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Preface

This study investigates the well-posedness and long-time behavior of two math-
ematical models for a biofilm formation in the presence of a chemoattractant.

Biofilms are accumulations of microorganisms that grow on solid surfaces or
interfaces between solid surfaces and liquids. They are frequently embedded in a
film of their own creation: a matrix of extracellular polymeric substance (EPS).
The physiology and behavior of the microbial cells of an organism growing in-
side a biofilm, especially if being inside an EPS matrix, and of a free-swimming
organism of the same species differ considerably. Organized and protected by
EPS, biofilm populations became ubiquitous. They can be found virtually every-
where where environmental conditions allow microbial growth. Whereas many
biofilms can cause negative effects like biofouling, biocorrosion and microbial
infections, some of them are active in useful technologies, like self-purification
of water and soil remediation.

A clear understanding of biofilm processes is highly relevant in environ-
mental, industrial and medical engineering applications, as well as in medicine.
Examples include [32]: developing better control mechanism over microbially
induced effects: corrosion, surface contamination (on food production surfaces,
natural or implanted surfaces in the body, teeth, contact lenses, etc.) and fouling
of drinking water and food; designing more efficient and stable self-purification
technologies in soil remediation and waste- and groundwater treatment.

Over the last 25 years, mathematical modeling, analysis and simulation of
biofilms have greatly contributed to a better understanding of biofilm processes
by explaining experimental findings and gaining insight into biofilm structure,
function, dynamics, population dynamics and the stability of their processes.

Most of the proposed biofilm formation models are discrete. They describe
the local cell motion on a chosen lattice in terms of a cellular automaton (a
microscopic approach). These models are able to capture different effects which
can be observed in connection with biofilms, but they are rather difficult to
analyze. In the present study, we treat the microbial cells and the exopolysac-
charide molecules surrounding them as single biomass entity described in terms
of its density in time and space. Such (mesoscopic) descriptions of biofilms lead
to continuous models which are much easier to handle analytically.

Based on the experimental evidence, several typical assumptions on a biofilm
are usually included into a spatial biofilm model:
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(i) The EPS matrix is a porous medium. The microbial cells defuse with a
non-constant, density-dependent diffusion coefficient. The diffusion coef-
ficient is a monotonically increasing function. It is zero where there is no
biofilm, that is, for zero biomass density, and it tends to infinity as the
biofilm density tends to its maximum possible value;

(ii) The cells cannot accumulate without bound. This means that the biomass
density at any point cannot exceed the density of the tight packing state
- a so-called volume filling effect.

Since our goal is to study the role of positive chemotaxis, we assume the presence
of a chemoattractant, a chemical which controls the cell motion by attracting
them to the areas of its higher availability. In addition to assumptions (i)-(ii),
we make yet another one - also based on experimental studies. It concerns the
way a biofilm responds to the chemoattractant:

(iii) In the areas with low biomass density there is little response to the chemoat-
tractant.

Apart from actually attracting the cells, the chemoattractant may have diverse
additional effects. For example, it may be a nutrient or a poison, thus having
an impact on the biofilm growth, or it may be produced by the cells themselves.

The majority of the chemotaxis models that were developed and analyzed in
the recent years originate from the Keller-Segel model for chemotaxis [18]. It is
a system of two strongly coupled parabolic partial differential equations for two
functions: the biomass density and the concentration of the chemoattractant.

Although, in its most general formulation, the Keller-Segel model allows a
variety of diffusion and chemotaxis scenarios and may include growth, death
and volume filling effects, it was extensively studied only for the case of free-
swimming microorganism colonies. In this research, we deal with two general-
izations of the Keller-Segel model for the case of a biofilm colony. Both enjoy,
under certain conditions on the parameter values, the basic assumptions (i)-(iii).
Chapter 2 of this work gives a generalization of a well-posed prototype proposed
in [12] (see also references therein), which merges together the classical porous
medium equation [31] and the Keller-Segel model with a source term. In this
part, we present the first study of the long-time dynamics for this system. In
Chapter 3, we perform, for the first time, the full study of the well-posedness and
the long-time dynamics of a nonautonomous version of the model from Chap-
ter 2. An alternative model is developed in Chapter 4. This new model extends
the prototype proposed in [32] and analyzed in [9] for a biofilm growing in the
presence of a nutrient, allowing the nutrient to be a chemoattractant as well.
We analyze its well-posedness and long-time dynamics and illustrate possible
model behavior in numerical simulations.

Chapter 1 is a preliminary one. It deals with the functional spaces that we
use throughout this work and with the notions of the global and the pull-back
attractors.
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Chapter 1

Preliminaries

In this chapter, we present notation and generally known facts (mostly without
proofs) that we use to state and derive the results of the subsequent chapters.
For the sake of convenience, we introduce the following conventions:

e N, Ny, Z, R, Rt and RS’ are sets of natural, non-negative integer, integer,
real, positive real and non-negative real numbers respectively;

e 1z := max {z, 0} returns the positive part of a number = € R;

1 for z > 0,
sign(z) := <0 for z = 0,
-1 forz<0

returns its sign;

e The integer and fractional parts of a number x € R are the numbers
[z] := max{q € Z| = ¢q} and {z} := z — [z] respectively;

e By |- | we denote:

— for a number z its absolute value || = max {M, —M};

1
— for avector x = (x1,...,2q) € R?its Euclidean norm |x| := (Zle |xl|2) ’

— for a multiindex o = (a,...,aq) € Nd for d € N its absolute value

d
ol = X521 a5

— for a Lebesgue measurable set its Lebesgue measure;

e By measure we always understand the Lebesgue measure;
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e In a topological space X, we denote by clx (A) the closure of a set A in X.
In R? we use the notation A instead. A denotes the topological boundary
of A.

e In a linear space X, we define x + A:={z +alae A} forze X, Ac X.

1.1 Functional spaces and their properties

This section is devoted to the classical Lebesgue and Sobolev spaces and to some
of their modifications. We refer to [1, 30] for a detailed analysis of the classical
spaces.

Most of the presented spaces are normable (e.g., LP(£2) and W*P(Q)), some
are metriziable, but not normable (e.g., L} (2) and W;>P(€2)), and some (e.g.,
LY () are not even metriziable, though locally convex. Let us, therefore,
before looking at concrete examples, briefly recall several facts originating from
the general framework in locally convex and normed spaces. We refer to [26]
(or some other standard textbook) for these as well as for the other facts from
functional analysis that we use in this work.

Let X and Y be two locally convex spaces. The (continuous) dual space of
X is denoted by X', its weak and weak-# topologies by o(X, X’) and o(X’, X)
respectively. X =~ Y denotes the topological equivalence of X and Y, which
means that they are homeomorphic.

Let F' be an operator, not necessarily linear, between X and Y. F is said
to be compact if it maps bounded subsets of X onto relatively compact subsets
of Y. Tt is said to be closed if its graph I'(F') := {(x, F(x))| z € X} is closed in
X xY.

We will often consider embeddings of a ’smaller’ locally convex space into a
"larger’ one:

Definition 1.1 (Embedding). Let X and Y be two locally convex spaces. An
injective linear operator ¢ : X — 'Y is called an embedding. If such an operator
L exists between X and Y, then X is said to be embedded in'Y . Further, we say
that

(1) X is continuously embedded in'Y (and write X — Y ) if v is a continuous
operator;

(2) X is compactly embedded in'Y (and write: X —<— Y ) if v is a compact
operator;

(8) X is densely and continuously embedded in'Y (and write: X <4, Y)if s
a continuous operator and 1(X) is dense in Y;

(4) X is densely and compactly embedded in'Y (and write: X KN Y)ifeisa
compact operator and v(X) is dense in'Y .

An important property of the dense and continuous embeddings concerns dual-
ity:
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Theorem 1.1 (Embedding of dual spaces). Let X and Y be two locally convex
spaces. Then

XSy=v &X' (1.1)

It is well known that every compact linear operator between Banach spaces
is continuous. It is even weak-to-norm continuous, which means that it is con-
tinuous between (X, o (X, X)) and Y. A similar property holds for the weak-#-
to-norm continuity:

Theorem 1.2 (Weak-#-to-norm continuity of a compact linear operator). Let X
be a normed space, Y a Banach space and F' a compact linear operator between
X" and Y. Then F is a continuous operator between (X', o(X’', X)) and Y.

LP spaces

We assume in this subsection that €2 is a nonempty measurable subset of RY,
d € N. Let us denote by L°(Q) the (linear) space of all equivalence classes
of measurable functions on 2. Each such class consists of functions that are
equal almost everywhere in ). As usual, we identify the functions from one
equivalence class and write u instead of [u].

For p € [1, 0] the function

|| : ||LT’(Q) : LO(Q) - [0,00],

(5, lu(x)] dz) 7 for pe [1,00),

lullze (@) = ess sup|u(x)| for p = o
zeQ

is called the LP norm. It is a well defined norm on the space
LP(Q) := {u e L°(Q)| lJul| e () < 0} .

Each L? space equipped with the L” norm is a Banach space. The space L?(£2)
is a Hilbert space with the scalar product

(u,v) 2 () i= J’Q u(z)v(x) dx for u,v e L*(Q).

We write || - ||, instead of || - |[zr(q) and even || - || instead of || - ||2 and (-,-)
instead of (-, -)2(q) to shorten the notation.
Some of the most important results about LP spaces are:

Theorem 1.3 (Holder inequality). Let p,q € [1,00] be such that % + % = 1.

Then for all u € LP(Q), v € LY(Q), we have uv € LY(Q), and the following
inequality holds

lwolly < flullplv]lg-
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Theorem 1.4 (Interpolation inequality for LP(Q)). Let 1 < p; < p < py < 0.
Then for allu € LP* () nLP2(Q) we have u € LP(QY), and the following inequality
holds

—0 [%
llullp < Mlelly, “llullp,

where

0:=

1 _ 1
p1 p
1 _ 1
p1 p2

Theorem 1.5 (Dual representation for LP(S2)). Let p € [1,00). Put
. 21 forpe(1,0),
o0 forp=1.
Then it holds that
(LP(Q) = L7 (Q).

In particular, consider the linear operator
tp: L7 (Q) — (LP(Q)), tp(u)(v) := f u(x)v(x) dx for all ve LP(Q).
Q

Ly is an isometric isomorphism between L¥' () and (LP(S2))".

Up to this point, we have considered the L% () space, as well as other
LP spaces, equipped with the topology produced by the corresponding norm.
For some of our applications (see below), the original topology appears too
restrictive. We are forced to pass to weaker topologies where it is easier to
prove compactness. We start with the following

Definition 1.2 (Lf_, () space). We define L _,(2) to be the set of all
L*(Q)-functions equipped with the topology

{1 (0)] Oea((LH (), L' ()},
where 11 is the isometric isomorphism defined in Theorem 1.5.

Some properties of L () are collected in Theorem 1.6 and Remark 1.1 below.

Theorem 1.6 (Properties of L% (). (1) The space LY . () is a locally
convex space;

(2) A subset of L* () is bounded in Ly,_ . (Q) if and only if it is norm bounded;

(3) The topology of L% . (), if restricted to an L*(Q) ball, is completely
metrizable;
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(4) L*(Q) balls are compact in L, (£2).

Sketch of the proof. Observe that ¢; is not only an isometric isomorphism
between (L(Q))" and L*(Q), it is, due to Definition 1.2, also a linear home-
omorphism between ((L'(Q))’,o((L*(Q)), L*())) and LY ,(2). But every
homeomorphism preserves metrizability and compactness properties, and every
linear homeomorphism preserves locally convex structure and boundedness of
subsets. Therefore, the properties (i)-(iv) are consequences of the corresponding
properties of the space ((L'(Q)),a((L*(Q)), L*(R2))), which is the dual space
of the infinitely dimensional separable Banach space L'(f2), equipped with the
weak-# topology, and the fact that compact metric spaces are complete.

O

Remark 1.1 (Further properties of L_,(€2)).

(1) The weak-# topology is the topology of pointwise convergence, so that the
topology of LY, (Q) can be also obtained by means of the following con-
vergence notion: A sequence {vy}, . converges in L} () to a v if and
only if

J u(z)v,(x)de — u(z)v(x) dz for all u e L*(Q);
Q n—ow Jo

(2) A metric for the restriction of the L% () topology to a ball of radius R

centered at 0 can be defined in the following way. Let {uy}, .y be a dense

subset of L'(Q) and let {B,} be a sequence of positive real numbers,
such that

neN

> Bul[unllLio) < .

neN

Then the function defined by

dgkw)(vh'UQ) = ZBn

neN

f (01(2) — v ())im () dx (1.2)
Q

for all v1,vy € L*(2), ||v1]lx, [|v2]|lsc < R, is an example of a metric which
produces the relative topology;

(3) The property 4. from Theorem 1.6 is equivalent to L*(Q) << L ().
This is due to the definition of compact embedding.

(4) For more information on compactness and metrizability in the weak-* topol-
ogy see [26].

Thus the L*(£2) balls are metrizable compact subsets of L%, (£2). This prop-
erty is used in Section 2.3 to prove the existence of a compact absorbing (see
Section 1.3) set. In Sections 3.5 and 4.4, we make use of intersections of the
LY_ () topology with the LP norm topology for p € [1,0). The definition is
as follows:
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Definition 1.3 (The space HP(2)). Let p € [1,0]. We define HP(Q) to be the
set of all L™ (QY)-functions equipped, for p = oo, with the topology of LL_ ()
and, for p € [1,00), with the intersection of the topologies of the spaces L_ . (2)
and LP ().

Next theorem contains the properties of the HP(2) spaces that are used in this
work.

Theorem 1.7 (Properties of HP(Q2)). Let p € [1,00). Then:
(1) The space HP(Q) is a locally convex space;
(2) A subset of L*(Q) is bounded in HP(Q) if and only if it is norm bounded;

(8) The topology of HP(QY), if restricted to an L™ () ball, is completely metriz-
able;

(4) The topologies of HP(2) and L?(Q), if restricted to an L™ () ball, coincide.
Sketch of the proof. Let p € [1,00).

(1) We observe that the set {l,| ue L'(Q)}, where l,(v/) := |[v/(u)| for v’ €
(L'(Q)), is an example of a system of seminorms on (L'(f))’ that gen-
erates o((L'(Q))’, L'(Q2)) topology on (L'(£2))’. Hence the locally convex
structure of the space L% () is given by the family {w,|ue L'(Q)},
where wy (v) := |§, u(x)v(z) dz| for all u € L*(2) and v € L*(). Conse-
quently, the family {w, +||-||,| w e L*(2)} is an example of a system of
norms that generates the locally convex structure of H?(2);

(2) A set is bounded in HP(Q) if and only if it is bounded in each of the
seminorms that defines it locally convex structure. In the particular case of
HP(Q) it follows with the proof of the property (1) that a set is bounded in
HP(Q) if and only if it is bounded in each of the norms w, and in the LP
norm, which is equivalent to the boundedness in both L% . (Q) and LP(Q).
The statement now follows with the property (2) from Theorem 1.6 and the
fact that, for 2 bounded, the L* norm is stronger then any other L? norm;

(3) Tt is a consequence of (4);
(4) Observe first that, due to the Holder inequality and Theorems 1.4, we have

1 1—1 1

W”“Hl < |lollp < [lolle "[lvllf for all v e L™(Q).
This shows that the topologies of LP(€2) and L*(2), if restricted to an L*(£2)
ball, coincide. To show the property (4) it then suffices to check that the
restriction of the L%_, () topology is weaker than, for example, the L?(€2)
topology.
Since the space L?(€2) is dense in L'(£2), we may assume that {u,}, .y
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L?(2) in the definition of the metric d) from (1.2) and choose the sequence
{Bn},ey to be such that

> Bullunllr2(9) < o
neN

holds. Consequently, we obtain with the Holder inequality that

S (v1,v2) =) By

neN

<. Bullunllzz2@llvr = vall2.

neN

f (02(2) — v2(@) Jun () da
Q

This shows that, if restricted to an L™ (Q2) ball, the Ly . (£2) topology is
weaker then the topology of L?(2).

]
Thus the L™ (2) balls are metrizable subsets of HP(2), and, for p € [1, ), a
subset of an L™ () ball is compact if an only if it is compact in LP(£2). These
properties we use in Sections 3.5 and 4.4 to prove the existence of a compact
absorbing (see Sections 1.4 and 1.3, respectively) set.
Sometimes, especially in case when ) is unbounded, it is useful (see [5, 10])
to consider the local version of an LP space, the space
LP

loc

(Q) := {ue L°(Q)| u e LP(K) for all compact sets K < Q}.
This space is not normable, though metrizable. Define the function

1 Mlzz @) + Lioe(€2) = [0, 0],

|ullLr (o) = milelﬂgd“u“”(mmo(l))’
where B, (1) is a unit ball in R? centered at xq. || - |7 (@) is a norm on a

p
loc

subspace of LY (), namely on the space

L3(Q) i= {ue L, ()] lullg) < =}

Note that L}

loc

(Q) is the largest of the presented spaces of the LP type.

Sobolev spaces

From now on we assume ) to be a nonempty domain (i.e. a nonempty open
connected set) in R%. We denote by D(f2) the (locally convex) space of all test
functions over Q. As a set, D(Q) coincides with C’(2), the set of all infinitely
differentiable functions with compact support in Q. The dual space of D(Q),
the space D’(Q), is the space of distributions over (2.

Distributions of the form v — {, u(z)v(z) dz for u € L}

1oe(§2) are called regular.
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1

joc func-

In case of a regular distribution, we identify the distribution with the L
tion that produces it.

For uw € D'(Q2) and v € D() we denote by (u,v) the value of u on v. In case
when u € L?(9) we recover the scalar product in L?().

For a multiindex o = (aq,...,qq) we define the differential operator of the
order |a|: D(®) := (021,...,0%4), where 0, is the partial distributional deriva-
tive along the variable z; and dg* = (0, )**. Recall that any distribution is
infinitely differentiable in the distributional sense.

For s € Ny and p € [1, 0] the function

<Z|a|$k¢ HD(Q)UHZP(Q)) ’ for pE [la OO),

‘Ig‘zgc HD(O‘)UH% for p = o

||u||W’“=P(Q) =

is a well defined norm on the space
Whr(©) i= {ue L/(@)| D@ue LP(Q) for o] <k},

Equipped with the || -||yy.»(q) norm, the space W*P(€) is the classical Sobolev
space of order k. All W*P(Q) spaces are Banach spaces. The space H*(Q) :=
W*2(Q) is a Hilbert space with the scalar product

(u,v) () = Z (D(O‘)u,D(o‘)v) for u,v € H*(Q).
<k
With k = 0 we recover the definitions of the corresponding LP spaces. One of
those subspaces of W*P(Q) that play an important role in partial differential
equations is the space WiP(Q) for © bounded. It consists of functions that
’vanish on the boundary’ in the sense of trace (see [1]). One of the equivalent
ways to define these spaces is:

WP (Q) 1= clyrn(e) (D(Q))
for k € N and p € [1,0]. For Q bounded the seminorm

|| - ||W§’P(Q) : Wk’p(Q) — [0, 00),

p

lullyse@y = | D HD<a>u

P
o=k Lr(Q)

is an equivalent norm on Wéc P(Q2). This is a consequence of the Poincaré in-
equality:

Theorem 1.8 (Poincaré inequality). Let p € [1,0] and let Q be a smooth
bounded domain in R%. Then there exists a positive constant P(Q,p) that de-
pends only on 0 and p and such that

[[ull, < P2, p)[|Dull,
holds for all u € WyP(Q).
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The norm ||-||W0k,p(m is called the energy norm. On the space H}(Q) := Wéc’Q ()
the bilinear form defined via

(w, V) gr(a) = Z (D(O‘)u,D(“)v) for u,v € HY(Q)
|a|=k

is a scalar product. The space Wg’p(ﬂ) is a closed subspace of W*P(Q), thus
it is a Banach space, while the space Hé“(Q) is a Hilbert space.

It is often useful to consider a class of 'in-between’ spaces, that is, to extend
the notion of classical Sobolev spaces of non-negative integer order k to the case
s € Ra’ \Np. One of the possible contractions uses the Slobodeckij seminorm

1
_ (%o 4250 e ay)” por pe1,20)
[ulop = ess sup lute)—uly)]
|z—y[?
T,yeQ,x £y

for p = o0

defined for 6 € (0,1) and p € [1,0]. For s € RI\Ng and p € [1, 0] the function

|+ lwew(oy : WEP(Q) — [0, 0],

[ <||u||€v[s]p + \\Z [D()y ]{ . ) for p e [1, ),

[ullwier o) + lfo{llffz [D(O‘)u]{s}’xj for p =

is a well defined norm on the space

WSP(Q) = {u e Wil»(Q)| [D(O‘)u] < oo for |a] = [S]}.

{s}.p

The spaces W*P(Q) for s € R} \Np are called Sobolev-Slobodeckij spaces. These
spaces are Banach spaces. The space H*(Q) := W*2(Q) is a Hilbert space with
the scalar product

(u,v) s () :=(u, V) gra1()

f f — D@u(y)) (D v(x) — Dv(y))

|z — y|20+d

dz dy.

\a\ s

If the domain €2 is suitably regular then, indeed, W#2P is a subset of W*+:P for
all 0 < 51 < 89 < 0.
Just as in case of integer order Sobolev spaces, we can define for s € R} \Ny and
p € [1, 0] the space

WEP(Q) = clyen(y (D()).

Observe that for all s € Rt and p € [1,00] the space D(Q) is densely and
continuously embedded in the space Wy (2) by means of the identity operator.
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This is because the convergence in D(2) is stronger than the convergence in
WyP(Q2) and because D(R) is dense in W;*(Q2) (by definition). With (1.1) it
follows that (WP (Q))’ < D'(Q). Now, for s € R* and pe (1, ] set

, / _pb_ f 1
W—s,p(Q) = (Wos,p (Q)) ’ p/ = {p—l orpe ( ,OO)a

1 for p = o0,
H5(Q) := W 52(Q).

This is the way to define the Sobolev spaces of negative order. For p € (1,00) it
also holds

(W==P(2)) = W5 ().
This is a consequence of

Theorem 1.9 (Reflexivity of W*P?(Q)). Let s € R and p € (1,00). The space
WP (Q) is reflexive.

For all s € R and p € [1, 0] the number y = s—%

(corresponding to the pair s, p). The numbers s, p and «y can be used to compare
a Sobolev space with another Sobolev space or with a Holder space. This is the
subject of

is called the Sobolev number

Theorem 1.10 (Sobolev embedding theorem). Let Q be smooth and bounded.
Let —0 < 81 < 89 < 0, 1 < ps < p1 < 0 and let v1 and v be the Sobolev
numbers corresponding to the pairs si1,p1 and ss, pa respectively. Then:

(Part I)

Yo > Y1 = Wsz,pz(Q) s PSP (Q)7
Yo =1 and p1 < 00 = WP2(Q)) — W1P1(Q)),

the embedding being the identity operator. In both cases the Sobolev inequality

[ullwsie1 (@) < Co(st, 52, p1, p2)|[ullweara () for all u e W*2P2(Q) (1.3)
holds. The embedding constant Co(s1,s2,p1,p2) depends only on s1, S, p1, D2
and the domain €.
(Part II)

Yo > 1 and p1 = 0, 51 > 0 = W2P2(Q) > Clrbisnl (),
the embedding being the identity operator and the Sobolev inequality
||U||c[s1],{s1}(§) < 01(51782,p2)||u||wszvpz(9)

holds. The embedding constant C1(s1, S2,p2) depends only on s1,s2,p2 and 2.
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Remark 1.2. In part II of the Sobolev embedding theorem, the Sobolev spaces
are compared with the spaces of continuously differentiable functions C*(Q2) and
the Holder spaces C*?(Q). They are continuous versions of the Sobolev spaces
WF*(Q) and the Sobolev-Slobodeckij spaces Wk %% (Q), respectively:

C°(Q) := C(Q) := {u: Q —> R| u continuous on Q},
R Q) = {u e C(Q)|D@u e C(Q) for |a] < k} , keN,

(@) _ D@
|D u(x) — D u(y)|<oo},

~

k() :={ueCkQ sup
@ { @) e

z,yeQ,z £y
IE ||Ck,9(§) =] ||Wk+8,w(Q),k e Ny, 0€[0,1).

As in case of LP spaces, we have an interpolation inequality for a space ’in-
between’:

Theorem 1.11 (Interpolation inequality for W*P(Q)). Let Q be smooth and
bounded. Let s1,s,s2 € (0,00) and p1,p,p2 € [1,0] be such that

So > 8§ = 81,

Y2 > >,
— s—s
9 = Y 71 c < 1 71) ’
Y2—N S2 — 81
where 1, v and 2 are the Sobolev numbers corresponding to the pairs si,p1,

s,p and sz, pa respectively. Then the following interpolation inequality holds for
all uw e W#2:P2(Q):

||U| |WSvP(Q) < I(sla S, 32»P1»P7P2)||“| |{1/[;>"91»P1 (Q) | |u||€VS2,P2 ()" (14)

The constant I(s1,s,s2,p1,D,p2) depends only on s1,$, S2,p1,p, p2 and the do-
main ).

The following useful nonlinear version of the Sobolev inequality (1.3) is a con-
sequence of Lemma 1.2 from [8].

Lemma 1.1. Let s € (0,1), p € [1,0) and g € (1,00). Then there exists a
constant N(q) that depends only on q and such that it holds

[|ul| < N(q) H|u|q_1uH5‘/W(Q) for all u e W*P(Q).

W)
We conclude this subsection with the definition of a local Sobolev space:

WEP(©Q) = {ue L},

Q)| D™y e LP

loc

() for |a| < k}



16 Preliminaries

The space WhH(P1r0)((qa,b); By, Ey)

The treatment of the parabolic problems dealt with in this work requires vector-
valued analogs of the functional spaces already introduced above. Let E; be a
Banach space. Now we focus on the functions which are defined on an interval
(a,b), —0 < a < b < o0, with values in Fy:

u: (a,b) > Ey.

Similarly to the scalar case, we define vector-valued: Lebesgue spaces LP((a, b); E1),
spaces of test functions D((a,b); E1) and distributions D’((a,b); E1), Sobolev
spaces W*P((a,b); E1) and H*((a,b); E1). Another important example of a
vector-valued Sobolev space is the space in which the time derivative d,u maps
from (a,b) to a ’larger’ space Ey such that F; — Ej: we introduce for pi1,pg €
[1, 0] the space

WhE1po)((a,b); By, Ey) := {u € LP*((a,b); E1)| dyu € LP°((a,b); Eo)}
equipped with the norm
lullw.rvo) ((a,b)s0,20) = lUllLer ((ab)i ) + 100Ul Loo ((a,b)50) -
Let E be an in-between Banach space:
Fi — FE — E.
Clearly we have the following continuous embedding
WhPLro) (g, b); By, Eo) < LP*((a,b); E).

The important compactness result for this kind of spaces is given by the following
theorem [5, 22].

Theorem 1.12 (Compact embeddings in vector-valued Sobolev spaces). Let
—0<a<b< o, p €[l,o], po € (1,0] and let Ey, E and Ey be Banach
spaces. Then

L ((a,b); E)  for p1 < oo,
C((a,b); E)  for p1 = c0.

By <% B By = Whep0)((a,b); By, Ep) s {

Remark 1.3 (Weak continuity). A similar result holds in case of a reflexive
space E equipped with its weak topology. In particular, the following useful
weak continuity property holds: let —o0 < a < b < 00, pg € (1,00] and let E and
FEy be Banach spaces, then

E <% By = Wh(£r0) ((a,b); B, Ey) = C((a,b); (E,0(E,E'))),  (1.5)

see [5, 22].
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Positivity

We conclude the Section 1.1 with two remarks on notation connected with posi-
tivity. The first one concerns the fact that in this work we deal with mathemat-
ical models that can describe evolution of two non-negative physical quantities:
density and concentration. Such models are naturally expected to preserve pos-
itivity in the following sense:

Definition 1.4 (Positivity preserving property). We say that an initial problem
18 positivity preserving if its solutions are non-negative for non-negative initial
data.

The second point is that we sometimes consider non-negative functions com-
ing from a function space. To shorten the notation, let us introduce the positive
cone notion:

Definition 1.5 (Positive cone). Let X be a subset of L°(Q). We define the
positive cone of X to be the subset X of X that consists of all w € X such that
u = 0 almost everywhere in 2.

1.2 Laplace operator

In this section, we consider the Laplace operator A from two different points of
view: as product of divergence and gradient and as infinitesimal generator of
an analytic semigroup.
The domain {2 is assumed to be smooth and bounded throughout the section.
Let us start with the following realization of the gradient operator:

YV HHQ) — (L2(Q)", Vu = (0nu, ..., 00,u)

where * denotes the transposition operator. In this realization, V is clearly an
isometry (see the definition of the H}(€2) norm), hence its range is closed. As a
consequence, it possesses the Moore-Penrose pseudoinverse [16]. It is given by
the operator

d _
VT (LA(Q)" - Hy(), VT = (V) Pranv)s

where Prq,(v) means the orthogonal projection on the range of V.

. d . . . e e
Further, since (L?(€2))" is a Hilbert space, we can identify it with its dual.
Then the corresponding adjoint operator coincides with a realization of the
minus divergence operator V* = —(V-), where

d
Ve (L2Q)) = HYQ), V- (s, ..., uq) = Z 0y u;.

For the minus Laplace operator, we then obtain

—~A:H}(Q) —» HYQ), —A =V*V.
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It follows directly from the properties of a pseudoinverse that
(—A)_l — V+v+*7
V(—A)71 — v+*7
VTV =id.

For an isometric operator the adjoint of its pseudoinverse is also isometric,
therefore

||V+*'U*||(L2(Q))d = ||'U*||H71(Q) fOI' all U* € H_l(Q) (18)

The other way to handle the Laplace operator is to apply to this operator the
general theory of abstract parabolic evolution equations [34]. Having ap € (1, 00)
fixed, consider this time the Laplace operator as an unbounded operator

A LP(Q) - LP(Q)
equipped with the domain

D(A) = {u e WrP(Q)| Aue LP(Q)} .

It is known that this operator generates an analytic semigroup e*® and that its
spectrum lies entirely in {A € R : A < —f8} for some 8 > 0 depending on Q. As
such, it has the following properties:
(A = et (—a), (1.9)
[l (=2)"]], < A(p, p)e™ " (1.10)

for all t > 0 and p > 0. The constant A(u,p) depends only on u,p and the
domain 2.

1.3 Global attractor

It is well known that the long time behavior of an autonomous dynamical system

can be described in terms of its global attractor. Let us recall several definitions

and facts from the general theory of attractors (for details we refer to [4, 5, 10]).

For our purpose, it is enough to make the presentation for locally convex spaces.
Consider an arbitrary locally convex space T .

Definition 1.6 (Semigroup). A (one-parametric) family {S(t)},>, of operators
in T is called a semigroup on T if it satisfies two conditions:

S(O) = idT?
S(t+s) =S5(t) oS(s) forallt,s =0,

where tdr denotes the identity operator.
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Remark 1.4. We call a semigroup {S(t)},-, continuous (closed, compact) if
the semigroup operators S(t) are continuous (closed, compact) operators in T
for all ¢ > 0.

Definition 1.7 (Global attractor). Let {S(t)},5, be a semigroup on T. A set
Ac T is called a global attractor for {S(t)},-, if

(i) A is compact in T ;

(i1) A attracts bounded subsets of T: for every B bounded and every neigh-
borhood V' of A there exists a T(B,V) > 0 such that S(t)B c V for all
t>T(B,V);

(iii) A is invariant with respect to {S(t)},5¢:

S(t)A = A for all t = 0.

Remark 1.5 (Uniqueness of global attractor). If a global attractor exists, it
is also unique. In fact, it is the maximal (with respect to inclusion) bounded
invariant (with respect to {S(t)},-,) subset of 7.

Definition 1.8 (Absorbing set). A set C © T is called absorbing for a semi-
group {S(t)},~q if for every B bounded there exists a T(B) > 0 such that
S(t)B c C for allt = T(B).

Remark 1.6. Every absorbing set is an attracting set.

Remark 1.7 (Positively invariant absorbing set). If C' < T is an absorbing set
for a semigroup {S(t)},-,, then, clearly,

lJ s

s€[0,7(C)]
is a positively invariant absorbing set for {S(t)},.,. The latter means that

S(t)C < C for all t > 0.

In this work, we use the following general result on the existence of global
attractors in complete metric spaces (see [24]):

Theorem 1.13 (Existence of global attractor). Let {S(t)},-, be a closed semi-
group in a complete metric space £ having a compact absorbing set K c £.
Then the semigroup {S(t)},s, possesses the global attractor. It is given by

A= ()ele (US(S)K) .

t=0 s=t
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1.4 Pullback attractor

It is well known that the way to extend the attractor theory for autonomous
dynamical systems to nonautonomous dynamical systems is not unique. The
two essential approaches here are the uniform and the pullback attractors. In-
troduced in [17], further studied and developed in [5, 6], the uniform attractor
is a time-independent set. Its existence for a nonautonomous system is usu-
ally obtained by means of the skew-product technique (see [5]). This object is
quite useful in periodic and quasiperiodic settings and usually leads to finite
dimensional dynamics. However, in more general (translation-compact, see [5])
settings, the uniform attractor often turns out to be infinite-dimensional, even
if the underling dynamics are actually very simple. Such is the case, e.g., with
the inhomogeneous heat equation in a bounded domain

Oru =Au + f(t), ulsg =0

This equation produces very simple dynamics, namely, a single exponentially
attracting trajectory. At the same time, the corresponding uniform attractor
has an infinite dimension and infinite topological entropy [5]. To avoid such
artificial effects, the pullback attractor concept was initiated in [19, 28]. We
follow this approach in the present work.

Let us recall several definitions and facts from the general theory of pullback
attractors (for details we refer to [19, 28] and, for further development, to [10,
13, 29] and the references therein). For our purpose, it is enough to make the
presentation for locally convex spaces.

Consider an arbitrary locally convex space 7T .

Definition 1.9 (Process). A (two-parametric) family {U(t,7)},>, of operators
in T is called a process on T if it satisfies two conditions:

U(r,7) =idy for all T € R,
U(t,7)=U(t,s)oU(s,7) forallt =s>71, 7,5,teR,

where id+ denotes the identity operator.

Remark 1.8. We call a process {U(t,7)},5, continuous (closed, compact) if
the process operators U(t,T) are continuous (closed, compact) operators in T
forallt > 7.

Definition 1.10 (Pullback attractor). Let {U(t,7)},>, be a process on T. A
(one-parametric) family {A(t)},cg is called a pullback attractor for {U(t,T)},- .

if
(i) The sets A(t) are compact in T for allt € R;

(i) The pullback attracting property holds: for all t € R, every B bounded
and every neighborhood V' of A(t) there exists a T(B,V,t) > 0 such that
U(t,t —s)BcV foralls 2T(B,V,t);
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(i4i) The invariance property holds:
U(t,7)A(T) = A(t) for all t > T. (1.11)

() The minimality property holds: for all families {A'(t)},cp of closed sets
that enjoy the pullback attracting, property it holds

A(t)y c A'(t) for allt € R.

Remark 1.9 (Uniqueness of pullback attractor). If a pullback attractor {A(t)},.r
exists for a process {U(t,T)},-, on T, it is also unique. In fact, it is the maxi-
mal (with respect to inclusion) family of bounded subsets of 7 with invariance
property (1.11): for all {A'(t)},.z that enjoy

(i) The sets A’(t) are bounded in T for all t € R;
(ii) U(t,7)A'(t) = A'(t) for all t > T;
it holds
A'(t) < A(t) for all t € R.

Definition 1.11 (Uniformly absorbing set). A set C' = T is called uniformly
absorbing for a process {U(t,T)},, in T if for every B bounded there exists a
T(B) > 0 such that U(t,t —s)B c C for allt € R and s = T(B).

Remark 1.10. Every uniformly absorbing set is a pullback attracting set.

Remark 1.11 (Positively invariant uniformly absorbing set). If C < T is a
uniformly absorbing set for a process {U(t,7)},,, then, clearly,

Jv,t—s)cC
s€[0,T(C)] teR

is a positively invariant uniformly absorbing set for {U(t,7)},. . The latter
means that

U(t,t —s)C c C forallt > s.

It is not difficult to extend the Theorem 1.13 to the following existence criterion
for the pullback attractor in a metric space:

Theorem 1.14 (Existence of pullback attractor). Let {U(t,7)},>, be a closed
process in a complete metric space £ having a compact uniformly absorbing set
K < &. Then the process {U(t,T)},, possesses the pullback attractor. It is
given by

A(t) := ﬂclg <UU(t,t— s)K) for allt e R.

=0 s=r



22 Preliminaries

Remark 1.12 (Forward attractor). Under the assumptions of Theorem 1.14 the
pullback attractor A(t) is at the same time the (uniform) forward attractor for
the process {U(t,7)},s,, i.e., the following (uniform) forward attracting prop-
erty (compare with the property (ii) from the Definition 1.10) holds: for alle > 0
and B bounded there exists a T(B, ) > 0 such that U(t + s,t)B € O (A(t + s))
for all t e R and s > T(B,e). Here O.(C) denotes the e-neighborhood of a set
Ccé.



Chapter 2

A biofilm model with
chemotaxis effect:
autonomous case

2.1 The Model

In this chapter, we consider the following model:

OM = V- (M[*VM) =V - (IM]'Vp) + f(M,p) in (0,0) x 2, (2.1)
Orp = Ap —g(M, p) in (0, 00) x €, (2.2)
M=0, p=1 in (0,00) x 09, (2.3)
M(0,-) = My, p(0,-) = po in , (2.4)

where a and v are given positive constants satisfying

%+1<7<0¢. (2.5)

Remark 2.1 (On condition (2.5)).
(1) In this study, we call conditions of this type for o and v ’balance’ conditions

since they establish a balance between the diffusion and transport terms,
that is, between the porous medium and the chemotaxis effects.

(2) It is clear from (2.5) that «, > 2 should hold.

Q c R? (d = 1,2,3) is a nonempty smooth bounded domain and M, €
L7(Q), po € WEH*(Q). We assume that the functions f and g satisfy the
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following assumptions: for all M, p e R let
|F(M, p)] < Fy(1+|M|%)* for some £€[0,a—y+2), FLeRy, (2
f(M, p)sign(M) < —F>|M| + F; for some Fy € R, F3 e RY, (2.
g(M, p) = G1p+ g2(p)M for some G; € RY, (2.
l92(p)| < G3 for some G3 € RY (2.

and, in order to ensure uniqueness and non-negativity of solutions for non-
negative initial data, let

f(M,p):=f (M|M|2J%a_1,p) —F4M|]\4|2‘J%@_1 for some Fy € R, (2.10)
Fe WLP(R?), go e WL (R), f(0,p) =0 for all pe R, go(0) <0. (2.11)

The following example of functions f and g satisfies the conditions (2.6)-(2.11):

Example 2.1.
(M+)55*
f(M,p) = —M + ————— arctan p,
(Wr) (M+)5* +1 g
P
M,p)=p+M—"—.
g(M,p) =p o+l

The system (2.1)-(2.4) was first introduced in [12]. It can model different
formation scenarios of a biofilm population described in terms of its density
M in the presence of a chemoattractant, a chemical described in terms of its
concentration p.

Let us compare our model with the classical chemotaxis models - the models
for the free-swimming populations.

As in the case of a free-swimming population with possibility of growth, the
evolution equation (2.2) for the chemoattractant includes the standard linear
diffusion term and a nonlinear reaction interaction term. Depending on the
particular choice of the reaction interaction term, the chemoattractant can be
subject to abiotic decay, be produced or degraded by the population.

The governing evolution equation, the equation (2.1) for the biomass den-
sity, differs considerably from the classical one. It includes two nonlinear spatial
movement effects: a degenerate diffusion term and a chemotaxis transport term.
Both diffusion and chemotaxis coefficients are density-dependent - following a
power law for positive exponents o and v — 1, respectively. Hence, both motion
effects disappear in the regions with zero biomass density, and they intensify as
the population grows.

The way diffusion and chemotaxis work together is responsible for the lo-
cal changes in the biomass density. Extensive studies made for the chemotaxis
models for the free-swimming populations show that in high dimensions the
diffusion is not strong enough to dominate over the positive chemotaxis effect.
This leads to local aggregation of cells and even to blow-up effect. The latter
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means that the biomass density becomes infinite in finite or infinite time.

In our case of a biofilm population, we can impose a ’balance’ condition on
the exponents a and « so as to balance the diffusion and transport terms. As a
result, we obtain a well-posed system, and its solutions are uniformly bounded
in time and space.

The study of the model (2.1)-(2.4) expands [12] (see also references therein).
In our research, we propose a less restrictive ’balance’ condition. The condition
a > v (an improvement over the condition o > v + 1 imposed in [12]) reads:
the density-dependent diffusion coefficient ’"dominates’ the intensity of response
to the chemical signal as the population grows. This, together with the ho-
mogenous Dirichlet boundary conditions, results in the uniform boundedness
of M and p and in their dissipation with time. On the other hand, in the ar-
eas with low biomass density the porous medium effect is due to the condition
S + 1 < v strong enough to keep the population spreading without vanishing

locally, which means that the support of M(¢,-) - theset {r € Q: M(t,z) > 0}
- is not shrinking in ¢ (see Section 2.4).

Finally, the equation (2.1) includes a ’source’ term: a nonlinear reaction in-
teraction term, which in our case allows a more general dependence upon the
biomass density than in the original model (see [12]). As usual, it corresponds
to the sink/source density: net number of particles created/lost per unit time
and per unit volume. The source term provides the possibility to model the
impact which the chemoattractant and external forces, such as predation or in-
toxication, can have on the population growth and death. In particular, apart
from actually attracting the biofilm cells, the chemoattractant can be a nutrient
or a poison, or a product of the cells themselves.

We emphasize the fact that even the analysis for the models that include
either the degenerate diffusion or the chemotaxis is rather challenging (see [31]
and [18], respectively) so that, in our case of a joint model, we face significant
difficulties. In this work, we consider weak solutions of the system (2.1)-(2.4).
The definition is as follows:

Definition 2.1 (Weak solution). A pair of functions (M, p) defined in [0, 00) xQ
is said to be a weak solution of (2.1)-(2.4) for My € L*(Q), po € WL (Q), if
for allT >0

(z’) Me L* ((O,T) X Q), |M|O“M e L2 ((O,T);Hg(Q)), oM € L? ((O,T);Hfl(Q));
(i) p—1e C((0,T); Wy ™ ();

(iii) (M, p) satisfies the equation (2.1) in L* ((0,T); H 1(Q)), M(0) = My in
C((0,7); (L*(2), o (L (), (L*()))))-sense and

t

plt) =1 =¢"(py — 1) - j =92 5(M(s), p(s)) ds
0

in W™ (Q).
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Remark 2.2 (Initial condition). From M € L*((0,7); L*(Q)) and 6,M €
L% ((0,7); H(%)), it follows with (1.5) for pg = 2, E = L*(2) and E; =

H=1(€) and the compact embedding (see Theorem 1.10) L2(Q) —‘> H-1(Q)
that M € C((0,7); (L*(Q),0(L?(2), (L?(£2))"))). Therefore, the initial condi-
tion for M makes sense.

For the convenience of the reader, we formulate the following

Theorem 2.1 (Well-posedness and boundedness). Let the functions f and
g satisfy the assumptions (2.6)-(2.11) and the constants a and -y satisfy v €
[% +1, a). Then the initial boundary-value problem (2.1)-(2.4) is uniquely solv-
able (in the sense of Definition 2.1) for each pair of starting values (Mo, po) €
L*(Q) x WE*(Q) and positivity preserving (in the sense of Definition 1.4). The
solution is uniformly bounded in time in the phase space L™ (Q) x W% ().

The proof of Theorem 2.1 for a more general (nonautonomous) setting is given
in Chapter 3 (see also [12] for the first result on the well-posedness for this model
in the autonomous case).

In Theorem 2.2 of Section 2.2 we prove a dissipative estimate for the problem
(2.1)-(2.4). As a consequence of Theorem 2.2, we derive in Section 2.3 the
existence of a weak global attractor for (2.1)-(2.4).

Remark 2.3 (Notation). For the sake of convenience, we assume throughout
this chapter that the constants B; (appear below) for all indices ¢ are only
dependent upon the parameters of the problem, that is, upon the constants «
and ~, the functions f and g and the domain €2, and not upon the initial data
My, po or t, or, unless stated otherwise, any other parameters.

2.2 Dissipative estimate

In this section, we use the condition a > 7 to establish a dissipative estimate
for our model, which is necessary to show the existence of the global attractor
(see Section 2.3). Our result reads:

Theorem 2.2 (Dissipative estimate). Let the functions f and g satisfy the
assumptions (2.6)-(2.11) and let the constants o and vy satisfy v € [% +1, a).
Then the following dissipative estimate holds for the initial boundary-value prob-

lem (2.1)-(2.4):
1M )|z + [lpOllwro @) <Co (||Mollze) + llpollwrr (@)™ - e>
+ Dy, forallt =0, (2.12)

t

where the positive constants Cy, 7o, Wor, Do depend only on o, 7y, f and g, and
are independent of My, po or t.

Remark 2.4. As will become clear from the proof below, we do not actually
need the condition v > § 41 to obtain the dissipative estimate (2.12). However,
this condition is crucial for uniqueness of solutions (see the proof of Theorem 3.1
or [12]).
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Proof. The main idea of the proof is to derive a collection of coupled dissipative
estimates for M and Vp in various L° norms, with § < oo for the M component,
and then apply a bootstrap argument in order to obtain the desired dissipative
estimate in the L*™ norm for both components. The estimates are done formally,
they can be justified by passing to an appropriate sequence of regularization
problems (e.g., (3.11)-(3.14) from Chapter 3), performing the estimates in the
same manner for the solutions of these problems and then passing to the limit.
We start with rewriting the equation (2.1) in the following way:

1

oM =V - <|M|7V <
a—7+1

ML = p) ) + 50

In order to derive our first a priori estimate, we multiply this equation by
(a 7+1M|M|0‘ v — p) and integrate by parts over (2 to obtain

<6A[1MMﬂ“7—p>
+

(W i+ MM ))
+< MWW”—O
< (FO49) c—pIMIT )
d(a ’y+1 a—v+2) H' “7”“ _(M’p)>
< (£ g MF o = p) = @on). 213)

Next, we multiply the equation (2.2) by (d:p + p — 1) in the same sense as above,
in order to obtain

_ 2:_77 2 _ 2 _
J0upl® + 5 llp = 1117 = =2 LIVl = IV = (oM, p), 6o+~ 1) &
1d
52 (19617 + llp = 11P) = =IIVpl[* = |20l = (9(M. ), 8up + p— 1) (2.14)

By adding the inequalities (2.13) and (2.14) together, we obtain that

c(lit<(o¢—7+1)1(o¢—7+2) H

1
- a—y _ _ 2 _ 2
< (70— p) 9 = (@, 20) 2o
—(9(M,p),0p+p—1). (2.15)

a— w+2

| M|

1 1
- (01.p) + SIVAP + 5l = 11P)
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We consider first the term containing g(M, p) = G1p + g2(p)M. Then

1d

—(Gpaptp=1) = =55 (GlIAF) = G (ol = (1.0)
1d 1
< =57 GllelP?) = A =a)Gulloll” + ZGilQl (2.16)

and

1
—(g2(P)M, 0p +p = 1) < ellup|* +ellp—1|* + 2*8||92(,0)JV-"||2

1
< =|awl +ellp - 1P + GHIMIE. (217)
(2.9) €

By combining (2.16) and (2.17) with the inequality

2 _ 1 1 2
— (0up, M) — | 0rp|” < §||M||2 =5 9l

1

and choosing € < 3, we have

— (0ep, M) — |0ep|* — (9(M, p), dep + p— 1)

1d 1 1 2
<= 321 ©lIAIR) = =Gl +llp = 1P + - Grlol = (5 =) lowl
L1 2
+<2+25G3>||M||
< — 5 (@lplP) ~ (1= )Gullol? +ellp— 1P + =Gl
6;% 2dt ! ! de '
(s La) (2.18)
22 °® ' '

Further, we can estimate the terms with f from (2.15) in the following way:

(F(M, p), MIM|™™Y) < (=FoM? + Fy|M], || D)
2.7)
a—y+2

- _FR H|M| 3

a—vy+1
2

‘(219

gy H|M

)

1
F2) 10+ F [l

1 £
~ (00 5 el + 27 (190 +
1

2
4e )

< 2elp— 111> + <25 + (2.20)
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By using the inequalities (2.18)-(2.20) we conclude from (2.15) that

d 1

a—v+
— M|z | — (M,
dt((a—7+1)(a—7+2) Il (M; p)
1 2 1 2 1 2
SVl + Sllo = 117 + S Gllll
o — 1
- e g a3+ ) i

—WWW—O—Q&WW+%W—HF+@H@Jh+%ﬁ>w~

(2.21)
In order to shorten the formulas, we introduce a new variable:
1 a—y+2 2
= 2 | — (M,
4 (a—’y+1)(a—’y+2)”| (M. p)
1 1 1
+ 31961 + 5llo = 1112 + SGallol (2:22)

3% is the leading M power in (2.21)-(2.22) due to the as-
sumptions made on «,y and £. Further, due to the Cauchy-Schwarz and Young
inequalities it holds that

1
(M, p) <€|Ip||2+£||Mll27 (2.23)

so that the term (M, p) is negligible in (2.22). Altogether, applying the Poincaré
and the Holder inequalities and adjusting the constant €, we can deduce from
(2.21)-(2.23) the inequality

7P S —Biyp + B

for some By € RT, By € R}. Gronwall’s lemma yields
By
B
Bs
By’

p(t) < e Pp(0) + 5= (1—e ),

< e Brip(0) + (2.24)

We finally obtain our first dissipative estimate: set
50 == IMI[3 + 1+ [|Vpl[?, 6o = —7+2, (2.25)

it follows from (2.24) with the help of (2.22)-(2.23) and the Poincaré inequality
that

Yso ( ) Cy50 Yso (O) “usot + DyJO
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for some Cly, ,wy, , Dy, that depend only upon the parameters of the problem.
Now, the equation (2.2) can be rewritten in the following way:

O(p—1) =Alp—1) —g(M,p)

and can thus be regarded as an abstract parabolic evolution equation with
respect to p — 1. Therefore, for all ¢ > 0 it holds (see [34]):

t

Pl =1 = e = 1) = | eI (5). () s (2.26)

and by applying operator V to both sides of (2.26), we obtain that

t
Volt) =V - |

v (e“*SJAg(M(s),p(s))) ds. (2.27)
0

The initial value pg is assumed to be sufficiently smooth, so that the following
holds:
[IVpolls < o0. (2.28)

What remains is to estimate the § norm of the integral from (2.27) with the
help of (1.9)-(1.10) and assumptions on g. By choosing u € (%7 1) and 6 > 1
such that W2#°(Q) < W19(Q), we arrive at the estimate

[ 9 (c=2arts).0060) a5

1)

t

<A(p, (S)J0 Pt — )7 (Gallp(s) || + Gal[M (s)]]) ds. (2.29)

Altogether, we obtain from (2.27)-(2.29) the following estimate:
IVo(t)lls <e™|[Vpolls + Alp,6)(G1 + Gs)-

: f =) (o)l + M) s (230)

<[ = (2o, 6) |, a5
o

Leaving this result for a moment and returning to the equation (2.1) we multiply
this equation by M|M|°~! for an arbitrary § > o — v + 1, so that all occurring
powers remain non-negative, and (formally) integrate over :

(OeM, M|IM°~") = (V- (IM|*VM) =V - (|M["Vp) + (M, p), M|M|*~") .
It follows that

1 d 5412 46 ats+1 ||2
—— |M| = =—7H M|z
6+1dtH| e (a+d+1)2 VIM|E
25 a+d6+1 a 5—1
S
+a+6+1(v|M| T M 2vﬂ>

+ (f(M, p), M|M|""1). (2.31)
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ays=1

Set ¥(0) := T222—. Then 9(6) < 1 holds due to the assumption o > .
[EET

Applying Holder’s inequality, we obtain that

_a g 6-—1 at+ds+1 a+d+1
( D) = (V1M MO vp)
a+5+1 a+5+1 s
<1l s HV|M| H|M| 7 19l
a+d6+1 1+
<Bs| Va5 " 196l (2.32)

For the last inequality, the embedding H'(Q) < L%(Q) (recall that d < 3) was
used. Further, we apply once more the Holder inequality and assumptions on
the function f and thus derive:

2 2
(FOM. ), MIMIP™) < = B || M| + 7y a3

(2.33)

s
. 4T
_ R H|M|"¥ ) . (2.34)

(5+1
(e

We can conclude from (2.31) using (2.32) and (2.34) that

6+1 2 46 a+5+1 2
\—7 V|M
ST M ey MY
20 a+5+1 1+9(9)
2 B HVM v
+ 2 g, |vi I,
51 4T
—F2H|M| 2 ‘ + B3 15,4 <H|M| > .

Since 1 + ¥(9) < 2, it follows with the Young inequality that

9

1 d S+1 2 5+1 5+1 o+1
srrg M < - m o s m, (Jone])
+ B4(0) [Vpl 3~ =, (2.35)
1-9(6) 1—5(5) 45 7itggg; .
where By(0) = —5~ (a+6+1B3) (m 1+19(6)) , therefore this

constant depends only on § and the parameters of the problem.

Next, we return to the equality (2.31) in order to repeat the whole procedure
once more, but this time we will be more precise about the estimates made, and
will use the regularity achieved up to this point. First, due to (2.33) and two
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obvious inequalities we have

atstl 2

2 45(6 +
T (OME5+1 HV|M|
256(6+1) < atstl
a+d+1
+ (0 + 1)(f(M, p), M|M|*).

6+1

i

M E )

n+5+1 2

e HV|M|

9(9)

a+5+1

VM|

a+é+1

+ (6 + 1) Be|| Vol

i

2¢

a+d+1
2

— (0 +1)F, H|M|‘S% (2.36)

+ (8 4+ 1)Br Fy H|M|

for § > a—~v+1 with ¢ = ﬁ. Taking into account a special case of the
interpolation inequality (1.4), the inequality

2 2
o]l < Bsl[Vol[>[Jo]lF
we obtain with the help of the Young inequality that

(8 + 1)[|Vol|[[o]]”®

(5 9(6)2
<(8+ 1)BY ||| O3 [y 7

20(5)%
—9(5) g

<BYD [ <|[Vol? + By(e)(5 + 1) 0T || 1 (2.37)

and

(8 + 1) 3] [u][% < (0 + 1) Fs B || |23 o] |24
24%

1 —3
< B3 | el|Vol? + Biole) (F5(6 + 1)) <% |jo]|, % |, (2.38)

where By(e) and Bjg(e) depend only on € and the parameters of the problem.
With the Holder inequality, we also have

a+5+1

HIMI (2.39)

<[] o, a1

a+6+1

for ¢ € (1,2) independent of §. By combining (2.37)-(2.38) for v := | M|
with (2.39) and choosing ¢ small enough depending only on the parameters of
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the problem, we can conclude from (2.36):

219(5)%

) 1-9(5)3
q

2¢2

) -
q

for 6 = o — v + 1. Since ¥(9), ¢ € (0,1) it follows for all § = o — v + 2 that

2

2 1—9(8)3 5 341
<Bu (191, 6+ D)= (], [l

d S+1
— M 5
dt H' I

L S41

B (6 + 1) (11017, 1o

2

S+1

B+ 1) H|M|T

d 5 5 o /2 i
= (115 +1) <Bud® (190() L + 17 1M1G o, (IM1255 +1)

— B (|5 +1).

Once more we get an integral inequality for | M (t)Hg + 1

t
|M(@®)]5+1 < Bu JO e8IV p(s)],, +1)7 M ()] s

q—1
2
5 a - 5
(ML +1)" ds+e T (Mol +1) . (240)

Now we are ready to derive some more dissipative estimates for the prob-
lem (2.1)-(2.4). We will extensively use Lemma A.1 from the Appendiz. This
lemma appears to be very useful in our situation. It actually shows that the
"dissipative property’ is preserved under standard operations (addition, multi-
plication, raising to a power and integration). To shorten the formulas, let us
set

hy = ||Vp||3 +1,

us == ||M||}+1, §€[l,0).
Observe that particular powers of ys, and hy, he and us (for sufficiently large
), uy and hg can be connected with one another by the inequalities of the

type (A.1) in the same manner as z; and z3 from Lemma A.1 are. From the
Lemma A.1 we can conclude that all of them dissipate exponentially with ¢:

hi(t) < Ch, (ha 4+ ys,)™" (0)e™ "1 + Dy, (2.41)

hg(t) < Ch2 (hg + ’U,7)Th2 (0)6_w"2t + th, (242)
F

us(t) < U (u5(0) + Cuy (b1 +45,)"° (0) e 2% + Doy = Us(t),  (243)

where the appearing coefficients depend on the parameters of the problem, and
only the coefficients C,,;, and D,,, depend on § as well. We especially emphasize
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that r is independent from ¢ (it will be crucial for the existence of the uniform
dissipative estimate). Indeed, from (2.30) and the definition of ys, (ys, > 1, see
(2.25)), we obtain that

3
I¥p(0lks <e Vol +4 (§.2) (G1+ Ga)-

| J P (1= 5)7 ([lp(s)l |2 + 1M (s)]]2) ds

3
<6_Bt||vp0||3 + 0(1,2,2)/1 (4,2) (G] + Gg) .

t .
: J e Pl=9) (¢t — s)_%y(;0 (0)ds (2.44)
0

since v —y +2 > 2, W22 s W13 and Wh2 — L2(Q) (with the embedding
constant C(1,2,2)). Next, using (2.30) one more time, we obtain that

3
V60l <9l +4(5.7) G+ Ga-

| f e P (1= 5) 7 ([lp(s)l |7 + 1M ()] ]7) ds

3
< il + 01,734 (5.7) (G4 Ga)

L e P9 (4 — §)=3 (||Vp(s)||s + 1 + || M(s)]|7) ds

(2.45)
since W27 — WL* and W13(Q) — L7(Q) (with the embedding constant
C(1,7,3)). The estimates for hy and he now follow with (2.44)-(2.45) and

_3
Lemma A.1 due to the fact that for the function d(t, s) := (t—s).* the condition
||d||L‘fJ(R§,L}7(R§)) < o0 is satisfied.

Let us now check the dissipative estimate (2.43). With (2.35) we have:

s—1 2
——us < — Fous + F3|Qlug® + By(6)h ™" (2.46)

Recall that 9(5) = 77%% and, consequently, ﬁm = Oﬁiﬁﬂ < Bjo6 for

some Bjg and § > 6, suf%ciently large. Now, the Young inequality yields:

ug’ = (eus) v e~ 7 < ——eus+ —€~

-1 5—1 s—1 0—1 1 (5-1)
) 1) ’

therefore it follows from (2.46) that

d 5—1
s <=0 (F2 - 5F3|Q|5> us + e~ OV E|Q| + 6B4(0)h12?

F
<-— 572% + e~ OV R|Q| + 6By (6)h P20
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for € small (depends only on the parameters of the problem). Gronwall’s lemma
then yields

t

us(t) <J'

¢ PF D) (TN R Q|+ 0ByOR(s)) ds
0

F.

+ e tug(0). (2.47)

The dissipate estimate (2.43) follows now with the estimate (A.2) of Lemma
A.1 and the dissipate estimate (2.41) for h;.
Now, from the inequality (2.40) we can conclude that

t

2
us(t) <e °F2us(0) 4+ Byp6° f e OF2UmS H ()U 4(s) ds, (2.48)
0 2
where
5 ~2(q71)
Hi(t) == h3(t)iig ' (8).

2 F.
Taking into account that ug 5 dissipates with e 97t and that H; dissipates with
2

an exponent independent of 0, we consecutively apply (A.3) to (2.48) and get

t
us(t) <e=Ftus(0) + Bryiid 5 (t) J e F =955 1\ (5) ds

0

ke o

2
<e~0F s (0) + —Bud'Hi(D)i
2

[SSESEN

5(t)

for § > J, sufficiently large. The bound §, depends only on the parameters of
the problem. Therefore, we may assume that

i (£) =€~ Fus(0) + Byad® Hy (£) 5(t). (2.49)

[SSISEN

Since
us(0) = [[Mol[§ + 1 < [|Mol|%,|2] + 1

we conclude from (2.49) that for

Fa, 3
As(t) == Ti5(t) <||]Weo||+1> +1 (2.50)

it holds that

As(t) < Biad*Hi(t)Ag ().

[NEEIN
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One can show by induction then that

Al

( )" (t) < (31452H1(t))22=1(%)k (€> - ‘Aé*(t)

)" o

Qo ke

e 2
o HO (1) A4, (1),
Therefore, we get
limsup A] (1) < H()AJ* (1). (2.51)
>0

By combining (2.51) with (2.50), we finally arrive at an estimate for ||M(t)||:
IM(#)]]o +1 = lim wg (t)
0>

1
< limsup 4} (t)
>0
1

< H(t) (a5 (t) + (|| Mo|| + 1)e?t> . (2.52)

Now, since the functions H and s, dissipate exponentially (recall (2.42)-(2.43)
and the definition of H and H;), we apply Lemma A.1 to (2.52) and conclude
that || M| dissipates exponentially as well. Moreover, it follows from the proof
that there exists a dissipative estimate for ||M ||, of the form given in (2.12).
The dissipative estimate for ||Vpl||o +1 = he is given in (2.42) and the Theorem
2.2 is thus proven.

O

2.3 Global attractor

The aim of this section is to apply the general theory from Section 1.3 to the
problem (2.1)-(2.4). We prove

Theorem 2.3 (Global Attractor). Let the functions f and g satisfy the as-
sumptions (2.6)-(2.11) and let the constants a and ~y satisfy v € [% + 1,a).
Then the solutions of the problem (2.1)-(2.4) can be described by a semigroup

{S(t)},=0 that acts on the space Ly () x (1 + W&T(Q)) The semigroup
{S(t)},q possesses the global attractor in Ly () x (1 + W&%(Q))

Proof. We observed in Section 2.1 that the problem (2.1)-(2.4), if considered
as an equation with respect to (M, p) in the space L*(Q) x (1 + Wolm(Q)), is
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well-posed: for each pair of initial values (Mg, po) € L* () x (1 + Wolf“(Q))

there exists a unique solution (M, p) in terms of Definition 2.1.
Since L™ () and L%, (92) coincide as sets, we can define the solving semi-
group {S(t)},5, of the problem (2.1)-(2.4) on the phase space Lj_,(2) x

(1 + Woly(Q)) as follows: for all ¢ = 0 let

S(0)  La(@) x (1457 (@) = LT (@) x (14 W57 (®),

S(H)(Mo, po) := (M(2), p(t)) for all (Mo, po) € L, () x (1+ Wy (2)).

Clearly, the space L._,(£2) x <1 + Wy~ (Q)) inherits all the properties of the

space L7, () that are listed in Theorem 1.6. In particular, it is a locally

convex space, so that the general theory from Section 1.3 is applicable.
Another consequence is that, due to Theorem 1.6(2), there is no difference

between the spaces L*(Q2) and L_, (Q) with concern to boundedness, the same

thus holds for L*(Q) x (1 + Wolf”(Q)> and LY, (Q) x (1 + WOII(Q))

The dissipative estimate (2.12) provides for the semigroup {S(t)},., the
existence of an absorbing L* () x (1 + W(}f(ﬂ)) ball B, centered at (0,1) of
a radius 2D,.. According to Remark 1.7, the set

C* = U S(S)B*7
s€[0,T(By)]

where T'(By) is such that S(s)B, < By for all s = T(By), is a positively
invariant absorbing set. With the dissipative estimate (2.12), it follows also
that Cy is actually contained in an L*(Q) x (1 + Wolq“(Q)) ball By, of a
radius Ryx, Rsx = 2D, centered at (0,1), thus it is a bounded positively

invariant absorbing set for {S(t)}, -
Since C, is bounded, its closure, the set

Coi= iz @x(rrwe@)(Cs):

is completely metrizable in its relative topology (see Theorem 1.6(3)).

mi (M, p1), (Ma, p2)) 1= max {al (My, M2), llpy = pallyson o }

is an example of a complete metric which induces the relative topology. Here
de) is the metric defined in (1.2) for R := Ry.

Let us assume for a moment that {S(t)},., is a closed semigroup. As a
closure of a positively invariant set, Cy is then also positively invariant under

{S(t)},50- Let us assume further that the set S(1)C is relatively compact in
LY_.(Q) x (1 + W&’“(Q)) As the closure of a time shift of an absorbing set,
ClL;p;i*(Q)X(1+W01,00(Q))(S(1)C*) is absorbing.
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All assumptions of Theorem 1.13 are then fulfilled since we are dealing with
a closed semigroup (the semigroup {S(t)},5,) in a complete metric space (the

space (C_'*, mf,(%))), and this semigroup possesses a compact absorbing set (the
set ClL{f_*(Q)x(HW(}"”(Q))(5(1)0*))' Theorem 1.13 yields the existence of the

global attractor.

To finish the proof, it remains to check the closedness of {S(t)},-, and the
relative compactness of S(1)C.

The projection of Cy on the M component is a bounded norm closed set in
L*(Q), therefore it is compact in LJ_,(2) due to Theorem 1.6. Let us now
show the relative compactness for the p component.

Since
(=) p(1) = (~) B gy — f (—A)H )5 (M (), plw)) dov

we conclude with (1.9)-(1.10) and assumptions on g that for all (Mg, py) € Cs
it holds

-t pin], < iyt e - [ (28 0001, o)

6

5 11 ! -
<A (126> Vp06+A<12,6> | =) g o)) del
<By(Rue), (2.53)

where the constant B,(Rx) depends only on R, and the parameters of the
problem. With (2.53) and the compact embedding (see Theorem 1.10)

W's5(Q) o Wh*(0Q)

it follows that the projection of the set S(1)Cy on the p component is relatively
compact.

It remains to show the closedness of the semigroup operators. In the proof
of Theorem 8.1 we will encounter the local Lipschitz-type continuity property
(3.39) for the solutions of (2.1)-(2.4). It can be translated into the following
form:

s (2", p") = 50 (117, pf7)
‘ (M(gl), p(()l)) - (M(g2)7 p(()Q))
for (Mél),p61)> , (M(EQ),p(()z)) € Cy. The constant L(t, Ryy) depends only on t,

R, and the parameters of the problem.
Recall that due to Theorem 1.10 we have

HH*l(Q) x L2(Q)

<L(t, Rus) (2.54)

HH*l(Q) x L2(Q)

WhHe(Q) — L*(Q), (2.55)
L*(Q) —— H 1(Q). (2.56)
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Since due to Theorem 1.2 compact operators are weak-#-to-norm continuous,
the property (2.56) allows the interpretation

LY () — H Q). (2.57)
By combining (2.55) with (2.57), we obtain that

L? (Q) x Wh*(Q) - H™1(Q) x L*(Q). (2.58)

Let {(MO( ), (n))} c C, be a sequence of initial data convergent to some
neN

(Mo, po) in LZ () x WH*(Q2). Due to the continuous embedding (2.58),
this sequence converges in H=1(Q) x L?(Q) to the same limit. From the prop-

erty (2.54) we deduce that the sequence {S (t) (M(gn), p(()”)> }neN converges to
S(t) (Mo, po) in H~1(Q) x L*(Q) for all ¢ > 0.

Let us further assume that for some ¢ > 0 the sequence {S (t) (Mén), ,0(()”)> }HEN
is convergent in LX _(Q) x WH*(Q). Again, due to the continuity of the em-

bedding (2.58), the limit is the same. This proves closedness, and the proof of
Theorem 2.3 is thus finished.

O

2.4 Biofilm mass: local behavior

In this section, we study the local behavior of the biofilm mass. We prove

Theorem 2.4 (Local mass behavior). Let the functions f and g satisfy the
assumptions (2.6)-(2.11) and the constants o and 7 satisfy v € [$ +1,a).
Further, let (Mg, po) € L*(Q) x WH*(Q) and the starting value My be strictly
separated from 0 in some open ball B < Q). Then

fM(t,x)dx >0

for allt > 0 and all open balls B with E c B.

Proof. We observed in Section 2.1 that the problem (2.1)-(2.4), if considered as
an equation with respect to (M, p) in the space L* () x W% (Q), is well-posed:
for each pair of initial values (Mo, po) € L*(2) x W1 (Q) there exists a unique
solution (M, p) in terms of Definition 2.1.

Assume the starting value Mj to be separated from 0 in a ball B < 2 by a
constant € > 0:

ess}gmeo >e>0. (2.59)
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This time we multiply the equation (2.1) by —pM ™!, where ¢ is a smooth
cut-off function with the properties

0eCP(B), 0<¢<1, p=1inaball Bc B

for an arbitrary ball B with B c B, and integrate over :
(M, —pM 1) = (V- (MOVM) = V- (MVp) + f(M,p),—pM ) (2.60)
Integrating (2.60) by parts we get:

d

2 4 1 o o 1
< + = (pronmE, mEvel)
dt B o

4 1 o
—p(@)InM(-,z)dx = — e H@?VM?

+ % (@%VM%,W%MV—%*W) — (M1, V- Vp)

_ <<p, f(]‘z\? f’)> , (2.61)

Let us now fix an arbitrary 7' > 0. The expression (2.61) is quite similar to
what we had in (2.31). It can be shown in the same way that the right side of
(2.61) is bounded from above by some positive constant By (T) for all ¢ € [0,T].
This is due to the assumptions made on f, the uniform boundedness of Vp and
the cut-off function and also to the fact that § +1 < v (and v > 1, of course).
Thus we get

d

% JB —p(z)In M (t,z) de < B1(T) (2.62)

for all ¢t € [0,T]. Integrating over [0,T], we obtain from (2.62) with the help of
(2.59) that

J —p(x)In M(T,z)dx <TBy(T) + f —p(z)In My(z) dx
B B

<T'B;(T) — J p(r)drlne
B

=IBQ (T, 6).
It follows with M being uniformly bounded that
f —In M(T,x)dx <By(T,e) + In M(T,x)

Ba{M(T,)<1} Bn{M(T,)=1}
<Bs(T¢). (2.63)

If |B A {M(T,-) < 1}| = 0 holds, then M(T,-) > 1 in B, and nothing is left to
prove. If |B n {M(T,-) < 1}| > 0 then we can use the Jensen’s inequality [27]
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1
| BA{M (T, )<1}|
left side of (2.63) from below. We obtain:

for the measure dr and convex function —In to estimate to the

Bs(T
—In| —= ! J M(T,z)dzx | <—= 3(Th¢) .
|IBn{M(T,-) <1}]| _ |Bn{M(T,-) <1}|
BA{M(T,)<1}

Hence it follows with obvious calculations that
fM(T,x)d:l:Z f M(T,z)dx > 0 for all T > 0.
B BA{M(T,)<1}

Theorem 2.4 is thus proven.
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Chapter 3

A biofilm model with
chemotaxis effect:
nonautonomous case

3.1 The Model

This chapter is devoted to the nonautonomous version of system (2.1)-(2.4): the
system

OM =V - (|[M|*VM) -V - (|M|"Vp) + f(t,M,p) in (1,0) x €, (3.1)
orp = Ap—g(t,M,p) in (1,00) x £, (3.2)
M=0, p=1 in (7,00) x 82,  (3.3)
M(r,-)=M;, p(1,) =p;s in €, (3.4)

where a and +y satisfy the 'balance’ condition (2.5):
a
by +1<y <o

QcR?(d=1,2,3) is a nonempty smooth bounded domain and M, € L* (1),
pr € WH*(Q). We assume that the functions f and g satisfy the following
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nonautonomous version of the assumptions (2.6)-(2.11): for all ¢, M, p € R let

|£(8, M, p)| < fr(t)(1 + [M[*)? for some & € [0,a —v+2), fi e (Ly(R)",

(3.5)
f(t, M, p)sign(M) < —F>|M| + f3(t) for some F» e RT, f3 e (L;(R))", x> 1,
(3.6)
g(t, M, p) = g1(t)p + g2(t, p) M for some g1 € (C*(R))* :
%gl(t) < O? gl(_oo) < 00, (37)
19204, 9)| < ga(t) for some gy € (LJ(R))*, 1> 4 (35)

and, in order to ensure uniqueness and non-negativity of solutions for non-
negative initial data,

F(t, M, p) = f (t,M|M|2+%*1,p) — FyM|M|#= ", for some Fy e R, (3.9)

FeWpr(R®), goe Wh' (R?), f(t,0,p) >0, ga(t,0) <O for all t,p e R.
(3.10)

The following example of functions f and g satisfies the conditions (3.5)- (3.10):

Example 3.1.
(M*)*5* :
ft, M, p) = —M + ————— arctan(p) sin(t),
(t, M) iy ) )
g(t, M, p) = arccot(t)p + M p cos(t).
p+1

We define weak solutions of (3.1)-(3.4) in the following way:

Definition 3.1 (Weak solution). A pair of functions (M, p) defined in [r,00)xQ
is said to be a weak solution of (3.1)-(3.4) for M, € L*(Q), p, € WL*(Q), if
for allT > 1

(i) MeL*((r,T) x Q), [M|*M € L? ((r,T); H}(Q)), 0;M € L* ((r,T); H~*(Q));
(i) p—1e O((7,T); Wy " (Q);
(iii) (M, p) satisfies the equation (3.1) in L* ((r,T); H-*(Q)), M(r) = M, in

Cw((1,T); L*(Q))-sense and

plt) — 1 =el=5(p 1) — f =93 (s M(s), p(s)) ds

T

in Wy ™ (Q).
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Remark 3.1 (Initial condition). From M e L*((r,T);L*())) and 6;M €
L2 ((1,T); H (), it follows with (1.5) for pg = 2, E = L*(Q) and E; =

H=1(9) and the compact embedding (see Theorem 1.10) L2(Q) —‘> H-1(Q)
that M € C((r,T); (L*(Q),0(L?(2), (L?(£2))"))). Therefore, the initial condi-
tion for M makes sense.

In the present work, we study the well-posedness and the long-time behav-
ior of the nonautonomous system (3.1)-(3.4). We prove the following nonau-
tonomous version of Theorem 2.1

Theorem 3.1. Let the functions f and g satisfy the assumptions (3.5)-(3.10)
and the constants o and y satisfy v € [% + 1,a). Then the wnitial boundary-
value problem (3.1)-(3.4) is uniquely solvable (in the sense of Definition 5.1)
for each pair of starting values (M., p,) € L*(Q) x WE*(Q) and (in the sense
of Definition 1.4). The solution is uniformly bounded in time in the phase space

L7 (Q) x Wh*(Q).

The proof of Theorem 3.1 is divided between Sections 3.2 (existence) and 3.3
(uniqueness). The positivity preserving property is a consequence of the pos-
itivity results from [11]. Sections 3.4 (dissipative estimate) and 3.5 (pullback
attractor) are devoted to the study of the long-time behavior for our system.
The main result is Theorem 3.2. It states the existence of a dissipative estimate
for the solutions of (3.1)-(3.4), and the dissipation proves to be with exponential
speed. In Section 3.5 we establish the existence of a global pullback attractor.

Remark 3.2 (Notation). For the sake of convenience, we assume throughout
this chapter that the constants B; (appear below) for all indices ¢ are only
dependent upon the parameters of the problem, that is, upon the constants «
and ~, the functions f and g and the domain €2, and not upon the initial data
M., p or the time variables 7 and ¢, or, unless stated otherwise, any other
parameters.

3.2 Existence of solutions

Proof of Theorem 3.1 (Existence). The main idea of the existence proof is to
choose a suitable regularization sequence for the problem (3.1)-(3.4) and then
apply the compactness method (see [21]).

Let us consider for arbitrary T" > 0, n € N a non-degenerate approximation
of the problem (3.1)-(3.4), the system

o Yy
0,0, =V - ((|Mn| +i) VMn) v ((|Mn| +i) Vpn)

+ f(t, My, pn) in (1,7T) x Q,
(3.11)
Orpn, =ADpp — g(t, My, pr) in (1,7) x Q

(3.12)
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with the same initial and boundary conditions as before:

M, =0, pn =1 in (1,T) x 09, (3.13)
M,(-,7) = M;, pp(,7)=prin Q. (3.14)

As a consequence of the a priory uniform boundedness, the general theory from
[20] may be extended to the non-degenerate problems (3.11)-(3.14) (for an al-
ternative treatment via maximal regularity see [2]). It follows that they are
uniquely solvable in the class of functions which is defined by Definition 3.1.

Further, in the same manner as the estimates for the solution itself are de-
rived in Section 3.4, one can show for the approximating sequence {(M,, pn)}
the following a priory estimate:

neN

M oo (7 0y w2y - IV Pl Lo () ) s Ml M 271y, 3 )y < Ba- (3.15)

With the help of (3.15) we can now estimate the right side of the equation (3.11)
in the L?((7,T), H=*(Q2)) norm uniformly in n € N. We obtain

10 Mol L2 (1), -1 (02)) < Be- (3.16)
Moreover, applying Lemma 1.1 for ¢ = o+ 1 and (for example) s = % together
with the Sobolev embedding theorem yields
2(a+1) < N2(a+1) @ 2 )
I s g SV @ DIMLE MG o,
e 2
<By 1Mo |* Mol e - (3.17)

Integrating (3.17) over (7,T) and combining with (3.15)-(3.16) we conclude that

||Mn|| 2(a+1) B4~

1 <
W) () T D (0) 11-1(0) )

The spaces By := W 2@ty B .= [2et1)(Q), Ey := H1(Q) satisfy
the assumptions of Theorem 1.12, consequently, it holds (set p1 := 2(a + 1),
po = 2)

wh(2a+1).2) ((7_7 T);WmQ(aH)(Q)’H*l(Q)) s L2OFD((7.T) x Q),

and the set {M,,| n € N} is thus compact in the space L2(**D((r,T) x Q).
For the second component, we now use the (3.15) to estimate the right side
of the equation (3.12) in L*((r,T), W~=1*(Q)) and get

||pn||W1~(‘7~=7J)((7—7T);W01= ”(Q),W*LD(Q)) < B5(| |VP0||w)-

The spaces E; := Wy (Q), E := L*(Q), Ey := W~1%(Q) satisfy the assump-
tions of Theorem 1.12, consequently, it holds (set py := pg := o0)

W (7, 1) Wy (), W (Q)) > C(Im, T, L7 ().
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The set {p,| n € N} is thus compact in the space C([7,T], L™(2)), hence also
in the larger space L™ ((7,T) x Q).

By combining these results, we obtain that there is a subsequence (n,,) such
that

M,, — M in L**D((7,T) x Q),

L

P, = pin L7((1,T) x Q),
m—C
Von,, e Vpin LY ((1,T) x Q). (3.18)

for some (M, p) € L@tV ((7,T) x Q) x L™ ((r,T) x ), and for a subsequence

(not relabeled) the convergence is almost everywhere in the cylinder (7,7") x Q.
It thus suffices to check that (M, p) is indeed a solution of the original prob-

lem (3.1)-(3.4) in the sense of distributions. Recall first that f,g € W1*(Q) for

Q := (1,T) x (—B1, B1)?, so that, with the second part of the Sobolev embed-

ding theorem, we have that f,g e C(Q).

With the continuity argument and the dominant convergence theorem, we ob-

tain that
f ('7Mnm7pnm) m:)oo f('aMa p) in LQ((Tv T) X Q)?
g(',Mnm,an) m:)”/;, g('aMa p) in L2((Ta T) X Q)?

M a
nm 1 1
J (|M| + ) dM — ——|M|*M in L*((1,T) x ),
0 n m—ow o+ 1

1 Y

(|Mnm| + ) — |M|[" almost everywhere in (7,7 x . (3.19)
N, m—w

Moreover, combining (3.19) with (3.18), we obtain with the dominant conver-

gence theorem that

~
<|Mnm| + 1) Von, — |M|"Vpin LY _((7,T) x Q).
N, m—aP0
Since the convergence in the distributional sense is weaker than the LP con-
vergence for any p € [1, 0] or than the LS_, convergence and since differential
operators are continuous in the space of distributions, it follows with the conver-
gences we derived in this subsection that (M, p) solves the problem (3.1)-(3.4)

in the sense of distributions. The existence part of Theorem 3.1 is thus proven.

O

3.3 Uniqueness of solutions

Proof of Theorem 3.1 (Uniqueness). Let us assume that the problem (3.1)-
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(3.4) has two different solutions (M, p1), (Ma, p2) with the same initial data:
My(7) = Ma(7), pi(7) = pa(7).
Since both (M7, p1) and (Ma, p2) are solutions of the equation (3.1), we get
1
0r(My — Mo) =mA (|Ma|* My — |Ma|* M) = V - (|M1|"Vp1 — |M2]"Vp2)
+ (f(taMlvpl) - f(t7M27p2))
1
=——A(|M|*My — | Ms|* M.
o1 12 UMMy — [Mo] My)
=V (IM"V(p1 = p2)) = V- (IM1]" = [M]|") Vo)
+ (f(taMhpl) - f(t7M17p2))
+ (f(t’Mlaf)Q) - f(ta M27p2)) . (320)

We want to estimate the difference M; — Ms, and we choose to do so in the
[|[V**(-)|| norm. For this purpose we multiply (3.20) by (—=A)~!(M; — Ms) and
integrate over 2:

(9:(My — My), (—A)~H (M — My))

= (A (M| My — [Ma|*Ms) , (—A) (M — Mz))

+ (=V - (IM"V (p1 = p2)) , (=A) (M — My))

+(=V- (M| = |Ms|") Vo), (=A) (M) — My))

+ (f(tv Mlapl) - f(t7M17p2)7 (_A)il(Ml - MZ))

+ (f(t, My, p2) = f(t, M, po), (=A) 71 (My — Mp)). (3.21)
On the left side of the resulting equation, there appears:
1d
(0:(My — M), (=A)"H(My — My)) = Sd |V (M — Mz)”2 : (3.22)

Suitable estimates for the terms on the right side of (3.21) are required now.
The operator A is self-adjoint, therefore

(A (IM1]* My = |M]*Ma) , (=A) " (M) — My))
= — (|M1|* My — [M|* M2, My — Ma). (3.23)

In the subsequent Section 3./, we prove the uniform boundedness for solutions
of the problem (3.1)-(3.4), so that

R = max {|Mil., , [Vpilly s lpill} < o0 (3.24)

(P
holds. This and (1.6) leads to
(=V - (M"Y (p1 = p2))  (=A) 7 (M — M)
=((IM"V (p1 = p2)), V(M1 — M3))
<SRY|V(p1 = p2)| [V (M = Ma)], (3.25)
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(=V - (1M = |M2]") Vp2), (=A)"H(My — M3))
=((|M1[" = |M2]") Vo, V(M — M)
SR[|M|" = [ M| 7| [V (M — My)| . (3.26)

Finally, combining (3.24) with the assumptions made on f and fixing an (arbi-
trary) t > 0, we obtain that

|f (s, My, pr) — f(s, My, p2)]| (s, My, p1 + 2(p2 — p1)) dz||pr — p2|
< Bl(t>R) lp1 — pa| (3.27)
(2.11)
and
|f(s, M1, p2) — f(s, Ma, p2)|
. 10) ‘f |M1| 2M17p2) (87 |M2|%M2ap2) + F4 (|M1|%M1 — |M2|%M2)‘
i
< aM( |M1|2M1+z(|M2|2M27|M1|2M1) p2) dz| + | Fyl
. ||M1|5M1 - |M2|%M2|
< Bo(t, R) || M]3 My — | My My)| (3.28)

(2.10)

for all s € [0,¢] and some constants By (t, R), B2(t, R) > 0 depending only on
the parameters of the problem and on R and ¢. With (3.22)-(3.28) we conclude
from (3.21) that

2dt I - )
— (|My|*My — |Ma|* Mo, My — Ma) + Bs(t, R) [V*(My — My)|
: (|||M1|W — [Ma|"| +[IV(p1 — p2)| + H|M1|%M1 - |M2|%M2||) (3.29)

for some constant Bs(t, R) > 0 depending only on the parameters of the problem
and on R and t.

a 2
z2 11

With hm | e F o)

()" _
Go) = AT < o0 it follows that

«© (3 2
(1M1= My — [Ma|= M2)™ < By (|My|* My — [ M| Mo) (My — Mz),  (3.30)

and with iﬂzijizl = # <o and v = § + 1 we have
1M = [Ma|"] < BsR'™ 3% [|My] % My — | M| % My (3.31)

Applying (3.30)-(3.31) together with the Young’s inequality to (3.29) yields
ﬁnally

V(M — M2)||2 <Bs(t, R) [V** (M, — M2)H2 + Bs(t, R) [V(p1 — p2)|”
(3.32)

7|



50 A biofilm model with chemotazis effect: nonautonomous case

for some constant Bg(t, R) > 0 depending only on the parameters of the problem
and on R and ¢.
Now we turn to equation (3.2). Both (M, p1) and (My, p2) solve it, hence

dr(p1 — p2) =A(p1 — p2) — (9(t, M1, p1) — g(t, M2, p2))
=A(p1 — p2) — g1(p1 — p2) — (92(t, p1) M1 — ga(t, p2) M2)
=A(p1 — p2) — g1(p1 — p2) — (92(t, p1) — g2(t, p2)) My
— g2(t, p2) (M1 — M>). (3.33)

As usual, we multiply (3.33) by p1 — p2 and integrate over €2, so that it comes
out

1d
3q lor = pal® = = V(o1 = p2)|* = g1 |1 — p2”
— ((92(t, p1) — g2(t, p2)) M1, p1 — p2)
— (92(t, p2) (M1 — M2), p1 — p2) . (3.34)

Due to the property (1.7) of V* and the assumptions made on go together with
the Poincaré inequality and uniform boundedness of Vps and M;, we obtain
the estimates:

(=g2(s, p2)(My — M3), p1 — p2)

— (92(s, p2)(p1 — p2), My — M)
(V(92(5702)(P1 - p2)), v+*(M1 - M2))
(92(s, p2)V(p1 — p2), V*(My — My))

# (L2621 = o)V, TP 01 - 012

5,010 = e [T5 00 = 0)| 4 9,

[V (M = M)

H (s, p2)|p1 — p2|

(2<11) g3 + Br(t,R)) [V(p1 — p2)| [V* (M1 — M) (3.35)
and

|(92(s,p1) — 92(s,p2))M1| < R
(2.11)

< Bs(t, R)lpr — pal (3.36)

1
0
J °9 (8,01 + 2(p2 — p1)) dz||p1 — p2-
0 op

for some constants Br(t, R), Bs(t, R) > 0 depending only on the parameters of
the problem and on R and ¢. Applying the estimates (3.35) and (3.36) to (3.34)
yields
1d 2 2 2
3z 1P = p2” < = [V(pr = p2)” + By(t, R) [lp1 — p2|

+ (95 + Br(t R) [V (o1 — o) [V**(My — My)| . (3.37)
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By adding (3.32) and (3.37) together and using the Young’s inequality one more
time, we finally come to the inequality

& (1970 =) + Bo(t, R on — el

<Bio(t, R)(gs + 1) (||V+*(M1 - Mz)H2 + Bs(t, R) [p1 — P2||2) (3-38)

for some constant Byo(t, R) > 0 depending only on the parameters of the prob-
lem and on R and t. Integrating (3.38), we conclude that

[V (M (8) — Ma(t)[* + Bs(t, R) o1 (t) — pa(t)]?
<(IV* (M (r) = Mo ()| + Bo(t, B) lpa(7) = pa(7)|) ePrott Sy on(er e

<Bu(t.B) (| O () = Ma()]* + Bolt. B) o1 (1) = po(D)IF)  (3.39)

for some constant By (¢, R) > 0 depending only on the parameters of the prob-
lem and on R and ¢. This proves uniqueness for the problem (3.1)-(3.4) since
the solutions (M7, p1), (Ma, p2) coincide at ¢ = 7. The uniqueness part of The-
orem 3.1 is thus proven.

O

3.4 Dissipative estimate

In this section, we use the condition v > 7 to establish a dissipative estimate
for our model, which is necessary to show the existence of the pullback attractor
(see Section 3.5). Our result reads:

Theorem 3.2 (Dissipative estimate). Let the functions f and g satisfy the
assumptions (3.5)-(3.10) and let the constants o and v satisfy v € [$ + 1, a).
Then the following dissipative estimate holds for the initial boundary-value prob-

lem (3.1)-(3.4):

M@)o + o)) <Co ([|Mr]lee + ||prllwren @)
cemwrt=T) 4 p forallt =T, (3.40)

where the positive constants Cy, 7o, wo, Doy depend only on o, y, f and g, and
are independent of M., p- ort.

Remark 3.3. As will become clear from the proof below, we do not actu-
ally need the condition v > § + 1 to obtain the dissipative estimate (3.40).
However, this condition is crucial for uniqueness of solutions (see the proof of
Theorem 3.1).



52 A biofilm model with chemotazis effect: nonautonomous case

Proof. The main idea of the proof is to derive a collection of coupled dissipative
estimates for M and Vp in various L° norms, with § < oo for the M component,
and then apply a bootstrap argument in order to obtain the desired dissipative
estimate in the L* norm for both components. The estimates are done formally,
they can be justified by passing to an appropriate sequence of regularization
problems (e.g., (3.11)-(3.14)), performing the estimates in the same manner for
the solutions of these problems and then passing to the limit.
We start with rewriting the equation (3.1) in the following way:

1

oM =V - <|M|7V (
a—vy+1

MPIP = p) )+ S M) ()
In order to derive our first a priori estimate, we multiply this equation by
(#M|M|°"7 — p) and integrate by parts over €2 to obtain

a—y+1
1
(a0r —
o —
2)

MM p)
= - <|M|V7

1 a—ry
(oz—’y-i—l M p)
+ <f(t,M,p)

1
,MIMI“‘”—p)
a—v+1

MMl —
MM =)
d( L

dt \(a—vy+1)(a—~+2

< (SO0 MM ) = ). ()

< (f(aM, )

sl 2—(M,p>)

Next, we multiply the equation (3.2) by (d¢p + p — 1) in the same sense as above,
in order to obtain

, 1d , 1d ) )
S p-1P=-2= - - M —1
ol + 5 o = 1P = =S S IVolP = V6l = (902 M, p), dip + p— 1)

1d
5 (VI 1o = 112) = Vol = |iplP = (g0t M, ), 0p + p = 1).
(3.43)

By adding the inequalities (3.42) and (3.43) together, we obtain that

d 1 a—vy+2 |12 1 1

— M| — (M - 241 =1

dt((a_wl)(a_,w)\h | (M, p) + 311Vl + 5l ||)
1

< - - a—7y __ _ 2 _ _ 2

— (9(t, M, p),0p+p—1). (3.44)
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We consider first the term containing g(t, M, p) = g1(t)p + g2(t, p)M. Tt then
holds:

1d 1d
— (g, dip+p=1) = = 5= (aillol?) + 5z allell” =g (el = (1. )
1d )
< — —q,
S (g1llpI1?) = a1 (1ol = (1, p))
1d 1
< YT (91||P||2) _(1_5)91||p||2+£91|9|
. d( pl?) = (1 =€)l ||2Jri (M) (3.45)
(3}) 9 qr 9P gilip 4691 .

and
1
2
—(g2(t, p)M,0ip + p— 1) < e ep|” +ellp— 1> + ;Ellgz(t,p)Mll2

1
2
< el +ellp = 1P + g3 lIM|P. (3.46)
(3.8) 2e

By combining (3.45) and (3.46) with the inequality
—(&pJW)—H@pF=£%HAHF-—%H&9W (3.47)
and choosing € < 3, we have
— (0p, M) = Hf?tpH2 —(9(t, M, p), 0ep+p—1)

d 1 1
@mm) (1= anllol® +2llo — 1 + o (I - (—QMWQ

592 ) I

d 1
o7 (91llpl?) = (1 = e)gullpll® +ellp — 11> + (Y

1
\2
_1
2
11 ,
+ (54 302 I (3.48)

Further, we can estimate the terms with f from (3.44) in the following way:

(f@,ﬂfqﬁ,ﬂfLNﬂ“_w)(§%>(—fﬁﬂ424-ﬁﬂﬂ4Llﬂﬂ“_”)

o= 2
= b H HIM =7 (3.49)
—umem»sde+1ﬁ( 33
(3.5) 4e
<2‘€||p_1||2+25+if2+1f2) (3.50)
h 4e’t T 4t :
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By using the inequalities (3.48)-(3.50) we conclude from (3.44) that

d 1
dt <(a—'y+1)(a—'y+2)

1 1 1
IV 2 - -1 2 - 2
LIV + 2l = 11E + Sarlol

a—y+2
2

a2~ a1, )

a=y+2 2

< B ||M)*F

a—~+1

2
+f3H|M| 2

(L L) e
2 T 293

1 1
~ VAR = (= Sl + 3ello ~ P + (264 Lon(r) + 412 .

1 3
+ - f2 |18

4

(3.51)

In order to shorten the formulas, we introduce a new variable:

1 a—vyt2 ||2
= M| 2 — (M,
v (a—7+Dm—7+ﬂw | (M, p)
1 1 1

+ 3192 + Sl = 1P + Sanllpl? + 1. (3:52)
|M “3* is the leading M power present in the expressions (3.51)-(3.52) due

to the assumptions made on «,~ and £, and we also have the estimate
1
(M, p) <ellpl[* + 1M (3.53)

for all € > 0. Altogether, applying the Poincaré and the Holder inequalities and
adjusting the constant £, we can deduce from (3.51) the inequality

d
7P S —A1p + azy’ (3.54)
for some A; € R, and as € Li (R), az > 0 and
51,5}
2

A simple calculation shows that any solution ¢ of the inequality (3.54) satisfies
the inequality

1
1—6

¢
o(t) < ((,010(7')€A1(19)(t7) +(1- 0)1[ e*Al(lfe)(t*S)ag(s) ds)

T

(3.55)

Applying Lemma A.1 from the Appendiz to the inequality (3.55) and taking
into account that as € L}(R) and the inequality (3.53) holds, we finally obtain
our first dissipative estimate. Set
[
ys, = 1M[l50 + 1+ [IVpll?, (3.56)
dopi=a—v+22=2
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it holds then that
Yso (t) < Cyao Yso (T)e_wyéo (=) + Dyao

for some Cy, ,wy, , Dy, that depend only upon the parameters of the problem.
Now, the equation (3.2) can be rewritten in the following way:

O(p—1) = Alp—1) —g(t, M, p)
and can thus be regarded as an abstract parabolic evolution equation with
respect to p — 1. Therefore, for all ¢ > 0 it holds (see [34]) that

pt) =1 =e""T2(p(r) 1) — f el%g(s, M(s), p(s)) ds, (3.57)

and by applying operator V to both sides of (3.57), we obtain that
¢
Vp(t) = e=DAVp(r) — j V (192 g(s, M(s), p(s)) ) ds. (3.58)

The initial value p(7) is assumed to be sufficiently smooth, so that the following
holds:

IVp(7)l]s < oo. (3.59)

What remains is to estimate the ¢ norm of the integral from (3.58) with the
help of (1.9)-(1.10) and assumptions on g. By choosing 1 € (3,1) and 6 > 1
such that W?2#2(Q) — W1°(Q), we arrive at the estimate

ij (e(tfs)Ag(s, M(s),p(g))> ds
<£ (=A)H (e(tfs)Ag(S,M(s),p(s)))Hs ds

<A(u75)J e Pt =) (Joa(s)l[1p(s)l15 + 93(s)[M(5)]]5) ds. (3.60)

T

4

Altogether, we obtain from (3.58)-(3.60) the following estimate:
V()]s <e PV p(r)lls + Alp, 0)-

f e U=t — 5) (|91 ()] + g3(s)) (Ilp()]]5 + IM(s)]]5) ds.
’ (3.61)

Leaving this result for a moment and returning to the equation (3.1) we multiply
this equation by M|M|°~! for an arbitrary § > o — v + 1, so that all occurring
powers remain non-negative, and (formally) integrate over €

(0 M, M|M°™") = (V- (IM|*VM) =V - (|]M]"Vp)
+f(t, M, p), MIM|°').
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It follows that

1 d a1 2 46 akotl 2
- - _ = M
d+1dt H' (a+0+1 HV| e
20 ato+1 o, 51
[ — M 2 M7 2t =
+a+6+1(v| | 1M vﬂ)
+ (f(t, M, p), MIM|*~1). (3.62)

@y o-1

Set ¥(0) := =242 . Then ¥(5) < 1 holds due to the assumption a > ~.
2

Applying Holder’s inequality, we obtain that

(vl ) = (V1M O )
<l HV|M|“““ =52 " v,
<8, [V | vl (3.63)

For the last inequality, the embedding H'(Q) — L%(2) (recall that d < 3) was
used. Further, we apply once more the Hélder inequality and assumptions on
the function f and thus derive:

S+1
Il (1%

We can conclude from (3.62) using (3.63) and (3.65) that

S5+1
(f(8. M, p), M|M|P™) < = B |15

(3.64)

2) o . (3.65)

2
g

1 d s+1 |2 40 atstl 2
L TV <—7HVM
0+ 1dt H| | (+6+1)2 M|
25 atses [1+9(0)
— % B HVM
+—2 _p|vim IVl
s
51 (12 sa1 2\ T
= E o' [+ ity (o2 [) 7

Since 1 + ¥(d) < 2, it follows with the Young inequality that

o)
1 d 5+1 5+1 S+1
] < =R s o, (o)
+ By (0) [Vl (3.66)
1-9(5) =5 =5
_ — S — .
where B4(d) = —5~ (a+5+133> ((a+§7+1)2 1+ﬁ(é)> , therefore this

constant depends only on § and the parameters of the problem.
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Next, we return to the equality (3.62) in order to repeat the whole procedure
once more, but this time we will be more precise about the estimates made, and
will use the regularity achieved up to this point. First, due to (3.64) and two
obvious inequalities we have

12 « 1112
L B A

e (a2,

+®+1KﬂﬂMP%MMﬂFU~
— B, HV|M|”+‘5“ ’
+ 0+ DBl [F1aa=5 | a2

— (0 +1)F, H|M|5J’5 + (5 +1)Bs f3 H|M|‘”+"“ * 3.67)

for6 > a—~v+1with (= 6+1

Recall that f3 € Ly(R) and k > 1. Taking into account a special case of the
interpolation inequality (1.4), the inequality

6

<B -
lell < Bl -

where the constant Bg depends only on k and the domain 2, we obtain with
the help of the Young inequality that

(6 + )[Vol[[jo]["®

219(5)1
<(Bo)"® [ £Vl + Br(e)(5 + 1) O [yl 0D (3.68)
and
(6 + 1) f3l10][2¢ < (5 + 1) f3 (Be)* [|[Vo] 20— jo] o=
T
< (Bo)® | lIVoll? + Bs(e) (f3(6 + 1)) 701 [jofp O~ |,

where By(e) and Byg(e) depend only on € and the parameters of the problem.
With the Holder inequality, we also have

a+6+1

WMFHW q>

q 142k

HIMI (3.70)

5-}—1
10412
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Since H%K < 2 holds due to k > 1, we can assume that ¢ < 2 and that it is

independent from ¢. By combining (3.68)-(3.69) for v := |M]| 5 with (3.70)
and choosing e small enough depending only on Bs and Bg (thus it depends
only on the parameters of the problem) we can conclude from (3.67):

g o=

29(8)

> 1—o(a)(1-1)
q

2¢ L

for 6 = o —~ + 1. Since ¥(9),( € (0,1) it follows for all § = a — v + 2 that

< (113 +1)
<Bus (1ol + 75 +1) (10015 +1) (1001255 +1)

Py (HMHg + 1).

B (191, 6+ D) (a1

121

(i

B (6+ )0 ([l

R +1 H|M|“1

Once more we get an integral inequality for |M (t)Hg + 1

5
IM(@)]5 +1
t

<Bpo* j AR ([9p(s)2 + f() + 1) (IM()]G a0 +1)

T

(I8 +1)" ds+ e R0 (M) +1)). (3.71)

Now we are ready to derive some more dissipative estimates for the prob-
lem (3.1)-(3.4). We will extensively use Lemma A.I from the Appendiz. This
lemma appears to be very useful in our situation. It actually shows that the
"dissipative property’ is preserved under standard operations (addition, multi-
plication, raising to a power and integration). To shorten the formulas, let us
set:

hl = ||vp||3+1a
us := [|[M||3+1, del,00).

Observe that particular powers of ys, and hy, he and us (for sufficiently large
0), ur and hs can be connected with one another by the inequalities of the
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type (A.1) in the same manner as z; and z3 from Lemma A.1 are. From the
Lemma A.1 we can conclude that all of them dissipate exponentially with ¢:

hi(t) < Ch,(hi + ys,)"™ (1)~ (=7) 4 Dy | (3.72)
ha(t) < Ch, (ha + ug)™2 (1)e~“n2 =) 4 Dy | (3.73)
us(t) < U (us(r) + Cuy (hy +y5,)™ (7)) e 70 4 D= Ts(t),  (3.74)

<
<

where the appearing coefficients depend on the parameters of the problem, and
only the coefficients C,, and D,,, depend on ¢ as well. We especially emphasize
that r is independent from ¢ (it will be crucial for the existence of the uniform
dissipative estimate). Indeed, from (3.61) and the definition of ys, (ys, > 1, see
(3.56)), we obtain that

- 3
IVp0ll <90l + 4 (3.2)-

f e (= 5)=H (g1 ()] + g5(9)) (llo(3)]|2 + [[M(5)]]2) ds

T

3
<eiﬁt||Vp(T)||3 +C(1,2,2)A (4,2) .

[ P = ) U919+ gl (0) s (3.75)

T

since v —y +2 > 2, W22 s W3 and W2 — L2(Q) (with the embedding
constant C'(1,2,2)). Next, using (3.61) one more time, we obtain that

_ 3
Vo0l <e*19p(r e + 4 (5.7)

f =9 (1t — )= (|gu ()] + 95(5)) (p(s)l7 + [[M(5)]|) ds

T

3
<P IVp() o + C(1,7,3)A (4, 7) -

f e (k= 5) 7 (g1 (s)] + 93(9)) (IVp()ls + 1+ [|M(s)]]7) ds
T (3.76)

since W23:7 — Wh* and W'3(Q) — L7(Q) (with the embedding constant
C(1,7,3)). The estimates for h; and hs now follow with (3.75)-(3.76) and
_3
Lemma A.1 due to the fact that for the function d(t,s) := (t —s), *(|g1(s)] +
g3(s)) the condition sup||d(,-)||1r) < o0 is satisfied (recall that we assumed
t>0

that g1 € L*(R) and g3 € L}(R), n > 4).
Let us now check the dissipative estimate (3.74). With (3.66)

1d -1 2
Sl < — Fous + Q| fsus® + By(8)h 7@ (3.77)
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o 5—2
Recall that 9(5) = % and, consequently, - 19(5) aa’y+1 By for
some Bis and § = 4, sufﬁ01ent1y large. Now, the Young inequality yields:
81 1 -1 6—1 1
ug® = (sug)aTa_éT < 5 cue + 55_(6_1)7

therefore it follows from (3.77) that

d
%u(g -9 (Fg —5|Q|f3

-1
) us +e=07V|Q| f3 + B4(8)h7°.
Gronwall’s lemma then yields

t
ug(t) < f 0N Pl 55 s (c=ED|0| i (5) + 6 By(0)AP(s) ) ds

8§t Fa—elQ|fs(s) 5t ds

+e ugs (7). (3.78)

Observe that it holds that

t [l
f Fy — £]Q|fs(s) ds ZFQ(t—T)—5|Q|Jl Fo(5)ds
>Fat —17) = <l foll ey (It = I7])
> (B =l falliym ) (¢ =) = 262Ul follymy- (3.79)

For ¢ := it follows with (3.78) and (3.79) that

Fy
2ol 177 |y

us(t) <e ( f e*<t*8>572( =D f3(s )+5B4(5)hf125(5)) ds

T

e =R s (r ))

The dissipate estimate (3.74) follows now with the estimate (A.2) of Lemma
A.1 and the dissipate estimate (3.72) for hy.
Now, from the inequality (3.71) we can conclude that

t
us(t) e *Fet="ys(r) + 31152”1 e~ Hy (5)1

T

5(8) ds, (3.80)

Wk QN

where

2(q p)

Hy(t) := (h3"(t) + f5(t) + 1)& 5 (1)

P

I\:\Q

2
Taking into account that ug s dissipates with e=02 (=) and that H, dissipates
2

with an exponent independent of ¢, we consecutively apply (A.3) to (3.80) and
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get
52 3 ' 572
us(t) <e 07 " Dys(r) + B1152”ﬂ§5(t)f e 9T (s) ds
2
gef‘;%(tf"')ué(T) + B1152K71H2(t)ﬂ§5(t)7
2
where
o . 2a—p)
Hy(t) = (h2 (&) + 1fsllEp ) + 1) Ug "ty (1)

and § > d, is sufficiently large. The bound §, depends only on the parameters
of the problem. Therefore, we may assume that

U(t) =e % g (1) + Bigd® T Ho(t)aig 4(t), (3.81)

[SISPSYIN]

Since
us(7) = [|M(7)[13 + 1 < ||M(7)]||9] + 1

we conclude from (3.81) that for

e%(t_”-) b

it holds that
2
As(t) < Bqu(t)éz""lA%é(t).

One can show by induction then that

n k 1)y a)k
4 e\ (4 q\ (2% Do k(%)
AL, 0 < (Bul@s =0 (1) As, (1
q 2
2 @-1)%( 2y
2 oy ()
= H% (t)As, (1)
Therefore, we get
limsup AJ (1) < H{)AJ* (1). (3.83)
[ E=tee)

By combining (3.83) with (3.82), we finally arrive at an estimate for ||M(t)||:
1
IM@)||e+1= 6lim ug (1)
— 0

1
< limsup @] (t)
S0
1

< H() <17§: () + (||M || + 1) e_?(t_7)> . (3.84)
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Now, since the functions H and s, dissipate exponentially (recall (3.73)-(3.74)
and the definition of H and Hj), we apply Lemma A.1 to (3.84) and conclude
that || M| dissipates exponentially as well. Moreover, it follows from the proof
that there exists a dissipative estimate for ||M ||, of the form given in (3.40).
The dissipative estimate for ||Vpl||o. +1 = ho is given in (3.73) and the Theorem
8.2 is thus proven.

O

3.5 Pullback attractor

The aim of this section is to apply the general theory from Section 1.4 to the
problem (3.1)-(3.4). We prove

Theorem 3.3. Let the functions f and g satisfy the assumptions (3.5)-(3.10)
and let the constants o and ~y satisfy v € [% +1, a). Then for all p € [1,00] the
solutions of the problem (3.1)-(3.4) can be described by a process {U(t,7)},,

that acts on the space HP () x (1 + WOI%(Q)> The process {U(t,T)},>, pos-
sesses the pullback attractor {A(t)},p in HP(Q) x (1 + Wol’%(Q)>, which is

independent of the concrete choice of p. Moreover, the set | JA(t) is relative
teR

compact in HP(2) x (1 + Wolx(Q)) for allp e [1,00].

Remark 3.4 (Rate of convergence to the pullback attractor). The rate of con-
vergence to the pullback attractor A(t) may, of course, depend on p and can be
arbitrarily slow.

Proof of Theorem 3.3. We showed in Theorem 3.1 that the problem (3.1)-
(3.4), if considered in the space L*(Q) x (1 + Wol’w(Q)), is well-posed: for

each pair of initial values (M, p;) € L*(Q) x (1 + WOII(Q)) there exists a

unique solution (M, p) in terms of Definition 3.1.
We define the solving process {U(t,7)},., of the problem (3.1)-(3.4) on the

phase space L*(Q) x (1 + W&L(Q)) as follows: for all ¢t = 7 let
Ut ) s L) x (14 W (@)) = L) x (14 W) (),

U(t,7) (M, pr) := (M(t), p(t)) for all (M,,p,) e L*(Q) x (1 + WOI%(Q))

The dissipative estimate (3.2) provides the existence of the ball B, of radius
2D, centered at (0, 1), which uniformly absorbs all bounded subsets of L™ (£2) x
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(1 + Wol"“(Q)) According to Remark 1.11, the set

Cy := U UU(t,t—s)B*,
5€[0,T(By)] teR
where T'(By) is such that U(t,t — s)Byx C By for all s > T(By), is a pos-
itively invariant set that uniformly absorbs all bounded subsets of L*(Q) x
(1 + WolL(Q)) With the dissipative estimate (3.2), it follows also that C is
actually contained in a ball By, of a radius Rys, Rys = 2D, centered at (0, 1).
Clearly, the spaces HP () x (1 + VVO1 " (Q)) inherit all the properties of the

space HP () that are listed in Theorems 1.6 and 1.7 for p = o0 and p € [1, 00),
respectively. In particular, they are locally convex spaces, so that the general
theory from Section 1.4 is applicable.

The fact that L™ () x (1 + W()lw(Q)) and all HP () x (1 + W&T(Q)) co-
incide as sets and have the same set of bounded sets (see Theorems 1.6(2) and
1.7(2)) has as a consequence that, in the spaces HP () x (1 + Wol’%(ﬂ)), the
family {U(t,7)},-, remains to be a process, and the set Cy remains to be a
bounded positively invariant uniformly absorbing set for {U(t,7)},- .-

For p € [1,00), the HP(Q) x (1 + Woly(Q)) topology is, per definition,
stronger than the H*(Q) x (1 + Wolm(ﬂ)) topology, and, if restricted to a

bounded set, it coincides with the restriction of the L?(2) x (1 + Wolf“(Q))

topology (see Theorem 1.7(4)).

Altogether, we arrive at the following conclusion: it suffices to prove the
existence of the family of compact sets with the invariance property (1.11)
that pullback attracts Cy equipped with one of the metrics that generates the
L?(Q) x (1 + W, OO(Q)) topology, for example, with the metric m{>) defined as
follows:

|

m (M. 1), (Mo, p2)) = (1M1 = Mal> + llps = pal s o)

for all (My, p1),(Ma, p2) € L?(2) x (1 + WolT”(Q)) This pullback attracting

family is then the pullback attractor for the whole HP () x (1 + Woloo(ﬂ)) for
each p € [1, 0].

However, to be able to apply the existence criterion for metric spaces, Theo-
rem 1.14, it is necessary for the process operators to be mapping in a complete
metric space.

The underling space, (LQ(Q) X (1 + WOIX(Q)> , mg)), is a complete metric
space, so that the set

C 1= ClL2(Q)x(1+W§>““(Q))(C*),
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equipped with the metric mf), is complete too.

Every L™ () ball is a closed subset of L_, (£2), thus closed in the stronger
topology of L%(Q), so that

C* C By,

and the process {U(t,7)},- . is well defined in Ci.

Let us assume for a moment that {U(¢,7)},- . is a closed process in Cy. As
a closure of a positively invariant set, C, is then also positively invariant under
{U(t,7)};>,- Let us assume further that the set

Ky = CZLQ(Q)X(l—&-WOl’ﬁ(Q)) (UU(T + 1’T)C*> (3.85)

TER

is compact in L?(Q) x (1 + W&I(Q)) As a closure of a uniform time shift of

Cy, K, is also uniformly absorbing. All assumptions of Theorem 1.14 are then
fulfilled since we are dealing with a closed process (the process {U(t,7)},,)
in a complete metric space (the set Cy equipped with a complete metric), and
this process possesses a compact uniformly absorbing set (the set K). Theo-
rem 1.14 yields the existence of the pullback attractor, its sets are contained
in the compact K, and, as we showed above, it is also the pullback attractor
for the process {U(t,7)},>, in each of the spaces HP(Q2) x (1 +Wo* (Q)) for
p € [1,00].

In order to finish the proof, it remains to check the closedness of {U(t,7)}, ,
and the compactness of K.

Let us first prove the closedness of the process operators. In the proof of
Theorem 3.1 we encountered the local Lipschitz-type continuity property (3.39)
for the solutions of (3.1)-(3.4). It can be translated into the following form:

Ut (M9, 1) = Uit 7) (M), p2))

(M0, p0) = (M@, @)

HH—l(Q)XLQ(Q)

SL(t =7, Rus) (3.86)

HH—l(Q) xL2(2)

for all (MT(l), pgl)) , (MT(Z), p(TZ)) € Cy. The constant L(t—7, Ry4) depends only
on t — 7, Ry, and the parameters of the problem.
Recall that due to the embedding theorems for Sobolev spaces, we have

L2(Q) x Wy ™ (Q)—H Q) x L*(Q). (3.87)

Let { (MT(”), p(T")) } N c Cy be a sequence of initial data convergent in L?(2) x
ne
(1 + W&’“(Q)) to some (M., p;). Due to the continuous embedding (3.87),

this sequence converges in H(2) x L%(£2) to the same limit. From the prop-
erty (3.86) we deduce that the sequence {U(t, T) (Mf(n)7 pﬁ"))}  converges to
ne
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U(t,7) (M., p,) in H-Y(Q) x L*(Q) for all t > 7.
Let us further assume that for some ¢t > 7 the sequence {U(t7 T) (MT(n), p(Tn)> } "
is convergent in L2(£2) x (1 + W(}I(Q)) Again, due to the continuity of the
embedding (3.87), the limit is the same. This proves closedness.

To prove compactness of K, in L*(2) x (1 + Wol’%(ﬂ)), we multiply the
equation (3.1) by (a + 1)0;|M|*M and integrate (formally) over §2:

(o + 1) (0M, 0| M|*M) = (AIMI*M + (o + 1) f(t, M, p), M| M)

Here:

[, M, p) ==V - (IM["Vp) + f(t, M, p).
After integrating by parts, we obtain that

a+1)\° apqp2 1 at1]2
(555) 13 ='f* == o viaae|

(a+1)2

5f 3 +1
%+1 (|M|2f(t7M7p),at|M|2 )

With the Cauchy-Schwarz inequality we have

a+1\° @12 12
e LA A YRS
2

(a1 1012 0, a2
so that
2 VM <(a+ 12112 e b, )
It follows with multiplying by ¢ — 7, ¢t > 7 that
o (=) [VIMIH ) <[ VIMIEH P 4 (6= ) (e + 12 |IMI F(1, M, p) H2 .
Integrating over (7,7 + 1), we obtain that

9 T+1 9
v+ P < [ v

4 (s —7)(a+1)? H|M(s)|%f(s, M(s),p(s))H2 ds. (3.88)

It remains, therefore, to estimate the integral on the right side of (3.88). We
have

112 f(s.0,p)| =

L IMIF Ty M A M £(5, )
2
3
<21Vl
gty

+[IM]2 f(s, M, p)| -

VIME [ Aply [1M]F5]
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From the derivation of dissipative estimates for ||M||3 in Section 3.4 we conclude
that for all (M, p;) € Cyx It then holds:

T+1
| IV M@ ds <By (Bu) (3.89)

T

T+1
J [V ()5 ds <Bs (Rux), (3.90)

where the constants By (R4;) and By (R44) depend only on R, and the pa-
rameters of the problem.

Further, due to the classical energy estimate and assumptions on g, we have
for all (M, p,) € Cy

T+1

[ 18017 s <190+ [ (s, 06).pts)) s

T T

<Bs (Rux) , (3.91)

the constant Bs (R.4) depends only on R, and the parameters of the problem.
By combining (3.89)-(3.91) with (3.88), we arrive at the following smoothing
estimate for M:

H|M(T + 1)|a+1”Hé(Q < By (Rax) (3.92)

)
the constant By (R.4) depends only on R, and the parameters of the problem.
Finally, using Lemma 1.1 for ¢ = o + 1, we obtain from (3.92) that

|M (T + 1)HW%—6,2(0+1)(Q) < By (Rix)

a+t

for an arbitrary 6 € (0,1), the constant Bps (R4s) depends only on Ry, 6 and
the parameters of the problem. We choose 0 := %, so that

”M(T + 1)||W2(a1+1) ,2((1+1)(Q) < BJVI (R**) . (3.93)

Next, we deal with equation (3.2). Since
() p(r +1) =(~A) ¥ e*p,

T+1 11
- j (=AY =8 (0 M (W), plw)) du

T

we conclude with the properties (1.9)-(1.10) that, due to assumptions on g,

6

5 11 T+1 1
< (25:6) 190lo 44 (13:6) [ (1= H lgfo. M@)o sl

<B,(Ryx), (3.94)
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and the constant B,(R.,) depends only on R, and the parameters of the
problem.

With the smoothing properties (3.93)-(3.94) and the compact embeddings
(see Theorem 1.10)

W 20T (Q) e L2(9)
W (Q) o WH(Q),

9

we obtain that U(r + 1,7) maps the set Cy into a compact subset of L*(Q) x
(1 + Woly”(Q)), and that this set can be assumed to be one and the same for

all 7 € R. Since K, is contained in it (see the definition of K, in (3.85)), it is
also compact. Theorem 3.3 is thus proven.

O

Remark 3.5 (Pullback attractor in 1D-case). In case of one spatial dimension,
there is no need to pass to a weaker topology. For Q = (a,b) for some —o0 <
a < b < oo the process {U(t, )}, possesses the pullback attractor in the phase

space L™ (a,b) x (1 + Wy ™ (a, b)) The proof of this statement (can be found

in [15]) is very similar to the proof of Theorem 3.5. It makes use of the compact
embedding

H; (a,b) =< C([a,b]),

see Theorem 1.10.
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A biofilm model with chemotaxis effect: nonautonomous case




Chapter 4

A biofilm model with

chemotaxis and
volume-filling effects

4.1 The Model

In this chapter, we consider the following model:

oM = dyV - (Gfﬁ;)a?vz@ C 4V - (M1 = MY Vp) + f(M, p),
(4.1)
Oip = dpAp — g(M, p) 4.2
satisfied in (0, 00) x €, with the boundary conditions
M =0, p=1in (0,%0) x 09 (4.3)
and the initial conditions
M(0,-) = My, p(0,-) = pp in £, (4.4)

where Q < R? (d = 1,2,3) is a nonempty smooth bounded domain, and the
given constants dys, dc, dp, o1, a2, 71, 2 satisfy

dar,de,dy, >0, (4.5)
a; >0, as € (O, 1), (46)

and a 'balance’ condition
TR TP (4.7)
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We assume that the given functions f, g : [0,1]*> — R for all M, p € [0, 1] satisfy
the conditions

@]

PFMp) = i+ s 0), 3, €17 (01F), (49
9(M,p) = Go + Gip + ga(p) M (4.9)
for such constants
Fi,Go, G eR (4.10)
and functions
f2e WH*((0,1)%) 90 € WH™(0,1) (4.11)
that the conditions
f(0,p) =0, f(1,p) <0 for all pe[0,1], (4.12)
g(M,0) <0, g(M,1) =0 for all M € [0,1] (4.13)

are fulfilled. For the initial data we assume that

My e L*(Q), po e WH(Q), 0 < My, po < 1 almost everywhere in Q. (4.14)
Remark 4.1 (On assumptions).
(1) It is clear from (4.6)-(4.7) that v, > 1,72 > 1 should necessarily hold.
(2) The function f has, due to the assumption (4.8), the form

F(M, p) = £(0,p) + F1 M + f M (M, p) dM.
0 (1 — M) 2
With as € (0,1) and 0, f, dr f2 € L ((0,1)?) it follows that f € C([0,1]?).

(3) Since g is linear in M, (4.13) is equivalent to the following set of conditions:

Go <0, Go+g2(0) <0, Go+G1 20, Go+G1 +g2(1) = 0.

Example 4.1. The primary example of functions f and g satisfying the above
assumptions is: a logistic-like growth function for the biomass growth

Mp
M, p) = ksM* (1 — M)® 4.15
FM.p) = k211 = b (1.15)
and a Monod’s function for the nutrient uptake
M
g(M, p) = by —"— (4.16)

p+k2’

so that the growth rate is proportional to the consumption rate g. The given
constants in (4.15)-(4.16) should satisfy

klak27k3 >0a
a;%ﬂ,b;—%ﬂ. (4.17)
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The system (4.1)-(4.4) can be used to model biofilm formation with chemo-
taxis and volume filling effects present. A volume filling effect has been included
into the biofilm prototype proposed in [32] and analyzed in [9, 14], as well as
into several chemotaxis models for free-swimming populations, for which we re-
fer the reader to [25] and to a survey of corresponding mathematical results [33].
It implies the existence of an upper threshold value for the biofilm density. This
maximal density value corresponds to the tight packing state. In our modeling,
we assume the threshold density to be normalized to 1.

As in the system (2.1)-(2.4), the unknown quantities in (4.1)-(4.4) are the
biomass density M and the concentration p of the chemoattractant. Thus,
M = 1 indicates the regions where the biomass is tightly packed. Note that,
as in the case of free-swimming populations, the variable M can be also seen
as volume fraction of the biomass in a two-phase modeling: a chemoattractant
diffuses through a two-component mixture of biomass and fluid (water, for ex-
ample) surrounding it (so that the fluid has the volume fraction 1 — M).

The model (4.1)-(4.4) arises from an attempt to bring a volume filling effect
into the model (2.1)-(2.4) for a biofilm with chemotaxis. The key difference
between the new model and the original one lies in the possibility contained
in equation (4.1) to control separately the asymptotics of the biomass motil-
ity coefficients at the both ends of density range. While in equation (4.1) one
exponent « is responsible for the limiting behavior of the diffusion coefficient
both as M tends to 0 and as it tends to infinity, in equation (4.1), we have two
different independent exponents, c; and as, that regulate the limiting behavior
at 0 and at 1, respectively. The same holds for the chemotaxis coefficient, where
we now have two different independent exponents, vy; and ~y», in place of ~, as
in (4.1). This offers a wider parameter range. Still, for the same reasons as for
the model (2.1)-(2.4), the exponents a1 and 71 («s and 73) cannot be chosen
independently of each other. In place of the 'balance’ condition eqrefbcl, a new
"balance’ condition (4.7) is imposed to obtain a well-posed model. Note that
in this work we deal only with the case where ay € (0,1), which, in Aronson’s
classification [3], corresponds to the so called fast diffusion, whereas the biofilm
prototype from [9] includes the super-diffusion singularity instead.

The shape of the reaction term f is forced by analysis, especially, by the
uniqueness proof. It differs considerably from the standard growth kinetics
terms used in most biofilm studies, the sink/source density (net number of par-
ticles created/lost per unit time and per unit volume) being dependent on the
biomass density M. In the important case f(0,-) = 0, Fy = 0, there is, due
to a; > 0, a delay in the biomass growth wherever M is close to 0, especially
during the early stages of biofilm formation. This corresponds to a ‘lag-phase’
coursed by the physiological adaptation which is needed during the onset of the
biofilm growth. In the regions where M is close to 1, particularly in a mature
biofilm, the slowing in the production of the new cells (observe that s < 1
holds) agrees well with the volume filling effect.

In this work, we consider weak solutions of the system (4.1)-(4.4). The
definition is as follows:



72 A biofilm model with chemotaxis and volume-filling effects

Definition 4.1 (Weak solution). A pair of functions (M,p) : [0,00) x Q —
[0,1]? is said to be a weak solution of (4.1)-(4.4) for Mo € L*(Q), po €
Wh*(Q), 0 < My, po < 1 almost everywhere in Q, if for all T > 0

(i) 5y s dM e L2 ((0,T); HE (), &:M e L2 ((0,T); H=(9)) ;

(ii) p— 1€ C((0,T); Wy™ ());

(iti) (M, p) satisfies the equation (4.1) in L* ((0,T); H=*(2)), M(0) = My in
C((0,7); (L3(2), o (L3(2), (L3(Q2)))))-sense and

t

plt) =1 =" gy = 1) = || =24 (01(5). () ds

in Wy ™ (Q).

Remark 4.2 (Initial condition). From M e L*((0,T);L*(?)) and 6;M €
L% ((0,7); H1()), it follows with (1.5) for pg = 2, E = L*(2) and E; =
H=1(€) and the compact embedding (see Theorem 1.10) L2(Q) —‘> H-1(Q)
that M € C((0,7); (L*(Q),0(L?(2), (L?(£2))"))). Therefore, the initial condi-
tion for M makes sense.

In the present work, we study the well-posedness and the long-time behavior
of the system (4.1)-(4.4). We prove the following result on well-posedness:

Theorem 4.1 (Well-posedness). Let the given constants dar, de, d,, a1, a2, Y1, V2
satisfy the assumptions (4.5)-(4.7) and the functions f and g satisfy the con-
ditions (4.8)-(4.13). Then the initial boundary-value problem (4.1)-(4.4) is
uniquely solvable (in the sense of Definition 4.1) for each pair of starting values
(Mo, po) that satisfies the condition (4.14).

The proof of Theorem /.1 is divided between Sections 4.2 (global existence) and
4.3 (uniqueness).

In Section 4.4, we address the long-time behavior for our system and es-
tablish the existence of the global attractor. This chapter concludes with an
illustration in Section 4.5 of a possible model behavior in numerical simulations.

Remark 4.3 (Notation).

(1) To shorten the notation, we introduce the functions
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(2) For the sake of convenience, we assume throughout this chapter that the
constants B; (appear below) for all indices i are only dependent upon the
parameters of the problem, that is, upon the constants das, de, d,, a1, aa,
Y1, 72, the functions f and g and the domain 2, and not upon the initial
data My, pg or the time variable ¢, or, unless stated otherwise, any other
parameters.

4.2 Existence of solutions

Proof of Theorem 4.1 (Existence). The main idea of the existence proof is to
choose a suitable regularization sequence for the problem (4.1)-(4.4) and then
apply the compactness method (see [21]).

Let us consider for arbitrary T" > 0, n € N a non-degenerate approximation
of the problem (4.1)-(4.4), the system

o (L—M)™

+ f (Mp, pn), (4.18)
6tpn :dpApn - g(Mny pn) (419)

satisfied in (0,7) x €, with the same initial and boundary conditions as before:

My, M + 1 1
d:M,, =dp A (J (M) " dM) C AV (M (1= M) V)

M, =0, pn =1 in (0,T) x 69, (4.20)
M, (-,0) = My, pn(-,0) = po in Q. (4.21)

To shorten the notation, we introduce for ¢ € [0, 1] the functions

. (M +¢)™
D.(M) := A=)
M
e = [ powyam,

0

so that Dy = D, & = £. For any fixed ¢ € [0,1] the function D, is clearly
monotonically increasing and

D.(M) = M for all M € [0,1). (4.22)

The function & is due to assumptions on «; and as continuous and bounded,
and it holds that

M
&0 <1+ | (1_‘“]\44)a2
(1+¢e)™

1—042

2% B 4.23
S =B (4.23)

N

(- - an)
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We are now prepared to derive several a priori estimates that we then use to
show the global existence of solutions of the problem (4.1)-(4.4). Observe first
that for every n € N the approximating equation (4.18) is clearly quasilinear
and non-degenerate and that the equation (4.19) is even semi-linear. Therefore,
we can conclude from the assumptions (4.7) on the constants, the assumptions
(4.8)-(4.13) on the functions f and g, the assumptions (4.14) on the initial data
and the boundary conditions (4.20) that

0 < M, p, <1 almost everywhere in [0, 7] x Q for all n € N. (4.24)

The proof can be done using the standard techniques, see, for example, [11].
As a consequence of the a priory uniform boundedness, the general theory
from [20] may be extended to the non-degenerate problem (4.18)-(4.21) (for an
alternative treatment via maximal regularity see [2]). It follows that this initial-
boundary value problem possesses a unique classical solution.
Further, using the properties (1.9)-(1.10) we then get

t
IV n(t)l]c = €™V po —f Vel =9t (g(My(s), pu(s))) ds
0

- 3 t d (s s
<e BTl + 4 (3.7) [ e o) gLl s

<e P4 Vol + R
=: Ba([|Vpol| ), (4.25)

where the constant R, depends only on the parameters of the problem.
Next, we multiply the equation (4.18) by £1 (M,,) and integrate over (0,T) x
Q: n

J ' (20, (5). 2 (M (9))) ds

1
0 n

—dys L ' (v- (VS%(Mn(s))) ,5%(Mn(s))) ds
T

3=

—de | (- (06 (1= M, () ().

b [ (0051 ) 3 (11 . (426)

0
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Integrating (4.26) by parts, we obtain that
M, (T)
J €1 (M)dM, 1
M, (0)

T 2
_ —deO Hw% (Mn(s))H ds

3=

3=

+d. | (V8 (M, (9). M3 (5) (1 = M () Vi (s)) ds

# [ (F 9050 3 (0050 s

0
The Cauchy-Schwarz inequality, together with (4.23), (4.24) and (4.25), yields

%M LT va% (Mn(s))H2 ds + ( f e £ (M) dM, 1)

O n
S(

b [ (F huop) 83 005D s

0

3=

M, (0) d2 T 9
J’ Ei(M)dM, 1) + —CJ [M7(s) (1 — M, (s))"” Vpn|~ ds.

d2
S Bi+ | 57— + Billflle ) TB2(l[Vpoll) | €
2d s

= B3([[Vpoll)- (4.27)

By using (4.27) as well, we can now estimate the right side of the equation (4.18)
in L2((0,T), H 1(2)) uniformly in n € N. We obtain

T
| 1000111 ds < BalIV o), (128)
0

where the constant By(||Vpol||s) depends only on ||V pg||s and the parameters
of the problem. Further, (4.27) and (4.22) yield

2

T T
L [M () [y g s <01 + 1)2J0 HD%(Mn(s))VMn ds

T 2
=(o1 + 1)2f0 Hve‘% (Mn(s))H ds
<(a1 +1)*Bs(|[Vpoll-)- (4.29)

Moreover, applying Lemma 1.1 for ¢ = a1 + 1 and (for example) s = % together
with the Sobolev embedding theorem yields

| |Mn | |2(O¢1 +11)

IETESY $N2(al+1)(0‘1 +1) ”Mgﬁl”iv%g(
W 2(aq

2(ap+1) Q)

@
<Bs ||Mf;1“||ilé(m . (4.30)
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Integrating (4.30) over (0,7") and combining with (4.27)-(4.29) we conclude that
|[ M| ) < Bs([[Vpol ),

2(ap+1)

1
Wi (2(a1+1),2) ((O,T);Wm (Q),H-1(Q)

where the constant Bg(||Vpol|«c) depends only on ||V po||s and the parameters
1

of the problem. The spaces By := Wxmsn2(@+)(Q) g = [2(a+)(Q),

Ey := H () satisfy the assumptions of Theorem 1.12, consequently, it holds

(set p1 :=2(cv1 + 1), po := 2) that

WhEED2) (0, 1) Wm0 (), HTH(Q)) e LAHD(0,T) x Q).

and the set {M,| n € N} is thus compact in the space L2(®1+1)((0,T) x Q).
For the second component, we now use the (4.25) to estimate the right side
of the equation (4.19) in L*((0,T), W=1*(£2)) and get

||pn||W1,(7»m)((oyT);WOlv‘f(Q),Wfly b(gz)) < B7(| |Vp0||r,5).

The spaces E; := Wy (Q), E := L*(Q), Ey := W~1%(Q) satisfy the assump-
tions of Theorem 1.12, consequently, it holds (set p; := pg := 00) that

WHOE) (0,7 Wy (@), W™H(9)) = C([0,T], L*(2)):

The set {p,| n € N} is thus compact in the space C([0,T7], L*(2)), hence also
in the larger space L*((0,T) x Q).
By combining these results, we obtain there is a subsequence (n,,) such that
My, — M in L2+ ((0,7) x Q),
pn'm - p in L%((O?T) X Q)7
m—ixL

Von, = Vpin L7_((0,T) x Q). (4.31)

for some (M, p) € L1 +1((0,T) x Q) x L*((0,T) x ), and for a subsequence
(not relabeled) the convergence is almost everywhere in the cylinder (0,7) x Q.

It remains to check that (M, p) is indeed a solution of the original problem
(4.1)-(4.4) in the sense of distributions. Recall first that f,g € W%*((0,1)?),
so that, with the second part of the Sobolev embedding theorem, we have that

f.9€C([0,1]).
With the continuity argument and the dominant convergence theorem, we ob-
tain that

£ (o) = F(M.p) in L2((0.7) x ),

9 pn) = g(M,p) in Z3(0,T) x ),

€1 (My,,) = E(M)in L2((0.7) x ),

M (1—M,)" il M (1 — M)™ almost everywhere in (7,T) x Q.
(4.32)
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Moreover, combining (4.32) with (4.31), we obtain with the dominant conver-
gence theorem that

M (1= Ma) Vp, — M (1L=M)"Vpin Li_,((0,T) x Q).

— AL

Since the convergence in the distributional sense is weaker than the LP con-

vergence for any p € [1,0] or than the L)~ _, convergence and since differential

operators are continuous in the space of distributions, it follows with the conver-
gences we derived in this subsection that (M, p) solves the problem (4.1)-(4.4)
in the sense of distributions. The existence part of Theorem 4.1 is thus proven.

O

Remark 4.4. It follows from the proof that the solution (M, p) enjoys the
estimates

0 < M, p < 1 almost everywhere in [0,7] x €,
E(M, p) < By almost everywhere in [0, 7] x Q,

fo IVEBL(s)]? ds < Bs(|[Vpoll) (4.33)

and the dissipative estimate

V()] <e [V poll + R (4.34)

4.3 Uniqueness of solutions
Proof of Theorem 4.1 (Uniqueness). Let us assume that the problem (4.1)-

(4.4) has two different solutions (in the sense of Definition 4.1) (M, p1), (Ma, p2)
with the same initial data:

My (0) = M2(0), p1(0) = p2(0).

Since both (M7, p1) and (Ma, p2) are solutions of the equation (4.1), we get

Mo Mo
a75(]\41 - M2) :dMA My m dM
— ch . (]\4?1 (1 — ]\41)’Y2 Vp1 — M;l (1 — ]\42)Vz Vpg)
+ (f(My, p1) = f(M2,p2)) - (4.35)

We want to estimate the difference M; — Ms, and we choose to do so in the
|| - [|[7-1(n) norm on an interval [0,¢] for arbitrary ¢ > 0. For this purpose, we
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multiply (4.35) by (—A)~1(M; — M>) and integrate over Q:

(Oe(My — Ma), (=A)~ (M1 — M)

—dy, (A JMQ M g (—a) (o, — Mg))

a, (L= M)
+de (V- (M (1= M) Vpr = Mg" (1= Ma)™ V), (=A)™H (M1 — My))
+ (f(My, p1) — f(Ma, pa), (=A) " (My — My)) . (4.36)

On the left side of the resulting equation, there appears:

(0(My — My), (—A) (M — My)) = VM, — My)|*. (4.37)

erd

Suitable estimates for the terms on the right side of (4.36) are required now.
The operator A is self-adjoint, therefore, using the Cauchy-Schwarz inequality,
we obtain for the first summand that

Mo M 1
(A Ju = ‘M2>>

M M
2 MCEl 2
- Y am, | 1dm
(JM1 (1= M)o= M, >
2
aM| . (4.38)
L (- M)F M) 7

The assumptions (4.7) and M; € [0, 1] together with the property (1.6) and the
Cauchy-Schwarz inequality lead for the second summand to

[(=V - (M (1= M) V1 = My' (1= Ma2)"* V), (=A)"H (M — My)))|
|(.Z\4’yl ].—]\41)’)/2 Vpl M;l (].—J\fg)’y2 VPQ,V+*(M1 —MQ))|
< fM W(M71 (1 —M)") dMV py, VT (M; — M)

+ (M7 (1= M) V(p1 = p2)), VI (M1 — Ms))|

Mz %
=z dM| + |p1 = p2l i) |-
J.]\/Il (1-M)Z Hg(2)

VM - M) (4.39)

< (max{%ﬁz} [V p2l|x
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Further, we use assumptions on f and the Cauchy-Schwarz inequality and get

F(My, p1) — f(Ma, p2) =(f(My, p2) — f(Mz, p2)) + (f(M1, p1) — f(Mi, p2))

Mo
- f (0n F(M, pa) — Fy) dM + Fy(My — My)
M,

P2

+ | 0,f(My,p)dp

P1

Mo ]\4“71
= | T onfa(M, p) dM + Fy (M — M
., o) AN+ Fi (0~ M)

P2
+ apf(Mlvp) dp7
P1

so that with the Poincaré, the Cauchy-Schwarz and the Young inequalities it
follows that

|(f(Ma, p1) — f(Ma, p2), (—A)"H(My — My))|

Mo, a1
< ‘ <J MiﬂaMfz(]\L p) dM, (—A)~H (M — Mz))

M, (1—M)= + 1 HVJF*(MI - M2)||

i ‘( " 0,1 (M1, p) dp, (—A) (0 — M2)> ‘

P1
Mz ]\4'&—1
f ;dM
L (

apE M0 el - p2||> [(—A)~ (M — My)|

< <||6Mf2||oc

+ |V (M — M)

) (P(Q’Q)”af”h”% M s P@ 21l — el +F1> |
M, (1—M)=
VM - M) (4.40)
Observe that it holds
| V(M) = M) = [ My = Mz g1 (o (4.41)

due to the property (1.8). By combining (4.37)-(4.40), using (4.41), the Poincaré
and the Cauchy-Schwarz inequalities, we can conclude from (4.36) that
1d 2 d 2
24t 1My — MQ”H*l(Q) < ?p”/)l - P2||§13(Q) + Bi(t, R) | My — MQ”Hfl(Q) :
(4.42)

The constant B (¢, R) depends only on ¢, R and the parameters of the problem.
Now we turn to equation (4.2). Both (M, p1) and (Ma, pa) solve it, hence

0t(p1 — p2) =d,A(p1 — p2) — (g(Mn, p1) — g(M2, p2))

=dpA(/)1 — p2) — G1(p1 — p2) — (g2(p1) — g2(p2)) My
— g2(p2) (M1 — Ma). (4.43)
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As usual, we multiply (4.43) by p; — p2 and integrate over

1d

2 2
Su o1 — p2ll” =d, (A(p1 — p2), p1 — p2) — G |lp1 — p2||

(
(M1(g2(p1) — g2(p2)), p1 — p2)
(M1 — M2, g2(p2)(p1 — p2))
=—d, [V(p1 = p2)|* = G1llp1 — ol

— (Mi(g2(p1) — 92(p2)), p1 — p2)

— (V7* (M1 = M2), 92(p2)V(p1 — p2))

- (v+*(M1 M), (1 p2>jpgz<p2>vp2)

d
<= lor = palgg o) + Ba(t. B)llpr — poll”
+ BQ(ta R) ”Ml - MQ”?—[—](Q) 5 (444)

while we again made use of the property (4.41), the Cauchy-Schwarz and the
Young inequalities, and the constant Bs(t, R) depends only on ¢, R and the
parameters of the problem.

Finally, by adding (4.42) and (4.44) together, we obtain that

1d 5
535 (1M1 = Mol ) + 111 = ool )

<By(t, R) (1M1 = Ma[f—s gy + llps = 2l ) (4.45)
Integrating (4.45), we conclude that

M1 (8) = Ma(8) g1 + 1o1(8) = p2(0)| I
<Ba(t, B) (IM1(0) = Ms(0) [+ 0 + 11(0) = p2(0)]) (4.46)

for some constant By (¢, R) > 0 depending only on the parameters of the prob-
lem and on R and ¢. This proves uniqueness for the problem (4.1)-(4.4) since
the solutions (M, p1), (Ma, p2) coincide at ¢ = 0. The uniqueness part of The-
orem 4.1 is thus proven.

O

4.4 Global attractor

The aim of this section is to apply the general theory from Section 1.3 to the
problem (4.1)-(4.4). We prove
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Theorem 4.2. Let the given constants dys,dc,d,, a1, 02, 71,72 satisfy the as-
sumptions (4.5)-(4.7) and let the functions f and g satisfy the conditions (4.8)-
(4.13). Then for all p € [1,0] the solutions of the problem (4.1)-(4.4) can be
described by a semigroup {S(t)},s, that acts on the set

B; = {(M7 p) € L*(Q) x (1 + WolL(Q))| 0 < M,p <1 almost everywhere in Q}
equipped with the metric defined by

(p)((M ). (Ms, p2) max{d;x;)(M1,M2), llp1 — p2||W01,ﬁ(Q)} forp = o,
MM 1,01), (Mz, p2)) = ;
(||M1 — Ml[f + |lpr — p2||§vém(m) forp> 1.

Here di%) is the metric defined in (1.2) for R := 1.
The semigroup {S(t)},-, possesses the global attractor in (Bl, mg}’)) that is

independent of the concrete choice of p.

Remark 4.5 (Rate of convergence to the attractor). The rate of convergence
to the global attractor A may, of course, depend on p and can be arbitrarily
slow.

Proof of Theorem 4.2. We showed in Theorem 4.1 that the problem (4.1)-(4.4),
if considered in By, is well-posed: for each pair of initial values (My, pg) € By
there exists a unique solution (M, p) in terms of Definition 4.1.

We define the solving semigroup {S(t)},, of the problem (4.1)-(4.4) on the
phase space B as follows: for all £ > 0 let

S(t) : By — By,
S(t)(Mo, po) := (M(t), p(t)) for all (Mo, po) € Bi.

Let us now prove the existence of the global attractor for the semigroup {S(t)},-
Observe first that the projection of the semigroup domain B; on the M
component is the unit ball in L*(£2). Due to Theorem 1.7(4), it is sufficient,
therefore, to show the existence of a compact invariant set that attracts By in
the metric mf). This set is then, necessarily, the global attractor in the metric
mf,}”) for all p € [1, 00].
As a closed subset of a complete metric space (L2(Q) X (1 + WOII(Q)> , mf)) ,

(2)

the space (ma* ) is complete.

Let us assume for a moment that {S(t)},. is a closed semigroup and that
it possesses a compact absorbing set in (Bl,mf)). All assumptions of Theo-
rem 1.13 are then fulfilled since we are dealing with a closed semigroup (the semi-
group {S(t)},5,) in a complete metric space (the space (Bl,mg))), and this

semigroup possesses a compact absorbing set. Theorem 1.13 yields the existence
of the global attractor, and, as we showed above, it is also the global attractor
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for the semigroup {S(t)},., in each of the spaces (Bl, mﬁf’)) for p € [1,00].

In order to finish the proof, it remains to check the closedness of {S(t)},-
and the existence of a compact absorbing set.

Let us first prove the closedness of the semigroup operators. In the proof of
Theorem 4.1 we encountered the local Lipschitz-type continuity property (4.46)
for the solutions of (4.1)-(4.4). It can be translated into the following form:

50 (457.04") =50 (347 47) s 01

(1 (1) (2) ()
<Lt R) H (MO Fo ) B (MO »Po )HH—l(Q)xL2(Q) (4.47)

for (M§",p"), (M7, 66" € Br, R 1= max {|[Vp1ll,|[Vpall}. The con-

stant L(¢, R) depends only on ¢, R and the parameters of the problem.
Recall that due to the embedding theorems for Sobolev spaces, we have

L2(Q) x WH*(Q)—=H™1(Q) x L*(Q). (4.48)

Let { (Mé”)7 p(()")) } N c Bj be a sequence of initial data convergent in L?(£2) x
ne
(1 + Woly“(Q)) to some (Mp, pg). Due to the continuous embedding (4.48),

this sequence converges in H () x L%(£2) to the same limit. From the prop-
erty (4.47) we deduce that the sequence {S(t) (Mén),p(()n))} converges to
S(t) (My, po) in H1(Q) x L2(Q) for all t > 0. e

Let us further assume that for some ¢ > 0 the sequence {S(t) (Mén),p(()n)>} "

is convergent in L2(£2) x (1 + W'Oly(Q)) Again, due to the continuity of the
embedding (4.48), the limit is the same. This proves closedness.

Next, the dissipative estimate (4.34) provides the existence of a ball By cen-
tered at (0,1) of a radius Ry := (1 + 4R2)2 in the mf) metric, which absorbs
all bounded sets of By. If we prove that S(1)By is a relatively compact set,
then cl(mag)) (S(1)By) is a compact absorbing set for the semigroup.

To prove this, we multiply the equation (4.1) by (a1 + 1), M+ and inte-
grate (formally) over Q:

(a1 +1) (6. M, 0, M) :(v-( L anM””“),atMal“)

(1= )
(Oq + 1)2

% +1 (M%f(MW)ﬁtM%H).

Here:

f(M,p) =—d.V-(M"(1—-M)"*Vp)+ f(M,p).
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After integrating by parts, we obtain that

2
ar L) Jaart -
9+

2
1
ag

— VMt
(1-M)=

t

1
2
(a1 +1)% /o 2 S
+W(M2 f(M, p), 0 M= )

With the Cauchy-Schwarz inequality we have

(557) oo <o
2

1

so that

1
O = VMt
2

(1—M)

It follows with multiplying by ¢ that

at tchQVMalJrl 1
1-M)=

2
(1-M)=

a1 o~ 2
+t(ar +1)° HMTlf(M, p)H .

Integrating over (0,1), we obtain that

2 < fl
0

+ son + 12 [ M2 () f(5), ()| s
(4.49)

1 a;+1 1 ?
wz VM* (1) &
7 (1= M(3)

o v

Let us estimate the integral on the right side of (4.49). Due to the assumption
(4.7) on v and 2 we have

@

M f(M, p)| <m(1 = M) = oMM+ 371 (1= M)~ VM| | V).,
+ MR (1— M) |Ap| + MT|f(M, p)|

1 (e}

<N +72) ————=5 VMM Vo, + |Aply + [ f]]e
(1-M)=

(4.50)

and

1 o 2 1
W |VM 1+1| S(l_i

O‘1+12_ a 2
(1 iy (VMO = @+ DIVEADP. (151)
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Further, due to the classical energy estimate, we have for all (M, pp) € By

1 1
fo 18p(s) 7 ds < |V pol® + f lg(M(s), p(s)) ds|?
<IVool* + llgllo- (4.52)

By combining (4.50)-(4.52) with (4.49) and (4.33), we get the following smooth-
ing estimate for M:

[y ) < Bi (R, (4.53)

the constant By (R4) depends only on R, and the parameters of the problem.
Finally, using Lemma 1.1 for ¢ = oy + 1, we obtain from (4.53) that

1 < .
M, st -2 g < Bar (B (4.54)

for an arbitrary 6 € (0,1), the constant Bjys (Ry) depends only on R, 6 and the
parameters of the problem. We choose 6 := % in (4.54), so that

1MW)l 320, < Bar (Ba).- (4.55)
Next, we deal with equation (4.2). Since
u FTRN
(=A)% p(1) = (=4A)" e po

1
- | i IRgr), o)) do
0

we conclude with the properties (1.9)-(1.10) that, due to assumptions on g,

1

(=A) 2 p(1)| < |(=A)Z Bpp— | (=) 0=92g(M(s), p(s)) ds
| <] )

<A(Z6) Vool +A( 26 fu )~ d
S \1 Polls 127) ), " 77 v
<B,(Rx), (4.56)

6

and the constant B,(R,) depends only on R, and the parameters of the prob-
lem.

With the smoothing properties (4.55)-(4.56), the compact embeddings (see The-
orem 1.10)

1

Wz 2t () o 12(Q),
WS 0(Q) e Wh(Q),

we obtain that S(1) maps the set By into a relative compact subset of L?(£2) x
(1 + W&X(Q)) Theorem 4.2 is thus proven.
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Remark 4.6 (Global attractor in 1D-case). In case of one spatial dimension,
there is no need to pass to a weaker topology. For Q = (a,b) for some —o0 <
a < b < oo the semigroup {S(t)},-, possesses the global attractor in the phase

space L™ (a,b) x (1 + Wol’%(a, b)) The proof of this statement is very similar
to the proof of Theorem 4.2. It makes use of the compact embedding

Hy(a,b) == C([a,b]),

see Theorem 1.10. We leave the details to the reader.

4.5 Numerical simulations

We conclude this chapter with a presentation of numerical simulation results
that illustrate possible model behavior. The simulation was performed by Her-
mann Eberl. For computational convenience, we restrict ourselves to the case
of one spatial dimension. Our goal is to investigate the potential effect of chemo-
taxis in early stages of biofilm colony formation, for a generic biofilm rather than
a particular biological system. We will do this by comparing the simulations of
the biofilm-chemotaxis model with the simulations of the corresponding biofilm
model without chemotaxis.

Table 4.1: Model parameters used in the simulations

parameter symbol | value | unit
system length L 5-107% [ m
biomass motility coefficient (diffusion) dy varied | m2d~?
biomass motility coefficient (chemotaxis) d. varied | m2d?
substrate diffusion coefficient d, 10% m2d~!
maximum growth rate k1 6 d=!
half saturation concentration ko 0.2 -
maximum substrate uptake rate ks 95238.1 | d~!
biomass diffusion exponent aq 4 -
biomass diffusion exponent a2 0.5 -
chemotaxis exponent Y1 3 -
chemotaxis exponent Yo 3 -
logistic growth exponent a 3 -
logistic growth exponent b 0.8 -

The simulations are done in a domain of length L = 0.5mm. For the reaction
part, we use the functions from Fzample 4.1. The parameters aq, as,¥1, 2 that
describe the spatial movement of the biomass and the growth parameters a,b
are chosen in accordance with (4.6) and (4.17), respectively, so that to ensure
the existence of a unique solution of the problem (4.1)-(4.4). The remaining
growth kinetics parameters and the chemotaxis diffusion coefficient are taken
from Benchmark Problem 1 of the International Water Association’s Taskgroup
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on Biofilm Modeling [32], where the maximum uptake rate k3 in (4.16) is com-
pounded from the maximum specific growth rate k1, a yield coefficient and the
maximum cell density. The half saturation concentration ko is chosen clearly
smaller 1, i.e. we consider the case of biomass growth that is not initially limited
by the chemoattractant. These parameters are kept constant for all simulations.
The biomass motility parameters dj; and d. are varied to investigate different
scenarios. All model parameters are collected in Table 4.1.

The numerical method that we use in these simulations is a straightforward
adaptation of the finite difference scheme [7] for the density-dependent diffusion-
reaction biofilm model. This method is able to deal with both the degeneracy
and the singularity in the biomass diffusion equation with sufficient accuracy,
while requiring only moderate spatial refinement [7, 23]; in our simulations we
use 200 grid points. In the numerical treatment, the additional chemotaxis
terms in (4.2) are treated as convective terms with density dependent convec-
tive velocity.

The system which we simulate corresponds to a standard biofilm growth
scenario. We use the initial data

L L
m for 2 —r<az<2+r
Mo(x):{ 0 2 STsagTh

0 olse for r = 0.05L, mo =0.1 (4.57)

The region where M = 0 is the aqueous phase, the region with M > 0 is the
actual biofilm. Due to growth, both regions change in time. It is easy to verify
that these symmetric initial data will lead to a symmetric solution, which is
unique due to Theorem 4.1. This solution will have M, = p, = 0 for © = L/2.
Hence, the solution of the problem restricted to the interval 0 < x < L/2 can
be interpreted as the solution of the system with a biofilm originally in a small
pocket on an impermeable substratum at L/2. As we present and discuss the
solution, we, therefore, restrict ourselves to the interval 0 < x < L/2.

The nutrients are added into the system at z = 0, due to (4.3), i.e. at
the boundary on the opposite side of the substratum. Thus chemotaxis is ex-
pected to lead to a faster expansion of the biofilm toward the nutrient source.
A particularity of the Dirichlet boundary conditions is that, by virtue of the
maximum principle, a higher amount of biomass leads to steeper chemoattrac-
tant gradients at the boundary, i.e. to improved environmental conditions. In
Figure 4.1 we plot the solution (M, p) of (4.1)-(4.3), (4.57)-(4.58) for biomass
motility coefficients dy; = d. = 107'2 as surface data over the z-t-plane. In the
beginning, biomass growth is very slow and appears to be almost stationary.
After some time, biomass density in the biofilm pocket starts increasing with-
out the biofilm region expanding. Initially, the biomass density increases faster
in the outer layer of the biofilm (close to the biofilm/aqueous phase interface)
than in the inner layer (at the substratum), due to higher nutrient availability
and no pressure to diffuse. Once the biomass density reaches values close to
unity, the biofilm region starts expanding and the biomass density attains a
value M =~ 1 in the interior of the biofilm. The chemoattractant concentration
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Figure 4.1: Biomass density M(t,x) and chemoattractant concentration p as a
solution of (4.1)-(4.3), (4.57)-(4.58) with parameters according to Table 4.1 and
biomass motility coefficients dy; = d. = 10710,

field coincides with the biomass density. It attains its minimum at the substra-
tum. The more biomass there is in the system the lower is the chemoattractant

concentration. The chemoattractant gradient at the boundary z = 0 increases

as biomass grows.
In order to assess the contribution of chemotaxis to biomass movement, rel-

ative to diffusion, we plot in Figure 4.2 the biomass densities for various choices
of the biomass motility coefficients. Together with the solution of our original
model (4.2) with dy; > 0, d. > 0 we plot the solution of the corresponding
biofilm model without chemotaxis-term (das > 0, d. = 0), i.e. the solution of

Qg

M
O M = dpV - <(1_M)QQVM> + £(M, p).

In the left column of Figure 4.2 we show simulations of the model with the
same biomass motility coefficient for both processes, diffusion and chemotaxis,
i.e. dys = d.. These parameters range here from 107!2 to 1078, This coefficient
controls how fast the biofilm region expands and to which maximum biomass
density it grows. For djp; = 1072, expansion is very slow and the biomass
density reaches values close to M = 1 inside the biofilm (Figure 4.2(a)). For

dyr 10710 the biofilm expands faster, still growing close to maximum cell
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density (Figure 4.2(c)). For the largest value, the biofilm expands quickly, but
does not exceed values of M ~ 0.6 Figure 4.2(e)). This choice of parameters
is therefore considered too big to be realistic. In all three cases with the same
biomass motility coefficient for both spatial processes, the solution of the model
with and without chemotaxis are essentially indistinguishable, indicating that
chemotaxis does not contribute noteworthy to biofilm formation in such cases.
In the right column of Figure 4.2, we use different biomass motility coeffi-
cients dps, d.. In all cases we choose the chemotaxis coeflicient to be higher than
the diffusive one, dy; « d.. We notice distinct differences in the biomass densi-
ties of the models with and without chemotaxis, in the cases of Figure 4.2(b) and
Figure 4.2(d), where d. = 1078 but not so in Figure 4.2(f), where d. = 10710, In
the case of Figure 4.2(b), with djy; = 10712 and d. = 10~® chemotaxis leads to a
very different biofilm structure than obtained by the model without chemotaxis.
The chemotaxis effect pulls biomass toward the nutrient source and leads to a
biofilm that is much denser close to the biofilm/water interface than in the inner
layers close to the substratum. This could be understood as the 1D analogy of
mushroom type biofilm colonies in 2D/3D. In the case of Figure 4.2(d), with
dyr = 10719 and d. = 1078, on the other hand the differences are not as pro-
nounced. Interestingly, it appears that the biofilm without chemotaxis grows
bigger and denser in this case than the one with chemotaxis. The chemoat-
tractant concentration p in all cases is similar as shown in Figure 4.2. These
simulations were repeated several times with different exponents of the chemo-
taxis model and different initial data (smaller initial inoculum or non-constant
biomass distribution in the inoculum). In all cases the results were qualitatively
the same (data not shown). This suggests that in early stages chemotaxis will
only affect biofilm structure quantitatively if the biomass motility coefficient is
substantially larger than the biomass motility coefficient due to diffusive biomass
spreading. It is reasonable to assume that this parameter depends on the mate-
rial properties of the particular biofilm (species and environment), in particular
of the EPS, in which cells are embedded, but also parameters that describe the
ability of the cells to move, e.g., by flagellar motion or twitching motility.
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Appendix A

An auxiliary Lemma

Consider first the differential inequality

Y < —wyy + dyyCy

dt
assuming that y > 1, ¢, € (0,1), dy, € L}(R) so that with some computation the
estimate

t

(y(t))l—Cy < (y(T))l_Cye_‘*’y(l_Cy)t + (1 _ QU)J e_“’y(l_Cy)(t_s)dy(S) ds

T

follows.

Lemma A.1. Let z1, 29,23 : [1,+00) — [0,+00) be such functions that

1(z1(7))e M + D,

<1
2(2’2(7’))6_th + Do,
t

23(t) < z3(T)e @3t + J e~ U=3)dg(t, 5) 21 (s) ds, (A1)

T

21 ZZ’
2(t) <

A\

ZI(T)7 ZQ(T)7 ZJ(T) = 17
for some constants wi,wq,ws > 0 and D1,Ds > 1, some non-decreasing func-
tions V1,12 : [1,40) — [1,40) and some d3 € L* (RS, L{(R})). Then it
holds that
(1) (21 + 22)(t) < (Y1 + P2)((21 + 22)(7))e™ Minlwrw2it 4 Dy 4 Dy,
(2) leg(t) < 3D1D21!)11Z)2(2122(T))67 min{ws,wz }t + D1 Ds.

(8) 27 (t) < max {1,271} (¥§ (21(7))e 7 + DY) Vo > 0.
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(4) For wy # ws

w(t) < (wm»

. ||d3||L’J(Ri’,L})(Rj—')) + Z3(T)e—w3t (AQ)

1 — min{wi,ws}t 1
1— e lorwsl© +D11—6*‘”3

and for ws = wi

—wy 1
0(0) < (D) A + Dry—i ) ol et agety
+ 23(T)e” 1,

For wy < ws, we also have

t
23(t) <zg(T)e™w3t + zl(t)J e~ (Ws=w)(t=5) gt s) ds. (A.3)

T

Proof. We only check the property (A.2). Since

¢
J e ws(t=8)emwis o (L, 5) ds

T

=e min{w;,ws}t S-tr e_|W1 _wgl(t_s)d?) (t7 S) ds if wg <ws
Si e~ lor—wslsda(t, 5) ds if wy > ws

1

< e~ mln{wl,W3}t||d3
1 — e—lwr—ws|

||Lﬁ(Ri,L;(Ri))7

we conclude from (A.1) that

¢
f e 3= da(t, 5) 21 (s) ds

T

t
SJ e (=) dg ¢, 5) (¢1(21(8))€_w1(t_5) + D1) ds

1 — min{w;,w 1
< <¢1(21(7'))1_6|wlw3|e {w1,ws}t +D1W>

) ||d3||Lm(Ri,L;(Ri))v

and (A.2) follows.
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