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Vollständiger Abdruck der von der Fakultät für Mathematik der Technischen
Universität München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr. Dr. J. Richter-Gebert

Prüfer der Dissertation: 1. Univ.-Prof. Dr. R. Lasser

2. Univ.-Prof. Dr. H. Upmeier
Philipps-Universität Marburg

3. Univ.-Prof. A. Derighetti
Ecole polytechnique fédérale de Lausanne \

Lausanne \ Schweiz
(schriftliche Beurteilung)

Die Dissertation wurde am 04.06.2012 bei der Technischen Universität München
eingereicht und durch die Fakultät für Mathematik am 07.10.2012 angenommen.





Preface

At the beginning of the last century, multipliers were first invented in the topic of harmonic
analysis in the context of the summability of Fourier series. A sequence {dn}n∈N0

of real
numbers was called ”multiplier” or ”factor” sequence whenever the mapping

1

2
a0 +

∞∑
n=1

(an cos(nx) + bn sin(nx)) 7→ 1

2
a0d0 +

∞∑
n=1

dn(an cos(nx) + bn sin(nx))

would map a certain class of Fourier series into itself or at least into another class of Fourier
series. 1913 as the oldest reference we could find, Young [171, 172, 173] was concerned about
the restrictions on functions such that their Fourier series becomes summable. He characterized
those multiplier sequences, which map the conjugate Fourier series of an absolutely integrable
function on T onto the Fourier series of a function in L1(T). He also found multiplier sequences,
which carry functions of finite variation defined on T into absolutely continuous functions. Fur-
thermore, Young proved already that the space of bounded measures on T is a subspace of
all multipliers operating on L1(T) as well as of the space of those multipliers operating on the
continuous functions on T. The converse inclusion was shown in 1921 by Sidon [144]. Later in
1932, Sidon [145] defined an isometric isomorphism between l2(Z) and the space of bounded
multipliers for the continuous functions on T into l1(Z).
1915 Mazurkiewicz [120] found multipliers for the space of absolutely integrable functions on T
whose Fourier series are everywhere (C,1) summable.
Just as well in 1915 Steinhaus [151] observed that the algebra of bounded multipliers operating
on l2(Z) is isometrically isomorphic to l∞(Z). Further, he proved the inclusion of bounded
multipliers mapping l2(Z) into l1(Z) in the set of all bounded multiplier operators on l1(Z).
Among the first mathematicians to invent multipliers was M. Riesz [134]. In his article of 1926
he proves in particular the norm decreasing inclusions of multipliers for Lq(T) in the space of
multipliers for Lp(T) where q ≤ p ≤ 2 or 2 ≤ p ≤ q.
In 1922 Fekete [38] was the first to generalize the concept of multipliers to several classes of
Fourier series. He extended the results of Sidon and Young and proved further equalities of
multiplier spaces. These equalities where generalized by Zygmund [174] in 1927.
While until 1929 only real multiplier sequences where considered, Bochner [6] was the first to
transfer the multiplier theory into the complex form. He proved Fekete’s inclusion results of
multiplier spaces under this new point of view.
In 1929 Orlicz [127] was interested in multipliers for orthogonal series. He observed also the
equality of the multiplier spaces of lp(Z) and those of lq(Z), where 1/p + 1/q = 1. This result
was transferred to functions on T by Hille and Tamarkin [80] in 1933. They proved further
the equality of the multiplier space on absolutely integrable functions on T and the one on
continuos functions on T. Moreover, in 1930 Hille [79] published some necessary and sufficient
condition for a sequence to be a factor sequence for bounded deviations.
Verblunsky [160] and Kaczmarz [87], took in 1932 /1933 a more general look on multiplier
sequences by dividing Fourier series into different classes. Verblunsky characterized multipliers
of six different subspaces of L1(T). 1935 Kaczmarz and Steinhaus [88] wrote a book about
orthogonal series where they added also a chapter about multipliers. 1938/1939 Kaczmarz and
Marcinkiewicz [89] characterized multipliers for orthogonal series and multipliers for general
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Fourier series, see also [118]. In between Littlewood and Paley [113, 114, 115] proved some
results about the convergence of Fourier series. They also gave explicit examples of multipliers
for Lp(T).

Later on starting around 1950 the concept of multipliers was generalized to many different
areas of harmonic analysis such as to groups. Helson [74] and Wendel, [165, 166], were the first
to prove pioneering results about characteristics of ”multiplier operators” on a compact Abelian
group G. They characterized those operators on the group algebra L1(G) which commute with
translations, and called them ”multiplier” or ”centralizer”. Helson proved that the space of all
multipliers for L1(G) is isometrically isomorphic to the measure algebra of bounded measures
on G. Using this result, Wendel found four equivalent definitions for such multipliers for L1(G).
(This result was generalized to hypergroups by R. Lasser [105] in 1982, see also Theorem 3.1.5).
1957 these equivalent definitions where confirmed by Helgason [72], using a simpler proof. Fur-
thermore, Wendel observed that the space of finite linear combinations of translation operators
is strong operator dense in the space of all multipliers for L1(G). Also the fact that isometric
multipliers for L1(G) are just translation operators multiplied with complex scalars of absolute
value one, is due to Wendel.
Among the pioneers in characterizing multipliers was also Edwards, see [29, 30]. He calls a linear
transformation multiplier, whenever it is the limit of finite linear combinations of translation
operators in the ultra weak topology. This definition holds on all topological linear spaces of
functions, measures or distributions on a locally compact group. On locally compact amenable
groups this definition of a multiplier coincides with the one given by Helson and Wendel, see
Derighetti, [22] chapter 4.
Furthermore, Edwards [29] characterized in 1955 each multiplier for L1(G) into Lp(G) as the
convolution with a Fourier transforms of a function in Lp(G). The same holds for all multipliers
for the set of bounded measures M(G) into Lp(G). Together with Brainerd, Edwards general-
ized these results in 1966 to all locally compact Abelian groups, see [7]. They also generalized
Helson’s result of the isometric isomorphism between the space of all multipliers for L1(G) and
the measure algebra of bounded measures on G.
Moreover, multipliers for Lp(G) for various groups G are quite well known, see for instance
Gaudry [52, 53, 57]. Further interesting results on multipliers for Abelian groups where found
1952/1954 by Grothendieck [66, 67], 1955 by Sunouchi [153] and Tomic̀ [157] and 1956-1958
by Helgason [71, 72, 73]. In 1956 S.G. Mihlin proved several results for multipliers of Fourier
integrals, see[122] and [123].
Goes [63] reformulated known and new criteria for operators to be a multiplier by using comple-
mentary spaces in 1959. He defined new classes of multipliers by carrying forward the research
on multipliers of Karamata [91, 92], Karamata and Tomic̀ [93] and Katayama [94].
In 1960 Lars Hörmander expedited the theory of multipliers for Rn to a vast part, proving for
example that every bounded translation invariant operator between Lp(R) spaces is uniquely
characterized by convolution with a distribution. He proved further basic properties of multi-
pliers for Lp(R) spaces and some inclusion results such as Mp

p ⊂M2
2 = L∞, see [84]. He focused

also on the use of estimates for multipliers.
In 1965 Edwards [31] proved further results for multipliers for the character group of a compact
Abelian group.
In the years following 1966 Gaudry [54] and Kitchen [97] published results concerning compact
and weakly compact multipliers for L1(G). In this case the multiplier algebra is isometrically
isomorphic to L1(G). Furthermore, Gaudry showed some results for multipliers for closely re-
lated but more general spaces, the weighted Lebesgue spaces and measure spaces, see [55]
Moreover, the theory of multipliers for translation-invariant Banach spaces on a non-compact
locally compact group G is also quite investigated. Characterizations of multipliers for Lp(G)
for an abitrary locally compact group G can for instance be found in Eymard [36]. Along the
pioneers on that area is Figà-Talamanca [39, 40, 41] who proved in 1965 that the dual of the
Figà-Talamanca Herz algebras App(G) is for every 1 < p < ∞ isometrically isomorphic to the
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multiplier space on Lp(G) for every locally compact Abelian group G. Together with Gaudry
[42] he extended this result to characterize multipliers in Lp(G), which map into Lq(G) for ev-
ery locally compact Abelian group G. Furthermore, they proved strict inclusion results of the
multiplier spaces on Lp(G), 1 ≤ p <∞, and mentioned several aspects of the spaces App(G), see
[42, 43, 44]. (Their inclusion results hold also for hypergroups, see Chapter 5). 1972 Bachelis
and Gilbert [2] extended some of their results, proving for example that Aqp(G) is the dual space
of compact multipliers in M(Lp(G), Lq(G)) for every compact group G. This leads to a double
dual result, stating that the space of all multipliers M(Lp(G), Lq(G)) is the double dual of the
space of compact multipliers in M(Lp(G), Lq(G)). Price [130] proved in 1970 the same strict
inclusion results as Figà-Talamanca and Gaudry between Spaces of Lp-Multipliers, but used
a different way to prove it. Some important inclusion results of multiplier spaces on function
spaces over compact groups are also due to Akemann [1] and Iltis [85].
1967 Hahn [68] characterized a multiplier f ∈ Mp(Ĝ) as a function f on G such that there

exists a constant K and ‖f̂ ψ̂‖p ≤ K‖ψ‖p holds for every simple function ψ on G. (This result
also holds for hypergroups and their duals, see Chapter 3 and 4).
Furthermore, many other remarkable results on multipliers for different groups are also found
in De Leeuw [18], Hirschmann [81], Littman [116], Skvortsova [148], Stein and Zygmund [150],
[175]. In 1969 Rieffel [133] transferred a lot of the known results in a very elegant way into the
context of tensor products.
1974 G. I. Gaudry and I. R. Inglis gave some approximation theorems for multipliers for locally
compact groups, extending the results of Edwards [32] and Ramirez [132].
Sato [141] characterized positive definite multipliers for locally compact groups in 1989.

In total, we see that a lot of investigations have been done on multipliers for spaces of func-
tions and distributions on various groups. This theory on multipliers was extended by Hewitt
and Ross [77] in 1970. One of the standard references for multipliers for groups is the book
of Larsen [101], but there is also a lot to find in the books of Edwards [33, Chapter 16] and
Gaudry [56, Chapter V, Vi and Vii]. Especially the history of multipliers is also explored quite
detailed by Hewitt and Ross in [77, Notes of section 36] and by Larsen [101, section 0.3].
Multipliers defined on translation-invariant Banach spaces on non-commutative groups are stud-
ies intensively by Derighetti [22]. He recently published a lecture note volume, which presents
all know and new found results on convolution operators on groups.
Multipliers for hypergroups have also been studied during the last decades.
1974/75 W. C. Connett and A. L. Schwartz [12, 13, 14] were interested in the topic of mul-
tipliers for ultraspherical series and Jacobi expansions. Their work is strongly connected to
multipliers for polynomial hypergroups generated by the ultraspherical polynomials. Also the
”multiplier criteria of Hörmander type for Jacobi expansions” published 1980 by G. Gasper and
W. Trebels [51] have a strong correlation to the characterization of multipliers defined on the
Jacobi hypergroup.
In 1982 R. Lasser [105] generalized Wendel’s theorem to commutative hypergroups. 1986 K.
Stempak [152] establishes a version of Hörmanders multiplier theorem on Bessel-Kingman hy-
pergroups which are a special class of Chèbli-Trimèche hypergroups. Finally, W.R. Bloom and
Z. Xu [5] generalized these results to the whole class of Chèbli-Trimèche hypergroups in 2000.
1985/86 F.Ghahramani and A.R.Medghalchifocused on compact multipliers for weighted hyper-
group algebras, see [61, 62]. They defined an isometric isomorphism between the multipliers for
a weighted hypergroup algebra Lω(X) and the corresponding measure algebra Mω(X).Their
main theorem states, that every measure, which defines a compact multiplier for Lω(X) is
already an element in Lω(X). Furthermore, they proved in the general setting of weighted
hypergroup algebras that every weakly compact multiplier for Lω(X) is already compact .Their
work is based on the results of Vrem [161, 162, 163] about compact hypergroups.
1990 Obata proved in [126] that every surjective, isometric multiplier T for L1(K,m), is de-
fined by an element x ∈ G(K) := {x ∈ K : εx ∗ εx̃ = εe = εx̃ ∗ εx} and γ ∈ C, |γ| = 1, by the
equation Tf = γεx ∗ f .
Conversely, every measure µ = γεx with x ∈ G(K) and γ ∈ C, |γ| = 1, defines a surjective,
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isometric multiplier for L1(K,m). Hence, the surjective, isometric multipliers for L1(K,m)
characterize the group part G(K) of K, see [4, pp. 68].
In 2002 H.Emamirad and G.S.Heshmati [34] characterized multipliers for the dual hypergroup

K = [−1, 1] of the ultraspherical polynomials R
(α,α)
n (t).

Moreover, in 2007 Pavel [129], generalized the results of Brainerd and Edwards characterizing
multipliers from L1(K,m) into Lp(K,m), 1 < p ≤ ∞, as convolutors by some f ∈ Lp(K,m),
see [129, Theorem 6]. Furthermore, compact multipliers are investigated in [129], too.
2007 V. Muruganandam [124], studied multipliers of Fourier spaces and gave necessary and
sufficient conditions on a commutative hypergroup such that the Fourier space is a Banach
algebra. He also introduced in 2008 a new class of hypergroups, spherical hypergroups and a
subclass, the ultraspherical hypergroups, see [125]. The Fourier space of ultraspherical hyper-
groups form Banach algebras under pointwise product. This implies, that the set of absolutely
integrable functions on the dual S admits convolution and is a Banach algebra with respect to
a special norm.
In 2008 Teresa Martinez [119] characterized multipliers of Laplace transform type for ultras-
pherical expansions.
2009/10 N. Youmbi [169, 170] illustrated the relation of semigroups of operators to semigroups
of multipliers and proved some results for multipliers for compact hypergroups, for instance an
extension of Wendel’s theorem for compact and not necessarily commutative hypergroups.

While there is a lot known about multipliers for groups, the literature about multipliers
for hypergroups is rather thin. Our aim here is to generalize known results about multipliers
for groups or for specific hypergroups to all commutative hypergroups. We will characterize
multipliers in different settings and illustrate the consequences of these properties on various
examples as for instance on polynomial hypergroups.
We will use all the common notations and elementary results of functional analysis without
listing them all here.

This work is structured in the following way. It starts with a basic introduction into general
properties of hypergroups and especially polynomial hypergroups.
The second part of this work includes theoretical results about multipliers for various Banach
spaces over commutative hypergroups. We introduce an important tool in harmonic analysis
in Chapter 2 by investigating the Hausdorff-Young transform for commutative hypergroups
which is the extension of the Fourier transform and the Plancherel transform to all Lp-spaces
where 1 < p < 2. Further, we investigate the inverse Hausdorff-Young transform on Lp(K̂, π),
1 < p < 2. Our main theorem in Chapter 2 states that those extended transforms are inverse
to each other. In contrast to the group case, this is not obvious, since the dual space K̂ of an
arbitrary hypergroup K admits in general no hypergroup structure. Moreover, we quote some
consequences of this extension which will be very useful in the following chapters.
In Chapter 3 multipliers for the Lp(K,m) spaces of a commutative hypergroup are character-
ized. Some applications of known results are quoted, for instance an application of Wendel’s
theorem (see [105]). Furthermore, new aspects are considered and some interesting examples
of multipliers for polynomial hypergroups are added.
In Chapter 4 we investigate multipliers for the dual of a commutative hypergroup. Some re-
sults of Chapter 3 are transferred to those spaces. Since we miss in general a dual hypergroup
structure, not all results are extendable. Nevertheless, using weak dual structures we can still
create a good impression of multipliers for Lp(S, π).
The relation of Figà-Talamanca Herz algebra Ap(K) to multipliers for Lp(K,m) is represented
in Chapter 5. In contrast to the group case, we observe an isometric isomorphism of Ap(K)
into the set of bounded multipliers for Lp(K,m) which is not necessarily surjective. We present
some consequences of this relation such as some inclusion results. We prove strict inclusion
results for the multiplier spaces as introduced in Chapter 3.
In Chapter 6 we take a look on those function spaces, for which all ϕ ∈ C0(K̂) define multipli-
ers. We derive these spaces from the original Lp(K,m) spaces. Thus, they are called derived
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spaces. Figà-Talamanca [40] and Gaudry [43] introduced derived spaces for Lp(G), where G is
a locally compact Abelian group. Hörmander [84] proved similar results for Euclidean groups
G = Rn. We will transfer some of Figà-Talamanca’s and Gaudry’s results to hypergroups. In
contrast to the group case not every dual S contains a set of uniqueness. Further, we only know
that |α(x)| ≤ 1 for every α ∈ K̂ and x ∈ K, where as we obtain |α(x)| = 1 for every x in a
locally compact group G and α ∈ Ĝ. This leads to weaker results for the derived spaces over
hypergroups. However, we conclude further inclusion results for different multiplier spaces by
using characteristics of the derived spaces.
In Chapter 7 multipliers for homogeneous Banach spaces are investigated. We show that the
multiplier spaces for different homogeneous Banach spaces coincide, even though these homo-
geneous Banach spaces differ in their structure and norm. This illustrates that the multiplier
spaces predict little about the structure of the corresponding homogeneous Banach spaces. In-
troduced in Chapter 7, we will characterize multipliers for the p-Fourier spaces in Chapter 8.
In contrast to Chapter 7, we will investigate results for arbitrary not necessarily strong hy-
pergroups. The main result in this chapter states that the multiplier spaces for the p-Fourier
spaces, 2 < p, of an infinite, compact hypergroup are continuously linearly isomorphic to the
dual space of a Banach space of continuous functions.
Some applications of the investigated theory are added in the last part of this work, which
includes Chapter 9 and Chapter 10. In Chapter 9 multipliers for almost-convergent sequences
with respect to polynomial hypergroups are studied. We prove that the multiplier space M(AC)
for AC, the space of almost-convergent sequences, coincides with ACs, the set of all strongly
almost-convergent sequences in the sense of Kerchy [96]. Finally, in Chapter 10 we discuss
applications of multipliers in the theory of time series analysis.

I want to thank a number of people who encouraged me over the last years. Prof. Dr. R.
Lasser gave me the inspiration to work on this topic in harmonic analysis. I thank him for a
lot of useful discussions.
My husband, Peter Degenfeld-Schonburg, helped by proofreading this work and eliminating
many typos. I thank him and my son, Leopold, for showing so much understanding during
stressful times. Last but not least, I thank my mother, Dietlinde, very much for making all this
possible.
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Chapter 1

Commutative Hypergroups

The first to define hypergroups were Dunkl [27], Jewitt [86] and Spector [149]. Dunkl [27] and
Spector [149] developed the theory of hypergroups in a very similar way. However, we will here
quote hypergroups following the concept of Jewett, see [86]. For the theory of hypergroups and
most of the basic properties we refer to [4].
Hypergroups generalize locally compact groups. Hence, many results of harmonic analysis can
be shown for hypergroups, in particular for commutative hypergroups.
Hypergroups were also investigated by Vrem [162] who studied harmonic analysis on compact
hypergroups and by Trimèche [159] who published a book entitled ”Generalized Wavelets and
Hypergoups” in 1997.

1.1 Definition of a Hypergroup and Basic Properties

For any locally compact Hausdorff space X let C(X), Cb(X), C0(X), Cc(X) be the spaces of
all continuous functions on X, those that are bounded, those that vanish at infinity and those
that have compact support, respectively. Furthermore, M(X) denotes the space of all regular
complex Radon measures on X. By Riesz’s representation theorem we can identify M(X) with
C0(X)∗, the dual space of C0(X). The subset of M(X) which contains all probability measures
on X is denoted by M1(X), while M+(X) denotes the subset of M(X), which contains all
positive measures on X. Further, we denote by εx the point measure of every x ∈ X.
Let C(X) be the space of all not empty compact subsets of X. We can define a topology on
C(X), which is generated by the subbasis consisting of all sets of the form

CU (V ) = {A ∈ C(X) : A ∩ U 6= ∅ and A ⊂ V },

where U and V are open subsets of X. This topology is called the Michael topology on C(X).
The definition above is equivalent to Michaels definition of the finite topology [121, Definition
1.7] and the Hausdorff topology defined by Dellacherie [21]. For more information about the
properties of the Michael topology, see e.g. [4].
Let K be a locally compact Hausdorff space and let

ω : K ×K →M1(K)

be a continuous map with respect to the weak-*-topology on M(K) = C0(K)∗. We can extend
the mapping (εx, εy) 7→ ω(x, y) (εx denotes the point measure at point x) to a bilinear mapping

(µ, ν) 7→ µ ∗ ν M(K)×M(K)→M(K)

defined by

µ ∗ ν(f) :=

∫
K

∫
K

ω(x, y)(f)dµ(x)dν(y)

1
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for each f ∈ C0(K). This mapping is called canonical extension of ω. It is commutative
and fulfills

‖µ ∗ ν‖ ≤ ‖µ‖‖ν‖.

Furthermore, we can extend a homeomorphism on K denoted by x 7→ x̃, K → K, to an
isometric isomorphism on M(K) by

µ 7→ µ̃, M(K)→M(K),

where µ̃(E) := µ(Ẽ) for every Borel set E ⊂ K, see [4]. This mapping is called canonical
extension of x 7→ x̃

Definition 1.1.1. Let K be a locally compact Hausdorff space. The triple (K,ω,̃ ) is called
hypergroup, if it satisfies the following conditions.

(H1) ω : K ×K →M1(K) is a weak-*-topology continuous map, which fulfills

εx ∗ ω(y, z) = ω(x, y) ∗ εz

for all x, y, z ∈ K. We say that ω is associative with respect to the canonical extension. We
call ω and its canonical extension to M(K) convolution and denote also x∗y := ω(x, y).

(H2) supp(ω(x, y)) is compact for every x, y ∈ K.

(H3) ˜: K → K is a homeomorphism such that ˜̃x = x and ω̃(x, y) = ω(ỹ, x̃) for all x, y ∈ K. ˜
and its canonical extension to M(K) is called involution.

(H4) There exists a unique element e ∈ K such that ω(x, e) = εx = ω(e, x) for all x ∈ K. We
call e unit element.

(H5) e ∈ supp(ω(x, ỹ)) if and only if x = y.

(H6) (x, y) 7→ supp(ω(x, y)), K×K → C(K) is continuous with respect to the Michael topology
on C(K).

If ω(x, y) = ω(y, x) for all x, y ∈ K, we call K a commutative hypergroup.

In the following we will write just K instead of (K,ω,̃ ). Moreover, we assume throughout
this thesis that K is a commutative hypergroup. For every function f on K we denote f̃(y) :=
f(ỹ) and f∗(y) := f(ỹ).

Since it is often very difficult to ascertain if the Michael topology holds, we want to mention
a result of T. H. Koornwinder and A. L. Schwartz [98]. They proved that the simpler Hausdorff
topology for the compact subsets is equal to the Michael topology whenever K is a metric
space and when both topologies are defined, see [98, Lemma 4.1]. The Hausdorff topology on
C(X), where X is a metric space with metric d, is defined in the following way. First define for
A ∈ C(X) and r > 0

Vr(A) = {y ∈ X : d(x, y) < r for some x ∈ A},

and for A,B ∈ C(X) let d(A,B) := inf{r : A ⊂ Vr(B) and B ⊂ Vr(A)}. d is called the
Hausdorff metric and the corresponding topology with basis consisting of the sets

Nr(A) = {B ∈ C(X) : d(A,B) < r},

for A ∈ C(X) and r > 0, is called the Hausdorff topology.

Proposition 1.1.2. Let X be a metric space. The Hausdorff topology and the Michael topology
for C(X) coincide.
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Proof. (see [98, Lemma 4.1]) Let A ∈ C(X) and r > 0. Since A is compact, there is a finite
sequence a1, ..., an ∈ A such that the sets Uk = Vr/2({ak}) form an open cover of A. We will
show that

⋂n
k=1 CUk(Vr(A)) ⊂ Nr(A). Suppose B ∈

⋂n
k=1 CUk(Vr(A)), then on the one hand

B ∈ Vr(A). On the other hand, if x ∈ A, then x ∈ Uk for some k, but Uk ∩ B 6= ∅, therefore
x ∈ Vr(B) and A ⊂ Vr(B). Hence, every Hausdorff-open subset of C(X) is also Michael-open.
Now suppose that U and V are open subsets of X. Let A ∈ CU (V ). It will suffice to produce
an r > 0 such that Nr(A) ⊂ CU (V ). Since A ⊂ CU (V ), A ∩ U must contain a point x, and
since U is open, there is r > 0 such that Vr({x}) ⊂ U and Vr(A) ⊂ V . Now suppose B ∈ C(X)
with d(A,B) < r. Then, A ⊂ Vr(B) and there exists y ∈ B such that d(x, y) < r. Hence,
y ∈ U ; thus B ∩ U 6= ∅. Moreover, B ⊂ Vr(A) ⊂ V . Thus, B ∈ CU (V ), and the two topologies
coincide.

1.2 Harmonic Analysis on Hypergroups

Generally, we denote the space of bounded linear operators on a Banach space Y by B(Y ). ‖ ‖
refers to the operator norm on B(Y ). Furthermore, ' always terms an isometric isomorphism
between Banach spaces. C, T, R, Z and N0 denote the complex numbers, the subset of C
consisting of those numbers with absolute value equal to 1, the real numbers, all integers and
all nonnegative integers, respectively.

The convolution in Definition 1.1.1 allows to define a translation operator on C(K) by
setting

Lxf(y) :=

∫
K

f(z) dω(x, y)(z)

for f ∈ C(K). For every x ∈ K we have Lxf ∈ C(K) for every f ∈ C(K), Lxf ∈ C0(K) for every
f ∈ C0(K), Lxf ∈ Cc(K) for every f ∈ Cc(K) and Lxf ∈ Cb(K) such that ‖Lxf‖∞ ≤ ‖f‖∞
for every f ∈ Cb(K), see [4, Proposition 1.2.16].
This translation can be extended to an operation of M(K) on Cb(K) by

Lµf(x) := µ ∗ f(x) :=

∫
K

Lỹf(x)dµ(y)

for every x ∈ K. Lµf is an element in Cb(K) for every f ∈ Cb(K) and an element in C0(K)
for f ∈ C0(K). Moreover, we have ‖Lµf‖∞ ≤ ‖µ‖‖f‖∞ for every f ∈ Cb(K).
Furthermore, we note that εỹ ∗ f = Lyf.

Spector [149] proved the existence of a Haar measure m for each commutative hypergroup.
m is characterized by the left-invariance∫

K

Lxf(y) dm(y) =

∫
K

f(y) dm(y)

for all x ∈ K and f ∈ Cc(K). By this left-invariance the Haar measure m is uniquely deter-
mined up to a multiplicative positive constant. For a compact hypergroup K we will choose
m ∈M+(K) such that m(K) = 1.

The Banach spaces Lp(K,m), 1 ≤ p ≤ ∞, are defined in the ordinary way, i.e.

Lp(K,m) := Lp(K,m)/N ,

where

Lp(K,m) = {f : K → C Borel measurable :

∫
K

|f(x)|pdm(x) <∞}

for all 1 ≤ p <∞ and

L∞(K,m) := {f : K → C Borel measurable : f is m-almost everywhere bounded on K}
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and
N := {f ∈ Lp(K,m) : f = 0 m-almost everywhere}.

‖f‖p :=

(∫
K

|f(x)|pdm(x)

)1/p

defines a norm on Lp(K,m) such that Lp(K,m) becomes a Banach space for all 1 ≤ p <∞.
The space L∞(K,m) is also a Banach space with respect to the norm

‖f‖∞ := inf{α ≥ 0 : {x ∈ K : |f(x)| > α} is a locally m− zero set }.

On Lp(K,m), 1 ≤ p ≤ ∞, we can also define a translation Lxf(y) := ω(x, y)(f) for all x, y ∈ K
and a convolution

Lµ(f)(x) := µ ∗ f(x) =

∫
K

Lỹf(x) dµ(y),

for all µ ∈M(K) and f ∈ Lp(K,m). Note that εỹ ∗f = Lyf . The spaces Lp(K,m), 1 ≤ p ≤ ∞,
are invariant under the translation actions Lx, x ∈ K, and under the convolution operators
Lµ, µ ∈M(K), and we obtain

‖Lxf‖p ≤ ‖f‖p and ‖Lµf‖p ≤ ‖µ‖‖f‖p,

for all 1 ≤ p ≤ ∞, see Proposition 1.3.5 and Lemma 1.4.6 in [4]. This is a difference to locally
compact Abelian groups, where the translation Lx defines an isometry.
Furthermore, we conclude for all x ∈ K

µ(Lxf) =

∫
K

Lxf(y)dµ(y) =

∫
K

Lỹf(x)dµ(ỹ) = µ̃ ∗ f(x) = Lµ̃(f)(x)

for all f ∈ Lp(K,m). Moreover, L1(K,m) is with respect to this convolution a Banach ∗-
algebra, which is an ideal in M(K), where we embed L1(K,m) into M(K) by f 7→ fm. In
particular L1(K,m) acts on Lp(K,m) via

f ∗ g(x) = Lfm(g)(x) =

∫
K

f(y) Lỹg(x) dm(y)

and we have ‖f ∗ g‖p ≤ ‖f‖1‖g‖p for f ∈ L1(K,m), g ∈ Lp(K,m), 1 ≤ p ≤ ∞.
The mapping x 7→ Lxf, K → Lp(K,m) is continuous for all 1 ≤ p < ∞, see [4, 1.2.1]. Hence,
we can define a convolution on Lp(K,m)× Lq(K,m) to C0(K) by

f ∗ g :=

∫
K

f(y)Lỹg(x)dm(y)

such that ‖f ∗ g‖∞ ≤ ‖f‖p‖g‖q for f ∈ Lp(K,m), g ∈ Lq(K,m), 1 ≤ p <∞ and 1/p+ 1/q = 1,
see [4, (1.4.10)].

Proposition 1.2.1. For a commutative hypergroup K we have f ∗ g = g ∗ f for f ∈ Lq(K,m)
and g ∈ Lp(K,m), 1 ≤ p ≤ ∞, 1/p+ 1/q = 1.

Proof. By Theorem 1.3.21 in [4] holds∫
K

Lxf(y)g(y)dm(y) =

∫
K

f(y)Lx̃g(y)dm(y)

for all x ∈ K. We obtain further

f ∗ g(x) =

∫
K

f(y) Lỹg(x) dm(y) =

∫
K

f(y) Lxg(ỹ) dm(y) =

∫
K

f̃(y) Lxg(y) dm(y)

=

∫
K

Lx̃f̃(y)g(y) dm(y) =

∫
K

ω(x̃, y)(f̃)g(y) dm(y)

=

∫
K

ω(x, ỹ)(f)g(y) dm(y) =

∫
K

Lxf(ỹ)g(y)dm(y) = g ∗ f(x).
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Furthermore, let 1 ≤ p ≤ ∞. For each continuous linear functional F on Lp(K,m) there
exists a function g ∈ Lq(K,m), 1/p+ 1/q = 1, such that

F (f) = f ∗ g∗(e) =

∫
K

f(x)g(x)dm(x),

for every f ∈ Lp(K,m). Conversely, every g ∈ Lq(K,m) defines by this equation a continuous
linear functional on Lp(K,m).

The structure space of the commutative Banach ∗-algebra L1(K,m) can be identified with

χb(K) = {α ∈ Cb(K) : α(e) = 1, Lxα(y) = α(x)α(y) for all x, y ∈ K},

where χb(K) is equipped with the compact-open topology, which is equal to the Gelfand topol-
ogy. The symmetric structure space of L1(K,m) can be identified with

K̂ = {α ∈ Cb(K) : α(e) = 1, Lxα(y) = α(x)α(y) and α(x̃) = α(x) for all x, y ∈ K},

where K̂ is equipped with the compact-open topology. We call the elements in χb(K) characters
of the hypergroup K and those in K̂ hermitian characters. Note that these two dual objects
need not coincide, see [4, 2.2.49]. The Fourier transform of f ∈ L1(K,m) (the Fourier-Stieltjes
transform of µ ∈M(K)) is defined by

f̂(α) =

∫
K

f(x) α(x) dm(x) (µ̂(α) =

∫
K

α(x) dµ(x))

for α ∈ K̂, respectively. f̂ and µ̂ are bounded continuous complex-valued functions on K̂, and

f̂ vanishes at infinity. We note that the space ̂L1(K,m) is a dense subspace in C0(K̂).
Furthermore, the algebra L1(K,m) admits a bounded approximate identity (ki)i∈I satisfying

ki ∈ Cc(K), ki ≥ 0, ‖ki‖1 = 1, limi suppki = {e}, k̂i ∈ L1
+(K̂, π) and limi k̂i = 1 uniformly on

compact subsets of K̂, see [4, Theorem 2.2.28].

Considering the Hilbert space L2(K,m) there exists a positive Borel measure π on K̂, called
Plancherel measure, such that∫

K

|f(x)|2 dm(x) =

∫
K̂

|f̂(α)|2 dπ(α)

for all f ∈ L1(K,m) ∩ L2(K,m). We denote suppπ by S. We emphasize that (in contrast to
the group case) K̂ does, in general, not bear a dual hypergroup structure. Moreover, whereas
suppm = K, the support of π is in general a proper closed subset of K̂. This leads to a great
contrast between the harmonic analysis of commutative hypergroups and that of locally com-
pact Abelian groups. A commutative hypergroup K which admits also a hypergroup structure
on S = K̂ is called a strong hypergroup. Examples of strong hypergroups are induced by
the Jacobi polynomials (see below) on N0 and on [−1, 1]. Moreover, the Bessel hypergroups on
R+ are strong hypergroups, see [4].

The Banach spaces Lp(S, π), 1 ≤ p ≤ ∞, with norm ‖ ‖p are defined analogue to those
on K, interchanging S and K and the measures π and m, respectively. The duality between
Lp(S, π) and Lq(S, π), 1/p+ 1/q = 1 is also given by∫

S
ϕ(α)ψ(α)dπ(α)

The extension of the Fourier transform from L1(K,m) ∩ L2(K,m) to L2(K,m) is called the
Plancherel transform. We denote the Plancherel transform of f ∈ L2(K,m) by ℘(f). The
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Plancherel transform is an isometric isomorphism from L2(K,m) onto L2(S, π), and for f, g ∈
L2(K,m) holds ∫

K

f(x) g(x) dm(x) =

∫
S
℘f(α) ℘g(α) dπ(α),

and hence ∫
K

f(x) g(x) dm(x) =

∫
S
℘(f)(α) ℘(g)(ᾱ) dπ(α)

(Parseval’s formula).
The inverse Fourier transform of ϕ ∈ L1(S, π) (the inverse Fourier-Stieltjes transform of

µ ∈M(K̂)) is defined by

ϕ̌(x) =

∫
S
ϕ(α) α(x) dπ(α) (µ̌(x) =

∫
K̂

α(x) dµ(α))

for x ∈ K, respectively.
ϕ̌ and µ̌ are bounded continuous complex-valued functions on K, and ϕ̌ vanishes at infinity.

An inversion theorem holds. That means if f ∈ L1(K,m) and f̂ ∈ L1(S, π) then f = (f̂)∨ in
L1(K,m). If f is also continuous, we have

f(x) =

∫
S
f̂(α)α(x)dπ(α) for all x ∈ K.

Conversely, if ϕ ∈ L1(S, π) such that ϕ̌ ∈ L1(K,m) then ϕ = (ϕ̌)∧ in L1(S, π). If ϕ is also
continuous, we have

ϕ(α) =

∫
K

ϕ̌(x)α(x)dm(x) for all α ∈ S.

We will also use an inverse uniqueness theorem: If µ ∈ M(K̂) and µ̌ = 0, then µ = 0 and if
ϕ ∈ L1S, π) and ϕ̌ = 0, then ϕ = 0.

Lasser proved in [108, Theorem 3.4, 3.5 and 3.6] the following relations between the topolo-
gies of a hypergroup K and its dual.

Theorem 1.2.2. i) K is discrete if and only if S is compact.

ii) S is compact if and only if K̂ is compact.

iii) K is compact if and only if K̂ is discrete and K̂ = S. Moreover for K compact K̂ is an
orthogonal basis in L2(K,m).

Moreover, applying the Plancherel transform we can define a (rather weak) translation
operator for L2(S, π). This translation is already introduced by Lasser in [108]. For every
f ∈ L∞(K,m) define Mf ∈ B(L2(S, π)) by means of

Mf (ϕ) = ℘(f̄ ℘−1(ϕ)) for ϕ ∈ L2(S, π).

Mf is a bounded linear operator satisfying ‖Mf (ϕ)‖2 ≤ ‖f‖∞ ‖ϕ‖2.

Proposition 1.2.3. If f, g ∈ L∞(K,m), then Mfg = Mf◦Mg, Mf̄ = (Mf )∗ and ‖Mf‖ = ‖f‖∞.
Furthermore, Mf = 0 if and only if f = 0.

The proof is straightforward, see [108].

Lemma 1.2.4. Let ϕ ∈ L2(S, π). The mapping α 7→Mα(ϕ), K̂ → L2(S, π) is continuous.



1.2. HARMONIC ANALYSIS ON HYPERGROUPS 7

Proof. Let α0 ∈ K̂, ε > 0. Since ℘−1(ϕ) ∈ L2(K,m) there is a compact subset C ⊆ K such
that ∫

K\C
|℘−1(ϕ)(z)|2 dm(z) <

ε

8
.

Let M =
∫
C

|℘−1(ϕ)(z)|2 dm(z) and

V (α0) =
{
α ∈ K̂ : |α(z)− α0(z)|2 <

ε

2M
for z ∈ C

}
.

For every α ∈ V (α0)

‖Mα(ϕ)−Mα0
(ϕ)‖22 = ‖ᾱ℘−1(ϕ) − ᾱ0℘

−1(ϕ)‖22

=

∫
C

|α(z)− α0(z)|2 |℘−1(ϕ)(z)|2 dm(z) +

∫
K\C
|α(z)− α0(z)|2 |℘−1(ϕ)(z)|2 dm(z)

<
ε

2
+

ε

2
= ε

We call Mα, α ∈ K̂, translation operator on L2(S, π).
We can further introduce an action of L1(S, π) on L2(S, π).Given ψ ∈ Cc(S) and ϕ ∈ L2(S, π)

we use an L2(S, π)-valued integral to define

ψ ∗ ϕ :=

∫
S
ψ(α) Mᾱ(ϕ) dπ(α) ∈ L2(S, π).

We have ‖ψ ∗ ϕ‖2 ≤ ‖ψ‖1 ‖ϕ‖2, and for any ψ ∈ L1(S, π) choose a sequence (ψn)n∈N,
ψn ∈ Cc(S), with ‖ψ − ψn‖1 → 0 as n tends to infinity. It is easily shown that

ψ ∗ ϕ := lim
n∈N

ψn ∗ ϕ ∈ L2(S, π)

is a well-defined action of L1(S, π) on L2(S, π) with ‖ψ ∗ ϕ‖2 ≤ ‖ψ‖1 ‖ϕ‖2.

1.2.1 An Example for a Hypergroup derived from a Group

Hypergroups are obviously strongly related to groups and moreover, important examples for
hypergroups are induced by groups. For instance, every locally compact Hausdorff group G
defines in the canonical way a hypergroup. More examples can be found in [4].
We introduce one specific example of a hypergroup which is induced by a group. Let G be a
locally compact (Hausdorff) group and let B denote a subgroup of the automorphism group
Aut(G) that contains the group I(G) of inner automorphisms. G is called a [FIA]B-group, if
B̄, the closure of B in Aut(G), is compact with respect to the Birkhoff topology. For each x in
G denote by [x] = {σ(x) : σ ∈ B̄} the B̄-orbit of x in G. The set GB consisting of all B̄-orbits
is a commutative hypergroup with the operation

ε[x] ∗ ε[y] :=

∫
B̄

ε[σ(x)y]dσ,

where dσ denotes the normalized Haar measure on B̄, see [136] and [86, 8.3A].
The natural map x 7→ [x] is an orbital morphism from G onto GB , see [86, 13.3].
Let E(G,B) be the set of extreme points of B-invariant positive definite continuous functions
f with f(e) = 1 endowed with the topology of compact convergence. Hartmann, Henrichs
and Lasser [70] identified the spaces of hypergroup characters of GB with E(G,B). Moreover,
they proved that E(G,B) is a hypergroup, the dual hypergroup to GB . Hence, GB is a strong
hypergroup.
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As a special case, suppose G = Rn and B = SO(n,R) the special orthogonal group, i.e. the
set of orthogonal n × n matrices with determinant 1. Then the hypergroup GB is the one-
dimensional hypergroup on R+ associated to the Bessel function jα of order α, see [4, 3.5.61].
Its dual is given by

ĜB = {φλ : λ ∈ R+},

where

φλ(x) :=

{
2αΓ(α+ 1) jα(λx)

(λx)α if λx 6= 0

1 if λx = 0.
,

see [124].

1.3 Polynomial Hypergroups

As a special class of hypergroups we will deal with polynomial hypergroups or hypergroups of
type [L] as they are called in [4]. Besides other applications, these hypergroups are important
in the theory of time series analysis, see for instance [82, 110] and Chapter 10. In that case K is
equal to N0 equipped with the discrete topology. Let (Rn(x))n∈N0

be an orthogonal polynomial
system on the real axis defined by a recurrence relation

R0(x) = 1, R1(x) =
1

a0
(x− b0)

R1(x)Rn(x) = anRn+1(x) + bnRn(x) + cnRn−1(x),

for a0 + b0 = 1 and an + bn + cn = 1 for all n ∈ N. We want to point out, that with these
assumptions we have Rn(1) = 1 for all n ∈ N0.
A convolution is generated by the orthogonal polynomial system (Rn(x))n∈N0 , see [106, 107],
whenever (Rn(x))n∈N0

has nonnegative linearization coefficients g(m,n; k) of the productRm(x)Rn(x),
i.e.

Rm(x) Rn(x) =

n+m∑
k=|n−m|

g(m,n; k) Rk(x).

Furthermore, assume Rn(1) = 1 for all n ∈ N=. Putting

ω(n,m) = εm ∗ εn =

n+m∑
k=|n−m|

g(m,n; k) εk,

a convex combination of the point measures εk, we get a convolution on N0. Together with
ñ = n as involution and n = 0 as unit. This convolution defines a hypergroup structure on
N0. In this way, every orthogonal polynomial system (Rn(x))n∈N0

such that the degree of Rn
is n, Rn(1) = 1 for all n ∈ N0 and g(m,n; k) ≥ 0 for all m,n ∈ N0 generates a hypergroup on
N0. We call such a hypergroup polynomial hypergroup on N0 induced by (Rn(x))n∈N0 .
Obviously all polynomial hypergroups are commutative.
Conversely, it is due to Favards’ theorem that every commutative hypergroup on N0 with
identity involution and zero as unit element and with

{n− 1, n+ 1} ⊂ supp(ω(1, n)) ⊂ {n− 1, n, n+ 1}

for every n ∈ N0, is a polynomial hypergroup induced by a certain orthogonal polynomial se-
quence (Rn(x))n∈N0

, see [106].

There are a lot of orthogonal polynomial systems with g(m,n; k) ≥ 0 as for example, the gen-
eralized Chebyshev polynomials, associated ultraspherical polynomials, Pollaczek polynomials,
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little q-Legendre polynomials, Jacobi polynomials and so on, see [4, 106, 107]. The Haar mea-
sure on polynomial hypergroups N0 is the counting measure with weights h(n) = g(n, n; 0)−1

at the points n ∈ N0.
The symmetric structure space of the Banach ∗-algebra l1(N0, h) can be identified with the set

Ds = {t ∈ R : |Rn(x)| ≤ 1 for all n ∈ N0}

via the mapping x 7→ αx, αx(n) = Rn(x), see [4] or [106]. Hence, we consider N̂0 as a
compact subset of R that contains t = 1 ∈ R. The Plancherel measure π on Ds is exactly
the orthogonalization measure of the orthogonal polynomial system (Rn(x))n∈N0

. Notice that
S = suppπ ⊆ Ds, and the orthogonalization measure is (up to a multiplicative constant)
uniquely determined. Hence, the Fourier transform of d = (d(n))n∈N0 ∈ l1(N0, h) is defined by

d̂(n) =

∞∑
k=0

d(k)Rn(k)h(k), x ∈ Ds.

Furthermore, the orthogonalization measure π on Ds of (Rn(x))n∈N0
is the only measure such

that the theorem of Plancherel-Levitan holds, i.e.

∞∑
k=0

|d(k)|2h(k) =

∫
Ds

|d̂(x)|2dπ(x)

for every d ∈ l1(N0, h).

1.3.1 The continuity Property (P)

The Jacobi polynomials are the only ones in the class of polynomial hypergroups, which possess
a dual hypergroup structure (see below). For all other polynomial hypergroups generated by
orthogonal polynomials (Rn(x))n∈N0

we have a weaker condition such that a weak dual structure
on Ds exists. We shall say that the polynomial hypergroup K = N0 fulfills the continuity
property (P) if for all s, t ∈ Ds there exists a probability measure µs,t ∈M1(Ds) such that

Rn(s)Rn(t) =

∫
Ds

Rn(u) dµs,t(u).

If the continuity property (P) is satisfied we get a weak dual structure on Ds, see [106]. Obvi-
ously every strong polynomial hypergroup satisfies the continuity property (P ). However, there
exist also polynomial hypergroups which satisfy the continuity property (P ), even though they
are not strong. For example the hypergroup induced by the generalized Chebyshev polynomials,
see [106], or the hypergroup induced by orthogonal polynomials related to homogeneous trees,
see [9].

Lemma 1.3.1. Let K = N0 be a polynomial hypergroup satisfying the continuity property (P).
Then (s, t) 7→ µs,t, Ds×Ds →M1(Ds) is continuous, where M1(Ds) bears the σ(M1(Ds), C(Ds))-
topology.

Proof. Given any ϕ ∈ C(Ds) and ε > 0, choose f ∈ l1(N0, h) with finite support such that

‖ϕ− f̂‖∞ < ε. Given s0, t0 ∈ Ds we conclude∣∣∣∣∫
Ds

ϕ(u) dµs,t(u) −
∫
Ds

ϕ(u) dµs0,t0(u)

∣∣∣∣ ≤ 2ε +

∣∣∣∣∫
Ds

f̂(u) dµs,t(u) −
∫
Ds

f̂(u) dµs0,t0(u)

∣∣∣∣
≤ 2ε +

∣∣∣∣∣∣
∑

k∈ supp f
f(k)h(k)

∫
Ds

Rk(u) d(µs,t − µs0,t0)(u)

∣∣∣∣∣∣
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≤ 2ε +
∑

k∈ supp f
|f(k)| |Rk(s)Rk(t)−Rk(s0)Rk(t0)| h(k)

Now it is obvious that we can find neighborhoods Us0 , Ut0 of s0 and t0 such that∣∣∣∣∫
Ds

ϕ(u) dµs,t(u) −
∫
Ds

ϕ(u) dµs0,t0(u)

∣∣∣∣ ≤ 3ε

for all s ∈ Us0 , t ∈ Ut0 .

We can now define the translation of any function ϕ ∈ C(Ds) by s ∈ Ds. We define
Lsϕ(t) = µs,t(ϕ). By Lemma 1.3.1 we have Lsϕ ∈ C(Ds). The orthogonalization measure π
behaves like a Haar measure on Ds.

Proposition 1.3.2. Let K = N0 be a polynomial hypergroup satisfying the continuity property
(P). Then ∫

Ds

Lsϕ(t) dπ(t) =

∫
Ds

ϕ(t) dπ(t)

holds for all ϕ ∈ C(Ds) and s ∈ Ds.

Proof. For s ∈ Ds let αs(n) = Rn(s). For f ∈ l1(N0, h) and s, t ∈ Ds we have

Lsf̂(t) =

∫
Ds

f̂(u) dµs,t(u) =

∫
Ds

∑
n∈N0

f(n)Rn(u)h(n) dµs,t(u)

=
∑
n∈N0

f(n) Rn(s)Rn(t)h(n) = (αs · f)∧(t),

and then∫
Ds

Lsf̂(t) dπ(t) =

∫
Ds

∑
n∈N0

f(n)Rn(s)Rn(t)h(n) dπ(t) = f(0) =

∫
Ds

f̂(u) dπ(u).

For any ϕ ∈ C(Ds) and ε > 0 there exist f ∈ l1(N0, h) (even with finite support) so that

‖ϕ− f̂‖∞ < ε. Then ‖Lsϕ− Lsf̂‖∞ < ε and it follows∫
Ds

Lsϕ(t) dπ(t) =

∫
Ds

ϕ(t) dπ(t).

The next step is to consider Borel measurable functions on Ds. Based on Lemma 1.3.1 and
Proposition 1.3.2 one can prove the following result, using the methods in [86].

Proposition 1.3.3. Let K = N0 be a polynomial hypergroup fulfilling the continuity property
(P). Let ψ : Ds → [0,∞] be a Borel measurable function. Then (s, t) 7→ µs,t(ψ), Ds ×
Ds → [0,∞] is Borel measurable. For each complex-valued, Borel measurable function ψ with∫
Ds

|ψ(t)| dπ(t) <∞ and s ∈ Ds, Lsg(t) := µs,t(g) satisfies

∫
Ds

Lsψ(t) dπ(t) =

∫
Ds

ψ(t) dπ(t).

By Proposition 1.3.3 we know that Lsψ is a well-defined element of L1(Ds, π) for each
ψ ∈ L1(Ds, π). Furthermore, we have ‖Lsψ‖1 ≤ ‖ψ‖1. By Hölder’s inequality we can transfer
this result to Lp(S, π), 1 < p <∞.

Proposition 1.3.4. Let K = N0 be a polynomial hypergroup satisfying the continuity property
(P). Let ϕ ∈ Lp(S, π), 1 ≤ p <∞ and t ∈ Ds. Then ‖Ltϕ‖p ≤ ‖ϕ‖p.
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Proof.

‖Ltϕ‖pp =

∫
Ds

|Ltϕ(s)|pdπ(s) ≤
∫
Ds

Lt(|ϕ|p)(s)dπ(s) =

∫
Ds

|ϕ|p(s)dπ(s) = ‖ϕ‖pp.

Similarly one can prove that Lsψ is a well-defined element of L∞(Ds, π) for each ψ ∈
L∞(Ds, π) and we have ‖Lsψ‖∞ ≤ ‖ψ‖∞.
Hence, we can define an action of M(K̂) on Lp(S, π). For µ ∈M(Ds) and ψ ∈ Lp(Ds, π),

µ ∗ ψ(t) :=

∫
Ds

Lsψ(t) dµ(s)

is a well-defined element of Lp(Ds, π) with ‖µ ∗ ψ‖p ≤ ‖µ‖ ‖ψ‖p. We note that L1(S, π) can

isometrically be embedded in the set of measures M(K̂) by ϕ 7→ ϕπ. Hence, we can transfer
the action of M(K̂) on Lp(S, π) to an action of L1(S, π) on Lp(S, π), whenever the continuity
property (P) is valid. We defined

ϕ ∗ ψ(t) :=

∫
Ds

Lsϕ(t)ψ(s)dπ(s)

for each t ∈ Ds. Furthermore, ‖ϕ ∗ ψ‖p ≤ ‖ϕ‖1‖ψ‖p for ϕ ∈ L1(S, π) and ψ ∈ Lp(S, π),
1 ≤ p ≤ ∞.

Remark 1.3.5. If the continuity property (P ) is fulfilled and 1 ∈ S, we obtain for every s ∈ Ds

and for every function ϕ ∈ Cc(Ds) with ϕ ≥ 0, ϕ(s) > 0 that Lsϕ(1) = ϕ(s) > 0. Hence,∫
Ds

ϕ(t)dπ(t) =

∫
Ds

Lsϕ(t)dπ(t) > 0,

since 1 ∈ S. This implies s ∈ S and we have Ds = S.

1.4 The Jacobi Hypergroup

Important examples of polynomial hypergroups are generated by the Jacobi polynomials

(R
(α,β)
n (x))n∈N0

which satisfy the recurrence formula

R
(α,β)
1 (x)R(α,β)

n (x) = anR
(α,β)
n+1 (x) + bnR

(α,β)
n (x) + cnR

(α,β)
n−1 (x)

with recurrence coefficients

an =
2(n+ α+ β + 1)(n+ α+ 1)(2 + α+ β)

(2n+ α+ β + 2)(2n+ α+ β + 1)2(α+ 1)

bn =
α− β

2(α+ 1)

[
1− (α+ β + 2)(α+ β)

(2n+ α+ β + 2)(2n+ α+ β)

]
cn =

2n(n+ β)(α+ β + 2)

(2n+ α+ β + 1)(2n+ α+ β)2(α+ 1)

for α, β ∈ R and

a0 =
2(α+ 1)

α+ β + 2
, b0 =

β − α
α+ β + 2

.

The Jacobi polynomials (R
(α,β)
n (x))n∈N0 are orthogonal with respect to

dπ(x) = cα,β(1− x)α(1 + x)βχ[−1,1](x) dx ,
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where cα,β is a constant in R and suppπ(α,β) = [−1, 1]. We choose the normalizationR
(α,β)
n (1) = 1.

If α ≥ β > −1 and α+ β + 1 ≥ 0, then g(m,n; k) ≥ 0 and hence, in that case, (R
(α,β)
n (x))n∈N0

generates a polynomial hypergroup on N0. (The parameter region for the parameters (α, β)
such that g(m,n; k) are nonnegative is even a little bit larger). For

(α, β) ∈ J =

{
(α, β) : α ≥ β > −1 and (β ≥ −1

2
or α+ β ≥ 0)

}
,

there exists for any x, y ∈ [−1, 1] a probability Borel measure µ
(α,β)
x,y ∈M([−1, 1]) such that

R(α,β)
n (x)R(α,β)

n (y) =

∫
S
R(α,β)
n (z)dµ(α,β)

x,y (z)

for all n ∈ N0, see [46] and [50] and the symmetric structure space Ds = [−1, 1] = S bears a
dual hypergroup structure, see [4] or [106]. ( For more information about the product formulas
and the generated hypergroup see also [15].)
Furthermore, the Jacobi polynomials with (α, β) ∈ J are the only orthogonal polynomials which
admit a dual hypergroup structure, see [4, Corollary 3.6.3]. The case α = β corresponds to
the ultraspherical (or Gegenbauer) polynomials. For the sake of simplicity we fix the
parameters (α, β) ∈ J and omit those from now on at all the notations of this chapter.
We define a Jacobi translation operator

Lyf(x) =

∫
S
f(z)dµx,y(z)

for all f ∈ L1(S, π) and y ∈ S. Since S is a hypergroup corresponding to µx,y, see [106], all the
known results for translation operators on hypergroups are available. In particular, we have
Lyf ∈ Lp(S, π) for all f ∈ Lp(S, π), Lyf ∈ C(S) for all f ∈ C(S) and ‖Lyf‖p ≤ ‖f‖p for
1 ≤ p ≤ ∞.
Furthermore, we can define a Jacobi transform

f̌(n) :=

∫
S
f(x)Rn(x)dπ(x)

for f ∈ L1(S, π) and n ∈ N0, and

d̂(x) :=
∞∑
k=0

d(n)Rn(x)h(n)

for d ∈ l1(N0, h) and x ∈ S. As the Fourier transform, the Jacobi transform also admits
the uniqueness theorem stating that f̌ = 0 implies f = 0 in L1(S, π), see [4]. Moreover, the
Jacobi transform is also an isometric mapping from L2(S, π) into l2(N0, h) and, conversely, from
(l1(N0, h), ‖ ‖2) into L2(S, π).
Using the Jacobi translation operator we define a commutative convolution on L1(S, π) by

f ∗ g :=

∫
S
f(x)Lyg(x)dπ(x)

for f, g ∈ L1(S, π), y ∈ S. f ∗ g is again an element in L1(S, π) such that ‖f ∗ g‖1 ≤ ‖f‖1 ‖g‖1.
Similarly, L1(S, π) acts on Lp(S, π), 1 ≤ p <∞, see [46] or [4]. A simple consequence is

(Lyf)∨ = Rn(y)f̌(n)

for all f ∈ L1(S, π), y ∈ S.



Chapter 2

The Hausdorff-Young Theorem

A lot of results exist on the Hausdorff-Young transform on groups and their applications, see for
instance [77]. Estimates for the norm of the Lp−Fourier transform on locally compact groups
are established by Russo, see [137],[138],[139], and Fournier, see [48], [49]. For groups which
are neither compact nor Abelian but which are unimodular the Hausdorff Young transform has
been defined and a Hausdorff-Young theorem has been proven by Kunze, see [100].
We study the Hausdorff-Young transform for commutative hypergroups by extending the do-
main of the Fourier transform to encompass all functions in Lp(K,m) and Lp(S, π) respectively,
where 1 ≤ p ≤ 2. Our main theorem states that those extended transforms are inverse to each
other. In contrast to the group case this is not obvious, since the dual space K̂ of an arbitrary
hypergroup K is in general not a hypergroup.

2.1 Main results

We extend the domain of the Fourier transform to all functions in Lp(K,m) where 1 ≤ p ≤ 2
using the Riesz-Thorin convexity theorem [26, VI.10.11].

The Fourier transform coincides on L1(K,m) ∩ L2(K,m) with the Plancherel transform.
Therefore, the Riesz-Thorin convexity theorem yields the inequality

‖f̂‖q ≤ ‖f‖p

for 1 ≤ p ≤ 2, 1/p+ 1/q = 1, for all simple functions f on K. Since we can approximate each
function f ∈ Cc(K) uniformly by simple functions, this inequality holds for all f ∈ Cc(K) and
the mapping

f 7→ f̂ , Cc(K)→ Lq(S, π)

can be extended uniquely by continuity to the whole of Lp(K,m). This extended map is called
Hausdorff-Young transform. To sum up, we have the following important result:

Theorem 2.1.1 (Hausdorff-Young). Let 1 ≤ p ≤ 2 and 1/p+ 1/q = 1. The Hausdorff-Young

transform is a linear mapping from Lp(K,m) into Lq(S, π), f 7→ f̂ such that ‖f̂‖q ≤ ‖f‖p.

In the same way we can extend the inverse Fourier transform f 7→ f̌ from Cc(S) into
C0(K) ⊂ L∞(K,m) by using the Riesz-Thorin convexity theorem once again. Its extension
maps Lp(S, π), 1 ≤ p ≤ 2, into Lq(K,m), 1/p+ 1/q = 1.

Theorem 2.1.2 (Inverse Hausdorff-Young). Let 1 ≤ p ≤ 2 and 1/p + 1/q = 1. The inverse
Hausdorff-Young transform is a linear mapping from Lp(S, π) into Lq(K,m), f 7→ f̌ such that
‖f̌‖q ≤ ‖f‖p.

13
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For later results it is important to know, whether the Lp1 -transform and the Lp2-transform
of a function f , which is contained in two different spaces Lp1(K,m) and Lp2(K,m), agree
π-almost everywhere on K̂. The same question holds for the dual versions.

Theorem 2.1.3. Let 1 ≤ p1, p2 ≤ 2.
i) For f ∈ Lp1(K,m) ∩ Lp2(K,m) the Lp1-transform of f and the Lp2-transform of f agree
π-almost everywhere on K̂.
ii) For f ∈ Lp1(S, π)∩Lp2(S, π) the inverse Lp1-transform of f and the inverse Lp2-transform
of f agree m-almost everywhere on K.

Proof. The proof follows the lines of [77, (31.26)].

Now it is natural to ask, whether the inverse Hausdorff-Young transform is indeed the inverse
mapping of the Hausdorff-Young transform. We will prove this inverse relation, but we have
to take into account that in general K̂ is not a hypergroup. Thus, we need a few results in
advance.

Lemma 2.1.4. For f, g ∈ L2(K,m) and h ∈ L1(K,m) we have f ∗g ∈ C0(K), g∗h ∈ L2(K,m)
and ∫

K

f ∗ g(y)h(ỹ)dm(y) =

∫
K

f(ỹ)g ∗ h(y)dm(y).

Proof. It is well-known that f ∗ g ∈ C0(K) for f, g ∈ L2(K,m) and g ∗ h ∈ L2(K,m) for
g ∈ L2(K,m), h ∈ L1(K,m), see [4]. Furthermore, f ∗ g(x) = g ∗ f(x) by the commutativity of
K. Finally, applying Fubini’s theorem we conclude∫

K

f ∗ g(y)h(ỹ)dm(y) =

∫
K

∫
K

f(x̃)Lyg(x)dm(x)h(ỹ)dm(y)

=

∫
K

f(x̃)

∫
K

Lyg(x)h(ỹ)dm(y)dm(x) =

∫
K

f(x̃)g ∗ h(x)dm(x).

Proposition 2.1.5. Let K be a commutative hypergroup and 1 ≤ p ≤ 2. Then the following
holds:

(i) For f ∈ Lp(K,m) and ϕ ∈ Lp(S, π) holds (f̂ϕ)∨ = f ∗ ϕ̌.

(ii) For µ ∈ M(K) and ϕ ∈ Lp(S, π) holds (µ̂ϕ)∨ = µ ∗ ϕ̌ m-almost everywhere. Especially,

for f ∈ L1(K,m) and ϕ ∈ Lp(S, π) we have (f̂ϕ)∨ = f ∗ ϕ̌ m-almost everywhere.

Proof. (i) f̂ϕ is by Theorem 2.1.1 and by an application of Hölder’s inequality an element in
L1(S, π). Hence, the inverse Fourier transform is well defined. Choosing f ∈ Cc(K), ϕ ∈ Cc(S),
we obtain by Fubini’s theorem

(f̂ϕ)∨(x) =

∫
S
f̂(α)ϕ(α)α(x)dπ(α) =

∫
S

∫
K

f(y)α(y)dm(y)ϕ(α)α(x)dπ(α)

=

∫
S

∫
K

α(x)α(y)f(y)ϕ(α)dm(y)dπ(α) =

∫
K

Lxϕ̌(ỹ)f(y)dm(y) = f ∗ ϕ̌(x).

Using the continuity of the transformations and of the convolution, the statement follows from
the denseness of Cc(K) in Lp(K,m) and the denseness of Cc(S) in Lp(S, π). Indeed, choosing a
sequence (ϕn)n∈N in Cc(S) such that limn→∞ ‖ϕn − ϕ‖p = 0, we conclude for each f ∈ Cc(K)
using Hölder’s inequality∥∥∥(f̂ϕ)∨ − f ∗ ϕ̌

∥∥∥
∞
≤
∥∥∥f̂(ϕ− ϕn)

∥∥∥
1

+ ‖f ∗ ϕ̌n − f ∗ ϕ̌‖∞ ≤ 2 ‖f‖p ‖ϕ− ϕn‖p → 0
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as n tends to infinity.
(ii) By [4, (2.2.15) ] we know already that (µ̂ϕ)∨ = µ ∗ ϕ̌ for all ϕ ∈ Cc(S). The denseness of
Cc(S) in Lp(S, π) yields for each ϕ ∈ Lp(S, π) the existence of a sequence (ϕn)n∈N in Cc(S),
which converges to ϕ in Lp(S, π). Hence,

‖(µ̂ϕ)∨ − µ ∗ ϕ̌‖q ≤ ‖µ̂(ϕ− ϕn)‖p + ‖µ ∗ (ϕ− ϕn)∨‖q ≤ 2 ‖µ‖ ‖ϕ− ϕn‖p → 0

as n tends to infinity. The second statement follows by embedding L1(K,m) into M(K) via
the mapping f 7→ fm, L1(K,m)→M(K).

We also use the following lemma proven in [45, Theorem 3.1].

Lemma 2.1.6. Given a compact neighborhood Cα of α ∈ S there exists a sequence (fn)n∈N in
Cc(K) such that ‖(fn ∗ f∗n)∧ − χCα‖1 → 0 as n tends to infinity.

The proof of the following proposition is essential for our main theorem of this chapter.

Proposition 2.1.7. Let f ∈ Lp(K,m), 1 ≤ p ≤ 2, such that the Hausdorff-Young transform

f̂ ∈ L2(S, π). Then f ∈ L2(K,m) and f = ℘−1(f̂) m-almost everywhere.
The same holds true for the dual S. Given ϕ ∈ Lp(S, π), 1 ≤ p ≤ 2, such that the inverse
Hausdorff-Young transform ϕ̌ ∈ L2(K,m). Then ϕ ∈ L2(S, π) and ϕ = ℘(ϕ̌) π-almost every-
where.

Proof. For f ∈ Lp(K,m) exist functions ki ∈ Cc(K), i ∈ I, such that the net (ki ∗ f)i∈I ∈
Lp(K,m) converges in Lp(K,m) to f , see [129]. Further ki∗f ∈ Lp(K,m)∩C0(K) ⊂ Lp(K,m)∩
L∞(K,m) ⊂ L2(K,m). Thus, (ki ∗ f)∧ = ℘(ki ∗ f) ∈ L2(S, π) ∩ Lq(S, π), 1/p + 1/q = 1.
Furthermore, we can find a sequence (fn)n∈N in Cc(K) such that ‖fn − f‖p → 0 as n tends to
infinity. By ∥∥∥(ki ∗ f)∧ − k̂if̂

∥∥∥
q
≤ ‖(ki ∗ f)∧ − (ki ∗ fn)∧‖q +

∥∥∥k̂if̂n − k̂if̂∥∥∥
q
→ 0

as n tends to infinity, we obtain (ki ∗ f)∧ = k̂if̂ π-almost everywhere. Hence, by Plancherel’s
theorem we have ∥∥∥ki ∗ f − ℘−1(f̂)

∥∥∥
2

=
∥∥∥(ki ∗ f)∧ − f̂

∥∥∥
2

=
∥∥∥k̂if̂ − f̂∥∥∥

2
.

Since (ki)i∈I can be chosen such that (k̂i)i∈I converges uniformly to one on compact subsets of
S, see [4, Theorem 2.2.28], we can choose for each ε > 0 a compact set C ⊂ S such that∫
C

|(k̂i − 1)f̂(α)|2dπ(α) +

∫
S\C
|(k̂i − 1)f̂(α)|2dπ(α) <

∫
C

|(k̂i − 1)f̂(α)|2dπ(α) + ε/2→ ε/2.

Thus,
∥∥∥ki ∗ f − ℘−1(f̂)

∥∥∥
2
→ 0 and we conclude f = ℘−1(f̂) m-almost everywhere.

To prove the second statement let α ∈ S, C a compact neighborhood of α and (fn)n∈N in Cc(K)
such that ‖(fn ∗ f∗n)∧ − χC‖1 → 0 as n tends to infinity. Put ψ = (fn ∗ f∗n)∧ ∈ L1(S, π) ∩
L2(S, π)∩C0(S). For any h ∈ L1(K,m) we have, applying Parseval’s formula and Proposition
2.1.5 ii),∫

S
℘(ϕ̌)(ᾱ)ĥ(α)ψ(α)dπ(α) =

∫
K

ϕ̌(x)℘−1(ĥψ)(x)dm(x) =

∫
K

ϕ̌(x)h ∗ ψ̌(x)dm(x).

Denoting ψ̃(α) := ψ(ᾱ) and h̃(x) = h(x̃) we easily obtain h̃ ∗ (ψ̃)∨(x̃) = h ∗ ψ̌(x). Applying
successively Fubini’s theorem, Proposition 2.1.5 i) and Lemma 2.1.4, we conclude∫

S
ϕ(ᾱ)ĥ(α)ψ(α)dπ(α) =

∫
K

h(x̃)(ϕψ̃)∨(x)dm(x) =

∫
K

h(x̃)ϕ̌ ∗ (ψ̃)∨(x)dm(x)

=

∫
K

ϕ̌(x̃)h̃ ∗ (ψ̃)∨(x)dm(x) =

∫
K

ϕ̌(x)h ∗ (fn ∗ f∗n)(x)dm(x).
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Hence, we have ∫
S

(℘(ϕ̌)(ᾱ)− ϕ(ᾱ))ĥ(α)(fn ∗ f∗n)∧(α)dπ(α) = 0

for all h ∈ L1(K,m). Since
{
ĥ : h ∈ L1(K,m)

}
is dense in C0(K̂) with respect to ‖ ‖∞, see

[4, Theorem 2.2.4 (ix)], we conclude for each n ∈ N that (℘(ϕ̌) − ϕ)(ᾱ)(fn ∗ f∗n)∧(α) = 0 for
almost all α ∈ S. Since the union of countable many π−zero sets is a π−zero set, we conclude
(℘(ϕ̌)− ϕ)(ᾱ)(fn ∗ f∗n)∧(α) = 0 for all α ∈ S\N , where N is a π−zero set, for all n ∈ N.
Further, since ‖(fn ∗ f∗n)∧ − χC‖1 → 0 we can find a subsequence (fnk ∗f∗nk)k∈N of (fn ∗f∗n)n∈N
such that (fnk∗f∗nk)∧(α)−χC(α)→ 0 for almost all α ∈ S. Thus, ℘(ϕ̌) = ϕ π almost everywhere
on C. Therefore, ℘(ϕ̌) = ϕ π−almost everywhere, and in particular ϕ ∈ L2(S, π).

Now we are able to prove our main theorem:

Theorem 2.1.8 (Inversion Hausdorff-Young). Let 1 ≤ p ≤ 2 and 1 ≤ r ≤ 2. For f ∈ Lp(K,m)

with f̂ ∈ Lr(S, π) holds (f̂)∨ = f in Lp(K,m).
Furthermore, for g ∈ Lp(S, π) such that ǧ ∈ Lr(K,m) holds (ǧ)∧ = g in Lp(S, π).

Proof. First let f ∈ Lp(K,m) such that f̂ ∈ Lr(S, π). Then f̂ ∈ Lq(S, π)∩Lr(S, π) ⊂ L2(S, π),

1/p+ 1/q = 1, and by Proposition 2.1.7 holds f = ℘−1(f̂) = (f̂)∨ , since the inverse Hausdorff-
Young transform and the inverse Plancherel transform coincide on L2(S, π) ∩ Lr(S, π). The
second statement follows similarly by Proposition 2.1.7.

Remark 2.1.9. The special case r = 1 in Theorem 2.1.8 is of particular interest. If f ∈ Lp(K,m)

and f̂ ∈ L1(S, π), then the integral
∫
S f̂(α)α(x)dπ(α) is equal to f(x) m-almost everywhere.

Corollary 2.1.10 (uniqueness theorem). Let 1 ≤ p ≤ 2 and f ∈ Lp(K,m) such that f̂ = 0
almost everywhere on S. Then f = 0 almost everywhere.
Let g ∈ Lp(S, π) such that ǧ = 0 almost everywhere, then g = 0 almost everywhere.

A further consequence of Proposition 2.1.5 is the following corollary.

Corollary 2.1.11. Let 1 ≤ p ≤ 2, 1/p + 1/q = 1. Suppose that f ∈ Lp(K,m), g ∈ Lp(S, π)
and x ∈ K. Further let ϕ ∈ L2(S, π) and β ∈ K̂. Then

i) (Lxf)∧(α) = α(x)f̂(α) for π-almost all α ∈ K̂ and
(ε̂xg)∨ = Lx̃ǧ m-almost everywhere.

ii) Denote by f∗(x) = f(x̃).

Then (f∗)∧ = f̂ π-almost everywhere and (ḡ)∨ = (ǧ)∗ m-almost everywhere.

Proof. i) (Lxf)∧(α) = (εx̃ ∗ f)∧(α) = ε̂x̃(α)f̂(α) = α(x)f̂(α) for π-almost all α ∈ K̂. The
second statement follows by Proposition 2.1.5.
ii) See [4, (2.2.32), (2.2.15)].

We can show similar results for bounded measures on K

Theorem 2.1.12. Let 1 ≤ p ≤ 2.

i) Let µ ∈M(K) such that µ̂ ∈ Lp(S, π) then dµ̃ = (µ̂)∨dm.

ii) Let µ ∈M(K̂) such that µ̌ ∈ Lp(K,m) then dµ̃ = (µ̌)∧dπ.

Proof. Let f, g ∈ L1(K,m) ∩ L2(K,m) and put h := f ∗ g ∈ L1(K,m) ∩ L2(K,m). The
set {f ∗ g : f, g ∈ L1(K,m) ∩ L2(K,m)} is sup-norm dense in C0(K). In fact, given some
g ∈ Cc(K) one can approximate g by fi ∗ g, fi ∈ Cc(K) with respect to ‖ ‖∞. Similarly,
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{(f ∗ g)∧ : f, g ∈ L1(K,m) ∩ L2(K,m)} is sup-norm dense in C0(K̂).
To prove i), we obtain by [4, Lemma 2.2.23] and by Plancherel’s theorem [4, 2.2.34]∫

K

hdµ̃ =

∫
K̂

ĥµ̂dπ =

∫
K

h(µ̂)∨dm.

Since {f ∗ g : f, g ∈ L1(K,m)∩L2(K,m)} is sup-norm dense in C0(K), we have dµ̃ = (µ̂)∨dm.
To prove ii), we have∫

K̂

ĥ(α)dµ(α) =

∫
K̂

∫
K

h(x)α(x)dm(x)dµ(α) =

∫
K

h(x)ˇ̃µ(x)dm(x).

Since, h̃ ∈ L2(K,m) and µ̌ ∈ Lp(K,m) ∩ Cb(K) ⊂ L2(K,m), we conclude by Plancherel’s
theorem [4, Theorem 2.2.34]∫

K

h(x)ˇ̃µ(x)dm(x) =

∫
K̂

ĥ(α)(ˇ̃µ)∧(α)dπ(α).

Hence, we find dµ̃ = (µ̌)∧dπ.

Remark 2.1.13. For f ∈ L1(K,m) we have fdm ∈M(K) and by Theorem 2.1.12 holds

(f̂)∨dm = f̃dm = fdm̃.

However, this is not a contradiction to Theorem 2.1.8, since the uniqueness of the Haar measure
and the commutativity of K imply m = m̃, see [4, pp. 28].
The same holds for the dual case, since ‖f̃‖2 = ‖f‖2 for every function f on K̂ and hence
dπ̃ = dπ by definition.

Remark 2.1.14. Theorem 2.1.12 implies also, that every measure µ ∈M(K) with µ̂ ∈ L2(K̂, π)
is absolutely continuous with respect to m and every measure µ ∈M(K̂) with µ̌ ∈ L2(K,m) is
absolutely continuous with respect to π.

2.2 Further Convolution Results

A similar result, but proven with standard arguments is the following.

Proposition 2.2.1. Let 1 ≤ p ≤ 2, 1/p + 1/q = 1. For f ∈ Lp(K,m) and each measure

µ ∈M(K) we have (µ ∗ f)∧ = µ̂f̂ π-almost everywhere.

Especially, for each function g ∈ L1(K,m) is (g ∗ f)∧ = ĝf̂ π-almost everywhere.

Proof. By [4, Lemma 1.4.6], is µ∗f ∈ Lp(K,m). Thus, (µ∗f)∧ is defined by Theorem 2.1.1. Let
(fn)n∈N be a sequence of functions in L1(K,m) ∩ Lp(K,m) such that limn→∞ ‖fn − f‖p = 0.

We have (µ∗fn)∧ = µ̂f̂n for each n ∈ N, see [4, (2.2.15)]. Since the Hausdorff-Young transform

is norm decreasing, we obtain (µ∗f)∧ = µ̂f̂ π-almost everywhere. The second statement follows
by embedding L1(K,m) into M(K) via the mapping f 7→ fm, L1(K,m)→M(K).

Considering p = 2 we can conclude the following proposition immediately

Proposition 2.2.2. Let f, g ∈ L2(S, π). Then (fg)∨ = ℘−1(f) ∗℘−1(g) m-almost everywhere.

Proof. Use [4, (2.2.15)] and Parseval’s identity.

Corollary 2.2.3. The equality L2(K,m) ∗ L2(K,m) = L1(S, π)∨ holds.
In particular, L2(K,m) ∗ L2(K,m) is a linear space.

In order to show a dual version of the last corollaries we need the following proposition.
Note that the following results do only hold for a compact dual space.
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Proposition 2.2.4. Let S be compact, ψ ∈ L1(S, π) and ϕ ∈ L2(S, π). Then (ψ ∗ ϕ)∨ = ψ̌ϕ̌.

Proof. Choose a sequence (ψn)n∈N in Cc(S) such that ‖ψn − ψ‖1 → 0 as n tends to infinity.
Since S is compact, we obtain ψn ∗ ϕ ∈ L1(S, π) for all n ∈ N and by Fubini’s theorem we
conclude

(ψn ∗ ϕ)∨(x) =

∫
S

∫
S
ψn(β)Mβ̄ϕ(α)α(x)dπ(β)dπ(α) = ψ̌n(x)ϕ̌(x)

for all x ∈ K. The statement follows by∥∥(ψ ∗ ϕ)∨ − ψ̌ϕ̌
∥∥
∞ ≤ ‖(ψ ∗ ϕ)− (ψn ∗ ϕ)‖2 +

∥∥ψ̌n − ψ̌∥∥∞ ‖ϕ̌‖∞ → 0, as n→∞.

Corollary 2.2.5. Let S be compact. Then (L2(S, π) ∗L2(S, π))∨ = L1(K,m) as linear spaces.

Proof. Let ψ,ϕ ∈ L2(S, π). By Proposition 2.2.4 holds (ψ ∗ ϕ)∨ = ψ̌ϕ̌ ∈ L1(K,m).
Conversely, for each h ∈ L1(K,m) exist ψ,ϕ ∈ L2(S, π) such that h = ψ̌ϕ̌ in L1(K,m). Hence,
h ∈ (L2(S, π) ∗ L2(S, π))∨.

Corollary 2.2.6. Let S be compact. Then L2(S, π) ∗ L2(S, π) = L1(K,m)∧ as linear spaces.

Concerning the translation on the dual, the following result holds and can be proven with
Proposition 2.2.4.

Corollary 2.2.7. Let S be compact and ϕ ∈ L2(S, π).
Then (Mαϕ)(β) = (Mβϕ)(α) for π-almost all α, β ∈ K̂.

Proof. There exists a unique g ∈ L2(K,m) such that ϕ = ℘(g) in L2(S, π). Further choose an
arbitrary f ∈ L2(K,m). By Proposition 2.2.4 and Parseval’s identity holds

℘(f) ∗ ℘(g)(α) = (fg)∧(α) =

∫
K

f(x)g(x)α(x)dm(x) =

∫
S
℘(f)(β)℘(ᾱg)(β̄)dπ(β).

℘(f) ∗ ℘(g)(α) =
∫
S ℘(f)(β)Mβ̄(℘(g))(α)dπ(β) by definition. Hence, we conclude∫

S
℘(f)(β)[Mβ̄(℘(g))(α)− ℘(ᾱg)(β̄)]dπ(β) = 0.

Since f was chosen arbitrary, we obtain Mβ̄(ϕ)(α) = ℘(ᾱg)(β̄) = Mα(ϕ)(β̄) for π-almost all

α, β ∈ K̂ .

2.3 Further Consequences of the main Theorem

Theorem 2.3.1 (Generalization of Parseval’s Identity). We have for 1 ≤ p ≤ 2 and 1
p + 1

q = 1,

1. For f ∈ Lp(K,m), g ∈ Lp(S, π) holds∫
K

f(x)ǧ(x)dm(x) =

∫
S
f̂(α)g(α)dπ(α).

2. For K compact, f ∈ Lp(K,m) and g ∈ Lq(K,m) such that ĝ ∈ Lp(S, π) holds∫
K

f(x)g(x)dm(x) =

∫
S
f̂(α)ĝ(α)dπ(α).

3. For S compact, ϕ ∈ Lp(S, π) and ψ ∈ Lq(S, π) such that ψ̌ ∈ Lp(K,m) is∫
S
ϕ(α)ψ(α)dπ(α) =

∫
K

ϕ̌(x)ψ̌(x)dm(x).
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Proof. The proof follows the lines of [77, 31.48].

Theorem 2.3.2. Let 1 < p < 2 and 1/p+1/q = 1. The mapping f 7→ f̂ , Lp(K,m)→ Lq(S, π)
is onto if and only if K is finite.

Proof. If K is finite the mapping f 7→ f̂ , Lp(K,m) → Lq(S, π) is obviously onto. Conversely,
let K be infinite and suppose that every function in Lq(S, π) is the Hausdorff-Young transform

of a function in Lp(K,m). Thus, the mapping f 7→ f̂ , Lp(K,m)→ Lq(S, π) is linear, bijective
and continuous. Hence, by a theorem of Banach the inverse mapping is also continuous and

there exists a constant C > 0 such that
∥∥∥f̂∥∥∥

q
≤ ‖f‖p ≤ C

∥∥∥f̂∥∥∥
q
.

Now consider a sequence (fn)n∈N in Lp(K,m), which converges weakly to zero in Lp(K,m) and
fulfills ‖fn1 + fn2 + ...+ fnm‖p = m1/p for all subsets {fn1 , fn2 , ..., fnm} of (fn)n∈N, m = 1, 2, ....

Such a sequence exists by [75, Lemma A]. By Theorem 2.3.1 the sequence (f̂n)n∈N converges

weakly to zero in Lq(S, π). By Lemma B in [75], there exists a subsequence (f̂nk)k∈N of (f̂n)n∈N

and a constant A > 0 such that
∥∥∥∑m

k=1 f̂nk

∥∥∥
q
≤ Am1/2. We obtain

m1/p = ‖fn1 + fn2 + ...+ fnm‖p ≤ C

∥∥∥∥∥
m∑
k=1

f̂nk

∥∥∥∥∥
q

≤ ACm1/2,

for all m = 1, 2, 3.... We see at once that 1
p ≤

1
2 , which contradicts our hypothesis. Hence, the

mapping f 7→ f̂ , Lp(K,m)→ Lq(S, π) cannot be onto.

The proof of Hewitt [75] is also extendable to the dual case and we conclude:

Theorem 2.3.3. Let 1 < p < 2 and 1/p+1/q = 1. The mapping f 7→ f̌ , Lp(S, π)→ Lq(K,m)
is onto if and only if K is finite.

If K is not necessarily finite, we can still prove that the range of the mapping f 7→ f̌ ,
Lp(S, π)→ Lq(K,m), is dense in Lq(K,m). For that, we need the following lemma.

Lemma 2.3.4. Let A be a compact subset of K and H an open subset of K such that A ⊂ H.
Then there is a function ψ ∈ L1(S, π) ∩ L2(S, π) such that ψ̌ ∈ Cc(K) and χA ≤ ψ̌ ≤ χH .

Proof. We may suppose that H has compact closure in K. Let P be a m-measurable symmetric
neighborhood of e ∈ K such that P ∗P ∗A ⊂ H. Let f be the function f = 1

m(P )χP∗A ∗χP on

K. By Corollary 2.2.3 there exists a function ψ ∈ L1(S, π) such that f = ψ̌. Further holds

ψ̌(x) = f(x) =
1

m(P )
(

∫
P

ω(x, y)(P ∗A)dm(y))

and (P ∗ {x}) ∩ (P ∗ A) = ∅ if and only if P̃ ∗ P ∗ A ∩ {x} = ∅. Hence, it is obvious that
χA ≤ ψ̌ ≤ χP∗P∗A ≤ χH . Since ψ̌ ∈ L2(K,m), we obtain ψ ∈ L2(S, π) with Proposition 2.1.7.

Remark 2.3.5. M. Lashkarizadeh Bami, M. Pourgholamhossein and H. Samea proved Lemma
2.3.4, too, see [104, Proposition 2.4]. A similar proof for Abelian groups can be found in [77,
(31.34)].

Remark 2.3.6. The dual spaces K̂ or S do, in general, not bear a dual hypergroup structure.
Therefore, we are not able to prove a dual version of Lemma 2.3.4 and to say something about
the range of the mapping f 7→ f̂ , Lp(K,m)→ Lq(S, π).

The following proposition follows immediately.

Proposition 2.3.7. The equality L1(S, π)∨Cc(K) = Cc(K) as linear spaces is valid.
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Proposition 2.3.8. For 1 < p ≤ 2 is Lp(S, π)∨ a ‖ ‖q-dense linear subspace in Lq(K,m),
1/p+ 1/q = 1.

Proof. For p = 2 the statement is obviously true. Therefore, suppose 1 < p < 2. Consider a
m-measurable subset B of K such that m(B) <∞. Given ε > 0, let A be a compact subset of
B and H an open subset of K, such that B ⊂ H and m(H\A) < εq. There exists a function
f ∈ (L1(S, π) ∩ L2(S, π))∨ ⊂ Lp(S, π)∨ such that χA ≤ f ≤ χH by Lemma 2.3.4. Then
‖f − χB‖q < ‖χH − χA‖q < ε. Linear combinations of functions χB are dense in Lq(K,m),
and hence, Lp(S, π)∨ is dense in Lq(K,m).

Concluding, we give two further results which are interesting in the context of harmonic
analysis.

Theorem 2.3.9. Let 1 ≤ p ≤ 2, µ be in M(K), f ∈ Lp(K,m) and suppose that µ̂ = f̂ π-almost
everywhere on K̂. Then f is in L1(K,m), µ is absolutely continuous and the Radon-Nikodym
derivative of µ is f.

Proof. The proof follows the lines of [77, 31.33].

Theorem 2.3.10. Suppose that f is a function in L1(K,m) ∩ L∞(K,m) and that f̂ is a non-

negative function. Then f̂ ∈ L1(S, π) and
∥∥∥f̂∥∥∥

1
≤ ‖f‖∞.

Proof. Let f ∈ L1(K,m) ∩ L∞(K,m). By Hölder’s interpolation theorem holds f ∈ L2(K,m)

and hence f̂ = ℘(f) ∈ L2(S, π). Let (ki)i∈I ∈ Cc(K) be an approximate identity in L1(K,m).
By Parseval’s theorem follows for all i ∈ I that∫

S
f̂(ki ∗ k∗i )∧dπ =

∫
K

f(ki ∗ k∗i )dm ≤ ‖f‖∞ ‖ki ∗ k
∗
i ‖1 ≤ ‖f‖∞ .

f̂(ki ∗ k∗i )∧ converges pointwise to f̂ and f̂ |k̂i|2 is by assumption not negativ. Applying Fatou’s
lemma we obtain∫

S
f̂dπ =

∫
S

lim
i
f̂(ki ∗ k∗i )∧dπ ≤ lim sup

i

∫
S
f̂(ki ∗ k∗i )∧dπ ≤ ‖f‖∞ .

Remark 2.3.11. A result similar to Theorem 2.3.10 for Abelian groups can be found in [77,
31.42].

Remark 2.3.12. It is an open question whether Theorem 2.3.9 and Theorem 2.3.10 admit dual
versions.

Remark 2.3.13. Even if it is not our intention to determine optimal estimates for the norm,
we want to remark that Rodionov did establish expansions of functions in the Lp-space with
respect to systems similar to orthogonal ones. His results are analogues of the Hausdorff-Young
theorems in the theory of trigonometric series, see [135]. However, Rodionov’s results apply to
only a few polynomial hypergroups, since orthonormal polynomials, which are also bounded,
are very rare.

Remark 2.3.14. M. S. Ramanujan and N. Tanović-Miller [131] generalized the Hausdorff-Young
Theorem to mixed norm sequence spaces. Using their results they characterized multipliers for
mixed norm sequence spaces.



Chapter 3

Multipliers for Lp(K,m)

As outlined in the introduction, multipliers for Lp spaces over various groups have been studied
intensively in the past, see for instance [2], [22], [33],[42], [56], [84], [77] and [101]. Even multi-
pliers for Lp spaces over hypergroups are investigated. Stempak [152] established a version of
Hörmanders multiplier theorem on Bessel-Kingman hypergroups, which are a special class of
Chèbli-Trimèche hypergroups. Hence, W.R. Bloom and Z. Xu [5] generalized these results to
the whole class of Chèbli-Trimèche hypergroups. Moreover, H. Emamirad and G.S. Heshmati
characterized multipliers for the dual hypergroup K = [−1, 1] of the discrete hypergroup gen-

erated by the ultraspherical polynomials R
(α,α)
n (t).

Our aim here is to generalize the characterizations of multipliers of specific hypergroups to all
commutative hypergroups.
Some of the results in this chapter were already proven in the author’s Master thesis [19]. This
in particular concerns the theory of pseudomeasures and the basic characterizations of mul-
tipliers for L2(K,m) and Lp(K,m), which are quoted in Theorem 3.2.8 and Theorem 3.3.4.
These results are also quoted in [20]. However, there are also new results added as well as some
example, e.g. 3.4.4.

3.1 Introduction and Multipliers for L1(K,m)

Definition 3.1.1. A multiplier T : Lp(K,m)→ Lp(K,m), 1 ≤ p <∞, is a bounded linear
operator from Lp(K,m) into Lp(K,m), which commutes with all translation operators Lx, x ∈
K, i.e. T ◦ Lx = Lx ◦ T. We denote the space of multipliers for Lp(K,m) by M(Lp(K,m)).

M(Lp(K,m)) is a closed subalgebra of B(Lp(K,m)), since the composition of operators in
B(Lp(K,m)) is continuous.
In order to establish a complete characterization of the multipliers for Lp(K,m), 1 ≤ p < ∞,
we basically use the arguments in the proof of Theorem 4.1.1 in [101] to prove that the space
M(Lp(K,m)) coincides with the space of convolutors of Lp(K,m), where T ∈ B(Lp(K,m)) is
called convolutor, if T (f ∗ g) = f ∗ Tg for all f, g ∈ L1(K,m) ∩ Lp(K,m). Pavel proved this
characterization of a multiplier in [129].

Proposition 3.1.2. Let T ∈ B(Lp(K,m)) and 1 ≤ p < ∞. Then T is an element of
M(Lp(K,m)) if and only if

Tf ∗ g = T (f ∗ g) = f ∗ Tg for all f, g ∈ L1(K,m) ∩ Lp(K,m).

Proof. Let T ∈ M(Lp(K,m)). For each f ∈ Lp(K,m) the mapping y 7→ Lyf , K → Lp(K,m)
is continuous. For f, g ∈ Cc(K) the convolution f ∗ g is a Lp(K,m)−valued integral. Hence,
we obtain by the multiplier characteristic of T

Tf ∗ g =

∫
K

g(y)Lỹ(Tf)dm(y) =

∫
K

g(y)T (Lỹf)dm(y).

21
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Since f, g ∈ Cc(K), we can interpret the integral as a limit of Riemann sums. By the additivity
and the continuity of T we conclude∫

K

g(y)T (Lỹf) dm(y) = T

(∫
K

g(y)Lỹfdm(y)

)
= T (f ∗ g).

For f, g ∈ L1(K,m) ∩ Lp(K,m) we choose sequences (fn)n∈N and (gn)n∈N in Cc(K) such that

‖fn − f‖p → 0, ‖gn − g‖1 → 0 for n→∞.

Thus,

‖T (f ∗ g)− Tf ∗ g‖p
≤ ‖T (f ∗ g)− T (fn ∗ gn)‖p + ‖T (fn ∗ gn)− Tfn ∗ g‖p + ‖Tfn ∗ g − Tf ∗ g‖p
≤ ‖T‖ (‖f ∗ g − fn ∗ g‖p + ‖fn ∗ g − fn ∗ gn‖p) + ‖Tfn‖p ‖gn − g‖1 + ‖T‖ ‖g‖1 ‖fn − f‖p
≤ ‖T‖ ‖g‖1 ‖f − fn‖p + ‖T‖ ‖fn‖p ‖g − gn‖1 + ‖T‖ ‖fn‖p ‖gn − g‖1 + ‖T‖ ‖g‖1 ‖fn − f‖p
→ 0

as n tends to infinity. Hence, we have Tf ∗ g = T (f ∗ g) for all f, g ∈ L1(K,m) ∩ Lp(K,m).
Interchanging the roles of f and g leads to Tf ∗ g = T (f ∗ g) = f ∗ Tg for all f, g ∈ L1(K,m)∩
Lp(K,m).
Conversely, choose fi ∈ Cc(K), i ∈ I with lim

i
‖fi ∗ g− g‖p = 0. Since Lxfi ∗ g = Lx(fi ∗ g) we

obtain for a convolutor T and any g ∈ L1(K,m) ∩ Lp(K,m)

T (Lxfi ∗ g) = Lxfi ∗ Tg = fi ∗ LxTg −→ LxTg

and by the continuity of T and Lx we have T (Lxfi ∗ g) = T (Lx(fi ∗ g)) −→ T Lxg for all
g ∈ L1(K,m) ∩ Lp(K,m). Now it is obvious that T ∈M(Lp(K,m)).

Corollary 3.1.3. Let T, S ∈M(Lp(K,m)), 1 ≤ p <∞. Then T ◦ S = S ◦ T.

Corollary 3.1.4. Let 1 ≤ p ≤ 2 and T ∈M(Lp(K,m)). T is bijective if and only if T−1 exists
and T−1 ∈M(Lp(K,m)).

Proof. Let T ∈M(Lp(K,m)) be bijective. Since T ∈M(Lp(K,m))we obtain

T−1f ∗ g = T−1T (T−1f ∗ g) = T−1(f ∗ g) = T−1(f ∗ TT−1g) = f ∗ T−1g

for all f, g ∈ L1(K,m) ∩ Lp(K,m). By Proposition 3.1.2 is T−1 ∈M(Lp(K,m)).

R. Lasser already generalized Wendel’s classical result and Helson’s result for multipliers for
L1(K,m) in case of K being commutative, see [105, Corollary 2.2] or [4, Theorem 1.6.24 ]. For
the sake of completeness, the characterizations of T ∈M(L1(K,m)) are formulated here again.

Theorem 3.1.5. Let T ∈ B(L1(K,m)). The following conditions are equivalent:

i) T ∈M(L1(K,m)).

ii) Tf ∗ g = T (f ∗ g) = f ∗ Tg for all f, g ∈ L1(K,m).

iii) There exists a unique measure µ ∈M(K) such that

Tf = µ ∗ f for all f ∈ L1(K,m).

iv) There exists a unique measure µ ∈M(K) such that

(Tf)∧ |S = µ̂ f̂ |S for all f ∈ L1(K,m).
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v) There exists a unique function ϕ ∈ C(S) such that

(Tf)∧ |S = ϕ f̂ |S for all f ∈ L1(K,m).

Moreover, the correspondence between T and µ defines an isometric algebra isomorphism from
M(L1(K,m)) onto M(K), such that ‖ϕ‖∞ ≤ ‖µ‖ = ‖T‖.

Proof. The proof of the equivalence of i) to v) is in [105, Corollary 2.2].

Remark 3.1.6. It should be noted that the implication v) ⇒ iv) actually establishes that ϕ is
a bounded function.

Remark 3.1.7. If a multiplier T ∈ M(L1(K,m)) is submarkovian, i.e. 0 ≤ Tf ≤ 1 m-almost
everywhere for all f ∈ L1(K,m) with 0 ≤ f ≤ 1 m−almost everywhere, then the corresponding
measure µ ∈M(K) is a positive contractive measure on K, see [4, Theorem 1.6.24].

Corollary 3.1.8. The Banach algebra M(L1(K,m)) is isometrically isomorphic to M(K).

There are two more results we can quote here. Similar results for locally compact Abelian
group can be found in Larsen [101, Theorem 0.1.2].

Theorem 3.1.9. The following hold:

i) The set of all convolution operators {Lg : g ∈ L1(K,m)} is dense in M(L1(K,m)) with
respect to the strong operator topology.

ii) The set of all finite linear combinations of translation operators Lx, x ∈ K, is dense in
M(L1(K,m)) with respect to the strong operator topology.

Proof. Let (ki)i∈I be an approximate identity in L1(K,m), i.e. limi ‖ki ∗ f − f‖1 = 0 for all
f ∈ L1(K,m). We have for all µ ∈M(K)

lim
i
‖µ ∗ f − µ ∗ ki ∗ f‖1 ≤ lim

i
‖f − ki ∗ f‖1 ‖µ‖ = 0

for all f ∈ L1(K,m). Hence, we have for all T ∈M(L1(K,m)) with Tf = µ ∗ f ,

lim
i
‖Tf − Lµ∗kif‖1 = lim

i
‖µ ∗ f − µ ∗ ki ∗ f‖1 = 0.

To show the second statement, it is sufficient to prove that if F is a strong operator continuous
linear functional on the space of operators on L1(K,m), which vanishes on the space of finite
linear combinations of translation operators, then it vanishes at every multiplier for L1(K,m).
This is due to the Hahn-Banach Theorem. For an operator T on L1(K,m) a strong operator
continuous linear functional has the form

F (T ) =

n∑
i=1

hi(Tfi)

for fi ∈ L1(K,m) and hi ∈ L1(K,m)∗, i = 1, 2, ..., n (see [101, D. 8.1]). Since the dual of
L1(K,m) is L∞(K,m), there exist a ϕi ∈ L∞(K,m) such that

hi(Tfi) =

∫
K

(Tfi)(x)ϕi(x)dm(x)

for all i = 1, 2, ..., n. Since F vanishes on the space of all translation operators, we obtain for
every multiplier T , Tf = µ ∗ f , on L1(K,m) the following

F (T ) =

n∑
i=1

∫
K

Tfi(x)ϕi(x)dm(x) =

n∑
i=1

∫
K

(µ ∗ fi(x))ϕi(x)dm(x)
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=

n∑
i=1

∫
K

[∫
K

ω(ỹ, x)(fi)dµ(y)

]
ϕi(x)dm(x)

=

∫
K

[
n∑
i=1

∫
K

Lỹfi(x)ϕi(x)dm(x)

]
dµ(y) =

∫
K

F (Lỹ)dµ(y) = 0

Remark 3.1.10. In addition to Theorem 3.1.9 Obata [126, Corollary 3.8] proved that every
surjective, isometric multiplier T for L1(K,m) is characterized by Tf = γεx ∗ f , where x is an
element in the centre of K, i.e.

x ∈ G(K) := {x ∈ K : εx ∗ εx̃ = εe = εx̃ ∗ εx}

and γ ∈ C, |γ| = 1.
Conversely, every measure µ = γεx with x ∈ G(K) and γ ∈ C, |γ| = 1, defines a surjective,
isometric multiplier for L1(K,m). Hence, the surjective, isometric multipliers for L1(K,m)
characterize the group part G(K) of K, see [4, pp. 68].

Before we continue to characterize multipliers for Lp(K,m), 1 < p <∞, we want to mention
that the set of multipliers for L1(K,m) is the same as the space of multipliers for C0(K) given
the usual norm ‖ ‖∞. Here, an operator T in B(C0(K)) is called multiplier for C0(K),
whenever it commutes with all translation operators, that is Lx ◦ T = T ◦ Lx for all x ∈ K.
The set of all multipliers for C0(K) is denoted by M(C0(K)).

Theorem 3.1.11. M(C0(K)) is isometrically isomorphic to M(K).

Proof. Let T ∈ M(C0(K)). Since T is continuous, f 7→ Tf(e) defines a continuous linear
functional on C0(K). By Riesz’s representation theorem there exists a unique µ ∈M(K) such
that Tf(e) = µ(f) = µ̃ ∗ f(e). Applying this equation to Lxf yields

Tf(x) = LxTf(e) = TLxf(e) = µ̃ ∗ Lxf(e) = µ(Lxf) = µ̃ ∗ f(x)

for all x ∈ K and f ∈ C0(K). Moreover, |µ̃(f)| ≤ ‖T‖‖f‖∞ for all f ∈ C0(K). Hence, we
conclude ‖µ̃‖ ≤ ‖T‖.
Conversely, the operator on C0(K) defined by Tf := µ̃∗f is obviously a multiplier, since we have
µ̃ ∗Lxf(y) = µ̃ ∗ εx̃ ∗ εỹ ∗ f(e) = εx̃ ∗ µ̃ ∗ f(y) = Lx(µ̃ ∗ f(y)), and ‖Tf‖∞ = ‖µ̃ ∗ f‖ ≤ ‖µ̃‖‖f‖∞.
Hence, M(K) is isometrically isomorphic to M(C0(K)).

Corollary 3.1.12. M(C0(K)) is isometrically isomorphic to M(L1(K,m)).

Remark 3.1.13. Following the lines of proof 3.1.5, we can transfer Theorem 3.1.5 to multipliers
for C0(K).

An Application

We want to show a short application of Wendel’s theorem. Figà-Talamanca and Gaudry [43]
proved similar results in the context of locally compact groups. Sakai [140] who studied com-
pact multipliers for L1(G), showed the same application for non-compact, non-Abelian groups.
He proved also for a non-compact, locally compact group G, that zero is the only weakly com-
pact multiplier of L1(G). Ghahramani and Medghalchi[61, 62] extended similar results to the
hypergroup case.

Definition 3.1.14. An operator T ∈ B(L1(K,m)) is called spectrally continuous if there
exists a constant r > 0 satisfying

‖Th‖1 ≤ r ‖Lh‖

for all h ∈ L1(K,m), Lh ∈ B(L2(K,m)).
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Theorem 3.1.15. Let K be a commutative, non-compact hypergroup. Then each spectrally
continuous multiplier T ∈M(L1(K,m)) is identically zero.

Proof. Let R(K,m) denote the closure of the set
{
Lf : f ∈ L1(K,m)

}
in the C∗−algebra

B(L2(K,m)), of all bounded linear operators on L2(K,m). Then R(K,m) is a C∗−algebra.
T ∈ B(L1(K,m)) can also be interpreted as a well-defined operator on

{
Lf : f ∈ L1(K,m)

}
into L1(K,m). Since T is spectrally continuous, it can then be uniquely extended to a bounded
operator T̃ of R(K,m) into L1(K,m). Since R(K,m) is a C∗−algebra, T̃ is weakly com-
pact, see [140, Proposition 1]. Denote by S the unit sphere of R(K,m). Since ‖Lf‖ ≤ ‖f‖1
for each f ∈ L1(K,m), we obtain that S ∩ L1(K,m) :=

{
f ∈ L1(K,m) : ‖Lf‖ ≤ 1

}
con-

tains the unit sphere of L1(K,m). Therefore, the set
{
Th : h ∈ L1(K,m), ‖h‖1 ≤ 1

}
is rel-

atively weakly compact in L1(K,m), since T̃ is weakly compact and T and T̃ coincide on{
h ∈ L1(K,m) : ‖h‖1 ≤ 1

}
. This implies that T is weakly compact as an operator on L1(K,m).

Since T is a multiplier for L1(K,m), by Wendel’s theorem there exists a bounded measure
µ ∈M(K) such that Th = µ ∗ h for all h ∈ L1(K,m). Let f ∈ L1(K,m), then the mapping

L1(K,m)→ L1(K,m), h 7→ (f ∗ µ)∗ ∗ (f ∗ µ) ∗ h

is weakly compact, where f∗(x) := f̃(x). Hence, by [3, Corollary 3.7] the mapping

L1(K,m)→ L1(K,m), h 7→ (f ∗ µ)∗ ∗ (f ∗ µ) ∗ (f ∗ µ)∗ ∗ (f ∗ µ) ∗ h

is compact. Let g = (f ∗ µ)∗ ∗ (f ∗ µ) ∗ (f ∗ µ)∗ ∗ (f ∗ µ) ∈ L1(K,m) and S1 denote the unit
sphere of L1(K,m). Then g ∗ S1 is a relatively compact subset in L1(K,m). Let {vi}i∈I be a
fundamental family of compact neighborhoods at a point s of K and let {fi}i∈I be a family
of continuous positive functions on K, such that the support of fi is contained in vi for all
i ∈ I and

∫
K
fi(x)dx = 1. Then {fi ∗ g}i∈I converges to Lsg in L1(K,m). Ls is a continuous

operator on L1(K,m), therefore the set {Lsg : s ∈ K} is relatively compact. Now suppose that
‖g‖1 6= 0 and hence let ‖g‖1 = 1. Then there exists a finite set {Ls1g, Ls2g, ..., Lsng}, si ∈ K
for all i ∈ I, such that

inf
1≤i≤n

‖Lsg − Lsig‖1 ≤
1

2

for all s ∈ K. On the other hand, let C be a compact subset of K such that∫
K\C
|g(x)|dm(x) <

1

10
and

∫
K\C
|Lsig(x)|dm(x) <

1

10
,

for i = 1, 2, ..., n. Such a subset C exists, since g, Lsig ∈ L1(K,m) for i = 1, 2, ..., n. Further,
let s be an element in K such that s /∈ C ∗C. Then {s̃}∗C∩C = ∅, see [4, 1.2.11], and therefore

‖Lsg − Lsig‖1 =

∫
C

|(Lsg − Lsig)(x)|dm(x) +

∫
K\C
|(Lsg − Lsig)(x)|dm(x)

≥
∫
C

|Lsig(x)|dm(x)−
∫
C

|Lsg(x)|dm(x)

+

∫
K\C
|Lsg(x)|dm(x)−

∫
K\C
|Lsig(x)|dm(x)

≥ (1− 1

10
)−

∫
C

|Lsg(x)|dm(x)− 1

10

Now we need to check the maximum value of
∫
C
|Lsg|dm(x). We obtain∫

C

|Lsg(x)|dm(x) ≤
∫
C

Ls(|g|)(x)dm(x)

=

∫
K

χC(x)Ls(|g|)(x)dm(x) =

∫
K

Ls̃χC(x)|g|(x)dm(x).



26 CHAPTER 3. MULTIPLIERS FOR LP (K,M)

Furthermore, we have

Ls̃χC(x) =

∫
suppω(s̃,x)

χC(z)dω(s̃, x)(z) =

∫
suppω(s̃,x)∩C

1dω(s̃, x)(z).

Since {s̃} ∗ C ∩ C = ∅ we have Ls̃χC(x) = 0 for all x ∈ C. Therefore, we conclude∫
C

|Lsg(x)|dm(x) ≤
∫
K

Ls̃χC(x)|g|(x)dm(x)

=

∫
K\C

Ls̃χC(x)|g|(x)dm(x) ≤
∫
K\C
|g|(x)dm(x) ≤ 1

10
.

All together, the inequalities above lead us to

‖Lsg − Lsig‖1 ≥ (1− 1

10
)−

∫
C

|Lsg(x)|dm(x)− 1

10
≥ 7

10

This is a contradiction to inf1≤i≤n ‖Lsg − Lsig‖1 ≤
1
2 for all s ∈ K. Hence, g = 0 and therefore

f ∗ µ = 0. Since f is an arbitrary element of L1(K,m) we have µ = 0. Thus, T = 0.

Remark 3.1.16. The first part of proof 3.1.15 follows the lines of Sakai [140]. However, Sakai uses
in the second part of his proof the isometric property of the left translation. This property is in
general not given for hypergroups. Hence, we used different estimates to reach the contradiction.

Remark 3.1.17. Gaudry [53], Grothendieck [67] and Helgason [71, 72] proved the same result,
but with various restrictions, for some special non-compact groups.

Remark 3.1.18. A similar result for compact groups G is available in [72], which states that
every spectrally continuous multiplier T ∈ M(L1(G)) equals a convolution operator Lf with

f ∈ L2(G). However, the proof is based on the fact that |α(x)| = 1 for all x ∈ G and α ∈ Ĝ.
Hence, this result cannot be proven for compact hypergroups in a similar way. In fact every
commutative hypergroup with only unitary characters is already a locally compact Abelian
group [4, Corollary 2.2.12].

3.2 Multipliers for L2(K,m)

Now we consider p = 2. It is obvious, that every measure µ ∈ M(K) defines a multiplier
for L2(K,m)). For p = 1 this conversely characterizes every multiplier for L1(K,m). This
is no longer true for p > 1. As a replacement for bounded measures on K we can define
pseudomeasures. We will see, that every multiplier for Lp(K,m), p > 1, can be characterized
through a pseudomeasure on K. Hence, the space of pseudomeasures contains the set of all
bounded measures on K. Pseudomeasures will be the main tool, to characterize multipliers
operating on various Banach spaces. On the contrary, one needs quasimeasures, a generalization
of pseudomeasures, to characterize multipliers which operate between different Banach spaces,
see e.g. [52].
We continue with a few results concerning pseudomeasures on K.

Definition 3.2.1. We call the set A(K) := {ϕ̌ : ϕ ∈ L1(S, π)} Fourier space of the hypergroup
K. With the norm ‖ϕ̌‖A := ‖ϕ‖1, A(K) becomes a Banach space.

Remark 3.2.2. By the uniqueness theorem for the inverse Fourier transform ‖ϕ̌‖A := ‖ϕ‖1
defines indeed a norm on A(K), see [4, Theorem 2.2.35].

Remark 3.2.3. Muruganandam showed in [124] some properties of the Fourier space A(K), for
instance for every function f ∈ A(K), we have also f̃ , f̄ and Lxf in A(K), for all x ∈ K.
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Definition 3.2.4. The space of all continuous linear functionals on A(K) is denoted by P (K),
the elements σ of P (K) are called pseudomeasures on K and

‖σ‖P = sup{ |σ(ϕ̌)| : ‖ϕ̌‖A ≤ 1}

is a norm on P (K).

Since the dual space of L1(S, π) is isometrically isomorphic to L∞(S, π), see [76, Theorem
12.18], P (K) is isometrically isomorphic to L∞(S, π). The mapping Φ : P (K)→ L∞(S, π),
where for each σ ∈ P (K) the element Φ(σ) ∈ L∞(S, π) is uniquely determined by∫

S

ϕ(α) Φ(σ)(ᾱ) dπ(α) = σ(ϕ̌) for ϕ ∈ L1(S, π),

defines an isometric isomorphism Φ from the Banach space P (K) onto L∞(S, π). We can define
a convolution of two pseudomeasures σ1, σ2 ∈ P (K) by

σ1 ∗ σ2 = Φ−1 (Φ(σ1)Φ(σ2)) ,

such that Φ is also an algebra isomorphism from P (K) onto L∞(S, π). The proof of these facts
is exactly as in [101, Theorem 4.2.2]. We shall call Φ(σ) the Fourier transform of σ ∈ P (K). If
µ ∈M(K) then∫

K

ϕ̌(x) dµ(x) =

∫
K

∫
S
α(x)ϕ(α) dπ(α) dµ(x) =

∫
S
ϕ(α) µ̂(ᾱ) dπ(α)

for all ϕ ∈ L1(S, π). Hence, each measure µ ∈ M(K) is a pseudomeasure and µ̂ = Φ(µ).
Moreover, we have ‖µ‖P = ‖µ̂‖∞ ≤ ‖µ‖. We want to note that for K infinite, we have
M(K)∧ ( L∞(S, π) = Φ(P (K)). Thus, M(K) ( P (K). Furthermore,∫

S
ϕ(α) Φ(µ1 ∗ µ2)(ᾱ) dπ(α) =

∫
K

ϕ̌(x) dµ1 ∗ µ2(x) for all ϕ ∈ L1(S, π).

Hence, the convolution µ1 ∗ µ2 of two measures µ1, µ2 ∈ M(K) agrees with the convolution of
µ1 and µ2 considered as pseudomeasures. Obviously, we have

Φ(σ1 ∗ σ2) = Φ(σ1) Φ(σ2) for σ1, σ2 ∈ P (K).

The above conclusions can be summarized as follows.

Proposition 3.2.5. The Fourier transform Φ : P (K)→ L∞(S, π) determined by∫
S
ϕ(α) Φ(σ)(ᾱ) dπ(α) = σ(ϕ̌) for all ϕ ∈ L1(S, π)

is an isometric algebra isomorphism of P (K) onto L∞(S, π).

Remark 3.2.6. We can consider P (K) as the von Neumann algebra of K, see [124, Proposition
4.1].

We shall say that a pseudomeasure σ ∈ P (K) belongs to L2(K,m) if there is a g ∈ L2(K,m)
such that

σ(ϕ̌) =

∫
K

ϕ̌(x) g(x) dm(x) for all ϕ ∈ L1(S, π) ∩ L2(S, π).

Since the set {ϕ̌ : ϕ ∈ L1(S, π) ∩ L2(S, π)} is dense in L2(K,m), g is uniquely determined.
If σ ∈ P (K) belongs to L2(K,m) and g is the corresponding element from L2(K,m) then
Parseval’s formula yields for ϕ ∈ L1(S, π) ∩ L2(S, π)∫

S
ϕ(α) Φ(σ)(ᾱ) dπ(α) = σ(ϕ̌) =

∫
K

ϕ̌(x) g(x) dm(x)
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=

∫
S
ϕ(α) ℘g(ᾱ) dπ(α).

Hence, we conclude Φ(σ) = ℘g ∈ L2(S, π) ∩ L∞(S, π), i.e. the Fourier transform of the
pseudomeasure σ agrees with the Plancherel transform of g.

Conversely, let σ ∈ P (K) such that Φ(σ) ∈ L2(S, π)∩L∞(S, π) then σ belongs to L2(K,m).
Indeed, putting g = ℘−1(Φ(σ)) ∈ L2(K,m) and using Parseval’s formula we obtain

σ(ϕ̌) =

∫
S
ϕ(α) Φ(σ)(ᾱ) dπ(α) =

∫
K

ϕ̌(x) g(x) dm(x)

for all ϕ ∈ L1(S, π) ∩ L2(S, π).
We may summarize the latter discussion in the following proposition.

Proposition 3.2.7. A pseudomeasure σ ∈ P (K) belongs to L2(K,m) if and only if Φ(σ) ∈
L2(S, π) ∩ L∞(S, π). Moreover, the Fourier transform of σ as a pseudomeasure coincides with
the Plancherel transform of the corresponding g ∈ L2(K,m).

It should be noted that every g ∈ L1(K,m) ∩ L2(K,m) determines a pseudomeasure
σ ∈ P (K) such that σ(ϕ̌) =

∫
K

ϕ̌(x) g(x) dm(x) is true for all ϕ ∈ L1(S, π) ∩ L2(S, π). Indeed,

let σ = Φ−1(ĝ). Then

Φ−1(ĝ)(ϕ̌) =

∫
S
ϕ(α) Φ(Φ−1(ĝ))(ᾱ) dπ(α) =

∫
S
ϕ(α) ℘g(ᾱ) dπ(α) =

∫
K

ϕ̌(x) g(x) dm(x).

In particular, the convolution σ ∗ g = Φ−1(Φ(σ)ĝ) of σ ∈ P (K) and g ∈ L1(K,m) ∩ L2(K,m)
is well-defined as a convolution of pseudomeasures.

If σ ∈ P (K) belongs to L2(K,m), we will further on denote the corresponding element of
L2(K,m) by σ, as well.

Theorem 3.2.8. Let T ∈ B(L2(K,m)). The following conditions are equivalent:

i) T ∈M(L2(K,m)).

ii) Tf ∗ g = T (f ∗ g) = f ∗ Tg for all f, g ∈ L1(K,m) ∩ L2(K,m).

iii) There exists a unique pseudomeasure σ ∈ P (K) such that σ ∗ f belongs to L2(K,m) and

Tf = σ ∗ f for all f ∈ L1(K,m) ∩ L2(K,m).

iv) There exists a unique pseudomeasure σ ∈ P (K) such that

℘(Tf) = Φ(σ) ℘(f) for all f ∈ L2(K,m).

v) There exists a unique ϕ ∈ L∞(S, π) such that

℘(Tf) = ϕ℘(f) for all f ∈ L2(K,m)

Moreover, the correspondence between T, σ and ϕ defines isometric algebra isomorphisms be-
tween M(L2(K,m)), P (K) and L∞(S, π) such that ‖ϕ‖S = ‖σ‖P = ‖T‖.

Proof. i)⇔ ii) is already proven in Proposition 3.1.2.
v)⇒ i) : We have

(Lxf)∧(α) = α(x) f̂(α) = ε̂x̃(α) f̂(α) for all f ∈ L1(K,m), α ∈ K̂,

and hence ℘(Lxf) = ε̂x̃ ℘(f) for all f ∈ L2(K,m). Therefore, it follows by (v)

℘(Lx(T (f))) = ε̂x̃ ℘(T (f)) = ε̂x̃ ϕ ℘(f) = ϕ ℘(Lx(f)) = ℘(T (Lx(f)))
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for all f ∈ L2(K,m), and hence T ∈M(L2(K,m)).
i) ⇒ v) : (The proof follows the lines of [101, Theorem 4.1.1]) i) is equivalent to (ii).

Hence, we have
℘(T (f)) ĝ = f̂ ℘(T (g)) (∗)

for all f, g ∈ Cc(K). For α ∈ S, choose f ∈ Cc(K) such that f̂(α) is nonzero on a neighborhood

of α and define on this neighborhood ϕ = ℘(T (f))/f̂ . By the identity (∗) ϕ is independent of
the choice of f , and it follows that there is a unique locally measurable function ϕ on S such that
℘(T (f)) = ϕ f̂ for all f ∈ Cc(K). If f ∈ L2(K,m), there exists a sequence (fn)n∈N0 , fn ∈ Cc(K)
such that limn∈N0

‖f − fn‖2 = 0. Then lim
n∈N0

‖℘(T (f)) − ℘(T (fn))‖2 = 0, and replacing

(fn)n∈N0
by a subsequence, we can suppose that f̂n → ℘(f) π-almost everywhere and ℘(Tfn)→

℘(T (f)) π-almost everywhere. It follows that ℘(Tf) = ϕ℘(f) π-almost everywhere.
It remains to prove that ϕ ∈ L∞(S, π). (We will even show that ‖ϕ‖S ≤ ‖T‖.) Assume,

in contrary, that there is a compact subset C ⊆ S such that π(C) > 0 and |ϕ(α)| > ‖T‖ for

π-almost all α ∈ C. Put g ∈ L2(K,m) such that ℘(g) = χC . Then ‖ϕχC‖2 > ‖T‖ (π(C))
1
2 ,

and on the other hand

‖ϕχC‖2 = ‖ϕ℘(g)‖2 = ‖℘(T (g))‖2 = ‖T (g)‖2 ≤ ‖T‖ ‖g‖2 = ‖T‖ (π(C))
1
2 .

Obviously, this is a contradiction. Hence, ϕ ∈ L∞(S, π) and ‖ϕ‖S ≤ ‖T‖. In addition, we have
‖Tg‖2 = ‖℘(Tg)‖2 = ‖ϕ℘(g)‖2 ≤ ‖ϕ‖S ‖g‖2, and we get ‖T‖ ≤ ‖ϕ‖S .

iv) ⇔ v) : The equivalence of iv) and v) is true by the assumptions on pseudomeasures
in the Introduction.

iv) ⇒ iii) : We have already shown that the convolution σ ∗ f of σ ∈ P (K) and f ∈
L1(K,m)∩L2(K,m) yields a pseudomeasure. For pseudomeasures σ enjoying property (iv) we
have

Φ(σ ∗ f) = Φ(σ) f̂ = ℘(Tf)

for all f ∈ L1(K,m) ∩ L2(K,m). Hence, Φ(σ ∗ f) ∈ L2(S, π) ∩ L∞(S, π) and (iii) follows by
Proposition 3.2.7.

iii)⇒ iv) : Using Proposition 3.2.7 once again, we conclude

℘(T (f)) = ℘(σ ∗ f) = Φ(σ ∗ f) = Φ(σ) f̂

for all f ∈ L1(K,m) ∩ L2(K,m). Since T is continuous and L1(K,m) ∩ L2(K,m) is dense in
L2(K,m), the statement (iv) is shown.

Remark 3.2.9. In [61] the equivalence of i) and iii) in Theorem 3.2.8 is shown for general
hypergroups and weights on the measure algebra of K, see [61, Proposition 1].

We obtain a result concerning translation invariant subsets in L2(K,m). The proof follows
closely the proof of a similar result for locally compact Abelian groups which can be found in
Larsen [101, Theorem 4.1.1 ].

Corollary 3.2.10. A subset X in L2(K,m) is a closed translation invariant linear subspace,
if and only if there exists a Borel measurable subset E of S such that

X =
{
f ∈ L2(K,m) : ℘(f) = 0 π − almost everywhere off E

}
,

that is ℘(X) = χE · L2(S, π).

Proof. Let X ∈ L2(K,m) be a closed translation invariant linear subspace. Further let T be the
Hilbert space projection of L2(K,m) onto X. T is obviously a linear operator with ‖T‖ = 1.
Moreover, for every f ∈ L2(K,m) such that f = f1 + f2 with f1 ∈ X and f2 ∈ X⊥ we conclude
Lxf = Lxf1 + Lxf2 for every x ∈ K. Further, Lxf1 ∈ X as X is translation invariant. By∫

K

Lxf2(y)g(y)dm(y) =

∫
K

f2(y)Lxg(y)dm(y) = 0
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for all g ∈ X, we have Lxf2 ∈ X⊥. Hence,

TLxf = T (Lxf1 + Lxf2) = Lxf1 = LxTf1 = Lx(Tf1 + Tf2) = LxTf

for all f ∈ L2(K,m). Thus, T commutes with translations and we have T ∈ M(L2(K,m)).
Consequently, by Theorem 3.2.8 there exists a function ϕ ∈ L∞(S, π) such that ℘(Tf) = ϕ℘(f)
for all f ∈ L2(K,m). Since T is a projection, we conclude from

℘−1(ϕ℘(f)) = Tf = T 2f = ℘−1(ϕ2℘(f)),

that ϕ2℘(f) = ϕ℘(f) for all f ∈ L2(K,m). Hence, ϕ2 = ϕ π−almost everywhere. Choosing
a representative function ϕ1 of ϕ and setting E = {x ∈ S : ϕ1(x) = 1} , we see that ϕ = χE
π−almost everywhere and we obtain the existence of a Borel measurable subset E of S such
that

X =
{
f ∈ L2(K,m) : ℘(f) = 0 π − almost everywhere off E

}
,

that is ℘(X) = χE · L2(S, π).
Conversely suppose there exists a Borel measurable subset E of S such that

X =
{
f ∈ L2(K,m) : ℘(f) = 0 π − almost everywhere off E

}
.

Let f ∈ X. Then ℘(Lxf) = ℘(εx)℘(f) ∈ χE · L2(S, π) = ℘(X) for all x ∈ K. Hence, Lxf ∈ X
and X is translation invariant. X is obviously linear. Furthermore, X is closed. Indeed, let a
sequence (fn)n∈N in X converge to f ∈ L2(K,m), i.e. ‖fn − f‖2 → 0 as n tends to infinity.
Then we have ‖℘(fn)− ℘(f)‖2 = ‖fn − f‖2 → 0 as n tends to infinity. Thus, ℘(f) = 0
π−almost everywhere off of E.

3.3 Multipliers for Lp(K,m), p 6= 1, p 6= 2

Now we investigate multipliers for Lp(K,m), p 6= 1, p 6= 2. Basically with the same arguments
used for Abelian groups we obtain inclusion results for M(Lp(K,m)). Let ‖T‖p be the operator
norm of T ∈ M(Lp(K,m)), 1 ≤ p < ∞. If it is clear which operator norm is meant in the
context, we will omit p in this notation.

Following the lines of the proof [101, Theorem 4.1.2 ] we conclude:

Proposition 3.3.1. Let 1 < p < ∞, 1
p + 1

q = 1. Then there exists an isometric algebra

isomorphism of M(Lp(K,m)) onto M(Lq(K,m)).

Proof. Let T ∈M(Lp(K,m)). By Proposition 3.1.2 the bounded linear functional

Fg(f) := f ∗ Tg(e)

is well-defined on Cc(K) for all g ∈ Cc(K). Fg has a continuous extension on Lp(K,m) such that
‖Fg‖p ≤ ‖Fg‖. With the duality between Lp(K,m) and Lq(K,m) it follows that Tg ∈ Lq(K,m)
and

‖Tg‖q = ‖Fg‖ ≤ ‖T‖p ‖g‖q .

Therefore, T ∈ M(Lp(K,m)) restricted to Cc(K) defines a continuous transformation from
Cc(K) onto Lq(K,m) which commutes with translations. Its unique extension from Lq(K,m)
to Lq(K,m) will also be denoted by T . This extension T also commutes with translations
and we have ‖T‖q ≤ ‖T‖p. Interchanging the roles of p and q, we get an isometric algebra
isomorphism from M(Lp(K,m)) onto M(Lq(K,m)).

Using a form of the Riesz-Thorin convexity theorem we can derive the next result just as in
Theorem 4.1.3 and Corollary 4.1.3 in [101].
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Lemma 3.3.2. Let 1 < p < ∞. Then there exists a continuous algebra isomorphism Ψ of
M(Lp(K,m)) into M(L2(K,m)). Moreover, ‖Ψ(T )‖2 ≤ ‖T‖p.

Proof. Let T ∈M(Lp(K,m)). By a form of Riesz-Thorin Convexity theorem [26, VI 10.8] the
function log ‖T‖ 1

a
is convex on 0 ≤ a ≤ 1. Since 1

p + 1
q = 1 and ‖T‖p = ‖T‖q it follows

log ‖T‖2 ≤
1

p
log ‖T‖p +

1

q
log ‖T‖q =

(
1

p
+

1

q

)
log ‖T‖p = log ‖T‖p .

Thus, the restriction of T ∈ M(Lp(K,m)) to the integrable simple functions determines a
unique element T2 ∈M(L2(K,m)) with ‖T2‖2 ≤ ‖T‖p.

Corollary 3.3.3. Let T ∈ M(Lp(K,m)), 1 < p < ∞. There exists a unique ϕ ∈ L∞(S, π)
such that

Tf = ℘−1(ϕ℘(f))

for all f ∈ L2(K,m) ∩ Lp(K,m). Moreover ‖ϕ‖∞ = ‖T‖2 ≤ ‖T‖p .

Proof. Let T ∈M(Lp(K,m)). T determines, when restricted to the integrable simple functions
S(K,m), a unique element T2 ∈ M(L2(K,m)). By Theorem 3.2.8 there exists a unique ϕ ∈
L∞(K,m) with T2f = ℘−1(ϕ℘(f)) for all f ∈ S(K,m). Let f ∈ L2(K,m) ∩ Lp(K,m) be
nonnegative almost everywhere and let (gn)n∈N0 be a monotone increasing sequence of non-
negative simple functions which converges almost everywhere to f . By Lebesgues dominated
convergence theorem and by the continuity of T and T2 it follows with the usual argument
that Tf = T2f for all non-negative f ∈ L2(K,m) ∩ Lp(K,m). By the Plancherel theorem
limn→∞ ‖℘(T2gn)− ℘(Tf)‖2 = 0 and by Theorem 3.2.8,

‖℘(T2gn)− ϕ℘(f)‖2 = ‖ϕ℘(gn)− ϕ℘(f)‖2 ≤ ‖ϕ‖∞ ‖gn − f‖2 → 0

for n → ∞. Therefore, Tf = ℘−1(ϕ℘(f)) for all nonnegative f ∈ L2(K,m) ∩ Lp(K,m) and
hence for all f ∈ L2(K,m) ∩ Lp(K,m).

We denote the set of all ϕ ∈ L∞(S, π) such that ℘(Tf) = ϕ℘(f) for each f ∈ L2(K,m) ∩
Lp(K,m) by M(Lp(K,m)). Furthermore, we call each ϕ which corresponds to a multiplier
T ∈M(Lp(K,m)) the Fourier Transform of T and denote T̂ := ϕ.
We get the following characterizations for a multiplier for Lp(K,m).

Theorem 3.3.4. Let T ∈ B(Lp(K,m)), 1 < p < 2. The following conditions are equivalent:

i) T ∈M(Lp(K,m))

ii) Tf ∗ g = T (f ∗ g) = f ∗ Tg for all f, g ∈ L1(K,m) ∩ Lp(K,m)

iii) There exists a unique pseudomeasure σ ∈ P (K) such that

Tg = σ ∗ g for all g ∈ L1(K,m) ∩ L2(K,m).

iv) There exists a unique pseudomeasure σ ∈ P (K) such that (Tg)∧ = Φ(σ)ĝ for all g ∈ Lp(K,m).

v) There exists a unique η ∈ L∞(S, π) such that (Tg)∧ = ηĝ for all g ∈ Lp(K,m).

Moreover ‖η‖∞ = ‖σ‖p = ‖T‖2 ≤ ‖T‖p.

Proof. The proof is completed by Lemma 3.1.2, Corollary 3.3.3 and Proposition 3.2.7. iv)
and v) follow for all g ∈ Lp(K,m) by extending the Fourier transform on L1(K,m) to the
Hausdorff-Young transform on Lp(K,m).

Remark 3.3.5. By Proposition 3.3.1 Theorem 3.3.4 holds also for 2 < p < ∞. However, since
the Hausdorff-Young transform is only defined for 1 < p < 2 , we need to restrict statements
iv) and v) to all functions in L1(K,m) ∩ L2(K,m).
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Remark 3.3.6. If a multiplier T ∈M(Lp(K,m)), 1 < p <∞, is submarkovian, i.e. 0 ≤ Tf ≤ 1
m-almost everywhere for all f ∈ Lp(K,m) with 0 ≤ f ≤ 1 m−almost everywhere, then there
exists even a positive, contractive measure µ ∈M(K), such that Tf = µ∗f for all f ∈ Lp(K,m),
see [4, Theorem 1.6.25].

Taking a look on our last results we can conclude for each commutative hypergroup K and
1 < p ≤ r ≤ 2, that there exists a norm-decreasing algebra isomorphism J from M(Lp(K,m))
into M(Lr(K,m)). Indeed, J(T ), T ∈ M(Lp(K,m)), is the unique extension to Lr(K,m) of
the restriction T |Lp(K,m)∩Lr(K,m). Hence, J can also be interpreted as an inclusion. With
a slight abuse of terminology we obtain the following inclusions for 1 < p < r < 2 :

M(K) ∼= M(L1(K,m)) ⊆ M(Lp(K,m)) ⊆ M(Lr(K,m)) ⊆ M(L2(K,m)) ∼= P (K),

and for 2 < r < p <∞

M(K) ∼= M(C0(K)) ⊆ M(Lp(K,m)) ⊆ M(Lr(K,m)) ⊆ M(L2(K,m)) ∼= P (K),

and the inclusion mappings are norm-decreasing. Later on we deal with the question whether
those inclusions are strict, see Chapter 5.

Remark 3.3.7. Considering compact hypergroups we want to point out that Theorem 3.2.8
generalizes Theorem 1.1, Corollary 3.1 and Lemma 4.1 in [34], where the dual hypergroup

K = [−1, 1] of the ultraspherical polynomials R
(α,α)
n (t) is investigated.

We want to mention a short result, which follows from Theorems 3.1.5, 3.2.8, 3.3.4.
For a function ϕ ∈ L∞(S, π) with ϕ 6= 0 π-almost everywhere, define 1

ϕ by choosing a repre-

senting function ϕ′ on K̂ such that ϕ′ = ϕ π-almost everywhere and set

1

ϕ′
(α) :=

{
1

ϕ′(α) if ϕ′(α) 6= 0

0 elsewhere.

1
ϕ denotes the equivalence class in L∞(S, π) of 1

ϕ′ . We obtain 1
ϕϕ = 1 π-almost everywhere.

Proposition 3.3.8. Let 1 ≤ p <∞ and T ∈M(Lp(K,m)) such that T̂ = ϕ. T is invertible if
and only if ϕ 6= 0 π-almost everywhere and 1/ϕ ∈M(Lp(K,m)).

Proof. Let without loss of generality 1 ≤ p ≤ 2. Let Tϕ ∈ M(Lp(K,m)) be invertible. There
exists Tψ ∈M(Lp(K,m)) with corresponding ψ ∈M(Lp(K,m)) such that Tϕ◦Tψ = I = Tψ◦Tϕ
in M(Lp(K,m)). We obtain f̂ = (Tϕ ◦ Tψf)∧ = ϕ(Tψf)∧ = ϕψf̂ for all f ∈ Lp(K,m). Since

for all α ∈ S there exists a function in f ∈ Cc(K) ⊂ Lp(K,m) such that f̂(α) 6= 0 we conclude
ϕ 6= 0 and ψ = 1

ϕ π-almost everywhere.

Conversely, (Tϕ ◦ T 1
ϕ
f)∧ = f̂ . By the uniqueness theorem of the Fourier transform it follows

that Tϕ ◦ T 1
ϕ

= I = T 1
ϕ
◦ Tϕ and Tϕ is invertible.

We want to give another criterion on ϕ ∈ L∞(S, π), which indicates that ϕ is the Fourier
transform of an operator T ∈M(Lp(K,m)). The following criterion is analogous to the criterion
given by Schoenberg, see [143], which characterizes the Fourier transform of measures. Also
in the hypergroup case Schoenberg’s theorem exists which states that ϕ ∈ Cb(K̂) equals on S
the Fourier transform of a bounded Borel measure µ on K if and only if there is a real number
B ≥ 0 such that

∣∣∫
S ϕ(α)h(α)dπ(α)

∣∣ ≤ B ∥∥ȟ∥∥∞ is satisfied for every h ∈ Cc(K̂), see [78].
L.S. Hahn [68] found the following characterization for multipliers for locally compact groups.
It can easily be transferred to hypergroups.

Proposition 3.3.9. Let 1 < p < ∞ and ϕ ∈ L∞(S, π). Then the following assertions are
equivalent
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i) ϕ ∈M(Lp(K,m))

ii) There exists a constant B such that

|
∫
S
ϕf̂ ĝdπ| ≤ B ‖f‖p ‖g‖q

for all f, g ∈ Cc(K) where 1/p+ 1/q = 1.

Proof. Let ϕ ∈ M(Lp(K,m)), then ℘−1(ϕ℘(f)) ∈ Lp(K,m) for all f ∈ Lp(K,m) ∩ L2(K,m)
and we can define a continuous mapping

Tf := ℘−1(ϕ℘(f)), T : (Cc(K), ‖ ‖p)→ (Lp(K,m), ‖ ‖p).

Thus,

‖T‖ = sup
{∥∥℘−1(ϕ℘(f))

∥∥
p

: f ∈ Cc(K), ‖f‖p ≤ 1
}
.

Since Lq(K,m) is the dual of Lp(K,m) and Cc(K) is norm dense in Lq(K,m), we have

‖T‖ = sup

{
|
∫
K

(℘−1(ϕ℘(f))g dm| : f, g ∈ Cc(K), ‖f‖p ≤ 1 ‖g‖q ≤ 1

}
.

By Plancherel’s theorem, this in turn is the same as the supremum of{
|
∫
K

(ϕ℘(f)℘(g)dπ| : f, g ∈ Cc(K), ‖f‖p ≤ 1 ‖g‖q ≤ 1

}
.

Conversely, consider ii) holds. Reversing the preceding arguments one sees that the operator
T : (Cc(K), ‖ ‖p) → (Lp(K,m), ‖ ‖p) defined by Tf := ℘−1(ϕ℘(f)) has Lp(K,m)−norm less
than or equal to B. Thus, T extends by continuity to all of Lp(K,m) with the same norm,
showing that ϕ ∈M(Lp(K,m)) and ‖ϕ‖∞ ≤ ‖T‖ = B.

We obtain two consequences of Proposition 3.3.9, which concern convergent nets of multi-
pliers. Similar results for locally compact Abelian groups can be found in [47, Corollary 1.1,
Corollary 1.2].

Corollary 3.3.10. Let 1 < p <∞ and {ϕi}i∈I be a net of functions inM(Lp(K,m)) such that
the corresponding multipliers {Ti}i∈I fulfill ‖Ti‖p ≤ B < ∞ for all i ∈ I. If {ϕi}i∈I converges
in the weak*-topology of L∞(S, π) to a function ϕ, then ϕ is also an element in M(Lp(K,m))
and the corresponding multiplier Tϕ fulfills ‖Tϕ‖p ≤ B.

Proof. Let 1/p+ 1/q = 1. By Proposition 3.3.9 is∣∣∣∣∫
S
ϕiĝf̂dπ

∣∣∣∣ ≤ B‖f‖p‖g‖q,
for all f, g ∈ Cc(S) and all i ∈ I. Since f̂ , ĝ ∈ L2(S, π), we have f̂ ĝ ∈ L1(S, π). The convergency

assumption on {ϕi}i∈I implies that
∣∣∣∫S ϕif̂ ĝdπ∣∣∣ converges to

∣∣∣∫S ϕf̂ ĝdπ∣∣∣ for all f, g ∈ Cc(S).

Hence, we obtain ∣∣∣∣∫
S
ϕf̂ ĝdπ

∣∣∣∣ ≤ B‖f‖p‖g‖q,
for all f, g ∈ Cc(S). By Proposition 3.3.9 is ϕ ∈M(Lp(K,m)) and ‖T‖p ≤ B.

Corollary 3.3.11. Let 1 < p <∞. If {Ti}i∈I is a bounded net in M(Lp(K,m)), ‖Ti‖p ≤M <∞
for all i ∈ I, and {Ti}i∈I converges to T in the weak operator topology over L2(K,m), then
T ∈M(Lp(K,m)) and ‖T‖p ≤M .
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Proof. Let f, g ∈ L2(K,m). By the convergency assumptions converges
∫
K

(Tif)g dm to∫
K

(Tf)g dm. Hence, by Plancherel’s theorem
∫
S ϕi℘(f)℘(g)dπ converges to

∫
S ϕ℘(f)℘(g)dπ,

where ϕi denote the corresponding functions of Ti in L∞(S, π) for all i ∈ I and ϕ denotes the
corresponding function to T . Since we can express every function in L1(S, π) as a product of
two functions in L2(S, π), we conclude that {ϕi}i∈I converges to ϕ in the weak* topology of
L∞(S, π). Corollary 3.3.10 completes the proof.

Remark 3.3.12. Gaudry and Inglis [58] proved further approximation theorems for multipliers
for a locally compact group G. These results are not extendable to hypergroups using similar
proofs, since their proof is based on the fact that the dual of the Figà-Talamanca Herz algebras
Ap(G) is isometrically isomorphic to M(Lp(G)). We do not know, if this is also the case in the
context of hypergroups (see Chapter 5).

3.4 Examples

We apply now Theorem 3.1.5 and Theorem 3.2.8, respectively, to polynomial hypergroups.
In that case the measure space M(N0) can be identified with l1(N0). Moreover, S = suppπ is
compact. Thus, L∞(S, π) ⊆ L2(S, π), and every pseudomeasure σ ∈ P (N0) belongs to l2(N0, h).

Let (τ(m,n))m,n∈N0
be an infinite matrix of complex numbers. Consider the linear trans-

formations T defined by

Tf(m) = g(m) =

∞∑
n=0

τ(m,n) f(n) h(n). (3.4.1)

Then g = (g(m))m∈N0 is defined at least whenever f = (f(n))n∈N0 ∈ lfin, i.e. f(n) 6= 0 for at
most finitely many n ∈ N0. We begin with a simple observation.

Lemma 3.4.1. Define T by (3.4.1) for f ∈ lfin. Then we have T ◦Ln = Ln ◦T for all n ∈ N0

if and only if τ(m,n) = Lnσ(m) for all m,n ∈ N0, where σ(k) = τ(k, 0).

Proof. Let εl(k) = δk,l for k, l ∈ N0. Then Tnε0(k) = 0 for k 6= n and Tnε0(n) = 1/h(n), and
Tε0(k) = τ(k, 0) = σ(k). Therefore, T ◦ Lnε0(m) = τ(m,n) and
Ln ◦Tε0(m) = Lnσ(m). It follows that T ◦Ln = Ln ◦T implies τ(m,n) = Lnσ(m). Conversely,
τ(m,n) = Lnσ(m) yields T ◦ Lnε0 = Ln ◦ Tε0, and then

T ◦ Lnεl = h(l) T ◦ Ln ◦ Llε0 = h(l) Ll ◦ Ln ◦ Tε0 = Ln ◦ Tεl,

for each l ∈ N0. Thus, the converse implication is also true.

In view of Lemma 3.4.1 we focus our attention to the case τ(m,n) = Tnσ(m), where
σ = (σ(k))k∈N0 . Notice that τ(m,n) = Tnσ(m) = Tmσ(n) = τ(n,m). From Theorem 3.1.5
and Theorem 3.2.8 we can conclude the following characterizations.

Proposition 3.4.2. Let K = N0 be a polynomial hypergroup.

(1) A necessary and sufficient condition that T is a bounded linear operator from l1(N0, h)
into l1(N0, h) is that σ = (σ(n))n∈N0

∈ l1(N0).

(2) A necessary and sufficient condition that T is a bounded linear operator from l2(N0, h)
into l2(N0, h) is that σ = (σ(n))n∈N0 is given by σ(n) = f̌(n) for some f ∈ L∞(S, π).

Remark 3.4.3. One should compare Proposition 3.4.2(2) with Theorem 9.18 in [175, Ch.IV].
We want to mention that ”the multipliers of l2(Z) correspond exactly with the so-called double
infinite Toeplitz matrices”, see [33, pp. 244]. For further information, we refer to Zygmund
[176] and Widom [167].
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If we consider polynomial hypergroups, which fulfill the continuity property (P ), we can
name a subset ofM(lp(N0, h)). L.-S. Hahn formulated similar results for commutative groups,
see [68, Theorem 5].

Theorem 3.4.4. Let K = N0 be a polynomial hypergroup fulfilling the continuity property (P ).
Let 1 ≤ p ≤ 2, 1/p+ 1/q = 1. Then

Lp(S, π) ∗ Lq(S, π) ⊂M(lr(N0, h)),

for every 2p
3p−2 ≤ r ≤

2p
2−p or equivalently 2q

q+2 ≤ r ≤
2q
q−2 .

Proof. For p = 1 the theorem reduces to the already known result

L1(S, π) ∗ L∞(S, π) ⊂ L∞(S, π) ⊂M(l2(N0, h)).

Let 1 < p ≤ 2 and 1/p+ 1/q = 1. Let ψ,ϕ ∈ Cc(S) and f, g ∈ Cc(N0). By Hölder’s inequality
and by Plancherel’s theorem∣∣∣∣∫

S
f̂ ĝ(ϕ ∗ ψ)dπ

∣∣∣∣ ≤ ‖ϕ ∗ ψ‖∞ ∫
S
|f̂ ĝ|dπ ≤ ‖ϕ‖1‖ψ‖∞‖f‖2‖g‖2.

Furthermore, we have ∣∣∣∣∫
S
f̂ ĝ(ϕ ∗ ψ)dπ

∣∣∣∣ ≤ ‖ϕ‖2‖ψ‖2‖f‖1‖g‖∞.
Thus, the multilinear mapping

T : Cc(N0)× Cc(N0)× Cc(S)× Cc(S)→ C, T (f, g, ϕ, ψ) =

∫
S
f̂ ĝ(ϕ ∗ ψ)dπ,

satisfies
|T (f, g, ϕ, ψ)| ≤ ‖f‖p′‖g‖q′‖ϕ‖r‖ψ‖s

for p′ = 1, q′ = ∞, r = s = 2 or p′ = q′ = 2, r = 1 and s = ∞. By the multilinear
version of the Riesz-Thorin interpolation theorem, see [175, XII, Theorem 3.3], T satisfies this
inequality for all 1/p′ = (1 − λ) 1

1 + λ
2 and 1/r = (1 − λ) 1

2 + λ
1 where 0 ≤ λ ≤ 1. This leads

to 1/p′ + 1/r = 3/2, see [68, pp. 325]. Hence, for p′ = p > 1 follows by Proposition 3.3.9
and the density of Cc(S) in Lp(S, π) and Lq(S, π) that Lp(S, π) ∗ Lq(S, π) ⊂M(lr(N0, h)) for
1/r = 3/2− 1/p = (3p− 2)/(2p). Proposition 3.3.1 and Lemma 3.3.2 complete the proof.

Remark 3.4.5. For p = 2 the Theorem above reduces to the already known result

L2(S, π) ∗ L2(S, π) = L1(S, π)∨ ⊂M(l1(N0, h)).

Remark 3.4.6. Combining Proposition 3.3.9 and Theorem 3.4.4, we conclude in particular that
‖Tf∗g‖r ≤ ‖f‖p‖g‖q where Tf∗g denotes the multiplier for lr(N0, h) corresponding to f ∗ g ∈
M(lr(N0, h)).

Remark 3.4.7. We cannot strengthen the conclusions of Theorem 3.4.4. Even in the group case
this is in general impossible, see [68, pp. 325].

3.5 On the Spectrum of a Multiplier

We define the spectrum of a bounded operator T on Lp(K,m) as the set

σp(T ) := {λ ∈ C : T − λI is not bijective}.

For an operator T on C0(K) denote the spectrum σ0(T ). As a direct consequence of Corollary
3.1.4 we obtain
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Corollary 3.5.1. Let 1 < p < 2 and 1/p + 1/q = 1. For T ∈ M(Lp(K,m)) we have
σp(T ) = σq(T ).

Proof. Let λ /∈ σp(T ) then (T − λI) is bijective and an element in M(Lp(K,m)). By Theorem
3.1.4 is (T − λI)−1 ∈ M(Lp(K,m)). Hence, we conclude (T − λI)−1 ∈ M(Lq(K,m)), as
well.

Corollary 3.5.2. Let T ∈ M(L1(K,m)). For the corresponding multiplier T 0 in M(C0(K))
we have σ1(T ) = σ0(T 0).

An application of Theorem 3.1.5, Theorem 3.2.8 and Theorem 3.3.4 is given in the spectral
theory of multipliers for the Jacobi hypergroup S = [−1, 1]. Note that the Jacobi polynomials

define a hypergroup on K =
ˆ̂
K = N0 with a dual hypergroup structure on S = [−1, 1].

In Wong [168, Chapter 21] we can find similar results for p = 2 while studying filters on the
unit circle.

Let (Rn(x))n∈N0
denote the sequence of Jacobi polynomial as introduced in the first chapter.

Theorem 3.5.3. Let 1 ≤ p <∞ and d = (d(n))n∈N0
∈ M(Lp(S, π)) ⊆ l∞(N0). Then d(n) is

an eigenvalue of Td ∈M(Lp(S, π)) for all n ∈ N0. The corresponding eigenfunction is Rn(x).
Moreover, d(n) are the only eigenvalues of Td.

Proof. Let n ∈ N0. We have Řn(m) =
∫ 1

−1
Rn(x)Rm(x)dπ(x) = δm,nh(n)−1, where δm,n

denotes the Kroneker symbol. Hence, we obtain by Theorem 3.1.5, Theorem 3.2.8 and Theorem
3.3.4 that

TdRn = (dŘn)∧ =

∞∑
k=0

d(n)h(n)−1δk,nRkh(k) = d(n)Rn.

Thus, d(n) is an eigenvalue of Td with corresponding eigenfunction Rn.
Conversely, let λ be an eigenvalue of Td, then there exists a corresponding eigenfunction f ∈
Lp(S, π) such that Tdf = λf . We obtain d(n)f̌(n) = (Tdf)∨(n) = λf̌(n) for all n ∈ N. Since
f 6= 0 in Lp(S, π), by the uniqueness theorem of the Jacobi transform there exists an integer
n ∈ N0 such that d(n) = λ.

For p = 2 we can show even a bit more.

Theorem 3.5.4. Let d = (d(n))n∈N0
∈ l∞(N0). Then d(n) is an eigenvalue of Td ∈M(L2(S, π))

for all n ∈ N0. The corresponding eigenfunction is Rn(x).
Moreover, denote by {d(n) : n ∈ N0}c the closure in C of the set {d(n) : n ∈ N0}. The spectrum
σ2(Td) of Td equals {d(n) : n ∈ N0}c.
Proof. d(n) is by Theorem 3.5.3 an eigenvalue of Td ∈M(L2(S, π)) for all n ∈ N0 with corre-
sponding eigenfunction Rn(x).
Since the spectrum of a bounded operator is always closed, the closure of the set {d(n) : n ∈ N0}
in C is contained in σ(Td).
Furthermore, let λ /∈ {d(n) : n ∈ N0}c. Then there exists a constant C > 0 such that
|λ− d(n)| > C for all n ∈ N0. By Plancherel’s Theorem follows for every ϕ ∈ L2(S, π)

‖(Td − λI)ϕ‖2 = ‖((Td − λI)ϕ)∨‖2 =

( ∞∑
k=0

|d(k)− λ|2|ϕ̌(k)|2h(k)

)1/2

≥ C‖ϕ‖2.

Hence, (Td − λI) is injective.
We need to prove the surjectivity of (Td − λI). Let ψ ∈ L2(S, π). By Plancherel’s theorem we

find that ψ̌ ∈ l2(N0, h) and, since 1
λ−d <

1
C , we have also ψ̌

λ−d ∈ l
2(N0, h). Using Plancherel’s

theorem again, we conclude the existence of a function φ ∈ L2(S, π) such that φ̌(n) = ψ̌(n)
λ−d(n)

for all n ∈ N0. Hence, ((Td−λI)φ)∨ = (λ−d(n))φ̌(n) = ψ̌(n) for all n ∈ N0. By the uniqueness
theorem of the Jacobi transform holds (Td − λI)φ = ψ.



Chapter 4

Multipliers for Lp(S, π)

We investigate multipliers for the dual S of a commutative hypergroup K. Some results of
Chapter 3 are transferred to Lp(S, π), 1 ≤ p < ∞. Since in general S does not admit a dual
hypergroup structure, not all results are extendable. Nevertheless, using weak dual structures
we can still gain a few insights into multipliers for Lp(S, π).

4.1 Multipliers for L1(S, π)

The dual spaces K̂ or S do, in general, not bear a dual hypergroup structure, and hence there
do not exist hypergroup-translation-operators on S. Nevertheless, using the inverse Fourier
transform we can characterize those functions f on K such that f ϕ̌ ∈ L1(S, π)∨ for all ϕ ∈
L1(S, π).

Definition 4.1.1. An operator T is called multiplier for L1(S, π), if and only if there exists a
corresponding continuous complex valued function f on K such that (Tϕ)∨ = f ϕ̌ ∈ L1(S, π)∨

for all ϕ ∈ L1(S, π).
We denote by M(L1(S, π)) the set of all multipliers for L1(S, π) and byM(L1(S, π)) the set of
corresponding continuous functions on K. Given a function f ∈ M(L1(S, π)), we denote the
corresponding multiplier by Tf .

By the uniqueness theorem for the inverse Fourier transform every multiplier operator T is
well-defined through the equation (Tϕ)∨ = fϕ̌ and a linear operator from L1(S, π) to L1(S, π).
Moreover, T is a closed mapping. In fact, if limn→∞ ‖ϕn − ϕ‖1 = 0 and limn→∞ ‖Tϕn−κ‖1 = 0
for ϕn, ϕ, κ ∈ L1(S, π), then κ̌(x) = limn→∞(Tϕn)∨(x) = f(x) limn→∞ ϕ̌n(x) = f(x)ϕ̌(x)
for all x ∈ K. From the closed graph theorem we conclude that T is continuous.

Lemma 4.1.2. Assume that 1 ∈ S = suppπ. Then there exists a net (ki)i∈I of functions
ki ∈ Cc(S) such that ki ≥ 0, ‖ki‖1 = 1 and ǩi(x)→ 1 for all x ∈ K.

Proof. We consider the set

Vε,C = {α ∈ S : |α(x)− 1| < ε for all x ∈ C},

where C ⊆ K is compact and ε > 0, which is a member of the neighborhood basis of 1 ∈ S. We
put kε,C = χVε,C/π(Vε,C), introduce a corresponding index set i ∈ I with the usual order and
observe that k∨ε,C(x)→ 1, whenever x ∈ C and ε→ 0. Now the statement follows.

Theorem 4.1.3. Assume that 1 ∈ S. If f ∈ M(L1(S, π)), i.e. f ϕ̌ ∈ L1(S, π)∨ for all
ϕ ∈ L1(S, π), then there is a unique measure µ ∈M(K̂) such that µ̌ = f.

37
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Proof. We know already that the linear operator T determined by fϕ̌ = (Tϕ)∨ is continuous,
and hence, there exists some M ≥ 0 with ‖Tϕ‖1 ≤ M ‖ϕ‖1 for all ϕ ∈ L1(S, π). Consider a
net (ki)i∈I as in Lemma 4.1.2, and let h ∈ Cc(K). Then∫

K

f(x) h(x̃) dm(x) = lim
i

∫
K

(f ǩi)(x) h(x̃) dm(x)

by Lebesgue’s theorem of dominated convergence. We have with Fubini’s theorem∫
K

(f ǩi)(x) h(x̃) dm(x) =

∫
K

(Tki)
∨(x) h(x̃) dm(x)

=

∫
K

∫
S
Tki(α) α(x) dπ(α) h(x̃) dm(x) =

∫
S
Tki(α) ĥ(α) dπ(α),

and then ∣∣∣∣∫
K

(fǩi)(x) h(x̃) dm(x)

∣∣∣∣ ≤ ‖ĥ‖S ‖Tki‖1 ≤ M ‖ĥ‖S .

Therefore,

∣∣∣∣∫
K

f(x)h(x̃) dm(x)

∣∣∣∣ ≤ M ‖ĥ‖S for all h ∈ Cc(K). The space (Cc(K))∧ is dense

in C0(K̂). Hence, the linear functional F (ĥ) =
∫
K

f(x)h(x̃) dm(x) defined on (Cc(K))∧ can

be continuously extended to a continuous linear functional on C0(K̂). Riesz’s representation
theorem yields a unique measure µ ∈M(K̂) such that∫

K

f(x) h(x̃) dm(x) = F (ĥ) =

∫
K̂

ĥ(α) dµ(α)

for all h ∈ Cc(K). By Fubini’s theorem follows∫
K

µ̌(x) h(x̃) dm(x) =

∫
K̂

ĥ(α) dµ(α) =

∫
K

f(x) h(x̃) dm(x)

for all h ∈ Cc(K), and hence µ̌ = f.

Remark 4.1.4. Theorem 4.1.3 implies that every f ∈ M(L1(S, π)) is a bounded function. The
reader should note that f = µ̌, µ ∈ M(K̂), is, in general, not an element in M(L1(S, π)).
The reason is that a dual hypergroup structure is not always given on S. In this case the
space M(L1(S, π)) is, in general, smaller than M(K̂)∨. However, we assume some additional
properties below, which imply that every measure µ ∈M(S) defines a multiplier for L1(S, π).
Furthermore, from the proof of Theorem 4.1.3 we know that the multiplier Tµ ∈ B(L1(S, π))
induced by µ̌ ∈M(L1(S, π)) satisfies ‖µ‖ ≤ ‖Tµ‖.

We can say more about multipliers for L1(S, π). The following theorem has already been
proven by Lasser in [105].

Theorem 4.1.5. Let f ∈ C(K). The following two conditions are equivalent:

i) There is a measure µ ∈M(K̂) such that µ̌ = f .

ii) For some constant M ≥ 0 we have∣∣∣∣∫
K

f(x)h(x)dm(x)

∣∣∣∣ ≤M ∥∥∥ĥ∥∥∥
∞

for every h ∈ Cc(K).

Moreover, these two conditions hold true, if 1 ∈ S and f ∈M(L1(S, π)).
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Proof. We prove only the implication of i) to ii). The rest follows by Theorem 4.1.3. Assume
condition i) is valid. We obtain∫

K

µ̌(x)h(x)dm(x) =

∫
K

∫
S
α(x)dµ(x)h(x)dm(x) =

∫
S

∫
K

α(x)h(x)dm(x)dµ(x) = µ(ĥ).

Hence, we have ∣∣∣∣∫
K

f(x)h(x)dm(x)

∣∣∣∣ ≤ ‖µ‖ ∥∥∥ĥ∥∥∥∞ .

V. Muruganandam characterized in [124] multipliers for the Fourier space A(K) = L1(S, π)∨

with norm ‖ϕ̌‖A = ‖ϕ‖1, as those complex valued functions g on K with g ·h ∈ A(K) for every
h ∈ A(K). He denoted the space of all multipliers for A(K) by MA(K).
The multiplier spaces M(L1(S, π)) and MA(K) coincide by definition, since Muruganandam
proved also that every f ∈MA(K) is always continuous, see [124, Proposition 3.2]. Hence, we
note that the continuity assumption for every f ∈M(L1(S, π)) is dispensable.
Furthermore, his characterizations for multipliers in MA(K) are also true for functions in
M(L1(S, π)). Muruganandam discovered, for instance, that the space M(L1(S, π)) forms a
Banach algebra with respect to the operator norm ‖f‖ := ‖Tf‖ on L1(S, π), see [124, Theorem
3.4]. He showed also that a bounded complex valued function g is an element in MA(K) if and
only if there exists a weakly continuous operator Mg on M(L2(K,m)) satisfying

Mg(Lf ) = Lg·f for all f ∈ L1(K,m),

and ‖g‖MA(K) = ‖Mg‖, see [124, Theorem 3.5].
Muruganandam defined a subset MbA(K) = {g ∈ MA(K) : g is bounded } in MA(K), since
it is unknown whether every multiplier for A(K) is bounded. However, by Remark 4.1.4 we
know for a commutative hypergroup K with 1 ∈ S, that MbA(K) = MA(K). Moreover, we
proved that

‖f‖∞ ≤ ‖Tf‖
for every f ∈ M(L1(S, π)). This coincides with the multiplier theory for groups, where
‖f‖∞ ≤ ‖f‖MA(G) for every multiplier f on A(G), [124, pp. 11].
Now we investigate the additional properties which imply the converse statement of Theorem
4.1.3.

Definition 4.1.6. We say K fulfills condition (F ) (or equivalently S admits signed prod-
uct formulas), if there exists a constant M > 0 such that for every α, β ∈ S there exists
ω(α, β) ∈M(S) such that

(F1) ‖ω(α, β)‖ < M

(F2) α(x)β(x) =
∫
S τ(x)dω(α, β)(τ) = ω(α, β)∨(x) for all x ∈ K.

Remark 4.1.7. Lasser gave Definition 4.1.6 and some consequences for hypergroups fulfilling
(F ) in [108]. He mentioned that ω(α, β)(S) = α(e)β(e) = 1 and hence M ≥ 1.

Moreover, Lasser proved that S admits signed product formulas if and only if ‖(ᾱf)∧‖∞ ≤M‖f̂‖∞
for all f ∈ L1(K,m) and α ∈ S, where M is the constant of Definition 4.1.6.

Remark 4.1.8. There are several examples of commutative hypergroups, which fulfill (F ), listed
in [124]. More examples can also be found in [4]. Every strong hypergroup obviously fulfills
(F ). Moreover, every polynomial hypergroup which satisfies the continuity property (P ) fulfills
(F ), as well.

Theorem 4.1.9. Let K be a commutative hypergroup fulfilling condition (F ). Then

M(S)∨ ⊂M(L1(S, π)).

Moreover, the multiplier Tµ ∈ B(L1(S, π)) induced by µ̌ ∈M(S)∨ satisfies ‖Tµ‖ ≤M‖µ‖.
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Proof. The proof follows by Theorem 4.12 in [124].

Corollary 4.1.10. Let K be a commutative hypergroup fulfilling condition (F ). Then L1(S, π)
is an algebra with respect to the convolution

(ϕ ∗ ψ)∨ := ϕ̌ · ψ̌

for all ϕ,ψ ∈ L1(S, π). Moreover, ‖ϕ ∗ ψ‖1 ≤M‖ϕ‖1‖ψ‖1 for all ϕ,ψ ∈ L1(S, π).

Proof. This convolution is well-defined by the uniqueness theorem of the inverse Fourier trans-
form. The proof is completed by Theorem 4.1.9 and Corollary 4.13 in [124].

Remark 4.1.11. If the constant M = 1, L1(S, π) forms a Banach algebra.

Corollary 4.1.12. Let K be a commutative hypergroup fulfilling condition (F ). If 1 ∈ S,
then L1(S, π) is a Banach algebra with respect to the convolution (ϕ ∗ ψ)∨ := ϕ̌ · ψ̌ for all
ϕ,ψ ∈ L1(S, π) under the multiplier operator norm ‖ϕ‖ := ‖Tϕ‖.
Moreover, the multiplier operator norm is equivalent to the usual norm ‖ ‖1.

Proof. The proof follows by Theorem 4.1.9, Corollary 4.1.10 and Corollary 4.14 in [124]. Con-
cerning the equivalence of norms, we obtain by Remark 4.1.4 and Theorem 4.1.9 for every ϕ ∈
L1(S, π) and the corresponding multiplier Tϕ ∈M(L1(S, π)) that ‖ϕ‖1 ≤ ‖Tϕ‖ ≤M‖ϕ‖1.

Finally, we can state the following characterizations for multipliers for L1(S, π):

Theorem 4.1.13. Let K be a commutative hypergroup such that the property (F ) is satisfied.
Suppose that S = K̂. For an operator T ∈ B(L1(S, π)) the following conditions are equivalent:

i) T ∈M(L1(S, π)), i.e. (Tϕ)∨ = fϕ̌ for some complex valued function f on K.

ii) ψ ∗ Tϕ = T (ϕ ∗ ψ) = ϕ ∗ Tψ for all ϕ,ψ ∈ L1(S, π)

iii) There exists a unique measure µ ∈M(S) such that

(Tϕ)∨ = µ̌ ϕ̌ for all ϕ ∈ L1(S, π).

Moreover, in this case there exists a constant M such that ‖µ‖ ≤ ‖T‖ ≤M‖µ‖.

Proof. Equivalency i) and iii) follow by Theorem 4.1.3 and Theorem 4.1.9. Furthermore, we
conclude by Remark 4.1.5 and Theorem 4.1.9 for every µ ∈ M(S) and the corresponding
multiplier Tµ ∈ M(L1(S, π)) that ‖µ‖ ≤ ‖Tµ‖ ≤ M‖µ‖, where the constant M is given as in
Definition 4.1.6.
Let T ∈M(L1(S, π)) such that (Tϕ)∨ = fϕ̌ for every ϕ ∈ L1(S, π). We obtain

(T (ϕ ∗ ψ))∨ = fϕ̌ψ̌ = ((Tϕ) ∗ ψ)∨.

ii) is proven by the uniqueness theorem of the inverse Fourier transform.
Conversely, let T ∈ B(L1(S, π)) such that Tϕ ∗ ψ = T (ϕ ∗ ψ). Hence, the function

f(n) :=
(Tϕ)∨(n)

ϕ̌(n)
=

(TRn)∨(n)

Řn(n)
= (TRn)∨(n)h(n)

is well defined for all n ∈ N0. Furthermore, (Tϕ)∨ψ̌(n) = (Tψ)∨ϕ̌(n) = 0 for every ϕ,ψ ∈
L1(S, π) with ϕ̌(n) = 0 and ψ̌(n) 6= 0. Hence, the equation (Tϕ)∨ = fϕ̌ holds for all ϕ ∈
L1(S, π).

Remark 4.1.14. Muruganandam invented in [125] a new class of hypergroups, the so-called
spherical hypergroups. Those hypergroups are non-commutative, but their Fourier spaces also
form Banach algebras under the point-wise product.
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4.1.1 An Investigation on polynomial Hypergroups

We investigate the situation above in the case of polynomial hypergroups. This is indeed useful,
since the Jacobi polynomials are the only ones in that class which possess a dual hypergroup
structure. Let K = N0 be a polynomial hypergroup generated by (Rn(x))n∈N0

. Applying the
inversion theorem we can easily show that each f ∈ l1(N0, h) defines a multiplier for L1(S, π).
In fact, for every ϕ ∈ L1(S, π) we have ψ := (fϕ̌)∧|S ∈ C(S) ⊆ L1(S, π) and fϕ̌ = ψ̌.

If the spaceM(L1(S, π)) is equal toM(Ds)
∨ and if the correspondence betweenM(L1(S, π))

and M(Ds) is isometric, then dual product formulas for Rn(x) are valid. We denote the
multiplier operator corresponding to µ ∈M(Ds) by Tµ. Recall that ‖µ‖ ≤ ‖Tµ‖.

Proposition 4.1.15. Let K = N0 be a polynomial hypergroup. Assume that 1 ∈ S. If the space
of multipliers M(L1(S, π)) is equal to M(Ds)

∨, and if ‖Tµ‖ = ‖µ‖, then S = Ds and for all
s, t ∈ Ds there exists a probability measure µs,t ∈M1(Ds) such that

Rn(s)Rn(t) =

∫
Ds

Rn(u) dµs,t(u) for all n ∈ N0.

Proof. Consider the points ps and pt of s ∈ Ds and t ∈ Ds, respectively. There exist
Lps , Lpt ∈ B(L1(S, π)) such that

(Lps(ϕ))∨(n) = p̌s(n) ϕ̌(n) = Rn(s) ϕ̌(n)

and
(Lpt(ϕ))∨(n) = Rn(t) ϕ̌(n)

for all ϕ ∈ L1(S, π) and n ∈ N0, and therefore

(Lps ◦ Lpt(ϕ))∨(n) = Rn(s)Rn(t) ϕ̌(n)

is valid for all ϕ ∈ L1(S, π), n ∈ N0. Now choose a net (ki)i∈I with ki ∈ C(S) ⊆ L1(S, π),
‖ki‖1 = 1 and ǩi(n)→ 1 for all n ∈ N0, see Lemma 4.1.2.

Since ‖Lps‖ = ‖ps‖ = 1 for all s ∈ Ds, (Lps ◦ Lpt(ki))i∈I is a norm-bounded net in
L1(Ds, π) ⊆ M(S). Thus, there is some subnet (we denote its index set again by I) such that
Lps ◦Lpt(ki) converges in the σ(M(S), C(S))-topology to some regular complex Borel measure
µs,t ∈M(S), where ‖µs,t‖ ≤ 1. Hence, we have∫

S
Rn(u) dµs,t(u) = lim

i

∫
S
Rn(u) Lps ◦ Lpt(ki)(u) dπ(u)

= lim
i

(Lps ◦ Lpt(ki))∨(n) = Rn(s)Rn(t) lim
i
ǩi(n) = Rn(s)Rn(t)

for all n ∈ N0. Putting n = 0 we have ‖µs,t‖ = µs,t(S) = 1, and in view of the Jordan-Hahn
decomposition of µs,t it follows that µs,t is a probability measure on S. Finally, note that
µs,t ∈ M(S) is uniquely determined by Rn(s)Rn(t) = µ̌s,t(n) for all n ∈ N0. In particular,
for t = 1 we have µ̌s,1(n) = Rn(s) = p̌s(n) and therefore each s ∈ Ds is an element of
S = suppπ.

Proposition 4.1.15 states that the continuity property (P) is necessarily satisfied ifM(L1(S, π))
and M(Ds) are isometric and isomorphic (as Banach spaces), provided 1 ∈ S. We shall now
prove the converse implication.

Theorem 4.1.16. Let K = N0 be a polynomial hypergroup, and suppose that 1 ∈ S. Then the
following two conditions are equivalent.

i) The space M(L1(S, π)) is equal to M(Ds)
∨ and the correspondence between M(L1(S, π))

and M(Ds) is isometric, i.e. ‖Tµ‖ = ‖µ‖.
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ii) The continuity property (P ) is fulfilled.

Proof. i) ⇒ ii) is already shown in Proposition 4.1.15. Conversely, if the continuity prop-
erty (P ) is fulfilled, we obtain with Remark 1.3.5 that Ds = S. Furthermore, we find for
every ν ∈M(Ds) and ψ ∈ L1(S, π) that ν ∗ ψ ∈ L1(S, π) and ‖ν ∗ ψ‖1 ≤ ‖ν‖ ‖ψ‖1. If
T ∈M(L1(S, π)) and µ ∈M(Ds), such that (Tϕ)∨ = µ̌ϕ̌ for all ϕ ∈ L1(S, π), then the inverse
uniqueness theorem yields Tϕ = µ ∗ ϕ. Morover, we have ‖T‖ ≤ ‖µ‖.

Theorem 4.1.17. Let K = N0 be a polynomial hypergroup such that 1 ∈ S and the conti-
nuity property (P ) is satisfied. For an operator T ∈ B(L1(S, π)) the following conditions are
equivalent:

i) T ∈M(L1(S, π)), i.e. (Tϕ)∨ = fϕ̌ for some complex valued function f on N0.

ii) T ◦ Ls = Ls ◦ T for all s ∈ Ds

iii) ψ ∗ Tϕ = T (ϕ ∗ ψ) = ϕ ∗ Tψ for all ϕ,ψ ∈ L1(S, π)

iv) There exists a unique measure µ ∈M(Ds) such that

(Tϕ)∨ = µ̌ ϕ̌ for all ϕ ∈ L1(S, π).

v) There exists a unique measure µ ∈M(Ds) such that

Tϕ = µ ∗ ϕ for all ϕ ∈ L1(S, π).

Moreover, the correspondence between M(L1(S, π)) and M(Ds) is isometric, i.e. ‖T‖ = ‖µ‖.

Proof. Let ϕ ∈ L1(S, π). By Lsϕ = εs ∗ϕ for all s ∈ Ds follows (Lsϕ)∨(n) = Rn(s)ϕ̌(n) for all
n ∈ N0. Hence Ls ∈ M(L1(S, π)) for all s ∈ Ds and we conclude for every T ∈ M(L1(S, π))
that

(T ◦ Lsϕ)∨(n) = f(n)Rn(s)ϕ̌(n) = (Ls ◦ Tϕ)∨(n)

for all n ∈ N0. Hence, ii) holds be the uniqueness theorem of the inverse Fourier transform.
Following the lines of Proposition 3.1.2 leads to the implication of ii) to iii).
The proof follows now by Chapter 1.3.1, Theorem 4.1.13 and Theorem 4.1.16.

4.2 Multipliers for L2(S, π)

Now we investigate multipliers for L2(S, π). Applying the Plancherel transform we can define
a translation operator for L2(S, π), and derive five equivalent conditions for multipliers for
L2(S, π).

We say that T ∈ B(L2(S, π)) is a multiplier for L2(S, π) whenever

℘−1(Tϕ) = f ℘−1(ϕ)

for all ϕ ∈ L2(S, π), where f is an element in L∞(K,m). We denote the space of multipliers
for L2(S, π) by M(L2(S, π)) and the set of all corresponding functions f ∈ L∞(K,m) by
M(L2(S, π)).

To introduce pseudomeasures on K̂ we proceed as before. Let

A(K̂) := {f̂ : f ∈ L1(K,m)}.

Take ‖f̂‖A := ‖f‖1 as the norm on A(K̂). Then A(K̂) is a Banach space, and the dual space
A(K̂)∗ is denoted by P (K̂), the elements s ∈ P (K̂) are called pseudomeasures on K̂. The
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mapping Φ : P (K̂) → L∞(K,m), where for each s ∈ P (K̂) the element Φ(s) ∈ L∞(K,m) is
uniquely determined by∫

K

f(x) Φ(s)(x̃) dm(x) = s(f̂) for f ∈ L1(K,m),

is an isometric isomorphism from the Banach space P (K̂) onto L∞(K,m). A convolution of
s1, s2 ∈ P (K̂) is determined by s1 ∗ s2 = Φ−1(Φ(s1) Φ(s2)), and Φ is then an algebra isomor-
phism. Φ(s) is called inverse Fourier transform of s ∈ P (K̂). If µ ∈M(K̂) we have∫

K̂

f̂(α) dµ(α) =

∫
K̂

∫
K

f(x) α(x) dm(x) dµ(α) =

∫
K

f(x) µ̌(x̃) dm(x)

for all f ∈ L1(K,m). Hence, each measure µ ∈ M(K̂) is a pseudomeasure, µ̌ = Φ(µ), and
‖µ‖P = ‖µ̌‖∞ ≤ ‖µ‖.

In conclusion we arrive at the following proposition

Proposition 4.2.1. The inverse Fourier transform Φ : P (K̂)→ L∞(K,m) determined by∫
K

f(x) Φ(s)(x̃) dm(x) = s(f̂) for all f ∈ L1(K,m)

is an isometric algebra isomorphism of P (K̂) onto L∞(K,m).

Remark 4.2.2. The convolution µ1 ∗ µ2 of two measures µ1, µ2 ∈ M(K̂) makes sense if we
interpret µ1 and µ2 as pseudomeasures. Hence, µ1 ∗ µ2 ∈ P (K̂). However, in general µ1 ∗ µ2 is
not a member of M(K̂).

Next, we will say that a pseudomeasure s ∈ P (K̂) belongs to L2(S, π) if there is ψ ∈ L2(S, π)
such that

s(f̂) =

∫
S
f̂(α) ψ(α) dπ(α) for all f ∈ L1(K,m) ∩ L2(K,m).

Similarly to Chapter 3 one can derive the following properties of the ψ ∈ L2(S, π) belonging to
s ∈ P (K̂) : ψ is uniquely determined and∫

K

f(x) Φ(s)(x̃) dm(x) = s(f̂) =

∫
S
f̂(α) ψ(α) dπ(α) =

∫
K

f(x) ℘−1ψ(x̃) dm(x)

for all f ∈ L1(K,m) ∩ L2(K,m).
In particular, we have Φ(s) = ℘−1(ψ) ∈ L2(K,m) ∩ L∞(K,m). Conversely, every s ∈ P (K̂)

with Φ(s) ∈ L2(K,m) ∩ L∞(K,m) belongs to L2(S, π). For that, put ψ = ℘(Φ(s)) ∈ L2(S, π).
Hence, the following ”dual” statement is valid.

Proposition 4.2.3. A pseudomeasure s ∈ P (K̂) belongs to L2(S, π) if and only if Φ(s) ∈
L2(K,m) ∩ L∞(K,m). Moreover, the inverse Fourier transform of s as a pseudomeasure
coincides with the inverse Plancherel transform of the corresponding ψ ∈ L2(S, π).

Furthermore, every ψ ∈ L1(S, π) ∩ L2(S, π) determines a pseudomeasure s ∈ P (K̂) such
that

s(f̂) =

∫
S
f̂(α) ψ(α) dπ(α)

holds for all f ∈ L1(K,m) ∩ L2(K,m). For that, put s = Φ−1(ψ̌). In particular, the convolution
s ∗ ψ = Φ−1(Φ(s)ψ̌) of s ∈ P (K̂) and ψ ∈ L1(S, π) ∩ L2(S, π) is well-defined as a convolution
of pseudomeasures.

Now, we have all the tools to give a complete characterization of multipliers for L2(S, π).
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Theorem 4.2.4. Let T ∈ B(L2(S, π)). The following conditions are equivalent:

i) T ∈M(L2(S, π)), i.e. Tϕ = ℘(f℘−1(ϕ)) for some f ∈ L∞(K,m).

ii) T ◦Mα = Mα ◦ T for all α ∈ K̂

iii) ψ ∗ Tϕ = T (ϕ ∗ ψ) = ϕ ∗ Tψ for all ϕ,ψ ∈ L1(S, π) ∩ L2(S, π)

iv) There exists a unique pseudomeasure s ∈ P (K̂) such that s ∗ ϕ belongs to L2(S, π) and
Tϕ = s ∗ ϕ for all ϕ ∈ L1(S, π) ∩ L2(S, π).

v) There exists a unique pseudomeasure s ∈ P (K̂) such that

℘−1(Tϕ) = Φ(s) ℘−1(ϕ) for all ϕ ∈ L2(S, π).

Moreover, we have an isometric isomorphism between M(L2(S, π)), L∞(K,m) and P (K̂).

Proof. The equivalence of i) and v) follows from Proposition 4.2.1.
Proposition 4.2.3 yields iv)⇔ v).

i) ⇒ ii) : We have ℘−1(Mαϕ) = ᾱ℘−1ϕ for all ϕ ∈ L2(S, π). Therefore, assumption i)
implies

℘−1(Mα Tϕ) = ᾱ ℘−1(Tϕ) = ᾱ f ℘−1(ϕ) = f ℘−1(Mαϕ) = ℘−1(TMαϕ)

for all ϕ ∈ L2(S, π). Hence, statement ii) is valid.
ii)⇒ iii): Let ψ ∈ Cc(S), ϕ ∈ L2(S, π). Since ψ ∗ Tϕ and ψ ∗ ϕ are defined as L2(S, π)-

valued integrals, and since T is continuous we have

ψ ∗ Tϕ =

∫
S
ψ(α) Mᾱ(Tϕ) dπ(α) =

∫
S
ψ(α) T (Mᾱϕ) dπ(α)

= T

(∫
S
ψ(α) Mᾱϕ dπ(α)

)
= T (ψ ∗ ϕ).

If ψ ∈ L1(S, π) approximate ψ by a sequence (ψn)n ∈ N in Cc(S) such that ‖ψ − ψn‖1 → 0. It
follows that ψ ∗ Tϕ = T (ϕ ∗ψ) for ψ ∈ L1(S, π) and ϕ ∈ L2(S, π). Interchanging the roles of ψ
and ϕ it follows that for all ϕ,ψ ∈ L1(S, π) ∩ L2(S, π)

ψ ∗ Tϕ = T (ϕ ∗ ψ) = ϕ ∗ Tψ.

(One should note that ϕ ∗ ψ = ψ ∗ ϕ for ϕ,ψ ∈ L1(S, π) ∩ L2(S, π), see [86].)
To prove ”iii) ⇒ i)”, one can proceed along the lines of the proof ”i) → v)” of Theorem

4.1.15 to obtain f ∈ L∞(K,m) such that ℘−1(Tϕ) = f℘−1(ϕ) for all ϕ ∈ L2(S, π).

It remains to prove that the spaces M(L2(S, π)) and L∞(K,m) are isometrically isomorphic.
We have obviously ‖T‖ ≤ ‖f‖∞. Assume ‖T‖ < ‖f‖∞. Then there exists a compact subset
C ⊂ K such that |f(x)| > ‖T‖ for m-almost all x ∈ C. Choose ψ ∈ L2(S, π) such that
℘−1(ψ) = χC . We obtain ‖fχC‖2 > ‖T‖m(C)1/2. On the other hand, we find a contradiction
by

‖fχC‖2 = ‖f℘−1(ψ)‖2 = ‖℘−1(Tψ)‖2 ≤ ‖T‖‖ψ‖2 = ‖T‖m(C)1/2.

Hence, M(L2(S, π)) and L∞(K,m) are isometrically isomorphic.

Remark 4.2.5. We want to point out that Theorem 4.2.4 generalizes results of [175] to a vastly
bigger class of orthogonal polynomials, viz. those that generate a polynomial hypergroup on
N0.

Theorem 4.2.4 leads to another result concerning translation invariant subspaces of L2(S, π).
Larsen quotes a similar result for commutative groups in [101, pp. 94].
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Corollary 4.2.6. A subset X in L2(S, π) is a closed translation invariant linear subspace, if
and only if there exists a Borel measurable subset E of K such that

X =
{
ψ ∈ L2(S, π) : ℘−1(ψ) = 0 m− almost everywhere off E

}
,

that is ℘−1(X) = χE · L2(K,m).

Proof. We follow the lines of proof 3.2.10.

4.3 Multipliers for Lp(S, π), p 6= 1, p 6= 2

Let 1 < p < ∞. We call a bounded operator T on Lp(S, π) multiplier for Lp(S, π), if
there exists a function f ∈ L∞(K,m) such that T is defined by Tϕ = ℘(f℘−1(ϕ)) for every
ϕ ∈ Lp(S, π) ∩ L2(S, π). We denote the set of all multipliers T on Lp(S, π) by M(Lp(S, π))
and the set of corresponding bounded functions f on K by M(Lp(S, π)).
As for multipliers for Lp(K,m) we can show the existence of an isometric isomorphism between
M(Lp(S, π)) and M(Lq(S, π)), 1/p+ 1/q = 1.

Proposition 4.3.1. Let 1 < p < ∞ and 1/p + 1/q = 1. Then there exists an isometric
isomorphism from M(Lp(S, π)) onto M(Lq(S, π)).

Proof. Let T ∈ M(Lp(S, π)). Then there exists a bounded function f on K such that Tϕ =
℘(f℘−1(ϕ)) for all ϕ ∈ Lp(S, π) ∩ L2(S, π). Let ψ ∈ Cc(S) and define

Fψ(ϕ) :=

∫
S
Tψ(α)ϕ(α)dπ(α) for all ϕ ∈ Cc(S).

We conclude for all ψ,ϕ ∈ Cc(S) by Plancherel’ s theorem

Fψ(ϕ) =

∫
S
Tψ(α)ϕ(α)dπ(α) =

∫
S
℘(f℘−1(ψ))(α)ϕ(α)dπ(α)

=

∫
K

f℘−1(ψ)(x)℘−1(ϕ)(x)dm(x) =

∫
S
℘(f℘−1(ϕ))(α)ψ(α)dπ(α)

=

∫
S
Tϕ(α)ψ(α)dπ(α).

Hence,

|Fψ(ϕ)| =
∣∣∣∣∫
S
Tϕ(α)ψ(α)dπ(α)

∣∣∣∣ ≤ ‖T‖p ‖ϕ‖p ‖ψ‖q .
Thus, Fψ defines a bounded linear functional on the norm dense subspace Cc(S) of Lp(S, π).
Hence, Fψ can be extended to such a functional on all of Lp(S, π) without increasing the norm.
By the duality of Lp(S, π) and Lq(S, π) and the definition of Fψ it follows that Tψ is an element
in Lq(S, π) and

‖Tψ‖q = ‖Fψ‖ ≤ ‖T‖p ‖ψ‖q .

Thus, T restricted to Cc(S) defines a continuous linear transformation of Cc(S) into Lq(S, π).
Since Cc(S) is dense in Lq(S, π), T restricted to Cc(S) can be uniquely extended to a continuous
linear transformation of Lq(S, π) without increasing the norm. We denote this extension again
by T . Furthermore, by the above considerations Tφ = ℘(f℘−1(φ)) holds for all φ ∈ Lq(S, π) ∩
L2(S, π). Indeed, let φ ∈ Lq(S, π) ∩ L2(S, π) and (φn)n∈N be a sequence in Cc(S) such that
‖φn − φ‖q → 0 as n tends to infinity. Since T is continuous, this leads to ‖Tφn − Tφ‖q → 0 as
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n tends to infinity. We obtain by Plancherel’s theorem for all ψ ∈ Cc(S)∫
S
Tφ(α)ψ(α)dπ(α) = lim

n

∫
S
Tφn(α)ψ(α)dπ(α) = lim

n

∫
S
℘(f℘−1(φn))(α)ψ(α)dπ(α)

= lim
n

∫
K

f(x)℘−1(φn)(x)℘−1(ψ)(x)dm(x)

= lim
n

∫
S
φn(α)℘(f℘−1(ψ))(α)dπ(α) =

∫
S
φ(α)℘(f℘−1(ψ))(α)dπ(α)

=

∫
K

f(x)℘−1(φ)(x)℘−1(ψ)(x)dm(x) =

∫
S
℘(f℘−1(φ))(α)ψ(α)dπ(α)

Since Cc(S) is norm dense in Lp(S, π) we conclude Tφ = ℘(f℘−1(φ)) for all φ ∈ Lq(S, π) ∩
L2(S, π). Hence, T ∈M(Lq(S, π)) and ‖T‖q ≤ ‖T‖p.
Interchanging the roles of p and q proves that the isomorphism constructed above is onto and
indeed isometric.

Remark 4.3.2. The above proof shows especially, that given a bounded linear operator T on
Lp(S, π) such that Tϕ = ℘(f℘−1(ϕ)) for a function f ∈ L∞(K,m) and all ϕ ∈ Cc(S), then
T ∈ M(Lq(S, π)), 1/p + 1/q = 1. Furthermore, applying Proposition 4.3.1 we obtain also
T ∈ M(Lp(S, π)). So, it is sufficient for an operator T ∈ B(Lp(S, π)) to be represented as
Tϕ = ℘(f℘−1(ϕ)) for all ϕ ∈ Cc(S), to be a multiplier for Lp(S, π).

Proposition 4.3.3. Let 1 ≤ p < ∞. There exists a continuous algebra isomorphism from
M(Lp(S, π)) into M(L2(S, π)).

Proof. Obviously every multiplier T for Lp(S, π) with Tϕ = ℘(f℘−1(ϕ)) for ϕ ∈ Lp(S, π) ∩
L2(S, π) defines a multiplier for L2(S, π) by Tϕ = ℘(f℘−1(ϕ)) for every ϕ ∈ L2(S, π). Fur-
thermore, we have ‖Tϕ‖2 = ‖f℘−1(ϕ)‖2 ≤ ‖f‖∞‖ϕ‖2. For 1 < p, we have by Proposition 4.3.1
and the Riesz-Thorin Convexity Theorem ‖T‖2 ≤ ‖T‖p.
Especially, for p = 1 we find ‖Tϕ‖2 ≤ ‖µ̌‖∞‖ϕ‖2 ≤ ‖µ‖‖ϕ‖2 ≤ ‖T‖‖1ϕ‖2.

This leads to the next Theorem.

Theorem 4.3.4. Let T ∈ B(Lp(S, π)) , 1 < p < 2. The following conditions are equivalent:

i) T ∈ M(Lp(S, π)), i.e. Tϕ = ℘(f℘−1(ϕ)) for some f ∈ L∞(K,m) and ϕ ∈ L2(S, π) ∩
Lp(S, π).

ii) There exists a unique pseudomeasure s ∈ P (K̂) such that s ∗ ϕ belongs to L2(S, π) and
Tϕ = s ∗ ϕ for all ϕ ∈ L1(S, π) ∩ L2(S, π).

iii) There exists a unique pseudomeasure s ∈ P (K̂) such that

(Tϕ)∨ = Φ(s) ϕ̌ in Lq(K,m) for all ϕ ∈ Lp(S, π).

Proof. The proof follows by Proposition 4.3.3 and Theorem 4.2.4. iii) follows by extending the
plancherel transform on L2(S, π)∩Lp(S, π) to the Hausdorff-Young Transform on Lp(S, π).

The next Proposition implies some inclusion results.

Proposition 4.3.5. Let 1 ≤ p ≤ q ≤ 2. Then there exists a continuous algebra isomorphism
of M(Lp(S, π)) into M(Lq(S, π)).

Proof. Let T ∈ M(Lp(S, π)). By Proposition 4.3.3 we know that T ∈ M(L2(S, π)) and
‖T‖2 ≤ ‖T‖p. Using the Riesz-Thorin Convexity Theorem again, we obtain T ∈ M(Lq(S, π))
and ‖T‖q ≤ ‖T‖p.
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Remark 4.3.6. With a slight abuse of terminology we have for 1 ≤ p ≤ r ≤ 2 or 2 ≤ r ≤ p <∞

M(L1(S, π)) ⊆M(Lp(S, π)) ⊆M(Lr(S, π)) ⊆M(L2(S, π)).

Furthermore, we have M(L1(S, π)) ⊂ M(K̂) ⊂ M(L2(S, π)). This leads to the question,
whether there exists 1 < p < 2 such that M(Lp(S, π)) = M(K̂). Unfortunately, this is an
open question.

In addition to Schoenberg’s theorem 4.1.5 (see also [143]), we want to quote a similar theorem
which characterizes multipliers for Lp(S, π). L.S. Hahn [68] found the following characterization
for multipliers for locally compact groups. It can easily be transferred to hypergroups.

Proposition 4.3.7. Let 1 < p <∞ and f be a measurable, bounded function on K. Then the
following assertions are equivalent

i) f ∈M(Lp(S, π))

ii) There exists a constant B such that

|
∫
K

fψ̌φ̌dm| ≤ B ‖ψ‖p ‖φ‖q

for all ψ, φ ∈ Cc(S) where 1/p+ 1/q = 1.

Proof. The proof follows the proof of 3.3.9 using Remark 4.3.2.

Using Hahn’s result for multipliers for locally compact groups, see [68, Theorem 5], Fisher
proved the completeness ofM(Lp(S, π)) with respect to the weak-*-topology of L∞(K,m), see
[47, Corollary 1.1]. This result can easily be transferred to hypergroups.

Corollary 4.3.8. If 1 < p < ∞ and {fi}i∈I be a net of functions in M(Lp(S, π)) such that
the corresponding multipliers {Ti}i∈I fulfill ‖Ti‖p ≤ B < ∞ for all i ∈ I. If {fi}i∈I converges
in the weak*-topology of L∞(K,m) to a function f , then f is also an element in M(Lp(S, π))
and the corresponding multiplier Tf fulfills ‖Tf‖p ≤ B.

Proof. Following the proof of 3.3.10

Moreover, Fisher proved another similar result on bounded convergent nets of multipliers
for Lp(G) [47, Theorem 3] which can be transferred to hypergroups, too.

Corollary 4.3.9. Let 1 < p <∞. If {Ti}i∈I is a bounded net in M(Lp(S, π)), ‖Ti‖p ≤M <∞
for all i ∈ I, and {Ti}i∈I converges to T in the weak operator topology over L2(S, π), then
T ∈M(Lp(S, π)) and ‖T‖p ≤M .

Proof. Following the lines of 3.3.11.

We observed earlier that multipliers for polynomial hypergroups, which fulfill the continuity
property (P ), admit

l2(N0, h) ∗ l2(N0, h) ⊂M(L1(S, π)) and l1(N0, h) ∗ l∞(N0, h) ⊂M(L2(S, π)).

Now it is a natural question whether such a result can be generalized to Lp(S, π). Indeed, we
can state a similar but more generalized result.
Using the characterizations of Theorem 4.3.7 for functions in M(Lp(S, π)), we are able to
name a subset of M(Lp(S, π)) for all 1 ≤ p < ∞. L.-S. Hahn formulated similar results for
commutative groups, see [68, Theorem 5].



48 CHAPTER 4. MULTIPLIERS FOR LP (S, π)

Theorem 4.3.10. Let K = N0 be a polynomial hypergroup fulfilling the continuity property
(P ). Let 1 ≤ p ≤ 2, 1/p+ 1/q = 1. Then

lp(N0, h) ∗ lq(N0, h) ⊂M(Lr(S, π)),

for every 2p
3p−2 ≤ r ≤

2p
2−p or equivalently 2q

q+2 ≤ r ≤
2q
q−2 .

Proof. Follows the proof of 3.4.4.

Remark 4.3.11. Combining Proposition 4.3.7 and Theorem 4.3.10 we obtain especially that
‖Tf∗g‖r ≤ ‖f‖p‖g‖q where Tf∗g denotes the multiplier for Lr(S, π) corresponding to f ∗ g ∈
M(Lr(S, π)).



Chapter 5

The Figà-Talamanca Herz
Algebras

The Figà-Talamanca Herz algebras Ap(G) has first been investigated by A. Figà-Talamanca
in 1965 for a group G which is either Abelian or compact. He also studied A2(G) for a non-
compact, non-commutative unimodular group G [41]. The definition we are using below is
analogous to the one for groups given by Eymard, see [36].
In this chapter we will focus on the relation of the Figà-Talamanca Herz algebras Ap(K) to
multipliers for Lp(K,m).

5.1 The Figà-Talamanca Herz algebras

5.1.1 Definition

Let K be a commutative hypergroup, 1 < p <∞ and 1/p+ 1/q = 1. We define

Ap(K) := {h ∈ C0(K) : h =

∞∑
i=1

fi ∗ g̃i, fi ∈ Lp(K,m), gi ∈ Lq(K,m)

for all i ∈ N and

∞∑
i=1

‖fi‖p ‖gi‖q <∞}.

By the inequality
∑∞
i=1 ‖fi ∗ gi‖∞ ≤

∑∞
i=1 ‖fi‖p ‖gi‖q, the sum

∑∞
i=1 |fi ∗ gi| converges uni-

formly on K. For h in Ap(K) there might be more than one possible way to write h as a sum
of convolutions. Therefore, we define for h ∈ Ap(K)

‖h‖Ap := inf{
∞∑
i=1

‖fi‖p ‖gi‖q : h =

∞∑
i=1

fi ∗ g̃i}.

‖ ‖Ap is a norm on Ap(K) such that ‖h‖∞ ≤ ‖h‖Ap . Furthermore, Ap(K) is a Banach space

with respect to ‖ ‖Ap , see [104]. We set A1(K) := C0(K) with the usual sup-norm. These

Banach spaces Ap(K) are called Figà-Talamanca Herz algebra. The space A2(K) is equal
to A(K), the Fourier space of K, which we will discuss below.

Remark 5.1.1. Since we are considering a commutative hypergroup K, we have Ap(K) = Aq(K)
for 1/p+ 1/q = 1, 1 < p <∞.

Lemma 5.1.2. Let 1 ≤ p < ∞. For u ∈ Ap(K), there exist sequences (fi)i∈N and (gi)i∈N in
Cc(K) such that u =

∑∞
i=1 fi ∗ g̃i. Hence, Ap,c := Ap(K) ∩ Cc(K) is dense in Ap(K).

Proof. See Lemma 2.2 and Corollary 2.5 in [104].

49
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5.1.2 A2(K) and the Fourier Space of K

In this section we want to show that the space A2(K) is equal to the Fourier space of K, i.e.
A(K), which consists of all inverse Fourier transforms ϕ̌ with ϕ ∈ L1(S, π). We introduced
A(K) already in Chapter 3. Recall that the set of pseudomeasures, P (K), is the set of all linear
functionals on A(K).
A. Derighetti showed similar results for not necessarily commutative groups in [22, Chapter
3.2].

Lemma 5.1.3. Let h ∈ A2(K) such that h =
∑∞
i=1 fi ∗ g̃i. Then there exists a unique

ϕ ∈ L1(S, π) such that

lim
N→∞

∥∥∥∥∥ϕ−
N∑
i=1

℘(fi)℘(g̃i)

∥∥∥∥∥
1

= 0.

Moreover, we have ϕ̌ =
∑∞
i=1 fi ∗ g̃i and ‖ϕ‖1 ≤

∑∞
i=1 ‖fi‖2 ‖gi‖2 .

Proof. Let M,N ∈ N with M < N . We have

N∑
i=M

‖℘(fi)℘(g̃i)‖1 ≤
N∑
i=M

‖℘(fi)‖2 ‖℘(g̃i)‖2 ≤
∞∑
i=1

‖fi‖2 ‖g̃i‖2 <∞.

Hence, (
∑N
i=1 ℘(fi)℘(g̃i))N∈N is a Cauchy sequence in L1(S, π) and there exists a ϕ ∈ L1(S, π)

such that limN→∞

∥∥∥ϕ−∑N
i=1 ℘(fi)℘(g̃i)

∥∥∥
1

= 0. Moreover, ‖ϕ‖1 ≤
∑∞
i=1 ‖fi‖2 ‖gi‖2 .

Let n ∈ N. Then∥∥∥∥∥
∞∑
i=1

fi ∗ g̃i − ϕ̌

∥∥∥∥∥
∞

≤
∞∑

i=n+1

‖fi ∗ g̃i‖∞ +

∥∥∥∥∥ϕ−
n∑
i=1

℘(fi)℘(g̃i)

∥∥∥∥∥
1

→ 0

as n tends to infinity.

Theorem 5.1.4. The inverse Fourier transform ∨ is an isometric isomorphism of L1(S, π)
onto A2(K). Moreover, for every h ∈ A2(K) there exist f, g ∈ L2(K,m) such that h = f ∗ g̃
and ‖h‖A2

= ‖f‖2 ‖g‖2.

Proof. By Corollary 2.2.3 in Chapter 2, we have L1(S, π)∨ = L2(K,m) ∗ L2(K,m) ⊆ A2(K).
Hence, for each ϕ ∈ L1(S, π) exist f, g ∈ L2(K,m) such that ϕ̌ = f ∗ g̃. We choose in particular
℘(f) = |ϕ|1/2 and for a representing function ϕ1 of ϕ we set

℘(g̃)(α) =

{
0 if ϕ1(α) = 0
|ϕ1(α)|
|ϕ1(α)|1/2 if ϕ1(α) 6= 0.

We obtain ϕ̌ = (℘(f)℘(g̃))∨ = f ∗ g̃ ∈ A2(K) and ‖ϕ̌‖A2
≤ ‖f‖2 ‖g‖2 = ‖ϕ‖1.

Conversely, by Lemma 5.1.3 holds A2(K) ⊆ L1(S, π)∨ such that ‖ϕ‖1 ≤ ‖ϕ̌‖A2
≤ ‖f‖2 ‖g‖2.

Hence, we have ‖ϕ‖1 = ‖ϕ̌‖A2
= ‖f‖2‖g‖2.

Corollary 5.1.5. The following equalities of linear spaces hold:

A(K) = L1(S, π)∨ = L2(K,m) ∗ L2(K,m) = A2(K).

Remark 5.1.6. V. Muruganandam defined A(K) as the set {h ∈ C0(K) : h =
∑∞
k=0 fi ∗ f̃i :

fi ∈ Cc(K) ∀i ∈ N0}. He also proved that A(K) = L1(S, π)∨ = L2(K,m) ∗L2(K,m) and some
further equalities, see [124, Proposition 4.2].
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Remark 5.1.7. Vrem [162] defines the Fourier space A(K) for a compact hypergroup K as the
space of all functions in L1(K,m) which have absolutely convergent Fourier series. By Corollary
5.1.5 we see that this definition coincides with the definition used here.

Proposition 5.1.8. Let µ ∈M(K). Then

‖µ̂‖∞ = sup{|µ(h)| : h ∈ A2(K) and ‖h‖A2
≤ 1}.

Proof. We obtain that |µ(h)| ≤ ‖µ̂‖∞ ‖h‖A2
. Hence,

sup{|µ(h)| : h ∈ A2(K) and ‖h‖A2
≤ 1} ≤ ‖µ̂‖∞ .

Conversely, choose ε > 0 and a compact subset C ⊂ S such that |µ̂(c)| ≥ ‖µ̂‖∞−ε and µ̂(c) < 0
for all c ∈ C or µ̂(c) > 0 for all c ∈ C. This is possible by the continuity of µ̂. Hence, we have

|
∫
S

χC(α)

π(C)
µ̂(α)dπ(α)| ≥ ‖µ̂‖∞ − ε.

Since ε was arbitrary, we conclude

sup{|
∫
S
ϕ(α)µ̂(α)dπ(α)| : ϕ ∈ L1(S, π) and ‖ϕ‖1 ≤ 1} ≥ ‖µ̂‖∞ .

Summing up, it follows from Theorem 5.1.4 that

‖µ̂‖∞ = sup{|µ(h)| : h ∈ A2(K) and ‖h‖A2
≤ 1}.

5.2 The Role of Ap(K) in the Theory of Multipliers

5.2.1 p-pseudomeasures

Let 1 ≤ p < ∞. We know that every bounded measure µ ∈ M(K) defines a multiplier Lµ on
Lp(K,m) by Lµf := µ∗f , see Chapter 3. If we denote the operator norm of Lµ in B(Lp(K,m))
by ‖Lµ‖p, we obtain ‖Lµ‖p ≤ ‖µ‖. Hence, there exists a continuous algebra isomorphism λpK
from M(K) into M(Lp(K,m)) defined by

λpK : M(K)→M(Lp(K,m)), µ 7→ λpK(µ) = Lµ.

Theorem 5.2.1. The map λpK : M(K)→M(Lp(K,m)), µ 7→ Lµ has the following properties:

i) λpK is an injective contraction of M(K) into M(Lp(K,m)).

ii) For each x ∈ K we denote by εx the point measure in x. For f ∈ Lp(K,m) we have
λpK(εx)(f) = Lx̃f and ‖λpK(εx)‖p ≤ 1.

iii) For each x, y ∈ K is λpK(x ∗ y) = λpK(εx) ◦ λpK(εy).

iv) For µ1, µ2 ∈M(K) is λpK(µ1 ∗ µ2) = λpK(µ1) ◦ λpK(µ2).

Proof. Let f ∈ Lp(K,m). i) and iv) are obviously true.
To prove ii) we conclude λpK(εx)(f) = εx ∗ f =

∫
K
Lz̃fdεx(z) = Lx̃f.

By λpK(x ∗ y)(f) = ω(x, y) ∗ f =
∫
K
Lz̃fdω(x, y)(z) = Lx̃ ◦ Lỹ(f) = λpK(εx)λpK(εy)(f), iii) is

proven.

Remark 5.2.2. Let 1 < p <∞. The map x 7→ λpK(εx) is a representation of the hypergroup K
in the Banach space B(Lp(K,m)). For p = 2 the map is called the regular representation of K.
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Proposition 5.2.3. Let K be a finite hypergroup and 1 ≤ p < ∞. We denote by CK the set
of all complex valued functions on K. Then we have M(Lp(K,m)) = λpK(CK).

Proof. Let T ∈ M(Lp(K,m)). For f ∈ Lp(K,m) = CK we have f = f ∗ εe. Hence, we
find Tf = T (f ∗ εe) = f ∗ Tεe and therefore T = λpK(Tεe). Conversely, it is obvious that
λpK(CK) ⊆M(Lp(K,m)).

Corollary 5.2.4. Let µ ∈M(K). Then

‖Lµ‖2 = ‖µ̂‖∞ = sup{|µ(h)| : h ∈ A2(K) and ‖h‖A2
≤ 1}.

Proof. By Chapter 3 we know that ‖Lµ‖2 = ‖µ̂‖∞, see [20, Theorem 2]. The proof follows then
by Proposition 5.1.8

Definition 5.2.5. Let 1 < p <∞. The topology on B(Lp(K,m)), associated to the family of
semi-norms

T 7→ |
∞∑
i=1

∫
K

Tfi(x)ḡi(x)dm(x)|

with
∑∞
i=1 fi ∗ g̃i ∈ Ap(K), is called the ultraweak topology.

This topology is locally convex and Hausdorff.

Remark 5.2.6. Let T ∈ B(Lp(K,m)) and (Sj)j∈J a net ofB(Lp(K,m)) such that supj ‖Sj‖p <∞,

D a dense subset of Lp(K,m) and F a dense subset of Lq(K,m), 1/p+ 1/q = 1. Suppose that
limj

∫
K
Sjf(x)ḡ(x)dm(x) =

∫
K
Tf(x)ḡ(x)dm(x) for every f ∈ D and g ∈ F . Then limj Sj = T

for the ultraweak topology, see [22, pp. 48] or [146, pp. 20]

Definition 5.2.7. Let 1 < p < ∞. The closure of λpK(M(K)) in B(Lp(K,m)) with re-
spect to the ultraweak topology is denoted PMp(K). Every element of PMp(K) is called
p-pseudomeasure.

Remark 5.2.8. Clearly

PMp(K) ⊆M(Lp(K,m)),

but we do not know whether those sets are identical.
Even in the group case it is unknown whether PMp(G) = M(Lp(G)) in general, see [22, pp.
48]. For a locally compact amenable group G and 1 < p < ∞ those sets are equal, see [22,
pp. 48, Corollary 3]. Unfortunately, we do not know if this result is also valid for hypergroups,
since the proof in [22, pp. 48] uses the multiplicativity of translation operators on groups, i.e.
Lx(fg) = LxfLxg for every x ∈ G, f, g ∈ Lp(G). This is in general not true for a commutative
hypergroup. Moreover, concerning amenability hypergroups show very different behavior than
groups, see for instance [109].

5.2.2 The Dual of Ap(K)

Figà-Talamanca [41] proved 1965 that the dual of the Figà-Talamanca Herz algebras Ap(G) is
for every 1 < p <∞ isometrically isomorphic to the multiplier space on Lp(G) for every locally
compact Abelian group G.
M. Lashkarizadeh Bami, M. Pourgholamhossein and H. Samea [104] transferred this result to
hypergroups in the sense that the dual of Ap(K) is isometrically isomorphic to the set PMp(K)
of all p-pseudomeasures. Since we have only PMp(K) ⊂M(Lp(K,m)) we do not know whether
the spaces Ap(K)∗ and M(Lp(K,m)) are isometrically isomorphic, too. Nevertheless, we will
quote their result here.



5.2. THE ROLE OF AP (K) IN THE THEORY OF MULTIPLIERS 53

Theorem 5.2.9. Let 1 < p <∞ and 1/p+1/q = 1. For any F ∈ Ap(K)∗ there exists a unique
F ′ ∈ PMp(K) such that for all f ∈ Lp(K,m) and g ∈ Lq(K,m)∫

K

F ′(f)(x)ḡ(x)dm(x) = F (f ∗ g̃).

The mapping Ψp
K : Ap(K)∗ → PMp(K), F 7→ F ′ is a surjective isometry: it carries the weak*-

topology of Ap(K)∗ over to the ultraweak topology of PMp(K).
If h =

∑∞
i=1 fi ∗ g̃i ∈ Ap(K), then

F (h) =

∞∑
i=1

∫
K

F ′(fi)(x)ḡi(x)dm(x).

If µ ∈ M(K) and Fµ is the corresponding element in Ap(K)∗ defined by Fµ(h) :=
∫
K
hdµ for

each h ∈ Ap(K), then λpK(µ) = F ′µ.

Proof. See Theorem 2.9 in [104].

Remark 5.2.10. V. Muruganandam proved similar results in [124] for p = 2.

Now we know for every 1 < p <∞ that

Ap(K)∗ ' PMp(K) ⊂M(Lp(K,m)).

For p = 2 we can state even more. Note that in Chapter 3 we denoted the set of all continuous
functionals on A(K) by P (K) and called its elements pseudomeasures. With this in mind we
continue with

Corollary 5.2.11. There exists an isometric isomorphism between M(L2(K,m)) and PM2(K).
In particular, every multiplier T ∈ M(L2(K,m)) is the ultraweak limit of a net {λ2

K(µi)}i∈I ,
µi ∈M(K) for all i ∈ I.

Proof. The proof follows from and Theorem 5.2.9, since M(L2(K,m)) is isometrically isomor-
phic to P (K) = A(K)∗ = A2(K)∗ and A2(K)∗ is isometrically isomorphic to PM2(K).

Remark 5.2.12. For p = 1 defineA1(K) := C0(K). Note that C0(K)∗ 'M(K) 'M(L1(K,m)).

Remark 5.2.13. Having Theorem 5.2.9 in mind, one could define for a multiplier T ∈M(Lp(K,m))

T̃ (h) :=

∞∑
k=0

Tfk ∗ g̃k(e)

for h =
∑∞
k=0 fk ∗ g̃k ∈ Ap(K). In the group case T̃ defines under some circumstances a linear

functional on Ap(K). However, to proof that T̃ is well-defined, the proof in [22, pp. 48] uses the
multiplicativity of translation operators on groups, which is in general not valid on hypergroups.

This thought leads to the next proposition.

Proposition 5.2.14. Let 1 < p <∞ and T ∈ B(Lp(K,m)). T ∈ PMp(K) if and only if

∞∑
i=1

∫
K

T (fi)(x)gi(x)dm(x) =

∞∑
i=1

∫
K

T (f ′i)(x)g′i(x)dm(x)

for all
∑∞
i=1 fi ∗ g̃i =

∑∞
i=1 f

′
i ∗ g̃′i ∈ Ap(K).
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Proof. Let T ∈ PMp(K) and h ∈ Ap(K) such that
∑∞
i=1 fi ∗ g̃i = h =

∑∞
i=1 f

′
i ∗ g̃′i. Then, by

Theorem 5.2.9 holds

∞∑
i=1

∫
K

T (fi)(x)gi(x)dm(x) = (Ψp
K)−1(T )(h) =

∞∑
i=1

∫
K

T (f ′i)(x)g′i(x)dm(x).

Conversely, let h =
∑∞
i=1 fi ∗ g̃i ∈ Ap(K). We define a linear functional on Ap(K) by

F (h) :=

∞∑
i=1

∫
K

T (fi)(x)gi(x)dm(x).

Thus, F ∈ Ap(K)∗ and by Theorem 5.2.9 there exists an operator S ∈ PMp(K) such that

F (f ∗ g̃) =

∫
K

Sf(x)g(x)dm(x)

for all f ∈ Lp(K,m) and g ∈ Lq(K,m), 1/p + 1/q = 1. Hence, by the continuity and the
linearity of F it follows that T = S ∈ PMp(K).

Even though we already know that P (K) is isometrically isomorphic to M(L2(K,m)), we
want to show a second possibility to prove this result using Proposition 5.2.14. Derighetti
proved similar results for locally compact groups in [22, Chapter 4.2].

Theorem 5.2.15. M(L2(K,m)) = PM2(K) and we have

∞∑
i=1

∫
K

T (fi)(x)gi(x)dm(x) = (Ψ2
K)−1(T )(h) =

∫
S
ϕ(α)T̂ (α)dπ(α)

for every h =
∑∞
i=1 fi ∗ g̃i ∈ A2(K), ϕ ∈ L1(S, π) such that ϕ̌ = h and T ∈M(L2(K,m)) with

corresponding T̂ ∈ L∞(S, π).

Proof. Let T ∈ M(L2(K,m)). To prove that T is an element in PM2(K) it is by Proposition
5.2.14 sufficient to verify the equality

∞∑
i=1

∫
K

T (fi)(x)gi(x)dm(x) =

∫
S
ϕ(α)T̂ (α)dπ(α)

for every ϕ̌ = h =
∑∞
i=1 fi ∗ g̃i ∈ A2(K). Using Plancherel’s theorem we find that

N∑
i=1

∫
K

T (fi)(x)gi(x)dm(x) =

N∑
i=1

∫
S
℘(T (fi))(α)℘(g̃i)(α)dπ(α)

=

N∑
i=1

∫
S
T̂ (α)℘(fi)(α)℘(g̃i)(α)dπ(α)

for N ∈ N. Furthermore, by Lemma 5.1.3 limN→∞

∥∥∥∑N
n=1 ℘(fi)℘(g̃i)− ϕ

∥∥∥
1

= 0. Therefore, we

obtain
∞∑
i=1

∫
K

T (fi)(x)gi(x)dm(x) =

∫
S
ϕ(α)T̂ (α)dπ(α).

Remark 5.2.16. We define the linear bijective isometric map

Ω : L∞(S, π)→ L1(S, π)∗, φ 7→ Ω(φ), where Ω(φ)(ϕ) :=

∫
S
φ(α)ϕ(α)dπ(α).
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Further denote by ΦT the transposed inverse Fourier transform on L1(S, π) and by Λ the
isometric isomorphism between M(L2(K,m)) and L∞(S, π), i.e.

Λ : M(L2(K,m))→ L∞(S, π), T 7→ T̂ .

We obtain
Λ = Ω−1 ◦ ΦT ◦ (Ψ2

K)−1.

Indeed, we have by Theorem 5.2.15 for T ∈M(L2(K,m)) and ϕ ∈ L1(S, π) that

Ω(T̂ )(ϕ) =

∫
S
T̂ (α)ϕ(α)dπ(α) = (Ψ2

K)−1(T )(ϕ̌)

= (Ψ2
K)−1 ◦ Λ−1(T̂ )(ϕ̌) = ΦT ◦ (Ψ2

K)−1 ◦ Λ−1(T̂ )(ϕ).

Hence, Λ is a homeomorphism of M(L2(K,m)) with the ultraweak topology onto L∞(S, π)
with the weak*- topology.

Remark 5.2.17. Following the lines of Derighetti in [22, pp 55] we conclude for 1 < p <∞ that

A2(K) ⊆ Ap(K) and ‖h‖Ap ≤ ‖h‖A2

for all h ∈ A2(K). The first statement follows also from the inclusion results in Chapter 3, i.e.
with a slight abuse ob terminology

Ap(K)∗ ⊆M(Lp(K,m)) ⊂M(L2(K,m)) = A2(K)∗.

Corollary 5.2.18. Let 1 < p <∞. A2(K) is a dense subspace of Ap(K).

Proof. Since we have M(Lp(K,m)) ⊂ M(L2(K,m)) and A∗p ⊆ M(Lp(K,m)), we obtain
A2(K) ⊂ Ap(K). To show that A2(K) is dense in Ap(K) only requires noting that each element
of Ap(K) can be approximated by functions of the form

∑m
i=1 fi ∗ gi with fi, gi ∈ Cc(K) for

i = 1, 2, ...,m, see Lemma 5.1.2.

5.2.3 An Application

We observe another consequence of Theorem 5.2.9. UsingAp(K) we can reformulate Proposition
3.3.9. M. J. Fisher proved similar results for locally compact groups, see [47].

Proposition 5.2.19. Let ϕ ∈ L∞(K̂, π) and 1 < p ≤ 2. The following conditions are equiva-
lent:

1. ϕ ∈M(Lp(K,m)), i.e. ϕ is the Fourier transform of a multiplier T ∈M(Lp(K,m)).

2. There exists a constant B ≥ 0 such that∣∣∣∣∫
S
ϕ(α)ψ(α)dπ(α)

∣∣∣∣ ≤ B ∥∥ψ̌∥∥Ap
for every ψ ∈ L1(S, π), where

∥∥ψ̌∥∥
Ap

denotes the norm of the inverse Fourier transform

of ψ in Ap(K).

Proof. Let T ∈ M(Lp(K,m)) and ϕ be the corresponding Fourier transform, i. e. ϕ = T̂ .
Further, let ψ ∈ L1(S, π). By Corollary 5.1.5 holds ψ̌ ∈ A2(K) and by Lemma 5.1.2 exist
sequences (fk)k∈N0

, (gk)k∈N0
in Cc(K) such that

ψ̌(x) =
∞∑
k=0

fk ∗ gk(x) and
∞∑
k=0

‖fk‖2 ‖gk‖2 <∞.



56 CHAPTER 5. THE FIGÀ-TALAMANCA HERZ ALGEBRAS

Furthermore, we have by Corollary 5.2.18 also ψ̌ ∈ Ap(K). We obtain by Plancherel’s theorem

∞∑
k=0

∫
S
ϕ(α)f̂k(α)ĝk(α)dπ(α) =

∞∑
k=0

∫
K

Tfk(x)gk(x)dm(x) =

∞∑
k=0

Tfk ∗ g̃k(e).

Since T ∈M(Lp(K,m)) we have∣∣∣∣∣
∞∑
k=0

Tfk ∗ g̃k(e)

∣∣∣∣∣ ≤
∞∑
k=0

‖Tfk‖p ‖gk‖q ≤ ‖T‖p
∥∥ψ̌∥∥

Ap
.

Set B = ‖T‖p. By Lemma 5.1.3 ψ =
∑∞
k=0 f̂kĝk and we obtain by Lebesque’s theorem of

dominated convergence ∣∣∣∣∫
S
ϕ(α)ψ(α)dπ(α)

∣∣∣∣ ≤ B ∥∥ψ̌∥∥Ap .
Conversely, suppose that ϕ ∈ L∞(S, π) satisfies∣∣∣∣∫

S
ϕ(α)ψ(α)dπ(α)

∣∣∣∣ ≤ B ∥∥ψ̌∥∥Ap
for a given constant B ≥ 0 and every ψ ∈ L1(S, π). Define

Φ(ψ̌) :=

∫
S
ϕ(α)ψ(α)dπ(α).

Then Φ admits by Corollary 5.2.18 a unique continuous linear extension to all of Ap(K). Hence,
we have Φ ∈ Ap(K)∗. By Theorem 5.2.9 and by reversing the arguments above we conclude for

the corresponding multiplier T ∈M(Lp(K,m)) that T̂ = ϕ π-almost everywhere on K̂.

5.3 Inclusion Results

Another interesting application of Theorem 5.2.9 is the proof of strict inclusion results for
multiplier spaces meant in the sense that there exists a continuous algebra isomorphism of one
multiplier space into another one. We proved for 1 ≤ p < r < 2 or 2 < r < p <∞ the inclusions

M(Lp(K,m)) ⊆M(Lr(K,m)) ⊆M(L2(K,m)).

It is a natural question whether those inclusions are strict. Obviously, it holds for every finite
hypergroup K that M(Lp(K,m)) = M(Lr(K,m)) = M(L2(K,m)). Indeed, if K is finite, it
is compact and discrete. Hence, the dual space K̂ is also compact and discrete and we obtain
for every ϕ ∈ L∞(K̂, π) and every function f ∈ Lp(K,m) that (ϕf̂)∨ is well defined and an
element in Lp(K,m). Hence, M(Lp(K,m)) = L∞(K̂, π) =M(L2(K,m)).
The main result of this section is that for every infinite, compact hypergroup K these inclusions
are strict. Moreover, we show that⋃

1≤q<p

M(Lq(K,m)) (M(Lp(K,m)) (
⋂

p<q≤2

M(Lq(K,m)),

for 1 < p < 2, with the first inclusion remaining strict when p = 2 and the second inclusion
remaining strict when p = 1. The same holds for non-compact hypergroups assuming some
additional conditions.
In 1970 Figà-Talamanca and Gaudry [43] proved strict inclusion results for multipliers for
locally compact groups. Price [130] extended their results and showed similar inclusion results
for locally compact groups. The first part of this chapter is similar to section 4.5 in Larsen
[101], but then we use these results to transfer Price’s results to hypergroups.
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5.3.1 Inclusion Results for compact Hypergroups

Lemma 5.3.1. Let K be infinite and compact. Let 1 ≤ p < 2. Then L2(K,m) is a proper
subspace of Lp(K,m).

Proof. Suppose L2(K,m) = Lp(K,m). Since ‖f‖p ≤ ‖f‖2 for each f ∈ Lp(K,m) ∩ L2(K,m),
we deduce from the two norm theorem, see [101, D. 6.3] that there exists a constant B > 0
such that ‖f‖2 ≤ B ‖f‖p for f ∈ L2(K,m) ∩ Lp(K,m). We show now that this is impossible.
Since K is not discrete, we have m({e}) = 0. Indeed, suppose m({e}) = ε > 0, then

ε = m({e}) < m({e} ∗ {x}) = m({x}).

Hence every point x ∈ K has positive measure m({x}) ≥ ε. Since K is not discrete, we can
choose a compact subset C ⊂ K which contains an infinite number points x ∈ C. Thus,
m(C) =∞. This is a contradiction.
Furthermore, by the regularity of the Haar measure m there exists a sequence of open neigh-
borhoods Un of the unit element e such that 0 < m(Un) < 1

n . Define for all n ∈ N a func-
tion χUn(x) = 1 whenever x ∈ Un and χUn(x) = 0 whenever x /∈ Un. We conclude from
‖χUn‖2 ≤ B ‖χUn‖p that

B ≥
‖χUn‖2
‖χUn‖p

= m(Un)
1
2−

1
p ≥ n

1
p−

1
2

for all n ∈ N. This contradicts that B is constant.

Lemma 5.3.2. Let K be compact and ψ a function on K̂. Then the following statements are
equivalent:

i) ψ ∈ l2(K̂, π) ii) ϕψ ∈ L1(K,m)∧ for all ϕ ∈ C0(K̂).

Proof. Let ψ ∈ l2(K̂, π). Then there exists a function g ∈ L2(K,m) such that ĝ = ψ. By
identifying each ϕ ∈ C0(K̂) with a multiplier Tϕ ∈ M(L2(K,m)) we obtain immediately

ϕĝ ∈ l2(K̂, π) for all ϕ ∈ C0(K̂). Since L2(K,m) ⊂ L1(K,m), we have ϕψ ∈ L1(K,m)∧ for all
ϕ ∈ C0(K̂).
Conversely, if ϕψ ∈ L1(K,m)∧ for all ϕ ∈ C0(K̂) then ψ ∈ l∞(K̂, π). Indeed, assume
ψ /∈ l∞(K̂), then there exists a sequence {rn} ⊂ K̂ such that |ψ(rn)| ≥ n. Let ϕ(rn) = 1√

n
,

n ∈ N, and ϕ(r) = 0 if r 6= rn for all n ∈ N. Since K is compact, K̂ is discrete and we
see that ϕ ∈ C0(K̂), but |ϕψ(rn)| ≥

√
n. Thus, ϕψ /∈ L1(K,m)∧ as L1(K,m)∧ ⊂ C0(K̂).

Now we can define a bounded operator Tψ on (C(K), ‖ ‖1) into L2(K,m) which commutes
with translation operators . Let Tψf := ℘−1(ψ℘(f)) for every f ∈ C(K). To prove that
Tψ is continuous, let fn, f ∈ C(K) and h ∈ L2(K,m) such that limn→∞ ‖fn − f‖1 = 0 and
limn→∞ ‖Tψfn − h‖2 = 0. By

lim
n→∞

∥∥∥ψf̂n − ψf̂∥∥∥
∞
≤ lim
n→∞

‖ψ‖∞ ‖fn − f‖1 = 0

and lim
n→∞

‖℘(Tfn)− ℘(h)‖2 = lim
n→∞

‖ψ℘(fn)− ℘(h)‖2 = 0,

we conclude Tψf = h. By the closed graph theorem Tψ is continuous. Therefore, Tψ can
be extended to a bounded operator on L1(K,m) into L2(K,m) which commutes with trans-
lation operators, see [129]. By [129, Theorem 6] ψ ∈ l2(K̂, π), since for any given multiplier
T ∈M(L1(K,m), L2(K,m)) there exists only one unique ψ ∈ l2(K̂, π) with Tf = ℘−1(ψ℘(f))
for all f ∈ L1(K,m).

Theorem 5.3.3. Let K be infinite and compact. Then for each p 6= 2, 1 ≤ p <∞,

M(Lp(K,m)) ∩ C0(K̂) is a proper subset of C0(K̂).
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Proof. Since M(Lp(K,m)) = M(Lq(K,m)) whenever 1
p + 1

q = 1, we may assume 1 ≤ p <

2. Suppose that C0(K̂) ⊂ M(Lp(K,m)). Then for all f ∈ Lp(K,m) we have that ϕf̂ ∈
Lp(K,π)∧ ⊂ L1(K,m)∧ for each ϕ ∈ C0(K̂). Note that since K is compact we have Lp(K,m) ⊆
L1(K,m). By Lemma 5.3.2 we obtain f̂ is in l2(K̂, π) and therefore f ∈ L2(K,m). Thus,
Lp(K,m) ⊆ L2(K,m) and since K is compact we obtain Lp(K,m) = L2(K,m). This is a
contradiction to Lemma 5.3.1.

Corollary 5.3.4. Let K be infinite and compact. For each p 6= 2, 1 ≤ p <∞, isM(Lp(K,m))
a proper subset of M(L2(K,m)).

As a consequence of Corollary 5.3.4 we conclude the strictness of the inclusionM(Lr(K,m)) (
M(L2(K,m)), r 6= p. We will use this proper inclusion to show the strictness of the other in-
clusions. Following exactly the lines of Price [130, Theoerem 4.1] we conclude the following
theorem.

Theorem 5.3.5. Let {λn}n∈N be a strictly positive sequence such that λn/
∑n−1
m=1 λm is un-

bounded and increasing. Let 1 ≤ p < 2 and suppose that there exists a sequence {Tn}n∈N in
M(Lp(K,m)) and numbers a,b such that

i) 0 < a < ‖Tn‖p < b for all n ∈ N.

ii) Tn → 0 in M(L2(K,m)) as n→∞.

Then there exists a sequence n1 < n2 < ... of positive integers such that the series
∑∞
j=1 λjTnj

converges in M(Lq(K,m)) for all p < q ≤ 2 to a unique operator T such that T /∈M(Lp(K,m)).

The topic of the next theorem, which proves the strict inclusions of multiplier spaces on a
compact hypergroup, was also investigated by Price [130] for locally compact groups. However,
for commutative hypergroups, we know only that Ap(K)∗ is isometrically isomorphic to a
subset of the multiplier space M(Lp(K,m)), whereas in the group case Ap(G)∗ is isometrically
isomorphic to the whole multiplier space M(Lp(G)). Hence, we need to adjust the proof given
by Price to this situation.

Theorem 5.3.6. Let K be infinite and compact. Then⋃
1≤q<p

M(Lq(K,m)) (M(Lp(K,m)) (
⋂

p<q≤2

M(Lq(K,m)),

if 1 < p < 2. For p = 1 the second inclusion remains strict and for p = 2 the first inclusion
remains strict.

Proof. For 1 ≤ p < 2 the proof of the second strict inclusion will be based on the fact that ‖ ‖p
is a strictly stronger norm than ‖ ‖2 on M(Lp(K,m)).
Let A1(K) := C0(K). We know by Theorem 2.9 in [104] that Ap(K)∗ equipped with the
weak*-topology is isometrically isomorphic to the set of all p-pseudomeasures, PMp(K), which
is a subset of M(Lp(K,m)). Hence, for each operator T ∈ PMp(K) the operator norm of T in
B(Lp(K,m)) is equal to the operator norm of T in Ap(K)∗.
Moreover, since A(K) is dense in Ap(K), 1 ≤ p < 2, we obtain also that the normed dual of
A(K) equipped with the Ap(K)-norm is a subset of M(Lp(K,m)). Now, assuming that ‖ ‖p
is equivalent to ‖ ‖2 on M(Lp(K,m)), leads to the equivalence of the Ap(K)-norm and the
A(K)-norm on A(K). Hence, we conclude with a slight abuse of terminology

(A(K)∗, ‖ ‖A2(K)∗) = (A(K)∗, ‖ ‖Ap(K)∗) = (Ap(K)∗, ‖ ‖Ap(K)∗)

⊆ (M(Lp(K,m)), ‖ ‖p) ⊆ (M(L2(K,m)), ‖ ‖2) = (A(K)∗, ‖ ‖A2(K)∗).

Therefore, if ‖ ‖p is equivalent to ‖ ‖2 on M(Lp(K,m)), then the Ap(K)-norm is equivalent to

the A(K)-norm on A(K), and we obtain M(Lp(K,m)) = M(L2(K,m)). This is a contradiction
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to Theorem 5.3.4. Hence, ‖ ‖p is strictly stronger than ‖ ‖2 on M(Lp(K,m)).
Hence, we may choose a sequence in M(Lp(K,m)) satisfying i) and ii) of Theorem 5.3.5. This
leads to the existence of a multiplier T ∈

⋂
p<q≤2M(Lq(K,m)) such that T /∈M(Lp(K,m)).

To prove the strictness of the first inclusion when 1 < p ≤ 2, note first that from the above
we have M(Lq(K,m)) ( M(Lp(K,m)) whenever 1 ≤ q < p. Assume

⋃
1≤q<pM(Lq(K,m)) =

M(Lp(K,m)). Then let {qm}m∈N be an increasing sequence in [1, p) such that qm → p as
m → ∞. Hence, the injection maps im : M(Lqm(K,m)) → M(Lp(K,m)) are continuous and⋃
m∈N im(M(Lqm(K,m))) = M(Lp(K,m)). Thus, the hypotheses of 6.5.1 in Edward’s Fourier

series [33] are satisfied and we obtain M(Lqm(K,m)) = M(Lp(K,m)) for one m ∈ N which is
a contradiction.

Remark 5.3.7. When p satisfies 2 ≤ p < ∞ we conclude the analogue by M(Lp(K,m)) =
M(Lp

′
(K,m)) whenever 1

p + 1
p′ = 1.

5.3.2 Inclusion Results for non-compact Hypergroups

To prove strict inclusion results for non-compact hypergroups in a similar way as we used above,
requires the existence of a set of uniqueness for Lp(K,m).

Definition 5.3.8. A set of uniqueness for Lp(K,m), 1 ≤ p ≤ ∞, is a π-measurable set
E in K̂ with the property that if ϕ ∈ L1(S, π) with ϕ = 0 π-almost everywhere off of E and
ϕ̌ ∈ Lp(K,m), then ϕ = 0 in L1(S, π).

Example 5.3.9. Obviously, every measurable subset of K̂ with measure zero is a set of unique-
ness for Lp(K,m), 1 ≤ p ≤ ∞.

For p = 2 and E a π−measurable subset of K̂ such that π(E) < ∞ we have ϕ = χE ∈
L1(S, π) ∩ L2(S, π) and ϕ = 0 off of E. Further, ϕ̌ = ℘−1(ϕ) ∈ L2(K,m). Hence, ϕ = 0 in
L2(S, π) if and only if π(E) = 0. Therefore, the only sets of uniqueness for L2(K,m) which

have finite measure are those subsets E in K̂ with measure π(E) = 0. The same holds for all
2 ≤ p ≤ ∞.

The prove of the existence of a set of uniqueness for non-compact Abelian groups is due to
Figà-Talamanca and Gaudry [43]. Katznelson [95] established a bit earlier similar results for
the circle group T. Also interested in set of uniqueness and their connection to the spectra of
multipliers for lp were Devinatz and Hirschman [23].
To prove the existence of a set of uniqueness like Larsen [101], we need to construct a sequence
of partitions {Πn} of a subset F ⊂ S, π(F ) > 0, in the following way: Π0 = F . Suppose
Πn = {E1, ..., E2n} where the Ej are the mutually disjoint π−measurable subsets of F such

that
⋃2n

j=1Ej = F and π(Ej) = π(F )/2n, j = 1, 2, ..., 2n. Then for each j = 1, 2, ..., 2n we
let Eij ⊂ Ej , i = 1, 2, be a π−measurable subset of Ej such that π(Eij) = π(Ej)/2, i = 1, 2,
and set Πn+1 = {Eij : i = 1, 2; j = 1, 2, ..., 2n}. Clearly Πn+1 partitions F into 2n+1 mutually
disjoint π−measurable subsets each of measure π(F )/2n+1.
To assure that this construction is possible, we need the existence of a suitable F ⊂ S such that
0 < π(F ) < ∞. Since the Plancherel measure is a regular positive Borel measure, we see by
Halmos [69, pp. 174] that this construction is possible whenever S contains a compact subset
F ⊂ S, π(F ) > 0, without an isolated point, i.e. for every point α ∈ F holds π({α}) = 0. This
for instance is fulfilled for every non-compact strong hypergroup, see [4, Section 2.4].
In the case of a polynomial hypergroup K = N0 this requires that S contains an interval
[a, b] = F ∈ S with −∞ < a < b < ∞. Unfortunately, not all dual spaces S contain such an
interval. See for instance the hypergroup generated by the little q-Legendre polynomials, [4].
Here

S = {0} ∪ {q2k : k ∈ N0}.

Therefore, it is unknown, whether the multiplier spaces M(lp(N0, h)), 1 < p < 2, on the little
q-Legendre hypergroup are strictly included in one another.
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However, there are also a lot of examples which fulfill this condition. Besides the Jacobi poly-
nomials, where S = [−1, 1], we can also choose for instance the Karlin-McGregor polynomials
which are defined by the recurrence coefficients a0 = 1, b0 = 0 and

an =

{
α−1
α for n odd
β−1
β for n even,

bn = 0, cn = 1− an

for α, β ≥ 2. Here the support of the Plancherel measure equals

S = [−γ1,−γ2] ∪ {0} ∪ [γ2, γ1],

where γ1 = 1√
αβ

(
√
α− 1 +

√
β − 1) and γ2 = 1√

αβ
(
√
α− 1−

√
β − 1).

Theorem 5.3.10. Let K be a non-compact, commutative hypergroup and ε > 0. If S contains
a compact subset F such that π(F ) > 0 and for all α ∈ F holds π({α}) = 0, then there exists a
π−measurable set E ⊂ F with

1. π(E) > π(F )− ε

2. E is a set of uniqueness for Lp(K,m), 1 ≤ p < 2.

The proof follows the lines of Larsen [101, Theorem 4.4.1] with appropriate adjustments. We
will omit it here, since it requires a lot of preliminaries especially concerning measure theory.
We refer instead to Larsen [101, Section 4.4], where all preliminaries and the Theorem is proven
for non-compact, commutative groups.
Whenever S contains a compact subset F such that π(F ) > 0 and for all α ∈ F holds
π({α}) = 0, we say S contains a proper set of uniqueness.
Theorem 5.3.10 enables us to examine the relationships between the spaces of multipliers
M(lp(N0, h)) for various values of p.

Theorem 5.3.11. Let K = N0 be a polynomial hypergroup such that S contains an interval
[a, b], a < b. For each p 6= 2, 1 < p <∞, M(lp(N0, h)) is a proper subset of M(l2(N0, h)).

Proof. We choose a set of uniqueness E ⊂ S for lp(N0, h) with ∞ > π(E) > 0. Define a

function χE on N̂0 by χE(α) = 1 whenever α ∈ E and χE(α) = 0 elsewhere. Hence, χE defines
a multiplier for l2(N0, h) as L∞(S, π) =M(l2(N0, h)). However, χE is not in M(lp(N0, h)).

Indeed, if we consider that χE defines a multiplier for lp(N0, h), then χE f̂ ∈ lp(N0, h)∧ for all
f ∈ l1(N0, h). In particular if f = χ̌S . Indeed, by R0(x) = 1 we have χ̌S ∈ l1(N0, h) as

‖χ̌S‖1 =

∞∑
n=0

|
∫
S
Rn(x)dπ(x)|h(n) =

∞∑
n=0

|
∫
S
Rn(x)R0(x)dπ(x)|h(n) = h(0) <∞.

Hence, χE = χE f̂ ∈ lp(N0, h)∧. This means that there exists a unique function g ∈ lp(N0, h)
such that ĝ = χE . As χE ∈ L1(S, π) we get χ̌E = g ∈ lp(N0, h). This contradicts the fact that
E is a set of uniqueness for lp(N0, h).

Following the lines of Theorem 5.3.6 we obtain

Theorem 5.3.12. Let K = N0 be a polynomial hypergroup, such that S contains an interval
[a, b], a < b. Then ⋃

1≤q<p

M(lq(N0, h)) (M(lp(N0, h)) (
⋂

p<q≤2

M(Lq(N0, h)),

if 1 < p < 2. For p = 1 the second inclusion remains strict and for p = 2 the first inclusion
remains strict.



5.3. INCLUSION RESULTS 61

Remark 5.3.13. For 2 ≤ p < ∞ we conclude the analogue by M(lp(N0, h)) = M(lp
′
(N0, h)),

1/p+ 1/p′ = 1 .

Remark 5.3.14. There are other examples of hypergroups which are neither compact nor discrete
and whose multiplier spaces are strictly included in one another. One example is the Bessel-
Kingman hypergroup, see [4], which is a strong hypergroup.
In order to prove that M(Lp(K,m)) is a proper subset of M(L2(K,m)) for a non-compact
hypergroup in the way we used above, we need that S contains a proper set of uniqueness.
Furthermore, we need the existence of a function f ∈ L1(K,m) ∩L2(K,m) such that f̂ |F = 1.
This is obviously guaranteed for every strong hypergroup, see Chapter 2. The existence of such
a function is also guaranteed, whenever L1(K,m) is regular, that is if for every closed subset V

of χb(K) and α ∈ χb(K)\V there exists a function f ∈ L1(K,m) with f̂ |V = 0 and f̂(α) 6= 0.
Indeed, choose a compact subset C in S and for every x ∈ C choose an open neighborhood Ux
with compact closure. Then there exists a finite subcover such that C ⊂

⋃n
j=1 Uxj . By Kaniuth

[90, Corollary 4.2.9] there exists a function f ∈ L1(K,m) with f̂ |C = 1 and f̂ = 0 outside
of
⋃n
j=1 Uxj . Since the closure of

⋃n
j=1 Uxj is compact, we have f ∈ L2(K,m). However, the

premise of regularity of L1(K,m) is much stronger than needed.
In the next chapter, we will prove that M(Lp(K,m)) is a proper subset of M(L2(K,m)) for
a non-compact hypergroup in a different way using derived spaces. We will see there that
the assumption of the existence of a function f ∈ L1(K,m) ∩ L2(K,m) such that f̂ |F = 1 is
unnecessary.

Remark 5.3.15. To prove similar strict inclusion results for multipliers for Lp(S, π) will be quite
difficult, since in general we do not have a dual convolution and hence we cannot define the
Figà-Talamanca Herz algebra on S like we did at the beginning of this chapter. Furthermore,
given a relatively non-compact S, we would need a translation operator on S to prove the
existence of a proper set of uniqueness for Lp(S, π) in the way described in [101]. However, we
will prove some strict inclusion results for the dual of a polynomial hypergroup as an application
to derived spaces in the next chapter.
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Chapter 6

Derived Spaces

In the previous chapters we characterized those functions ϕ ∈ L∞(S, π) which define a mul-
tiplier for the different Lp-spaces. Conversely, we now take a look on those function spaces,
for which all ϕ ∈ C0(K̂) define multipliers. We derive these spaces from the original Lp(K,m)
spaces. Thus, they are called derived spaces.
Helgason [71, 72] discussed derived algebras of commutative Banach algebras. His results are
also quoted in Larsen [101, Chapter 1.8] which are obviously also valid for L1(K,m) or for
Lp(K,m) whenever K is compact. (We note that for a compact, commutative hypergroup K,
Lp(K,m) with the usual convolution product is a semi-simple, self-adjoint commutative Banach
algebra which contains an approximate identity. However, this approximate identity is not a
minimal approximate identity.)
Figà-Talamanca [40] and Gaudry [43] invented derived spaces for Lp(G), where G is a locally
compact Abelian group. Their results are also quoted in Larsen [101, Chapter 4.6]. Hörmander
[84] proved similar results for Euclidean groups G = Rn. We will extend some of the results
from Figà-Talamanca [40] and Gaudry [43] to hypergroups. In contrast to the group case not
every dual S contains a proper set of uniqueness. Further we find |α(x)| ≤ 1 for every α ∈ K̂
and x ∈ K, whereas we obtain |α(x)| = 1 for every x in a locally compact group G and α ∈ Ĝ.
This leads to somehow weaker results for hypergroups.
In the last part of this chapter we prove applications of derived spaces for commutative hyper-
groups concerning strict inclusion results of multiplier spaces.

6.1 The Derived Space for Lp(K,m)

If K is non-compact, then Lp(K,m), p > 1, is in general no longer a Banach algebra and
the concept of the derived algebra is meaningless. Therefore, we define in a natural analogous
manner the derived space of Lp(K,m), 1 ≤ p <∞. For each f ∈ Lp(K,m), 1 ≤ p <∞, denote

‖f‖0 := sup
{
‖h ∗ f‖p : h ∈ L1(K,m),

∥∥∥ĥ∥∥∥
∞
≤ 1
}
.

Let Lp(K,m)0 be the linear subspace of Lp(K,m) consisting of all those f ∈ Lp(K,m) with
‖f‖0 <∞. We call Lp(K,m)0 the derived space of Lp(K,m). We prove below that Lp(K,m)0

is a Banach space with respect to the norm ‖ ‖0.
For p = 1 we see at once from Lemma 1.8.1 in [101], that L1(K,m)0 coincides with the derived
algebra of L1(K,m), defined by

L1(K,m)0 =
{
f ∈ L1(K,m) : ϕf̂ ∈ L1(K,m)∧ ∀ϕ ∈ C0(K̂)

}
.

63
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Starting with this definition, we define for 1 ≤ p ≤ 2

Lp(K,m)0 :=
{
f ∈ Lp(K,m) : ϕf̂ ∈ Lp(K,m)∧ ∀ϕ ∈ C0(K̂)

}
.

Here, f̂ denotes the Hausdorff-Young transform of an element in Lp(K,m). Obviously Lp(K,m)0

is a linear subspace of Lp(K,m) and it equals Lp(K,m)0 whenever Lp(K,m) is a semi-simple
self-adjoint Banach algebra, see [101, Chapter 1.8]. Moreover, since every bounded function
on K̂ defines a multiplier for L2(K,m), we see at once that L2(K,m)0 = L2(K,m). Further
L2(K,m)0 = L2(K,m), because

‖h ∗ f‖2 = ‖℘(h ∗ f)‖2 =
∥∥∥ĥ℘(f)

∥∥∥
2
≤
∥∥∥ĥ∥∥∥

∞
‖℘(f)‖2 =

∥∥∥ĥ∥∥∥
∞
‖f‖2

for all h ∈ L1(K,m) and f ∈ L2(K,m). Hence, L2(K,m)0 = L2(K,m)0 as linear spaces.

Our aim is now for an arbitrary hypergroup K and 1 < p < 2 to prove that the two
spaces Lp(K,m)0 and Lp(K,m)0 coincide. Furthermore, we will investigate some properties of
Lp(K,m)0 and Lp(K,m)0.

Theorem 6.1.1. Let 1 ≤ p ≤ 2. Then Lp(K,m)0 ⊆ Lp(K,m)0.

Proof. Let f ∈ Lp(K,m)0. For ϕ ∈ C0(K̂) define a linear transformation A from C0(K̂) into

Lp(K,m) by (Aϕ)∧ := ϕf̂ ∈ Lp(K,m)∧. To prove that A is continuous, let limn ‖ϕn − ϕ‖∞ = 0
and limn ‖Aϕn − g‖p = 0. Then for 1

p + 1
q = 1 we have∥∥∥ϕf̂ − ĝ∥∥∥

q
≤

∥∥∥ϕf̂ − (Aϕn)∧
∥∥∥
q

+ ‖(Aϕn)∧ − ĝ‖q ≤ ‖ϕ− ϕn‖∞ ‖f‖p + ‖Aϕn − g‖p → 0

as n → ∞. Therefore, (Aϕ)∧ = ϕf̂ = ĝ. By the uniqueness of the Hausdorff-Young
transform A is a closed transformation and hence continuous by the closed graph theorem.

Since (h ∗ f)∧ = ĥf̂ for all h ∈ L1(K,m), we see that ‖h ∗ f‖p =
∥∥∥Aĥ∥∥∥

p
≤ ‖A‖

∥∥∥ĥ∥∥∥
∞
. Thus,

‖f‖0 ≤ ‖A‖ <∞ and f is an element in Lp(K,m)0.

In the following, we characterize the space Lp(K,m)0 in order to prove that it coincides
with the linear space Lp(K,m)0 for 1 ≤ p ≤ 2.

Theorem 6.1.2. Suppose 1 < p <∞ and 1
p + 1

q = 1. Then the following are equivalent:

i) f ∈ Lp(K,m)0.

ii) For each g ∈ Lq(K,m) exists a unique µ ∈M(K̂) such that f ∗ g = µ̌.

Proof. Let f ∈ Lp(K,m)0 and g ∈ Lq(K,m). We define a continuous linear functional on
L1(K,m)∧ with respect to the supremum norm by

F (ĥ) := h ∗ f ∗ g(e)

for each h ∈ L1(K,m). F is indeed continuous, since

|F (ĥ)| ≤ ‖h ∗ f ∗ g‖∞ ≤ ‖h ∗ f‖p ‖g‖q ≤
∥∥∥ĥ∥∥∥

∞
‖f‖0 ‖g‖q .

Consequently, F has a unique extension to a continuous linear functional on C0(K̂) and
‖F‖ ≤ ‖f‖0 ‖g‖q. Let µ ∈ M(K̂) be the unique measure associated with this extension of

F by the Riesz representation theorem. We obtain for each h ∈ L1(K,m)

h ∗ f ∗ g(e) =

∫
K̂

ĥ(α)dµ(α).
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Further, for each h ∈ L1(K,m)

h ∗ f ∗ g(e) =

∫
K̂

ĥ(α)dµ(α) =

∫
K̂

∫
K

h(x)ᾱ(x)dm(x)dµ(α)

=

∫
K

h(x)

∫
K̂

α(x̃)dµ(α)dm(x) =

∫
K

h(x)Lx̃µ̌(e)dm(x) = h ∗ µ̌(e).

Let x ∈ K. Choosing Lxh ∈ L1(K,m) in the equations above, we conclude

h ∗ f ∗ g(x) = Lxh ∗ f ∗ g(e) = Lxh ∗ µ̌(e) = h ∗ µ̌(x)

for every h ∈ L1(K,m). Thus, f ∗ g = µ̌. µ is unique by the uniqueness theorem of the inverse
Fourier-Stieltjes transform.
Conversely, suppose that f ∈ Lp(K,m) such that for each g ∈ Lq(K,m) there exists a unique
measure µ ∈ M(K̂) with f ∗ g = µ̌. Clearly, this equation defines a linear transformation
S : Lq(K,m)→M(K̂), Sg := µ. Moreover, if limn ‖gn − g‖q = 0 and limn ‖Sgn − v‖ = 0 then

‖(Sg)∨ − v̌‖∞ ≤ ‖(Sg)∨ − (Sgn)∨‖∞ + ‖(Sgn)∨ − v̌‖∞
≤ ‖f ∗ g − f ∗ gn‖∞ + ‖Sgn − v‖ ≤ ‖f‖p ‖g − gn‖q + ‖Sgn − v‖ → 0.

Hence, Sg = v and by the Closed Graph Theorem S is continuous. We obtain for every
h ∈ L1(K,m)

|h ∗ f ∗ g(e)| = |h ∗ µ̌(e)| = |
∫
K

h(x)Lx̃µ̌(e)dm(x)| = |
∫
K

h(x)

∫
K̂

α(x̃)dµ(α)dm(x)|

= |
∫
K̂

ĥ(α)dµ(α)| ≤
∥∥∥ĥ∥∥∥

∞
‖µ‖ =

∥∥∥ĥ∥∥∥
∞
‖Sg‖ ≤

∥∥∥ĥ∥∥∥
∞
‖S‖ ‖g‖q .

Consequently, we conclude with the Hahn-Banach Theorem

‖h ∗ f‖p = sup
{
|h ∗ f ∗ g(e)| : ‖g‖q ≤ 1

}
≤
∥∥∥ĥ∥∥∥

∞
‖S‖ .

Hence, ‖f‖0 ≤ ‖S‖ <∞ and f ∈ Lp(K,m)0.

Theorem 6.1.2 shows that each f ∈ Lp(K,m)0 defines a continuous linear transformation
S : Lq(K,m)→M(K̂) by (Sg)∨ = µ̌ = f ∗ g and ‖f‖0 ≤ ‖S‖. Moreover, we obtain

(SLxg)∨ = f ∗ Lxg = Lx(f ∗ g) = Lx(Sg)∨ = εx̃ ∗ (Sg)∨

and further

(ε̂x̃Sg)∨(y) =

∫
K̂

α(y)ε̂x̃(α)d(Sg)(α) =

∫
K̂

α(x)α(y)d(Sg)(α)

=

∫
K̂

Lyα(x)d(Sg)(α) =

∫
K̂

∫
K

εx̃(z)Lyα(z̃)dm(z)d(Sg)(α)

=

∫
K̂

∫
K

Lỹ ε̃x̃(z)α(z)dm(z)d(Sg)(α) =

∫
K

Lyεx̃(z̃)

∫
K̂

α(z)d(Sg)(α)dm(z)

=

∫
K

Lyεx̃(z)(Sg)∨(z̃)dm(z) =

∫
K

εx̃(z)Lz̃(Sg)∨(y)dm(z) = εx̃ ∗ (Sg)∨(y)

for all x, y ∈ K. Hence, S commutes with translations in the sense that S(Lxg) = ε̂x̃Sg for all
x ∈ K. The next theorem shows that the converse is also true. We prove that each continuous
linear transformation S : Lq(K,m) → M(K̂) with S(Lxg) = ε̂x̃Sg for all x ∈ K defines a
unique function f ∈ Lp(K,m)0.

Theorem 6.1.3. Suppose 1 < p < ∞ and 1
p + 1

q = 1. Let S : Lq(K,m) → M(K̂) be a linear
transformation. The following assertions are equivalent
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i) There exists a unique f ∈ Lp(K,m)0 such that (Sg)∨ = f ∗ g for all g ∈ Lq(K,m).

ii) S is continuous and S(Lxg) = ε̂x̃(Sg) for all x ∈ K.

Moreover, the correspondence between f and S defines a linear isometry from Lp(K,m)0 with
norm ‖ ‖0 onto the Banach space of all continuous linear transformations
S : Lq(K,m)→M(K̂) such that SLxg = ε̂x̃Sg for all x ∈ K.

Proof. It remains to prove that ii) implies i). For g ∈ Lq(K,m) denote Sg = µg ∈M(K̂). We
define a functional F on Lq(K,m) by

F (g) :=

∫
K̂

dµg.

Since S is linear, F is also linear and we obtain |F (g)| = ‖µ̃g‖ = ‖Sg‖ ≤ ‖S‖ ‖g‖q for all
g ∈ Lq(K,m). Thus, F is continuous and there exists a unique function f ∈ Lp(K,m) such
that F (g) = f ∗ g(e) for all g ∈ Lq(K,m). We conclude for all x ∈ K

f ∗ g(x) = Lx(f ∗ g)(e) = f ∗ Lxg(e) = F (Lxg)

=

∫
K̂

d(SLxg) =

∫
K̂

d(ε̂x̃Sg) =

∫
K̂

α(x)dµg(α) = µ̌g(x).

Hence, for all g ∈ Lq(K,m) we have f ∗ g = (Sg)∨ and f ∈ Lp(K,m)0 by Theorem 6.1.2.
Furthermore, the equivalence of i) and ii) defines obviously a mapping from Lp(K,m)0 onto
the Banach space of all continuous linear transformations S : Lq(K,m) → M(K̂) which fulfill
S(Lxg) = ε̂x̃(Sg) for all x ∈ K. By the proof of Theorem 6.1.2 we have ‖f‖0 ≤ ‖S‖ whenever
f ∗ g = (Sg)∨ for all g ∈ Lq(K,m). On the other hand we find for each g ∈ Lq(K,m) by the
proof of Theorem 6.1.2 that

|h ∗ f ∗ g(e)| = |
∫
K̂

ĥ(α)d(Sg)(α)|

for all h ∈ L1(K,m). Since L1(K,m)∧ is norm dense in C0(K̂) we conclude that

‖Sg‖ = sup

{
|
∫
K̂

ĥ(α)dµ(α)| : ĥ ∈ L1(K,m)∧,
∥∥∥ĥ∥∥∥

∞
≤ 1

}
= sup

{
|h ∗ f ∗ g(e)| : h ∈ L1(K,m),

∥∥∥ĥ∥∥∥
∞
≤ 1
}

≤ sup
{
‖h ∗ f‖p ‖g‖q : h ∈ L1(K,m),

∥∥∥ĥ∥∥∥
∞
≤ 1
}

= ‖f‖0 ‖g‖q .

Thus, we obtain in total that ‖S‖ = ‖f‖0 and the mapping is an isometry.

Corollary 6.1.4. Let 1 < p <∞. With the norm ‖ ‖0, Lp(K,m)0 is a Banach space.

The next theorem leads to the inclusion Lp(K,m)0 ⊂ Lp(K,m)0 for 1 < p ≤ 2.

Theorem 6.1.5. Let 1 < p ≤ 2 and ϕ ∈ Cb(K̂). Then there exists a bounded linear operator

T : Lp(K,m)0 → Lp(K,m)0 such that T commutes with translations and ϕf̂ = (Tf)∧ for all
f ∈ Lp(K,m)0.

Proof. Let f ∈ Lp(K,m)0. By Theorem 6.1.2 there exists for every g ∈ Lq(K,m) a unique
measure µ ∈M(K̂) such that f ∗ g = µ̌g. Define a linear functional F on Lq(K,m) by

F (g) :=

∫
K̂

ϕ̃(α)dµg(α).

Since |F (g)| ≤ ‖ϕ‖∞ ‖µg‖ ≤ ‖ϕ‖∞ ‖f‖0 ‖g‖q, F is bounded. Thus, there exists a unique
Tf ∈ Lp(K,m) such that F (g) = Tf ∗ g(e). Further, we obtain for all y ∈ K

Tf ∗ g(y) =

∫
K

Tf(x)Lx̃g(y)dm(x) = F (Lyg).
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By Theorem 6.1.3

F (Lyg) =

∫
K̂

ϕ̃(α)d(SLyg)(α) =

∫
K̂

ϕ̃(α)d(ε̂ỹSg)(α) =

∫
K̂

ϕ̃(α)α(y)dµg(α) = v̌(y)

where dv = ϕ̃dµg. By Theorem 6.1.2 Tf ∈ Lp(K,m)0 and we conclude by Theorem 6.1.3
‖Tf‖0 ≤ ‖f‖0 ‖ϕ‖∞.
Moreover, by Chapter 2 we have (v̌)∧dπ = dṽ = ϕdµ̃g = ϕ(µ̌g)

∧dπ. Hence, we obtain (Tf)∧ĝ =

(Tf ∗ g)∧ = (v̌)∧ = ϕ(µ̌g)
∧ = ϕ(f ∗ g)∧ = ϕf̂ ĝ for all g ∈ L1(K,m) ∩ Lq(K,m). For each

α ∈ K̂ choose a function g ∈ L1(K,m) ∩ Lq(K,m) such that ĝ(α) 6= 0. Hence, we conclude

(Tf)∧(α) = ϕf̂(α) for all α ∈ K̂ and T obviously commutes with translations.

Corollary 6.1.6. Let 1 ≤ p ≤ 2. Then Lp(K,m)0 = Lp(K,m)0

Remark 6.1.7. We want to remark that Theorem 6.1.5 holds for all ϕ ∈ Cb(K̂). This leads to
the equality of the spaces{

f ∈ Lp(K,m) : ϕf̂ ∈ Lp(K,m)∧ ∀ϕ ∈ Cb(K̂)
}

and
{
f ∈ Lp(K,m) : ϕf̂ ∈ Lp(K,m)∧ ∀ϕ ∈ C0(K̂)

}
for 1 ≤ p ≤ 2.

We characterized the derived spaces for 1 ≤ p ≤ 2 very precisely. For 2 < p <∞ we can at
least determine a dense linear subset of Lp(K,m)0.

Proposition 6.1.8. Let 2 ≤ p <∞ and 1/p+ 1/q = 1. Then Lq(S, π)∨ ⊂ Lp(K,m)0.

Proof. Let f = ϕ̌, ϕ̌ ∈ Lq(S, π)∨ ⊂ Lp(K,m). Then for h ∈ L1(K,m) is ĥϕ ∈ Lq(S, π)

with (ĥϕ)∨ = h ∗ f . Thus, ‖h ∗ f‖p ≤
∥∥∥ĥϕ∥∥∥

q
≤
∥∥∥ĥ∥∥∥

∞
‖ϕ‖q. Therefore, f ∈ Lp(K,m)0 and

‖f‖0 ≤ ‖ϕ‖q.

We mentioned earlier that L2(K̂, π)∨ = L2(K,m) = L2(K,m)0. For 2 < p we do not know
whether the spaces Lq(S, π)∨ and Lp(K,m)0 are equal. However, we can prove that Lq(S, π)∨

is a ‖ ‖0−dense subset in Lp(K,m)0, 1/p+ 1/q = 1.

Proposition 6.1.9. Let 2 ≤ p < ∞. Lq(S, π)∨ is a ‖ ‖0-dense linear subspace in Lp(K,m)0,
1/p+ 1/q = 1.

Proof. For each f ∈ Lp(K,m)0 there exists fn ∈ Lq(S, π)∨, n ∈ N such that ‖f − fn‖p → 0 as

n tends to infinity and fn ∈ Lp(K,m)0 for all n ∈ N, see Chapter 2. Hence,
‖(f−fn)∗h‖p
‖ĥ‖∞

→ 0

for all h ∈ L1(K,m) as n tends to infinity. Thus, ‖f − fn‖0 → 0 as n tends to infinity.

6.2 The Derived Spaces for compact Hypergroups

Now we want to get a better idea of how the spaces Lp(K,m)0 = Lp(K,m)0 appear for different
1 ≤ p ≤ 2. We already know that L2(K,m) = L2(K,m)0 = L2(K,m)0. For a compact hyper-
group K we can also show that the two spaces L2(K,m) and Lp(K,m)0 coincide for 1 ≤ p ≤ 2.
The corresponding result for a commutative, compact group G states that Lp(G)0 is alge-
braically and topologically isomorphic to L2(G) and 2−1/2‖f‖2 ≤ ‖f‖0 ≤ ‖f‖2, see [101, The-
orem 1.9.1]. For a locally compact group G we know for all characters α ∈ Ĝ that |α(x)| = 1
for all x ∈ G. In contrast to the group case, we have for a commutative hypergroup K only
|α(x)| ≤ 1 for α ∈ K̂ and x ∈ K. This is why the next proposition is weaker than the corre-
sponding result for a commutative and compact group G.



68 CHAPTER 6. DERIVED SPACES

Proposition 6.2.1. Let K be compact and 1 ≤ p ≤ 2. Then L2(K,m) = Lp(K,m)0 as linear
spaces.

Proof. Since K is compact, we have L2(K,m) ⊂ Lp(K,m) ⊂ L1(K,m). Given a function
f ∈ L2(K,m) we obtain for each h ∈ L1(K,m)

‖f ∗ h‖p ≤ ‖f ∗ h‖2 = ‖℘(f ∗ h)‖2 ≤
∥∥∥f̂∥∥∥

2

∥∥∥ĥ∥∥∥
∞

= ‖f‖2
∥∥∥ĥ∥∥∥

∞
.

Thus, ‖f‖0 ≤ ‖f‖2. Conversely, let f ∈ Lp(K,m)0. For 1 ≤ q ≤ p ≤ 2 we have

‖f ∗ h‖q /
∥∥∥ĥ∥∥∥

∞
≤ ‖f ∗ h‖p /

∥∥∥ĥ∥∥∥
∞

for all h ∈ L1(K,m). Thus, Lp(K,m)0 ⊆ Lq(K,m)0 ⊆ L1(K,m)0. Hence, f is also an ele-

ment in L1(K,m)0 = L1(K,m)0 and we obtain for each ϕ ∈ C0(K̂) that ϕf̂ ∈ L1(K,m)∧.
Furthermore, by Lemma 5.3.2 and Proposition 2.1.7 we have f ∈ L2(K,m). This leads to
L2(K,m) = Lp(K,m)0 = Lp(K,m)0.

Remark 6.2.2. In addition to Chapter 5 we can reformulate Theorem 5.3.3 and Corollary
5.3.4. Lemma 5.3.1 implies that for an infinite and compact hypergroup K, 1 ≤ p < 2,
the inclusion Lp(K,m)0 ( Lp(K,m) is proper. Moreover, there exists ϕ ∈ C0(K) such that
ϕ /∈M(Lp(K,m)).

We can say even a bit more about the derived spaces of Lp(K,m), 1 < p <∞, for a compact
hypergroup K. A similar result for compact Abelian groups can be found in [101, Theorem
1.9.1 (ii)].

Theorem 6.2.3. Let K be compact and 1 < p <∞. If ϕ ∈ (Lp(K,m)0)∧ and ψ is a function

on K̂ such that |ψ(α)|/ ‖α‖22 ≤ |ϕ(α)| for all α ∈ K̂, then ψ ∈ (Lp(K,m)0)∧.

Proof. If f ∈ Lp(K,m)0 and h ∈ Lq(K,m), 1/p + 1/q = 1, then f ∗ h has an absolutely
convergent Fourier series. To see this, define

F (g) :=

∫
K

f ∗ g(x)h̃(x)dm(x)

for g ∈ Lp(K,m). Clearly, F is linear and since f ∈ Lp(K,m)0 we have by Hölder’s inequality

|F (g)| ≤ ‖f ∗ g‖p ‖h‖q ≤ ‖f‖0 ‖ĝ‖∞ ‖h‖q .

Thus, F defines a bounded linear functional on Lp(K,m)∧ and hence on all of C0(K̂), since
Lp(K,m)∧ is dense in C0(K̂), see [4, 2.2.4]. Consequently, there exists a unique bounded regular
Borel measure µ ∈M(K̂), such that∫

K

f ∗ g(x)h(x̃)dm(x) =
∑
α∈K̂

µ({α})ĝ(α),

for all g ∈ Lp(K,m). Moreover, since K is compact, K̂ defines an orthogonal basis on L2(K̂, π)
and we obtain α̂(β) = εα(β)‖α‖22 for all α, β ∈ K̂. In particular, for all α ∈ K̂ ⊂ Lp(K,m) ∩
L2(K,m)

‖α‖22 µ({α}) = α̂(α)µ({α}) =

∫
K

f ∗ α(x)h(x̃)dm(x) =

∫
K

∫
K

Lỹα(x)f(y)dm(y)h(x̃)dm(x)

=

∫
K

∫
K

α(y)f(y)dm(y)α(x)h(x̃)dm(x) = f̂ ĥ(α) = (f ∗ h)∧(α).

Since µ is bounded and ‖α‖22 ≤ ‖α‖
2
∞ = 1 for all α ∈ K̂, we have ‖(f ∗ h)∧‖1 ≤ ‖µ‖ <∞ and

therefore, f ∗ h has an absolutely convergent Fourier series.
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Now suppose f ∈ Lp(K,m)0, f̂ = ϕ and ψ is a function on K̂ such that |ψ(α)|/ ‖α‖22 ≤ |ϕ(α)|
for all α ∈ K̂. In light of the previous remarks it is apparent that for each h ∈ Lq(K,m) we
have ∑

α∈K̂

|ϕ(α)ĥ(α)| <∞

and hence ∑
α∈K̂

|ψ(α)ĥ(α)|/ ‖α‖22 <∞.

The convergence of the sum forces that only countable many summands differ from 0. Hence,
ψ(α) vanishes except for countable many α ∈ K̂, say except for α1, α2, .... For each positive
integer n ∈ N define

gn(x) :=

n∑
i=1

ψ(αi)αi(x)/ ‖αi‖22 .

Then we have for each h ∈ Lq(K,m)∫
K

gn(x)h(x̃)dm(x) =

n∑
i=1

ψ(αi)/ ‖αi‖22
∫
K

αi(x)h(x)dm(x) =

n∑
i=1

ψ(αi)ĥ(αi)/ ‖αi‖22 <∞.

It follows at once that (gn)n∈N is a weakly convergent sequence in Lp(K,m). Since Lp(K,m)
is weakly complete, see [101, D.10] there exists a function g ∈ Lp(K,m) such that

lim
n→∞

∫
K

gn(x)h(x̃)dm(x) =

∫
K

g(x)h(x̃)dm(x),

for all h ∈ Lq(K,m). Further,

ĝ(α) = lim
n→∞

∫
K

gn(x)α(x)dm(x) = lim
n→∞

n∑
i=1

ψ(αi)α̂(αi)/ ‖αi‖22 = ψ(α)

for all α ∈ K̂. Finally, since f ∈ Lp(K,m)0, we have for every d ∈ Lp(K,m) ⊂ L1(K,m)

‖f ∗ d‖p ≤ ‖f‖0
∥∥∥d̂∥∥∥

∞
.

Thus, if d(x) =
∑n
i=1 d̂(αi)αi(x) is a polynomial in Lp(K,m) we obtain

‖g ∗ d‖p =

∥∥∥∥∥
n∑
i=1

d̂(αi)ĝ(αi)αi

∥∥∥∥∥
p

=

∥∥∥∥∥
n∑
i=1

d̂(αi)ψ(αi)αi

∥∥∥∥∥
p

=

∥∥∥∥∥f ∗
n∑
i=1

d̂(αi)ψ(αi)[ϕ(αi)]
−1αi

∥∥∥∥∥
p

≤ ‖f‖0

∥∥∥∥∥(

n∑
i=1

d̂(αi)ψ(αi)[ϕ(αi)]
−1αi)

∧

∥∥∥∥∥
∞

≤ ‖f‖0
∥∥∥d̂ψϕ−1

∥∥∥
∞
≤ ‖f‖0

∥∥∥d̂∥∥∥
∞

since |ψ(α)| ≤ |ϕ(α)| ‖α‖22 ≤ |ϕ(α)|. Since the trigonometric polynomials are norm dense in

Lp(K,m) we can conclude that ‖g ∗ d‖p ≤ ‖f‖0
∥∥∥d̂∥∥∥

∞
for all d ∈ Lp(K,m). Thus, ‖g‖0 < ∞

and therefore is g ∈ Lp(K,m)0. Hence, ψ = ĝ ∈ (Lp(K,m)0)∧.

6.3 The Derived Spaces for non-compact Hypergroups

Now we want to characterize the derived spaces for a non-compact hypergroup K. Therefore,
we need again the existence of a proper set of uniqueness, see Chapter 5. Hence, in contrast to
the group case, this restricts our results for non-compact hypergroups. For K non-compact we
will show that under some circumstances Lp(K,m)0 equals {0}.
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Theorem 6.3.1. Let K be non-compact and 1 ≤ p < 2. If γ is a function on K̂ such that
ϕγ ∈ Lp(K,m)∧ for all ϕ ∈ C0(K̂) then γ = 0 almost everywhere on each compact set without
an isolated point.

Proof. If S does not contain a set of uniqueness, then S does not contain a compact set F
without an isolated point such that π(F ) > 0. Hence, the theorem is obvious.
Thus, we suppose that S contains a proper set of uniqueness. Further suppose γ does not
vanish almost everywhere on each compact set without an isolated point. Then there exists
a compact set C ⊂ K̂ without an isolated point, such that π(C) > 0 and γ does not vanish
almost everywhere on C. For ψ ∈ Cc(K̂) such that ψ = 1 on C, ψγ does not vanish almost
everywhere on C. Moreover, since ϕψ ∈ C0(K̂) for all ϕ ∈ C0(K̂), it follows by assumption
that ϕψγ ∈ Lp(K,m)∧ for all ϕ ∈ C0(K̂).
Therefore, we may assume without loss of generality that γ vanishes outside of some compact
set F without an isolated point and with π(F ) > 0.
For p = 1 we have ϕγ ∈ L1(K,m)∧ for all ϕ ∈ C0(K̂). Thus, for all ϕ ∈ C0(K̂) there exists
a unique gϕ ∈ L1(K,m) such that ĝϕ = ϕγ. Since γ vanishes outside of F , we conclude that

ϕγ ∈ Cc(K̂) ⊂ L2(S, π). We obtain gϕ ∈ L1(K,m) ∩ L2(K,m) and hence gϕ ∈ Lp(K,m),

1 ≤ p ≤ 2. Consequently ϕγ ∈ Lp(K,m)∧, 1 ≤ p ≤ 2, for all ϕ ∈ C0(K̂). Thus, we may further
assume without loss of generality, that ϕγ ∈ Lp(K,m)∧ for all ϕ ∈ C0(K̂) for some fixed p,
1 < p < 2.
Choosing a ϕ ∈ C0(K̂) which is identically one on F , leads to γ ∈ Lp(K,m)∧ ⊂ Lq(S, π),
1
p + 1

q = 1. Thus, the estimate

∫
K̂

|γ(α)|2 dπ(α) =

∫
K̂

χF (α) |γ(α)|2 dπ(α) = ‖χF γ‖22

≤
(∫

K̂

|γ(α)|q dπ(α)

)2/q (∫
K̂

χF (α)dπ(α)

)1−2/q

<∞

shows that γ ∈ L2(S, π). Now for each ϕ ∈ C0(K̂) let Aϕ denote the unique element of
Lp(K,m) such that (Aϕ)∧ = ϕγ. Since γ is an element in L2(S, π) with compact support, we
have (Aϕ)∧ ∈ L1(S, π) ∩ L2(S, π) and it is apparent that Aϕ = ℘−1(ϕγ) ∈ L2(K,m). It needs
to be noted that by the construction of the Hausdorff-Young transform, it is apparent that the
Hausdorff-Young transform coincides with the Fourier transform or the Plancherel Isomorphism
on Lp(K,m) ∩ L1(K,m) and Lp(K,m) ∩ L2(K,m), respectively.
In this way we define a linear mapping A from C0(K̂) to Lp(K,m). Moreover, by the Closed
Graph Theorem using standard argumentation, we deduce that A is continuous. Thus, there
exists a constant B > 0 such that ‖Aϕ‖p ≤ B ‖ϕ‖∞ for all ϕ ∈ C0(K̂).

Now let E ⊂ K̂ be any compact set. We wish to show that (χEγ)∨ ∈ Lp(K,m). Therefore, let
the sequence (ϕn)n∈N in Cc(K̂) be such that 0 ≤ ϕn(α) ≤ 1 for all α ∈ K̂ and ϕn(α) = 1 for
α ∈ E. Further, let En be the support of ϕn, En+1 ⊂ En and

⋂∞
n=1En = E. Clearly (ϕn)n∈N

converges pointwise to χE . Furthermore, ‖Aϕn‖p ≤ B ‖ϕn‖∞ ≤ B shows that (Aϕn)n∈N is
a bounded sequence in Lp(K,m). Hence, the sequence (Aϕn)n∈N has a weakly convergent
subsequence (Aϕk)k∈N0

. Let g ∈ Lp(K,m) be such that

lim
k

∫
K

Aϕk(x)h(x̃)dm(x) =

∫
K

g(x)h(x̃)dm(x)

for every h ∈ Lq(K,m), 1
p + 1

q = 1. Further, the sequence (ϕkγ)k∈N0 clearly converges pointwise

to χEγ and |ϕkf(α)| ≤ |f(α)| for all α ∈ K̂.
Since (Aϕk)k∈N0

is in Lp(K,m) ∩ L2(K,m), we have by Parseval’s formula and Lebesque’s
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theorem of dominated convergence for all h ∈ Cc(K) ⊂ L1(K,m) ∩ L2(K,m) that∫
K

g(x)h(x̃)dm(x) = lim
k

∫
K

Aϕk(x)h(x̃)dm(x) = lim
k

∫
K̂

(Aϕk)∧(α)ĥ(α)dπ(α)

= lim
k

∫
K̂

ϕkγ(α)ĥ(α)dπ(α) =

∫
K̂

χEγ(α)ĥ(α)dπ(α) =

∫
K

(χEγ)∨(x)h(x̃)dm(x).

The applications of Parseval’s formula are justified since χEγ ∈ L2(S, π) ∩ L1(S, π), see [4,
Lemma 2.2.20], and by the Hausdorff-Young Theorem. Since Cc(K) is norm dense in Lq(K,m)
we conclude that (χEγ)∨ = g almost everywhere. Therefore, (χEγ)∨ ∈ Lp(K,m).
There exists a measurable subset E ⊂ F ⊂ K̂, π(E) > 0, such that γ does not vanish almost
everywhere on E and E is a set of uniqueness for Lp(K,m), see Chapter 5. Since the Plancherel
measure is regular, see [86], and a measurable subset of a set of uniqueness is again a set of
uniqueness, it is apparent that we may assume E is compact. Then (χEγ)∨ ∈ Lp(K,m) while
χEγ does not vanish almost everywhere. This is a contradiction to the fact that E is a set of
uniqueness for Lp(K,m).

Corollary 6.3.2. Let K be non-compact and 1 ≤ p < 2. If S does not have an isolated point,
then Lp(K,m)0 = Lp(K,m)0 = {0}.

Corollary 6.3.3. Let K be non-compact and 1 < p <∞, p 6= 2. Suppose ϕ ∈M(Lp(K,m))
has the property that if ψ ∈ C0(K̂) and |ψ(α)| ≤ |ϕ(α)| for almost all α ∈ K̂ then ψ is also in
M(Lp(K,m)). Then ϕ = 0 almost everywhere on each compact set without an isolated point.

Proof. Assume 1 < p < 2, since M(Lp(K,m)) ∼=M(Lq(K,m)), if 1
p + 1

q = 1.

By Chapter 3 we see that ϕf̂ ∈ Lp(K,m)∧ for each f ∈ Lp(K,m). If ψ ∈ C0(K̂), for ψ 6= 0 holds
|ψϕ(α)| / ‖ψ‖∞ ≤ |ϕ(α)| for almost all α ∈ K̂ and by assumption ψϕ/ ‖ψ‖∞ ∈ M(Lp(K,m)).

Therefore, ψϕ ∈M(Lp(K,m)) for all ψ ∈ C0(K̂). Then we have in particular ψϕf̂ ∈ Lp(K,m)∧

for all ψ ∈ C0(K̂) and f ∈ Lp(K,m). By Theorem 6.3.1 it follows ϕf̂ = 0 almost everywhere
on each compact set without an isolated point for all f ∈ Lp(K,m). For every compact set F

without an isolated point we can choose f ∈ Lp(K,m) such that f̂ |F 6= 0. Indeed, we know

for an approximate identity (ki)i∈I that (ki ∗ ki)∧ = k̂ik̂i converges to 1 uniformly on each
compact subset. Choosing the function f = ki ∗ ki ∈ Lp(K,m) for an appropriate i ∈ I, we

obtain f̂χF 6= 0.
Thus, ϕ = 0 almost everywhere on each compact set without an isolated point.

Remark 6.3.4. By Theorem 6.3.1 it follows in particular for each non-compact hypergroup K
such that S contains a proper set of uniqueness, that the inclusion Lp(K,m)0 ( Lp(K,m) is
proper. Indeed, S contains a compact subset F , π(F ) > 0, without an isolated point. Hence,

for every f ∈ Lp(K,m)0 it follows by Theorem 6.3.1 that f̂ |F = 0 almost everywhere. However,

there exists a function f ∈ Lp(K,m) such that f̂χF 6= 0.

6.4 Applications to inclusion Results

Using Theorem 6.3.1 we derive some inclusion results concerning different multiplier spaces.

Corollary 6.4.1. Let K be non-compact and 1 ≤ p < 2. If S contains a proper set of unique-
ness, then C0(K̂) ∩M(Lp(K,m)) is a proper subset of C0(K̂).
Moreover, M(Lp(K,m)) is a proper subset of M(L2(K,m)).

Following the lines of Theorem 5.3.6, we obtain

Theorem 6.4.2. Let K be non-compact. If S contains a proper set of uniqueness, then⋃
1≤q<p

M(Lq(K,m)) (M(Lp(K,m)) (
⋂

p<q≤2

M(Lq(K,m)),
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if 1 < p < 2. For p = 1 the second inclusion remains strict and for p = 2 the first inclusion
remains strict.

Using Theorem 6.3.1 we obtain also a result concerning the inclusion results of multipliers
for the dual space of a polynomial hypergroup K = N0.

Theorem 6.4.3. Let K = N0 be a polynomial hypergroup which fulfills the continuity property
(P ). If S contains a proper set of uniqueness, then M(N̂0)∨ is a proper subset of M(Lp(S, π))
for all 1 < p <∞.

Proof. Since K = N0 satisfies the continuity property (P ), we have proven in Chapter 3 that

M(N̂0)∨ ⊂M(Lp(S, π)) for all 1 < p <∞. For p = 2 we have further M(L2(S, π)) = L∞(N0)
and the inclusion is obviously proper. Furthermore, for p 6= 2 we can assume 1 < p < 2 by
Proposition 4.3.5. Let r = 2p

3p−2 then 1 < r < 2 and p = 2r
3r−2 and by Theorem 4.3.10 we obtain

lr(N0, h) ∗ ls(N0, h) ⊂M(Lr(S, π)),

1/r+ 1/s = 1. To prove that the inclusion M(N̂0)∨ ⊂M(Lp(S, π)) is proper, it is sufficient to

show that lr(N0, h) ∗ ls(N0, h) 6⊂M(N̂0)∨.

Now assume lr(N0, h) ∗ ls(N0, h) ⊂ M(N̂0)∨. We define a complete norm on M(N̂0)∨ by
‖µ̌‖ = ‖µ‖. This is indeed a norm by the uniqueness theorem of the inverse Fourier-Stieltjes
transform. For each g ∈ lr(N0, h) define a linear transformation

Tg : ls(N0, h)→M(N̂0) by Tg(f) := g ∗ f.

To prove that Tg is continuous, choose a sequence (fn)n∈N0 in ls(N0, h) and f ∈ ls(N0, h) such
that ‖fn − f‖s → 0 and ‖Tgfn − µ̌‖ = 0 as n tends to infinity. Then

‖Tgf − µ̌‖∞ ≤ ‖Tgf − Tgfn‖∞ + ‖Tgfn − µ̌‖∞
≤ ‖g ∗ f − g ∗ fn‖∞ + ‖Tgfn − µ̌‖ ≤ ‖g‖r‖f − fn‖s + ‖Tgfn − µ̌‖ → 0

as n tends to infinity. Thus, Tgf = µ̌ and by the Closed Graph Theorem Tg is continuous.
Hence, Tg is bounded and for each g ∈ Lr(N0, h) there exists a constant M(g) ≥ 0 such that

‖Tgf‖ = ‖f ∗ g‖ ≤M(g)‖f‖s.

If we choose f, g ∈ Cc(N0), we conclude ĝf̂ ∈ L1(S, π) and g ∗ f = (ĝf̂)∨. Since, we can embed

L1(S, π) into M(N̂0) we obtain by the assumptions above

‖ĝf̂‖1 = ‖(ĝf̂)∨‖ = ‖g ∗ f‖ ≤M(g)‖f‖s.

For ϕ ∈ C0(N̂0), ‖ϕ‖∞ < 1, we conclude therefore

‖ϕĝf̂‖1 ≤ ‖ϕ‖∞‖(ĝf̂)∨‖ ≤M(g)‖f‖s.

By Chapter 2 it follows (ϕĝf̂)∨ = (ϕĝ)∨ ∗ f ∈ C0(N0) for all f ∈ Cc(N0). Hence, we have

|
∞∑
k=0

(ϕĝ)∨(k)f(k)h(k)| = |(ϕĝ)∨ ∗ f(0)| ≤ ‖(ϕĝ)∨ ∗ f‖∞ ≤ ‖ϕĝf̂‖1 ≤M(g)‖f‖s

for all f ∈ Cc(N0). Since Cc(N0) is dense in ls(N0, h), (ϕĝ)∨ defines a continuous linear
functional on ls(N0, h) and we can conclude (ϕĝ)∨ ∈ lr(N0, h). This leads to ϕĝ ∈ lr(N0, h)∧

for all ϕ ∈ C0(N̂0). By Theorem 6.3.1 it follows ĝ = 0 π-almost everywhere on each compact set
without an isolated point. Since S contains a proper set of uniqueness, there exists a compact
set F ⊂ S without an isolated point and π(F ) > 0. Hence, ĝ|F = 0. This contradicts the
fact that g was chosen arbitrarily in Cc(N0). Therefore, lr(N0, h) ∗ ls(N0, h) is not contained in

M(N̂0)∨ and M(N̂0)∨ is properly contained in M(lp(N0, h)).

Corollary 6.4.4. Let K = N0 be a polynomial hypergroup which fulfills the continuity prop-
erty (P ). If S contains a proper set of uniqueness, then M(L1(S, π)) is a proper subset of
M(Lp(S, π)) for all 1 < p <∞.



Chapter 7

Multipliers for homogeneous
Banach Spaces

In the context of Fourier analysis homogeneous Banach spaces on the unit circle are of great
interest, see [95], [105] and [164]. For instance, in homogeneous Banach spaces we can apply
all the classical approximation procedures on functions on the unit circle and their Fourier
expansions.
Dales and Pandey [16] have studied the class Sp of Segal algebras and proved weakly amenabil-
ity. Using this results, Ghahramani and Lau [59, 60] characterized further for various classes
of Segal algebras derivations and multipliers from a Segal algebra into itself and into its dual
module. Furthermore, multipliers of Segal algebras on locally compact groups are also investi-
gated in [8],[28], [64], [65], [99], [155, 156] and [158]. Even multipliers into general homogeneous
Banach spaces on groups are investigated by Feichtinger [37].
Segal algebras are a specific type of homogeneous Banach spaces. They are often even defined
equivalent to homogeneous Banach spaces.
Homogeneous Banach spaces determined by the Jacobi translation operator are introduces by
G. Fischer and R. Lasser in [46]. They give a lot of examples of homogeneous Banach spaces
and Banach algebras consisting of functions on S = [−1, 1]. These spaces are determined by

the Jacobi translation operator, which is generated by the Jacobi polynomials R
(α,β)
n (x).

Our aim here is to characterize multipliers for homogeneous Banach spaces in the hypergroup
setting. Moreover, we will give several examples of homogeneous Banach spaces, e.g. the
Wiener algebra, the Beurling space or the Sobolev space and study their multiplier properties
individually. The investigation of multipliers for the Wiener algebra was started in the author’s
Master thesis [19], but is here continued to a vast part.

7.1 Homogeneous Banach spaces determined by the Ja-
cobi translation operator

The Jacobi polynomials (R
(α,β)
n (x))n∈N, α, β > −1, are orthogonal with respect to π(α,β), where

supp π(α,β) = [−1, 1] = S. For the sake of simplicity we fix the parameters (α, β) ∈ J and omit
those from now on at all the notations in this chapter.

Definition 7.1.1. We call a linear subspace B of L1(S, π) a homogeneous Banach space
on S with respect to (α, β), if it is endowed with a norm ‖ ‖B such that

(B1) Rn ∈ B for all n ∈ N0

(B2) B is complete with respect to ‖ ‖B and ‖ ‖1 ≤ ‖ ‖B

73
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(B3) For every f ∈ B, x ∈ S we have Lxf ∈ B and ‖Lxf‖B ≤ ‖f‖B

(B4) For every f ∈ B the map x 7→ Lxf , S → B is continuous.

A homogeneous Banach space is called character-invariant, if

(B5) For every f ∈ B, n ∈ N0 we have Rn · f ∈ B and ‖Rn · f‖B ≤ ‖f‖B .

Every homogeneous Banach space B on S with respect to (α, β) is in fact a L1(S, π)-module,
since for each g ∈ B and f ∈ L1(S, π) we have f ∗ g ∈ B and ‖f ∗ g‖B ≤ ‖f‖1 ‖g‖B . Further-
more, B is a Banach algebra with convolution as multiplication, [46].

Some obvious examples for a homogeneous Banach space B on S with respect to (α, β) are
B = Lp(S, π), 1 ≤ p <∞, with norm ‖ ‖p and B = C(S) with norm ‖ ‖∞.
We are now in the position to examine multipliers for certain homogeneous Banach spaces on
S with respect to (α, β).

7.2 Multipliers for homogeneous Banach spaces

Let B be a homogeneous Banach space on S with respect to (α, β).

Definition 7.2.1. We call a bounded linear operator T on B multiplier, if and only if T
commutes with the Jacobi translation operator Ly for all y ∈ S, e.g. T ◦ Ly = Ly ◦ T . We
denote by M(B) the set of all multipliers for B.

Before we take a look on multipliers for some specific homogeneous Banach spaces on S, we
will first characterize multipliers for a general homogeneous Banach space B on S. Later on,
we will examine some examples for homogeneous Banach spaces on S and their corresponding
multiplier spaces.

Theorem 7.2.2. A bounded linear operator T on B is a multiplier for B, T ∈ M(B), if and
only if

T (f ∗ g) = f ∗ Tg

for all f ∈ L1(S, π) and g ∈ B. Moreover, we have Tf ∗ g = T (f ∗ g) = f ∗ Tg for all f, g ∈ B.

Proof. Following the lines of proof 3.1.2.

The next Theorem shows that each multiplier T for B is uniquely defined by its values on
Rn for n ∈ N0.

Theorem 7.2.3. A bounded linear operator T on B is a multiplier for B, T ∈ M(B), if and
only if there exists a unique function ϕ ∈ l∞(N0) such that

(Tf)∨ = ϕf̌

for all f ∈ B. Moreover, we have ϕ(n) = (TRn)∨(n)h(n) for all n ∈ N0 and ‖ϕ‖∞ ≤ ‖T‖.

Proof. By (B1) is Rn ∈ B for all n ∈ N0 and we have Řn(m) = δm,nh(n)−1, where δm,n denotes
the Kroneker symbol. Thus, for every n ∈ N0 there exists Rn ∈ B with Řn(n) = h(n)−1 6= 0.
Further, for n ∈ N0 and f, g ∈ B such that f̌(n) 6= 0 and ǧ(n) 6= 0 we have by Theorem 7.2.2

(Tf)∨(n)/f̌(n) = (Tg)∨(n)/ǧ(n).

This equation shows that the definition

ϕ(n) := (Tf)∨(n)/f̌(n) = (TRn)∨(n)h(n)
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is independent on the choice of f ∈ B. Hence, ϕ(n) is well-defined on N0. If f̌(n) 6= 0 and
ǧ = 0 then (Tg)∨(n)f̌(n) = (Tf)∨(n)ǧ(n) = 0. Hence, the equation (Tg)∨(n) = ϕ(n)ǧ(n) is
valid for all n ∈ N0 and g ∈ B.
If ψ ∈ l∞(N0) is a second function with (Tg)∨(n) = ϕ(n)ǧ(n) for all n ∈ N0 and g ∈ B, then
we obtain (ψ(n)− ϕ(n))ǧ(n) = 0 for all n ∈ N0 and all g ∈ B. This implies ϕ = ψ.
To prove that ϕ is bounded, we define

Kn := sup
f∈B

{∣∣f̌(n)
∣∣ : ‖f‖B = 1

}
.

By
∥∥f̌∥∥∞ ≤ ‖f‖1 ≤ ‖f‖B = 1 for all f ∈ B ⊂ L1(S, π), we have 0 < Kn ≤ 1. Further holds

|ǧ(n)| ≤ Kn ‖g‖B . Moreover,

|ϕ(n)ǧ(n)| = |(Tg)∨(n)| ≤ Kn ‖Tg‖B ≤ Kn ‖T‖ ‖g‖B

for all g ∈ B. By choosing only those g ∈ B with ‖g‖B = 1 and ǧ(n) 6= 0 we have

|ϕ(n)| ≤ Kn ‖T‖ inf

{
1

|ǧ(n)|
: ‖g‖B = 1 and ǧ(n) 6= 0

}
= ‖T‖ ,

where the second equality holds, since the g ∈ B with ‖g‖B = 1 and ǧ(n) = 0 do not contribute
to the value of Kn. Hence, ϕ is bounded by ‖ϕ‖∞ ≤ ‖T‖.
Conversely, let T be a bounded linear operator on B such that T is defined by (Tf)∨ = ϕf̌ for
a given ϕ ∈ l∞(N0) and all f ∈ B. Then

(T ◦ Lxf)∨(n) = ϕ(n)(Lxf)∨(n) = ϕ(n)Rn(x)f̌(n)
= Rn(x)ϕ(n)f̌(n) = (Lx ◦ Tf)∨(n)

for all n ∈ N0 and f ∈ B. By the uniqueness of the Jacobi transform it follows that T ◦ Lx =
Lx ◦ T .

The next Theorem depends on whether the homogeneous Banach space B is a subset in
L2(S, π) or not. If B ⊂ L2(S, π), we have f̌ ∈ l2(N0, h) for all f ∈ B and we can show the
existence of a pseudomeasure σ ∈ P (S), such that Tf = σ ∗f belongs to L2(S, π) for all f ∈ B.
For the theory of pseudomeasures we refer to Chapter 3.

Theorem 7.2.4. Let B ⊂ L2(S, π). For a bounded linear operator T on B the following
conditions are equivalent:

i) T ∈M(B), i.e. T ◦ Lx = Lx ◦ T for all x ∈ S.

ii) There exists a unique pseudomeasure σ ∈ P (S), such that Tf = σ ∗ f for all f ∈ B.

Moreover, there exists a continuous algebra isomorphism on M(B) into P (S) with ‖σ‖P ≤ ‖T‖.

Proof. Let T ∈ M(B). By Theorem 7.2.3 there exists a unique ϕ ∈ l∞(N0) such that Tf =
℘(ϕf̌) for all f ∈ B. Furthermore, by the assumptions in Chapter 3 (see also [20]) there exists
an isometric isomorphism Φ : P (S) → l∞(N0). Set σ := Φ−1(ϕ). Moreover, we know that for
f ∈ B ⊂ L1(S, π) ∩ L2(S, π), σ ∗ f exists as a pseudomeasure and we obtain by definition

Φ(σ ∗ f) = Φ(σ)f̌ = ϕf̌ ∈ l2(N0, h) ∩ l∞(N0).

Hence, Φ−1(ϕf̌) = σ ∗ f belongs to L2(S, π) and

σ ∗ f = Φ−1(ϕf̌) = ℘(ϕf̌) = Tf.

Since Φ is isometric, we have by Theorem 7.2.3 ‖σ‖P = ‖ϕ‖∞ ≤ ‖T‖.
Conversely is every bounded linear operator T on B, which is defined by Tf = σ∗f for σ ∈ P (S),
a multiplier for B. Indeed, Tf = σ ∗ f = Φ−1(Φ(σ)f̌) = ℘(ϕf̌) for ϕ = Φ(σ) ∈ l∞(N0). The
rest follows by Theorem 7.2.3.
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If B 6⊂ L2(S, π) we have to take compromises. We are only able to prove a much weaker
result for T ∈M(B).

Theorem 7.2.5. Let B 6⊂ L2(S, π). If a bounded linear operator T on B is a multiplier for B,
i.e. T ◦ Lx = Lx ◦ T for all x ∈ S, then there exists a unique pseudomeasure σ ∈ P (S), such
that Tf = σ ∗ f for all f ∈ B ∩ L2(S, π).
Moreover, there exists a continuous algebra isomorphism on M(B) into P (S) with ‖σ‖P ≤ ‖T‖.

Proof. The proof follows the lines of the first part of proof 7.2.4.

7.2.1 Multipliers for the Wiener algebra W (S)

An interesting example of homogeneous Banach spaces determined by the Jacobi translation
operator is the Wiener algebra. Denote by

W (S) :=
{
f ∈ C(S) : f̌ ∈ l1(N0, h)

}
.

The Wiener algebra, W (S), is with the norm ‖f‖W :=
∥∥f̌∥∥

1
, f ∈W (S), a homogeneous Ba-

nach space on S, see [46] (We introduced W (S) already in Chapter 3). Furthermore, W (S) is a
Banach algebra with respect to the convolution and with respect to the pointwise multiplication
of functions.

Theorem 7.2.6. For an operator T ∈ B(W (S)), the following conditions are equivalent:

i) T ∈M(W (S)), i.e. T ◦ Lx = Lx ◦ T for all x ∈ S.

ii) For all f, g ∈W (S) we have Tf ∗ g = T (f ∗ g) = f ∗ Tg.

iii) There exists a unique bounded function ϕ on N0, such that
(Tf)∨ = ϕf̌ for all f ∈W (S).

Moreover ‖ϕ‖∞ = ‖T‖.

We will introduce a different possibility of a proof and show the implication i) to ii) again,
even though we have already proven this equivalency in the section above, see Theorem 7.2.2.

Proof. Let T ∈M(W (S)). Since W (S) is a homogeneous Banach space, we have Lxf ∈W (S)
for all x ∈ S and f ∈W (S).
By

‖f‖W =
∥∥f̌∥∥

1
≤ ‖f‖1 +

∥∥f̌∥∥
1
≤ ‖f‖∞ +

∥∥f̌∥∥
1
≤ 2

∥∥f̌∥∥
1

= 2 ‖f‖W

the two norms ‖ ‖W and ‖.‖1 := ‖.‖1 + ‖̌.‖1 are equivalent on W (S). Thus, each continuous

functional F on W (S) w.r.t. ‖ ‖W is also continuous w.r.t. ‖ ‖1 .
Further, it is evident that the mapping Ψ : W (S)→ L1(S, π)×l1(N0, h) defined by Ψ(f) := (f, f̌)

for each f ∈W (S) is a linear isometry of (W (S), ‖ ‖1) into the Banach space L1(S, π)×l1(N0, h)
equipped with the sum of the ordinary norms as productnorm, i.e. ‖ ‖1 + ‖ ‖1. Thus, we may
consider W (S) as a closed linear subspace of L1(S, π) × l1(N0, h). Since the dual space of
L1(S, π) × l1(N0, h) is isomorphic to L∞(S, π) × l∞(N0), by the theorem of Hahn-Banach we

can consider every continuous linear functional F on W (S) w.r.t. ‖ ‖1 to be of the following
form:

F (f) =

∫
S
f(x)a(x)dπ(x) +

∞∑
k=0

f̌(k)b(k)h(k),

for (a, b) ∈ L∞(S, π) × l∞(N0). (The pair (a, b) corresponding to a given functional may not
be unique.)

Now let F be such a continuous functional on W (S) w.r.t. ‖ ‖1. Then F ◦T is also a continuous
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linear functional on W (S) w.r.t. ‖ ‖1. Hence, there exist (a, b) and (α, β) in L∞(S, π)× l∞(N0)
such that for each f ∈W (S) we have

F (f) =

∫
S
f(x)a(x)dπ(x) +

∞∑
k=0

f̌(k)b(k)h(k)

F ◦ T (f) =

∫
S
f(x)α(x)dπ(x) +

∞∑
k=0

f̌(k)β(k)h(k).

Consequently, for f, g ∈W (S) is

F (Tf ∗ g) =

∫
S

(Tf ∗ g)(x)a(x)dπ(x) +

∞∑
k=0

(Tf ∗ g)∨(k)b(k)h(k)

=

∫
S

∫
S
LyTf(x)g(y)dπ(y)a(x)dπ(x) +

∞∑
k=0

(Tf)∨
∫
S
g(y)Rk(y)dπ(y)b(k)h(k)

=

∫
S
g(y)

∫
S
LyTf(x)a(x)dπ(x)dπ(y) +

∫
S
g(y)

∞∑
k=0

(Tf)∨Rk(y)b(k)h(k)dπ(y)

=

∫
S
g(y)

[∫
S
TLyf(x)a(x)dπ(x) +

∞∑
k=0

(TLyf)∨b(k)h(k)

]
dπ(y)

=

∫
S
g(y)F ◦ T (Lyf)dπ(y)

=

∫
S
g(y)

[∫
S
Lyf(x)α(x)dπ(x) +

∞∑
k=0

(Lyf)∨β(k)h(k)

]
dπ(y)

=

∫
S

∫
S
Lyf(x)g(y)dπ(y)α(x)dπ(x) +

∞∑
k=0

f̌

∫
S
g(y)Rk(y)dπ(y)β(k)h(k)

=

∫
S

(f ∗ g)(x)α(x)dπ(x) +

∞∑
k=0

(f ∗ g)∨(k)β(k)h(k)

= F ◦ T (f ∗ g) = F (T (f ∗ g))

Moreover, we know by Theorem 7.2.3 the existence of a unique ϕ ∈ l∞(N0) such that (Tf)∨ =
ϕf̌ and ‖T‖ ≥ ‖ϕ‖∞. We obtain further

‖Tf‖W = ‖(Tf)∨‖1 =
∥∥ϕf̌∥∥

1
≤ ‖ϕ‖∞ ‖f‖W .

Hence, ‖T‖ = ‖ϕ‖∞.

Theorem 7.2.7. For T ∈ B(W (S)) the following conditions are equivalent:

i) T ∈M(W (S)), i.e. T ◦ Lx = Lx ◦ T for all x ∈ S.

ii) There exists a unique pseudomeasure σ ∈ P (S), such that Tf = σ ∗ f for all f ∈W (S).

Moreover, there exists an isometric algebra isomorphism on M(W (S)) onto P (S).

Proof. The assertion follows by Theorem 7.2.4, since W (S) ⊂ L2(S, π). Further, Φ is isometric
and we have by Theorem 7.2.6 ‖σ‖P = ‖ϕ‖∞ = ‖T‖. Moreover, each ϕ ∈ l∞(N0) defines a
multiplier for W (S) by Tf := (ϕf̌)∧. Hence,

M(W (S)) ' l∞(N0) ' P (S).
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7.2.2 Multipliers for Ap(S, π)

Motivated by the Wiener algebra, W (S), we introduce further homogeneous Banach spaces

Ap(S, π) :=
{
f ∈ L1(S, π) : f̌ ∈ lp(N0, h)

}
,

1 ≤ p <∞, with norm ‖f‖p := ‖f‖1 +
∥∥f̌∥∥

p
. Notice that (A1(S, π), ‖.‖1) is the Wiener algebra

W (S) with a different but equivalent norm. The equivalence of the two norms ‖.‖1 and ‖.‖W
was shown in the proof of Theorem 7.2.6.
Larsen introduced in [101, Chapter 6] these spaces on groups. He presents various characteri-
zations for multipliers for functions with Fourier transform in Lp(Ĝ). Many of these results are
extendable to commutative hypergroups. Here we focus on Ap(S, π).
We want to remark, that the following relations between those spaces holds obviously for
1 ≤ p ≤ q ≤ 2 ≤ r ≤ s <∞,

W (S) ⊂ Ap(S, π) ⊂ Aq(S, π) ⊂ A2(S, π) = L2(S, π) ⊂ Ar(S, π) ⊂ As(S, π) ⊂ L1(S, π)

Before we can characterize the multipliers for Ap(S, π), we need to check, if those spaces are
indeed homogeneous Banach spaces on S. The proof equals partial the proof of Proposition 3.6
in [46].

Proposition 7.2.8. Ap(S, π) :=
{
f ∈ L1(S, π) : f̌ ∈ lp(N0, h)

}
, 1 ≤ p < ∞, is with norm

‖f‖p := ‖f‖1 +
∥∥f̌∥∥

p
a character-invariant homogeneous Banach space on S.

Proof. Ap(S, π) is obviously a linear subspace of L1(S, π) and ‖·‖p is a norm by the uniqueness
theorem of the Jacobi transform. Since Řm(n) = h(n)−1δm,n ∈ lp(N0, h), where δm,n denotes
the Kronecker symbol, we have Rn ∈ Ap(S, π) for all n ∈ N0. Hence, (B1) holds.
For f ∈ Ap(S, π) we have ‖f‖1 ≤ ‖f‖1 +

∥∥f̌∥∥
p
. Further, Ap(S, π) is complete with respect

to ‖·‖p, because each Cauchy sequence (fn)n∈N in Ap(S, π) is a Cauchy sequence in L1(S, π)
and (f̌n)n∈N is a Cauchy sequence in lp(N0, h). Since L1(S, π) and lp(N0, h) are complete with
respect to ‖.‖1 and ‖.‖p respectively, there exists f ∈ L1(S, π) with limn→∞ ‖fn − f‖1 = 0 and

d ∈ lp(N0, h) such that limn→∞
∥∥f̌n − d∥∥p. Furthermore, f̌ = d, since∥∥f̌ − d∥∥∞ ≤ ∥∥f̌ − f̌n∥∥∞ +

∥∥f̌n − d∥∥p ≤ ‖f − fn‖1 +
∥∥f̌n − d∥∥p → 0

as n tends to infinity. Thus, we have proven (B2).
To show (B3) note that supx∈S |Rn(x)| = 1 for all n ∈ N0. Hence, for each f ∈ Ap(S, π) and
x ∈ S we have Lxf ∈ L1(S, π) and (Lxf)∨(n) = Rn(x)f̌(n) is an element in lp(N0, h). Further
follows

‖Lxf‖p = ‖Lxf‖1 +

( ∞∑
k=0

∣∣Rk(x)f̌(k)
∣∣p h(k)

)1/p

≤ ‖f‖1 + sup
k∈N0

|Rk(x)|
∥∥f̌∥∥

p
≤ ‖f‖p .

Now we want to show the continuity of x 7→ Lxf , S → Ap(S, π) for all f ∈ Ap(S, π). Fix
f ∈ Ap(S, π) and let x0 ∈ S, ε > 0. There exists N ∈ N and g ∈ Ap(S, π) such that∥∥ǧ − f̌∥∥

p
< ε

4 , ǧ(n) = f̌(n) for all n ≤ N and ǧ(n) = 0 for all n > N . Indeed, since f̌ ∈ lp(N0, h)

there exists a N ∈ N0 such that
∑∞
k=N+1 ‖f̌(k)|ph(k) < ε

4 . We choose g =
∑N
k=0 f̌(k)Rkh(k).

Furthermore, since ǧ(n) = 0 for all n > N there exists δ > 0 with ‖(Lxg)∨ − (Lx0
g)∨‖p <

ε
2 for

all x ∈ S such that |x− x0| < δ. Thus, we obtain ‖(Lxf)∨ − (Lx0f)∨‖p < ε for all x ∈ S with

|x− x0| < δ and finally ‖Lxf − Lx0
f‖p < 2ε for all x ∈ S with |x− x0| < δ′, since L1(S, π) is a

homogeneous Banach space. Thus, the map x 7→ Lxf , S → B is continuous for all f ∈ Ap(S, π)
and (B4) is proven.
We conclude Rn · f ∈ Ap(S, π), since Řn = 1

h(n)εn and hence,

(Rn · f)∨ = Řn ∗ f̌ ∈ l1(N0, h) ∗ lp(N0, h) ∈ lp(N0, h).
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Moreover,

‖Rn · f‖p = ‖Rn · f‖1 + ‖(Rn · f)∨‖p
≤ ‖Rn‖∞ ‖f‖1 +

∥∥Řn ∗ f̌∥∥p
≤ ‖f‖1 +

∥∥Řn∥∥1

∥∥f̌∥∥
p

= ‖f‖1 +

∥∥∥∥ 1

h(n)
εn

∥∥∥∥
1

∥∥f̌∥∥
p

= ‖f‖p .

for all n ∈ N0. Hence, Ap(S, π) is a character-invariant homogeneous Banach space on S.

Remark 7.2.9. A2(S, π) is with norm ‖f‖ :=
∥∥f̌∥∥

2
also a character-invariant homogeneous

Banach space.

Now we continue characterizing multipliers for Ap(S, π).

Theorem 7.2.10. For a bounded linear operator T on Ap(S, π), 1 ≤ p < ∞, the following
conditions are equivalent:

i) T ∈M(Ap(S, π)), i.e. T ◦ Lx = Lx ◦ T for all x ∈ S.

ii) For all f, g ∈ Ap(S, π) we have Tf ∗ g = T (f ∗ g) = f ∗ Tg.

iii) There exists a unique bounded function ϕ on N0, such that
(Tf)∨ = ϕf̌ for all f ∈ Ap(S, π).

Moreover, ‖T‖ ≥ ‖ϕ‖∞. For 1 ≤ p ≤ 2 is further ‖T‖ ≤ 2 ‖ϕ‖∞.

Proof. The proof follows directly by Theorem 7.2.2 and Theorem 7.2.3. (One could also follow
the lines of the proof of Theorem 7.2.6.)
For the last statement we have for 1 ≤ p ≤ 2

‖Tf‖p ≤ ‖Tf‖2 + ‖ϕ‖∞
∥∥f̌∥∥

p
= ‖(Tf)∨‖2 + ‖ϕ‖∞

∥∥f̌∥∥
p

≤ ‖ϕ‖∞
∥∥f̌∥∥

2
+ ‖ϕ‖∞

∥∥f̌∥∥
p
≤ 2 ‖ϕ‖∞

∥∥f̌∥∥
p
≤ 2 ‖ϕ‖∞ ‖f‖

p
.

The next characterization of multipliers in Ap(S, π) depends on whether p ≤ 2 or p > 2.
This is do to the fact that for 1 ≤ p ≤ 2, we have Ap(S, π) ⊂ L2(S, π).
Conversely is L2(S, π) ( Ap(S, π) whenever 2 < p. Indeed, for p > 2 and 1/p + 1/q = 1
suppose L2(S, π) = A2(S, π) = Ap(S, π). Given a continuous function g on S the Riesz-Thorin
convexity theorem yields the inequality ‖ǧ‖p ≤ ‖g‖p. Now let f ∈ Lq(S, π) ⊂ L1(S, π). By
approximating f through continuous functions on S, we obtain f̌ ∈ lp(N0, h). Our assumption
implies f ∈ L2(S, π). Hence, Lq(S, π) = L2(S, π). This is a contradiction, since S is infinite.
In case 2 < p we can only quote Theorem 7.2.5, but in case p ≤ 2 we can say more:

Theorem 7.2.11. For a bounded linear operator T on Ap(S, π) and 1 ≤ p ≤ 2, the following
conditions are equivalent:

i) T ∈M(Ap(S, π)), i.e. T ◦ Lx = Lx ◦ T for all x ∈ S.

ii) There exists a unique pseudomeasure σ ∈ P (S), such that Tf = σ∗f for all f ∈ Ap(S, π).

Moreover, there exists a continuous algebra isomorphism from M(Ap(S, π)) onto P (S) such
that ‖σ‖P ≤ ‖T‖ ≤ 2 ‖σ‖P .

Proof. The proof follows by Theorem 7.2.4 and Theorem 7.2.10, since P (S) and l∞(N0) are iso-
metrically isomorphic. Moreover, each ϕ ∈ l∞(N0) defines by Tf := ℘(ϕf̌) for all f ∈ Ap(S, π)
a multiplier for Ap(S, π). Hence, the algebra isomorphism from M(Ap(S, π)) into P (S) is
surjective.
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Proposition 7.2.12. Let 1 ≤ p ≤ 2. Then there exists a norm-increasing algebra isomorphism
from M(W (S)) into M(Ap(S, π)).

Proof. We haveW (S) ⊂ Ap(S, π). Hence, M(Ap(S, π)) ⊂M(W (S)), since for T ∈M(Ap(S, π))
and f ∈ W (S) we obtain (Tf)∨ = ϕf̌ ∈ l1(N0, h), for ϕ ∈ l∞(N0) as in Theorem 7.2.10, and
Tf = (ϕf̌)∧ ∈ C(S). Hence, Tf ∈W (S). Furthermore,

‖Tf‖W = ‖(Tf)∨‖1 ≤ ‖ϕ‖∞
∥∥f̌∥∥

1
= ‖ϕ‖∞ ‖f‖W .

Thus, T is a bounded linear operator on W (S), which commutes with translation, that is
T ∈M(W (S)). Further, by Theorem 7.2.7 and Theorem 7.2.11 there exists an isomorphism
between M(W (S)) and P (S) and between P (S) and M(Ap(S, π)). Hence, M(W (S)) and
M(Ap(S, π)) are algebraic isomorphic. Moreover, we have

‖T‖W = ‖ϕ‖∞ ≤ ‖T‖
p
,

where ‖T‖W denotes the operator norm of T defined on W (S) and ‖T‖p denotes the operator
norm of T defined on Ap(S, π). Hence, the algebra isomorphism is norm-increasing.

Remark 7.2.13. We want to point out, that by Proposition 7.2.12 the multiplier spaces of
W (S) and Ap(S, π), 1 < p ≤ 2, coincide, despite that fact that W (S) is a proper linear subset
in Ap(S, π) and the norms of those spaces are not equivalent. This leads to the observation
that the multipliers for a homogeneous Banach space contribute little information about the
homogeneous Banach space itself.
Moreover, we remark the existence of a norm-increasing algebra isomorphism from M(Ap(S, π))
into M(Aq(S, π)) for 1 ≤ p < q ≤ 2.

Remark 7.2.14. In contrast to 1 ≤ p < q ≤ 2 where M(Ap(S, π)) = M(Aq(S, π)), for
2 ≤ p < q <∞ we can only show that

M(Aq(S, π)) ⊂M(Ap(S, π)).

Since for T ∈ M(Aq(S, π)) and f ∈ Ap(S, π) ⊆ Aq(S, π) we have (Tf)∨ = ϕf̌ ∈ lp(N0) as
f ∈ Ap(S, π) and ϕ is bounded. Further holds

‖Tf‖p ≤ ‖Tf‖1 + ‖ϕ‖∞
∥∥f̌∥∥

p
≤ ‖Tf‖q + ‖ϕ‖∞

∥∥f̌∥∥
p

≤ ‖T‖q ‖f‖q + ‖ϕ‖∞
∥∥f̌∥∥

p
≤ (‖T‖q + ‖ϕ‖∞) ‖f‖p ,

where ‖T‖q denotes the operator norm of T defined on Aq(S, π). Hence, T is a bounded linear
operator on Ap(S, π) and T commutes with all Jacobi translation operators.

Remark 7.2.15. Using Theorem 4 in [20] we have for all 1 ≤ p <∞

l1(N0, h) = M(Ds) 'M(L1(S, π)) ⊂M(Ap(S, π)) ⊂M(W (S)) ' P (S).

7.2.3 Multipliers for the Beurling space W∗(S)

The space

W∗(S) :=

{
f ∈W (S) :

∞∑
k=0

sup
l≥k
|f̌(l)|h(k) <∞

}
is called Beurling space. The Beurling space W∗(S) is with norm

‖f‖W∗ :=

∞∑
k=0

sup
l≥k
|f̌(l)|h(k)



7.2. MULTIPLIERS FOR HOMOGENEOUS BANACH SPACES 81

a homogeneous Banach space, see [46]. Furthermore, W∗(S) is a Banach algebra with respect
to the convolution and with respect to the pointwise multiplication of functions.
G. Fischer and R. Lasser proved in [46] that W (S)\W∗(S) 6= ∅ by giving an example of a
function in W (S)\W∗(S). Hence, it makes indeed sense to examine the multipliers for W∗(S),
even though we already know the multipliers for W (S). Despite the fact that the two homoge-
neous Banach spaces are different and their norms are not equivalent, we will prove that their
multiplier spaces coincide.
It is easy to see, that the multiplier space M(W (S)) is included in M(W∗(S)). Indeed, choose
a multiplier T ∈M(W (S)) with the corresponding function ϕ ∈ l∞(N0) such that (Tg)∨ = ϕǧ
for all g ∈W (S) and let f ∈W∗(S) ⊂W (S). We obtain

‖Tf‖W∗ =

∞∑
k=0

sup
l≥k
|(Tf)∨(l)|h(k) =

∞∑
k=0

sup
l≥k
|ϕ(l)||f̌(l)|h(k) ≤ ‖ϕ‖∞ ‖f‖W∗ .

Thus, T is a bounded linear operator on W∗(S), which commutes with Jacobi translation
operators. Hence, T ∈ M(W∗(S)). In particular each ϕ ∈ l∞(N0) defines a multiplier for
W∗(S), see Theorem 7.2.7
There is even more we can say about the multipliers for W∗(S):

Theorem 7.2.16. For a bounded linear operator T on W∗(S) the following conditions are
equivalent:

i) T ∈M(W∗(S))

ii) For all f, g ∈W∗(S) we have Tf ∗ g = T (f ∗ g) = f ∗ Tg.

iii) There exists a unique function ϕ ∈ l∞(N0) such that (Tf)∨ = ϕf̌ for all f ∈W∗(S).

Moreover is ‖T‖ = ‖ϕ‖∞.

Proof. The equivalencies of i), ii) and iii) follow by Theorem 7.2.2 and 7.2.3.
Furthermore, we have ‖T‖ ≥ ‖ϕ‖∞ by Theorem 7.2.3. By

‖Tf‖W∗ =

∞∑
k=0

sup
l≥k
|(Tf)∨(l)|h(k) =

∞∑
k=0

sup
l≥k
|ϕ(l)||f̌(l)|h(k) ≤ ‖ϕ‖∞ ‖f‖W∗ .

we obtain ‖ϕ‖∞ = ‖T‖.

As a consequence of Theorem 7.2.16 we conclude

Theorem 7.2.17. For a bounded linear operator T on W∗(S) the following conditions are
equivalent:

i) T ∈M(W∗(S))

ii) There exists a unique pseudomeasure σ ∈ P (S) such that Tf = σ ∗ f , for all f ∈W∗(S).

Moreover, there exists an isometric algebra isomorphism from M(W∗(S)) onto P (S).

Proof. The proof follows by Theorem 7.2.4 and by Theorem 7.2.16.
Moreover, the isometric algebra isomorphism from M(W∗(S)) into P (S) is surjective, since
each ϕ ∈ l∞(N0) defines a multiplier for W∗(S) by Tf := (ϕf̌)∧. Hence, we have an isometric
algebra isomorphism from M(W∗(S)) onto l∞(N0) ' P (S).

Corollary 7.2.18. There exists an isometric algebra isomorphism between M(W (S)) and
M(W∗(S)).
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7.2.4 Multipliers for the Sobolev space H
(1)
2 (S)

We denote by sn := R′n(1) for n ∈ N.
Define a subspace

D(B) :=

{
f ∈ L2(S, π) :

∞∑
k=0

s2
k|f̌(k)|2h(k) <∞

}
and an operator

B : D(B)→ L2(S, π), Bf :=

∞∑
k=0

skf̌(k)Rkh(k)

for all f ∈ D(B). Furthermore, we put

H
(1)
2 (S) :=

{
f ∈ L2(S, π) : lim

x→1−

f − Lxf
1− x

exists in L2(S, π)

}
and call

D : H
(1)
2 (S)→ L2(S, π), Df := lim

x→1−

f − Lxf
1− x

the Jacobi differential operator with respect to (α, β) ∈ J .
G.Fischer and R.Lasser showed in [46] that the Jacobi differential operator D fullfils

i) H
(1)
2 (S) = D(B)

ii) Df = limx→1−
f−Lxf

1−x =
∑∞
k=0 skf̌(k)Rkh(k) = Bf for all f ∈ H(1)

2 (S)

We call the space H
(1)
2 (S) Sobolev space induced by D and choose

‖f‖2,1 := ‖f‖2 + ‖Df‖2

as norm on H
(1)
2 (S). With this norm H

(1)
2 (S) becomes a homogeneous Banach space on S with

respect to (α, β) ∈ J , see [46].
Sobolev spaces are very important in the theory of partial differential equations. Sobolev spaces
defined on the torus T are investigated in [142].

Theorem 7.2.19. For a bounded linear operator T on H
(1)
2 (S) the following conditions are

equivalent:

i) T is a multiplier for H
(1)
2 (S), i.e. T ∈M(H

(1)
2 (S)).

ii) For all f, g ∈ H(1)
2 (S) we have Tf ∗ g = T (f ∗ g) = f ∗ Tg.

iii) There exists a unique function ϕ ∈ l∞(N0) such that (Tf)∨ = ϕf̌ for all f ∈ H(1)
2 (S).

Moreover, ‖ϕ‖∞ = ‖T‖.
Proof. The equivalencies i), ii) and iii) follow by Theorem 7.2.2 and 7.2.3. Theorem 7.2.3
yields‖ϕ‖∞ ≤ ‖T‖. Further, we obtain ‖T‖ ≤ ‖ϕ‖∞ by

‖Tf‖2,1 = ‖Tf‖2 + ‖D(Tf)‖2 = ‖(Tf)∨‖2 +

∥∥∥∥∥
∞∑
k=0

sk(Tf)∨(k)Rkh(k)

∥∥∥∥∥
2

=
∥∥ϕf̌∥∥

2
+

∥∥∥∥∥
∞∑
k=0

skϕ(k)f̌(k)Rkh(k)

∥∥∥∥∥
2

≤ ‖ϕ‖∞
∥∥f̌∥∥

2
+

( ∞∑
k=0

s2
k(ϕ(k)f̌(k))2h(k)

)1/2

≤ ‖ϕ‖∞ ‖f‖2 + ‖ϕ‖∞

( ∞∑
k=0

s2
k(f̌(k))2h(k)

)1/2

= ‖ϕ‖∞ (‖f‖2 + ‖Df‖2) = ‖ϕ‖∞ ‖f‖2,1 .
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Theorem 7.2.20. Let T be a bounded linear operator on H
(1)
2 (S). The following conditions

are equivalent:

i) T ∈M(H
(1)
2 (S)).

ii) There exists a unique pseudomeasure σ ∈ P (S) such that Tf = σ ∗ f for all f ∈ H(1)
2 (S).

Moreover, there exists an isometric algebra isomorphism from M(H
(1)
2 (S)) onto P (S).

Proof. The proof follows by Theorem 7.2.4 and Theorem 7.2.19.

Furthermore, each ϕ ∈ l∞(N0) defines by Tf := ℘(ϕf̌) a multiplier for H
(1)
2 (S). Indeed, we

have

‖Tf‖2,1 = ‖Tf‖2 +

( ∞∑
k=0

s2
k(Tf)∨(k)2h(k)

)1/2

=
∥∥ϕf̌∥∥

2
+

( ∞∑
k=0

s2
kϕ(k)2f̌(k)2h(k)

)1/2

≤ ‖ϕ‖∞
∥∥f̌∥∥

2
+ ‖ϕ‖∞

( ∞∑
k=0

s2
kf̌(k)2h(k)

)1/2

= ‖ϕ‖∞ ‖f‖2,1 <∞

for all f ∈ H
(1)
2 (S). Hence, Tf is a bounded linear operator on H

(1)
2 (S), which commutes

with Jacobi translation operators. Thus, T ∈ M(H
(1)
2 (S)) and we obtain an isometric algebra

isomorphism from M(H
(1)
2 (S)) onto P (S).

Corollary 7.2.21. There exists an isometric algebra isomorphism between the spaces M(W (S)),

M(W∗(S)) and M(H
(1)
2 (S)).

Remark 7.2.22. We want to point out, that the homogeneous Banach spaces W (S), W∗(S) and

H
(1)
2 (S) are all very different in their structure and the spaces of bounded operators B(W (S)),

B(W∗(S)) and B(H
(1)
2 (S)) on W (S), W∗(S) and H

(1)
2 (S), respectively, differ. However, their

multiplier spaces coincide. The basic tool to prove this quite remarkable fact is the theory of
pseudomeasures.
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Chapter 8

Multipliers for p−Fourier Spaces

Inspired by the last chapter where we introduced the homogeneous Banach spaces Ap(S) de-
fined on the Jacobi hypergroup S = [−1, 1], we generalize the definition of Ap(S) to a general
commutative hypergroup K. We will discuss the Banach algebras Ap(K,m) consisting of func-
tions in L1(K,m) with Fourier transform in Lp(S, π) and give an overview of the structure of
the multiplier spaces M(Ap(K,m)).
1964 Larsen, Liu and Wang [103] introduced the spaces Ap(G) for a locally compact Abelian
group G. Later on the spaces Ap(G) and their multipliers were intensively studied by Larsen
[102], Figà-Talamanca and Gaudry [43]. Larsen presents the main results about multipliers for
Ap(G) in [101, Chapter 6]. Our aim is to generalize the known results about multipliers for
Ap(G) to commutative hypergroups.

8.1 The Banach algebra Ap(K,m)

We denote by Ap(K,m) the set of all functions in L1(K,m) with Fourier transform in Lp(S, π),
1 ≤ p ≤ ∞,

Ap(K,m) :=
{
f ∈ L1(K,m) : f̂ ∈ Lp(S, π)

}
.

We note that Ap(K,m) for p =∞ is the space L1(K,m). Moreover, by Hölder’s interpolation
theorem holds A1(K,m) ⊆ Ap(K,m) ⊆ Aq(K,m) for 1 ≤ p ≤ q ≤ ∞.
Further, by Proposition 2.1.7 in Chapter 2 follows L1(K,m) ∩ L2(K,m) = A2(K,m).
A hypergroup K is discrete, if and only if K̂ is compact, see [108]. Hence, Ap(K,m) = L1(K,m)
for each 1 ≤ p <∞. Therefore, we will omit this case in the whole chapter.
In this section we take a closer look on the structure of the spaces Ap(K,m). We note first
that the space Ap(K,m), 1 ≤ p ≤ ∞, is translation invariant, since for all x ∈ K holds

(Lxf)∧ = (εx̃ ∗ f)∧ = ε̂x̃f̂ ∈ Lp(S, π) for all f ∈ Ap(K,m). Furthermore, by (f ∗ g)∧ = f̂ ĝ for
all f ∈ Ap(K,m) and g ∈ L1(K,m) is Ap(K,m) an ideal in L1(K,m).

Theorem 8.1.1. Ap(K,m), 1 ≤ p ≤ ∞, is with the norm

‖f‖p := ‖f‖1 +
∥∥∥f̂∥∥∥

p

and the usual convolution in L1(K,m) a commutative Banach algebra.

Proof. By the uniqueness theorem for Fourier transforms is ‖ ‖p obviously a norm on Ap(K,m).
Since K is a commutative hypergroup, the convolution in Ap(K,m) is commutative, too. Fur-
thermore, Ap(K,m) is an ideal in L1(K,m) which is a commutative Banach algebra itself.
In order to prove the completeness of Ap(K,m) let (fn)n∈N be a Cauchy sequence in Ap(K,m).

Clearly (fn)n∈N and (f̂n)n∈N are Cauchy sequences in the Banach spaces L1(K,m) and Lp(S, π),

85



86 CHAPTER 8. MULTIPLIERS FOR P−FOURIER SPACES

respectively. Let f ∈ L1(K,m) and g ∈ Lp(S, π) be such that limn ‖fn − f‖1 = 0 and

limn

∥∥∥f̂n − g∥∥∥
p

= 0. Since the Fourier transform is norm decreasing, the first assertion im-

plies that limn

∥∥∥f̂n − f̂∥∥∥
∞

= 0. The second assertion implies the existence of a subsequence of

(f̂n)n∈N which converges point-wise almost everywhere to g. Thus, f̂ = g almost everywhere.
Hence, f ∈ Ap(K,m) and Ap(K,m) is with norm ‖ ‖p complete.
To show the submultiplicativity of ‖ ‖p we observe that for each f, g ∈ Ap(K,m)

‖f ∗ g‖p = ‖f ∗ g‖1 +
∥∥∥f̂ ĝ∥∥∥

p
≤ ‖f‖1 ‖g‖1 +

∥∥∥f̂∥∥∥
∞
‖ĝ‖p

≤ ‖f‖1 (‖g‖1 + ‖ĝ‖p) ≤ ‖f‖
p ‖g‖p .

Thus, Ap(K,m) is a commutative Banach algebra.

Remark 8.1.2. Larsen, Liu and Wang [103] proved Theorem 8.1.1 for locally compact Abelian
groups.

Lemma 8.1.3. Ap(K,m) is a ‖ ‖1-norm dense subspace in L1(K,m) for all 1 ≤ p ≤ ∞.

Proof. Let f, g ∈ L1(K,m) ∩ L2(K,m). Then f ∗ g ∈ L1(K,m) ∩ L2(K,m) ∩ C0(K) and
we know by the existence of an approximative identity for L1(K,m) in Cc(K) that the set{
f ∗ g : f, g ∈ L1(K,m) ∩ L2(K,m)

}
is norm dense in L1(K,m). Furthermore, for each element

h = f ∗ g, f, g ∈ L1(K,m) ∩ L2(K,m), holds

ĥ = (f ∗ g)∧ = f̂ ĝ ∈ L1(S, π) ∩ L2(S, π) ∩ C0(K̂).

Thus, the set A1(K,m) =
{
f ∈ L1(K,m) : f̂ ∈ L1(S, π)

}
is norm dense in L1(K,m). By

Hölder’s interpolation theorem follows that Ap(K,m) =
{
f ∈ L1(K,m) : f̂ ∈ Lp(S, π)

}
is norm

dense in L1(K,m) for all 1 ≤ p ≤ ∞.

Theorem 8.1.4. Ap(K,m), 1 ≤ p ≤ ∞, contains an approximate identity (ki)i∈I in A1(K,m).

Proof. Consider W (e, C, ε) := {y ∈ K : |α(y)− α(e)| < ε ∀α ∈ C } , where C ⊂ S is compact
and ε > 0. W (e, C, ε) is a member of the neighborhood basis of e ∈ K. Put

f := χW (e,C,ε)/m(W (e, C, ε))

and introduce an index set j ∈ J corresponding to ε with the usual order. We observe that
f̂j(α)→ 1 whenever α ∈ C and ε→ 0.
Let (ki)i∈I be an approximate identity for L1(K,m) such that ki ≥ 0 and suppki → {e} for each
i ∈ I. Since A1(K,m) is a norm dense subset of L1(K,m), we can choose (ki)i∈I in A1(K,m).
Indeed, choose for each i ∈ I a sequence (kij)j∈N in A1(K,m) such that kij converges to ki in
L1(K,m). It obviously holds for every g ∈ L1(K,m) that

‖kij ∗ g − g‖1 ≤ ‖kij ∗ g − ki ∗ g‖1 + ‖ki ∗ g − g‖1 → 0

as i and j tend to infinity. Furthermore, we can also choose kij > 0 for each j ∈ N and
‖kij‖1 = ‖kij − ki + ki‖1 ≤ ‖kij − ki‖1 + ‖ki‖1 → 1 as j tends to infinity for all i ∈ I. We
denote (kij)j∈N,i∈I again by (ki)i∈I .

We prove that (k̂i)i∈I converges uniformly to one on compact subsets of S. Let C ⊂ S compact

and (fj)j∈J in L1(K,m) as indicated above, such that f̂j(α)→ 1 for each α ∈ C. Since (ki)i∈I
is an approximate identity for L1(K,m), the desired conclusion is evident from the inequality

|k̂i(α)− 1| = lim
j→∞

|k̂if̂j(α)− f̂j(α)| ≤ lim
j→∞

∥∥∥k̂if̂j − f̂j∥∥∥
∞
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≤ lim
j→∞

‖ki ∗ fj − fj‖1 → 0,

for all α ∈ C.
Now suppose g ∈ Ap(K,m) and ε > 0. Let C ⊆ S be a compact subset such that∫

S\C
|ĝ(α)|pdπ(α) < εp/(2 · 3p).

Moreover, since (k̂i)i∈I converges uniformly to one on C it is easily seen that there exists i0 ∈ I
such that for i > i0 ∫

C

|ĝ(α)k̂i(α)− ĝ(α)|pdπ(α) < εp/2.

Further, let (ki)i∈I fulfill ‖ki‖1 < 2 for each i ∈ I. By the assumptions above this is not a loss
of generality Thus, for i > i0

∥∥∥ĝk̂i − ĝ∥∥∥
p

=

[∫
C

|ĝk̂i(α)− ĝ(α)|pdπ(α) +

∫
S\C
|ĝk̂i(α)− ĝ(α)|pdπ(α)

]1/p

≤

[
εp/2 +

∥∥∥k̂i − 1
∥∥∥p
∞

∫
S\C
|ĝ(α)|p dπ(α)

]1/p

≤
[
εp/2 + (

∥∥∥k̂i∥∥∥
∞

+ 1)pεp/(2 · 3p)
]1/p

≤ ε.

Hence, limi

∥∥∥ĝk̂i − ĝ∥∥∥
p

= 0 and limi ‖g ∗ ki − g‖1 = 0 as i tends to infinity. Therefore,

limi ‖g ∗ ki − g‖p = 0 for each g ∈ Ap(K,m) and (ki)i∈I is an approximate identity for
Ap(K,m).

Remark 8.1.5. We want to remark that the approximate identity (ki)i∈I ⊂ A1(K,m) is not
necessarily in Cc(K) and it might be that ‖ki‖1 6= 1. However, as shown in the proof above we
have ‖ki‖1 → 1 as i tends to infinity.

The existence of an approximate identity for Ap(K,m) in A1(K,m) reveals that each
Ap(K,m) is norm dense in Ar(K,m), r > p, since the spaces Ap(K,m), 1 ≤ p < ∞, are
ideals in L1(K,m).
We can say even more about the relation of different Ap(K,m)−spaces.

Proposition 8.1.6. Let K be an infinite and compact hypergroup. Then

Ar(K,m) ( Ap(K,m), 1 ≤ r < p ≤ 2

L2(K,m) = A2(K,m) ( Ap(K,m), 2 < p.

Proof. We note that S is discrete, since K is compact. For 1 ≤ r < p ≤ 2 choose a function
f ∈ lp(S, π)\lr(S, π). By the Hausdorff-Young theorem holds that f̌ ∈ Lq(K,m) ⊂ L1(K,m),
1/p+ 1/q = 1, and further (f̌)∧ = f ∈ lp(S, π)\lr(S, π). Hence, f̌ ∈ Ap(K,m)\Ar(K,m).
From the Hausdorff-Young theorem we find A2(K,m) = L2(K,m). For 2 < p suppose

Ap(K,m) = L2(K,m), that is for each f ∈ L1(K,m) with f̂ ∈ lp(S, π) holds f ∈ L2(K,m).
Let f ∈ Lq(K,m) ⊂ L1(K,m), 1/p + 1/q = 1. By the Hausdorff-Young theorem follows

f̂ ∈ lp(S, π) thus f ∈ L2(K,m). Hence, Lq(K,m) ⊆ L2(K,m). Since K is compact, this
implies Lq(K,m) = L2(K,m). This is impossible by Lemma 4.5.1 in [101].

Proposition 8.1.7.
{
f ∈ L1(K,m) ∩ L∞(K,m) : f̂ ≥ 0

}
⊆ A1(K,m).

Proof. Following the lines of Hewitt and Ross [77, 31.42], we obtained in Chapter 2, Theorem

1.3.8, for every function in L1(K,m) ∩ L∞(K,m) such that f̂ is a nonnegative function that

f̂ ∈ L1(S, π) and
∥∥∥f̂∥∥∥

1
≤ ‖f‖∞.
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8.2 Multipliers for Ap(K,m)

A continuous linear operator T on Ap(K,m), i.e. T ∈ B(Ap(K,m)), is called multiplier for
Ap(K,m), if and only if T commutes with translations, i.e.

T ◦ Lx = Lx ◦ T

for all x ∈ K. We denote the set of all multipliers for Ap(K,m) by M(Ap(K,m)).
Before we start with the first characterization we need to consider a short additional result.
The mapping

Ψp : Ap(K,m)→ L1(K,m)× Lp(S, π), Ψp(f) := (f, f̂),

for each f ∈ Ap(K,m) is obviously a linear isometry from Ap(K,m) into the Banach space
L1(K,m) × Lp(S, π) with the sum norm ‖(f, g)‖ := ‖f‖1 + ‖g‖p. Thus, we may consider

Ap(K,m) as a closed subspace of L1(K,m)×Lp(S, π). The dual space of L1(K,m)×Lp(S, π)
is isomorphic with L∞(K,m)× Lq(S, π), 1/p+ 1/q = 1. Thus, by an application of the Hahn-
Banach theorem follows that every continuous linear functional F on Ap(K,m) must be of the
form

F (f) =

∫
K

f(x)g(x)dm(x) +

∫
K̂

f̂(α)h(α)dπ(α),

where (g, h) ∈ L∞(K,m)×Lq(S, π). However, the pair (g, h) corresponding to a given functional
F may not be unique.

Theorem 8.2.1. Let 1 ≤ p ≤ ∞ and T ∈ B(Ap(K,m)). The following assertions are equiva-
lent:

i) T ∈M(Ap(K,m)), i.e. T ◦ Lx = Lx ◦ T for all x ∈ K.

ii) T (f ∗ g) = Tf ∗ g = f ∗ Tg for all f, g ∈ Ap(K,m).

iii) There exists a unique ϕ ∈ Cb(S) such that (Tf)∧|S = ϕf̂ |S for all f ∈ Ap(K,m) and
‖ϕ‖∞ ≤ ‖T‖.

Proof. The prove of the equivalence of i) to ii) follows the lines of prove 3.1.2. However, we
want to present a different way to prove the implication i) to ii) here as well. Suppose T
is a continuous linear operator on Ap(K,m) which commutes with translations. Let F be a
continuous linear functional on Ap(K,m). By the previous comment exist (g, h), (g′, h′) ∈
L∞(K,m)× Lq(S, π), 1/p+ 1/q = 1, such that for f ∈ Ap(K,m) holds

F (f) =

∫
K

f(t)g(t)dm(t) +

∫
K̂

f̂(α)h(α)dπ(α)

F ◦ T (f) =

∫
K

f(t)g′(t)dm(t) +

∫
K̂

f̂(α)h′(α)dπ(α).
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Consequently for f1, f2 ∈ Ap(K,m) we have

F (Tf1 ∗ f2) =

∫
K

Tf1 ∗ f2(t)g(t)dm(t) +

∫
K̂

(Tf1 ∗ f2)∧(α)h(α)dπ(α)

=

∫
K

∫
K

Lx̃Tf1(t)f2(x)dm(x)g(t)dm(t) +

∫
K̂

(Tf1)∧(α)f̂2(α)h(α)dπ(α)

=

∫
K

f2(x)

∫
K

Lx̃Tf1(t)g(t)dm(t)dm(x)

+

∫
K

f2(x)

∫
K̂

(Tf1)∧(α)α(x)h(α)dπ(α)dm(x)

=

∫
K

f2(x)

[∫
K

T (Lx̃f1)(t)g(t)dm(t) +

∫
K̂

(TLx̃f1)∧(α)h(α)dπ(α)

]
dm(x)

=

∫
K

f2(x)F (TLx̃f1)dm(x)

=

∫
K

f2(x)

[∫
K

Lx̃f1(t)g′(t)dm(t) +

∫
K̂

(Lx̃f1)∧(α)h′(α)dπ(α)

]
dm(x)

=

∫
K

∫
K

Lx̃f1(t)f2(x)dm(x)g′(t)dm(t) +

∫
K̂

f̂1(α)f̂2(α)h′(α)dπ(α)

=

∫
K

(f1 ∗ f2)(t)g′(t)dm(t) +

∫
K̂

(f1 ∗ f2)∧(α)h′(α)dπ(α)

= F ◦ T (f1 ∗ f2) = F (T (f1 ∗ f2)).

Since this holds for every continuous linear functional F onAp(K,m), we obtain T (f ∗ g) = Tf ∗ g
for all f, g ∈ Ap(K,m). Changing the roles of f and g implies assertion ii).
Since Ap(K,m) is dense in L1(K,m), there exists for each α ∈ S a function f ∈ Ap(K,m) such

that f̂(α) 6= 0. The rest of the proof follows the lines of the proof of 7.2.3.

Proposition 8.2.2. Let 1 ≤ p < r ≤ ∞. Then M(Ar(K,m)) ⊆M(Ap(K,m)).

Proof. As mentioned above holds Ap(K,m) ⊆ Ar(K,m). Thus, for each multiplier T in
M(Ar(K,m)) and each function f ∈ Ap(K,m) is Tf ∈ Ar(K,m) ⊂ L1(K,m) and further

(Tf)∧ = ϕf̂ in Lp(S, π). Hence, Tf ∈ Ap(K,m). Furthermore, let f ∈ Ap(K,m) and (fn)n∈N
be a sequence in Ap(K,m) such that limn→∞ ‖f − fn‖p = 0 and limn→∞ ‖Tfn − g‖p = 0 for
some g ∈ Ap(K,m). We obtain

(Tf)∧(α) = ϕf̂(α) = lim
n→∞

ϕf̂n(α) = lim
n→∞

(Tfn)∧(α) = ĝ(α)

for all α ∈ S. By the uniqueness theorem of the Fourier transform follows Tf = g in Ap(K,m)
and hence by the Closed Graph Theorem is T |Ap(K,m) continuous with respect to ‖.‖p. Thus,

M(Ar(K,m)) ⊆M(Ap(K,m)).

Every bounded measure µ ∈M(K) defines obviously a multiplier for Ap(K,m), 1 ≤ p ≤ ∞,
by Tf := µ∗f . Conversely, it is an open question whether there exists a measure µ ∈M(K) for
each multiplier T for Ap(K,m) such that Tf = µ ∗ f . However, we will prove the existence of a
unique pseudomeasure σ ∈ P (K) for each T ∈M(Ap(K,m)), 1 ≤ p <∞, such that Tf = σ ∗ f
for f ∈ A2(K,m)∩Ap(K,m). For an introduction into the theory of pseudomeasures see Chap-
ter 3. Below we will discuss if the embedding of M(Ap(K,m)) into the set of pseudomeasures
P (K) is onto.
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Theorem 8.2.3. Let 1 ≤ p <∞. For T ∈M(Ap(K,m)) there exists a unique pseudomeasure
σ ∈ P (K) such that

Tf = σ ∗ f,

for each f ∈ A2(K,m) ∩ Ap(K,m). Moreover, the correspondence between T and σ defines a
continuous algebra isomorphism from M(Ap(K,m)) into P (K).

Proof. Let f ∈ A2(K,m)∩Ap(K,m) and T ∈M(Ap(K,m)). For p < 2 is Ap(K,m) ⊂ A2(K,m)
and therefore Tf ∈ Ap(K,m)∩A2(K,m). For p > 2 holdsA2(K,m)∩Ap(K,m) = A2(K,m) and
by M(Ap(K,m)) ⊂ M(A2(K,m)) we have Tf ∈ A2(K,m). Thus, Tf ∈ A2(K,m) ∩Ap(K,m)
for all 1 ≤ p <∞.
By Theorem 8.2.1 exists a unique ϕ ∈ Cb(S) such that (Tf)∧|S = ϕf̂ |S and ‖ϕ‖∞ ≤ ‖T‖. We
choose σ ∈ P (K) sucht that Φ(σ) = ϕ.
The convolution σ∗f of a pseudomeasure σ ∈ P (K) and a function f ∈ A2(K,m)∩Ap(K,m) ⊂
L1(K,m) ∩ L2(K,m) is well defined and yields a pseudomeasure in P (K). Thus, we obtain

Φ(σ ∗ f) = Φ(σ)℘(f) = ℘(Tf) in Lp(S, π) ∩ L2(S, π) ∩ L∞(S, π),

for all f ∈ A2(K,m)∩Ap(K,m). Hence, we have σ∗f = Tf in Ap(K,m) for all f ∈ A2(K,m)∩
Ap(K,m). Since Φ is isometric, we obtain ‖T‖ ≥ ‖ϕ‖∞ = ‖σ‖ and the correspondence between
T and σ defines a continuous algebra isomorphism from M(Ap(K,m)) into P (K).

Remark 8.2.4. For 1 ≤ p ≤ 2 we have Ap(K,m) ⊂ L1(K,m) ∩ L2(K,m) and we can omit the
limitation f ∈ Ap(K,m) ∩ L2(K,m) in Theorem 8.2.3.

Denote by M(Ap(K,m)) the set of all ϕ ∈ Cb(S) such that there exists a multiplier

T ∈M(Ap(K,m)) with (Tf)∧|S = ϕf̂ |S for all f ∈ Ap(K,m).

Corollary 8.2.5. Let 1 ≤ p < ∞. Then there exists an isometric algebra isomorphism from
M(Ap(K,m)) into P (K).

With a slight abuse of terminology we conclude

M(K) ⊆M(Ap(K,m)) ⊆ P (K).

In the following, we will check if those inclusions are proper. We will prove for a compact
hypergroup K and 1 ≤ p ≤ 2 that the second inclusion is onto. In contrary, we will show
the strictness of the second inclusion for a compact, infinite hypergroup K and p > 2. For a
non-compact hypergroup K holds Cb(S) ( L∞(S, π). Hence, the second inclusion is proper.

Remark 8.2.6. For a locally compact, non-compact Abelian group G the sets M(Ap(G)) and
M(G) coincide. This was first proven in [103]. The prove quoted in [101, Chapter 6.3] is
based on the fact that the translation on L1(G) is a linear isometry. However, in the case of
commutative hypergoups the translation is in general only norm decreasing. Therefore, it is
unclear whether M(Ap(K,m)) and M(K) are isomorphic.

8.2.1 The Multipliers for Ap(K,m) for a compact Hypergroup K

In this section we take a closer look on multipliers for Ap(K,m) on a compact, infinite hyper-
group K. For p > 2 we show that M(Ap(K,m)) is a proper subset of P (K). However, we name
a normed linear space whose dual is isomorphic to M(Ap(K,m)). Larsen [102] proved similar
results for locally compact Abelian groups.

Proposition 8.2.7. Let K be infinite and compact and 1≤ p ≤ 2. There exists a homeomor-
phism between the spaces M(Ap(K,m)) and P (K).
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Proof. We know from Chapter 3 that l∞(S, π) is isometrically isomorphic to P (K). There-

fore, we choose a ϕ ∈ l∞(S, π) and f ∈ Ap(K,m). Then ϕf̂ ∈ lp(S, π) ∩ l∞(S, π) and by

Hölder’s interpolation theorem follows ϕf̂ ∈ l2(S, π). By Plancherel’s theorem there exists a

function Tf ∈ L2(K,m) such that (Tf)∧ = ϕf̂ . Thus, Tf ∈ Ap(K,m). Moreover, by Hölder’s
interpolation theorem follows

‖Tf‖p = ‖Tf‖1 + ‖(Tf)∧‖p ≤ ‖Tf‖2 + ‖ϕ‖∞‖f̂‖p ≤ ‖ϕ‖∞(‖f̂‖2 + ‖f̂‖p) ≤ 2‖ϕ‖∞‖f‖p.

Hence, the equation (Tf)∧ = ϕf̂ defines a continuous operator on Ap(K,m) and we obtain
‖T‖ ≤ 2‖ϕ‖∞. Thus, we have a continuous mapping from l∞(S, π) into M(Ap(K,m)).
Conversely, let T ∈M(Ap(K,m)), there exists by Theorem 8.2.1 a function ϕ ∈ l∞(S, π) such

that (Tf)∧ = ϕf̂ for each f ∈ Ap(K,m) and ‖ϕ‖∞ ≤ ‖T‖.

Remark 8.2.8. For 1 ≤ p ≤ 2 and K compact holds with a slight abuse of terminology

M(A1(K,m)) = M(Ap(K,m)) = M(A2(K,m)) ' l∞(S, π) ' P (K).

We want to point out that M(Ap(K,m)) is in general not isometric to l∞(S, π). However, as
shown in the prove above we obtain

‖ϕ‖∞ ≤ ‖T‖ ≤ 2 ‖ϕ‖∞ .

We will now take a closer look on the situation for 2 < p. We obtain for 2 < p < ∞,
1/p+ 1/q = 1, the following inclusions (mostly by applying the Hausdorff-Young Theorem)

A1(K,m) ⊆ Aq(K,m) ⊂ Lp(K,m) ⊂ L2(K,m) = A2(K,m) ⊆ Lq(K,m) ⊂ Ap(K,m).

To prove the next proposition we will use the Derived space Ap(K,m)0 of Ap(K,m), denoted
by

Ap(K,m)0 :=
{
f ∈ Ap(K,m) : ϕf̂ ∈ Ap(K,m)∧ ∀ ϕ ∈ C0(S)

}
.

Note that for a compact hypergroup K holds for 1 ≤ p ≤ 2,

Ap(K,m) = Ap(K,m)0 ⊂ L2(K,m)

and for 2 ≤ p
L2(K,m) = Ap(K,m)0.

Indeed, for 1 ≤ p ≤ 2 we have Ap(K,m) ⊂ A2(K,m) = L2(K,m). Let f ∈ Ap(K,m) and

ϕ ∈ C0(S). We obtain ϕf̂ ∈ Lp(S, π)∩L2(S, π). Consequently, by the Plancherel theorem there

exists g ∈ L2(K,m) such that ℘(g) = ϕf̂. Since g ∈ L2(K,m) ⊂ L1(K,m) and ℘(g) ∈ Lp(S, π),
we have g ∈ Ap(K,m). Thus, f ∈ Ap(K,m)0 and Ap(K,m) = Ap(K,m)0 for 1 ≤ p ≤ 2.
For p > 2 holds Ap(K,m)0 ⊆ L1(K,m)0 = L2(K,m) by Chapter 6. Further, L2(K,m) =
A2(K,m)0 ⊂ Ap(K,m)0. Thus, L2(K,m) = Ap(K,m)0.

Proposition 8.2.9. Let K be infinite and compact. For 2 < p exists ϕ ∈ C0(S) such that
ϕ /∈M(Ap(K,m)).

Proof. Suppose ϕAp(K,m)∧ ⊆ Ap(K,m)∧ for each ϕ ∈ C0(S), then we have by the remarks
above Ap(K,m) = Ap(K,m)0 = L2(K,m) = A2(K,m). This contradicts Proposition 8.1.6.

Corollary 8.2.10. Let K be compact and infinite. For 2 < p holds M(Ap(K,m)) ( P (K).

Corollary 8.2.11. Let K be compact and infinite. For 1 ≤ r ≤ 2 < p holds

M(Ap(K,m)) (M(Ar(K,m)).
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Now we construct a certain Banach space of continuous functions on K whose dual is con-
tinuously isomorphic to M(Ap(K,m)). However, the isomorphism involved is not an isometry.

Fix p > 2. For T ∈M(Ap(K,m)) and ϕ ∈ l∞(S, π) such that (Tf)∧ = ϕf̂ in lp(S, π) for each
f ∈ Ap(K,m), we set

β(T )(f) :=

∫
S

(Tf)∧(α)dπ(α) =

∫
S
ϕ(α)f̂(α)dπ(α)

and define

‖f‖B := sup {|β(T )(f)| : T ∈M(Ap(K,m)), ‖T‖ ≤ 1} ,

for all f ∈ A1(K,m). It is evident that these definitions make sense as each T ∈M(Ap(K,m))
is also an element in M(A1(K,m)). ‖ ‖B is obviously a norm on the linear space A1(K,m) and
we shall denote A1(K,m) with this norm by Bp(K,m). The preceding definitions also show for
each T ∈ M(Ap(K,m)) that β(T ) defines a continuous linear functional on the normed linear
space Bp(K,m). Thus, we obtain a mapping β : M(Ap(K,m)) → Bp(K,m)∗. Following the
lines of Larsen [101, Chapter 6.4] we obtain the next theorem. The theory in [101] is for Abelian
groups, but without further issues it can be extended to hypergroups.

Theorem 8.2.12. Let K be infinite and compact. For each 2 < p < ∞ is the mapping
β : M(Ap(K,m))→ Bp(K,m)∗ defined by

β(T )(f) =

∫
S

(Tf)∧(α)dπ(α),

for f ∈ Bp(K,m), a continuous linear isomorphism of M(Ap(K,m)) onto Bp(K,m)∗.
Moreover, ‖β(T )‖B∗ ≤ ‖T‖

p ≤ 2 ‖β(T )‖B∗ .

We denote by B̄p(K,m) the completion of the normed linear space Bp(K,m). Then the
dual of B̄p(K,m) is obviously the same as the dual of Bp(K,m). In particular, the preceding
theorem establishes the existence of a continuous linear isomorphism between M(Ap(K,m))
and B̄p(K,m)∗. Moreover, for a compact hypergroup K follows from the Fourier inversions
theorem that A1(K,m) = l1(S, π)∨ as linear spaces. In particular we can assume A1(K,m) as
a norm dense subset in C0(K). Hence, we have

Bp(K,m) = A1(K,m) = l1(S, π)∨ ⊂ C(K).

B̄p(K,m) may also be consider as a linear subspace of C(K).

Theorem 8.2.13. Let K be infinite and compact. For all p > 2 exists a continuous, linear,
injective mapping τ of B̄p(K,m) onto a subspace of C(K).

Proof. For f ∈ Bp(K,m) is by the Fourier inversions theorem (f̂)∨ = f in L1(K,m). Thus, for
each x ∈ K follows

|f(x)| = |(f̂)∨(x)| = |
∫
S
α(x)f̂(α)dπ(α)|

= |
∫
S

(Lxf)∧(α)dπ(α)| = |β(Lx)(f)|

≤ sup {|β(T )(f)| : T ∈M(Ap(K,m)), ‖T‖ ≤ 1} = ‖f‖B .

Hence, ‖f‖∞ =
∥∥∥(f̂)∨

∥∥∥
∞
≤ ‖f‖B for all f ∈ Bp(K,m).

We consider the elements of B̄p(K,m) as Cauchy sequences of elements of Bp(K,m). Hence, by
the preceding inequality follows for each Cauchy sequence (fn)n∈N in Bp(K,m), that (fn)n∈N
is a Cauchy sequence in C(K). This leads to the existence of a unique function f ∈ C(K) such
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that limn ‖fn − f‖∞ → 0 as n tends to infinity.
We define a linear mapping from B̄p(K,m) onto a subspace of C(K) by

τ((fn)n∈N) := f.

It is apparent by the previous inequality that τ is a continuous linear mapping.
We want to prove that τ is also injective. Here, it is sufficient to show for a Cauchy se-
quence (fn)n∈N in Bp(K,m) such that limn ‖fn‖∞ = 0 follows limn ‖fn‖B = 0. Now if
T ∈ M(Ap(K,m)), we have by Theorem 8.2.12 that β(T ) ∈ Bp(K,m)∗. Moreover, the in-
equality

|β(T )(fn)− β(T )(fm)| ≤ ‖β(T )‖B∗ ‖fn − fm‖B
shows that (β(T )(fn))n∈N is a Cauchy sequence of numbers. Define

G(T ) := lim
n
β(T )(fn).

We claim that G(T ) = 0 for each T ∈ M(Ap(K,m)) and hence (fn)n∈N converges weakly to
zero. Indeed, given g ∈ L1(K,m) we denote by Tg the multiplier for Ap(K,m) defined by
Tgf := g ∗ f for all f ∈ Ap(K,m). Since (fn)n∈N is a subset in A1(K,m), we may apply the
Fourier inversions theorem to deduce that for all n ∈ N

|β(Tg)(fn)| = |
∫
S

(Tgfn)∧(α)dπ(α)| = |
∫
S

(g ∗ fn)∧(α)dπ(α)| = |((g ∗ fn)∧)∨(e)| ≤ ‖g‖1 ‖fn‖∞ .

Hence, G(Tg) = 0 for all g ∈ L1(K,m).
Furthermore, suppose (ki)i∈I ⊂ A1(K,m) is an approximate identity for A1(K,m) such that

limi ‖ki‖1 → 1. If T ∈ M(Ap(K,m)) ⊂ M(A1(K,m)), we see that LTki converges to T in the
strong operator topology on M(A1(K,m)). We obtain for all f ∈ Bp(K,m) and each i ∈ I

|β(T )(f)− β(LTki)(f)| = |
∫
S

(Tf)∧(α)dπ(α) −
∫
S

(LTkif)∧(α)dπ(α)|

≤ ‖[(T − LTki)(f)]∧‖1 ≤ ‖(T − LTki)(f)‖1 .

Consequently holds limi β(LTki)(f) = β(T )(f) for all f ∈ Bp(K,m). Suppose T ∈M(Ap(K,m))
and ε > 0. Then, since G(LTki) = 0 for all i ∈ I we have

|G(T )| = |G(T )−G(LTki)|
≤ |G(T )− β(T )(fn)|+ |β(T )(fn)− β(LTki)(fn)|+ |β(LTki)(fn)−G(Ltki)|
≤ |G(T )− β(T )(fn)|+ ‖(T − LTki)fn‖

1
+ ‖fn‖∞ ‖Tki‖1 .

Since limn β(T )(fn) = G(T ) and limn ‖fn‖∞ = 0, exists an integer N ∈ N such that

|β(T )(fN )−G(T )| ≤ ε/3 and ‖fN‖∞ ≤ ε/3.

For this N choose j ∈ I such that∥∥(T − LTkj )(fN )
∥∥1 ≤ ε/3.

We conclude |G(T )| < ε. Since ε > 0 was chosen arbitrary, we obtain G(T ) = 0 for all
T ∈M(Ap(K,m)) and (fn)n∈N converges weakly to zero.
Let ε > 0 and for all n ∈ N choose Tn ∈ M(Ap(K,m)) such that ‖Tn‖ ≤ 1 and ‖fn‖B <
|β(Tn)(fn)|+ε/3. This is possible by the definition of ‖ ‖B . Since (fn)n∈N is a Cauchy sequence
in Bp(K,m), there exists an integer N ∈ N such that for all m,n ≥ N holds ‖fn − fm‖B < ε/3.
In particular, since ‖β(Tm)‖B∗ ≤ ‖Tm‖ for all m > N , we have

‖fN‖B < |β(TN )(fN )|+ ε/3 ≤ |β(TN )(fN − fm)|+ |β(TN )(fm)|+ ε/3

≤ ‖TN‖ ‖fN − fm‖B + |β(TN )(fm)|+ ε/3

≤ 2ε/3 + |β(TN )(fm)|.
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However, since (fm)m>N converges weakly to zero, we see that limm |β(TN )(fm)| = 0. Hence,
‖fN‖B ≤ 2ε/3. Thus, limn ‖fn‖B = 0. Hence, τ is injective.

We can summarize the previous theorems in the next result.

Theorem 8.2.14. Let K be infinite and compact. For all 2 < p exists a continuous linear
isomorphism of M(Ap(K,m)) onto the dual space of a Banach space of continuous functions.

Remark 8.2.15. We want to remark, that the norm in the Banach space of continuous functions
in Theorem 8.2.14 is not the sup-norm.

Theorem 8.2.16. Let K be infinite and compact and p > 2. The space of finite linear combi-
nations of functions in {β(Lx) : x ∈ K} is weak* dense in Bp(K,m)∗.

Proof. Suppose f ∈ Bp(K,m) and β(Lx)(f) = 0 for all x ∈ K. Then for each x ∈ K is

0 = β(Lx)(f) =

∫
S

(Lxf)∧(α)dπ(α) =

∫
S
f̂(α)ᾱ(x)dπ(α) = (f̂)∨.

By the Fourier Inversions theorem is f = 0 and β(T )(f) = 0 for all T ∈ M(Ap(K,m)).
Consequently, every weak* continuous linear functional which vanishes on {β(Lx) : x ∈ K},
vanishes on all of Bp(K,m)∗. Thus, we conclude that the space of finite linear combinations of
functions in {β(Lx) : x ∈ K} is weak* dense in Bp(K,m)∗.

Remark 8.2.17. Theorem 8.2.16 is an analogue for M(Ap(K,m)) to Theorem 3.1.9 in Chapter
3.

8.3 Multipliers for Ap(S, π)

We investigate briefly multipliers for

Ap(S, π) :=
{
ϕ ∈ L1(S, π) : ϕ̌ ∈ Lp(K,m)

}
, 1 ≤ p ≤ ∞.

In the last chapter we characterized multipliers forAp(S, π) on the Jacobi hypergroup S = [−1, 1],
which is a strong hypergroup. Characterizing the multipliers for Ap(S, π) for an arbitrary or
discrete hypergroup K is more difficult, since we cannot use argumentations relaying on con-
volutions or translations. However, we will give a short impression.

Theorem 8.3.1. Ap(S, π) is with norm ‖ϕ‖p := ‖ϕ‖1 + ‖ϕ̌‖p a Banach space.

Proof. Follows the lines of the first part of proof 8.1.1.

For a compact hypergroup K holds Ap(S, π) = L1(S, π). This case was investigated in
Chapter 4. Thus, we will omit that case here.
Moreover, by Hölder’s interpolation theorem and an application of the Hausdorff-Young theorem
holds

Ap(S, π) ⊆ Aq(S, π), for 1 ≤ p ≤ q ≤ ∞, and

Ap(S, π) ⊆ L2(S, π), for p ≤ 2.

Whenever S is infinite and compact, we show that the first inclusion is proper.

Proposition 8.3.2. Let S be infinite and compact. Then

Ap(S, π) ( Aq(S, π), for 1 ≤ p < q ≤ 2, and

L2(S, π) = A2(S, π) ( Ap(S, π), for 2 < p.

Proof. Follows the lines of proof 8.1.6.
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We obtain the analogue to Lemma 8.1.3. Gaudry [53, Theorem 7.1] proved similar results
for locally compact groups.

Lemma 8.3.3. The set
{
ψ ∈ L1(S, π) : ψ̌ ∈ Cc(K)

}
is dense in L1(S, π) with respect to ‖ ‖1.

Proof. First note that the set of functions in L2(S, π) with inverse Plancherel transform in
Cc(K) is dense in L2(S, π). This is obvious from Plancherel’s theorem. Therefore, the set
of functions in L1(S, π) with inverse transform in Cc(K) is dense in L1(S, π). Indeed, given
ϕ ∈ L1(S, π), write ϕ = ψ · γ with ψ, γ ∈ L2(S, π). Now approximate ψ and γ in L2(S, π)
by functions ψi, γi with ψ̌i, γ̌i ∈ Cc(K). Then ϕ is approximated in L1(S, π) by ψi · γi and
(ψi · γi)∨ = ψ̌i ∗ γ̌i ∈ Cc(K). Hence,

{
ψ ∈ L1(S, π) : ψ̌ ∈ Cc(K)

}
is dense in L1(S, π).

Corollary 8.3.4. Let 1 ≤ p ≤ ∞. Ap(S, π) is ‖.‖1-norm dense in L1(S, π).

Remark 8.3.5. By the uniqueness theorem of inverse Fourier transforms and by the Hausdorff-
Young Theorem holds for S being compact and infinite and for each 2 < p <∞, 1/p+ 1/q = 1,
that

A1(S, π) ⊆ Aq(S, π) ⊆ Lp(S, π) ⊂ L2(S, π) = A2(S, π) ⊆ Lq(S, π) ⊆ Ap(S, π) ⊆ L1(S, π).

Furthermore, we have A1(S, π) = L1(K,m)∧ as linear spaces.

Multipliers for Ap(S, π)

We call a bounded function f ∈ Cb(K) multiplier for Ap(S, π), if and only if

fϕ̌ ∈ Ap(S, π)∨ = L1(S, π)∨ ∩ Lp(K,m)

for each ϕ ∈ Ap(S, π), 1 ≤ p <∞.
We can define a continuous linear mapping T : Ap(S, π) → Ap(S, π) by (Tϕ)∨ := fϕ̌. The set
of all multiplier operators T on Ap(S, π) is denoted by M(Ap(S, π)).
For 1 ≤ p ≤ q ≤ ∞ holds M(L1(S, π)) ⊆ M(Aq(S, π)) ⊆ M(Ap(S, π)) using straight forward
argumentation.
Moreover, for K discrete and hence S compact each function in A1(S, π)∨ defines a multipler
for Ap(S, π), 1 ≤ p < ∞. Indeed, let f ∈ A1(S, π). Then f̌ ϕ̌ ∈ L1(K,m) ∩ Lp(K,m) and
therefore (f̌ ϕ̌)∧ ∈ C0(S) ⊂ L1(S, π). Hence, f̌ ϕ̌ ∈ Ap(S, π)∨.

Theorem 8.3.6. Let 1 ≤ p < ∞. For each T ∈ M(Ap(S, π)) exists a unique pseuodmeasure
s ∈ P (K̂) such that

Tϕ = s ∗ f

for each ϕ ∈ A1(S, π). Moreover, the correspondence between T and s defines a continuous
algebra isomorphism from M(Ap(S, π)) into P (K̂).

Proof. Let T ∈ M(Ap(S, π)) and f ∈ Cb(K) such that (Tϕ)∨ = fϕ̌ ∈ Ap(S, π)∨ for all
ϕ ∈ Ap(S, π). By Chapter 4 exists an isometric isomorphism Φ : P (K̂)→ L∞(K,m) and hence
a unique pseudomeasure s ∈ P (K̂) such that Φ(s) = f. The convolution s ∗ ϕ = Φ−1(Φ(s)ϕ̌)
of a pseudomeasure s ∈ P (K̂) and an element ϕ ∈ L1(S, π) ∩ L2(S, π) is well-defined as a
convolution of pseudomeasures. Further, by an application of the Hausdorff-Young Theorem is
A1(S, π) ⊂ L1(S, π) ∩ L2(S, π). Thus,

Φ(s ∗ ϕ) = Φ(s)ϕ̌ = (Tϕ)∨,

for all ϕ ∈ A1(S, π). Hence, Φ(s ∗ ϕ) ∈ L1(K,m) ∩ C0(K). The rest of the proof follows by
Hölder’s interpolation Theorem and the arguments used in Chapter 4.

Even though the space L1(S, π) admits in general no convolution, we can still investigate a
characterization for multipliers in M(Ap(S, π)) analogue to Theorem 8.2.1.
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Corollary 8.3.7. Let T ∈ M(Ap(S, π)) and ϕ,ψ ∈ A1(S, π). Then ϕ ∗ Tψ = Tϕ ∗ ψ as a
convolution of pseudomeasures.

Proof. By (Tϕ)∨ = fϕ̌ ∈ L1(K,m) ∩ C0(K) holds Tϕ ∈ A1(S, π) and the convolution Tϕ ∗ ψ
is well-defined. Further,

Tϕ ∗ ψ = Φ−1(Φ(Tϕ)Φ(ψ)) = Φ−1(fϕ̌ψ̌) = ϕ ∗ Tψ.

In the following let S be compact and infinite. Obviously holds A2(S, π) = L2(S, π). Fur-
thermore, by Proposition 8.3.2 is Ap(S, π) a ‖ ‖q-dense subset in Aq(S, π).

Theorem 8.3.8. Let S be compact and infinite and 1 ≤ p ≤ 2. There exists a homeomorphism
between the spaces M(Ap(S, π)) and P (K̂). Moreover, ‖s‖P ≤ ‖T‖ ≤ 2‖s‖P .

Proof. The proof follows the lines of proof 8.2.7.

Remark 8.3.9. If K =
ˆ̂
K we call the hypergroup pontryagin. In general this is not the case.

Hence, K is in general not an orthogonal basis for L2(S, π) and the prove of Theorem 8.2.12
cannot be transferred to the dual situation.



Chapter 9

Multipliers for almost-convergent
Sequences

Lorentz [117] formulated the theory of almost convergence for bounded, complex sequences.
His concept of almost convergence was then studied in the context of amenable semigroups, see
for instance [11, 17, 25]. Lasser extended this theory to polynomial hypergroups, see [111].
In this chapter we want to introduce multipliers for the set of all almost convergent sequences, i.
e. AC, in the context of polynomial hypergroups. We will give six equivalent characterizations
of multipliers for AC.

9.1 Almost-convergent Sequences

In the following let K = N0 denote a polynomial hypergroup which is generated by the or-
thogonal polynomials (Rn(x))n∈N0 . We denote the set of all invariant means (with respect to
(Rn(x))n∈N0

) by

M := {µ ∈ l∞(N0)∗ : µ(1) = 1, µ ≥ 0, and µ(Lmf) = µ(f) for all m ∈ N0}.

M is nonempty, see [147]. Further denote

P1(h) :=
{
ϕ ∈ l1(N0, h) : ϕ ≥ 0, ‖ϕ‖1 = 1

}
.

P1(h) is weak-*-dense in the set of all means, see [128].

Definition 9.1.1. A sequence f ∈ l∞(N0) is called almost convergent to a constant d(f), if

µ(f) = d(f) for all µ ∈M.

We will denote the set of all almost convergent sequences in l∞(N0) by AC. The subset of all
almost convergent sequences in l∞(N0) such that µ(f) = 0 for all µ ∈M is denoted by AC0.

Lasser [111] proved that AC0 equals the closed linear span of {a− Lna : a ∈ l∞(N0), n ∈ N}.
Furthermore, he verified that

AC = C1⊕AC0.

L. Kerchy [96] defined a stronger form of almost convergence for bounded complex sequences.
We extend his notations to the context of polynomial hypergroups.

Definition 9.1.2. A sequence (f(n))n∈N0 ∈ l∞(N0) is strongly almost convergent to
d(f) ∈ C, if

µ(|f − d(f)1|) = 0 for all µ ∈M.

Here 1 stands for the constant sequence (1, 1, 1, ...). We denote the set of all strongly almost
convergent sequences in l∞(N0) by ACs.

97
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Definition 9.1.3. A sequence (f(n))n∈N0 ∈ l∞(N0) is N−convergent to a constant d(f) ∈ C,
if for each ε > 0 there exists a set A ⊆ N such that µ(χA) = 0 for all µ ∈M and |f(n)−d(f)| < ε
for all n ∈ N\A.

Remark 9.1.4. Kerchy’s definition of strongly almost convergence obviously implies N-convergence.
Conversely, let f ∈ l∞(N0) be N−convergent to d(f) ∈ C. For each ε > 0 we obtain
µ(|f − d(f)1|) ≤ µ(χN\A)ε = ε. Hence, µ(|f − d(f)1|) = 0 and f ∈ ACs.
Remark 9.1.5. Each convergent sequence (fn)n∈N ∈ l∞(N0) is obviously strongly almost con-
vergent, since we conclude by Example 2 in [111] for each finite set A ∈ N that χA ∈ AC0. The
converse implication is in general false.

9.2 Multipliers for almost-convergent Sequences

Definition 9.2.1. A function f ∈ l∞(N0) such that f ·AC ⊂ AC is called multiplier for AC.
We denote the set of all multipliers for AC by M(AC).

Chou and Duran, [10] showed results for multipliers for AC in the context of semigroups.
Inspired by Chou and Duran, we will study the space M(AC). Our main result in this chapter
is the equivalence

M(AC) = AC0 ⊕ C1,

where we denote AC0 := {f ∈ l∞(N0) : |f | ∈ AC0}.
Theorem 9.2.2. Let K be a polynomial hypergroup and f ∈ l∞(N0). f is a multiplier for AC,
i.e. f ·AC ⊂ AC, if and only if f ∈ AC and

µ(f · g) = µ(f)µ(g) = d(f)d(g)

for all g ∈ AC and µ ∈M.

Proof. Each function f ∈ AC, which fullfils µ(f · g) = µ(f)µ(g) = d(f)d(g) for all g ∈ AC and
µ ∈M, is obviously a multiplier for AC.
Conversely, let f ∈ M(AC). Since 1 ∈ AC we have f = f · 1 ∈ AC. To prove for ev-
ery g ∈ AC and µ ∈ M that µ(f · g) = µ(f)µ(g), we consider l1(N0, h)∗ = l∞(N0) and
l1(N0, h)∗∗ = l∞(N0)∗. If ψ ∈ l1(N0, h), a ∈ l∞(N0), then

a(ψ) = ψ(a) =

∞∑
k=0

ψ(k)a(k)h(k).

Since P1(h) is weak-*-dense in the set of all means, there exists a sequence (ϕn)n∈N in P1(h)
such that limn(ϕn(a)− ϕn(Lma)) = 0 for each a ∈ l∞(N0) and m ∈ N. Obviously, it holds for
each g ∈ AC that

lim
n
ϕn(g) = d(g). (1)

Now let k ∈ N be fixed. Set ψn = ϕnf−Lk(ϕnf) for each n ∈ N0. Then (ψn)n∈N0
is a sequence

in l1(N0, h) ⊂ l∞(N0)∗. We claim that ψn is a weak Cauchy sequence in l1(N0, h). Indeed, for
a ∈ l∞(N0) we obtain

ψn(a) = (ϕnf − Lk(ϕnf))(a)

=

∞∑
j=0

[ϕn(j)f(j)a(j)h(j)− Lk(ϕnf)(j)a(j)h(j)]

=

∞∑
j=0

[ϕn(j)f(j)a(j)h(j)− ϕn(j)f(j)Lka(j)h(j)]

=

∞∑
j=0

ϕn(j)f(j)(a− Lka)(j)h(j) = ϕn(f(a− Lka)).
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Since f is a multiplier for AC and (a − Lka) ∈ AC, we have f(a − Lka) ∈ AC. Hence, by
equation (1) we find that

lim
n
ψn(a) = lim

n
ϕn(f(a− Lka)) = d(f(a− Lka)) (2)

for all a ∈ l∞(N0). Therefore, limn ψn(a) exists for all a ∈ l∞(N0) and ψn is a weak Cauchy
sequence as we claimed.
Since l1(N0, h) is weakly sequentially complete, see [26, Theorem IV 8.6] there exists ψ ∈ l1(N0, h)
such that ψ = limn ψn in the weak topology. Certainly, for every point measure εt ∈ l∞(N0),
t ∈ N0, holds

ψ(t)h(t) = ψ(εt) = lim
n
ψn(εt) = lim

n
ψn(t)h(t).

Since h(t) 6= 0 for all t ∈ N0, we have ψ(t) = limn ψn(t) for every t ∈ N0. On the other hand
by [111, Example 2] we have

lim
n
ϕn(t)h(t) = lim

n
ϕn(εt) = 0.

Hence, limn ϕn(t) = 0 and

|ψ(t)| = | lim
n

(ϕn(t)f(t)−Lk(ϕnf)(t))| ≤ | lim
n
Lk(ϕnf)(t)| = | lim

n

k+t∑
j=|k−t|

g(k, t; j)ϕn(j)f(j)| = 0.

We obtain ψ ≡ 0. By (2) follows for all µ ∈M

µ(f(a− Lka)) = d(f(a− Lka)) = lim
n
ψn(a) = 0 = µ(f)µ(a− Lka).

Since AC0 equals the closed linear span of {a− Lka : a ∈ l∞(N0), k ∈ N}, the statement follows
by AC = C1⊕AC0, see [111, Theorem 2].

Theorem 9.2.3. Let K be a polynomial hypergroup and f ∈ l∞(N0). f is a multiplier for AC,
i.e. f ·AC ⊂ AC, if and only if f ∈ AC0 ⊕ C1.

Proof. Let f ∈ AC0 ⊕ C1. Then there exists a constant d(f) ∈ C1 and a function f0 ∈ AC0

such that f = f0 + d(f). Given an arbitrary function g ∈ AC and a mean µ ∈M we have

|µ(f0g)| ≤ µ(|f0g|) ≤ ‖g‖∞ µ(|f0|) = 0.

Hence, we obtain µ(f0g) = 0 and

µ(fg) = µ((f0 + d(f))g) = d(f)µ(g) = d(f)d(g) ∈ C.

By Theorem 9.2.2 holds fg ∈ AC.
Conversely, let f ∈ l∞(N0) such that f · AC ⊂ AC. Since 1 ∈ AC we have f = f · 1 ∈ AC.
Identify each mean in the canonical way with a measure on N0, see [24]. To show that f is an
element in AC0 ⊕ C1 it is sufficient to show that

f ≡ d(f) on suppµ for each µ ∈M.

Indeed, if f ≡ d(f) on suppµ, then there exists a function g ∈ l∞(N0) such that f = d(f) + g
and g ≡ 0 on suppµ for each µ ∈M. Hence,

µ(|g|) = µ(|gχK\suppµ|) ≤ ‖g‖∞ µ(χK\suppµ) = 0

for each µ ∈M and we obtain g ∈ AC0.
Now let µ ∈M be fixed. By Theorem 9.2.2 holds

µ(fg) = µ(f)µ(g)

for all g ∈ AC. Hence,

µ((f − d(f))2) = µ(f − d(f))2 = (µ(f)− d(f))2 = 0

and f ≡ d(f) on suppµ as we wanted.
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We conclude the following characterization of multipliers for AC.

Theorem 9.2.4. Let K be a polynomial hypergroup and f ∈ l∞(N0). The following assertions
are equivalent:

i) f is a multiplier for AC, i.e. f ·AC ⊂ AC.

ii) f ∈ AC and µ(f · g) = µ(f)µ(g) = d(f)µ(g) for all g ∈ l∞(N0) and µ ∈M.

iii) f ≡ d(f) on suppµ for all µ ∈M.

iv) f is N−convergent to a constant d(f).

v) f ∈ ACs.

vi) f ∈ AC0 ⊕ C1.

Proof. Suppose f is strongly almost convergent to d(f) ∈ C and let g ∈ l∞(N0), µ ∈M. Then,
we have |(f(n)− d(f))g(n)| ≤ |f(n)− d(f)|‖g‖∞. Thus,

0 ≤ |µ((f − d(f)1)g)| ≤ µ(|f − d(f)1|)‖g‖∞ = 0.

Hence, µ(f − d(f)1)g) = 0 and we obtain µ(fg) = d(f)µ(g) for all g ∈ l∞(N0). Hence, v)
implies ii).
The rest of the proof follows by Theorem 9.2.2 and Theorem 9.2.3.

Corollary 9.2.5. M(AC) defines with the sup-norm a commutative Banach algebra with respect
to the point-wise multiplication.

Proof. M(AC) is a closed subspace of l∞(N0), since AC is a closed subspace of l∞(N0) and
every µ ∈ M is continuous. Let f, g ∈ M(AC). Obviously holds ‖f · g‖∞ ≤ ‖f‖∞‖g‖∞.
Furthermore, for each a ∈ AC we have f · g · a ∈ AC. Thus, f · g ∈M(AC).

The following example shows that the set of all multipliers for AC is in general a proper
subset of AC.

Example 9.2.6. Let (Rn)n∈N be a sequence of ultraspherical polynomials, which is normed
such that R1(x) = x. Since, the characters of the polynomial hypergroup are exactly given
by αx(n) := Rn(x), x ∈ [−1, 1], the sequences αx, x ∈ [−1, 1], fulfill Lmαx(n) = αx(n)αx(m).
Hence, they are almost convergent, see [111]. For any µ ∈M we have

µ(αx) = µ(T1αx) = R1(x)µ(αx).

This is for x ∈ [−1, 1], x 6= 1, only possible if µ(αx) = 0. Therefore, d(αx) = 0 for x ∈ [−1, 1],
x 6= 1 and d(α1) = 1, see [111, Example 1].
In particular holds α−1 ∈ AC0. Furthermore, (note that Rn(−1) = (−1)n)

α−1 · α−1(n) = Rn(−1)Rn(−1) = (−1)2n = 1.

This leads to
µ(α−1α−1) = µ(1) = 1 6= 0 = µ(α−1)µ(α−1)

for each µ ∈ M, which contradicts ii) in Theorem 9.2.4. Therefore, α−1 ∈ AC cannot be a
multiplier for AC.



Chapter 10

Multipliers and invariant linear
Systems in Time Series Analysis

Time series which obey stationarity induced by polynomial hypergroups are investigated in
a series of papers, see [35], [82, 83], [110], [112]. This stationarity takes into account effects
caused by delays, see [35]. Besides modeling delays, there are various other fields of applications
where stationarity induced by polynomial hypergroups provides an appropriate access, see for
instance [83]. In a recent paper [110] Lasser formulated the basic ideas and tools in the context
of sequences (X(n))n∈N0

in Hilbert spaces.

10.1 General Theory

We recall the relevant facts from [110]. Note that for the application in time series the
Hilbert space H is always a L2−space on a certain probability space. Throughout this chapter
(Rn(x))n∈N0 denotes an orthogonal polynomial sequence that generates a polynomial hyper-
group on N0.
We define the translation of a sequence (X(n))n∈N0

in a Hilbert spaces H by

LnX(m) :=

m+n∑
k=|n−m|

g(m,n; k)X(k)

for all n,m ∈ N0, where g(m,n; k) denote the linearization coefficients of the productRn(x)Rm(x)
as introduced in Chapter 1.3.

Definition 10.1.1. A sequence (X(n))n∈N0
in a Hilbert spaces H with corresponding scalar-

product < . , . > is called Rn−stationary, if

< X(m), X(n) > = < LnX(m), X(0) >

for all n,m ∈ N0.

Given a sequence (X(n))n∈N0 in a Hilbert spaces H we consider ϕ(n) := < X(n), X(0) > .
It is easily shown that (ϕ(n))n∈N0

is a sequence of complex numbers satisfying

n∑
j,k=0

λjλkLjϕ(k) ≥ 0

for all n ∈ N0 and λ0, ..., λn ∈ C. This is exactly the property of positive definiteness with
respect to (Rn(x))n∈N0

, see [110]. Therefore, we can apply Bochner’s theorem (or often called
Cramer’s Theorem) for commutative hypergroups, see [86], in order to obtain the spectral
measure µ for the sequence (X(n))n∈N0

.
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Theorem 10.1.2 (Cramer). Let (X(n))n∈N0 be an Rn−stationary sequence such that the cor-
responding sequence (ϕ(n))n∈N0

, ϕ(n) = < X(n), X(0) >, is bounded. Then there exists a

unique positive bounded measure µ on N̂0 = Ds such that

< X(m), X(n) > = Lnϕ(m) =

∫
N̂0

Rm(x)Rn(x)dµ(x).

We call µ the spectral measure of (X(n))n∈N0
.

Remark 10.1.3. (ϕ(n))n∈N0
is bounded if and only if (X(n))n∈N0

is bounded in H.

Consider the Hilbert space L2(N̂0, µ). {Rn : n ∈ N0} is a linear independent subset of

L2(N̂0, µ) and the linear span of {Rn : n ∈ N0} is dense in L2(N̂0, µ). We denote a sub Hilbert
space of H by H0 := span{X(n) : n ∈ N0}. Furthermore, we define a linear map

Φ : span{Rn : n ∈ N0} → H0, Φ

(
N∑
k=1

ckRnk

)
:=

N∑
k=1

ckX(nk).

Φ is well-defined. Moreover, Φ can be uniquely extended to an isometric isomorphism from
L2(N̂0, µ) onto H0. We may assume that H = H0.

The classical theory of time-invariant systems in time series analysis can be generalized
to Rn−stationary sequences in an obvious manner. In the classical theory of time-invariant
systems the index-set is Z. A stationary sequence (Y (n))n∈N0 in a L2−Hilbert space satisfies
< Y (m), Y (n) > = < Y (m− n), Y (0) >.
A time-invariant system is nothing else than a bounded linear operator which transforms the
given stationary sequence (Y (n))n∈N0

into a sequence (Y ′(n))n∈N0
which is stationary again.

Such operators are called multipliers, i.e. operators which commute with translation operators.
For a bounded, Rn−stationary sequence (X(n))n∈N0 in H the corresponding multipliers are
exactly those bounded linear operators T ∈ B(H) which obey

T ◦ Ln = Ln ◦ T for all n ∈ N0.

Such an operator T is called multiplier of (X(n))n∈N0 . The following proposition holds, see
[110, Proposition 6.1].

Proposition 10.1.4. Let (X(n))n∈N0
be a bounded, Rn−stationary sequence in H and T ∈ B(H)

be a multiplier of (X(n))n∈N0
. Put Y (n) = TX(n) for n ∈ N0. Then (Y (n))n∈N0

is a bounded,
Rn−stationary sequence in H.

We can say even more about multipliers of (X(n))n∈N0
. Let φ ∈ L∞(N̂0, µ). Define a

bounded linear operator Tφ ∈ B(H) by

Tφ(Z) = Φ(φΦ−1(Z)), Z ∈ H.

We obtain Φ(Rnψ) = LnΦ(ψ) for all ψ ∈ L2(N̂0, µ) and n ∈ N0 by

< Φ(Rnψ), X(m) > = < Rnψ,Rm > = < ψ,RnRm >

= < Φ(ψ),Φ(RnRm) > = < Φ(ψ), LnX(m) > = < LnΦ(ψ), X(m) >

for all m ∈ N0. Thus,

Tφ ◦ LnZ = Φ(φΦ−1(LnZ)) = Φ(φRnΦ−1(Z)) = Ln ◦ TφZ

for all Z ∈ H. Hence, Tφ is a multiplier of (X(n))n∈N0
.

In [110] it is proven that for every multiplier T of (X(n))n∈N0
there exists a corresponding

φ ∈ L∞(N̂0, µ) such that T = Tφ. Therefore, the operators Tφ, φ ∈ L∞(N̂0, µ), are exactly
the multipliers of (X(n))n∈N0

. The following characterization for multipliers of (X(n))n∈N0
is

valid, see [110, Theorem 6.3]
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Theorem 10.1.5. Let (X(n))n∈N0 be a bounded, Rn−stationary sequence in a Hilbert space
H. Assume that the linear span of the X(n) is dense in H. Let T ∈ B(H). Then the following
are equivalent:

(i) T is a multiplier of (X(n))n∈N0 .

(ii) There exists a unique φ ∈ L∞(N̂0, µ) such that T = Tφ.

10.2 Examples of Multipliers for Rn−stationary sequences

We consider now some examples of multipliers T = Tφ for bounded, Rn−stationary sequences.

Multipliers for Rn−white noise

(Z(n))n∈N0
is called Rn−white noise in a Hilbert space H if

< Z(n), Z(m) > = δn,m
1

h(n)
.

If (Z(n))n∈N0
is Rn−white noise, (Z(n))n∈N0

is obviously a bounded, Rn−stationary sequence
and the corresponding spectral measure µ of (Z(n))n∈N0

is exactly the orthogonalization mea-
sure π. We assume again H = H0 := span{Z(n) : n ∈ N0}.
Thus, we can illustrate the connection to the multiplier results in Chapter 3.
The map

span{Z(n) : n ∈ N0} → l2(N0, h), Z(n) 7→ δn
h(n)

=: εn

can be uniquely extended to an isometric isomorphism between H = span{Z(n) : n ∈ N0} and
l2(N0, h). This leads to the following observation.
On one hand, Theorem 3.2.8 characterizes T ∈ M(l2(N0, h)) by the existence of a function
φ ∈ L∞(S, π) such that ℘(Td) = φ℘(d) for all d ∈ l2(N0, h), where ℘ denotes the usual
Plancherel transform.
On the other hand, Theorem 10.1.5 describes the multipliers of (Z(n))n∈N0

as operators of the
form T = Tφ as constructed above, where φ ∈ L∞(S, π). Identifying l2(N0, h) with L2(S, π)

via the Plancherel isomorphism ℘ and H with L2(N̂0, π) = L2(S, π) via Φ−1 (as described
above), we see that both characterizations yield the same φ ∈ L∞(S, π) as multiplier, only the
”representation” of the Hilbert spaces are different.

Furthermore, let (Z(n))n∈N0 be Rn−white noise and choose any φ ∈ L∞(S, π). By Propo-
sition 10.1.4 the sequence (Y (n))n∈N0

with Y (n) := TφZ(n) is a bounded, Rn-stationary se-

quence in H = span{Z(n) : n ∈ N0}. The corresponding spectral measure µ for (Y (n))n∈N0

fulfills dµ(x) = |φ(x)|2dπ(x). In fact, we can prove even a more generalized result.

Proposition 10.2.1. Let (X(n))n∈N0
be a bounded, Rn−stationary sequence in a Hilbert space

H with corresponding spectral measure µ. For φ ∈ L∞(N̂0, µ) the sequence Y (n) := TφX(n)
fulfills

< Y (n), Y (0) > =

∫
N̂0

Rn(x)|φ(x)|2dµ(x), n ∈ N0,

i.e. |φ(x)|2dµ(x) defines the spectral measure corresponding to (Y (n))n∈N0
.

Proof. Sinec Φ is an isometry, we obtain

< Y (n), Y (0) > = < TφX(n), TφX(0) > = < Φ(φΦ−1(X(n))),Φ(φΦ−1(X(0))) >

= < φΦ−1(X(n)), φΦ−1(X(0)) > =

∫
N̂0

Rn(x)|φ(x)|2dµ(x).
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Example of a Multiplier for an autoregressive Process

An important class of examples of multipliers lead to the so called autoregressive processes. We
give a short introduction of this class.
Let (Z(n))n∈N0 be Rn−white noise in a Hilbert space H. A Rn−stationary sequence (Y (n))n∈N0

is called autoregressive of order q (with respect to Rn), if there exist b1, ..., bq ∈ C, bq 6= 0,
such that

Y (n) + b1L1Y (n) + b2L2Y (n) + ...+ bqLqY (n) = Z(n)

holds for all n ∈ N0.

If 1 6∈ S = suppπ, then the function

φ(x) :=
1

1−R1(x)
, x ∈ N̂0

is an element in L∞(S, π). Hence, the elements Y (n) := TφZ(n) form a bounded, Rn−stationary
sequence with corresponding spectral measure

dµ(x) =
1

|1−R1(x)|2
dπ(x).

(Y (n))n∈N0
is an autoregressive process. Indeed, it obviously holds that

Rnφ−R1Rnφ = Rn for all n ∈ N0.

We apply Φ : span{Z(n) : n ∈ N0} → L2(S, π) on both sides of the equation. By

R1Φ−1(Z(n)) = Φ−1(L1Z(n))

we obtain that

Φ(φΦ−1(Z(n)))− Φ(φΦ−1(L1Z(n))) = Z(n) for all n ∈ N0.

By the definition of Y (n) and the fact that Tφ commutes with translations, we have the following
autoregressive equation of order 1

Y (n)− L1Y (n) = Z(n) for all n ∈ N0.

Orthogonal polynomial sequences (Rn(x))n∈N0 with 1 6∈ S = suppπ are for example the Karlin-
McGregor polynomials (see Chapter 5) or the polynomials related to homogeneous trees, see
[9]. The reader should note that in the classical theory of time series the function

g(eit) =
1

|1− eit|

can never define a multiplier.

In case of 1 ∈ S one can construct bounded, Rn−stationary sequences (X(n))n∈N0
satisfying

the same autoregressive equation, see [110, Example 5], provided φ(x) := 1
1−R1(x) ∈ L

1(S, π).

However, the sequence (X(n))n∈N0
is constructed from an Rn−white noise (Z(n))n∈N0

in a
different way, see [110, Theorem 7.4].
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