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Zusammenfassung

In dieser Arbeit werden statistische Fragen fiir hochfrequent beobachtete zeitstetige
autoregressive Moving-Average (CARMA) Prozesse untersucht. Zunéchst wird fiir in-
vertierbare CARMA Modelle mit endlicher Varianz ein L2-konsistenter Schitzer fiir die
Zuwéachse des zugrundeliegenden Lévy-Prozesses konstruiert. Dieser ist unabhangig von
der Ordnung des Prozesses. Dariiber hinaus wird das Hochfrequenzverhalten von ap-
proximierenden Riemann-Summen analysiert und deren Autokovarianzstruktur mit der
von gesampelten CARMA Prozessen verglichen.

Im zweiten Teil der Arbeit werden auch a-stabile CARMA Modelle analysiert. Im
asymptotischen Kontext hochfrequenter Daten auf langen Zeitintervallen, werden Kon-
vergenzresultate fiir verschieden normalisierte Periodogramm-Versionen gezeigt. Je nach-
dem, ob die ausgewahlten Frequenzwerte tiber Z linear abhangig oder unabhéngig sind,
variieren die Grenzverteilungen. Die Beweise dazu verwenden Methoden aus der Geome-
trie der Zahlen. Uber eine Glittung des Periodogramms wird ein konsistenter Schétzer
fiir die normalisierte rationale Transferfunktion hergeleitet. Darauf basierend wird ein
Schatzverfahren fiir die Parameter eines CARMA Prozesses vorgeschlagen.






Abstract

We consider high-frequency sampled continuous-time autoregressive moving average
(CARMA) models driven by finite-variance zero-mean Lévy processes. An L?-consistent
estimator for the increments of the driving Lévy process without order selection is pro-
posed if the CARMA model is invertible. The high-frequency behavior of approximating
Riemann sum processes is analyzed and their autocovariance structure is compared to
the one of sampled CARMA processes.

In the second part, the underlying process of the CARMA model is chosen to be either
a symmetric a-stable Lévy process or a symmetric Lévy process with finite second mo-
ments. In the doubly asymptotic framework of high-frequency data within a long time
interval, convergence of normalized and self-normalized versions of the periodogram to
functions of stable distributions is shown. The limit distributions differ depending on
whether the frequency values are linearly dependent or independent over Z. For the
proofs we require methods from the geometry of numbers. Moreover, a consistent esti-
mate for the normalized power transfer function is established by applying a smoothing
filter to the periodogram. This result is used to propose an estimator for the parameters

of the CARMA process.
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1 Introduction

Being the continuous-time analog of the well-known ARMA processes (see, e.g., [17]),
continuous-time autoregressive moving average (CARMA) processes have been exten-
sively studied over the recent years. They provide, on the one hand, a mathematically
tractable class of linear stochastic models in continuous time. On the other hand, as
shown in [80], CARMA processes are equivalent to the class of continuous-time linear
state space models if the variance of the underlying driving Lévy process is supposed
to be finite. It is therefore not astonishing that this rich class is widely used in various
areas of application as, e.g., signal processing and control (cf. [46, 61]), econometrics
(cf. [7, 72]), high-frequency financial econometrics (cf. [87]), financial mathematics (cf.
6, 13, 49, 85]) and stochastic modeling of energy markets (cf. [5, 45]).

The question whether a time series should be modeled by a continuous-time or a
discrete-time process is naturally of fundamental importance. One obvious advantage of
continuous-time modeling is that it allows handling of irregularly spaced time series and
in particular high-frequency data. The constantly increasing availability of the latter in
finance and science in general has sparked a great deal of attention about the asymp-
totic behavior of high-frequency sampled processes in the last decade (see, e.g., [51]).
The substantial part of this thesis will deal with statistical inference for the underlying
Lévy process and the parameters of CARMA models in a high-frequency asymptotic

framework.

The financial and economic crisis that started in 2008 with the Lehman default and
the ongoing sovereign crisis demonstrate impressively that there is a necessity for new
models incorporating more of the so-called stylized facts (for instance heavy tails, i.e.
very high/low values are far more likely than in the normal distribution) which one
can observe in real financial observation data. In order to illustrate the basic differ-
ence between a Gaussian distribution and a distribution with a long tail, Montroll and
Shlesinger [66] proposed to compare the distribution of heights with the distribution
of annual incomes for American adult males. An average individual who seeks a friend

twice his height would fail. On the other hand, one who has an average income will have



1 Introduction

no trouble to discover a richer person, who, with a little diligence, may locate a third
person with twice his income, etc. The income distribution in its upper range has a
Pareto inverse power tail; however, most of the income distributions follow a log-normal
curve, but the last few percent have a stable tail with exponent a = 1.6 (cf. [3]), i.e., the
mean is finite but the variance of the corresponding 1.6-stable distribution diverges. In
the case of financial data these models are extreme in the sense that stable distributions
(excluding the Gaussian) do not have a finite variance. But in contrast to “classical” fi-
nance (stocks, bonds, currencies, storable commodities, etc.) there are many other fields
of application where it seems to be reasonable to assume infinite variance for the data.
In [45], for instance, a stable CARMA(2, 1) model is fitted to spot prices from the Singa-
pore New Electricity Market. An early example of a-stable stochastic modeling can be
found already in Mandelbrot [62] and Fama [35], who proposed the stable distribution
for stock returns. Internet traffic models are just one other possible application area for
heavy-tailed models (cf. [27, 30, 64]), other examples of a-stable stochastic modeling are
given in [52, Chapter 7].

Also from a theoretical point of view stable distributions are an interesting class
to work with. If X, X,,... are i.i.d. nondegenerate random variables and there are

sequences of constants a,, > 0 and b,, € R such that

a;lzn:Xk—bngZ

k=1

as n — 00, then Z has a stable distribution (cf. [12, Proposition 9.25]).

In classical time series analysis second-order stationarity is a basic concept. Therefore,
a distinctive feature when dealing with finite-variance models is the extensive use of
Hilbert space methods (see, for instance, [17, Chapter 2]). However, if we allow for
possibly infinite-variance processes, in particular stable models, these techniques cannot
be used for a theoretical analysis of statistics of the corresponding models. Although
there is a concept of orthogonality even in Banach spaces, called James orthogonality
(see, e.g., [77, Section 2.9]), or a “covariance alternative” for infinitely divisible processes,
called codifference (see, e.g., [77, Section 2.10]), it is not immediate to carry over results
for finite-variance processes to possibly heavy-tailed models.

One possible way out, however, is to use spectral methods. Very often a significant
tool for the analysis of statistical and probabilistic problems in conjunction with var-
ious stochastic processes is provided by spectral representations of these models. For

instance, the spectral representations of symmetric stable processes have been used suc-



cessfully to solve prediction and interpolation problems (see, e.g., 26, 50]) and to study
structural and path properties for certain subclasses of these models (see, e.g., [25, 75]).
In [44] it has been shown that also multivariate regularly varying CARMA processes,
which in particular include stable CARMA models, possess spectral representations in
the summability sense. Inspired by this work, we decided to address a deeper spectral
analysis of (stable) CARMA processes in this thesis.

Outline of the thesis

Every of the following chapters of this thesis is based on a paper and hence, they are
basically self-contained. In the following we present brief abstracts of the contents for
each chapter. Detailed content information follows in the introductory sections of the
individual chapters.

In this thesis we deal with statistical inference for the underlying Lévy process and the
parameters of CARMA models in a high-frequency asymptotic framework. The common
ground for the following three chapters is given, on the one hand, by the continuous-
time model we consider, namely Lévy-driven CARMA processes. On the other hand,
each chapter will either use spectral methods in proofs or study directly probabilistic
properties of these models in the frequency domain.

More precisely, Chapter 2 is based on [40]. High-frequency sampled CARMA models
driven by finite-variance zero-mean Lévy processes are considered. An L2-consistent
estimator for the increments of the driving Lévy process without order selection in
advance is proposed if the CARMA model is invertible. In the second part of this chapter
we analyze the high-frequency behavior of approximating Riemann sum processes, which
represent a natural way to simulate continuous-time moving average processes on a
discrete grid. We shall compare their autocovariance structure with the one of sampled
CARMA processes, where the rule of integration plays a crucial role. Moreover, new
insight into the kernel estimation procedure of [20] is given.

Chapter 3 is based on [39]. Again a CARMA process (Y}):er is considered, this time
driven by a symmetric a-stable Lévy process with a € (0,2]. It is sampled at a high-
frequency time-grid {0, A, 2A,, ..., nA,}, where the observation grid gets finer and
the last observation tends to infinity as n — oo. We investigate the normalized peri-
odogram I,, ya, (w) = [n7Y* Y"1 Vi, e |2 of the sampled sequence. Under suitable

conditions on A, we show the convergence of the finite-dimensional distribution of both

_2
An [Lyan (@A), - Ly yan (wndh)]



1 Introduction

for (wy, ..., wy) € (R\{0})™ and of self-normalized versions of it to functions of stable
distributions. The limit distributions differ depending on whether wy, ..., w,, are linearly
dependent or independent over Z. For the proofs we require methods from the geometry
of numbers.

The last chapter is taken from [38]. Once more a CARMA process driven by either a
symmetric a-stable Lévy process with o € (0, 2) or a symmetric Lévy process with finite
second moments is studied. In the asymptotic framework of high-frequency data within a
long time interval, we establish a consistent estimate for the normalized power transfer
function by applying a smoothing filter to the periodogram of the CARMA process.
Thereafter, this result is used in order to propose an estimator for the parameters of the

CARMA process. The estimation procedure is exemplified by a simulation study.



2 Noise recovery and high-frequency

behavior of approximating Riemann

SI,IITIS1

2.1 Introduction

The constantly increasing availability of high-frequency data in finance and science in
general has sparked a great deal of attention about the asymptotic behavior of high-
frequency sampled processes in the last decade, especially concerning the estimation of
the multi-power variations of It6 semimartingales (see, e.g., [2, 4]), employing their re-
alized counterparts. These quantities are of primary importance to practitioners, since
they embody the deviation of data from a Brownian motion. Such methods are summa-
rized in the book of [51] and references therein, which represents the most recent review
on the subject.

In many areas of application Lévy-driven processes are used for modeling time series.

An ample class within this group are continuous-time moving average (CMA) processes

Yt:/Oo g(t—s)dLs, teR, (2.1)
where g is a so-called kernel function and L = (L;)cr is said to be the driving Lévy
process (see, e.g., [78] for a detailed introduction). They cover, for instance, Ornstein-
Uhlenbeck and continuous-time autoregressive moving average (CARMA) processes. The
latter are the continuous-time analog of the well-known ARMA processes (see, e.g., [17])
and have been extensively studied over the recent years (cf. [14, 15, 22, 85]). Originally,
driving processes of CARMA models were restricted to Brownian motion (see [32], and
also [33]); however, [14] allowed for Lévy processes with a finite rth moment for some

r > 0.

!The contents of this chapter are based on Ferrazzano, V. and Fuchs, F. (2012), Noise recovery for
Lévy-driven CARMA processes and high-frequency behaviour of approximating Riemann sums,
submitted for publication.



2 Noise recovery and Riemann sum approximations

Lévy-driven CARMA processes are widely used in various areas of application like
signal processing and control (cf. [46, 61]), high-frequency financial econometrics (cf.
[87]) and financial mathematics (cf. [6, 13, 49, 85]). Stable CARMA processes can be
relevant in modeling energy markets (cf. [5, 45]). Very often, a correct specification of
the driving Lévy process is of primary importance in all these applications.

In this chapter we will be concerned with a high-frequency sampled CARMA process
driven by a second-order zero-mean Lévy process. Under the assumption of invertibility
of the CARMA model, we shall present an L?-consistent estimator for the increments
of the driving Lévy process, employing standard time series techniques. It is remarkable
that the proposed procedure works for arbitrary autoregressive and moving average
orders, i.e. there is no need for order selection in advance. In the light of the results
in [20] and the flexibility of CARMA processes, the method might apply to a wider
class of CMA processes, too. Moreover, since the proof employees only the fact that
the increments of the Lévy process are orthogonal rather than independent, the result
holds for a much ampler class of driving processes. Notable examples are the COGARCH
processes ([13, 55]) or time-changed Lévy processes ([28]), which are often employed to
model volatility clustering in finance and intermittency in turbulence.

This noise recovery result will give rise to the conjecture that the sampled CARMA
process behaves on a high-frequency time grid approximately like a suitable MA (oco) pro-
cess, which we shall call approzimating Riemann sum process. By comparing the asymp-
totic properties of the autocovariance structure of high-frequency sampled CARMA
models with the one of their approximating Riemann sum processes, it will turn out
that the so-called rule of the Riemann sum plays a crucial role if the difference between
the autoregressive and moving average order is greater than 1. On the one hand, this
gives new insight for the kernel estimation procedure studied in [20] and explains at
which points the kernel is indeed estimated. On the other hand, this has obvious con-
sequences for simulation purposes. Riemann sum approximations are an easy tool to
simulate CMA processes; however, our results show that one has to be careful with the
chosen rule of integration in the context of certain CARMA processes.

The outline of the remaining chapter is as follows. In Section 2.2 we are going to recall
the definition of finite-variance CARMA models and summarize important properties
of high-frequency sampled CARMA processes. In particular, we fix a global assumption
that guarantees causality and invertibility for the sampled sequence. In the third section
we then derive an L?-consistent estimator for the increments of the driving Lévy pro-
cess starting from the Wold representation of the sampled process. It will turn out that

wnvertibility of the original continuous-time process is sufficient and necessary for the



2.2 Preliminaries to Chapter 2

recovery result to hold. Section 2.3 is completed by an illustrating example for CAR(2)
and CARMA (2, 1) processes. Thereafter, the high-frequency behavior of approximating
Riemann sum processes is studied in Section 2.4. First, an ARMA representation for the
Riemann sum approximation is established in general and then the role of the rule of
integration is analyzed by matching the asymptotic autocovariance structure of sampled
CARMA processes and their Riemann sum approximations in the cases where the au-
toregressive order is less or equal to 3. The connection between the Wold representation
and the approximating Riemann sum yields a deeper insight into the kernel estimation
procedure introduced in [20]. A short conclusion can be found in Section 2.5 and finally,

some auxiliary results are established in the last section.

2.2 Preliminaries to Chapter 2

2.2.1 Finite-variance CARMA processes

Throughout this chapter we shall be concerned with a CARMA process driven by a
second-order zero-mean Lévy process L = (L;);er with E[L] = 0 and E[L3] = 1. It is
defined as follows.

For non-negative integers p and ¢ such that p > ¢, a CARMA(p, q) process Y = (Y})ier
with coefficients ay, ..., a,, co,...,c, € R and driving Lévy process L is defined to be a

strictly stationary solution of the suitably interpreted formal equation
a(D)Y; =oc(D)DL;, teER, (2.2)

where D denotes differentiation with respect to ¢, a(-) and ¢(-) are the characteristic

polynomials,
a(z) =2 +a 2"+ +a, and c(2)i=cpt ozt

the coefficients ¢; satisfy ¢, = 1 and ¢; = 0 for ¢ < j < p, and o > 0 is a constant.
The polynomials a(-) and ¢(-) are assumed to have no common zeros. Throughout this
chapter we shall denote by A\;; ¢ = 1,...,p, and —p;, i = 1,...,¢q, the roots of a(-) and
c(+) respectively, such that these polynomials can be written as a(z) = [[?_,(z — ;) and
c(z) = 1, (z + u;). Throughout this chapter we will further assume

Assumption 2.1.
(1) The zeros of the polynomial a(-) satisfy R(A;) < 0 for every j=1,...,p,
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(i1) the roots of c(-) have non-vanishing real part, i.e. R(p;) #0 for all j=1,....q.

Since the derivative DL; does not exist in the usual sense, we interpret (2.2) as being

equivalent to the observation and state equations

Y, =c"X,, (2.3)
dXt = AXt dt + €p st, (24)
where
X(t) Co 0
X(l) (t) C1 0
Xt = : ) c= ) ep = )
X(p_Q) (t) Cp—2 0
X(p_l) (t) Cpfl
1 0
0 1 e
A= : : : : and A = —ay for p=1.
0 0 0 |
—Qp —Ap—1 —Qp—2 ... —A1

It is easy to check that the eigenvalues of the matrix A are the same as the zeros of the
autoregressive polynomial a(-).
Under Assumption 2.1 (i) it has been shown in [22, Theorem 3.3] that Egs. (2.3)-(2.4)

have the unique strictly stationary solution,

Y, = / gt —u)dL,, teR, (2.5)
where

% /p%etz dz = UZ\: Res,— <6Zt%) , ittt >0,

0, if t <0,

g(t) = (2.6)

and p is any simple closed curve in the open left half of the complex plane encircling
the zeros of a(-). The sum is over the distinct zeros A of a(-) and Res,—,(-) denotes the
residue at A of the function in brackets. The kernel g can also be expressed (cf. [22], Egs.
(2.10) and (3.7)) as

gt) =oc'e e, L) (t), tER, (2.7)
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and its Fourier transform is

F{o()} W) ::/g(s) e ds = o  weR (2.8)
R
In the light of Eqgs. (2.5)-(2.8), we can interpret a CARMA process as a continuous-time
filtered white noise, whose transfer function has a finite number of poles and zeros. We
outline that the request on the roots of a(-) to lie in the interior of the left half of the
complex plane in order to have causality arises from Theorem V, p. 8, [71], which is
intrinsically connected with the theorems in [86], pp. 125-129, on the Hilbert transform.
A similar request on the roots of ¢(-) will turn out to be necessary for recovering the

driving Lévy process.

2.2.2 Properties of high-frequency sampled CARMA processes

We now recall some properties of the sampled process Y2 := (Y;,a)nez of a CARMA(p, q)
model where A > 0; cf. [20, 21] and references therein. It is known that the sampled
sequence Y2 satisfies the ARMA(p,p — 1) equations

P*(B)Y,> =0%B)Z;, neZ, (Z3)~WN(0,03), (2.9)
with the AR part ®*(B) := [['_,(1 — e®¥B), where B is the discrete-time backshift

operator, BY,2 := Y2 ,. Finally, the MA part ©2(:) is a polynomial of order p — 1,
chosen in such a way that it has no roots inside the unit circle. For p > 3 and fixed
A > 0 there is no explicit expression for the coefficients of ©2(+) nor the white noise
process Z2. Nonetheless, asymptotic expressions for ©2(+) and 0% = Var(Z5) as A |0
were obtained in [20, 21]. Namely we have that the polynomial ©2(z) can be written as
(see [20, Theorem 2.1))

p—q—1 q

=[] a+n& ) [[a-G=2). zecC, (2.10)
) 2A;(p q)— .
oA = (14+0(1)), asA]O0, (2.11)

(2(p — ) = DI 0(&)

where, again as A | 0,

G =1+ A+ o(A), kE=1,...,q,
n(&) =& -1+ V(& —1)> = 1+0(1), i=1...,p—q¢—1 (2.12)
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The signs + in (2.12) are chosen respectively such that, for sufficiently small A, the
coefficients (;, and 7(&;) are less than 1 in absolute value. This ensures that Eq. (2.9) is
invertible. Moreover, &, i =1,...,p — ¢ — 1, are the zeros of a;,_,_1(-), which is defined

as the (p — ¢ — 1)-th coefficient in the series expansion

sinh(z 2k+1
C R\{0 2.13
e Za | zeC zeRr\(0), (213)

where the LHS of Eq. (2.13) is a power transfer function arising from the sampling
procedure (cf. [21, Eq. (11)]). Therefore the coefficients n(&;), i = 1,...,p — ¢ — 1, can
be regarded as spurious, as they do not depend on the parameters of the underlying

continuous-time process Y, but just on p — q.

Remark 2.2.1. Our notion of sampled process is a weak one, since we only require
that the sampled process has the same autocovariance structure as the continuous-time
process, when observed on a discrete grid. We know that the filtered process on the LHS
of (2.9) (see [22, Lemma 2.1]) is a (p—1)-dependent discrete-time process. Therefore there
exist 2P~! possible representations for the RHS of (2.9) yielding the same autocovariance
function of the filtered process, but only one having its roots outside the unit circle, which
is called minimum-phase spectral factor (see [79] for a review on the topic). Since it is
not possible to discriminate between them, we always take the minimum-phase spectral
factor without any further question. This will be crucial for our main result.

Moreover, the rationale behind Assumption 2.1 (ii) becomes clear now: if () = 0
for some k, then the corresponding |(x|? is equal to 1+ A?|ug|* + o(A?), for either sign
choice. Then the MA(p — 1) polynomial in Eq. (2.10) will never be invertible for small
A. O

In order to ensure the invertibility of the sampled CARMA process, we need to verify
that |n(&;)| is strictly less than 1 for all = 1,...,p — ¢ — 1 and sufficiently small A.

Proposition 2.2.2. The coefficients n(&;) in Eq. (2.12) are uniquely determined by

77(&):&_1_ (gi_1)2_1+0(1)7 izl,...,p—q—l,

and we have that & — 1 — /(& —1)2—=1€ (0,1) foralli=1,...,p—q— 1.

Proof. 1t follows from Proposition 2.6.1 that & € (2,00) for alli =1,...,p —q — 1.

10



2.3 Noise recovery
This yields & — 1+ /(& — 1)2 — 1 > 1 for all i and hence, we have that
&) =&—-1-V(&E—-1)2?-1+0(1), i=1,....p—q—1.

Since the first-order term of 7(¢;) is positive and monotonously decreasing in §;, the

additional claim follows. O

2.3 Noise recovery

In this section we are going to prove the first main statement of the chapter, which is
a recovery result for the driving Lévy process. We start with some motivation for our
approach.

We know that the sampled CARMA process Y2 = (Y,a)nez has the Wold represen-
tation (cf. [17, p. 187])

A—OO.AA,:OOU_AA @A‘
Y —;% Z Z(\/Zzbj)((mzn_]), nez, (2.14)

J=0

where Z?‘;O(@DJA)Z < 00. Moreover, Eq. (2.14) is the causal representation of Eq. (2.9),
and it has been shown in [20] that for every causal and invertible CARMA((p, ¢) process,
as A |0,

T2 b a glt), >0, (2.15)
VA
where ¢ is the kernel in the moving average representation (2.5). Given the availability of
classical time series methods to estimate (@DJA) jen and o3, and the flexibility of CARMA
processes, we argue that this result can be applied to more general CMA processes.

Given Egs. (2.14) and (2.15) it is natural to investigate, whether the quantity
L5 = @ZHA, n € 7Z,
OA

approximates the increments of the driving Lévy process in the sense that for every fixed
t € (0, 00),

Al
S LS5 L, Ao (2.16)
=1

As usual, convergence in L? implies also convergence in probability and distribution.

The first results on retrieving the increments of L were given in [19], and furthermore

11



2 Noise recovery and Riemann sum approximations

generalized to the multivariate case by [24]. The essential limitation of this parametric
method is that it might not be robust with respect to model misspecification. More
precisely, the fact that a CARMA(p, q) process is (p — ¢ — 1)-times differentiable (see
Proposition 3.32 of [63]) is crucial for the procedure to work (cf. [24, Theorem 4.3]).
However, if the underlying process is instead CARMA(p/, ¢') with p’ — ¢’ < p — ¢, then
some of the necessary derivatives do not exist anymore. In contrast to the aforementioned
procedure, in the method we propose there is no need to specify the autoregressive and
the moving average orders p and ¢ in advance.

Before we start to prove the recovery result in Eq. (2.16), let us, in analogy to the

discrete-time case, establish the notion of invertibility.

Definition 2.3.1.
A CARMA(p, q) process is said to be invertible if the roots of the moving average poly-
nomial c(-) have negative real parts, i.e. ®(p;) >0 for alli=1,...,q.

Our main theorem is the following:

Theorem 2.3.2. Let Y be a finite-variance CARMA(p, q) process and Z* the noise
on the RHS of the sampled Eq. (2.9). Moreover, let Assumption 2.1 hold and define
LA =/ AJopZ”. Then, as A |0,

Al
Y LIPS L, te(0,00), (2.17)
=1

if and only if the roots of the moving average polynomial c(-) on the RHS of the CARMA
Eq. (2.2) have negative real parts, i.e. if and only if the CARMA process is invertible.

Proof. Under Assumption 2.1 (ii) and using Proposition 2.2.2; the sampled ARMA
equation (2.9) is invertible. The noise on the RHS of (2.9) is then obtained using the

classical inversion formula

_24(B)

ZA

where B is the usual backshift operator. Let us consider the stationary continuous-time

process

ZA ::M}Q:iaé/t_mg(t—iA—s)dLs teR (2.18)
t @A(BA) pir 7 - ) )

where the continuous-time backshift operator Ba is defined such that BA Y; := Y;_a for
every t € R and the series in the RHS of Eq. (2.18) is the Laurent expansion of the

12



2.3 Noise recovery

rational function ®2(-)/©2(+). Moreover, Z2 = Z2 for every n € N; as a consequence,
the random variables Z2, Z2 are uncorrelated for |t —s| > A and Var(Z2) = Var(Z2).
Exchanging the sum and the integral signs in Eq. (2.18), and the fact that g(-) = 0 for

negative arguments, we have that Z# is a continuous-time moving average process

t
Zf:/ g~ (t—s)dL,, teR,

whose kernel function g® has Fourier transform (cf. Eq. (2.8))

DR (e DA (e™R) ¢(—iw)

Flo* () = g m) FLON) = g oa

—, weR, A>0.
a(—iw)

Since we can write L; — L;_a = ffoo Lo,a)(t—5)dL,, t € R, the sum of the differences

between the rescaled sampled noise terms and the increments of the Lévy process is

given by
n 3 nA n \/Z
ZL].A—L,LA:/ =g (JA — 5) — T.a)(JA — 5)| dL,
=1 —oo o L 7A
nA
= / ha(nA — s)dLy, n €N, (2.19)
where, for every n € N,
~ | VA . .
h2(s) := Z ~——g*(s+(j—n)A) = Loa(s+ (G —nA)|, seR,

o
=1 L8

and the stochastic integral in Eq. (2.19) w.r.t. L is still in the L?-sense. It is a standard
result, cf. [47, Ch. IV, §4], that the variance of the moving average process in Eq. (2.19)

is given by

nA

> LnA] — [ A - 9) ds = B0, (2.20)

—00

E

where the latter equality is true since h5(s) = 0 for any s < 0.

Furthermore, the Fourier transform of h2(-) can be readily calculated, invoking the

13



2 Noise recovery and Riemann sum approximations

linearity and the shift property of the Fourier transform. We thus obtain

Flhp()Hw) = \;—Zf{gA(-)}( ) = F{L.a)( ]Zezw(n NA

B \/_H (1= ”+W))c( w) e —1] 1 — eiwAn

O'A @A(eWA) a(—iw)  iw 1 —ewa

=: _[hA’l(w) — h*?(W)] - heP(w), weR

Due to Plancherel’s Theorem, we deduce

TA
D L5 = Lna
=1
1
2 Je

Var

= 20N = 5 [ IFURO}Fw) o

[[18n22@) 4 [0 h23(w) [ — 2 (> ~W(w)) 129 ()] e,

(2.21)

It is easy to see that the first two integrals in Eq. (2.21) are, respectively, the variances
of >0, Z_LJ-A and L,a, both equal to nA. Setting n := |t/A] yields for fixed positive t,
as A |0,

[t/A]

r (> LY~ Liyaja _2[t/AJA—;/

=1 R

R (hA’l RE2(w )) ‘h@;’AJ( )‘de

:2t(1+o(1))—1/R§re<hA,l 82w i )|

T
Thus, in order to show Eq. (2.17), it remains to prove that

l/R%(hA,l.W(w)) 5, )’2dw:2t(1—|—0(1)) as A 10,

(0

which in turn is equivalent to

L VA1 - cos(w[t/AA) sin(wA)%( ;‘-’1(1—eA<AJ+"w>)C(—m)>

ont Jo ' oa  1— cos(wA) w OA (ewh) a(—iw)

L 1 cos(w) D (1= BN o)
M 5 (D) a(—iw)

W

)]dw:1+0(1) as A | 0.

(2.22)

Now, Lemma 2.6.2 shows that the integrand in Eq. (2.22) converges pointwise, for

14



2.3 Noise recovery

every w € R\ {0}, to 2(1 — cos(wt))/w? as A | 0. Since, for sufficiently small A, the inte-
grand is dominated by an integrable function (see Lemma 2.6.3), we can apply Lebesgue’s
Dominated Convergence Theorem and deduce that the LHS of Eq. (2.22) converges, as
A 10, to

1 1-— t 2 (11—
1 cos(wt) do / cos(w) do =1
7t Jr w? T Jo w?
This proves Eq. (2.22) and concludes the proof of the “if”-statement.

As to the “only if”-statement, let J := {j =1,...,q: R(p;) < 0} and suppose that

J # ). Then we have, by Eq. (2.10) for A | 0,

c(—iw) _piq*l d
BA(ciod) — ]1:[1 L+n(&)) 1:[ e eWA (140(1))
p—q—1 o
= T (e A TT 22— 4 o1)
=1 jeg Hi
p—q—1

= (L+0(&) AT+ Dw)(1 +o(1)), weR,

where D(w) := =1+ [];c,(p; — iw)/(—p; — iw). By virtue of Lemmata 2.6.2 and 2.6.3,
we then obtain that the LHS of Eq. (2.22) converges, as A | 0, to

1 [ 1—cos(wt)
7t Jr w? T

(1+R(Dw)))dw =1+ = /R 1LOS(W)SCE(D(w/t)) dw

w?

Since | [[;e;(1; — iw)/(—p; —iw)| = 1, we further deduce that R(D(w)) < 0 for any
w € R. Obviously, R(D(w)) # 0 and hence,

1 1_LSW)@ +R(DW))) dw < 1,

7t Jx w?

which, in turn, shows that the convergence result (2.17) cannot hold. O

Remark 2.3.3. (i) It is an easy consequence of the triangle and Hélder’s inequality
that, if the recovery result (2.17) holds, then also

[t/A] N
dNLp Y Lf (Ly— Ly), t,se(0,00), t<s,
=1 j=[t/Al+1

is valid.

15



2 Noise recovery and Riemann sum approximations

(i)

(iii)

(iv)

Minor modifications of the proof above show that the recovery result remains valid
if we drop the assumption of causality (i.e. Assumption 2.1 (i)) and suppose instead
only R(\;) # 0 for every j = 1,...,p. Hence, invertibility of the CARMA process
is necessary for the noise recovery result to hold, whereas causality is not. In the
non-causal case, the obtained white noise process will not be the same as in the
Wold representation (2.14).

The necessity and sufficiency of the invertibility assumption descends directly from
the fact that we choose always the minimum-phase spectral factor, as pointed out
in Remark 2.2.1.

The proof suggests that this procedure should work in a much more general frame-
work. Let I2(-) denote the inversion filter in Eq. (2.18) and * := {@b?}ieN the
coefficients in the Wold representation (2.14). Then the proof of Theorem 2.3.2

essentially needs, apart from the rather technical Lemma 2.6.3, that, as A | 0,

o g(s) e ds
ZZO:O ka etkwA

T2 (%) Flg()}(w) -1, weR, (2.23)
provided that the function >, Y2 2% does not have any zero inside the unit circle.
In other words, we need that the discrete Fourier transform in the denominator
of (2.23) converges to the Fourier transform in the numerator; this can be easily
related to the kernel estimation result in Eq. (2.15). Given the peculiar structure
of CARMA processes, this relationship can be calculated explicitly, but the results
should hold true for continuous-time moving average processes with more general

kernels, too. O

We illustrate Theorem 2.3.2 and the necessity of the invertibility assumption by an

example where the convergence result is established using a time domain approach. That

gives an explicit result also when the invertibility assumption is violated.

Unfortunately this strategy is not viable for a general CARMA process, due to the

complexity of calculations involved when p > 2.

Example 2.3.4 (CARMA(2, q) process). The causal CARMA (2, ¢) process is the strictly

stationary solution to the formal stochastic differential equation

16
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2.3 Noise recovery

and it can be represented as a continuous-time moving average process, as in Eq. (2.5),
for A\i, Aa < 0, A\ # Ag and ¢ € R\{0}, with kernel

etz\l_et>\2
t) = =0
g() o )\1_)\2 Y q Y
C+>\1 )\ C+)\2 A
t) = ! 2 —1

for t > 0 and 0 elsewhere. The corresponding sampled process Y2 = Y, a, n € Z, satisfies
the causal and invertible ARMA(2, 1) equations as in (2.9) where, from Eq. (27) of [21]
and for n € Z,

nA (n—1)A
_ /( g(nA — u) dLy + / g(nA — 1) — (M2 4 6¥8) g((n — 1)A — u)] dLy.

(n—2)A
(2.24)

The corresponding MA(1) polynomial in Eq. (2.9) is ©2(B) = 1 —0,B, with asymptotic

parameters

Or = V3 —2+40(1), ok =0’A32+V3)/6+ o(A®), q=0,
Or =1 —sgn(b)bA 4+ o(A), o = A +o(A), g=1.

The inversion of Egs. (2.9) and (2.24) gives, for every A > 0,

ZnA:@A—(B)Yn Z@ABZH AB)Y,

. (n—i—1)A
S0 [ gl DA =) — (@4 4+~ ha)g((n i~ DA — u)] L,

Then Z2 = (Z2),ez is a weak white-noise process. Moreover, using AL,, = f(n ya 4L,
we have
0, J <0,
A A .
E[Z} ALl ={ [2g j=0, (225)

N 1f0 A+s (eMA + &M —9,) g(s)]ds, j > 0.

17



2 Noise recovery and Riemann sum approximations

For a fixed ¢ € (0, 00), using the fact that AL and L® are both second-order stationary

white noises with variance A, we have that

2

/Al N i
E|Y (L} = AL)| =2[t/A]A -2 Z [LPAL] —2) E[LFAL)]
i=1 i#j
A
:2Lt/AJA—@Lt/AJ/ o(s) ds
O'A 0
0WA [A [t/A] i—1
- A+ 5) — (M2 4 M8 —h,) N !
ox )b [a( ) — ( A) ds Y >

=1 j=1

where the last equality is obtained using Eq. (2.25). Moreover, for every a # 1,

n -1
,_a"+(1—-an-1
D) Ll

i=1 j=1

Then the variance of the error can be explicitly calculated as

1t/A] 2

E|Y (L& —AL)

=1

2N R
WMA———UM/‘ 2fWA /A1 —0a) — 1

(1= 0n)?
x/o 9(A + 5) — (A1A+e’\2 — 0) g(s)] ds.

We now compute the asymptotic expansion for A | 0 of the equation above. We obviously
have that 2|¢t/A]A = 2t(140(1)) and, using the explicit formulas for the kernel functions
9s

q=20
(3 \/g)tJro
(4v3—6) A1 +0(1))
DA |t/A] g } L(3+V3)t/A(1L+o(1))
g(A+5) — (A1A+eAzA GA)()]ds =
<9 WAJ+Lt/AJ<1—9A>—1>/<1—9A>z g=1
2t + o(1)

2(c — sgn(c) ¢) A% + o(A?)
(€78 +sgn(c)et —1)/(cA)* + o(A7?).

18



2.4 High-frequency behavior of approximating Riemann sums

Hence, for a fixed t € (0,00) and A | 0, we get

2

/4]
_ 1 =
E|S (2 -aL)| = { o(1); 1=0

P —2(e7#O 4 sgn(c)et — 1)(1 —sgn(c)) /e +o(1), q=1,

i.e. (2.17) holds always for ¢ = 0, whereas for ¢ = 1 if and only if ¢ > 0. If ¢ < 0, the
error approximating the driving Lévy by inversion of the discretized process grows as 4t

for large t. O

2.4 High-frequency behavior of approximating Riemann

sums

The fact that, in the sense of Eq. (2.16), L2 ~ AL, = Ln,a — L(n—1)a for small A, along
with Eq. (2.15), gives rise to the conjecture that the Wold representation (2.14) for Y2
behaves on a high-frequency time grid approximately like the MA(0c0) process

Zg (j+h)AL,_;, neZ, (2.26)

for some h € [0, 1] and g is the kernel function as in (2.7). In other words, we have for a
CARMA process, under the assumption of invertibility and causality, that the discrete-
time quantities appearing in the Wold representation approximate the quantities in
Eq. (2.26) when A | 0. The transfer function of (2.26) is then defined as

Zg (j+h)e™ —mg<w<m, (2.27)

and its spectral density can be written as

1
AW = - WRPw), —T<wsm

It is well known that a CMA process can be defined (for a fixed time point t) as the L?-
limit of Eq. (2.26); this fact is naturally employed to simulate a CMA process easily, when
all the relevant quantities are known a priori. Therefore we will name the process Y%
approzimating Riemann sum of Eq. (2.5), and h is the so-called rule of the approximating

sum; e.g. if h = 1/2, we have the popular mid-point rule.
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2 Noise recovery and Riemann sum approximations

In order to give an answer to our conjecture, we will investigate properties of the
approximating Riemann sum Y& of a CARMA process and compare its asymptotic
autocovariance structure with the one of the sampled CARMA process Y. This will
yield more insight into the role of A for the behavior of Y as a process.

We start with a well known property of approximating sums.

Proposition 2.4.1. Let g be in L? and Riemann-integrable. Then, for every h € [0, 1],
as A ] 0:

(i) Y — v L 0, for every k € Z.

(i1) fftf/ﬁj L Y, for every t € R.
Proof. This follows immediately from the hypotheses made on g and the definition of
L?-integrals. O

This result essentially says only that approximating sums converge to Y; for every fixed
t. However, for a CARMA(p, q) process we have that the approximating Riemann sum
process satisfies for every h and A an ARMA(p,p — 1) equation (see Proposition 2.4.2
below), meaning that there might exist a process, whose autocorrelation structure is the
same as the one of the approximating sum. Given that the AR filter in this representa-
tion is the same as in Eq. (2.9), it is reasonable to investigate whether ®2(B) Y2 and
P2 (B) Y2 " have, as A | 0, the same asymptotic autocovariance structure, which can
be expected but is not granted by Proposition 2.4.1.

The following proposition gives the ARMA(p,p — 1) representation for the approxi-

mating Riemann sum.

Proposition 2.4.2. Let Y be a CARMA(p, q) process, satisfying Assumption 2.1, and
furthermore suppose that the roots of the autoregressive polynomial a(-) are distinct.
Then the approzimating Riemann sum process Y ™" of Y defined by Eq. (2.26) satisfies,
for every h € [0,1], the ARMA(p,p — 1) equation

P2(B) YA = 0 0MB)AL,, nc7Z, (2.28)

where
OMM(2) = 05" — 07+ — .+ (—l)p_lépAf{ P (2.29)

and

p
i ) o,
QA’h — § : C( hAN § ANy g+ AG) kE=0,... -1
* =1 a/()\l>e ‘ , 7 v |
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2.4 High-frequency behavior of approximating Riemann sums

where the right-hand sum is defined to be 1 for k = 0 and it is evaluated over all possible
subsets {j1,...,Jx} of {1,...,p}\{l}, having cardinality k, for k > 0.

Proof. Write 2 (z2) = [[_;(1 —e®¥2) = = >0 ¢527 and observe that

k=0 \j=0
P o0
T A (h+k)AA
—oc E E ?; elhth) ep  ALp_j_y
Jj=0 k=p—j

'U
._.

O'CT (Z gbA (k— ])AA) Aep . ALn—k
0
+UCTZ< Zqﬁ e_JAA> (htR)AA o ALy .
k=p

B
Il

By virtue of the Cayley-Hamilton Theorem (cf. also [22, proof of Lemma 2.1]), we have

that
P
e
J b
=0

and hence, ®*(B) Y A" = —gcT Y071 (Z?:o gbfe(k_j)AA) eh4e, AL, . We conclude
with [39, Lemma 2.1(i) and Eq. (4.4)]. O

Remark 2.4.3. (i) The approximating Riemann sum of a causal CARMA process is
automatically a causal ARMA process. On the other hand, even if the CARMA
process is invertible in the sense of Definition 2.3.1, the roots of (:)A’h(-) may lie

inside the unit circle, causing YY" to be non-invertible.

(ii) It is easy to see that é()A’h = g(hA). Then for p — g > 2, if h = 0, we have that
05" = 0, giving that ©2:°(0) = 0. This is never the case for ©2(), as one can see
from Eq. (2.10) and Proposition 2.2.2. Moreover, it is possible to show that for
h =1 and p — g > 2, the coefficient épA_’ll is 0, implying that Eq. (2.28) is actually
an ARMA (p, p — 2) equation. For those values of h, the ARMA equations solved
by the approximating Riemann sums will never have the same asymptotic form as

Eq. (2.9): therefore we shall restrict ourselves to the case h € (0,1) from now on.
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2 Noise recovery and Riemann sum approximations

(iii) The assumption of distinct autoregressive roots might seem restrictive, but the
omitted cases can be obtained by letting distinct roots tend to each other. This
would, of course, change the coefficients of the MA polynomial in Eq. (2.29). More-
over, as shown in [20, 21], the multiplicity of the zeros does not matter when

L?-asymptotic relationships as A | 0 are considered. U

Due to the complexity of retrieving the roots of a polynomial of arbitrary order from
its coefficients, finding the asymptotic expression of OAh (+) for arbitrary p is a daunt-
ing task. Nonetheless, using Proposition 2.4.2, it is not difficult to give an answer for

processes with p < 3, which are the most used in practice.

Proposition 2.4.4. Let Y2" be the approzimating Riemann sum for a CARMA(p, q)
process, with p < 3, let Assumption 2.1 hold and the roots of a(-) be distinct.

Ifp=1, the process Y& is an AR(1) process driven by Z> = geA™M AL, for every
A>0. Ifp=2,3, we have

SAh a p a-1 (hA)P=a-1
CDA(B) YnA - H(l — (1= Ap; +o(A H (1 — xp—q.i(h)B) ( mALn>

(2.30)
where, for h € (0,1) and A [ 0, x21(h) = (h—1)/h+0o(1) and

2(h — 1)2
2h—1)h—1—(=1)iy/1—4(h— 1)h

x3,;(h) = +o(l), j=12

Proof. Sincep < 3, 0% "(2) is a polynomial of order p—1 with real coefficients; therefore
the roots, if any, can be calculated from the coefficients, and asymptotic expressions can
be obtained by computing the Taylor expansions of the roots around A = 0.

If p = 1, the statement follows directly from Eq. (2.28). For p = 2,3, the roots of
Eq. (2.29) are {14+ Ap; +0o(A)}icr g and {1/xp—q.i(h) }iz1, p—q-1, giving that

p—q—1

q
0" (2) = [[(1+ A+ o(A) = 2) T (1/xp-gi(h) —2), z€C.
=1

=1

eAh

Vieta’s Theorem gives that the product of the roots of Eq. (2.29) is equal to 85"/ ey

which yields

q pql

éAh('Z):éoA’h (I—(1—Au+oA H (1 = Xp—qi(h)2).
3 =1
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2.4 High-frequency behavior of approximating Riemann sums

Since 05" = g(hA) = o(hA)P971/(p — ¢ — D!(1 + o(1)), we have established the
result. O

In general the autocorrelation structure will depend on h through the parameters
Xp—qi(h),i=1,...,p—q—1.In a time series context, it is reasonable to require that the
approximating Riemann sum process has the same asymptotic autocorrelation structure

as the CARMA process we want to approximate.

Corollary 2.4.5. Let the assumptions of Proposition 2.4.4 hold. Then ®*(B)Y2 and

OA(B) YA have the same asymptotic autocovariance structure as A | 0

for every h € (0,1), ifp—q=1,
for h = (3+V3)/6, ifp—q=2,

and for h = (15 +1/225 — 30\/%) /30, ifp—q=3

Moreover, the MA polynomials in FEgs. (2.10) and (2.30) coincide if and only if the
CARMA process is invertible and |xp—q:(h)| < 1, that is

for every h € (0,1), ifp—q=1,
for h = (3+/3)/6, ifp—q=2.

Forp—q =3, such h does not exist.

Proof. The claim for p — ¢ = 1 follows immediately from Proposition 2.4.4 and Egs.
(2.10)-(2.11). For p = 2 and ¢ = 0, we have to solve the spectral factorization problem

oAl +n(&)?) = ?A%(1 + x2.(h)*)h°
oan(&) = —o°A’xaq(h)h?

with (&) = 2—v/3+0(1) and x21(h) = (h—1)/h+o0(1). Eq. (2.11) then yields the two
solutions i = (34 1/3)/6. For p = 3 and ¢ = 1, analogous calculations lead to the same
solutions. Finally, consider the case p = 3 and ¢ = 0. We have to solve asymptotically
the following system of equations

0.2 5
oA (1 + (n(&) +n(£2))* + n(&)*n(&)?) = 4A (1+ (x3.1(h) + x32(h)* + x3,1(h)*x3,2(h)*)h*
0_2 5
oA (&) +n(&) A+ n(&)n(&)) = — 4A (x3,1(h) + x3,2(h)) (L + x3,1(h)x3,2(h))h*
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2 Noise recovery and Riemann sum approximations

(TQAS

4 X3,1(h)X3,2(h)h4

oan(&)n(&) =

where 1(£12) = (13 £ /105 — V270 + 261/105) /2 + o(1) and xs,1(h) and x32(h) are as
in Proposition 2.4.4. Solving that system for h gives the claimed values.

To prove the second part of the corollary, we start observing that, under the assump-
tion of an invertible CARMA process, the coefficients depending on p; will coincide
automatically, if any. Then it remains to check whether the coefficients depending on
h can be smaller than 1 in absolute value. The cases p — ¢ = 1,2 follow immediately.
Moreover, to see that there is no such h for p — ¢ = 3, it is enough to notice that, for
every h € (0,1), |x31(h)| > 1 and 0 < |x32(h)| < 1, i.e. they do never satisfy the sought
requirement for h € (0, 1). O

Corollary 2.4.5 can be interpreted as a criterion to choose an h such that the Riemann
sum approximates the continuous-time process Y in a stronger sense than the simple
convergence as a random variable for every fixed ¢. The second part of the corollary says
that there is an even more restrictive way to choose h such that Egs. (2.10) and (2.30)
will coincide. If the two processes satisfy asymptotically the same causal and invertible
ARMA equation, they will have the same coefficients in their Wold representations as
A | 0, which are given in the case of the approximating Riemann sum explicitly by
definition in (2.26).

In the light of (2.15) and Theorem 2.3.2, the sampled CARMA process will asymp-
totically behave like its approximating Riemann sum process for some specific h = h,
which might not even exist, as in the case p = 3, ¢ = 0. However, if such an h exists,

the kernel estimators (2.15) can be improved to

“xVfial = 9AUYA +R) +o(d), tER,

For invertible CARMA (p, ¢) processes with p—q = 1, any choice of h would accomplish
that. In principle an h can be found matching a higher order expansion in A, where higher
order terms will depend on h.

For p — ¢ = 2, there is only a specific value h = h := (3 4+ v/3)/6, such that yAh
behaves as Y2 in this particular sense, and therefore it gives a recommendation for a
unique, optimal value for, e.g., simulation purposes.

Finally, for p — ¢ = 3, a similar value does not exist, meaning that it is not possible
to mimic Y2 in this sense with any approximating Riemann sum.

In order to confirm this, we now give a small numerical study. We consider three
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2.4 High-frequency behavior of approximating Riemann sums

different causal and invertible processes, a CARMA(2,1), a CAR(2) and a CAR(3)
process, with parameters \y = —0.7, \y = —1.2, \3 = —2.6 and pu; = 3. Of course, for
the CARMA(2,1) we use only Aj, Ay and py, while for the CAR processes there is no
need for p;. Then we estimate the kernel functions from the theoretical autocorrelation
functions using (2.15) as in [20], for moderately high sampling rates, namely 22 = 4
(Figure 2.1) and 2° = 64 samplings per unit of time (Figure 2.2). In order to see where
the kernel is being estimated, we plot the kernel estimations on different grids. The small
circles denote the extremal cases h = 0 and h = 1, the vertical sign the mid-point rule
h = 0.5, and the diamond and the square are the values given in Corollary 2.4.5, if any.
The true kernel function is then plotted with a solid, continuous line. For the sake of
clarity, only the first 8 estimates are plotted.

For the CARMA (2, 1) process, the kernel estimation seems to follow a mid-point rule.
For the CAR(2) process, the predicted value h = (3 + 1/3)/6 (denoted with squares) is
definitely the correct one, and for the CAR(3) for every h € [0, 1] the estimation is close
but constantly biased. Of course in the limit A | 0, the slightly weaker results given by
Eq. (2.15) still hold, giving that the bias vanishes in the limit. The conclusion expressed
above is true for both considered sampling rates, which is remarkable since they are only

moderately high, in comparison with the chosen parameters.

CARMA(2,1) process CAR(2) process CAR(3) process

0.75

0.8

0.7

0.7

0.6

0.3

0.1

0.4 L L L 0
0 0.5

o
N
)
oL
2l
&l
[N

Figure 2.1: Kernel estimation for a sampling frequency of 22 samplings per unit of time,
i.e. A = 0.25. The diamond and the square symbols denote, where available,
the values of h suggested by Corollary 2.4.5.
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CARMA(2,1) process

CAR(2) process CAR(3) process

0.25 0.04

0.035

0.025 -

g(t)

0.02

0.015

0.01F

0.005 -

L L L L L L 0 L L L L L L 0 L L L L L L
0 0.02 0.04 006 008 01 012 0 0.02 004 006 0.08 0.1 0.12 0 0.02 004 006 0.08 01 012
t t t

Figure 2.2: Kernel estimation for a sampling frequency of 2¢ samplings per unit of time,
i.e. A = 0.016. The diamond and the square symbols denote, where available,
the values of h suggested by Corollary 2.4.5.

2.5 Conclusion

In this chapter we have dealt with the asymptotic behavior of two classes of discrete-time
processes closely related to the one of CARMA processes, when the sampling frequency
tends to infinity.

First, we studied the behavior of the white noise appearing in the ARMA equation
solved by the sampled sequence of a CARMA process of arbitrary order. Then we showed,
under a necessary and sufficient identifiability condition, that the aforementioned white
noise approximates the increments of the driving Lévy process of the continuous-time
model. The proposed procedure is non-parametric in nature, and it can be applied with-
out assuming any knowledge on the order of the process. Moreover, it is argued that
such results should be extendable to CMA processes with more general kernel functions.
This is left for future research.

The results in the first part of this chapter, considered jointly with those in [20],
show that the Wold representation of a sampled causal and invertible CARMA process
behaves somehow like a Riemann sum as A | 0. Then in the second part of this chap-
ter the converse is investigated, i.e. whether a Riemann sum approximating a causal

CARMA process satisfies the same ARMA (p, p — 1) equation of the process we want to
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approximate, as the spacing of the grid tends to zero. This is in particular important for
simulations, where such approximating Riemann sums constitute a natural choice.

It has been shown that these processes satisfy an ARMA(p,p — 1) equation, but in
general they are not invertible. For p < 3, the roots of the moving average polynomial
of such discrete-time processes depend, apart from the roots of ¢(-), also on the rule h.
Moreover, in the case p = 3, ¢ = 0, no choice of h makes the Riemann sum invertible, im-
plying that the Riemann sum and the sampled process will never satisfy asymptotically
the same causal and invertible ARMA equation. Although only a finite number of cases
has been considered, it shows that in general a causal and invertible CARMA process
cannot be approximated by a Riemann sum, at least not in the sense of the second part

of Corollary 2.4.5. Further investigations on this matter are left for future research.

2.6 Appendix to Chapter 2

Throughout this appendix, we shall use the same notation as in the preceding sections.

Proposition 2.6.1. The function ay(x), as defined in Eq. (2.13), has the form

1 Py(z)
(2n + 1)! antl”

an(x) = x#0, n €N, (2.31)

where P,(x) is a polynomial of order n in x, namely

=g S ()6 (e

§=0 k=j+1 =
n n k . .
. 2n+1 i+ 1\ /2k+1 i 2k +1 .
n—j | _ _9\j—2k
+;}x ;(2k+1)’{2k+1};Kj+1><2z’+1> (j+1>( 2i )]( 2) ’
(2.32)

with {} being the Stirling number of the second kind. Moreover, all the zeros of a,(x)

are real, distinct and greater than 2.

Proof. Using the definition of the hyperbolic functions, we can write

sinh(z) 02z _ 1
- = eC 0
cosh(z) —1+x €24+ 1+2(zx — 1)e? flzx), 2 , x#0,

ie. f(z,z) = g(e*,x), where g(y,z) :=(y* — 1)/(y* + 1 + 2(x — 1)y). Then the n-th
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2 Noise recovery and Riemann sum approximations
derivative of the function f(-,x) is, by virtue of the Faa di Bruno formula

kz

e”*, zeC, x#0,

y=e®

o o "\ (n) OF
%f(z,x) = @g(e L) = Z {k} 8_ykg(y’x)

k=1

where the coefficients {Z} are the Stirling numbers of the second kind. Using the previous

formula and the definition of a,,(x), for = # 0,

T (2n+1) o
= Z L a_ykg(y’x)

z=0 k=1

82n+1
2n+ D!ay(z) = Wf(z, x)

y=1

_2n+1 2n+1)] 1 (z—=1)(z+1) .

= kz:;k'{ k }27Ti/p(Z_QQ(x))(Z_al(x))(Z_1)k+1d

_2n+1 2n+1 L Z+1 z

= kz:; k!{ k }27ri /p (z —az(2))(z — a1 (2))(z — 1)kd (2.33)

where the latter equality comes from the Cauchy differentiation formula, a;(z) = 1—z—
x(r —2), as(x) =1 — 2z + /x(x — 2), i.e. they are the roots (in y) of the polynomial

y>+ 1+ 2(x — 1)y, and p is a counter-clockwise oriented closed curve in the complex

plane encircling z = 1. The case x = 0 has been excluded because f(-,0) is not defined

in z =0, and lim,_, | f(2,0)] = 0.

Let us denote the integrand in Eq. (2.33) by fx(z,z); it is a rational function having
one pole of order k in z = 1. Moreover, there are two simple poles in z = a;(z) and
z = ag(x) if x # 2, or just a simple one in z = —1 if z = 2, due to cancellation with
the zero at z = —1 in the numerator. The case x = 2 can be also obtained by letting
the difference between a;(x) and as(x) tend to zero in the upcoming calculations and is

therefore not treated by itself.

Then by the Cauchy theorem of residues, Theorem 1, p. 24 of [65], we have that the
integral in Eq. (2.33) is
1
Sl ACRLERS SEACE
2mi J,
= —Res.—q, () f(2, %) — Res,—q, ) fi(2, ) — Res.—oo fi(2,2), © # 0,2,

where the latter identity is obtained using Theorem 2, p. 25 of [65]. Moreover, since the
difference of orders between the polynomials in the denominator and in the numerator
of fr(z,2) is k+ 1 > 1, the residue at infinity is always zero (Section 3.1.2.3, pp. 27-28,
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2.6 Appendix to Chapter 2

[65]). For = # 0,2, we have that z = a;(x) and z = as(z) are simple poles, yielding

1+ ay(z) 1+ as(x)
QW/fk ar(z) = D (az(2) —ar(w))  (az(e) = DF (as(2) — a(x))

l <2@+1> (2zi1) ( )} (—a)"¥ (a(w — 2))"
00 )L

+ (k mod 2) (—2)F/2+1=k p=lk/2]=1, (2.34)

Lk/ 2]-11

M\ i M\

where the last equality is obtained by using the Binomial theorem. Plugging Eq. (2.34)
in Eq. (2.33), and separating the outermost sum in odd and even k, we get, still for
x#0,2,

(2n + 1)! ay(z)

S (DG - () () e

J

R 36 ([ ST R ) P

J

2n +1
2k + 1)! — )7k gL
+k:0< + ){2k+1}( )"

n k—1

P]f
M»

k=0 j=0 1

3 |

Then Eq. (2.31) can be obtained by merging the last two lines and rearranging the

indexes.

Using (2.32), we easily see that, for P,(z) = po + p1z+ ... + puz”

p= (2" @D pa=1, (2.35)

i.e. P,(z) will have n, potentially complex, roots, and they can not be zero. Moreover,

it is easy to verify that f(z,x) solves the mixed partial differential equation

88_:2 (z,2) = (x—l)%jtx(a:—Q)aaz flz,z), z€C, x#0. (2.36)

Then we take 2n — 1, n € N, derivatives in z on both sides of Eq. (2.36); invoking the

Schwarz theorem, the product rule for derivatives and evaluating the resulting expression
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2 Noise recovery and Riemann sum approximations

at z = 0, we obtain that the function «,(z) is given by recursion, for = ¢ (0, 2),

(2n+3)(2n+ 1) apyi(x) = Va(r — 2)% Va(r — 2)5%0%(@ , (2.37)

ap(z) =1/z.

We now prove by induction the claim regarding the roots being real, distinct and greater
than 2. The cases ap(z) = 1/x and 6 o (z) = (x—3)/2? have respectively no and one zero,
so the claim can be verified directly; then we start from aq(z) = (30 — 152+ 2?)/(1202?),
whose zeros are &1 = 1/2 (15 — V105) = 2.37652, &0 = 1/2 (15 + v/105) ~ 12.6235,
and they satisfy the claim, too. We now assume that the claim holds for a,(z), n > 2,

and its zeros are 2 < &, 1 < &po < ... <&up-

The derivative of a,, () is of the form Q,,(z)/z""2, where (2n+1)!Q,(z) = m%Pn(m) -
(1+n) P,(z). By Rolle’s theorem, @,,(z) has n — 1 real roots x,;, i = 1,...,n— 1, such
that 2 < &,1 < Xni1 < &2 < Xn2 < - < Xnn—1 < &nn. Using the product rule and the

value of the coefficients in Eq. (2.35), we get

0

—ap(z) ~ —272/2n+ 1) =0, z — oo.

ox
Again by Rolle’s theorem, since Za,(z) — 0 and a,(z) — 0 as z — 00, Q,(z) has
a root at some point &,, < xnn. < 00. For x > 2, the function \/x(z — 2)%0@(1’)
is well defined and it is zero for # = 2 and z = Xy, ¢ = 1,...,n. With the same

arguments as before, we then obtain that 2 [y/z(z — 2)Za, ()] is zero for © = &4y,

t=1,...,n+1, where 2 < &,111 < Xn1 < &nt12 < Xn2 < - < Xon < Entint1 < 00.
Then by Eq. (2.37), those zeros are also roots of, respectively, a,.1(z) and P, ().
Since P,.1(x) is a polynomial of order n + 1, it can have only n + 1 roots, which have
been found already. Moreover, they are all real, distinct and strictly greater than 2, and

the claim is proven. O

Lemma 2.6.2. Suppose that R(p;) # 0 for all j = 1,...,q. Then we have, for any
t € (0,00) and w € R\{0},

limo

VA1 - cos(w|t/A]A) sin(wA) %< 51(1—eAW+"w>)c(—m>>

A0 oA w 1 — cos(wA) O~ (ewh) a(—iw)
_ #ﬁs’(‘”)a L R(DW)))
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and

VA1 — cos(w|t/A] A) ( (11— eAAiti)) C(‘“’)) —0

li .
Ao N w > OA (ewh) a(—iw)

where D(w) = =1+ [[;c; (1 —iw)/(—p; —iw) and J == {j =1,...,q + R(y;) < 0}.
Obuiously, if R(p;) > 0 for all j =1,...,q, then D(w) =0 for every w € R.

Proof. By Proposition 2.2.2, we have that n(§;) € (0,1) for sufficiently small A. Hence,
for any w € R,

§:1<1 _ eA()\j-i-iw)) C(—ZUJ) B 4 AN +iw) _ q [ — iw
OA (eiwd) a(—iw) N H (1 + n(&;)ed) ]1;[1 W+ A - 1 — (ewd
—q—1
= AP79(1 + D(w H (L+n(E) (1 +0(1)) as A LO.
7=1

Moreover, using Eq. (2.11), we obtain

f \/ (p—q)— 1 -T2 0(&))

UA Apr—aq—1

(14+0(1)) asA 0.

Since cos(w|t/A|A) — cos(wt) and Asin(wA)/(1 — cos(wA)) — 2/w as A | 0 for any
w € R\{0}, we can use the equality (cf. [20, proof of Theorem 3.2])

\/[2(]? —) =TI () T2 [+ ()|
L= 1+ () I ()

(I1+o0(1))=1+0(1) asAlO0

to conclude the proof. O

Lemma 2.6.3. Suppose that t € (0,00) and R(p;) # 0 for all j =1,...,q, and let the

functions h™1(-), h™2(-) and htt/?’AJ( ) be defined as in the proof of Theorem 2.3.2. Then

there is a C' > 0 such that, for any w € R and any sufficiently small A,

2R (0 By () - 032 B ()| < (),

where h(w) := (7% /2274 + 1) %1y 1)(w) + Cw*Lr\(—1,1)(w). Moreover, h is integrable

over the real line.

Proof. We obviously have

_ 2
)2@}3(%%@&( ) ARG (w )‘ ‘h“ B (w ‘ ’h“ % W) (238)
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2 Noise recovery and Riemann sum approximations

for any w € R and any A. Let us first consider the second addend on the RHS of
Eq. (2.38).

We obtain |h22 . hﬁ;’AJ( w)|*> =2 (1—cos(w|t/A]A))/w? and since [t/A]A < t holds,
we can bound, for any A, the latter function by #* on the interval (—1,1) and by 4/w?
on R\(—1,1).

As to the first addend on the RHS of Eq. (2.38), we calculate

1w 2 .
pat s o = g2 A I [ P feiw) 1 = cos(wlt/AJA) -, o
lt/A] o3 ENESE la(—iw)[>? 1 —cos(wA) '

Let now |w| < 1 and suppose that A is sufficiently small, i.e. the following inequalities
will be true for any |w| < 1 whenever A is sufficiently small. Using |1 — ¢*| < 7/4|z| for
|z| <1 (see, e.g., [1, 4.2.38]) yields

AN +iw) |2 2
A
|a(—iw)] 4
Then (1 — cos(wA))/(wA)? > 1/4 together with 4 (1 — cos(w|t/A|A))/w? < 2% (see

above) implies

L —cos(w[t/AJA) _ (1t 2
1 —cos(wA) ~— " \A) "~
As in the proof of Lemma 2.6.2, write ©2(z) = [T/_{~ "1 +n(g)z) 1-1(1=¢;2), where

¢ = 1—sgn(R(;)) 1 A+o0(A) (see [20, Theorem 2.1]). Since [T1_, (|1 — ¢;e™2| /A)2
1 1/20sgn(R(py)) 1 — iwl|?, we further deduce

|e(—iw)]|? < 21
;]':1 I1- CjeiwA|2 oA

By virtue of Eq. (2.11), we then obtain

DM| >

T a2 < 2220 —a) T n(e)
];[ |1+n(€]) | < A2(p—g-1) r_le |1_|_77( )ezwA‘

and since |n(&;)] < 1 for all j (see Proposition 2.2.2) we also have that |1 +n(&;)e™?| >
211+ n(&;)| for all j, resulting in

—q)— -1 —q)—
= ) - A2(p q—1) = 11 +7] f; = A2

Dm| |>
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2.6 Appendix to Chapter 2

where the latter equality follows from [20, proof of Theorem 3.2]. All together the RHS of
Eq. (2.39) can be bounded for any |w| < 1 and any sufficiently small A by (7/2)% 2-%2.

[t remains to bound the RHS of (2.39) also for |w| > 1. Hence, for the rest of the proof
let us suppose |w| > 1 and in addition we assume again that A is sufficiently small in

order that all the following inequalities hold. We are going to show that

o A TIy [T = e (i) P 1 — cos(w[t/A]A)
oA |02 (eiwd)? la(—iw)[* 1 —cos(wA)

C
<
S5

for some C' > 0. Since |02A/UZ’ < const. - A™2(P=4=1) (gee (2.11)) and since ?;;171 1+

n(&;)ewr| =2 < H?;’ffl(l — n(&)]) 2 < const. (cf. Proposition 2.2.2), it is sufficient to

prove

(wA)? TT5, 1 - eA(/\ij)’z le(—iw)]* 1 — cos(w|t/A]A)
A2(r—9) q RNE 21— A <C (2.40)
i1 |1 — (e wd|” |a(—iw)] cos(wA)

for some C' > 0. For any w € R, the power transfer function satisfies |c(—iw)/a(—iw)|? <
const. /(w??~® 4+ 1). Thus, Eq. (2.40) will follow from

@A?  TIo |1 = ey cos(w[t/A]A)

<C. 2.41
(wA)2(r—0) 4 A2(p—9) - ¢jeiwd [ 1 —cos(wA) — (241)

We even show that (2.41) is true for any w € R. However, using symmetry and periodicity
arguments it is sufficient to prove Eq. (2.41) on the interval [0, QK’T] We split that interval

into the following six subintervals

2 2 2 :
= [55  m2l] oo= |55 = e 0 5 = i B
27 |pi| 2w
L= |27 _ 1K1 27
0 {A J=1,1-:F~1,q 2 7A}

For any w € I U I, the fraction %W can be bounded by |¢/A]?. In the other

intervals we have the obvious bound 2/(1 — cos(wA)) for that term.

Now, for any j = 1,...,p, we have, as A | 0,

A , A
‘1 _eA)\j ‘ezo.;A‘z S 2|1 —GWA|2 +4A2 |)‘j|2 _ 8Sin2 (%) +4A2 |)‘j|2
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< AN (7 + [\])
ifwe UL U, and [1— e - e8| <4A? ((21/A —w)’ + NP ifw e LU U TG

The first fraction on the LHS of Eq. (2.41) satisfies

|45

2 mianl ,,,,, q 9o Agéiq), if w < ]1,

(W2) T ifwelLbUl
(WA)2(r=a) 4 A2(p—a) — (WA)22<p—q>v 2 U 13,
7r(22(+2‘1)’ ifW€]4U[5U]6.

Then, for any j = 1,...,q and w € I[; U I, we obtain

1= e 2| = |1 — (1 —sgn(R(15) 1y A + o(A))e2|” > A [sgn(R(11y)) py — iw|’

l\DI»—

1 2
> gAQ ||

If w € I3, then we have

2

1 e 2 (L] =y + o] ) = (25in (5] = iy + o(1)] 8
3 2
> A? (gw — |y + 0(1)|)

and likewise, for w € Iy, we deduce |1 — Qjei“’A‘z > A? (3 —w) — | + 0(1)])2. On I,
we get for arbitrary € > 0

1= Ge™2]” = 2(1 — cos(wA)) - (1 — Asgn(R(py)) R(szy) + o(A))
+2sin(wA) - (—Asgn(R(1y)) S(y) + 0o(A)) + A%|]* + o(A?)

> (WA - (1—2) = 2wA) - AS(y)| - (14 2) + A (|iy[* + 0(1))

= [2(wA).

Since f2(w)/w? = 1—¢ (w— o0) and f2(w)/w? —>oo(w—>0)

fA(w)/w? on (0, 00) could be achieved in any w* with ( ‘i)ff )( *) = 0. The only such
_ A(piP+o(1)

(global) minimum of

value is w* = RESIpAE Now
A, % (4112 R 11 2 1R(w. 2
fs (:")2) -1 —e— (1 —|—E)2 "2(”]” > (1 +€) (:U’J2> o 36 _ 62 Z - (/172) :
(w*) |1|? +o(1) |44 2 |pyl
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R(py)?

A
if we choose € = ¢ oz We obtain fw(;“) > %%I( |3 for any w € (0, 00). Hence,

1R(py)?
2 |l

Using periodic properties of the sine and cosine terms, we likewise get

|1 _ gjei‘*’A|2 > f?(wA) > (wA)?  for all w € .

1 R(p;)? 27 2
uuA
11— (e ‘ 3 |/~LjTQ A? N for any w € I5.

Putting all together, we can bound the LHS of Eq. (2.41) in I; by

i) ([t/A]A)? 4PA% - TT0, (ming=y g /4 + X))

A TS T A% 8-aA2 [ T0_, |py/?
< min |15 .t2_4p+q'H§= (min’f Lo |24 [ )
i=lg 2 j= Fo1 3l
in I, by
2(wA)?  APAP - TTT_, (dmaxi—y,..q [l + A7)
- R, )?
1 — cos(wA) (wA)? - TT0, 2 ILM]\"Z
5.4 TTP_) (dmaxg=y g lpxl* + [Aj]?) o
. R(p )2 T
ming—y g |4;]% - ;1-:1% |£Z]‘2)
in I3 by
X 12
2(wA)2 (WA)% (1 + 4 maxp— 1]“, \llkP)
1 — cos(wA) (wA)Q(P ) - (HwA)2
< 24p 202qﬁ (1 + |)\ ‘2 > C
m = 3
- ey Admaxy_1,. q|pl?
in I, by
TTTGE ISRV | (A G Rp— T —
(27)? 2 T i=1 Amax—1,....q [k
m2(p—q) 1 — cos(wA) 2024 (27T — wA)2q
P 2 2
< g4t 202qH(1+ Al 2) 2-(2m —wA)
P dmaxy_y, 4 |pkl?) 1 — cos(2m — wA)
B (T, e
s =L,
- ey dmaxg—1, 4 |ml?
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in I5 by

(2m)? 2 NPT (dmaxgor, g [kl® + []%)
w20~ 1 — cos(wA) A2 9_, § mingon, g [ 2(R(y) /1 1151)
(2m)2 47’-1_[’-’: (dmaxp—y, g |ue> + |Nj?) 2407
= 2(p—q) ngl ming_1,__ g |pe[2(R(p5)/|15])% 1 — cos(2m — wA)
(2m)% 47 H’-’: (4maxp—y, g > + |Aj?) 5-4

< . . =C,
m2e=a) TT9_y g mingoy g [e>(R(y) /1p5])? mingi g [p?
and, finally, in Ig by
(2 [t/A])2 A% - TT0_) (ming=y,_ g [l*/4 4 X))
7200 ST | (R

< (2mt)? 4% - 115, (mink Lo | /4 IV )
= 2(p—a) :1 2|,Uj|2

This shows Eq. (2.41) and thus concludes the proof. O
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3 On the limit behavior of the

periodogram of high-frequency

sampled stable CARMA processes2

3.1 Introduction

Continuous-time ARMA (CARMA) processes are the continuous-time versions of the
well known ARMA processes in discrete time having short memory. The advantage of
continuous-time modeling is that it allows handling of irregularly spaced time series and
in particular of high-frequency data often appearing in turbulence and finance. In this
chapter we consider a CARMA process Y = (Y})cr driven by a symmetric a-stable Lévy
process (L;)icr. Before we start with its definition, we recall that a real-valued random
variable X is called symmetric a-stable (SasS) with index of stability o € (0, 2], if its

characteristic function is of the form
Ox(z) =Efexp{iz X} =exp{—0®|z|*}, z€R,

for some o > 0, and a real random vector X = (X, ..., Xy)T is SasS, if all linear
combinations Zle a; X;, (ay, ..., ag)T € R? are SaS; see the monograph of Samorod-
nitsky and Taqqu [77] for details on stable distributions. Then a symmetric a-stable
Lévy process (L;)icr is a stochastic process with Ly = 0 almost surely, independent and

stationary increments which are Sa.S distributed with characteristic function
O, (2) =Eexp{izLi}] =exp{—|t|lo} |2]"}, 2z, t€ER,

for some o7, > 0 and almost surely cadlag sample paths (cf. the book of Sato [78] on Lévy
processes). A symmetric a-stable CARMA process is then defined as follows. Let (L¢)cr

be a symmetric a-stable Lévy process. Assume that we have given p, ¢ € N, p > ¢, and

2The contents of this chapter appeared in Fasen, V. and Fuchs, F. (2013), On the limit behavior of the
periodogram of high-frequency sampled stable CARMA processes, Stochastic Process. Appl., 123 no.
1, pp. 229-273
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ai, ..., Gp, Co, ..., Cqg € R, a,, ¢y # 0, set
0 1 0 0
0 0 1 . :
A= Lo 0 | err®
0 0 ... 0 1
—Gp —Apq ... ... —aQ

and let (X;)er be a strictly stationary solution to the stochastic differential equation
dX; = AX,dt +e,dL;, teR, (3.1a)
where e, denotes the p-th unit vector in R”. Then the process
Y, =c'X,, teR, (3.1b)

with ¢ = (¢g, ¢g-1, -+ -, Cq—pt1)T (where we use the convention ¢; = 0 for j < 0) is said
to be a symmetric a-stable CARMA process of order (p, q). Necessary and sufficient
conditions for the existence of a strictly stationary CARMA process are given in [22].
A CARMA process can be interpreted as a solution to the formal p-th order stochastic
differential equation

a(D)Y; =¢(D)DL;, teR,

where D denotes the differential operator with respect to t and
a(z) =4+ a P+ +a, and c(z) i =coz? + 29+ e

are the autoregressive and the moving average polynomial, respectively. Hence, Sa.S
CARMA processes can be seen as the continuous-time analog of Sa.S (discrete-time)
ARMA processes. The representation (3.1) of a CARMA process is the controller canon-
ical state space representation going back to [14]. Alternatively there exists also the
observer canonical form of a CARMA process (see (3.14) below) as derived in [63] for
multivariate CARMA models. For an overview and a comprehensive list of references on
CARMA processes we refer to [16, 23]. CARMA processes are important for stochastic
modeling in many areas of application as, e.g., signal processing and control (cf. [46, 61]),
econometrics (cf. [7, 72]), high-frequency financial econometrics (cf. [87]) and financial

mathematics (cf. [6]). Stable CARMA processes are particularly relevant in modeling
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energy markets (cf. [5, 45]).

The aim of this chapter is to investigate the sampled sequence Y2 := (Yia)rez of
a causal (i.e., current values of the process only depend on past values of the driving
process) stable CARMA process, meaning we only observe the underlying CARMA
process (Y;)ier at equidistant time points 0, A, 2A,... with A > 0 small as used for
modeling high-frequency data (cf. [21, 36]), and to study the asymptotic behavior of the
sampled process Y2 in the frequency domain. In the time domain the autocovariance

function

2 %) . 2
vy (h) = 2/ eihww dw = el 45 (0)e, heR, (3.2)

T oo a(iw)]

with vx(0) = 20% fooo eSAepegeSATds, gives information about the dependence structure,

whereas in the frequency domain the spectral density

) =g [ wimetean= "0 AL g (33)

2 ) ™ Jaliw)
gives information about the periodicities of the CARMA process. Both the spectral
density and the autocovariance function exist only for o = 2. The spectral density of

the sampled process Y2 is

) = oo 3 wlkayet = 2 3 G (U acu<n )

k=—00 k=—oc0

where the second equality follows from [11, p. 206]. It is related to fy by
I A fAWA) Iz 5)(w) = fr(w), weR, (3.5)

(see p. 55 for a proof). Loosely spoken, this means that in the limit A — 0 we can identify
every CARMA process from its equidistantly sampled observations. The question arises
whether this is also true if we study the empirical version of the spectral density, the
periodogram. We investigate normalized and self-normalized versions. The normalized

periodogram of Y2 at frequency w € [—7, 7] is given by

2

Lya(@) = [n7/" 3 Vi etk
k=1

Equation (3.5) suggests that we obtain a non-trivial limit by studying the behavior of
the properly rescaled periodogram I, ya of the sampled CARMA process at point wA.
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3 Limit behavior periodogram

More precisely, we will show that the finite-dimensional distribution of the periodogram
AZYL ya(wA), ..oy L ya(wnA)] for (Wi, ..., wm) € (R\{0})™ converges weakly to
a function of stable distributions, if simultaneously the grid distance A goes to 0 with
a suitable rate and the number of observations n goes to infinity (see Theorem 3.2.6).
A small grid distance and a huge number of observations reflect the behavior of high-
frequency data. A consequence of this is the fact that the normalized periodogram is not
a consistent estimator of the so-called power transfer function |c(i-)/a(i-)[*. Moreover,
if (L;):er is a Brownian motion then the limit distribution has independent components.
In contrast, if (L;)er is a SaS-stable Lévy process with o € (0,2) then the compo-
nents are dependent. In both cases the limit distributions differ depending on whether
w1, ..., Wy are linearly dependent or independent over Z. However, the one-dimensional
distributions do not depend on w. Our result is comparable to Brockwell and Davis [17,
Chapter 10.3] for the finite variance and Kliippelberg and Mikosch [57, Theorem 2.4] for
the stable case, respectively, of an ARMA process in discrete time; although the a-stable

limit distributions are different in the discrete-time and the continuous-time model.

Since the normalized periodogram depends on «, which is in general an unknown pa-
rameter, we also analyze different normalizations. So-called self-normalized periodogram

versions are given by

.12 n 2
f ( ) ZZ:l YkA e—zwk | f ( ) Zk:l YkA e—zwk ) g
nyalw) = o an nyalw) = o , —1T<w<m,
v (D k1 Yia)? v PR N (3.6)

having the obvious benefit that they only depend on the data and not on the index of
stability .. Again the finite-dimensional distributions of I~n ya(A-) converge to functions
of stable distributions and do not provide consistent estimators (cf. Theorem 3.2.10).
The limit distribution has similar properties as for the normalized periodogram. The
second version fn ya has to be rescaled with A as in (3.5) to derive a limit result (see
Theorem 3.2.11). Our conclusions for the self-normalized periodogram are in analogy to
those for ARMA models in discrete time obtained by Kliippelberg and Mikosch [58].

The chapter is structured in the following way. We start with our main results in
Section 3.2. The sampled CARMA process Y2 has a representation as an MA process in
discrete time where the noise sequence is p-dependent. In Section 3.2.1 we investigate this
moving average structure in detail. Then the asymptotic behavior of the normalized and
the self-normalized periodogram is topic of Sections 3.2.2 and 3.2.3. Finally, in Section 3.3

we derive results for the characterization of the limit distributions of the normalized and
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3.2 Main results

the self-normalized periodogram versions. These are based on the geometry of numbers

and on manifolds. The proofs of the results are presented in Section 3.4.

Notation

We use N* and R* for the natural and real numbers, respectively, excluding zero and
Z for the integers. For the minimum of two real numbers a, b € R we write shortly
a A b and for the maximum a V b. The real and imaginary part of a complex number
z € C is written as (z) and (z), respectively, and its complex conjugate as z. For
two sequences (a,)neny and (b, )nen We say a, ~ b, as n — oo if lim,_, a, /b, = 1. The
transpose of a matrix M is written as M7 and the m-dimensional identity matrix shall
be denoted by I,,.

For a subset S C N and k£ € N we set
S
(k) ={BCS:|B|=k}.

The orthogonal complement of S C R™ is denoted by S*.
On K € {R,C} the Euclidean norm is denoted by |- | whereas on K™ it will be usually

written as ||-||. A scalar product on a linear space is written as (-, -); in R™ and C™,
we usually take the Euclidean one. If X and Y are normed linear spaces, let B(X,Y)
be the set of bounded linear operators from X into Y. On B(X,Y’) we will usually use
the operator norm which, in the case of Y being a Banach space, turns B(X,Y) itself
into a Banach space. In particular we always equip B(K™,K") with the corresponding

operator norm if not stated otherwise.

For two random variables X and Y the notation X 2 Y means equality in distri-
bution. If we consider a sequence of random variables (X,,),en, We denote convergence
in probability to some random variable X by X, L X asn — oo and convergence in
distribution by X, B X asn — .

3.2 Main results

Before stating the main results, we establish the moving average structure of the sampled

sequence together with two auxiliary lemmata.
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3 Limit behavior periodogram

3.2.1 Moving average structure of the sampled process

The aim of this section is to better understand the structure of the discrete-time sampled
process Y2, Let Aj, ..., A, denote the eigenvalues of A. By defining the filter ®2(B) :=

?:1 (1 — e)‘jAB) where, as usual, B denotes the backward shift operator and applying
it to the sampled sequence Y2, we obtain (cf. [22, Lemma 2.1]), for any k € Z,

p
Zy,a = 92(B) Ve = Z N (3.7)
r=1
where
kA r—1 .
Zp 5= / cT< -y o e<’“-1-ﬂ>AA> e®A=94¢ dL,, r=1,....p, (3.8a)
(k—1)A 0
and
o5 = (1) 3 ATt i =0,1,...,p. (3.8b)
{i1 ...,ij}e({l’ "]:*”})
We can rewrite the filter as ®2(2) = r (1—eN2z) =— 0 ®% 27 for any z € C. In
this chapter we will suppose that the eigenvalues Ay, ..., A, of A have strictly negative

real parts (see Assumption 3.1 below). Under this assumption we observe that ®2(z) # 0
for all |z] <1 and thus deduce, for any |z| < 1,

U2 (2) == (P2(2)) Z\DA Z with U = > AT Amin e N,
.7 =0 j1a~-'7j17€{0717"'7j}
anzljm:j

We can hence rewrite Eq. (3.7) as
YA =UAB) Zra, kel (3.9)

showing that the sampled CARMA process Y2 is a (discrete-time) moving average
process of the noise sequence 78 = (Zk7A)kez. A challenge is that Z2 is not an i.id.
sequence; it is p-dependent. For this reason we define, for any k € Z, w € R and m €

{1, ..., p}, the auxiliary (random) functions

r—1
Zk A Z Zr fzw(rfl) and fA Z efzw r—1) ( . Z q)]A e(rlj)A/\m> )
=0

(3.10)
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3.2 Main results

In contrast to Z2 we have now that Z2(w) := (Zy,a)rez(w) is an iid. sequence, and
the idea is to rewrite the periodogram essentially by means of Z A(w). Then the next

auxiliary lemma holds.

Lemma 3.2.1.

(i) Under the assumption that the eigenvalues Ay, ..., A\, of A are distinct, we have,

forany A>0,re{l,...,p}, k €Z and s € R,

r—1 P r—1
T( A _(r—1—§)AA \ (kA—-s)A_ c(Am) B A _(r=1—§)AAm \ J(EA—8)Am
c ( jZO(I)je J )e €p—za,(/\m) jzoq)j e J e .

m=1

(i1) We have, for any \ € C,

1[4 o
Z/ ‘e(A’S)’\—l‘ ds =0 as A —0.
0

(111) Assume that the eigenvalues Ay, ..., N, of A possess non-vanishing real parts. We
then have, for any m € {1, ..., p} and any w € R,
m . 1
fé )(wA) ~ AP a(iw) ———  as A — 0.
W — Am
i) Assume that the eigenvalues A1, ..., \, of A are distinct and possess non-vanishin
w) A that the eig lues A Ap of A distinct and ishing

real parts. Then we have, for any w € R,

P\, 1 c(iw
Z() (iw)

@A) iw— A aiw)’

m=1

By virtue of Lemma 3.2.1(i), Egs. (3.8a) and (3.10) we obtain that
kA p
= c(Am) 4(m) FA—s)A
Zk.A (w) = (/ a7 (w) eFA=sAm T,
( )kez (k—1)A mz:;a'()\m) & keZ
A

k
—. ( / g% (s) dLs) (3.11)
(k=1)A keZ

is an i.i.d. sequence of complex Sa.S random variables since gxﬁv)w : R — C is complex-

valued. Recall that integration of complex-valued deterministic functions with respect

to a SaS Lévy process is well defined as a limit in probability for all functions in
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3 Limit behavior periodogram

L*(C) := {f : R — C measurable, [, |f(z)|"dz < oo} (for further details, see [77,
Section 3.4 and Section 6.2]). The characteristic function of the stable integral [, gdL
is given by

E

exp {izl /R%(g(s))dlls +i 29 /R%(g(s))dLs}]
= exp { - UZ‘/R |21 R(g(x)) + 22 S(g())[" dx} (3.12)

for any 21, 29 € R (cf. [77, Example 6.1.5 and Proposition 6.2.1(i)]) such that the random
vector (R (fpg9dL), S ([ygdL)) is Sas.

Finally, we require the following conclusions for (\I/]A) jen for the proofs of our results.

Lemma 3.2.2. Suppose A = A,, = 0 as n — oo and that the eigenvalues Ay, ..., A, of

A possess strictly negative real parts. Then we have:

(i) There is a constant C(p) > 0 such that
W] < Cp) APV et i EN,
where Amax 1= MaxXpeq1, . py R(Ax) € (—00, 0).

(ii) If nA0 "% o0 for some 6 > 0, then we have

—n—1

= n—00 ng < “ n—00
S0 aa SEY (X jun]) o

j=n+1 k=—oco “j=1-k
«
(i) 1fnis, "5 oo, then A nt LY (5 [93]) "5

(iv) If nARP~ DT "2 o0 then

nA(—k)

Aa - OC’VLOO
(X )

k=2—p—n > j=1V(2—p—k)

(v) If nASPL) m2pe 00, then A%n~! 22:2—;9 (Z;‘L:1 ‘\I,JAn }) noeo
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3.2 Main results

3.2.2 Normalized periodogram

Before we formulate the main limit results for the normalized and the self-normalized
periodogram, we introduce a random vector that will show up in the limits.

Let m € N*, wy, ..., w, € R* and set w = (wi, ..., wy)?. We define the (2m + 1)-
dimensional (stable) random vector ((SM(w), S¥(w))jeq1, ... mp> Sme1(w)) via its joint
characteristic function

E [exp { (Z 0; SR(w) + 1y S (w) + Tsmmcg)) H — exp{—0% - Ky(6, v, 7},
j=1
(3.13a)
with §, v € R™, 7 € R and K, (0, v, 7) given as follows:
(i) fwy, ..., wy are linearly independent over Z (i.e. there is no h € Z™, h # 0, such
that (h, w) = 0), then
K,0,v,7)= / Zéj cos (2mx;) + v; sin (2mx;) + 7| d(z1, ..., Tp)-
[071)7n ]:1

(3.13b)
(i) If wy, ..., wy are linearly dependent over Z, then there is an s € {1, ..., m — 1}

such that

m (0%
Z 0; cos (2mxj)+vjsin 2nzj)+7| A (21, ..., Tm),

=1

1
Kltw )= |,
(3.13¢)
where A = M (w1, ..., wy) is the (m — s)-dimensional linear manifold in [0,1)™
defined in Eq. (3.17) below and 2 is the (m — s)-dimensional Lebesgue (Haus-
dorff) measure on A (wy, ..., wy) (for a definition of manifolds, see, e.g., [67, pp.
200-201]).

We start to investigate the normalized periodogram in analogy to [17, 57]. Since we
use Lemmata 3.2.1 and 3.2.2 for the proofs of the asymptotic behavior of the normalized

periodogram we require the following.

Assumption 3.1.

The eigenvalues A1, ..., A\, of A are distinct and possess strictly negative real parts.

Moreover, we establish our limit results for the different periodogram versions in the
asymptotic framework of high-frequency data within a long time interval using Lemma
3.2.2. Thus we need
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3 Limit behavior periodogram

Assumption 3.2.
There is some § > 0 such that, with f = max{1+ 9, a(p—1)+max{0, 1 —a}}, we have
A = A, — 0 whereas nA? — oo as n — .

Remark 3.2.3.

(i) Note that in the case of a symmetric a-stable Ornstein-Uhlenbeck process (i.e.
p = 1), Assumption 3.2 becomes A, — 0 and nAL*? — oo as n — oo for some

0 > 0 and does not depend on «.

(ii) Conversely, if p > 2, the convergence rate of A,, depends on a. However, one easily
verifies that 3 < 2p — 1 is always true and thus, if A, — 0 and nA?~! — oo as
n — oo hold, Assumption 3.2 is satisfied as well. 0

The following is an analog result to the discrete-time ones [17, Theorem 10.3.1] and

[57, Proposition 2.1], respectively.

Proposition 3.2.4. Let A = A, and Y2 = (Yia, Jrez be the sampled SaS CARMA

process. Under Assumption 3.1 the periodogram I, ya, satisfies, for any w € [—m, 7],
—iwn |2
Ly, yan (w) = |08 (7)) I, 780 (W) + Ro A, (W)

with Z2 = (Zk,An)keZ as given in Eq. (3.7). If in addition Assumption 3.2 holds, then

we have for any w € R*

_2
lim P(Ai *| Ry A, (WA,)| > 5) =0 for everye > 0.

n—oo

This shows that we have to study the limit behavior of the periodogram of ZAn in
order to get insight into the asymptotic properties of I,, ya,. The next theorem provides

the key result therefore. Note that in terms of the discrete Fourier transform of Z An

n

n
J Zhn (w) := n~ e E Zk. A, ek _p<w<m,
k=1

we can write [, za, (W) = |, za, (w)[*.

Theorem 3.2.5. If Assumption 3.1 holds, A = A, — 0 and nALPY 5 oo gs

n — oo, then we have, for any m € N* and w = (wy, ..., wn)? € (R*)™,

INa ZAn (%’An)] B [eliwy) - (S(w) —iS W), as 1 = 0.

n j=1,..,m J 7j=1,..,.m
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3.2 Main results

The joint characteristic function of the 2m-dimensional stable random wvector

(S (w), Sjg(%))je{l,...,m} is given in Eq. (3.13) (with 7 =0).

Combining now Proposition 3.2.4 and Theorem 3.2.5 together with the fact that
‘\I!A"(e_“A")‘Q ~ A P a(iw)|"?  asn — oo,

where the latter can be easily derived from the definition of U”» together with the
convergence of A, to 0, we deduce the following main result for the limit behavior of

the normalized periodogram.

Theorem 3.2.6. Suppose o € (0,2] and let Y2 = (Yya, )rez denote the sampled SauS
CARMA((p, q) process. If Assumptions 3.1 and 3.2 hold, then I, ya, satisfies for any
meN* and w = (w1, ..., wy)! € (R*)™

7j=1,....m

AT (1, yan (wiA)]. 3 [M (57’ + [575(%)]2)] | as 1 — 00,

where the stable random vector (S}(w), Sj%(%))je{l,...,m} has joint characteristic func-

tion as given in Eq. (3.13) (with 7 =0).
Remark 3.2.7.

(i) We highlight two important differences of our limit result to the one in [57] for
ARMA models in discrete time. First, we do not have to distinguish between ra-
tional and irrational multiples of 27 in the frequency vector w as it has been the
case in discrete time (see, e.g., [57, Theorem 2.4]). The reason therefore is our
asymptotic framework A, — 0 as n — oo which yields that in the proof of Propo-
sition 3.3.4 the crucial Eq. (3.52) holds for any h € Z™, h # 0, whereas with
A, = A constant and one frequency component being a rational multiple of 27,
(3.52) could not hold for all h € Z™, h # 0. Second, the same equation explains
why in our framework the limit distributions differ depending on whether or not
the frequencies wy, ..., wy, are linearly dependent over Z (cf. Eq. (3.13)). In dis-
crete time they depend on whether or not 2w, wy, ..., wy, (with wq, ..., w, being
irrational multiples of 27) are linearly dependent over Z (see again [57, Theorem
2.4]). Note that the latter is also the reason why the manifold .# (w,...,w,,) in

(3.17) is different from the manifold that appears in the discrete-time result.

(ii) Moreover, for linearly independent wy, ..., w,, the distribution of the random vec-

tor (S}(w), S;*(w))jeq1,...m} does not depend on w anymore. In the dependent
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3 Limit behavior periodogram

case, w determines the manifold, and hence, has an influence on the limit distri-
bution. The sequence of random variables (S (w), S°(w))jeq1, .., my is independent
in the case a = 2, whereas for a < 2 it is dependent; in particular for m = 1 and

w = w € R*, the random variables S*(w) and S (w) are dependent.

(iii) Investigating the special case m = 1, Theorem 3.2.6 gives for any w € R*

|e(iw)|” i

27 s
2'/ e dL,
[0,1)

as n — oo. Hence, the limit distribution factorizes in a parametric factor depending

_2
AV T yan(wA,) B

|a(iw)|

on w (the so-called power transfer function) and a random factor, which does not
depend on w anymore. The limit distribution coincides with the limit distribution
of the normalized periodogram of ARMA models if w is an irrational multiple of
2m.

(iv) Let a = 2. Then with w € R* as n — o0,

NZ N2
L4 —2) 2 21 fy (w) E,

An Iy yan (WD) 2 27 fy (W) ( 5T

where N; and Ny are 1.i.d. standard normal random variables and E is a standard
exponential random variable. This limit result is the empirical counterpart to (3.5)
with scaling factor A, and in analogy to the results for ARMA models (cf. [17,
Theorem 10.3.2]). It confirms, that A, I, ya,(wA,) is not a consistent estimator

for the spectral density.

v) For any h € R*, (S®(hw), SZ(hw))icq1. ... m L SE(w), S3(w))ieqr. ... m1, such that
Vi J .7{7 ’} J J{» 7}

J

as n — 0o,
B [leGhop)® (ram, 12 raay 112
AV [Loyau(hoA)] B {WQSJ W]*+ [$PW)°) o
On the other hand, if wy,...,w,, are linearly independent over Z, then there exists
an h € R with h 4+ wy, ..., h + w,, linearly dependent over Z such that the limit

distributions (S*(w), S;*(w))jeq1,...m} and (SF(hl+w), S¥ (AL +w))jeq, .., m} are
different. Consequently, there is no general result how a frequency shift influences

the limit distribution. O

Remark 3.2.8. We conjecture that Assumption 3.2 is in this formulation not a nec-

essary assumption for Theorem 3.2.6. However, it seems to be (close to) necessary for
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Proposition 3.2.4, but Proposition 3.2.4 is not necessary for Theorem 3.2.6. U

3.2.3 Self-normalized periodogram

Next we derive the limit behavior of the self-normalized periodogram ,fn7yAn and T’nyyAn,
respectively, as given in (3.6), which is comparable to those in [58, Section 3| for ARMA
processes. As in the normalized case they converge to functions of stable distributions
as the following two theorems show.

First, we have to state some notation. The observer canonical form of a CARMA
process (cf. [63]) is given under Assumption 3.1 by the stationary and causal multivariate

Ornstein-Uhlenbeck process

t
V, = / =943dL,, teR, (3.14a)

where the vector 8 = (f4,...,8,)" € R is defined recursively by

p—1—j
Bp—j = — Z aifp—j—i+ce—j, J=0,1,...,p—1,

i=1

(with the convention ¢; = 0 for j < 0). Then
Y,=elV;, teR, (3.14b)

where e; = (1, 0, ..., 0)T € R?. Hence, every Sa.S CARMA process can also be written
as a Lévy-driven moving average process Y, = ffooog(t — 8)dLg, t € R, with kernel

function
g(t) = el B 1100 (t). (3.15)

The following proposition is crucial for the asymptotic behavior of the different self-

normalized periodogram versions.

Proposition 3.2.9. Assume a € (0,2] and let Y2 = (Yya, )rez denote the sampled SauS
CARMA(p, q) process. Moreover, define AL(kA,) := Lga, —Lk-1)a, fork € Z, n € N*.
Suppose Assumption 3.1, A, — 0 and nA,, — oo as n — oo hold. Then

(i) Sy Yia, = X320 9080 - Xy AL(RA,) + op (A7 (nA)7)  asn = oc,

(i1) Sopo Vi, = S50 980 - Sy AL(RAL)? + 0p (A1 (AT ) as n— oo,
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3 Limit behavior periodogram

The main limit results are then as follows.

Theorem 3.2.10. Suppose a € (0,2] and let Y2 = (Yya, )rez denote the sampled

SaS CARMA(p, q) process. The self-normalized periodogram I,, ya, is as in (3.6). If
Assumptions 3.1 and 3.2 hold, and in addition c; # 0, then we have for any m € N*
and w = (wy, ..., wyu)t € (R*)™, as n — oo,

Inijn ((JJJAn>:| 2)
Jj=1,...m

wery

(i, ) 2 [SHw)]” + [S2w)]”

(Jo~ g(s)ds)? - |a(iw;)? S (W) , ’

Jj=1,....m

where g is the kernel function of the CARMA process as given in Eq. (3.15) and the
(2m + 1)-dimensional stable random vector ((SM(w), S]S(cg))je{l m} Smt1(w)) has

joint characteristic function given by Eq. (3.13).
Theorem 3.2.11. Suppose a € (0,2] and let Y2 = (Yya, )rez denote the sampled
SaS CARMA(p,q) process. The self-normalized periodogram j\myAn is as in (3.6). If

Assumptions 3.1 and 3.2 hold, then we have for any m € N* and w = (wy, ..., wn)? €

(R*)™, as n — oo,

Jo~ 9?(s)ds - |a(iw))|? 52 ’

j=1,....m

], B | (sP@) + (s3]

ceey

where g is again the kernel function of the CARMA process as given in Eq. (3.15), the
(2m)-dimensional stable random vector (S (w), Sf‘(cg))je{l ) has joint characteristic
function as given in Eq. (3.13) (with 7 = 0) and S? is a positive o /2-stable random

variable.
Remark 3.2.12.

(i) Theorems 3.2.10 and 3.2.11 show that also the self-normalized periodogram versions
do not yield consistent estimators for the (normalized) power transfer function.
However, based on these results we will show in [38] that applying a smoothing
filter to the self-normalized periodogram gives such a consistent estimate. Since
the model parameters influence the power transfer function and, causality and
invertibility of the CARMA process preconditioned, the latter uniquely determines
those parameters, it is possible to use that consistent estimator of the normalized

power transfer function for statistical inference on the CARMA parameters.

(i) We have not specified explicitly the joint characteristic function of the random

vector that determines the limit in Theorem 3.2.11. However, it is uniquely iden-
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3.3 Lattices in R™ and the manifolds A (w1, ..., wn)

tifiable from the calculated Laplace transform in Eq. (3.50). Note that the limit

distributions in Theorems 3.2.10 and 3.2.11 are not the same.

(iii) Moreover, we have to multiply (fn van (WiAR))jeqt, ..., my in Theorem 3.2.11 by A, to
obtain an asymptotic limit result. This normalization is not necessary for
(i;hyAn (wjAn))jeqt,...,m}y in Theorem 3.2.10. Observing (3.5), the rescaling with
A,, seems to be natural in some way. The point is that with Proposition 3.2.9 we

have for the different normalizations

A (S Yia)?  (AnXX09(A))" (D4, AL(KA,))
22:1 YkQAn B A, Z] oQ(JA )2 Zk:l AL(k?A )2

(fo ds) L

fo )2ds  [L, L]

+ OP(l)

as n — 0o, where ([L, L],);>0 is the quadratic variation process of (L;);>o. For this

reason A, appears in Theorem 3.2.11. U

3.3 Lattices in R™ and the manifolds .Z (w1, ..., w,)

In this section we recall some basic facts about lattices in R™ and use them to construct
the manifolds .# (w, ..., wy) in Eq. (3.13c). For more details concerning the theory of
lattices we refer the reader to [29, 48].

Definition 3.3.1 (Lattice). For S C R™ let span”(S) and span®(S), respectively, denote
the integer and linear hull of S. For any linearly independent vectors by, ..., by € R™
the additive subgroup of R™

L =L (b, ..., bg) :=span”({by, ..., bg})

is said to be a lattice and by, ..., by is called a basis of £. The dimension of the lattice
Z is given by
dim (%) := dim (span™(.Z)) = d.
We call a subset S in R™ discrete if S has no accumulation point in R™. It is a classical

result that discreteness characterizes lattices among additive subgroups in R™.

Theorem 3.3.2 (cf. [48], § 3.2). A subset S C R™ is a lattice if and only if it is a
discrete, additive subgroup of R™. In either case the dimension of the lattice is equal to

the maximal number of linearly independent vectors in S.
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3 Limit behavior periodogram

Suppose that we have given wy, ..., w,, € R* which are linearly dependent over Z. Let
W= (Wi, ..., wn)T = 27n. Note that all lattices as well as the manifolds .Z (w1, ..., wn)
in this chapter depend on the frequency vector w and 7, respectively. We neglect, how-

ever, that dependency for ease of notation. We define
Z = {,71}L NnZ™.

Then & constitutes a discrete, additive subgroup of R™ and since the maximal possible
number of linearly independent vectors in .Z is m — 1, we apply Theorem 3.3.2 and
obtain an s € {1, ..., m — 1} and a basis b,,_s41, ..., by, € Z™ of the lattice .Z. Now

&=Ltz (3.16)

is a discrete, additive subgroup in R™ as well and hence, again due to Theorem 3.3.2, it
is a lattice generated by a basis by, ..., b,,_s € Z™. That the dimension of .Z is indeed
m — s (i.e. the maximal possible dimension of the orthogonal complement of .Z’) can be
seen from the following fact: let

bgm—s—i—l

H = : e 7™
bT

and note that there has to be an s x s-block with non-vanishing determinant. W.l.o.g.
this block is given by the first s columns of H, denoted by H!*). We can solve, for
any j € {s+ 1, ..., m}, the linear systems H[S]xj = —h; where h; is the j-th column
of H and obtain, using Cramer’s rule, solutions z; € Q° with common denominator
det (H [S]) € Z. Hence, the vectors

Lj

0
vj::det(HM)- | Fei| €2, je{s+1, ..., m},

with e; being the j-th unit vector in R™, are linearly independent and Hv; = 0 for
all j € {s+1,..., m}. This shows that v; € {bn_si1, ..., b} NZ™ = £ for any
j € {s+1, ..., m}, and hence, the dimension of the lattice .Z has to be m — s as
claimed above. Let

Bim (b by o b)) €z
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3.3 Lattices in R™ and the manifolds A (w1, ..., wn)
and
T:(Rmod1)™* — (R mod1)™

r=(21,...,0m_s) = Bxrmod 1= (Zxﬂy) mod 1,

j=1

where the mod-operator has to be applied componentwise. We then define
M =T ((R mod1)™*), (3.17)
the Gram matrix G := BT B and the set of functions on .#
T ={fp: M -C: f =) o T oGl oT ! for an h € £} (3.18)

T is well-defined due to the injectivity of T' (see the proof of the upcoming Theo-
rem 3.3.3(i)). Moreover, it can be shown that all the functions in .7 are continuous
(mod 1) on .. The following theorem holds.

Theorem 3.3.3.
(i) A is an (m — s)-dimensional C*-manifold in [0,1)™.

(i) Let p € R™™° be the coordinates of 1) in the basis B, i.e. n = Bp. Then (z, j1) # 0
forall z € M, 2 # 0.

(111) For any fr, € T with h € £, h # 0, we have

1 m—s _
) ///z Ju(@) A" (dx) = 0,

where F* is the (m — s)-dimensional Lebesgue measure on M .

(iv) For any x,y € M, x #y, there is an h € £ such that fr(x) # fr(y).

Since (R mod 1)™ and (R mod 1)™~* are compact Hausdorff spaces, one immediately
obtains that also .# is a compact Hausdorff space. Note that the subalgebra span®(.7)
of the algebra C'(.#) of all continuous complex-valued functions on .# contains the con-
stant function 1 (take h = 0). Moreover, span®(.7) is closed under complex conjugation
and separates points (see Theorem 3.3.3(iv)). Applying the Stone-Weierstrafl Theorem
(cf. [76, p. 122] or [82, p. 161]), this yields that span®(.7) is dense in C(.#) with respect

to the topology of uniform convergence.
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3 Limit behavior periodogram

An application of Theorem 3.3.3 as given in the next proposition characterizes the limit
distributions of the normalized and the first version of the self-normalized periodogram,

respectively, by random vectors with characteristic functions as given in (3.13).

Proposition 3.3.4.

Suppose A = A,, = 0 and nA,, — 00 as n — oco. Moreover, define for any z1,z0 € R
the function Z,, ,, : C = R by Z,, ., () := 21 R(x) + 22 S(x). Then, for any m € N*,
Wi, -y Wy € R* and §, v € R™,

1 n—p+1| m @
Jm 2 D 1D Fe (A eliwy))
k=1 |j=1

= Ky ((EGJ‘% (C<Z’wj)))j€{l,..‘,m} (B0, (C(iwj)))je{l,...,m} ’ O> ’

where K, is given by egs. (3.13b) and (3.13c), respectively.

For wy, ..., wy, linearly independent over Z a similar result has been derived in [59,
Corollary 4].

Finally, we shall require Proposition 3.3.5 from below for the limit result of the second
version of the self-normalized periodogram. The proof of this proposition is based on
Theorem 3.3.3 as well.

Proposition 3.3.5. Suppose A = A,, — 0 and nA,, — oo as n — co. Let m € N*,

Wi, W, € R* and write w = (wy,...,wn)? = 2000, ...,0m)t = 2mn. Moreover,

suppose that (Ny)gen+ are i.i.d. standard normal random variables.

(i) If wy,...,wy, are linearly independent over Z, we assume that we have given a
random variable U, uniformly distributed on [0,1)™ and independent of (Ny)gen+,
and a function f : (R mod 1)™ xR — R such that E[f*(U, N,)] < oo and g () :=
E[f*(x, N1)], k = 1,2, is continuous on (R mod 1)™.

(ii) Ifwy, ... ,wn are linearly dependent over Z, we assume that we have given a random
variable V., uniformly distributed on [0,1)"~° and independent of (Ng)ren+, and a
function f: 4 xR — R such that E[f?>(U, Ny)] < oo and g¥) (x) := E[f*(z, N1)],
k = 1,2, is continuous on A, where U := T(V) and T is the parametrization of

M.

Then in either case

%Zf(k:AnQ mod 1, No) BE[f(U, )] asn — oo, (3.19)
k=1
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3.4 Proofs of Chapter 3

3.4 Proofs of Chapter 3

3.4.1 Proofs of Section 3.1

Proof of Equation (3.5).
Fix an arbitrary w € R and assume that A is sufficiently small such that wA € [—m, 7.
Then

. A - —ikw : 1 - —ikw
Afa(wA) (32 o Z Yy (kA) e~ (22 2—0T<A Z elklaA ik A>fyX(0) c. (3.20)
k=—o00 k=—o0

™

For any € > 0, there exist an Ny € N and Ay > 0 such that

0o 0o
H / e\h\Aeflhw dh — A § : e|k|AAefzkwA ’
- k=—00

No
< |h|A dh + ‘/ |h|A | —ihw dh — A |k|AA  —ikwA
[ e an | [ et S g

|k|<|No/A]
+A Yy e
|k|>|No/AJ+1
€ No 4 - €
< -+ H / elMAe=thew qp — A Z elkladg—ihwa )| | = (3.21)
3 —No |k|<|No/A] 3

for all 0 < A < Ay. The second addend on the right-hand side converges to 0 as A — 0
(Riemann sums!), i.e. there is a Ay > 0 such that (3.21) is less or equal to € for any
A < A;. Hence, the right-hand side of Eq. (3.20) converges, as A — 0, to

LCT</ e|h|Aefihw dh) ’VX<O> c i/ CTe‘h\AfyX(O) C .e*’ihw dh (3:3) fY(w)'
—oo ————

2m oo T o
2y )

3.4.2 Proofs of Section 3.2.1

Proof of Lemma 3.2.1. (i) By virtue of [8, Proposition 11.2.1] we have, for any
teR,

1
et = — [(zI, — A)~te* dz,
2mi J,
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3 Limit behavior periodogram

where p is a simple closed curve in the complex plane enclosing the spectrum of A.

Moreover, from [24, Lemma 3.1] we immediately obtain
(2L, — A) e, = clz)

for any z € C\{\y, ..., A\,}. Hence,
r—1
CT( B Z (I)jA e(r—l—j)AA) okB=94¢
:_Zq)A T(QL/ZI —A) 1(r1])Az+kA dZ>€p
r—1
:_Z(I)A L/ (Z (r—1—j)Az+(kA— S)ZdZ
2 z)

) "L e(Am) _Z(I)A (r=1-) A | o(kA=5)Am
a/()\m) =0 J ’

m=1

where the last equality follows from the Residue Formula (see, e.g., [60, Chapter VI,
Theorem 1.2 and Lemma 1.3] or [43, Theorem II1.6.3 and Remark II1.6.4]) and the fact
that the eigenvalues Ay, ..., A, of A are supposed to be distinct.

(ii) We obviously have

1 . (A=s)A o 1 . SA o
Z/o |e —1}ds:Z/0 ‘e —l}ds
204

A
< X ‘esm)‘) cos (sS(N)) — 1! + ‘68% sin (s S )‘ ds.
0

Due to the Mean Value Theorem there exists an e(A) € [0, A] such that
L ey (2) RV N a
N le cos (sI(N)) — 1| ds = | cos (e(A) (V) — 1|7 (3.22)

Since ¢(A) — 0 as A — 0, we immediately obtain that the right-hand side of (3.22)

converges to 0 as A — 0. Likewise we deduce that
1 A
K/o }esm’\)sin (SS(A))‘adS—}O as A =0

and hence, (ii) follows.
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3.4 Proofs of Chapter 3

(iii) By virtue of Eq. (3.8b) we have, for any r € {1, ..., p},

r—1

. A (r=1-5)ANm
E q)j e
=0

__ DA A o(r2Mm §A =M GA A
— (—1)2 DA (L1)26r=D8An Z M1 oM A A
{zl}e(““‘l"p})
— (—1)% DB Z BN (L1)3 o3 Z oA +Aiy)
{11}6({1 ..... p}\{m}) {“’w}e( "'2"1’})
—— 0,
= (—1)t DA Z oA +Xiy)

{il,iz}e({l """ f}\{m})

— = (=1) Z AT N,

=...= (—1)r+1 Z RN ST, (3.23)
{il,...,iT_l}e({l"-;171’}1\{7”})

and hence, due to Egs. (3.10) and (3.23),

fém) (WA) = ie—zwA r—1) < Z (I)A r—1—j AAm)

o

_ Z(_l)r e—iwAr Z eAZgzl Aig

1

_ pZ<_1)T Z eA(ZS 1 Nig fzwr)
p—1 AJ p—1 r J

— — (=1)" Z (Z i, — iwr) +o(APT)
=0 T e e ) B

(3.24)

as A — 0. Now, since the eigenvalues of A are also the zeros of the autoregressive

polynomial a(z), we observe that in order to show Lemma 3.2.1(iii) it remains to prove
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3 Limit behavior periodogram

the following

(1) 3 (ZM _ w) YPERVE | (S STt

vl
—_

#

3

(3.25)
where dg,-13(j) = 1 if j = p — 1 and 0 otherwise.

If p = 1, one immediately verifies that (3.25) holds since both sides are equal to 1.

Hence, we assume p > 1 in the following.

For j =0, due to the Binomial Theorem, the left-hand side of (3.25) is equal to

3 (—1)" (p; 1) = (1+(-1))"" =0

For j € {1, ..., p— 1} we obtain

i

pz_l(—l)r > (Z)\ —iwr)j

r=0 par
{il,-..,ir}e({l’ -wTP}\{m}>

p—1 i, ;
B (=1 Z <Z()\i5 — Zu)))

r=1 py

{i1,...,ir}E ({1, p}\{m})

p—1 J —(t—1) p—1—(t—2)—k1 p—1—(t—(t-1)-5'2 &y, .
-3 (1) ( t ) 2 > 3 (k >

r=1 t=1 r— k1=1 ko=1 P 1

i=ki\ (i ks =
X . "= Z (Auy — i)/~ 2h=r b
k2 kt_l Ui,y ur€{1,...,p\{m}

up<u2<...<u

‘ —2-% 0 kn , , _
— P Zhlh<j><j_kl>m J-ZZ%@)
t=1 k1=1 ko=1 ki_1=1 kl k2 kt,1

t p—1
i1 —1—-t
X E <)‘m - iw)J—Zh:1 i | |<>‘u5 - iw)kt+175 (_1)T (p ) .

ul, ..., ut€{1, ..., pH\{m} s=2 r=1
up<uz<...<ut

<
¥
|
—
o~
|
—
=
3
—
|
—
=
|
N
>
|
I
K

o8



3.4 Proofs of Chapter 3

Since (n) =0 for all n € N and 5 < 0, we get
J

-1y (p_ | _t> -0 3 (p_ 1 _t> = (1 (e )

—1 r—1t - r
fo ift=1,....p—2
] (=Pt ift=p—1,
where we used again the Binomial Theorem. Consequently, for any 7 € {1, ..., p — 2},

the right-hand side of (3.26) vanishes, whereas for j = p — 1 it becomes

(—1)1071 (pI 1) (p;2> (i) H()\S —iw)=(p—1)! H(’Lw — Xs),

s=1 s=1
s#EmM s#Em

which completes the proof of Eq. (3.25) and hence, (iii) is shown.

(iv) It is a simple consequence of Liouville’s Theorem (see, for instance, [60, Chapter
ITI, Theorem 7.5]) that any rational function f(z) = 12) with deg(q) < deg(p) can be

p(2)
written as
f(Z) = hf(z; )\1) + ...+ hf(Z; >\r)
where Ay, ..., A, are the distinct zeros of p(z) and h¢(z; A,,) is the principal part of the

Laurent series expansion of f at the point \,,.

Again, the eigenvalues of A are also the zeros of the autoregressive polynomial a(z).
Consequently, we can apply the above result to the rational function ¢(z)/a(z) (note
that deg(a) = p > g = deg(c)) and obtain

) e M) ot hega(2: A)

— = Ne¢jalZ; s c/a\%; :

a(z) / 1 / P
Since Ay, ..., A, are distinct, every A,,, m € {1, ..., p}, is a pole of order 1 of the
rational function c/a. In this case, it is well known (see, e.g., [60, p. 174]) that the

principal part of the Laurent series expansion of ¢/a at the point \,, reduces to

c(Am) 1
adAm) 22— Am
Since Ay, ..., A, are supposed to have non-vanishing real parts, we have a(iw) # 0 for
any w € R. Hence, Lemma 3.2.1(iv) holds for any w € R. O
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3 Limit behavior periodogram

Proof of Lemma 3.2.2. (i) This statement follows easily by induction over p from
the definition of the \I/]-A".
(ii)) We deduce from (i) that

oo N I o A . _( _l)e(nJrl)An)\max
D T SO AT Y et = O(p) AT

j=n+1 Jj=n+1
. 5
C p) nlAp (Amax—plog(A?)'éAn) n—00
_L e nAn+ lN 0

max

J— eA7L>\nlax

, (3.27)

since A,, — 0 and nA*° — oo as n — oco.
If 0 < a <1, we have (cf. also [57, Proof of Proposition 2.1])

—n—1 n—k a 0
SN ) Ay e

k=—oc0 “j=1-k j=n+2

and analogously to (3.27) it can be shown that the right-hand side converges to 0 as
1 1 ~An [ An 0 An -
n — oco. Otherwise, if 1 < a < 2, we set W := U} /Zj:n+2 |\Ilj ‘ and obtain

Py (;ziiwfn\) (S ) E S (fzkkw )
s(;wf”\)a m;ﬂ! X

due to Eq. (3.27).
(iii) We use again (i) to derive

A ST ) OB S (S’
=1-

k=1-n j=1-k =1
COPS: s COPS
(1 —_ eA )\max @ Pt (1 —_ eA )\max)a 1 _ eaAnAmax
C(p)* 1
Gl 0

(_ )\max)a _a)\maann

as n — 00, since we suppose nA,, — 0o.

(iv) We have, once again due to (i),

Ao -1 nA(—k) o Ao p—2 k ntp—2
5 (xS (o) S (x )]
k=2—p-n j=1v(2—p—k) k=1 j=1 k=p—1 j=k+2-p
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3.4 Proofs of Chapter 3

Aa n+p—2
<=t [(p —2) (p— 1)+ (C(p) (p— ) A7) 3 eodntmalhr2- p)]
k=p—1

< % |:(p -2)(p— 1D+ (C(p) (p— 1) AP H%xm} ’

where the first summand obviously vanishes as n — oo. The second term is asymptoti-

cally equivalent to
(Clp)(p—1)" 1

_a)\max nAg(p_erl -0

as n — oo by assumption.
(v) Tt is once more (i) that gives

AY
WA

n

<Z‘\11An )a < (p—D%(i\\Ifﬂ)a < (p—1)% (%>a
-1

k P
~ Clp)* (p L — 0
_>\max @ nAz(pil)
a(p—1)

as n — 00, since we assume that nA, — 00 as n — 0. O

3.4.3 Proofs of Section 3.2.2

Since the proof of Proposition 3.2.4 is based on Theorem 3.2.5, we prove first The-
orem 3.2.5 and then Proposition 3.2.4. For the proof of Theorem 3.2.5 we need the

following additional result:

Proposition 3.4.1. If Assumption 3.1 holds, A = A, — 0 and nAS"™Y = 0o as
n — oo, then, for any w € R,

Jm ZAn (CUAn) = J(z)An (CUAn) + op <A§+p71> as n — o0

n,

with Jff)An(wAn) = p ey Zk A, (WA,) e" @Ak gnd (ék A, Jkez as in (3.10).

Proof. We first observe that

n

n p
1 ~ ; 3.7 1 ;
_1 2 : —iwApk 37 _1 § : T —iwApk
Jn72An (WATL) =N « Zk;7An (S = n « ( Zk_,,,_'_l’An)e
k=1 r=1

k=1
pA(n+1—k

— n*é i (Z )ZI: A, efiwAn(kJrrfl)

k=2—p r=1V(2—Fk)
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3 Limit behavior periodogram

= IO (WA + IP (wA) + I (wA,) (3.28)
with
1 0 L .
Jn7 (whAy) =n"a Z Zy A, e~ WAn(ktr=1)
k=2—p r=2—k
. n—p+1 p (3.10) . n—p+1 ' -
J,E?)An(wAn) =n"a Zy, o, e etk B2 s Z e whnk Z AL (WA,
k=1 r=1 k=1
n n+1l—k
(3) e T —iwAp (k+r—1)
o n, (WA,) :==n"a Z Z A, € :
k=n—p+2 r=1

Moreover, we define, for any 2,20 € R, the function =,, ,, : C —» R, =, ,,(z) =
21 R(z) + 29 (). Then we have, due to Eq. (3.8a) and Lemma 3.2.1(i),

0 D kA, r—1
_ nfé Z o iwln (k+r—1) /( CT( . Z (I)jAn e(rlJ)AnA) e(kAnfs)Aep dL,

k—1)A,

k=2—p r=2—k 7=0
0 P r—1
_ n—é C E e—zwAn (k+r—1) q) (7‘ 1-5)AnAm
a’ /\m -
k=2—p m=1 r=2—k j=0
kA,
EAL—8)Am
X / ekAn=9Am q
(k—1)Ap

0
=n= Y / o Ak () (s)dLs, (3.29)
=2—

k=2—p

where, for any w € R and A > 0,

k) " c(Am) (i)
C(A (s) ::Z LAY (w)e”"b‘_s))‘m and

m=1 a/()\m) s

p r—1
fém; 2—k) (w) — Z efiwA(rfl) ( . Z (I)]A e(rlj)A)\m) )
=0

r=2—*k

Hence, the complex Sa.S random variable Ay~ (1) (wAy,) has joint characteristic

function (cf. (3.12))
kAR e
Z / ds ;,
o e-na,

S (72 s (9))

(I)Jfll’)An (21, 22) = exp {_nA};ra(pl)
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3.4 Proofs of Chapter 3

21, 22 € R. With the same arguments as in Eqgs. (3.23) and (3.24) we further obtain, as

n — 00,
p—1 1
N wA,) = (=1)" <p ) +0(A,) (3.30)
r=1—k r
and hence, |f§q:2_k)(wAn)| <2 lforanyme{l,...,pfand k=2—-p,3—p, ..., 0,

if only n is sufficiently large. Thus,

0

1 kAn Ak (k) «a
N > /( D,z (e Cap i, (8 )) ds

ey (k=1)An

’Zﬂ + | z2])® k
S 1+ap 1) Z ‘C(Az,wAn(S)
<\zl|+\zzr LAWY
<(p— 1) (2
( ) nA Z |a )‘m

and the right-hand side converges to 0 as n — 00, since we suppose nA,
obviously yields JS)AH (wA,) = op (A}/aﬂ’_l) as n — 0.

Likewise we obtain JS)AH (WA,) = op (A,ll/ arp 71) as n — oo which completes the proof
of Proposition 3.4.1. O]

«

ds

1) _y 0. This

Proof of Theorem 3.2.5. We prove that Ap P~/ [JT(L2)An (ijn)L.:l ..... _ converges
weakly to [c(iw;) - (S (w) —iS3 (w))] .

7j=1,....m
sition 3.4.1. By virtue of (3.11) we have

as n — oo and then conclude with Propo-

n—p+1

kA,
TN @iy =n7a Y / e ek g0 A, (5)dL (3.31)
o J(k-1)A,
for any j € {1, ..., m} and the joint characteristic function of the complex Sa.S random

vector Ay P71 [J( )A (ij”)]j:L--.,m is given by

n

n—p+1

CDJfffA (0.v) —exp{ 1+a(p 1) Z /

‘—‘Gj,ljj <eiiij kg(A,,z wj (S))

- ot

ds}
(3.32)

with arbitrary 6, v € R™. Hence, due to Lévy’s Continuity Theorem, we have to show

for any 0, v € R™

«

ds

n—p+1 kA,

A ARG A1+a<p D Z /

—iw; k
*—*9 ,Vj <e 3 kg(A) ,wilAn (S)>

“1)A,
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= Ky ((E'%:Vj (C(l’wj>))j€{1,.‘.,m} ) (E—Vj"%‘ (C(iwj)))je{l,...,m} ’ 0) ) (3.33)

where K, has been defined in (3.13b) and (3.13c), respectively.

We first claim
m (k)
— —iw gAn wiAp (8)
E ::91',1/3' (e sAuk J—)

(s
. N 1
n 1 An (kfl)An =1 Ap

«
Zo,,v, (e_“jA"k c(iwj)> )

To this end, we use ||z[* — [y|*| < (|z]*/2+ |y|*/?) - |z — y|*/* for a € (0, 2] together with
the Cauchy-Schwarz inequality and obtain

m (k)
=y o~ iwj Ank gAmijn(s)
—0;,v; —1
2 Al

j=1

07

ds

n—0o0

220, (3.34)

n—p+1 o

TlA Z/ —-1)A,

m
D Zoy (705 eli)
j=1

«

ds

n— (k) 3
1 it kn LN wiA (S>
< Zo,.0, fzwj nk n,Wj=2n
~ nA, ; / A, Z 05:v5 AP1
m 3
+om )| )
j=1

ds
1
2 73
n m (k)
1 p+11/kAn . 9% A (3) .
~ ~ > (1051 + ) =) + Je(iw;)[2 | | ds
no= A Jona, \ S ’ ’ AL !
n— (k) a 93
1" /m" - ik [ 9An, wA, (s)
X | — — gy, | e ot [ = — c(iw;) ds
[n ; A Jik-1a, ; Y AR !
= [1 X [2,

where, due to Assumption 3.1, Eq. (3.11) and Lemma 3.2.1(iii), there are constants
C(w;) > 0 such that for all sufficiently large n

kAy,
5 o

«

+ lefiw;)| ds

o p+l gA w] (S)

AT

Z 1651+ ;)"
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3.4 Proofs of Chapter 3

3 ; QUGN c(iw;)|* 00
Z 10,1 + [u;1)° ((C(%)ZW(AM) + Je(iuy)| ) <

and hence, I; is bounded. Setting

h(k) (8) o Xp: c(/\l) a(iw) e(kAn*S))\l ke {1 }
An,w T ,Al)lw—)\ ) IR %

we obtain for the second term

i 1" e gl AL (s)
I; <m (16;] + ;)" = —/ i c(iw;)| ds
j=1 n 3 Ay Je-na, AP
i 1 n—p+1 1 kA ggf) N (s) " a
<m0+ s > |4 e ) (o)
j=1 n 3 Ay Je-1)a AP i
+‘ Ny (5) = cliw;) ds]- (3.35)
Then, for any j € {1, ..., m},
n— (k) o
1" kA g A (s
DI R = L
n = Ay Jg1a, An "
P ) . «
lc(N)| [ fan (WiAn)  aliwy) S
< . = — — 0 3.36
B (; |’ (N)] AR wj — A (3:36)

by virtue of Lemma 3.2.1(iii). Moreover,

1 n—p+1 1 kA, ) o
— h — d
w2 a o [ - ctiw) [ as
1"&E 1 A e ali o
_ / Z c(N)  a(iw;) ( (kAn=)\ _ 1)| g
= — - ; - e ) S
no= Ay Jpna, | A (N) dw; — N

p . @ A
. 1 n @ n—00
<" 3 (o0l Ty 2aq) 3, K-l @)
7 n

where we used Lemma 3.2.1(ii) and (iv). Hence, by Egs. (3.36) and (3.37) the right-hand

side of (3.35) converges to 0 as n — oo and thus, (3.34) is shown, as well.

In order to obtain (3.33) and hence,

AR [JS)AH(%‘A”)L:L..-,m a [e(iw;) - (ST (w) — z‘S-“(cg))Lzl m

g\KRS) T W25 &) =,
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3 Limit behavior periodogram

as n — 00, it remains to prove that

n—p+1 «a

P>

m
,zijnk c(zw]))

OJ,UJ
7j=1

= K, ((E%M (C(iwj)))je{l,...,m} ) (E*%@j (C(iwj»)je{l,...,m} ’ 0) '

Since we suppose in particular n4,, — oo as n — oo, this follows from Proposition 3.3.4.

)

Finally, since also nAn P 5 50 as n — oo holds, Proposition 3.4.1 yields for any

weR
TN (@A) + 0% (wA,) = op (AN

and hence, Ay P~!/° [, 5an (ijn)L,:l . 2 [ciw;) - (S (w) — Z'Sjg(g))}jzl L, as

n
) IRARS]

n — 0o. This completes the proof. O

Proof of Proposition 3.2.4. We immediately obtain

(]myAn((A)) n O‘ZYkA e —iwk (:9 _lz (Z\P Zk ],An) ik

where
n N Z —zwk Z Zk A, e—zwk and
W a,(w) =n"= Z LN ()
Hence,
_[n’yAn (w) ’\I/An( —iw } ZATE( ) + Rn,An ((.U),
with

R a, (w) = Uhn(e™™) J

n,

o0 (@) W, o, (@) + 08 (e79) T 5, (W) Wi, 8, (@) + W, a, ().

For the rest of the proof suppose that Assumption 3.2 holds and fix an arbitrary
w € R*. We have to show that A2 >/ | R, A, (WA,)] 5 0asn — oo
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3.4 Proofs of Chapter 3

1Va(p—1)

Since WA (e=@An) ~ AP q(iw)~t as n — oo and since in particular nA, — 00

if Assumption 3.2 holds, it follows from Theorem 3.2.5 that

AL e (e B T (WA,) B

n,

(ST (w) —iSP(w))  asn — o0,

where the joint characteristic function of (S*(w), S;*(w)) is given by Eq. (3.13) (with
m = 1 and 7 = 0). Hence, in order to show A5~ 2/a|Rn A, (WA,)] 5 0asn — oo, it is

sufficient to prove that
Ay @ Wy A, (WA,) 50 asn— . (3.38)

We shall prove (3.38) by an appropriate decomposition of the sum W, A, (wA,,), anal-
ogously to the one in [57, Proof of Proposition 2.1]. We write

Won, (WA,) =n"= Z Yhre WA, A (WA,) +n7e prﬁ em WAL AL (WA,)

j=n+1 7=0

= Wik, (WAL + 2L (WA,)

and
WS)An (WA,) = n-a Z \I,]An oW ( _ Z Z%An e—iwAnk)
j=n+1 —1
oo n—j
+ na Z \I/]-A” e WAhnj Z e o~ iwAnk
J=n+l1 k=1—j
_. W (11) (wA,) + WSQA)”(WAn)‘
We have
1
AYE[WER )] < AT [, s on)| a8 3 [0
j=n+1

and it is again Theorem 3.2.5 together with the Continuous Mapping Theorem (see, e.g.,
[54, Theorem 13.25]) showing An P~ |J . Zan (WAL 2 |c(iw)] - | S (w) — iSP (w)| as

n — 00. Since we have > \I/jA | = 0 by virtue of Lemma 3.2.2(ii), we immediately

Jj= n+1|
deduce Ay~ V/® WéuA)n( Ay) 5 0asn — oo.

Concerning the term W,(:QA)H (wA,) we write

j=n+1 k=1—j
J J 67



3 Limit behavior periodogram

-1 n—k
—na § : Zk,An e wApk E : \II]A” e wARj

k=—n j=n+1
—n—1
+n o § ZkA e—zwA k § \I/An —iwApj
k=—o00 j=1-k

= WD (WA,) + WD (wA,)

and obtain for arbitrary ¢ > 0
1—1
P(An W) wAn)] > ¢)
p 1 —1 n—k
S Z ]P)(A:la n"a Z Zl:—r-‘,-l,An Z \I]jAn e—iwAn(k?-i-j)
r=1

)
>_
p

k=—n j=n+1
p L -1 n—k c
- r i An —iwAy,(k+7) -
2 P(A S T, R( X w5 2
r=1 k=—n J=n+l1
n—k c
A i (k+j
+P( Z Z SN (Z Ui e ( ﬂ))‘ > 2_p)] (3.39)
k=—n j=n+1
Since, for every r € {1,..., p} and n € N*, the random variables Zf ., A,k €
{—=n, —n+1, ..., —1}, are independent and symmetric we apply [84, Theorem 1.2] and

the right-hand side of (3.39) can be bounded by

—1
§ : T
Zk—r—i—l,An

k=—n

2n
4§:P<Aiin—i ST jws
r=1

j=n+1

> i). (3.40)

2p

By virtue of (3.8a), (3 23) and Lemma 3.2.1(i), the characteristic function of
Ay /e g it Zh i A, I8 given by

< Z ‘\IIAnDa _Zl /(k r+1)A,

j=n+1 k=—n

% Z oBn H1T A, e((kr+1)Ans))\m>

«
ds
(it v 1 }e ({1, p}\{m})

r—1

j=n+1

(2 a0

m=1

D(z1, z9) = exp{

for any z1, 2o € R (see proof of Proposition 3.4.1 for the definition of =,, .,,). We then
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3.4 Proofs of Chapter 3
obtain with Apax := maxgeq, .. py X(Ax) <0

IOg (I)(Zl, 22)
o

1 O\
(A Z |\IfA ‘ |Z1|+|22|)< 1) Bndma (= DZ‘G A >

Jj=n+1

and the right-hand side converges to 0 as n — oo due to Lemma 3.2.2(ii). Thus, (3.40)

converges to 0 as well and A,/ W (121) (wA ) % 0 is shown.

In order to get Ab~'/* VVT(L1 22 (WA,) RN 0, we prove, for any r € {1, ..., p},
L1 ) —n—1 n—k
Anon™e N Zi A, Y W emAED) D g,
k=—o00 j=1-k

Therefore it is sufficient (using the same arguments as above via characteristic functions)

to show that o n
23 (X fel) o

k=—oo “j=1-k

as n — 00. This can be found in Lemma 3.2.2(ii) and hence, AnHe W(lizz (wWA,) 5.

n,

All together we have shown that Ay~ e W(l) (wA,,) converges to 0 in probability.

It remains to prove that also Aj~ Ve Wé?)An (wA,) 5 0 as n — co. To this end, we
define

n j 0
W ) =t D sl D

n—j

k=n+2—p—j r=n+2—j—k k=n—p+2 r=1

= W (wA,) + WED (wA,) — WD (wA,) = WP (wA,)

n,

and write
(2)
WA, (wWA,)
n 0 p n V4
o1 Ay —iwApj r —twAnk T —iwApk
=n « E ‘I/j e E Zkfrﬂ,Ane - E E Zkfr+1,Ane
j=1 k=1—j r=1 k=n—j+1 r=1

0
o1 Ay —iwAnj r —iwAnp (k+r—1)
=n o E wire E kA, €
i . —
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3 Limit behavior periodogram

n pA(n+1—k)

r —iwAy, (k+r—1)
k=n+2—p—j r=1V(n+2—j—k)

n

1-p n—p+
— WY (WAL S W AK S )zk o (WA ek
k=1—j k=

7j=1
= WA (@A) + W () = W <wAn>.
By virtue of Eq. (3.11) we have
L 1-p ~ n
Ay T/V(22 (wA,) = Ao a poa, (WA, e wank Z \I/jA” e WwAnj
k=1-n j=1—k

A . An —zwA (k )\m) kAL —5)Am
Z(n—uaZZ‘P] *j/ 2Oy @A) et dL,

a’(A
k=1-n j=1-k m

Since, due to Lemma 3.2.1(iii), fém)( A,) ~ AP la(i W)

1/\ as n — oo for every m €
{1, ..., p}, one observes by calculating the characteristic function of Ay~ Y O‘I/Vn A, (WAy)
that it is enough to show that

1-p n
ASP
n

(5 o)) o

k=l-n j=1—k

This follows immediately from Lemma 3.2.2(iii) and hence also A, e WSQ (WA, )
as n — oo holds.

Since the complex SaS random variables (ék:An)kez(wA") are i.i.d. (cf. Eq. (3.11)),
we easily derive

n 1-p
1—1 23 . 1—-L 1 . ) x .
A, @ W,(L A)n(wAn) = WA LA T E P @ whnd g Zim.a, (WA,) @714

D

. _1
el ALTE W (wA,,)

and thus An/® W(23 (wAy) 50 as n — oo, as well.

Finally, we have to prove that A L/e VV(21 (wAy) Lo Therefore, observe that

1—1
An = W (wA,)

n,

-1 nA(—k) P
_ A, Z WAk Z JAn g=iwhnj Z o iwAn(r=1) v
(nAn)l/a J k,An
k=2—p—n j=1v(2—p—k) r=2—j—k
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3.4 Proofs of Chapter 3

nA(—k)

k=2—p—n j=1V(2—p—k)

y /kAn Zp: c(Am) f(m;2fj*k)(wA )e(kAn*S))‘m dL (3.41)
(k—1) (M) 2" ' S

n m=1

(cf. Eq. (3.29)). Using Eq. (3.30) and its upper bound (see proof of Proposition 3.4.1),
the joint characteristic function of the right-hand side of (3.41), denoted once more by
. satisfies

nA(—k)

2p1‘ )\m aﬁ -1 N a
a3 ) 25 5 (TS jap)”
m= k

=2—p—n " j=1V(2—p—k)

lOg (I)(Zl, 22)
or

By virtue of Lemma 3.2.2(iv) we then have

-1 nA(—k)

Aa an—)oo
X (X )

k=2—p—n > j=1V(2—p—k)

and hence, Ay~ /® WflAlz (WA,) = 0 as n — oo,

Likewise, we get

0 1—-k
-2 (212) —iwApk A —zwA —iwAp 1
o nJ iwAp(r—1)
Ap WA (WA,) = 1/a E e g v g e Zy A,
k=2—p j=1 r=1

and, as before, one derives that it is sufficient to show that % 22:2710 (Z?:l ‘\IIJA" })a
converges to 0 as n — oo. This has been done in Lemma 3.2.2(v).

One can show analogously to W ) that also A, "/® Wrng’j (WA,) % 0 and anal-
ogously to W )it follows that Al 1/ “ Wflﬁz(wAn) £ 0 as n — oo. This implies

A71;1/(1 Wn v (wA ) _> 0 and A}z l/a W(z)An(wAn) £> 0 as n — oo, as well, and the

n,

proof is completed. [

3.4.4 Proofs of Section 3.2.3

Proof of Proposition 3.2.9. (i) We first observe that the state vector in Eq. (3.14a)

can be written as

VkAn = ZejAnAfn,k—j Vn € N*, ke Z,

=0
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3 Limit behavior periodogram

where &, 1 == f(]]if’{mn elFAn=9)43 4L, (cf. [36, Proof of Lemma 5.4]). Its Beveridge-Nelson

decomposition (cf. [9]) is then given by

Via, = (Z ejA"A> EantVira—Vox VneN, kez,

J=0

with Vnk = Z;’io (Efijﬂ elA"A)ﬁm k—j (see also [36, Proof of Theorem 4.2]). Hence,
Z Vk‘A'n = (IP - eA"A>71 Z gn,k + ‘77’170 - ‘771,77,7
k=1 k=1

where ‘7,170—‘7”,” = (Ip—eA”A)fleA"A(VO—VnAn). Since A, (Ip—eA"Af1 "2 At and
Vo 2 Vaa,, for any n € N*| we obviously get XN/mO — \N/mn = op(A;1(nA,)Y?) as n — oo.
By analog calculations via characteristic functions (as used in the proofs of Theorem 3.2.5
and Proposition 3.4.1), we further obtain Y",_, & x = B> p_; AL(KA,) +op((nA,)V%)
as n — oo. Putting all this together, we have

3.14b)
E Yia, =€ E Via,,
k=1 k=1

= T (I, — 2 4) ™ (5 i AL(kA,) + op ((nAn)i>> top (Arfl(”A“)é)

= Zg(jAn) ) ZAL(kAn) + op (A;I(nAn)i> as n — oo
J=0 k=1
and (1) is shown.

(ii) Let (0, X1, v1) denote the characteristic triplet of the underlying Lévy process L.
As in the proof of [36, Proposition A.1(c)]), we first factorize the Lévy measure vy, into

two Lévy measures
vin(A) =vp(A\{z e R: |z| <1}) and v (A) :=v(ANn{z eR: |z| <1}),

for any Borel set A C R*, such that v, = v; ) + V2. We decompose L into two inde-
pendent Lévy processes L = L) + L) where L™ has characteristic triplet (0, 0, v;a))
and L® has characteristic triplet (0, ¥z, v;).

Then one can show, as in the proof of [36, Lemma 5.6], that

z”: Vier, Vin, = f:ejA”A (i 7(11)19 (@S%)T) A 4 op (A;l(nAnﬁ)

k=1 §=0 k=1
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3.4 Proofs of Chapter 3

as n — 00, where Vi, is the state vector in Eq. (3.14a), f( elkAn=5)43 dL(l)
if & € (0,2) and fr(f)k = &k if @ = 2 where &, = f(k—l)An e(m” S)AB dL,. Next we
claim that, also for a € (0,2),

Zg (<) ankénwoP((nA)

as n — oo. Together with lim, .. A, > 7 JAnAR @ifnAT — [ e B A ds for all

matrices B,, B € RP*P with lim,,_,,, B,, = B, this yields

i Via, Via, = iejA"A (i En, bl k) R <Aﬁl(nﬁn)
k=1

=0 k=1

Qv

) (3.42)

Qv

) (3.43)

as n — 00. As to (3.42), we observe with 57(12)1{ =&k — S (1) f( elkAn=s)43 aL®?
that

AL ICHIES SEACARSIC I CHIES SLACHN
=1

k=1 k=1

3

and thus, by virtue of Holder’s Inequality and taking the norm ||[M|| := ||vec(M)]|, we

1
32(2 ) )(z ) )
k=1 k=1

Note that the second Lévy component L has finite moments of any order (cf. [78,

obtain

n n T
Sl — > (¢
k=1 k=1

Corollary 25.8]) and hence, we can apply [36, Proposition A.1(a)] and deduce for some
C > 0 and all sufficiently large n

rglel] o el

where the right-hand side converges to 0, since we suppose nA, — oo and 1 —2/a < 0
for any a € (0,2). We further obtain by combining [36, Proposition A.2(a,c)] and [74,
Theorem 7.1] that (nA,)~%*Y0 | Hfg)k||2 converges weakly as n — oo (note that L)
is a compound Poisson process). This completes the proof of (3.42) and hence also Eq.
(3.43) is shown.

(2)
nk

E

2
)

2 L2
”sc-mn) :
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3 Limit behavior periodogram

Now also

an &= ZAL kA2 BT + op ((nAn)%) asn oo (3.44)

k=1

holds. For, the (i,7)-th component of Y77 &, k&8, — B> p_ AL(kA,)? 87 can be
bounded, again due to Holder’s Inequality, by

N |=

{Z k€l — BYAL(RA, ) BT] )
’ (Zn: (8, 800:8,)) 3 (sl — 5 AL("“A">>2>

k=1 k=1

< ( el (16, @-Aumn)f)

2

3

with [fn k] and f3; being the ¢-th and the j-th component of §,, , and 3, respectively. Sim-
ilar arguments as used above for > _, H{nkH yield that (nA,)"2* 30 (€ 1]; as well
as (nA,) 230 (B AL(kAn))2 converge weakly to positive a/2-stable random vari-

ables. In order to obtain Eq. (3.44), it hence remains to prove that, for any i € {1, ..., p},
the sum (nA,)"2*>"0 | (&), — Bi AL(k‘An))2 converges to 0 in probability. This
is indeed true, since the random variables [&, ], — B; AL(kA,), k: € {1,..., n}, are

el (elAn=94 —1,)B|" ds )1/CY nd
DI el (eBn =94 —1,)8|% ds — 0 as n — oo (cf. Lemma 3.2.1(ii)). We thus deduce

L 3.14b a
Z VA (3.140) el ( Z VkAndTAn) €1
(323) e{ <Z efAnA < Z &mf?: k) ejAnAT> e +op <A;1(nAn)§>
j=0 k=1
(324) 6{ (Z ejAnA <ﬂ Z AL(/{ZAn)z ﬁT + op ((nAn)%) )ejAnAT> €1
j=0 k=1

+op (A;l(nAn)%>

ii.d. symmetric a- stable with scale parameter o, ( fOA"

= Z (JA,) Z L(kA,)? + op (A;l(nAn)%> as n — 00
=0
and (ii) is shown. O

Proof of Theorem 3.2.10. Assume that ¢, # 0. By virtue of [24 Lemma 3.1], the
integrated kernel function [ g(s)ds is equal to [~ efe’fds = —e[ A8 = ¢qa,’.
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3.4 Proofs of Chapter 3

Due to Proposition 3.2.4 we immediately obtain, for any w € R* and n sufficiently large

~ : I =a, (WA, ~
[n,YAn (wAn) _ ’\IjAn(efzwAn)F n, ZA ( ) - + Rn,An(WAn)

(n=tey i Yia,)

with Ry a, (WA) = Rua, (@A) (7Y S0 YVia,) - Since Ry a, (wA,) = op (A7)

as m — oo (see again Proposition 3.2.4) and since

Ay S A 2 )
(o) 3 ([ o) -G
" k=1 0

@)

Q

2
P
as n — oo with S being a SaS random variable with scale parameter oy (cf. [36,

Theorem 3.1(a)]), we have

Ry A, (wA,) =o0p(1) asn — oo. (3.45)
Since ‘\I!A"(e_i“’A")| ~ AL la(iw)] 7 and A, Y070 9(5AR) = [y g(s)ds as n — oo,

we combine Eq. (3.45), Proposition 3.4.1 and Proposition 3.2.9(i), and observe that, in

order to show Theorem 3.2.10, it remains to prove

O NI R %)
2} ([C(in) . (S;R( ) - ZS ( ))]je{l cym}’ Sm+1<9~3)>

as n — oo and to apply the Continuous Mapping Theorem (see, e.g., [54, Theorem
13.25]). However, this weak convergence result can be shown along the lines of the proof
of Theorem 3.2.5. O

Proof of Theorem 3.2.11. Assume w.l.o.g. that f s)ds # 0 (the CARMA pro-
cess would be trivial otherwise). Furthermore, we obtain as in the proof of Theorem 3.2.10
for all sufficiently large n

~ . 2 [ ZA’” (WAn) ~

L yon (WA,) = MA”(Q—WAH)’ n—;/a STy + Ry A, (WA,)
k=1 " kA,

with ﬁn,An (WA,) = Rya, (WA,) (n72/30 Y,fAn)fl. Since R, A, (WA,) = 0p (Az/a 2)
D

as n — oo (see Proposition 3.2.4) and since A, (nA,) >0 VA = [Fg*(s)ds -

(L, L], as n — oo with ([L, L],);>0 being the quadratic variation process of (L;);>o (cf.

I6)



3 Limit behavior periodogram
[36, Theorem 3.6(a)]), we get
Ay R a, (WA,) = 0p(1)  as n — oo. (3.46)

Since |W4n (e_"‘*’A")‘2 ~ AL la(iw)| 7 and A, 3770 g (GAL) = [T g% (s) ds as n — oo,
we combine (3.46), Proposition 3.4.1 and Proposition 3.2.9(ii), and observe that

2—2p—
n

2
o

~ L1, -1 A Jn A, (WA, )
Ay I yan (WA,) = |a(iw)|” d . (1 1
vontisy) =lati)* ([T ds) e (ron(1)
(3.47)

as n — 00. In the proof of Theorem 3.2.5 it has been shown that, for any w € R*,

An p_é(] (wAy) - (nA( P ZALI{:A) e @Ak 5o asn = 0o

(cf. Egs. (3.31), (3.32) and (3.35)-(3.37)). Hence, (3.47) becomes

: n —iw 2
- |c<w>| S0 AL(KA,) e ™Ank|

B dnyanha) = I (s ds - Ja(iw)]? s, AL(RA,)? (1 +or()

as n — oo. We introduce an i.i.d. sequence (Zy)gen+ of symmetric a-stable random vari-
ables with scale parameter o, and observe that (AL(kA”))keN* 2 AV (Zk)ken=. Con-
sequently, to finish the proof of Theorem 3.2.11, it is sufficient to show that

[|ZZ=1 Z e_iijnk’2] I
n 2
> k1 Zi L)

as n — oQ.

2 S 2
[SF@)” + [S°W)]
G2

Je{l,....,m}
(3.48)
Since n~2/« ’22:1 Zke*"“fA"k{Q 2 [S?(g)]z—k [Sf(g)f as n — oo, which follows implic-
itly from the proofs of Proposition 3.3.4 and Theorem 3.2.5, and since n=2/* 3"} Z2 =
S? asn — oo with S? being a positive a/2-stable random variable, which can be easily

derived from, e.g., [74, Theorem 7.1], we will show that also the random vector

(71?,27 O‘i,Z(ijn)? ﬂi,Z<ijn))je{17...7m}a (349)

with

VL 5= na ZZﬁ7 ay, z(WiA,) = ne S Z, cos(wjApk) and
k=1 k=1
B, z(w;An) :=mn P sin(w; Ay k),
k=1
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3.4 Proofs of Chapter 3

converges weakly. Note that this implies Eq. (3.48).

We take the same approach as in the proof of [58, Proposition 2.2] (which can be
found in [56]). Let (Nk)gens, Piy Pay ...y Py, My, My, ..., M, be i.i.d. standard normal
random variables, independent of (Zj)ken+. Then, with ¢ > 0 and 6, v € [0,00)™, the

Laplace transform of the random vector in (3.49) is given by

fn,An (‘%Q? Z)

[ 2 m 2 12
¥
=[E |exp {—7%?72 - E (Ejo‘i,z(%’An) + 7] 7217Z(ijn)) }]
i j=1

=E E

€xXp {Zg&n_; Z Zka + 7 Z (Qijan’Z(ijn) + Vijﬁn,Z(ijn))} ‘(Zk>k€N*]]

k=1 j=1

=K exp {Zg@n_i Z Zk Nk +1 Z (QJ PJ Oénjz<WjAn) + Vj Mj ﬁn’z@c}jAn))}

k=1 j=1
n

=E |exp {in_clx Zy, <90 Ny + Z (6 Pj cos(w;Ank) + vj M; sin(ijnk))> }]
L k=1

J=1
aN +
> o

o Ny + Z (6; P; cos(wjAnk) + v; M; sin(w;Ayk))
j=1

y) = =30 ’gp Np+3>00, (6; P; cos(w;jAnk) + v; M; sin(ijnk))‘

We define the function h(z, y) := ‘gpy +200 (6; P; cos(2mz;) + v M; sin(27rxj))‘ :
xr € R™ y € R. Note that h satisfies the assumptions of Proposition 3.3.5 for every
realization of P = (Py,..., P,)T and M = (My, ..., M,,)T.

=E [exp in_iZ1<E
k=1
0% —
—F _ZL
SES

k=1

© Ny, + Z (6; P; cos(wjAnk) + v M; sin(w;A,k))

Jj=1

= E [exp {—ag K a, (0, 0, Z{)H

with K, a, (,0 :

Now, if wy,...,w,, are linearly independent over Z we obtain by virtue of Proposi-
tion 3.3.5

fn,An<§07 Q7 L{) nj}oo E [exp {—O’% E [h(gv N1>| B7 M] }]

«

=E © Ny + Z (6; P; cos(2nU;) + v; M; sin(27U;)) ’ P, M

j=1

exp {—az‘ -E

=: f(¢, 0, v). (3.50)
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3 Limit behavior periodogram

Here Uy, ..., U, are ii.d. [0, 1)-uniform random variables independent of P, ..., P,
M, ..., M,, and Nj.

If wy,...,w, are linearly dependent over Z, then also by virtue of Proposition 3.3.5
Jo.an (@, 0, v) — f(o, 0, v) as n — oo but now U = T'(V4, ..., V,,—s) with T being the
parametrization of the (m — s)-dimensional manifold .Z (w1, ...,wy) (cf. (3.17)) and
Vi,..., Vin—s are i.i.d. [0, 1)-uniform random variables independent of P, M and N;.

Hence, in both cases the Laplace transform f,, a, (¢, 8, v) of the random vector (3.49)
converges to a function that is continuous in the origin. This implies that the ran-
dom vector (7,2 5, o2 4(w;Ay), fhz(ijn))je{me} converges weakly and completes
the proof. m

3.4.5 Proofs of Section 3.3

Proof of Theorem 3.3.3. We identify the equivalence classes in (R mod1)™~* and
(R mod 1)™, respectively, by their representatives in [0, 1)™~* and [0, 1)™.
(i) Define

Ni={z=(21,...., 20 €0,1)"*: Fje{l,....m—s},ie{l,...,m}
such that z; =k - |b§i)|_1 for some k€ {0, 1, ..., ‘bgi)’ —1}},

where by) denotes the i-th component of the vector b;. Clearly s *(T(N)) = 0 and
T 1ym-s\n is continuously differentiable with rank(D T'|j ;ym-s x (2)) = rank(B) =
m— s for all z € [0,1)"*\N. Moreover, T is injective. The reason is the following. Sup-
pose that T(z1, ..., Zm_s) = T (Y1, ..., Ym—s) for some (21, ..., 2m_s)T, (Y1, Ym_s)’ €
[0,1)™=*. Then

(Z ij]) mod 1 = (Z yjbj) mod 1 <= Z(x] —y;)b; € Z™.
j=1 =1

j=1

Since "% (z; — y;)b; € span®({b1, ..., bys}) NZ™ C LLAZm = &, there exist
integers zj, j € {1, ..., m—s}, such that 3 """ (z;—y; —2;)b; = 0 and hence, (z;—y;) =
z; € Zforall je{l,..., m— s} Since z; —y; € (—1,1) we must have z; = y; for all
j € {1, ..., m — s}. This shows that T is indeed injective. Note that 7! is continuous
(mod 1) on .# and thus, T'([0,1)™ *\N) is an (m— s)-dimensional C'*-manifold in [0, 1)™
(for a definition of manifolds, see, e.g., [67, pp. 200-201]). Since ™ (T (N)) = 0,

also .# is an (m — s)-dimensional C''-manifold and integration over .# is the same
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3.4 Proofs of Chapter 3

as integration over 7'([0,1)™ *\N) = .#Z\T(N) (note that T'(N) itself is a manifold in
[0,1)™ from lower dimension than m — s).

(ii) Suppose there is a 2 = (21, ..., 2m—s)" € Z™°, 2 # 0, such that (z, u) = 0.
W.lo.g. 21 # 0. Then

The vectors E = —%bl +b; € Q™ 1 =2, ..., m—s, are obviously linearly independent.
Thus,

<span]R {52, o ,st}>L C {Q}L = <spanIR {52, . ,’Z;ms})L NZ™ C {Q}L NZ™ = .57,

and since the dimension of . is s whereas the dimension of span® {52, e Em_s}L nNzZm™
is s + 1 (the latter can be obtained as in the proof of dim(.#) = m — s on p. 52), we
have a contradiction. Hence, (z, p) # 0 for all z € Z™™°, z # 0.

(iii) We have, with h = Bz and z € Z™ %, z # 0,

1 / _ / / 2mi(h, T(G—z))
_ x) I dz) = T(z))dx = e : dz
s |, fu(z) (dz) - fu(T(x)) -

. —1 . T -1
_ / e27r7,<h, BG~'z mod 1) dr = / e27rz(z,B BG™ ') dx
[0,1)m=*

[0,1)"175
m—s 1 '
= H/O 2% ;. (3.51)
j=1

Since z # 0 there is a j € {1, ..., m — s} with z; € Z\{0}, and the right-hand side of
(3.51) has to be zero.

(iv) Let T(x), T(y) € A, T(x) # T(y). Since T is injective, there is some j, €
{1, ..., m — s} such that xj, # y;,. For h = Be;, = b;, we have

fh(T(x)) i fh(T(y))fl _ e?m'(bjo,T(Gilx)fT(Gfly» _ eQﬂi(BejO,BGfl(azfy)) _ eQﬂ'i (@50 =Y50) 7& 1’

since z;, — yj, € (—1,1)\{0}. O

Proof of Proposition 8.3.4. Letting w = (w1, ..., wp)" = 27(n, ..., nm)" = 271,

we immediately get
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3 Limit behavior periodogram

n «

n—00 % Z Z cos (2m{n;Ank}) Zo, o, (c(iw;)) + sin 2w {n;Ank}) E_,, 0, (c(iw;))

k=1 |j=1

Let us first consider the case where wy, ..., w,, are linearly independent over Z. We
claim that, for any h € Z™, h # 0,

1 = Iy
SN 0 s 00! (3.52)
n

To this end, note that for n sufficiently large

2mi(h, n)Ann
‘e ~ — ]_‘ 1 1

- 1
- 2mih, m) An = h “nA
(§] ~ — 1‘ ‘< ) ﬂ>| n

1 )
= Z e2 (hym)Ank _ =
n

n
k=1

and the right-hand side converges to 0 as n — oo since nA,, — oo by assumption and
since wq, ..., w, are supposed to be linearly independent over Z.

However, (3.52) already implies that

LS faky / f(x) da (3.53)

[0,1)™

for any continuous function f : R™ — C with period 1 in each component variable (more
precisely, f should be seen as a function, mapping from the compact Hausdorff space
(R mod 1)™ to the complex numbers). An explanation is the following. If we fix ¢ > 0,
we know from the Weierstrass Approximation Theorem (cf. [83, Theorem 17]) that there
exists a trigonometrical polynomial W, i.e. a finite linear combination of functions of
the type ™) h € Z™, such that sup,cgm | f(z) — U ()| < e. This yields

'/ dx——ZfAkn‘
[0,1)m

Nd 2)de — =3 W (Ank
<|[ - \/{ : Z )
+ EZ\I’e(AnkQ)—f(AnkQ)‘
<2€~|—‘/ d$——z\lf (A kn)‘ (3.54)
[0,1)m

Since f[o 1ym 27 dg = 0 for any h € Z™, h # 0, Eq. (3.52) implies that the second
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3.4 Proofs of Chapter 3

term on the right-hand side of (3.54) converges to 0 as n — oo. This shows that (3.52)
already implies (3.53).
We conclude the first part of the proof by applying (3.53) to the function

«

flx1, ..oy o) = Z cos (2mx;) Bg, 0, (cliw;)) + sin (2mz;) 2y, o, (c(iw;))| . (3.55)

In the case where wy, ..., w, are linearly dependent over Z, we first observe that for
any f, € 7 with h € £, h #0,

1 n
— E fr(Apknpmod 1) -0 asn — oo (3.56)
n 4

k=1

(where the mod-operator is defined componentwise; for the definition of 7 and £ see
(3.16) and (3.18), respectively). Therefore note that A,kn mod 1 € .# for any n € N*,
ke {1, ..., n}, since (cf. Theorem 3.3.3)

Apknmod 1= B(Ayk p) mod 1= B(Ayk g mod 1) mod 1 =T(A,kpmod 1) € 4.

—_——
€fo,1)m=s

(3.57)
Then, with h = Bz € %, = € Z"=*\{0},

n

1< 1 2mi(Bz, BG~1T~1(Ankn mod 1))
=S Ak mod 1) = =S ’ ~k
- fn( n mod 1) - e

k=1 k=1

9

n n
1 Ze2m(z,T*1(AnkQ mod 1)) (3.57) 1 RLICIE
n n

k=1 k=1

and since (z, p) # 0 for all z € Z™*\{0} (see Theorem 3.3.3(ii)), we obtain Eq. (3.56)
in the same way as we have shown (3.52) in the linearly independent case.

Now, in the linearly dependent case (3.56) already implies

RN oo 1 -
;;fmnkgmod R ///, J(@) A (da) (3.58)

for any continuous function f : .# — C. Indeed, span®(.7) is a dense subalgebra in
C(A), the algebra of all continuous complex-valued functions on the compact Hausdorff
space . , with respect to the topology of uniform convergence (cf. also comments after

Theorem 3.3.3). Hence, for any continuous function f : .# — C and any fixed € > 0 there
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3 Limit behavior periodogram

is a finite linear combination W, of functions in .7 such that sup,c , |f(z) — VY (z)| < e.

This yields, analogously to (3.54),

—1 mes — l " mo
S f, T S ke mod 1)
1 m—s 1 -
S 2e + 'm //// \I/E(I) I (dZE) - ﬁ kg_l \I/€<Ankﬂ mod 1) s

and the second term on the right-hand side converges to 0 as n — oo by virtue of
Theorem 3.3.3(iii) and Eq. (3.56). This shows (3.58).

We conclude the linearly dependent case by applying Eq. (3.58) to the function f| ,
with the same f as in the linearly independent case in (3.55). O

Proof of Proposition 3.3.5. We have
1 n
=~ [y mod 1, Ny) — E[f(U, M)
k=1
1 n
=— Z (f(k:Ann mod 1, N;) — E [f(k:Ann mod 1, Nl)])
n 1 1
k=1

+ % ZE [f(kAnQ mod 1, N1)} -E[f(U, N)]

=. Il + IQ.

We consider first the case where wy, ..., w,, are linearly independent over Z. Then, by

virtue of Eq. (3.53) and the assumption that ¢V is continuous on (R mod 1)™, we have

h= 3" gV (kA mod 1) = B[f(U N)] "5 [ g0y do B[ M)

k=1 [0,1)™

- /ﬁ)l)mE[f(fE, N dz —E[f(U, Ny)] = 0.

With Chebyshev’s Inequality and the assumption that ¢(? is continuous on (R mod 1)™,

we further obtain

n

3 E {(f(kAnQ mod 1, N}) — E [f(k;Anﬂ mod 1, NI)D }

1

e2n

]P)(’]ﬂ > 5) S
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1 « ) 1 & o
<5 ;E [£2 (6 mod 1, N)| = ’;g (kA mod 1)
- L/ 9 () dz - (14 o(1)) = 5 E[F(U, N)] - (1 +0(1)

e2n Jipym e2n <

where we used once more (3.53). Hence, Eq. (3.19) is shown in the linearly independent

case.
Suppose now that wy, ..., w,, are linearly dependent over Z. As above, now due to Eq.
(3.58),
1
L= D(z) ™5 (dz) —E[f(U, N
" S | 90 A7 )~ E [T )
= [ ey B ), M)
0,1)m—s
= [ BUE), Nz —E[110), N] =0
0,1)m—s
and
1 n
P(h| > ) < 5> g® (kAuy mod 1)
k=1
1 1
= : @ (z) m(dz) -(1 + o(1)) "= 0.
Sy ) 9 A ) (14 o(1) S
—E[2(T(V), M)
Thus, also in the linearly dependent case (3.19) holds. O
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4 Spectral estimates for

high-frequency sampled CARMA

pro CESSES3

4.1 Introduction

In this chapter we investigate continuous-time ARMA (CARMA) processes Y = (Y})ier
in the spectral domain and propose an estimator for the model parameters. For an
overview and a comprehensive list of references on CARMA processes and their applica-
tions in several fields such as signal processing and control, econometrics and financial
mathematics, we refer to [16, 23, 36]. The driving force of a CARMA process is a Lévy
process (Lit)ier. A Lévy process (Ly)i>o is defined (cf. [78]) to satisfy Lo = 0 a.s., (Lt)t>0
has independent and stationary increments and the paths of (L;);>o are stochastically
continuous. An extension of a Lévy process (L;):>o from the positive to the whole real
line is given by L; := Ll >0y — z_t_]l{Ko} for t € R, where (Et)tzo is an independent
copy of (L¢)¢>o. Prominent examples are Brownian motions and stable Lévy processes. In
this chapter we restrict our attention to symmetric stable Lévy processes and symmetric
Lévy processes with finite second moments. Then a CARMA process can be interpreted
(its formal definition is given in Section 4.2) as a solution to the p-th order stochastic
differential equation

a(D)Y; =¢(D)DL;, teR, (4.1)

where D denotes the differential operator with respect to t and

a(z) =4+ a P+ +a, and c(z) i =coz? + 29+ e

3The contents of this chapter are based on Fasen, V. and Fuchs, F. (2012), Spectral Estimates for
High-Frequency Sampled CARMA Processes, submitted for publication.
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4 Spectral estimates

are the autoregressive and the moving average polynomial, respectively. Hence, CARMA
processes can be seen as the continuous-time analog of (discrete-time) ARMA processes.

From a statistical point of view, the so-called power transfer function

U(w) =

w e R, (4.2)

which corresponds (up to a constant) to the classical spectral density in the finite-
variance case, is of central interest since it determines the model completely. The zeros
of U contain the zeros of ¢(i-), and hence, provided that the sign of the real part of
any zero of ¢(-) is supposed to be known, one can identify uniquely the coefficients of
the moving average polynomial from the power transfer function W. Likewise the zeros
of ¥~ characterize completely the coefficients of the autoregressive polynomial if one
assumes to know the sign of the real parts of the zeros of a(-). From this it is obvious
that, under causality and invertibility assumptions on the CARMA process, estimators
for the power transfer function can be used to construct estimators for the coefficients
of a(+) and ¢(+).

The empirical version of the power transfer function (spectral density) is in the finite
second moment case the periodogram. In [39] we have investigated the limit behavior
of normalized and self-normalized versions of the periodogram of high-frequency sam-
pled symmetric a-stable CARMA processes. Here we assume again that we observe
the CARMA process Y only at equidistant time points {0, A,,, 2A,, ..., nA,} where
A, > 0 is small, as used for modeling high-frequency data appearing in turbulence and
finance (cf. [21, 36]), and n € N is the total number of observations. More precisely, our

asymptotic results hold under
Assumption 4.1. We suppose that simultaneously A,, — 0 and nA,, — oo as n — 0o.

The normalized periodogram of the sampled sequence Y2 := (Yja, Jrez at frequency

w € [—m, 7] is given by

n 4 9
L, yan(w) = ’n‘l/a Z Yia, e k| (4.3)
k=1

where for finite-variance CARMA processes we have o = 2 and for a-stable CARMA
processes « is the index of stability. A self-normalized alternative, no longer depending
on a, is given for w € [—m, 7| by
n —iwk 2
~ L, yan(w) D ko1 Yia, €
In, YAn (W) = —2/aN Y2 - n 2
L > k1 Yia, > k1 Vi,
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As stated in [39, Theorems 3.5 and 3.10], both the normalized as well as the self-
normalized periodogram are not consistent estimators for the power transfer function
if the Lévy process is a-stable, o € (0,2]. The limit distribution is a function of an
a-stable random vector which reduces in the finite-variance case to an exponential dis-
tribution. We will generalize these results to finite-variance CARMA processes and to
a very general high-frequency grid distance A,,. The limit results for high-frequency
sampled finite-variance CARMA processes are analog to the results for finite-variance
CARMA processes sampled at an equidistant time grid as derived in [37].

However, by applying linear smoothing filters to the periodogram consistent estimators
for the (normalized) power transfer function can be constructed which is the main topic

of this chapter. We will consider the class of estimators of the form

Toyan(@) = > Wulk) L, yan(wr) (4.5)
‘MSmn
and
Toyan(@) = > Wu(k) L, yan(wr) (4.6)
‘klsmn
where N
wk:w—i—ﬁ, ’]fl Smn, (47)

and (my,)nen is a sequence in N satisfying

Assumption 4.2. We suppose that simultaneously m,, — oo and "K:L — 0 as n — oo.

n

The sequence of weight functions W, : Z — R is specified by

W, (k) = W, (—k), W, (k) >0, VkeN, (4.8a)
> Wuk)=1, VneN, (4.8b)
k| <mn
5 1
max Wi (k)=o|— as n — 00. (4.8¢)
|k|Smn mp

On the one hand, we will show that the sequence of smoothed self-normalized peri-
odograms A, fn van (WA,) is a consistent estimator for the normalized power transfer
function. This result is in analogy to the one for ARMA models in discrete time obtained
by Kliippelberg and Mikosch in [58]. On the other hand, for finite-variance CARMA
processes the smoothed normalized periodograms A, T, ya,(wA,) provide consistent

estimators for the 2r-multiple of the spectral density, as well.
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4 Spectral estimates

Thereafter, these results are used to develop an estimator for the parameters of the
CARMA process. Our heuristic will basically consist of a constrained nonlinear least
squares problem where the constraints come from the (necessary) additional assumption
of causality and invertibility of the CARMA process. The estimator is then given as the
best, in terms of least squares, (normalized) rational approximation for the smoothed
periodogram values. It is an alternative to the ones presented in [18, 19, 45] working for
both finite-variance and stable CARMA processes with infinite second moments. The
Gaussian quasi-maximum-likelihood estimation has been derived in [19, 81] for Lévy-
driven (multivariate) CARMA processes with finite second moments. In [45] a heuristic
study of the estimation of stable CARMA(2, 1) processes is presented. A nonparametric
estimator for the kernel function of a CARMA process is proposed in [20], and for
Ornstein-Uhlenbeck processes, which are CARMA(1, 0) processes, an efficient estimator
for the mean reversion parameter of the Ornstein-Uhlenbeck model has been obtained in
[18, 53] by using methods of [31]. Compared to the other estimators the new contribution
of this chapter is that the estimator performs well for both finite-variance and infinite-
variance models and we are able to estimate both the autoregressive and the moving
average polynomial.

The chapter is structured in the following way. In Section 4.2 we recall the formal
definition of a Lévy-driven CARMA process and present some assumptions and notations
of the chapter. The main results are stated in Section 4.3. These include the asymptotic
behavior of the different smoothed periodogram versions and of the periodogram itself.
The topic of Section 4.4 is then the statistical inference for the model parameters of a
CARMA process, illustrated by a simulation study for a CARMA(2, 1) process. Finally,

Section 4.5 contains the proofs.

Notation

We use N* and R* for the natural and real numbers, respectively, excluding zero and
Z for the integers. For the minimum of two real numbers a, b € R we write shortly
a A b and for the maximum a V b. The real and imaginary part of a complex number
z € C is written as R(z) and (z), respectively, and its complex conjugate as Z. For
two sequences (a,)neny and (b, )nen We say a, ~ b, as n — oo if lim, o a, /b, = 1. The
transpose of a matrix M is written as M7 and the m-dimensional identity matrix shall
be denoted by I,,,. On K € {R,C} the Euclidean norm is denoted by |-| whereas on
K™ it will be usually written as ||-||. For two random variables X and Y the notation

X 2 Y means equality in distribution. If we consider a sequence of random variables
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(Xn)nen, we denote convergence in probability to some random variable X by X, 5 x

e D
as n — oo and convergence in distribution by X, — X as n — oc.

4.2 Preliminaries to Chapter 4

4.2.1 Lévy-driven CARMA processes

We recall the definition of an a-stable random variable and then present the notation

which we use throughout the chapter for the underlying driving Lévy process.

Definition 4.2.1. A real-valued random variable Z is called symmetric a-stable (Sa.S)

with index of stability o € (0,2], if its characteristic function is of the form
Oy(u) =Elexp {iuz}] = exp{—0c®|u|"}, u€R,

for some o > 0. The parameter o is called scale parameter. A symmetric a-stable Lévy
process (L;)ier with scale parameter oy, is a Lévy process where Ly is SaS with scale

parameter oy,.

In particular a S2S random variable is normally distributed and a 2-stable Lévy

process is a Brownian motion. For the driving Lévy process we use the following notation.

Definition 4.2.2. Let o € (0,2] and o, > 0. By L(«, o) we denote a symmetric Lévy

process that is either
(i) a-stable with scale parameter oy, if o € (0,2), or
(ii) satisfies E[L3] = o2 if a = 2.
A CARMA process driven by L(«, o) is then defined as follows. Assume that we

have given p, ¢ € N, p > ¢, and a4, ..., ap, co, ..., ¢g € R, a,, cog # 0, let
0 1 0 0
0 0 1 .
A= : : R € RP*P
0 0 ... 0 1
—Qp, —Qp_1 ... ... —ai

and let (X;)er be a strictly stationary solution to the stochastic differential equation

dXt = AXt dt + ep st7 t e R, (49&)
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4 Spectral estimates

where e, denotes the p-th unit vector in R”. Then the process
Y, =c'X,, teR, (4.9b)

with ¢ = (¢g, ¢4-1, -+, Cqpr1)? (where we use the convention ¢; = 0 for j < 0) is
said to be a CARMA process of order (p, q). Necessary and sufficient conditions for the
existence of a strictly stationary CARMA process are given in [22]. In this chapter we

will suppose

Assumption 4.3.

The eigenvalues A1, ..., A\, of A are distinct and possess strictly negative real parts.

Under this assumption, the solution for the state process in (4.9a) is unique, strictly

stationary, causal and can be written as
t
X, = / e=94¢ dL,, teR. (4.10a)

Hence, the CARMA process Y can also be expressed as a Lévy-driven moving average
process Y; = ffooo g(t — s)dLg, t € R, with kernel function

g(t) = cTee, 1 o0 (D). (4.10Db)

Notably the CARMA process can be interpreted as solution of the stochastic differential

equation given in (4.1).

4.2.2 Decomposition of the smoothed (self-normalized)

periodogram

Before stating the main results, we derive a series representation of the sampled sequence
YAn driven by a Lévy process L(a, o) as in Definition 4.2.2. We use this representation
for a suitable decomposition of the Fourier transform of Y27 and its associated smoothed
(self-normalized) periodogram. Recall that the discrete Fourier transform is given by
F, van(w) :=n"Yo3S" Via, e”™F for any w € [—m, 7).

It is well known that every solution to (4.9a) satisfies

t
X, = elt=94 X, +/ e(t’“)Aep dL,, Vs, t € R, s <t.

s

Then, under Assumption 4.3, we have by iteration that the state process X at time point
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kA, can be written in the series representation
o0
Xpa, = Y &4 e, k€L, (4.11)
§=0
with the RP*P-valued noise sequence

kA,
&= / eFAn=9)Aqr, neN, keZ. (4.12)
(k—1)A,

We define, for any w € [—7, 7],

n—j n
Un,j(w) := &rpe - Z & e
k=1—j k=1
s (0) = 3010, ()
=0
My, a,(w) = (I, —e™™ -2 ) Iy g omik, (4.13)
k=1
Jon, (W) ="M, A, (w) e, and

Roa, (W) = J, A, (W) - T Ky A, (W) € + cTKmAn(w) e I A, (w) + |CTKn7 A, (W) ep|2.

n

The series representation of the state process X in Eq. (4.11) then immediately yields

the following decomposition for the Fourier transform of the sampled sequence Y2»

n n o0
1 —iwk T AL A % —iwk
ne F, yan(w) = g Yin, e =c E E ot e ep
k=1

k=1 j=0
e} n o)
_ CT (Z ej(AnAf'iwIp) Zf:;k eiwk) e, + CT (Z ej(AnAfiwIp) Un,j<w)> ey
=0 k=1 =0
="My a, (W) ep+ " K a, (W) ep = J, o, (W) + K a, (W) ey (4.14)

and hence, we may split the smoothed (self-normalized) periodogram in a main, limit-

determining, part and a vanishing rest term (cf. upcoming Propositions 4.3.3 and 4.3.4):

2

A~

Toyan(w) = > Wu(k)

S Yaa, et
n 2
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4 Spectral estimates

2

T, (Wi) + Ky a, (wr) €

Z W Zn: Y?2

|k|<mp ulp

= 3 Wi et ‘ + 3 Wl ) o) A"i(/w’“). (4.15)
k| <mn, 2oum1 Yia, (k| < uln

4.3 Limit behavior of the smoothed periodogram

Our main limit theorem is the following:

Theorem 4.3.1. Suppose o € (0,2], o, > 0 and let Y2 = (Yya, Jrez denote the sam-
pled sequence of a non-trivial CARMA (p, q) process driven by the Lévy process L(«, or)
as in Definition 4.2.2. Moreover, Assumptions 4.1 to 4.3 may hold, and assume that the
weight functions W,, satisfy (4.8). Then the smoothed self-normalized periodogram as in
Eq. (4.6) satisfies for any w € R*,
!C(Zw)\
AnT yan(WAR) , as n — 0o,
fo Ja(iw)[?
where g is the kernel function of the CARMA process (see (4.10b)), i.e., the smoothed

self-normalized periodogram is a weakly consistent estimator for the normalized power

transfer function.

For o = 2 the normalization n=' Y} | V2, = converges in probability, as n — oo, to

o g%(s)ds - o (cf. [36, Theorem 5.5(a)]) such that a direct conclusion is

Corollary 4.3.2. Under the same assumptions as in Theorem 4.3.1, suppose in addition
that o = 2. Then the smoothed normalized periodogram as in Eq. (4.5) satisfies for any

w € R*,
|e(iw) |?
|a(iw)[?

e., the smoothed normalized periodogram is a weakly consistent estimator for the 2m-

P
ATy yan(WA,) = o7 - as n — oo,

multiple of the spectral density.

The proof of Theorem 4.3.1 will be divided into two parts. The first one shows that

the main part in (4.15) converges to the normalized power transfer function as n — oc.
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4.3 Limit behavior of the smoothed periodogram

Proposition 4.3.3. Under the same assumptions as in Theorem 4.3.1 we have for any
w € R*,

‘ 2

2

‘]n, An((WAn)k) P \c(zw)]
> |k|§'r:nn Walk) D et Yu2An -~ fooo g2(s)ds - la(iw)|?

as n — 0o,

where J,, A () has been defined in (4.13).
The second part shows that the rest term in (4.15) vanishes as n — oc.

Proposition 4.3.4. Suppose a € (0,2], o, > 0 and let Y2 = (Yia,)rez denote
the sampled sequence of a non-trivial CARMA (p,q) process driven by the Lévy pro-
cess L(a, o) as in Definition 4.2.2. Moreover, Assumptions 4.1 to 4.3 may hold, and
assume that the weight functions W,, satisfy (4.8a) and (4.8b). Then we have for any
w € R*,

R, An<<WAn)k> P
A, k<zm W (k) NN —0 asn— oo,

where Ry, A, (+) has been defined in (4.13).

In Theorem 4.3.1 we have shown that the smoothed self-normalized periodogram pro-
vides consistent estimates for the (normalized) power transfer function of symmetric
a-stable as well as finite-variance CARMA processes. Recall that normalized and self-
normalized periodogram versions have been investigated in [39] under more restrictive
assumptions on A,, than here. Moreover, in that paper only the Gaussian case has been
studied but not the general finite-variance setting. Therefore, the following theorem
should be seen as an extension of the results in [39]. It concerns the limit behavior of

the normalized periodogram including finite-variance CARMA processes.

Theorem 4.3.5. Suppose o € (0,2], o1, > 0 and let Y2 = (Ya, ez denote the sam-
pled sequence of a non-trivial CARMA (p, q) process driven by the Lévy process L(c, o)
as in Definition 4.2.2. Moreover, Assumptions 4.1 and 4.3 may hold. Then the peri-

odogram as in (4.3) satisfies for any w € R*,

. / e27ris dL:
[0,1)

where (Lf)i>o i a symmetric a-stable Lévy process with scale parameter oy, if a € (0,2)

2-2 p |c(iw)|” ’

Ay I, yan (WA, :
v lB) i)

as n — oo,

and for o = 2 it is a symmetric Brownian motion with Var(L}) = o%.
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4 Spectral estimates

A direct conclusion is the asymptotic behavior of the periodogram for finite-variance
CARMA processes.

Corollary 4.3.6. Let the assumptions of Theorem 4.53.5 hold and suppose o = 2. Then

the normalized periodogram as in (4.3) satisfies for any w € R*,

- 2 N2 N2
Ay L yan (wA,) L 0% . % . <71 + 72) as n — 0o,

where Ny and Ny are i.i.d. standard normal random variables, and the self-normalized

periodgram as in (4.4) satisfies for any w € R,

. . 2 N2 N2
An ] . An D IC(Z(‘U)| . _1 _2
mysn(@ha) = e e 2

2 2
where g is the kernel function of the CARMA process (see (4.10b) ).

as n — 0o,

From Proposition 4.3.4 we know already that the rest term in (4.15) with W,,(0) =1
and W, (k) = W,,(—k) = 0 for k € N* vanishes. These weights do not satisfy (4.8c), but
obviously (4.8a) and (4.8b). The next proposition investigates the main part.

Proposition 4.3.7. Under the same assumptions as in Theorem 4.3.5 we have for any
w € R*,

2
2z
A e pa o, (WAR)

as n — oo,

2 )2 ,
E} ‘C<le)|2 . ‘/ e?ms dL:
la(iw)]* | /o)

where J,, A, () has been defined in (4.13) and (L})i>o is as in Theorem 4.3.5.
Remark 4.3.8.

(i) As already mentioned above, in [39] the general finite-variance case has not been
considered. In this spirit, Theorem 4.3.5 and Corollary 4.3.6 should be seen as
an extension of [39, Theorems 3.5 and 3.10], although we have stated only the
univariate limit distributions for the normalized and self-normalized periodogram
here. However, it seems to be possible to derive also the limit behavior for different
frequencies. In this case, the limit depends again on the dependence structure of
those frequencies if o < 2, cf. [39, Section 2.2]. As in the Gaussian case (cf. [39,
Remark 3.6(ii)]) different periodogram ordinates of finite-variance CARMA models

are asymptotically independent.
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(i)

(iii)

4.3 Limit behavior of the smoothed periodogram

Theorem 4.3.5 (and its proof) confirms our conjecture in [39, Remark 3.7], namely
that the assumption nA? — oo with 8 = max {1 +6,a(p — 1) + max {0,1 — a}}
for some 0 > 0 is not necessary for the limit results of normalized and self-
normalized periodogram versions of symmetric a-stable CARMA processes. In-
stead, supposing nA,, — oo as n — oo is already sufficient. Note that, anyway,
the partition of the periodogram used in [39] provides deeper insight into struc-
tural properties of CARMA processes in the frequency domain and therein lay the
necessity for the stronger condition on the observation grid (cf. also [39, proof of
Proposition 3.2 and Remark 3.7]).

We want to compare the limit results for the high-frequency sampled finite-variance
CARMA process Y2 with the results for a finite-variance CARMA process sam-
pled at an equidistant time grid Y2 = (Yia)rez for some A > 0 fixed. For that,
let fya, denote the spectral density of Y27, fya the spectral density of Y2 and
finally

_ ok ki)
P = o ati) P

w € R,

the spectral density of the continuous-time process Y. Moreover, the periodogram
of the sampled sequence Y2 is denoted by I,, ya(w) = [n /230 | Yin e @k ? for
w € [—m,7]. A conclusion of [37, Theorem 3.1] for the equidistant sampling is that
for any w € (—7/A,0) U (0,7/A),

NZ
L2

[n7yA (WA) D ﬁ
2 2

—fyA ((,UA) — ) as n — oQ,

and of Corollary 4.3.6 and [39, Eq. (1.5)] for the high-frequency time sampling that
for any w € R*,

Lya: (@A) 1, <N2 N?

1,2
Fyan (@A) 7 + 2) as n — o0.

Surprisingly the structure of the limit results is the same and will be of advantage
for statistical inference. The similarities suggest that the rate of convergence of A,

has no influence on the asymptotic behavior. 0
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4 Spectral estimates

4.4 Estimation of the CARMA parameters

In this section we propose a (spectral) estimation procedure for the autoregressive
(AR) and moving average (MA) parameters of a CARMA process, based on Theo-
rem 4.3.1 and Corollary 4.3.2. We will exemplify our method by a simulation study for
the CARMA(2,1) case.

Let a € (0,2], o, > 0 and Y2 = (Yya, Jrez be the sampled sequence of a non-trivial
CARMA (p, q) process driven by the Lévy process L(«, o) as in Definition 4.2.2. W.l.o.g.
we assume in the following that ¢y = 1 (note that multiplying the MA polynomial by
constants is equivalent to multiplying the scale parameter o of the underlying Lévy

process by the same factor). Thus its MA and AR polynomials are given by

q P

c(z) = 214127 . ey, = H (z— ), a(z)=z2"4a2""'+.. . +a,= H (z—Aj),
k=1 j=1

where fiq,..., ¢, denote the zeros of ¢ and Aq,...,\,, as usual, the zeros of a. The

corresponding normalized power transfer function (cf. (4.2)) can be written as

q 2 _ 9k 2 q . e
C W) = C- ;;zl(w 23 () @ + pl”) _ k:l(wﬂﬂk)(w Zﬂ"),weR,
i (@2 =23\ w + [N ?) D (Wi (w—1X))

with C~' = [[¥ ¢*(s) ds (where g is as in (4.10b)).
The following example illustrates this relationship in the case of a CARMA(2, 1) pro-

Cess.

Example 4.4.1 (CARMA(2, 1) process). Consider a CARMA(2, 1) process which is the

strictly stationary solution to

(D*+ aiD+a2) Y, = (D+p)DLy, teR,
ie. c(z) =z+4pand a(z) = 22 + a1z + as = (z — A\1)(2z — \2). In this case the kernel g
in (4.10b) is given by

_ M H o AR,

1) =
g9(t) N N

t>0,

and the normalized power transfer function can be written as

W) Jelw)?
fooo g?(s)ds fooo g?(s)ds - |a(iw)]

w? + p?
wt+ (a2 — 2a9)w? + a3’

2 :C(alya%:u) WERa
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4.4 Estimation of the CARMA parameters

with C(a’h a2>H) = (f(]oo 92(3) ds)il = _2)\1)\2u/2\}|-+)\i\§\2 = 2,u%1—&(-122~ ]

Hence, we observe that the zeros of

p—q Z:l (w - Hk) (w + W)
P (W= A) (Wt

J=1

U(w) :=C - U(—iw) = C - (1)

~—

are given by p and —7g, k € {1,...,q}, and the poles of ¥ (i.e. the zeros of U—) are
Aj and —)\_j, j€{1,...,p}. Consequently, we will have to suppose

Assumption 4.4. The zeros pu, ..., pg of the moving average and the zeros Ay, ..., A,

of the autoregressive polynomial are all distinct and possess strictly negative real parts

in order to be able to identify the parameters of the CARMA process from its normalized

power transfer function.

Remark 4.4.2. Note that Assumption 4.3 is included in Assumption 4.4. Moreover,
requiring that the AR zeros Ay, ..., A, possess strictly negative real parts is a standard
assumption that ensures causality of the CARMA process. The analog condition on the

MA zeros guarantees invertibility. O

It is clear that Assumption 4.4 will lead to a constraint for the parameter vector 6 :=
(ay, ..., ap, c1y ..., cq)T, i.e. 6 has to be an element of some subset © C RPT?. The
power transfer function is henceforth denoted by ¥y and its normalization by Cp.

Our estimation heuristic is the following. Suppose we have observed the CARMA (p, q)
process on the time grid {A,, ..., nA,} and let m € N*. Then we choose m different
frequencies w; € (0,7/A,), 7 = 1, ..., m, and solve the constrained nonlinear least

squares problem

o~

0= argmini ‘1og (Co - Vp(w;)) — log (An T\n Yan (ijn)> ’2 . (4.16)
=1

Remark 4.4.3. Under the additional assumption of a finite fourth moment of the driv-
ing Lévy process, the asymptotic behavior of the variance of the smoothed periodogram
for ARMA models in discrete time [17, Theorem 10.4.1] and the proof of Theorem 4.3.5
suggest that for w € R*,

lim E [A, L, ya. (wA,)] = 07 U(w) and (4.17)
-1
lim (> Wa(k)* | ALVar(T, ya.(wA,)) = o T (w). (4.18)

n—00
k| <mn
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4 Spectral estimates

Eq. (4.18) implies that the variance of the smoothed periodogram is higher for frequencies
with a high and lower for frequencies with a low power transfer function, respectively.
Together with (4.17) this suggests to use the logarithmic transformation as a variance
stabilizing technique (see also [73, Sections 2.9.1 and 6.2.4]). We have observed in our
simulation study that also in the a-stable case, this transformation made the results

more reliable. O

Methods for constrained optimization and (non)linear least squares problems are dis-
cussed, for instance, in the monographs [10, 41, 70]. We have decided to use the solver
MINOS and as interface the modeling language AMPL (see [42, 69] for the MINOS
user’s guide and a general introduction to AMPL, respectively). In the presence of lin-
ear constraints (which will be the case in our setting) MINOS solves (4.16) using a
reduced-gradient algorithm combined with a quasi-Newton algorithm that is described
in [68].

In our example of a CARMA(2, 1) process, the optimization problem (4.16) becomes
the following.

Example 4.4.4 (CARMA(2, 1) process). We consider again the CARMA (2, 1) process

as in Example 4.4.1. Assumption 4.4 yields immediately that aq, as, ¢ > 0 must hold.

Hence, the (unknown) parameter vector 6 = (ay, ay, p)" is an element of © := (0, 00)?.

The optimization problem in (4.16) then becomes

~

ai m 2

2 2
2aia9 wj +u =N
! ‘ -1 (A T, yan (WA )
- (“2 +ay w4+ (af - 2a2)w? + a3 08 { An T, yan (wjAn)

ay | = argmin
~ ay,a2,u>0 j=1

(4.19)
O

Simulation Study

As announced at the beginning of this section, we will carry out a simulation study for a
CARMA(2,1) process in order to show how the estimation heuristic (4.19) performs in
the finite-variance as well as in the stable case. Our simulation study should be compared
to the one in [45, Chapter 4]. Therefore, we have chosen not only similar values of o but
also comparable CARMA parameters.

For each « taking on the values 2, 1.8, 1.6, 1.4 and 1.25, we have simulated 250 differ-
ent sample paths of an a-stable CARMA(2, 1) process with parameters a; = 2, ay = 0.1

and p = 0.2. In the Gaussian case (i.e. @« = 2) we have chosen the standard deviation of
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4.5 Proofs of Chapter 4

the underlying Lévy process to be o, = 1.5 and in the other scenarios we have fixed the
same value as the scale parameter for the driving process. Every CARMA sample path
is simulated by means of an Euler approximation of the corresponding SDE in its state
space representation (cf. (4.9)). The mesh of the simulation time grid has been set to 0.01
and the number of total time steps is equal to 150000. The observed CARMA sample,
however, is chosen to be only every 10th simulated value, i.e. the CARMA process has
been observed at time points {A,, 2A,, ..., nA,} with A, = 0.1 and n = 15000.

Note that in the Gaussian case, we can easily reformulate (4.19) as

or

N m 2., 2 2
ai . 2 Wy +p

| = argmin log (07,) + log —log (AT, yan (w;A

a O'L,al,GQ,M>0jZ; (%) (w;*—k(a%—Qaz)wf—l—a% (AnTryan (iAn))
n

by virtue of Corollary 4.3.2. Thus, by using the normalized smoothed periodogram in the
Gaussian case, we shall get an estimate for the standard deviation o of the underlying
Lévy process on top.

For each realized time series, we computed then smoothed periodogram values for 300
equidistant frequencies w; in the interval [0.005, 27, i.e. w; = 0.0054 (j —1)/299 - (27 —
0.005), 5 = 1, ..., 300. Our smoothing filter has m,, = [v/nA, | = 38 nodes with equal
weights W, (k) = 1/(2m,, +1) = 1/77 for any |k| < m,, = 38. Concerning several aspects
of these (necessary) specifications in practice, we refer the reader, for instance, to [73,
Chapter 7].

Our results are reported in Table 4.1. As in [45], we observe that the estimates of the
CARMA parameters become better in terms of the standard deviation when « decreases.
However, in terms of the bias no evident relationship is visible. In Figure 4.1, we plotted
smoothed periodogram values for some selected time series in order to show the effect

of the logarithmic transformation we have used (cf. also Remark 4.4.3).

4.5 Proofs of Chapter 4

We start with three lemmata that we will need for the proofs of our main results. The

third one is the “Ornstein-Uhlenbeck version” of Proposition 4.3.4.

Lemma 4.5.1. Under the same assumptions as in Theorem 4.3.1 we have for any
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4 Spectral estimates

oL ax az v

True 1.5 2.0 0.1 0.2
Mean 1.5127 2.0859 0.1182 0.2159
a=2 Bias 0.0127 0.0859 0.0182 0.0159
Std. dev. 0.0392 0.1204 0.0358 0.0366
Mean - 2.0580 0.1108 0.2185
a=138 Bias - 0.0580 0.0108 0.0185
Std. dev. - 0.1240 0.0372 0.0378
Mean - 2.0626 0.1079 0.2127
a=1.6 Bias - 0.0626 0.0079 0.0127
Std. dev. - 0.1130 0.0315 0.0361
Mean - 2.0659 0.1101 0.2129
a=14 Bias - 0.0659 0.0101 0.0129
Std. dev. - 0.1151 0.0311 0.0329
Mean - 2.0776 0.1140 0.2149
a=1.25 Bias - 0.0776 0.0140 0.0149
Std. dev. - 0.0928 0.0286 0.0307

Table 4.1: Simulation study for different values of a;, based on 250 sample paths each:
mean, bias and standard deviation of the estimates for the CARMA param-
eters.

w € R*,

’ 2

1

T, (@A), le(iw)|

iz S Vi, Jog(9)ds - Ja(w)P?

where JS)An((wAn)k) = cl(iwl, — A) e, (X0_ AL(uA,) e " @Akn) with AL(ud,) =
Lyn, — Lw-1)a, for anyu e {1,...,n} and n € N.

Proof. First, we note from [24, Lemma 3.1] that ¢ (iwl, — A)~'e, = c(iw) a(iw)™! for
any w € R and from [39, Proposition 3.8(ii)] we obtain

iYUQAn = igZ(jA ZAL (uA,)* + op (A (nAn)%) as n — 00.
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log-log plots

12

10+

o N &~ o
T T T

I I I I
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

0 I
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 107 10"

Figure 4.1: Smoothed periodogram values plotted against frequencies for five selected
time series (pluses) in the Gaussian case (on top) and the 1.6-stable case
(below). The true spectral density and normalized power transfer function is
plotted as a solid line, respectively. The two graphs on the RHS are the left
ones on a log-log scale.

Thus, we deduce

2

TN (@A)

7’L,

_ZW Z"YQ

™ k| <mn uln
n —i(wAR)Lu 2
) (i S \zuzl AL(uA,) e i@Aw| (14 0p(1))
fO ( )ds ZW |2 |k|<m, ZZ:]. AL(U’An)Q
and it is sufficient to show that
}Z | AL(uA,) e )’“u}Q P
W u= 1 . 4.20
Z ST AL(uA,)? — as n — 0o ( )

Define Z,, ., := A;l/aAL(uAn) for any n € N, u € Z. If a € (0,2), (Zp,u)uez is a
sequence of i.i.d. symmetric a-stable random variables with scale parameter o, and in
the case o = 2 they are symmetric satisfying E[Z] ] = o7 for any n € N, u € Z. Then

we write as in the proof of [56, Lemma 6.1]

2 ALa,) e o Zies Zo e A
W, Wa( 7
2 Wal S AL(uA,)? M;ﬂ Sy 22
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Zn UZH S
S0y Z Z W (k) cos((wA)k(u — s))

1§u7és<n Zr 1 TL T |k|<mn

Zn u Zn s
1+ Z ays(WA,) )
1<u#s<n ZT 1

Now,

Zn 1 Zn o
(Zz:l ZT%, u) ?

= O(n2 Z ais(wAn))

1<u#s<n

Z a?w (WAn>

1<u#s<n

2
ZTL’U,ZTLS
E ( Z aus(wAn)'Z:n’—Zé> = 2E
r=1“n,r

1<u#s<n

as n — 0o, where for the first inequality we used that (Z, ,)uez is a sequence of i.i.d.
symmetric random variables. The second equality follows from [56, Lemma 5.8] if o €
(0,2) and from the SLLN together with the Dominated Convergence Theorem if o = 2,

respectively. Hence, in order to show (4.20), it remains to prove that for any w € R*,

Z a2, (wA,) = o(n®) asn — oo. (4.21)

1<u#s<n

By virtue of [56, Lemma 5.9(iv)] and Eq. (4.7) we obtain for some C' > 0

Z ais (WATL)

1<u#s<n

= Z Wi (k)W (k2) Z cos ((wAR )k, (u— 5)) - cos (WA, )i, (u — 5))

|k1‘a|k2‘§mn 1<u#s<n

1 sin? (—kl_kQ) sin? (k1+k2 + wnAn)
=3 Wi (k) W (k 2L+ 2 —2n
’ mn<§kz<mn (RO {SiHQ (Bg2)  sin® (M50 4+ wA,)
1 & sin?(wnA, + k)
_ W2 L 2 n _9
" 2 Z (k) {n * sin*(wA,, + £) n}

k=—mn,

S C . n2{ Z Wn(kl) Wn<k2) [(lﬁ - kQ)_Q + (2wnAn + ]Cl + ]fg)_z]

_mn§k1¢k2<mn
- Z W2(k) [1+ (wnA, + k)~ }}
k=—mn

1

if n is only sufficiently large. Since m,, — oo and nA, m,' — oo as n — oo (see As-

sumption 4.2), we deduce that, for any ky # ky € {—m,, ..., m,} and w € R*, the term
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(2wnA,, + k1 + k2)~2 can be bounded by (k; — ko)™2 and (wnA, + k)72, |k| < m,, can

be bounded by 1, respectively, for all sufficiently large n. Hence, we have

2m

~ 1

2y al(wA,) <20 W2(k) - 2> (2m, — j + 1)= + O(my)

n a, (wA,) < max W, my, — J : my
1<u#£s<n [kl<man j=1 72

=2C"- |]£|nax W2(k) - O(my,) (459 o(l) asn— oo,
<mnp
which completes the proof of the lemma. O

Remark 4.5.2. If we assume only (4.8a) and (4.8b) on the weight functions W,,, Eq.
(4.21) is no longer valid. However, a slight modification of the proof above shows that

D <urtscn Gas(@A,) = O(n?) as n — oo in this case. Hence, we still have, as n — oo,

Z W, (k) ‘ZZ=1 AL(ul,) e~ HwAn)pu
' Y w1 AL(uA,)?

‘ 2

=14 0p(1) (4.22)

and consequently also

1 S W T (@A) (i) |2

An k| <mn D ue1 Vi, B I g%(s)ds - a(iw)|?

‘ 2

S(1+0p(1)  (4.23)

as n — 0o, if we drop assumption (4.8c) on the weight functions. We will use these facts

in the upcoming proofs of Lemmata 4.5.3 and 4.5.4 and Proposition 4.3.4. 0

Lemma 4.5.3. Under the same assumptions as in Proposition 4.5.4 we have for any

w € R*,

2

A 1 P
" —0 asn— oo,

e T (@A) = 0 T (@A)

where JT(ZI)An() is as in Lemma 4.5.1.

Proof. We split the proof in two parts. First, we will establish
2
(nA) "5 S Walk) ‘Jfgn((mn)k) — Jggn«mnm\ B0 asn oo, (4.24)

k| <mn

n

where Jff)A (WAL)g) = T (iwl,— A (30, & e Whnr) e, and &, s as in (4.12).
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4 Spectral estimates

Thereafter, we will show that also

ZW

|k|<mn

1 2
T s, (@A) = — 72 TP\ (WA 0 asn — oo,

nl/a

(4.25)
Note that Egs. (4.24) and (4.25) together imply the claim of the lemma.

As to (4.24), we observe first that, due to Assumption 4.3, the eigenvalues of A are
supposed to be distinct. Hence, there exists an invertible matrix D € CP*P such that
A = Ddiag(\y, ..., \p) D7! and thus,

= Ddiag (e, ..., e*) D7, (4.26)

Setting

€, 0:=D71e D" ding ( / edn=hqr, / e(“A"‘SWdLS) ,
7 (u—1)An (u—1)An,
(4.27)

we obtain

Jfgn((wan)k)—Jggn((mn)k) Tliwl, — AT (6, — AL(uA,)I,) e7i@ane,

u=1

n

(4i7) CT(iwIp B A)—l D [Z <gn7u . AL(uAn) Ip> e—i(wAn)ku] D1 e,

u=1
and hence, for some C' > 0,
‘2

(A5 30 Walk) [0 (@) = IEN (@A)

|k|<mp
P uA, 2
Cna) Y 3w Yo [T sy,
G=1 |k|<mn (=1)An
p
<20 (nA)TEY DT Walk)
J=1 |k|<mn

uln,
—i(whn / ((uAn—sm@ cos((ul, — $)S(\;)) — 1) dL,
(

u—1)A

n uly,

Ze—’i(wAn)ku/ (A =R gin((uA,, — 5)3();)) dL,

u=1 (u=1)A,

_|_

21
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4.5 Proofs of Chapter 4
p

=20 (nA) " > 1P + 1Y, (4.28)
j=1

Again we define 7, , := A;l/QAL(uAn) for any n € N, u € Z, and for j € {1,...,p},

we set

| A, 1/a
a3, = ( | e costs 30 - Hads) e
0

4 An 1/a
f(AJn = (/ ‘esﬂ?()\ )sin(s S | ds) :
0

We will use that lim,,_,.o An 1/o‘d(j) = lim,, o0 An L/ ( =0 for any j € {1,...,p} (cf
the proof of [39, Lemma 2.1(ii)]). Now, for any j € {1, ..,p}

and

(nA) 219 2 A, (d(j) 3 W

k| <mn

n 2
_1 —
n o § Zn,ue H(wWAR)gu
u=1

n 2
é E :Zn . e—i(wAn)ku
u=1

Since n=¥«3"" Z,% ., converges weakly as n — 0o, respectively, to a (positive) «a/2-
stable random variable if @ € (0,2) and to 0% if @ = 2, we deduce from (4.22) that both
(nA)"2*I9 and (nA,)~%°IY) converge to 0 in probability as n — oo for any j €
{1,...,p}. This implies that the right-hand side of (4.28) converges to 0 in probability
and completes the proof of Eq. (4.24).

(A A1 2 A% (59) S Wk o

|k|<mn

As to (4.25), for any k € {—m,,, ..., m,} and n sufficiently large, the inequality

< HA” (Ip _ eAn(A—i(w—l—ywzl)Ip))_lH (it — 4)7

x [ty = 4= Azt (1, = et (4=

An (X =i

nﬁn)lp)> H

nin))‘l . [Hiculp —A— A;l (Ip _ eAn(A—iwIp)>H

F[|At (T, — eAnAmien)] | )1 _ ik
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4 Spectral estimates

. k
)\J—z(w+nAn)

A, |
X | S IA = il |+ 1A = iy ‘1 _ e

p -1
. m —
< const. E I\ —iw| — — - Al A=l
— nA
]:

n

-1
. eAn”A_iWIpH

p
< const. Z 2
j=1

|

An . 2 . my,
<5 A —iwlp||” + [|A — iwl,|| - 7]

holds, where the last convergence result follows from Assumptions 4.1 to 4.3. Thus,
define

€, ‘= max

)
k[ <mn

. k -1
A, <Ip — eAn(A*Z(erm)Ip)) — (iwl, — A)~*

where, for any w € R*, we have ¢, \, 0 as n — oo. Then, for some C' > 0,

2

A, 1

2
Ant D Walk) o Inan(WAR)K) = er(f)An((WAn)k)
[k|<mp,
2 A 1
_Ana Z Wn(k;) e |:A (I _eA (A z(w-l—ﬁ) p)) (ZwI _A)—1:|
|E|<mn,
n 2
(S
- 2
(4.27) An
< Cenz A o Z W n a Ze_Z(WA / (uAn—S))\] dLs
|k|<mn (u I)A
2
<2C€nZA o Z W [n QZG—Z(wA )ku/ (e(uAn 8)Aj )dL
|k’|<mn (u l)A

ZAL (ul\,,) e~ @An ] (4.29)

Now, having in mind that €, \, 0 as n — oo, the same arguments as used above give that
the right-hand side of (4.29) converges to 0 in probability as n — oo. This completes
the proof of Eq. (4.25) and hence, Lemma 4.5.3 is shown. ]
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4.5 Proofs of Chapter 4

Lemma 4.5.4. Suppose a € (0,2], o, > 0 and define a family of sequences of i.i.d.
random variables (Zy, u)uez such that, if « € (0,2), (Z, w)uez = (Su)uez for alln € N
with independent symmetric a-stable random variables S, each with scale parameter oy,
and in the case a = 2 the random variables Z,, ,, are symmetric and satisfy E [Zg u} =02
for any n € N and u € Z. Moreover, Assumptions 4.1 to 4.3 may hold, and assume that
the weight functions W, satisfy (4.8a) and (4.8b). Then we have for any w € R* and

re{l,...,p},

n—

w
3

—i(wAn
nue

A2
nz—;;ZW 50 asn— oo

E :ej(A nAr—i (WA, [
N

1-j5 u=1

Proof. We follow along the lines of [56, Lemmata 6.2 and 6.3]. Setting

E —iwu § —wu
Zn u € Zn u € Y

u=1—j

we observe that

2
2
n_a e] (ApAr— Z UJAn [ Z Z —’L(wAn)ku
J u=1—j u=1
2 n 2
n-a Z oI (AnAr—i(wAn)y) UZ ((WAn)k) + n‘i Zej(An)\r—i(wAn)k)Ufj((wAn)k)
j=n+1 j=0
(@A) + AT, (@A)
We start with the proof of
A2 ST WL k) ADL (WA =0 as i — . (4.30)
|k|<mn
We have
> Walk) A, (@A)
|k|<map
n—j 2
< QTLi{ Z W Z eJA nAr—ij(WAR)k Zn ue*i(wAn)ku
[k|<mp, j=n+1 ’uzlfj
- X W] $5 e[S, sl L
|k|<mp, Jj=n+1
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4 Spectral estimates
—9n e (V1 + V)

and

Ai n- e Vy < Ai ( i eI AnR(Ar) ) Z W ( ‘Zu 157; uleZ;(v;A ku Z

Jj=n+1 |k|§mn

where the second term is equal to 1 + Op(1) as n — oo (this is a simple consequence
of Eq. (4.22)). The third term converges, if a € (0,2), weakly to a positive a/2-stable

random variable (see for instance [74, Theorem 7.1]) and for v = 2 we know due to the

WLLN that n=' 370 —> o2 as m — oo. The first term satisfies
N AR _ A ETTDASROD o)
Anj:nzle - Anm ~ _éR()\T)e — 0 as n — oo (431)

by virtue of Assumptions 4.1 and 4.3 and hence, A2 n=%/* 1, Lo

As to V, we get

—1 n—u
Vi 32{ Z Wn(k) Z Zn’ue—i(wAn)kU Z ol AnAr—ij(wAn)k
|k|<mp, u=-n j=n+1
—n—1
o3 w5 s § s ]
‘k‘gmn U=—00 j=1—u
=:2(Vi1 + Via)
and
—1 n—u 2
Vi = Z 2., Z W, ( Z I AnAr—ij (@A) | Z o Zon
u=-—n |k|<mn Jj=n+1 —n<uiFus<—1

n—uy n—ug

% Z Wn(]f) Z Z ej1A7z>\r+j2An>\7r_i(WAn)k'(ul_u2+j1_j2)

|k|<mpy Ji=n+1 jo=n+1

=: Vi1 + Viie.

As above, we know that n=%/® Z_l Z?  converges in distribution as n — oco. To-

u=—n “n,u
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4.5 Proofs of Chapter 4

gether with Eq. (4.31) this yields

-1 . 2
Ai na Vin < noe Z Zrzz,u' Z Wi (k) - (An Z em"““”) o as n — 00.

u=-n |k <mp J=n+1
(4.80)
(4.32)
For any € > 0 a conditional application of Bonami’s inequality (cf. [56, Section 5.2])
yields a C'(e) > 0 such that

P (Ai 05 Vi > 5)

_9 2
e R TR D SR N SRTAT
—n<ujFua<—1 |k|<mp
n—u; n—ug 271-1/2
X Z Z % (elen)\r+j2An)\7T7i(WAn)k'(u17u2+]’17.7'2)> ) ] }]
J1=n+1 jo=n+1
(4.8b) _9 2 2 2 - FARR(A) ' 71/2
< Elexps —C(e)e A “ne Z A/ Z e
—n<uiFug<—1 j=n+1
-1 -1 9] —2
u=—n Jj=n+1

and the right-hand side converges to 0 as n — oo by virtue of Eq. (4.32) and Lebesgue
dominated convergence.

Hence, A2 n=2/*V, % 0 as n — oo is shown. Concerning Vis we proceed similarly.
We write

2

—n—1 n—u
2 A A —1j (WA,
Vie= Y Z2, D Walk)| Y effndrmiians) 4 > Znus Znyuy
u=—00 |k|<mn, j=1l-u —ooLu Fu<—n—1
n—u1 n—usg .
% E Wn(k}) E E el1BnArHj2AnAr—i(wAn)g-(u1—uz+j1—j2)
|k|<mp, J1=1-uy je=1—uz
=: Vig1 + Vi

and observe that Vi < > "~ ! Z2 (Z%“ el An¥( T)) We prove that, for any § > 0,

U=—00 j=1—u

—n—1 n—u 2
fu(6) :=E |exp —5—A2 T Z o <Z ejA"m()"")> —1 asn— oo.

U=—00 j=1-u

(4.33)
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4 Spectral estimates
Note that this implies A2 n=2/%V}y 5 0 as n— co. Let (Ny)uez be iid. N(0,1)-

random variables with characteristic function Elexp(i0N,)] = exp(—60*/2) independent

of (Z,, u)uez for any n € N. Then we have for o € (0, 2)

[ —n—1 n—u
fn(6) =E |exp ——AQ T Z 52( eJA” Ar) }
j=1—u

r B —n—1

=E |E | exp {sz n-e Z Su Ny Z el A %(AT} (Su)uez ]
L L U=—00 j=1—u
r r —n—1

=E |E | exp {léAn n- e Z Su Ny Z eI AnR0) } (N, )ueZ”
L L U=—00 j=1—u
B a —n—1 n—u @

_F exp{—0L5a Z |Nu|oz ( Z e]A R )) }]
L u=-—00 Jj=l-u

and

N —n—1 n-u a
= E[|Ny|*] - 7” Z ( Z ejA"”“) =0

u=—00 \j=1l—u

Aa —n—1 n—u @
5 g (55 )
j=1-u
as n — 00, since E[|N1]*] < oo and
—n—1 n—u RO o Az eAnﬂ?(x\r)(]_ _ enAniR()\r)> ¢ e(nJrl)An?R()\r)a
o Z Z © = 1 — AN "1 Z AR

u=—o00 \Jj=1l—u
n—00 1 “ gnAnR(Ar)a n—00
~ —— —— 0 4.34
( %(Ar)) TaA RO (4:34)

due to Assumptions 4.1 and 4.3. Lebesgue dominated convergence then obviously gives
fn(0) = 1 for any 6 > 0, i.e. Eq. (4.33) is shown for a € (0,2). If a = 2, we first write

as above B
exp {25A nz Z Zn,u Ny Z el Bn %(’\T)}].

U=—00 j=1—-u

[n(0) =E

Then, using the independence of (Ny)uez and (Z, y)uez, We obtain

—n—1 1 . 9
<n1/2 Z Zn,u Ny Z eIBn m‘:,\r> :%% Z E [ 72 Z ejAnéﬁ‘:(AT))

U=—00 j=1—-u U=—00 v <j:1u

n—oo

— 0,
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4.5 Proofs of Chapter 4

where the latter can be shown as in the case a € (0,2) above (cf. (4.34)). We can apply
again the Dominated Convergence Theorem and deduce that f,(5) — 1 for any 6 > 0
also in the case o = 2. Hence, (4.33) and A2 n=2/%Viy; 5 0 as n — oo is shown.

Analogously to V12 above, we obtain for Vi with € > 0

P AEL n_%|V122| > €>

S

n—ui

<E exp{—C’(a)eAgzni[ Z Z2 nm( Z I AnFAr >

—oco<uiFup<—n—1 n=l-u

S 27 -1/2
(£
Je=1—u2

—n—1 n—u 2\
<E |exp{ —C(e)e | A2 na Z zZ ( Z ejA”%(’\")> — 0 asn — 0o

U=—00 j=1-u

due to (4.33) and, once more, Lebesgue dominated convergence.

Hence, also A2 n=%% Vi, 5 0 and A2 p=2e V7, £ 0 holds as n — co. Note at this
point that Eq. (4.30) has been shown.

Thus, it remains to prove that also

A2 ST WL k) AP (WA)) =0 asn— . (4.35)

k| <mn

First,

3" Walk) AP, (WAL

0

E ejAnAr ij(WAR)k E —z(wAn)ku

J=1 u=1-j

+ Z Wn(k’) Ze]A nAr—ij(WAR) g Z Znue H(WAR)pu

|k|<mn Jj=1 u=n—j+1

=207 (Vy + V3

an—i{ > Wa(k)

|k|<mn

)

and

0 2

n
—i(wAp)ku AR —15 (WA,
E nue )k § ol An 3( )k

= j=1—-u

> Wa(k)

[k|<m,
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4 Spectral estimates

(4.80) O noo 2
< Z z2, ( Z emm(w)) + Z Zn s Zon iy

u=1l-n j 1—n<uj #u2<0

j=1l-u
n n o
% E Wn(k) E E ej1An)\r+j2An/\r—i(UJAn)k(ul—u2+j1—j2)

|k|<mn J1=1—u1 jo=1—ug

=: ‘711 + ‘712~

Now, 1711 can be dealt with like Vjo; above and one observes that in order to show

~ p . .
A2n=%/*V; — 0 as n — oo, it is sufficient to prove

Ag ‘ "
: n JARR(Ar) —
nlggo — E ( E e > 0. (4.36)

This follows from [39, Lemma 2.2(iii)] by setting p = 1 (note that in this case \IJJ-A" =

e78n2) The proof of A2 n=2/Vj, 55 0 as n — oo is then completely analog to the one
of A2 =2V, £ 0 above.

Finally,

n

. 2
172§2237U< 2 ejA"“(AT)> v FnwZu
u=1

j=n+1l-u 1<u #ua<n
n n o
X E W, (k) E E: eI1BnAr+j2 AnAr—i(wAn) (w1 —uz-+j1—j2)
|k|<m, Ji=n+l-ui jo=n+l-uz

= ‘721 +‘722

. /e P . ~ .
and in order to show A2 n=2/¢V, — 0 as n — oo, it is, as for Vi, sufficient to prove

i S5 3 eem) o

j=n+l-u

However, this is exactly Eq. (4.36). As for Vi and Vj», one obtains that A2 n=2/ Vj, o
as n — 00, as well. This completes the proof of Eq. (4.35).
Equations (4.30) and (4.35) together yield the statement of the lemma. O

Proof of Proposition 4.3.3. Lemma 4.5.1 has shown that, for any w € R*,

2
| )

as n — 090,

1) .
= > Wa(k) Tn., (0B LA |c(iw)]
An (k| <mn et Yo, Iy~ 9%(s)ds - |a(iw)|?
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4.5 Proofs of Chapter 4

with Jfl})An((wAn)k) = T(iwl, — A)'e, (on_; AL(uA,) e~@An)rt) - Since the random
Variable A, (nA,)~2>7"_ V2, converges in distribution as n — oo, respectively, to
o g%(s)ds - [L, L], with ([L, L],);>0 being the quadratic variation process of (Ly);>o if
€ (0,2) and to [;° ¢g*(s)ds - oF if @ = 2 (cf. [36, Theorem 5.5(a)]), a straightforward

application of the Cauchy-Schwarz inequality shows that it is sufficient to prove

1 2

P
Z Wa( W T, s (@A) =~ T (wA)R)| =0 asn — oo
|k|<mp
(4.37)
However, (4.37) is a consequence of Lemma 4.5.3. [

Proof of Proposition 4.3.4. First, by virtue of the Cauchy-Schwarz inequality, we

have

s 3 i o (92,0,

_, Y2
2

l>|H

2
T (@A) = 200 (@A) +
<2(2A, Y Wi(k) TN

1 u

=T (@A)

n,

1/2
<A S Wk gl En s (@Ane) ) cA S W R (C7W el

|k|<mn Zu 1 uAn ‘k“gmn Zu 1 uAn

1

where K, a,(-) and J, 5 (-) are as in Eq. (4.13) and Jr(%
Lemma 4.5.1.

)An() has been defined in

Since A, (nA,)"2/*>""_ V2, converges in distribution, respectively, to [~ g*(s) ds-
L, L]; asn — oo if @ € (0,2) with ([L, L],);>0 being the quadratic variation process
of (L)i=0 and g the kernel function in (4.10b) and to [;° ¢g*(s)ds - o if a =2 (cf. [36,
Theorem 5.5(a)]), we can combine Lemma 4.5.3 and (4.23) in order to deduce that

A, Z W |RnA (WAl

2
k| <mn, Zu 1YuAn
1/2
T Ko an (WAL &)
<0p(1) A0 3 Wl Enan 02
T Ko, (w0A)R) €|
+A, Y Wn(k;)| S
|| <mn 2= Yua,
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4 Spectral estimates

as n — 00. Therefore, it is sufficient to prove the following:

A E ST W

k| <mn

(k) |¢" K, a, (WA ep’ 50 asn— .

To this end, we define

where gw is given by (4.27). Then
n An

which implies

272 _2
An aEI

k|<m

k) |7 Ko (@0A)5) €|

< const. -
k| <mn
P , N 2
= const. - Z AYapa Z W,(k) ‘ nTAS)n((wAn)k)‘
r,s=1 |k|<mn
p 5 .
= const. - Z AYapa Z W,(k) ‘ nrgl((wAn)k)’ :

since [/(\’n A () = <KJ§L( ))T S is diagonal.

Now, for any r € {1,...,p},

o a (@A) = € Ko a, (WA er
0o [ n—j n ul,
Z F(ARA—i(wAR) L) _ efi(wAn)ku / e(uAnfs))\T dL,
j=0 u=1—j3 u=l1 (u=1A,
9 n—j n ] ulp,
_ j(An)\r—i(wAn)k.) . e—i(wAn)ku/ R (e(uAn—s))\T) dLS
J=0 lu=1—5  u=1] (u=1)An
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+i E e]A)\T —i(wAn

Z i] e —i(wAR)ru /UAn S (e(uAn—s))\T) dL,.
(

u=1—j3 u=1 u=1)Ay

We define (Z,, u)uez == An YeUAL(uA,))uez such that, if a € (0,2), (Zn, uw)ucz, are
i.i.d. symmetric a-stable random variables with scale parameter o;, and in the case
o = 2 it is an ii.d. symmetric sequence satisfying E[Z2 ] = o for any n € N, u € Z.

Note that

[T7ANS
(/ R (e(uAn—s))\r) dLS)
(ufl)An ueZ

and likewise

ulAn Ap
(i) ()
(ufl)A ueZ 0

Since C ~ AY® and A, C” — 0 as n — oo for any r € {1,...,p} (cf. [39, Lemma
2.1(ii) and its proof]) and since, for any r € {1,...,p},

1iS]
VR
O\D
3

S (es)\r)

dS) (Zn,U>ueZ = CY(LT) <va“)ueZ‘

n

o[- 5 5"

1-j

« E Wi ( nue’ n )kt

k| <mn

as n — oo (see Lemma 4.5.4), we obtain that the right-hand side of Eq. (4.39) converges
to 0 in probability as n — oo which in turn yields (4.38) and hence, completes the proof
of the proposition. O

Proof of Proposition 4.3.7. Note first that we can understand the self-normalized
periodogram as a special case of the smoothed one by choosing the weight functions W),
as W,(0) = 1 and W,,(k) = 0 for any k # 0. These weights do not satisfy (4.8¢), but
obviously (4.8a) and (4.8b). With that “degenerated” choice of weight functions and

Lemma 4.5.3, we deduce immediately that it is sufficient to prove the following:

2 p Je(iw)l? i

2mix *
: : e ™ dL;
|a(iw)]? /[0,1)

() has been defined in Lemma 4.5.1. Now, it is clearly

/ e27ri x dL;
[0,1)

(nA,) " (S0 (WA,)

as n — 00,

* 1
for any w € R*, where J,(l’)A

enough to show that

2
D

A7 Y ALA,) e A S

as n — 00. (4.40)
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4 Spectral estimates

Let (Zn, w)uez := A;l/a(AL(uAn))uez for n € N. Then (4.40) follows, by virtue of the
Continuous Mapping Theorem (see, for instance, [54, Theorem 13.25]), from

n n 1 1
n"a (Z Zn,u cos(wApu), ZZ"=“ sin(wAnu)> 2 </ cos(2mx) dL;,/ sin(27x) dL;) ,
bt 0 0

u=1
as n — 00, which in turn is equivalent to

n 1
na Z Zp,u (b1 cos(wA,u) + by sin(wAj,u)) 3 / [by cos(2mx) + by sin(2mx)] AL,
~ - 0

-~

=Xn,u

u=1
(4.41)

as n — oo for any (by, by)T € R2
First, we prove (4.41) for a € (0,2). Since (Z,, 4)uez is an i.i.d. sequence of symmetric
a-stable random variables with scale paramater o, the random variable n-a Zzzl X

is again symmetric a-stable with scale parameter o, ;, where

n

@ n
on = % Z b1 cos(wA,u) + by sin(wA,u)|* .
u=1
Moreover, writing w = 277, we have

on = % Z |b1 cos(2m{nA,u}) + b sin(2m{nA,u})|”

u=1

1
"2 0 / by cos(2mx) + by sin(27x)|* da
0

where the convergence can be shown as in the proof of [39, Proposition 2.6, Eq. (4.11)].
This results in (4.41) for « € (0,2).

For a = 2 we prove (4.41) with the Lindeberg-Feller Theorem (see, e.g., [34, p. 114]).
Obviously, for each n, the random variables X,, ,, 1 < u < n, are independent with
E[X,, .] = 0 since Z,, ,, are supposed to be symmetric. Moreover, writing again w = 277,

we have
1 — o2 )
- Xnu)=—2) (b or{nA by sin(27{nA
o ;Var( n,u) n uz:;( 1 cos(2m{nA,u}) + by sin(27{n nu}))
e ' 2 b b2
= o7 / (by cos(2mx) + by sin(27z))* dz = o7 <_1 + _2> :
0

where the convergence can be shown again as in the proof of [39, Proposition 2.6, Eq.
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(4.11)]. Since, for any £ > 0,

_ZE ]1{‘Xn u|>5\f}} (|bl‘ + |62|> ’ |:ZZ,1]1{Zn,1>E\/5 ] nz>°° 0,

[b1[+]b2]

we can apply the Lindeberg-Feller Theorem and deduce

| — b b2
n-2 Z Zn,u (b1 cos(wApu) + by sin(wA,u)) 2 \/a% <51 + ;) - N(0,1)

()
/0 ' b cos(2mz) + by sin(2m)] dL:,

[iS]

[iS]

where Ny, Ny are i.i.d. N(0,1) random variables. This shows (4.41) and completes the
proof. n

Proof of Theorem 4.3.5. We can understand the (self-)normalized periodogram as
a special case of the smoothed one by choosing the weight functions W, as W,,(0) =1
and W, (k) = 0 for any k£ # 0, which do not satisfy (4.8c), but obviously (4.8a) and
(4.8b). Then we can use the same partition as in Eq. (4.15) and apply Proposition 4.3.4
together with Proposition 4.3.7 to obtain the statement. O]

P'roof of Corollary 4.3.6. Follows from Theorem 4.3.5, (4.42) and > " _ V2, RN
I.° 9%(s)ds - o} if o = 2 (cf. [36, Theorem 5.5(a)]). O
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