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Zusammenfassung

In dieser Arbeit werden statistische Fragen für hochfrequent beobachtete zeitstetige
autoregressive Moving-Average (CARMA) Prozesse untersucht. Zunächst wird für in-
vertierbare CARMA Modelle mit endlicher Varianz ein L2-konsistenter Schätzer für die
Zuwächse des zugrundeliegenden Lévy-Prozesses konstruiert. Dieser ist unabhängig von
der Ordnung des Prozesses. Darüber hinaus wird das Hochfrequenzverhalten von ap-
proximierenden Riemann-Summen analysiert und deren Autokovarianzstruktur mit der
von gesampelten CARMA Prozessen verglichen.

Im zweiten Teil der Arbeit werden auch α-stabile CARMA Modelle analysiert. Im
asymptotischen Kontext hochfrequenter Daten auf langen Zeitintervallen, werden Kon-
vergenzresultate für verschieden normalisierte Periodogramm-Versionen gezeigt. Je nach-
dem, ob die ausgewählten Frequenzwerte über Z linear abhängig oder unabhängig sind,
variieren die Grenzverteilungen. Die Beweise dazu verwenden Methoden aus der Geome-
trie der Zahlen. Über eine Glättung des Periodogramms wird ein konsistenter Schätzer
für die normalisierte rationale Transferfunktion hergeleitet. Darauf basierend wird ein
Schätzverfahren für die Parameter eines CARMA Prozesses vorgeschlagen.





Abstract

We consider high-frequency sampled continuous-time autoregressive moving average
(CARMA) models driven by finite-variance zero-mean Lévy processes. An L2-consistent
estimator for the increments of the driving Lévy process without order selection is pro-
posed if the CARMA model is invertible. The high-frequency behavior of approximating
Riemann sum processes is analyzed and their autocovariance structure is compared to
the one of sampled CARMA processes.

In the second part, the underlying process of the CARMA model is chosen to be either
a symmetric α-stable Lévy process or a symmetric Lévy process with finite second mo-
ments. In the doubly asymptotic framework of high-frequency data within a long time
interval, convergence of normalized and self-normalized versions of the periodogram to
functions of stable distributions is shown. The limit distributions differ depending on
whether the frequency values are linearly dependent or independent over Z. For the
proofs we require methods from the geometry of numbers. Moreover, a consistent esti-
mate for the normalized power transfer function is established by applying a smoothing
filter to the periodogram. This result is used to propose an estimator for the parameters
of the CARMA process.
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1 Introduction

Being the continuous-time analog of the well-known ARMA processes (see, e.g., [17]),

continuous-time autoregressive moving average (CARMA) processes have been exten-

sively studied over the recent years. They provide, on the one hand, a mathematically

tractable class of linear stochastic models in continuous time. On the other hand, as

shown in [80], CARMA processes are equivalent to the class of continuous-time linear

state space models if the variance of the underlying driving Lévy process is supposed

to be finite. It is therefore not astonishing that this rich class is widely used in various

areas of application as, e.g., signal processing and control (cf. [46, 61]), econometrics

(cf. [7, 72]), high-frequency financial econometrics (cf. [87]), financial mathematics (cf.

[6, 13, 49, 85]) and stochastic modeling of energy markets (cf. [5, 45]).

The question whether a time series should be modeled by a continuous-time or a

discrete-time process is naturally of fundamental importance. One obvious advantage of

continuous-time modeling is that it allows handling of irregularly spaced time series and

in particular high-frequency data. The constantly increasing availability of the latter in

finance and science in general has sparked a great deal of attention about the asymp-

totic behavior of high-frequency sampled processes in the last decade (see, e.g., [51]).

The substantial part of this thesis will deal with statistical inference for the underlying

Lévy process and the parameters of CARMA models in a high-frequency asymptotic

framework.

The financial and economic crisis that started in 2008 with the Lehman default and

the ongoing sovereign crisis demonstrate impressively that there is a necessity for new

models incorporating more of the so-called stylized facts (for instance heavy tails, i.e.

very high/low values are far more likely than in the normal distribution) which one

can observe in real financial observation data. In order to illustrate the basic differ-

ence between a Gaussian distribution and a distribution with a long tail, Montroll and

Shlesinger [66] proposed to compare the distribution of heights with the distribution

of annual incomes for American adult males. An average individual who seeks a friend

twice his height would fail. On the other hand, one who has an average income will have
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1 Introduction

no trouble to discover a richer person, who, with a little diligence, may locate a third

person with twice his income, etc. The income distribution in its upper range has a

Pareto inverse power tail; however, most of the income distributions follow a log-normal

curve, but the last few percent have a stable tail with exponent α = 1.6 (cf. [3]), i.e., the

mean is finite but the variance of the corresponding 1.6-stable distribution diverges. In

the case of financial data these models are extreme in the sense that stable distributions

(excluding the Gaussian) do not have a finite variance. But in contrast to “classical” fi-

nance (stocks, bonds, currencies, storable commodities, etc.) there are many other fields

of application where it seems to be reasonable to assume infinite variance for the data.

In [45], for instance, a stable CARMA(2, 1) model is fitted to spot prices from the Singa-

pore New Electricity Market. An early example of α-stable stochastic modeling can be

found already in Mandelbrot [62] and Fama [35], who proposed the stable distribution

for stock returns. Internet traffic models are just one other possible application area for

heavy-tailed models (cf. [27, 30, 64]), other examples of α-stable stochastic modeling are

given in [52, Chapter 7].

Also from a theoretical point of view stable distributions are an interesting class

to work with. If X1, X2, . . . are i.i.d. nondegenerate random variables and there are

sequences of constants an > 0 and bn ∈ R such that

a−1
n

n∑
k=1

Xk − bn
D→ Z

as n→∞, then Z has a stable distribution (cf. [12, Proposition 9.25]).

In classical time series analysis second-order stationarity is a basic concept. Therefore,

a distinctive feature when dealing with finite-variance models is the extensive use of

Hilbert space methods (see, for instance, [17, Chapter 2]). However, if we allow for

possibly infinite-variance processes, in particular stable models, these techniques cannot

be used for a theoretical analysis of statistics of the corresponding models. Although

there is a concept of orthogonality even in Banach spaces, called James orthogonality

(see, e.g., [77, Section 2.9]), or a “covariance alternative” for infinitely divisible processes,

called codifference (see, e.g., [77, Section 2.10]), it is not immediate to carry over results

for finite-variance processes to possibly heavy-tailed models.

One possible way out, however, is to use spectral methods. Very often a significant

tool for the analysis of statistical and probabilistic problems in conjunction with var-

ious stochastic processes is provided by spectral representations of these models. For

instance, the spectral representations of symmetric stable processes have been used suc-

2



cessfully to solve prediction and interpolation problems (see, e.g., [26, 50]) and to study

structural and path properties for certain subclasses of these models (see, e.g., [25, 75]).

In [44] it has been shown that also multivariate regularly varying CARMA processes,

which in particular include stable CARMA models, possess spectral representations in

the summability sense. Inspired by this work, we decided to address a deeper spectral

analysis of (stable) CARMA processes in this thesis.

Outline of the thesis

Every of the following chapters of this thesis is based on a paper and hence, they are

basically self-contained. In the following we present brief abstracts of the contents for

each chapter. Detailed content information follows in the introductory sections of the

individual chapters.

In this thesis we deal with statistical inference for the underlying Lévy process and the

parameters of CARMA models in a high-frequency asymptotic framework. The common

ground for the following three chapters is given, on the one hand, by the continuous-

time model we consider, namely Lévy-driven CARMA processes. On the other hand,

each chapter will either use spectral methods in proofs or study directly probabilistic

properties of these models in the frequency domain.

More precisely, Chapter 2 is based on [40]. High-frequency sampled CARMA models

driven by finite-variance zero-mean Lévy processes are considered. An L2-consistent

estimator for the increments of the driving Lévy process without order selection in

advance is proposed if the CARMA model is invertible. In the second part of this chapter

we analyze the high-frequency behavior of approximating Riemann sum processes, which

represent a natural way to simulate continuous-time moving average processes on a

discrete grid. We shall compare their autocovariance structure with the one of sampled

CARMA processes, where the rule of integration plays a crucial role. Moreover, new

insight into the kernel estimation procedure of [20] is given.

Chapter 3 is based on [39]. Again a CARMA process (Yt)t∈R is considered, this time

driven by a symmetric α-stable Lévy process with α ∈ (0, 2]. It is sampled at a high-

frequency time-grid {0, ∆n, 2∆n, . . . , n∆n}, where the observation grid gets finer and

the last observation tends to infinity as n → ∞. We investigate the normalized peri-

odogram In, Y ∆n (ω) = |n−1/α
∑n

k=1 Yk∆n e−iωk|2 of the sampled sequence. Under suitable

conditions on ∆n we show the convergence of the finite-dimensional distribution of both

∆
2− 2

α
n

[
In, Y ∆n (ω1∆n), . . . , In, Y ∆n (ωm∆n)

]

3



1 Introduction

for (ω1, . . . , ωm) ∈ (R\{0})m and of self-normalized versions of it to functions of stable

distributions. The limit distributions differ depending on whether ω1, . . . , ωm are linearly

dependent or independent over Z. For the proofs we require methods from the geometry

of numbers.

The last chapter is taken from [38]. Once more a CARMA process driven by either a

symmetric α-stable Lévy process with α ∈ (0, 2) or a symmetric Lévy process with finite

second moments is studied. In the asymptotic framework of high-frequency data within a

long time interval, we establish a consistent estimate for the normalized power transfer

function by applying a smoothing filter to the periodogram of the CARMA process.

Thereafter, this result is used in order to propose an estimator for the parameters of the

CARMA process. The estimation procedure is exemplified by a simulation study.

4



2 Noise recovery and high-frequency

behavior of approximating Riemann

sums1

2.1 Introduction

The constantly increasing availability of high-frequency data in finance and science in

general has sparked a great deal of attention about the asymptotic behavior of high-

frequency sampled processes in the last decade, especially concerning the estimation of

the multi-power variations of Itō semimartingales (see, e.g., [2, 4]), employing their re-

alized counterparts. These quantities are of primary importance to practitioners, since

they embody the deviation of data from a Brownian motion. Such methods are summa-

rized in the book of [51] and references therein, which represents the most recent review

on the subject.

In many areas of application Lévy-driven processes are used for modeling time series.

An ample class within this group are continuous-time moving average (CMA) processes

Yt =

∫ ∞
−∞

g(t− s) dLs, t ∈ R, (2.1)

where g is a so-called kernel function and L = (Lt)t∈R is said to be the driving Lévy

process (see, e.g., [78] for a detailed introduction). They cover, for instance, Ornstein-

Uhlenbeck and continuous-time autoregressive moving average (CARMA) processes. The

latter are the continuous-time analog of the well-known ARMA processes (see, e.g., [17])

and have been extensively studied over the recent years (cf. [14, 15, 22, 85]). Originally,

driving processes of CARMA models were restricted to Brownian motion (see [32], and

also [33]); however, [14] allowed for Lévy processes with a finite rth moment for some

r > 0.

1The contents of this chapter are based on Ferrazzano, V. and Fuchs, F. (2012), Noise recovery for
Lévy-driven CARMA processes and high-frequency behaviour of approximating Riemann sums,
submitted for publication.
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2 Noise recovery and Riemann sum approximations

Lévy-driven CARMA processes are widely used in various areas of application like

signal processing and control (cf. [46, 61]), high-frequency financial econometrics (cf.

[87]) and financial mathematics (cf. [6, 13, 49, 85]). Stable CARMA processes can be

relevant in modeling energy markets (cf. [5, 45]). Very often, a correct specification of

the driving Lévy process is of primary importance in all these applications.

In this chapter we will be concerned with a high-frequency sampled CARMA process

driven by a second-order zero-mean Lévy process. Under the assumption of invertibility

of the CARMA model, we shall present an L2-consistent estimator for the increments

of the driving Lévy process, employing standard time series techniques. It is remarkable

that the proposed procedure works for arbitrary autoregressive and moving average

orders, i.e. there is no need for order selection in advance. In the light of the results

in [20] and the flexibility of CARMA processes, the method might apply to a wider

class of CMA processes, too. Moreover, since the proof employees only the fact that

the increments of the Lévy process are orthogonal rather than independent, the result

holds for a much ampler class of driving processes. Notable examples are the COGARCH

processes ([13, 55]) or time-changed Lévy processes ([28]), which are often employed to

model volatility clustering in finance and intermittency in turbulence.

This noise recovery result will give rise to the conjecture that the sampled CARMA

process behaves on a high-frequency time grid approximately like a suitable MA(∞) pro-

cess, which we shall call approximating Riemann sum process. By comparing the asymp-

totic properties of the autocovariance structure of high-frequency sampled CARMA

models with the one of their approximating Riemann sum processes, it will turn out

that the so-called rule of the Riemann sum plays a crucial role if the difference between

the autoregressive and moving average order is greater than 1. On the one hand, this

gives new insight for the kernel estimation procedure studied in [20] and explains at

which points the kernel is indeed estimated. On the other hand, this has obvious con-

sequences for simulation purposes. Riemann sum approximations are an easy tool to

simulate CMA processes; however, our results show that one has to be careful with the

chosen rule of integration in the context of certain CARMA processes.

The outline of the remaining chapter is as follows. In Section 2.2 we are going to recall

the definition of finite-variance CARMA models and summarize important properties

of high-frequency sampled CARMA processes. In particular, we fix a global assumption

that guarantees causality and invertibility for the sampled sequence. In the third section

we then derive an L2-consistent estimator for the increments of the driving Lévy pro-

cess starting from the Wold representation of the sampled process. It will turn out that

invertibility of the original continuous-time process is sufficient and necessary for the

6



2.2 Preliminaries to Chapter 2

recovery result to hold. Section 2.3 is completed by an illustrating example for CAR(2)

and CARMA(2, 1) processes. Thereafter, the high-frequency behavior of approximating

Riemann sum processes is studied in Section 2.4. First, an ARMA representation for the

Riemann sum approximation is established in general and then the role of the rule of

integration is analyzed by matching the asymptotic autocovariance structure of sampled

CARMA processes and their Riemann sum approximations in the cases where the au-

toregressive order is less or equal to 3. The connection between the Wold representation

and the approximating Riemann sum yields a deeper insight into the kernel estimation

procedure introduced in [20]. A short conclusion can be found in Section 2.5 and finally,

some auxiliary results are established in the last section.

2.2 Preliminaries to Chapter 2

2.2.1 Finite-variance CARMA processes

Throughout this chapter we shall be concerned with a CARMA process driven by a

second-order zero-mean Lévy process L = (Lt)t∈R with E[L1] = 0 and E[L2
1] = 1. It is

defined as follows.

For non-negative integers p and q such that p > q, a CARMA(p, q) process Y = (Yt)t∈R

with coefficients a1, . . . , ap, c0, . . . , cq ∈ R and driving Lévy process L is defined to be a

strictly stationary solution of the suitably interpreted formal equation

a(D)Yt = σc(D) DLt, t ∈ R, (2.2)

where D denotes differentiation with respect to t, a(·) and c(·) are the characteristic

polynomials,

a(z) := zp + a1z
p−1 + · · ·+ ap and c(z) := c0 + c1z + · · ·+ cp−1z

p−1,

the coefficients cj satisfy cq = 1 and cj = 0 for q < j < p, and σ > 0 is a constant.

The polynomials a(·) and c(·) are assumed to have no common zeros. Throughout this

chapter we shall denote by λi, i = 1, . . . , p, and −µi, i = 1, . . . , q, the roots of a(·) and

c(·) respectively, such that these polynomials can be written as a(z) =
∏p

i=1(z−λi) and

c(z) =
∏q

i=1(z + µi). Throughout this chapter we will further assume

Assumption 2.1.

(i) The zeros of the polynomial a(·) satisfy <(λj) < 0 for every j = 1, . . . , p,

7



2 Noise recovery and Riemann sum approximations

(ii) the roots of c(·) have non-vanishing real part, i.e. <(µj) 6= 0 for all j = 1, . . . , q.

Since the derivative DLt does not exist in the usual sense, we interpret (2.2) as being

equivalent to the observation and state equations

Yt = cTXt, (2.3)

dXt = AXt dt+ ep dLt, (2.4)

where

Xt =



X(t)

X(1)(t)
...

X(p−2)(t)

X(p−1)(t)


, c =



c0

c1

...

cp−2

cp−1


, ep =



0

0
...

0

1


,

A =



0 1 0 . . . 0

0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1

−ap −ap−1 −ap−2 . . . −a1


and A = −a1 for p = 1.

It is easy to check that the eigenvalues of the matrix A are the same as the zeros of the

autoregressive polynomial a(·).
Under Assumption 2.1 (i) it has been shown in [22, Theorem 3.3] that Eqs. (2.3)-(2.4)

have the unique strictly stationary solution,

Yt =

∫ ∞
−∞

g(t− u) dLu, t ∈ R, (2.5)

where

g(t) =


σ

2πi

∫
ρ

c(z)

a(z)
etz dz = σ

∑
λ

Resz=λ

(
ezt
c(z)

a(z)

)
, if t > 0,

0, if t ≤ 0,

(2.6)

and ρ is any simple closed curve in the open left half of the complex plane encircling

the zeros of a(·). The sum is over the distinct zeros λ of a(·) and Resz=λ(·) denotes the

residue at λ of the function in brackets. The kernel g can also be expressed (cf. [22], Eqs.

(2.10) and (3.7)) as

g(t) = σ cT etA ep 1(0,∞)(t), t ∈ R, (2.7)

8



2.2 Preliminaries to Chapter 2

and its Fourier transform is

F {g(·)} (ω) :=

∫
R
g(s) eiωs ds = σ

c(−iω)

a(−iω)
, ω ∈ R. (2.8)

In the light of Eqs. (2.5)-(2.8), we can interpret a CARMA process as a continuous-time

filtered white noise, whose transfer function has a finite number of poles and zeros. We

outline that the request on the roots of a(·) to lie in the interior of the left half of the

complex plane in order to have causality arises from Theorem V, p. 8, [71], which is

intrinsically connected with the theorems in [86], pp. 125-129, on the Hilbert transform.

A similar request on the roots of c(·) will turn out to be necessary for recovering the

driving Lévy process.

2.2.2 Properties of high-frequency sampled CARMA processes

We now recall some properties of the sampled process Y ∆ := (Yn∆)n∈Z of a CARMA(p, q)

model where ∆ > 0; cf. [20, 21] and references therein. It is known that the sampled

sequence Y ∆ satisfies the ARMA(p, p− 1) equations

Φ∆(B)Y ∆
n = Θ∆(B)Z∆

n , n ∈ Z, (Z∆
n ) ∼WN(0, σ2

∆), (2.9)

with the AR part Φ∆(B) :=
∏p

i=1(1 − e∆λiB), where B is the discrete-time backshift

operator, BY ∆
n := Y ∆

n−1. Finally, the MA part Θ∆(·) is a polynomial of order p − 1,

chosen in such a way that it has no roots inside the unit circle. For p > 3 and fixed

∆ > 0 there is no explicit expression for the coefficients of Θ∆(·) nor the white noise

process Z∆. Nonetheless, asymptotic expressions for Θ∆(·) and σ2
∆ = Var(Z∆

n ) as ∆ ↓ 0

were obtained in [20, 21]. Namely we have that the polynomial Θ∆(z) can be written as

(see [20, Theorem 2.1])

Θ∆(z) =

p−q−1∏
i=1

(1 + η(ξi) z)

q∏
k=1

(1− ζk z), z ∈ C, (2.10)

σ2
∆ =

σ2∆2(p−q)−1

(2(p− q)− 1)!
∏p−q−1

i=1 η(ξi)
(1 + o(1)), as ∆ ↓ 0, (2.11)

where, again as ∆ ↓ 0,

ζk = 1± µk∆ + o(∆), k = 1, . . . , q,

η(ξi) = ξi − 1±
√

(ξi − 1)2 − 1 + o(1), i = 1, . . . , p− q − 1. (2.12)

9



2 Noise recovery and Riemann sum approximations

The signs ± in (2.12) are chosen respectively such that, for sufficiently small ∆, the

coefficients ζk and η(ξi) are less than 1 in absolute value. This ensures that Eq. (2.9) is

invertible. Moreover, ξi, i = 1, . . . , p− q − 1, are the zeros of αp−q−1(·), which is defined

as the (p− q − 1)-th coefficient in the series expansion

sinh(z)

cosh(z)− 1 + x
=
∞∑
k=0

αk(x)z2k+1, z ∈ C, x ∈ R\{0}, (2.13)

where the LHS of Eq. (2.13) is a power transfer function arising from the sampling

procedure (cf. [21, Eq. (11)]). Therefore the coefficients η(ξi), i = 1, . . . , p − q − 1, can

be regarded as spurious, as they do not depend on the parameters of the underlying

continuous-time process Y , but just on p− q.

Remark 2.2.1. Our notion of sampled process is a weak one, since we only require

that the sampled process has the same autocovariance structure as the continuous-time

process, when observed on a discrete grid. We know that the filtered process on the LHS

of (2.9) (see [22, Lemma 2.1]) is a (p−1)-dependent discrete-time process. Therefore there

exist 2p−1 possible representations for the RHS of (2.9) yielding the same autocovariance

function of the filtered process, but only one having its roots outside the unit circle, which

is called minimum-phase spectral factor (see [79] for a review on the topic). Since it is

not possible to discriminate between them, we always take the minimum-phase spectral

factor without any further question. This will be crucial for our main result.

Moreover, the rationale behind Assumption 2.1 (ii) becomes clear now: if <(µk) = 0

for some k, then the corresponding |ζk|2 is equal to 1 + ∆2|µk|2 + o(∆2), for either sign

choice. Then the MA(p − 1) polynomial in Eq. (2.10) will never be invertible for small

∆. �

In order to ensure the invertibility of the sampled CARMA process, we need to verify

that |η(ξi)| is strictly less than 1 for all i = 1, . . . , p− q − 1 and sufficiently small ∆.

Proposition 2.2.2. The coefficients η(ξi) in Eq. (2.12) are uniquely determined by

η(ξi) = ξi − 1−
√

(ξi − 1)2 − 1 + o(1), i = 1, . . . , p− q − 1,

and we have that ξi − 1−
√

(ξi − 1)2 − 1 ∈ (0, 1) for all i = 1, . . . , p− q − 1.

Proof. It follows from Proposition 2.6.1 that ξi ∈ (2,∞) for all i = 1, . . . , p − q − 1.

10



2.3 Noise recovery

This yields ξi − 1 +
√

(ξi − 1)2 − 1 > 1 for all i and hence, we have that

η(ξi) = ξi − 1−
√

(ξi − 1)2 − 1 + o(1), i = 1, . . . , p− q − 1.

Since the first-order term of η(ξi) is positive and monotonously decreasing in ξi, the

additional claim follows.

2.3 Noise recovery

In this section we are going to prove the first main statement of the chapter, which is

a recovery result for the driving Lévy process. We start with some motivation for our

approach.

We know that the sampled CARMA process Y ∆ = (Yn∆)n∈Z has the Wold represen-

tation (cf. [17, p. 187])

Y ∆
n =

∞∑
j=0

ψ∆
j Z

∆
n−j =

∞∑
j=0

(
σ∆√

∆
ψ∆
j

)(√
∆

σ∆

Z∆
n−j

)
, n ∈ Z, (2.14)

where
∑∞

j=0(ψ∆
j )2 < ∞. Moreover, Eq. (2.14) is the causal representation of Eq. (2.9),

and it has been shown in [20] that for every causal and invertible CARMA(p, q) process,

as ∆ ↓ 0,
σ∆√

∆
ψ∆
bt/∆c → g(t), t ≥ 0, (2.15)

where g is the kernel in the moving average representation (2.5). Given the availability of

classical time series methods to estimate (ψ∆
j )j∈N and σ2

∆, and the flexibility of CARMA

processes, we argue that this result can be applied to more general CMA processes.

Given Eqs. (2.14) and (2.15) it is natural to investigate, whether the quantity

L̄∆
n :=

√
∆

σ∆

Z∆
n , n ∈ Z,

approximates the increments of the driving Lévy process in the sense that for every fixed

t ∈ (0,∞),
bt/∆c∑
i=1

L̄∆
i

L2

→ Lt, ∆ ↓ 0. (2.16)

As usual, convergence in L2 implies also convergence in probability and distribution.

The first results on retrieving the increments of L were given in [19], and furthermore

11



2 Noise recovery and Riemann sum approximations

generalized to the multivariate case by [24]. The essential limitation of this parametric

method is that it might not be robust with respect to model misspecification. More

precisely, the fact that a CARMA(p, q) process is (p − q − 1)-times differentiable (see

Proposition 3.32 of [63]) is crucial for the procedure to work (cf. [24, Theorem 4.3]).

However, if the underlying process is instead CARMA(p′, q′) with p′ − q′ < p − q, then

some of the necessary derivatives do not exist anymore. In contrast to the aforementioned

procedure, in the method we propose there is no need to specify the autoregressive and

the moving average orders p and q in advance.

Before we start to prove the recovery result in Eq. (2.16), let us, in analogy to the

discrete-time case, establish the notion of invertibility.

Definition 2.3.1.

A CARMA(p, q) process is said to be invertible if the roots of the moving average poly-

nomial c(·) have negative real parts, i.e. <(µi) > 0 for all i = 1, . . . , q.

Our main theorem is the following:

Theorem 2.3.2. Let Y be a finite-variance CARMA(p, q) process and Z∆ the noise

on the RHS of the sampled Eq. (2.9). Moreover, let Assumption 2.1 hold and define

L̄∆ :=
√

∆/σ∆Z
∆. Then, as ∆ ↓ 0,

bt/∆c∑
i=1

L̄∆
i

L2

→ Lt, t ∈ (0,∞), (2.17)

if and only if the roots of the moving average polynomial c(·) on the RHS of the CARMA

Eq. (2.2) have negative real parts, i.e. if and only if the CARMA process is invertible.

Proof. Under Assumption 2.1 (ii) and using Proposition 2.2.2, the sampled ARMA

equation (2.9) is invertible. The noise on the RHS of (2.9) is then obtained using the

classical inversion formula

Z∆
n =

Φ∆(B)

Θ∆(B)
Y ∆
n , n ∈ Z,

where B is the usual backshift operator. Let us consider the stationary continuous-time

process

Z∆
t :=

Φ∆(B∆)

Θ∆(B∆)
Yt =

∞∑
i=0

a∆
i

∫ t−i∆

−∞
g(t− i∆− s) dLs, t ∈ R, (2.18)

where the continuous-time backshift operator B∆ is defined such that B∆ Yt := Yt−∆ for

every t ∈ R and the series in the RHS of Eq. (2.18) is the Laurent expansion of the

12



2.3 Noise recovery

rational function Φ∆(·)/Θ∆(·). Moreover, Z∆
n∆ = Z∆

n for every n ∈ N; as a consequence,

the random variables Z∆
s , Z∆

t are uncorrelated for |t− s| ≥ ∆ and Var(Z∆
t ) = Var(Z∆

n ).

Exchanging the sum and the integral signs in Eq. (2.18), and the fact that g(·) = 0 for

negative arguments, we have that Z∆ is a continuous-time moving average process

Z∆
t =

∫ t

−∞
g∆(t− s) dLs, t ∈ R,

whose kernel function g∆ has Fourier transform (cf. Eq. (2.8))

F{g∆(·)}(ω) =
Φ∆(eiω∆)

Θ∆(eiω∆)
F{g(·)}(ω) = σ

Φ∆(eiω∆)

Θ∆(eiω∆)

c(−iω)

a(−iω)
, ω ∈ R, ∆ > 0.

Since we can write Lt−Lt−∆ =
∫ t
−∞ 1(0,∆)(t−s) dLs, t ∈ R, the sum of the differences

between the rescaled sampled noise terms and the increments of the Lévy process is

given by

n∑
j=1

L̄∆
j − Ln∆ =

∫ n∆

−∞

n∑
j=1

[√
∆

σ∆

g∆(j∆− s)− 1(0,∆)(j∆− s)

]
dLs

=

∫ n∆

−∞
h∆
n (n∆− s) dLs, n ∈ N, (2.19)

where, for every n ∈ N,

h∆
n (s) :=

n∑
j=1

[√
∆

σ∆

g∆(s+ (j − n)∆)− 1(0,∆)(s+ (j − n)∆)

]
, s ∈ R,

and the stochastic integral in Eq. (2.19) w.r.t. L is still in the L2-sense. It is a standard

result, cf. [47, Ch. IV, §4], that the variance of the moving average process in Eq. (2.19)

is given by

E

[
n∑
j=1

L̄∆
j − Ln∆

]2

=

∫ n∆

−∞

(
h∆
n (n∆− s)

)2
ds = ‖h∆

n (·)‖2
L2 , (2.20)

where the latter equality is true since h∆
n (s) = 0 for any s ≤ 0.

Furthermore, the Fourier transform of h∆
n (·) can be readily calculated, invoking the

13



2 Noise recovery and Riemann sum approximations

linearity and the shift property of the Fourier transform. We thus obtain

F{h∆
n (·)}(ω) =

[√
∆

σ∆

F{g∆(·)}(ω)−F{1(0,∆)(·)}(ω)

]
n∑
j=1

eiω(n−j)∆

=

[
σ

√
∆

σ∆

∏p
j=1(1− e∆(λj+iω))

Θ∆(eiω∆)

c(−iω)

a(−iω)
− eiω∆ − 1

iω

]
1− eiω∆n

1− eiω∆

=:
[
h∆,1(ω)− h∆,2(ω)

]
· h∆,3

n (ω), ω ∈ R.

Due to Plancherel’s Theorem, we deduce

Var

[
n∑
i=1

L̄∆
j − Ln∆

]
= ‖h∆

n (·)‖2
L2 =

1

2π

∫
R
|F{h∆

n (·)}|2(ω) dω,

=
1

2π

∫
R

[∣∣h∆,1 · h∆,3
n (ω)

∣∣2 +
∣∣h∆,2 · h∆,3

n (ω)
∣∣2 − 2<

(
h∆,1 · h∆,2(ω)

) ∣∣h∆,3
n (ω)

∣∣2] dω.

(2.21)

It is easy to see that the first two integrals in Eq. (2.21) are, respectively, the variances

of
∑n

i=1 L̄
∆
j and Ln∆, both equal to n∆. Setting n := bt/∆c yields for fixed positive t,

as ∆ ↓ 0,

Var

bt/∆c∑
i=1

L̄∆
j − Lbt/∆c∆

 = 2bt/∆c∆− 1

π

∫
R
<
(
h∆,1 · h∆,2(ω)

) ∣∣∣h∆,3
bt/∆c(ω)

∣∣∣2 dω

= 2t(1 + o(1))− 1

π

∫
R
<
(
h∆,1 · h∆,2(ω)

) ∣∣∣h∆,3
bt/∆c(ω)

∣∣∣2 dω.

Thus, in order to show Eq. (2.17), it remains to prove that

1

π

∫
R
<
(
h∆,1 · h∆,2(ω)

) ∣∣∣h∆,3
bt/∆c(ω)

∣∣∣2 dω = 2t(1 + o(1)) as ∆ ↓ 0,

which in turn is equivalent to

1

2πt

∫
R
σ

√
∆

σ∆

1− cos(ωbt/∆c∆)

1− cos(ω∆)

[
sin(ω∆)

ω
<

(∏p
j=1(1− e∆(λj+iω))

Θ∆(eiω∆)

c(−iω)

a(−iω)

)

+
1− cos(ω∆)

ω
=

(∏p
j=1(1− e∆(λj+iω))

Θ∆(eiω∆)

c(−iω)

a(−iω)

)]
dω = 1 + o(1) as ∆ ↓ 0.

(2.22)

Now, Lemma 2.6.2 shows that the integrand in Eq. (2.22) converges pointwise, for
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2.3 Noise recovery

every ω ∈ R\{0}, to 2(1− cos(ωt))/ω2 as ∆ ↓ 0. Since, for sufficiently small ∆, the inte-

grand is dominated by an integrable function (see Lemma 2.6.3), we can apply Lebesgue’s

Dominated Convergence Theorem and deduce that the LHS of Eq. (2.22) converges, as

∆ ↓ 0, to
1

πt

∫
R

1− cos(ωt)

ω2
dω =

2

π

∫ ∞
0

1− cos(ω)

ω2
dω = 1.

This proves Eq. (2.22) and concludes the proof of the “if”-statement.

As to the “only if”-statement, let J := {j = 1, . . . , q : <(µj) < 0} and suppose that

J 6= ∅. Then we have, by Eq. (2.10) for ∆ ↓ 0,

c(−iω)

Θ∆(eiω∆)
=

p−q−1∏
j=1

(1 + η(ξj))
−1

q∏
j=1

µj − iω
1− ζj eiω∆

(1 + o(1))

=

p−q−1∏
j=1

(1 + η(ξj))
−1 ∆−q

∏
j∈J

µj − iω
−µj − iω

(1 + o(1))

=

p−q−1∏
j=1

(1 + η(ξj))
−1 ∆−q(1 +D(ω))(1 + o(1)), ω ∈ R,

where D(ω) := −1 +
∏

j∈J(µj − iω)/(−µj − iω). By virtue of Lemmata 2.6.2 and 2.6.3,

we then obtain that the LHS of Eq. (2.22) converges, as ∆ ↓ 0, to

1

πt

∫
R

1− cos(ωt)

ω2

(
1 + <(D(ω))

)
dω = 1 +

1

π

∫
R

1− cos(ω)

ω2
<(D(ω/t)) dω.

Since |
∏

j∈J(µj − iω)/(−µj − iω)| = 1, we further deduce that <(D(ω)) ≤ 0 for any

ω ∈ R. Obviously, <(D(ω)) 6≡ 0 and hence,

1

πt

∫
R

1− cos(ωt)

ω2

(
1 + <(D(ω))

)
dω < 1,

which, in turn, shows that the convergence result (2.17) cannot hold.

Remark 2.3.3. (i) It is an easy consequence of the triangle and Hölder’s inequality

that, if the recovery result (2.17) holds, then also

bt/∆c∑
i=1

L̄∆
i

bs/∆c∑
j=bt/∆c+1

L̄∆
j

L1

→ Lt (Ls − Lt), t, s ∈ (0,∞), t ≤ s,

is valid.
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2 Noise recovery and Riemann sum approximations

(ii) Minor modifications of the proof above show that the recovery result remains valid

if we drop the assumption of causality (i.e. Assumption 2.1 (i)) and suppose instead

only <(λj) 6= 0 for every j = 1, . . . , p. Hence, invertibility of the CARMA process

is necessary for the noise recovery result to hold, whereas causality is not. In the

non-causal case, the obtained white noise process will not be the same as in the

Wold representation (2.14).

(iii) The necessity and sufficiency of the invertibility assumption descends directly from

the fact that we choose always the minimum-phase spectral factor, as pointed out

in Remark 2.2.1.

(iv) The proof suggests that this procedure should work in a much more general frame-

work. Let I∆(·) denote the inversion filter in Eq. (2.18) and ψ∆ :=
{
ψ∆
i

}
i∈N the

coefficients in the Wold representation (2.14). Then the proof of Theorem 2.3.2

essentially needs, apart from the rather technical Lemma 2.6.3, that, as ∆ ↓ 0,

I∆(eiω∆)F{g(·)}(ω) =

∫∞
0
g(s) eiωs ds∑∞

k=0 ψ
∆
k eikω∆

→ 1, ω ∈ R, (2.23)

provided that the function
∑∞

k=0 ψ
∆
k z

k does not have any zero inside the unit circle.

In other words, we need that the discrete Fourier transform in the denominator

of (2.23) converges to the Fourier transform in the numerator; this can be easily

related to the kernel estimation result in Eq. (2.15). Given the peculiar structure

of CARMA processes, this relationship can be calculated explicitly, but the results

should hold true for continuous-time moving average processes with more general

kernels, too. �

We illustrate Theorem 2.3.2 and the necessity of the invertibility assumption by an

example where the convergence result is established using a time domain approach. That

gives an explicit result also when the invertibility assumption is violated.

Unfortunately this strategy is not viable for a general CARMA process, due to the

complexity of calculations involved when p > 2.

Example 2.3.4 (CARMA(2, q) process). The causal CARMA(2, q) process is the strictly

stationary solution to the formal stochastic differential equation

(D− λ2) (D− λ1)Yt = σDLt, q = 0,

(D− λ2) (D− λ1)Yt = σ (c+ D) DLt, q = 1,
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2.3 Noise recovery

and it can be represented as a continuous-time moving average process, as in Eq. (2.5),

for λ1, λ2 < 0, λ1 6= λ2 and c ∈ R\{0}, with kernel

g(t) =σ
etλ1 − etλ2

λ1 − λ2

, q = 0,

g(t) =σ
c+ λ1

λ1 − λ2

etλ1 + σ
c+ λ2

λ2 − λ1

etλ2 , q = 1,

for t > 0 and 0 elsewhere. The corresponding sampled process Y ∆
n = Yn∆, n ∈ Z, satisfies

the causal and invertible ARMA(2, 1) equations as in (2.9) where, from Eq. (27) of [21]

and for n ∈ Z,

Φ∆(B)Y ∆
n

=

∫ n∆

(n−1)∆

g(n∆− u) dLu +

∫ (n−1)∆

(n−2)∆

[g(n∆− u)− (eλ1∆ + eλ2∆) g((n− 1)∆− u)] dLu.

(2.24)

The corresponding MA(1) polynomial in Eq. (2.9) is Θ∆(B) = 1−θ∆B, with asymptotic

parameters

θ∆ =
√

3− 2 + o(1), σ2
∆ = σ2∆3(2 +

√
3)/6 + o(∆3), q = 0,

θ∆ = 1− sgn(b) b∆ + o(∆), σ2
∆ = σ2∆ + o(∆), q = 1.

The inversion of Eqs. (2.9) and (2.24) gives, for every ∆ > 0,

Z∆
n =

Φ∆(B)

Θ∆(B)
Y ∆
n =

∞∑
i=0

(θ∆B)i
2∏
i=1

(1− eλi∆B)Y ∆
n

=

∫ n∆

(n−1)∆

g(n∆− u) dLu

+
∞∑
i=0

θi∆

∫ (n−i−1)∆

(n−i−2)∆

[g((n− i)∆− u)− (eλ1∆ + eλ2∆ − θ∆)g((n− i− 1)∆− u)] dLu.

Then Z∆ = (Z∆
n )n∈Z is a weak white-noise process. Moreover, using ∆Ln =

∫ n∆

(n−1)∆
dLs,

we have

E[Z∆
n ∆Ln−j] =


0, j < 0,∫ ∆

0
g(s) ds, j = 0,

θj−1
∆

∫ ∆

0
[g(∆ + s)− (eλ1∆ + eλ2∆ − θ∆) g(s)] ds, j > 0.

(2.25)
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2 Noise recovery and Riemann sum approximations

For a fixed t ∈ (0,∞), using the fact that ∆L and L̄∆ are both second-order stationary

white noises with variance ∆, we have that

E

bt/∆c∑
i=1

(L̄∆
i −∆Li)

2

= 2bt/∆c∆− 2

bt/∆c∑
i=1

E[L̄∆
i ∆Li]− 2

∑
i 6=j

E[L̄∆
i ∆Lj]

= 2bt/∆c∆− 2
√

∆

σ∆

bt/∆c
∫ ∆

0

g(s) ds

− 2
√

∆

σ∆

∫ ∆

0

[g(∆ + s)− (eλ1∆ + eλ2∆ − θ∆) g(s)] ds

bt/∆c∑
i=1

i−1∑
j=1

θj−1
∆

where the last equality is obtained using Eq. (2.25). Moreover, for every a 6= 1,

n∑
i=1

i−1∑
j=1

aj−1 =
an + (1− a)n− 1

(1− a)2
, n ∈ N.

Then the variance of the error can be explicitly calculated as

E

bt/∆c∑
i=1

(L̄∆
i −∆Li)

2

= 2bt/∆c∆− 2
√

∆

σ∆

bt/∆c
∫ ∆

0

g(s) ds− 2
√

∆

σ∆

θ∆
bt/∆c + bt/∆c(1− θ∆)− 1

(1− θ∆)2

×
∫ ∆

0

[g(∆ + s)− (eλ1∆ + eλ2∆ − θ∆) g(s)] ds.

We now compute the asymptotic expansion for ∆ ↓ 0 of the equation above. We obviously
have that 2bt/∆c∆ = 2t(1+o(1)) and, using the explicit formulas for the kernel functions
g,

2
√

∆
σ∆
bt/∆c

∫∆

0
g(s) ds

2
√

∆
σ∆

∫∆

0
[g(∆ + s)− (eλ1∆ + eλ2∆ − θ∆)g(s)] ds

(θ∆
bt/∆c + bt/∆c(1− θ∆)− 1)/(1− θ∆)2

 =



q = 0(
3−
√

3
)
t+ o(1)(

4
√

3− 6
)

∆(1 + o(1))
1
6

(
3 +
√

3
)
t/∆(1 + o(1))

q = 1

2t+ o(1)

2(c− sgn(c) c)∆2 + o(∆2)

(e−sgn(c)ct + sgn(c)ct− 1)/(c∆)2 + o(∆−2).
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2.4 High-frequency behavior of approximating Riemann sums

Hence, for a fixed t ∈ (0,∞) and ∆ ↓ 0, we get

E

bt/∆c∑
i=1

(L̄∆
i −∆Li)

2

=

{
o(1), q = 0,

−2(e−sgn(c)ct + sgn(c)ct− 1)(1− sgn(c))/c+ o(1), q = 1,

i.e. (2.17) holds always for q = 0, whereas for q = 1 if and only if c > 0. If c < 0, the

error approximating the driving Lévy by inversion of the discretized process grows as 4t

for large t. �

2.4 High-frequency behavior of approximating Riemann

sums

The fact that, in the sense of Eq. (2.16), L̄∆
n ≈ ∆Ln = Ln∆−L(n−1)∆ for small ∆, along

with Eq. (2.15), gives rise to the conjecture that the Wold representation (2.14) for Y ∆

behaves on a high-frequency time grid approximately like the MA(∞) process

Ỹ ∆, h
n :=

∞∑
j=0

g(∆(j + h)) ∆Ln−j, n ∈ Z, (2.26)

for some h ∈ [0, 1] and g is the kernel function as in (2.7). In other words, we have for a

CARMA process, under the assumption of invertibility and causality, that the discrete-

time quantities appearing in the Wold representation approximate the quantities in

Eq. (2.26) when ∆ ↓ 0. The transfer function of (2.26) is then defined as

ψ∆
h (ω) :=

∞∑
j=0

g(∆(j + h)) e−iωj, −π ≤ ω ≤ π, (2.27)

and its spectral density can be written as

f∆
h (ω) =

1

2π
|ψ∆
h |2(ω), −π ≤ ω ≤ π.

It is well known that a CMA process can be defined (for a fixed time point t) as the L2-

limit of Eq. (2.26); this fact is naturally employed to simulate a CMA process easily, when

all the relevant quantities are known a priori. Therefore we will name the process Ỹ ∆, h

approximating Riemann sum of Eq. (2.5), and h is the so-called rule of the approximating

sum; e.g. if h = 1/2, we have the popular mid-point rule.
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2 Noise recovery and Riemann sum approximations

In order to give an answer to our conjecture, we will investigate properties of the

approximating Riemann sum Ỹ ∆, h of a CARMA process and compare its asymptotic

autocovariance structure with the one of the sampled CARMA process Y ∆. This will

yield more insight into the role of h for the behavior of Ỹ ∆, h as a process.

We start with a well known property of approximating sums.

Proposition 2.4.1. Let g be in L2 and Riemann-integrable. Then, for every h ∈ [0, 1],

as ∆ ↓ 0:

(i) Ỹ ∆, h
k − Y ∆

k
L2

→ 0, for every k ∈ Z.

(ii) Ỹ ∆, h
bt/∆c

L2

→ Yt, for every t ∈ R.

Proof. This follows immediately from the hypotheses made on g and the definition of

L2-integrals.

This result essentially says only that approximating sums converge to Yt for every fixed

t. However, for a CARMA(p, q) process we have that the approximating Riemann sum

process satisfies for every h and ∆ an ARMA(p, p − 1) equation (see Proposition 2.4.2

below), meaning that there might exist a process, whose autocorrelation structure is the

same as the one of the approximating sum. Given that the AR filter in this representa-

tion is the same as in Eq. (2.9), it is reasonable to investigate whether Φ∆(B)Y ∆ and

Φ∆(B) Ỹ ∆, h have, as ∆ ↓ 0, the same asymptotic autocovariance structure, which can

be expected but is not granted by Proposition 2.4.1.

The following proposition gives the ARMA(p, p − 1) representation for the approxi-

mating Riemann sum.

Proposition 2.4.2. Let Y be a CARMA(p, q) process, satisfying Assumption 2.1, and

furthermore suppose that the roots of the autoregressive polynomial a(·) are distinct.

Then the approximating Riemann sum process Ỹ ∆, h of Y defined by Eq. (2.26) satisfies,

for every h ∈ [0, 1], the ARMA(p, p− 1) equation

Φ∆(B) Ỹ ∆, h
n = σ Θ̃∆, h(B) ∆Ln, n ∈ Z, (2.28)

where

Θ̃∆, h(z) := θ̃∆,h
0 − θ̃∆,h

1 z +− . . .+ (−1)p−1θ̃∆,h
p−1 z

p−1 (2.29)

and

θ̃∆,h
k :=

p∑
l=1

c(λl)

a′(λl)
eh∆λl

∑
e∆(λj1+λj2+...+λjk ), k = 0, . . . , p− 1,
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2.4 High-frequency behavior of approximating Riemann sums

where the right-hand sum is defined to be 1 for k = 0 and it is evaluated over all possible

subsets {j1, . . . , jk} of {1, . . . , p}\{l}, having cardinality k, for k > 0.

Proof. Write Φ∆(z) =
∏p

j=1(1− e∆λjz) = −
∑p

j=0 φ
∆
j z

j and observe that

Φ∆(B) Ỹ ∆, h
n = −

p∑
j=0

φ∆
j Y

∆, h
n−j

= −σcT
p−1∑
k=0

(
k∑
j=0

φ∆
j e(k−j)∆A

)
eh∆A ep ·∆Ln−k

− σcT
p∑
j=0

∞∑
k=p−j

φ∆
j e(h+k)∆A ep ·∆Ln−j−k

= −σcT
p−1∑
k=0

(
k∑
j=0

φ∆
j e(k−j)∆A

)
eh∆A ep ·∆Ln−k

+ σcT
∞∑
k=p

(
−

p∑
j=0

φ∆
j e−j∆A

)
e(h+k)∆A ep ·∆Ln−k.

By virtue of the Cayley-Hamilton Theorem (cf. also [22, proof of Lemma 2.1]), we have

that

−
p∑
j=0

φ∆
j e−j∆A = 0,

and hence, Φ∆(B) Ỹ ∆, h
n = −σcT

∑p−1
k=0

(∑k
j=0 φ

∆
j e(k−j)∆A

)
eh∆A ep ·∆Ln−k. We conclude

with [39, Lemma 2.1(i) and Eq. (4.4)].

Remark 2.4.3. (i) The approximating Riemann sum of a causal CARMA process is

automatically a causal ARMA process. On the other hand, even if the CARMA

process is invertible in the sense of Definition 2.3.1, the roots of Θ̃∆, h(·) may lie

inside the unit circle, causing Ỹ ∆, h to be non-invertible.

(ii) It is easy to see that θ̃∆,h
0 = g(h∆). Then for p − q ≥ 2, if h = 0, we have that

θ̃∆,0
0 = 0, giving that Θ̃∆, 0(0) = 0. This is never the case for Θ∆(·), as one can see

from Eq. (2.10) and Proposition 2.2.2. Moreover, it is possible to show that for

h = 1 and p− q ≥ 2, the coefficient θ̃∆,1
p−1 is 0, implying that Eq. (2.28) is actually

an ARMA(p, p − 2) equation. For those values of h, the ARMA equations solved

by the approximating Riemann sums will never have the same asymptotic form as

Eq. (2.9): therefore we shall restrict ourselves to the case h ∈ (0, 1) from now on.
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2 Noise recovery and Riemann sum approximations

(iii) The assumption of distinct autoregressive roots might seem restrictive, but the

omitted cases can be obtained by letting distinct roots tend to each other. This

would, of course, change the coefficients of the MA polynomial in Eq. (2.29). More-

over, as shown in [20, 21], the multiplicity of the zeros does not matter when

L2-asymptotic relationships as ∆ ↓ 0 are considered. �

Due to the complexity of retrieving the roots of a polynomial of arbitrary order from

its coefficients, finding the asymptotic expression of Θ̃∆, h(·) for arbitrary p is a daunt-

ing task. Nonetheless, using Proposition 2.4.2, it is not difficult to give an answer for

processes with p ≤ 3, which are the most used in practice.

Proposition 2.4.4. Let Ỹ ∆, h be the approximating Riemann sum for a CARMA(p, q)

process, with p ≤ 3, let Assumption 2.1 hold and the roots of a(·) be distinct.

If p = 1, the process Ỹ ∆, h is an AR(1) process driven by Z∆
n = σe∆hλ1∆Ln, for every

∆ > 0. If p = 2, 3, we have

Φ∆(B) Ỹ ∆, h
n =

q∏
i=1

(1− (1−∆µi + o(∆))B)

p−q−1∏
i=1

(1− χp−q,i(h)B)

(
σ

(h∆)p−q−1

(p− q − 1)!
∆Ln

)
(2.30)

where, for h ∈ (0, 1) and ∆ ↓ 0, χ2,1(h) = (h− 1)/h+ o(1) and

χ3,j(h) =
2(h− 1)2

2(h− 1)h− 1− (−1)j
√

1− 4(h− 1)h
+ o(1), j = 1, 2.

Proof. Since p ≤ 3, Θ̃∆, h(z) is a polynomial of order p−1 with real coefficients; therefore

the roots, if any, can be calculated from the coefficients, and asymptotic expressions can

be obtained by computing the Taylor expansions of the roots around ∆ = 0.

If p = 1, the statement follows directly from Eq. (2.28). For p = 2, 3, the roots of

Eq. (2.29) are {1 + ∆µi + o(∆)}i=1,...,q and {1/χp−q,i(h)}i=1,...p−q−1, giving that

Θ̃∆, h(z) = θ̃∆,h
p−1

q∏
i=1

(1 + ∆µi + o(∆)− z)

p−q−1∏
i=1

(1/χp−q,i(h)− z), z ∈ C.

Vieta’s Theorem gives that the product of the roots of Eq. (2.29) is equal to θ̃∆,h
0 /θ̃∆,h

p−1,

which yields

Θ̃∆, h(z) = θ̃∆,h
0

q∏
i=1

(1− (1−∆µi + o(∆))z)

p−q−1∏
i=1

(1− χp−q,i(h)z).
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2.4 High-frequency behavior of approximating Riemann sums

Since θ̃∆,h
0 = g(h∆) = σ(h∆)p−q−1/(p − q − 1)!(1 + o(1)), we have established the

result.

In general the autocorrelation structure will depend on h through the parameters

χp−q,i(h), i = 1, . . . , p−q−1. In a time series context, it is reasonable to require that the

approximating Riemann sum process has the same asymptotic autocorrelation structure

as the CARMA process we want to approximate.

Corollary 2.4.5. Let the assumptions of Proposition 2.4.4 hold. Then Φ∆(B)Y ∆ and

Φ∆(B) Ỹ ∆, h have the same asymptotic autocovariance structure as ∆ ↓ 0

for every h ∈ (0, 1), if p− q = 1,

for h = (3±
√

3)/6, if p− q = 2,

and for h =
(

15±
√

225− 30
√

30
)
/30, if p− q = 3.

Moreover, the MA polynomials in Eqs. (2.10) and (2.30) coincide if and only if the

CARMA process is invertible and |χp−q,i(h)| < 1, that is

for every h ∈ (0, 1), if p− q = 1,

for h = (3 +
√

3)/6, if p− q = 2.

For p− q = 3, such h does not exist.

Proof. The claim for p − q = 1 follows immediately from Proposition 2.4.4 and Eqs.

(2.10)-(2.11). For p = 2 and q = 0, we have to solve the spectral factorization problem

σ2
∆(1 + η(ξ1)2) = σ2∆3(1 + χ2,1(h)2)h2

σ2
∆η(ξ1) = −σ2∆3χ2,1(h)h2

with η(ξ1) = 2−
√

3+o(1) and χ2,1(h) = (h−1)/h+o(1). Eq. (2.11) then yields the two

solutions h = (3±
√

3)/6. For p = 3 and q = 1, analogous calculations lead to the same

solutions. Finally, consider the case p = 3 and q = 0. We have to solve asymptotically

the following system of equations

σ2
∆(1 + (η(ξ1) + η(ξ2))2 + η(ξ1)2η(ξ2)2) =

σ2∆5

4
(1 + (χ3,1(h) + χ3,2(h))2 + χ3,1(h)2χ3,2(h)2)h4

σ2
∆(η(ξ1) + η(ξ2))(1 + η(ξ1)η(ξ2)) = −σ

2∆5

4
(χ3,1(h) + χ3,2(h))(1 + χ3,1(h)χ3,2(h))h4
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2 Noise recovery and Riemann sum approximations

σ2
∆η(ξ1)η(ξ2) =

σ2∆5

4
χ3,1(h)χ3,2(h)h4

where η(ξ1,2) =
(
13±

√
105−

√
270± 26

√
105
)
/2 + o(1) and χ3,1(h) and χ3,2(h) are as

in Proposition 2.4.4. Solving that system for h gives the claimed values.

To prove the second part of the corollary, we start observing that, under the assump-

tion of an invertible CARMA process, the coefficients depending on µi will coincide

automatically, if any. Then it remains to check whether the coefficients depending on

h can be smaller than 1 in absolute value. The cases p − q = 1, 2 follow immediately.

Moreover, to see that there is no such h for p − q = 3, it is enough to notice that, for

every h ∈ (0, 1), |χ3,1(h)| > 1 and 0 < |χ3,2(h)| < 1, i.e. they do never satisfy the sought

requirement for h ∈ (0, 1).

Corollary 2.4.5 can be interpreted as a criterion to choose an h such that the Riemann

sum approximates the continuous-time process Y in a stronger sense than the simple

convergence as a random variable for every fixed t. The second part of the corollary says

that there is an even more restrictive way to choose h such that Eqs. (2.10) and (2.30)

will coincide. If the two processes satisfy asymptotically the same causal and invertible

ARMA equation, they will have the same coefficients in their Wold representations as

∆ ↓ 0, which are given in the case of the approximating Riemann sum explicitly by

definition in (2.26).

In the light of (2.15) and Theorem 2.3.2, the sampled CARMA process will asymp-

totically behave like its approximating Riemann sum process for some specific h = h̄,

which might not even exist, as in the case p = 3, q = 0. However, if such an h̄ exists,

the kernel estimators (2.15) can be improved to

σ∆√
∆
ψ∆
bt/∆c = g(∆(bt/∆c+ h̄)) + o(∆), t ∈ R.

For invertible CARMA(p, q) processes with p−q = 1, any choice of h would accomplish

that. In principle an h̄ can be found matching a higher order expansion in ∆, where higher

order terms will depend on h.

For p − q = 2, there is only a specific value h = h̄ := (3 +
√

3)/6, such that Ỹ ∆, h̄

behaves as Y ∆ in this particular sense, and therefore it gives a recommendation for a

unique, optimal value for, e.g., simulation purposes.

Finally, for p − q = 3, a similar value does not exist, meaning that it is not possible

to mimic Y ∆ in this sense with any approximating Riemann sum.

In order to confirm this, we now give a small numerical study. We consider three
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2.4 High-frequency behavior of approximating Riemann sums

different causal and invertible processes, a CARMA(2, 1), a CAR(2) and a CAR(3)

process, with parameters λ1 = −0.7, λ2 = −1.2, λ3 = −2.6 and µ1 = 3. Of course, for

the CARMA(2, 1) we use only λ1, λ2 and µ1, while for the CAR processes there is no

need for µ1. Then we estimate the kernel functions from the theoretical autocorrelation

functions using (2.15) as in [20], for moderately high sampling rates, namely 22 = 4

(Figure 2.1) and 26 = 64 samplings per unit of time (Figure 2.2). In order to see where

the kernel is being estimated, we plot the kernel estimations on different grids. The small

circles denote the extremal cases h = 0 and h = 1, the vertical sign the mid-point rule

h = 0.5, and the diamond and the square are the values given in Corollary 2.4.5, if any.

The true kernel function is then plotted with a solid, continuous line. For the sake of

clarity, only the first 8 estimates are plotted.

For the CARMA(2, 1) process, the kernel estimation seems to follow a mid-point rule.

For the CAR(2) process, the predicted value h̄ = (3 +
√

3)/6 (denoted with squares) is

definitely the correct one, and for the CAR(3) for every h ∈ [0, 1] the estimation is close

but constantly biased. Of course in the limit ∆ ↓ 0, the slightly weaker results given by

Eq. (2.15) still hold, giving that the bias vanishes in the limit. The conclusion expressed

above is true for both considered sampling rates, which is remarkable since they are only

moderately high, in comparison with the chosen parameters.
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Figure 2.1: Kernel estimation for a sampling frequency of 22 samplings per unit of time,
i.e. ∆ = 0.25. The diamond and the square symbols denote, where available,
the values of h suggested by Corollary 2.4.5.
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Figure 2.2: Kernel estimation for a sampling frequency of 26 samplings per unit of time,
i.e. ∆ ≈ 0.016. The diamond and the square symbols denote, where available,
the values of h suggested by Corollary 2.4.5.

2.5 Conclusion

In this chapter we have dealt with the asymptotic behavior of two classes of discrete-time

processes closely related to the one of CARMA processes, when the sampling frequency

tends to infinity.

First, we studied the behavior of the white noise appearing in the ARMA equation

solved by the sampled sequence of a CARMA process of arbitrary order. Then we showed,

under a necessary and sufficient identifiability condition, that the aforementioned white

noise approximates the increments of the driving Lévy process of the continuous-time

model. The proposed procedure is non-parametric in nature, and it can be applied with-

out assuming any knowledge on the order of the process. Moreover, it is argued that

such results should be extendable to CMA processes with more general kernel functions.

This is left for future research.

The results in the first part of this chapter, considered jointly with those in [20],

show that the Wold representation of a sampled causal and invertible CARMA process

behaves somehow like a Riemann sum as ∆ ↓ 0. Then in the second part of this chap-

ter the converse is investigated, i.e. whether a Riemann sum approximating a causal

CARMA process satisfies the same ARMA(p, p− 1) equation of the process we want to
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approximate, as the spacing of the grid tends to zero. This is in particular important for

simulations, where such approximating Riemann sums constitute a natural choice.

It has been shown that these processes satisfy an ARMA(p, p − 1) equation, but in

general they are not invertible. For p ≤ 3, the roots of the moving average polynomial

of such discrete-time processes depend, apart from the roots of c(·), also on the rule h.

Moreover, in the case p = 3, q = 0, no choice of h makes the Riemann sum invertible, im-

plying that the Riemann sum and the sampled process will never satisfy asymptotically

the same causal and invertible ARMA equation. Although only a finite number of cases

has been considered, it shows that in general a causal and invertible CARMA process

cannot be approximated by a Riemann sum, at least not in the sense of the second part

of Corollary 2.4.5. Further investigations on this matter are left for future research.

2.6 Appendix to Chapter 2

Throughout this appendix, we shall use the same notation as in the preceding sections.

Proposition 2.6.1. The function αn(x), as defined in Eq. (2.13), has the form

αn(x) =
1

(2n+ 1)!

Pn(x)

xn+1
, x 6= 0, n ∈ N, (2.31)

where Pn(x) is a polynomial of order n in x, namely

Pn(x) =

n∑
j=0

xn−j
n∑

k=j+1

(2k)!

{
2n+ 1

2k

} k∑
i=j

[(
i+ 1

j + 1

)(
2k

2i+ 1

)
−
(

i

j + 1

)(
2k

2i

)]
(−2)j+1−2k

+

n∑
j=0

xn−j
n∑
k=j

(2k + 1)!

{
2n+ 1

2k + 1

} k∑
i=j

[(
i+ 1

j + 1

)(
2k + 1

2i+ 1

)
−
(

i

j + 1

)(
2k + 1

2i

)]
(−2)j−2k,

(2.32)

with
{·
·

}
being the Stirling number of the second kind. Moreover, all the zeros of αn(x)

are real, distinct and greater than 2.

Proof. Using the definition of the hyperbolic functions, we can write

sinh(z)

cosh(z)− 1 + x
=

e2z − 1

e2z + 1 + 2(x− 1)ez
=: f(z, x), z ∈ C, x 6= 0,

i.e. f(z, x) = g(ez, x), where g(y, x) :=(y2 − 1)/(y2 + 1 + 2(x − 1)y). Then the n-th
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2 Noise recovery and Riemann sum approximations

derivative of the function f(·, x) is, by virtue of the Faà di Bruno formula

∂n

∂zn
f(z, x) =

∂n

∂zn
g(ez, x) =

n∑
k=1

{
n

k

}
∂k

∂yk
g(y, x)

∣∣∣∣
y=ez

ekz, z ∈ C, x 6= 0,

where the coefficients
{
n
k

}
are the Stirling numbers of the second kind. Using the previous

formula and the definition of αn(x), for x 6= 0,

(2n+ 1)!αn(x) =
∂2n+1

∂z2n+1
f(z, x)

∣∣∣∣
z=0

=
2n+1∑
k=1

{
2n+ 1

k

}
∂k

∂yk
g(y, x)

∣∣∣∣
y=1

=
2n+1∑
k=1

k!

{
2n+ 1

k

}
1

2πi

∫
ρ

(z − 1)(z + 1)

(z − a2(x))(z − a1(x))(z − 1)k+1
dz

=
2n+1∑
k=1

k!

{
2n+ 1

k

}
1

2πi

∫
ρ

z + 1

(z − a2(x))(z − a1(x))(z − 1)k
dz (2.33)

where the latter equality comes from the Cauchy differentiation formula, a1(x) = 1−x−√
x(x− 2), a2(x) = 1− x+

√
x(x− 2), i.e. they are the roots (in y) of the polynomial

y2 + 1 + 2(x − 1)y, and ρ is a counter-clockwise oriented closed curve in the complex

plane encircling z = 1. The case x = 0 has been excluded because f(·, 0) is not defined

in z = 0, and limz→0 |f(z, 0)| =∞.

Let us denote the integrand in Eq. (2.33) by fk(z, x); it is a rational function having

one pole of order k in z = 1. Moreover, there are two simple poles in z = a1(x) and

z = a2(x) if x 6= 2, or just a simple one in z = −1 if x = 2, due to cancellation with

the zero at z = −1 in the numerator. The case x = 2 can be also obtained by letting

the difference between a1(x) and a2(x) tend to zero in the upcoming calculations and is

therefore not treated by itself.

Then by the Cauchy theorem of residues, Theorem 1, p. 24 of [65], we have that the

integral in Eq. (2.33) is

1

2πi

∫
ρ

fk(z, x)dz = Resz=1fk(z, x)

= −Resz=a1(x)fk(z, x)− Resz=a2(x)fk(z, x)− Resz=∞fk(z, x), x 6= 0, 2,

where the latter identity is obtained using Theorem 2, p. 25 of [65]. Moreover, since the

difference of orders between the polynomials in the denominator and in the numerator

of fk(z, x) is k + 1 > 1, the residue at infinity is always zero (Section 3.1.2.3, pp. 27-28,
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[65]). For x 6= 0, 2, we have that z = a1(x) and z = a2(x) are simple poles, yielding

1

2πi

∫
ρ

fk(z, x) dz =
1 + a1(x)

(a1(x)− 1)k (a2(x)− a1(x))
− 1 + a2(x)

(a2(x)− 1)k (a2(x)− a1(x))

= (2x)−k
bk/2c∑
i=0

[
2

(
k

2i+ 1

)
(−x)−1 +

(
k

2i+ 1

)
−
(
k

2i

)]
(−x)k−2i (x(x− 2))i

=

bk/2c−1∑
j=0

bk/2c∑
i=j

[(
i+ 1

j + 1

)(
k

2i+ 1

)
−
(

i

j + 1

)(
k

2i

)]
(−2)j+1−k x−j−1

+ (k mod 2) (−2)bk/2c+1−k x−bk/2c−1; (2.34)

where the last equality is obtained by using the Binomial theorem. Plugging Eq. (2.34)

in Eq. (2.33), and separating the outermost sum in odd and even k, we get, still for

x 6= 0, 2,

(2n+ 1)!αn(x)

=
n∑
k=1

k−1∑
j=0

k∑
i=j

(2k)!

{
2n+ 1

2k

}[(
i+ 1

j + 1

)(
2k

2i+ 1

)
−
(

i

j + 1

)(
2k

2i

)]
(−2)j+1−2k x−j−1

+
n∑
k=0

k−1∑
j=0

k∑
i=j

(2k + 1)!

{
2n+ 1

2k + 1

}[(
i+ 1

j + 1

)(
2k + 1

2i+ 1

)
−
(

i

j + 1

)(
2k + 1

2i

)]
(−2)j−2k x−j−1

+
n∑
k=0

(2k + 1)!

{
2n+ 1

2k + 1

}
(−2)−k x−k−1.

Then Eq. (2.31) can be obtained by merging the last two lines and rearranging the

indexes.

Using (2.32), we easily see that, for Pn(x) = p0 + p1x+ . . .+ pnx
n,

p0 = (−2)−n (2n+ 1)!, pn = 1, (2.35)

i.e. Pn(x) will have n, potentially complex, roots, and they can not be zero. Moreover,

it is easy to verify that f(z, x) solves the mixed partial differential equation

∂2

∂z2
f(z, x) =

[
(x− 1)

∂

∂x
+ x(x− 2)

∂2

∂x2

]
f(z, x), z ∈ C, x 6= 0. (2.36)

Then we take 2n − 1, n ∈ N, derivatives in z on both sides of Eq. (2.36); invoking the

Schwarz theorem, the product rule for derivatives and evaluating the resulting expression
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at z = 0, we obtain that the function αn(x) is given by recursion, for x 6∈ (0, 2),

(2n+ 3) (2n+ 1)αn+1(x) =
√
x(x− 2)

∂

∂x

[√
x(x− 2)

∂

∂x
αn(x)

]
, (2.37)

α0(x) = 1/x.

We now prove by induction the claim regarding the roots being real, distinct and greater

than 2. The cases α0(x) = 1/x and 6α1(x) = (x−3)/x2 have respectively no and one zero,

so the claim can be verified directly; then we start from α2(x) = (30−15x+x2)/(120x3),

whose zeros are ξ2,1 = 1/2
(
15−

√
105
)
≈ 2.37652, ξ2,2 = 1/2

(
15 +

√
105
)
≈ 12.6235,

and they satisfy the claim, too. We now assume that the claim holds for αn(x), n ≥ 2,

and its zeros are 2 < ξn,1 < ξn,2 < . . . < ξn,n.

The derivative of αn(x) is of the form Qn(x)/xn+2, where (2n+1)!Qn(x) = x ∂
∂x
Pn(x)−

(1 +n)Pn(x). By Rolle’s theorem, Qn(x) has n− 1 real roots χn,i, i = 1, . . . , n− 1, such

that 2 < ξn,1 < χn,1 < ξn,2 < χn,2 < . . . < χn,n−1 < ξn,n. Using the product rule and the

value of the coefficients in Eq. (2.35), we get

∂

∂x
αn(x) ∼ −x−2/(2n+ 1)!→ 0, x→∞.

Again by Rolle’s theorem, since ∂
∂x
αn(x) → 0 and αn(x) → 0 as x → ∞, Qn(x) has

a root at some point ξn,n < χn,n < ∞. For x ≥ 2, the function
√
x(x− 2) ∂

∂x
αn(x)

is well defined and it is zero for x = 2 and x = χn,i, i = 1, . . . , n. With the same

arguments as before, we then obtain that ∂
∂x

[
√
x(x− 2) ∂

∂x
αn(x)] is zero for x = ξn+1,i,

i = 1, . . . , n + 1, where 2 < ξn+1,1 < χn,1 < ξn+1,2 < χn,2 < . . . < χn,n < ξn+1,n+1 < ∞.

Then by Eq. (2.37), those zeros are also roots of, respectively, αn+1(x) and Pn+1(x).

Since Pn+1(x) is a polynomial of order n + 1, it can have only n + 1 roots, which have

been found already. Moreover, they are all real, distinct and strictly greater than 2, and

the claim is proven.

Lemma 2.6.2. Suppose that <(µj) 6= 0 for all j = 1, . . . , q. Then we have, for any

t ∈ (0,∞) and ω ∈ R\{0},

lim
∆↓0

σ

√
∆

σ∆

1− cos(ωbt/∆c∆)

ω

sin(ω∆)

1− cos(ω∆)
<

(∏p
j=1(1− e∆(λj+iω))

Θ∆(eiω∆)

c(−iω)

a(−iω)

)

=
2− 2 cos(ωt)

ω2

(
1 + <(D(ω))

)
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and

lim
∆↓0

σ

√
∆

σ∆

1− cos(ωbt/∆c∆)

ω
=

(∏p
j=1(1− e∆(λj+iω))

Θ∆(eiω∆)

c(−iω)

a(−iω)

)
= 0,

where D(ω) := −1 +
∏

j∈J(µj − iω)/(−µj − iω) and J := {j = 1, . . . , q : <(µj) < 0}.
Obviously, if <(µj) > 0 for all j = 1, . . . , q, then D(ω) = 0 for every ω ∈ R.

Proof. By Proposition 2.2.2, we have that η(ξj) ∈ (0, 1) for sufficiently small ∆. Hence,

for any ω ∈ R,∏p
j=1(1− e∆(λj+iω))

Θ∆(eiω∆)

c(−iω)

a(−iω)
=

1∏p−q−1
j=1 (1 + η(ξj)eiω∆)

p∏
j=1

e∆(λj+iω) − 1

iω + λj

q∏
j=1

µj − iω
1− ζjeiω∆

= ∆p−q(1 +D(ω))

p−q−1∏
j=1

(1 + η(ξj))
−1 (1 + o(1)) as ∆ ↓ 0.

Moreover, using Eq. (2.11), we obtain

σ

√
∆

σ∆

=

√
[2(p− q)− 1]! ·

∏p−q−1
j=1 η(ξj)

∆p−q−1
(1 + o(1)) as ∆ ↓ 0.

Since cos(ωbt/∆c∆) → cos(ωt) and ∆ sin(ω∆)/(1 − cos(ω∆)) → 2/ω as ∆ ↓ 0 for any

ω ∈ R\{0}, we can use the equality (cf. [20, proof of Theorem 3.2])√
[2(p− q)− 1]! ·

∏p−q−1
j=1 η(ξj)∏p−q−1

j=1 (1 + η(ξj))
=

∏p−q−1
j=1 |1 + η(ξj)|∏p−q−1
j=1 (1 + η(ξj))

(1 + o(1)) = 1 + o(1) as ∆ ↓ 0

to conclude the proof.

Lemma 2.6.3. Suppose that t ∈ (0,∞) and <(µj) 6= 0 for all j = 1, . . . , q, and let the

functions h∆,1(·), h∆,2(·) and h∆,3
bt/∆c(·) be defined as in the proof of Theorem 2.3.2. Then

there is a C > 0 such that, for any ω ∈ R and any sufficiently small ∆,∣∣∣2<(h∆,1 · h∆,3
bt/∆c(ω) · h∆,2 · h∆,3

bt/∆c(ω)
)∣∣∣ ≤ h(ω),

where h(ω) :=
(
72p/22p+q + 1

)
t21(−1,1)(ω) + Cω−21R\(−1,1)(ω). Moreover, h is integrable

over the real line.

Proof. We obviously have∣∣∣2<(h∆,1 h∆,3
bt/∆c(ω) · h∆,2 h∆,3

bt/∆c(ω)
)∣∣∣ ≤ ∣∣∣h∆,1 · h∆,3

bt/∆c(ω)
∣∣∣2 +

∣∣∣h∆,2 · h∆,3
bt/∆c(ω)

∣∣∣2 (2.38)
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for any ω ∈ R and any ∆. Let us first consider the second addend on the RHS of

Eq. (2.38).

We obtain |h∆,2 · h∆,3
bt/∆c(ω)|2 = 2 (1− cos(ωbt/∆c∆))/ω2 and since bt/∆c∆ ≤ t holds,

we can bound, for any ∆, the latter function by t2 on the interval (−1, 1) and by 4/ω2

on R\(−1, 1).

As to the first addend on the RHS of Eq. (2.38), we calculate

∣∣∣h∆,1 · h∆,3
bt/∆c(ω)

∣∣∣2 = σ2 ∆

σ2
∆

∏p
j=1

∣∣1− e∆(λj+iω)
∣∣2

|Θ∆(eiω∆)|2
|c(−iω)|2

|a(−iω)|2
1− cos(ωbt/∆c∆)

1− cos(ω∆)
. (2.39)

Let now |ω| < 1 and suppose that ∆ is sufficiently small, i.e. the following inequalities

will be true for any |ω| < 1 whenever ∆ is sufficiently small. Using |1− ez| ≤ 7/4|z| for

|z| < 1 (see, e.g., [1, 4.2.38]) yields∏p
j=1

∣∣1− e∆(λj+iω)
∣∣2

|a(−iω)|2
≤
(

7

4
∆

)2p

.

Then (1 − cos(ω∆))/(ω∆)2 ≥ 1/4 together with 4 (1 − cos(ωbt/∆c∆))/ω2 ≤ 2t2 (see

above) implies

1− cos(ωbt/∆c∆)

1− cos(ω∆)
≤ 2

(
t

∆

)2

.

As in the proof of Lemma 2.6.2, write Θ∆(z) =
∏p−q−1

j=1 (1 + η(ξj)z)
∏q

j=1(1− ζjz), where

ζj = 1−sgn(<(µj))µj ∆+o(∆) (see [20, Theorem 2.1]). Since
∏q

j=1

(∣∣1− ζjeiω∆
∣∣ /∆)2 ≥∏q

j=1 1/2 |sgn(<(µj))µj − iω|2, we further deduce

|c(−iω)|2∏q
j=1 |1− ζjeiω∆|2

≤ 2q

∆2q
.

By virtue of Eq. (2.11), we then obtain

σ2 ∆

σ2
∆

p−q−1∏
j=1

∣∣1 + η(ξj)e
iω∆
∣∣−2 ≤ 2 · [2(p− q)− 1]!

∆2(p−q−1)

p−q−1∏
j=1

|η(ξj)|
|1 + η(ξj)eiω∆|2

and since |η(ξj)| < 1 for all j (see Proposition 2.2.2) we also have that |1 + η(ξj)e
iω∆| ≥

1
2
|1 + η(ξj)| for all j, resulting in

σ2 ∆

σ2
∆

p−q−1∏
j=1

∣∣1 + η(ξj)e
iω∆
∣∣−2 ≤ 22(p−q)−1

∆2(p−q−1)
[2(p− q)− 1]!

p−q−1∏
j=1

|η(ξj)|
|1 + η(ξj)|2

=
22(p−q)−1

∆2(p−q−1)
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where the latter equality follows from [20, proof of Theorem 3.2]. All together the RHS of

Eq. (2.39) can be bounded for any |ω| < 1 and any sufficiently small ∆ by (7/2)2p 2−qt2.

It remains to bound the RHS of (2.39) also for |ω| ≥ 1. Hence, for the rest of the proof

let us suppose |ω| ≥ 1 and in addition we assume again that ∆ is sufficiently small in

order that all the following inequalities hold. We are going to show that

σ2 ∆

σ2
∆

∏p
j=1

∣∣1− e∆(λj+iω)
∣∣2

|Θ∆(eiω∆)|2
|c(−iω)|2

|a(−iω)|2
1− cos(ωbt/∆c∆)

1− cos(ω∆)
≤ C

ω2

for some C > 0. Since
∣∣σ2∆/σ2

∆

∣∣ ≤ const. ·∆−2(p−q−1) (see (2.11)) and since
∏p−q−1

j=1 |1 +

η(ξj)e
iω∆|−2 ≤

∏p−q−1
j=1 (1 − |η(ξj)|)−2 ≤ const. (cf. Proposition 2.2.2), it is sufficient to

prove

(ω∆)2

∆2(p−q)

∏p
j=1

∣∣1− e∆(λj+iω)
∣∣2∏q

j=1 |1− ζjeiω∆|2
|c(−iω)|2

|a(−iω)|2
1− cos(ωbt/∆c∆)

1− cos(ω∆)
≤ C (2.40)

for some C > 0. For any ω ∈ R, the power transfer function satisfies |c(−iω)/a(−iω)|2 ≤
const./(ω2(p−q) + 1). Thus, Eq. (2.40) will follow from

(ω∆)2

(ω∆)2(p−q) + ∆2(p−q)

∏p
j=1

∣∣1− e∆(λj+iω)
∣∣2∏q

j=1 |1− ζjeiω∆|2
1− cos(ωbt/∆c∆)

1− cos(ω∆)
≤ C. (2.41)

We even show that (2.41) is true for any ω ∈ R. However, using symmetry and periodicity

arguments it is sufficient to prove Eq. (2.41) on the interval [0, 2π
∆

]. We split that interval

into the following six subintervals

I1 :=

[
0, min

j=1,...,q

|µj|
2

]
, I2 :=

[
min
j=1,...,q

|µj|
2
, max
j=1,...,q

2|µj|
]
, I3 :=

[
max
j=1,...,q

2|µj|,
π

∆

]
,

I4 :=

[
π

∆
,
2π

∆
− max

j=1,...,q
2|µj|

]
, I5 :=

[
2π

∆
− max

j=1,...,q
2|µj|,

2π

∆
− min

j=1,...,q

|µj|
2

]
and

I6 :=

[
2π

∆
− min

j=1,...,q

|µj|
2
,
2π

∆

]
.

For any ω ∈ I1∪ I6, the fraction 1−cos(ωbt/∆c∆)
1−cos(ω∆)

can be bounded by bt/∆c2. In the other

intervals we have the obvious bound 2/(1− cos(ω∆)) for that term.

Now, for any j = 1, . . . , p, we have, as ∆ ↓ 0,

∣∣1− e∆λj · eiω∆
∣∣2 ≤ 2

∣∣1− eiω∆
∣∣2 + 4∆2 |λj|2 = 8 sin2

(
ω∆

2

)
+ 4∆2 |λj|2
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≤ 4∆2
(
ω2 + |λj|2

)
if ω ∈ I1 ∪ I2 ∪ I3, and

∣∣1− e∆λj · eiω∆
∣∣2 ≤ 4∆2

(
(2π/∆− ω)2 + |λj|2

)
if ω ∈ I4 ∪ I5 ∪ I6.

The first fraction on the LHS of Eq. (2.41) satisfies

(ω∆)2

(ω∆)2(p−q) + ∆2(p−q) ≤


minj=1,...,q

|µj |
2
· ∆2

∆2(p−q) , if ω ∈ I1,
(ω∆)2

(ω∆)2(p−q) , if ω ∈ I2 ∪ I3,
(2π)2

π2(p−q) , if ω ∈ I4 ∪ I5 ∪ I6.

Then, for any j = 1, . . . , q and ω ∈ I1 ∪ I6, we obtain

∣∣1− ζjeiω∆
∣∣2 =

∣∣1− (1− sgn(<(µj))µj∆ + o(∆))eiω∆
∣∣2 ≥ 1

2
∆2 |sgn(<(µj))µj − iω|2

≥ 1

8
∆2 |µj|2 .

If ω ∈ I3, then we have

∣∣1− ζjeiω∆
∣∣2 ≥ (∣∣1− eiω∆

∣∣− |µj + o(1)|∆
)2

=

(
2 sin

(
ω∆

2

)
− |µj + o(1)|∆

)2

≥ ∆2

(
3

5
ω − |µj + o(1)|

)2

and likewise, for ω ∈ I4, we deduce
∣∣1− ζjeiω∆

∣∣2 ≥ ∆2
(

3
5
(2π

∆
− ω)− |µj + o(1)|

)2
. On I2

we get for arbitrary ε > 0

∣∣1− ζjeiω∆
∣∣2 = 2(1− cos(ω∆)) · (1−∆ sgn(<(µj))<(µj) + o(∆))

+ 2 sin(ω∆) · (−∆ sgn(<(µj))=(µj) + o(∆)) + ∆2|µj|2 + o(∆2)

≥ (ω∆)2 · (1− ε)− 2(ω∆) ·∆ |=(µj)| · (1 + ε) + ∆2
(
|µj|2 + o(1)

)
=: f∆

ε (ω∆).

Since f∆
ε (ω)/ω2 → 1− ε (ω →∞) and f∆

ε (ω)/ω2 →∞ (ω → 0), a (global) minimum of

f∆
ε (ω)/ω2 on (0,∞) could be achieved in any ω∗ with

(
d

dω
f∆
ε (ω)
ω2

)
(ω∗) = 0. The only such

value is ω∗ =
∆(|µj |2+o(1))

(1+ε)|=(µj)| . Now

f∆
ε (ω∗)

(ω∗)2
= 1− ε− (1 + ε)2 |=(µj)|2

|µj|2 + o(1)
≥ (1 + ε)

<(µj)
2

|µj|2
− 3ε− ε2 ≥ 1

2

<(µj)
2

|µj|2
;
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if we choose ε = 1
6

<(µj)
2

|µj |2 , we obtain f∆
ε (ω)
ω2 ≥ 1

2

<(µj)
2

|µj |2 for any ω ∈ (0,∞). Hence,

∣∣1− ζjeiω∆
∣∣2 ≥ f∆

ε (ω∆) ≥ 1

2

<(µj)
2

|µj|2
(ω∆)2 for all ω ∈ I2.

Using periodic properties of the sine and cosine terms, we likewise get

∣∣1− ζjeiω∆
∣∣2 ≥ 1

2

<(µj)
2

|µj|2
∆2

(
2π

∆
− ω

)2

for any ω ∈ I5.

Putting all together, we can bound the LHS of Eq. (2.41) in I1 by

min
j=1,...,q

|µj|
2
· (bt/∆c∆)2

∆2(p−q) ·
4p∆2p ·

∏p
j=1

(
mink=1,...,q |µk|2/4 + |λj|2

)
8−q∆2q

∏q
j=1 |µj|2

≤ min
j=1,...,q

|µj|
2
· t2 ·

4p+q ·
∏p

j=1

(
mink=1,...,q |µk|2/4 + |λj|2

)∏q
j=1

1
2
|µj|2

= C,

in I2 by

2(ω∆)2

1− cos(ω∆)

4p∆2p ·
∏p

j=1 (4 maxk=1,...,q |µk|2 + |λj|2)

(ω∆)2p ·
∏q

j=1
1
2

<(µj)2

|µj |2

≤
5 · 42p ·

∏p
j=1 (4 maxk=1,...,q |µk|2 + |λj|2)

minj=1,...,q |µj|2p ·
∏q

j=1
1
2

<(µj)2

|µj |2
= C,

in I3 by

2(ω∆)2

1− cos(ω∆)

4p(ω∆)2p ·
∏p

j=1

(
1 +

|λj |2
4 maxk=1,...,q |µk|2

)
(ω∆)2(p−q) · ( 1

20
ω∆)2q

≤ π2 4p 202q

p∏
j=1

(
1 +

|λj|2

4 maxk=1,...,q |µk|2

)
= C,

in I4 by

(2π)2

π2(p−q)
2

1− cos(ω∆)

4p(2π − ω∆)2p ·
∏p

j=1

(
1 +

|λj |2
4 maxk=1,...,q |µk|2

)
20−2q (2π − ω∆)2q

≤ 4p+1 202q

p∏
j=1

(
1 +

|λj|2

4 maxk=1,...,q |µk|2

)
2 · (2π − ω∆)2

1− cos(2π − ω∆)

≤ π2 4p+1 202q

p∏
j=1

(
1 +

|λj|2

4 maxk=1,...,q |µk|2

)
= C,
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in I5 by

(2π)2

π2(p−q)
2

1− cos(ω∆)

4p∆2p ·
∏p

j=1 (4 maxk=1,...,q |µk|2 + |λj|2)

∆2q
∏q

j=1
1
8

mink=1,...,q |µk|2(<(µj)/|µj|)2

≤ (2π)2

π2(p−q)

4p ·
∏p

j=1 (4 maxk=1,...,q |µk|2 + |λj|2)∏q
j=1

1
8

mink=1,...,q |µk|2(<(µj)/|µj|)2

2∆2

1− cos(2π − ω∆)

≤ (2π)2

π2(p−q)

4p ·
∏p

j=1 (4 maxk=1,...,q |µk|2 + |λj|2)∏q
j=1

1
8

mink=1,...,q |µk|2(<(µj)/|µj|)2

5 · 4
minj=1,...,q |µj|2

= C,

and, finally, in I6 by

(2πbt/∆c)2

π2(p−q)

4p∆2p ·
∏p

j=1

(
mink=1,...,q |µk|2/4 + |λj|2

)
8−q∆2q

∏q
j=1 |µj|2

≤ (2πt)2

π2(p−q)

4p+q ·
∏p

j=1 (mink=1,...,q |µk|2/4 + |λj|2)∏q
j=1

1
2
|µj|2

= C.

This shows Eq. (2.41) and thus concludes the proof.
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3 On the limit behavior of the

periodogram of high-frequency

sampled stable CARMA processes2

3.1 Introduction

Continuous-time ARMA (CARMA) processes are the continuous-time versions of the

well known ARMA processes in discrete time having short memory. The advantage of

continuous-time modeling is that it allows handling of irregularly spaced time series and

in particular of high-frequency data often appearing in turbulence and finance. In this

chapter we consider a CARMA process Y = (Yt)t∈R driven by a symmetric α-stable Lévy

process (Lt)t∈R. Before we start with its definition, we recall that a real-valued random

variable X is called symmetric α-stable (SαS) with index of stability α ∈ (0, 2], if its

characteristic function is of the form

ΦX(z) = E [exp {i z X}] = exp {−σα |z|α}, z ∈ R,

for some σ ≥ 0, and a real random vector X = (X1, . . . , Xd)
T is SαS, if all linear

combinations
∑d

i=1 aiXi, (a1, . . . , ad)
T ∈ Rd are SαS; see the monograph of Samorod-

nitsky and Taqqu [77] for details on stable distributions. Then a symmetric α-stable

Lévy process (Lt)t∈R is a stochastic process with L0 = 0 almost surely, independent and

stationary increments which are SαS distributed with characteristic function

ΦLt(z) = E [exp {i z Lt}] = exp {−|t|σαL |z|
α}, z, t ∈ R,

for some σL ≥ 0 and almost surely càdlàg sample paths (cf. the book of Sato [78] on Lévy

processes). A symmetric α-stable CARMA process is then defined as follows. Let (Lt)t∈R

be a symmetric α-stable Lévy process. Assume that we have given p, q ∈ N, p > q, and

2The contents of this chapter appeared in Fasen, V. and Fuchs, F. (2013), On the limit behavior of the
periodogram of high-frequency sampled stable CARMA processes, Stochastic Process. Appl., 123 no.
1, pp. 229-273
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3 Limit behavior periodogram

a1, . . . , ap, c0, . . . , cq ∈ R, ap, c0 6= 0, set

A :=



0 1 0 . . . 0

0 0 1
. . .

...
...

...
. . . . . . 0

0 0 . . . 0 1

−ap −ap−1 . . . . . . −a1


∈ Rp×p

and let (Xt)t∈R be a strictly stationary solution to the stochastic differential equation

dXt = AXt dt+ ep dLt, t ∈ R, (3.1a)

where ep denotes the p-th unit vector in Rp. Then the process

Yt := cTXt, t ∈ R, (3.1b)

with c = (cq, cq−1, . . . , cq−p+1)T (where we use the convention cj = 0 for j < 0) is said

to be a symmetric α-stable CARMA process of order (p, q). Necessary and sufficient

conditions for the existence of a strictly stationary CARMA process are given in [22].

A CARMA process can be interpreted as a solution to the formal p-th order stochastic

differential equation

a(D)Yt = c(D)DLt, t ∈ R,

where D denotes the differential operator with respect to t and

a(z) := zp + a1z
p−1 + . . .+ ap and c(z) := c0z

q + c1z
q−1 + . . .+ cq

are the autoregressive and the moving average polynomial, respectively. Hence, SαS

CARMA processes can be seen as the continuous-time analog of SαS (discrete-time)

ARMA processes. The representation (3.1) of a CARMA process is the controller canon-

ical state space representation going back to [14]. Alternatively there exists also the

observer canonical form of a CARMA process (see (3.14) below) as derived in [63] for

multivariate CARMA models. For an overview and a comprehensive list of references on

CARMA processes we refer to [16, 23]. CARMA processes are important for stochastic

modeling in many areas of application as, e.g., signal processing and control (cf. [46, 61]),

econometrics (cf. [7, 72]), high-frequency financial econometrics (cf. [87]) and financial

mathematics (cf. [6]). Stable CARMA processes are particularly relevant in modeling
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3.1 Introduction

energy markets (cf. [5, 45]).

The aim of this chapter is to investigate the sampled sequence Y ∆ := (Yk∆)k∈Z of

a causal (i.e., current values of the process only depend on past values of the driving

process) stable CARMA process, meaning we only observe the underlying CARMA

process (Yt)t∈R at equidistant time points 0, ∆, 2∆, . . . with ∆ > 0 small as used for

modeling high-frequency data (cf. [21, 36]), and to study the asymptotic behavior of the

sampled process Y ∆ in the frequency domain. In the time domain the autocovariance

function

γY (h) =
σ2
L

π

∫ ∞
−∞

eihω
|c(iω)|2

|a(iω)|2
dω = cT e|h|A γX(0) c, h ∈ R, (3.2)

with γX(0) = 2σ2
L

∫∞
0

esAepe
T
p esA

T
ds, gives information about the dependence structure,

whereas in the frequency domain the spectral density

fY (ω) =
1

2π

∫ ∞
−∞

γY (h) e−ihω dh =
σ2
L

π
· |c(iω)|2

|a(iω)|2
, ω ∈ R, (3.3)

gives information about the periodicities of the CARMA process. Both the spectral

density and the autocovariance function exist only for α = 2. The spectral density of

the sampled process Y ∆ is

f∆(ω) =
1

2π

∞∑
k=−∞

γY (k∆) e−ikω =
1

∆

∞∑
k=−∞

fY

(ω + 2kπ

∆

)
, −π ≤ ω ≤ π, (3.4)

where the second equality follows from [11, p. 206]. It is related to fY by

lim
∆→0

∆ f∆(ω∆)1[− π
∆
, π
∆

](ω) = fY (ω), ω ∈ R, (3.5)

(see p. 55 for a proof). Loosely spoken, this means that in the limit ∆→ 0 we can identify

every CARMA process from its equidistantly sampled observations. The question arises

whether this is also true if we study the empirical version of the spectral density, the

periodogram. We investigate normalized and self-normalized versions. The normalized

periodogram of Y ∆ at frequency ω ∈ [−π, π] is given by

In, Y ∆(ω) =
∣∣∣n−1/α

n∑
k=1

Yk∆ e−iωk
∣∣∣2.

Equation (3.5) suggests that we obtain a non-trivial limit by studying the behavior of

the properly rescaled periodogram In, Y ∆ of the sampled CARMA process at point ω∆.
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3 Limit behavior periodogram

More precisely, we will show that the finite-dimensional distribution of the periodogram

∆2−2/α[In, Y ∆(ω1∆), . . . , In, Y ∆(ωm∆)] for (ω1, . . . , ωm) ∈ (R\{0})m converges weakly to

a function of stable distributions, if simultaneously the grid distance ∆ goes to 0 with

a suitable rate and the number of observations n goes to infinity (see Theorem 3.2.6).

A small grid distance and a huge number of observations reflect the behavior of high-

frequency data. A consequence of this is the fact that the normalized periodogram is not

a consistent estimator of the so-called power transfer function |c(i · )/a(i · )|2. Moreover,

if (Lt)t∈R is a Brownian motion then the limit distribution has independent components.

In contrast, if (Lt)t∈R is a SαS-stable Lévy process with α ∈ (0, 2) then the compo-

nents are dependent. In both cases the limit distributions differ depending on whether

ω1, . . . , ωm are linearly dependent or independent over Z. However, the one-dimensional

distributions do not depend on ω. Our result is comparable to Brockwell and Davis [17,

Chapter 10.3] for the finite variance and Klüppelberg and Mikosch [57, Theorem 2.4] for

the stable case, respectively, of an ARMA process in discrete time; although the α-stable

limit distributions are different in the discrete-time and the continuous-time model.

Since the normalized periodogram depends on α, which is in general an unknown pa-

rameter, we also analyze different normalizations. So-called self-normalized periodogram

versions are given by

Ĩn, Y ∆(ω) =

∣∣∣∑n
k=1 Yk∆ e−iωk

∣∣∣2
(
∑n

k=1 Yk∆)2
and În, Y ∆(ω) =

∣∣∣∑n
k=1 Yk∆ e−iωk

∣∣∣2∑n
k=1 Y

2
k∆

, −π ≤ ω ≤ π,

(3.6)

having the obvious benefit that they only depend on the data and not on the index of

stability α. Again the finite-dimensional distributions of Ĩn, Y ∆(∆ · ) converge to functions

of stable distributions and do not provide consistent estimators (cf. Theorem 3.2.10).

The limit distribution has similar properties as for the normalized periodogram. The

second version În, Y ∆ has to be rescaled with ∆ as in (3.5) to derive a limit result (see

Theorem 3.2.11). Our conclusions for the self-normalized periodogram are in analogy to

those for ARMA models in discrete time obtained by Klüppelberg and Mikosch [58].

The chapter is structured in the following way. We start with our main results in

Section 3.2. The sampled CARMA process Y ∆ has a representation as an MA process in

discrete time where the noise sequence is p-dependent. In Section 3.2.1 we investigate this

moving average structure in detail. Then the asymptotic behavior of the normalized and

the self-normalized periodogram is topic of Sections 3.2.2 and 3.2.3. Finally, in Section 3.3

we derive results for the characterization of the limit distributions of the normalized and
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3.2 Main results

the self-normalized periodogram versions. These are based on the geometry of numbers

and on manifolds. The proofs of the results are presented in Section 3.4.

Notation

We use N∗ and R∗ for the natural and real numbers, respectively, excluding zero and

Z for the integers. For the minimum of two real numbers a, b ∈ R we write shortly

a ∧ b and for the maximum a ∨ b. The real and imaginary part of a complex number

z ∈ C is written as <(z) and =(z), respectively, and its complex conjugate as z. For

two sequences (an)n∈N and (bn)n∈N we say an ∼ bn as n→∞ if limn→∞ an/bn = 1. The

transpose of a matrix M is written as MT and the m-dimensional identity matrix shall

be denoted by Im.

For a subset S ⊆ N and k ∈ N we set(
S

k

)
:= {B ⊆ S : |B| = k} .

The orthogonal complement of S ⊆ Rm is denoted by S⊥.

On K ∈ {R,C} the Euclidean norm is denoted by | · | whereas on Km it will be usually

written as ‖ ·‖. A scalar product on a linear space is written as 〈 · , · 〉; in Rm and Cm,

we usually take the Euclidean one. If X and Y are normed linear spaces, let B(X, Y )

be the set of bounded linear operators from X into Y . On B(X, Y ) we will usually use

the operator norm which, in the case of Y being a Banach space, turns B(X, Y ) itself

into a Banach space. In particular we always equip B(Km,Kn) with the corresponding

operator norm if not stated otherwise.

For two random variables X and Y the notation X
D
= Y means equality in distri-

bution. If we consider a sequence of random variables (Xn)n∈N, we denote convergence

in probability to some random variable X by Xn
P→ X as n → ∞ and convergence in

distribution by Xn
D→ X as n→∞.

3.2 Main results

Before stating the main results, we establish the moving average structure of the sampled

sequence together with two auxiliary lemmata.
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3 Limit behavior periodogram

3.2.1 Moving average structure of the sampled process

The aim of this section is to better understand the structure of the discrete-time sampled

process Y ∆. Let λ1, . . . , λp denote the eigenvalues of A. By defining the filter Φ∆(B) :=∏p
j=1

(
1− eλj∆B

)
where, as usual, B denotes the backward shift operator and applying

it to the sampled sequence Y ∆, we obtain (cf. [22, Lemma 2.1]), for any k ∈ Z,

Z̃k,∆ := Φ∆(B)Y ∆
k =

p∑
r=1

Zr
k−r+1,∆, (3.7)

where

Zr
k,∆ :=

∫ k∆

(k−1)∆

cT
(
−

r−1∑
j=0

Φ∆
j e(r−1−j)∆A

)
e(k∆−s)A ep dLs, r = 1, . . . , p, (3.8a)

and

Φ∆
j := (−1)j+1 ·

∑
{i1, ..., ij}∈

(
{1, . . . , p}

j

) e∆·
∑j
m=1 λim , j = 0, 1, . . . , p. (3.8b)

We can rewrite the filter as Φ∆(z) =
∏p

j=1

(
1−eλj∆ z

)
= −

∑p
j=0 Φ∆

j z
j for any z ∈ C. In

this chapter we will suppose that the eigenvalues λ1, . . . , λp of A have strictly negative

real parts (see Assumption 3.1 below). Under this assumption we observe that Φ∆(z) 6= 0

for all |z| ≤ 1 and thus deduce, for any |z| ≤ 1,

Ψ∆(z) := (Φ∆(z))−1 =
∞∑
j=0

Ψ∆
j z

j with Ψ∆
j =

∑
j1, ..., jp∈{0, 1, ..., j}∑p

m=1 jm=j

e∆·
∑p
m=1 λmjm , j ∈ N.

We can hence rewrite Eq. (3.7) as

Y ∆
k = Ψ∆(B) Z̃k,∆, k ∈ Z, (3.9)

showing that the sampled CARMA process Y ∆ is a (discrete-time) moving average

process of the noise sequence Z̃ ∆ := (Z̃k,∆)k∈Z. A challenge is that Z̃ ∆ is not an i.i.d.

sequence; it is p-dependent. For this reason we define, for any k ∈ Z, ω ∈ R and m ∈
{1, . . . , p}, the auxiliary (random) functions

˜̃Zk,∆(ω) :=

p∑
r=1

Zr
k,∆ e−iω(r−1) and f

(m)
∆ (ω) :=

p∑
r=1

e−iω(r−1)

(
−

r−1∑
j=0

Φ∆
j e(r−1−j)∆λm

)
.

(3.10)
42



3.2 Main results

In contrast to Z̃ ∆ we have now that ˜̃Z∆(ω) := ( ˜̃Zk,∆)k∈Z(ω) is an i.i.d. sequence, and

the idea is to rewrite the periodogram essentially by means of ˜̃Z∆(ω). Then the next

auxiliary lemma holds.

Lemma 3.2.1.

(i) Under the assumption that the eigenvalues λ1, . . . , λp of A are distinct, we have,

for any ∆ > 0, r ∈ {1, . . . , p}, k ∈ Z and s ∈ R,

cT
(
−
r−1∑
j=0

Φ∆
j e(r−1−j)∆A

)
e(k∆−s)Aep =

p∑
m=1

c(λm)

a′(λm)

(
−
r−1∑
j=0

Φ∆
j e(r−1−j)∆λm

)
e(k∆−s)λm .

(ii) We have, for any λ ∈ C,

1

∆

∫ ∆

0

∣∣e(∆−s)λ − 1
∣∣αds→ 0 as ∆→ 0.

(iii) Assume that the eigenvalues λ1, . . . , λp of A possess non-vanishing real parts. We

then have, for any m ∈ {1, . . . , p} and any ω ∈ R,

f
(m)
∆ (ω∆) ∼ ∆p−1 a(iω)

1

iω − λm
as ∆→ 0.

(iv) Assume that the eigenvalues λ1, . . . , λp of A are distinct and possess non-vanishing

real parts. Then we have, for any ω ∈ R,

p∑
m=1

c(λm)

a′(λm)
· 1

iω − λm
=
c(iω)

a(iω)
.

By virtue of Lemma 3.2.1(i), Eqs. (3.8a) and (3.10) we obtain that

( ˜̃Zk,∆
)
k∈Z(ω) =

(∫ k∆

(k−1)∆

p∑
m=1

c(λm)

a′(λm)
f

(m)
∆ (ω) e(k∆−s)λm dLs

)
k∈Z

=:

(∫ k∆

(k−1)∆

g
(k)
∆, ω(s) dLs

)
k∈Z

(3.11)

is an i.i.d. sequence of complex SαS random variables since g
(k)
∆, ω : R → C is complex-

valued. Recall that integration of complex-valued deterministic functions with respect

to a SαS Lévy process is well defined as a limit in probability for all functions in
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3 Limit behavior periodogram

Lα(C) := {f : R → C measurable,
∫
R |f(x)|α dx < ∞} (for further details, see [77,

Section 3.4 and Section 6.2]). The characteristic function of the stable integral
∫
R g dL

is given by

E

[
exp

{
i z1

∫
R
<
(
g(s)

)
dLs + i z2

∫
R
=
(
g(s)

)
dLs

}]

= exp

{
− σαL

∫
R
|z1<(g(x)) + z2=(g(x))|α dx

}
(3.12)

for any z1, z2 ∈ R (cf. [77, Example 6.1.5 and Proposition 6.2.1(i)]) such that the random

vector
(
<
(∫

R g dL
)
, =
(∫

R g dL
))

is SαS.

Finally, we require the following conclusions for (Ψ∆
j )j∈N for the proofs of our results.

Lemma 3.2.2. Suppose ∆ = ∆n → 0 as n→∞ and that the eigenvalues λ1, . . . , λp of

A possess strictly negative real parts. Then we have:

(i) There is a constant C(p) > 0 such that

∣∣Ψ∆n
j

∣∣ ≤ C(p) ∆−(p−1)
n e∆nλmaxj ∀j ∈ N,

where λmax := maxk∈{1, ..., p}<(λk) ∈ (−∞, 0).

(ii) If n∆1+δ
n

n→∞→ ∞ for some δ > 0, then we have

∞∑
j=n+1

∣∣Ψ∆n
j

∣∣ n→∞→ 0 and
∆α
n

n

−n−1∑
k=−∞

( n−k∑
j=1−k

∣∣Ψ∆n
j

∣∣)α n→∞→ 0.

(iii) If n∆n
n→∞→ ∞, then ∆αp

n n−1
∑1−p

k=1−n

(∑n
j=1−k

∣∣Ψ∆n
j

∣∣)α n→∞→ 0.

(iv) If n∆
α(p−1)+1−α
n

n→∞→ ∞, then

∆α
n

n

−1∑
k=2−p−n

( n∧(−k)∑
j=1∨(2−p−k)

∣∣Ψ∆n
j

∣∣)α n→∞→ 0.

(v) If n∆
α(p−1)
n

n→∞→ ∞, then ∆α
n n
−1
∑0

k=2−p

(∑n
j=1

∣∣Ψ∆n
j

∣∣)α n→∞→ 0.
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3.2.2 Normalized periodogram

Before we formulate the main limit results for the normalized and the self-normalized

periodogram, we introduce a random vector that will show up in the limits.

Let m ∈ N∗, ω1, . . . , ωm ∈ R∗ and set ω˜ = (ω1, . . . , ωm)T . We define the (2m + 1)-

dimensional (stable) random vector ((S <j (ω˜), S =j (ω˜))j∈{1, ...,m}, Sm+1(ω˜)) via its joint

characteristic function

E

[
exp

{
i

(
m∑
j=1

θj S
<
j (ω˜) + νj S

=
j (ω˜) + τ Sm+1(ω˜)

)}]
= exp {−σαL ·Kω˜(θ˜, ν˜, τ)},

(3.13a)

with θ˜, ν˜ ∈ Rm, τ ∈ R and Kω˜(θ˜, ν˜, τ) given as follows:

(i) If ω1, . . . , ωm are linearly independent over Z (i.e. there is no h ∈ Zm, h 6= 0, such

that 〈h, ω˜〉 = 0), then

Kω˜(θ˜, ν˜, τ) =

∫
[0, 1)m

∣∣∣∣ m∑
j=1

θj cos (2πxj) + νj sin (2πxj) + τ

∣∣∣∣αd(x1, . . . , xm).

(3.13b)

(ii) If ω1, . . . , ωm are linearly dependent over Z, then there is an s ∈ {1, . . . , m − 1}
such that

Kω˜(θ˜, ν˜, τ) =
1

H m−s(M )

∫
M

∣∣∣∣ m∑
j=1

θj cos (2πxj)+νj sin (2πxj)+τ

∣∣∣∣αdH m−s(x1, . . . , xm),

(3.13c)

where M = M (ω1, . . . , ωm) is the (m− s)-dimensional linear manifold in [0, 1)m

defined in Eq. (3.17) below and H m−s is the (m−s)-dimensional Lebesgue (Haus-

dorff) measure on M (ω1, . . . , ωm) (for a definition of manifolds, see, e.g., [67, pp.

200-201]).

We start to investigate the normalized periodogram in analogy to [17, 57]. Since we

use Lemmata 3.2.1 and 3.2.2 for the proofs of the asymptotic behavior of the normalized

periodogram we require the following.

Assumption 3.1.

The eigenvalues λ1, . . . , λp of A are distinct and possess strictly negative real parts.

Moreover, we establish our limit results for the different periodogram versions in the

asymptotic framework of high-frequency data within a long time interval using Lemma

3.2.2. Thus we need
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3 Limit behavior periodogram

Assumption 3.2.

There is some δ > 0 such that, with β = max{1 + δ, α(p− 1) + max{0, 1−α}}, we have

∆ = ∆n → 0 whereas n∆β
n →∞ as n→∞.

Remark 3.2.3.

(i) Note that in the case of a symmetric α-stable Ornstein-Uhlenbeck process (i.e.

p = 1), Assumption 3.2 becomes ∆n → 0 and n∆1+δ
n → ∞ as n→∞ for some

δ > 0 and does not depend on α.

(ii) Conversely, if p ≥ 2, the convergence rate of ∆n depends on α. However, one easily

verifies that β ≤ 2p − 1 is always true and thus, if ∆n → 0 and n∆2p−1
n → ∞ as

n→∞ hold, Assumption 3.2 is satisfied as well. �

The following is an analog result to the discrete-time ones [17, Theorem 10.3.1] and

[57, Proposition 2.1], respectively.

Proposition 3.2.4. Let ∆ = ∆n and Y ∆n = (Yk∆n)k∈Z be the sampled SαS CARMA

process. Under Assumption 3.1 the periodogram In, Y ∆n satisfies, for any ω ∈ [−π, π],

In, Y ∆n (ω) =
∣∣Ψ∆n(e−iω)

∣∣2 In, Z̃∆n (ω) +Rn,∆n(ω)

with Z̃∆n := (Z̃k,∆n)k∈Z as given in Eq. (3.7). If in addition Assumption 3.2 holds, then

we have for any ω ∈ R∗

lim
n→∞

P
(

∆
2− 2

α
n |Rn,∆n(ω∆n)| > ε

)
= 0 for every ε > 0.

This shows that we have to study the limit behavior of the periodogram of Z̃∆n in

order to get insight into the asymptotic properties of In, Y ∆n . The next theorem provides

the key result therefore. Note that in terms of the discrete Fourier transform of Z̃∆n ,

Jn, Z̃∆n (ω) := n−1/α

n∑
k=1

Z̃k,∆n e−iωk, −π ≤ ω ≤ π,

we can write In, Z̃∆n (ω) = |Jn, Z̃∆n (ω)|2.

Theorem 3.2.5. If Assumption 3.1 holds, ∆ = ∆n → 0 and n∆
1∨α(p−1)
n → ∞ as

n→∞, then we have, for any m ∈ N∗ and ω˜ = (ω1, . . . , ωm)T ∈ (R∗)m,

∆
1−p− 1

α
n

[
Jn, Z̃∆n (ωj∆n)

]
j=1, ...,m

D→
[
c(iωj) ·

(
S <j (ω˜)− iS =j (ω˜)

)]
j=1, ...,m

as n→∞.
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The joint characteristic function of the 2m-dimensional stable random vector(
S <j (ω˜), S =j (ω˜)

)
j∈{1, ...,m} is given in Eq. (3.13) (with τ = 0).

Combining now Proposition 3.2.4 and Theorem 3.2.5 together with the fact that

∣∣Ψ∆n(e−iω∆n)
∣∣2 ∼ ∆−2p

n |a(iω)|−2 as n→∞,

where the latter can be easily derived from the definition of Ψ∆n together with the

convergence of ∆n to 0, we deduce the following main result for the limit behavior of

the normalized periodogram.

Theorem 3.2.6. Suppose α ∈ (0, 2] and let Y ∆n = (Yk∆n)k∈Z denote the sampled SαS

CARMA(p, q) process. If Assumptions 3.1 and 3.2 hold, then In, Y ∆n satisfies for any

m ∈ N∗ and ω˜ = (ω1, . . . , ωm)T ∈ (R∗)m

∆
2− 2

α
n

[
In, Y ∆n (ωj∆n)

]
j=1, ...,m

D→
[
|c(iωj)|2

|a(iωj)|2
([
S <j (ω˜)

]2
+
[
S =j (ω˜)

]2)]
j=1, ...,m

as n→∞,

where the stable random vector
(
S <j (ω˜), S =j (ω˜)

)
j∈{1, ...,m} has joint characteristic func-

tion as given in Eq. (3.13) (with τ = 0).

Remark 3.2.7.

(i) We highlight two important differences of our limit result to the one in [57] for

ARMA models in discrete time. First, we do not have to distinguish between ra-

tional and irrational multiples of 2π in the frequency vector ω˜ as it has been the

case in discrete time (see, e.g., [57, Theorem 2.4]). The reason therefore is our

asymptotic framework ∆n → 0 as n→∞ which yields that in the proof of Propo-

sition 3.3.4 the crucial Eq. (3.52) holds for any h ∈ Zm, h 6= 0, whereas with

∆n := ∆ constant and one frequency component being a rational multiple of 2π,

(3.52) could not hold for all h ∈ Zm, h 6= 0. Second, the same equation explains

why in our framework the limit distributions differ depending on whether or not

the frequencies ω1, . . . , ωm are linearly dependent over Z (cf. Eq. (3.13)). In dis-

crete time they depend on whether or not 2π, ω1, . . . , ωm (with ω1, . . . , ωm being

irrational multiples of 2π) are linearly dependent over Z (see again [57, Theorem

2.4]). Note that the latter is also the reason why the manifold M (ω1, . . . , ωm) in

(3.17) is different from the manifold that appears in the discrete-time result.

(ii) Moreover, for linearly independent ω1, . . . , ωm the distribution of the random vec-

tor (S <j (ω˜), S =j (ω˜))j∈{1, ...,m} does not depend on ω˜ anymore. In the dependent
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3 Limit behavior periodogram

case, ω˜ determines the manifold, and hence, has an influence on the limit distri-

bution. The sequence of random variables (S <j (ω˜), S =j (ω˜))j∈{1, ...,m} is independent

in the case α = 2, whereas for α < 2 it is dependent; in particular for m = 1 and

ω˜ = ω ∈ R∗, the random variables S <1 (ω) and S =1 (ω) are dependent.

(iii) Investigating the special case m = 1, Theorem 3.2.6 gives for any ω ∈ R∗

∆
2− 2

α
n In, Y ∆n (ω∆n)

D→ |c(iω)|2

|a(iω)|2
·
∣∣∣∣∫

[0,1)

e2πi s dLs

∣∣∣∣2
as n→∞. Hence, the limit distribution factorizes in a parametric factor depending

on ω (the so-called power transfer function) and a random factor, which does not

depend on ω anymore. The limit distribution coincides with the limit distribution

of the normalized periodogram of ARMA models if ω is an irrational multiple of

2π.

(iv) Let α = 2. Then with ω ∈ R∗ as n→∞,

∆n In, Y ∆n (ω∆n)
D→ 2πfY (ω)

(
N2

1

2
+
N2

2

2

)
D
= 2πfY (ω)E,

where N1 and N2 are i.i.d. standard normal random variables and E is a standard

exponential random variable. This limit result is the empirical counterpart to (3.5)

with scaling factor ∆n and in analogy to the results for ARMA models (cf. [17,

Theorem 10.3.2]). It confirms, that ∆n In, Y ∆n (ω∆n) is not a consistent estimator

for the spectral density.

(v) For any h ∈ R∗, (S <j (hω˜), S =j (hω˜))j∈{1, ...,m}
D
= (S <j (ω˜), S =j (ω˜))j∈{1, ...,m}, such that

as n→∞,

∆
2− 2

α
n

[
In, Y ∆n (hωj∆n)

]
j=1, ...,m

D→
[
|c(ihωj)|2

|a(ihωj)|2
([
S <j (ω˜)

]2
+
[
S =j (ω˜)

]2)]
j=1, ...,m

.

On the other hand, if ω1, . . . , ωm are linearly independent over Z, then there exists

an h ∈ R with h + ω1, . . . , h + ωm linearly dependent over Z such that the limit

distributions (S <j (ω˜), S =j (ω˜))j∈{1, ...,m} and (S <j (h1˜+ω˜), S =j (h1˜+ω˜))j∈{1, ...,m} are

different. Consequently, there is no general result how a frequency shift influences

the limit distribution. �

Remark 3.2.8. We conjecture that Assumption 3.2 is in this formulation not a nec-

essary assumption for Theorem 3.2.6. However, it seems to be (close to) necessary for
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Proposition 3.2.4, but Proposition 3.2.4 is not necessary for Theorem 3.2.6. �

3.2.3 Self-normalized periodogram

Next we derive the limit behavior of the self-normalized periodogram Ĩn, Y ∆n and În, Y ∆n ,

respectively, as given in (3.6), which is comparable to those in [58, Section 3] for ARMA

processes. As in the normalized case they converge to functions of stable distributions

as the following two theorems show.

First, we have to state some notation. The observer canonical form of a CARMA

process (cf. [63]) is given under Assumption 3.1 by the stationary and causal multivariate

Ornstein-Uhlenbeck process

Vt =

∫ t

−∞
e(t−s)Aβ dLs, t ∈ R, (3.14a)

where the vector β = (β1, . . . , βp)
T ∈ Rp is defined recursively by

βp−j = −
p−1−j∑
i=1

aiβp−j−i + cq−j, j = 0, 1, . . . , p− 1,

(with the convention cj = 0 for j < 0). Then

Yt = eT1 Vt, t ∈ R, (3.14b)

where e1 = (1, 0, . . . , 0)T ∈ Rp. Hence, every SαS CARMA process can also be written

as a Lévy-driven moving average process Yt =
∫∞
−∞ g(t − s) dLs, t ∈ R, with kernel

function

g(t) = eT1 etAβ 1[0,∞)(t). (3.15)

The following proposition is crucial for the asymptotic behavior of the different self-

normalized periodogram versions.

Proposition 3.2.9. Assume α ∈ (0, 2] and let Y ∆n = (Yk∆n)k∈Z denote the sampled SαS

CARMA(p, q) process. Moreover, define ∆L(k∆n) := Lk∆n−L(k−1)∆n for k ∈ Z, n ∈ N∗.
Suppose Assumption 3.1, ∆n → 0 and n∆n →∞ as n→∞ hold. Then

(i)
∑n

k=1 Yk∆n =
∑∞

j=0 g(j∆n) ·
∑n

k=1 ∆L(k∆n) + oP

(
∆−1
n (n∆n)

1
α

)
as n→∞,

(ii)
∑n

k=1 Y
2
k∆n

=
∑∞

j=0 g
2(j∆n) ·

∑n
k=1 ∆L(k∆n)2 + oP

(
∆−1
n (n∆n)

2
α

)
as n→∞.
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3 Limit behavior periodogram

The main limit results are then as follows.

Theorem 3.2.10. Suppose α ∈ (0, 2] and let Y ∆n = (Yk∆n)k∈Z denote the sampled

SαS CARMA(p, q) process. The self-normalized periodogram Ĩn, Y ∆n is as in (3.6). If

Assumptions 3.1 and 3.2 hold, and in addition cq 6= 0, then we have for any m ∈ N∗

and ω˜ = (ω1, . . . , ωm)T ∈ (R∗)m, as n→∞,

[
Ĩn, Y ∆n (ωj∆n)

]
j=1, ...,m

D→

[
|c(iωj)|2

(
∫∞

0
g(s) ds)2 · |a(iωj)|2

·
[
S <j (ω˜)

]2
+
[
S =j (ω˜)

]2
S2
m+1(ω˜)

]
j=1, ...,m

,

where g is the kernel function of the CARMA process as given in Eq. (3.15) and the

(2m + 1)-dimensional stable random vector
((
S <j (ω˜), S =j (ω˜)

)
j∈{1, ...,m}, Sm+1(ω˜)

)
has

joint characteristic function given by Eq. (3.13).

Theorem 3.2.11. Suppose α ∈ (0, 2] and let Y ∆n = (Yk∆n)k∈Z denote the sampled

SαS CARMA(p, q) process. The self-normalized periodogram În, Y ∆n is as in (3.6). If

Assumptions 3.1 and 3.2 hold, then we have for any m ∈ N∗ and ω˜ = (ω1, . . . , ωm)T ∈
(R∗)m, as n→∞,

∆n

[
În, Y ∆n (ωj∆n)

]
j=1, ...,m

D→

[
|c(iωj)|2∫∞

0
g2(s) ds · |a(iωj)|2

·
[
S <j (ω˜)

]2
+
[
S =j (ω˜)

]2
S 2

]
j=1, ...,m

,

where g is again the kernel function of the CARMA process as given in Eq. (3.15), the

(2m)-dimensional stable random vector
(
S <j (ω˜), S =j (ω˜)

)
j∈{1, ...,m} has joint characteristic

function as given in Eq. (3.13) (with τ = 0) and S 2 is a positive α/2-stable random

variable.

Remark 3.2.12.

(i) Theorems 3.2.10 and 3.2.11 show that also the self-normalized periodogram versions

do not yield consistent estimators for the (normalized) power transfer function.

However, based on these results we will show in [38] that applying a smoothing

filter to the self-normalized periodogram gives such a consistent estimate. Since

the model parameters influence the power transfer function and, causality and

invertibility of the CARMA process preconditioned, the latter uniquely determines

those parameters, it is possible to use that consistent estimator of the normalized

power transfer function for statistical inference on the CARMA parameters.

(ii) We have not specified explicitly the joint characteristic function of the random

vector that determines the limit in Theorem 3.2.11. However, it is uniquely iden-
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3.3 Lattices in Rm and the manifolds M (ω1, . . . , ωm)

tifiable from the calculated Laplace transform in Eq. (3.50). Note that the limit

distributions in Theorems 3.2.10 and 3.2.11 are not the same.

(iii) Moreover, we have to multiply (În, Y ∆n (ωj∆n))j∈{1, ...,m} in Theorem 3.2.11 by ∆n to

obtain an asymptotic limit result. This normalization is not necessary for

(Ĩn, Y ∆n (ωj∆n))j∈{1, ...,m} in Theorem 3.2.10. Observing (3.5), the rescaling with

∆n seems to be natural in some way. The point is that with Proposition 3.2.9 we

have for the different normalizations

∆n (
∑n

k=1 Yk∆n)
2∑n

k=1 Y
2
k∆n

=

(
∆n

∑∞
j=0 g(j∆n)

)2

∆n

∑∞
j=0 g(j∆n)2

· (
∑n

k=1 ∆L(k∆n))
2∑n

k=1 ∆L(k∆n)2
+ oP (1)

D→
(∫∞

0
g(s) ds

)2∫∞
0
g(s)2 ds

· L2
1

[L,L]1

as n→∞, where ([L, L]t)t≥0 is the quadratic variation process of (Lt)t≥0. For this

reason ∆n appears in Theorem 3.2.11. �

3.3 Lattices in Rm and the manifolds M (ω1, . . . , ωm)

In this section we recall some basic facts about lattices in Rm and use them to construct

the manifolds M (ω1, . . . , ωm) in Eq. (3.13c). For more details concerning the theory of

lattices we refer the reader to [29, 48].

Definition 3.3.1 (Lattice). For S ⊆ Rm let spanZ(S) and spanR(S), respectively, denote

the integer and linear hull of S. For any linearly independent vectors b1, . . . , bd ∈ Rm

the additive subgroup of Rm

L := L (b1, . . . , bd) := spanZ({b1, . . . , bd})

is said to be a lattice and b1, . . . , bd is called a basis of L . The dimension of the lattice

L is given by

dim(L ) := dim
(
spanR(L )

)
= d.

We call a subset S in Rm discrete if S has no accumulation point in Rm. It is a classical

result that discreteness characterizes lattices among additive subgroups in Rm.

Theorem 3.3.2 (cf. [48], § 3.2). A subset S ⊆ Rm is a lattice if and only if it is a

discrete, additive subgroup of Rm. In either case the dimension of the lattice is equal to

the maximal number of linearly independent vectors in S.
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3 Limit behavior periodogram

Suppose that we have given ω1, . . . , ωm ∈ R∗ which are linearly dependent over Z. Let

ω˜ = (ω1, . . . , ωm)T = 2πη˜. Note that all lattices as well as the manifolds M (ω1, . . . , ωm)

in this chapter depend on the frequency vector ω˜ and η˜, respectively. We neglect, how-

ever, that dependency for ease of notation. We define

L̃ := {η˜}⊥ ∩ Zm.

Then L̃ constitutes a discrete, additive subgroup of Rm and since the maximal possible

number of linearly independent vectors in L̃ is m − 1, we apply Theorem 3.3.2 and

obtain an s ∈ {1, . . . , m− 1} and a basis bm−s+1, . . . , bm ∈ Zm of the lattice L̃ . Now

L := L̃ ⊥ ∩ Zm (3.16)

is a discrete, additive subgroup in Rm as well and hence, again due to Theorem 3.3.2, it

is a lattice generated by a basis b1, . . . , bm−s ∈ Zm. That the dimension of L is indeed

m− s (i.e. the maximal possible dimension of the orthogonal complement of L̃ ) can be

seen from the following fact: let

H :=


bTm−s+1

...

bTm

 ∈ Zs×m

and note that there has to be an s × s-block with non-vanishing determinant. W.l.o.g.

this block is given by the first s columns of H, denoted by H [s]. We can solve, for

any j ∈ {s + 1, . . . , m}, the linear systems H [s]xj = −hj where hj is the j-th column

of H and obtain, using Cramer’s rule, solutions xj ∈ Qs with common denominator

det
(
H [s]

)
∈ Z. Hence, the vectors

vj := det
(
H [s]

)
·



xj

0
...

0

+ ej

 ∈ Zm, j ∈ {s+ 1, . . . , m},

with ej being the j-th unit vector in Rm, are linearly independent and Hvj = 0 for

all j ∈ {s + 1, . . . , m}. This shows that vj ∈ {bm−s+1, . . . , bm}⊥ ∩ Zm = L for any

j ∈ {s + 1, . . . , m}, and hence, the dimension of the lattice L has to be m − s as

claimed above. Let

B :=
(
b1 b2 . . . bm−s

)
∈ Zm×(m−s)

52



3.3 Lattices in Rm and the manifolds M (ω1, . . . , ωm)

and

T : (R mod 1)m−s → (R mod 1)m

x = (x1, . . . , xm−s)
T 7→ B x mod 1 =

(
m−s∑
j=1

xj bj

)
mod 1,

where the mod-operator has to be applied componentwise. We then define

M := T
(
(R mod 1)m−s

)
, (3.17)

the Gram matrix G := BTB and the set of functions on M

T :=
{
fh : M → C : fh = e2πi〈h, · 〉 ◦ T ◦G−1 ◦ T−1 for an h ∈ L

}
. (3.18)

T is well-defined due to the injectivity of T (see the proof of the upcoming Theo-

rem 3.3.3(i)). Moreover, it can be shown that all the functions in T are continuous

(mod 1) on M . The following theorem holds.

Theorem 3.3.3.

(i) M is an (m− s)-dimensional C1-manifold in [0, 1)m.

(ii) Let µ˜ ∈ Rm−s be the coordinates of η˜ in the basis B, i.e. η˜ = Bµ˜. Then 〈z, µ˜〉 6= 0

for all z ∈ Zm−s, z 6= 0.

(iii) For any fh ∈ T with h ∈ L , h 6= 0, we have

1

H m−s(M )

∫
M

fh(x) H m−s(dx) = 0,

where H m−s is the (m− s)-dimensional Lebesgue measure on M .

(iv) For any x, y ∈M , x 6= y, there is an h ∈ L such that fh(x) 6= fh(y).

Since (R mod 1)m and (R mod 1)m−s are compact Hausdorff spaces, one immediately

obtains that also M is a compact Hausdorff space. Note that the subalgebra spanC(T )

of the algebra C(M ) of all continuous complex-valued functions on M contains the con-

stant function 1 (take h = 0). Moreover, spanC(T ) is closed under complex conjugation

and separates points (see Theorem 3.3.3(iv)). Applying the Stone-Weierstraß Theorem

(cf. [76, p. 122] or [82, p. 161]), this yields that spanC(T ) is dense in C(M ) with respect

to the topology of uniform convergence.
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3 Limit behavior periodogram

An application of Theorem 3.3.3 as given in the next proposition characterizes the limit

distributions of the normalized and the first version of the self-normalized periodogram,

respectively, by random vectors with characteristic functions as given in (3.13).

Proposition 3.3.4.

Suppose ∆ = ∆n → 0 and n∆n → ∞ as n→∞. Moreover, define for any z1, z2 ∈ R
the function Ξz1, z2 : C → R by Ξz1, z2(x) := z1<(x) + z2=(x). Then, for any m ∈ N∗,
ω1, . . . , ωm ∈ R∗ and θ˜, ν˜ ∈ Rm,

lim
n→∞

1

n

n−p+1∑
k=1

∣∣∣∣∣
m∑
j=1

Ξθj , νj

(
e−iωj∆nk c(iωj)

)∣∣∣∣∣
α

= Kω˜
((

Ξθj , νj

(
c(iωj)

))
j∈{1, ...,m} ,

(
Ξ−νj , θj

(
c(iωj)

))
j∈{1, ...,m} , 0

)
,

where Kω˜ is given by eqs. (3.13b) and (3.13c), respectively.

For ω1, . . . , ωm linearly independent over Z a similar result has been derived in [59,

Corollary 4].

Finally, we shall require Proposition 3.3.5 from below for the limit result of the second

version of the self-normalized periodogram. The proof of this proposition is based on

Theorem 3.3.3 as well.

Proposition 3.3.5. Suppose ∆ = ∆n → 0 and n∆n → ∞ as n→∞. Let m ∈ N∗,
ω1, . . . , ωm ∈ R∗ and write ω˜ = (ω1, . . . , ωm)T = 2π(η1, . . . , ηm)T = 2πη˜. Moreover,

suppose that (Nk)k∈N∗ are i.i.d. standard normal random variables.

(i) If ω1, . . . , ωm are linearly independent over Z, we assume that we have given a

random variable U˜ , uniformly distributed on [0, 1)m and independent of (Nk)k∈N∗,

and a function f : (R mod 1)m×R→ R such that E[f 2(U˜ , N1)] <∞ and g(k)(x) :=

E[fk(x, N1)], k = 1, 2, is continuous on (R mod 1)m.

(ii) If ω1, . . . , ωm are linearly dependent over Z, we assume that we have given a random

variable V˜ , uniformly distributed on [0, 1)m−s and independent of (Nk)k∈N∗, and a

function f : M ×R→ R such that E[f 2(U˜ , N1)] <∞ and g(k)(x) := E[fk(x, N1)],

k = 1, 2, is continuous on M , where U˜ := T (V˜ ) and T is the parametrization of

M .

Then in either case

1

n

n∑
k=1

f(k∆nη˜ mod 1, Nk)
P→ E

[
f(U˜ , N1)

]
as n→∞. (3.19)
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3.4 Proofs of Chapter 3

3.4 Proofs of Chapter 3

3.4.1 Proofs of Section 3.1

Proof of Equation (3.5).

Fix an arbitrary ω ∈ R and assume that ∆ is sufficiently small such that ω∆ ∈ [−π, π].

Then

∆f∆(ω∆)
(3.4)
=

∆

2π

∞∑
k=−∞

γY (k∆) e−ikω∆ (3.2)
=

1

2π
cT
(

∆
∞∑

k=−∞

e|k|∆Ae−ikω∆
)
γX(0) c. (3.20)

For any ε > 0, there exist an N0 ∈ N and ∆0 > 0 such that

∥∥∥∫ ∞
−∞

e|h|Ae−ihω dh−∆
∞∑

k=−∞

e|k|∆Ae−ikω∆
∥∥∥

≤
∫
|h|≥N0

∥∥e|h|A
∥∥ dh+

∥∥∥∥∫ N0

−N0

e|h|Ae−ihω dh−∆
∑

|k|≤bN0/∆c

e|k|∆Ae−ikω∆

∥∥∥∥
+ ∆

∑
|k|≥bN0/∆c+1

∥∥e|k|∆A
∥∥

≤ ε

3
+

∥∥∥∥∫ N0

−N0

e|h|Ae−ihω dh−∆
∑

|k|≤bN0/∆c

e|k|∆Ae−ikω∆

∥∥∥∥+
ε

3
(3.21)

for all 0 < ∆ ≤ ∆0. The second addend on the right-hand side converges to 0 as ∆→ 0

(Riemann sums!), i.e. there is a ∆1 > 0 such that (3.21) is less or equal to ε for any

∆ ≤ ∆1. Hence, the right-hand side of Eq. (3.20) converges, as ∆→ 0, to

1

2π
cT
(∫ ∞
−∞

e|h|Ae−ihω dh
)
γX(0) c =

1

2π

∫ ∞
−∞

cT e|h|AγX(0) c︸ ︷︷ ︸
(3.2)
= γY (h)

·e−ihω dh
(3.3)
= fY (ω).

3.4.2 Proofs of Section 3.2.1

Proof of Lemma 3.2.1. (i) By virtue of [8, Proposition 11.2.1] we have, for any

t ∈ R,

etA =
1

2πi

∫
ρ

(zIp − A)−1etz dz,
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where ρ is a simple closed curve in the complex plane enclosing the spectrum of A.

Moreover, from [24, Lemma 3.1] we immediately obtain

cT (zIp − A)−1ep =
c(z)

a(z)

for any z ∈ C\{λ1, . . . , λp}. Hence,

cT
(
−

r−1∑
j=0

Φ∆
j e(r−1−j)∆A

)
e(k∆−s)Aep

= −
r−1∑
j=0

Φ∆
j c

T

(
1

2πi

∫
ρ

(zIp − A)−1e(r−1−j)∆z+(k∆−s)z dz

)
ep

= −
r−1∑
j=0

Φ∆
j ·

1

2πi

∫
ρ

c(z)

a(z)
e(r−1−j)∆z+(k∆−s)z dz

=

p∑
m=1

c(λm)

a′(λm)

(
−

r−1∑
j=0

Φ∆
j e(r−1−j)∆λm

)
e(k∆−s)λm ,

where the last equality follows from the Residue Formula (see, e.g., [60, Chapter VI,

Theorem 1.2 and Lemma 1.3] or [43, Theorem III.6.3 and Remark III.6.4]) and the fact

that the eigenvalues λ1, . . . , λp of A are supposed to be distinct.

(ii) We obviously have

1

∆

∫ ∆

0

∣∣e(∆−s)λ − 1
∣∣αds =

1

∆

∫ ∆

0

∣∣esλ − 1
∣∣αds

≤ 2α

∆

∫ ∆

0

∣∣es<(λ) cos
(
s=(λ)

)
− 1
∣∣α +

∣∣es<(λ) sin
(
s=(λ)

)∣∣αds.

Due to the Mean Value Theorem there exists an ε(∆) ∈ [0,∆] such that

1

∆

∫ ∆

0

∣∣es<(λ) cos
(
s=(λ)

)
− 1
∣∣α ds =

∣∣eε(∆)<(λ) cos
(
ε(∆)=(λ)

)
− 1
∣∣α. (3.22)

Since ε(∆) → 0 as ∆ → 0, we immediately obtain that the right-hand side of (3.22)

converges to 0 as ∆→ 0. Likewise we deduce that

1

∆

∫ ∆

0

∣∣es<(λ) sin
(
s=(λ)

)∣∣α ds→ 0 as ∆→ 0

and hence, (ii) follows.
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(iii) By virtue of Eq. (3.8b) we have, for any r ∈ {1, . . . , p},

−
r−1∑
j=0

Φ∆
j e(r−1−j)∆λm

= −e(r−1)∆λm Φ∆
0 − e(r−2)∆λm Φ∆

1 − e(r−3)∆λm Φ∆
2 − . . .− Φ∆

r−1

= (−1)2 e(r−1)∆λm − (−1)2 e(r−2)∆λm
∑

{i1}∈
(
{1, . . . , p}

1

) e∆λi1 − e(r−3)∆λm Φ∆
2 − . . .− Φ∆

r−1

= (−1)3 e(r−2)∆λm
∑

{i1}∈
(
{1, . . . , p}\{m}

1

) e∆λi1 − (−1)3 e(r−3)∆λm
∑

{i1, i2}∈
(
{1, . . . , p}

2

) e∆(λi1+λi2 )

− . . .− Φ∆
r−1

= (−1)4 e(r−3)∆λm
∑

{i1, i2}∈
(
{1, . . . , p}\{m}

2

) e∆(λi1+λi2 )

− . . .− (−1)r
∑

{i1,...,ir−1}∈
(
{1, . . . , p}
r − 1

) e∆
∑r−1
s=1 λis

= . . . = (−1)r+1
∑

{i1,...,ir−1}∈
(
{1, . . . , p}\{m}

r − 1

) e∆
∑r−1
s=1 λis (3.23)

and hence, due to Eqs. (3.10) and (3.23),

f
(m)
∆ (ω∆) =

p∑
r=1

e−iω∆(r−1)

(
−

r−1∑
j=0

Φ∆
j e(r−1−j)∆λm

)

=

p−1∑
r=0

(−1)r e−iω∆r
∑

{i1, ..., ir}∈
(
{1, . . . , p}\{m}

r

) e∆
∑r
s=1 λis

=

p−1∑
r=0

(−1)r
∑

{i1, ..., ir}∈
(
{1, . . . , p}\{m}

r

) e∆(
∑r
s=1 λis−iωr)

=

p−1∑
j=0

∆j

j!

p−1∑
r=0

(−1)r
∑

{i1, ..., ir}∈
(
{1, . . . , p}\{m}

r

)
( r∑

s=1

λis − iωr
)j

+ o(∆p−1)

(3.24)

as ∆ → 0. Now, since the eigenvalues of A are also the zeros of the autoregressive

polynomial a(z), we observe that in order to show Lemma 3.2.1(iii) it remains to prove
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the following

p−1∑
r=0

(−1)r
∑

{i1, ..., ir}∈
(
{1, . . . , p}\{m}

r

)
( r∑

s=1

λis − iωr
)j

= (p− 1)!

p∏
s=1
s 6=m

(iω − λs) δ{p−1}(j),

(3.25)

where δ{p−1}(j) = 1 if j = p− 1 and 0 otherwise.

If p = 1, one immediately verifies that (3.25) holds since both sides are equal to 1.

Hence, we assume p > 1 in the following.

For j = 0, due to the Binomial Theorem, the left-hand side of (3.25) is equal to

p−1∑
r=0

(−1)r

(
p− 1

r

)
=
(
1 + (−1)

)p−1
= 0.

For j ∈ {1, . . . , p− 1} we obtain

p−1∑
r=0

(−1)r
∑

{i1, ..., ir}∈
(
{1, . . . , p}\{m}

r

)
( r∑

s=1

λis − iωr
)j

=

p−1∑
r=1

(−1)r
∑

{i1, ..., ir}∈
(
{1, . . . , p}\{m}

r

)
( r∑

s=1

(λis − iω)

)j

=

p−1∑
r=1

(−1)r
j∑
t=1

(
p− 1− t
r − t

)
p−1−(t−1)∑

k1=1

p−1−(t−2)−k1∑
k2=1

. . .

p−1−(t−(t−1))−
∑t−2
h=1 kh∑

kt−1=1

(
j

k1

)

×

(
j − k1

k2

)
· · ·

(
j −

∑t−2
h=1 kh

kt−1

) ∑
u1, ..., ut∈{1, ..., p}\{m}

u1<u2<...<ut

(λu1 − iω)j−
∑t−1
h=1 kh

×
t∏

s=2

(λus − iω)kt+1−s

=

j∑
t=1

p−1−(t−1)∑
k1=1

p−1−(t−2)−k1∑
k2=1

. . .

p−2−
∑t−2
h=1 kh∑

kt−1=1

(
j

k1

)(
j − k1

k2

)
· · ·

(
j −

∑t−2
h=1 kh

kt−1

)

×
∑

u1, ..., ut∈{1, ..., p}\{m}
u1<u2<...<ut

(λu1 − iω)j−
∑t−1
h=1 kh

t∏
s=2

(λus − iω)kt+1−s

p−1∑
r=1

(−1)r

(
p− 1− t
r − t

)
.

(3.26)
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Since

(
n

j

)
= 0 for all n ∈ N and j < 0, we get

p−1∑
r=1

(−1)r

(
p− 1− t
r − t

)
= (−1)t

p−1−t∑
r=0

(−1)r

(
p− 1− t

r

)
= (−1)t ·

(
1 + (−1)

)p−1−t

=

{
0 if t = 1, . . . , p− 2,

(−1)p−1 if t = p− 1,

where we used again the Binomial Theorem. Consequently, for any j ∈ {1, . . . , p− 2},
the right-hand side of (3.26) vanishes, whereas for j = p− 1 it becomes

(−1)p−1

(
p− 1

1

)(
p− 2

1

)
· · ·

(
2

1

)
p∏
s=1
s 6=m

(λs − iω) = (p− 1)!

p∏
s=1
s 6=m

(iω − λs),

which completes the proof of Eq. (3.25) and hence, (iii) is shown.

(iv) It is a simple consequence of Liouville’s Theorem (see, for instance, [60, Chapter

III, Theorem 7.5]) that any rational function f(z) = q(z)
p(z)

with deg(q) < deg(p) can be

written as

f(z) = hf (z; λ1) + . . .+ hf (z; λr)

where λ1, . . . , λr are the distinct zeros of p(z) and hf (z; λm) is the principal part of the

Laurent series expansion of f at the point λm.

Again, the eigenvalues of A are also the zeros of the autoregressive polynomial a(z).

Consequently, we can apply the above result to the rational function c(z)/a(z) (note

that deg(a) = p > q = deg(c)) and obtain

c(z)

a(z)
= hc/a(z; λ1) + . . .+ hc/a(z; λp).

Since λ1, . . . , λp are distinct, every λm, m ∈ {1, . . . , p}, is a pole of order 1 of the

rational function c/a. In this case, it is well known (see, e.g., [60, p. 174]) that the

principal part of the Laurent series expansion of c/a at the point λm reduces to

c(λm)

a′(λm)
· 1

z − λm
.

Since λ1, . . . , λp are supposed to have non-vanishing real parts, we have a(iω) 6= 0 for

any ω ∈ R. Hence, Lemma 3.2.1(iv) holds for any ω ∈ R.

59



3 Limit behavior periodogram

Proof of Lemma 3.2.2. (i) This statement follows easily by induction over p from

the definition of the Ψ∆n
j .

(ii) We deduce from (i) that

∞∑
j=n+1

∣∣Ψ∆n
j

∣∣ ≤ C(p) ∆−(p−1)
n

∞∑
j=n+1

e∆nλmaxj = C(p) ∆−(p−1)
n

e(n+1)∆nλmax

1− e∆nλmax

∼ −C(p)

λmax

e
n∆n

(
λmax−p

log(∆n)·∆δn
n∆1+δ

n

)
n→∞→ 0, (3.27)

since ∆n → 0 and n∆1+δ
n →∞ as n→∞.

If 0 < α ≤ 1, we have (cf. also [57, Proof of Proposition 2.1])

∆α
n

n

−n−1∑
k=−∞

( n−k∑
j=1−k

∣∣Ψ∆n
j

∣∣)α ≤ ∆α
n

∞∑
j=n+2

∣∣Ψ∆n
j

∣∣α,
and analogously to (3.27) it can be shown that the right-hand side converges to 0 as

n→∞. Otherwise, if 1 < α ≤ 2, we set Ψ̃∆n
j := Ψ∆n

j /
∑∞

j=n+2

∣∣Ψ∆n
j

∣∣ and obtain

∆α
n

n

−n−1∑
k=−∞

( n−k∑
j=1−k

∣∣Ψ∆n
j

∣∣)α =

( ∞∑
j=n+2

∣∣Ψ∆n
j

∣∣)α ∆α
n

n

−n−1∑
k=−∞

( n−k∑
j=1−k

∣∣Ψ̃∆n
j

∣∣)α
≤
( ∞∑
j=n+2

∣∣Ψ∆n
j

∣∣)α−1

∆α
n

∞∑
j=n+2

∣∣Ψ∆n
j

∣∣ n→∞→ 0

due to Eq. (3.27).

(iii) We use again (i) to derive

∆αp
n

n

1−p∑
k=1−n

( n∑
j=1−k

∣∣Ψ∆n
j

∣∣)α ≤ C(p)α ∆α
n

n

n∑
k=1

( n∑
j=k

e∆nλmaxj
)α

≤ C(p)α ∆α
n

n (1− e∆nλmax)α

n∑
k=1

eα∆nλmaxk ≤ C(p)α ∆α
n

n (1− e∆nλmax)α
· 1

1− eα∆nλmax

∼ C(p)α

(−λmax)α
· 1

−αλmaxn∆n

→ 0

as n→∞, since we suppose n∆n →∞.

(iv) We have, once again due to (i),

∆α
n

n

−1∑
k=2−p−n

( n∧(−k)∑
j=1∨(2−p−k)

∣∣Ψ∆n
j

∣∣)α ≤ ∆α
n

n

[
p−2∑
k=1

( k∑
j=1

∣∣Ψ∆n
j

∣∣)α +

n+p−2∑
k=p−1

( k∑
j=k+2−p

∣∣Ψ∆n
j

∣∣)α]
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≤ ∆α
n

n

[
(p− 2) (p− 1)αp +

(
C(p) (p− 1) ∆−p+1

n

)α n+p−2∑
k=p−1

eα∆nλmax(k+2−p)

]

≤ ∆α
n

n

[
(p− 2) (p− 1)αp +

(
C(p) (p− 1) ∆−p+1

n

)α 1

1− eα∆nλmax

]
,

where the first summand obviously vanishes as n→∞. The second term is asymptoti-

cally equivalent to
(C(p) (p− 1))α

−αλmax

· 1

n∆
α(p−2)+1
n

→ 0

as n→∞ by assumption.

(v) It is once more (i) that gives

∆α
n

n

0∑
k=2−p

( n∑
j=1

∣∣Ψ∆n
j

∣∣)α ≤ (p− 1)
∆α
n

n

( ∞∑
j=1

∣∣Ψ∆n
j

∣∣)α ≤ (p− 1)
∆α
n

n

(
C(p) ∆−p+1

n

1− e∆nλmax

)α
∼ C(p)α (p− 1)

(−λmax)α
· 1

n∆
α(p−1)
n

→ 0

as n→∞, since we assume that n∆
α(p−1)
n →∞ as n→∞.

3.4.3 Proofs of Section 3.2.2

Since the proof of Proposition 3.2.4 is based on Theorem 3.2.5, we prove first The-

orem 3.2.5 and then Proposition 3.2.4. For the proof of Theorem 3.2.5 we need the

following additional result:

Proposition 3.4.1. If Assumption 3.1 holds, ∆ = ∆n → 0 and n∆
α(p−1)
n → ∞ as

n→∞, then, for any ω ∈ R,

Jn, Z̃∆n (ω∆n) = J
(2)
n,∆n

(ω∆n) + oP

(
∆

1
α

+p−1
n

)
as n→∞

with J
(2)
n,∆n

(ω∆n) := n−1/α
∑n−p+1

k=1
˜̃Zk,∆n(ω∆n) e−iω∆nk and ( ˜̃Zk,∆n)k∈Z as in (3.10).

Proof. We first observe that

Jn, Z̃∆n (ω∆n) = n−
1
α

n∑
k=1

Z̃k,∆n e−iω∆nk (3.7)
= n−

1
α

n∑
k=1

( p∑
r=1

Zr
k−r+1,∆n

)
e−iω∆nk

= n−
1
α

n∑
k=2−p

p∧(n+1−k)∑
r=1∨(2−k)

Zr
k,∆n

e−iω∆n(k+r−1)
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= J
(1)
n,∆n

(ω∆n) + J
(2)
n,∆n

(ω∆n) + J
(3)
n,∆n

(ω∆n) (3.28)

with

J
(1)
n,∆n

(ω∆n) := n−
1
α

0∑
k=2−p

p∑
r=2−k

Zr
k,∆n

e−iω∆n(k+r−1),

J
(2)
n,∆n

(ω∆n) := n−
1
α

n−p+1∑
k=1

p∑
r=1

Zr
k,∆n

e−iω∆n(k+r−1) (3.10)
= n−

1
α

n−p+1∑
k=1

e−iω∆nk ˜̃Zk,∆n(ω∆n),

J
(3)
n,∆n

(ω∆n) := n−
1
α

n∑
k=n−p+2

n+1−k∑
r=1

Zr
k,∆n

e−iω∆n(k+r−1).

Moreover, we define, for any z1, z2 ∈ R, the function Ξz1, z2 : C → R, Ξz1, z2(x) :=

z1<(x) + z2=(x). Then we have, due to Eq. (3.8a) and Lemma 3.2.1(i),

J
(1)
n,∆n

(ω∆n)

= n−
1
α

0∑
k=2−p

p∑
r=2−k

e−iω∆n(k+r−1)

∫ k∆n

(k−1)∆n

cT
(
−

r−1∑
j=0

Φ∆n
j e(r−1−j)∆nA

)
e(k∆n−s)Aep dLs

= n−
1
α

0∑
k=2−p

p∑
m=1

c(λm)

a′(λm)

p∑
r=2−k

e−iω∆n(k+r−1)

(
−

r−1∑
j=0

Φ∆n
j e(r−1−j)∆nλm

)

×
∫ k∆n

(k−1)∆n

e(k∆n−s)λm dLs

= n−
1
α

0∑
k=2−p

∫ k∆n

(k−1)∆n

e−iω∆nk ζ
(k)
∆n, ω∆n

(s) dLs, (3.29)

where, for any ω ∈ R and ∆ > 0,

ζ
(k)
∆, ω(s) :=

p∑
m=1

c(λm)

a′(λm)
f

(m; 2−k)
∆ (ω) e(k∆−s)λm and

f
(m; 2−k)
∆ (ω) :=

p∑
r=2−k

e−iω∆(r−1)

(
−

r−1∑
j=0

Φ∆
j e(r−1−j)∆λm

)
.

Hence, the complex SαS random variable ∆
1−p−1/α
n J

(1)
n,∆n

(ω∆n) has joint characteristic

function (cf. (3.12))

Φ
J

(1)
n,∆n

(z1, z2) = exp

{
− σαL

n∆
1+α(p−1)
n

0∑
k=2−p

∫ k∆n

(k−1)∆n

∣∣∣Ξz1, z2

(
e−iω∆nk ζ

(k)
∆n, ω∆n

(s)
)∣∣∣α ds

}
,
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z1, z2 ∈ R. With the same arguments as in Eqs. (3.23) and (3.24) we further obtain, as

n→∞,

f
(m; 2−k)
∆n

(ω∆n) =

p−1∑
r=1−k

(−1)r

(
p− 1

r

)
+O(∆n) (3.30)

and hence,
∣∣f (m; 2−k)

∆n
(ω∆n)

∣∣ ≤ 2p−1 for any m ∈ {1, . . . , p} and k = 2− p, 3− p, . . . , 0,

if only n is sufficiently large. Thus,

1

n∆
1+α(p−1)
n

0∑
k=2−p

∫ k∆n

(k−1)∆n

∣∣∣Ξz1, z2

(
e−iω∆nk ζ

(k)
∆n, ω∆n

(s)
)∣∣∣α ds

≤ (|z1|+ |z2|)α

n∆
1+α(p−1)
n

0∑
k=2−p

∫ k∆n

(k−1)∆n

∣∣∣ζ(k)
∆n, ω∆n

(s)
∣∣∣α ds

≤ (p− 1)
(|z1|+ |z2|)α

n∆
α(p−1)
n

(
2p−1

p∑
m=1

|c(λm)|
|a′(λm)|

)α

and the right-hand side converges to 0 as n→∞, since we suppose n∆
α(p−1)
n →∞. This

obviously yields J
(1)
n,∆n

(ω∆n) = oP
(
∆

1/α+p−1
n

)
as n→∞.

Likewise we obtain J
(3)
n,∆n

(ω∆n) = oP
(
∆

1/α+p−1
n

)
as n→∞ which completes the proof

of Proposition 3.4.1.

Proof of Theorem 3.2.5. We prove that ∆
1−p−1/α
n

[
J

(2)
n,∆n

(ωj∆n)
]
j=1, ...,m

converges

weakly to
[
c(iωj) ·

(
S <j (ω˜)− iS =j (ω˜)

)]
j=1, ...,m

as n→∞ and then conclude with Propo-

sition 3.4.1. By virtue of (3.11) we have

J
(2)
n,∆n

(ωj∆n) = n−
1
α

n−p+1∑
k=1

∫ k∆n

(k−1)∆n

e−iωj∆nk g
(k)
∆n, ωj∆n

(s) dLs (3.31)

for any j ∈ {1, . . . , m} and the joint characteristic function of the complex SαS random

vector ∆
1−p−1/α
n

[
J

(2)
n,∆n

(ωj∆n)
]
j=1, ...,m

is given by

Φ
J

(2)
n,∆n

(
θ˜, ν˜) = exp

{
− σαL

n∆
1+α(p−1)
n

n−p+1∑
k=1

∫ k∆n

(k−1)∆n

∣∣∣∣∣
m∑
j=1

Ξθj ,νj

(
e−iωj∆nkg

(k)
∆n,ωj∆n

(s)
)∣∣∣∣∣

α

ds

}
(3.32)

with arbitrary θ˜, ν˜ ∈ Rm. Hence, due to Lévy’s Continuity Theorem, we have to show

for any θ˜, ν˜ ∈ Rm

lim
n→∞

1

n∆
1+α(p−1)
n

n−p+1∑
k=1

∫ k∆n

(k−1)∆n

∣∣∣∣∣
m∑
j=1

Ξθj , νj

(
e−iωj∆nk g

(k)
∆n, ωj∆n

(s)
)∣∣∣∣∣

α

ds
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= Kω˜
((

Ξθj , νj

(
c(iωj)

))
j∈{1, ...,m} ,

(
Ξ−νj , θj

(
c(iωj)

))
j∈{1, ...,m} , 0

)
, (3.33)

where Kω˜ has been defined in (3.13b) and (3.13c), respectively.

We first claim∣∣∣∣∣ 1n
n−p+1∑
k=1

(
1

∆n

∫ k∆n

(k−1)∆n

∣∣∣∣∣
m∑
j=1

Ξθj , νj

(
e−iωj∆nk

g
(k)
∆n, ωj∆n

(s)

∆p−1
n

)∣∣∣∣∣
α

ds

−

∣∣∣∣∣
m∑
j=1

Ξθj , νj

(
e−iωj∆nk c(iωj)

)∣∣∣∣∣
α)∣∣∣∣∣ n→∞→ 0. (3.34)

To this end, we use
∣∣|x|α−|y|α∣∣ ≤ (|x|α/2 + |y|α/2) · |x− y|α/2 for α ∈ (0, 2] together with

the Cauchy-Schwarz inequality and obtain∣∣∣∣∣ 1

n∆n

n−p+1∑
k=1

∫ k∆n

(k−1)∆n

∣∣∣∣∣
m∑
j=1

Ξθj , νj

(
e−iωj∆nk

g
(k)
∆n, ωj∆n

(s)

∆p−1
n

)∣∣∣∣∣
α

−

∣∣∣∣∣
m∑
j=1

Ξθj , νj

(
e−iωj∆nk c(iωj)

)∣∣∣∣∣
α

ds

∣∣∣∣∣
≤ 1

n∆n

n−p+1∑
k=1

∫ k∆n

(k−1)∆n

(∣∣∣∣∣
m∑
j=1

Ξθj , νj

(
e−iωj∆nk

g
(k)
∆n, ωj∆n

(s)

∆p−1
n

)∣∣∣∣∣
α
2

+

∣∣∣∣∣
m∑
j=1

Ξθj , νj

(
e−iωj∆nk c(iωj)

)∣∣∣∣∣
α
2
)

×

∣∣∣∣∣
m∑
j=1

Ξθj , νj

(
e−iωj∆nk

(
g

(k)
∆n, ωj∆n

(s)

∆p−1
n

− c(iωj)

))∣∣∣∣∣
α
2

ds

≤

 1

n

n−p+1∑
k=1

1

∆n

∫ k∆n

(k−1)∆n

 m∑
j=1

(|θj|+ |νj|)
α
2 ·

∣∣∣∣∣g
(k)
∆n, ωj∆n

(s)

∆p−1
n

∣∣∣∣∣
α
2

+ |c(iωj)|
α
2

2

ds


1
2

×

[
1

n

n−p+1∑
k=1

1

∆n

∫ k∆n

(k−1)∆n

∣∣∣∣∣
m∑
j=1

Ξθj , νj

(
e−iωj∆nk

(
g

(k)
∆n, ωj∆n

(s)

∆p−1
n

− c(iωj)

))∣∣∣∣∣
α

ds

] 1
2

=: I1 × I2,

where, due to Assumption 3.1, Eq. (3.11) and Lemma 3.2.1(iii), there are constants

C(ωj) > 0 such that for all sufficiently large n

I2
1 ≤ 2m2

m∑
j=1

(|θj|+ |νj|)α ·
1

n

n−p+1∑
k=1

1

∆n

∫ k∆n

(k−1)∆n

∣∣∣∣∣g
(k)
∆n, ωj∆n

(s)

∆p−1
n

∣∣∣∣∣
α

+ |c(iωj)|α ds
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≤ 2m2

m∑
j=1

(|θj|+ |νj|)α ·

((
C(ωj)

p∑
l=1

|c(λl)|
|a′(λl)|

)α
+ |c(iωj)|α

)
<∞

and hence, I1 is bounded. Setting

h
(k)
∆n, ω

(s) :=

p∑
l=1

c(λl)

a′(λl)

a(iω)

iω − λl
e(k∆n−s)λl , k ∈ {1, . . . , p},

we obtain for the second term

I2
2 ≤ mα

m∑
j=1

(|θj|+ |νj|)α
1

n

n−p+1∑
k=1

1

∆n

∫ k∆n

(k−1)∆n

∣∣∣∣∣g
(k)
∆n, ωj∆n

(s)

∆p−1
n

− c(iωj)

∣∣∣∣∣
α

ds

≤ (2m)α
m∑
j=1

(|θj|+ |νj|)α
1

n

n−p+1∑
k=1

[
1

∆n

∫ k∆n

(k−1)∆n

∣∣∣∣∣g
(k)
∆n, ωj∆n

(s)

∆p−1
n

− h(k)
∆n, ωj

(s)

∣∣∣∣∣
α

+
∣∣∣h(k)

∆n, ωj
(s)− c(iωj)

∣∣∣α ds

]
. (3.35)

Then, for any j ∈ {1, . . . , m},

1

n

n−p+1∑
k=1

1

∆n

∫ k∆n

(k−1)∆n

∣∣∣∣∣g
(k)
∆n, ωj∆n

(s)

∆p−1
n

− h(k)
∆n, ωj

(s)

∣∣∣∣∣
α

ds

≤

(
p∑
l=1

|c(λl)|
|a′(λl)|

·

∣∣∣∣∣f
(l)
∆n

(ωj∆n)

∆p−1
n

− a(iωj)

iωj − λl

∣∣∣∣∣
)α

n→∞→ 0 (3.36)

by virtue of Lemma 3.2.1(iii). Moreover,

1

n

n−p+1∑
k=1

1

∆n

∫ k∆n

(k−1)∆n

∣∣∣h(k)
∆n, ωj

(s)− c(iωj)
∣∣∣α ds

=
1

n

n−p+1∑
k=1

1

∆n

∫ k∆n

(k−1)∆n

∣∣∣∣ p∑
l=1

c(λl)

a′(λl)

a(iωj)

iωj − λl
(
e(k∆n−s)λl − 1

)∣∣∣∣αds

≤ pα
p∑
l=1

(
|c(λl)|
|a′(λl)|

· |a(iωj)|
|iωj − λl|

)α
1

∆n

∫ ∆n

0

∣∣e(∆n−s)λl − 1
∣∣α ds

n→∞→ 0, (3.37)

where we used Lemma 3.2.1(ii) and (iv). Hence, by Eqs. (3.36) and (3.37) the right-hand

side of (3.35) converges to 0 as n→∞ and thus, (3.34) is shown, as well.

In order to obtain (3.33) and hence,

∆
1−p− 1

α
n

[
J

(2)
n,∆n

(ωj∆n)
]
j=1, ...,m

D→
[
c(iωj) ·

(
S <j (ω˜)− iS =j (ω˜)

)]
j=1, ...,m
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as n→∞, it remains to prove that

1

n

n−p+1∑
k=1

∣∣∣∣∣
m∑
j=1

Ξθj , νj

(
e−iωj∆nk c(iωj)

)∣∣∣∣∣
α

n→∞→ Kω˜
((

Ξθj , νj

(
c(iωj)

))
j∈{1, ...,m} ,

(
Ξ−νj , θj

(
c(iωj)

))
j∈{1, ...,m} , 0

)
.

Since we suppose in particular n∆n →∞ as n→∞, this follows from Proposition 3.3.4.

Finally, since also n∆
α(p−1)
n → ∞ as n → ∞ holds, Proposition 3.4.1 yields for any

ω ∈ R
J

(1)
n,∆n

(ω∆n) + J
(3)
n,∆n

(ω∆n) = oP
(
∆1/α+p−1
n

)
and hence, ∆

1−p−1/α
n

[
Jn, Z̃∆n (ωj∆n)

]
j=1, ...,m

D→
[
c(iωj) ·

(
S <j (ω˜) − iS =j (ω˜)

)]
j=1, ...,m

as

n→∞. This completes the proof.

Proof of Proposition 3.2.4. We immediately obtain

Jn, Y ∆n (ω) = n−
1
α

n∑
k=1

Yk∆n e−iωk
(3.9)
= n−

1
α

n∑
k=1

( ∞∑
j=0

Ψ∆n
j Z̃k−j,∆n

)
e−iωk

= n−
1
α

∞∑
j=0

Ψ∆n
j e−iωj

( n∑
k=1

Z̃k,∆n e−iωk + Un, j,∆n(ω)

)
= Ψ∆n(e−iω) Jn, Z̃∆n (ω) +Wn,∆n(ω),

where

Un, j,∆n(ω) =

n−j∑
k=1−j

Z̃k,∆n e−iωk −
n∑
k=1

Z̃k,∆n e−iωk and

Wn,∆n(ω) = n−
1
α

∞∑
j=0

Ψ∆n
j e−iωj Un, j,∆n(ω).

Hence,

In, Y ∆n (ω) =
∣∣Ψ∆n(e−iω)

∣∣2 In, Z̃∆n (ω) +Rn,∆n(ω),

with

Rn,∆n(ω) = Ψ∆n(e−iω) J
n, Z̃∆n (ω)Wn,∆n(ω) + Ψ∆n(e−iω) J

n, Z̃∆n (ω)Wn,∆n(ω) + |Wn,∆n(ω)|2.

For the rest of the proof suppose that Assumption 3.2 holds and fix an arbitrary

ω ∈ R∗. We have to show that ∆
2−2/α
n |Rn,∆n(ω∆n)| P→ 0 as n→∞.
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Since Ψ∆n(e−iω∆n) ∼ ∆−pn a(iω)−1 as n→∞ and since in particular n∆
1∨α(p−1)
n →∞

if Assumption 3.2 holds, it follows from Theorem 3.2.5 that

∆
1− 1

α
n Ψ∆n(e−iω∆n) Jn, Z̃∆n (ω∆n)

D→ c(iω)

a(iω)

(
S <1 (ω)− iS =1 (ω)

)
as n→∞,

where the joint characteristic function of
(
S <1 (ω), S =1 (ω)

)
is given by Eq. (3.13) (with

m = 1 and τ = 0). Hence, in order to show ∆
2−2/α
n |Rn,∆n(ω∆n)| P→ 0 as n → ∞, it is

sufficient to prove that

∆
1− 1

α
n Wn,∆n(ω∆n)

P→ 0 as n→∞. (3.38)

We shall prove (3.38) by an appropriate decomposition of the sum Wn,∆n(ω∆n), anal-

ogously to the one in [57, Proof of Proposition 2.1]. We write

Wn,∆n(ω∆n) = n−
1
α

∞∑
j=n+1

Ψ∆n
j e−iω∆njUn,j,∆n(ω∆n) + n−

1
α

n∑
j=0

Ψ∆n
j e−iω∆njUn,j,∆n(ω∆n)

=: W
(1)
n,∆n

(ω∆n) +W
(2)
n,∆n

(ω∆n)

and

W
(1)
n,∆n

(ω∆n) = n−
1
α

∞∑
j=n+1

Ψ∆n
j e−iω∆nj

(
−

n∑
k=1

Z̃k,∆n e−iω∆nk

)

+ n−
1
α

∞∑
j=n+1

Ψ∆n
j e−iω∆nj

n−j∑
k=1−j

Z̃k,∆n e−iω∆nk

=: W
(11)
n,∆n

(ω∆n) +W
(12)
n,∆n

(ω∆n).

We have

∆
1− 1

α
n

∣∣∣W (11)
n,∆n

(ω∆n)
∣∣∣ ≤ ∆

1−p− 1
α

n

∣∣Jn, Z̃∆n (ω∆n)
∣∣∆p

n

∞∑
j=n+1

∣∣Ψ∆n
j

∣∣
and it is again Theorem 3.2.5 together with the Continuous Mapping Theorem (see, e.g.,

[54, Theorem 13.25]) showing ∆
1−p−1/α
n |Jn, Z̃∆n (ω∆n)| D→ |c(iω)| ·

∣∣S <1 (ω) − iS =1 (ω)
∣∣ as

n→∞. Since we have
∑∞

j=n+1

∣∣Ψ∆n
j

∣∣→ 0 by virtue of Lemma 3.2.2(ii), we immediately

deduce ∆
1−1/α
n W

(11)
n,∆n

(ω∆n)
P→ 0 as n→∞.

Concerning the term W
(12)
n,∆n

(ω∆n) we write

W
(12)
n,∆n

(ω∆n) = n−
1
α

∞∑
j=n+1

Ψ∆n
j e−iω∆nj

n−j∑
k=1−j

Z̃k,∆n e−iω∆nk
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= n−
1
α

−1∑
k=−n

Z̃k,∆n e−iω∆nk

n−k∑
j=n+1

Ψ∆n
j e−iω∆nj

+ n−
1
α

−n−1∑
k=−∞

Z̃k,∆n e−iω∆nk

n−k∑
j=1−k

Ψ∆n
j e−iω∆nj

=: W
(121)
n,∆n

(ω∆n) +W
(122)
n,∆n

(ω∆n)

and obtain for arbitrary ε > 0

P
(

∆
1− 1

α
n

∣∣W (121)
n,∆n

(ω∆n)
∣∣ > ε

)
≤

p∑
r=1

P
(

∆
1− 1

α
n n−

1
α

∣∣∣∣ −1∑
k=−n

Zr
k−r+1,∆n

n−k∑
j=n+1

Ψ∆n
j e−iω∆n(k+j)

∣∣∣∣ > ε

p

)

≤
p∑
r=1

[
P
(

∆
1− 1

α
n n−

1
α

∣∣∣∣ −1∑
k=−n

Zr
k−r+1,∆n

· <
( n−k∑
j=n+1

Ψ∆n
j e−iω∆n(k+j)

)∣∣∣∣ > ε

2p

)

+ P
(

∆
1− 1

α
n n−

1
α

∣∣∣∣ −1∑
k=−n

Zr
k−r+1,∆n

· =
( n−k∑
j=n+1

Ψ∆n
j e−iω∆n(k+j)

)∣∣∣∣ > ε

2p

)]
. (3.39)

Since, for every r ∈ {1, . . . , p} and n ∈ N∗, the random variables Zr
k−r+1,∆n

, k ∈
{−n, −n+ 1, . . . , −1}, are independent and symmetric we apply [84, Theorem 1.2] and

the right-hand side of (3.39) can be bounded by

4

p∑
r=1

P
(

∆
1− 1

α
n n−

1
α

2n∑
j=n+1

∣∣Ψ∆n
j

∣∣ · ∣∣∣∣ −1∑
k=−n

Zr
k−r+1,∆n

∣∣∣∣ > ε

2p

)
. (3.40)

By virtue of (3.8a), (3.23) and Lemma 3.2.1(i), the characteristic function of

∆
1−1/α
n n−1/α

∑2n
j=n+1

∣∣Ψ∆n
j

∣∣ ·∑−1
k=−n Z

r
k−r+1,∆n

is given by

Φ(z1, z2) = exp

{
−
σαL ∆α

n

n∆n

( 2n∑
j=n+1

∣∣Ψ∆n
j

∣∣)α −1∑
k=−n

∫ (k−r+1)∆n

(k−r)∆n

∣∣∣∣Ξz1, z2( p∑
m=1

c(λm)

a′(λm)

×
∑

{i1, ..., ir−1}∈
(
{1, . . . , p}\{m}

r − 1

) e∆n
∑r−1
h=1 λih e((k−r+1)∆n−s)λm

)∣∣∣∣αds

}

for any z1, z2 ∈ R (see proof of Proposition 3.4.1 for the definition of Ξz1, z2). We then
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obtain with λmax := maxk∈{1, ..., p}<(λk) < 0

∣∣∣∣− log Φ(z1, z2)

σαL

∣∣∣∣ ≤
(

∆n

2n∑
j=n+1

∣∣Ψ∆n
j

∣∣ (|z1|+ |z2|)

(
p− 1

r − 1

)
e∆nλmax(r−1)

p∑
m=1

|c(λm)|
|a′(λm)|

)α

and the right-hand side converges to 0 as n→∞ due to Lemma 3.2.2(ii). Thus, (3.40)

converges to 0 as well and ∆
1−1/α
n W

(121)
n,∆n

(ω∆n)
P→ 0 is shown.

In order to get ∆
1−1/α
n W

(122)
n,∆n

(ω∆n)
P→ 0, we prove, for any r ∈ {1, . . . , p},

∆
1− 1

α
n n−

1
α

−n−1∑
k=−∞

Zr
k−r+1,∆n

n−k∑
j=1−k

Ψ∆n
j e−iω∆n(k+j) P→ 0.

Therefore it is sufficient (using the same arguments as above via characteristic functions)

to show that
∆α
n

n

−n−1∑
k=−∞

( n−k∑
j=1−k

∣∣Ψ∆n
j

∣∣)α → 0

as n→∞. This can be found in Lemma 3.2.2(ii) and hence, ∆
1−1/α
n W

(122)
n,∆n

(ω∆n)
P→ 0.

All together we have shown that ∆
1−1/α
n W

(1)
n,∆n

(ω∆n) converges to 0 in probability.

It remains to prove that also ∆
1−1/α
n W

(2)
n,∆n

(ω∆n)
P→ 0 as n→∞. To this end, we

define

W
(21)
n,∆n

(ω∆n) := n−
1
α

n∑
j=1

Ψ∆n
j e−iω∆nj

[( −j∑
k=2−p−j

p∑
r=2−j−k

+
0∑

k=2−p

1−k∑
r=1

−
n−j∑

k=n+2−p−j

p∑
r=n+2−j−k

−
n∑

k=n−p+2

n+1−k∑
r=1

)
Zr
k,∆n

e−iω∆n(k+r−1)

]
=: W

(211)
n,∆n

(ω∆n) +W
(212)
n,∆n

(ω∆n)−W (213)
n,∆n

(ω∆n)−W (214)
n,∆n

(ω∆n)

and write

W
(2)
n,∆n

(ω∆n)

= n−
1
α

n∑
j=1

Ψ∆n
j e−iω∆nj

( 0∑
k=1−j

p∑
r=1

Zr
k−r+1,∆n

e−iω∆nk −
n∑

k=n−j+1

p∑
r=1

Zr
k−r+1,∆n

e−iω∆nk

)

= n−
1
α

n∑
j=1

Ψ∆n
j e−iω∆nj

( 0∑
k=2−p−j

p∧(1−k)∑
r=1∨(2−j−k)

Zr
k,∆n

e−iω∆n(k+r−1)
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−
n∑

k=n+2−p−j

p∧(n+1−k)∑
r=1∨(n+2−j−k)

Zr
k,∆n

e−iω∆n(k+r−1)

)

= W
(21)
n,∆n

(ω∆n) + n−
1
α

n∑
j=1

Ψ∆n
j e−iω∆nj

[( 1−p∑
k=1−j

−
n−p+1∑
k=n−j+1

)
˜̃Zk,∆n(ω∆n) e−iω∆nk

]
=: W

(21)
n,∆n

(ω∆n) +W
(22)
n,∆n

(ω∆n)−W (23)
n,∆n

(ω∆n).

By virtue of Eq. (3.11) we have

∆
1− 1

α
n W

(22)
n,∆n

(ω∆n) = ∆
1− 1

α
n n−

1
α

1−p∑
k=1−n

˜̃Zk,∆n(ω∆n) e−iω∆nk

n∑
j=1−k

Ψ∆n
j e−iω∆nj

=
∆n

(n∆n)1/α

1−p∑
k=1−n

n∑
j=1−k

Ψ∆n
j e−iω∆n(k+j)

∫ k∆n

(k−1)∆n

p∑
m=1

c(λm)

a′(λm)
f

(m)
∆n

(ω∆n) e(k∆n−s)λm dLs.

Since, due to Lemma 3.2.1(iii), f
(m)
∆n

(ω∆n) ∼ ∆p−1
n a(iω) 1

iω−λm as n→∞ for every m ∈
{1, . . . , p}, one observes by calculating the characteristic function of ∆

1−1/α
n W

(22)
n,∆n

(ω∆n)

that it is enough to show that

∆αp
n

n

1−p∑
k=1−n

( n∑
j=1−k

∣∣Ψ∆n
j

∣∣)α n→∞→ 0.

This follows immediately from Lemma 3.2.2(iii) and hence also ∆
1−1/α
n W

(22)
n,∆n

(ω∆n)
P→ 0

as n→∞ holds.

Since the complex SαS random variables
( ˜̃Zk,∆n

)
k∈Z(ω∆n) are i.i.d. (cf. Eq. (3.11)),

we easily derive

∆
1− 1

α
n W

(23)
n,∆n

(ω∆n) = e−iω∆nn ·∆1− 1
α

n n−
1
α

n∑
j=1

Ψ∆n
j e−iω∆nj

1−p∑
k=1−j

˜̃Zk+n,∆n(ω∆n) e−iω∆nk

D
= e−iω∆nn ·∆1− 1

α
n W

(22)
n,∆n

(ω∆n)

and thus ∆
1−1/α
n W

(23)
n,∆n

(ω∆n)
P→ 0 as n→∞, as well.

Finally, we have to prove that ∆
1−1/α
n W

(21)
n,∆n

(ω∆n)
P→ 0. Therefore, observe that

∆
1− 1

α
n W

(211)
n,∆n

(ω∆n)

=
∆n

(n∆n)1/α

−1∑
k=2−p−n

e−iω∆nk

n∧(−k)∑
j=1∨(2−p−k)

Ψ∆n
j e−iω∆nj

p∑
r=2−j−k

e−iω∆n(r−1) Zr
k,∆n
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=
∆n

(n∆n)1/α

−1∑
k=2−p−n

n∧(−k)∑
j=1∨(2−p−k)

Ψ∆n
j e−iω∆n(k+j)

×
∫ k∆n

(k−1)∆n

p∑
m=1

c(λm)

a′(λm)
f

(m; 2−j−k)
∆n

(ω∆n) e(k∆n−s)λm dLs (3.41)

(cf. Eq. (3.29)). Using Eq. (3.30) and its upper bound (see proof of Proposition 3.4.1),

the joint characteristic function of the right-hand side of (3.41), denoted once more by

Φ, satisfies

∣∣∣∣− log Φ(z1, z2)

σαL

∣∣∣∣ ≤
(

2p−1 (|z1|+ |z2|)
p∑

m=1

|c(λm)|
|a′(λm)|

)α
∆α
n

n

−1∑
k=2−p−n

( n∧(−k)∑
j=1∨(2−p−k)

∣∣Ψ∆n
j

∣∣)α.
By virtue of Lemma 3.2.2(iv) we then have

∆α
n

n

−1∑
k=2−p−n

( n∧(−k)∑
j=1∨(2−p−k)

∣∣Ψ∆n
j

∣∣)α n→∞→ 0,

and hence, ∆
1−1/α
n W

(211)
n,∆n

(ω∆n)
P→ 0 as n→∞.

Likewise, we get

∆
1− 1

α
n W

(212)
n,∆n

(ω∆n) =
∆n

(n∆n)1/α

0∑
k=2−p

e−iω∆nk

n∑
j=1

Ψ∆n
j e−iω∆nj

1−k∑
r=1

e−iω∆n(r−1) Zr
k,∆n

and, as before, one derives that it is sufficient to show that ∆α
n

n

∑0
k=2−p

(∑n
j=1

∣∣Ψ∆n
j

∣∣)α
converges to 0 as n→∞. This has been done in Lemma 3.2.2(v).

One can show analogously to W
(211)
n,∆n

that also ∆
1−1/α
n W

(213)
n,∆n

(ω∆n)
P→ 0 and anal-

ogously to W
(212)
n,∆n

it follows that ∆
1−1/α
n W

(214)
n,∆n

(ω∆n)
P→ 0 as n → ∞. This implies

∆
1−1/α
n W

(21)
n,∆n

(ω∆n)
P→ 0 and ∆

1−1/α
n W

(2)
n,∆n

(ω∆n)
P→ 0 as n → ∞, as well, and the

proof is completed.

3.4.4 Proofs of Section 3.2.3

Proof of Proposition 3.2.9. (i) We first observe that the state vector in Eq. (3.14a)

can be written as

Vk∆n =
∞∑
j=0

ej∆nAξn, k−j ∀n ∈ N∗, k ∈ Z,
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where ξn, k :=
∫ k∆n

(k−1)∆n
e(k∆n−s)Aβ dLs (cf. [36, Proof of Lemma 5.4]). Its Beveridge-Nelson

decomposition (cf. [9]) is then given by

Vk∆n =

(
∞∑
j=0

ej∆nA

)
ξn, k + Ṽn, k−1 − Ṽn, k ∀n ∈ N∗, k ∈ Z,

with Ṽn, k :=
∑∞

j=0

(∑∞
l=j+1 el∆nA

)
ξn, k−j (see also [36, Proof of Theorem 4.2]). Hence,

n∑
k=1

Vk∆n =
(
Ip − e∆nA

)−1
n∑
k=1

ξn, k + Ṽn, 0 − Ṽn, n,

where Ṽn, 0−Ṽn, n =
(
Ip−e∆nA

)−1
e∆nA(V0−Vn∆n). Since ∆n

(
Ip−e∆nA

)−1 n→∞→ −A−1 and

V0
D
= Vn∆n for any n ∈ N∗, we obviously get Ṽn, 0 − Ṽn, n = oP (∆−1

n (n∆n)1/α) as n→∞.

By analog calculations via characteristic functions (as used in the proofs of Theorem 3.2.5

and Proposition 3.4.1), we further obtain
∑n

k=1 ξn, k = β
∑n

k=1 ∆L(k∆n) + oP ((n∆n)1/α)

as n→∞. Putting all this together, we have

n∑
k=1

Yk∆n

(3.14b)
= eT1

n∑
k=1

Vk∆n

= eT1
(
Ip − e∆nA

)−1

(
β

n∑
k=1

∆L(k∆n) + oP

(
(n∆n)

1
α

))
+ oP

(
∆−1
n (n∆n)

1
α

)
=
∞∑
j=0

g(j∆n) ·
n∑
k=1

∆L(k∆n) + oP

(
∆−1
n (n∆n)

1
α

)
as n→∞

and (i) is shown.

(ii) Let (0, ΣL, νL) denote the characteristic triplet of the underlying Lévy process L.

As in the proof of [36, Proposition A.1(c)]), we first factorize the Lévy measure νL into

two Lévy measures

νL(1)(A) := νL(A\{x ∈ R : |x| ≤ 1}) and νL(2)(A) := νL(A ∩ {x ∈ R : |x| ≤ 1}),

for any Borel set A ⊆ R∗, such that νL = νL(1) + νL(2) . We decompose L into two inde-

pendent Lévy processes L = L(1) + L(2) where L(1) has characteristic triplet (0, 0, νL(1))

and L(2) has characteristic triplet (0, ΣL, νL(2)).

Then one can show, as in the proof of [36, Lemma 5.6], that

n∑
k=1

Vk∆nV
T
k∆n

=
∞∑
j=0

ej∆nA

(
n∑
k=1

ξ
(1)
n, k

(
ξ

(1)
n, k

)T)
ej∆nAT + oP

(
∆−1
n (n∆n)

2
α

)
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as n→∞, where Vk∆n is the state vector in Eq. (3.14a), ξ
(1)
n, k :=

∫ k∆n

(k−1)∆n
e(k∆n−s)Aβ dL

(1)
s

if α ∈ (0, 2) and ξ
(1)
n, k := ξn, k if α = 2 where ξn, k :=

∫ k∆n

(k−1)∆n
e(k∆n−s)Aβ dLs. Next we

claim that, also for α ∈ (0, 2),

n∑
k=1

ξ
(1)
n, k

(
ξ

(1)
n, k

)T
=

n∑
k=1

ξn, kξ
T
n, k + oP

(
(n∆n)

2
α

)
(3.42)

as n→∞. Together with limn→∞∆n

∑∞
j=0 ej∆nABn ej∆nAT =

∫∞
0

esAB esA
T
ds for all

matrices Bn, B ∈ Rp×p with limn→∞Bn = B, this yields

n∑
k=1

Vk∆nV
T
k∆n

=
∞∑
j=0

ej∆nA

(
n∑
k=1

ξn, kξ
T
n, k

)
ej∆nAT + oP

(
∆−1
n (n∆n)

2
α

)
(3.43)

as n→∞. As to (3.42), we observe with ξ
(2)
n, k := ξn, k − ξ(1)

n, k =
∫ k∆n

(k−1)∆n
e(k∆n−s)Aβ dL

(2)
s

that

n∑
k=1

ξn, kξ
T
n, k =

n∑
k=1

ξ
(1)
n, k

(
ξ

(1)
n, k

)T
+

n∑
k=1

ξ
(1)
n, k

(
ξ

(2)
n, k

)T
+

n∑
k=1

ξ
(2)
n, k

(
ξ

(1)
n, k

)T
+

n∑
k=1

ξ
(2)
n, k

(
ξ

(2)
n, k

)T
and thus, by virtue of Hölder’s Inequality and taking the norm ‖M‖ := ‖vec(M)‖, we

obtain∥∥∥∥∥
n∑
k=1

ξn, kξ
T
n, k −

n∑
k=1

ξ
(1)
n, k

(
ξ

(1)
n, k

)T∥∥∥∥∥ ≤ 2

(
n∑
k=1

∥∥∥ξ(1)
n, k

∥∥∥2
) 1

2

·

(
n∑
k=1

∥∥∥ξ(2)
n, k

∥∥∥2
) 1

2

+
n∑
k=1

∥∥∥ξ(2)
n, k

∥∥∥2

.

Note that the second Lévy component L(2) has finite moments of any order (cf. [78,

Corollary 25.8]) and hence, we can apply [36, Proposition A.1(a)] and deduce for some

C > 0 and all sufficiently large n

E

[
(n∆n)−

2
α

n∑
k=1

∥∥∥ξ(2)
n, k

∥∥∥2
]

= (n∆n)−
2
α

n∑
k=1

E
[∥∥∥ξ(2)

n, k

∥∥∥2
]
≤ C · (n∆n)1− 2

α ,

where the right-hand side converges to 0, since we suppose n∆n →∞ and 1− 2/α < 0

for any α ∈ (0, 2). We further obtain by combining [36, Proposition A.2(a,c)] and [74,

Theorem 7.1] that (n∆n)−2/α
∑n

k=1

∥∥ξ(1)
n, k

∥∥2
converges weakly as n→∞ (note that L(1)

is a compound Poisson process). This completes the proof of (3.42) and hence also Eq.

(3.43) is shown.
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Now also

n∑
k=1

ξn, k ξ
T
n, k = β

n∑
k=1

∆L(k∆n)2 βT + oP

(
(n∆n)

2
α

)
as n→∞ (3.44)

holds. For, the (i, j)-th component of
∑n

k=1 ξn, k ξ
T
n, k − β

∑n
k=1 ∆L(k∆n)2 βT can be

bounded, again due to Hölder’s Inequality, by∣∣∣∣∣
[ n∑
k=1

ξn,k ξ
T
n,k − β

n∑
k=1

∆L(k∆n)2 βT
]
i,j

∣∣∣∣∣ ≤
(

n∑
k=1

[ξn,k]
2
i

n∑
k=1

(
[ξn,k]j − βj ∆L(k∆n)

)2
) 1

2

+

(
n∑
k=1

(
βj ∆L(k∆n)

)2
n∑
k=1

(
[ξn,k]i − βi ∆L(k∆n)

)2
) 1

2

with
[
ξn, k

]
i
and βj being the i-th and the j-th component of ξn, k and β, respectively. Sim-

ilar arguments as used above for
∑n

k=1

∥∥ξ(1)
n, k

∥∥2
yield that (n∆n)−2/α

∑n
k=1 [ξn, k]

2
i as well

as (n∆n)−2/α
∑n

k=1

(
βj ∆L(k∆n)

)2
converge weakly to positive α/2-stable random vari-

ables. In order to obtain Eq. (3.44), it hence remains to prove that, for any i ∈ {1, . . . , p},
the sum (n∆n)−2/α

∑n
k=1

(
[ξn, k]i − βi ∆L(k∆n)

)2
converges to 0 in probability. This

is indeed true, since the random variables [ξn, k]i − βi ∆L(k∆n), k ∈ {1, . . . , n}, are

i.i.d. symmetric α-stable with scale parameter σL
( ∫ ∆n

0

∣∣eTi (e(∆n−s)A − Ip)β
∣∣α ds

)1/α
and

∆−1
n

∫ ∆n

0

∣∣eTi (e(∆n−s)A − Ip)β
∣∣α ds→ 0 as n→∞ (cf. Lemma 3.2.1(ii)). We thus deduce

n∑
k=1

Y 2
k∆n

(3.14b)
= eT1

( n∑
k=1

Vk∆nV
T
k∆n

)
e1

(3.43)
= eT1

(
∞∑
j=0

ej∆nA

( n∑
k=1

ξn, kξ
T
n, k

)
ej∆nAT

)
e1 + oP

(
∆−1
n (n∆n)

2
α

)
(3.44)
= eT1

(
∞∑
j=0

ej∆nA

(
β

n∑
k=1

∆L(k∆n)2 βT + oP

(
(n∆n)

2
α

))
ej∆nAT

)
e1

+ oP

(
∆−1
n (n∆n)

2
α

)
=
∞∑
j=0

g2(j∆n) ·
n∑
k=1

∆L(k∆n)2 + oP

(
∆−1
n (n∆n)

2
α

)
as n→∞

and (ii) is shown.

Proof of Theorem 3.2.10. Assume that cq 6= 0. By virtue of [24, Lemma 3.1], the

integrated kernel function
∫∞

0
g(s) ds is equal to

∫∞
0
eT1 esAβ ds = −eT1A−1β = cq a

−1
p .
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Due to Proposition 3.2.4 we immediately obtain, for any ω ∈ R∗ and n sufficiently large

Ĩn, Y ∆n (ω∆n) =
∣∣Ψ∆n(e−iω∆n)

∣∣2 In, Z̃∆n (ω∆n)

(n−1/α
∑n

k=1 Yk∆n)
2 + R̃n,∆n(ω∆n)

with R̃n,∆n(ω∆n) = Rn,∆n(ω∆n)
(
n−1/α

∑n
k=1 Yk∆n

)−2
. Since Rn,∆n(ω∆n) = oP

(
∆

2/α−2
n

)
as n→∞ (see again Proposition 3.2.4) and since(

∆n

(n∆n)1/α

n∑
k=1

Yk∆n

)2

D→
(∫ ∞

0

g(s) ds

)2

· S2 =
c2
q

a2
p

· S2

as n → ∞ with S being a SαS random variable with scale parameter σL (cf. [36,

Theorem 3.1(a)]), we have

R̃n,∆n(ω∆n) = oP (1) as n→∞. (3.45)

Since
∣∣Ψ∆n(e−iω∆n)

∣∣2 ∼ ∆−2p
n |a(iω)|−2 and ∆n

∑∞
j=0 g(j∆n) →

∫∞
0
g(s) ds as n→∞,

we combine Eq. (3.45), Proposition 3.4.1 and Proposition 3.2.9(i), and observe that, in

order to show Theorem 3.2.10, it remains to prove(
∆

1−p− 1
α

n

[
J

(2)

n, Z̃∆n
(ωj∆n)

]
j∈{1, ...,m}

, (n∆n)−
1
α

n∑
k=1

∆L(k∆n)

)
D→
([
c(iωj) ·

(
S <j (ω˜)− iS =j (ω˜)

)]
j∈{1, ...,m} , Sm+1(ω˜)

)
as n→∞ and to apply the Continuous Mapping Theorem (see, e.g., [54, Theorem

13.25]). However, this weak convergence result can be shown along the lines of the proof

of Theorem 3.2.5.

Proof of Theorem 3.2.11. Assume w.l.o.g. that
∫∞

0
g2(s) ds 6= 0 (the CARMA pro-

cess would be trivial otherwise). Furthermore, we obtain as in the proof of Theorem 3.2.10

for all sufficiently large n

În, Y ∆n (ω∆n) =
∣∣Ψ∆n(e−iω∆n)

∣∣2 In, Z̃∆n (ω∆n)

n−2/α
∑n

k=1 Y
2
k∆n

+ R̂n,∆n(ω∆n)

with R̂n,∆n(ω∆n) = Rn,∆n(ω∆n)
(
n−2/α

∑n
k=1 Y

2
k∆n

)−1
. Since Rn,∆n(ω∆n) = oP

(
∆

2/α−2
n

)
as n→∞ (see Proposition 3.2.4) and since ∆n (n∆n)−2/α

∑n
k=1 Y

2
k∆n

D→
∫∞

0
g2(s) ds ·

[L, L]1 as n→∞ with ([L, L]t)t≥0 being the quadratic variation process of (Lt)t≥0 (cf.
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[36, Theorem 3.6(a)]), we get

∆n R̂n,∆n(ω∆n) = oP (1) as n→∞. (3.46)

Since
∣∣Ψ∆n(e−iω∆n)

∣∣2 ∼ ∆−2p
n |a(iω)|−2 and ∆n

∑∞
j=0 g

2(j∆n)→
∫∞

0
g2(s) ds as n→∞,

we combine (3.46), Proposition 3.4.1 and Proposition 3.2.9(ii), and observe that

∆n În, Y ∆n (ω∆n) = |a(iω)|−2

(∫ ∞
0

g2(s) ds

)−1

·
∆

2−2p− 2
α

n

∣∣∣J (2)
n,∆n

(ω∆n)
∣∣∣2

(n∆n)−2/α
∑n

k=1 ∆L(k∆n)2
·
(
1+oP (1)

)
(3.47)

as n→∞. In the proof of Theorem 3.2.5 it has been shown that, for any ω ∈ R∗,

∆
1−p− 1

α
n J

(2)
n,∆n

(ω∆n)− c(iω)

(n∆n)1/α

n∑
k=1

∆L(k∆n) e−iω∆nk P→ 0 as n→∞

(cf. Eqs. (3.31), (3.32) and (3.35)-(3.37)). Hence, (3.47) becomes

∆n În, Y ∆n (ω∆n) =
|c(iω)|2∫∞

0
g2(s) ds · |a(iω)|2

·
∣∣∑n

k=1 ∆L(k∆n) e−iω∆nk
∣∣2∑n

k=1 ∆L(k∆n)2
·
(
1 + oP (1)

)
as n→∞. We introduce an i.i.d. sequence (Zk)k∈N∗ of symmetric α-stable random vari-

ables with scale parameter σL and observe that
(
∆L(k∆n)

)
k∈N∗

D
= ∆

1/α
n (Zk)k∈N∗ . Con-

sequently, to finish the proof of Theorem 3.2.11, it is sufficient to show that[∣∣∑n
k=1 Zk e−iωj∆nk

∣∣2∑n
k=1 Z

2
k

]
j∈{1, ...,m}

D→

[[
S <j (ω˜)

]2
+
[
S =j (ω˜)

]2
S 2

]
j∈{1, ...,m}

as n→∞.

(3.48)

Since n−2/α
∣∣∑n

k=1 Zke
−iωj∆nk

∣∣2 D→ [
S<j (ω˜)

]2
+
[
S=j (ω˜)

]2
as n→∞, which follows implic-

itly from the proofs of Proposition 3.3.4 and Theorem 3.2.5, and since n−2/α
∑n

k=1 Z
2
k
D→

S 2 as n→∞ with S 2 being a positive α/2-stable random variable, which can be easily

derived from, e.g., [74, Theorem 7.1], we will show that also the random vector

(
γ 2
n,Z , α

2
n,Z(ωj∆n), β2

n,Z(ωj∆n)
)
j∈{1, ...,m} , (3.49)

with

γ 2
n,Z := n−

2
α

n∑
k=1

Z2
k , αn,Z(ωj∆n) := n−

1
α

n∑
k=1

Zk cos(ωj∆nk) and

βn,Z(ωj∆n) := n−
1
α

n∑
k=1

Zk sin(ωj∆nk),

76



3.4 Proofs of Chapter 3

converges weakly. Note that this implies Eq. (3.48).

We take the same approach as in the proof of [58, Proposition 2.2] (which can be

found in [56]). Let (Nk)k∈N∗ , P1, P2, . . . , Pm, M1, M2, . . . , Mm be i.i.d. standard normal

random variables, independent of (Zk)k∈N∗ . Then, with ϕ ≥ 0 and θ˜, ν˜ ∈ [0,∞)m, the

Laplace transform of the random vector in (3.49) is given by

fn,∆n(ϕ, θ˜, ν˜)

= E

[
exp

{
−ϕ

2

2
γ 2
n,Z −

m∑
j=1

(
θ2
j

2
α2
n,Z(ωj∆n) +

ν2
j

2
β2
n,Z(ωj∆n)

)}]

= E

[
E

[
exp

{
iϕn−

1
α

n∑
k=1

ZkNk + i

m∑
j=1

(
θjPjαn,Z(ωj∆n) + νjMjβn,Z(ωj∆n)

)} ∣∣∣∣(Zk)k∈N∗
]]

= E

[
exp

{
iϕn−

1
α

n∑
k=1

ZkNk + i

m∑
j=1

(
θj Pj αn,Z(ωj∆n) + νjMj βn,Z(ωj∆n)

)}]

= E

[
exp

{
in−

1
α

n∑
k=1

Zk

(
ϕNk +

m∑
j=1

(
θj Pj cos(ωj∆nk) + νjMj sin(ωj∆nk)

))}]

= E

exp

in− 1
α Z1

(
n∑
k=1

∣∣∣∣∣ϕNk +
m∑
j=1

(
θj Pj cos(ωj∆nk) + νjMj sin(ωj∆nk)

)∣∣∣∣∣
α) 1

α




= E

[
exp

{
−σ

α
L

n

n∑
k=1

∣∣∣∣∣ϕNk +
m∑
j=1

(
θj Pj cos(ωj∆nk) + νjMj sin(ωj∆nk)

)∣∣∣∣∣
α}]

=: E
[
exp

{
−σαL ·Kn,∆n(ϕ, θ˜, ν˜)

}]
with Kn,∆n(ϕ, θ˜, ν˜) := 1

n

∑n
k=1

∣∣∣ϕNk +
∑m

j=1

(
θj Pj cos(ωj∆nk) + νjMj sin(ωj∆nk)

)∣∣∣α.

We define the function h(x, y) :=
∣∣∣ϕy +

∑m
j=1

(
θj Pj cos(2πxj) + νjMj sin(2πxj)

)∣∣∣α,

x ∈ Rm, y ∈ R. Note that h satisfies the assumptions of Proposition 3.3.5 for every

realization of P˜ = (P1, . . . , Pm)T and M˜ = (M1, . . . , Mm)T .

Now, if ω1, . . . , ωm are linearly independent over Z we obtain by virtue of Proposi-

tion 3.3.5

fn,∆n(ϕ, θ˜, ν˜)
n→∞→ E

[
exp

{
−σαL · E

[
h(U˜ , N1)|P˜ , M˜]}]

= E

[
exp

{
−σαL · E

[∣∣∣∣∣ϕN1 +
m∑
j=1

(
θj Pj cos(2πUj) + νjMj sin(2πUj)

)∣∣∣∣∣
α ∣∣∣∣P˜ , M˜

]}]
=: f(ϕ, θ˜, ν˜). (3.50)
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Here U1, . . . , Um are i.i.d. [0, 1)-uniform random variables independent of P1, . . . , Pm,

M1, . . . , Mm and N1.

If ω1, . . . , ωm are linearly dependent over Z, then also by virtue of Proposition 3.3.5

fn,∆n(ϕ, θ˜, ν˜)→ f(ϕ, θ˜, ν˜) as n→∞ but now U˜ = T (V1, . . . , Vm−s) with T being the

parametrization of the (m − s)-dimensional manifold M (ω1, . . . , ωm) (cf. (3.17)) and

V1, . . . , Vm−s are i.i.d. [0, 1)-uniform random variables independent of P˜ , M˜ and N1.

Hence, in both cases the Laplace transform fn,∆n(ϕ, θ˜, ν˜) of the random vector (3.49)

converges to a function that is continuous in the origin. This implies that the ran-

dom vector
(
γ 2
n,Z , α

2
n,Z(ωj∆n), β2

n,Z(ωj∆n)
)
j∈{1, ...,m} converges weakly and completes

the proof.

3.4.5 Proofs of Section 3.3

Proof of Theorem 3.3.3. We identify the equivalence classes in (R mod 1)m−s and

(R mod 1)m, respectively, by their representatives in [0, 1)m−s and [0, 1)m.

(i) Define

N :=
{
x = (x1, . . . , xm−s)

T ∈ [0, 1)m−s : ∃j ∈ {1, . . . , m− s}, i ∈ {1, . . . , m}

such that xj = k ·
∣∣b(i)
j

∣∣−1
for some k ∈ {0, 1, . . . ,

∣∣b(i)
j

∣∣− 1}
}
,

where b
(i)
j denotes the i-th component of the vector bj. Clearly H m−s(T (N)) = 0 and

T |[0,1)m−s\N is continuously differentiable with rank(D T |[0,1)m−s\N (x)) = rank(B) =

m− s for all x ∈ [0, 1)m−s\N . Moreover, T is injective. The reason is the following. Sup-

pose that T (x1, . . . , xm−s) = T (y1, . . . , ym−s) for some (x1, . . . , xm−s)
T , (y1, . . . , ym−s)

T ∈
[0, 1)m−s. Then(

m−s∑
j=1

xjbj

)
mod 1 =

(
m−s∑
j=1

yjbj

)
mod 1 ⇐⇒

m−s∑
j=1

(xj − yj)bj ∈ Zm.

Since
∑m−s

j=1 (xj − yj)bj ∈ spanR({b1, . . . , bm−s}) ∩ Zm ⊆ L̃ ⊥ ∩ Zm = L , there exist

integers zj, j ∈ {1, . . . , m−s}, such that
∑m−s

j=1 (xj−yj−zj)bj = 0 and hence, (xj−yj) =

zj ∈ Z for all j ∈ {1, . . . , m − s}. Since xj − yj ∈ (−1, 1) we must have xj = yj for all

j ∈ {1, . . . , m− s}. This shows that T is indeed injective. Note that T−1 is continuous

(mod 1) on M and thus, T ([0, 1)m−s\N) is an (m−s)-dimensional C1-manifold in [0, 1)m

(for a definition of manifolds, see, e.g., [67, pp. 200-201]). Since H m−s(T (N)) = 0,

also M is an (m − s)-dimensional C1-manifold and integration over M is the same
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as integration over T ([0, 1)m−s\N) = M \T (N) (note that T (N) itself is a manifold in

[0, 1)m from lower dimension than m− s).
(ii) Suppose there is a z = (z1, . . . , zm−s)

T ∈ Zm−s, z 6= 0, such that 〈z, µ˜〉 = 0.

W.l.o.g. z1 6= 0. Then

µ1 = −
m−s∑
i=2

zi
z1

µi and η˜ =
m−s∑
i=2

µi ·
(
− zi
z1

b1 + bi

)
.

The vectors b̃i := − zi
z1
b1 + bi ∈ Qm, i = 2, . . . , m−s, are obviously linearly independent.

Thus,(
spanR

{
b̃2, . . . , b̃m−s

})⊥
⊆ {η˜}⊥ ⇒

(
spanR

{
b̃2, . . . , b̃m−s

})⊥
∩Zm ⊆ {η˜}⊥ ∩Zm = L̃ ,

and since the dimension of L̃ is s whereas the dimension of spanR
{
b̃2, . . . , b̃m−s

}⊥∩Zm
is s + 1 (the latter can be obtained as in the proof of dim(L ) = m − s on p. 52), we

have a contradiction. Hence, 〈z, µ˜〉 6= 0 for all z ∈ Zm−s, z 6= 0.

(iii) We have, with h = B z and z ∈ Zm−s, z 6= 0,

1

H m−s(M )

∫
M

fh(x) H m−s(dx) =

∫
[0,1)m−s

fh(T (x)) dx =

∫
[0,1)m−s

e2πi〈h, T (G−1x)〉 dx

=

∫
[0,1)m−s

e2πi〈h,BG−1x mod 1〉 dx =

∫
[0,1)m−s

e2πi〈z,BTBG−1x〉 dx

=
m−s∏
j=1

∫ 1

0

e2πi zjxj dxj. (3.51)

Since z 6= 0 there is a j ∈ {1, . . . , m − s} with zj ∈ Z\{0}, and the right-hand side of

(3.51) has to be zero.

(iv) Let T (x), T (y) ∈ M , T (x) 6= T (y). Since T is injective, there is some j0 ∈
{1, . . . , m− s} such that xj0 6= yj0 . For h = B ej0 = bj0 we have

fh(T (x)) · fh(T (y))−1 = e2πi〈bj0 , T (G−1x)−T (G−1y)〉 = e2πi〈Bej0 , BG
−1(x−y)〉 = e2πi (xj0−yj0 ) 6= 1,

since xj0 − yj0 ∈ (−1, 1)\{0}.

Proof of Proposition 3.3.4. Letting ω˜ = (ω1, . . . , ωm)T = 2π(η1, . . . , ηm)T = 2πη˜,we immediately get

1

n

n−p+1∑
k=1

∣∣∣∣∣
m∑
j=1

Ξθj , νj

(
e−iωj∆nk c(iωj)

)∣∣∣∣∣
α
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n→∞∼ 1

n

n∑
k=1

∣∣∣∣∣
m∑
j=1

cos (2π{ηj∆nk}) Ξθj , νj

(
c(iωj)

)
+ sin (2π{ηj∆nk}) Ξ−νj , θj

(
c(iωj)

)∣∣∣∣∣
α

.

Let us first consider the case where ω1, . . . , ωm are linearly independent over Z. We

claim that, for any h ∈ Zm, h 6= 0,

1

n

n∑
k=1

e
2πi〈h, η˜〉∆nk → 0 as n→∞. (3.52)

To this end, note that for n sufficiently large

∣∣∣∣ 1n
n∑
k=1

e
2πi〈h, η˜〉∆nk

∣∣∣∣ =
1

n
·

∣∣∣e2πi〈h, η˜〉∆nn − 1
∣∣∣∣∣∣e2πi〈h, η˜〉∆n − 1
∣∣∣ ≤ 1∣∣〈h, η˜〉

∣∣ · 1

n∆n

and the right-hand side converges to 0 as n→∞ since n∆n → ∞ by assumption and

since ω1, . . . , ωm are supposed to be linearly independent over Z.

However, (3.52) already implies that

1

n

n∑
k=1

f(∆nk η˜) n→∞→
∫

[0,1)m
f(x) dx (3.53)

for any continuous function f : Rm → C with period 1 in each component variable (more

precisely, f should be seen as a function, mapping from the compact Hausdorff space

(R mod 1)m to the complex numbers). An explanation is the following. If we fix ε > 0,

we know from the Weierstrass Approximation Theorem (cf. [83, Theorem 17]) that there

exists a trigonometrical polynomial Ψε, i.e. a finite linear combination of functions of

the type e2πi〈h, · 〉, h ∈ Zm, such that supx∈Rm |f(x)−Ψε(x)| ≤ ε. This yields∣∣∣∣ ∫
[0,1)m

f(x) dx− 1

n

n∑
k=1

f(∆nk η˜)
∣∣∣∣

≤
∣∣∣∣∫

[0,1)m
(f(x)−Ψε(x)) dx

∣∣∣∣+

∣∣∣∣ ∫
[0,1)m

Ψε(x) dx− 1

n

n∑
k=1

Ψε(∆nk η˜)
∣∣∣∣

+

∣∣∣∣ 1n
n∑
k=1

Ψε(∆nk η˜)− f(∆nk η˜)
∣∣∣∣

≤ 2ε+

∣∣∣∣ ∫
[0,1)m

Ψε(x) dx− 1

n

n∑
k=1

Ψε(∆nk η˜)
∣∣∣∣. (3.54)

Since
∫

[0,1)m
e2πi〈h, x〉 dx = 0 for any h ∈ Zm, h 6= 0, Eq. (3.52) implies that the second
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term on the right-hand side of (3.54) converges to 0 as n→∞. This shows that (3.52)

already implies (3.53).

We conclude the first part of the proof by applying (3.53) to the function

f(x1, . . . , xm) :=

∣∣∣∣∣
m∑
j=1

cos (2πxj) Ξθj , νj

(
c(iωj)

)
+ sin (2πxj) Ξ−νj , θj

(
c(iωj)

)∣∣∣∣∣
α

. (3.55)

In the case where ω1, . . . , ωm are linearly dependent over Z, we first observe that for

any fh ∈ T with h ∈ L , h 6= 0,

1

n

n∑
k=1

fh(∆nk η˜ mod 1)→ 0 as n→∞ (3.56)

(where the mod-operator is defined componentwise; for the definition of T and L see

(3.16) and (3.18), respectively). Therefore note that ∆nk η˜ mod 1 ∈M for any n ∈ N∗,
k ∈ {1, . . . , n}, since (cf. Theorem 3.3.3)

∆nk η˜ mod 1 = B(∆nk µ˜) mod 1 = B(∆nk µ˜ mod 1︸ ︷︷ ︸
∈[0,1)m−s

) mod 1 = T (∆nk µ˜ mod 1) ∈M .

(3.57)

Then, with h = Bz ∈ L , z ∈ Zm−s\{0},

1

n

n∑
k=1

fh(∆nk η˜ mod 1) =
1

n

n∑
k=1

e
2πi〈Bz,BG−1T−1(∆nk η˜ mod 1)〉

=
1

n

n∑
k=1

e
2πi〈z, T−1(∆nk η˜ mod 1)〉 (3.57)

=
1

n

n∑
k=1

e
2πi〈z, µ˜〉∆nk,

and since 〈z, µ˜〉 6= 0 for all z ∈ Zm−s\{0} (see Theorem 3.3.3(ii)), we obtain Eq. (3.56)

in the same way as we have shown (3.52) in the linearly independent case.

Now, in the linearly dependent case (3.56) already implies

1

n

n∑
k=1

f(∆nk η˜ mod 1)
n→∞→ 1

H m−s(M )

∫
M

f(x) H m−s(dx) (3.58)

for any continuous function f : M → C. Indeed, spanC(T ) is a dense subalgebra in

C(M ), the algebra of all continuous complex-valued functions on the compact Hausdorff

space M , with respect to the topology of uniform convergence (cf. also comments after

Theorem 3.3.3). Hence, for any continuous function f : M → C and any fixed ε > 0 there
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is a finite linear combination Ψε of functions in T such that supx∈M |f(x)−Ψε(x)| ≤ ε.

This yields, analogously to (3.54),∣∣∣∣ 1

H m−s(M )

∫
M

f(x) H m−s(dx)− 1

n

n∑
k=1

f(∆nk η˜ mod 1)

∣∣∣∣
≤ 2ε+

∣∣∣∣ 1

H m−s(M )

∫
M

Ψε(x) H m−s(dx)− 1

n

n∑
k=1

Ψε(∆nk η˜ mod 1)

∣∣∣∣,
and the second term on the right-hand side converges to 0 as n→∞ by virtue of

Theorem 3.3.3(iii) and Eq. (3.56). This shows (3.58).

We conclude the linearly dependent case by applying Eq. (3.58) to the function f |M
with the same f as in the linearly independent case in (3.55).

Proof of Proposition 3.3.5. We have

1

n

n∑
k=1

f(k∆nη˜ mod 1, Nk)− E
[
f(U˜ , N1)

]
=

1

n

n∑
k=1

(
f(k∆nη˜ mod 1, Nk)− E

[
f(k∆nη˜ mod 1, N1)

])
+

1

n

n∑
k=1

E
[
f(k∆nη˜ mod 1, N1)

]
− E

[
f(U˜ , N1)

]
=: I1 + I2.

We consider first the case where ω1, . . . , ωm are linearly independent over Z. Then, by

virtue of Eq. (3.53) and the assumption that g(1) is continuous on (R mod 1)m, we have

I2 =
1

n

n∑
k=1

g(1)(k∆nη˜ mod 1)− E
[
f(U˜ , N1)

] n→∞→ ∫
[0,1)m

g(1)(x) dx− E
[
f(U˜ , N1)

]
=

∫
[0,1)m

E [f(x, N1)] dx− E
[
f(U˜ , N1)

]
= 0.

With Chebyshev’s Inequality and the assumption that g(2) is continuous on (R mod 1)m,

we further obtain

P(|I1| > ε) ≤ 1

ε2 n2

n∑
k=1

E
[(
f(k∆nη˜ mod 1, N1)− E

[
f(k∆nη˜ mod 1, N1)

])2
]
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≤ 1

ε2 n2

n∑
k=1

E
[
f 2(k∆nη˜ mod 1, N1)

]
=

1

ε2 n2

n∑
k=1

g(2)(k∆nη˜ mod 1)

=
1

ε2 n

∫
[0,1)m

g(2)(x) dx · (1 + o(1)) =
1

ε2 n
E[f 2(U˜ , N1)] · (1 + o(1))

n→∞→ 0,

where we used once more (3.53). Hence, Eq. (3.19) is shown in the linearly independent

case.

Suppose now that ω1, . . . , ωm are linearly dependent over Z. As above, now due to Eq.

(3.58),

I2
n→∞→ 1

H m−s(M )

∫
M

g(1)(x) H m−s(dx)− E
[
f(U˜ , N1)

]
=

∫
[0,1)m−s

g(1)(T (x)) dx− E
[
f(T (V˜ ), N1)

]
=

∫
[0,1)m−s

E [f(T (x), N1)] dx− E
[
f(T (V˜ ), N1)

]
= 0

and

P(|I1| > ε) ≤ 1

ε2 n2

n∑
k=1

g(2)(k∆nη˜ mod 1)

=
1

ε2 n
· 1

H m−s(M )

∫
M

g(2)(x) H m−s(dx)︸ ︷︷ ︸
=E[f2(T (V˜ ), N1)]

·(1 + o(1))
n→∞→ 0.

Thus, also in the linearly dependent case (3.19) holds.
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4 Spectral estimates for

high-frequency sampled CARMA

processes3

4.1 Introduction

In this chapter we investigate continuous-time ARMA (CARMA) processes Y = (Yt)t∈R

in the spectral domain and propose an estimator for the model parameters. For an

overview and a comprehensive list of references on CARMA processes and their applica-

tions in several fields such as signal processing and control, econometrics and financial

mathematics, we refer to [16, 23, 36]. The driving force of a CARMA process is a Lévy

process (Lt)t∈R. A Lévy process (Lt)t≥0 is defined (cf. [78]) to satisfy L0 = 0 a.s., (Lt)t≥0

has independent and stationary increments and the paths of (Lt)t≥0 are stochastically

continuous. An extension of a Lévy process (Lt)t≥0 from the positive to the whole real

line is given by Lt := Lt1{t≥0} − L̃−t−1{t<0} for t ∈ R, where (L̃t)t≥0 is an independent

copy of (Lt)t≥0. Prominent examples are Brownian motions and stable Lévy processes. In

this chapter we restrict our attention to symmetric stable Lévy processes and symmetric

Lévy processes with finite second moments. Then a CARMA process can be interpreted

(its formal definition is given in Section 4.2) as a solution to the p-th order stochastic

differential equation

a(D)Yt = c(D) DLt, t ∈ R, (4.1)

where D denotes the differential operator with respect to t and

a(z) := zp + a1z
p−1 + . . .+ ap and c(z) := c0z

q + c1z
q−1 + . . .+ cq

3The contents of this chapter are based on Fasen, V. and Fuchs, F. (2012), Spectral Estimates for
High-Frequency Sampled CARMA Processes, submitted for publication.
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are the autoregressive and the moving average polynomial, respectively. Hence, CARMA

processes can be seen as the continuous-time analog of (discrete-time) ARMA processes.

From a statistical point of view, the so-called power transfer function

Ψ(ω) :=
|c(iω)|2

|a(iω)|2
, ω ∈ R, (4.2)

which corresponds (up to a constant) to the classical spectral density in the finite-

variance case, is of central interest since it determines the model completely. The zeros

of Ψ contain the zeros of c(i ·), and hence, provided that the sign of the real part of

any zero of c(·) is supposed to be known, one can identify uniquely the coefficients of

the moving average polynomial from the power transfer function Ψ. Likewise the zeros

of Ψ−1 characterize completely the coefficients of the autoregressive polynomial if one

assumes to know the sign of the real parts of the zeros of a(·). From this it is obvious

that, under causality and invertibility assumptions on the CARMA process, estimators

for the power transfer function can be used to construct estimators for the coefficients

of a(·) and c(·).
The empirical version of the power transfer function (spectral density) is in the finite

second moment case the periodogram. In [39] we have investigated the limit behavior

of normalized and self-normalized versions of the periodogram of high-frequency sam-

pled symmetric α-stable CARMA processes. Here we assume again that we observe

the CARMA process Y only at equidistant time points {0, ∆n, 2∆n, . . . , n∆n} where

∆n > 0 is small, as used for modeling high-frequency data appearing in turbulence and

finance (cf. [21, 36]), and n ∈ N is the total number of observations. More precisely, our

asymptotic results hold under

Assumption 4.1. We suppose that simultaneously ∆n → 0 and n∆n →∞ as n→∞.

The normalized periodogram of the sampled sequence Y ∆n := (Yk∆n)k∈Z at frequency

ω ∈ [−π, π] is given by

In, Y ∆n (ω) =
∣∣∣n−1/α

n∑
k=1

Yk∆n e−iωk
∣∣∣2, (4.3)

where for finite-variance CARMA processes we have α = 2 and for α-stable CARMA

processes α is the index of stability. A self-normalized alternative, no longer depending

on α, is given for ω ∈ [−π, π] by

În, Y ∆n (ω) =
In, Y ∆n (ω)

n−2/α
∑n

k=1 Y
2
k∆n

=

∣∣∣∑n
k=1 Yk∆n e−iωk

∣∣∣2∑n
k=1 Y

2
k∆n

. (4.4)
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As stated in [39, Theorems 3.5 and 3.10], both the normalized as well as the self-

normalized periodogram are not consistent estimators for the power transfer function

if the Lévy process is α-stable, α ∈ (0, 2]. The limit distribution is a function of an

α-stable random vector which reduces in the finite-variance case to an exponential dis-

tribution. We will generalize these results to finite-variance CARMA processes and to

a very general high-frequency grid distance ∆n. The limit results for high-frequency

sampled finite-variance CARMA processes are analog to the results for finite-variance

CARMA processes sampled at an equidistant time grid as derived in [37].

However, by applying linear smoothing filters to the periodogram consistent estimators

for the (normalized) power transfer function can be constructed which is the main topic

of this chapter. We will consider the class of estimators of the form

Tn, Y ∆n (ω) =
∑
|k|≤mn

Wn(k) In, Y ∆n (ωk) (4.5)

and

T̂n, Y ∆n (ω) =
∑
|k|≤mn

Wn(k) În, Y ∆n (ωk) (4.6)

where

ωk = ω +
k

n
, |k| ≤ mn, (4.7)

and (mn)n∈N is a sequence in N satisfying

Assumption 4.2. We suppose that simultaneously mn →∞ and mn
n∆n
→ 0 as n→∞.

The sequence of weight functions Wn : Z→ R is specified by

Wn(k) = Wn(−k), Wn(k) ≥ 0, ∀ k ∈ N, (4.8a)∑
|k|≤mn

Wn(k) = 1, ∀n ∈ N, (4.8b)

max
|k|≤mn

W 2
n(k) = o

(
1

mn

)
as n→∞. (4.8c)

On the one hand, we will show that the sequence of smoothed self-normalized peri-

odograms ∆n T̂n, Y ∆n (ω∆n) is a consistent estimator for the normalized power transfer

function. This result is in analogy to the one for ARMA models in discrete time obtained

by Klüppelberg and Mikosch in [58]. On the other hand, for finite-variance CARMA

processes the smoothed normalized periodograms ∆n Tn, Y ∆n (ω∆n) provide consistent

estimators for the 2π-multiple of the spectral density, as well.
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Thereafter, these results are used to develop an estimator for the parameters of the

CARMA process. Our heuristic will basically consist of a constrained nonlinear least

squares problem where the constraints come from the (necessary) additional assumption

of causality and invertibility of the CARMA process. The estimator is then given as the

best, in terms of least squares, (normalized) rational approximation for the smoothed

periodogram values. It is an alternative to the ones presented in [18, 19, 45] working for

both finite-variance and stable CARMA processes with infinite second moments. The

Gaussian quasi-maximum-likelihood estimation has been derived in [19, 81] for Lévy-

driven (multivariate) CARMA processes with finite second moments. In [45] a heuristic

study of the estimation of stable CARMA(2, 1) processes is presented. A nonparametric

estimator for the kernel function of a CARMA process is proposed in [20], and for

Ornstein-Uhlenbeck processes, which are CARMA(1, 0) processes, an efficient estimator

for the mean reversion parameter of the Ornstein-Uhlenbeck model has been obtained in

[18, 53] by using methods of [31]. Compared to the other estimators the new contribution

of this chapter is that the estimator performs well for both finite-variance and infinite-

variance models and we are able to estimate both the autoregressive and the moving

average polynomial.

The chapter is structured in the following way. In Section 4.2 we recall the formal

definition of a Lévy-driven CARMA process and present some assumptions and notations

of the chapter. The main results are stated in Section 4.3. These include the asymptotic

behavior of the different smoothed periodogram versions and of the periodogram itself.

The topic of Section 4.4 is then the statistical inference for the model parameters of a

CARMA process, illustrated by a simulation study for a CARMA(2, 1) process. Finally,

Section 4.5 contains the proofs.

Notation

We use N∗ and R∗ for the natural and real numbers, respectively, excluding zero and

Z for the integers. For the minimum of two real numbers a, b ∈ R we write shortly

a ∧ b and for the maximum a ∨ b. The real and imaginary part of a complex number

z ∈ C is written as <(z) and =(z), respectively, and its complex conjugate as z. For

two sequences (an)n∈N and (bn)n∈N we say an ∼ bn as n→∞ if limn→∞ an/bn = 1. The

transpose of a matrix M is written as MT and the m-dimensional identity matrix shall

be denoted by Im. On K ∈ {R,C} the Euclidean norm is denoted by | · | whereas on

Km it will be usually written as ‖ ·‖. For two random variables X and Y the notation

X
D
= Y means equality in distribution. If we consider a sequence of random variables
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(Xn)n∈N, we denote convergence in probability to some random variable X by Xn
P→ X

as n→∞ and convergence in distribution by Xn
D→ X as n→∞.

4.2 Preliminaries to Chapter 4

4.2.1 Lévy-driven CARMA processes

We recall the definition of an α-stable random variable and then present the notation

which we use throughout the chapter for the underlying driving Lévy process.

Definition 4.2.1. A real-valued random variable Z is called symmetric α-stable (SαS)

with index of stability α ∈ (0, 2], if its characteristic function is of the form

ΦZ(u) = E [exp {iuZ}] = exp {−σα |u|α}, u ∈ R,

for some σ ≥ 0. The parameter σ is called scale parameter. A symmetric α-stable Lévy

process (Lt)t∈R with scale parameter σL is a Lévy process where L1 is SαS with scale

parameter σL.

In particular a S2S random variable is normally distributed and a 2-stable Lévy

process is a Brownian motion. For the driving Lévy process we use the following notation.

Definition 4.2.2. Let α ∈ (0, 2] and σL ≥ 0. By L(α, σL) we denote a symmetric Lévy

process that is either

(i) α-stable with scale parameter σL if α ∈ (0, 2), or

(ii) satisfies E [L2
1] = σ2

L if α = 2.

A CARMA process driven by L(α, σL) is then defined as follows. Assume that we

have given p, q ∈ N, p > q, and a1, . . . , ap, c0, . . . , cq ∈ R, ap, c0 6= 0, let

A :=



0 1 0 . . . 0

0 0 1
. . .

...
...

...
. . . . . . 0

0 0 . . . 0 1

−ap −ap−1 . . . . . . −a1


∈ Rp×p

and let (Xt)t∈R be a strictly stationary solution to the stochastic differential equation

dXt = AXt dt+ ep dLt, t ∈ R, (4.9a)
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where ep denotes the p-th unit vector in Rp. Then the process

Yt := cTXt, t ∈ R, (4.9b)

with c = (cq, cq−1, . . . , cq−p+1)T (where we use the convention cj = 0 for j < 0) is

said to be a CARMA process of order (p, q). Necessary and sufficient conditions for the

existence of a strictly stationary CARMA process are given in [22]. In this chapter we

will suppose

Assumption 4.3.

The eigenvalues λ1, . . . , λp of A are distinct and possess strictly negative real parts.

Under this assumption, the solution for the state process in (4.9a) is unique, strictly

stationary, causal and can be written as

Xt =

∫ t

−∞
e(t−s)Aep dLs, t ∈ R. (4.10a)

Hence, the CARMA process Y can also be expressed as a Lévy-driven moving average

process Yt =
∫∞
−∞ g(t− s) dLs, t ∈ R, with kernel function

g(t) = cT etAep 1[0,∞)(t). (4.10b)

Notably the CARMA process can be interpreted as solution of the stochastic differential

equation given in (4.1).

4.2.2 Decomposition of the smoothed (self-normalized)

periodogram

Before stating the main results, we derive a series representation of the sampled sequence

Y ∆n driven by a Lévy process L(α, σL) as in Definition 4.2.2. We use this representation

for a suitable decomposition of the Fourier transform of Y ∆n and its associated smoothed

(self-normalized) periodogram. Recall that the discrete Fourier transform is given by

Fn, Y ∆n (ω) := n−1/α
∑n

k=1 Yk∆n e−iωk for any ω ∈ [−π, π].

It is well known that every solution to (4.9a) satisfies

Xt = e(t−s)AXs +

∫ t

s

e(t−u)Aep dLu, ∀s, t ∈ R, s < t.

Then, under Assumption 4.3, we have by iteration that the state process X at time point
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k∆n can be written in the series representation

Xk∆n =
∞∑
j=0

ej∆nAξ∗n, k−j ep, k ∈ Z, (4.11)

with the Rp×p-valued noise sequence

ξ∗n, k :=

∫ k∆n

(k−1)∆n

e(k∆n−s)AdLs, n ∈ N, k ∈ Z. (4.12)

We define, for any ω ∈ [−π, π],

Un, j(ω) :=

n−j∑
k=1−j

ξ∗n, k e−iωk −
n∑
k=1

ξ∗n, k e−iωk,

Kn,∆n(ω) :=
∞∑
j=0

ej(∆nA−iωIp)Un, j(ω),

Mn,∆n(ω) :=
(
Ip − e−iω · e∆nA

)−1
n∑
k=1

ξ∗n, k e−iωk, (4.13)

Jn,∆n
(ω) := cTMn,∆n(ω) ep and

Rn,∆n(ω) := Jn,∆n
(ω) · cTKn,∆n(ω) ep + cTKn,∆n(ω) ep · Jn,∆n

(ω) +
∣∣cTKn,∆n(ω) ep

∣∣2 .
The series representation of the state process X in Eq. (4.11) then immediately yields

the following decomposition for the Fourier transform of the sampled sequence Y ∆n

n
1
α Fn, Y ∆n (ω) =

n∑
k=1

Yk∆n e−iωk = cT

(
n∑
k=1

∞∑
j=0

ej∆nAξ∗n, k−j e−iωk

)
ep

= cT

(
∞∑
j=0

ej(∆nA−iωIp)

n∑
k=1

ξ∗n, k e−iωk

)
ep + cT

(
∞∑
j=0

ej(∆nA−iωIp) Un, j(ω)

)
ep

= cTMn,∆n(ω) ep + cTKn,∆n(ω) ep = Jn,∆n
(ω) + cTKn,∆n(ω) ep (4.14)

and hence, we may split the smoothed (self-normalized) periodogram in a main, limit-

determining, part and a vanishing rest term (cf. upcoming Propositions 4.3.3 and 4.3.4):

T̂n, Y ∆n (ω) =
∑
|k|≤mn

Wn(k)

∣∣∣∑n
u=1 Yu∆n e−iωku

∣∣∣2∑n
u=1 Y

2
u∆n
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(4.14)
=

∑
|k|≤mn

Wn(k)

∣∣∣Jn,∆n
(ωk) + cTKn,∆n(ωk) ep

∣∣∣2∑n
u=1 Y

2
u∆n

=
∑
|k|≤mn

Wn(k)

∣∣∣Jn,∆n
(ωk)

∣∣∣2∑n
u=1 Y

2
u∆n

+
∑
|k|≤mn

Wn(k)
Rn,∆n(ωk)∑n
u=1 Y

2
u∆n

. (4.15)

4.3 Limit behavior of the smoothed periodogram

Our main limit theorem is the following:

Theorem 4.3.1. Suppose α ∈ (0, 2], σL > 0 and let Y ∆n = (Yk∆n)k∈Z denote the sam-

pled sequence of a non-trivial CARMA(p, q) process driven by the Lévy process L(α, σL)

as in Definition 4.2.2. Moreover, Assumptions 4.1 to 4.3 may hold, and assume that the

weight functions Wn satisfy (4.8). Then the smoothed self-normalized periodogram as in

Eq. (4.6) satisfies for any ω ∈ R∗,

∆n T̂n, Y ∆n (ω∆n)
P→ |c(iω)|2∫∞

0
g2(s) ds · |a(iω)|2

as n→∞,

where g is the kernel function of the CARMA process (see (4.10b)), i.e., the smoothed

self-normalized periodogram is a weakly consistent estimator for the normalized power

transfer function.

For α = 2 the normalization n−1
∑n

k=1 Y
2
k∆n

converges in probability, as n → ∞, to∫∞
0
g2(s) ds · σ2

L (cf. [36, Theorem 5.5(a)]) such that a direct conclusion is

Corollary 4.3.2. Under the same assumptions as in Theorem 4.3.1, suppose in addition

that α = 2. Then the smoothed normalized periodogram as in Eq. (4.5) satisfies for any

ω ∈ R∗,

∆n Tn, Y ∆n (ω∆n)
P→ σ2

L ·
|c(iω)|2

|a(iω)|2
as n→∞,

i.e., the smoothed normalized periodogram is a weakly consistent estimator for the 2π-

multiple of the spectral density.

The proof of Theorem 4.3.1 will be divided into two parts. The first one shows that

the main part in (4.15) converges to the normalized power transfer function as n→∞.
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Proposition 4.3.3. Under the same assumptions as in Theorem 4.3.1 we have for any

ω ∈ R∗,

∆n

∑
|k|≤mn

Wn(k)

∣∣∣Jn,∆n
((ω∆n)k)

∣∣∣2∑n
u=1 Y

2
u∆n

P→ |c(iω)|2∫∞
0
g2(s) ds · |a(iω)|2

as n→∞,

where Jn,∆n
( · ) has been defined in (4.13).

The second part shows that the rest term in (4.15) vanishes as n→∞.

Proposition 4.3.4. Suppose α ∈ (0, 2], σL > 0 and let Y ∆n = (Yk∆n)k∈Z denote

the sampled sequence of a non-trivial CARMA(p, q) process driven by the Lévy pro-

cess L(α, σL) as in Definition 4.2.2. Moreover, Assumptions 4.1 to 4.3 may hold, and

assume that the weight functions Wn satisfy (4.8a) and (4.8b). Then we have for any

ω ∈ R∗,

∆n

∑
|k|≤mn

Wn(k)
Rn,∆n((ω∆n)k)∑n

u=1 Y
2
u∆n

P→ 0 as n→∞,

where Rn,∆n( · ) has been defined in (4.13).

In Theorem 4.3.1 we have shown that the smoothed self-normalized periodogram pro-

vides consistent estimates for the (normalized) power transfer function of symmetric

α-stable as well as finite-variance CARMA processes. Recall that normalized and self-

normalized periodogram versions have been investigated in [39] under more restrictive

assumptions on ∆n than here. Moreover, in that paper only the Gaussian case has been

studied but not the general finite-variance setting. Therefore, the following theorem

should be seen as an extension of the results in [39]. It concerns the limit behavior of

the normalized periodogram including finite-variance CARMA processes.

Theorem 4.3.5. Suppose α ∈ (0, 2], σL > 0 and let Y ∆n = (Yk∆n)k∈Z denote the sam-

pled sequence of a non-trivial CARMA(p, q) process driven by the Lévy process L(α, σL)

as in Definition 4.2.2. Moreover, Assumptions 4.1 and 4.3 may hold. Then the peri-

odogram as in (4.3) satisfies for any ω ∈ R∗,

∆
2− 2

α
n In, Y ∆n (ω∆n)

D→ |c(iω)|2

|a(iω)|2
·
∣∣∣∣∫

[0,1)

e2πi s dL∗s

∣∣∣∣2 as n→∞,

where (L∗t )t≥0 is a symmetric α-stable Lévy process with scale parameter σL if α ∈ (0, 2)

and for α = 2 it is a symmetric Brownian motion with Var(L∗1) = σ2
L.
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A direct conclusion is the asymptotic behavior of the periodogram for finite-variance

CARMA processes.

Corollary 4.3.6. Let the assumptions of Theorem 4.3.5 hold and suppose α = 2. Then

the normalized periodogram as in (4.3) satisfies for any ω ∈ R∗,

∆n In, Y ∆n (ω∆n)
D→ σ2

L ·
|c(iω)|2

|a(iω)|2
·
(
N2

1

2
+
N2

2

2

)
as n→∞,

where N1 and N2 are i.i.d. standard normal random variables, and the self-normalized

periodgram as in (4.4) satisfies for any ω ∈ R∗,

∆n În, Y ∆n (ω∆n)
D→ |c(iω)|2∫∞

0
g2(s) ds · |a(iω)|2

·
(
N2

1

2
+
N2

2

2

)
as n→∞,

where g is the kernel function of the CARMA process (see (4.10b)).

From Proposition 4.3.4 we know already that the rest term in (4.15) with Wn(0) = 1

and Wn(k) = Wn(−k) = 0 for k ∈ N∗ vanishes. These weights do not satisfy (4.8c), but

obviously (4.8a) and (4.8b). The next proposition investigates the main part.

Proposition 4.3.7. Under the same assumptions as in Theorem 4.3.5 we have for any

ω ∈ R∗,

∆
2− 2

α
n n−

2
α

∣∣∣Jn,∆n
(ω∆n)

∣∣∣2 P→ |c(iω)|2

|a(iω)|2
·
∣∣∣∣∫

[0,1)

e2πi s dL∗s

∣∣∣∣2 as n→∞,

where Jn,∆n
( · ) has been defined in (4.13) and (L∗t )t≥0 is as in Theorem 4.3.5.

Remark 4.3.8.

(i) As already mentioned above, in [39] the general finite-variance case has not been

considered. In this spirit, Theorem 4.3.5 and Corollary 4.3.6 should be seen as

an extension of [39, Theorems 3.5 and 3.10], although we have stated only the

univariate limit distributions for the normalized and self-normalized periodogram

here. However, it seems to be possible to derive also the limit behavior for different

frequencies. In this case, the limit depends again on the dependence structure of

those frequencies if α < 2, cf. [39, Section 2.2]. As in the Gaussian case (cf. [39,

Remark 3.6(ii)]) different periodogram ordinates of finite-variance CARMA models

are asymptotically independent.
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(ii) Theorem 4.3.5 (and its proof) confirms our conjecture in [39, Remark 3.7], namely

that the assumption n∆β
n → ∞ with β = max {1 + δ, α(p− 1) + max {0, 1− α}}

for some δ > 0 is not necessary for the limit results of normalized and self-

normalized periodogram versions of symmetric α-stable CARMA processes. In-

stead, supposing n∆n → ∞ as n→∞ is already sufficient. Note that, anyway,

the partition of the periodogram used in [39] provides deeper insight into struc-

tural properties of CARMA processes in the frequency domain and therein lay the

necessity for the stronger condition on the observation grid (cf. also [39, proof of

Proposition 3.2 and Remark 3.7]).

(iii) We want to compare the limit results for the high-frequency sampled finite-variance

CARMA process Y ∆n with the results for a finite-variance CARMA process sam-

pled at an equidistant time grid Y ∆ = (Yk∆)k∈Z for some ∆ > 0 fixed. For that,

let fY ∆n denote the spectral density of Y ∆n , fY ∆ the spectral density of Y ∆ and

finally

fY (ω) =
σ2
L

2π

|c(iω)|2

|a(iω)|2
, ω ∈ R,

the spectral density of the continuous-time process Y . Moreover, the periodogram

of the sampled sequence Y ∆ is denoted by In, Y ∆(ω) =
∣∣n−1/2

∑n
k=1 Yk∆ e−iωk

∣∣2 for

ω ∈ [−π, π]. A conclusion of [37, Theorem 3.1] for the equidistant sampling is that

for any ω ∈ (−π/∆, 0) ∪ (0, π/∆),

In,Y ∆(ω∆)

fY ∆(ω∆)

D→ 2π

(
N2

1

2
+
N2

2

2

)
as n→∞,

and of Corollary 4.3.6 and [39, Eq. (1.5)] for the high-frequency time sampling that

for any ω ∈ R∗,

In,Y ∆n (ω∆n)

fY ∆n (ω∆n)

D→ 2π

(
N2

1

2
+
N2

2

2

)
as n→∞.

Surprisingly the structure of the limit results is the same and will be of advantage

for statistical inference. The similarities suggest that the rate of convergence of ∆n

has no influence on the asymptotic behavior. �

95



4 Spectral estimates

4.4 Estimation of the CARMA parameters

In this section we propose a (spectral) estimation procedure for the autoregressive

(AR) and moving average (MA) parameters of a CARMA process, based on Theo-

rem 4.3.1 and Corollary 4.3.2. We will exemplify our method by a simulation study for

the CARMA(2, 1) case.

Let α ∈ (0, 2], σL > 0 and Y ∆n = (Yk∆n)k∈Z be the sampled sequence of a non-trivial

CARMA(p, q) process driven by the Lévy process L(α, σL) as in Definition 4.2.2. W.l.o.g.

we assume in the following that c0 = 1 (note that multiplying the MA polynomial by

constants is equivalent to multiplying the scale parameter σL of the underlying Lévy

process by the same factor). Thus its MA and AR polynomials are given by

c(z) = zq+c1z
q−1 + . . .+cq =

q∏
k=1

(z − µk) , a(z) = zp+a1z
p−1 + . . .+ap =

p∏
j=1

(z − λj) ,

where µ1, . . . , µq denote the zeros of c and λ1, . . . , λp, as usual, the zeros of a. The

corresponding normalized power transfer function (cf. (4.2)) can be written as

C ·Ψ(ω) = C ·
∏q

k=1 (ω2 − 2=(µk)ω + |µk|2)∏p
j=1 (ω2 − 2=(λj)ω + |λj|2)

= C ·
∏q

k=1 (ω + i µk) (ω − i µk)∏p
j=1 (ω + i λj) (ω − i λj)

, ω ∈ R,

with C−1 =
∫∞

0
g2(s) ds (where g is as in (4.10b)).

The following example illustrates this relationship in the case of a CARMA(2, 1) pro-

cess.

Example 4.4.1 (CARMA(2, 1) process). Consider a CARMA(2, 1) process which is the

strictly stationary solution to

(
D2 + a1D + a2

)
Yt = (D + µ) DLt, t ∈ R,

i.e. c(z) = z + µ and a(z) = z2 + a1z + a2 = (z − λ1)(z − λ2). In this case the kernel g

in (4.10b) is given by

g(t) =
λ1 + µ

λ1 − λ2

etλ1 +
λ2 + µ

λ2 − λ1

etλ2 , t ≥ 0,

and the normalized power transfer function can be written as

Ψ(ω)∫∞
0
g2(s) ds

=
|c(iω)|2∫∞

0
g2(s) ds · |a(iω)|2

= C(a1, a2, µ) · ω2 + µ2

ω4 + (a2
1 − 2a2)ω2 + a2

2

, ω ∈ R,
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with C(a1, a2, µ) =
(∫∞

0
g2(s) ds

)−1
= −2λ1λ2

λ1+λ2

µ2+λ1λ2
= 2 a1a2

µ2+a2
. �

Hence, we observe that the zeros of

Ψ̃(ω) := C ·Ψ(−iω) = C · (−1)p−q
∏q

k=1 (ω − µk) (ω + µk)∏p
j=1 (ω − λj) (ω + λj)

are given by µk and −µk, k ∈ {1, . . . , q}, and the poles of Ψ̃ (i.e. the zeros of Ψ̃−1) are

λj and −λj, j ∈ {1, . . . , p}. Consequently, we will have to suppose

Assumption 4.4. The zeros µ1, . . . , µq of the moving average and the zeros λ1, . . . , λp

of the autoregressive polynomial are all distinct and possess strictly negative real parts

in order to be able to identify the parameters of the CARMA process from its normalized

power transfer function.

Remark 4.4.2. Note that Assumption 4.3 is included in Assumption 4.4. Moreover,

requiring that the AR zeros λ1, . . . , λp possess strictly negative real parts is a standard

assumption that ensures causality of the CARMA process. The analog condition on the

MA zeros guarantees invertibility. �

It is clear that Assumption 4.4 will lead to a constraint for the parameter vector θ :=

(a1, . . . , ap, c1, . . . , cq)
T , i.e. θ has to be an element of some subset Θ ⊆ Rp+q. The

power transfer function is henceforth denoted by Ψθ and its normalization by Cθ.

Our estimation heuristic is the following. Suppose we have observed the CARMA(p, q)

process on the time grid {∆n, . . . , n∆n} and let m ∈ N∗. Then we choose m different

frequencies ωj ∈ (0, π/∆n), j = 1, . . . , m, and solve the constrained nonlinear least

squares problem

θ̂ := argmin
θ∈Θ

m∑
j=1

∣∣∣log
(
Cθ ·Ψθ(ωj)

)
− log

(
∆n T̂n, Y ∆n (ωj∆n)

)∣∣∣2 . (4.16)

Remark 4.4.3. Under the additional assumption of a finite fourth moment of the driv-

ing Lévy process, the asymptotic behavior of the variance of the smoothed periodogram

for ARMA models in discrete time [17, Theorem 10.4.1] and the proof of Theorem 4.3.5

suggest that for ω ∈ R∗,

lim
n→∞

E
[
∆n In, Y ∆n (ω∆n)

]
= σ2

L Ψ(ω) and (4.17)

lim
n→∞

 ∑
|k|≤mn

Wn(k)2

−1

∆2
n Var(Tn, Y ∆n (ω∆n)) = σ4

L Ψ2(ω). (4.18)
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Eq. (4.18) implies that the variance of the smoothed periodogram is higher for frequencies

with a high and lower for frequencies with a low power transfer function, respectively.

Together with (4.17) this suggests to use the logarithmic transformation as a variance

stabilizing technique (see also [73, Sections 2.9.1 and 6.2.4]). We have observed in our

simulation study that also in the α-stable case, this transformation made the results

more reliable. �

Methods for constrained optimization and (non)linear least squares problems are dis-

cussed, for instance, in the monographs [10, 41, 70]. We have decided to use the solver

MINOS and as interface the modeling language AMPL (see [42, 69] for the MINOS

user’s guide and a general introduction to AMPL, respectively). In the presence of lin-

ear constraints (which will be the case in our setting) MINOS solves (4.16) using a

reduced-gradient algorithm combined with a quasi-Newton algorithm that is described

in [68].

In our example of a CARMA(2, 1) process, the optimization problem (4.16) becomes

the following.

Example 4.4.4 (CARMA(2, 1) process). We consider again the CARMA(2, 1) process

as in Example 4.4.1. Assumption 4.4 yields immediately that a1, a2, µ > 0 must hold.

Hence, the (unknown) parameter vector θ = (a1, a2, µ)T is an element of Θ := (0,∞)3.

The optimization problem in (4.16) then becomesâ1

â2

µ̂

 = argmin
a1,a2,µ>0

m∑
j=1

∣∣∣∣∣log

(
2a1a2

µ2 + a2
·

ω2
j + µ2

ω4
j + (a2

1 − 2a2)ω2
j + a2

2

)
− log

(
∆n T̂n, Y ∆n (ωj∆n)

)∣∣∣∣∣
2

.

(4.19)

�

Simulation Study

As announced at the beginning of this section, we will carry out a simulation study for a

CARMA(2, 1) process in order to show how the estimation heuristic (4.19) performs in

the finite-variance as well as in the stable case. Our simulation study should be compared

to the one in [45, Chapter 4]. Therefore, we have chosen not only similar values of α but

also comparable CARMA parameters.

For each α taking on the values 2, 1.8, 1.6, 1.4 and 1.25, we have simulated 250 differ-

ent sample paths of an α-stable CARMA(2, 1) process with parameters a1 = 2, a2 = 0.1

and µ = 0.2. In the Gaussian case (i.e. α = 2) we have chosen the standard deviation of
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the underlying Lévy process to be σL = 1.5 and in the other scenarios we have fixed the

same value as the scale parameter for the driving process. Every CARMA sample path

is simulated by means of an Euler approximation of the corresponding SDE in its state

space representation (cf. (4.9)). The mesh of the simulation time grid has been set to 0.01

and the number of total time steps is equal to 150000. The observed CARMA sample,

however, is chosen to be only every 10th simulated value, i.e. the CARMA process has

been observed at time points {∆n, 2∆n, . . . , n∆n} with ∆n = 0.1 and n = 15000.

Note that in the Gaussian case, we can easily reformulate (4.19) as
σ̂L

â1

â2

µ̂

 = argmin
σL,a1,a2,µ>0

m∑
j=1

∣∣∣∣∣log
(
σ2
L

)
+ log

(
ω2
j + µ2

ω4
j + (a2

1 − 2a2)ω2
j + a2

2

)
− log

(
∆nTn,Y ∆n (ωj∆n)

)∣∣∣∣∣
2

by virtue of Corollary 4.3.2. Thus, by using the normalized smoothed periodogram in the

Gaussian case, we shall get an estimate for the standard deviation σL of the underlying

Lévy process on top.

For each realized time series, we computed then smoothed periodogram values for 300

equidistant frequencies ωj in the interval [0.005, 2π], i.e. ωj = 0.005 + (j−1)/299 · (2π−
0.005), j = 1, . . . , 300. Our smoothing filter has mn = b

√
n∆nc = 38 nodes with equal

weights Wn(k) = 1/(2mn+1) = 1/77 for any |k| ≤ mn = 38. Concerning several aspects

of these (necessary) specifications in practice, we refer the reader, for instance, to [73,

Chapter 7].

Our results are reported in Table 4.1. As in [45], we observe that the estimates of the

CARMA parameters become better in terms of the standard deviation when α decreases.

However, in terms of the bias no evident relationship is visible. In Figure 4.1, we plotted

smoothed periodogram values for some selected time series in order to show the effect

of the logarithmic transformation we have used (cf. also Remark 4.4.3).

4.5 Proofs of Chapter 4

We start with three lemmata that we will need for the proofs of our main results. The

third one is the “Ornstein-Uhlenbeck version” of Proposition 4.3.4.

Lemma 4.5.1. Under the same assumptions as in Theorem 4.3.1 we have for any
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σL a1 a2 µ
True 1.5 2.0 0.1 0.2

α = 2
Mean 1.5127 2.0859 0.1182 0.2159
Bias 0.0127 0.0859 0.0182 0.0159

Std. dev. 0.0392 0.1204 0.0358 0.0366

α = 1.8
Mean - 2.0580 0.1108 0.2185
Bias - 0.0580 0.0108 0.0185

Std. dev. - 0.1240 0.0372 0.0378

α = 1.6
Mean - 2.0626 0.1079 0.2127
Bias - 0.0626 0.0079 0.0127

Std. dev. - 0.1130 0.0315 0.0361

α = 1.4
Mean - 2.0659 0.1101 0.2129
Bias - 0.0659 0.0101 0.0129

Std. dev. - 0.1151 0.0311 0.0329

α = 1.25
Mean - 2.0776 0.1140 0.2149
Bias - 0.0776 0.0140 0.0149

Std. dev. - 0.0928 0.0286 0.0307

Table 4.1: Simulation study for different values of α, based on 250 sample paths each:
mean, bias and standard deviation of the estimates for the CARMA param-
eters.

ω ∈ R∗,

1

∆n

∑
|k|≤mn

Wn(k)

∣∣∣J (1)
n,∆n

((ω∆n)k)
∣∣∣2∑n

u=1 Y
2
u∆n

P→ |c(iω)|2∫∞
0
g2(s) ds · |a(iω)|2

as n→∞,

where J
(1)
n,∆n

((ω∆n)k) := cT (iωIp−A)−1ep
(∑n

u=1 ∆L(u∆n) e−i(ω∆n)ku
)

with ∆L(u∆n) :=

Lu∆n − L(u−1)∆n for any u ∈ {1, . . . , n} and n ∈ N.

Proof. First, we note from [24, Lemma 3.1] that cT (iωIp − A)−1ep = c(iω) a(iω)−1 for

any ω ∈ R and from [39, Proposition 3.8(ii)] we obtain

n∑
u=1

Y 2
u∆n

=
∞∑
j=0

g2(j∆n) ·
n∑
u=1

∆L(u∆n)2 + oP

(
∆−1
n (n∆n)

2
α

)
as n→∞.
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Figure 4.1: Smoothed periodogram values plotted against frequencies for five selected
time series (pluses) in the Gaussian case (on top) and the 1.6-stable case
(below). The true spectral density and normalized power transfer function is
plotted as a solid line, respectively. The two graphs on the RHS are the left
ones on a log-log scale.

Thus, we deduce

1

∆n

∑
|k|≤mn

Wn(k)

∣∣∣J (1)
n,∆n

((ω∆n)k)
∣∣∣2∑n

u=1 Y
2
u∆n

=
|c(iω)|2∫∞

0
g2(s) ds · |a(iω)|2

∑
|k|≤mn

Wn(k)

∣∣∑n
u=1 ∆L(u∆n) e−i(ω∆n)ku

∣∣2∑n
u=1 ∆L(u∆n)2

· (1 + oP (1))

and it is sufficient to show that

∑
|k|≤mn

Wn(k)

∣∣∑n
u=1 ∆L(u∆n) e−i(ω∆n)ku

∣∣2∑n
u=1 ∆L(u∆n)2

P→ 1 as n→∞. (4.20)

Define Zn, u := ∆
−1/α
n ∆L(u∆n) for any n ∈ N, u ∈ Z. If α ∈ (0, 2), (Zn, u)u∈Z is a

sequence of i.i.d. symmetric α-stable random variables with scale parameter σL, and in

the case α = 2 they are symmetric satisfying E[Z2
n, u] = σ2

L for any n ∈ N, u ∈ Z. Then

we write as in the proof of [56, Lemma 6.1]

∑
|k|≤mn

Wn(k)

∣∣∑n
u=1 ∆L(u∆n) e−i(ω∆n)ku

∣∣2∑n
u=1 ∆L(u∆n)2

=
∑
|k|≤mn

Wn(k)

∣∣∑n
u=1 Zn, u e−i(ω∆n)ku

∣∣2∑n
u=1 Z

2
n, u
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(4.8b)
= 1 +

∑
1≤u6=s≤n

Zn, u Zn, s∑n
r=1 Z

2
n, r

∑
|k|≤mn

Wn(k) cos((ω∆n)k(u− s))

=: 1 +
∑

1≤u6=s≤n

aus(ω∆n) · Zn, u Zn, s∑n
r=1 Z

2
n, r

.

Now,

E

( ∑
1≤u6=s≤n

aus(ω∆n) · Zn, u Zn, s∑n
r=1 Z

2
n, r

)2
 = 2E

[
Z2
n, 1 Z

2
n, 2(∑n

u=1 Z
2
n, u

)2

] ∑
1≤u6=s≤n

a2
us(ω∆n)

= O

(
n−2

∑
1≤u6=s≤n

a2
us(ω∆n)

)

as n→∞, where for the first inequality we used that (Zn,u)u∈Z is a sequence of i.i.d.

symmetric random variables. The second equality follows from [56, Lemma 5.8] if α ∈
(0, 2) and from the SLLN together with the Dominated Convergence Theorem if α = 2,

respectively. Hence, in order to show (4.20), it remains to prove that for any ω ∈ R∗,∑
1≤u6=s≤n

a2
us(ω∆n) = o(n2) as n→∞. (4.21)

By virtue of [56, Lemma 5.9(iv)] and Eq. (4.7) we obtain for some C > 0∑
1≤u6=s≤n

a2
us(ω∆n)

=
∑

|k1|,|k2|≤mn

Wn(k1)Wn(k2)
∑

1≤u6=s≤n

cos
(
(ω∆n)k1(u− s)

)
· cos

(
(ω∆n)k2(u− s)

)
=

1

2

∑
−mn≤k1 6=k2≤mn

Wn(k1)Wn(k2)

{
sin2

(
k1−k2

2

)
sin2

(
k1−k2

2n

) +
sin2

(
k1+k2

2
+ ωn∆n

)
sin2

(
k1+k2

2n
+ ω∆n

) − 2n

}

+
1

2

mn∑
k=−mn

W 2
n(k)

{
n2 +

sin2(ωn∆n + k)

sin2(ω∆n + k
n
)
− 2n

}

≤ C · n2

{ ∑
−mn≤k1 6=k2≤mn

Wn(k1)Wn(k2)
[
(k1 − k2)−2 + (2ωn∆n + k1 + k2)−2

]
+

mn∑
k=−mn

W 2
n(k)

[
1 + (ωn∆n + k)−2

]}
,

if n is only sufficiently large. Since mn → ∞ and n∆nm
−1
n → ∞ as n→∞ (see As-

sumption 4.2), we deduce that, for any k1 6= k2 ∈ {−mn, . . . , mn} and ω ∈ R∗, the term
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(2ωn∆n + k1 + k2)−2 can be bounded by (k1 − k2)−2 and (ωn∆n + k)−2, |k| ≤ mn, can

be bounded by 1, respectively, for all sufficiently large n. Hence, we have

n−2
∑

1≤u6=s≤n

a2
us(ω∆n) ≤ 2C · max

|k|≤mn
W 2
n(k) ·

[
2

2mn∑
j=1

(2mn − j + 1)
1

j2
+O(mn)

]

= 2C · max
|k|≤mn

W 2
n(k) ·O(mn)

(4.8c)
= o(1) as n→∞,

which completes the proof of the lemma.

Remark 4.5.2. If we assume only (4.8a) and (4.8b) on the weight functions Wn, Eq.

(4.21) is no longer valid. However, a slight modification of the proof above shows that∑
1≤u6=s≤n a

2
us(ω∆n) = O(n2) as n→∞ in this case. Hence, we still have, as n→∞,

∑
|k|≤mn

Wn(k)

∣∣∑n
u=1 ∆L(u∆n) e−i(ω∆n)ku

∣∣2∑n
u=1 ∆L(u∆n)2

= 1 +OP (1) (4.22)

and consequently also

1

∆n

∑
|k|≤mn

Wn(k)

∣∣∣J (1)
n,∆n

((ω∆n)k)
∣∣∣2∑n

u=1 Y
2
u∆n

=
|c(iω)|2∫∞

0
g2(s) ds · |a(iω)|2

· (1 +OP (1)) (4.23)

as n→∞, if we drop assumption (4.8c) on the weight functions. We will use these facts

in the upcoming proofs of Lemmata 4.5.3 and 4.5.4 and Proposition 4.3.4. �

Lemma 4.5.3. Under the same assumptions as in Proposition 4.3.4 we have for any

ω ∈ R∗,

∆
− 2
α

n

∑
|k|≤mn

Wn(k)

∣∣∣∣ ∆n

n1/α
Jn,∆n

((ω∆n)k)−
1

n1/α
J

(1)
n,∆n

((ω∆n)k)

∣∣∣∣2 P→ 0 as n→∞,

where J
(1)
n,∆n

( · ) is as in Lemma 4.5.1.

Proof. We split the proof in two parts. First, we will establish

(n∆n)−
2
α

∑
|k|≤mn

Wn(k)
∣∣∣J (2)
n,∆n

((ω∆n)k)− J (1)
n,∆n

((ω∆n)k)
∣∣∣2 P→ 0 as n→∞, (4.24)

where J
(2)
n,∆n

((ω∆n)k) := cT (iωIp−A)−1
(∑n

u=1 ξ
∗
n, u e−i(ω∆n)ku

)
ep and ξ∗n, u is as in (4.12).
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Thereafter, we will show that also

∆
− 2
α

n

∑
|k|≤mn

Wn(k)

∣∣∣∣ ∆n

n1/α
Jn,∆n

((ω∆n)k)−
1

n1/α
J

(2)
n,∆n

((ω∆n)k)

∣∣∣∣2 P→ 0 as n→∞.

(4.25)

Note that Eqs. (4.24) and (4.25) together imply the claim of the lemma.

As to (4.24), we observe first that, due to Assumption 4.3, the eigenvalues of A are

supposed to be distinct. Hence, there exists an invertible matrix D ∈ Cp×p such that

A = D diag(λ1, . . . , λp)D
−1 and thus,

eA = D diag
(
eλ1 , . . . , eλp

)
D−1. (4.26)

Setting

ξ̂n, u := D−1 ξ∗n, uD
(4.26)
= diag

(∫ u∆n

(u−1)∆n

e(u∆n−s)λ1dLs, . . . ,

∫ u∆n

(u−1)∆n

e(u∆n−s)λpdLs

)
,

(4.27)

we obtain

J
(2)
n,∆n

((ω∆n)k)− J (1)
n,∆n

((ω∆n)k) = cT (iωIp − A)−1

n∑
u=1

(
ξ∗n,u −∆L(u∆n)Ip

)
e−i(ω∆n)kuep

(4.27)
= cT (iωIp − A)−1D

[
n∑
u=1

(
ξ̂n, u −∆L(u∆n) Ip

)
e−i(ω∆n)ku

]
D−1 ep

and hence, for some C > 0,

(n∆n)−
2
α

∑
|k|≤mn

Wn(k)
∣∣∣J (2)
n,∆n

((ω∆n)k)− J (1)
n,∆n

((ω∆n)k)
∣∣∣2

≤ C (n∆n)−
2
α

p∑
j=1

∑
|k|≤mn

Wn(k)

∣∣∣∣∣
n∑
u=1

e−i(ω∆n)ku

∫ u∆n

(u−1)∆n

(
e(u∆n−s)λj − 1

)
dLs

∣∣∣∣∣
2

≤ 2C (n∆n)−
2
α

p∑
j=1

∑
|k|≤mn

Wn(k)

×

[ ∣∣∣∣∣
n∑
u=1

e−i(ω∆n)ku

∫ u∆n

(u−1)∆n

(
e(u∆n−s)<(λj) cos((u∆n − s)=(λj))− 1

)
dLs

∣∣∣∣∣
2

+

∣∣∣∣∣
n∑
u=1

e−i(ω∆n)ku

∫ u∆n

(u−1)∆n

e(u∆n−s)<(λj) sin((u∆n − s)=(λj)) dLs

∣∣∣∣∣
2 ]
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=: 2C (n∆n)−
2
α

p∑
j=1

I
(j)
1 + I

(j)
2 . (4.28)

Again we define Zn, u := ∆
−1/α
n ∆L(u∆n) for any n ∈ N, u ∈ Z, and for j ∈ {1, . . . , p},

we set

d
(j)
∆n

:=

(∫ ∆n

0

∣∣es<(λj) cos(s=(λj))− 1
∣∣α ds

)1/α

and

f
(j)
∆n

:=

(∫ ∆n

0

∣∣es<(λj) sin(s=(λj))
∣∣α ds

)1/α

.

We will use that limn→∞∆
−1/α
n d

(j)
∆n

= limn→∞∆
−1/α
n f

(j)
∆n

= 0 for any j ∈ {1, . . . , p} (cf.

the proof of [39, Lemma 2.1(ii)]). Now, for any j ∈ {1, . . . , p},

(n∆n)−
2
α I

(j)
1
D
= ∆

− 2
α

n

(
d

(j)
∆n

)2

·
∑
|k|≤mn

Wn(k)

∣∣∣∣∣n− 1
α

n∑
u=1

Zn, u e−i(ω∆n)ku

∣∣∣∣∣
2

and

(n∆n)−
2
α I

(j)
2
D
= ∆

− 2
α

n

(
f

(j)
∆n

)2

·
∑
|k|≤mn

Wn(k)

∣∣∣∣∣n− 1
α

n∑
u=1

Zn, u e−i(ω∆n)ku

∣∣∣∣∣
2

.

Since n−2/α
∑n

u=1 Z
2
n, u converges weakly as n→∞, respectively, to a (positive) α/2-

stable random variable if α ∈ (0, 2) and to σ2
L if α = 2, we deduce from (4.22) that both

(n∆n)−2/αI
(j)
1 and (n∆n)−2/αI

(j)
2 converge to 0 in probability as n→∞ for any j ∈

{1, . . . , p}. This implies that the right-hand side of (4.28) converges to 0 in probability

and completes the proof of Eq. (4.24).

As to (4.25), for any k ∈ {−mn, . . . , mn} and n sufficiently large, the inequality∥∥∥∥∆n

(
Ip − e∆n(A−i(ω+ k

n∆n
)Ip)
)−1

− (iωIp − A)−1

∥∥∥∥
≤
∥∥∥∥∆n

(
Ip − e∆n(A−i(ω+ k

n∆n
)Ip)
)−1
∥∥∥∥ · ∥∥(iωIp − A)−1

∥∥
×
∥∥∥iωIp − A−∆−1

n

(
Ip − e∆n(A−i(ω+ k

n∆n
)Ip)
)∥∥∥

(4.26)

≤ const.

p∑
j=1

∆n

∣∣∣1− e∆n(λj−i(ω+ k
n∆n

))
∣∣∣−1

·

[∥∥iωIp − A−∆−1
n

(
Ip − e∆n(A−iωIp)

)∥∥
+
∥∥∆−1

n

(
Ip − e∆n(A−iωIp)

)∥∥ · ∣∣∣1− e−i
k
n

∣∣∣ ]
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≤ const.

p∑
j=1

2

∣∣∣∣λj − i(ω +
k

n∆n

)∣∣∣∣−1

· e∆n‖A−iωIp‖

×

[
∆n

2
‖A− iωIp‖2 + ‖A− iωIp‖ ·

∣∣∣1− e−i
k
n

∣∣∣ ]

≤ const.

p∑
j=1

(
|λj − iω| −

mn

n∆n

)−1

· e∆n‖A−iωIp‖

×

[
∆n

2
‖A− iωIp‖2 + ‖A− iωIp‖ ·

mn

n

]
n→∞→ 0

holds, where the last convergence result follows from Assumptions 4.1 to 4.3. Thus,

define

εn := max
|k|≤mn

∥∥∥∥∆n

(
Ip − e∆n(A−i(ω+ k

n∆n
)Ip)
)−1

− (iωIp − A)−1

∥∥∥∥ ,
where, for any ω ∈ R∗, we have εn ↘ 0 as n→∞. Then, for some C > 0,

∆
− 2
α

n

∑
|k|≤mn

Wn(k)

∣∣∣∣ ∆n

n1/α
Jn,∆n

((ω∆n)k)−
1

n1/α
J

(2)
n,∆n

((ω∆n)k)

∣∣∣∣2

= ∆
− 2
α

n

∑
|k|≤mn

Wn(k)

∣∣∣∣∣cT
[
∆n

(
Ip − e∆n(A−i(ω+ k

n∆n
)Ip)
)−1

− (iωIp − A)−1

]

×n−
1
α

(
n∑
u=1

ξ∗n, u e−i(ω∆n)ku

)
ep

∣∣∣∣∣
2

(4.27)

≤ C εn

p∑
j=1

∆
− 2
α

n

∑
|k|≤mn

Wn(k)

∣∣∣∣∣n− 1
α

n∑
u=1

e−i(ω∆n)ku

∫ u∆n

(u−1)∆n

e(u∆n−s)λj dLs

∣∣∣∣∣
2

≤ 2C εn

p∑
j=1

∆
− 2
α

n

∑
|k|≤mn

Wn(k)

[ ∣∣∣∣∣n− 1
α

n∑
u=1

e−i(ω∆n)ku

∫ u∆n

(u−1)∆n

(
e(u∆n−s)λj − 1

)
dLs

∣∣∣∣∣
2

+

∣∣∣∣∣n− 1
α

n∑
u=1

∆L(u∆n) e−i(ω∆n)ku

∣∣∣∣∣
2 ]
. (4.29)

Now, having in mind that εn ↘ 0 as n→∞, the same arguments as used above give that

the right-hand side of (4.29) converges to 0 in probability as n→∞. This completes

the proof of Eq. (4.25) and hence, Lemma 4.5.3 is shown.
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Lemma 4.5.4. Suppose α ∈ (0, 2], σL > 0 and define a family of sequences of i.i.d.

random variables (Zn, u)u∈Z such that, if α ∈ (0, 2), (Zn, u)u∈Z = (Su)u∈Z for all n ∈ N
with independent symmetric α-stable random variables Su each with scale parameter σL

and in the case α = 2 the random variables Zn, u are symmetric and satisfy E
[
Z2
n, u

]
= σ2

L

for any n ∈ N and u ∈ Z. Moreover, Assumptions 4.1 to 4.3 may hold, and assume that

the weight functions Wn satisfy (4.8a) and (4.8b). Then we have for any ω ∈ R∗ and

r ∈ {1, . . . , p},

∆2
n

n2/α

∑
|k|≤mn

Wn(k)

∣∣∣∣∣
∞∑
j=0

ej(∆nλr−i(ω∆n)k)

[
n−j∑
u=1−j

−
n∑
u=1

]
Zn, u e−i(ω∆n)ku

∣∣∣∣∣
2

P→ 0 as n→∞.

Proof. We follow along the lines of [56, Lemmata 6.2 and 6.3]. Setting

UZ
n, j(ω) :=

n−j∑
u=1−j

Zn, u e−iωu −
n∑
u=1

Zn, u e−iωu,

we observe that

n−
2
α

∣∣∣∣∣
∞∑
j=0

ej(∆nλr−i(ω∆n)k)

[
n−j∑
u=1−j

−
n∑
u=1

]
Zn, u e−i(ω∆n)ku

∣∣∣∣∣
2

≤ 2

∣∣∣∣∣n− 1
α

∞∑
j=n+1

ej(∆nλr−i(ω∆n)k)UZ
n,j((ω∆n)k)

∣∣∣∣∣
2

+

∣∣∣∣∣n− 1
α

n∑
j=0

ej(∆nλr−i(ω∆n)k)UZ
n,j((ω∆n)k)

∣∣∣∣∣
2


=: 2
(
A

(1)
n,∆n

((ω∆n)k) + A
(2)
n,∆n

((ω∆n)k)
)
.

We start with the proof of

∆2
n

∑
|k|≤mn

Wn(k)A
(1)
n,∆n

((ω∆n)k)
P→ 0 as n→∞. (4.30)

We have∑
|k|≤mn

Wn(k)A
(1)
n,∆n

((ω∆n)k)

≤ 2n−
2
α

{ ∑
|k|≤mn

Wn(k)

∣∣∣∣∣
∞∑

j=n+1

ej∆nλr−ij(ω∆n)k

n−j∑
u=1−j

Zn, u e−i(ω∆n)ku

∣∣∣∣∣
2

+
∑
|k|≤mn

Wn(k)

∣∣∣∣∣
∞∑

j=n+1

ej∆nλr−ij(ω∆n)k

∣∣∣∣∣
2

·

∣∣∣∣∣
n∑
u=1

Zn, u e−i(ω∆n)ku

∣∣∣∣∣
2}
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=: 2n−
2
α (V1 + V2)

and

∆2
n n
− 2
α V2 ≤ ∆2

n

(
∞∑

j=n+1

ej∆n<(λr)

)2

·
∑
|k|≤mn

Wn(k)

∣∣∑n
u=1 Zn, u e−i(ω∆n)ku

∣∣2∑n
u=1 Z

2
n, u

· n−
2
α

n∑
u=1

Z2
n, u

where the second term is equal to 1 + OP (1) as n→∞ (this is a simple consequence

of Eq. (4.22)). The third term converges, if α ∈ (0, 2), weakly to a positive α/2-stable

random variable (see, for instance, [74, Theorem 7.1]) and for α = 2 we know due to the

WLLN that n−1
∑n

u=1 Z
2
n, u

P→ σ2
L as n→∞. The first term satisfies

∆n

∞∑
j=n+1

ej∆n<(λr) = ∆n
e(n+1)∆n<(λr)

1− e∆n<(λr)

n→∞∼ − 1

<(λr)
en∆n<(λr) → 0 as n→∞ (4.31)

by virtue of Assumptions 4.1 and 4.3 and hence, ∆2
n n
−2/α V2

P→ 0.

As to V1, we get

V1 ≤ 2

{ ∑
|k|≤mn

Wn(k)

∣∣∣∣∣
−1∑

u=−n

Zn, u e−i(ω∆n)ku

n−u∑
j=n+1

ej∆nλr−ij(ω∆n)k

∣∣∣∣∣
2

+
∑
|k|≤mn

Wn(k)

∣∣∣∣∣
−n−1∑
u=−∞

Zn, u e−i(ω∆n)ku

n−u∑
j=1−u

ej∆nλr−ij(ω∆n)k

∣∣∣∣∣
2}

=: 2(V11 + V12)

and

V11 =
−1∑

u=−n

Z2
n, u

∑
|k|≤mn

Wn(k)

∣∣∣∣∣
n−u∑
j=n+1

ej∆nλr−ij(ω∆n)k

∣∣∣∣∣
2

+
∑

−n≤u1 6=u2≤−1

Zn, u1 Zn, u2

×
∑
|k|≤mn

Wn(k)

n−u1∑
j1=n+1

n−u2∑
j2=n+1

ej1∆nλr+j2∆nλr−i(ω∆n)k·(u1−u2+j1−j2)

=: V111 + V112.

As above, we know that n−2/α
∑−1

u=−n Z
2
n, u converges in distribution as n→∞. To-
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gether with Eq. (4.31) this yields

∆2
n n
− 2
α V111 ≤ n−

2
α

−1∑
u=−n

Z2
n, u ·

∑
|k|≤mn

Wn(k)︸ ︷︷ ︸
(4.8b)

= 1

·

(
∆n

∞∑
j=n+1

ej∆n<(λr)

)2

P→ 0 as n→∞.

(4.32)

For any ε > 0 a conditional application of Bonami’s inequality (cf. [56, Section 5.2])

yields a C(ε) > 0 such that

P
(

∆2
n n
− 2
α |V112| > ε

)
≤ E

[
exp

{
− C(ε) ε∆−2

n n
2
α

[ ∑
−n≤u1 6=u2≤−1

Z2
n, u1

Z2
n, u2

( ∑
|k|≤mn

Wn(k)

×
n−u1∑
j1=n+1

n−u2∑
j2=n+1

<
(

ej1∆nλr+j2∆nλr−i(ω∆n)k·(u1−u2+j1−j2)
))2 ]−1/2}]

(4.8b)

≤ E

[
exp

{
− C(ε) ε∆−2

n n
2
α

[ ∑
−n≤u1 6=u2≤−1

Z2
n, u1

Z2
n, u2

(
∞∑

j=n+1

ej∆n<(λr)

)4 ]−1/2}]

≤ E

[
exp

{
− C(ε) ε

(
n−

2
α

−1∑
u=−n

Z2
n, u

)−1(
∆n

∞∑
j=n+1

ej∆n<(λr)

)−2}]

and the right-hand side converges to 0 as n→∞ by virtue of Eq. (4.32) and Lebesgue

dominated convergence.

Hence, ∆2
n n
−2/α V11

P→ 0 as n→∞ is shown. Concerning V12 we proceed similarly.

We write

V12 =
−n−1∑
u=−∞

Z2
n, u

∑
|k|≤mn

Wn(k)

∣∣∣∣∣
n−u∑
j=1−u

ej∆nλr−ij(ω∆n)k

∣∣∣∣∣
2

+
∑

−∞≤u1 6=u2≤−n−1

Zn, u1 Zn, u2

×
∑
|k|≤mn

Wn(k)

n−u1∑
j1=1−u1

n−u2∑
j2=1−u2

ej1∆nλr+j2∆nλr−i(ω∆n)k·(u1−u2+j1−j2)

=: V121 + V122

and observe that V121 ≤
∑−n−1

u=−∞ Z
2
n, u

(∑n−u
j=1−u ej∆n<(λr)

)2

. We prove that, for any δ ≥ 0,

fn(δ) := E

exp

−δ2

2
∆2
n n
− 2
α

−n−1∑
u=−∞

Z2
n, u

(
n−u∑
j=1−u

ej∆n<(λr)

)2

→ 1 as n→∞.

(4.33)
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Note that this implies ∆2
n n
−2/α V121

P→ 0 as n→∞. Let (Nu)u∈Z be i.i.d. N(0, 1)-

random variables with characteristic function E[exp(iθNu)] = exp(−θ2/2) independent

of (Zn, u)u∈Z for any n ∈ N. Then we have for α ∈ (0, 2)

fn(δ) = E

exp

−δ2

2
∆2
n n
− 2
α

−n−1∑
u=−∞

S2
u

(
n−u∑
j=1−u

ej∆n<(λr)

)2



= E

[
E

[
exp

{
iδ∆n n

− 1
α

−n−1∑
u=−∞

SuNu

n−u∑
j=1−u

ej∆n<(λr)

}∣∣∣∣∣ (Su)u∈Z
]]

= E

[
E

[
exp

{
iδ∆n n

− 1
α

−n−1∑
u=−∞

SuNu

n−u∑
j=1−u

ej∆n<(λr)

}∣∣∣∣∣ (Nu)u∈Z

]]

= E

[
exp

{
−σαLδα

∆α
n

n

−n−1∑
u=−∞

|Nu|α
(

n−u∑
j=1−u

ej∆n<(λr)

)α}]

and

E

[
∆α
n

n

−n−1∑
u=−∞

|Nu|α
(

n−u∑
j=1−u

ej∆n<(λr)

)α]
= E[|N1|α] · ∆α

n

n

−n−1∑
u=−∞

(
n−u∑
j=1−u

ej∆n<(λr)

)α

→ 0

as n→∞, since E[|N1|α] <∞ and

∆α
n

n

−n−1∑
u=−∞

(
n−u∑
j=1−u

ej∆n<(λr)

)α

=
∆α
n

n
·

(
e∆n<(λr)

(
1− en∆n<(λr)

)
1− e∆n<(λr)

)α

· e(n+1)∆n<(λr)α

1− e∆n<(λr)α

n→∞∼
(
− 1

<(λr)

)α
· en∆n<(λr)α

−n∆n<(λr)α

n→∞→ 0 (4.34)

due to Assumptions 4.1 and 4.3. Lebesgue dominated convergence then obviously gives

fn(δ) → 1 for any δ ≥ 0, i.e. Eq. (4.33) is shown for α ∈ (0, 2). If α = 2, we first write

as above

fn(δ) = E

[
exp

{
iδ∆n n

− 1
2

−n−1∑
u=−∞

Zn, uNu

n−u∑
j=1−u

ej∆n<(λr)

}]
.

Then, using the independence of (Nu)u∈Z and (Zn, u)u∈Z, we obtain

E

( ∆n

n1/2

−n−1∑
u=−∞

Zn, uNu

n−u∑
j=1−u

ej∆n<(λr)

)2
 =

∆2
n

n

−n−1∑
u=−∞

E
[
Z2
n, uN

2
u

]︸ ︷︷ ︸
=σ2

L

(
n−u∑
j=1−u

ej∆n<(λr)

)2

n→∞→ 0,
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where the latter can be shown as in the case α ∈ (0, 2) above (cf. (4.34)). We can apply

again the Dominated Convergence Theorem and deduce that fn(δ) → 1 for any δ ≥ 0

also in the case α = 2. Hence, (4.33) and ∆2
n n
−2/α V121

P→ 0 as n→∞ is shown.

Analogously to V112 above, we obtain for V122 with ε > 0

P
(

∆2
n n
− 2
α |V122| > ε

)
≤ E

[
exp

{
− C(ε) ε∆−2

n n
2
α

[ ∑
−∞≤u1 6=u2≤−n−1

Z2
n, u1

Z2
n, u2

(
n−u1∑

j1=1−u1

ej∆n<(λr)

)2

×

(
n−u2∑

j2=1−u2

ej∆n<(λr)

)2 ]−1/2}]

≤ E

exp

−C(ε) ε

∆2
n n
− 2
α

−n−1∑
u=−∞

Z2
n, u

(
n−u∑
j=1−u

ej∆n<(λr)

)2
−1

→ 0 as n→∞

due to (4.33) and, once more, Lebesgue dominated convergence.

Hence, also ∆2
n n
−2/α V122

P→ 0 and ∆2
n n
−2/α V12

P→ 0 holds as n→∞. Note at this

point that Eq. (4.30) has been shown.

Thus, it remains to prove that also

∆2
n

∑
|k|≤mn

Wn(k)A
(2)
n,∆n

((ω∆n)k)
P→ 0 as n→∞. (4.35)

First,∑
|k|≤mn

Wn(k)A
(2)
n,∆n

((ω∆n)k)

≤ 2n−
2
α

{ ∑
|k|≤mn

Wn(k)

∣∣∣∣∣
n∑
j=1

ej∆nλr−ij(ω∆n)k

0∑
u=1−j

Zn, u e−i(ω∆n)ku

∣∣∣∣∣
2

+
∑
|k|≤mn

Wn(k)

∣∣∣∣∣
n∑
j=1

ej∆nλr−ij(ω∆n)k

n∑
u=n−j+1

Zn, u e−i(ω∆n)ku

∣∣∣∣∣
2}

=: 2n−
2
α (Ṽ1 + Ṽ2)

and

Ṽ1 =
∑
|k|≤mn

Wn(k)

∣∣∣∣∣
0∑

u=1−n

Zn, u e−i(ω∆n)ku

n∑
j=1−u

ej∆nλr−ij(ω∆n)k

∣∣∣∣∣
2
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(4.8b)

≤
0∑

u=1−n

Z2
n, u

(
n∑

j=1−u

ej∆n<(λr)

)2

+
∑

1−n≤u1 6=u2≤0

Zn, u1Zn, u2

×
∑
|k|≤mn

Wn(k)
n∑

j1=1−u1

n∑
j2=1−u2

ej1∆nλr+j2∆nλr−i(ω∆n)k(u1−u2+j1−j2)

=: Ṽ11 + Ṽ12.

Now, Ṽ11 can be dealt with like V121 above and one observes that in order to show

∆2
n n
−2/α Ṽ11

P→ 0 as n→∞, it is sufficient to prove

lim
n→∞

∆α
n

n

0∑
u=1−n

(
n∑

j=1−u

ej∆n<(λr)

)α

= 0. (4.36)

This follows from [39, Lemma 2.2(iii)] by setting p = 1 (note that in this case Ψ∆n
j =

ej∆nλr). The proof of ∆2
n n
−2/α Ṽ12

P→ 0 as n→∞ is then completely analog to the one

of ∆2
n n
−2/α V122

P→ 0 above.

Finally,

Ṽ2 ≤
n∑
u=1

Z2
n, u

(
n∑

j=n+1−u

ej∆n<(λr)

)2

+
∑

1≤u1 6=u2≤n

Zn, u1Zn, u2

×
∑
|k|≤mn

Wn(k)
n∑

j1=n+1−u1

n∑
j2=n+1−u2

ej1∆nλr+j2∆nλr−i(ω∆n)k(u1−u2+j1−j2)

=: Ṽ21 + Ṽ22

and in order to show ∆2
n n
−2/α Ṽ21

P→ 0 as n→∞, it is, as for Ṽ11, sufficient to prove

lim
n→∞

∆α
n

n

n∑
u=1

(
n∑

j=n+1−u

ej∆n<(λr)

)α

= 0.

However, this is exactly Eq. (4.36). As for V122 and Ṽ12, one obtains that ∆2
n n
−2/α Ṽ22

P→ 0

as n→∞, as well. This completes the proof of Eq. (4.35).

Equations (4.30) and (4.35) together yield the statement of the lemma.

Proof of Proposition 4.3.3. Lemma 4.5.1 has shown that, for any ω ∈ R∗,

1

∆n

∑
|k|≤mn

Wn(k)

∣∣∣J (1)
n,∆n

((ω∆n)k)
∣∣∣2∑n

u=1 Y
2
u∆n

P→ |c(iω)|2∫∞
0
g2(s) ds · |a(iω)|2

as n→∞,
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with J
(1)
n,∆n

((ω∆n)k) = cT (iωIp − A)−1ep
(∑n

u=1 ∆L(u∆n) e−i(ω∆n)ku
)
. Since the random

variable ∆n (n∆n)−2/α
∑n

u=1 Y
2
u∆n

converges in distribution as n → ∞, respectively, to∫∞
0
g2(s) ds · [L, L]1 with ([L, L]t)t≥0 being the quadratic variation process of (Lt)t≥0 if

α ∈ (0, 2) and to
∫∞

0
g2(s) ds · σ2

L if α = 2 (cf. [36, Theorem 5.5(a)]), a straightforward

application of the Cauchy-Schwarz inequality shows that it is sufficient to prove

∆
− 2
α

n

∑
|k|≤mn

Wn(k)

∣∣∣∣ ∆n

n1/α
Jn,∆n

((ω∆n)k)−
1

n1/α
J

(1)
n,∆n

((ω∆n)k)

∣∣∣∣2 P→ 0 as n→∞.

(4.37)

However, (4.37) is a consequence of Lemma 4.5.3.

Proof of Proposition 4.3.4. First, by virtue of the Cauchy-Schwarz inequality, we

have

∆n

∑
|k|≤mn

Wn(k)
|Rn,∆n((ω∆n)k)|∑n

u=1 Y
2
u∆n

≤ 2

(
2∆n

∑
|k|≤mn

Wn(k)

∣∣∣Jn,∆n
((ω∆n)k)− 1

∆n
J

(1)
n,∆n

((ω∆n)k)
∣∣∣2 +

∣∣∣ 1
∆n
J

(1)
n,∆n

((ω∆n)k)
∣∣∣2∑n

u=1 Y
2
u∆n

×∆n

∑
|k|≤mn

Wn(k)

∣∣cTKn,∆n((ω∆n)k)ep
∣∣2∑n

u=1 Y
2
u∆n

)1/2

+ ∆n

∑
|k|≤mn

Wn(k)

∣∣cTKn,∆n((ω∆n)k)ep
∣∣2∑n

u=1 Y
2
u∆n

,

where Kn,∆n( · ) and Jn,∆n
( · ) are as in Eq. (4.13) and J

(1)
n,∆n

( · ) has been defined in

Lemma 4.5.1.

Since ∆n (n∆n)−2/α
∑n

u=1 Y
2
u∆n

converges in distribution, respectively, to
∫∞

0
g2(s) ds ·

[L, L]1 as n → ∞ if α ∈ (0, 2) with ([L, L]t)t≥0 being the quadratic variation process

of (Lt)t≥0 and g the kernel function in (4.10b) and to
∫∞

0
g2(s) ds · σ2

L if α = 2 (cf. [36,

Theorem 5.5(a)]), we can combine Lemma 4.5.3 and (4.23) in order to deduce that

∆n

∑
|k|≤mn

Wn(k)
|Rn,∆n((ω∆n)k)|∑n

u=1 Y
2
u∆n

≤ OP (1)

∆n

∑
|k|≤mn

Wn(k)

∣∣cTKn,∆n((ω∆n)k) ep
∣∣2∑n

u=1 Y
2
u∆n

1/2

+ ∆n

∑
|k|≤mn

Wn(k)

∣∣cTKn,∆n((ω∆n)k) ep
∣∣2∑n

u=1 Y
2
u∆n

113



4 Spectral estimates

as n→∞. Therefore, it is sufficient to prove the following:

∆
2− 2

α
n n−

2
α

∑
|k|≤mn

Wn(k)
∣∣cTKn,∆n((ω∆n)k) ep

∣∣2 P→ 0 as n→∞. (4.38)

To this end, we define

Ûn, j(ω) :=

n−j∑
u=1−j

ξ̂n, u e−iωu −
n∑
u=1

ξ̂n, u e−iωu and

K̂n,∆n(ω) :=
∞∑
j=0

ej(∆ndiag(λ1, ..., λp)−iωIp) Ûn, j(ω), −π ≤ ω ≤ π,

where ξ̂n, u is given by (4.27). Then

Kn,∆n(ω) = D
∞∑
j=0

ej(∆ndiag(λ1, ..., λp)−iωIp) Ûn, j(ω)D−1 = D K̂n,∆n(ω)D−1,

which implies

∆
2− 2

α
n n−

2
α

∑
|k|≤mn

Wn(k)
∣∣cTKn,∆n((ω∆n)k) ep

∣∣2
≤ const. ·∆2− 2

α
n n−

2
α

∑
|k|≤mn

Wn(k)
∥∥∥vec

(
K̂n,∆n((ω∆n)k)

)∥∥∥2

= const. ·
p∑

r, s=1

∆
2− 2

α
n n−

2
α

∑
|k|≤mn

Wn(k)
∣∣∣K̂(r, s)

n,∆n
((ω∆n)k)

∣∣∣2
= const. ·

p∑
r=1

∆
2− 2

α
n n−

2
α

∑
|k|≤mn

Wn(k)
∣∣∣K̂(r, r)

n,∆n
((ω∆n)k)

∣∣∣2 , (4.39)

since K̂n,∆n( · ) =
(
K̂

(r, s)
n,∆n

( · )
)
r, s∈{1,...,p}

is diagonal.

Now, for any r ∈ {1, . . . , p},

K̂
(r, r)
n,∆n

((ω∆n)k) = eTr K̂n,∆n((ω∆n)k) er

=
∞∑
j=0

ej(∆nλr−i(ω∆n)k)

[
n−j∑
u=1−j

−
n∑
u=1

]
e−i(ω∆n)ku

∫ u∆n

(u−1)∆n

e(u∆n−s)λrdLs

=
∞∑
j=0

ej(∆nλr−i(ω∆n)k)

[
n−j∑
u=1−j

−
n∑
u=1

]
e−i(ω∆n)ku

∫ u∆n

(u−1)∆n

<
(
e(u∆n−s)λr

)
dLs
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+ i

∞∑
j=0

ej(∆nλr−i(ω∆n)k)

[
n−j∑
u=1−j

−
n∑
u=1

]
e−i(ω∆n)ku

∫ u∆n

(u−1)∆n

=
(
e(u∆n−s)λr

)
dLs.

We define (Zn, u)u∈Z := ∆
−1/α
n (∆L(u∆n))u∈Z such that, if α ∈ (0, 2), (Zn, u)u∈Z are

i.i.d. symmetric α-stable random variables with scale parameter σL, and in the case

α = 2 it is an i.i.d. symmetric sequence satisfying E[Z2
n, u] = σ2

L for any n ∈ N, u ∈ Z.

Note that(∫ u∆n

(u−1)∆n

<
(
e(u∆n−s)λr

)
dLs

)
u∈Z

D
=

(∫ ∆n

0

∣∣∣<(esλr)∣∣∣αds

) 1
α

(Zn, u)u∈Z =: C(r)
n (Zn, u)u∈Z

and likewise(∫ u∆n

(u−1)∆n

=
(
e(u∆n−s)λr

)
dLs

)
u∈Z

D
=

(∫ ∆n

0

∣∣∣=(esλr)∣∣∣αds

) 1
α

(Zn,u)u∈Z =: C̃(r)
n (Zn,u)u∈Z .

Since C
(r)
n ∼ ∆

1/α
n and ∆

−1/α
n C̃

(r)
n → 0 as n→∞ for any r ∈ {1, . . . , p} (cf. [39, Lemma

2.1(ii) and its proof]) and since, for any r ∈ {1, . . . , p},

∆2
n n
− 2
α

∑
|k|≤mn

Wn(k)

∣∣∣∣∣
∞∑
j=0

ej(∆nλr−i(ω∆n)k)

[
n−j∑
u=1−j

−
n∑
u=1

]
Zn, u e−i(ω∆n)ku

∣∣∣∣∣
2

P→ 0

as n→∞ (see Lemma 4.5.4), we obtain that the right-hand side of Eq. (4.39) converges

to 0 in probability as n→∞ which in turn yields (4.38) and hence, completes the proof

of the proposition.

Proof of Proposition 4.3.7. Note first that we can understand the self-normalized

periodogram as a special case of the smoothed one by choosing the weight functions Wn

as Wn(0) = 1 and Wn(k) = 0 for any k 6= 0. These weights do not satisfy (4.8c), but

obviously (4.8a) and (4.8b). With that “degenerated” choice of weight functions and

Lemma 4.5.3, we deduce immediately that it is sufficient to prove the following:

(n∆n)−
2
α

∣∣∣J (1)
n,∆n

(ω∆n)
∣∣∣2 D→ |c(iω)|2

|a(iω)|2
·
∣∣∣∣∫

[0,1)

e2πi x dL∗x

∣∣∣∣2 as n→∞,

for any ω ∈ R∗, where J
(1)
n,∆n

( · ) has been defined in Lemma 4.5.1. Now, it is clearly

enough to show that

(n∆n)−
2
α

∣∣∣∣∣
n∑
u=1

∆L(u∆n) e−iω∆nu

∣∣∣∣∣
2

D→
∣∣∣∣∫

[0,1)

e2πi x dL∗x

∣∣∣∣2 as n→∞. (4.40)
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Let (Zn, u)u∈Z := ∆
−1/α
n (∆L(u∆n))u∈Z for n ∈ N. Then (4.40) follows, by virtue of the

Continuous Mapping Theorem (see, for instance, [54, Theorem 13.25]), from

n−
1
α

(
n∑
u=1

Zn, u cos(ω∆nu),
n∑
u=1

Zn, u sin(ω∆nu)

)
D→
(∫ 1

0
cos(2πx) dL∗x,

∫ 1

0
sin(2πx) dL∗x

)
,

as n→∞, which in turn is equivalent to

n−
1
α

n∑
u=1

Zn, u (b1 cos(ω∆nu) + b2 sin(ω∆nu))︸ ︷︷ ︸
=:Xn, u

D→
∫ 1

0

[b1 cos(2πx) + b2 sin(2πx)] dL∗x,

(4.41)

as n→∞ for any (b1, b2)T ∈ R2.

First, we prove (4.41) for α ∈ (0, 2). Since (Zn,u)u∈Z is an i.i.d. sequence of symmetric

α-stable random variables with scale paramater σL, the random variable n−
1
α

∑n
u=1Xn, u

is again symmetric α-stable with scale parameter σn,L where

σαn,L =
σαL
n

n∑
u=1

|b1 cos(ω∆nu) + b2 sin(ω∆nu)|α .

Moreover, writing ω = 2πη, we have

σαn,L =
σαL
n

n∑
u=1

∣∣b1 cos(2π{η∆nu}) + b2 sin(2π{η∆nu})
∣∣α

n→∞→ σαL

∫ 1

0

|b1 cos(2πx) + b2 sin(2πx)|α dx

where the convergence can be shown as in the proof of [39, Proposition 2.6, Eq. (4.11)].

This results in (4.41) for α ∈ (0, 2).

For α = 2 we prove (4.41) with the Lindeberg-Feller Theorem (see, e.g., [34, p. 114]).

Obviously, for each n, the random variables Xn, u, 1 ≤ u ≤ n, are independent with

E[Xn, u] = 0 since Zn, u are supposed to be symmetric. Moreover, writing again ω = 2πη,

we have

1

n

n∑
u=1

Var(Xn, u) =
σ2
L

n

n∑
u=1

(
b1 cos(2π{η∆nu}) + b2 sin(2π{η∆nu})

)2

n→∞→ σ2
L

∫ 1

0

(b1 cos(2πx) + b2 sin(2πx))2 dx = σ2
L

(
b2

1

2
+
b2

2

2

)
,

where the convergence can be shown again as in the proof of [39, Proposition 2.6, Eq.
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(4.11)]. Since, for any ε > 0,

1

n

n∑
u=1

E
[
X2
n, u 1{|Xn, u|>ε

√
n}
]
≤ (|b1|+ |b2|)2 · E

[
Z2
n, 1 1

{
|Zn, 1|> ε

√
n

|b1|+|b2|

}] n→∞→ 0,

we can apply the Lindeberg-Feller Theorem and deduce

n−
1
2

n∑
u=1

Zn, u (b1 cos(ω∆nu) + b2 sin(ω∆nu))
D→

√
σ2
L

(
b2

1

2
+
b2

2

2

)
·N(0, 1)

D
= σL

(
b1√

2
N1 +

b2√
2
N2

)
(4.42)

D
=

∫ 1

0

[b1 cos(2πx) + b2 sin(2πx)] dL∗x,

where N1, N2 are i.i.d. N(0, 1) random variables. This shows (4.41) and completes the

proof.

Proof of Theorem 4.3.5. We can understand the (self-)normalized periodogram as

a special case of the smoothed one by choosing the weight functions Wn as Wn(0) = 1

and Wn(k) = 0 for any k 6= 0, which do not satisfy (4.8c), but obviously (4.8a) and

(4.8b). Then we can use the same partition as in Eq. (4.15) and apply Proposition 4.3.4

together with Proposition 4.3.7 to obtain the statement.

Proof of Corollary 4.3.6. Follows from Theorem 4.3.5, (4.42) and 1
n

∑n
u=1 Y

2
u∆n

P→∫∞
0
g2(s) ds · σ2

L if α = 2 (cf. [36, Theorem 5.5(a)]).
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[56] Klüppelberg, C., and Mikosch, T. Some limit theory for the self-normalised

periodogram of stable processes. Tech. rep., ETH Zürich, Department of Mathe-
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[65] Mitrinović, D. S., and Kečkić, J. D. The Cauchy Method of Residues: Theory

and Applications. Reidel, Dordrecht, Holland, 1984.

[66] Montroll, E. W., and Shlesinger, M. F. On the wedding of certain dy-

namical processes in disordered complex materials to the theory of stable Lévy
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continuous-time autoregressive moving average (CARMA) stochastic volatility

models. J. Bus. Econom. Statist. 24 (2006), 455–469.

125



Bibliography

[86] Titchmarsh, E. C. Introduction to the Theory of Fourier Integrals, 2nd ed.

Oxford University Press, London, UK, 1948.

[87] Todorov, V. Estimation of continuous-time stochastic volatility models with

jumps using high-frequency data. J. Econometrics 148 (2009), 131–148.

126


	Introduction
	Outline

	Noise recovery and Riemann sum approximations
	Introduction
	Preliminaries to Chapter 2
	Finite-variance CARMA processes
	Properties of high-frequency sampled CARMA processes

	Noise recovery
	High-frequency behavior of approximating Riemann sums
	Conclusion
	Appendix to Chapter 2

	Limit behavior periodogram
	Introduction
	Main results
	Moving average structure of the sampled process
	Normalized periodogram
	Self-normalized periodogram

	Lattices and the manifolds M
	Proofs of Chapter 3
	Proofs of Section 3.1
	Proofs of Section 3.2.1
	Proofs of Section 3.2.2
	Proofs of Section 3.2.3
	Proofs of Section 3.3


	Spectral estimates
	Introduction
	Preliminaries to Chapter 4
	Lévy-driven CARMA processes
	Decomposition of the smoothed (self-normalized) periodogram

	Limit behavior of the smoothed periodogram
	Estimation of the CARMA parameters
	Proofs of Chapter 4


