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Abstract

This thesis is concerned with the validated computation of connecting
orbits in continuous dynamical systems. Our approach provides approxi-
mations to connecting orbits with exact error bounds and leads to a math-
ematically rigorous existence proof based on numerical calculations. We
first formulate equivalent zero finding problems on appropriate Banach
spaces and validate approximate solutions via fixed point arguments. As
applications we consider the Lorenz system and the Gray-Scott equations.
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Zusammenfassung

Diese Arbeit beschäftigt sich mit der validierten Berechnung verbinden-
der Orbits in kontinuierlichen dynamischen Systemen. Unsere Methode
liefert Näherungen an verbindende Orbits, exakte Fehlerschranken und
nutzt numerische Berechnungen zu einem mathematisch rigorosen Exis-
tenzbeweis. Wir formulieren äquivalente Nullstellengleichungen auf geeig-
neten Banachräumen und validieren Näherungslösungen über Fixpunkt-
argumente. Als Anwendungen betrachten wir das Lorenz-System und die
Gray-Scott Gleichung.
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Chapter 1

Introduction

Connecting orbits are one of the fundamental building blocks for the un-
derstanding of the global dynamics of a given dynamical system. Thinking
for instance of a dynamical model for a physical system the first step in
obtaining an understanding of the model is to understand its equilibrium
states and investigate the existence of periodic or oscillatory motion. The
next step is to ask what happens if we perturb a stationary or periodic so-
lution. Here connecting orbits come into play. If there exists for example a
connecting orbit between one stationary state and an oscillatory solution,
this means that starting from a suitable perturbation of the equilibrium
we asymptotically converge to periodic motion. In this sense connecting
orbits help to build a dynamical scaffold organizing the possible dynamics
of a given equation. But connecting orbits not only assist in establishing
structure, they also lead to the creation of complexity. A well-known ex-
ample is the Shilnikov Theorem [43, 36]. In this context the existence of
a connecting orbit from an equilibrium to itself implies the existence of
infinitely many periodic as well as infinitely many nonperiodic bounded
solutions.

The goal of this work is to provide numerical verification methods for
the existence of connecting orbits in dynamical systems induced by an
ordinary differential equation. A fundamental objective of our rigorous
numerical algorithms is to bridge the gap between numerical simulation
and rigorous mathematical analysis. More concretely, in accordance with
the general idea of the field of validated numerics as for example advo-
cated in [47], we use a combination of analysis and numerics to derive
rigorous a-posteriori error bounds for an approximation to a connecting
orbit within which we can guarantee, in the mathematically exact sense, a
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10 CHAPTER 1. INTRODUCTION

real connection to be found.

Given the importance of connecting orbits it comes as no surprise that
there are several algorithms for their numerical approximation available.
More precisely for dynamical systems induced either by the iteration of
an invertible map or by an ordinary differential equation (ODE) there are
a number of classical algorithms for approximating equilibria, periodic or-
bits and connections between them. However according to Palmer in [33,
p.428] theorems rigorously assuring the existence for transversal connect-
ing orbits in dynamical systems induced by flows are scarce. Therefore
we consider our results on the rigorous computation of certain homoclinic
and transversal heteroclinic orbits in dynamical systems induced by ODEs
as a valuable contribution in this context. We hasten to add that this is by
no means the first time a rigorous numerical approach is taken to prove
existence of connecting orbits and we will give a review of the existing
approaches in the sequel. Before we describe the details of our method we
give an overview of the foundational algorithms we build on.

We first discuss the basic idea of methods due to Beyn and Doedel [19,
23, 1] for the case of heteroclinic orbits between hyperbolic fixed points.
We emphasize that a similar idea applies to the computation of homoclinic
orbits and connections between more general invariant sets like periodic
orbits. Suppose we are given two hyperbolic fixed points p1,2 ∈ Rd of the
nonlinear ODE

u̇ = g(u) u ∈ Rd. (1.1)

A connecting orbit from p1 to p2 corresponds to a solution u : (−∞, ∞)→
Rd of (1.1) such that

lim
t→−∞

u(t) = p1 lim
t→∞

u(t) = p2. (1.2)

The first fundamental challenge from a numerical perspective is that (1.2)
is an inherently asymptotic statement. As a consequence we need to trun-
cate the time interval (−∞, ∞) to a finite interval [t0, t1]. An immediate
problem entailed by this truncation is the control of the boundary values.
More concretely, we have to make sure that the values u(t0) and u(t1) are
chosen appropriately to ensure condition (1.2) to be satisfied.
One way to deal with this problem is to use the concept of invariant man-
ifolds. More precisely, we know that associated to every hyperbolic fixed
point p of (1.1) for sufficiently smooth g there is a stable and an unsta-
ble manifold Ws,u(p) characterized by the fact that elements of Ws(p) are
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asymptotic to p in forward time and elements of Wu(p) are asymptotic to p
in backward time. Therefore in order to assure that the solution u on [t0, t1]
corresponds to a connecting orbit we need to demand that u(t0) ∈Wu(p1)
and u(t1) ∈ Ws(p2). To treat this requirement numerically, we conse-
quently need to approximate the nonlinear objects Ws,u(p1,2).
The classical approach followed by Doedel et. al in [19, 23] consists in
imposing u(t0) and u(t1) to lie in linear approximations of the manifolds
and solve (1.1) on the finite interval augmented by appropriate additional
conditions. This method is also used for continuation of connecting orbits
[22] and is implemented in the software package AUTO [49]. A similar
approach is followed in the method of projected boundary conditions of
Beyn et al. [1]. This boundary value approach is also foundational to Lin’s
method utilized by Krauskopf et al. for finding connecting orbits [35, 32].
A complimentary software package to AUTO specialized on homoclinic
orbits is given by HomCont (see [49]). In this context we also mention the
powerful continuation software MatCont [18].

At this point it becomes evident that following this strategy there are
two sources of numerical errors to control. First the numerical integration
of (1.1) induces errors and second the defect introduced by the truncation
to the finite interval has to be controlled. It is shown in [1] using the the-
ory of exponential dichotomies that for the method of projected boundary
conditions the latter error decays exponentially with the length of the inte-
gration interval. This in turn clarifies a fundamental trade-off: the longer
the integration time the better we can control the error introduced by the
approximation of the manifold but the more errors are potentially accu-
mulated during integration. The shorter the integration the fewer errors
are introduced but the harder it gets to control the approximation of the
manifolds.

Another approach to compute approximations to connecting orbits is
given by a set-oriented method applied in [29]. This procedure is based
on the subdivision technique to approximate invariant manifolds of in-
variant objects [16, 17]. The idea is to encode the continuous dynamics as
a combinatorial graph and compute box coverings of the involved stable
and unstable manifolds. Searching for intersections between them leads
to a box covering of connecting orbits. These set-oriented techniques are
implemented in the software package GAIO [30].
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We now turn to the description of the approach for the rigorous com-
putation of connecting orbits followed in this work. The general philoso-
phy, inspired by the one employed in [60], consists in encoding the prop-
erty of being a connecting orbit in an appropriate operator equation of the
form

F(x) = 0

on a Banach space X. We will take two different paths to achieve this.

Our first approach tailored to the computation of transversal hete-
roclinic orbits between hyperbolic fixed points of (1.1) is based on the
parametrization method developed in [7, 8, 9]. Note that we will not use
the dynamics of the flow induced by (1.1) explicitly. Hence in the numer-
ical treatment we do not need to discretize it and therefore we term this
method the discretization free approach.
Assume two hyperbolic fixed points p1,2 ∈ Rd of (1.1) with unstable di-
mension nu and stable dimension ns such that ns + nu − 1 = d to be given.
We will henceforth refer to hyperbolic fixed points fulfilling these dimen-
sional requirements as generic hyperbolic fixed points. The parametriza-
tion method provides us with power series expansions of maps Q and P
together with their domains of definition Vνu,s ⊂ Rnu,s such that Q(Vνu) ⊂
Wu(p1) and P(Vνs) ⊂ Ws(p2). The main tool in their computation are
certain invariance equations fulfilled by Q and P, lending themselves also
to powerful methods for flow computations on the manifolds (see 4.2.1).
Taking into account the fact that connecting orbits lie in the intersection
of the stable and unstable manifolds of the corresponding fixed points,
finding values ϕ̃ ∈ Rnu and φ̃ ∈ Rns such that

Q(ϕ̃) = P(φ̃)⇔ Q(ϕ̃)− P(φ̃) = 0

implies that there exists a connecting orbit between p1 and p2. In this sense
the discretization free approach is a local approach, as it builds on the
intersection of local unstable and stable manifolds of p1 and p2. In order
to obtain a well-posed equation with isolated zeros we need to impose
an additional phase condition. We realize this by locking one parameter
variable in the unstable parameter space. Formally we achieve this by
composing Q with a parametrization Θ : Rnu−1 → Rnu of a co-dimension
1 submanifold in parameter space. This leads us to define F : Rd → Rd by

F(α, φ) = Q(Θ(α))− P(φ). (1.3)
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Now finding x̃ = (α̃, φ̃) ∈ Rd such that F(x̃) = 0 is equivalent with finding
a connecting orbit between p1 and p2. The rigorous numerical evaluation
of this map involves interval arithmetical evaluations of truncations QM

and PN of the power series for Q and P. We use the MATLAB interval li-
brary INTLAB [48] to carry out these computations. The truncation errors
Q− QM and P− PN together with their derivatives are controlled by the
theory introduced in [60], where Cauchy estimates are used to control the
derivative. Assuming an approximate solution x̄ = (ᾱ, φ̄) ∈ Rd of (1.3)
to be given, we conclude the existence of a unique zero (α̃, φ̃) by calling
upon the Newton Kantorovich Theorem [45]. More precisely under cer-
tain assumptions on the quality of the approximation x̄, that we obtain by
a classical Newton iteration, and the invertibility of the derivative DF(x̄)
we are able to compute a radius r̄ > 0 such that we can guarantee a unique
solution x̃ to exist in a ball Bx̄(r̄) ⊂ Rd around the approximate solution x̄.
Taking the structure of F into account we are furthermore able to guaran-
tee that the heteroclinic connection we compute corresponds to a transver-
sal intersection of the corresponding stable and unstable manifolds. More
precisely we show that invertibility of DF(x̃) implies transversality of the
connection. In particular we can assure the invertibility of DF(x̃) despite
the fact that we only have bounds on the location of x̃ but do not know it
exactly.

For our second approach we first rewrite (1.1) as integral equation

F1(u) def= p0 +
∫ t

t0

g(u(s))ds− u(t) = 0 (1.4)

for a given initial time t0, where u(t0) = p0. Next we follow an idea similar
to the classical approach of projected boundary conditions. Therefore we
term this method boundary value approach. The main difference to the
classical algorithm, beside the quest for a-posteriori error bounds, is that
we use a higher order approximation of the invariant manifolds. Let us
describe the idea for heteroclinic connections between generic hyperbolic
fixed points p1,2 ∈ Rd of (1.1). Assume parametrizations Q and P of the
unstable and stable manifold Wu,s(p1,2) to be given and an interval [t0, t1]
to be chosen. As above we require u(t0) ∈ Wu(p1) and u(t1) ∈ Ws(p2)
which in terms of (1.4) becomes

Q(ϕ) +
∫ t1

t0

g(u(s))ds = P(φ). (1.5)

Appending (1.5) to (1.4), resorting again to a suitable phase condition en-
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coded by a map Θ : Rnu−1 → Rnu and setting θ = (α, φ) ∈ Rd we aim to
find a zero of the operator

F(θ, u) =

(
Q(Θ(α)) +

∫ t1
t0

g(u(s))ds− P(φ)
Q(Θ(α)) +

∫ t
t0

g(u(s))ds− u(t)

)
def=

(
Q(Θ(α)) +

∫ t1
t0

g(u(s))ds− P(φ)
F1(θ, u)

) (1.6)

defined on X = Rd × B, where B is a suitable function space and F1 was
redefined to account for the phase condition. We will give more details
on the choice of B as we proceed. Note that zeros of F correspond to
connecting orbits between p1,2. In a more general context we assume F to
be of the form

F(θ, u) =

(
G(p1(θ), p2(θ))

F1,2(θ, u)

)
(1.7)

where θ ∈ Rp and G : Rd ×Rd → Rp encodes the boundary conditions
and where p is the dimension of parameter space. More precisely the
maps p1(θ) and p2(θ) represent the boundary conditions at time t = t0

and t = t1 respectively. As a difference to the discretization free approach
in the form presented above, these can be chosen for example in a way
accounting for symmetries in the system or also more general forms of
boundary conditions. F2 is obtained in a similar way as F1 by integrating
backwards in time. The benefit of this general notation is that we can take
symmetries into account and adapt to the computation of more general
connecting orbits. We elaborate on this in more detail in Section 3.2.
Concerning the rigorous numerical treatment we follow two different ap-
proaches. The common feature is that in both cases we use the method
of radii polynomials (e.g. see [15]), providing an effective approach for
the verification of the applicability of the Banach Fixed Point Theorem
(BFP). More precisely, the idea of this method is to prove the existence of a
zero to a map defined on a possibly infinite dimensional Banach space via
proving the existence of a solution to an equivalent fixed point problem
for an associated Newton-like fixed point operator T constructed from an
approximate solution. To achieve this, given the approximation the goal
is to apply the BFP on a ball of a-priori unknown radius r around this ap-
proximation. As an analogue to the discretization-free approach, a central
issue in the construction of T is to obtain a good approximate inverse of
the Fréchet derivative D f at the approximate solution.
To obtain numerically amenable conditions for the application of the BFP,
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i.e. T should be a contractive self-mapping on the ball around the approxi-
mate solution, the requirements are encoded in a set of finitely many strict
polynomial inequalities, where the unknown radius r is the variable. More
precisely, if one finds a radius r̄ such that the polynomial inequalities are
simultaneously fulfilled, the operator T is a contraction on the ball of ra-
dius r̄ around the approximation. As a result we can guarantee a unique
fixed point of T to exist in this ball and hence we also obtain the existence
of a solution to our original zero finding problem in the possibly infinite
dimensional space.
We point out that in the case of an infinite dimensional problem a so-
called tail radii polynomial is constructed via analytic estimates control-
ling the truncation error introduced during the Galerkin projection. The
exact derivation depends on the choice of method that shall be our next
concern.

1. First we discretize F by using linear splines. This is much in the spirit
of [60] with the difference that we adapt the approach to generic first
order ODEs and obtain results on transversality. More precisely we
represent u by its linear spline approximation and obtain a splitting
of F of the form F = Fm ⊕ F∞, where Fm is defined on a finite di-
mensional space. Thus the approximate zero (θ̄, ū) can be found by
applying a classical non-rigorous Newton approach to Fm. In addi-
tion Fm can be evaluated rigorously together with its derivative again
by a combination of interval arithmetic and rigorous error analysis
based on [60]. The fixed point operator T is of the form T = Tm⊕ T∞,
where Tm is Newton-like. It is constructed from the splitting Fm⊕ F∞.
By applying the method of radii polynomials we get the existence of
a zero (θ̃, ũ) of F within a ball of radius r̄ around the approxima-
tion (θ̄, ū). The tail errors involved in the construction of the tail
radii polynomial are controlled via classical a-priori spline estimates
[50]. In addition we obtain the invertibility of DF(θ̃, ũ). In the case
of heteroclinic connections between generic hyperbolic fixed points
this invertibility again implies transversality.

2. Second we use a spectral discretization based on the Chebyshev ex-
pansion of the unknown function u [56, 57]. A central feature is that
Chebyshev series are Fourier series in disguise [57] which paves the
way to the direct transfer of the mathematical machinery developed
in the last ten years [24, 67, 13, 14] to prove existence of solutions
to ODEs and PDEs with periodic profiles to the realm of existence
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proofs for non-periodic solutions like connecting orbits.
To the best of our knowledge an approach based on Chebyshev
spectral discretization has not been used for the rigorous solution
of nonlinear differential equations before. We mention the work
[6] where the authors develop Chebyshev interpolation polynomial-
based tools for rigorous computing. However, it seems that they
have not yet applied their methods to rigorously solve nonlinear dif-
ferential equations.
More precisely the idea of our approach is to use the smoothness
of the vector field g and construct a map f = f (θ, x) defined on
the Banach space Ωs of rapidly decaying sequences, augmented by a
parameter variable θ ∈ Rp, such that its zeros are in one-to-one cor-
respondence with the zeros of F. In this context the formulation of
(1.1) as integral equation is crucial as we can exploit elegant relations
between the Chebyshev polynomials and its antiderivatives. To ob-
tain a numerically tractable expression we compute with a Galerkin
projection f (m). This enables us to compute an approximate zero
(θ̄, x̄) again by a classical Newton method. In addition f (m) can be
evaluated rigorously together with its derivative again by a combina-
tion of interval arithmetic and rigorous error analysis based on [60].
Given the approximation (θ̄, x̄) we apply the method of radii poly-
nomials by constructing a Newton-like fixed point operator T asso-
ciated to an approximate zero of f . We again get the existence of
a unique solution (θ̃, x̃) in a ball of radius r̄ around (θ̄, x̄). In order
to construct the radii polynomials and in particular to control the
tail term we use the connection of Chebyshev series to Fourier series
[57] in order to be able to use the analytic convolution estimates in-
troduced in [24, 67, 13, 14].
In addition to the existence of a zero (θ̃, x̃) we also assure the invert-
ibility of D f (θ̃, x̃).

Before giving an outline of the rest of the work we aim for an overview
of alternative rigorous approaches to the computation of connecting orbits
for ODEs. For the context of maps we refer to [3] and the introduction of
[34] and references therein.
First we mention the work of Palmer based on shadowing techniques [33].
The idea is to establish the existence of a true connecting orbit near a
numerically computed one via checking the invertibility of a certain oper-
ator. As in our case numerically verifiable conditions for this invertibility
are derived.
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Furthermore we refer to the work of the CAPD group [40]. Based on the
rigorous integration of the flow and the variational equation various exis-
tence proofs for connecting orbits in the Circular restricted 3-body prob-
lem [64, 65], the Rössler system [63] and the Michelson system [62] were
obtained. The direct integration of the flow marks a difference to our ap-
proach based on a reformulation of the problem as an operator equation.
In addition we mention [44, 66, 42] that are also based on fixed point type
arguments. Next we point out topological approaches [37, 39] based on
index theoretic arguments using the Conley index [11] and the connection
matrix [21]. Applications include the computation of connecting orbits be-
tween equilibria of the Swift-Hohenberg PDE [54, 39].

The thesis is structured as follows. In Chapter 2 we compile some
background material. In Section 2.1 we collect the necessary facts from
dynamical systems theory with a special focus on the parametrization
method for the computation of invariant manifolds [7, 8, 9] together with
the a-posteriori error analysis [60]. In Section 2.2 we introduce some clas-
sical concepts from approximation theory important for the discretization
in the boundary value approach. In Chapter 3 we develop the main theo-
retical results. In Section 3.1 we introduce our discretization-free approach
based solely on the parametrization method and an Newton-Kantorovich
like argument for the verification. In Section 3.2 we establish the boundary
value approach, where we dedicate Section 3.2.1 to the discretization and
validation using the linear spline approximation and Section 3.2.2 to the
discretization and validation using the spectral approximation. In both
cases we use the method of radii polynomials in the validation. In Sec-
tion 3.3 we establish results guaranteeing in the discretization-free case
and in the boundary value approach using linear spline case for hetero-
clinic orbits between generic hyperbolic equilibria that the intersection of
the stable and unstable manifolds implied by our verified connecting or-
bit is transverse. In both cases this is achieved by showing that we not
only get a verified solution of the respective operator equations but also
invertibility of the derivative of the corresponding operator at this solu-
tion. This fact is then tied to the transversality of the manifolds. For the
spectral approximation we obtain an analogue result for the invertibility
of the derivative of the operator on the sequence space. In Chapter 4 we
present some applications in the context of the Lorenz equations in Sec-
tion 4.2 and the Gray-Scott equations in Section 4.1. In particular we com-
pare the spline and spectral discretization approach to some extent and
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extend results obtained in [60] concerning symmetric homoclinics in the
Gray-Scott equations using a spline based method by applying our spec-
tral approach. Finally we finish by giving an outlook on some possible
future applications.



Chapter 2

Background

This chapter serves as a review of basic notions important for the rest of
the thesis. As we will consider validated numerical methods for dynamical
systems we concentrate on introducing the relevant facts from the respec-
tive fields. We will start with the background material from dynamical
systems theory necessary in order to understand the sequel. First we offer
a more detailed description of what is mathematically understood by a
dynamical system and continue by defining invariant manifolds of hyper-
bolic fixed points together with the concept of connecting orbits between
them. These will be the main characters in the following. For more details
we refer to [10, 46]. We dedicate a section to the parametrization method
developed in [7, 8, 9] together with its numerical validation theory from
[60] as it will be a crucial tool in order to get rigorous approximations to
the aforementioned invariant manifolds.
Next we will focus on approximation theory and some numerical aspects
of this classical subject. We will by no means aim to give a complete re-
view of the field but restrict ourselves to the topics of direct relevance
to this thesis. More concretely our goal is to recall the approach of local
spline approximation and the global spectral approximation approach for
real-valued functions of one variable.

2.1 Dynamical systems

2.1.1 Basic definitions from dynamical systems theory

Dynamical systems model processes evolving with time, ranging from rel-
atively simple ones like the motion of the harmonic oscillator to much
more complex ones like the behavior of chemical reactants. More specif-
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ically one considers the state of a system and asks how, depending on
the current state, the evolution of the system will carry on in the future.
Thinking for example of the oscillator, given the initial position and speed,
how can we determine its future fate? The mathematical theory of dynam-
ical systems seeks for an abstract formulation of this heuristic idea. There
are two immediate central questions to ask: what do we understand by the
state of the system and how do we determine the evolution in the future?

The state of the system is modeled as an element of the so called phase
space X. Mathematically this is, in our case, a finite or infinite dimensional
Banach space. Considering for example the phase space of the harmonic
oscillator we obtain X = R2 as the oscillator models the motion of an elas-
tic spring which is characterized by the two scalar quantities of the dis-
placement from the equilibrium and speed. For spatially inhomogeneous
problems in continuous time like a chemical reaction the phase space will
typically be an infinite dimensional function space, where at each point in
time the function represents the spatial distribution of the reactants. We
will elaborate on these types of dynamical systems further below.

The evolution rule is given by the (semi-)flow map which is induced
for example by iteration of an invertible map, by an ordinary or a partial
differential equation. More formally we have the following definition.

Definition 2.1.1 Let T ∈ {N, Z, R, R+} and Φ : T× X → X be a mapping
with the following properties:

1. Φ(x, 0) = x ∀x ∈ X

2. Φ(Φ(x, t), s) = Φ(x, s + t) ∀s, t ∈ T

If T = N, R+ we call Φ a semi-flow and for T = Z, R we speak of a flow.
Depending on whether the state space is finite or infinite dimensional and the time
T is R or Z we speak of a (in)finite continuous or discrete dynamical system.

To sum up a dynamical system is a pair (X, Φ) of a phase space X and a
(semi)flow Φ on X.

Concretely we will consider two classes of dynamical systems in this
work.

1. Smooth dynamical systems on Rd: the flow map is induced by the
solution of a nonlinear ODE

u̇ = g(u), (2.1)
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where g : Rd → Rd is a nonlinear vectorfield. This will be our
primary object of study. The above mentionned oscillator is a very
basic example.

2. Nonlinear evolution equations: the semiflow is induced by a semi-
linear parabolic PDE of the form

ut = g(u) (2.2)

where g(u) = Au + n(u) with a linear partial differential operator
A and a nonlinearity n(u). We will study equilibrium solutions to
these equations that reduce the consideration of the PDE to an ODE
problem. An example application can be found in the dynamics of
chemical reactions we previously alluded to.

We henceforth assume that we are given a dynamical system (Rd, Φ)
induced by a nonlinear ODE (2.1).

The central question is, given an initial point x ∈ Rd what is the asymp-
totic result of the action of the flow Φ? This is analyzed by considering
the orbit of x, defined as follows.

Definition 2.1.2 Let Φ : Rd ×T→ Rd be a flow, the orbit of a point x ∈ Rd is
given by

O(x) = {Φ(x, t) : t ∈ T} .

Generally it is hard, if not impossible, to compute the flow map analyt-
ically. Thus O(x) cannot be computed exactly but is only amenable to
numerical investigation. One of the goals of the field of rigorous numeri-
cal methods is to bridge the gap between numerical simulation on the one
hand and analytical investigation in the mathematically strict sense on the
other. The algorithms presented in this thesis aim to contribute to this idea.

As it is not possible to analyze all orbits individually a common strat-
egy to analyze a given dynamical system is to look for points x ∈ Rd with
particularly simple orbits and use these as building blocks for more com-
plicated dynamical behavior. In this context the starting point is to seek
fixed points and periodic points.

Definition 2.1.3 Let a flow Φ : Rd ×T → Rd be given. p ∈ Rd is called fixed
point of Φ if Φ(p, t) = p for all t ∈ T or equivalently if g(p) = 0.
p ∈ Rd is called periodic orbit if there exists a T > 0 such that Φ(x, T) = x.



22 CHAPTER 2. BACKGROUND

A third important class is given by connecting orbits which help organizing
dynamics between fixed and periodic points. For the sake of notational
simplicity we only define connections between fixed points. We emphasize
that our methods are potentially extendable to connecting orbits between
periodic orbits.

Definition 2.1.4 Let p1,2 be fixed points of (2.1) with corresponding flow Φ. The
orbit O(x) of x ∈ Rd is called a connecting orbit from p1 to p2 if

lim
t→−∞

Φ(x, t) = p1 and lim
t→∞

Φ(x, t) = p2.

If p1 6= p2 then O(x) is called a heteroclinic orbit. For p1 = p2 one refers to
O(x) as a homoclinic orbit.

Together one obtains a dynamical scaffold structuring phase space. We
restrict our attention to the computation of connecting orbits between a
special class of fixed points, namely hyperbolic fixed points.

Definition 2.1.5 A fixed point p ∈ Rd of (2.1) is called hyperbolic if

Re(λ) 6= 0 ∀λ eigenvalue of Dg(p).

Our method to compute connections between hyperbolic fixed points
p1,2 builds on the fact that associated to a hyperbolic fixed point there
are invariant manifolds characterized by the dynamical behavior of their
elements, namely the stable and unstable manifold. As these objects are of
some importance in our context let us give a precise definition. We restrict
our attention to the stable manifold, the unstable manifold can be obtained
via time reversal. First we define the local stable manifold Ws

loc(p) with
respect to a neighborhood U of p by

Ws
loc(p) = {x ∈ U : lim

t→∞
Φ(x, t) = p and Φ(x, t) ∈ U ∀t ≥ 0}.

The Stable Manifold Theorem [46, 10] states that if the flow Φ is Ck then
Ws

loc(p) can be represented as a graph of a Ck function over Es, and hence it
is justified to speak of a manifold. Once we have the local stable manifold
the global stable manifold of p is defined by

Ws(p) =
⋃
t≥0

Φ(Ws
loc(p), t).

In other words the stable manifold of p ∈ Rd is characterized by

Ws(p) = {x ∈ Rd : lim
t→∞

Φ(x, t) = p}.



2.1. DYNAMICAL SYSTEMS 23

The classical proofs of the (Un)stable Manifold Theorem either are
based on Ljapunov Perron Method [10] or the so called graph transform
[46]. The recently developed parametrization method by de la Llave,
Fontich et al. [7, 8, 9] provides an alternative approach with far reach-
ing generalizations. The central property of this approach with respect to
this work is that it lends itself to efficient numerical implementations in-
cluding error bounds. We will elaborate on this in more detail in the next
section.

Hence for the case of hyperbolic fixed points the following equivalence
is valid:

O(x) is a connecting orbit between p1 and p2 ⇔ x ∈Wu(p1) ∩Ws(p2).
(2.3)

The relation (2.3) will be central when we formulate the problem of finding
connecting orbits in a twofold way as an equivalent zero finding problem
on an appropriate Banach space.

Verbalized (2.3) means that an orbit is a connecting orbit between the
hyperbolic fixed points p1,2 if it lies in the intersection of the unstable man-
ifold of p1 with the stable manifold of p2. This in turn implies that this in-
tersection, if non-empty, is always at least one dimensional. Consequently
we expect connecting orbits between hyperbolic fixed points generically
to occur if the dimensions nu,s of Wu,s(p1,2) fulfill the relation

nu + ns ≥ d + 1. (2.4)

If a given connecting orbit connects two hyperbolic equilibria p1,2 for
which (2.4) is met, we call it a generic connecting orbit.

We remark that requirement (2.4) is not satisifed for homoclinic or-
bits to hyperbolic fixed points, as hyperbolicity implies that nu + ns = d.
This makes a homoclinic orbit a codimension one phenomena, that is we
expect them to generically occur in one-parameter families of ODEs thus
foreshadowing the relation of the occurrence of connecting orbits to global
bifurcations. See for example [2] for a more thorough treatment of the role
of parameters in connecting orbit problems.

We now go on to give a detailed discussion of the parametrization
method including the strategy employed in numerical calculations.
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2.1.2 The parametrization method

The present discussion is aimed at reviewing some elements of the pa-
rameterization method for stable and unstable manifolds of hyperbolic
equilibria of vector fields. We concentrate on those aspects relevant for
this thesis. For the full development in all generality see [7, 8, 9]. The
fundamental point of the following discussion is that the parametrization
P that we aim to compute has to fulfill a functional equation that, under
some regularity assumptions, we can use in order to derive a power series
representation of P. We also review the a-posteriori error analysis from
[60].

Derivation and solution of the functional equation

Let us restrict our attention to the computation of the n-dimensional stable
manifold of a hyperbolic fixed point p of (2.1) with flow Φ. The unstable
manifold can be computed by time reversal. Before we go to the details
we state that the overall goal of the parametrization method is to find a
neighborhood Rn ⊃ Vν and a map P : Vν → Rd such that

P(Vν) ⊂Ws(p).

Assume that Dg(p) is diagonalizable over C. Note that this is not a major
restriction as diagonalizable matrices form a dense subset of Cn,n. Let
λ1, . . . , λn be the corresponding eigenvalues with negative real part of
Dg(p) and Λ ∈ Cn,n the diagonal matrix with diagonal entries λ1, . . . , λn.
Assume without loss of generality that there are m real eigenvalues and l
pairs of complex conjugate eigenvalues. Let λ1, . . . , λm be the real eigen-
values and λm+2j−1, λm+2j for j = 1, . . . , l be the pairs of complex conju-
gate eigenvalues. Note that n = m + 2l. In order for the parametrization
method to succeed we need to impose that λ1, . . . , λn are non-resonant.

Definition 2.1.6 A set of eigenvalues is called non-resonant if for all k1, . . . , kn ∈
N with k1 + · · ·+ kn ≥ 2 we have that

k1λ1 + . . . + knλn 6= λi

for all i = 1, . . . , n.

Henceforth assume that λ1, . . . , λn are non-resonant. We will see that the
non-resonance condition is crucial for the success of the herein described
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implementation. In addition assume that the eigenvalues λ1, . . . , λn are or-
dered such that for m ≥ 0 the eigenvalues λ1, . . . , λm ∈ R are real and for
j = 1, . . . , n−m

2 the eigenvalues λm+2j−1 and λm+2j are complex conjugate.
We set l = n−m

2 .

For later use let us define for x ∈ Rn the norm

‖x‖(m,l) = max
(

max
1≤i≤m

|xi|, max
1≤j≤l

√
x2

m+2j−1 + x2
m+2j

)
. (2.5)

More precisely the domain Vν will naturally turn out to be a ball with
respect to this norm. Further let A be the matrix with columns ξ1, . . . , ξn,
where ξ1, . . . , ξn are the possibly complex eigenvectors of Dg(p). In addi-
tion let A be the real matrix with columns v1, . . . , vn constituting the basis
of the corresponding real invariant subspace obtained by defining

vi = ξi i = 1, . . . , m

vm+2j−1 = 2Re(ξm+2j−1) j = 1, . . . , l

vm+2j = −2Im(ξm+2j−1) j = 1, . . . , l.

(2.6)

The choice involving the factor 2 will become clear as we proceed. Finally
set J = A−1Dg(p)A, which explicitly gives

J =



λ1
. . . 0

λm

J1

0
. . .

Jl


(2.7)

where

Jj =

(
aj −bj

bj aj

)
with λm+2j−1 = aj + ibj for j = 1, . . . , l and bj < 0.

The aim of the parametrization method is to find an open set Vν ⊂ Rn

together with a parametrization P : Rn ⊃ Vν → Rd such that

P(0) = p DP(0) = A, (2.8)

that in addition conjugates the linear flow of J = A−1Dg(p)A in the pa-
rameter space with the nonlinear flow on the stable manifold. More pre-
cisely we require

Φ(P(φ), t) = P(eJtφ) ∀φ ∈ Vν (2.9)
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for all t where both sides of the equation are defined. Remark that (2.9)
then ensures that

P(Vν) ⊂Ws(p).

This can be seen by considering for an arbitrary φ ∈ Vν

lim
t→∞

Φ(P(φ), t) = lim
t→∞

P(eJtφ) = P( lim
t→∞

eJtφ︸ ︷︷ ︸
=0

) = p,

where lim
t→∞

eJtφ = 0 stems from the fact that the J is a block diagonal matrix

corresponding to the eigenvalues of Dg(p) with negative real parts.

Remark 2.1.1 Knowing the parametrization P, using (2.9) enables to compute
the dynamics on the stable manifold by computing the linear flow in parameter
space and lifting to phase space by applying the parametrization. This is a feature
that is useful when the dynamics is sensitive to leave the stable manifold. We
will consider a concrete application of this notion in Section 4.2.1. Also in a more
general context the parametrization method potentially offers the possibility to
compute the flow on more general invariant manifolds using the above described
technique.

By differentiating (2.9) on both sides and evaluating at zero yields the
functional equation

g(P(φ)) = DP(φ)Jφ ∀φ ∈ Vν, (2.10)

which, together with the initial constraints (2.8) is equivalent to (2.9).

For technical reasons, becoming evident momentarily, the strategy to
solve (2.10) consists in considering a complex valued extension

f : Cn ⊃ U → Cd

satisfying

g( f (z)) = D f (z)Λz ∀z ∈ Bν, (2.11)

where Bν is the ball with respect to the complex sup-norm ‖(z1, . . . , zn)‖∞ =
max

i=1,...,n
|zi| and Λ defined above . Additionally we demand the initial con-

straints

f (0) = p D f (0) = A (2.12)
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with A ∈ Cd,n defined earlier. Using the complex extension f , we define
the real valued parametrization via a complex change of coordinates by

P(φ1, . . . , φm, φm+1, φm+2, . . . , φm+2l−1, φm+2l) =

f (φ1, . . . , φm, φm+1 + iφm+2, φm+1 − iφm+2, . . . ,

φm+2l−1 + iφm+2l , φm+2l−1 − iφm+2l) .

(2.13)

In other words we define
P(φ) = f (Tφ)

with the matrix T given by

T =



1
. . . 0

1
B

0
. . .

B


where

B =

(
1 i
1 −i

)
.

The real domain of definition of P induced by the complex sup-norm ‖.‖∞

is Vν = {φ ∈ Rn : ‖φ‖m,l ≤ ν}. This can be seen as follows. Assume for

z = (φ1, . . . , φm, φm+1 + iφm+2, φm+1 − iφm+2, . . . ,

φm+2l−1 + iφm+2l , φm+2l−1 − iφm+2l) ∈ Cn

that ‖z‖∞ < ν. This means in particular that maxi=1,...,n |zi| < ν. Using
the standard definition of the complex absolute value we translate this to
a requirement for φ = (φ1, . . . , φn). More precisely this yields

max( max
i=1,...,m

|φi|, max
j=1,...,l

‖(φm+2j−1, φm+2j)‖2) < ν

which is exactly described by ‖φ‖(m,l) < ν as defined in (2.5). We note that
we have the estimate ‖x‖(m,l) ≤

√
2‖x‖∞.

The fact that this also leads to a real valued map with image in Ws(p) and
satisfying (2.10) with constraints (2.8) will be clarified after we describe
the strategy to compute f numerically.
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In order to solve (2.11) we plug in the power series ansatz

f (z) = ∑
|k|≥0

akzk (2.14)

where k = (k1, . . . , kn) is a multi-index with |k| = k1 + . . . + kn, ak ∈ Cd

and zk = zk1
1 · · · zkn

n . Assuming a Taylor expansion

g(z) = g(p) + Dg(p)z + ∑
|k|≥2

bkzk = Dg(p)z + ∑
|k|≥2

bkzk

of g around its hyperbolic fixed point p, we can formulate the following
lemma to solve (2.11).

Lemma 2.1.1 Let f (z) = ∑
|k|≥0

akzk the power series ansatz for the complex

parametrization f fulfilling (2.12) under the constraints (2.11). In addition let
the stable eigenvalues λ1, . . . , λn of Dg(p) be non-resonant.

The coefficients (ak)|k|≥0 can be computed recursively setting

a0 = p aei = ξi (i = 1, . . . , n)

where ei is the i-th standard basis vector. For |k| ≥ 2 we need to solve the linear
systems

(Dg(p)− (k1λ1 + · · ·+ knλn)1d,d)ak = −ck (2.15)

where ck = ck(ak̄, |k̄| < |k|) ∈ Rd is a function of multi-indices k̄ of absolute
value strictly less than k determined by the nonlinearity g.

Proof 2.1.1 First the initial constraints (2.12) yield

f (0) = a0 = p and D f (0) = [ae1 , . . . , aen ] = A.

Next we expand both sides of (2.11) and match like powers. Let us start with the
left hand side.

g( f (z)) = Dg(p) f (z) + ∑
|k|≥2

bk( ∑
|k|≥0

akzk)k

= ∑
|k|≥0

Dg(p)akzk + ∑
|k|≥2

ckzk

where ck = ck(ak̄, k̄ < k). For the right hand side we first realize that

∂zk

∂zi
= kizk−ei
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and hence (
∂zk

∂z1
, . . . ,

∂zk

∂zn

)
Λz = (λ1k1 + . . . + λnkn)zk

where we recall that Λ is the diagonal matrix with diagonal entries λ1, . . . , λn.
Thus we get

D f (z)Λz = ∑
|k|≥0

ak(λ1k1 + . . . + λnkn)zk.

Therefore (2.11) is equivalent to

∑
|k|≥0

Dg(p)akzk + ∑
|k|≥2

ckzk = ∑
|k|≥0

ak(λ1k1 + . . . + λnkn)zk

or

∑
|k|≥0

(Dg(p)− (λ1k1 + . . . + λnkn)1d,d)akzk = − ∑
|k|≥2

ckzk.

Matching like powers yields (2.15). �

Remark 2.1.2 1. Note that the non-degeneracy assumption on the eigenvalue
is crucial. In other words if there would be k1, . . . , kn ∈N such that

k1λ1 + . . . knλn = λj

for some j = 1, . . . , n then the system (2.15) may not be solvable!

2. (2.15) is often referred to as homological equation.

3. We will see concrete formulas for ck in the sequel when we consider flows
induced by polynomial vector fields.

4. Realize that the fact that Λ is a diagonal matrix, and not a nondiagonal
matrix like J, is crucial for simplifying the algebra!

5. By solving (2.15) to arbitrary order N we get high order polynomial ap-
proximation

fN(z) =
N

∑
|k|=0

akzk (2.16)

for which we will be able to state error estimates. We will return to this
point later.

We finish this discussion by assuring that (2.13) indeed induces a real
valued map satisfying (2.8) and (2.10).
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Lemma 2.1.2 Let P be the map defined on Vν by (2.13). Then P(Vν) ⊂ Rn and

P(0) = p DP(0) = A.

In addition the functional equation

g(P(φ)) = DP(φ)Jφ

is fulfilled for all φ ∈ Vν.

Proof 2.1.2 To show that P is real valued we show that conj( f (Tφ)) = f (Tφ)
where conj denotes complex conjugation. We also use the bar notation when it is
convenient. Choose a multi-index (k1, . . . , kn) and compute

conj(a(k1,...,kn)

m

∏
i=1

φki
i

l

∏
j=1

z
km+2j−1
j z̄

km+2j
j ) =

aΠ((k1,...,kn))

m

∏
i=1

φki
i

l

∏
j=1

z̄
km+2j−1
j z

km+2j
j )

where Π((k1, . . . , kn)) denotes the permutation that exchanges km+2j−1 and km+2j

for j = 1, . . . , l. This stems form the fact that complex conjugation of (2.15) per-
mutes exactly these indices. Hence conj( f (Tφ)) corresponds to a permutation of
the summands and hence

conj( f (Tφ)) = f (T(φ))

and P(φ) = f (Tφ) is real for all φ ∈ Vν.

Next we have by definition

P(0) = f ( T0︸︷︷︸
=0

) = p.

Furthermore
DP(0) = D f (T0)T = AT.

Denote the columns of AT by π1, . . . , πn and recall that the columns of A are
ξ1, . . . , ξn. By definition we have for i = 1, . . . , m

πi = ξi = vi.

For j = 1, . . . , l we have that

πm+2j−1 = ξm+2j−1 + ξ2j = 2Re(ξm+2j−1) = vm+2j−1

πm+2j = i(ξm+2j−1 − ξ2j) = −2Im(ξm+2j−1) = vm+2j,
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where we recall that ξm+2j−1 and ξm+2j are complex conjugate eigenvectors for
j = 1, . . . , l. Hence remembering (2.6) yields DP(0) = A.

To show the functional equation (2.10) we realize that

g(P(φ)) = g( f (Tφ)) =
(2.11)

D f (Tφ)ΛTφ = DP(φ)T−1ΛTφ, (2.17)

where we use that
DP(φ) = D f (Tφ)T.

From the fact that for a, b ∈ R(
1 i
1 −i

)(
a −b
b a

)(
1 i
1 −i

)−1

=

(
a + ib 0

0 a− ib

)
,

we get for j = 1, . . . , l that

BJjB−1 =

(
λm+2j−1 0

0 λ̄m+2j−1

)

and hence Λ = TJT−1. Plugging this into (2.17) yields

g(P(φ)) = DP(φ)Jφ.

�

Let us next consider the a-posteriori error bounds. In preparation for
the error analysis of the parametrization computation we topologize the
space of analytic functions f : Bν ⊂ Cn → Cd with the norm

‖ f ‖ν = sup
z∈Bν

‖ f (z)‖∞.

In addition, considering a power series expansion of f on Bν given by

f (z) =
∞

∑
|k|=0

bkzk, (bk ∈ Cd),

where k = (k1, . . . , kn) is a multi-index, |k| = ∑n
i=1 ki and zk = ∏n

i=1 zki
i ,

define the norm

‖ f ‖Σ,ν =
∞

∑
|k|≥0
‖bk‖∞ν|k|.

Note that ‖.‖Σ,ν is efficiently computable if f is a polynomial and that
‖ f ‖ν ≤ ‖ f ‖Σ,ν. These facts will be exploited in our computations. In
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the a-posteriori analysis for both our approaches to connecting orbit com-
putation we will also have to control derivatives of the parametrizations.
Therefore for matrix valued analytic functions A : Bν ⊂ Cn → Cd,d we set

‖A‖M,ν = sup
z∈Bν

sup
‖w‖∞=1

‖A(z)w‖∞

= sup
z∈Bν

‖A(z)‖∞

with the usual matrix ∞-norm given by the maximal absolute value row
sum.

A-posteriori analysis

Let fN be the N-th order polynomial approximation of f obtained by solv-
ing the homological equations (2.15) up to order N and let PN be the N-th
order polynomial defined by the same complex conjugate change of vari-
ables as in Equation (2.13). We now want to ascertain the quality of the
approximation. The philosophy of the a-posteriori analysis is the follow-
ing: given the approximate parametrization PN , prove that there is an exact
parametrization P nearby. More precisely we will try to find a parameter
disk Vν ⊂ Rn and a δ > 0 such that

‖P(φ)− PN(φ)‖∞ < δ, for all φ ∈ Vν.

Theorem 4.2 in [60] provides numerically verifiable sufficient condi-
tions under which this is possible. In the following we describe the nec-
essary ingredients. Given an approximate solution fN : Bν ⊂ Cn → Cd to
(2.11) fulfilling the constraints (2.12) with

fN(z) =
N

∑
|k|=0

bkzk, (2.18)

we derive error bounds which by construction carry over to the real valued
restriction given by (2.13). We define the following validation values.

Definition 2.1.7 (Validation Values) The collection of positive constants ν, εtol ,
C1, C2, ρ′, ρ and µ are called validation values if they possess the following prop-
erties.

1. ‖g ◦ fN − D fNΛ‖Σ,ν < εtol .

2. ‖ fN‖ν ≤ ρ′ < ρ.
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3. ‖Dg( fN)‖M,ν ≤ C1.

4. max
|α|=2

max
1≤j≤n

sup
|z−p0|≤ρ

|∂αgj(p + z)| ≤ C2.

5. max
1≤i≤n

Re(λi) < −µ.

It is important that all these values can be computed rigorously using
interval arithmetic. The following theorem is the basis of the a-posteriori
analysis. We use as shorthand notation

Ng = max
j=1,...,d

#{(k, l)|1 ≤ k, l ≤ d such that ∂k∂l gj 6≡ 0},

and suppose we are given constants N1,2 such that

N1 ≥ Ng,

N2 ≥
d(d + 2)d+2

(d + 1)d+1 .

Theorem 2.1.1 [Theorem 4.2 in [60]] Suppose that for an approximation fN in
the sense of (2.18) we are given validation values as in Definition 2.1.7. Assume
that N and δ fulfill

(N + 1)µ− C1 > 0,

δ >
2εtol

(N + 1)µ− C1
,

δ < min
{

(N + 1)µ− C1

C2N1N2
,

ρ− ρ′

d + 2

}
.

Then there exists a unique solution f : Bν → Cd to (2.11) fulfilling the initial
value constraints (2.12) such that

‖ f − fN‖ν ≤ δ. (2.19)

Furthermore the series coefficients for |k| > N satisfy the growth bounds ‖ak‖∞ ≤
δ

ν|k|
.

In particular it follows from (2.19) that

‖P(φ)− PN(φ)‖∞ < δ, for all φ ∈ Vν,

as we wished.
We remark that the proof in [60] actually shows that the truncation

error E(z) = f (z)− fN(z) is itself an analytic function on Bν with ‖E‖ν ≤
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δ. In particular we know that e(φ) = P(φ) − PN(φ) is a real analytic
function with

‖e(φ)‖∞ ≤ δ for all φ ∈ Vν.

Furthermore we can use classical results from complex analysis in order to
obtain bounds on the derivatives of the truncation error on smaller disks.
As this observation is essential when formulating a-posteriori validation
theorems for connecting orbits we give some further details.

Cauchy bounds The following result, whose proof can be found in [38],
allows estimating the derivatives of an analytic function of several com-
plex variables given a bound on the supremum of the function itself, but
on strictly smaller domain disks. The size of the bounds depends on how
much domain we are willing to give up. The proof relies on the multi-
variable Cauchy integral formula for derivatives of analytic functions of
several complex variables.

Lemma 2.1.3 (Cauchy Bounds) Suppose that f : Bν ⊂ Cn → Cd is bounded
and analytic. Then for any 0 < σ ≤ 1 we have for i = 1, . . . , n that

‖∂i f ‖ν exp(−σ) ≤
2π

νσ
‖ f ‖ν so that ‖D f ‖M,ν exp(−σ) ≤

2πn
νσ
‖ f ‖ν,

as well as for i, j = 1, . . . , n

‖∂i∂j f ‖ν exp(−σ) ≤
4π2

ν2σ2 ‖ f ‖ν so that ‖D2 f ‖ν exp(−σ) ≤
4π2n2

ν2σ2 ‖ f ‖ν.

When some of the eigenvalues occur in complex conjugate pairs we
require the following adaption of the Cauchy bounds.

Remark 2.1.3 Bounds on Derivatives When There Are Complex Conjugate
Eigenvalue Pairs Recall that in the case of complex conjugate pairs of
eigenvalues λj+1 = λj of Dg(p), the parameterization of the real stable
manifold is given by the complex conjugate change of variable in Equation
(2.13). Assume that we have m real eigenvalues and l complex conjugate
pairs of eigenvalues with n = m + 2l. Next as the complex change of
variables indicated by (2.13) can in particular be viewed as a composition
of functions we need to apply the chain rule to adapt the Cauchy estimates.
As a starting point let us treat the case where we only have one pair of
complex conjugate eigenvalues, meaning m = 0, l = 1 and hence n = 2.
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Then the parametrization P : R2 ⊃ Vν → Rd is for φ = (φ1, φ2) ∈ R2 given
by P(φ) = PN(φ) + e(φ) = fN(z, z̄) + E(z, z̄). In particular E : C2 ⊃ Bν →
Cd has d component functions Ek k = 1, . . . , d inducing the d components
of e.
In particular suppose for a component function Ek : Bν ⊂ C2 → C, that
Ek(z, z̄) ⊂ R and ‖Ek(z, z̄)‖∞ ≤ δ for each z ∈ Bν. Let ek : Vν ⊂ R2 → R be
defined by ek(φ1, φ2) = Ek(φ1 + iφ2, φ1 − iφ2). For j = 1, 2 we have

∂

∂φj
ek(φ1, φ2) = −ij+1

(
∂

∂z
Ek(z, z̄) + (−1)j+1 ∂

∂z̄
Ek(z, z̄)

)
. (2.20)

Then for any 0 < σ ≤ 1 and k = 1, . . . , d, applying Lemma 2.1.3 gives the
bound ∣∣∣∣ ∂

∂φj
ek(φ)

∣∣∣∣ ≤ ‖∂1E‖ν exp(−σ) + ‖∂2E‖ν exp(−σ) ≤
4π

νσ
δ (2.21)

for all φ ∈ Vν. Taking another derivative requires applying the chain rule
to both terms in Equation (2.20), leading to four terms which must be
bounded, so that∣∣∣∣ ∂2

∂φj∂φl
ek(φ)

∣∣∣∣ ≤ 16π2

ν2σ2 δ, for j, l = 1, 2 (2.22)

and for all φ ∈ Vν. Next we consider the case of general n = m + 2l.
Setting for A : Rn → Rn,d

|A|M,ν = sup
‖φ‖(m,l)≤ν

sup
‖x‖(m,l)=1

‖A(φ)x‖∞

= sup
‖φ‖(m,l)≤ν

‖A(φ)‖∞
(2.23)

with the usual maximal row sum matrix norm ‖ · ‖∞ and applying the
component-wise estimates given by Equations (2.21) and (2.22) gives

|DP|M,ν exp(−σ) ≤ |DPN |M,ν exp(−σ) +
(2m + 4l)nπ

νσ
δ. (2.24)

Concerning the second derivative we get for every component function Pk

(k = 1, . . . , d)

|D2Pk|ν exp(−σ) ≤ |D(PN)k|ν exp(−σ) +
(2m + 4l)2n2π

ν2σ2 δ (2.25)

for any loss of domain parameter 0 < σ ≤ 1. We note that for the appli-
cations to two dimensional stable and unstable manifolds associated with
a single complex conjugate pair of eigenvalues we have that m = 0 and
l = 1. The example we consider using the Lorenz equation will be of this
type.
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2.2 Spline and spectral approximation

In this section we review two different numerical approximation tech-
niques for real-valued functions u : I → R defined on an interval I ⊂ R.
That is we look for a function uh that can be described by a finite amount
of variables such that the approximation error

‖u− uh‖

is controllable in a mathematically concise way. We consider two philoso-
phies to obtain the approximation uh:

• Representation by many piecewise polynomials of low degree with
local support. This strategy is classically referred to as spline ap-
proximation.

• Representation by one polynomial of high degree defined on the
whole interval obtained by truncation of a Chebyshev series. This
strategy is classically referred to as spectral approximation.

We remark that there exist different other approaches to this approx-
imation problem, like for example meshfree methods [20] and wavelets
[12, 61] which we will nevertheless not consider in this thesis.

We will restrict our attention to linear splines for the spline approach,
where our main source is [50]. The spectral approach is based on the trun-
cation of a Chebyshev series expansion. As references see for example [57]
and [56]. While we refer to [50] for the details on the spline approximation,
we give some more details about the spectral approximation with an em-
phasis on the application of discrete convolution techniques. In particular
we give an overview of the convolution estimates from [5] and [25].

2.2.1 Spectral approximation

Let I = [−1, 1]. The central result in this context, which can be found
together with its proof in [57], provides an analogue of the Fourier expan-
sion for non-periodic functions on an interval.

Theorem 2.2.1 Every Lipschitz continuous function u : [−1, 1] → R has a
unique representation as an absolutely convergent series of the form

u(t) =
∞

∑
k=0

akTk(t) (2.26)



2.2. SPLINE AND SPECTRAL APPROXIMATION 37

where the polynomial basis Tk (k ≥ 0) is given by the two term recursion

Tk+1(t) = 2tTk(t)− Tk−1(t) (2.27)

with T0(t) = 1 and T1(t) = t.

The coefficients (ak)k∈N can be explicitly computed by

ak =
2
π

∫ 1

−1

u(t)Tk(t)√
1− t2

dt (2.28)

for k ≥ 1 and for k = 0 the coefficient 2
π has to be changed to 1

π . The degree k
polynomials Tk(t) are called Chebyshev polynomials (of 1st kind).

Before proceeding further we recall some basic properties of the Cheby-
shev polynomials that we wish to refer to later.

Lemma 2.2.1 Let Tk(t) : [−1, 1] → R denote the kth Chebyshev polynomials of
first kind. Then the following statements are true:

1.
Tk(−1) = (−1)k Tk(1) = 1 (2.29)

2. ∫
T0(s)ds = T1(s),

∫
T1(s)ds = (T2(s) + T0(s))/4∫

Tk(s)ds =
1
2

(
Tk+1(s)
k + 1

− Tk−1(s)
k− 1

)
for k ≥ 2

(2.30)

For a proof see [4].

By a rescaling of the coefficients ak for k ≥ 1 we assume for technical
reasons a Chebyshev series expansion of the form

u(t) = a0 + 2
∞

∑
k=1

akTk(t). (2.31)

To obtain the numerical approximation we use a Galerkin projection. That
is, given a dimension m we define

uh(t) = a0 + 2
m−1

∑
k=1

akTk(t).

We identify the function uh with the m-dimensional vector (a0, . . . , am−1)
of its Chebyshev coefficients and obtain a finite dimensional object that we
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can manipulate numerically.

The numerical usefulness of this expansion becomes more evident if
we consider the following equivalent characterization of the Chebyshev
polynomials. For t ∈ [−1, 1] we have

Tk(t) = cos(kθ) where t = cos(θ) for a θ ∈ R. (2.32)

In this form it is less obvious that Tk(t) is a degree k polynomial. Without
giving the details of the derivation, which can be found in [56], we indicate
the foundation for this fact. Given a t ∈ [−1, 1] we can find a complex
number z ∈ S1 ⊂ C in the unit circle such that t = 1

2 (z + z−1) and hereby
obtain

Tk(t) = cos(kθ) =
1
2
(zk + z−k).

Then we directly check that

2tTk − Tk−1(t) = 2 cos(θ) cos(kθ)− cos((k− 1)θ)

= 2
1
2
(z + z−1)

1
2
(zk + z−k)− 1

2
(zk−1 + z1−k)

=
1
2
(zk+1 + z−k−1) = cos((k + 1)θ) = Tk+1(t).

(2.33)

(2.32) obviously yields T0(t) = 1 and T1(t) = t and together with (2.33) we
have that Tk(t) = cos(kθ) with t = cos(θ) defines a degree k polynomial
in t.

The benefit of (2.32) is that the series expansion (2.26) can be identified
as a Fourier series in disguise. This central fact heralds the application
of the machinery of analytic estimates introduced in [24, 67, 13, 14] and
the Banach space of rapidly decaying coefficients used in [58, 24] in our
non-periodic problem setting. Thus let us be more precise. If we define

ãk =

ak k ≥ 0

a−k k < 0

we obtain

u(t) = a0 + 2
∞

∑
k=1

akTk(t) = a0 + 2
∞

∑
k=1

ak
1
2
(eikθ + e−ikθ) =

∞

∑
k=−∞

ãkeikθ .

(2.34)
By (2.34) we can derive the following central lemma.
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Lemma 2.2.2 Let u : [−1, 1] → R and v : [−1, 1] → R be two Lipschitz
continuous functions with corresponding Chebyshev expansions

u(t) = a0 + 2
∞

∑
k=1

akTk(t) v(t) = b0 + 2
∞

∑
k=1

bkTk(t)

such that their product uv : [−1, 1]→ R is Lipschitz continuous. Then

uv = (a ∗ b)0 + 2
∞

∑
k=1

(a ∗ b)kTk(t)

where (a ∗ b)k is given for k ≥ 0 by the discrete convolution sum

(a ∗ b)k = ∑
k1+k2=k
ki∈Z

a|k1|b|k2|. (2.35)

Proof 2.2.1 Following (2.34) we compute

uv(t) =

(
∞

∑
k=−∞

ãkeikθ

)(
∞

∑
k=−∞

b̃keikθ

)
=

∞

∑
k=−∞

(ã ∗ b̃)keikθ

where
(ã ∗ b̃)k = ∑

k1+k2=k
ki∈Z

ãk1 b̃k2

which is the classical convolution sum for Fourier series that can be found for
example in [53]. By definition of ãk and b̃k we obtain for k ≥ 0

∑
k1+k2=k
ki∈Z

ãk1 b̃k2 = ∑
k1+k2=k
ki∈Z

a|k1|b|k2|. (2.36)

Using the fact that by construction ãk = ã−k and b̃k = b̃−k we get that (ã ∗ b̃)k =
(ã ∗ b̃)−k and thus using (2.36)

uv(t) =
∞

∑
k=−∞

(ã ∗ b̃)keikθ = (ã ∗ b̃)0 +
∞

∑
k=1

(ã ∗ b̃)k(eikθ + e−ikθ)

= (a ∗ b)0 +
∞

∑
k=1

(a ∗ b)k(eikθ + e−ikθ) =

= (a ∗ b)0 + 2
∞

∑
k=1

(a ∗ b)k
1
2
(eikθ + e−ikθ)

= (a ∗ b)0 + 2
∞

∑
k=1

(a ∗ b)k cos(kθ) = (a ∗ b)0 + 2
∞

∑
k=1

(a ∗ b)kTk(t).

�
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Thus by representing two sufficiently smooth functions in Chebyshev
basis Tk their multiplication can be viewed as convolution of their Cheby-
shev coefficient sequences (ak)k∈N.

As a further analogue to Fourier series the question about the decay
rates of these coefficients ak is of crucial importance. Like in the case of
Fourier series an overall rule of thumb is: the smoother a function the
faster the coefficients decay. In our context the functions u we wish to
expand are components of solutions to differential equations of the form
(2.1) where the vector field g : Rd → Rd is real analytic. This in particular
implies that u is a real analytic function which in turn entails geometric
decay of the Chebyshev coefficients. As this is of central importance let us
state the main theorem in this context that again can be found in [57].

Theorem 2.2.2 Let a function u : [−1, 1]→ R be real analytic and analytically
continuable onto the ρ-ellipse Eρ for some ρ > 1 and let it be bounded on Eρ by
some R > 0 that is |u(z)| ≤ R for all z ∈ Eρ then

|ak| ≤ 2Rρ−k (2.37)

with |a0| ≤ R. This decay behaviour O(ρ−k) for k→ ∞ is referred to as geometric
decay.

Proof 2.2.2 See [57].

Remark 2.2.1 1. The ρ ellipse is a classical object in approximation theory
and is defined as follows: fix a ρ > 1 and consider the image of the circle
with radius ρ in the complex plane C under the Joukowski map w = 1

2 (z +
z−1). This is an ellipse with foci at ±1 which is particularly suitable for
our situation as we consider analytic continuations of functions defined on
[−1, 1].

2. If two functions u and v are analytic, then so is their product. Hence we are
obviously in the position to use Lemma 2.2.2.

Furthermore we can derive the following elementary bound on the ap-
proximation error in the infinity norm ‖u− uh‖∞

def= supt∈[−1,1] |u− uh(t)|.

Lemma 2.2.3 Let the conditions of Theorem 2.2.2 be fulfilled then we can esti-
mate for any m > 1

‖u− uh‖∞ ≤
4R

ρ− 1
ρ−m+1
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Proof 2.2.3 We directly compute for t ∈ [−1, 1] and m > 1 arbitrary but fixed
that

|u(t)− uh(t)| ≤ 2
∞

∑
k=m

|ak|︸︷︷︸
≤2Rρ−k

|Tk(t)|︸ ︷︷ ︸
≤1

≤ 4R
∞

∑
k=m

ρ−k

= 4R

(
1

1− 1
ρ

−
1−

( 1
ρ

)m

1− 1
ρ

)
=

4Rρ−m+1

ρ− 1
.

Taking the supremum over all t ∈ [−1, 1] yields the result. �

It is a well-known fact that geometric decay of a sequence (ak)k∈N implies
that it is also algebraically decaying. More precisely, defining the weights

ωk =

|k| k 6= 0

1 k = 0
(2.38)

we have the following implication: given a ρ > 1

sup
k≥0
|ak|ρk < ∞⇒ sup

k≥0
|ak|ωs

k < ∞

for all algebraic decay rates s > 1. Thus we know that the Chebyshev
coefficient sequence of an analytic function is algebraically decaying for
all decay rates s > 1. This motivates the definition of the space of alge-
braically decaying sequences

Ωs = {(ak)k∈N : sup
k≥0
|ak|ωs

k < ∞}. (2.39)

Moreover if we define for a ∈ Ωs

‖a‖Ωs = sup
k≥0
|ak|ωs

k

the pair (Ωs, ‖‖Ωs) is a Banach space. Inspired by Lemma 2.2.2 we add the
additional operation of discrete convolution of two sequences a1, a2 ∈ Ωs

denoted by ∗ and defined in (2.35). Then (Ωs, ‖‖Ωs , ∗) becomes an algebra.
More concretely this means that given two sequences a, b ∈ Ωs there is a
constant C = C(s) such that

‖a ∗ b‖Ωs ≤ C‖a1‖Ωs‖a2‖Ωs .

Constructive proofs of this fact can be found for the case 1 < s < 2 in [5]
and for the case s ≥ 2 in [25]. In particular concrete values of the con-
stants C(s) can be derived from these results. It will turn out in the sequel
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that it is indispensable in our approach that these estimates are as sharp
as possible. We will therefore give some details on the strategy of their
derivation used in [25].

Fixing a decay rate s ≥ 2 we have to bound

sup
k≥0
|(a1 ∗ a2)k|ωs

k,

where (a ∗ b)k is given by (2.35). The following Lemma, corresponding to
Lemma A.2 in [25] leads us the way to achieving this task. Following [25]
we first define

γM(s) = 2
[

M
M− 1

]s

+
[

4 ln(M− 2)
M

+
π2 − 6

3

] [
2
M

+
1
2

]s−2

.

Lemma 2.2.4 Assume two sequences a1,2 ∈ Ωs to be given and set A1,2 =
‖a1,2‖s. Let M ∈N with M ≥ 6. Define α2

0, . . . , α2
M by

α2
k

def=


1 + 2 ∑M

k1=1
1

ω2s
k1

+ 2
M2s−1(s−1) k = 0

∑M
k1=1

2ωs
k

ωk1
ωk+k1

+ 2ωs
k

(k+M+1)s Ms−1(s−1) + 2 + ∑k−1
k1=1

ωs
k

ωs
k1

ωs
k−k1

1 ≤ k ≤ M− 1

2 + 2 ∑M
k1=1

1
ωs

k1
+ 2

Ms−1(s−1) + γM(2) k ≥ M

.

(2.40)
Then we have that for k ≥ 0

∑
k1+k2=k
ki∈Z

1
ωs

k1
ωs

k2

≤ α2
k

ωs
k

and hence

|(a1 ∗ a2)k| ≤ A1 · A2
α2

k
ωs

k
(2.41)

Proof 2.2.4 [25]

Using Lemma 2.2.4 we can set

C = max
k=0,...,M

α2
k

and obtain that (Ωs, ‖‖Ωs , ∗) is an algebra.
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Remark 2.2.2 If one sets
‖ · ‖s = C‖ · ‖Ωs ,

then (Ωs), ‖ · ‖s becomes a Banach algebra. This can be seen by realizing that for
a1,2 ∈ Ωs we have

‖a1 ∗ a2‖s = C‖a1 ∗ a2‖Ωs ≤ C2‖a1‖Ωs‖a2‖Ωs

=
(
C‖a1‖Ωs

)(
C‖a2‖Ωs

)
= ‖a1‖s‖a2‖s.

Taking the next step from Lemma 2.2.2 leads to the consideration of
products of n functions u1, . . . , un, induced for example by nth order poly-
nomial nonlinearities in the vector field g in (2.1). We therefore extend the
above reasoning to the estimation of the norm of convolution terms of the
form a1 ∗ . . . ∗ an for n ≥ 2.
As this is a central aspect we wish to refer to later we explain the strategy
used in [25] to obtain these estimates in more detail. Choosing n ≥ 3 and
M ≥ 6 the main ingredient is to inductively construct αn

0 , . . . , αn
M fulfilling

∑
k1+...+kn=k

ki∈Z

1
ωs

k1
· · ·ωs

kn

≤ αn
k

ωs
k

for 0 ≤ k ≤ M− 1 and

∑
k1+...+kn=k

ki∈Z

1
ωs

k1
· · ·ωs

kn

≤ αn
M

ωs
k

for k ≥ M. The following Lemma corresponding to Lemma A.3 in [25]
effectuates this strategy.

Lemma 2.2.5 Assume sequences a1, . . . , an ∈ Ωs for a given n ≥ 3 to be given
and set Ai = ‖ai‖Ωs for i = 1, . . . , n. Let M ≥ 6 and define αn

0 , . . . , αn
M by

αn
k =



αn−1
0 + 2 ∑M−1

k1=1
αk1
ω2s

k1

+ 2αn−1
M

(M−1)2s−1(2s−1) k = 0

∑M−k
k1=1

αn−1
k+k1

ωs
k

ωs
k1

ωs
k+k1

+ αn−1
M ωs

k
(M+1)s(M−k)s−1(s−1) + ∑k−1

k1=1

αn−1
k1

ωs
k

ωs
k1

ωs
k−k1

+

∑M
k1=1

αn−1
k1

ωs
k

ωs
k1

ωs
k+k1

+ αn−1
M ωs

k
(M+k+1)s(M)s−1(s−1) + αn−1

k + αn−1
0

1 ≤ k ≤ M− 1

α
(n−1)
M ∑M

k1=1
1

ωs
k1

+ 2αn−1
M

Ms−1(s−1) + Σ∗ + ∑M
k1=1

α
(n−1)
k1
ωs

k1
+

αn−1
M + αn−1

0 k ≥ M
(2.42)
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where Σ∗ is defined by Σ∗ def= min(Σa, Σb) with

Σa =
M−1

∑
k1=1

αn−1
k1

Ms

ωs
k1

(M− k1)s + αn−1
M (γM −

M−1

∑
k1=1

1
ωs

k1

)

Σb = γM max
k=0,...,M

αn−1
k

Then

∑
k1+...+kn=k

ki∈Z

1
ωs

k1
· · ·ωs

kn

≤ αn
k

ωs
k

and hence
|(a1 ∗ . . . ∗ an)k| ≤ A1 · · · An

αn
k

ωs
k

(2.43)

for all k ≥ 0.

Proof 2.2.5 See [25]



Chapter 3

Rigorous numerics for
connecting orbits

Our strategy for the verification of connecting orbits between hyperbolic
fixed points of (2.1) is to consider an equivalent nonlinear operator equa-
tion

F(x) = 0 x ∈ X, (3.1)

where X is a Banach space and F is a Fréchet differentiable operator and
develop methods to validate solutions of these equations. The basis for this
approach is contained in equation (2.3). The common goal of all methods
is, given an approximate solution x̄ of the corresponding equation (3.1), to
find a ball Br(x̄) in the respective Banach space around the approximate
solution in which a genuine solution x̃ is guaranteed to exist.
We start with an algorithm that we term discretization free approach as it
is based on the intersection of the local stable and unstable manifold with
respect to some particularly chosen neighborhoods and lends itself to an
equivalent finite dimensional operator equation without discretization of
the flow induced by (2.1). We validate solutions to this equation using the
Newton-Kantorovich Theorem.
In the case when these local manifolds do not intersect the corresponding
equation (3.1) is infinite dimensional and necessitates the discretization
of the flow induced by (2.1). While the Newton-Kantorovich Theorem
would be applicable in principle in this situation the infinite dimension-
ality induces substantial technical hurdles that we are able to circumvent
by the method of radii polynomials originally designed to validate equi-
libria of PDEs (e.g. see [15]). In particular it provides an efficient means of
controlling the error induced by infinite dimensionality. Concerning the

45
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discretization we follow two different paths. First we utilize linear splines,
in a similar spirit as in [60], and secondly we use a spectral method based
on the truncation of Chebyshev series.
We finish this section by discussing results related to transversality of the
connecting orbits we validate.

3.1 Discretization free approach

3.1.1 General validation method using Newton-Kantorovich

The Newton-Kantorovich Theorem is a classical result in nonlinear anal-
ysis giving information about the convergence behavior of the Newton
iteration. Stated in the following way we can use it to validate solutions to
(3.1) in the sense that we find a ball around an approximate solution x̄ in
which we can guarantee a unique genuine solution x̃ to exist.

Theorem 3.1.1 (Newton-Kantorovich Theorem) Let (X, ‖ · ‖X) and (Y, ‖ ·
‖Y) be Banach spaces and F : X → Y be a Fréchet differentiable mapping. Con-
sider x̄ ∈ X, r̄ > 0 and Bx̄(r̄) ⊂ X the closed ball of radius r̄ centered at x̄. Let
B(X, Y) be the space of bounded linear operators on X with the operator norm
‖ · ‖B(X) and similarly B(Y, X). Assume that

(i) DF(x̄) has a bounded inverse, and

(ii) ‖DF(x)− DF(y)‖B(X,Y) ≤ κ‖x− y‖X for all x, y ∈ Bx̄(r̄),

for κ ≥ 0. If

(I)

εNK ≥ ‖DF(x̄)−1 F(x̄)‖X,

(II)

εNK ≤
r̄
2

,

and

(III)

4εNK κ ‖DF(x̄)−1‖B(Y,X) ≤ 1,

then there is a unique x̃ ∈ Bx̄(r̄) so that F(x̃) = 0.
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A proof of the Newton-Kantorovich Theorem can be found in [45].
Note that the connection to the Newton iteration is suggested in the fol-
lowing way. Thinking of the classical Newton operator

T(x) = x− DF−1(x)F(x)

to find a zero of a differentiable map f and assuming that we start the
iteration with x0 = x̄, then we realize that the difference between the first
iterate T(x̄) and the initial point x̄ is exactly

x̄− DF(x̄)−1F(x̄)− x̄ = DF(x̄)−1F(x̄)

and thus εNK measures this initial defect. Instead of giving more details
on the proof we make the following remark to clarify the strategy to apply
Theorem 3.1.1 to validation purposes.

Remark 3.1.1 In order to use Theorem 3.1.1 to validate a numerical approxima-
tion to a solution of (3.1) defined on a finite dimensional spaces X and Y we take
the following steps:

1. Check if ‖DF−1(x̄)‖B(Y,X) is bounded.

2. Compute εNK such that

‖DF(x̄)−1F(x̄)‖X ≤ εNK (3.2)

3. Set
r̄ = 2εNK. (3.3)

4. Compute κ for this r̄.

5. Check if
4εNKκ‖DF−1(x̄)‖B(Y,X) ≤ 1. (3.4)

By using interval arithmetic we can check the strict inequality in (3.4).
The benefit is that the strict inequality implies invertibility of DF(x̃). (see
Lemma 3.3.1). In the sequel this fact will be connected to the transversality
of the intersection of the stable and unstable manifold.

In order to illustrate the basic mechanics involved in applying Theo-
rem 3.1.1 for validation purposes we consider the following elementary
example. We stir the reader’s attention to the following two facts, clearly
visible in this easy example:
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• The quality of the numerical approximation, i.e. the magnitude of
εNK is crucial for the success of the validation

• The central technical tool to compute κ is the Mean Value Theorem

Example 3.1.1 We consider an iterative approximation of 3
√

3. Realize that the
boundedness requirements condense to scalar nonzero conditions in this context.
A Matlab implementation can be found in the software accompanying this thesis.
In this (trivial) illustration we obtain

F(x) = x3 − 3 (3.5)

resulting in the iteration

xk+1 = xk −
x3

k − 3
3x2

k
(3.6)

with an appropriate initial condition x0 ∈ R. Assuming an approximate zero
x̄ = xkend of (3.5) for some iteration number kend let us check the assumptions of
Theorem 3.1.1.

•
DF(x̄)−1 bounded ⇔ 1

3x̄2 < ∞. (3.7)

• Assuming
r̄ ≥ 2εNK (3.8)

where

| x̄
3 − 3
3x̄2 | ≤ εNK (3.9)

we demand from κ > 0 that

|3x2 − 3y2| ≤ κ|x− y| (3.10)

for x, y such that |x− x̄|, |y− x̄| < r̄.

By applying the mean value theorem we can compute κ symbolically in this case.
We readily estimate for all x < y with |x− x̄|, |y− x̄| < r̄

|3x2 − 3y2| ≤ 6ξ|x− y| ≤ κ|x− y|, (3.11)

where ξ ∈ (x, y) and κ = 6(x̄ + r̄). We explicitely see that the bigger εNK the
bigger r and the bigger κ will be. To complete the proof we thus have to check for
the above constructed constant εNK and κ that we have

4εNKκ| 1
3x̄2 | ≤ 1. (3.12)
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The point distinguishing the finite from the infinite dimensional setting
is that in the finite dimensional case we can estimate εNK and κ directly
by evaluating F and DF using interval arithmetic. When working on in-
finite dimensional spaces the additional error produced by discretizing X
has to be taken into account. Hence, it is more difficult to get estimates
for εNK and κ, as we can neither evaluate the operator F nor its derivative
DF numerically. One strategy to cope with this problem raised by infinite
dimensionality is to use the method of radii polynomials that we shall de-
scribe in Section 3.2. Now we shall go on to describe how we use Theorem
3.1.1 to validate connecting orbits.

3.1.2 Validation of connecting orbits

We would like to use the above presented procedure to validate connect-
ing orbits between two hyperbolic equilibria p1,2 of (2.1). The idea is to
look for intersections of the local stable and unstable manifolds which
can be encoded as a zero of an operator F defined on a finite dimensional
space. Let us start with the derivation of F before we turn to the validation
technique.

Definition of F

Let p2 have stable dimension ns and denote by P : Rns ⊃ Vνs → Rd a
parametrization of the local stable manifold of p2. Similarly for p1 we
assume the unstable dimension to be nu and set Q : Rnu ⊃ Vνu → Rd to
be a parametrization of the local unstable manifold of p1. Additionally we
take the non-degeneracy condition nu + ns = d + 1 as given. Denote the
parameter in Vνu as ϕ and in Vνs as φ. As described in (2.3) an orbit is a
connecting orbit if it lies in the intersection of Wu(p1) and Ws(p2). Thus if
we find ϕ̃ ∈ Vνu and φ̃ ∈ Vns such that Q(ϕ̃) = P(φ̃) def= q then

q ∈Ws(p2) ∩Wu(p1)

and hence O(q) is a connecting orbit from p1 to p2. As a consequence
setting

F(ϕ, φ) = Q(ϕ)− P(φ) (3.13)

we obtain that the existence of x̃ = (ϕ̃, φ̃) ∈ Rd+1 such that F(x̃) = 0 is
equivalent to the existence of a connecting orbit from p1 to p2. However
F : Rd+1 → Rd and we can not expect F to have isolated zeros. As the
Newton-Kantorovich Theorem by construction detects isolated zeros, we
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need to impose a phase condition in order to ensure isolation of the zeros
we seek for.

Phase condition The idea of the phase condition is to fix one of the pa-
rameters ϕ or φ to lie on a prescribed co-dimension one submanifold of
the parameter space and hereby reduce the number of independent vari-
ables by one. We choose this to be done in the unstable parameter space
emphazising that this is a choice that can just as well be made in favor of
the stable parameter space. Let

Θν : B1 ⊂ Rnu−1 → int (Vνu) ⊂ Rnu (3.14)

be an immersion of the (nu − 1)-sphere of radius ν, where we let B1 be
the unit euclidean ball of radius 1. Moreover we require that image(Θν) is
transverse to the linear vector field Λu in unstable parameter space. This
transversality condition insures that for any α ∈ B1 the columns of DΘν(α)
and the single vector ΛuΘν(α) are a linearly independent set of vectors
which span Rnu . Then the columns of DP[Θν(α)]Θν(α) and the vector
DP[Θν(α)]ΛuΘν(α) span TP[Θν(α)]Wu(p1). Note that since the dynamics on
the manifold are conjugate to the linear dynamics in parameter space we
know that DP[Θν(α)]ΛuΘν(α) is the tangent vector to the orbit through
P[Θν(α)]. Then the columns of DP[Θν(α)]DΘν(α) span the subspace of
TP[Θν(α)]Wu(p1) transverse to the orbit.
We thus redefine F by

F : B1 ×Vνs ⊂ Rnu−1 ×Rns = Rd → Rd (3.15)

given by
F(α, φ) = Q[Θν(α)]− P(φ). (3.16)

with the effect that F maps Rd into itself and the Newton-Kantorovich
technique is applicable.

In order to make F amenable to a numerical treatment we choose or-
ders N, M for the finite sum approximations PN and QM to the infinite
sum expressions of the parametrizations P and Q. Recall that PN is de-
rived from a complex valued extension fN : Cns → Cd as defined in (2.16)
and further explained in Section 2.1.2. In a similar way we assume QM to
be derived from a complex valued map hM : Cnu → Cd. Next we assume
Vνu,s to be chosen as in Theorem 2.1.1 which in particular entails that

P = PN + es Q = QM + eu
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with analytic tail errors es,u : Rns,u → Rd, where ‖eu(ϕ)‖∞ ≤ δu for all
ϕ ∈ Vνu and ‖es(φ)‖∞ ≤ δs for all φ ∈ Vνs . This enables us to express F as

F(α, φ) = QM(Θ(α)) + eu(Θ(α))− PN(φ)− es(φ)

= QM(Θ(α))− PN(φ) + eu(Θ(α))− es(φ)
def= FN,M(α, φ) + E(α, φ).

(3.17)

We point out that in order to use the Newton-Kantorovich Theorem 3.1.1
it is indispensable to have control over the derivatives of F up to second
order. This clarifies the importances of the Cauchy estimates introduced
in Lemma 2.1.3 as these can be used to estimate the derivatives of E for
which we only ever have an upper bound on ‖E(α, φ)‖∞. We recall in this
context that Cauchy bounds enable to estimate derivatives of an analytic
function f on a certain domain only using knowledge about the norm of
f .

Validation of solution to F(α, φ) = 0

The idea for the Newton-Kantorovich based validation is described in Re-
mark 3.1.1. We now aim for an implementation of this technique to the
validation of approximate solutions to F(x) = 0 with F given in (3.16).
The following remark describes an important tool in this process.

Remark 3.1.2 (Neumann series) The Neumann series makes a statement about
the invertibility of a certain linear operator on a Banach space X. More specifi-
cally let T be a linear operator on X and let ‖ · ‖ be a norm on the space of linear
operators on X such that it becomes a Banach space. Then if ‖T‖ < 1 then I−T
is invertible and

‖(I−T)−1‖ ≤ 1
1− ‖T‖ .

This is a direct analogue of the classical geometric series.

Next assume an approximate zero x̄ = (ᾱ, φ̄) to be given. We will take
steps 1 to 5 from Remark 3.1.1 to build a ball Bx̄(r̄) of radius r̄ around
x̄ where we can guarantee a genuine zero x̃ to exist. First we need to
be exact with the norms we use in the respective spaces. Recall that we
suppose that p1 has nu unstable eigenvalues where mu are real and lu are
complex conjugate pairs and similarly p2 has ns stable eigenvalues with ms

stable eigenvalues and ls complex conjugate pairs. Recall further that we
have nu,s = mu,s + 2lu,s. Taking Definition 3.15 into account we explicitly
state that F maps the Banach space X = (B1×Vνs , ‖ · ‖) to Y = (Rd, ‖ · ‖∞).
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Before we give more details on the choice of norms in the following remark
we emphasize that it is important for us to demand that the immersion Θν

maps B1 into Vνu so that we can use the Cauchy estimates naturally given
for the operator norms defined by (2.23). We now return to the question
of norms and elaborate in addition on the induced matrix norms as these
will be of some importance in the sequel. The goal of the following remark
is to show that it is sufficient to bound the canonical matrix infinity norm,
as it serves as an upper bound for the various induced norms.

Remark 3.1.3 Consider first A ∈ Rd,d mapping from X = (B1 × Vνs , ‖ · ‖) to
Y = (Rd, ‖ · ‖∞), where we set

‖x‖ = max (‖(x1, . . . , xnu−1)‖2, ‖(x1, . . . , xns)‖ms,ls) . (3.18)

By definition the matrix norm is given by

sup
‖x‖=1

‖Ax‖∞ = sup
‖x‖=1

max
i=1,...,d

∣∣∣∣∣ d

∑
j=1

aijxj

∣∣∣∣∣ .

Let us estimate ∣∣∣∣∣ d

∑
j=1

aijxj

∣∣∣∣∣ ≤ d

∑
j=1
|aij| |xj|︸︷︷︸

≤1 if ‖x‖≤1

.

Thus we obtain sup‖x‖=1 ‖Ax‖∞ ≤ maxi=1,...,d ∑d
j=1 |aij|. As usual by setting

x = ei we note sup‖x‖=1 ‖Ax‖∞ = maxi=1,...,d ∑d
j=1 |aij| = ‖A‖∞, the usual

matrix ∞-norm.
Next we let A ∈ Rd,d map Y to X. We denote by ‖A‖ the induced matrix norm
and get by definition

‖A‖ = sup
‖x‖∞=1

‖Ax‖ ≤ sup
‖x‖∞

√
2‖Ax‖∞ =

√
2‖A‖∞. (3.19)

Thus for computational convenience to bound ‖A‖ we bound ‖A‖∞ and use
(3.19).

Last but not least a similar reasoning can be applied to bound the operator
norm ‖ · ‖P for matrices A mapping (B1, ‖ · ‖2) to (Vνu , ‖ · ‖(mu,lu)) to obtain
‖A‖P ≤

√
2‖A‖∞. Note that the subscript P refers to phase condition.

Before we state the validation values explicitly we introduce the fol-
lowing notation.

Definition 3.1.1 We say x � y for x, y ∈ Rd iff xi ≤ yi for all i = 1, . . . , d.
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Assume the following validation values to be given. We point out
that they all can be computed rigorously using interval arithmetic. In the
sequel we motivate in detail how these quantities enter in the validation
algorithm.

Definition 3.1.2 (Discretization-free validation values) We call ᾱ ∈ B1 ⊂
Rnu−1, φ̄ ∈ Bνs ⊂ Rns and the positive constants ε, σu, σs, C1, C2, C̃i

1 ∈
Rnu , i = 1, . . . , d, C̃j

2 ∈ Rnu , j = 1, . . . , nu − 1, C̃i
3 ∈ Rd,nu , i = 1, . . . , d,

C̃j,k
4 ∈ Rnu , j, k = 1, . . . , nu − 1, C̃j,k

5 Rd, j, k = 1, . . . , ns , A and r̄ validation
values if

(i)
‖Θν(ᾱ)‖(mu,lu) < νu and ‖φ̄‖(ms,ls) < νs,

(ii)

σu ≤ − ln

(
‖Θν(ᾱ)‖(mu,lu)

νu

)
and σs ≤ − ln

(
‖φ̄‖(ms,ls)

νs

)
,

(iii)
‖F(M,N)(ᾱ, φ̄)‖∞ ≤ εnum,

(iv)
‖[DF(M,N)(ᾱ, φ̄)]−1‖ ≤ C1,

(v)
‖DΘν(ᾱ)‖P ≤ C2,

(vi)

πC1

(
(2lu + 4mu)C2

νuσu
δu +

2ls + 4ms

νsσs
δs

)
≤ A,

(vii)
2C1

1− A
(εnum + δu + δs) ≤ r̄,

(viii)

sup
‖ϕ−ϕ̄‖(mu ,lu)<r

|D(QM)i(ϕ)| � C̃i
1 ∈ Rnu (i = 1, . . . , d)

sup
‖α−ᾱ‖2<r

∣∣∣∣ ∂

∂αj
Θ(α)

∣∣∣∣ � C̃j
2 ∈ Rnu (j = 1, . . . , nu − 1)

sup
‖ϕ−ϕ̄‖(mu ,lu)<r

∣∣D2(QM)i(ϕ)
∣∣ � C̃i

3 ∈ Rd,nu (i = 1, . . . , d)

sup
‖α−ᾱ‖2<r

∣∣∣∣ ∂

∂αk∂αj
Θ(α)

∣∣∣∣ � C̃j,k
4 ∈ Rd (j, k = 1, . . . , nu − 1)
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(ix)

sup
‖φ−φ̄‖(ms ,ls)<r

∣∣∣∣ ∂

∂φj∂φk
PN(φ)

∣∣∣∣ � C̃j,k
5 (j, k = 1, . . . , ns).

Given these validation values we now describe a procedure how to
verify the existence of a zero to the map F : Rd → Rd given by (3.16)
which will correspond to a connecting orbit from p1 to p2. We term this
the discretization-free procedure.

Discretization free procedure

Step 1 We need to show that that DF(x̄)−1 has bounded norm. To this
end we note that under the assumption that DFN,M(x̄)−1 exists, we have

DF(x̄)−1 = [DFN,M(x̄) + DE(x̄)]−1

=
[

DFN,M(x̄)
(

I + DFN,M(x̄)−1DE(x̄)
)]−1

=
(

I + DFN,M(x̄)−1DE(x̄)
)−1

DFN,M(x̄)−1.

(3.20)

As we aim to use a Neumann series argument as described in Remark
3.1.2 to show bounded invertibility of

(
I + DFN,M(x̄)−1DE(x̄)

)
, this poses

us the problem of estimating ‖DFN,M(x̄)−1DE(x̄)‖B(X,X) where E(α, φ) =
eu(Θ(α))− es(φ). Recalling x̄ = (ᾱ, φ̄) we compute, using submultiplica-
tivity, that

‖DF−1
N,M(x̄)DE(x̄)‖B(X,X) ≤ ‖DFN,M(x̄)−1‖‖Deu(Θ(α))DΘ(α)− Des(φ)‖∞

≤ ‖DFN,M(x̄)−1‖
(
|Deu(Θ(α))|νu exp(−σu)‖DΘ(α)‖P + |Des(φ)|νs exp(−σs)

)
.

The next step is to use the Cauchy estimates specified in Lemma 2.1.3 and
further adapted to the case of complex conjugate eigenvalues in Remark
2.1.3 as well as the bounds C1,2 specified in 3.1.2(iv) and 3.1.2(v). Note that
3.1.2(ii) is equivalent to

νu exp(−σu) ≤ ‖Θ(ᾱ)‖(mu,lu) and νs exp(−σs) ≤ ‖φ̄‖(ms,ls)

which together with 3.1.2(i) assures applicability of the Cauchy estimates.
We obtain

‖DF−1
N,M(x̄)DE(x̄)‖ ≤ C1

(
(2mu + 4lu)π

νuσu
δuC2 +

(2ms + 4ls)π

νsσs
δs

)
= A.

(3.21)
If we demand A < 1, Remark 3.1.2 enables us to estimate

‖DF(x̄)−1‖ ≤ 1
1− A

C1 (3.22)

which completes Step 1.
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Step 2 The next step consists in computing εNK defined in (3.2) which
amounts to finding a normwise bound on DF(x̄)−1F(x̄). To this end we
recall

F(x̄) = FN,M(x̄) + E(x̄) = FN,M(x̄) + eu(Θ(α))− es(φ)

Building on 3.1.2(i) the use of the aposteriori bounds δu,s is justified and
we get that

‖F(x̄)‖∞ ≤ ‖FN,M(x̄)‖∞︸ ︷︷ ︸
εnum

+δu + δs

where εnum is amenable to interval computations. Using this combined
with (3.22) we see

‖DF(x̄)−1F(x̄)‖∞ ≤
C1

1− A
(εnum + δu + δs)

def= εNK.

Step 3 Recalling (3.3) we set r̄ = 2εNK. This identifies 3.1.2(vi) as the
condition encoding this definition.
Before continuing with Step 4 we wish to emphasize that Step 1− 3 exploit
the numerical results together with rigorous error estimates. The better the
numerical results and the tighter the error bounds the more likely it is that
Step 4 and 5 are successful.

Step 4 The next step we need to take consists in computing κ > 0 such
that

‖DF(x)− DF(y)‖∞ ≤ κ‖x− y‖
for all x, y with ‖x − x̄‖∞ ≤ r̄ and ‖y− x̄‖∞ ≤ r̄. To achieve this we will
apply the Mean Value Theorem component-wise. Therefore let suitable
x = (αx, φx), y = (αy, φy) ∈ Rd be given. We compute with ξ = (αξ , φξ)
where ξi = tixi + (1− ti)yi for i = 1, . . . , d and some ti ∈ (0, 1)

max
i=1,...,d

d

∑
j=1

∣∣∣∣ ∂Fi

∂xj
(x)− ∂Fi

∂xj
(y)
∣∣∣∣ = max

i=1,...,d

d

∑
j=1

∣∣∣∣∇ ∂Fi

∂xj
(ξ)(x− y)

∣∣∣∣ =

≤ max
i=1,...,d

d

∑
j=1

d

∑
k=1

∣∣∣∣ ∂Fi(ξ)
∂xj∂xk

∣∣∣∣ |(x− y)k|︸ ︷︷ ︸
≤‖x−y‖

≤ ‖x− y‖ max
i=1,...,d

d

∑
j=1

d

∑
k=1

∣∣∣∣ ∂Fi(ξ)
∂xj∂xk

∣∣∣∣ .

This leaves us with the task of estimating ∑d
j=1 ∑d

k=1

∣∣∣ ∂Fi(ξ)
∂xj∂xk

∣∣∣. Therefore let
us first consider for i = 1, . . . , d

∂Fi(x)
∂xj∂xk

=
∂(QM(Θ(αx)))i − (PN(φx))i

∂xj∂xk
+

∂(eu(Θ(αx)))i − (es(φx))i

∂xj∂xk

=
∂(QM(Θ(αx)))i

∂xj∂xk
+

∂(eu(Θ(αx))i

∂xj∂xk
− (PN(φ))i

∂xj∂xk
− (es(φ))i

∂xj∂xk
.
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Recalling x = (α1, . . . , αns , φ1, . . . , φnu) we use this to obtain

d

∑
j=1

d

∑
k=1

∣∣∣∣ ∂Fi(x)
∂xj∂xk

∣∣∣∣ ≤ nu−1

∑
j=1

nu−1

∑
k=1

∣∣∣∣∂(QM(Θ(αx)))i

∂αj∂αk

∣∣∣∣+ ∣∣∣∣∂(eu(Θ(αx))i

∂αj∂αk

∣∣∣∣
+

ns

∑
j=1

ns

∑
k=1

∣∣∣∣∂(PN(φx))i

∂φjφk

∣∣∣∣+ ∣∣∣∣∂(es(φx))i

∂φj∂φk

∣∣∣∣ .

Now we are in the position to use Cauchy estimates to bound the error
terms and complete the computation κ via interval arithmetic. More con-
cretely using the chain rule and recalling 3.1.2(viii) and 3.1.2(ix) we first
get for j, k = 1, . . . , ns − 1∣∣∣∣∂(QM(Θ(αx)))i

∂αj∂αk

∣∣∣∣+ ∣∣∣∣∂(eu(Θ(αx))i

∂αj∂αk

∣∣∣∣
≤ 〈C̃i

3C̃j
2, C̃k

2〉+ 〈C̃i
1, C̃j,k

4 〉+
16π2

ν2
uσ2

u
δu

nu

∑
r=1

nu

∑
l=1

(C̃j
2)r(C̃k

2)l +
4π

νuσu
δu

nu

∑
r=1

(C̃j,k
4 )r

def= Pjk.

where 〈·, ·〉 denotes the euclidian dot product. So finally we are able to
define

κ =
nu−1

∑
j=1

nu−1

∑
k=1

Pjk +
ns

∑
j=1

ns

∑
k=1

C̃j,k
5 + n2

s
16π2

ν2
s σ2

s
δs.

Step 5 The last step consist in checking inequality (3.4). We recall that
if this is a strict inequality then it will follow from Theorem 3.3.1 that the
connecting orbit we validate corresponds to a transversal intersection of
the involved unstable and stable manifolds.

Let us summarize the above procedure in the following theorem.

Theorem 3.1.2 Assume validation values according to Definition 3.1.2 to be
given. Then there exist a unique zero x̃ = (α̃, φ̃) of F given by (3.16) in a
ball of radius r̄ with respect to ‖ · ‖ from (3.18) around the approximate solution
(ᾱ, φ̄).

The proof is given by the above reasoning.

3.2 Approach solving a boundary value problem

After considering the discretization free approach in Section 3.1 we now
compute connecting orbits by solving a parametric boundary value prob-
lem for (2.1) that we rewrite as an integral equation augmented by some
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boundary conditions. Solutions hereof we interpret as zeros of an oper-
ator F defined on a Banach space X to be in the general setting of (3.1).
Note that one main difference to the above approach is that we now have
an operator which is defined on an infinite dimensional space as opposed
to the finite dimensional setting of Section 3.1.
We aim to compute a solution of F(x) = 0 by applying the method of radii
polynomials [15]. That is, as a first step we construct a fixed point operator
T : X → X defined on an associated infinite dimensional Banach space X
whose fixed points are in bijective correspondence to zeros of F. The con-
struction of the fixed point operator T and the choice of the Banach space
X will be different in the Spline and Chebyshev approach. More precisely,
in the Spline approach we set X = X and construct a Newton-like fixed
point operator T directly from F. In the Chebyshev approach we let X
be the space of rapidly decaying Chebyshev coefficients and construct an
equivalent problem of the form f (x) = 0 on X . Then we derive T corre-
sponding to f .
Once T : X → X is defined the idea is to find a fixed point of T in a ball
Br(x̄) around an approximate solution x̄ of F(x) = 0 or f (x) = 0 respec-
tively. In order to do so we take the radius r of the ball as a variable and
compute a finite number of polynomials p0(r), . . . , pM(r) such that the fol-
lowing implication is valid: if we find an r̄ > 0 such that pi(r̄) is negative
for all i = 0, . . . , M, then T is a contraction on the ball Bx̄(r̄) ⊂ X . By
using the Banach Fixed Point theorem we hereby obtain the existence of a
unique genuine fixed point of T and hence a unique genuine zero of F.
Before we go on to construct the operator F we wish to emphasize the
following point. We assume explicitly that we are given an approxima-
tion x̄ ∈ X in the infinite dimensional space X . We will obtain this by
numerical computations in a finite dimensional approximate space and
embedding the result back again into the full space X .

We start by constructing the general operator F and give the details on
the respective fixed point operators in separate subsections.

Formulation of the parametrized BVP Let times t1 < t2 be given. Defin-
ing p1,2 = u(t1,2), solving (2.1) is equivalent to solving either the integral
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equation

u(t) = p1 +
∫ t

t1

g(u(s))ds ∀t ∈ [t1, t2]

⇔

F1(p1, u)(t) def= p1 +
∫ t

t1

g(u(s))ds− u(t) = 0 ∀t ∈ [t1, t2]

(3.23)

or

u(t) = p2 −
∫ t2

t
g(u(s))ds ∀t ∈ [t1, t2]

⇔

F2(p2, u)(t) def= u(t) +
∫ t2

t
g(u(s))ds− p2 = 0 ∀t ∈ [t1, t2].

(3.24)

Our goal in defining F is, to use use either (3.23) or (3.24) and to ad-
ditionally encode the property of being a connecting orbit in parametric
boundary conditions. The idea is to extract the boundary conditions from
the fact that a connecting orbit starts on a unstable manifold and ends on
a stable manifold.
Mathematically this means we will set

X = Rp × B, (3.25)

where B is an appropriate function space and consider an operator F :
X → X given by

F(θ, u)(t) def=

(
G(p1(θ), p2(θ))

F1,2(p1,2(θ), u)(t)

)
, (3.26)

where G : R2d → Rp is an affine map and possibly p1 and /or p2 de-
pend on the parameter θ ∈ Rp in a way ensuring that the operator (3.26)
has isolated zeros. We use the convention p = 0 for the absence of G, as
encountered in IVPs. To be clear we emphasize that the benefit of this
general notation is that it allows us to unite both the solution of IVPs and
the computation of generic connecting orbits while being able to take sym-
metries into account, as we will in the example of the Gray-Scott equation
considered in Section 4.1. More precisely, the goal of this choice of no-
tation is to make the methods described herein easily extendable to for
example the context of generic homoclinic connecting orbits and systems
possessing integrals of motions. This will necessitate the introduction to
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further constraints in order to assure isolation of the solutions to the oper-
ator equation that we wish to incorporate in the function G.

For the sake of concreteness let us construct the operators to compute
solutions of IVPs and of generic heteroclinic orbits between hyperbolic
equilibria p1,2.

Example 3.2.1 1. Consider the initial value problem

u̇ = g(u) u(t1) = p1 (3.27)

which is equivalent to solving F1(p1, u) = 0 with F1 defined in (3.23). Thus
by setting p = 0 we obtain the operator F : B→ B with F(u) = F1(p1, u)
whose zeros correspond to solutions of (3.27).

2. Let two hyperbolic equilibria p1,2 fulfilling (2.4) be given together with
parametrizations

Q : Rnu ⊃ Vνu → Rd P : Rns ⊃ Vνs → Rd

of the local unstable and stable manifold of p1,2. Letting a phase condition
Θ : Rnu−1 → Rnu explained in (3.14) be given. Recalling that nu − 1 +
ns = d, we define p = d and set θ = (α, φ) ∈ Rd. Furthermore let

G(p1, p2) = G(p1(θ), p2(θ)) = P(φ)︸ ︷︷ ︸
p2(θ)

−Q(Θ(α))︸ ︷︷ ︸
p1(θ)

−
∫ t2

t1

g(u(s))ds

(3.28)
and set

F(θ, u) =

(
G(p1(θ), p2(θ))
F1(p1(θ), u)(t)

)
. (3.29)

The choice of the function space B is a critical one and depends on
several parameters, that we elaborate on in the following remark.

Remark 3.2.1 First it depends on the equation and the regularity the equation
prescribes for its solutions. This gives an upper bound on the regularity we can
assume about our solution and hence to the regularity we prescribe by choosing
the function space. Secondly it depends on the error norms that we have at our
disposition. The natural norm to measure the error of a spline approximation is
the sup-norm ‖ · ‖∞ and as we require B to be a Banach space we need to choose
it accordingly. A generic choice is to pick

B = C0([0, 1], Rd),



60 CHAPTER 3. RIGOROUS NUMERICS FOR CONNECTING ORBITS

the space of continuous functions from [0, 1]→ Rd. In the Chebyshev approach it
is convenient to assume that the Chebyshev coefficient decay algebraically to any
order. Thus

B = Cω([−1, 1], Rd)

denoting the space of real analytic functions is a good choice, as this ensures
geometric decay which implies algebraic decay to any order (see Section 2.2.1). It
is worth noting that we use less regularity than we could by stepping back to a
space of algebraically decaying coefficients with some fixed decay rate s.

We now go on to construct the fixed point operator T encoding the
zeros of F. We start by using the Spline approach before we go on with
the Chebyshev approach. Before we go to the details of the derivation we
wish to make the following remark.

Remark 3.2.2 The goal in both the Spline and the Chebyshev approach is to
divide the operator T into a finite dimensional part amenable to numerical inves-
tigation and an infinite dimensional tail part controlling the error introduced by
the truncation. The Chebyshev algorithm will be more explicit in the sense that
we start from a basis expansion of the unknown function that gives us an infinite
set of concrete equations for every basis coefficient that we then truncate. In the
spline approach we start from a finite approximation to the unknown function
that gives us a finite dimensional equation. The infinite tail part has to be dealt
with by a-priori estimates.
This fact motivates that in the spline case we consider a splitting of X = Xm⊕X∞

in a finite dimensional space Xm and infinite dimensional X∞ where we only have
normwise bounds for the elements of X∞.
We point out that in this sense the Spline approach can be considered to be more
rigid than the Chebyshev approach.

3.2.1 Validation of connecting orbits: Spline approach

Let F be given by (3.23). We consider F as a map from X = Rp ×
C0([0, 1], Rd) to itself. The goal is to derive a fixed point operator T de-
fined on X whose fixed points correspond to zeros of F and show that T is
a contraction in a ball around a numerical approximation x̄ ∈ X to the so-
lution of F(x) = 0. To obtain the approximation we first aim to discretize
F using linear splines.
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Discretization of F using linear splines to construct splitting X = Xm ⊕
X∞

Set t1,2 in (3.23) to t1 = 0 and t2 = 1. To account for the choice of this spe-
cific time interval we rescale (3.23) by a time factor L, set B = C0([0, 1], Rd)
in (3.25) and consider F : Rp × C0([0, 1], Rd) to be given by

F(θ, u) =

(
G(p1(θ), p2(θ))

p1(θ) + L
∫ t

0 g(u(s))ds− u(t)

)
. (3.30)

We remark that we do not take L as a variable. We assume this to be
part of the numerical approximation to our connecting orbit.

In addition let ∆ : 0 = t0 < t1 < · · · < tm = 1 be a grid on [0, 1].
We aim to use the linear spline projection associated to ∆ to construct a
splitting X = Xm ⊕ X∞, into a finite dimensional space Xm and an infinite
dimensional error space X∞.

Denote Sm the space of linear splines subordinate to the grid ∆ and
consider the linear spline projection Πm : C0([0, 1], R) → Sm ∼= Rm+1

consisting of computing the linear interpolation of u with respect to the
mesh ∆. More concretely we have for u ∈ C0([0, 1], R)

Πm(u) = (u(t0), u(t1), . . . , u(tm)) ∈ Rm+1.

For u ∈ C0([0, 1], Rd) define

uh = (Πm)du = (Πmu1, . . . , Πmud) ∈ (Sm)d ∼= Rd(m+1).

Depending on the context we interpret uh as a continuous function, as
a d times m + 1 matrix, where we denote its columns by (uh)l ∈ Rd for
l = 1, . . . , m + 1 or as a d(m + 1) column vector.

Define Xm = Rp × (Sm)d and the finite dimensional projection Πm :
X → Xm : (θ, u) 7→ (θ, (Πm)du). By using the complementary projection
I −Πm we get that X∞ = 0× (I −Πm)dC0([0, 1], Rd), where (I −Πm)du =
((I −Πm)u1, . . . , (I −Πm)ud). The associated projection Π∞ : X → X∞ is
given by (θ, u) 7→ (0, (I −Πm)du). For x ∈ X we write x = (xm, x∞), with
xm

def= Πmx and x∞
def= Π∞x.

Let us furthermore define the norms

‖Πm(θ, u)‖Xm = max{‖θ‖∞, ‖Πmu1‖∞, . . . , ‖Πmud‖∞} (3.31)
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and
‖Π∞(θ, u)‖X∞ = max

l=1,...,d
sup

t∈[0,1]
|(I −Πm)ul(t)|, (3.32)

which qualify the pairs (Xm, ‖.‖Xm) and (X∞, ‖.‖X∞) as Banach spaces.
This splitting of the space X induces a splitting of the operator F that

is defined on it. Furthermore we have the splitting of the operator

F = Fm ⊕ F∞
def= ΠmF⊕Π∞F. (3.33)

We will derive explicit formulas for the discretized operator Fm in the
application section. Before turning to the definition of the fixed point op-
erator T we elaborate more on how we identify numerical outputs with
elements in function space.
Set M = p + d(m + 1) and consider an isomorphism i : RM → Xm and
define Fm = i−1 ◦ Fm ◦ τ, where the embedding τ : RM → Xm ⊕ {0∞}
is defined by w 7→ (i(w), 0∞). For sake of simplicity we identify Xm

and RM, as well as xm ∈ Xm and i−1(xm) ∈ RM. In particular we
write x = (xm, x∞) = ((xm)0 . . . , (xm)d+1, x∞), where (xm)0 ∈ Rp and
(xm)j ∈ Rm+1 for j = 1, . . . , d. Note that Fm : RM → RM and we can
use standard numerical techniques (e.g. Newton’s method, continuation
techniques [31]) in order to compute an approximate solution x̄m of

Fm(xm) = 0. (3.34)

From the above construction, one has that x̄ = τ(x̄m) is an approximate
solution of (3.34).

Construction of the fixed point operator T and the radii polynomials

Assume a finite dimensional approximate solution x̄ ∈ X such that Fm(x̄) ≈
0. Let us define the set Bx̄(r) = x̄ + B(r, ω), where

B(r, ω) def= {x ∈ X : ‖xm‖Xm ≤ r and ‖x∞‖X∞ ≤ ωr}, (3.35)

with a fixed parameter ω that can be used to control the infinite dimen-
sional error. Note that the dependence of the set Bx̄(r) on the variable
radius r is a-priori unknown, and that the idea of the method of radii
polynomials is to solve for a suitable r∗ such that our corresponding fixed
point operator T is a contraction on Bx̄(r).

In order to define T, assume first that the following assumptions (RP)
are fulfilled.



3.2. APPROACH SOLVING A BOUNDARY VALUE PROBLEM 63

• RP1. We have computed an approximate solution x̄ = (x̄m, 0∞) for
(3.34), that is there exists a small ε > 0 such that ‖Fm(x̄m)‖Xm ≤ ε.

• RP2. We have computed the Fréchet derivative DFm(x̄m).

• RP3. We have computed an approximate inverse Am for DFm(x̄m).

• RP4. Am is injective.

Let us define the fixed point operator T : X → X to be

T(x) = (xm − AmFm(x))⊕ (F∞(x) + x∞). (3.36)

Lemma 3.2.1 Let x ∈ X. Then F(x) = 0 if and only if T(x) = x.

Proof 3.2.1 Assume F(x) = 0. By (3.33), one has that Fm(x) = 0m and
F∞(x) = 0∞. Therefore T(x) = xm ⊕ x∞ = x. On the other hand if T(x) =
x it follows that AmFm(x) = 0m and by injectivity of Am this amounts to
Fm(x) = 0m. Furthermore we have F∞(x) = 0∞ and by (3.33) it follows that
F(x) = 0 ∈ X.

We now describe the method of radii polynomials in more detail. The
construction of the polynomials p0, . . . , pM(r) depends on some bounds
encoding the requirements for the Banach Fixed Point Theorem to be ap-
plicable on the ball Bx̄(r). More precisely calling upon the contraction
mapping theorem on Bx̄(r) necessitates to show that T(Bx̄(r)) ⊂ Bx̄(r)
and that T is a contraction on Bx̄(r). In order to do so, we consider the
residual function

y def= T(x̄)− x̄ = −AmFm(x̄)⊕ F∞(x̄). (3.37)

First let us assume that we are given positive constants Y0 ∈ Rp and
Y1, . . . , Ym+1 ∈ Rd and Y∞ ∈ R such that

| (Πmy)i | � Yi, for all i = 1, . . . , m + 1 (3.38)

and
‖Π∞y‖X∞ ≤ Y∞. (3.39)

To show that T is a contraction, we introduce, for ξ1, ξ2 ∈ B(r, ω), the
quantity

z(ξ1, ξ2)
def= DT(x̄ + ξ1)ξ2. (3.40)
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Realize that z(ξ1, ξ2) is linear in ξ2. Assume further that we are given
polynomials bounds Z0(r) ∈ Rp, Zi(r) ∈ Rd for i = 1, . . . , m + 1 and
Z∞(r) ∈ R satisfying

sup
ξ1,ξ2∈B(r,ω)

| (Πm(z(ξ1, ξ2)))i | � Zi(r), for all i = 1, . . . , m + 1 (3.41)

and
sup

ξ1,ξ2∈B(r,ω)
‖Π∞(z(ξ1, ξ2))‖X∞ ≤ Z∞(r). (3.42)

Using the above ingredients we define the radii polynomials.

Definition 3.2.1 Assume we are given bounds as in (3.38) and (3.39) and poly-
nomial bounds as in (3.41) and (3.42). Then define for i = 1, . . . , m + 1 the finite
radii polynomials

pi(r) = Yi + Zi(r)− r

and, given a number ω > 0, define the tail radii polynomial

p∞(r) = Y∞ + Z∞(r)−ωr.

Let us now state the main result, whose proof can be found in [60].

Theorem 3.2.1 [Theorem 2.6 in [60]] If there exists an r̄ > 0 such that pi(r̄) ≺ 0
for all i = 1, . . . , m + 1 and p∞(r̄) < 0 then T is a contraction on Bx̄(r̄) and
hence there exists a unique zero x̃ of (3.1) in Bx̄(r̄).

Remark 3.2.3 The vector bounds Y1, . . . , Ym+1 and Z1(r), . . . , Zm+1(r) defined
in (3.38) and (3.41) are the direct analogues of εNK and κ that are also found
numerically. The additional bounds Y∞ and Z∞(r) are introduced in order to
control the truncation error introduced by discretization.

3.2.2 Validation of connecting orbits: Chebyshev approach

In contrast to the Spline approach we do not directly discretize (3.26) but
first compute a representation of F in terms of the Chebyshev basis.

Derivation of the Chebyshev representation We use the following corol-
lary which is a direct consequence of Theorem 2.2.2.

Corollary 3.2.1 Assume that g : Rd → Rd is real analytic and let u : [−1, 1]→
Rn be a solution of (2.1). Then each component uj of u is real analytic and has
a unique representation as an absolutely and uniformly convergent series of the
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form uj(t) = ∑∞
k=0(aj)kTk(t). Also, for each j ∈ {1, . . . , d}, the sequence of

Chebyshev coefficients {(aj)k}k≥0 of uj decreases to zero faster than any algebraic
decay, that is, for any decay rate s > 1, there exists a constant Aj = Aj(s) < ∞

such that |(aj)k| ≤ Aj
ks , for k ≥ 1.

We will henceforth assume that the vector field g : Rd → Rd is real
analytic and that t1 = −1 and t2 = 1 in (3.23) and (3.24) respectively. Note
that this is no restriction as a rescaling of time can (and will) be considered
in the autonomous vector field g of a particular application. Furthermore
Corollary 3.2.1 assures that F is defined from Rp × Xω([−1, 1])d to itself
justifying the choice B = Xω([−1, 1])d in (3.25). We will nevertheless not
use this explicitly but now step to coefficient space.
By a rescaling of the Chebyshev coefficients (aj)k in Corollary 3.2.1 we can
furthermore assume a Chebyshev expansion of a solution u of (2.1) to be
given by

u(t) = a0 + 2 ∑
k≥1

akTk(t), (3.43)

where ak =
(
(a1)k, (a2)k, · · · , (ad)k

)T ∈ Rd. Letting

‖ak‖∞ = max
j=1,...,d

{|(aj)k|}

and using the weights defined in (2.38) one has by Corollary 3.2.1 that for
any given s > 1

‖a‖s
def= sup

k≥0
{‖ak‖∞ωs

k} < ∞. (3.44)

Defining Xs to be

Xs = {x = (θ, (ak)k) : ak =
(
(a1)k, (a2)k, · · · , (ad)k

)T ∈ Rd

and ‖x‖s = sup
k≥k0

‖xk‖∞ωs
k < ∞}

the pair (Xs, ‖.‖s) becomes a Banach space. Note that all d component
sequences ak are elements of Ωs defined in (2.39). We use the notation
x = (xk)k≥k0 with k0 = 0 for p = 0 and k0 = −1 for p > 0. Our goal is first
to find a map f defined on Xs such that for x = (θ, a) ∈ Xs

f (x) = 0⇔ F(θ, u) = 0

where u corresponding to a is given by (3.43). In order to achieve this let
us start by plugging in the expansion (3.43) into the vector field g to get

g(u(t)) = c0 + 2 ∑
k≥1

ckTk(t), (3.45)
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where we explicitly assume that starting with ‖a‖s < ∞ we obtain ‖c‖s <

∞.

Remark 3.2.4 The assumption that ‖c‖s < ∞ in (3.45) is fulfilled for all polyno-
mial vector fields g : Rd → Rd. More precisely let g be an nth-order polynomial
nonlinearity given by

g(u1, . . . , ud) =
n

∑
|l|=0

dlu
l1
1 · · · u

ld
d ,

where dl ∈ Rd and l = (l1, . . . , ld) with |l| = l1 + . . . + ld. Assuming the
componentwise Chebyshev expansion (3.43), using the convolution Lemma 2.2.2
we obtain

g(u1, . . . , ud) =
n

∑
|l|=0

dl

(
(al1

1 ∗ . . . ∗ ald
d )0 + 2

∞

∑
k=1

(al1
1 ∗ . . . ∗ ald

d )kTk(t)

)

= d0 + 2
∞

∑
k=1

(
n

∑
|l|=0

dl(al1
1 ∗ . . . ∗ ald

d )k

)
Tk(t)

(3.46)
and hence

c0 = d0 ck =
n

∑
|l|=0

dl(al1
1 ∗ . . . ∗ ald

d )k for k ≥ 1. (3.47)

where

alk
k

def= ak ∗ . . . ∗ ak︸ ︷︷ ︸
lk times

.

By the fact that (Ωs, ‖.‖Ωs , ∗) with Ωs defined in (2.39) is an algebra we know
that with c = (ck)k∈N given by (3.47) ‖c‖s < ∞. For non-polynomial real
analytic vector fields a Taylor expansion can be considered.

Next we plug (3.45) into the general expression for F given by (3.26). Let
us furthermore assume that the second component of F is given by (3.23).
The case where it is given by (3.24) is very similar and we will point out
the differences that occur. Our goal is to obtain an expansion

F1(p1, u) = f̃0 + 2
∞

∑
k=1

f̃kTk(t)
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with f̃k ∈ Rd. Hence, using Lemma 2.2.1 we compute

F1(p1, u) = p1 +
∫ t

−1
g(u(s))ds− u(t) =

= p1 +
∫ t

−1

(
c0 + 2

∞

∑
k=1

ckTk(s)

)
ds−

(
a0 + 2

∞

∑
k=1

akTk(t)

)
=

= p1 +

c0

T1(t)− T1(−1)︸ ︷︷ ︸
=−1=−T0(t)

+
2
4

c1

T2(t) + T0(t)︸ ︷︷ ︸
=T0(−1)

−(T2(−1)︸ ︷︷ ︸
=1

−T0(−1))



+2
∞

∑
k=2

ck


1
2

(
Tk+1(t)
k + 1

− Tk−1(t)
k− 1

)
−1

2

(
(−1)k+1

k + 1
− (−1)k−1

k− 1

)
︸ ︷︷ ︸

=− (−1)k

k2−1




−
(

a0 + 2
∞

∑
k=1

akTk(t)

)
= T0(t)

(
p1 + c0 −

1
2

c1 − 2
∞

∑
k=2

(−1)kck
k2 − 1

− a0

)

+ 2T1(t)
( c0

2
− c1

2

)
+ 2T2(t)

( c1

4
− c3

4

)
+ 2

∞

∑
k=2

(ck−1 − ck+1)
2k

Tk(t)− 2
∞

∑
k=1

akTk(t) =

= T0(t)

(
p1 + c0 −

1
2

c1 − 2
∞

∑
k=2

(−1)kck
k2 − 1

− a0

)
+ 2

∞

∑
k=2

(
(ck−1 − ck+1)

2k
− ak

)
Tk(t),

where the numbers marked in red are added artificially in order to clarify
the pattern. As a result we are able to define

f̃k =

p1 + c0 − 1
2 c1 − 2 ∑∞

k=2
(−1)kck

k2−1 − a0 k = 0
1
2k (ck−1 − ck+1)− ak k ≥ 1.

(3.48)

Concerning the boundary condition G(p1, p2) we assume a general expan-
sion

η : Xs → Rp, η(θ, a) = G(p1, p2). (3.49)

We hence are ready to define the map f = ( fk)k≥k0 on Xs componentwise
by

fk =


η(θ, a) k = −1

p1 + c0 − 1
2 c1 − 2 ∑∞

k=2
(−1)kck

k2−1 − a0 k = 0

2kak + (ck+1 − ck−1) k ≥ 1

(3.50)

where ck = ck(a) and we employed the rescaling fk = −2k f̃k for k ≥ 1.
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Remark 3.2.5 If we assume the second component of F to be given by (3.24) then
we obtain

fk =


η(θ, a) k = −1

−p2 + c0+ 1
2 c1 − 2 ∑∞

k=2
(−1)kck

k2−1 +a0 k = 0

2kak + (ck+1 − ck−1) k ≥ 1

(3.51)

where we apply for k ≥ 1 the scaling fk = 2k f̃k instead of the above considered
scaling.

For the sake of concreteness let us derive the map η for the solution of
IVPs and the computation of generic heteroclinics.

Remark 3.2.6 1. In order to solve IVPs with initial value p1 we do not have
an explicit additional boundary condition. Thus we set p = 0, k0 = 0 and
f from (3.50) is given componentwise by

fk =

p1 + c0 − 1
2 c1 − 2 ∑∞

k=2
(−1)kck

k2−1 − a0 k = 0

2kak + (ck+1 − ck−1) k ≥ 1.
(3.52)

2. Concerning the computation of generic heteroclinic orbits between hyper-
bolic fixed points p1,2 with (un)stable manifolds of dimension nu,s we recall
θ = (α, φ) and summarize (3.28) by

p1(θ) = Q(Θ(α)) p2(θ) = P(φ),

where G(p1, p2) can be written as

u(1) = P(φ),

where Q and P are parametrizations of the corresponding unstable and
stable manifolds. Hence, using the property Tk(1) = 1 for all k ≥ 0 from
Lemma 2.2.1, we obtain

fk =


P(φ)− (a0 + 2 ∑∞

k=1 ak) k = −1

Q(Θ(α)) + c0 − 1
2 c1 − 2 ∑∞

k=2
(−1)kck

k2−1 − a0 k = 0

2kak + (ck+1 − ck−1) k ≥ 1

. (3.53)

In the next result we summarize some important features of the above
procedure. In particular we obtain that f : Xs → Xs−1. In addition we re-
alize that solutions x ∈ Xs of the equation f (x) = 0 have strong regularity
properties.
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Lemma 3.2.2 Let f be given by (3.50) and set s ≥ 2 be arbitrary but fixed.
Assume that there is a constant C ∈ R such that

sup
k≥0
{‖ck‖∞ωs

k} = C < ∞.

Then f : Xs → Xs−1. Additionally if x ∈ Xs is a solution of f (x) = 0 with f
either given by (3.50) or (3.51), then u defined by (3.43) solves F(θ, u) = 0 with
F given by (3.23) or (3.24) respectively. Furthermore it follows that x ∈ Xs0 for
all s0 > 1.

Proof 3.2.2 Let (θ, a) ∈ Xs be given. Then there exists a constant A ∈ R with
supk≥0{‖ak‖∞ωs

k} < A < ∞. We compute for k = 0:

‖p1 + c0 −
1
2

c1 − 2
∞

∑
k=2

(−1)kck

k2 − 1
− a0‖∞ ≤

≤ ‖p1‖∞ +
1
2
‖c1‖∞ + 2

∞

∑
k=1

‖ck‖∞

k2 − 1
+ ‖a0‖∞ ≤

≤ ‖p1‖∞ +
C
2

+ 2C
∞

∑
k=1

1
ωs

k(k2 − 1)︸ ︷︷ ︸
<∞

+A = C1 < ∞.

And for k ≥ 1:

‖ck+1 − ck−1 + 2kak‖∞ωs−1
k ≤

 C
ωs

k

1 +
ωs

k
ωs

k−1︸ ︷︷ ︸
≤2s

+ 2k
A
ωs

k

ωs−1
k

≤ (1 + 2s)C
ωk

+ 2A ≤ (1 + 2s)C + 2A = C2 < ∞.

This induces that

sup
k≥0
‖ fk‖ωs−1

k ≤ max(C1, C2) < ∞.

Taking ‖η(θ, a)‖∞ < ∞ into account, it follows that ( fk)k≥k0 ∈ Xs−1 and hence
f : Xs → Xs−1.

Next assume that x = (θ, a) ∈ Xs solves f (x) = 0. This in particular implies
that

ak =
1
2k

(ck−1 − ck+1)
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and hence we obtain uniformly in k that

‖ak‖ωs+1
k ≤ ωs+1

k
2k

(1 + 2s)
C
ωs

k
=

1 + 2s

2
C < ∞.

This implies a ∈ Xs+1. As a matter of fact 1 ≤ s1 ≤ s2 implies ωs1
k ≤ ωs2

k and
we know that

Xs1 ⊂ Xs2 (3.54)

for all 1 ≤ s1 ≤ s2. Hence a ∈ Xs+1 implies a ∈ X s̃ for all s ≤ s̃ ≤ s + 1.
Inductively we obtain that a ∈ Xs0 for all s0 ≥ s and by (3.54) a ∈ Xs0 for all
s0 ≥ 1. Finally we obtain by construction that if f (θ, a) = 0 with f either given
by (3.50) or (3.51), then u defined by (3.43) solves F(θ, u) = 0 with F given by
(3.23) or (3.24) respectively. �

Definition of the fixed point operator and radii polynomials As alluded
to above the strategy to find solutions x ∈ Xs of

f (x) = 0

with f generally given by either (3.50) or (3.51), is to consider an equiva-
lent fixed point operator T : X → X whose fixed points are in one-to-one
correspondence with the zeros of f . More precisely, we choose X = Xs

and let the operator T be a Newton-like operator about an approximate
solution x̄ of f .

In order to compute this numerical approximation we introduce a
Galerkin projection. Let m > 1 and define the finite dimensional pro-
jection Πm : Xs → Xs

m by Πmx = (xk)m−1
k=k0

. The Galerkin projection of f is
defined by

f (m) : Xs
m → Xs

m : xF 7→ Πm f (xF, 0∞), (3.55)

where 0∞ = (I −Πm)0. Identifying (xF, 0∞) with xF ∈ Xs
m
∼= Rp+dm we

think of f (m) : Rp+dm → Rp+dm. Now assume that we have computed
x̄F ∈ Rp+dm such that f (m)(x̄F) ≈ 0 and let x̄ = (x̄F, 0∞) ∈ Xs. Let Bx̄(r) =
x̄ + B(r), the closed ball in Xs of radius r centered at x̄, where

B(r) =

{
x ∈ Xs : ‖x‖s = sup

k≥k0

{‖xk‖∞ωs
k} ≤ r

}
= ∏

k≥k0

[
− r

ωs
k
,

r
ωs

k

]n(k0)

,

(3.56)
where n(−1) = p and n(k) = ds for k ≥ 0. In order to define the fixed

point operator T, we introduce Am ≈
(

D f (m)(x̄F)
)−1

a numerical inverse
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of D f (m)(x̄F). Assume that the finite dimensional matrix Am is invertible
(this hypothesis can be rigorously verified with interval arithmetic). Define
the linear invertible operator A : Xs → Xs+1 by

(Ax)k =

(Am(Πmx))k, k = k0, . . . , m− 1
1
2k xk, k ≥ m.

(3.57)

Finally define the Newton-like operator T : Xs → Xs about the numerical
solution x̄ by

T(x) = x− A f (x). (3.58)

The goal is to determine (if possible) a positive radius r of the ball
Bx̄(r) so that T : Bx̄(r) → Bx̄(r) is a contraction. Assuming that such
r > 0 exists, an application of the contraction mapping theorem yields the
existence of a unique fixed point x̃ of T within the closed ball Bx̄(r). By
invertibility of the linear operator A, one can conclude that x̃ is the unique
solution of f (x) = 0 in the ball Bx̄(r). By construction, this unique solution
represents a solution u(t) of the general operator equation (3.26) with the
second component either given by (3.23) or (3.24). Hence, all we need to
do is to find r > 0 such that T : Bx̄(r) → Bx̄(r) is a contraction. This task
is achieved with the notion of the radii polynomials (originally introduced
in [15] to compute equilibria of PDEs), which provide an efficient way of
constructing a set on which the contraction mapping theorem is applica-
ble. As in section 3.2.1 their construction depends on the Y and Z bounds.
Consider the bound Y = (Yk)k≥k0 satisfying∣∣∣[T(x̄)− x̄

]
k

∣∣∣ � Yk, k ≥ k0, (3.59)

where the inequality is taken component-wise and where Yk ∈ Rd
+ for

k ≥ 0. If k0 = −1, then Yk0 ∈ R
p
+. Consider the bound Z(r) = (Zk(r))k≥k0

satisfying

sup
ξ1,ξ2∈B(r)

∣∣∣[DT(x̄ + ξ1)ξ2
]

k

∣∣∣ � Zk(r), k ≥ k0, (3.60)

where again the inequality is taken component-wise and where Zk(r) ∈
Rd

+ for k ≥ 0. If k0 = −1, then Zk0(r) ∈ R
p
+. If the vector field in (2.1)

is polynomial, then it is possible to obtain a polynomial expansion in r
for Zk(r). As a matter of fact, in this case, the degree of the polynomial
Zk(r) is the same as the degree of the polynomial vector field g(u). The
reason for this can be found in Remark 3.2.4 in equation (3.46). A more
detailed description of how (3.46) is involved in this fact can be found in
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the concrete derivation of the Z bounds in the application Section 4. Oth-
erwise, that is if the analytic vector field g(u) is not polynomial, a Taylor
expansion can be considered in order to obtain a polynomial expression
in r for Zk(r).

In addition to the analogues of the hypothesis RP1. to RP4. in the
Spline case we make the following important assumptions. Assume that
there exists a number M ≥ m where m is the dimension of the Galerkin
projection (3.55) such that the bounds Y and Z satisfying (3.59) and (3.60)
are such that
A1. Yk = 0 ∈ Rn for all k ≥ M.

A2. There exists a uniform polynomial bound Z̄M(r) such that for all k ≥
M,

Zk(r) � Z̄M(r)
ωs

k
. (3.61)

Before introducing the radii polynomials, let us briefly talk about the
two above assumptions. If the vector field g(u) is polynomial, then the
nonlinear terms ck(ā) are convolutions terms of the form

((ā)j1(ā)j2 · · · (ā)j`)k

which are eventually equal to zero for large enough k since āk = 0 for
k ≥ m. Hence, by construction of A defined in (3.57) and of the bound Y
as in (3.59), there exists M such that Yk can be defined to be 0 ∈ Rd for
k ≥ M. Again in case the vector field g(u) is polynomial, there are some
analytic convolution estimates (e.g. the ones developed in [24]) that allow
computing Z̄M(r) satisfying (3.61). The computation of the uniform poly-
nomial bound Z̄M(r) is presented explicitly in the examples of Section 4.

Definition 3.2.2 Denote by 1d ∈ Rd the vector whose components are all 1. We
define the finite radii polynomials (pk(r))M−1

k≥k0
by

pk(r) = Yk + Zk(r)− r
ωs

k
1d, k = k0, . . . , M− 1, (3.62)

and the tail radii polynomial by

pM(r) = Z̄M(r)− r1d. (3.63)

The following result justifies the construction of the radii polynomials of
Definition 3.2.2.
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Theorem 3.2.2 If there exists r̄ > 0 such that pk(r̄) ≺ 0 for all k = k0, . . . , M,
then T : Bx̄(r̄) → Bx̄(r̄) is a contraction and therefore there exists a unique
x̃ ∈ Bx̄(r̄) such that T(x̃) = x̃. Hence, there exists a unique x̃ ∈ Bx̄(r̄) such that
f (x̃) = 0.

Proof 3.2.3 See Corollary 3.6 in [24].

We wish to emphasize that the conditions (3.62) and (3.63) entail that Yk +
Zk(r) − r

ωs
k
1d ≺ 0 for all k ≥ k0. We summarize this in the following

Proposition.

Proposition 3.2.1 Let pk(r), k ≥ k0 be given by (3.62) and pM(r) by (3.63). If
pk(r) ≺ 0 for k = k0, . . . , M, then

Yk + Zk(r)− r
ωs

k
1d ≺ 0 for all k ≥ k0. (3.64)

Proof 3.2.4 For k ≥ M we have

Zk(r)− r
ωs

k
1d = Yk︸︷︷︸

=0

+Zk(r)− r
ωs

k
1d. (3.65)

And hence if pM(r) ≺ 0⇔ Z̄M(r) ≺ r1d we get by assumption A2. that

Zk(r) � Z̄M(r)
ωs

k
≺ r

ωs
k

1d. (3.66)

Using (3.65), (3.66) implies

Yk + Zk(r)− r
ωs

k
1d ≺ 0 (3.67)

for all k ≥ M. Together with (3.62) this yields our claim. Note that this is
essential for the proof in [24] and can be seen as one of the key steps in controlling
the infinite dimensional error.

In summary the strategy to rigorously compute solutions of f (x) = 0
with f either given by (3.50) or (3.51) is therefore to construct the radii
polynomials of Definition 3.2.2, to verify (if possible) the hypothesis of
Theorem 3.2.2, and to use the result of Lemma 3.2.2 to conclude that
u(t) = a0 + 2 ∑k≥1 akTk(t) is a solution of F = 0 where F is either given by
(3.23) or (3.24) respectively.

While the computation of the bound Y satisfying (3.59) is rather straight-
forward, the computation of the polynomial bound Z(r) satisfying (3.60)
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is more involved. In order to simplify its computation, we introduce the
linear invertible operator A† : Xs → Xs+1 by

(A†x)k =

(D f (m)(x̄F)(Πmx))k, k = k0, . . . , m− 1

2kxk, k ≥ m.
(3.68)

and we use the factorization T(x) = x− A f (x) = (I − AA†)x− A( f (x)−
A†x). Letting ξ1 = wr, ξ2 = vr with w, v ∈ B(1), one has that

DT(x̄ + ξ1)ξ2 = (I − AA†)ξ2 − A
(

D f (x̄ + ξ1)ξ2 − A†ξ2

)
=
[
(I − AA†)v

]
r− A

(
D f (x̄ + wr)vr− A†vr

)
,

(3.69)

where the first term is of the form εr, for ε = (I − AA†)v ∈ Xs very
small, and where the coefficient of r in [D f (x̄ + wr)vr− A†vr]k should be
small as the dimension of the Galerkin projection m is large. Hence, for
m large enough, the coefficient in r of Zk(r) should be small. That should
increase the chances of the coefficient of r in the radii polynomials defined
in Definition 3.2.2 to be negative, and therefore increase the chances of
verifying the hypothesis of Theorem 3.2.2. We give more details on both
the computation of the Y and the Z bounds for the applications in Section
4.

3.3 Results on transversality

In the context of generic connecting orbits it is a natural question if the
connecting orbit we proof to exist corresponds to a transversal intersec-
tion of the related invariant manifolds. If that is the case we will speak of
a transversal connecting orbit. More precisely, suppose that we are in the
setting of two hyperbolic fixed points p1 and p2 of (2.1) fulfilling the non-
degeneracy condition nu + ns = d + 1 where nu,s are as usual the unstable
dimension of p1 and the stable dimension of p2 respectively. The common
idea of the results is the following.
Recall that our philosophy to compute connecting orbits is to encode the
existence of a connecting orbit as the existence of a zero of some operator
F defined on a Banach space X. Starting from an approximate solution
x̄ we ensure the existence of a genuine zero x̃ implying the existence of
a connecting orbit together with rigorous normwise bounds on the error
x̄ − x̃ which can also be used to derive phase space bounds on the con-
necting orbit itself. The idea to additionally ensure that the intersection
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of the unstable and stable manifold is transversal consists in showing that
transversality follows from the invertibility of the derivative DF(x̃) at the
solution x̃. Note that we only know a ball in which x̃ is contained but
do not know it exactly. We will nevertheless be able to make a statement
about the invertibility of the derivative at that point and as a consequence
about the transversality of the connections.
Before we investigate our different approaches more closely let us recall
the notion of transversality. As we work in euclidian space Rd we restrict
to the definition for that particular case.

Definition 3.3.1 (Transversality) Suppose we are given two submanifolds M, N
of Rd. Then these two submanifolds intersect transversally if for every point
x ∈ M ∩ N the tangent spaces Tx M and Tx N generate Rd. In more detail we
assume that for any particular x ∈ M ∩ N, if v1, . . . , vm is a basis for Tx M and
w1, . . . , wn for Tx N then we have that v1, . . . , vm, w1, . . . , wn is a basis for Rd.

Note that in the general definition for submanifolds of a general mani-
fold we need to have that the tangent spaces at every intersection point
generate the tangent space of the ambient manifold at that point.

3.3.1 Discretization free approach

Suppose we are in the general setting of Theorem 3.1.1. Then we have the
following result.

Corollary 3.3.1 (Bounded Invertibility of the Inverse) Let ‖DF(x̄)−1‖B(X),
x̄, εNK, κ, r, and x̃ be as Theorem 3.1.1. In addition suppose that r ≤ 4εNK and
that the strict inequality

4εNKκ‖DF(x̄)−1‖B(X) < 1, (3.70)

is satisfied. Let M be any constant with 4εNKκ‖DF(x̄)−1‖B(X) ≤ M < 1. Then
DF(x̃) is invertible and

‖DF(x̃)−1‖B(X) ≤
‖DF(x̄)−1‖B(X)

1−M
. (3.71)

Proof 3.3.1 As a preparation we realize that

DF(x̃) = DF(x̃) + DF(x̄)− DF(x̄) =

= DF(x̄)
(

DF(x̄)−1DF(x̃) + I − I
)

=

= DF(x̄)
(

I − (I − DF(x̄)−1DF(x̃))
)

=

= DF(x̄)
(

I − DF(x̄)−1(DF(x̄)− DF(x̃))
)

.
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This motivates applying a Neumann Series argument to the expression

DF(x̃) = DF(x̄)
[

I − DF(x̄)−1 (DF(x̄)− DF(x̃))
]

.

Recalling Remark 3.1.2 we require to this end that

‖DF−1(x̄)(DF(x̄)− DF(x̃))‖B(X) < 1.

Using the definition of κ and the fact that we require r ≤ 4εNK, we estimate in
the following way:

‖DF(x̄)−1(DF(x̄)− DF(x̃))‖B(X)‖ ≤ ‖DF(x̄)−1‖B(X)‖DF(x̄)− DF(x̃)‖B(X)

≤ ‖DF(x̄)−1‖B(X)κ‖x̄− x̃‖
≤ ‖DF(x̄)−1‖B(X)κr

≤ ‖DF(x̄)−1‖B(X)κ4εNK.

Thus by using (3.70)

‖DF−1(x̄)(DF(x̄)− DF(x̃))‖B(X) < 1,

follows and the Neumann series Theorem yields invertibility of DF(x̃) together
with (3.71). �

We now turn to the concrete consideration of the discretization free con-
nection operator F given by (3.16) to compute generic connecting orbits
between the hyperbolic equilibria p1,2. Recall that F is defined on X ∼= Rd,
where d = ns + nu − 1 with the stable and unstable dimensions nu,s. As-
sume an approximate solution x̄ = (ᾱ, φ̄) with F(ᾱ, φ̄) to be given together
with an exact solution x̃ = (α̃, φ̃) obtained via the discretization-free pro-
cedure based on Theorem 3.1.1 and introduced in detail in Section 3.1.2.
Corollary 3.3.1 ensures that DF(x̃) is invertible. We wish to connect this
fact to the transversality of the intersection of the unstable and stable man-
ifold of p1 and p2. Let us therefore investigate DF(x). Using (3.16) we
obtain

DF(x) = [DQ(Θ(α))DΘ(α)︸ ︷︷ ︸
∈Rd,nu−1

| −DP(φ)︸ ︷︷ ︸
∈Rd,ns

] ∈ Rd,d.

First using Corollary 3.3.1 we obtain that DF(x̃) is invertible. The idea is
to show that the columns of DF(x̃) span the cartesian product

TQ(Θ(α̃))W
u(p1)× TP(φ̃)W

s(p2).

By invertibility of DF(x̃) they span Rd and the tangent spaces would hence
span Rd. This entails transversality of the intersection. The idea of the
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following Theorem is to show that the vector DQ(Θ(α̃))JuΘ(α̃), which
completes the columns of DQ(Θ(α))DΘ(α) to a basis of TQ(Θ(α̃))Wu(p1)
fulfills

DQ(Θ(α̃))JuΘ(α̃) ∈ span(DP(φ̃))

with Ju given in (2.7). Once this is shown the transversality follows. The
main tool we use will be the invariance equation that the parametrizations
P and Q fulfill by definition. Let us now state the result.

Theorem 3.3.1 Suppose that the hypotheses of Theorem 3.1.2 are satisfied. In
particular assume the validation values defined in Definition 3.1.2 and a corre-
sponding zero x̃ to be given. If in addition the strict inequality given by

4εNKκC1

1−M
< 1,

is fulfilled, then the connecting orbit from p1 to p2 through x̃ ∈ Rd is transverse.

Proof 3.3.2 Note that P[Θν(α̃)] = Q(φ̃) and denote x̃(t) the orbit x̃ starting at
t = 0. Then

x̃′(0) = g[x̃(0)] = g[Q(Θν(α̃))] = DQ(Θν(α̃))JuΘν(α̃),

where the last equality follows from the invariance equation (2.10) for the param-
eterization and also

x̃′(0) = g[x̃(0)] = g[P(φ̃)] = DP(φ̃)Jsφ̃.

The matrices Ju,s are defined in equation (2.7) for the unstable and stable eigen-
values respectively. Then we have

DP(φ̃)Jsφ̃ = DQ(Θν(α̃))JuΘν(α̃). (3.72)

This completes the proof.

3.3.2 Spline approach

Concerning the Spline approach for generic heteroclinic orbits we wish to
take the same path as for the discretization free approach. That is we show
the following: given a zero x̃ ∈ X = Rp × C0([0, 1], Rd) of F as given in
(3.29) that was shown to exist via Theorem 3.2.1, then the Fréchet deriva-
tive DF(x̃) is an invertible linear operator. Then we go on to show that
this invertibility implies transversality of the connection. The following
Corollary achieves the first step.
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Corollary 3.3.2 Assume that the hypotheses of Theorem 3.2.1 are satisfied and
consider x̃ to be the unique fixed point of T within Bx̄(r) = x̄ + B(r, ω). Then
the linear operator DF(x̃) : X → X is invertible.

Proof 3.3.3 Recalling (3.31) and (3.32), we define a norm on X as follows. Given
x ∈ X, consider the weighed norm on X by

‖x‖X = max
{
‖Πmx‖Xm ,

1
ω
‖Π∞x‖X∞

}
. (3.73)

Recalling (3.35), the closed unit ball in X with respect to norm (3.73) is B(1, ω).
Then, letting x̄ be the center of the ball Bx̄(r), there exists x1 ∈ B(r, ω) such
that x̃ = x̄ + x1. Recalling (3.41) and (3.42) and from the fact that each radii
polynomial pl(r)prec0, we then get that

‖DT(x̃)‖X = sup
x∈B(1,ω)

‖DT(x̃)x‖X =
1
r

sup
x∈B(1,ω)

‖DT(x∗ + x1)xr‖X

=
1
r

sup
x∈B(1,ω)

{
max

{
‖ΠmDT(x∗ + x1)xr‖Xk ,

1
ω
‖Π∞DT(x∗ + x1)wr‖X∞

}}

≤ max
{

(Z0)1

r
, . . .

(Z0)p

r
,
(Z1)1

r
, . . . ,

(Z1)m+1

r
. . .

(Zd)1

r
, . . . ,

(Zd)m+1

r
,

Z∞

r

}
< 1.

Using Neumann series, we get that the operator I −DT(x̃) : X → X is invertible. Since

T(x) = (Πm − AmΠmF)(x) + Π∞(F(x) + (x)) = x− AmΠmF(x) + Π∞F(x),

then
I − DT(x̃) = −AmΠmDF(x̃) + Π∞DF(x̃).

Suppose that there exists y ∈ X such that DF(x̃)y = 0. Then ΠmDF(x̃)y = 0

(Am invertible⇐⇒ −AmΠmDF(x̃)y = 0) and Π∞DF(x̃)y = 0. Hence

[I − DT(x̃)]y = −AmΠmDF(x̃)y + Π∞DF(x̃)y = 0

which implies that y = 0 by invertibility of I − DT(x̃). That implies that DF(x̃) is
injective. We want to show that DF(x̃) is surjective. Consider w ∈ X (we want to
construct y ∈ X such that w = DF(x̃)y). Let wm

def= Πmw and w∞
def= Π∞w. Define

zm = −Amwm, z∞ = w∞ and z = zm + z∞ ∈ X. We know by surjectivity of I−DT(x̃)
that there exists y ∈ X such that

z = [I − DT(x̃)]y = −AmΠmDF(x̃)y + Π∞DF(x̃)y.

Hence, zm = Πmz = −AmΠmDF(x̃)y and z∞ = Π∞z = Π∞DF(x̃)y. The invert-
ibility of Am (see RP4 above) implies that wm = −(Am)−1zm = ΠmDF(x̃)y. We can
therefore conclude that w = wm + w∞ = ΠmDF(x̃)y + Π∞DF(x̃)y = DF(x̃)y.
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Next suppose that (α̃, φ̃, ũ) ∈ X is a zero of the operator F given by
(3.29). Having Corollary 3.3.2 in mind we need to obtain the Fréchet
derivative of the operator F : X → X. Consider (α1, φ1, u1) ∈ X. Com-
puting the difference

F(α̃ + α1, φ̃ + φ1, ũ + u1)− F(α̃, φ̃, ũ),

and neglecting the terms which are quadratic in (α1, φ1, u1) leads to

DF[α̃, φ̃, ũ](α1, φ1, u1) =(
DQ(φ̃)φ1 − DP(Θν(α̃))DΘν(α̃)α1 − L

∫ 1
0 Dg[ũ(τ)]u1(τ) dτ

u1(t)− DP(Θν(α̃)DΘν(α̃)α1 − L
∫ t

0 Dg[ũ(τ)]u1(τ) dτ

)
.

(3.74)

The next step in order to apply Corollary 3.3.2 is to characterize the
kernel of DF.

Lemma 3.3.1 (α1, φ1, u1) ∈ ker(DF(α, φ, u)) if and only if

u′1(t) = LDg[u(t)]u1(t), (3.75)

u1(0) = DP(Θν(α)DΘνα)α1 and u1(1) = DQ(φ)φ1. (3.76)

Proof 3.3.4 The proof follows by rewriting (3.75) in integral form and taking the
boundary conditions (3.76) at t = 0 and at t = 1 into account.

Theorem 3.3.2 Suppose that (α̃, φ̃, ũ) ∈ X is a zero of F, and that DF(α̃, φ̃, ũ)
is invertible. Then the intersection of Wu(p1) and Ws(p2) is non-empty and
transverse on orbit(Q[φ̃]).

Proof 3.3.5 Let z̃ = P(Θν(α̃)) ∈Wu(p1) and define ŷ = Φ(z̃, 1) = ũ(1). Then
by the fact F(α̃, θ̃, ũ) = 0 it follows ỹ = Q(φ̃) ∈Ws(p2). Furthermore it follows
from the flow invariance of Wu(p1) and Ws(p2) that orbit(z̃) = orbit(ỹ) ⊂
Wu(p1) ∩Ws(p2), so that the intersection is non-empty.

Φ(z̃, t) ∈Wu(p1) for any t ∈ R, and by the chain rule

DαΦ(P(Θν(α̃)), t) = DΦ(z̃, t)DP(Θν(α̃))DΘν(α̃).

Then the columns of this matrix span the linear subspace of TΦ(z̃,t)Wu(p1) per-
pendicular to the orbit of z̃ for any t ∈ [0, 1]. Since the columns of −DQ(φ̃) span
TỹWs(p2) (and since the orbit passes through ỹ) we have that the columns of the
matrix

[DΦ(z̃, 1)DP(Θν(α̃))DΘν(α̃) | − DQ(φ̃)]



80 CHAPTER 3. RIGOROUS NUMERICS FOR CONNECTING ORBITS

span TỹWu(p1) and TỹWs(p2).
Assume for the sake of contradiction that the intersection Wu(p1) ∩Ws(p2)

is not transverse at ŷ. Then TỹWu(p1) and TỹWs(p2) do not span Rn and there
is a non-zero vector ξ = (ξ1, ξ2) ∈ Rnu−1 ×Rns = Rn so that

[DΦ(z̃, 1)DP(Θν(α̃))DΘν(α̃) | − DQ(φ̃)]ξ = 0.

or
M(z̃, 1)DP(Θν(α̃))DΘν(α̃)ξ1 = DQ(φ̂)ξ2,

where M(z̃, t) is the solution of the variational equation

d
dt

M(z̃, t) = L Dg[ũ(t)]M(z̃, t) M(z̃, 0) = I.

If we define α1 = ξ1, φ1 = ξ2, and take u1 : [0, 1]→ Rn to be

u1(t) = M(z̃, t)DP(Θν(α̃))DΘν(α̃)α1 for all t ∈ [0, 1],

then (α1, φ1, u1) solves the boundary value problem (3.75). Thus 0 6= (α1, φ1, u1) ∈
ker(DF(α̃, φ̃, ũ)) which is a contradiction as we assumed DF(α̃, φ̃, ũ) to be in-
vertible.

3.3.3 Chebyshev approach

Assume we are in the setting or Theorem 3.2.2 and recall Remark 3.2.4.
We first make the following observation.

Lemma 3.3.2 Let the bounds Yk and Zk be defined as in (3.59) and (3.60). Define
the sequence Z(r) = (Zk(r))k≥k0 . Assume for some M > 0 the radii polynomials
pk(r) k = k0, . . . , M− 1 and pM(r) to be given as specified in Definition 3.2.2.
Finally let the conditions of Theorem 3.2.2 be fulfilled. Then ‖Z‖s < r.

Proof 3.3.6 Using equation (3.67) of Proposition 3.2.4 and 0 � Yk for all k ≥ k0

we get
‖Zk(r)‖ ≤ ‖Yk + Zk(r)‖∞ <

r
ωs

k

for all k ≥ k0. Thus

‖Z(r)‖s = sup
k≥k0

‖Zk(r)‖∞ωs
k < r.

�

This enables us to proof the following Theorem.
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Theorem 3.3.3 Assume the conditions of Theorem 3.2.2 to be fulfilled. In partic-
ular let x̃ such that f (x̃) = 0. Then D f (x̃) is an invertible linear operator.

Proof 3.3.7 Aiming to use a Neumann series argument similar to the one in the
proof of Theorem 3.3.2 we first consider the operator norm ‖DT(x̃)‖s of DT(x̃)
as map from Xs to itself. We thus compute

‖DT(x̃)‖s = sup
‖v‖s=1

‖DT(x̃)v‖s = sup
‖v‖s=1

‖DT(x̄ + ξ1)v‖s

with ξ1 ∈ Bx̄(r). We continue with

‖DT(x̃)‖s =
1
r

sup
‖v‖s=1

‖DT(x̄ + ξ1)rv‖s =
1
r

sup
‖ξ2‖s=r

‖DT(x̄ + ξ1)ξ2‖s =

=
1
r

sup
‖ξ2‖s=r

sup
k≥k0

{‖(DT(x̄ + ξ1)ξ2)k‖∞ωs
k} ≤

≤ 1
r

sup
‖ξ2‖s=r

{‖Zk(r)‖∞ωs
k} ≤

1
r
‖Z(r)‖s <

1
r

r = 1,

where we used the definition of Zk(r) in 3.60 and the strict inequality follows
from Lemma 3.3.2. By a Neumann series argument

I−DT(x̃) = −AD f (x̃)

is invertible. By invertibility of A we obtain that D f (x̃) is invertible. More
precisely assume that B def= D f (x̃) is not injective. Then there is an x 6= 0
with Bx = 0. But then ABx = 0, as A is injective which is a contradiction to
invertibility of AB. To show surjectivity let y ∈ Xs be given. By surjectivity of
AB there is in particular an x such that ABx = Ay, which implies by invertibility
of A that Bx = y. �
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Chapter 4

Applications and approach
comparison

In this chapter we describe several numerical applications to demonstrate
the effectivity of our approach. We start in Section 4.1 by considering
symmetric homoclinic orbits in the Gray-Scott system. This system was
also considered in [60] where a similar approach to the one presented in
this work was taken. The difference is that linear splines were used in
the discretization and the formulation of the equivalent operator equation
(3.1) used the second order formulation of the system. We first describe
the Chebyshev approach to the Gray-Scott system written as a 4D first or-
der system where the symmetry condition is employed to formulate the
boundary conditions. In particular we extend some results on the exis-
tence of symmetric homoclinics obtained in [60].
Our next case study in Section 4.2 focuses on a generic first order system,
the Lorenz equations. The success of our boundary value approach relies
on a combination of the parametrization method together with the corre-
sponding discretization. By first presenting applications of our discretiza-
tion free approach, we take this opportunity to investigate the parametriza-
tion method together with the validation of the parametrization computa-
tions more closely. In the sequel we concentrate on the rigorous solution
of initial value problems in the Lorenz system. This will in particular en-
able us to scrutinize the dependency of our algorithm on the discretization
method in more detail and compare their performance. We finish by giv-
ing an application of the spline based boundary value approach in this
generic first order system.

83
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4.1 Symmetric connections in the Gray Scott system

We consider the Gray-Scott equation re-scaled by a time factor L given by

v′′1 = L2 (v1v2
2 − λ(1− v1)

)
v′′2 = L2

(
1
γ (v2 − v1v2

2)
)

.
(4.1)

More precisely, letting u1 = v1, u2 = v′1, u3 = v2, u4 = v′2 and u =
(u1, u2, u3, u4), we can re-write (4.1) as the following vector field:

du
dt

= g(u) =


u2

L2 (λu1 + u1u2
3 − λ

)
u4

L2
(

1
γ u3 − 1

γ u1u2
3

)
 . (4.2)

(4.2) has a hyperbolic fixed point q = (1, 0, 0, 0)T where the eigenvalues of
Dg(q) are given by

µ1,2 = ±L
√

λ µ3,4 = ±L
1√
γ

. (4.3)

We first give some background information how (4.1) arises in the context
of a reaction diffusion equation modeling a chemical reaction. In particular
we concentrate on the physical significance of the symmetric homoclinics
that we compute and describe the meaning of the parameters γ and λ. We
also elaborate on the mathematical role of the parameters for the existence
of exact analytic formulas for symmetric homoclinics as discussed in [27]
and for the occurrence of resonances in the eigenvalues of Dg(p). In par-
ticular we will find all possible resonances.
Then we describe the implementation of the Chebyshev approach for this
problem.

4.1.1 Background on the Gray-Scott system and results

Background The Gray Scott model serves as a model for a continuously
fed unstirred autocatalytic reaction. The homoclinic solutions we seek
represent non-trivial stationary spatial patterns in the form of pulses. Let
us give some more detailed explanations of what this means. Our main
source is [27] and references therein.
The Gray-Scott model is a particular case of a two component reaction
diffusion system. Reaction diffusion systems serve for example as a math-
ematical model for situations where chemical substances react with each
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other at certain rates while being able to distribute spatially in a prescribed
manner. We stress that reaction diffusion systems in general have attracted
much interest in the context of pattern formation [26, 51] and in the mod-
eling of biological processes [41].
’Two component system’ refers to the fact that two chemicals are involved
in the reaction. Let us denote those by A and B with concentrations a
and b. In addition the term ’continuously fed reaction’ means that the
substance A is supplied at a certain rate θ. Schematically this is described
by θ

k f−→ A + 2B
k1−→ 3B, rate = k1ab2

B k2−→ C, rate = k2b,
(4.4)

where k1,2 are positive reaction rates and the rate θ at which a is supplied
is assumed to be of the form

θ = k f (a0 − a).

This means θ is positive if the concentration a is below some threshold
a0 and negative otherwise. The mathematical model in the case where the
concentrations a(x, t) and b(x, t) depend on one spatial dimension is given
by the semilinear parabolic reaction diffusion PDE

∂a
∂t

= DA
∂2a
∂x2 − k1ab2 + k f (a0 − a)

∂b
∂t

= DB
∂2b
∂x2 + k1ab2 − k2b,

(4.5)

where DA,B are diffusion coefficients of A and B. After a nondimensional-
ization (4.5) becomes

∂ṽ1

∂t
=

∂2ṽ1

∂x2 − ṽ1ṽ2
2 + R(1− ṽ1)

∂ṽ2

∂t
= d

∂2ṽ1

∂x2 + ṽ1ṽ2
2 − Sṽ2

(4.6)

where the dimensionless constants R, S and d are defined by

R =
k f

k1a2
0

, S =
k2

k1a2
0

and d =
DB

DA
.

For details on the rescaling to obtain ṽ1, ṽ2 we refer to [27]. (4.1) arises
when we look for stationary, that is time-independent, solutions of (4.6).
More precisely a further scaling is conducted (see [27]) and we obtain

v′′1 = v1v2
2 − λ(1− v1)

v′′2 = 1
γ (v2 − v1v2

2)
,
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where
λ =

R
S2 and λ = Sd (4.7)

as the stationary equation from which (4.1) arises via a rescaling of time
with a factor L.

Results Next we concentrate on considering the first order system (4.2)
equivalent to (4.1) on the interval [−1, 1] and seek for evenly symmetric
homoclinic solutions to the hyperbolic fixed point q = (1, 0, 0, 0).

Remark 4.1.1 1. From now on we interpret the interval [−1, 1] as ’time’ in-
terval even if (4.1) is the stationary equation for the reaction diffusion PDE
(4.6). As this is a mere notational issue no confusion should arise.

2. We recall that for a function v : R → R by ’evenly symmetric’ we mean
’evenly symmetric about t = −1’ in this case, that is v(−1 + t) = v(−1−
t) for all t ∈ R, as the we shift the origin in time to t = −1 to be in the
generic Chebyshev setting.

It is shown in [27] that for parameter values γλ = 1 and λ > 4 there exists
a family of evenly symmetric homoclinics. More precisely for all (λ, γ) in
the parameter set

C0 =
{

(γ,
1
γ

) : 0 < γ <
2
9

}
the functions given by

v1(t) = 1− 3γ

1 + Q cosh( t+1√
γ )

and v2(t) =
3

1 + Q cosh( t+1√
γ )

, (4.8)

with Q(γ) =
√

1− 9γ
2 , induce an evenly symmetric homoclinic orbit to the

fixed point p of (4.2). Let us make two remarks about the consequences of
the relationship λγ = 1.

Remark 4.1.2 Taking into account the definition (4.7) of λ and γ the relation
λγ = 1 means that

k f

DB
=

k2

DA
,

thereby relating the supply rate k f of A and the reaction k2 at which B disappears
in terms of the diffusion rates DA,B.
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Remark 4.1.3 Resonances
Recalling (2.1.6) a resonance between the two stable eigenvalues µ2 and µ4 defined
in (4.3) is given if there are positive integers m, n ≥ 0 such that

mµ2 + nµ4 = µj j = 2, 4

Assuming 0 < γ < 2
9 and

λγ = 1 λ > 4,

we observe that from λ = 1
γ we have that µ2 = µ4 and hence there is a resonance

between the stable eigenvalues µ2 and µ4 by setting m = 1 and n = 0 or vice
versa. If one considers the general case of resonances between µ2 and µ4 we must
have

n
√

λ + m
1√
γ

=
√

λ or n
√

λ + m
1√
γ

=
1√
γ

for integers m, n ≥ 0 or equivalently

√
λγ =

−m
n− 1︸ ︷︷ ︸

<0,unless n=0

(n 6= 1) or
√

λγ = −m− 1
n︸ ︷︷ ︸

<0,unless m=0

(n 6= 0).

Hence we can get two families of resonance curves that contain all possible pa-
rameter values at which resonances can occur. More concretely these are given
by

Cm =
{
(λ, γ) : λγ = (m + 1)2} and C 1

n
=
{

(λ, γ) : λγ =
1
n2

}
where m ≥ 0 and n ≥ 2.

Furthermore Theorem C in [27] ascertains that the homoclinics persist
if λγ = 1 + ε for some positive ε and [60] investigates to a certain extent
the magnitude of ε. More concretely Theorem 1.1 in [60] shows the ex-
istence of 30 homoclinic orbits on the line γ = 0.15 in parameter space.
Let us now formulate a result guaranteeing the existence of 297 homoclin-
ics for γ ∈ {0.14, 0.15, 0.16}, and for several different values of λ. As a
preparation we introduce the notation

Λ±I ,∆λ
(γ) =

{
(γ, λ) : λ =

1± k∆λ

γ
, k ∈ I

}
,

for an index set I .
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γ 0.10 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.20
L+(γ) 0.45 0.50 0.55 0.60 0.60 0.60 0.65 0.70 0.75 0.75 0.75
L−(γ) 0.50 0.55 0.55 0.55 0.60 0.60 0.65 0.65 0.70 0.70 0.7
K+(γ) 90 90 90 90 90 90 90 90 90 90 90
K−(γ) 18 16 15 12 11 9 7 6 3 2 1

Table 4.1: Values of L and K in dependence of γ

Theorem 4.1.1 Let ∆λ = 0.03 and γi = 0.14 + (i− 1)0.01 for i = 1, 2, 3. Set
I+(γi) = {1, . . . , 90} for i = 1, 2, 3 and I−(γi) = {1, . . . , K−(γi)} where
K−(γi) is specified in Table 4.1 for i = 1, 2, 3. If

(λ, γ) ∈
3⋃

i=1

Λ+
I+(γi),∆λ

(γi) ∪Λ−I−(γi),∆λ
(γi),

there exists a ball Bx̄(r̄γ,λ) ⊂ Xs (with fγ,λ(x̄) ≈ 0) containing a unique solution
x̃ = (θ̃, ã) of fγ,λ(x) = 0 corresponding to an even homoclinic solution of (4.1).

For a geometric representation of the result of Theorem 4.1.1, we re-
fer to Figure 4.2 and Figure 4.3. The rigorous verification of Theorem
4.1.1 can be found in the MATLAB programs proofLambdaplusγ.m and
proofLambdaminusγ.m with γ = 014, 015, 016, and relies on Theorem 3.2.2.
All codes can be downloaded from [28]. The programs make use of the
package Intlab [48] for the interval computations and of the package Cheb-
fun [55]. Chebfun is used to compute the Chebyshev coefficients of the
exact solutions (4.8) from which a continuation is performed. The main
prerequisite for applying Theorem 3.2.2 is the construction of the radii
polynomials (3.62) and (3.63).

Beside these rigorously verified homoclinic solutions we investigated
a bigger region in parameter space by constructing the radii polynomials
p1(r), . . . , pM(r) without interval arithmetic and finding an r > 0 such
that pi(r) ≺ 0 for all i = 1, . . . , M. The results are marked in black in
Figure 4.1. More precisely set ∆λ = 0.03 and γi = 0.10 + (i − 1)0.1 for
i = 1, . . . , 11 and let K±(γi) be specified by Table 4.1. Define I+

nr(γi) =
{1, . . . , 90} ∪ {110, . . . , K+(γi)} for i ∈ {1, 2, 3, 4, 5, 8, 9, 10, 11}, I+

nr(γi) =
{110, . . . , K+(γi)} for i = 6, 7, 8 and I−nr(γi) = {1, . . . , K−(γi)}. Note that
“nr" stands for non rigorous. We found symmetric homoclinic solutions
for

(γ, λ) ∈
11⋃

i=1

(
Λ+
I+

nr(γi),∆λ
(γi) ∪Λ−I−nr(γi),∆λ

(γi)
)

.
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Figure 4.1: The green points indicate the region in parameter space at which the
rigorous proof of existence of symmetric homoclinics was obtained by computing
the radii polynomials with interval arithmetic. The red points indicate the region
investigated in [60]. The black points are investigated using the radii polynomials
computed without the use of interval arithmetic. Based on the discussion about
resonances, we portrait the curve C1 and C 1

2
at which our rigorous method will

necessarily fail. Note that C0 is the curve on which the exact homoclinics (4.8)
exist.

These computations are carried out by the MATLAB program nonrigor-
oushomoclinics.m also to be found on [28]. We now give some details on
the derivation of the bounds involved in the definition of the radii poly-
nomials.

4.1.2 Formulation of the operator and construction of the radii
polynomial bounds for the Chebyshev approach

In order to be able to compute the bounds Y−1, . . . , YM−1, Z−1(r), . . . , ZM−1(r) ∈
R4 and ZM(r) ∈ R4 specified in (3.59) and (3.60) we need to specify certain
details for the general operator given by (3.51).
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1 0.8 0.6 0.4 0.2 0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

1 0.8 0.6 0.4 0.2 0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

Figure 4.2: Thirty-nine homoclinics from Theorem 4.1.1, where (λ, γ) ∈
Λ+
{1,...,30},0.03(0.15) on the left and (λ, γ) ∈ Λ−{1,...,9},0.03(0.15) on the right. The red

solution corresponds to the exact homoclinic given by (4.8). Each couple (v1, v2)
is the center of a ball in function space in which an exact solution is guaranteed to
exist. The blue part over [0, 1

2 ] corresponds to the interval [−1, 1] for the operator
(4.10), which in turn corresponds to the rescaling of [0, L±(0.15)]. The green part
is added by using the conjugacy relation (see equation (57) in [60]) fulfilled by
the parametrization P of Ws

loc(p), where we integrate for 2 time units on the time
scale of (4.10) and then rescale [−1, 3] to the interval [0,1]. The part over [−1, 0] is
obtained using the symmetry.
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Figure 4.3: (Left) Components v1 (black) and v2 (blue) of the homoclinic
solution of Theorem 4.1.1 corresponding to the parameter value (γ, λ) =
(0.15, 1+89(0.03)

0.15 ) ∈ Λ+
I+(0.15),0.03(0.15). The interval [0, 1] corresponds to the

rescaled interval [−1, 1] of (4.10), corresponding itself in turn to a rescaling of
[0, 0.6]. The interval [−1, 0] is added by symmetry. (Right) The Chebyshev co-
efficients of v1 (black) and v2 (blue). Notice the fast decay of the coefficients to
zero.
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Formulation of the operator f for symmetric homoclinics

The first step is to compute the Chebyshev coefficients ck of g ◦ u where g
is given by (4.2). Recalling Remark 3.2.4 which is based on Lemma 2.2.2
we can directly derive that the Chebyshev coefficients (3.45) of (4.2) are
given explicitly by

ck =


(a2)k

L2 (λ(a1)k + (a1 ∗ a2
3)k − λδk,0

)
(a4)k

L2
(

1
γ (a3)k − 1

γ (a1 ∗ a2
3)k

)
 , (4.9)

where δk,0 is the Kronecker delta function and where

(a1 ∗ a2
3)k = ∑

k1+k2+k3=k
ki∈Z

(a1)|k1|(a3)|k2|(a3)|k3|.

To complete the statement of (3.51) we need to specify the boundary
conditions η : Xs → Rp.

We are interested in computing symmetric homoclinic orbits between
q = (1, 0, 0, 0)T and itself. Note that q has a two-dimensional stable mani-
fold parametrized by two parameters. This yields that we are in the case
p = 2. Thus we need to stipulate two additional boundary conditions. We
use the fact that we seek even homoclinics to do so. Consider P(θ) to be a
parameterization of the local stable manifold Ws

loc(p) at the steady state q.
In order to compute P we employ the parametrization method developed
in [7, 8, 9] that we summarize in Section 2.1.2.
We thus interpret symmetric homoclinic orbits as solutions of a BVP with
the boundary value u(1) = P(θ), that is u(1) ∈ Ws

loc(p). We impose
an even symmetry of the orbit (v1, v2) which implies that one imposes
v′1(−1) = u2(−1) = 0 and v′2(−1) = u4(−1) = 0. Hence, the bound-
ary condition (3.49) reads as G(u(−1), u(1)) = (u2(−1), u4(−1))T ∈ R2,
p1 = P(θ) and then the operator (3.26) is given by

F(θ, u)(t) =


u2(−1)
u4(−1)

u(t) +
∫ 1

t
Ψ(u(s))ds− P(θ)

 . (4.10)

Using Tk(−1) = (−1)k yields

η(θ, a) = ((a2)0 + 2
∞

∑
k=1

(−1)k(a2)k, (a4)0 + 2
∞

∑
k=1

(−1)k(a4)k).
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Together with (4.9) we hereby obtain an explicit expression f (x) = fγ,λ(x)
for the operator (3.51) tailored to the problem of finding even homoclinics
in the Gray-Scott system.

Computation of the Y- and Z-bounds

Let us now derive the quantities Y−1, . . . , YM−1, Z−1(r), . . . , ZM−1(r) ∈ R4

and ZM(r) ∈ R4 specified in (3.59) and (3.60). The important ingredients
are summarized in Tables 4.2 and 4.3. For notational brevity we omit the ∗
in the convolutions sums in Tables 4.2 and 4.3 whenever convenient. The
technical details of their derivation are our next focus of attention.

Assume a dimension m for the Galerkin projection to be given. We start
by explicitly stating the Galerkin projection f (m) : R4m+2 → R4m+2 speci-
fied in (3.55). Let xF = (θ, a0, . . . , am−1) = (θ, aF) ∈ R4m+2 then f (m)(xF) is
defined by

η(m)(xF) =

(
(a2)0 + 2 ∑m−1

j=1 (−1)j(a2)j

(a4)0 + 2 ∑m−1
j=1 (−1)j(a4)j

)

f (m)
0 (xF) = a0 +

c(m)
0 +

c(m)
1
2
− 2

m−1

∑
j=2

c(m)
j

j2 − 1

− P(θ)

f (m)
k (xF) = 2kak +

(
c(m)

k+1 − c(m)
k−1

)
k = 1, . . . , m− 2

f (m)
m−1(xF) = 2(m− 1)am−1 +




0
L2(a1 ∗ a2

3)
(m)
m

0

L2
(
− 1

γ (a1 ∗ a2
3)

(m)
m

)
− c(m)

m−2


where we set

c(m)
k =


(a2)k

L2 (λ(a1)k − λδk,0)
(a4)k

L2
(

1
γ (a3)k

)
+


0

L2(a1 ∗ a2
3)

(m)
k

0

L2
(
− 1

γ (a1 ∗ a2
3)

(m)
k

)
 ,

with the finite convolution sums

(a1 ∗ a2
3)

(m)
k = ∑

k1+k2+k3=k
|ki |<m

(a1)k1(a2)k2(a3)k3 .
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k = −1

Z̃−1
1 (s− 1)

 1
(m−1)s−1

1
(m−1)s−1


k = 0

Z̃0
1




0
L2((|ā3 |2 |v1 |I )M

0 + 2(|ā1 ||ā3 ||vI
3 |)M

0 )
0

L2
γ

[
(|ā3 |2 |v1 |I )M

0 + 2(|ā1 ||ā3 ||vI
3 |)M

0

]
+ ε3

0


0

L2(A3 + 2A1 A3)
0

L2
γ (A3 + 2A1 A3)

+
1
2


0

L2((|ā3 |2 |v1 |I )M
1 + 2(|ā1 ||ā3 ||vI

3 |)M
1 )

0
L2
γ

[
(|ā3 |2 |v1 |I )M

1 + 2(|ā1 ||ā3 ||vI
3 |)M

1

]
+

ε3
1
2


0

L2(A3 + 2A1 A3)
0

L2
γ (A3 + 2A1 A3)

+ 2
m−1

∑
j=2

1
j2 − 1




0
L2(|ā3 |2 |v1 |I )M

0 + 2(|ā1 ||ā3 ||vI
3 |)M

0
0

L2
γ

[
(|ā3 |2 |v1 |I )M

0 + 2(|ā1 ||ā3 ||vI
3 |)M

0

]
+ ε3

j


0

L2(A3 + 2A1 A3)
0

L2
γ (A3 + 2A1 A3)


+

+
M−2

∑
j=m

1
j2 − 1

 1
ωs

j


1

L2λ

1
L2
γ

+


0

L2((|ā3 |2 |v1 |I )M
0 + 2(|ā1 ||ā3 ||v3 |)M

0 )
0

L2
γ

[
(|ā3 |2 |v1 |I )M

0 + 2(|ā1 ||ā3 ||v3 |)M
0

]
+ ε3

j


0

L2(A3 + 2A1 A3)
0

L2
γ (A3 + 2A1 A3)


+

2
((M− 1)2 − 1)(s− 1)(M− 2)s−1




1
L2λ

1
L2
γ

+


0

L2(ΣM−1
33 + 2ΣM−1

13 )
0

L2
γ (ΣM−1

33 + 2ΣM−1
13 )



+ Λ

Z̃0
2




0
L2(2(|ā3 ||w3 ||v1 |)M

0 + 2(|ā3 |w1 ||v3 |)M−1
0 + 2(|ā1 ||w3 ||v1 |)M

0 )
0

L2
γ

[
2(|ā3 ||w3 ||v1 |)M

0 + 2(|ā3 ||w1 ||v3 |)M−1
0 + 2(|ā1 ||w3 ||v1 |)M

0

]
+ 2ε3

0


0

L2(4A3 + 2A1)
0

L2
γ (4A3 + 2A1)



+
1
2


0

L2(2(|ā3 ||w3 ||v1 |)M
1 + 2(|ā3 |w1 ||v3 |)M

1 + 2(|ā1 ||w3 ||v1 |)M
1 )

0
L2
γ

[
2(|ā3 ||w3 ||v1 |)M

1 + 2(|ā3 ||w1 ||v3 |)M
1 + 2(|ā1 ||w3 ||v1 |)M

1

]
+ ε3

1


0

L2(4A3 + 2A1)
0

L2
γ (4A3 + 2A1)



+2
M−2

∑
j=2

1
j2 − 1




0
L2(2(|ā3 ||w3 ||v1 |)M

j + 2(|ā3 |w1 ||v3 |)M
j + 2(|ā1 ||w3 ||v1 |)M

j )
0

L2
γ

[
2(|ā3 ||w3 ||v1 |)M

j + 2(|ā3 ||w1 ||v3 |)M
j + 2(|ā1 ||w3 ||v1 |)M

j

]
+ 2ε3

j


0

L2(4A3 + 2A1)
0

L2
γ (4A3 + 2A1)




+
2α3

M−1
((M− 1)2 − 1)(s− 1)(M− 2)s−1


0

L2(4A3 + 2A1)
0

L2
γ (4A3 + 2A1)




Z̃0
3




0
L2((|w3 |2 |v3 |)M

0 + 2(|w1 ||w3 ||v3 |)M
0 )

0
L2
γ

[
(|w3 |2 |v3 |)M

0 + 2(|w1 ||w3 ||v3 |)M
0

]
+ 9ε3

0


0
1
0
1
γ

+
1
2


0

L2((|w3 |2 |v3 |)M
1 + 2(|w1 ||w3 ||v3 |)M

1 )
0

L2
γ

[
(|w3 |2 |v3 |)M

1 + 2(|w1 ||w3 ||v3 |)M
1

]
+

9
2

ε3
1


0

L2

0
L2
γ



+2
M−2

∑
j=2

1
j2 − 1




0
L2((|w3 |2 |v3 |)M

j + 2(|w1 ||w3 ||v3 |)M
j )

0
L2
γ

[
(|w3 |2 |v3 |)M

j + 2(|w1 ||w3 ||v3 |)M
j

]
+ 9ε3

j


0

L2

0
L2
γ


+

6α3
M−1

((M− 1)2 − 1)(s− 1)(M− 2)s−1


0

L2

0
L2
γ




k = 1, . . . , m− 1

Z̃k
1




0
L2((|ā3 |2 |v1 |I )M

k+1 + 2(|ā1 ||ā3 ||vI
3 |)M

k+1)
0

L2
γ

[
(|ā3 |2 |v1 |I )M

k+1 + 2(|ā1 ||ā3 ||vI
3 |)M

k+1

]
+ ε3

k+1


0

L2(A3 + 2A1 A3)
0

L2
γ (A3 + 2A1 A3)



+


0

L2((|ā3 |2 |v1 |I )M
k−1 + 2(|ā1 ||ā3 ||vI

3 |)M
k−1)

0
L2
γ

[
(|ā3 |2 |v1 |I )M

k−1 + 2(|ā1 ||ā3 ||vI
3 |)M

k−1

]
+ ε3

k−1


0

L2(A3 + 2A1 A3)
0

L2
γ (A3 + 2A1 A3)




Z̃k
2




0
L2(2(|ā3 ||w3 ||v1 |)M

k+1 + 2(|ā3 |w1 ||v3 |)M
k+1 + 2(|ā1 ||w3 ||v1 |)M

k+1)
0

L2
γ

[
2(|ā3 ||w3 ||v1 |)M

k+1 + 2(|ā3 ||w1 ||v3 |)M
k+1 + 2(|ā1 ||w3 ||v1 |)M

k+1

]
+ 2ε3

k+1


0

L2(4A3 + 2A1)
0

L2
γ (4A3 + 2A1)



+


0

L2(2(|ā3 ||w3 ||v1 |)M
k−1 + 2(|ā3 |w1 ||v3 |)M

k−1 + 2(|ā1 ||w3 ||v1 |)M
k−1)

0
L2
γ

[
2(|ā3 ||w3 ||v1 |)M

k−1 + 2(|ā3 ||w1 ||v3 |)M
k−1 + 2(|ā1 ||w3 ||v1 |)M

k−1

]
+ 2ε3

k−1


0

L2(4A3 + 2A1)
0

L2
γ (4A3 + 2A1)




Z̃k
3




0
L2((|w3 |2 |v3 |)M

k+1 + 2(|w1 ||w3 ||v3 |)M
k+1)

0
L2
γ

[
(|w3 |2 |v3 |)M

k+1 + 2(|w1 ||w3 ||v3 |)M
k+1

]
+ 9ε3

k+1


0

L2

0
L2
γ

+


0

L2((|w3 |2 |v3 |)M
k−1 + 2(|w1 ||w3 ||v3 |)M

k−1)
0

L2
γ

[
(|w3 |2 |v3 |)M

k−1 + 2(|w1 ||w3 ||v3 |)M
k−1

]
+ 9ε3

k−1


0

L2

0
L2
γ




Table 4.2: Formulas for Z̃k
l , k = 0, . . . , m− 1
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m ≤ k ≤ M− 1

Z̃k
1

 1
ωs

k+1


1

L2λ

1
L2
γ

+


0

L2((|ā3 |2 |v1 |)M
k+1 + 2(|ā1 ||ā3 ||v3 |)M

k+1)
0

L2
γ

[
(|ā3 |2 |v1 |)M

k+1 + 2(|ā1 ||ā3 ||v3 |)M
k+1

]
+ ε3

k+1


0

L2(A3 + 2A1 A3)
0

L2
γ (A3 + 2A1 A3)



+
1

ωs
k−1


1

L2λ

1
L2
γ

+


0

L2((|ā3 |2 |v1 |)M
k−1 + 2(|ā1 ||ā3 ||v3 |)M

k−1)
0

L2
γ

[
(|ā3 |2 |v1 |)M

k−1 + 2(|ā1 ||ā3 ||v3 |)M
k−1

]
+ ε3

k−1


0

L2(A3 + 2A1 A3)
0

L2
γ (A3 + 2A1 A3)




Z̃k
2




0
L2(2(|ā3 ||w3 ||v1 |)M

k+1 + 2(|ā3 |w1 ||v3 |)M
k+1 + 2(|ā1 ||w3 ||v1 |)M

k+1)
0

L2
γ

[
2(|ā3 ||w3 ||v1 |)M

k+1 + 2(|ā3 ||w1 ||v3 |)M
k+1 + 2(|ā1 ||w3 ||v1 |)M

k+1

]
+ 2ε3

k+1


0

L2(4A3 + 2A1)
0

L2
γ (4A3 + 2A1)



+


0

L2(2(|ā3 ||w3 ||v1 |)M
k−1 + 2(|ā3 |w1 ||v3 |)M

k−1 + 2(|ā1 ||w3 ||v1 |)M
k−1)

0
L2
γ

[
2(|ā3 ||w3 ||v1 |)M

k−1 + 2(|ā3 ||w1 ||v3 |)M
k−1 + 2(|ā1 ||w3 ||v1 |)M

k−1

]
+ 2ε3

k−1


0

L2(4A3 + 2A1)
0

L2
γ (4A3 + 2A1)




Z̃k
3




0
L2((|w3 |2 |v3 |)M

k+1 + 2(|w1 ||w3 ||v3 |)M
k+1)

0
L2
γ

[
(|w3 |2 |v3 |)M

k+1 + 2(|w1 ||w3 ||v3 |)M
k+1

]
+ 9ε3

k+1


0

L2

0
L2
γ

+


0

L2((|w3 |2 |v3 |)M
k−1 + 2(|w1 ||w3 ||v3 |)M

k−1)
0

L2
γ

[
(|w3 |2 |v3 |)M

k−1 + 2(|w1 ||w3 ||v3 |)M
k

]
+ 9ε3

k−1


0

L2

0
L2
γ




k ≥ M

Z̃M
1 (1 + ( M

M−1 )s)




1
L2λ

1
L2
γ

+


0

L2(ΣM−1
33 + 2ΣM−1

13 )
0

L2
γ (ΣM−1

33 + 2ΣM−1
13 )




Z̃M
2 (1 + ( M

M−1 )s)α3
M−1


0

L2(4A3 + 2A1)
0

L2
γ (4A3 + 2A1)



Z̃M
3 (1 + ( M

M−1 )s)3α3
M−1


0

L2

0
L2
γ



Table 4.3: Formulas for Z̃k
l , k = m, . . . , M
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Note that as |ki| < m− 1 for i = 1, 2, 3

(a1 ∗ a2
3)

(m)
k = 0 whenever k > 3(m− 1). (4.11)

Assume that a numerical approximation x̄F with f (m)(x̄F) ≈ 0 is given
and define x̄ = (x̄F, 0∞). First we notice that by (4.11), setting M = 3m− 1
suffices to fulfill assumption A.1 from Section 3.2.2. This can be seen by
realizing that for k ≥ m + 1 we have that

(Tx̄− x̄)k = −(A f (x̄)) =

=
−L2

2k




0
(ā1 ∗ ā2

3)
(m)
k+1

0
− 1

γ (ā1 ∗ ā2
3)

(m)
k+1

−


0
(ā1 ∗ ā2

3)
(m)
k−1

0
− 1

γ (ā1 ∗ ā2
3)

(m)
k−1


 .

(4.12)

Recalling (4.11) we hereby see that (Tx̄− x̄)k = 0 for k− 1 ≥ 3(m− 1),
hence for k ≥ 3m− 1. Thus we set M = 3m− 1 and define M̄ = M− 1 =
3m− 2. Our first goal is to compute bounds Y−1, . . . , YM̄ such that

|(Tx̄− x̄)k| ≤ Yk

for k = −1, . . . , M̄. We therefore define

x̄M̄ = (θ̄, ā0, . . . , ām−1, 04, . . . 04︸ ︷︷ ︸
2m−2 times

)

and compute y = f (x̄M̄, 0∞) = ( f (M̄)(x̄M̄), 0∞). Then we set Yk as

Yk =

(|Am||yF|)k k = −1, . . . m− 1
|yk |
2k k = m, . . . , M̄

. (4.13)

We now compute polynomials Zk(r) = ∑3
l=1 Zk

l rl ∈ R4 (k = −1, . . . , M̄)
such that

sup
ξ1,ξ2∈Br(0)

|(DT(x̄ + ξ1)ξ2)k| � Zk(r)

for all k = −1, . . . , M̄. In order to do so we use the splitting given in (3.69).
Let

ξ1 = r(θ, w) and ξ2 = r(φ, v) (4.14)

with(θ, w), (φ, v) ∈ B1(0).
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Our first step is to compute polynomials zk(r) = ∑3
l=1 zk

l rl such that

D fk(x̄ + ξ1)ξ2 − (A†ξ2)k = zk(r) (4.15)

for k ≥ −1. The componentwise estimation of |zk(r)| as major step to ob-
tain Zk(r) is postponed to a separate consideration. We note that we have
to distinguish the cases k = −1, k = 0, 1 ≤ k ≤ m− 2, k = m− 1, m ≤ k.

Derivation of zk(r) Let us start with the cases −1 ≤ k ≤ m− 1. For these
components we realize that

D fk(x̄ + ξ1)ξ2 − A†ξ2 = D fk(x̄ + ξ1)ξ2 − D f (m)
k (x̄F)ξ2F .

First we consider k = −1 in (4.15) and compute for x = (θx, a), y =
(θy, b) ∈ Xs and zF = (θz, dF) ∈ R4m+2:

Dη(x)y− Dη(m)(zF)yF =
d
dt

η(x + ty)|t=0 −
d
dt

η(m)(zF + tyF)|t=0

=
d
dt

(
((a + tb)2)0 + ∑∞

j=1((a + tb)2)j

((a + tb)4)0 + ∑∞
j=1((a + tb)4)j

)
|t=0

− d
dt

(
((dF + tbF)2)0 + ∑m−1

j=1 ((dF + tbF)2)j

((dF + tbF)4)0 + ∑m−1
j=1 ((dF + tbF)4)j

)
|t=0 =

(
∑∞

j=m(b2)j

∑∞
j=m(b4)j

)
.

Setting x = x̄ + ξ1, zF = x̄F and y = ξ2 we obtain, recalling (4.14)

z−1
1 =

(
∑∞

j=m(v2)k

∑∞
j=m(v4)k

)
. (4.16)

In addition as z−1
l = 0 for l = 2, 3, we note that

z−1(r) = rz−1
1 . (4.17)

We remark that in order to compute Z−1(r), that is among others to
compute a componentwise estimate on |z1(r)|, we will crucially use that
ξ2 ∈ B1(0) ⊂ Xs. This fact gives us information about the decay behavior
of the sequences v2,4 and enables us to estimate the infinite tail series in a
standard way.

Let us continue with computing for x = (θx, a), y = (θy, b) ∈ Xs and
zF = (θz, dF) ∈ R4m+2

D f0(x)y− D f (m)
0 (zF)yF =

d
dt

f0(x + ty)|t=0 −
d
dt

f (m)
0 (dF + tbF)|t=0. (4.18)
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Keep in mind that we will later want to apply these calculations with
x = x̄ + ξ1, zF = x̄F and y = ξ2 with ξ1,2 given by (4.14). In this context it
is essential that we compute first

Dck(a)b =
d
dt

ck(a + tb)|t=0 and Dc(m)
k (dF)bF =

d
dt

c(m)
k (dF + tbF)|t=0

for certain k ≥ 0. In order to achieve this we have to compute

d
dt

((a1 + tb1) ∗ (a3 + tb3)2)k|t=0

= ∑
k1+k2+k3=k

ki∈Z

d
dt

(a1 + tb1)|k1|(a3 + tb3)|k2|(a3 + tb3)|k3||t=0

= ∑
k1+k2+k3=k

ki∈Z

d
dt

[
(a1)|k1|(a3)|k2|(a3)|k3| + t(b1)|k1|(a3)k2(a3)|k3|+

t(a1)|k1|(b3)|k2|(a3)|k3| + t(a1)|k1|(a3)|k2|(b3)|k3|+

t2(b1)|k1|(b3)|k2|(a3)|k3| + t2(b1)|k1|(a3)|k2|(b3)|k3|+

t2(a1)|k1|(b3)|k2|(b3)|k3| + t3(b1)|k1|(b3)|k2|(b3)|k3|
]

t=0

= ∑
k1+k2+k3=k

ki∈Z

(b1)|k1|(a3)|k2|(a3)|k3| + (a1)|k1|(b3)|k2|(a3)|k3| + (a1)|k1|(a3)|k2|(b3)|k3|

= (a2
3 ∗ b1)k + 2(a1 ∗ a3 ∗ b3)k.

In the same manner we obtain that

d
dt

((d1 + tb1) ∗ (d3 + tb3)2)(m)
k |t=0 = (d2

3 ∗ b1)
(m)
k + 2(d1 ∗ d3 ∗ b3)

(m)
k .

This yields

Dck(a)b =


(b2)k

L2λ(b1)k
(b4)k

L2

γ (b3)k

+


0

L2 ((a2
3 ∗ b1)k + 2(a1 ∗ a3 ∗ b3)k

)
0

−L2

γ

(
(a2

3 ∗ b1)k + 2(a1 ∗ a3 ∗ b3)k
)
 (4.19)

and

Dc(m)
k (dF)bF =


(b2)k

L2λ(b1)k

(b4)k
L2

γ (b3)k

+


0

L2
(
(d2

3 ∗ b1)
(m)
k + 2(d1 ∗ d3 ∗ b3)

(m)
k

)
0

−L2

γ

(
(d2

3 ∗ b1)
(m)
k + 2(d1 ∗ d3 ∗ b3)

(m)
k

)


(4.20)
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for k = 1, . . . , m− 1. We now go on to consider

D f0(x)y− D f (m)
0 (zF)yF =

d
dt

(a0 + tb0 − d0 − tb0)|t=0︸ ︷︷ ︸
=0

+

(Dc0(a)b− Dc(m)
0 (dF)bF) +

1
2
(Dc1(a)b− Dc(m)

1 (dF)bF)

− 2
m−1

∑
j=2

1
j2 − 1

(Dcj(a)b− Dc(m)
j (dF)bF)− 2

∞

∑
j=m

1
j2 − 1

Dcj(a)b

− DP(θx)θy.

(4.21)

We are now ready to set x = x̄ + r(θ, w), zF = x̄F and y = r(φ, v)
with (θ, w), (φ, v) ∈ B1(0) ⊂ Xs in (4.21). In order to get a polynomial
expansion

D f0(x̄ + r(θ, w))r(φ, v)− D f (m)
0 (x̄F)r(φ, vF) =

3

∑
l=1

z0
l rl (4.22)

we hence need to consider

Dcj(ā + rw)rv− Dc(m)
j (āF)rvF

for 0 ≤ j ≤ m− 1 . Recalling (4.19) and (4.20) let us first realize that

(ā3 + rw3)2 ∗ rv1 =rā2
3 ∗ v1 + 2r2 ā3 ∗ w3 ∗ v1 + r3w2

3 ∗ v1

(ā1 + rw1) ∗ (ā3 + rw3) ∗ rv3 =rā1 ∗ ā3 ∗ v3

+ r2(ā3 ∗ w1 ∗ v3 + ā1 ∗ w3 ∗ v1)

+ r3w1 ∗ w3 ∗ v3.

Thus we obtain

Dcj(ā + rw)rv =
3

∑
l=1

β
j
lr

j
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with β
j
l (l=1,2,3) defined for every j ≥ 0 by

β
j
1 =


(v2)j

L2λ(v1)j

(v4)j
L2

γ (v3)j

+


0

L2 ((ā2
3 ∗ v1)j + 2(ā1 ∗ ā3 ∗ v3)j

)
0

−L2

γ

(
(ā2

3 ∗ v1)j + 2(ā1 ∗ ā3 ∗ v3)j
)


β
j
2 =


0

L2 (2(ā3 ∗ w3 ∗ v1)j + 2(ā3 ∗ w1 ∗ v3)k + 2(ā1 ∗ w3 ∗ v1)j
)

0
−L2

γ

(
2(ā3 ∗ w3 ∗ v1)j + 2(ā3 ∗ w1 ∗ v3)k + 2(ā1 ∗ w3 ∗ v1)j

)


β
j
3 =


0

L2 ((w2
3 ∗ v3)j + 2(w1 ∗ w3 ∗ v3)j

)
0

−L2

γ

(
(w2

3 ∗ v3)j + 2(w1 ∗ w3 ∗ v3)j
)
 .

(4.23)

Now assume 0 ≤ j ≤ m− 1. Then

Dc(m)
j (āF)rvF = r




(v2)j
L2λ(v1)j

(v4)j
L2

γ (v3)j

+


0

L2
(
(ā2

3 ∗ v1)
(m)
j + 2(ā1 ∗ ā3 ∗ v3)

(m)
j

)
0

−L2

γ

(
(ā2

3 ∗ v1)
(m)
j + 2(ā1 ∗ ā3 ∗ v3)

(m)
j

)

 .

(4.24)

Remark 4.1.4 Difference of infinite and finite cubic convolution sums
Let sequences a1,3 ∈ Ωs and v1,3 ∈ Ωs be given. Then we consider the difference
(a2

3v1)k − (a2
3v1)

(m)
k of the infinite and finite convolution sums:

∑
k1+k2+k3=k

ki∈Z

(a3)|k1|(a3)|k2|(v1)|k3| − ∑
k1+k2+k3=k
|ki |<m

(a3)|k1|(a3)|k2|(v1)|k3| =

∑
−m+1≤k1≤m−1
|ki |≥m (i=2,3)
k1+k2+k3=k

(a3)|k1|(a3)|k2|(v1)|k3| + ∑
|k1 |≥m

ki∈Z (i=2,3)
k1+k2+k3=k

(a3)|k1|(a3)|k2|(v1)|k3|+

∑
−m+1≤k2≤m−1
|ki |≥m (i=1,3)
k1+k2+k3=k

(a3)|k1|(a3)|k2|(v1)|k3| + ∑
|k2 |≥m

ki∈Z (i=1,3)
k1+k2+k3=k

(a3)|k1|(a3)|k2|(v1)|k3|+

∑
−m+1≤k3≤m−1
|ki |≥m (i=1,2)
k1+k2+k3=k

(a3)|k1|(a3)|k2|(v1)|k3| + ∑
|k3 |≥m

ki∈Z (i=1,2)
k1+k2+k3=k

(a3)|k1|(a3)|k2|(v1)|k3|.

We make the following important observation. If (a3)k = 0 for k ≥ m then we
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obtain that

∑
k1+k2+k3=k

ki∈Z

(a3)|k1|(a3)|k2|(v1)k3 − ∑
k1+k2+k3=k
|ki |<m

(a3)|k1|(a3)|k2|(v1)|k3| =

= ∑
|k3 |≥m

ki∈Z (i=1,2)
k1+k2+k3=k

(a3)|k1|(a3)|k2|(v1)|k3| = ((a3)2vI
1)k,

where we define for a sequence a ∈ Ωs

aI
k =

0 k ≤ m− 1

ak k ≥ m
. (4.25)

Note that we encounter exactly the case (a3)k = 0 for k ≥ m when we compute

Dcj(ā + rw)rv− Dc(m)
j (āF)rvF.

In an analogue fashion we have in the case (a1)k = (a3)k = 0 for k ≥ m

∑
k1+k2+k3=k

ki∈Z

(a1)|k1|(a3)|k2|(v3)k3 − ∑
k1+k2+k3=k
|ki |<m

(a1)|k1|(a3)|k2|(v3)|k3| =

= ∑
|k3 |≥m

ki∈Z (i=1,2)
k1+k2+k3=k

(a1)|k1|(a3)|k2|(v3)|k3| = (a1a3vI
3).

Using (4.23), (4.24) and Remark 4.1.4, we obtain for 0 ≤ j ≤ m− 1

Dcj(ā + rw)rv− Dc(m)
j (āF)rvF =

3

∑
l=1

κ
j
lr

l (4.26)

with κ
j
l defined by

κ
j
1 =


0

L2 ((ā2
3 ∗ vI

1)j + 2(ā1 ∗ ā3 ∗ vI
3)j
)

0
−L2

γ

[
(ā2

3 ∗ vI
1)j + 2(ā1 ∗ ā3 ∗ vI

3)j
]


κ
j
2,3 = β

j
2,3.

(4.27)

Using (4.26) we can specify the polynomial expansion given in (4.22)
by

D f0(x̄ + r(θ, w))r(φ, v)− D f (m)
0 (x̄F)r(φ, vF) =[

3

∑
l=1

κ0
l rl +

1
2

3

∑
l=1

κ1
l rl

−2
m−1

∑
j=2

1
j2 − 1

(
3

∑
l=1

κ
j
lr

l

)
− 2

∞

∑
j=m

1
j2 − 1

(
3

∑
l=1

β
j
lr

l

)]
=

3

∑
j=1

z0
j rj

(4.28)
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with

z0
1 =

[
κ0

1 +
1
2

κ1
1 − 2

m−1

∑
j=2

κ
j
1

j2 − 1
− 2

∞

∑
j=m

β
j
1

j2 − 1

]
− DP(θ̄ + rθ)φ

z0
l =

[
β0

l +
1
2

β1
l − 2

∞

∑
j=2

β
j
l

j2 − 1

]
(l = 2, 3)

(4.29)

where 0 ≤ r < rappr with an apriori bound rappr on r.

We now go ahead to consider the cases 1 ≤ k ≤ m− 1. We obtain for
x = (θa, a) and y = (θb, b)

D fk(x)y = 2kbk + (Dck+1(a)b− Dck−1(a)b).

This yields for k = 1, . . . , m− 1 and ξ1,2 specified in (4.14)

D fk(x̄ + ξ1)ξ2 − A†ξ2 = D fk(x̄ + ξ1)ξ2 − D f (m)
k (x̄F)ξ2 =

= L
[
(Dck+1(ā + rw)rv− Dc(m)

k+1(āF)rwF)− (Dck−1(ā + rw)rv− Dc(m)
k−1(āF)rvF)

]
=

3

∑
l=1

(κk+1
l − κk−1

l )rl =
3

∑
l=1

zk
l rl ,

where we define for j = 1, 2, 3

zk
l =

(κk+1
l − κk−1

l ) l = 1

(βk+1
l − βk−1

l ) l = 2, 3
(4.30)

with κk
1 and βk

2,3 given as in (4.27) and (4.23).

Finally for k ≥ m we have that

D fk(x̄ + ξ1)ξ2 − A†ξ2 = D fk(x̄ + ξ1)ξ2 − 2krvk =

= [Dck+1(ā + rw)rv− Dck−1(ā + rw)rv] =

=
3

∑
l=1

(βk+1
l − βk−1

l )rl =
3

∑
l=1

zk
l rl ,

where we define for j = 1, 2, 3

zk
l = (βk+1

l − βk−1
l ) (4.31)

with βk
l given as in (4.23).
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Our next goal is to compute bounds Z̃k(r) = ∑3
l=1 Z̃k

l rl such that

|zk(r)| � Z̃k(r)

for k = −1, . . . , M̄, where we recall the notation � given in Definition
3.1.1. Similar notation will be applied for strict inequalities. We note that
the results can be found in Tables 4.2 and 4.3.

Derivation of Z̃k(r) and Zk(r) Let us start with k = −1. Recalling (4.16)
and in addition that w, v ∈ B1(0) ⊂ Ωs implies in particular that |(vi)k| ≤
1

ωs
k

for i = 2, 4. Hence by applying integral estimates in each component
we obtain

|z−1
1 | �

(
∑∞

j=m
1
js

∑∞
j=m

1
js

)
�
(∫ ∞

m−1
1
js dj∫ ∞

m−1
1
js dj

)
= (s− 1)

(
1

(m−1)s−1

1
(m−1)s−1

)

We can therefore define

Z̃−1
1 = (s− 1)

(
1

(m−1)s−1

1
(m−1)s−1

)
Z̃−1

l = 0 (l = 2, 3) (4.32)

The decay information on the sequences w, v will continue to stay cru-
cial for our estimates. To define Z̃k for k = 0, . . . , M̄ we first derive bounds
Bk

l (l = 1, 2, 3), Kk
1 and BM̄

l (l = 1, 2, 3) such that:

|βk
l | � Bk

l l = 1, 2, 3, k = 0, . . . , M

|κk
1| � Kk

1 0 ≤ k ≤ m− 1

|βk
l | �

BM̄
l

ωs
k

l = 1, 2, 3 k ≥ M̄.

(4.33)

To achieve this we will need to bound general cubic convolution sums.
Realize that every convolution sum can be split in the following way. Let
l ∈ {1, 2, 3}, M > 0 and a, b, c ∈ Ωs sequences. Then

∑
k1+k2+k3=k

ki∈Z

a|k1|b|k2|c|k3| = ∑
k1+k2+k3=k

|ki |<M (i=1,...,l)

a|k1|b|k2|c|k3| + ∑
k1+k2+k3=k

maxi=1,...,l |ki |≥M

a|k1|b|k2|c|k3|.

The benefit of this operation is that in our case the sequences a, b will
be finite and thus by choosing l = 3 the first sum is finite and can be
computed via FFT and the second sum can be estimated by the following
results obtained in [25]. The next Lemma is a special case of Lemma A.4
in [25].
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Lemma 4.1.1 Let s ≥ 2 be a decay rate and M1 ≥ M2 ≥ 6. Fix l ∈ {1, 2, 3}.
Then for 0 ≤ k ≤ M2 − 1 there are computable numbers ε3

k = ε3
k(M1, M2) such

that ∣∣∣∣∣∣∣∣ ∑
k1+k2+k3=k

maxi=1,...,l |ki |≥M2

a|k1|b|k2|c|k3|

∣∣∣∣∣∣∣∣ ≤ l(ABC)ε3
k ,

where A = ‖a‖s, B = ‖b‖s and C = ‖c‖s.

Proof 4.1.1 See [25].

We set A1,3 = max
i=0,...,m−1

{|(ā1,3)i|ωs
k} and proceed to compute Bk

l for k =

0, . . . , M. Recalling (4.23) we aim to use Lemma 4.1.1 with M1 = M + 1
and M2 = M = M̄ + 1. Hence we obtain:

|βk
1| �

1
ωs

k


1

L2λ

1
L2

γ

+


0

L2
(
(|ā3|2 ∗ |v1|)(M)

k + 2(|ā1| ∗ |ā3| ∗ |v3|)(M)
k

)
0

L2

γ

[
(|ā3|2 ∗ |v1|)(M)

k + 2(|ā1| ∗ |ā3| ∗ |v3|)(M)
k

]
+

ε3
k


0

L2 (A2
3 + 2A1 A3

)
0

L2

γ (A2
3 + 2A1 A3)

 def= Bk
1

|βk
2| �


0

L2
(

2(|ā3| ∗ |w3| ∗ |v1|)(M)
k + 2(|ā3| ∗ |w1| ∗ |v3|)(M)

k + 2(|ā1| ∗ |w3| ∗ |v1|)(M)
k

)
0

L2

γ

[
2(|ā3| ∗ |w3| ∗ |v1|)(M)

k + 2(|ā3| ∗ |w1| ∗ |v3|)(M)
k + 2(|ā1| ∗ |w3| ∗ |v1|)(M)

k

]
+

2ε3
k


0

L2 (4A3 + 2A1)
0

L2

γ (4A3 + 2A1)

 def= Bk
2

|βk
3| �


0

L2
(
(|w3|2 ∗ |v3|)(M)

k + 2(|w1| ∗ |w3| ∗ |v3|)(M)
k

)
0

L2

γ

[
(|w3|2 ∗ |v3|)(M)

k + 2(|w1| ∗ |w3| ∗ |v3|)(M)
k

]
+ 9ε3

k


1
L2

1
L2

 def= Bk
3

(4.34)
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Recalling (4.27) we go on by computing Kk
1 for k = 0, . . . , m− 1

|κk
1| �


0

L2
(
(|ā3|2 ∗ |v1|I)(M)

k + 2(|ā1| ∗ |ā3| ∗ |vI
3|)

(M)
k

)
0

L2

γ

[
(|ā3|2 ∗ |v1|I)(M)

k + 2(|ā1| ∗ |ā3| ∗ |vI
3|)

(M)
k

]
+

ε3
k


0

L2 (A3 + 2A1A3)
0

L2

γ (A3 + 2A1A3)

 def= Kk
1.

(4.35)

Concerning the uniform bounds BM̄
l for l = 1, 2, 3 specified in (4.33)

we use Lemma 2.2.5 with n = 3 and M1 = M̄. In particular we wish to
remind the reader of equation (2.43). Thus we obtain

|βk
1| �

1
ωs

k


1

L2λ

1
L2

γ

+
α3

M̄
ωs

k


0

L2(A2
3 + 2A1A3)

0
L2

γ (A2
3 + 2A1A3)

 def=
BM̄

1
ωs

k

|βk
2| �

α3
M̄

ωs
k


0

L2 (4A3 + 2A1)
0

L2

γ (4A3 + 2A1)

 def=
BM̄

2
ωs

k

|βk
3| �

3α3
M̄

ωs
k


0
L2

0
L2

 def=
BM̄

3
ωs

k
.

(4.36)

Let us now estimate |z0
l | for l = 1, 2, 3. To this end we first assume that

we have a bound Λ ∈ R4 such that

|DPs(θ̄ + rθ)φ| ≤ Λ

for all r with 0 < r < rapriori, where rapriori is an apriori bound on r.
The details of achieving this via an argument based on the Mean Value
Theorem are explained in [60]. The reasoning in 3.1.2 is very similar in
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spirit. Recalling (4.28) we have

|z0
1| � L


K0

1 +
1
2

K1
1 +

m−1

∑
j=2

K j
1

1
k2 − 1

+
∞

∑
j=m

BM̄
1

α3
M̄

js(j2 − 1)︸ ︷︷ ︸
≤

α3
M̄

(M̄2−1)js


+ Λ

� L

[
K0

1 +
1
2

K1
1 +

m−1

∑
j=2

K j
1

1
j2 − 1

+
m−1

∑
j=2

Bj
1

1
j2 − 1

+ BM̄
1

α3
M̄

(M̄2 − 1)(s− 1)(M̄− 1)(s−1)

]
+ Λ def= Z̃0

1

|z0
l | � L

[
B0

l +
1
2

B1
l +

M̄

∑
j=2

Bk
l

1
j2 − 1

+ BM̄
l

α3
M̄

(M̄2 − 1)(s− 1)(M̄− 1)(s−1)

]
def= Z̃0

l .

(4.37)
Then for k = 1, . . . , m− 1 we have for l = 1, 2, 3 that

|zk
l | � (Kk+1

l + Kk−1
l ) def= Z̃k

l . (4.38)

And for k = m . . . , M̄ and l = 1, 2, 3 we get

|zk
l | � L(Bk+1

l + Bk−1
l ) def= Z̃k

l . (4.39)

Taking (4.32), (4.37), (4.38) and (4.39) together we obtain polynomial ex-
pansions

|D fk(x̄ + rw1)− A†rw2| � Z̃k(r) =
3

∑
l=1

Z̃k
l rl (4.40)

for all k = −1, . . . , M̄.

By definition of A and A† there is a δ such that for all k ≥ −1

|((I−AA†)ξ2)k| � rδ ∈ R4

where the inequality is to understood componentwise. We now define
for l = 1, 2, 3 vectors Vl = (Z̃−1

l , Z̃0
l , . . . , Z̃m−1

l ) ∈ R4m+2 to obtain for k =
−1, . . . , m− 1

Zk
1 = (|Am|V1)k + δ

Zk
l = (|Am|Vj)k j = 2, 3

(4.41)

and for k = m, . . . , M̄

Zk
l =

1
2k

Z̃k
l k = m, . . . , M̄ (4.42)
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and hereby have that for all k = −1, . . . , M̄

|(DT(x̄ + ξ1)ξ2)k| �
3

∑
l=1

Zk
l rl .

As the right hand side is independent of ξ1,2 we can take the supremum
over all ξ1,2 ∈ Br(0) ⊂ Xs and obtain

sup
ξ1,ξ2∈Br(0)

|(DT(x̄ + ξ1)ξ2)k| �
3

∑
l=1

Zk
l rl

for all k = −1, . . . , M̄.

We now are able to combine equations (4.57), (4.68) and (4.69) to define
the radii polynomials for k = −1, . . . , M̄ specified in (3.62) by setting

pk(r) = Yk +
3

∑
l=1

Zk
l rl − r

ωs
k

14. (4.43)

Let us consider the tail radii polynomial from (3.63). We then seek a
bound ZM(r) such that

sup
w1,w2∈Br(0)

|(DT(x̄ + rw1)w2)k| �
1

ωs
k

ZM(r)

for k ≥ M. The result can be found in Table 4.3. To this end let us compute
bounds such that

|zk
l | �

1
ωs

k
Z̃M

l

for k ≥ M. Recall that zk
l = βk+1

l − βk−1
l with βk

l specified in (4.23). For
l = 2, 3 we aim to use (4.36). Concerning the crucial term for l = 1 we will
follow a more refined reasoning we specify momentarily. Thus we obtain
for l = 2, 3:

|zk
l | � L

(
BM̄

l
ωs

k+1
+

BM̄
l

ωs
k−1

)
� BM̄

l
1

ωs
k

(
1 + (1 +

1
M̄

)s
)

def=
1

ωs
k

Z̃M
l (4.44)

where we applied the following trick:

1
(k + 1)s +

1
(k− 1)s ≤

1
ks +

1
(k− 1)s =

1
ks

(
1 +

ks

(k− 1)s

)
≤ 1

ks

(
1 +

Ms

(M− 1)s

)
=

1
ks

(
1 +

(M̄ + 1)s

M̄s

)
=

1
ks

(
1 + (1 +

1
M̄

)s
)

.
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We could proceed in an analogue fashion for the linear terms but we can
achieve sharper bounds by applying the following reasoning. Remember-
ing (4.30) we first need to consider for k ≥ M the convolution term

∣∣∣(ā2
3v1)k+1

∣∣∣ =

∣∣∣∣∣ m−1

∑
k1=−m+1

m−1

∑
k2=−m+1

(ā3)|k1|(ā3)|k2|v1)k−k1−k2

∣∣∣∣∣
≤

m−1

∑
k1=−m+1

m−1

∑
k2=−m+1

(|ā3|)|k1|(|ā3|)|k2|
1

(k + 1− k1 − k2)s

=
1

ωs
k

m−1

∑
k1=−m+1

m−1

∑
k2=−m+1

(|ā3|)|k1|(|ā3|)|k2|
ks

(k + 1− k1 − k2)s

≤ 1
ωs

k

m−1

∑
k1=−m+1

m−1

∑
k2=−m+1

(|ā3|)|k1|(|ā3|)|k2|max(
Ms

(M + 1− k1 − k2)s , 1)

def=
1

ωs
k

ΣM+1
33 .

(4.45)
In an analogue fashion we have that

∣∣(ā2
3(b2)1)k−1

∣∣ ≤ 1
ωs

k

m−1

∑
k1=−m+1

m−1

∑
k2=−m+1

(|ā3|)|k1|(|ā3|)|k2|max(
(M− 2)s

(M− 1− k1 − k2)s , 1)

def=
1

ωs
k

ΣM−1
33

|(ā1 ā3(b2)1)k−1| ≤
1

ωs
k

m−1

∑
k1=−m+1

m−1

∑
k2=−m+1

(|ā1|)|k1|(|ā1|)|k2|max(
Ms

(M + 1− k1 − k2)s , 1)

def=
1

ωs
k

ΣM+1
13

|(ā1 ā3(b2)1)k−1| ≤
1

ωs
k

m−1

∑
k1=−m+1

m−1

∑
k2=−m+1

(|ā1|)|k1|(|ā1|)|k2|max(
(M− 2)s

(M− 1− k1 − k2)s , 1)

def=
1

ωs
k

ΣM−1
13 .

(4.46)
In the estimates above the following elementary reasoning is crucial. Con-
sider τk = ( k

k+1−c ) for a constant c ∈ R and k such that τk is well defined.
Then we have

k
k + 1− c

≥ 1 c ≥ 1

k
k + 1− c

≤ 1 c ≤ 1.

So in the first case τk+1 ≤ τk whenever defined and so we have τk ≤ τM.
In the second case we τk ≤ 1 for all k where it is defined and we can use
this to estimate the sum.
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Thus inserting (4.45) and (4.46) into (4.30) we obtain the estimate

|zk
1| �

1
ωs

k


(

1 + (1 +
1
M̄

)s
)

1
λ

1
1
γ

+


0

ΣM+1
33 + 2ΣM+1

13 + ΣM−1
33 + 2ΣM−1

13
0

1
γ

(
ΣM+1

33 + 2ΣM+1
13 + ΣM−1

33 + 2ΣM−1
13

)



def=
1

ωs
k

Z̃M
1 .

(4.47)
The next step is to apply A to the estimates on |D fk(x̄ + rw1)rw2)) −
(A†rw2)k|. As

1
2k
≤ 1

2M
for k ≥ M this leads to setting

ZM
l =

1
2M

Z̃M
l (4.48)

for l = 1, 2, 3. Then defining ZM(r) = ∑3
l=1 ZM

l rl we finally have that

sup
w1,w2

|(DT(x̄ + ξ1)ξ2)k| �
1

ωs
k

ZM(r)

for ξ1,2 given in (4.14) and all k ≥ M.

4.2 The Lorenz system

In this section we consider the well-known Lorenz equations (see e.g. [52])
given by the 3D ODE system

ẋ = σ(y− x)

ẏ = ρx− y− xz

ż = xy− βz,

(4.49)

where β, ρ and σ are real parameters. The system has the equilibria

q1 = (0, 0, 0) q2,3 = (±
√

β(ρ− 1),±
√

β(ρ− 1), ρ− 1),

where q2,3 exist for β(ρ− 1) ≥ 0. The classical studies conducted on the
system consist in fixing the parameters β = 8

3 and σ = 10 and consider
ρ as a bifurcation parameter. For an extensive overview of analytical and
numerical studies we refer the reader to [52].
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We begin our treatment of the Lorenz system with the discretization-
free approach. We fix the parameter σ at the non-classical value σ = −2.2
and let β = 8

3 . In order to study the connecting dynamics in the vicinity
of the pitchfork bifurcation at ρ = 1 we vary ρ starting from ρ = 1.33 and
investigate connecting orbits from the origin to the secondary equilibrium
q2. Our focus of attention is twofold. First we investigate the validation
procedure for ρ = 1.33 more closely. In particular we elaborate on the
usage of the conjugacy equation (2.9) for the integration of the flow on the
stable manifold of q2. Second we implement a simple continuation scheme
to show the success of our procedure for several values of ρ in the interval
[1.33, 3.2].
We continue our study with an application of our methods to the rigorous
solution of initial value problems at the classical parameter values β = 8

3 ,
σ = 10 and ρ = 28. This is motivated by the fact that we can concentrate on
the role of the discretization method. We use this opportunity to compare
the spline and the spectral approach. See in particular 4.2.2. We finish by
presenting an application of the spline based boundary value approach to
compute connecting orbits at the parameter values β = 8

3 and σ = −2.2
for several values of ρ.

4.2.1 Discretization-free approach

In this section we describe the proof of the following Theorem.

Theorem 4.2.1 Let the parameters β = 8
3 and σ = −2.2 in the Lorenz system

(4.49) be fixed. Define the parameter set for ρ by

U = {ρ : ρ = 1.33 + k0.01 with k = 0, . . . , 186}.

Then for every ρ ∈ U there exists a tranverse connecting orbit from the origin to
the secondary equilibrium q2.

We first like to give some more details about the computation of the
parametrization maps P and Q for the case of the Lorenz equations.

Details on the computation of the parametrization We focus our at-
tention on the parametrization P of the stable manifold of the secondary
equilibrium q2 for ρ fixed at 1.33.
Assume the parameter values β = 8

3 , σ = −2.2 and ρ = 1.33 to be cho-
sen. Denote by λs

1,2 the stable eigenvalues of Dg(q2) with corresponding
eigenvectors ξs

1,2, where g is the Lorenz vector field. Note that we have
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λs
1,2 = −1.5198± 0.3893i ∈ C with λs

1 = λs
2 and ξs

1 = ξs
2 ∈ C3. Hence

ms = 0 and ls = 1. This directly implies that λs
1,2 are non-resonant. More

precisely assume that for a general λ ∈ C \R and for k1,2 ∈N

k1λ̄ + k2λ = λ⇔ k1λ̄ = (1− k2)λ.

Comparing real and imaginary parts directly yields

k1 = 1− k2

k1 = −(1− k2),

which entails k1 = 0 and k2 = 1, which is of course a tautology. A similar
reasoning applies to k1λ̄ + k2λ = λ̄. Together it follows that in particular
λs

1,2 are non-resonant. Hence we can use (2.15) in order to compute the
coefficients (ak)|k|≥0, ak = ((ak)1, (ak)2, (ak)3) ∈ C3, k = (k1, k2) ∈ N2

necessary to define P : R2 ⊃ Vνs → R3 by

P(φ) = P(φ1, φ2) = f (φ1 + iφ2, φ1 − iφ2) =

=
∞

∑
k1+k2=0

ki≥0

a(k1,k2)(φ1 + iφ2)k1(φ1 − iφ2)k2 .

The constant and linear constraints yield a0,0 = q2, a(1,0) = ξs
1 and a(0,1) =

ξs
2. Next we give a concrete expression for the coefficients ck involved in

(2.15). In order to do so the following remark is helpful.

Remark 4.2.1 (Cauchy-Product in two variables) Omitting details of conver-
gence questions for the moment, we need to be able to compute Cauchy-products
of the form

∞

∑
k1=0

∞

∑
k2=0

a(k1,k2)z
k1
1 zk2

2

∞

∑
k1=0

∞

∑
k2=0

b(k1,k2)z
k1
1 zk2

2 =

=
∞

∑
k1=0

∞

∑
k2=0

a(k1,k2)z
k2
2︸ ︷︷ ︸

def=αk1

zk1
1

∞

∑
k1=0

∞

∑
k2=0

b(k1,k2)z
k2
2︸ ︷︷ ︸

def= βk1

zk1
1 =

=
∞

∑
k1=0

(
k1

∑
n1=0

αn1 βk1−n1

)
zk1

1 .

Computing the Cauchy-Product αn1 βk1−n1 we get

αn1 βk1−n1 =
∞

∑
k2=0

a(n1,k2)z
k2
2

∞

∑
k2=0

b(k1−n1,k2)z
k2
2 =

=
∞

∑
k2=0

(
k2

∑
n2=0

a(n1,n2)b(k1−n1,k2−n2)

)
zk2

2 .
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In summary we get
∞

∑
k1=0

∞

∑
k2=0

a(k1,k2)z
k1
1 zk2

2

∞

∑
k1=0

∞

∑
k2=0

b(k1,k2)z
k1
1 zk2

2 =

=
∞

∑
k1=0

∞

∑
k2=0

(
k1

∑
n1=0

k2

∑
n2=0

a(n1,n2)b(k1−n1,k2−n2)

)
zk1

1 zk2
2 .

(4.50)

Note that the change from summation over k1 + k2 = k, k1,2 ≥ 0 to the double
sum over k1,2 corresponds to a change of summation order that we assume to be
possible by absolute convergence of the series involved.

Recalling the Lorenz vector field g : R3 → R3 stipulated in (4.49) and
using (4.50) the left hand side of the functional equation (2.11) for f reads
explicitly as

∞

∑
k1+k2=0

ki≥0


σ

(
(a(k1,k2))2 − (a(k1,k2))1

)
ρ(a(k1,k2))1 − (a(k1,k2))2

−β(a(k1,k2))3

+

 0
−∑k1

n1=0 ∑k2
n2=0(a(n1,n2))1(a(k1−n1,k2−n2))3

∑k1
n1=0 ∑k2

n2=0(a(n1,n2))1(a(k1−n1,k2−n2))2


 zk1

1 zk2
2 .

(4.51)

Concerning the right hand side we get(
∞

∑
k1=1

∞

∑
k2=0

a(k1,k2)k1zk1−1
1 zk2

2

)
λs

1z1 +

(
∞

∑
k1=0

∞

∑
k2=1

a(k1,k2)k2zk1
1 zk2−1

2

)
λs

2z2 =

= a(1,0)λ
s
1zk1

1 + a(0,1)λ
s
2zk2

2 +
∞

∑
k1=1

∞

∑
k2=1

a(k1,k2) (k1λs
1 + k2λs

2) zk1
1 zk2

2 .

(4.52)
Matching like powers we rediscover the linear constraints for (k1, k2) =
(0, 0) and (k1, k2) ∈ {(1, 0), (0, 1)}. In preparation for matching like pow-
ers for k1 + k2 ≥ 2 we realize 0

−∑k1
n1=0 ∑k2

n2=0(a(n1,n2))1(a(k1−n1,k2−n2))3

∑k1
n1=0 ∑k2

n2=0(a(n1,n2))1(a(k1−n1,k2−n2))2



=

 0

−∑
k′1
n1=0 ∑

k′2
n2=0(a(n1,n2))1(a(k1−n1,k2−n2))3

∑
k′1
n1=0 ∑

k′2
n2=0(a(n1,n2))1(a(k1−n1,k2−n2))2

+

 0 0 0
−(a(0,0))3 0 −(a(0,0))1

(a(0,0))2 (a(0,0))1 0

 a(k1k2),
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Figure 4.4: Local Stable (red) and local unstable (blue) manifolds for Lorenz
when σ = −2.2, β = 8/3 and ρ = 1.33. Black spheres denote the location of the
fixed points.

where we define the notation ∑
k′1
n1=0 ∑

k′2
n2=0 to denote that

(n1, n2) /∈ {(0, 0), (k1, k2)}.

Finally we match like powers for k1 + k2 ≥ 2 by comparing (4.52) to (4.51)
and get the homological equation−σ− (k1λs

1 + k2λs
2) σ 0

ρ− (a(0,0))3 −1− (k1λs
1 + k2λs

2) −(a(0,0))1

(a(0,0))2 (a(0,0))1 −β− (k1λs
1 + k2λs

2)

 a(k1k2) = c(k1,k2)

(4.53)
with

c(k1,k2) =

 0

∑
k′1
n1=0 ∑

k′2
n2=0(a(n1,n2))1(a(k1−n1,k2−n2))3

−∑
k′1
n1=0 ∑

k′2
n2=0(a(n1,n2))1(a(k1−n1,k2−n2))2

 .

We identify the structure

(Dg(q1)− (λs
1k1 + λs

2k2)13,3) a(k1,k2) = c(k1,k2),

as stated in Lemma 2.1.1.

Validation of connection at β = 8
3 , σ = −2.2 and ρ = 1.33 Next we dis-

cuss the validation process more closely. We start by choosing parametriza-
tion orders M = 45 at q1 and N = 35 at q2. Note that the choice of a
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higher parametrization order for the unstable manifold of the origin is
motivated by the fact that the unstable eigenvalues at the origin are given
by λu

1,2 = 0.6000± 0.6049i and thus the spectral gap µ from Theorem 2.1.1
is smaller than for λs

1,2 given above, necessitating a higher order to get the
same accuracy. Furthermore we set the domain sizes to νu = 0.725 and
νs = 0.575. As mu = ms = 0 (i.e. we have complex conjugate eigenvalues
at both q1 and q2) the norm in parameter space Vνu,s ⊂ R2 is the euclid-
ian norm. Figure 4.4 shows the image of Vνs under the truncated stable
parametrization PN and of Vνu under the truncated unstable parametriza-
tion QM suggesting the existence of a transversal intersection. For these
domains and parametrization orders we obtain the following numerical
defects in the functional equation (2.11):

‖g ◦ fN − D fNΛs‖Σ,νs ≤ 6.29× 10−14

and
‖g ◦ hM − DhMΛu‖Σ,νu ≤ 1.09× 10−13,

where Λu,s ∈ C2,2 are diagonal matrices with the (un)stable eigenvalues
on the diagonal. Using Theorem 2.1.1 we get a-posteriori error bounds
δu = 3.3× 10−14 and δs = 3.5× 10−14.

To proof the existence of a connection we go on to set a phase condition
in unstable parameter space. We pick a circle of radius ν = 0.70796507495989,
i.e. we set

Θ(α) = ν

(
cos(α)
sin(α)

)
.

This completes the concrete formulation of F given by (3.16). Using a
classical Newton iteration we obtain an approximate solution

ᾱ = −1.08544433208255 (radians)

and
φ̄ = (−0.018554373780656, 0.548268655433034)

with
‖F(ᾱ, φ̄)‖∞ < 2.25× 10−14.

By applying the validation Theorem 3.1.2 we obtain rigorous error
bounds on (ᾱ, φ̄) and get the radius r̄ = 2.72 × 10−12 such that we can
guarantee a unique solution with ‖Θ(α̃)−Θ(ᾱ)‖2 < r̄ and ‖φ̃− φ̄‖2 < r̄.
The corresponding computations are carried out by Disfreerho133.m to be
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Figure 4.5: Validated transversal connecting orbit for Lorenz when σ = −2.2,
β = 8/3 and ρ = 1.33. The image of the phase condition Θ is shown as a green
circular arc on the local stable manifold. The solution of the discretization-free
operator F is shown as a black dot on the intersection of the manifolds and the
green phase arc. The pink arc is the image under the parameterizations of the
flow in parameter space.

found at [28]. In addition we can compute a representation of the con-
necting orbit by flowing Θ(ᾱ) in Vνu and φ̄ in Vνs under the linear flows
of Ju,s (induced by Λu,s) and lifting to phase space via (2.9). The result is
shown in Figure 4.5. We now go on to scrutinize this process more closely
and in particular compare this integration of the nonlinear flow via the
conjugated linear flow to integration of the flow in phase space.

Nonlinear flow integration in phase space vs linear integration in pa-
rameter space Suppose we would approximate the (un)stable manifold
of q1,2 by a linear approximation as done in the classical approach of pro-
jected boundary conditions used in [1, 19]. We ask the following questions:

1. Which domain sizes νlin
u,s do we have to choose in order to get the

same a-posteriori accuracy, that is δu,s ∼= 3× 10−14?

2. How long do we need to integrate the linear flow in parameter
spaces Vνu,s in order to flow the approximations ᾱ and φ̄ from above
to get to these smaller neighborhoods Vνlin

u,s
?

3. How does standard numerical integration behave in comparison?
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Figure 4.6: Dependence of δu,s on νlin
u,s , where δu is shown in blue and δs is

depicted in red.

Concerning the first question we resort to a heuristic study. Figure 4.6
shows the dependence of the a-posteriori errors δu,s on νlin

u,s . That is we
keep the parametrization order N = M = 1 fixed, i.e. conduct only linear
approximation of the manifolds, and vary νlin

u,s . We find that we can choose
νlin

u = νlin
s = 3× 10−8.

Let us now turn to the second question. Recalling 2.7 we use that the
linear flow in stable parameter space is induced by the matrix

exp(Js) = exp(Re(λs
1))

(
cos(γs) − sin(γs)
sin(γs) cos(γs)

)

where exp(iIm(λs
1)) = (cos(γs) + i sin(γs)). A similar formular holds

for exp(Ju). As a consequence exp(Ju,s) have the structure exp(Ju,s) =
exp(Re(λu,s

1 ))Du,s where Du,s is an eucledian isometry. In particular we
get that

‖ exp(Jut)ϕ‖2 = e0.6t‖ϕ‖2, and ‖ exp(Jst)φ‖2 ≈ e−1.52t‖φ‖2.

Thus the unstable and stable parameters ϕ̄ = Θ(ᾱ) and φ̄ can be flown in

−28.3 ≈ 1
0.6

log
(

3× 10−8

0.71

)
and 11.0 ≈ −1

1.52
log
(

3× 10−8

0.55

)
,
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Figure 4.7: Flow in parameter space. On the left hand side the unstable param-
eter space is shown. The blue circle corresponds to Vνu together with the green
circle illustrating the phase condition. The cyan star is Θ(ᾱ) and the blue curve
depicts its orbit under the linear flow induced by Ju. On the right hand side we
see the corresponding picture with Vνs and φ̄.

time units into the neighborhoods Vνlin
u,s

. Figure 4.7 depicts the phase por-
trait of these linear integrations. Lifting these orbits via the conjugacy
yields Figure 4.5.

In order to answer the third question we compare with standard nu-
merical integration in phase space by flowing

qu = QM(exp(−28.3Ju)Θ(ᾱ)) ∈ R3

forward in time and check the convergence behavior by monitoring

d(t) = ‖Φ(qu, t)− q1‖2. (4.54)

On Figure 4.8 we see that in the beginning we can observe convergence
towards q1, but after 32 time units in the vicinity of the equilibrium nu-
merical errors cause the orbit to switch to its local unstable manifold. This
effect is circumvented completely during the integration using the conju-
gacy relation, where can integrate over 28.3 + 11 = 39.3 time units without
any instability effects.

Proof of Theorem 4.2.1 To proof Theorem 4.2.1 we implement a simple
continuation scheme. The continuation begins with ρ = 1.33, νu = 0.725,
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Figure 4.8: The time evolution of d(t) ((4.54)) is depicted, where the integration
is conducted by a standard Matlab ’ode45’ integrator with AbsTol = 10−16. We
see convergence towards q2 before at time t ≈ 32 the minimum distance of 1.8×
10−2 is reached. The numerical error causes then divergence along the unstable
manifold of q1. Note that the unstable eigenvalue of q1 is λu ≈ 1.57.

νs = 0.575, and a phase circle fixed at ν = 0.70796507495989. Each step
of the continuation increases the previous value of ρ by 0.01, the previous
value of νu by 0.0079, the previous value of νs by 0.0108, and the previ-
ous value of ν by 0.0079. In each computation the value of N and M are
held at 30. For each value of the parameters the origin q1 has two di-
mensional unstable manifold and the secondary equilibrium q2 has two
dimensional stable manifold, both with complex conjugate eigenvalues.
The transversality follows by Theorem 3.3.1. The proof is completed by
running Disfreecontinuation.m to be found at [28]. Some of the the results
are summarized in Table 4.4, and seven of the resulting orbits are illus-
trated in Figure 4.9. It takes about three and a half hours for all 187 proofs
to complete by running .
The proofs reported in Table 4.4 can be produced by running the program
DisfreecontinuationII.m [28] without computing all 187 parameter values.
This program runs in a much shorter time.
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ρ δu δs r̄ Proof Time
1.35 2.26× 10−13 2.78× 10−14 1.36× 10−11 86.5 (sec)
1.45 3.03× 10−13 4.00× 10−14 2.86× 10−12 87.1 (sec)
1.55 4.83× 10−13 3.70× 10−14 3.00× 10−12 87.2 (sec)
1.65 8.49× 10−13 3.89× 10−14 4.87× 10−12 87.0 (sec)
1.75 1.54× 10−12 5.55× 10−14 8.65× 10−12 87.1 (sec)
1.85 2.88× 10−12 6.33× 10−14 1.60× 10−11 87.0 (sec)
1.95 5.47× 10−12 7.70× 10−14 3.05× 10−11 87.0 (sec)
2.05 1.05× 10−11 8.53× 10−14 5.84× 10−11 87.1 (sec)
2.15 2.03× 10−11 1.13× 10−13 1.15× 10−10 87.3 (sec)
2.25 3.98× 10−11 1.23× 10−13 2.28× 10−10 89.5 (sec)
2.35 7.95× 10−11 1.54× 10−13 4.62× 10−10 95.5 (sec)
2.45 1.59× 10−10 1.72× 10−13 9.39× 10−10 102.6 (sec)
2.55 3.16× 10−10 2.15× 10−13 1.91× 10−9 104.5 (sec)
2.65 6.20× 10−10 2.37× 10−13 3.84× 10−9 96.8 (sec)
2.75 1.20× 10−9 2.78× 10−13 7.58× 10−9 91.1 (sec)
2.85 2.27× 10−9 3.34× 10−13 1.50× 10−8 91.2 (sec)

Table 4.4: Proof of short-connections for sixteen different values of ρ.
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Figure 4.9: Seven validated transversal connecting orbits for Lorenz with σ = −2.2,
β = 8/3 and ρ taking the values 1.35, 1.55, 1.75, 2.05, 2.25, 2.55, and 2.75.

4.2.2 Rigorous solutions of IVPs

Next we consider rigorous solutions of IVPs using both the spline and the
chebyshev approach. This will enable us to compare the two discretization
methods explicitly. We start by presenting the Chebyshev approach and
go on to compare the Spline approach.

Chebyshev approach

Recall that the operator f is given by (3.52) and using Lemma 2.2.2 we get
that the chebyshev coefficients ck of g ◦ u are explicitly defined by

ck = L

 σ((a2)k − (a1)k)
ρ(a1)k − (a2)k − (a1a3)k

(a1a2)k − β(a3)k

 (4.55)

with
(anam)k = ∑

k1+k2=k
ki∈Z

(an)|k1|(am)|k2|

for n = 1, m = 1, 2 and k ≥ 0. Finally assuming an initial value p1

to be given this yields an explicit expression for the IVP operator f . We
emphasize again that in this case there are no invariant manifolds involved
and the operator f has no dependence on parametrizations. Let us go on
to present some rigorous numerical results for different initial values p1.
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Theorem 4.2.2 Consider

p1
1 = (8.102574164767477, 9.551574461919124, 24.429705657930224)

p2
1 = (−0.208252089096454,−0.454566900892446, 0)

p3
1 = (4.102702069909453, 8.936495309135337, 0.5789130478426856).

Let s = 2. For p0 ∈ {p1
1, p2

1, p3
1} consider the IVP-operator f given by (3.52)

with ck as in (4.55). For each L in Table 4.5 there exists a unique solution x̃ ∈ Xs

of f (x) = 0 in a ball Bx̄(r̄p1,2,3
1

) ⊂ Xs of radius r̄p1,2,3
1

centered at an approximate
solution x̄.

L 0.5 1 1.5 2 2.5 3
mp1

1
50 100 200 250 300 500

mp2
1

300 300 300 350 500 failed

mp3
1

150 200 300 400 500 600

r̄p1
1

2.61× 10−9 1.27× 10−8 2.85× 10−8 8.77× 10−8 4.53× 10−7 1.03× 10−6

r̄p2
1

1.92× 10−7 6.81× 10−7 1.49× 10−6 2.60× 10−6 4.81× 10−6 –

r̄p3
1

1.07× 10−7 1.31× 10−7 6.29× 10−7 1.09× 10−6 1.40× 10−6 5.17× 10−6

Table 4.5: Given p1,2,3
1 and for a fixed L, these are corresponding values of the

Galerkin projection dimension mp1,2,3
1

and the radius r̄p1,2,3
1

around the approxi-

mate solution x̄ in Xs for which the radii polynomials approach was successful.

Before we discuss the proof via an application of Theorem 3.2.2 we
comment on the choice of the initial conditions. p1

1 is chosen to lie approx-
imately on the unstable manifold of the positive eye equilibrium

(
√

β(ρ− 1),
√

β(ρ− 1), ρ− 1),

p2
1 lies approximately on the unstable manifold of the origin whereas

p3
1 is taken randomly according to a uniform distribution in [−10, 10] ×

[−10, 10] × [−10, 10]. As one can see in Table 4.5, the data of the veri-
fication method depends strongly on the choice of the initial condition.
We assume that this stems from the presence of poles of the complex ex-
tension of the solutions u : [−1, 1] → R3 of (4.49) whose position in the
complex plane changes depending on the initial condition and the scaling
factor L. By Theorem 2.2.2 this influences the decay rate of the Chebyshev
coefficients. This is illustrated in Figure 4.10. We refer to Figure 4.11 for a
representation in phase space of two solutions of Theorem 4.2.2.

The proof of Theorem 4.2.2 can be found in the MATLAB programs
proofLorenz1.m, proofLorenz2.m and proofLorenz3.m at [28]. It relies on The-
orem 3.2.2 and uses the package Intlab [48] for the interval computations
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and the package Chebfun [55]. In order to apply Theorem 3.2.2 the con-
struction of the radii polynomials as defined in (3.62) and (3.63) is cru-
cial. After the following remark we aim to give some details about the
derivation of the bounds defined in (3.59), (3.60) and (3.61) involved in the
construction of the polynomials.
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Figure 4.10: Comparison of the componentwise solution profiles of a solution
u : [−1, 1] → R3 of the Lorenz equations for the initial condition p1

1 (blue), p2
1

(red) and p3
1 (green) for L = 1 and of the decay rates of their Chebyshev coefficient

sequences.
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Figure 4.11: Profile in phase space of the solution (u1, u2, u3) of the Lorenz
equations starting at (a) the initial condition p1

1; (b) the initial condition p3
1.

Remark 4.2.2 Consider an approximate solution x̄ and a corresponding unique
genuine solution x̃ ∈ Bx̄(r) ⊂ Xs of f (x) = 0 for a decay rate s > 1 and a
radius r > 0. Via the expansion (3.43) the sequences of Chebyshev coefficients x̄
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and x̃ correspond to functions ū and ũ respectively, where ũ solves (4.49) with
respective initial condition p1. Given s > 1, the inequality ‖x̄− x̃‖s ≤ r can be
used to get that

‖ū− ũ‖∞
def= sup

t∈[−1,1]
‖ū(t)− ũ(t)‖∞

≤ ‖ā0 − ã0‖∞ + 2 sup
t∈[−1,1]

∞

∑
k=1
‖āk − ãk‖∞ |Tk(t)|︸ ︷︷ ︸

≤1

≤
(

1 + 2
∞

∑
k=1

1
ωs

k

)
r ≤

(
3 +

2
s− 1

)
r.

We now turn to the computations of the bounds involved in the construc-
tion of the radii polynomials.

Derivation of the Y and Z bounds Recalling (3.52) we do not have ad-
ditional boundary conditions and thus are in the case p = 0 and k0 = 0.
As we consider a 3D ODE we set d = 3. Let us now derive the quantities
Y0, . . . , YM−1, Z0(r), . . . , ZM−1(r) ∈ R3 and ZM(r) ∈ R3.

Assume a dimension m for the Galerkin projection explained in (3.55)
to be given. We start by explicitly stating the Galerkin projection

f (m) : R3m → R3m.

Let xF = (a0, . . . , am−1) = aF ∈ R3m then f (m)(xF) is given component-wise
by

f (m)
0 (xF) = p1 − a0 + c(m)

0 +
c(m)

1
2
− 2

m−1

∑
j=2

1
j2 − 1

c(m)
j

f (m)
k (xF) = 2kak + c(m)

k+1 − c(m)
k−1 k = 1, . . . , m− 2

f (m)
m−1(xF) = 2(m− 1)am−1 +

 0
−L(a1a3)

(m)
m

L(a1a2)
(m)
m

− c(m)
m−2

where we define

c(m)
k = L


σ((a2)k − (a1)k)

ρ(a1)k − (a2)k

−β(a3)k

+

 0
−(a1a3)

(m)
k

(a1a2)
(m)
k



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with the finite convolution sums

(a1a2)
(m)
k = ∑

k1+k2=k
|ki |<m

(a1)|k1|(a2)|k2|

(a1a3)
(m)
k = ∑

k1+k2=k
|ki |<m

(a1)|k1|(a3)|k2|.

Note that as |ki| ≤ m− 1 for i = 1, 2

(a1a2)
(m)
k = 0 whenever k > 2(m− 1). (4.56)

Assume that a numerical approximation x̄F with f (m)(x̄F) ≈ 0 is given
and define x̄ = (x̄F, 0∞). In a similar fashion as in (4.12) we notice that by
(4.56), setting M = 2m− 1 suffices to fulfill assumption A.1 from Section
3.2.2.

Setting M̄ = M− 1 our next goal is to compute bounds Y0, . . . , YM̄ such
that

|(Tx̄− x̄)k| � Yk

for k = 0, . . . , M̄. We therefore define

x̄M̄ = (ā0, . . . , ām−1, 03, . . . 03︸ ︷︷ ︸
m−2 times

)

and compute y = f (M̄)(x̄M̄). Then we set Yk as

Yk =

(|Am||yF|)k k = 0, . . . m− 1
|yk |
2k k = m, . . . , M̄.

(4.57)

Recalling (3.69) our next step is to compute polynomials zk(r) = zk
1r +

zk
2r2 such that

D fk(x̄ + rw)rv− (A†rv)k = zk(r)

for k ≥ 0. The componentwise estimation of |zk(r)| as a major step to ob-
tain Zk(r) is postponed to a separate consideration. We note that we have
to distinguish the cases k = 0, 1 ≤ k ≤ m− 2, m ≤ k.

Starting with k = 0 we compute for arbitrary x = a ∈ Xs, y = b ∈ Xs

and zF = dF ∈ R3m

D f0(x)y− D f (m)
0 (zF)yF =

d
dt

f0(x + ty)|t=0 −
d
dt

f (m)
0 (zF + tyF)|t=0
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Keep in mind that we will later want to apply these calculations with
x = x̄ + ξ1, zF = x̄F and y = ξ2 with ξi ∈ Br(0) ⊂ Xs. In this context it is
essential that we compute first

Dck(a)b =
d
dt

ck(a + tb)|t=0 and Dc(m)
k (dF)bF =

d
dt

c(m)
k (dF + tbF)|t=0

for every k ≥ 0. In order to achieve this we have to consider

d
dt

((a1 + tb1)(a3 + tb3))k|t=0 =

= ∑
k1+k2=k
ki∈Z

d
dt

(a1 + tb1)|k1|(a3 + tb3)|k2||t=0 =

= ∑
k1+k2=k
ki∈Z

d
dt
[
(a1)|k1|(a3)|k2| + t((a1)|k1|(b3)|k2| + (a3)|k1|(b1)|k2|)+

t2(b1)|k1|(b3)|k2|
]
|t=0 =

= ∑
k1+k2=k
ki∈Z

(a1)|k1|(b3)|k2| + (a3)|k1|(b1)|k2| = (a3b1)k + (a1b3)k

and in an analogue way

d
dt

((a1 + tb1)(a2 + tb2))k|t=0 = (a1b2)k + (a2b1)k.

This entails in particular

d
dt

((a1 + tb1)(a3 + tb3))
(m)
k |t=0 = (a3b1)

(m)
k + (a1b3)

(m)
k

d
dt

((a1 + tb1)(a2 + tb2))
(m)
k |t=0 = (a1b2)

(m)
k + (a2b1)

(m)
k .

Hence we obtain

Dck(a)b = L


(σ((b2)k − (b1)k)

ρ(b1)k − (b2)k

−β(b3)k

+

 0
−((a3b1)k + (a1b3)k)

(a1b2)k + (a2b1)k




and for k = 0, . . . m− 1

Dc(m)
k (dF)bF = L


(σ((b2)k − (b1)k)

ρ(b1)k − (b2)k

−β(b3)k

+

 0
−((d3b1)

(m)
k + (d1b3)

(m)
k )

(d1b2)
(m)
k + (d2b1)

(m)
k


 .
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We now go on to consider

D f0(x)y− D f (m)
0 (dF)yF =

[
(Dc0(a)b− Dc(m)

0 (dF)bF)−

1
2
(Dc1(a)b− Dc(m)

1 (dF)bF)− 2
m−1

∑
j=2

1
j2 − 1

(Dcj(a)b− Dc(m)
j (dF)bF)

−2
∞

∑
j=m

1
j2 − 1

Dcj(a)b

]
.

(4.58)

Let us next set x = x̄ + ξ1, dF = x̄F and y = ξ2 where ξ1 = rw and ξ2 = rv.
We hence obtain for k ≥ 0

Dck(x̄ + rw)rv = βk
1r + βk

2r2

with

βk
1 = L


σ(v2)k − (v1)k)

ρ(v1)k − (v2)k

−β(v3)k

+

 0
−(ā3v1)k − (ā1v3)k

(ā1v2)k + (ā2v2)k




βk
2 = L

 0
−(w3v1)k − (w1v3)k

(w1v2)k + (w2v1)k

 .

(4.59)

In addition we have

Dck(ā + rw)rv− Dcm
k (āF)rvF = κk

1r + κk
2r2

with

κk
1 = L

 0
−(ā3vI

1)k − (ā1vI
3)k

(ā1vI
2)k + (ā2vI

2)k

 k = 0, . . . , m− 1, (4.60)

where

(vI
1,2,3)k =

0 0 ≤ k ≤ m− 1

(v1,2,3)k k ≥ m

and κk
2 = βk

2 for k = 1, . . . , m− 1.

We hereby obtain

D f0(x̄ + rw)rv− D f (m)
0 (x̄F)rvF =

=
2

∑
l=1

κ0
l rl +

1
2

2

∑
l=1

κ1
l rl +

m−1

∑
j=2

1
j2 − 1

(
2

∑
l=1

κ
j
lr

l

)
+

∞

∑
j=m

1
j2 − 1

(
2

∑
l=1

β
j
lr

l

)

=
2

∑
l=1

z0
l rl
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with

z0
l =

[
κ0

l −
1
2

κ1
l − 2

m−1

∑
j=2

1
j2 − 1

κ
j
l − 2

∞

∑
j=m

1
j2 − 1

β
j
l

]
l = 1, 2

=


[
κ0

l − 1
2 κ1

l − 2 ∑m−1
j=2

1
j2−1 κ

j
l − 2 ∑∞

j=m
1

j2−1 β
j
l

]
l = 1[

β0
l − 1

2 β1
l − 2 ∑∞

j=2
1

j2−1 β
j
l

]
l = 2

.

(4.61)

We now go ahead to consider the cases 1 ≤ k ≤ m− 1. We obtain

D fk(x̄ + rw)rv− (A†rv)k = D fk(x̄ + rw)rv− D f (m)
k (x̄F)rvF =

=
(

Dck+1(ā + rw)rv− Dc(m)
k+1(āF)rvF)

−(Dck−1(ā + rw)rv− Dc(m)
k−1(āF)rvF

)
=

2

∑
l=1

(κk+1
l − κk−1

l )rl =
2

∑
l=1

zk
l rl ,

where we define for l = 1, 2

zk
l = (κk+1

l − κk−1
l )

=

(κk+1
l − κk−1

l ) l = 1

(βk+1
l − βk−1

l ) l = 2

(4.62)

with κk
l and βk

l given as in (4.60) and (4.59).

Finally for k ≥ m we have that

D fk(x̄ + rw)rv− (A†rv)k = D fk(x̄ + rw)rv− 2krvk =

= L [Dck+1(ā + rw)rv− Dck−1(ā + rw)rv]

=
2

∑
l=1

(βk+1
l − βk−1

l )rl = zk
1r + zk

2r2,

where we define for l = 1, 2

zk
l = βk+1

l − βk−1
l (4.63)

with βk
l given as in (4.59) . Summarizing (4.61) and (4.63) we now have

D fk(x̄ + rw)rv− (A†rv)k = zk
1r + zk

2r2

for all k ≥ 0. An overview can be found in Table 4.6.
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k = 0

z0
1

L


 0
−(ā3vI

1)0 − (ā1vI
3)0

(ā1vI
2)0 + (ā2vI

2)0

− 1
2

 0
−(ā3vI

1)1 − (ā1vI
3)1

(ā1vI
2)1 + (ā2vI

2)1

− 2
m−1

∑
j=2

1
j2 − 1

 0
−(ā3vI

1)j − (ā1vI
3)j

(ā1vI
2)j + (ā2vI

2)j


−2

M−1

∑
j=m

1
j2 − 1


σ((v2)j − (v1)j)

ρ(v1)j − (v2)j
−β(v3)j

+

 0
−(ā3v1)j − (ā1v3)j
(ā1v2)j + (ā2v2)j


− 2

∞

∑
j=M

1
j2 − 1


σ((v2)j − (v1)j)

ρ(v1)j − (v2)j
−β(v3)j

+

 0
−(ā3v1)j − (ā1v3)j
(ā1v2)j + (ā2v2)j





z0
2 L


 0
−(w3v1)0 − (w1v3)0
(w1v2)0 + (w2v1)0

− 1
2

 0
−(w3v1)0 − (w1v3)0
(w1v2)0 + (w2v1)0

− 2
∞

∑
j=2

1
j2 − 1

 0
−(w3v1)j − (w1v3)j
(w1v2)j + (w2v1)j




k = 1, . . . , m− 1

zk
1 L

 0
−(ā3vI

1)k+1 − (ā1vI
3)k+1

(ā1vI
2)k+1 + (ā2vI

2)k+1

−
 0
−(ā3vI

1)k−1 − (ā1vI
3)k−1

(ā1vI
2)k−1 + (ā2vI

2)k−1


zk

2 L

 0
−(w3v1)k+1 − (w1v3)k+1
(w1v2)k+1 + (w2v1)k+1

−
 0
−(w3v1)k−1 − (w1v3)k−1
(w1v2)k−1 + (w2v1)k−1


k ≥ m

zk
1 L

σ((v2)k+1 − (v1)k+1)
ρ(v1)k+1 − (v2)k+1
−β(v3)k+1

+

 0
−(ā3v1)k+1 − (ā1v3)k+1
(ā1v2)k+1 + (ā2v2)k+1

−
σ((v2)k−1 − (v1)k−1)

ρ(v1)k−1 − (v2)k−1
−β(v3)k−1

+

 0
−(ā3v1)k−1 − (ā1v3)k−1
(ā1v2)k−1 + (ā2v2)k−1


zk

2 L

 0
−(w3v1)k+1 − (w1v3)k+1
(w1v2)k+1 + (w2v1)k+1

−
 0
−(w3v1)k−1 − (w1v3)k−1
(w1v2)k−1 + (w2v1)k−1



Table 4.6: Formulas for zl
k

Our next goal is to compute polynomials Z̃k(r) = Z̃k
1r + Z̃k

2r2 ∈ R3

such that

|zk(r)| � Z̃k(r)

for k = 0, . . . , M̄ and Z̃M(r) = Z̃M
1 r + Z̃M

2 r2 ∈ R3 such that

|zk
l | �

Z̃M
l

ωs
k

for all k ≥ M. In order to do so we start by computing bounds Bk
l ∈ R3

and Kk
l ∈ R3 such that

|βk
l | � Bk

l k = 0, . . . , M and l = 1, 2

|κk
1| � Kk

1 k = 0, . . . , m

and B̄M
l with

|βk
l | �

B̄M
l

ωs
k

(l = 1, 2)

for all k ≥ M̄. Let us start with Bk
1 for k = 1, . . . , M and Kk

1 for k = 1, . . . , m.
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Consider therefore the finite sums∣∣∣(ā1v(I)
3 )k

∣∣∣ ≤ m−1

∑
k1=−m+1

(|ā1|)|k1|(v(I)
3 )|k−k1|

def= Σk,(I)
1

∣∣∣(ā2v(I)
1 )k

∣∣∣ ≤ m−1

∑
k1=−m+1

(|ā2|)|k1|(v(I)
1 )|k−k1|

def= Σk,(I)
2

∣∣∣(ā3v(I)
1 )k

∣∣∣ ≤ m−1

∑
k1=−m+1

(|ā3|)|k1|(v(I)
1 )|k−k1|

def= Σk,(I)
3 ,

where we recall that (vi)k = 1
ωs

k
for i = 1, 2, 3. Using this notation we can

estimate

|βk
1| ≤ L

 1
ks

 2σ

ρ + 1
β

+

 0
Σk

1 + Σk
3

Σk
1 + Σk

2


 def= Bk

1 k = 0, . . . , M

|κk
1| ≤ L

 0
Σk,I

1 + Σk,I
3

Σk,I
1 + Σk,I

2

 def= Kk
1 k = 0, . . . , m.

In order to obtain BM
1 let us consider for k ≥ M̄∣∣∣∣∣ m−1

∑
k1=−m+1

(ā1)|k1|(v3)|k−k1|

∣∣∣∣∣ ≤ m−1

∑
k1=−m+1

(|ā1|)|k1|
1

(k− k1)s

≤ 1
ωs

k

0

∑
k1=−m+1

(|ā1|)|k1| +
1

ωs
k

m−1

∑
k1=1

(|ā1|)k

(1− k2
(M−1) )

s

=
1

ωs
k

(|ā1|)0 +
m−1

∑
k1=1

(|ā1|)k1

1 +
1

(1− k2
(M−1) )

s


def=

1
ωs

k
ΣM−1

1 ,

where we use that

1

1− k1
k

≤

1 k1 ≤ 0
1

1− k1
(M−1)

k1 ≥ 0 and k ≥ M− 1
.

Similarly we set for i = 2, 3

ΣM−1
i =

(|āi|)0 +
m−1

∑
k1=1

(|āi|)k1

1 +
1

(1− k2
(M−1) )

s

 .
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So we obtain for k ≥ M̄

|βk
1| �

1
ωs

k
L


 2σ

ρ + 1
β

+

 0
ΣM−1

1 + ΣM−1
3

ΣM−1
1 + ΣM−1

2


 def=

1
ωs

k
B̄M

1 .

In order to compute Bk
2 for k = 0, . . . , M and B̄M

2 we employ estimates
whose detailed explanation can be found in [25] and that are summarized
in Lemma 2.2.4. Using the constants α2

k for k = 0, . . . M defined in 2.2.4 we
obtain that ∣∣∣∣∣∣ ∑

k1+k(2)=k

1
ωk1 ωk2

∣∣∣∣∣∣ ≤
α2

k k = 0, . . . , M− 1
α2

M
ωs

k
k ≥ M− 1

.

This enables us to estimate for k = 0, . . . , M

|βk
2| � Lα2

k

0
2
2

 def= Bk
2

and for k ≥ M

|βk
2| �

Lα2
M

ωs
k

0
2
2

 def=
1

ωs
k

B̄M
2 .

We are now ready to estimate:

|z0
l | �


[
K0

1 + 1
2 K1

1 + 2 ∑m−1
j=2

1
j2−1 K j

1 + 2 ∑M̄−1
j=m

1
j2−1 Bj

1+

2 BM
1

((M−1)2−1)(M−2)s−1(s−1)

]
l = 1[

B0
2 + 1

2 B1
2 + 2 ∑M̄−1

j=2
1

j2−1 Bj
2 + 2 BM

2
((M−1)2−1)(M−2)s−1(s−1)

]
l = 2

def=

Z̃0
l l = 1

Z̃0
l l = 2

.

(4.64)
For k = 1, . . . , m− 1 we have that

|zk
l | �

(Kk+1
l + Bk−1

l ) l = 1

(Bk+1
l + Bk−1

l ) l = 2

def=

Z̃k
l l = 1

Z̃k
l l = 2

.

(4.65)
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and for k = m . . . , M̄

|zk
l | � (Bk+1

l − Bk−1
l ) def= Z̃k

l (l = 1, 2). (4.66)

For k ≥ M we apply the following reasoning:

|zk
l | �

1
(k + 1)s B̄M

l +
1

(k− 1)s B̄M
l �

1
ωs

k

(
1 + (1 +

1
M

)s
)

B̄M
l

def=
1

ωs
k

Z̃M
l .

As a result we obtained polynomial expansions Z̃k(r) = Z̃k
1r + Z̃k

2r2 such
that

|D fk(x̄ + ru)rv− A†rv| � Z̃k(r) (4.67)

for all k = 0, . . . , M̄ and Z̃M(r) = Z̃M
1 r + Z̃M

2 r2 such that

|D fk(x̄ + ru)rv− A†rv| � 1
ωs

k
Z̃M(r)

for all k ≥ M. A summary is found in Table 4.7.

k = 0

Z̃0
1

L


 0

Σ0,I
3 + Σ0,I

1
Σ0,I

1 + Σ0,I
2

+
1
2

 0
Σ1,I

3 + Σ1,I
1

Σ1,I
1 + Σ1,I

2

+ 2
m−1

∑
j=2

1
j2 − 1

 0

Σj,I
3 + Σj,I

1
Σj,I

3 + Σj,I
1



+2
M−2

∑
j=m

1
j2 − 1

 1
ωs

j

 2|σ|
|ρ|+ 1
|β|

+

 0

Σj
3 + Σj

1
Σj

2 + Σj
2


+

2
((M− 1)2 − 1)(s− 1)(M− 2)s−1


 2|σ|
|ρ|+ 1
|β|

+

 0
ΣM−1

3 + ΣM−1
1

ΣM−1
1 + ΣM−1

2





Z̃0
2 L

 2α2,M
0

ωs
0

+
α2

1
ωs

1
+ 2

M−1

∑
j=2

2α2
j

(j2 − 1)ωs
j

+
4α2

M−1
((M− 1)2 − 1)(s− 1)(M− 2)s−1

0
1
1


k = 1, . . . , m− 1

Z̃k
1 L


 0

Σk+1,I
3 + Σk+1,I

1
Σk+1,I

1 + Σk+1,I
2

+

 0
Σk−1,I

3 + Σk−1,I
1

Σk−1,I
1 + Σk−1,I

2




Z̃k
2 L

[
α2

k+1
ωs

k+1
+

α2
k−1

ωs
k−1

]0
2
2


k = m, . . . , M− 1

Z̃k
1 L

 1
ωs

k+1

 2|σ|
|ρ|+ 1
|β|

+

 0
Σk+1

3 + Σk+1
1

Σk+1
1 + Σk+1

2


+ L

 1
ωs

k−1

 2|σ|
|ρ|+ 1
|β|

+

 0
Σk−1

3 + Σk−1
1

Σk−1
1 + Σk−1

2




Z̃k
2 L

[
α2

k+1
ωs

k+1
+

α2
k−1

ωs
k−1

]0
2
2


k = M

Z̃M
1 L

(1 + ( M
M−1 )s)

 2|σ|
|ρ|+ 1
|β|

+ (1 + ( M
M−1 )s)

 0
ΣM−1

3 + ΣM−1
1

ΣM−1
1 + ΣM−1

2




Z̃M
2 L

[
(1 + ( M

M−1 )s)α2
M−1

]0
2
2



Table 4.7: Formulas for Z̃l
k
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By definition of A and A† there is a δ such that for all k ≥ 0

|((Id− AA†)rv)k � rδ ∈ R3.

We now define for l = 1, 2 vectors Vl = (Z̃0
l , . . . , Z̃m−1

l ) ∈ R3m to obtain for
k = 0, . . . , m− 1

Zk
1 = (|Am|V1)k + δ

Zk
l = (|Am|Vj)k l = 2

(4.68)

and for k = m, . . . , M̄

Zk
l =

1
2k

Z̃k
l k = m, . . . , M̄ (4.69)

and hereby have that for all k = 0, . . . , M̄

|(DT(x̄ + rw)rv)k| � Zk
1r + Zk

2r2.

As the right hand side is independent of w, v we can take the supremum
over all w, v ∈ B1(0) ⊂ Xs and obtain

sup
w,v∈B1(0)

|(DT(x̄ + rw)rv)k| � Zk
1r + Zk

2r2

for all k = 0, . . . , M̄.

Finally we set

ZM
l =

1
2M

Z̃M
l (4.70)

for l = 1, 2, 3. Then defining ZM(r) = ZM
1 r + ZM

2 r2 we obtain that

sup
w1,w2

|(DT(x̄ + rw)rv)k| �
1

ωs
k

ZM(r)

for all k ≥ M. This finalizes the construction of the bounds necessary to
define the radii polynomials specified in 3.2.2.

Spline approach

We continue with the solution of the above described initial value prob-
lems by using the linear spline approach. We first compare the results
and then give details on the discretization of the corresponding operator F
together with the deduction of the Y and Z bounds used in the validation
procedure.
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Numerical results and performance comparison For a given initial value
p1 the operator to solve the corresponding initial value problem for the
Lorenz equation (4.49) over the integration interval [0, L] is given by

F(u)(t) = p1 + L
∫ t

0
g(u(s))ds− u(t) = 0 ∀t ∈ [0, 1]. (4.71)

We consider the initial value problems from Theorem 4.2.2 and solve them
via validating zeros of (4.71).

Let us start with more detailed discussion of p1
1. Recall that this is the

initial value lying approximately on the unstable manifold of the positive
eye equilibrium (

√
β(ρ− 1),

√
β(ρ− 1), ρ− 1). For an integration time of

L = 0.63 we depict the numerical orbit in Figure 4.12. Before we discuss
rigorous numerical results obtained via our linear spline based algorithm,
we offer the following heuristics concerning the performance we can ex-
pect.
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Figure 4.12: Numerical approximate orbit of p1
1 for L = 0.63. p1

1 is shown in
green and the positive eye equilibrium (

√
β(ρ− 1),

√
β(ρ− 1), ρ− 1) is depicted

in red.

Looking at Figure 4.12 we see a circular shaped motion in phase space
caused by the vicinity of p1

1 to the eye equilibrium that has a complex
conjugate pair of unstable eigenvalues. This motivates the following line
of thought. Let us for the moment assume we try to approximate a pla-
nar circular motion with radius R parametrized over [0, 1] by using linear
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splines, i.e. we wish to approximate

γ(t) = R

(
cos(2πt)
sin(2πt)

)
t ∈ [0, 1].

Looking at this procedure from an elementary perspective, by choosing m
equidistant grid points we approximate the circle by a regular m-gon γh

parametrized over [0, 1]. For this easy case we can give an explicit lower
bound on the C0 distance between γ and γh. In particular we can specify
the dependence of this distance on the number of grid points m explicitly.
By applying the pythagorean theorem on an arc segment of 2π

m we get

max
t∈[0,1]

‖γ(t)− γh(t)‖∞ ≥
1√
2

max
t∈[0,1]

‖γ(t)− γh(t)‖2 =
R√

2

(
1− cos(

π

m
)
)

.

Thus to obtain an accuracy on the order of 10−9 as we did for p1
1 with

integration time 1 using the Chebyshev approach we need roughly 50000
grid points. Compare this to 50 modes in the Chebyshev case. Figure 4.13
depicts the evolution of the lower error bound with increasing number of
grid points.
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Figure 4.13: Behavior of the lower error bound R√
2

(
1− cos( π

m )
)

in dependence
of the number of grid points m.

In Table 4.8 we give some concrete numerical results. We stop at in-
tegration time L = 0.3 as more than 1200 grid points become computa-
tionally challenging. In Figure 4.14 we depict the approximate orbit for
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L 0.1 0.15 0.2 0.25 0.3
mp1

1
600 700 1000 1100 1200

r̄p1
1

2.25× 10−4 6.83× 10−4 5.19× 10−4 9.87× 10−4 1.95× 10−3

Table 4.8: Given p1
1 and for a fixed L, these are the corresponding number of

equidistant grid points mp1
1

and the radius r̄p1
1

around the approximate solution

ū in C0(R, R3) for which the spline based radii polynomials approach was suc-
cessful.
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Figure 4.14: Approximate orbit of p1
1 for integration time L = 0.3.

L = 0.3. The computations are carried out by splineIVP1.m at [28].

Let us go on with considering p2
1 and p3

1. We recall that p2
1 lies on the

linear approximation to the unstable manifold of the origin and p3
1 was

chosen at random in the box [−10, 10] × [−10, 10] × [−10, 10]. Table 4.9
shows the rigorous numerical results and Figure 4.15 shows the approxi-
mate orbits for an integration time L = 0.2. The computations are carried
out by splineIVPj.m with j = 2, 3 at [28]. In total we see the following
points:

• The Chebyshev approach yields higher accuracy for the same inte-
gration time.

• We are able to verify solutions over longer integration time intervals
by using the Chebyshev approach.

• If we compare the number of grid points in the Spline approach to
the dimension of the Galerkin projection in the Chebyshev case, the
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L 0.1 0.15 0.2
mp2

1
600 700 1000

mp3
1

600 700 1200

r̄p2
1

9.68× 10−5 3.24× 10−4 5.05× 10−4

r̄p3
1

2.23× 10−3 3.27× 10−2 1.68× 10−2

Table 4.9: Given p2,3
1 and for a fixed L, these are the corresponding number of

equidistant grid points mp2,3
1

and the radius r̄p2,3
1

around the approximate solu-

tion ū in C0(R, R3) for which the spline based radii polynomials approach was
successful.
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Figure 4.15: Approximate orbit of p2
1 for integration time L = 0.2 on the left

hand side and of p3
1 and the same integration time on the right hand side.

Galerkin dimension is smaller.

Derivation of the Y and Z bounds In order to derive the Y-bounds from
(3.38) and (3.39) and the Z-bounds specified in (3.41) and (3.42) necessary
to construct the radii polynomials from Definition 3.2.1 we first need to
give formulas for Fm and F∞ from (3.33). We give a dimension indepen-
dent derivation, i.e. we assume the dimension to be given by a general
d ≥ 1.

Recalling (4.71) and x = u we obtain

Fm(x) = (Πm)d
(

p1 + L
∫ t

0
g(u(τ))dτ − u(t)

)
and

F∞(x) = (I −Πm)d
(

p1 + L
∫ t

0
g(u(τ))dτ − u(t)

)
.
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More explicitly we define

Fm(uh) = f m(uh)− uh ∈ Rd(m+1),

where f m = ( f m
1 , . . . , f m

m+1) and f m
i (uh) ∈ Rd is given for i = 1, . . . , m + 1

component-wise by

[ f m
i (uh)]j = (p1)j + L

∫ ti−1

0
gj(uh(τ))dτ,

where j = 1, . . . , d.
We wish to construct the bounds Y1, . . . , Ym+1 and Y∞ as specified

in (3.38) and (3.39) as well as Z1, . . . , Zm+1(r) and Z∞(r) given by (3.41)
and (3.42). Assume that the four assumptions (RP) of Section 3.2.1 are
satisfied, in particular we assume an approximate solution ūh such that
‖Fm(ūh)‖Xm ≤ ε, for a given small ε > 0. We can choose Y1, . . . , Ym+1 such
that

|(AmFm(ūh))i| � Yi (4.72)

by evaluating the right hand side rigorously using interval arithmetic. Let
us now turn to Y∞.

Lemma 4.2.1 Let x̄ = ūh. If we define

Y∞ ≥ max
j=1,...,d

max
i=1,...,m

(ti − ti−1)2

8
sup

t∈[ti−1,ti ]

∣∣∣∣ d2

dt2 L
∫ t

0
gj(ūh(τ))dτ

∣∣∣∣
then, recalling (3.37), one has that

‖Π∞y‖X∞ = ‖F∞(x̄)‖X∞ ≤ Y∞.

Proof 4.2.1 By definition we get

‖F∞(x̄)‖X∞ = ‖(I −Πm)d(p1 + L
∫ t

0
g(ūh(τ))dτ − ūh)‖C0

= ‖(I −Πm)dL
∫ t

0
g(ūh(τ))dτ‖C0 .

We now apply Theorem 2.6 from [50] to obtain

‖F∞(x̄)‖X∞ ≤ max
j=1,...,d

max
i=1,...,m

(ti − ti−1)2

8
sup

t∈[ti−1,ti ]

∣∣∣∣ d2

dt2 L
∫ t

0
gj(ūh(τ))dτ

∣∣∣∣
The results follows immediately.
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We remark that the quantities involved in Lemma 4.2.1 can be computed
rigorously using interval arithmetic.
Next we compute the polynomial bounds Z1(r), . . . , Zm+1(r) and Z∞(r).
Recalling (3.40), z(ξ1, ξ2) = DT(x̄ + ξ1)ξ2, where T is defined in (3.36) and
ξ1, ξ2 ∈ B(r, ω). In particular we can write ξ1 = rw and ξ2 = rv, where
w, v ∈ B(1, ω). Let us start with Z1(r), . . . , Zm+1(r). In analogy to (3.69)
we realize that we have

Πmz(ξ1, ξ2) = (I − AmDFm(x̄ + ξ1))ξ2

= (I − AmDFm(x̄))(Πm)dξ2 + (AmDFm(x̄)(Πm)dξ2 − AmDFm(x̄ + ξ1)ξ2).
(4.73)

By setting

η(s) = Fm(x̄ + ξ1 + sv)− Fm(x̄ + s(Πm)dv) ∈ Rd(m+1),

(4.73) can be rewritten as

Πmz(ξ1, ξ2) = (I − AmDFm(x̄))(Πm)dξ2 − Amη′(0)r.

Hence we have to estimate (η′(0))i ∈ R3 for i = 1, . . . , m + 1. Choose an
index i ∈ {1, . . . , m + 1}. We obtain

(η(s))i = L
∫ ti−1

0

[
g(ūh(τ) + rw(τ) + sv(τ))− g(ūh(τ) + s(Πm)dv(τ))

]
dτ

def= βi(s).

Also, we have that

β′i(0) =
d
ds

[
L
∫ ti−1

0

[
g(ūh(τ) + rw(τ) + sv(τ))− g(ūh(τ) + s(Πm)dv(τ))

]
dτ

]∣∣
s=0

= L
∫ ti−1

0

[
Dg(ūh(τ) + rw(τ))v(τ)− Dg(ūh(τ))(Πm)dv(τ)

]
dτ.

We assume for the moment that we can write

Dg(ūh + rw)v− Dg(ūh)(Πm)dv =
D

∑
n=1

γnrn−1 (4.74)

for vector functions γn = γn(ūh(τ), w(τ), v(τ)) ∈ Rd and a suitable D ∈
N. In case the analytic vector field g is polynomial, D will be the degree
of polynomial. We will elaborate on how to compute the expansion (4.74)
for the Lorenz equations in the next paragraph. Under this assumption
we obtain bounds Γi

n ∈ Rd such that∫ ti−1

0
|γn(τ)| dτ � Γi

n, for i = 1, . . . , m + 1.
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The bounds Γi
n ∈ Rd depend on the form of the vector field. We refer

to the next paragraph for a specific derivation in the case of the Lorenz
equations. Hence, we obtain that∣∣β′i(0)

∣∣ � L
D

∑
n=1

Γi
nrn−1. (4.75)

If we define Ṽn ∈ Rd(m+1) as

Ṽn = (Γ1
n, . . . , Γm+1

n )

we arrive at ∣∣η′(0)r
∣∣ � D

∑
n=1

Ṽnrn.

Now using that ‖v‖∞ ≤ 1, we obtain

|Πmz(ξ1, ξ2)| �
∣∣(I − AmDFm(x̄))Πmvr− Amη′(0)r

∣∣
� ‖I − AmDFm‖∞r + ‖Am‖∞

D

∑
n=1

Ṽnrn.

Define
V1 = ‖I − AmDFm‖∞1d(m+1) + ‖Am‖∞Ṽ1,

Vn = ‖Am‖∞Ṽn, for n 6= 1,

where 1d(m+1) = (1, . . . , 1) ∈ Rd(m+1). Then if we set

Zi(r) =
D

∑
n=1

(Vn)irn ∈ Rd

for i = 1, . . . , m + 1, the inequality

sup
x1,x2∈B(r,ω)

|(Πmz(ξ1, ξ2))i| � Zi(r)

is fulfilled. By assumption RP4. we can assume that there is a small εI

such that
‖ I−AmDFm‖∞ ≤ εI .

The smaller εI the better is the chance that V1 − 1d � 0 which a necessary
condition in order to find a suitable r̄ in order to apply Theorem 3.2.1.

Concerning the bound Z∞(r) we have to compute the following:

‖Π∞z(ξ1, ξ2)‖X∞ =∥∥∥∥(I −Πm)d
(

L
∫ t

0
Dg(ūh(τ) + rw(τ))rv(τ)dτ

)∥∥∥∥
∞

.

In order to estimate this we use the next result.
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Lemma 4.2.2 Let ξ1, ξ2 be specified as above. If we define

Z∞(r) ≥
[

max
j=1,...,d

max
i=1,...,m

ti − ti−1

2
sup

t∈[ti−1,ti ]
|LDgj(ūh(t) + rw(t))v(t)|

]
r,

then ‖Π∞z(x1, x2)‖X∞ ≤ Z∞(r).

Proof 4.2.2 By definition we obtain

‖Π∞z(ξ1, ξ2)‖X∞ =

‖(I −Πm)d(L
∫ t

0
Dg(ūh(τ) + rw(s))rv(τ)dτ)‖∞ ≤[

max
j=1,...,d

max
i=1,...,m

ti − ti−1

2
sup

t∈[ti−1,ti ]

∣∣LDgj(ūh(t) + rw(t))v(t)
∣∣] r

where we used a result from [50] for the inequality. The assertion now follows.

This completes the construction of the bounds. We complement the discus-
sion by giving concrete formulas for γn and Γi

n (i = 1, . . . , m + 1) defined
in (4.74) and (4.75) in the context of the Lorenz equations.

Formulas for the Lorenz equations First notice that

Dg(x, y, z) =

 −σ σ 0
ρ− z −1 −x

y x −β

 . (4.76)

Let us start with the computation of the vector functions γn(ūh, w, v) (n =
1, . . . , D) defined in (4.74). Recall that we seek an expression of the form

Dg(ūh(s) + rw(s))v(s)− Dg(ūh(s))(Πm)dv(s) =
D

∑
n=1

γnrn−1,

where w, v ∈ B(1, ω) as defined in (3.35). This in particular implies
that

‖w‖∞ ≤ 1 + ω ‖v‖∞ ≤ 1 + ω

‖w− (Πm)3w‖∞ ≤ ω ‖v− (Πm)3v‖∞ ≤ ω.
(4.77)

Denoting ūh = ([ūh]1, [ūh]2, [ūh]3), w = (w1, w2, w3), v = (v1, v2, v3) and
applying (4.76) we can write (4.74) as follows.
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Dg(ūh(s) + rw(s))v(s)− Dg(ūh(s))(Πm)3v(s)

=

 −σ(v1 −Πmv1) + σ(v2 −Πmv2)
ρ(v1 −Πmv1)− [ūh]3(v1 −Πmv1)− (v2 −Πmv2)− [ūh]1(v3 −Πm[x̃2]3)

[ūh]2(v1 −Πmv1) + [ūh]1(v2 −Πmv2)− β(v3 −Πmv3)


+ r

 0
w3v1 − w1v3

2w2v1


def= γ1(ūh, w, v) + rγ2(ūh, w, v).

In particular D = 2 in this case. Using (4.77) we can compute Γi
1,2 ∈ R3

(i = 1, . . . , m + 1). For i = 1, . . . , m∫ ti

ti−1

|γ1(ūh(s), w(s), v(s))|ds � 2|σ|
maxt∈[ti−1,ti ]{|ρ− [ūh]3(t)|+ 1 + |[ūh]1(t)|}

maxt∈[ti−1,ti ]{|[ūh]2(t)|+ |[ūh]1(t)|+ |β|}

ω(ti − ti−1)
def= Γ̃i

1.
(4.78)

Similarly

∫ ti

ti−1

|γ2(ūh(s), w(s), v(s))|ds �

0
2
2

 (ti − ti−1)(1 + ω)2 def= Γ̃i
2. (4.79)

Now set for n = 1, 2 and i = 1, . . . , m + 1

Γi
n =

i−1

∑
k=1

Γ̃k
n.

4.2.3 Connections using the boundary value approach

We finish by presenting an application of the spline based boundary value
approach in the context of the generic first order system of the Lorenz
equations. We obtain the following result.

Theorem 4.2.3 Let the parameters β = 8
3 and σ = −2.2 in the Lorenz system

(4.49) be fixed. Define the parameter set for ρ by

U = {ρ : ρ = 3.2 + k0.01 with k = 0, . . . , 100}.

Then there for every ρ ∈ U exists a tranverse connecting orbit from the origin to
the secondary equilibrium q2.
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The proof is based on Theorem 3.2.1. We next describe its ingredients and
report more closely on the results.

Formulation of the operator F and discretization Recall that the opera-
tor F is defined on B1 ×Vνu × C([0, 1], Rd) by

F(α, φ, u)(t) =

(
P(φ)−

(
Q(Θν(α)) + L

∫ 1
0 g[u(τ)] dτ

)
Q(Θν(α)) + L

∫ t
0 g[u(τ)] dτ − u(t)

)
. (4.80)

Setting x = (α, φ, u) , we obtain for Fm and F∞ from (3.33)

Fm(x) =

 P(φ)−
(

Q(Θν(α)) + L
∫ 1

0 g[u(τ)] dτ
)

(Πm)d
(

Q(Θν(α)) + L
∫ t

0 g[u(τ)]dτ − u(t)
)

and

F∞(x) =

(
0

(I −Πm)d
(

P(Θν(α)) + L
∫ t

0 g[u(τ)]dτ − u(t)
)) .

More concretely we assume that we are given approximate parametriza-
tions

PN(φ) =
N

∑
k=0

as
kφk and QM(ϕ) =

M

∑
k=0

au
k ϕk.

Then we define the operator Fm,N,M : B1 × Vνu ×Rd(m+1) → Rd ×Rd(m+1)

by

Fm,N,M(α, φ, uh) =

(
PN(φ)−

(
QM(Θν(α)) + L

∫ 1
0 g(uh(τ))dτ

)
f m,M(α, uh)− uh

)
,

where m is the number of grid points in the grid ∆ and f m,M = ( f m,M
1 , . . . , f m,M

m+1)
and f m,M

i (α, uh) ∈ Rd is given by

f m,M
i (α, uh) = QM(Θν(α)) + L

∫ ti−1

0
g(uh(τ))dτ.

Then we can use the splitting

Fm(α, φ, uh) = Fm,N,M(α, φ, uh) +


(P(φ)− PN(φ)) + (QM(Θν(α))−Q(Θν(α)))

QM(Θν(α))−Q(Θν(α))
...

QM(Θν(α))−Q(Θν(α))


= Fm,N,M(α, φ, uh) + E(α, φ),
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where E(α, φ) := Fm(α, φ, uh) − Fm,N,M(α, φ, uh) is independent of uh. In
order to derive the Y-bounds from (3.38) and (3.39) and the Z-bounds spec-
ified in (3.41) and (3.42) we can treat Fm,N,M similar as in Section 4.2.2 and
E can be dealt with via the rigorous error analysis together with Cauchy
bounds presented in Section 2.1.2 and similar to Section 3.1.2. Rather than
giving further details we present some concrete results.

Numerical results and proof of Theorem 4.2.3 We first give some details
on the validation for ρ = 3.2. Choose M = 35, N = 30, νs = 1.75, νu =
1.5, β = 8/3, σ = −2.2, and ρ = 3.2. For these parameters we again
have two dimensional saddles at the equilibria with complex conjugate
eigenvalues. We computed validated bounds for the local unstable and
stable manifolds of δu = 1.48× 10−13 and δs = 2.75× 10−14 and find (by
graphical inspection) that the local stable and unstable manifolds do not
intersect in phase space. We then define the operator F in (4.80) with L =
0.5 and discretize C0

(
[0, 1], R3) using piecewise linear splines with 500

uniformly spaced grid points. We run a classical Newton iteration scheme
and obtain an approximate orbit with non-rigorous defect of 9× 10−16.

The validation is carried out by using the program performancerho3p2.m.
We obtain the existence of a unique solution of F about the approximate
numerical solution in a 5.11× 10−5 neighborhood of the approximation.
Using the radii polynomials method we also obtain isolation in a neigh-
borhood whose radius is not more than 0.041. Transversality follows as
discussed in Section 3.3.2. The proof takes 44 seconds. The results are
illustrated in Figure 4.16. (Note we have fixed the phase condition in the
stable rather than the unstable parameter space but this makes no differ-
ence to the argument). The figure clearly illustrates that the local stable
and unstable manifolds do not intersect in phase space, and shows both
the spline approximation of the long-connection and the asymptotic orbit
segments obtained by applying the linear flow to the boundary points in
parameter space. Table 4.10 tabulates performance results for the same
proof at ρ = 3.2 for several different parameterization orders and grid
discretizations.

To proof Theorem 4.2.3 we implemented a simple continuation scheme.
This implementation can be found in the program continuationrho3p2.m.
The results are reported in Table 4.11.
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N M Grid δu δs r̄ Proof Time
20 25 125 3.09× 10−11 4.34× 10−14 [0.00127, 0.04144] 14 (sec)
20 25 250 3.09× 10−11 4.34× 10−14 [0.00023, 0.04145] 20 (sec)
20 25 500 3.09× 10−11 4.34× 10−14 [0.00005, 0.04145] 36 (sec)
20 25 1000 3.09× 10−11 4.34× 10−14 [0.00001, 0.04146] 1.4 (min)
20 25 2000 3.09× 10−11 4.34× 10−14 [2.93× 10−6, 0.04146] 15 (min)

Table 4.10: Performance data for seven proofs of conneciting orbitss for Lorenz
with β = 8/3, σ = −2.2 and ρ = 3.2.

ρ δu δs r̄ Proof Time
3.2 1.48× 10−13 2.75× 10−14 [0.00005, 0.04145] 44 sec
3.3 1.88× 10−13 3.33× 10−14 [0.00006, 0.04298] 45 sec
3.4 3.33× 10−13 4.20× 10−14 [0.00006, 0.04101] 44 sec
3.5 4.81× 10−13 5.40× 10−14 [0.00007, 0.03992] 44 sec
3.6 1.27× 10−12 6.52× 10−14 [0.00007, 0.03843] 44 sec
3.7 5.81× 10−13 7.20× 10−14 [0.00007, 0.03286] 44 sec
3.8 3.73× 10−11 1.01× 10−13 [0.00007, 0.02995] 44 sec
3.9 3.21× 10−10 1.21× 10−13 [0.00008, 0.02703] 44 sec
4.0 3.31× 10−9 1.39× 10−13 [0.00008, 0.02395] 44 sec
4.1 3.86× 10−8 2.05× 10−13 [0.00009, 0.02056] 44 sec
4.2 5.14× 10−6 2.52× 10−13 [0.0001, 0.01509] 44 sec

Table 4.11: Proof of connecting orbits for eight different values of ρ. All man-
ifolds computed to order M = 25 and N = 20 and spline discretization of 600
grid points.
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Figure 4.16: Validated transversal connecting orbit for Lorenz when σ = −2.2,
β = 8/3 and ρ = 3.2. The image of the phase condition Φ is shown as a green
circular arc on the local stable manifold. The zero of 4.80 is shown as a black arc.
The pink arcs are the image under the parameterizations of the boundary points
in parameter space. The manifolds intersect transversally along the black arc.



Chapter 5

Conclusion

In this thesis we proposed rigorous numerical schemes for the computa-
tion of connecting orbits in dynamical systems induced by nonlinear or-
dinary differential equations. We computed connecting orbits via solving
an equivalent zero finding problem F(x) = 0.
On the one hand we formulated a finite dimensional equation for generic
heteroclinic orbits using a high order approximation of the involved man-
ifolds via the parametrization method, where we used a Newton Kan-
torovich based approach for the validation and the proof of transversality.
We presented some applications in the Lorenz system.
One the other hand we built on the approach from [60] in the spirit of the
classical method of projected boundary condition. There the validation is
based on the method of radii polynomials and the boundary conditions
are formulated via the parametrization method. We considered the fol-
lowing extensions and improvements:

• Formulation of F by using the generic first order formulation of the
ODE and obtainment of results about transversality of generic het-
eroclinics for spline discretization together with applications in the
Lorenz system.

• Consideration of an alternative spectral discretization method for the
first order formulation based on the Chebyshev expansion together
with non-degeneracy results for the derivative of the associated op-
erator. In particular we extended results obtained in [60] on the
existence of symmetric homoclinics in the Gray-Scott equations by
using our spectral approach.

We finish by giving possible further applications and extensions of this
spectral discretization approach.

145
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First, our method could probably be generalized to compute rigorously so-
lutions of higher-order differential equations without re-writing them as
first order vector fields. For example, we believe that computing solutions
of BVPs associated to the Gray-Scott equations (4.1) could be obtained by
integrating twice each equation which could then be solved rigorously by
moving to the space of Chebyshev coefficients. The improvement would
be twofold. First, the linear part of the equations would grow as O(k2) (as
opposed to O(k) in the BVP-operator (3.50)), hence facilitating the use of
a contraction mapping argument based on a Newton-like operator. Sec-
ond, the size of the finite dimensional projection would be twice smaller.
A downside is that we would obtain more complicated formulas of the
Chebyshev expansions of the equations resulting from the double integra-
tion.
A second extension of the method would be to use a multiple shooting ap-
proach to solve the integral operators over long periods of time. Indeed,
the theory of the Chebyshev series presented in Section 2.2.1 suggests that
integrating over long periods of time (e.g. compute solutions with large
scaling factor L) has the disadvantage of bringing the (potentially existing)
poles closer to the ρ-ellipse mentioned in Theorem 2.2.2. This implies that
the Chebyshev coefficients of the solutions decay to zero at a slow rate.
Therefore, an advantage of a multiple shooting approach based on inte-
grating over many short intervals (with corresponding short scaling factor
L) would push away the poles, hence bringing a faster decay rate to the
Chebyshev coefficients of the solutions. We could then potentially take
smaller Galerkin projection dimensions to perform our rigorous computa-
tions, thanks to the fast decay rates of the solutions on each sub-intervals.
The downside would again be a more complicated formulation of the op-
erators which would need to take care of solving simultaneously many
parallel problems.
A third extension of the method would be to combine the rigorous pseudo
arc length continuation method of [5, 59] to compute global smooth branches
of solutions of BVPs.
A fourth and slightly more challenging improvement consists of modify-
ing the proposed approach to vector fields with nonlinearities that are non
polynomial. That would require extending the already existing convolu-
tion estimates to the non polynomial case.
A final and most ambitious extension would be to attempt to rigorously
compute solutions of spatially periodic PDEs combining a Chebyshev se-
ries expansion in time and a Fourier series expansion in space.
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