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Chapter 1

Introduction

Van der Waals forces between atoms and molecules play a fundamental role in many fields
of chemistry, biology, nanotechnology and condensed matter physics (for a survey, see e.g.
[KMMO09]), [BMMO1]). Loosely, the term "Van der Waals forces’ refers to weak long-range
forces, as opposed to strong short-range forces such as covalent and ionic bonds.

Van der Waals forces can be grouped into two classes. The first class consists of forces due
to interactions of permanent dipoles with induced dipoles. These are sometimes referred to
as Debye forces. The second class, which will be in the focus of the present work, contains
the so-called dispersion forces. This form of interaction originates purely from fluctuations
in the charge distributions and cannot be easily understood in classical terms. It occurs
in particular between atoms and molecules without any permanent dipoles in their charge
distributions, e.g. noble gases or any systems with spherically symmetric ground state
electron distributions. In the case of noble gases, dispersion forces are among the main
interactions present between different atoms, and the existence of a liquid phase for these
elements is a manifestation of their effect.

Heuristically, dispersion forces are often explained by the following mechanism: the mov-
ing electrons at one atom dynamically polarize the charge distribution, thereby creating
fluctuating multipole moments which dynamically induce multipole moments in the charge
distributions of the other atoms. These moments then act back on the electrons of the
first atom, and on average this process leads to an attractive interaction. For more details
and further discussion, we refer to [Sto97].

Although as indicated above, dispersion forces constitute only a subclass of the more gen-
eral Van der Waals forces, we will use the terms ’dispersion forces/interactions’ and 'Van
der Waals forces/interactions’ interchangeably.

In a quantum-theoretical approach to interatomic forces, the mathematical object describ-
ing the interaction is the Born-Oppenheimer potential energy surface

V(R) := inf spec(H(R)) — Rlim [inf spec(H (R))].
—00
Here H(R) is a Hamiltonian describing the electrons (and, in a more complete treatment,
photons) in the two-atom system with interatomic distance R = Rg — R € R3. Custom-
arily, the nuclei (at R4 and Rp) are treated as classical particles appearing parametrically
in the Hamiltonian. The large |R|-behaviour of V(R) then captures the Van der Waals
forces.
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The foundation for a quantum theory of dispersion forces was laid in [EL30]. In this sem-
inal work a Schrédinger operator describing two non-interacting neutral hydrogen atoms
with spherically symmetric ground states situated at a distance R € R? from one another
is considered, i.e.

2 2 hQ 2

h e e
Hy=Hs+ Hp = _%Am

X2

Sl 2T el

Here x1,x2 € R? are the coordinates of the two electrons, e is the elementary charge, m
is the electron mass and i denotes Planck’s constant. The operator

2
;. € A A
H = W((1 ~3R®R)x, -XQ), (1.0.1)
which is the lowest-order contribution to the (formally) multipole-expanded interatomic
Coulomb interaction

~ e? e? e? e? 102
X1,X2) (= — + - - , .0.
Qr(x1x) = It TR Rl o f R (1.0.2)
is treated as a perturbation of the system. Calculation of the matrix element
—(H (W, © W) |((Ho — Bo)gqunenyy )~ [H (W% @ 0%) (1.0.3)

occurring in second-order Rayleigh-Schrodinger perturbation theory then yields the inter-
action potential

Waw (R) = +O(1/|R)?), (1.0.4)

Ce
IR
where

co = [RI*(H' (W © W) |((Ho — Eo)ygas ey )~ 1H' (W) © ).

Here \II% and \I/% are the ground states of H4 and Hp corresponding to ground state
energies Eé“ and E(])3 , respectively, and Fy = Eé‘ + E(’]B.

However, there are several mathematical issues regarding this approach (which the authors
were actually aware of ). Firstly, the perturbation operator H' is not relatively bounded
with respect to Hy, and the Hamiltonian Hy + H’, even if it was realized as a self-adjoint
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operator, could not be bounded from below, which is a necessary condition for a ground
state to exist. Furthermore, the formal perturbation series involving H' diverges. These
problems have recently been resolved in [Fri], which contains a rigorous proof of (1.0.4). A
crucial ingredient, which in particular justifies the multipole expansion of Qg, is the proof
that in the ground state of the full system described by Hy + Q R, the electrons are expo-
nentially localized at ’their’ respective nuclei. In particular, this result states that ionic
configurations (in which both electrons are localized near one of the nuclei) are ’exponen-
tially unlikely’ as the interatomic distance R = |R| increases. This assertion is stronger
than the standard results about exponential decay of ground state wave functions, since
the latter only establish exponential smallness outside regions containing both the nuclei,
and thus do not distinguish ionic electron configurations from neutral ones.

Earlier works on the on 1/RS-decay of Van der Waals interactions in the mathematics
literature include [LT86], in which a universal upper bound proportional to —1/R® on the
interaction potential is deduced using the Rayleigh-Ritz variational principle and carefully
chosen test functions, and [MS80], in which it is proved that asymptotically non-degenerate
energy levels of Hy + Q R possess an asymptotic series expansion in powers of 1/R. How-
ever, the coefficients of that expansion are not identified explicitly.

Heuristically, the theoretically predicted lowest-order (~ 1/R®)-contribution to the in-
teraction energy between atoms with spherically symmetric ground states is expected to
break down in the regime of roughly 100 Bohr radii. This can be attributed to the electro-
magnetic interaction having a finite speed of propagation, namely the speed of light. Since
it takes the information about the motion of the electrons at one atom a finite amount of
time to reach another atom, and since at an interatomic separation of around 100 atomic
diameters, the time of travel of light between the atoms is the same as the average ’cir-
culation time’ of electrons around their nuclei, the correlation between the motion of the
electrons at the different nuclei partially breaks down. This mechanism of retardation
should effectively lower the strength of the interaction. Note, however, that this heuristic
argument does not indicate the strength of the retarded interaction.

The first theoretical investigation of the retarded Van der Waals interaction between atoms
and molecules in the physics literature goes back to Casimir and Polder [CP48]. In this
work the authors investigate a model of two non-interacting neutral atoms (with nuclear
charges Z4 and Zp) which are coupled to a quantized radiation field. The interatomic
electrostatic interaction is modelled by a dipole operator as in (1.0.3).

The Hamiltonians H 4 and Hp describing the non-interacting atoms are assumed to have
purely discrete spectra and spherically symmetric ground states, and the photon momenta
live on a lattice. The latter is achieved by means of a ’box quantization’, i.e. by enclosing
the electromagnetic field in a finite volume, the size of which is sent to infinity in the
course of the calculation, so that sums over photon momenta are replaced by integrals.
Treating the coupling to the field and this electrostatic interaction as perturbations of
the non-interacting system, the authors employ a method which combines elements of
fourth-order Rayleigh-Schrodinger perturbation theory with a calculus dubbed ’Heisen-
berg’s method’, which involves first perturbing one atom by the quantized radiation field,
and then coupling the resulting vector potential to the second atom. For the difference of
the energy corrections for the system with finite interatomic distance R and those for the
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infinitely separated atoms, the authors derive the formula

krkputdu e~ 2uR
AE(R 1.0.5
 7he Z/ (k? +u?)(k2, + u?) R? ( )

o 1 1 \? .. 1 1 \?
x {(<ql @l + @) (14 0+ )+ 460 (0 + ) } 7

where [, m label the eigenvalues Ej, E,, of the atomic Hamiltonians H 4 and Hpg, respec-
tively, k; = E;/(ch), and

Z A ZB
=W D x|l g% = WhD) xPwh), ae{l,2,3}

are matrix elements of the electric dipole operators.
By formal arguments, the R-asymptotics of (1.0.5) are then deduced to be

23FLC 1 A B
ir RO

(1.0.6)
if R>> )\ = %7;, R >> )\, and

1 (G an)? + (gl an)? + Algfga5)?
RS Ko+ km ’

lym

if R << N\, R << Ap, respectively. ag and ag are the so-called static polarizabilities of
the atoms A and B, which are defined by

3 Z A
= 22 Zxalll (Ha = Eo)juo,ewo o) 1Y x50%), (1.0.7)
j=1

a=1 i=1

and correspondingly for atom B.

At a certain point in the derivation of (1.0.5), an ultraviolet-cutoff is inserted ad hoc into
some of the encountered integrals over photon momenta in order to handle divergences,
and a number of terms are extracted from residues at finite points in the domain of integra-
tion. However, it remains somewhat unclear how and at what point the ultraviolet-cutoff
is removed and in what respect the final results depend on its choice. Furthermore, it
is not completely apparent whether or not the dipole-approximation (see below for an
explanation) is used for the quantized radiation field.

From a mathematical point of view, the Casimir-Polder result, as well as many of the
subsequent perturbative approaches in the physics literature (see Section 1.4 below), are
questionable in several respects. Firstly, it should be emphasized that any perturbation
calculation remains formal unless a suitable underlying operator-theoretic model (e.g. a
self-adjoint Hamiltonian with spectral gap, perturbed by a relatively bounded symmetric
operator) is specified. Secondly, if an ultraviolet-cutoff is incorporated into the calcula-
tions, which, as we will see below, is necessary to realize the corresponding models as
semi-bounded, self-adjoint Hamiltonians, this has to be done in a systematic way. In par-
ticular, a careful investigation of the final (R — oo)-asymptotics and its dependence on
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the chosen cutoff function has to be carried out. Thirdly, the above-mentioned problems
related to replacing the interatomic Coulomb potential by a dipole operator in the Hamil-
tonian also occur in the model including the radiation field.

The aim of the present work is to reinvestigate the perturbative approach of Casimir and
Polder to the derivation of the retarded Van der Waals interaction within a mathemati-
cally rigorous context and show how these gaps and loose ends can be accounted for. In
particular, we wish to remove as many of the restricting assumptions (e.g. discrete or even
finite atomic spectra) as possible.

In recent years the quantum-mechanical description of non-relativistic matter coupled to
the quantized radiation field (sometimes termed non-relativistic quantum electrodynam-
ics, or simply NRQED) has been given a rigorous mathematical foundation, in particular
by the works of Bach, Frohlich and Sigal ([BFS98], [BFS99]; see also the references therein
for earlier work in this field). One of the most important models considered in these
works describes a system of N non-relativistic spinless particles which are coupled to the
quantized radiation field via the canonical momentum, and is given by the Hamiltonian

N
1 . e 2 ~
Hor =3 o (—J’ij - EA(p,Xj)) +e2Q + Hy. (1.0.8)

Following, e.g. [Spo04], we will call Hamiltonians of this form Pauli-Fierz Hamiltonians in
this work, although it should be mentioned that this terminology is not used universally.
A(p,x) is the vector potential of the quantized radiation field in Coulomb gauge, Q is a
scalar potential (typically a Coulomb potential) describing all interactions involving the
nuclei and the electrons, and Hy is the Hamiltonian of the free quantized radiation field.
Hpp field acts on the space L2,,;(R3Y) ® F, where F is the bosonic Fock space over the
Hilbert space W = L?(R3) ® L?(R3), the two summands accounting for the two polariza-
tion degrees of freedom of the photons.

Among the fundamental results about Hpp (with varying assumptions on Q) are self-
adjointness on D(—A) ® D(Hy), essential self-adjointness on many convenient subspaces,
semi-boundedness and the existence of a ground states, see [BFS98], [BFS99], [GLL01] and
the references therein; for a proof of self-adjointness for arbitrary values of the coupling
strength e, see [Hir02].

Furthermore, many interesting results about the spectrum of Hpr have been obtained, in
particular concerning the connection between excited states of the corresponding atomic
(respectively molecular) Schrodinger operator (not involving the radiation field) and so-
called resonances of Hppr. The physical fact that photons are massless particles and can
thus acquire arbitrarily small amounts of energy manifests itself mathematically in the
spectrum of H; consisting of a single non-degenerate eigenvalue corresponding to the
vacuum state of the field, which lies at the bottom of a stretch of continuous spectrum
extending from 0 to oco. Thus the spectrum of the non-interacting Hamiltonian (with the
interaction between electrons and photons switched off) consists of the countable set of
eigenvalues of the atomic (respectively molecular) Hamiltonian, all of which are embedded
into the continuous spectrum. In particular, the non-interacting Hamiltonian is lacking
a spectral gap above its ground state energy, prohibiting the 'naive’ use of perturbation
theory. We will have to deal with this fact, which is related to the well-known infrared
problem of quantum electrodynamics, in the course of this work, since we want to extract
information from the system using perturbation theory nevertheless. This will be accom-
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plished by introducing an additional infrared cutoff into the interaction between electrons
and photons, producing a spectral gap, which is then removed in the final results.

Once the interaction is switched on, one expects all the excited levels of the atom (respec-
tively molecule) to become ’dissolved into the continuum’, turning into resonances, while
only the ground state survives. This picture has been well-established mathematically by
now, see e.g. [BFS98|, [BFS99], [BFSS99], [FGSO08].

Another crucial feature of Hpp is that the vector potential contains an ultraviolet-cutoff
p which suppresses the interaction of the electrons with photons above a certain energy
scale A. The introduction of the ultraviolet-cutoff serves as a mathematical means for
realizing Hpp as a semi-bounded, self-adjoint Hamiltonian. So far, this seems to be the
only available method accomplishing this.

As we have pointed out above and as we will argue in the review of the physics liter-
ature below, so far no perturbative analysis of the retarded Van der Waals interaction
which starts out from a well-defined, semi-bounded self-adjoint Hamiltonian containing
an ultraviolet-cutoff has been carried out, and it is one of the aims of the present work to
fill this gap.

Of course, any property of Hpr will a priori depend on the choice of the cutoff p, and so
far, the (A — oo)-behaviour of Hpp and related quantities (like for instance its ground
state and ground state energy) are not well-understood mathematically (see e.g. [Spo04],
Chapter 19). From a physical point of view the dependence on the ultraviolet-cutoff may
seem quite unsatisfactory: obviously many measurable phenomena in nature happen ex-
actly the way they do, with unambiguous values of certain parameters and measurement
outcomes. On the other hand, one has to bear in mind that the model itself is designed
with the limitation to phenomena below certain energy scales in mind. After all, it is this
modelling assumption which allows for the non-relativistic description of the electrons in
the first place. Taking this into account, there might actually be situations, in particular
in the low-energy regime, in which the dependence on the ultraviolet-cutoff turns out to be
marginal. In fact, as we will prove in the present work, the (asymptotic) 1/R"-coefficient
in the interaction potential considered by us actually has a well-defined (A — oo)-limit.
The model which will be the starting-point of the considerations in the present work be-
longs to a subclass of Hamiltonians of the form (1.0.8) and is described by the Hamiltonian

N
1 . e 2
Hqa = Z 5 (—1th]. - EA(,O,XJ‘)) +e2Qy + Hy. (1.0.9)

J=1

Its crucial feature, whose importance and physical origin was emphasized by Spohn ([Spo04]),
is that instead of a general scalar potential Q as in (1.0.8), it contains the ’smeared’
Coulomb potential @, which is obtained by convolving the electrostatic charge density
of an array of point charges with a form factor ¢ (see below for the definition). The rea-
son for this choice is the observation that the classical system of the (point-like) particles
and the radiation field, considered as a joint dynamical system, constitutes an ill-posed
initial value problem for a system of ODEs, which is due to singularities of the evolution
equations on the trajectory of the charged particles. This problem can be circumvented
by using smeared charge densities instead, which leads to a model sometimes called the
Abraham model. The quantization of this regularized classical system then yields (1.0.9).
A natural additional structure, which arises from first regularizing the classical system and
then carrying out the quantization, is that that the form factor ¢) and the ultraviolet-cutoff
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function p occurring in Hg4 are coupled by the relation

p =1, (1.0.10)

the hat denoting the Fourier transform on R? (see below for the normalization convention
used by us). For an introduction to and an extensive discussion of both the regularized
classical dynamical system and Hga, we refer to [Spo04].

The relationship (1.0.10), while originally coming from physical arguments, has interesting
mathematical implications for the perturbative analysis of the Van der Waals interaction
we will carry out in this work. In fact, it has been one of the reasons why we decided
to use Hga as a starting point instead of the Hamiltonian (1.0.8). Firstly, by the be-
haviour of the Fourier transform under dilations, (1.0.8) automatically couples the spatial
scale describing the extension of the charge density and the energy scale at which the
ultraviolet-cutoff comes into effect. This fact will turn out to be extremely useful when
considering the large- R-asymptotics of Fourier integrals of the form (1.4.2) (but with the
ultraviolet-cutoff present), since (1.0.8) then automatically provides a dual and simpler
picture of the investigated sequence of integrands in real space. In particular, it will lead
to a convergent ultraviolet behaviour of the 1/R"-interaction coefficient.

Secondly, as it will turn out, the fact that the function p appears not only in the field
operators, but also - via its Fourier transform - in the electrostatic potential, is crucial
for the different contributions to the energy corrections to be comparable while the inter-
action with the radiation field is still cut off at a finite momentum: in the 'non-smeared’
electrostatic Coulomb potential @, the limit of an infinitely large ultraviolet-cutoff (i.e.
an infinitely small amount of smearing) has already been taken in a sense, while the scale
of the ultraviolet-cutoff in the vector potential A (p,x) is still finite. In particular, as will
be discussed in Section 6.6, the (asymptotic) cancellation of the 'London term’ (1.0.3)
by contributions involving the field operators, which is crucial for the emergence of the
asymptotic 1/R” behaviour, breaks down if @ instead of @y is used in the Hamiltonian,
see the discussion in that section.

It is clear why this subtlety did not show up in the physics literature reviewed above (see
Section 1.4 for more details): if one omits the ultraviolet-cutoff altogether, then, although
this renders the underlying Hamiltonian meaningless, on a formal level the contributions
from the electrostatic and the field interactions match and do not cause discrepancies in
the calculation.

In the remainder of this introduction we

e Describe the mathematical setup of the present work in more detail (Section 1.1)

State the main results (Section 1.2)

Explain the strategy of their proofs (Section 1.3)
e Continue the discussion of the physics literature on the subject (Section 1.4)

e Summarize the history and status quo of experiments measuring dispersion forces
(Section 1.5)
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1.1 Outline I: Mathematical setup

In Chapter 2 we introduce the model used in this work. The starting point will be to
consider Hamiltonians of the form (1.0.9) for three different physical systems: the first one,
denoted by Hqga(R), describes a molecule consisting of two neutral atoms with nuclear
charges Z4 and Zp, respectively, with the nuclei located at the points 0 and R € R3.
The other two Hamiltonians H, S ' and H, 5 ' describe two individual atoms A and B, located
at 0 and R, respectively, each of which is coupled to the quantized radiation field. This
corresponds to the situation of the two atoms in the molecule being infinitely separated.
We then employ two common approximations: firstly, we use a dipole-approximated vector
potential. This approximation amounts to 'pinning down’ the vector potential A(p,x) at
the nuclei by letting the first Z4 electrons interact with the radiation field at the point 0,
and the remaining one with the field at R. This approximation will turn out to greatly
simplify the perturbation calculations later on.

Secondly, for the two-atom system described by Hga(R), we neglect antisymmetry of
the electrons of atom A and B, retaining only the antisymmetry of the first Z4 and the
last Zp electrons among each other. Mathematically, this is implemented by choosing
L2 (R3%4)® [2  (R3B)® F as an underlying Hilbert space. The motivation for these
alterations is discussed in Section 2.2.

The two modifications result in three new Hamiltonians H(R), H A and HB, and the
main goal of the present work is is to understand the long-range behaviour of the Born-
Oppenheimer potential energy surface for the model just introduced. This interaction
potential is defined as the difference between the ground state energy

E(R) := infspec(H(R))

of the system consisting of the two atoms A and B at a finite distance R := |R| from each
other, interacting via Coulomb interaction and the radiation field, and the limit of this
ground state energy as the atoms are moved infinitely apart. In mathematical terms,

V(R) := E(R) — lim E(R). (1.1.1)

R—o00

It is strongly conjectured (see [MS09]) that

lim E(R) = E4 + Ep,

R—oo
where F4 = inf spec(H%), and analogously for E. The analogous result in the Schrodinger
case, i.e. without the radiation field, was proved by Morgan and Simon ([MS80]) and can
be viewed as a clamped-nuclei variant of the HVZ theorem.
However, since we would like to apply perturbative methods to the analysis of V(R), which
a priori are not available due to the lack of spectral gaps of the operators involved in f/(R),
we will consider an infrared-regularized version of (1.1.1), see below.
In Section 2.3 we implement this infrared regularization for the Hamiltonians, H(R), H4
and HP, which will endow them with spectral gaps and thus make perturbation theory
applicable. There are different possibilities available for doing so, e.g. by introducing a
photon mass, which creates a gap at the bottom of the spectrum of the free field Hamilto-
nian Hy, or by constraining the photons to a momentum lattice, rendering the spectrum
of Hy discrete and creating a gap at its bottom. The method of choice for the present
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work is to use an infrared-cutoff (parametrized by a small number o > 0) in the coupling
function occurring in A(p,x). As we will see below, this amounts to the introduction of
new coordinates in photon momentum space, distinguishing between low- and high-energy
contributions to photon wave functions, and induces a splitting of the photon Fock space
into a tensor product F, ® F,. The corresponding decompositions of the Hamiltonians
each consist of a part which acts trivially, and a new Hamiltonian (denoted by H,(R), HA
and HZ, respectively) of the form 1.0.9, which has a finite spectral gap above its ground
state energy and which acts on a Fock space built from the restrained single-photon mo-
mentum space L?(R? \ B, /.(0)) & L*(R*\ B, /.(0)). It is these latter Hamiltonians that
will be further analyzed. An important remark is that the infrared regularization is well-
controlled in the sense that the ground state energies of the regularized Hamiltonians
converge to those of the original ones as the regularization parameter tends to zero, see
Lemma 2.3.1.

In Section 2.4 we set up the perturbation-theoretic framework for the analysis of the
ground state energies of H,(R), HA and HE. Tt turns out that these three operators can
be rewritten as

H,(e,R) = HJ + eH + ¢*H”, (1.1.2)
Hy\(e) = (Ha+ Hyso) + eHy 4 + €2 H 4, (1.1.3)
HJP(e) = (Hp + Hy>o) + eHy g+ ¢ Hy i, (1.1.4)

where H] = Ha + Hp + Hy>, describes the non-interacting system of the two atoms and
the radiation field, H4 and Hp are the Hamiltonians of the two atoms A and B, Hy>, is
the infrared-regularized Hamiltonian of the free field, and the remaining operators contain
the interactions between the electrons and the field, as well as the interatomic Coulomb
interaction (in the case of HY).

Although Hf, Hy + Hy>, and Hp + Hy>, also depend on the electronic charge e via
the atomic Coulomb potentials, we suppress this dependence and keep the (true, non-
zero) value of e fixed for these operators. This amounts to treating e as an independent
mathematical parameter and will lead to expansions of ground states and ground state
energies which are partial expansions with respect to this parameter, with coefficients that
still depend on the physical value of the electronic charge entering Hf, Ha + Hy>, and
Hp + Hf>,. In light of this, each of (1.1.2), (1.1.3), (1.1.4) is a quadratic operator family
parametrized by the coupling strength e. See Section 2.4 for more details on this concept.
We establish that the operators H4 and Hp converge to their Schrodinger counterparts
H, and Hp (containing the non-smeared Coulomb potential) in norm resolvent sense as
the ultraviolet-cutoff parameter A tends to infinity, and assume non-degeneracy of the
ground states of the latter Hamiltonians. If follows that for large enough values of A the
assumption of non-degeneracy carries over to the ground states \II% and \IIOB of Hy and Hp,
which exist by standard results on atomic Schrodinger operators, see Proposition 2.5.1.
In Section 2.6 we prove that the unperturbed operators Hf, Ha+ H>5, and Hg + Hy>4,
viewed as operators on the Hilbert spaces L2 (R3%4)® L2 (R3?B)®F, L2 . (R¥?4)xF

ants ants anti

and L2 _,.(R3?B)® F, respectively (recall the above remarks about neglecting ’interatomic’
antisymmetry), have self-adjoint realizations, which in turn possess the non-degenerate
ground states \1194 ® \II% ®Q, \I/% ®Q and \IIOB ® €, respectively. Here € denotes the vacuum
vector of Fock space.

The corresponding ground state energies are Fy = Eg—i—E%, Eg and E%, where Eg and EB‘
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are the ground state energies of H4 and Hp. Due to the above infrared regularization, the
operators Hf, Hy + H¢>, and Hp + Hy>, have spectral gaps of sizes min{A, Ap, ho},
min{A 4, ho} and min{Ap, ho}, respectively, above their ground state energies. Here A 4
and Ap are the spectral gaps of H4 and Hp, which are independent of o. Under suitable
assumptions on the ultraviolet-cutoff function p the above families are found to be analytic
of type (A) in the sense of Kato, so that standard results of analytic perturbation theory
imply that for small enough values of the coupling constant e, the operators HZ2 (e), HZ(e)
and H,(e,R) have non-degenerate ground states, with the corresponding energy levels
given by the series expansions

oo ) (o] )
=> €' EJy, Ej(e)=) ¢ Ep, (1.1.5)
=0 1=0

= iei E?(R), (1.1.6)
=0

see Lemma 2.7.1. As discussed above, these expansions are partial with respect to the
parameter e, in the sense that the coefficients E7 4, E7 p and EY (R) still depend on the
physical value of e via the Coulomb potentials in the atomic Hamiltonians H4 and Hp.
Note that the radii of convergence of these series depend on the size of the infrared-cutoff
parameter o, and decrease to zero as ¢ — 0. However, this issue does not pose a problem
because we will work with a simplified model (see (1.2.1) below) which will turn out to
have a well-defined (o — 0)-limit. See also Remark 2.7.2.

In Section 2.8 the regularized interaction potential
V7(e,A,R) := E7(e,R) — (E(e) + Ej(e))

is defined. Here we have stressed its dependence on the ultraviolet-cutoff parameter A,
which it inherits from the operators HA(e), HE(e) and H,(e,R). It is established that
by (1.1.5) and (1.1.6), V?(e, A, R) has the series expansion

(e, AAR) =) ¢ (E — (Bfa+ E{p)) = > _ e V7(AR). (1.1.7)
=1 )

In particular, all partial derivatives with respect to e at (e = 0) exist, and

al
Oel

Vo(0,A,R) = (i) V7 (A, R).

1.2 Statement of the main results

We are now in a position to state the main results of the present work, which concern the
first four coefficients in the above series expansion. The first result is the assertion that
these coeflicients have a well-defined limit as the infrared regularization is removed.

Theorem 1.2.1. Assume (A1) and (A2) (see below) and let A > Ay, with Ag as in
Proposition 2.5.2. Then fori=1,2,3,4,

. 10 _, . o
Vi(AR) = lim (,av (0.AR) ) = lim (V7 (A R)
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exists.

The following two theorems concern the large- R-asymptotics of the interaction potential

Ze Vi(A,R) Z <§1L% (aae Vo0, A R))) (1.2.1)

which will serve as an approximate model for the true’ interaction potential V(R) from
(1.1.1).

Theorem 1.2.2 (1/R"-law for ultraviolet-cutoff system). Assume (A1) and (A2) (see
below) and let A > Ay, with Ag as in Proposition 2.5.2. Then

lim (RkV(A, R)> -

R—o0

forany 0 <k <7, and

c7(A) := lim (R7V(A’ R)) _ —e4§

R—o0 2

(21) 73— (0)aB(0), (1.2.2)

where

- <§jxixy?4| ((HA — B + fiw(k)) g0 }l> ijxlfA>
i=1

k) = <§xi\1103\ ((HB — B} + hw (k) g }L) Zx]\IJO >
=1

are the dynamic polarizabilities of the systems described by H4 and Hp.

Note that the interaction coefficient c7(A) still depends on the ultraviolet-cutoff via a:s(0)

and a£(0): their definition involves the operators Hy and Hp, their ground states and
their lowest eigenvalues, all of which are A-dependent via the smeared Coulomb potential.
The third main result states that c7(A) has a well-defined limit as the ultraviolet-cutoff is
removed.

Theorem 1.2.3 (Ultraviolet convergence and universality of 1/R"-law). Assume the hy-
potheses of Theorem 2.8.4. Then c;(A) has a well-defined limit as the ultraviolet-cutoff A
is removed, which is given by
2 h
lim ¢r(A) = —6433(2@ VA 0)ak0), (1.2.3)

A—o0

where &E‘(k) and dg(k) are the dynamic polarizabilities of the corresponding atomic

Schrodinger operators Hy and Hp incorporating non-smeared Coulomb potentials, see

(2.5.3).
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Remarks:

i) (1.2.3) reproduces the formula (1.0.6) found by Casimir and Polder ([CP48]), the only
difference being the additional factor 1/(27)2. This factor is due to our usage of units,
in which the vacuum permittivity ¢ is set equal to one, as opposed to the convention
4meg = 1 used in [CP48].

ii) The connection between the approximate model V (A, R) and the full model V(R) is
not entirely clear: although we will show that

lim V7 (e, A, R) = V(R)

for e in an interval [0,ep] (see Lemma 2.3.1), it is an open problem whether every indi-
vidual term in the series (1.1.7) has a well-defined (0 — 0)-limit, let alone whether V(R)
is four (or more) times differentiable, with i-th derivative equalling V;(A,R). Note that
if this was the case, then the V;(A,R) would correspond to the coefficients of the Taylor
series of V(R) at zero. However, recent results by Bach, Frohlich and Pizzo ([BFP09], on
asymptotic expansions of the ground state energy of Pauli-Fierz Hamiltonians in terms of
the fine structure constant o = 2 /(hc)) and by Griesemer and Hasler ([GH09], on analytic
expansions of the same quantity with respect to a3/2 when the dipole approximation is
used) suggest that the limiting objects V;(A,R) = (}_12% (VZ(A,R)) considered by us may

have a more than formal significance even for an expansion of V(R) up to arbitrary order
in e.

iii) As will become clear in the proofs of the main results, in principle the method for
analyzing the interaction coefficients V;(A, R) presented in this work could be carried out
up to any desired (finite) order of e in (1.1.7). But as Theorems 1.2.2 and 1.2.3 show, the
cancellation of the 1/R%-term corresponding to (1.0.3) by contributions caused by the ra-
diation field, and thus the emergence of the 1/R"-behaviour at long range, already occurs
within the first four terms.

1.3 Outline II: Strategy of the proofs

Part II of this thesis is devoted to the proof of Theorems 1.2.1, 1.2.2 and 1.2.3.

In Chapter 4 we prove Theorem 3.0.6, which states that Zle e'V7 (A, R) can be converted
into a sum of terms with a structure that makes them a lot more suitable for the following
investigation of the large R-asymptotics. The proof uses the following ingredients: First of
all, explicit formulas for the energy corrections up to fourth order (in €) in terms of matrix
elements involving the reduced resolvent T of H{ are derived in Section 4.1. After an
extensive analysis of the properties of 77 in Section 4.2, it is shown that 2?21 eV (A R)
further simplifies due the general structure of the perturbation problem and the fact that
many terms occur both in the case of finite and infinite interatomic separation, see also
Section 4.3. The remaining terms can then be grouped according to whether they are
generated by both the interaction with the field and the interatomic Coulomb interaction,
or whether they originate purely from either of them.

In Section 4.4 the terms containing only the field interaction are processed further by
converting them into integrals over the photon momenta. This is done using invariance
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properties and fiber decompositions of the reduced resolvent 7%, commutator and other
operator identities as well as symmetries involving the polarization vectors e(k, \) of the
photons. Furthermore, a number of R-dependent as well as some R-independent terms are
shown to cancel in the course of the calculation. This observation was partially inspired
by the formal manipulations carried out in the physics literature, see Section 1.4 below.
A guiding principle in grouping and comparing the terms encountered during the pro-
cessing is the homogeneity of (parts of) the integrands that occur. As mentioned above,
the converted terms have the structure of Fourier integrals, and thus - motivated by well-
known properties of the distributional Fourier transform - homogeneity can serve as a first
hint towards which terms will contribute to which power of 1/|R| in the final result. Fol-
lowing this idea, we group the terms originating purely from the field interaction into three
terms denoted by Fg(R,0), F7(R,0), F3(R,0). As is already suggested by the notation,
we expect these terms to decay asymptotically as 1/|R|%, 1/|R|” and 1/|R|* (with k& > 8),
respectively, after the infrared-cutoff ¢ is removed.

Chapter 5 deals with the terms in Z?Zl ¢'V7 (A, R) which contain the smeared interatomic
Coulomb interaction. An important tool for the analysis of these terms is the multipole
expansion of the interatomic Coulomb potential (), which is introduced and investigated
in Section 5.1. In particular, we derive tail estimates for the series expansion on bounded
regions of configuration space and give an estimate for the ’exterior’ contribution to ex-
pectation values of Qr on exponentially decaying functions. These estimates are essential
in making the arguments used in the physics literature rigorous. As pointed out in the
above discussion and in Section 1.4 below, the respective authors incorporate the lowest-
order term of the multipole expansion (the 'dipole operator’) into the Hamiltonian as a
perturbation. Although this formally leads to the same lowest-order (in 1/|R|) matrix
elements in the energy corrections, this method is flawed, since the resulting expression
does not define a semi-bounded Hamiltonian. However, following our approach, one can
exploit the exponential localization of the ground state eigenfunctions to rigorously carry
out the multipole expansion within the relevant matrix elements.

The results of Section 5.1 are applied to the terms

(Wo|Qr|Wo)

and
—(QrYo|T?|QRY0)H A0 H2F (1.3.1)

in Sections 5.2 and 5.3. In particular, we prove that a version of the London term (1.0.3)
involving the smeared Coulomb potential Qp is the lowest-order contribution (in 1/R) to
(1.3.1). Furthermore, this ’smeared’ version of the London term has a representation as an
integral over photon momenta, which is intimately connected to the relationship (1.0.10)
discussed above.

In Section 5.4, a number of terms from Zf‘zl e’V (A,R) which contain both the quan-
tized radiation field and the interatomic Coulomb potential and which are grouped into
terms denoted by My (R,0) and Mp(R,0) are investigated. We prove Theorem 5.4.1,
which identifies the contributions to Ma(R,o) and Mp(R, o) at orders 1/R® and 1/R"
and provides error estimates for the remaining ones, proving them to be O(1/R8).

In the course of the proof, which comprises Sections 5.5.2 through 5.5.5, a number of me-
thods is used. In Section 5.5.2 the multipole expansion is applied to Qr, again introducing
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a spatial cutoff and providing error estimates for the ’interior’ and ’exterior’ contributions
to the corresponding matrix elements. The estimates on the ’exterior’ contributions are
independent of the infrared regularization, and their proof involves results on the con-
servation of exponential decay under the application of resolvents of atomic Schrodinger
operators, see Lemma A.2.2 in the Appendix.

We then use rotation invariance and parity of the atomic ground states to show that a
number of terms obtained from replacing (g by its series expansion vanish, see Section
5.5.3.

In Section 5.5.4 we establish the existence of the (¢ — 0)-limits of the ’interior’ contribu-
tions to M4 (R, o) and Mp(R, o) and give estimates on the rate of convergence.

In the remainder of the proof of Theorem 5.4.1 we show that the lowest powers of 1/|R|
occurring in these limits are 1/|R|® and 1/|R|” and calculate the corresponding coeffi-
cients, see Section 5.5.5. To this end, we investigate the occurring Fourier integrals using
two different methods. The first one uses an approach involving the distributional Fourier
transform of singular functions. It exploits the homogeneity of parts of the integrands as
well as the relation (1.0.10) to transform the integrals in question into convolutions with
Dirac sequences parametrized by the interatomic distance R. This method is introduced
in Section 5.5.5. Its drawback is that one has to be able to compute the distributional
Fourier transforms of the integrands explicitly. In the cases where this is not possible, we
therefore employ a second method, which involves standard decay estimates for oscillatory
integrals involving smooth functions. Fortunately, the latter regularity requirement is met
in the cases in which we would like to apply this method, which turns out to be due to
properties of the ultraviolet-cutoff and the analyticity of resolvents.

In Chapter 6 we analyze the terms F;7(R, o), F3(R,0) and establish the (asymptotic) can-
cellation of the 1/|R|S-contributions. We first derive error estimates comparing (R, o)
and Fg(R, o) to their respective (¢ — 0)-limits F7(R) and Fg(R), which turn out to
exist since the integrands are sufficiently regular at the origin. Subsequently, in Section
6.5, we first show that the lowest power of 1/|R| that enters in F7(R) is 1/|R|” and cal-
culate the (asymptotic) coefficient explicitly. This is done by first rescaling the photon
momenta, at which point the homogeneity mentioned above comes into play, and then
applying a method for the asymptotic analysis of a certain class of singular Fourier in-
tegrals. This method, which is developed in Sections 6.2 and 6.3, uses the fact that the
Fourier transform of the (rescaled) ultraviolet-cutoff, which coincides with the (rescaled)
smeared charge distribution due to the relation (1.0.10), is a Dirac sequence. Furthermore,
it involves an analysis of the regularity of the dynamic polarizabilities aé’B (k) and their
Fourier transforms, thereby making the formal asymptotics arguments used in the physics
literature (see e.g. formulas (1.0.5) and (1.0.6)) rigorous.

The term Fg(R) contains integrands that are more regular than those occurring in F7(R),
and can be shown to be O(1/|RJ®) by the standard decay estimates for oscillatory integrals
mentioned above.

In Section 6.6 we show how the 1/|R|%-contribution originating from the electrostatic
Coulomb interaction is cancelled asymptotically by contributions involving the radiation
field, in the sense that their sum decays faster than any inverse power of |R|. As men-
tioned above, this crucially exploits the relation (1.0.10), which is a consequence of using a
smeared Coulomb potential for the interaction of the atomic particles. We also argue why
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we expect this mechanism of cancellation to break down if a proper Coulomb potential is
used instead.

Finally, in Chapter 7, we collect all the previous results, carry out the proofs of Theorems
1.2.1 and 1.2.2, and prove Theorem 1.2.3 by combining the norm resolvent convergence of
the atomic Hamiltonians mentioned above with an argument involving the uniformity of
exponential decay estimates for the atomic ground states with respect to the ultraviolet-
cutoff parameter A.

1.4 Further discussion of the physics literature

In the 1950s and 1960s, research on the retarded Van der Waals interaction in the theo-
retical physics literature mainly focused on a model described by a Hamiltonian which is
formally given by

H1:HA+HB+Hf—€(:L'1-E(0)+$2-E(R)),

where H4 and Hp are non-relativistic Schrodinger Hamiltonians describing hydrogen
atoms located at 0 and R, Hy is the free Hamiltonian of the quantized radiation field, and

B = 3 [k el (2;)3 el (e * ¥ ax () — e a} (1)

A=1,2

is the transverse electric field. Here w(k) = c|k| is the photonic dispersion relation, ¢
denotes the speed of light, e(k, \) are polarization vectors, and a];\(k), ay(k) are creation
and annihilation operators (see Section 2.1 below for precise definitions). Note that no
ultraviolet-cutoff has been incorporated into the electric field, so that it is not clear whether
H, is well-defined as a self-adjoint Hamiltonian. Formally, H; can be viewed as being

obtained from the dipole-approximated Pauli-Fierz Hamiltonian

Hap :21me (—ihvxl _ ZA(p, 0))2 n (—ihVX2 _ SA(p, R))2

+ *Qr(z1,32) + Hy

2me

(with Qg as in (1.0.2)) via the unitary transformation

e—i((e/(hc)z1-A(p,0)+(e/(he)z2-A(p,R)) ’

which yields the Hamiltonian

62

3(2m)3

2
e
Hy =Hy + 7||P||%2|SE1|2 +Hp +

2 2
H
3(27T)3 ||pHL2|:E2‘ + Hy
2

el Gl

~ e? 2 ,
+ 62QR(1'1,$2) — (27-(-)3 /dk’p|(kk|g’ (xl . k)(k . x2)ezk-R7

—e(z1-Ep(0) + 22 - Ep(R)) + (21 - 22)
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where

E,(x)= ) / dk\/h“ék) (;'(;r()l;;Qe(k, A) (e &¥ay (k) — e &X)gl (k).

A=1,2

Note that the coupling function in E,(x) behaves like /|k| at k = 0, in contrast to
the one occurring in the electromagnetic vector potential A(p,x), which behaves more
singular, namely as 1/4/|k| at zero. Neglecting the harmonic terms ﬁ]\p”%ﬂxlp,
2
sieass lplI2a zaf? and
2

(@1 2) s / k() PR,

setting p = 1 (this corresponds to a distribution of point charges), and arguing that to
first approximation, the dipole contribution from Qg
is cancelled exactly by the term

1 1 -

———— [ dk——(z1 - k)(k - zp)e’® R
(277')3 / |k|2($l )( x2)e )

which by (formal) Fourier transform is equal to the dipole operator

1
AT R3

one arrives at Hq, the only interaction operator being

(31 (1= BR)(R)z2)

H' = —e(x1-E(0) + 22 - E(R)). (1.4.1)

Note however that it is not clear a priori how accurate the above approximations are and
whether they can be controlled. Furthermore, even though Hs is unitarily equivalent to
Hgip, it is not clear whether Hy - even if properly realized as a self-adjoint Hamiltonian -
is unitarily equivalent to any physical model derived from first principles.

The first paper outlining a perturbation calculation using H; seems to be [PZ57], in which
the result (1.0.5) of [CP48] is re-derived. The authors start out with a box quantization
of the radiation field, leading to a discrete spectrum of Hy. The corresponding sums are
then later replaced by integrals over photon momenta.

The additional assumption that the spectra of H4 and Hp are finite and consist of a ground
state energy and one threefold degenerated excited level is made, which results in modified
polarizabilities a‘g’B. The resulting integrals over photon momenta are transformed into
(1.0.5) by arguments involving residue calculus and principal value integrals with implicit
cutoffs at infinity.

In [MP65] the results of [PZ57] are extended to the case of molecules in excited states,
resulting in a retarded Van der Waals interaction that can be either attractive or repulsive.
Craig and Power ([CP69]) perform a calculation using (1.4.1) as a perturbation operator
and arrive at the formula

he |k1|]k2\ A ik-
A B 2 ik-R
—QRop dkidko————(1+ (k1 - k 1.4.2
E E(2 )4/6 1 2|]1| |]2|( (k1 -ka)%)e ( )

for the lowest-order contribution to the retarded Van der Waals interaction. Here ozg

and ozg are static polarizabilities of two neutral atoms with purely discrete spectra. The
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authors then claim that a finite value for the integral can be found by ’explicit evaluation’.
Taking into account that this integral is clearly divergent in the sense of Lebesgue, this
can only mean that implicitly, a principal value or another limit was computed.

As will be shown in the course of the present work, if an ultraviolet-cutoff is incorporated
systematically into the model from the start, terms formally similar to (1.4.2) actually
contribute to the 1/R"- coefficient in the asymptotic expansion of the interaction poten-
tial, and the constant found in [CP69] has a well-defined meaning as a limit. For textbook
accounts of the derivations and the methods used in the above works, see [Pow65] and
[MK67].

Feinberg and Sucher ([FS68], [FS70]) follow an approach using scattering-theoretic argu-
ments and interaction potentials defined in terms of spectral representation of Feynman
amplitudes. They find the formula

he <23(04A B A B

I zoE + ayogy) + agal + aj@,a%)) (1.4.3)

1

for the lowest-order contribution to the retarded Van der Waals interaction. Note that
(1.4.3) contains the magnetic polarizabilities

A

23:<Z x0Y | Zxallfo >

ZpB

ob = 622;<Zxa\1/ \Zxa\p0> (1.4.4)

w‘mw

which do not occur in the Casimir-Polder result. In [Boy74], (1.4.3) is re-derived by argu-
ments involving the zero-point energy of the quantized radiation field.

In a recent work ([MS09]) Miyao and Spohn follow a functional-integral approach to the
problem. Starting from a self-adjoint, ultraviolet-cutoff, non-dipole-approximated Hamil-
tonian for an Hs-molecule with ’smeared’ electrons coupled to the quantized radiation field
(see the Hamiltonian (1.0.9) above), their very insightful (though in parts not completely
rigorous) derivation uses the Feynman-Kac formula and an expansion of the second cumu-
lant. The result is a formula for the retarded Van der Waals interaction which is similar to
(1.4.3), but which has different coefficients in front of the terms containing the magnetic
polarizability. A further difference is that their polarizabilities are defined in terms of
the (reduced) resolvent and the ground state of the Pauli-Fierz Hamiltonian of a single
hydrogen atom coupled to the radiation field, as opposed to the Schrédinger operators
H 4 p that were used in the definitions (1.0.7) and (1.4.4).

An interesting future task would be to investigate the relation between these quantities
for the two cases with and without radiation field. It might be worth noting that in the
course of their derivation, the authors also encounter integrals of the form (1.4.2), so the
rigorous method introduced in the present work for asymptotically expanding such inte-
grals in powers of R provides a rigorous foundation of the corresponding steps in [MS09].
For further references to the physics and quantum chemistry literature, we refer to the
textbooks [Spo04] and [Mil93].
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1.5 Experimental situation

The experimental investigation of Van der Waals forces and the effect of retardation has
quite a long history, which dates back to the 1930s and is still an active field today; for
extensive reviews of the history and the current status of the experimental situation, see
[KMMO09] and [BMMO1].

However, so far experiments in this area have mainly focussed on measuring a macroscopic
manifestation of dispersion forces, the so-called Casimir effect. This effect describes an
interaction between macroscopic bodies which is a consequence of the underlying quantum
phenomenon. As in the microscopic theory, these macroscopic interactions are predicted
to exhibit a crossover in behaviour between a non-retarded short-range regime and a re-
tarded long-range regime, which manifests itself in the relevant potentials obeying different
power laws in the respective regimes of separation between the bodies. The scale at which
this crossover occurs, as well as the sign, the different power laws and the strength of the
interaction itself, sensitively depend on the geometry and the material properties of the
macroscopic objects considered.

There are two commonly used theories of the macroscopic Casimir effect, neither of which
is based directly on quantum-mechanical Hamiltonians describing atoms and molecules.
The first one is a direct macroscopic approach based on the fluctuation-dissipation theo-
rem. This approach goes back to work by Lifshitz [Lif56] and takes into account macro-
scopic material properties like the (frequency-dependent) dielectric permittivity, as well
as atomic properties such as dynamic polarizabilities (see below for a definition). The
second theory is based on arguments from quantum field theory and views the presence of
macroscopic bodies as imposing boundary conditions which alter the vacuum state of the
field. This approach was first used by Casimir ([Cas48|) shortly after the publication of
the Casimir-Polder result [CP48]. The two approaches are compatible in that the Lifshitz
results can be obtained from the field-theoretic approach, see the references in [KMMO09].
It should be noted that even the macroscopic Casimir effect is extremely difficult to mea-
sure, and experiments have to obey stringent requirements on equipment, methods and
precision, for instance extremely precise determination of the separation distance, circum-
vention of residual potential differences, and minimizing material roughness and impurity.
However, in recent years there have been experiments using atomic force microscopy which
achieve accuracies of about one per cent, and which confirm the behaviour of the dis-
persive interaction between macroscopic bodies as predicted by the Lifshitz theory (and
modifications of it which take into account properties of real materials). In particular,
the crossover from the non-retarded to the retarded regime (the interaction in the latter
is sometimes termed the Casimir force) has been observed for different geometries (e.g.
plates, spheres, lenses) and materials (e.g. metals, mica, coated polystyrene). There
have also been indirect measurements of the Casimir force between an atom and a plate,
which use Bose-Einstein-condensates, and in mesoscopic situations using extremely small
material samples. For all the results just mentioned, see [KMMO09], [MPR*08] and the
references therein.

To our knowledge, so far no direct experimental verification of the microscopic theory of
retarded Van-der Waals forces between atoms and molecules, which are the subject of
the current work, seems to be available; the only commonly cited ’indirect experimental
evidence’ being the classic monograph [VO99], parts of which actually inspired the theo-
retical considerations in [CP48] in the first place. Nevertheless, since the Lifshitz theory
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reproduces the microscopic predictions of London and Casimir-Polder in the limit of dilute
bodies (see the references in [KMMO09] and [BMMO01]), experiments verifying predictions
about the macroscopic Casimir effect can be considered an indirect verification of the
microscopic theory.
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Chapter 2

Definition of the model and main
results

2.1 Hamiltonians

Consider two neutral atoms A and B consisting of two clamped nuclei located at 0 and
R € R3, with nuclear charge Z4, Zp respectively, whose (spinless) components interact
via smeared Coulomb potentials. The corresponding Hamiltonian (1.0.9) describing the
compound system of the molecule (composed A and B) coupled to the quantized radiation
field is given by

Hqa(R)
N

=

j=1

and the Hamiltonians of the individual systems consisting of atom A (respectively B)
coupled to the quantized radiation field are given by the Hamiltonians

1 . e 2
o (—lﬁvxj — EA(p, Xj)) + BQ(Qw(R) QIr)+In, @Iy, ® Hy, (2.1.1)

Za

1 . e 2
Hin =Y 5 (-mvxm - ZAp, xjA)) +e2Qu + Hy, (2.1.2)
ja=1 €
N 1 e 9
Hoa= D, 5 (<inV,, — A, xjp)) +Qp(R) + Hy. (2.1.3)
jp=Za+1 "€

These three operators act on the Hilbert spaces LZ,;(R3*Y) @ F, L2 . (R34) ® F and
L2, ;(R32B) @ F, respectively.

antt
F=FW) =i F™ = a2 0w
is the bosonic Fock space over the Hilbert space
W= L*(R®) @ L*(R?).

It describes the quantum states of an unconstrained number of photons with two degrees
of polarization. ® denotes the symmetric tensor product of Hilbert spaces, and we have
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set FO .= C = span{Q}, where Q is the so-called photon vacuum. m, is the mass of an
electron, e denotes the elementary charge, c is the speed of light in the vacuum and A is
the reduced Planck constant. N = Z4 4+ Zp is the total charge, and

= / dk'w Sk R _ ik (xi,~R) _ ikox;, +eik~(x]-B—xiA)>
R3 \k\2
’LAJ
+ Z / de} 2 olk (X5 4 —Xi ) — 7 Z/ de’ 2 1kxiA
= !k| \k!
W} 1k(x —X; 1k(xi -R)
»> / e \k\? R § \k\? C
Qa= 2, / ]k|2 el buaT) — 7, Z / \kp s, (2.1.4)
iA<jA
w ik-(x;,—X%; ik (x;,—
Qs(R) = Z dk| é{@’ ek ip=>ip) _ 7 z |k\2 ek( i5~R)(2.1.5)

iB<JjB

are the Coulomb potentials corresponding to charge densities smeared by convolution with
the function v, which will be specified below. See A.5 in the appendix for a derivation of
these formulas for the potentials.

Remark: In the whole of this work, we will adhere to the convention

f(k) = (27:)”/2 / F@)e k) gy (2.1.6)

for the Fourier transform. Using this convention, the electromagnetic vector potential in
Coulomb gauge is defined by

A(p,x) == al (GX) + a(GX). (2.1.7)

Here a' and a are the photon creation and annihilation operators on the Fock space F.
They are defined by first prescribing their actions on F(™ | namely

1 — _
(a(H)T) ™ (kp, AL, K, Ap) = Fei AT Dy Ay, kg A, K, A,

7j=1

(a()W) ™ (K, A Ky M) = Vi + 1 Z FORNTPTD (X Ky, Ap - K, M),

3
Ar=1,2"7R

where f € W = L?(R3)@ L?(R?) describes a single (polarized) photon, and then extending
this to the dense subspace

Fpim = {0 = {012 e F| ¥™ =0 for all but finitely many n}.

It is easily shown (see e.g. [Mer06]) that a(f)! and a(f) are closable and that their closures
(again denoted by the same symbols) satisfy the relation

(a(f))* = a'(f), (2.1.8)



where the asterisk denotes the adjoint operator. Note that on each n-particle level F(™),
these operators are bounded, but their extensions to F are unbounded operators.

On Fyip, the creation and annihilation operators satisfy the canonical commutation rela-
tions

[a(f),a'(9)] =(f, 9w
[a(£). alg)] =[a'(f),a (9)] = 0.

For any x € R? the coupling function G* € W is defined by

h .
X(k,\) := cp(k k, \)e ikx) 2.1.
G0 ) = eplk)y | 5 selle Ve ) (2.1.9)
where w(k) = ck is the photonic dispersion relation. Note that formally, the vector

potential is often written as

A = 3 [diepo ij)e(k,A)(e—“k'x)a;(k)+ei<k'X>aA(k)),
A=1.2

but to give rigorous mathematical meaning to the objects af (k) and a(k) would require the
introduction of operator-valued distributions, which we shall not need for our purposes.
The polarization vectors e(k, \) satisfy

ek, \)- k=0, e(kA\)-e(k,u)=0dx
and can be chosen such that
elk,\) =e(-k,\), A=12

A typical choice is

1
e(k, 1) = 7(—]{2, k‘l, 0),

VK2 + k3

ek,2) = L3 x e(k,1)

] kiks, koks, —ki — k3).

1
- e
ERGE
The ultraviolet-cutoff function p satisfies

p(+) = () = A3¢po(A-) = po(-/A),

where v is the form factor with which the charge distributions are convoluted. Here and
in everything that follows, we will always place the following assumption on .
Assumptions (A1l):

Y(x) = Aehp(Ax),
where A > 0, ¢ € C§°(R3), supp g C B1(0), [t =1 and 1 is real and invariant under

rotations, i.e. ¥(R™!x) = 1(x) for any R € SO(3) and x € R3. In particular, v is even,
i.e. (—x) = 1(x) for all x € R3.
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The parameter A characterizes the (inverse) length scale over which the point charges are
smeared. From the behaviour of the Fourier transform under dilations we conclude

~ —

p(+) =¥ () = Apo(A-) = po(-/A), (2.1.10)

where py = 17)6, so that on the level of the photons, A plays the role of an ultraviolet-
cutoff. Note that the assumptions on ¢ imply that p is real, p € S(R?), and that it
satisfies p(—k) = p(k) for all k € R3. Furthermore, the integral constraint on vy enforces
¥(0) = 1/(27)%/2, so that in the definition of the vector potential A, we automatically
absorb the factor 1/(2m)3/2 coming from the Fourier decomposition of solutions of the
Maxwell equations into normal modes (see [Spo04]).

The relationship (2.1.10) is an inherent feature of the quantization of the Abraham model
(for an explanation and further discussion, see [Spo04]), and the fact that the ultraviolet-
cutoff p is the Fourier transform of a scaled C§°-function (i.e. a Dirac sequence) will have
interesting consequences for the investigation of the large R-asymptotics of the fourth-
order energy corrections investigated below, see Section 6.5.

The Hamiltonian of the free quantized radiation field is given by

Hj:= Z/ hw(k)al (k)ay (k)dk = dT' (hw(k)),
A=1,27/R?

where the right-hand side denotes the second quantization of the multiplication opera-

tor hw(k) @ hw(k) = (hw(gk) ﬁxu?k)) on FI) = W = L?(R%) @ L*(R3). The latter is
self-adjoint on its maximal domain (this is always true for multiplication by real measur-
able functions), and by construction of the second quantization (see e.g. [RS80], Section
VIIL.10), Hy is a self-adjoint operator on F with domain D(Hy).

The following result is a fundamental prerequisite for the mathematically rigorous treat-
ment of the Hamiltonians we have just introduced.

Theorem 2.1.1. Let the assumptions (A1) on the form factor 1 be satisfied, and assume
that |e| < eg for a suitable eg. Then the operators Hoa(R), HSA, HSA are self-adjoint
and bounded from below on D(—As g+ Hyf), D(—Aa+ Hy), D(—=Ap+ Hy), respectively.

Proof. Tt can be shown (see e.g. [BFS99], [Spo04]) that the domains of a(f) and a'(f)
contain D((H)'/?) and that the relative boundedness estimates
la’ (£) ¥z <IIf fllw DY)z + 11F 1 121, (2.1.11)
la(f) ¥z <If/wllwll | (Hp) /20 2 (2.1.12)

hold for any f € W and ¥ € D((Hy)'/?). Combining these with (infinitesimal) relative
boundedness of the Coulomb potential with respect to the Laplacian and noting that the
assumptions (A1) on the form factor ¢ imply that

1
dk|p(k)|?
[, alot? S < .
ﬁA(p,x)2 are

one deduces that the symmetric operators eﬁzcvxj - A(p,x) and e*5
relatively form-bounded with respect to the operator —A+ Hy. The smallness assumption
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on e and an application of the KLMN theorem (see e.g. [RS75]) yield the assertion.
U

Remark 2.1.2. By functional integral methods it can actually be shown that this result
holds true for any value of the coupling strength e, cf. [Hir02]). For more details on the
Hamiltonian of the quantized Abraham model, see [Spo04].

Remark 2.1.3. As mentioned in the introduction, the realization of Pauli-Fierz Hamilto-
nians as semi-bounded, self-adjoint operators (which as such can have ground states with
finite energies and define a strongly continuous unitary group describing the time evolu-
tion of the quantum system) was pioneered in the works of Bach, Frohlich and Sigal (see
[BE'S98], [BFS99]). Without these fundamental results, the rigorous approach to retarded
Van der Waals interactions undertaken in the present work would not be possible. Note,
however, that the introduction of an ultraviolet-cutoff (which was necessary in order to
obtain the bounds (2.1.11)) implies that the operators Hga(R), HSA, HgA, as well as
all objects and quantities derived from them (such as energy levels, ground states and
resolvents), depend on the choice of the cutoff function 1y and the scale A at which the
ultraviolet-cutoff comes into effect. Furthermore, it is by no means clear (and probably
should not be expected at this level of generality) how the ultraviolet-cutoff could be re-
moved in any well-defined way. For instance, note that the right-hand sides of (2.1.11)
diverge as A — oo if f = G*(k, \)). This general situation is in contrast to the case of the
asymptotic 1/R"-coefficient c7 (see (1.2.2)), which is part of a description of a very special
physical situation (two atoms in their ground states and in equilibrium with the radiation
field), and which we find to have a well-defined (A — o0)-limit, see Theorem 1.2.3.

2.2 Approximations

Next we implement two common approximations, namely we employ the dipole approxi-
mation and neglect ’'interatomic’ antisymmetry of the electrons.

2.2.1 The dipole approximation

From now on we will use Hamiltonians which are subject to the so-called dipole approxima-
tion. This means that instead of using an x-dependent vector potential for the quantized
field, we ’fix’ the electromagnetic field at the nuclei located at 0 and R. The corresponding
Hamiltonians are

Za N
1 . e 2 . e 2
HR) =Y S (_lnvxm —ZAp. 0)) + Y - (_lhvij - A, R))
Jja=1 iB=Za+1
+*(Qu(R) @ Ir) + I, @ Iy, @ Hy (2.2.1)
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for the compound system and

Za
1 . e 2
HA = Z 5 <—1hVXjA — EA(p, 0)) +e*Qa + Hy, (2.2.2)
Jja=1 N
N 1 e 2
HP = N (_mv% —EA(p,R)) +e2Qp(R) + Hy, (2.2.3)
jp=Za+1 " €

for the individual systems.

2.2.2 Neglecting interatomic antisymmetry

The second approximation consists of neglecting interatomic antisymmetry of the elec-
trons, which is implemented by considering H(R) an operator on the Hilbert space

L2 (R¥24) @ L2 (R3P) ® F instead of L2 ,.(R3")® F. As before, H* and H? act
on L2 . (R34) @ F and L.2,,,(R3?8) @ F, respectively. Note that using the partition of

the vector potential in (2.2.1) (i.e. ja’s interact with the field at 0, jp’s with the field at
R) in an operator on L2, . (R3¥) ® F would not be possible to start with: since H(R) is
not invariant under permutation of the electronic variables, it does not leave this subspace
invariant.

Both of the above approximations are motivated by the observation that as soon as an

ionicity avoidance result, i.e. a bound of the form
Puo (3}) < Ce—cdist(x,{O,R})

on the one-particle density of the (true, antisymmetric) ground state vy is available, a
variational argument (see e.g. [MS80] for the Schrodinger/no-field case) shows that the
exchange error, i.e. the difference

(VI H(R)|¢) e WHER)Y)

eAN(Ha®Hp)RF  |[1]]? VeHAHERF  [J1]|?

)

decays exponentially in the interatomic distance R. Such bounds are known to hold
for atoms (see standard results on exponential decay) and molecules (see [Fri]) in the
Schrodinger case without field, for atoms in NRQED (see [Gri04]), and they are strongly
conjectured to also hold for molecules in NRQED.

In order to define the setup and carry out the calculations on the Hilbert space L?,_,.(RV)®
F, one would then have to use a partition of the (true, antisymmetric) ground state
according to regions of configuration space where each of the electrons is localized near
one of the two nuclei. Although this is possible in principle, we refrain from implementing
it in the present work so as not to overload the notation and to keep the calculations
within a reasonable length.

As for the non-dipole-approximated Hamiltonians, one has the following self-adjointness

and semi-boundedness result, which is proven in exactly the same manner.
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Lemma 2.2.1. Let the assumptions (A1) on the form factor ¢ be satisfied, and assume
that |e| < ey for a suitable ey. Then the operators H(R), HA, HE are self-adjoint and
bounded from below on

D(—Ajs—Ap+Hy) C L2, (R¥4) @ L2 ,,(R3?E) @ F,

antt anti

D(=A4+ Hp) C L2,,(R¥4) @ F,

antt

D(-Ap+ Hy) C L2, (R¥85) o F,

antt

respectively.

Again, this result actually holds true for any value of the coupling strength e, cf. [Hir02].

2.3 Infrared regularization

The quantity of interest in this work is the long-range behaviour of the interaction potential

VIR):=ER) — ngn ER). (2.3.1)
Here
E(R) := infspec(H(R))

is the ground state energy of the system consisting of the two atoms A and B at a finite
distance R from each other, interacting via Coulomb interaction and the radiation field,
and the second term in (2.3.1) is the limit of this ground state energy as the atoms are
moved infinitely apart.
The great challenge in understanding V(R) (whether qualitatively or quantitatively) is
that the dependence of the ground state energy on the interatomic distance R is quite
subtle and enters in a very indirect way. This is already the case in the situation without
coupling to the radiation field, where the role of R is that of a parameter in the interatomic
Coulomb potential, namely the position of the second nucleus. In the presence of the
radiation field, an additional R-dependence is generated, which - as we will see in the
course of our analysis - is more subtle, even if the dipole-approximation is used.
As we pointed out in the introduction, perturbation theory is a tool that has been used
extensively in the physics literature to tackle this problem in both cases, with the mathe—
matical problems indicated above. However, as we also mentioned, the 1/|R|%-asymptotics
of V in the case without radiation can be proven rigorously, so in order to explain the
crossover to 1/|R|"-behaviour in the presence of the field, one has to understand the
mechanism by which contributions from the radiation field suppress the London term
1

Ce ’R‘ .
Since this term is of perturbative origin, it is natural to try and understand how the per-
turbative energy corrections obtained formally in the works mentioned above can be given
a rigorous mathematical meaning.
Due to the lack of spectral gaps in the operators H(R), H4 and H® involved in the defini-
tion of V(R) (see the discussion in the introduction above), a priori standard perturbation
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theory is not available for their treatment. Our approach will therefore be to consider an
infrared-regularized version of the interaction potential V(R), the introduction of which
we will now begin to prepare.

We incorporate an infrared-cutoff into the coupling function G*(k, A) by setting

GX(k,\) == X0 (k)G*(k, \) = X0 (k) c p(k) e(k, \Je k.

2w(k)

where o > 0, and x, (k) is the characteristic function of the set {k € R?, w(k) > o}. The
infrared-regularized vector potential is defined as

As(x) = al (GF) +a(GY),

and the corresponding infrared-regularized Hamiltonians are

24 1 e 2 N e 2
H'R) =Y S (—iﬁijA - EAU(O)> + Y : (—ihvij - EAU(R)>
Ja=l iB=Za+1

+e*Qu(R) + Hy

for the compound system and

Z A
o .__ 1 : € 2 2
HG =3 5 (<i¥x,, - CAU(O)) +e2Qa + Hy,
ja=1
N 1 e 2
Hp = Y : (—mvxm - EAG(R)> +e2Qp(R) + Hy,
iB=Za+1

for the individual systems.
The decomposition

LYR’) = L*({w(k) > o}) ® L ({w(k) < 0})
carries over to
W =L*(R3) @ L*(R?)

= (L*({w(k) 2 o}) @ L*({w(k) 2 0})) @ (L*({w(k) < o}) @ L2 ({w(k) < 0}))
=:We®Ws

and induces an isomorphism
U:FW)— F(Wy) @ FWeo) = Fp @ F,
on the level of the Fock spaces. Corresponding isomorphisms

U = Linti(RSZA)(ngnti(RSZB) & U,

UA = IL(2LTL (]R3ZA)®U7

ti

UB = IL(2”7 (R3ZB) ® U,

ti
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are induced between the Hilbert spaces, with respect to which the Hamiltonians transform
as

UH(R)U' = H,(R)® Iz + 15, ® Hyeq, (2.3.2)
UaHGU ' = H} @Iz + 15, ® Hpoo, (2.3.3)
UpHRUG' = HP @ 1z + 15, ® Hyoy, (2.3.4)
where
24 1 e 2
Ho(R) =Y o (—mvxm - EAU(O))
ja=1
N e 9
+ Y 5 (FihVa, —CAGR)) +QuR) + Hpsp, (235)
iB=Za+1 ¢ ¢
&l 1 e 2
HY =) 5o (-irvx,;, - EAU(O)) +2Qu + Hyso, (2.3.6)
ja=1
N 1 e 2
HY = 3 g (Vs — CAG(R)) +EQu(R) + Hys, (2.3.7)
jB=Za+1
acton L2 . (R3?M)@L?  (R¥?B)RF,, L2, . (R3%1)@F, and L2, ,.(R3?B)®F,, respectively,
and

Hizo = [ Re09al (9000 = AT (09 3 w20

Note that the Fock space vacuum sector F(©) = C is left unaltered by the above isomor-
phism. On .7-}(,1), Hy>, acts by multiplication with hw(k), and this operator is bounded
away from zero by construction, since the underlying space is L?(w(k) > o). We have

spec(Hf‘f((rn) = essran(hw(k)) = [ho, 00).

=

In particular, H FFD is boundedly invertible, with ||(H % Analogously,

)
Hf|f<2> is multiplication by h(w(k1) + w(ks)), and we have the identities spec(Hflf(g)) =

[2ho, 00) and ||(H

f‘f@))_lH = 5+—. As an operator on all of F,, the spectrum of H>, is

given by

spec(H y>,) =spec <69$L°:0h(z w(k,)))

i=1
={0} UpZ; [nho, 00)
={0} U [ho, 0).

Evidently, H>, has a spectral gap of size ho above its ground state energy. Now note
that since the inner product on the Fock space F, is generated by that on L?({w(k) > o}),
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all integrations occurring in the calculation of the matrix elements will range over the set
{w(k) > o} respectively {w(ky) > o} x {w(k2) > o}, and the final (¢ — 0)-limit can be
carried out by replacing these with integrals over R? and RS, respectively.

The next lemma states two facts: firstly, it shows that the infrared regularization is
controlled in the sense that if it is removed by carrying out the (o — 0)-limit, we recover
the ground state energies of the dipole-approximated Hamiltonians H(R), H A and HP
we set out to study in the first place from those of the infrared-regularized Hamiltonians
H?(R), H} and H. Secondly, for the study of the ground state energies of the latter, we
can restrict ourselves to the study of the operators H,(R), Hf and HZ, which act on the
Hilbert spaces Lg,,;(R*4) @ L2, (R*?) @ F5, L7, (R*#4) @ Fr and L7,,,,(R3P) @ F,
respectively, and have spectral gaps above their ground state energies. In particular, as we
will see below, these latter operators can be treated using analytic perturbation theory.

Lemma 2.3.1. Let the assumptions (A1) on the form factor ¢ be satisfied, and assume
that |e| < ey for a suitable eg. Then

inf spec(H?(R)) = inf spec(H,(R)) =: E(R), (2.3.8)
inf spec(H%) = inf spec(HZ) =: EY, (2.3.9)
inf spec(H$) = inf spec(HP) =: ES,. (2.3.10)
and
linr(l)EU(R) = E(R) = inf spec(H(R)), (2.3.11)
lin%)Eg = E, := inf spec(H?), (2.3.12)
lin%)E% = Ep := inf spec(HP). (2.3.13)

Assume in addition that the atomic Hamiltonians Ha, Hp and Ha + Hp + €2Qr (see
(2.5.1), (2.5.2) and (2.4.3) below for their definitions) have non-degenerate ground states.
Then for e small enough and o < oy for a suitable oy (depending on the spectral gaps
of the atomic Hamiltonians), E°(R), ES and E are isolated eigenvalues of H,(R), HZ
and H f , respectively, with spectral gaps at least of size o.

Proof. The identities (2.3.8), (2.3.9) and (2.3.10) are immediate from the decompositions
(2.3.2) through (2.3.4) upon noting that inf specH ¢, = 0. The assertions (2.3.11) through
(2.3.13) follow from ([FGS08], Lemma 22) upon noting that all operator estimates used
by the authors also hold for the dipole-approximated vector potential. The last assertion
is a consequence of ([FGS08], Theorem 18). O

Remark 2.3.2. i) We have included the previous result here since it demonstrates the
mechanism of the infrared regularization and the fact that it is well-controlled upon re-
moving the infrared-cutoff. However, note that it concerns ground state energies before
employing a perturbation expansion. As already mentioned in the remarks after Theorem
1.2.3, this result does not make any assertions about the (¢ — 0)-behaviour of individual
terms in the perturbation expansion and therefore cannot be used to relate (o — 0)-limits
of individual perturbation coefficients to quantities related to the true (i.e. non-infrared-
regularized) ground state energies E4, Ep and E(R).
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ii) In Theorem 2.5.2 below we will see that if the ultraviolet-cutoff A is chosen large enough,
then the non-degeneracy assumption on the ground states of H 4 and Hpg follows from the
assumption that the ground states of the atomic Schrodinger operators H, and Hp with
proper (i.e. non-smeared) Coulomb potential (see 2.5.3) are non-degenerate.

2.4 Perturbation-theoretic setup

In the following we will write p; = —ihVy, and use the shorthand Hy = L2 ,;(R3%4),
Hp = L2 ,.(R3%B). Multiplying out the squares in (2.3.5) and switching to the relative

anti

coordinates {xz,+1 +R,...,xny + R} on Hp yields the perturbation problem
H,(R) = Hy(e,R) := HJ + eH., + *H, (2.4.1)
where
Hf =Hy+ Hp+ Hy>q

is the non-interacting Hamiltonian of the two atoms and the free radiation field (see (2.5.1)
and (2.5.2) below for the definition of H4 and Hp), and the perturbations are given by

1 Z 1 N
Hl - Ze o j : B
0= e 2 P As0) = D (Pin - As(R)), (2.4.2)
Ja= iB=Za+1
Z A N
H// - 7Ao' 2 - —Ao_ R 2
7 2m, “~ c? )7+ OMme Z 2 R)"+Qr
ja=1 JB=Za+1
1 Za 2 1 Zp 9
T {0 — A ,
Qme 02 (0) 2me C2 ( ) +QR
where
=2 / il (T — eleteis ) _ e loip ) 1 (s xia )Y (9.4.3)
RS Ik\Q

tA.JB

is the smeared interatomic Coulomb potential in relative coordinates.
Rewriting the operators (2.3.6) and (2.3.7) (which act on Hy ® F, and Hp ® F,, respec-
tively) perturbatively yields

H\e) = (Ha+ Hyzo) + eH) o+ € H) 5,

Hy(e) = (Hp + Hy>q) + ety g+ e*Hy g,

where the perturbations are now given by

Za

1 1 Zu
H, 4 =— Ay H! “2A,(0)? 2.4.
g,A Mec jzl(pJA (0))7 A — 2, 2 (0) ) ( 6)
A=
I 1 Zg
CIJ',B = - m Z (p]B AJ(R)), gB %CTAU(R)2 (247)
¢ jp=Za+1 €
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Recall from above that due to the introduction of relative coordinates, the unperturbed
operator HZ(0) is independent of R, so that the R-dependence of the family HZ(e) is
caused only by the perturbation operators.

Remark 2.4.1. A few conceptual issues are worth remarking on at this point. The
Hamiltonians (2.4.1), (2.4.4) and (2.4.5) depend on the three paramaters e, A and R.
Our objective is to study the large-|R|-behaviour of the interaction potential V7 (e, A, R)
(see Section 1.1 or Section 2.8 below) derived from these operators, and - if possible - to
gain results which are independent of the ultraviolet-cutoff A. To obtain a formula for
V(e, A, R) which is accesible to further analysis, we first employ perturbation theory with
respect to e, resulting in an expansion whose coefficients depend on A and R. In a second
step, we then analyze the |R|-asymptotics of these coefficients, and later investigate their
(A — oo)-behaviour.

Note that the Hamiltonians H4 and Hp depend on e via the atomic Coulomb potentials
and therefore, strictly speaking, Hf, Hq + Hy>, and Hp + Hy>, are not the constant
terms (i.e. those resulting upon setting e = 0) of the families (2.4.1), (2.4.4) and (2.4.5).
This issue could be resolved by regarding the fine structure constant o = e?/(4nhc) as the
coupling constant: noting that the definition of the coupling function (see (2.1.9)) implies

e e e

7AO’ ~ — hwiw 1/2

. (x) JVhe e
we find

eHy, = ¢ (Hy s+ Hyp) ~ © (Ao(0) + Ag(R)) ~ /%,

g

¢’ Hy = e* (Hg 4 + Hy g+ Qr)

€2 [ Zy 75
~ Ao’ 2 Ao’ 2 2
s (5 An07 + 52 ALR?) +
2 0

Nozl—i—ozl—l—eoz,

so that setting e = 1, we find that the interatomic Coulomb term e?Qpr (as well as the
atomic Hamiltonians H4 and Hp, as can be seen analogously) is of zeroth order with
respect to o, while the remaining terms in e?H” are of first order, and the perturbations
eH, 4, eH] 4 and eH; are of order 1/2.

However, ultimately we are interested in the large-|R|-behaviour of V7(e, A, R), and we
expect that the interatomic Coulomb potential e2Qp only makes a small contribution to
this if |R| is large. This is why on the level of perturbation theory with respect to e, we split
the interatomic Coulomb potential e?Qp from the atomic Coulomb potentials contained
in Hy and Hp and (as mentioned in the introduction) suppress the e-dependence of the
atomic Hamiltonians H4 and Hp. Mathematically, this can be regarded as treating e
as an independent parameter for the families (2.4.1), (2.4.4) and (2.4.5), which we will
henceforth view as quadratic operator families with respect to e. In Section 2.7 we apply
standard results from analytic perturbation theory to the families (2.4.1), (2.4.4) and
(2.4.5), obtaining series expansions for their ground states and ground state energies.
The remaining e-dependence in the constant terms Hf, Hy + Hy>, and Hp + H >, will
manifest itself in the fact that these expansion are partial expansions with respect to the
parameter e, in the sense that their coeflicients still depend on the physical value of the
electronic charge contained in these operators.
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2.5 The atomic Schrodinger operators

In (2.4.4) and (2.4.5),

Za 52
Hy==> Ay, +€°Qa (2.5.1)

; 2me
ia=1

and

Za+Zp 2
- E 2
Hp = — ' e AXJB +e“Qp (252)
jB=Za+1

are Schrodinger operators describing the atoms A and B, respectively. (4 is the smeared
Coulomb potential from (2.1.4), and Qg corresponds to Q(R) from (2.1.5) after switching
to relative coordinates for the electrons of atom B. The operators H4 and Hp act on the
Hilbert spaces Ha = L2, ,.(R324) and Hp = L2,,,(R?47), respectively. Note that the
introduction of relative coordinates has eliminated the R-dependence from the operator
Hpg. The R-dependence involving the electrons is now solely contained in the interatomic
Coulomb potential Qg.

Next we collect some important properties of the operators Hy and Hp.

Proposition 2.5.1. Suppose that the form factor 1 satisfies the assumptions (A1). Then

i. Ha and Hp are self-adjoint operators on L2, ,.(R3%4) and L?

anti anti (R?)ZB) with domains
D(Hy) = H*(R*?4) N L7,,,,(R*4) and D(Hp) = H*(R*?2) N L7,,,,(R*77), respec-
tively.

nti

ii. Their spectra are of the form

spec(Ha) = {E4}72) U [2a, ),
SpeC(HB) = {ElB}?iO U [EB, 00)7

where the Ef4 and the E}é are isolated eigenvalues of finite multiplicity satisfying
Ele < E}4 << Xy and E% < EJI3 < .- < ¥pg. In particular, Hax and Hp both
have a ground state, and the corresponding ground state energies Eg and EJO3 are
separated from the rest of the spectrum by finite gaps Aq > 0, Ag > 0.

iii. (Rotational and parity invariance) H 4 and Hp are rotationally invariant in the sense
that
UrHy = HyUgr, UrHp = HpUr VR e SO(3),

where the bounded operator Ugr, (UgV)(z) := W([R™! x -+ x R™1]x) belongs to the
unitary representation of the diagonal of the group SO(3)x---xSO(3). Furthermore,
Hy4 and Hp commute with the parity operators P4 and Pa, where

PA¢(X17-"7XZA) ¢(—X17---;—XZA)7

PBd}(Xl, Ce. ,XZB) = w(—Xl, ey —XZB).
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iv. (Exponential decay of eigenfunctions)

(a) (LP bounds on ground state eigenfunctions) Let ¥4 and ¥p be the ionization
thresholds of Ha and Hg, and let \IJ% and \IJOB be eigenfunctions of H4 and Hp
corresponding to the lowest eigenvalues E% and EY, respectively. Then for any
a<l,

\Ilgea\/EAfE%x\A e LOO(R?)ZA) ﬂLQ(]R?’ZA),
\I,%em/zB—Egum c LOO(RSZB) N L2(R3ZB),

where |x|4 = \/ZiZ:Al 2me(x; - x3) and |z|p = \/Ziz;‘ztﬁ 2me(x; - Xi).

(b) (Ezponential decay of the one-particle densities) Let W9 and V% be as in (a).
Then the corresponding one-particle densities

pq,%(m) = ZA/ |00 (x, %0, ..., x7,)dxs ... X7,,
R3ZA-3

pq,%(x) = ZB/ 0% (x,x2, ..., Xz7,)2dxs ... X7,
R3Zp—3

satisfy

pyo, (x) < Ca e~ Call,

—Cplx|
pyo (x) < Cpe ™
for suitable constants Ca,C"y,Cp,Cz > 0.

v. Let V9 and Y be as in w)(a). Then for any ia € {1,...,Z4}, jp € {Za +
1,...,Z4+ Zn} and any « € {1,2,3},

x¢, U9 € H*(R%4), x% U% € H*(RP7B).

Proof. 1) By rewriting Q4 and Qp in position space (using the fact that the Fourier
transform converts products into convolutions, see A.5), one observes that each summand
is of the form
V(y)Y(y) 1
W(x)=C [ dydy =CWxd)* | | (@),

RS lz—y+y -
with * = x; or v = x; — x;. Note that we have used the assumption that ¢ is even.
Since ¢ € C§°(R3), so is 1 * ¥, and thus we conclude W € C*°(R3). In particular,
W is bounded on compact subsets of R3. To estimate its decay at infinity, note that
for |z| > 4diamsuppv and y,y’ € suppt we have |z —y + /| > ||z| — |y — V|| >
|z| — 2 diam supp ¢ > 1/2|z|, and thus

2C

[

W ()| < fj / dydy D)y =

since [¢ = 1 by assumption. Thus we conclude that at infinity, W decays at least like
the non-smeared Coulomb potential. Combining this with the boundedness on compact
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subsets, we conclude W € C}° (R3), its supremum depending on the size of supp . (Note
that if we rescale 1 = A3yy(A-) to form a Dirac sequence, then we recover the non-
smeared Coulomb potential in the limit A — oo, which is of course unbounded near zero.)
Thus Q4 € C°(R3%4) Qp € C°(R348), and their infinitesimal relative boundedness
with respect to the 3Z4- (3Zp-) dimensional Laplacian is trivial, establishing the self-
adjointness of Hy (Hp) on D(Ha) = H?*(R3%4) N L2, . (R324) (D(Hp) = H*(R3*?2) N
L2 ,.(R3%7)) via the Kato-Rellich theorem.

ii) This is basically Zhislin’s theorem ([Zis60]). In our case of a smeared Coulomb potential,
it can for instance be proven by a slight modification of the proof given in [Fri03].

iii) Note that Ug leaves D(Ha) = H?*(R3%4) N L2 (R3%4) and D(Hp) = H?(R3%8) N

antt

L2, . (R32B) invariant. The operators
ZA+7ZB 72
B STV s A
JA 2m6 B
Jja= 1 JB=Za+1

commute with Ug, since every term in the sum is a Laplacian on R? and thus com-
mutes with any element of the representation of SO(3). By assumption, the smeared
charge distribution v, and thus also its Fourier transform 1/3, is invariant under rotations.
Furthermore, |Rk| = |k| for any R € SO(3) and k € R?, so that the first assertion
follows by a change of variables in the expressions defining Q4 and Qg. The assertion

on the parity operators follows similarly: P4 and Pg commute with — Z]A 1 2’7125 X4

and — Z]Z;;rZZ e 27;2 -Ay; ,» respectively (twofold differentiation produces (— 1)2 =1), and

| — k| = k|, ¥(—k) = 1(k) for all k € R? (the latter by the above assumption on ).
iv)a) The smeared Coulomb potentials Q4 and Qp satisfy the condition (C3) from
[DHSV79]: by the proof of i), each term W in the sums, viewed as a multiplication
operator on L?(R?), is decomposable into an element of L?(R?) + L*(R3) (actually the
L2-part can be chosen to be 0, see above) and satisfies W (x) — 0 as |x| — co. The results
now follow from §5 and §7 of [DHSV79).
iv)b) See [AHOHOMS]1].

v) It suffices to verify that ZZA A, (x3, ¥0) € L2(R3%4). To this end, note that

ZA

D Ay (x2,09) _2Zv A+XZAZAXJ (T9).

j=1

Since ¥ € H?(R3%4) is an eigenfunction, we have

ZA
Z vxj (XZQA) ) vxj \IIO - (VXZA \IJO ) S L2(R3ZA)'
j=1
Using the eigenvalue equation for \11?4, we find
A 2m,
X D A (W) = x7, ( T (2Qalx, - x7,) - E%)ﬁf%) ,
j=1
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and the exponential decay estimates from iv) allow us to conclude (x§ ¥9) € L? (R3%4),
Furthermore, Q4 € C£°(R3%4) by the proof of i), so that also

Qa(x1,... ,xZA)(x?A\II%) € LQ(R?’ZA),
finishing the proof. O

To prepare for the following, consider the standard atomic Schrédinger operators

Za

- h2
Hy=— Z zmeAXi + €2VA,
=1
. h
Hp=-) 5, (2.5.3)

=1

describing two atoms A and B located at 0 and R € R3, respectively. Here the interaction
is given by the Coulomb potentials

1 &
Va=—
A 47r |xl| 471' Z |x; — xj|
and
1 &
V= —
B 471' \X | 47rz |XZ—XJ|
Note that here we have already chosen the relative coordinates {x; + R,...,xz, + R}

for the operator H . The Hamiltonians H 4 and H p are self-adjoint on the domains

L2 (R324) 0 H%(R324) and L2, ,.(R3%2) N H(R347), respectively (this was first proven
in [Kat51]), and their spectra consist of a countable set of eigenvalues of finite multiplicity
at the bottom, and a branch of essential spectrum stretching from the ionization threshold
to infinity above these (see [Zis60]). In particular, H4 and Hp have ground states, and
the corresponding eigenvalues are separated from the rest of the spectrum by finite gaps

A4 and Ap.

Assumption (A2): The ground states of the Schrodinger operators Hy and Hp (con-
taining non-smeared Coulomb potentials) are non-degenerate.

The next proposition establishes the close connection between the Hamiltonians Ha, Hp
(containing smeared Coulomb potentials) and their counterparts Ha, Hp.

Proposition 2.5.2. Suppose that assumptions (A1) and (A2) are satisfied. Then there
exists Ag > 0 such that for A > Ay ,

i. The ground states of Haq and Hp are non-degenerate and are spanned by two nor-
malized, antisymmetric wave functions \1194 and \If%.

11194 and \II% can be chosen to be real functions.
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140 \Il% and \If% both have definite parity, i.e. they are eigenfunctions of the parity oper-
ators Py and Pp (see the preceding proposition) with eigenvalues € 4,ep € {1,—1},
respectively. Furthermore, ‘1194 and \Il% are invariant under the representation of the
diagonal of SO(3) x---x SO(3). Note that by the introduction of relative coordinates
for atom B, both \1194 and \II% are centered at 0.

w. The spectral gaps Ax and Ap are bounded away from zero uniformly in A.

Proof. i) and iv) follow from the fact that H4 and Hp converge to H 4 and H B, respec-
tively, in norm resolvent sense (see [RS80] for the definition). In particular (see [RS80],
Thm. VIII.23), this convergence implies

1 Plapy(Ha) = Plapy(Ha)l A—’ 0,

|1 Py (Hp) — Py (Hp)||

—>OO

for all spectral projections P, ) corresponding to intervals (a,b) with endpoints belonging
to the resolvent set of Hy (respectively Hg). Choosing (a,b) so that the only point of
spec (H ) (resp. spec (Hp)) it contains is an isolated eigenvalue E, and letting A be large,
implies the existence of isolated eigenvalues E; of Hy (resp. Hp) in the vicinity of F,
their total multiplicity being equal to that of E. In particular, this implies the existence
of non-degenerate ground states of H4 (resp. Hp) for large A. Furthermore, choosing Ag
so large that none of the eigenvalues of H4 and Hp obtained from those of H4 and Hp
cross, we obtain uniform lower bounds for the spectral gaps A4 and Ap as A ranges over
the interval [Ag, 00).

We will prove norm resolvent convergence of H4 to Hy, the other case being completely
analogous. First note that H4 and H4 have the common domain H2(R3%4), so that by
([RS80], Theorem VIIIL.25 b)), it is sufficient to show that

sup ||(Ha = Ha)plla — =0,
llella=1
where [l¢[|i = |[¢ll 2324y + [[Hapll p2(r374) is the graph norm of Hy, which is equivalent

to the H?(R3%4)-norm by standard relative boundedness estimates. To this end, we first
rewrite Q4 in position space (see A.5), which yields

Qa(x1,...,%xz,)
= i‘r‘mi; <(¢ 1)) * ‘1|> (xiy) + ;rz;A ((d) xP) * ’1|> (Xiy = Xj4)-

For any ¢ € D(H,) = H*(R3%4) with |||y = 1 we have
I(Ha — Ha)ol ]2 goz4)
:HQA - VHiQ(R?’ZA)

=5 ((wewrs ) o) (25.4)
e 1) T ) 7 L2(R3Za) o
1 1 1 1 2
4 ar \WHEW) T (X = Xy ) — o 2.5.5
’ in Z)42<;A <47r <<¢ v - |> x Xia) |%i, — XjA’) v L2(R3%4) ( :
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Consider a typical term in (2.5.4) and assume without loss of generality that i4 = 1. Put

o= () ) 0= o

|- x|

and note that f € L? (R?). Recalling that by assumption we have 1) = A34(A-), where
Yo € C§°(R?), [+ =1 and supptpy C B1(0), we note that

supp (¢ *9) C 2supp v C By (0).

Now choosing L > 2/A and using the splitting L?(R3) = L?(B1(0)) @ L*(R3 \ B(0))

yields
1 1
H ((w *9) !-I) (i) = |xiA|> N ooy

:/ dxz...deA/ |f ()Pl (x1, - - -, X7, )dx
R3Z4-3 R3

:/ dx2...deA/ |f(x1)|2|g0\2(x1,...,xZA)dx1
R3%4A4—3 R3\ Br,(0)

2

+/ dx2...deA/ |f(x1)|2|g0]2(x1,...,xZA)dx1.
R3ZA4-3 )

Outside supp (¢ * ¢) we have

(e ) 0=

|- |

by Newton’s theorem (see [LL97], Theorem 9.7), so that the first integral vanishes. As
concerns the second one, we apply the Sobolev inequality (twice) to the function

(10('7X27 s aXZA) € H2(R3)

to conclude that ¢(-,xa,...,xz,) € L. (R?), with

loc
(s x2, o xz,) e (B 0)) SOl X2 x2,) | H2(B,(0))
SCH‘?(? X2, .- 7XZA)HH2(R3)
for a suitable constant C' which is independent of x»,...,xz,. This yields the estimate

/ dxz...deA/ |f(x1)\2\@]2(x1,...,XZA)dX1
R3ZA—3 BL(O)

< [ sz ot oxz e [ 100
R:’)ZA—S B

£(0)

:CQHJCH??(BL(O)) /]RSZA Z |DSo(2, %, ..., Xz,) |2 dzdxs . .. dxz,
|| <2

§02||f||%2(BL(0)) ||90"?112(R3ZA) < é||f||%2(BL(o)) Il

=1
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where the last inequality follows from the equivalence of the norms ||-[| y2(gsz4) and || ||,
see above. By standard results on mollification with C§°-functions (see e.g. [Eva98]), we
have f — 0 in L (R3), which shows that

sup (2.54) — =0.
lell =1 A—oo

The corresponding assertion for the terms in (2.5.5) is proved similarly by introducing
relative coordinates (in R3%4) for each pair (x;,,%;,)-

ii) Since H4 and Hp are real operators (in the sense that they commute with the involution
WP ), \11?4 and \I'% can be chosen to be real functions.

iii) Since H4 and Hp are rotationally invariant and commute with the parity operators (see
Proposition 2.5.1), the non-degeneracy of Eg and E% implies that each of \11?4 and \IJ% has
to lie in a one-dimensional common eigenspace of the Hamiltonian and the generators of
the Lie group {(R, ..., R), R € SO(3)}, which are the angular momentum operators L, =

——

Za p times
EiZ:Al’B (x; X Pi)a, @ = 1,2,3. The only one-dimensional eigenspaces of these operators are
those corresponding to the eigenvalue L = 0, and thus the representation of the operator
Ur, Upp = (R 'xq,. .. ,R_lsz,B) in terms of these generators yields the assertion. [J

2.6 Non-degenerate isolated ground state energy and re-
duced resolvents

In this section we investigate the unperturbed operators H, (0, R), HA(0) and H2(0) from
the quadratic operator families (2.4.1), (2.4.4) and (2.4.5). We will establish essential
self-adjointness and (assuming the hypotheses of Proposition 2.5.2) the existence of non-
degenerate ground states for the closures, corresponding to the isolated eigenvalues Fy =
E% + EY%. E4 and Ep, respectively.

To this end, we first prove some basic results on the tensor product of subspaces and on
the relation between reducing subspaces and self-adjoint closures of operators. Following
this, we prove an abstract result about the ground state energies and the ground state
eigenspaces of (closures of ) operators with a 'non-interacting’ structure

A®I+I1® B,

where A and B are self-adjoint and possess non-degenerate, isolated eigenvalues at the
bottom of their spectra. This result is then applied to the three unperturbed operators
corresponding to the compound system and the two individual systems.

We begin with a few definitions and remarks on notation. Throughout, H will denote a
Hilbert space. For two (arbitrary) subspaces U; C H; and Uy C Hj, the algebraic tensor
product is defined as

U1®U2 = Span{u1 R ug, up € U, ug € UQ}.

The tensor product U; ® Us of two subspaces is defined as the completion of Uy ®Usy with
respect to the product norm inherited from H;&Ho:

U@ Uy = U1(§U2.
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We will make use of both the Uy ® Us and the U3 &@Us notation, depending on the situation.
Note that even if U7 and Us are both closed, U,®Usy need not be closed. However, in the
special case that both U; and U; are closed and at least one of them is finite-dimensional,

U1&Uy = Uy &Us,

see the proof of Lemma 2.6.1 below.
Given two closable operators A : D(A) — H; and B : D(B) — Hs, their tensor product

A®B:D(A)®D(B) — Hy ® Hy

is defined by setting (A® B)(u; ®us2) := Aua® Busy and extending linearly. It is a standard
fact that A ® B is closable (see e.g. [RS80]), its closure being denoted by

AR B.

Analogous to the case of subspaces, A ® B need not to be closed, even if A and B are
both closed operators.

The orthogonal projection onto a closed subspace U of a Hilbert space H will be denoted
by Py, and Iy will denote the identity operator on the smaller Hilbert space U.

A closed subspace U C H is called a reducing subspace for a linear operator A : D(A) — H
if PyA C APy. In this case the restrictions Aj;; and Ajyo are well-defined.

Lemma 2.6.1. Let Uy C Hy and Uy C Hy be closed subspaces of the Hilbert spaces Hi
and Hy, and let Py, and Py, be the associated orthogonal projections. Then

/I;. Pf
U1®Us

= Py, ® Py,.
ii. If in addition Uy (or Us) is finite-dimensional, then
Ran(PUl ® PUQ) = U1<§)U2 = U1(§>U2 = Ran(PUl X PU2).

Proof. i) Let uw € Hy ® Hy. Since Py, ® Py, is the closure of the bounded operator
Py, ® Py, with domain H1®H2, we can find a sequence (u,) C H,®H, such that u,, — u
and

(PU1 ® PU2)2u :nli—>Holo ((PU1 ® PU2)2un)
: 2 2
= lim ((PU1 ® PU2)un)
n—00
:<PU1 ® PU2>uv

which shows that (Py, ® Py,) is a projection. Self-adjointness follows similarly, and thus
(Py, ® Py,) is an orthogonal projection. It is left to show that

Ran (Py, ® Py,) = U1&Us.

Noting that

U1&Us = Ran Py, ®Ran Py, = Ran (Py, ® Py,),
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it suffices to show that

Ran (Py, ® Py,) = Ran (Py, ® Py,).

To this end, note that trivially, Ran (Py, ® Py,) C Ran (Py, ® Py,), the latter being a
closed subspace since Py, ® Py, is an orthogonal projection. Since the closure of a set is
its smallest closed superset, we conclude

Ran (PU1 ® PUQ) C Ran (PU1 ®PU2)'

For the converse inclusion let v € Ran (Py, ® Pr,), pick a preimage u and choose a se-
quence (u,) C Hi®Hsy with u, — u, which is possible by the construction of the closure.
Then

(PUl ®PU2)un:PU1 ®PU2Un—>PU1®PU2u:’U7

the sequence on the left consisting of elements of Ran (Py, ® Py,). This proves v €
Ran (Py, ® Py,) and thus

Ran (Py, ® Py,) C Ran (Py, ® Py,).

ii) The first equality was already shown in i), so it is left to prove the second one. This
is a general result for the algebraic tensor product of two closed subspaces, one of which
is finite-dimensional, and is proven as follows. Suppose U; is finite-dimensional. For an

element u € U1(§>U2, choose a sequence (uy,) C Uy QUs with u,, — u. Using an orthonormal
basis {ei}le of U1, any member of the sequence can be written as

d d

Up = Zc?(ei ®aj) = Z(ei ® c;al)

i=1 =1

for suitable coefficients ¢}’ € C and vectors ai' € Us. The Cauchy property, the fact that
{e;} is an orthonormal basis and the closedness of U then imply that the sequences ¢} a’,

i=1,...,d, converge in Uy (their limits denoted by a;), which leads to the representation
d d
u= nh_)rgoun = 7}1—{20 ;(ei ®cral) = ;(ei ® a;),
and the latter is evidently an element of Uy QUs. O

Lemma 2.6.2. Let A : D(A) — H be densely defined and closable, and let U C H
be a reducing subspace for A. Then U is a reducing subspace for A. Furthermore, the
restrictions Ay : D(A)NU — U and Ay @ D(A) N Ut — UL are densely defined and
closable (as operators on the Hilbert spaces U and UJ-), and

() = @) (Aps) = @) s - (2.6.1)
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Proof. i) To show that U reduces A we have to verify PyA C APy. To this end, let
u € D(A). By definition of the closure, there exists a sequence {u,} C D(A) such that
Uy — u and Au, — Awu. Using that Py is continuous and that U reduces A, we find
PyAu = lim PyAu, = lim APyu,.
n—oo

n—oo

Now Pyu, — Pyu by continuity, so that the fact that A is closable implies

lim APyu, = A ( lim Pyuy ) = APyu.

This shows that PyD(A) C D(A) and that PyA = APy on D(A) = D(PyA), which
suffices to prove PyA C APy.

ii) The domains D(Ajy) = D(A)NU and D(Ajy1) = D(A)N U+ are dense in U and U+,
respectively, since U is a reducing subspace and therefore US D(A|yy) = (D(A))*nU = {0}
and U+ © D(Ajy1) = {0}, see [Wei76]. To see that Ay is closable, consider a sequence
Uy C D(A‘U) with u, — 0 and Ajyu, — u for some u. With respect to the decomposition
H = U @ U*, define @, := (u,,0) C D(A), the latter inclusion holding since U is a
reducing subspace for A. Obviously, @, — 0 and

Aty = (A|UunaA\Ui0) = (A\U’U'?MO) - (U,O)

Since A is closable, we conclude u = 0. The proof that A1 is closable is analogous.

iii) We prove the first identity in (2.6.1), the proof of the other being completely analogous.
Let u € D((Ay)) C U. By the definition of the closure, there exists a sequence {u,} C
D(Ay) C U such that u, — u and

(Ay)u = lim Agu, = lim Au, = Au = (A)yu, (2.6.2)

n—oo

where the second to last equality holds since A is closable. This shows that u € D(A)NU =
D((A)j). Conversely, let u € D((A)|;y). By the definition of the closure A, there exists

a sequence {i,} C D(A) (not necessarily lying in U), such that @, — u and A, — Au.
We have
(A)pu = Au= lim A, = lim A(Pyiy, + Pyrin) = lim (APyty, + APyiiy).
(2.6.3)

Since U is a reducing subspace for A and A, the spaces U and U~ are invariant under
these operators, which implies Au € U, APy, € U and APy.4, € UL. Applying P, .
and Py to (2.6.3) and using their continuity now yields

and
PUZ’LL = Zu = lim PUAPUan = lim APUﬂn = lim A\UPUfL'm (2.6.4)

In particular, the limit on the right-hand side exists. The continuity of Py implies Py, —
Pyu = u, and thus the closability of A yields

Tim APyt = (App) (nlgrolo PUan) — A, (2.6.5)

50



which shows that v € D((Ajy7). Together with the above inclusion, this yields

D((Ar) = D((A)v),

and by (2.6.2), (2.6.3) (2.6.4) and (2.6.5), the action of the two operators on this domain
coincides, finishing the proof. O

Corollary 2.6.3. Let A: D(A) — H be densely defined, symmetric and essentially self-
adjoint, and let U C H be a reducing subspace for A. Then U is a reducing subspace for
A. Furthermore, the restrictions Ay : D(A)NU — U and Apr : D(A)N Ut — Ut are

essentially self-adjoint (as operators on the Hilbert spaces U and UL ), and

() = @) (Aps) = @) o -

Proof. The assertion follows from Lemma 2.6.2 and the fact that restrictions of self-adjoint
operators to reducing subspaces are self-adjoint. O

Proposition 2.6.4. Let A: D(A) — H; and B : D(B) — Hjy be self-adjoint operators
with non-degenerate eigenvalues E 4 and Eg at the bottom of their spectra, and suppose that
these eigenvalues are separated from the rest of the spectrum by finite gaps A, A > 0.
Let \11?4 and \I/% be ground state eigenfunctions corresponding to E4 and Eg, and consider
the orthogonal decomposition

H®Hy,=U1 U ®Uz ® Uy
=({W0R{UE)) © (Ui {¥E) © (Ui e{UE)) o (U9 e {w))t

into closed subspaces. Furthermore, define the operator C := A® I 4+ 1 ® B with domain
D(C) := D(A)®D(B). Then

i. The U; are reducing subspace for both C and its self-adjoint closure C.

. B4+ Ep is a non-degenerate eigenvalue of C which is separated from the rest of its
spectrum by min{A 4, Ag}. The corresponding ground state is \Il% ® ‘IJOB.

spec ((6 —(Ea+ EB))|U1L) C [min{A4, Ap},00).
In particular,

((5 —(Ba+ EB))|U1L> B

exists and is bounded .

Proof. i) By [RS80], Section VIII.10, C is essentially self-adjoint. To show that the U; are
reducing subspaces for C, we have to verify

PUiC C CPUi, (2.6.6)
which amounts to showing that the inclusion

o1



between their domains holds and that Py,C = CPy, on D(C). Since Uy, Uy, Us are al-
gebraic tensor products (which are closed nevertheless since {¥9} and {¥%} are one-
dimensional, see Lemma 2.6.1), the corresponding orthogonal projections are given by
Pryoy @ Pryoy, Pryoy @ Prgoyr and Prgo 1 ® Pryoy (no closures), which comprise spec-
tral projections of A and B, respectively. The fact that self-adjoint operators commute
with all their spectral projections now implies (2.6.6) for ¢ = 1,2,3. As regards Uy, note
that on D(C) = D(A)®@D(B), the corresponding orthogonal projection Pryoyr @ Pryoy.
acts as Prgoy1 ® Prgoy1, so that

and (Ppyo )1 ® Pryoy1)C = C(P{\IJOA}'L ® Pryo 1) on D(C) again.follow from the fact that
P{\I,% s and P{\p% yL are spectral projections of A and B, respectively.

Corollary 2.6.3 implies that the U; are also reducing subspaces for C' and that taking the
closure and restricting to the U; commutes:

@), = (Cw). i=1,2,34. (2.6.7)

This finishes the proof of i).
ii), iii) Assume without loss of generality that F4 = Ep = 0. By [RS80], Section VIIIL.10,
the spectrum of C' is given by

spec(C) = spec(A) + spec(B) C {0}U[min{A 4, Ap}, 00). (2.6.8)

Obviously, \1194 ® \I/% is an eigenvector of C' and C corresponding to the eigenvalue 0, and
the fact that it is separated from the rest of spec(C) is apparent from (2.6.8). To show
that 0 is a non-degenerate eigenvalue of C, assume that there exists another eigenvector
v corresponding to 0. Without loss of generality, v can be chosen to be orthogonal to
\Ilg1 ® \Il%, which implies v € Uy @ Us @ Uy. By (2.6.7) and the definition of C, the
restriction of C' to Us is given by

(6)‘U2 = (C|U2) = Al{\If%} ® I{\IJ%}L + I{q;(}‘} ® BI{\II%}L.

Noting that A, (w9} and Bjggo 4. are self-adjoint operators on the Hilbert spaces {¥9} and
{W%1L] respectively, we conclude from [RS80], Section VIIL.10, that

spec ((6)|U2) C [Ap, ).

Similarly, one deduces
spec ((€)|U3) C [A4,00)
and
spec ((C)y,) C [Aa+ Ap, ).

Combining these three inclusions, we conclude that a) they are in contradiction to the
assumptions that v € Us ® Us @ Uy is an eigenvector corresponding to the eigenvalue 0,
which proves ii), and b) that

spec ((6)‘(]%) = spec ((€)|(U2@U3@U4)) C [min{A4,Ap}, ),
which proves iii). O
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Next we will apply the preceding result (or more precisely, its generalization to three
operators, which is straightforward) to the operators

H,(0,R) = HS
=Ha@ Iy, @Ir+ Iy, @ Hp @ Ir + I, @ Iy @ Hyso, (2.6.9)
HXNO0) = Ha® Ir + Iy, @ Hyso, (2.6.10)
HP(0)=Hp @ Ir + Iy, ® Hyso (2.6.11)

from (2.4.1), (2.4.4) and (2.4.5), with domains

D(Ho(0,R)) =D(HA)®D(Hp)®D(Hy>o) C Ha® Hp ® Fo,
D(H;(0)) =D(HA)®D(Hy>4) C Ha ® Fo,
D(HZ(0)) =D(Hp)®D(Hfz0) € HE @ Fo,

respectively.

Proposition 2.6.5. Assume (A1),(A2) and let A > Ao, with Ao as in Proposition 2.5.2.
Let \If% and \I/% be the non-degenerate ground states of Hy and Hp (which exist by Propo-
sition 2.5.2), and let E4 and Ep be the corresponding atomic ground state energies and
A, Ap the corresponding spectral gaps.

Then the closures of (2.6.9), (2.6.10) and (2.6.11), which we will denote by the same sym-
bols, are self-adjoint and have the non-degenerate eigenvalues Ey = Ele + E%, FE4 and Ep
at the bottom of their respective spectra. These eigenvalues are separated from the remain-
ing spectra by the finite spectral gaps min{A 4, Ap, ho}, min{A 4, ho} and min{Apg, hc},
respectively, and the corresponding ground states are \11?4 ® \I/% ® Q, 11194 ® Q and \II% ® Q.
Furthermore,

spec ((Hg ~ By), {%}Q = [min{A4, Ap, hio}, 00), (2.6.12)
spec ((HA T Hyzo — E9) w0 ®Q}L) = [min{Ay, o}, 00), (2.6.13)
spec ((HB +Hf>o — E%))H\I/%@Q}L) = [min{Ap, ho}, ), (2.6.14)

and in particular the reduced resolvents

T : ((Hg - E0)|{\IIO}J-)_1? Uy = \IJOA X \I/OB ® Q,

T3 :=((Ha+ Hp>o — EB\))\{@%@Q}L)_1,

Tf =((Hp + H>o — EB))j(uo,e0yt)
exist as bounded operators.
Proof. By the assumptions and Proposition 2.5.2, the lowest eigenvalues E% and E% of
the self-adjoint operators H4 and Hp are non-degenerate and have finite spectral gaps
A, and Apg. Furthermore, Hy>, is self-adjoint with

spec(Hy,) = {0}Ulho, 50),
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where 0 is a non-degenerate eigenvalue which is separated from the rest of the spectrum
of Hy¢>, by the gap ho (see the construction of the infrared regularization in Section 2.3).
Thus all the assumptions of Proposition 2.6.4 are fulfilled, and the assertion follows. Note
that the additional claim about equality in (2.6.12) through (2.6.14) follows from the fact
that spec(H¢>,) contains the continuous part [ho, 00). O

Note that both Ey and ¥ are are independent of o, since inf spec(Hf>q) =0, Hf>,0 =0
for all o > 0 (the vacuum sector is left unchanged by the infrared regularization).

2.7 Analyticity of infrared-regularized ground states and
eigenvalues

We are now in a situation in which analytic perturbation theory under its standard as-
sumptions (see e.g.[Kat80]) is applicable, and the next proposition collects the ensuing
results.

Proposition 2.7.1. Let assumptions (A1) and (A2) be satisfied and let A > Ay, with
Ao as in Proposition 2.5.2. Then Hy(e,R), H2(e) and HE(e) are self-adjoint ana-
lytic families (with respect to the parameter e) of type (A) (in the sense of Kato) on
D(HS) C LA(R3N)® F, D(Ha + Hyso) and D(Ha + Hys,), respectively. For |e| < eg
(the latter depending on o and A), the operators Hy(e,R), H2(e) and HZ(e) have non-
degenerate eigenvalues E7(e,R), E9(e) and EE(e) at the bottom of their respective spectra.
The corresponding eigenvectors are denoted by ¥7(e,R), 1% (e) and YF(e). In a neigh-
bourhood of 0 (depending on o), these objects are analytic functions of e, given by the
series expansions

E°(e,R)=> ' EJ(R), ¢7(e,R)=) eyf(R), (2.7.1)
i=0 1=0
Ej(e) = Z e EYy, vh(e) = Z ey 4, (2.7.2)
=0 =0
Eg(e) =Y ¢ Efp, vE(e) =) evip, (2.7.3)
=0 1=0

where E§ y = EY, Efp = E%, ¥§ 4 =05 ®Q, 5 = VL 0Q, Yf(R) = ¥ © U3 ® Q
are independent of o and EJ(R) = Ey = Eg + E% 1s independent of both o and R.

Proof. We will give the proof for H,(e,R). The other two assertions are proven analo-
gously. H§ is self-adjoint on D(HJ) C Ha ® Hp ® F, and H/ and H/ are symmetric
and relatively bounded with respect to H{. For Qg, this is proven in Lemma A.1.1, and
the relative bounds for the operators involving the vector potential A were discussed in
Section 2.1. Note that the relative bounds for operators involving A depend on the size
of the ultraviolet-cutoff.

Therefore, H,(e, R) is a quadratic operator family (in the parameter e) whose constant
term is a self-adjoint operator and whose non-constant members are H{-bounded sym-
metric operators. By [Kat80], Ch.VII. §3, it follows that H,(e, R) is a self-adjoint analytic
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family of type (A) on a (complex) neighbourhood of 0, the size of which depends on both
the infrared-cutoff o and the ultraviolet-cutoff A. Since by the assumptions on H4 and Hp
and its construction, H = H,(0, R) has a non-degenerate eigenvalue at the bottom of its
spectrum, the remaining assertions follow from standard results of analytic perturbation
theory (see also [Kat80]). O

Remark 2.7.2. As already mentioned in the introduction, the expansions (2.7.1) through
(2.7.3) are partial with respect to the parameter e, in the sense that the coefficients EgA,
Elp, E?(R), 74, V7 g and 1?7 (R) still depend on the physical value of e via the Coulomb
potentials in the atomic Hamiltonians H4 and Hp. Furthermore, as discussed above,
the spectral gaps of Hf, Hy + Hy>, and Hy + Hf>, depend on o and shrink to zero as
o — 0. This implies that the radii of convergence of the expansions (2.7.1) through (2.7.3)
shrink to zero as ¢ — 0. As mentioned before, this issue does not pose a problem since
our investigations concern the simplified model (1.2.1) for the interaction potential, and
this quantity will turn out to have a well-defined (0 — 0)-limit in the next section.

2.8 Regularized interaction potential and main results
As mentioned in the introduction, it is strongly conjectured (see e.g. [MS09]) that

lim F(R) = infspec(H?) + inf spec(H?)

R—oo

and that
lim B (e, R) = E5(e) + E§(e).

R—o00

for the corresponding infrared-regularized Hamiltonians, the corresponding result being a
well-known fact in the case of molecular Schrédinger operators without coupling to the
radiation field. The following definition of the regularized interaction potential is guided
by this.

Definition 2.8.1. Assuming the hypotheses of Proposition 2.7.1, we set
B (€) i= E(e) + B3 (e)
and define the regularized interaction potential
Ve, A,R) := E?(e,R) — EZ(e).
Fori=0,1,2..., the coefficients V7 (R) are defined by

V7 (A R) := E7(R) — (E7 4 + Ef ).

1

As already mentioned in the introduction, we stress the dependence on the ultraviolet-
cutoff parameter A, which V?(e, R) and V%(R) inherit from the operators HZ (e), HE(e)
and H, (e, R). Noting that V{J (A, R) = 0, these definitions and the series expansions from
Proposition 2.7.1 immediately yield
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Corollary 2.8.2. Assume the hypotheses of Proposition 2.7.1. Then V?(e, A,R) is ana-
lytic in e in a neighbourhood of 0 and has the series expansion

(e,A,R) Ze V(A R). (2.8.1)

In particular, all partial derivatives with respect to e at (e = 0) exist, and

T ve0.0R) = (V7 (AR)

In the remainder of this section we restate the three theorems containing the main results
in order to streamline the presentation.

Theorem 2.8.3. Assume (A1) and (A2) and let A > Ag, with Ag as in Proposition 2.5.2.
Then fori=1,2,3,4,

(1o, o
V(A R) = tim (121700 R)) =l (V7 (0. R)

exists.

Recall the definition
4 4 ei 8
AR) = Vi(A,R li 7(0,A,R

of the approximate model (1.2.1) for the full interaction potential V(R) (2.3.1) from
Section 1.2. For remarks on this simplification, see Section 1.2 of the introduction.

Theorem 2.8.4 (1/R"-law for ultraviolet-cutoff system). Assume (A1) and (A2) and let
A > Ay, with Ag as in Proposition 2.5.2. Then

lim (R’W(A,R)) ~0

R—oo
forany 0 <k <7, and

—3he 4

(2m) % —ag(0)ap(0),

cr(A) = lim (R'V(A,R)) = e o

R—o0 2

where

= <§A:XZ\I/?4’ ((HA — B} + hw(k)) {\I’O }l> ZXJ‘IIA>
=1

- <§Xiqf%| ((HB — B + hw(k)) (g, }L) ZX]‘PO >
=1

are the dynamic polarizabilities of the systems described by Ha and Hp.
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Note that the interaction coefficient c7(A) still depends on the ultraviolet-cutoff via as(0)
and aB(0): their definition involves the operators H4 and Hp, their ground states and
their lowest eigenvalues, all of which are A-dependent via the smeared Coulomb potential.
The third main result states that c7(A) has a well-defined limit as the ultraviolet-cutoff is

removed.

Theorem 2.8.5 (Ultraviolet-convergence and universality of 1/R"-law). Assume the hy-
potheses of Theorem 2.8.4. Then c7;(A) has a well-defined limit as the ultraviolet-cutoff A
is removed, which is given by
2
lim ¢7(A) = —64?3(271')

A—oo 9

_qhc -
S —am(0)ap(0),

where a(k) and dg(k) are the dynamic polarizabilities of the corresponding atomic

Schrodinger operators Hp and Hp incorporating non-smeared Coulomb potentials, see

(2.5.3).
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Part 11

Proof of the main results
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Chapter 3

Simplification of terms in the
interaction potential

The results of the following theorem constitute the first step in the proof of Theorems 1.2.1
through 1.2.3. It provides a decomposition of the terms V? (A, R) through V7 (A, R) into
terms which possess a structure that makes them more easily accessible to the analysis
carried out in the later chapters. One important feature of some of the terms in this
decomposition - as will become clear from their definitions below - is that they can be
expressed in terms of integrals over the photon momenta, with integrands that involve
only atomic quantities.

Before stating the theorem, let us introduce some notational conventions and definitions.

e Restrictions to the subspaces {U9}+, {4} {¥0 1+ @ {UL}L etc., which are used
in the construction of the reduced resolvents, are always understood.

e We will always write Ha, Hp and H{ instead of Hy — E%, Hp — E% and Hf —
(EX+ Ep).

e Whenever there is no risk of confusion, trivial tensor factors occurring in operators
are left out, e.g. H,4 instead of Hy ® Iy,

e Statements, equations and identities that refer both to atom A and atom B will
frequently be summarized using the notation \1194’ 5> Ha.B, a‘g’B et cetera.

Define

1 PR i
FiRo0) == 5 1(0) [ diadialolln) Plolc) P(1 + (ks - Ko P)e 00 R,
(J'>< o
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F7(R, U)

]_ o ~ —i .
= ot [ didke|C)PICAP L+ (e R
9h Qo XQo

—4R3w(k )2w(ke)? — 6h3w(k1)3w(k2)>

x [(aé(kl)aﬁ(km < w(ky) + w(kso)

+ (ap(ki)aB (ko) + ap(ka)af (ki) (_h3w(k1)2w(k2) n ﬁgw(k1)2w(k2)2>]’

w(ky) + w(ks)
(3.0.1)
F3(R,0)
1

=T om dk1dks|C (k1) [*|C(k2)[2(1 + (ki - ko)?)e Ratk) R
9 Ja, xa,

X !2h4w(k1)2w(k2)2T5(k1, ko) + Frw(k)3w(ks)Ty(k1, ko)

— 8htw (k) )3w(ks)Ts(k1, ki) + hlw (k) )?w(ks)?Ts(k1, kz)] . (3.0.2)

Here Q, := {w(k) > o} C R? is the restricted region of the one-photon momentum space
which arises from the infrared regularization,

h

C(k) == p(k) 20(K)

(3.0.3)

describes the coupling function of the electromagnetic vector potential A(p,x), the dy-
namic polarizabilities (see Theorem 2.8.4) are denoted by ag’B(k), and

Za Zp
vy = Z xiA\Il%, VR = Z XjB\I/% (3.0.4)
ia=1 =1

are the dipole moments of the ground states of atom A and B, respectively. Furthermore,
we have defined

L(oo) = Y <v§§ @ V2] ((HA ¥ HB)y{W%W%}Q—l v ® VﬁB>L2(st>’ (3.0.5)
a,f=1
Taller, ko) =Y [ ((Ha + heo(le)) ™ (Ha + (ko)) afi(ky)
a=1 A
+ () ((Hp + (k)™ (Hp + ho(ka) ) |, (3.0.6)
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3
Ti(k o) == D7 ((Ha+ Hp) ™ (Ha+ hw(k) ™ (Hp + Aw(ke)) ') 0 (3.0.7)
o, f=1 A®VE
3
To(ka,ke) = > [((Ha+ Hp)™" |(Ha+ hleo(kn)) ™ (Ha + hw(ke) ™
a,f=1
+ (Hp + h(w(k)) " (Hp + h(w(kg))_l] >vg®vg ] . (3.0.8)

Recall that xingB € H?(R324.2) by the remarks in Section 2.5. Furthermore, x;1)4 5 €
{4, B}t by the assumed non-degeneracy of the atomic ground states, and

U(HA\{\I/%}l) C [AA,OO), G(HB|{\I/%}i) C [AB,OO)7
o) ag’B(k) and the T; are well-defined. Finally, define

MB(R, U)

9 .
= 2 Re / dK|C(K) 2 e~k R
el

X —QM(k)<VA(1 —~k@k)vp|(Ha+ Hp) ' |Qr(¥4 ® ‘I’%)>

+ (R ())2([(1 — k@ k) (Ha + hw(k) ' va] @ U5|Qp
W% @ [(Hp + () "))

(o)) ((Ha + ho(k) @ 1) (va(l = k@ k)vp ) [(Ha + Hp) |
Qr(¥ @ ¥))

+ (ho(W)* ((I® (Hp + ho()) ™) (va(l =k @ k)vp ) |(Ha+ Hp) |

Qr(¥ @ ¥Y))
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and

M4(R,0)
1 2
=0 /Q(I dk|C(k)|
X [{<VA®\I/%‘(1—E@R)QR’VA®\I/DB>

— () ((Ha + (k) "' va @ Oh|(1 k@ K)Qrlva © W )
— (k) (va @ WhI(1 — k@ K)Qrl(Ha + (k) 'va @ W)

+ (k)2 ((Ha + heo(K) v @ 951~ k@ K)Qr|

[(Ha + hw(k)) " 'va @ ‘I/%>} (3.0.9)

+ {<‘I’?4 ®vp|(1 -k k)Qr|¥Y ®VB>

~ () (W4 @ (Hp + hw(k) " vpl(1 ~ k@ K)Qr|¥% @ ve)
(k)<\1194 @vpl(1-k@k)Qp|¥Y ® (Hp + hw(k))*lvB>

+ ()2 ( W% @ (Hp + (k) 'vpl(1 - k@ K)Qr|

|¥% ® (Hp + hw(k))_lvB>H (3.0.10)

[ () oo

H< H pjgwoy+) ( Zp]A 1A<®1A<)VA> ® UE|Qr(YY ® ‘1’%)>

+2Re

~ (K ><HAH\1,0}L (me (1~ k@ k) (Ha+ hw(k)'va) © U

Qr(VY @ \IIOB)>} (3.0.11)
{<qu ® (Hpjwgy) ™ (( Z pjs) (1-k® R)vB) Qr(¥ @ 9))
— (k) (99 @ (Hpygup ) ( Z piy) - (1 — k@ K)(Hp + () 'vp)|
|QR(@?4®\1/°B)>}”. (3.0.12)
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Theorem 3.0.6. Assume (A1) and (A2) and let A > Ao, with Ag as in Proposition 2.5.2.
Then

VIU(A7R) :‘/E’)G(Av R) =0,

Vi (A, R) =(Po|Qr| Vo), (3.0.13)
Vi (AR) == (QrYo|T?|QrY0) 01 poF (3.0.14)
+ Fy(R, 0) (3.0.15)
+ F(R,0) + Fs(R,0) (3.0.16)
+ Ma(R,0)+ Mp(R,0) (3.0.17)
~ (Wol Qr|Wo) (I T Hj (W © Q)|* + TG H p(¥; @ Q)I?).  (3.018)
Remarks:

The terms (3.0.13) and (3.0.14) only contain the interatomic Coulomb potential Qr and
correspond exactly to the first- and second-order energy corrections that arise in the
context of the perturbative analysis of the Born-Oppenheimer potential energy surface in
the case without radiation field, see [Gar07]. The reason they appear as a second- and
fourth-order correction (with respect to the perturbation parameter e) in our situation is
that if the radiation field is taken into account, the perturbation is a sum of both linear
and quadratic terms e.

To further analyze (3.0.13), (3.0.14) and (3.0.18) (the latter owing its R-dependence only
to the prefactor (Vo|Qr|¥o), which is identical to (3.0.13)), we will employ a multipole
expansion of Qr. This technique which exploits the exponential decay of the atomic
ground states \I’% and W9 p and involves a spatial cutoff, will be developed in Section 5.1
and applied to (3.0.13), (3.0.14) and (3.0.18) in Sections 5.2 and 5.3. There it will turn
out that (3.0.13) and (3.0.18) decay faster than any inverse power of R as R — oo, while
the lowest-order contribution (in 1/R) to —(QrVo|T?|QrY0)H ,oHzoF is proportional to
1/R®, and is given a by version of the well-known so-called London term (1.0.3) involving
the smeared Coulomb potential.

The terms (3.0.15) and (3.0.16) which originate from (4.3.3) below are generated solely by
the interaction operators H/ .4 and H' o5 While (3.0.17) (which will be further analyzed in
Section 5.4) contains both the field interaction and the interatomic Coulomb interaction.
As it will turn out, after the removal of the infrared-cutoff o,

e The term (3.0.15) and parts of (3.0.17) are responsible for the (asymptotic) can-
cellation of the 1/R®-contribution from —(Qr¥o|T°|QrY0)1 o1 zeF, See Section
6.6.

e The term (R, o) and parts of (3.0.17) combine to give the asymptotic 1/R"-decay
of V7 (A,R), the coefficient agreeing with the one predicted by Casimir and Polder,
see Section 6.

e The term F3(R, o) and the remaining parts of (3.0.17) are of higher order than 1/R7,
see also Section 6.
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Chapter 4

Proof of Theorem 3.0.6

4.1 Derivation of a formula for the fourth-order energy cor-

rection

The first step in the proof of Theorem 3.0.6 consists of deriving formulas for the energy
corrections up to fourth order (in e), using general features and symmetries of the per-
turbation problem at hand. In particular, we conclude that the first- and third-order
corrections vanish altogether.

The perturbation problems (2.4.1) for the compound system and (2.4.4), (2.4.5) for the
separated atoms have the following features in common:

i.

ii.

iii.

iv.

They are of the form H(e) = Hy+eH' +e?H”, with H(e) acting on a Hilbert space
of the form H ® F, where H is a Hilbert space and and F is a bosonic Fock space.

Hy is a self-adjoint operator which has the non-interacting structure

Hy=H® I+ Iy @ Hys,,

where H is a self-adjoint operator on H and H f>o is the infrared-regularized free
field Hamiltonian. Hy has a simple eigenvalue Fy at the bottom of its spectrum,
and the corresponding eigenvector (ground state) is of the form ¥y = ¢ ® ), where
1 € H and 2 € F is the vacuum vector. Furthermore, Ej is separated from the rest
of the spectrum by a spectral gap A > 0.

The part of H' which acts on F maps the n-th sector to the (n + 1)-th and to the
(n — 1)-th sector.

The part of H” which acts on F maps the n-th sector to itself, the (n — 2)-th and
to the (n + 2)-th sector.

By the assumptions on Hy we have spec (Hy — Ey) C {0}U[A, 00), with 0 being an isolated
eigenvalue. Restricting this operator to the orthogonal complement of the ground state
U yields

spec <(H0 - EO)'{WO}L) C [A, 0),

67



which shows that 0 € p ((Ho — Ep), {\1,0}1_>, and thus the reduced resolvent

T .= ((Ho — EO)|{\DO}J-)_1

exists and is bounded, see also Proposition 2.6.4 above. The structure of Hy implies that
T leaves individual Fock space levels invariant (see also Lemma 4.2.5). Let P and P+
denote the orthogonal projections onto {¥o} and {¥o}+, respectively. For a perturbation
problem of this form, assuming that for e in a neighbourhood of 0 we have an analytic
representation of the ground state eigenvalue E(e) and the ground state i(e) of H(e), we
can solve the eigenvalue equation

H(e)w(e) = (Ho + eH' + e2H") v(e) = E(e)ib(e) = (i ¢ E) (i ewj)
=0 5=0

order by order and find

E1 =(Vy|H'|¥p) = 0 (by ii and iii) (4.1.1)
By = — (H'Wo|T|H"Wo) + (Wo| H" Vo) (4.1.2)
Ey =— (H'Uo|T(Ey — PTH')TP+|H' V)
— (H'Vo|TP*|H' Py)
— (H'Uo|TP+|H" W)
— (H"Wo|T P+ H'Wy)
— (Wolt1) (B2 — (Wo|H" W) .
Using that {Wy} is one-dimensional (property ii) above), one concludes Py’ = u¥ for a
complex number pu = (Vy|1)'), which, together with the formula for E, already established,
leads to the simplification
Es = — (H'U|T(E, — PYH TP |H' W)
— (H'Wo|TPH|H" W) — (H"Wo|TP|H'¥o)
=— (H'Uy|T(Ey — PTHTP*|H'T)
— 2Re [(H'Wo|T|H"¥y)] .
Now using E; = 0 and properties iii) and iv) above, as well as the Fock level invariance
of the reduced resolvent and the mutual orthogonality of different Fock space sectors, we

conclude
FE3 =0. (4.1.3)

Using this and the same arguments again, one arrives at the simplified expression

Ey= —(H'Uo|TH'TH'T|H'U,) — Ey|TH &>
—(H"Wo|T|H" Vo) + 2Re [(H'Vo|TH'T|H" V)]
+(H'Uo|TH"T|H' V) (4.1.4)

for the fourth-order energy correction.
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4.2 Analysis of the reduced resolvent

Having established explicit formulas for the energy corrections up to fourth order in the
preceding section, we will now apply these to the specific perturbation problems at hand
to obtain a simplified expression for the interaction potential

4
V(AR) =) ¢ V7(AR).
=0

To this end, we will first set out to conduct a detailed analysis of the reduced resolvent
T = ((H§ — Eo)jfweys) -

More precisely, after proving two auxiliary technical results, we first investigate the action
of T on a number of invariant subspaces (Lemma 4.2.5 below). Following this, we show
in Section 4.2.3 how the action of T'? on several subspaces of H4 ® Hg ® fél) and Ha ®
Hp ®.7:§2) can be understood pointwise in the photon coordinates (k,\) and (ki, A, ko, p1),
respectively. The corresponding results will be used heavily in the calculations which
convert the contributions to V(A, R) into integrals over photon momenta. Sections 4.2.4
and 4.2.5 are concerned with properties of T inherited from the atomic Hamiltonians H 4
and Hp, in particular commutativity with the atomic ground state projections and parity
operators, as well as rotation invariance.

In Section 4.2.6 we establish and collect some important operator identities that will be
used in the calculations later on.

4.2.1 Some results on tensor products of operators

Lemma 4.2.1. Let A : D(A) — H be a densely defined operator which is boundedly
invertible, and let M C H be a reducing subspace of A. Then M is a reducing subspace of
A~ and the restrictions Ay and Ao are invertible, with inverses given by

(Apn) ™ = (A, Ap) ™ = (A7) e

Proof. Since A is boundedly invertible, we have D(A~!) = H. For any u € H we can find
an element v € D(A) such that u = Av. Let Py be the orthogonal projection onto M.
Then

A_IPMU = A_IPMAU = A_lAPMU = Pyv = PMA_I’LL,

where we have used the assumption Py;A C APy in the second identity. This shows that
A71Py; = PyyA~Y and thus that M is a reducing subspace for A~'. In particular, the
restrictions (A™1) ,; and (A_1)| yL are well-defined, and for any u € M we have

(A u=A""u e MND(A) = D(Ajy)
and thus

A|M(A71)|Mu = AA\u =u.
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On the other hand,
(A_1)|MA|MU = (A_l)\MAu = A "Au=u

for any u € D(A) N M, since then Au € M by assumption. This shows the assertion for
the operators involving the subspace M. The corresponding result for those involving M+
is shown completely analogously. O

Lemma 4.2.2. Let H be a Hilbert space and let A: D(A) — H and B : D(B) — H be
bounded closable operators with a common dense domain D which is left invariant by both
of them, i.e. AD C D, BD C D. Then if A and B commute on D, i.e. ABu = BAu for
all w € D, so do their closures, i.e.

(A)(B)u = (B)(A)u
for allu € H.

Proof. Let u € H. Since A and B are closed by construction, we can choose {u,} C D
with u, — uw and Bu, — Bu. By the boundedness of A, the sequence Au, also converges
(it is a Cauchy sequence), and by the closedness of A this limit has to equal Au. Thus we
obtain

(A)(B)u = (A)(nh_)rr;oBun) = nh—>nolo(A) Bu,, = JLHSOABUH = 7}1_{203(‘4”")’
A cont. €D

which shows that lim B(Au,) exists. Now the closedness of B implies that

n—oo

lim B(Au,) = B( lim Au,) = (B)(A)u,

n—oo n—oo
which proves the assertion. O
Definition 4.2.3. A symmetric operator A : D(A) — H is called positive if
(u|Au) >0
for all u € D(A).
Lemma 4.2.4. Let A and B be positive self-adjoint operators on the Hilbert spaces Hi

and Ha, respectively. Then AQ B, I® B, AQI and AR I+ 1R B are positive operators
on Hi ® Hy, and D(A+ B) C D(A® 1), D(A+ B) C D(I ® B).

Proof. By the positivity of A and B, we have spec(A) C [0, 00) and spec(B) C [0, 00), and
thus

spec(A ® B) = (spec(A))(spec(B)) C [0, 00),
spec(A® I + 1 ® B) = (spec(A)) + (spec(B)) C [0,00),

and spec(A ® I) = spec(A), spec(I ® B) = spec(B) (see [RS80], Theorem VIII.33). This
in turn implies that AQ B, AQI+1® B, A® I and I ® B are positive. Thus the asser-
tion on the positivity of the operators follows by restriction.
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Next let u € D(A+ B) and choose {u,} € D(A)®D(B) with u,, — u and (A + B)u, —
(A4 B)u, which is possible by construction of the closure. Since {u,} ¢ D(A)®D(B) C
D(A)®Hs, it suffices to show that (A ® Iu, — A® Iu to prove the assertion on the
domains. To this end, consider

1A+ B)(atn = )2 =l Alutn — ) 2 + | Blat = )|
+ 2Re [(A® I)(un — tya), (I @ B) (1t — )]

Since A and B are self-adjoint and A ® B is positive, we have
(A D) (un = tm), (I @ B)(un = um)) = (Un = tm, (A® B)(un = um)) >0,
which implies
1(A + B)(un — wm)|* 2 | A(un — wm) |* + | B(un — um) 1.

Now as a convergent sequence (A + B)u, is a Cauchy sequence, and the inequality shows
that Au, and Bu, are also Cauchy sequences, which converge since H 4 ® Hp is complete.
But now the closability of A ® I and I ® B implies that v € D(A® I) N D(I ® B) and
that (A ® INu, — (A® u and (I ® B)u, — (I ® B)u.

O

4.2.2 Action of 77 on reducing subspaces

Lemma 4.2.5 (Properties of the reduced resolvent). Let the assumptions (A1) and (A2)
be satisfied and let A > Ao, with Ag as in Proposition 2.5.2. Let H = Ho + Hp + Hy>,
and assume without loss of generality that infspec(Ha) = spec(Hp) = 0, which implies
inf spec(HJ) = 0. Recall that HJ has a spectral gap min{Aa, Ap,o}. Let U9 and U}
denote the non-degenerate ground states of Ha and Hp, respectively. Set Ug := 11194 ®
\IJ% ®QQ and let n € N, n > 1. Then the reduced resolvent

7 = (Hgy{%p)_l

has the following invariant (closed) subspaces, on which it acts as indicated:

1. 'Particle excitations’:

-~ —_— _1
{\11?4 029 \I/%}J-(X){Q}, (HA + HB’{@%@@%}L> ® Iy, (4.2.1)
~ - -1
{@%}@{@%}L(@{Q}’ I{\p%} ® (HB‘{\I/%}J_) 3¢ I{Q}, (4.2.2)
~ . -1
{\I’%}L@){\I}%}@{Q}’ (HA|{\1/94}L) ® I{\p%} & I{Q}, (4.2.3)
-1
01 Lafqo 1S -5
(Vo e{UgH)e{0}, (HA + Hal o taen }L) ® I1oy. (4.2.4)
1. 'Field excitations’:
~ . -1
(OB URIBIH, Tug) © Iwgy ® (Hrzolioy) (4.2.5)
~ ~ 1
0 0 (n)
{(Wa{UBIeF", Loy ® gy ® <@“72 I (kn))> . (4.2.6)
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1i. "Mized excitations’:

I - .
{\IJ }®({\IJO }L®{Q}L)a I{\IJ%} ® (HB + Hszm) , (4.2.7)
—T¢
a4~ (n) —1
0 —
OB UGHEF),  Iagy ® (Hp +hwlk) + -+ ok)lgryams) -
(4.2.8)
TT01l oL - —1
{UE W He{}h), Iigoy ® (HA + Hf>a|m) , (4.2.9)
=79
o~ () -1
(RGBT, Iy © (Ha+ k() ++wk))lgrysms)
(4.2.10)
= = -1
{UOHR{ILH {0}, (HA + Hp + Hf>o|{q, NEETET }l®{Q}L) : (4.2.11)

= ~ _(n -1
(OB BF",  (Hat Hp+hwl) + - +wka)lgomsmrya@ms)
(4.2.12)

Proof. By Proposition 2.6.4, {¥g}, {¥(}+ and all the subspaces of {¥o}+ mentioned in
the assertion are reducing subspaces for H4 + Hp + H?,

spec((Ha + Hp + Hf)|(yyy1) = (min{Aa, Ap, ho'}, 00),

and in particular

= ((Ha+ Hp + Hf)jfwo1) "

exists and is bounded. By Lemma 4.2.1, all the subspaces comprising {Wo}+ are reducing
subspaces of T, and restriction commutes with taking the inverse.

Next we will analyze the action of T on the individual subspaces. To this end, denote
S:=Ha+ Hp + Hy>,, with domain D(HA)®D(Hg)@D(H ).

i) First of all consider S| (0B (W0} L B{0) (no closure of the subspace needs to be taken,
since {¥Y}@{Q} is finite-dimensional, see Lemma 2.6.1). As H4 and Hjs, act trivially
on {UY} and {Q}, respectively, we conclude

Siwoyereyyiai) = Loy @ Hpjpwyyt @ Ly,

from which we deduce

SpeC(SH\I, }®{\I/ }l@){Q}) = SpeC(HBH\I,%}J_)

as operators on the Hilbert space {¥%}2{T%}+&{Q}, see e.g. [RS80]). In particular,
S\{qf 1e{wY1e{er = > Ap > 0. We claim that

-1
(5\{w 0)B(, }L@{Q}) =l © (Hpuoy0) ™' © Iy
:I{‘I’?A} & (HB\{\II%}i) ® Iqy, (4.2.13)
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which is (4.2.2). Note that SH\IJ%}@@{\I,OB}L@@{Q} is essentially self-adjoint by Corollary 2.6.3,
so it is in particular densely defined, symmetric and closable. Furthermore, its closure is
positive (> Ap > 0, see above) and thus in particular one-to-one. So in order to prove the
first equality in (4.2.13), by ([Wei76], Satz 5.2) it suffices to verify that Sl{ﬁ/%}@{\lf%}l@{ﬂ}
is one-to-one and has the (set-theoretic) inverse Trgoy ® (HB|{\I,%}L)*1 ® I{gy on its range.
The latter follows from Ran(S‘{\I,%}@{\P%}L@{Q}) = {W%}@(Ram(HBH\I,%}L))@{Q}, while
the former follows from the relation

Ker(S)iwoyarug)1ai0y) © Ker((Sjwo)ug)+a10)) = {0}

where the last equality holds since (S (0} 5{00,}1 {Q}) is boundedly invertible. The second
equality in (4.2.13) holds since Iigoy ® (HBl{\I,%}L)_l ® I{qy is bounded and defined on all
of {WY1&{ %L} &{Q}, which is a closed subspace by Lemma 2.6.1 (note that {¥%} and
{Q} are one-dimensional) and thus equal to the Hilbert space {9} ® {¥%}+ @ {Q}.

The identities (4.2.3) and (4.2.5) are proven completely analogous. To show (4.2.6) one uses
in addition the decomposition {Q}+ = 20:1}'5”), which consists of reducing subspaces for
the operator H F{QL by construction of the second quantization. Note that the bounded

invertibility of Y, and H;Ifﬁn) = @r=12M(w(ky) + - +w(ky,)) is due to the infrared

regularization.
ii) To see (4.2.4), first set M := {¥Y}-&{T%}L and note that

Swuagoy = (Ha+ Hp)jn ® 1oy,

since the action of H¢>, on {1} is trivial. Furthermore,

(Ha+ Hp)m @ Iiay C ((Ha + Hp)jv) @ Iy,

and both operators are essentially self-adjoint (the former by Corollary 2.6.3, the lat-
ter by the construction of tensor product operators and the fact that ((Ha + Hp)x) =

(Ha + Hp)|y is self-adjoint by arguments analogous to those in i)). The uniqueness of
the closure now implies

(Ha+ Hp)jm @ Iiay = (Ha + Hp)jv) @ Ly,

which allows us to conclude spec(Sy,51qy) = spec(((Ha + Hp)jar)) To calculate the latter
set, we observe that

HA|{\IJ?4}J' +HB\{\I’%}J- C (HA+HB)\M C ((HA+HB)|M)7

which shows that ((Ha + Hp)|ar) is a self-adjoint extension of H pjqwoy+ + Hpjpyo,yo, the
latter being essentially self-adjoint by construction of the tensor product of operators.
Again by the uniqueness of the self-adjoint closure, we deduce

(Ha+ Hp)m) = H w30 + Hpjpuo,y+

which implies

spec(((Ha + Hp)m)) = spec(H g0y 1) + spec(Hp|goy1) C [Aa+ Ap, 00).
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In particular,

((Ha+ Hp) )" = (Ha+ Hp)jpy) ™"
exists and is bounded. As in i), we first check that (Ha+Hp)|y ® [{qy is one-to-one, which
holds since its closure S,z [y 18 boundedly invertible. Furthermore, (Ha + Hp)|p ® I{0y

has the set-theoretic inverse (((Ha 4+ Hp)ja)) ' ® Ifgy on its range, which allows us to
conclude that

—1 p——— -
(Swmwy) = (a+ Hp) )" @ Iy = (Ha+ Hp) )" @ Iy,

where the last identity follows since M is closed and {2} is finite-dimensional. Thus
we have proved (4.2.4). The proof of the remaining asserted identities is completely
analogous. O

4.2.3 Fiber decomposition of 7% with respect to photon momenta

Lemma 4.2.6 (Fiber decomposition). Let A be a densely defined symmetric positive op-
erator on a Hilbert space H, A > a > 0, which is essentially self-adjoint on a core D.
Let Q@ C R" and w : Q — R>q be measurable, and let T,, be the self-adjoint realization
of multiplication by w on L*(Q). Then A + T, is essentially self-adjoint on DRD(T,,),
spec (A +T,,) C [a,00),

inf spec (A + T,,) = inf spec (A) + inf spec(T,,) > a > 0,
and under the isomorphism H ® L*(Q) = L?(Q; H) we have

(A+T,) ' = /@(A + w(k))"Ldk,
Q

- ()™ ¢) () = (@ + w(0) (10

for any ¢ € H® L*(Q) and k € Q. In particular,
(Pl(A+T) ") perzo) = /Q<<P(k)\(f4+ w(k)) (k)i dk (4.2.14)
for any ¢,v € H® L*().

Proof. The assertions on the essential self-adjointness of A + T, and the spectrum of its
closure are standard results from operator theory, see e.g. [RS78]. Since A > a > 0 and
esstanw C [0,00), the operator (A + w(k))™! exists and is bounded (as an operator on
H) for almost all k € Q. Furthermore, 0 ¢ spec(A + T,), so that (A + T,,)~! exists and is
a bounded operator on H ® L?(2).

Under the isomorphism mentioned above a vector u ® v € H ® L?(f2) is identified with
the map k — v(k)u =: (u ® v)(k) € H. Correspondingly, for u ® v € DRL?(Q), we have

(A® D)(u o v) = (k) (Au) = Ao(k)u) = A(k)(v(k)u) = A(k)(u o v) (),

where k — A(k) = A is the constant map. By linear extension, this generalizes to
(A® Iy — A(k)p(k) for any ¢ € DRL?(Q). Analogously, (I ® T,))(¢) — w(k)p(k) for
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¢ € HRD(T,). In terms of fiber decompositions of operators (see [RS78] for the definition
of the concept) this means

® o
AT = / Adk, I®T, = / w(k)dk. (4.2.15)
Q Q
Note that both k +— A(k) = A and k — w(k) are measurable in the sense of [RS78],

Chapter XIII, see below.

For ,v € H ® L?(Q) the map k — (p|(A + w(k))!|¢) is a composition k + w(k) s
(A+wk)™ — (p|(A+wk)) ) of a measurable and two continuous maps, and thus
k — (A+w(k))~! is a measurable map from 2 to £(H) by definition. Since A+w(k) (and
thus also (A + w(k))™!) is self-adjoint and positive (on D(A) C H and H, respectively)
for almost all k € €, we obtain the estimate

[A+w()) ™" =esssup [|(A + w(l) ™ 2
keQ

=ess sup (sup spec((A + w(k))*l)
ke

:eslfes;;p (1/(inf spec((A + w(k))))

g(l/(infspec(Z)) <1/a < oo,

where in the second to last step we have used that A + w(k) > A since essranw C [0, 00).
This shows that (A+w(-))~! € L®(; L(H)), and thus fga(z—i-w(k))_ldk is well-defined.
Now fix 1 € DRD(T,) € D(A+T,) and write ¢ = (A + T,,) " *(A + T,)®. Under the
isomorphism, this maps to ¢(k) = ((A +1,,) "' (A + T,,)¥) (k). On the other hand, ¢ (k) €
D =D(A+wk)) C D(A+w(k)), and by the bounded invertibility of A + w(k) we have

P(k) = (A4 wk)) (A + wk))pk). (4.2.16)

Defining ¢ := (A + T,)y € HRL*(Q) and x(k) := (A+w(k))(k) = (A+w(k))w(k) € H,
and using that on D&D(T,) we have A+ T, = A+ T, = [J(A+ w(k))dk by (4.2.15),
this implies

o) = (AT T2 () = (4 +w(k)(k) = x(k). (12.17)
Putting together (4.2.16) and (4.2.17), we obtain
(AFTL)0) (k) = (k) = (A +w(k) (k) = (A + (k) p(k).
This shows

n

(A+T,) ' = /®(A + w(k)) tdk

on A+ T, (D®D(T,)), which is dense in H®L?(Q) since A + T, is onto and has DRD(T,)
as a core by construction of the operator closure. O
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In the next Lemma we apply the previous abstract result to the reduced resolvent T
restricted to various of its invariant subspaces.

Lemma 4.2.7 (Fiber decomposition of reduced resolvents). Assume (A1) and (A2) and
let A > Ao, with Ao as in Proposition 2.5.2. Set Q, = {w(k) > o} C R3. Then

1.

T A
< IRAREIE S }L@f‘”w>( )

= (HA + Hp + hw(k)|m> Uk, A),

<¢‘ oo Ha{wy }L®f“>| >HA®HB®.7:

1
-> | ae(otie ) (T + i) gegagys) 0 ),

(4.2.18)

for all ¢, € {V}H&{TY }l®f<§1), and

(TU Q,b) (k17 k27 )‘7 H)

OO B{UyLBF

-1
= (HA + Hp + h(w(ki) + w(kz))‘m> Pk, ka, A, ),

<SO‘ w1+ { vy, }L®f(2>| >HA®HB®]:

Z / dk; dks
Qo X

Au=1,2

- -1
<80(k1, ko, A, )] (HA + Hp + h(w(k) + w(kz))|m) (k1 ka, A, M)>HA®HB
(4.2.19)

~ ~ (2
for all o, € (WO B{VLIBF.
1.

T° ———— k, A

:(HA—kﬁw(k)H\I,oA}L) Pk, A),

0-7
<(p‘ A|{\I/0}i®}'1)| >HA®]-'

_Z/ dk k>\)|<HA+hw( )HWO}Q Iw(k,k)>

A=1,2 Ha
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for all v, € {\Ifg}i@)fé—l), and

(ww) (kn, ko, A, 1)

AR EFY

= (Ha+ hw(ke) + wika))jguny ) (ki ke, A, p),

T >
<SD‘ A\{\If%}i@ff)|w HAQF

Z / dkdks
Qo X

A,u=1,2

(it ko 0 )| (Ha + Alotha) + o))y ) ot ke Aom))

A

for all ¢, € {q/%}l@f((f).

(T; W e 1/}) (k, \)
-1
_ (HB + hw(k)H\IIOB}L) BN,

T >
<(p‘ B\{@%}L@A@fﬁ”w Hp®F

=>> /Q dk<cp(k, A (HB +ﬁw(k)|{\lf%}i>_1 [ (k, A)>

A=1,2 He

for all ¢, € {\I’%}J—@fcgl), and

<TU d)) (kla k27 >\7 /’L)

BH{9}LBF)

= (Hp + hw (i) + (ko)) a2 ) Tk, Ko A, ),

T >
<(p‘ B|{\P%}i®f§2)|¢ HpRF

= Z / dk,dksy
Au=1,2 Qo XQp

<<P(k1,k2,)\,u)| (HB + h(w(ki) +W(k2))|{\y%}i) W(k17k2,>\,u)>H

B

for all g, € {WOILRFLY.
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Proof. We prove i) and remark that the assertions in ii) and iii) are shown completely
analogously. Since fgl) = W,®W,, where W, = L?(,), we have the natural isomorphism

(WO B8R = (VI E{rg)) o £
=(({VGHE{VRH) & Wo) & (WA HB{IRH) @ Wo)
=L Qi { VO HE{VRH) @ L2(Qs {15 HE{ R},

where the first equality holds by the definition of the tensor product of Hilbert spaces.
With respect to this isomorphism a vector ¢ € {\1194}%@{\1/%}1-@}19) is represented by

the function k +— <zgﬁ’i i ;i), on which T acts as
-1
P ——
Ji. (T4 M+ M0 g poagys) ’
—1 ;
P —
0 Jo, (P4 i+ heo9) yragyr)

see Lemmas 4.2.5 and 4.2.6. Since F\2 = S2 (W, @ Wy) (S2 being the symmetrizer,
i.e. the orthogonal projection onto the subspace of functions which are invariant under
permutation of the variables) and Hy>, commutes with Sz, we conclude that, as above,
T° acts on a function

(
k) = | 7 o € (VUGB

by componentwise application of

D -1
/QUXQ7 (HA—i-HB —|—77,(w(k1) —i—w(kg))'W) dkldkz,
The identities (4.2.18) and (4.2.19) now follow by (4.2.14) and the definition of the inner
product on .7-"(51) and ff), respectively. ]

4.2.4 Ground state and parity invariance

Throughout this section, we assume (Al) and (A2), as well as A > Ay, with Ag as in
Proposition 2.5.2. In particular, Proposition 2.5.2 then guarantees the existence of real,
non-degenerate and rotation-invariant ground states {¥%} and {¥%} of H4 and Hp, which
both possess a definite parity. In the following, we will show that the reduced resolvent
commutes with the orthogonal projections onto \1'94 and \I!% and with the parity operators.
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Lemma 4.2.8 (Ground state projections commute with 7). Let

77 = ((HF ~ Eo)lgyys)

be the reduced resolvent of Hf = Ha + Hp + Hy>q, where ¥g = \IJOA®\II% ®9Q, and VY, \IJ%
are the (non-degenerate) ground states of Hy and Hp, respectively. Then the projections

Pryoy ® Inper = Pyojsmper)

and

Py ®@ Iaer = Pug1amaer)

commute with T° on {¥o}+, i.e.

[T, P{\I/%} & I’}—(B@]:]{\I,O}L = [T, P{‘II%} & IHA®]-‘]{\I/0}L =0.

Proof. Without loss of generality, assume E = E% = 0, i.e. Ey = EQ + E% = 0. The fact
that Prgoy @ Iryer and Pryoy @ Iy ,er are the projections onto {VO}&(Hp ® F) and
{V21&(HA®F) follows from Lemma 2.6.1. Let u = u1 @ua@uz € (HAQHERF)N{Wo}+.
Then (Ppyo; ® Irper)u = (Puyo) ® Inper)u = (V) @u@uz € (WO 10({¥R}&{0}1)",
which is an invariant subspace of T (Lemma 4.2.5). We have T7(Pyoy ® Iy por)u =
T ((c¥Y) ® ug @ uz) = (c¥Y) ® TG(ug ® us), where

—1
75 = ((H + Hyzo)lqag 0y )

(this follows from T7_,

a0t = Iryoy ® T, see Lemma 4.2.5). On the other
B
hand,

(Pryoy © Inper)T u
:(P{q,%} ® Inper)T’ <(P{‘I’91} ® Inper)u+ (P{‘I’%} & IHB®]:)J‘U)
~(Prasy ® Triper) ((€¥%) © T (uz @ us) )

+ (P{\I/%} ® IHB@)]:)TU ((I — P{\I,%}Ul) & us & U,g)

SEOVREEISE R

Since {¥Y 1+ ({¥%1®{Q})* is also an invariant subspace for 77, we conclude

(P{q’%}@(HB@f))TJ((I — Pryoju1) ® uz ® ug) = 0,

which (by linear extension) implies that T"P{\I,%} ® Inpor = P{\I,%} ® Iy zoFrT° on
(HARHBRF) N {¥}+, the latter being a dense subspace of (H4 ® Hp ® F) N {¥}+ by
construction, so that the assertion follows. ]
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Definition 4.2.9 (Parity operators). Let ¥ € Ha ® Hp ® F, where H4 and Hp are
(symmetry subspaces of) L?(R344) and L?(R342) and F is a bosonic Fock space over a
Hilbert space H. The parity operators P4 ('with respect to A’), P ("with respect to B’)
and the ’joint’ parity operator P are defined by their action in the representation

Hi®Hp ® F = L2(R3%4 x R3%8; g% ( F))

as follows:
(PAw)n(X17-~7XZA7Y17-~ 7yZB) 3:1/171(—?(17- "7_XZA7y17“ . 7YZB)7
(PBw)n(le--~7XZA7YI7-~- 7YZB) ::wn(xla" . 7XZA7_y17"'7_yZB)7
(Pw)n(xlr"’XZA?ylv"' 7yZB) ::1/}774(_)(17' --7—XZA7—YI7- . -;_YZB)-

Remark 4.2.10. Note that P4, Pp and P are isometries satisfying Pg = Pg = P? =
I ,oHzor (such operators are sometimes called ’involutions’). Since they differ from +17,
they all have spectrum {1,—1}. The two eigenvalues 1 and —1 correspond to functions
of ’even’ and ’odd’ parity (with respect to A, B or ’joint’). The orthogonal projections
onto the eigenspaces can be constructed explicitly by decomposing a given function into
its even and odd part (f = f+ + f—, f+(z) :=1/2(f(z) £ f(—z)). Furthermore, note that
PsPp = PgPy = P.

Lemma 4.2.11 (Parity invariance properties of the reduced resolvent). Let P, Py, Pp
be the parity operators defined above. Let

T° = ((Hg - E0)|{@0}L>

be the reduced resolvent of Hf = Ha + Hp + Hy>,, where Uy = \11?4 ® \I/% ® Q, and \1194,
\I/?B are the (non-degenerate) ground states of Hy and Hp, respectively. Then

[TJ,P(X)I]:] = [TJ,PA ®IHB ®I]:] = [TJ,IHA ® Pp ®I]:] = 0.

-1

In particular, T leaves the (separate and joint) parity eigenspaces invariant.

Proof. Assume without loss of generality that Ey = 0. First note that Hq ® Iy e7,
Iy, ® Hgp ® Ir and Iy ,oHy @ Hf> all commute with P4, Pg and P on their respective
domains D(HA)®(Hp ® F), D(Hp)&(Ha @ F) and (Ha ® Hp)®@D(Hs,) in the sense
that Po(Ha ® Inyer) C (Ha ® Inger)Pa etc. (see Proposition 2.5.1). Therefore Ha +
Hp + Hy>, (with domain D(HA)®D(Hg)®D(Hfs,) ) commutes with P4, P and P.
Since ¥4 and 1p are non-degenerate eigenfunctions of H4 and Hp by assumption, they
must have a definite parity, i.e. be eigenfunctions of P4 and Pp, respectively. This implies
that {¥g} is a common eigenspace of P4, Pp and P. Therefore its orthogonal complement

{Wg}+ is left invariant by P4, Pg and P, which in turn implies that H4 + Hp + H?l{‘lfo}L

(with domain (D(HA)®D(Hp)®D(Hfss)) N {¥o}+ ) commutes with P4, Pp and P.
By Corollary 2.6.3,

Hg’{\yO}L = HA + HB + HfZU‘{lI,O}J_ = HA + HB + ngl{‘l/o}i'

Now let u € D(HA+HB+H;|{WO}L

{un} € D(HA)@D(Hp)@D(Hy>0)) N {¥o}

) and choose
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with u, — w and (Ha + Hp + H;I{Wo}i)u” — Hg\{%}Lu. Since P4, Pg and P are
continuous, we have

= lim (Ha+ Hp + Hf gy ) Pun,

where we have used the above commutator property. The continuity of P implies Pu,, —
Pu, and the construction of the operator closure allows us to conclude Pu € D(H{| {\I,O}L)
and

lim (Ha + Hp + HU‘{%}L)Pun = H{ |[{yoy Pu,

n—oo f
which establishes PH{|ry,1 C Hf |y, P- Now for any densely defined operator A :
D(A) — H which is boundedly invertible and which commutes with a bounded operator
B (in the sense that BA C AB), we have

A 'Bu=A"'BAv=A"'ABv = Bv=BA 'y

for every u € H and v = A~'u € D(A), which shows [A™!, B] = 0. Applying this to
A= Hf| (wo)+ and B = P proves the assertion. The same argument is valid for P4 and
Pg.

O

4.2.5 Rotation invariance

In this section we establish results that will allow us to exploit the rotation invariance of
the atomic Hamiltonians and their ground states in simplifying certain expressions that
will arise in the conversion of the V7(A,R) into integrals over photon momenta. More
precisely, the results in this section will allow us to eliminate the polarization vectors from
the calculation, resulting in expressions whose only photon degrees of freedom are the
momenta.

We begin by proving a simple fact about expectations of rotation-invariant operators on
states involving a rotation-invariant wave function and components of the position and
momentum operators.

Lemma 4.2.12 (Rotation invariance I). Let a,b € R3. Suppose that ¥, ® € L?>(R3N) and
the bounded operator A : L*(R*V) — L2(R3N) are rotation invariant in the sense that
for every R € SO(3), (Ug¥)(x1,...,on) = U(R toy,..., R 2y) = U(zy,...,2N) for

almost all (x1,...,zn) € R*N and [A,Ug] = 0. Furthermore, let p; = —ihVy, be the
operator of momentum for the i-th particle. Then the following identities hold.

i. If 2;¥ and x;® are in L*(R3N), then
1
((a-zo)P|Al(b- 2;)®) = S(a - b)(z:¥|Az;®).
i. If W and U are in H'(R3N), then

(o p)UIAIb - py) ) = 3 (0 D) {pi ] Alp;®).
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iii. If 2;V and 2;® are in L2(R3") and ¥, ® € HY(R3YN), then
1
{(a-z:)U|A[(b-p;)®) = 5(a-b){z: | Alp; D).

Proof. i) Choose R € SO(3) such that Ra = ey, the first standard unit vector of R3. Then

((a-z:)¥|A|(b- z;)P)

(Ur((a-z:)®)|URA|(b- z;)®)
((a- R 'a)WIA[(b- R 'z;)®])
((
(

Ra - z;)W|A[(Rb - z;)®])
=((Ra - 2;)|Rb - Alz;®])

a0 / d(er - )0 (@) (R - Alz;®)(x)
—al [t / dr 2} T | (e1 - RB)(ex - Ala;@](x) + (e2 - Rb)(es - Alar;)(x))

(e3 - Rb)(es - Ale @1(@)}

=lallpl(@-b) | dx xj ¥(z)Alz;®](x)

+ (eq - RD) / da xj U(x)Al25®](z)
+ (e3 - Rb) /dx z; U(2)Alz}®](z).

In the second term, le changes sign under the transformation 7'x - - - x T, T : (e1, €2, e3)
(—e1,e2,—e3) € SO(3), while the remaining integrand wA[:cgtl)] (x) is invariant under
this transformation by assumption. Thus the second term vanishes. For the first term,
apply the same argument with the transformation 7' : (e1, ea, e3) — (—e1, —eg, e3) € SO(3)
Thus only the term

allb(@-B) [ do ot T A} 8)(0) ~(a-8) [ do T Al}](x)
=(a- b)(azll\IJ|A|x}(I)>

survives. Repeating the above argument with matrices R € SO(3) mapping a to ex and
e3, respectively, and summing up yields

3
3((a- ;)| A|(b- ;) Z ) (@ W] AlzG®) = (a - b)(x; V| A|z;P).

ii), iii) Since for an H!'-function ¥ which is rotationally invariant in the above sense, we
have
UrlVa ¥](2) = [Vo, U]([R™! x -+ x R™']w) = R™ [V, ¥(x)]

(as is easily seen using the chain rule), the operators p; exhibit the same transformation
behaviour as z;, so the above reasoning applies without alteration. ]
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To generalize the preceding result to situations in which not one but two components of
the position (or momentum) operators appear on each side of the inner product, we first
prove the following two results, which will yield a decomposition of the resolvent of an
operator with a 'non-interacting’ structure:

Lemma 4.2.13. Let A : D(A) — H be a positive self-adjoint operator satisfying A >
A > 0. Then for any X\ > 0 and all x € H, the identity

(A+N)"1e = / dse ™ e %4y
0

holds.

Proof. Since A — A > 0, we have —A + A < 0 and (0,00) C p(—A + A). Furthermore,
A = (=4 + A)7H| < |A|(dist(A, spec(—A + A))~™1 < 1 for any A > 0. By the Hille-
Yosida theorem (or by the spectral theorem), exp(t(—A 4+ A)) is a strongly continuous
contraction semigroup. For generators of such groups we have the following representation
of the resolvent in terms of the semigroup (see e.g. [Eva98|, Theorem 7.4.3):

(AT A== (A= Ay e = [T dsee e A8,
0

for every x € H and p € (0,00). Choosing = A + X > 0 and using the Trotter product
formula (see [RS80], Theorem VIII.31) to conclude

e—(A+)\)se—sA+Asl, — e—)\se—sAx

yields the assertion. O

Lemma 4.2.14. Let A and B be self-adjoint operators on the Hilbert spaces Hi and Ho,
respectively. Assume that A > Ajp > 0, B > Ap > 0, and consider the self-adjoint
operator T'=A® I+ 1® B. Then spec(T) C [Aa+ Ap,00), T > A+ Ap >0, and

T — oA g etB Yt >0, (4.2.20)

(™) am, =¢ M@, W0, (4.2.21)
Proof. The assertion on the self-adjointness, the spectrum and the semi-boundedness of
T are standard properties of the tensor product operator construction (see e.g. [RS80],
Theorem VIII.33).

Since A> A4 >0,B>Ag>0,T>A4+Ap=:A >0, we know that e *4, e~ *B and
e T are strongly continuous contraction semigroups.

Let u ® v € D(A)®D(B) and define ¥(t) := e *T'(u ® v). Since D(A)®D(B) c D(T),
we have (t) € C1([0,00), D(T)) and %w(t) = —T(t), i.e. 1(t) solves the initial value
problem %@b(t) = —Ty(t), ¥(0) = u ®v. Now consider 1)(t) := e 4y ® e *By. We have
¥(t) € D(A)®D(B) for all t > 0 since e 4 and e 8 leave the domains of their respective
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generators invariant. Furthermore, 1;(0) =u®uv, and

—

4000 = Jim (G50 00 )
:iﬁ)(% [(ef(tm)A _ e )@ e By 4 e HNAYy @ (¢~ (B _ eftB)v})
=(—Ae " "Mu e Py 4+ e MU @ (—BetBy)
=—(A®I+I1®B) (e ume Py)
=—(A®I+I®B)Y(t)
==~ Ty(t)

by the semigroup properties of exp(—tA) and exp(—tB) and the fact that T = A® I +
I ® B on D(A)®D(B) by construction. But this means that t(t) also solves the above
initial value problem. Since this solution is unique (this is a standard result on operator
semigroups, see e.g. [Wer00], Satz VII.4.), we conclude

Y(t) =e T(uev) = (e e ™) (uav) =P(t).

Since this identity holds for any u®v € D(A)®D(B), it extends to all of D(A)®D(B) by
linearity and to all of H; ® Hs by density, proving (4.2.20). This last step requires passing
to the closure (e~*4 @ e~tB) of the operator on the right-hand side. Restricting both sides
of (4.2.20) to the algebraic tensor product D(exp(—tA)®exp(—tB)) = Hi®Hy C H, ® H;
yields (4.2.21) O

Next we apply the preceding results to the resolvent of

(Ha® I+ 1S Hp) gy

Proposition 4.2.15. Assume (A1) and (A2) and let A > Ao, with Ao as in Proposition
2.5.2. Let Hy and Hp be the atomic Hamiltonians, and assume without loss of generality
that inf spec(H 4) = inf spec(Hp) = 0. Let w(k) = c|k| be the photonic dispersion relation.
Then

- -1
(i + (k1) + wlk)) gy mgnys) (@8 0)

_ /00 s (e—s(HA+w(k1))|{\I'%}Lu 2 e—S(HB‘HU(kQ))H\I,%}L U)
0

for all ki, ko € R? and every u @ v € Ha ® Hp. Furthermore, the operators

e*S(HAJFW(kl))H\p%}J_ *S(HBJFW(k?))H\I,OB}J_

and e

are rotation invariant operators on the Hilbert spaces {W9}+ C Ha and {¥4}+ C Hp (in
the sense that they commute with the family Ur of operators, see Proposition 2.5.1).
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Proof. Set M := {U}+®{¥%}-. We have (Ha + Hp)ps = Aa+ Ap =: A > 0. Thus
by Lemma 4.2.13, we have (choosing z = w(k;) + w(ks) > 0)

- -1
((Ha+Hp + wit) + wllo) goyamnr)  (@90)

_ / " ds e~k +ka)s o —s(TaFHB) 11 (4 @ 1),
0
By Corollary 2.6.3, (Ha + Hp)jps = (Ha + Hp)jp- Furthermore, as was shown in the

pI‘OOf of Lemma 425, (HA + HB)|M = HA|{\IJ?4}J- + HB|{\IJ%}J- We have HA|{\IJ?4}J- >
Ay >0, HBl{‘l,(})B}L > Ap > 0, and thus Lemma 4.2.14 is applicable, yielding

((HA + Hp +w(ki) + W(k2))|m) (u®v)
— /OO ds e~ s(w(ki)+w(k2)) <e_SHAH‘1’94}Lu ® e_SHB\{A}Lv)
0

_ /oo s efs(HA+w(k1))|{\p(j)4}Lu 2 efs(HBﬂu(ks))\{\I,%}Lv’
0

where we have used the Trotter product formula ([RS80], Theorem VIIL.31) for the last
identity.

To prove the claim about the rotation invariance, recall that by Proposition 2.5.1,
UrHa,p = Ha pUr (as unbounded operators on H 4 p). As noted in the remarks after that
proposition, the ground state eigenfunctions \1194 and \I/%, and thus also the one-dimensional
subspaces spanned by them, are invariant under the family {Ug|R € SO(3)}. There-
fore the orthogonal complements {¥9}+ and {¥%}+ are also left invariant by the family
{Ug|R € SO(3)}, so that we immediately obtain UR(HA7B|{¢%’B}L) = (HA7B‘{,¢%7B}L)UR

as operators on {¥ z}+. Now the identities

—s(Ha,p+w(k))

e e 1 = e I i

(as bounded operators on {1/1%7 511) follow from the spectral theorem (see e.g. [Con90],
Theorem 4.11). O

We now prove the generalization of Lemma 4.2.12 to the situation of operators that allow
for a decomposition of the form just considered.

Lemma 4.2.16 (Rotation invariance II). Let a,b,c,d € R and let the operators p; be
as in Lemma 4.2.12. Suppose that N = Z4 + Zp and let A be a bounded operator on
L2(R3N) = L2(R3%4) ® L?(R34B) which allows for a decomposition of the form

A= C’/Ooodu A (u) ® Agz(u),

(or into linear combination of terms of this type), where the A1(u) and Az(u) are bounded,
rotationally invariant operators on L*(R3%4) and L*(R3%B), respectively, and convergence
of the integral holds at least in the weak operator topology. Suppose further that \I/% and
\I'% are rotation invariant in the sense of Lemma 4.2.12. Then for anyia,ja € {1...,Z4}
and any ig,jp € {1...,Zp},
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1. [fwiA,jA\IIA € LQ(R:SZA), xiBJB\IIB S L2<R323), then
(wiy - a)¥a @ (zig-b)VE|A|(2), - )Va @ (), - d)¥B)

3
1
=5 (a-o)b-d) 3 (2§ W4 ©al UplAld Vo @al Up).
a,B=1

ii. If Wap € HY(R3%45) and 25,V 4 € L?(R3%4), 2, Vg € L*(R3%B), then
((Pig - @)¥a® (pig - b)VB|A|(z), - )¥a® ()5 - d)Vp)

3
1
:g(a )(bed) Y (P Ta® Pl Up|Alad U @ xfB Up).
a,B=1

Proof. 1) Suppose that A is given in the above integral representation, where we assume
C =1 without loss of generality. We calculate

(wiy - a)¥a® (zig - b)Up|A|(2), - )¥a® ()5 - d)¥VB)

:/Ooo du((wi, - @)W alAr(u)|(zj, - )V a)((Tip - b)Vp|Az(u)|(z)y - d)VE)

11 >
~53@ 00 [ dua, ValAi ey, Va) o, Vol As(wle, U)
3
1 o (6% (6%
:9(a-c)(b~d)/0 du Y (@8, Wal Ay (u)|z$, Ua) (2] Wp|As(u)|a] Up)
a,B=1

3 )
:é(a )b-d) Y /0 du(a, Ua @z Wp| A1 (u) ® Az (u)|z$, Ua @ 2 Up)
a,f=1
1 : a B a B
=5(a-o)(b-d) > (af, VA, UplAlaf V@, Up),
a,f=1
where the second equality follows from Lemma 4.2.12. If A is given as a linear combination
of terms of the above type, the argument still applies, since the initial and final matrix
elements are linear in A.
i), iii) follow immediately, since under rotations, the momentum operators transform
exactly like x;, see the proof of Lemma 4.2.12. O

By a simple argument involving the diagonalization of symmetric matrices, we can gener-
alize the preceding result even further:

Lemma 4.2.17. Assume the hypotheses of Lemma 4.2.16. In addition, let A, B be real,
symmetric 3 x 3 matrices. Then for anyia,ja € {1...,Z4a} and anyip,jp € {1...,Zp},
1. If.Z‘iAJ'A\IJA S LQ(R?’ZA), xiB,jB\IJB S L2(R3ZB), then
(i % Ali W3) IT] (x5, 9% - Blx; 0)) )

3

1
:§tr[AB] Z <X?A\I’94 ® XfB\IJ%\T|x§‘A\P% ® X?B\I’%>.
a,f=1
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i. If Wap € HY(R3%48) and 25,V 4 € L?(R3%4), 2, Vg € L*(R3%B), then

(i APy ) IT] (P11 V% - B(psn %)) )
3

1
A 35 (0 i 4 01 08)

a,B=1

Proof. Since A is symmetric, we can find an orthogonal matrix O4 which transforms A
into the diagonal matrix D = diag (A1, A2, A2), the \; being the eigenvalues of A. We
conclude

(i, 0% - A(xip UR)) = (x5, 0% - (04 DO0A) (xi, V))

3
= (0a(xi,¥9) - (DOA) (%1, U%)) = > Xi(0a(xi, ¥%) - €) (i - Oa(xi5TY))
=1
3
= Z )\i(XZ'A\IJOA . OZez) (OZ@Z . XiB\I/OB).
=1

Here the e; constitute the canonical orthonormal basis of R®. The corresponding trans-
formation for B yields

(XjA\IJ?‘l (Xjp \I’O X]A\IIA OBeZ) (OBez Xip v B)s

IIMw

so that we obtain
(i W% Alxip W) 1T] (5, 5% - Blx;05)) )

=D A 5\j<(XiA‘I’9x -Ohe;) (Ohei - xig WE)|T|(x, 0% - OFes) (Ofe; 'XjB‘I’%)>7
to which Lemma 4.2.16 is applicable, yielding

(i W% - Alxi W) IT] (x5, 9% - Blx; V) )
3

1 -
=3 Z i \j(Ohe; - OFe;) (Okej - Ohe) Z <X?A\ll ® x \IJ BlT|x5 % ® X?B‘l/%>.
%,J a,p=1
An easy calculation shows that
3
> i Aj(Ofei - Ohe;) (Oe; - Ofei) = > Xiei- (0aBOR)es),
i i=1

and by the definition and the cyclicity of the trace we find

tr[AB] [OADOAB] = tr[DOABOA]
3

=> (ei- (DOABOY)e) Z)\ (0ABOY)e;),
i=1

finishing the proof of the first assertion. The second claim is proven completely analo-
gously. O
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4.2.6 Resolvent and operator identities

In the following lemma we collect some important identities involving the reduced resolvent
T7 restricted to some of its invariant subspaces. We will need these identities in Chapters
3 and 5, when we convert the matrix elements occurring in V{7,,,(R) to integrals over
photon momenta.

Note: In the statement of the following lemma, we will stick to the convention that if an
operator (Ha p + w(k)) appears on the left of (H4 + Hp)™!, it is understood that it is
applied to the left-hand side of the inner product.

Lemma 4.2.18 (Resolvent and operator identities). Assume (A1) and (A2) and let A >
Ao, with Ag as in Proposition 2.5.2. Then the following identities and relations hold:

i.
(Ho+ Hp +w(ky) +w(ks))  (Hap + wka)) ™
=(Hp,a +w(k)) " (Hap +wks)) ™
— (Ha+ Hp + w(ki) + w(ke)) " (Hpa +w(ki)) ™!
as bounded operators on {W9}+&{V%}E C HARHp for all (ki,kz) € RE.

1.

[(Ha+ w(ki) ™t @ Ingy, I, @ (Hp + w(ka)) '] =0, (4.2.22)
_ 1
[(Hap+wki)) ™ ® Iy m] =0,
B 1
[(HA + HB + w(kl) + w(kg)) 1, m] :O,
[(Ho+ Hp)™? 1 ] =0

"w(ky) +w(ka)
as bounded operators on {W9}+&{V%} C Ha ® Hp for all (ki,ks) # (0,0) € RS.

[(Ha+Hp +w(ky) + wka)) ™", (Hap +w(ks)) "1 ® I, ,] =0, (4.2.23)
[(Ha+w(ki)) ' @ Iy, Iy, @ (Ha +w(ke))~1] =0 (4.2.24)

as bounded operators on {V4}@{UYI C Ha ® Hp for all ki, ko, ks € R3. Fur-
thermore,

(Fa + H + wiko) + w(ka) ™ (s + w(ks)) © i)

c ((HA,B T olks) @ IHB’A) (Ha ¥ Hp + wki) + w(ks)) L. (4.2.25)

<(HA +w(ky)) HHp +w(ks))? + (Hp + w(ky)) H(Ha + w(ks)) 2
— ((Ha + w0)) ™ 4+ (Hp o+ w2)) ™) (A Hp o) + wllee)) ™)
:<(HA + w(ko))2(Hp +w(ky)) ™ — (Ha+ w(ky))?(Hp + w(kQ))—1>¢ (4.2.26)
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for all ¢ € {WY}+&{VQ}+ C Ha® Hp and all k1, ko € R3,
(((Fa -+ ()™ + (Hp + (k) ) (Fa + Hp) ™
— (Ha+ ho(1) ™ (Hp + ho(k) ™)

=2ho(k) (o + (k)™ (Hp + () (Ha+ Hp) ™)

for all ¢ € {WO M &{W0L and all k € R3.
A B

((Fa+ Hp) ™!
|(Ha + ho(ky) ™ (g + heo(k2)) ™ @ Hg
+ Ha @ (Hp + (k) ™ (Hp + heo(ks)) ™| >¢
=((Ha+ o)) (Ha 4 o) @ 1)
+ (1@ (Hp 4+ i)™ (Hp + hoke) ™)
~ ((EF Hp)  [(Ha o+ holl) ™ @ 1+ 1 @ (Hp + ho(k) ™)
+ huo(ka){ (o T Hip) ™ [(BLa -+ heo(len) ™ (Bt + ho(lea)) ™ @ 1
16 (Hp + hw(ky) ™ (Hp + huo(ke)) | >w
for all ¢ € D(H 40,y )ED(Hp gyoy2) and any ki, ks € R,
Proof. i) Noting that (Ha+w(ks)) '®@(Hp+w(k:)) ™ maps HA®Hp to D(HA)®D(Hp) =
D(Ha+ Hp) and (Ha + Hp) ! extends (Hy + Hp) ™!, we calculate

(Ha+ Hp +w(ky) +
=(Ha+ Hp + w(ki) +
=(Ha+ Hp +w(ki) +

w(ke)) (Ha+w(ke)) ™' @ Ing
w(ka)) " (Ha +w(ke)) ™' @ ((Hp +w(k1))(Hp + w(ki)) ™)
w(ke)) " (Ha + Hp + w(kn) + w(ke) = (Ha +w(ks)))
% ((Ha+ (o)™ @ (Hp +w(ki) ™)
:((HA +w(ke)) ' ® (Hp + w(ky )—1)
— (Ha+ Hp +w(ki) + w(ke)) " (B, © (Hp + w(kn) ™)
on {T9}+&{¥Y1+. By exchanging the roles of A and B, the second assertion follows.

ii) The first four identities hold trivially due to the non-interacting structure of the operator
(Hap+w(k)) "' @Iy, , and the fact that 1/(w(k1)+w(ks)) is multiplication by a constant

on Ha ® Hp. To prove (4.2.23), set M = {¥4}L&{T%}L. As in the proof of Lemma
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4.2.5, we see that M is a reducing subspace for (Ha + w(ks))™! ® I3,, on which it is
closable with boundedly invertible, self-adjoint closure

((Ha+ w(ks)) ™ & Irp)m

Equally, we have that

(HA + Hp + w(kl) + w(kg))|M = ((HA + w(kl)) Ing +1n, ® (HB + w(kg)))|M
is self-adjoint and boundedly invertible on the Hilbert space M. This implies the relations

exp (1t (Hy + Hp +w(ky) + w(kg))|M)

=exp (1t Ha+w(k )H\I,OA}L) ® exp (it(HB + (U(kQ))l{\Ij%}L>,
(1

exp (it((Ha + w( kg))_1®IHB)|M)

=exp <1t(HA + w(kg))‘{q,oA}L) & I{@%}L

for the corresponding unitary groups (see [Wei76], Satz 8.35). By definition, two (un-
bounded) self-adjoint operators commute if and only if all their spectral projections com-
mute. By [RS80], Thm.VIIL.13, this equivalent to either their resolvents or their unitary
groups commuting (in the usual sense for bounded operators). Now it is clear that

[exp <it(HA +wlkn) o }L) ® exp (it(HB + w(ka)) a0, }L) ,

exp <it(HA + w(kg))ww) ® I{W%}L]
—[exp (it(Ha + w (ki) gy ) »exp (i(Ha +w(ks))gug e )|
® {exp (it(HB + w(kz))\{\p%p) ,I{\I,%}L} =0

on {UY1H&{WY1+ the latter being a dense invariant subspace of the Hilbert space M =
{T0}-L&{V%}L for these operators. Applying Lemma 4.2.2, we conclude

[exp (1A + (k1)) w0 ) @ exp (t(Hp + w(ke)) a2 )

exp (it(HA + w(k3)>|{\1,?4}¢) (%9 I{\I,(I)B}J_] =0,

as bounded operators on M, which is equivalent to

[(Ha + Hp + w(ki) + w(ka))jnr, (Ha + w(ks)) © In )] = 0,

and also to

[(Foa i+ (k1) + wka)pe) ™ (L w() @ Brepar ) 1=0
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as bounded operators on M by the above and [RS80], Thm.VIIL.13. As in the proof of
Lemma 4.2.5,

(T + o)) @ g hit) = (Ha + (3)) 1@ ey o

and restricting to the (dense) subspace {¥4}+@{W%}L proves (4.2.23). Identity 4.2.24
is proven completely analogous. To see (4.2.25), note that by the above, all spectral
projections of (Ha + Hp +w(ki) +w(ka))p and ((Ha +w(ks)) @ I3;)p commute. Us-
ing the spectral representation of ((Hq + Hp + w(ky) + w(kg))|M)_1 and the fact that
((HA + Hp + w(kl) + u}(kg))‘M)_l maps M to D(HA + Hp + w(kl) + w(kz))|M), which
is contained in D((Ha ® I3 )|n) (see Lemma 4.2.4), the assertion follows.

iii) Since the operator (Hp+w(k1)) ' (Ha+w(ks)) ™2 appears on both sides of the asserted
equality (note that the two factors commute on {W9}+&{¥%}+), it suffices to show that

((Ha+ (i)™ (Hp + (k)

2
= (A 000) ™ (H )™ ) (- Hp + (k) + (ko)) ™)

=~ ((Ha+w(k)(Hp + w(k2))*1>¢,
which is easily seen by inserting a factor
(Ha+ Hg +w(ky) + w(ke)) " (Ha + Hp + w(ky) + w(ks))
in front of the first summand on the left-hand side and the right-hand side, noting that
Hy+ Hp +w(ki) +w(ks) = Ha+ Hp + w(ky) + w(ky)

on D(H4)®D(Hp), and using the commutator relations from ii), as well as our convention
about the ordering of operators stated above.
iv) The operator (Ha+hw(k)) ™ (Hp+hw(k)) ! maps {¥9}+&{¥%1+ to D(H4)®D(Hp),
on which Hx + Hg = H4 + Hp, so that we can insert an identity and obtain

(((HLa + o)™+ (Hp + () ™) (o + Hp)

~ (Ha 4 o)™ (Hp + ho(l) ™)
=(((Ha + ho(1) ™ + (Hp + hw(K)) ™) (Ha + Hp) ™

— (Ha+ H) ™ (Ha + His + 20(0) = 20(0)) (HLa 4 oK) ™ (Hp + ho(k) ™)
—(((Ha + heo(k) ™+ (Hp + heo(K)) ™) (a + H) ™

~ (a+ Hp) ™ ((Hp + ho() ™ + (Ha + huo(k) ")

+ 2u(k) (Ha + Hp) ™ (Ha + heo()) ™ (Hp + heo(k)) ")

Now by the commutator relation from ii) and the fact that

(Ho+hwk) @I =(Hs+hk) ol
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on {¥Y}+&{W%}+, we infer

(((Ha + heo() ™ + (Hp + ho()) ™) (Ha + Hp) ™

(s (1) (Ha o+ o)) )

(
=((Fa+ )™ ((Ha + ho() 0 1+ T @ (Hp + ho(k) )
(

(Hp 4+ o)™ (Ha+ ho() ™))

so that the assertion follows by noting that due to the commutator relations in ii) and our
above convention, we have

(2000 (AT Hp) ™ (Ha + heo(k)) ™ (Hp + o)) )

=200 (s + (k)™ (Hp + b)) (Ha + Hp) ™)

v) Since ¢ € D(HAl{\I,%}J_)@D(HB‘{\I,%}L), we can add and subtract operators H4 and
Hp to obtain

((Ha T Hp)"

|(Ha + ho(k) ™ (Ha + eo(ka)) ™ @ Hp

+ Hy® (Hp + hw(k))) " (Hp + hw(kz))_l} >¢
=((Fa+ Hp) ™ [(Ha 4 o)) ™ (Ha + heo(ka)) ™ (HLa + Hip)

+ (Ha+ Hp)(Hp + hw(ky)) ' (Hp + hw(k)) ™"
— (Ha+ hw(k1))  (Ha + hw(ke)) " Ha ® 1

—1& Hp(Hp + ho(ky)) ™ (Hp + huo(k2)) "] >w.

Using the commutator relation (4.2.25), the fact that Hy + Hg = H4 + Hp on
D(HA‘{W?A}L)@D(HBI{\II%}L) and the commutativity of Hp and (Hp + hw(ki))™! on
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D(Hpg), we obtain

((HA+Hp) ™ | (Ha+ Hp) ((Ha + (k)™ (Ha + (ko) @ 1)
+ (Ha+ Hp) (19 (Ha + o)™ (Hp + ho(ka)) ")

— (Ha + hw(ki)) ' (Ha + hw(kg)) ' Ha @ I

1@ (Hp + he(ln) ™ Hp (Hp + (ko)) ™)

:<<HA + hw (ki) " (Ha + hw(ke)) P @ 1
+1® (Hp + hw(ky)) ' (Hp + hw(ky)) ™
— (A Hp) [ (Ha+ ho(le)) ™ (Ha + (k) Ha @ 1

+ 10 (Hp + hok)™ Hp(Hp + ko)™ ])

Finally, using the relations (Hj + hw(ko)) 'Hao = I — hw(ks)(Ha + hw(ks))™! and
HB(HB + hw(kg))il =1 — hw(kg)(HB + hw(kg))il (Wthh hold on D(HA) and Hp,
respectively), we arrive at the asserted expression. O

4.3 Exploiting invariance properties and cancellations with
infinitely separated problems

In the next step of the proof of Theorem 3.0.6 we apply the formulas for the energy cor-
rections derived in Section 4.1, exploit the properties of the reduced resolvent established
in Section 4.2, and collect simplifications that arise from cancellations of terms occurring
in the energy corrections of both the compound and the infinitely separated systems.
Recall the definitions

T7 =((H§ = Eo)jqweyr) ", Yo=9%@9%0Q,
T3 =((Ha+ Hyzo — EY))j(wo,00)L)
TE =((Hp + Hy>o — EB))j{a0,00y2) "

of the reduced resolvents of Hy, Hq + Hy>, and Hp + Hy>, from Proposition 2.6.5. The
above-mentioned simplifications are collected in the following result.
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Lemma 4.3.1. Assume the hypotheses of Theorem 3.0.6. Then

Vlo(A7R) = V?)J(A7R) =0,

Vy (A, R) = (¥0|Qr[¥0), (4.3.1)
Vi (AR)
= —(QrY|T?|QrY0) (4.3.2)

- {2 Re [(H; aWo| T HY, T H., 5 T°|H., 50 + (H., 4 Vo|T" H, 5 T°H,, ,T°|H, B%ﬂ

o (HY, W0\ T7 Hy 5T Hy, 577 |Hy, 4 W0) + (Hy o[ T Hj, T Hy, 4T |Hy, 5 %o) |
(4.3.3)
—2Re [<Hé_7 AYo|T? H,, 4T° H,, 4T°|H], 5 Vo) + (H, 4 Vo|T" H, sT° H,, 5T°|H,, 4%0)

- (HY, WOl HY, T HY, T | HY, 40o) + (HY o[ T7 H), 7% HY 4 T° | H) W)

(4.3.4)
- 2Re[<HC’,”A\Il0|T”|HC’,’,B\IIO>} (4.3.5)
+ QRe[<HQ,A‘I’0’TUH$TU\H(¥,B‘I’O> + (H} pWo|T7H, T° |H] ,¥o)
o+ (HY, Do T7 Hy T | HY oWo) + (Hy, 5 Wol T Hy 4 T7|HY 500)| (4.3.6)
{2 Re[(HY 4 Vol T7 HT? | 1), o) | + (H 4o |T7 Y 5T | HY, 4Wo)
o+ (HY 5 Uo| T HY \T7|H}, 5 W0) } (43.7)
+ 2Re[<H(’,\Ifo|T“H(’,TU|QR\IIO>} + (H,Wo|T QT |H. W) (4.3.8)
o+ {(Hp A (95 @ Q) TF|H A(V% © Q) |TF Hy (0 © 0|
+ (HY (WY © Q)ITGH, 5(W) © Q) [TTHL(WY © Q)]
— (WolQrlWo) (TS Hy 4 (W% © Q)| + | TEH} 5 (W5 @ 2))
— (Y @ Q) L(W © Q) [ TEH, 50 @ Q)]
(W © Q) HY 5l(¥h © Q) IT5H, 495 © Q)2 ] (4.3.9)

Proof. We apply the formulae from Section 4.1 to V,7(A,R), i = 1,2,3,4. As concerns the
first- and third-order contributions, (4.1.1) and (4.1.3) implies

VE(A,R) = Vi (A, R) =0,
For the second-order term, (4.1.2) yields

VS (A, R) =B5(R) — (E5.4 + B3 )
= — (H,Wo|T?|HyWo) + (Wo| Hy |Wo)
— [ (M A (9 2 QTSI H AW @ Q) + (9 © Q) HY 4|09 © )

— (Hy (V5 © QITEIH, 5(V © Q) + (W) © Q)| Hy 5 (V) © 2)].
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Noting that
Hy=H, s+ H,p, Hy=H;,+Hyp+Qr,

recalling that ||¥9 || = [|[¥%|| = 1 and using the fact that T leaves the spaces
(VO 312({P%1e{0Q})*t and {¥41&({T%}&{0Q})* invariant (Lemma 4.2.5), we find

— (H}, A(V9 @ Q)TF|H], 4(V% @ Q) + (9 @ Q)[H 4|(VY @ Q)
— (H}, p(V% @ Q)T Hy, p(¥h @ Q) + (Vg @ Q)|H] 5|(Vh @ Q))
= — (Hy, 4Wo|T?|H] 4 Vo) + (Yo|H] 4|%o) — (H, p¥o|T|H, g¥o) + (Yo|H] 5|¥0),

which has the consequence that most terms in Vi (A, R) cancel and that we are left with

a

V& (A R) = — (HJ, 4 Wo|T?|H], gp¥o) — (H} pVo|T7|H] 4¥o) + (Vo|Qr| Vo).
By Lemma A.8.2, (H,, ,Wo|T7|H], z Vo) = (H} zWo|T?|H] 4¥o) = 0, so that
Vi (A, R) = (¥o|Qr|¥o) = (4.3.1). (4.3.10)

This remaining term, which is independent of the infrafred regularization parameter o,
will turn out to vanish up to arbitrary order in 1/R by the exponential localization of
\1'94 and \IJOB and the rotational invariance of the corresponding one-particle densities, see
Section 5.2. As regards the fourth-order term V7 (R), we use (4.1.4) to find

VI (A R) =Ef(R) — (E7 4 + Ef )
={—(H, o T7 Hy T H,T7 |1, W)
+ (H, 4(99 © Q)| TGH, A\TGH, 4TS H,, 4(V% © Q))
+ (Hy p (U © )G H, TG H,, 5T5H, (0 © ) | (4.3.11)
+ {~BS (R)||T7 H, wo
+ B Al TG H, (V% © Q)2 + BS | TG H, s (Vs 0 Q)P } - (43.12)
o { = (WOl | H o) + (HEA(W% @ Q)T Hy 4 (¥ © )

+ (HY 5 (W © Q)| TF|H (V) @ 0) } (43.13)

o+ 2Re | (HyWolT7 H, T | HyWo) — [(Hp 4 (W% @ QTS Hj ATS|Hy 4(V5 @ )

o (Hy 5 (W © Q)|T5 Hy 5 THI Y 5(0 © Q)] (4.3.14)

+{ (WO T7 BT | Wo) — [(Hl AW © Q)| TS HY ATS | H) A(W5 © Q)

o+ (Hy (W © Q)| TEHY 5 THIHy 5 (W5 @ 0)] }. (4.3.15)
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Again using H, = H) 4+ H] 5, H} = H}] , + H] p + QR, [T%] = [|¥%] = 1 and the

(e

invariance of {¥}&({¥%}&{Q})* and {\I/ }®({\If 1@{Q})* under 77, we find

(4.3.11) = — (H,Wo|T° H, T H, T°|H, V)
— | (AW © Q)T H) AT HY, ATS | H) A(V5 © 9))
— (H} (W © Q)T Hy 5T Hy 5 TH |y, (5 © )]
— — (H |77 BT HL T | HY o)
— | (AW |T7 HY, AT Hy, 4T | HY, 4 W0)
~ (Hy W0\ T7 Hy 5T Hy, 5 T7|H,, W) |

(4.3.3) + (4.3.4)

— (H}, 4Wo|T7H} \T7H} sT7|H,, 4¥o)
- <Hé,B%!T"H;BT"H;,BT”| 5%)
+ (Hy aVo|T7 Hy AT Hy 4T7|H, 4 W0)
+ (H}, pVo|T° H,, gT° H,, 3 T° |H B\p0>
—=(4.3.3) + (4.3.4).

Similarly,

(4.3.13) = — (H] ¥, \T”|H”\110>
- [—< A (VY © DITFH AV © ) — (HY (' © DT H, (V) .0)
= — (H!'T, |T"|H”\Ilo> [—(H;A\IJO\T”\H;A\IJ@ - <H(’,’7B\110\T”\H(’,’73\110>]

=— (QrY0|T|QrYo) — 2Re[(H] 4 Vo|T?|H, zVy)]
— 2R6[<QR\I/0’TJ’(H(/7/7A + ngB)\If0>] .

Note that QrVo € (Ha ® Hp) ® {Q} and (H] 4 + H] )W € {¥o} @ (Ha @ Hp) ®
F@ . Since T acts trivially on {¥y} and since different Fock space sectors are mutually

orthogonal, we can use the invariance of Fock space levels under 7% (Lemma 4.2.5) to
conclude 2Re[<QR\Ilg|TU|(H”A + H(’T’B)‘IJ0>] = 0, which leads to

(4.3.13) = —(QrYo|T?|QrY0) — 2Re[(H, 4 Wo|T7|H] p¥0)] = (4.3.5) 4 (4.3.2).

Using the same arguments, we find
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(4.3.14) + (4.3.15)

=2Re

(HWo| T HYT7 | HyWo) — [(Hy 4(W © QI TH 4TSIHY 4(5 © Q)

+ (Hy, (W © Q)| TEH, 5 TH Y 5(V © Q))|

o+ (HWo T BT | Hy o) — [(Hj 1(0% @ Q)[TSHY 4T Hj, 4(95 © )

+ (Hy p (W © O)|TGH 5 THIH, 505 © 9))]

=2Re

(H,Wo|T° H,T° |H] Vo) — [( 0. AY0| T Hy o\ T7|HY 4 00)

o+ (H}, yWo|T7 Hy, 5T | HY W) |

g,

o+ (W |T7 BT | Hy W) — [ (Hy 4| T Hy 4T |y 4 W0)
+ <HC/I,B‘1J0’TUH;{,BTU|H(/T,B\IIO>:|

=2Re|((Hy 4 + Hy p)Vo|T (Hy 4 + Hy p)T7|(Hy 4 + Hy p) Vo)

- [<H3,A‘I’0\T”HQ,ATU Hy 4%o) + (H} g¥o|T° :;,BTU’HZT/,B\I]OH

+ ((Hya + Hy p) Vol T7 (Hy 4 + Hyf )T |(Hy 4 + Hy 5)Wo)
— [(H AW\ T Yy T\ HY, g Wo) + (Hy, W0l T Y 5T | Hy W0)|
+ 2Re [(HLWo| T H, T |QrY0)| + (H,Wo|T?QrT |H, Wy)

=2Re

(Hl 400l T” HY T\ Y, 5 %0 ) + ( Hy 5o/ T H, T | HY 4 %0 )

o+ (H W0\ T Hy, 5T |HJ W0 ) + ( H 5 Wo| T Hy T7 | Hy %0 )
] +(H

+ 2Re [(H, 4Vo|T°H)T?|H,;, p¥o)

+ (Hy pWo T Hy AT |Hy 5Vo)

+ 2Re [(H, Wo|T"H, T°|QrY0)| + (H,Vo|T°QrT’|H, Vo)
=(4.3.6) + (4.3.7) + (4.3.8),

(VO[T HY 5 T7| ) 4 0)
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and

(4.3.12)
= — B§(R)||IT"H, W
+ B3 A TSH, 4(0% © )2 — B 5| TEH, (V) © Q)|
= [ wol T | Hy Wo) — (WolHy Wo) |77 Hy wo (4.3.16)
[ (A @ Q)TF ) (9% @ Q) + (¥ © Q)|Hj 4]V 2 2))]
x | TSH, A(V% © Q)|
[ (G (V% © Q)\TEIH, 5(W © Q) + (W © Q) HY (25 © Q)]
x | TH, 5(¥% © )2,
By Lemma A.8.2, the cross terms in || T7H,Wo||? and (H,Wo|T?|H,¥o) vanish, yielding
(4.3.16)
= [(Hywo T | Wo) — (o H|Wo) | |7 H, o
= [(H 40| T Hy 4W0) + (Hy g Wo|T7 |}, yWo) — (Wol HY o + HY i + Qr|¥o)]

x |17 Hy, 4%l + |77 Hy, i Wol

= [(H5 A(¥% © QITFH, A(W% © Q) + (Hy, 5 (¥ © Q)15 | H, 5 (0 © Q)
— (W% © Q) HY 4 (W% © 0)) — (9% © 9) [ (W) @ 0)) — (Wo|Qrl¥o)]

x |IT§H 4(9% © Q) + |1 T5HY (% © Q)2],

where the last identity follows from the invariance properties of the reduced resolvent 1T
(see Lemma 4.2.5). Thus most contributions cancel, and we are left with

(4.3.12) = — (Wo|Qr|Wo) | ITFH, <\If?4®9>||2+||Tg h 5T @ Q)P
+ (Hea (W © Tz (V3 @ 9) TG Ho (¥ © )
+ (Hy, p(W © Q)|T5|H} (V5 © Q) |TFH, (8% © Q)
— (W @ QH 4|(¥% © Q) |TEH, 5(¥h © Q)|
— (W} © Q)| Hy 5l (V) © Q) |T5H, 4(¥% © Q)
— (4.3.9),
which finishes the proof. O
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4.4 Converting matrix elements into integrals over photon
momenta

The remainder of the proof of Theorem 3.0.6 consists of analyzing the terms (4.3.3) through
(4.3.9) one by one, which is done in the following series of lemmas. The assertions of these
lemmas constitute the results of the process of converting the V;?(A, R) into integrals over
photon momenta which contain effective atomic quantities like the dynamic polarizabilities
ag’B(k). As will be discussed below, we will also encounter some important cancellations
in the course of the calculations, see (4.4.12), (4.4.13) and Lemma 4.4.5 below.

The proofs of Lemmas 4.4.1 through 4.4.5 will be given in the remaining sections of this
chapter. The method employed is common to all of them and will be outlined in Section
4.4.1.

Define

0B (4.4.1)

Sap =

and note that S4 p are well-defined since Xﬂ/’& p€H 2 (]R3ZAvB) by the remarks in section
2.5.

Lemma 4.4.1. Assume the hypotheses of Theorem 3.0.6 Then
(4.3.4) =0, (4.4.2)
and

(4.3.3)
1

=- %4/ dkydks|C (k) ?|C(k2) |2 (1 + (ky - ky)?)e itathka) R
Qo

3
x [4h2w(k1)w(k2) ( 3 <vfz; v |(Ha+ Hp) v @ vg>>
a,B=1
23w (kq)%w(ks)?
w(ki) + w(ks)

+mﬂmm&m»(

+ (e (ki)ag (k) + ag(ko)ag (ki) (

(
+ h4w(k1) (kg)T4(k1, kg) + 2h4 (k1)2w(k2)2T5(k1, kg)
— 8htw(ky )Pw(ks)Ts(k1, k1) + hrw(ky)?w(ks) > Ts(
3
+ 2h2w(kq)w(ks) ( Z (Hp + hw(ky)) " H(Hg + hw(k)) ™) g2 SB
a,B=1

+ Sa{(Hp + hw(k;))  (Hp + hw(k?>>_1>v§®vg) (4.4.3)

4545
T i) + wlka) (444)
4w(ky)?
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S XX [ asasictaiceor?

zA)]B7kA7lB a,B=1

S

pf, W% ® p) UHIS(Ha + w(ky)) ™ (Ha + Hp + w(k) + w(ks)) ™ (Hp + w(ka)) ™"
+A(HA +w(ki) N(Ha + Hp + w(ki) + w(ke)) H(Ha +w(k)) ™
+A(Hp +w(ki)) " (Ha+ Hp + w(ki) +w(ke)) " (Hp + w(k)) ' |pf, % @ p), ¥% >

(4.4.6)
Lemma 4.4.2. Assume the hypotheses of Theorem 3.0.6. Then
(4.3.5)
C(k1)|* [C(k2)]* iy +x0)R SRR
=——-548 dk;dk e VTR (] 4 (kg - ko)?). 4.4.7
e [y R (14 (ko ka)?). (147)
Lemma 4.4.3. Assume the hypotheses of Theorem 3.0.6. Then
(4.3.6) + (4.3.7)
_/ dkidko|C (ki) [* |C(ka)[* (1+ (ki - kg)?)e Ratke)R
Qo xQ
X 8 SaS (4.4.8)
05 (wker) + wkz)) 77 .
2w(ky)w _ _
¢ 2llaetl) (<<HA i) (Ha+ hla)) ) S
+SA<(HB+M(k1))71(HB +hw(k2))l>> (4.4.9)
4 w(k1)2
X 2
e (Z | (G3) Iy ) (ZaI T HEWo |2 + Zg | THWo ). (4.4.11)

Lemma 4.4.4. Assume the hypotheses of Theorem 3.0.6. Then

(4.3.8) = 2Re [(H, 0o|T" H,T? |QrWo)] + (H,Uo|T°QrT|H, Vo)
= Mu(R,0) + Mp(R,0).

Cancellation of lower-homogeneity-terms. Two important cancellations occur at
this point. Firstly, as we have pointed out in the introduction, homogeneity of (parts of)
the integrands will be a guiding principle in grouping terms and detecting cancellations, as
well as in the analysis of their large R-asymptotics. In fact, all of the terms we encounter
have the structure of Fourier integrals, and it will turn out that the ’partial’ homogeneity
is crucial in determining the decay as R — oo. For instance, consider the terms (4.4.4),
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(4.4.7) and (4.4.8). The function

1 A ~
w(kl)w(kg)(u}(kl) + w(kz)) (1 + (kl . k2)2)

occurring in the integral (recall the definition of C(k) from (3.0.3)) is homogeneous of
degree —3, which hints at a 1/R3-decay of the integral (the integrals are taken over RY).
However, as is easily seen by inspection,

(4.4.4) + (4.4.7) + (4.4.8) = 0. (4.4.12)

Similarly, the terms (4.4.3), (4.4.5), (4.4.9) and (4.4.10), which contain integrands of ho-
mogeneity 0 and —1, respectively, cancel:

(4.4.3) + (4.4.5) + (4.4.9) + (4.4.10) = 0 (4.4.13)

Note that these cancellations do not involve the Coulomb potential. In particular, for
them to occur it does not make a difference whether or not a smeared charge distribution
is used, or whether or not the Coulomb potential is multipole-expanded.

Cancellation of R-independent terms. Secondly, the terms and (4.4.6) and (4.4.11)
are independent of R, and (4.3.9) will turn out also to contain R-independent contribu-
tions. Fortunately, the next lemma asserts that their sum reduces to a term which will
later be shown to decay faster than any inverse power of R, see Chapter 5.

Lemma 4.4.5. Assume the hypotheses of Theorem 3.0.6. Then

(4.3.9) + (4.4.6) + (4411) = —(WolQr|Wo) (ITFHj 4(¥% © Q)| + | TEHy (% © Q)|).

4.4.1 Outline of the method for the proofs of Lemmas 4.4.1 through
4.4.5

Before giving the proofs of Lemmas 4.4.1 through 4.4.5, we describe the general scheme
according to which they all proceed.

i. Use the structure of the interaction operators H, = H, 4 + H] p, the invariance
properties of the reduced resolvent T (see Lemmas 4.2.5, 4.2.11) and orthogonal-
ity arguments to reduce the number of terms and to simplify their structure. For
instance, many operators 7' ’collapse’ into the operators T'] and T'3.

ii. Use a fiber decomposition of T'] and T (see Lemma 4.2.7) to convert the matrix
elements into integrals over the photon momenta, the integrands involving matrix
elements over the electronic coordinates.

iii. Use rotation invariance properties of the ground states and the unperturbed op-
erators, as well as the transformation behaviour of the position and momentum
operators to eliminate sums over the photon polarizations involving the polarization
vectors (see Lemmas 4.2.12 through 4.2.17).
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iv. This procedure produces matrix elements of resolvents of the atomic Hamiltonians
(Ha+wk))™Y, (Ha+ Hp +w(ky) +w(ks)™!) etc.) on states of the form p?A\II% ®
p]@B Y%, which are then further transformed into matrix elements on states of the form

X?A‘IJ% ® x]@BWOB by using Proposition 2.5.1, the commutator relation from Lemma
A.7.1 and a number of operator identities collected in Lemma 4.2.18. This conversion
of the matrix elements is crucial in order to be able to compare the contributions
to the interaction potential obtained from the quantized radiation field to those
containing the (multipole-expanded) interatomic Coulomb potential, which involve
the position operators x; per se.

v. The resulting integrals can be further simplified by exploiting symmetry with respect
to the photon momentum integration variables ki and ko, see Lemma A.10.1 and
Remark 4.4.6

4.4.2 Proof of Lemma 4.4.1
We begin by proving (4.4.2). First note that
(4.3.4) = —2Re [(HQ, 2 Wo|T7 H., \T° H!, ,T° |H), W)
+ (Hy 2 Wo|T° Hy, 4T° H, g T°|H,, 4 o)
+ (H, pWo|T° H, gT° H, gT°|H,, 4¥o)
+ (H, g Wo|T°H, g T° H, 4T°|H,, V)

— —2Re[(HZT’ATUH:T’A\I’O|TJ|Hc,r,ATUHc,f,B\I]0>

+ (H, AT? H,, 2 Wo|T°|H, 5T7 H,, 4 W) (4.4.14)
+ (H, gT° Hy, 00| T°|H, 5T H, 4 ¥o) (4.4.15)
+ (Hy gT7 Hy ol T°|H, \T°|H,, W) | (4.4.16)

We will show that the four terms in square brackets vanish individually. Using the def-
inition of the perturbation operators H/ 4 and H p, Lemma A.8.1 and the invariance
properties of the reduced resolvent 77 (Lemma 4.2.5), we find

Hy, oT"Hj, 4 W0 € {93)8 (Ha © (FO 0 FP))

H} AT Hy, W € {94 HB{uHB(FED & 7).

Since these subspaces are conserved by 77 (Lemma 4.2.5) and are mutually orthogonal
due to the occurrence of {¥%} in one of them and {¥%}+ in the other, we conclude that

(Ho AT Hy 40| T7|Hy 4T Hy 5 ¥o) = 0.

By the same argument, we find that (4.4.14) through (4.4.16) also vanish, establishing
(4.4.2).
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In the remainder of the proof we establish the identity involving

(4.3.3)

2Re [(HQ,A‘I’O T H, AT° H, 5T |H,, 5Wo) + (H, AWo|T° H, gT° H, T° |HQ,B‘I’0>]

+ (Hy, 4Wo|T? Hy, gT° Hy, gT°|Hy 2 Vo) + (Hy pWo|T Hy 4T Hy AT |H,, 5Wo)

—. SAABB + SABAB + SABBA + SBAAB' (4‘4.17)

In the following we will demonstrate steps ii) to v) from the procedure outlined above
using the term

SABBA — — (Wo|H, 417 H,, T H}, 5T° H}, 4|¥0)
= — (H, gT° H,, 4%o|T?|H,, 5T° H, 4|¥o).

By Lemma A.8.1, we have H] 4 W, € {W%}@{\P%}i@)}"y) (note that H/ 4 only acts on the
coordinates of atom A), which is left invariant by 77 and on which it acts as I (w9} ® T
(see Lemma 4.2.5), yielding

GABBA _ —(H,, gT{H, 4 Vo|T7|H,, TS H,, 4|T0).

The vector potential contained in H; ; maps the subspace {\II%}(@{\P%}J—@@JZSI) to

Hp @ {V9}®{Q} and Hp ® {\P%}J-@)]:C(g), which are invariant subspaces for T7. Thus
H}, g(T{H 4%0) and T7H (T H/ 4¥o) consist of two contributions from these respec-
tive subspaces. By the mutual orthogonality of Fock space levels, the cross-terms vanish,
so that only the contributions which have the structure

(Mp ® (W }H8{Q}[Hp © {99 }H60{Q})

and

(M @ (WOHEF Hp © (WO HEF),

respectively, survive. The first of these is

1 o
SABBA . RCPL Z <ij - a(GRYu;, |T |pi, .a(GgR)UkA>

o HAQHER{Q}
ia,JB.kA,lB

where u;, == ¥% ® T [pi, - a'(G2)(¥Y ® Q)] . Again using Lemma A.8.1, we find

Pig 'a(GaR)ukA € {@%}l(@{w%}l@{()}’

so that we can use Lemma 4.2.5 (T acts as (Ha + Hp)™! on {¥9}-2{T%}11&{Q}) to
deduce

1

ABBA R -1 R
- 3 - [ AT H . .
Sl (mec)4 T ZB<p]B a(GU )u A ’( A B) |plB a(GO‘ )ukA>HA DHER{Q)}
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By the fiber decomposition of T'7 (Lemma 4.2.7), u;, can be represented as
uiy(k,A) = (cC(ke(k, A) - (Ha + fw(k)) " [pi, P5]) U,
so that by the definition of the annihilation operator,
Pjp - a(Gg)ui,
=pjs V- ( > /Q dky ¢ C(ki)e(ks, Ne™ ™ (C(ky)e(kr, A) - (Ha + M(kl))l[pm‘l’%)>

A=1,2

:/ dki ¢ C (k) Pe™ Rp, Wy - (I — ki @ k) (Ha + (ki) ™ [piy P9,

o

where we have also used Lemma A.6.1. Recall the definition of the set Q, = {k €
R3|w(k) > o}. Fubini’s theorem yields
S{lBBA
1

_ 2 2 —i(ki—k2)R
gt 2 dadielC) POt

x (W - (1 — ey @ 1) (HLa + B ()~ i, W3 |(Fla + Hp) ™"

P W - (I — ko @ ko) (Ha + hwo(k2)) ™ o1, ¥4])

1 )
= — kdk k)|?|C(kq)|2e (ki —k2) R
(me)* Z /anflad 1dk2|C (k1)]7|C (ka)| e

ia,JB.kaslB

HAQHB

ia.JBkaslB

pi, V% - (I — ki @ k1)pj, OY|(Ha + hw(ki)) ™ (Ha + Hp) ' (Ha + hw(ks)) ™|

Pra W% - (T — ko @ ka)pr, U )

X

S

HA@HB.

Now (I — k ® Rl) and (I — ks ® RQ) are real symmetric matrices, and since (Hy +
hw(k))~! is rotation-invariant by Proposition 2.5.1 and (Ha + Hg) ! allows for an integral
decomposition into tensor products of rotation-invariant operators by Proposition 4.2.15,
the operator (Ha + hw(ky)) Y (Ha + Hg) ' (Ha + hw(ky)) ™! satisfies the assumptions of
Lemma 4.2.17, so that we obtain

ABBA
Sl

3
11 .
- = § j § dk,dks|C(k1)[2|C (ko) |2e ik —k2) R
(me)49 /QUXQJ 1ka|C k) C kel

ia,JB:ka,lB a,f=1

X tr |:(I — lA{l & 1;1)([ — lA{Q &® 122):|
x (Pina W - @pf, Wl (Ha + ho(ky)) ™!

x (Ha+ Hp) '(Ha+ hw(ke)) '[pf, U3 @ pgA\II%>HA®HB‘
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Noting that tr[(/ —k; @ ky)(I — ko @ ko)] = (1 + (k1 - ko)?), we arrive at

ABBA
Si

1

(me)

@M—l

4

> Z / dk, dk|C(ky)|?|C/(kg) 2~ 0 k2 R(1 4 (K, - ky)2)
0'>< o

ia,JB:ka,lB a,f=1

(pina®y - @bl WaI(HA + heo(k)) ™

X (M)i (HA + hw(kQ)) 1‘plB\I’B ® pkA\IJA>HA®HB'

Note that we are allowed to replace e?(k1—k2) R by gilki+ka) R gince the remaining integrand

is invariant under the change of variables ks — —ks. The second contribution to the term
SABBA is

1 _
SPEEA =t 30 (a0 (CRyuny|(Fa+ Hy ) + (k)
¢ ia,JB:ka,lB

Pis - @ u ,
} I ( g ) ka HAQHBRFs

where we have used that p;, -a’ (G®)uy, € {ﬁl%}i@{ﬁl%}i@}}(,g) (Lemma A.8.1) and that
T acts as (Ha + Hp + h(w(k;) + w(k2)))~! on this subspace by Lemma 4.2.5. Analo-
gously to the above, p;,, - al(GR)u;, has the representation

(Pjs - al (GF)uiy) (K1, ko, A, p1)

1
=7 ®apu=1,2 ¢ C(k1)C(ka)

« [e—ikl-R(ij\II% -e(ki, ) (e(ka, i) - (Ha 4 hw(ks)) pi, Y]

+e R (p, W - e(ka, ) (e(ki, A) - (Ha + hw(ki)) " [pi, @],

where we have used the fiber decomposition of 77 (Lemma 4.2.7) and the definition of

the creation operators. Using the definition of the inner product on _7-"(9) and the fiber
decomposition of (Hs + Hp + h(w(ky) + w(ks)))~! (Lemma 4.2.7), this yields
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S?BBA

:‘_(nig4; )IEEDY {/?XgnqudkﬂCXk1ﬂ2KXk2ﬂ2

ia,dBkaslB Ap=12

X [<(Pj3‘1’% ce(ky, N))(e(ke, p) - (Ha + hw(ke)) ™ [pi, V4]l

(Ha + Hp + h(w(k;) + w(ka))) ™|
[(Piy % - e(ki, A))(e(ka, i) - (Ha + M(k2))_1[pkA‘I’OA]>

Ha®HB
+ (P - ek, ) (eller, A) - (Ha + heo(ler)) ™ pi, WY
(2 M + hw(lr) + w(k2)) |
(P ¥ - ez, ) (e(kr, A) - (Ha+ hollen) ™ o, W01

ol R (), 0, - ek ) (el ) - (Ha + huo(lr) ™ [piy W]
(Ha+ Hp + h(w(k) + w(ks))) |
(P, V% - e(ka, 10))(e(ky, \) - (Ha + hw(kl))*l[pkA‘I’%]>HA®HB
ol (W - ez, ) (e(ker, A) - (Ha 4 Fuo(ln)) ™ i, W)
(Ha + Hp + h(w(k;) + w(ks))) ™|

|(P1s U - e(ki, A))(e(ke, ) - (Ha + ﬁw(k2))_1[PkA‘I’9x]>

ta,dB:kalp Ap=1,2
X [<(ij‘I’OB ce(ki, A))(e(ke, 1) - piy OY|

[(Ha + hw(ke)) ™ (Ha & H + Blw(kn) + w(ka)) ™ (Ha + o(kz) |
(o1 W - e(kr, V) (e(kz, 1) - P, B )

+ (P W% - ek, ) (e(k1, \) - pi, Y|
((Ha + hw (k1)) (Ha + Hp + h(w(ki) + w(ka))) ™ (Ha + hw (ki) ™|
(P, W - elka. ) ek ) - i Wh)

etk R (Wl - efler, V) (e(ke, 1) - Py U
|(Ha + fw (ko)™ (Ha + Hp + h(w(k) + w(k2))) ™ (Ha + (k) ™!
(P, W - el ) et V) P, W% )

el R (Wl - eflea, 1)) (e(ki, A) - Py U

|(Ha + hw(ke)) ™ (Ha + Hp + hw(ky) + w(ke))) ™ (Ha + hw(ks)) |
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Next we exploit the rotation invariance of the operator
(Ha+ ho(kn)) ™ (Ha + Hp + h(w(ki) +w(k2))) ™ (Ha + hw(ke)) ™

and apply Lemma 4.2.16 (note that by Proposition 4.2.15, its assumptions are satisfied),
yielding

SABBA

DD Yy | dadelcta)? (Cle)

1A7JB’kA7lB [ ﬂ DY U= 1 2

(e(ki, \) - e(ki, \))(e(kz, 1) - e(kz, 1) {pf, W% @ ], |

|(Ha + hw(ke)) ™ (Ha + Hp + h(w(ky) + w(ke))) ™ (Ha + hw(ka)) |

0 @ p’ W >
|PkA A PZB B HAeHs

+ (e(kz, p) - e(ka, 1)) (e(ky, A) - e(ka, )‘))<p?A\I’A @y, VBl
|(Ha + hw(ke)) ™ (Ha + Hp + h(w(ky) + w(ke))) ™ (Ha + hw (k1)) |

« \I’ ® \If0>
|pkA A plB HARHB

+ ei(k1—k2)~R(e(k1’/\) -e(ko, 1)) <PZA‘I’A X pkB OBI
|(Ha + hw (k)™ (Ha + Hp + h(w (k) + w(ke))) ™ (Ha + hw(ki)) ™|

o ® \I/°>
|pkA A plB HARHB

el R e(ky, \) - e(kz, 1)) * (P2, W% © PY, U
[(Haa+ b))~ (Ha + Hp + hw(k) + w(ka)) ™ (Ha+ hw(kz)) |

o \I’ ® \IJO> ’
|pkA A plB HAQHB
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a form which allows us to compute the sums over A and p using Lemma A.6.1:
S?BBA

3
1 11
=— — - § Ej k1dks|C'(k)|? |C(ko)|?
(me)429 /Q(,ngd 1d 2|C( 1)‘ |C( 2)|

iA)jB7kA7lB a,B=1

. [4<ps;w?4 o bl )

|(Ha + hw(ke)) ™ (Ha + Hp + h(w(ki) + w(ke))) ™ (Ha + w(kz)) ™
(4.4.18)
+ (Ha + hw (ki)™ (Ha + Hp + hi(w(ki) +w(k2))) ™ (Ha + hw (ki) ™|
(4.4.19)
pf, W% @ [, ¥) -
+ e’i(kl—kQ)‘R(l + (f<1 . 1}2)2><p?A\I/% ® pr\II%\
|(Ha + hw(ke)) ™ (Ha + Hp + h(w(ki) + w(k2))) ™ (Ha + w(ki) ™|

o \IJO ® 16} \I/0> 4.4.20
\PkA AYPL,¥YB HasHz ( )

+ ei(szkl)'R(l + (f{l . E2)2)<p?A\II?4 ® pr\IIOB|
(Ha + hw(k1)) ™" (Ha + Hp + h(w(ki) + w(ka))) ™ (Ha + hw(ks)) ™|

o g0 @ pl \1/0> . 4.4.21
Pr,Ya®p; Vg o ( )

For the final step we note that the exchange k; < ko transforms (4.4.19) into (4.4.18) and
(4.4.21) into (4.4.20), so that an application of Lemma A.10.1 yields

Sé‘lBBA

3
:_(mle)‘*;l ) Z/g)UxQUdkldeIC(k1)|2|C(k2)|2

ia,iB,ka,le o,f=1

(Hp + hw(k1)) Y (Ho + Hp + h(w(ky) + w(ko))) N (Ha + hw(ky)) ™

(pg, 9% @ by, W%

o g0 @ pl \1/0> 4.4.22
P, Va®p; Vg o ( )

3
11 . o

- dk1dks|C(k)|? |C(ko) [2ei®ek) R 4 (L . k)2
(mec)1 9 Z E: /QXQU 1dka|C(k1)[” [C(k2)|"e (14 (k1 - ko)?)

14,98 ka,lB a,f=1

(D7, W% @ B, WhI(Ha + heo(kr)) ™ (Ha + H + hlw(ky) + w(k)) ™ (Ha + heo(kz)) |

B8 0

PtV ©p U (4.4.23)

>HA®HB‘

Note that we can replace ek2=k1)'R py eilkitka)R iy (4 423) since the remaining in-
tegrand is invariant under the change of variables k; — —k;j. This will be done in the
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following. The term (4.4.22) is independent of R and will be part of the term (4.4.6).

Using commutators and operator identities. Applying the preceding procedure to
the contributions in SAABE = GABAB and GBAAB (see (4.4.17)) which are analogous to
SABBA and S5BBA | we obtain

AABB ABAB ABBA BAAB
SAABB | GABAB | gABBA 4 gl

:—# > Z / dk1dks|C(k1)[?|C(ka)|? (1 + (ki - kg)?)e ilkitke) R

€ iajpkalp a,f=1

+2(Ha+ hw(kl))_l(HB + ﬁw(kz))_l} + (Ha+ Hp) ™| (Ha + hw (k1)) ™ (Ha + hw(ke)) ™

+ (Hp + hw(k1)) " (Hp + hw(ka)) ™" + 2(Ha + hw (k1)) (Hp + ﬁw(k2))71] ’

0 0
IPi, YA ® pr‘PB>

and

AABB ABAB ABBA BAAB
SAABB | GABAB 4 GABBA | g

_ (7,”1)4; Z Z / dkldk2|0(k1)|2 ’C(kZ)Pei(kg—kQ.R(l + (f{l . RZ)Q)

ia,JB:ka,lB a,f=1
<P?A\I’A ® pk B
[(HLa -+ Teo(her)) ™ (T + H + Blw(a) -+ (k) ™ (g + eo(kz)) ™
+ (Hp + ho(ky)) ™ (Ha + Hp + h(w (ki) +w(k2))) " (Hp + hw(ks)) ™!
+2(Hp + hw(k))) " (Ha + Hp + h(w(ky) + w(ks))) (Hp + hw(k;)) ™"

00 p’ Wl > 4.4.24
’PkA A sz B HA&Hz ( )

3’(’”194 2. Z/ dkadko|C k) PIC o)

ia,iBska,lB o,f=1
py, U9 ® pJB LI8(HA + w(kl))*l(HA + Hp +w(k;) +w(ks)) H(Hp + w(ks)) ™!
+A(Ha+w(ki)) "(Ha+ H +w(ki) +w(ko)) (Ha + w(ki)) ™!
+4(Hp +w(ki) " (Ha+ Hp + w(ki) + wike)) " (Hp + w(ki) " pf, ¥4 © i 99 >

s
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To further simplify (4.4.24), we employ Lemma 4.2.18 i), which allows us to calculate

(Ha+ ho(kn)) ™ (Ha + Hp + h(w(ki) +w(k2))) ™ (Ha + hw(ke)) ™

+ (Hp + hw (k1)) (Ha + Hp + h(w(k) + w(ka))) ™ (Hp + hw(k)) ™

+2(Ha + hw(ki)) ™ (Ha + Hp + h(w(k1) + w(ka))) " (Hp + hw (ki)™
=(Ha + (k1)) ™| (Ha + Fo(ko)) ™ (Hp + hw(kq)) ™

— (Ha+ Hp + hw(ky) + w(ke)) ™ (Hp + hwo(kr)) ™|

o+ (Hp + heo(kn)) ™ [ (Ha + (k1)) ™ (Hp + heo(kz)) ™!

— (Ha+ Hp + h(w(ki) + w(k2))) ' (Ha + ﬁw(kl))_l}

+2(Ha + ho(kn)) ™ (Ha + Hp + hlw(kn) + w(ke)) ™ (Hp + ho(k) ™

as bounded operators on {09 }+&{¥%1+. By the commutator relation Lemma 4.2.18 ii)
(4.2.22), this equals

(Ha + hw(kq)) 2(Ha + Hp + h(w(ky) + w(k2))) ™' — (Ha + Hg + h(w(k;) + w(ks))) ™!
o (Ha+ hwo(ko)) ™ + (Hp + (ko)) ™ | (Hp + hw(ka)) ™

—(Hp + hw(k1)) " (Ha + Hp + h(w(ki) + w(k2))) " (Ha + hw(k)) .

Using Lemma 4.2.18 ii) (4.2.23), (4.2.24), we can rewrite this as

(Ha + hw (k)™ (Hp + heo(ka)) ™| (Ha + (ko)) ™ + (Hp + eo(ka)) ™|

+ (Ha + hw(k1)) " (Ha + Hp + h(w(k1) + w(k))) " (Hp + hw(k)) ™"
— (Ha + hw(k1)) ™t @ Iy, ) (Ha + Hp 4 h(w(ki) + w(k))) ™ (I, ® (Hp + hw(ky)) ).

Sandwiching this with two vectors ¢, € {TY}H&{T%L} yields

(pI(Ha -+ Ro(kn)) ™ (Hp + (k)™ | (L + Ro(ka)) ™ + (Hp + eo(k2)) ™" [J)
o+ {((Ha + ho(1) ™ @ Dl (Fa + Hp + hw(kn) + w(k2))) ™ (@ (Hp + hw(ki) ™))
— (((Ha + heo(k)) T @ Dpl (Fa + Hp + hw(ke) + w(ke))) ™ (T, ® (i + (k) 1))

=(pI(Ha + (k) ™ (Hp + hw(kn) ™ [(Ha + Feo(a)) ™ + (Hp + heo(la)) ™),

since

(Hap + ho(k) ™1 @ Iy ) = (Hap + hw(k) ™' @ I )

on {¥Y }L®{\IJ }+. The choice ¢ = Py, W%@pJB\IJ% ) =pg \IJ?4®pl ¥ now establishes
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(4.4.24)

3
1 R R .
B 2 2 / dk1dks|C(k1)|2|C (ko) P(1 + (ki - ko)?)e(atke) R
Qo

I9md
ia,JB.ka,lB a,f=1

e

<p?A\If?4 @ P, W[ (Ha + hw(k) ™ (Hp + hok)) ™

X [(HA + h(d(kQ))_l + (Hp + h(d(kQ))_l:| ‘pﬁA\If% ® pr\I’%>,

and thus, upon adding all contributions,

(4.3.3)
:S?ABB +51ABAB + SfBBA +SlBAAB
+ S;XABB + S?BAB + S;&BBA + SzBAAB
3
1 A A .
e XY [ ddlota IO PO+ (e kR
Qo

€ ia.dp.kalp a,f=1

<p;;qf?4 o5, 4|
1
Mw(ki) +w(ks))
O+ (k) ™ (Hp + (k) (4.4.25)

[Q(HA + hw(kn)) "N (Hp + hw(k) !

+ { (A Hi) 7 [ (o + o)™ (o + ho(ls)) ™!

+ (Hp + (k)™ (Hp + hw(la)) |

+ 2(Ha+ Hp) Y(Ha+ (ki) (Hp + hw(kg))’l} (4.4.26)
 (Ha+ heo(l) ™ (Hp + hoo(k)) ™ [(La + heo(ho)) ™+ (Hp + hio(lo)) ™|
(4.4.27)
b ¥, @ pr\If%>
11 5 ) )
S Z-A,ng,zB aﬁZZI /Q  Badkel OOk )
<p?A‘1’?4 ®p) Uy
8(H .1+ w(kn)) ™ (& Hp + w(ky) + w(ke) ™ (Hp + w(kz)) ™
+A(Ha +w(ki)) N(Ha+ Hp + w(ki) + w(ke)) (Ha +w(ki) ™
+4(Hp +w(k1)) ' (Ha+ Hp + w(ki) + w(ks)) ' (Hp + w(k1)) "'
b}, % ® pr\If%>. (4.4.28)
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Note that (4.4.28) equals (4.4.6), so it remains to investigate the terms (4.4.25), (4.4.26)
and (4.4.27).

Converting momentum into position operators. To this end, we implement step
v) from the procedure outlined above, i.e. we will convert the atomic matrix elements
between states of the form pf, ‘IJ% ® p?B \If% to expressions involving states of the form

X;, \1194 ® xfB \I/%. This is done using the commutator relations

im
Piy, B\IIAB - heHA B(X'LA B\I’A B)

from Lemma A.7.1 (recall that H4 p denote Hap — E}%’B), and after that the operator
identities from Lemma 4.2.18.
First we consider the term (4.4.25). By Proposition 2.5.1,

x¢ U @ x] W) € H(R¥Y)QH?(R?E),
so that we can apply Lemma A.7.1, the definition of v4 p and the identity
Hap(Hap +hw(k)™ =1 - hw(k)(Hap + hw(k) ™
to obtain, after rearranging terms,
> <pg; ) @ p! WY ‘(HA + hw(k1)) ' @ (Hp + hw(k;))™*
tA,iB.kalB

+ (Ha+ hw(k) ™' @ (Hp + hw(ks)) ™! |pft, U5 @ pp, ¥) >

= (7)4 <(HA ® Hp)(vi® VB)’(HA + hw(k)) ' ® (Hp + hw(ky)) ™!
o (Ha + (k) ™ @ (Hp + Teo(ke)) ™| (Ha @ Hp)(v @ v)))
= (Te) " (2(Ha © Hp) ~ ho(la) (20 @ Hp) + Ha© 1) ~ ho(ko)(H © 1)
+ hw(k;)? (I T +2(Hy+hw(k)) '@ Hg + Hy® (Hp + hw(kl))_l)
+ hw(ke)? (Ha ® (Hp + M(kQ))* ) + FPw(ki)w(ke)(I @ I)
— BPw(ki)® (Ha + hw(k:) ' @ T+ 1@ (Hp + hw(k)) ™)
— Bw(ki)w(ke)? (I ® (Hp + hw(kQ)) 1
(k1)
(k)" (
(k1)

— BPw(ki)*w(ke) (Ha + m}(kl)) ®1)
+ (k) (Ha + ho(ky)) ™ @ (Hp + hw(k;)) ™)
+ htw(k)?w(ks)® ((Ha + hw(ki)) ™ © (Hp + hw(kQ))_1)>va®vﬁ :

Recalling the definitions of Sy g, ag’B(k) (see (4.4.1) and Theorem 2.8.4, respectively)
and defining the magnetic polarizabilities

A,B
ayy = (va st plvasvd p), (4.4.29)
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(these are well-defined, since X»ﬂ,/)%’ g €H 2(R3%4.8) by the remarks in section 2.5), we find

(4.4.25)
1 C (k1) [|C (ko) |

- dkydk 1+ (ky - ko)?)e ilkitka) R
it /QQ ke ) (i) L Bk

X [4SASB — 2hw(ki) (2047 SE + Saak;) — 2hw(ke)Saak)

+ 22w (k)2 (aMaM + 20 (k1) S5 + SAaE(kl))
+ 2h%w(k2)? (Saaf(ka)) + RPw(ki)w(ks)(I ® )
—23w(k1)? (agp(ki)ak + adraB (ki)

— 23w (ky )w (ko) 2ol (ko) — 2h3w (k) w(ks)af (ko

+ 20t w(ky ) o (k1 )a B (k) + 2h4w(k1)2w(k2)2a§(k1)ag(kg)] .

According to Lemma A.10.1, we can replace

2hw(k1)2aMSB by — 2(w(k;) + w(ke)hai;Sp,
2h2w (kl) aMaM ( (kl) + w(ks) )h2aMaM,
2hw(ko)? (Saap (k )by 2h*w(ky)? (Saah (k1)) ,
—2h3w(k1) (k2)2aﬁa§(k2) by — 2h3w(k)?w(ks)as a2 (ky), and
2h*w(ki)*w (k) oz (ki)ag (ke) by hlw(ki)*w(ke)® (ag(ki)ag(ke) + ag(ke)ag (ki) ,

obtaining

(4.4.25)
1 1C ) PIC (o)
= o /QQ k) + wike))

(14 (ki - ko)?)e (ke tha) R

X [45',453 —2h (w(ky) + w(ksa)) (O/j?/st + SAaﬁ)

v h2aMaM( (k1)? + 2w(k; )w (ko) + w(k2)2>
= (w(k)+w(ka))?
+ 4hw(k1)? (Saag (ki) + ap(ki)Sp)
— 213 (w(k1)3 + w(k1)2w(k2)) (ag(kl)aﬁ + af\}ag(kl))
+ 2h4w(k1)4afg(k1)ag(k1)

+ hlw(ki)’w(ke)? (e (ki)ag(ks) + ag(ke)ap (k) |-

Now consider (4.4.27). Using the commutator relation from Lemma A.7.1, the definition
of v g, the identity (Ha p + hw(k)) " Hap =1 — hw(k)(Ha g + hw(k))~! (which holds
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on D(Ha,p)) and the commutator relation from Lemma 4.2.18ii)(4.2.22), we find

> (P % @ o), W[ (Ha + (ki) (Hp + (ki)™

ia,JB:ka,lB

| (Ha + hoole)) ™ + (Hip + hoo(ke)) ™|

P, ¥4 @p), ‘I’OB>
_ (’%)4 (v& © Vo[ (7 = ho(ler)(Ha + heo(len) ™) (7 = o) (Ha + Puv(la)) ™)
® (Hp — hwo(ki) + (ho(kn)) (Hp + heo(k1)) ™|
+ (Ha — ho(ky) + (hw(kn))*(Ha + hw (ki) ™)
® | (1 = k) (Hp + ho(k) ™)

x (I — hw(ka)(Hp + hw(k2))7l)] ’

v%®Vg>.

Rearranging terms yields

(%)

<VA®VB‘HA®I+I®HB’VA®V63>

- hw(k1)<vA ®VB‘ (Ha+hw(ki))™' ® Hp

vj@vBB>

— Teo(ka) (V4 @ V| (H + hw(ke)) ™" @ Hp + Ha @ (Hp + hw(ka)) ™ |v5 @ v )

+Ha® (Hp + hw(ky)) ™

o 2l (k0))2 (V4 © VB[ (Ha + heo(kn) ™ + (Hi + (k) ”!

\ ®VﬂB>
12wk (ke) (V5 @ VE|(Ha + heo(kn) ™ (Ha + (ko)) @ Hp

+ Ha® (Hg + hw(ky)) ' (Hp + hw(kz)) ™"

+ (Ha+hw(ks) ' @I +1® (Hp+ 7w(k2))‘1‘vf}1 ® v‘;>
— (i) w(ke) (V] © VE|(Ha + hw(k) ™ (Ha + hw(ke)) " @ 1

+1® (Hp + hw(k1)) ' (Hp + hw(ky)) ™"

+ (Ha + hw(ks)) ™' @ (Hp + hw (ki)™

+ (Ha + hw(k1)) ™' @ (Hp + hw(kz)) ™!

va ®v’g>
— 20wk (VG @ vB\ Ha+ ho(ky)) "L @ (Hp + hw(k;))™ ‘VA @ v)
(k) (ke) (VA © VB[ (Ha + Rwo(k) ™ (Ha + heo(ke)) ™

® (Hp + hw(ky)) ™!
+ (Ha + hw(ky)) ' @ (Hp + hw(k;)) ™

x (Hp + hw(ky))™ \VA ® vB>
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Setting

3
Ty(ky, ko) : Z< (Ha + hw(k) ™ (Ha + heo(ke)) ™) oy

«
Va

Ar((Hp + o)™ (Hp + ho(ka)) ™)

«
VB

and using the definitions of Sa g, a]‘?/[B, agB(k), Tu(ky, ko) (for the latter, see (3.0.6))
and Lemma A.10.1 (exchange ko and k; for otherwise symmetric integrands), we obtain

(4.4.27)
1

== 4/ dk;dks|C (k1)|?[C (ko) [*(1 + (kg - ko)?)e itk R
It Ja, xq,

X [SACV]\B/[ + Oéf/[SB — 2%(1(1) (a‘é(kl)sB + SAOzg(kl) + aﬁaﬁ)

+ (2h%w(k1)? + Pw(k )w(ks)) (ag(kl)aﬁ + af/[ag(kl))
3
+ h2w(ky)w(ks) [Z@;}‘(HA + hw(ky))"H(Hy + hw(kg))’l‘vj>53

a=1

+ S, 23:<VBB’(HB + hw(k) ™ (Hp + hw(kz))l\V@]
B=1

— Bw(ky)?w(ks)

T3(ki, ka) + ag(ks)op (ki) + aé(kl)ag(b)]

— 23w (k)30 (ky)aB (ki) + hw(k;)Pw(ks) Ty (ky, kg)] :

Next we consider (4.4.26). Performing the same steps as for (4.4.27), we end up with

(4.4.26)
1 e —i

— g (5" 5 [ el PO+ e
e 7B 1

3 H<<HA®I>VA®VB) (o M) (Ha o Iv 0 v
—|—<(I®HB)VA®VB’HA+HB) ‘(I®HB)Vi®Vg>

n 2<vA @vB‘ (Ha+ Hp) “(Ha @HB)‘V% ®Vg>} (4.4.30)
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— 2hw(ky) H<(HA ® I)v% ®vB‘ (Ho+ Hp)~ (HA ® (Hp er(kl))‘l)’vf}1 ®v‘;>

v ®vg>}

+ <(I ® Hp)ve ® vB‘ (Ha+ Hg)~ ((HA wk) e HB)

(4.4.31)
+{vq ®ij (Ha+ Hp) (HA®I+I®HB)‘V;§ ®vﬁB> (4.4.32)
+ B2w(ky )w(ks) [<(HA ® Ive @ vB‘ (Ha 1 Hp)™
x (Ha® (Hp +w() ™ (Hp + (k) ") [vi @ v])
n <(1 ® Hp)vS © vg‘(HA T Hp)!
o ((Ha+ (i)™ (Ha + (k)™ @ Ha )[v5 0 v)
+ 2<v‘;§ oV ‘ (Ha 1 Hp)" <I ® I) Ve ® v§> (4.4.33)
+2(hw (ki) <vA ® vB‘ Hat Hp)" [(HA 4 hwk) "t @ Hp
+ Hy® (Hp + hw(kl))—l} \vf;; ® v§> (4.4.34)

— 2k )Pui) (v © V| (Fa + Hi) ™! [(Ha + (k) @ 1
+1® (Hp+ m}(kl))‘l} Vi ® V%>

+ 2%t (k) 2w (ko) <vA ® VB‘ (Ha+ Hp)™ [(HA + hw(ky )~

@ (Hp + ho(ka)) ™|

vi®Vg> :

Using Lemma 4.2.18ii)(4.2.22) and the fact that on D(H.)®D(Hp) we have Hy @ I =
Hy®Iand I® Hg =1® Hp, we find

<(HA®I)VA®VB‘ Hat Hp) ‘(HA®I)vg®vﬁB>
+<(I®HB)VA®V ‘HAJFHB) 1‘(I®H3)vj®vg>

+2<vA®vB‘ (Ha+ Hp)~ (HA®HB)‘v§§®vg>

~((Ha @ T)(Ix + Hp) " (vi @ V(A © DV © V)

+ (T8 H)(Ha+ Hp) " (v ® v))|(1 @ Hp)vi & V)

+ (Ea @ D) (Ha+ Hp) ™ (v @ VH)I(I © Hp)vg © v} )

+ (T Hp)(Ha + Hp) ™ (v @ V)| (Ha @ VG 2V )
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:< [(HA 1)+ ([T @ Hp)|(Ha T Hp) '(v4 @ v |(Ha® I +1® H)vs ® vﬁB>

:<(HA FHp) \(Ha+ Hp)(vS @ V)| (Ha + Hp)vS @ V7 >

On DgIA)@)D(HB) we have H4 + Hp = Ha+ Hp, and thus, again recalling the definitions
of afj and Sa p ((4.4.29) and (4.4.1)), we obtain

B SAaﬁ + a‘f/lSB
9h4

(4.4.30) = / dler iz | C (k) | C (ko) P (1 + (K - ko) ?)e r il R,
Qo XQo

For the same reason,

A B
20 as

(4.4.32) = dk1dks|C (k1) [2|C (ko) |Phw (k) (1 + (ki - ko)?)e ikatke) R

o Ja,xa,
Furthermore, by Proposition 2.5.1, v§ ® v’gB € D(H,)®D(Hp), so that we can write

Vj’/_“®vg>

+ (@ Hp)vi © Vi |yt Hp) ™ ((Ha+ wila) ™ © Hp)

<(HA ® vy ® V%’(M)fl (HA o (Hp + w(kl))ﬂ)

v ®Vg>

:<(HA Vv Hp— Hp)ve vg(wA T Hp)! (HA ® (Hp + w(kl))’l)

vi ®v%>
o+ ((Ha— Ha+ Hp) @ V| (Ha+ Hp) ™ ((Ha + (ki)™ @ Hp ) v @ v )
=(VA AV ) (VAI(Hp + (k) V5 ) + (VI(Ha+wlkn) " Ve ) (VB HalVE)

_ <(I®HB)V%®Vg‘(mr1(HA @ (Hp +w(k1))*1>

v%@vﬂB>

- <(HA ® vy ® V%’(HA +Hp)™! ((HA +wk)) ' ® HB)

vi®Vg>.

Again using Lemma 4.2.18ii)(4.2.22), the fact that on D(H,)®D(Hp) we have Hy @ I =
Hi®1I and I ® Hg = I ® Hp, and the identities

Hap(Hap+ hcu(k))_1 =1—hwk)(Hap+ hw(k))_l,
we obtain

_ <(I®HB)V§§ ®Vg‘(m)_l<HA  (Hp ~|—w(k1))—1)

v ®vﬁB>
— <(HA ® v ® vg\<m>-l ((HA +wk)) ' ® HB> ’viﬁ ® vg>
_ <v§; ® vg)(T T Hp) ! [(1 — hw(ky)(Ha + w(ki)) ™) @ Hp

+H,® (I — hw(ky)(Hp + hw(kl))_l)}

vj®Vg>

= — (v vj|(Ha T Hp) (14 + Hp)|vi 0 v} )
+ ho(le) (V5 @ v | (a+ ) ™ [(Ha + w(ie)) ™ Hp

+HA® (Hp + hw(kl))*l}

vﬁ®Vg>
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=— <V2‘1 ®V%)(I®I ‘vj ®vﬁB>
+ hw(k1)<vA ® vB( (Ha+Hp)~ [(HA +w(ki)) ' ® Hp

+Hu® (Hp + hw(ky))” } ‘VA @vg>.

Now using the definitions of ag’B (k), Sa,p and 04}\44’3, we conclude

(4.4.31)

1 . . .
=—— dk1dks|C(k1)|?|C (k) |? (1 4 (ki - ky)?)e ilkithke) R
It Ja, xa.

[2M(k1) [aMaM Sp0B (k) — aE(kl)SB}
3
= 2(hw(ki))? Y (v @ V| (Ha+ Hp) ™ [(Ha +w(ki) ™ @ Hp
a,B=1

+Hy® (Hp + hw(kl))*l} ’vji; ® vg> .

Note that last term cancels (4.4.34). Repeating the same arguments for the term (4.4.33),
we find

(4.4.33)
1 PN .
== [ dadie|Clk)PIC () Po(kn) (1 + (ki - ko)?)e (R R
Qo X

2<v§§ ® vﬁB’(HA T HB)’I‘Vﬁ ® vﬁB>

X [h2w(k1)w(k2)

23:< ‘ HA+hw(k1)) (HA+hW(k2)) ‘VA®VB>SB

SAi@%\(HB + (k)™ (Hp + o(ka) V)
B=1
- 23: (vi & V| (= Hp) ™ | (Ha + w(ki) ™ © Hp
a76:

+ Ha® (Hp + (k)| [vi o v ) (4.4.35)

+ Bk )w(ks)?

x [ > (Vi@ VB[ (Ha+ Hp) ™ [(Ha + (ki) (Ha + w(ks)) ™' @ Hp

a,f=1

+ Ha @ (Hp + (ki)™ (Hp + hw(ke) | v @ v5)
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To simplify (4.4.35), we use the fact that v§ ® vg € D(H4)®D(Hg), the relation
(Hap + hw(k)"Hap = I — hw(k)(Hap + hw(k))™" (valid on D(Ha,p)), the com-
mutator relation (4.2.22) from Lemma 4.2.18ii) and the fact that Hq4 + Hg = Hy + Hp,
(Ha+ho(k) 1@ 1= (Ha+hwk))'@land I ® (Hg + hw(k))~! = I® (Hg+hw(k)) ™!
on D(H,)®D(Hpg), to conclude

(V& © VB[ (Ha+ Hp) ™ ((Ha +w(k) ' @ Hp)|[vg @ v5 )

vq @ va|(Ha+ Hp)~ "((Ha+w(ky)) "(Ha+ Hp — Hp)) |[v4 ® v
8

(v @ vi|(Ha+w(c) T @ 1) (Ha + Hp) ™ (Ha + Hp) v @ v )

a,f=1
<VA®VB‘HA+HB) (I—hw(kl)(HA+w(k1))’1)‘vﬁ®vg>
=ag(ki)af
3
_ « Jé]
Z <VA®VB‘ HA"‘HB) VA®VB>
a,f=1

+ hw(k1)<VA ® VB‘ (Ha+ Hp) ' (Ha + w(ki))”

VA®Vg>

and accordingly for the second term in (4.4.35), yielding
(4.4.35)
—aj (ki) + agrap (ki)

<VA®VB‘ HA—i—HB)
a,B=1

va ®Vg>
+ o) (v @ v | (Fa  Hp) ™[ (Ha + w(i))

+ (Hp + W(k1))71}

va ®vg> :

Putting everything together, setting

3
Z (v @VI(H A+ Hp) [(FA + hw(k) "+ (Hp + hw(k))*l} Ve @ V),

3

Ty(ki ko) = ) <(HA +Hp)™! ((HA + hw(k)) ™ (Ha + hw(ke)) ™ Hp
a,B=1

+ HaHp + hw(k)™ (Hp + hwo(k) ™)) .
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and recalling the definition of T5(ki, ks) from (3.0.7), we have arrived at

(4.4.26)

1 . . )
== 4/ dkdks|C(kp)|?|C (ko) 2w (k) (1 + (ky - ko)?)e ikitke) R
9t Ja, xq,

Sl + adi S + 2hw (k) [aMaM SpaB(ky) — ap(ki)Sp — af/[a]]\g/[]

+ h2w(ky)w(ks)

<VA®VB‘ Hj+ Hp)™

vaevh)

3
+ Z<Vg’(HA + hw(k)) " (Ha + hw(ks)) ™"

a=1

+SAi<vg‘(HB+hW(k1)) H(Hp + hw(ks)) ™ ’ﬁB>

VA ®Vg>SB

B=1
_ [ag(kl)aﬁ + atraB(ky) —2 i <VA ® VB‘ (Ha+ Hp) 'vi ® Vg>
a,f=1
+ hw(k1)T1 (k) ]
+ IPw (ki )w(ke) T (i, k) — 27°w(k1 ) w (ko) Ti (k1)
+ 20%w(ky ) 2w (ko) Th (K1, kg)]
T ﬁ Qo %0 dkdks|C (k1) |?|C (k) P (k) (1 + (ki - ko)?)e 7 o) R
Saady + ajpSp + 2hw(k) [Saag (ki) — az(ki)Ss]
+ 4h%w (k) )w kg) Vi ® Vg ’ (Hs+ Hp)~ Vj®vg>
+ H2w( [23: v ( HA + hw(ky)) " (Ha + hw(ks)) " vE @ vg>s
a=1

+5A§3:<v ’ (Hp + hw(ky)) ™ (Hp + hw(kz))~ ’ §>]
B=1

— RPw(kn)w(ks) (ag(ki)ay; + agap (k)
+ Bw(ky)w(ka)?To(ky, ke) — 3h3w(ky )2w(ke) T1 (ki)

+ 2h%w(k ) %w(ks)*Ts (k1 , ko) | .
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Adding all contributions, noting that Ta(ka, k1) = To(ky, ko) (this follows from commuta-
tivity of resolvents of a fixed operator) and using Lemma A.10.1 now yields

(4.4.25) + (4.4.26) + (4.4.27)

1 AN .
== g7 | dadka|C)*|C(ko) (1 + (ki - ko)) R He R
Qo
454SB B A w<k1) —|—w(k2)
S Sp) (2 —2———— 2
" [h(w(kn Fulig)) TS+ ednSn) B2 0 )

=0
4w (kq)?
+ (SaaB (ki) + aé(kl)sB) <—4M(k1) + hui(kl)—i-lw(lq)>

3
+ 4h%w (k1 )w(ks) ( > <v;§ @ Vo |(Ha+ Hp) '|v§ ©@ vﬁB>)
a,B=1

+ (ap(ki)ay + aprap (ki) (2h2w(k1)2 2l)” 2h2w(kl)2w(k2))

S wky) +wks)  wki) 4 w(ks)
=0

23w (k)
o kaga)) (2wt + gl )

+ (ap(ki)aB (ko) + ap(ka)af (ki) (—h3w(k1)2w(k2) +

h3w(k1)2w(k2)2>
w(ky) + w(ks)
+ 18w (k) 2w (ks) [—3T1 (w(k1)) + To(k1, ko) — T(ki, k2)]
+ Itw (ki) w(ke) Ta(ki, ko) + 2h%w(ky ) 2w(ke)*Ts (k1, ko)

3

+ 2h2w(k1)w(k2)< D ((Ha+ hw(kn) ™ (Ha + hw (k) ™)
a,B=1

+ Sa{(Hp + hw(k1)) " (Hp + hw(ks)) ™)

5 SB
vi®vy
v%@v%)'

Next we claim that
— 3T1(k1) + Tg(kl, k2) — Tg(kl, k2)
- — 40(%(1{1)045(1{1) - 8hw(k1)T5(k1, kl) + hw(kg)T6(k1, kg)

To see this, observe that by Lemma 4.2.18 v) (recall the definition of the magnetic pola—

rizabilities ay” from (4.4.29)),

Th(ki, ko)
3

B
«@
ayi=1 vaA®VE

+ (1@ (Hp + holkn) ™ (Hp + heo(lea)) ™)

vq ®vBB

((Ha H [(Ha o+ holl)) @1+ T (Ha + h”(kl))_lpv“@”]
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3
+heo(ka) S ((Ha+Hy ' [(Ha+ holkn) ™ (Ha + ho(ks) ' @ 1
a,f=1

+ 1@ (Hp + hwo(le)) ™ (Hp + ho(ka)) ™' |)

:Tg(kl, k2) — T(kl) + hw(kg)T(j(kl, kQ)

v ®Vg

Furthermore, Lemma 4.2.18iv) yields

Ty (k)
3
—ag(k)ap (k) + 2hw(k) Y <(HA +Hp ' ((Ha+ hw(k) ™ @ (Hp + ﬁw(k))‘l)>
a,f=1
—am(k)aZ (k) 4+ 2hw(k)T5(k, k).

V%@Vg

Using this result, we can now rewrite

(4.4.25) + (4.4.26) + (4.4.27)
1

— gt [ dladialCl)PIC (k) (1 + (i koot
Qo

3
X [4h2w(k1)w(k2)( Z <fo1 ® Vg|(m)_l|vﬁ ® VﬁB>>
a,f=1
3w 4
+ (az (ki)ag (ki) <—4h3w(k1)2w(k2) — 20w (k)? + m>
h3w(k1)2w(k2)2>
w(ki) + w(ks)

+ (op(ki)ap(ks) + ag(ke)ap(k)) | —hPw(k)?w(ks) +

+ hlw(ky)3w(ke) Tu(ky, ko) + 2h%w(ky)2w(ks)?Ts (k1 , ko)

— 8h4w(k1)3w(k2)T5(k1, kl) + h4w(k1)2w(k2)2T6(k1, kg)
3
20k Jw(ka) | D ((Ha + heo(kn)) ™ (Ha + (ko)) ™) o g0 S

4545p
hw(ky) + w(ka))

W 2
+ (Saak (ki) + ap(ki)SE) (—4hw(k1) + ﬁw(li)(fi(lq)ﬂ '

Finally, noting that on R%\ {0} we have the identity

2w(kp)*
—dwlka)w(ke) = 20(la)’ + 27

_ () w(k)’ — 6wk w (ko)

- w(kl) + w(kQ)

_ —2uw(k1)? — dw(ki)w(ks) — 4((w (k1) + w(ka))® — w(ka)? — 2w(k1)w(ks))

=w(ky)w(ks) ( w(ky) + w(ks) )
w w w §

=w(k1)w(ks) (2(w(k2) —w(ki)) + 4w(1$1)+ fﬁl) Zw(kl)(lfzj(kz)

— 4w(k1) — 4w(k2)>
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B B w(kg)(w(k1)+w(k2)) 6w w
vl )wlks) ( ’ w(ky) + w(ka) Bl +4w(k1) + w(ka) " QW(kl) +w(ks)

_2w(k)*w(ka)® (k)2
_w(k1)+w(k2) 6 (kl) (k2)

finishes the proof of Lemma 4.4.1.

4.4.3 Proof of Lemma 4.4.2

By the definition of the perturbation operators Hy , and H]  (see (2.4.6) and (2.4.7)),
(4.3.5) = — 2Re[(H,; ,Wo|T°|H; p¥0)]

__( ! ) 2Re<(ZAA (02, yT”!(ZBAa(R)Q)%>

2me H
Recall the definitions of the magnetic vector potential A, (x) = a'(GX) + a(GX), with
the coupling functions G¥(k, \) = x»(k)G*(k, A\) = x(k ) ( )e( Ae k% Note that
since ¥y = U9 ® ¥% @ Q and a(f)Q = 0 for any f G W, = L*(Q) @ L*(Qy), we have,

using the commutator relation [a(f),a'(9)] = (f,9)w.,,

AU(Xk)Z\IJU
—[a!(GX) - al(GF) + a(GX) - a(GF) +2a(GX) - a(GX) + (G, GXhw, | W

3
=a(GF*) - a"(G3*)Wo + (Y 1GF)alliv, ) o,

a=1

so that A,(0)?¥, and A,(R)%>¥, are elements of ¥y & {TYIR{TLNSFP). On {¥},
the reduced resolvent 7' acts trivially (this subspace is projected out in its construction),
and for the remaining terms we can use the invariance properties of 7 (Lemma 4.2.5)
and the mutual orthogonality of Fock space levels to conclude

— 2Re[(H, 4W0|T°|H,; p¥0)]
ZAZB

== 2278 Re(al(@Y) - ! (GY)Wo|T7|a! (GF) - ol (GR) Wy ).
msc

By the definition of the creation operators,
(aT(G;"“) . GT(Gﬁk)\Ifo) (Xl, e XN, kl, kQ, )\, M)

=(GF (ki A) - G (ko 1) (W @ W) (1, X).

S
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Furthermore, T acts as Ir, ® Inp ® 550 on {U91®{vY }®.7: (see Lemma

k1)+w(
4.2.5), so that we find

— 2Re[(H} 4Wo|T7|Hy p¥0)]

 ZaZB
= W ()
m2 h,_/

e

E : 2 2 .
/Q Q0 dhadie h(jd((kl;)) +i¢(ulg<)2)) (e(ki, ) - e(ky, p))? e MMk,
Ap=1,2 x

Lemma A.6.1 asserts that >, ,_; o(e(ki, A) - e(ky, 11))? = 1+ (ki - ko)?, which allows us
to carry out the summation over the photon polarizations, and by Lemma A.9.1, Z4 g =
(2me)/(3h2)S 4 g, which finally yields

— 2Re[(Hy 4 Wo|T7|Hy 5¥0)]

C0DP 100 iy 4 (i, iy ?
= kidk a2 214+ (k- k
5 g M otk ot

finishing the proof.

4.4.4 Proof of Lemma 4.4.3

i) We first consider the term

(4.3.7)

=(Hg A0o|T7 HJT? |Hy pVo) + (Hy gWolT7 HyT7 | Hy 4 o)
+<HQ,A‘1’0’TUH”BTU| A‘I’0> <HQ,B‘I’0’TUH”ATU\ B‘I’0>

=2Re [(Hy, 4 Vo| T HyT?|Hy, pWo)] + (Hy 4Wo|T7 Hy 577 |Hy, 4 Wo)
+ <H[/,7B\I/0\TUHZT/’ATU|H(’T’B\I’0). (4.4.36)

To analyze these expressions further, we first consider a general term of the form
1 o 2|mo
st O (TP Ae(x) ol A (ki1 (P, - As(x))W0) o (4437)
€7 il jel; kely

where the sets I;, I, I, over which the indices are ranging will be specified below. Note
that so far, no dipole approximation has been employed. By the invariance properties of
the reduced resolvent 77 (see Lemma 4.2.5), we have

T7 (P, - Ao (x:))Wo € Ha @ Hp @ FL)

for any i. Therefore only the contributions to A(x)*T7(px; - As(x;))¥o which lie in

HAa® Hp ® .7-}(;1) contribute to the inner product. Recall the definitions of the magnetic
vector potential A, (x) = af(G¥) + a(G¥), the one-photon space W, = L?(Q,) & L%(Q,)
and the coupling functions GX(k, \) = xo(k)G*(k, \) = xo (k) cC(k)e(k, \)e **. Using
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the commutator relation [a(f),af(g)] = (f,9)w,, we find that for fixed x € R?, the part
of A,(x)? which leaves each Fock space level invariant is given by

a'(GY) - a(GY) +(GF, Gw,
On a function v € W, = f,gl), this operator acts as
[(24"(G3) - a(GX) + (G Gw, ) o] (e, )
= 23: 2(G3)a(k, N)((GF)as V), + [(GF)ally, v(k, A).
a=1
Note that |[(GX)o|lfy, is independent of x by construction of G¥. Thus

(4.4.37)

=it [2 S (T, Al

i€l; el kel

3
D (G )all V(G ) T (P, - A (3,) Wb, )
a=1
3
+ (41 Z ) (D (P, - Ao () Wol(T7)I(Y P, - Ar(oy)) o)
a=1 iel; JEl;

Using the fiber decomposition of T with respect to photon momenta (Lemma 4.2.7) and
the definition of the inner product on W, we calculate

(GZF, T7 (px; - Ao(x;))Yo)w,
-y / ke G+ (i, M) [17 (P, - Ao () W] (K. A)

A=1,2

-y / DGR (T7() (D, - A () (T4, ® UL)] (K, 1)

A=1,2

where 77 (k) denotes the resulting k-dependent operator (this will depend on the subspace
on which 77 is applied). Note that this expression is still a function of the electronic
variables. Since ¥y € Hq ® Hp ® {2}, we have a(GX)¥o = 0, and thus

(Px, - Ao (x))) (VY © ¥%) = (px, - al(G37)) (V) © )
—cCO(k) (e(k, A) - pa, (%% (09 @ \11?3))) . (4.4.38)
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Using this, we conclude

(G317 (b, - Av(x)) To)w,
= 3 [ e el et (1700 (efhe ) py (e (1 @ W) ).

A=1,2

and, again using 4.4.38, the fiber decomposition of T° and Fubini’s theorem, arrive at

(T7(px, - A () %\Z (G )l AV (G2 ), T (P - A () Vo), )

(T (b, - A, <xz>>wo\GXk- > / s |C Icy) Pl p)ce

pn=1,2

« (1700) (etca ) pyfe 0% 0 95))) ),
> / dkadks [C (k)P [C k) P (e(ka, ) - (ke 1)

A\p=1,2
<e<k17 N) - T7 () [Py (75 (0 @ W) |
jermellr (el ) - T7(ka) [, (740 (0 0 W5))] ) )

HAaQHB
/ diadiy [0 (O (e(kr, ) -efka. )
< (ki, )

Ap=1,2
T (k) [T (0 © W) |

‘e—lkl X, gik2 Xk (e(k27 w) - T (ko) [e_ikz'xj pxj((‘l’% ® \Il%))} ) >'HA®HB’

where in the last step we have used the Coulomb gauge condition e(k, ) - k = 0.
To proceed, we need to specify the index sets I;, I; and I}.

Case la): i € {1,...,Za}, k € {Za41,..., N}, j € {Z4a41,...,N}. This generates the
term
My i=(e(ler, \) - T7 (1) [Ty (9 @ )| |
x o ik gikax (e(kQ, 1) - T° (ko) {e—ikm P, (U9 © WY ))} )>
=([elke, ) - (Ha + heo(ler) gag ) [0 ™pe 05 || @ 0)) |
x U9 ® [efikl'x’“eik?xk (e(kg, w) - (Hp + M(kg)‘{@%}L)fl [e*ﬂ”'xj Px; \Il%} )]>
=(eller. A) - (Ha o+ heo(lea) gao2) ™" e ps 04| [95)

X <‘I’OB|e_ik1'xkeik2'x’“ <e(k2, p) - (Hp + hw(kz)\{xp%}ﬂ_l [e_ikﬂjpxj ‘I’OBD>

Ha®hp

Ha®hp

B
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=e(k1, )+ {(Ha + o) )" o7 ps W3] [0
=0
X <\If%|e_ik1'xkeik2'xk <e(k2, w) - (Hp + w(ka) o p0) " [e_ikﬂjpx]' ‘I’OBD>

Ha

B

=0.

Case 1b): i € {1,....Z4}, k € {1,...,Z4}, j € {Za4+1,...,N}. Analogously to the
above, we obtain

My i=( ke ioxke (e, \) - (Ho + hoo(kr) o) ™" [efikl'xipxl"l’g‘} |‘I’0A>HA

X <‘I’%\ ((HB + w(ka) g ye) {e_ikz-xjpxjw%})>HB -e(ks, 1)

=0
=0.

Case 2): i,j €{l,...,Za}, k€ {Za4+1,...,N}. In this case the term
My =(elr, ) - (Ha -+ heolhea) gas ) [ %ip 0] )|
ez, 1) - ((Ha + heoller) g y) ™ [ pg WG] ) )

% <\IIOB|e—1k1~xke1k2~xk\I,0B>

Ha
Hp

is generated. Note that the last term is proportional to pg(k; — ko), the Fourier transform
of the ground state density of atom B.

Case 3): i,j € {Za41,...,N}, k€ {1,...,Z4}. Analogously to the previous case, we
obtain

My =(eler.N) - ((Hp + Rl gy )~ [e7 % py wh] )|
‘e(kz, ) - ((HB + (k1) gy ) [e_ik”‘jpxﬁlf%} )>

% <\Il?4|e—1k1~xke1k2-xk\11%>

HB
Ha

Now we return to the analysis of (4.4.36). The first term corresponds exactly to case 1)
upon setting x; = 0, x; = R, x;;, = 0 (case a)), x; = R (case b)) in the exponentials, so
we conclude

2Re [(H,, 4Wo|T°H T |H, g¥o|)n) = 0.
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The second term corresponds to case 2). Upon setting x; = 0 = x;, x; = R in the
exponentials, it becomes

(Hg,aWo|T7 Hy pT7|Hy 4¥o)

Tl Y Y [ dkdkelcta)P Ok

- 2m3ct
e 1,5€{1,....Z4} \,u=1,2 o X

X (e(kh )\> : e(k27 M))e_i(kl_kz)'R
X <e(k1,)\) ((HA+hw(k1)H\I,o }J_ [pr\IIO]N

et (s oty o),

3
Z Jalliv,) Z<<pxm-Ao(O))\Ifol(T”)2l(pij~Ag(0))\1fo>H (4.4.39)

TAJA

=(mec®)|T7H, 4 ¥ol?

For the third term, which corresponds to case 3), we obtain (this time setting x; = x; = R,
kj, = 0)

<H$B‘P0\T"H§ATUIHQB‘I’0>

2 3 Z/ dkydks |C(k1)[? |C (ko)[?

iB,JB A\, u=1,2
x (e(k, ) - e(ke, u))e‘“‘”“‘”‘R

<e(k1,)\) : ((HB + hw(kl)|{\p%}L)_1 [sz"p%})’

le(ka, 1) - ((HB + fw(kn) g pe) [ij‘ll%]»

2m3c4

B

3
+ (O IG@)al) 3 (P, - A (BTl T7Y (P, - Ao(RI) Vo),

iB,JB

=(mee)2| T H), o2
(4.4.40)

Since the remaining integrands are invariant under the change of variables (ki,ka) +—
(+k1, +ky), we can replace both e ikKi—k2) R 5 o—ilke—ki) R 1y o—ilkitke) R 54 (4.4.39)
to (4.4.40) and exploit rotation invariance of the ground states \I/?4, \If% and the operators
H g by applying Lemma 4.2.12, obtaining
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(437)

(Z 1(G2) I, ) (Zall T Hy 0|12 + ZBIIT7 H) 4% )

2m c2
1 .
dkidka|C (k) 2 [C)? (3 (elka,A) - efka, p))? o kR
3m3 Q Q
€ e X% Ap=1,2

Za
Zs > (DiU%|(Ha + o)™ (Ha + (k)" o 0% )2,

ij=1

N
+2Za Y, (pVBI(Hp + ho(ky) ' (Hp + ﬁw(k2))_1|Pj‘I’%>HB] -

By Lemma A.6.1, 37, ,_;o(e(ki,A) - e(ko, 11))? =1+ (ky - ko).

ii) Next we analyze

(4.3.6)
=2Re | (Hj, W0l T” YT |HY 5 ¥o) + (HypWolT” YT |HY 40 )
+ <Hé-,A‘Ifo|T”Hé,BT”\H£,A\Ifo> + <H;,B\IJO|T“H;, AT”{H;;,B\IJO> : (4.4.41)
First consider a general term of the form
2
P Re | (T7[(px, - A 00 00]] (B, - Ar (6,)) 77 [Ag (1) 0] ]
34 Z Xi o\ X o\&j o R
2mee i€l;,j€I; keI HAQHBRF

with the index sets I, I;, I to be specified below. Since ¥y = (¥4 ® ¥% ® Q) and
a(GX)Q2 = 0 for any x € R3, we have

Aa(Xk)Q‘I’OZ[aT(GZ"‘)' "(GF*) +a(G3r) - a(G3*) + 24 (GF) - a(GF) + (GF, GX)w, | Yo

3
_aT(G;‘k) ka YWo + Z HWU Wo,

which is a vector in Hq ® Hp ® (.7:(52) @ {Q}). Consequently, only the contribution
from the second Fock space level survives under application of the reduced resolvent, i.e.
To[A,(x1)?Wo] = T7[al (GX+) - af (GX#)T]. Furthermore, by the invariance properties of
T° (Lemma 4.2.5) and the structure of the operator (px; - As(x;)), we have

T7[af (GXF) - aT (GX) W] € Hy ® Hp @ FP)
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and

=(px, - a(GZ')T7[a’ (GXF) - al (GEF)Wo] + (px, - al (GF))T7[al (GEF) - ol (GXF) W]
€ Ha®Hp @ (FI @ FO).

(Px, - Ao (x;))T7[a(GF*) - a(GF) Wo]

On the other hand, by the same arguments,
T7((px, - Ao (x:)Wo] = T7[(px, - ' (GF) W] € Ha ® Hp @ FV,

so that the mutual orthogonality of Fock space levels implies

(77 (P, - A ) Vol P, - Ao ()T (AWl

—(T7[(px, - a'(GE) W]l (Px, - a(GF) T[0! (GX) - a (G) W] ) (4.4.42)

HASHERF

By the definition of the creation operators,

<a’T(G§k) : aT(Gﬁk)\IJO) (Xla ..y XN, kla k27 )‘a M)
_2
V2

OnHy QHp® .7:52), T actsas IQ I ® m (see Lemma 4.2.5), so that we can

use the definition of the annihilation operators to calculate

(GF*(k1, ) - G (ka, 1) (U9 ® U)(x1,- ., XN).

(Px, - a(Go')T7[al (GF*) - al (GF+) W]
:\/iﬂpxj (\IJ?LX ® \IJ%)

1> /Q iy h(w(kl)iw(kZ))W(GWkl,A) ko, )) |

pn=1,2

Now using the fiber decomposition of 77 (with respect to photon momenta) on .7-79)
(Lemma 4.2.7), the definition of the coupling functions G* and Fubini’s theorem, we
obtain

(4.4.42)

|C (k1) C(ko)|”

9t ) B
- A,uz—:l,z /QGXQU Al Mw(ki) + w(ka) (e(ky, A) - e(ka, 1))

<Ta(k1)[e—ik1xi (e(k17 )\) . pxl_(\Il% X \I/OB)))

ikaxj —i(ki+k2)xr (o(k P, (VY @ WO 4.4.43
e e (e( 2, 1) - P J( A B))]>HA®HB’ ( )

where T (k1) denotes the resulting k-dependent operator (which depends on the subspace
of Ha ® Hp to which T is applied). Note that we have also used the Coulomb gauge
condition e(k,\) - k = 0.
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A case analysis similar to the above shows that the only cases which occur in (4.3.6) and
in which (4.4.43) does not vanish are

)i, je{l,....,Za}, k € {Zat1,..., N}, which corresponds to the third term in (4.4.41)
upon setting x; = x; = 0, x;, = R in the exponentials, and

2) i, € {Za41,...,N}, k € {1,...,Z4}, corresponding to the fourth term in (4.4.41)
upon setting x; = x; = R, x;, = 0 in the exponentials. We conclude

(4.3.6)

—Re

2 2
3 /f dkldk2|ixﬁi?)j?3?2l)( (k1, A) - e(ka, 1))

Ap=1,2" o X2

Zpe 0RIR 37 (el ) - P, WhI(Ha + holc)) ™ ek, 1) - Py, W)

A A
1AJA

+ Zyeltath)R Y <eﬂqu-meW%ber+hqu»_”eGmﬁw-prW%>H ]I
. 3 B
'B,)B

Using rotation invariance of the ground states W0, \IIOB and the operators Hy p (Lemma
4.2.12), the identity >, ,_;o(e(ki, M) - e(ke,p)) =1+ (ki - ko)? from Lemma A.6.1 and
the fact that as above, we can replace k; by —k; in the exponentials, yields

(4.3.6)

2 |C(k1)|* C(ko)? © 112y (ki +ke)R
— dkdk 1+ (k- -k e H¥1TX2
Sl /QQ ke 5 a) Fwll) T KLk

Z5 Y (Pry WAI(Ha + ho(lr)) " |y, 95

= Ha
1A,JA

+ 20 Y (P WHI(HA + (k) ™ Py, W) ”
. . B
'B;]B

So far we have shown that

(4.3.6) + (4.3.7)

2
-~ 3m3

Ck)? |C (k)P
/QQ ko o) + w(ko))
Za

Zp Y (piU%|(Ha + hw(ki)) " p;¥%)
ij=1

(1 4 (]?{1 . Rz)Q)efi(k1+k2)-R

+ 24 }: (PiV%)| Hp + hw (k1)) |p; U)
1.] ZA+1

3
T (Z (@) Ry, ) (ZallT™ HY ol + 2|77 H 4] (4.4.45)

(4.4.44)
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* % / dk1dks|C(ky)[* [C(ka)[* (14 (ky - kg)?)e itk
Me JQoxQo
Za
x| Zp Y (P (Ha + hw(k) ™ (Ha + hw(ka)) ™ Py ¥%)n

ij=1

’ N
+2Za Y, (PVBI(Hp + hw(ky) ™ (Hp + hw(k2)) ™' p;©%)w, |-
,j=2Z+1

(4.4.46)

Remark 4.4.6. Since the atomic ground states \1194 and \IJ% are chosen to be real func-
tions, the states X?\IJ%B are also real, and so are any states the form A(w?\I/%7B) with a
real operator A. On the other hand, states of the form A(pf‘\Il?LL p) are purely imaginary.

(We call a vector real if it is an eigenfunction of the involution 1 +— ¢ corresponding to
the eigenvalue 1. Analogously, a vector is called purely imaginary if it is an eigenfunction
corresponding to the eigenvalue —1. An operator is called real if it commutes with this
involution.)

Since all the resolvents occurring in the matrix elements are real operators, all occurring
matrix elements are real. (For the matrix elements involving p?\II?LL g this follows since the
inner product of two purely imaginary states is real.) Furthermore, they are invariant un-
der (ki,ks) — (—kj, —ks2). The remaining integrands in all integrals under consideration
are of the form f(kj, ke)exp(—i(k; + ko) - R), with f real and satisfying f(—ki, —ks) =
f(ky, ko). It follows that all integrals are real, so that any ’'real parts’ in front of them
can be dropped. (Note that the domain of integration, {w(k;i) > o} x {w(ke) > o}, is
invariant under the change of coordinates (ki, ko) — (—ki, —k2))

Combining terms (4.4.46) and (4.4.44). According to remark 4.4.6, the real part
in front of (4.4.44) can be dropped, so that applying the commutator relation (recall the
convention Hy p = Ha p — EB&,B)

ime ime

Pl g = - [Hap,zilYh 5 = . Hap(xi)% p)

from Lemma A.7.1 to the terms in (4.4.46)4-(4.4.44), one obtains

(4.4.46) + (4.4.44)

_ L men2 2 2 L T2y —i(ki+ka)R
g () el Ca) R [COa) 1+ (k-

2 Za )
: [h(w(kl) + w(ks)) (ZB iJZ:1<Xi\I]?4|HA(HA + (k) " H A 09)

ZB
+ Za Z (x;V%|Hp(Hp + hw(kl))—lﬂg\quf%>>
i,j=1
Za
+2Zp Y (%Y Ha(Ha + hw(ky)) ™ (Ha + w(ka)) " Halx,; 7%)
i,j=1
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Zp
+ 24 ) (xiUB|Hp(Hp + hw(ky)) " (Hp + w(ka)) " Hplx,; T%)
ij=1

/ dklde‘C(kl)‘Q ‘C(kQ)‘Q (1 + (l;l . R2)2>e—i(k1+k2)R
Qo X

1
" 3m.h?

Za
7B Z <Xi\ll?4| ﬁ(w(kl)Q-l- w(ks)) Ha (I — heolka ) (Ha + hw(kl))_1>

ij=1

X

(1= heoka) (g + eo(a)) ™) (T = Reo(lea) (Ha + (ko)) ™) ;0% )

ZB
70 3 (Wbl iy iy o (7~ M) + et )

1,7=1

+1 — hw(ki)(Hp + hw(ki)) ™" — hw(ks)(Hp + hw(ks)) ™"

+ (hw(k)) (hw(ke))(Hp + hw (k1)) ™' (Hp + M(kz))_llxj‘y%>

1

 3meh? /QUXQU dk1dks|C(k1)[* |O(k2)|? (1 + (ki - ko)?)e i(kithka)R

X

2w(k
(ZAOQ\% + ZBOzAM) — o ( 1> (ZA()&% + ZBOzf/[)

(k1) + w(ks)

(ZaSB + SaZp)

ZA
Zp Y (aWA|(Ha + hw(k) ™ (Ha + hw(kz)) ™ x; 0%)
ij=1

Zp
+Za ) (aVg|(Hp + hw(ki)) ™ (Hp + hw(kz)) ™ x; 0%)
ij=1

)

where we have used Lemma A.10.1. Since the remaining integrand is invariant under the
exchange ki < ko, and since €, x 0, is composed of twice the same subset of R?, we can
replace

2w(ky) w(ki) +w(ks) /
dkidks...——————— = [ dkidky... ——————= = [ dkydksy...1
/ FT (k) + w(ke) / T () + w(ke) B
so that the first two terms of [...] (which contain integrands of homogeneity —2) add up

to zero, and we are left with
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(4.4.46) + (4.4.44)

_3mleh2 /QUXQU dkdks|C (k1) [C(ka)[* (1+ (ki - k)?)e k)R
2
. [h(w(kﬂ + w(ka)) (ZaSp + SaZp)
2
i h(j(i{hf; —ll-qwzkg)) (ZAag(kl) + O‘g(kl)ZB>
— 2hw(ky) ( Zaap (ki) + ag(kl)ZB>
ZA
+ (hw (k) (hw(ka)) | Zp D (iU |(Ha + hw(ky)) ™ (Ha + hw(ks)) " x;¥9)
ij=1
Zp
+ 24 S (WY (Hp + hw(kn)) ™ (Hp + hw(ks)) x5 | |
ij=1

Now by Lemma A.9.1, Z4 g = (2m.)/(3h2)S4 B, so that - recalling the definition of the
dynamic polarizabilities ag’B(k) from Theorem 2.8.4 - we obtain

(4.4.46) + (4.4.44)
:/ dkldk2|0(k1)|2 |C(k2)|2 (1 + (1;1 . 1;2)2)e*i(k1+k2)R
Qo X

SaSB

8
: [9h5<w<k1> T (k)

+ 2w(k1)w(k2)

9h2 [<(HA+m(kl))_l(HA+hw(k2))_1>SB

+Sa((Hp + (k)™ (Hp + hw(k2>)—1>]

4 w(ky)?
+ @(&W%(kl) + ap(ki)Sp) <M - w(k1)>] ;

finishing the proof.

4.4.5 Proof of Lemma 4.4.4

By the definition (2.4.2) of the perturbation operator H/, we have
(4.3.8) =2Re [(H, Wo|T” H,T7|QrWo)] + (H,Wo|T" QT H, W)

() X

ij=1

2Re [((pi - Ao)Wo|T7 (s - Ay)T?|QrY0)]

+ ((Pi - Ao)Vo|T° QRT |(P) - As)Wo) |-
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The sum over the electron coordinates ¢ and j splits into four contributions:

2= 2+ 2. + 2.
“J i€{l,...,Za}, 1€{Zs+1,...,N}, i€{l,...,Za},
je{l,...,Z4} je{Za+1,...,N} je{Za+1,...,N}

+ )
i€{Za+1,... N},
je{l,...,Za}

To simplify notation, we will denote these cases by using indices (i4,ja), (i, jB) et cetera.
The proof consists of two parts. In the first part, we will investigate the third and fourth
sum and show that

1
TI::@ Z+Z

iA.JB  iB,JA

2Re [((pi - Ay)¥o|T7 (p; - Ay)T°|QRY0)]

+ <(pz . AU)\I’0|TUQRTU|(pj . Aa)\p0> = MB(Ra U)'

In the second part we will establish the corresponding identity

2Re [{(pi - Ay) 0| T (pj - Ao)T7|QRrT0)]

1
Ty ::m§c2 Z + Z

iA,JA  iB,JB

+{(pi - Ac)Vo|TQRT?|(pPj - As)Wo) | = Ma(R, o).

Part i) First consider

S 2Re|:<(p7;A Ao (0))Wo[T7(pjs 'AU(R))TG‘QR%H

tA.JB

= >~ 2Re[(T7(Pss - Ao(R)T7(Pi, - Ao(0)0|Qr¥o ).

1A,JB

By the structure of ¥g, the form of the vector potential A, (x) = af(GX) 4 a(GX) and
Lemma A.8.1, we have

(Pin - A (0)To = (i, - al (G))) Wy = pi, ¥ ® T @ ol (GF)Q € (V) HHR{UB}FY,
and thus the invariance properties of 77 (Lemma 4.2.5) imply that

T7(pi, - As(0)) %0 = T (i, ¥4 @ al(G9)Q) © W), € (W5} E{wh}EFD.
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By the same arguments,
T7(pjs - As(R))T7 (piy - As(0))¥o
=1[pj, - (a'(GR) + a(GR)) [T5 (ps, ¥4 @ a'(G5)02) @ wh]]
e (VOB {U0)1E (fé‘” @ ff)) .

On the other hand, QrV¥y € Ha ® Hp ® {2}, so that the mutual orthogonality of Fock
space levels implies that

(17 |psy - a!(GH) |15 (P, W) @ a'(GD)2) @ W] [|Qr¥0) = 0.

For the remaining contribution we use the invariance properties of 77, the fiber decom-
position of T (Lemma 4.2.7) and the definition of the annihilation operator a(GE) to
obtain

<T” [ij -a(GY) {TZ (pm‘I’% ® aT(G3)9> ® ‘POB” IQR%>H

~((Ha+Hp)™! [gljg / i (1 W GRON) (L holh) iy W - Go (V) |

0 @ 00 > ,
‘QR( A B) HaoHs

which by Fubini’s theorem and the definition of the coupling functions GX(k, \) equals
Ay / dk|C(k)[2e &R
A=1,27 1%
((Ha -+ () [(piy W5 - ek, X)) @ (9 Wl - e(k,\)) | (Fa + i) ™
79 ® U > :
‘QR( A B) HAa®HB
Interchanging the roles of the indices, one finds

2Re[( (b1, - Ao (R)WoIT7 (bs, - Ao (0)T°|Q1 0 )]

= ) / dk|C (k) |e’c R

A=1.2
<(PjA‘I’21 ce(k, ) ® (Hp + hw(k)) ' [(piy V% - e(k, )\))]‘(HA +Hp)!

Qr(% @ ¥%))

= > / dk|C(k)[2e kR
Qo

A=1,2

Ha®HB

<(ij\II(1)4 ce(k,\)) ® (Hp + hw(k)) "' [(pis U5 - e(k, /\))]‘(HA +Hgp) ™!
‘QR(‘I’% ® ‘I’%)>HA®HB,

where we have used the fact that C(k), e(k, \) and w(k) are invariant under the change
of variables k — —k. By arguments completely analogous to the ones just given (and the
fact that T7QRT7 is symmetric), one establishes
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m262 (Z Z) Aq)Wo|TQRT7|(p; - As) Vo)

1A,)B !ByJA

3 Z/ K| C (k) 26~ R

iA,JB A=1,2

—Re

x [<(HA+m(k>)1[piA- e(k, )W)] @ Uy|Qr)|

U9 @ (Hg + hwk)) ek, \) - p;, P2 .
|5 © (Hp + hw(k)) " e(k, A) - pj, B]>HA®HB]
Summarizing, we have found
=22 (Z Z) 2Re [((pi - Ag)Wo|T7(p; - Ag)T7|QR¥0)]
1A,)B 1BsJA

+((Pi - Ao)Yo|TQRT7|(pj - As)¥Wo)

3 Z/ dK|C (k) [2e~ kR

ZA]B)\ 12

—Re

x [<(HA+hw<k))‘1[p¢A- e(k, \) W] ® U3 |Qxl
W% ® (Hp + ho(k) ek N) - py ¥h])

- (((Ha + heo()) ™" + (Hp + (k) ™)

< (e ) P, ¥R @ (efle ) - by ¥h)||
’(HA +Hp) ' Qr(¥) ® ‘1’%)>HA®HB” :

Applying Lemma A.6.1, we can carry out the summation over the polarizabilities:

Z/ dK|C (k) [2e~ R

1A,]B

—Re

x [<<HA+hw<k>> piy U] © W1 - k ® K)Qg

0% @ (Hp + hw(k)) ' [p), \I/%]>HA®HB:|

(L + o)™+ (Hp + heo(1)) ™) [pi, 95 (1 — k@ Ky, 0 |
(L Hp) ™ [Qr(¥) @ ‘I’%)>HA®HB”-
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Next we note that by Proposition 2.5.1, vq = ZiA xiA\I/% € H?R?*4) and vp =
2 s x;, V% € H2(R342), so we can apply the commutator relation

0 _ime 0
PispVap =7 Hap (%iy s YA B)

from Lemma A.7.1, as well as the relations
(Hap +hwk) " Hap =T — hw(k)(Ha p + hw(k)) ™,

which hold on D(H 4 g), yielding

2
T1 = —Re

= dk|C (k)|?e R
he| [ dkicoo)

xk&ﬂ«HwHM&WWHwA®W%O—R®EQM

W ® (Hp + ho(k) ™ [Hpvsl)

(=02 ((Ha + heo(l) ™+ (Hp + ho(k) ™)

X [(HAVA)(I —k® &)(HBVB)] ]

|(Ha+ Hp) 'Qr(¥Y ® ‘I’OB)>HA®HB”

2
=—Re

= dk|C(k)|2e R
fe| [ dkicoo)

[«PJM&XHrHM&D*WA®W%ﬂ—R®EQﬂ

W% ® (1~ o) (Hp + () vs)

- <((I — (Ha+ hw(k)) " )va) (1 —k @ k)(Hpvp)|(Ha + Hp) ™|
Qr(wh o)
- <(HAVA)(1 ~k@k) ((I - (Hp + hw(k)) " )Ba) |(Ha+ Hp) |

0 0
|Qr(¥Y ® ¥) HA®HB” .

To simplify notation, set v :=v4(1l —k ® k)vp and u := Qr(V9y ® ¥%). Then

138



2
T1 :ﬁRe

/ K| C(k) PR
Qo

X

<VA®\II%|(1 —12®12)QR|\1/?4®VB>HA®HB (4.4.47)

— R (k)([(Ha + hoo(k)) vl © W31~ k@ ) Q¥ @ v )

AQHB

(4.4.48)
— ho(k)(va® UI(1 k@ R)QRI WY ® [(Hp + o) val)
(4.4.49)
+ (o) [(Ha + ho()) " va] @ Wh|(1 - k © k) Qx|
[ @ [(Hp + h) Mvsl)
- <(HA RI+I® HB)uy(mYH@HA@HB (4.4.50)
+ () ((Ha + (k)" @ Hp + Ha @ (Hp + (k) ™) o]
\(M)l\u>HA®HB] . (4.4.51)

Note that since v € D(H4)®D(Hpg) and Hy + Hg = HA®I+I® Hp on D(H,)®D(Hp),
we have

(4.450) = —(va(1 —k @ k)v|Qr(¥Y @ UY)) = —(4.4.47),

where for the last identity we have used that ) i Xin and Qr are real multiplication
operators.

To further analyze (4.4.51), note that ((Ha + fiw(k)) ™' ® Iv and (I ® (Hp + hw(k)) v
both lie in D(H4)®D(Hg), which allows us to calculate

(4.4.51) :hw(k)<(HA +Hgp)! [(HA +Hp — Ha)(Ha + hw(k)) " ® 1)

+ (Hat Hy — Hp)(I @ (Hp + ho(6))|olu)

=heo(l)(((Ha+ (k)™ @ 1+ 1@ (Hp + (k) ™) vlu)
— o) ( (T ) [( HalHa + hol1) ! 1)
=T—hw(k)(HA+hw(k))~1
+ (I ® Hp(Hp + hw(k)) ™! )}U|“>
=I—hw(k)(Hp+hw(k)) 1

- (k)<((HA twk) QT +I® (Hp+ hwk) ™) u\u> (4.4.52)

— 2h(k) (ol (Ha + Hp) " 'Ju)

o (k)2 ((Ha + Feo(K)) ™+ (Hp + (k) ™) ul (o + Hp) ™ o).
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Again using that >, X;,, Y;, Xj, and Qg are real multiplication operators, we find
(4.4.52)
=t () ([(Ha + ()" va] (1 - k @ K)vp|Qn(W% @ )
+ ho(l) (va(l — k@ K)[(Hp +w(k) "' va][Qr(¥% © )
=) ([(Ha + (k) 'val @ Bl - k@ K)Qrl¥ & vs)
+ () (va @ Wh|(1 - k @ K)Qr|VS @ [(Hp + hw(k)'vs])
— ((4.4.48) + (4.4.49))

Ha®HB

Adding up all terms, we arrive at

T = ~ 2Re / dk|C(k)|? e~ kR
Qo

h2

X [—2hw(k)<vA(1 — k@ k)vp|(Ha+ Hp) M Qr(T4 ® xp%)>

+ ()2 ([(1 — k@ k) (Ha + hwo(k)'va] @ Wh|Qu
W% @ [(Hp + hewo(k)) 'va])

+ (k)2 ((Ha + ho(0)) ™ @ 1) (va(l = k@ K)vg ) |(Ha + Hp)™'|
Qr(¥% @ )

+ (ho(W)*((I'® (Hp + ho()) ™) (va(l —k @ k)vp ) |(Ha+ Hp) |

|Qr(YY ® ‘I’%)ﬂ

:MB (Rv 0)7

finishing the first part of the proof.
Part ii) In this part of the proof we will show that

(Z + Z) 2Re [((P: - Ar) Yol T7(P; - A0)T7|Qr¥0)
iAJA  iB.JB
+{(Pi - Ag)Vo|T7QrT?|(pj - As)Vo) | = Ma(R,0).
First of all, consider the contribution
foa = m >~ Py - Ac(0) 0| T7QRT? (P, - Ao(0)) %)

1AJA

and note that by Lemma A.8.1, we have
(P - Ao (0)) W0 = [(Piy - Ax(0))(Ph @ Q)] © Uy € {Wh}+ @ FUB{U},

140



according to

—1
on Wthh T acts as I{qj%} X Tz = I{\P%} X <HA +HfZU|{\II94}J-®]-—,§1)>

Lemma 4.2.5, (4.2.9). Thus we obtain

T2a

o (T A ()W) © 9)] © VR QRITS(ps, - Ar(0)(W) © 9) © W),

1A,JA

Using the definition of A, and applying the fiber decomposition of 7' with respect to
photon momenta (Lemma 4.2.7) now yields

= 3 3 /dik\c<k>12

€ iajar=1,2
((Ha + heo ()7 (i - ek, A) W] © 9h[Qp
[(Ha -+ heo()) ™ (s - ek, 1) W] @ W),

and an application of Lemma A.6.1 allows us to carry out the A-summation, resulting in

= 3 Y /Qodk|c<k>|2

€i4,ja =12

((Ha + ho(l) ™ [pi, 0% © 95|(1 - k @ K)Qr|

[(HLa + ho (k) ™ [, W5] @ )

As above, by Proposition 2.5.1, we have v4 := ZiA Xi, \11?4 € H?(R3%4) and vp :=
> ip Xin ¥ € H?(R3%8), so we can apply the commutator relation
im
piA,B\IJOA,B = f(HA,BXiA,B ‘I’%,B)
from Lemma A.7.1 and the relations (Ha g+hw(k)) ' Hap = I —hw(k)(Ha p+hw(k)) "},
which hold on D(H 4 g), yielding

1

2
Tu=pa [ dkIC0)

% [{(va @ Wh|(1 - k@ k)Qrlva ® W)

— hw()((Ha + heo(k) " va @ W1~ k 0 K)Qrlva @ W)

— to(k) (va @ WhI(1 — k@ K)Qr(Ha + (k) 'va @ U )

+ (h(0))2( (Ha + heo(k)) ™ va & 9h|(1 — k @ K)QrI(Ha + ho(k) "va @ )

=(3.0.9).
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By exchanging the roles of A and B, one proves that

222 Pis - Ag(R))W0|T7QRT|(Pjys - Ao(R))Wo)
lByJB

1
= [, AIC9P

<\IJOA ®VB|(1 — R@R)QR|\II?4 ®VB>

— (k) (0% @ (Hp + hw(K) vl — k@ K)QR| ¥ © va)

— hw() (W @ vil(1 - k @ K)QR|WS @ (Hp + (k) 'vs)
+ (o) (W), @ (Hp + ho()) ' vp](1 ~ k@ K)Qr|¥) @ (Hp + hw(k)~ vB>]
=(3.0.10).
It remains to investigate

LS+ S ) 2Re (o AWl T7 () - AT QR0

mgcs \ —~
TAJA 'B,JB

In the first contribution

Ty = m2 ) Z Re p’LA ’ AJ(O)\I]0|TU(ij ’ AJ(O))TU’QR\I’OH )

1A,JA

we move all resolvents to the left and obtain

T m2 5 Y Re [(T7 (D), - A (0)T([(piy - Ar(0))(¥% @ Q)] @ W) [QrWo)

TAJA

=u

Next we use the invariance properties of 77 (see Lemma 4.2.5) to simplify this expression:
as already shown above,

T7([(pin - As(0))(¥h @ Q)] @ W) = [T5((Pis - Ar(0)(¥) ® Q)] @ Y,

and this vector lies in {T%}&({W9}+ ® FS )) Therefore, since (p;, - A5(0)) does not act
on the coordinates of B,

we (UHIB(Ha © (FO @ FP)) = ({Ph}18(Ha @ {0)) @ ({vh1B(Ha © F2)).

Let u; and ug denote the projections of u onto the two subspaces on the right-hand side.
From the invariance properties of 7% we conclude that also 77u € ({U%}&(Ha @ {Q})) &

({\I/ 1&(Ha ® F2 ))) . Since the Coulomb potential Qr acts only on the particle co-

ordinates, it follows for the right-hand side in the above inner product that QrV¥gy €
(Ha ® Hp)®{Q}. But now the mutual orthogonality of Fock space levels implies that
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the only non-vanishing contributions to Ty, are the terms containing (T7u;|QrWo). We
calculate u; explicitly. Recalling

A, (x) = a'(GF) +a(GY),

where GX = x, (k) cC(k)e(k, \)e ** and using that (p;, - a(G9))(¥Y @ Q) = 0, we
conclude

ur = (P, - a(Go)TE(Piy - a'(GS)) (P @ Q)] @ V.
By the definition of the action of the creation operators on {2}, that of the annihilation

operators on fc(,l) and the fiber decomposition of 7' with respect to photon momenta
(Lemma 4.2.7), this equals

U1

s [ [ @I+ 1) 1% G0N | | &
A=1,2

= |y | [ dkICAOP | 3 el n)-elie ) | (a+ hoti) ipi, w0 | | = 05
Qs A=1,2

_2 [(ij . (/ﬂg dk |C (k) 2 (1 —k® 12) (Ha + hw(k))_l[pm‘l’%]ﬂ ® U,

where we have used Lemma A.6.1 for the last identity. Now since u; € {U}1®(HA®{Q}),
we conclude

T%uy
=)™ (e () IO (1w k) (L4 10 o, 95 ) | & 0,

(see Lemma 4.2.5), and using the above commutator relation and the relation (H4 +
hw(k))PHy =T — hw(k)(Ha + hw(k)) ™! finally yields

/Q dk (me ) |C(k)|?

[<(HA|{\110 3 ( Z pjy) - (1-k® lA<)VA) ®@ UR|QR(VY ® ‘I’%)>

TQC =2Re

— heo(K){ (HLy u02) ( me (1= k@ k) (Ha + (k) 'va) @ WY

Qr(vY @ Uh))

] = (3.0.11).
The last identity to be established, namely

Ty = m2 3 D Rel((piy - A (R)P0|T7 (pj, - Ao (R)T7|Qr¥o)]

iB,JB

=(3.0.12),

is proven completely analogous by exchanging the roles of A and B.
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4.4.6 Proof of Lemma 4.4.5

First recall

(4.3.9)
= — (Dol QnrlWo) (I TG Hy 4 (W% @ Q)2 + | TEHp (V5 @ Q) 1) (4.4.53)
o (Hp 4 (0% @ Q)| TS| HY 1 (V5 © Q) |75 Hy 585 @ 9) (4.4.54)
o+ (Hy (W © Q)| T Hp (VY © Q) | TTH, (9% @ Q) (4.4.55)
— (W @ Q) Hy 4 (¥ © Q) |75 H 50 @ Q) (4.4.56)
(W @ Q) HY (W © Q) ITTH) (W% @ Q)12 (4.4.57)

o~ o~~~

Note that apart from (¥o|Qg|Wo)||T7 H. ¥/, all contributions are R-independent. We
will start by investigating the second and third contribution. Applying the general scheme
outlined in Section 4.4.1 above (i.e. using the definition of the perturbation operators H (’I A
and H (’7 g the invariance properties of 77 (Lemma 4.2.5), the fiber decomposition of the

reduced resolvent on fél) (Lemma 4.2.7), rotation invariance of ¥9% and ¥% and the

polarization vector identities from Lemma A.6.1), we arrive at

(4.4.54) + (4.4.55)

4 1 y
:§ (me)4 AOXQU dkldk2|cf(k1)|2 |C(k2)|2 Z Z

1A,JASB.JB a,B=1

(P2, W% @ Pl WhI (Ha +w(l)) ™ (Hp +w(ks))

+ (Hp +w(ki) ™ (Ha + w(ke)) 208, 04 @ p), 05 ). (44.58)

Now recall the term (4.4.6). It can be rewritten as

(4.4.6)

11 i 5 5
D3 Z/ﬂaxﬂgdkldkw(kl) C(ks)|

iAij’kA)lB a,B=1

<p?A‘I’?4 ®p) VY|
8(Ha +w(k1)) " (Ha+ Hp + w(ki) + w(ks)) " (Hp + w(ke)) ™!
+A(HA +w(ki)) N(Ha+ Hp + w(ki) + w(ke)) (Ha +w(ki)) ™
+4(Hp +w(ky)) ' (Ha + Hp + w(ki) + w(ke)) ' (Hp + w(ky)) |

[P, W% © pp, ¥ )
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3
>y /deﬂodkldeC(kl)Q]C(kg)]z

4
(mE) iA:jB’kA)lB a,B=1

(o2, 9% & o, W] (4 + wli) ™+ (Hp + () )’

x (Ha+ Hp + w(ki) + w(ks)) " 'pf, 9% @ p’ \IIOB>, (4.4.59)

I

where we have used the commutator relations from Lemma 4.2.18 ii) and the fact that by
Lemma A.10.1), we can change variables from k; to ko in the last term without changing
the value of the integral. Now using the operator identity Lemma 4.2.18 iii) and the fact
that under the exchange k; < ko (note that €, x €, is also invariant with respect to
this), the second term in (4.2.26) becomes minus the first term, we conclude that by the
symmetry of the remaining integrand,

(4.4.54) + (4.4.55) + (4.4.6) = 0.
For the last two contributions to (4.3.9), we find

(4.4.56) + (4.4.57)
= — (Uo|H] 4| Qo) | T7H], gWo||* — (Vo|H] 5|Wo)||T" H}, 4 Po|?

3
_ 1 X 2 / 2
=~ Zuge 2 (@l 17 He Vol
1 3
X 2 / 2
= Zo e 21 (G2 i, 177 H a0
2 2 o rr! 2
=—Z4 |C(k)|"dk | [T H g Vol
2me \ J{w(x)20} ’

2
- Zp; ( / \c<k>|2dk> 17 Hy a0l
Me \ Hw(k)>0}

which is cancelled by the term (4.4.11), finishing the proof of Lemma 4.4.5.

145



146



Chapter 5

Analysis of terms containing the
Coulomb interaction

In this chapter we carry out the analysis of the terms in V,?(A,R), i = 1,2,3,4, which
contain the smeared interatomic Coulomb potential Qr. See the introduction for an
overview. The main tool is the so-called multipole expansion, which is a series expansion
of Qr on a restrained configuration space, and which we introduce in the next section.

5.1 Multipole expansion of the (smeared) interatomic Coulomb
potential Qp

Following Gardner ([Gar07]), we derive a tail estimate for the quadratic form of this
series. If the series is truncated at order L, the right-hand side of this estimate involves

a1y L
“R

the quotient ( , where R is the interatomic distance and d characterizes the

size of the area of R*V to which the electron coordinates are restricted. Furthermore,
we establish that the quadratic form of Qg, if evaluated on exponentially decaying wave
functions, decays exponentially outside this area as d — oo. We will make the assumptions
(A1) on the form factor 9 throughout this section. Writing Qg in position space (see A.5)
yields

Qr
= ¥ [ dvdy v

1A,JB

1 1 1 1
< ; - - )
R—-y+y| |xiy—%x-R-y+y| Ixiy - R-y+¢] x+R-y+v|

(5.1.1)

For two vectors r, R € R? satisfying |r| < |R/, the series expansion

L&
R el
=0
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converges (absolutely). Here Pj(x) is the [-th Legendre polynomial and 6 is the angle
enclosing the vectors r and R, defined via the inner product by r - R = |r| |R| cosf. Let
R := |R| and choose d < R/4, Ry := 6 diamsupp . Then for y,y’ € supp v, |xi,|, [xj5] <
d and R > Ry, we have
R+y—y| >R~y -yl > +R — 2diamsupp ¢
>(2/3)R > (8/3)d > 2d
>[%iy — Xjgl,
R+y—y| >[xil,
| =R+y—y| =[x,
and thus the multipole expansion is applicable to the last three terms in (5.1.1), yielding

Z/dydyw ()

lAa]B

|X2A XJB|
[!R y+v| Z\RHJ y!l“Pl<C°SH"¢A”‘J'B’R“’*9/)

Bl
Z R+y—y |l+1Pl <COS HxiA,Rer—y’)
o0

[ I
- Z “R+y— y/|l+1pl (COS 9Xj37_R+y_y/> :
=0

As in the non-smeared case (see [Gar07]), one easily checks - using the definition of the
Legendre polynomials - that the (I = 0)- and (I = 1)-terms vanish. For the latter, one uses
in addition that the change of variables y < 3’ does not change the value of the integral
and one can thus replace | —R+y — /| = |R+ vy —y| by |R+y —¢/|. Evaluation of the
(I = 2)-term, which again uses the property just mentioned, yields

Z/ dydy'(y) ¥ (y')

ZA:]B

1
X —
R+y—y?
which corresponds exactly to the non-smeared dipole operator, as can be seen by formally

replacing ¢ by dg. Now noting that in the sense of the distributional Fourier transform
on R3, we have

[xz-A (I = 3R Ty =) @ R¥y—y)) %55,

()2 can be expressed as

(2m)" 1
@2 = 47 1/2 Z / |k|2 kR(XiA k) (k-x;,)

- Z/dk L om0 033

1A,)B

=: Q. (5.1.2)
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To exhibit the mathematical structure of the higher terms contributing to ) g more clearly,
we will need two results from the spectral theory of the Laplacian. Firstly, we use the ad-
dition theorem for Legendre polynomials (see e.g. [WW96]), which furnishes a connection
between the [-th Legendre polynomial and the spherical harmonics Y;,, of degree I: for
two unit vectors &, € R3, we have

l
Pi ) = 5o 3 il (0,002 Yiml (0,
m=—1

where the tuple (6, ¢); denotes the angular variables of a unit vector # € R3. The second
result tells us how to expand a translated regular solid harmonic into spherical harmonics
depending on the individual vectors comprising the translate, see e.g. [ST77]. More
precisely, we have

41
21 Tl oYl (6, @)a-
1/2 l1
- Z <2l1> 2l1 +1 V l — ll Cl st m
|a|l1 |b|l llY}lm1 (9 90) l 11)(m—m1)

for any a,b € R3, where

C o lm P = m P faN T
lm,liymy = I1 +my li —my 20

is a Clebsch-Gordan coefficient. Applying these results to Qg yields

Qn =Qs + ﬁ > [ dvay'iw). o)

1A.JB
l 11 1/2
Cm m
\/2z+1 Z”ZO . <2l1 \ 211+1\/ l—l1 bt
1 mp=-—

|X2'A‘l1 ’XjB‘l h *
|R—|—y—y/]l+1 lymy
l
471' |XZA|Z
D3 Ry O i[O ]

[0, ), 1 Y011y (m—m) [(05 ©)x; , Y [(0, 0) R4y ]

4T |XJB|
- 20 +1 mzl ’ _R+ y—y ’l—&-l Yim[(e SO)XjB] Yim[(a @)*Rer*y/] .

Since the multipole expansion converges absolutely and uniformly with respret to y and
y' (note that supp(¢(-) 1(-)) is compact), we can exchange the summation and the dydy’-
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integration. Next define

1/2
1 / 4nm 21 4 4
m = Clom,iy,m
Ul,m,lq, 1(R) V2 ¥ <2l1> 211+1 2([—[1)—1—1 l,m,l1,m1

=:Clm 1y my
Yim (0, oy
x ( / dydy'¥(y), ¥ () fR[i y“’i@fﬁﬁ{ }) ,
i ®) =gy [ty o) vl
wn(®) =gy [ vyt v O,

Note that these quantities are well-defined for all | since we have chosen R > Ry =
4 diam supp v, which implies |R + y| > 3 diam supp ¢ for all y € supp ¢, and thus ensures
that 1/| £ R +y — ¢/|"t! is continuous on supp 1) x suppy C RE.

Summarizing these results, we obtain

Lemma 5.1.1. Let ¢ satisfy the assumptions (A1). Choose 0 < d < R/4 and Ry =
6 diamsupp ) as above. Then for R > Ry and |x;,|, |x;,| < d,

Qr =0Q2

00 l l 15
FIDSTST DT bl sl T Y (0,9,

14,JB =3 Lm=—111=0mi1=—0

X Y(7 1) (m— ml)[(e ‘P)ij]ul,m,h,ml(R)

- Z ’XZA’lYlm )sz]Ulm(R)

m=—1

l
- Z ’XJ'B‘lY;Tn[(QvSO)XJB wlm ZQZ (513)

m=—1
Furthermore, by the parity of the spherical harmonics of degree | and the invariance of
V(Y)Y (y') under y <y, it holds that wy,m(R) = (—1) vpm(R).
Large R-asymptotics of the interatomic Coulomb potential Qg

Lemma 5.1.2. Suppose that ¢ satisfies the assumptions (A1). Let A > 0,1 > 2 and let
R € R, |R| =1 be fived. Then

3 3
\AR+y Y|t

BT T R AL

YZm[(ev SO)ARerfy’] (5'1'4)
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Proof. Consider the function g : R — C,

1

9((y',y)) = ARy yWHYzm[(G,@)Am(yuy)],

which is continuous and bounded away from the set S := {(y/,y)|y = ¥ + AR} =
{(/,+AR)|y € R3} of its singularities. Define Ux(y/,y) := R*yo(Ry) R3¢o(Ry'). Since
supp Wr C By r(0) x By g(0), we have AR +¢/| > 1/R for R > Ry = 4diamsupp ¢ =
4/A and |y'| < 1/R. This shows that (Bj/g(0) x By/g(0)) NS = 0, and in particular
supp¥r NS = 0, which in turn implies that g|suppwy, is continuous and bounded. This
allows us to interpret the integral in (5.1.4) as (¥ *¢)((0,0)). By the assumptions on vy,
Ur is a Dirac sequence (with respect to the parameter R), so that the assertion follows
from the standard result that the convolution of a continuous function f with a Dirac
sequence converges pointwise to the function f, see e.g. [Eva98]. O

Rescaling variables by (y,vy') — (A/Ry, A/Ry') and using the properties of ¢ (see assump-
tion (Al)) yields the identity

YY), v()
dydy —22 2~
/ TRy
:AZ—H /dyd ,R31/10(Ry) sto(Ry/)
L AR +y — [+

[(, @)R—iry—y’]

lem[(ga (p)Af{+y_y/]' (515)
In view of (5.1.5), applying Lemma 5.1.2 to (5.1.3) yields
Lemma 5.1.3. Suppose that i) satisfies the assumptions (A1). Choose 0 < d < R/4 and

Ro = 4diamsupp ¢ as above and let R € R?, |f{| =1 be fized. Then forl € N, 1> 2 and
|XiA‘7 ’XjB’ <d,

Qo ~ i Z %[xm (IRg — 3R®R> XJB:|

1A,JB
Wty mi (R) ~ Clmty Rl+1Ylm[(9 ©rl = #al,m,h,ml(f{)v
U (R) ~ 5 e Vinl (0, 0)g) =5 g n (R,
W (R) ~ 5 = Yinl(0,9)_g) = (-1 i im(R)

as R — 0o, and consequently, for | > 3,

1
QZNZW

1A,JB

[ Z Z Z |X71A |l1 |X]B |l h l1m1 [( )sz] }/(?—ll)(m—ml) [(07 QP)XJ‘B} al,m,l1,m1 (R)

m=—l11=0mi=—11

l
= 37 (il Y0 @), ] + (1) l:n[<97¢>xj3])@z,m<ﬂ>]
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5.1.1 Error estimates for the multipole expansion

Lemma 5.1.4 (Tail estimate). Suppose that i satisfies the assumptions (A1). Let U, ® €
L2(R3*N) and let 0 < (d + 1) < R/4. Furthermore, assume R > Ry := 6 diamsupp and
let Qg = {|x;| < d| < d} CR3N. Let xq,(x1,...,%xn) = ¥ xa(x;), where x4 € C°(R3),
0<xd <1, xa(x) =1if x| <d, xa(x) =0 if [x| > d+1 and xq4(Rx) = xa(x) for all
R € SO(3), be a smooth characteristic function of Qq. Then for any L € N, L > 2,

L
<‘I[|QRXQ‘1’(I)>L2(R3N) - <\I/| (lz Ql)XQd‘(I)>L2(R3N)
=2
1 /4(d+1)\"
<ZaZpg ((R)> @l L2 ran 1 ¥ L2 maw)-

Proof. The argument is a modification of the one given in [Gar07]. By the choice of d and
Ry and Lemma 5.1.1, the multipole expansion converges on supp xq, C {24+1. Therefore,
using Fubini’s theorem, we find

I:=

L
<\1;\QRXQd|<I>>L2(R3N) — <\I’! (lZ; QZ)XQd|(I)>L2(R3N)

Ly ¥

I=L+1%a,jB

<‘I’I><Qd /R dydy' P (y)y(y)

|Xi _ij|l
R +y -y

i I
TRty gr (COS exiA’Rer‘y’)

|XJ'BHl
TRy y <COS exfB’*RW*y/) @>L2(R3N)

i <COS exiA —Xjp, R+y—y’>

Note that cos@ € [—1,1] and |P,(z)| < 1 for x € [-1,1]. The term 1/|R +y — ¢/| is
independent of x;, and x;,, and in the last term we can replace | — R + y — ¢/| with
IR +y — ¢/| by virtue of the y < y/-symmetry of the remaining integrand. This yields

1 Y(y) YY)
I <— dydy ——2L 77 7
i 2, IR e

% Z <\Ij|<’xiA - XjB|l — il = XjB‘l)XQd|(I)>L2(R3N)‘>

1« / ;) Yy)
<— dydy' ——— =7
dm lzL—:f—l RS R +y—y[H!
<[ 3 (2@+ 1)+ 2aa+ 1)) \\wr\L2<R3N)||xQd<I>HL2<R3N)>
iAij
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/ dudy w(y)w(y’)

6 yay R+y— o]

x ( > (2d+ 1)+ @2a+ 1)) \|\1/y|L2(R3N)||<1>|;L2(R3N)) .

1A,JB

On supp ¥ x supp ), we have |[R +y —¢'| > R — 2diamsupp v > 2/3R, and thus

V(W) YY) BN e (3
dydy ——Z" 2~ < | — =—= . 1.
[ vty 2 < (55 ) I = (57 (5.1.6)
This implies
[ & 3\ 1 l l
=) (57)  2a2s (2d+ 1)+ @+ 1)) [¥lzgom [0l o
1 201 f4(d+1)\ 3\" 3 /3\
== ZiZ - ) +2(2) ) v o .
L4 BI%R( ) (3(8> £ 220 ) 1l oy 22 oy

Furthermore, (4(d +1)/R)! < (4(d +1)/R)**! for all | > L + 1, since 4(d + 1)/R < 1 by
assumption, yielding

1 1 /4d+1\" & 3\" 3/3\

I <—Zs7p— — — [ = U )
<z (Mg0) X (3(5) +3 (1) ) ol
L+1 L+1 L+1
<L 702k (MDY (30 T 56 T g [0 o
~4r R\ R 5/8 1/4 (®) ®>)

d+1 L+1
<2z R( ) 0 s gy |9l sy

) 10 oo | s

O]

Lemma 5.1.5 (Exponential decay of the quadratic form). Let ¢ satisfy the assumptions
(A1). Suppose that f € HY(R3N), g € L?>(R3N) and that these functions satisfy the
pointwise bounds

|f(x1,...,xn5)| < Cle_’Yl(|x1‘+---|xN‘)’

lg(x1,...,xn)| < Coe2(x1l+-xn])
for some positive constants C1, Ca, Y1, V2.
Let Q4 = {|x;| <dli=1,...,N} CR¥*. Let xq,(x1,...,xn) = I}, xa(x;), where x4 €
Ce°(R%), 0 < xa <1, xa(x) = 1 if x| <d, xa(x) = 0 if [x| > d+ 1 and x4(Rx) = xa(x)
for all R € SO(3), be a smooth characteristic function of Q.

Then there exist positive constants C' and 7y, independent of R, d and the ultraviolet-cutoff
A, such that

(F1QR(1 ~ xa,)lg) 2o | < O(1+ )
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Proof. By Lemma A.1.1, Qg is a bounded operator from H'(R3V) to L2(R3V), and its
operator norm can be bounded by Cg(1 + 1/R), where Cg > 0 is independent of R and
the ultraviolet-cutoff A. Thus we obtain

(flQr(1 - XQd)|g>L2(R3N)

S”QRHHl(Rw),L?(RSN)H”f”Hl(R3N)”(1 - XQd)9HL2(R3N)
<Co(1 + 1/R)[|fl g1 syl gl L2 msvyay)

where for the second inequality we have used that 1 — xq, < 1 and supp (1 — xq,) C
L2(R3N \ Q). The claim now follows from Lemma A.3.1 O

5.2 Analysis of Vi (R) and —(U,|Qg|Vo)||T7 H. U, |*

In this section we combine the results of the previous section with the spherical symmetry
of the ground states ¥9 and ¥% to prove that the terms

(Uo|Qr|Vo)

and

(W0l QrlWo) (TS Hy 4 (5 ® 9| + | THH, (W) © )|

occurring in E?Zl €'V (R) decay faster than any inverse power of R as R — oc.

Lemma 5.2.1. Let v satisfy the assumptions (A1). Choose d < |R|/2, set Q4 =
{Ixi| < dyi = 1,...,N} C R3" and let xq, be a smooth characteristic function of
Qq as in Lemma 5.1.4. Suppose that VY € L?*(R3%4), U% € L2(R3%8) are normalized
and spherically symmetric in the sense that V% (Rx1,...,Rxz,) = ¥Y(x1,...,xz,) and
VO (Rxz,41, - BXz,425) = Y (X2, 41, - - -y X2, +25) for all rotations R € SO(3). Then
for anyl > 2,

<\I/?4 ® W%‘QlXQdN/% & \I’%>L2(R3N) =0.

Proof. In the case | = 2, the result is most easily seen by the representation (5.1.2)
for @2, which is odd under the change of variables (xi,...,Xz,,Xz,41,--.:XZ,+25)
(=Xt vy —XZ,,XZ 4415 - - s XZ 4+ 25 ), While the remaining integrand xq,[¥Y%|? [¥%? is in-

variant under this transformation by the assumptions on xq, and the fact that \11?4 and
U9 possess a definite parity (see the remarks after Proposition 2.5.1). For the case [ > 3,
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recall the definition (5.1.3) of the terms

l l l1
Ql = Z Z Z Z ’XiA |l1 ‘X]B |lil1 lel [(07 SO)X,'A] }/r(}kfll)(mfml) [(9’ (p)ij]

ia,jB Lm=—111=0m1=-1y
X Uty my (R) (5.2.1)
l
=S el Vil 90, | v (R) (5.2.2)
m=—I
l
= > i Vi l(0,9)x,, ] wim(R) |- (5.2.3)
m=—1
Each summand in (5.2.1) only depends on one variable from {xi,...,xz,} and one from
{Xz,41,---,Xz,42p}, sO that after renaming variables and using the antisymmetry of the

wave functions (xq, is invariant under permutation of the coordinates), the corresponding
term in the integral (¥4 @ ¥%|Q;xq, V% @ \IJOB>L2(]R3N) reduces to an integral of the form

/ dxadxppan,(xa) pe.a,(xp)xal” [xp| "
Supp Xd XsSupp Xd
X Y [0, 0)xa) Y1) (mem) (05 0)x5]

- </ dxa PAS (XA) |XA’11 Yltm1 [(Ha (p)XA]>
Supp Xd
g </ PP X dXB PB (XB) |XB‘lill Yr(?—ll)(m—mﬂ[(e? QO)XB])7
su d

where pa.q, and pp q, are the one-particle density matrices of U9 |supp Xo, and U |supp Xay:
whose spherical symmetry (in the above sense) is inherited by the former: p4 po,(Rx) =
paB.a,(x) for all x € R® and any R € SO(3), as is easily seen by a change of variables
in the definition of pa g, (note that the region supp xq, is left invariant by rotations
(R,...,R), R € SO(3)). Thus pagq,(xa)|xal't and ppq,(x5)|xp/"~"* depend only on
the radial variables |x4| and |xp|, respectively. Spherical harmonics Y}* [(6, ¢)x] average
to zero upon angular integration with respect to x if [ > 1, which follows from their
orthogonality properties, the (I = 0)-spherical harmonic being a constant function. But
since [ > 3 in our case, at least one of the numbers [y and [ — [; is greater or equal to one,
so that the corresponding integral vanishes. An analogous argument shows that the terms
in (5.2.2) and (5.2.3) integrate to zero. O

Combining Lemmas 5.1.4, 5.1.5 and 5.2.1, we obtain the following result on

Vi (R) = (Yo|Qr|Y0)

from (4.3.10), which says that this contribution to the interaction potential can be made
smaller than any given power of 1/|R].
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Lemma 5.2.2. Assume the hypotheses of Theorem 3.0.6.
Then for any L > 3, there exist constants Cy, Cy > 0, independent of R and the ultraviolet-
cutoff A, such that for R > Ry := 6 diam supp ¢,

L
1 _
(T @ UB|Qr|TY @nghﬂmaaﬁsz<:zAZB(“m> -+Cﬂ1+_ﬁﬂ) Cov/IR[
In particular,

1%1_{20 (Rk<\IJOA ® \II%‘QRN/?LX ® \IIOB>L2(R3(ZA+ZB))) =0

for any k > 0.

Proof. By Proposition 2.5.1 iv) a), U9 and W% satisfy pointwise exponential bounds, so
that we can use Lemmas 5.1.4 and 5.1.5 to conclude that for any 0 < (d+1) < R/4 and
any L > 2,
|<\I'?4 ® ‘IJOB|QR"I’?4 ® \IIOB>L2(R3(ZA+ZB))‘
=I{V% ® V5|Qmxa,| Vs ® V) aggon) + (Vi @ V3IQR(1 — x0,)|¥a © Vi)paom)

1 [(4(d+1)\*!
<|(w9 ® I(Z Q) x0l% @ Uh) vy + Za “BIR]| ((\R|)>

1 ¢
+ 01(1 + @)

for suitable constants C1,C’ > 0. As before, Qg := {|x;,| < d, |xj,| < d} C R*N and xq,
is a smooth characteristic function of €24 as in Lemma 5.1.4. By Proposition 2.5.2, \If?4 and
VY% are spherically symmetric in the sense that W9 (Rxy,...,Rxz,) = V9 (x1,...,xz,)
and \Il%(RxZAH, o Rxz,472,) = ‘I’OB(XZAH, .., Xz,+2zp) for all rotations R € SO(3).
Thus the hypotheses of Lemma 5.2.1 are satisfied, which allows us to conclude that

L
(0% 2 WD Q1) x| W5 © W) pageany | = 0,
=2

and by choosing (d + 1) = 1/4|R|'/? < 1/4|R|, we obtain

<\IJOA ® \I'(J]B|QR|\IJOA ® \IIOB>L2(R3(ZA+ZB>)
1 L+1

1 2 1 ol
<ZnZp L () O 4 L yeC1/ayIR]
IR[ \[R| R
so that the assertion follows by choosing L = 2L — 3 and Cy = 1 / 4C". O

Lemma 5.2.3. Assume the hypotheses of Theorem 3.0.6. Then

lim (R (WolQr|Wo) (IT5Hj4(9% © Q)2 + | TEH, (9% © Q)[2) ) =0

R—oo

for any k>0 and any o > 0, and
Jim_1im (R5 (%ol Qrl Vo) (TS Hy 4 (V5 © QI + [ TEH, 5(0h @ Q))) ) =0

for any k > 0.
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Proof. Using the fiber decomposition of the reduced resolvents T3 g (see Lemma 4.2.7)
and rotation invariance of the operators H4 p (Lemma 4.2.12), one finds

(Mxmﬁm%®mW+mgm£@%®mw)

2
S e ),
<ZPzB‘IIBH(HB+hW 2||ZPJB\IIA> ]a

ip

which is independent of R. Note that the k-integrals converge, since p € S(R?) and the
inner products in the integrand are uniformly bounded with respect to k, which follows
from the resolvent estimates

1

(a5 + ho(k) 2] <
A,B

By dominated convergence, the (¢ — 0)-limit exists, and the assertions now follow from
Lemma 5.2.2. ]

5.3 Analysis of the London term

5.3.1 Error estimate for the London term

The preceding results of this chapter allow us to analyze the large R-asymptotics of the
term

—(QrYo|T?|QrRY0)H A0 H s F

which arises as the second-order energy correction with respect to the interatomic Coulomb
potential in the non-QED context of Friesecke and Gardner ([Fri], [Gar07]). First note
that since Qr¥g € (Ha ® Hp)®{Q}, the invariance properties of 77 (see Lemma 4.2.5)

imply
(QrYO|T?|IQRY0), , orporr

- —1
~(Qr(% @ V)| (a+ He)aeugyr ) 1Qr(WA@WE), o (5.3.1)

which shows that this term is independent of the infrared regularization parameter o.
Our goal in this section is to estimate the error made by replacing (5.3.1) with the lowest-
order contribution of its multipole expanded version, the so-called London term, which is
formally given by

(Q2(¥) © V) ((HA + HB)I{W%Q@W%}L) Q2(Y% @ ¥E)) gy arin (5.3.2)

where

Z/dydyw ()

ZAJB
<y g [ (e -SRIV ) 0 BT 1)) ]
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is the (smeared) dipole operator, see Section 5.1. However, to obtain a convergent expres-
sion for the multipole expansion, we introduce a spatially cutoff version of (5.3.2), which
is then compared to (5.3.1).

Lemma 5.3.1. Assume the hypotheses of Theorem 3.0.6. Let Ry = 6diamsuppvy and
R > Ry. Choose 0 < d < R/4, define the set Qg :={|x;| <d,i=1,...,N} C R*N and let
X, be a smooth characteristic function of (g as in Lemma 5.1.5.

Then for any L € N, L > 2, there exist positive constants C1,Ca,7v (independent of R
and d but depending on the ultraviolet-cutoff A via properties of the atomic Hamiltonians
Ha ), such that

Q¥ & W) (Ha o)l ougys) 1Qr(PS @ T%))
Qoo (W @ W) (2 F Hp)lwnougs ) [Qaxe, (W40 09))  (5.33)

o [i A(d+1) 2L+2+ L i A(d +1) L+1+l}
=1 R2 R R? R

=2
+ Che™ 4+ O(1/RY),
where the coefficients of the last contribution are independent of d.
Proof. First write
Vo ® Up = Xa,(Th @ Up) + (1 - xo,)(¥5 © Up),

which leads to

-1
(Qr(¥s W) ((a+ Hp)l ey ) 1Qr(¥h @ Wh))

~( @i, (¥ @ )| (Ha + o) qunougys ) |Quxe, (0% ©05)) (5.3.4)
+(Qr(1— xa,) (0% © W) ((Fa+ o)l wnou): ) 1Qn(l— xo,) (W) & ¥%))
(5.3.5)
+ 2Re[(Qr(1 — x0,) (W% © V)| (4 + Hp)ljwnong) ) [Qmxo (0 05))].
(5.3.6)

By Proposition 2.5.1 and the assumptions on xq,, the functions XQd(\D% ® \I/%) and

(1 — xa,) (VY% ® ¥%) are elements of H'(R3Y). Furthermore, Proposition 2.5.1 iv) a)
guarantees the pointwise exponential decay of \IIOA and \Il%. Thus we can apply A.3.1 b)
(note that that \Il% ® \Il% is an eigenfunction of H4 + Hp corresponding to the eigenvalue
0 and that the smeared Coulomb potentials occurring in H4 and Hp satisfy the relevant
assumptions therein), to infer the existence of positive constants C' and 4/, independent
of d, such that

11 = x0)(T% © U5) | 11 (gowy < Ce™ 7
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By Lemma A.1.1, Qp is a bounded operator from H'(R3Y) to L?(R3"), and its operator
norm [|Qrl| g1 sy, L2rsny can be bounded from above by

CQ(l + 1/R) < CQ(l + 1/R0) =: C/,

where Cg > 0 (and thus also C”) is independent of R and A. This allows us to estimate
(5.3.5) and (5.3.6) as follows:

—1
(@01 = xa)(Wh @ W) ((Ha+ Ha)lpuoounye ) 1Qr(1— xa,) (W5 @ )|
<1 = x0) (¥% © ©H) s o) | Qs gy, 2oy (L H) ™ oy ooy
<CZe™'UC)? ||(Ha + Hp) ™ p2rany, p2rsny,

0 0 o 7. -t 0 0
(@01 = xa ) (W% @ W) ((Ha+ Ha)lwoouny ) 1Qnxa, (W5 © Uh))]
<Ce " UC|(Ha+ Hp) Mlr2@ony c2@om) I Xaq (P4 @ %) |11 o)
<Ce " UC|(Ha+ Hp) Ml r2@ony c2@om) |90 © OE | a1 o).

where we have used [|xq,(¥% ® \IJ%)|]H1(R3N) <|¥% ® \I’%HHl(R:aN) in the last step.
It remains to investigate the term 5.3.4. Lemma 5.1.1 yields the convergence of the mul-
tipole expansion on supp xq,, which means that we have

(Qrxo, (W% © V%) |(Hx T Hp) ' [Qrxa, (¥4 © ¥Y) )

L [e%S)
=<(Z Q+ > Ql)XQd(‘I’% ® UR)|(Ha+ Hp)™'|

I=L+1
(Z Qut > Q) oV 0 7))
m=L+1
-y (Qux,(¥% @ Wh)|(Ha+ Hp) ™' [Quixa, (¥4 © ¥h)) (5.37)

l,m=2

(Y )@ e V)T ED (Y Qn)xaWheth) 638

I=L+1 m=L+1
+ 2Re( (Z Q) xa¥h VI F ) (Y Qu)re, (0@ 99)]

m=L+1
(5.3.9)
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The tail estimate established in the proof of Lemma 5.1.4 leads to

1(5.3.8) + (5.3.9)]

= :(ZAZBR (T)LH) +ZAZBR <MR+1)>LH ZLQ

ZQ[(Xl, v ,XN)

|

X [Ix0, (Th ® ‘I’%)HL?(RW) [(Ha + HB)71HL2(]R3N),L2(R3N)

@+ 1\ 1 o1 f4d+ 1)\
-<ZAZBR (R) ) ‘|’47T(ZAZB)2;CIR2 (R)

x || %9 ® ‘IJOBHLZ’(RSN)H(HA + HB)_1||L2(R3N),L2(R3N)>

IA

where we have defined the constants C; := 3 (§)l + % (§)l and used the fact that
X (Th @ U p2rany < 109 @ W[ r2gsn)

by dominated convergence. Finally, we show that
(5.3.7) = (Qax04 (W% © W) (Ha + Hp) ™| Qaxo, (W5 © WE) ) + O(1/RY),

where the coefficients of the O(1/R®) can be chosen to be independent of d. To see this,
note that in view of Lemma 5.1.3 (or again the estimates established in the proof of Lemma
5.1.4), we have

(Qxau(¥ & VR (AT H5) ™ [@me, (W & W) ) = O(1/R2)

and the coefficients on the right-hand side can be bounded independently of d by enlarging
the domains of integration from supp xgq, to R3V | yielding convergent expressions thanks
to the exponential decay of \11?4 and \I'%. Thus what is left to show is that the term

R -1
2Re|(Qaxa, (W4 © W] (a+ Hp)lpuoouny s ) 1@axa, (0% @ 95))],

with
Q=13 [ vy vt) vl
1A4,JB
m[ (IR3—3(R+@/ y') ® (R+y_y,))ij:|
and

3 3
@3=z[Z > Z il 15 127 Y, [0 0)x: ] Yoty () [0 )5,

ia,jB Lm==31=0mi=—0

X U3,m,ly,m (R) (5310)

3
= 3 (a3l 00x,, ] + (17155 Y (0, 00, ] ) vs,m<R>] ,

m=—3

(5.3.11)
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vanishes, since it is the only one that could yield contributions asymptotically propor-
tional to 1/R". Since \If% and \IJOB are non-degenerate, they are eigenfunctions of the
parity operators P4 and Pp (acting on the variables xi,...,xz, and xz,11,...,XN)
with eigenvalues €4 and ep, respectively. By construction, xq, has parity 1 with re-
spect to both P4 and Pg. Now Pa[Q2xa,(P% ® ¥%)] = —e4 Q2x0, (VY ® ¥%) and
PplQaxa,(¥% @ ¥)] = —e5 Qaxa, (P ® UY), as is easily seen from the structure of
Q2. In particular, Qaxq, (¥4 ® ¥%) € {U9}+ @ {¥4}+. On the other hand, for I =1,
3 — 11 = 2, the terms Y7, [(60,¢)x, ] YQ*(m_ml)[(G,gp)ij](\I/% ® %) have parity ep with

respect to Ppg, since Y.

o(m—my1) has parity (—1)2 = 1. The same argument holds for the case

lh=2,1—11y =1, with €4 and P4 instead. Since the operator ((HA + HB)’{ﬂf%@\If%}l) 1
leaves the eigenspaces of P4 and Pp invariant individually (see Lemma 4.2.11), the con-
tributions from (5.3.10) vanish.

The two terms in (5.3.11) both only depend on either of the variables x;, and x;,, which

implies that the product of (5.3.11) and \1194 ® \I/% is a sum consisting of one term from
Ha®{V%} and one term from {¥Y%} @ Hp. Since {VY} @ Hp and Ha @ {¥} are invari-

. ~1
ant subspaces of ((HA + HB)|{‘I/E)4®\I/%}L) (see Lemma 4.2.5) and Qaxq, (V9 @ U%) €
{093+ @ {UL}+ by the above, the contributions from (5.3.11) also vanish. O

5.3.2 Integral representation of the London term

Define

=Y (xou (v3 ©v8) | (Ea ¥ Hp)lwoouny: ) Ixo, (viovd))

a,8=1 Ha®HEB

and recall the definition of the operator

Q=y 3 [ dvifv0) 0)
7S — R6
i4.JB
1

“REy-yP

from the multipole expansion of Qr. As the next result shows, we can convert the London
term (5.3.3) into an integral over photon momenta, thereby putting it on equal footing
with the perturbation terms generated by the radiation field. For this step, it is essential
that Qg contains the smeared Coulomb potential, since only then the operator Qs has a
momentum space representation via the distributional Fourier transform, see (5.1.2). As

noted in the introduction, this will also play a role in the (asymptotic) cancellation at
order 1/R%, which will be discussed in detail in Section 6.6.

xii (I = 3R Ty =)@ R+ =) x5 ]

Lemma 5.3.2. Assume the hypotheses of Theorem 3.0.6 and let xq, be as in Lemma
5.3.1. Then

“1
0 0 T 0 0
<Q2xnd(‘I’A ® Vg ((HA + HB)|{\I/9\®\P%}L) |@2x0, (Va @ \IIB)>HA®HB

1. . PN
:9L(d)/ dkydko|p(ki)[? [p(ke)Pe MR R (K, - k)2,
R3xR3
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Proof. By (5.1.2), Q2 = Q, where

Q=% [ a2 o, 0 10

tA,JB

Exploiting rotation invariance (Lemma 4.2.16) and recalling the definition of the dipole
moments v4 g from (3.0.4), we find

(@x0,5 0 W) [ (T F o)l ugougy ) [@xo, (Vs @ U)

.S / dk, dk [p(kD)[* [p(ka)* g, +1)R
RIXR? k1 [? [ko?

Ha®HB

ia,JB:ka,lB

—1
<XQd ((XiA . k1)\11?4 & (XJB . k1)\If%) ‘ ((HA + HB)‘{\I,%(@\I,OB}J_) ‘

‘XQd ((XkA . kg)\l’% ® (XlB . k2)\p%)>HA®HB

Z dk dk (kl)’2 ’p(kQ)‘ze—i(kl-i-kz).R(k -k )2
o Jes s i i ? s

-1
3 g B
<XQd (vf}l ® VB) | ((HA + HB)’{\I/%@\I/%}i) pey (Vfl ® VB) >HA®HB

3
=5 3 [ il ) e R R
ﬁ xR

(xou (v &vE) (T F)lgougy) e, (vi®2)),,
(5.3.12)

O

5.4 Decomposition and analysis of the mixed terms M4 (R, o)
and Mp(R,0)

The remainder of Chapter 5 is devoted to the analysis of the terms M4 (R, o) and Mp(R, o)
from V7 (A,R) (see (3.0.17)), which contain both the quantized radiation field and the
(smeared) interatomic Coulomb potential.

In the present section we state a result providing a representation of these terms which
will later be used to identify their contributions at orders 1/R5 and 1/R” and to provide
error estimates for the remaining ones. Its proof, which is split into a series of lemmas,
will be given in the remaining sections of this chapter.
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Theorem 5.4.1. Assume the hypotheses of Theorem 3.0.6. Let Ry = 6 diam supp ¢ and
R > Ry. Choose 0 < d < R/4. Then there exist positive constants Ci(l), Ca2(l), C, 7,
independent of R, o and d (but depending on A via p and properties of Ha p), such that
for any L € N, L > 2, we have the representation

MA(R, O') +MB(R,0')
=Ms(R, 0,d) + Mz (R, d) + M3(R, d)
+ MILN,ERR(R7 d) + MOUT(R’ g, d) + MILR(Rv g, d)?

and its contributions (which will be defined below) have the following properties:

. lir%M(;(R, o,d) exists. Furthermore,
g —>

. k1 1/2y) _
lim. (R lim M (R, 0, R )) —0 (5.4.1)
for k <6, and
lim (R6 lim Mg(R, o R1/2)> — 1 i) (5.4.2)
el G 3(27)2

(see (3.0.5) for the definition of L(c0)).

[}
Rlim (RkM7(R, d)) =0 wuniformly in d >0 for any k <7,
32 he
. 7 1/2y) _ _ 2% A B
Jim (RTM(R,BY2)) = =50 50 (0) o (0).
[}
B}im (R MLy(R,d) =0,  for any k < 8, uniformly in d > 0. (5.4.3)
[}
L I+1
3 o\3
phRaals Y (o) s meEao ()
>4, even s€[0,0/(Ac)] ¢
L I+1
3 o\4
+ Y sup  |po(s))? <2R> Os(1) (f) . (5.4.4)
1>2,1 even $€[0.0/(Ac)] ¢
In particular,
lim ME,(R,0,d) = 0.
[ J

L+1
My opr(Rod) = O (@ (“(TRﬁ”) ) ,

with coefficients that depend on the ultraviolet-cutoff scale A via po(k/A) and prop-
erties of Ha g, but which are independent of o.
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\Mour(R,0,d)| < C(1+1/R)e

Furthermore,
lirr(lJ (Mour(R,0,d))
o—

exists and satisfies the same estimate.

5.5 Proof of Theorem 5.4.1

5.5.1 Some definitions

To prepare for the following, we split the terms M4 (R, o) and Mp(R, o) into a spatially
cutoff ’'inner part’ and a corresponding ’outer part’. Set Qg := {|x1| < d,...|xn| < d} C
R3N and let XQ, = H,fi 1Xd(+i) be a smooth, rotation-invariant characteristic function of
24 as in Section 5.1 (respectively Section 5.3).

Definition 5.5.1. Using the notational conventions introduced in Section 3, we define

A[N(R,O',d)
— 1 2
= 5o [ mic)

X <VA ® Uh|(1 —k®k)QRXQd\VA®‘I’O>

— heo(K)( (Ha + hw(K))'va @ WhI(1 — k @ K)Qrxo,[va © W )
— (k) (va ® WhI(1 — k@ K)Qrxa,| (Ha + hw(k) 'va @ W)

o (heo (1)) (Ha + () ' va © 5|1~ k @ k) Qrxa, | (Ha + hwo(l)~'va © W)
+ (95 © va|(1 - k& k) Qrxa, [ W% © Vi )

— (k) (W @ (Hp + ho(k) " val(1 - k@ K)Qnxa, /0% @ vs)

)

+ (heo(k)* (9% & (Hp + ho(k)) V(1 — k © K)Qrxa, 9% © (Hp + fw(k))lvB]

| (o) oo

[<<HA{@0 7 (¢ Z pis) - (1 —k@kva) @ WhQuxo, (W% @ Uh))

— () (W% @ va| (1~ k@ K)Qrxa, |94 @ (Hp + hw(k) v

+2Re

—m(k)<(Hm{quo}L (me (1= k@ k)(Ha + (k) 'va) @ U

|Qrx0,(T) ® ‘I’%)>
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(U0 ® (Hpygagy ) (S pia) - (1 - k@ R)v5)|Qrxe, (V) © ¥))

~ () (W% © (Hpygagys) ™ (X ps) - (1~ k@ R)(Hp + (k) 'vp))|

|

|Qrxa, (V) ® ‘I’%)>

and
Bin(R,0,d)
. 2 2 —ik-R
= h2Re /Q(r dk|C(k)|*e
x | =2nw(k) (va(l = k @ K)vp|(Fa + Hp) [ Quxo, (9% @ Uh))

+ (heo(1))2{[(1 — k@ &) (Ha + hwo(k)"'va) © U5[Qnxo,|
|95 ® [(Hp + ho(k) ' va])

+ (o (k)2(((Ha + ho(®)) ™ @ 1) (va(l = k@ K)vg ) [(Ha+ Hp) ™|
|Qrx0,(¥) ® ‘1’%)>

+ ()2 (1 @ (Hp + hw() ) (va(l = k@ K)vp ) |(Fa + Hg) "'

|Qrxe, (¥ @ ¥%))

The terms Aoyr(R,o0,d) and Boyr(R,0,d) are defined analogously by replacing xq,
with 1 — xq,. Set

Movur(R,0,d) := Aour(R,0,d) + Bour(R, 0, d).
Obviously,

MA(R,O') + MB(R, 0) = A]N(R, o, d) + B[N(R, o, d) + MOUT(R, o, d). (5.5.1)

The proof of theorem 5.4.1 is divided into the following series of lemmas. For an overview
of its strategy and the methods employed, see Section 1.3 of the introduction.
5.5.2 Multipole expansion of the Coulomb part

The first step in the proof of Theorem 5.4.1 is to employ the multipole expansion of the
smeared interatomic Coulomb potential. Recalling the definition of the terms @Q; from
Section 5.1 and letting xq, be as in the preceding section, we make the following
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Definition 5.5.2. Set

Bl(Ra g, d)
2

= Re

/ dk|C (k)| e~ kR

o

A~ ~

« _2m<k><<m>*lm<1 ~k®k)vg|

Qo (W@ ¥h) (5:5.2)

+ (R (k)2([(1 ~ k@ k) (Ha + hwo(k) ' va] @ |
[Quxa, (V5 @ [(Hp + (k) va)) )

o+ (k)2 (a + Hp) ™ ((Ha + (k)" @ 1) [va(l — k@ k)vg]|
|Qixo, (¥) ® ‘1’03)>

+ (hw(k))2<(HA +Hp) ' (I® (Hp+ hw(k))™") [va(l -k @ k)vg]|

L2(R3N)
L2 (RSN)

[@exa,(Va @ ‘I’%)>L2<R3N>” |

and define 4;(R, 0, d) analogously, replacing Qr by Q; in A;n(R,0,d). Furthermore, for
L eN, L > 2, define

L
My prp(R.d) == Ary(R,0,d)+ By (Ryo,d) = Y <[11(R, o.d) + B/(R, 0, d)) . (5.5.3)
=2

Lemma 5.5.3 (Multipole error estimate for mixed terms, inside). Assume the hypotheses
of Theorem 5.4.1. Then for any L€ N, L > 2,

L+1
M ppa(R.d) = O (@ (‘“‘fRﬁ”) ) ,

where the higher-order coefficients depend on the ultraviolet-cutoff scale A via po(k/A) and
properties of Ha g, but are independent of o.
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Proof. By Lemma 5.1.1, the multipole expansion of QQr converges on supp xq,, yielding

L
Bin(R,0,d) = > Bi(R,0,d)
=2

2 2
< —
< | icoo)

X [zhw(k)K(M)—l[vAu—k@k)vB]]( f: Qz)xQd(‘If%®\IJ%)>

L2 (RSN) ‘
l=L+1

+ (()?| ([(1 = k@ K)(Ha + (k) va] @ W)

(3 @) (90 (01 i) M)

+ (hw(k))2‘<(HA + Hp) ' [((Ha+ hw(k) " 1) (VA(1 —k® E)VB)]]

‘( i Ql)XQd(QOA @ \IIOB)>L2(]R3N)‘

I=L+1
+ (hw(k))2‘<(HA FHp) (I @ (Hp + hw(k)) ) (VA(1 —k® R)vB)]]

‘( i Ql)XQd(\II?Ll ® ‘POB)>

L2 (]RSN) ’] ’
l=L+1

Note that the k-integrals converge due to the ultraviolet-cutoff p contained in C'(k). Carry—
ing out the vector operations inside the matrix elements, noting that supp xo, C Q24+1
and applying Lemma 5.1.4, we obtain the estimate

=2
2 3 1 [4d+D\F] S kaks
<= | |ok 2ZAZB< ) o8 —
i o, 0 a2y (TR ) | 22 T e
X | (hw (X)) (Ha + ho (%) ™Vl 2@ ai ) 19B | 2205 i) 1WAl 220 00)
x |(Hp + hw(k) "Vl 205 400)
+ (hw(K))?||(Ha + Hp) ™ ((Ha + hw(k)) ™ @ DvEv 120,41
< |99 @ UB 120y, 1)
+ (hw(k))2(|(Ha + Hp) "' (I ® (Hp + hw (k)" )WvavEllz2(0,,)
X W% © UGl 12 (00)
+ 2hw(k)[|(Ha + HB)AV%VQBHH(QU,H)H‘I’% ® ‘I’%||L2(Qd+1)” ;
where QA,d = {|X1| S,. <y ’XZA| S d}, QB,d = {’XZA+1| S, ceey ’XN’ S d}
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We have |0, 3 — %\ < 2 for all k € R?\ {0}. Since ¥9,v% € L2(R3%4) and \I/%,vﬁB €
L?(R3%8) (for v§ and vg this follows from the exponential decay of the atomic ground
states, see Proposition 2.5.1), all L?-norms on the bounded subsets Qad+1, OB,d+1 and

Q441 can be estimated from above by the corresponding L?-norms on the whole space.
Using the fact that U9 and ¥% are normalized, this leads to

4 31 4(d+1)>L+1
< Ck)?ZsZ
o, |G ZaZn g |R|<|R|

(
3
X [ > [(hw(k))z\l(HA + 7w (k) V| sza | (Hp + ho(k) V| 2oz

8
+ (hw(k))? (| (Ha + Hp) ™ (Ha + hw(k)) ™' @ DVEVE] 2@
+ (hew(X))?|[(Fa + Hp) ™ (I @ (Hp + ho(k) ™ )vivill 2@

+2hw(k)|[(Ha + Hp)~ VAVB”LQ(]RN)]]

In the next step we use the resolvent norm estimates

I(Ha+Hg) || < 1/(Aa+ Ap),
I(Ha + hw(k)) M| < 1/(hw(k) + Aa) < 1/A4,
I(Hp + hw(k)) 7| < 1/(hw(k) + Ap) < 1/Ap,

which hold on the subspace (WO HR{T%3, {93+ and {¥%}E, respectively (note that

vg € {U9}+ and VB € {U%1L by parity). Recall that Ay and Ap are the spec-
tral gaps of the atomic Hamiltonians H4 and Hp. Recalling the definition |C(k)|> =
(hlp(k)[?)/(2w(K)), we conclude

S
2
FU
9
Q.
IIMh
FU
9
Q.

31 [4d+1D)\ (SN, >
SZAZB |R| <w) Z HVAHL2(R3ZA) Z vaHL2(R3ZB)
p=1

( [ i

1 1 1 1
2hw(k —+ — .
el ()<AAAB+AA+AB <AA+AB>>D

Noting that the integrand in the k-integral is non-negative, we can pass to the integral
over all of R? (which is finite since p € S(R?)), obtaining the final result
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L
Rcrd Z (R,0,d)
1=2

31 [4d+1)\T (SN, A
ZAZB%@ ( R| ) C; ||VA||L2(]R3ZA) 521 ||VB||L2(]RSZB)

4 1 1 11
dk|po(k/A)|? | ———— + 2hw(k —
X(A; lpolle/ NI KA, + 2! )<AAAB*‘AA+¢M3<AA*‘AB)> )’

where we have highlighted the dependence of the coefficient on the scale A of the ultraviolet-
cutoff. i
Performing the same steps of the proof for the term A;(R,o,d), we obtain

‘&MR@@—&@J@‘

L+1[ 3
Si/ dk|C(K)[2ZaZ i‘“;|<4@&;1)> [E:

a,B=1
>< [

kokp
AN

5 (V3 ooz VAl aozay + V8 | 2oz IVE | 2o )

_.|_

m‘;_n
St T N

w(Ie) |[(Ha + ho()) 7V | 2eosay VA p2rona)

+ (H + heo (1)) "V 2 o) IV B 2 o
)| (Ha -+ o)) ™Vl sz | (L + Fo() VAl sz
K)? | (Hp + o))~V | o g | (B + o)~V sz

E

+
+w
+

U Fawgy ) (2 PEOVAN 2oz
JA
1 Hpygagy )™ (2 RSVl oo
JB
+ nfew<k>u<HA|{\pg}L>-1<Z Pg ) (Ha + 1)V ooz
JA
+ ermk)wﬂm{@%}nl(z p%)(Hp + hw<k>>1v%uL2<R3zB)”

JB

3 1 [/4d\*!
<92 dk |C YA —
/QU CO)PZaZn R \(!Rr)

3 2 3 2
1 o N
X [hg ((ZlVALQ(R3ZA) + (ZIHVBHLZ(RSZB)> )
3 2 3 2
2w(k o 1 N 1
+7§ ) ((ZVAL2(R3ZA)> FA+ (Z \VB||L2(R3ZB)> AB)
a=1 a=1
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Do
/-~

3 2 )
A 1
(Q'””“R”AJ Azt (Z v M>) AB)

a=1

3
2 - (6%
+ Z [meh |:||(HA|{\II%}L) I(ijA)VZ“LZ(R3ZA)

a,B=1 Ja
+ H(HBH\I/%}J—)_l(Z p‘?B)ngLQ(RSZB)}
JB
2 ~ . _
() (Haygwg )™ (0P (Ha + ()l e oy
Ja
2 - N -
20 (Hygagy ) (X 95, (H + hw(l0) lv%Hp(RszB)” .
JB
By Proposition 2.5.1, v € H?(R3%4) and v& € H?(R3%5). Since the p{, j, are relatively
bounded with respect to Ha g and D(H4 p) = H?(R3%4.8), we have
||(HA|{\I!%}L)71(Z P )Y L2 r374)

<CI(H g guoy )~ Ul p2ozay + 1 Hav ]l paszay)
<O (H oy )~ I 2 rszay

for any ¢ € H?(R3#4), and accordingly for Hp. Note that by taking maxima if necessary,
we can find constants C' and C which work for any ja, jp, o and both Hy and Hp.
Furthermore,

I(H A + (k) VAl 2ggozay + | Ha(Ha + ho(k) VA 2gsza)
”VAHL2 R3Za) T ||VA”L2(R3ZA) + hw(k)|[(Ha + hw(k))_IVZHL?(JRMA)

1 ho(K)
< Aa + 1+ AA) ||VZHL2(R3ZA)'

<1
SAs

Recalling ||(HA|{\I,E>4}L)*1H < 1/A4 and the definition of C'(k), we conclude

‘AIN(R, o,d) — A(R, 0, d)‘

d L+1 )
= dk | po(k/A
R i)
3

(4
|
1 2 3 2
3

2 3 2
1 1

g va -— + g \s: -—
<a1 | A‘LQ(RSZA)> A (al | BHL2(R3ZB)> Ap

3 1
SZAZB in R

3 2 ;
A 1
@ ”VA””(R””> A (Z IV 2o ) A7
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; mfc (ZA (Z uvAum) N (i HV%HH?>>
. 2:10 (ii (AlA 14 h‘gk) (i HviHLz>
2 (s ) (Z ||vB||Lz>>]

which is finite since p € S(R3). O

Lemma 5.5.4 (Multipole error estimate for mixed terms, outside). Assume the hypotheses
of theorem 5.4.1. Then there exist positive constants C' and -y, independent of o, R, d
(but depending on A via p(k/A) and the properties of Ha ), such that

|Mour(R,0,d)| < C(1+1/|R[) e

Furthermore,

lim (Mou(R, 0, d))

exists and satisfies the same estimate.

Proof. To simplify notation, we first define

=((Ha+ Hp)'v§ @ v2]|IQr(1 — x0,) (V% © ‘I’%)>L2(R3Ny
=((HA+ ho(19)7vE © WHIQR(1— xa,) (V4 ® (s + o) Vp)) L o

+ (2 Hg) ™ [(Ha+ ho(k) V5 © VilIQe(l = xa, ) (¥4 @ 9))

+ ((HA+Hp) ™' V4 @ (Hp + ho(K)) VR IIQR(L — x0,) (W% © ¥5))
(R, d)
=(v4 ® UHIQr(1 ~ xa,) (v @ ¥%))
+ <\IJOA ® vE|Qr(1l — xa,) ( A® VB> > (o)
T’ (R.d k)
=2 Re[<(HA + hw(k)'ve @ TYQr(1 — xa,) (vfl ® \1193)>

+ (W% @ (Hp + ho(k)) " VEIQR(1 - xa,) (95 @ v5))

L2(R3N)’

L2 (RSN)

L2 (RSN)
LQ(R3N)] ’
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2 (R.d. k)

=((Ha+ hol)”v5 © WIQn(1 — xo,) ((Ha+ holl) Vi wh))
(R0 (Hp -+ o) VBIQR(L— xo,) (Vh @ (Hp + o) vE)) L

6’ (R, d)

<(HA\{\I/0 3) { Zp]A VA} ® U} ‘QR — xa,) (¥ ® ‘I’%)>L2(R3N)

+ <‘IJA & HBH\IJO }L [ ijB ”QR 1 _Xﬂd)(\I’94®WOB)>

L2(R3N)’
(R, d,k)
=((Hajguoy ) [( Z Pia) (Ha + (k)" ﬁ] ® w%\QRu ~xe) W)
<\I/A®(HB\{¢!O }J_ { ZpJB (Hp + hw(k) ”QR XQd)(\I’%®\I/OB)>L2(R3N)

and note that

MOUT(R o d) = AOUT(R, o, d) + BOUT(R, o, d)

= Z/ dk|C (k)|*(0a,p — kakp)

a,B=1

x [;[ $O(R,d) = (i) £ (R d, k) + (heo()* £ (R, d. k)

+ 2Re

(o) R - re0 72 (R k)]]

+%e*%’k'R |—2n0(k) [ (R, d) + (k)57 (R d, k)}”.

Using |(6a5 — kakg)| < 2, recalling |C(k)|> = (h|p(k)[?)/(2w(k)) and noting that the
integrands are regular at k = 0, we immediately conclude

|Mour(R,0,d)|

< Z/ dk|p(k

a,B=1

x [4|ff”ﬁ(R7 d)| + 2w (k)| fs* (R, d, k)| + 57 (R, d)]

1
heo(k)
+ (R, d, k)| + ho(k)] f27 (R, d, k)|

2

oh
g e R+ (R )] (5.5.4)
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and positivity of the integrands yields

|Mour (R, 0,d)|
3

3
<Al ) [ 3 RN + 3o/ Vol @) | D2 157 (R.0)

O{,ﬁzl CM,IBZI

3
2 a
+ o/ Volga@n () | D 167 R, d)
¢ a,f=1
3
+ [ acholml/0F |3 265 R 4101+ (Rud.K)
a,B=1
’ 2h
[ i/ |30 1R+ R )
a,B=1 ¢

where we have highlighted the dependence of p on the ultraviolet-cutoff A. By the fact
that po € S(R?) by assumption and the bounds to be proven below, all k-integrals are
finite.

In the remainder of the proof we will establish (k-independent) exponential bounds on the
fiaﬁ. As we will show below, for i = 1,2,3,6,7, this can be accomplished by a method
analogous to the one used in the proof of Lemma 5.3.1.

In the case of f}' 7 and fs p , however, this method will have to be modified slightly, using
an argument based on the maximum principle for elliptic PDEs to extract information
about the decay of the one-particle density of the functions (H4 + hw(k))"'v% and (Hp +
hw(k))"1ve.

Let us first turn to the cases i = 1,2,3,6,7. The arguments given in the proof of Lemma
5.3.1, together with the resolvent and relative boundedness estimates already used in the
proof of Lemma 5.5.3, yield

3

Yo (R, )
a,f=1

< HQRHHl ®3n), 22 111 = x0,) (TS @ UR)|| 1 o

3
A +A (Z ||VA||L2(R3ZA > (Z HvaB||L2(R3ZB)) )
a=1

Z 2% (R, d,K)|
a,B=1

< 1Qrl @, 2@sm) Il (1 = xe,) (P9 ® Up)| 1 mov)

3
1 1 1 .
) <AA Ap AA + Ap (A >> (Z IVl L2324 ) (az::l HVBHL2(R3ZB)> )
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3
SR, d)

a,B=1
< N1Qrlla @®sv), L2@sm) (1 = x0,) (T% © UE)| g1 sy

[z 1S 0 8oy + ) 3 0o )] (.55

B=1 ia,ja iB,JB

3
IR, a)

a,B=1
<N1Qrlla @®sv), L2@sm) (1 = x0,) (T% © OB g1 gy
3

~ 3
Z5C ZBC
A | 2 VAl goza) > IVBle@szs) | |-
A4 \p=1 5=1

3
SR, d, k)|

a,B=1
<NQrlla @®svy, c2@sm) (1 = x0,) (T% © UE)| g1 sy

3
Z4C (k) )
Aa (AA +1+ AA) <Z HVA’LZ(R?rZA))
ZgC
+ Ap (AB +1 + ) (Z VBl L2 ®szs )]

Note that the norms || ZZA ia X7 jA\IJAHLQ(RdZA) and || Zzs jB x&

& ]B\IIBHLQ(RJZB) occur-
ring in (5.5.5) are finite due to the exponential decay of U9 and W%. These estimates
show that we can find a positive constant C’, independent of R, o and d (but depending

on A via properties of Hq p and via po(k/A)), such that

‘MOUT<R7 g, d)‘
<C|Qull g oy ey N (1 — X00) (0% & W) 71 oy
+ [ dklon(ic/a) [Z (R, + ()| 57 (R d 1) (5.5.6)
a,f=1

By Lemma A.1.1,
QR 1 (r3vy, L2many < Co(1+1/R),

with a positive constant Cg that is independent of R and A. The exponential decay of
\II% and \I/% (see Proposition 2.5.1) implies the existence of positive constants Cy, Cg, v4
and ~vp, such that

’\I’OA(Xl, . 7XZA)‘ < Cy e—’YA(|X1|+...+|xZA|)’

(0% (x4 41, ... xn)| < Cpe B xzamalttixnl),

From this we conclude that v§ and Vg are also exponentially decaying, and we can find

174



positive constants C'q, Cg, 74 and ’yg, such that

_ 0 —g (|1 ]+
|v;;(x1,...,xZA)|_‘ngwaA(xl,...,xZA) < 09 o llttixz, )
i
8 _ B 3O B oo oot
VB(XZA+1,...,XN) *ZXiB\I/B(XZA"rl?"'?XN) gCBe FYB(IXZA*“ ‘XN|)7
JB

and by taking maxima and minima, respectively, we can find positive constants C’y, C'5,
7', and v such that

VG (x1,...,%xz,)] <C4 e ValPel+ ez, )

B 1=V (lx +-+x
VE(Xz,11,- - XN)| <Che V(X2 441l Ixnl)

the right-hand sides now being independent of o and §. By Lemma A.3.1 ii) (recall that
\IJ% ® \If% is an eigenfunction of H4 + Hp corresponding to the eigenvalue 0, and the
smeared Coulomb potentials occurring in H4 and Hp satisfy the assumptions of Lemma
A.3.1), there exist positive constants C; and 1, independent of d, such that

(1 = x,) (W) ® UE)|| 1 @svy < Cre (5.5.7)
It remains to estimate |f{’(R,d, k)| and |f2°(R,d,k)|. By Lemma A.1.1,
k)
<2(|Qrll g1 (®3Ny, L2 (RSN “’(HA + hw (k) TV @ Wl rany (1 — X)) (Vi ® U p2qrany
1% @ (Hp + () ™V o (1 = x0,) (¥4 © V) 2eon)
<20+ 1/R)[|(Ha + heo()™'v4 © W s gamy ¥ © W2 g
+119% @ (Hp + hew(l) " Vil om |95 @ V2o |

where for the second inequality we have used that 1 — xq, < 1 and supp (1 — xq,) C
L2(R3N \ Q). Now Lemma A.3.1 i) yields the existence of positive constants Ca, C3, 2
and 3 such that

IV ® OY| 2 s,y < Coe 24,

199 ® vl 2 @smo,) < Cae

Noting that (Ha + hw(k)) v @ ¥4 and U9 ® (Hp + hw(k)) ~1v% are independent of o,
R and d, we can find positive constants C4 and 74 such that

/PR, d, k)| < C4(1+1/R)e™ . (5.5.8)

In the last part of the proof we investigate fs g (R,d,k). Applying the Cauchy-Schwarz
inequality, Lemma A.1.1 and using 1 — xq, < 1, supp (1 — xq,) C L*(R3" \ ), yields
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57 (R, d,K)|
=|((Fa + (k) v @ WHIQR(1 — xa,) (Ha + hw(k) V] @ W) )
+ (W% @ (Hi + ho) ™ VEIQ(1 — xa,) (¥4 ® (H + holk) VE)) L |
<CQUU+ 1/R)[II(Ha + (k) ™V © Whll s oy | (Ha + (k) V8 © WG| aggama)
+ 199 ® (Hp + hw(k)) V3] g1 @ev) |9 © (Hp + h"‘)(k))ilvf}HLQ(R?’N\Qd)]-

The reason we have to modify our previous method at this point is the appearance of the
terms |[(Ha + hw(k))_lvfl & \I]%HLQ(R?’N\QOZ) and ||\I’?4 ® (Hp + hw(k))_lngLQ(R?,N\Qd).
Since they involve the reduced resolvents (Ha p + hw(k))™!, we cannot establish their
exponential decay (in d) directly as above.

The first step is to estimate these terms by expressions only involving one-particle densities.
Put gk = (Ha + ﬁ/,u(k))_lvf1 and consider the decomposition

RgN\Qd:UJQ]

into 2%V — 1 disjoint subsets, where every ; is of the form (--- x {|x;,| > d} x ...) for
some iy € {1,..., N} (see the proof of Lemma A.3.11)). Then

I(Ha + (k) ™'V @ U7 gary o)

— Z/ ](pﬁ’k|2(x1, e ,XZA) ‘\I/%IQ(XZA_H, e ,XN)dx1 e dXN.
g I

Since the integrand is positive, we can replace each 2; by the larger set
R x - x {|x,] > d} x - x R3,
obtaining
I(Ha + heo(k)) 7V @ U7 gany o

S Z/ ‘(pﬂyk‘Q(Xl, Ce. ,XZA) ’\I/OB|2(XZA+1, e ,XN)dxl e dXN.
J R

3 x{]xg ;| >d}x - xR3

Collecting the cases in which iy € {1,...,Z4} and iy € {Z4+1,..., N}, respectively, using
the partial antisymmetry of g and \IJ% and employing the definition of the one-particle
densities py,, and Py, We find

|(Ha + ho(l) ™V © WY [12 gavi gy

S </ [ooal (et Xz, ) deA> 195135 o)
{|x1]|>d} xR3x---xR3

—_———
=1

" ClZA,ZB ”8057k||%2(R32A) / ’\IJOB|2(XZA+17 coXN)AX 7,41 - dXN
{Ixz 4 +11>d} xR3x---xR3
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1 1
=Cz,.z / 0 x)dx + C" cp’kZ / pyo (x)dx,
A BZB (ix|>d) wﬁ,k( ) ZA,ZBH I¢] ‘L2(R3ZA)ZA (ix|>d} \I/B( )

where Cz, 7, and C7 , are combinatorial constants. Analogously,

1% ® (Hp + hw (k) VR 7 2@sv o)

1 -
<Czm / pan (X)dx | |Bas
Za \Jxi>ap 4

where we have set ¢y := (Hp + ﬁw(k))_lvﬁB. Now the exponential decay of U9 and ¥}
implies the existence of positive constants C5, Cg, 75, ¥6 such that

/ pgo (x)dx < Cse™ 5%,
{Ix[>a} "

/ pgo (x)dx < Cge™ 107,
{x|>ay °

1
2
[2@ozay T Cza25 7 /{X|>d} Poaa(X)dx,

and by Lemma A.2.2,

Pes x (x) < C’76_77‘xI )

P& x (x) < CSeivs‘xl

for almost all x € R3 and suitable positive constants C7, Cg, 7 and g which are indepen-
dent of k. Thus we can find postive constants Cr, Cs, 77 and g, independent of k and d,
such that

/ Pos (x)dx < C~'7e7:77d,
{Ix[>d}

/ p%’k(x)dx < égeffygd.
{x[>d}

Collecting all estimates yields
/2P (R, d, k)| < Co(1+ 1/R)e (5.5.9)

for positive constants Cg and 9 which are independent of o, R, k and d. Finally, plugging
(5.5.7), (5.5.8) and (5.5.9) into (5.5.6) finishes the proof of the first assertion of the lemma.
The second assertion follows by a dominated convergence argument applied to (5.5.4). O
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5.5.3 Simplification of lower-order terms

Lemma 5.5.5. Assume the hypotheses of Theorem 5.4.1 and recall the terms fll(R, o,d)
and Bj(R,0,d) from Definition 5.5.2. Then for alll € N, | > 2,

A(R,0,d) =0.

Furthermore,

B(R,0,d) =0
for odd I, and for even | = 2s we have
By (R, 0,d)

2 .
—Re / dk|C (k)| e~ kR
Qo

x | =2 () (Ha + Hp) ™' val ~ k ® k)vs]|Qaoxa, (¥4 © V) )

L2(R3N)
+ (k) ([(1 = k@ K)(Ha + ho(K) " va] @ 0|
[Qexe, (W4 @ (Hs + ho()ve)) o
+ (k)2 + Hp) ™ ((Ha + ho(k) " @ 1) [va(l ~ k@ k)vg
|Qasx0, (TG ® ‘1’93)>

+ (k)2 ((Ha + Hp) ™ (1@ (Hp + hw(K)) ™)) [va(l ~ k@ k)vg]|

L2(R3N)

[@axe,(Vh @ ‘I’%)>L2<R3N>” |

where

2s 2s 15

Q2s: Z Z Z ‘XiA|ll |XJ'B|2S—I1 l>1km1[(0’90)xm}

m=—2s l1:O m1:—l1

X Y(zs—ll)(m—ml) [(6, @)ij] U2s,m, 11 ,my (R).

Proof. We begin by proving the assertion about A;(R,o,d). The first step is to perform
the k-integration first to generate one k-independent 3 x 3-Matrix in each contribution.
This is done by defining the following functions:

f]l(xl, e ,XZA)
g [ OO0, ¥5) (1~ ke R (3%, %),

1A JA
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ga(x1,...,%z,)

1

=3 /Q dk|C (k) Pw (k) (Ha + hw (k)

g3(x1, ..., %z,)

- / dk|C/(k)w(k)2(Ha + hu(k))

o

ga(x1,. - X2z,)

D%, 9] (1 - k@ k) (A + hok

1A

i

= / dk |C(K)[* W5 (H g go3e) |:ij,4

meh

§5(X1, . 7XZA)
— L / dk |C (k) 2o (k) WY,

Me

o

ko k)Y x,¥9)].

]

)(1 -k ®@k)( ZXJB‘IIO

JiB

G6(XZ 41,5 XN)
:_/ dk|C(k szB
Qo
§7(XZA+1,...,XN)
= | IOt (H -+
G8(XZ 415 XN)

D7 [ w0 ke ),

;—/ dk|C/(K) %w (k)2 (Hp + ho(k

o

G9(XZa41,-- -+ XN)

[ZXZB } 1 - k®k)(Hp + hw(k

i

- /Q IO Vh(Hagay ) ()0

g10 XZA+1’ .- )

/ 4K | C(K) [2w(k) @

k)(z Xig W%)L

(HB|{\I/0 }L

[Zp]B :

—k®k)(Hp + hw(k))~

1(2){@@%)} .

Exam]o-ke b .
A JA

N> x ).

{Z Xip L }

Note that §; through g5 are in L'(R344) and g through §io are in L'(R3%5). Further-
more, all the g; are invariant under permutation of the variables.
The key in the following argument is the insight that all functions g; are invariant under
the families {Ug|R € SO(3)}, which act on L'(R3%4) and L'(R3%3), respectively. This
can be seen as follows. The dispersion relation w(k) and the ultraviolet-cutoff function
p (occurring in C(k)) are invariant under rotations in R3 by assumption. The ground
states U9 and WY are left invariant by the families {Ur} by the conclusions after Propo-
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sition 2.5.1. Finally, the operators (HAH\I,%}L)A, (HBH\I,%}L)A, (Ha + hw(k))™! and
(Hp + hw(k))~! commute with the families {Ug} by Proposition 2.5.1 and the fact that
commutativity with these families is inherited by the resolvents of H4 and Hp (see the
proof of Lemma 4.2.11). Using these ingredients, we calculate, e.g. for the function gg
which originates from the term (3.0.10):

Urlgs(Xz4+41,- -, XN)]

:§8(R_1XZA+1a" R_IXN)

—Z/ dk|C(k)[Pw(k)?U [(HBJFhw( )~ 1(XiB\I’%>}
'B;JB

x (1= k@ K)UR|[(Hp + ho(k) ™ (x;, 05)]

-y / dk|C (k) 2w (k)2 (Hp + ha(K)) L (Urlxi, V)

iB,JB

x (1= k@ K)(Hp + (k)™ (Urlx;, W)

= 3 [ dIC09%007 (R T(Hs + 1) e, 7))

iB,JB

x (1-kok) (R [(Hp + hw(k)) ™ (x;, ¥%)])
= / dk|C(K) Pw(k)? ((HB +hw(k))‘1(xz'3‘1’%))

7IB’]B
x (R™'R — (Rk) ® (RR)) ([(Hp + ho(k) ™ (x, ¥5)])
- [, OOl + holl) 3 )
x (1 -k ®k)(Hp + hw(k ZXJB\IJU
:§8(XZA+1a e ,XN).

In the last step we have used the change of variables k' := Rk (note that Rk = }/ﬁ{, since
R € SO(3), and that the domain €, is invariant under rotations). The argument for the
remaining g; is completely analogous. Next we define the functions

gi(x) = Xd(x)ij.Z;‘2Xd(xj)§i(x,X2,...,XZA)dx2...deA, i=1,...,5,
1 L ~ .
Xd(x) fH_gy:ZA+1Xd(Xj)gi(X7 XZa+25--- 7XN)dXZA+2 ce dXN)7 v = 67 ey 107

and note that since the g; are invariant under permutation of the variables, this definition
does not depend on which 3Z4 — 3 (resp. 3Zp — 3) variables we trace out. Now a simple
change of variables shows that the g; inherit the rotation invariance, i.e. g;(R™1x) = g;(x)
for all x € R®, R € SO(3) and i = 1,...,10 (recall that the functions x4 where chosen to
be invariant under SO(3)). Using the definitions of the functions g; and Fubini’s theorem,
we conclude
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Al (Rv g, d)

L.

UG A (X 2451, - - - s XN) (!?1 + 2Re(go] + g3 + 2Re[gs + ?15]) (X1,-..,Xz7,)

+ ‘\I/ | (Xl, e ,XZA)<§6 + 2Re[§7] + gg + 2Re[§9 + §10]>(XZA+1, e ,XN)]

X Qu(x1, ..., XN)XQ, (X1, ..., XN)dX] ... dxXN

_Z/ dxi...dxy xao,(X1,...,XN)
R3N

tAsJB

[O% (X241, s XN) <§1 + 2Re[g2] + g3 + 2Re[gs + §5]) (X1,-..,%Xz7,)

+ ’\I/ | (Xl, v ,XZA) (gﬁ + 2Re[§7] + gs + 2Re[§9 + gw])(XZA_H, e ,XN)]

[ Z Z Z |X’LA‘11 ’X]B‘l h Yzlml [( )XZA] Y&Lh)(mfml)[(a SO)XjB:I Ul,m,ly,ma (R)

m=—011=0mi1=—11

l
- Z ‘XiA’lY;*m[(ea(P)sz vim(R Z ’X]B’lY;m )X]'B]wl,m(R)]'

m=—I m=—1

Using the invariance of 09|, [¥%|% the g; and xq, under permutation of the electron
coordinates, we can rename variables and obtain

Al(Ra g, d)
=ZAZp
l
- Z 'Ul7m(R) ||H7{\LZA+1XC[('Z‘)‘IIOB”iZ(Ri’:ZB)

m=—|

X

( / xI" Vi (0, 9)x] (91 + 2Relga] + g + 2Relga + g5] ) (x >dx> (5.5.10)

- Z VL, (R) T2 Xa(+4) (6 + 2Reg] + gs + 2Re(go + G10]) | 11 moza)

m=—1

x ( / x| Vi [0, )] (1/Z)pa.a(x) dx> (5.5.11)
R3

— Z wlm ”Hz A xa(: )\I/AHL2 (R3ZA)

m=—1

X (/ Ix[' V35,106, 0)x] (96 + 2Re[g7] + gs + 2Re[go + gm]) (x) dx) (5.5.12)
R3

181



!
= > wim(R) T 4, 1 1xa(-4) (61 + 2Re[ga] + Gs + 2Relda + G5)) | 11 (g2

m=—1

x ( /R Y 0,90 (1/Z)p,a(x) dx) (5.5.13)

l l l1
+ Z Z Z ul,m,h,ml(R)

m=—011=0mi;=—11

x K/Rs X[y, 160, )x] (91 + 2Re[ga] + g3 + 2Re[gs + 95]) (x) dX>
X (/R‘3 I Y (e [0, 90)x] (1/ZB)pB a(%) dX> (5.5.14)
+ (/Rg x| Y, 10, 0)x] (1/Z4) paa(x) dX>

X (/]R?’ |X|l_l1 Yv(xl(—ll)(m—ml)[(gv @)x]
X (ge + 2Re[g7] + g8 + 2Re[gg + glg]> (x) dx)” , (5.5.15)

where pa 4, ppa are the one-particle densities of HiZ;‘IXd(-i)\Il% and Hf\iZAHXd('i)‘I’OBv
respectively. But now all the integrands in the terms (5.5.10) through (5.5.13) have the
structure of a product of a function on R3 which is invariant under SO(3), and a spherical
harmonic of degree [ > 2. The latter integrates to zero against a spherically symmetric
function due to the mutual orthogonality of spherical harmonics of different degrees and
the (I = 0)- spherical harmonic being a constant function. In the two terms (5.5.14) and
(5.5.15) at least one of the two spherical harmonics Y, and }/(7—l1)(m—m1) has degree > 1,
so that the corresponding integral against the spherically symmetric functions involved
vanishes, which causes the two products (5.5.14) and (5.5.15) to vanish. Summarizing, all
the contributions to fll(R, o,d) vanish, and the assertion on fll(R, o,d) is proved.

Next we turn to the investigation of Bj(R,o,d). To this end, consider the term (5.5.2).
Set f := (Ha+ Hp)~! (VA(l ~k® l;)vB>. Since ¥Y and UY are eigenfunctions of the
parity operators P4 and Pp with eigenvalues €4 and ep, respectively (see the remarks
after Proposition 2.5.1), v4 and v4 have parity —e4 and —ep. By Lemma 4.2.11, these
parities are left invariant by the operator (Ha + Hg) ™!, so that the function f has parity
—e 4 with respect to P4 ® I and —ep with respect to I ® Pg. By definition, for [ > 3,
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l I

l
Q=120 > D il sl T Y, (6, 9)x, ]

iA,JB Lm=—l11=0m1=—11
X }/&Lll)(mfml) [(07 (P)ij] Ul,m,l1,m1 (R) (5516)
l
= D Ixial Yil(0,0)x, Joim(R) (5.5.17)
m=—I
l
= > i Vi l(0,9)x,, ] wim(R) |- (5.5.18)
m=—1

The term (5.5.17) in @; only depends on the variable x;, € {x1,...xz,}, so that the cor-
responding contribution to the inner product in (5.5.2) vanishes upon integrating over the
variables Xz,11, ..., Xy, since IT}V Zat1 xa(+i)¥% and f have opposite parity with respect
to Pp. Analogously, the contribution from (5.5.18) vanishes.

If [ is odd, then at least one of the numbers I; and [ — [; has to be even. Assume without
loss of generality that /; is even. Then the fact that the spherical harmonics Y}, have
parity (—l)l and the assumption that the functions x4 comprising xq, are invariant under
SO(3) imply that the function

i ™ 1575 1 Y, [0, 0)se ] Yty mma) (05 9] 10,10, (R) X2 (P ® W)

occurring in (5.5.16) has parity €4 with respect to P4 ® I. Thus its integral against f with
respect to the variables xi,...,xz, vanishes, proving the assertion for the term (5.5.2).
The claim for the remaining terms is proven analogously, noting that all resolvents involved
conserve parities with respect to P4 and Pg by Lemma 4.2.11. ]

5.5.4 Infrared regularization errors for mixed terms

After having established some simplifications in the lowest-order terms of the multipole
expansion, we further analyze the remaining contributions ), Bos(R,0,d) by splitting
them into o-dependent and o-independent terms.

Definition 5.5.6. Recalling the notation and the definitions of Section 5.1 and letting
X, be as in the preceding sections, we define

T{"(R)

R34o(Ry) R3¢o(Ry)
. — / ~
T /RG aydy AR +y — y/|!+1 Ym[(0: ) ARy )

SQs,ll ,m,mi (d)

o,
= (L Hp) V] | i ¥id (0.0, ]

X (3 Yy e [0 ), X0, (V5 2 9))

. L2(R3N)’
JB
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TG (d, k)

= (((Ha + 10(10)7v8) @ WB|(Y iy V5, [0, 9)x,)

X (O sl ™Y s [0, 91, ) X0 (W5 (4 hk) V)

. (5.5.19)
+ ((a+ Hp) ™ [(Ha + heo(l)'v5) @ V3| ermvl o [0.9)x,,)
% (0 s Yy e [0 9D D0, (PA 0 95)) (5.5.20)
+ <<mJ+HB>—1 Ve @ ((Hp + ho(k) V)] |( Z i Y5 [0 ), )
b Y e [0 Py Dr0 (¥ ) paqgowy (5.5.21)
Bi(s,d,R)

2s 2s

A 2541
5SS Gt st (4)

m=—2sl1=0m;=-1; a,f=1

koks \ i
X </Rd dk|p(k)[? <5a,ﬂ - ,k,rf)) e kR)], (5.5.22)

2s 2s A 2541
5SS Gttt ()

m—72311 Om1 —ll()cﬂ 1

kak S,l1,m,m —ik-
X </dekw(k)\p(k)\2 <5aﬁ— |k|§)> T25™ M (d, K| )e kR)], (5.5.23)

:=Re

Bs(s,d,R)

:=Re

Bs(o,s,d,R)

2s 2s A 2541
5SS st ()

m=—2sl1=0m1=-1; o,f=1

kaks \ i
x ( [ ) (s - ) e kR)],
e K

By(o,s,d,R)

S = A 2s+1
Z Z Z Z CQsmll,ml h)TzS’m(R) <R>

T)’L——25l1 0m1*—l10¢,@ 1

kak S m,m —ik-
[ w9/ (S = ) T e R |
B /e(0) k|
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Note that the k-integrals over R? exist, since |p|?> € S(R?) and the remaining inte-
grands are in L} (R3). For (5.5.23) the latter fact will become evident from estimates
on Tjsgl’m’ml(d, |k|) derived below. Recalling Definition 5.5.2, the definition of the @

(see section 5.1) and using [, = [ps — [5 12(0) immediately leads to

Bos(R, 0, d)
=B (s,d,R) 4+ Ba(s,d,R) + Bs(0,s,d,R) 4+ By(0,s,d,R). (5.5.24)

The analysis of the last two terms is the subject of the present section, and the terms
Bi(s,d,R) and Bs(s,d,R) will be investigated in Section 5.5.5.

The following result concerns the o-dependence of Bs(o,s,d,R) and By(o,s,d,R) and
will imply the claim (5.4.4) of Theorem 5.4.1 upon defining

L L
M{zR,0,d):= > Bs(0,l/2,d,R)+ Y  Bio,l/2,d,R), (5.5.25)
>4, even [>2,l even

where L € N, L > 2.

Lemma 5.5.7 (Infrared regularization errors for mixed terms). Assume the hypotheses
of Theorem 5.4.1 and let s = 1/2 > 1. Then there exist positive constants Cy(l),Ca(l),
independent of o, d and R (but depending on A via properties of Ha g), such that

‘Bg(O’, s,d, R) + By(o, s, d, R)’

() (L) (0 (' + 0 ()

In particular,
lin% (Bs(o,s,d, R) + By(0,s,d,R)) = 0.
g—

Proof. Recall from Section 5.1 that

AN i , /
(%) 7@ = [ vy B0 0.0

Using Fubini’s theorem and reversing the steps taken in Section 5.1 (i.e. addition theorem
for Legendre polynomials and results about spherical harmonics of translates), we obtain

h
Bi(0,1/2,d,R) = — - Re
T

3 k.ks.
S [ el PG — e
5217 Base(0) K|

;YY) /
X <AG dydy WWaﬂ(kv da R7 Y,y ))]7
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where

Wa,ﬂ(ku d7 R7 Y, y/)
= ((Ha + 110) V) © W] ( 3 sy = 35 Pl b,y metss)
tA4,JB

% X, (V4@ (Hp + hel)vg)) o

+ (Ha+ Hp) M [((Ha + (k) "'v5) @ v
(D7 s = X 005 O, s ey y) X0, (85 © ) )
1A,JB

+ ((a+ M) v ® (Hp + hw(k) VR

‘( Z |XiA - XjB |lPl(COS exiA—XjB ,R+y—y’))XQd(\I’?4 ® \II%)>L2(R3N)'
iA,JB

L2 (RSN)

To estimate W, g(k,d,R,y,v’), define

Ud(X, R.y, y/) = Z |XiA — Xjp |l]Dl(COS axiA fXjB,Rer*y’)XQd(\I/OA ® \IIOB)

1A,JB

and note that we can rewrite

W5k, d,R,y,y) :<((HA + hw(k)"IvE) ® (Hp + Mk)_lvﬁB)|ﬂd>L2(R6)

(T ) (o)) @ v ua)

4 (L Ha) 5 (o o+ w0) VElua)

where i, is defined by replacing ¥% with \IlioB in uq. Next we use the resolvent estimates

1
Ay + Ap’
1

| (T + H) ) <
I+ o) gagy )71 < 5
(s + B gagy )1 < 5

(recall the definition of the subspace W = {W9}1&{¥%}1) to obtain

1 1 1 1
Was(k,d,R,y,y)| < alv? _
ol & Ry, 9] Sl zzom [Vallvl (AAAB * Aa+Ap (AA * AB))

As far as the norm of ug is concerned, we use the fact that |Pj(z)| <1 for z € [-1,1] (see
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[Gar07]) to estimate

2
||ud||L2(R3N) = / Z |xia — XjB‘ZPl(COS exiA —XjB7R+y—y’)XquJ?4‘IIOB
BN Jiagn
2

< Lo [ X el ) 1wt e

R tA,JB
<[ Ixia — x5, (0% © U) < o0,

iA,JB L2(R3N)

the last expression being finite due to the exponential decay of the ground states \11?4 and
U9 (see Proposition 2.5.1). As seen in the proof of Lemma 5.1.4, for R > R, we have

;W) () 3\
/u@dydy R+y—y/|+? = <2R) '

Finally, using

J

(see also the proof of Lemma 6.1.1), we arrive at

Kokg\ i
ke w(K)|po(l/A) 2 (80,5 — i e R

o\ 4
i <sre(Z) s oo(s)P

C s€[0,0/(Ac)]

(0)

o/c

|B4(U7 1/27 d7 R)|

3 I+1 o4 ) 3
<|(=—= — sup  |po(s)|” | (2he)|[VAlllIV3]]
<2R) ( C> s€[0,0/(Ac)] AT

X (AAlAB + A/Hl-AB < >> H Z iy — %52 (¥% @ B)‘

1A.JB

L2(R3N)’

which proves the first part of the claim. Following the same steps as above, we obtain

Bs(o,1/2,d,R)
2 : VWV e -1peay
P (o iy e ) i) )

kokg\ i

with ug as above. The estimates just established, together with

k. k _ik.
[ el M) P (50— S e R < smo/ sup m(o)P
B, .(0) | sel0.0/(Ac)]
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lead to

3\ o3
Bs(o,1/2,d,R)| <4 <) — sup  |po(s 2
By(o/2,dR) <4 (5= ) () <se[0,0/mcﬂ' (5)]

1 TR 230 0
arag VAIVBI X by =Pk o W)
1A,)B
proving the second part of the claim and finishing the proof. O

5.5.5 1/R%- and 1/R"- contributions to M4(R,c) and Mz(R,0)

The final step in the proof of Theorem 5.4.1 is to identify the contributions at the orders
1/R® and 1/R". To this end, we first establish some results on the asymptotic behaviour
of certain Fourier integrals in the next section.

Asymptotics of distributional Fourier transforms

In the following two sections we will have to understand the large |R|-asymptotics of a
class of Fourier integrals of the form

IR) = [ dkT)goe T,

where R € R", g € S(R"), g(—k) = g(k) for all k € R”, and T is an element of L}, (R™)
which is homogeneous of degree av > —n.

An approach which we have found to be quite useful in this context is to investigate I(R)
by methods involving the Fourier transform of distributions. Note that the homogeneity
of T ensures that T satisfies an integral growth estimate which implies 7' € S’(R") (see
e.g. [Str94]). Thus I(R) can be written in ’dual’ notation as follows:

I(R) = (Te 7R g) g1 gny sn) = (T, e g) sy smn)

Since g is even, we have
R0 = (g0 ) ()

so that, using the definition and the properties of the distributional Fourier transform, we

find

o —
——— —

I(R) =(T, (R g) g/ mny srny = (T, R g) g/ s(mn)
(T, mR[7])s/(&r),5R")S

with Tg denoting the operator of translation by R € R™. Since T is homogeneous of degree
o, T' is homogeneous of degree —n — a (see [Str94]). Recall that a distribution 7" is called
homogeneous of degree « if it satisfies (T, Sxp) = 1/A*(T, p) for all ¢ € S(R™) and all
0 # X\ € R. Here S) denotes the scaling operator, i.e. (Sx¢)(-) = A"¢(A-). The relation
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between the scaling operator and the operator of translation is given by S\x7, = 7,/05%,
a € R™. Using these facts, we obtain that for any 0 # A € R,

7)\—11—0( R

IR) === (T, r[9)) s (rr) sR7) = AT, SATR(G]) s (me) SRR

=AT"UT, T rSA T s (R SR

In the applications below, we will have n = 3 or n = 6, and the test function g will be
given by |p(k)|? and |p(k1)|?|p(k2)|?, respectively.

The assumptions (A1) on the form factor ¢ imply that |p|?> € S(R?), and that the Fourier
transform of |p|? is given by

—

Iol?=pp=7p
=(2m) /2 (p % ) = (2m) "2 (A%0(A)) + (Ao(A-)))
=(2m) 32 A3 (o * o) (A-),

where f(z) = f(—z) denotes reflection and we have used that p is real and v is even.
The last equality follows from properties of the convolution, with the Fourier convention
(2.1.6) used in this work. Note that the assumed properties of 1y imply that A3w(A-)
and A3 (1o * 19)(A-) are Dirac sequences. For the latter fact, note that [ (1o * 1) (z)dz =
([ to(x)dz)? =1 and v * ¥y € CF°(R3).

Applying the preceding arguments to the two cases g(k) = |p(k)|?> and g(ki, ko) =
|p(k1)|?|p(k2)|? and choosing A = R/A, we find

/R dk T(k)|p(k)[?e ®R = (27)73/2 (g)m <T Ty B (o * ¢o)(R~)]>

S'(R?),S5(R?)

and

/6 dkidks T(kl, kg) ‘p(kl) |2‘,0(k2> ‘2e_i(k1+k2)'R
R

A 64a .
:(27T)_3 <R> <T7 T(A]EA{,AIA{) [RS (wo * ¢0)(R1)R3(w0 * ¢O)(R.2)]>S’(R6),S(R6)'

Two things are important to note at this point. Firstly, the rescaling has generated inverse
powers of R = |R|, which is connected to the homogeneity of T'. Secondly, it has produced
Dirac sequences of test functions which are parametrized by the interatomic distance R
and which are shifted away from the origin by an amount of the order of the ultraviolet-
cutoff A. These observations motivate the next results, which will allow us to estimate
the large-R decay of certain terms from the interaction potential which involve both the
radiation field and the Coulomb potential, see below.

The following two lemmas state that under the additional assumption that the distri-
butional Fourier transform 7' is represented by a smooth function outside the set of its
singularities, we can calculate the (R — oo)-limits of the terms in pointed brackets explic-
itly.
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Lemma 5.5.8. Let A > 0 and R = RR € R®. Let T € S'(R3) be such that away from
0 € R3, the distribution T € S'(R3) is represented by a function T(-) € C®(R3*\ {0}) when
restricted to test functions of compact support, i.e.

(To0) = [ 109000k

for all ¢ € C§°(R3) with 0 ¢ supp ¢. Furthermore, assume that 1y is even, 1y € C§°(R3),
supp o C B1(0) and [o =1. Then

Jim. <T,TAR [R?’(% . wo)(R.)D = T(AR). (5.5.26)
Proof. Set Vg := (R?’(wo *wo)(R-1)>. Since supp(to * ¥p) C 2supp 1o C Ba(0), it follows
that supp(¢o * 10)(R-) C By/r(0) and

A~

supp (TA f{\I/R(')> C By/r(AR),

so that X
0 ¢ supp(TAﬁ\yR(-)) & |AR| > 2/R & R > 2/A.

Choose Ry > 2/A and a bounded open set D supp (TAR\I’R(')) with 0 ¢ Q, for instance,

Q= BQ/RO(AR). By the hypothesis on the distribution T, we have Tl € C{°(Q), and in
particular T|q € LP(Q) for any 1 < p < co. Furthermore, WUplo € C°() for all R > Ry,
and U, is a Dirac sequence, which implies that T+ U — T in LP (Q) for 1 < p < oco. Since
T|Q is continuous, we conclude that also TxWp — T pointwise in . Now for R > Ry
and by the choice of (Q,

(Toraa [Ron = in)(R)] ) = [ 700 p(ic— AR)k = (7 « 1) (AF)

where we have used the definition of the convolution and the fact that Wy is even. Since
AR € Q by construction, this proves the assertion. ]

The next result is a modification of the preceding one for the case n = 6, under the
additional assumptions that the occurring test functions have a special structure.

Lemma 5.5.9. Let A > 0 and R = RR € R®. Let T € S'(RS) be such that away from

the set S = ({0} x R3) U (R? x {0}) C RS, the distribution T' € S'(RS) is represented by a
function T(-1,-2) € C*°(RS\ S) when restricted to test functions of compact support, i.e.

(T, ¢) = / Tk, ka) ks, ka)dkr ks

for all € C(R®) with S Nsuppy = 0. Furthermore, assume that 1y is even, 1y €
Cs°(R3), supp o C B1(0) and [1o = 1. Then

lim <T TRAR) [33(% « 00) (R1) R® (o * wo)(R-g)D — T(AR,AR).  (5.5.27)

R—o00
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Proof. Set Up := <R3(1/J0 * @Do)(Rq)) <R3(@ZJ0 * Q,Z)o)(R-g)>. Since

supp(1o * ¥o) C 2supp 1y C B2(0),

it follows that supp (4o * ¥)(R-) C Ba/g)(0) and

Supp (T(A rRAR)YR(1; '2)> =supp <T(A R,AR) [RS(UJO * 1) (R1) R® (1o %)(R'z)D
C By/r(A R) x By p(A R)a

so that R
Sﬂsupp(T(AR’AR)\I/R(-l, 2)) =0 < |AR| >2/R< R > 2/A.

Choose Ry > 2/A and a bounded open set Q D Supp(T(ARJ\R)\I’R('l,Q)) with 0 ¢ Q,

for instance 2 := By/g, (Af{) X By/R, (Af{) By the hypothesis on the distribution T,
we have T'|q € Cy°(92), and in particular Tlo € LP(Q) for any 1 < p < co. Furthermore,
Urla € C3°(Q) for all R > Ry, and W is a Dirac sequence, which implies thatAT*\Il R — 1?
in LP(Q) for 1 < p < oo. Since T|q is continuous, we conclude that also T'x U — T
pointwise in . Now for R > Ry and by the choice of €2,

(T, s [ B 0 5 0) (Rea) RO (o 5 o) (Re2)] )
= / T'(k1, ko) r(k; — AR, ky — AR)dk;dks
Q
- (T " pr) (AR, AR),

where we have used the definition of the convolution and the fact that U is even. Since
(AR, AR) € Q by construction, this proves the assertion. O

The next two lemmas constitute a generalization of the well-known fact that the Fourier
transform maps multiplication by polynomials to derivatives to the case of tempered dis-
tributions which are represented by smooth functions outside their sets of singularities.
We will use these results in the following sections to calculate

lim <T, TAR {Rs(iﬁo * ?;Z)O)(R‘)] >

R—o00

and

lim <T, T(AR.AR) [Rg(ibo s o) (R-1) R (1o * ¢0)(R'2)} >

R—o0

in situations where 7' is not known explicitly (and might not even be globally representable
by an Llloc—function), but where T" has the structure of a product of a polynomial with a
function whose distributional Fourier transform is known explicitly.
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Lemma 5.5.10. Suppose that f € L} (R") is of the form f(k) = P(—ik)g(k), where
P(z) = 3 ja<m Ca®® 15 a polynomial of degree m (multi-index notation is used here) and
g € L} (R")NC>®(R"\ {0}) grows at most polynomially at infinity (for instance because
it is homogeneous). Then f also grows at most polynomially at infinity, and thus f and
g define tempered distributions Ty, T, € S'(R™). Furthermore, suppose that Tg = Tj for
a function § € L}, (R") N C®(R™\ {0}) (necessarily also fulfilling a growth estimate at
infinity).

Then on test functions ¢ € C§°(R™) with 0 ¢ supp ¢, Tf is given by P(D)g, where D = Vy
denotes the classical derivative)

Proof. Let T denote the operator of reflection, i.e. (T, ¢) := (T, @), where @¢(z) := p(—z).
Let ¢ € C§°(R™) and assume 0 ¢ supp . By the definition of the distributional Fourier
transform, the multiplication of tempered distributions with C°°-functions growing suffi-
ciently slow at infinity, the behaviour of the Fourier transformation under multiplication
with polynomials in the coordinates, and the partial derivative of distributions, we obtain

(Ty, ) = (T, @) = (Tp(it)g> P)

(T, P(=ik)3) = (T, P(_iK)@) = (T, P(ik)$)
—(T,, P(=D)@) = (Ty, P(~D)¢) = (P(D)Ty, ¢)
(T}, P(~D)g).

Now choose functions x; € C*°(R") and x2 € C§°(R"™) with x; + x2 =1 and x2 = 1 on
Br(0), where L > 0 is a parameter to be chosen below. This yields

{T1,0) = (Dugixes P(=D)g)
:<X1T§7 P(_D)g)) + <X2T§) P(_D)90>
(note that xi is bounded and thus x17} is a tempered distribution.) Since 0 ¢ supp x1
and g € C®(R™\ {0}), we have x1g € C>®(R"). Therefore, the partial derivative
P(D)Ty,4 exists (as a tempered distribution) and is given by Tp(py(y,4). Furthermore,
x29 € C(R™\ {0}) N L} (R3) since x2 has compact support. Thus we have

loc

(Tr, ) = (TpD)(xa5) ) + (Txag» P(—=D)ep).

Now since 0 ¢ supp ¢ by assumption, we also have 0 ¢ supp (P(—D)¢p), and thus we can
find an L such that y; = 1 on supp ¢ and supp (x2g) N supp (P(—D)y) = 0. But then
P(D)x1g = P(D)g (as C*°(R™)-functions on supp ¢), and

<TX2§7 P(_D)‘P> =0,

i.e. we have shown that -

(Tp(—ix)g, ©) = (Tp(Dyg> )
for all ¢ € C§°(R™) with 0 ¢ supp . O

~

Remark: In the above Lemma, we could also assume the weaker condition that (T, ¢) =
(g, ) for all p € C5°(R™) such that 0 ¢ supp ¢.
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Lemma 5.5.11. Suppose that f € Li,.(R*™) is of the form
f(ki, ka) = P(—iky, —iks)g(ki, k2),

where P is a polynomial and g € L}, (R*)NC>=(R?"\ S), with S = (R"x {0})U({0} xR"),
grows at most polynomially at infinity. Then f also grows at most polynomially at infinity,
and thus f and g define tempered distributions Ty, T, € S'(R™).

Suppose that the distributional Fourier transform of g satisfies Tg = Tj for a function
g€ Ll (RT)NC®R"\S).

Then on test functions of the form ¢(-1)¢(-2) € C§(R*™), where ¢ € C°(R") and 0 ¢
supp ¢, Tf is given by P(D)g, where D = Vy is the classical derivative.

Proof. As in the proof of Lemma 5.5.10, we begin by noting that

(Tr, (p(1)p(2)) = (T3, P(=D)(¢(-1)¢(-2))-

Now choose functions x; € C*(R"), x2 € C§°(R™) with x1+ x2 = 1 and x2 = 1 on Br(0),
where L > 0 is a parameter to be chosen below. Using (x1 + x2)(-1)(x1 + x2)(-2) = 1 (as
a multiplier on R?") yields

<va (e(-1)e(2)) = (Tvixigtxexag+xaxeitxaas P(=D)(@(1)e(-2)))
=3 (10X (2) Ty, P(=D)((1)(2)) ) + (xe(1)x2(2)T5, P(=D)(p(-1)¢(2))
+ (x1()x2(2)Ty P(=D)(@(-1)¢(2)) ) + (xa(1)x1(:2)Tg, P(=D)((1)(-2)) )-

Note that since x1 and x2 are smooth and bounded, all the x;x;Tj; are tempered distribu-
tions. By the structure of the singular set S, we have S Nsupp(x1(-1)x1(-1)) = 0, and the
assumption § € C°(R?*"\ S) thus implies x1(-1)x1(-2)§ € C*°(R?*"). Therefore, the par-
tial derivative P(D)Ty, y, 3 exists (as a tempered distribution) and is given by Tp(py(
Thus we have

(10X (2)T5 P=D)(p(1)e(-2)))

X1X19)"

<P(D)TX1X197 (80('1)90('2))>
:<TP(D)(X1X1§)? (‘P(l)w(z))>

Now since 0 ¢ supp ¢ by assumption, we can find an L such that xy; = 1 on supp ¢ and
supp x2 N supp ¢ = @, which implies that P(D)x1x1§ = P(D)§ as C°°(R?")-functions on
supp (¢(-1)®(-2). Furthermore,

supp(P(—D)(¢(-1)¢(-2)) C supp((e(-1)¢(-2)),

with the consequence that that for such an L,

supp (x2('1)x2(-2)g) Nsupp(P(—D)(»(-1)¢(
=supp (x1(-1)x2(-2)g) Nsupp(P(=D)(¢(-1)¢(-2))
=supp (x2(-1)x1(-2)g) Nsupp(P(—D)(¢(-1)p(
:(Z)’
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which in turn implies

(Tyaxag> P(=D)(0(1)¢(2))) =(Tixag, P(=D)(0(1)¢(-2)))
=(Txox15: P(=D)((1)(-2)))
=0,

finishing the proof. O

No 1/R" (or less)-contributions from higher terms in multipole expansion

In this section we will show that the contributions Bj(s,d,R) and Ba(s,d,R) to (5.5.24)
(see (5.5.22) and (5.5.23) above for their definition) in the lower-order terms of the mul-
tipole expansion decay strictly faster than 1/R7 if s > 2.
Upon setting

L

MR, d):= > Bi(l/2,d,R) + Ba(1/2,d,R),

>4, even

for L € N, L > 2, the corresponding claim in Theorem 5.4.1 (see (5.4.3)) will follow from
Lemmas 5.5.12 and 5.5.13 below.

Lemma 5.5.12. Assume the hypotheses of Theorem 5.4.1 and let s € N, s > 2 and k < 8.
Then

lim (R* Bi(s,d,R)) =0

R—o00

uniformly in d.
Proof. We will first estimate Sisgl’m’ml (d). Introduce the function
v, xn) = (3 i [0, 00, ])
iA
1 (D2 il Y [0, 95, ] ) 2, (0% © 9,
JjB

where xq, is the smooth characteristic function of the set {14 introduced in the assumptions
of Theorem 5.4.1. Then we can write

S (0) — (7 T H) o)

a,3 L2(R3N)

which yields the estimate
’ Sisg1»m»m1

()] < IVl pagozay IVBI 2 oze | (Fa + Hp) ™ llvall o).

By the exponential decay of \1194 and \II% (see Proposition 2.5.1),
vmo = (D0 1Al Yi0 i 100, 20 1) (O ™0 [0, 2, ) (9% © 9)
A JB
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is in L2(R3Y). Furthermore, ||vg]| < ||vso|| by construction of xq,, so that we conclude

2 7l k) k) TT7 . L T\~
15225 ()] < VAl a@sza VB 2oz | (Ha + Hp) ™ llvse 2@

this estimate now being independent of d. By Lemma 5.1.2, Rlim Tis’m(R) exists, so
— 00

Tis’m(R) is bounded with respect to R, but depends on A. Next we investigate the

integral
kok ,
dklo(k 2 5(] __ Palvp 77,k-R'
[ o (80 5 )

The contribution
b [ dipliofe T
]R?’

decays faster than any inverse power of R, since it is the Fourier transform of the Schwartz
function |p|? (up to a constant). Note, however, that by the scaling p(k) = po(k/A), the
rate of decay depends on A. Writing the second contribution in distributional form yields

-

see the previous section. Since for R > Ry = 2/A we have 0 ¢ supp(T(AR) [R3(vox1p0)(R-)]),

kakg
k[

Lemma 5.5.10 tells us that the action of
against

on this test function is given by integration

1, (22 L

Lemma 5.5.8 allows us to conclude that

—

) kakﬂ 5 _(271')1/2 —_—
P}Lnéo< K2 TR (R (4ho wo)(R')]> TARP (0a,s — 3ARaARp)
2m)1/2 N
:( A)3 (605 — 3RaRp).

In particular, <k|‘f(lff ' T(AR) [R3 (10 * 10)(R-)]) is bounded uniformly in R. We conclude

RF By(s,d,R)
2s 2s A

3
Z Z Z Z 6257mvllvm1 Si:‘?:ﬁll ,m,m (d)Tis,m(R)

m=—2sl1=0m1=—11 a,5=1

= —2Re

% [(27")3/25a,ﬂ Azs+1Rk—(25+1)|/p"\2(R)

)

1 2s+4 pk—(2s+4 kﬁﬁ 3
n (27r)3/2A TR )< k|2 ’T(AR)[R (tho *wﬂ)(R‘)]>

and applying the above estimates yields

|[R* By(s,d,R)| < C(A) (R D |[pR(R)| + R (25+0),
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where the constant C(A) depends on the ultraviolet-cutoff scale A, but is independent of
R and the parameter d used in the multipole expansion. The first term on the ggglt—hand
side tends to zero as R — oo for any choice of k and s by the rapid decay of |p|?, while
the second term does so if k£ < 8 and s > 2, proving the assertion. ]

Lemma 5.5.13. Assume the hypotheses of Theorem 5.4.1 and let s € N, s > 2. Then

lim (R* By(s,d,R)) =0

R—o0

uniformly in d for all k < 9.

Proof. In contrast to the proof of the preceding Lemma, where the matrix elements oc-

curring in the integrals (collected in the functions Sisél’m’ml (d)) were independent of the

photon momenta, now we have to deal with the functions Tazf’gll’m’ml(d, |k|), which do
depend on k and whose Fourier transforms we do not know explicitly. Therefore, we will
employ a classic technique to extract the asymptotic behaviour of oscillatory integrals by
successive partial integration.

The first step is to note that since w(k) and

¢a,ﬁ(’k|7dﬂA7287m7 mlvll) = ’p(k)szjfﬁlhm,ml (d7 |k|)

only depend radially on k, we can carry out the angular integration in (5.5.23) explicitly
by using the identity

/ e R — k ® k)dy,

—4r [(1 ~R®R) Sink(ZR)

+(1-3R®R) (C(:;Z? - Si;f;? )} :

which leads to the integral
[ oy = Fahaw0g00 (1. d, A, 25.m,ma, 1o Rl
R3

%0 ! L1 1
—dre /0 de [(5(1,5 — RaR) (56 sin(¢R)) + (3, — 3Rals) (56 cos(§R) — sin(gR))}
X 9004,,3(57 d7A7 28,m,m1, ll)

We collect some properties of the functions £ ¢, g in the following

Lemma 5.5.14. Under the hypotheses of Lemma 5.5.13, the map

5 = Emgpoc,ﬁ(ga da A7 257 m,mai, ll)

is in C*°((0,00)). Furthermore, {™pq 3 and all its derivatives d%(gmcpaﬁ) are continu-
ous at &€ = 0 and decay rapidly. In particular, C‘ljg—nn(ﬁmcpa,@) € L'((0,00)) N L>((0, 00)),
gli}rgo%(fmcpaﬁ) =0 and %i_r}r(l]c%(ﬁmgaa,g) = 0 if n < m. Integrability and boundedness

hold uniformly in d.
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Proof. First note that

d’n
dgn

dm k dk
_Z< >d§n k 5m)d§k¢aﬁ(§ 2

() &, R\ dFt . Immy dt )
= (k> dgr ") (tz: (t) a7 Lo (& D) g (1P©)F)

=0

(g Soa,ﬁ)

by Leibniz’ rule. Since p(§) is a Schwartz function, the same is true for G%(Ip(f)ﬁ),

so it suffices to show that %(T 2s:lumma e 7)) exists, is bounded (uniformly in d) and
continuous at zero for all n > 0. To this end, first consider the term (5.5.19) and define
the functions

l
uag =4 xa(s Z|X1A‘ Y3 [0, 0)x,, 1Y,

uBd = Hz']iZA—i-le('i)(Z %75 'Y i [0, 90)x,,, 1) P

JB
Then (5.5.19) becomes

(VA (Ha + hw (€)™ uaa) pagszay (upal (Hp + hwo(€) V) g2 @76 -

Using the spectral resolutions E4(A) and Ep(A) of the self-adjoint operators Hy) (w3
and HB|{\I,OB}J_ , this can be expressed as

1 (6%
/Spec( ) Tﬁw(f)d<vf1’EA<)‘)‘UA,d>L2(R3zA)

Hp o031

1
X —d UB,d EB A VB 3Z
/Spec( }J—) )\—I-hW(f) < ’ ( )| B>L2(R B)

B|{\I/O
Note that since spec(H 4 ryo 1) C [Aa,00) and spec(Hp|(g931) C [Ap,00), the functions
A W (for A € spec(H 4(g0y1) and A € spec(Hpryo 1), respectively) are

bounded uniformly in £ for any n > 0. Thus by a standard result on parameter-dependent
integrals, both factors are differentiable with respect to &, with derivatives given by

d” / 1
— —————d(VY|Ea(N)|uad) 23z
d€ Spec(HA|{\If?4}l) )\—l—hw(f) L2(R3%A)
1
:(—1)”n!(hc)”/ S e CVAIEA(N) [uaa) 2 gez
spec(HAl{\I,%}J_) ()\ + hw(g)) +1 L2(R34A)

=(=1)"nl(he)" (VAI(Ha + ho(€) ™" Dluna) p2gszays
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and accordingly for the second factor. Continuity at £ = 0 is easily read off from this
expression. Using the Cauchy-Schwarz inequality and the resolvent estimate

I(Ha + ho(€)" D) < (1/dist(~hw (&), spec(H o y )" < (1/A84)"H,

we conclude

o B -
o (VI + 1) ) oz (umal i+ 1) V) o))
<3 () (= 008 0" (/A A0 oyl

< IV 2 (s7s) lup.all 2 (eszs

The exponential decay of U9 and W% (see Proposition 2.5.1) implies that

UA,00 = Z |XiA ‘ll}/}f,ml [(‘91 QD)XzA]\IIOA € L2 (RgZA)v
iA

uB,oo = Z |X]B |l_l1}/}tl1,m7m1 [(9’ SD)XjB] E L2 (R3ZB)7
JB

and the fact that 0 < xq < 1 yields the estimates [|uadllr2m3zay < [[tacollp2®32a)s
lup,dll 225y < luBocll 2325y, Whose right-hand sides are now independent of the
parameter d used in the multipole-expansion.
To estimate (5.5.20) and its derivatives, define

w1, x) = ((HA F ) [0 Beea ¥, [0 005, )

X (Z ’XjB ’l_llyfill,mfml [(07 @)ij])XQd(\I}% @ \IIOB):|> (Xla ce aXN)

JjB

and rewrite

(5.5.20) = <v% ® Vol (Ha + hw(§) T ® I>\W|wd>L2(R3N)’

where W = {¥9} L &{¥%}L. As in the proof of Lemma 4.2.5 (see also the proof of
Lemma 4.2.18), one notes that

-1

(Ha+ () @ D = (((Ha + hel@) @ D)

= (a e T+ @ ® 1r))|W)_1 .

The operator (Ha® I +hw(§)(IR1))jw = (Ha® I)jw +hw(§) Iy is essentially self-adjoint
and satisfies the inclusion

(Ha® D + hwo(§) Iy C (Ha @ Dy + hw (),
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the latter operator being self-adjoint (as sum of a self-adjoint and a bounded self-adjoint
operator). The uniqueness of the self-adjoint extension for essentially self-adjoint operators
now implies

(Ha@ T+ hw(€)I@1)w = (Ha® w + hw()w,
establishing

(s + @) 8 Dy = ((Ha @ Dy + b)) -

This means that we can use the spectral resolution E()) of the self-adjoint operator
(Ha ® I);w to conclude

<vg OVl (Hs+ (@) T &1 >|w!wd>L2(R3N)

1 ~
e 7(1 Va ®V6 E )\ wy .
/Spec((lfmﬁbl)w))\-i-hw(f) (Vi @ vl E(A)|wa) r2rav)

By the proof of Lemma 4.2.5,

spec((Ha ®@ I)jw) = spec(H g0+ ® Ipgoy1) = spec(Hypyo 1) C [Ag, 00),

so the function A — M# is uniformly bounded in § on spec((Ha ® I)y). The argument
already used above directly leads to the estimate

’j; <<V,°4 @ v (Ha + hw(£)T @ I)W|wd>L2(R3N)> ’

<t (57) VR lisonn) IVBlaquosny ooy

n+1
<t (57 ) IV lzsgeonn) 1V5 oguosoy |G H) el 2w
where we have set
woo = [ (32 1xis M50 1 [0, ), ])
iA
o (3 i Y gy, [0 9, 1) (9 © W) | (e ),
JB

which is in L?(R?*") due to the exponential decay of ¥ and U%. The corresponding
estimate for the term (5.5.21) and its derivatives (with A4 replaced by Ap) is proven
completely analogous, finishing the proof of Lemma 5.5.14. O
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Proof of Lemma 5.5.13, continued. Using Lemma A.4.1 and Lemma 5.5.14 (in par-
ticular the vanishing of the functions %(ém@aﬂ) at infinity for any n,m and at zero if
n < m), we conclude

/O — R, Rﬁ)(lg2 Sin(ER)) + (60,5 — 3132&1%5)(%5 cos(€R) — % sin(gR))}
X 9004,8(5 d A 28 m ml,ll)
1 d? 1 [ d*
—47rc[ ~-R Rﬁ ( hmdigg(f Pa,3) + R5/0 Sin(ﬁR)dfgl(é‘Q(pa,g)df)

PR 1 d 1 [® a3
+ (00,5 — 3RaRp) <—R4(g% d—f(&oa,ﬁ)) + 55 /0 Sin({R)d—g(fgoaﬁ)df

L. 1 [ d?
_ ﬁ(%%@a,ﬁ) + ﬁ /0 SID(ER)déQgOaﬁdf)]

1 N
=4dre [—2R4(26aﬁ —4R.R3) a0 5(0,d, A, 25, m,m1, 1)
L 5 a7 a
TR (60,8 — RaRp) ; sm(ﬁR)d—g(g Pa,p)dE

N 00 d3 d2
+ (a5 — 3RaRﬂ)/0 sin({R) <d§3(£s0a,ﬁ) + d@%,ﬁ) d&)]-

This strategy has now produced enough powers of 1/R to carry out the limit occurring in
the assertion. Consider

R¥Bsy(s,d,R)
2s 2s
=Re| > > Z Z Cosom by TR (R)AZHT RE=(2551)
m——2.sl1 Omlf—llaﬁ 1
2 kakﬁ 28,l1,m,m1 —k-R
x | dkw(k)|p(k)[" | da,8 — ) ) Typt " (d, ke
R3 ’ k|2 @
2s 2s
=4mchRe Z Z Z Z CQsmll,Tru ZSm( )A28+1
m—728l1 Oml_—llaﬁ 1

—2R*=D=CsH1) (95, 5 — AR,Rp) ©a.5(0,d, A, 25, m,my, 1)

) 4
4 R—5)=(25+1) ((5,%5 —R.Rpg) / sin(¢R) jg‘ (£%0a,5)d8
0

A 0 d3 d2
+ (00,3 — 3RaRp) /0 sin(§R) (d?g(f@a,ﬂ) + TSQQPQ,B) df)]

By Lemma 5.1.2, }%im T™(R) exists, so Ty (R) is bounded with respect to R. Now
—00

using that %gpaﬁ, %(&pa,@) and @(f ¢a3) are in L((0,00)) uniformly in d by Lemma
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5.5.14 and employing the (d-independent) bounds on ¢, 5(0,d, A, 2s,m,my, 1) derived in
its proof, we arrive at

‘RkBQ(S, d, R)‘ < C(A) <R(k—5)—(2s+l) + R(k—4)—(28+1)) ’

with a constant C'(A) which is independent of R and d but depends on the ultraviolet-
cutoff scale A. Now if £ < 9 and s > 2, the right-hand side contains negative powers of R,
proving the assertion. ]

1/R%- and 1/R"- contributions from mixed terms

Recall that by the decomposition (5.5.1) and the definition of MILN?ERR(R, d) see (5.5.3)),
we have

Ms(R,0,d) + Mp(R,0,d) = Ain(R,0,d) + Bin(R, 0,d) + Mour(R, 0,d)
N
=) (Al(Rv 0,d) + By(R, 0, d)) + Mfy prr(R, d) + Mour (R, 0, d).

In view of the preceding results, the only of these terms which are left to discuss are
contained in B(R,0,d) (see (5.5.2) for its definition). By Lemma 5.5.5,

BQ (Rv g, d)

2 .
=—Re / dk|C(k)[* e R
Qg

T2

x [_%w(k)<(w) [va(l —k ®k)v]|Qaxa, (V) © ¥} )>L2(R3N)

(5.5.28)
+ (o (k))2([(1 ~ k @ &) (Ha + Feo(k) " va] @ |

[Qoxes (W@ [(Hp + b)) vil))
+ (hw(k))2<(HA +Hp) " (Ha+hwk) '@ 1) [va(l —k @ k)vg]]
|@2xa, (W% @ W) )

+ (o (k))2((Ha+ Hp) ™ (I © (Hp + hw(k)) ™) [va(l ~ k@ kv

‘Q2X9d(‘ll?4 ® W%)>L2(R3N)]] )

with Q9 as defined there. By (5.5.24),

L2 (RSN)

Bs(R,0,d) = By(1,d,R) + By(1,d,R) + Bs(o,1,d,R) + By(0,1,d,R),

where the terms on the right-hand side are defined in 5.5.6. Recalling that B4(o,1,d,R)
was already absorbed into the definition of M7 (R,0,d) (see (5.5.25)), we are left with

discussing
Ms(R,0,d) := B1(1,d,R) + Bs(o,1,d,R)
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and
M7(R,d) := By(1,d,R). (5.5.29)

The claims (5.4.1) and (5.4.2) about Ms(R,0,d) in Theorem 5.4.1 follow from the next
lemma.

Lemma 5.5.15. Assume the hypotheses of Theorem 5.4.1. Then for any R € R?® and
0<d<R/4,
hH%)Mﬁ (R, 0,d)

exists. Furthermore,

lim <Rk;ii1%M6(R, J, 31/2)) —0

R—oo
for k <6, and
lim (RG lim Mg(R, o R1/2)) = LL(oo)
R—o0 oc—0 T 3(271')2 ’

with L(co) as defined in 5.5.1.
Proof. Using R\ B, .(0) = €, we find
Ms(R,0,d) = (5.5.28).

Recalling the proof of Lemma 5.5.5, we can first replace Q2 by Qo (by re-adding the
vanishing terms from the multipole expansion) and the latter by its Fourier representation

~ ) 2 .
Q=3 [l e, 10 e x,,)

(see Section 5.1), yielding
Mﬁ(R, g, d)

= — 2Re

/ dkldkg‘p(kl)‘z ‘p(kQ)Pe_i(kH-kz)‘R
Qo xR3

(val =K @ K)vp|(Ha + Hp) "xo,|(va - ke) (vs k2>>L2<R3N>] |

Noting that the operator (Hy4 + HB)_lxgd is rotation-invariant in the sense of Lemma
4.2.17, we obtain

M6<R7 U7d)
2 i .
— gRe [ dkidkalp(k) (i) e R
Qs xR3

x tr[(1 — k1 @ kq) (ks - ko)] L(d),

=1—(k;-kg)2
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where we have defined

3 -1
L(d) := a%;1<v3; ® vg‘ ((HA ¥ HB)’{@%@Q%}J.) ‘ng (v3 ® VBB)>L2(R3N)‘ (5.5.30)

Since the integrand is of the form f(ki,ks)exp(—i(k; + ko) - R), with f real and satis-
fying f(—ki, —ko) = f(ki,ka), the real part can be dropped. (Note that the domain of
integration ), x R? is invariant under the change of coordinates (ki, k) — (—ki, —k2)).
Thus

MG (Ra g, d)
2

= L(d)/ dkidka|p(ky)|? [p(k2) (1 = (ky - ko)?)e itk R
9 Qo xR3

Noting that |1 — (k; - ko)2| < 2, recalling p € S(R?) and using dominated convergence, we
find

lin%MG(R, o,d)

L) [ dkidkolp(i) P o)1 - (ki -p)2)e T
R3 xR3

2

9
= gL(d) ( /R ) dklyp(kl)%ikl'l‘) < / dkg\p(k2)|26ik2'R>

2

ko
“L(d dkydks|p(k ko) 2L K2 i) R
oLl [ | dkidelpa) o) P

=T1(R,d) + T>(R, d).
Again by dominated convergence,

lim L(d)

d—oo

= lim
d—o0

VA ® VB’ HA + HB) (XQdV% ® V%))Lz(R3N)
1

“Q
= ?Mw

=lim [ Y ((Ha+Hp) ' (vG @ vE)|(x,va ® Vi) r2(msn)
d—o0 g1

= Z (v§ @ V| (Ha + Hp)~ 1\VA®VB>L2(R3N)
a,f=1

=L(c0).

In particular, L(d) is uniformly bounded with respect to d. Furthermore,

2 — 2
T(R.d) = —s L)) ()P(R))
which has rapid decay with respect to R since p is a Schwartz function. Thus

lim (R* Ty (R, RY?)) =0

R—o00
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for any k£ > 0. Next we investigate the integral

ki -k ,
I(R) 12/ dk1dks|p(ky)|? |p(ke)|? 2 e~ ilkathka) R
R B¢ Pkl

» 1 1 e,
=/ dk1|p(k1)|%e ‘“R,k IQ/Idkﬂp(kQ)\ o P(kl ko)2e ke R
R3 R3

occurring in T5(R,d). By Lemma 5.5.10, if R > 2/A,

2 —iks-R
[, Belptia) P s ia ke

1 A3, 1.
= i g 1 Pl o = o) ()
1 A3 1

~(2m)32 R3< (ki - vx2)2(|ki|2)’TAR[R3(w0 * ¢0)(R')]>

1 A3 (2m)Y2 [/ |k |? k; - x)2
_<27r>3/2R3( : <<}xj3 S >’TAR[R?W°*¢0><R'”>-

Thus I(R) splits into the two terms

3
I(R) _ A </Rd dki |p(kq)|? Lty ‘“‘I'R>< 1’3,TAR[R3(¢Q *wo)(R-)]> (5.5.31)

4m R3 ky|? %2
=(2m)2/ o (R
3 A3 kﬁ —ik;- X5%}
T An B ( dkllp (k)| Ik B ye R) < |x 2 |§ ARl (o *¢0)(R')]>‘
o =1

(5.5.32)

By Lemma 5.5.8, (ﬁ, TAr R (Vo * o) (R-)]) converges to 1/A% as R — oo. In particular,

this expression is bounded in R, so the rapid decay of \/p\\Q implies that R¥(5.5.31) — 0 as
R — oo for any k > 0. As above, by Lemma 5.5.10, we have

Kok?
dk k 2 1 1 —Zkl
/R3 1]p(k1) e w2 ®
A3 1 1 PPV
TR E<W(5a,ﬁ =387 - %)), Ty [R® (Yo * %)(R')D

if R > 2/A, and Lemma 5.5.8 implies

R%(5.5.32) o3 23:(5 ~ 3R, -Rs) (R, - R
e - B o " Rp)(Ra - Rp)

(4m)2 AS
a,B=1
6 A~
_ (3)226 (1 - 3R ® R)(R ® R)]
6
- (4m)?
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as R — oo, and R¥(5.5.32) — 0 for k < 6. This immediately leads to

Lim RF(Ty(R, RY?)) = lim <§L(R1/2)RkI(R)> =0

R—o00

for any k < 6, and

2 2 6
. 6 1/2 _ 1 4 1/2\ p6 _ =
P}E}})o (R (T>(R, R ))) }%1_{1(1)0 <9L(R )R I(R)) 9L(oo) )
finishing the proof. O

The claim about M7(R,d) in Theorem 5.4.1 follows from the next lemma.
Lemma 5.5.16. Assume the hypotheses of Theorem 5.4.1. Then

lim (RkM7(R, d)) =0

R—o0
uniformly in d > 0 for any k < 7, and

lim (R7M7(R, R1/2)) = —% (2710)304;(0) o2(0).

R—o0

Proof. Recall the definition (5.5.29). In the proof of Lemma 5.5.13, it was shown that

RFBy(1,d,R)

2 2 5 3
D20 2 Y Comnm T (RN

m=—2011=0m1=—11 a,f=1

=4mchRe

x | =4R* (545 — 2RaR5) 0a,5(0,d, A, 2,m,my, 1)

k R.R - i
LRl —8)((5%5—RQR5) /0 sin(6R) g (€°0a,5)d8

A o8 d3 d2
+ (o — 3RoRy) /0 sin(¢R) <d£3<s¢a,g> + dggsoaﬁ) df)” .

Furthermore, it was established that the term

4

A A o0 d
(5a,ﬁ - RaRﬁ)/O Sin(ﬁR)T&(fzﬁpa,ﬂ)dé

A~ A 00 d5 d?
+(6a,5 — 3RaRﬁ)/0 sin({R) <d§3(€<pa,ﬁ) + d£2¢a,ﬁ> dé

can be bounded independently of R and uniformly in d by a constant which depends on
the ultraviolet-cutoff A, and that

©a,5(0,d, A, 2,m,ma, 1) = |p(0)PT 25 ™™ (d, 0),
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which is independent of both A and R and which is bounded uniformly in d. Since Ti’m(R)
converges to 1/(A)*Ya,m ([0, ¢]g) as R — oo by Lemma 5.1.2, it is in particular bounded
in R. Combining these facts, we conclude that

lim (R’fBz(l,Rl/2,R)) —0

R—oo

for k < 7, proving the first assertion of the lemma.

By dominated convergence, T2 lmmi (g 0) has a limit as d — oo, which we denote by
T gm "™ (00, 0) and identify as belng obtained from T2 lmmi (g 0) by omitting the char-

Q,

acteristic function yq,. Recalling |p(0)|? = 1/(27)3, we thus conclude that

lim (R7BQ(1, Rl/Q,R)>

R—oo
167Tch
= Z Z Z Z C2ml1,m1 Ag}/Qm([g ] )
m=—201=0m;=-11 o,f=1
X (00,8 — 2RaRg) T2 ™™ (00, 0)
167Tch 3 N
= e| Y (Jap— 2RaRp)
a,B=1
X [<((HA{\IJ%}J-) V) @ URWIY @ (Hpjgweye)” 1V1@)>L2(R3N) (5.5.33)
+ <((HA|{Q94}L)—1V%) @ VE|(Ha+ Hp) W (Y @ WUB)>L2(R3N) (5.5.34)

+ <v§§ ® ((HBHQ%}L)*V@)KHA + Hp) YW (Y o ‘I’OB)>L2(R3N)” . (5.5.35)

where we have set

2 2

I
W= >3 > Comuim Yem((0,0lg) x| x5 20

ta,Jp m=—2011=0m1=-0
X Yl [0, 0)%, ] Yoty e, [0, 9%, , |-

Reversing the steps taken in Section 5.1 (i.e. addition theorem for Legendre polynomials
and results about spherical harmonics of translates), we obtain

Z’XZA XJB’ P2( (XlA Xjp))
/LA’]B

1
A

1A,JB

PR 1 3 -
xia (1= 3R @ R)x — 5 (il + i)+ 5(0s - R)? + (i R)?),

where we have used Ps(z) = 1/2(3z% — 1). The multiplication operators

1 3 R
S il i) + 5 (i R + (g R)P)
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conserve parity with respect to atom A and B separately, so the corresponding terms in
(5.5.33) through (5.5.35) vanish upon integration, and we are left with

. 7 1/2

o (507 )
167ch

= @i

Z (0a,3 — QRQRB) (6y,6 — 3R7R5)
a,B,7,0

" [<<(HA{w%}L)1V§i) ®VpIVE© ((HBI{‘I’OB}L>71V%)>L2(R3N)

+ <((HA|{\I/?4}L)_1V3§) @ vp|(Ha+ Hp) V) @ V6B>L2(R3N)

+ <V% ® (Hpjpugy) " Vp) | (Ha + Hp) V) @ V5B>L2(R3N)]]

167ch PN P
| X (G 2R 55 SRR

a’ﬁyvvé

X [<vf}1)|((HA|{\pg‘}L)_1V1><V63|((HB|{\1/%}L)_1Vg)>

+ <V§ ® VﬁB\((HAHq/g}L)_l ®I)(Ha+Hp) v} ® V6B>

+ (V4 @ VHIT® Hpjug) ) )(Ha+ Hp) ' vy @ vh)

] |

Exploiting rotational invariance (Lemma 4.2.17), applying Lemma 4.2.18 iv) (with k = 0)
and using the definition of the dynamic polarizabilities ag’B (k) yields

(VI wo30) ™V ) (VB ((Hgigag ) 7 VE) )
+ <fox ® VﬁB’((HA\{\I/%}J-)_l ®I)(Ha+ Hp) 'V} ® V(SB>
+ <V?§ v ® (Hp|(oy-) Y)(Ha + Hp) V) ® V53>

1 _ _
=500 8.5 [<vA|<<HA.{@g}L> V) (vVBI(H gy ) IV )

=az(0) =ag(0)

3
+ 3 (Vi @ VI (Hauo )" @ D(Ha + Hp) ' vh @ viy)
ij=1

3
+ > (Vi@ V)T @ (Hpjag ) ) (Ha + Hp)lvh @ vh )
ij=1

2
=50y 05 05(0) 0 (0),
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which finally leads to

lim (3732(1, RY/2, R))

R—oo
_ maé@) aB(0) Tr[(1- 2R @ R) (1 - 3R @ R))],

=4

proving the second claim.
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Chapter 6

Analysis of pure field terms

In this chapter we we analyze the terms F7(R, o) and F3(R,0) in V7 (A, R), which origi-
nate purely from the radiation field (see (3.0.16)), and establish the (asymptotic) cancel-
lation of the 1/|R|%-contributions to the interaction potential V (A, R).

In Section 6.1 we derive error estimates which compare F7(R, o) and F3(R,0) to their
respective (0 — 0)-limits F7(R) and Fg(R). The latter turn out to exist since the inte-
grands are sufficiently regular at the origin.

In Sections 6.2 and 6.3, which are joint work with Gero Friesecke, we present a method
for the asymptotic analysis of a class of singular, formally divergent Fourier integrals, and
verify that the integrals encountered in F7(R) belong to this class. The latter boils down
to a careful investigation of regularity properties of the dynamic polarizabilities ag(k) and
aB (k). The relevant distributional Fourier transforms are calculated in Section 6.4.
Subsequently, in Section 6.5, we apply this method to show that the lowest power of 1/|R|
that enters in F7(R) is 1/|R|", and calculate the corresponding (asymptotic) coefficient
explicitly. Furthermore, using standard decay estimates for oscillatory integrals involving
smooth functions, we show that

lim (RCF(R)) =0
R—o0o

for any k < 8, i.e. that F3(R) can only contribute to V (A, R) at orders 1/RF for k > 8.
In Section 6.6 we show that the 1/|R/|%-contributions to V (A, R) vanish asymptotically,
in the sense that they decay faster than any inverse power of |[R|. As mentioned in the
introduction, this crucially exploits the relation (1.0.10), which is a consequence of using
a smeared Coulomb potential for the interaction of the electrons. As an aside, we discuss
in Section 6.6.1 why we expect the mechanism of cancellation to break down if a proper
Coulomb potential is used.
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6.1 Subtraction of infrared-regularized terms and deriva-
tion of error estimates

Recall the definition

F7(R7 U)

1 A .
— gt [ dadielCl)PIC(k) (1 + (k- ky)?)e it
Qo

X [(ag(kl)ag(kl)) <_4h3w(k1)ZW(k2)2 — 6h3w(k1)3w(k2)>

w(ki) + w(ks)

3w 2(,0 2

1 lp(k) | [p(k2)|? L Too)2)a—i(ki+k2) R
=——= k;dk 1+ (ks -k i(kitks
36h2 /{;U ¢ ld 2 (/J(kl) o.)(kg) ( ( 1 2) )e

—4h3w(k)%w(ks)? — 6h3w(k1)3w(k2)>
w(kl) + W(k2)

x [(aé<kl>a§<k1>> (

3w 2w 2
+ (op(a)aZ (k) + af (o (ki) <‘ﬁ3w<k1)2w<k2) e o >]

from (3.0.1). The following result compares this expression, which still depends on the
infrared-cutoff o, to the term which results from taking the limit ¢ — 0, namely to

F7(R)
i= —ﬁ - dkidko o ;{1{11))’2 ’p(;{Q))’ (1 _|_(k1.1;2)2)e—i(k1+k2)-R
A —4h3w(ky)?w(ks)? — 63w (ky)3w(ks)
X [(aE(kﬁag(kﬂ)( (k) + (k) >

w(ky) + w(ks)
(6.1.1)

+ (ag(kl)ag(kz) + aé(kz)(lg(kl)) <h3bd(k1)2w(k2) i h3w(k1)2w(k2)2)] |

Note that this integral converges since |p(-1)|? |p(-2)|? € S(R®) and the remaining integrand
is in L},.(R%). The latter fact will become evident from the estimates on ag’B(k) derived
in the proof of the following lemma.

Lemma 6.1.1. Assume the hypotheses of Theorem 3.0.6. Then there exist constants Cr

and C; > 0, i = 2,...,4, independent of o and R (but depending on A via properties of
Hy ), such that

(R, 0) - Fr(R)|

2
S( sup  |po(s) ) <ZUZA7 ZC) ( sup Ipo(8)|2> e
s€[0,0/(cA)] s€[0,0/(cA)]
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Proof. First note that

Fr(R,0) — F7(R)
p(k1)l? |p(ka)|?

U A | &
= + + dkidk
36h* < QxBye(0)  JByse(0)x9%  JB,e(0)xB,,0(0) T 0) w(ko)

x (14 (kg - kp)?)e itatio) R
—4h3w(k1)2w(k2)2 - 6h3w(k1)3w(k2)
« [(aé<k1>a§<k1>> ( e )
h3w(k1)2w(k2)2>]

+ (afg‘(kﬁag(kﬂ + aé(kQ)ag(kl)) (—h3w(k1)2w(k2) + wky) + w(ks)

o/c

The standard identity |[(A — X\) 71| = 1/(dist(), spec(A))) for self-adjoint operators yields
the estimates

A\ B L1 : : B2
o (ki) ok (kj)| A Ag Z )(ZHVBH )
a=1 =1

i.e. these quantities are bounded uniformly in k; and ky. Note that |1+ (K; - k9))2| < 2,
so the only remaining terms in the integral which couple ki and ko are those containing
1/(w(k1) 4+ w(k2)). We will use an individual estimate for these terms in each of the three
integrals. On Q, x B, /.(0) we have the estimate

1 < 1 < 1
wky)+wks) ~ o/c+wks) ~ wks)’

and analogously 1/(w(ki) + w(ka)) < 1/w(ky) on B, /.(0) x Q,. For the integral over
B,/c(0) x B,/.(0) we use the estimate 1/(w(k:) + w(k2)) < 1/(2v/w(k1)y/w(ks)), which

follows from the basic inequality ab < (1/2)(a? + b?). Next define

(o A) = 2,(k): () = 2,
Slo0)= [ 0909% )= [l

Note that S; and M; are finite for ¢ > —1 since p is a Schwartz function, and obviously
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an Ip(k)|?w(k)? < M;(A). Putting the above estimates together, we obtain

F(R.0) - Fr(R)|

hCap

<
- 18

/ dkldk2|p(k1)y2|p(k2)|2é (6w(ki)w(ks) + 6w(ky)?)
Q% By 1o(0) w(ks)

1
+/ dlky dka|p(k1) *|p(ka) |* —— (6w (k1 )w(ka) + 6w (ki)?)
BU/C(O)XQU

w(ky)
—

2/ w(ky)w(ks)

</QU dkl\P(k1)|2w(k1)) </Ba/c(0) dk2\P(k1)|2>
2 2
4 (/B o dky |p(ky))| w(k1)> </Q dka|p(ky)| )
2 2
+ (/B o dk|p(ky )| w(k1)> (/BU/C(O) dks|p(ky )| )”

8Mo(A)S1(o, A) + 14M;(A)So(o, A) + 6Ma(A)S—1(0, A)

+/ dlky dks|p(k1) *| p(ka) (6w(k)w(ka) + 6w(ki)?)
BCF/C(O)XBO'/C(O)

+2

o/c

o/c

+ 351/2(0, A)S1/2(07 A) + 353/2(