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Zusammenfassung

Pair-Copula-Bayes-Netze (PCBNs) stellen eine neuartige Klasse multivariater sta-
tistischer Modelle dar, welche sowohl nichtgaußsche Verteilungen als auch die Vor-
gabe einer durch einen azyklische Digraphen (ADG) repräsentierten Liste bedingter
Unabhängigkeiten erlauben. Die Likelihoodfunktionen dieser Modelle besitzen ei-
ne spezifische Faktorisierung, welche auf Pair-Copula-Konstruktionen basiert und
folglich nur univariate Verteilungen und bivariate (bedingte) Copulas umfasst.

Wir entwickeln die theoretischen Grundlagen zur Konstruktion von PCBNs auf be-
liebigen ADGs und liefern generische Algorithmen zur Erzeugung von Zufallsstich-
proben und zur Likelihood-Inferenz. Darüber hinaus schlagen wir ein Verfahren zur
Ordnung der Elternknoten im zugrunde liegenden ADG vor. Wir demonstrieren
die Maximum-Likelihood-Schätzung der Parameter dieser Modelle und vergleichen
PCBNs mit verschiedenen Modellen aus der Literatur. Eine Simulationsstudie un-
tersucht die Effekte von Modellmissspezifikation und unterstreicht den Bedarf an
nichtgaußschen Verteilungen zur Modellierung bedingter Unabhängigkeiten.

Die Schätzung des zugrunde liegenden ADGs erfolgt mit Hilfe einer Variante des
bekannten PC-Algorithmus. Diese Variante basiert auf einem neuartigen Test auf
bedingte Unabhängigkeit, welcher speziell auf den Modellrahmen zugeschnitten ist.
Eine Simulationsstudie zeigt, dass der PC-Algorithmus zur Strukturschätzung in
nichtgaußschen PCBNs höchst geeignet ist. Zuletzt untersuchen wir Strategien zur
Reduzierung des numerischen Aufwands und verwenden die vorgeschlagenen Ver-
fahren zur Modellierung von Finanzdaten.





Abstract

Pair-copula Bayesian networks (PCBNs) are a novel class of multivariate statistical
models which permit non-Gaussian distributions as well as the inclusion of condi-
tional independence assumptions specified by a directed acyclic graph (DAG). These
models feature a specific factorisation of the likelihood that is based on pair-copula
constructions (PCCs) and hence involves only univariate distributions and bivariate
copulas, of which some may be conditional.

We develop the theoretical foundation for constructing PCBNs from arbitrary DAGs
and provide generic algorithms for random sampling and likelihood inference. More-
over, routines for selecting orderings of the parents of the vertices in the underlying
graphs are proposed. We demonstrate maximum likelihood estimation of the para-
meters of these models and compare PCBNs to various competing models from the
literature. A simulation study investigates the effects of model misspecification and
highlights the need for non-Gaussian conditional independence models.

Model selection of the DAG is facilitated using a version of the well-known PC al-
gorithm which is based on a novel test for conditional independence of random vari-
ables tailored to the PCC framework. A simulation study shows the PC algorithm’s
high aptitude for structure estimation in non-Gaussian PCBNs. We finally investig-
ate strategies to reduce computational complexity and apply the proposed methods
to modelling financial return data.
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Introduction

The analysis of dependence and independence in a given family of random variables
is a fundamental concept in multivariate statistics. Although, in a broad sense, inde-
pendence can be deemed the absence of dependence, inference with a view towards
the one or the other may involve substantially different statistical models. In this
thesis, we combine the advantages of graphical independence models with the flexib-
ility of copulas to derive a novel multivariate statistical model, which not only reflects
Markov properties exhibited by data, but also enables us to capture further distri-
butional features such as heavy-tailedness and non-linear, asymmetric dependence.

Graphical models are multivariate statistical models in which the joint distribution
of a family of random variables is restricted by a list of conditional independence
assumptions. This list can be summarised in a graph whose vertices represent the
variables and whose edges represent interrelations of these variables. We are particu-
larly interested in the graphical models known as Bayesian networks, whose Markov
properties can be represented by a directed acyclic graph (DAG). Given a family
X = (Xv)v∈{1,...,d}, d ∈ N, of continuous random variables associated to a DAG
D, the distribution of X features a specific factorisation of the probability density
function (pdf), which is given by

f(x) =
d∏

v=1

fv|pa(v)(xv |xpa(v)), x = (x1, . . . , xd) ∈ Rd,

where pa(v) are the parents of a vertex v (i.e. the vertices w such that D contains the
edge w → v) and fv|pa(v)( · |xpa(v)) is the conditional pdf of Xv given Xpa(v) = xpa(v)

(Lauritzen, 1996, Chapter 3). For instance, if X follows a multivariate normal
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distribution, this factorisation is reflected in a particular shape of the precision mat-
rix. IfX follows a discrete distribution, a similar factorisation holds for the probab-
ility mass function. Inference in Bayesian networks is thus facilitated by their visual
representation of conditional independence restrictions through missing edges in a
graph and by the factorisation of their likelihood based on parent-child relationships.
Moreover, the inclusion of Markov properties results in a certain parsimony.

The origins of graphical models can be traced back to the seminal work of Wright
(1921) on path analysis. Modern applications of Bayesian networks range from ar-
tificial intelligence, decision support systems, and engineering to genetics, geology,
medicine, and finance (Pourret et al., 2008). These models play an important role
in causal reasoning (Pearl, 2009). Despite the broad scope of applicability, however,
graphical modelling of continuous random variables has mainly been limited to the
multivariate normal distribution. At the same time, it is well known from the liter-
ature on statistical finance that the assumption of joint normality may lead to severe
underestimation of certain risks (McNeil et al., 2005), and, in a more general sense,
fails to yield suitable models in many applications. Another approach to dealing
with continuous Bayesian networks is to discretise the continuous random variables
and then to work with the corresponding discrete model. However, depending on
the discretisation used, the conditional probability tables involved in this proced-
ure quickly become very complex. We instead use copulas to derive flexible and
tractable continuous Bayesian networks that are not hampered by these drawbacks.

Copulas are multivariate cumulative distribution functions (cdfs) on the unit cube
with uniform univariate margins. Their popularity originates from a theorem of
Sklar (1959), which states that every multivariate cdf can be decomposed into its
univariate margins and a copula. Given a family X = (Xv)v∈{1,...,d} of continu-
ous random variables with strictly increasing univariate marginals F1, . . . , Fd, this
relationship can also be stated in terms of the pdf as

f(x) = c
(
F1(x1), . . . , Fd(xd)

) d∏

v=1

fv(xv), x = (x1, . . . , xd) ∈ Rd,
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where the copula pdf c is uniquely determined. From a statistical perspective, cop-
ulas allow us to separate the tasks of modelling univariate margins and multivariate
dependences. Their high usability has lead to widespread application, in particular
in quantitative finance (Cherubini et al., 2004). While there is a plethora of literat-
ure on bivariate copulas (also called pair copulas) (Joe, 1997; Nelsen, 2006), however,
many of these bivariate copulas have no straightforward multivariate extension.

Bedford and Cooke (2001, 2002) hence developed pair-copula constructions (PCCs),
in which a multivariate copula is decomposed into bivariate, potentially conditional,
copulas. Also, they introduced so-called regular vines (R-vines) as a graphical rep-
resentation of a class of hierarchical PCC models known as vine copula models.
Aas et al. (2009) and Dißmann et al. (2013) later recognised these models’ aptitude
for likelihood inference since pdfs of vine copulas are easily obtainable in explicit
analytical form. By drawing on the rich literature on pair-copula families, vine
copula models provide high distributional flexibility and can thus be universally ap-
plied in multivariate dependence analysis. Applications to financial data have shown
that vine copula models outperform other multivariate copula models in predicting
log-returns of equity portfolios, see Aas and Berg (2009), Chollete et al. (2009),
and Fischer et al. (2009). While one may be reminded of graphical models when
looking at R-vines, these graphical representations have no interpretation in terms
of Markov properties. In fact, not all Markov properties specified by a DAG can
be represented in a vine copula model. Also, the flexibility of vine copula models
comes at the price of quadratic growth in the number of pair copulas to be specified
as the number of variables increases.

In an attempt to merge the advantages of both worlds, Kurowicka and Cooke (2005)
applied the pair-copula concept to Bayesian networks and thereby obtained a novel
class of PCC models which, by construction, satisfy conditional independence as-
sumptions specified by a DAG. However, their analyses were restricted to pair-copula
families with the property that zero rank correlation implies independence. We cast
their idea into a more general theoretical framework and show that this restriction of
the set of applicable pair copulas is unnecessary. Given a family X = (Xv)v∈{1,...,d}
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of continuous random variables with strictly increasing univariate marginals and
Markov structure specified by a DAG D, iterative application of Sklar’s theorem to
the pdf factorisation with respect to D yields the decomposition

f(x) =
d∏

v=1

fv(xv)
∏

w∈pa(v)

cv,w|pa(v;w)

(
Fv|pa(v;w)(xv|xpa(v;w)), Fw|pa(v;w)(xw|xpa(v;w))

∣∣xpa(v;w)

)
,

where pa(v;w) are the parents of v that are smaller than w by a given increasing
ordering <v of pa(v). The parent orderings <v need to be specified in addition
to the Markov structure. This way, we obtain a pdf decomposition in which each
edge of D corresponds to exactly one (conditional) pair copula. From a statistical
viewpoint, we obtain a novel statistical model that is both a Bayesian network and
a copula model, and in which all copula parameters can be chosen independently of
each other. We refer to these models, which include Gaussian Bayesian networks as
a special case, as pair-copula Bayesian networks (PCBNs).

The price to be paid for the inclusion of conditional independence assumptions is re-
flected in the conditional cdfs, whose evaluation may require high-dimensional integ-
ration and is thus potentially more involved than in vine copulas. So far, an explicit
representation of these conditional cdfs was only derived in examples. We provide
and proof a general algorithm for evaluating the likelihood of an arbitrary PCBN.
Further research on PCBNs includes Hanea et al. (2006) and Hanea and Kurowicka
(2008). While these authors concentrate on non-parametric statistical inference and
elicited expert knowledge, we focus attention to parametric likelihood inference and
data-driven structure estimation. Elidan (2010) uses another copula decomposition
of distributions associated with a DAG that is based on generally higher-variate cop-
ulas and hence lacks the flexibility of the pair-copula approach. Overall, we observe
that copulas are slowly starting to make their way into graphical modelling.

A concept crucial to PCCs are conditional copulas. A customary assumption in PCC
modelling is that families and parameters of conditional pair copulas remain constant
for all possible values of the conditioning variables, see Hobæk Haff et al. (2010),
Acar et al. (2012), and Stöber et al. (2012) for a critical assessment. Outside the PCC
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context, conditional copulas have been used in finance applications, frequently with
the aim of modelling time-varying dependence (Patton, 2006). Here, time variation
in the conditional copulas is captured by the inclusion of time-varying parameters.

Model selection in PCBNs involves specification of the underlying DAG. When
expert knowledge is unavailable, data-driven structure estimation algorithms are
frequently used. Two approaches are predominantly found in the literature: the
constraint-based and the score-and-search-based approach (Koller and Friedman,
2009, Chapter 18). In the former, the DAG is inferred from a series of condi-
tional independence tests, while in the latter, the DAG is found by optimising
a given scoring function. Unfortunately, available implementations of aforemen-
tioned algorithms are mainly confined to discrete or Gaussian models. We con-
centrate on the constraint-based PC algorithm (Spirtes and Glymour, 1991) and
introduce a novel test for conditional independence of continuous random vari-
ables tailored to the PCC framework. This test uses the Rosenblatt transform
(Rosenblatt, 1952) to convert the problem of testing the conditional independence
Xu ⊥⊥ Xv | XW , u, v /∈ W ⊆ {1, . . . , d}, into the problem of testing the inde-
pendence Fu|W (Xu |XW ) ⊥⊥ Fv|W (Xv |XW ). The conditional cdfs required in this
transformation are estimated using vine copula models.

Outline of the thesis

In Chapter 1, we review Bayesian networks. We begin in Section 1.1 by collecting
the graph-theoretical terminology required throughout this thesis. We then give
the definition of a D-Markovian probability measure in Section 1.2 and state some
important properties. In Section 1.3, we introduce graphical models and focus at-
tention to Gaussian Bayesian networks.

Vine copula models are introduced in Chapter 2. We first recall the definition of a
copula in Section 2.1 and provide the cdfs and pdfs of the pair-copula families used
in this thesis. Next, we introduce PCCs in Section 2.2, before considering likelihood
inference and model selection in vine copula models in Section 2.3.
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In Chapter 3, we develop the theoretical foundation for constructing PCBNs and
investigate statistical inference in these models. Above given pair-copula decom-
position of distributions associated to a DAG is proved in Section 3.1. Next, we
formally derive pair-copula factorisations for the corresponding conditional cdfs in
Section 3.2 and summarise the results in a ready-to-use algorithm. We proceed
by introducing PCBNs in Section 3.3, where we consider random sampling as well
as likelihood inference. The developed routines for likelihood inference are eventu-
ally tested in a simulation study in Section 3.4, which also investigates the effects
of model misspecification. It is demonstrated that non-Gaussian PCBNs outper-
form Gaussian PCBNs and D-vine copula models in all of the investigated set-
tings. Sections 3.1 and 3.4 are based on Bauer et al. (2012), while Sections 3.2
and 3.3 are taken from Bauer and Czado (2012).

Model selection in PCBNs is studied in Chapter 4. We begin by considering struc-
ture estimation in PCBNs in Section 4.1. To this end, we review the PC algorithm
and introduce the novel test for conditional independence of continuous random vari-
ables mentioned above. We then examine the PC algorithm’s aptitude for structure
estimation in non-Gaussian PCBNs in a simulation study in Section 4.2. Our novel
test will prove to outperform a standard test for zero partial correlation frequently
used in the Gaussian setting. Last, we propose a strategy for ordering the parents
of a vertex in the DAG in Section 4.3. This strategy is based on the idea of mod-
elling strongest dependences in the pair copulas with fewest conditioning variables.
Chapter 4 is based on Bauer and Czado (2012).

In Chapter 5, the hitherto developed routines are applied to modelling financial re-
turn data. More precisely, we model daily log-returns of two portfolios comprising
German and US stock and bond indices (Section 5.1) and international stock indices
(Section 5.2). In the first data set, we use economic considerations to derive the un-
derlying DAG, while in the second data set, we use the PC algorithm. The chapter is
concluded by an account on reducing computational complexity. Section 5.1 is taken
from Bauer et al. (2012), while Section 5.2 is based on Bauer and Czado (2012).

The thesis finally contains two appendices. In Appendix A, we provide closed form
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expressions for the h-functions of the pair-copula families discussed in Section 2.1.
Appendix B features the complete pair-copula decomposition of the PCBN associ-
ated to the example DAG in Section 3.2.





1 Bayesian networks

Bayesian networks are multivariate statistical models in which the joint distribution
of a family of random variables is restricted by a list of conditional independence
assumptions. This list can be summarised in a directed acyclic graph D whose
vertices represent the variables and whose edges represent interrelations between
these variables. We begin this chapter by fixing some graph-theoretical terminology,
which is not used consistently throughout the literature. We then give the definition
of a D-Markovian probability measure and state some important properties. Finally,
we introduce graphical models and focus attention to Gaussian Bayesian networks.
A comprehensive introduction to Bayesian networks is found in Lauritzen (1996)
and Cowell et al. (2003), see also Pourret et al. (2008) for examples of applications.

1.1 Graph-theoretical terminology

Let V 6= ∅ be a finite set and let E ⊆ E :=
{

(v, w) ∈ V × V
∣∣ v 6= w

}
. Then

G = (V,E) denotes a graph with vertex set V and edge set E. We say that G
contains the undirected edge v − w if (v, w) ∈ E and (w, v) ∈ E. Similarly, we say
that V contains the directed edge v → w if (v, w) ∈ E but (w, v) /∈ E. A graph
containing only undirected edges is called an undirected graph (UG). If G is a UG and
E ≡ E , we call G the complete UG on V . Moreover, a graph containing only directed
edges is called a directed graph. By replacing all directed edges of G with undirected
edges, we obtain the skeleton Gs of G. We write v ( w whenever (v, w) ∈ E, that
is G contains either the directed edge v → w or the undirected edge v − w. A
sequence of distinct vertices v1, . . . , vk ∈ V , k ≥ 2, is called a path from v1 to vk if G
contains vi ( vi+1 for all i ∈ {1, . . . , k − 1}. A path from v1 to vk is called directed

9



10 1 Bayesian networks

if at least one of the connecting edges is directed. We call a path from v1 to vk a
cycle if v1 = vk. In particular, we call a directed path from v1 to vk a directed cycle
if v1 = vk. A graph without directed cycles is known as a chain graph (CG). A CG
containing only directed edges is called a directed acyclic graph (DAG). We define
the adjacency set of a vertex v ∈ V as ad(v) :=

{
w ∈ V

∣∣ (v, w) ∈ E or (w, v) ∈ E
}
.

If w /∈ ad(v), we say that v and w are non-adjacent. A triple of vertices (u, v, w) is
called a v-structure if G contains u→ v ← w and if u and w are non-adjacent.

Now let D = (V,E) be a DAG. The moral graph Dm of D is defined as the skeleton
of the graph obtained from D by introducing an undirected edge u − w whenever
D contains a v-structure (u, v, w) for u, v, w ∈ V . Since all edges of D are directed,
we can speak of paths instead of directed paths. For v ∈ V , we set

pa(v) :=
{
w ∈ V

∣∣D contains w → v
}

(parents of v),

an(v) :=
{
w ∈ V

∣∣D contains a path from w to v
}

(ancestors of v),

de(v) :=
{
w ∈ V

∣∣D contains a path from v to w
}

(descendants of v), and

nd(v) := V \
(
{v} ∪ de(v)

)
(non-descendants of v).

A set I ⊆ V is called ancestral if pa(v) ⊆ I for all v ∈ I. The smallest ancestral set
containing I is denoted by An(I). As is readily verified, An(I) = I ∪ ⋃v∈I an(v).
The graph DI =

(
I, E∩(I×I)

)
is called the subgraph of D induced by I. A bijection

v• :
{

1, . . . , |V |
}
→ V , i 7→ vi, satisfying i < j whenever D contains vi → vj for some

i, j ∈
{

1, . . . , |V |
}
is called a well-ordering of D. Note that in a well-ordered DAG

the set {v1, . . . , vk} is ancestral for all k ∈
{

1, . . . , |V |
}
.

Finally, let G be a UG and let I, J,K ⊆ V be pairwise disjoint. A path from I to J
is a path from a vertex v ∈ I to a vertex w ∈ J . We say that K separates I from
J in G, and write I ⊥ J | K [G], if every path from I to J contains a vertex in K.
In particular, we write I ⊥ J | ∅ [G], or shortly I ⊥ J [G], if there exists no path
between I and J . We call G connected if for every distinct v, w ∈ V there is a path
from v to w. A connected UG without cycles is a tree. If there is a vertex w ∈ V
such that ad(w) = V \ {w} and ad(v) = {w} for all v ∈ V \ {w}, that is all vertices
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are solely adjacent to w, then G is called a star and w is called its root vertex.

Example 1.1. Figure 1.1 shows a well-ordered DAG D on four vertices 1, 2, 3, 4

together with the corresponding moral graph Dm. For every vertex v in D, the sets
ad(v), an(v), de(v), nd(v), and pa(v), respectively, are given in Table 1.1. Observe
that D contains the v-structure 2 → 4 ← 3, which is why Dm contains the edge
2 − 3. We obtain the graph separation property 1 ⊥ 4 | {2, 3} [Dm].

1.2 Conditional independence and directed acyclic

graphs (DAGs)

In graphical probability modelling, graphs are used to represent conditional inde-
pendence properties of corresponding families of probability measures. Let D =

(V,E) be a DAG on d := |V | vertices and let P be a probability measure on Rd.
Moreover, let X be an Rd-valued random variable distributed as P . For I ⊆ V , we
write XI := (Xv)v∈I and denote the corresponding I-margin of P by PI . If I = {v}
for some v ∈ V , we write Xv and Pv instead of X{v} and P{v}. Furthermore, we write
XI ⊥⊥XJ |XK whenever XI and XJ are conditionally independent given XK for
pairwise disjoint sets I, J,K ⊆ V . By convention, XI ⊥⊥XJ |X∅ is understood as
XI ⊥⊥XJ . P is said to possess the local D-Markov property if

Xv ⊥⊥Xnd(v)\pa(v) |Xpa(v) for all v ∈ V. (1.1)

Correspondingly, P is said to possess the global D-Markov property if

I ⊥ J | K [(DAn(I∪J∪K))
m] ⇒ XI ⊥⊥XJ |XK for all I, J,K ⊆ V. (1.2)

Equations (1.1) and (1.2) relate (conditional) independence properties of P to graph
separation properties of D. Since ad(v)∩

(
nd(v)\pa(v)

)
= ∅ for every v ∈ V , it can

be easily seen that the conditional independence restrictions obtained from Equation
(1.1) correspond to missing edges in D. One can show that P has the local D-Markov
property if and only if P has the global D-Markov property, see Lauritzen (1996,
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p. 51). A probability measure satisfying Equations (1.1) and (1.2) is thus simply
called D-Markovian. Despite the aforementioned equivalence, the lists of explicit
conditional independence restrictions obtained from Equations (1.1) and (1.2) may,
however, be of different lengths. Note that a D-Markovian probability measure can
exhibit further conditional independence properties apart from those represented by
D. If, however, P exhibits no conditional independence properties other than those
represented by D, then P is called faithful to D. Now let P have Lebesgue-density
f . One can show that P is D-Markovian if and only if f has a so-called D-recursive
factorisation, that is

f(x) =
∏

v∈V
fv|pa(v)

(
xv
∣∣xpa(v)

)
for all x = (x1, . . . , xd) ∈ Rd, (1.3)

where fv|pa(v)( · | xpa(v)) denotes the conditional probability density function (pdf)
of Xv given Xpa(v) = xpa(v), see again Lauritzen (1996, p. 51). Note that there
may be more than one DAG representing the same set of conditional independence
restrictions. We call the set of DAGs representing the same conditional independence
restrictions as D the Markov-equivalence class of D, and denote it by [D]. Two
DAGs D1 = (V,E1) and D2 = (V,E2) are called Markov equivalent if [D1] = [D2].
By Verma and Pearl (1991), D1 and D2 are Markov equivalent if and only if they
have the same skeleton and the same v-structures. The Markov-equivalence class of
D can be represented by a CG, the so-called essential graph De associated with [D],
which has the same skeleton as D and contains a directed edge v → w if and only
if all members of [D] contain v → w, see Andersson et al. (1997). A DAG in [D]

can be obtained from De by directing all undirected edges of De such that no new
v-structures and no directed cycles are introduced.

Example 1.2. Figure 1.2 shows again the DAG D from Figure 1.1 together with the
essential graph associated with the corresponding Markov-equivalence class. Let P
be an absolutely continuous D-Markovian probability measure on R4. Straightfor-
ward evaluation of Condition (1.1) yields the restrictions X1 ⊥⊥ X∅ | X∅ (for v = 1),
X2 ⊥⊥ X3 | X1 (both for v = 2 and v = 3), and X1 ⊥⊥ X4 |X23 (for v = 4), of which
the first is vacuous. There are no other implicit conditional independence properties
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in this example. As for the pdf of P , Equation (1.3) yields the representation

f(x) = f1(x1) f2|1(x2 |x1) f3|1(x3 |x1) f4|23(x4 |x23) for all x = (x1, . . . , x4) ∈ R4.

We shall mention that verifying whether a given empirical distribution on Rd can
be assumed to originate from a D-Markovian probability measure is hard. One
approach is to apply structure estimation algorithms to the given data, cf. Chapter
4. As an alternative approach, expert knowledge is frequently exploited to define the
graph D specifying the Markov structure (Kurowicka and Cooke, 2006, Chapter 5).

1.3 Gaussian Bayesian networks

A Bayesian network or (directed) graphical model based on a DAG D = (V,E) is a
family of D-Markovian probability measures. For instance, the family of all regular
D-Markovian normal distributions on Rd, d := |V |, is called the Gaussian Bayesian
network based on D. Applications of Bayesian networks range from artificial intel-
ligence, decision support systems, and engineering to genetics, geology, medicine,
and finance. For lack of tractable continuous probability measures, statistical mod-
elling with Bayesian networks has mostly been limited to multivariate discrete or
normal distributions. Kurowicka and Cooke (2005) used copulas to derive a rich and
tractable class of continuous Bayesian networks, which we investigate in Chapter 3.

Let us briefly review Gaussian Bayesian networks. By {ND,Σ |Σ ∈ Θ} we denote
the family of D-Markovian normal distributions on Rd with zero mean and positive
definite correlation matrix Σ. Let x = (x1, . . . ,xn), n ∈ N, be a realisation of a
sample of i.i.d. observations X1, . . . ,Xn from a corresponding random variable X.
As is well known, the log-likelihood function takes the form

l(Σ;x) = −n d
2

log(2π)− n

2
log |Σ| − 1

2
tr
(
Σ−1 xT x

)
,

where |A| denotes the determinant and tr(A) the trace of a matrix A ∈ Rd×d

(Lauritzen, 1996, Section 5.1.2). A more explicit representation of the precision
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1

2 3

4

1

2 3

4

Figure 1.1: A well-ordered (vertex labels) DAGD (left) with moral graphDm (right).

v ad(v) an(v) de(v) nd(v) pa(v)

1 {2, 3} ∅ {2, 3, 4} ∅ ∅
2 {1, 4} {1} {4} {1, 3} {1}
3 {1, 4} {1} {4} {1, 2} {1}
4 {2, 3} {1, 2, 3} ∅ {1, 2, 3} {2, 3}

Table 1.1: Sets of adjacencies (ad), ancestors (an), descendants (de), non-descend-
ants (nd), and parents (pa) for the vertices v in DAG D of Figure 1.1.

1

2 3

4

1

2 3

4

Figure 1.2: A DAG D (left) specifying the conditional independence restrictions
X1 ⊥⊥ X4 | X23 and X2 ⊥⊥ X3 | X1, and the essential graph De (right)
associated with the corresponding Markov-equivalence class [D].
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matrix Σ−1, and hence of Σ, can be given using the Markov properties of ND,Σ.
Assume w.l.o.g. that D is well-ordered, and write V = {1, . . . , d}. Let A ∈ Rd×d be
the lower triangular matrix with elements

Ai,i := 1, Ai,pa(i) := −Σi,pa(i) (Σpa(i),pa(i))
−1, Ai,j := 0 otherwise,

and let D ∈ Rd×d be the diagonal matrix with elements

Di,i := Σi,i −Σi,pa(i) (Σpa(i),pa(i))
−1 Σpa(i),i.

Then Σ−1 = ATD−1A, see Cox and Wermuth (1996, Chapter 3).

Moreover, let ∆ ∈ Rd×d be the diagonal matrix with elements ∆i,i :=
√

(Σ−1)i,i.
The elements of the standardised precision matrix C := ∆−1 Σ−1 ∆−1 have an
interpretation in terms of partial correlations. More precisely, let i 6= j ∈ V . Then
Ci,j = −ρi,j·V \{i,j} (Lauritzen, 1996, Section 5.1.3). In particular, we have

Ci,j = 0 ⇔ Xi ⊥⊥ Xj |XV \{i,j}.

Also, for every K ⊆ V \{i, j} and an arbitrary k ∈ K, we have the recursive formula

ρi,j·K =
ρi,j·K−k − ρi,k·K−k ρj,k·K−k√
1− ρ2

i,k·K−k

√
1− ρ2

j,k·K−k

, (1.4)

where K−k := K \ {k}, see Kurowicka and Cooke (2006, Section 3.3).





2 Vine copula models

Copulas provide a powerful tool in statistical analysis, which allows to conveniently
separate the tasks of modelling univariate margins and multivariate dependences.
Vine copulas are multivariate copulas which use bivariate copulas as building blocks
and which feature a graphical representation called a regular vine. In this chapter,
we introduce copulas and give some important examples. Moreover, we review pair-
copula constructions and consider statistical inference in vine copula models. A
comprehensive introduction to copulas is found in Joe (1997) and Nelsen (2006).
Cherubini et al. (2004, 2011) discuss applications of copulas in finance. Vine copula
models are treated in Kurowicka and Cooke (2006) and Kurowicka and Joe (2011).

2.1 Copulas

A d-variate copula, d ∈ N, is a cumulative distribution function (cdf) on [0, 1]d such
that all univariate marginals are uniform on the interval [0, 1]. By Sklar’s theorem
(Sklar, 1959), every cdf F on Rd with marginals F1, . . . , Fd can be written as

F (x) = C
(
F1(x1), . . . , Fd(xd)

)
, x = (x1, . . . , xd) ∈ Rd,

for some suitable copula C. If F is absolutely continuous and F1, . . . , Fd are strictly
increasing, a similar relationship holds for the pdf f of F , namely

f(x) = c
(
F1(x1), . . . , Fd(xd)

) d∏

i=1

fi(xi), x = (x1, . . . , xd) ∈ Rd,

17
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where the copula pdf c is uniquely determined. Above equations can then be solved
for C and c, respectively, using marginal quantile functions. Doing so, we get

C(u) = F
(
F−1

1 (u1), . . . , F−1
d (ud)

)
and c(u) =

f
(
F−1

1 (u1), . . . , F−1
d (ud)

)
∏d

i=1 fi
(
F−1
i (ui)

) (2.1)

for all u = (u1, . . . , ud) ∈ [0, 1]d. For instance, consider the case of complete inde-
pendence. Then Equation (2.1) yields the independence copula C⊥⊥(u) :=

∏d
i=1 ui

with pdf c⊥⊥(u) ≡ 1.

Two important classes of copulas are the elliptical and the Archimedean copulas. We
will use copulas from these two classes in the simulation studies and data applications
of Chapters 3 to 5. Elliptical copulas arise from applying Equation (2.1) to elliptical
distributions, which include the multivariate normal and Student’s t distributions.
On the other hand, let ϕ : [0, 1]→ [0,∞] be a continuous, strictly decreasing, convex
function satisfying ϕ(0) =∞ and ϕ(1) = 0. Then

Cϕ(u) := ϕ−1
(
ϕ(u1) + · · ·+ ϕ(ud)

)
(2.2)

is called a strict Archimedean copula with generator ϕ. We are mostly interested in
bivariate elliptical and Archimedean copulas, of which we now give some examples.

Example 2.1 (Gaussian copula). The bivariate Gaussian copula with parameter
ρ ∈ (−1, 1) is an elliptical copula which arises from applying Equation (2.1) to the
bivariate standard normal cdf Φρ with correlation coefficient ρ. We get

C(u; ρ) = Φρ

(
Φ−1(u1),Φ−1(u2)

)
, u = (u1, u2) ∈ [0, 1]2,

where Φ denotes the univariate standard normal cdf. Setting x1 := Φ−1(u1) and
x2 := Φ−1(u2), the corresponding pdf takes the form

c(u; ρ) =
1√

1− ρ2
exp

(
−ρ

2(x2
1 + x2

2)− 2 ρ x1 x2

2 (1− ρ2)

)
.

Example 2.2 (Student’s t copula). The bivariate Student’s t copula with paramet-
ers ρ ∈ (−1, 1) and ν ∈ (1,∞) is another elliptical copula. It arises from applying
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Equation (2.1) to the bivariate standard t cdf tρ,ν with correlation coefficient ρ and
ν degrees of freedom. We obtain

C(u; ρ, ν) = tρ,ν
(
t−1
ν (u1), t−1

ν (u2)
)
, u = (u1, u2) ∈ [0, 1]2,

where tν denotes the univariate Student’s t cdf with ν degrees of freedom. Setting
x1 := t−1

ν (u1) and x2 := t−1
ν (u2), the corresponding pdf is given by

c(u; ρ, ν) =
Γ
(
ν
2

)
Γ
(
ν+2

2

) (
1 +

x21
ν

) ν+1
2
(

1 +
x22
ν

) ν+1
2

√
1− ρ2 Γ2

(
ν+1

2

) (
1 +

x21+x22−2 ρ x1 x2
ν (1−ρ2)

) ν+2
2

,

where Γ denotes the gamma function.

Example 2.3 (Clayton copula). The Clayton copula with parameter θ ∈ (0,∞) is
an Archimedean copula with generator ϕθ(t) := 1

θ
(t−θ − 1). Equation (2.2) yields

C(u; θ) =
(
u−θ1 + u−θ2 − 1

)− 1
θ , u = (u1, u2) ∈ [0, 1]2, and

c(u; θ) = (1 + θ) (u1 u2)−1−θ (u−θ1 + u−θ2 − 1
)−2− 1

θ .

Example 2.4 (Frank copula). The Frank copula with parameter θ ∈ R \ {0} is an
Archimedean copula with generator ϕθ(t) := − log

(
e−θt−1
e−θ−1

)
. We have

C(u; θ) = −1

θ
log

(
1 +

(e−θ u1 − 1)(e−θ u2 − 1)

e−θ − 1

)
, u = (u1, u2) ∈ [0, 1]2, and

c(u; θ) = − θ e−θ (u1+u2)(e−θ − 1)
(
(e−θ u1 − 1) (e−θ u2 − 1) + e−θ − 1

)2 .

Example 2.5 (Gumbel copula). The Gumbel copula with parameter θ ∈ [1,∞) is
an Archimedean copula with generator ϕθ(t) := (− log t)θ. We obtain

C(u; θ) = exp
(
−
(
(− log u1)θ + (− log u2)θ

) 1
θ

)
, u = (u1, u2) ∈ [0, 1]2, and
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c(u; θ) =
C(u; θ) (log u1 · log u2)θ−1

((
(− log u1)θ + (− log u2)θ

) 1
θ + θ − 1

)

u1 u2

(
(− log u1)θ + (− log u2)θ

)2− 1
θ

.

Density contour plots of above copulas with chosen parameters are displayed in
Figure 2.1. These copulas exhibit notable differences in tail behaviour as captured
by the lower and upper tail dependence coefficients (TDCs)

λL(C) := lim
u→0

C(u, u)

u
and λU(C) := lim

u→1

1− 2u+ C(u, u)

1− u .

Moreover, we can express the Kendall’s τ of two continuous random variables via
their copula using the equality

τ(C) = 4

∫

[0,1]2
C(u1, u2) dC(u1, u2)− 1,

see Joe (1997, Section 2.1.9). For Archimedean copulas, this equality can equival-
ently be expressed in terms of the generator ϕ, yielding

τ(Cϕ) = 1 + 4

∫ 1

0

ϕ(t)

ϕ′(t)
dt.

Table 2.1 summarises the relation between copula parameters, TDCs, and Kendall’s
τ for the bivariate Clayton, Frank, Gumbel, Gaussian, and Student’s copula families.

2.2 Pair-copula constructions (PCCs) and regular

vines

While in recent years a vast catalogue of bivariate copula families (also known as
pair-copula families) has accumulated in the literature, many of these bivariate fam-
ilies have no straightforward multivariate extension. Bedford and Cooke (2001,
2002) introduced a rich and flexible class of multivariate copulas that uses bivari-
ate (conditional) copulas as building blocks only. The corresponding decomposition
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Figure 2.1: Density contour plots of bivariate copulas with Kendall’s τ of 0.25 and
0.75 (parentheses). The degrees of freedom of the Student’s t copulas
were set to 5. All copulas are displayed with standard normal margins.
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of a multivariate copula into bivariate copulas is called a pair-copula construction
(PCC). The most widely researched copulas arising from PCCs are the vine copulas.
These vine copulas admit a graphical representation called a regular vine (R-vine),
which consists of a sequence of trees, each edge of which is associated with a cer-
tain pair copula in the corresponding PCC. More precisely, let V 6= ∅ be a finite
set and let d := |V |. An R-vine on V is a sequence V := (T1, . . . , Td−1) of trees
T1 = (V1, E1), . . . , Td−1 = (Vd−1, Ed−1) such that V1 = V and Vi = Ei−1 for i ≥ 2,
that is, the vertices of tree Ti are the edges of tree Ti−1. We here represent an edge
v − w in tree Ti, i ∈ {1, . . . , d − 1}, by the doubleton {v, w} instead of by the
pairs (v, w) and (w, v), that is, Ei ⊆

{
{v, w}

∣∣ v 6= w ∈ Vi
}
. Moreover, every tree

Ti, i ≥ 2, of V has to satisfy a proximity condition requiring that |v M w| = 2 for
every edge {v, w} ∈ Ei, where u M v = (u ∪ v) \ (u ∩ v). Two vertices in tree Ti,
i ≥ 2, can hence only be adjacent if the corresponding edges in tree Ti−1 share a
common vertex. Last, every edge {v, w} ∈ E := E1 ∪ · · · ∪ Ed−1 carries a label
v M w | v ∩w representing the (conditional) pair copula CvMw|v∩w, where v M w | ∅ is
conveniently replaced by v M w. Instead of CvMw|v∩w we also write CvM,wM|v∩w, where
vM := v \ (v∩w) and wM := w \ (v∩w). The pdf f of a d-variate probability measure
with marginals Fv, v ∈ V , and copula CV corresponding to V then takes the form

f(x) =
∏

{v,w}∈E
cvM,wM|v∩w

(
FvM|v∩w(xvM |xv∩w), FwM|v∩w(xwM |xv∩w)

∣∣xv∩w
)∏

v∈V
fv(xv),

(2.3)
where x = (xv)v∈V ∈ Rd. Note that—similar to DAGs—the vertices in the first tree
of V represent the univariate margins of CV . In contrast to DAGs, however, V does
not have an interpretation in terms of Markov properties of CV . An example of an
R-vine representing a five-variate vine copula is given in Figure 2.2.

For every K ⊆ V and v ∈ K, we define K−v := K \ {v}. The conditional cdfs in
Equation (2.3) can be evaluated tree-by-tree using a recursive formula derived in Joe
(1996), which says that for every v ∈ V , every K ⊆ V−v, and an arbitrary w ∈ K

Fv|K(xv |xK) =
∂Cv,w|K−w

(
Fv|K−w(xv |xK−w), Fw|K−w(xw |xK−w)

∣∣xK−w
)

∂Fw|K−w(xw |xK−w)
. (2.4)
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Copula Kendall’s τ Lower TDC λL Upper TDC λU

Clayton θ
θ+2

2−
1
θ 0

Frank 1− 4
θ

(
1−D1(θ)

)
0 0

Gumbel 1− 1
θ

0 2− 2
1
θ

Gauss 2
π

arcsin (ρ) 0 0

Student 2
π

arcsin (ρ) 2 tν+1

(
−
√
ν + 1

√
1−ρ
1+ρ

)
2 tν+1

(
−
√
ν + 1

√
1−ρ
1+ρ

)

Table 2.1: Relation between parameters, tail dependence coefficients (TDCs), and
Kendall’s τ for given copula families. D1 is the first-order Debye function.
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Figure 2.2: An R-vine specifying the pair copulas C12, C23, C25, C34, C13|2, C24|3,
C35|2, C14|23, C45|23, and C15|234 (edge labels). Boundaries of vertices
including either 1 or 5 appear in bold, see Section 4.1.3.
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An iterative algorithm for evaluating the pdf in Equation (2.3) under a simplifying
assumption of constant conditional copulas introduced below is given in Dißmann
et al. (2013). The first partial derivatives of a pair copula Cv,w are also known as
h-functions. For (uv, uw) ∈ [0, 1]2, we write

hv,w(uv, uw) :=
∂Cv,w(uv, uw)

∂uw
and hv,w(uv, uw) :=

∂Cv,w(uv, uw)

∂uv
.

Many popular pair-copula families exhibit closed-form expressions for these h-func-
tions, see Appendix A. Note that by Equation (2.4), we have

hv,w
(
Fv(xv), Fw(xw)

)
= Fv|w(xv |xw) and hv,w

(
Fv(xv), Fw(xw)

)
= Fw|v(xw |xv),

where (xv, xw) ∈ R2. Hence, we can extend the notion of h-functions to conditional
pair copulas, and express the right hand side of Equation (2.4) by

hv,w|K−w
(
Fv|K−w(xv |xK−w), Fw|K−w(xw |xK−w)

∣∣xK−w
)
.

Assume p := |K| ≥ 1, and write K = {w1, . . . , wp} such that wi 6= wj for i 6= j. We
defineK−i := {wi+1, . . . , wp} for every i ∈ {1, . . . , p}. Observing that fv|K(xv |xK) =

d
dxv
Fv|K(xv |xK), we obtain by the chain rule of differentiation

fv|K(xv |xK) = fv(xv)

p∏

i=1

cv,wi|K−i
(
Fv|K−i(xv |xK−i), Fwi|K−i(xwi |xK−i)

∣∣xK−i
)
. (2.5)

2.3 ML estimation and model selection in vine

copula models

A vine copula model is a family of vine copulas together with families of univariate
marginals. Maximum likelihood (ML) estimation in vine copula models was first
considered in Aas et al. (2009). The findings therein were, however, restricted to
vine copula models represented by C- and D-vines. A C-vine is an R-vine whose
trees are all stars. Conversely, an R-vine is called a D-vine if all vertices in tree T1
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are adjacent to at most two other vertices. ML estimation in vine copula models
based on general R-vines was considered in Dißmann et al. (2013).

Let V be an R-vine on V with edge set E, and let CvM,wM|v∩w( · , · ;θvM,wM|v∩w),
{v, w} ∈ E, be given (conditional) pair copulas with joint parameter vector θ :=

(θvM,wM|v∩w){v,w}∈E ∈ Θ. By {CV,θ |θ ∈ Θ} we denote the corresponding vine copula
family. Note that we dropped the values xu∩v of the conditioning variables from the
pair copulas CvM,wM|v∩w, thus assuming that the corresponding copula family and
parameter vector θvM,wM|v∩w remain constant for all xu∩v ∈ R|u∩v|. This simplifying
assumption is made for computational convenience and has become common prac-
tice in likelihood inference for vine copula models, see Hobæk Haff et al. (2010),
Acar et al. (2012), and Stöber et al. (2012) for a critical assessment. Furthermore,
let u = (u1, . . . ,un), n ∈ N, be a realisation of a sample of i.i.d. observations
U 1, . . . ,Un from a random variable U on [0, 1]d with copula family {CV,θ |θ ∈ Θ}
and uniform univariate margins. Equation (2.3) yields the log-likelihood function

l(θ;u) =
n∑

k=1

∑

{v,w}∈E
log cvM,wM|v∩w

(
FvM|v∩w

(
ukvM
∣∣ukv∩w;θ

)
, FwM|v∩w

(
ukwM

∣∣ukv∩w;θ
)
;θ
)
.

(2.6)
The restriction to uniform margins is made for numerical convenience, see below.

2.3.1 ML estimation

Since a joint estimation of the parameters of the univariate marginal distributions
and the copula can become computationally demanding in high dimensions, a two-
step estimation approach known as the inference functions for margins method (Joe
and Xu, 1996) is frequently applied. First, the marginal parameters are estimated
and second, given the estimates of the marginal parameters, the copula paramet-
ers are inferred. In a similar vein, Genest et al. (1995) proposed a semiparametric
approach in which the empirical cdf is used to transform the univariate margin-
als to uniform [0, 1] distributions before estimating the parameters of the copula
model, see Kim et al. (2007) for a comparison. ML estimation of the parameters
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in Equation (2.6) is frequently performed using a stepwise approach as first de-
scribed in Aas et al. (2009). In a first step, ML estimates of the parameters of each
pair-copula family are computed separately. Due to the recursive structure of the
log-likelihood function outlined above, this estimation step is carried out tree-by-
tree. We refer to the obtained parameter estimates as sequential ML estimates. In a
second step, the full log-likelihood function is maximised jointly using the sequential
ML estimates as starting values, yielding the so-called joint ML estimates θ̂vM,wM|v∩w,
{v, w} ∈ E. Large and small sample applications of the stepwise estimation proced-
ure have shown that the sequential ML estimates also provide a good approximation
of their joint counterparts, see Hobæk Haff (2013, 2012) for consistency results and
a simulation study. One might hence consider omitting the second estimation step
in a given situation to reduce computational complexity.

2.3.2 Model selection

Model selection for vine copula models comprises estimation of the R-vine V and
selection of the pair-copula families for CvM,wM|v∩w, {v, w} ∈ E. Given V , the latter
task of selecting pair-copula families can be performed tree-by-tree, choosing for each
edge {v, w} ∈ E the one pair-copula family among a given set of candidate families
that optimises a given selection criterion like Akaike’s information criterion (AIC)
(Akaike, 1974) or the Bayesian information criterion (BIC) (Schwarz, 1978). Diß-
mann et al. (2013) presented a greedy-type algorithm for the estimation of V , which
estimates the trees T1, . . . , Td−2 sequentially, that is, again tree-by-tree. Note that
estimating tree Td−2 also fixes tree Td−1. Structure estimation for tree Ti = (Vi, Ei),
i ∈ {1, . . . , d − 2}, is carried out in three steps. In a first step, a weight ωv,w is
assigned to every pair of vertices v, w ∈ Vi with |v M w| = 2. Suitable weights given
the data are, for instance, the absolute values of estimates of Kendall’s τ , or AIC or
BIC values of selected pair-copula families with estimated parameters. In a second
step, Ti is set to be a tree on Vi optimising the sum of edge weights

∑
{v,w}∈Ei ωv,w,

where |v M w| = 2 for all {v, w} ∈ Ei to ensure the proximity condition. Such an
optimal spanning tree can be found using the algorithms by Kruskal (1956) or Prim
(1957). In a last step, a pair-copula family is assigned to each edge {v, w} ∈ Ei,
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as described above, and an ML estimate of the corresponding parameter(s) is com-
puted. This last step may have already been performed when computing the edge
weights ωv,w. Note that due to the greedy nature of the algorithm, the resulting
R-vine need not optimise the sum of all edge weights

∑
{v,w}∈E ωv,w. The search for

optimal spanning trees reduces to a search for root vertices when only considering
C-vines instead of the more general R-vines, cf. Czado et al. (2012). Since a D-vine is
completely determined by tree T1, only one tree has to be specified when restricting
the class of R-vines to D-vines. Due to the particular structure of D-vines, however,
finding tree T1 by the above method leads to a travelling salesman problem (TSP)
(Applegate et al., 2007), which is NP-hard. Kurowicka (2011) proposed an altern-
ative structure selection algorithm, in which V is built in reverse order from tree
Td−1 to tree T1 using partial correlation estimates as weights. Bayesian approaches
to structure estimation have been considered in Smith et al. (2010), Min and Czado
(2011), and Gruber et al. (2013). Implementations of model selection and ML es-
timation procedures for vine copula models are readily available in the R package
VineCopula (Schepsmeier et al., 2013).

The construction of a d-variate vine copula model requires the specification of
(
d
2

)

pair-copula families, a number growing quadratically in d. The actual number of
decisions to make in practical applications may, however, be lower if we happen to
discover (conditional) independences in the analysed data. In that case, the cor-
responding pair copulas are set to be independence copulas. Since above structure
estimation algorithm is based on the idea of modelling strongest dependences in
the first trees, Brechmann et al. (2012) proposed to set all pair copulas in the later
trees to independence copulas, which leads to so-called truncated R-vines. Instead
of leaving the detection of (conditional) independences to chance, one may, however,
consider modelling these independences in the first place to obtain more parsimo-
nious models. Unfortunately, the construction of vine copula models satisfying pre-
specified conditional independence restrictions is a hard problem in general. A class
of models suited for this task are the Bayesian networks discussed in Chapter 1. Kur-
owicka and Cooke (2005) hence joined graphical and copula modelling to introduce
PCCs for Bayesian networks, which we will investigate in the next chapter.
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Pair-copula Bayesian networks (PCBNs) combine the distributional flexibility of
PCCs with the parsimony of Bayesian networks. In this chapter, we derive PCCs
for D-Markovian probability measures and develop routines for computing condi-
tional cdfs. Moreover, we consider random sampling in PCBNs and investigate these
models’ aptitude for likelihood inference in a simulation study. PCBNs were first
introduced in Kurowicka and Cooke (2005) and further extended in Hanea (2008).
However, the analyses therein were restricted to pair-copula families with the prop-
erty that zero rank correlation implies independence. Also, these authors concen-
trate on non-parametric statistical inference, while we focus attention to parametric
likelihood inference.

3.1 PCCs for D-Markovian probability measures

Let D = (V,E) be a DAG, and let P be an absolutely continuous D-Markovian
probability measure on Rd, d := |V |, with strictly increasing univariate marginal
cdfs. We aim to derive a pair-copula decomposition for the pdf f of P . To this end,
we order the parent sets of all vertices in D increasingly. Let wv :

{
1, . . . , |pa(v)|

}
→

pa(v), i 7→ wi := wv(i), be a bijection for every v ∈ V with |pa(v)| ≥ 1. We
introduce a total order <v on pa(v) for every v ∈ V such that whenever |pa(v)| ≥ 1

we have wi <v wj if and only if i < j for all i, j ∈
{

1, . . . , |pa(v)|
}
. Note that there

are |pa(v)|! permutations of pa(v) (up to isomorphism). We call O := {<v | v ∈ V }
a set of parent orderings for D. For every v ∈ V and w ∈ pa(v), we set

pa(v;w) :=
{
u ∈ pa(v)

∣∣u <v w
}

=
{
wi ∈ pa(v)

∣∣ i < w−1
v (w)

}
.

29
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By Sklar’s theorem, we know that the cdf of P can be uniquely decomposed into the
univariate marginals F1, . . . , Fd and a copula C. The following theorem shows that C
can be further decomposed into the (conditional) pair copulas Cv,w|pa(v;w), v ∈ V , w ∈
pa(v), which yields a PCC for C in which each (conditional) pair copula corresponds
to exactly one edge w → v in D. Contrary to the vine-based approach of Kurowicka
and Cooke (2005), the proof relies on graph-theoretical considerations only.

Theorem 3.1. Let D = (V,E) be a DAG on d := |V | vertices, and let P be an ab-
solutely continuous D-Markovian probability measure on Rd with strictly increasing
univariate marginal cdfs. Then P is uniquely determined by its univariate margins
Pv, v ∈ V , and its (conditional) pair copulas Cv,w|pa(v;w), v ∈ V , w ∈ pa(v).

Proof. (Induction on the cardinality of V ) Since P is D-Markovian, its pdf f admits
a D-recursive factorisation of the form (1.3). The claim is trivial for |V | = 1. Hence,
let |V | ≥ 2. Since D is acyclic, we may choose some maximal vertex of D, that is,
some m ∈ V with de(m) = ∅. Let V ′ := V \ {m} and E ′ := E ∩ (V ′ × V ′). Then
above-mentioned factorisation can be written as

f(x) = fm|pa(m)(xm |xpa(m))
∏

v∈V ′
fv|pa(v)(xv |xpa(v)), x = (xv)v∈V ∈ Rd. (3.1)

By the choice of m, the sets pa(v) and nd(v), v ∈ V ′, remain unaffected by a
transition from D to the subgraph D′ = (V ′, E ′). Thus, PV ′ is D′-Markovian and the
product

∏
v∈V ′ fv|pa(v)(...) on the right hand side of Equation (3.1) is the D′-recursive

factorisation of fV ′ . We may assume inductively that PV ′ , and hence fV ′ , is uniquely
determined by the univariate margins Pv, v ∈ V ′, and the (conditional) pair copulas
Cv,w|pa(v;w), v ∈ V ′, w ∈ pa(v). It remains to show that the same property holds for
fm|pa(m) if we include Pm and Cm,w|pa(m;w), w ∈ pa(m), in our analysis.

We prove the latter claim by induction on k := |pa(m)|. The claim is trivial for
k = 0. For k ≥ 1, let w1 <m . . . <m wk denote the elements of pa(m) and let
W := pa(m;wk). By Equation (2.4),

fm|pa(m)(xm |xpa(m)) = cm,wk|W
(
Fm|W (xm |xW ), Fwk|W (xwk |xW )

∣∣xW
)
fm|W (xm |xW ).
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Since pa(m) ⊆ V ′, the conditional cdf Fwk|W ( · |xW ) is completely determined by
PV ′ and therefore by the quantities specified in the theorem’s claim. Observing
that W = pa(m) \ {wk}, we may conclude by induction that Fm|W ( · |xW ) and
fm|W ( · |xW ) also exhibit the claimed property. This establishes the claim.

By the above theorem, we can write f(x), x = (xv)v∈V ∈ Rd, as

∏

v∈V
fv(xv)

∏

w∈pa(v)

cv,w|pa(v;w)

(
Fv|pa(v;w)(xv|xpa(v;w)), Fw|pa(v;w)(xw|xpa(v;w))

∣∣xpa(v;w)

)
. (3.2)

We may again distinguish the pair copulas involved by the number of conditioning
variables. Similar to vine copulas, this number ranges between 0 and possibly d−1.
Although the graphical representations of the two models look fairly similar, the
concepts behind are completely different. While R-vines illustrate the required pair
copulas only, the edges of a DAG specify conditional independence restrictions. In
both cases, however, these representations are visual aids only and can be omitted.

The remaining question is whether DAGs actually yield pair-copula decompositions
which are not representable by R-vines. This question is closely related to the
computation of the conditional cdfs Fv|pa(v;w)( · |xpa(v;w)) and Fw|pa(v;w)( · |xpa(v;w))

in Equation (3.2). The answer is yes. In contrast to R-vines, DAGs allow the
specification of conditional cdfs that cannot be computed by simply plugging in
results from preceding trees. Hence, these conditional cdfs have to be computed via
integration of other margins. In view of their application for statistical inference,
however, DAG PCCs are more parsimonious than R-vine PCCs, see Section 3.4.

Example 3.1. Consider the DAG D in Figure 1.2 with ordering 2 <4 3 of pa(4) =

{2, 3}. By Table 1.1, we obtain pa(1; ∅) = ∅, pa(2; 1) = ∅, pa(3; 1) = ∅, pa(4; 2) = ∅,
and pa(4; 3) = {2}. Equation (3.2) yields

f(x) = f1(x1) · · · f4(x4) ·c21

(
F2(x2), F1(x1)

)
·c31

(
F3(x3), F1(x1)

)
·c42

(
F4(x4), F2(x2)

)

· c43|2
(
F4|2(x4 |x2), F3|2(x3 |x2)

∣∣x2

)
, x = (x1, . . . , x4) ∈ R4,

where F4|2(x4 |x2) = h42

(
F4(x4), F2(x2)

)
by Equation (2.4). Since the copula C32
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is not available in the decomposition of f , we exploit the conditional independence
X2 ⊥⊥ X3 | X1 to obtain

F3|2(x3 |x2) =

∫ x3

−∞
f3|2(y3 |x2) dy3 = f−1

2 (x2)

∫ x3

−∞
f23(x2, y3) dy3

= f−1
2 (x2)

∫ x3

−∞

∫ ∞

−∞
f123(y1, x2, y3) dy1 dy3

(1.3)
= f−1

2 (x2)

∫ ∞

−∞
f1(y1) f2|1(x2 | y1)

∫ x3

−∞
f3|1(y3 | y1) dy3 dy1

=

∫ ∞

−∞
f−1

1 (y1) f−1
2 (x2) f12(y1, x2)F3|1(x3 | y1) dF1(y1)

(2.4)
=

∫ ∞

−∞
c21

(
F2(x2), F1(y1)

) ∂C31

(
F3(x3), F1(y1)

)

∂F1(y1)
dF1(y1)

=

∫ 1

0

c21

(
F2(x2), u1

) ∂C31

(
F3(x3), u1

)

∂u1

du1

=

∫ 1

0

c21

(
F2(x2), u1

)
h31

(
F3(x3), u1

)
du1.

There is no general closed-form solution for the last integral. If we instead choose
the ordering 3 <4 2 for pa(4) = {2, 3}, we obtain the same decomposition as above
with the roles of vertices 2 and 3 interchanged.

Due to the appearing integral, the pair-copula decomposition in the example cannot
be represented by an R-vine. There are, however, DAG PCCs representable by
R-vines, see Section 3.4 for a four-variate DAG PCC that coincides with a D-vine
PCC. Note that straightforward application of Sklar’s theorem to Equation (1.3)
yields another copula decomposition for f , see Elidan (2010). This decomposition,
however, consists of generally higher-variate copulas and hence leads to statistical
models hampered by the difficulties described in Section 2.2.

3.2 Evaluating conditional cdfs

As shown above, the challenge in Equation (3.2) lies in the evaluation of the con-
ditional cdfs. Assume without loss of generality that D is well-ordered. Let v ∈ V
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and let J ⊆ V \ {v} be non-empty. We will now derive a pair-copula decompos-
ition for the conditional cdf Fv|J( · |xJ). We begin by exploiting the (conditional)
independence restrictions represented by D. To this end, consider the moral graph
G := (DAn({v}∪J))

m. If {v} ⊥ I | (J \ I) [G] for some non-empty I ⊆ J , then the
global D-Markov property in Equation (1.2) yields with K := J \ I

fv|J(xv |xJ) =
f{v}∪J(x{v}∪J)

fJ(xJ)
=
fv|K(xv |xK)fI|K(xI |xK) fK(xK)

fI|K(xI |xK) fK(xK)
= fv|K(xv |xK),

where by convention fW |∅(xW |x∅) := fW (xW ) for every W ⊆ V , and f∅(x∅) := 1.
Thus, Fv|J( · |xJ) = Fv|K( · |xK), and we can continue with the conditioning set K.
The case K = ∅ is trivial. Assume K 6= ∅. Observing that

Fv|K(y |xK) =

∫ y
−∞ f{v}∪K(x{v}∪K) dxv

fK(xK)
, (3.3)

we next need to find pair-copula decompositions for f{v}∪K and fK .

3.2.1 Pair-copula decompositions for marginal pdfs

More generally, let I ⊆ V be non-empty and consider the (marginal) pdf fI . For
every v ∈ I, we set I−v := I \ {v} and obtain the following lemma.

Lemma 3.2. Let D = (V,E) be a well-ordered DAG on d := |V | vertices, and let P
be an absolutely continuous D-Markovian probability measure on Rd with pdf f . Let
I ⊆ V be non-empty and let v denote the maximal vertex in I by the well-ordering
of D. Moreover, define Sv :=

{
u ∈ pa(v)

∣∣ {u} ⊥ I−v [(DAn({u}∪I−v))
m]
}
and

Wv :=





∅ if I−v = ∅ or Sv = pa(v),

{w1} ∪ pa(v;w1) if I−v ⊆ pa(v) and I−v 6= ∅,
{w2} ∪ pa(v;w2) else,

where w1 and w2 denote the maximal vertices in I−v and pa(v) \ Sv, respectively, by
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V

I−v pa(v)

(a) Wv={w1}∪pa(v;w1)

V

I−v pa(v)

(b) Wv=∅ or Wv={w2}∪pa(v;w2)

V

I−v pa(v)

(c) Wv={w2} ∪ pa(v;w2)

V

I−v pa(v)

(d) Wv=pa(v)

Figure 3.1: Venn diagrams of the sets I−v 6= ∅ and pa(v) 6= ∅, and corresponding
definitions of Wv (see lower captions).

a given parent ordering <v. Then for all xI = (xu)u∈I ∈ R|I|,

fI(xI) =

∫

R|Wv\I|
fv|Wv(xv |xWv) fWv∪I−v(xWv∪I−v) dxWv\I . (3.4)

Note that by convention,
∫
R0 g(x) dx∅ := g(x) for every integrable function g : Rk →

R, k ∈ N. Also, the parent ordering <v need not concur with the well-ordering of D.

Proof. As can be seen from the definition of Wv, the decomposition of fI in the
lemma’s claim depends on the relation between the sets I−v and pa(v). Assume first
that I−v = ∅. Then fI = fv and the claim is trivial.

Next, assume I−v 6= ∅ but pa(v) = ∅. Then Sv = ∅. Since v is maximal in I by the
well-ordering of D, v has no descendants in I−v, and we have {v} ⊥ I−v [(DAn(I))

m].
The global D-Markov property thus yields fI(xI) = fv(xv) fI−v(xI−v), that is, Equa-
tion (3.4) for Wv := ∅.

From now on assume I−v 6= ∅ and pa(v) 6= ∅. The possible relations between I−v

and pa(v) are illustrated in Figure 3.1. If I−v ⊆ pa(v) (Figure 3.1a), we extend I−v
to Wv := {w1} ∪ pa(v;w1) ⊇ I−v and obtain as claimed

fI(xI) =

∫

R|Wv\I|
f{v}∪Wv(x{v}∪Wv) dxWv\I =

∫

R|Wv\I|
fv|Wv(xv |xWv) fWv(xWv) dxWv\I .

Note that in case I−v = {w1}∪pa(v;w1), no integration is required sinceWv \I = ∅.

Next, let I−v ∩ pa(v) = ∅ (Figure 3.1b). If Sv = pa(v), then {v} ⊥ I−v [(DAn(I))
m]

since v has no descendants in I−v. Hence, we again have fI(xI) = fv(xv) fI−v(xI−v),
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that is, Equation (3.4) for Wv := ∅. If, however, Sv 6= pa(v), then {v} ⊥ I−v |
Wv [(DAn(I∪Wv))

m], whereWv := {w2}∪pa(v;w2), and the global D-Markov property
yields

fI∪Wv(xI∪Wv) = fv|Wv(xv |xWv) fI−v |Wv(xI−v |xWv) fWv(xWv). (3.5)

Since I−v ∩Wv = ∅, we thus get

fI(xI) =

∫

R|Wv |
fv|Wv(xv |xWv) fWv∪I−v(xWv∪I−v) dxWv .

Note that in case Sv = ∅, we have Wv = pa(v).

Finally, assume I−v ∩ pa(v) 6= ∅ such that I−v * pa(v) (Figure 3.1c). Similarly to
Equation (3.5), we obtain with Wv := {w2} ∪ pa(v;w2)

fI∪Wv(xI∪Wv) = fv|Wv(xv |xWv) f(I−v\Wv)|Wv(xI−v\Wv |xWv) fWv(xWv)

by the global D-Markov property, and hence

fI(xI) =

∫

R|Wv\I|
fv|Wv(xv |xWv) fWv∪I−v(xWv∪I−v) dxWv\I .

Note again that in case Sv = ∅, we have Wv = pa(v). Also, note that in case
pa(v) ⊆ I−v (Figure 3.1d), no integration is required. This establishes the claim.

The set Wv in Lemma 3.2 is either empty or of the form {w} ∪ pa(v;w) for some
w ∈ pa(v). In the latter case, we can express fv|{w}∪pa(v;w)( · |x{w}∪pa(v;w)) on the
right hand side of Equation (3.4) in terms of the univariate marginals Fu, u ∈ V ,
and the (conditional) pair copulas Cv,u| pa(v;u), u ∈ pa(v), as follows.

Lemma 3.3. Let the notation be as in Lemma 3.2 and let P have strictly increasing
univariate marginal cdfs. Let I−v 6= ∅ and let Sv 6= pa(v). Then fv|Wv(xv |xWv),
xv ∈ R, xWv = (xw)w∈Wv ∈ R|Wv |, takes the form

fv(xv)
∏

w∈Wv

cv,w|pa(v;w)

(
Fv|pa(v;w)(xv |xpa(v;w)), Fw|pa(v;w)(xw |xpa(v;w))

∣∣xpa(v;w)

)
.
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Proof. Since I−v 6= ∅ and Sv 6= pa(v),Wv is non-empty and thusWv = {u}∪pa(v;u)

for some u ∈ pa(v). By Equation (2.5), we can hence write fv|Wv(xv |xWv) as

fv(xv)
∏

w∈Wv

cv,w|pa(v;w)

(
Fv|pa(v;w)(xv |xpa(v;w)), Fw|pa(v;w)(xw |xpa(v;w))

∣∣xpa(v;w)

)
,

and the claim is proven.

Since all vertices in Wv ∪ I−v are smaller than v by the well-ordering of D and
since V is finite, we can inductively apply Lemmas 3.2 and 3.3 to the pdf fWv∪I−v in
Equation (3.4) until no unconditional pdfs of dimension higher than one remain. Let
J denote the set of vertices corresponding to the integration variables added during
this iterative procedure (and including Wv \ I). Given a set O of parent orderings
for D, Lemma 3.2 yields a set Wu for every u ∈ I ∪ J . We have hence established
the following theorem.

Theorem 3.4. Let the notation be as in Lemma 3.3. Then

fI(xI) =

∫

R|J|

∏

v∈(I∪J)

fv(xv)

×
∏

w∈Wv

cv,w|pa(v;w)

(
Fv|pa(v;w)(xv |xpa(v;w)), Fw|pa(v;w)(xw |xpa(v;w))

∣∣xpa(v;w)

)
dxJ

for all xI = (xv)v∈I ∈ R|I|.

Note that in the special case I = V , Theorem 3.4 yields Equation (3.2). Above
procedure for deriving a pair-copula decomposition of fI as given in Theorem 3.4 is
summarised in Algorithm 1.

Example 3.2. Consider the well-ordered DAG G in Figure 3.2. The edges and
parent orderings of G can be summarised in a matrix AG = (aij)1≤i,j≤7 whose ele-
ments satisfy aij = k, k ≤ |pa(j)|, if G contains the edge i → j and if i is the k-th
smallest parent of j by <j, and aij = 0 otherwise, see Figure 3.2. For the reader’s
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Algorithm 1 Pair-copula decomposition of a (marginal) pdf.
Input Well-ordered DAGD; set of parent orderingsO; non-empty vertex set I ⊆ V .
Output Factorisation f . % (marginal) pdf fI(xI)
1: f ← 1;
2: J ← ∅; % indices of integration variables
3: while |I| ≥ 1 do
4: % Select maximal vertex:
5: v ← maximal vertex in I by the well-ordering of D;
6: f ← f · fv(xv);
7: I ← I−v;
8: % Determine the set Wv:
9: W ← ∅;

10: S ←
{
w ∈ pa(v)

∣∣ {w} ⊥ I [(DAn({w}∪I))m]
}
;

11: if I 6= ∅ and S 6= pa(v) then
12: if I ⊆ pa(v) then
13: w ← maximal vertex in I by the parent ordering <v;
14: W ← {w} ∪ pa(v;w);
15: else
16: w ← maximal vertex in pa(v) \ S by the parent ordering <v;
17: W ← {w} ∪ pa(v;w);
18: end if
19: end if
20: % Introduce corresponding pair copulas and integration variables:
21: for w ∈ W do
22: f ← f · cv,w|pa(v;w)

(
Fv|pa(v;w)(xv |xpa(v;w)), Fw|pa(v;w)(xw |xpa(v;w))

∣∣xpa(v;w)

)
;

23: if w /∈ I then
24: I ← I ∪ {w};
25: J ← J ∪ {w};
26: end if
27: end for
28: end while
29: f ←

∫
R|J|

f dxJ ;
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convenience we omit function arguments. Equation (3.2) yields

f = f1 ···f7 c21(F2, F1)c31(F3, F1)c42(F4, F2)c41|2(F4|2, F1|2)c54(F5, F4)c53|4(F5|4, F3|4)

· c65(F6, F5) c64|5(F6|5, F4|5) c63|54(F6|54, F3|54) c62|543(F6|543, F2|543) c75(F7, F5)

· c76|5(F7|5, F6|5) c73|56(F7|56, F3|56).

We will later derive a pair-copula decomposition for F3|56. In preparation, we now
use Algorithm 1 to derive pair-copula decompositions for f356 and f56.

As a result of applying Algorithm 1 to f356 and f56, we obtain

f356 =

∫

R3

f6|543 f5|43 f4|21 f3|1 f2|1 f1 dx124

=

∫

R3

f6 c63|54(F6|54, F3|54) c64|5(F6|5, F4|5) c65(F6, F5) f5 c53|4(F5|4, F3|4) c54(F5, F4)

· f4 c41|2(F4|2, F1|2) c42(F4, F2) f3 c31(F3, F1) f2 c21(F2, F1) f1 dx124 (3.6)

and f56 = f6|5 f5 = f6 c65(F6, F5) f5, respectively, see Table 3.1.

When can
∫ y
−∞ f{v}∪K(x{v}∪K) dxv in Equation (3.3) be further simplified?

Let us now return to the conditional cdf in Equation (3.3). Setting I := {v}∪K, the
numerator on the right hand side of Equation (3.3) takes the form

∫ y
−∞ fI(xI) dxv.

Decompose fI(xI) according to Theorem 3.4, and let J denote the set of vertices
corresponding to the newly added integration variables. Clearly, J ⊆ An(I) \ I. If
the old integration variable xv does not appear as a conditioning variable in one
of the pair copulas Cv,w|pa(v;w), v ∈ I ∪ J , w ∈ Wv, in the decomposition of fI , it
may be possible to solve the integral with respect to xv analytically. More precisely,
let J ′ ⊆ J and let W ′ ⊆ W := I−v ∪ J ′ be non-empty. Let k := |W ′| and write
W ′ = {w1, . . . , wk}. Moreover, set W ′

−i := {w1, . . . , wi−1} for all i ∈ {1, . . . k}.
Assume that the (conditional) pair copula Cv,wk|W ′−k is available in the pair-copula
decomposition of f , that is W ′

−k = pa(v;wk) or W ′
−k = pa(wk; v), and that (after
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1

3

2

4

5

6

7

31

21

41|2

53|4
63|54

73|56

42
62|543

54

64|5

65

75

76|5




1 2 3 4 5 6 7

1 0 1 1 2 0 0 0
2 0 0 0 1 0 4 0
3 0 0 0 0 2 3 3
4 0 0 0 0 1 2 0
5 0 0 0 0 0 1 1
6 0 0 0 0 0 0 2
7 0 0 0 0 0 0 0




Figure 3.2: A well-ordered (vertex labels) DAG G (left) with parent orderings 2 <4 1,
4 <5 3, 5 <6 4 <6 3 <6 2, 5 <7 6 <7 3 specifying the pair copulas C21,
C31, C42, C41|2, C54, C53|4, C65, C64|5, C63|54, C62|542, C75, C76|5, C73|56

(edge labels), and corresponding representation matrix AG (right).

f356 I v S I−v ⊆ pa(v)? w W J

{3, 5, 6} 6 ∅ X 3 {3, 4, 5} {4}
{3, 4, 5} 5 ∅ X 3 {3, 4} {4}
{3, 4} 4 ∅ X 1 {1, 2} {1, 2, 4}
{1, 2, 3} 3 ∅ X 1 {1} {1, 2, 4}
{1, 2} 2 ∅ X 1 {1} {1, 2, 4}
{1} 1 ∅ − − ∅ {1, 2, 4}

f56 I v S I−v ⊆ pa(v)? w W J

{5, 6} 6 ∅ X 5 {5} ∅
{5} 5 {3, 4} − − ∅ ∅

Table 3.1: Vertices and vertex sets obtained during the application of Algorithm 1
to the pdfs f356 and f56 corresponding to the DAG D in Figure 3.2.
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possible algebraic manipulation) fI takes the form

∫

R|J′|
fv(xv)

k∏

i=1

cv,wi|W ′−i
(
Fv|W ′−i(xv |xW ′−i), Fwi|W ′−i(xwi |xW ′−i)

∣∣xW ′−i
)
fW (xW ) dxJ ′ .

(3.7)
Then Fubini’s theorem and Equation (2.5) yield that

∫ y
−∞ fI(xI) dxv takes the form

∫

R|J′|
hv,wk|W ′−k

(
Fv|W ′−k(y |xW ′−k), Fwk|W ′−k(xwk |xW ′−k)

∣∣xW ′−k
)
fW (xW ) dxJ ′ , (3.8)

where the integral with respect to xv was replaced by an h-function which, by
assumption, is available in the pair-copula decomposition of f . Note that some of
the copula pdfs cv,wi|W ′−i , i ∈ {1, . . . , k − 1}, in Equation (3.7) may not correspond
to an edge in D, but may instead be given implicitly by an integral over further
variables, or may be equal to 1 due to a related Markov property of P , see also the
example below. We need to take these special cases into account when checking the
applicability of the inverse chain rule algorithmically.

It may sometimes also be useful to substitute uw := Fw(xw), duw = fw(xw) dxw, for
all w ∈ J in the pair-copula decomposition of fI , and thus to write

fI(xI) =

∫

[0,1]|J|
cI∪J

((
Fw(xw)

)
w∈I ,uJ

)∏

w∈I
fw(xw) duJ .

A similar transformation can be applied to the denominator in Equation (3.3) if
integration variables are present.

Example 3.3. Consider the integral
∫ ·
−∞ f356 dx3 associated to the DAG G in Fig-

ure 3.2, which will later appear when deriving a pair-copula decomposition for F3|56.
Observing that

∫

R2

f4 c41|2(F4|2, F1|2) c42(F4, F2) f3 c31(F3, F1) f2 c21(F2, F1) f1 dx12

=

∫

R2

f1234 dx12 = f34 = f4 f3 c43(F4, F3),
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Equation (3.6) yields

∫ ·

−∞
f356 dx3 =

∫ ·

−∞

∫

R

f3 c63|54(F6|54, F3|54) c53|4(F5|4, F3|4) c43(F4, F3)

· f6 c64|5(F6|5, F4|5) c65(F6, F5) f5 c54(F5, F4) f4 dx4 dx3.

Note that c43 is not available in the pair-copula decomposition of f . Since by (2.5)

∫ ·

−∞
f3 c63|54(F6|54, F3|54) c53|4(F5|4, F3|4) c43(F4, F3) dx3 = h63|54(F6|54, F3|54),

we can, however, simplify the integral with respect to x3, and c43 vanishes. We get
∫ ·

−∞
f356 dx3 =

∫

R

f6 h63|54(F6|54, F3|54) c64|5(F6|5, F4|5) c65(F6, F5) f5 c54(F5, F4) f4 dx4.

(3.9)

3.2.2 Pair-copula decompositions for conditional cdfs

Summing up, a pair-copula decomposition for the conditional cdf Fv|K( · |xK) in
Equation (3.3) is obtained in three steps. First, we apply Theorem 3.4 to f{v}∪K
and fK . Second, we possibly apply the inverse chain rule to the integral with respect
to xv in the numerator. Last, we cancel common factors like

∏
w∈K fw(xw) in the

numerator and the denominator. The procedure is summarised in Algorithm 2.

As is seen from Theorem 3.4 and Equation (3.8), the factorisation for Fv|K( · |xK)

obtained from Algorithm 2 may contain some new conditional cdfs. This problem
can, however, be solved inductively. Let w denote the maximal vertex in {v} ∪K
by the well-ordering of D. Since Algorithm 2 only adds ancestors of {v} ∪ K as
integration variables, all vertices involved in the new conditional cdfs are smaller
than or equal to w by the well-ordering of D. In particular, those conditional cdfs
involving w are of the special form Fw|pa(w;u)( · |xpa(w;u)) for some u ∈ pa(w), and
can by Equation (2.4) iteratively be expressed as

Fv|pa(w;u)(xv|xpa(w;u))=hv,u|pa(v;u)

(
Fv|pa(v;u)(xv|xpa(v;u)), Fu|pa(v;u)(xu|xpa(v;u))

∣∣xpa(v;u)

)
.
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Algorithm 2 Pair-copula decomposition of a conditional cdf.
Input Well-ordered DAG D; set of parent orderings O; vertex v ∈ V (conditioned

variable), vertex set K ⊆ V−v (conditioning variables).
Output Factorisation F . % conditional cdf Fv|K(y |xK)
1: % Exploit global D-Markov property:
2: while ∃w ∈ K : {v} ⊥ {w} | K−w [(DAn({v}∪K))

m] do
3: K ← K−w;
4: end while
5: % Numerator:
6: n← Algorithm_1

(
D,O, {v} ∪K

)
;

7: n←
∫ y
−∞ n dxv;

8: simplify n with inverse chain rule for variable xv if possible;
9: % Denominator:

10: d← Algorithm_1
(
D,O, K

)
;

11: % Conditional cdf Fv|K(y |xK):
12: cancel common factors in n and d;
13: F ← n

d
;

Hence, all vertices involved in the algorithmically more demanding new conditional
cdfs are strictly smaller than w by the well-ordering of D. Corresponding pair-copula
decompositions for the new conditional cdfs can thus be computed inductively by
again applying Algorithm 2. Since V is finite, the whole procedure terminates
after finitely many steps, and the desired decomposition in terms of only univariate
marginals and (conditional) pair copulas is obtained.

Overall, we observed that the problems of deriving pair-copula decompositions for
a conditional cdf and a marginal pdf are deeply intertwined and can be solved by
alternating iteration. Note that it is sufficient for our purposes to exploit only those
conditional independence properties of P which follow directly from graph separation
in D via the global D-Markov property. Once a complete decomposition for f is
obtained, the evaluation at x ∈ Rd can be performed vertex-by-vertex and parent-
by-parent along the well-ordering of D. That is, given v∗ ∈ V and w∗ ∈ pa(v∗),
we first evaluate all terms corresponding to the marginals Fv and the pair copulas
Cv,w|pa(v;w) for v smaller than v∗ by the well-ordering of D and w <v w

∗ if w∗ ∈ pa(v),
before evaluating the terms corresponding to Fv∗ and Cv∗,w∗|pa(v∗;w∗).



3.3 Simulation and ML estimation in pair-copula Bayesian networks 43

Example 3.4. For the DAG G in Figure 3.2, we sketch how to apply Algorithm 2 to
obtain a pair-copula decomposition for F3|56. Note that G contains the edges 3→ 5

and 3 → 6, which is why neither 5 nor 6 can be removed from the conditioning
set. We get F3|56 =

∫ ·
−∞

f356
f56

dx3. Applying our previous results for f356 and f56,
respectively, we further have

F3|56 =

∫
R
f6 h63|54(F6|54, F3|54) c64|5(F6|5, F4|5) c65(F6, F5) f5 c54(F5, F4) f4 dx4

f6 c65(F6, F5) f5

,

see Equation (3.9). Thus, by cancelling common factors, we finally obtain

F3|56 =

∫

R

h63|54(F6|54, F3|54) c64|5(F6|5, F4|5) c54(F5, F4) f4 dx4.

The complete pair-copula decomposition for f is given in Appendix B.

3.3 Simulation and ML estimation in pair-copula

Bayesian networks

Given (conditional) pair copulas Cv,w|pa(v;w)( · , · ;θv,w|pa(v;w)), v ∈ V , w ∈ pa(v), with
joint parameter vector θ := (θv,w|pa(v;w))v∈V,w∈pa(v) ∈ Θ, above construction yields
a d-variate copula model, which we will denote by {CD,O,θ |θ ∈ Θ}. Note that for
computational convenience, we again make the simplifying assumption of constant
conditional copulas. Together with families of univariate marginals, {CD,O,θ |θ ∈ Θ}
constitutes a statistical model which merges the advantages of graphical Markov
modelling with the distributional flexibility of the pair-copula approach. We will
refer to such a model as a pair-copula Bayesian network (PCBN).

3.3.1 Simulation

Write V = {v1, . . . , vd} according to the well-ordering of D, and for i ∈ {1, . . . , d}
set V−i := {v1, . . . , vi−1}. A sample u = (uv1 , . . . , uvd) ∈ [0, 1]d from a fully specified
PCBN with uniform univariate margins is obtained by simulating d independent
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uniform [0, 1] variables x1, . . . , xd and applying the quantile transformations

uv1 := x1,

uv2 := F−1
v2|v1(x2 |uv1 ;θ),

uv3 := F−1
v3|V−3

(x3 |uV−3 ;θ),

...

uvd := F−1
vd|V−d(xd |uV−d ;θ).

The order in which the components of u are generated is given by the well-ordering of
D. Solving transformation equation i for xi, we have by the local D-Markov property

xi = Fvi|V−i(uvi |uV−i ;θ) = Fvi|pa(vi)(uvi |upa(vi);θ), i ∈ {1, . . . , d}. (3.10)

Now assume that pa(vi) 6= ∅, and let w denote the largest vertex in pa(vi) by the
parent ordering <vi . Then Equations (3.10) and (2.4) yield

xi = hvi,w|pa(vi;w)

(
Fvi|pa(vi;w)(uvi |upa(vi;w);θ), Fw|pa(vi;w)(uw |upa(vi;w);θ);θ

)
. (3.11)

Since uvi is only contained in the first argument Fvi|pa(vi;w)(...) on the right hand side
of Equation (3.11), we obtain by induction that the only inverse functions needed
in the computation of uvi are the inverse h-functions h−1

vi,w∗|pa(vi,w∗)
, w∗ ∈ pa(vi).

Example 3.5. Consider again the well-ordered DAG D in Figure 1.2 with parent
ordering 2 <4 3. Moreover, let x1, . . . , x4 ∈ [0, 1]. Straightforward application of
the results in Example 3.1 yields the sampling equations

u1 := x1,

u2 := h−1
21 (x2, u1;θ21),

u3 := h−1
31 (x3, u1;θ31),

u4 := h−1
42

(
h−1

43|2

(
x4,

∫ 1

0

c21(u2, y1;θ21)h31(u3, y1;θ31) dy1;θ43|2

)
, u2;θ42

)
.
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3.3.2 ML estimation

Let u = (u1, . . . ,un), n ∈ N, be a realisation of a sample of i.i.d. observations
U 1, . . . ,Un from a random variable U on [0, 1]d with copula family {CD,O,θ |θ ∈ Θ}
and uniform univariate margins. The restriction to uniform margins is made along
the same lines as for vine copula models. By Equation (3.2), the log-likelihood
function l(θ;u) takes the form

n∑

k=1

∑

v∈V

∑

w∈pa(v)

log cv,w|pa(v;w)

(
Fv|pa(v;w)

(
ukv
∣∣ukpa(v;w);θ

)
, Fw|pa(v;w)

(
ukw
∣∣ukpa(v;w);θ

)
;θ
)
.

(3.12)
ML estimation of the parameters in Equation (3.12) can be performed using a step-
wise approach similar to the one discussed in Section 2.3. The only difference to vine
copula models is that we iterate over the vertices of D and their respective parents
instead of over the trees of an R-vine. Hence again, in a first step, sequential ML
estimates are computed and in a second step, using the sequential ML estimates as
starting values, joint ML estimates θ̂v,w|pa(v;w), v ∈ V , w ∈ pa(v), are inferred.

Example 3.6. For the PCBN in Example 3.5 we obtain the log-likelihood function

l(θ;u) =
n∑

k=1

log c21

(
uk2, u

k
1;θ21

)
+ log c31

(
uk3, u

k
1;θ31

)
+ log c42

(
uk4, u

k
2;θ42

)

+ log c43|2

(
h42

(
uk4, u

k
2;θ42

)
,

∫ 1

0

c21

(
uk2, y1;θ21

)
h31

(
uk3, y1;θ31

)
dy1;θ43|2

)
.

3.4 Likelihood inference: A simulation study

An appealing feature of PCBNs is their flexibility gained from using bivariate copulas
as building blocks only. In particular, these models can accommodate distributions
other than the multivariate normal, which is a desirable property in many stat-
istical applications, see, for instance, McNeil et al. (2005, Section 3.1.4). We now
investigate these models’ aptitude for likelihood inference. Again, we restrict our
considerations to PCBNs with uniform [0, 1] univariate margins.
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Copula 1 2 3 4 5 6

C21 C 0.25 0.75 0.75 0.25 0.25 0.25
C31 G 0.25 0.75 0.25 0.75 0.25 0.25
C42 t 0.25 0.75 0.25 0.25 0.75 0.25
C43|2 N 0.25 0.75 0.25 0.25 0.25 0.75

Copula 7 8 9 10 11 12

C21 C 0.25 0.75 0.75 0.25 0.25 0.25
C31 C 0.25 0.75 0.25 0.75 0.25 0.25
C42 C 0.25 0.75 0.25 0.25 0.75 0.25
C43|2 C 0.25 0.75 0.25 0.25 0.25 0.75

Table 3.2: Selected pair-copula families and values of Kendall’s τ for C21, C31, C42,
and C43|2. Copulas were chosen from the Clayton (C), Gumbel (G), Gaus-
sian (N), and Student’s t (t) pair-copula families.

3.4.1 Simulation setup

We examined the small sample performance of PCBNs by a simulation study. To this
end, we drew samples from two PCBNs with conditional independence properties
given by the DAG D in Figure 1.2. More precisely, these PCBNs emerge from two
different choices of pair-copula families involved. In either setting, we considered 6

different parameter configurations, resulting in the 12 simulation scenarios described
in Table 3.2. The copula families used (Clayton, Gumbel, Gaussian, and Student’s
t) exhibit notable differences in their dependence structures and tail behaviours.
Within each copula family, a range of values of Kendall’s τ as a dependence measure
can be obtained by suitable parameter choices. We considered two scenarios in which
all selected copulas have τ = 0.25, and two scenarios with τ = 0.75. In each of the 8

remaining scenarios, one copula has τ = 0.75, while all other copulas have τ = 0.25.
The degrees-of-freedom parameters of the selected Student’s t copulas were set to
ν = 5 in order to allow for heavy-tailed dependence. See Table 3.3 for the relations
between copula parameters, TDCs, and Kendall’s τ .

In each of the 12 scenarios we performed N = 100 simulation runs, and in each
simulation run we generated n = 1,000 i.i.d. observations. The sampling procedure
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Copula Clayton Gumbel Gauss Student

Parameter(s) 0.67 6.00 1.33 4.00 0.38 0.92 0.38, 5 0.92, 5
Kendall’s τ 0.25 0.75 0.25 0.75 0.25 0.75 0.25 0.75
Lower TDC λL 0.35 0.89 0.00 0.00 0.00 0.00 0.15 0.15
Upper TDC λU 0.00 0.00 0.32 0.81 0.00 0.00 0.64 0.64

Table 3.3: Parameters, Kendall’s correlation coefficients, and TDCs of the pair cop-
ulas used in the simulation study. See also Table 2.1.

used was outlined in Example 3.5. For each of the 1,200 runs, we numerically calcu-
lated joint ML estimates of the parameters of the underlying PCBN (as specified in
Table 3.2) and compared them to the respective true parameters. In order to sum-
marise ML estimates within each scenario, we used a common scale by converting
all parameter estimates to estimates of Kendall’s τ , as described in Table 2.1. An
overview of our results in terms of empirical bias and mean squared error (MSE)
with respect to the true value of Kendall’s τ is given in Figure 3.5.

PCBNs may be viewed as generalisations of Gaussian Bayesian networks as presented
in Section 1.3. By choosing all univariate margins as well as all pair-copula families
in a PCBN based on a DAG D to be Gaussian, we obtain the Gaussian Bayesian
network based on D. The Gaussian DAG PCC corresponding to the DAG of our
simulation study, for instance, is a four-variate Gaussian copula with correlation
matrix

R =




1 ρ12 ρ13 R14

ρ12 1 ρ12 ρ13 ρ24

ρ13 ρ12 ρ13 1 R34

R14 ρ24 R34 1



,

where ρ12, ρ13, and ρ24 are the correlations implied by the pair copulas C21, C31,
and C42. Using the conditional correlation ρ34|2 implied by the copula C43|2, we may
represent the correlations R14 and R34 as

R14 = ρ12 ρ24 +
ρ13 ρ34|2 (1− ρ2

12)
√

1− ρ2
24√

1− ρ2
12 ρ

2
13

,
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R34 = ρ12 ρ13 ρ24 + ρ34|2

√
1− ρ2

12 ρ
2
13

√
1− ρ2

24.

This representation is based on the conditional independence properties specified
by the DAG D in Figure 1.2 and the iterative formula for partial correlations given
in Equation (1.4). The latter is applicable since partial and conditional correla-
tions coincide for normal distributions (Whittaker, 1990, Section 6.2). Fitting this
Gaussian PCBN to our simulated data sets allows us to compare the estimated
pair-copula parameters to the true parameters of the generating models. To ensure
comparability, we again transform estimated parameters to estimates of Kendall’s τ .
Error estimates in the Gaussian PCBN are interpreted as in the true model, which
we will henceforth refer to as the non-Gaussian PCBN. An overview of these error
estimates is given in Figure 3.5.

As stated in Section 3.1, the PCBN corresponding to the DAG D of our simulation
study cannot be represented by an R-vine. A D-vine featuring the same uncondi-
tional pair copulas C12, C13, and C24 as our DAG is given in Figure 3.3. It specifies
a D-vine copula model that approximates our PCBN. In the second and third tree,
this D-vine comprises the conditional pair copulas C23|1, C14|2, and C34|12. In or-
der to study how well this D-vine copula model approximates the given PCBN,
we performed the following procedure in each of the 1,200 runs of our simulation
study. First, we selected pair-copula families for C12, C13, C24, C23|1, C14|2, and
C34|12, choosing from the four copula families described in Table 3.3 and the inde-
pendence copula. More precisely, we first computed sequential ML estimates of the
parameters θ12, θ13, θ24, θ14|2, θ23|1, and θ34|12 for the Clayton, Gumbel, Gaussian,
and Student’s t copula, respectively, and then used the AIC to identify the most
appropriate copula families. We included C12, C13, and C24, of which the true fam-
ilies are known, in this procedure to be able to judge the reliability of our selection
criterion. Table 3.4 gives an overview of how often each copula family was selec-
ted. In almost all simulation runs, the families of C12, C13, and C24 were identified
correctly. If C23|1 is the independence copula in this model, then the D-vine in
Figure 3.3 yields a PCC satisfying U2 ⊥⊥ U3 | U1 but, in general, fails to satisfy
U1 ⊥⊥ U4 | U 23 as specified by D. If the independence copula does not appear in the
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3 1 2 4
13 12 24

13 12 24
23|1 14|2

23|1 14|2
34|12

Figure 3.3: A four-variate D-vine having the unconditional pair copulas in common
with the DAG PCC derived from the DAG D in Figure 1.2.

1

2 3

4

21
31

41
|2

32|1

42
43
|21

Figure 3.4: A complete DAG specifying the same PCC as the D-vine in Figure 3.3
given that none of the associated pair copulas is the independence copula.
Parents were ordered according to 1 <3 2 and 2 <4 1 <4 3.

D-vine copula model, we obtain the same log-likelihood as in the model specified by
the complete DAG in Figure 3.4, which is hence an example of a PCBN that can be
represented by a D-vine. Note, however, that interest with Bayesian networks lies in
capturing conditional independence assumptions and therefore rather in DAGs with
missing edges than in complete DAGs. The approximating D-vine copula model can
be viewed as structurally misspecified model for the given data. Given a choice of
pair-copula families, we then computed joint ML parameter estimates in the D-vine
copula model and compared the maximised log-likelihoods to those obtained in the
Gaussian and the non-Gaussian PCBN. The results are displayed in Figure 3.6.

3.4.2 Results

Since the Gaussian PCBN can be viewed as a misspecified model for the data given
in scenarios 1 through 12, it is not surprising that error estimates in this model
are generally higher than those in the non-Gaussian PCBNs. In fact, Figure 3.5
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Copula 1 2 3 4 5 6 7 8 9 10 11 12

C12 C 100 100 100 100 100 100 100 100 100 100 100 100
G, N, t, I: all 0

C13 C 0 0 0 0 0 0 100 100 100 100 100 100
G 100 100 99 100 99 98 0 0 0 0 0 0
N 0 0 1 0 1 0 0 0 0 0 0 0
t 0 0 0 0 0 2 0 0 0 0 0 0
I 0 0 0 0 0 0 0 0 0 0 0 0

C24 C 0 0 0 0 0 0 100 100 100 100 100 100
G 0 0 2 0 0 1 0 0 0 0 0 0
t 100 100 98 100 100 99 0 0 0 0 0 0
N, I: all 0

C14|2 C 3 0 4 1 1 0 95 29 39 100 98 98

G 36 86 36 4 36 98 0 0 8 0 0 0
N 58 0 43 89 54 1 2 6 18 0 2 1
t 3 14 4 6 8 1 3 65 4 0 0 1
I 0 0 13 0 1 0 0 0 31 0 0 0

C23|1 C 3 3 1 6 8 2 4 2 5 7 6 3

G 3 3 3 4 5 4 3 1 5 4 4 2
N 13 9 7 8 10 10 16 7 10 7 11 14
t 5 1 0 2 5 4 1 1 4 3 1 1
I 76 84 89 80 72 80 76 89 76 79 78 80

C34|12 C 0 0 0 13 0 0 100 81 100 31 99 100

G 0 0 0 3 0 0 0 0 0 2 0 0
N 93 22 95 78 93 95 0 0 0 62 0 0
t 7 78 5 6 7 5 0 19 0 5 1 0
I 0 0 0 0 0 0 0 0 0 0 0 0

Table 3.4: For each scenario (column) and run we identified the copula families with
optimal AIC. The resulting frequencies are given. Frequencies of the
true copula families for C12, C13, C24, C23|1 appear in bold. Copulas were
chosen from the Clayton (C), Gumbel (G), Gaussian (N), and Student’s t
(t) pair-copula families, and the independence copula (I). As an example,
the top left entry of the table states that in all of the 100 runs of scenario 1,
C as a choice for C12 yields a higher AIC than all other families considered
(G, N, t, I). Also, C is the true copula family for C12 in this scenario.
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Figure 3.5: Bias (left) and MSE (right) of estimates of Kendall’s τ associated with
copulas C21, C31, C42, C43|2. The vertical axes use a transformed log-
scale for better visibility. In each of the 12 scenarios (horizontal axis)
described in Table 3.2, parameter estimates were obtained in the true
(circle) and in the Gaussian (triangle) PCBN using sequential (solid blue
or green) and joint (outline blue or green) ML estimation.
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shows that the estimates of Kendall’s τ obtained in the Gaussian PCBN are consid-
erably worse than those obtained in the non-Gaussian model. Differences between
these models with regard to bias and MSE for Kendall’s τ are more pronounced in
scenarios featuring high correlations and asymmetric tail dependence. The smal-
lest difference in performance is thus found in the low-correlation scenarios 1 and
7, whereas in the high-correlation scenarios 2 and 8 the Gaussian PCBN fails by a
huge amount. For instance, in scenario 8 the ratios of biases for Kendall’s τ in the
non-Gaussian and Gaussian PCBN, respectively, are of order 103 or higher. The
corresponding ratios of MSEs are of order 102 or higher. Note that Figure 3.5, with
its focus on estimation of Kendall’s τ , presents only one aspect in the comparison
between non-Gaussian and Gaussian PCBNs. For instance, estimation of the de-
grees of freedom of a Student’s t copula is neglected in this figure. It is clear that
Gaussian PCBNs are useless when interest lies in the estimation of TDCs, say.

Since DAG and D-vine copula models have different parameter sets, direct com-
parisons of parameter estimates are infeasible. We hence compared maximised log-
likelihoods for the Gaussian and the non-Gaussian PCBN and the D-vine copula
model. Figure 3.6 shows that maximised log-likelihoods in the non-Gaussian PCBNs
are roughly 50% higher than those obtained in their Gaussian counterparts. Even
though the Gaussian PCBN in scenarios 1 to 6 has one parameter less than its non-
Gaussian competitor, this difference in log-likelihood clearly shows the latter model’s
superiority. Figure 3.6 also shows the performance of the approximating D-vine cop-
ula model. As this model and the non-Gaussian PCBN share the same unconditional
pair copulas, it is not surprising that the maximised log-likelihoods in these models
differ mainly in those scenarios with high values of θ43|2, namely, scenarios 2, 6, 8,
and 12. In other words, the effects of structural misspecification are primarily no-
ticeable in those 4 scenarios. Note, however, that the D-vine copula model involves a
higher number of parameters than the non-Gaussian PCBN and that its maximised
log-likelihood is always slightly inferior to that of the latter model.

The average computation time for joint ML estimation in the non-Gaussian PCBN
was 12 seconds in scenarios 1 through 6 and 5 seconds in scenarios 7 through 12 on
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Figure 3.6: Kernel density estimates of the maximised log-likelihoods in 100 runs for
each scenario (Table 3.2) based on the Gaussian PCBN (dashed), the
non-Gaussian PCBN (solid), and the D-vine copula model (longdash).
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a 2 GHz dual-core computer with 2 GB of RAM. Fitting the D-vine copula model
instead reduced computation time by about 70% in scenarios 1, 3, 4, 5, and 6, and
by about 90% in scenarios 7, 9, 10, 11, and 12. This difference in computation time
is due to the numerical integration involved in computing joint ML estimates for
the non-Gaussian PCBN. In the high-correlation scenarios 2 and 8, however, ML
estimation in both models was performed equally fast. Overall, there is an increase in
computation time when using the non-Gaussian PCBN instead of the D-vine copula
model, but it is small compared to the associated gain in statistical precision.

Besides maximised log-likelihoods, we also investigated how well the three models
capture rank correlations of the bivariate margins U 14, U 23, and U 34, which were
not directly included in our DAG and D-vine PCCs. To this end, we performed
the following procedure in each run. First, we computed estimates τ̂14, τ̂23, and τ̂34

of Kendall’s τ for the three margins. Then we generated a sample of n = 1,000

i.i.d. observations from the Gaussian PCBN, the non-Gaussian PCBN, and the D-
vine copula model, respectively, using the joint ML parameter estimates obtained
before. For each of these samples we again computed estimates of Kendall’s τ and
compared the results to τ̂14, τ̂23, and τ̂34, respectively. Figure 3.7 gives an overview
of our findings in terms of empirical bias and MSE for each scenario. The patterns
described by these error estimates resemble those of the maximised log-likelihoods
summarised above, and hence yield similar conclusions. The range of bias and MSE
values is roughly the same as in Figure 3.5.

In order to check whether our findings are valid for smaller sample sizes, we conduc-
ted an additional simulation study in which each simulation run contained n = 500

(as opposed to n = 1,000) observations. As far as estimation of Kendall’s τ is con-
cerned, we found biases similar to those in Figures 3.5 and 3.7, while MSEs tended
to be twice as high as those given in Figures 3.5 and 3.7. The comparison between
Gaussian and non-Gaussian PCBNs may be summarised along the same lines as
above. By comparison with its competitors, the performance of the vine copula
model decreases for smaller sample size and is subject to higher variability.

The main conclusion from our simulation study is that non-Gaussian PCBNs are
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Figure 3.7: Bias (left) and MSE (right) of estimates of Kendall’s τ associated with
margins U 14, U 23, U 34. The vertical axes use a transformed log-scale for
better visibility. In each of the 12 scenarios (horizontal axis) (Table 3.2),
estimates of Kendall’s τ were compared to estimates of Kendall’s τ ob-
tained from samples generated from the Gaussian PCBN (triangle), the
non-Gaussian PCBN (circle), and the D-vine copula model (diamond).
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capable of capturing features in data that neither Gaussian PCBNs nor vine copula
models can reflect. Gaussian PCBNs exhibit particularly poor performance in pres-
ence of non-normal tail behaviour. Vine copula models are not sufficiently flexible
to observe certain Markov properties. Both non-normality and Markov properties
are easily incorporated into our non-Gaussian PCBNs.



4 Model selection

Model selection for PCBNs involves estimation of the DAG D = (V,E), selection of
the set O of parent orderings, and selection of the pair-copula families for Cv,w|pa(v;w),
v ∈ V , w ∈ pa(v). In this chapter, we investigate structure estimation in PCBNs
using the PC algorithm (Spirtes and Glymour, 1991). To this end, we introduce a
novel test for conditional independence that is based on vine copula models. The
performance of our structure estimation procedure is examined in a simulation study.
Moreover, we develop routines for selecting O and pair-copula families.

4.1 Structure estimation

The first task of modelling the joint distribution of a given set of variables with a
Bayesian network is to identify the DAG D = (V,E) specifying the Markov structure
of the variables. A convenient approach to defining D is the use of expert knowledge.
However, the scope of this approach is rather limited since expert knowledge is often
incomplete or unavailable. Data-driven structure estimation algorithms provide a
computer-based alternative to elicited expert knowledge. Robinson (1973) has shown
that the number nd of DAGs on d := |V | labelled vertices is given by the recurrence
equation

n0 = 1, nd =
d∑

k=1

(−1)k−1

(
d

k

)
2k(d−k) nd−k.

Since nd grows super-exponentially in d, a systematic trial of all possible DAGs on
V is infeasible, and thus efficient searching algorithms are required. A consider-
able number of structure estimation algorithms has been proposed over the last two
decades, see Neapolitan (2003, Chapters 8 – 11) and Koller and Friedman (2009,

57
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Chapter 18) for an overview. The majority of these algorithms follow one of the two
estimation approaches predominant in the literature: the constraint-based and the
score-and-search-based approach. In the constraint-based approach, D is inferred
from a series of conditional independence tests. In the score-and-search-based ap-
proach, D is found by optimising a given scoring function—like AIC or BIC—over a
suitable search space, for instance, the space of all DAGs or the space of all Markov-
equivalence classes. Besides, there exist hybrid algorithms which combine both
approaches. Unfortunately, available implementations of aforementioned algorithms
are mainly confined to discrete or Gaussian models and are hence not suited for our
non-Gaussian continuous Bayesian networks.

4.1.1 The PC algorithm

We will provide a structure estimation algorithm that is particularly suited to finding
the DAG D underlying a non-Gaussian continuous Bayesian network. Our algorithm
is a version of one of the most popular constraint-based estimation algorithms, the
PC algorithm (named after its inventors Peter Spirtes and C lark Glymour), see
Spirtes and Glymour (1991) and Spirtes et al. (2000, Section 5.4.2). To fix notation
and for the reader’s convenience, we now recall the PC algorithm. Let P be an
absolutely continuous D-Markovian probability measure on [0, 1]d with uniform uni-
variate margins. The restriction to uniform margins is made along the same lines as
in Section 3.3. Moreover, let u = (u1, . . . ,un), n ∈ N, be a realisation of a sample of
i.i.d. observations U 1, . . . ,Un from a random variable U distributed as P . The PC
algorithm for estimating D from u involves three major steps in which the complete
UG G on V is gradually transformed into a CG G∗ on V , which is supposed to be
the essential graph De corresponding to the Markov-equivalence class [D] of D. The
resulting CG G∗ can then be extended to a DAG as outlined in Section 1.2.

In the first step of the PC algorithm, a series of tests for conditional independence is
performed on u. More precisely, for all distinct vertices i, j ∈ V and chosen vertex
sets K ⊆ V \ {i, j}, the null hypothesis H0 : Ui ⊥⊥ Uj | UK is tested against the
general alternative H1 : Ui 6⊥⊥ Uj | UK of conditional dependence. Given a suitable
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independence test of choice, we denote the test decision at significance level α ∈ (0, 1)

by Tα(ui,uj;uK) ∈ {H0,H1}. We will later introduce a novel class of conditional
independence tests that is particularly tailored to the algorithm and applicable to
non-Gaussian continuous data. If Tα(ui,uj;uK) = H0, the edge i − j is removed
from G and the conditioning set K is stored in two variables Sij and Sji for later
use. As a result of the first step, G is turned into the skeleton of G∗. Step one is
summarised in Algorithm 3.

In the second step, G is transformed into a CG by introducing a v-structure i → k

← j whenever i and j are non-adjacent, k ∈ ad(i) ∩ ad(j), and k /∈ Sij. In the
last step, G is transformed into G∗ by directing further edges of G to prevent new
v-structures and directed cycles, until no more edges need direction. Steps two
and three are given in Algorithm 4, where the third step was taken from Pearl
(2009, Section 2.5). If P is faithful to D and if all statistical test decisions made
in Algorithm 3 are correct, then Algorithm 4 will return the correct graph De, see
Meek (1995). Due to the finite sample size or the existence of hidden variables,
the application of Algorithm 3 to empirical data may sometimes, however, lead
to conflicting information about edge directions. That is, it may be possible in a
given situation that Algorithm 4, while introducing v-structures, first orients an
undirected edge i − j into i → j, and later tries to introduce the opposite edge
direction i ← j. In such a situation, we keep i → j and skip the new v-structure
including i ← j. We can test whether the resulting CG can still be extended to a
DAG without introducing new v-structures or directed cycles using the algorithm
by Dor and Tarsi (1992). The PC algorithm can also be adapted to incorporate
existing expert knowledge, see Meek (1995) and Moole and Valtorta (2004). We will
henceforth assume that P is faithful to D and that there are no hidden variables.

4.1.2 Testing conditional independence using partial

correlations

The centrepiece of the PC algorithm—as of any constraint-based estimation algo-
rithm—is the test for conditional independence. In a Gaussian framework, the test
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Algorithm 3 PC algorithm: finding the skeleton.
Input Data set u; significance level α ∈ (0, 1); conditional independence test with

test decision Tα(ui,uj;uK) for H0 : Ui ⊥⊥ Uj | UK , i 6= j ∈ V , K ⊆ V \ {i, j}.
Output Skeleton G=(V,EG); separation sets Sij, i 6= j ∈ V , (i, j) /∈ EG, (j, i) /∈ EG.
1: G ← complete UG on V ;
2: k ← 0;
3: repeat
4: for i ∈ V and j ∈ ad(i) do % i and j are adjacent in G
5: if Tα(ui,uj;uK) = H0 for any K ⊆ ad(i) \ {j} with |K| = k then
6: delete i − j from G;
7: Sij ← K;
8: Sji ← K;
9: end if

10: end for
11: k ← k + 1.
12: until |ad(i)| ≤ k for all i ∈ V .

Algorithm 4 PC algorithm: introducing edge directions.
Input Skeleton G = (V,EG); separation sets Sij, i 6= j ∈ V , (i, j) /∈ EG, (j, i) /∈ EG.
Output Chain graph G.
1: % Introduce v-structures:
2: for i ∈ V and j /∈ ad(i) and k ∈ ad(i) ∩ ad(j) do
3: if k /∈ Sij then
4: replace i − k − j by i→ k ← j in G;
5: end if
6: end for
7: % Orient as many undirected edges as possible by repeated application of the

following rules:
8: repeat
9: R1 orient j − k into j → k whenever G contains i→ j and k /∈ ad(i);

10: R2 orient i − j into i→ j whenever G contains i→ k → j;
11: R3 orient i − j into i → j whenever G contains i − k → j and i − l → j,

and l /∈ ad(k);
12: until no more edges can be directed;
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of choice is usually a test for zero partial correlation ρij·K , see, for instance, Anderson
(2003, Section 4.3). The null hypothesis then translates into H0 : ρij·K(Xi, Xj;XK) =

0, where Xk := Φ−1(Uk) for all k ∈ V , and Φ denotes the univariate standard
normal cdf. Here, the quantile function Φ−1 is applied to U in order to transform
the uniform univariate copula margins to standard normal margins. The conditional
independence test is based on the asymptotic normality

√
d− |K| − 3 ẑn

L−−−→
n→∞

N(0, 1), ẑn :=
1

2
log

(
1 + ρ̂ij·K(Xn

i ,X
n
j ;Xn

K)

1− ρ̂ij·K(Xn
i ,X

n
j ;Xn

K)

)
,

of the Fisher’s z-transformed partial-correlation estimator ρ̂ij·K under H0, see again
Anderson (2003, Section 4.3). Here, L−→ denotes convergence in distribution, N(0, 1)

is the univariate standard normal distribution, and Xn
k := (Φ−1(U1

k ), . . . ,Φ−1(Un
k ))

for all k ∈ V . Kalisch and Bühlmann (2007) have proven uniform convergence of the
PC algorithm under joint normality and a mild sparsity assumption for the underly-
ing DAG, cf. also Harris and Drton (2012). An implementation of the PC algorithm
with above partial correlation test is available in the R package pcalg (Kalisch
et al., 2012). The pcalg package also provides an interface for self-implemented
conditional independence tests.

4.1.3 Vine-copula-based conditional independence test

Above test for zero partial correlation was derived under the assumption of joint nor-
mality. We now introduce a copula-based alternative test for conditional independ-
ence that is also applicable to non-Gaussian continuous data. Assume K 6= ∅. Oth-
erwise, the problem reduces to testing ordinary (unconditional) stochastic independ-
ence. Let Fi,j|K( · , · |vK) denote the conditional cdf of Ui and Uj given UK = vK ,
and let Ci,j|K( · , · |vK) be the corresponding conditional copula. Moreover, let C⊥⊥

again denote the independence copula on [0, 1]2. The conditional independence
Ui ⊥⊥ Uj | UK holds if and only if

Fi,j|K(vi, vj |vK) = Ci,j|K
(
Fi|K(vi |vK), Fj|K(vj |vK)

∣∣vK
)

= Fi|K(vi |vK)Fj|K(vj |vK)
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for all vi, vj ∈ [0, 1] and PK-almost all vK ∈ [0, 1]|K|, where UK ∼ PK . Hence, the
null hypothesis of the conditional independence test can be stated as

H0 : Ci,j|K( · , · |vK) = C⊥⊥( · , · ) for PK-almost all vK ∈ [0, 1]|K|.

Using again the simplifying assumption that Ci,j|K( · , · |vK) depends on vK only
through Fi|K( · |vK) and Fj|K( · |vK), we drop vK from Ci,j|K( · , · |vK) and approx-
imate H0 by the more accessible null hypothesis H∗0 : Ci,j|K( · , · ) = C⊥⊥( · , · ). The
new null hypothesis H∗0 can be tested using any test for ordinary (unconditional)
stochastic independence of two continuous random variables applied to the trans-
formed observations W 1

i|K , . . . ,W
n
i|K and W 1

j|K , . . . ,W
n
j|K , where

W k
i|K := Fi|K

(
Uk
i

∣∣U k
K

)
and W k

j|K := Fj|K
(
Uk
j

∣∣U k
K

)
, k ∈ {1, . . . , n}. (4.1)

Song (2009) called Equation (4.1) the Rosenblatt transform after Rosenblatt (1952),
while Bergsma (2011) called it the partial copula transform. Given a realisation
u of

(
U 1, . . . ,Un

)
, the difficulty of this approach lies in the computation of the

transformed realisations wi|K and wj|K , where wki|K := Fi|K
(
uki
∣∣ukK

)
and wkj|K :=

Fj|K
(
ukj
∣∣ukK

)
for all k ∈ {1, . . . , n}. Note that the conditional cdfs Fi|K( · |vK)

and Fj|K( · |vK) are typically unknown and need to be estimated in the course of
the testing procedure. Bergsma (2011) suggested the use of non-parametric kernel
estimators for this task. By contrast, we propose a parametric estimation method
that is based on vine copula models.

Estimating conditional cdfs using vine copula models

Taking another look at vine copula models, we observe that transformed realisations
likewi|K andwj|K naturally emerge in the log-likelihood function. In fact, given any
distinct i, j ∈ V and K ⊆ V \ {i, j}, it is always possible to construct a regular vine
V = (T1, . . . , Tp), p := 1+ |K|, in which tree T1 has vertex set V1 = {i}∪{j}∪K and

tree Tp is of the form i, l|K−l
i,j|K
— j,m|K−m for some l,m ∈ K. The corresponding

log-likelihood function l
(
θ;u{i}∪{j}∪K

)
, θ ∈ Θ, contains the pair-copula pdf ci,j|K
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Figure 4.1: A C- (left) and a D-vine (right) on five vertices having the same edge
label 15|234 in tree T4. A corresponding R-vine is given in Figure 2.2.
The three vines were constructed according to rule R with i = 1 and
j = 5. Boundaries of nodes including either 1 or 5 appear in bold.

with arguments Fi|K
(
uki
∣∣ukK ;θ

)
and Fj|K

(
ukj
∣∣ukK ;θ

)
for all k ∈ {1, . . . , n}. Thus,

by computing an ML estimate θ̂ of θ and subsequently evaluating l at θ̂, we obtain
estimates ŵki|K := Fi|K

(
uki
∣∣ukK ; θ̂

)
and ŵkj|K := Fj|K

(
ukj
∣∣ukK ; θ̂

)
of wki|K and wkj|K ,

respectively, as a welcome side effect.

We call a vertex v in Tree Tq, q ∈ {1, . . . , p− 1}, an inner vertex if |ad(v)| ≥ 2. In
order to construct such a vine V , we have to follow one simple rule:

R Neither i nor j may be part of an inner vertex in trees T1, . . . , Tp−1 of V .

Following R, it is even possible to restrict the class of R-vines to C- or D-vines. The
only inner vertices of a C-vine are the root vertices of the trees T1, . . . , Tp−1. Thus, in
a C-vine obeying R, i and j do not appear in the root vertices of the respective trees.
Similarly, in a D-vine obeying R, i and j only appear in the boundary vertices of
trees T1, . . . , Tp−1. Figures 2.2 and 4.1 give an example of a C-, a D-, and an R-vine,
respectively, having the same edge label in tree Tp.

The tree structure of V can be estimated from u{i}∪{j}∪K by adapting the greedy
search strategies described in Section 2.3 to the new constraint R. An optimal C-
vine obeying R is found by restricting the sets of possible root vertices for trees
T1, . . . , Tp−1 to vertices containing neither i nor j, respectively. In order to find an
optimal D-vine obeying R, the unconstrained TSP usually solved has to be replaced
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by a constrained TSP with fixed source vertex i and destination vertex j. Finally,
an optimal R-vine obeying R is found by first estimating a smaller R-vine VK with
first tree vertices K. Having found VK , vertex i is then connected to a vertex
l ∈ K in tree T1 such that the new edge i − l has optimal edge weight amongst all
possible edges i − m for m ∈ K. The same is done for vertex j. Note that this
way, j cannot be connected to i. The newly formed structure is then sequentially
transformed into V by analogously extending the remaining trees T2, . . . , Tp, such
that the proximity condition and R are always satisfied and the corresponding edge
weights are optimised. Copula selection and ML estimation in the resulting vine
copula model is then performed as usual.

Conditional independence tests

Summing up, we test the conditional independence Ui ⊥⊥ Uj | UK in three steps.
In the first step, we construct a vine V on the vertices {i} ∪ {j} ∪K by applying a
modified version of one of the structure estimation algorithms described in Section
2.3 to u{i}∪{j}∪K . In the second step, we select corresponding pair-copula famil-
ies, perform ML estimation in the resulting model, and evaluate the log-likelihood
function l at the estimated parameter vector θ̂ to obtain transformed realisations
ŵi|K :=

(
ŵki|K

)
1≤k≤n and ŵj|K :=

(
ŵkj|K

)
1≤k≤n, respectively. In the last step, we

apply a test for ordinary stochastic independence of two continuous random vari-
ables to ŵi|K and ŵj|K . Note that in the first iteration step of Algorithm 3, only
unconditional independences, that is K = ∅, are tested, and thus the independence
test of choice is directly applied to u.

We examine the performance of our novel testing procedure in a simulation study
in the next section, using three different tests for ordinary stochastic independence.
Recycling notation, consider the null hypothesis H0 : Ui ⊥⊥ Uj vs. H1 : Ui 6⊥⊥ Uj. The
first test used is a test for zero Kendall’s τ with null hypothesis H∗0 : τ(Ui, Uj) = 0 vs.
H∗1 : τ(Ui, Uj) 6= 0. Under H0, the Kendall’s τ estimator τ̂n exhibits the asymptotic
normality √

9n(n− 1)

2(2n+ 5)
τ̂n(U i,U j)

L−−−→
n→∞

N(0, 1),
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where U i :=
(
U1
i , . . . , U

n
i

)
and U j :=

(
U1
j , . . . , U

n
j

)
, see Hollander and Wolfe (1999,

Section 8.1). In general, τ(Ui, Uj) = 0 does not imply Ui ⊥⊥ Uj. However, for
many popular copula families like the Clayton, the Gaussian, and the Gumbel cop-
ula families, H0 and H∗0 are equivalent. The family of Student’s t copulas serves
as a counterexample. We then consider H∗0 an approximation for H0. The other
two independence tests used in Section 4.2 are of Cramér-von Mises type. More
precisely, independence test number two is the test for zero Hoeffding’s D proposed
by Hoeffding (1948). P-values of the sample test statistic D̂n are computed using
the asymptotically equivalent sample test statistic B̂n by Blum et al. (1961), see
also Hollander and Wolfe (1999, Section 8.6). Independence test number three is
the test by Genest and Rémillard (2004) based on the empirical copula process.

4.2 Structure estimation: A simulation study

We conducted an extensive simulation study to examine the small sample perform-
ance of the PC algorithm in finding the true Markov structure underlying a PCBN.

4.2.1 Simulation setup

We drew samples from various PCBNs based on the conditional independence prop-
erties represented by the DAG D in Figure 1.2. These PCBNs emerged from various
choices of pair-copula families for C21, C31, C42, and C43|2. More precisely, we chose
from the Clayton, Gumbel, Gaussian, and Student’s t pair-copula families. These
copula families exhibit considerable differences in their dependence structures and
tail behaviours. We considered four PCBNs with all four pair copulas C21, C31,
C42, and C43|2 coming from the same copula family, respectively. Additionally, we
considered 24 PCBNs with each pair copula C21, C31, C42, and C43|2 coming from a
different copula family. Our choices of pair-copula families are given in Table 4.1.
For each choice of pair-copula families we then considered 16 different parameter
configurations arising from a selection of two different parameter values for each
pair copula. The parameter values for each pair copula were chosen to correspond
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to values of Kendall’s τ of 0.25 and 0.75, that is one low and one high rank correlation
specification. These configurations are summarised in Table 4.2.

Our selection of copula parameters is based on the bijective relationship between
the parameters of the Clayton, Gumbel, and Gaussian pair-copula families and the
corresponding Kendall’s τ . For the Student’s t copula, such a bijective relationship
exists only between the correlation parameter and Kendall’s τ , which is why we set
the degrees-of-freedom parameter of each Student’s t copula to ν = 5 in order to al-
low for heavy-tailed dependence. See Table 3.3 for the relations between parameters,
TDCs, and Kendall’s τ for each pair copula used in the simulation study.

Summing up, we have 28 different PCBNs with 16 different parameter configura-
tions each, that is, 448 simulation scenarios. In each of the 448 simulation scenarios
we performed N = 100 simulation runs, and in each simulation run we generated
n = 1,000 i.i.d. observations. For each of the 44,800 runs we applied the PC al-
gorithm with the ten different conditional independence tests described in Section
4.1.3. Those were the widely used test for zero partial correlation (COR) and our
novel vine-copula-based tests using either only C-vines (C), or only D-vines (D), or
more generally R-vines (R), respectively, together with one of the Kendall’s τ (K),
Hoeffding’s D (H), or Genest and Rémillard (GR) tests for ordinary (unconditional)
stochastic independence. Since zero partial correlation is generally not equivalent
to conditional independence, we consider COR only an approximate conditional in-
dependence test serving as a benchmark. In a Gaussian framework, however, zero
partial correlation is equivalent to conditional independence. This equivalence holds
in particular in the scenarios featuring only Gaussian pair copulas, in which case
the respective joint copula families are also Gaussian. The corresponding correlation
matrices were derived in Section 3.4. Each test was performed at the 5% level.

4.2.2 Results

Let Gf,p,r,t denote the CG obtained from applying the PC algorithm with conditional
independence test t ∈ {COR,C-GR,C-H,C-K,D-GR,D-H,D-K,R-GR,R-H,R-K}
to the data simulated in run r ∈ {1, . . . , 100} of pair-copula scenario f ∈ {1, . . . , 28}
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Copula 1 2 3 4 5 6 7 8 9 10 11 12 13 14

C21 C G N t C C C C C C G G G G
C31 C G N t G G N N t t C C N N
C42 C G N t N t G t G N N t C t
C43|2 C G N t t N t G N G t N t C

Copula 15 16 17 18 19 20 21 22 23 24 25 26 27 28

C21 G G N N N N N N t t t t t t
C31 t t C C G G t t C C G G N N
C42 C N G t C t C G G N C N C G
C43|2 N C t G t C G C N G N C G C

Table 4.1: Selected pair-copula families for C21, C31, C42, C43|2. Copulas were chosen
from the Clayton (C), Gumbel (G), Gaussian (N), and Student’s t (t)
pair-copula families. See Tables 4.2 and 3.3 for further details on the
pair-copula families used.

Copula 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

C21 0.25 0.75 0.25 0.25 0.25 0.75 0.75 0.75 0.25 0.25 0.25 0.75 0.75 0.75 0.25 0.75
C31 0.25 0.25 0.75 0.25 0.25 0.75 0.25 0.25 0.75 0.75 0.25 0.75 0.75 0.25 0.75 0.75
C42 0.25 0.25 0.25 0.75 0.25 0.25 0.75 0.25 0.75 0.25 0.75 0.75 0.25 0.75 0.75 0.75
C43|2 0.25 0.25 0.25 0.25 0.75 0.25 0.25 0.75 0.25 0.75 0.75 0.25 0.75 0.75 0.75 0.75

Table 4.2: Selected values of Kendall’s τ for each choice of pair-copula families for
C21, C31, C42, C43|2. See Tables 4.1 and 3.3 for further details on the
pair-copula families used.
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(see Table 4.1) and parameter configuration p ∈ {1, . . . , 16} (see Tables 4.2 and 3.3).
We compared each CG Gf,p,r,t to the true essential graph De in Figure 1.2, and set
πf,p,r,t := 1 if Gf,p,r,t equalled De and πf,p,r,t := 0 otherwise. For each pair-copula
scenario f and each conditional independence test t, we then computed the relative
frequency of recovering the correct structure over all parameter configurations p
and all runs r, which we will denote by πf,t := 1

1600

∑16
p=1

∑100
r=1 πf,p,r,t. Moreover,

we determined the structural Hamming distance (SHD) (Tsamardinos et al., 2006)
δf,p,r,t between each CG Gf,p,r,t and De. In short, δf,p,r,t counts the number of edges
that need to be added to, removed from, directed in, or flipped in Gf,p,r,t in order to
obtain De. Hence, δf,p,r,t takes a value between zero and

(|V |
2

)
= 6. We again took the

average over all parameter configurations p and all runs r, yielding the mean SHD
δf,t := 1

1600

∑16
p=1

∑100
r=1 δf,p,r,t for each pair-copula scenario f and each conditional

independence test t. The results are given in Figures 4.2 and 4.3, respectively.

Let us first consider Figure 4.2. The relative frequencies πf,COR range between 14%

and 63%, whereas for the vine-copula-based tests, πf,t ranges between 40% and
64%. COR was outperformed by at least one vine-copula-based test in 18, and
by all vine-copula-based tests in 15 out of the 28 copula scenarios. The lowest
frequency of 14% was obtained when applying the PC algorithm with COR to the
data sets generated in copula scenario 1 (numbering as in Table 4.1), which features
only Clayton, that is non-elliptical, copulas. By contrast, COR showed a solid
performance in the elliptical-copulas-only scenarios 3 and 4, which is not surprising
given that COR is based on the partial correlation. In 9 out of the 28 copula
scenarios, πf,COR is lower than 40%, which is the minimum frequency obtained for
the vine-copula-based tests. Also, in these 9 scenarios, the difference in relative
frequencies between COR and the vine-copula-based tests ranges between 9 and 33

percentage points. The highest frequency of 64% was obtained in copula scenario 15

both for the PC algorithm with C-GR and C-H, respectively. Taking means over all
28 copula scenarios, we obtain the overall relative frequencies πt := 1

28

∑28
f=1 πf,t for

all tests t. These overall frequencies range between 50% and 53% for the vine-copula-
based tests, while πCOR = 45%. The best performances were again achieved by C-GR
and C-H. However, we recommend using the R-vine-based conditional independence
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Figure 4.2: Percentage πf,t of runs in which the PC algorithm returned the correct
Markov structure for each choice f of pair-copula families for C21, C31,
C42, C43|2 (legends) and each independence test t (horizontal axes) (1,600
runs each). Copulas were chosen from the Clayton (C), Gumbel (G),
Gaussian (N), and Student’s t (t) pair-copula families. The percentage
of correct recoveries out of all 28 copula scenarios is given in solid grey.
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Figure 4.3: Average structural Hamming distance (SHD) δf,t between the true es-
sential graph De and the CG Gf,p,r,t returned by the PC algorithm for
each choice f of pair-copula families for C21, C31, C42, C43|2 (legends)
and each independence test t (horizontal axes) (1,600 runs each). Cop-
ulas were chosen from the Clayton (C), Gumbel (G), Gaussian (N), and
Student’s t (t) pair-copula families. The average SHD over all 28 copula
scenarios is given in solid grey.
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tests in higher dimensions since these offer more general tree structures than their C-
and D-vine counterparts. Moreover, we observe that choosing H instead of GR as test
for unconditional stochastic independence has only little effect on the performance
of the vine-copula-based tests. By contrast, relative frequencies were, on average,
slightly worse when using K instead of GR and H, respectively. Since zero Kendall’s
τ is generally also not equivalent to stochastic independence, we recommend using
GR and H. Note that in a given copula scenario f and a given parameter scenario
p, the relative frequencies πf,p,t := 1

100

∑100
r=1 πf,p,r,t can be a lot higher than the

averages displayed in Figure 4.2. We observed frequencies πf,p,t of up to 98%. To
sum up, using a vine-copula-based conditional independence test instead of COR
leads to more reliable structure estimates, in particular when the data exhibit non-
Gaussian, asymmetric dependence.

Considering only the correctly recovered Markov structures may be a too crude
performance measure. Hence, the mean SHDs δf,t in Figure 4.3 illustrate how much
the results of the PC algorithm differ from the true essential graph De. For the
vine-copula-based tests, δf,t ranges between 0.62 and 1.03. The respective overall
means δt := 1

28

∑28
f=1 δf,t lie between 0.79 and 0.84. Thus, on average, the results of

the PC algorithm differ by less than one edge from De. That is, if the PC algorithm
yields a CG that is not equivalent to De, then, with a high probability, CG and De
are not too different. The lowest values of δt were again obtained for C-GR and
C-H. Similarly, δf,COR ranges between 0.63 and 2.44, and δCOR = 0.98, which again
shows the superiority of the vine copula approach. The worst mean SHD of 2.44

was obtained in copula scenario 1. Overall, we can say that the PC algorithm with
either of the 9 vine-copula-based conditional independence tests provides a suitable
procedure for structure estimation in PCBNs.

We repeated the simulation study both for a significance level α of 1% and for a
sample size n of 500. For α = 1%, we obtained results similar to the ones described
above for α = 5%. The overall relative frequencies πt were slightly lower, ranging
from 44% to 47% for the vine-copula-based tests, while πCOR was 43%. Also, the
overall mean SHDs δt ranged between 0.86 and 0.94 for the vine-copula-based tests,



72 4 Model selection

while πCOR was 0.99. The reduction in sample size to n = 500, on the other hand,
lead to a slightly stronger decrease in the overall relative frequencies πt, which then
ranged between 39% and 41% for the vine-copula-based tests, while πCOR was 37%.
Similarly, the overall mean SHDs δt ranged between 1.07 and 1.11 for the vine-
copula-based tests, while πCOR was 1.17. Yet, both for α = 1% and for n = 500,
the CGs returned by the PC algorithm differed on average from De by only one
edge. The performance of the PC algorithm can thus be deemed reliable and ro-
bust. In future research, one may investigate the performance of other conditional
independence tests like Zhang et al. (2011), as well as of other estimation algorithms.

4.3 Ordering the parents of a DAG

Given the DAG D = (V,E) and a set O of parent orderings, the selection of pair-
copula families for Cv,w|pa(v;w), v ∈ V , w ∈ pa(v), can be performed in a similar way
as in Section 2.3 for vine copula models, with the difference that the iteration is
vertex-by-vertex and parent-by-parent instead of tree-by-tree.

For the selection of O we propose a greedy-type procedure inspired by the structure
selection algorithm for vine copula models outlined in Section 2.3. Clearly, an or-
dering of the parents of a vertex v ∈ V is only required if pa(v) 6= ∅. We assume
that D is well-ordered. Let v ∈ V and assume k := |pa(v)| ≥ 1. Moreover, let
i ∈ {1, . . . , k} and assume that we have already selected the i − 1 smallest parents
of v, denoted by w1 <v · · · <v wi−1. This implies that we have already selec-
ted pair-copula families for Cv∗,w|pa(v∗;w), v∗ smaller than v by the well-ordering of
D, w ∈ pa(v∗), and Cv,wj |pa(v;wj), j < i. Also, this implies that we have inferred
corresponding ML parameter estimates, which we summarise in the vector θ̂. Let
W−i := {w1, . . . , wi−1}. The selection of wi is performed in three steps. First,
we compute the pseudo-observations Fv|W−i

(
ukv
∣∣ukW−i ; θ̂

)
and Fw|W−i

(
ukw
∣∣ukW−i ; θ̂

)
,

k ∈ {1, . . . , n}, for all w ∈ pa(v) \W−i. Note that for i = 1, nothing needs to be
done since all univariate marginals are uniform on [0, 1]. Second, we assign a weight
ωv,w to every edge w → v, w ∈ pa(v) \ W−i, based on the previously calculated
pseudo-observations, and choose wi such that wi → v has optimal edge weight.
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Suitable weights are, for instance, the absolute values of estimates of Kendall’s τ , or
AIC or BIC values of selected pair-copula families with estimated parameters. Last,
we select a pair-copula family for Cv,wi|pa(v;wi) and compute an ML estimate of the
corresponding parameter(s). Again, this last step may have already been performed
when computing the edge weights ωv,w.





5 Data applications

PCBNs can accommodate a great variety of distributional features to be modelled
such as heavy-tailedness and non-linear, asymmetric dependence, while, at the same
time, they can capture pre-specified Markov properties (as given by a DAG). In this
chapter, the routines presented in earlier sections are applied to modelling financial
return data. Moreover, we develop strategies for reducing the computational effort
potentially involved in evaluating the log-likelihood of a PCBN.

5.1 German and US stock and bond market indices

As a real-world application, we applied PCBNs to a four-variate financial data set
comprising US and German stock and bond market indices. More precisely, we
modelled the dependence structure of daily log-returns of the Dow Jones Industrial
Average (DJI), the Dow Jones Corporate Bond Index (DJCB), the German stock
index (DAX), and the corresponding German corporate bond index (RDAX) from
3 April 2007 to 30 September 2010 (n = 854 observations). US indices are given in
US Dollars and German indices in Euros, that is, we did not correct the data for
exchange rate fluctuations. Figure 5.1 shows the four time series of daily log-returns.

5.1.1 Univariate time series models

Using the inference functions for margins method outlined in Section 2.3, we mod-
elled univariate marginal distributions without regard to the dependence structure
between variables. We first removed serial correlation in the four time series of log-
returns by applying an AR(1)-GARCH(1,1) filter, which accounts for conditional

75
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µ [×103] a ω [×105] α β ν

DJI 1.02 (0.14) −0.10 (0.04) 0.20 (2.88) 0.12 (0.02) 0.88 (0.02) 6.33 (1.52)
DJCB 0.16 (0.37) −0.11 (0.03) 0.06 (3.77) 0.08 (0.02) 0.89 (0.02) 6.75 (1.73)
DAX 0.58 (0.44) 0.01 (0.03) 0.39 (3.79) 0.09 (0.02) 0.89 (0.02) 8.24 (2.30)
RDAX 0.25 (0.07) 0.10 (0.04) 0.01 (2.38) 0.05 (0.01) 0.95 (0.01) 17.30 (9.03)

Table 5.1: ML estimates and standard errors (in parentheses) of AR(1)-GARCH(1,1)
parameters for the DJI, DJCB, DAX, and RDAX daily log-returns.

heteroskedasticity present in the data, see Bollerslev (1986). The log-return ri,t of
index i ∈ {DJI,DJCB,DAX,RDAX} at time t can thus be written as

rt,i = µi + ai rt−1,i + εt,i,

εt,i = σt,i zt,i, (5.1)

σ2
t,i = ωi + αi ε

2
t−1,i + βi σ

2
t−1,i,

with parameters ωi > 0, αi, βi ≥ 0 such that αi + βi < 1, |ai| < 1, and µi ∈ R,
where E [zt,i] = 0 and Var [zt,i] = 1. The standardised residuals zt,i are assumed
to follow a univariate Student’s t distribution with νi degrees of freedom, that is,√

νi
νi−2

zt,i ∼ tνi . ML parameter estimates and their standard errors derived from
numerical evaluation of the Hessian of the AR(1)-GARCH(1,1) parameters are given
in Table 5.1. Using these standard errors and a 5% significance level, we cannot re-
ject the null hypothesis of the Ljung-Box test that there is no autocorrelation left in
the residuals and squared residuals (Ljung and Box, 1978). The same holds true for
the null hypothesis of the Lagrange-multiplier ARCH test that the residuals exhibit
no conditional heteroskedasticity (Engle, 1982). We converted the standardised re-
siduals to uniformly distributed observations ut,i = tνi

(√
νi
νi−2

zt,i

)
before modelling

the joint dependence structure of the four time series of log-returns by a PCBN.

5.1.2 Specifying the conditional independence structure

Based on the economic consideration that the German stock index is driven by its
US counterpart and that within the US and Germany corporate bond indices are



5.1 German and US stock and bond market indices 77

driven by the respective national stock indices, we propose a conditional independ-
ence model for the transformed residuals ut,i. The DAG D from Figure 1.2 with
vertices 1, 2, 3, 4 representing the variables DJI, DJCB, DAX, RDAX, respectively,
reflects the above-mentioned dependences and specifies the conditional independence
assumptions

DJCB ⊥⊥ DAX | DJI and DJI ⊥⊥ RDAX | {DJCB,DAX}.

Besides, we also obtain the DAG D when applying the PC algorithm with either of
the ten conditional independence tests COR, C-GR, C-H, C-K, D-GR, D-H, D-K,
R-GR, R-H, and R-K described in Section 4.1.3 (with notation as in Section 4.2).
Given the results presented below, we retrospectively measured the reliability of
the PC algorithm for the analysed financial data set as follows. We first generated
N = 100 i.i.d. samples of size n = 854 from the non-Gaussian PCBN specified by
the joint ML parameter estimates in Table 5.2 and then applied the PC algorithm
to recover the conditional independence properties of each of these samples. The
true DAG structure was recovered in 88% to 93% of the cases (depending on the
conditional independence test used), which supports our model assumptions.

Given the DAG D, Theorem 3.1 prescribes which pair copulas need specification in
the definition of our model. Note that vertex 4 (RDAX) has two parents (DJCB
and DAX), which necessitates the selection of a parent ordering. Using the pro-
cedure described in Section 4.3 with Kendall’s τ edge weights, we decided to use
vertex 2 (DJCB) as the first parent. Our decision was based on estimates τ̂ of
Kendall’s τ between vertices 2, 4 (τ̂ = 0.39) and 3, 4 (τ̂ = −0.25), respectively. The
corresponding log-likelihood function was derived in Example 3.6.

5.1.3 Pair-copula selection and ML estimation

Having fixed our model’s Markov structure, we next selected parametric copula fam-
ilies for C21, C31, C42, and C43|2, respectively. We considered the Clayton, Frank,
Gaussian, Gumbel, and Student’s t copula families as well as reflected versions of
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the Clayton and Gumbel copula families in order to account for negative correla-
tions. Among these candidates, we selected copula families based on comparisons
of AIC values, which resulted in modelling all four copulas C21, C31, C42, and C43|2

by Student’s t copulas. Figure 5.2 displays these choices along with kernel dens-
ity estimates of the respective true copula pdfs. Visual comparison of these plots
strongly affirms our choices of the Student’s t copula family. We shall note that the
estimates of the correlation parameters ρ and the degrees of freedom ν used to com-
pute AIC values are nothing else than the sequential ML estimates to be obtained
from the selected PCBN. Our choice of t copula is consistent with popular modelling
approaches in the literature on statistical finance, see Ignatieva and Platen (2010).

We then computed joint ML estimates of the parameters of the so selected non-
Gaussian PCBN. In view of reducing model complexity, we also applied a semipara-
metric ML estimator inspired by Hobæk Haff (2013). To this end, we replaced the
integral in the log-likelihood function in Example 3.6 by a non-parametric condi-
tional cdf estimator of F3|2( · |ut,2) given by

F̂3|2(ut,3 |ut,2) =

∑n
s=1 Φ

(
Φ−1(ut,3)−Φ−1(us,3)

h3

)
φ
(

Φ−1(us,2)−Φ−1(ut,2)

h2

)

∑n
s=1 φ

(
Φ−1(us,2)−Φ−1(ut,2)

h2

) , t ∈ {1, . . . , n},

where φ denotes the standard normal pdf, and h2, h3 are normal reference rule-of-
thumb bandwidths, see Li and Racine (2007, Section 6.2). We used transformed
observations Φ−1(ut,i) for the kernel smoothing to avoid boundary effects. The
log-likelihood function of this model, which we will refer to as the semiparametric
non-Gaussian PCBN, takes the form

L̂(θ;u) =
n∑

t=1

log c21(ut,2, ut,1;θ21) + log c31(ut,3, ut,1;θ31) + log c42(ut,4, ut,2;θ42)

+ log c43|2
(
h42(ut,4, ut,2;θ42), F̂3|2(ut,3 |ut,2);θ43|2

)
.

ML estimation in this model is performed as in the fully parametric case. Last,
we also applied the Gaussian PCBN from Section 3.4 to the data and compared
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Figure 5.1: Daily log-returns of the Dow Jones Industrial Average (DJI), the Dow
Jones Corporate Bond Index (DJCB), the German stock index (DAX),
and the German corporate bond index (RDAX).
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Figure 5.2: Kernel density estimates of pair-copula pdfs (left) and our choices of
Student’s t copula pdfs (right) for modelling the DJI, DJCB, DAX, and
RDAX data. All copulas are displayed with standard normal margins.
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its performance to the non-Gaussian and the semiparametric non-Gaussian PCBN.
Parameter estimates, bootstrapped standard errors, and estimates of Kendall’s τ for
all three models are given in Table 5.2. The respective maximised log-likelihoods
and AIC values are summarised in Table 5.3.

Due to non-normal tail behaviour observed in the data, it is not surprising that the
Gaussian PCBN again turns out inferior to its non-Gaussian competitors. Applying
the Vuong test with AIC correction (Vuong, 1989) for model selection yields the
same conclusion. The results for the non-Gaussian and the semiparametric non-
Gaussian PCBN, however, are rather close. In fact, the null hypothesis of the
Vuong test that both models are equally close to the true model cannot be rejected
at the 5% significance level. Choosing the semiparametric over the fully parametric
non-Gaussian PCBN cut down computation time by the factor 50.

5.2 International stock market indices

We also applied PCBNs to a financial data set comprising ten major international
stock market indices. More precisely, we modelled the joint distribution of a portfolio
of daily log-returns of the Australian All Ordinaries (AUS), the Canadian S&P/TSX
Composite Index (CAN), the Swiss Market Index (CH), the German DAX (DEU),
the French CAC 40 (FRA), the Hong Kong Hang Seng Index (HK), the Japanese
Nikkei 225 (JPN), the Singapore Straits Times Index (SGP), the UK’s FTSE 100

(UK), and the US S&P 500 (USA) from 1 April 2008 to 29 July 2011 (n = 733

observations). The ten time series of daily log-returns are given in Figure 5.3.

5.2.1 Univariate time series models

Using the inference functions for margins method, we again modelled univariate mar-
ginal distributions without regard to the dependence structure between variables.
We first removed serial correlation in the ten time series of log-returns by applying an
AR(1)-GARCH(1,1) filter, as was given in Equation (5.1). The standardised resid-
uals zt,i of stock index i ∈ {AUS,CAN,CH,DEU,FRA,HK, JPN, SGP,UK,USA}
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Copula non-Gaussian semiparametric non-Gaussian Gaussian

Parameters τ̂ Parameters τ̂ Parameters τ̂

C21 S t −0.35, 10.1 (0.03, 3.8) −0.23 t −0.35, 10.1 (0.03, 3.9) −0.23 N −0.34 (0.03) −0.22
J t −0.35, 10.4 (0.03, 4.3) −0.23 t −0.35, 10.1 (0.03, 4.2) −0.23 N −0.34 (0.03) −0.22

C31 S t 0.66, 9.2 (0.02, 4.3) 0.46 t 0.66, 9.2 (0.02, 4.3) 0.46 N 0.66 (0.02) 0.46
J t 0.66, 9.3 (0.02, 4.4) 0.46 t 0.66, 9.2 (0.02, 4.4) 0.46 N 0.66 (0.02) 0.46

C42 S t 0.57, 17.4 (0.02, 4.0) 0.39 t 0.57, 17.4 (0.02, 4.0) 0.39 N 0.57 (0.02) 0.39
J t 0.56, 14.0 (0.02, 4.4) 0.38 t 0.56, 15.6 (0.02, 4.2) 0.38 N 0.57 (0.02) 0.39

C43|2 S t −0.29, 8.9 (0.03, 3.4) −0.19 t −0.30, 9.8 (0.03, 4.3) −0.20 N −0.28 (0.04) −0.18
J t −0.29, 8.7 (0.03, 3.6) −0.19 t −0.30, 9.5 (0.03, 4.3) −0.20 N −0.28 (0.04) −0.18

Table 5.2: Sequential (S) and joint (J) ML estimates, standard errors (parentheses),
and estimates of Kendall’s τ for the Gaussian, non-Gaussian, and semi-
parametric non-Gaussian PCBNs applied to the log-return data. Copulas
include the Gaussian (N) and Student’s t (t) pair-copula families.

PCBN LL # Parameters AIC

nG S 509.0 8 −1002.0
J 509.2 8 −1002.4

snG S 507.8 8 −999.6
J 507.9 8 −999.8

G S 489.7 4 −971.5
J 489.8 4 −971.5

Table 5.3: Maximised log-likelihoods, numbers of parameters, and AIC values for
the Gaussian (G), non-Gaussian (nG), and semiparametric non-Gaussian
(snG) PCBNs applied to the log-return data. Sequential (S) and joint (J)
ML estimates of the corresponding parameters are given in Table 5.2.
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Figure 5.3: Daily log-returns of the Australian All Ordinaries (AUS), the Canadian
S&P/TSX Composite Index (CAN), the Swiss Market Index (CH), the
German DAX (DEU), the French CAC 40 (FRA), the Hong Kong Hang
Seng Index (HK), the Japanese Nikkei 225 (JPN), the Singapore Straits
Times Index (SGP), the UK FTSE 100 (UK), & the US S&P 500 (USA).
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µ [×103] a ω [×105] α β ν γ

AUS 0.26 (0.41) 0.01 (0.04) 0.18 (3.77) 0.08 (0.02) 0.91 (0.02) 10.33 (3.46) 0.90 (0.05)
CAN 0.50 (0.38) −0.01 (0.04) 0.17 (3.83) 0.09 (0.02) 0.90 (0.02) 10.74 (3.73) 0.80 (0.05)
CH 0.08 (0.38) 0.02 (0.04) 0.38 (4.01) 0.12 (0.03) 0.86 (0.02) 7.64 (2.04) 0.92 (0.05)
DEU 0.66 (0.49) −0.03 (0.04) 0.31 (4.03) 0.08 (0.02) 0.91 (0.02) 7.77 (2.39) 0.93 (0.05)
FRA 0.23 (0.54) −0.02 (0.04) 0.59 (4.24) 0.09 (0.02) 0.89 (0.02) 8.29 (2.44) 0.94 (0.05)
HK 0.36 (0.55) −0.02 (0.04) 0.23 (4.07) 0.07 (0.02) 0.93 (0.01) 8.23 (2.25) 0.97 (0.05)
JPN 0.27 (0.53) −0.06 (0.04) 0.85 (4.39) 0.12 (0.03) 0.85 (0.02) 15.33 (7.85) 0.87 (0.05)
SGP 0.57 (0.40) −0.01 (0.04) 0.24 (3.98) 0.09 (0.02) 0.90 (0.02) 4.92 (0.89) 1.03 (0.05)
UK 0.56 (0.44) −0.01 (0.04) 0.37 (4.02) 0.09 (0.02) 0.89 (0.02) 8.42 (2.60) 0.92 (0.05)
USA 0.76 (0.43) −0.07 (0.04) 0.23 (4.03) 0.10 (0.02) 0.89 (0.02) 7.22 (2.15) 0.84 (0.04)

Table 5.4: ML estimates and standard errors (in parentheses) of AR(1)-GARCH(1,1)
parameters for the ten time series of daily log-returns.

are assumed to follow a skewed Student’s t distribution with νi degrees of freedom
and skewness parameter γi, see McNeil et al. (2005, Section 3.2). The corresponding
cdf will be denoted by tνi,γi . ML parameter estimates and corresponding standard
errors derived from numerical evaluation of the Hessian of the AR(1)-GARCH(1,1)
parameters are given in Table 5.4. We assessed model fit using the following stat-
istical tests: the Ljung-Box test (Ljung and Box, 1978) with null hypothesis that
there is no autocorrelation left in the residuals and squared residuals, the Langrange-
multiplier ARCH test (Engle, 1982) with null hypothesis that the residuals exhibit
no conditional heteroskedasticity, and the Kolmogorov-Smirnov test (Conover, 1999,
Section 6.1) with null hypothesis that the residuals follow a skewed Student’s t distri-
bution. None of these null hypotheses could be rejected at the 5% significance level.
We then transformed the standardised residuals to uniformly distributed observa-

tions ut,i := tνi,γi

(√
νi
νi−2

+
2 ν2i γ

2
i

(νi−2)2 (νi−4)
zt,i

)
, before modelling the joint dependence

structure of the ten time series of log-returns by a PCBN.

5.2.2 Estimating the conditional independence structure

We estimated the conditional independence structure of the ten time series of log-
returns by applying the PC algorithm with either of the ten conditional independence
tests COR, C-GR, C-H, C-K, D-GR, D-H, D-K, R-GR, R-H, and R-K described in
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Section 4.1.3 (with notation as in Section 4.2) to the transformed observations ut,i.
All tests were performed at the 5% level. As a result, we obtained three different
essential graphs DeCOR, DeGR,H, and DeK, of which the first was returned by the PC
algorithm with COR, the second was returned by the PC algorithm with either of
C-GR, C-H, D-GR, D-H, R-GR, and R-H, and the third was returned by the PC
algorithm with either of C-K, D-K, and R-K, respectively. Obviously, a restriction
of the class of R-vines to C- or D-vines had not influence on the resulting essen-
tial graph. We then oriented undirected edges in the obtained essential graphs, as
described in Section 1.2, in order to obtain DAGs DCOR, DGR,H, and DK from the
Markov-equivalence classes represented byDeCOR, DeGR,H, andDeK, respectively. More
precisely, DeCOR contained the two undirected edges AUS − HK and CH − DEU,
which we replaced by AUS→ HK and CH→ DEU, respectively, based on the heur-
istic rule that DeGR,H and DeK already contained AUS→ HK and CH→ DEU. Simil-
arly, we oriented AUS − JPN into AUS← JPN in DGR,H and DK since DeCOR already
contained AUS← JPN. The DAGs DCOR, DGR,H, and DK are given in Figure 5.4.

In all three DAGs in Figure 5.4, the Asian-Pacific indices AUS, HK, JPN, and SGP
are mutually adjacent, and so are the two North American indices CAN and USA.
The same holds true for the European indices CH, DEU, FRA, and UK in DAG
DCOR, while DEU and UK are non-adjacent in DGR,H and DK. A probability meas-
ure satisfying the Markov properties represented by either DGR,H or DK, respectively,
observes the conditional independence restriction DEU ⊥⊥ UK | {CH,FRA}. All
further conditional independence restrictions represented by the DAGs in Figure 5.4
involve indices in at least two of the above given regions Asia-Pacific, Europe, and
North America. We hence observe a strong geographical clustering of dependences.
Moreover, all three DAGs in Figure 5.4 represent the conditional independence re-
striction {AUS,HK, JPN, SGP} ⊥⊥ {CAN,USA} | {CH,DEU,FRA,UK}, that is,
Asia-Pacific ⊥⊥ North America | Europe. Note that Markov properties alone are not
sufficient for deriving causal relations within the analysed data (see, for instance,
the undirected edges in an essential graph), but they can be used as a starting point
for further research in that direction.
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A well-ordering for DCOR is given by 1 7→ CAN, 2 7→ CH, 3 7→ DEU, 4 7→ UK,
5 7→ FRA, 6 7→ USA, 7 7→ JPN, 8 7→ SGP, 9 7→ AUS, 10 7→ HK. Similarly,
we obtain a well-ordering for DGR,H and DK, respectively, by mapping 1 7→ CAN,
2 7→ CH, 3 7→ UK, 4 7→ FRA, 5 7→ DEU, 6 7→ USA, 7 7→ JPN, 8 7→ AUS,
9 7→ SGP, 10 7→ HK. We determined parent orderings for the three DAGs in Figure
5.4 in two steps. First, we applied the greedy-type procedure with Kendall’s τ edge
weights described in Section 4.3, and second, we permuted some of the orderings
obtained in step one to reduce the number of integrals in the corresponding pair-
copula decompositions and thus the computational complexity. More precisely, we
changed JPN <AUS SGP and CAN <USA DEU <USA FRA in DAG DCOR into
SGP <AUS JPN and DEU <USA FRA <USA CAN, respectively, and CAN <USA

DEU <USA FRA in DAG DK into DEU <USA FRA <USA CAN. The resulting
parent orderings for DCOR, DGR,H, and DK, respectively, are displayed in Figure 5.4.

5.2.3 Pair-copula selection and ML estimation

Having fixed the parent orderings for the three PCBNs corresponding to DCOR,
DGR,H, and DK, respectively, we next selected parametric pair-copula families us-
ing the AIC as a selection criterion. We considered the Clayton, Frank, Gaussian,
Gumbel, and Student’s t copula families as well as reflected versions of the Clayton
and Gumbel copula families in order to account for negative correlations. We then
computed sequential ML estimates of the parameters of the so specified PCBNs.
Selected pair-copula families, corresponding sequential ML estimates, bootstrapped
standard errors, and estimates of Kendall’s τ are given in Table 5.5. The respective
maximised log-likelihoods and AIC values are summarised in Table 5.6. Moreover,
we compared model fit to the respective Gaussian PCBNs comprising only Gaus-
sian pair copulas. Corresponding ML estimates, standard errors, and estimates of
Kendall’s τ are again found in Table 5.5, while maximised log-likelihoods and AIC
values are given in Table 5.6.

According to the AIC, the best fit was obtained by the non-Gaussian PCBN with
DAG DGR,H, followed by the non-Gaussian PCBNs associated to DK and DCOR,
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DAG DCOR DGR,H DK

Parameters τ̂ Parameters τ̂ Parameters τ̂

JPN → AUS nG t 0.56, 10.3 (0.03, 4.1) 0.38 t 0.73, 8.5 (0.02, 3.4) 0.52 t 0.73, 8.5 (0.02, 3.4) 0.52
G N 0.55 (0.03) 0.37 N 0.72 (0.02) 0.52 N 0.72 (0.02) 0.52

SGP → AUS nG t 0.64, 9.4 (0.02, 4.1) 0.44
G N 0.64 (0.02) 0.44

CH → DEU nG t 0.83, 5.4 (0.01, 1.8) 0.63 F 0.98 (0.23) 0.11 F 0.98 (0.23) 0.11
G N 0.82 (0.01) 0.62 N 0.14 (0.04) 0.09 N 0.14 (0.04) 0.09

FRA → DEU nG t 0.94, 3.8 (0.01, 1.2) 0.78 t 0.94, 3.8 (0.01, 1.2) 0.78
G N 0.93 (0.01) 0.76 N 0.93 (0.01) 0.76

CH → FRA nG F 1.55 (0.24) 0.17 t 0.44, 9.0 (0.03, 4.4) 0.29 t 0.44, 9.0 (0.03, 4.3) 0.29
G N 0.28 (0.04) 0.18 N 0.44 (0.03) 0.29 N 0.44 (0.03) 0.29

DEU → FRA nG t 0.94, 3.8 (0.01, 1.1) 0.78
G N 0.93 (0.01) 0.76

UK → FRA nG t 0.57, 6.9 (0.03, 3.3) 0.38 t 0.92, 7.3 (0.01, 2.8) 0.74 t 0.92, 7.3 (0.01, 2.8) 0.74
G N 0.59 (0.04) 0.40 N 0.92 (0.01) 0.74 N 0.92 (0.01) 0.74

AUS → HK nG t 0.35, 13.4 (0.03, 4.8) 0.22 t 0.35, 13.4 (0.03, 4.8) 0.22 t 0.35, 13.4 (0.03, 4.8) 0.22
G N 0.36 (0.04) 0.24 N 0.36 (0.04) 0.24 N 0.36 (0.04) 0.24

JPN → HK nG t 0.20, 20.0 (0.04, 2.8) 0.13 N 0.20 (0.04) 0.13 N 0.20 (0.04) 0.13
G N 0.20 (0.04) 0.13 N 0.20 (0.04) 0.13 N 0.20 (0.04) 0.13

SGP → HK nG t 0.78, 5.7 (0.01, 1.9) 0.57 t 0.78, 5.7 (0.01, 2.0) 0.57 t 0.78, 5.7 (0.01, 2.0) 0.57
G N 0.78 (0.02) 0.57 N 0.78 (0.02) 0.57 N 0.78 (0.02) 0.57

AUS → SGP nG t 0.64, 9.4 (0.02, 4.0) 0.44 t 0.64, 9.4 (0.02, 4.0) 0.44
G N 0.64 (0.02) 0.44 N 0.64 (0.02) 0.44

JPN → SGP nG t 0.60, 11.6 (0.02, 4.5) 0.41 N 0.27 (0.03) 0.17 N 0.27 (0.03) 0.17
G N 0.60 (0.02) 0.41 N 0.26 (0.03) 0.17 N 0.26 (0.04) 0.17

UK → SGP nG N 0.34 (0.03) 0.22 N 0.27 (0.03) 0.18 N 0.27 (0.03) 0.18
G N 0.34 (0.03) 0.22 N 0.27 (0.03) 0.18 N 0.27 (0.03) 0.18

CAN → UK nG SG 1.13 (0.03) 0.12 N 0.31 (0.03) 0.20 N 0.31 (0.03) 0.20
G N 0.21 (0.04) 0.13 N 0.31 (0.03) 0.20 N 0.31 (0.03) 0.20

CH → UK nG t 0.36, 9.6 (0.03, 4.5) 0.23 t 0.83, 8.6 (0.01, 3.7) 0.62 t 0.83, 8.6 (0.01, 3.7) 0.62
G N 0.39 (0.04) 0.25 N 0.83 (0.01) 0.62 N 0.83 (0.01) 0.62

DEU → UK nG t 0.88, 7.3 (0.01, 3.0) 0.69
G N 0.88 (0.01) 0.68

CAN → USA nG N 0.48 (0.03) 0.32 t 0.75, 6.7 (0.02, 3.0) 0.54 N 0.52 (0.03) 0.35
G N 0.48 (0.03) 0.32 N 0.75 (0.01) 0.54 N 0.52 (0.03) 0.35

DEU → USA nG t 0.71, 6.8 (0.02, 3.0) 0.51 t 0.47, 12.7 (0.03, 4.9) 0.31 t 0.71, 6.8 (0.02, 3.0) 0.51
G N 0.71 (0.02) 0.50 N 0.47 (0.03) 0.31 N 0.71 (0.02) 0.50

FRA → USA nG t 0.19, 9.2 (0.04, 4.5) 0.12 t 0.19, 9.2 (0.04, 4.4) 0.12
G N 0.21 (0.05) 0.14 N 0.21 (0.05) 0.14

Table 5.5: Selected pair-copula families, sequential ML estimates, standard errors
(parentheses), and estimates of Kendall’s τ for the Gaussian (G) and
non-Gaussian (nG) PCBNs corresponding to the DAGs in Figure 5.4.
Copulas include the Frank (F), Gaussian (N), Survival Gumbel (SG),
and Student’s t (t) pair-copula families.
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Figure 5.4: DAGs DCOR (top left), DGR,H (top right), DK (bottom) returned by
the PC algorithm with different conditional independence tests when
estimating the Markov structure of the ten time series AUS, CAN, CH,
DEU, FRA, HK, JPN, SGP, UK, USA of daily log-returns. Solid edges
appear in all three DAGs. Edge labels indicate parent orderings, that
is, for instance, DEU <USA FRA <USA CAN in DCOR.

DAG LL # Parameters AIC

DCOR nG 3397.0 30 −6734.0
G 3264.6 17 −6495.3

DGR,H nG 3412.8 25 −6775.6
G 3285.5 15 −6540.9

DK nG 3401.9 26 −6751.8
G 3264.1 16 −6496.3

Table 5.6: Maximised log-likelihoods, numbers of parameters, and AIC values for the
Gaussian (G) and non-Gaussian (nG) PCBNs corresponding to the DAGs
in Figure 5.4. ML estimates of the parameters are given in Table 5.5.
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Figure 5.5: Predicted one-day 99% VaR based on 100,000 samples from either of
the non-Gaussian PCBNs with DAGs DCOR (dotted), DGR,H (solid), DK

(dashed). Bars indicate true portfolio losses.

respectively. Applying the Vuong test with AIC correction (Vuong, 1989) to the non-
Gaussian PCBNs at the 5% level, we cannot reject the null hypothesis that all three
models are equally close to the true model. A similar statement holds for the Gaus-
sian PCBNs. However, using the Vuong test for model selection between a Gaussian
and a non-Gaussian PCBN will always decide in favor of the non-Gaussian model,
which again shows the latter model’s superiority. This is, of course, to be expected
since financial returns often exhibit heavy-tailed dependence, which is validated here
by the low estimates of the degrees-of-freedom parameters of the t copulas.

5.2.4 Value-at-Risk prediction

We finally examined the out-of-sample performance of the non-Gaussian PCBNs
by predicting Value-at-Risk (VaR) (McNeil et al., 2005, Section 2.2) for the period
from 10 August 2011 to 20 January 2012 (N = 100 observations). To this end, we
considered an equally weighted portfolio of above stock indices, and performed the
following steps at each time point t. First, we set the portfolio value at time t−1 to 1

and computed the true portfolio loss Lt := 1− 1
10

∑10
i=1 e

rt,i . Second, we drew 100,000

samples from either of the three non-Gaussian PCBNs under investigation. Last,
we used the freshly drawn samples to predict the one-day 99% VaR and compared
the obtained values to Lt. The results are displayed in Figure 5.5.

The VaR predictions of all three models are almost indistinguishable and are each
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only once exceeded by the true portfolio losses. Hence, for either model, the null
hypotheses of correct unconditional (Kupiec, 1995) and conditional (Christoffersen,
1998) coverage, respectively, cannot be rejected at the 5% significance level.

5.3 Reducing computational complexity

Depending on the underlying DAG and the corresponding parent orderings, the
evaluation of the log-likelihood of a PCBN may involve high-dimensional numer-
ical integration and hence considerable computational effort. In Section 4.3, we
presented a greedy procedure for selecting the parent orderings of the vertices of
the underlying DAG, which is based on the idea of modelling strongest depend-
ences in the pair copulas with fewest conditioning variables. In Section 5.2.2, we
introduced an additional selection step, in which some of the parent sets were re-
arranged in order to reduce the number of integrals in the corresponding likelihood
decompositions. It would be desirable to have theoretical results on the relation-
ship between parent orderings and the number and complexity of integrals in the
future. Moreover, in Section 5.1.3, we suggested to replace some or all of the integ-
rals by non-parametric kernel conditional cdf estimators. Another way of reducing
computational complexity is to consider sequential instead of joint ML estimates.





A H-functions of selected copula
families

The h-functions of the Clayton, Frank, Gumbel, Gaussian, and Student’s t pair-
copula families discussed in Section 2.1 exhibit closed form expressions.

Clayton copula

h12(u; θ) =
(
(u−θ1 − 1)uθ2 + 1

)−1− 1
θ , u = (u1, u2) ∈ [0, 1]2, θ ∈ (0,∞).

Frank copula

h12(u; θ) =
(e−θ u1 − 1) e−θ u2

(e−θ u1 − 1) (e−θ u2 − 1) + e−θ − 1
, θ ∈ R \ {0}.

Gumbel copula

h12(u; θ) =
C(u; θ)

u2

(
1 +

(
log u1

log u2

)θ)−1+ 1
θ

, θ ∈ [1,∞).

Gaussian copula

h12(u; ρ) = Φ

(
Φ−1(u1)− ρ Φ−1(u2)√

1− ρ2

)
, ρ ∈ (−1, 1).
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Student’s t copula

h12(u; ρ, ν) = tν+1



√
ν + 1

(
t−1
ν (u1)− ρ t−1

ν (u2)
)

√
(1− ρ2)

(
ν +

[
t−1
ν (u2)

]2)


, ρ ∈ (−1, 1), ν ∈ (1,∞).



B Example of a PCC for a
D-Markovian probability measure

In Examples 3.2 to 3.4, we considered a D-Markovian probability measure on R7

associated to the DAG D in Figure 3.2. We decomposed the pdf according to

f = f1 ···f7 c21(F2, F1)c31(F3, F1)c42(F4, F2)c41|2(F4|2, F1|2)c54(F5, F4)c53|4(F5|4, F3|4)

· c65(F6, F5) c64|5(F6|5, F4|5) c63|54(F6|54, F3|54) c62|543(F6|543, F2|543) c75(F7, F5)

· c76|5(F7|5, F6|5) c73|56(F7|56, F3|56).

We then used Algorithm 2 to derive a pair-copula decomposition for the conditional
cdf F3|56. Applying Algorithm 2 also to the other conditional cdfs yields

F1|2 = h21(F2, F1),

F4|2 = h42(F4, F2),

F3|4 =

∫

R2

c41|2(F4|2, F1|2) c42(F4, F2)h31(F3, F1) f2 c21(F2, F1) f1 dx12,

F5|4 = h54(F5, F4),

F4|5 = h54(F5, F4),

F6|5 = h65(F6, F5),

F7|5 = h75(F7, F5),

F3|54 = h53|4(F5|4, F3|4),
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F6|54 = h64|5(F6|5, F4|5),

F3|56 =

∫

R

h63|54(F6|54, F3|54) c64|5(F6|5, F4|5) c54(F5, F4) f4 dx4,

F7|56 = h76|5(F7|5, F6|5),

F2|543 =

∫ ·
−∞
∫
R
c41|2(F4|2, F1|2) c42(F4, F2) c31(F3, F1) f2 c21(F2, F1) f1 dx1 dx2∫

R2 c41|2(F4|2, F1|2) c42(F4, F2) c31(F3, F1) f2 c21(F2, F1) f1 dx12

,

F6|543 = h63|54(F6|54, F3|54).
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Abbreviations

AIC Akaike’s information criterion
BIC Bayesian information criterion
C-vine canonical vine
cdf cumulative distribution function
cf. compare (Lat. confer)
CG chain graph
D-vine drawable vine
DAG directed acyclic graph
i.e. that is (Lat. id est)
i.i.d. independent and identically distributed
ML maximum likelihood
MSE mean squared error
PCC pair-copula construction
pdf probability density function
R-vine regular vine
TDC tail dependence coefficient
TSP travelling salesman problem
UG undirected graph
w.l.o.g. without loss of generality
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