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Abstract

In this thesis, the problem of detecting small particles dispersed in air is considered. A method
for the quantitative measurement of the particles, which is studied here, was developed at the
research institute CAESAR in the course of the European integrated project NANOSAFE2. We
investigate two issues: the transport of particles by air to a washing flask where the particles are
being immersed in water and motion of particles in water flowing through a wet cell having an
active boundary part responsible for the measurement.

For the transport of particles, a mathematical model that describes the evolution of the flow, the
motion of dispersed particles, and the interaction between particles and air is derived. Thus, this
model is related to a two-component flow problem. Under certain assumptions, the existence and
uniqueness of weak solutions to the governing initial-boundary value problem on a non-empty
time interval is shown. This result is established using a fixed-point technique.

For the measurement of particles, we first derive a coupled initial-boundary value problem
that describes the evolution of the flow, particle density, and surface mass density of measured
particles, and the interaction between particles and water. The surface mass density of measured
particles is described via a boundary condition of hysteresis type on the particle density posed on
the active part of the wet cell. To investigate the derived model theoretically, the influence of the
particles on the water is neglected. Thereby the whole problem is divided into two sub-problems,
the flow problem and the evolution of particle density, so that the velocity and pressure can be
found independently of the particle density. The existence of weak solutions is proved on a non-
empty time interval determined by the data of the flow problem. The uniqueness is proved under
the assumption that the divergence of the velocity field is essentially bounded. The existence and
uniqueness of weak solutions to the evolution of the particle density can be shown in the case of
arbitrary finite time intervals, provided that the velocity field is sufficiently regular.

Finally, the numerical simulation of the model of measurement in the case of full coupling
is described. We propose a scheme for the numerical solution of the model equations using
the finite element method. The numerical behavior of the proposed scheme is discussed for
some selected examples. First simulations of the measurement in the wet cell in two and three
dimensions are presented.
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It is a pleasure to thank Prof. Pavel Krejčí for writing a report on the thesis and helping me
with the “evolution of the particle density problem”. His insights in anisotropic embeddings
were essential to show the uniqueness of weak solutions to this problem.

My special thank goes to my colleague and carpool partner Jürgen Frikel for proofreading parts
of the manuscript, and for his patience in discussing about open questions with me. Thereby,
some problems could be solved on the way to the university or back.

I am thankful to Dr. Lope A. Flórez Weidinger and Dr. Luis Felipe Opazo from Göttingen for
providing me with several overview papers about aptamers and their possible applications.

Furthermore, I want to thank Florian Drechsler for proofreading parts of the manuscript and
correcting some of my mistakes in English.

My thank also goes to Prof. Hans Wilhelm Alt for the time he spent in discussions with me
and his helpful orientation.

I also want to thank the Chair of Mathematical Modeling at the Technical University of Munich
for providing a stimulating atmosphere, and the hard- and software I could use to complete the
thesis.

Moreover, I would like to acknowledge the support from the Foundation of German Business
(Stiftung der Deutschen Wirtschaft, sdw); I was granted a scholarship for doctoral candidates.

I am deeply thankful to my family for their support, patience and encouragement, when it was
needed.



Contents

Abstract iii

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Description of the detection procedure . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Brief overview of conventional models and methods . . . . . . . . . . . . . . . . 4
1.4 Objectives and description of the results obtained . . . . . . . . . . . . . . . . . 7

1.4.1 Derivation of mathematical models . . . . . . . . . . . . . . . . . . . . 8
1.4.2 Theoretical investigations . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.4.3 Numerical computations . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Derivation of mathematical models 12
2.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 Presentation of the mathematical models . . . . . . . . . . . . . . . . . . . . . . 14
2.3 Motion of weakly compressible fluids . . . . . . . . . . . . . . . . . . . . . . . 16
2.4 Transport of particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4.1 Motion of a single particle . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.4.2 Averaged motion of particles . . . . . . . . . . . . . . . . . . . . . . . . 20
2.4.3 Interaction with the liquid . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.4.4 A simplified model for the particle transport . . . . . . . . . . . . . . . . 25

2.5 Measurement of particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.5.1 Mathematical description of the active part of the wet cell . . . . . . . . 26
2.5.2 Evolution of the particle density . . . . . . . . . . . . . . . . . . . . . . 28
2.5.3 Influence of the particles on the liquid . . . . . . . . . . . . . . . . . . . 31

2.6 Physical constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.A The Transport Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.B The stress tensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.C Brownian motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.D The Boltzmann equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.D.1 Connection to macroscopic quantities . . . . . . . . . . . . . . . . . . . 42

3 Theoretical investigations 44
3.1 Summary of the chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.2 Used methods and conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.3 The transport problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.3.1 Representation of the pressure and the particle density . . . . . . . . . . 48
3.3.2 The convective term and the regularity of the right-hand side . . . . . . . 50
3.3.3 Existence and uniqueness of solutions to the auxiliary problem . . . . . . 51
3.3.4 Fixed-point method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

vi



Contents

3.4 The decoupled measurement problem . . . . . . . . . . . . . . . . . . . . . . . 60
3.4.1 The flow problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.4.1.1 Construction of approximate solutions . . . . . . . . . . . . . 62
3.4.1.2 A priori estimates . . . . . . . . . . . . . . . . . . . . . . . . 63
3.4.1.3 Passage to the limit and additional regularity . . . . . . . . . . 65
3.4.1.4 Regularity of the right-hand side . . . . . . . . . . . . . . . . 67
3.4.1.5 Fixed-point method . . . . . . . . . . . . . . . . . . . . . . . 71

3.4.2 Evolution of the particle density . . . . . . . . . . . . . . . . . . . . . . 75
3.4.2.1 Construction of approximate solutions . . . . . . . . . . . . . 77
3.4.2.2 A priori estimates . . . . . . . . . . . . . . . . . . . . . . . . 81
3.4.2.3 Passage to the limit . . . . . . . . . . . . . . . . . . . . . . . 87
3.4.2.4 Representation of the trace . . . . . . . . . . . . . . . . . . . 90
3.4.2.5 Uniqueness . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
3.4.2.6 An anisotropic embedding . . . . . . . . . . . . . . . . . . . . 95

3.A Elementary inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
3.B Gronwall type inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
3.C Hilpert’s inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
3.D Convergence theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
3.E Sobolev spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
3.F Embeddings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
3.G Results on the solvability of PDEs . . . . . . . . . . . . . . . . . . . . . . . . . 110

3.G.1 Elliptic problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
3.G.2 Monotone operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

3.H The conservation of mass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

4 Numerical Simulations 114
4.1 Discretization scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

4.1.1 Discretization of the particle system . . . . . . . . . . . . . . . . . . . . 116
4.1.2 Discretization of the flow problem . . . . . . . . . . . . . . . . . . . . . 117

4.2 Computation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
4.2.1 Regularization of the hysteresis boundary condition . . . . . . . . . . . . 120
4.2.2 Comparison of geometries . . . . . . . . . . . . . . . . . . . . . . . . . 125
4.2.3 Simulation in two dimensions . . . . . . . . . . . . . . . . . . . . . . . 127
4.2.4 Simulation in three dimensions . . . . . . . . . . . . . . . . . . . . . . . 130

Conclusion 132

vii





1 Introduction

The present thesis is devoted to the detection of small particles. This problem has been studied at
the research institute CAESAR in the course of the European integrated project NANOSAFE2 –
Safe production and use of nanomaterials. Within the project, CAESAR investigated the possi-
bility of capturing and detecting nanoparticles immersed in aqueous solvents by means of tech-
niques based on specifically binding peptides, see [69]. We will focus on two components of the
developed technique and consider mathematical modeling and analysis of the derived models.
We will then present results of numerical simulations of one of these models.

We will distinguish the problems of detection and pure transport of particles in a flowing
medium. The reason for this distinction is that the detection procedure developed at CAESAR is
divided into two sub-processes: the washing out of particles and their measurement. These two
sub-processes explained in Section 1.2 are modeled in different ways.

This chapter is structured as follows: the motivation is given in Section 1.1, the detection
method developed at CAESAR is described in Section 1.2. Some conventional models and
methods are reviewed in Section 1.3, and the objectives of the thesis and the contents of the
following chapters are summarized in Section 1.4.

1.1 Motivation

The detection of particles gained special interest in the last decades when the possibilities of
nanotechnology were discovered. The ability to tailor material properties at nanoscale enabled
the engineering of novel materials that have entirely new properties, which led to new research ar-
eas and to the development of new commercially available products. With only a reduction of size
the fundamental characteristics of substances such as electrical conductivity, colour, strength, and
melting point – properties which are usually considered constant for a given material – can all
change. Therefore, nanomaterials show promising application potentials in a variety of fields
such as chemistry, electronics, medicine, cosmetics or the food sector. For example, metal oxide
nanopowders have found already increasing applications in commercial products like sunscreens,
cosmetics, catalysts, functional coatings, medical agents, etc.

However, not only its large potential was recognized but also sceptical voices concerning
nanotechnology could be heard in public. One of the sharpest critics of industrial nanoparticle
applications is the non-governmental organisation ETC Group. However, the fear of risk asso-
ciated with nanoparticle use was mainly caused by limited scientific knowledge about potential
side effects of nanoparticles in the human body and the environment due to their special proper-
ties. They may, for example, penetrate into body cells and break through the blood-brain barrier
[42]. See also [68].

The objectives of the European project NANOSAFE were to assemble available information
from public and private sources on chances and possible hazards involving industrial nanopar-
ticle production, to evaluate the risks to workers, consumers and the environment, and to give
recommendations for setting up regulatory measures and codes of good practice to obviate any
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1 Introduction

danger [42]. The research on nanoparticles was continued in a second project, NANOSAFE2.
Within NANOSAFE2, 25 partners from industry, research centers and universities work on four
sub-projects: detection and characterization techniques, health hazard assessment, and develop-
ment of secure industrial production systems and safe applications, societal and environmental
aspects.

As one of the participants, the research institute CAESAR has developed a peptide based
biosensor for detecting nanoparticles. Besides this approach, other detection methods have been
investigated, for example, light scattering-based techniques or techniques based on different
physical principles such as electrostatics, thermophoresis, bubbling, vapour condensation, etc.
[70].

In the present thesis, two steps of the detection procedure developed at CAESAR will be
considered from the mathematical point of view. We will derive mathematical models to describe
the physical processes, analyse the solvability issue, and present simulation results for one of the
derived models. Before describing the detection plant we are going to model, we mention some
“classical applications” of nanomaterials.

The particular properties of small particles have been exploited by humans since prehistory
but without specific knowledge. Famous and perhaps surprising examples are objects made of
clay, a highly stable blue pigment the Mayas used to paint their figures, Damascus blades, or the
brilliant red colour of some church windows.

Clay largely consists of the mineral kaolinite, which has the structure of thin platelets, only a
few tens of nanometers thick. These slide readily over each other when the mineral has absorbed
water whereby clay becomes smeary and easily shapeable. From the eighth century on the Mayas
were able to paint their clay figures with a blue pigment that could resist the ravages of time.
They synthesized an inorganic-organic nanocomposite consisting of palygorskite, another clay
mineral also known as “mountain leather”, and an organic indigo pigment. This highly stable
old pigment is now again being produced in the USA by MCI Mayan Pigments, Inc. Damascus
blades were renown in the Middle Ages for their filigree markings, their sharpness, and their
fracture toughness. For a long time modern metallurgy could not find a scientific explanation for
these properties. Only at the end of 2006, carbon nanotubes could be found in the blades. This
nanowire reinforcement at least explains their fracture toughness. In the Middle Ages church
windows were coloured using an extremely fine, nano-scale dispersion of gold. This causes a
brilliant red colour that endures for centuries [53].

1.2 Description of the detection procedure

Figure 1.2.1 shows schematically a device developed at CAESAR for the detection of particles.
The considered device was constructed in particular to specifically detect large organic molecules
in air. An organic molecule is a chain consisting of many links connected by flexible bonds so
that the molecule can assume different configurations.

Before such particles can be detected, they are prepared as shown in Figure 1.2.1.b. Air
containing particles is injected into a vessel. The air flow from the inlet to the outlet transports
the particles into the water quench of a washing flask. Concurrently a loudspeaker generates
acoustic waves to prevent the particles from the deposition on the bottom of the vessel. In the
washing flask, the particles are washed out of the air into the water when the air bubbles rise to
the water surface. After a certain time, the water contains a significant amount of particles, and
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1.2 Description of the detection procedure
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Figure 1.2.1: Scheme of the device constructed for the detection of particles

the obtained dispersion is fed into a biosensor where the particles are detected.
As shown in Figure 1.2.1.a, the sensor consists of a wet cell having an active boundary part

providing the measurement. When the dispersion flows through the wet cell, the particles arriving
at the active part are trapped until the sensor is saturated. The trapped mass can be measured,
and the concentration of particles in the dispersion can be estimated.

�
�
���

Input-
electrode

6

Quartz
crystal

J
J
JJ]

Output-
electrode






�

Aptamers
@
@@R

Fluid containing
Nanoparticles

Figure 1.2.2: Scheme of the active part

A schematic sketch of the active part is shown Figure 1.2.2. In order to detect the particles,
special molecules, called aptamers, are immobilized on a quartz crystal by means of excita-
tion and detection electrodes. Free ends of the aptamers are receptors that can specifically bind
particles form the immersion. Once a particle is attached to an aptamer, it cannot be released
anymore. To measure the amount of trapped particles, acoustic shear waves are generated by the
excitation electrodes via piezoelectric excitation. The change of the surface mass load causes
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1 Introduction

a phase change in the waves travelling along the aptamer layer, and this phase change can be
measured by the detection electrodes.

1.3 Brief overview of conventional models and methods

From the description of the detection method in Section 1.2, it is clear that many interesting
and challenging issues related to the whole detection plant (see Figure 1.2.1) or parts of it can
be considered to get a better understanding of the physical processes occurring during the mea-
surement. The aim of this section is to describe briefly some conventional notions, models and
methods that we consider interesting as a general state of knowledge. However, not all of these
topics are directly applicable to the problem considered in the present thesis.

Evolution of mixtures. One topic which is definitely related to the device shown in Figure
1.2.1 is the flow of mixtures. As described in Section 1.2, the fluids flowing through each unit
of the detection plant consist of at least two components: an air-particle mixture in the vessel,
a water-particle mixture in the wet cell, and an air-water-particle mixture in the washing flask.
A variety of models for the description of multi-component flow have been developed because
each mixture shows specific properties. There are even mixtures where different derivations of
governing equations yield different results. An example of such a case will be given below for a
mixture of discrete particles contained in a continuum fluid.

But also for “simple mixtures” consisting of two continuum components, several scenarios can
be distinguished: the components can be miscible (up to certain proportions) or immiscible. For
example, ethyl alcohol and aqueous salt solutions (sulphates of zinc, copper, etc.) are miscible in
all proportions (see [33, X.3]), whereas water and oil are immiscible. Important situations where
the flow of immiscible liquids occurs are, for example, oil recovery, lubricated pipelining, etc.
An essential difference between mixtures of immiscible and miscible fluids are diffusive effects
occurring when miscible fluids come in contact with each other. Thus, even if no outer force
or pressure gradient is applied, the mixture can be in a dynamical state due to the composition
gradient.

One possibility to describe the flow of miscible liquids is to derive a system of equations in
terms of variables such as the volume fraction of one of the components φ, mixture density
ρ, mass averaged velocity U , mixture pressure p, and temperature θ. The system consists of a
continuity equation for ρ, U , a drift diffusion equation for φ, U , equations of motion for ρ, U , p
(and possibly φ, depending on the stress tensor), and an energy equation for θ.

The stress induced by the composition gradient or density gradients can be modeled using the
Korteweg stress, or the traceless version of it. The Korteweg tensor is given by the formula (see
[33, X.3, X.4])

TKij = δ1
∂ρ

∂xi

∂ρ

∂xj
+δ2

∂φ

∂xi

∂φ

∂xj
+γ1

∂2ρ

∂xi∂xj
+γ2

∂2φ

∂xi∂xj
+γ3

(
∂ρ

∂xi

∂φ

∂xj
+
∂φ

∂xi

∂ρ

∂xj

)
. (1.1)

The situation becomes even more complicated if phase changes have to be considered. A
detailed derivation of models for (im)miscible multi-component and/or multi-phase flows, solu-
tion techniques and extensive lists of possible applications can be found, for example, in books
[32, 33, 13]. The evolution of mixtures of (dilute) gases can also be described by Boltzmann
equations for multiple species [11, 12].
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1.3 Brief overview of conventional models and methods

Next, we mention briefly the example where different derivations of governing equations yield
different results for the same mixture. Following [31], we consider an incompressible fluid-
particle suspension and compare the equations given by mixture theory and ensemble averaging.
Let ρ, V , P, T∗ be the true density, velocity, pressure, and stress in the mixture, and let the
indices s, f indicate variables of the solids and the fluid, respectively. Further denote the solids
fraction by φ and the fluids fraction by ε = 1 − φ. If body forces are neglected, the classical
equations of mixture theory for two incompressible constituents are given by

εt + div (εvf ) = 0,
φt + div (φvs) = 0,

ρf
[
(εvf )t + div (εvf ⊗ vf )

]
= mf + div Tf

ρs [(φvs)t + div (φvs ⊗ vs)] = ms + div Ts,

mf +ms = div S,

(1.2)

where mf , ms are the forces of interaction between the constituents and S is an interaction
stress.

Two fluid equations can also be derived by ensemble averaging. In this approach one defines
the indicator function

H(x) =

{
0 if x is in solid,
1 if x is in fluid,

and <> designates the operation of taking the average over many identical trials at x at time t.
Then the fluid and solid fractions are given by

〈H〉 = ε(x, t) = 1− φ(x, t),
〈1−H〉 = 1− 〈H〉 = φ(x, t).

If V (x, t) is the true velocity, then the averaged fluid and solid velocities V f and V s, are given
by

V f =
〈H V 〉
〈H〉

=
〈H V 〉
ε

, V s =
〈(1−H)V 〉

φ
.

The composite and mass averages for a quantity f are defined by

fc = 〈f〉 = ε ff + φ fs,

fm =
〈ρ f〉
〈ρ〉

=
(ρ f)c

ε ρf + φ ρs
.

To formulate the equations of motion, we additionally introduce a one-dimensional Dirac’s
delta function δΣ(x) across the solid-fluid interface. Let ν be the outward normal to the solid,
and T∗ · ν = t the traction. Then the following equations can be derived (body forces are
neglected again)

εt + div (εV f ) = 0,
φt + div (φV s) = 0,

(ρc)t + div (ρc V m) = 0,

ρf [(εV f )t + div〈H V V 〉] = div
(
εT∗f

)
− 〈δΣ t〉,

ρs [(φV s)t + div〈(1−H)V V 〉] = div (φT∗s) + 〈δΣ t〉.

(1.3)
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1 Introduction

Supposing that mixture theory and ensemble averaging yield the same results and comparing
the systems (1.2) and (1.3), we get the relations

V f = vf , V s = vs, εT∗f = Tf , φT∗s = Ts,

mf = ρf div (εvf ⊗ vf − 〈H V ⊗ V 〉)− 〈δΣ t〉,
ms = ρs div (φvs ⊗ vs − 〈(1−H)V ⊗ V 〉) + 〈δΣ t〉,

div S = div
(
ρf εvf ⊗ vf + ρs φvs ⊗ vs −

〈
[ρf H + ρs(1−H)]V ⊗ V

〉)
.

(1.4)

Still, there is no contradiction between the equations of mixture theory and the ensemble aver-
aged equations.

Now, assume that the fluid phase is Newtonian,

T∗ = −P I + 2µD[V ] in the fluid,

and the solid phase is a rigid body for which

D[V ] = 0 on solids,

where D[V ] = 1
2

(
∇V + [∇V ]T

)
is the rate of strain.

The stress for the fluid phase in mixture theory is given by

Tf = −ε pf I + 2 ε µD[vf ].

This differs from the fluid stress obtained from ensemble averaging

Tf = εT∗f = 〈H T∗〉 = −ε pf I + 2 ε µD[vc].

Here, the ensemble averaged pressure in the liquid (Pf ) is identified with the liquid pressure in
mixture theory, i.e. Pf = 〈H P 〉/ε = pf .

Finally, note that other averaging procedures are possible, and, for example, soft spatial aver-
aging yields the same result for the stress tensor in the fluid as in the case of ensemble averaging,
see [31]. A similar averaging method will be used in Sections 2.4.4 and 3.3 to regularize the
velocity field in the continuity equation for the particles.

Single-Phase Flow. Similar to the case of mixtures, divers models exist also for one-component
flows. One can distinguish between incompressible and compressible fluids (liquids and gases),
and the compressible ones can be regarded as inviscid (called Euler or ideal fluids) or viscous
and thermally conducting (Navier-Stokes-Fourier fluids). Further refinements are possible. Dif-
ferences between the corresponding models consist in the number of variables used to describe
the flow, and the state equations, which are necessary to close the models.

Let us note that the consideration of the flow of a single Newtonian phase is a challenging
issue concerning the mathematical analysis and numerical computations. To substantiate this
statement we refer to the preface of [40] where we can find the quote: “More than two centuries
after this introduction by L. Euler (and later by Navier) of the fluid mechanics equations, much
remains to be understood mathematically even if considerable progress has been (slowly) made.”
As for the numerical side, see the introduction in [19]: “Many times significant errors have been
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1.4 Objectives and description of the results obtained

made when using CFD software packages without a solid background in fluid mechanics and
numerical analysis.” The abbreviation CFD stands for computational fluid dynamics. We will
not go into details but mention that, for certain applications in CFD, the parallelization is very
important to reduce the running time for realistic simulations in large domains on fine grids.

The reader interested in mathematical or computational methods for single-phase flows is re-
ferred to books [17, 18, 19, 36, 38, 40, 41, 47, 60].

Aptamers. Aptamers are oligonucleic acid or peptide molecules that bind to a specific target.
Besides their application in the biosensor shown in Figure 1.2.2, they can be used in a variety of
biochemical and clinical applications. Let us mention a few of them to indicate their potential.

Biochemical applications of aptamers are, for example, the identification of biomolecules that
can point out various diseases. It is possible to select aptamers that bind to a specific cell type or
subpopulation of malignant cells (for example, tumor cells), and, in individual cases, they have
already been used successfully to inhibit the virulence of such targeted microorganisms. Such
a potential inhibition property makes aptamers in particular useful to validate the function of
their targets in cell-culture experiments and in vivo. These and other possible applications are
discussed in [44].

Further applications of aptamers include the inhibition of human thrombins [7], synchronous
cancer imaging, therapy, and sensing of drug delivery [5], the replacement of antibodies in diag-
nostics [30], the application of peptide atpamers in molecular medicine [29], and the application
as therapeutics [46].

The binding property with high specificity to the target is already exploited during the pro-
duction of aptamers. Aptamers are produced by systematic evolution of ligands by exponential
enrichment (SELEX) process. In this process first a combinatorial nucleic acid library (DNA or
RNA) with a large number of random sequences is synthesized. The library is then incubated
with the desired target molecule under conditions suitable for binding. Next the unbound nucleic
acids are partitioned from those bound specifically to the target molecule which are then eluted
from the target molecule and amplified. This procedure is reiterated until the resulting sequences
are highly enriched [26, 67]. An early description of aptamer production can be found in [15, 7],
and further description of the separation methods used in SELEX in [24].

The active part. Finally, we note that Figure 1.2.2 is a simplified scheme of an acoustic wave
sensor. A more thorough description of the mathematical modeling, analysis and numerical
simulation can be found in [50].

1.4 Objectives and description of the results obtained

In this thesis we consider processes occurring in the vessel and the wet cell shown in Figure 1.2.1.
The objectives of the thesis include the following three aspects: mathematical modeling, analysis
and numerical simulations. This means, our overall goal is to derive mathematical models that
have the following features.

• They describe the evolution of the particles in the flowing medium and, in case of the wet
cell, the amount of particles bound by the active part.
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• They are formulated as initial-boundary value problems for which the well-posedness, at
least the existence and uniqueness of generalized solutions, can be established.

• They can be solved numerically without “too high programming and computing efforts”.

As we will consider models that have such features, it is clear that we cannot use the models
described in Section 1.3 in their full strength. Let us mention some of the difficulties. If the
equations of mixture theory were used, the Korteweg tensor (1.1) should to be included in the
stress term of the momentum equations. This causes problems in the mathematical analysis,
because we do not know how to derive suitable a priori estimates in this case.

If averaged equations were used, further modeling or guessing is necessary, as the system
is not closed. Considering ensemble averaging, for example, we see that the relations (1.4)
contain averages of products, which cannot be directly identified with macroscopic variables.
The ensemble average of a product is not the product of ensemble averages, so that these terms
need further modeling [31, 33].

For these reasons, we will consider simpler models than those mentioned in Section 1.3. In
the following, the vessel will be referred to as “the transport part” and the wet cell as “the
measurement part”. Thus, the model related to a system of governing equations with initial
and boundary conditions for the transport part is called “transport problem”. The model of
the measurement part is called “coupled measurement problem” or “decoupled measurement
problem” depending on the accounting for the mutual interaction between the particles and the
fluid. The term “decoupled" means that the problem consists of two subproblems: the “flow
problem” and the “evolution of the particle density”, where the motion of particles does not
affect the total flow.

All models are formulated as initial boundary value problems in such a way that the amount
of particles which leaves the vessel or wet cell, or adhere to the active part of the wet cell, is
determined by the amount of particles entering the plant.

The present thesis is divided into three parts: the derivation of mathematical models, their
theoretical investigation, and numerical simulations. First, we derive fully coupled equations for
the transport and measurement problems. Then we introduce certain simplifications to obtain a
relaxed transport problem and a decoupled measurement problem. For these problems we will
show the existence and uniqueness of generalized solutions. Finally, the coupled measurement
problem will be solved numerically.

The Subsections 1.4.1, 1.4.2, and 1.4.3 summarize the content of the subsequent chapters.

1.4.1 Derivation of mathematical models

Chapter 2 is devoted to the derivation of the mathematical models. Starting with the consideration
of compressible Newtonian fluids we introduce the concept of weak compressibility to obtain a
system of partial differential equations that, in combination with initial and boundary conditions,
is called the flow problem. It is formulated in (2.1). The equations look similar to the Navier-
Stokes equations for incompressible fluids. The difference is that small volume changes are
included in the model instead of assuming complete incompressibility.

For the description of the transport of particles, we will first derive the system of equations
(2.46). It consists of two continuity equations, one for each component, and 2N equations of
motion, where N is the dimension of the considered space. The interaction between the compo-
nents is modeled by interaction terms in the equations of motion. To derive the equations we first

8



1.4 Objectives and description of the results obtained

average the equations for the velocity of single particles presented in [64] to obtain the momen-
tum conservation for the particle flow. Using results on the Boltzmann equations for mixtures,
we obtain a continuity equation for the particle flow and an expression for the influence of the
particle flow on the liquid flow. To this end, simplifying assumptions on the stress tensor are
necessary.

For theoretical investigations, we simplify the above sketched equations for the transport of
particles by using expansion with respect to a small parameter and regularizing the velocity field
in the continuity equation for the particle flow. Thereby the velocity of particle flow is eliminated,
and the resulting system of equations consists of two mass conservations and a global momentum
conservation both for the particle and fluid flow. The equations are given in (2.2).

For the measurement of particles, the equations describing the coupled measurement problem
are given in (2.3). The system of equations consists of the mass conservation law for weakly
compressible liquids, the mass conservation for the particle flow in the form of drift diffusion
equation, and the global momentum conservation (particles and fluid). The surface density of
adhered particles on the active part of the wet cell is an additional unknown, which is necessary
to describe a boundary condition of hysteresis type on the active part of the wet cell.

To derive this special boundary condition, the mass flux of particles arriving at the active part
is related to the rate of change of the surface mass density of adhered particles. The properties
of the aptamers, non-detachment of adhered particles and saturation if all aptamers are occupied,
are modeled a boundary operator of hysteresis type, see (2.54).

The conservation equation for the particles is derived using Smoluchowski’s approximation
for the Langevin equations. This results in a drift diffusion equation for the particle density,
where the drift is determined by the velocity of the ambient liquid. Thereby, the mass flux of
particles towards the active part of the wet cell is given in terms of the gradient of the particle
density. Completed with boundary conditions on the inlet, outlet and solid walls of the wet cell,
the derived problem is called evolution of the particle density (2.5). Combining the evolution
of the particle density with the flow problem (to obtain the velocity of the liquid) yields the
decoupled measurement problem (2.4). This problem will be used for theoretical investigations.

To include the influence of the particles on the liquid we use the conservation of the total
momentum as prescribed by mixture theory. Additionally, we can identify the mixture theory
variables with the ones used for the decoupled model. Finally, we obtain practically the same
structure of the equations as in the case of decoupling. The sole difference is an additional
convective term appearing in the momentum equation and describing the influence of the particle
flow on the fluid. This coupled measurement problem will be investigated numerically.

1.4.2 Theoretical investigations

Chapter 3 contains the theoretical part of this thesis. It is devoted to the investigation of the
transport problem (see Section 3.3), and the decoupled measurement problem (see Section 3.4).
The latter one is split into the flow problem and the evolution of the particle density. Therefore the
transport problem, the flow problem, and the evolution of the particle density will be considered
separately.

For each of these three problems, we prove the existence and uniqueness of weak solutions.
The existence of weak solutions for the decoupled measurement problem follows from the exis-
tence results on the flow problem and the evolution of the particle density. To obtain the unique-
ness of solutions, we have to assume additional regularity of the solutions of the flow problem.
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The transport problem is considered in Section 3.3. This problem consists of the continuity
equations for each component, a global momentum conservation, initial values for the pressure,
velocity, particle density, and Dirichlet boundary conditions for the velocity. We prove the ex-
istence of a non-empty time interval such that the problem admits unique weak solutions under
the following requirements: The considered domain Ω ⊂ RN is bounded and has a C2 boundary,
the initial functions for the pressure and velocity are in H1(Ω) and H1(Ω)N , respectively, the
initial value of the particle density is Lipschitz continuous with its support being separated from
the boundary by a positive distance, and the boundary value of the velocity is the trace of an
H2(Ω)N -function. For the precise formulation see Definition 3.3.1 and Theorem 3.3.2.

The flow problem is considered in Section 3.4.1. It consists of the continuity equation, the
equations of motion and Dirichlet boundary conditions for the velocity. For this problem, we
show the existence of a non-empty time interval on which unique weak solutions exist. This
problem seems simpler than the previous one but the treatment of the evolution of the particle
density requires more regularity of the velocity field. In order to obtain a sufficiently regular
solution, we suppose that the initial value of the pressure is in H1(Ω), the initial value of the
velocity inH2(Ω)N , and the boundary value for the velocity is the trace of anH2(Ω)N -function.
Again, we assume that the domain Ω ⊂ RN is bounded and has a C2 boundary. See Definition
3.4.2 and Theorem 3.4.4 for the precise result.

The evolution of the particle density problem is investigated in Section 3.4.2. This problem
consists of a drift-diffusion equation, initial values for the particle density and the surface mass
density of adhered particles, a Neumann-type boundary condition on the outlet and solid bound-
ary of the wet cell, a Robin-type boundary condition on the inlet, and a boundary condition
of hysteresis type at the active part that relates the particle density to the surface mass density.
This problem will be considered for H1(Ω)-initial values and constant-in-time inflow of parti-
cles through the inlet. In contrast to the other problems, we show the existence and uniqueness
of weak solutions in bounded Lipschitz domains on arbitrary time intervals provided the veloc-
ity field is sufficiently regular. The results obtained on the flow problem guarantee sufficient
regularity for the existence of weak solutions. As for the uniqueness it can be proved under
stronger assumptions. See Definition 3.4.19 and Theorem 3.4.21 for the exact formulation. An
important tool to investigate the evolution of the particle density is a special embedding theorem
in anisotropic Sobolev spaces, see Definition 3.4.33 and Theorem 3.4.34. The embedding was
communicated to me by Pavel Krejčí.

Finally, Theorem 3.4.1, which is a consequence of Theorems 3.4.4 and 3.4.21, states the main
result for the decoupled measurement problem.

1.4.3 Numerical computations

In Chapter 4, the coupled measurement problem is solved numerically. We decided to consider
this problem because of the following aspects: The structure of the system is consistent with
other conventional theories, it is still close to the decoupled measurement problem that can be
analyzed theoretically (see Section 3.4), the nonlinear boundary condition makes it an interesting
problem, and it can be treated numerically using conforming finite elements (FE).

To explain the first aspect, we notice that the system of equations in the coupled measurement
problem is similar to the equations of mixture theory and to the macroscopic balance equations
derived from Boltzmann equations for mixtures. That is, the system consists of continuity equa-
tions for each component and the conservation of the total momentum. In contrast, the decoupled
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measurement problem contains only the influence of the liquid on the particles, and therefore,
only the momentum of the liquid is conserved.

Since the evolution of the particles is described via a diffusion equation, conforming FE are
appropriate for the numerical treatment of the coupled measurement problem, at least, if the dif-
fusion coefficient is large and the discretization is sufficiently fine. Here, continuous piecewise
linear shape functions will be used on a triangular (tetrahedral) mesh in two (three) dimensions.
This method is not suitable for the numerical solution of the transport problem, where the hyper-
bolic continuity equation appears. To solve such equations, different FE techniques, for example,
streamline diffusion, Galerkin least squares or discontinuous Galerkin FEM, or other discretiza-
tion methods like finite difference or finite volume methods are necessary, see [19, Chapters
3,4].

In Section 4.1 we present a discretization scheme for the coupled measurement problem. The
scheme is split into the computation of the variables corresponding to the fluid flow (velocity and
pressure), and the variables corresponding to the particles (volume density and surface density on
the active part of the wet cell). The reason for this separation is twofold. First, the computation of
the particle variables requires an iterative method because of the nonlinear boundary condition on
the active part of the wet cell. Second, numerical computations show that a small time step in the
discretization of the particle variables is necessary to avoid (or at least to dampen) oscillations.
This effect can be explained as follows. In the terminology of [19, Section 4.1.9], the decoupled
measurement problem becomes singularly perturbed for diffusion coefficients in the range given
by Table 2.6.4, thus a sufficiently fine discretization is necessary to avoid the Gibbs phenomenon.
Further, regarding the beginning of Section 4.2 in connection with Lemma 3.4.22, we see that
a bound on the time step for the particle variables in terms of the diffusion coefficient already
occurs during the theoretical investigation of the evolution of the particle density. Therefore,
computational effort can be saved if the flow variables are not computed in every time step. The
scheme is implemented in Scheme 4.1.1, page 119.

Finally, numerical results will be presented in Section 4.2. The computations are carried out
using the FE program Felics which is developed at the Chair of Mathematical Modeling at Tech-
nische Universität München. The first example in Section 4.2.1 considers a closed wet cell,
where the drift velocity is set to zero. It illustrates the sensitivity of the proposed scheme with
respect to the time step length, and we propose a regularization of the hysteresis boundary con-
dition that enables us to use larger time steps. This is useful when physically realistic scenarios
are considered.

Next, the flow of particles through an open wet cell without any active part is considered
in Section 4.2.2. It occurs that the main stream of particles leaves the wet cell and almost no
particles arrive at the boundary. Thus, in subsequent examples, the active part will be positioned
on an obstacle in the interior of the wet cell.

In Sections 4.2.3 and 4.2.4, simulations of a wet cell are presented in two and three di-
mensions, respectively. Since the diffusion coefficient of particles in water is extremely small
(< 10−16 m · s−2, see Table 2.6.4), stabilization techniques are necessary to obtain realistic re-
sults in this case. To avoid such difficulties, we consider air instead of water, which provides, for
example, the diffusion coefficient 5.31 · 10−8 m · s−2 for spherical titanium dioxide particles of
diameter 0.01 µm.
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In this chapter, we give the mathematical formulation of the models discussed in Chapter 1.
They describe the evolution of a two-component mixture. The air in the vessel or the water in
the wet cell considered as conventional fluids will be referred as the first component or phase.
The particles will be considered as a special dilute fluid and referred as the second component or
phase. In contrast to water or air, the particles are assumed to be rarefied enough so that they do
not exert pressure or stress on each other.

Similar to [17, 18, 47, 40, 58] we consider the flow under the continuum hypothesis. This
means that the smallest considered parts of the material are so called “fluid particles”, see e.g.
[58, 1.1]. A fluid particle is not a rigid particle but an ensemble of molecules. Such an ensemble
has to contain enough molecules to ensure a proper averaging of physical quantities. On the other
hand, it has to be small compared to the region where the flow is considered so that macroscopic
quantities like density, velocity or temperature can be viewed as continuous functions of points
associated with fluid particles.

Analogously to the method of fluid particles, we will describe the solid particle medium as a
continuum consisting of small volumes, where each volume contains sufficiently large number of
solid particles. It should be noted that the points of this continuum are sufficiently "larger" than
those for the fluid continuum because there are much more molecules than particles in a fixed
volume. Therefore, we may average fluid-related physical quantities appearing in equations for
particle flows.

This chapter is structured as follows. In Section 2.1, the notation is given. Section 2.2 presents
(without derivation but just for reference) mathematical formulations of all models considered in
the thesis. The derivation is given later. In Section 2.3, the motion of weakly compressible fluids
is considered, and equations for the flow problem are derived.

Section 2.4 is devoted to the transport problem. In Sections 2.4.1 – 2.4.3 we will derive a
system of equations describing the transport of particles, and in Section 2.4.4 some assumptions
will be introduced to obtain the final equations for the transport problem.

The coupled and decoupled measurement problems are considered in Section 2.5. Relations
between the volume density of particles in the wet cell and the surface density on its active part
are derived in Section 2.5.1. In Section 2.5.2 equations for the evolution of the particle density
are derived, which, in combination with the flow problem, yields the mathematical model for the
decoupled measurement problem. In Section 2.5.3, the influence of the particles on the fluid is
modeled, and the derivation of equations for the coupled measurement problem is completed.
Section 2.6 contains values of physical constants. In the appendix, some useful aids from the
literature are summarized.

2.1 Notation

Both, air in the vessel and water in the wet cell (see Section 1.2), will be referred as “liquid” or
“fluid”, even though air at standard conditions is gaseous. Thus we can consider liquid of fluid
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flow, or particle flow, or liquid-particle flow.
The bold letters U and V denote the velocity fields of the liquid and particles, respectively; p

and Π denote the pressure and stress tensor, respectively. Proper densities are denoted by ρ, and
physical densities by ρ. For example, if ρp is the proper density of the particles and φ the volume
fraction of the particles, then the physical density ρp is given by ρp = ρp · φ.

Let Ω denote an open subset in RN , N ∈ {2, 3} (the region where the flow is considered); ∂Ω
the boundary of Ω; and ν outward directed normal unit vectors on ∂Ω. The time interval where
the problems are considered is denoted I = [0, T ], T > 0. If not stated differently x denotes a
point in space (x ∈ Ω) and t a time instant (t ∈ I). It is self-evidently which physical quantities
are considered as functions of (x, t). Inlet and outlet of the vessel or wet cell are assumed to be
disjoint subsets of the boundary. They are denoted by Γin and Γout, respectively. The active part
of the wet cell is denoted by Γ, and we assume Γ ⊂ ∂Ω \ (Γin ∪ Γout).

For two vectors a, b ∈ RN , with the components aj , bj , j = 1, ..., N , the scalar product and
tensor product are

a · b =
N∑
j=1

aj bj , a⊗ b = (aj bk)jk , j, k = 1, ..., N,

and, for two matrices A, B ∈ RM×N

A : B =
M∑
j=1

N∑
k=1

ajk bjk.

For a function ρ : Ω× I → R, the gradient of ρ (the column vector) and the partial derivative
with respect to time will be denoted by

∇ρ(x, t) =
∂ρ

∂x
(x, t) =

(
∂ρ

∂x1
, ...,

∂ρ

∂xN

)T
, ρ′(x, t) = ρt(x, t) =

∂ρ

∂t
(x, t),

and for U : Ω× I → RN the gradient (Jacobi matrix) and divergence by

∇U(x, t) =
(
∂Uj
∂xk

(x, t)
)

=
(
∂U

∂x1
, ... ,

∂U

∂xN

)
, divU =

N∑
j=1

∂Uj
∂xj

.

If Π is a tensor of the second order (a matrix), depending on x or (x, t), then the divergence
div Π denotes the vector whose components are the divergences of the row vectors

div Π =

 N∑
j=1

∂Π1j

∂xj
, · · · ,

N∑
j=1

∂ΠNj

∂xN

T

.

We assume that the liquids under consideration are viscous and Newtonian, which means that
the stress is related to the pressure and velocity by

Π = (−p+ λdivU) I + µ(∇U +∇UT ) and div Π = −∇p+ µ∆U + ξ∇divU ,

where µ, λ are constants depending on the liquid, ξ = λ+ µ with µ, ξ > 0, see Theorem 2.B.3
and Remark 2.D.1.
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2.2 Presentation of the mathematical models

First remember that we refer to the vessel shown in Figure 1.2.1.b as to the transport part of
detection. The wet cell shown in Figure 1.2.1.a is associated with the measurement part of
detection.

Throughout the thesis, we assume that liquids are weakly compressible. The flow of weakly
compressible media is described by the following flow problem:

γ pt + divU = 0 in Ω× (0, T ),

ρ0U t + ρ0 (U · ∇)U − div Π = f in Ω× (0, T ),

U = U b on ∂Ω× (0, T ),

U(x, 0) = U0(x), p(x, 0) = p0(x) for t = 0.

(2.1)

The theoretical investigation of (2.1) is given in Section 3.4.1.
To describe the transport part mathematically, we first derive the following system of equa-

tions:
γ pt + divU = 0,

ρ0U t + ρ0 (U · ∇)U − div Π + α 〈ρp〉 (U − 〈V 〉) = f ,

〈ρp〉t + div (〈ρp〉 〈V 〉) = 0,

〈V 〉t +
(
〈V 〉 · ∇

)
〈V 〉 − α

(
U − 〈V 〉

)
= 0,

where 〈V 〉 and 〈ρp〉 denote the averaged velocity and density of the particle component. In order
to deduce theoretical results (see Section 3.3), the equations are simplified to obtain the following
initial boundary value problem:

γ pt + divU = 0 in Ω× (0, T ),

(ρ(0))t + div
(
ρ(0)U∗

)
= 0 in Ω× (0, T ),(

ρ0 + ρ(0)
)

(U t + (U · ∇)U))− div Π = f in Ω× (0, T ),

U = U b on ∂Ω× (0, T ),

U(x, 0) = U0(x), p(x, 0) = p0(x), ρ(0)(x, 0) = ρ0(x) for t = 0.

(2.2)

Here ρ(0) denotes an approximation to the particle density 〈ρp〉, and we assume that ρ(0) satisfies
the continuity equation for a smoothed velocity fieldU∗ = σδ∗U , where σδ is a fixed smoothing
function. During the theoretical investigation, we assume additionally that the support of ρ0 is
separated from the boundary ∂Ω by a positive distance so that, for small times, no boundary
conditions for ρ(0) are necessary. System (2.2) is called the transport problem.

To be able to consider an operator boundary condition in the wet cell, we take the diffusion of
particles into account and derive a drift-diffusion equation. Assume that the velocity field on the
boundary of the wet cell U b is known, and

U b · ν ≤ 0 on Γin,

U b · ν ≥ 0 on Γout,

U b = 0 on ∂Ω \ (Γin ∪ Γout).
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The following equations describe the physical processes in the wet cell:

γ pt + divU = 0 in Ω× (0, T ),

(ρp)t + div (ρpU)− β∆ρp = 0 in Ω× (0, T ),

ρ0U t + div
(
U ⊗

[
(ρp + ρ0)U − β∇ρp

])
= f + div Π in Ω× (0, T ),

U = U b on ∂Ω× (0, T ),

−[ρpU b − β∇ρp] · ν = −gpU b · ν on Γin × (0, T ),

−∂νρp = 0 on ∂Ω \ (Γ ∪ Γin),

−β ∂νρp = (ηp)t, ηp = Ap(ρp) on Γ× (0, T ),

U(x, 0) = U0(x), p(x, 0) = p0(x), ρp(x, 0) = ρ0
p(x) for t = 0 in Ω,

ηp(x, 0) = η0
p(x) for t = 0 on Γ.

(2.3)

Thus, the system describes the coupled measurement problem. It is used for numerical com-
putations in Chapter 4. In (2.3), ηp denotes the surface mass density of particles on the active
part of the wet cell. The action of the active part is described by the hysteresis operator Ap, see
(2.54). In problem (2.3), the interaction between the components in both directions is accounted
for. For the theoretical investigations given in Section 3.4, we have to neglect the influence of the
particles on the liquid, which means that the particle density ρp is cancelled from the momentum
balance equation. The new model-equations read:

γ pt + divU = 0 in Ω× (0, T ),

(ρp)t +U · ∇ρp − β∆ρp = 0 in Ω× (0, T ),

ρ0U t + ρ0 (U · ∇)U = f + div Π in Ω× (0, T ),

U = U b on ∂Ω× (0, T ),

−[ρpU b − β∇ρp] · ν = −gpU b · ν on Γin × (0, T ),

−∂νρp = 0 on ∂Ω \ (Γ ∪ Γin),

−β ∂νρp = (ηp)t, ηp = Ap(ρp) on Γ× (0, T ),

U(x, 0) = U0(x), p(x, 0) = p0(x), ρp(x, 0) = ρ0
p(x) for t = 0 in Ω,

ηp(x, 0) = η0
p(x) for t = 0 on Γ.

(2.4)

These equations describe the decoupled measurement problem. Note that we first can find the
velocity and pressure using the first and third equation, and then solve the second one for ρp.
Thus, first compute U and then solve the problem:

ρt +U · ∇ρ−∆ρ = 0 in Ω× (0, T ),

ηt = −∂νρ, η = A(ρ) on Γ× (0, T ),

− [ρU −∇ρ] · ν = −gU · ν on Γin × (0, T ),

−∂νρ = 0 on
[
∂Ω \ (Γ ∪ Γin)

]
× (0, T ),

ρ(x, 0) = ρ0(x), η(x, 0) = η0(x) for t = 0.

(2.5)
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Note that the variables are rescaled in (2.5) so that the diffusion coefficient is equal to 1, and the
index p is dropped in the scaled particle density ρ and surface mass density η.

2.3 Motion of weakly compressible fluids

In this section, the continuity equation and the momentum balance equations are derived for a
weakly compressible Newtonian fluid from the equations of compressible fluids. The assumption
of weak compressibility will provide a relation between the density and the pressure of the fluid
so that an energy equation is not needed. The derivation of the equations for compressible fluids
presented here is mainly taken from the books [18, Chapter 1] and [47, Chapter 1].

The evolution of the quantities describing the motion of a viscid compressible fluid is governed
by the Navier-Stokes equations

(ρf )t + div (ρf U) = 0,
(ρf U)t + div (ρf U ⊗U) +∇p− µ∆U − ξ∇divU = ρf F ,

(2.6)

whereU , ρf and p denote the velocity, density and pressure of the fluid, respectively. The factors
µ and ξ are viscosity coefficients of the fluid, and F is the density of volume forces, e.g. gravity.
The first equation in (2.6) is called continuity equation or mass conservation, and the second one
represents equations of motion or momentum conservation.

Note that the product rule applied to the left-hand side of the momentum equation of (2.6) and
the conservation of mass yield

(ρf U)t + div (ρf U ⊗U) = ρf [U t + (U · ∇)U ] . (2.7)

In three dimensions, the system (2.6) consists of four equations for five unknown functions
ρf , p, U1, U2 and U3. Thus, an additional relation is needed in order to close the model. To this
end, we assume that the fluid be weakly compressible to get a relation between ρf and p.

Weak compressibility means that the deviations of the density and the pressure from nominal
values are small and depend linearly on each other. In this case the pressure is a function of
the density only. Moreover we assume that high gradients in the pressure or velocity field and
phenomena like shocks and turbulence will not occur in the vessel or wet cell. Thus, we assume
that there exist reference values ρ0 and p0 (say the density and the pressure in the equilibrium at
normal conditions) and a constant factor λ such that the linear approximation

ρf = ρ0 + λ(δp), p = p0 + δp, (when δp is small) (2.8)

reflects the physical property of the fluid. Further, we assume that all products containing δp can
be neglected.

Substituting (2.8) into the source term of (2.6) yields

ρf F ≈ ρ0 F =: f .

Inserting (2.8) into the conservation of mass for the liquid in (2.6) yields

λ (δp)t + ρ0 divU + λ div (δp U) = 0. (2.9)

16



2.3 Motion of weakly compressible fluids

Denoting γ := λ/ρ0 and neglecting the term containing δp, relation (2.9) can be rewritten as the
following new continuity equation:

γ pt + divU = 0. (2.10)

Proceeding in the same way with the total derivative in the momentum equation of (2.6), we
get

(ρf U)t + div (ρf U ⊗U) ≈ ρ0U t + ρ0 div (U ⊗U) . (2.11)

Note that, if (2.7) is used first, and then (2.8), the total derivative is approximated by

(ρf U)t + div (ρf U ⊗U) ≈ ρ0U t + ρ0 (U · ∇)U . (2.12)

It should be stressed that no relation similar to (2.7) holds for the right-hand sides of (2.11) and
(2.12). We will use (2.11) for numerical computations and (2.12) for theoretical investigations.
Thus, (2.11) is used in the momentum equation in (2.3), whereas (2.12) is used in (2.1), (2.2) and
(2.4). Using (2.10), products containing divU can be neglected, and therefore

div (U ⊗U) = (U · ∇)U +U · divU ≈ (U · ∇)U .

For later use in Section 2.5.3, we briefly recall the derivation of (2.6) using the same notation
as in Appendix 2.A. To obtain the continuity equation consider an arbitrary control volume V =
V (t0) ⊂ V ⊂ Ωt0 at a time t = t0. Set V (t) = φ(V, t), where φ is the mapping defined in
(2.83) considered on a time interval (t1, t2) 3 t0. Then, the domain V (t) is formed by the same
fluid particles at each time instant, therefore the mass of the element of fluid represented by the
domain V (t) remains constant:

d
dt

∫
V (t)

ρf (x, t) dx = 0 , t ∈ (t1, t2). (2.13)

Applying the Transport Theorem 2.A.3 to (2.13) yields∫
V (t)

[
∂ρf
∂t

(x, t) + div (ρf U) (x, t)
]

dx = 0, t ∈ (t1, t2). (2.14)

Since t is an arbitrary time instant, one can substitute t = t0 and V (t) = V (t0) = V so that
(2.14) holds true for arbitrary t0 ∈ (0, T ) and arbitrary control volume V . Therefore

(ρf )t(x, t) + div (ρf (x, t)U(x, t)) = 0, t ∈ (0, T ), x ∈ Ωt,

which is the continuity equation in (2.6). For later purposes, rewrite the integral of the divergence
in (2.14) as a surface integral∫

V
(ρf )t dx = −

∫
∂V
ρf U · ν ds = −

∫
∂V
ṁ · ν ds, (2.15)

where ṁ = ρfU is the mass flux of the fluid.
The equations of motion can be derived by Newton’s law of conservation of momentum in

the following form: The rate of change of the total momentum of an element of fluid formed by
the same particles at each time and occupying the domain V (t) at instant t is equal to the force
acting on V (t).
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2 Derivation of mathematical models

The total momentum of fluid particles contained in V (t) is given by

H(V (t)) =
∫
V (t)

ρf (x, t)U(x, t) dx. (2.16)

Denoting byF(V (t)) the force acting on the volume V (t), the law of conservation of momentum
reads

dH(V (t))
dt

= F (V (t)) , t ∈ (t1, t2). (2.17)

Substituting (2.16) into (2.17), using the Transport Theorem 2.A.3, and proceeding as in the
case of the continuity equation yields∫

V
[(ρfUj)t + div (ρf Uj U)] dx = Fj(V ; t), j = 1, 2, 3, (2.18)

for the j-th component of the momentum, arbitrary t ∈ (0, T ) and arbitrary control volume V ,
where the components of F(V ; t) are denoted by Fj(V ; t).

Here only the volume force (also called the outer or body force) and the surface force (inner
force) exerted by the fluid contained outside the domain V on its boundary are considered. De-
noting the density of the volume force by F ∈ [C1(M)]3 and expressing the surface force using
the stress tensor Π = (Πij)3

i,j=1 that characterizes the density and direction of the surface force,
the forces acting on V are given by

F(V ; t) =
∫
V
ρf (x, t)F (x, t) dx+

∫
∂V

Π · ν ds. (2.19)

Substituting (2.19) into (2.18), using Green’s Theorem, and taking into account that t and V
are arbitrary yields

∂

∂t

(
ρf Uj

)
t
+

∂

∂xk

(
ρf Uj Uk

)
= ρf Fj +

∂Πjk

∂xk
, j = 1, 2, 3,

for j-th component of the momentum equation (summation over repeated indexes is assumed).
Or in tensor notation

(ρf U)t + div (ρf U ⊗U) = ρf F + div Π (2.20)

Assuming that the fluid is Newtonian and using Stokes’ Postulates given in Section 2.B yields
that the tensor Π is given by Theorem 2.B.1:

Π = (−p+ λ divU) I + 2µD. (2.21)

If the relations µ ≥ 0, 3λ+ 2µ = 0 hold (see [18]), we get

div Π = −∇p+ µ∆U + ξ∇divU , ξ = µ+ λ ≥ 0. (2.22)

Substituting (2.22) into (2.20) yields the momentum equation claimed in (2.6). Further note
that (2.20) can written as

ρf U t + (ṁ · ∇)U = div Π + ρf F . (2.23)
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2.4 Transport of particles

2.4 Transport of particles

In this section we derive the equations for the transport problem. The chamber, where the trans-
port phenomena occur, is schematically shown in Figure 2.4.1 in two dimensions. The arrows
indicate the flow direction of inflow and outflow of the liquid.

Ω

Γin

Γout

Figure 2.4.1: Scheme of the vessel

Under the assumption that the velocity field U of the liquid is known, we derive equations of
motion for the particles as follows:

ρp dV = αρp (U − V ) dt+ β
√
ρp dW t, (2.24)

where ρp and V denote the particle density and the bulk velocity of the particles, respectively,
and α and β are constants determined by properties of the liquid and the particles. The right-
hand side of (2.24) describes the momentum transfer from the liquid to the particles. Since the
momentum has to be conserved, the momentum transfer from the particles to the liquid has to be
considered too. This will be achieved by subtracting the term

α 〈ρp〉 (U − 〈V 〉)

from the right-hand side of the momentum equation of the liquid. In order to close the model,
results from the Boltzmann equation will be used to obtain the continuity equation for the parti-
cles.

2.4.1 Motion of a single particle

The context of this section is based on [64]. The motion of a single particle transported by a fluid
is given by

dV p

dt
= F drag + F bi ,

dxp
dt

= V p. (2.25)

Here V p denotes the particle velocity, and xp the position. The force causing the acceleration
of the particle is split into the macroscopic drag force F drag and the Brownian force F bi arising
from the molecular motion. Since the particle is larger than a molecule of the fluid, the drag
force is given by Stokes’ formula

F drag =
3π µdp(U − V p)

mpCc
,
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2 Derivation of mathematical models

where dp, mp and V p are the diameter, mass, and velocity of the particle, respectively, and µ and
U are the dynamical viscosity and velocity of the fluid, respectively; Cc denotes the Cunningham
slip correction (see formula (2.82)).

The fluctuations are given by Gaussian random variables with

〈F bi(t)〉 = 0 , 〈F bi(t) · F bi(t′)〉 =
2 k θ f δ(t′ − t)

m2
p

.

Here k denotes Boltzmann’s constant, θ the temperature, and f the friction coefficient (see [21])
given by

f =
3π µdp
Cc

.

In the following, we will assume that Cc is constant. As in [37, 64] the components of the
Brownian force can be written as

F ibi = Gi
√
π S0

∆t
, where S0 =

216 ν k θ
π2 ρf d5

p (ρp/ρf )2Cc
. (2.26)

In (2.26), Gi is a Gaussian random variable, ν the kinematic viscosity of the fluid related to the
dynamic viscosity as µ = ρf ν. Introducing the abbreviations

α :=
3π µdp
mpCc

, β∗ :=
√
π S0 =

√
216 µ k θ
π d5

p ρ
2
p Cc

(2.27)

and letting ∆t→ 0, equations (2.25) become the Langevin equations from the Ornstein-Uhlenbeck
theory of Brownian particles (see [61, 45]).

dxp = V p dt,
dV p = α (U − V p) dt+ β∗ dW t.

(2.28)

2.4.2 Averaged motion of particles

In Section 2.4.1, the influence of the liquid on a particle is model by the Gaussian random process
dW t. To derive relations for the bulk density and the bulk velocity of the particles, we use
that the arithmetic mean value of independently normally distributed random variables is again
normally distributed. More precisely, if G1, ..., Gn, n ∈ N are normally distributed with Gj ∼
N (µj , σ2

j ), then the arithmetic mean value Sn is normally distributed:

Sn =
1
n

n∑
j=1

Gj ∼ N
(
µS , σ

2
S

)
where µS =

1
n

n∑
j=1

µj , σ2
S =

1
n2

n∑
j=1

σ2
j . (2.29)

Definition 2.4.1. For a point x ∈ RN , consider a small neighbourhood V of x. Define the bulk
density ρp of particles at x at time t as the ratio of the total mass of the particles contained in V
divided by the volume of V . If V contains n particles of equal mass mp, one can write

ρp(x, t) =
1
|V |

∑
xk(t)∈V

mp =
mp n

|V |
,
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2.4 Transport of particles

where xk(t) denotes the position of the particle k at time t. In a similar way, the bulk velocity
V is defined as the mean value of the velocities of the particles contained in V :

V (x, t) =


1
n

∑
xk(t)∈V

V p,k(xk(t), t) = mp
ρp(x,t)|V |

∑
xk(t)∈V

V p,k(xk(t), t) if n ≥ 1,

0 else.

To derive an equation for the bulk velocity V , the differential dt is replaced by a finite time
interval ∆t and dW t is replaced by Gk

√
∆t for particle k, where Gk ∼ N (0, 1) is the Gaussian

probability variable (see (2.26). Averaging (2.28) over all particles in V and using Definition
2.4.1 yields

∆x = V (x(t), t)∆t

∆V =
α

n

∑
xk(t)∈V

(U − V p,k) ∆t+
β∗
√

∆t
n

∑
xk(t)∈V

Gk.
(2.30)

If the drift velocityU is assumed to be continuous, the mean value ofU can be approximated
by U(x, t). Using (2.29) and Definition 2.4.1, the stochastic term can be rewritten as

1
n

∑
xk(t)∈V

Gk = n−1/2G =
(

mp

ρp |V |

)1/2

G, G ∼ N (0, 1). (2.31)

Inserting (2.31) into (2.30) yields, for the region where ρp > 0,

∆V = α (U − V ) ∆t+
β
√
ρ
p

G
√

∆t, where β = β∗

(
mp

|V |

)1/2

. (2.32)

Let ρmin = mp/|V | be interpreted as the minimal particle density, i.e. ρp = 0 if V contains
no particles, or ρp ≥ ρmin if V contains at least one particle. In the case of integer numbers of
particles (n ∈ {1, 2 ...}) it holds

0 ≤ β
√
ρp

=
β∗√
n
≤ β∗.

For ∆t→ 0, replace G
√

dt by dW t, and (2.30) becomes

dx
dt

= V (x(t), t),

dV (x(t), t) = α (U(x(t), t)− V (x(t), t)) dt+
β
√
ρp

dW t.
(2.33)

Multiplying the second equation by ρp, we get the conservation of momentum (2.24).
In order to describe the transport of particles through the vessel, we are not interested in the

description of the motion of single particles, and therefore, not in the evolution of the stochastic
quantities V and ρp. Our goal is to describe the evolution of the expected values of the particle
velocity and density, i.e. 〈V 〉 and 〈ρp〉.

To compute the expectation of the both sides of (2.24), the stochastic differential dW t is
understood in the Ito sense. Therefore, the probabilistic part dW t in (2.24) does not influence
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2 Derivation of mathematical models

ρp and V until time instant t+ dt. Since the Brownian motion has independent increments, and
because we assume that the particles are dilute enough so that the Brownian force is generated by
the liquid only, we obtain that ρ±1/2

p and dW t are stochastically independent at each time instant.
This argument is more clear, if the time discrete equations (2.30) and (2.32) are considered. The
random variables G, Gk, at time t are assumed to be independent from that at preceding time
instances, and therefore the variablesG, Gk, V and ρp are independent becauseV and ρp at time
t are generated byG andGk occurring at preceding time instances. Moreover, if the particles are
rarefied the collisions of a certain particle with liquid molecules do not influence the collisions
of an other particle with liquid molecules. Therefore, it is natural to assume that ρ±1/2

p and G are
independent in (2.32).

Thus, computing the expectation of the both sides of the second equation in (2.33) yields the
evolution of 〈V 〉:

d〈V 〉 = α (U − 〈V 〉) dt. (2.34)

To obtain an equation for the momentum, multiply (2.34) by 〈ρp〉 to get

〈ρp〉
d 〈V 〉

dt
= 〈ρp〉 α (U − 〈V 〉) . (2.35)

Thus, the expected momentum transfer from the liquid to the particles at time t is 〈ρp〉α (U − 〈V 〉).
We complete this section by combining systems (2.6) and (2.35) and using the weak com-

pressibility of the liquid to obtain

γ pt + divU = 0,

ρ0U t + ρ0 (U · ∇)U − div Π(l) = f ,

〈ρp〉
d 〈V 〉

dt
− 〈ρp〉 α (U − 〈V 〉) = 0.

(2.36)

In N space dimensions, this is a system of 2N + 1 equations for 2N + 2 unknowns U1,
〈V 〉1 , ..., UN , 〈V 〉N , p and 〈ρp〉. Thus, a continuity equation for 〈ρp〉 is needed. Moreover,
(2.36) contains no term that describes the influence of the particles on the liquid. These aspects
are considered in Section 2.4.3. We do not cancel the factor 〈ρp〉 in (2.36) to keep the corre-
sponding equation being the momentum conservation law of the particles. This will be useful in
Sections 2.4.3 and 2.4.4.

2.4.3 Interaction with the liquid

The system we are considering consists of two phases, the liquid and particle phases. Comparing
the momentum equations for the fluid in (2.6) and for the particles in (2.24), we see that the
liquid transfers momentum to the particles, but there is no term describing the influence of the
particles on the liquid. However, the momentum has to be conserved and therefore, the amount
of the momentum transfered to the particles has to be subtracted from the momentum of the
liquid. Moreover, as it is mentioned at the end of Section 2.4.2, the continuity equation for 〈ρp〉
is necessary.

The following arguments are taken from [11, 12, 62]. The desired equation will be obtained
using the results of Section 2.D applied to a Boltzmann gas consisting of two species: the liquid
labeled by 1 and the particles labeled by 2. In the similar way, we obtain a term that describes the
momentum transfer from the liquid to the particles. Let us assume the following assumptions.
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2.4 Transport of particles

1. The average 〈·〉 over the Brownian motion and the average
∫

[·]dξ over the microscopic
velocity yield the same result. Using the notation of Section 2.D, this implies

v(1) = U ,

v(2) = 〈V 〉 ,
ρl = ρ(1),

〈ρp〉 = ρ(2),
(2.37)

2. The tensor Π(1) is given in terms of p(1) and v(1) by formula (2.21). The tensor Π(2) is
equal to zero because the particle continuum does not have any internal pressure or stress.

Application of the results of Section 2.D. The evolution of a mixture of two species can be
described in terms of their one-particle distributions. Denote by f1 and f2 the one-particle distri-
butions of the liquid and particles, respectively. Then fj(x, ξ, t) dxdξ is the expected mass of
molecules of species j which, at time t, have positions lying within a volume element dx about
x and velocities lying within a momentum-space element dξ about ξ. Therefore,∫

R3

∫
R3

fj(x, ξ, t) dξdx = Mj , j = 1, 2,

where M1 and M2 are the total masses of the liquid and the particles, respectively.
The one-particle functions satisfy the Boltzmann equations (2.91) for n = 2:

∂f1

∂t
+ ξ · ∂f1

∂x
= Q11 (f1, f1) +Q12 (f1, f2) ,

∂f2

∂t
+ ξ · ∂f2

∂x
= Q21 (f2, f1) +Q22 (f2, f2) ,

where the macroscopic force is neglected. The collision termsQjk(fj , fk) describe the influence
of collisions between particles of species j and k on the evolution of the one-particle function of
species j. If f1 and f2 are known, the macroscopic quantities describing the flow are given by

ρ(j) =
∫

RN
fj dξ, (ρv)(j) =

∫
RN
ξfj dξ, v(j) =

(ρv)(j)

ρ(j)
,

where ρ(j), (ρv)(j) and v(j) denote the mass density, momentum, and mass velocity of species
j, respectively.

By (2.93) the macroscopic variables satisfy the continuity equations for each phase:(
ρ(j)
)
t
+ div

(
ρ(j) v(j)

)
= 0, j = 1, 2, (2.38)

and the conservation of the total momentum reads

2∑
j=1

[(
ρ(j)v(j)

)
t
+ div

(
ρ(j)v(j) ⊗ v(j) + Π(j)

)]
= 0. (2.39)

The components of the tensor Π(j) are given by

Π(j)
ik =

∫
RN

c
(j)
i c

(j)
k fj dξ,
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2 Derivation of mathematical models

where c(j) = ξ − v(j) is the peculiar velocity of the j-th species. Using the mass conservations
(2.38), equation (2.39) can be rewritten as

2∑
j=1

[
ρ(j) dv(j)

dt
+ div Π(j)

]
= 0. (2.40)

Random forces. In contrast to the above derivation, equation (2.25) defines a probabilistic
model for the evolution of the particles (component 2). Using the same notation as for the
Boltzmann equation, we write

dξ = F (t,x, ξ) dt, with F dt = α(U − ξ) dt+ β dW t (2.41)

and assume that the force acting on the particles comes from the liquid only. In other words, there
are no collisions of particles with each other. Then, one can show that the distribution function
f2 of the particles satisfies the Fokker-Planck equation (see [11, II.9])

∂f2

∂t
+ ξ · ∂f2

∂x
=
β

2
∆ξf2 −

∂

∂ξ
[α(U − ξ)f2] , (2.42)

where ∆ξ denotes the Laplacian with respect to the components of ξ.
We postulate now that the above described approach related to collisions and the probabilistic

approach described by (2.25), (2.41) and (2.42) yield the same result. Therefore, the continuity
equation for the particles can be used. To get the conservation of momentum, multiply (2.42) by
ξ, integrate over RN , and use the conservation of mass to obtain:

ρ(2) dv(2)

dt
+ divΠ(2) =

∫
RN

[
β

2
ξ∆ξf2 + α(U − ξ)f2

]
dξ

= αρ(2)
(
U − v(2)

)
+
β

2

∫
RN
ξ∆ξf2dξ.

(2.43)

Combining both approaches. Equations (2.43) and (2.35) yield

ρ(2) dv(2)

dt
= αρ(2)

(
v(1) − v(2)

)
,

β

2

∫
RN

[ξ∆ξf ] dξ = divΠ(2) = 0. (2.44)

Substituting (2.37) and (2.44) into (2.40) and inserting the macroscopic force again denoted
by F yield the conservation for the liquid

ρlU t + ρl (U · ∇)U − div Π(1) = ρlF − α 〈ρp〉 (U − 〈V 〉) . (2.45)

Finally, combining equation (2.34), continuity equations (2.38), momentum equation (2.45),
and using the weak compressibility of the liquid, we get

γpt + divU = 0,

ρ0U t + ρ0 (U · ∇)U − div Π + α 〈ρp〉 (U − 〈V 〉) = f ,

〈ρp〉t + div (〈ρp〉 〈V 〉) = 0,

〈V 〉t +
(
〈V 〉 · ∇

)
〈V 〉 − α

(
U − 〈V 〉

)
= 0.

(2.46)

In system (2.46) the number of equations equals to the number of unknowns (2N + 2). There-
fore, one can hope that the solvability under suitable initial and boundary conditions can be
proved. Nevertheless, in Section 2.4.4, we will introduce further simplifications to ensure the
applicability of the method used in Section 3.3 will work.
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2.4 Transport of particles

2.4.4 A simplified model for the particle transport

In order to derive a model for which we can show the existence and uniqueness of weak solutions,
the system (2.46) has to be simplified. To this end, 〈V 〉 and 〈ρp〉 are expanded in the small
parameter α−1 so that the momentum conservation for the particles is not necessary anymore. In
this section, the following model is derived

γ pt + divU = 0,(
ρ(0)
)
t
+ div

(
ρ(0)U∗

)
= 0,(

ρ0 + ρ(0)
)(
U t + (U · ∇)U

)
+∇p− µ∆U − ξ∇divU = f ,

(2.47)

where U∗ = U ∗ σδ with a fixed smoothing function σδ and ρ(0) denotes the expansion term of
〈ρp〉 of order 0. System (2.47) will be derived from (2.46) under the following assumptions.

1. The average density 〈ρp〉 and the average particle velocity 〈V 〉 can be expanded in the
small parameter ε = α−1, that is

〈ρp〉 = ρ(0) (+ερ(1) + ε2ρ(2) + ...),

〈V 〉 = V (0) + εV (1) (+ε2V (2) + ...).
(2.48)

2. The approximation ρ(0) of 〈ρp〉 of order 0 fulfills the continuity equation with the smoothed
velocity-field, that is

(ρ(0))t + div
(
ρ(0)U∗

)
= 0.

To justify the first assumption consider Table 2.6.4. From the values of α for Ti O2 particles
of the diameter less than 1µm in air or water, we see that ε < 5 · 10−5 in the both media. The
second assumption is explained in the beginning of the chapter.

Substituting the expansion (2.48) into (2.34) yields

ε
dV (0)

dt
+ ε2

dV (1)

dt
+ .... =

(
U − V (0) − εV (1) − ...

)
.

Comparing the coefficients yields

ε0 : V (0) = U ,

ε1 : V (1) = −dU
dt

= − [U t + (U · ∇)U ] .
(2.49)

Inserting (2.48) into (2.45) and using (2.49), we get

ρlU t + ρl (U · ∇)U − div Π− ρlF

= α
(
ρ(0) + ε1ρ(1) + ...

)(
−ε1 dU

dt
+ ε2 V (2) + ...

)
= −ρ(0)

(
U t + (U · ∇)U

)
+ ...,

(2.50)

since the only term appearing with ε0 is ρ(0)V (1). For a weakly compressible fluid, (2.50) is
identical to the conservation of the total momentum in (2.47).
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2 Derivation of mathematical models

To obtain an equation for ρ(0) substitute the expansion (2.48) into the mass conservation for
the particle phase in (2.46) to obtain:

0 = ε0
[
ρ

(0)
t + div

(
ρ(0)U

)]
+ ε1

[
ρ

(1)
t + div

(
ρ(0)V (1) + ρ(1)U

)]
+ ε2... ,

and for ε0:
(ρ(0))t + div

(
ρ(0)U

)
= 0.

By the second assumption, U can be replaced by U∗ which yields the mass conservation equa-
tion of particles of (2.47).

2.5 Measurement of particles

In this section, the equations for the description of the measurement part (see Figure 1.2.1.a, page
3) are derived. The model of the wet cell is the same as in [8] and [4].

This section is structured as follows. The description of the active part of the wet cell is
given in Section 2.5.1. This shows why the systems (2.2) or (2.46) are not used to describe
the measurement part. The evolution of the particles density in the interior of the wet cell is
considered in Section 2.5.2, and the equations for the coupled measurement problem are derived
in Section 2.5.3. This model equations are used for numerical computations in Chapter 4.

2.5.1 Mathematical description of the active part of the wet cell

Denote the interior of the wet cell by Ω, the whole boundary by ∂Ω, and the outward directed unit
normal on ∂Ω by ν. The inlet, outlet, and active part denoted by Γin,Γout and Γ, respectively,
are mutually disjoint subsets of ∂Ω. We suppose for simplicity that Ω is the cube (0, 1)N , and Γ
is contained in the plane {xN = 0}. Then ν = −eN on Γ, where eN is the unit vector along the
xN -axis.

Assume that the particles adhered to the aptamers are located in the region

Γδ :=
{
x ∈ RN : (x1, ..., xN−1, 0)T ∈ Γ ∧ −δ ≤ xN ≤ 0

}
By our hypothesis, the particles entering Γδ are instantaneously immobilized and trapped. Let φ
be the volume fraction of particles in Ω; φ the volume fraction of the particles in Γδ, and φmax

the maximal value of φ. Denote the proper density of the particles by ρp, then the mass ηp of
trapped particles per surface unit of Γ is given by

ηp(x) = ρp

∫ δ

0
φ (x+ r ν) dr.

Denote the mass flux of the particles by ṁp, then the mass conservation law reads

(ηp)t = ṁp · ν, on Γ. (2.51)

In order to close the model, a relation between ηp and ρp or between φ̄ and φ has to be
specified, which plays the role of a constitutive relation that accounts for the adhesion properties
of the aptamer. First, the adhered particles are not released any more. Therefore, ηp and φ̄
should be monotonically increasing. Second, there exist two thresholds φ0 and φ1 such that the
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2.5 Measurement of particles

aptamer can not bind particles, if either φ|Γ ≤ φ0 (insufficient concentration for the activation),
or φ|Γ ≥ φ1 (exhaustion of free aptameres). Since the particles arriving at Γ are immediately
absorbed until saturation and not detached, define the hysteresis operator Aφ by

Aφ(ξ)(t) = ess sup {Hφ (ξ(τ)) : τ ≤ t} , for ξ ∈ L∞(0, T ), (2.52)

where

Hφ(s) =


0 if s < φ0,

a(s− φ0) if s ∈ [φ0, φ1],
φ̄max if s > φ1,

and a = φmax/(φ1 − φ0). Then the constitutive relation between φ and φ reads

φ(x, t) = Aφ (φ(x, ·)) (t), x ∈ Γ, t ∈ (0, T ). (2.53)

See Figure 2.5.2 for an illustration.

φ0 φ1

φmax

s

Hφ(s)

2.5.2.a: Graph of Hφ

φ0 φ1

φmax

ξ

Aφ(ξ)

2.5.2.b: Action of the hysteresis operator Aφ

Figure 2.5.2: Scheme of the constitutive relation between φ and φ

Note that (2.53) can be transformed into the following relation between ρp and ηp.

ηp(x, t) = Ap (ρp(x, ·)) (t),

Ap(ξ)(t) = ess sup {Hp (ξ(s)) : s ≤ t} ,

Hp(s) =


0 if s < ρp,0,

a(s− ρp,0) if s ∈ [ρp,0, ρp,1],
ηmax if s > ρp,1,

(2.54)

where ρp,i = ρp φi for i = 0, 1 are the mass densities corresponding to the activation and
exhaustion, respectively, and ηmax = ρp · φmax. Also note that Hp(s) = ρp ·Hφ(s/ρp).

Remark 2.5.1. If the equations presented in Section 2.4.4 would be used to describe the evolu-
tion of the particle density, the mass flux of particles towards the active part Γ would be equal to
ṁp = ρpU = 0 (U = 0 on Γ ⊂ ∂Ω \ (Γin ∪ Γout)). Therefore, this model is not appropriate
for the detection because no particles would be absorbed.
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2 Derivation of mathematical models

2.5.2 Evolution of the particle density

In this section, we derive a diffusion equation for the time evolution of the particle density ρp.
And therefore, the particle flux towards Γ is generally different from zero. To derive the diffusion
equation, two approaches will be compared. In the first one, presented in [14], a diffusion equa-
tion for particles suspended in a liquid is derived from thermodynamical considerations (without
using (2.25)). The second one is Smoluchowski’s approximation (see [55]). Both approaches are
presented in [45].

Einstein’s diffusion coefficient. Assuming that the liquid in which the particles are suspended
is at rest, the formula

β =
R θ

N
· 1

3 π µ dp
=

k θ

3 π µ dp
(2.55)

for the diffusion coefficient β is derived in [14, §3]. Here,N is the number of molecules in 1 g, µ
the viscosity of the liquid, k Boltzmann’s constant, and θ the temperature. The second expression
in (2.55) can be found in [45, Chapter 4]. Taking into account the effects of the Cunningham slip
correction, (2.55) becomes

β =
k θ Cc

3 π µ dp
. (2.56)

Under the assumption U = 0 the particle density satisfies the diffusion equation

∂ρp
∂t

= β∆ρp, (2.57)

see [14, §4], [45, Chapter 4] or [28, Chapter 7.4]. Integrating (2.57) over a control volume
V , applying Gauss’ Theorem to the right-hand side, and comparing the resulting equation with
(2.15), we obtain an expression for the mass flux of the particles

ṁp = −β ∇ρp, if U = 0. (2.58)

In the case of a fluid in motion, we add the drift term ρp U to (2.58) and proceed as in Section
2.3. Analogously to (2.15), we get∫

V

∂ρp
∂t

dx = −
∫
∂V
ṁp · ν ds = −

∫
V

div (ρp U − β∇ρp) dx, (2.59)

after applying Gauss’ Theorem, which holds for an arbitrary volume V . Assuming ρp andU are
sufficiently regular, we deduce the conservation of mass for the particles:

(ρp)t + div (ρp U)− β ∆ρp = 0. (2.60)

Smoluchowski’s approximation. According to [45] we consider the Smoluchowski approxi-
mation of a Brownian particle

dx(t) = U(x(t), t) dt+ β̄ dW t, with β̄ :=
β∗
α
. (2.61)

In (2.61), x(t) denotes the position of the observed particle at time t, U the velocity of the
ambient fluid, and W t a Wiener-process. To obtain (2.61) from equations (2.28), we formally
use the following
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2.5 Measurement of particles

Theorem 2.5.2 ([45, Theorem 10.1]). Let b : Rl → Rl satisfy a global Lipschitz condition, and
letW be a Wiener process on Rl. Let x,V be a solution of the coupled equations

dx(t) = V (t) dt; x(0) = x0,

dV (t) = −αV (t) dt+ α b (x(t)) dt+ α dW t; V (0) = V 0.

Let y be a solution of

dy(t) = b (y(t)) dt+ dW t; y(0) = x0.

Then, for all V 0, with probability one

lim
α→∞

x(t) = y(t),

uniformly for t in compact subintervals of [0,∞).

It is noted in [45] that the theorem remains valid for the case that b is continuous and, for t in
compact sets, satisfies a uniform Lipschitz condition in x. Actually, α given by (2.27) is large
but finite (see Table 2.6.4). Therefore, we formally apply the theorem to system (2.28) where
β̄ = β∗/α is a new coefficient. This yields (2.61) and we will show, that (2.60) follows from
(2.61).

Denote by p(s,y, t,x) the transition probability density when a particle starting at time s from
a point y, moving according to (2.61), arrives at time t > s at the point x. Thus, ρp(x, t) can be
computed from the particle density at time s by:

ρp(x, t) =
∫

RN
ρp(y, s) p(s,y, t,x) dy. (2.62)

To derive an evolution equation for ρp, apply Theorem 2.C.4 to (2.62) to obtain the conserva-
tion equation for the particle density:

(ρp)t + div (ρpU) = βS ∆ρp,

where the diffusion coefficient is given by

βS :=
β̄2

2
=

113
324
· k θ Cc
π µ dp

. (2.63)

Expression (2.63) is obtained by using (2.27) to compute β̄ from (2.61), and expressing the
particle mass by mp = ρp π d

3
p/6.

Remark 2.5.3. Note that both derivations are not completely rigorous in strong sense. First,
diffusion equation (2.60) is derived from (2.57) ignoring the assumption that the fluid is at rest.
Second, Theorem 2.5.2 is applied to get (2.61) in the case of large but finite α. To justify these
procedures compare the diffusion coefficients of (2.56) and (2.63)

βS ≈ 1.05 · β.

Since both approaches yield nearly the same result, we accept both of them but use preferably
the value of β given by (2.56).
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2 Derivation of mathematical models

Boundary conditions. From (2.59), one can deduce an expression for the mass flux of particles

ṁp = ρp U − β ∇ρp. (2.64)

Inserting (2.64) into (2.51) yields the boundary condition for ρp

(ηp)t = −β ∂νρp, (2.65)

because U = 0 on Γ. Combing (2.60) with (2.65) and adding boundary conditions on ∂Ω \ Γ
and initial values for ρp and ηp yields the following initial boundary value problem

(ρp)t + div (ρpU)− β ∆ρp = 0 in Ω× (0, T ),

(ηp)t = −β ∂νρp, ηp = A(ρp) on Γ× (0, T ),

− [ρpU − β∇ρp] · ν = −gpU · ν on Γin × (0, T ),

−∂νρp = 0 on
[
∂Ω \ (Γ ∪ Γin)

]
× (0, T ),

ρp(x, 0) = ρ0
p(x), ηp(x, 0) = η0

p(x) for t = 0.

(2.66)

On the inlet, the mass flux of particles ṁp · (−ν) into the wet cell is prescribed by gpU · (−ν),
where gp is assumed to be a known function. The boundary part ∂Ω\(Γ∪Γin∪Γout) is assumed
to be solid. Therefore, it is reasonable to assume that the velocity field of the liquid satisfies the
no-slip condition (U = 0) on this part. By formula (2.64), the condition −∂νρp = 0 means that
the particles cannot leave the wet cell through solid walls. In contrast to the inflow condition, the
boundary condition−∂νρp = 0 is also imposed on the outlet Γout. This means that the diffusion
does not contribute to the outflow, and the mass flux of particles through the outlet is determined
by the transport term ρpU · ν only.

Now, assume that the liquid is weakly compressible as in Section 2.3, i.e. all products con-
taining divU (see (2.10)) are neglected. Then, the approximation div (ρpU) ≈ U · ∇ρp holds,
and we see that the system of equations (2.4) describing the decoupled measurement problem
consists of system (2.66) and flow problem (2.1).

In Section 3.4.2, we show that these conditions are reasonable initial and boundary data.

Rescaling. To simplify the notation for theoretical investigations, system (2.66) is rescaled.
First, to reduce the diffusion coefficient to 1, introduce new time and velocity scales: t′ = β t
and U ′ = β−1U . Second, to obtain a maximal value of the surface mass density to be equal to
1, define the new variables η = ηp/ηmax and ρ = ρp/ηmax, which satisfy

ηt = −∂νρ on Γ,

where (similar to the transition from (2.52) to (2.54))

η(x, t) = A (ρ(x, ·)) (t),

A(ξ)(t) = ess sup {H (ξ(τ)) : τ ≤ t} ,

H(s) =


0 if s < ρ∗0,

a(s− ρ∗0) if s ∈ [ρ∗0, ρ
∗
1] ,

1 if s > ρ∗1.

(2.67)
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2.5 Measurement of particles

The constants are given by ρ∗i = (ρp/ηmax)φi, i = 1, 2, a = (ρ∗1 − ρ∗0)−1. The graph of the
function H and the action of the operator A are shown in Figure 2.5.3.

ρ∗0 ρ∗1

1

s

H(s)

2.5.3.a: Graph of H

ρ∗0 ρ∗1

1

ξ

A(ξ)

2.5.3.b: Action of the hysteresis operator A

Figure 2.5.3: The constitutive relations for the scaled variables

Finally, setting g = gp/ηmax, dropping the primes, and assuming the liquid being weakly
compressible, wee see that system (2.66) yields (2.5) describing the evolution of the particle
density.

2.5.3 Influence of the particles on the liquid

The influence of the liquid onto the particles is already modeled for the measurement part in
Section 2.5.2. In the same way as for the transport problem in Section 2.4.3, we are going to
derive a simple description of the influence of the particles on the liquid. To this end, a conser-
vation equation for the total momentum is derived similar to [33, X.4]. Our basic assumptions in
this section are that the Korteweg stresses can be neglected, and that the volume fraction of the
particles is small compared to the fraction of the liquid. A mathematical argument for the first
assumption is given in the beginning of Section 1.4. To provide a physical justification, we note
that Korteweg developed his idea of the stress induced by composition gradients for mixtures
that are in equilibrium with external body forces. However, in flowing mixtures, the dynamics
induced by the motion of the mixture occur in shorter time scales than the dynamics induced by
the diffusive effects (unless the velocity is extremely small). Therefore, it is reasonable to as-
sume that the stress induced by composition gradients does not significantly affect the dynamics
in situations we are going to consider.

Let us implement the above sketched objectives. According to [33] and similar to Section 2.5.1
denote by φ the volume fraction of particles. We assume that the density ρf of the composite is
given by the so called simple mixture equation

ρf (φ) = ρl (1− φ) + ρp φ, (2.68)

where ρl and ρp denote the proper densities of the liquid and particles, respectively as before.
Further, let V l and V p denote the average velocities of the liquid and particles. Set

V m =
ρl V l (1− φ) + ρp V p φ

ρl (1− φ) + ρp φ
. (2.69)
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2 Derivation of mathematical models

By [33, X.4], ρf and V m satisfy the continuity equation and the conservation of momentum:

dρf
dt

= −ρf divV m,

ρf
dV m

dt
= −∇p+ div ΠD + ρf F ,

(2.70)

where p is the pressure of the mixture. In (2.70), the tensor ΠD is the sum of a “Newtonian part”
and a part which is given in terms of the Korteweg stresses:

ΠD = µ

[(
∇V m + [∇V m]T

)
− 2

3
div (V m) · I

]
+ T,

with
T = TK − 1

3
trace(TK) · I,

and TK denotes the Korteweg stress tensor (see formula (1.1)). By our assumptions, T can be
neglected.

Next, we identify the averaged variables with the ones used in Sections 2.5.1 and 2.5.2. In
simple mixtures, the densities ρl and ρp of the liquid and the particle phase are given in terms of
the proper densities ρl, ρp, and the volume fraction φ by

ρl = ρl (1− φ), ρp = ρp φ. (2.71)

Further, V l can be identified with U . Evaluating the substantial derivative on the left-hand side
of the momentum equation in (2.70) and using (2.15) for the mass flux of the liquid and (2.64)
for the mass flux of the particle phase yield the relations

ρf V m = ṁf = ṁl + ṁp = ρlU + ρpU − β ∇ρp. (2.72)

Rewrite the left-hand side of the momentum equation of (2.70) similar to (2.23) where the case
of a single fluid phase was considered and use (2.72) to obtain

ρf
dV m

dt
= ρf (V m)t + ([ρlU + ρpU − β∇ρp] · ∇) V m. (2.73)

By our assumptions, φ is small so that (2.69) yields the approximation

V m ≈ V l = U . (2.74)

To identify the pressure, we argue similar to Section 2.4.3: since φ is supposed to be small,
the particles can not significantly contribute to the formation of the pressure. Thus, p can be
identified with the pressure of the liquid. Additionally, the approximation (2.74) yields −∇p +
div ΠD = div Π (see (2.22)). Rewriting the continuity equation of (2.70) as (ρf )t+div ṁf = 0
and inserting (2.68), (2.71), (2.72), and (2.60) yield a continuity equation for ρl and U . Thus,
inserting (2.73) and (2.74) into the momentum equation of (2.70) and accounting for (2.60) yield
the following system of equations:

(ρl)t + div (ρlU) = 0,

(ρp)t + div (ρpU − β∇ρp) = 0,

(ρl + ρp)U t +
(
[ρlU + ρpU − β ∇ρp] · ∇

)
U = div Π + (ρl + ρp)F .

(2.75)

32



2.5 Measurement of particles

To complete the derivation of equations (2.3) for the coupled measurement problem, multiply
the first and second equations in (2.75) by U and add them to the third one to obtain:(

[ρl + ρp]U
)
t
+ div (U ⊗ [ρlU + ρpU − β∇ρp]) = div Π + (ρl + ρp)F . (2.76)

Now, neglect ρp in the first term of the left-hand side and in the last term of the right-hand side
and remember the weak compressibility of the liquid to obtain (2.3).

Let us now derive a momentum equation that is different from (2.76) and the third one of
(2.75). Assume summation over repeated indices and use the continuity equation of (2.70) to
rewrite the j-th component of the momentum equation as follows:

(ρf Vm,j)t + div (ρf Vm,j V m) =
∂Πjk

∂xk
+ Fj , j = 1, ..., N. (2.77)

Substitute
ρf Vm,j = ṁf,j = ρf Uj + β

∂ρp
∂xj

(see (2.72)) into the divergence term of (2.77) and then identify V m = U (see (2.74)). This
yields

(ρf U)t + div ([ρf U − β∇ρp]⊗U) = div Π + ρf F . (2.78)

Equations (2.76) and (2.78) differ in the convective terms only due to (2.68) and (2.71).

Remark 2.5.4. The momentum equations (2.76) and (2.78) are derived under the same assump-
tions and approximations. Nevertheless, we prefer to use (2.76) instead of (2.78) for the deriva-
tion of equations for the coupled measurement problem because of the following reasons. First,
the derivation of (2.76) from system (2.75) is consistent with the form of system (2.70). Second,
equation (2.76) yields a conventional equality for the kinetic energy like in the case of single
fluid flow. Such relations are useful in the analysis of flow problems for incompressible or com-
pressible media. See for example [17, 18, 36, 38, 40, 41, 47, 60].

Show first the consistency claimed in the remark. Evaluating the total derivative on the left-
hand side of the second equation of (2.70), adding the continuity equation multiplied by V m,
and applying the identification (2.72) yield the identity

ρf (V m)t + (ṁf · ∇)V m = (ρf V m)t + div (V m ⊗ ṁf ) . (2.79)

The same method is used to derive (2.76) from the system (2.75). The left-hand side of the
momentum equation of (2.75) is analogous to the left-hand side of (2.79) and the left-hand side
of (2.76) is analogous to the right-hand side of (2.79). This method does not work if (2.76) is
replaced by (2.78) since the gradient∇ρp appears in the convective terms.

Next, show the claim on the equality for the kinetic energy in Remark 2.5.4. It follows from a
general formula. Let the functions

a, f : Ω× [0, T ]→ R and b, u : Ω× [0, T ]→ RN

be (componentwisely) in C1
(
Ω× (0, T )

)
. Moreover, let a, f and b satisfy

at + div b = f. (2.80)
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2 Derivation of mathematical models

Then, the following computation holds:

[(au)t + div (u⊗ b)] · u = |u|2 at + |u|2 ∂bk
∂xk

+
a

2
∂|u|2

∂t
+
bk
2
∂|u|2

∂xk

= |u|2 f +
a

2
∂|u|2

∂t
+

1
2
∂(|u|2 bk)
∂xk

− |u|
2

2
∂bk
∂xk

=
1
2
[(
a |u|2

)
t
+ div

(
|u|2b

)
+ |u|2 f

]
.

(2.81)

Adding both mass conservations in (2.75) and using (2.72) yields

(ρf )t + div (ṁf ) = 0,

which is similar to (2.80). Suppose U = 0 on ∂Ω and multiply (2.76) by U . Use (2.80), (2.81)
with (a, f, b, u) = (ρf , 0, ṁf , U) on the left-hand side and integrate over Ω to obtain the
energy equation

1
2

d
dt

∫
Ω
ρf |U |2 dx+

∫
Ω

[
µ|∇U |2 + ξ|divU |2

]
dx =

∫
Ω

[ρfF −∇p] ·U dx.

This equation is analogous to [41, Equation (5.9)], for example.
Thus, the argumentation in Remark 2.5.4 is grounded.

2.6 Physical constants

In this section, we give the values of physical constants which we used in the previous sec-
tions. Values given in Tables 2.6.1, 2.6.2 and 2.6.3 can be found in [28, Appendix A1] and [58,
Appendix D].

Table 2.6.1: Physical constants

Boltzmann’s constant k 1.38 E− 23 N ·m ·K−1

Gas constant R 8.314 J ·mol−1 ·K−1

Molar Volume Vmol of ideal gas at 20 ◦C 2.24 E− 2 m3 ·mol−1

Density of titanium dioxide TiO2 4.23 E + 3 kg ·m−3

Table 2.6.2: Properties of water at 20 ◦C and 1 atm = 1.01 E + 5 Pa

Dynamic viscosity µ 1000. E− 6 kg ·m−1 · s−1

Kinematic viscosity ν 1.000 E− 6 m2 · s−1

Density ρ0 1.000 E + 3 kg ·m−3

An ideal gas is characterized by the relation

p =
nmol

V
·R · θ = ρ · R

mmol
· θ,
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Table 2.6.3: Properties of dry air at 20 ◦C and 1 atm = 1.01 E + 5 Pa

Density ρ0 1.205 kg ·m−3

Dynamic viscosity µ 1.81 E− 5 Pa · s

Mean free path λ 0.066 µm

Compressibility γideal 1.E− 5 m · s2 · kg−1

where V, nmol and mmol denote the volume occupied by the gas, the number of moles contained
in V , and the molar mass of the gas, respectively. For such gases, the compressibility γideal (see
Section 2.3) is given by

γideal =
Vmol

R · θ

where Vmol is the molar volume of the gas.

Values of the Cunningham slip correction Cc and the diffusion coefficient β in air given in
Table 2.6.4 can be found in [28, Appendix A11]. The values of α and β∗ are computed using
(2.27), and the values of β in water are computed using (2.55).

Table 2.6.4: Physical properties of spherical titanium dioxide particles
depending on the diameter

Particle diameter and mass Property in Air in Water

dp = 1 µm
mp = 2.12 E− 15 kg

Cc 1.165 —

α 6.61 E + 4 s−1 4.26 E + 12 s−1

β∗ 0.49 m · s−3/2 3.94 E + 3 m · s−3/2

β 2.76 E− 11 m2 · s−1 4.29 E− 19 m2 · s−1

dp = 0.1 µm
mp = 2.21 E− 18 kg

Cc 2.888 —

α 2.67 E + 6s−1 4.26 E + 14 s−1

β∗ 9.87 E + 1 s−3/2 1.25 E + 6 m · s−3/2

β 6.85 E− 10 m2 · s−1 4.29 E− 18 m2 · s−1

dp = 0.01 µm
mp = 2.21 E− 21 kg

Cc 22.447 —

α 3.43 E + 7 s−1 4.26 E + 16 s−1

β∗ 1.12 E + 4 m · s−3/2 3.94 E + 8 m · s−3/2

β 5.31 E− 8 m2 · s−1 4.29 E− 17 m2 · s−1

In [28, Chapter 3.4], the Cunningham correction factor Cc (see Sections 2.4.1 and 2.5.2) is
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2 Derivation of mathematical models

specified as

Cc =


1 dp > 1 µm,
1 + 2.52 (λ/dp) 0.1 µm < dp < 1 µm,
1 + (λ/dp) [2.514 + 0.800 exp (−0.55 dp/λ)] dp < 0.01 µm,

(2.82)

where λ is the mean free path. See also [21, Chapter 2].

2.A The Transport Theorem

Let (0, T ) be a time interval, during which we follow the fluid motion, and Ωt ⊂ RN denote the
domain occupied by the fluid at time t ∈ (0, T ). Then the domain of definition of the quantities
describing the flow is the set

M = {(x, t) : x ∈ Ωt , t ∈ (0, T )} ⊂ RN+1.

In the Lagrangian description the trajectories of the fluid particles are determined by the equa-
tion

x = φ(X, t), (2.83)

where X represents the reference determining the particle under consideration. Usually one
assumes that X is the initial position of the particle, i.e. X = φ(X, 0). The velocity and
acceleration of the particle referenced byX are given by

Û(X, t) =
∂φ(X, t)

∂t
and â(X, t) =

∂2φ(X, t)
∂t2

, (2.84)

provided the above derivatives exist.
The Eulerian description is based on the determination of the velocity U(x, t) of the fluid

particle passing through the point x ∈ Ωt at time t. Due to (2.83) and (2.84), we get the relation

U(x, t) = Û(X, t) where x = φ(X, t).

If (2.87) is satisfied, the acceleration of the fluid particle passing through x at time t is expressed
as

a = U t + (U · ∇)U or aj(x, t) =
∂Uj
∂t

+ Uk ·
∂Uj
∂xk

,

where a = (a1, a2, a3), U = (U1, U2, U3), x = (x1, x2, x3), and the summation convention
was used. Note that the trajectory of the particle passing through the point X ∈ Ωt0 at time
t0 ∈ (0, T ) is given in Eulerian coordinates by the initial value problem

dx
dt

= U(x, t) , x(t0) = X.

To account for the dependence on t0, rewrite (2.83) in the form

x = φ(X, t0; t), (2.85)

then, the problem (2.85) can be rewritten as

∂x(X, t0; t)
∂t

= U(x(X, t0; t), t), x(X, t0; t0) = X. (2.86)
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2.A The Transport Theorem

In the following we will assume that the velocity is continuously differentiable

U ∈ C1 (M)3 . (2.87)

Theorem 2.A.1 ([18, 1.3.22 Theorem]). Assume (2.87), then the following statements hold:

1. For each (X, t0) ∈ M problem (2.86) has exactly one maximal solution φ(X, t0; t) (de-
fined for t from a certain interval (αX,t0 , βX,t0)).

2. The mapping φ has continuous first order partial derivatives with respect to Xi, t0, t, i =
1, ..., N and continuous derivatives ∂2φ/∂t ∂Xi, ∂

2φ/∂t0 ∂Xi, i = 1, ..., N in its do-
main of definition {(X, t0; t) : (X, t0) ∈M, t ∈ (αX,t0 , βX,t0)}.

For V (t0) ⊂ Ωt0 denote by V (t) := {x : x = φ(X, t0; t) for someX ∈ V (t0)} the set
occupied by the same particles at time t.

Lemma 2.A.2 ([18, 1.4.5 Lemma]). Let t0 ∈ (0, T ), V (t0) be a bounded domain with V (t0) ⊂
Ωt0 . Then there exists an interval (t1, t2) 3 t0 such that the following conditions are satisfied:

1. The mapping ”t ∈ (t1, t2),X ∈ V (t0) 7→ x = φ(X, t0; t) ∈ V (t)” has continu-
ous first order derivatives with respect to t,Xi and continuous second order derivatives
∂2φ/∂t∂Xi, i = 1, ..., N .

2. The mapping ”X ∈ V (t0) 7→ x = φ(X, t0; t) ∈ V (t)” is a continuously differentiable
one-to-one mapping of V (t0) onto V (t) with continuous and bounded Jacobian determi-
nant

J(X, t) = det
(
∂φ(X, t0; t)

∂X

)
> 0 ∀X ∈ V (t0), ∀t ∈ (t1, t2).

3. The inclusion {
(x, t) : t ∈ [t1, t2], x ∈ V (t)

}
⊂M

holds and thus, the mapping U has continuous and bounded first order derivatives on
{(x, t) : t ∈ (t1, t2), x ∈ V (t)}.

4.

U(φ(X, t0; t), t) =
∂φ(X, t0; t)

∂t
∀X ∈ V (t0), ∀t ∈ (t1, t2).

Theorem 2.A.3 (Transport Theorem). Let the conditions 1 – 4 of Lemma 2.A.2 be satisfied and
let the function F = F (x, t) have continuous and bounded first order derivatives on the set
{(x, t) : t ∈ (t1, t2), x ∈ V (t)}. Then for each t ∈ (t1, t2) there exists a finite derivative

d
dt

∫
V (t)

F (x, t) dx =
∫
V (t)

[
∂F

∂t
(x, t) +U(x, t) · ∇F (x, t) + F (x, t) divU(x, t)

]
dx

=
∫
V (t)

∂F

∂t
(x, t) dx+

∫
∂V (t)

F (x, t)U(x, t) · ν(x) ds

Proof. See [18, 1.4.9 Theorem and formulas 1.4.12, 1.4.13]
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2 Derivation of mathematical models

2.B The stress tensor

Assume that ρf , Ui,Πij ∈ C1(M) and fi ∈ C(M). The law of conservation of the moment
of momentum can be formulated in the following way: The rate of change of the moment of
momentum of the piece of fluid occupying the volume V (t) at any time t is equal to the sum of
moments of the volume and surface forces acting on this volume.

Using this law, one can proof the following

Theorem 2.B.1 (Symmetry of the stress tensor). The law of conservation of the moment of
momentum

d
dt

∫
V (t)

x× (ρf U)(x, t) dx =
∫
V (t)

x× (ρf f)(x, t) dx+
∫
∂V (t)

x×Π · ν ds

is valid if and only if the stress tensor Π is symmetric.

Proof. [18, 1.7.30. Theorem]

In case of Newtonian fluids, the form of the stress tensor is determined by Stokes’ Postulates.
To formulate them introduce the deformation velocity tensor D by

D = (dij)
3
i,j=1 , with dij =

1
2

(
∂Ui
∂xj

+
∂Uj
∂xi

)
.

This is equivalent to D = (1/2) (∇U +∇UT ). Then the Stokes’ Postulates read:

1. Π = −pI + τ.

2. The tensor τ is a continuous function of the deformation velocity tensor, is independent of
other kinematic variables and does not explicitly depend on the position in the fluid and
on time either.

3. The fluid is isotropic medium. This means that its properties are the same in all space
directions.

4. If the deformation velocity tensor is zero, only the pressure force acts in the fluid. Hence,
if D = 0, then Π = −pI.

5. The relation between τ and D is linear.

If these postulates hold then the form of Π is determined by Theorem 2.B.3.

Remark 2.B.2 (Mathematical formulation of Stokes’ Postulates). The above postulates can be
formulated as follows

1. Π = −p I + τ.

2. τ = f(D), f is continuous.

3. The form of the mapping f is invariant with respect to the transformation of the Cartesian
coordinate system: S τ S−1 = f(S DS−1) for any orthonormal matrix S.
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2.C Brownian motion

4. f(0) = 0.

5. The mapping f is linear.

Theorem 2.B.3 ([18, 1.7.32. Theorem]). Under the conditions 1) - 5) of Remark 2.B.2 the stress
tensor has the form

Π = (−p+ λ divU) I + 2µD

where λ, µ are constants or functions of thermodynamical quantities.

2.C Brownian motion

The following definitions can be found in [35][Section 1.5]

Definition 2.C.1 (Gaussian distribution). Let X be a random variable

1. The probability measure PX = P ◦X−1 is called distribution of X .

2. For a real random variable X , the map FX : x 7→ P [X ≤ x] is called the distribution
function of X (or, more accurately, of PX ). We write X ∼ µ if µ = PX and say that X
has distribution µ.

3. A family (Xi)i∈I of random variables is called identically distributed if PXi = PXj for all

i, j ∈ I . We write X D= Y if PX = PY .

4. Let µ ∈ R, σ2 > 0 be a real random variable with

FX(x) = P [X ≤ x] =
1√

2π σ2

∫ x

−∞
exp

(
(t− µ)2

2σ2

)
dt for x ∈ R.

Then
Nµ,σ2 := PX

is called the Gaussian normal distribution with parameters µ and σ2. In particular N0,1,
is called the standard normal distribution.

Definition 2.C.2 (Stochastic process). 1. Let I ⊂ R. A family of random variables X =
(Xt, t ∈ I) (on (Ω,F , P )) with values in (E, E) is called a stochastic process with index
set (or time set) I and range E.

2. We write L[X] = PX for the distribution of X . If G ⊂ F is a σ-algebra, then we write
L[X|G] for the regular conditional distribution of X given G.

3. X is called a process with independent increments if X is real valued and, for all n ∈ N
and all t0, ..., tn ∈ I with t0 < · · · < tn, we have(

Xti −Xti−1

)
i=1,...,n

is independent.

4. X is called process with stationary increments if X is real-valued and

L [Xs+t+r −Xt+r] = L [Xs+r −Xr] for all r, s, t ∈ I.
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2 Derivation of mathematical models

Definition 2.C.3 (Brownian motion). A real-valued stochastic process B = (Bt, t ∈ [0,∞)) is
called a Brownian motion if

1. B0 = 0.

2. B has independent, stationary increments.

3. Bt ∼ N0,t for all t > 0, and

4. t 7→ Bt is P -almost surely continuous.

Following [45] a (vector valued) Brownian motion is also called “Wiener process” and will be
denoted byW t. The next result on the transition probability density can be found in [20]. There,
ξ denotes the solution of

dξ = b(ξ(t), t) dt+ σ(ξ(t), t) dW t

The functions b and σ are supposed to satisfy

|b(x, t)| ≤ C(1 + |x|) , |σ(x, t)| ≤ C(1 + |x|) (2.88)

on [T0, T ]×RN with a constant C. It is assumed that, for any bounded B ⊂ RN and T0 < T ′ <
T , there exists a constant K (perhaps depending on B and T ′) such that, for all x,y ∈ B and
T0 ≤ t ≤ T ′,

|b(x, t)− b(y, t)| ≤ K|x− y| , |σ(x, t)− σ(y, t)| ≤ K|x− y|, (2.89)

holds.
Denote by p the transition probability density, that is

P (ξ(t) ∈ B | ξ(s) = y) =
∫
B
p(s,y, t,x) dx, for all B ∈ B(RN ),

where B(RN ) denotes the σ-algebra of Borel subsets of RN . Introduce the coefficients aij by

aij :=
N∑
l=1

σil σjl,

and for a Φ ∈ C2 consider differential operators

A(t)Φ =
1
2

N∑
i,j=1

aij(x, t)
∂2Φ
∂xi∂xj

+
N∑
i=1

bi(x, t)
∂Φ
∂xi

,

A∗(t)Φ =
1
2

N∑
i,j=1

∂2

∂xi∂xj
(aij(x, t)Φ)−

N∑
i=1

∂

∂xi
(bi(x, t)Φ).

The operators ∂t + A(t) and −∂t + A∗(t) are called the “backward operator” and “forward
operator”, respectively.

Theorem 2.C.4 ([20, Theorem 8.1]). Assume that b, σ satisfy (2.88), (2.89) and for i, j =
1, ..., N , bi(·, t) ∈ C1 and σij(·, t) ∈ C2 for T0 ≤ t ≤ T . If p(s,y, ·, ·) is in C1,2((s, T ) × RN ),
then

−∂p
∂t

+A∗(t)p = 0.
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2.D The Boltzmann equation

2.D The Boltzmann equation

This section provides a brief overview over the Boltzmann equation for rigid spheres. The con-
tents is mainly taken from [11]. There, the equations of motion are given in terms of the velocities
of the particles. Another possibility is to use the momentum of the particles. This approach is
considered in [57].

Discussions on, for example, boundary conditions, other types of collisions, choice of the
time line, regularity or ergodic hypothesis are omitted here. The interested reader is referred to
[10, 11, 57, 12, 62].

To avoid difficulties at the boundary assume that a system of K ∈ N particles without internal
structure is moving in infinite space RN

x . Under additional assumptions, which are stated below,
the Boltzmann equation describes the evolution of this system on a microscopic level in terms of
the one-particle distribution f : RN

x × RN
ξ × It → R+.

Here RN
x is the space of all possible positions of particles, RN

ξ the space of all possible veloc-
ities, and It the (finite or infinite) time interval, where the system is considered. For any fixed
time t, the quantity f(x, ξ, t) dxdξ stands for the density of particles in the volume element
dxdξ centered at the point (x, ξ) of the reduced phase space associated with the position and
velocity.

The Boltzmann equation can be derived under the following assumptions (see [62, Section
1.2])

1. Particles interact via binary collisions: the gas is dilute enough so that the effect of interac-
tions involving more than two particles can be neglected. If the gas consists of K particles
of radius r in N dimensional space, this would mean

rN K � 1 , rN−1K ' 1.

2. The collision are localized both in time and space, i.e., they are brief events which occur
at a given position x and given time t.

3. The collisions are elastic: momentum and kinetic energy are preserved in a collision pro-
cess.

4. The collisions are microreversible. In a deterministic setting, this means that microscopic
dynamics are time-reversible. In a probabilistic setting, this means that the probability
that the velocities (ξ, ξ∗) of two colliding particles are changed into (ξ′, ξ′∗) in a collision
process, is equal to the probability that (ξ′, ξ′∗) are changed into (ξ, ξ∗).

5. The Boltzmann chaos assumption: the velocities of two particles which are about to collide
are uncorrelated. If two particles at position x, which have not collided yet, are picked
randomly, then the joint distribution of their velocities is given by the tensor product (in
velocity space) of their one-particle functions.

Under these assumptions the one-particle function f satisfies the Boltzmann equation

∂f

∂t
+ ξ · ∂f

∂x
+ F · ∂f

∂ξ
= Q(f, f), (2.90)
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2 Derivation of mathematical models

where F is the macroscopic force acting the particles, and Q(f, f) is the collision operator,
which describes the influence of collisions between particles on the evolution of f .

If the considered system of particles is a mixture of n species, (2.90) changes into a system
of n coupled Boltzmann equations for the n distribution functions fj , j = 1, ..., n. In this case,
the influence of collisions between particles of species j and k on fj is described by n collision
operators Qjk(fj , fk), k = 1, ..., n. Thus (2.90) becomes

∂fj
∂t

+ ξ · ∂fj
∂x

+ F j ·
∂fj
∂ξ

=
n∑
k=1

Qjk(fj , fk), j = 1, ..., n. (2.91)

2.D.1 Connection to macroscopic quantities

From relations (2.90) or (2.91) one can derive equations for the evolution of the system of par-
ticles in terms of macroscopic quantities such as the physical density ρ(j)(x, t), the momentum
(ρv)(j)(x, t), and mass velocity v(j)(x, t) of the j-th species. The connection to the one-particle
function is given by

ρ(j) =
∫

RN
fj dξ, (ρv)(j) =

∫
RN
ξ fj dξ, v(j) =

(ρv)(j)

ρ(j)
.

The equations for the macroscopic quantities are obtained by multiplying the Boltzmann equa-
tion for the one-particle distribution (2.90) or (2.91) with a collision invariant ψα and integration
over all possible velocities.

Single species. In the case of single species the index or superscript j is omitted. A function
ψ is called a collision invariant if ∫

RN
ψ Q(f, f) dξ = 0.

The space of collision invariants is spanned by the five elementary collision invariants ψ0 =
const, (ψ1, ψ2, ψ3) = ξ, ψ4 = |ξ|2. The collision invariant ψ0 corresponds to the conservation
of mass, (ψ1, ψ2, ψ3) to the conservation of momentum, and ψ4 to the conservation of energy.
Since we do not consider the energy equation, ψ4 is neglected.

In the following, assume that the macroscopic force F is independent of ξ and f(x, ξ, t)→ 0
for |x| → ∞. Then, multiplying (2.90) by ψα, α = 1, . . . , 4, and integrating with respect to ξ
yield the following equations for the macroscopic quantities (summation over repeated indices):

∂ρ

∂t
+

∂

∂xi
(ρ vi) = 0, α = 0,

∂

∂t
(ρ vα) +

∂

∂xi

(
ρ vα vi + Παi

)
= ρFα, α = 1, 2, 3.

(2.92)

In (2.92), α = 0 corresponds to the continuity equation, and α = 1, 2, 3 correspond to the
equations of motion. To derive (2.92) from (2.90), introduce the peculiar velocity c = ξ − v,
and use the relations∫

RN

∂f

∂xi
dξ = 0,

∫
RN

ξk
∂f

∂xi
dξ = −ρ δik∫

RN
ξα ξi f dξ = ρ vα vi + Παi, Παi =

∫
RN

cα ci f dξ.
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2.D The Boltzmann equation

The content of the following remark on the structure of Π can be found in [12, II.6]

Remark 2.D.1. In any macroscopic approach to fluid dynamics, one has to postulate, either
on the basis of experiments or by plausible arguments, some phenomenological relations (the
so-called “constitutive equations”) between Παi on one hand and ρ, vi on the other. One well
known model is the Navier-Stokes-Fourier (or viscous and thermally conducting) fluid:

Π = (p− λ div v) I− µ
(
∇v + [∇v]T

)
,

where µ and λ are the viscosity coefficients.

Mixtures. In the case of a mixture of n species (without chemical reactions or phase transition,
etc.), it holds ∫

RN
ψ

n∑
k=1

Qjk(fj , fk) dξ = 0, j = 1, . . . , n,

for ψ = const., which corresponds to the conservation of mass for the j-th species, and∑
j

∫
RN

ψj
∑
k

Qjk(fj , fk) dξ = 0,

for ψj = const., ψj = ξα, α = 1, 2, 3 or ψj = |ξ|2 (conservation of the total mass, momen-
tum and energy). Instead of (2.92), the macroscopic variables for mixtures satisfy a continuity
equation for each species and the conservation of the global momentum:

(ρ(j))t + div
(
ρ(j) v(j)

)
= 0, j = 1, ..., n,

n∑
j=1

[(
ρ(j) v(j)

)
t
+ div

(
ρ(j) v(j) ⊗ v(j) + Π(j)

)
− F j ρ

(j)
]

= 0.
(2.93)
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3 Theoretical investigations

This chapter is the theoretical part of the thesis. It contains the obtained results on the existence,
uniqueness, and regularity of weak solutions to the problems derived in Chapter 2.

The chapter is structured as follows: in Section 3.1, we summarize the required assumptions
and theoretical results obtained. Section 3.2 contains a short description of methods used during
the proofs, a comparison with known results from the literature, and the conventions used in the
subsequent sections. The next two sections immediately deal with the statement of the theoret-
ical results. Section 3.3 deals with the transport problem and Section 3.4 with the decoupled
measurement problem. References and results from the literature are given in the appendix.

3.1 Summary of the chapter

In Section 3.3, the transport problem (2.2) is considered. We show the existence of a non-
empty time interval such that (2.2) admits a unique weak solution under suitable assumptions
on the initial and boundary data. For the flow variables U and p we will assume that the initial
and boundary functions satisfy: U0 ∈ H1(Ω)N , p0 ∈ H1(Ω) and U b ∈ H3/2(∂Ω)N . It is
supposed that the initial function ρ0 for the particle density is Lipschitz continuous with suppρ0

being separated from the boundary by a positive distance. We assume that the domain Ω has
C2 boundary. This is necessary to extend U b to an H2(Ω)N function using the trace theorem in
Sobolev-spaces (Theorem 3.E.2), and to use the basis {ψj} of L2(Ω)N and H1

0 (Ω)N given by
Lemma 3.G.4. Under these assumptions we show the existence and uniqueness of weak solutions
on a non-empty time interval (0, T ), T > 0 that is determined by the data. See Theorem 3.3.1
for the precise formulation.

Section 3.4 is devoted to the decoupled measurement problem (2.4). This problem is decom-
posed into the flow problem (2.1) and the evolution of the (scaled) particle density (2.5).

The flow problem (2.1) is investigated in Section 3.4.1. The main result here is the exis-
tence and uniqueness of weak solutions in a non-empty time interval (0, T ), T > 0 that is
determined by the data. To obtain this result, we assume that the data of the problem satisfy:
U b ∈ H3/2(∂Ω), U0 ∈ H2(Ω)N , p0 ∈ H1(Ω) and f ∈ H1(0, T ;L2(Ω)N ). The domain Ω
is assumed to be of class C2 for the same reason as in the case of the transport problem. See
Theorem 3.4.4 for the precise formulation.

The evolution of the particle density (2.5) is considered in Section 3.4.2. The main result
here is the existence and uniqueness of weak solutions on arbitrary time intervals provided the
velocity field is sufficiently regular. To obtain this result we assume that the initial particle
density ρ0 is a positive function from L∞(Ω) ∩ H1(Ω), and the initial surface mass density η0

is given by the relation η0 = H(ρ0). For simplicity, we suppose that the mass flux g |U b · ν| of
the particles through the inlet is constant in time and that g is bounded. To show the existence of
weak solutions on a given time interval we need less regularity of the velocity field than obtained
from the solution of the flow problem. To obtain the uniqueness of weak solutions we need
the essential boundedness of the divergence of the velocity field. Such a regularity exceeds that
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3.2 Used methods and conventions

obtained from the analysis of the flow problem. The precise result is formulated in Theorem
3.4.21. An important tool to prove this theorem is a special embedding in anisotropic Sobolev
spaces, which was communicated to me by Pavel Krejčí, see Theorem 3.4.34.

The existence of weak solutions to the decoupled measurement problem in bounded C2 do-
mains follows from the results on the flow problem and the evolution of the particle density.
The solution is unique provided the divergence of the velocity field from the flow problem is
essentially bounded.

3.2 Used methods and conventions

The flow problem (2.1) and the transport problem (2.2) will both be treated by fixed-point meth-
ods. Thereby, we consider an arbitrary function W , substitute it into the continuity equations
and the convective terms of the momentum equations, and then study the solution operator
G : W 7→ U , compare [3]. In the following, the problem of finding U for a given W is
called auxiliary problem.

Note that a difficulty in the treatment of the equations of weakly compressible fluids is the lack
of a suitable energy inequality. Thus, the methods for incompressible or strongly compressible
fluids cannot be applied directly. To illustrate this, assume for the moment that U b = 0 and
f = 0, multiply the momentum equation of (2.1) by U , integrate over Ω, and use the conserva-
tion of mass to obtain∫

Ω

[
1
2
∂

∂t

(
ρ0 |U |2 + γp2

)
+ |∇U |2 + |divU |2

]
dx = −ρ0

∫
Ω
Uj

∂Ui
∂xj

Ui dx,

where summation over repeated indices is assumed. Since the right-hand side does not vanish,
and it can not be estimated through the initial and boundary data the energy estimate can not be
deduced directly. To work around this difficulty, Banach’s fixed-point theorem will be used. Let
us briefly summarize methods applied to the problems under investigation and sketch the relation
to the existing literature.

The transport problem. In contrast to [3], this problem is formulated as a separate problem
whose treatment is more rigorous. We enhance the fixed-point scheme of [3] and gain an ex-
plicit representation of the pressure and the particle density. The representation of the particle
density can also be found in [56]. To show the solvability of the auxiliary problem, we will use
Galerkin’s method and ideas of [47]. Then, we show that G is a contraction on a certain function
space, provided that T is small enough. Problem (2.2) is similar to the flow problem for strongly
compressible media. This problem is studied, for example, in [17, 41, 47, 56].

The flow problem. Compared to [3], we modify the fixed-point scheme, and use Lemma 3.B.2
instead of conventional Gronwall’s inequality. Due to the modification of the fixed-point scheme,
additional assumptions on the pressure can be avoided, and the problem can be treated rigorously.
The use of Lemma 3.B.2 enables us to show the unique solvability for arbitrary H2(Ω)N initial
values for the velocity. To show the solvability of the auxiliary problem, Galerkin’s method is
used to derive estimates for the velocity and its time derivative. This procedure is also applied in
[36] for the treatment of incompressible viscid fluids. The existence of a fixed-point is shown by
proving that G is a contraction on a certain function space.
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3 Theoretical investigations

Other methods for Navier-Stokes equations are studied, for instance, in [18, 36, 38, 40, 60].
Clearly, this list is not complete. One can consult the references in [40] for an extensive overview
of the literature.

We note that a problem similar to (2.1) is studied in [60, §8] as an approximation to the Navier-
Stokes equations. There, the problem of deriving a priori estimates is solved by introducing
the stabilization term 1/2 (divU)U in the momentum equation of (2.1). More precisely, the
following problem is considered:

ε (pε)t + divuε = 0 in Ω× (0, T ),

(uε)t + (uε · ∇)uε +
1
2

div (u)ε uε − ν∆uε +∇pε = f in Ω× (0, T ),

uε = 0 on ∂Ω× (0, T ),

uε = u0, pε = p0 at t = 0,

(3.1)

instead of (2.1). In (3.1), ν denotes the kinematic viscosity of the fluid. Multiplying the momen-
tum equation in (3.1) by uε and integrating over Ω yields∫

Ω

[
1
2
∂

∂t

(
|uε|2 + ε p2

ε

)
+ ν|∇uε|2

]
dx =

∫
Ω
f · udx, (3.2)

for sufficiently regular uε and pε. Relation (3.2) is suitable to derive a priori estimates. More-
over, as ε → 0, a subsequence (uε′ , pε′) of solutions of (3.1) converges to some solution (u, p)
of Navier-Stokes equations, see [60, Theorems 8.3 and 8.4] for the precise formulation. How-
ever, we are not interested in the limit γ → 0 in problem (2.1). Therefore, fixed-point techniques
are used in Section 3.4.1 to investigate the flow problem (2.1)

The evolution of the particle density. To investigate problem (2.5), the same method as in [4]
(Rothe’s method) is used. Here, the boundary condition on the inlet is changed to the Robin
type condition, and the assumption of divergence-free velocity field is dropped. Due to the mod-
ification of the inlet condition, the estimations can be carried out without further assumptions
on the trace of the solution. A priori estimates are similar to [4] but without assuming that the
velocity field is divergence-free. To establish the required relation between the trace of the par-
ticle density and the surface mass density of adhered particles on the active part, we first apply
results of Savaré on elliptic problems in Lipschitz domains to obtain additional regularity of the
particle density. Then, we apply a special embedding theorem to obtain continuity properties of
the particle density in time. The uniqueness follows then from Hilpert’s inequality.

We use the following conventions. The terms Young’s, Hölder’s or Minkowski’s inequalities
are used in the usual way (see Theorems 3.A.1 – 3.A.4). Further, the results of Section 3.D are
used without direct referring to this section. In the following, Ω is assumed to be a bounded
domain in RN , N ∈ {2, 3}, and Sobolev embeddings will mainly be applied in three dimensions
because this is the most interesting case. The constants occurring thereby will be denoted by CΩ

to indicate the dependence on the domain.

3.3 The transport problem

This section is devoted to the theoretical investigation of the transport problem (2.2). For the
theoretical investigation of (2.2), the system is transformed to homogeneous boundary conditions
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3.3 The transport problem

for the velocity. To simplify the notation, extend U b to Ω by solving the following elliptic
boundary-value problem:

−µ∆ψ − ξ∇divψ = 0 in Ω,
ψ|∂Ω = U b on ∂Ω.

(3.3)

Then U b ∈ H2(Ω) by Lemma 3.G.3, and (2.2) can be rewritten using u = U −U b as follows:

γp′ + div (u+U b) = 0,

(ρ(0))t + div
(
ρ(0)[u∗ +U b

∗]
)

= 0,(
ρ0 + ρ(0)

)(
ut + ([u+U b] · ∇) [u+U b]

)
+∇p− µ∆u− ξ∇divu = f ,

u|∂Ω = 0,

u(x, 0) = U0(x)−U b, p(x, 0) = p0(x), ρ(0)(x, 0) = ρ0(x).

(3.4)

Definition 3.3.1 (Weak solutions). Let q > N be given, and let the space W 1,1
q,∞(Ω × (0, T ))

be defined as in Section 3.H. A triple of functions (u, p, ρ(0)) with u ∈ H1(0, T ;L2(Ω)N ) ∩
L2(0, T ;H1

0 (Ω)N ), p ∈ H1(0, T ;L2(Ω)), and ρ(0) ∈W 1,1
q,∞(Ω× (0, T )) is called weak solution

of (3.4), if the initial conditions are satisfied, and all of the following equations

0 =
∫ T

0

∫
Ω

[(
ρ(0)
)
t
+ div

(
ρ(0)[u∗ +U b

∗]
)]
ψ1 dx dt,

0 =
∫ T

0

∫
Ω

[
γ pt + div (U b + u)

]
· ψ2 dx dt

0 =
∫ T

0

∫
Ω

[(
ρ0 + ρ(0)

)(
ut + ([u+U b] · ∇) [u+U b]

)
− f

]
ψ dxdt

+
∫ T

0

∫
Ω

[µ∇u : ∇ψ + ξ div (u) div (ψ)− p div (ψ)] dxdt

(3.5)

are fulfilled for all ψ1 ∈ L1(0, T ;Lq
′
(Ω)), ψ2 ∈ L2(0, T ;L2(Ω)), and ψ ∈ L2(0, T ;H1

0 (Ω)N )
where 1/q + 1/q′ = 1.

Note that the particles cannot leave Ω through the walls ∂Ω \ (Γin ∪ Γout). But if the velocity
is regularized, it could happen that U∗ · ν 6= 0 on ∂Ω \ (Γin ∪ Γout). Therefore, we will require
that the particles are located strictly inside Ω at t = 0 to estimate the time when they can reach
the boundary.

Now, the main result of Section 3.3 can be stated.

Theorem 3.3.2 (Main result for the transport problem). Let Ω be a bounded domain in RN

with C2 boundary. Let σδ (see Section 2.4.4) be nonnegative and Lipschitz-continuous with∫
RN σδ = 1 and suppσδ ⊂ Bδ(0) for some δ > 0, where Bδ(0) is the ball with radius δ and

center at the origin. Suppose U0 ∈ H1(Ω)N , U b ∈ H2(Ω)N , p0 ∈ H1(Ω) and ρ0 ∈ C0,1(Ω)
with dist

(
supp ρ(0), ∂Ω

)
≥ d > 0 for some d.
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Then, there exists T > 0 such that (3.4) has a unique weak solution (u, p, ρ(0)) in Ω× (0, T ),
provided that f ∈ L2(0, T ;L2(Ω)N ). The components of the solution belong to the spaces:

u ∈ H1(0, T ;L2(Ω)N ) ∩ L∞(0, T ;H1
0 (Ω)N ) ∩ L2(0, T ;H2(Ω)N ),

p ∈ H1(0, T ;H1(Ω)),

ρ(0) ∈ C0,1(Ω× (0, T )).

Additionally it holds supp ρ(0)(t) ⊂ Ω for t ∈ [0, T ]. Remember that the velocity U is given by
U = U b + u.

Remark 3.3.3. Using embedding theorems, one can deduce from Theorem 3.3.2:

U ∈ C([0, T ];H1−ε(Ω)N ) for ε > 0,

p ∈ C([0, T ];H1(Ω)).

The next definition introduces functional spaces where we are looking for the functionsU and
u.

Definition 3.3.4. Let T ∈ (0,∞) and Ω be an open subset of RN , N ∈ {2, 3}. Define the
following Banach-spaces:

V := V (0, T ) := H1(0, T ;L2(Ω)N ) ∩ L∞(0, T ;H1(Ω)N ) ∩ L2(0, T ;H2(Ω)N ),

V0 := V ∩ L∞(0, T ;H1
0 (Ω)N ),

endowed with the norms

‖U‖V := ‖U‖H1(0,T ;L2(Ω)N ) + ‖U‖L∞(0,T ;H1
0 (Ω)N ) + ‖U‖L2(0,T ;H2(Ω)) ,

‖u‖V0 := ‖u‖H1(0,T ;L2(Ω)N ) + ‖u‖L∞(0,T ;H1
0 (Ω)N ) + ‖u‖L2(0,T ;H2(Ω)) .

The proof of Theorem 3.3.2 is structured as follows. In Section 3.3.1, the auxiliary problem is
formulated and representations of the pressure and the particle density are given. The right-hand
side of the auxiliary problem is investigated in Section 3.3.2. In Section 3.3.3, the solvability
of the auxiliary problem is considered. Finally, in Section 3.3.4 the proof of Theorem 3.3.2 is
completed by showing the existence of a fixed-point in the auxiliary problem.

3.3.1 Representation of the pressure and the particle density

To obtain a fixed-point scheme for u, introduce an arbitrary function w and replace u by w in
the mass conservations and the nonlinear term of the momentum equation in (3.4). Then, the
auxiliary problem reads:

γ pt + div (w +U b) = 0,(
ρ(0)
)
t
+ div

(
ρ(0)[w∗ +U b

∗]
)

= 0,(
ρ0 + ρ(0)

)
ut − µ∆u− ξ∇div (u) = F ,

u|∂Ω = 0,

u(x, 0) = U0(x)−U b(x), p(x, 0) = p0(x), ρ(0)(x, 0) = ρ0(x).

(3.6)
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3.3 The transport problem

The right-hand side of the momentum equation in (3.6) is defined by

F := F (w) := f −∇p−
(
ρ0 + ρ(0)

)
([w +U b] · ∇) [w +U b]). (3.7)

Note p and ρ(0) can be expressed in terms of w, see equations (3.8) and (3.10) below. There-
fore, F given by (3.7) can indeed be regarded as a mapping of w. To show that (3.6) is solvable
for u, the regularity of the right-hand side (3.7) has to be investigated. To this end, we show first
how the unknowns p and ρ(0) can be computed.

Assume w ∈ V0, then U b ∈ H2(Ω) and the first equation in (3.6) show that pt satisfies:

pt = −1
γ

div (w +U b) ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω)).

Therefore, the pressure is given by

p(t) = p0 − t

γ
divU b −

1
γ

∫ t

0
divw(τ) dτ ∈ H1(0, T ;H1(Ω)). (3.8)

To obtain a formula for ρ(0), set W = w + U b ∈ V . Then ρ(0) is determined by the initial
value problem

ρ
(0)
t + div

(
ρ(0)W ∗) = 0 in Ω× (0, T ),

ρ(0) = ρ0 for t = 0.
(3.9)

The regularized velocity field W ∗ satisfies the requirements of Theorem 3.H.1. Thus, the solu-
tion ρ(0) is given by the formula

ρ(0)(x, t) = ρ0 (y(0, t,x)) · exp
(∫ t

0
div (W ∗(y(τ, t,x), τ)) dτ

)
, (3.10)

where y denote the characteristics ofW ∗ (see (3.181)). Due to (3.10), the time when the particles
reach the boundary can be estimated from below as follows. Using properties of convolutions,
we get ∫ t

0
‖divW ∗(τ)‖L∞(Ω) dτ ≤ ‖σδ‖L2(RN )

∫ t

0
‖div (W (τ))‖L2(Ω) dτ

≤ T ‖σδ‖L2(RN ) ‖W ‖L∞(0,T ;H1(Ω)N )

so that ρ(0)(x, t) 6= 0 can occur only if y(τ, t, x) ∈ supp ρ0 for some τ ∈ [0, t]. By (3.181) and
the embedding H2−ε(Ω) ⊂ C(Ω), it holds

|y(τ1, t, x)− y(τ2, t, x)| ≤ CΩ T ‖W ‖L∞(0,T ;H2−ε(Ω)) .

In order to ensure supp ρ(0)(·, t) ⊂ Ω, assume in the following that

T <
d

CΩ ‖W ‖L∞(0,T ;H2−ε(Ω))

where d is the same number as in the hypothesis of Theorem 3.3.2. Additionally, ρ(0) is non-
negative and bounded due to (3.10). Applying Theorem 3.H.1 and setting

M1 := max ρ0 · exp
(√

N‖σδ‖L2(RN ) ‖U b‖H1(Ω)N

)
,

yields an upper bound for ρ(0) in terms of w = W −U b as follows:

ρmax := M1 · exp
(
T
√
N‖σδ‖L2(RN ) ‖w‖L∞(0,T ;H1(Ω)N )

)
. (3.11)
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3.3.2 The convective term and the regularity of the right-hand side

In order to show the existence of weak solutions u ∈ V0 of (3.6), the regularity of F given by
(3.7) has to be estimated. The following lemma specifies the regularity of the convective term.

Lemma 3.3.5. Let V , W ∈ V and r ∈ L∞(Ω × (0, T )) be arbitrary functions. Then there
exists a constant CV such that

‖r · (V · ∇)W ‖2L2(0,T ;L2(Ω)N ) ≤ CV
√
T ‖r‖2L∞(Ω×(0,T )) · ‖V ‖

2
V · ‖W ‖2V .

The constant CV is independent of V , W and r.

Proof. Let v and w be arbitrary components of V andW , respectively. Note that r · (V · ∇)W
consists of a sum of terms of the form r v wxj . Therefore, it is enough to proof that∥∥r v wxj∥∥2

L2(0,t;L2(Ω))
≤CΩ

√
t ‖r‖2L∞(Ω×(0,T ))·

· ‖v‖2L∞(0,t;H1(Ω)) ·
∥∥wxj∥∥L∞(0,t;L2(Ω))

·
∥∥wxj∥∥L2(0,t;H1(Ω))

,

for all t ∈ (0, T ), where CΩ is independent of v, w and r. Obviously∫ t

0

∫
Ω
r2 v2w2

xj ≤ ‖r‖
2
L∞(Ω×(0,T )) ·

∫ t

0

∫
Ω
v2w2

xj .

Therefore, it remains to estimate the integrals on the right-hand side. To this end we will use
Hölder’s inequality with p = 3, p′ = 3/2, the embeddingsH1(Ω) ⊂ L6(Ω), H1/2(Ω) ⊂ L3(Ω),
and the interpolation inequality ‖u‖2H1/2(Ω) ≤ CΩ ‖u‖H1(Ω) · ‖u‖L2(Ω) (see Theorem 3.E.7). We
have ∫ t

0

∫
Ω
v2w2

xj ≤
∫ t

0
‖v‖2L6(Ω)

∥∥wxj∥∥2

L3(Ω)
≤ CΩ

∫ t

0
‖v‖2H1(Ω)

∥∥wxj∥∥2

H1/2(Ω)

≤ CΩ ‖v‖2L∞(0,t;H1(Ω))

∫ t

0

∥∥wxj∥∥H1(Ω)

∥∥wxj∥∥L2(Ω)

≤ CΩ ‖v‖2L∞(0,t;H1(Ω)) ·
∥∥wxj∥∥L∞(0,t;L2(Ω))

·
∥∥wxj∥∥L2(0,T ;H1(Ω))

·
√
t.

The last step is due to the application of Hölder’s inequality.

Now it is possible to show that F is square summable.

Lemma 3.3.6. Assume 0 < T <∞, f ∈ L2(0, T ;L2(Ω)N ), andW ∈ V . Define the function

g : [0,∞)2 → [0,∞) , g(r, T ) = r2 T 2 + T 1/2 r4 · exp
(
N1/2‖σδ‖L2(RN )T r

)
.

Then F defined by (3.7) can be estimated as follows:

‖F ‖2L2(0,T ;L2(Ω)N ) ≤ BF (T ) · (1 + g (‖W ‖V , T )) .

The function BF is non-decreasing in T and independent ofW .
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3.3 The transport problem

Proof. By (3.8) and Hölder’s inequality, it holds∫ T

0

∫
Ω
|∇p|2dxdt ≤ 2T

∥∥p0
∥∥2

H1(Ω)
+

2
γ2

∫ T

0

∫
Ω

∣∣∣∣∫ t

0
∇divW (τ) dτ

∣∣∣∣2 dxdt

≤ 2T
∥∥p0
∥∥2

H1(Ω)
+

2
γ2

∫ T

0

∫
Ω
t ·
∫ t

0
|∇divW (τ)|2 dτdxdt

≤ 2T
∥∥p0
∥∥2

H1(Ω)
+

2T 2

γ2
‖W ‖2L2(0,T ;H2(Ω)N ) .

(3.12)

The value ρmax is bounded by

ρmax ≤ max ρ0 · exp
(
C T ‖W ‖V

)
for C >

√
N‖σδ‖L2(RN ). Therefore

(ρ0 + ρmax) ≤
(
ρ0 + max ρ0

)
· exp

(
C T ‖W ‖V

)
. (3.13)

Therefore Lemma 3.3.5, estimate (3.12), and definition (3.11) imply∫ T

0

∫
Ω
|F |2dxdt ≤ C

∫ T

0

∫
Ω

[
|f |2 + |∇p|2 + T 1/2

(
ρ0 + ρmax

)2‖W ‖4V ]
≤ C

[
‖f‖2L2(0,T ;L2(Ω)N ) + T

∥∥p0
∥∥2

H1(Ω)
+ T 2‖W ‖2V + T 1/2

(
ρ0 + ρmax

)2‖W ‖4V ],
for C large enough. Using the bound (3.13) proves the lemma.

3.3.3 Existence and uniqueness of solutions to the auxiliary problem

We turn to the solvability of the auxiliary problem (3.6). More precisely, we show that the
following problem (

ρ0 + ρ(0)
)
ut − µ∆u− ξ∇divu = F ,

u|∂Ω = 0,

u(x, 0) = U0(x)−U b(x)

(3.14)

has a unique solution u ∈ V0 in the sense of Definition 3.3.7. Note that the F = F (w) (see
(3.7)) and that p and ρ(0) are given by (3.8) and (3.10).

Definition 3.3.7. An element u ∈ V0 is called a strong solution of (3.14) if the following equa-
tion ∫ T

0

∫
Ω

[(
ρ0 + ρ(0)

)
ut − µ∆u− ξ∇divu− F

]
·ψ dxdt = 0, (3.15)

holds true for all ψ ∈ L2(0, T ;H1
0 (Ω)N ).

The goal of this section is to prove the following lemma.

Lemma 3.3.8. Assume the hypothesis of Lemma 3.3.6. Then (3.14) has a unique strong solution
u ∈ V0.
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Remark 3.3.9. Due to the inclusions V0 ⊂ H1(0, T ;L2(Ω)N ) ⊂ C([0, T ];L2(Ω)N ), the initial
condition in (3.14) makes sense.

The proof of Lemma 3.3.8 is divided into the following steps:

1. Construction of approximate solutions um.

2. Estimation of um in several norms.

3. Show that a subsequence of {um} converges to a solution u of (3.14).

Step 1: construction of approximate solutions. The solution u of (3.14) is approximated via
Faedo-Galerkin approximations. To construct them, we proceed similar to [47, Chapter 7].

Let {ψj}, {λj} be the sequences defined in Lemma 3.G.4. For m ∈ N, define

Xm := span{ψj}mj=1 (3.16)

and construct the approximations um by the ansatz

um(t,x) =
m∑
k=1

amk (t)ψk(x) m = 1, 2, ... (3.17)

To obtain an equation for the coefficients amj , replace (u, ψ) by (um, ψj) in (3.15) and neglect
the integral over (0, T ) to obtain∫

Ω

(
ρ0 + ρ(0)

)
umt (t) ·ψj dx =

∫
Ω

[F (t) + µ∆um(t) + ξ∇divum(t)] ·ψj dx. (3.18)

By Lemma 3.G.4, the coefficients are determined by the system of ODEs

m∑
k=1

ȧmk (t) ·
∫

Ω

(
ρ0 + ρ(0)(t)

)
ψk ·ψj dx =

∫
Ω
F (t) ·ψj dx− λj amj (t), j = 1, ...,m,

amj (0) =
∫

Ω
u0 ·ψj dx.

This can be written as an initial value problem for the vector am(t) =
(
am1 (t), ..., amm(t)

)T
M(t) · ȧm(t) = Am(am(t)), amj (0) =

∫
Ω
u0 ·ψj dx,

where Aj(am) =
∫

Ω F ·ψj − λj a
m
j and the components of the matrix M are given by

Mjk(t) =
∫

Ω
ρf (t)ψj ·ψk dx, ρf = ρ0 + ρ(0).

Therefore, M is a symmetric matrix whose coefficients are real-valued and continuous in time
because ρf is continuous. To see that (3.18) is solvable, we estimate the smallest and largest
eigen-value of M . Define

Mρf (t) : Xm → Xm,
〈
Mρf (t)v ; w

〉
=
∫

Ω
ρf (t)v ·w, v,w ∈ Xm

52



3.3 The transport problem

Definition (3.11) implies that ‖Mρf (t)‖L(Xm,Xm) ≤ ρ0 + ρmax and the inequalities

ρ0 ‖v‖2L2(Ω)N ≤
∫

Ω
ρf (t)v · v dx ≤ (ρ0 + ρmax) ‖v‖2L2(Ω)N , for all v ∈ Xm,

which show that the eigen-values of M(t) lie in the interval [ρ0, ρ0 + ρmax] ⊂ (0,∞). Thus,
M(t) is strictly positive, uniformly in t and m. Finally, M(t)−1 exists and is continuous in time.

Therefore, (3.18) can be rewritten as

umt =M−1
ρf (t)

(
F (t) + µ∆um(t) + ξ∇divum(t)

)
,

and the theory of ODEs, shows the existence of Tm > 0 such that the solution am of

ȧm(t) = M(t)−1Am(am(t)), amj (0) =
∫

Ω
u0 ·ψj dx, for j = 1, ...,m,

exists on [0, Tm).

Step 2: a priori estimates on the approximate solutions. The solution of (3.14) will be obtained
as a weak limit of the approximations um. To this end, we show that they are bounded in V0

independently of m.

Lemma 3.3.10. Let the hypothesis of Lemma 3.3.6 be fulfilled for T > 0. Then, for eachm ∈ N,
the approximations um defined by (3.17) exist on [0, T ] and satisfy the estimate

‖um‖2V0
≤ Bu(T ) ·

(
1 + g

(
T, ‖W ‖V

))
.

The function Bu is non-decreasing in T and independent ofW and m.

Proof. By construction of um, the equation (3.18) remains valid if the basis function ψj is
replaced by an arbitrary ψ ∈ Xm. The idea of the proof is to choose first ψ = umt (t) and
then ψ = [−µ∆ − ξ∇div]um(t). The choice ψ = umt yields after integration over (0, t),
0 < t < Tm, and application of Young’s inequality:∫

Ω

[
µ

2
|∇um(t)|2 +

ξ

2
|divum(t)|2

]
+
∫ t

0

∫
Ω

(ρ0

2
+ ρ(0)

)
|umt |2

≤
∫

Ω

[
µ

2
|∇u0(t)|2 +

ξ

2
|divu0(t)|2

]
+
∫ t

0

∫
Ω

1
2ρ0
|F |2.

(3.19)

In the same way, ψ = [−µ∆− ξ∇div]um yields∫ t

0

∫
Ω

∣∣∣∣12 [−µ∆− ξ∇div]um
∣∣∣∣2 ≤ ∫ t

0

∫
Ω

[
|F |2 +

(
ρ0 + ρmax

)2∣∣umt ∣∣2] . (3.20)

Multiply (3.20) by (ρ0/4) · (ρ0 + ρmax)−2 and add it to (3.19) to obtain:∫
Ω
|∇um(t)|2 +

∫ t

0

∫
Ω

[
|umt |2 + |[−µ∆− ξ∇div]um|2

]
≤ C

[∥∥u0
∥∥2

H1(Ω)N
+ ‖F ‖2L2(0,t;L2(Ω)N )

]
,

(3.21)
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where C is sufficiently large.
Now, use Poincaré’s inequality and the orthonormality of {ψj} in L2(Ω)N to obtain the bound

|am(t)|2 ≤ ‖um(t)‖2L2(Ω)N ≤ CΩ ‖∇um(t)‖2L2(Ω)N×N

≤ C
[∥∥u0

∥∥2

H1(Ω)N
+ ‖F ‖2L2(0,t;L2(Ω)N )

]
,

which shows that am exists and is bounded on [0, T ] wheneverF is square summable over [0, T ].
Since [−µ∆−ξ∇div] is strongly elliptic, the definition of the norm in V0 (see 3.3.4) and Lemma
3.3.6 yield the estimate

‖um‖2V0
≤ C

[∥∥u0
∥∥2

H1(Ω)N
+BF (T )

(
1 + g(T, ‖W ‖V

)]
.

This proves the lemma.

Step 3: passage to the limit. Due to the uniform bound given by Lemma 3.3.10 there exist an
element u ∈ V0 such that a subsequence of {um}m∈N denoted again by {um}m∈N converges in
the following sense

um ⇀ u weakly in H1(0, T ; L2(Ω)N ),

um
∗
⇀ u ∗-weakly in L∞(0, T ;H1

0 (Ω)N ),

um ⇀ u weakly in L2(0, T ;H2(Ω)N ).

(3.22)

The next step is to show that u satisfies (3.15).

Lemma 3.3.11. The weak limitu ∈ V0 given by (3.22) is a unique strong solution of the auxiliary
problem (3.14) in the sense of Definition 3.3.7.

Proof. By the construction of approximate solutions, see (3.17) and (3.18), the functions um

satisfy∫ T

0

∫
Ω

[(
ρ0 + ρ(0)

)
umt + [−µ∆− ξ∇div]um − F

]
·ψ = 0 for all ψ ∈ L2(0, T ;Xm).

Due to the convergence (3.22), it holds∫ T

0

∫
Ω

[(
ρ0 + ρ(0)

)
ut + [−µ∆− ξ∇div]u− F

]
·ψ = 0 (3.23)

for all ψ ∈ L2(0, T ;Xm). Lemma 3.G.4 ensures that
⋃
m∈NXm is dense in L2(Ω)N . Thus,⋃

m∈N
L2(0, T ;Xm) is a dense subset of L2(0, T ;L2(Ω)N ).

Moreover, u ∈ V0 ⊂ H1(0, T ;L2(Ω)N ) ∩ L2(0, T ;H2(Ω)N ), and the bound defined in
(3.11) imply that

(
ρ0 + ρ(0)

)
ut + [−µ∆ − ξ∇div]u − F is a continuous linear functional on

L2(0, T ;L2(Ω)N ). To show that, use Hölder’s inequality to obtain∣∣∣∣∫ T

0

∫
Ω

[(
ρ0 + ρ(0)

)
ut + [−µ∆− ξ∇div]u− F

]
·ψ dxdt

∣∣∣∣
≤ C

[
‖u‖V0 + ‖F ‖L2(0,T ;L2(Ω)N )

]
· ‖ψ‖L2(0,T ;L2(Ω)N ) .

(3.24)
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By the relations (3.23) and (3.24) we get∫ T

0

∫
Ω

[(
ρ0 + ρ(0)

)
ut + [−µ∆− ξ∇div]u− F

]
·ψ dxdt = 0

for all ψ ∈ L2(0, T ;L2(Ω)N ). The uniqueness of u follows from the linearity of problem
(3.14).

3.3.4 Fixed-point method

Assume the hypothesis of Lemma 3.3.6. Due to Lemma 3.3.8, one can then consider the mapping
W 7→ u : V → V0 which maps W onto the solution of the initial-boundary value problem
(3.14). Since u is a weak limit of the approximate solutions (3.17) it satisfies the bound of
Lemma 3.3.10. Since W = U b + w ∈ V for w ∈ V0, one can also consider the mapping
w 7→ u : V0 → V0. Similar to Lemma 3.3.10, u is bounded by

‖u‖2V0
≤ Bu ·

(
1 + g0(T, ‖w‖V )

)
, g0(T, ‖w‖V ) = g(T, ‖U b +w‖V ). (3.25)

By the definition of g in Lemma 3.3.6, there exists an independent of w constant B0 such that

g0(T, ‖w‖V ) ≤ B0

[
T 2 ‖U b‖2H2(Ω)N

+ T 1/2 ‖U b‖4H2(Ω)N · exp
(
B0 T

[
‖U b‖H2(Ω) + ‖w‖V0

])
+ T 2‖w‖2V0

+ T 1/2‖w‖4V0
· exp

(
B0 T

[
‖U b‖H2(Ω) + ‖w‖V0

])]
.

(3.26)

Definition 3.3.12. Let U0 ∈ H1(Ω)N , U b ∈ H2(Ω)N , p0 ∈ H1(Ω),f ∈ L2(0, T ;L2(Ω)N )
for some T > 0 and w ∈ V0. Define the solution operator G by the relation

G : V0 → V0 , G(w) = u,

where u is a unique solution claimed by Lemma 3.3.11.

To complete the proof of Theorem 3.3.2, we apply Banach’s fixed-point theorem to show that
G has a unique fixed-point for sufficiently small T . To this end, we will first find a set M that
satisfies G(M) ⊂ M . Then, we will show that G is a contraction on M at least for small T .
Define the following sets

M(T, r) :=
{
u ∈ V0 : u(0) = u0 ∧ ‖u‖V ≤ r

}
for T > 0 and r > ‖u0‖H1

0 (Ω)N . Substituting (3.26) into (3.25) for aw ∈M(T, r) with r2 > Bu
and denoting R := ‖U b‖V + r yield

‖u‖2V0
≤ Bu +BuB0R

2 T 1/2
[
T 3/2 +R2 exp (B0 T R)

]
≤ r2, (3.27)

if T is sufficiently small. In this case G(M(T, r)) ⊂M(T, r).
The next step is to find T and r such that G is contractive on M(T, r).
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Inequality for difference of two solutions. Choose wi ∈ V0, ui = G(wi) and use the
following notations: W i = wi+U b, U i = ui+U b for i = 1, 2, w̃ = w1−w2, ũ = u1−u2,
p̃ = p1 − p2, and ρ̃ = ρ

(0)
1 − ρ

(0)
2 . By (3.14), the difference ũ solves the following problem

γp̃t + div (ũ) = 0,(
ρ0 + ρ

(0)
2

)
ũt − µ∆ũ− ξ∇div (ũ) = F̃ ,

ũ(0,x) = 0 , ũ|∂Ω = 0,

where

F̃ = ∇p̃− ρ̃u1,t − ρ̃ [(W 1 · ∇)W 1]−
(
ρ0 + ρ

(0)
2

)
[(W 1 · ∇)w̃ + (w̃ · ∇)W 2] . (3.28)

To estimate ‖ũ‖V in terms of ‖w̃‖V , the right-hand side F̃ has to be estimated. To this end,
we first estimate p̃ (see (3.29)) and ρ̃ (see Lemma 3.3.13)

Similar to (3.8), p̃ is given by the formula

p̃(t) = −1
γ

∫ t

0
div w̃(τ) dτ,

and therefore, Hölder’s inequality yields the estimate

‖∇p̃‖2L2(Ω)N =
1
γ

∫
Ω

∣∣∣∣∫ t

0
∇div w̃(τ) dτ

∣∣∣∣2 dx ≤ T

γ
‖w̃‖L2(0,T ;H2(Ω)N ) . (3.29)

For ρ̃ one can show the following estimate.

Lemma 3.3.13. Let d be defined as in Theorem 3.3.2, and ρ0 be nonnegative and Lipschitz-
continuous with the Lipschitz-constant Lρ. Moreover, let W i ∈ V be given and ρi be solutions
of (3.9) corresponding to velocity fields W ∗

i , i = 1, 2, respectively. Set ρ̃ = ρ1 − ρ2 and
W̃ = W 1 −W 2. Then there exists a constant B̃ρ such that

ρ̃(x, t) ≤ B̃ρ
√
T
∥∥∥W̃∥∥∥

L2(0,T ;H2−ε(Ω)N )
.

The constant B̃ρ depends on σδ, ρ0, and ‖W i‖V , but not on W̃ .

Proof. The proof is divided into two steps. First, the difference of the characteristics ỹ is esti-
mated, second, ρ̃ is estimated.

Step 1 (estimate of the characteristics). By the equations (3.181), the difference of the charac-
teristics ỹ = y1 − y2 solves the initial value problem

∂ỹ1

∂τ
(τ, t, x) = W ∗

1(y1(τ, t, x), τ)−W ∗
2(y2(τ, t, x), τ) , ỹ(t, t, x) = 0.

Assume that t and x are fixed and omit them for brevity. The difference of the trajectories at
time s can be estimated as follows:

|ỹ(s)| ≤
∫ s

0
|W ∗

1(y1(τ), τ)−W ∗
2(y2(τ), τ)| dτ

≤
∫ s

0

[
|W ∗

1(y1(τ), τ)−W ∗
2(y1(τ), τ)|

+ |W ∗
2(y1(τ), τ)−W ∗

2(y2(τ), τ)|
]
dτ.

(3.30)
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3.3 The transport problem

Due to the embedding H2−ε(Ω) ⊂ C0(Ω̄) the first term on the right-hand side can be estimated
as follows:∫ s

0
|W ∗

1(y1(τ), τ)−W ∗
2(y1(τ), τ)| ≤ CΩ ‖W ∗

1 −W ∗
2‖L2(0,T ;H2−ε(Ω)N )

√
s. (3.31)

The second term on the right-hand side of (3.30) can be estimated using the Lipschitz-continuity
of σδ. Denote the Lipschitz-constant of σδ by Lσ. The following estimate holds∫ s

0
|W ∗

2(y1(τ), τ)−W ∗
2(y2(τ), τ)|

≤
∫ s

0

∫
RN
|σδ(y1(τ)− z)− σδ(y2(τ)− z)| · |W 2(z, τ)| dz dτ

≤
∫ s

0

[
sup
y∈Ω
|W 2(y, τ)| ·

∫
M
|σδ(y1(τ)− z)− σδ(y2(τ)− z)| dz

]
dτ

≤ 2|Bδ|Lσ
∫ s

0
‖W 2‖H2−ε(Ω)N |ỹ(τ)|dτ,

(3.32)

where M = Bδ(y1(τ))∪Bδ(y1(τ)), and |Bδ| is the volume of a ball with radius δ. Substituting
(3.31) and (3.32) into (3.30) yields

|ỹ(s)| ≤ CΩ

√
s ‖W ∗

1 −W ∗
2‖L2(0,T ;H2−ε(Ω)) + 2|Bδ|Lσ

∫ s

0
‖W 2‖H2−ε(Ω)N |ỹ(τ)|dτ.

Thus, Gronwall’s inequality implies

|ỹ| ≤ By
√
T ‖W ∗

1 −W ∗
2‖L2(0,T ;H2−ε(Ω)) ,

By := CΩ exp
(

2
√
T |Bδ|Lσ ‖W 2‖L2(0,T ;H2−ε(Ω)N )

)
.

(3.33)

Step 2 (estimate for the densities). Due to Theorem 3.H.1, the difference ρ̃ = ρ1 − ρ2 of
solutions of (3.9) can be expressed by

ρ̃(x, s) =
[
ρ0(y1(s))− ρ0(y2(s))

]
exp

(∫ s

0
div (W ∗

1(y1(τ), τ)) dτ
)

+ ρ0(y2(s))

[
exp

(∫ s

0
div (W ∗

1(y1(τ), τ)) dτ
)

− exp
(∫ s

0
div (W ∗

2(y2(τ), τ)) dτ
)]

.

(3.34)

The first term on the right-hand side of (3.34) can be estimated using properties of convolutions,
the Lipschitz-continuity of ρ0, and the estimate (3.33). We have[

ρ0(y1(s))− ρ0(y2(s))
]

exp
(∫ s

0
div (W ∗

1(y1(τ), τ)) dτ
)

≤ LρBy
√
T ‖W ∗

1 −W ∗
2‖L2(0,T ;H2−ε(Ω))

× exp
(√

s ‖σδ‖L2(RN ) ‖W 1‖L2(0,T ;H1(Ω)N )

)
.

(3.35)
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To estimate the brackets on the right-hand side of (3.34), note that
∣∣ea − eb

∣∣ ≤ eK |b − a| for
real a, b < K, and set r = max{‖W i‖L1(0,T ;H1(Ω)N ) : i = 1, 2}. Using the properties of
convolutions again, one deduces the following estimate

exp
(∫ s

0
div (W ∗

1(y1(τ), τ)) dτ
)
− exp

(∫ s

0
div (W ∗

2(y2(τ), τ)) dτ
)

≤ exp
(
r ‖σδ‖L2(RN )

)
×∣∣∣∫ s

0
div (W ∗

1(y1, τ)−W ∗
2(y1, τ) +W ∗

2(y1, τ)−W ∗
2(y2, τ)) dτ

∣∣∣
≤ exp

(
r ‖σδ‖L2(RN )

)
·
[
‖σδ‖L2(RN ) ‖W 1 −W 2‖L1(0,T ;H1(Ω)N ) +∣∣∣∫ s

0

∫
RN

σδ(y1 − z)− σδ(y2 − z) div (W 2(z)) dzds
∣∣∣]

≤ exp
(
r ‖σδ‖L2(RN )

)
·
[
‖σδ‖L2(RN )

√
T ‖W 1 −W 2‖L2(0,T ;H1(Ω)N ) +

Lσ By
√
T ‖W 1 −W 2‖L2(0,T ;H2−ε(Ω)N ) ‖W 2‖L1(0,T ;H1(Ω)N )

]

(3.36)

Noting that ‖W ‖H1(Ω)N ≤ ‖W ‖H2−ε(Ω)N for small ε, using the abbreviation

B̃ρ := LρBy · exp
(√

s ‖σδ‖L2(RN ) ‖W 1‖L2(0,T ;H1(Ω)N )

)
+

+ ρmax exp
(
r ‖σδ‖L2(RN )

)
·
[
‖σδ‖L2(RN ) + Lσ By ‖W 2‖L1(0,T ;H1(Ω)N )

]
,

and substituting (3.35) and (3.36) into (3.34) yield

ρ̃(x, s) ≤ B̃ρ
√
T ‖W 1 −W 2‖L2(0,T ;H2−ε(Ω)N ) , ∀ (x, s) ∈ Ω× (0, T ),

which completes the proof of the lemma.

Due to (3.11), one can redefine the constant ρmax as follows:

ρ
(0)
i (x, t) ≤M1 · exp

(
r T
√
N‖σδ‖L2(RN )

)
=: ρmax, i = 1, 2.

The next lemma gives an estimate of F̃ defined by (3.28). Denote the constant in time exten-
sion of U b again by U b.

Lemma 3.3.14. Let wi ∈ M(T, r), i = 1, 2 and R = ‖U b‖V + r. Then there exists B̃F such
that ∥∥∥F̃∥∥∥2

L2(0,T ;L2(Ω)N )
≤ B̃F (T, r)

√
T ‖w̃‖2V0

.

The constant B̃F depends on T, r, and other data that are fixed. The constant B̃F is non-
decreasing in T, r.
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Proof. For ‖wi‖V ≤ r, it holds: ‖W i‖V ≤ R. Applying Lemma 3.3.5 to each term separately
yields∥∥∥(ρ0 + ρ

(0)
2

)
[(W 1 · ∇)w̃ + (w̃ · ∇)W 2]

∥∥∥2

L2(0,T ;L2(Ω)N )
≤ 2CV

(
ρ0 + ρmax

)2√
T R2‖w̃‖2V0

,

‖ρ̃ [(W 1 · ∇)W 1]‖2L2(0,T ;L2(Ω)N ) ≤ CV T
1/2R4 · B̃2

ρ T‖w̃‖2V0
.

In the derivation of the last inequality, we have used Lemma 3.3.13 to estimate ρ̃. Using again
Lemma 3.3.13 and estimate (3.27), we get

‖ρ̃u1,t‖2L2(0,T ;L2(Ω)N ) ≤ (r B̃ρ)2 T ‖w̃‖2V0
.

Note that W̃ = w̃, forW i = U b +wi, i = 1, 2. By (3.29), the gradient of the pressure can be
estimated as follows:

‖∇p̃‖2L2(0,T ;L2(Ω)N ) ≤
T 2

γ
‖w̃‖2V0

.

Combining all prefactors into a single one completes the proof the lemma.

The next lemma gives an estimate for ‖ũ‖V in terms of ‖w̃‖V .

Lemma 3.3.15. Let r > B
1/2
u and T > 0 satisfy (3.27). Let wi ∈ M(T, r), i = 1, 2 and

ui = G(wi), ũ = u1 − u2, w̃ = w1 −w2. For every κ ∈ (0, 1), there exists T∗ > 0 such that

‖ũ‖2V0
≤ κ ‖w̃‖2V0

,

where V0 = V0(0, T∗).

Proof. By (3.15), ũ satisfies the equation∫ T

0

∫
Ω

[(
ρ0 + ρ

(0)
2

)
ũt +

[
−µ∆− ξ∇div

]
ũ− F̃

]
·ψ = 0 for all ψ ∈ L2(0, T ;L2(Ω)N ).

The same techniques as in the proof of Lemma 3.3.10 yield the inequality∫
Ω
|∇ũ(t)|2 dx+

∫ t

0

∫
Ω

[
|ũt|2 + |∆ũ|2 + |∇div ũ|2

]
dxdτ ≤ C

∫ t

0

∫
Ω
|F̃ |2 dxdτ,

for all t ∈ (0, T ). By Definition 3.3.4, the left-hand side is equivalent to the norm of ũ in V0, and
by Lemma 3.3.14, the right-hand side can be estimated from above by C B̃F (T, r) t1/2 ‖w‖2V0

.
Choosing κ ∈ (0, 1) and setting

T∗ = min

{
T,

∣∣∣∣ κ

C B̃F (T, r)

∣∣∣∣2
}

yields ‖ũ‖V0 ≤ κ‖w‖V0 in V0(0, T∗).

Now we use Banach’s fixed-point theorem to deduce, that the solution operator G defined in
Definition 3.3.12 has a unique fixed-point u ∈ V0(0, T∗). Compute the pressure p using the for-
mula (3.8), and the particle density ρ(0) using the formula (3.10). Then (u, p, ρ(0)) is the unique
weak solution of problem (3.4) in the sense of Definition 3.3.1.

The proof of Theorem 3.3.2 is completed, and the consideration of the transport problem is
finished. Next, the decoupled measurement problem will be investigated.
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3.4 The decoupled measurement problem

This section is devoted to the investigation of system (2.4) describing the decoupled measurement
problem. The problem is decoupled in the following sense. The quantities U and p describing
the flow can be computed independently of the particle variables ρ and η by solving the flow
problem (2.1) Using the velocity fieldU , the particle variables ρ and η are determined by system
(2.5) describing the evolution of the particle density. The main result of Section 3.4 is stated in
Theorem 3.4.1. For the definition of weak solutions, see Definitions 3.4.2 and 3.4.19 below.

Theorem 3.4.1 (Main result for the decoupled measurement problem). Let Ω ⊂ RN be a
bounded domain with C2 boundary. Assume the data for the flow variables satisfy
U0 ∈ H2(Ω)N , U b ∈ H3/2(∂Ω)N , and p0 ∈ H1(Ω), and the data for the particle variables
satisfy ρ0 ∈ H1(Ω) ∩ L∞(Ω), ρ0 ≥ 0, η0 = H(ρ0) in Γ, and g ∈ L∞(Γin). Then there exists
T > 0 such that problem (2.4) admits a weak solution, provided that f ∈ H1(0, T ;L2(Ω)N ).
The components of the solution lie in the spaces

U ∈W 1,∞(0, T ;L2(Ω)N ) ∩H1(0, T ;H1(Ω)N ) ∩ L∞(0, T ;H2(Ω)N ),

p ∈W 1,∞(0, T ;H1(Ω)) ∩H2(0, T ;L2(Ω)),

ρ ∈ H1(0, T ;L2(Ω)) ∩ L∞(0, T ;H1(Ω)) ∩ L2(0, T ;H(3−ε′)/2(Ω)) ∩ L∞(Ω× (0, T )),

η ∈ H1(0, T ;L2(Γ)) ∩ L∞(0, T ;H1/2(Γ)),

where ε′ > 0 is arbitrary. If the velocity field U obtained from the flow problem possesses the
additional regularity: ‖divU(t)‖L∞(Ω) ≤ C∗U for almost all t ∈ (0, T ), where C∗U is a constant,
then the solution is unique.

Theorem 3.4.1 follows from the results on the flow problem (see Theorem 3.4.4) and the
results on the evolution of the particle density (see Theorem 3.4.21). This section is structured
as follows. The flow problem is considered in Section 3.4.1, and the evolution of the particle
density is considered in Section 3.4.2.

For the flow problem, we first construct an auxiliary problem in Section 3.4.1.1. The regu-
larity of solutions of the flow problem is considered in Sections 3.4.1.2 – 3.4.1.3 under certain
assumptions on the data of the problem. The assumptions are verified in Section 3.4.1.4. The
solvability of the flow problem is proved in 3.4.1.5. See Definition 3.4.2 and Theorem 3.4.4 for
precise formulations.

For the evolution of the particle density, we construct approximate solutions in Section 3.4.2.1.
A priori estimates for the approximate solutions are established in Section 3.4.2.2. Weak limits
of the approximate solutions are considered in Section 3.4.2.3. The existence of weak solution
is proved in Section 3.4.2.4. The uniqueness of the solution is considered in Section 3.4.2.5. A
special anisotropic embedding theorem is proved in Section 3.4.2.6. The embedding is used in
Section 3.4.2.4 to establish additional regularity of the weak solution. The precise formulation
of the results for the evolution of the particle density is given in Definition 3.4.19 and Theorem
3.4.21. For the embedding, see Definition 3.4.33 and Theorem 3.4.34.

3.4.1 The flow problem

In this section, the flow problem (2.1) is considered. For theoretical investigations, the system is
transformed to homogeneous boundary conditions for the velocity. Similar to Section 3.3, extend
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U b to an H2(Ω)N -function by solving the boundary value problem (3.3). Using u = U − U b

the flow problem can be rewritten as follows:

pt + div (U b + u) = 0
ρ0ut + ρ0 ([U b + u] · ∇) [U b + u] +∇p− µ∆u− ξ∇divu = f

u|∂Ω = 0

u(x, 0) = u0 := U0(x)−U b(x), p(x, 0) = p0(x).

(3.37)

Definition 3.4.2 (Weak solutions). A pair of functions (u, p) with p ∈ H1(0, T ;L2(Ω)) and
u ∈ L2(0, T ;H1

0 (Ω)N ) ∩ H1(0, T ;L2(Ω)N ) is called weak solution of (3.37), if the initial
conditions are satisfied and all of the following equations∫ T

0

∫
Ω

[γ pt + div (U b + u)] · ζ dxdt = 0,

∫ T

0

∫
Ω

[
ρ0 ut − ρ0 ([U b + u] · ∇) [U b + u]− f

]
·ψ dxdt

+
∫ T

0

∫
Ω

[
µ∇u : ∇ψ + ξ div (u) div (ψ)− p div (ψ)

]
dxdt = 0

hold for all ζ ∈ L2(0, T ;L2(Ω)), ψ ∈ L2(0, T ;H1
0 (Ω)N ).

The next definition introduces functional spaces where we are looking for the functionsU and
u.

Definition 3.4.3. Let T ∈ (0,∞), Ω be an open subset of RN , N ∈ {2, 3}. Define

W := W (0, T ) :=

{
u ∈ L∞(0, T ;H2(Ω)N )

∣∣∣∣∣ut ∈ L
2(0, T ;H1(Ω)N )

∩ L∞(0, T ;L2(Ω)N )

}
,

W0 := W ∩ L∞(0, T ;H1
0 (Ω)N ),

being endowed with the norms

‖U‖2W := ‖U‖2L∞(0,T ;H2(Ω)N ) + ‖U t‖2L2(0,T ;H1(Ω)N ) + ‖U t‖2L∞(0,T ;L2(Ω)) ,

‖u‖2W0
:= ‖u‖2L∞(0,T ;H2(Ω)N ) + ‖ut‖2L2(0,T ;H1

0 (Ω)N ) + ‖ut‖2L∞(0,T ;L2(Ω)) .

The main result of this section is stated in the following theorem.

Theorem 3.4.4 (Main result for the flow problem). Let Ω ⊂ RN be a bounded domain with C2

boundary. Assume U b ∈ H3/2(∂Ω), U0 ∈ H2(Ω)N and p0 ∈ H1(Ω). Then there exists T > 0
such that the system (3.37) has a unique generalized weak solution in the sense of Definition
3.4.2. The functions u and p lie in the spaces

u ∈W0,

p ∈W 1,∞(0, T ;H1(Ω)) ∩H2(0, T ;L2(Ω)),

provided that f ∈ H1(0, T ;L2(Ω)N ). Remember that the velocity U is given by U = U b + u.
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3.4.1.1 Construction of approximate solutions

Theorem 3.4.4 will be proved by a fixed-point technique. To obtain a fixed-point scheme for
the velocity, proceed similar to Section 3.3.1. Introduce an arbitrary function w and replace u
by w in the mass conservation equation and the convective term of the momentum equation. If
w ∈W0 is known, the pressure p satisfies the following relations (compare (3.8)):

pt = −1
γ

div (U b +w) ∈ L∞(0, T ;H1(Ω)) ∩H1(0, T, L2(Ω)),

p(t) = p0 − 1
γ

∫ t

0
div (U b +w(τ)) dτ ∈W 1,∞(0, T ;H1(Ω)) ∩H2(0, T ;L2(Ω)).

(3.38)

Further, define the right-hand side F as follows

F = F (w) := f +∇p− ρ0 ([w +U b] · ∇) [w +U b] . (3.39)

For a given w, problem (3.37) can be rewritten as the parabolic initial-boundary value problem

ρ0ut − µ∆u− ξ∇divu = F in Ω× (0, T ),
u = 0 on ∂Ω× (0, T ),

u(x, 0) = u0(x) for t = 0.

(3.40)

Clearly, (3.40) has a unique weak solution u which satisfies the equation∫ T

0

∫
Ω

[ρ0 ut + [−µ∆− ξ∇div]u− F ] ·ψ = 0, ∀ψ ∈ L2(0, T ;L2(Ω)N ), (3.41)

provided that u0 and F are sufficiently regular. The goal of the following construction is to show
that u ∈W0, ifw ∈W0 and F is computed as in the definition (3.39). In Lemma 3.4.12 below,
we show that w ∈W0 implies F ∈ H1(0, T ;L2(Ω)N ).

To show that u ∈ W0, we proceed similar to Section 3.3.3. Let {λj} and {ψj} be the se-
quences defined in Lemma 3.G.4, define the spaces Xm as in (3.16), and consider the approxi-
mations um defined in (3.17). To obtain an equation for the coefficients, neglect the integral over
(0, T ) in (3.41), and replace (u, ψ) by (um, ψj), j = 1, . . . ,m to obtain∫

Ω
[ρ0 u

m
t (t) + [−µ∆− ξ∇div]um(t)− F (t)] ·ψj dx = 0, j = 1, . . . ,m. (3.42)

Then, the coefficients amj of um are determined by the following initial value problem

ρ0 ȧ
m
j (t) + λj a

m
j (t)−

∫
Ω
F (t) ·ψj dx = 0,

amj (0) =
∫

Ω
u0 ·ψj dx (j = 1, ...,m).

(3.43)

This system of ODEs can be written in matrix-vector notation as follows:

ρ0 ȧ
m +Am(am(t)) = 0, amj (0) =

∫
Ω
u0 ·ψj dx, (j = 1, ...,m), (3.44)

where the components Amj are given by Amj (am(t)) = λj a
m
j (t)−

∫
Ω F (t) ·ψj . The theory of

ODEs shows the existence of Tm > 0 such that the solution am exists on [0, Tm).
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3.4.1.2 A priori estimates

In this section, the approximations um defined in Section 3.4.1.1 are estimated in several norms.
The method is similar to [36]. The following lemma shows that the approximations um exist on
a certain non-empty time interval independent of m.

Lemma 3.4.5. Let u0 ∈ H1
0 (Ω)N and F ∈ L2(0, T ;L2(Ω)N ) for some T > 0. Then, for each

m, the solutions am of (3.44) exist on [0, T ]. Further there exists an independent of m constant
B1 such that the approximations um satisfy the estimates

‖um‖2L∞(0,T ;H1
0 (Ω)N )

‖um‖2L2(0,T ;H2(Ω)N )

‖umt ‖
2
L2(0,T ;L2(Ω)N )

 ≤ B1 ·
[∥∥u0

∥∥2

H1
0 (Ω)N

+ ‖F ‖2L2(0,T ;L2(Ω)N )

]
.

Proof. The idea of the proof is to replace the basis function ψj in (3.42) by ψj = umt (t) and by
ψj = [−µ∆ − ξ ∇div]um(t). To this end, fix m ∈ N, multiply (3.43) by ȧmj (t), and sum up
over j ∈ {1, ...,m}. This is equivalent to replacing ψj by umt in (3.42). After integrating the
resulting equation over (0, s), s ∈ (0, Tm), and applying Young’s inequality, we obtain

ρ0

2

∫ s

0

∫
Ω
|umt |2 dxdt+

∫
Ω

[
µ |∇um(s)|2 + ξ|divum(s)|2

]
dx

≤
∫

Ω

[
µ |∇u0|2 + ξ|divu0|2

]
dx+

∫ s

0

∫
Ω

1
2ρ0
|F |2 dxdt.

(3.45)

To replace ψj by [−µ∆ − ξ∇div]um, multiply (3.43) by λj amj (t) and sum up over j ∈
{1, ...,m} to obtain

ρ0

2

∫
Ω

[
µ|∇um(s)|2 + ξ|divum(s)|2

]
dx+

1
2

∫ s

0

∫
Ω
|[−µ∆− ξ∇div]um|2 dxdτ

≤ ρ0

2

∫
Ω

[
µ|∇u0|2 + ξ|divu0|2

]
dx+

1
2

∫ s

0

∫
Ω
|F |2 dxdτ.

(3.46)

We show next that am exists on [0, T ]. Using Poincare’s inequality in (3.46) and the orthonor-
mality of {ψj} in L2(Ω)N , we obtain the following estimate

|am(t)|2 =
∫

Ω
|um(t)|2 dx ≤ CP

∫
Ω
|∇um(t)|2 dx

≤ C
[∫

Ω
|∇u0|2 dx+

∫ Tm

0

∫
Ω
|F |2dxdτ

]
,

for all t ∈ [0, Tm). For Tm ≤ T , the right-hand side is bounded becauseF ∈ L2(0, T ;L2(Ω)N ).
This implies that am exists on [0, T ].

Next, show the claimed estimates of um. Combining (3.45) and (3.46) yields∫
Ω
|∇um(t)|2 dx+

∫ T

0

∫
Ω

[
|umt |2 +

∣∣[−µ∆− ξ∇div]um
∣∣2] dxdτ

≤ C
[∥∥u0

∥∥2

H1
0 (Ω)N

+ ‖F ‖2L2(0,T ;L2(Ω)N )

]
.

Noting that −µ∆− ξ∇div is strongly elliptic proves the lemma (see Theorem 3.G.2).
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Let us derive additional estimates of umt . To this end, we assume in the following that
u0 ∈ H2(Ω)N ∩ H1

0 (Ω)N and F ∈ H1(0, T ;L2(Ω)N ). Due to (3.40), the time derivative
umt of um satisfies the following initial boundary value problem∫

Ω
[ρ0 u

m
tt + [−µ∆− ξ∇div]umt − F t] ·ψ dxdt = 0,

umt |∂Ω = 0,

umt (0) = PXm
(
ρ−1

0 [µ∆ + ξ∇div]u0 + F (0)
)
,

where PXm denotes the orthogonal projection in L2(Ω)N onto Xm (see definition (3.16). Due
to the construction (3.43), the coefficients ȧmj of umt are solutions of the following initial value
problem

ρ0 ä
m
j (t) + λj ȧ

m
j (t)−

∫
Ω
F (t) ·ψj dx = 0,

ȧmj (0) =
1
ρ0

∫
Ω
F (0) ·ψj dx− λj

ρ0
amj (0), (j = 1, ...,m).

(3.47)

Thus, system (3.47) can be rewritten as follows:∫
Ω

[(ρ0 u
m
tt (t)− F t) ·ψ + µ∇umt (t) : ∇ψ + ξ div (umt (t)) div (ψ)] dx = 0

umt (0) = PXm
(
ρ−1

0

[
F (0) + µ∆u0 + ξ∇divu0

])
,

(3.48)

for all ψ ∈ Xm.

Remark 3.4.6 (Sense of the initial conditions). Note that the term F (0) appearing in the defini-
tion of the initial condition umt (0) in (3.48) has a sense because of the embedding
H1(0, T ;L2(Ω)N ) ⊂ C([0, T ];L2(Ω)N ).

The following lemma gives additional estimates of umt .

Lemma 3.4.7. Let u0 ∈ H2(Ω)N ∩H1
0 (Ω)N and F ∈ H1(0, T ;L2(Ω)N ). Then there exist an

independent of m constant B2 such that the approximations um satisfy the following estimates

‖umt ‖
2
L2(0,T ;H1

0 (Ω)N )

‖umt ‖
2
L∞(0,T ;L2(Ω)N )

}
≤ B2 ·

[∥∥u0
∥∥2

H2(Ω)N
+ ‖F (0)‖2L2(Ω)N + T ‖F t‖2L2(0,T ;L2(Ω)N )

]
.

Proof. Similar to the proof of Lemma 3.4.5, substitute ψ = umt into (3.48) and integrate over
(0, t), t ≤ T , to obtain

ρ0

2

∫
Ω
|umt (t)|2 dx+

∫ t

0

∫
Ω

[
µ |∇umt |2 + ξ|divumt |2

]
dxds

≤ ρ0

2

∫
Ω
|u0
t |2 dx+

∫ t

0

∫
Ω
|F t(τ)| |umt (s)| dxds.

To apply the generalized Gronwall inequality (3.174), use Hölder’s inequality to estimate the last
integral over Ω as follows∫

Ω
|F t(s)| |umt (s)| ≤ 2

[
1

2ρ0

∫
Ω
|F t(s)|2

]1/2

·
[∫

Ω

ρ0

2
|umt (s)|2

]1/2

.
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Due to (3.174), we obtain

ρ0

2

∫
Ω
|umt (t)|2 dx+

∫ t

0

∫
Ω

[
µ |∇umt |

2 + ξ |divumt |
2
]

dxds

≤ ρ0

∫
Ω
|u0
t |2 dx+

3t
2ρ0

∫ t

0

∫
Ω
|F t(s)|2 dxds.

Note that u0
t ∈ L2(Ω)N due to (3.48).

3.4.1.3 Passage to the limit and additional regularity

The next lemma clarifies how solutions of problem (3.40) can be constructed from the considered
approximations.

Lemma 3.4.8 (Passage to the limit). Let u0 ∈ H2(Ω)N ∩H1
0 (Ω)N and F ∈ H1(0, T ;L2(Ω)N )

for a given T > 0. Then there exists a unique function u that possesses the following regularity:

u ∈ L2(0, T ;H2(Ω)N ) ∩ L∞(0, T ;H1
0 (Ω)N ),

ut ∈ L∞(0, T ;L2(Ω)N ) ∩ L2(0, T ;H1
0 (Ω)N )

and satisfies the following equations∫ T

0

∫
Ω

[ρ0 ut − µ∆u− ξ∇divu− F ] · φdxdt = 0,

−
∫

Ω
ut(0) ·ψ(0) dx+

∫ T

0

∫
Ω

[
−ρ0ut ·ψt + µ∇ut : ∇ψ

+ξ div (ut) div (ψ)− F t ·ψ
]

dxdt = 0,

for all φ ∈ L2(0, T ;L2(Ω)N ) and all ψ ∈ H1(0, T ;H1
0 (Ω)N ), ψ(T ) = 0.

Proof. The estimates of the approximations um in Lemmas 3.4.5 and 3.4.7 are independent of
m. Thus, there exist a function u and a subsequence again denoted by {um} that satisfies the
following relations:

um ⇀ u weakly in H1(0, T ;H1
0 (Ω)N ),

um ⇀ u weakly in L2(0, T ;H2(Ω)N ),

umt
∗
⇀ ut ∗-weakly in L∞(0, T ;L2(Ω)N ).

(3.49)

By construction of um (see (3.42)), it holds∫ T

0

∫
Ω

[ρ0 u
m
t − µ∆um − ξ∇divum − F ] ·ψ = 0, for all ψ ∈ L2(0, T ;Xm). (3.50)

The convergence results (3.49) show that (3.50) remains true if um is replaced by the limit u.
Since ⋃

m∈N
L2(0, T ;Xm) is dense in L2(0, T ;L2(Ω)N ), (3.51)
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we obtain∫ T

0

∫
Ω

[ρ0 ut − µ∆u− ξ∇divu− F ] ·ψ = 0 for all ψ ∈ L2(0, T ;L2(Ω)N ). (3.52)

This is the first equation claimed in the lemma.
To show the second one, note that umt satisfies (3.48) and define

u0
t := ρ−1

0

(
[µ∆ + ξ∇div]u0 + F (0)

)
.

Due to (3.48), the approximation umt satisfies the equation

−
∫

Ω
PXm(u0

t ) ·ψ(0) dx+
∫ T

0

∫
Ω

[
− ρ0 u

m
t ·ψt + µ∇umt : ∇ψ

+ ξ div (umt ) div (ψ)− F t ·ψ
]

dxdt = 0

for all ψ ∈ H1(0, T ;Xm), ψ(T ) = 0. Similar to (3.51), the set
⋃
m∈N L

2(0, T ;Xm) is dense in
L2(0, T ;H1

0 (Ω)N ). Thus, the convergence result (3.49) yields:

−
∫

Ω
u0
t ·ψ(0) dx+

∫ T

0

∫
Ω

[
− ρ0ut ·ψt + µ∇ut : ∇ψ

+ ξ div (ut) div (ψ)− F t ·ψ
]

dxdt = 0
(3.53)

for all ψ ∈ H1(0, T ;H1
0 (Ω)N ), ψ(T ) = 0.

It remains to show that ut(0) = u0
t holds. To this end, note that (3.53) implies that utt satisfies

ρ0 utt = F t − [µ∆ + ξ∇div]ut ∈ L2(0, T ;H−1(Ω)N ).

Moreover, ut ∈ L2(0, T ;H1
0 (Ω)N ) by the first relation of (3.49). Thus, Theorem 3.F.5 yields

that ut ∈ C([0, T ];L2(Ω)N ). Choose the testfunction ψ in equation (3.53) in the following way.
Fix an arbitrary η ∈ H1

0 (Ω)N and, for δ ∈ (0, T ), define the function fδ as follows:

fδ(t) =

{
1− t/δ if t ∈ [0, δ],
0 if t > δ.

Chooseψ = ψδ(x, t) := fδ(t)η(x) in (3.53) and setX := L2(0, T ;H1
0 (Ω)N ). Then, Theorem

3.F.5 yields∫
Ω

[
ut(0)− u0

t

]
· η dx = −〈ρ0 utt , ψδ〉X′×X

+
∫ T

0

∫
Ω

[
F t ·ψδ − µ∇ut : ∇ψδ − ξ div (ut) div (ψδ)

]
dxdt.

For δ → 0, we have ψδ → 0 in X . Thus, the right-hand side of the above equation tends zero.
The relation ut(0) = u0

t follows because η ∈ H1
0 (Ω)N is arbitrary, and H1

0 (Ω)N is dense in
L2(Ω)N .

The uniqueness of u follows from the linearity of equations (3.52) and (3.53).
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3.4 The decoupled measurement problem

The next lemma establishes additional regularity of the function u.

Lemma 3.4.9 (Additional regularity). Assume the hypothesis of Lemma 3.4.8. Then, the function
u lies in L∞(0, T ;H2(Ω)N ) and satisfies the estimate

‖u‖L∞(0,T ;H2(Ω)N ) ≤ C
[
‖F ‖L∞(0,T ;L2(Ω)N ) + ‖ut‖L∞(0,T ;L2(Ω)N )

]
.

Proof. By Lemma 3.4.8, we have∫ T

0

∫
Ω

[−µ∆− ξ∇div]u ·ψ dxdt =
∫ T

0

∫
Ω

[F − ρ0 ut] ·ψ dxdt (3.54)

for all ψ ∈ L2(0, T ;L2(Ω)N ). The embedding H1(0, T ;L2(Ω)N ) ⊂ C([0, T ], L2(Ω)N ) and
Lemma 3.4.8 imply that [F − ρ0 ut] ∈ L∞(0, T ;L2(Ω)N ). Since L2(0, T ;L2(Ω)N ) is dense in
L1(0, T ;L2(Ω)N ), we obtain

[−µ∆− ξ∇div]u ∈
(
L1(0, T ;L2(Ω)N )

)′
= L∞(0, T ;L2(Ω)N ).

The strong ellipticity of [−µ∆−ξ∇div] and Theorem 3.G.2 yield that u ∈ L∞(0, T ;H2(Ω)N ).
The estimate claimed in the lemma follows from (3.54).

Remark 3.4.10 (Scalar continuity). Lemma 3.4.9 and Theorem 3.F.4 applied withX = H2(Ω)N

and Y = H1
0 (Ω)N yield u ∈ Cs(0, T ;H2(Ω)N ).

3.4.1.4 Regularity of the right-hand side

In this section, we show that the function F defined by (3.39) satisfies F ∈ H1(0, T ;L2(Ω)N )
provided that p0 ∈ H1(Ω), U b ∈ H2(Ω)N , and w ∈ W0 (see Definition 3.4.3). Further, we
estimate the H1(0, T ;L2(Ω)N )-norm of the difference F (w1)− F (w2) for w1, w2 ∈W0.

Let us first estimate the pressure. By (3.38), the following inequalities hold for t ∈ [0, T ] and
for C being sufficiently large:∫ t

0

∫
Ω
|∇pt|2 dxdτ =

1
γ2

∫ t

0

∫
Ω
|∇div (U b +w)|2 dxdτ,

≤ C t
[
‖U b‖2H2(Ω)N + ‖w‖2L∞(0,T ;H2(Ω)N )

]
,∫

Ω
|∇p(t)|2 dx ≤ C

[∥∥p0
∥∥2

H1(Ω)
+ t

(
‖U b‖2H2(Ω)N + ‖w‖2L∞(0,T ;H2(Ω))

)]
,

∫ t

0

∫
Ω
|∇p|2 dxdτ ≤ C t

[∥∥p0
∥∥2

H1(Ω)
+ t

(
‖U b‖2H2(Ω)N + ‖w‖2L∞(0,T ;H2(Ω))

)]
.

(3.55)

The next lemma gives estimates of the convective term.
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Lemma 3.4.11 (The convective term). Let V , W ∈ W , and let T > 0 be finite. Then there
exists a constant CW such that

‖(W · ∇)V ‖2L∞(0,T ;L2(Ω)N ) ≤ CW
[
‖W (0)‖2H1(Ω)N + T‖W ‖2W

]
× ‖V ‖W

[
‖V (0)‖2H1(Ω)N + T‖V ‖2W

]1/2
,

‖(W · ∇)V ‖2L2(0,T ;L2(Ω)N ) ≤ CW T‖V ‖2W · ‖W ‖2W ,∥∥∥∥ ∂∂t [(W · ∇)V ]
∥∥∥∥2

L∞(0,T ;L2(Ω)N )

≤ CW ‖V ‖2W · ‖W ‖2W .

The constant CW is independent of V , W and T .

Proof. Let v be an arbitrary component of V , andw be an arbitrary component ofW . Then each
component of (W ·∇)V consists of a sum of terms having the form vxk ·w where k ∈ {1, ..., N}.
Therefore, it is enough to estimate the product vxk · w.

First, we establish some property of functions from H1(0, T ;L2(Ω)). Due to the general-
ized Minkowski inequality (see Theorem 3.A.4), a function u ∈ H1(0, T ;L2(Ω)) satisfies the
following estimate

‖u(t)‖2L2(Ω) ≤ 2
∫

Ω
|u(0)|2 dx+ 2

∫
Ω

[∫ t

0
ut(τ) dτ

]2

dx

≤ 2
∫

Ω
|u(0)|2 dx+ 2

(∫ t

0

[∫
Ω
|ut(τ)|2 dx

]1/2

dτ

)2

≤ 2
∫

Ω
|u(0)|2 dx+ 2t

∫ t

0

∫
Ω
|ut|2 dxdτ

(3.56)

for t ∈ (0, T ). Let us show the first inequality claimed in the lemma. Using Hölder’s inequality,
the auxiliary inequality (3.56) and the interpolation inequality (see Theorem 3.E.7) yield the
following estimate:∫

Ω
|w(t) vxk(t)|2 ≤ ‖w(t)‖2L6(Ω) ‖vxk(t)‖2L3(Ω) ≤ CΩ ‖w(t)‖2H1(Ω) ‖vxk(t)‖2H1/2(Ω)

≤ C
[
‖w(0)‖2H1(Ω) + t ‖wt‖2L2(0,T ;H1(Ω))

]
‖vxk(t)‖H1(Ω) ‖vxk(t)‖L2(Ω)

≤ C
[
‖w(0)‖2H1(Ω) + t ‖wt‖2L2(0,T ;H1(Ω))

]
× ‖vxk(t)‖H1(Ω)

[
‖vxk(0)‖2L2(Ω) + t ‖vxk , t‖

2
L2(0,T ;L2(Ω))

]1/2
.

This shows the validity of the first inequality claimed in the lemma. The second inequality
follows from the first one and Hölder’s inequality.

To obtain the third inequality, consider the time derivative

∂(w vxk)
∂t

= wt vxk + w vxk , t. (3.57)
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The first term on the right-hand side of (3.57) can be estimated using the interpolation inequality
and the embedding H1(Ω) ⊂ L6(Ω) for N ≤ 3. It holds∫ t

0

∫
Ω
|wt vxk |

2 dxdτ ≤
∫ t

0
‖wt‖2L3(Ω) · ‖vxk‖

2
L6(Ω) dτ

≤ C
∫ t

0
‖wt‖H1(Ω) ‖wt‖L2(Ω) ‖vxk‖

2
H1(Ω) dτ

≤ C ‖v‖2L∞(0,T ;H2(Ω)) · ‖wt‖L∞(0,T ;L2(Ω)) · ‖wt‖L1(0,T ;H1(Ω)) .

To estimate the second term in (3.57), use the embedding H2(Ω) ⊂ C(Ω) for N ≤ 3, and
Hölder’s inequality to obtain∫ t

0

∫
Ω
|w vxk , t|

2 dxτ ≤
∫ t

0
max
x∈Ω̄
|w(x, τ)|2 ·

∫
Ω
vxk , t(τ)2 dxdτ

≤ CΩ ‖w‖2L∞(0,T ;H2(Ω)) ‖vt‖
2
L2(0,T ;H1(Ω)) .

This completes the proof of the third inequality claimed in the lemma.

The next lemma shows that the function F defined in (3.39) lies in H1(0, T, L2(Ω)N ).

Lemma 3.4.12 (Regularity of F ). Assume that u0 ∈ H2(Ω)N ∩ H1
0 (Ω)N , U b ∈ H2(Ω)N ,

p0 ∈ H1(Ω), and f ∈ H1(0, T, L2(Ω)N ). Further, let w ∈ W0 be given with w(0) = u0. Set
Rb := ‖U b‖H2(Ω)N + ‖w‖W0 and define the function gF as follows

gF : [0,∞)2 → [0,∞),

gF (t, r) = Rb
(
‖U b‖H1(Ω)N +

∥∥u0
∥∥
H1

0 (Ω)N

)3 + T R2
b + T 3/2R4

b .

Then, there exist an independent of w and T constant BF such that the function F defined in
(3.39) satisfies the following estimates

‖F ‖2L2(0,T ;L2(Ω)N ) ≤ T BF ·
(
1 + ‖w‖2W0

+ ‖w‖4W0

)
,

‖F t‖2L2(0,T ;L2(Ω)N ) ≤ BF ·
(
1 + ‖w‖2W0

+ ‖w‖4W0

)
,

‖F ‖2L∞(0,T ;L2(Ω)N ) ≤ BF ·
(
1 + gF (T, ‖w‖W0)

)
.

Proof. Let us regard U b as a constant in time function. Then it holds: ‖U b‖W = ‖U b‖H2(Ω)N

(see Definition 3.4.3). To derive the first estimate of F , use the definition (3.39), the estimate of
the pressure (3.55), and Lemma 3.4.11. Applying Young’s inequality several times yields∫ T

0

∫
Ω
|F |2 dxdt ≤ C T

[
‖f‖2L∞(0,T ;L2(Ω)N ) +

∥∥p0
∥∥2

H1(Ω)

+ ‖U b‖2H2(Ω)N + ‖U b‖4H2(Ω)N + ‖w‖2W0
+ ‖w‖4W0

]
.

(3.58)

If BF is chosen sufficiently large, the first estimate claimed in the lemma follows from (3.58). In
the same way, the time derivative can be estimated as follows∫ T

0

∫
Ω
|F t|2 dxdt ≤ C

[
‖f t‖

2
L2(0,T ;L2(Ω)N ) + ‖U b‖2H2(Ω)N + ‖U b‖4H2(Ω)N

+ ‖w‖2W + ‖w‖4W
]
.

(3.59)
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If BF is sufficiently large, the second estimate claimed in the lemma follows from (3.59).
To obtain the third estimate, use (3.55) and Lemma 3.4.11 and proceed as follows∫
Ω
|F (t)|2 dx ≤ C

[
‖f(t)‖2L2(Ω)N

+
∥∥p0
∥∥2

H1(Ω)
+ t
(
‖U b‖2H2(Ω)N + ‖w‖2L∞(0,T ;H2(Ω))

)
+
(
‖U b‖H2(Ω)N + ‖w‖W0

)
×
(
‖U b‖2H1(Ω)N +

∥∥u0
∥∥2

H1(Ω)N
+ t
[
‖U b‖2H2(Ω)N + ‖w‖2W0

])3/2]
.

(3.60)

Due to the embedding H1(0, T ;L2(Ω)N ) ⊂ C([0, T ];L2(Ω)N ), the first term on the right-hand
side of (3.60) is bounded. To estimate the summands containing w on the right-hand side of
(3.60), set Rb = ‖U b‖H2(Ω)N + ‖w‖W0 and use the inequality (a2 + b2)1/2 ≤ a+ b that holds
for a, b > 0. We have

t
(
‖U b‖2H2(Ω)N + ‖w‖2L∞(0,T ;H2(Ω))

)
+
(
‖U b‖H2(Ω)N + ‖w‖W0

)
×
(
‖U b‖2H1(Ω)N +

∥∥u0
∥∥2

H1(Ω)N
+ t
[
‖U b‖2H2(Ω)N + ‖w‖2W0

])3/2

≤ tR2
b + C Rb

(
‖U b‖H1(Ω)N +

∥∥u0
∥∥
H1

0 (Ω)N

)3 + t3/2R4
b .

(3.61)

Substituting (3.61) into (3.60) and choosing sufficiently largeBF completes the proof of the third
inequality claimed in the lemma.

The next lemma gives estimates of the difference F̃ := F (w1) − F (w2) for two given
functions w1, w2 ∈W0.

Lemma 3.4.13 (Estimation of F̃ ). Assume the hypothesis of Lemma 3.4.12. Let w1, w2 ∈ W0

be given with wi(0) = u0, i = 1, 2, and let F (w1) and F (w2) be defined by (3.39). Set
w̃ = w1 −w2, F̃ = F (w1)− F (w2), and r = max{‖wj‖W0 : j = 1, 2}. Then, there exists
an independent of w̃ and T constant B̃F such that F̃ satisfies the following estimates∥∥∥F̃∥∥∥

L2(0,T ;L2(Ω)N )
≤ T 1/2 B̃F ‖w̃‖W0 ,∥∥∥F̃ t

∥∥∥
L2(0,T ;L2(Ω)N )

≤ B̃F ‖w̃‖W0 ,∥∥∥F̃∥∥∥
L∞(0,T ;L2(Ω)N )

≤ B̃F
[
T 1/2 + T 3/4

]
‖w̃‖W0 .

The constant B̃F is nondecreasing in r.

Proof. SetW i = U b +wi for i = 1, 2. Then, F̃ is given by the formula (see (3.39)):

F̃ = ∇p̃− ρ0 [(W 1 · ∇)w̃ + (w̃ · ∇)W 2] . (3.62)

where the difference p̃ = p1 − p2 is determined by the relations

p̃t = −1
γ

div w̃, p̃ = −1
γ

∫ t

0
div w̃(τ) dτ. (3.63)
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Using formula (3.62), the generalized Minkowski inequality (see Theorem 3.A.4), and Lemma
3.4.11 yields∫ T

0

∫
Ω
|F̃ |2 dxdt ≤ C T

[
‖w̃‖2W0

+
(
‖W 1‖2W + ‖W 2‖2W

)
· ‖w̃‖2W0

]
. (3.64)

Similarly, the time derivative F t can be estimated as follows∫ T

0

∫
Ω
|F̃ t|2 dxdt ≤ C

[
‖w̃‖2W0

+
(
‖W 1‖2W + ‖W 2‖2W

)
· ‖w̃‖2W0

]
. (3.65)

Note that ‖W i‖2W ≤ 2‖U b‖2W + 2‖wi‖2W0
, i = 1, 2, and set r = max{‖w1‖W0 , ‖w2‖W0}.

The first and second inequalities claimed in the lemma follow from (3.64) and (3.65), if B̃F is
chosen sufficiently large.

To obtain the estimate in L∞(0, T ;L2(Ω)N ), estimate the summands on the right-hand side
of (3.62). Due to (3.63) and Theorem 3.A.4, it holds

‖∇p̃(t)‖2L2(Ω)N ≤
t

γ2
‖w̃‖2L∞(0,T ;H2(Ω)) . (3.66)

To estimate the nonlinear term on the right-hand side of (3.62), note that w1(0) = w2(0) by the
hypothesis of the lemma and use Lemma 3.4.11 to obtain:∫

Ω
[(W 1(t) · ∇)w̃(t) + (w̃(t) · ∇)W 2(t)]2 ≤ C t3/2

[
‖U b‖H2(Ω)N + r

]2
· ‖w̃‖2W0

. (3.67)

To show the third inequality claimed in the lemma, combine (3.62), (3.66), and (3.67) and enlarge
BF if necessary.

3.4.1.5 Fixed-point method

The goal of this section is to complete the proof of Theorem 3.4.4. The Lemmas 3.4.8, 3.4.9,
and 3.4.12 show thatw ∈W0 implies u ∈W0, where u is the solution of problem (3.40). Thus,
the following definition makes sense.

Definition 3.4.14. Assume that u0 ∈ H2(Ω)N ∩ H1
0 (Ω)N , U b ∈ H2(Ω)N , p0 ∈ H1(Ω), and

f ∈ H1(0, T ;L2(Ω)N ). The solution-operator G is defined as follows:

G : W0 −→W0, G(w) := u,

where u is the solution of the initial-boundary value problem (3.40).

We proceed as follows.

• Estimate the norm of G(w) in terms of w and T (Lemma 3.4.15).

• Estimate the norm of G(w1)−G(w2) in terms of w1 −w2 and T (Lemma 3.4.16).

• Use Banach’s fixed-point theorem to show that Theorem 3.4.4 holds true for sufficiently
small T (Lemma 3.4.17).
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Lemma 3.4.15. Assume w ∈ W0 with w(0) = u0 and denote u = G(w), where G is the
mapping of defined by 3.4.14. Define a function gu as follows:

gu : [0,∞)2 → [0,∞), gu(t, r) = r + r2 + t1/4 r2.

Then, there exists an independent of w constant BG such that the following estimate holds true:

‖u‖W0 ≤ BG
(
1 + ‖w‖1/2W0

+ T 1/2 gu(T, ‖w‖W0)
)
.

The constant BG is nondecreasing in T .

Proof. Due to Lemmas 3.4.5 and 3.4.7, the following estimate holds

‖u‖L∞(0,T ;H1
0 (Ω)N )

‖u‖L2(0,T ;H2(Ω)N )

‖ut‖L∞(0,T ;L2(Ω)N )

‖ut‖L2(0,T ;H1
0 (Ω)N )


≤ C

{ ∥∥u0
∥∥
H2(Ω)N

+ ‖F (0)‖L2(Ω)N

+ ‖F ‖L2(0,T ;L2(Ω)N ) + T 1/2 ‖F t‖L2(0,T ;L2(Ω)N )

}
. (3.68)

Due to the definition of F (see (3.39)), the second term on the right-hand side can be estimated
as follows

‖F (0)‖L2(Ω)N ≤ C
[
‖f(0)‖L2(Ω)N +

∥∥p0
∥∥
H1(Ω)

+ ‖U b‖2H2(Ω)N +
∥∥u0

∥∥2

H2(Ω)N

]
. (3.69)

The third and fourth terms on the right-hand side of (3.68) can be estimated using Lemma 3.4.12
as follows

‖F ‖L2(0,T ;L2(Ω)N ) + T 1/2 ‖F t‖L2(0,T ;L2(Ω)N ) ≤ C T
1/2
(
1 + ‖w‖W0 + ‖w‖2W0

)
. (3.70)

Substituting (3.69) and (3.70) into (3.68) yields

‖u‖L∞(0,T ;H1
0 (Ω)N )

‖u‖L2(0,T ;H2(Ω)N )

‖ut‖L∞(0,T ;L2(Ω)N )

‖ut‖L2(0,T ;H1
0 (Ω)N )


≤ C2(T ) + T 1/2C1

(
‖w‖W0 + ‖w‖2W0

)
, (3.71)

where C1 is independent of w and T , and C2 is independent of w.
It remains to estimate u in L∞(0, T ;H2(Ω)N ) (see the Definition 3.4.3). By Lemmas 3.4.9

and 3.4.12, and estimate (3.71), it holds

‖u‖L∞(0,T ;H2(Ω)N ) ≤ ‖F ‖L∞(0,T ;L2(Ω)N ) + ‖ut‖L∞(0,T ;L2(Ω)N )

≤ B1/2
F gF (T, ‖w‖W0)1/2 + C2(T ) + T 1/2C1

(
‖w‖W0 + ‖w‖2W0

)
,

(3.72)

where gF is the function defined in Lemma 3.4.12. The term
√
gF (T, ‖w‖W0) can be estimated

using Young’s inequality and the inequality
√
a+ b ≤

√
a +
√
b that is true for a, b ≥ 0. We

have √
gF (T, ‖w‖W0) ≤ C3(T ) + C4 ‖w‖1/2W0

+ T 1/2 ‖w‖W0 + T 3/4 ‖w‖2W0
. (3.73)

Substituting (3.73) into (3.72) and combining (3.71) with (3.72) completes the proof.
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Lemma 3.4.16. Let G be the mapping introduced by Definition 3.4.14. Let wi ∈ W0 be given,
and wi(0) = u0, i = 1, 2. Set ui := G(wi), ũ := u1 − u2, and w̃ := w1 −w2. Then, there
exists an independent of w̃ and T constant Bu such that ũ satisfies the following estimate

‖ũ‖W0 ≤ B̃u
[
T 1/2 + T 3/4

]
‖w̃‖W0 .

The constant B̃u is nondecreasing in r, where r = max{‖w1‖W0 , ‖w2‖W0}.

Proof. The function ũ is a weak solution of the following initial boundary value problem (see
(3.40)):

ρ0ũt − µ∆ũ− ξ∇div ũ = F̃ in Ω× (0, T ),
ũ = 0 in ∂Ω× (0, T ),

ũ(x, 0) = 0 in Ω× {t = 0},

where the right-hand side F̃ is defined in (3.62). This problem is similar to (3.40). Therefore,
ũ satisfies the estimate (3.68), if u0 and F are replaced by ũ0 and F̃ , respectively. Note that
F̃ (0) = ũ0 = 0. Thus, it holds

‖ũ‖L∞(0,T ;H1
0 (Ω)N )

‖ũ‖L2(0,T ;H2(Ω)N )

‖ũt‖L∞(0,T ;L2(Ω)N )

‖ut‖L2(0,T ;H1
0 (Ω)N )


≤ C

{∥∥∥F̃∥∥∥
L2(0,T ;L2(Ω)N )

+ T 1/2
∥∥∥F̃ t

∥∥∥
L2(0,T ;L2(Ω)N )

}
.

Apply Lemma 3.4.13 to obtain

‖ũ‖L∞(0,T ;H1
0 (Ω)N )

‖ũ‖L2(0,T ;H2(Ω)N )

‖ũt‖L∞(0,T ;L2(Ω)N )

‖ut‖L2(0,T ;H1
0 (Ω)N )


≤ C T 1/2 B̃F ‖w̃‖W0 . (3.74)

It remains to estimate the L∞(0, T ;H2(Ω)N )-norm of ũ. Similar to (3.72), ũ satisfies the
following estimate

‖ũ‖L∞(0,T ;H2(Ω)N ) ≤
∥∥∥F̃∥∥∥

L∞(0,T ;L2(Ω)N )
+ ‖ũt‖L∞(0,T ;L2(Ω)N ) . (3.75)

The first term on the right-hand side of (3.75) is already estimated in the last inequality of Lemma
3.4.13. Combining the estimates (3.74) and (3.75) and applying Lemma 3.4.13 yield

‖ũ‖W0 ≤ C B̃F
[
T 1/2 + T 3/4

]
‖w̃‖W0 .

Remember that B̃F is nondecreasing in r, where r = max{‖w1‖W0 , ‖w2‖W0}.

Lemma 3.4.17 (Fixed-point ofG). LetBG be the same constant as in Lemma 3.4.15. For T > 0
and r >

∥∥u0
∥∥
H2(Ω)N

, define the set

M(T, r) :=
{
w ∈W0(0, T ) : ‖w‖W0 ≤ r and w(0) = u0

}
.

Then, for sufficiently large r, there exists T∗ ∈ (0, T ] such that the solution operator G defined
in 3.4.14 has a unique fixed-point w∗ ∈M(T∗, r).
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Proof. The lemma follows from Banach’s fixed-point theorem. To apply this theorem, we deter-
mine r and T∗ such that G(M(T∗, r)) ⊂ M(T∗, r). Let T > 0 be given. Due to Lemma 3.4.15,
the following estimates hold

‖u‖W0(0,T∗) ≤ BG
(
1 + ‖w‖1/2W0

+ T
1/2
∗ gu(T, ‖w‖W0(0,T∗))

)
≤ BG

(
1 + r1/2 + T

1/2
∗ gu(T, r)

) (3.76)

for T∗ ∈ (0, T ], r >
∥∥u0

∥∥
H2(Ω)N

, and w ∈ M(T∗, r). In order to ensure the inclusion

G(M(T∗, r)) ⊂M(T∗, r), we determine T∗ and r such that BG
(
1 + r1/2 +T

1/2
∗ gu(T, r)

)
≤ r.

To this end, note that the inequality

BG(1 + r1/2) < r (3.77)

holds if, for example, r > (3B2
G)/2 +BG. Thus, if r satisfies (3.77), the estimates (3.76) imply

the relation G(M(T∗, r)) ⊂M(T∗, r), if T∗ satisfies the inequality

T∗ ≤ Tmax :=
[
r −BG(1−

√
r)

BG gu(T, r)

]2

. (3.78)

The next step is to show that G is contractive on M(T∗, r) for sufficiently small T∗. Fix r > 0
satisfying (3.77). Then, the constant B̃u = B̃u(r) of Lemma 3.4.16 is fixed. For two functions
w1, w2 ∈ M(T∗, r), denote ui = G(wi), i = 1, 2, w̃ = w1 − w2, and ũ = u1 − u2. By
Lemma 3.4.16, the following estimate holds

‖ũ‖W0(0,T∗) ≤ B̃u T
1/2
∗

[
1 + T 1/4

max

]
‖w̃‖W0(0,T∗) (3.79)

for any T∗ ∈ (0, Tmax]. Choose δ ∈ (0, 1). Then, estimate (3.79) yields that ‖ũ‖W0 ≤ δ‖w̃‖W0 ,
if T∗ additionally satisfies the inequality

T∗ ≤

[
δ

B̃u [1 + Tmax]

]2

. (3.80)

Thus, if r satisfies inequality (3.77) and T∗ satisfies the inequalities (3.78) and (3.80), then we
have G(M(T∗, r)) ⊂ M(T∗, r) and ‖ũ‖W0 ≤ δ ‖w̃‖W0 . Due to Banach’s fixed-point theorem,
the solution-operator G has a unique fixed-point w∗ ∈M(T∗, r).

To complete the proof of Theorem 3.4.4, use the second forumla of (3.38) to compute the
pressure p. Then, the pair of functions (w∗, p) is a unique weak solution of (3.37) on the time
interval (0, T∗). Theorem 3.4.4 is proved.

This completes the investigation of the flow problem. The next section deals with the evolution
of the particle density.
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3.4.2 Evolution of the particle density

This section is devoted to the theoretical investigation of the initial boundary value problem
(2.5) describing the evolution of the particle density. Here, we assume that the initial surface
mass density η0 on the active part Γ is given by the relation η0 = H(ρ0), where the function
H is defined in (2.67). The initial particle density ρ0 is assumed to be nonnegative. Thus, the
following initial boundary value problem is considered:

ρt +U · ∇ρ−∆ρ = 0 in Ω× (0, T ),

−∂νρ = 0 on
(
∂Ω \

[
Γ ∪ Γin

])
× (0, T ),

−∂νρ = (ρ− g) |U b · ν| on Γin × (0, T ),
ηt = −∂νρ, η = A(ρ) on Γ× (0, T ),

ρ(x, 0) = ρ0(x) ≥ 0 on Ω× {t = 0},
η(x, 0) = η0(x) = H(ρ0(x)) ≥ 0 on Γ× {t = 0},

(3.81)

where the operator A is defined as follows (see (2.67)):

A(ρ(x, ·))(t) = ess sup
0≤s≤t

H(ρ(x, s)). (3.82)

Remark 3.4.18. Note that, if the requirement η0 = H(ρ0) is omitted, then the initial condition
for η has to be replaced by the following relation

η(x, 0) = max
{
η0(x) , H(ρ0(x))

}
on Γ× {t = 0}.

In this case the operator A is given as follows

A(ρ(x, ·))(t) = max
{
η(x, 0) , ess sup

0≤s≤t
H(ρ(x, s))

}
instead of (3.82).

In this section, we suppose that the velocity field U(x, t) is a known function having the
following properties

U b · ν ≤ 0 on Γin,

U b · ν ≥ 0 on Γout,

U b = 0 on ∂Ω \
[
Γin ∪ Γout

]
,

U ∈ C([0, T ];H3/2+ε(Ω)N )

(3.83)

for some ε > 0. In (3.83), the trace U b = U |∂Ω of the velocity field is assumed to be constant
in time. Note that the last requirement in (3.83) and the embedding Hs(Ω) ⊂ C(Ω), s > N/2,
yield the estimate

|U(x, t)| ≤ CU , for t ∈ [0, T ], x ∈ Ω

for a suitable constant CU .
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In order to obtain the uniqueness of solutions in Section 3.4.2.5, the following additional reg-
ularity of the velocity field U is necessary: The norm ‖divU(t)‖L∞(Ω) (considered as function
of t) is supposed to lie in the space L∞(0, T ). In this case, there exists a constant C∗U such that

‖divU(t)‖L∞(Ω) ≤ C
∗
U for almost all t ∈ (0, T ). (3.84)

To define weak solutions of problem (3.81), denote the trace on Γ of a function u defined in Ω
by γ0 u. Weak solutions of (3.81) are defined as follows.

Definition 3.4.19 (Weak solutions). A pair of functions (ρ, η),

ρ ∈ H1(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω)),

η ∈ H1(0, T ;L2(Γ)),

is called weak solution of problem (3.81), if they satisfy the initial conditions, the relation

η(x, t) = A(γ0 ρ(x, ·))(t) for almost all (x, t) ∈ Γ× (0, T ), (3.85)

and the following integral identity∫ T

0

∫
Ω

[ρt +U · ∇ρ]ψ dxdt+
∫ T

0

∫
Ω
∇ρ · ∇ψ dxdt

+
∫ T

0

∫
Γ
ηt ψ dsdt+

∫ T

0

∫
Γin

ρψ|U b · ν|dsdt =
∫ T

0

∫
Γin

g ψ|U b · ν|dsdt,
(3.86)

which holds for all testfunctions ψ ∈ L2(0, T ;H1(Ω)).

Remark 3.4.20. It should be noted here that the relation (3.85) requires more regularity from
the function ρ to define correctly the operator A(γ0 ρ). We will show in Section 3.4.2.4 that ρ is
continuous in the variables (z, t) for almost all (x, y), which eliminates all problems concerning
the treatment of A(γ0ρ).

The main result of the present section is formulated in the following theorem.

Theorem 3.4.21 (Main result for the evolution of the particle density). Let Ω ∈ RN be a bounded
Lipschitz domain. Assume ρ0 ∈ H1(Ω) ∩ L∞(Ω), ρ0 ≥ 0, η0 = H(ρ0) in Γ, g ∈ L∞(Γin) is
constant in time, and U satisfies (3.83).

Then, for every T > 0, there exists a weak solution (ρ, η) to problem (3.81) such that

ρ ∈ H1(0, T ;L2(Ω)) ∩ L∞(0, T ;H1(Ω)) ∩ L2(0, T ;H(3−ε′)/2(Ω)) ∩ L∞(Ω× (0, T )),

η ∈ H1(0, T ;L2(Γ)) ∩ L∞(0, T ;H1/2(Γ)),

for any ε′ > 0. The function ρ satisfies the estimates:

0 ≤ ρ(x, t) ≤ max
{∥∥ρ0

∥∥
L∞(Ω)

, ‖g‖L∞(Γin)

}
a.e. in Ω× (0, T ).

If the velocity field U additionally satisfies estimate (3.84), then (ρ, η) is a unique weak solu-
tion of problem (3.81).
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3.4.2.1 Construction of approximate solutions

In this section, we construct approximate solutions to problem (3.81). To this end, construct an
implicit time discretization scheme as follows. Fix an arbitraryK ∈ N and set τ = T/K. Define
functions ρn, n ∈ {1, 2, . . . ,K} as solutions of the following problem:

ρn − ρn−1 = τ [∆ρn +U · ∇ρn] in Ω,

ηn − ηn−1 = −τ ∂νρn on Γ,

−∂ν ρn = (g − ρn)U b · ν on Γin,

∂νρ
n = 0 on ∂Ω \

[
Γ ∪ Γin

]
,

(3.87)

where
ηn(x) = max

k∈{0,1,...,n}
H
(
ρk(x)

)
on Γ. (3.88)

Note that
ηn(x) = ηn−1(x) +

(
H (ρn(x))− ηn−1(x)

)+ on Γ, (3.89)

where, as usually, f+ := max(0, f). Therefore, the weak form of (3.87) is given by∫
Ω

[
(ρn − ρn−1)ψ + τ ψU · ∇ρn + τ∇ρn · ∇ψ

]
+
∫

Γ
(ηn − ηn−1)ψ + τ

∫
Γin

ρn ψ |U b · ν| = τ

∫
Γin

g ψ |U b · ν|
(3.90)

The following lemma ensures that the problem (3.87) - (3.89) is uniquely solvable provided
that ρ0 ∈ H1(Ω).

Lemma 3.4.22. Let c0 := maxs∈R (dH(s)/ds) and τ0 := min{1, 2/C2
U}. If τ < τ0 and

ρn−1 ∈ H1(Ω) then (3.90) has a unique solution ρn ∈ H1(Ω).

Proof. Define the operator A(u, v) : H1(Ω)×H1(Ω)→ (H1(Ω))′ by

〈A(u, v) , ψ〉 =
∫

Ω
v ψ dx+ τ

∫
Ω
∇v · ∇ψ dx+

∫
Γ

(
H(v)− ηn−1

)+
ψ ds

+ τ

∫
Γin

v ψ |U b · ν| ds− τ
∫

Γin

g ψ |U b · ν| ds

+ τ

∫
Ω
ψU · ∇udx,

(3.91)

where ψ ∈ H1(Ω) is arbitrary, and 〈·, ·〉 denotes the duality product between (H1(Ω))′ and
H1(Ω).

We proceed in two steps. Fist, to proof the existence of ρn, n = 1, ...,K, show that A is of the
type of Calculus of Variations (see Definition 3.G.6) and apply Lemma 3.G.7 with f ∈ (H1(Ω))′

defined by

〈f , ψ〉 =
∫

Ω
ρn−1 ψ dx.

Second, show the uniqueness of ρn.
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Implementation of Step 1: existence of ρn. Proof the conditions of Definition 3.G.6. The
boundedness ofA follows by applying Hölder’s inequality and the embeddingH1(Ω) ⊂ L4(∂Ω),
N = 3, to (3.91):

〈A(u, v) , ψ〉 ≤ ‖v‖L2(Ω) ‖ψ‖L2(Ω) + τ ‖∇v‖L2(Ω)N ‖∇ψ‖L2(Ω)N

+ c0‖v‖L2(Γ) ‖ψ‖L2(Γ) + τ‖v‖2L4(Γin) ‖ψ‖
2
L4(Γin) ‖(U b · ν)‖L2(Γin)

+ τ‖g‖L∞(Γin) ‖ψ‖L2(Γin) ‖(U b · ν)‖L2(Γin)

+ τ CU ‖ψ‖L2(Ω) ‖u‖L2(Ω)N .

To estimate the integral over Γ, the following inequality is used∣∣∣∣∫
Γ

(
H(v)− ηn−1

)+
ψ ds

∣∣∣∣ ≤ ∫
Γ
|H(v)| |ψ|ds ≤ c0

∫
Γ
|v| |ψ|ds.

To establish the first property of Definition 3.G.6, show first, that A is hemi-continuous with
respect to v. Let w ∈ H1(Ω) be fixed and λ ∈ R, then∣∣∣∣∫

Γ

[(
H(v + λw)− ηn−1

)+ − (H(v)− ηn−1
)+]

ψ ds
∣∣∣∣2

≤ C2
Ω ‖ψ‖

2
H1(Ω) ·

∫
Γ

∣∣∣(H(v + λw)− ηn−1
)+ − (H(v)− ηn−1

)+∣∣∣2 ds
(3.92)

by Hölder’s inequality and the embedding H1(Ω) ⊂ L2(∂Ω). Split the last integral in (3.92)
into integrals over the sets

G1 = {H(v) > ηn−1 ∧ H(v + λw) > ηn−1},
G2 = {H(v) < ηn−1 ∧ H(v + λw) > ηn−1},
G3 = {H(v) < ηn−1 ∧ H(v + λw) < ηn−1},
G4 = {H(v) > ηn−1 ∧ H(v + λw) < ηn−1},

then the integral over G1 can be estimated by∫
G1

∣∣∣(H(v + λw)− ηn−1
)+ − (H(v)− ηn−1

)+∣∣∣2 ds

≤
∫
G1

|H(v + λw)−H(v)|2 ds

≤ c2
0λ

2

∫
G1

|w|2 ds.

(3.93)

The integral over G2 can be estimated by∫
G2

∣∣∣(H(v + λw)− ηn−1
)+ − (H(v)− ηn−1

)+∣∣∣2 ds

=
∫
G2

∣∣∣(H(v + λw)− ηn−1
)+∣∣∣2 ds

≤
∫
G2

|H(v + λw)−H(v)|2 ds

≤
∫
G2

c2
0 λ

2 |w|2 ds.
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The integral over G3 vanishes, and the integral over G4 is being estimated by∫
G4

∣∣∣(H(v + λw)− ηn−1
)+ − (H(v)− ηn−1

)+∣∣∣2 ds

=
∫
G4

∣∣∣(H(v)− ηn−1
)+∣∣∣2 ds

≤
∫
G4

|H(v)−H(v + λw)|2 ds

≤
∫
G2

c2
0 λ

2 |w|2 ds.

(3.94)

Substituting (3.93) - (3.94) into (3.92) shows that A is hemi-continuous with respect to v.
Show next the inequality in the first property Definition 3.G.6. For u, v ∈ H1(Ω), it holds

〈A(u, u)−A(u, v) , (u− v)〉

=
∫

Ω
|u− v|2 dx+ τ

∫
Ω
|∇(u− v)|2dx+ τ

∫
Γin

|u− v|2|U b · ν|ds

+
∫

Γ

[(
H(u)− ηn−1

)+ − (H(v)− ηn−1
)+] (u− v)ds

≥ 0,

(3.95)

because
(
H(u)− ηn−1

)+ − (H(v)− ηn−1
)+ and (u − v) have the same sign and because of

(3.83). Therefore,A satisfies the first property of Definition 3.G.6. Clearly,A is hemi-continuous
with respect to u. Thus, the second property of Definition 3.G.6 is verified.

To show the third property, assume uj ⇀ u weakly in H1(Ω) and assume that

〈A(uj , uj)−A(uj , u) , (uj − u)〉 → 0.

This implies that uj → u strongly in H1(Ω). To proof that, replace u by uj and v by u in (3.95).
By Hölder’s inequality, the following estimate holds:

|〈A(uj , v)−A(u, v) , ψ〉| = τ

∣∣∣∣∫
Ω
∇(uj − u) ·U ψ dx

∣∣∣∣
≤ τ CU ‖ψ‖L2(Ω) ‖∇(uj − u)‖L2(Ω)N .

The right-hand side tends to 0, which proves the third property of Definition 3.G.6.
To obtain the fourth property, assume that uj ⇀ u weakly in H1(Ω) and assume that

A(uj , v) ⇀ φ in (H1(Ω))′. Then

〈A(uj , v) , ψ〉 =
∫

Ω
[v ψ + τ∇v · ∇ψ] dx+

∫
Γ

(
H(v)− ηn−1

)+
ψ ds

+ τ

∫
Γin

v ψ |U b · ν|ds− τ
∫

Γin

g ψ |U b · ν|ds

+ τ

∫
Ω
ψU · ∇uj dx.
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Since uj appears in the last term only, passing to the limit yields

〈φ , ψ〉 =
∫

Ω
[v ψ + τ∇v · ∇ψ] dx+

∫
Γ

(
H(v)− ηn−1

)+
ψ ds

+ τ

∫
Γin

v ψ |U b · ν|ds− τ
∫

Γin

g ψ |U b · ν| ds

+ τ

∫
Ω
ψ∇u ·U dx,

and we get

〈A(uj , v) , uj〉 − 〈φ , u〉

=
∫

Ω
v (uj − u) dx+ τ

∫
Ω
∇v · ∇(uj − u)dx

+
∫

Γ

(
H(v)− ηn−1

)+ (uj − u) ds,

+ τ

∫
Γin

v (uj − u) |U b · ν|ds− τ
∫

Γin

g (uj − u) |U b · ν|ds

+ τ

∫
Ω

(uj − u)U · ∇uj dx+ τ

∫
Ω
uU · ∇(uj − u) dx.

(3.96)

Note that all terms on the right-hand side of (3.96) are linear with respect to uj except for∫
(uj − u)U · ∇uj . Thus, the assumption uj ⇀ u weakly in H1(Ω) implies that all terms

tend to zero as j →∞ except for (possibly)
∫

(uj − u)U · ∇uj . To treat this term, assume that∫
(uj − u)U · ∇uj 6→ 0. Then, there exists δ > 0 and a subsequence {uk} of {uj} such that∣∣∣∣∫

Ω
(uk − u)U · ∇uk dx

∣∣∣∣ > δ ∀k.

Due to H1(Ω) ⊂⊂ L4(Ω), N = 3, we can assume that {uk} converges strongly in L4(Ω). The
limit is u. Hölder’s inequality and the assumption (3.83) yield the inequalities

0 < δ <

∣∣∣∣∫
Ω

(uk − u)U · ∇uk dx
∣∣∣∣ ≤ ‖uk − u‖L4(Ω) · ‖U‖L4(Ω)N · ‖∇uk‖L2(Ω)N . (3.97)

The the first factor on the right-hand side of (3.97) tends to zero as k → ∞ due to the choice
of {uk}. The last factor is bounded because uk ⇀ u weakly in H1(Ω). Thus, the right-hand
side of (3.97) tends to zero as k → ∞ which is impossible. Therefore

∫
(uj − u)U · ∇uj 6→ 0

cannot hold, and equation (3.96) yields 〈A(uj , v), uj〉 → 〈φ, u〉 as j → ∞. All properties of
Definition 3.G.6 are satisfied.

Implementation of Step 2: uniqueness of ρn. Assume there are two solutions ρn1 and ρn2 and
set ρ̄ = ρn1 − ρn2 , then

0 = 〈A(ρn1 )−A(ρn2 ) , ρn1 − ρn2 〉

=
∫

Ω
|ρ̄|2 dx+ τ

∫
Ω

[
|∇ρ̄|2 + ρ̄U · ∇ρ̄

]
dx

+
∫

Γ

[(
H(ρn1 )− ηn−1

)+ − (H(ρn1 )− ηn−1
)+]

ρ̄ds

+ τ

∫
Γin

|ρ̄|2 (U b · ν) ds.

(3.98)
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3.4 The decoupled measurement problem

As before, the boundary integrals in (3.98) are nonnegative. Application of Young’s inequality
to the term ρ̄U · ∇ρ̄, together with (3.83), yields∫

Ω
|ρ̄|2 dx+ τ

∫
Ω
|∇ρ̄|2 dx+ τ

∫
Γin

|ρ̄|2 |U b · ν| ds

≤ τ
C2
U

2

∫
Ω
|ρ̄|2 dx+

τ

2

∫
Ω
|∇ρ̄|2 dx.

(3.99)

Assume τ < min{1, 2/C2
U}. Then (3.99) yields ρ̄ = 0.

3.4.2.2 A priori estimates

Lemma 3.4.23. Let τ0 be defined as in Lemma 3.4.22, and ρn, n = 1, ...,K, be a sequence of
weak solutions defined by (3.90). Set

B0 :=
∫

Ω
|ρ0|2 dx+ T

∫
Γin

|g|2 |U b · ν| ds.

Then, it holds∫
Ω
|ρj |2 +

K∑
n=1

∫
Ω
|ρn − ρn−1|2 + τ

K∑
n=1

[∫
Γin

|ρn|2 |U b · ν|+
∫

Ω
|∇ρn|2

]
≤ B0,

for all j = 1, ...,K, provided τ ∈ (0, τ0).

Proof. Choose ψ = ρn in (3.90) and rewrite the first term as

(ρn − ρn−1)ρn =
1
2
[
|ρn|2 + |ρn − ρn−1|2 − |ρn−1|2

]
. (3.100)

The term ρnU can be estimated by Young’s inequality 3.A.1, and the boundedness of U by∣∣∣∣∫
Ω
ρnU∇ρn

∣∣∣∣ ≤ C2
U

2
‖ρn‖2L2(Ω)N +

1
2
‖∇ρn‖L2(Ω)N . (3.101)

The integral over Γ is positive. Indeed, (3.89) shows that ηn − ηn−1 ≥ 0. Due to the assump-
tion η0 ≥ 0 in (3.81) and (3.88), it holds: ηn(x)− ηn−1(x) = 0 if ρn(x) ≤ 0.

The integral over |ρn|2 |U b · ν| is positive, and the right-hand side can be estimated by∣∣∣∣∫
Γin

gρn|U b · ν|
∣∣∣∣ ≤ 1

2

∫
Γin

|g|2 |U b · ν|+
1
2

∫
Γin

|ρn|2 |U b · ν|. (3.102)

Substituting (3.100), (3.101) and (3.102) into (3.90) and summing up for n = 1, ..., k yield

1
2

∫
Ω
|ρk|2 +

1
2

k∑
n=1

∫
Ω
|ρn − ρn−1|2

+
τ

2

k∑
n=1

[∫
Γin

|ρn|2 |U b · ν|+
∫

Ω
|∇ρn|2

]
≤ 1

2

∫
Ω
|ρ0|2 +

τ k

2

∫
Γin

|g|2 |U b · ν|.

This proves the lemma.
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The assumption that the mass flux g|U b · ν| through the inlet being time independent is used
in the proof of the next lemma.

Lemma 3.4.24. Let τ0 be defined as in Lemma 3.4.22, and ρn, n = 1, ...,K, be a sequence of
weak solutions of (3.90). Then, there exists a constant B1 depending only on g, U , and ρ0 such
that ∫

Ω
|∇ρj |2 dx+

∫
Γin

|ρj |2 |U b · ν| ds

+
K∑
n=1

τ

∫
Ω

[∣∣∣∣ρn − ρn−1

τ

∣∣∣∣2 + |∆ρn|2
]

dx

+
K∑
n=1

[∫
Ω
|∇ρn −∇ρn−1|2 dx+

∫
Γin

|ρn − ρn−1|2 |U b · ν|ds
]
≤ B1

for all j = 1, ...,K, provided τ ∈ (0, τ0).

Proof. Substitute ψ = ρn− ρn−1 into (3.90) and use (3.100) with ρn and ρn−1 replaced by∇ρn
and ∇ρn−1, respectively, to obtain∫

Ω
|ρn − ρn−1|2 +

∫
Γ
(ηn − ηn−1)(ρn − ρn−1)

+
τ

2

∫
Ω

[
|∇ρn|2 + |∇ρn −∇ρn−1|2 − |∇ρn−1|2

]
+
τ

2

∫
Γin

[
|ρn|2 + |ρn − ρn−1|2 − |ρn−1|2

]
|U b · ν|

= τ

∫
Γin

g(ρn − ρn−1)|U b · ν|

+ τ

∫
Ω

(ρn − ρn−1)U · ∇ρn.

(3.103)

The integral over Γ is positive, because ρn(x) ≥ ρn−1(x) implies ηn(x) ≥ ηn−1(x), and
ρn(x) ≤ ρn−1(x) implies ηn(x) = ηn−1(x). The last integral can be estimated using (3.83)
and Young’s inequality as follows∣∣∣∣τ ∫

Ω
(ρn − ρn−1)∇ρn ·U

∣∣∣∣
≤ 1

2

∥∥ρn − ρn−1
∥∥2

L2(Ω)
+
τ2C2

U

2
‖∇ρn‖2L2(Ω)N .

(3.104)

Substituting (3.104) into (3.103) and dividing by τ yields

τ

2

∫
Ω

∣∣∣∣ρn − ρn−1

τ

∣∣∣∣2 +
1
2

∫
Ω

[
|∇ρn|2 + |∇ρn −∇ρn−1|2 − |∇ρn−1|2

]
+

1
2

∫
Γin

[
|ρn|2 + |ρn − ρn−1|2 − |ρn−1|2

]
|U b · ν|

≤
∫

Γin

g(ρn − ρn−1)|U b · ν|+
τ C2

U

2
‖∇ρn‖2L2(Ω)N .

(3.105)
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3.4 The decoupled measurement problem

Remember that g|U b · ν| is assumed to be time independent. Summing up inequality (3.105)
for n = 1, ..., k and using B0 defined in Lemma 3.4.23 to estimate the last term, we obtain

k∑
n=1

τ

2

∫
Ω

∣∣∣∣ρn − ρn−1

τ

∣∣∣∣2

+
1
2

k∑
n=1

[∫
Ω
|∇ρn −∇ρn−1|2 +

∫
Γin

|ρn − ρn−1|2 |U b · ν|
]

+
1
2

∫
Ω
|∇ρk|2 +

1
2

∫
Γin

|ρk|2 |U b · ν|

≤ 1
2

∫
Ω
|∇ρ0|2 +

1
2

∫
Γin

|ρ0|2|U b · ν|+
C2
U B0

2

+
∫

Γin

g (ρk − ρ0) |U b · ν|.

(3.106)

Using Young’s inequality in the last term of (3.106) and multiplying by 2, we get

k∑
n=1

τ

∫
Ω

∣∣∣∣ρn − ρn−1

τ

∣∣∣∣2

+
k∑

n=1

[∫
Ω
|∇ρn −∇ρn−1|2 +

∫
Γin

|ρn − ρn−1|2 |U b · ν|
]

+
∫

Ω
|∇ρk|2 +

1
2

∫
Γin

|ρk|2 |U b · ν|

≤
∫

Ω
|∇ρ0|2 +

3
2

∫
Γin

|ρ0|2|U b · ν|+ C2
U B0

+
∫

Γin

|g|2|U b · ν|.

(3.107)

To derive an estimate of ∆ρn, restrict ψ ∈ D(Ω) in the weak form (3.90) to obtain

〈∆ρn;ψ〉 = −
∫

Ω
∇ρn · ∇ψ dx =

∫
Ω
ψ

[
ρn − ρn−1

τ
+U · ∇ρn

]
,

which shows ∆ρn = (ρn − ρn−1)/τ + U · ∇ρn ∈ L2(Ω). If we denote the right-hand side of
(3.107) by B′1, then Lemma 3.4.23 yields

k∑
n=1

τ

∫
Ω
|∆ρn|2 dx ≤ 2

k∑
n=1

τ

∫
Ω

[∣∣∣∣ρn − ρn−1

τ

∣∣∣∣2 + C2
U |∇ρn|2

]
≤ 2B′1 + 2C2

UB0, (3.108)

for all k = 1, ...,K. Inequalities (3.107) and (3.108) prove the lemma.

The next lemma provides estimates of the approximate solutions in L∞(Ω).

Lemma 3.4.25. Let τ0 be defined as in Lemma 3.4.22, and ρn, n = 1, ...,K, be a sequence of
weak solutions defined by (3.90). Set

B2 := max
{
‖g‖L∞(Γin) ,

∥∥ρ0
∥∥
L∞(Ω)

}
,

Then, it holds 0 ≤ ρn(x) ≤ B2 for all n = 0, ...,K, and almost all x ∈ Ω.
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Proof. Choose ψ = f ′b(ρ
n) in (3.90) where fb is defined for b > 0 by

fb(s) =


1
2s

2 if s < 0,
0 if 0 ≤ s ≤ b,
1
2(s− b)2 if b < s.

In order to prove the lemma, we will show that b ≥ B2 implies∥∥f ′b(ρn)
∥∥
L2(Ω)

= 0 for all n = 1, ...,K.

Observing that

f ′b(s) =


s if s < 0,
0 if 0 < s < b,

s− b if b < s,

shows that fb satisfies the hypothesis of Lemma 3.A.5, and f ′b(ρ
n) ∈ H1(Ω) due to Lemmas

3.4.24 and 3.E.5. Moreover, the following identities holds: ∇ρn f ′b(ρn) = ∇f ′b(ρn) f ′b(ρ
n) and

∇ρn ·∇f ′b(ρn) = |∇f ′b(ρn)|2 almost everywhere in Ω. Thus, f ′b(ρ
n) is an admissible testfunction

and we obtain from (3.90):∫
Ω

[
(ρn − ρn−1)f ′b(ρ

n) + τ |∇f ′b(ρn)|2
]

+
∫

Γ
(ηn − ηn−1)f ′b(ρ

n)

= τ

∫
Γin

(g − ρn) f ′b(ρ
n) |U b · ν| − τ

∫
Ω
f ′b(ρ

n)U · ∇f ′b(ρn).

(3.109)

Using Lemma 3.A.5 and the identity 2fb(s) = f ′b(s)
2, s ∈ R, the first term on the left-hand

side of (3.109) can be estimated from below by∫
Ω

(ρn − ρn−1)f ′b(ρ
n) ≥

∫
Ω

[
fb(ρn)− fb(ρn−1)

]
=

1
2

∫
Ω

[
f ′b(ρ

n)2 − f ′b(ρn−1)2
]
. (3.110)

For the integral over Γ, it holds∫
Γ
(ηn − ηn−1) f ′b(ρ

n) ds ≥ 0. (3.111)

If ρn(x) < 0 then ηn(x) = ηn−1(x). If ρn(x) ≥ 0 then f ′b(ρ
n(x)) ≥ 0 and ηn(x) ≥ ηn−1(x).

The integral over Γin in (3.109) satisfies∫
Γin

(g − ρn) f ′b(ρ
n) · |U b · ν| ≤ 0, for b > ‖g‖L∞(Γin). (3.112)

Indeed, if f ′b(ρ
n(x)) < 0, then ρn(x) < 0 and g(x) − ρn(x) ≥ 0. If f ′b(ρ

n(x)) > 0, then
ρn(x) > b ≥ g(x) and g(x)− ρn(x) < 0.

Using (3.83) and Young’s inequality to estimate the last term in (3.109) yields

τ

∫
Ω
f ′b(ρ

n)U · ∇f ′b(ρn) ≤ τ

2

∫
Ω
|∇f ′b(ρn)|2 +

τ C2
U

2

∫
Ω
|f ′b(ρn)|2. (3.113)
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3.4 The decoupled measurement problem

Substituting (3.110), (3.111), (3.112) and (3.113) into (3.109) and dividing by τ yield∫
Ω

[(
1
τ
−
C2
U

2

)
f ′b(ρ

n)2 + |∇f ′b(ρn)|2
]
≤ τ

∫
Ω
|f ′b(ρn−1)|2. (3.114)

By the hypothesis on τ , it holds: 1/τ − C2
U/2 > 0. Therefore, (3.114) with n = 1 yields:

f ′b(ρ
1) = 0 for b ≥ B2. Repeating this argument for n = 2, ...,K proves the lemma.

To obtain further estimates, define

ξn(x) := max
k∈{1,...,n}

ρk(x), ζn(x) := H(ξn(x)), x ∈ Ω (3.115)

and note that ζn can be written as

ζn(x) := max
k∈{0,1,...,n}

H(ρk(x)) = ζn−1(x) +
[
H(ρn(x))− ζn−1(x)

]+
, x ∈ Ω.

Due to Lemma 3.E.6, we have ζn ∈ H1(Ω), and it holds

ηn = γ0 ζ
n. (3.116)

The following lemma gives uniform estimates for ζn and ηn.

Lemma 3.4.26. Let c0, τ0 be defined as in Lemma 3.4.22, and ρn, n = 1, ...,K, be a sequence
of weak solutions defined by (3.90). Then, there exists a constant B3 depending only on g, U ,
and ρ0 such that∫

Ω
|∇ζj |2 +

K∑
n=1

[
τ

∫
Ω

∣∣∣∣ζn − ζn−1

τ

∣∣∣∣2 + τ

∫
Γ

∣∣∣∣ηn − ηn−1

τ

∣∣∣∣2 +
∫

Ω

∣∣∇ (ξn − ξn−1
)∣∣2] ≤ B3

for all j = 1, ...,K, provided that τ ∈ (0, τ0).

Proof. Denote Gn := {ρn ≥ ξn−1} and choose ψ = ξn − ξn−1 in (3.90) to obtain∫
Ω

[(
ρn − ρn−1

) (
ξn − ξn−1

)
+ τ∇ρn · ∇

(
ξn − ξn−1

)]
+
∫

Γ

(
ηn − ηn−1

) (
ξn − ξn−1

)
+ τ

∫
Γin

ρn
(
ξn − ξn−1

)
|U b · ν|

= τ

∫
Γin

g
(
ξn − ξn−1

)
|U b · ν| − τ

∫
Ω

(
ξn − ξn−1

)
U · ∇ρn.

(3.117)

The first term can be estimated from below by∫
Ω

(
ρn − ρn−1

) (
ξn − ξn−1

)
≥
∫

Ω

∣∣ξn − ξn−1
∣∣2 . (3.118)

Indeed, if x ∈ Gn, then ρn(x) = ξn(x) and ξn(x) − ρn−1(x) ≥ ξn(x) − ξn−1(x) ≥ 0. If
x 6∈ Gn, then ξn(x) = ξn−1(x). Similarly, we get for the integral over Γin:∫

Γin

ρn
(
ξn − ξn−1

)
|U b · ν| =

∫
Γin

ξn
(
ξn − ξn−1

)
|U b · ν|

=
1
2

∫
Γin

[
|ξn|2 − |ξn|2 +

∣∣ξn − ξn−1
∣∣2] |U b · ν|.

(3.119)
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Further, ∇ρn · ∇
(
ξn − ξn−1

)
= ∇ξn · ∇

(
ξn − ξn−1

)
almost everywhere in Ω. Indeed,

∇
(
ξn − ξn−1

)
= 0 almost everywhere in Ω \ Gn, whereas ρn = ξn and ∇ρn = ∇ξn almost

everywhere in Gn. Therefore, we obtain∫
Ω
∇ρn · ∇

(
ξn − ξn−1

)
=
∫
Gn
∇ρn · ∇

(
ξn − ξn−1

)
=
∫
Gn
∇ξn · ∇

(
ξn − ξn−1

)
=
∫

Ω
∇ξn · ∇

(
ξn − ξn−1

)
=

1
2

∫
Ω

[
|∇ξn|2 − |∇ξn−1|2 +

∣∣∇ (ξn − ξn−1
)∣∣2] .

(3.120)

To estimate the integral over Γ in (3.117) from below, use (3.115) and the Lipschitz-continuity
of H to get

ζn − ζn−1 = H(ξn)−H(ξn−1) ≤ c0

(
ξn − ξn−1

)
. (3.121)

Thus, it holds ∫
Γ

(
ηn − ηn−1

) (
ξn − ξn−1

)
≥ 1
c0

∫
Γ

∣∣ηn − ηn−1
∣∣2 . (3.122)

To estimate the terms containing U in (3.117), use (3.83) and apply 3.A.1 to obtain

τ

∫
Ω

(
ξn − ξn−1

)
U · ∇ρn ≤

C2
U τ

2

2

∫
Ω
|∇ρn|2 +

1
2

∫
Ω

∣∣ξn − ξn−1
∣∣2 . (3.123)

Substituting (3.118) – (3.123) into (3.117), dividing by τ , summing up for n = 1, ..., k, and
using the assumption that g|U b · ν| is time independent, we get

1
2

∫
Ω
|∇ξk|2 +

1
2

∫
Γin

|ξn|2 |U b · ν|

+
k∑

n=1

τ

[
1
2

∫
Ω

∣∣∣∣ξn − ξn−1

τ

∣∣∣∣2 +
1
c0

∫
Γ

∣∣∣∣ηn − ηn−1

τ

∣∣∣∣2
]

+
1
2

k∑
n=1

[∫
Ω

∣∣∇ (ξn − ξn−1
)∣∣2 +

∫
Γin

∣∣ξn − ξn−1
∣∣2 |U b · ν|

]

≤
∫

Γin

g(ξk − ξ0)|U b · ν|+
C2
U

2

k∑
n=1

τ

∫
Ω
|∇ρn|2.

(3.124)

Taking into account (3.121) and the inequality |∇ζn| = |H ′(ξn)∇ξn| ≤ c0|∇ξn|, applying
Young’s inequality to the right-hand side of (3.124), and using the constantB0 defined in Lemma
3.4.23 yield

1
2c2

0

∫
Ω
|∇ζk|2 +

1
4

∫
Γin

|ξn|2 |U b · ν|

+
k∑

n=1

τ

c0

[
1
c0

∫
Ω

∣∣∣∣ζn − ζn−1

τ

∣∣∣∣2 +
∫

Γ

∣∣∣∣ηn − ηn−1

τ

∣∣∣∣2
]

+
1
2

k∑
n=1

[∫
Ω

∣∣∇ (ξn − ξn−1
)∣∣2 +

∫
Γin

∣∣ξn − ξn−1
∣∣2 |U b · ν|

]
≤ 2

∫
Γin

|g|2 |U b · ν|+
1
4

∫
Γin

|ρ0|2 |U b · ν|+
C2
U B0

2
.
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This proves the lemma.

3.4.2.3 Passage to the limit

For everyK ∈ N define two kinds of time interpolations of {ρn}, {ηn}, and {ζn}. Let ρK , ηK , ζK

be piecewise linear interpolations, whereas ρ̄K , η̄K , ζ̄K are piecewise constant ones. That is

ρK(x, t) =
(

1− n+
t

τ

)
ρn(x) +

(
n− t

τ

)
ρn−1(x), ρ̄K(x, t) = ρn(x) (3.125)

if t ∈ ((n−1)τ, nτ ], n = 1, ...,K, and the functions ηK , ζK , η̄K , and ζ̄K are defined in the same
way. The following lemma shows in which sense the piecewise linear and piecewise constant
interpolations converge to each other.

Lemma 3.4.27. For K →∞ the interpolations defined by (3.125) satisfy:

[ρK(t)− ρ̄K(t)]→ 0 in L2(Ω),

[ζK(t)− ζK(t)]→ 0 in L2(Ω),

[ηK(t)− ηK(t)]→ 0 in L2(Γ),

and the convergence is uniform for t ∈ [0, T ]. Moreover

(ρK − ρ̄K)→ 0 in L2(0, T ;H1(Ω)).

Proof. Due to Lemma 3.4.24, the following estimate holds true∫ T

0

[
‖ρK(t)− ρ̄K(t)‖2L2(Ω) + ‖∇ρK(t)−∇ρ̄K(t)‖2L2(Ω)

]
dt

=
K∑
n=1

[∥∥ρn − ρn−1
∥∥2

L2(Ω)
+
∥∥∇ρn −∇ρn−1

∥∥2

L2(Ω)

]
·
∫ nτ

(n−1)τ

( t
τ
− n

)2
dt

≤ τ

3
max{1, τ}

[
K∑
n=1

τ

∫
Ω

∣∣∣∣ρn − ρn−1

τ

∣∣∣∣2 dx+
K∑
n=1

∫
Ω
|∇ρn −∇ρn−1|2 dx

]
,

where the term on the right-hand side in square brackets is bounded by B1. This proves the last
assertion of the lemma, because τ = T/K.

The other assertions of the lemma are obvious for t = 0. For each t ∈ (0, T ] and K ∈ N, we
have (nK − 1)τ < t ≤ nK τ for a certain nK ∈ {1, ...,K}. And therefore, by (3.125):

|ρK(x, t)− ρ̄K(x, t)| =
(
nK −

t

τ

)
· τ ·

∣∣ρnK−1(x)− ρnK (x)
∣∣

τ
,

where 0 < nK − t/τ < 1. Computing the L2(Ω)-norm and using Lemma 3.4.24 yield∫
Ω
|ρK(x, t)− ρ̄K(x, t)|2 dx ≤ τ2

∫
Ω

∣∣∣∣ρnK−1 − ρnK
τ

∣∣∣∣2
≤ τ

K∑
n=1

τ

∣∣∣∣ρn−1 − ρn

τ

∣∣∣∣2 ≤ τ B1,
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where B1 is independent of K and t. This proves the first assertion about ρK and ρ̄K . The
claims concerning ζK and ζ̄K , and ηK and η̄K can be shown in a similar way using Lemma
3.4.26 instead of 3.4.24.

Lemmas 3.4.24 to 3.4.26 imply

‖ρK‖L∞(Ω×(0,T )) , ‖ρ̄K‖L∞(Ω×(0,T )) ≤ B2,

‖(ρK)t‖L2(Ω×(0,T )) , ‖∆ρK‖L2(Ω×(0,T )) ≤ B1,

‖∇ρK‖L∞(0,T ;L2(Ω)) , ‖∇ρ̄K‖L∞(0,T ;L2(Ω)) ≤ B1,

‖(ζK)t‖L2(Ω×(0,T )) , ‖(ηK)t‖L2(Γ×(0,T )) ≤ B3,

‖∇ζK‖L∞(0,T ;L2(Ω)) ,
∥∥∇ζ̄K∥∥L∞(0,T ;L2(Ω))

≤ B3.

(3.126)

Moreover, the relation (3.116) and the embedding H1(Ω) ⊂ H1/2(∂Ω) yield bounds for the
norms

‖ηK‖L∞(0,T ;H1/2(Γ)) , ‖η̄K‖L∞(0,T ;H1/2(Γ)) .

Therefore, there exist functions

ρ ∈ H1(0, T ;L2(Ω)) ∩ L∞(0, T ;H1(Ω)) ∩ L∞(Ω× (0, T )),

η ∈ H1(0, T ;L2(Ω)) ∩ L∞(0, T ;H1/2(Γ)),

ζ ∈ H1(0, T ;L2(Ω)) ∩ L∞(0, T ;H1(Ω)) ∩ L∞(Ω× (0, T )),

(3.127)

and a subsequence {Km}m∈N such that the approximations converge as follows

ρKm → ρ ∗−weakly in H1(0, T ;L2(Ω)) ∩ L∞(0, T ;H1(Ω)) ∩ L∞(Ω× (0, T )),

ρ̄Km → ρ ∗−weakly in L∞(0, T ;H1(Ω)) ∩ L∞(Ω× (0, T )),

ζKm → ζ ∗−weakly in H1(0, T ;L2(Ω)) ∩ L∞(0, T ;H1(Ω)) ∩ L∞(Ω× (0, T )),

ζ̄Km → ζ ∗−weakly in L∞(0, T ;H1(Ω)) ∩ L∞(Ω× (0, T )),

ηKm → η ∗−weakly in H1(0, T ;L2(Γ)) ∩ L∞(0, T ;H1/2(Γ)),

η̄Km → η ∗−weakly in L∞(0, T ;H1/2(Γ)).
(3.128)

Next, show that ρ and η satisfy (3.86). The equations (3.87), (3.88), under accounting for
estimates (3.126), yield:

(ρK)t +U · ∇ρ̄K = ∆ρ̄K in L2(Ω× (0, T )),

−∂ν ρ̄K = (ηK)t in L2(0, T ;H−1/2(Γ)),

−∂ν ρ̄K = (ρ̄K − g)|U b · ν| in L2(0, T ;H−1/2(Γin)),

−∂ν ρ̄K = 0 in L2(0, T ;H−1/2(∂Ω \ [Γ ∪ Γin])),
η̄K(x, t) = A(ρ̄K(x, ·))(t) for a.a. (x, t) ∈ Γ× (0, T ),
ζ̄K(x, t) = A(ρ̄K(x, ·))(t) for a.a. (x, t) ∈ Ω× (0, T ),

(3.129)
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and, due to (3.116), it holds

η̄K = γ0 ζ̄K in L∞(0, T ;H1/2(Γ)). (3.130)

In the weak form, (3.129) reads (ρn are defined by (3.90)):∫ T

0

∫
Ω

[(ρK)t +U · ∇ρ̄K ]ψ dxdt+
∫ T

0

∫
Ω
∇ρ̄K · ∇ψ dxdt

+
∫ T

0

∫
Γ
(ηK)t ψ dsdt+

∫ T

0

∫
Γin

ρ̄K ψ|U b · ν|dsdt

=
∫ T

0

∫
Γin

g ψ|U b · ν|dsdt

(3.131)

for all ψ ∈ L2(0, T ;H1(Ω)).
The passage to the limit with respect to subsequences in (3.129), (3.130) and (3.131) yields

ρt +U · ∇ρ = ∆ρ in L2(Ω× (0, T )),

−∂νρ = ηt in L2(0, T ;H−1/2(Γ)),

−∂νρ = (ρ− g) |U b · ν| in L2(0, T ;H−1/2(Γin)),

−∂νρ = 0 in L2(0, T ;H−1/2(∂Ω \ [Γ ∪ Γin])),

η = γ0ζ in L∞(0, T ;H1/2(Γ))

(3.132)

so that ρ and η satisfy the weak form (3.86).

Lemma 3.4.28. Let ρ and ζ be the limits in (3.127), (3.128). Then the following equality holds

ζ(x, t) = A(ρ(x, ·))(t) (3.133)

for almost all (x, t) ∈ Ω× (0, T ).

Proof. First, we proof that there exist subsequences, again denoted by {ζKm}, {ζ̄Km}, which
satisfy:

ζKm → ζ in C(0, T ;H1−ε(Ω)),

ζKm → A(ρ) in C(0, T ;L2(Ω)),

ζ̄Km(t)→ A(ρ)(t) in L2(Ω), uniformly for t ∈ [0, T ].

(3.134)

Due to the estimates from (3.126) and Theorem 3.F.2, applied withX = H1(Ω), B = H1−ε(Ω),
and Y = L2(Ω), there exists a subsequence of (ζKm) that convergences in C(0, T ;H1−ε(Ω)).
By (3.128), the limit equals ζ, which proves the first assertion of (3.134).

The second assertion can be shown almost in the same way as in [63, IX.1]. Note that the
following embedding is true:

H1(Ω× (0, T )) ⊂⊂ L2(Ω; C[0, T ]).

Therefore, a subsequence, again denoted by ρKm , satisfies

ρKm → ρ in L2(Ω; C[0, T ]) (3.135)
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so that ρKm(x, ·)→ ρ(x, ·) in C[0, T ] for almost all x ∈ Ω.
Similar to the proof of Lemma 3.4.27, fix an arbitrary t ∈ (0, T ] and set τ := T/K. Then,

there exists an integer n ∈ {1, ...,K} such that (n− 1)τ < t ≤ n τ . From (3.115), the definition
of A, and the convergence (3.135), it follows

|ζKm(x, t)−A(ρ(x, ·))(t)| =
∣∣∣∣max
s≤t

H(ρKm(x, s))−max
s≤t

H(ρ(x, s))
∣∣∣∣

≤ c0 max
s≤t
|ρKm(x, s)− ρ(x, s)|

≤ c0 ‖ρKm(x, ·)− ρ(x, ·)‖C[0,T ]

for almost all x ∈ Ω, where c0 = max dH(s)/ds. Computing the L2(Ω)-norm of the both sides
of the previous relation yields∫

Ω
|ζKm(x, t)−A(ρ(x, ·))(t)|2 dx ≤ c2

0‖ρKm(x, ·)− ρ(x, ·)‖2L2(Ω; C[0,T ]),

where the right-hand side tends to zero independently of t because of (3.135). This proves the
second assertion of (3.134).

The third assertion is a consequence of the second one and Lemma 3.4.27.
It is easy to see that the first and second assertions of (3.134) prove the claim of the lemma.

To proof the existence of solutions to (3.81), it is necessary to establish that η = A(γ0ρ) (see
(3.85)). This relation is the consequence of Lemma 3.4.28 and the results of the next section
where the commutativity of A and γ0 is established.

3.4.2.4 Representation of the trace

We have already shown that ρ and η are related by the identity η = γ0A(ρ) (see (3.132) and
(3.133)). However, to show the existence of solutions to problem (3.81) in the sense of Definition
3.4.19, the identity (3.85) has to be established. This identity is also important for the proof of
the uniqueness of (ρ, η) using Hilpert’s inequality, see Section 3.4.2.5.

To proof of (3.85), we use regularity results for solutions of elliptic problems in Lipschitz
domains (see Theorem 3.4.29) and an anisotropic embedding (see Theorem 3.4.34) that ensures
certain continuity properties of ρ(x, y, z, t) in the variables (z, t), if N = 3. The following
theorem deals with the regularity of solutions to elliptic problems in Lipschitz domains.

Theorem 3.4.29 ([52, Theorem 4]). Let Ω be a Lipschitz bounded open set, let ν be the exterior
unit normal to its boundary, and let A(x) be symmetric matrices with measurable coefficients
satisfying

∃α, µ > 0 : α|ξ|2 ≤ A(x)ξ · ξ ≤ µ|ξ|2, ∀ξ ∈ RN , for a.e. x ∈ Ω,
∃L > 0 : |A(x)−A(y)| ≤ L|x− y|, ∀x, y ∈ Ω.

If f ∈ L2(Ω) and g ∈ H−1/2+s(∂Ω), s ∈ (−1/2, 1/2), then the non-homogeneous Neumann
problem:

−divA(x)∇u(x) + λu = f(x) in Ω,
∂νAu(x) = g(x) on ∂Ω,

(with λ > 0 and νA = Aν) admits a unique solution u ∈ H1+s(Ω).
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Let us note that the proof Theorem 3.4.29 given in [52] yields the following bound for the
H1+s(Ω)-norm of u: ‖u‖H1+s(Ω) ≤ C(‖f‖L2(Ω) + ‖g‖H−1/2+s(∂Ω)).

The result of this section is formulated in the following lemma.

Lemma 3.4.30. The limits ρ and η from (3.128) satisfy identity (3.85). Moreover it holds:
ρ ∈ L2(0, T ;H3/2−ε(Ω)) for any ε > 0.

Proof. The proof of the lemma is divided into the following three steps:

1. Show ρ ∈ L2(0, T ;H3/2−ε(Ω)), for any ε > 0.

2. Show ρ ∈ Lq((0, X) × (0, Y ); C([0, Z] × [0, T ])), provided that Ω contains the cube
(0, X)× (0, Y )× (0, Z) where X, Y and Z are positive numbers.

3. Deduce (3.85).

Implementation of Step 1. Remember that Ω is supposed to be a Lipschitz domain. Thus,
Theorem 3.4.29 is applicable to elliptic problems in Ω. For almost all t ∈ (0, T ) and any λ > 0,
the function ρ(t) is a solution of the following non-homogeneous Neumann problem

−∆u+ λu = f := −ρt(t)−U · ∇ρ(t) + λρ(t) in Ω,
∂νu = q on ∂Ω,

(3.136)

where the boundary function q is given by

q(x) =


ηt(x, t) x ∈ Γ,(
g(x)− ρ(x, t)

)
|U b(x) · ν| x ∈ Γin,

0 x ∈ ∂Ω \ (Γ ∪ Γin).

By the regularity of ρ and η given in (3.127), it holds q ∈ L2(0, T ;L2(∂Ω)). Moreover, the
regularity of ρ and the properties of U (see (3.83)), imply f ∈ L2(0, T ;L2(Ω)). Thus, Theorem
3.4.29 can be applied to problem (3.136) with s = 1/2− ε and yields ρ(t) = u ∈ H3/2−ε(Ω) for
almost all t ∈ (0, T ). Due to the regularity of q and f , it holds ρ ∈ L2(0, T ;H3/2−ε(Ω)). This
completes the proof of Step 1.

Implementation of Step 2. Let Ω contain a cube of the form (0, X) × (0, Y ) × (0, Z) where
X, Y, Z are positive numbers. In order to apply Theorem 3.4.34, we have to find some p > 2
such that ρxi ∈ Lp(Ω× (0, T )) holds. By (3.127) and the following embedding

H1/2−ε(Ω) ⊂ Lp1(Ω), p1 =
6

3− (1/2− ε) · 2
= 3− ε′, ε′ =

3 ε
1 + ε

, (3.137)

we obtain
ρxi ∈ L2(0, T ;Lp1(Ω)) ∩ L∞(0, T ;L2(Ω)) (3.138)

for i = 1, ..., N . Thus, Hölder’s inequality yields the following estimate[∫ T

0

∫
Ω
|ρxi |p

]1/p

≤

[∫ T

0

(∫
Ω
|ρxi |2

)1/(3−p)
](3−p)/2

×

[∫ T

0

(∫
Ω
|ρxi |2(p−1)

)1/(p−1)
](p−1)/2

91



3 Theoretical investigations

for p > 1. Therefore, (3.138) with p1 = 2(p− 1) yields

ρxi ∈ Lp(Ω× (0, T )), p =
5
2
− ε′

2
. (3.139)

Taking into account the regularity of ρ given by (3.127) and (3.139), and applying Theorem
3.4.34 we obtain

ρ ∈ Lq((0, X)× (0, Y ) ; C([0, Z]× [0, T ])), if p ≤ q < 2(p+ 2)
6− p

. (3.140)

Note that such q exist for sufficiently small ε because of inequality (3.166) and because p > 2
for ε′ ∈ (0, 1), see (3.139) and (3.137). This completes the proof of Step 2.

Implementation of Step 3. Let X, Y, and Z be the numbers from the previous step, and let us
assume for simplicity that Γ = (0, X) × (0, Y ) × {0}. Denote by ΓN = (0, X) × (0, Y )
the projection of Γ onto the hyperplane {x : xN = 0}, then (3.140) can be rewritten as
ρ ∈ Lq(ΓN ; C([0, Z]× [0, T ])). According to [2, A 6.6] the trace γ0 u on Γ of function u ∈
H1(Ω) is defined by

γ0 u(x) = lim
z→0+

u(x+ z eN ),

and it is shown that
∫

Γ |γ0 u(x)− u(x+ z eN )|2ds→ 0.
Remember that η = γ0A(ρ) is already shown. Therefore, η = A(γ0 ρ) is proved if we can

show that
|A(ρ(x, y, 0, ·))(t)−A(ρ(x, y, z, ·))(t)| → 0 as z → 0+ (3.141)

for all t ∈ [0, T ] with A(ρ)(t) ∈ H1(Ω) and for almost all (x, y) ∈ ΓN . Suppose N = 3.
For almost all (x, y) ∈ ΓN , the function ρ(x, y, z, s) is continuous in the variables (z, s) (see
(3.140)). Thus, it is uniformly continuous on compact sets of the form (z, s) ∈ [0, Z] × [0, T ].
Fix an arbitrary t for which A(ρ)(t) ∈ H1(Ω). Then, for almost all (x, y) ∈ ΓN , the following
estimate holds true

|A(ρ(x, y, 0, ·))(t)−A(ρ(x, y, z, ·))(t)| =
∣∣∣∣max
s≤t

ρ(x, y, 0, s)−max
s≤t

ρ(x, y, z, s)
∣∣∣∣

≤ max
s≤t
|ρ(x, y, 0, s)− ρ(x, y, z, s)| .

(3.142)

The right-hand side of (3.142) tends to zero as z → 0+ due to the uniform continuity of
ρ(x, y, ·, ·). Thus, (3.141) holds, and we obtain γ0A(ρ)(t) = A(γ0 ρ)(t) for almost all t ∈ (0, T ).
Finally, taking into account the last equation in (3.132) and Lemma 3.4.28, we obtain the follow-
ing equalities

η(t) = γ0 ζ(t) = γ0A(ρ)(t) = A(γ0 ρ)(t)

for almost all t ∈ (0, T ). This completes the proof of Step 3.

3.4.2.5 Uniqueness

To complete the proof of Theorem 3.4.21, it remains to show the uniqueness of solutions to
problem (3.81) if the velocity field U satisfies (3.84). To this end, Hilpert’s inequality (see
Theorem 3.C.1) is used. The following remark provides some preparations.
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Remark 3.4.31. 1. Note that the functions γl and γr (see Section 3.C) corresponding to the
hysteresis operator A (see (3.82) and Figure 2.5.3) are given by

γl, γr : R→ [0, 1], γl(s) ≡ 1, γr(s) = H(s).

These functions satisfy the conditions (3.175).

2. Theorem 3.C.1 is not directly applicable because the regularity of ρ given by (3.127) and
Lemma 3.4.30 does not imply a boundary regularity of the form: ρ(x, ·) ∈ W 1,1(0, T )
a.e. in Γ. However, note that the proof of Theorem 3.C.1 given in [63] is based on the
following property: σ ∈W 1,1(0, T ) implies ε = E(σ, ε0) ∈W 1,1(0, T ), where E denotes
a play operator under consideration. The proof remains correct without changes if the
assumption (σi, ε0) ∈W 1,1[0, T ]× R, i = 1, 2 is replaced by the following assumption:

(σi, ε0, εi) ∈ C[0, T ]× R×W 1,1(0, T ), where εi = E(σi, ε0) (i = 1, 2). (3.143)

Let us show that the functions ρ and η satisfy (3.143) almost everywhere in Γ. It holds:
η = A(γ0 ρ) ∈ L2(Γ; H1(0, T )) due to Lemma 3.4.30 and the regularity of η given in
(3.127). Thus, we obtain A(ρ(x, ·)) ∈ W 1,1(0, T ) for almost all x ∈ Γ. Moreover, the
regularity result (3.140) implies that ρ(x, ·) ∈ C([0, T ]) for almost all x ∈ Γ. Conse-
quently, the requirement (3.143) is satisfied almost everywhere in Γ if (σi, εi, E) is re-
placed by (ρi(x, ·), ηi(x, ·), A), i = 1, 2.

3. To apply Hilpert’s inequality, terms of the form φU · ∇ψ have to be integrated by parts.
If φ, ψ ∈ H1(Ω), and U satisfies (3.83), estimate the H1(Ω)N -norm of φU , then use the
weak Gaussian Theorem 3.E.4.

By (3.83), it holds: φU ∈ L2(Ω)N . To show that ∇(φU) ∈ L2(Ω)N×N , let U be an
arbitrary component of U . The product rule yields ∇(φU) = U ∇φ + φ∇U ∈ L1(Ω).
Due to (3.83) and the embedding H1/2+ε(Ω)N ⊂ L3(Ω), N = 3, we have ∇U(t) ∈
L3(Ω), t ∈ [0, T ]. Accounting for (3.83) and using Hölder’s inequality, the following
estimates show that∇(φU) ∈ L2(Ω)N :∫

Ω
|U ∇φ|2 ≤ C2

U

∫
Ω
|∇φ|2,

∫
Ω
|φ∇U |2 ≤ ‖φ‖2L6(Ω) · ‖∇U‖

2
L3(Ω)N .

Therefore, Theorem 3.E.4 yields∫
Ω
φU · ∇ψ +

∫
Γin

φψ|U b · ν| =
∫

Ω
ψ [φ divU +U · ∇φ] +

∫
Γout

φψ|U b · ν|,

by the properties of U on the boundary (see (3.83)).

The following lemma states the result of this section.

Lemma 3.4.32. Let the velocity field U satisfy (3.84). Then, the limits ρ and η given by (3.128)
are unique weak solutions of problem (3.81).

Proof. Let (ρi, ηi), i = 1, 2, be two solutions to problem (3.81). Define ρ̄ := ρ1 − ρ2 and
η̄ := η1 − η2. By (3.86), ρ̄, η̄ satisfy the following integral identity∫ T

0

∫
Ω

[ρ̄t +U · ∇ρ̄]ψ +
∫ T

0

∫
Ω
∇ρ̄ · ∇ψ +

∫ T

0

∫
Γ
η̄t ψ +

∫ T

0

∫
Γin

ρ̄ ψ|U b · ν| = 0
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for any ψ ∈ L2(0, T ;H1(Ω)). Integrate the term ψU ·∇ρ̄ by parts (see Remark 3.4.31) to obtain∫ T

0

∫
Ω

[ρ̄t ψ +∇ρ̄ · ∇ψ] +
∫ T

0

∫
Γ
η̄t ψ +

∫ T

0

∫
Γout

ρ̄ ψ|U b · ν|

=
∫ T

0

∫
Ω

[ψ ρ̄divU + ρ̄U · ∇ψ] .
(3.144)

For M ⊂ R denote the characteristic function of M by χM . In (3.144), choose ψ = qm, where
qm(x, τ) = Hm

e (ρ̄(x, τ)) · χ[0,t](τ), t ∈ (0, T ] and

Hm
e (s) :=


0, if s < 0,
m s, if 0 ≤ s ≤ 1/m,
1, if s > 1/m.

Note thatHm
e (s) = 1− (ms+ − 1)− so thatHm

e (ρ̄) is an admissible testfunction due to Lemma
3.E.6.

The terms in (3.144) are estimated separately. The second summand under the first integral on
the left-hand side can be estimated from below as follows∫

Ω
∇ρ̄ · ∇qm dx =

∫
Ω

(Hm
e )′ (ρ̄) |∇ρ̄|2 dx ≥ 0. (3.145)

The integral over Γout in (3.144) is positive due to (3.83). To estimate the term containing the
divergence, use the relationHm

e (ρ̄)· ρ̄ ≤ ρ̄+ and the assumptions on divU to obtain the estimate∣∣∣∣∫ t

0

∫
Ω
ρ̄ ·Hm

e (ρ̄) · divU dxdτ
∣∣∣∣ ≤ C∗U ∫ t

0

∫
Ω
ρ̄+ dxdτ. (3.146)

To estimate the last term on the right-hand side of (3.144) define

Mm :=
{

(x, τ) ∈ Ω× (0, t) : 0 ≤ ρ̄(x, τ) ≤ m−1
}
,

then, ∇Hm
e (ρ̄) = 0 in

[
Ω× (0, T )

]
\Mm. Using Young’s inequality yields the estimate∣∣∣∣∫ t

0

∫
Ω
ρ̄U · ∇Hm

e (ρ̄) dxdτ
∣∣∣∣ =

∣∣∣∣∫
Mm

ρ̄U · (Hm
e )′(ρ̄) · ∇ρ̄dxdτ

∣∣∣∣
≤
C2
U

2

∫
Mm

ρ̄+ dxdτ +
1
2

∫
Mm

(Hm
e )′(ρ̄) |∇ρ̄|2 dxdτ,

(3.147)

because 0 ≤ ρ̄(x, t) ≤ m−1 on Mm so that ρ̄(x, t) · (Hm
e )′(ρ̄(x, t)) ≤ 1.

Substituting (3.145), (3.146), and (3.147) into (3.144) yields the inequality∫ t

0

[∫
Ω
ρ̄tH

m
e (ρ̄) dx+

∫
Γ
η̄tH

m
e (ρ̄) ds

]
dτ +

1
2

∫ t

0

∫
Ω

(Hm
e )′(ρ̄) |∇ρ̄|2 dxdτ

≤ C
∫ t

0

∫
Ω
ρ̄+ dxdτ
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for C = C2
U/2 + C∗U . The passage to the limit as m→∞ yields:∫ t

0

[∫
Ω
ρ̄t q dx+

∫
Γ
η̄t q ds

]
dτ ≤ C

∫ t

0

∫
Ω
ρ̄+ dxdτ, (3.148)

where q ∈ He(ρ̄) is a function such that Hm
e (ρ̄)→ q a.e. in Ω× (0, T ) and a.e in Γ× (0, T ).

By (3.127), it holds η̄ ∈ L2(Γ;H1(0, T )). Thus, the second term on the left-hand side of
(3.148) can be estimated from below using Theorem 3.C.1. It holds

∂ η̄+(x, t)
∂t

≤ ∂ η̄(x, t)
∂t

q(x, t), a. e. in (0, T ) (3.149)

for almost all x ∈ Γ. Since ρ̄0 = 0 and η̄0 = 0, substituting (3.149) into (3.148) yields∫
Ω
ρ̄+(t) dx+

∫
Γ
η̄+(t) ds ≤ C

∫ t

0

∫
Ω
ρ̄+ dxdτ.

Due to (3.173), it holds ρ̄+ = 0 and η̄+ = 0. By interchanging the indices 1 and 2, we conclude
that ρ̄ = 0 and η̄ = 0.

To complete the proof of Theorem 3.4.21, it remains to prove the embedding used in Section
3.4.2.4 to obtain the regularity given in (3.140).

3.4.2.6 An anisotropic embedding

This section is devoted to the anisotropic embedding theorem used in Section 3.4.2.4 to establish
the relation (3.85). The embedding (see Theorem 3.4.34) and the method of proof presented here
were communicated to me by Pavel Krejčí.

Throughout this section, assume that x∗, y∗, z∗, t∗ > 0 are given, set X := (0, x∗) and
X ′ := (−x∗, 2x∗), and define the intervals Y, Z, T, Y ′, Z ′, and T ′ analogously. Introduce the
following notation:

Q = X × Y × Z × T,

Q′ = X ′ × Y ′ × Z ′ × T ′,

x = (x, y, z, t) = (x1, x2, x3, x4),

λ = (λ1, λ2, λ3, λ4),

|λ| = λ1 + λ2 + λ3 + λ4,

x : σλ =
( x1

σλ1
,
x2

σλ2
,
x3

σλ3
,
x4

σλ4

)
, σ > 0,

‖f(x, y, ·, ·)‖p, Z×T =
[∫

Z×T
|f(x, y, z, t)|p dz dt

]1/p

,

with obvious changes if p = ∞. The following definition introduces the considered function
spaces.
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Definition 3.4.33. For p ≥ 1 define the following function spaces:

V := V p(Q) :=
{
u ∈ L1(Q) : ut ∈ L2(Q), Diu ∈ Lp(Q), i = 1, 2, 3

}
,

W := W p(Q) := Lp
(
X × Y ; C(Z × T )

)
,

endowed with the norms

‖u‖V p(Q) = ‖u‖1, Q + ‖ut‖2, Q +
3∑
i=1

‖Diu‖p,Q ,

‖u‖W p(Q) =
∥∥∥‖u(x, y, z, t)‖∞, Z×T

∥∥∥
p,X×Y

.

The norms in V p(R4) and W p(R4) will simply be denoted by ‖·‖V p and ‖·‖W p , respectively.
The proof Theorem 3.4.34 is based on a prolongation operator Ep : V p(Q) → V p(R4) that is
continuous in the norm given by Definition 3.4.33. To construct Ep, fix a ball B ⊂ R4 such that
Q ⊂ B, and define V p

B to be the subset of V p(R4) consisting of all functions vanishing outside
of B. Define W p

B analogously. The operator Ep can be constructed similar to [9, Chapter 2,
§3.6]. For a given u ∈ V p(Q), define the prolongation u1 of u onto the set X ′ × Y × Z × T by
reflection at the hyperplanes {x = 0} and {x = x∗}. We obtain

u1(x, y, z, t) :=


u(x, y, z, t) if x ∈ X,
u(−x, y, z, t) if x ∈ (−x∗, 0),
u(x∗ − (x− x∗), y, z, t) if x ∈ (x∗, 2x∗).

In the same way, the function u2 can be defined as the extension of u1 onto X ′ × Y ′ × Z × T .
Proceeding in this way, yields a function u4 ∈ V p(Q′) with ‖u4‖V p(Q′) ≤ 34 ‖u‖V p(Q). Fix a
smooth cutoff function ζ ∈ D(R4) satisfying ζ(x) = 1 if x ∈ Q, and ζ(x) = 0 if x 6∈ B ∩Q′.
Define the operator Ep by Ep u := ζ · u4. Then Ep u ∈ V p

B and, due to the choice of ζ, it holds:

‖Ep u‖1,R4 ≤ 34 ‖u‖1, Q ,

‖Di(Ep u)‖pi,R4 ≤ ‖u4Diζ‖pi,R4 + ‖ζ Diu4‖pi,R4

≤ 34 ‖ζ‖C1(R4)

(
‖u‖pi, Q + ‖Diu‖pi, Q

)
.

(3.150)

Let us consider the case p ∈ [2, 4]. Since Q is bounded, Poincare’s inequality (see for example
[9, Chapter 1, Theorem 1.3]) yields

‖u‖2, Q ≤ C
(
‖u‖1, Q +

∑
i

‖Diu‖2, Q
)

so that we obtain u ∈ H1(Q) ↪→ L4(Q), N = 4. Thus, inequalities (3.150) yield

‖Ep u‖V p ≤ cp ‖u‖V p(Q) , for p ∈ [2, 4]. (3.151)

In the same way, a prolongation operator Ep : W p(Q)→W p
B can be defined.

The following theorem gives the result of this section.
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Theorem 3.4.34. Let p ∈ (2, 4]. If q satisfies the following inequalities

p ≤ q < 4 + 2p
6− p

,

then the embedding V p(Q) ⊂⊂W q(Q) is compact.

The proof of Theorem 3.4.34 is divided into the following steps:

1. Definition of approximations uσ.

2. Estimation of the difference uα − uβ of approximations in the W q(Q)-norm.

3. Proof of the continuity of the embedding V p(Q) ↪→W q(Q).

4. Proof of the compactness of the embedding V q(Q) ⊂⊂W q(Q).

Implementation of Step 1: definition of approximations. For a given u ∈ V p(Q) denote the
prolongation Ep u by u∗. Define the approximations uσ (σ > 0) of u as follows:

uσ(x) = σ−|λ|
∫

R4

φ
(

(x− x′) : σλ
)
· u∗(x′)dx′

= σ−|λ|
∫

R4

φ

(
x1 − x′1
σλ1

,
x2 − x′2
σλ2

,
x3 − x′3
σλ3

,
x4 − x′4
σλ4

)
· u∗(x′) dx′1 . . . dx

′
4

(3.152)

where φ ∈ D(R4) is a fixed positive smoothing function with
∫
φ dx = 1. The derivative of uσ

with respect to σ is given by the following identity:

∂uσ

∂σ
= −|λ|σ−|λ|−1

∫
R4

φ
(

(x− x′) : σλ
)
· u∗(x′) dx′

+ σ−|λ|
∫

R4

∑
i

Diφ
(

(x− x′) : σλ
)

(xi − x′i)(−λi)σ−λi−1 · u∗(x′) dx′

=
∫

R4

∑
i

(−λi)σ−|λ|−1 u∗(x′) ·
[
φ
(

(x− x′) : σλ
)

+Diφ ·
xi − x′i
σλi

]
dx′.

(3.153)

Using the product rule, the following computation yields an expression for the terms in square
brackets of (3.153):

∂

∂x′i

[
xi − x′i
σλi

· φ
(

(x− x′) : σλ
)]

= −σ−λi φ
(

(x− x′) : σλ
)

+
xi − x′i
σλi

·Diφ
(

(x− x′) : σλ
)
·
(
−σ−λi

)
=
−1
σλi
·
[
φ+

xi − x′i
σλi

·Diφ

]
.

Thus, the identity (3.153) can be rewritten as follows

∂uσ

∂σ
=
∑
i

λi σ
−1−|λ|+λi

∫
R4

u∗(x′) ·
−1
σλi
·
[
φ+Diφ ·

xi − x′i
σλi

]
dx′

=
∑
i

λi σ
−1−|λ|+λi

∫
R4

u∗(x′) ·
∂

∂x′i

[
xi − x′i
σλi

· φ
(

(x− x′) : σλ
)]

dx′

= −
∑
i

λi σ
−1−|λ|+λi

∫
R4

Φi

(
(x− x′) : σλ

)
·Di u∗(x′)dx′,

(3.154)
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where Φi(y) := yi φ(y).
Let uα and uβ be two approximations, 0 < α < β ≤ 1. Using identity (3.154), we obtain the

following estimate for the difference uβ − uα of two approximations:

∣∣∣uβ(x)− uα(x)
∣∣∣ ≤ 4∑

i=1

|λi| Ii(x), (3.155)

where

Ii(x) =
∫ β

α
σ−1−|λ|+λi

∫
R4

∣∣∣Φi

(
(x− x′) : σλ

)∣∣∣ · ∣∣Di u∗(x′)
∣∣ dx′ dσ, (3.156)

for i = 1, . . . , 4.

Implementation of Step 2: estimate for the difference of approximations. To indicate the order
of integration, we use the following notation:∫

Rt
dt =

∫
R

dt or
∫

Rt
dt′ =

∫
R

dt′.

A similar notation is used when integrating over x, y, z, x′, y′, or z′. The following lemma
gives estimates of the W q-norm of the difference uβ − uα in terms of the V p-norm of a given
u ∈ V p(Q) and certain p, q ≥ 1.

Lemma 3.4.35. Assume β > α > 0 and p ∈ (2, 4], and let q satisfy the inequalities

p ≤ q < 4 + 2p
6− p

.

Then, the following estimate holds∥∥∥uβ − uα∥∥∥
W q
≤ Cpq · (βκ − ακ) ‖u∗‖V p

for all u ∈ V p(Q), where

κ =
1
2

+
p+ 2
5p− 6

(
2
q
− 3

2

)
> 0,

Cpq =
p+ 2
5p− 6

3∑
i=1

∥∥∥‖Φi‖p,Rz×Rt

∥∥∥
r,Rx×Ry

+
∥∥∥‖Φ4‖2,Rz×Rt

∥∥∥
s,Rx×Ry

,

and
1
r

= 1 +
1
q
− 1
p
,

1
s

=
1
2

+
1
q
.

Proof. Estimate the W q-norm of the integrals Ii appearing in (3.155). To this end, set pi =
p, i = 1, 2, 3, and p4 = 2, and estimate the integrand in (3.156) in the following way. Apply
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Hölder’s inequality in the variables z′ and t′, and substitute yi = xi/σ
λi to obtain

σ−1−|λ|+λi
∫

R4

∣∣∣Φi

(
(x− x′) : σλ

)∣∣∣ · ∣∣Di u∗(x′)
∣∣ dx′

≤ σ−1−|λ|+λi
∫

Rx

∫
Ry

∥∥∥∥Φi

(
x− x′

σλ1
,
y − y′

σλ2
,
·
σλ3

,
·
σλ4

)∥∥∥∥
p′i,Rz×Rt

×
∥∥Di u∗

(
x′, y′, ·, ·

)∥∥
pi,Rz×Rt dy′ dx′

= σ−1−|λ|+λi+(λ3/p′i)+(λ4/p′i)

∫
Rx

∫
Ry

∥∥∥∥Φi

(
x− x′

σλ1
,
y − y′

σλ2
, · , ·

)∥∥∥∥
p′i,Rz×Rt

×
∥∥Di u∗

(
x′, y′, ·, ·

)∥∥
pi,Rz×Rt dy′ dx′.

Therefore, the C(Rz × Rt)-norm of Ii(x, y, ·, ·) can be estimated as follows

‖Ii(x, y, ·, ·)‖∞,Rz×Rt ≤
∫ β

α

[
σ−1−|λ|+λi+(λ3/p′i)+(λ4/p′i)

×
∫

Rx

∫
Ry

∥∥∥∥Φi

(
x− x′

σλ1
,
y − y′

σλ2
, · , ·

)∥∥∥∥
p′i,Rz×Rt

×
∥∥Di u∗

(
x′, y′, ·, ·

)∥∥
pi,Rz×Rt

]
dy′ dx′ dσ

(3.157)

Due to Minkowski’s inequality, we obtain the following estimate of the W q-norm of Ii:

‖Ii‖W q =
∥∥∥‖Ii(·, ·, ·, ·)‖∞,Rz×Rt

∥∥∥
q,Rx×Ry

≤
∫ β

α
σ−1−|λ|+λi+(λ3/p′i)+(λ4/p′i)

×
{∫

Rx×Ry

[∫
Rx×Ry

∥∥∥∥Φi

(
x− x′

σλ1
,
y − y′

σλ2
, · , ·

)∥∥∥∥
p′i,Rz×Rt

×
∥∥Di u∗

(
x′, y′, ·, ·

)∥∥
pi,Rz×Rt dx′ dy′

]q
dx dy

}1/q

dσ.

(3.158)

Note that the curly braces represent the Lq(Rx × Ry)-norm of a convolution. Apply Young’s
inequality for convolutions in (3.158) with

1
pi

+
1
ri

= 1 +
1
q
, (3.159)

to obtain the following estimate

‖Ii‖W q ≤
∫ β

α
σ−1−|λ|+λi+(λ3/p′i)+(λ4/p′i)

×
∥∥∥∥∥∥∥Φi

( ·
σλ1

,
·
σλ2

, · , ·
)∥∥∥

p′i,Rz×Rt

∥∥∥∥
ri,Rx×Ry

· ‖Di u∗‖pi,R4 dσ

≤ cp
∫ β

α
σ−1−|λ|+λi+(λ3/p′i)+(λ4/p′i)+(λ1/ri)+(λ2/ri) dσ

×
∥∥∥‖Φi‖p′i,Rz×Rt

∥∥∥
ri,Rx×Ry

· ‖u‖V p(Q) .

(3.160)
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Remember that pi = p (i = 1, 2, 3) and p4 = 2, so that r1 = r2 = r3 = r and r4 = s, where
r and s are defined in the lemma. The requirement r, s ≥ 1 and the identity (3.159) yield the
following lower bound for q:

q ≥ max{p, 2}. (3.161)

The integral on the right-hand side of (3.160) remains bounded for arbitrary β > α > 0, if the
exponents of σ are greater than −1 for i = 1, . . . , 4. Equalize the exponents for i = 1, . . . , 4 to
obtain

0 < κ := λ1 +
λ3

p′
+
λ4

p′
+
λ1

r
+
λ2

r
− |λ| = λ2 +

λ3

p′
+
λ4

p′
+
λ1

r
+
λ2

r
− |λ|

= λ3 +
λ3

p′
+
λ4

p′
+
λ1

r
+
λ2

r
− |λ| = λ4 +

λ3

2
+
λ4

2
+
λ1

s
+
λ2

s
− |λ|.

(3.162)

The first two equations in (3.162) imply the relations

λ1 = λ2 = λ3 =: λ, λ4 =: µ, and |λ| = 3λ+ µ.

Thus, the last equation in (3.162) yields

λ

(
1
2

+
1
p′

+
2
r
− 2
s

)
= µ

(
3
2
− 1
p′

)
. (3.163)

Substituting 1/p′ = 1 − 1/p and the identities for 1/r and 1/s given in the lemma into (3.163)
yields

λ (5p− 6) = µ (p+ 2) .

Choosing µ = 1 and using (3.162) yield the identities

λ =
p+ 2
5p− 6

and κ =
1
2

+ λ

(
2
q
− 3

2

)
. (3.164)

Moreover, the inequality of (3.162) holds, if q satisfies the inequality

q <
2(p+ 2)

6− p
. (3.165)

Combining the lower and upper bounds of q given by (3.161) and (3.165), we obtain the follow-
ing inequality for p:

p <
2(p+ 2)

6− p
, which holds for p ∈ (2, 6). (3.166)

Due to (3.162), the integral on the right-hand side of (3.160) satisfies the relations

0 <
∫ β

α
σκ−1 dσ = βκ − ακ < βκ, for β > α > 0. (3.167)

The lemma follows from (3.161), (3.164), (3.165), (3.166) and (3.167).

Implementation of Step 3: continuity of the embedding. The next lemma ensures thatW q(Q) ⊂
V p(Q) with continuous injection if p and q satisfy the requirements of Lemma 3.4.35.
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Lemma 3.4.36. Let p ∈ (2, 4]. If q satisfies the inequalities

p ≤ q < 4 + 2p
6− p

,

then the embedding W q(Q) ↪→ V p(Q) is continuous. The following estimate

‖u∗‖W q ≤ Cq σδ ‖u∗‖1,R4 + σκ ‖u∗‖V p

holds for all u ∈ V p(Q) and σ > 0, where

Cq =
∥∥∥‖φ‖∞,Rz×Rt

∥∥∥
q,Rx×Ry

, δ = −|λ|+ 2λ
q
,

λ and κ are defined by (3.164), and λ = (λ, λ, λ, 1).

Proof. In the definition (3.152) of uσ, apply Hölder’s inequality in the varialbles z′ and t′ to
obtain the estimate

‖uσ(x, y, ·, ·)‖∞,Rz×Rt ≤ σ
−|λ|

∫
Rx×Ry

∥∥∥∥φ(x− x′σλ
,
y − y′

σλ
, · , ·

)∥∥∥∥
∞,Rz×Rt

×
∥∥u∗ (x′, y′, ·, ·)∥∥1,Rz×Rt dx′ dy′.

Computing the Lq(Rx × Ry)-norm of both sides and applying Young’s inequality for convolu-
tions yield

‖uσ‖W q ≤ σδ ·
∥∥∥‖φ‖∞,Rz×Rt

∥∥∥
q,Rx×Ry

·
∥∥∥‖u∗‖1,Rz×Rt

∥∥∥
1,Rx×Ry

, (3.168)

where δ = −|λ| + 2λ
q . Applying the triangle inequality, inequality (3.168), and Lemma 3.4.35

we obtain the estimate

‖u‖W q(Q) ≤ ‖u∗‖W q ≤ ‖uσ‖W q + ‖uσ − u∗‖W q ≤ Cq σδ ‖u∗‖1,R4 + Cpq σ
κ ‖u∗‖V p ,

for σ > 0.

Implementation of Step 4: compactness of the embedding. The proof of Theorem 3.4.34 is
complete, if we show that every bounded subset M ⊂ V p(Q) is precompact in W q(Q), that is,

∀ε > 0 ∃u1, . . . , un ∀u ∈M ∃k ∈ {1, · · · , n} : ‖u− uk‖W q(Q) < ε.

To this end, let ε > 0, p and q satisfy the requirements of Lemma 3.4.36, and M be a bounded
subset of V p(Q). Fix σ ∈ (0, 1) such that the following inequality holds:

‖u∗ − uσ‖W q ≤ Cpq σκ ‖u∗‖V p <
ε

4
∀u ∈M, (3.169)

where the constants Cpq and κ are defined by Lemma 3.4.35.
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Set Mσ := {uσ : u ∈ M} and remember that u∗ = Ep u ∈ V p
B by the construction of the

prolongation operator Ep. Thus, the definition (3.152) of uσ implies the relation suppuσ ⊂ Bφ,
where Bφ := B + suppφ.

The set Mσ is bounded in C1(Bφ) and therefore pre-compact in C0(Bφ) by the Theorem of
Arzela-Ascoli. Thus, there exist u1, . . . , un ∈M such that

∀u ∈M ∃k ∈ {1, . . . , n} ∀x ∈ Bφ : ‖uσ − uσk‖∞, Bφ <
ε

4 |Px,y Bφ|1/q
, (3.170)

where |Px,y Bφ| is the two dimensional measure of the projection of Bφ onto the x, y-plane. Let
u ∈M . Due to inequality (3.169) and property (3.170), there exists k ∈ {1, . . . , n} such that

‖u∗ − uσk‖W q ≤ ‖u∗ − uσ‖W q + ‖uσ − uσk‖W q <
ε

2
. (3.171)

SetMk = {u ∈M : ‖u∗ − uσk‖W q < ε/2}, k = 1, . . . , n, and J = {k ∈ {1, . . . , n} : Mk 6= ∅}.
For every k ∈ J fix one representative ûk ∈Mk. Due to (3.171), the following estimates

‖u− ûk‖W q(Q) ≤ ‖u∗ − ûk,∗‖W q ≤ ‖u∗ − uσk‖W q + ‖uσk − ûk,∗‖W q < ε

hold for every u ∈ Mk. Moreover, we have M =
⋃
k∈JMk by (3.170) and (3.171). The proof

of Theorem 3.4.34 is complete.

This finishes the proof of Theorem 3.4.21 and the consideration of the evolution of the par-
ticle density. The consequences of Theorems 3.4.4 and 3.4.21 for the decoupled measurement
problem are given in Theorem 3.4.1. Results from the literature are given in the appendix.
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3.A Elementary inequalities

3.A Elementary inequalities

Theorem 3.A.1 (Young’s inequality, see [47, Formula 1.1.4]). Let x,y ∈ RN , p > 1 and
p−1 + q−1 = 1, then

N∑
j=1

|xj yj | ≤
1
p

N∑
j=1

εp|xj |p +
1
q

N∑
j=1

ε−q|yj |p.

Theorem 3.A.2 (Hölder’s inequaltity). Let 1 ≤ p ≤ ∞ and p−1 + q−1 = 1 (with the convention
∞−1 = 0). Let (Ω, Σ, µ) be a measurespace, f ∈ Lp(Ω), and g ∈ Lq(Ω). Then f · g ∈ L1(Ω)
and ∫

Ω
|f g| dµ ≤

[∫
Ω
|f |p dµ

]1/p [∫
Ω
|g|q dµ

]1/q

.

Proof. See [65, Theorem I.1.10]

Theorem 3.A.3 (Minkowski’s inequaltity). Assume 1 < p < ∞ and let (Ω, Σ, µ) be measure
space, and f and g be measurable functions on Ω with range in [0,∞]. Then[∫

Ω
(f + g)p dµ

]1/p

≤
[∫

Ω
fp dµ

]1/p

+
[∫

Ω
gp dµ

]1/p

.

Proof. See [51, Theorem 3.5] or [27, 198].

Theorem 3.A.4 (Generalized Minkowski’s inequality). In analogy to Theorem 3.A.3, it holds for
1 < p <∞:{∫ [∫

|f(x,y)| dλ(y)
]p

dµ(x)
}1/p

≤
∫ [∫

|f(x,y)|p dλ(y)
]1/p

dµ(x)

Proof. See [27, 202] or [51, Chapter 8, Excercise 16].

Lemma 3.A.5 (See [8]). Let f : R→ R be a C1 function such that f ′ does not decrease. Then

f(α)− f(β) ≤ f ′(α)(α− β) for all α, β ∈ R.

3.B Gronwall type inequalities

Lemma 3.B.1 ([18, 8.2.29 Lemma]). Let us assume that h is continuous, r is integrable in [a, b],
h, r ≥ 0 in [a, b], and that y is continuous in [a, b] and satisfies the inequality

y(t) ≤ h(t) +
∫ t

a
r(s) y(s) ds ∀t ∈ [a, b].

Then

y(t) ≤ h(t) +
∫ t

a
r(s)h(s) exp

(∫ t

s
r(τ) dτ

)
ds, t ∈ [a, b].
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Lemma 3.B.1 will mainly be used in one of the following forms. By direct computation one
verifies

y(t) ≤ ‖h‖L∞(a,b) · exp
(
‖r‖L1(a,b)

)
. (3.172)

Assume now that z is a non-negative real-valued function on [a, b], and the inequality

y(t) + z(t) ≤ h(t) +
∫ t

a
r(s) y(s) ds

holds for all t ∈ [a, b]. Then, y satisfies 3.172, and we obtain the following inequality

y(t) + z(t) ≤ ‖h‖L∞(a,b)

[
1 + ‖r‖L1(a,b) exp

(
‖r‖L1(a,b)

)]
. (3.173)

The next lemma and the method of proof were communicated to me by Pavel Krejčí. For
different Gronwall type inequalities, we refer to papers [48, 49].

Lemma 3.B.2. Let f and u be real-valued nonnegative functions defined for t ≥ 0 and let p > 1
be a constant. Assume f ∈ L1

loc(0,∞), u ∈ L∞loc(0,∞), and that the inequality

up(t) ≤ C +
∫ t

0
f(s)u(s) ds

holds true for all t ≥ 0, where C ≥ 0 is a constant. Then

u(t) ≤
[
C(p−1)/p +

p− 1
p

∫ t

0
f(s) ds

]1/(p−1)

for all t ≥ 0.

Proof. Define the function

g(t) :=
(
C +

∫ t

0
f(s)u(s) ds

)1/p

.

Then g is absolutely continuous, g(t) ≥ u(t), and it holds

d gp

dt
(t) = p gp−1(t) ġ(t) = f(t)u(t) ≤ f(t) g(t).

Since p− 2 > −1, we obtain

p

p− 1
gp−1(t) ≤ p

p− 1
gp−1(0) +

∫ t

0
f(s) ds.

This inequality and the relation u(t) ≤ g(t), t ≥ 0, prove the lemma.

We derive an inequality similar to (3.173). Assume u satisfies

u2(t) + z(t) ≤ c2 + 2
∫ t

0
f(s)u(s) ds

for a nonnegative function z. Then, Lemma 3.B.2 yields

u2(t) + z(t) ≤ c2 + 2 c
∫ t

0
f(s) ds+ 2

(∫ t

0
f(s) ds

)2

≤ c2 + 2 c T 1/2 ‖f‖L2(0,T ) + 2T ‖f‖2L2(0,T )

≤ 2 c2 + 3T ‖f‖2L2(0,T ),

(3.174)

provided that f is square integrable over (0, T ) for T ≥ t.

104



3.C Hilpert’s inequality

3.C Hilpert’s inequality

The contents of this section is taken from [63, III.2]. Denote by He the Heaviside graph:

He(s) :=


{0} if s < 0,
[0, 1] if s = 0,
{1} if s > 0,

and introduce generalized plays as follows. Assume that two functions γl and γr are given with

γl, γr : R→ [−∞,∞] continuous and nondecreasing, with γr ≤ γl. (3.175)

For σ ∈ R set J(σ) = [γr(σ), γl(σ)], and denote by IJ(σ) the indicator function of J(σ). The
generalized play corresponds to the inclusion

ε̇ ∈ −∂IJ(σ)(ε),

which is equivalent to the variational inequality

ε ∈ J(σ), ε̇(ε− v) ≤ 0, ∀v ∈ J(σ).

For generalized plays the relation σ 7→ ε can be expressed in the form

ε(t) = [E(σ, ε0)](t) in [0, T ], (3.176)

where E is a hysteresis operator. In (3.176) σ denotes a function τ 7→ σ(τ).
Hilpert’s inequality is formulated in the following theorem.

Theorem 3.C.1 ([63, Theorem III.2.6]). Let (σi, ε0) ∈ W 1,1(0, T ) × R (i = 1, 2), and
h : [0, T ] → R be a measurable function such that h ∈ He(σ1 − σ2) a.e. in (0, T ). Set
εi := E(σi, ε0), ε̄ := ε1 − ε2. Then

dε̄
dt
h ≥ d

dt
(ε̄+) a.e. in (0, T ).

3.D Convergence theorems

Definition 3.D.1 (Weak convergence.). Let X be a Banach space, and denote its dual by X ′.

1. A sequence {xk}k∈N converges weakly to x ∈ X as k →∞ (xk ⇀ x) if〈
xk ; x′

〉
→
〈
x ; x′

〉
for all x′ ∈ X ′.

2. A sequence {x′k}k∈N converges weakly to x′ ∈ X ′ as k →∞ (x′k
∗
⇀ x′) if〈

x ; x′k
〉
→
〈
x ; x′

〉
for all x ∈ X.

3. A setM ⊂ X (resp. X ′) is weakly (resp. ∗-weakly) sequentially compact if every sequence
in M has a weakly (resp. ∗-weakly) convergent subsequence whose weak (resp. ∗-weak)
limit lies in M .
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Remark 3.D.2 ([2, 6.3]). 1. The weak (resp. ∗-weak) limit of a sequence is unique.

2. Strong convergence implies weak or ∗-weak convergence.

3. x′k
∗
⇀ x′ in X ′ implies ‖x′‖ ≤ lim infk→∞ ‖x′k‖.

4. xk ⇀ x in X implies ‖x‖ ≤ lim infk→∞ ‖xk‖.

5. Weakly (∗-weakly) convergent subsequences are bounded.

6. If xk → x (strongly) in X and x′k
∗
⇀ x′ in X ′, then 〈xk ; x′k〉 → 〈x ; x′〉. The same holds

true if xk ⇀ x in X and x′k → x′ (strongly) in X ′.

Theorem 3.D.3 (Sequencial compactness, see [2, 6.5, 6.9]).

1. LetX be separable. Then the close unit ballB1(0) inX ′ is ∗-weakly sequentially compact.

2. Let X be reflexive. Then the close unit ball B1(0) in X is weakly sequentially compact.

3.E Sobolev spaces

For a nonnegative integer k and 1 ≤ p ≤ ∞ define the Sobolev space W k,p(Ω) by

W k,p(Ω) = {u ∈ Lp(Ω) : Dαu ∈ Lp(Ω) for all multiindices 0 ≤ |α| ≤ k} .

Equipped with the norm

‖u‖Wk,p(Ω) =
( ∑

0≤|α|≤k

‖Dαu‖pLp(Ω)

)1/p
,

the space W k,p(Ω) is a Banach-space ([1, 3.2 Theorem], [16, Section 5.2, Theorem 2]) and can
be characterised as the completion of {u ∈ Ck(Ω) : ‖u‖Wk,p(Ω) <∞}with respect to the norm
‖ · ‖Wk,p(Ω) ([1, 3.16 Theorem], [2, 2.23 Theorem], [16, Section 5.3, Theorem 2]). For ε ∈ (0, 1)
set

Iα,ε,p(u) =
∫

Ω

∫
Ω

|Dαu(x)−Dαu(y)|p

|x− y|N+pε
dxdy.

The Sobolev-Slobodetskii space W k+ε,p(Ω) denotes the space of all functions u ∈ W k,p(Ω)
having finite norm

‖u‖Wk+ε,p(Ω) =
[
‖u‖p

Wk,p(Ω)
+
∑
|α|=k

Iα,ε,p(u)
]1/p

.

As usual,W l,p
0 (Ω) denotes the closure of C∞0 (Ω) inW l,p(Ω), andW−l,p(Ω) =

(
W l,p

0 (Ω)
)′. The

spaces W l,2(Ω) are Hilbert spaces, and we use the following notation H l(Ω) = W l,2(Ω) and
H l

0(Ω) = W l,2
0 (Ω).

Some properties of Sobolev spaces depend on the smoothness of the boundary of Ω. Similar
to [66, Defintion 2.7], define the smoothness of a domain as follows.
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3.E Sobolev spaces

Definition 3.E.1 ((k, κ)-smooth domains). A domain Ω ⊂ RN is called (k, κ)-smooth if for
each x ∈ ∂Ω there exists a neighbourhood Ux such that

1. Ux is (k, κ)-diffeomorph to the unit cube WN = {x : |xi| ≤ 1, i = 1, ..., N}. Denote
the 1-1-transformation Ux ↔WN by Φx. The transformation Φx is supposed to have the
following properties:

2. Ux ∩ ∂Ω↔WN ∩ {xN = 0}.

3. Ux ∩ Ω↔WN ∩ {0 < xN < 1}.

4. Ux ∩ (RN \ Ω)↔WN ∩ {−1 < xN < 0}.

If Ω is (0, 1)-smooth we say, Ω has Lipschitz boundary, or Ω is a Lipschitz domain. Denote by
γ the operator defined by (γ u) = u|∂Ω when u is a smooth function. The next theorem considers
the trace operator in Sobolev spaces H l(Ω).

Theorem 3.E.2 (Trace Theorem, see [66, Theorems 8.7, 8.8]). Let Ω be (k, κ)-smooth and
assume that 1/2 < l ≤ k + κ, (if l is integral, then k = l − 1, κ = 1 is admissible).

1. There exists a linear continuous operator

S0 : H l(Ω)→ H l−1/2(∂Ω),

such that
S0φ = φ|∂Ω

for all φ ∈ Cl(Ω) for l integral, φ ∈ C[l]+1(Ω) otherwise.

2. There exists a linear continuous extension operator

L0 : H l−1/2(∂Ω)→ H l(Ω)

such that
S0(L0(φ)) = φ for all φ ∈ H l−1/2(∂Ω).

The trace operator in Sobolev spaces W s,p(Ω), p > 1, is considered, for example, in [25]. See
also [9] for the case where s is positive integer, and [22] for the case s = 1.

Theorem 3.E.3 ([25, Theorem 1.5.1.3]). Let Ω be a bounded open subset of RN with a Ck,1
boundary ∂Ω. Assume that s− 1/p is not an integer, s ≤ k + 1, s− 1/p = l + σ, 0 < σ < 1, l
a non-negative integer. Then the mapping

u 7→
{
γ u, γ

∂u

∂ν
, . . . , γ

∂lu

∂νl

}
which is defined for u ∈ Ck,1(Ω), has a unique continuous extension as an operator from

W s,p(Ω) onto
l∏

j=0

W s−j−1/p, p(∂Ω).

This operator has a right continuous inverse which does not depend on p.
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Theorem 3.E.4 (Weak Gaussian Theorem [2, A 6.8]). Let 1 ≤ p ≤ ∞, p′ = p/(p − 1) and Ω
be a bounded Lipschitz domain.

1. If u ∈W 1,1(Ω), then it holds for i = 1, ..., N∫
Ω

∂u

∂xi
dx =

∫
∂Ω
u · νi ds

2. If u ∈W 1,p(Ω), v ∈W 1,p′(Ω), then Green’s formula∫
Ω

[
u
∂v

∂xi
+ v

∂u

∂xi

]
dx =

∫
∂Ω
S(u) · S(v) · νi ds

holds.

The following lemmas can be found as exercises in [16]. See also [59, Lemme 1.1].

Lemma 3.E.5. Assume F : R → R is C1, with F ′ bounded. Suppose u ∈ W 1,p(Ω) for some
1 ≤ p ≤ ∞. Then

v := F (u) ∈W 1,p(Ω) and
∂v

∂xj
= F ′(u)

∂u

∂xj

for j = 1, ..., N .

See [16, Chap 5, Exercise 16]

Lemma 3.E.6. Assume 1 ≤ p ≤ ∞, Ω is bounded and u ∈W 1,p(Ω). Then

1. |u| ∈W 1,p(Ω).

2. u+, u− ∈W 1,p(Ω) and

∇u+ =

{
∇u a.e. on {u > 0}
0 a.e. on {u ≤ 0},

∇u− =

{
0 a.e. on {u > 0}
∇u a.e. on {u ≤ 0}.

3. ∇u = 0 almost everywhere on the set {u = 0}.

See [16, Chap 5, Exercise 17]

Theorem 3.E.7 (Interpolation inequality). Let 0 ≤ sj < ∞, 1 ≤ pj < ∞, j = 0, 1. For
0 ≤ θ ≤ 1 put

s = (1− θ)s0 + θs1,
1
p

=
1− θ
p0

+
θ

p1
.

Then there exists a constant C > 0 such that

‖f‖W s,p(Ω) ≤ C‖f‖1−θW s0,p0 (Ω) ‖f‖
θ
W s1,p1 (Ω), f ∈W s0,p0(Ω) ∩W s1,p1(Ω).

See [47, Theorem 1.48] or [39, Remarque 9.1] for the case p = p0 = p1 = 2.
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3.F Embeddings

For two normed vector spaces X, Y , with X ⊂ Y we write X ↪→ Y if the identity id : X → Y ,
id(x) = x is continuous, and X ⊂⊂ Y if id is compact.

Theorem 3.F.1. Let 1 ≤ p ≤ ∞ and Ω ⊂ RN be a bounded Lipschitz domain. For 0 ≤ k < N/p
set

p∗ =
Np

N − kp
.

1. For k ≥ 0 the following embeddings are continuous

W k,p(Ω) ↪→ Lp
∗
(Ω) if k <

N

p
,

W k,p(Ω) ↪→ Lq(Ω) for all p ∈ [1,∞) if k =
N

p
,

W k,p(Ω) ↪→ C0,k−N/p(Ω) if
N

p
< k <

N

p
+ 1,

W k,p(Ω) ↪→ C0,α(Ω) for all α ∈ (0, 1) if k =
N

p
+ 1,

W k,p(Ω) ↪→ C0,1(Ω) if k >
N

p
+ 1,

2. For k > 0 the following embeddings are compact

W k,p(Ω) ⊂⊂ Lq(Ω) for all q ∈ [1, p∗) if k <
N

p
,

W k,p(Ω) ⊂⊂ Lq(Ω) for all q ∈ [1,∞) if k =
N

p
,

W k,p(Ω) ⊂⊂ C(Ω) if k >
N

p
,

Theorem 3.F.1 is stated in [47, 1.3.5.8]. For the case where k is a positive integer, see [1,
5.4 Theorem] and [2, 8.9, 8.13]. For arbitrary positive k and p < N , the embeddings of the
form W k,p(Ω) ↪→ Lq(Ω) are shown in [1, 7.57 Theorem]. Embeddings of the form H l(Ω) ↪→
Ck,α, H l(Ω) ⊂⊂ Ck,α or H l1(Ω) ⊂⊂ H l2(Ω), 0 ≤ l2 < l1 can be found in [66, §§6, 7]. See
also [25, Theorem 1.4.3.2] for the embedding W s′,p(Ω) ⊂⊂W s′′,p(Ω), s′ > s′′ ≥ 0.

Theorem 3.F.2 ([54, Section 8, Corollary 4]). Let X ⊂⊂ B ↪→ Y ; X, B, Y be Banach
spaces.

1. Assume F = {f} is bounded in Lp(0, T ;X), 1 ≤ p < ∞, and Ft = {ft | f ∈ F} is
bounded in L1(0, T ;Y ). Then F is relatively compact in Lp(0, T ;B).

2. Let F be bounded in L∞(0, T ;X) and Ft be bounded in Lr(0, T ;Y ) , r > 1. Then F is
relatively compact in C([0, T ];B).

Definition 3.F.3 (Scalar continuity). Let Y be a Banach space, Y ′ its dual space, T > 0. A
function f : [0, T ] → Y is called scalar continuous if the function 〈y′ ; f(t)〉 : [0, T ] → C is
continuous on [0, T ], for all y′ ∈ Y ′.
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Theorem 3.F.4 ([39, Lemme 8.1]). Be X, Y be two Banach spaces, X ⊂ Y with continuous
injection, X be reflexive. Set

Cs(0, T ;Y ) = {f ∈ L∞(0, T ;Y ) : f scalar continuous of [0, T ]→ Y } .

Then it holds: L∞(0, T ;X) ∩ Cs(0, T ;Y ) = Cs(0, T ;X).

Theorem 3.F.5. Let T > 0, p > 1, V be a reflexive and separable Banach space, and H be a
Hilbert space where V is dense inH with continuous injection V ⊂ H . DefineX := Lp(0, T ;V ),
and W := {f ∈ X : f ′ ∈ X ′} where X ′ = Lp

′
(0, T ;V ′) is the dual space of X . Then it holds

W ⊂ C(0, T ;H). For u, v ∈W the following formula holds true

〈u(t) , v(t)〉H×H − 〈u(s) , v(s)〉H×H =
∫ t

s

[〈
u′(τ) , v(τ)

〉
V ′×V +

〈
v′(τ) , u(τ)

〉
V ′×V

]
dτ,

for s, t ∈ [0, T ].

Proof. See [23, Chapter IV, §1, Theorem 1.17]. For the case p = 2 see also [66, Theorem
25.5]

3.G Results on the solvability of PDEs

3.G.1 Elliptic problems

Let Ω ⊂ RN be open and bounded, and let the functions b, aij ∈ L∞(Ω), hi, f ∈ L2(Ω),
i, j = 1, ..., N be given. Consider the Dirichlet problem

∫
Ω

 N∑
i=1

∂ζ

∂xi
·

 N∑
j=1

aij
∂u

∂xj
+ hi

+ ζ(b u+ f)

 dx = 0 for all ζ ∈ H1
0 (Ω),

u ∈ H1
0 (Ω).

(3.177)

If there exists c0 > 0, such that

N∑
i,j=1

aij(x) ξi ξj ≥ c0 |ξ|2 for all x ∈ Ω and ξ ∈ RN , (3.178)

then (aij(x))i,j is said to be uniformly (in x) elliptic.

Theorem 3.G.1 ([2, 4.8]). Let b ≥ 0 and (3.178) be satisfied. Then, there exists a unique weak
solution u ∈ H1

0 (Ω) of problem (3.177). It holds

‖u‖H1(Ω) ≤ C(‖h‖L2(Ω) + ‖f‖L2(Ω)),

where C is an independent of h and f constant.
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3.G Results on the solvability of PDEs

Theorem 3.G.2 ([2, Theorems A 10.2, A 10.3]). Let Ω ⊂ RN be open and bounded with
Lipschitz boundary, and u ∈ H1(Ω) be the weak solution of the homogeneous Dirichlet problem

N∑
i=1

∂

∂xj

 N∑
j=1

aij
∂u

∂xj
+ qi

 = f in Ω,

u = 0 on ∂Ω,

with (aij(x))i,j bounded and uniformly elliptic. Suppose m ≥ 0 and f ∈ Hm(Ω), qi ∈
Hm+1(Ω), aij ∈ Cm,1(Ω). Then u ∈ Hm+2(Ω)loc, and Hm+2(D)-norm of u can be estimated
can be estimated by the data, for every open D ⊂ Ω, with D compact.

If ∂Ω can locally be expressed as the graph of a Cm+1,1 function and aij ∈ Cm,1(Ω). Then
u ∈ Hm+2(Ω), and the Hm+2(Ω)-norm of u can be estimated by the data.

Lemma 3.G.3 (The Lamé system). If Ω is a bounded (1, 1)-smooth domain, µ, ξ > 0, f ∈
L2(Ω)N , g ∈ H3/2(∂Ω)N . Then the boundary value problem[

−µ∆− ξ∇div
]
U = f in Ω,
U = g on ∂Ω

has a unique weak solution U ∈ H2(Ω)N .

Proof. By Theorem 3.E.2, there exists U b ∈ H2(Ω)N with U b|∂Ω = g. Therefore, F =
f + [µ∆ + ξ∇div]U b ∈ L2(Ω)N , and the problem can be rewritten for u = U − U b with
homogeneous boundary conditions[

−µ∆− ξ∇div
]
u = F in Ω,
u = 0 on ∂Ω.

(3.179)

One easily checks that [−µ∆− ξ∇div] is uniformly elliptic, and that the requirements of (the
vectorial versions of) theorems 3.G.1 and 3.G.2 are satisfied for m = 0. Therefore, (3.179) has
a unique weak solution u ∈ H2(Ω)N ∩H1

0 (Ω)N , and U = u +U b ∈ H2(Ω)N is the asserted
solution of the original problem.

Lemma 3.G.4 (Eigen-values of the Lameé system, see [47, Lemma 4.33]). Let Ω ∈ C2 be a
bounded domain. Then there exist countable sets

{λj}∞j=1 ⊂ (0,∞), 0 < λ1 ≤ λ2 ≤ ...
{ψj}∞j=1 ⊂ H1

0 (Ω)N ∩H2(Ω)N

such that
−∆ψj −∇divψj = λjψj

and {ψj}∞j=1 is orthonormal basis L2(Ω)N with respect to the scalar product
∫

Ω u ·v as well as
an orthogonal basis of H1

0 (Ω)N with respect to the scalar product
∫

Ω[µ∇u : ∇v + ξdiv (u) ·
div (v)].
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3 Theoretical investigations

3.G.2 Monotone operators

Definition 3.G.5. Let V be a Banach space and let the operator A : V → V ′ be given.

1. A is called hemi-continuous if the function λ 7→ 〈A(u+ λv) , w〉 is continuous from
R→ R for all u, v, w ∈ V .

2. A is called monotone if the inequality 〈A(u)−A(v) , u− v〉 ≥ 0 holds for all u, v ∈ V .

Definition 3.G.6. Let V be a reflexive and separable Banach space. An operator A : V → V ′

is called of the type of “Calculus of Variations”, if it is bounded and can be represented by

A(v) = A(v, v),

where u, v → A(u, v) is an operator from V × V → V ′ having the properties:

1. ∀u ∈ V, v 7→ A(u, v) is hemi-continuous and bounded from V → V ′, and

〈A(u, u)−A(u, v) , u− v〉 ≥ 0.

2. ∀v ∈ V, u 7→ A(u, v) is bounded and hemi-continuous from V → V ′.

3. If uj ⇀ u weakly in V and 〈A(uj , uj)−A(uj , u) , uj − u〉 → 0, then

∀v ∈ V, A(uj , v) ⇀ A(u, v) weakly in V ′.

4. If uj ⇀ u weakly in V and A(uj , v) ⇀ φ weakly in V ′, then 〈A(uj , v), uj〉 → 〈φ, u〉.

Lemma 3.G.7 ([38, Chapter. 2.2, Corollaire 2.1]). Let f ∈ V ′ be arbitrary, and assume that the
operator A : V → V ′ is of the type of Calculus of Variations in the sense of Definition 3.G.6.
Then, the equation A(u) = f has a solution (at least one).

3.H The conservation of mass

In this section, we give the results from [56] which are used in Section 3.3 for the investigation
of the transport problem. Let us fix the notation notation. Suppose Ω ⊂ RN , N ∈ {2, 3},
is a bounded domain with C2 boundary, and, for T > 0, define QT := Ω × [0, T ] ⊂ RN+1.
For a vector field v : QT → RN denote by vi, i = 1, . . . , N the components of v. If vi ∈
L1

loc(Ω), i = 1, . . . , N , then let∇v denote the vector whose components are all of the first-order
(distributional) derivatives ∂xjvi, i, j = 1, . . . , N , and∇2v denote the vector whose components
are all of the second-order derivatives ∂xk∂xjvi, i, j, k = 1, . . . , N . Denote the norm in Lq(Ω)
by ‖·‖q,Ω if q < ∞ and by |·|Ω if q = ∞. If vi ∈ Lq(QT ), i = 1, . . . , N , set ‖v‖q,QT =(∫
QT
|v(x, t)|q dxdt

)1/q. The spaces W 2,1
q (QT ) and W 1,1

q,∞(QT ) can be defined for q > N as
the closures of the sets of (vector)-functions from C2(QT ), with the norms

‖v‖(2,1)
q,QT

=
∥∥∇2v

∥∥
q,QT

+ ‖∇v‖q,QT + ‖vt‖q,QT + ‖v‖q,QT ,

‖ρ‖(1,1)
q,∞, QT = sup

t≤T
‖∇ρ(t)‖q,QT + sup

t≤T
‖ρt(t)‖q,QT + |ρ|QT .
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3.H The conservation of mass

For a given v ∈W 2,1
q (QT ), consider the following problem

ρt + div (ρv) = 0, in QT ,

ρ(0,x) = ρ0(x), in Ω.
(3.180)

To obtain the solution ρ of problem (3.180), consider the characteristic equations defined by the
Cauchy problem

∂y

∂τ
(τ, t, x) = v(y(τ, t, x), τ) , y(τ, t, x) = x. (3.181)

Problem (3.181) is uniquely solvable for any v ∈ W 2,1
q , q > N , which vanishes on ∂Ω. A

solution y satisfies the following estimates

|∇y|2 =
N∑
j,k

(
∂yj
∂xk

)2

≤ N exp
(

2
∫ t

0
|∇v(τ)|Ω dτ

)
,

∣∣∣∣∂y∂t
∣∣∣∣ ≤ √N |V |Qt exp

(∫ t

0
|∇v(τ)|Ω dτ

) (3.182)

and the relation
yt + (V · ∇)y = 0. (3.183)

The next theorem establishes the solvability of problem (3.181) and gives some estimates of
the solution ρ. To formulate the theorem, introduce the norm in the space of Hölder continuous
functions with the exponent α ∈ (0, 1) by the relations

|ρ|(α)
Ω = |ρ|Ω + [ρ](α)

Ω , [ρ](α)
Ω = sup

x,y∈Ω

|ρ(x)− ρ(y)|
|x− y|α

.

Theorem 3.H.1 ([56, Theorem 2]). Let v ∈ W 2,1
q (QT ). For any ρ0 satisfying the conditions

0 < m0 ≤ ρ0(x) ≤M0 and ∇ρ0 ∈ Lq(Ω)N , problem (3.180) has a unique solution

ρ(x, t) = ρ0 (y(0, t,x)) exp
(∫ t

0
div (v(y(τ, t,x), τ)) dτ

)
from the class W 1,1

q,∞(QT ), for which we have the estimates

m0 exp
(
−
√
N

∫ t

0
|∇v(τ)|Ω dτ

)
≤ ρ(x, t) ≤M0 exp

(√
N

∫ t

0
|∇v(τ)|Ω dτ

)
,

‖∇ρ(t)‖q,Ω ≤
√
N exp

(
[2 + 1/q]

√
N

∫ t

0
|∇v(τ)|Ω dτ

)
×
[∥∥ρ0

∥∥
q,Ω

+
∣∣ρ0
∣∣
Ω

√
N

∫ t

0

∥∥∇2v(τ)
∥∥
q,Ω

dτ
]
,

[
ρ(t)

]α
Ω
≤
√
N

[[
ρ0
]α
Ω

+
∣∣ρ0
∣∣
Ω

√
N

∫ t

0
[∇v(τ)]αΩ dτ

]
× exp

(
(1 + α)

√
N

∫ t

0
|∇v(τ)|Ω dτ

)
, α ∈ (0, 1).
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4 Numerical Simulations

In this chapter, problem (2.3) is solved numerically. During the derivation of the equations the
density and the surface mass density were denoted by ρp and ηp, respectively, to distinguish
the particle variables from the flow variables. Due to the assumption of weak compressibility
of the liquid, no confusion occurs if p is omitted (the density of the liquid is denoted by ρ0).
Using this notation and the representation of the stress tensor (2.22), we obtain the following
initial-boundary value problem

γ pt + divU = 0 in Ω× (0, T ),

ρt + div (ρU)− β∆ρ = 0 in Ω× (0, T ),

ρ0U t + div (U ⊗ [(ρ+ ρ0)U − β∇ρ]) = f + div Π in Ω× (0, T ),

U = U b on ∂Ω× (0, T ),

−[ρU b − β∇ρ] · ν = −gU b · ν on Γin × (0, T ),

−∂νρ = 0 on ∂Ω \ (Γ ∪ Γin),

−β ∂νρ = ηt, η = A(ρ) on Γ× (0, T ),

U(x, 0) = U0(x), p(x, 0) = p0(x), ρ(x, 0) = ρ0(x) for t = 0 in Ω,

η(x, 0) = η0(x) for t = 0 in Γ.

(4.1)

This chapter is structured as follows. In Section 4.1, we present a scheme for the numerical so-
lution of problem (4.1) by means of the finite element method (FEM). The results of simulations
are given in Section 4.2.

Remark 4.0.2. As mentioned in Section 1.2, the wet cell developed at CAESAR was constructed
to work with organic molecules immersed in water. It should be noted that the diffusion coeffi-
cient for organic molecules in water is sufficiently larger than that for rigid particles. An organic
molecule is a chain consisting of many links connected by flexible bonds so that the molecule can
assume different configurations with a large frequency. This yields hydrodynamical forces that
cause relatively large and frequent displacements of the molecule from its average position. Such
an effect can be interpreted as a diffusion with a relatively large diffusion coefficient. Simula-
tions presented in [43] and theoretical issues of [34] indicate the presence of such effects. Thus,
the diffusion coefficient for organic molecules in water is expected to be much larger than the
value for rigid particles in water given in Table 2.6.4. A reasonable guess for the magnitude of
the diffusion coefficient yields its value between 10−10 and 10−8 m2 · s−1. Thus, we will use the
value 10−8 m2 · s−1 for our simulation.
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4.1 Discretization scheme

4.1 Discretization scheme

To solve problem (4.1) numerically, we use the finite element program Felics developed at the
Chair of Mathematical Modeling at the Technical University of Munich. We propose a discretiza-
tion scheme that first computes the variables U and p corresponding to the flow of the liquid,
and then the variables ρ and η corresponding to the particles. The scheme is obtained as follows.

Let [0, T ] be the time interval where the evolution of the mixture is considered. To discretize
the time, choose two numbers m, K ∈ N such that K/m ∈ N. Define the time step length
τ := T/K and choose a partition t0 = 0 < t1 < t2 < · · · < tK−1 < tK = T where
tn = n · τ, n = 1, ...,K. Denote the unknown velocity, pressure, particle density, and surface
mass density of the particles at time t = tn by Un, pn, ρn, and ηn, respectively. The variables
Un and pn will be computed only at times tn with n = m · j, j ∈ {1, ...,K/m}.

In order to obtain a time discretization of system (4.1), replace the derivatives ρt and ηt at time
tn by the difference quotients (ρn− ρn−1)/τ and (ηn− ηn−1)/τ , and replace the derivativesU t

and pt by (Un −Un−m)/(mτ) and (pn − pn−m)/(mτ) to obtain

γ
pn − pn−m

mτ
+ divUn = 0,

ρ0
Un −Un−m

mτ
− div Πn = fn − divCn−m,

ρn − ρn−1

τ
− β∆ρn = −div

(
ρn−1Un

)
,

Un = U b on ∂Ω,

−[ρnU b − β∇ρn] · ν = −gU b · ν on Γin,

−∂νρn = 0 on ∂Ω \ (Γ ∪ Γin),

−β ∂νρn =
ηn − ηn−1

τ
, ηn = A(ρn) on Γ.

(4.2)

The convective term is abbreviated by

Cj = U j ⊗ [(ρj + ρ0)U j − β∇ρj ]. (4.3)

To compute the unknowns in each time step, problem (4.2) is split in the following way. To
compute the velocity and pressure at time t = tn, n = j ·m, assume that Un−m, pn−m, ρn−m,
and ηn−m are already known. Then Un and pn are determined by the subproblem

γ
pn − pn−m

mτ
+ divUn = 0,

ρ0
Un −Un−m

mτ
+∇pn − µ∆Un − ξ∇divUn = fn − divCn−m,

Un = U b on ∂Ω.

(4.4)

To compute the unknowns ρn and ηn for n = (j−1)m+1, ..., j m, assume that (4.4) is already
solved for U jm, pjm, and the functions ρn−1, ηn−1 are already known. Then, the equation of
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4 Numerical Simulations

(4.2) describing the particle variables ρn and ηn reads

ρn − ρn−1

τ
− β∆ρn = −div

(
ρn−1U jm

)
,

−[ρnU b − β∇ρn] · ν = −gU b · ν on Γin,

−∂νρn = 0 on ∂Ω \ (Γ ∪ Γin),

−β ∂νρn =
ηn − ηn−1

τ
, ηn = A(ρn) on Γ.

(4.5)

In the next two sections, we describe an iterative scheme for solving (4.4) and (4.5). Section
4.1.1 contains the treatment of problem (4.5). The presented scheme is the same as in [4]. In
Section 4.1.2, a scheme with two intermediate steps presented in [6, 60] is adopted (see also [3])
to solve the flow problem (4.4). In [6, 60] the flow of incompressible fluids is considered. The
convergence of approximate velocities and pressures constructed by the scheme to some solution
of Navier-Stokes equations is considered in [60, Theorems 7.1 and 7.2].

4.1.1 Discretization of the particle system

The scheme for solving (4.5) is taken from [4]. We will apply it to a weak form of (4.5) because
it is suitable for the numerical treatment by means of the finite element method. Assume that
the velocity U jm is known for a j ∈ {1, . . . ,K/m}, and let the particle density ρn−1, and the
surface mass density ηn−1 be already computed for a n ∈ {(j − 1)m + 1, ..., j ·m}. Then, the
weak form of (4.5) is given by∫

Ω

[(
ρn + τ U jm · ∇ρn

)
ψ + τ∇ρn · ∇ψ

]
dx+ τ

∫
Γin

ρn ψ |U b · ν| ds

=
∫

Ω
ρn−1ψ dx+ τ

∫
Γin

g ψ |U b · ν| ds−
∫

Γ

(
ηn − ηn−1

)
ψ ds.

(4.6)

Note that the problems (4.5) and (4.6) are similar to (3.87) and (3.90), respectively.
Equation (4.6) contains the two unknowns ρn and ηn. To eliminate ηn, rewrite the relation

η = A(ρ) in the discrete form (similar to (3.89)):

ηn(x)− ηn−1(x) =
(
H(ρn(x))− ηn−1(x)

)+
. (4.7)

To resolve the nonlinearity in (4.7), we construct a fixed-point scheme for ρn. Note that (4.7) is
equivalent to the relation(

H(ρn(x))− ηn−1(x)
)+ = h(ρn)(x) ·

[
H(ρn)(x)− ηn−1(x)

]
, (4.8)

where

h(ρn)(x) =

{
0 if H(ρn)(x)− ηn−1(x) ≤ 0,
1 if H(ρn)(x)− ηn−1(x) > 0.

To construct a fixed-point iteration scheme, choose a small c > 0, and rewrite (4.8) as(
H(ρn)− ηn−1

)+ =
(
H(ρn)

ρn + c

ρn + c
− ηn−1

)+

= h(ρn)
[
H(ρn)

ρn

ρn + c
−
(
ηn−1 −H(ρn)

c

ρn + c

)]
.

(4.9)
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4.1 Discretization scheme

By Lemma 3.4.25, ρn ≥ 0 a.e. in Ω so that (ρn+c)−1 is well-defined. Substituting the identities
(4.7) and (4.9) into (4.6) yields∫

Ω
[ρn ψ + τ∇ρn · ∇ψ] +

∫
Γ

h(ρn) ·H(ρn)
ρn + c

ρn ψ ds+ τ

∫
Γin

ρn ψ |U b · ν| ds

=
∫

Ω
ψ
[
ρn−1 − τ U jm · ∇ρn

]
+ τ

∫
Γin

g ψ |U b · ν| ds

−
∫

Γ
h(ρn)

(
ηn−1 −H(ρn)

c

ρn + c

)
ψ ds.

(4.10)

Equation (4.10) can be used to compute a sequence {ρ̃k} approximating ρn. Replacing every
appearance of ρn either by ρ̃k or ρ̃k−1, one can obtain the following recursion scheme:

ρ̃0 = ρn−1,∫
Ω

[
ρ̃k ψ + τ∇ρ̃k · ∇ψ

]
+
∫

Γ

h(ρ̃k−1) ·H(ρ̃k−1)
ρ̃k−1 + c

ρ̃k ψ ds+ τ

∫
Γin

ρ̃k ψ |U b · ν| ds

=
∫

Ω
ψ
[
ρn−1 − τ U jm · ∇ρ̃k−1

]
+ τ

∫
Γin

g ψ |U b · ν| ds

−
∫

Γ
h(ρ̃k−1)

(
ηn−1 −H(ρ̃k−1)

c

ρ̃k−1 + c

)
ψ ds.

(4.11)

Iterate (4.11) until
∥∥ρ̃k − ρ̃k−1

∥∥
L∞(Ω)

is smaller than a specified tolerance and set ρn := ρ̃k.

4.1.2 Discretization of the flow problem

To solve (4.4), we adopt schemes with two intermediate steps suggested in [6, 60] for the numer-
ical treatment of incompressible flow. Assume n = m · j for a j ∈ {1, . . . ,K/m} and define
the time step length τf for the computation of the flow variables Un and pn by τf = m · τ . To
use FEM for numerical calculations, problem (4.4) has to be transformed to have homogeneous
Dirichlet boundary conditions. Assume the boundary function U b is extended to Ω such that
U b ∈ H1(Ω) and substitute Un = un +U b into (4.2). Then, un and pn satisfy the equations

γ
pn − pn−m

τf
+ divun = −divU b,

ρ0
un − un−m

τf
− [µ∆ + ξ∇div]un = fn −∇pn − divCn−m + [µ∆ + ξ∇div]U b,

un ∈ H1
0 (Ω)N ,

(4.12)

where (4.3) is used to express the convective term.

Remark 4.1.1 (Representation of the pressure). During the theoretical investigations in Sections
3.4.1 and 3.3.1 we used the continuity equation of (4.12) to express the pressure in terms of the
initial value and the velocity. For numerical computations, we will use a different method that
yields a smoother velocity field. See also Remark 4.1.2.
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4 Numerical Simulations

To solve (4.12), introduce an auxiliary function ũ ∈ H1
0 (Ω)N and split the momentum equa-

tion of (4.12) into the following two equations:

ρ0
ũ− un−m

τf
− [µ∆ + ξ∇div] ũ = fn − divCn−m + [µ∆ + ξ∇div]U b,

ρ0
un − ũ
τf

= −∇pn.
(4.13)

Note that the sum of both equations is the original momentum conservation with [µ∆+ξ∇div]un

replaced by [µ∆+ξ∇div]ũ. The first equation of (4.13) and the requirement ũ ∈ H1
0 (Ω)N form

an elliptic boundary value problem for ũ. To solve for pn, proceed as follows. Computing the
divergence of both sides of the second equation of (4.13) and using the conservation of mass
from (4.12) to eliminate divun yields

ρ0γ p
n − τ2

f ∆pn = ρ0γ p
n−m − τf ρ0 div (ũ+U b) . (4.14)

To obtain the boundary condition for (4.14), remember that un = ũ on ∂Ω and multiply the
second equation of (4.13) by the outward normal ν, which yields:

− ∂ν pn = 0 on ∂Ω. (4.15)

Now the scheme for computing un and pn can be shortly expressed as follows:

1. Solve the first equation of (4.13) to compute the auxiliary velocity field ũwithout account-
ing for the pressure.

2. Determine the pressure pn from the problem (4.14), (4.15).

3. Use the last equation of (4.13) to compute a correction for ũ to obtain un.

In order to use finite elements, write equations (4.13), (4.14), and (4.15) in the weak form.
The auxiliary velocity ũ is the solutions of the following problem:

ũ ∈ H1
0 (Ω)N ,∫

Ω
[ρ0 ũ+ τf µ∇ũ : ∇ψ + τ ξ div ũ · divψ] dx

=
∫

Ω

[(
ρ0 u

n−m + τf f
n
)
·ψ

+ τf
(
Cn−m − µ∇U b

)
: ∇ψ − τf ξ divU b · divψ

]
dx

(4.16)

for all ψ ∈ H1
0 (Ω)N . The weak form of (4.14) and (4.15) reads:

pn ∈ H1(Ω),∫
Ω

[
ρ0γ p

n · φ+ τ2
f ∇pn · ∇φ

]
dx

= ρ0

∫
Ω

[
γ pn−m · φ− τf div (ũ+U b) · divφ

]
dx

(4.17)

for all φ ∈ H1(Ω). The last equation of (4.13) yields:

un = ũ+
τ

ρ0
∇pn. (4.18)
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4.2 Computation results

Remark 4.1.2. Note that (4.12) and (4.13) are not exactly the same problems because of the use
of [−µ∆− ξ∇div]ũ instead of [−µ∆− ξ∇div]un. Nevertheless, the error introduced this way
is of the order τf . On the other hand, such a trick provides a regularizing effect on the velocity
field.

Moreover, note that the boundary condition (4.15) for pn is not satisfied by the exact pressure
p (there is no boundary condition for p in (4.1)). According to [60, Remark 7.2 and Theorems 7.1
and 7.2], this does not affect the convergence of the scheme when Navier-Stokes equations for
incompressible fluids are considered. Thus, we assume that the solutions pn of problem (4.17)
yield good approximations to the exact pressure (provided that a solution to problem (4.1) exists).

Summarizing the results of Subsections 4.1.1 and 4.1.2, we obtain the following scheme for
solving (4.1):

Scheme 4.1.1 Coupled measurement problem

1: Choose ε > 0. Let K,m ∈ N be such that K/m ∈ N.
2: Set the time step lengths τ := T/K and τf := m · τ .
3: Set values for U0, p0, ρ0, and η0.
4: for j = 1 to K/m do
5: Compute the convective term C(j−1)m at t = (j − 1) · τf by (4.3).
6: Solve (4.16) for the auxiliary velocity ũ.
7: Solve (4.17) for the pressure pjm at time t = j · τf .
8: Compute ujm at time t = j · τf by (4.18).
9: Obtain the new velocity U j = U b + uj at time t = j · τf .

10: for n = (j − 1)m+ 1 to j ·m do
11: Set ρ̃0 := ρn−1 and k = 1.
12: repeat
13: Solve (4.11) for ρ̃k.
14: Increment k ← k + 1.
15: until ‖ρ̃k − ρ̃k−1‖ ≤ ε.
16: Set the new particle density ρn := ρ̃k.
17: Compute ηn by (4.7).
18: end for
19: end for

4.2 Computation results

In this section, numerical computations for the wet cell are presented. For simplicity, we consider
spherical titanium dioxide particles. According to Remark 4.0.2, we want to have the diffusion
coefficient within the range 10−10 to 10−8, which corresponds to titanium dioxide particles in
air. From this reason the computations are carried out for 0.01 µm TiO2 particles not in water
but in air. The material constants for air are given in Table 2.6.3 on page 35.
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Another parameter that has to be chosen with care is the time step length τ . The examples
presented in Section 4.2.1 show that τ has to be relatively small in order to avoid oscillations in
the numerical solutions. We will therefore introduce a regularisation of the problem such that
computations are not too time-consuming.

Further, the examples presented in Section 4.2.2 show that most of the particles flow through
the wet cell without reaching the active part if it is located at the bottom of the wet cell. Thereby,
the geometry of the wet cell is modified in order to improve the efficiency of detecting.

The section is structured as follows. In Section 4.2.1, we introduce a regularization of the
boundary hysteresis operator. Different configurations of the in- and outlet will be considered
in Section 4.2.2. Simulations of a complete model of the wet cell including the introduced
regularization are presented in Sections 4.2.3 and 4.2.4 in two and three dimensions.

4.2.1 Regularization of the hysteresis boundary condition

In Section 4.1.2, we already introduced a scheme which produces additional smoothness in the
velocity field, for the discretization of the flow problem (4.4), see Remark 4.1.2. Nevertheless,
the resulting scheme (see Scheme 4.1.1) is still sensitive with respect to the choice of parameters.
The computed results presented in Figures 4.2.2 and 4.2.3 show that an improper choice of the
time step can cause oscillations, especially in the surface mass density η.

To handle these effects, we regularize problem (4.1) by adding a parabolic operator with small
coefficients to the boundary hysteresis operator. Assume in the following that Γ can be smoothly
and isometrically parameterised in terms of two independent space variables (y1, y2) if N = 3,
or one space variable if N = 2. Denote the normal to ∂Γ with respect to Γ by νΓ and the
Laplacian on Γ by ∆Γ = ∂2/∂y2

1 + ∂2/∂y2
2 . Replace the boundary condition on Γ in (4.1) by

−∇ρ · ν = ηt + β1ρt − β2∆Γρ in Γ,
−∇ρ · νΓ = 0 on ∂Γ,

where β1, β2 are small positive numbers. Using this new boundary condition, the weak form
(4.6) is replaced by∫

Ω

[(
ρn + τ U jm · ∇ρn

)
ψ + τ ∇ρn · ∇ψ

]
dx+ τ

∫
Γin

ρnψ|U b · ν|ds

=
∫

Ω
ρn−1 ψ dx+ τ

∫
Γin

g ψ|U b · ν|ds

−
∫

Γ

[(
ηn − ηn−1

)
ψ + β1

(
ρn − ρn−1

)
ψ + β2τ ∇yρn · ∇yψ

]
ds,

where ρn and ψ are assumed to be sufficiently regular on Γ, and the components of the gradient
∇yφ of a smooth function φ are given by

[∇yφ(x)]j =
N∑
k=1

∂φ(x)
∂xk

· ∂xk(y(x))
∂yj

(j = 1, . . . , N − 1).

Proceeding similarly to Section 4.1.1, we obtain the following regularized fixed-point iteration
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4.2 Computation results

scheme for the approximating sequence {ρ̃k}:

ρ̃0 = ρn−1,∫
Ω

[
ρ̃k ψ + τ∇ρ̃k · ∇ψ

]
dx+ τ

∫
Γin

ρ̃k ψ |U b · ν| ds

+
∫

Γ

[
h(ρ̃k−1) ·H(ρ̃k−1)

ρ̃k−1 + c
+ β1

]
ρ̃k · ψ ds+ τ

∫
Γ
β2∇yρ̃k · ∇yψ ds

=
∫

Ω

[
ρn−1 + τ U jm · ∇ρ̃k−1

]
ψ dx+ β1

∫
Γ
ρn−1 ψ ds

+ τ

∫
Γin

g ψ|U b · ν| ds

−
∫

Γ
h(ρ̃k−1)

(
ηn−1 −H(ρ̃k−1)

c

ρ̃k−1 + c

)
ψ ds,

(4.19)

instead of (4.11).
Let us now show the effect of the regularization in a two-dimensional example. Set the data

of the problem in (4.1) as follows: U0 = U b = 0, p0 = 0, η0 = 0, β = 10−3, and the initial
density ρ0 as shown in Figure 4.2.1. The diffusion coefficient β is artificially large but suitable
to produce the desired effects.

Figure 4.2.1: Inital distribution of particles

The wet cell is assumed to be a two-dimensional rectangle Ω = (0, 0.1)2 with the active
part located on the bottom Γ = [0, 0.1] × {0}. To describe the hysteresis operator, the function
H : R → [0, 1] in (2.67) is specified by ρ∗0 = 0, ρ∗1 = 0.1, and a = 10, i.e.

H(s) =


0 if s < 0,
10 s if 0 ≤ s ≤ 0.1,
1 if s > 1.

The region Ω is discretized by a grid consisting of 3053 points and 5908 triangles. In Scheme
4.1.1, the tolerance for the fixed-point iteration is chosen as ε = 10−4.

To compare simulations based on (4.11) and (4.19), three combinations of the parameters
β1, β2, and τ are used. The unmodified detector corresponds to β1 = 0 and β2 = 0. The case of
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regularization is described by β1 = 1 and β2 = β. The time steps are chosen both as τ = 5·10−3

and τ = 10−6. We consider the following three cases:

Table 4.2.1: Considered choices of parameters

Parameter Case 1 Case 2 Case 3

β1 0 0 1
β2 0 0 1 E− 3
τ 5 E− 3 1 E− 6 5 E− 3

Figures 4.2.2 and 4.2.3 show numerical results for the particle density and for the saturation of
the surface mass density. Since case 2 corresponds to the unmodified detector with the smallest
time step, we will consider this result as a quasi-exact reference solution. Figure 4.2.2 shows
that the particle densities in all cases are close to each other until the active part is saturated.
Comparing cases 1 and 2 in Figure 4.2.2, one can see that a larger time step causes the particle
density to rise faster near the saturated region so that a peak in the particle density occurs. One
can also see that the density at the active part shows oscillations at later times in case 1. In the
case of a smaller time step the particles approaching the saturated part can spread horizontally.
Therefore, the density near the boundary remains smaller and smoother in case 2 than in case
1. In case 3, the modified boundary condition oppresses the peak and the oscillations near the
saturated parts of the detector, in contrast to case 1. The regularisation also causes a more
uniform growth of the particle density near the boundary. Thus, the results of cases 2 and 3
become different when the detector is saturated. Nevertheless, this difference remains smaller
than that for cases 1 and 2.

Figure 4.2.3 shows the computed evolution of the surface mass density η on the active part,
normalized by the surface mass density ηmax corresponding to saturation. Similar to the particle
density in the wet cell near its active part, the growth of the saturation in case 2 is slower than in
case 1. Case 3 shows the slowest growth among the considered cases. The results of case 1 show
the largest oscillations, and these oscillations disturb the complete saturation. It should be noted
that the shape of the curves is comparable in all cases in spite of kinks caused by oscillations (see
Sections 4.2.3 and 4.2.4).

Thus, the comparison of cases 2 and 3 shows that the regularization yields relatively smooth
solutions that are close to unregularized ones even for regularization parameters β1 > β. Further,
we will use the regularization in our numerical simulations.
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4.2 Computation results

Figure 4.2.2: Computed evolution of the particle density in the cases given by Table 4.2.1

Time Case 1 Case 2 Case 3

0.075 s

0.2 s

0.4 s

0.8 s
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Figure 4.2.3: Computed evolution of η/ηmax in the cases given by Table 4.2.1

Time Case 1 Case 2 Case 3
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4.2 Computation results

4.2.2 Comparison of geometries

In this section, we consider the motion of particles in the wet cell without active part. Numerical
computations show that only a small amount of particles arrives at the bottom of the wet cell in
the case of small diffusion coefficients. To show this effect, three numerical experiments with
different conditions on the in- and outlet are considered.

The geometry considered in this section is a two dimensional rectangle with the edge length
equals 0.1m and with short tubes at the openings. The direction of the tubes models the flow
direction on the inlet and outlet. Figure 4.2.4 shows the initial particle density ρ0 and the consid-
ered geometries.

Figure 4.2.4: Geometries and initial conditions for the particle density

Particle density
in kg ·m−3:

Case 1:

Case 2:

Case 3:

In all cases, the boundary function g for the particle density is the trace of ρ0 on Γin, the
boundary conditions for the velocity is set to |U b| = 0.05m/s on Γin and Γout in the direction
of the tubes, the initial values for the velocity and pressure are U0 = 0 and p0 = 0, and the time
steps are τ = 10−4s and τf = 2 ·10−3s. The geometry is discretized by grids consisting of about
3 · 105 points and 6 · 106 triangles. The edge length of the triangles is about 7 · 10−4m. Actually,
the slope of the particle density in case 1 is much smaller than that in other cases. Nevertheless,
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such a small slope cannot prevent the rapid growth of the gradient in time, see Figure 4.2.5.
The results obtained for the shapes shown in Figure 4.2.4 are presented in Figure 4.2.5. In all

cases, the main part of the particles is transported from the incoming tube to the outgoing one
without reaching the boundary. The density near the boundary remains small while the majority
of particles leaves the sensor. Thus, if the active part is located on the bottom, as it is assumed in
the theoretical investigation of Section 3.4.2, it seems difficult to detect a significant amount of
particles. The particle density near the bottom as well in the rest of the sensor grows at later times
after the formation of a steady state flow regime. For this reason, the geometry of the sensor is
changed in Section 4.2.3, and Γ is located on an obstacle in the interior of the wet cell.

Figure 4.2.5: Computed evolution of the particle density
in the geometries shown in Figure 4.2.4

Time Case 1 Case 2 Case 3

3.8 s

5.0 s

10.0 s

40.0 s

80.0 s
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4.2.3 Simulation in two dimensions

As motivated above, we are changing the geometry of the wet cell to improve the adhesion of
particles to the active part. The active part is located on an obstacle in the interior of the wet cell.
Thereby, the particles have to flow around the active part before they leave the wet cell.

Figure 4.2.6 shows the new setting and the initial particle density. The wet cell is now supposed
to be a rectangle (0, 0.01)2, and, as indicated in the figure, the active part Γ is the boundary of
the inner circle.

ΓHHY ���1

Figure 4.2.6: The modified geometry and initial particle density in units mg ·m−3

The boundary function g on Γin is the trace of the initial particle density, the velocity at the
inlet and outlet is U b = ex · 0.01 m · s−1 (ex is the unit vector along the x axis), and the initial
functions U0 and p0 for the velocity and pressure are set to zero. Note that the ratio between the
maximal value of the initial distributions in Figures 4.2.1 and 4.2.6 is of order 100. To model the
active part analogously to Section 4.2.1, the function H is specified as follows:

H(s) =


0 if s < 0,
10 s if 0 ≤ s ≤ 0.001,
0.01 if s > 0.001.

(4.20)

The time steps are set to be τ = 10−5 and τf = 2 · 10−3 s, the tolerance for the fixed-point
iteration is ε = 10−3, and the regularization parameters are β1 = β2 = β. To discretize the wet
cell a mesh consisting of 8994 points and 17278 triangles is used. That means, the edge length
of the triangles is of order 10−4m.

To show the influence of the diffusion coefficient on the evolution of the surface mass density,
we compare the results of two simulations with different values of the diffusion coefficient β. In
the first computation, we use the diffusion coefficient β = 5 · 10−8 m2 · s−1 given in Table 2.6.4,
in the second one, we use a larger value of the diffusion coefficient, i.e. β = 5 · 10−6 m2 · s−1.

The computed surface mass densities η on the active part, normalized by the surface mass
density ηmax corresponding to saturation, in both cases are compared in Figure 4.2.7. In both
cases, a rapid growth of the surface mass density occurs first at the left part of the obstacle. The
resulting peak increases and spreads over the active part. The increase stops at those points where
the saturation value is reached. As could be expected, the evolution in the case of larger diffusion
is quicker, and the whole active part is saturated to the final time instant, whereas the saturation
occurs only at the front part of the obstacle in the unmodified setting.
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Remark 4.2.1 (Quality of the solutions). The quality of the numerical solution is yet an open
question. For the coupled measurement problem with diffusion coefficients considered in this
section, we do not have a reference computation similar to case 2 in Section 4.2.1. Therefore,
the deflection from the real solution (if it is unique) cannot be estimated at the moment.

To interpret the computations, we refer to Section 4.2.1. In the examples considered there,
oscillations did not change the shape of the solution dramatically, and the regularized solution
was close to that computed with a fine time step. Thus, we hope that the result shown in Figure
4.2.7 is close to the actual solution.
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4.2 Computation results

Figure 4.2.7: Computed evolution of η/ηmax on the active part of the wet cell
shown in Figure 4.2.6 in the cases β = 5 · 10−8 and β = 5 · 10−6

β = 5 E− 8 β = 5 E− 6 β = 5 E− 8 β = 5 E− 6

t = 0.26 s t = 0.50 s

t = 1.50 s t = 3.80 s

t = 5.00 s t = 6.20 s

t = 7.40 s t = 9.00 s
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4.2.4 Simulation in three dimensions

In this section, we present a three-dimensional simulation of the wet cell. From the point of
view of applications, this is the most interesting case. However, there are many difficulties in the
implementation of the numerical algorithm for the problem under consideration – above all, the
necessity to use very fine meshes in three dimensions.

The wet cell is supposed to be a cube with edge length equal to 1cm. The active part is located
on a cylindrical obstacle (see Figure (4.2.8)). The computed results given in Figure 4.2.7 show
that a significant amount of particles can be detected only at the front half of the active part if the
value of the diffusion coefficient is β = 5 · 10−8m2 · s−1 = 5 · 10−4cm2 · s−1. Therefore, we
consider the geometry shown in Figure 4.2.8 where the active part is shown in red.

-Inlet
� Outlet


















�

Active part

Figure 4.2.8: Geometry of the wet cell in three dimensions

Similarly to Section 4.2.3, the functions U0 and p0 are set to zero, the boundary value for
the velocity is U b = ex · 0.01m/s, and the function H is given by (4.20). The initial particle
distribution is analogous to that shown in Figure 4.2.4 with its support being extended towards
the active part. The boundary function g at the inlet is the trace of the initial particle density. Set
the parameters: τf = 2 · 10−3s, ε = 10−3 and β1 = β2 = β. Compared to Section 4.2.3, the
time step size and mesh size will be varied. We put τ = 5 · 10−4s and use the double mesh size
to triangulate the geometry. That means the mesh consists of about 11 · 104 points and 6.6 · 105

tetrahedra with edge length equal to 0.02 cm.
The computed evolution of the surface mass density η, normalized by the surface mass density

ηmax, for these parameters and initial and boundary data is shown in Figure 4.2.9. Similar to
Figure 4.2.7, the first jump of the surface mass density occurs in the center of the active part,
and the resulting peak increases until the saturation is reached. Here the growth of the saturated
region stops earlier than in the case of Figure 4.2.7, and the surface mass density of adhered
particles increases only at points that lie around the saturated part. In the region where η/ηmax

assumes large values, the solution shows oscillations.
As for the quality of the solution, the same situation as in Section 4.2.3 occurs. Because of

the absence of the reference simulation similar to that in case 2 of Section 4.2.1, the influence of
the introduced regularization and the distance to the real solution has to be considered in future
investigations.

130



4.2 Computation results

Figure 4.2.9: Computed evolution of η/ηmax on the active part of the wet cell
shown in Figure 4.2.8

Values of η/ηmax on the active part:

t = 0.2 s t = 0.3 s

t = 0.5 s t = 1.0 s

t = 2.5 s t = 4.5 s
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Conclusion

In this thesis, a procedure of detecting small particles dispersed in air is considered. The work is
related to investigations (quantitative measurement of nano-particles) carried out at the research
institute CEASAR in the course of the European integrated project NANOSAFE2. We consider
two problems: transport of particles by air to a washing flask where the particles are being
immersed in water and motion of particles in water flowing through a wet cell having an active
boundary part responsible for the measurement.

The transport of particles is described by a fully coupled model where particles are considered
as a continuum medium. For this problem, the local in time existence and a regularity of gen-
eralized solutions are proved. The results obtained are consistent with results for Navier-Stokes
equations presented in [36, 56].

For the motion of particles in the wet cell and their adhesion to the active boundary part, an-
other coupled model is derived. The equations describe the evolution of the velocity, pressure,
particle density, and surface mass density of measured particles. The specific of the model is a
boundary hysteresis operator describing the adhesion of particles and the saturation. For theo-
retical investigations, the problem is decoupled by neglecting the influence of the particles on
the liquid. The existence of weak solutions is proved on a non-empty time interval that depends
on the flow problem data. The uniqueness of weak solutions is established in the case where
solutions of the flow problem are sufficiently regular. In this case, unique weak solutions of the
evolution of the particle density exist on arbitrary time intervals.

A scheme for the numerical treatment of the coupled model of the motion of particles in the
wet cell and their adhesion to the active boundary part is proposed. The behavior of the scheme is
verified in selected examples. Computational results are presented for two and three dimensions.
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