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Preface

In this thesis we discuss two different aspects of the fast marching method (FMM). The
FMM was introduced in [Set96a] and it solves the static Hamilton-Jacobi-equation

‖∇u(x)‖c(x) = 1 on Ω, u|∂Ω=0 (0.1)

with a continuous speed function c > 0.
The first aspect is to use indefinite speed functions, that means we allow that the

speed c changes its sign. Such indefinite speed functions makes only sense if we regard
the corresponding initial value problem of (0.1), that is{

θt(t, x)− c(t, x) |θx(t, x)| = 0 on (0, T)×Rd

θ(0, ·) = 1Ω0 − 1ΩC
0
,

(0.2)

A first approach for the numerical solution of such an equation on a regular lattice
in Rd was presented in [CFFM08] wherein convergence of the proposed algorithm
was also proven. In [CFFM08] this method has been refined such that we also have a
discrete comparison principle. In chapter 2 we will, after introducing the underlying
theory in chapter 1, present a generalization of these methods to unstructured grids.

The main idea behind this generalization to unstructured grid is that the (m)GFMM
locally solves the eikonal equation (0.1) using the same upwind discretization as in the
FMM. We transport the meaning of the grid and the discretization to the unstructured
grid and then we modify the algorithm in the right way. This is all described in
section 2.3. As the GFMM the GFT can be modified such that it copes with an discrete
comparison principle – at least if the underlying triangulation is acute. Section 2.4
is dedicated to the proof of this result. Of course we carried out some numerical
experiments to validate whether these methods work in practice, see section 2.5.

Using unstructured grids for the FMM one can not only use a scalar speed function
but one can also solve the anisotropic eikonal equation as in [BR06, Section 7]. This
extension to anisotropic metrics is transferred to the generalized fast marching method
from above in section 2.6. On the one hand this works fine in a heuristic and also
computational sense but there are arise open problems in theory.

This leads to the second aspect, namely a fast marching method for the anisotropic
eikonal equation. Such a fast marching method for unstructured triangulation is
already presented in [Ras07]. In chapter 3 we apply this method to the special case
of a Cartesian grid. The key ingredient for such an method is the concept of virtual
triangles as introduced in [KS98]. We give a detailed analysis for the virtual triangles
and show that some new problems arise. Further we show the connection to other
algorithms used to solve the anisotropic eikonal equation and compare the numerical
results of these methods.
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1 Hamilton-Jacobi equations

In this chapter we establish the theory of Hamilton-Jacobi equations (HJE). In particular
we introduce the concept of viscosity solutions, which is one of the most important
concepts in this thesis.

This chapter is organized as follows. In the first section we give an example which
shows us that the concept of classical solutions for partial differential equations (PDEs)
is not sufficient, and that we therefore have to look for a more appropriate theory of
solutions. In section 1.2 we introduce the concept of viscosity solutions and also state
some basic properties. In section 1.3 we take a closer look at the static HJE because
we need this special case to understand the fast marching method (FMM) which is a
key ingredient in the construction of the GFMM in chapter 2. In addition we will also
use the concept of static HJE in chapter 3. Furthermore we also look at equations of
eikonal type and show a connection to optimal control problems. In section 1.4 we
generalize the definition of viscosity solutions for discontinuous functions because the
generalized fast marching method (GFMM) works with them. In the last section 1.5
we illustrate the connection between the eikonal equation and front propagation with
some examples.

1.1 Introductory example

We start with the scalar eikonal equation∣∣u′(x)
∣∣− 1 = 0 in ]−1, 1[

u(−1) = u(1) = 0
(1.1.1)

For this equation a classical solution u ∈ C1([−1, 1]) does not exist. Due to the mean
value theorem there should exist a point ξ ∈ ]−1, 1[ with u′(ξ) = 0 which contradicts
the condition that |u′(x)| = 1 for all x ∈ ]−1, 1[. Thus the notion of classical solutions
is not useful here because this concept is too strict to obtain a solution. However, all
the functions un(x) defined on [−1, 1] by

u0(x) = 1− |x|

uj(x) =
1
2j −

∣∣∣∣ 1
2j − uj−1(x)

∣∣∣∣ for j ∈N
(1.1.2)

are weak1 solutions of (1.1.1).
Thus we see that this simple equation has on the one hand no classical solution but

on the other hand infinitly many weak solutions, so this situation is not satisfactory.

1Weak solutions means here that the function u is Lipschitz-continuous and therefore differentiable
almost everywhere by Rademacher’s theorem.

1



1 Hamilton-Jacobi equations
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Figure 1.1.1: Different weak solutions for (1.1.1).

There exists a physical interpretation of (1.1.1) which has a unique solution. One
can interpret u as the first arrival time of a wave which expands with constant speed 1
starting at the boundary. The function u0(x) = 1− |x| is the unique solution for this
interpretation. We will see later on, that u0 is the so called viscosity solution.

1.2 Continuous viscosity solutions

We will now introduce the notion of viscosity solutions and state some basic properties.
This notion was first introduced in [CL81] and developed and discussed further in
[Lio82], [CL83], [CEL84] and [CL84]. A good overview of this topic can also be found
in [CIL92].

We start here with the initial-value problem and we use this setting for the front
propagation which is described in section 1.5. Let us regard the initial-value problem
for the Hamilton-Jacobi equation

ut(t, x) + H(t, x, Du(t, x)) = 0 in (0, ∞)×Rd

u = g on {t = 0} ×Rd.
(1.2.1)

Here the Hamiltonian H : R×Rd ×Rd → R and the initial function g : Rd → R

is given. The unknown here is u : [0, ∞)×Rd → R, u = u(t, x) with Du = Dxu =
(ux1 , . . . , uxn) as the spatial derivative. We will write H = H(t, x, p), so that p is the
placeholder for the spatial gradient.

In the next definitions and theorems we follow the ideas and methods of [Eva10], to
generalize the results for Hamiltonians of the form H(t, x, Du). Hamiltonians of the
form H(x, Du) are treated in [Eva10].

Definition 1.2.1 (according to [Eva10, Chapter 10.1]):
We assume that H(t, x, p) is continuous. A bounded, uniformly continuous function u is
called a viscosity solution of the initial-value problem (1.2.1) for the Hamilton-Jacobi equation
provided:

(i) u = g on {t = 0} ×Rd,

2



1.2 Continuous viscosity solutions

(ii) for each v ∈ C∞([0, ∞)×Rd),{
if u− v has a local maximum at a point (t0, x0) ∈ (0, ∞)×Rd, then

vt(t0, x0) + H(t0, x0, Dv(t0, x0)) ≤ 0,
(1.2.2)

and{
if u− v has a local minimum at a point (t0, x0) ∈ (0, ∞)×Rd, then

vt(t0, x0) + H(t0, x0, Dv(t0, x0)) ≥ 0,
(1.2.3)

A function u that satisfies the condition (1.2.2) it is called a subsolution and if it
satisfies (1.2.3) it is called a supersolution.

Remark 1.2.2:
In the literature there are different ways to define the viscosity solutions. Some people
(e.g [BCD97, Definition II.1.1] for static HJE) assume that the test-function v only has to
be differentiable. This leads to an equivalent formulation because, loosely speaking,
the C∞-functions are dense in the set of C1-functions.

Some definitions use strict extrema which also leads to an equivalent definition
because if u− v attains a local extremum at (t0, x0) one can construct ṽ = v± (|x− x0|+
|t− t0|) such that u− ṽ has a strict extremum.

A priori we do not know whether there is a connection between a classical solution,
if it exists, and a viscosity solution of (1.2.1). This question will be answered in the
following lemma and theorem.

Lemma 1.2.3 (Touching by a C1 function [Eva10, chapter 10.1]):
Assume u : Rd → R is continuous and is also differentiable at some point x0. Then there exists
a function v ∈ C1(Rd) such that

u(x0) = v(x0) (1.2.4)

and
u− v has a strict local maximum at x0. (1.2.5)

The proof can be found in [Eva10, Chapter 10.1].

Theorem 1.2.4 (Consistency of viscosity solutions (according to [Eva10, chapter 10.1] )):
Let u be a viscosity solution of (1.2.1), and suppose u is differentiable at some point (t0, x0) ∈
(0, ∞)×Rd. Then

ut(t0, x0) + H(t0, x0, Du(t0, x0)) = 0.

Proof. In the first step we apply the lemma 1.2.3 (in Rd+1) to the function u. We know
that there exists a function v in C1 such that u− v has a strict maximum at (t0, x0).

We set vε := ηε ∗ v with a mollifier2 ηε in the 1 + d variables (t, x). Then we obtain
vε → v
Dvε → Dv uniformly near (t0, x0)

vε
t → vt

(1.2.6)

2A mollifier is a smooth function η on Rd which is compactly supported with
∫

Rd η(x)dx = 1 and for
ε→ 0 we have |ηε ∗ f − f |∞ → 0 for f ∈ C∞ where at ηε(x) := ε−dη(x/ε).

3



1 Hamilton-Jacobi equations

and therefore we conclude that u− vε has a maximum at (tε, xε) with

lim
ε→0

(tε, xε) = (t0, x0). (1.2.7)

Due to the definition of viscosity solutions, we have

vε
t(tε, xε) + H(tε, xε, Dvε(tε, xε)) ≤ 0.

Now let ε→ 0 and we obtain with (1.2.6) and (1.2.7)

vt(t0, x0) + H(t0, x0, Dv(t0, x0)) ≤ 0. (1.2.8)

As u− v has a strict local maximum, and u is differentiable at (t0, x0) we know

Du(t0, x0) = Dv(t0, x0) and ut(t0, x0) = vt(t0, x0).

Using the above with (1.2.8) we get

ut(t0, x0) + H(t0, x0, Du(t0, x0)) ≤ 0.

The other inequality
ut(t0, x0) + H(t0, x0, Du(t0, x0)) ≥ 0.

can be proofed analogous by using the lemma 1.2.3 to −u to find a C1 function v such
that u− v has a strict minimum at (t0, x0).

The other way round we will now show that a classical solution u is also a viscosity
solution.

Theorem 1.2.5 (Classical solutions are viscosity solutions (according to [Eva10, chapter
10.1] )):
Let u ∈ C1([0, ∞)×Rd)∪ BUC([0, ∞)×Rd) be a classical solution of (1.2.1). Then u is also
a viscosity solution.

Proof. Let v ∈ C∞([0, ∞)×Rd) such that u− v has a local maximum at (t0, x0). Thus
we have {

Du(t0, x0) = Dv(t0, x0) and
ut(t0, x0) = vt(t0, x0).

Therefore we gain

0 = ut(t0, x0) + H(t0, x0, Du(t0, x0)) = vt(t0, x0) + H(t0, x0, Dv(t0, x0)).

The other case that u− v attains a local minimum at (t0, x0) is treated analogously.
Thus u is also a viscosity solution of (1.2.1).

The next step is to look whether there exists an unique solution of (1.2.1). Therefore
we suppose that the Hamiltonian H satisfies the following conditions of Lipschitz
continuity: 

|H(t, x, p)− H(t, x, q)| ≤ C |p− q|
|H(t, x, p)− H(t, y, p)| ≤ C |x− y| (1 + |p|)
|H(t, x, p)− H(s, x, p)| ≤ C |t− s| (1 + |p|)

(1.2.9)

4



1.2 Continuous viscosity solutions

Theorem 1.2.6 (Uniqueness of viscosity solutions (according to [Eva10, chapter 10.2] )):
Under the assumptions (1.2.9) there exists at most one viscosity solution of (1.2.1).

Proof. We split the proof into six steps.

1. Assume u and ũ are both viscosity solutions with the same initial conditions, but

sup
[0,∞)×Rd

(u− ũ) =: σ > 0. (1.2.10)

We choose 0 < ε, λ < 1 and set

Φ(x, y, t, s) := u(t, x)− ũ(s, y)− λ(t + s)− 1
ε2

(
|x− y|2 + (t− s)2

)
− ε(|x|2 + |y|2)

(1.2.11)
for x, y ∈ Rd and t, s ≥ 0. The functions u and ũ are bounded due to definition 1.2.1
and thus there exists a point (x0, y0, t0, s0) ∈ [0, ∞)2 ×R2d such that

Φ(x0, y0, t0, s0) = max
[0,∞)2×R2d

Φ(x, y, t, s). (1.2.12)

2. Now fix 0 < ε, λ < 1 so small such that (1.2.10) implies

Φ(x0, y0, t0, s0) ≥ sup
(t,xt)∈[0,∞)×Rd

Φ(x, x, t, t) ≥ σ

2
. (1.2.13)

We have furthermore Φ(x0, y0, t0, s0) ≥ Φ(0, 0, 0, 0) and therefore

u(t0, x0)− ũ(s0, y0)− u(0, 0) + ũ(0, 0)

≥ λ(t0 + s0) +
1
ε2

(
|x0 − y0|2 + (t0 − s0)

2
)
+ ε(|x0|2 + |y0|2). (1.2.14)

Due to the boundedness of u and ũ we deduce

|x0 − y0| , |t0 − s0| = O(ε) as ε→ 0. (1.2.15)

and furthermore we get from (1.2.14) that ε(|x0|2 + |y0|2) = O(1). So we get with
help of the AM–GM inequality

ε(|x0|+ |y0|) = ε1/4ε3/4(|x0|+ |y0|)
≤ ε1/2 + Cε3/2(|x0|2 + |y0|2)
≤ Cε1/2

and thus
ε(|x0|+ |y0|) = O(ε1/2). (1.2.16)

3. Since Φ(x0, y0, t0, s0) ≥ Φ(x0, x0, t0, t0) we get as in (1.2.14)

u(t0, x0)− ũ(s0, y0)− λ(t0 + s0)−
1
ε2

(
|x0 − y0|2 + (t0 − s0)

2
)
− ε(|x0|2 + |y0|2)

≥ u(t0, x0)− ũ(t0, x0)− 2λt0 − 2ε |x0|2 .

5



1 Hamilton-Jacobi equations

Therefore we have

ũ(t0, x0)− ũ(s0, y0) + λ(t0− s0) + ε(x0 + y0)(x0− y0) ≥
1
ε2

(
|x0 − y0|2 + (t0 − s0)

2
)

.

Due to the uniform continuity of ũ given in definition 1.2.1 and (1.2.16) plus (1.2.15)
we obtain that

|x0 − y0| , |t0 − s0| = o(ε). (1.2.17)

which is stronger than (1.2.15).

4. We denote by ω(·) the modulus of continuity of u. This is a function with

|u(t, x)− u(s, y)| ≤ ω(|x− y|+ |t− s|)

for all x, y ∈ Rd, t, s ∈ [0, ∞) and limr→0 ω(r) = 0. Similarly ω̃(·) denotes the
modulus of continuity of ũ.

Equation (1.2.13) with (1.2.17) and the initial condition implies

σ

2
≤ u(t0, x0)− ũ(s0, y0)

= u(x0, t0)− u(x0, 0) + u(x0, 0)− ũ(x0, 0) + ũ(x0, 0)− ũ(x0, t0) + ũ(x0, t0)− ũ(s0, y0)

≤ ω(t0) + ω̃(t0) + ω̃(o(ε)).
(1.2.18)

Now take ε > 0 to be so small that the above implies

σ

4
≤ ω(t0) + ω̃(t0).

Thus we know t0 ≥ µ > 0 for some constant µ. Likewise we can deduce that
s0 ≥ µ > 0.

5. In view of (1.2.12) we can see that the mapping (t, x) 7→ Φ(x, y0, t, s0) has a maximum
at (t0, x0). Using the function

v(t, x) := ũ(s0, y0) + λ(t + s0) +
1
ε2 (|x− y0|2 + (t− s0)

2) + ε(|x|2 + |y0|2)

we conclude with (1.2.11) that u− v has a maximum at (x0, t0).

Since u is a viscosity solution of (1.2.1) we conclude that

vt(t0, x0) + H(t0, x0, Dv(t0, x0)) ≤ 0.

Therefore we get

λ +
2(t0 − s0)

ε2 + H
(

t0, x0,
2(x0 − y0)

ε2 + 2εx0

)
≤ 0 (1.2.19)

On the other hand we regard now the mapping (s, y) 7→ −Φ(x0, y, t0, s) with

ṽ(s, y) := u(t0, x0)− λ(t0 + s)− 1
ε2 (|x0 − y|2 + (t0 − s)2)− ε(|x0|2 + |y|2).
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1.3 Static Hamilton-Jacobi equations

As above we see that ũ− ṽ has a minimum at (s0, y0). Since ũ is also a viscosity
solution of (1.2.1), we know that

ṽt(s0, y0) + H(s0, y0, Dṽ(s0, y0)) ≥ 0.

So we get

− λ +
2(t0 − s0)

ε2 + H
(

s0, y0,
2(x0 − y0)

ε2 − 2εy0

)
≤ 0. (1.2.20)

6. Subtracting (1.2.19) and (1.2.20) we get

2λ ≤ H
(

s0, y0,
2(x0 − y0)

ε2 − 2εy0

)
− H

(
t0, x0,

2(x0 − y0)

ε2 + 2εx0

)
. (1.2.21)

Now we employ the assumption (1.2.9) on H to get3

λ ≤ C
(
(|t0 − s0|+ |x0 − y0|)

(
1 +

∣∣∣∣2(x0 − y0)

ε2 − 2εy0

∣∣∣∣)+ 2ε |x0 + y0|
)

(1.2.22)

Now we use the estimates (1.2.16) and (1.2.17) in the above inequality. Then we let
ε→ 0 to discover 0 < λ ≤ 0, which leads to a contradiction.

1.3 Static Hamilton-Jacobi equations

In this section we introduce the concept of Hamilton-Jacobi equations for Dirichlet
problems and the corresponding notion of viscosity solutions. The definitions and basic
properties are stated in subsection 1.3.1. In subsection 1.3.2 we look at the special case
of equations of eikonal type, which will be the most important case for the following
chapters. This section is then closed by subsection 1.3.3 where we briefly show the
connection between the eikonal equation and problems of optimal control.

1.3.1 Definitions and basic properties

First we will take a close look at the static Hamilton-Jacobi equations.
Let Ω ⊂ Rd denote an open set. Furthermore assume H : Ω ×Rd → R is at least
continuous and g : ∂Ω→ R is a known continuous function with the boundary data.
We consider the Dirichlet problem of the form

H(x, Du(x)) = 0 in Ω
u = g on ∂Ω.

(1.3.1)

The next definition follows definition 1.2.1.
3With the assumptions (1.2.9) we get

|H(t, x, p)− H(s, y, q)| = |H(t, x, p)− H(s, x, p) + H(s, x, p)− H(s, y, p) + H(s, y, p)− H(s, y, q)|
≤ C |t− s| (1 + |p|) + C |x− y| (1 + |p|) + C |p− q|
= C ((|t− s|+ |x− y|)(1 + |p|) + |p− q|)

7



1 Hamilton-Jacobi equations

Definition 1.3.1 ([CEL84]):
A bounded, uniformly continuous function u is called a viscosity solution of the Dirichlet
problem (1.3.1) for the static Hamilton-Jacobi equation provided:

(i) u = g on ∂Ω,

(ii) for each v ∈ C∞(Ω),{
if u− v has a local maximum at a point x0 ∈ Ω, then
H(x0, Dv(x0)) ≤ 0,

(1.3.2)

and {
if u− v has a local minimum at a point x0 ∈ Ω, then
H(x0, Dv(x0)) ≥ 0.

(1.3.3)

A function u that fulfills only condition (1.3.2) is called a subsolution. On the other
hand a function u that satisfies (1.3.3) is called a supersolution.

Remark 1.2.2 also applies to this definition. Furthermore there is also a general
connection between the initial-value problem and the Dirichlet problem.

Remark 1.3.2 ([BCD97, chapter II.1, p. 26]):
We consider the initial-value problem with the HJE

ut + H(t, x, Dxu(t, x)) = 0 in (0, ∞)×Rd.

We can write this equation as a Dirichlet problem with the HJE

H̃(y, Du(y)) = 0 in Rd+1.

by setting y = (t, x) and H̃(y, p) = pd+1 + H(t, x, (p1, . . . , pd)) with p = (p1, . . . , pd+1) ∈
Rd+1.

For the eikonal equation there is another kind of relation between the formulation as
an initial-value problem and a Dirichlet problem. We will look at this in section 1.5.
We want to mention that for the Dirichlet formulation of a HJE there also is a consistency
result [BCD97, Proposition 1.9] like theorem 1.2.4. For the fast marching method (see
section 2.1) we need some more assumptions on the Hamiltonian. To gain more
valuable results we will from now on only consider Hamiltonians H with the following
properties: (see [Lio82, Section 5.2])

(H1) (Continuity) H ∈ C(Ω×Rd).

(H2) (Convexity) p 7→ H(x, p) is convex for all x ∈ Ω.

(H3) (Coercivity) H(x, p)→ ∞ as |p| → ∞, uniformly in x ∈ Ω.

(H4) (Compatibility of the Hamiltonian) H(x, 0) ≤ 0 for all x ∈ Ω.

The existence of a solution of (1.3.1) requires a further condition for the boundary
data, namely
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1.3 Static Hamilton-Jacobi equations

(H5) (Compatibility of Dirichlet data) g(x)− g(y) ≤ δ(x, y) for all x, y ∈ ∂Ω.

Here δ denotes the optical distance between the points x and y. It is defined under the
assumptions (H1)-(H4) by

δ(x, y) = inf
{∫ 1

0
ρ
(
ξ(t),−ξ ′(t)

)
dt : ξ ∈ C0,1([0, 1], Ω), ξ(0) = x, ξ(1) = y

}
with ρ(x, q) = max

H(x,p)=0
〈p, q〉

(1.3.4)

at which C0,1([0, 1], Ω) denotes the set of Lipschitz-continuous functions from [0, 1] to
Ω.

The optical distance δ fulfills the properties

δ(x, x) = 0, 0 ≤ δ(x, z) ≤ δ(x, y) + δ(y, z).

If in addition H is symmetric with respect to p, this means H(x, p) = H(x,−p), then
δ(x, y) = δ(y, x) and therefore δ is a pseudo-metric. These properties are proven in
[Ras07, Lemma 1.21] and a similar construction was already used in [Lio82, Theorem
5.1].

In the next theorem we see, that there is a solution of the Dirichlet problem and it
can be written with the help of the optical distance.

Theorem 1.3.3 ([Lio82, Theorem 5.3]):
Assume (H1)-(H4). The Dirichlet problem (1.3.1) has a viscosity solution u if and only if the
boundary condition satisfies the compatibility condition (H5). A specific viscosity solution is
then given by the Hopf-Lax formula

u(x) = inf
y∈∂Ω

(g(y) + δ(x, y)) (1.3.5)

To get a uniqueness result we must enforce a slightly stronger condition

(H4’) H(x, 0) < 0 for all x ∈ Ω.

With the following comparison result one can gain the uniqueness of the solution
given in equation (1.3.5).

Theorem 1.3.4 ([Ish87, Theorem 1]):
Assume4 (H1)-H(3) and H(4’) and let u, v be viscosity sub- and supersolutions of (1.3.1),
respectively. If u ≤ v on Ω then u ≤ v in Ω.

1.3.2 Eikonal equation

In chapter 2 and 3 we deal with equations of eikonal type. Therefore we introduce this
notion in this subsection. We will only consider from now on equations of eikonal type,
this means we regard equations of the form

H(x, Du(x)) = 0, x ∈ Ω, with H(x, p) = E(x, p)− 1 (1.3.6)

where the function E(x, p) fulfills the conditions
4The assumptions we use here are stricter than the one Ishii uses in his paper.
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1 Hamilton-Jacobi equations

(E1) (Continuity) E ∈ C(Ω×Rd)

(E2) (Convexity) p 7→ E(x, p) is convex for all x ∈ Ω

(E3) (Homogeneity) E(x, tp) = tE(x, p) for all x ∈ Ω, p ∈ Rd, t > 0

(E4) (Positivity) E(x, p) > 0 for all x ∈ Ω, p 6= 0.

It is easy to see that a function H which is defined by (1.3.6) also fulfills the conditions
(H1)-(H4). Thus the uniqueness and existence theorem also holds for the equation of
eikonal type.

We want to remark here that all functions H that suffice the conditions (H1)-(H3) and
(H4’), can be written in the form (1.3.6) with a function E that fulfills the conditions
(E1)-(E4). This result is formally stated and proved in [Ras07, Theorem 1.29].

Now we review the example from section 1.1. We show that the function u0 in (1.1.2)
is really the viscosity solution of the simple eikonal equation (1.1.1).

Example 1.3.5:
In section 1.1 we defined u0(x) = 1− |x| and we proposed that this is a viscosity
solution of (1.1.1). To confirm that u0 solves the equation we first check, whether it is a
subsolution.

The function u0 is differentiable in ]−1, 0[ ∪ ]0, 1[ and there it fulfills the equation
|u′0(x)| − 1 = 0. Therefore u0 is due to theorem 1.2.5 a viscosity solution there.

Now let us look at the critical point 0. Let v ∈ C∞(]−1, 1[) such that u0 − v attains
at 0 a strict local maximum. This means that there is a δ > 0, such that for all |x| < δ
we have (u0 − v)(x) < (u0 − v)(0). We conclude that for all 0 < x < δ we gain
− v(x)−v(0)

x < 1 and vice versa we get for all −δ < x < 0 the inequality v(x)−v(0)
x < 1.

Thus we know |v′(0)| ≤ 1 and therefore u is a viscosity subsolution in ]−1, 1[ by
definition 1.3.1.

Now we show that u0 is also a supersolution. For all points x ∈ ]−1, 0[ ∪ ]0, 1[ we
already know that u0 is also a supersolution.

We now take a closer look at the point 0. We should take a function v ∈ C∞(]−1, 1[)
such that u0 − v has a strict local minimum at 0. The point is that there is no such
function v with this property because u0 is not differentiable in the point 0 and u0
is concave in a neighbourhood of 0. Thus u0 is also a supersolution and therefore a
viscosity solution.

In the last step we look at the boundary condition. u0 satisfies the boundary condition
u0(±1) = 0 and obviously u0 is uniformly continuous. Thus u0 is a viscosity solution
of (1.1.1).

Example 1.3.6:
Let Ω be a bounded and open set in Rd and c : Ω → R a continuous function with
c > 0. Then the equation

c(x) |Du(x)| − 1 = 0 in Ω
u(x) = 0 on ∂Ω

(1.3.7)

is called the eikonal equation. The value u(x) can be interpreted as the arrival time at
x of a wave starting at ∂Ω and travelling with speed c. Of course this equation is of
eikonal type and satisfies the conditions (E1)-(E4).
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1.3 Static Hamilton-Jacobi equations

Example 1.3.7:
The eikonal equation can be generalized by allowing the speed c to depend also
on the direction of the gradient of u. We now assume Ω ⊂ R2 to be open and
bounded. Furthermore let M(x) : R2 → S2 be a continuous mapping into the set of
2× 2 symmetric positive definite matrices. We denote the scalar product induced by
M(x) with 〈p, q〉M(x) := 〈M(x)p, q〉. The corresponding norm is defined by |p|M(x) :=
〈p, p〉M(x) . The equation

|Du(x)|M(x) − 1 = 0 in Ω

u(x) = 0 on ∂Ω
(1.3.8)

is called the anisotropic eikonal equation. Sometimes this equation is also called
generalized eikonal equation (cf. [BR06, Section 7]) but the notion of anisotropic is
more specific and we use the word generalized in this thesis in another context (cf.
chapter 2). As in the above example this equation is of eikonal type and fulfills the
conditions (E1)-(E4).

1.3.3 Optimal control

In this subsection we show that the eikonal equation can be seen as a problem of
optimal control.

Let us regard the eikonal equation (1.3.7). To interpret this equation in the sense of
optimal control we look at a controlled dynamic system

y′(t) = f (y(t), a(t)), t > 0
y(0) = x

(1.3.9)

with a(·) ∈ A := {a : [0, ∞) → A measurable}, A a given compact metric space,
x ∈ Rd and the function f : Rd × A→ Rd is assumed to be Lipschitz-continuous in the
first argument. y is called the state of the system and a the control. Further we write
yx(·, a) = yx(·) for the solution of (1.3.9).

Now we introduce the two cost functionals which depend on the initial state x ∈ Rd

and the control a(·) ∈ A
• Finite horizon: given g ∈ C(Rd), t > 0

J(x, t, a) := g(yx(t, a)), (1.3.10)

• Minimum time: given a closed target T ⊂ Rd

tx(a) :=

{
min{s : yx(s, a) ∈ T } if {s : yx(s, a) ∈ T } 6= ∅
+∞ otherwise.

(1.3.11)

Loosely speaking J(x, t, a) gives the value of g at point y which is reached by a path
starting in x and travelling for time t with control a. On the other hand tx(a) gives the
time of first contact with T , starting at x and travelling with control a.

Now we define the value functions
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• Finite horizon: v(t, x) := infa(·)∈A J(t, x, a),

• Minimum time: T(x) := infa(·)∈A tx(a).

We can interpret v(t, x) as the cost of the cheapest point we can reach if we start in
x and travelling with the best control a for the time t. Likewise we can interpret T(x)
as the first time such that starting from x we reach the target T by using an optimal
control a.

In the next theorem we show that the value function is, under some assumptions,
the solution of a certain PDE.

Theorem 1.3.8 ([Bar97, Proposition 1.3]):
Assume the value function is C1 in a neighbourhood of (t, x) (or x for the minimum time
problem). Then

Finite horizon: vt(t, x) + H(x, Dxv(t, x)) = 0
Minimum time: H(x, DT(x)) = 1

Here the Hamiltonian is for both cases H(x, p) = supa∈A{− f (x, a) · p} (see [BCD97,
Proposition III.3.5 and Proposition IV.2.3]). Now we must find a dynamic f and a set
of controls such that supa∈A{− f (x, a) · p} = c(x) |p| . It is easy to see that a suitable
dynamic f and set A of controls are

f (x, a) = c(x) · a and A := {a : [0, ∞)→ B1(0)}.

1.4 Discontinuous viscosity solutions

We must extend the notion of viscosity solutions to discontinuous functions since
we deal with such problems in chapter 2. Before we can give a formal definition we
introduce the upper and lower semi-continuous envelope.

Definition 1.4.1 ([BCD97, Section V.2.1]):
Let u : X → R be a bounded function. The upper semi-continuous envelope of u is defined by

u∗(x) = lim sup
y→x

u(y) := lim
r→0+

sup{u(y) : y ∈ X, |y− x| ≤ r}. (1.4.1)

The lower semi-continuous envelope of u is

u∗(x) = lim inf
y→x

u(y) := lim
r→0+

inf{u(y) : y ∈ X, |y− x| ≤ r}. (1.4.2)

We want to remark that u∗ is the smallest upper semi-continuous function which is
greater than or equal u and on the other hand u∗ is the greatest lower semi-continuous
function which is smaller than or equal to u.

Now we can define what we understand by a discontinuous viscosity solution.

Definition 1.4.2 ([BP90, Section 4 and Proposition 5]):
Let H : [0, ∞)×Rd×Rd → R be a continuous function and g : Rd → R bounded. A function
u is called a discontinuous viscosity solution of the initial-value problem (1.2.1) provided:
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1.5 Front propagation

(i) u∗ ≤ g and u∗ ≥ g on {t = 0} ×Rd,

(ii) for each v ∈ C∞([0, ∞)×Rd),{
if u∗ − v has a local maximum at a point (t0, x0) ∈ (0, ∞)×Rd, then

vt(t0, x0) + H(t0, x0, Dv(t0, x0)) ≤ 0,
(1.4.3)

and{
if u∗ − v has a local minimum at a point (t0, x0) ∈ (0, ∞)×Rd, then

vt(t0, x0) + H(t0, x0, Dv(t0, x0)) ≥ 0.
(1.4.4)

We see that this definition is very similar to 1.2.1. The only difference is that we
do not test the function u but instead its upper and lower semi-continuous envelope.
As before we call u a subsolution if it satisfies (1.4.3) and a supersolution if it satisfies
(1.4.4).

1.5 Front propagation

In chapter 2 we are interested in computing a discontinuous viscosity solution of the
generalized eikonal equation (2.0.1). This equation give us the motion of a front in time.
To get a better understanding of this topic we introduce the problem and give some
basic results.

In the first subsection 1.5.1 we introduce the problem of front propagation and
give all the definitions. In subsection 1.5.2 we list some basic results of existence and
uniqueness and in the last subsection 1.5.3 we take a closer look at the non-empty
interior condition.

1.5.1 Level-Set approach

In this subsection we give a definition for the problem of front propagation. A short
introduction to this matter can be found in [BSS93, Section 1] or [Sou97, Section 1].

The front propagation is formally explained as follows. Γt denotes a smooth front
at time t > 0. Let Γt = ∂Ωt with Ωt ⊂ Rd open. The front is moving outward from Γt
with normal velocity V which is formally given by

V = v(t, x, n, Dn). (1.5.1)

We assume that v is a continuous function, n denotes here the unit normal vector of Γt
which points outward and Dn is the derivative of vector n. Furthermore we assume
that there is a smooth function u such that

Ωt = {x ∈ Rd : u(t, x) > 0}
Γt = {x ∈ Rd : u(t, x) = 0}
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and Du(x) 6= 0 for all x ∈ Γt. V, n and Dn depends on u and its derivatives in the
following way

V =
ut

|Du| , n = − Du
|Du| and Dn = − 1

|Du|

(
I − Du⊗ Du

|Du|2

)
D2u. (1.5.2)

With these relations we can rewrite equation (1.5.1) in the form

ut + F(t, x, Du, D2u) = 0

and owing to (1.5.2) we get

F(t, x, p, X) = − |p| v
(

t, x,− p
|p| ,−

1
|p|

(
I − p⊗ p

|p|2

)
X

)

with p ∈ Rd and X ∈ Sd, the space of symmetric d× d matrices. We further see that F
fulfills a certain functional equation, namely

F(t, x, λp, λX + µ(p⊗ p)) = λF(t, x, p, X) for all λ > 0 and µ ∈ R. (1.5.3)

A function F is called geometric, if it satisfies this functional equation (1.5.3). To ensure
that the problem is well-posed, we must further assume that F is degenerate elliptic,
that means

F(t, x, p, X) ≤ F(t, x, p, Y) if X ≥ Y (1.5.4)

for all (t, x) ∈ (0, ∞)×Rd, p ∈ Rd and X, Y ∈ Sd. Here X ≥ Y means that X−Y has
only non-negative eigenvalues.

Until now everything was quite formal. Let us choose a function F that satisfies
(1.5.3) and (1.5.4). Further we choose a suitable initial function u0. We assume that we
have a closed set Γ0 ⊂ Rd such that

Γ0 = {x ∈ Rd : u0(x) = 0}.

Thus Γ0 represents the front at time t = 0. Now solve the equation

ut + F(t, x, Du, D2u) = 0 in (0, ∞)×Rd,

u(0, x) = u0(x) on Rd.
(1.5.5)

in the viscosity sense5. Then we define the front Γt at time t by

Γt = {x ∈ Rd : u(t, x) = 0}. (1.5.6)

This formulation has the advantage that we do not need to assume that Γt is smooth
and we can track the propagation of the front over singularities.

5Here we use a notion of viscosity solutions for second order equations. We will not use second order
equations except in this section, so we omit a formal introduction. All results that are stated in
this section hold also for the first order equations which we consider in the following chapters. An
introduction to viscosity solutions for second order equations can be found in [CIL92].
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1.5.2 Basic properties

In this subsection we recall a theorem which states that (1.5.3) really deals with the geo-
metric properties of u. For the following theorems we need some technical assumptions
on F. These are listed below.

(F1) The mapping (t, x, p, X) → F(t, x, p, X) is bounded for bounded (p, X) and con-
tinuous for x ∈ Rd, t ∈ [0, R ∈ BR(0) \ {0} and |X| ≤ R for all R > 0.

(F2) F∗(t, x, α(x − y), X) − F∗(t, x, α(x − y), Y) ≥ −ω(|x− y| (1 + α |x− y|)), where
ω(0+) = 0 and for all x, y ∈ Rd, t ∈ (0, ∞), α ≥ 0 and matrices X, Y ∈ Sn

such that
(

X 0
0 Y

)
≤ Kα

(
I −I
−I I

)
for some constant K > 0.

(F3) F∗(t, x, 0, 0) = F∗(t, x, 0, 0)

The following theorem shows the uniqueness of the solution and also gives a com-
parison principle.

Theorem 1.5.1 ([BSS93, Theorem 1.1]):
Assume that F suffices the conditions (F1)-(F3) and (1.5.3) plus (1.5.4). Then, for any u0 ∈
UC(Rd), there exists a unique solution u ∈ UC([0, ∞)×Rd) of (1.5.5). Moreover, if u and v
are, respectively, sub- and supersolutions of (1.5.5) in UC([0, ∞)×Rd), then

u(0, ·) ≤ v(0, ·) in Rd ⇒ u ≤ v in [0, ∞)×Rd]. (1.5.7)

Theorem 1.5.2 ([BSS93, Theorem 1.2]):
Assume the hypotheses of theorem 1.5.1 hold and let u, v ∈ UC([0, ∞)×Rd) be solutions of
(1.5.5) such that

{x ∈ Rd : u(0, x) > 0} = {x ∈ Rd : v(0, x) > 0},
{x ∈ Rd : u(0, x) < 0} = {x ∈ Rd : v(0, x) < 0},
{x ∈ Rd : u(0, x) = 0} = {x ∈ Rd : v(0, x) = 0}

and
lim
|x|→∞

|u(0, x)| , lim
|x|→∞

|v(0, x)| > 0.

Then for all t > 0 we have

{x ∈ Rd : u(t, x) > 0} = {x ∈ Rd : v(t, x) > 0},
{x ∈ Rd : u(t, x) < 0} = {x ∈ Rd : v(t, x) < 0},
{x ∈ Rd : u(t, x) = 0} = {x ∈ Rd : v(t, x) = 0}.

This theorem justifies calling a function F geometric if it satisfies (1.5.3). So the
evolution Γ0 → Γt depends only on F and the right choice of signs of the initial datum
u0 inside and outside of Γ0, but it does not depend on the precise choice of u0.
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1.5.3 Non-empty interior

In [BSS93] is a very interesting theorem which states that in general we do not get an
unique solution of (1.5.5) if the initial data are discontinuous.

We start with a definition of a regular evolution Γt and then we give a theorem
which connects the uniqueness and the regularity. After this we give an example of an
evolution that has multiple solutions.

Definition 1.5.3 ([BSS93, Definition 2.1]):
Let Γt be the evolution of Γ0 by the level set approach. We say that {Γt}t≥0 is regular if

cl{(t, x) : u(t, x) > 0} = {(t, x) : u(t, x) ≥ 0} and
int{(t, x) : u(t, x) ≥ 0} = {(t, x) : u(t, x) > 0}

For Γ0 we define the set Ω0 = {x : u(0, x) > 0}. With this notation, we can state the
following interesting result.

Theorem 1.5.4 ([BSS93, Theorem 2.1]):
{Γt}t≥0 is regular if and only if there exists a unique solution of (1.5.5) with initial datum
1Ω0 − 1ΩC

0
.

For some special functions F we can be assured that the evolution has an empty
interior and is therefore unique.

Theorem 1.5.5 ([BSS93, Theorem 4.1]):
We assume that u(0, x) = dist(x, Γ0) in Rd and Γ0 = ∂{x ∈ Rd : d(x, Γ0) < 0} = ∂{x ∈
Rd : d(x, Γ0) > 0}. Let α ∈ W1,∞((0, T) ×Rd) for all T > 0, with the condition that
either (i) α does not change sign in (0, ∞)×Rd or (ii) α is independent of t. Then Γt = {x :
u(t, x) = 0} is regular, where u ∈ UC((0, ∞)×Rd) is the solution of ut + α(t, x) |Du| = 0
in (0, ∞)×Rd. In particular Γt has an empty interior.

Some numerical tests of the generalized fast marching method in in section 2.5
use functions that suffices the conditions of theorem 1.5.5. But we cannot always
assume these conditions and in the following example we give an evolution that has a
non-unique solution and therefore develops a non-empty interior.

The following example was first published in [Bar93, Section 4] and afterwards in
[BSS93, Proposition 4.4]. Afterwards we extend this example which gives us an explicit
evolution, which develops a non-empty interior.

Example 1.5.6 (Non-empty interior):
Consider the equation

ut − (t− x) |ux| = 0 in R× (0, ∞)

u(0, x) = (1I − 1IC)(x) on R
(1.5.8)

with some appropriate interval I. We construct a suitable interval such that this
evolution develops a non-empty interior.

To get a solution we interpret (1.5.8) in the domain Ω1 = {(x, t) : c(t, x) < 0} as a
finite horizon problem, see also subsection 1.3.3. The dynamics are given by

ẏx(s) = c(s, yx(s))a(s) with yx(0) = x (1.5.9)
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1.5 Front propagation

t = xX−(t) X+(t)

(x0, t0)

Ω1 = {c(t, x) < 0}

Ω2 = {c(t, x) > 0}

x

t

Figure 1.5.1: Plot of example 1.5.6 with (x0, t0) = (1, 1).

and a(·) ∈ L∞((0, ∞), [−1, 1]).
Now we determine the trajectories passing through (x0, t0) and driven by the forward

and backward ODE
Ẋ±(t) = ±c(t, X±(t))

with c(t, x) = t− x. For the solution we get

X±(t) = C±e∓t + t∓ 1 with C± = (x0 − t0 ± 1)e±t0 .

Let us fix t0 := x0 := 1 and define the open interval I := I(0) with I(t) :=
(X−(t); X+(t)). Then we set for the initial state u(0, x) = (1I − 1IC)(x). The evolution
of this discontinuous function is displayed in figure 1.5.1.

By interpreting this as an optimal control problem the minimal supersolution and
the maximal subsolution in Ω1 are given by

u∗(t, x) = inf
a(·)∈A

u∗(0, yx(t)) and u∗(t, x) = inf
a(·)∈A

u∗(0, yx(t)) (1.5.10)

which can also be written in the form u∗(t, x) = (1I(t) − 1I(t)C)(x) and u∗(t, x) =
(1I(t) − 1

I(t)
C)(x).

In the set {(x, t) : x = t} one gets u∗(t, x) = −1. On the other hand we have in
{(x, t) : x = t} \ {(x0, t0)} now u∗(t, x) = −1, but u∗(x0, t0) = 1.

We take now a closer look at the solution in the set Ω2 = {(x, t) : x < t}. In this
domain we can also use a similar interpretation as an optimal control problem. We get
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1 Hamilton-Jacobi equations

for the maximal and minimal solutions

u(t, x) = sup
a(·)∈A

{u∗(τ, yx(τ))1{τ<t}}

and
u(t, x) = sup

a(·)∈A
{u∗(τ, yx(τ))1{τ<t}}

where τ denotes the time the trajectory yx is exiting from Ω2.
It follows that we have on the one hand u = −1 in Ω2. On the other hand we have

u(t, x) = 1 for those points in Ω2 for which the trajectory yx can reach the point (x0, t0)
and u(t, x) = −1 otherwise. In other words, we gain u(t, x) = 1 for all points in Ω2
with X+(t) ≤ x ≤ X−(t) and −1 otherwise. Thus the evolution has developed an
non-empty interior.

Loosely speaking the problem of non-empty interiors emerges if a singularity of
the evolution appears at a point at which the speed function changes its sign. Such a
situation cannot be foreseen because in general we do not have enough information to
decide on it.

We continue the preceding example and give a continuous evolution that develops a
non-empty interior.

Example 1.5.7:
Now regard the evolution governed by the equation

ut − (t− x) |ux| = 0 in R× (0, ∞)

u(0, x) = u0(x) on R.

with a continuous function u0 with {u0 > 0} = I. We set x−0 = X−(0) = 1− 1/e and
x+0 = X+(0) = e− 1, using the trajectories X± defined above.

Let us chose for u0 the signed distance of the points x−0 , x0
+ namely u0(x) = min{x−

x−0 ,−(x− x+0 )}. This function is uniformly continuous and we expect from theorem
1.5.4 that the evolution should develop a non-empty interior.

In Ω1 the solution u can be achieved by the trajectories X− and X+ starting in
(t, x) and following them to the intersection with the axis {t = 0}. We get the two
intersection points x− = X−(0) = 1 + (x− t− 1)e−t and x+ = (x− t + 1)et − 1. Thus
u(t, x) = min{u0(x−), u0(x+)} and on the set {t = x} we get u(t, t) = min{u0(1−
1/et), u0(et − 1)}, especially u(1, 1) = 0.

In the set Ω2 we gain by the interpretation as an optimal control problem the
following solution:

u(t, x) =


u(1, 1) = 0 if X0

−(t) ≤ x ≤ X0
+(t),

u(τ, τ) if x ≤ X0
−(t) with X−(τ) = τ,

u(τ, τ) if X0
+(t) ≤ x with X+(τ) = τ,

where the trajectories X− and X+ pass through (x, t) and the trajectories X0
+ and X0

−
pass through (x0, t0). Thus we have for X−(τ) = τ that τ = (x− t− 1)e−teτ + τ + 1
which yields τ = t − ln(1 + t − x). On the other hand we get for X+(τ) = τ then
τ = (x − t + 1)ete−τ + τ − 1 which gives us τ = t + ln(1− t + x). The function u is
displayed for several values of t in figure 1.5.2.

18



1.5 Front propagation
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u(t, x)

Figure 1.5.2: Plot of example 1.5.6 with u0 as the signed distance. The evolution (blue)
is plotted for the times 0, 0.5, 1, 1.5 and 2. The corresponding 0-level-set
is marked red. One can see that the 0-level-set develops a non-empty
interior for t > 1.
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2 Generalized fast marching method

This chapter deals with the numerical solution of a generalized eikonal equation. For an
open set Ω0 ⊂ Rd and a continuous function c : R×Rd → R the generalized eikonal
equation is defined as{

θt(t, x)− c(t, x) |θx(t, x)| = 0 on (0, T)×Rd

θ(0, ·) = 1Ω0 − 1ΩC
0
,

(2.0.1)

with θ : R×Rd → R. For a structured discretization of the space Rd a first algorithm
was proposed in [CCF06] and after this in [Cri07, Section 3.4]. This first version was
improved in [CFFM08] to be convergent which is also proven in this article. The authors
of this algorithm also gave some numerical examples in R2. A year later Forcadel
proposed in [For09] a slightly modified algorithm such that the algorithm fulfills also a
discrete comparison principle.

The aim of this chapter is to propose a modification of both versions such that one
can use an unstructured triangulation for the discretization of R2.

This chapter is organized as follows. First we recall in section 2.1 the well known
fast marching method (FMM) for structured and unstructured meshes. In the next
section 2.2 we take a short review of the two versions of the generalized fast marching
method (GFMM). There we also recall some properties of these methods. In section 2.3
we use the ideas of the two versions of GFMM to propose two new versions that work
on unstructured triangulations (GFT). We also state some properties of these methods
there. Section 2.4 is dedicated to the proof of a comparison principle. In section 2.5
we give some numerical examples that compare the different versions of GFMM with
the new algorithms. In section 2.6 we extend the GFT to deal with anisotropic speed
functions. In the last section 2.7 we sum up the results and briefly discuss some open
problems.

If the reader is already familiar with the mGFMM he is encouraged to read remark
2.2.12 where we correct an error of the mGFMM.

Here a short comment on the notation: We follow [CFFM08], thus the symbol θ is
always used in a time-dependent context and refers to the solution of (2.0.1) and the
symbol u is always regarded in a static context.

2.1 Fast marching method

In this section we explain the fast marching method (FMM) and its extension to
triangulated domains. In the first subsection 2.1.1 we recall the fast marching method
for structured grids. After this we see in subsection 2.1.2 how one can extend this
method to acute triangulations. Then in subsection 2.1.3 we extend the FMM to deal
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2 Generalized fast marching method

Ui,j Ui+1,jUi−1,j

Ui,j+1

Ui,j−1

Figure 2.1.1: 4-point neighbourhood for the upwind discretization.

with non-acute triangulations by using virtual updates. In the last subsection 2.1.4 we
see how FMM can cope with the anisotropic eikonal equation.

2.1.1 FMM for structured grids

We now introduce the fast marching method, which was first published in [Set96a] and
[Set96b]. An overview of FMM, with an elaborate discussion of theory and applications
can be found in [Set99b, Chapter 8]. For reasons of simplicity we stick here only to the
two-dimensional case, but of course this method could also be used in d dimensions.

The fast marching method is an algorithm to solve the eikonal equation

|∇u(x)| · c(x)− 1 = 0 in [0, 1]2 \ Γ
u(x) = 0 on ∂Γ

(2.1.1)

where Γ is a closed set and the speed function c > 0 is assumed to be continuous.
For the discretization of (2.1.1) we use the upwind scheme introduced in [RT92].

First, we endow [0, 1]2 with a Cartesian grid (ih, jh) (i, j = 0, . . . , n) of grid-spacing
h = 1/n. Furthermore we split the index set {0, . . . , n}2 into the two disjoint sets ΩD
and ΓD. Here ΓD represents the set Γ in the discrete grid. The discrete equation is

max(D−x
ij U,−D+x

ij U, 0)2 + max(D−y
ij U,−D+y

ij U, 0)2 =
1

C2
ij

, (i, j) ∈ ΩD

Uij = 0, (i, j) ∈ ΓD.
(2.1.2)

Here we denote by D±x
ij U the backward- and forward finite-difference approximation

of the partial derivative with respect to x, that is

D−x
ij U =

Uij −Ui−1,j

h
, −D+x

ij U =
Uij −Ui+1,j

h
, (2.1.3)

where Uij = u(ih, jh), Cij = c(ih, jh). The finite differences D±y
ij U in y-direction are

defined in the same way. For notational convenience we set Ui,n+1 = Ui,−1 = ∞
and Un+1,j = U−1,j = ∞ (i, j = 0, . . . , n). This notation is also very useful for the
implementation.
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2.1 Fast marching method

The FMM works as follows: In the first step we tag all points in ΓD to be known.
After this we tag all points in ΩD that have a neighbour in ΓD as trial. All other points
are tagged as far. Now we compute trial values for all trial points, using (2.1.2), where
we use the values of the points in ΓD. Let NB be the set of trial points, the so called
narrow-band. Now we perform the iteration:

(FMM1) Let (i, j) ∈ NB denote the point with the smallest trial value.

(FMM2) Tag (i, j) as known, and remove it from NB.

(FMM3) Tag all neighbours of (i, j), which are not known, as trial and add them to NB.

(FMM4) Recompute the values of U for all trial neighbours of (i, j) by using (2.1.2).

(FMM5) If NB 6= ∅, goto (FMM1).

As the value of Uij in (2.1.2) depends only on smaller values of U in the neighbouring
points, the fast marching method computes a solution to (2.1.2). This dependency of
Uij only on neighbour points with smaller values of U is also denoted as the causality.
This property is very essential for the discretization, because with this we have a notion
of upwind and therefore we can solve the discrete scheme (2.1.2) in only one iteration.

The complexity of the FMM is O(N log N), with N denoting the total number of grid
points. The factor log N comes from step (FMM1). In this step one searches the point
with the smallest trial value in the narrow-band. This is done by a heapsort which
needs log N steps in every cycle of the algorithm.

Another method which is even faster, that means it has complexity O(N), was
introduced by Tsitsiklis in [Tsi95]. But this method has not been as popular as the FMM.
Further there exist variants of the FMM with complexity O(N). There one uses not an
exact priority queue but a so called untidy priority queues, see also [YBS05].

2.1.2 FMM for acute triangulations

We want to apply the FMM to grids with acute triangulations. To do this, we need a
suitable update scheme that works on triangulations. We regard a triangulation T of Ω
and we denote by N the set of vertices and by τ we denote a single triangle in T . We
follow here the concept of Hopf-Lax updates introduced in [BR06]. Using other ideas
identical update-schemes have been developed, i.e. [Set99b, Chapter 10] or [Fom97].

On structured grids we use the 4-point neighbourhood for the update scheme.
In unstructured triangulations, we use the following sense of neighbourhood. The
neighbourhood ω(C) of a node C ∈ N is defined as the collection of all triangles τ ∈ T
that have C as a common vertex (see figure 2.1.2).

The idea for the update scheme is the following: We fix the speed c on the neigh-
bourhood ω(C) and we carry out a linear interpolation of u on the edges between
the vertices where we already know the function values. Then we calculate the exact
viscosity solution in ω(C) to get a update (ΛU)(C). Formally we can write the update
with the optical distance (see (1.3.4)) as

(ΛU)(C) := inf
y∈∂ω(C)

{U(y) + δC(y, C)}
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2 Generalized fast marching method

C

B

A

Figure 2.1.2: The neighbourhood ω(C) of the point C is the collection of the grey
triangles joining the point C.

where δC denotes the optical distance if we fix the speed c in the neighbourhood ω(C)
to the value at the point C.

Thus we get an update scheme given by

(ΛU)(C) = min
τ∈T :C∈τ

min {U(y) + δC(C, y) : y ∈ { edge opposite to C}} .

Now assume that τ1, . . . , τm ∈ ω(C) are the triangles which have C as a common
vertex. Then we can rewrite the above formula by

(ΛU)(C) = min
1≤i≤m

Ui (2.1.4)

where Ui is given in the triangle ABC = τi ∈ ω(C) by

Ui =


U(A) + |A− C| cos α ≤ ∆,
U(A) + cos(δ− α) |A− C| α ≤ δπ − β,
U(B) + |B− C| ∆ ≤ cos π − β,

(2.1.5)

with ∆ = U(B)−U(A)
B−A , cos(δ) = ∆ if |∆| ≤ 1, and α andβ are the angles at A and B.

The update scheme fulfills a monotonicity property [BR06, Lemma 5] which will be
important in the proof of a comparison principle in proposition 2.3.5 and lemma 2.4.13.
Let U and V be two discrete functions on ∂ω(C) with U ≤ V then we know that

(ΛU)(C) ≤ (ΛV)(C). (2.1.6)

We must assume that all triangles τ ∈ T are acute if we want use the fast marching
method. This condition is due to the causality, see also [Set99b, Section 10.3.2]. If we
have no acute triangulation we still can use an iterative solver like Gauß-Seidel, but
FMM does not converge to the right solution.

At the end of this section we want to mention that FMM works also in Rd using
simplexes instead of triangles but we regard here only examples in R2.
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2.1 Fast marching method

C B

A

Z

Y

X

Figure 2.1.3: Construction of the splitting of a non-acute triangle ABC into two acute
triangles AZC and ZBC. The splitting section is marked gray.

2.1.3 FMM for general triangulations

A crucial assumption for the FMM is the causality and therefore we are restricted to
acute triangulations. In [KS98, Section 4.2] there is an extension of FMM to non-acute
triangulations. The main idea is that we split an obtuse triangle into two acute triangles
and afterwards we use the acute triangles for the update scheme. These two acute
triangle are sometimes called virtual triangles and the corresponding update is called
virtual update.

The idea for the construction of the virtual triangles is to search a node that lies in the
so called splitting section. The splitting section of an obtuse angle ∠(ACB) is defined
as the set of points x such that 0 ≤ ∠(ACx) ≤ π/2 and 0 ≤ ∠(xCB) ≤ π/2, see also
figure 2.1.3. In essence the virtual triangles have the effect that one locally coarsens the
mesh such that the coarsened mesh is acute. Thus we have a lack of accuracy but we
still can use the fast single pass method.

We want to emphasize that using virtual updates one does not solve the discrete
system for the eikonal equation [Ras07, Section 3.3.3] anymore. Nevertheless this
method has been widely used because it gives good results with low computational
effort.

There is another issue on which I did not find any discussions in the literature: Using
virtual updates, it can happen that the updates are not monotone because we use points
which are not neighbours for the update. In Section 3.4.3 we give an example for this
and show some effects.

2.1.4 FMM for triangulations and the anisotropic eikonal equation

Now we briefly recall how one can extend the fast marching method to handle the
anisotropic eikonal equation (1.3.8), see also [BR06, Section 7]. This extension will be
used in section 2.6 and chapter 3. As in the case of the isotropic eikonal equation we
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2 Generalized fast marching method

get the update scheme

(ΛU)(C) = min
1≤i≤m

Ui with

Ui = min
y∈Ji

(
U(y) + |C− y|M(C)

)
.

where Ji denotes the edge of triangle τi opposite to C and the norm and scalar product
induced by a symmetric positive definit matrix M are |p|M =

√
〈p, p〉M with 〈p, p〉M =

〈Mp, p〉.
The idea to calculate this minimum is that we transform the triangle τi with the matrix

M(C)−1/2. On this transformed triangle we solve the isotropic eikonal equation and
therefore we can apply the explicit update formula (2.1.5). Setting 〈p, q〉C = 〈p, q〉M(C)−1 ,
|p|C = |p|M(C)−1 , cα = cos(α) and cβ = cos(β) we gain the concrete update formula

∆ =
U(B)−U(A)

|B− A|C
cα =

〈C− A, B− A〉C
|C− A|C · |B− A|C

cβ =
〈C− B, A− B〉C
|C− B|C · |A− B|C

Ui =


U(A) + |C− A|C if cα ≤ ∆
U(B) + |C− B|C if ∆ ≤ −cβ

U(A) +
(

cα∆ +
√
(1− c2

α)(1− ∆2)
)
|C− A|C else.

(2.1.7)

We must ensure that the transformed triangle M−1/2τi is still acute to use fast
marching. If this is not the case we have to search in the transformed triangulation for
suitable virtual triangles.

As we can see in (2.1.7), we need only M(C)−1 but not M(C)−1/2 for our calculations,
and M(C)−1 is very easy to compute.

2.2 GFMM on structured grids

In this section we recall the two versions of the generalized fast marching method
(GFMM) as they were proposed by Carilini et al. in [CFFM08] and Forcadel in [For09].
In the first subsection 2.2.1, we write down the first version of GFMM and give also
some results which have been proved in [CFFM08]. In the second subsection 2.2.2 we
recall the modified version of the GFMM (mGFMM) which was presented in [For09].
This method fulfills a comparison principle and we discuss some of the differences. We
will refer to this section in section 2.3 where we use the ideas of the two versions of
GFMM to extend these algorithms to unstructured grids.

There are two main ideas in the construction of the GFMM. The first idea is that one
separates the information whether a point lies inside or outside from the information
about the time of the last visit at a point of the front. The other idea is to use a double
narrow-band to keep track of the front. One narrow-band deals with the part of the
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2.2 GFMM on structured grids

front pointing outwards. The other narrow-band keeps track of the nodes pointing
inwards. There are also some more minor subtle issues one has to keep in mind. We
will take up these points later on.

2.2.1 GFMM

2.2.1.1 Preliminary definitions

We consider a lattice Q := {xI = (xi1 , . . . xid) = (i1∆x, . . . , id∆x) : I = (i1, . . . , id) ∈ Zd}
with stepsize in space ∆x > 0; further we need a time step ∆t > 0.

Definition 2.2.1 ([CFFM08, Definition 2.1]):
We define the neighbourhood of the node I ∈ Zd as the set

V(I) := {K ∈ Zd : |K− I| ≤ 1}.
Definition 2.2.2 ([CFFM08, Definition 2.2]):
Given the speed cn

I := c(tn, xI), we define the regularized speed by the function

ĉn
I :=

{
0 if there exists K ∈ V(I) such that (cn

I cn
K < 0) and |cn

I | ≤ |cn
K|

cn
I otherwise

Definition 2.2.3 ([CFFM08, Definition 2.3]):
Let E ⊂ Zd. We define the numerical boundary ∂E of E as the set

∂E := V(E) \ E,

with
V(E) := {K ∈ Zd : ∃I ∈ E such that K ∈ V(I)}.

Definition 2.2.4 ([CFFM08, Definition 2.4]):
Given a field θn

I with values +1 and −1. We define the two phases

Θn
± = {I ∈ Zd : θn

I = ±1}
and the fronts

Fn
± := ∂Θn

∓ and Fn := Fn
+ ∪ Fn

−.

The definition of Fn
± can also be written as

Fn
± = {I ∈ Zd : θn

I = ±1 and ∃K ∈ V(I) with θn
K = −θn

I }.
We use some further notations for the algorithm, namely

±g ≥ 0 for I ∈ F±

means
+g ≥ 0 for I ∈ F+ and − g ≥ 0 for I ∈ F−

and for the min and max operators we define

min
±
{0, g±} := min{0, g+, g−} and max

±
{0, g±} := max{0, g+, g−}.
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θ = −1

θ = 1

Figure 2.2.1: The front F− (blue) and F+ (green) in the GFMM.

2.2.1.2 Description of the algorithm

The algorithm generates an increasing sequence of times (tn)n∈N with t0 = 0. The
phase parameter θn

I takes the values +1 and −1 and indicates thereby whether the
point xI at time tn is inside or outside the front. Thus θn

I should be viewed as an
approximation to the solution θ of (2.0.1), see also theorem 2.2.9.

We have to introduce some more variables to state the algorithm. First, un
I is defined

for all nodes I which the front has already passed. This value can be interpreted as
the time when the front Fn reaches the node I. The variable ûn

I is equal to un
I if I ∈ Fn.

Thus it is just a restriction of u to Fn. ũn
I is the tentative time of the node I; this is the

time the front may reach the node I. Then t̃n is the minimum of all ũn
I , so it give us

the time when the front Fn reaches its next point. We have to restrict the value of t̃n, to
ensure convergence and this restricted value will be denoted by t̂n.

Now we list the algorithm GFMM:

Initialization

1. Set n = 1.

2. Initialize the field θ0

θ0 =

{
1 for xI ∈ Ω0,
−1 elsewhere.

3. Initialize the time on F0 by u0
I = 0 for all I ∈ F0 and set t0 = 0.

Main cycle

4. Initialize ûn−1 everywhere on the grid by

ûn−1
±,I =

{
un−1

I for I ∈ Fn−1
± ,

∞ elsewhere.
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2.2 GFMM on structured grids

5. Compute ũn−1 on Fn−1:
For I ∈ Fn−1

± do

a) if ±ĉn−1
I ≥ 0 then ũn−1

I = ∞

b) if ±ĉn−1
I < 0 then we compute ũn−1

I as the solution of the following second
order equation:

d

∑
k=1

(
max
±

(
0, ũn−1

I − ûn−1
+,Ik,±

))2

=
(∆x)2∣∣∣ĉn−1

I

∣∣∣2 if I ∈ Fn−1
− ,

d

∑
k=1

(
max
±

(
0, ũn−1

I − ûn−1
−,Ik,±

))2

=
(∆x)2∣∣∣ĉn−1

I

∣∣∣2 if I ∈ Fn−1
+ ,

where Ik,± = (i1, . . . , ik−1, ik ± 1, ik+1, . . . , id).

6. t̃n = min
{

ũn−1
I : I ∈ Fn−1

}
.

7. t̂n = min {t̃n, tn−1 + ∆t}.

8. tn = max
{

tn−1, t̂n
}

.

9. If tn = tn−1 + ∆t and tn < t̃n go to step 4 with n := n + 1 and{
un

I = un−1
I for all I ∈ Fn := Fn−1,

θn
I = θn−1

I for all I ∈ Zd.

10. Initialize the new accepted points

NAn
± =

{
I ∈ Fn−1

± : ũn−1
I = t̃n

}
, NAn = NA+ ∪ NA−.

11. Reinitialize θn
I

θn
I =


−1 for I ∈ NAn

+,
1 for I ∈ NAn

−,
θn−1

I elsewhere.

12. Reinitialize un on Fn:

a) If I ∈ Fn \V(NAn), then un
I = un−1

I .

b) If I ∈ NAn, then un
I = tn.

c) If I ∈ (Fn−1 ∩V(NAn)) \ NAn, then un
I = un−1

I .

d) If I ∈ V(NAn) \ Fn−1, then un
I = tn.

13. Set n := n + 1 and go to 4.
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Figure 2.2.2: The discrete evolution of remark 2.2.5. The front F+ (green) and F− (blue)
using the velocity c instead of ĉ.

We present now some remarks on the GFMM.

Remark 2.2.5 (Using ĉ instead of c):
In this remark we want to explain why to use ĉ instead of c. To do so we adapt (and
correct) an example published in a non-reviewed lecture note by Forcadel1. Let us
consider an 1-D example of the GFMM and we use the speed c instead of ĉ. Now
assume that we use the space step ∆x and that we pick up a certain point xI . The
time-independent speed2 c and the evolution θ at the beginning should be

θ(0, x) =

{
1 for x ≤ xI ,
−1 for x > xI ,

c(x) =

{
−δ for x ≤ xI ,
δ for x > xI .

Further we set ∆t = ∆x/δ. The evolution can be viewed in figure 2.2.2. At time t1 = ∆t
both points xI and xI+1 are accepted. In the next step at time t2 = t1 + ∆t the points
xI−1 and xI+2 are accepted, and so on. One sees that the discrete evolution splits and
develops a topological change that does not appear in the analytic evolution. If we
use ĉ then we have ĉI = 0 and ĉI+1 = 0. Then the front will not move as we can see
in figure 2.2.3. Thus the regularization of c prevents a separation of the evolution that
would not appear in the analytic evolution.

Remark 2.2.6 (Using t̃, t̂ and t):
In Step 6 of the GFMM we define t̃ as the minimum of all ũ. This step corresponds to
the selection of points with minimal trial value in the FMM.

Step 7 assures that the progress in time does not use too large time steps. Just assume,
that we reach in the algorithm a situation at which ĉ ≡ 0. Then t̃ is computed to ∞ and

1http://uma.ensta.fr/work/labo_work/files/zidani/NOTES_de_COURS_CEA-EDF-INRIA08/

LectureNotes_Forcadel.pdf section 3 on page 6. Last access: 03. August 2011
2Forcadel defines the speed c at point xI by c(xI) = δ. But then this example would not work any more.

Probably this is just a typesetting error.
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Figure 2.2.3: The discrete evolution of remark 2.2.5. The front F+ (green) and F− (blue)
using the velocity ĉ.

the algorithm would terminate, though the analytic evolution does not necessarily stop
for all time as the discrete evolution would do.

On the other hand step 8 enforces that the sequence of times (tn)n∈N increases and
therefore this could be regarded as a sequence of physical time. Such a situation can
happen if at a point xI the speed grows rapidly, so ĉn−1

I � ĉn
I .

We give now some interpretations and comments on the algorithm. We use this
interpretation in section 2.3 to construct the new algorithm.

• The aim of steps 1 to 3 is to initiate the data for the computation.

• The parameter ∆x is responsible for the resolution in space. ∆t together with step
7 ensures, that the speed c is sampled at least after the period of time ∆t.

• In step 12 the variable un
I is updated with the physical time tn and not with its

tentative time t̃n. Thus the sequence (tn)n∈N is monotone.

• The two variables ûn
±,I are equal to ∞ if the node I is in not in the narrow-band

Fn
±. This means that we restrict the information about un

I in a suitable way for
computing and everything outside the front Fn is unimportant.

• The update scheme in step 5 is just the d-dimensional version of the upwind
discretization of Rouy and Tourin [RT92].

• The steps 9 to 12 are meant to update the information about the narrow-band
such that we keep track of the front.

• One has to update the variables Fn, Θn and ûn in an efficient way to maintain
optimal complexity.

• One can find in the preprint [CFFM, Section 3] of [CFFM08] another motivation
for the truncation of t.

31



2 Generalized fast marching method

2.2.1.3 Properties

We cite here two important properties of the GFMM. The first one is a weak comparison
principle and the other one is the convergence theorem.

Proposition 2.2.7 ([CFFM08, Proposition 3.2]):
We denote by un

I (resp., vn
I ) the numerical solution at the point (tn, xI) of the GFMM algorithm

with velocity cu (resp., cv). We assume that there exists T > 0 such that for all (t, x) ∈
[0, T]×Rd

inf
s∈[t−∆t],s≥0

cv(s, x) ≥ sup
s∈[t−∆t],s≥0

(cu(s, x))+

where f+ is the positive part of f . We assume that

{θ0
u = 1} ⊂ {θ0

v = 1} and v0 = u0 = 0.

We define m and k such that {
tm ≤ T < tm+1,
sk ≤ T < sk+1,

where (tm)m and (sm)m are the sequences of time constructed by the GFMM algorithm with
velocity cu and cv, respectively. We then consider

vI =


v0

i if θ0
v,I = 1,

vk
I if I ∈ NAk

v for some k ≤ k + 1
sk+1 if θk

v,I = −1.

Then, ∀l ≤ m, ∀I ∈ NAl
u, we have vI ≤ ul

I .

In subsection 2.3.1.3 we will prove an analogous comparison principle for the GFT
algorithm.

Now we will cite the convergence theorem for the GFMM. To do this we must
introduce some notational conventions. The sequence of physical times (tn)n∈N defined
in step 8 of the algorithm is non-decreasing. We can extract a strictly increasing
sub-sequence (tkn)n∈N such that

tkn = tkn+1 = · · · = tkn+1−1 < tkn+1 .

Till now we approximated the function θ only at the grid points and therefore we have
to extend this definition. Denote by Sn

I the square cell Sn
I := [tkn , tkn+1 [×[xI , xI + ∆x[

with the positive quadrant [xI , xI + ∆x[= ∏d
α=1[xiα

, xiα
+ ∆x[. Furthermore we denote

by ε the couple ε := (∆t, ∆x).
Now we can define the extension of θ by

θε(t, x) = θ
kn+1−1
I if (t, x) ∈ Sn

I .

and further the half-relaxed limits

θ
0
(t, x) = lim sup

ε→0, (s,y)→(t,x)
θε(s, y), θ0(t, x) = lim inf

ε→0, (s,y)→(t,x)
θε(s, y).

For this extended function a comparison principle also holds, namely
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0 · ∆x 1 · ∆x 2 · ∆x
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Figure 2.2.4: Evolution for cv(left) and cu(right) in remark 2.2.10. The front F+(green)
and F−(blue).

Corollary 2.2.8 ([CFFM08, Corollary 3.5]):
Under the assumptions of proposition 2.2.7 we have for all (t, x) ∈ [0, T]×Rd

θε
u(t, x) ≤ θε

v(t, x). (2.2.1)

For the proof of convergence we need also an assumption about the velocity c and
the domain Ω0 :

(A) The velocity c ∈W1,∞([0, T]×Rd) fulfills for some constant L > 0 the condition
|c(t, x)− c(s, y)| ≤ L(|s− t| + |x− y|). Furthermore Ω0 is a C2 open set, with
bounded boundary ∂Ω0.

Theorem 2.2.9 ([CFFM08, Theorem 2.5]):
Under assumption (A), θ

0
(resp., θ0) is a viscosity subsolution (resp., supersolution) of (2.0.1).

In particular, if (2.0.1) satisfies a comparison principle, then θ
0
= (θ0)∗ and (θ

0
)∗ = θ0.

We would like to comment that the assumption that (2.0.1) satisfies a comparison
principle is equivalent to the non-empty interior condition. Therefore we have in
general no possibility to ensure a priori the uniqueness of the solution. See also section
1.5 for this point.

Remark 2.2.10:
In this remark we will give an explicit example of two evolutions which does not fulfill
the comparison principle. This example is adapted from [For09, Section 5.2], and will
be continued in remark 2.2.14.

Let us assume that ∆t and ∆x small enough. We look at the lattice Q = {xi :=
i∆x, i ∈ Z}. We choose the the speed cv and cu with

cv(t, x) =

{
max(0, min(1, 4

3 x)) if t ≤ 1,
min(0, max(−1,−2x)) if t ≥ 17

16 ,
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2 Generalized fast marching method

and

cu(t, x) =

{
max(0, min(1, x)) if t ≤ 1,
min(0, max(−1,−3x)) if t ≥ 17

16 .

We interpolate cv and cu linear for constant x between 1 ≤ t ≤ 17
16 . Thus we gain3

cv, cu ∈ C0,1([0, T]×R).
The initial condition is

θ0
v,i = θ0

u,i =

{
1 if i ≤ 0
−1 if i ≥ 1

First we compute the evolution for cv. We gain that point 1 is accepted at time t1 = 3
4 .

Then we set v1 = v2 = t1 due to step 12 of GFMM. In the next iteration the tentative
value of point 2 becomes ṽ2 = t1 +

3
8 = 9

8 > 17
16 . Thus point 2 will not be accepted

because the speed has previously changed its sign. If ∆t is small enough point 1 will
be accepted again at time t2 = t1 +

∆x
2∆x = 5

4 .
Now let us take a look at the evolution governed by the speed cu. Point 1 is accepted

at time t1 = 1 and we set u1 = u2 = 1. Point 2 will not be accepted because the speed
has previously changed its sign. Now the front turns back and point 1 will be accepted
again at time t2 = t1 +

∆x
3∆x = 1 + 1

3 = 4
3 > 5

4 .
So we have in the interval [ 5

4 , 4
3 ] that

−1 = θε
v(t, ∆x) < θε

u(t, ∆x) = 1,

which contradicts the comparison principle 2.2.8 for the GFMM.

2.2.2 Modified GFMM

Forcadel, one of the authors of the GFMM, published in a succeeding paper [For09]
a modified version of the GFMM, which we call mGFMM, that fulfills a stronger
comparison principle.

2.2.2.1 Preliminary definitions

Before we can present the mGFMM we give some preliminary definitions. We still work
on the same lattice Q as for the GFMM and the definitions 2.2.1 to 2.2.4 can be reused.

We define the narrow-bands NBn
± at step n via

NBn
+ := Fn

+ ∩ {I ∈ Zd : ĉn
I < 0}, NBn

− := Fn
− ∩ {I ∈ Zd : ĉn

I > 0}

and
NBn := NBn

+ ∪ NBn
−.

In NBn we store the points which can be reached directly from the front. In all other
points in Fn \ NBn the direction of the speed points to the wrong side and therefore
the front cannot propagate.

3The restriction −1 ≤ cv, cu ≤ 1 is just to ensure that cv and cu are Lipschitzian.
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θ = −1

θ = 1

Figure 2.2.5: The front F− (blue) and F+ (green) in the mGFMM. The points of NB−
(blue filled circles) and NB+ (green filled circles) are part of the front F−
and F+. In the grey region is the speed c positive, in the white region
negative.

We further introduce the notion of useful points for some point K, that is

U n(K) = {I ∈ V(K) : θn
I = −θn

K}, U n =
⋃

K∈NBn

U n(K).

The meaning of the useful points U (K) is that one uses only the information of these
neighbours of K to compute a tentative value for the arrival time of K. Furthermore we
introduce the useful time un

I→K. This time un
I→K can be interpreted as the time when

the front Fn begin to move from I to K. This meaning is emphasized in remark 2.2.13.
In an algorithmic view the useful times uI→K replace the times û± used in the GFMM.

2.2.2.2 Description of the algorithm

The mGFMM is very similar to the GFMM. First we state the modified algorithm and
afterwards we discuss the differences.

Initialization

1. Set n = 1.

2. Initialize the field θ0 as

θ0 =

{
1 for xI ∈ Ω0,
−1 elsewhere.

3. Initialize the time t0 = 0 and set for points I

u0
I→K =

{
t0 if I ∈ U 0(K) and K ∈ NB0

+∞ elsewhere.
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2 Generalized fast marching method

Main cycle

4. Compute ũn−1 on NBn−1

Let I ∈ NBn−1, then we compute ũn−1
I as the solution of the following second

order equation:

d

∑
k=1

(
max
±

(
0, ũn−1

I − un−1
Ik,±→I

))2

=
(∆x)2∣∣∣ĉn−1

I

∣∣∣2
where Ik,± = (i1, . . . , ik−1, ik ± 1, ik+1, . . . , id).

5. t̃n = min
{

ũn−1
I : I ∈ NBn−1

}
.

6. Truncate t̃n
tn = max {tn−1, min {t̃n, tn−1 + ∆t}}.

7. If tn = tn−1 + ∆t and tn < t̃n go to step 10 with θn = θn−1.

8. Initialize the new accepted points

NAn
± = {I ∈ NBn−1

± : ũn−1
I = t̃n}, NAn = NAn

+ ∪ NAn
−.

9. Reinitialize θn
I

θn
I =

{
−θn−1

I for I ∈ NAn,
θn−1

I otherwise.

10. Reinitialize un
I→K

un
I→K =

{
min{un−1

I→K, tn} if I ∈ U n(K) and K ∈ NBn

+∞ otherwise.

11. Set n := n + 1 and go to 4.

In this modified GFMM there is no need to update un at the whole front Fn. It
suffices to update only these points which are useful for the propagation in the next
step. Further, it is an important new idea that the time un

I→K at a point I depends also
on its neighbours. Of course, one has to update the information about Fn and NBn;
this is not explicitly stated but should be done in an efficient way, otherwise one loses
optimal complexity.

Remark 2.2.11:
In step 5 of the GFMM we distinguish two cases depending on the sign of ĉ to ensure
that the evolution moves upwind. In the mGFMM there is no distinction on the sign of
ĉ in step 4. This is already implicitly done in the definition of NB. The narrow-band is
chosen in such a way that only upwind points are regarded and therefore we do not
need to treat two cases.
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2.2 GFMM on structured grids

Remark 2.2.12:
We changed step 7 of mGFMM to get a working algorithm. In the original work [For09],
an application to image segmentation [FLGG08] and a preprint for the usage of the
mGFMM in dislocation dynamics [CFM] step 7 was formulated as follows:

7. If tn = tn−1 + ∆t and tn < t̃n go to step 4 with n := n + 1, θn = θn−1 and
un = un−1.

With this definition of step 7 it is possible that a front cannot change its direction. An
explicit example is given in the following remark 2.2.13

Remark 2.2.13:
In this remark we want to emphasize the meaning of useful points and the correct
choice of step 7. This is done by a small explicit calculation that is loosely inspired by
2.2.10, see also [For09, Section 5.2].

Assume ∆t and ∆x small enough and regard the lattice Q = {xi := i∆x, i ∈ Z}. Let
us define the speed

c(t, x) =

{
max(0, min(1, 4

3 x)) if t ≤ 1,
−1 if t ≥ 17

16 ,

and interpolate c linear for constant x between 1 ≤ t ≤ 17
16 . Thus we gain4 c ∈

C0,1(R× [0, T]).
The initial condition is

θ0
i =

{
1 if i ≤ 0,
−1 if i ≥ 1.

Now we compute the evolution governed by c.
First, we have F0

+ = {0}, F0
− = {1}. Furthermore it holds NB0

+ = ∅ because ĉ0
0 = 0

and NB0
− = {1} because ĉ0

1 = 4
3 ∆x > 0. Thus we get U 0 = {0} as well as u0→1 = 0, all

other values are u·→· = ∞.
The first point that will be accepted is i = 1 at time t1 = 3

4 . We can number the new
state with n = 1 because before t1 nothing else would change.

Now we have F1
+ = {1}, F1

− = {2}. We get NB1
+ = ∅ because ĉ1

1 = 4
3 ∆x ≥ 0 and

NB1
− = {2} because ĉ1

2 = 8
3 ∆x > 0. Thus U 1 = {1} and this leads to u1→2 = 3

4 , and all
other values u·→· = ∞.

The tentative value of point 2 is

ũ1
2 =

3
4
+

2∆x
4
3 · 2∆x

=
9
8
>

17
16

.

Thus point 2 cannot be accepted because the speed changes its sign at time t with
1 ≤ t ≤ 17

16 .
We can now assume that for a time t2 with 1 ≤ t2 ≤ 17

16 we have that c(x, t2) = −1 < 0
for all x ∈ R. Due to the change of the sign of the velocity, the sets NB and U changes
also. Thus we have at state n = 2 now the following:

4The restriction of c is just to ensure that c is Lipschitzian.

37



2 Generalized fast marching method
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Figure 2.2.6: Evolution for cv(left) and cu(right) in remark 2.2.14. The front F+(green)
and F−(blue) are displayed as also the points of NB+ (green filled circles)
and NB− (blue filled circles).

The front has not changed: F2
+ = {1}, F2

− = {2}, but for the narrow-band we get
NB2

+ = {1} because ĉ2
1 < 0 and NB0

− = ∅ because ĉ2
2 < 0. Thus U 1 = {2} and due

to the update of the useful times at step 10 we get u2→1 = t2. All other values are
u·→· = ∞.

Therefore the tentative value for point 1 is now ũ2
1 = t2 +

∆x
1 < ∞ and point 1 will be

accepted again. So the algorithms keeps on working.
If we use the original description of the mGFMM we would have in state n = 2 the

same front and narrow-band, but the useful times would not be updated and we would
still have u1→2 = 3

4 . All other useful times would still be u·→· = ∞ (i.e. u2→1 = ∞).
Thus we would get for the tentative value for point 1 just ũ2

1 = ∞. The algorithm would
terminate because nothing else could change anymore.

Remark 2.2.14:
We continue here remark 2.2.10. Let us assume that we have the same speed cv and cu
and also the same initial condition θ0

v = θ0
u, but we use now the mGFMM.

The evolution of θv driven by cv is as follows: We get that point 1 is accepted at
tv
1 = 3

4 and point 2 cannot be accepted as above. We can assume that the velocity cv

changes its sign at time 1 ≤ tv
2 ≤ 17

16 . Thus point 1 will be accepted again at time
tv
3 = tv

2 +
∆x

2∆x = tv
2 +

1
2 .

For the evolution of u we get that point 1 is accepted at time tu
1 = 1 and point

2 cannot be accepted like above. Now we can assume that the speed changes its
sign at time 1 ≤ tu

2 ≤ 17
16 with |tv

2 − tu
2 | ≤ 1

17 . So point 1 is accepted again at time
tu
3 = tu

2 +
∆x

3∆x = tu
2 +

1
3 < tv

3. Thus we see that this evolution copes with the comparison
principle.

2.2.2.3 Properties

We cite here again two important properties of the mGFMM. The first one is the
comparison principle. The other one is the convergence of this scheme. We use the
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same definitions for θε, θ
0

and θ0 as for the GFMM.
Before we can state the comparison principle we first present a definition about

comparable and compared times.

Definition 2.2.15 ([For09, Definition 3.1]):
Let T > 0 and let us consider two velocities cu and cv. We denote by (tn)n and (un

I→K)n (resp.
(sm)m and (vm

I→K)m) the sequences of times and of useful times associated to the velocity cu
(resp. cv). We say that sm and tn are comparable if the property C(tn, sm) holds true:

C(tn, sm) is true if


tn ≤ sm < tn+1 and sm < sm+1

or
sm ≤ tn < sm+1 and tn < tn+1

We say that θm
v and θn

u are compared and we denote this by θm
v � θn

u if for all I ∈ Zd,
θm

v,I > θn
u,I ,

or


θm

v,I = θn
u,I =: σI = ±1

and (with some obvious notation)
σIun

I→K ≥ σIvm
I→K for all K ∈ V(I) \ {I} such that I ∈ U n

u (K) ∩ Um
v (K).

If the times tn and sm are comparable then they are part of the strictly increasing
sequence of times which are used in the definition of θε.

We will use an analogous definition later on in subsection 2.4 for the proof of a
comparison principle for the mGFT algorithm. Now we cite here the comparison
principle:

Theorem 2.2.16 ([For09, Theorem 3.4]):
Let T > 0 and consider the two velocities cu and cv. Given θ0

u,I (resp. θ0
v,I) for all I ∈ Zd and

u0
I→K for all I ∈ U 0

u(K), K ∈ NB0
u (resp. v0

I→K for all I ∈ U 0
v (K), K ∈ NB0

v), we assume that

t0 := sup
I∈U 0

u (K),K∈NB0
u

u0
I→K ≤ T,(

resp. s0 := sup
I∈U 0

v (K),K∈NB0
v

v0
I→K ≤ T

)

for a given T ≥ 0.
We also assume that the two velocities satisfy for all (t, x) ∈ [min(t0, s0), T − ∆t]×Rd

inf
s∈[t,t+∆t]

cv(s, x) ≥ sup
s∈[t,t+∆t]

cu(s, x).

If C(t0, s0) and θ0
v � θ0

u, then
θε

v(t, x) ≥ θε
u(t, x)

for all (t, x) ∈ [max(t0, s0), T]×Rd.

This comparison principle is then used to prove the convergence result which we cite
here. Here the same assumptions (A) are used as for theorem 2.2.9.
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Theorem 2.2.17 ([For09, Theorem 3.6]):
Under assumption (A), θ

0
(resp., θ0) is a viscosity subsolution (resp., supersolution) of (2.0.1).

In particular, if (2.0.1) satisfies a comparison principle, then θ
0
= (θ0)∗ and (θ

0
)∗ = θ0 is the

unique discontinuous viscosity solution of (2.0.1).

2.3 Generalized fast marching method for unstructured
triangulations

In this section I propose an adaption of the GFMM to unstructured triangulations (GFT).
Taking a closer look at the GFMM (or the mGFMM) we see that this algorithm deals
mainly with the concept of neighbourhood. So we discretize R2 not with a regular
lattice Q but with an unstructured triangulation. Furthermore we do not use the
4-point neighbourhood any more but the concept of adjacent nodes in the triangulation.
Another important point is the correct choice of an update formula like the one used
in step 5 of GFMM and step 4 of mGFMM. Here we use the update scheme of [BR06].
See also subsection 2.1.2 for a short overview of the update formula for the eikonal
equation for unstructured triangulations.

This section is organized as follows: In the first subsection 2.3.1 we propose the GFT
algorithm. Therein, we give some preliminary definitions, propose the algorithm and
then state and proof a weak comparison principle. In subsection 2.3.2 we present the
modified GFT (mGFT) with the needed definitions and the algorithm. We propose also
a comparison principle which we state and prove in section 2.4. The last subsection
2.3.3 is devoted to some comments on implementation and complexity of GFT and
mGFT.

2.3.1 First version of GFT

The GFT is an adaption of the GFMM to unstructured grids. The definitions and the
description of the GFT are analogous to the GFMM.

2.3.1.1 Definitions for GFT

Let us consider an acute triangulation T of R2. We denote by the N the set of nodes
of T and by E the set of edges of T . We can interpret a triangulation of R2 as an
undirected graph and therefore E can been seen as a subset of {{I, K} : I, K ∈ N}. Like
in the GFMM we also use a time step ∆t > 0. The following definitions are analogously
to the definitions 2.2.1 to 2.2.4 for the GFMM.

Definition 2.3.1:
We define the neighbourhood of the node I ∈ N as the set

V(I) := {K ∈ N : {I, K} ∈ E}.
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θ = −1

θ = 1

Figure 2.3.1: The front F− (blue) and F+ (green) in the GFT.

Definition 2.3.2:
Given the speed cn

I := c(tn, xI), we define the regularized speed by the function

ĉn
I :=

{
0 if there exists K ∈ V(I)such that (cn

I cn
K < 0) and |cn

I | ≤ |cn
K| ,

cn
I otherwise.

Definition 2.3.3:
Let E ⊂ N . The numerical boundary ∂E of E is the set

∂E := V(E) \ E,

with
V(E) := {K ∈ N : ∃I ∈ E such that K ∈ V(I)}.

Definition 2.3.4:
Given a field θn

I with values +1 and −1. We define the two phases

Θn
± = {I ∈ N : θn

I = ±1}

and the fronts
Fn
± := ∂Θn

∓ and Fn := Fn
+ ∪ Fn

−.

We also use the same notions ±g ≥ 0 for I ∈ F±, min±{0, g±} and max±{0, g±} as
in the GFMM.

A typical situation of a front F is displayed in figure 2.3.1. Compare it also to figure
2.2.1 where we used the same situation but a regular lattice.
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2.3.1.2 Algorithm GFT

Now the GFT can be written formally in exactly the same way as the GFMM except
step 5 where we must use an appropriate extension of the update formula of Rouy
and Tourin to unstructured grids. For this we use the Hopf-Lax updates described in
subsection 2.1.2.

Initialization

1. Set n = 1.

2. Initialize the field θ0 as

θ0 =

{
1 for xI ∈ Ω0,
−1 elsewhere.

3. Initialize the time on F0 by u0
I = 0 for all I ∈ F0.

Main cycle

4. Initialize ûn−1 everywhere on the grid by

ûn−1
±,I =

{
un−1

I for I ∈ Fn−1
± ,

∞ elsewhere.

5. Compute ũn−1 on Fn−1

For I ∈ Fn−1
± do

a) if ±ĉn−1
I ≥ 0 then ũn−1

I = ∞.

b) if ±ĉn−1
I < 0 then we compute ũn−1

I via the Hopf-Lax update. We have to
distinguish two cases:

• if I ∈ Fn−1
− , then ũn−1

I = (Λûn−1
+ )(I) with the speed

∣∣∣ĉn−1
I

∣∣∣.
• if I ∈ Fn−1

+ , then ũn−1
I = (Λûn−1

− )(I) with the speed
∣∣∣ĉn−1

I

∣∣∣.
6. t̃n = min

{
ũn−1

I , I ∈ Fn−1
}

.

7. t̂n = min {t̃n, tn−1 + ∆t}.

8. tn = max
{

tn−1, t̂n
}

.

9. If tn = tn−1 + ∆t and tn < t̃n go to 4 with n := n + 1 and{
un

I = un−1
I for all I ∈ Fn := Fn−1,

θn
I = θn−1

I for all I ∈ N .

10. Initialize new accepted points
NAn

± =
{

I ∈ Fn−1
± : ũn−1

I = t̃n

}
, NAn = NA+ ∪ NA−
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11. Reinitialize θn
I

θn
I =


−1 for I ∈ NAn

+,
1 for I ∈ NAn

−,
θn−1

I elsewhere.

12. Reinitialize un on Fn

a) If I ∈ Fn \V(NAn) then un
I = un−1

I .

b) If I ∈ NAn then un
I = tn.

c) If I ∈ (Fn−1 ∩V(NAn)) \ NAn then un
I = un−1

I .

d) If I ∈ V(NAn) \ Fn−1 then un
I = tn.

13. Set n := n + 1 and go to step 4.

The interpretation for all variables are exactly the same as for the GFMM. Especially
the usage of ĉ, t̃ and t̂ is justified in the same way. The remarks 2.2.5, 2.2.6 and 2.2.10
work also for the GFT by embedding the one-dimensional situation in R2.

2.3.1.3 Comparison principle for GFT

In this subsection we state and prove a weak comparison principle which is analogous
to the one for the GFMM, see also proposition 2.2.7.

Proposition 2.3.5 (Weak comparison principle for GFT):
We denote by un

I (resp., vn
I ) the numerical solution at the point (tn, xI) of the GFT algorithm with

velocity cu (resp., cv). We assume that there exists T > 0 such that for all (t, x) ∈ [0, T]×R2

inf
s∈[t−∆t],s≥0

cv(s, x) ≥ sup
s∈[t−∆t],s≥0

(cu(s, x))+

where f+ is the positive part of f . Further we assume that

{θ0
u = 1} ⊂ {θ0

v = 1} and v0 = u0 = 0.

We define m and k such that {
tm ≤ T < tm+1,
sk ≤ T < sk+1,

where (tm)m and (sm)m are the sequences of time constructed by the GFT algorithm with
velocity cu and cv, respectively. We then consider

vI =


v0

i if θ0
v,I = 1,

vk
I if I ∈ NAk

v for some k ≤ k + 1
sk+1 if θk

v,I = −1.

Then, ∀l ≤ m, ∀I ∈ NAl
u, we have vI ≤ ul

I .
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The proof of this proposition is motivated by the proof of the corresponding result
for the GFMM, see also [CFFM08, Proof of Proposition 3.2].

Proof. For a proof by contradiction we assume that there exists a minimal index µ with
I ∈ NAµ

u such that
uµ

I < vI . (2.3.1)

Now we define κ such that I ∈ NAκ
v. In the case that θk

v,I = −1 we set κ = k + 1, that
means the point I has not been accepted till the time T. Thus we know that

tµ = uµ
I < vI = sκ. (2.3.2)

We distinguish now two cases.

Case 1: I ∈ NAµ
+,u ⊂ Fµ−1

+,u
Either we have I ∈ {θ0

v = 1}, then we obtain vI = v0
I = 0 = u0

I ≤ uµ
I , which

contradicts (2.3.1), or we have instead I ∈ {θ0
v = −1} then we have by the

assumption {θ0
u = 1} ⊂ {θ0

v = 1} that θ0
u = −1. Therefore we know that there

exists n < µ with
θn−1

u,I = −1 and θn
u,I = 1.

Thus we deduce un
I ≥ vI > uµ

I ≥ un
I , which is absurd.

Case 2: I ∈ NAµ
−,u ⊂ Fµ−1

−,u
We prove the second case in four steps.

(i) In the first step, we show that for all K ∈ V(I) \ {I}

ûµ−1
+,K ≥ v̂κ−1

+,K (2.3.3)

holds. We may assume that ûµ−1
+,K < ∞, because otherwise (2.3.3) is

trivially true.

This means that K ∈ Fµ−1
+,u , see step 4 of the algorithm. Thus we have

tµ ≥ ûµ−1
+,K ≥ vK. (2.3.4)

The first inequality comes from the fact that the sequence tn is non-
decreasing and the second inequality is due to the minimality of µ in
(2.3.1).

Now we must show vK ≥ v̂κ−1
+,K . If we have v̂κ−1

+,K < ∞ then we know
K ∈ Fκ−1

+,v . Thus K has been already accepted and therefore we get
vK = v̂κ−1

+,K , because v is a non-negative velocity and a point can only be
passed once by the front. If instead v̂κ−1

+,K = ∞, then we know θκ−1
v,K = −1.

Thus we get vK ≥ sκ because point K has not been accepted, but this
contradicts vK ≤ tµ < sκ by (2.3.2). So the case v̂κ−1

+,K = ∞ is not possible.

Thus we have showed (2.3.3) and the first step is completed.
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(ii) In this step we show for all K ∈ V(I) ∩ Fµ−1
+,u

sk∗ ≥ v̂κ−1
+,K (2.3.5)

with
k∗ := sup{k, sk ≤ tµ} < κ.

With (2.3.3) and (2.3.4) from step (i) we have

tµ ≥ ûµ−1
+,K ≥ v̂κ−1

+,K .

Now let us assume that ∞ > v̂κ−1
+,K > sk∗ , the case ∞ = v̂κ−1

+,K could not
happen, see step (i). Then this would imply that there exists k′ > k∗ such
that tµ ≥ v̂κ−1

+,K = sk′ . This contradicts the definition of k∗ and therefore
(2.3.5) holds.

(iii) Next we prove that for all K ∈ V(I) ∩ Fµ−1
+,u

v̂κ−1
+,K = v̂k∗

+,K. (2.3.6)

holds. Due to v̂κ−1
+,K < ∞, see step (i), we know that θκ−1

v,K = 1. Now look at
the iteration k in which point K was accepted. Either we have k = 0, that
means θ0

v,K = 1 and therefore v̂κ−1
+,K = v0

K = 0, or in the case k ≥ 1 we have
K ∈ NAk

v and thus v̂κ−1
+,K = vk

K = sk.
If we assume that k > k∗, then we get

v̂κ−1
+,K = vk

K = sK ≥ sk∗+1 > sk∗

which contradicts (2.3.5) from step (ii), and thus we know k ≤ k∗. Now
we know that there exists a m ≤ κ − 1 such that θm

v,I = −1 and θκ
v,I = 1,

see also the definition of κ. Thus we get K ∈ Fk∗
+,v and therefore

v̂κ−1
+,K = vk

K = v̂k∗
+,K.

(iv) Now we construct a contradiction. With (2.3.3) from step (i) and (2.3.6)
from step (iii) we get

v̂κ−1
+,K = v̂k∗

+,K ≤ ûµ−1
+,K .

We use the monotonicity of the update formula (2.1.6) to conclude ṽk∗
K ≤

ũµ−1
K . Therefore we have sk∗+1 ≤ ṽk∗

K ≤ ũµ−1
K ≤ uµ

K = tµ which contradicts
the definition of k∗. Thus proposition 2.3.5 is proven.

Let us use the function θε as defined in definition 2.4.1. Then we have a comparison
principle for θε, namely

Corollary 2.3.6:
Under the assumptions of proposition 2.3.5, we have for all (t, x) ∈ [0, T]×R2

θε
u(t, xI) ≤ θε

v(t, xI).
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The proof is exactly the same as in [CFFM08, Corollary 3.5].
Of course using velocities which are negative instead of the positive velocities as in

the preceding results we gain also a comparison principle like [CFFM08, Corollary 3.6].
This is just a direct consequence of the symmetry of the GFT.

Corollary 2.3.7:
We denote by un

I (resp., vn
I ) the numerical solution at the point (tn, xI) of the GFT algorithm with

velocity cu (resp., cv). We assume that there exists T > 0 such that for all (t, x) ∈ [0, T]×R2

sup
s∈[t−∆t],s≥0

cu(s, x) ≤ inf
s∈[t−∆t],s≥0

−(cv(s, x))−

where f− ≥ 0 is the negative part of f . Further we assume that

{θ0
v = −1} ⊂ {θ0

u = −1} and v0 = u0 = 0.

Then, for all (t, x) ∈ [0, T]×R2, we have

θε
u(x, t) ≤ θε

v(x, t).

2.3.1.4 Remarks

We want to give two remarks on the GFT. The aim of the first remark is to extend the
algorithm to the d-dimensional case and in the second remark we adapt the method of
virtual updates such that we can also use the GFT for a non-acute triangulation.

Remark 2.3.8:
The first remark is that this algorithm can be formulated also in Rd. To get a working
algorithm we do not use a triangulation anymore, but a partition of Rd into simplexes.
The neighbourhood V(I) is then similarly defined as the set of points I such that {I, K}
is an edge of a simplex. We also have to use an appropriate update-scheme. For this
we use the Hopf-Lax update as in [BR06, Section 4]. This Hopf-Lax update also has
a monotonicity property. So the comparison principle 2.3.5 and also its proof holds
in the d-dimensional setting. The proof uses only the notion of neighbourhood and
the monotonicity of the update scheme but no notion that is inherent 2-dimensional. I
implement the GFT only in the 2-dimensional case; thus I restricted the presentation to
d = 2, but the idea of the algorithm works for any finite dimension. Also the GFMM is
presented in Rd but the numerical examples are all in two dimensions.

Remark 2.3.9:
Till now we have the restriction that the GFT can only deal with an acute triangulation.
Also the FMM on unstructured girds has this restriction, but there one can use the
method of virtual triangles to construct on two acute triangles the fly which replace a
non-acute triangle.

It is no problem to construct virtual triangles in the GFT because this is a pure
geometric problem and therefore can be carried out in exactly the same way as in
the FMM. In the FMM the u-values we use for the update are defined on all points,
especially on all points that are already accepted. But in the GFT the values of u
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we use for the the updates are restricted to the front. So at first glance there are no
usable values û outside the front. This problem is only an issue due to the algorithmic
description of the GFT. It is no difference for an acute triangulation if we define û± for
all points. This can be done by replacing step 3 and 4 with the following steps 3’ and 4’:

3’. Initialize the time by

u0
I =

{
0 if I ∈ F0,
∞ otherwise.

4’. Initialize ûn−1 everywhere on the grid by

ûn−1
±,I =

{
un−1

I for I ∈ Θn−1
± ,

∞ elsewhere.

With this definition we can access useful values of û on the whole domain and thus we
can use the strategy of virtual updates.

We want to emphasize that using virtual update we do not calculate the Hopf-Lax
update on ω(C) for a point C exactly but only a good approximation, see also subsection
2.1.3. Viewing only numeric results we can deal with non-acute triangulations by using
virtual updates. The example 2.5.2.5 in section 2.5 is devoted to the usage of non-
acute triangulations and virtual updates. In theory we are still restricted to an acute
triangulation, because using virtual updates we cannot guarantee the monotonicity of
the update formula and with a non-acute triangulation the causality property is not
fulfilled anymore.

2.3.2 Modified generalized fast marching method for unstructured
triangulations (mGFT)

The GFT algorithm is based on the GFMM for unstructured grids. As with the GFMM
the GFT fulfills only a weak comparison principle and the counterexample of Forcadel
[For09, Section 5.2] applies here too. Therefore we adapt the idea of the mGFMM to
build a version of the GFT that copes with a comparison principle. This comparison
principle is stated and proven in section 2.4.

2.3.2.1 Definition mGFT

We need some preliminary definitions before we can state the mGFT. As in the defi-
nition of the mGFMM where we reused the definitions 2.2.1 to 2.2.4 we can reuse the
definitions 2.3.1 to 2.3.4 in the case of unstructured triangulations.

We first introduce the notion of the narrow-band, which connects the information
about θ with the speed ĉ.

Definition 2.3.10:
Given a field θn and the regularized speed ĉn from definition 2.3.2. We define the narrow-band
NB by the set of points which can be reached immediately by the front, that is

NBn = {I ∈ N : ∃K ∈ V(I) with θn
I = −θn

K and θn
I ĉn

I < 0}.
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θ = −1

θ = 1

Figure 2.3.2: The front F− (blue) and F+ (green) in the mGFT. The points of NB− (blue
filled circles) and NB+ (green filled circles) are part of the front F− resp.
F+. In the grey region is the speed c positive, in the white region negative.
Compare this figure also with figure 2.3.1 where the same situation is
displayed for the GFT.

Furthermore we set
NBn
± = NBn ∩ {I ∈ N : θn

I = ±1}.

The narrow-band NBn
± can also be written in the form

NBn
+ = F+ ∩ {I ∈ N : ĉn

I < 0} and NBn
− = F− ∩ {I ∈ N : ĉn

I > 0}.

As in the GFMM we introduce now the notion of useful points. For every I ∈ NBn

one computes a tentative value ũn
I of the arrival time at this point I. So we define the

set of useful points by

U n(K) = {I ∈ V(K) : θn
K = −θn

I }, U n = ∪K∈NBnU n(K).

For each useful point K ∈ NBn we introduce further the useful time un
I→K. This value

can be seen as the time when the fronts Fn goes from node I ∈ V(K) to K. We use this
notion for the computation of the tentative arrival time at point K.

2.3.2.2 Algorithm mGFT

Now we can state the algorithm for the mGFT. As one can see the algorithm has the
very same structure as the mGFMM.
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Initialization

1. Set n = 1.

2. Initialize the field θ0 as

θ0 =

{
1 for xI ∈ Ω0,
−1 elsewhere.

3. Initialize the time for points I

u0
I→K =

{
t0 it I ∈ U 0(K) and K ∈ NB0,
+∞ otherwise.

Loop

4. Compute ũn−1 on NBn−1

Let I ∈ NBn−1, then we compute ũn−1
I via the Hopf-Lax update by using the

information about the useful times u·→I for point I .

ũn−1
I = (Λun−1

·→I )(I) with the speed
∣∣∣ĉn−1

I

∣∣∣ .

5. t̃n = min
{

ũn−1
I : I ∈ NBn−1

}
.

6. Truncate t̃n
tn = max {tn−1, min {t̃n, tn−1 + ∆t}}.

7. if tn = tn−1 + ∆t and tn < t̃n go to step 10 with θn = θn−1.

8. Initialize new accepted points
NAn

± =
{

I ∈ NBn−1
± : ũn−1

I = t̃n

}
, NAn = NA+ ∪ NA−.

9. Reinitialize θn
I

θn
I =

{
−θn−1

I for I ∈ NAn,
θn−1

I elsewhere.

10. Reinitialize un
I→K

un
I→K =

{
min

(
un−1

I→K, tn

)
if I ∈ U (K) and K ∈ NBn,

+∞ otherwise.

11. Set n := n + 1 and go to step 4.
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2.3.2.3 Comments

Like the GFT the mGFT can also be extended to Rd. This can be done in the exact same
way as presented in remark 2.3.8. Thus also the comparison principle 2.4.5 holds also
in Rd.

Now we come to a point where GFT and mGFT are essentially different. In the GFT
it is possible to use the method of virtual updates to deal with non-acute triangulations
because the extension of û to the whole domain is straight forward. In the mGFT we
run into problems if we would extend the useful times. The useful times uI→K for
a point K depends also on its neighbours I. If we would use the virtual updates we
should be able to define the useful time at the point K not only for its neighbours in
V(K), but for all points I ∈ N in the whole computational domain. So the effort to
store and update the information about useful times would be at least quadratic in a
naive implementation and thus the algorithm would not be efficient anymore. In a
more sophisticated implementation one could reduce this effort because the complexity
of calculating a single virtual triangle is bounded by a constant [KS98, Section 4] and
one also has to traverse only a bounded number of triangles. But still the effort for
the implementation would be high and using virtual updates we still would lose the
comparison principle which was the motivation for constructing this method.

Therefore it seems to be reasonable to use the mGFT only on acute triangulations,
but the GFT can be used with general triangulations.

2.3.3 Computational complexity

In this subsection we will give a short overview of the complexity of GFT and mGFT.
In essence, we will obtain the same results as presented in [CFFM08, Subsection 2.3]
for the GFMM.

We assume that the speed c is constant for the time interval [k∆t, (k + 1)∆t) with
some ∆t. This assumption is not to strict, because due to the discretization every
function can be seen as constant for a small period of time. Furthermore we use a mesh
with M points that is contained in the unit-interval [0, 1]d. Assume further that the
speed is normalized to |c| ' 1 and that the time T which the front needs to traverse
the grid is also normalized to T ' 1. The number of mesh points that are typically
contained in the front F (or narrow-band NB for mGFT) is of size M

d−1
d . Further the

typical length of an edge is about M−1/d.
There are 3 different cases for ∆t:

Case (a) ∆t = ∞
In this case the speed c is independent in time. Therefore the algorithm
behaves like a doubled FMM and we need only to update in step 5 the points
I ∈ V(NAn), cause all other values ũ cannot change due the constant of the
speed in time. Also in step 4, 11 and 12 we need only to update points that
are accepted and their neighbours. Furthermore we can use the min-heap to
get the point with minimal value of ũ. So we can recover the complexity of
the FMM and gain for GFT and mGFT a complexity of O(M log M). We have
to modify the usual data structure for the min-heap because we have also to
remove elements of the heap which are not at its root. This is done by adding
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to every point a reference to its position in the heap; so we can directly access
any point in the heap and it can be removed similar to an element which is
removed from the heap by the extract-min operation.

Case (b) O(M−1/d) ≤ ∆t ≤ ∞
This case is very similar to the case above. During the interval [k∆t, (d + 1)∆t)
we have the same behavior as in case (a). So the effort in this period is
O(Mk log M) where Mk denotes the number of points that have been crossed
by the front during this period. We normalized the time such that the front
passes the whole domain in about T ' 1, so we can assume that we have
about T

∆t =
1

∆t time intervals of the form [k∆t, (k + 1)∆t) and in total we cross
M = ∑k Mk points. At time k∆t we also recompute the tentative values on
the whole front (or narrow-band for the mGFT), which requires an effort of
O(M

d−1
d log M) every time.

Thus we get

1/∆t

∑
k=1
O(Mk log M) +

1/∆t

∑
k=1
O(M

d−1
d log M) = O((M + M

d−1
d /∆t) log M).

As long as ∆t > M−1/d we get an overall complexity of O(M log M) which is
the same order as in case (a).

Case (c) 0 ≤ ∆t < O(M−1/d)
In this case the speed varies very strongly and therefore it will no longer
be efficient to use a heap. Due to the changes of the speed we recompute
the tentative values for every point in the front at each iteration n, and for
the mGFT (and the mGFMM) we have to check which points are in the
narrow-band and which are not. Thus we have in every iteration an effort of
O(M

d−1
d ). Therefore we get for the overall complexity O(M

2d−1
d ). In this case

a level-set-method may be faster than the generalized fast marching methods.

In section 2.5 we carry out a numerical experiment where we can see the effect
of these different cases. In case (b) we used a heap for the extraction of the nodes
with minimal ũ value. In principle it would be possible to use an untidy priority
queue instead of the heap as proposed in [YBS05]. This could slightly decrease the
computational effort but it would also introduce new errors as presented in [RS09].
Furthermore the reduction of complexity can probably be neglected because the relation
of operations for the priority queue to the total number of operations is very low.

2.4 Comparison principle for mGFT

In this section we prove a comparison principle of the discrete evolution for the mGFT,
see theorem 2.4.5. This comparison principle is analogous to the one stated and proved
in [For09, Theorem 3.4], see also theorem 2.2.16.

We adapt here the proof which Forcadel presents in [For09]. In essence we can do
the very same and nearly copy his proof. This may seem curious at first sight, because
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we deal here with a triangulation (or with simplexes in Rd) and Forcadel deals with a
regular grid. And indeed a priori we do not know whether the proof of Forcadel can
be conveyed to our situation.

In the proof of [For09, Theorem 3.4] (see also Theorem 2.2.16) Forcadel uses a
comparison principle for the times tn [For09, Theorem 5.1] and a method for extending
the discrete function to [0, ∞)×Rd, see also the construction of θε in 2.2.1.3. The proof
of [For09, Theorem 5.1] uses the monotonicity of the update scheme and some auxiliary
results on the sequences of time tn.

To prove the comparison principle 2.4.5 for the mGFT, we first introduce how we can
extend the discrete function θn

I to a function θε on the whole domain. For this step we
have only few restrictions, so we can easily define such an extension. In the next step
we prove theorem 2.4.5 under the assumption that we have a comparison principle for
our times tn, see also theorem 2.4.9. In the proof of theorem 2.4.9 we use properties of
the discrete evolution computed by the algorithm. These properties are collected in
some lemmata and propositions and we can use all the methods which Forcadel used.
The monotonicity of the update scheme is only used in lemma 2.4.13, all other results
depends on the description of the algorithm and the notion of neighbourhood.

A posteriori we can see that this is possible because in the proof of these auxiliary
results Forcadel used the concept of neighbourhood and the connection between the
values at the grid points due to the algorithm. Forcadel used throughout the proof
always the discrete point of view and especially he did not use any kind of analytical
construction. Now I transferred these notions of neighbourhood and the algorithm in
a suitable way to unstructured grids, so we can recycle the proof of Forcadel because
on a discrete point of view the algorithms mGFMM and mGFT only differ in step 4
where the tentative values are computed. But the important point of step 4 is that the
updates are monotone, and this property is preserved. Therefore one can say that the
proof of Frocadel can essentially be used in a much more general setting than in his
paper [For09].

Now we construct θε. The sequence of time {tn, n ∈ N} defined in step 6 of the
mGFT is by construction non-decreasing and we can extract a subsequence {tnk , k ∈N}
which is strictly increasing such that

tnk = tnk+1 = . . . = tnk+1−1 < tnk+1 .

Hence the sequence tnk is defined in exactly the same way as for the GFMM and the
mGFMM. We cannot directly reuse the definition of the square cell Sk

I because we work
on an unstructured grid. We replace the square cells by the patches P k

I which we define
as follows:

We denote by P k
I the patch [tnk , tnk+1 [×PI . Thereby PI is a union of triangles which

has the point I as a common corner. Furthermore we require that
⋃PI = R2, that

means the patches cover R2. A second condition is, that we assume PI ∩ PK = ∅ for
I 6= K. To achieve this the edges of the triangulation can only belong to one patch and
therefore a patch can be on one side open and on the other closed.

For the comparison principle it would even suffice that PI is just any subset of R2

with I ∈ PI and that (PI)I∈N is a partition of R2. This is because we need for the
comparison principle only a mapping that links every point in R2 to a node in N .
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2.4 Comparison principle for mGFT

Figure 2.4.1: Example for the mapping of triangles to nodes for the construction of the
patches.

Definition 2.4.1:
Let hmax the maximal diameter of all triangles in T and P k

I :=
[
tnk , tnk+1

[
×PI the patch PI

with the times tnk from the strictly increasing sequence of times. We denote by ε the couple

ε = (hmax, ∆t).

Then we define θε by
θε(t, x) = θ

nk+1−1
I if (t, x) ∈ P k

I .

We remark that the construction of θε is exactly the same for the GFT, so there is no
difference between these two methods.

Now we introduce the notion of comparable and compared times. This is the same
notion as used for the mGFMM, see also definition 2.2.15.

Definition 2.4.2 (Comparable and compared times):
Let T > 0 and let us consider two velocities cu and cv. We denote by (tn)n and (un

I→K)n (resp.
(sm)m and (vm

I→K)m) the sequences of times and of useful times associated to the velocity cu
(resp. cv). We say that sm and tn are comparable if the property C(tn, sm) holds true. This
property is

C(tn, sm) is true if


tn ≤ sm < tn+1 and sm < sm+1

or
sm ≤ tn < sm+1 and tn < tn+1.

We say that θm
v and θn

u are compared and we denote this by θm
v � θn

u if for all points I ∈ N
holds 

θm
v,I > θn

u,I ,

or


θm

v,I = θn
u,I =: σI = ±1

and
σIun

I→K ≥ σIvm
I→K for all K ∈ V(I) such that I ∈ U n

u (K) ∩ Um
v (K).
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2 Generalized fast marching method

We want to emphasize that C(tn, sm) can only be true if tn and sm are elements from
the strictly increasing sequence of times which we used for the construction of the
patch P k

I . This construction was made to ensure that algorithm cannot change the front
without advancing in time.

Remark 2.4.3:
The notation θm

v � θn
u may be misleading because � does not only depend on the

values of θ but the values of vm and un are also regarded. We have further that θm
v � θn

u
implies θm

v ≥ θn
u .

Using the initial values u0
I→K = 0 for all I ∈ U 0

u(K), K ∈ NB0
u and v0

I→K for all
I ∈ U 0

v (K), K ∈ NB0
v we get that θ0

v � θ0
u is equivalent to θ0

v,I ≥ θ0
u,I for all I. In all

numerical examples in section 2.5 we use this zero initial condition.

Remark 2.4.4:
In the definition of the comparable times we use the inequality σIun

I→K ≥ σIvm
I→K which

depends on the sign of θm
v,I . The reason is that we look at which point will be accepted

earlier. For σI = 1 the point K has to be accepted for cv before for cu, thus we ask for
un

I→K ≥ vm
I→K. Vice versa, when σI = −1, the point K has to be accepted for cu before

for cv and then we need the reversed inequality.

2.4.1 Comparison principle for θε

Theorem 2.4.5 (Comparison principle for the θε):
Let T > 0 and consider the two velocities cv and cu. Given θ0

u,I (resp. θ0
v,I) for all I ∈ N and

u0
I→K for all I ∈ U 0

u(K), K ∈ NB0
u (resp. v0

I→K for all I ∈ U 0
v (K), K ∈ NB0

v), we assume that

t0 := sup
I∈U 0

u (K),K∈NB0
u

u0
I→K ≤ T

(
resp. s0 := sup

I∈U 0
v (K),K∈NB0

v

v0
I→K ≤ T

)
for a given T ≥ 0.

We also assume that the two velocities satisfy for all (t, x) ∈ [min(t0, s0), T − ∆t]×R2

inf
s∈[t,t+∆t]

cv(s, x) ≥ sup
s∈[t,t+∆t]

cu(s, x).

If C(t0, s0) and θ0
v � θ0

u, then
θε

v(t, x) ≥ θε
u(t, x)

for all (t, x) ∈ [max(t0, s0), T]×R2.

Proof. We prove this theorem by contradiction. For this we define

t∗ = inf{t ≥ max(t0, s0) such that θε
v(t, x) < θε

u(t, x) for some x ∈ R2}

and
x∗ such that θε

v(t
∗, x∗) < θε

u(t
∗, x∗).
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Theorem 2.4.5

Theorem 2.4.9

Lemma 2.4.11Lemma 2.4.10 Proposition 2.4.12

Proposition 2.4.15

Lemma 2.4.17 Lemma 2.4.18

Lemma 2.4.13 Lemma 2.4.14

Figure 2.4.2: Structure of the proof of theorem 2.4.5.

Now we choose m, n and I such that
sm ≤ t∗ < sm+1,
tn ≤ t∗ < tn+1,
x∗ ∈ PI .

Then θε
v(t, x∗) = θm

v,I for t ∈ [sm, sm+1) and θε
u(t, x∗) = θn

u,I for t ∈ [tn, tn+1). Therefore
t∗ = sm or t∗ = tn and hence C(tn, sm) is true. Theorem 2.4.9 says that θm

v � θn
u and thus

θm
v,I ≥ θn

u,I for all I ∈ N

which contradicts the construction of t∗ and x∗.

We used in this proof theorem 2.4.9. The proof of this theorem depends also on some
further results. The dependence is displayed in figure 2.4.2.

2.4.2 Basic properties for mGFT

We list in this subsection some basic properties of the mGFT. We will use these results
in the following proofs.

Proposition 2.4.6 (Basic properties of mGFT):
Using the mGFT we get the following properties:

1. 0 ≤ tn − tn−1 ≤ ∆t.
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2 Generalized fast marching method

2. For all points K ∈ N and I ∈ U n(K), we have

un
I→K ≤ tn.

3. NBn ∩ U n = ∅.

4. If I ∈ NAn, then

un
I→K =

{
tn if I ∈ U n(K),
+∞ otherwise.

5. If I ∈ NAn, then ũn−1
I ≤ tn.

6. If I ∈ U n−1(K) ∩ U n(K), then
un

I→K = un−1
I→K.

7. If I ∈ U n(K) \ U n−1(K), then
un

I→K = tn.

8. If tn > tn−1, then t̃n ≥ tn.

9. If tn = tn−1, then t̃n ≤ tn.

Proof. 1. This follows directly from point 6 of the algorithm.

2. This is a straight forward consequence of point 10 of the algorithm.

3. By contradiction, we assume that there exists I and K ∈ V(I) such that I ∈
NBn ∩ U n(K). The fact that I ∈ NBn implies that

θn
I ĉn

I < 0.

Furthermore we deduce from I ∈ U n(K) that K ∈ NBn and therefore

θn
I = −θn

K and θn
I ĉn

K > 0.

Taking both formulae together we get

ĉn
I ĉn

K < 0,

which is a contradiction to the definition of ĉ, because ĉI ĉK ≥ 0 for adjacent nodes
I and K.

4. Assume that I ∈ NAn. Then we know I ∈ NBn−1 and due to property 3 we get
I /∈ U n−1(K). Hence we get un−1

I→K = +∞. Due to step 10 of mGFT we then have
uI→K = tn in the case I ∈ U n(K) and +∞ otherwise.

5. We prove by contradiction. We assume that ũn−1 > tn. Since I ∈ NAn, we get that

ũn−1
I = t̃n > tn.

Step 6 of mGFT gives us that tn = tn−1 + ∆t < t̃n and so by step 7, no point would
be accepted. Thus we have a contradiction to I ∈ NAn.
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2.4 Comparison principle for mGFT

6. Assume that I ∈ U n−1(K) ∩ U n(K). Due to step 10 of mGFT and property 2 we
see

un
I→K = min(un−1

I→K, tn) = un−1
I→K.

7. Assume I ∈ U n(K) \ U n−1(K). Due to I /∈ U n−1(K) we know that un−1
I→K = +∞.

Thus step 10 of mGFT gives us

un
I→K = min(un−1

I→K, tn) = tn.

8. If tn > tn−1, then we see with step 6 of mGFT that

tn = min(t̃n, tn−1 + ∆t) ≤ t̃n.

9. If tn = tn−1, then we see with step 6 of mGFT that

tn−1 ≥ min(t̃n, tn−1 + ∆t)

and thus we gain tn = tn−1 ≥ t̃n.

For the properties 2, 4, 6 and 7 we use step 10 of the mGFT. These properties hold
only if we use the right formulation of step 7 of the mGFT and not the one used in the
original publication of the mGFMM [For09].

Proposition 2.4.7 (Monotonicity of c→ ĉ):
The mapping c→ ĉ is monotone, that means if we have cv ≥ cu then we get ĉv ≥ ĉu.

Proof. Let cv ≥ cu. We will prove that we have for all nodes I ∈ N
ĉv,I ≥ ĉu,I . (2.4.1)

To proof this, we distinguish four cases:

Case 1: ĉv,I = cv,I and ĉu,I = cu,I .
This is the simplest case. We just get

ĉv,I = cv,I ≥ cu,I = ĉu,I

and therefore (2.4.1) is true.

Case 2: ĉv,I 6= cv,I and ĉu,I 6= cu,I .
In this case we have ĉv,I = 0 = ĉu,I due to the definition 2.3.2 for ĉ and so (2.4.1)
is true.

Case 3: ĉv,I = cv,I and ĉu,I 6= cu,I .
We have ĉu,I = 0 like above. We assume by contradiction that

ĉv,I = cv,I < 0 = ĉu,I . (2.4.2)

Due to cv ≥ cu we get that cu,I < 0. Since ĉu,I 6= cu,I , we know that there exists
K ∈ V(I) with cu,K > 0 and |cu,I | ≤ |cu,K| . Therefore we get

|cv,I | ≤ |cu,I | ≤ |cu,K| = cu,K ≤ cv,K

and by the definition of ĉ we get ĉv,I = 0. This contradicts (2.4.2) and proves
therefore (2.4.1).
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2 Generalized fast marching method

Case 4: ĉv,I 6= cv,I and ĉu,I = cu,I .
We use the same idea as in case 3. Now we have ĉv,I = 0. By contradiction,
assume that

ĉu,I = cu,I > 0 = ĉv,I . (2.4.3)

Since cv ≥ cu, we know that cv,I > 0. Since ĉv,I 6= cv,I , we deduce that there
exists K ∈ V(I) such that cv,K < 0 and |cv,I | ≤ |cv,K| . Therefore we get

|cu,I | ≤ |cv,I | ≤ |cv,K| = −cv,K ≤ −cu,K = |cu,K|

and by the definition of ĉ we get ĉu,I = 0. This contradicts (2.4.3) and proves
therefore (2.4.1).

Proposition 2.4.8 (Symmetry of the algorithm):
Let us consider the two velocities cu and cv. We denote by (tu

n)n, (un
I→K)n, (θn

u)n (resp. (sv
m)m,

(vm
I→K)m, (θm

v )m) the sequences of times, of useful times and of field values associated with the
velocity cu (resp. cv) and with the initial condition θ0

u (resp. θ0
v).

We also define (su
m)m, (um

I→K)m, (θm
v )m (resp. (tu

n)n, (vn
I→K)n, (θn

u)n the sequences of times,
of useful times and of field values associated to the velocity cu = −cv (resp. cv = −cu) and
with the initial condition θ0

u = −θ0
v (resp. θ0

v = −θ0
u).

Then we have the following equivalence:

θm
v � θn

u ⇔ θn
v � θm

u .

Proof. Due to the construction of the algorithm we have symmetry in the sequences of
times, the useful times and the field values associated to the velocity, i.e. it holds that

θm
u = −θm

v , θn
v = −θn

u , su
m = sv

m, tv
n = tu

n, um
I→K = vm

I→K, vn
I→K = un

I→K.

Now assume that θm
v � θn

u and let us prove that θn
v � θm

u . We distinguish two cases:

Case 1: θm
v > θn

u
We get

θm
u = −θm

v < −θn
u = θn

v .

Case 2: θm
v = θn

u = σ
Here we have

θm
u = θn

v = σ = −σ.

Let I ∈ Um
u (K) ∩ U n

v (K). Thus we know especially that I ∈ Um
v (K) ∩ U n

u (K).
Then we get

σvn
I→K = −σun

I→K ≤ −σvm
I→K = σum

I→K.

In the last step we used that θm
v � θn

u .

In total we get θn
v � θm

u .
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2.4.3 Comparison principle for the tn time

The main idea for the comparison principle is as follows. We take a point K ∈
NBn

u ∩ NBm
v at comparable times tn and sm, that means C(tn, sm) is true. Then the

points I with I ∈ U n
u (K) ∩ Um

v (K) become useful with velocity v before become useful
with velocity u. With the definition of uI→K and vI→K we are able to show that
vm

I→K ≤ un
I→K. Thus we can conclude with the monotonicity of the update scheme that

ṽm
K ≤ ũn

K. Hence point K will be accepted with velocity v before with velocity u. This
preserves the comparison of θu and θv.

The introduction of useful times is essential for the algorithm because with this notion
and the right handling in step 10 we know that vm

I→K ≤ un
I→K if a node I becomes useful

for v before it becomes useful for u. Thus it is necessary to introduce a separate time
for each neighbour of K and also to set this time only to a finite value if K is in upwind
direction of I.

Theorem 2.4.9 (Comparison principle for the tn times):
Under the assumptions of theorem 2.4.5, we denote by (tn)n and (un

I→K)n (resp. (sm)m and
(vm

I→K)m) the sequences of times and of useful times associated to the velocity cu (resp. cv). Then
θm

v � θn
u for every time satisfying C(tn, sm) and tn, sm ≤ T.

Proof. We will do this proof by contradiction. Let us define

s∗ = inf{min(tn, sm) such that θm
v 6� θn

u , tn, sm ≤ T and C(tn, sm) is true}.

Due to the symmetry of the mGFT (proposition 2.4.8), we can assume that s∗ = sm∗

for a certain index m∗. Now we define

n∗ = inf{n ≥ 0 such that θm∗
v 6� θn

u , tn ≤ T and C(tn, sm∗) is true}.

Thus we have (tn∗ , sm∗) as the minimal couple with θm∗
v � θn∗

u , sm∗ ≤ tn∗ < sm∗+1 and
tn∗ < tn∗+1. We write in the following n for n∗ and m for m∗ to simplify the notation.

We distinguish now two cases:

Case 1: sm < tn
We define p ≥ 0 such that

tn−p−1 < tn−p = . . . = tn < tn+1.

Step 1: θm
v � θ

n−p−1
u

We will prove in this step that θm
v � θ

n−p−1
u . The couple (n, m) is mini-

mal one such that θm
v 6� θn

u . Thus it suffices to show that C(tn−p−1, sm)
is satisfied. We recall that

sm < tn−p = . . . = tn < sm+1, and tn−p−1 < tn−p.

Either we have sm ≤ tn−p−1, then it holds sm ≤ tn−p−1 < sm+1 and
therefore tn−p−1 < tn−p, or we have tn−p−1 < sm, then we get tn−p−1 <
sm < tn−p which yields sm < sm+1.

Therefore C(tn−p−1, sm) is true and thus it holds θm
v � θ

n−p−1
u .
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Step 2: Contradiction
We use lemma 2.4.10 to conclude that θm

v � θ
n−p
u , . . . , θm

v � θn
u . This is

contradiction to the construction of n.

Case 2: sm = tn
We define analogously to case 1 now p and q such that

tn−p−1 < tn−p = . . . = tn < tn+1 and sm−q−1 < sm−q = . . . = sm < sm+1.

Like above we have either tn−p−1 ≤ sm−q−1 < sm−q = tn−p or sm−q−1 ≤
tn−p−1 < tn−p = sm−q. Thus C(tn−p−1, sm−q−1) is true. Due to the minimality of
(m, n) we gain that θ

m−q−1
v � θ

n−p−1
u . Now we use lemma 2.4.11 to deduce that

θ
m−q
v � θ

n−p
u . Proposition 2.4.12 gives us that θm

v � θn
u , which is a contradiction

to the definition of n.

We used in the proof of theorem 2.4.9 the lemmata 2.4.10 and 2.4.11 as well as the
proposition 2.4.12. We state these results and give also their proofs. The proof of
proposition 2.4.12 is given in subsection 2.4.4.

Lemma 2.4.10 (Two jumps, two arrivals):
Assume that θm−1

v � θn−1
u . Then, if sm−1 ≤ tn < sm (resp. tn−1 ≤ sm < tn) and tn, sm ≤ T,

we have θm−1
v � θn

u (resp. θm
v � θn−1

u ).

Proof. We show here the proof in the case sm > tn. The other case is equivalent due to
the symmetry of the algorithm, see also proposition 2.4.8.

We do the proof by contradiction. Let us assume that θm−1
v 6� θn

u . Thus there exists a
point I with

θm−1
v,I < θn

u,I

or
θm−1

v,I = θn
u,I = σI and ∃K : I ∈ Um−1

v (K) ∩ U n
u (K) with σIun

I→K < σIvm−1
I→K.

(2.4.4)

We distinguish two cases: in the first case the value of θn
u changes but not in the

second case.

Case 1: I ∈ NAn
u

Subcase 1.1: θm−1
v,I > θn−1

u,I
We know θm−1

v,I = 1 and θn−1
u,I = −1. Since I ∈ NAn

u, we deduce that
θn

u,I = 1 = θm−1
v,I = σI . Due to I ∈ Um−1

v (K) and point 2 of proposition
2.4.6 we gain

vm−1
I→K ≤ sm−1.

Further we know by I ∈ NAn
u ∩ U n

u (K) and point 4 of proposition 2.4.6
that

tn = un
I→K.
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Together with sm−1 ≤ tn from the assumption this yields

vm−1
I→K ≤ sm−1 ≤ tn = un

I→K.

which is a contradiction to (2.4.4).

Subcase 1.2: θm−1
v,I = θn−1

u,I
We distinguish now the cases ±1.

Subcase 1.2.1: θm−1
v,I = θn−1

u,I = 1
Since I ∈ NAn

u we know that θn
u,I = −1, but this contradicts (2.4.4).

Subcase 1.2.2: θm−1
v,I = θn−1

u,I = −1

Step 1: ũn−1
I ≥ ṽm−1

I and I ∈ NBm−1
v,−

Since I ∈ NAn
u we know that I ∈ NBn−1

u,− . Due to sm − sm−1 ≤ ∆t,
tn − tn−1 ≤ ∆t and sm > tn we have |tn−1 − sm−1| ≤ ∆t. Further
we recall that θm−1

v � θn−1
u and θm−1

v,I = θn−1
u,I = −1. Thus the

assumptions of lemma 2.4.13 are fulfilled and we conclude

ũn−1
I ≥ ṽm−1

I and I ∈ NBm−1
v,− .

Step 2: ṽm−1
I ≥ sm

Due to step 6 of the mGFT we know sm = max(sm−1, min(sm−1 +
∆t, s̃m)). By the assumption of the lemma we have sm > sm−1 and
so

sm = min(sm−1 + ∆t, s̃m) ≤ s̃m.

Using the definition of s̃m, we conclude s̃m ≤ ṽm−1
I with I ∈

NBm−1
v,− . Thus we know

ṽm−1
I ≥ sm.

Step 3: Contradiction
Via step 1 and 2 we get

ũn−1
I ≥ ṽm−1

I ≥ sm > tn

and then
ũn−1

I > tn.

This is impossible because I ∈ NAn
u, see also point 5 in proposition

2.4.6.

Subcase 1.3: θm−1
v,I < θn−1

u,I
This case is impossible since we assume θm−1

v � θn−1
u .

Case 2: I /∈ NAn
u
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Subcase 2.1: θm−1
v,I < θn

u,I
Since I /∈ NAn

u, we have θn−1
u,I = θn

u,I and therefore θm−1
v,I < θn−1

u,I . This is a
contradiction to θm−1

v � θn−1
u .

Subcase 2.2: θm−1
v,I = θn

u,I
Due to I /∈ NAn

u, we have

θn−1
u,I = θn

u,I = θm−1
v,I = σI = ±1. (2.4.5)

From equation (2.4.4) we get that there exists a node K ∈ E such that

I ∈ Um−1
v (K) ∩ U n

u (K) and σIun
I→K < σIvm−1

I→K. (2.4.6)

We distinguish three subcases:

Subcase 2.2.1: I ∈ U n−1
u (K)

Equation (2.4.6) and the assumption I ∈ U n−1
u (K) give us that I ∈

Um−1
v (K) ∩ U n−1

u (K). Together with the assumption θm−1
v � θn−1

u and
(2.4.5) we conclude

σIun−1
I→K ≥ σIvm−1

I→K.

Furthermore it holds that SI ∈ U n−1
u (K) ∩ U n

u (K). Point 6 in proposi-
tion 2.4.6 gives us that un

I→K = un−1
I→K. Thus we have

σIun
I→K ≥ σIvm−1

I→K

which contradicts (2.4.6).

Subcase 2.2.2: I /∈ U n−1
u (K) and σI = +1

We have I ∈ U n
u (K) \ U n−1

u (K). Using point 7 of proposition 2.4.6 we
conclude that un

I→K = tn. In addition we know I ∈ Um−1
v (K) and

point 2 of proposition 2.4.6 leads to sm−1 ≤ vm−1
I→K. In combination

with the assumption of the lemma we get

un
I→K = tn ≥ sm−1 ≥ vm−1

I→K.

This is a contradiction to (2.4.6).

Subcase 2.2.3: I /∈ U n−1
u (K) and σI = −1

The equations (2.4.5) and (2.4.6) give us I ∈ Um−1
v (K) ∩ U n

u (K) and
θn−1

u,I = θn
u,I = θm−1

v,I = −1. Furthermore we have we can see like in
subcase 1.2.2 that |tn−1 − sm−1| ≤ ∆t. The assumptions of lemma
2.4.14 are fulfilled and thus we get I ∈ U n−1

u (K), which leads to a
contradiction.

Subcase 2.3: θm−1
v,I > θn

u,I
This case is impossible. See also equation (2.4.4).

Lemma 2.4.11 (Two jumps, one arrival):
Assume that θm−1

v � θn−1
u , tn−1 < tn and sm−1 < sm. If sm = tn ≤ T, then θm

v � θn
u .
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Proof. The proof of this lemma uses the same techniques as the proof of lemma 2.4.10.
It is just more lengthy because we have to distinguish more cases.

We do the proof by contradiction. Let us assume that θm−1
v 6� θn

u . Thus there exists a
point I with

θm
v,I < θn

u,I

or
θm

v,I = θn
u,I = σI and ∃K : I ∈ Um

v (K) ∩ U n
u (K) and σIun

I→K < σIvm
I→K.

(2.4.7)

We consider the following four cases:

Case 1: I ∈ NAn
u \ NAm

v

Subcase 1.1: θm−1
v,I > θn−1

u,I

We know θm−1
v,I = 1 and θn−1

u,I = −1. Since I ∈ NAn
u \ NAm

v , we deduce
that θn

u,I = 1 = θm
v,I = σI . Due to I ∈ Um

v (K) and point 2 of proposition
2.4.6 we gain

vm
I→K ≤ sm.

Further we know by I ∈ NAn
u ∩ U n

u (K) and point 4 of proposition 2.4.6
that

tn = un
I→K.

Together with sm = tn from the assumption this yields

vm−1
I→K ≤ sm−1 = tn = un

I→K.

which is a contradiction to (2.4.7).

Subcase 1.2: θm−1
v,I = θn−1

u,I
We distinguish now the cases ±1.

Subcase 1.2.1: θm−1
v,I = θn−1

u,I = 1
Due to I ∈ NAn

u we know that θn
u,I = −1, but this contradicts (2.4.7).

Subcase 1.2.2: θm−1
v,I = θn−1

u,I = −1

Step 1: ũn−1
I ≥ ṽm−1

I and I ∈ NBm−1
v,−

Since I ∈ NAn
u we know that I ∈ NBn−1

u,− . We know tn− tn−1 ≤ ∆t,
sm − sm−1 ≤ ∆t and sm = tn. Therefore we get |tn−1 − sm−1| ≤ ∆t.
Further we recall that θm−1

v � θn−1
u and θm−1

v,I = θn−1
u,I = −1. Thus

the assumptions of lemma 2.4.13 are fulfilled and we conclude

ũn−1
I ≥ ṽm−1

I and I ∈ NBm−1
v,− .

Step 2: ṽm−1
I ≥ sm

Due to step 6 of the mGFT we know sm = max(sm−1, min(sm−1 +
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∆t, s̃m)). By the assumption of the lemma we have sm > sm−1 and
so

sm = min(sm−1 + ∆t, s̃m).

Using the definition of s̃m, we conclude with I ∈ NBm−1
v,− that

s̃m ≤ ṽm−1
I .

Either we have ṽm−1
I ≥ s̃m and therefore

sm ≤ s̃m < vm−1
I ,

or we have ṽm−1
I ≥ s̃m, but then we know with J /∈ NAm

v and
steps 7 and 8 of the mGFT that

sm = sm−1 + ∆t < s̃m < vm−1
I .

Thus we know
ṽm−1

I ≥ sm.

Step 3: Contradiction
Via step 1 and 2 we get

ũn−1
I ≥ ṽm−1

I ≥ sm = tn

and then
ũn−1

I > tn.

This is impossible because I ∈ NAn
u, see also point 5 in proposition

2.4.6.

Subcase 1.3: θm−1
v,I < θn−1

u,I
This case is impossible since we assume θm−1

v � θn−1
u .

Case 2: I ∈ NAm
v \ NAn

u
Due to the symmetry of the mGFT in proposition 2.4.8, this case is done like
case 1.

Case 3: I ∈ NAn
u ∩ NAm

v

Subcase 3.1: θm−1
v,I > θn−1

u,I
We know θm−1

v,I = 1 and θn−1
u,I = −1. Due to I ∈ NAn

u ∩ NAm
v we conclude

that I ∈ NBn−1
u,− ∩ NBm−1

v,+ . Therefore we have

ĉn−1
u,I > 0 and ĉm−1

v,I < 0.

This is a contradiction because |sm−1 − tn−1| ≤ ∆t and thus cm−1
v,I ≥ cn−1

u,I .

Subcase 3.2: θm−1
v,I = θn−1

u,I
Since I ∈ NAn

u ∩ NAm
v we have θm

v,I = θn
u,I . From equation (2.4.7) we know

I ∈ U n
u (K) ∩ Um

v (K). With point 4 of proposition 2.4.6 we gain

vm
I→K = sm = tn = un

I→K.

This is a contradiction to (2.4.7).
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Subcase 3.3: θm−1
v,I < θn−1

u,I
This is impossible since θm−1

v � θn−1
u .

Case 4: I /∈ NAn
u ∪ NAm

v

Subcase 4.1: θm
v,I < θn

u,I
Due to I /∈ NAn

u ∪ NAm
v we have θn−1

u,I = θn
u,I and θm

v,I = θm−1
v,I . Thus we get

θm−1
v,I < θn−1

u,I . This is a contradiction to θm−1
v,I � θn−1

u,I .

Subcase 4.2: θm
v,I = θn

u,I
Since I /∈ NAn

u ∪ NAm
v , we have

θn−1
u,I = θn

u,I = θm−1
v,I = θm

v,I = σI = ±1. (2.4.8)

Due to equation (2.4.7) we know that there exists a node K such that
I ∈ Um

v (K) ∩ U n
u (K) and

σIun
I→K < σIvm

I→K. (2.4.9)

We have to distinguish subcases according to U (K):
Subcase 4.2.1: I ∈ U n−1

u (K) ∩ Um−1
v (K)

Using (2.4.8) and the assumption θm−1
v � θn−1

u of the lemma we
conclude

σIun−1
I→K ≥ σIvm−1

I→K.

Furthermore we have I ∈ U n−1
u (K) ∩ U n

u (K) and I ∈ Um−1
v (K) ∩

Um
v (K). Thus we get with point 6 of proposition 2.4.6 that un

I→K =
un−1

I→K and vm
I→K = vm−1

I→K . Therefore we have

σIun
I→K ≥ σIvm

I→K,

which contradicts (2.4.9).

Subcase 4.2.2: I ∈ Um−1
v (K) \ U n−1

u (K)

Subcase 4.2.2.1: σI = +1
We use I ∈ U n

u (K) \ U n−1
u (K) together with point 7 of proposition

2.4.6 which give us un
I→K = tn. Furthermore we know that I ∈

Um
v (K). Point 2 of proposition 2.4.6 gives us sm ≥ vm

I→K. Thus we
see

un
I→K = tn = sm ≥ vm

I→K,

which contradicts (2.4.9).

Subcase 4.2.2.2: σI = −1
We know I ∈ Um−1

v (K) ∩ U n
u (K) and furthermore θn−1

u,I = θn
u,I =

θm−1
v,I = −1. Like in Subcase 1.2.2 we can see that |tn−1 − sm−1| ≤

∆t. The assumption of lemma 2.4.14 are satisfied and we get that
I ∈ U n−1

u (K). This is a contradiction.
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Subcase 4.2.3: I ∈ U n−1
u (K) \ Um−1

v (K)
Due to the symmetry this case is done in the same way as the preced-
ing subcase 4.2.2.

Subcase 4.2.4: I /∈ U n−1
u (K) ∪ Um−1

v (K)
We have I ∈ U n

u (K) \ U n−1
u (K) and I ∈ Um

v (K) \ Um−1
v (K). Via point 7

of proposition 2.4.6 we get tn = un
I→K and sm = vm

I→K. Thus we have

vm
I→K = sm = tn = un

I→K.

This is a contradiction to (2.4.9).

Subcase 4.3: θm
v,I > θn

u,I
This case is impossible due to the assumption in equation (2.4.7).

Proposition 2.4.12 (Stationary case with the same arrival):
Let us assume that tn−p−1 < tn−p = . . . = tn < tn+1 and sm−q−1 < sm−q = . . . = sm < sm+1

with p, q ≥ 0 and tn = sm ≤ T. If θ
m−q
v � θ

n−p
u , then θm

v � θn
u .

Subsection 2.4.4 is devoted to the proof of the preceding proposition, but before we
state this proof we will turn our attention to the lemmata 2.4.13 and 2.4.14.

The following lemma handles with the monotonicity of the update scheme and
transfers this property to the discrete evolution. Thus we can with this lemma compare
θn−1

u and θm−1
v by comparing the times ũn−1 and ṽm−1 at the narrow-band. Therefore it

can be seen as the heart of the proof of theorem 2.4.5.

Lemma 2.4.13 (Comparison of the candidate time ũ):
Assume that θm−1

v � θn−1
u , |tn−1 − sm−1| ≤ ∆t, with tn−1, sm−1 ≤ T. If

θm−1
v,I = θn−1

u,I = −1 and I ∈ NBn−1
u,−(

resp. θm−1
v,I = θn−1

u,I = 1 and I ∈ NBm−1
v,+

)
then

I ∈ NBm−1
v,− and ũn−1

I ≥ ṽm−1
I(

resp. I ∈ NBn−1
u,+ and ũn−1

I ≤ ṽm−1
I

)
.

Proof. First, we prove this lemma in the case θm−1
v,I = θn−1

u,I = −1 and I ∈ NBn−1
u,− . The

other case will handled afterwards.
Due to I ∈ NBn−1

u,− , we know that{
∃K ∈ V(I) such that θn−1

u,K = 1,
ĉn−1

u,I > 0.
(2.4.10)
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Step 1: I ∈ NBm−1
v,−

Using the assumption θm−1
v � θn−1

u , we know that θm−1
v,K ≥ θn−1

u,K = 1 and thus
we have θm−1

v,K = 1. Hence we conclude with θm−1
v,I = −1 that

I ∈ Fm−1
v,− . (2.4.11)

Furthermore due to |tn−1 − sm−1| ≤ ∆t it holds

cv(·, sm−1) ≥ cu(·, tn−1).

The monotonicity of c→ ĉ in proposition 2.4.7 together with equation (2.4.10)
give us

ĉm−1
v,I ≥ ĉn−1

u,I > 0. (2.4.12)

Now we see that due to equations (2.4.11) and (2.4.12) that

I ∈ NBm−1
v,− . (2.4.13)

Step 2: Ordering un−1
·→I ≥ vm−1

·→I
Let K ∈ V(I). We distinguish two cases:

Case 1: θm−1
v,K = −1

Since θm−1
v � θn−1

u , we get that θm−1
v,K ≥ θn−1

u,K and therefore θn−1
u,K = −1.

Thus K is not useful for I and therefore we have

un−1
K→I = +∞ = vm−1

K→I .

Case 2: θm−1
v,K = 1

First we assume θn−1
u,K = 1. Together with I ∈ NBn−1

u,− ∩NBm−1
v,− we know

that K ∈ U n−1
u (I) ∩ Um−1

v (I). Then using the assumption θm−1
v � θn−1

u
yields that un−1

K→I ≥ vm−1
K→I with σI = 1.

In the other case we assume θn−1
u,K = −1. Thus point K is not useful for

I and we get that un−1
K→I = +∞ which leads to un−1

K→I ≥ vm−1
K→I .

In total this yields
un−1

K→I ≥ vm−1
K→I

for all K ∈ V(I).

Step 3: ũn−1
I ≥ ṽm−1

I
In step 1 we showed in equation (2.4.12) that ĉm−1

v,I ≥ ĉn−1
u,I > 0 and step 2

yield un−1
·→I ≥ vm−1

·→I . The claim is followed now by the monotonicity in the
Hopf-Lax-Formula (2.1.6) which we use to compute the update in step 4 of the
mGFT.

Now we will do the proof for the case θm−1
v,I = θn−1

u,I = 1 and I ∈ NBm−1
v,+ . This done

by using the same methods as above.
Due to I ∈ NBm−1

v,+ , we know that{
∃K ∈ V(I) such that θm−1

v,K = −1,
ĉm−1

v,I < 0.
(2.4.14)
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Step 1: I ∈ NBn−1
u,+

Using the assumption θm−1
v � θn−1

u , we know that −1 = θm−1
v,K ≥ θn−1

u,K and thus
we have θn−1

u,K = −1. Hence we conclude with θm−1
v,I = 1 that

I ∈ Fn−1
u,+ . (2.4.15)

Furthermore due to |tn−1 − sm−1| ≤ ∆t it holds that

cv(·, sm−1) ≥ cu(·, tn−1).

The monotonicity of c→ ĉ in proposition 2.4.7 together with equation (2.4.14)
give us

0 > ĉm−1
v,I ≥ ĉn−1

u,I . (2.4.16)

Now we see that due to equations (2.4.15) and (2.4.16) that

I ∈ NBn−1
u,+ . (2.4.17)

Step 2: Ordering un−1
·→I ≤ vm−1

·→I
Let K ∈ V(I). We distinguish two cases:

Case 1: θn−1
u,K = +1

Since θm−1
v � θn−1

u , we get that θm−1
v,K ≥ θn−1

u,K and therefore θm−1
v,K = +1.

Thus K is not useful for I and therefore we have

un−1
K→I = +∞ = vm−1

K→I .

Case 2: θn−1
u,K = −1

First we assume θm−1
v,K = −1. Together with I ∈ NBn−1

u,+ ∩ NBm−1
v,+

we know that K ∈ U n−1
u (I) ∩ Um−1

v (I). Then using the assumption
θm−1

v � θn−1
u yields that un−1

K→I ≤ vm−1
K→I with σI = −1.

In the other case we assume θm−1
v,K = +1. Thus point K is not useful for

I and we get that vm−1
K→I = +∞ which leads to un−1

K→I ≤ vm−1
K→I .

Thus we have for all K ∈ V(I)

un−1
K→I ≤ vm−1

K→I .

Step 3: ũn−1
I ≤ ṽm−1

I
In step 1 we showed in equation (2.4.16) that 0 > ĉm−1

v,I ≥ ĉn−1
u,I and in step 2

yields un−1
·→I ≤ vm−1

·→I . The claim is followed now by the monotonicity in the
Hopf-Lax-Formula (2.1.6) which we use to compute the update in step 4 of the
mGFT.

The lemma 2.4.14 give us an useful condition to decide whether a point as already
been useful or not. In this lemma the ordering of the velocity is essential for the proof.
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Lemma 2.4.14 (Property of useful points):
Assume that I ∈ Um

v (K) ∩ U n
u (K), θm

v,I = θn
u,I = θn−1

u,I = −1 and |tn−1 − sm| ≤ ∆t with
tn, sm ≤ T. Then it holds that I ∈ U n−1

u (K).

Proof. We do the proof by contradiction. We assume that I /∈ U n−1
u (K).

Due to I ∈ Um
v (K) and θm

v,I = −1 we know that

θm
v,K = 1 and ĉm

v,K < 0.

Likewise we have I ∈ U n
u (K) and θn

v,I = −1 and thus

θn
u,K = 1 and ĉn

u,K < 0.

Due to the assumption |tn−1 − sm| ≤ ∆t and the ordering of the velocity cu and cv we
gain

ĉn−1
u,K ≤ ĉm

v,K < 0.

We know θn−1
u,I = −1, ĉn−1

u,K < 0 and I /∈ U n−1
u (K), thus we get

θn−1
u,I = θn−1

u,K = −1.

This is a contradiction, because we cannot get from θn−1
u,K = −1 to θn

u,K = +1 with a
negative velocity ĉn−1

u,K < 0.

2.4.4 Comparison principle for the t̃n times: proof of proposition 2.4.12

In this subsection we prove proposition 2.4.12. To do so we state and prove a slightly
more general result in proposition 2.4.15.

First we recall that we consider in this subsection two sequences of times with

tn−p−1 < tn−p = . . . = tn < tn+1 and sm−q−1 < sm−q = . . . = sm < sm+1

such that tn = sm ≤ T. To simplify the notation, we set for this subsection

t̃n−p = −∞ and s̃m−q = −∞. (2.4.18)

With this notational convention the definition of comparable times 2.4.2 for times
t̃n−k and s̃m−l with 0 ≤ k ≤ p and 0 ≤ l ≤ q can be read as

C(t̃n−k, s̃m−l) is true if


t̃n−k ≤ s̃m−l < t̃n−k+1,
or

s̃m−l ≤ t̃n−k < s̃m−l+1.

This is because the velocities cn−k
u and cm−l

v are independent of k = 0, . . . , q and
l = 0, . . . , q respectively and the notational convention (2.4.18). Thus we have for
0 ≤ k ≤ p and 0 ≤ l ≤ q that

t̃n−k < t̃n−k+1 ans s̃m−l < s̃m−l+1.
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Proposition 2.4.15 (Comparison principle for the t̃n times):
Let p, q ≥ 0. If it holds that θ

m−q
v � θ

n−p
u with p + q ≥ 1, then we have θm−l

v � θn−k
u for

0 ≤ k ≤ p, 0 ≤ l ≤ q satisfying C(t̃n−k, s̃m−l).

Proof. We do the proof by contradiction. Let us define

s̃∗ = inf
{

min (t̃n−k, s̃m−l) | θm−l
v 6� θn−k

u , 0 ≤ k ≤ p, 0 ≤ l ≤ q and C (t̃n−k, s̃m−l) is true
}

.

Due to the symmetry of the mGFT in proposition 2.4.8, we can assume that s̃∗ = s̃m−l∗

for a certain index l∗. Now we define

k∗ = sup
{

0 ≤ k ≤ p such that θm−l
v 6� θn−k

u and C (t̃n−k, s̃m−l∗) is true
}

.

Thus (n− k∗, m− l∗) is the minimal couple with θm−l∗
v 6� θn−k∗

u and

s̃m−l∗ ≤ t̃n−k∗ < s̃m−l∗+1.

Due to our convention C
(
t̃n−p, s̃m−q

)
is true. Therefore we know that k∗ < p or l∗ < q.

Together with s̃m−l∗ ≤ t̃n−k∗ we conclude k∗ < p.
In the following we will write k instead of k∗ and l instead of l∗ to simplify the

notation. We distinguish for the proof now two cases:

Case 1: s̃m−l < t̃n−k

Step 1: θm−l
v � θn−k−1

u
Due to the minimality of the couple (n− k, m− l) it suffices to show
that C(tn−k−1, sm−l) is true. This implies then θm−l

v � θn−k−1
u . The

definition of k and l gives us

s̃m−l < t̃n−k < s̃m−l+1.

Either we have s̃m−l ≤ tn−k−1, which implies s̃m−l ≤ t̃n−k−1 < t̃n−k <
s̃m−l+1, or we have t̃n−k−1 < s̃m−l , which yields t̃n−k−1 < s̃m < t̃n−k.

Thus C(t̃n−k−1, s̃m−l) is true anyway and we get that θm−l
v � θn−k−1

u .

Step 2: Contradiction
Now we can use lemma 2.4.17 to conclude that θm−l

v � θn−k
u , but this

leads to a contradiction of the construction of k and l.

Case 2: s̃m−l = t̃n−k
We have by construction that k < p. Thus we know that s̃m−l = t̃n−k > −∞
and therefore is l < q. Furthermore we have t̃n−k−1 ≤ s̃m−l−1 < s̃m−l = tn−k or
s̃m−l−1 ≤ t̃n−k−1 < t̃n−k = s̃m−l . Thus C(t̃n−k−1, s̃m−l−1) is satisfied. This yields
by the construction of (k, l) that θm−l−1

v � θn−k−1
u . Now we use lemma 2.4.18

to deduce that θm−l
v � θn−k

u . This is a contradiction to the definition of k and l.
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Remark 2.4.16:
In this remark we show the connection to proposition 2.4.12. Due to the assumptions of
this proposition we have with point 8 and 9 of proposition 2.4.6 either s̃m ≤ t̃n ≤ tn =
sm < sm+1 ≤ s̃m+1 or t̃n ≤ s̃m ≤ sm = tn < tn+1 ≤ t̃n+1. Thus C(t̃n, s̃m) is true and we
can apply proposition 2.4.15 which gives us that θn

v � θn
u . Therefore proposition 2.4.12

true.

We used in the proof of Proposition 2.4.15 the two lemmata 2.4.17 and 2.4.18. We state
and prove now these two lemmata. The proofs are similar to the proofs of lemmata
2.4.10 and 2.4.11.

Lemma 2.4.17 (Two jumps, two arrivals):
Assume that θm−l

v � θn−k
u for 0 ≤ k ≤ p, 0 ≤ l ≤ q. Then, if s̃m−l ≤ t̃n−k+1 < s̃m−l+1 (resp.

t̃n−k ≤ s̃m−l+1 < t̃n−k+1), we have θm−l
v � θn−k+1

u (resp. θm−l+1
v � θn−k+1

u ).

Proof. We show here the proof in the case s̃m−l+1 > t̃n−k+1. The other case is equivalent
due to the symmetry of the algorithm, see also proposition 2.4.8.

We use point 8 and 9 of proposition 2.4.6 to conclude that t̃n+1 ≥ tn+1 > tn = sm ≥
s̃m ≥ s̃m−l+1 for 1 ≤ l ≤ q + 1. Thus we know that 1 ≤ k ≤ p and tn−k+1 = tn.

We do the proof by contradiction. We assume that θm−l
v 6� θn−k+1

u . Thus there exists a
point I with

θm−l
v,I < θn−k+1

u,I ,
or
θm−l

v,I = θn−k+1
u,I = σI and ∃K : I ∈ Um−l

v (K) ∩ U n−k+1
u (K) and σIun−k+1

I→K < σIvm−l
I→K.
(2.4.19)

We distinguish two cases: in the first case the value of θn−k+1
u changes but not in the

second case. This is analogous to the cases in the proof of lemma 2.4.10.

Case 1: I ∈ NAn−k+1
u

Subcase 1.1: θm−l
v,I > θn−k

u,I

We know θm−l
v,I = 1 and θn−k

u,I = −1. Since I ∈ NAn−k+1
u , we deduce that

θn−k+1
u,I = 1 = θm−l

v,I = σI . Due to I ∈ Um−l
v (K) and point 2 of proposition

2.4.6 we gain
vm−l

I→K ≤ sm−l .

Further we know by I ∈ NAn−k+1
u ∩U n−k+1

u (K) and point 4 of proposition
2.4.6 that

tn−k+1 = un−k+1
I→K .

Together with sm−l = tn−k+1 from the assumption this yields

vm−l
I→K ≤ sm−l ≤ tn−k+1 = un−k+1

I→K

which is a contradiction to (2.4.19).

Subcase 1.2: θm−l
v,I = θn−k

u,I
We distinguish now the cases ±1.
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Subcase 1.2.1: θm−l
v,I = θn−k

u,I = 1
Since I ∈ NAn−k+1

u we know that θn−k+1
u,I = −1, but this contradicts

(2.4.19).

Subcase 1.2.2: θm−l
v,I = θn−k

u,I = −1

Step 1: ũn−k
I ≥ ṽm−l

I
Since I ∈ NAn−k−1

u , we know that I ∈ NBn−k
u,− . Further we recall

that θm−l
v � θn−k

u as well as θm−l
v,I = θn−k

u,I = −1. In addition
we have tn−k = sm−l . Thus the assumptions of lemma 2.4.13 are
fulfilled and we conclude

ũn−k
I ≥ ṽm−l

I .

Step 2: Contradiction
Due to I ∈ NAn−k+1

u , we know that t̃n−k+1 = ũn−k
I . Furthermore

we know due the definition that ṽm−l
I ≥ s̃m−l+1. Together with

step 1 we conclude

t̃n−k+1 = ũn−k
I ≥ ṽm−l

I ≥ s̃m−l+1.

This is a contradiction to s̃m−l+1 > t̃n−k+1.

Subcase 1.3: θm−l
v,I < θn−k

u,I
This case is impossible since we assume θm−1

v � θn−1
u .

Case 2: I /∈ NAn−k+1
u

Subcase 2.1: θm−l
v,I < θn−k+1

u,I

Since I /∈ NAn−k+1
u , we have θn−k+1

u,I = θn−k
u,I and therefore θm−l

v,I < θn−k
u,I .

This is a contradiction to θm−l
v � θn−k

u .

Subcase 2.2: θm−l
v,I = θn−k+1

u,I
Due to I /∈ NAn−k+1

u , we have

θn−k
u,I = θn−k+1

u,I = θm−l
v,I = σI = ±1. (2.4.20)

From equation (2.4.19) we get, that there exists a node K such that

I ∈ Um−l
v (K) ∩ U n−k+1

u (K) and σIun−k+1
I→K < σIvm−l

I→K (2.4.21)

We distinguish three subcases:

Subcase 2.2.1: I ∈ U n−k
u (K)

Equation (2.4.21) and the assumption I ∈ U n−k
u (K) gives us that

I ∈ Um−l
v (K) ∩ U n−k

u (K). Together with the assumption θm−l
v � θn−k

u
and (2.4.20) we conclude that

σIun−k
I→K ≥ σIvm−l

I→K.
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Furthermore it holds I ∈ U n−k
u (K)∩U n−k+1

u (K). Point 6 in proposition
2.4.6 gives us that un−k+1

I→K = un−k
I→K. Thus we have.

σIun−k+1
I→K ≥ σIvm−l

I→K

which contradicts (2.4.21).

Subcase 2.2.2: I /∈ U n−k
u (K) and σI = +1

We have I ∈ U n−k+1
u (K) \ U n−k

u (K). Using point 7 of proposition 2.4.6
we conclude that un−k+1

I→K = tn−k+1. In addition we know I ∈ Um−l
v (K)

and point 2 of proposition 2.4.6 leads to sm−l ≤ vm−l
I→K. In combination

with the assumption of the lemma we conclude

un−k+1
I→K = tn−k+1 = sm−l ≥ vm−l

I→K.

This is a contradiction to (2.4.21).

Subcase 2.2.3: I /∈ U n−k
u (K) and σI = −1

The equations (2.4.20) and (2.4.21) give us I ∈ Um−l
v (K) ∩ U n−k+1

u (K)
and θn−k

u,I = θn−k+1
u,I = θm−l

v,I = −1. Furthermore we have tn−k = sm−l .
The assumptions of lemma 2.4.14 are fulfilled and thus we get I ∈
U n−k

u (K), which leads to a contradiction.

Subcase 2.3: θm−l
v,I > θn−k

u,I
This case is impossible. See also equation (2.4.19).

Lemma 2.4.18 (Two jumps, one arrival):
Assume that θm−l

v � θn−k+1
u for 1 ≤ k ≤ p, 1 ≤ l ≤ q. If s̃m−l+1 = t̃n−k+1, then

θm−l+1
v � θn−k+1

u .

Proof. We do the proof by contradiction. Let us assume that θm−l+1
v 6� θn−k+1

u . Then
there exists a point I with

θm−l+1
v,I < θn−k+1

u,I

or
θm−l+1

v,I = θn−k+1
u,I = σI and ∃K : I ∈ Um−l+1

v (K) ∩ U n−k+1
u (K) and σIun−k+1

I→K < σIvm−l+1
I→K

(2.4.22)
We consider the following four cases:

Case 1: I ∈ NAn−k+1
u \ NAm−l+1

v

Subcase 1.1: θm−l
v,I > θn−k

u,I

We know θm−l
v,I = 1 and θn−k

u,I = −1. Since I ∈ NAn−k+1
u \ NAm−l+1

v , we
deduce that θn−k+1

u,I = 1 = θm−l+1
v,I = σI . Due to I ∈ Um−l+1

v (K) and point
2 of proposition 2.4.6 we gain

vm−l+1
I→K ≤ sm−l+1.
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Further we know by I ∈ NAn−k+1
u ∩U n−k+1

u (K) and point 4 of proposition
2.4.6 that

tn−k+1 = un−k+1
I→K .

Together with sm−l+1 = tn−k+1 from the assumption this yields

vm−l+1
I→K ≤ sm−l+1 = tn−k+1 = un−k+1

I→K

which is a contradiction to (2.4.22).

Subcase 1.2: θm−l
v,I = θn−k

u,I
We distinguish now the cases ±1.

Subcase 1.2.1: θm−l
v,I = θn−k

u,I = +1
Due to I ∈ NAn−k+1

u \ NAm−l+1
v we know that θn−k+1

u,I = −1 and
θm−l+1

v,I = 1, which contradicts (2.4.22).

Subcase 1.2.2: θm−l
v,I = θn−k

u,I = −1

Step 1: ũn−k
I ≥ ṽm−l

I
Since I ∈ NAn−k+1

u and θn−k
u,I = −1 we know that I ∈ NBn−k

u,− .
Moreover it holds tn−k = sm−l . Further we recall that θm−l

v � θn−k
u

and θm−l
v,I = θn−k+1

u,I = −1. Thus the assumptions of lemma 2.4.13
are fulfilled and we conclude

ũn−k
I ≥ ṽm−l

I .

Step 2: Contradiction
Due to sm−l+1 = sm−l and I /∈ NAm−l+1

v we conclude using step 8
of the mGFT that s̃m−l+1 < ṽm−l

I . Together with step 1 we get

ũn−k
I ≥ ṽm−l

I > s̃m−l+1 = t̃n−k+1.

This is impossible because I ∈ NAn−k+1
u with step 8 of the mGFT

yields ũn−k
I = t̃n−k+1.

Subcase 1.3: θm−l
v,I < θn−k

u,I
This case is impossible since we assume θm−l

v � θn−k
u .

Case 2: I ∈ NAm−l+1
v \ NAn−k+1

u
Due to the symmetry of the mGFT in proposition 2.4.8, this case can be handled
like case 1.

Case 3: I ∈ NAn−k+1
u ∩ NAm−l+1

v

Subcase 3.1: θm−l
v,I > θn−k

u,I

We know θm−l
v,I = 1 and θn−k

u,I = −1. Due to I ∈ NAn−k+1
u ∩ NAm−l+1

v we
conclude that I ∈ NBn−k

u,− ∩ NBm−l
v,+ . Therefore we have

ĉn−k
u,I > 0 and ĉm−l

v,I < 0.

This is a contradiction because sm−l = tn−k and thus cm−l
v,I ≥ cn−k

u,I .
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Subcase 3.2: θm−l
v,I = θn−k

u,I

Since I ∈ NAn−k+1
u ∪ NAm−l+1

v we have θm−l+1
v,I = θn−k+1

u,I . From equation
(2.4.22) we know I ∈ U n−k+1

u (K)∩Um−l+1
v (K). With point 4 of proposition

2.4.6 we gain
vm−l+1

I→K = sm−l+1 = tn−k+1 = un−k+1
I→K .

This is a contradiction to (2.4.22).

Subcase 3.3: θm−l
v,I < θn−k

u,I
This is impossible since θm−l

v � θn−k
u .

Case 4: I /∈ NAn−k+1
u ∪ NAm−l+1

v

Subcase 4.1: θm−l+1
v,I < θn−k+1

u,I

Due to I /∈ NAn−k+1
u ∪ NAm−l+1

v we have θn−k
u,I = θn−k+1

u,I and θm−l
v,I =

θm−l+1
v,I . Thus we get θm−l

v,I < θn−k
u,I . This is a contradiction to θm−l

v,I � θn−k
u,I .

Subcase 4.2: θm−l+1
v,I = θn−k+1

u,I
Since I /∈ NAn−k+1

u ∪ NAm−l+1
v , we have

θn−k
u,I = θn−k+1

u,I = θm−l
v,I = θm−l+1

v,I = σI = ±1. (2.4.23)

Due to equation (2.4.22) we know, that there exists a node K such that
I ∈ Um−l+1

v (K) ∩ U n−k+1
u (K) and

σIun−k+1
I→K < σIvm−l+1

I→K (2.4.24)

We distinguish several subcases according to U (K):
Subcase 4.2.1: I ∈ U n−k

u (K) ∩ Um−l
v (K)

Using (2.4.23) and the assumption θm−l
v � θn−k

u of the lemma we
conclude

σIun−k
I→K ≥ σIvm−l

I→K.

Furthermore we have I ∈ U n−k
u (K) ∩ U n−k+1

u (K) and I ∈ Um−l
v (K) ∩

Um−l+1
v (K). Thus we get with point 6 of proposition 2.4.6 that

un−k+1
I→K = un−k

I→K and vm−l+1
I→K = vm−l

I→K. Therefore we have

σIun−k+1
I→K ≥ σIvm−l+1

I→K ,

which contradicts (2.4.24).

Subcase 4.2.2: I ∈ Um−l
v (K) \ U n−k

u (K)

Subcase 4.2.2.1: σI = +1
We use I ∈ U n−k+1

u (K) \ U n−k
u (K) together with point 7 of propo-

sition 2.4.6 which gives us un−k+1
I→K = tn−k+1. Furthermore we

know that I ∈ Um−l+1
v (K). Point 2 of proposition 2.4.6 gives us

sm−l+1 ≥ vm−l+1
I→K . Thus we see

un−k+1
I→K = tn−k+1 = sm−l+1 ≥ vm−l+1

I→K ,

which contradicts (2.4.24).
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Subcase 4.2.2.2: σI = −1
We know I ∈ Um−l

v (K) ∩ U n−k+1
u (K) and furthermore θn−k

u,I =

θn−k+1
u,I = θm−l

v,I = −1. Using tn−k = sm−l the assumptions of
lemma 2.4.14 are satisfied and we get that I ∈ U n−k

u (K). This is a
contradiction.

Subcase 4.2.3: I ∈ U n−k
u (K) \ Um−l

v (K)
Due to the symmetry this case is done in the same way as the preced-
ing subcase 4.2.2.

Subcase 4.2.4: I /∈ U n−k
u (K) ∪ Um−l

v (K)
We have I ∈ U n−k+1

u (K) \ U n−k
u (K) and I ∈ Um−l+1

v (K) \ Um−l
v (K). Via

point 7 of proposition 2.4.6 we get tn−k+1 = un−k+1
I→K and sm−l+1 =

vm−l+1
I→K . Thus we have

vm−l+1
I→K = sm−l+1 = tn−k+1 = un−k+1

I→K .

This is a contradiction to (2.4.24).

Subcase 4.3: θm−l+1
v,I > θn−k+1

u,I
This case is impossible due to the assumption in equation (2.4.22).

2.5 Numerical Tests

In this section we present some numerical examples for the GFT and the mGFT. We
adapt the examples presented in [CFFM08, Section 6], where I also implemented
the GFMM and the mGFMM. Therefore we can directly compare the results of the
different versions of the generalized fast marching method. The numerical results for
the mGFMM are also new because in [For09] and also in [CFM] no numerical examples
for the mGFMM are given.

2.5.1 Comments on the implementation and numerical tests

The different versions of the generalized fast marching are implemented in Java using
as far as possible the same code to have a direct comparison. The choice of Java has
some pragmatical reasons. We have a direct interface to Matlab, the implementation
is independent of the platform and Java supports a large API. The set operations
are made with the LinkedHashSet class of Java which gives us at least theoretically
constant complexity for the remove-, add- and contain- operation per element, and the
complexity for an iterator over the set is linear in the number of elements stored in this
structure. Thus we can reach at least theoretically optimal computational complexity.
Further I modified the ArrayHeap class from the package edu.stanford.nlp.util of the
NLP Project5 such that one can remove arbitrary objects from the heap, see also case (a)
and (b) in subsection 2.3.3. The triangulations are calculated using the Triangle library

5http://nlp.stanford.edu/software/lex-parser.shtml
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by Jonathan Richard Shewchuk6 and an interface to Matlab. In addition I had access to
the code used by Rasch in [Ras07], which shows how to handle virtual updates.

In [CFFM08] two methods to measure the error are used. The one method is to
compute the difference between the area A(·) of the set Ω±T = {x | θ(T, x) = ±1} with
the approximated set Ω±m = {x | θε

m(x) = ±1}, where m is the number of iterations to
reach the final time T. We do not use this method because with this measure we cannot
really detect convergence. This is already mentioned in [CFFM08, p. 2946].

The other method used in [CFFM08] is to compute the Hausdorff distance between
the exact front and the approximated front. I do not use this kind of error measure
because the Hausdorff distance may be too sensitive to topological changes of the front.
I use instead of the Hausdorff distance the L1-norm. The L1-norm of (θ − θε)(T, ·) is
in our case (up to the constant 2) equal to the Lebesgue measure of the set {θ(T, ·) 6=
θε(T, ·)}. This is because θ and θε are characteristic functions except for scaling.

Now we want to compute
∫

D |(θ − θε)(T, x)| dx where D denotes the computational
domain. We approximate this error by replacing the difference θ − θε with I[R[(θ −
θε)(T, ·)]], where I denotes the linear interpolation on a triangle (resp. the bilinear
interpolation using a regular grid) and R denotes the restriction of a function to the
grid points of the mesh. The approximated error

∫
D |I[R[(θ − θε)(T, ·)]]| dx can easily

be computed exactly which is roughly speaking a weighted summation of the points
which lie in the false region. For the estimation of the error we use the triangle
inequality

‖(θ− θε)(T, ·)‖1 ≤ ‖(θ− I[R[θ]])(T, ·)‖1 + ‖I[R[(θ− θε]](T, ·)‖1 + ‖(θε− I[R[θε]])(T, ·)‖1.

Assume that the computational domain is the cube [0, 1]d with M grid points and
that we have a typical distance between two adjaent nodes of O(h) = O(M1/d). Then
the typical front crosses O(M1−(1/d)) cells, thus we know that the discretization error
‖(θ − I[R[θ]])(T, ·)‖1 and ‖(θε − I[R[θε]])(T, ·)‖1 can estimated by

‖(θε − I[R[θε]])(T, ·)‖1 = O(M−1/d) = O(h) and

‖(θ − I[R[θ]])(T, ·)‖1 = O(M−1/d) = O(h),

because the volume of a grid cell is about O(M−1) = O(hd) and θ differs from I[R[θ]]
only in cells of the front. Therefore we get

‖(θ − θε)(T, ·)‖1 ≤ ‖I[R[(θ − θε]](T, ·)‖1 +O(h).
Thus we know that the error measure can only detect linear convergence. This is no
restriction for our application because due to the construction of the generalized fast
marching method we can only archive linear convergence.

We use in some examples the level set of a polynomial to calculate the exact solution.
This method was already used in [CFFM08, Section 6] and we briefly recall it here.

Assume that we have a linear speed function c(t, x) = a(t)x + b(t) and an initial
front Γ0 = {x : P(0, x) = 0}, where P is a polynomial in x whose coefficients depends
on t. Then the front Γt at time t is equal to {x : P(t, x) = 0} if P suffices the equation

Pt(t, x)− |DP(t, x)| c(t, x) = 0, (2.5.1)

6http://www.cs.cmu.edu/~quake/triangle.html
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see also section 1.5.

(a) Hyperplanes: We assume that P(t, x) = A(t)x + B(t). If the coefficients are solu-
tions of the ODE

Ȧ(t) = |A(t)| a(t)
Ḃ(t) = |A(t)| b(t)

then P is a solution of (2.5.1) and therefore we can use this formulation to calculate
the exact solution of the evolution.

(b) Spheres: Let P(t, x) = R(t)2 − |x− x0(t)|2. Then P suffices (2.5.1) if the coefficients
solves the ODE

ẋ0(t) = a(t)R(t)
Ṙ(t) = x0(t)a(t) + b(t).

Before we start with the concrete numerical examples, we give here the default
setting for our computation which holds if nothing else is reported. We use the update
procedure of case (b) in 2.3.3 with time step ∆t = 4h. That means that we recompute
the speed and the tentative values of all points at the front at least after the time interval
∆t. We further use always a square with sides of length L as the computational domain,
and we set for unstructured grids with M nodes the grid spacing h to the number
L/(M1/d − 1). Thus a regular grid with grid spacing h would have the same number
of nodes as the unstructured grid. In the Triangle library which we use to calculate
the triangulation we used a setting such that every angle in the triangulation is at least
30◦ and nevertheless we used for the GFT virtual updates in the case of a non-acute
triangle. For the computation of the order of the error and the time we used the results
of the eight finest meshes in the computation. The examples are computed on a virtual
Linux server with Matlab R2010b and the host server has Intel X5680 processors. The
algorithm is not parallelized, so all computation work on one CPU core.

2.5.2 Numerical examples

In the first three examples 2.5.2.1 to 2.5.2.3 we use the same settings as in [CFFM08,
Section 6, Test 1, 2 and 3]. Example 2.5.2.4 is motivated by [CFFM08, Section 6, Test
4] but no quantitative results have been given therein. The last example 2.5.2.5 is
dedicated to the effect of degenerated meshes and the usage of virtual updates.

2.5.2.1 Rotating line

In this example we use the initial function P(0, x) = 1.5x1 + x2 which gives us the
initial state for θ by

θ(0, x) =

{
1 if 1.5x1 + x2 > 0,
−1 else.
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Figure 2.5.1: Solution for the example 2.5.2.1 with constant speed at t = 0 (left) and
t = 1 (right). The green line indicates the location of the analytical front.
The nodes at which analytic and computed solution differ are marked as
red dots. The orange filled triangles indicate the numerical front.

We test here with two speed functions. The first one is c(t, x) = x1. The case of the
other speed function will be handled later. With the remarks above we know that the
coefficients of P(t, x) = A(t)x + B(t) are solutions of the ODE{

Ȧ1(t) =
√

1 + A1(t)2,
A1(0) = 1.5,

{
Ȧ2(t) = 0,
A2(0) = 1,

{
Ḃ(t) = 0,
B(0) = 0.

One gets that
P(t, x) = sinh(t + asinh(A1(0)))x1 + x2

is the corresponding solution for P. We compute the solution on the domain D =
[−1, 1]2 till the time T = 1. In figure 2.5.1 the initial data and the computed solution
at time T = 1 are displayed. The mesh consists of 2785 nodes which corresponds to a
grid spacing of h = 0.0386. We can see that the error is located at a small band around
the analytical fornt Γt. This behavior can also be observed in the other examples.

In figure 2.5.2 we can see that all four variants of the generalized fast marching
converge linear to the solution. Further we see that in this case GFMM and mGFMM
resp. GFT and mGFT compute the same solution. The reason for this is that the speed
in every point is constant in time. Thus both versions are equivalent.

The dependence of the number of nodes to the computational time is displayed in
figure 2.5.3.

We can see that the time is heavily reduced if we use the efficient update of the speed
as indicated in subsection 2.3.3. Furthermore it makes practically no difference whether
we use case (a) or (b). Thus it seems to be a reasonable choice to use case (b) as long
we have no indication to use case (c). Due to the analysis in 2.3.3 we would predict an
order of 1.5 for case (c) and an order of ≈ 1 for cases (a) and (b), but in our experiments
we detect a significantly higher complexity. The reason for this behavior is not clear
and may be connected to the internals of the virtual machine of Java. One can further
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Time 1.16 1.01 1.08 1.25

Figure 2.5.2: The approximated error in the L1-norm for the example in 2.5.2.1 with
constant speed c(t, x) = x1.

observe that the computation times differ about 30%, thus the results for the order of
the time may not be accurate, but overall we can say that the observed complexity is
higher than the complexity we predict.

On a notebook with an Intel P8400 processor we need with a grid spacing h = 0.005
about 1.2 sec. for the GFMM, 1.1 sec. for the mGFMM and the GFT and 1.3 sec. for the
mGFT. This is about 60-times faster then the times presented in [CFFM08].

Now we change the speed function to c(t, x) = sin(2πt)x1. The front rotates clock-
wise for 0 ≤ t ≤ 1/2, then counterclockwise for 1/2 ≤ t ≤ 1 and so on. As in the
previous calculation we get in this case for the polynomial

P(t, x) = sinh (asinh(3/2) + (1 + cos(2πt))/(2π)) x1 + x2. (2.5.2)

The initial data and the computed solution for this choice of c are presented in figure
2.5.4.

In this setting we see that GFMM and mGFMM and likewise GFT and mGFT return
slightly different results. Further we can recognize that the error of the modified
versions is smaller. One can estimate such an behavior, because the mGFMM and
mGFT cope also with the comparison principle and therefore they share more properties
of the analytical evolution.

For the computation of the error we have to restrict the set of points we consider for
this. The point is that in this case the solution of the evolution in R2 restricted to the
Domain D := [−1, 1]2 is not the same as when we solve the evolution on the domain D.
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Figure 2.5.3: CPU time in seconds dependent on the number of grid points for the
GFMM (left) and the GFT (right). We distinguish the cases (a), (b) and (c)
as in subsection 2.3.3.

Figure 2.5.4: Initial data (left) and computed solution (right) at time t = 1 for the
example 2.5.2.1 with speed c(t, x) = sin(2πt)x1.

In our case we have the effect that the front is rounded near the boundary of D if the
line rotates counterclockwise. Thus we take only those points into account which lie in
the smaller domain [−0.9, 0.9]2.
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Figure 2.5.5: The approximated error in the L1-norm for the example in 2.5.2.1 with the
non constant speed c(t, x) = sin(2πt)x1.

This issue can be very important because computations are restricted to bounded
domains. Therefore we must ensure that either the front never reaches the boundary
of the computational domain D or that at least the characteristics at the points of the
front show outward when touching the boundary of D.

The time for the computation on a notebook with Intel P8400 processor for grid
spacing h = 0.005 in the case of the non-constant speed is about 1.5 sec. for the GFMM,
1.3 sec. for the mGFMM and the GFT, and 1.9 sec. for the mGFT. This is about 80-times
faster then the computational time presented in [CFFM08].

2.5.2.2 Propagation of a circle

In this example we compute how a circle propagates due to the speed c(t, x) = t/10− x1.
The initial data is given as the zero level set of P(0, x) = x2

1 + x2
2 − 1. Thus we have for

θ in this case

θ(0, x) =

{
1 if x2

1 + x2
2 − 1 < 0,

−1 otherwise.

Using the formulas of the preceding subsection we gain for the coefficient of P(t, x) =
(x1 − x0,1(t))2 + (x2 − x0,2(t))2 − R(t)2 the ODE{

ẋ0,1(t) = −R(t),
x0,1(0) = 0,

{
ẋ0,2(t) = 0,
x0,2(0) = 0,

{
Ṙ(t) = −x0,1(t) + t/10,
R(0) = 1.
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2.5 Numerical Tests

Figure 2.5.6: Initial data (left) and computed solution (right) at time t = 0.5 for the
example 2.5.2.2.
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Figure 2.5.7: The approximated error in the L1-norm for the example in 2.5.2.2.

Hence we get for the solution

x0,1(t) = (t− 11 sinh(t))/10 and R(t) = (11 cosh(t)− 1)/10,

which means that the circle moves to the left and expands. We use D = [−2, 2]2 for the
computational domain. Thus we know that the front will not touch the boundary till the
time T = 0.5. In figure 2.5.6 we see the initial state and the result of our computation.
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Figure 2.5.8: The approximated error in the L1-norm for the example in 2.5.2.3.

The mesh used in this figure is the same as used in the previous example, but it was
scaled by a factor of 2. Thus we have a corresponding grid spacing of h = 0.0773.

In this example GFMM and mGFMM and likewise GFT and mGFT do not compute
the same solution, because the speed changes its sign, but the difference is so small
that it has no visible effect. The convergence is linear, as can be seen in figure 2.5.7.

We reuse this setting in the example in 2.5.2.5 where we test the effect of degenerated
meshes and the usage of virtual updates.

2.5.2.3 Comparison to FMM

In this example we show that the generalized fast marching methods can in principle
also be used as a FMM, although a pure FMM is of course much faster than the
generalized one.

We want to compute the solution of

c(x) |DT(x)| = 1 x ∈ Ω
T(x) = 0 x ∈ ∂Ω.

This problem is connected to the evolution of a front as shown in subsection 1.3.3
because the speed c does not change sign and is independent of t. Thus we are able to
solve the minimum time problem using the equivalent representation as a evolution.

We set here c(x) = 1 and ∂Ω = ∂B(0, 1/2) and compute the T for x ∈ [−2, 2]2 \
B(0, 1/2). Due to the choice c(x) = 1 we know that T(x) is just the distance between x
and B(0, 1/2) whose exact solution can easily be determined.
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2.5 Numerical Tests

We must keep track in our algorithms of the time when the front crosses a point. In
the GFMM and GFT this information is stored in the variable un

I . In the mGFMM and
mGFT we have no such variable because we do not use this information. Therefore I
added in the mGFMM and mGFT a variable un

I which stores this information in exactly
the same way as in the GFMM and GFT, but we do not use this information for further
computations within the algorithm.

In our example we have a constant speed. Thus GFMM and mGFMM and likewise
GFT and mGFT produce the same results. We can see in figure 2.5.8 that the convergence
is linear, and therefore the generalized fast marching methods are really an extension
of the plain FMM. The FMM has the advantage that one can construct methods of high
order accuracy whereas the generalized methods presented here are restricted to be of
first order.

2.5.2.4 Collapsing circles

In this example we show an example that involves topological changes of the front. We
set the computational domain as D = [−2.6, 2.6]2. The initial state is

θ(0, x) =

{
1 if x ∈ Ω0

−1 otherwise,

with Ω0 = B((−1,−1/2), 1) ∪ B((1, 1/2), 1), that means we start with two circles
with radius 1, one centred at p1 = (−1,−1/2) the other at p2 = −p1. We choose
c(t, x) = 1− t for the speed.

The analytical solution can be obtained by using the Huygens principle. For 0 ≤ t ≤ 1
the circles expand and join. At t = 1 we have θ(1, x) = 1Ω1(x) with Ω1 = B(p1, 1.5) ∪
B(p2, 1.5). The corners of ∂Ω1 are at s1 = (− sin(arctan(1/2)), cos(arctan(1/2))) =
(−1/

√
5, 2/
√

5) and s2 = −s1. For 1 ≤ t the joined circles shrink again. We can
construct θ(t, x) by regarding two circles at p1 and p2 with radius R(t) and two circles
at s1 and s2 with radius r(t). For the radii R(t) and r(t) we get two simples ODEs,
namely {

Ṙ(t) = c(t),
R(0) = 1,

and

{
ṙ(t) = −c(t),
r(1) = 0

with c(t) = c(t, x) = 1− t as the speed function which is in our case independent of x.
Thus we conclude that the front separates at time 1 +

√
2 and that it disappears at time

t = 1 +
√

3.
As we can see in figure 2.5.11 we have a slightly reduced order for convergence. The

reason for this is that the mesh is still too coarse to enter a convergent regime but
nevertheless the algorithms are still working fine.

In the figures 2.5.9 and 2.5.10 we show this evolution column by column for twelve
different times. The circles which we used above for the construction are plotted green.
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2 Generalized fast marching method

t = 0 t = 1

t = 1/3 t = 4/3

t = 2/3 t = 5/3

Figure 2.5.9: Evolution of example 2.5.2.4.
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t = 2 t = 2.3

t = 2.1 t = 2.4

t = 2.2 t = 1 +
√

2

Figure 2.5.10: Evolution of example 2.5.2.4.
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Figure 2.5.11: The approximated error at time t = 1 +
√

2 in the L1-norm for the
example in 2.5.2.4.

2.5.2.5 Virtual updates

In this example we look at the effect of meshes with obtuse triangles and the usage
of virtual updates. We reuse the settings of example 2.5.2.2, with the difference that
we propagate the front till time T = 0.6 instead of T = 0.5. This is just to see a
greater difference between computing with or without virtual updates. The mesh was
generated by stretching a high quality mesh in x2-direction by a factor of 10.

In figure 2.5.12 we clearly see that the GFT does not converge if we do not use the
method of virtual updates. Using virtual updates gives us at the beginning linear
convergence which slows down to an order ≈ 0.4. This effect may be related to the fact
that using virtual updates, we do not exactly compute the underlying Hopf-Lax-updates
but only an approximation.

In the figures 2.5.13 and 2.5.14 we plotted the result on a mesh with 1202 nodes. We
clearly see that the front does not move fast enough to the left if we do not use virtual
updates. Thus a systematical error is introduced and no convergence can be obtained.
On the other hand using virtual updates we see that the front evolves properly and the
error is only located in a small band near the analytical front, as in the other examples.

We conclude that from a practical point of view it is reasonable to use virtual updates
every time obtuse triangles appear, but we cannot guarantee in a theoretical manner that
the numerical solution converges to the analytic one. Even the comparison principle
no longer holds because using virtual updates we heavily change the meaning of
neighbourhood which is used in the proof of proposition 2.3.5.
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Figure 2.5.12: The approximated error in L1-norm for the example in 2.5.2.5.

Figure 2.5.13: Initial data (left) and computed solution (right) at time t = 0.6 for the
example 2.5.2.5 using virtual updates.

2.6 GFT for anisotropic speed metrics

In this section we extend the idea of the front propagation driven by a speed c in normal
direction to speed functions that are induced by symmetric and definite matrices. Thus
we will use the term metric instead of speed. Furthermore we apply the GFT to this
problem to get a algorithm that solves this problem. We propose this algorithm and
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2 Generalized fast marching method

Figure 2.5.14: Initial data (left) and computed solution (right) at time t = 0.6 for the
example 2.5.2.5 without virtual updates.

give also a numerical example.

2.6.1 Front propagation for anisotropic speed.

Until now we regarded the equation (2.0.1) which can be written for c(t, x) > 0 in the
form {

θt(t, x)− |θx(t, x)|M(t,x) = 0 on (0, T)×Rd,

θ(0, ·) = 1Ω0 − 1ΩC
0
,

with a symmetric positive definite (spd) matrix M(t, x) = c(t, x)2 · Id. Now let us extend
the definition of the square root in this section for all x ∈ R by

√
x := sgn(x)

√
|x|.

With this kind of signed square root we can rewrite (2.0.1) for arbitrary functions c now
by {

θt(t, x)− |θx(t, x)|M(t,x) = 0 on (0, T)×Rd,

θ(0, ·) = 1Ω0 − 1ΩC
0
,

with M(t, x) = c(t, x) |c(t, x)| · Id. The matrix M(t, x) is spd (or symmetric negative
definite (snd)) if and only if c(t, x) is positive (or negative). We remark that for a snd
matrix M we get that |p|M =

√
〈Mp, p〉 ≤ 0 and that − |·|M is a norm.

Until now we have only rewritten equation (2.0.1), but now we can extend the front
propagation to anisotropic metrics. Let M be a continuous mapping M : [0, ∞]×Rd →
{−Sd ∪ 0 ∪ Sd}, where Sd is the set of the symmetric positive definite d× d matrices.
Then we regard the equation

{
θt(t, x)− |θx(t, x)|M(t,x) = 0 on (0, T)×Rd,

θ(0, ·) = 1Ω0 − 1ΩC
0
.

(2.6.1)

90



2.6 GFT for anisotropic speed metrics

2.6.2 Generalized fast marching for anisotropic speed functions

We want to apply the GFT to get an algorithm which we call generalized fast marching
method for anisotropic metrics (GFA) that can compute a numerical solution of (2.6.1).
First we look where in the GFT the speed cn

I occurs. The first appearance is the
definition 2.3.2 of the regularized speed ĉn

I . We extend that definition to

Definition 2.6.1:
Given the metric Mn

I := M(tn, xI). We define the regularized speed by the function

M̂n
I :=


0 if there exists K ∈ V(I) such that

(
(Mn

I ∈ Sd, Mn
K ∈ −Sd) or (Mn

I ∈ −Sd, Mn
K ∈ Sd)

)
and |I − K|abs(Mn

K)
−1 ≤ |I − K|abs(Mn

I )
−1

Mn
I otherwise.

Here I − K denotes the vector from node K to node I.

Remark 2.6.2:
In definition 2.6.1 we replace the condition cn

I cn
K < 0, which means that the speed c

has a different sign at points I and K, with the condition
(
(Mn

I ∈ Sd, Mn
K ∈ −Sd) or

(Mn
I ∈ −Sd, Mn

K ∈ Sd)
)

which says that the metric M is at one node positive definite
and at the other negative definite.

The other condition |cn
I | ≤ |cn

K| can be interpreted as follows: We reach node I from
node K with speed |cn

K| before we would reach node K from node I with speed |cn
I |.

That means the time to reach node I from node K with speed |cn
K| is h/ |cn

K| which is
smaller than the time h/ |cn

I | if we use speed cn
I .

We first extend the notion of the absolute value. Thus we introduce for this section
the notion abs(·) for matrices M ∈ {−Sd ∪ 0∪ Sd} by

abs(M) =

{
−M if −M ∈ Sd,
M otherwise.

Thus abs(·) denotes for these matrices a kind of absolute value in the sense that abs(M)
is always a positive definite matrix (or the zero matrix).

With this notion we transfer the condition |cn
I | ≤ |cn

K| to |I − K|abs(Mn
K)
−1 ≤ |I − K|abs(Mn

I )
−1 ,

that means we look in which metric we can go faster from I to K.

With this notion of M̂ we still have a monotone mapping M→ M̂ as shown in the
following proposition. It is analogous to proposition 2.4.7

Proposition 2.6.3 (Monotonicity of M→ M̂):
The mapping M→ M̂ is monotone, that means if we have Mv ≥ Mu then we get M̂v ≥ M̂u.

Proof. Let Mv ≥ Mu. We will prove that we have for all nodes I ∈ N

M̂v,I ≥ M̂u,I . (2.6.2)

We proof only the case M̂v,I = Mv,I and M̂u,I 6= Mu,I . All other cases are done like in
the proof of 2.4.7.
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Case 3: M̂v,I = Mv,I and M̂u,I 6= Mu,I .
Due to M̂u,I 6= Mu,I we have M̂u,I = 0. We assume by contradiction that

M̂v,I = Mv,I < 0 = M̂u,I . (2.6.3)

Thus we have Mv,I ∈ −Sd. Due to Mv ≥ Mu we get that Mu,I < 0, that means
Mu,I ∈ −Sd. Since M̂u,I 6= Mu,I , we know that there exists K ∈ V(I) with
Mu,K ∈ Sd and

|I − K|abs(Mu,K)−1 ≤ |I − K||Mu,I |−1 . (2.6.4)

Now we show that M̂v,I = 0.

We have Mv,I ∈ −Sd and MvK ≥ Mu,K > 0 thus Mv,K ∈ Sd. Thus we get

|I − K|abs(Mv,K)−1 ≤ |I − K|abs(Mu,K)−1 because Mv ≥ Mu and Mu,K ∈ Sd

≤ |I − K|abs(Mu,I)−1 due to 2.6.4

≤ |I − K|abs(Mv,I)−1 because Mv ≥ Mu and Mv,I ∈ −Sd

Thus we have M̂v,I = 0 and we have a contradiction to (2.6.3) and therefore we
have proved (2.6.2).

The other point which we have to change in the GFT is step 5 of the algorithm. The
distinction due to the sign of cn

I is replaced by the condition whether Mn
I ∈ ±Sd.

5. Compute ũn−1 on Fn−1 as
Let I ∈ Fn−1

± , then

a) if ±M̂n−1
I ∈ {0∪ Sd} then ũn−1

I = ∞.

b) if ±M̂n−1
I ∈ −Sd then we compute ũn−1

I via the Hopf-Lax update. We have
to distinguish two cases:

• if I ∈ Fn−1
− , then ũn−1

I = (Λûn
+)(I) with the speed abs(M̂n−1

I ).

• if I ∈ Fn−1
+ , then ũn−1

I = (Λûn
−)(I) with the speed abs(M̂n−1

I ).

Remark 2.6.4:
We change in step 5 of the GFT only the condition ±ĉn−1

I ≥ 0 to ±M̂n−1
I ∈ {0∪Sd} and

±ĉn−1
I < 0 to ±M̂n−1

I ∈ −Sd which means that we compute only updates for points
which lie on the upwind side of the front. The Hopf-Lax update has to be computed as
mentioned in subsection 2.1.4. Thus we internally compute with a mesh that is locally
transformed by (Mn

I )
−1/2. So the mesh can be heavily deformed and therefore we

should use the methods of virtual updates. Furthermore this implies that we have no
comparison principle like 2.3.5, because we need an acute triangulation for this and
due to the local transformations of the grid in the Hopf-Lax update we cannot give any
general predictions whether the transformed grids are acute or not.

Fortunately we have at least a method which works in practice and gives good
numerical solutions of (2.6.1). In the following subsection we present such an example.
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Figure 2.6.1: Initial data for the example in 2.6.3 with Υ = 10.

Figure 2.6.2: Computed solution for the example in 2.6.3 with Υ = 10 at time t = π
with virtual updates (top) and without (bottom).

2.6.3 Numerical example for GFA

For this example we choose for the metric and the initial condition

M(t, x) =
(

1 0
0 1/Υ2

)
· sin(t) and θ(0, x) =

{
1 if x ∈ Ω0,
−1 otherwise,

(2.6.5)

with Ω0 = {(x1, x2) ∈ R2 | x2
1 + (Υx2)2 ≤ 1}. This can be interpreted as an ellipse with

the major axis x1 and minor axis x2 with radii R = 1 and r = 1/Υ. We choose the
metric such that we can give the analytic solution, namely

θ(t, x) =

{
1 if x ∈ Ωt

−1 otherwise,

with Ωt = {(x1, x2) ∈ R2 | x2
1 + (Υx2)2 ≤ (2− cos(t))2}. The computational domain

is D = [−3.1, 3.1]× [−(3Υ + 0.1), 3Υ + 0.1]. In figure 2.6.1 we plot the initial data for
Υ = 10.

In figure 2.6.2 we see the state for the evolution at time t = π. We clearly see that
we have to use virtual updates. Otherwise large errors are produced and we get an
inappropriate approximation. Using this anisotropic metric has the same effect as
compressing the hole domain in x1-direction by the factor

√
Υ. Thus internally we

compute with a highly irregular mesh as in example 2.5.2.5 and it is reasonable to use
virtual updates.

Figure 2.6.3 shows the computed solution at time t = 3π/2. The effect of using
virtual updates is more pronounced than in figure 2.6.2, and we see that there is no
possibility of convergence if we do not use virtual updates.
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Figure 2.6.3: Computed solution for the example in 2.6.3 with Υ = 10 at time t = 3π/2
with virtual updates (top) and without (bottom).
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Figure 2.6.4: The approximated error in the L1-norm for the example in 2.6.3 with
Υ = 10 at time t = π.

In figure 2.6.4 we clearly see that without virtual updates there is no convergence.
Of course we have some additional effort due to the virtual updates but this is in this
example about a factor of 2 and it does not affect the order of time.

More interesting is the figure 2.6.5. Here we display the convergence for different
values of Υ and for the times t = π and t = 3π/2. For t = π we recognise that we have
for all three values of Υ in essence linear convergence. Thus the method works very
well with virtual updates and even better than in example 2.5.2.5. But for t = 3π/2
we observe that for coarse meshes we have also nearly linear convergence. However,
for finer grids we see that the rate of convergence slows down the more the anisotropy
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Figure 2.6.5: The approximated error in the L1-norm for the example in 2.6.3 at time
t = π (left) and t = 3π/2 (right).

Υ increases. For Υ = 10 we have practically no convergence anymore, but for Υ = 3
we still have linear convergence. Thus the situation is curious. On the one hand using
virtual updates we gain very good results, but if the front changes its direction, it seems
that the higher the anisotropy the slower the convergence. Also in example 2.5.2.5 the
front changes its direction on a small part and this could be the reason for the slower
convergence. But there is no theoretical reasoning for this. Furthermore no such effect
using virtual updates has been described in the literature.

2.7 Conclusion and further problems

In this section we briefly discuss the results of the preceding sections and discuss some
starting points for further work on this topic.

2.7.1 Conclusion

In section 2.2 we recalled the GFMM and the mGFMM where we also corrected the
algorithm of mGFMM in remark 2.2.13. We saw in section 2.3 that we can extend the
GFMM and the mGFMM to unstructured grids by using the same heuristic arguments.
The main steps are to use the right interpretation of neighbourhood and a suitable
update formula. In both cases we can recover the comparison principle if the underlying
triangulation is acute. The proofs of these results are essentially the same because
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they are based only on the notion of neighbourhood and a monotone update scheme.
The numerical examples in section 2.5, which are inspired by the ones in [CFFM08],
show that all variants of (m)GFMM and (m)GFT give in essence the same results. The
numerical examples for the mGFMM are new too, because there are no numerical
results in the literature till now. In a practical and heuristic sense the (m)GFT is
therefore a real extension to the (m)GFMM.

The situation is worse if we ask for a proof of convergence. In [CFFM08] the structure
of the regular grid is heavily used in the proof of the convergence theorem and this
cannot be transfered to unstructured grids. Some results for the convergence proof
of the GFMM can be recovered, see subsection 2.7.6 but it is still an open problem to
prove convergence for (m)GFT.

The step from isotropic speed to anisotropic metrics in section 2.6 is straight forward
for unstructured grids and it may be of interest in the future. In the GFA there arise
bigger theoretic problems and even a comparison principle as in the GFT no longer
holds.

2.7.2 Further variants of (m)GFMM

In the (m)GFMM we use a regular grid and the neighbourhood of a node xI consists
of the points xK with ‖xI − xK‖1 = ∆x. These are the centers of the faces of the
d-dimensional cube around xI with edge length 2∆x. If we use instead the corners
of this cube as the neighbourhood V(I) then we can use the same description of the
algorithm but we must use in another update scheme in step 5 in the GFMM and step
4 in the mGFMM. If we use a consistent and monotone update scheme, e.g. induced
by the Hopf-Lax update, then we know that a comparison principle like 2.2.7 for the
GFMM and 2.2.16 for the mGFMM will still hold, because the proof of these two results
depends on a suitable notion of the neighbourhood and the update scheme, see also the
proof of 2.3.5 and 2.4.5. Using this extended neighbourhood we expect that the error
will decrease but still have the same order, and on the other hand the computational
effort will increase. It should be tested which kind of neighbourhood would be more
efficient in practice. Further we expect that this scheme would be still convergent but
have to check whether the proof stills applies here.

Another extension would be to use anisotropic metrics in the (m)GFMM like in
section 2.6 instead of a scalar speed function. We can regard this method as a special
case of the GFA. Using the methods of chapter 3 we can take effort of this special
structure and implement the algorithm. Using anisotropic metric on a regular gird
would be interesting, for example in the image sciences.

2.7.3 Theoretic results for anisotropic speed

In the example for the GFA we saw that convergence slowed down if we had a high
anisotropy and changing directions in the front. In the literature I found no rigorous
proof or disproof whether the fast marching methods converges if one uses virtual
updates. Thus the algorithms presented are only justified in an heuristic manner and
we have no proof whether the method will converge.
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2.7.4 Adaptivity

The (m)GFMM and (m)GFT use a static mesh. In the examples 2.5.2.1 and 2.5.2.2 we
effectively used only a small portion of the mesh. The greater part of the mesh was
not used, so we wasted a lot of memory, but no computational time, because that
depends only on the number of grid points we used. For some applications as in image
processing it seems to be reasonable to regard the problem in a static mesh. But in
other situations it would be useful to have an adaptive setting. We need for an adaptive
algorithm on the one hand suitable data structures and on the other hand we need
error estimators which we use to decide where we should coarsen or refine the mesh.
Using adaptive meshes we have the advantage that we save memory and that we can
use a mesh that is as fine as it is necessary to achieve a certain precision.

2.7.5 Applications for (m)GFT

The (m)GFT can be used like the (m)GFMM for several applications. In [FLGG08] one
uses the mGFMM for a method for image segmentation. If we have data on an irregular
mesh we can directly apply the GFT or the mGFT to this problem. In this case there
are no analytic difficulties and one has only to implement this method with the right
speed function which also depends on the current front.

Another application for the (m)GFT would be the extension to non-local speed
functions like the one presented for the mGFMM in [CFM]. In this work the authors
extended the mGFMM to problems with non-local speed functions and they proved
therein that the mGFMM would still be convergent. For the numerical computations
they used the GFMM instead of the mGFMM. This was probably done to simplify the
effort for the implementation, but no reasons are given in this article. In an algorithmic
view one can extend the problem to an irregular mesh and we can use mGFT instead
of mGFMM. A demanding task is to transfer the computation of the non-local speed
which is done in [CFM, Section 8] via Fast Fourier Transform. This application of the
FFT for the computation of a convolution explicitly uses the regular structure of the
grid and it will be difficult to find a fast method for the computation of convolution
on irregular grid, which we have in the (m)GFT. So the problem is not to have any
working algorithm but to make an implementation which is efficient.

2.7.6 Convergence of (m)GFT

In this subsection we discuss which parts of the convergence proof in [CFFM08] can
be transferred to the GFT and in which parts one explicitly uses the structure of the
regular mesh and therefore we cannot use their methods.

We saw in section 2.4 that the construction of the patch Pk
I was not unique. We have

there some more degrees of freedom than in the construction of the square cells Sk
I for

the (m)GFMM. For the proof of the comparison principle 2.3.5 and 2.4.5 we know that
this choice of Pk

I was suitable but it was only heuristically motivated and it is not clear
whether we can prove convergence with this construction.
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2 Generalized fast marching method

Before we can speak about convergence we define half-relaxed limits of θε :

θ
0
(t, x) = lim sup

ε→0,y→x,s→t
θε(s, y), θ0(t, x) = lim inf

ε→0,y→x,s→t
θε(s, y), .

This is the same definition as used in [CFFM08, Section 2.2] and [For09, Section 3].
With this definition we gain for the (m)GFT the same symmetry result as [CFFM08,

Lemma 3.1].

Lemma 2.7.1 (Symmetry of the (m)GFT algorithm):
We denote by θ

0
[θ0, c] and θ0[θ0, c] the functions constructed by the (m)GFT algorithm with

initial condition θ0 and velocity c. Then we have

θ
0
[θ0, c] = −θ0[−θ0,−c].

The proof is exactly the same as in [CFFM08, Lemma 3.1].
We use in the following the assumption

(A) The velocity c ∈W1,∞(R2× [T, 0]), for some constant L > 0 we have |c(x′, t′)− c(x, t)| ≤
L/ |x′ − x|+ |t′ − t|), and Ω0 is a C2 open set, with bounded boundary ∂Ω0.

Further we denote by H the maximum diameter of any triangle in the triangulation T .
In the following we show that we can recover the lemmata 4.1, 4.2 and 4.3 of

[CFFM08]. The proofs of these results for the (m)GFT are mainly the same as for the
(m)GFMM. This is because one uses mostly ideas that do not explicitly use structure of
the regular grid. We only show the results for the GFT. For the mGFT we would get
analogous results as for the mGFMM and the differences are mainly of notational kind.

First we gain for the GFT the analogous result of [CFFM08, Lemma 4.1]

Lemma 2.7.2 (time character of û):
Assume that there exists δ > 0 and (I, n) ∈ N ×N such that c(tn, xI) ≥ δ > 0, θn−1

I = −1,
and θn

I = 1 (resp., c(tn, xI) ≤ δ < 0, θn−1
I = 1, and θn

I = −1) then for any K ∈ V(I) ∩ Fn−1
+

(resp. K ∈ V(I) ∩ Fn−1
− ), we have for H ≤ δ2

16L

ûn−1
+,K = sup{tm ≤ tn−1, θm−1

K = −1, θ
p
K = 1 for m ≤ p ≤ n− 1} > tn −

4H
δ

,

with the convention that ûn−1
+,K = 0 if θP

K = 1 for 0 ≤ p ≤ n− 1
(resp., un−1

−,J = sup{tm ≤ tn−1, θm−1
K = 1, θ

p
K = −1 for m ≤ p ≤ n− 1} > tn − 4H

δ

with the convention that ûn−1
+,K = 0 if θP

K = −1 for 0 ≤ p ≤ n− 1).

The proof is essentially the same as in [CFFM08, Lemma 4.1]. We changed the index
J to K and we have to regard the maximum diameter H of the triangulation instead of
the grid spacing ∆x. We have only to change the estimate of ũn−p−1

I − ûn−p−1
K ≤ 2∆x

δ .
Due to the Hopf-Lax update we know that

ũn−p−1
I − ûn−p−1

K ≤ H
1

ĉn−p−1
K

≤ 2H
δ

.

The rest of the proof is exactly the same as in [CFFM08].
Now we state that also [CFFM08, Lemma 4.2] works in the setting of GFT.
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Lemma 2.7.3 (Error estimate between tn and t̃n):
Assume that there exists I ∈ NAn such that

∣∣∣ĉn−1
I

∣∣∣ ≥ δ > 0. Then the following estimate
holds:

(t− t̃n)
+ ≤ 2L

δ2 H∆t if ∆t ≤ δ

2L
The proof differs at some points from the proof in [CFFM08], so we give here the full

proof.

Proof. We treat only the case cn−1
I ≥ ∆ > 0. The other case is similar.

Assume that t̃n < tn (otherwise the result is obviously true). Then we know that
tn = tn−1. We define p > 0 such that tn−p−1 < tn−p = · · · = tn−1 = tn. In particular we
have

tn−p ≤ t̃n−p ≤ ũn−p−1
K ∀K ∈ Fn−p−1

and
t̃n = ũn−1

I ≤ ũn−1
K ∀K ∈ Fn−1.

Now we show that I ∈ Fn−p−1
− . We assume by contradiction that I /∈ Fn−p−1

− . By using
that θ

n−p−1
I = −1 (since ĉI > 0), we deduce that, for all K ∈ V(I) ∩ Fn−1

+ , we have
θ

n−p−1
K = −1 and thus we have ûn−1

+,K = tn. This implies that also the node K has
been accepted at the physical time tn, which gives us that ũn−1

I > tn, and this is a
contradiction.

Further we know due to tn−p − tn−p−1 ≤ ∆t that ĉn−p−1
I ≥ δ

2 for ∆t ≤ δ
2L .

We compare ûn−1
+,K and ûn−p−1

+,K for K ∈ V(I) ∩ Fn−1
+ . If K /∈ Fn−p−1

+ , then uK changes
its value during the iterations n− p ≤ m ≤ n− 1, and for such m we have ûn−1

K =
um

K = tm = tn. Since t̃n < tn we know that the node J ∈ V(I) does not contribute to the
Hopf-Lax update of node I.

Thus we have t̃n = ũn−1
I = (Λûn−1)(I) = (Λûn−p−1)(I) with speed ĉn−1

I and
ũn−p−1

I = (Λûn−p−1)(I) with speed ĉn−p−1
I .

Now we get the estimate

tn − t̃n ≤ ũn−p−1
I − ũn−1

I

≤ H

 1∣∣∣ĉn−1
I

∣∣∣ − 1∣∣∣ĉn−1
I

∣∣∣
 ≤ H

∣∣∣ĉn−p−1
I

∣∣∣− ∣∣∣ĉn−1
I

∣∣∣∣∣∣ĉn−p−1
I

∣∣∣ ∣∣∣ĉn−1
I

∣∣∣
≤ H

|∂tc|∞
∣∣tn−1 − tn−p−1

∣∣∣∣∣ĉn−p−1
I

∣∣∣ ∣∣∣ĉn−1
I

∣∣∣ ≤ 2L
δ2 H∆t.

Even [CFFM08, Lemma 4.3] holds in the same form:

Lemma 2.7.4 (Separation of the phases of θε by the level set of a test function):
Let φ ∈ C2 in a neighbourhood of V of (t0, x0) such that φt(t0, x0) > 0 (resp.,φt(t0, x0) < 0).
There exists δ0 > 0, r > 0, τ > 0 such that, if maxV((θ

ε)∗ − φ) is reached at (tε, xε) ∈
B((t0, x0), δ0) ⊂ V with (θε)∗(tε, xε) = 1, then there exists Ψε ∈ C2(B(x0, r), (t0 − τ, t0 +
τ)) such that
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2 Generalized fast marching method

(i) for all (tm, xK) ∈ Qτ,r(t0, x0) = (t0 − τ, t0 + τ)× B(x0, r0)

θε(tm, xk) = 1⇒ tm ≥ Ψε(xK) (resp., tm ≤ Ψε(xK)).

(ii) There exists (I, n) ∈ N ×N such that (tε, xε) ∈ Qn
I = [tkn , tkn+1]× PI , (θ)∗(tkn , xI) =

1, tkn = Ψε(xI), and θn = 1, θm
I = −1, m0 ≤ m ≤ b − 1 (resp. θn = −1, θm

I =
1, m0 ≤ m ≤ n− 1), where n = inf{k : kn ≤ k ≤ kn+1 − 1, θk

I = 1(resp. θk
I = −1)}

and m0 = inf{m : tm ≥ t0 − τ}.

(iii) The following Taylor expansion holds:

Ψε(xK) = Ψε(xI)−
Dφ(t0, x0)

φt(t0, x0)
(xK − xI) + HO(H + |xI − x0|+ |tkn − t0|).

(iv) If φt(t0, x0) < 0, then for all (tkn xK) ∈ Qτ,r(t0, x0) = (t0 − τ, t0 + τ)× B(x0, r0)

θε(tkn−1 , xk) = 1 and θε(tkn , xk) = −1⇒ tkn ≤ Ψε(xK).

The proof is exactly the same as in [CFFM08]. We have only to set Qn−1
K =

]tkn , tkn+1[× int(PK) instead of Qn−1
K =]xK + ∆x[×]tkn , tkn+1[. Further we replace the

grid spacing ∆x by the maximum diameter H of the triangulation.
In the lemmata 4.4, 4.5 and 4.6 and also in the proof of the convergence theorem

[CFFM08, Theorem 2.5] the structure of the regular grid is used extensively and thus I
could not transfer these results to the setting of the GFT.

Nevertheless the (m)GFT is based on the same heuristic arguments as the (m)GFMM
and thus it seems to be reasonable that also the (m)GFT converges under the same
conditions as the (m)GFMM. Thus I state here the conjecture of convergence for (m)GFT:

Conjecture 2.7.5:
Under assumption (A), θ

0
(resp. θ0) is a viscosity subsolution (resp., supersolution ) of (2.0.1).

In particular, if (2.0.1) satisfies a comparison principle, then θ
0
= (θ0)∗ and (θ

0
)∗ = θ0 is the

unique discontinuous viscosity solution of (2.0.1).

100



3 Anisotropic fast marching on Cartesian
grids

3.1 Introduction

In many applications, such as image science, one has to solve the anisotropic eikonal
equation, namely

‖Du(x)‖M(x) = 1 on Ω, u|∂Ω = 0. (3.1.1)

where M : Ω → S2 is a continuous mapping and S2 denotes the set of symmetric
positive definite 2× 2-matrices.

Some algorithms are known in the literature. The ordered upwind method (OUM)
was introduced in [SV03]; it can solve general static Hamilton-Jacobi equations. In his
PhD-Thesis [Lin03] Lin adapted – at least theoretically – the OUM for the anisotropic
eikonal equation to regular grids, but no numerical results for the OUM are given. Lin
also introduced a kind of anisotropic fast marching; the resulting algorithm, however,
does not converge to the analytic solution [Lin03, Section 8.3.2]: he uses a consistent
discretization, but the plain fast marching scheme is not suitable in this case. We will
see in section 3.3, why the ansatz of Lin cannot work in general. Further, we list the
cases in which Lin’s algorithm will work.

Spira and Kimmel proposed in [SK04] a variant of the fast marching method that
computes the solution of the eikonal equation on a parametric manifold. Their methods
are very similar to the anisotropic fast marching method that will be proposed in
section 3.2, where we will also discuss the differences between these two methods.
Unfortunately, Spira and Kimmel did not recognize that they had almost solved the
problem for the anisotropic eikonal equation.

In [BR06] an adaptive Gauss-Seidel method was proposed to solve (3.1.1) on unstruc-
tured meshes. Further, [Ras07] presented a fast marching variant of this method. We
will mainly use their ideas for constructing an anisotropic fast marching method.

In [KSC+07] and [SKD+07] a recursive anisotropic FMM, respectively an anisotropic
FMM is proposed. Despite the name “fast marching method” this method is not a
single-pass method as would be characteristic for fast marching methods. The authors
describe an adaptive Gauss-Seidel method with two priority queues instead of one
FIFO-queue as in [BR06]. In section 3.4 we will also compare this method and give
numeric results.

In [WDB+08] an algorithm to approximate distances maps on parametric surfaces is
proposed using ansatz different from [SK04]. They use a massively parallel algorithm
and sweeping strategies to gain, in total, an O(N) algorithm if the parametrization of
the surface satisfies suitable conditions.
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3 Anisotropic fast marching on Cartesian grids

3.2 The AFM algorithm

In this section we will construct an anisotropic fast marching method (AFM). In the
first subsection 3.2.1 we give a heuristic motivation of the algorithm. After this we
will state the AFM in subsection 3.2.2 and in the following subsection 3.2.3 we show
how we can construct the needed virtual triangles. In subsection 3.2.4 and 3.2.5 we
give some estimates for the virtual triangles. In the last subsection 3.2.6 we discuss the
differences to the method in [SK04].

3.2.1 Motivation

There are two different methods to construct a convergent method that solves the
anisotropic eikonal equation. The first one is the ordered upwind method. This method
was introduced in [SV03] for triangulated meshes and can of course also be used on
Cartesian grids. The key point of the OUM is that one constructs a narrow-band
which is large enough to contain the domain of numerical dependency. I think this
method is the most sophisticated and one obtains the best result with optimal numerical
complexity, but it is hard to understand and to implement.

The second way to solve this equation is to use iterative methods e.g. Gauß-Seidel
methods. Using Gauß-Seidel there is no need to care about the domain of numerical
dependency, because by iterating one implicitly construct the right domain of depen-
dency. The advantage of Gauß-Seidel is that it is easy to understand and it is also easy
to implement. There are many different special cases of this Gauß-Seidel iteration but
all methods share the property that they are in essence iterative methods. The problem
of all these methods is, that one has in general a complexity of at least O(N3/2).

In the isotropic case the fast marching method is a hybrid of these two ways. On the
one hand fast marching is a very special Gauß-Seidel-method, on the other hand it is
a narrow-band method like the ordered upwind method. The causality is the main
property in the fast marching method. With this it is possible to construct a single pass
algorithm and there is no need to iterate. In the case of the anisotropic eikonal equation
we have to take care of the causality of the fast marching method and this is done by
constructing virtual triangles and the usage of a consistent update formula.

3.2.2 Description of the AFM algorithm

The AFM algorithm is a pure fast marching algorithm. So the structure is like the one
in [Set99a, chapter 8]. The only change is in step (4) due to the concrete formulation of
the update formula.

(1) Begin loop: Let A be the Trial point with the smallest u value.

(2) Add the point A to Known; remove it from Trial.

(3) Tag all neighbours of A that are not Known as Trial. If the neighbour is in Far,
remove, and add to the set Trial.

(4) Recompute the values of u at all Trial neighbours of A.
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3.2 The AFM algorithm

C EW
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M−1/2

C
E

W

N

S

Figure 3.2.1: Transformation of the grid by a symmetric positive definite matrix M−1/2.
Squares become to parallelograms. The transformed triangles CSE and
CNW on the right side are obtuse.

(5) Return to top of loop.

We describe now the update formula for the 4-point neighbourhood. The the case
of the 8-point neighbourhood can be handled in the completely same way. Using the
4-point neighbourhood a node C has four neighbours, namely N, E, S and W. These
neighbours induce a triangle patch around C with the four triangles CEN, CSE, CWS
and CNW. For this triangle patch we use the Hopf-Lax update for the anisotropic
eikonal equation introduced in [BR06, Section 7], see also subsection 2.1.2. The main
idea we use here is that the generalized eikonal equation (3.1.1) is solved by locally
transforming the mesh and solving the isotropic eikonal equation in the transformed
mesh. In figure 3.2.1 such a transformation is displayed.

We may use this update scheme only if the transformed triangles are acute. If we
have to update an obtuse triangle we use the idea of virtual triangles and split the
obtuse triangle into two acute ones. The construction of suitable virtual triangle is
described in the following subsection 3.2.3.

3.2.3 Finding virtual triangles

For this subsection we regard a triangle CAB in the transformed mesh that has an
obtuse angle at node C, see for example figure 3.2.2. Furthermore, we assume that C
lies at the origin of our coordinate system and we identify the nodes with the vectors
connecting them from the origin.

We search a node P of the mesh in the splitting section such that the two triangles
CAP and CPB are acute. Hereby the splitting section is defined as the set of points
x such that the angles ∠(ACx) and ∠(xCB) are acute. We know that all grid points
have the form αA + βB with α, β ∈ Z because we started with a Cartesian grid and
transformed the whole grid by M−1/2.

The conditions that the triangles CAP and CPB have to be acute at C give us with
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3 Anisotropic fast marching on Cartesian grids

C

A

B

P

Figure 3.2.2: The obtuse triangle CAB is split into the two acute triangles CAP and
CPB. Here is P = 4 · A + 3 · B.

P = αA + βB the conditions for α and β:

〈A, P〉 = |A|2 α + 〈B, A〉 β ≥ 0
〈B, P〉 = 〈A, B〉 α + |B|2 β ≥ 0.

Furthermore it is reasonable to enforce that α and β are positive and that |P| should be
as small as possible.

So we end up with the following nonlinear integer programming problem for
P = αA + βB:

min |P|
with the restrictions

〈A, P〉 = |A|2 α + 〈B, A〉 β ≥ 0,
〈B, P〉 = 〈A, B〉 α + |B|2 β ≥ 0,

α, β ∈ N+. (3.2.1)

To find a suitable point P would be difficult because P is determined by a nonlinear
integer programming problem. To simplify the problem we weaken the assumption
on P and we do not minimize |P| anymore, but we minimize

〈
A⊥, P

〉
=
〈

A⊥, B
〉

β
instead. Hereby A⊥ denotes a normalized vector that is perpendicular to A such that
∠(ACA⊥) = π/2.

Thus we get the following linear integer programming problem:

min〈A⊥, P〉

with the restrictions

〈A, P〉 = |A|2 α + 〈B, A〉 β ≥ 0,
〈B, P〉 = 〈A, B〉 α + |B|2 β ≥ 0,

α, β ∈ N+.
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3.2 The AFM algorithm

Due to the assumption on the triangle CAB we have
〈

A⊥, P
〉
= β

〈
A⊥, B

〉
> 0. Thus

it suffices to minimize β. Rewriting the conditions of the angles (3.2.1) we get

− 〈A, B〉
|A|2

β ≤ α ≤ − |B|
2

〈A, B〉β.

This problem can be solved very fast because we just carry out a linear search increasing
β.

Thus the construction of suitable virtual triangles is done by solving the following
linear integer programming problem:
Find minimal β ∈N+ such that the interval[

− 〈A, B〉
|A|2

;
− |B|2
〈B, A〉

]
β (3.2.2)

contains a natural number α.
It may happen that the interval in (3.2.2) contains more than one natural number. In

this case we just take the smallest one. Therefore we know that if this interval contains
a natural number, then we have α =

⌈
−〈A,B〉
|A|2 β

⌉
.

At the end of this section we give two remarks. The simplified problem (3.2.2) still
constructs a point in the splitting section as it is needed for the causality property
of the fast marching algorithm, but we cannot guarantee that we have found a point
that is as close as possible to C. The second remark is that we could also minimize〈

B⊥, P
〉
= α

〈
B⊥, A

〉
with ∠(B⊥CB) = π/2 instead of

〈
A⊥, P

〉
= β

〈
A⊥, B

〉
. This

choice was just made by chance because there is no canonical choice for this.

3.2.4 Estimates for virtual triangles in the 4-point neighbourhood

In this subsection we derive some estimates for α and β in the 4-point neighbourhood.
To do this, we regard the triangle CEN with the coordinates C = (0, 0)T, E = (1, 0)T

and N = (0, 1)T. Furthermore we have a symmetric positive definite matrix V which
plays the role of M−1/2. We assume that V has eigenvalues λ1 = Υ > 1, λ2 = 1 and
eigenvectors v1 = (cos φ, sin φ) and v2 = (sin φ,− cos φ) with 0 ≤ φ < π. Thus the
matrix V is

V =

(
Υ cos2 φ + sin2 φ (Υ− 1) cos φ sin φ

(Υ− 1) cos φ sin φ cos2 φ + Υ sin2 φ

)
.

For the transformed points we get

V · C = (0, 0),

A = V · E =

(
Υ cos2 φ + sin2 φ
(Υ− 1) cos φ sin φ

)
,

B = V · N =

(
(Υ− 1) cos φ sin φ

cos2 φ + Υ sin2 φ

)
.

Thus we get

|A|2 = Υ2 cos2 φ + sin2 φ,
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3 Anisotropic fast marching on Cartesian grids

|B|2 = (1 + Υ2 + (1− Υ2) cos(2φ))/2,
〈A, B〉 = (Υ2 − 1) cos φ sin φ. (3.2.3)

One can see that 〈A, B〉 < 0 for π/2 < φ < π. Thus for π/2 < φ < π we have a
obtuse triangle and we will regard this case for the rest of this subsection. The lower
and upper bounds for the interval in (3.2.2) are

− 〈A, B〉
|A|2

=
(1− Υ2) cos φ sin φ

Υ2 cos2 φ + sin2 φ
,

− |B|2
〈B, A〉 =

cot φ + Υ2 tan φ

1− Υ2 .

Finally we get for the length of the interval

l :=

∣∣∣∣∣
[
− 〈A, B〉
|A|2

;
− |B|2
〈B, A〉

]∣∣∣∣∣ = 2Υ2 csc(2φ)

(1− Υ2)(Υ2 cos2 φ + sin2 φ)
.

We know that this interval contains a natural number if its length is at least 1. Thus we
know, that β ≤ dl−1e. A short computation with Mathematica shows that the maximum
of l−1 is attained at

arccos

(
−
√

2
/(

5− 3Υ2 + 9
√

9− 14Υ2 + 9Υ4
))
→ 5π

6
for Υ→ ∞

and we gain

β .

√
3(Υ2 − 1)(1 + 3Υ2)

16Υ2 = O(Υ2).

With equation (3.2.2) we get for α the bound (we left the ceiling operation for simplicity)

α ≤
⌈
dl−1e 〈A, B〉

− |A|2
⌉
≈
(
Υ2 − 1

)2 sin2(2φ)

4Υ2 = O(Υ2).

We carried out some numerical experiments to validate whether these boundaries
are sharp or not. For this we compute the values for α and β explicitly and compare
the results with the analytic estimates.

We see in figures 3.2.3 and 3.2.4 that the analytic estimates for α and β are sharp, but
we assume that the coefficients are smaller in the average case.

To determine the average complexity for the calculation of α and β we do the
following numerical experiment. We compute the values of α and β for the angle
π/2 < φ < π at 10000 equidistant sampled points and a given anisotropy coefficient Υ.
Afterwards we just calculate the mean of α and β and divide this mean by Υ again.

In figure 3.2.5 we see how this ratio depends on the anisotropy coefficient Υ. This
figure leads to the conjecture that the average complexity to determine a suitable virtual
triangle is O(Υ) instead of O(Υ2) for the worst-case analytic estimate.
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Figure 3.2.3: Computed values (red) for α (left) and β (right) compared with the exact
boundaries (blue) and boundaries without ceiling operation (green). We
use an anisotropy Υ = 10 and sample the angle π/2 < φ < π at 100000
equidistant points.
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Figure 3.2.4: The same experiment as in figure 3.2.3 but with anisotropy Υ = 100.

3.2.5 Estimates for virtual triangles in the 8-point neighbourhood

In this subsection we do the same analysis for the 8-point neighbourhood using the
same techniques as in the case of the 4-point neighbourhood. Let us regard the triangle
C(NE)N with the coordinates C = (0, 0)T, NE = (1, 1)T and N = (0, 1)T and we use
the same matrix V as before.

Now we get for the transformed points

V · C = (0, 0)

A = V · (NE) =

(
Υ cos2 φ + sin2 φ + (Υ− 1) cos φ sin φ

(Υ− 1) cos φ sin φ + cos2 φ + Υ sin2 φ

)
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Figure 3.2.5: Mean of α (resp. β) divided by the anisotropy coefficient Υ plotted against
Υ. In the left figure we regard the 4-point neighbourhood and the angle
π/2 < φ < π was sampled at 10000 equidistant points The mean of α and
β is the same, thus we see only one of them. In the right plot we regard
the same but in the 8-point neighbourhood and the angle 3π/4 < φ < π,
see also subsection 3.2.5.

B = V · N =

(
(Υ− 1) cos φ sin φ

cos2 φ + Υ sin2 φ

)
(3.2.4)

Thus we have

|A|2 =
(
Υ2 − 1

)
sin(2φ) + Υ2 + 1

|B|2 =
((

1− Υ2) cos(2φ) + Υ2 + 1
)

/2
〈A, B〉 =

((
Υ2 − 1

)
(sin(2φ)− cos(2φ)) + Υ2 + 1

)
/2. (3.2.5)

One can verify that 〈A, B〉 > 0 for 1 ≤ Υ < 1 +
√

2. Further we have 〈A, B〉 > 0 for
0 < φ < 3/4π. Thus we will assume 〈A, B〉 < 0 for the rest of this subsection which
implies that 3π/4 < φ < π and Υ > 1 +

√
2. The lower and upper bounds for the

interval are

−〈A, B〉
|A|2

=

((Υ2 + 1
)

sec(2φ)

Υ2 − 1
+ tan(2φ)

)−1

− 1

/2

− |B|2
〈B, A〉 = −

((
Υ2 − 1

)
sin(φ) cos(φ)

Υ2 sin2(φ) + cos2(φ)
+ 1

)−1

. (3.2.6)

Finally we get for the length of the interval

l :=

∣∣∣∣∣
[
−〈A, B〉
|A|2

;
− |B|2
〈B, A〉

]∣∣∣∣∣
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Figure 3.2.6: Computed values(red) for α (left) and β (right) compared with the exact
boundaries (blue) and boundaries without ceiling operation (green). We
use an anisotropy Υ = 10 and sample the angle 3π/4 < φ < π at 100000
equidistant points.

= − 2Υ2

((Υ2 − 1) sin(2φ) + Υ2 + 1) ((Υ2 − 1) (sin(2φ)− cos(2φ)) + Υ2 + 1)
.

We can compute with Mathematica the angle φ∗ which maximizes β. We omit the
analytic formula but a further use of Mathematica gives us

lim
Υ→∞

φ∗ = π/2 + arctan(2 +
√

7)

which can also be verified by numeric experiments. Thus we get the boundary for β

β .

(
7
√

7− 17
)

Υ4 − 2
(

1 +
√

7
)

Υ2 − 5
√

7− 13

16Υ2 = O(Υ2).

For α we get the bound (again without ceiling operation)

α ≤
⌈
dl−1e−〈A, B〉

|A|2
⌉
≈
((

Υ2 − 1
)
(sin(2φ)− cos(2φ)) + Υ2 + 1

)2

4Υ2 = O(Υ2).

As in the case of the 4-point neighbourhood we carried out some numerical experi-
ments to see whether these boundaries are sharp or not. As above we computed the
values for α and β explicitly and compared the results with the analytic estimates.

We see in figures 3.2.6 and 3.2.7 that the analytic estimates for α and β are sharp,
but we expect that in the average case we the coefficients α and β are smaller. An
experiment for the average case is displayed in figure 3.2.5.

109



3 Anisotropic fast marching on Cartesian grids

2.4 2.6 2.8 3 3.2
0

200

400

Angle of anisotropy φ

C
oe

ffi
ci

en
t

α

2.4 2.6 2.8 3 3.2
0

200

400

600

800

Angle of anisotropy φ

C
oe

ffi
ci

en
t

β

Figure 3.2.7: Same experiment as in figure 3.2.6 but with anisotropy Υ = 100.

3.2.6 Differences to [SK04]

In [SK04] the authors proposed a fast marching method to solve the eikonal equation on
a 2-dimensional parametric manifold. The main idea is that they transport the Cartesian
grid on R2 to the manifold. The transported grid is in general non-orthogonal and they
use also the idea of virtual updates to overcome the problems of obtuse triangles. They
end up in equation (10) with the same problem as in (3.2.2) but it is not mentioned
and derived that the constructed point is minimal due to the projection to A⊥. The
algorithm to calculate n and m (resp. α and β) differs in its form, but is in essence the
same. Due to their ansatz with the metric tensor they could not give as detailed an
analysis for the dependency of the virtual triangles.

In main idea in the AFM is, that we solve the anisotropic eikonal equation by locally
transforming the grid and solving the ordinary eikonal equation in the transformed grid.
Thus this idea applies for every metric given by a mapping M : Ω→ S2, especially for
M induced by the metric tensor of a manifold. In [SK04] they use always the point of
view to solve the eikonal equation on the manifold and they lift up the update scheme
to the manifold. Thus one does not see that the same idea can also work with the more
general setting of any metric M : Ω→ S2.

3.3 Restrictions for the plain fast marching method on
cartesian grids

A straight forward approach for the fast marching method is to transform the update
formula to get a consistent update scheme. In [Lin03] this was done and Lin recognized
that this approach does not work in gerneral. Lin also saw that the reason for this was
the causality property, which was not fulfilled anymore. But no closer analysis was
given and also no other suitable extension for the fast marching method.

In [JBT+08] the authors applied the idea of [Lin03] in R3. They developed an exact
update scheme, but only used the plain fast marching method. Thus their algorithm
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cannot converge in general. In the 3-dimensional setting one has to split obtuse
simplexes into acute one. This could be possible by using the same ideas as in the
construction of virtual triangles, but no such methods has been presented.

The causality of the update scheme is an important principle for constructing the
fast marching method. Further we know that the causality property holds if and only
if the underlying triangulation is non-obtuse. With the preceding section we are able to
list the cases in which the plain fast marching method still converges for anisotropic
metrics.

In the case of the 4-point neighbourhood we see by equation (3.2.3) that the corre-
sponding triangle are non-obtuse if and only if the angle of anisotropy is a multiple of
π/4. Thus we have to use virtual updates if the anisotropy does not point along the
edges of the grid.

The case of the 8-point neighbourhood is more complicated. Like above, we see
with equation (3.2.5) that we need no virtual updates if the angle of the anisotropy is
a multiple of π/4. Let V = M−1/2 with M from (3.1.1) and λ1 ≥ λ2 the eigenvalues
of M. Then we know by equation (3.2.5) that in the case λ1/λ2 ≤

√
1 +
√

2 that no
obtuse angle appear and we need no virtual updates. If the anisotropy is bigger, it
depends on the angle φ, whether obtuse angle appears or not. Furthermore in the
8-point neighbourhood the coefficients α and β are always smaller than in the 4-point
neighbourhood.

3.4 Numerical tests

In this section we present some numerical tests for the different methods. We abbreviate
the anisotropic fast marching using the 4-point neighbourhood by AFM4 and using the
8-point neighbourhood by AFM8. The usual fast marching method with a consistent
update scheme but without virtual update is called FMM4 or FMM8 depending on the
underlying neighbourhood. We abbreviate the adaptive Gauß-Seidel methods by AGS
and the method introduced in [KSC+07] by 2QGS (double queued Gauß-Seidel).

3.4.1 Implementational issues

We give here some comments on the implementation of the different methods.
In practical computations the grid is bounded and therefore we cannot ensure that

we find a suitable virtual triangle. If we determine a point P in the construction of
virtual triangles which is outside the computational domain we just project it to the
boundary of the domain and are no longer concerned whether the triangles induced by
the projected point are acute.

Another issue is that due to the symmetry we only have to check one triangle in the
4-point stencil. In the case of the 8-point stencil it suffices to check 4 triangles. If we
find an obtuse one we can stop the search, because there are either no obtuse triangles
or two of them which are opposite.

At first sight, it seems that we have to do the transformation with M−1/2 explicitly.
But we need only the scalarproduct and the norm, so it suffices only to calculate M−1

which is much simpler.
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Figure 3.4.1: Computed solution of example 3.4.2 with stepsize h = 2−8 using FMM4
(left) and the AFM8 (right).

For the AGS we used a code provided by the authors of [BC11], see also the example
in subsection 3.4.6. The update scheme is the one which was introduced in [Lin03]. The
2QGS is based on the AGS. We only changed the handling of the queue so we directly
compare the influence of choosing the order of iterations. We further introduced a
tolerance in the 2QGS like in AGS. With this tolerance we prevent the 2QGS from
propagating updates with too small an enhancement.

3.4.2 Constant speed

In the first example we test whether the algorithm works with a constant metric. We
set for the metric φ = π/7 and λ1 = 100, λ2 = 1, thus Υ = 10 and the domain is
Ω = [−1/2, 1/2]2.

We see in figure 3.4.1 the typical corners of the level sets using the plain FMM,
whereas AFM gives a good result.

In figure 3.4.2 we can recognize convergence using AFM or iterative methods. The
plain FMM does not converge. Its update scheme is consistent but it does not cope with
the causality property. Furthermore, all methods have in practice a linear complexity.
This is suspected for FMM and AFM, but AGS and 2QGS has also linear complexity
due to the special structure of this problem. In a non-constant metric one finds that the
complexity of AGS is O(N3/2).

3.4.3 Monotonicity of AFM

In section 2.1.3 we remarked that, using virtual updates, it may happen that the update
scheme is no longer monotone. This example clearly show this effect. We use the same
settings as before, but now with λ1 = 400, thus Υ = 20.

We see in figure 3.4.3 that without enforced monotonicity the result has multiple
local minima. Enforcing monotonicity we have no local minima but still some corners
in the level sets. These corners develop at the beginning of the computation, because
we find virtual triangles for the update, but these triangles do not contain any useful
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Figure 3.4.2: Left: Convergence of the different algorithms. One sees that without the
useage of virtual triangles one does not achieve convergence.
Right: Time to compute the solution. We have nearly linear complexity
because the constant of the N log(N) term is very small.
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Figure 3.4.3: Computed solution of example 3.4.3 with stepsize h = 2−8 using AFM4
without monotonicity (left) and enforcing monotonicity (right).

information at this stage, and thus we effectively compute the first points as with plain
FMM. Of course this effect is weaker using the 8-point neighbourhood but we used for
the figure 3.4.3 the 4-point neighbourhood to clearly show that there is such an effect.

Enforcing monotonicity adds numerical errors. This effect is shown in figure 3.4.4,
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Figure 3.4.4: Convergence of AFM4 and AFM8 with and without monotonicity.
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Figure 3.4.5: Computed characteristics using AFM4 (left), AFM8 (middle) and AGS
(right).

but this effect is not very strong and the order of convergence is still preserved.
In all examples the default setting is to enforce monotonicity because I think is

important to preserve this property.

3.4.4 Characteristics

The virtual updates in the AFM has some side effect for the characteristics. In this
example we show the effect of virtual updates for the approximation of characteristics.
The setting is the same as in the preceding example.

We see in figure 3.4.5 the approximation for the characteristics. In the right picture
we see that AGS does a good approximation of the characteristics which are straight
lines beginning at the origin. The AFM badly approximates the characteristics in the
quadrant, using 4 neighbours, respectively in the octant, using 8 neighbours, where
virtual updates are carried out. This bad approximation is not even restricted to the
points where corners in the level-set appear; this error is transported to the whole
quadrant, respectively octant.
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Figure 3.4.6: Left: Computed solution of example 3.4.5 using AFM8.
Right: Estimated error.
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Figure 3.4.7: Error vs. anisotropy (left) and CPU time vs. anisotropy (right)

This effect not so surprising because the direction of the characteristics is an informa-
tion of the first derivative of the solution and using virtual updates we locally coarsen
the mesh and thus we cannot expect that this information is well approximated.

Thus the AFM is not suitable for directly approximating the characteristics or the
derivative of the value function u.

3.4.5 Three regions

In this example we show the effect of varying the anisotropy. We have the following
setting: Ω = [−1, 1]× [0, 1], source point (−1, 0), the metric is defined by φ = 2π/9
in ([−1,−1/3] ∪ [1/3, 1])× [0, 1] and φ = −2π/9 in [−1/3, 1/3]× [0, 1], λ2 = 1 and
λ1 = Υ2. We have chosen a stepsize h = 2−8.

In figure 3.4.6 we see the computed solution and the estimated error. We used a
solution computed with stepsize h = 2−9 and the AGS to estimate the error.

The dependency of Υ and the error respectively the CPU time is displayed in figure
3.4.7. We see in the left graph that for an anisotropy up to 20 AFM and AGS/2QGS give
results with similar accuracy. For higher anisotropy the AFM is less accurate than AGS
and 2QGS. In the right graph we see that the computational time for the AFM is nearly
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Figure 3.4.8: Source image for anisotropic metric in example 3.4.6.

independent to the anisotropy. AGS is more sensitive to an increase of anisotropy and
2QGS is even worse.

In this example the 2QGS is very inefficient for high anisotropy, because it propagates
the information in a bad way; namely already visited points with the smallest value
are updated first. Thus it takes too long to transport the information along the
characteristics. This effect is even more pronounced if we use no tolerance in the
algorithm as in the AGS. The AGS instead transports the information more equally
because the FIFO-queue therein does not depend on the function values.

3.4.6 Spiral

This last example is adapted from [BC11, Section 2.3]. It is motivated by the field of
medical images processing. In figure 3.4.8 we see the source image with 548× 600
pixels which defines the anisotropic metric. The metric is defined as follows: Along the
black line we travel fast with anisotropy Υ; near the black line we walk fast to the line,
but slow in parallel direction; in the outer region we walk slow in all directions.

We computed the distance map with starting point at one end of the line with
different solvers using a notebook with Intel P8400 processor. For Υ = 10 we need
about 40 sec. for AGS, 5.2 sec. for 2QGS and 6.2 sec. for AFM8. The computed distance
map is for all algorithms practically the same and the minimizing path is nearly
identical too, see figure 3.4.9.

In this example 2QGS is slightly faster than AFM8 and much more efficient than
AGS. In the example above 2QGS was much slower than AGS. The reason may be that
we have only in a small part of the image an anisotropy and in the isotropic part of the
image 2QGS acts nearly as a plain FMM which speeds up the algorithm.

Using a higher anisotropy Υ the computational time heavily increases for AGS to 132
sec. but 2QGS needs 5.4 sec. and AFM8 needs 6.4 sec. We see that the effort for 2QGS
and AFM8 is nearly independent of the anisotropy but the AGS is very sensitive.

The results of AGS and 2QGS are practically the same, and also the distance map
computed by AFM8 seems to be good, but the approximation of characteristics is bad in
the region with high anisotropy which is the part we are interested in. The minimizing
path for AFM8 in figure 3.4.10 breaks down because the path tries to go along the
characteristics but the characteristics are badly approximated using virtual updates.
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Figure 3.4.9: Distance map (left) and plot of direction of the characteristics (right) with
minimizing path (black) for AGS (top) and AFM8 (bottom) for anisotropy
Υ = 10.

So the problem is here less the computed value for the distance but more the local
errors in the first derivative. If we smooth the distance map with a Gaussian filter with
σ = 5 and a size of 20 pixel, then the characteristics are also smoothed and we get a
minimizing path which seems to be the same as using AGS or 2QGS.

3.5 Conclusion

We saw in the previous examples that the AFM converges to the solution of the
anisotropic eikonal equation. Like the other methods AGS and 2QGS the convergence
is of first order. The main advantage of the AFM is that the computational time of
the method is in practice independent of the anisotropy, but for higher anisotropy we
lose accuracy. We have the typical trade off between accuracy and effort. This loss
of accuracy is a consequence of the local grid transformation and the construction of
virtual updates so that we effectively coarsen the mesh. This leads to the effect that we
have on the one hand a good approximation of the value function, but the estimates of
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Figure 3.4.10: Distance map (left) and plot of the direction of the characteristics
(right) with minimizing path (black) for AGS (top), AFM8 (middle) and
smoothed distance (bottom) for anisotropy Υ = 100.

the first derivative and in particular the direction of characteristics are not satisfying.
The problems with the approximation of the first derivative and the monotonicity
appear also in the plain FMM if we use virtual updates, but we are able to clearly show
this effect.
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3.5 Conclusion

For the AGS and the 2QGS we have in general more accurate results but the com-
putational time is higher and is not predictable. In particular for the 2QGS we cannot
predict the computational time. In example 3.4.5 we saw that this method is very
inefficient but in the spiral example 3.4.6 it was even faster than the AFM. It would be
worth while investigating in which cases the 2QGS is efficient and in which applications
one can use this method.

For applications where the computational time is a criterion it seems to be better
to use the AFM, because we can predict the time much better and nearly guarantee
it. The iterative solvers AGS and 2QGS are on the other hand more accurate but we
cannot give estimates for the computational time.

An important difference between the AFM and the algorithm of [SK04] is that we
regard here only local transformations of the mesh and that we do not need any
manifold in the background. The article [WDB+08] computes also geodesic distances
on manifolds like [SK04] but they use a parallel approach. Also in this article the
authors restrict themselves to manifolds, but it seems that it should also be able to solve
the more general anisotropic eikonal equations. So it would be interesting to extend
their method to general anisotropic eikonal equation, because under some suitable
assumptions they can guarantee linear complexity.
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Symbols and notation

R the set of real numbers

Rd the euclidean d-dimensional space

〈p, q〉 the euclidean scalar product ∑d
i=1 piqi of p = (p1, . . . , pd), q =

(q1, . . . , qd) ∈ Rd

|x| the euclidean norm of x ∈ Rd

B(E) the space of bounded functions u : E→ R with |u|∞ < ∞

UC(E) the space of uniformly continuous functions u : E→ R

BUC(E) the space B(E) ∩UC(E)

Cn(E) the space of functions u : E→ R that are n-times differentiable

C0,1(E, X) the space of Lipschitz-continuous functions u : E→ X

W1,∞(E) the space of functions u ∈ C1(E) with |u′|∞ < ∞

Sd the set of the d× d symmetric positive definite matrices

∂Ω the boundary of the set Ω

Ω the closure of the set Ω

ΩC the complement of the set Ω

B(x0, r) the open ball {x ∈ Rd : |x− x0| < r}
B(x0, r) the closed ball {x ∈ Rd : |x− x0| ≤ r}
u∗ the upper semi-continuous envelope of u

u∗ the lower semi-continuous envelope of u

u̇ the derivative u of with respect to t

2QGS recursvie fast marching method according to [KSC+07]

AFM4/8 fast marching method for anisotropic metrics on structured
grids using the 4-point or 8-point neighbourhood, see section
3.2

AGS adaptive Gauss-Seidel iteration according to [BR06]

FMM4/8 plain fast marching method accorting to [Set99b] using the
4-point or 8-point neighbourhood

GFA generalized fast marching method for anisotropic metrics, see
section 2.6
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Symbols and notation

GFMM generalized fast marching method according to [CFFM08]

mGFMM modified generalized fast marching method according to [For09]

GFT generalized fast marching method for unstructured triangula-
tions, see section 2.3.1

mGFT modified generalized fast marching method for unstructured
triangulations, see section 2.3.2
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