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Zusammenfassung

Diese Arbeit beschäftigt sich mit dem Zusammenspiel von Geometrie und Algebra.
Als Geometrie behandeln wir projektive Geometrie sowie euklidische Spezialisierun-
gen. Die Algebra, um die es hier gehen soll, baut auf Determinanten auf deren
symbolische Darstellung im Englischen “Brackets” heißen. Das von Grünbaum und
Shephard wiederentdeckte “Flächenprizip” macht es möglich, Brüche von Brackets
als orientierte Längenverhältnisse zu interpretieren. Diese Interpretation wird in
zwei Teilen der Arbeit verwendet:
Zunächst werden sogenannte Γ-Kreise untersucht. Diese ergeben sich auf natür-

liche Weise bei der Interpretation von binomischen oder biquadratischen Beweisen
von Schließungssätzen mittels des Flächenprinzips. Diese kann angewendet wer-
den, da solche Beweise, wie von Richter-Gebert eingeführt, in der Sprache der
Brackets formuliert sind. Γ-Kreise können als grundlegende Bausteine in dieser
Theorie betrachtet werden. Man kann die Γ-Kreise zusammen mit biquadratischen
Brüchen, die den biquadratischen Beweisen entspringen, auch nutzen, um daraus
selbst Schließungssätze zu konstruieren. Dabei ermöglicht die Interpretation durch
das Flächenprinzip geometrische Kontrolle über die Kürzungsmuster. Die formale
Behandlung der Bausteine orientiert sich an der Sprache von Dress und Wenzel. Die
in unserer Behandlung nicht vollständig vorhandene Information über Kollinear-
itäten impliziert, dass sich nicht automatisch alle Γ-Kreise auf einige wenige ihrer
Art zurückführen lassen. Daher werden sogenannte irreduzible Γ-Kreise genauer
untersucht, was es zudem ermöglicht sie zu zählen. Wendet man das Flächenprinzip
auf (Kombinationen von) Γ-Kreisen an, so erhält man Resultate, die die von Grün-
baum und Shephard verallgemeinern.
Anschließend wird das Problem der Cayley-Faktorisierung behandelt. Hierbei

möchte man mit einer Linealkonstruktion überprüfen, ob sich endlich viele Punkte
der projektiven Ebene in spezieller Lage befinden. Die spezielle Lage der Punkte
wird durch das Verschwinden eines Polynoms in Brackets beschrieben, das wir mit B
bezeichnen wollen. Es ist durch Sturmfels und Whiteley bekannt, dass dies nicht im-
mer möglich ist – stattdessen kann man immerM ·B durch eine Linealkonstruktion
charakterisieren, wobei M ein Monom in Brackets ist. Wir stellen einen neuen Al-
gorithmus für das gleiche Resultat vor, der einen geringeren Grad von M aufweist.
Der konstante Faktor in der Gradschranke wird von 105 auf 9 reduziert. Dies
wird durch das implizite Einführen von lokalen Koordinatensystemen mittels des
Flächenprinzips erreicht. Die gefundenen orientierten Längenverhältnisse können
dann mit den Konstruktionen von Ceva und Menelaus sowie der von-Staudt’schen
projektiven Arithmetik kombiniert werden. Der Algorithmus kann den Satz von
Pascal erklären und ist prägnant genug, um auf dem Computer implementiert zu
werden. Zwei beispielhafte Ausgaben werden angegeben.
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Abstract

The present thesis is on the interplay of geometry and algebra. As geometry we
consider projective geometry as well as Euclidean specializations. The algebra in
question is based on determinants whose symbolic representation is called bracket.
The area principle, which was rediscovered by Grünbaum and Shephard, allows for
interpreting ratios of brackets as oriented length ratios. This interpretation is made
use of in two parts of the thesis:
At first, so-called Γ-cycles are investigated. They emerge in a natural way when

interpreting binomial or biquadratic proofs of incidence theorems via the area prin-
ciple. It can be applied, since such proofs, as introduced by Richter-Gebert, are
formulated in the language of brackets. Γ-cycles can be understood as basic building
blocks within this theory. One can use Γ-cycles together with biquadratic fractions,
which arise from biquadratic proofs, also in order to construct incidence theorems.
In doing so, the interpretation via the area principle provides geometric control over
the cancellation patterns. The formal treatment of these building blocks follows the
language of Dress and Wenzel. Since the information about collinearities is not com-
plete in our setup, we cannot automatically reduce the number of relevant Γ-cycles
to only a few. Therefore, so-called irreducible Γ-cycles are analyzed in more detail,
which allows for also counting them. Applying the area principle to (a combination
of) Γ-cycles results in statements that generalize those of Grünbaum and Shephard.
Afterwards, the problem of Cayley factorization is treated. Here one wishes to

check with a ruler construction whether finitely many points in the projective plane
are located in special position. The special position of the points is described by
the vanishing of a polynomial in brackets which is denoted by B. It is known due
to a result of Sturmfels and Whiteley that this is not always possible—instead one
can characterize always M · B by a ruler construction, where M is a monomial in
brackets. We present a new algorithm for the same result and show that it implies
a smaller degree of M . The constant factor in the bound on the degree is reduced
from 105 to 9. This is achieved by implicitly introducing local coordinate systems
via the area principle. The obtained oriented length ratios can be combined with the
constructions of Ceva and Menelaus as well as with the projective arithmetic given
by von Staudt. The algorithm is able to explain Pascal’s theorem and is concise
enough to be implemented on a computer. Two exemplary outputs are given.
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1. Introduction

“ Ich bemerke nur noch, dass ich das [...] Verfahren, nach welchem
der positive oder negative Werth einer Linie durch die verschiedene
Nebeneinanderstellung der die Endpuncte der Linie bezeichnenden
Buchstaben ausgedrückt wird, durchgehends angewendet und auch
auf die Bezeichnung des Inhaltes von Dreiecken [...] und dreiseitigen
Pyramiden erweitert habe. Es wird hierdurch, so wie auch zum
Theil durch den barycentrischen Calcul selbst, die Anschaulichkeit
der synthetischen Methode mit der Allgemeinheit der analytischen
in möglichst nahe Verbindung gebracht, indem man mit Anwendung
rein geometrischer Zeichen, dergleichen die für die Puncte einer
Figur gewählten Buchstaben sind, die arithmetischen Beziehungen
zwischen den Theilen der Figur durch Formeln darstellt, welche für
alle möglichen Lagen der Theile Gültigkeit haben.”

August Ferdinand Möbius, Der barycentrische Calcul, 1827

The topic of this thesis in its most general sense is the interplay of geometry and
algebra which both have a very long history. In the following it shall become clear
why we feel connected to the above statement made by Möbius which in a loose
translation and with a language adjusted to the present thesis can be summarized
as follows: The method of considering oriented lengths and volumes, indicated by
the order of points naming them, is able to connect the imagination of the synthetic
method and the generality of the analytic one by naming geometric points with
letters and representing geometric relations with formulas such that they are valid
in all possible concrete geometric situations. The so-called area principle is a special
case of considering ratios of oriented lengths and volumes. It is used within this
thesis to address several problems. However, as we will show in Section 3.9, it can
often be translated into considerations regarding weights as it was Möbius’s starting
point for introducing barycentric coordinates. To begin with, we now describe the
synthetic and algebraic methods and language used in the present text.
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1. Introduction

Our setup is projective geometry (for a very brief introduction see Chapter 2).
Here, three points are collinear if and only if the matrix whose columns are the
3-vectors of the homogenous coordinates of the points has a vanishing determinant.
Naming the homogenous coordinates of the three points p, q and r, this can be
written as

|p, q, r| := det(p, q, r) = 0.

This notion does not refer to the concrete coordinates of the points but only to its
names. This motivates the notion of a symbolized version of a determinant using
only names of points:

[p,q, r]

which is called a bracket. The names p, q and r themselves have a symbolic nature
and can be considered to be taken from an alphabet P describing a point set. This
language emphasizes the symbolic and combinatoric way points will be treated. The
notion of brackets is useful since many geometric properties can be represented by
combinations of brackets, more precisely with bracket polynomials. E.g. three lines
spanned by the pairs of points {a, b}, {c, d} and {e, f} are concurrent if and only if

|a, b, c||d, e, f | − |a, b, d||c, e, f | (1.1)

vanishes. Expressing the same property on the level of concrete homogenous coor-
dinates yields much longer expressions (see Section 4.6). This is one reason why
geometers since Cayley have been interested in brackets.
Another approach to brackets is invariant theory (see Section 3.3 for more details).

According to Klein’s Erlangen program, geometry can always be considered as being
invariant theory. This seems reasonable when recalling that in Euclidean geometry
the property of a triangle being equilateral does not depend on its position relative
to the origin. Therefore this property is at least invariant under translations. It
turns out that all Euclidean properties are invariant under the group of Euclidean
moves.
In projective geometry one considers those transformations that maintain collin-

earity of points. It is the first fundamental theorem of (real) projective geometry
that each such transformation is induced by multiplying the homogenous coordi-
nates of a point with an invertible matrix. Now (1.1) vanishing is a projectively
invariant property, since

|M · a,M · b,M · c||M · d,M · e,M · f | − |M · a,M · b,M · d||M · c,M · e,M · f |
= det(M)2

(
|a, b, c||d, e, f | − |a, b, d||c, e, f |

)

for a real invertible 3 × 3 matrix M and due to the multiplicativity of the deter-
minant. For technical reasons we restrict ourselves to polynomial invariants with
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respect to the multiplication of matrices M with determinant equal to 1. These
invariants can be classified by the bracket polynomials and the corresponding fun-
damental theorems of invariant theory (which is described in Section 4.5 in more
detail). Projectively invariant properties can be easily constructed by their means.
They are considered to be elements of the bracket ring as introduced by White in
[120]. Here the names of the points are treated as symbols, not as vectors, which
allows for generalizing the concept to more general combinatorial geometries.

The usage of bracket polynomial and invariant language turned out to be useful
for many geometers. There are also applications that use the algebra of brackets to
determine special positions of points. These applications include robotics, statics,
rigidity of frameworks and scene analysis (see e.g. [125, 127, 33, 129, 28, 27, 81, 32]).

Until now this introduction was very algebraic. In the following we will present
a more geometric point of view: there are natural geometric constructions in the
projective plane. The most fundamental ones are the operations join and meet
whose existence is guaranteed by the axioms of projective planes: two points can be
joined to a unique line and two lines meet in a unique point. We will focus on these
two constructions. An exemplary computation in the more general Grassmann-
Cayley algebra shows that the intersection of the lines spanned by the pairs of
points {c, d} and {a, b} can be given by

x := |a, b, d| · c− |a, b, c| · d. (1.2)

This point being collinear also with e and f is characterized by (1.1) vanishing.
The previous was supposed to give a first glimpse on the constructions possible in
Grassmann-Cayley algebra. In its general form it allows for transforming (closed)
linear geometric constructions into bracket polynomials. Calculations will be done
in the language of brackets and in an affine version also in terms of oriented length
ratios. The latter version is obtained by the very powerful area principle which
in this form is was rediscovered by Grünbaum and Shephard. However, without
considering ratios of oriented lengths and volumes but absolute oriented values is
used by and generalized from lines to triangles and tetrahedra by Möbius in [86].
For more historical background see Section 3.1. The principle says that the ratio of
the determinants given in (1.2) equals an oriented length ratio

−|a, c, d||b, c, d | =
a x

x b

in a Euclidean interpretation (see also Figure 1.1). The principle is called “area prin-
ciple”, since ratios of determinants can be considered as ratios of areas of triangles
in the right context. This interpretation in terms of oriented length ratios has the
advantage that they provide much more intuition. It will be the key intuition for

3



1. Introduction

the considerations done in Part II and in Part III. Furthermore, as it is pointed out
in Section 3.9, it is closely related with the theory of weights and centers of mass
referred to by Möbius in the introductory quotation.

Figure 1.1.: The length ratio a x/ x b equals |a, d,c||b, c,d | , a ratio of determinants.

Part I: Basics
Part I introduces many of the previously mentioned concepts in more detail. It
summarizes the basic definition and computing techniques (projective geometry,
bracket algebra, Grassmann-Cayley algebra, tensor diagrams and evaluation) as
well as some tools or basic building blocks (the area principle, the theorems of Ceva
and Menelaus and von Staudt constructions) used in both Parts II and III. First,
this part will focus on the plane case. For most of the results in Parts II and III, this
is sufficient. Since the theory also extends to arbitrary dimensions results in Parts II
and III can sometimes also be applied to general dimensions. This will not be treated
explicitly but should be mentioned. We remark that we give a symbolic version of
the definitions for the Grassmann-Cayley algebra which is not the standard one (see
Chapter 5). The symbolic definition is very close to the formulation of Möbius who
is amazed by the possibility to calculate only with the names of the points. This
algebra can be thought of a tool for computing with subspaces both of Rn and also
with projective subspaces. We choose the symbolic version for the following reasons:
as before when introducing brackets, it is natural to work only with abstract names
of points not with vectors representing homogenous coordinates as it is done in
classical introductions which mostly go back to [37] by Doubilet, Rota and Stein
in which the ideas go back to Grassmann’s “Ausdehnungslehre” (see [48, 49]). This
approach fits better with the symbolic treatment in the bracket ring. This was
already done by the school of Rota and is called the “White module” there. It is
located at the transition to a more general, supersymmetric theory and the very
detailed geometric ideas presented in [37] are less present. We want to connect both
in the introductive treatment of Grassmann-Cayley algebra.
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It is an important basic fact that in Grassmann-Cayley algebra, any “closed”
construction done by the means of join and meet with respect to some (abstract)
base points a, b, . . . , e can be evaluated to a (multihomogenous) bracket polynomial
B in the points a, b, . . . , e which has integer coefficients. This serves as motivation
for the problem treated in Part III. A closed construction can be thought of a
construction that asks for the collinearity of three points that are constructed by the
means of join and meet depending on the points a, b, . . . , e. The resulting bracket
polynomial is unique in the previously mentioned bracket ring. Nevertheless, the
bracket ring is a factor ring, say R/I with a non-trivial modulo I. Therefore, it
makes sense to consider several methods for evaluation since their output might
look quite different and be identical only modulo I (see Chapter 6). We also give an
introduction to the background of incidence theorems (see Chapter 7). Theorems
of this kind are the starting point for the considerations in Part II. The techniques
used in this part are in turn used to attack the problems in Part III. Incidence
theorems are theorems using only incidences in their formulation of hypotheses
and conclusions. The most famous examples are the theorems of Pappos and of
Desargues.

Part II: Γ-Cycles
Part II is about so-called Γ-cycles, which is a new concept developed together with
Jürgen Richter-Gebert and describing a special class of binomial identities in the
bracket algebra. In general, binomial identities in the bracket algebra are obvious.
However, in the case of Γ-cycles its only at first sight and without knowing any
context that they could be considered being trivial. At second sight, any Γ-cycle
can be interpreted as a theorem about oriented length ratios in affine geometry.
Regarding them on their own, these Euclidean theorems are surprising and do not
look trivial any longer. An example seems to be appropriate: In Figure 1.2 on the
left-hand side, a Γ-cycle in its graphical version is shown. It induces the identity

[a, f , g]

[a,b, f ]
· [a,b, f ]

[a,b, c]
· [a,b, c]

[a, c,d]
· [a, c,d]

[a,d, e]
· [a,d, e]

[d, e, f ]
· [d, e, f ]

[e, f , g]
· [e, f , g]

[a, f ,g]
= 1,

which can also be written as a vanishing binomial in the bracket ring, since all
brackets occurring somewhere in a numerator also occur somewhere in a denomi-
nator. In the concrete form given, every fraction can be interpreted via the area
principle yielding that the product of oriented length ratios in the right-hand side
of Figure 1.2 equals 1 (for more details see Chapter 10).

Γ-cycles are exactly those binomial identities, for which such an interpretation
in terms of oriented lengths is possible. This is due to the fact that they can be
interpreted as cycles in a Γ-graph known from matroid theory (see [84]).
Furthermore, Γ-cycles do appear naturally when one tries to interpret so-called

binomial or biquadratic proofs (see [92, 93, 9, 30]) in terms of length ratios in an
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1. Introduction

∏ length
length

= 1

Figure 1.2.: A Γ-cycle and a Euclidean interpretation.

affine setup. In fact, this [94, 2] was the starting point of our considerations. So the
exposition in Part II starts with an exemplary interpretation of a binomial proof in
terms of length ratios (see Chapter 9). Of special interest are irreducible Γ-cycles,
which cannot be understood as products of smaller Γ-cycles. Here the product is
considered in an appropriate group defined in Chapter 10. It seems to be natural
to consider this group as it was similarly done by Dress and Wenzel in a series of
papers, e.g. in [38, 40, 41, 39]. In our context, the formulation of groups is useful
to define (different versions of) irreducibility. Dress and Wenzel use the groups
for encoding information about very general matroids. Γ-cycles can be understood
as mimicking these concepts in a setup where only partial information is present
and the setup is more concrete, namely the projective plane. For knowing all of the
possible building blocks when interpreting binomial proofs, a counting of irreducible
Γ-cycles is given in Chapter 11. Furthermore, the structure of the supporting lines
of the induced oriented length ratios is analyzed and shortcuts for applying the area
principle are established (see Chapter 12).
As it turns out, Γ-cycles are also related to phenomena described by Grünbaum

and Shephard (see [53, 52, 54]) who rediscovered the area principle. They enumerate
cyclic theorems about oriented length ratios in polygons. We find that many of the
calculations can be restated with Γ-cycles alone (see Chapter 13). For the results in
[54] another ingredient is needed to prove the theorems in the language of brackets:
biquadratic fractions, which are the basic building blocks in binomial proofs, which
in turn were the starting point of our consideration in Part II. Now all results in [54]
can be restated within the concise language of Γ-cycles and biquadratic fractions.
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Biquadratic fractions can be also used in a more general setup in order to impose
incidence relations on the points contained in a Γ-cycle. They are also included in the
formulations via groups done in Chapter 10. The tools of Γ-cycles and biquadratic
fractions can be used in at least two setups: in the style of Grünbaum and Shephard,
new theorems about oriented length ratios can be constructed. They generalize their
concept in the sense that no symmetry is required in the constructed theorems.
However, one can also come up with theorems having a symmetry different from
the cyclic one considered by Grünbaum and Shephard (see again Chapter 13).
On the other hand, e.g. the theorems of Ceva and Menelaus (introduced in Part I)

allow for reducing the number of oriented length ratios involved. Doing this often
enough one ends up with an incidence theorem. Therefore one also needs information
on how the length ratios are arranged. It turns out that they arrange in cycles which
we call orbits to avoid confusion. Chapter 12 gives shortcuts on how these orbits
are obtained and that irreducible Γ-cycles do have at most three orbits. All in all
we have a construction method for incidence theorems which was inspired by [94].
Brackets cancel as in binomial proofs but the interpretation via oriented length
ratios provides (geometric) control over the cancellation process.

Part III: Cayley Factorization
In the most general point of view, the problem of Cayley factorization asks for a
translation from algebra to geometry. It treats the question whether a construction
given previously in the description of Part I can be reversed. There we pointed out
that a closed construction done by the means of join and meet yields a (multihomo-
geneous) bracket polynomial with coefficients in Z. Reversing this process means
starting with a multihomogenous bracket polynomial B with integer coefficients and
searching for a join-meet-construction whose evaluation results in B. This is a rea-
sonable question, since in the above mentioned applications of bracket polynomials
those are often obtained algebraically and need to be interpreted. Therefore the
problem of Cayley factorization is formulated since a join-meet-construction results
in a bracket polynomial and has a chance to interpret it. A very short first example
would be to search for an interpretation of (1.1) vanishing. We saw before that
this interpretation can be given by the concurrence of three lines. The most famous
example is surely induced by Pascal’s theorem characterizing six points lying on a
common conic by a construction. Its statement is summarized in Figure 1.3. It is
not too hard to derive the determinantal equation given in the middle of the figure
by geometric and algebraic considerations (see e.g. [95]). A Cayley factorization can
be considered as “automatically deriving” Pascal’s theorem.
For attacking the problem there is an algorithm due to White for deciding the

multilinear case (see [124]). For the general case there are methods for bracket
polynomials of small degree given in [80]. There are also results in more special cases
which are given in Chapter 14. It was shown in [104] by Sturmfels and Whiteley
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⇔ |a, c, e| · |a, d, f | · |b, c, f | · |b, d, e|
−|a, c, f | · |a, d, e| · |b, c, e| · |b, d, f | = 0

⇔

Figure 1.3.: Pascal’s theorem: six points a, b, c, d, e and f lie on a common conic
if and only if the depending points x, y, z lie on a common line.

that a factorization is not always possible. However, they also show that for any
bracket polynomial B (homogenous, with integer coefficients), there always exists a
bracket monomial M such that M ·B can be factored. This is the reformulation of
the problem which we focus on. In the present thesis, the degree of the monomialM
and therefore also the complexity of the construction can be reduced to an extent
that makes an implementation possible. The constant factor in the bound on the
degree of M can be reduced from 105 (in the algorithm used in [104]) to 9.
The algorithm presented here relies on the (intuition of the) area principle and in

its first version interprets only bracket binomials. The configurations of Ceva and
Menelaus as well as von Staudt constructions are used to perform multiplication on
oriented length ratios and cross-ratios. In a next step, the approach is generalized
to the case of an arbitrary number of summands. Von Staudt’s construction for
projective addition is used to combine several summands. Some optimizations are
done in order to keep the degree of the leading monomialM low. The most relevant
optimizations done are factoring out common factors and reusing existing points in
the constructions.
The algorithm is able to explain Pascal’s theorem: The algorithm has some free-

dom of choice during its execution. We will show in Section 16.7 that local opti-
mizations within the algorithm yield Pascal’s theorem. In a more general and less
symmetric setup this cannot be expected. However we think that this derivation of
Pascal’s theorem shows that our algorithm is very close to geometry. In addition, as
previously mentioned, a concrete implementation in Mathematica ([136]) together
with the Combinatorica package was possible. With its help we include two exam-
ples of the output of the implementation (see Chapter 18). One of its examples can
be considered to be a generalization of Pascal’s theorem since it factors a polyno-
mial describing the property of ten points lying on a common cubic. The concrete
representation of the bracket polynomial that is factored has 20 summands. It is
due to Richter-Gebert and it is the shortest representation known to our group.
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2. Fundamental Definitions in
Projective Geometry

This and the following chapter give a very short reference for basic concepts in
projective geometry which are used later on in this text. We will mostly focus on
the real projective plane. The exposition given here is by no means exhaustive.
For a more extensive treatise, there are a lot of monographs on the topic, e.g.
[24, 25, 43, 110, 65] to mention only a few of them. They provide most of the
concepts used here. We follow closely the exposition in [95]. E.g. [24, 95] also
provide comments on the historical development.

2.1. Homogenous Coordinates of Points

In the real projective plane RP2, a point is a one-dimensional subspace of R3. This
motivates why the two-dimensional real projective plane is also called projective
geometry of rank 3. We define an equivalence relation on the vectors spanning the
one-dimensional subspaces. For v ∈ R3 \ {(0, 0, 0)} let

[v] :=
{
v′ ∈ R3 | v′ = λ · v for λ ∈ R \ {0}

}
.

The points P of RP2 are all of these equivalence classes:

P :=
R3 \ {(0, 0, 0)}

R \ {0} :=
{

[v] | v ∈ R3 \ {(0, 0, 0)}
}
.

Topologically, P is in fact a two-dimensional structure. The usual affine plane R2

can be embedded in RP2. One possible embedding is shown in Figure 2.1. This
embedding, where the last coordinate equals 1, is called the standard embedding. It
provides an intuition for most of the points in RP2 except for points of the shape
(x, y, 0), where x, y ∈ R. Those can be thought as being points infinitely far away
pointing in direction (x, y) in the corresponding affine picture in R2. All lines with
direction (x, y) have this point in common. This brings us to the next ingredient of
the projective plane: lines.

11
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50 3 Homogeneous Coordinates

y

x

z

p

l

R2 → {(x, y, z) ∈ R3 | z = 1}

Fig. 3.1 Embedding the Euclidean plane in R3.

coordinate representation of the Euclidean plane E. As usual, we identify the
Euclidean plane with R2. Each point in the Euclidean plane can be repre-
sented by a two-dimensional vector of the form (x, y) ∈ R2. A line can be con-
sidered as the set of all points (x, y) satisfying the equation a·x+ b·y + c = 0.
However, since we will treat lines as individual objects rather than sets of
points, we will consider the parameters (a, b, c) themselves as a representation
of the line. Observe that for nonzero λ the vector (λ·a, λ·b, λ·c) represents the
same line as (a, b, c). Furthermore, the vector (0, 0, 1) does not represent a
real line at all, since then the above equation would read 1 = 0.

Now we make the step to homogeneous coordinates. For this we consider
our Euclidean plane embedded affinely in the three-dimensional space R3. It
is convenient to consider the plane to be the z = 1 plane. Each point (x, y)
of the Euclidean plane will now be represented by the point (x, y, 1). How
should we interpret all other points in R3? In fact, for any point that does
not have a zero z-component we can easily assign a corresponding Euclidean
point. For (x, y, z) ∈ R3 we consider the one-dimensional subspace spanned
by this point. If z "= 0 this subspace intersects the embedded Euclidean plane
at a unique single point. We can calculate this point simply by dividing by the
z-coordinate. Thus for z "= 0 the vector p = (x, y, z) represents the Euclidean
point (x/z, y/z, 1). Note that all vectors in the equivalence class [p] represent
the same Euclidean point. So if we are interested only in Euclidean points,
we do not have to care about nonzero scalar factors.

How about the remaining points of R3, those with z-coordinate equal to 0?
These points will correspond to the points at infinity of the projective com-
pletion of the Euclidean plane. To see this, we consider a limit process that

Figure 2.1.: Embedding the Euclidean plane in R3. The figure is due to Richter-
Gebert and e.g. used in [95].

2.2. Homogenous Coordinates of Lines

Lines in RP2 should be defined in such a way that points, that lie on a common
line in R2, should be collinear in their embedding in RP2. The embedded points
of a line in R2 form planes that pass through the (three-dimensional) origin. The
plane can be identified by its normal vector, which is unique up to non-zero scalar
multiples. L shall denote the set of lines. We can set

P =
R3 \ {(0, 0, 0)}

R \ {0} = L (2.1)

and for [p] ∈ P and [l] ∈ L

[p] incident to [l] :⇐⇒ 〈p, l〉 = 0, (2.2)

where 〈∗, ∗〉 denotes the usual scalar product in R3. One can check that the resulting
plane RP2 characterized by P, L and the incidence relation just described, fulfills
the axioms for (general) projective planes given e.g. in [24]. These axioms as well
as the equations (2.1) and (2.2) indicate that there is a dual relationship between
points and lines in this geometry.
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2.3. Join, Meet and Collinearity in Homogenous
Coordinates

Even though non-zero scalar-multiples of a vector in R3 represent the same point
or line, when doing concrete calculations, the actual vector does matter. This will
be the case in large parts of the present thesis. We will refer to the concrete vector
by referring to the homogeneous coordinates of a point. The approach of taking
into account the concrete homogeneous coordinates can be considered to be the
structural geometry described in [131, p. 16, p. 136].

Suppose we are given the homogeneous coordinates p and q of two distinct points
in RP2. From (2.2) one can conclude how to compute homogeneous coordinates l of
the line joining the points [p] and [q]. The line [l] is orthogonal to p and q. Therefore

l = p× q

where × denotes the usual cross product or vector product from linear algebra.
Furthermore we have l 6= 0, since p and q are linearly independent. By duality we
can summarize

join(p, q) := p× q and meet(l,m) := l ×m (2.3)

for homogeneous coordinates of the line joining the two points [p] and [q] as well as
homogeneous coordinates of the point of intersection of the lines [l] and [m]. The
definition of join and meet can be extended to the case where p, q, l or m are
arbitrary elements in R3. We have

join(p, q) = 0

if and only if p = (0, 0, 0) or q = (0, 0, 0) or [p] = [q] which describes degenerate
cases. With the help of (2.3) (or with the intuition provided by Figure 2.1) one can
deduce a condition for three points [p], [q] and [r] being collinear:

[p], [q], [r] collinear ⇐⇒ 〈join(p, q), r〉 = 0

⇐⇒ 〈p× q, r〉 = 0 ⇐⇒ |p, q, r| = 0 (2.4)

where |p, q, r| shall be a shortcut for det(p, q, r). Furthermore, in the case that p, q
and r are induced by the standard embedding, we have

|p, q, r| =

∣∣∣∣∣∣

p1 q1 r1

p2 q2 r2

1 1 1

∣∣∣∣∣∣
= 2 · 4(p, q, r) (2.5)
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where 4(p, q, r) denotes the oriented area of the triangle that corresponds to p, q
and r in the Euclidean plane. 4(p, q, r) is positive if and only if a counterclockwise
triangle is induced.

2.4. The Intersection of Two Lines Given as Spans of
Points via Plücker’s µ

Let a, b, c and d be the homogeneous coordinates of points in RP2. We seek for
an easy representation of meet(join(a, b), join(c, d)). We assume non-degenerate
situations for the moment. By (2.4) we search homogeneous coordinates x with
|x, a, b| = 0 as well as |x, c, d| = 0. For any (λ, µ) ∈ R2 \ {(0, 0)}, we have

|µ · b+ λ · a, a, b| = 0 (2.6)

and therefore [µ · b + λ · a] lies on the line spanned by [a] and [b]. Testing the
collinearity with [ join(c, d)] is testing

|µ · b+ λ · a, c, d| = µ · |b, c, d|+ λ · |a, c, d| = 0.

Therefore, the choice µ = |a, c, d| and λ = −|b, c, d| are valid parameters for
describing x and it holds:

[
meet(join(a, b), join(c, d))

]
=
[
|a, c, d| · b− |b, c, d| · a

]
. (2.7)

Furthermore, one can convince oneself that this formula also holds on the level of
homogeneous coordinates and due to the commutation rules for the vector product
it holds:

meet(join(a, b), join(c, d)) = −|a, b, c| · d + |a, b, d| · c
= |c, d, a| · b − |c, d, b| · a. (2.8)

Though this equation was not too hard to find, in rank 3 it motivates definitions in
the bracket ring and in the Grassmann-Cayley algebra (see Chapter 4 and Chap-
ter 5). Grassmann-Cayley algebra in general rank can be considered as the symbolic
computation of spans and intersections. Assigning concrete homogeneous coordi-
nates to the symbols results in exact calculations with coordinates.

2.5. Points in Projective Space of Rank n

Analogously to Section 2.1, one can define a real projective geometry RPn−1 of rank
n. Its points are given by imposing an equivalence relation on non-zero vectors in
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Rn: For v ∈ Rn \ {0} let

[v] := {v′ ∈ Rn | v′ = λ · v for λ ∈ R \ {0}}.

The points P(n−1) of RPn−1 are all of these equivalence classes:

P(n−1) :=
Rn \ {(0, . . . , 0)}

R \ {0} :=
{

[v] | v ∈ Rn \ {0}
}
.

In rank 3 we proceeded by giving coordinates of lines and incidence relations between
points and lines (see Section 2.2). In general rank n, it does make sense not only
to talk about lines but also about planes, hyperplanes and subspaces of a rank
between 0 and n. A detailed treatment of these properties very soon leads to the
introduction of Grassmann coordinates (see e.g. [95, 65] also for more information
about projective spaces). In principle, the Grassmann-Cayley algebra introduced
in Chapter 5 is a symbolic version of these coordinates. For future reference, we
observe: The (n−1)-dimensional Euclidean space Rn−1 can be embedded in RPn−1

by the same standard embedding as before, i.e. by homogeneous coordinates whose
last coordinate equals 1. As before, the homogeneous coordinates of points spanning
subspaces in RPn−1 span linear subspaces in Rn. Therefore, the foundations of an
algebraic treatment of projective (n − 1)-space is linear algebra. Some general
relations between vectors in Rn will be given in Section 4.4. They are used to
formulate (symbolic versions of) incidence relations of points in Rn and in RPn−1

in Chapter 5.
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3. Geometric Tools and Constructions

This chapter is to be understood as loose collection of geometric tools and techniques
used throughout the thesis.

3.1. The Area Principle

Assuming the standard embedding and using triangle areas leads to an interpre-
tation of ratios of determinants: let a, b, c and d be homogeneous coordinates of
points in RP2 with last coordinates equal to 1 and located in such a way that

x = meet(join(a, b), join(c, d)) = |a, c, d| b− |b, c, d| a (3.1)

is a well defined point in the embedded version of R2 (i.e. the last coordinate of x
is not 0) and [x] is distinct from [a] and [b]. Due to (2.5) it holds:

|a, d, c|
|b, c, d | =

4(a, d, c)

4(b, c, d)
=

a x

x b
, (3.2)

where and the notation ∗ ∗
∗ ∗

denotes an oriented length ratio in the corresponding
Euclidean setup (see also Figure 3.1). This identity can easily be checked by means
of elementary geometry. We will use this principle very often. It is able to give

Figure 3.1.: The area principle: |a,d,c||b,c,d| = a x/ x b .

a geometric interpretation of determinantal expressions. The area principle will
be the key ingredient and starting point for Γ-cycles in Part II as well as the key
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intuition for Cayley factorization in Part III. Observe that formula for x given in
(3.1) uses the same determinants as the area principle in (3.2). One can say, that
starting with the determinants, one can generate them as coefficients in a linear
combination expressing x. This observation will be used later on as well. It is not
new and was recovered e.g. by Grünbaum and Shephard in [53]. On page 182 in
a subsequent publication [54] the same authors give some historical remarks. The
oldest emergence of the principle given there is [34] from 1816. They also give the
reference [21] which is closely related to incidence theorems. They are the origin
from which Part II emerged. As mentioned earlier, the principle is closely related
with the theory of weights and centers of mass used by Möbius in [86]. Generating
the determinants in linear combinations by the above construction was also used in
[104] which will get more important in Part III.

When doing calculations with oriented length ratios, there is always a formulation
via brackets nearby and no explicit specialization to Euclidean space is needed for
formal calculations. First demonstrations of this fact will be done in Section 3.2
and Section 3.6.

In general, the area principle can be used in two directions: the first one is to
express oriented length ratios via determinants. This will be used e.g. in the next
section and allows for simple proofs of theorems about oriented length ratios as well
as incidence theorems (see Part II).

When we take the opposite direction and we use the words “applying the area
principle”: assume that we have two determinants (or entities closely related to
determinants, see Chapter 4 and Chapter 10) which differ by exactly one entry. This
fits with the combinatorics of (3.2) and the ratio of determinants can be interpreted
as oriented length ratio. The combinatorics of (3.2) are highlighted in a colored
version below:

|a, d, c|
|b, c, d |

In fact, for applying the area principle to generalized determinants, it will suffice
that they differ by exactly one element for permutations of the entries can by ac-
counted by sign changes of the result. We emphasize the combinatorics, since we
want to show how they are interpreted when “applying the area principle” and to
introduce some terminology. The blue-grey entries are the common elements of the
determinants, the blue-violet entry only occurs in the numerator, the orange entry
only in the denominator. The blue-grey entries span the transversal , the blue-violet
and the orange entry span the reference line. x is the intersection of the transversal
and the reference line. The length ratio is taken along the reference line with respect
to x. Sometimes a and b are called endpoints and x is called intermediate point.
The complete picture including the newly introduced terms is shown in Figure 3.2.
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Figure 3.2.: The length ratio a x/ x b is induced by the combinatorics of |a, d,c||b, c,d | .

3.2. The Theorems of Ceva and Menelaus

The area principle can be used to give very short proofs of the classical theorems of
Giovanni Ceva (1647–1734) and Menelaus of Alexandria (c. 70–140) in Euclidean
geometry (see also Figure 3.3):

• Ceva’s theorem states that if in a triangle the sides are cut by three lines
concurring in a single point (the Ceva center or centroid) and passing through
the corresponding opposite vertex, then the product of the three (oriented)
length ratios along each side equals 1.

• Menelaus’s theorem states that this product is −1 if the cuts along the sides
are induced by a single line, called Menelaus line.

Ceva’s Thm:
a x

x b
· b y
y c
· c z
z a

= 1 Menelaus’s Thm:
a x

x b
· b y
y c
· c z
z a

= −1

Figure 3.3.: Theorems of Ceva and Menelaus.

A reformulation of the claims of both theorems via the area principle (see also
[53]) and assuming homogenous coordinates in the standard embedding makes the
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statement of the theorems almost trivial: in the Ceva case we have

a x

x b
· b y

y c
· c z

z a
=
|a, c, d|
|b, d, c | ·

|b, a, d|
|c, d, a| ·

|c, b, d |
|a, d, b| = 1 (3.3)

and in the Menelaus case we have

a x

x b
· b y

y c
· c z

z a
=
|a, x, y|
|b, y, x | ·

|b, x, y|
|c, y, x| ·

|c, x, y |
|a, y, x| = −1. (3.4)

Observe that for each α ∈ R \ {0}, there is exactly one vector w of homogeneous
coordinates (with last coordinate 1) such that cw / w a = α. This implies that also
the converse of the above formulation is true: from a x/ x b · b y / y c · cw / w a = 1 or
a x/ x b ·b y / y c ·cw / w a = −1 we can deduce the existence of a centroid or a Menelaus
line, resp. This can be seen by the fact that x and y already determine the centroid
of the Menelaus line. Therefore there is a point z′ fulfilling the adapted versions of
(3.3) and (3.4). It has to coincide with z since c z / z a = c z′ / z′ a. In the following,
we will consider the theorems of Ceva and Menelaus as containing both directions
of implication.

3.3. Projective Transformations and Invariants

This section will be formulated for general rank n in order to establish the necessary
concepts needed in Section 4 which treats the bracket ring. Consider an invertible
n × n matrix M . The left multiplication of M with the homogeneous coordinates
of a point x in RPn−1 induces a map P(n−1) → P(n−1). Any such map is called
a projective transformation. The class of projective transformations also covers
the better known (embedded versions of) affine transformations such as rotations,
scaling and shearing. A projective transformation is intrinsic to projective geometry
in the sense that a projective transformation preserves collinearity, i.e.

[a], [b], [c] ∈ Pn−1 are collinear =⇒ [M · a], [M · b], [M · c] are collinear.

In rank 3 this can be easily seen by assuming that l provides the coordinates of the
line incident with [a], [b] and [c]. Now, the line with coordinates M−T l is incident
with [M · a], [M · b] and [M · c]. It is a classical result traditionally formulated for
the plane that in the real projective plane, also the converse is true.

Theorem 3.1 (Fundamental Theorem of Projective Geometry). If Φ : P → P is
any bijective map on the points of the real projective plane RP2 that preserves the
collinearity of points, then Φ can be expressed as multiplication by a invertible 3× 3
matrix.
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This classical result is known as fundamental theorem of projective geometry. One
can find proofs in many textbooks on projective geometry. A detailed description
of the history of the theorem is given in [111]. Its origins are attributed to Möbius,
Chasles and Steiner whereas the real treatment of the questions starts with von
Staudt [112]. The constructions he uses will be restated in Section 3.7. Under a
general projective transformation, lengths and ratios of lengths are not preserved.
This leads to the question, which properties are preserved and to the definition of
a projective invariant. This kind of question can be regarded as being fundamental
to all kind of geometries and is closely related to Klein’s Erlangen program.
Note that the proof of Theorem 3.1 actually works with properties on projective

lines and incorporates each additional dimension by introducing a new projective
line as reference system. Therefore Theorem 3.1 also holds in all higher dimensions
(see e.g. [3] for a verification of this fact). Observe that each element of Rn·k can
be interpreted as giving a point configuration: we can consider it as a matrix whose
columns are coordinates of points.

Definition 3.2. Let S be an arbitrary set. A projective invariant of rank n on k
points in the real projective space RPn−1 is a map f from a dense subset of Rn·k to
S such that for all invertible real n×n matrices M ∈ GL(R, n) and k× k invertible
real diagonal matrices D ∈ diag(R \ {0}, k) and for any configuration P , the map f
is defined on M · P ·D and we have

f(P ) = f(M · P ·D).

In the case that S is a binary set, f is called a projectively invariant property.

Each projective invariant is also an SL-invariant as defined below. We consider
SL-invariants since the polynomial SL-invariants have a nice structure as we will see
in Chapter 4. Therefore all objects built on this structure, as the Grassmann-Cayley
algebra introduced in Chapter 5, are closely related with SL-invariants.

Definition 3.3. Let S be an arbitrary set. A SL-invariant of rank n on k points
in Rn is a map f from a dense subset of Rn·k to S such that for all real n × n
unimodular matrices M , i.e. M ∈ SL(R, n), and for any configuration P , the map
f is defined on M · P and we have

f(P ) = f(M · P ).

When no rank is explicitly specified we assume rank 3. In Section 3.4, we will get
to know the prototype of a projective invariant, whereas Chapter 4 will provide a
complete description of (polynomial) SL-invariant functions. It turns out that some
of them induce projectively invariant properties. In fact, in the context of projective
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geometry, there is a whole zoo of different definitions of invariants. There is also
a definition of a relative invariant or semi-invariant. In [37] (used as foundation
of Chapter 5) the relative invariant is called an invariant. So the reader should
be careful in this context. In the present text, we decided to chose the projective
invariants and the SL-invariants in order to have a clear setup. We are guided by
[95, 102].

3.4. The Cross-Ratio

Another fundamental ingredient to projective geometry used extensively in Part III
is the cross-ratio. It forms the smallest projective invariant and is in fact an invariant
involving four points on a projective line. The origins of the concept even dates back
to the ancient greeks. In order to keep the exposition short, we embed the definition
in RP2.

Definition 3.4. The cross-ratio of the points [a], [b], [x], [y] ∈ P (in this order)
seen from [o] ∈ P is defined as the magnitude

([a], [b]; [x], [y])[o] :=
|o, a, x|
|o, x, b | ·

|o, b, y |
|o, y, a| (3.5)

whenever the magnitude can be considered as a value in R∪{∞}, i.e. whenever [o],
[a], [b], [x], [y] are such that the right-hand side of (3.5) is in R or they are such
that the denominator vanishes but the numerator does not vanish.

Due to the linearity of the determinant, the cross-ratio is well defined for points
in P. The multiplicativity and multilinearity of the determinant imply that the
cross-ratio seen form [o] is a projective invariant. Furthermore, in non-degenerate
situations, replacing e.g. a by o + λa (for λ ∈ R \ {0}) results in the same value
for the cross-ratio seen from [o]. So the cross-ratio seen from [o] in fact depends
on the lines through [o] and [a], [b], [x], [y], resp. (see also Figure 3.4 where the
square brackets indicating equivalence classes are omitted in order to obtain a clear
arrangement).
On the other hand, assuming that [a], [b], [x] and [y] are on a common line not

incident to [o], the expression does not depend on the specific choice of the point [o]:
Since ([a], [b]; [x], [y])[o] is invariant under projective transformations and rescaling,
we can assume that a, b, x, y and o are coordinates of the standard embedding:
if the last coordinate of a, b, x, y or o equals 0, one can find an invertible matrix
such that the transformed coordinates can be rescaled to coordinates of points in
the standard embedding. We will not give such a matrix explicitly. However almost
all matrices are appropriate. In a non-degenerate situation, we can apply the area
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3.4. The Cross-Ratio

Figure 3.4.: In ([a], [b]; [x], [y])[o] we can replace a by a′, b by b′, x by x′ and y by
y′ and we obtain the same value.

principle from 3.1 to the defining equation of the cross-ratio (see also Figure 3.5).
This implies that we have

([a], [b]; [x], [y])[o] =
a x

x b
· b y

y a
(3.6)

which does not depend on [o]. This also holds in degenerate situations and we can
define:

·

Figure 3.5.: Applying the area principle to the defining equation of the cross-ratio.

Definition 3.5. The cross-ratio of four points [a], [b], [x], [y] ∈ P (in this order)
incident with a line [l] ∈ L is defined as

([a], [b]; [x], [y]) :=
|o, a, x|
|o, x, b | ·

|o, b, y |
|o, y, a|
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with arbitrary [o] ∈ P not on the line [l].

Due to the possible replacement of e.g. a by o+ λa in ([a], [b]; [x], [y])[o] we have:

Proposition 3.6 (Invariance of Cross-Ratios under Projections). Let [o] be a point
and let [l] and [l′] be two lines not passing through [o]. If four points [a], [b], [c], [d]
on [l] are projected by the viewpoint [o] to four points [a′], [b′], [c′], [d′] on [l′], then
the cross-ratios satisfy ([a], [b]; [c], [d]) = ([a′], [b′]; [c′], [d′]).

3.5. Projective Number Lines

Figure a line in RP2 and three distinct points [p0], [p1] and [p∞] on this line. W.l.o.g.
we can assume that they are scaled in such a way that p1 = p0 + p∞. This fixes the
relative scaling between the three given points. Any other point [px] on this line,
that different from [p0], is identical to [p0 + x · p∞] for some x ∈ R. One can easily
check that it holds

([p0] , [p∞] ; [px] , [p1]) = x

for any such x and also

([p0] , [p∞] ; [p∞] , [p1]) =∞,
([p0] , [p∞] ; [p0] , [p1]) = 0,

([p0] , [p∞] ; [p1] , [p1]) = 1.

Thus by its projective invariance, the cross-ratio can be interpreted as a number
obtained by rescaling three of the points and expressing a fourth point with respect
to the other three ones.
Furthermore, for any point [p] on the line spanned by distinct points [p0] and

[p∞], there is the tuple of real numbers (µp, λp) different from (0, 0) such that
[p] = [µp p0 + λp p∞]. Any rescaling of the pair (λp, µp) gives the same point.
This induces homogenous coordinates of the line with respect to the concrete ho-
mogeneous coordinates p0 and p∞. In a situation analogue to Section 2.1 these
coordinates have the structure of R2\{(0,0)}

R\{0} . So if p0 and p∞ are scaled in such a
way that p1 = p0 + p∞ and [q] is a point on the line with q = µq p0 +λq p∞ we have
that

([p0] , [p∞] ; [q] , [p1]) =
λq
µq
.

Alltogether, the cross-ratio can be considered as line coordinates of any point on a
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line with respect to three given base points [p0], [p∞] and [p1]. Since the properties
describing a basis do not depend on the concrete homogeneous coordinates of the
points, it is possible to talk about three points in P being a basis.

3.6. Quadrilateral Sets

Quadrilateral sets are the foundation for doing constructive calculations on projec-
tive number lines in the next section. In the (old) literature they are often called
“points of an involution”. Consider the situation in Figure 3.6: there it is given a
complete quadrilateral [z], [z1], [z2], [z3] which sides are cut with another line result-
ing in points [a1], [a2], [a3], [b1], [b2] and [b3]. Again, we omit the square brackets
indicating equivalence classes in order to obtain a clear arrangement.

Figure 3.6.: The incidence configuration shows that (3.7) holds and that{
{[a1], [b2]}, {[a2], [b3]}, {[a3], [b1]}

}
is a quadrilateral set.

We will show that in this case for any point [o] it holds that

|o, a1, b1| · |o, a2, b2| · |o, a3, b3| = |o, a1, b3| · |o, a2, b1| · |o, a3, b2|. (3.7)

In order to show this and assuming a non-degenerate situation, where all the deter-
minants do not vanish, we can rewrite the identity as

|o, a1, b1|
|o, a2, b1|

· |o, a2, b2|
|o, a3, b2|

· |o, a3, b3|
|o, a1, b3|

= 1. (3.8)

Since the left-hand side of (3.8) is again invariant under projective transformations
and rescaling of the points, we can w.l.o.g. assume homogeneous coordinates with
last coordinate equaling 1. This allows for an reformulation of (3.8) equation via
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3. Geometric Tools and Constructions

the area principle:
a1 b1

b1 a2

· a2 b2

b2 a3

· a3 b3

b3 a1

= −1.

This identity can be proved by applying Menelaus’s theorem to the three triangles
(a1, a2, z), (a2, a3, z) and (a3, a1, z). This allows us to rewrite all parts of the above
equation in a way such that their overall product equals −1:

a1 b1

b1 a2

=− a1 z1

z1 z
· z z2

z2 a2

,

a2 b2

b2 a3

=− a2 z2

z2 z
· z z3

z3 a3

,

a3 b3

b3 a1

=− a3 z3

z3 z
· z z1

z1 a1

.

As announced in Section 3.1, the advantage of the area method is that it comes
with a less Euclidean and more projective formulation of this derivation, which is a
little harder to read but does not make assumptions on the shape of homogeneous
coordinates of the points involved:

|o, a1, b1|
|o, a2, b1|

=
|z1, z2, a1|
|z1, z2, a2|

=
|z1, z2, a1|
|z1, z2, z |

· |z1, z2, z |
|z1, z2, a2|

=
|z1, z2, a1|
|z1, z2, z |

· |z2, z3, z |
|z2, z3, a2|

,

|o, a2, b2|
|o, a3, b2|

=
|z2, z3, a2|
|z2, z3, a3|

=
|z2, z3, a2|
|z2, z3, z |

· |z2, z3, z |
|z2, z3, a3|

=
|z2, z3, a2|
|z2, z3, z |

· |z1, z3, z |
|z1, z3, a3|

,

|o, a3, b3|
|o, a1, b3|

=
|z1, z3, a3|
|z1, z3, a1|

=
|z1, z3, a3|
|z1, z3, z |

· |z1, z3, z |
|z1, z3, a1|

=
|z1, z3, a3|
|z1, z3, z |

· |z1, z2, z |
|z1, z2, a1|

.

In a Euclidean setup, the identities can be considered to be true since they can be
derived by applying the area principle to the Menelaus identities given above.
By a more careful investigation one can find two basic kind of operations in the

detailed calculation:

• In each row, the first and the last equality can be considered as changing the
points involved in the area principle. Therefore one needs the existence of
some collinearities.

• The second equality explains itself by canceling on the right-hand side.

Both tools will be introduced more formally in Chapter 10 and are called biquadratic
fractions and Γ-cycles. These calculations have the advantage that they are more
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projective in nature. However, they are less intuitive and more algebraic and non-
geometric in nature, unless the area principle can be applied.
In fact, (3.7) has some symmetries which can be captured by saying that

{
{[a1], [b2]}, {[a2], [b3]}, {[a3], [b1]}

}
(3.9)

forms a quadrilateral set whenever (3.7) is fulfilled. We use the notation of sets which
shall be allowed to be multisets. Furthermore, this condition does not depend on the
order of elements of the sets in (3.9). So the construction in Figure 3.6 witnesses the
fact, that {{[a1], [b2]}, {[a2], [b3]}, {[a3], [b1]}} forms a quadrilateral set. However,
due to the symmetry just described it is not the only construction for witnessing
(3.9). For our purposes we conclude that the combinatorics of a quadrilateral set
given by the construction in Figure 3.6 can be identified by following pairs of lines
that do not share a common point in the construction.

3.7. Von Staudt’s Constructions: Arithmetic on
Projective Number Lines

In this section, no explicit reference to the concrete homogeneous coordinates is
needed and we can do our considerations without square brackets denoting equiv-
alence classes. Let p0, p1 and p∞ be in P such that they form a projective ba-
sis of a number line in RP2. Let px and py two other points on this line with
(p0 , p∞ ; px , p1) = x and (p0 , p∞ ; py , p1) = y. We are interested in points px+y

with (p0 , p∞ ; pz , p1) = x + y and px·y with (p0 , p∞ ; pz , p1) = x · y. One can
easily check by hand calculation that
{
{p0 , px+y} ; {px , py} ; {p∞ , p∞}

}
and

{
{p0 , p∞} ; {px , py} ; {p1 , px·y}

}

form quadrilateral sets. Figure 3.7 induces a construction of the points px+y and
px·y. Observe that the symmetry of quadrilateral sets implies the commutativity of
projective addition and multiplication.
The tools of projective addition and multiplication where originally introduced

by von Staudt in [112]. He introduces the language of Würfe (which is translated
to throws e.g. in [110]). This concept makes it possible to avoid the assignment of
coordinates. Von Staudt uses throws for his version of the fundamental theorem of
projective geometry (see Theorem 3.1 in Section 3.3). Those constructions are not
contained in every textbook on projective geometry. E.g. in [25] as well as in [110]
they are introduced. The latter has the advantage that it gives a translation from
the old notions of von Staudt into more modern terms of language.
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Figure 3.7.: Von Staudt constructions for projective addition and multiplication.

3.8. Harmonic Sets

In Section 16.4, we will once use the classical construction for a harmonic set. In
fact, this concept is much more fundamental than the arithmetic constructions just
seen. However it can be easily explained with their help: We say that

{
{a , b} ; {c , d}

}
(3.10)

(a, b, c, d ∈ P) is a harmonic set whenever

(a, b; c, d) = −1.

Observe that after canceling this is equivalent to
{
{a, a}, {b, b}, {c, d}

}

being a quadrilateral set. This implies that the order of the elements in the sets in
in (3.10) does not affect the property of being a harmonic set. In particular, the
considerations done in Section 3.6 imply that the

{
{a , b} ; {c , d}

}
is a harmonic

set if the construction shown in Figure 3.8 is possible.

3.9. Configurations of Ceva and Menelaus Revisited

Most of the considerations involving oriented length ratios can be restated in terms
of weights. Therefore we will use physical properties and intuition which we will not
prove. If one wishes, one can translate large parts of the thesis into terms of weight
ratios. A overall illustration of the phenomena described is shown in Figure 3.9.
Consider homogeneous coordinates a, b and c of three non-collinear points in the
standard embedding, i.e. the last coordinate a, b and c equals 1. Assume wa, xb in
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Figure 3.8.: Construction for witnessing
{
{a, b}; {c, d}

}
being a harmonic set.

R \ {0} are given such that the linear combination

wa a+ wb b

is a finite point, i.e. its last coordinate is distinct from 0. The points Euclidean
interpretations of a, b and c form a triangle. Let x be the rescaled version of the
above linear combination that allows us to consider oriented length ratios in the
Euclidean plane. Due to the area principle it holds

a x

x b
=
wb
wa
. (3.11)

This property establishes the connection between lengths and weights: assume there
are weights wa, wb and wc in R \ {0} attached to the points a, b and c. In homoge-
neous coordinates, the center of mass of the segment with endpoints a and b is given
by zab := wa a + wb b and similarly for the other two segments. This is the lever
rule from physics stated in homogenous coordinates. By physics we know that there
exists a center of mass of the whole triangle. Observe that any point on the line
spanned by [a] and [b] can be written as linear combination of a and b. Therefore
any point of the line can be interpreted as a center of mass where the weights are
the coefficients of the linear combination. Now Ceva’s theorem can be rephrased as:
“Consider homogeneous coordinates of points xab, xbc and xca on the lines sup-

porting the corresponding triangle edges. The lines

[ join(a, xbc)], [ join(b, xca)] and [ join(c, xab)]

meet in a single point if and only if we can find weights wa, wb and wc such that
[xab], [xbc] and [xca] are the same points as the induced centers of mass.”
A centroid implying weights is the existence of barycentric coordinates introduced
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by Möbius who starts his investigations by studying the center of mass (see [86]).
He also relates length ratios together with an orientation to the ratio of masses.
Barycentric coordinates can be understood as homogenous coordinates of an em-
bedding of the Euclidean plane into projective space which is different from the
standard embedding introduced in Section 2.1. This shows the deep connection
between Ceva’s theorem and weights.

Figure 3.9.: Weights are given for the vertices of the triangle. They are indicated
by the size of the vertices. Its inverses are indicated by green arrows
which are considered to be forces located at the vertices. The centroid
and the Menelaus lines are given. The latter contains the centers of
motions of the edges which are induced by the green forces.

Also for the theorem of Menelaus it can be given an interpretation which depends
on the same weights wa, wb and wc: consider again the segment with endpoints
a and b and forces induced by 1/wa and 1/wb at the corresponding vertices of the
segment. Due to (3.11), the ratio of these values is the same as a x

x b
. There is an

associated rotation of the segment with center

yab := wa a− wb b.

Observe that yab is related to zab by
{
{[a], [b]}; {[zab], [yab]}

}
being a harmonic

point set. Assume ybc and yca are defined analogously. Now yab and ybc suffice to
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induce a rotation of the whole triangle. This motion has an axis which is spanned
by yab and ybc. The point yca has to lie on this axis as well. This fact can be
understood as Menelaus’s theorem. It can be paraphrased as: “Given instantaneous
motions on the three vertices of a triangle, the induces centers of motion on the
edges lie on a common line.”
A generalization of this fact, which uses weights on the vertices of a tetrahedron

in 3-space and its the inverses of the weights as instantaneous motions, induces the
well known incidence theorem of Desargues. For more information about incidence
theorems see Chapter 7. A generalization to 4-space should be possible as well.
A related reasoning, which uses three vertices of a triangle as a basis for further
constructions, is given in [139]. The three base points remain fixed during the
calculations. The method can be interpreted as using barycentric coordinates with
respect to the three base points chosen.

3.10. Conics and Pascal’s Theorem

For future reference, we also state another classical theorem about conics. It is due
to Pascal who proved it in 1640 (see [22] for an english translation). A conic C
consists of those points [(x, y, z)] in RP2 that fulfill

α · x2 + β · y2 + γ · xy + δ · xz + ε · yz + ζ · z2 = 0

for some real α, β, γ, δ, ε and ζ depending on C. By counting degrees of freedom one
finds that five points in general position supply enough equations to determine these
values. Therefore, six points, that lie on the same conic, are in a special position. It
is not hard to derive (see [95, p. 169]) that the six points [a], [b], [c], [d], [e] and [f ]
lie on a common conic if and only if

|a, c, e| · |a, d, f | · |b, c, f | · |b, d, e| − |a, c, f | · |a, d, e| · |b, c, e| · |b, d, f | = 0. (3.12)

It is the statement of Pascal’s theorem that both is also equivalent to the fact that
the points [x], [y] and [z], whose construction is shown in Figure 3.10 on the right,
are collinear. We will prove the equivalence of (3.12) and the collinearity of [x], [y]
and [z] in Chapter 6. Observe that a and b never occur in the same determinant.
The defining equation can be rewritten in terms of cross-ratios of line bundles:

|a, c, e| · |a, d, f |
|a, c, f | · |a, d, e| =

|b, c, e| · |b, d, f |
|b, c, f | · |b, d, e|

which is equivalent to

([c], [d]; [e], [f ])[a] = ([c], [d]; [e], [f ])[b].
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⇔ |a, c, e| · |a, d, f | · |b, c, f | · |b, d, e|
−|a, c, f | · |a, d, e| · |b, c, e| · |b, d, f | = 0

⇔

Figure 3.10.: Pascal’s theorem: six points a, b, c, d, e and f ∈ P lie on a common
conic if and only if the depending points x, y, z lie on a common line.
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4. The Bracket Ring and the
Fundamental Theorems of Invariant
Theory

A lot of properties in projective geometry can be stated with the help of deter-
minants. The cross-ratio (Section 3.4) and the condition for six points lying on a
common conic (Section 3.10) are only a few examples. Theorem 4.9 will show that
in a certain sense, any projectively invariant (polynomial) property can be stated
with the help of determinants. To formulate this result, we introduce some nota-
tion in the current chapter. In the literature (see below), there are many slightly
different versions of these results. We follow the approach given by Sturmfels in
[102]. The concept, that all geometry is in fact invariant theory, motivates many
of the considerations in the following Chapters and is subject of Klein’s Erlangen
program.
In the present chapter, we give an algebraic structure that describes determinants

symbolically. We dissociate the determinants from their definition via vector coor-
dinates and instead view them as formal symbols only depending on the names of
the points without referring to concrete coordinates. Therefore the notion of de-
terminants is simplified and square brackets, e.g. [∗, ∗, ∗] in rank 3, are used. This
explains the name “bracket ring”. We briefly describe the main ideas in the example
of rank 3 and then give some additional informations about the origin of the bracket
ring. Let P be a finite set of names of points and let ∆(P) = { [i, j,k] | i, j,k ∈ P }
be the set of formal determinants. The points in P are thought to be points in RP2

or non-zero points in R3. R[∆(P)] is the ring over R which is generated by these
symbols. We aim to model the behavior of true determinants as well as possible.
This is in fact achieved quite well as, we will see in Section 4.5. We will ensure that
e.g. [a,b,a] = 0 and [a,b, c] = −[a, c,b]. Apart from that, there are other phenom-
ena which we have to take into account. There are relations between determinants
which are called Grassmann-Plücker relations. We will provide an interpretation of
them. In Section 4.4, we will generalize the concept of the bracket ring to rank n,
i.e. for RPn−1 or Rn.
Another approach to the bracket ring is to consider SL-invariants. The deter-

minant is an SL-invariant. The first fundamental theorem of invariant theory can
be summarized as stating that combinations of determinants—or bracket polynomi-
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als, which are their symbolic counterparts—are enough to describe all (polynomial)
SL-invariants. The second fundamental theorem describes the relations holding be-
tween different bracket polynomials. These relations will match the ones given in
the definition of the bracket ring. They also imply that a representation of a bracket
polynomial is not unique. Therefore we will briefly describe the straightening algo-
rithm which is able to compute a normal form of bracket polynomials.

The definitions given here are taken from [95] and [102]. First, a definition for
rank 3 is given. In the context of Grassmann coordinates, a symbolic treatment
of determinants is already used in [65] whereas a systematic symbolic treatment is
done by White in [120] in the more general setup of combinatorial geometries (see
e.g. [31]). This point of view is fundamental for the definitions as they are done in
the present chapter. Great insight of the subject is also shown in [109] and [107].
However, the treatment there is not symbolic in nature. This branch of invariant
theory is (in this context) often referred to as “classical invariant theory”. A linkage
between new and old invariant theory is given in [16] by Carrell and Dieudonné. It
is based on Weyl’s classical groups [119]. Also classical invariant theory considers
its computations as “symbolic method”. However the terms and definitions used
rely on coordinates. A formal language, which uses names of points, is also given
by Whiteley in [135, 130, 134]. Here first order logic is considered. This means
that relations under investigation include quantifiers. There, there are also given
fundamental theorems of invariant theory. In particular, an invariant first order
formula in coordinates can be translated into a first order formula in brackets.
Within these notions it is natural to talk about models which are distinct from
the language. In [51, 68, 99] Rota and his collaborators use a symbolic method
which is generalized to model symmetric and antisymmetric tensors. This is done
by generalizing the straightening algorithm for comparing bracket polynomials (see
Section 4.7). In the case that the signed alphabet used contains only negative
letters, classical invariant theory is obtained. This case is treated in more detail
in [68, Chap. 8]. It is pointed out that the bracket ring is a special case of the
supersymmetric bracket algebra introduced there. A point configuration assigning
concrete homogeneous coordinates to the point names is considered being a model.
Again the word model is borrowed from logic. This distinction will also be done in
the present and the next chapter. More comments on this development, which is
also related to the following chapter, can be found in [50].

Proofs for (versions of) the crucial results given in Section 4.5 can be found e.g.
in [102, 37, 68, 65, 71, 119, 16]. A detailed summary of related topics including the
definitions and relations given in the next chapters is given in the recent book [77]
by Li. Again observe that the following treatment is symbolic in nature and that
we never have to refer to concrete coordinates.
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4.1. Grassmann-Plücker Relations in Rank 3

4.1. Grassmann-Plücker Relations in Rank 3

We start with a definition of the bracket ring in rank 3. In this case, we can
show some connections to geometric and algebraic facts derived in Chapters 2 and
Chapter 3. On the level of true determinants, (2.8) implies that for any homogeneous
coordinates a, b, c, d, e and f of points in RP2, there are two ways of expressing∣∣a, b, meet(join(c, d), join(e, f))

∣∣ and it holds

− |c, d, e| · |a, b, f | + |c, d, f | · |a, b, e| = |e, f, c| · |a, b, d|
− |e, f, d| · |a, b, c|. (4.1)

This motivates the 4-term Grassmann-Plücker relation

[a, b, c][d, e, f ]− [a, b, d][c, e, f ] + [a, b, e][c, d, f ]− [a, b, f ][c, d, e] = 0

for a, b, c, d, e, f ∈ P (4.2)

for the symbolized versions of determinants. The equation will be required to hold
in the following definition of the bracket ring.

Remark 4.1. Assuming f = a and the rules for permutations of the point names
given in the next definition (and in particular implying that [a, b, a] = 0) we can
deduce the 3-term Grassmann-Plücker relation for a, b, c, d, e ∈ P:

[a, b, c][a, d, e]− [a, b, d][a, c, e] + [a, b, e][a, c, d] = 0. (4.3)

In fact, [77, Prop. 2.16] tells us, that in a specific sense, the 3-term Grassmann-
Plücker relations can also generate 4-termed Grassmann-Plücker relations. This is
also true in higher rank.

4.2. The Bracket Ring BP in Rank 3

The previous considerations give rise to the following definition:

Definition 4.2 (Bracket Ring of Rank 3). Let P be a finite set of point names.
∆(P) := { [i, j,k] | i, j,k ∈ P } defines a set of indeterminantes in the ring R[∆(P)].
With S3 the symmetric group on three elements, R[∆(P)] contains the ideals

Irepeat :=
〈{

[i, j,k] ∈ ∆(P)
∣∣ i = j or i = k or j = k

}〉
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Ialtern :=
〈{

[p1,p2,p3] + sgn(σ) [pσ(1),pσ(2),pσ(3)]
∣∣p1,p2,p3 ∈ P, σ ∈ S3

}〉

IGP :=
〈{

[a, b, c][d, e, f ]− [a, b, d][c, e, f ] + [a, b, e][c, d, f ]

− [a, b, f ][c, d, e]
∣∣a, b, c, d, e, f ∈ P

}〉
.

The bracket ring is defined as

BP := R[∆(P)]
/〈

Irepeat ∪ Ialtern ∪ IGP
〉
.

Remark 4.3. Observe that for Q and P disjoint we have

BP ⊂ BP∪̇Q .

Following [102], consider an abstract point configuration X consisting of |P| ho-
mogeneous coordinates in RP2: let X = (xij) be an 3 × |P|-matrix whose entries
are indeterminates and whose columns correspond to elements of P. R[xij ] is the
corresponding ring in 3 · |P| variables. To make the connection between the abstract
bracket ring and the projective geometry introduced in Chapter 2, we define an al-
gebra homomorphism from the bracket ring BP to R[xij ]. Therefore, fix an order
on P and let i be the element of P at position i. We allow ourselves to write xi−
instead of x

− i
.

Definition 4.4. The map

φ :





R[∆(P)] → R[xij ]

[i, j,k] 7→ det



xi1 xj1 xk1

xi2 xj2 xk2

xi3 xj3 xk3




vanishes on Irepeat, Ialtern and IGP, φ. Therefore it induces a map

Φ : BP → R[xij ]

which is called the generic coordinatization.

Where identities induces by Φ hold for all point configurations, the following
definition of ΦP can check for relations between concrete homogeneous coordinates
of points:
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Definition 4.5. Let P be a (concrete) point configuration associated to |P| many
points in RP2: let P = (pij) be an 3× |P|-matrix, whose columns are homogeneous
coordinates. The coordinatization map

ΦP : R[∆(P)]→ R

is the composition of Φ and the substitution homomorphism given by the values of
P .

4.3. Grassmann-Plücker Relations in Rank n

The bracket ring can be defined not only for rank 3. The Grassmann-Plücker rela-
tions are induced essentially by Cramer’s rule from linear algebra. It can be restated
as follows: Searching for solutions of the linear equation (b1, . . . , bn)x = bn+1 in Rn
gives an identity on the level of vectors: assuming the solvability of the equation
implies

bn+1 = (b1, . . . , bn)x =

n∑

i=1

xi bi

with xi being the entries of a solution x (for 1 ≤ i ≤ n). Furthermore, the multilin-
earity of the determinant gives

|b1, . . . , bi−1, bn+1, bi+1, . . . , bn| = xi |b1, . . . , bn| for 1 ≤ j ≤ n

and therefore
n∑

i=1

|b1, . . . , bi−1, bn+1, bi+1, . . . , bn| bi = |b1, . . . , bn|
n∑

i=1

xi bi

which implies

n∑

i=1

|b1, . . . , bi−1, bn+1, bi+1, . . . , bn| bi = |b1, . . . , bn| bn+1. (4.4)

In the case that (b1, . . . , bn)x = bn+1 is not solvable in Rn, assume there is another
n-element subset of b1, . . . , bn+1, such that the corresponding determinant does not
vanish (otherwise, (4.4) already holds true). Letting play these vector the roles
of the b1, . . . , bn gives the same result. Thus (4.4) holds in general. Plugging it
in the last column of det(a1, . . . , an−1, ∗) gives the coordinate version of a general
Grassmann-Plücker relation holding for all vectors in Rn and for all homogeneous
coordinates of points in RPn−1 and motivates Definition 4.6.
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4.3.1. Interpreting Grassmann-Plücker Relations: Intersection of
Subspaces

(4.4) has a similar interpretation as (4.1): for any 2 ≤ k ≤ n − 1 (4.4), can be
rewritten as

k∑

i=1

(−1)i |b1, . . . , bi−1, bi+1, . . . , bn+1| bi

=
n+1∑

i=k+1

(−1)i+1 |b1, . . . , bi−1, bi+1, . . . , bn+1| bi. (4.5)

Both sides of the equation give homogeneous coordinates of points in RPn−1. The
left-hand side of the equation indicates that the point lies in the subspace spanned
by the points b1, . . . , bk and the right-hand side of the equation indicates that it
also lies in the space spanned by the points bk+1, . . . , bn+1. Thus, (4.5) allows for
expressing the intersection of two subspaces of suitable dimensions in two different
ways. This phenomenon will be generalized in Chapter 5.

4.4. The Bracket Ring BP in Rank n

Definition 4.6 (Bracket Ring of Rank n). Let P be a finite set of point names and
let n be a natural number. ∆(P) := { [p1,p2, . . . ,pn] |p1,p2, . . . ,pn ∈ P } defines
a set of indeterminantes for the ring R[∆(P)]. With Sn the symmetric group on n
elements, it contains the ideals

Ialtern :=
〈{

[p1,p2, . . . ,pn] + sgn(σ) [pσ(1),pσ(2), . . . ,pσ(n)]∣∣p1,p2, . . . ,pn ∈ P, σ ∈ Sn
}〉
,

Irepeat :=
〈{

[p1,p2, . . . ,pn]
∣∣p1 = p2, p1,p2, . . . ,pn ∈ P

}〉
,

IGP :=
〈{ n+1∑

i=1

(−1)i[a1, . . . ,an−1,bi][b1, . . . ,bi−1,bi+1, . . . ,bn+1]

∣∣a1, . . . ,an−1, b1, . . . ,bn+1 ∈ P
}〉
.

The bracket ring of rank n is defined as

B(n)
P := BP := R[∆(P)]

/〈
Irepeat ∪ Ialtern ∪ IGP

〉
.

φ, Φ and ΦP can be defined in analogy to the rank 3 case in Definitions 4.4 and 4.5.
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4.5. Fundamental Theorems of Invariant Theory

φ and Φ make it easier to formulate the fundamental theorems of invariant theory
which emphasize the fundamental role of the bracket ring. Again, all statements
involving Φ are statements which hold for all possible point configurations (in con-
trast to ΦP ). No proofs will be given. Proofs can be found e.g. in [102] or other
references given in the beginning of the chapter.
As it turns out, the ideals Irepeat, Ialtern and IGP generate all dependencies along

determinants and the bracket polynomials in R[∆(P)] vanishing in any coordinati-
zation and for arbitrary rank:

Theorem 4.7 (Second Fundamental Theorem of Invariant Theory). The homomor-
phism Φ is injective. In other words, kerφ (which is a subset of R[∆(P)]) equals〈
Irepeat ∪ Ialtern ∪ IGP

〉
.

Any element of ker ΦP =
〈
Irepeat ∪ Ialtern ∪ IGP

〉
is called a syzygy. The following

first fundamental theorem of invariant theory states in essence that all (polynomial)
invariants are induced by bracket polynomials. For the correct formulation we define

Definition 4.8. Let R[xij ]
SL be the ring of polynomials in R[xij ] that are SL-

invariants when considered as functions.

Theorem 4.9 (First Fundamental Theorem of Invariant Theory). Φ is surjective,
i.e. it holds

im(φ) = φ(R[∆(P)] ) = R[xij ]
SL.

A concrete algorithm for finding a bracket representation of an element in R[xij ]
SL

is provided by [102, Alg. 3.2.8]. First and second fundamental theorem together
imply:

Corollary 4.10. The Bracket ring is isomorphic to the invariant ring:

BP ∼= R[xij ]
SL.

One can also derive a “first fundamental theorem” for rational functions. However,
it is needed precisely once in this thesis so it is implicitly given in the last part of
the proof of Theorem 5.15.

4.6. Applications to Projective Geometry

So for any SL-invariant, we can chose whether we want to give it as an element
of BP or as an element of R[xij ]

SL. It is a deep believe of many geometers, that
the representation within the bracket ring is “better”. We give two reasons for
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4. The Bracket Ring and the Fundamental Theorems of Invariant Theory

that: First of all, this formulation is independent on the choice of coordinates.
This is a basic property of properties in geometry. Consider e.g. the statement
of Pascal’s theorem (see Section 3.10): the fact that six points lie on a common
conic should not depend on the position of the six points relative to the origin.
Secondly, the representation of the invariants of interest is usually much shorter
in the language of brackets than in the language of homogeneous coordinates. We
borrow an example from [102] to demonstrate this: with P = {1, . . . ,6} we have
that Φ

(
[1,2,3][4,5,6]− [1,2,4][3,5,6]

)
equals

−x1,3x2,2x3,3x4,1x5,2x6,1 +x1,2x2,3x3,3x4,1x5,2x6,1 +x1,3x2,1x3,3x4,2x5,2x6,1
−x1,1x2,3x3,3x4,2x5,2x6,1 +x1,3x2,2x3,1x4,3x5,2x6,1 −x1,2x2,3x3,1x4,3x5,2x6,1
−x1,3x2,1x3,2x4,3x5,2x6,1 +x1,1x2,3x3,2x4,3x5,2x6,1 +x1,3x2,2x3,2x4,1x5,3x6,1
−x1,2x2,3x3,2x4,1x5,3x6,1 −x1,3x2,2x3,1x4,2x5,3x6,1 +x1,2x2,3x3,1x4,2x5,3x6,1
−x1,2x2,1x3,3x4,2x5,3x6,1 +x1,1x2,2x3,3x4,2x5,3x6,1 +x1,2x2,1x3,2x4,3x5,3x6,1
−x1,1x2,2x3,2x4,3x5,3x6,1 +x1,3x2,2x3,3x4,1x5,1x6,2 −x1,2x2,3x3,3x4,1x5,1x6,2
−x1,3x2,1x3,3x4,2x5,1x6,2 +x1,1x2,3x3,3x4,2x5,1x6,2 −x1,3x2,2x3,1x4,3x5,1x6,2
+x1,2x2,3x3,1x4,3x5,1x6,2 +x1,3x2,1x3,2x4,3x5,1x6,2 −x1,1x2,3x3,2x4,3x5,1x6,2
−x1,3x2,1x3,2x4,1x5,3x6,2 +x1,1x2,3x3,2x4,1x5,3x6,2 +x1,2x2,1x3,3x4,1x5,3x6,2
−x1,1x2,2x3,3x4,1x5,3x6,2 +x1,3x2,1x3,1x4,2x5,3x6,2 −x1,1x2,3x3,1x4,2x5,3x6,2
−x1,2x2,1x3,1x4,3x5,3x6,2 +x1,1x2,2x3,1x4,3x5,3x6,2 −x1,3x2,2x3,2x4,1x5,1x6,3
+x1,2x2,3x3,2x4,1x5,1x6,3 +x1,3x2,2x3,1x4,2x5,1x6,3 −x1,2x2,3x3,1x4,2x5,1x6,3
+x1,2x2,1x3,3x4,2x5,1x6,3 −x1,1x2,2x3,3x4,2x5,1x6,3 −x1,2x2,1x3,2x4,3x5,1x6,3
+x1,1x2,2x3,2x4,3x5,1x6,3 +x1,3x2,1x3,2x4,1x5,2x6,3 −x1,1x2,3x3,2x4,1x5,2x6,3
−x1,2x2,1x3,3x4,1x5,2x6,3 +x1,1x2,2x3,3x4,1x5,2x6,3 −x1,3x2,1x3,1x4,2x5,2x6,3
+x1,1x2,3x3,1x4,2x5,2x6,3 +x1,2x2,1x3,1x4,3x5,2x6,3 −x1,1x2,2x3,1x4,3x5,2x6,3.

Now, one could ask whether the SL-invariants are of any interest for a geometer
who is expected to be interested in projective invariants. In fact, for any point
configuration P , the vanishing of ΦP

(
[1,2,3][4,5,6] − [1,2,4][3,5,6]

)
expresses

the fact that the lines with coordinates join
(
ΦP (1),ΦP (2)

)
, join

(
ΦP (3),ΦP (4)

)

and join
(
ΦP (5),ΦP (6)

)
meet in a single point. Here ΦP (p) is to be understood as

the point in P corresponding to p ∈ P and the geometric interpretation follows from
Section 2.4. The following Definition 4.11 is needed in order to see which of the SL-
invariants also lead to more general invariants, e.g. projectively invariant properties
(see Section 3.3). Before that, we observe that giving SL-invariants as elements of
the bracket ring BP has the disadvantage that there are many representations of
the same invariant. Section 4.7 will deal with this problem in more detail.

Definition 4.11. Let P be a finite set. For a bracket monomial m in R[∆(P)] and
for p ∈ P we define the relative degree deg(m,p) as the total number of occurrences
of p in m. Let m1 + · · · + mk be a polynomial in R[∆(P)] given as a sum of
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monomials. We say that m1 + · · ·+mk is multihomogenous if

deg(m1,p) = . . . = deg(mk,p) for all p ∈ P.

If m1 + · · · + mk is also in Z[∆(P)] then m1 + · · · + mk is said to have integer
coefficients. For k = 1, 2, 3, . . . , the expression m1 + · · · + mk is called monomial,
binomial, trinomial, . . . , resp. as long as m1, . . . ,mk /∈ 〈Irepeat〉.
A bracket polynomial B in BP has a subset of the properties just defined whenever

it has a representation in R[∆(P)] satisfying all properties in the subset at once.

By the multiplicativity of the determinant, every multihomogenous bracket poly-
nomial induces a projectively invariant property: Interpreting Φ as function and
following that up with applying a function that decides whether the result equals
zero, induces the desired invariant. To see that the resulting functions are projec-
tively invariant property, observe that is holds since e.g. in rank 3:

|M · λa · a,M · λb · b,M · λc · c| = det(M) · λa λb λc · |a, b, c|

for λa, λb, λc ∈ R \ {0}, M ∈ GL(R, 3) and a, b, c ∈ R3. Thus in a (representation of
a) multihomogeneous bracket polynomial, each summand induces the same non-zero
scalar factors when testing the function being a projectively invariant property. We
summarize:

Proposition 4.12. Multihomogeneous bracket polynomials induce projectively in-
variant properties.

4.7. Comparing Expressions in BP and the Straightening
Algorithm

The advantage of short expressions for geometric properties comes with a big dis-
advantage: especially IGP makes it hard to tell whether two bracket polynomial
equal each other or not (or equivalently to tell whether a bracket polynomial is in
fact the zero polynomial). The standard answer for this problem is the classical
straightening algorithm which goes back to Young (see [138]). It is also treated in
[37]. [103, 102] show the connection to Gröbner bases as introduced by Buchberger
in [14, 15] and by Hironaka in [64]. Another introduction on Gröbner bases can
be found e.g. in [113]. More precisely, [103, 102] show that the straightening algo-
rithm is as a Gröbner bases algorithm where in addition the shape of the Gröbner
basis is known beforehand. It is able to transform any bracket polynomial into a
normal form. After reducing two bracket polynomials to normal form, they can
be compared. Nevertheless, in practice, the normal forms tend to have much more

41



4. The Bracket Ring and the Fundamental Theorems of Invariant Theory

summands than the polynomials one started with. Due to [93], the straightening
algorithm requires overexponential CPU time which is not surprising, since it is a
Gröbner bases algorithm.
We will give a very rough sketch of the algorithm in order to get an impression

on how it works. The normal form is characterized by the fact that all monomi-
als of the polynomial are standard. A monomial is standard, whenever all of its
sorted brackets (sorted with respect to the some fixed order imposed on P) can
be arranged as rows of a matrix in such a way that the columns of the matrix are
non-decreasing. The ordering of P also induces a monomial order which orders
the set of monomials.1 Whenever there is a biggest monomial of the current rep-
resentation of the bracket polynomial that is non-standard, it can be replaced by a
bracket polynomial (taken from the Göbner bases) whose summands are all smaller
in the monomial order. Monomial orders have the property that they cannot have
infinite decreasing chains. Therefore, this process has to terminate. This is the
required normal form. It can be shown that the set of so-called van der Waerden
syzygies is a Gröbner basis for

〈
Irepeat ∪ Ialtern ∪ IGP

〉
(see again [103, 102]). One

can use not only van der Waerden syzygies but also other additional syzygies in
order to eliminate non-standard monomials as long as the monomial order is de-
creased. One can hope for better running times of the straightening algorithm.
This is done in [122] by White including a comparison of the performance of the five
variations given. Furthermore, if the bracket polynomial is antisymmetric in some
points of P, an optimized version of the algorithm is given in [85], called the dotted
straightening algorithm. According to [102, p. 117] it can be understood as a special
case of the straightening law in the superalgebra [51]. Considering antisymmetry
is closely related with Grassmann-Cayley algebra treated in the next chapter and
with multilinear Cayley factorization mentioned in Part III. Here in this context,
the straightening algorithm is treated in sake of completeness. It will not be used
within this thesis.

1In rank 3, it suffices to order the indeterminantes { [i, j,k] | i, j,k ∈ P and i < j < k }. One choses
the lexicographical order on these variables and the induced degree reverse lexicographic order
is the monomial order in question.
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Grassmann-Cayley Algebra

Grassmann-Cayley algebra is used to calculate with subspaces of Rn and therefore
also with subspaces of RPn−1 (see also Section 2.5). In the classical literature, this is
done by referring to the concrete coordinates of points in Rn. We will again use the
names of points to introduce the elements of a symbolic version of Grassmann-Cayley
algebra. We are interested in those elements of the algebra that can be interpreted
as being subspaces of Rn. The join operation allows for spanning a subspace with
some points. The meet operation can be interpreted as an intersection of subspaces.
We give formal definitions and afterwards interpretations in order to show that the
definitions meet the intuition of join and meet just described. To do so on a symbolic
level, relations are established in Theorem 5.13. Theorem 5.15 is a symbolic version
of the fact that in classical Grassmann-Cayley algebra “identical subspaces are scalar
multiples of each other”. This will be used as a motivation for different evaluations
in Chapter 6.
Classical introductions can be found e.g. in [126, 127, 4, 102] and also in [77,

Chap. 2.3]. In [77] and in [73] many additional references can be found. [4, 36]
provide many historical comments and give many credits to Grassmann for his Aus-
dehnungslehre (see [48, 49]). There are also many articles honoring Grassmann in
[90] celebrating the bicentennial birthday of Grassmann. Within this community
it is also provided a software package for Grassmann algebra calculations. It is
distributed with an introductory book (see [13]). Forder [44] can be understood
as giving an early restatement of Grassmann’s original ideas in modern language.
Furthermore, many examples are given within this book. In [77], in addition to
the conventional meet, also a total meet product is given by Li which is inspired by
the coproduct given in [51]. It is also given a more recent development to connect
Grassmann-Cayley algebra with Clifford algebra or geometric algebra. For an intro-
duction to the latter we refer to [89]. On page 49 it is stated that “Grassmann-Cayley
algebra and Clifford algebra are equivalent in the sense that anything expressed in
one of them can also be expressed in the other. Which one you prefer is probably
a matter of taste.” The foundations of geometric algebra are given by Hestenes
in [59] and first applications to projective geometry are given in [61]. Another
overview over related algebras is given in [60]. As one investigates literature using
Grassmann-Cayley algebra, one finds that one often calculates symbolically.
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Therefore we will use a symbolized version of this algebra and refer to it as
“Grassmann-Cayley algebra” as well when no confusion can arise. We saw another
symbolic treatment before in the case of bracket polynomials: here in every expres-
sion, the names of points in P are unbreakable symbols in the sense that it is never
referred to coordinates of the points. In the context of Grassmann-Cayley algebra,
this has the advantage that no coordinates for subspaces have to be defined. This
definition is a little cumbersome and needs an interpretation as determinants of
points given by coordinates with respect to a specific basis. This does not provide
geometric interpretation in the first place. The symbolic version captures geometric
meaning and emphasizes the nature of the computations done in this thesis. Fur-
thermore, we do not need to specify a certain basis. Of course, when interpreting a
formula, some points can be considered constituting a basis. However, interpreting
another formula, other points can be considered yielding a basis.
Another motivation for the symbolic treatment is that in the literature, the

bracket ring is considered to be a substructure of Grassmann-Cayley algebra. How-
ever, in a formal way of thinking, i.e. without using isomorphisms, this is not the
case when we use the symbolic version of the bracket ring given by White in [120]
and the classical definition of the Grassmann-Cayley algebra based on coordinates.
The symbolic version Λ(P) of the Grassmann-Caylay algebra given below allows

for this and is completely coordinate-free. It is called White module in [18]. The
elements of P play again the role of generic points in Rn. In order to see the beauty
and structure of the algebra, we will introduce it for general geometric rank n. In
rank 3, a lot of phenomena cannot be seen. The definition of Λ(P) depends on the
geometric rank n as well as on (the cardinality of) the set P. It uses the definition
of the bracket ring in rank n on P. It is used to ensure that any n + 1 points are
dependent. Furthermore, we will also give an interpretation of the elements of Λ(P)
for a concrete instance of points. This is done by inserting concrete homogenous
coordinates in brackets. In principle, this interpretation can be slightly extended
in order to achieve the classical version of Grassmann-Cayley algebra including
Grassmann coordinates as defined e.g. in [65]. In essence, this follows from letting
P be a n-elements set which is considered to be a basis of the vector space. This
approach is taken in [28].
The exposition given in the current chapter follows [37] by Doubilet, Rota and

Stein. The following references can be considered to emerge from a school which
goes back to Rota. The definitions in [37] are closely related to concrete coordinates.
However, almost every definition given there can be literally translated to names
of points instead of points in Rn. This makes the presentation symbolic in nature.
With their vocabulary, it is in essence (a symbolized version of) a non-standard
Cayley or Peano space (see also [4, 28]). This is a vector space together with a
so-called bracket, which is in fact a determinant there. The Peano space is called
non-standard, if the length of the bracket is not the same as the dimension of the
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vector space. This case is neglected in the exposition in [37]. In our case, the vector
space is replaced by a module with coefficients in BP. As it was mentioned in the
previous chapter, this symbolic approach using only point names or an alphabet was
already taken in [51, 68, 99] in order to treat generalizations of the bracket ring. In
[37], it is pointed out that it is the first time since the period between Grassmann
and Bourbaki that the so-called meet product is defined without referring to duality
of vector spaces. This feature is essential for the symbolized treatment given here
since dualizing refers explicitly to single coordinates of points (or to a fixed basis).
This makes it hard to treat points in a whole. [4] treats classical Grassmann-
Cayley algebra which is called double algebra there. It also provides much historical
background.
As mentioned before, the symbolic version of Grassmann-Cayley algebra given

here is in essence the White module considered in [18, 12] and also [11]. [18] in-
troduces the White module as a motivation for the more general superalgebras.
In [12] the White module is called G−n (P) on a negative alphabet P. Based on
a prejoin and a premeet a join and a meet are defined. The fact that the pre-
meet is well defined follows from the existence of a Hopf algebra structure. This
approach, which is inspired by the connection of the exterior product and Hopf al-
gebras, is also mentioned in [4]. We think that the White module can be considered
as an intermediate step in the passage from the classical version of Grassmann-
Cayley algebra and superalgebras. Another introduction in this context is given
in [57, 29]. We consider the passage to the White module as being a natural
concept in the same way as the symbolic treatment of the bracket ring is nat-
ural. It is less general than the supersymmetric theory but it is more in tra-
dition with the very geometric ideas given in [37]. Furthermore, in our defini-
tion we will not need to refer to a Hopf algebra. Instead we refer to the bracket
ring.
Observe that while trying to restate known properties of Grassmann-Cayley al-

gebra in a purely symbolic manner, one can also see the limitations of symbolic
computing in general. Or to state it differently, one sees in which parts of the the-
ory coordinates are involved. For example, as mentioned before, the definition of
the Hodge star operator for dualization and therefore presumably the concept of
duality relies on coordinates. Furthermore, in the symbolic formulation, one can
always see which parts of a formula (may) depend on which points in P. When
in classical theory it is easy to argue that entities representing the same subspace
in Rn differ only by a scalar factor, this gets more difficult in a symbolic version
(see Theorem 5.15). However, one gains information about this scalar factor and
sees that it can be given as (the quotient of) two SL-invariants on the points in
P.
Doing this, it turns out that in Grassmann-Cayley algebra calculations with pro-

jective objects are done exactly, i.e. taking scalar factors into account. Thus these
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5. A Symbolic Version of the Grassmann-Cayley Algebra

calculations can be regarded as being also valid for points in Rn. Nevertheless, the
interpretation of the elements as subspaces of Rn (or RPn−1) does not take scalar
multiples into account.

5.1. The Elements

The Grassmann-Cayley algebra has two operations: the join ∨ and the meet ∧. We
will first define the elements of the algebra as elements of a quotient space and treat
the two (compatible) operations later on.

Definition 5.1 (Elements of the Grassmann-Cayley Algebra of Rank n). Let P be
a finite set of names of points and let n be a natural number. The set of all strings
over P of length j is denoted Pj with P0 := {1}. Let BP = B(n)

P be the bracket ring
of rank n on P. For 1 ≤ k ≤ n let Λk(P) be the quotient of the free BP-module on
Pk and the submodule which contains all elements

∑
p1···pk∈Pk

αp1···pk p1 · · ·pk with
αp1···pk ∈ BP such that

∑

p1···pk∈Pk
αp1···pk [p1, . . . ,pk, z1, . . . , zn−k] ∈ BP∪̇{z1, ...,zn−k} (5.1)

is a representation of 0 in BP∪̇{z1, ...,zn−k} (for symbols z1, . . . , zn−k not in P). Λ(P)
is the graded direct sum

Λ(P) :=
n⊕

k=0

Λk(P).

Elements of Λ1(P) are called points.

The elements of Λk(P) can be regarded as incomplete brackets. Due to (5.1), its
elements equal each other, whenever the completed brackets equal each other for
any choice of completion. Thus, z1, . . . , zn−k are regarded as generic points with
respect to the elements in P.

Remark 5.2. Observe that whenever (5.1) equals 0, it equals 0 as well for letting
z1, . . . , zn−k be arbitrary names of points in P ∪̇ {z1, . . . , zn−k} due to the second
fundamental theorem of invariant theory.

The points, i.e. the elements of Λ1(P), can be easily interpreted, since they are
linear combination of the points in P: let P be a point configuration describing P
in Rn. We write ΦP (p) for the column in P that corresponds to p ∈ P. There is a
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5.1. The Elements

natural extension of the coordinatization ΦP defined on BP:
∑

p∈P
αp p ∈ Λ1(P) is mapped to

∑

p∈P
ΦP(αp) ΦP (p)

which is the same linear combination with coordinates substituted in the coefficients
(which are determinants) as well as in the points themselves. ΦP is well defined:
from

∑
p∈Pk αp p = 0 it follows that
∣∣∣∣∣∣
∑

p∈P
ΦP(αp) ΦP (p), z1, . . . , zn−1

∣∣∣∣∣∣
= 0 for all z1, . . . , zn−1 ∈ Rn.

This implies that
∑

p∈P ΦP(αp) ΦP (p) = 0 and ΦP is well defined. For future
reference, we remark that the same construction can be also done for the generic
coordinatization Φ.
The interpretation of Λ0(P) is easy, since it is the bracket ring BP. Further-

more, Λn(P) can also be identified with the bracket ring (see also [102, p. 96]): for
p1, . . . ,pn ∈ P we map p1 · · ·pn to [p1, . . . ,pn]. The multilinear extension of this
map is a well-defined injective map. Parts of ΦP can be generalized to more general
Λk(P):

Definition 5.3. For P, P and n as before, and for
∑

p1···pk∈Pk αp1···pk p1 · · ·pk ∈
Λk(P) we say that

ΦP


 ∑

p1···pk∈Pk
αp1···pk p1 · · ·pk


 = 0

if and only if
∑

p1···pk∈Pk
ΦP (αp1···pk) ·

∣∣∣ΦP (p1), . . . ,ΦP (pk), z1, . . . , zn−k
∣∣∣ = 0

holds for all z1, . . . , zn−k ∈ Rn.

The fact that Definition 5.3 is well-defined follows from the following remark:

Remark 5.4. Observe that with this terminology and e ∈ Λk(P) we have:

e = 0 in Λk(P) ⇐⇒ ΦP (e) = 0 for all P

due to Definition 5.1 and the second fundamental theorem of invariant theory (The-
orem 4.7).
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5. A Symbolic Version of the Grassmann-Cayley Algebra

For an interpretation of ΦP (e) = 0, for the time being we analyze

ΦP (p1 · · ·pk) = 0 with p1, . . . ,pk ∈ P. (5.2)

This equation must hold true also in the case that the coordinates of z1, . . . , zn−k are
chosen in such a way that they are linearly independent among themselves and not
in the space spanned by ΦP (p1), . . . ,ΦP (pk). Thus ΦP (p1 · · ·pk) = 0 if and only if
ΦP (p1), . . . ,ΦP (pk) are linearly dependent. In particular, if ΦP (p1), . . . ,ΦP (pk−1)
are linearly independent, it describes the subspace spanned by them. The condition
in (5.2) checks for ΦP (pk) lying in this subspace. Therefore, p1 · · ·pk−1 is meant
to describe the space spanned by the points p1, . . . ,pk−1 on a symbolic level. The
following definition of the join allows for extending this spanning property also to
points in Λ1(P). It is the linear extension of the juxtaposition as defined in the
following section.

5.2. The Join ∨
The join ∨ is a symbolic version of the exterior product. In any coordinatization, it
will be the exterior product. Though the traditional symbol for the exterior product
is ∧, most authors in the context of Grassmann-Cayley algebra use the symbol ∨.
This is due to geometric reasons, since it resembles more the symbol ∪.

Definition 5.5 (Join). For A = a1 · · ·ak and B = b1 · · ·bl in
⋃n
j=1 Pj the join ∨

is defined as the juxtaposition

AB := A ∨B :=

{
a1 · · ·akb1 · · ·bl if k + l ≤ n.
0 otherwise.

Furthermore,
1A := 1 ∨A := A =: A ∨ 1 =: A 1.

The general join ∨ is this associative map extended linearly to a binary operation
on Λ(P) and can also be written as juxtaposition.

The join is well defined since it vanishes on the defining submodules due to Re-
mark 5.2. By multilinearity of the join and the determinant, the following holds
also for general points a1, . . . ,ak ∈ Λ1(P):

ΦP (a1 · · ·ak) = 0⇐⇒
∣∣∣ΦP (a1), . . . ,ΦP (ak), z1, . . . , zn−k

∣∣∣ = 0

for all z1, . . . , zn−k ∈ Rn (5.3)
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and similarly for k = n it holds

ΦP (a1 · · ·an) =
∣∣∣ΦP (a1), . . . ,ΦP (an)

∣∣∣.

Remark 5.6 (The join is antisymmetric). Due to Definition 5.1 of the elements of
Λ(P) and due to Ialtern and Irepeat, the juxtaposition of elements, i.e. the join, is
antisymmetric.

5.3. The Meet ∧
Definition 5.7. For A = a1 · · ·ak and B = b1 · · ·bl in

⋃n
j=0 Pj with k+ l ≥ n the

meet ∧ is defined as

A ∧B =
∑

σ

sgn(σ)[aσ(1), . . . ,aσ(n−l),b1, . . . ,bl] aσ(n−l+1) · · ·aσ(k) (5.4)

where the sum is taken over all permutations σ of {1, . . . , k} such that σ(1) < σ(2) <
· · · < σ(n − l) and σ(n − l + 1) < σ(n − l + 2) < · · · < σ(k). Such permutations
are called shuffles of the (n − l, k − (n − l)) split of A. For k + l < n we define
A∧B := 0. The general meet ∧ is this map extended linearly to a binary operation
on Λ(P). The join has higher precedence than the meet.

The fact, that the meet is well-defined, follows from Theorem 5.9 and Remark 5.2.
Before stating it, we remark

Remark 5.8. There is a natural notion for brackets also for a1, . . . ,an ∈ Λ1(P).
It is the multilinear extension of the bracket. This is consistent with identifying
Λ0(P) with Λn(P). With this notion and by multilinearity, (5.4) is also valid for
a1, . . . ,ak, b1, . . . ,bl ∈ Λ1(P) and

ΦP
(
[a1, . . . ,an]

)
=
∣∣∣ΦP (a1), . . . ,ΦP (an)

∣∣∣

for any configuration P and for a1, . . . ,an ∈ Λ1(P). For future reference we also
state that due to the second fundamental theorem of invariant theory, we have

n+1∑

i=1

(−1)i[a1, . . . ,an−1,bi][b1, . . . ,bi−1,bi+1, . . . ,bn+1] = 0

in B(n)
P also for a1, . . . ,an−1, b1, . . . ,bn+1 ∈ Λ1(P) (compare Definition 4.6).
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Theorem 5.9 (Anticommutativity of the Meet). For A = a1 · · ·ak and B =
b1 · · ·bl in

⋃n
j=0 Pj it holds

A ∧B = (−1)(n−k)(n−l) B ∧A.

Proof (sketch). Just as it is done in [102, Thm. 3.2.2.], one can show by induction
on k + l that for z1, . . . , z2n−k−l not in P

∑

σ

sgn(σ)[aσ(1), . . . ,aσ(n−l),b1, . . . ,bl][aσ(n−l+1), . . . ,aσ(k), z1, . . . , z2n−k−l]

− (−1)(n−k)(n−l)∑

τ

sgn(τ)[bτ(1), . . . ,bτ(n−k),a1, . . . ,ak]

[bτ(n−k+1), . . . ,bτ(l), z1, . . . , z2n−k−l]

is a syzygy.

Remark 5.10. Due to the linearity of all operations involved, Theorem 5.9 holds also
for a1, . . . ,ak, b1, . . . ,bl ∈ Λ1(P).

Corollary 5.11. The meet is associative.

Proof. We follow the proof in [102, Thm. 3.2.2.]. Due to the linearity of the join
we consider A = a1, . . . ,ak, B = b1, . . . ,bl and C = c1, . . . , cm which are joins of
points in P with 1 ≤ k, l, m ≤ n. By Theorem 5.9, we have

A ∧ (B ∧ C ) = (−1)(n−k)(2n−l−m) (B ∧ C) ∧ A and
(A ∧ B) ∧ C = (−1)(n−k)(n−l) (B ∧ A) ∧ C. (5.5)

By the iterated application of Definition 5.7, one finds that both expressions are
identical: in the non-trivial case that k+ l+m ≥ 2n the expressions A ∧ (B ∧ C)
and (A ∧ B) ∧ C result both in

∑

τ

s̃gn(τ)[bτ(1), . . . ,bτ(n−m), c1, . . . , cm]

[bτ(n−m+1), . . . ,bτ(2n−m−k), a1, . . . ,ak] bτ(2n−m−k+1) · · ·bτ(l)

and the sum is taken over the generalized splits τ , i.e. such that the indices of the bs
are ordered inside each bracket and outside. A ∧ (B ∧ C) and (A ∧ B) ∧ C differ in
the value for s̃gn(τ): the value for the former is induced by sorting τ(1), . . . , τ(n−
m), τ(n−m+1), . . . , τ(2n−m−k), τ(2n−m−k+1), . . . , τ(l) whereas the latter
is induced by sorting τ(n−m+ 1), . . . , τ(2n−m− k), τ(1), . . . , τ(n−m), τ(2n−
m − k + 1), . . . , τ(l). Therefore both values differ by (−1)(n−k)(n−m) which shows
the claim.
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Remark 5.12. Identifying the elements in Λ0(P) with the ones in Λn(P) as indicated
before, one finds that for A ∈ Λk(P) and B ∈ Λl(P) holds

A ∧ B = A ∨ B when k + l = n. (5.6)

In what follows, we want to interpret the meet A∧B in the case for A = a1 · · ·ak
and B = b1 · · ·bl being joins of points in Λ1(P). For k + l = n + 1, the meet
a1, . . . ,ak, b1, . . . ,bl is a point. By Definition 5.7 and Theorem 5.9, these points
are linear combinations of the points a1, . . . ,ak as well as of the points b1, . . . ,bl.
Thus their meet can be regarded as lying in the intersection of both objects (compare
also Section 4.3.1). For the more general situation of k + l ≥ n + 1, intuition is
provided by the following theorem. Points c1, . . . , ck+l−n are defined that lie in
the intersection of both subspaces represented by A and B. Taking enough of them
results in spanning the subspace. Therefore A∧B can be considered as representing
the intersection of A and B. The exact formulation of this reads as:

5.4. Interpretations and Relations

Theorem 5.13. For A = a1 · · ·ak and B = b1 · · ·bl with a1, . . . ,ak, b1, . . . ,bl ∈
Λ1(P) and k + l ≥ n+ 1 let

c1 := a1 · · ·an−l an−l+1 ∧ B
c2 := a1 · · ·an−l an−l+2 ∧ B

...
ck+l−n := a1 · · ·an−l ak ∧ B.

It holds

[a1, . . . ,an−l, b1, . . . ,bl]
k+l−n−1 A ∧ B = c1 c2 . . . ck+l−n. (5.7)

Proof. We will proceed by induction on the number l− (n−k) of joins on the right-
hand side of (5.7), which is also the rank of the resulting space. The base step is
the case k + l = n + 1 which was treated before. We give a short overview of the
(quite lengthy) inductive step: the right-hand side will be expanded which can be
shown to be identical with the left-hand side. Therefore the inductive hypothesis
will be applied to the first part of the right-hand side of (5.7). Performing the last
join will result in a linear combination of elements ai1 · · ·aik+l−n (i1, . . . , ik+l−n ∈
{1, . . . , k}). The coefficients of this linear combination can be reduced to the ones
emerging from applying Definition 5.7 to the left-hand side of (5.7).
We apply the inductive hypothesis to a1 · · ·ak−1 and B in order to give an ex-

pression for c1 c2 . . . ck+l−n−1 and use Remark 5.8 on the validity of (5.4). This
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reduces the right-hand side of (5.7) to

[a1, . . . ,an−l, B]k+l−n−2 (a1 · · ·ak−1 ∧ B) ∨ (a1 · · ·an−l ak ∧ B)

= [a1, . . . ,an−l, B]k+l−n−2

∑

σ∈R{1, ...,k−1}
τ∈R{1, ...,n−l,k}

(
sgn(σ) sgn(τ)[aσ(1), . . . ,aσ(n−l), B][aτ(1), . . . ,aτ(n−l), B]

aσ(n−l+1) · · ·aσ(k−1) aτ(k)

)

if we use [∗, . . . , ∗, B] as a shortcut for [∗, . . . , ∗,b1, . . . ,bl] and R{i1,, ...,it} denotes
all permutations of {i1, , . . . , it} that indicate (n− l, t− (n− l)) splits of ai1 · · ·ait .
Since the join is antisymmetric, there are coefficients απ such that we can rewrite
the summation part of the above equation:

∑

σ∈R{1, ...,k−1}
τ∈R{1, ...,n−l,k}

(
sgn(σ) sgn(τ)[aσ(1), . . . ,aσ(n−l), B][aτ(1), . . . ,aτ(n−l), B]

aσ(n−l+1) · · ·aσ(k−1) aτ(k)

)

=
∑

π∈R{1, ...,k}
απ aπ(n−l+1) · · · aπ(k).

(5.8)

We fix a π ∈ R{1, ...,k} and determine απ. In order to do so, we have to identify all
pairs (σ, τ) with σ ∈ R{1, ...,k−1} and τ ∈ R{1, ...,n−l,k} such that the sets

Sσ,τ :=
{
σ(n− l + 1), . . . , σ(k − 1), τ(k)

}
and Pπ :=

{
π(n− l + 1), . . . , π(k)

}

are identical. From now on let σ, τ and π always denote elements in R{1, ...,k−1},
R{1, ...,n−l,k} and R{1, ...,k}, resp. Let sσ,τ be the signature of the permutation that
sorts (

σ(n− l + 1), . . . , σ(k − 1), τ(k)
)
. (5.9)

This sorting results in the order of (π(n− l+ 1), . . . , π(k)) which is already sorted,
since π is a split (see Definition 5.7). With

βσ := sgn(σ) [aσ(1), . . . ,aσ(n−l), B] and

γτ := sgn(τ) [aτ(1) , . . . ,aτ(n−l), B]
(5.10)

we have
απ =

∑

Sσ,τ =Pπ
sσ,τ · βσ · γτ . (5.11)
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In order to determine απ, we assume that σ and τ are given such that

Sσ,τ = Pπ. (5.12)

We distinguish two cases:
Case 1: Assume k ∈ Pπ. Since π is ordered within the parts of the split, we have
π(k) = k. Furthermore, k cannot be in the range of σ and due to (5.12) we have
τ(k) = k and τ = id. Again (5.12) implies

{
σ(n− l + 1), . . . , σ(k − 1)} = {π(n− l + 1), . . . , π(k − 1)

}
and

{
σ(1), . . . , σ(n− l)} = {π(1), . . . , π(n− l)

}
.

Since π and σ are ordered within the parts of the splits, they coincide on {1, . . . , k−
1}. Therefore we have

απ = 1 · sgn(π) · 1 [aπ(1), . . . ,aπ(n−l), B] [a1, . . . ,an−l, B]

due to (5.11) and (5.10).
Case 2: Assume k /∈ Pπ. Since π is a split, its range can be divided in four parts as
given by

π(1), . . . , π(J)︸ ︷︷ ︸
∈{1, ...,n−l}

, π(J + 1), . . . ,

=k︷ ︸︸ ︷
π(n− l)︸ ︷︷ ︸

∈{n−l+1, ...,k}

, π(n− l + 1), . . . , π(j)︸ ︷︷ ︸
∈{1, ...,n−l}

, π(j + 1), . . . , π(k)︸ ︷︷ ︸
∈{n−l+1, ...,k−1}

with some 0 ≤ J ≤ n− l − 1 and n− l + 1 ≤ j ≤ k. Let

I :=
{
π(n− l + 1), . . . , π(j)

}
.

Observe that I cannot be the empty set since k /∈ Pπ and {π(n− l + 1), . . . , π(j)}
alone does not contain enough elements to constitute Pπ. Due to (5.12) and due to
the range of τ there has to be a

x ∈ I such that τ(k) = x.

The range of σ and the fact that σ is ordered within the parts split this imply that
the following identities on sets completely determine σ and τ :

{
π(j + 1), . . . , π(k)

}
=

{
σ(j), . . . , σ(k − 1)

}
,

I \ {x} =
{
σ(n− l + 1), . . . , σ(j − 1)

}
,

{
σ(1), . . . , σ(n− l)

}
=

{
π(1), . . . , π(n− l − 1)

}
∪ {x},

{
τ(1), . . . , τ(n− l)

}
=

{
1, . . . , n− l

}
\ {x} ∪ {x}.
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Let y ∈ {n − l + 1, . . . , j} be the preimage of x under π: π(y) = x. This eases
the description of I \ {x}. In order to determine sσ,τ one has to sort the following
sequence (see (5.9)):

(
σ(n− l + 1), . . . , σ(k − 1), τ(k)

)

=
(
π(n− l + 1), . . . , π(y − 1), π(y + 1), . . . , π(k), τ(k) = x = π(y)

)
.

This implies
sσ,τ = (−1)k+y.

Comparing the sorting of complete sequences given by σ and π yields

βσ = sgn(π) · (−1)y+k [aπ(1), . . . ,aπ(J), aπ(J+1), . . . ,aπ(n−l−1), ax=π(y), B].

To determine γτ one has to sort the sequence

π(1), . . . , π(J), π(n−l+1), . . . , π(y−1), π(y+1), . . . , π(j), k, x = π(y) = τ(k).

It can be ordered with a permutation of signature (−1)y+j ·ε. Here ε is the signature
obtained by sorting

π(1), . . . , π(J), π(n− l + 1), . . . , π(j).

Therefore, we obtain

γτ = (−1)y+j · ε
[aπ(1), . . . ,aπ(J), aπ(n−l+1), . . . ,aπ(y−1), aπ(y+1), . . . ,aπ(j), ak, B].

Due to (5.11), we can give the complete coefficient:

απ = sgn(π) · (−1)j · ε
∑

n−l+1 ≤ y ≤j
(−1)y

[aπ(1), . . . ,aπ(J), aπ(J+1) , . . . , aπ(n−l−1), aπ(y), B]

[aπ(1), . . . ,aπ(J), aπ(n−l+1),aπ(y−1), aπ(y+1), . . . ,aπ(j), ak, B]

= sgn(π) · (−1)j · ε · (−1)j

[aπ(1), . . . ,aπ(J), aπ(J+1) , . . . , aπ(n−l−1), ak=π(n−l), B]

[aπ(1), . . . ,aπ(J), aπ(n−l+1), . . . , aπ(j−1), aπ(j), B]

= sgn(π)

[aπ(1), . . . , aπ(n−l), B]

[a1, . . . , an−l, B]
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where the first identity is due to IGP in Definition 4.6 and the second identity is
due to the definition of ε.
In both cases and due to (5.8), we have that the right-hand side of (5.7) now equals

=[a1, . . . ,an−l, B]k+l−n−1

∑

π∈T{1, ...,k1}

sgn(π)[aπ(1), . . . ,aπ(n−l), B] aπ(n−l+1) · · ·aπ(k−1)

=[a1, . . . ,an−l, B]k+l−n−1 A ∧ B

due to the definition of A ∧ B.

Remark 5.14. Suppose A = a1 · · ·ak and B = b1 · · ·bl with a1 · · ·ak, b1 · · ·bl ∈
Λ1(P). Definition 5.7 and Theorem 5.9 together with Remark 5.8 give representa-
tions for A ∧ B that are linear combinations of either a’s or b’s. In [77, p. 68 f.]
there are given representations where a’s and b’s can be mixed. This gives new
representations starting with rank 4.

In classical Grassmann-Cayley algebra there exists a statement which can be
summarized informally as “identical subspaces are scalar multiples of each other”.
The following theorem gives a symbolic version of this statement.

Theorem 5.15. Suppose there are given A,B ∈ Λ(P) such that a multiple of them
can be given as joins of points: suppose that αA = a1 · · · ak 6= 0 and β B =
b1 · · ·bk 6= 0 with α, β ∈ BP \ {0} and a1, . . . ,ak, b1, . . . ,bk ∈ Λ1(P) as well as
0 ≤ k ≤ n. For 1 ≤ k ≤ n− 1 assume furthermore that

a1 · · ·ak bi = 0 for all 1 ≤ i ≤ k and

b1 · · ·bk ai = 0 for all 1 ≤ i ≤ k.

There are λ, µ ∈ BP \ {0} such that

λ A = µ B.

Remark 5.16. The above theorem should be read as: Whenever A and B represent
the same subspace, they are related be multiplicative λ and µ in BP. Furthermore,
λ and µ are indeed elements of BP, i.e. they SL-invariant on a coordinate level. In
addition, it must be possible to obtain µ B from λ A by essentially only applying
Grassmann-Plücker relations.

Proof of Theorem 5.15. The statement is trivial for k ∈ {0, n} and we can assume
1 ≤ k ≤ n− 1 from now on. The overall strategy for the proof can be described as
showing that some suitable λ and µ are SL-invariant polynomials (in the sense of
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Definition 4.8) and then to use a fundamental theorem of invariant theory. There-
fore, it is necessary to have control over λ and µ. However, the λ′ and µ′ we are able
to give directly are not SL-invariant, but their ratio λ′

µ′ is. So the first part of the
proof is dedicated to giving polynomials in coordinats and showing that their ratio
is SL-invariant. The second part of the proof can be considered as giving a rational
version of the first fundamental theorem. It provides the existence of λ, µ ∈ BP\{0}.
Finding λ′ and µ′ if α = 1 = β: for now, we are looking for polynomials λ′ and µ′

only depending on the generic coordinates of a1, . . . ,ak, b1, . . . ,bk such that

λ′ · Φ ( A ∨ z1 · · · zn−k) = µ′ · Φ ( B ∨ z1 · · · zn−k) (5.13)

(for z1 · · · zn−k not in P, compare Definition 5.1) and λ′

µ′ is SL-invariant. It trivially
holds in BP ∪̇ {z1, ..., zn−k} that

[b1, . . . ,bk, z1, . . . , zn−k][a1, . . . ,ak, z1, . . . , zn−k]

= [a1, . . . ,ak, z1, . . . , zn−k][b1, . . . ,bk, z1, . . . , zn−k].

Our strategy is to show that there are polynomial functions λ′ and µ′ only depending
on the generic coordinates of a1, . . . ,ak, b1, . . . ,bk such that

λ′

µ′
=

Φ
(
[b1, . . . ,bk, z1, . . . , zn−k]

)

Φ
(
[a1, . . . ,ak, z1, . . . , zn−k ]

) . (5.14)

In particular, λ′

µ′ is SL-invariant since the right-hand side of (5.14) is. Now for
the concrete values of λ′ and µ′: Since a1 · · · ak 6= 0, there exist row indices s =
{s1, . . . , sk} ⊂ {1, . . . , n} such that the subdeterminant Φ(a1, . . . , ak | s) consisting
of the rows s of

(
Φ(a1), . . . ,Φ(ak)

)
is a non-zero polynomial. The notation is

borrowed from [51]. We let

λ′ := Φ(b1, . . . , bk | s) and µ′ := Φ(a1, . . . , ak | s).

We show that

λ′ · Φ
(
[a1, . . . ,ak, z1, . . . , zn−k]

)
= µ′ · Φ

(
[b1, . . . ,bk, z1, . . . , zn−k]

)
. (5.15)

It is a task of linear algebra to show that this equation holds for all values, i.e. to
show for any configuration P and for any z1, . . . , zn−k ∈ Rn that

∣∣∣ΦP (b1), . . . , ΦP (bk) | s
∣∣∣ ·
∣∣∣ΦP (a1), . . . ,ΦP (ak), z1, . . . , zn−k

∣∣∣

=
∣∣∣ΦP (a1), . . . , ΦP (ak) | s

∣∣∣ ·
∣∣∣ΦP (b1), . . . ,ΦP (bk), z1, . . . , zn−k

∣∣∣ (5.16)
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where
∣∣ΦP (∗), . . . , ΦP (∗) | s

∣∣ denotes the corresponding subdeterminant. We fix
a point configuration P . We can assume that the set {ΦP (a1), . . . , ΦP (ak)} is
linearly independent (otherwise (5.16) holds trivially). So due to a1 · · ·ak bi = 0
(for all 1 ≤ i ≤ k) there are scalars γi,j ∈ R (1 ≤ i, j ≤ k) such that

ΦP (bi) =
k∑

j=1

γi,j ΦP (aj)

and we have

∣∣∣ΦP (b1), . . . , ΦP (bk) | s
∣∣∣ =

∣∣∣∣∣∣∣

γ1,1 . . . γ1,k
...

...
γk,1 . . . γk,k

∣∣∣∣∣∣∣
·
∣∣∣ΦP (a1), . . . , ΦP (ak) | s

∣∣∣

and therefore also
∣∣∣ΦP (b1), . . . ,ΦP (bk), z1, . . . , zn−k

∣∣∣

=

∣∣∣∣∣∣∣

γ1,1 . . . γ1,k
...

...
γk,1 . . . γk,k

∣∣∣∣∣∣∣
·
∣∣∣ΦP (a1), . . . ,ΦP (ak), z1, . . . , zn−k

∣∣∣

for all z1, . . . , zn−k ∈ Rn Substituting both identities in (5.16) and using (5.14)
implies (5.13).

Finding λ′ and µ′ in the general case: in the case that α 6= 1 or β 6= 1 it is not hard
to see that

Φ(a1, . . . , ak | s) = Φ(α) · Φ(A | s) and

Φ(b1, . . . , bk | s) = Φ(β) · Φ(B | s)
where the definition of Φ(∗ | s) is linearly extended and s is determined by the
previous case in which we had α = 1 = β. Substituting this and αA = a1 · · · ak
and β B = b1 · · ·bk into (5.15) gives

Φ(β) · Φ
(
B | s

)
· Φ(α) · Φ

(
A ∨ z1, . . . , zn−k

)

= Φ(α) · Φ
(
A | s

)
· Φ(β) · Φ

(
B ∨ z1, . . . , zn−k

)

which due to α 6= 0 6= β implies (5.13) for

λ′ := Φ(B | s) and µ′ := Φ(A | s).
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5. A Symbolic Version of the Grassmann-Cayley Algebra

Furthermore, λ
′

µ′ is SL-invariant since we can rewrite the SL-invariant

Φ(b1, . . . , bk | s)
Φ(a1, . . . , ak | s)

=
Φ(β)

Φ(α)
· Φ(B | s)

Φ(A | s) .

Since the first factor on the right-hand side is SL-invariant, the second one has to
be as well.

Finding λ and µ via a rational version of the first fundamental theorem: we use the
fact, that any SL-invariant ratio of polynomials (e.g. λ

′

µ′ ) can be written as the ratio
of two SL-invariant polynomials. To see this we follow [16, Chap. 1, Prop. 1]. A
first verification of this statement was found in [91, Thm. 3.3]. Here the setup is
much more general. In the situation given, a short proof can be obtained as follows:
since R[xij ] is factorial, there are λ′′ and µ′′ in R[xij ] that are relative prime and

λ′′

µ′′
=
λ′

µ′
.

In the following, we introduce a notion and employ that it denotes a group action.
Therefore, let M ∈ SL(R, n) and let λ ∈ R[xij ] and consider the xijs as entries of
a matrix X. Now insert the entry at position (i, j) of M · X in λ instead of xij .
The resulting polynomial is denoted by M ∗ λ. With this notion and due to the
SL-invariance of λ

′

µ′ , we have also SL-invariance for the fully canceled ratio:

λ′′

µ′′
=
M ∗ λ′′
M ∗ µ′′ which implies (M ∗ µ′′) · λ′′ = (M ∗ λ′′) · µ′′

for every M ∈ SL(R, n). Since λ′′ does not divide µ′′, it divides M ∗ λ′′. Due to the
fact that M ∗ λ′′ and λ′′ have the same degree, d(M) := M∗λ′′

λ′′ does only depend on
M . We know from linear algebra that M · (M ′ ·X) = (M ·M ′) ·X for X as before
and M, M ′ ∈ SL(R, n). We obtain

(M ·M ′) ∗ λ′′ = M ∗ (M ′ ∗ λ′′) which implies d(M ·M ′) = d(M) · d(M ′). (5.17)

This is the defining equation for d being a character (since λ′′ 6= 0 due to the
definition of λ′ 6= 0). d(M) := M∗λ′′

λ′′ can be read as giving a rational definition of
d in terms of the entries of M . This definition can be also applied to elements of
GL(R, n). Obviously (5.17) is still valid as an identity of polynomials and d(M)
can be understood as an character of GL(R, n). Now the sole theorem in [16,
Chap. 2, Sec. 4] tells us that every rational abelian character of GL(R, n) is an
integer exponent of the determinant. Therefore we have d(M) = det(M)g for some
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5.5. Grassmann-Cayley Algebra Expressions

g ∈ Z whenever M ∈ GL(R, n) and

d(M) = 1 if M ∈ SL(R, n).

Due to the definition of d, the polynomial λ′′ is an SL-invariant. Due to symmetry,
the same applies for µ′′.
Now the (regular) first fundamental theorem of invariant theory applied to λ′′

and µ′′ implies that there are λ and µ ∈ BP such that

Φ(λ) = λ′′ and Φ(µ) = µ′′.

The existence of these λ and µ together with (5.13) completes the proof.

5.5. Grassmann-Cayley Algebra Expressions

The following definition is taken from [102, p. 98].

Definition 5.17. Any element of Λ(P) that can be written as an expression only
containing the symbols ∨, ∧ and points in P is called a (simple) Grassmann-Cayley
algebra expression. Whenever this expression is an element of Λ0(P) or Λn(P), it is
called closed (simple) Grassmann-Cayley algebra expression or (closed) synthetic
construction. A formula for a (simple) Grassmann-Cayley algebra expression in
Λ1(P) can also be called construction.

Observe that the simple Grassmann-Cayley algebra expressions are considered
to represent subspaces. Theorem 5.13 and Theorem 5.15 imply that whenever A
and B are simple Grassmann-Cayley algebra expressions that represent the same
subspace, there are λ, µ ∈ BP such that

λA = µB.

Furthermore, observe that in each step of the evaluation, any summand has the
same number of occurrences of any element in P. In addition, this evaluation can
only produce coefficients in Z. We summarize:

Theorem 5.18. Each closed simple Grassmann-Cayley algebra expression is a mul-
tihomogenous bracket polynomial with integer coefficients.

Remark 5.19. The classical version of the Grassmann-Cayley algebra is the one
where |P| = n, say P = e1, . . . , en, and the coefficients for linear combinations are
allowed to be in the ground field R. In this case, any expression in the resulting
algebra can be uniquely written as linear combinations of the ordered words on P.
This is the way of coordinating objects in the classical Grassmann-Cayley algebra.

59



5. A Symbolic Version of the Grassmann-Cayley Algebra

The join can easily be performed in the framework of coordinates. For the meet,
dualization allows for deriving a formula that is well-structured on the level of
coordinates see e.g. [95].
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6. Evaluations

In the present chapter we want to emphasize the role of different evaluations of
Grassmann-Cayley algebra expressions. We will demonstrate the effects of different
strategies for evaluation with the help of the example given by the construction
underlying Pascal’s theorem. We will promote a graphical evaluation technique
which can be considered as the technique of tensor diagrams due to Blinn. In
addition, we will introduce a notation which, in the cases considered within this
thesis, can encode the choices, which done in the evaluation, in a single graphic.
This notation is illustrated with an example taken from Part III.
From now on, we will work in rank 3, we assume P to be a finite set of names

of points and we will identify Λ0(P) with Λ3(P). In principle, in rank 3, a closed
synthetic construction can always be evaluated by essentially knowing that

ab ∧ cd = [a, c,d]b− [b, c,d]a = [a,b,d]c− [a,b, c]d (6.1)

for a,b, c,d ∈ Λ1(P) (compare also (2.8)). However, we know from Chapter 5
on Grassmann-Cayley algebra that the elements of Λ(P) may have many different
representations. When doing calculations in the Grassmann-Cayley algebra, some
representations are more useful than others. For example, let p,q, r be any (possibly
dependent) points in Λ1(P). In the case that [p,q, r] = (p∨q)∧r = 0, verifying this
identity may be nontrivial and can be done e.g. by using the straightening algorithm.
The use of different representations can be illustrated as follows: Theorem 5.15 tells
us that if [p,q, r] = 0, there are λ, µ ∈ BP \ {0} such that

λpq = µpr.

So if those λ and µ were known beforehand, [p,q, r] = 0 could be seen much more
easily since it would hold

λ [p,q, r] = µ [p, r, r] = 0

which would imply [p,q, r] = 0, since λ 6= 0 and BP has no zero divisors. In general
it is not at all obvious how to find suitable representations. However, whenever p,q
and r are simple Grassmann-Cayley algebra expressions, we have some freedom in
evaluating them. The different evaluations give many different representations of
the same object. It is obvious that the anticommutativity of the meet allows for
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6. Evaluations

(at least) two different evaluations of the meet given in (6.1). Choosing a suitable
one will sometimes ease the whole calculation. And there is even more freedom in
choosing a concrete evaluation. We will illustrate different phenomena with the help
of three different evaluations of the construction underlying Pascal’s theorem (see
also Section 3.10 and the non-gray part of Figure 6.1). This will establish a symbolic
version of the already diagrammatically notion of tensor diagrams introduced by
Blinn in [7, 8, 6] incorporated in [96]. These references follow in their definitions
more the lines of non-symbolic tensors as given in [55, 82]. The capacity of tensor
diagram evaluations is in principal the same as the basic expansions in [77] given by
Li. We will argue that the diagrammatically notion of tensor diagrams is intuitive
and symmetric in the sense that no root of the calculation tree has to be specified.
This is an advantage of the diagram notion which is not present in this clear manner
in the formalism of basic expansions given in [77]. There it is also brought up the
problem of binomial evaluations: The author states that in all of his experiments, his
evaluation algorithm achieves binomial evaluations whenever the result is binomial.
I.e. in all steps of the algorithm, the expressions stays binomial. In [77, 80] a whole
Cayley expansion theory is given. The notion of Cayley bracket evaluations seems
to be similar to the exposition in terms of tensor diagrams given here. However,
without a graphical representation, the computations can be considered being less
obvious. In the present chapter, we give a notion to indicate evaluations in terms
of tensor diagrams. This notion is appropriate especially when the expansions are
binomial (or trinomial, in the case that the result is trinomial). It is used in Part III
of the thesis in order to give concise certificates for the evaluations stated there. The
induced calculations have the same property as the executions of Li’s algorithm: the
intermediate steps do not have more summands than the result (perhaps except for
the computation in Section 17.1 which is a special case since integers are constructed
and projective addition is used).

6.1. Evaluations of Pascal’s Construction

In Grassmann-Cayley algebra, the collinearity of the three constructed points x, y
and z in Pascal’s construction (see Section 3.10) in a given point configuration is
expressed by

[ab ∧ de, cd ∧ fa, ef ∧ bc] = (ab ∧ de)(cd ∧ fa)(ef ∧ bc) (6.2)

vanishing in the coordinatization. Due to (3.12) we expect (6.2) to be (a scalar
multiple of)

[a, c, e] [a,d, f ] [b, c, f ] [b,d, e]− [a, c, f ] [a,d, e] [b, c, e] [b,d, f ]. (6.3)
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6.1. Evaluations of Pascal’s Construction

Figure 6.1.: Two Pascal lines for a conic.

6.1.1. First Evaluation

In order to reduce the number of summands after expanding the first two parts of
(6.2) it seems to be a good idea to evaluate it like

([a,d, e]b− [b,d, e]a) ([c,d,a]f − [c,d, f ]a) (ef ∧ bc).

This way, some summands will vanish. By evaluating ef ∧bc to [e,b, c]f− [f ,b, c]e,
(6.2) expands to

− [b, f , e][a,d, e][c,d,a][f ,b, c]− [b,a, f ][a,d, e][c,d, f ][e,b, c]

+ [b,a, e][a,d, e][c,d, f ][f ,b, c] + [a, f , e][b,d, e][c,d,a][f ,b, c]. (6.4)

This is not a representation we expected. We could straighten (6.3) as well (6.4)
and compare both expressions. We will not do this and try another evaluation.

6.1.2. Symmetric (Classical) Evaluation

We chose to evaluate (6.2) as

([a,d, e]b− [b,d, e]a) ([c, f ,a]d− [d, f ,a]c) ([e,b, c]f − [f ,b, c]e).

Here no summand vanishes by repeated points a, b, c, d, e, f in the expansion of
the above joins. This evaluation is symmetric in the sense that any point appears
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exactly once outside the brackets. Expanding this evaluation gives

[b,d, f ][a,d, e][c, f ,a][e,b, c]− [b,d, e][a,d, e][c, f ,a][f ,b, c]

− [b, c, f ][a,d, e][d, f ,a][e,b, c] + [b, c, e][a,d, e][d, f ,a][f ,b, c]

− [a,d, f ][b,d, e][c, f ,a][e,b, c] + [a,d, e][b,d, e][c, f ,a][f ,b, c]

+ [a, c, f ][b,d, e][d, f ,a][e,b, c]− [a, c, e][b,d, e][d, f ,a][f ,b, c]

which directly simplifies to

= [a, c, f ][a,d, e][b, c, e][b,d, f ]− [a, c, e][a,d, f ][b, c, f ][b,d, e], (6.5)

since a lot of identical summands are produced. This is exactly (6.3) with an
additional factor of −1. In particular, we know that (6.4) is identical to (6.5) in
BP, i.e. one can be transferred to the other one by adding some Grassmann-Plücker
relations. With the evaluation just seen a short representation can be obtained but
in between the expression grows exponentially.

6.1.3. Evaluation by Rerooting the Expression

Another possibility to evaluate (6.2) is applying Remark 5.12 which states that for
elements A ∨ B ∈ Λn(P), the join can be replaced by the meet. Furthermore, the
meet is associative. This implies:

(ab ∧ de)(cd ∧ fa)(ef ∧ bc) (6.6)
=
(
(ab ∧ de)(cd ∧ fa)

)
∧
(
ef ∧ bc

)
(6.7)

=
((

(ab ∧ de)(cd ∧ fa)
)
∧ ef

)
∧ bc (6.8)

=
([

(ab ∧ de), e, f
]
(cd ∧ fa)−

[
(cd ∧ fa), e, f

]
(ab ∧ de)

)
∧ bc

=
[
(ab ∧ de), e, f

][
(cd ∧ fa),b, c

]
−
[
(cd ∧ fa), e, f

][
(ab ∧ de),b, c

]

= [a,b, e][d, e, f ][c, f ,a][d,b, c]− [c,d, f ][a, e, f ][b,d, e][a,b, c]. (6.9)

A remarkable property of this evaluation is that it stays binomial during all of the
calculation. Furthermore, in contrast to many evaluations in the classical literature,
the evaluation starts not in the first part of the underlying construction (which is
e.g. evaluating (ab∧de)) but leaves points unevaluated. This allows for evaluating
it in two different ways in the last step. The resulting bracket polynomial differs in
its representation from the one in (6.5). However, exchanging the points b and d
lets them coincide. This implies that

(ab ∧ de)(cd ∧ fa)(ef ∧ bc) = (ad ∧ be)(cb ∧ fa)(ef ∧ dc)

64



6.1. Evaluations of Pascal’s Construction

and in any coordinatization, the three gray points are collinear as well (see Fig-
ure 6.1). In fact, there is much more underlying symmetry, since the condition for
six points lying on a common conic is symmetrical. In each instance, the lines ob-
tained by permuting the points (6.2) are called Pascal lines. In fact it is a classical
result that there are 60 of them. They are again related an meet in bundles in
Steiner points (see [58, 100] and more recently [23]).

6.1.4. Diagram Representations

We illustrate the above calculations by giving expression trees. This helps to also
access general evaluations more easily. (6.6) and (6.2) are read as

af

⋁ 

dc

⋁ 

⋀ 

ed

⋁ 

ba

⋁ 

⋀ 

⋁ 

cb

⋁ 

fe

⋁ 

⋀ 

(6.7) and (6.8) can be read as

fe

⋁ 

af

⋁ 

dc

⋁ 

⋀ 

ed

⋁ 

ba

⋁ 

⋀ 

⋁ 

⋀ 

cb

⋁ 
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6.2. Rerooting in Diagrams

We see, that the expression tree as a topological structure is not changed. However,
at each vertex, the order of the neighboring vertices has a meaning and does matter.
One can argue inductively and traveling along edges, that the expression tree can
be rerooted at any inner vertex ⋁ or ⋀ . If the order around inner vertices is
maintained, this will result in an equivalent Grassmann-Cayley expression: since we
are in rank 3 and 3 is an odd number, we have that

p ∨ q ∨ r = q ∨ r ∨ p and P ∧Q ∧R = Q ∧R ∧P

for all p, q, r ∈ Λ1(P) and P, Q, R ∈ Λ2(P). This implies that the rooting can be
completely omitted. What matters, is the topological structure of the evaluation
tree including the cyclic order around the inner vertices. Therefore, the previous
diagram can by symmetrized as

c d

⋁ 

e

f

⋁ 

bc

⋁ 

⋀ 

a

b ⋁ 

d

e

⋁ 

⋀ ⋁ 

⋀ 

f

a⋁ 

It encodes the same Grassmann-Cayley expression as the diagrams given before.
The representation of Grassmann-Cayley expressions as expression trees has the
advantage that it is invariant under rerooting in contrast to the underlying geometric
construction.

6.3. Splitting Diagrams along Inner Edges and Notation

We call an edge an inner edge, whenever it is an edge between inner nodes. Any
inner edge has the shape
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A

B

b

a

⋀ 

⋁ 
= B ∧ ab ∧A (6.10)

for some a, b ∈ Λ1(P) and A, B ∈ Λ2(P). We know that

ab ∧A = [a,A]b− [b,A]a

(where [a,A] is a shorthand for a∧A if a ∈ Λ1(P) and A ∈ Λ2(P)) which establishes
a general rule for the evaluation of inner edges as given in (6.10) to

A

B

b

a

A

B

b

a- (6.11)

Here different connected components of the same summand are regarded as related
by multiplication. The equality of (6.10) and (6.11) is a symbolic versions of the
so-called ε-δ rule for graphical calculations with tensors as introduced e.g. in [7, 96].
In this form originating from Blinn. We will refer to it by saying splitting a diagram
along a given edge. Observe that for correctly splitting along an edge given in
(6.10), the endpoints of new edges introduced in (6.11) have to be placed at the
position of the endpoints of old edges at the nodes labeled with a, b, A and B. We
have to do this since we want to obtain a correct cyclic order of arrows around the
nodes a, b, A and B. In [7, 96], the nodes ⋁ and ⋀ are so-called ε-tensors.
Both of them are denoted by a small black dot in [7, 96]. The distinction between
points and lines in our setup is done by coloring the nodes. In [7, 96] the edges
are directed and it is distinguished between covariant and contravariant indices.
Outgoing arrows (with respect to one node) are called covariant where incoming
arrows are called contravariant. So point-like nodes have only covariant arrows (or
indices) and line-like nodes have contravariant ones. We adjust to this notation
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by directing the edges pointing from white nodes to black nodes. This might be
convenient for readers familiar with this notion. Nevertheless, we can drop the
symbols inside the inner nodes and use and instead of ⋁ and ⋀ .

With these notions, the three evaluations of Pascals construction can be summa-
rized in

c d

e

f

bc

a

b

d

e
f

a

Splitting along the red edges correspond to the first evaluation, splitting along green
edges to the second and splitting along the blue edges is the first step of the third
evaluation. The next step in the third evaluation is now splitting along the blue
edges in the result:

c d

e

f

bc

a

b

d

e
f

a

c d

e

f

bc

a

b

d

e
f

a

- (6.12)
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We say that Classical evaluations, like the first and the second evaluations of
Pascal’s construction, distinguish a single inner node as root and then evaluate the
diagram from outside to inside. More precisely, after the specification of a root, it
is split only along edges that enter a white node . Here entering is understood
as being contained in a directed path from the leave to the distinguished root.
Therefore, any classical evaluation can be summarized in a single diagram with
highlighted edges. The highlights correspond to the splits and the order of splittings
does not really matter. More general, i.e. non-classical evaluations may not be
summarized that easily. However, the additional degree of freedom in evaluating
may lead to binomial evaluations.
With the help of some conventions we can also summarize both steps of the third

evaluation in a single diagram:

c d

e

f

bc

a

b

d

e
f

a

a1!b

a3

a2

b1

b2

It should be read as follows: start splitting along the edge a1. In a generic general
case this will result in two summands. This is also true for the actual edge a1 given
here. Therefore it is labeled with an arrow → and a letter b. This means that
in the first summand, one should continue splitting edges whose labels start with
an a. In the second summand one should start with the newly introduced letter
b and split along the edge b1. So in the case of splitting edge a1→b in the first
step one splits along a2 in the first induced summand and along b1 in the second
induced summand. The edges, where the label does not contain an arrow →, have
the property that after splitting along them one of the induced summands trivially
vanishes. After splitting along the edge a1 the diagram essentially looks like (6.12).
After all steps it looks like
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c d

e

f
bc

a
b

d
e

f

a

c d

e

f
bc

a
b

d
e

f

a
-

a3: +1

a2: +1 

b3: −1

b2: −1 

The blue label a2: +1 indicates that after splitting along the edge labeled a2, only
the first summand survives. It induces a factor +1 for the first summand. Now
the result of the evaluation can be easily read of: The small black dots with three
adjacent points correspond to joins. In order to read of an expression in Λ(P), we
recall that they also represent expression trees. Therefore e.g.

c

f

a

can be read as c ∨ f ∨ a = [c, f ,a].

So after splitting any inner edges, the summands consist of products of small dia-
grams that can be interpreted as brackets when the letters are read in counterclock-
wise order. Therefore the above evaluation can be read as

(+1) ·(+1) · [a,b, e][d, e, f ][c, f ,a][d,b, c]−(−1) ·(−1) · [c,d, f ][a, e, f ][b,d, e][a,b, c]

which is the same as (6.9). This notion is appropriate for evaluations with few
summands. In this case, one does not have to introduce to many new letters.
Observe that now the order of splittings might be crucial for the property to have
few summands during the evaluation. Furthermore, the notion is (not yet) adjusted
to the case that in some step of the evaluation one wants to split along an edge that
was not present in the very first diagram. We think, in principle, this problem can
be resolved. However, we do not need this kind of notion in this exposition and
therefore we use the description of calculations as introduced.
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6.4. Exemplary Evaluation of an Expression of Part III

In the following, we extend the notion of expansion in order to use not only points
in P as arguments of simple Grassmann-Cayley algebra expressions of diagrams.
We also use points that are given by a linear combination. We demonstrate this
and some additional phenomena arising in this treatment with an example used in
Section 16.5. There it is labeled with Case 2 (ii) and it is given by the diagram

∞=0'0=∞'b'

0=∞'a'x

∞=0'b'x' a'

b1

b4

b3

b2

a2

a3

a5

a4

a1!b

(6.13)

with 0 =∞′, ∞ = 0′, a′ and b′ ∈ P. x and x′ are given as

x = Mx (µx0− λx∞) and x′ = Mx′ (µx′0
′ − λx′∞′) (6.14)

with µx, λx, µx′ and λx′ ∈ BP. Furthermore the shape of µ1′ and λ1′ is known.

µ1′ = [a′,b′,0′] and λ1′ = [a′,b′,∞′].

We split along the edge a1 and consider the first summand. It looks like
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∞=0'0=∞'b'

0=∞'a'x

∞=0'b'x' a'

a2

a3

a5

a4

The second summand in the subsequent splitting along edge a2 results in

∞=0'0=∞'b'

∞=0'b'x' a'
b4

a3

a5

0=∞'a'x
b2a4

which vanishes since at the highlighted inner node, two identical subtrees meet.
Splitting along edges a2 and a3 in the first summand results in
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∞=0'0=∞'b'

0=∞'a'x

∞=0'b'x' a'

a5

a4

a3: −1
a2: +1 

The label a4 indicates that now, we should plug in the value of x given in (6.14).
This means that we evaluate

∞=0'b'

x
a4

=

Mx·µx· ∞=0'b'

0=∞'

−Mx·λx· ∞=0'b'

∞=0'

where the second summand vanishes. Plugging in also the value of x′ implies that
the first summand after splitting (6.13) along the edge a1 can be written as
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a'

∞=0'0=∞'b'

0=∞'a'0=∞'

∞=0'b'∞=0'

a4: 
a3: −1
a2: +1 

a5: 
Mx · µx

Mx′ · µx′

(6.15)

where all values in the top left are considered as factors of the diagram. Now for
the second summand. After splitting along the edge b1 the diagram looks like

∞=0'0=∞'b'

0=∞'a'x

∞=0'b'x' a'
b4

b3

b2

b1:   +1
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We can plug in the value of x by now. In total the second summand evaluates to

∞=0'0=∞'b'

0=∞'a'∞=0'

∞=0'b'0=∞' a'

b1:   +1

b4: 
b3:   +1
b2: −Mx · λx

−Mx′ · λx′

(6.16)

The evaluations of both summands (6.15) and (6.16) together give an evaluation of
(6.13) as

(+1) · (−1) ·Mx · µx ·Mx′ · µx′ ·
[a′,b′,∞ = 0′]︸ ︷︷ ︸

µ1′

[∞ = 0′,a′,0 =∞′][0 =∞′,b′,∞ = 0′] 0

− (+1) · (−Mx · λx) · (+1) · (−Mx′ · λx′)·
[0 =∞′,a′,∞ = 0′][b′,∞ = 0′,0 =∞′] [a′,b′,0 =∞′]︸ ︷︷ ︸

λ1′

∞

= [0,∞,b′][0,∞,a′] ·Mx′ ·Mx

(
µ1′µxµx′0− λ1′λxλx′∞

)

as claimed in Section 16.5. The example just seen covers all phenomena arising
in the evaluation of expressions given in Section 16.5: if one does the evaluation
as stated there, one sometimes has to find inner vertices where identical subtrees
meet. Doing this, all evaluations are binomial. In the last step, one has to identify
λ1 and µ1 as just seen in the example. The evaluations of the expressions given in
Section 17.2 are all trinomial as it are the results given there. Observe that this is a
very concise way of evaluation. Even though the last computations occupied several
pages to explain them, the actual results (6.15) and (6.16) can be given in a single

75



6. Evaluations

diagram. One can do the calculations easily by printing (6.13) twice, considering
each copy as a summand, deleting edges and keeping track of factors.
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There are some reasons to have a separate chapter on incidence theorems. One is
that it is a classical part of projective geometry. The defining axioms of projective
geometry are essentially about incidence and therefore it is interesting, which kind
of theorems can be deduced. Some of the incidence theorems date back to the
ancient Greeks. Another reason is that it is closely related to everything presented
in this thesis. Although most of the time, this connection is not explicit, it is there.
Furthermore, incidence theorems are the starting point for the considerations in
Part II. We will only treat incidence theorems in RP2. We start with describing the
general structure of incidence theorems. We will give background information on
automated proving of (incidence) theorems. Sometimes incidence theorems can also
be detected automatically. We will argue that it is important to consider so-called
non-degeneracy conditions. Many approaches use construction sequences to prove
the theorem. This might restrict the classes of theorems as well as the generality
of the statements that are considered. For both, stating and proving incidence
relations, it plays a role how theorems are actually given. We will restate our
point of view on this subject. It was formalized in [2]. It captures theorems that
do not have a construction sequence. Furthermore it can automatically take mild
non-degeneracy conditions into account.

7.1. General Structure of Incidence Theorems

In its most general form an incidence theorem may roughly be stated as “Given
some objects in the projective plane and some prescribed incidence relations hold
between them. Then an additional incidence relation holds.”

7.2. Pascal’s Theorem Revisited

We already encountered a statement matching this description: Pascal’s theorem
(see Section 3.10) can be read as:

• Given a conic C, points a, b, c, d, e, f , x, y and z points in the projective
plane RP2 and lines l1, l2, l3, l4, l5 and l6
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7. Incidence Theorems

• such that a, b, c, d, e and f are incident with C and

a, b and x are incident with l1,
e, d and x are incident with l2,
a, f and y are incident with l3,
c , d and y are incident with l4,
e, f and z are incident with l5 and
b, c and z are incident with l6.

• Then the points x, y and z are incident with some line l.

A different formulation with the incidence constraints more implicitly would be:

• Given points a, b, c, d, e, f , x, y and z in the projective plane

• such that a, b, c, d, e and f are on a common conic and the triples of points
(a, b, x), (e, d, x), (a, f, y), (c, d, y), (e, f, z) and (b, c, z) are collinear.

• Then the points x, y and z are collinear as well.

In fact, often in the literature, incidence theorems are stated in this fashion but
they are not completely correct in this way. Figure 7.1 gives a configuration in
RP2 fulfilling all requirements of the above formulation of Pascal’s theorem where
the conclusion does not hold. In fact, Figure 7.1 is a degenerate configuration. So

Figure 7.1.: A degenerate configuration where the conic consists of the two red lines.
Here a naive formulation of Pascal’s theorem does not hold.
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7.3. Incidence Theorems of Points and Lines

in the above formulation of Pascal’s theorem, it is not taken care of degenerate
configurations. A correct formulation of the theorem that matches the present
exhibition could be:
Whenever points a, b, c, d, e and f lie on a common conic it holds that the

determinant
∣∣∣meet

(
join(a, b), join(d, e)

)
,meet

(
join(c, d), join(f, a)

)
,

meet
(
join(e, f), join(b, c)

)∣∣∣ (7.1)

vanishes. In the case that meet
(
join(a, b), join(d, e)

)
, meet

(
join(c, d), join(f, a)

)

and meet
(
join(e, f), join(b, c)

)
can be interpreted as homogenous coordinates, this

fact implies the collinearity of the three points. However, it may happen, that one
of the three vectors is zero. This can only happen, if the underlying construction de-
generates. In this case, (7.1) holds trivially and one cannot conclude a “collinearity”
of three points.
This example is supposed to illustrate the fact, that depending on the formu-

lation of an incidence theorem, non-degenerate conditions have to be formulated.
Supposing a correct formulation, Pascal’s theorem is surely an incidence theorem.
However, in the present text, we will focus mostly on incidence relations and in-
cidence theorems involving only points and lines. So unless mentioned differently,
from now on, an incidence theorem will be formulated in terms of points and lines.

7.3. Incidence Theorems of Points and Lines

A first example of a theorem on points and lines is in fact another degenerate
situation of Pascal’s theorem: consider the case where the conic C degenerates to
two lines which are incident to the points a, c and e resp. b, d and f (see Figure 7.2).

In fact, Pappos’s theorem is very special in a lot of senses. For example, it is
the smallest of all incidence theorems and also the only one on nine points. In the
literature you can find many other special properties and also a variety of different
proofs. See [95] for nine proofs and more relations. It is also treated in almost
every textbook on projective geometry. We referred to some of them already in
Chapter 2. We will present two ideas for proofs. The first one is just the fact that
(7.1) holds since points a, . . . , f lie on a common conic. Furthermore, in general,
within this specialization, the construction does not degenerate. So this proves,
that whenever the construction indicated in Figure 7.2 does not degenerate, the
constructed points are collinear. One can see this also without the knowledge that
a pair of lines constitutes a degenerate conic: reconsider from Chapter 6 that in
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7. Incidence Theorems

Figure 7.2.: A degenerate configuration of Pascal’s theorem gives Pappos’s theorem.

Grassmann-Cayley algebra it holds

(ab ∧ de)(cd ∧ fa)(ef ∧ bc)

= [a, c, f ][a,d, e][b, c, e][b,d, f ]− [a, c, e][a,d, f ][b, c, f ][b,d, e].

Plugging in e = ac ∧ uv = [a,u,v]c − [c,u,v]a and f = bd ∧ xy = [b,x,y]d −
[d,x,y]b gives zero (for some u, v, x and y). This can be also read as a proof for
a pair of lines being a conic. The above formulation in Grassmann-Cayley algebra
implies the existence of an underlying construction. All incidence theorems that are
formulated with the help of an underlying construction by the ruler alone can in
principle be proved with the help of Grassmann-Cayley algebra and a method for
showing the vanishing of a resulting bracket polynomial. This method might be the
straightening algorithm or substituting symbolic coordinates with the help of Φ.

7.4. (General) Automated Theorem Proving

The method last described can be considered a an automated version of theorem
proving. Actually, there is a whole branch of mathematics and computer science
dedicated to automated geometric reasoning. Overviews of the development (up
to the point of publication) are given in [93, 114] by Richter-Gebert and Wang.
The latter contains many references for the development of automated reasoning.
The first steps date back to [46]. First theoretical results are given by the fact
that arbitrary algebraic equations can be encoded as projective incidence theorems
([83, 10, 121]). Furthermore, realizability is theoretically decidable ([105]).
It was Wu who gave a systematic translation routine from geometry to algebra (see

e.g. [137]). He uses Euclidean geometry and translates constructions to polynomials
in coordinates. Therefore, he gives a complete restatement of Hilbert’s “Foundations
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7.4. (General) Automated Theorem Proving

of Geometry” (see [62]). He uses a constructive treatment of algebraic geometry
introduced previously by Ritt (see e.g. [98]). The method encodes the hypotheses
of a theorems in the vanishing of a polynomial (in the coordinates of points). The
conclusion is encoded in a polynomial as well. It aims to show that a multiple of this
polynomial vanishes in behalf of the hypotheses. The theorem is true in a concrete
instance, whenever the multiplier monomial not yields zero. The multiplier is said
to be a non-degeneracy condition. Wu’s method tries also to interpret the non-
degeneracy conditions derived. To show the vanishing of a multiple of the conclusion
polynomial, a construction sequence of the theorem is assumed and used in order
to eliminate variables. Using the translation from geometry to algebra done by Wu,
in [72], Kutzler and Stifter use a different approach to do the algebraic calculations:
they use Buchberger’s algorithm using Gröbner bases. Both methods are introduced
and compared in [20]. A variant of using Gröbner bases was introduced by Kutzler
(see e.g. [70]). For another overview regarding Gröbner bases in geometric theorem
proving see also [117]. Here one finds also a section on discovering theorems.
A view words on theorems with a construction sequence (or theorems of con-

structive type) are appropriate: As stated in [20, p. 19], the choice of a construction
sequence is intimately related not only with the selection of parameters and depen-
dent variables but also to the validity of the theorem as well as the non-degeneracy
conditions given by an algorithm. Recalling the re-rooting process from the pre-
vious chapter, one sees that this approach may not cover the spirit that (some)
points have same rights. For example, there might be constructions where one can
construct a point a depending on b as well as the point b depending on a.
There are also coordinate-free methods. One of its is the so-called area method

summarized in [21]. An external overview over the method is given in [69]. It is coor-
dinate free and expresses relations via areas and length ratios and is therefore closely
related with the content of this thesis. The area method also uses a construction
sequence in order to make symbolic manipulations. Another coordinate-free method
is bracket algebra together with Grassmann-Cayley algebra (see e.g. [30, 74, 78]).
A final polynomial exists whenever an (oriented) matroid is non-realizable. There-
fore an incidence theorem is proved whenever a counterexample is non-realizable.
Final polynomials trace back to Bokowski and Sturmfels ([10]), and independently
to Whiteley ([135, 130, 132, 133]). The connection between both theories is empha-
sized in [134]. The latter also addresses the problem of interpreting non-degenerate
multipliers appearing in the methods described above. This is done by considering
invariant properties and translating them into invariant language. The special case
of biquadratic final polynomials due to Bokowski and Richter-Gebert is easier to
compute and works in many cases (see [92, 93, 9, 30]). We will give an example of
this method in Section 9. In [101], Sturmfels points out that incidence theorems are
special cases of configurations and that also [63] gives comments about the great
significance of configurations in former times. In the concrete computations he uses
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(partial) construction sequences in order to get algebraic expressions. Results of
Mnëv and Shor are cited in order to obtain the result that the real realizability
problem is NP-hard. Due to [10, p. 5] the existence of a construction sequence is
the question of rational realizability.
Closely related to bracket algebra and Grassmann-Cayley algebra is also the

method of Clifford algebra (which is closely related with Grassmann-Cayley al-
gebra). This approach is due to Li and Cheng (see e.g. [67, 73, 116]). In these
approaches the borders are not sharp and also variants of the previously mentioned
approaches are used. See also the work of Li e.g. in [75, 74, 79, 80, 76]. The detailed
book [77] can be seen as a summary of the above mentioned. [42] can be read as
generalizing the elimination methods seen e.g. in Wu’s method to Clifford Algebra.
More developments on the subject are given in several collections e.g. [26] and

the proceedings on the workshops of automated deduction in geometry starting with
[115, 45, 97]. More literature can be found under http://www-calfor.lip6.fr/
~wang/GRBib/.
Applications of mechanical theorem proving are due to [93] given in computer-

aided geometric reasoning, robotics and robot motion planning, computer vision
and scene analysis, rigidity of frameworks, molecular conformation, computer-aided
design and computer-aided manufacturing and many other related topics.

7.5. Modeling Incidence Theorems of Points and Lines

The starting point for the investigation of Γ-cycles in Part II is the binomial or
biquadratic proving method given in [92, 93, 9, 30]. It provides a construction-
free formulation and treatment. Pappos’s theorem in this kind of formulation can
be stated as: if (a, e, c), (b, d, f), (a, b, x), (e, d, x), (a, f, y), (c, d, y), (e, f, z) and
(b, c, z) are triples of collinear points then x, y and z are collinear as well. Also
this formulation needs non-degeneracy conditions: the theorem is false in the very
degenerate situation where we identify the points a, . . . , f and put x, y and z
anywhere in a non-collinear situation in the projective plane. A more general form
of a construction-free formulation including non-degeneracy conditions is restated
from [2]:

Definition 7.1. A real projective incidence assertion T on a finite point set P is
a triple (H,B, C) such that:

• H,B ⊂
{
{i, j,k} | i, j,k ∈ P pairwise distinct

}

• C = {a,b, c} with a,b, c ∈ P pairwise distinct and C /∈ H.

A point configuration P in RP2 is called an instance of T if [i, j,k]P := ΦP ([i, j,k])
= 0 for all {i, j,k} ∈ H and [i, j,k]P 6= 0 for all {i, j,k} ∈ B. If in addition for
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7.5. Modeling Incidence Theorems of Points and Lines

every instance P of T also [a,b, c]P = 0 holds, then T is called a valid assertion or
a theorem.

Observe that although the formulation in Definition 7.1 is similar to the one of the
Grassmann-Cayley algebra, the indices in P play a different role. In Grassmann-
Cayley algebra, they are considered to play the role of free generic points. Depending
on points in P, new points can be constructed. In contrast to this, Definition 7.1
uses a more symmetric formulation that does not need the distinction between free
and dependent points. So it might allow for changing the underlying construction
without changing the validity of the theorem.
Non-degeneracy conditions are cumbersome to deal with. The proposed formula-

tion as triples of points that are considered to be non-collinear has the advantage
that they can be easily formulated and interpreted. It turns out, that there is a
natural choice of B depending on H and C. This natural choice ensures essentially
that points on the same line may not coincide, as long as this line is relevant to the
formulation of the theorem. Furthermore, the dual shall also hold: two (distinct)
lines sharing a point in P may not coincide.
For some considerations in Part II we restate some definitions from [2]. Let

A := H ∪ {C}. Assume w.l.o.g. that A is saturated, i.e. for

{a, b, c} ∈ A and {b, c, d} ∈ A =⇒ {a, b, d} ∈ A.

We define
f({a, b, c}) := {i | {a, b, i} ∈ A}

which can be thought as the line supported by a, b and c. f is well defined due to
the saturation of A. The set of all derived lines is collected in a set

G :=
{
f({a, b, c}) | {a, b, c} ∈ A

}
.

These notions allow us to define the natural choice for B mentioned above:

B(A) :=
{
{a, b, c}

∣∣∃G,H ∈ G with |G ∩H| = 1

and a ∈ G \H, b ∈ H \G, c ∈ H ∪G
}
.

B(A) is meant to be a default value for non-degeneracy conditions and depends
only on the collinearities and the conclusion of a (generic drawing of) an incidence
theorem. As an example, we consider Theorem 9.1 which is treated in more detail
later. It is illustrated in Figure 9.1. We have {h,g,p} ∈ B(A) since {0,g,h,k}
and {∞,k,m,p} are in G and intersect in the single element k. On the other hand,
{h,m, c} is not an element of B(A). It also turns out in [2] that this natural choice
of B is well-suited for the purposes of binomial proofs and Ceva-Menelaus proofs
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investigated there: the equivalence of both proving methods. The idea is already
presented in [94]. In Chapter 9, we will exemplify the implication which starts with
binomial proofs and ends up with Ceva-Menelaus proofs. This implication is the
more interesting one.
The definition of B(A) is crucial for this translation process. Since we want to

derive a geometric reasoning working in any instance, we have to restrict to elements
in B(A). We will see in Section 10.3 that the shape of B(A) influences the way some
cycles can be decomposed. So a few comments on why we believe the definition
makes sense are appropriate. First of all, the fact that collinear points shall not
coincide (and its dual version) seems natural to us. The non-degeneracy conditions
may be in some cases a little too restrictive. However, they do not fix all points
in the construction and some degeneracies are still allowed. Having in mind that
B(A) can be stated automatically, this seems to be a good tradeoff. Furthermore,
as mentioned before, the conditions are strong enough to do the translation process
from biquadratic proofs to Ceva-Menelaus proofs.
There is an additional advantage of the construction-free approach for formulating

incidence theorems: one can also require to have relations between points that are
not ruler-constructible. This happens e.g. if one implicitly needs to have (irrational)
roots of real numbers. Von Staudt constructions (see Section 3.7) allow for checking
whether we have a root but not to construct one. This happens e.g. in the projective
version of a regular pentagon. It can be summarized as follows: consider five points
determining a pentagon. Construct all intersections of an edge and the diagonal
opposite to it. Whenever four of these intersections lie on a common line, the fifth
does lie on the same line (see Figure 7.3). This statement can be made a rigorous one
in the sense of Definition 7.1 but no construction sequence can be given. However,
there exists a binomial proof for it ([93, Ex. 14] and [47] for another occurrence
of the configuration). For other non-rational incidence types, e.g. configurations
without construction sequence see [10, Chap. 5].

Figure 7.3.: A non-constructible incidence theorem: as soon as 4 of the black points
are on a line l, the last black point is on l, too.
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8. Introduction to Γ-Cycles

The present part of the thesis is dedicated to so-called Γ-cycles. They emerged in
the investigation of binomial proofs (see [92, 93, 9, 30]). This kind of investigation
can be found in [94, 2]. An example of it will be given in Chapter 9. There,
the area principle is used to translate an algebraic proof of an incidence theorem
into an argument working with oriented length ratios. These oriented length ratios
are structured in such a way that they can be interpreted as being induced by
configurations of Ceva and Menelaus. The overall result is a collection of Ceva and
Menelaus triangles which are glued together. This resultis in the structure of a
triangulated oriented combinatorial 2-manifold. The existence of all but one Ceva
or Menelaus triangles implies the existence of the last one. This gives another proof
for the incidence theorem in question. It is formulated in the language of length
ratios. At some point during the translation process, one is left with a collection
of (possibly long) cycles in a base graph Γ (defined in detail in Chapter 10). In
[2] the cycles can be decomposed into triangles by adding new points to the overall
setup. These triangles indicate the configurations of Ceva and Menelaus. However,
the number of additional triangles needed might be big. Therefore it makes sense to
consider the cycles on its own. This motivates the treatment of Γ-cycles. All cycles
obtained in the translation process are in fact Γ-cycles.
All edges in the overall base graph Γ can be interpreted via the area principle

(see Section 3.1). The edges can be considered as unbreakable ratios of determinants
and as elements of a group RGB defined in Chapter 10. The group is related to
a group BGB encoding all products of bracket (and its inverses). This relation is
also used in the translation process of a binomial proof. It is based on theory and
definitions due to Dress and Wenzel (see [38, 40, 41, 39]). Their theory is developed
for very general setups of finite or infinite matroids with coefficients. Our more
specific setup is the projective plane. However, we are in a situation, where not
the full information about triples of points being collinear or not being collinear is
present.
As the edges of Γ, each edge of a Γ-cycle can be interpreted as a length ratio in

Euclidean geometry (with some additional assumptions on the coordinates). The
fact, that the length ratios are induced by cycles yields that the overall product of all
length ratios induced by the cycle equals +1 or −1. This is an identity in Euclidean
geometry called a Γ-cycle theorem and is introduced in Section 10.4.1. Γ-cycle
theorems can be understood as generalization of Ceva’s and Menelaus’s theorem.
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Similar theorems are also considered by Grünbaum and Shephard (see [53, 52, 54]).
The connections of Γ-cycle theorems and their results is given in Chapter 13.
The investigation of Γ-cycles themselves first focuses on irreducibility. The con-

cept emerges from the translation process described before and is also considered by
Dress and Wenzel. A Γ-cycle is said to be weakly irreducible whenever it cannot be
obtained by combining two shorter Γ-cycles which use only vertices of the first Γ-
cycle. For the definition of strongly irreducibility one includes additional information
about non-degeneracy conditions as it is possible when treating incidence theorems.
Since this information is very specific we focus on weakly irreducibility and omit
the word “weakly”. These restrictions allow for structuring the irreducible Γ-cycles.
We give a table representation which provides a good visualization and allows for
counting irreducible Γ-cycles of fixed length (see Chapter 11). The table repre-
sentation and the suggestion of an underlying structure is due to Richter-Gebert.
Furthermore, this coding of Γ-cycles allows for extracting additional information
about Γ-cycles. This information (see Section 12.2) is helpful when further using
the Γ-cycle (see Section 12.1). By using Γ-cycles we mean imposing additional in-
cidence relations. This allows for more complicated theorems about oriented length
ratios (see Chapter 13) and also for constructing new projective incidence theorems.
This construction is possible since one has good geometric control of the cancellation
process by glueing length ratios. This gluing process is the reason why Chapter 10
also includes definitions of groups capturing informations about triples of points
being collinear. These identities are also present in the expositions of Dress and
Wenzel.
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9. Motivation: Example on How to
Transform a Binomial Proof to
Γ-Cycles

The topic of Γ-cycles treated in this part of the thesis emerged from the investigation
of the relations between biquadratic proofs (introduced by Richter-Gebert in [92, 93,
9, 30]) and Ceva-Menelaus proofs (see [95, 94, 2]). Since this emergence is essential
to the understanding of the relevance and concrete treatment of Γ-cycles, we will
give another brief introduction with the help of a concrete example. Other examples
can be found in [94, 2]. In this introduction, all considerations are exemplary. They
generalize as it was shown in [2].
The example considered here is not the smallest one possible. However, its size

may give an impression on how the general case behaves. Furthermore, the con-
struction considered fits quite well into the topics of this thesis and can be extended
to show the limitations of the proofing method (see Section 9.4).
Now for the example. Consider Figure 9.1. Assuming all incidences except the

one indicated by the red line implies the existence of the red line. This is due to
the fact that addition is associative. To see this, recall Section 3.7 and observe:

Figure 9.1.: (a+b)+c = a+(b+c) encoded in geometry via von Staudt constructions.
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the quadrilateral with vertices d, k, m and h induces a quadrilateral set such that
the small gray point on the line spanned by m and d represents the sum of a
and b. The quadrilateral set induced by d, m, n and p adds c to it. This means
that meet(join(d, p), join(0,∞)) represents the sum (a + b) + c. Similarly, the
quadrilateral sets induced by f , g, h and l and the one induced by d, e, f and l
together compute a+ (b+ c). The fact that both values are identical is encoded in
the fact that the lines join(d, p) and join(d, l) meet join(0,∞) in the same point.
In other words (and in a non-degenerate situation): d, l and p are collinear. All
gray points do not play a crucial role in the construction and can be omitted. This
results in the following formulation of our toy example:

Theorem 9.1. Let P = {0, c,d, e, f ,g,h,∞,k, l,m,n,p}, let H consist of all 3-
element subsets of the sets

{∞,0, c}, {0, e, f}, {0,m,n}, {c, f ,g}, {c,n,p}, {d, e,k}, {h, l,m},
{0,g,h,k}, {∞, e,g, l}, {∞,k,m,p}, {∞,d, f ,h,n}.

Let C = {d, l,p}. In the sense of Definition 7.1, A := (H,B = B(A), C) is an
incidence theorem.

9.1. Formal Language for Stating Biquadratic Proofs

The formalization of biquadratic or binomial proofs done in [2] points out that the
domain of its calculations is a multiplicative group generated by formal determinants
of (free and dependent) points together with a symbol ε that plays the role of a
formal −1. We will need the following definition as a setup for symbolic calculations,
e.g. for binomial proofs:

Definition 9.2. Let (H,B, C) be a real projective incidence theorem on P. Let
BGB be the quotient of the free multiplicatively written abelian group generated by

{
[a,b, c]

∣∣ {a,b, c} ∈ B
}
∪
{
ε
}

and the group generated by
{

[a,b, c]

[b, c,a]

∣∣∣∣ {a,b, c} ∈ B

}
∪
{
ε · [a,b, c]

[b,a, c]

∣∣∣∣ {a,b, c} ∈ B

}
∪
{
ε2
}
.

This definition allows for formal multiplicative calculations with determinants
that are supposed to be non-zero. The permutational properties of the determi-
nants are implemented. We define a subgroup of BGB encoding properties of the
collinearities encoded in H:
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9.2. A Biquadratic Proof for the Given Example

Definition 9.3. Let (H,B, C) be a real incidence projective theorem on P. Let
HGB,H be the subgroup of BGB generated by

{
[a,b,x][a, c,y]

[a,b,y][a, c,x]
∈ BGB

∣∣∣∣ {a,b, c} ∈ H, x,y ∈ P

}
.

The generating elements of HGB,H are called biquadratic fractions.

Proposition 9.4. Let P be a point configuration in RP2 that is an instance of a real
projective incidence theorem (H,B, C). There is a well-defined homomorphism ΦP :
BGB → (R \ {0}, ·) which is the extension of the map ΦP defined in Definition 4.5
and which maps ε to −1. Furthermore we have

ΦP
(
HGB,H

)
= { 1 }.

Proof. It suffices to show the last statement. Let [a,b,x][a,c,y]
[a,b,y][a,c,x] ∈ BGB with {a,b, c} ∈

H, x,y ∈ P. By writing a, b, c, x and y for the points in P corresponding to a, b,
c, x and y we have that

ΦP

(
[a,b,x][a, c,y]

[a,b,y][a, c,x]

)
=

[a,b,x]P [a, c,y]P
[a,b,y]P [a, c,x]P

=
|a, b, x| · |a, c, y|
|a, b, y| · |a, c, x|

and it suffices to show that

|a, b, x| · |a, c, y| − |a, b, y| · |a, c, x| = 0.

This is an easy consequence of the 3-term Grassmann-Plücker relation (4.3) implying
that

|a, b, x| · |a, c, y| − |a, b, y| · |a, c, x|+ |a, b, c| · |a, y, x| = 0.

Since {a,b, c} is in H and P is an instance, we have |a, b, c| = 0 which proofs the
claim.

9.2. A Biquadratic Proof for the Given Example

A binomial proof for A is formulated within this language is given by:

[0,∞,g] · [∞, c,n]

[∞, c,g] · [0,∞,n]
{0,∞, c} [∞,d,g] · [0,∞, e]

[∞,d, e] · [0,∞,g]
{∞, e,g, l}

[0,∞,m] · [0, c,k]

[0, c,m] · [0,∞,k]
{0,∞, c} [∞,n,p] · [0, c,n]

[∞, c,n] · [0,n,p]
{c,n,p}
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[0,∞, f ] · [0, c, e]

[0,∞, e] · [0, c, f ]
{0,∞, c} [0,d,k] · [∞, e,k]

[∞,d,k] · [0, e,k]
{d, e,k}

[∞,d,k] · [d,h,m]

[d,h,k] · [∞,d,m]
{∞,d, f ,h,n} ε· [0,∞,k] · [k, l,m]

[∞,k, l] · [0,k,m]
{∞,k,m,p}

[0,∞,n] · [∞,d,p]

[∞,n,p] · [0,∞,d]
{∞,d, f ,h,n} ε· [0,m,p] · [∞,d,m]

[0,∞,m] · [d,m,p]
{∞,k,m,p}

[0,∞,d] · [∞, f ,g]

[∞,d,g] · [0,∞, f ]
{∞,d, f ,h,n} [0,n,p] · [0, c,m]

[0, c,n] · [0,m,p]
{0,m,n}

ε· [d,h,k] · [0,k,m]

[0,d,k] · [h,k,m]
{0,g,h,k} ε· [d, l,m] · [h,k,m]

[d,h,m] · [k, l,m]
{h, l,m}

[0, c,h] · [0, e,k]

[0, e,h] · [0, c,k]
{0,g,h,k} [0, e,h] · [0, c, f ]

[0, f ,h] · [0, c, e]
{0, e, f}

[0, f ,h] · [0, c,g]

[0, c,h] · [0, f ,g]
{0,g,h,k} [0, f ,g] · [∞, c,g]

[0, c,g] · [∞, f ,g]
{c, f ,g}

ε· [∞,k, l] · [∞,d, e]

[∞, e,k] · [∞,d, l] {∞, e,g, l}

This is a list of elements of HGB,H together with a certificate for the membership.
This certificate are sets of collinear points in the way they are given in Theorem 9.1.
The product of all these biquadratic fractions is an element of HGB,H. After can-
celing it is

ε · [d, l,m] · [∞,d,p]

[d,m,p] · [∞,d, l] .

For an instance P and using non-bold letters as point names for the corresponding
bold letters in P and due to Proposition 9.4 we have

|d, l,m| · |∞, d, p|+ |d,m, p| · |∞, d, l| = 0.

Again, by a 3-termed Grassmann-Plücker relation it holds that

|d, l,m| · |d,∞, p| − |d, l,∞| · |d,m, p|+ |d, l, p| · |d,m,∞| = 0.

Adding up both equations yields

|d, l, p| · |d,m,∞| = 0.

Since we have that {d,m,∞} ∈ B = B(A) and since P is an instance, we know
that |d,m,∞| 6= 0 and therefore it must hold that |d, l, p| = 0 which proofs A.
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Generally and roughly speaking, a binomial proof is a collection of biquadratic
fractions whose product also has the structure of a biquadratic fraction. This way,
an additional collinearity can be concluded. It should be remarked that this proof
was obtained by an automatic prover given in [108]. It is based on the theory given
in [93] and uses a substitution method for solving the resulting linear equation
system. This procedure happens to be good for producing short proofs.

9.3. Interpreting a Biquadratic Proof

Biquadratic proofs are concise and human checkable. However, in the form just
presented, there is less geometric intuition attached to them. One could draw a
Euclidean picture and interpret bracket as (scaled) oriented triangle areas. However,
we think that this is not very intuitive. A concept that is easier to deal with are
oriented length ratios. When applicable, the area principle (see Section 3.1) provides
an translation from ratios of brackets to oriented length ratios. An analysis of a
generic biquadratic fraction

[a,b,x][a, c,y]

[a,b,y][a, c,x]

shows that the area principle can be applied. Furthermore, it can be applied in two
different ways induced by two different splittings of the fraction:

[a,b,x]

[a,b,y]
· [a, c,y]

[a, c,x]
and

[a,b,x]

[a, c,x]
· [a, c,y]

[a,b,y]
.

We choose to split the biquadratic fractions in the binomial proof of A in the first
way indicated. This results in considering the products of ratios

1.
[0,∞,g]

[∞, c, g]
· [∞, c, n]

[0,∞,n]
11.

[∞,d,g]

[∞,d, e]
· [0,∞, e]

[0,∞,g]

2.
[0,∞,m]

[0, c, m]
· [0, c, k]

[0,∞,k]
12.

[∞,n,p]

[∞, c, n]
· [0, c, n]

[0,n,p]

3.
[0,∞, f ]

[0,∞, e]
· [0, c, e]

[0, c, f ]
13.

[0,d, k]

[∞,d,k]
· [∞, e,k]

[0, e, k]

4.
[∞,d,k]

[d,h, k]
· [d,h, m]

[∞,d,m]
14. ε· [0,∞,k]

[∞,k, l]
· [k, l, m]

[0,k,m]

5.
[0,∞, n]

[∞,n,p]
· [∞,d,p]

[0,∞, d]
15. ε· [0,m, p]

[0,∞,m]
· [∞,d,m]

[d,m, p]
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6.
[0,∞,d]

[∞,d,g]
· [∞, f ,g]

[0,∞, f ]
16.

[0,n,p]

[0, c, n]
· [0, c, m]

[0,m,p]

7. ε· [d,h,k]

[0,d, k]
· [0,k,m]

[h,k,m]
17. ε· [d, l, m]

[d,h,m]
· [h,k,m]

[k, l, m]

8.
[0, c,h]

[0, e,h]
· [0, e,k]

[0, c, k]
18.

[0, e,h]

[0, f , h]
· [0, c, f ]

[0, c, e]

9.
[0, f , h]

[0, c,h]
· [0, c,g]

[0, f , g]
19.

[0, f , g]

[0, c,g]
· [∞, c,g]

[∞, f , g]

10. ε· [∞,k, l]

[∞, e,k]
· [∞,d, e]

[∞,d, l]
20. ε· [d,m,p]

[d, l, m]
· [∞,d, l]

[∞,d,p]

where the additional 20th entry is the inverse of the product of the first 19 ones. It
has a the same shape, but is not a generating element of HGB,H. This symmetrizes
all following considerations. Every ratio of brackets can be interpreted as an oriented
length ratio. From now on, we want to stay in the intuitive world of oriented length
ratios. For the moment we forget about the “signs” ε, since they can be easily
reconstructed. We refer to the above collection, including the 20th entry, as the
collection of split biquadratic fractions describing the binomial proof of A. It is
not at all obvious what canceling of brackets might be in the world of oriented
length ratios. So one needs an interpretation of canceling without breaking the
interpretation as length ratios. Therefore, the ratios themselves are considered as
unbreakable symbols (as it will be done more formally in Definition 10.3). In order
to structure the binomial proof, one can find small subpatterns of cancellation. We
can even visualize them (see Figure 9.2), which is also the best way to explain them:

Here every edge corresponds to one fraction of a split biquadratic fraction. The
number printed at the edges indicates the number of the corresponding biquadratic
fraction. The arrows can be considered as being directed from numerators to de-
nominators. Since we neglect sign changes, we can consider the numerator and
the denominator to be sets. In Figure 9.2 it is obvious that the arrows arrange
themselves in cycles. This is true for every biquadratic proof (see [2]). We want
to investigate those cycles and start with 2-cycles. The cycle with vertices {0, c,n}
and {0,n,p} can be read as

[0, c,n]

[0,n,p]
· [0,n,p]

[0, c,n]
= 1,

since the brackets in a cycle cancel. Translating this to oriented length ratios states
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9.3. Interpreting a Biquadratic Proof

{0, f ,g}

{0, c,g}

{0, c, f}

{0, c, e}

{0, c,n}

{0,n,p}

{0, f ,h} {0, c,h}

{0, e,h}

{∞,n,p} {∞, c,n}

{0,∞,n}

{0,m,p} {0,∞,m}

{0, c,m}

{h,k,m} {k, l,m}

{0,k,m}

{∞,d,k} {d,h,k}

{0,d,k}

{d, l,m} {d,h,m}

{∞,d,m}{d,m,p}

{∞,d, e} {∞,d, l}

{∞,d,p}

{0,∞,d}

{∞,d,g}

{0,∞,k} {∞,k, l}

{∞, e,k}

{0, e,k}

{0, c,k}

{0,∞,g} {∞, c,g}

{∞, f ,g}

{0,∞, f}

{0,∞, e}

5

12

1

16

15

2

13

4

7

7

17

14

18

9

8

56

11
10

20

138

2
14

10
63

11
1

19

17

4

15

20

19 9

18 3
12 16

Figure 9.2.: The combinatorics of the edges induced by the split biquadratic frac-
tions describing the binomial proof of A.
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that an oriented length ratio multiplied with its inverse equals one. This is intuitive
also on the level of oriented length ratios as well as on the level of brackets. There-
fore, two edges with the same endpoints but pointing in opposite directions can be
omitted or added as one likes.

In the following, we will argue that the 3-cycles induce exactly the same structures
as either Ceva’s or Menelaus’s theorem in Section 3.2. Here, in this biquadratic
proof of A, there is no need to consider cycles of length greater than three in more
detail. This is due to the fact, that additional pairs of arrows pointing in opposite
directions can be inserted at the dashed lines in Figure 9.2. These arrows can be
introduced since they can be interpreted via the area principle. However, this is
the point where the interest in Γ-cycles comes form. Before describing Γ-cycles
in more detail, we complete the interpretation of the biquadratic proof via length
ratios.

For that purpose, observe that we are left with 2-cycles and 3-cycles in Figure 9.2.
Each 3-cycle is associated with a Ceva or Menelaus triangle in an instance: let P be
an instance which admits Euclidean interpretations of the points. Since incidence
relations are projectively invariant, we can furthermore assume that all additional
(finitely many) points introduced in the following also admit a Euclidean interpreta-
tion. In the instance, we use non-bold letters as point names for the corresponding
bold letters in P. Now consider e.g. the two triangles that contain arrows from the
biquadratic fraction number six. These triangles are

41 := ({f ,g,∞}, {0, f ,∞}, {0,g,∞}) and 42 := ({0,d,∞}, {d,g,∞}, {d, e,∞}).

The vertices of 41 do have one letter in P in common and the combinatorics of the
area principle (see Section 3.1) applied to the three edges of 41 tell us that in an
instance, this is an identity in a Ceva triangle with vertices 0, f and g and centroid
∞ . Similarly, 42 has the combinatorics of a triangle with vertices 0, g and e and
a Menelaus line spanned by d and ∞.

Now, the biquadratic fractions tell us, that some length ratios are identical and
corresponding triangles can be glued : in the case of 41 and 42, both triangles share
an edge. The existence of the biquadratic fraction number six

[0,∞,d]

[∞,d,g]
· [∞, f ,g]

[0,∞, f ]

can be interpreted via the area principle and the combinatorics of the construction
given in Figure 9.1 or Theorem 9.1:

0h

h g
· g h

h 0
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9.3. Interpreting a Biquadratic Proof

This has to yield 1 by Proposition 9.4. In the present formulation, this is quite
obvious. One can easily convince oneself that there can be only two kinds of triangles

Figure 9.3.: When interpreting the triangles in Figure 9.2 as Ceva and Menelaus
triangles (in an instance), the triangles can be considered being glued
together via the biquadratic fractions. The numbers indicate which
biquadratic fractions induce the glueings of edges.

in Figure 9.2 since these triangle have the property that their edges indicate oriented
length ratios. They can be distinguished by the number of point names the vertices
have in common.
Translating all triangles in Figure 9.2 to Ceva and Menelaus triangles yields a

collection of triangles which are glued together by the interpretation of biquadratic
fractions. The combinatorics are shown in Figures 9.3 and 9.4. The arrows are
directed in such a way, that in the induced length ratios, the letters at the end of
the arrow are located in the numerator and the letters at the arrow tips are located
in the denominator of the original biquadratic fraction. Figure 9.3 describes which
biquadratic fractions induce the glueings. Two gray letters in a triangle indicate

97



9. Motivation: Example on How to Transform a Binomial Proof to Γ-Cycles

that the triangle is considered to be a Menelaus triangle with vertices given by
black labelings. The gray points indicate the points spanning the Menelaus line.
A single letter inside a circle indicates the centroid of a Ceva triangle. Edges on
the boundary equipped with the same symbols are considered to be glued as well.
Therefore, the structure is a topological sphere. The glueings without labeling
correspond to dashed lines in Figure 9.2. Edges with two numbers correspond to
places where two 2-cycles were glued. E.g. the biquadratic fractions number 12 and
16 are

[∞,n,p]

[∞, c, n]
· [0, c, n]

[0,n,p]
and

[0,n,p]

[0, c, n]
· [0, c, m]

[0,m,p]

and they both express an equality of length ratios with same endpoints and in the
product one ratio cancels as a whole. The product implies

|∞, n, p|
|∞, c, n| ·

|0, c, m|
|0,m, p| = 1 (9.1)

in an instance. This identity can easily be checked by means of the area principle:
[∞,n,p]
[∞,c,n] and

[0,c,m]
[0,m,p] are edges of triangles in Figure 9.2 that express mutually inverse

length ratios
p n

n c
and

c n

n p
.

Since in any biquadratic fraction, both of its ratios always share a common point,
an equation corresponding to (9.1) needs to be stated with the help of two bi-
quadratic fractions. For a Euclidean interpretation, the point n of intersection is
also important for the combinatorics of Ceva and Menelaus triangles. All points of
intersection for all edges are given in Figure 9.3. Therefore seven new points have
to be introduced and can be defined as follows:

t = meet(join(d,∞)join(e, p)), u = meet(join(c, e), join(0, k)),

v = meet(join(e, 0), join(∞, k)), w = meet(join(0, l), join(∞, k)),

x = meet(join(p, h), join(d,m)), y = meet(join(p, 0), join(d,∞)),

a = meet(join(e, k), join(0,∞)).

These intersections exists and do not degenerate since e.g.

t = meet(join(d,∞)join(e, p)) = |d, ∞, p| · e − |d, ∞, e| · p

and {d,∞,p} and {d,∞, e} are elements of B.

Based on Figure 9.4, we state either Menelaus’s or Ceva’s theorem multiply all
resulting equations. The arrows pointing in opposite directions along the same edges
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9.3. Interpreting a Biquadratic Proof

Figure 9.4.: When interpreting the triangles in Figure 9.2 as Ceva and Menelaus
triangles (in an instance), the triangles can be considered being glued
together via the biquadratic fractions. Interpreting the fractions via
the area principle shows that glued edges share the same intermediate
point.
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imply that in the overall product, length ratios cancel:

0 k

k h

hm

m l

l w

w 0
· 0w

w l

l∞
∞ e

e v

v 0
· 0 v

v e

e g

g∞
∞ a

a 0
· 0 a

a∞
∞ d

d h

h k

k 0
· h d

d∞
∞m

mp

px

xh
· hx

x p

p d

d l

l m

mh
· l d

d p

p t

t e

e∞
∞ l

·

e t

t p

p y

y 0

0 f

f e
· 0 y

y p

p n

n c

c∞
∞ 0

· c n

n p

pm

m∞
∞ 0

0 c
· c 0

0∞

∞ g

g e

e u

u c
· c u

u e

e 0

0 f

f g

g c
· c g

g f

f e

e 0

0∞
∞ c

· f 0

0 e

e∞
∞ g

g c

c f
· f c

c g

g h

h 0

0 e

e g
· 0h

h g

g∞
∞ e

e f

f 0
= (−1)14 = 1. (9.2)

This also yields a proof for theorem A called Ceva-Menelaus proof : The require-
ments of A ensure that (9.2) can be stated everywhere except for the places in-
dicated with highlighted letters d. Define d′ = meet(join(l, p), join(d,m)) and
d′′ = meet(join(l, p), join(d,∞)). With those points induced by the triangles de-
rived in Figure 9.4, we can state (9.2) with d′ and d′′ instead of d. This implies

p d′

d′ l
· l d′′

d′′ p
= 1

which implies d′ = d′′. By the definition of d′ and d′′, this also implies d′ = d′′ = d
and hence yields the desired conclusion that d, l and p are collinear.
So the interpretation of a biquadratic proof via the area principle yields another

independent proof consisting of Ceva and Menelaus triangles, a glueing pattern and
inverse oriented length ratios along the glueings. Observe that the right-hand side
of (9.2) have to yield 1, i.e. the overall number of Menelaus configurations has to
be an even number. So in order to get a complete cancellation pattern, one has to
take sign changes into account.

The Translation Process in the General Case
As discussed in [94, 2], this translation is in principle possible for every biquadratic
proof. In order to formulate this statement one needs to specify what is an admissible
result of such a translation. The first idea was to require sets of Ceva and Menelaus
triangles together with a glueing pattern. In our example, this was possible since we
could decompose every cycle in Figure 9.2 into triangles. In an arbitrary translation
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process, this might not be the case. Starting at this point, there are at least two
different options to deal with this problem. In order to formulate these options we
introduce some notions in the next section.

9.4. On the Power of Biquadratic Proofs

We remarked earlier that A is a good example to also show the limitations of
the biquadratic proving method. Therefore see Figure 9.5 which is only a slight
modification of Figure 9.1. Now the quadrilateral sets induced by d2, k, m, h and
d2, m, n and p compute (a + b) + c and the quadrilateral sets induced by f , g, h
and l and d1, e, f and l compute a+ (b+ c). With the help of an computer algebra

Figure 9.5.: Another version of (a + b) + c = a + (b + c) encoded in geometry via
von Staudt constructions.

system one can see that the incidence theorem induced has no biquadratic proof
even assuming B to be as general as possible. However, there are biquadratic proofs
for the fact, that constructive projective addition is well defined and independent
of the points responsible for constructing the quadrilateral set. Therefore, using
several binomial proofs and inserting additional points still can proof the theorem
binomially. To do so, one can insert all gray points from Figure 9.1 and one can
show that they coincide with the corresponding ones in Figure 9.5 (which have to
be inserted there). Then we can use the binomial proof of A. It was conjectured
by Richter-Gebert that this approach might be universal. One does not know how
many binomial proof have to be applied and therefore the algorithm has no longer
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polynomial running time. One cannot expect a better time bound since it was
mentioned in Section 7.4 that the realization problem is proven to be NP-hard over
the reals.
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Γ-Cycles and Morphisms

The principle objects of consideration in the present Part II of this thesis are so-
called Γ-cycles. In their unoriented version they can be considered as cycles in the
(undirected) graph Γ defined below:

Definition 10.1. Let P be a finite set of points. Let B be a set consisting of 3-
element subsets of P. The Γ-graph Γ(B) of B is the (undirected) graph with vertices
B and edges {

{A,B}
∣∣∣A,B ∈ B, |A ∩B| = 2

}
.

A point configuration P in RP2 is called an instance of B if [i, j,k]P = ΦP ([i, j,k])
6= 0 for all {i, j,k} ∈ B. This property is well-defined, since ΦP ([i, j,k]) being zero
does not depend on the order of i, j and k.

The edges of Γ(B) have a combinatorial structure such that in any instance P
of B, the area principle can be applied. For each instance P , in matroid theory,
the base graph Γ(P ) is defined. The graph Γ(P ) has all bases as vertices and edges
with the same combinatorial definition as above. Bases in this context of a concrete
instance are non-collinear triples of points. Obviously, Γ(B) is a (induced) subgraph
of Γ(P ). There are some useful results (see [84]) on properties of Γ(P ). In [38, 40, 41]
the concept of matroids is generalized to matroids with coefficients and also infinite
matroids. [39] provides a version specialized to the finite case. Different kinds of so-
called Tutte groups are defined and morphisms between the groups are constructed.
Γ(P ) can be generalized for the matroids under consideration. The fact that this
graph is a a Maurer graph, as introduced in [84], allows for the construction of one
of the morphisms described above. This morphism is of particular interest in our
considerations since the groups involved are related to the groups considered here.
This part of the thesis can be understood as mimicking some of the effects seen
there in a setting, where not the full Γ(P ) is known. E.g. this is the case when
considering a projective incidence theorem T = (H,B(A), C) with B(A) being the
generic non-degeneracy conditions depending on H and defined in Section 7.5. In
this case, Γ(B(A)) has only vertices (and edges) that are present in any instance
of T . The group BGB defined in the previous chapter sits between FB

M and TB
M in

the language of Dress and Wenzel. The quotient BGB/HGB,H is essentially TB
M .
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Similarly, RGB, which is to be defined, sits between FM and TM . The quotient
RGB/EB,H will be closely related to TM . We are in the case of finite combinatorial
structure with partial information but with at least the intuition that the points
correspond to projective configurations.

10.1. Weak Irreducibility

Now consider a translation process as in Chapter 9 for some binomial proof (of a
real projective incidence theorem T := (H,B=B(A), C)). All split biquadratic
fractions correspond to (directed) edges in Γ(B(A)). As in Figure 9.2 it also holds
in the general case that these edges arrange in cycles which can be considered as
(cyclically oriented) cycles in Γ(B(A)). These cycles can in principle have arbitrary
length. With the following definition, the underlying cycles are unoriented Γ-cycles.

Definition 10.2. Let Γ(B) be a Γ-graph for some set B. Let C be a cycle in Γ(B).
C is called unoriented Γ-cycle. Furthermore, if the subgraph of Γ(B) induced by the
vertices of C is again C, we say that C is weakly irreducible and weakly reducible
otherwise.

Observe that weakly irreducibility is a very local property and does depend only
on the vertices of the cycle itself. It tries not to find a composition in the full graph
Γ(B). This possibility will be captured in Definition 10.3.

Γ-cycles that are not weakly irreducible have a pair of non-neighboring vertices
that differ by exactly one element. We saw an example of an (oriented version of
a) weakly reducible Γ-cycles in the 4-cycles and 5-cycles in Figure 9.2. The dashed
lines indicate places where edges in Γ(B(A)) are present which imply reducibility.
See Figure 10.2 (a) at the end of this chapter for an example of an weakly irreducible
Γ-cycle. In the figure, we omit the curly parentheses at the labeling of the vertices
in order to get a clean picture. Furthermore, considering the edges of the cycles as
ratios allows for applying the area principle (see Section 3.1). When no numerator
and denominator are specified, one can only identify points spanning the reference
line and the transversal. This is exemplarily shown in Figure 10.2 (b).
In the context of the translation process indicated in Section 9.3, an oriented ver-

sion of a weakly reducible Γ-cycle can be easily decomposed into smaller cycles along
an additional edge. This decomposition is of the same shape as the decomposition
along the dotted lines shown in Figure 9.2. There, we were in the lucky position that
the resulting Γ-cycles were triangles which have an interpretation as the theorems of
Ceva and Menelaus. In general, we are interested in situations where such a simple
decomposition is not possible. This is the reason why we are interested in weakly
irreducible Γ-cycles. Most of the considerations in the next chapters will refer to
them. However, one could resolve the interpretation of biquadratic proofs also in
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different ways. These ways should be depicted now. Furthermore, a language for
oriented Γ-cycle is developed.

10.2. Oriented Γ-Cycles and Strong Irreducibility

To model the considerations about split biquadratic fractions (as they were done
in Section 9.3) in terms of directed edges in Γ(B), we define an algebraic structure
RGB which has the directed edges of Γ(B) as elements. Furthermore, they vanish
when they are traversed in opposite directions (see Definition 10.3). Clearly each
set of split biquadratic fractions can be considered to be an element of RGB. In the
same way, any cycle emerging from the translation process is an element of RGB.

Definition 10.3. Let P be a finite set of points. Let B be a set consisting of 3-
element subsets of P. The group of bracket ratios compatible with the area principle
RGB is defined to be the quotient of the multiplicatively written free abelian group
generated by the formal (unbreakable) symbols

{
A

B

∣∣∣ {A,B} is an edge in Γ(B)

}
∪
{

ε

}

and the subgroup generated by
{
A

B
· B
A

∣∣∣ {A,B} is an edge in Γ(B)

}
∪
{
ε2

}
.

Furthermore, any element
−→C ∈ RGB that as an representation as

−→C =
A1

A2
· A2

A3
· · · Ak−1

Ak
· Ak
A1

is a called a k-cycle in RGB (for some k ∈ N) whenever
(
{A1, A2}, {A2, A3}, . . . ,

{Ak, A1}
)
is a Γ-cycle. It is weakly irreducible whenever

(
{A1, A2}, {A2, A3}, . . . ,

{Ak, A1}
)
is weakly irreducible. It is also called (oriented) Γ-cycle of length k. It

is strongly irreducible whenever it is not contained in the subgroup of RGB that is
generated by all k′-cycles where k′ < k. A point configuration P is called an instance
of
−→C whenever it is an instance of B.

Clearly, whenever an oriented Γ-cycle is strongly irreducible, it is weakly irre-
ducible. Within this setting, one could argue that one should focus on the strongly
irreducible k-cycles in RGB.
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Remark 10.4. Observe that any element ofRGB can be given a representation which
either contains ε once or does not contain ε. Ignoring ε, the rest of the element as the

shape
A1

A2
· · · Ak−1

Ak
which can be drawn as a directed version of a subgraph of Γ(B)

where we also allow multiple edges. This yields a graphical representation of many

objects in RGB which is often quite helpful. The objects
A1

A2
directly correspond

to edges and are sometimes called edges as well.

10.3. Decomposing Large Γ-cycles within Biquadratic
Proofs

Due to [84, 39], when the same definitions are done with underlying graph Γ(P )
for an instance P instead of Γ(B), one can cut down the maximal k for which a
k-cycle can be strongly irreducible to 3. For a general projective incidence theorem
T = (H,B, C) specific informations about the shape of Γ(B) are out of reach,
especially in the case that B has very few elements. Those cases can be easily
achieved by redefining B after a (binomial) proof and letting it consist of those
elements that are needed for the proof. This may induce big strongly irreducible
cycles. The big ambiguity about the shape of B is another reason, different from the
ones given in Chapter 7.5, to restrict ourselves to the cases where B equals B(A).
Even in the case that B = B(A), one does not have the property of Γ(B(A))

being a Maurer graph. So one cannot apply the same techniques as in the matroidal
realizable case in order to control the length of the cycles. It remains an open prob-
lem whether for any incidence theorem T = (H,B(A), C), any biquadratic proof
can be transferred to a collection of 3-cycles in RGB(A). Observe that therefore,
it would be allowed that not every splitting of biquadratic fractions may lead to
oriented Γ-cycles that can be written as a product of 3-cycles. There has to be
only one splitting which allows for this. It remains also open the stronger problem
whether any k-cycle in RGB(A) can be written as a product of 3-cycles.
We do know cycles where this is possible but this decomposition is not at all

easy. More precisely, there is a theorem (H,B(A), C) with a 4-cycle such that the
decomposition into 3-cycles that was obtained by solving a linear equation system
with Mathematica ([136]) uses 54 triangles. Having this in mind, it could be much
more convenient to have a better understanding of the underlying Γ-cycle than to
actually carry out the decomposition into 54 triangles.
There is also another way to deal with large cycles as introduced in [2]. Here

one adds two new generic points, say g and h, to the whole theorem. This allows
for a decomposition of large cycles but also generates at least 3k − 2 new triangles
when decomposing a k-cycle. Within a biquadratic proof, Γ-cycles do look not very
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complicated. In fact, this is also a benefit of the modeling of an incidence theorem by
(H,B, C). It has the advantage that we do not have to distinguish between free and
dependent points. For dependent points expressed in Grassmann-Cayley algebra, a
bracket may look much more complicated and will have more than one evaluation.
Therefore, in a setup of Grassmann-Cayley algebra, the canceling of brackets used in
biquadratic proofs is less trivial. This cancellation process corresponds to Γ-cycles.

10.4. Some Subgroups Vanishing under Morphisms

In order to describe the relations between RGB and BGB, we consider the group
homomorphism Φ : RGB → BGB induced by

ε 7→ ε and
{b,a, c}
{d, c,a} 7→

[b,a, c]

[d, c,a]

where colors only highlight the combinatorics of a given unbreakable symbol in
RGB. Observe that the result indeed only depends on the combinatorics of the
argument. The combinatorics are induced by the considerations done in Section 3.1.
Furthermore, Φ is well-defined since it vanishes on the defining subgroup. Let

−→C =
A1

A2
· A2

A3
· · · Ak−1

Ak
· Ak
A1
∈ RGB

be an oriented Γ-cycle. Apparently it holds that

Φ(
−→C ) =

k∏

i=1

Φ

(
Ai

Ai+1

)
∈ {ε, 1}.

We define Φ(
−→C ) to be the signature of

−→C . In order to determine the signature,
one has to compare the orientations of canceling brackets in Φ(

−→C ). We will give an
easier way to read of the signature of weakly irreducible Γ-cycles later on. We will
use the structure introduced when counting them (see Section 12.2). By abuse of
notation, we can assume Φ(

−→C ) to lie in RGB as well. This allows for defining ©B

to be the group generated by
{

Φ(
−→C ) · −→C

∣∣∣−→C is oriented Γ-cycle
}

which implies
Φ
(
©B

)
=
{

1
}
.
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Figure 10.2 (c) highlights the combinatorics which are given in the definition of Φ
for each edge in the given example.

10.4.1. A Euclidean Interpretation of Oriented Γ-Cycles

Consider an instance P . We assume that all points have Euclidean interpretations
and all intersections defined in the following fit in Euclidean space given by the
standard embedding. We write non-bold letters for points in P corresponding to
bold indices in P. For a, b, c and d ∈ P it holds:

ΦP

(
{b,a, c}
{d, c,a}

)
=
|b, a, c |
|d, c, a|

where we use ΦP also to denote ΦP ◦Φ since no confusion can arise. We apply the
area principle and it holds:

|b, a, c |
|d, c, a| =

b p

p d
(10.1)

where p := meet(join(b, d), join(a, c)).

Definition 10.5. Let
−→C =

A1

A2
· A2

A3
· · · Ak−1

Ak
· Ak
A1

be an oriented Γ-cycle. Let P

be an instance of
−→C . Assume the last entries of the points in P equal 1 and applying

the area principle gives

ΦP

(
Ai

Ai+1

)
=

bi pi

pi di

for finite points pi (for 1 ≤ i ≤ k and indices considered modulo k). Due to (10.1),
there is a induced Euclidean theorem stating that

k∏

i=1

bi pi

pi di
= ΦP (

−→C ) ∈ {−1,+1}.

This Euclidean theorem is called a Γ-cycle theorem induced by
−→C .

Figure 10.2 (d) gives an example of a Γ-cycle theorem. In fact, a Γ-cycle theorem
is not trivial in Euclidean space.

Remark 10.6. There are two Γ-cycles of length 3. The Γ-cycle theorems induced by
them are exactly the theorems of Ceva and Menelaus.
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10.4.2. Including Collinearities

Let H a set of 3-element subsets of P such that B and H are disjoint. The group
of biquadratic fractions in area form ↑- - -

- - -↓B,H is the subgroup of RGB generated by
{
{a,b,x}
{a,b,y} ·

{a, c,y}
{a, c,x}

∣∣∣∣∣ {a,b, c} ∈ H or {a,x,y} ∈ H

}
(10.2)

which implies
Φ
(
↑- - -

- - -↓B,H
)
⊂ HGB,H.

Let
EB,H := 〈©B ∪ ↑- - -

- - -↓B,H〉.
We say that P is an instance of of B and H if [i, j,k]P 6= 0 for all {i, j,k} ∈ B and
[i, j,k]P = 0 for all {i, j,k} ∈ H. This implies together with Proposition 9.4 that
for all instances P it holds that

ΦP (EB,H) = {1}.

Remark 10.7. Observe that the graphical version of the elements generating ↑- - -
- - -↓B,H

(see (10.2)) looks like Figure 10.1. The dashed lines indicate places where there is
an edge in Γ(B). This explains the name of the group ↑- - -

- - -↓B,H. Observe that
multiplying an oriented 4-cycle yields the other splitting of the biquadratic fraction.
Observe furthermore that in the left edge, the transversal is given by a and b and in

Figure 10.1.: Graphical version of a biquadratic fraction in area form.

the right edge it is given by a and c. It might be the case, that H implies that the
transversal can be also spanned by some other points. If one wants to express this
fact in EB,H, one can alter the points spanning the transversal step by step giving
a graphical picture as ↑- - -

- - -↓↑- - -
- - -↓ ··· ↑- - -

- - -↓ (see also Figure 12.3 for an example).
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Slight modifications of [39] as well as [2] imply that each biquadratic proof has
a preimage under Φ that lies in EB,H. The formulation in terms of EB,H can be
considered easier since one has better (geometric) control of the cancellation process.
This control is gained via the interpretation as oriented length ratios and the Γ-
cycle theorems. In particular, it is easier to construct new theorems within this
theory because cancellation can be easily achieved. These theorems can be theorems
about oriented length ratios or incidence theorems (along with a biquadratic proof).
We will present examples for both cases in Chapter 12 and Chapter 13. Both
cases can be regarded as giving a specific representation of an element of EB,H by
its defining elements. The overall product can again be interpreted geometrically
resulting in a derived geometric fact. The approach can be understood as starting
with cancellation patterns (or with Γ-cycles) and imposing incidence constraints
(requiring H to contain some elements such that some elements in ↑- - -

- - -↓B,H are
present). The geometric control that one achieves is also a reason for the Cayley
factorization to work (see Part III).
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(a) (b)

(c) (d)

∏ length
length

= 1

Figure 10.2.: A weakly irreducible Γ-cycle in an unoriented and in an oriented ver-
sion together with the corresponding Γ-cycle theorem.
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11. Counting (Weakly) Irreducible
Γ-Cycles

Suppose C = ({A1, A2}, {A2, A3}, . . . , {Ak, A1}) is a weakly irreducible unoriented
Γ-cycle. From now on, we will drop the word “weakly”, since we will not consider
strong irreducibility any longer. The following is joint work with Jürgen Richter-
Gebert who invented the table representation of (irreducible) Γ-cycles as shown e.g.
in Figure 11.1 (e) and in many other diagrams. In order to structure and enumerate
them he made the assumptions given in the following section. By enumerating
and investigating all irreducible cycles of fixed length up to 9 he suggested the
subscheme depicted in Figure 11.3. The formulation in his enumeration was via the
permutation σ which will be used in Section 12.2.

11.1. Assumptions on the Irreducible Γ-Cycles

We will w.l.o.g. require that P =
⋃k
i=1 Ai and that C has connected entries, i.e.

that for each p ∈ P, the subgraph of C induced by the vertices Vp containing p

Vp =
{
Ai
∣∣p ∈ A, i ∈ {1, . . . , k}

}

is connected. For a Γ-cycle not meeting this requirement for some p, the entry p can
be given a new name in each connected component. This maintains the property of
being a Γ-cycle as well as the irreducibility.
The aim of this Chapter is to give a reasonable counting of irreducible Γ-cycles of

fixed length k. Figure 11.5 and 11.6 at the end of the chapter show a resulting listing
of irreducible Γ-cycles of length 7 and 8. They use a table representation which is
to be defined in the following section. In order to avoid case distinctions, from now
on, we will assume that k ≥ 4. Furthermore, some Γ-cycles have to be considered
identical, e.g. Γ-cycles that differ only by labeling the entries of the vertices. These
assumptions also imply that there is exactly one irreducible Γ-cycle where Va covers
all vertices of C for some a ∈ P:

(
{a,b1,b2}, {a,b2,b3}, {a,b3,b4}, . . . , {a,bk−1,bk}, {a,bk,b1}

)
. (11.1)

In order to count the remaining irreducible Γ-cycles we temporally exclude this cycle
from the following considerations and each Vp induces a path in C.
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11.2. Table Representations of Irreducible Γ-Cycles

We chose an orientation
−→C for C: Let

−→C =
A1

A2
· A2

A3
· · · Ak−1

Ak
· Ak
A1

.

As in the definition of Φ we identify blue-grey, blue-violet and orange entries for
each edge (see Figure 11.1 (c) whithin is a continuation and partial restatement of
Figure 10.2 ). Each end of a path induced by Vp corresponds to a blue-violet or
to a orange coloring of p. Since this is true for any p in P, each element of P is
colored in orange exactly once. This implies that P has exactly k different entries.
Furthermore, we can identify the vertices A1, A2, . . . , Ak with its orange labeling
(highlighted with grey circles in Figure 11.1(c)). With this identification, the con-
secutive sequence of vertices vertices A1, A2, . . . , Ak of

−→C induces a linear order on
the elements of P. We will use the notion ±l to indicate steps of size l (l ∈ N) in
the cyclically closed linear order of P. It is used to produce a table representation of
the oriented Γ-cycle

−→C . This representation is in essence an incidence matrix (see
also Figure 11.1 (e): we label both rows and columns by the elements of P in the
given order. The labels of the columns are considered as vertex labels. We draw
a dot at position (p,q) whenever p is contained in the defining set of the vertex
which is labeled with q. The black lines indicate the paths induced by the Vps.

(c) (e)
[3, 1, 1, 2]

position

en
tr

y

Figure 11.1.: Continuation of Figure 10.2 giving a table representation of the Γ-cycle
under consideration.

114



11.2. Table Representations of Irreducible Γ-Cycles

One can read of the oriented Γ-cycle from the diagram: each column is a vertex
and its entries are indicated by dots. Clearly any oriented Γ-cycle can be given a
table representation. In Figure 11.1 (e), there is an additional coloring of some dots.
The coloring indicates for each column, which entries are colored in blue-violet or
orange at the corresponding vertex in the diagram (c). The sequence of numbers
given there is detailedly explained below. A rough description is as follows: in the
first line, there are 2+3 dots in the second line there are 2+0 dots, and so on. This
induces a sequence [3, 0, 0, 1, 1, 2, 0]. Omitting the 0s gives the sequence depicted in
Figure 11.1 (e). The omission is possible since we will see in Figure 11.3 that e.g.
the second and the third line are induced by the first one. On the other hand, the
restrictions for a table to represent a (not necessarily irreducible) oriented Γ-cycle
of length k can be easily expressed (compare Definition 10.2 and 10.1):

• Each column has to contain three dots and therefore the table has to contain
3 k dots.

• For two neighboring columns, there have to be precisely two rows in which both
columns contain a dot. Here neighboring also includes a cyclic neighboring,
i.e. the first and the last column are considered as neighbors as well.

Taking into account also the specific labeling of the vertices we chose for our re-
stricted class of irreducible oriented Γ-cycles, we need to require also:

• In diagonal of the table, dots are drawn, but not in the positions (p,p − 1)
for all p ∈ P.

We will argue:

• For all p ∈ P there is a dot at position (p,p + 1).

In order to see this, suppose the contrary: suppose there is a p ∈ P such that there
is no dot in position (p,p− 1) and (p,p + 1). Since column p has to have two dots
in common with both vertices p− 1 and p + 1 and non of these entries can be p by
assumption, vertices p − 1 and p + 1 must have the same entries, say a and b in
common with vertex p. Therefore, vertices p− 1 and p + 1 both consist of a and b
plus another entry and they differ by exactly one element. This is a contradiction
to the assumption that

−→C is irreducible.
All previous assumptions imply that 2 k of the 3 k dots of a Γ-cycle of length k are

already fixed. Therefore, each table representation corresponding to an irreducible
oriented Γ-cycle contains the dots indicated in Figure 11.2. Since the Vps induce
connected components, the entries of row p have to be given by the column indices

p, p + 1, p + 2, . . . , p + l + 1
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Figure 11.2.: Common subscheme of all table representations of irreducible Γ-cycles.

for some l depending on p and with 0 ≤ l ≤ k − 3. Visually speaking, this means
that in Figure 11.2 the black lines have to be extended to the right.
Since we have only fixed 2 k positions of dots, there has to be a row p in which

the corresponding l is strictly positive. Since
−→C is a cycle, we can w.l.o.g. assume

that p is the first element in P with respect to its induced order. Therefore, the
the first row of the table corresponds to the first row in Figure 11.3.
Now consider some q within the range of p + 1 to p + l− 1. Due to our previous

considerations, there have to be dots at positions (q,q) and (q,q+1). There cannot
be more dots in this row since this would imply a dot at position (q,q + 2). This
in not possible since in column q + 2 there are already three dots in rows p, q + 1
and q + 2.
Furthermore, there has to be a dot at position (p + l,p + l+ 2): column p + l+ 1

as to have two entries in common with column p + l + 2. Since there is no dot at
position (p,p + l + 2) and at position (p + l + 1,p + l) it has to be at position
(p + l,p + l + 2). Now one can restart the game with entry p + l in the place of
p. This implies that the whole table is composed of building blocks as given in
Figure 11.3 and there is a sequence [l1, l2, . . . , lt] of positive numbers that uniquely
determines

−→C . Since Figure 11.2 fixes 2 k of the overall 3 k dots, we have

t∑

i=1

li = k.

Therefore, [l1, . . . , lt] is a composition of n. Any cyclic shift, e.g. [l2, . . . , lt, l1], of
the ls will also represent

−→C . So in fact,
−→C corresponds to a cyclic composition of

k.
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Figure 11.3.: l dots added to Figure 11.2 in row p determine all other black dots in
rows p + 1 up to p + l+ 1 as well as a dot at position (p + l,p + l+ 2).

We summarize:
Each irreducible (oriented) Γ-cycle of length k (with the restrictions done in Sec-
tion 11.1 ) corresponds to a cyclic composition of k.

11.3. Counting Irreducible Γ-Cycles

A first step in the direction of counting irreducible Γ-cycles of length k is to give
the number of cyclic compositions of k. It is included in the On-Line Encyclopedia
of Integer Sequences (OEIS) (as sequence number A008965, see [87]) and a formula
is given by

number of cyclic compositions of k =
1

k

∑

d|k
ϕ(d)2

k
d − 1

where ϕ is Euler’s phi function and d|k means that d divides k. In the OEIS there is
given another suitable interpretation of this number: it is the number of necklaces
where the beads themselves are sets of beads with total number of beads being k.
Turning over of the necklace is not allowed. This fits with the action of adding dots
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to a table as in Figure 11.2 in the allowed way, i.e. locally generating patterns as in
Figure 11.3. For future reference we illustrate the connection to number sequence
number A000031 (see [88]) in the OEIS: It gives the number of k-bead necklaces
with 2 colors when turning over is not allowed. Sequence A008965 is essentially
sequence A000031 with an offset of −1. The connection between 2-colored neck-
laces and cyclic compositions is just an extension of the standard bijection between
(ordinary) compositions of the number k and the k − 1 bit binary numbers to the
cyclic case.

In order to count irreducible oriented Γ-cycles we analyze which cyclic composi-
tions encode irreducible oriented Γ-cycles. There are exactly four cyclic composi-
tions that obviously cannot encode irreducible Γ-cycles since their entries are bigger
than k − 3. They are:

[k], [k − 1], [k − 2, 2], [k − 2, 1, 1].

All remaining cyclic compositions do encode (not necessarily irreducible) Γ-cycles:
a table representation of a given cyclic composition can be derived by transferring
the first entry of the composition to the first part of the table representation as
shown in Figure 11.3. Afterwards, one can do a cyclic shift of the table and of the
composition a fill the whole table with dots. Now each column contains three dots
and neighboring columns share exactly two dots: due to the translation procedure,
it suffices to check this property locally in Figure 11.3. Since it holds true there,
each of the remaining cyclic compositions does encode a Γ-cycle. Due to our pre-
vious considerations, it remains to identify those cyclic compositions that do not
correspond to irreducible Γ-cycles in order to find all irreducible Γ-cycles (fulfilling
the requirements stated in Section 11.1).

Assume that there is a cyclic composition such that the induced Γ-cycle has two
vertices V andW that are not neighbored in the cycle but nevertheless have exactly
two elements p and q in common. Since V and W have at least distance 2 (in the
cycle) and since p and q are in both columns belonging to V and W and since p
and q are connected entries, both p and q have to belong to at least three vertices.
Therefore, p and q locally look like the first row in Figure 11.3 and the number of
vertices containing p and q determined by adding 2 to an entry of the composition.
Let l be the entry corresponding to p in the composition and consider the local
situation shown in Figure 11.3. The columns indexed by p + 2 up to p + l − 1
already contain three dots and none of them can be q since q has to be contained
in at least three vertices. Therefore, w.l.o.g. V is the vertex belonging to column p
or p + 1 and W belongs to column p + l or p + l + 1. In any case, q has to be in
column p + l or p + l + 1 which by our labeling convention of the columns implies
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11.3. Counting Irreducible Γ-Cycles

that
q = p + l or q = p + l + 1.

In order to have also q in column p or p + 1 we need to have

q + lq + 1 = p or q + lq + 1 = p + 1

where lq is the entry in the composition that corresponds to q. Combining all
possible values for q and lq leads to the compositions (see also Figure 11.4)

[l, k − l − 1, 1], [l, 1, k − l − 2, 1], [l, k − l], [l, 1, k − l − 1].

Figure 11.4.: Tables induced by the cyclic compositions [l, k−l−1, 1], [l, 1, k−l−2, 1],
[l, k − l] and [l, 1, k − l − 1] when k = 10 and l = 5.

We want to count these compositions which encode reducible oriented Γ-cycles.
Therefore we have to analyze which parameter range of l is admissible and ensure
that we count each reducible oriented Γ-cycle only once. Substituting l for k− l− 1
in [l, 1, k − l − 1] identifies this cyclic composition with the first one (with different
parameters). Now all the classes of composition

[l, k − l − 1, 1], [l, 1, k − l − 2, 1] and [l, k − l]

are disjoint. In the following, we count their number of distinct elements.
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11. Counting (Weakly) Irreducible Γ-Cycles

Number of [ l, k − l − 1, 1 ]-Type Cyclic Compositions
We have to ensure that 1 ≤ l ≤ k− 3 and 1 ≤ k− l− 1 ≤ k− 3. This equivalent to
2 ≤ l ≤ k − 3. In these case we neither have l = 1 nor k − l − 1 = 1. So each l in
the given range gives a different cyclic composition. Their number is

k − 4.

Number of [ l, k − l ]-Type Cyclic Compositions
We have to ensure that 1 ≤ l ≤ k − 3 and 1 ≤ k − l ≤ n − 3. This equivalent to
3 ≤ l ≤ k − 3. We count the lexicographically maximal representatives, which are
the ones with l ≥ k − l. In total there are

k − 3−
⌈
k

2

⌉
+ 1 =

⌊
k

2

⌋
− 2

different cyclic compositions of this type.

Number of [ l, 1, k − l − 2, 1 ]-Type Cyclic Compositions
We have to ensure that 1 ≤ l ≤ k−3 and 1 ≤ k− l−2 ≤ k−3. The second equation
is redundant. We count the lexicographically maximal representatives, which are
the ones with l ≥ k − l − 2. In total there are

k − 3−
⌈
k − 2

2

⌉
+ 1 =

⌊
k

2

⌋
− 1

different cyclic compositions of this type.

Theorem 11.1. Up to relabeling, the total number of weakly irreducible oriented
Γ-cycles with connected entries of length k (with k ≥ 3) is

1

k

∑

d|k
ϕ(d)2

k
d − k − 2

⌊
k

2

⌋
+ 3.

Proof. The proof for k = 3 can be done by hand. For k ≥ 4 we have:

1

k

∑

d|k
ϕ(d)2

k
d − k − 2

⌊
k

2

⌋
+ 3 =

1

︸︷︷︸
cycle as in (11.1)

+
1

k

∑

d|k
ϕ(d)2

k
d − 1

︸ ︷︷ ︸
cyclic comp.s

− 4

︸︷︷︸
[k], [k−1], [k−2,2], [k−2,1,1]
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− (k − 4)
︸ ︷︷ ︸

[ l, k−l−1, 1 ]-type cyclic comp.s

− (

⌊
k

2

⌋
− 2)

︸ ︷︷ ︸
[ l, k−l ]-type cyclic comp.s

− (

⌊
k

2

⌋
− 1)

︸ ︷︷ ︸
[ l, 1, k−l−2, 1 ]-type cyclic comp.s

Corollary 11.2. Up to relabeling, the total number of unoriented irreducible Γ-
cycles of length k (with k ≥ 3) with connected entries is

1

2k

∑

d|k
ϕ(d)2

k
d − k − 2

⌊
k

2

⌋
+ 3 +

{
2
k−1

2 if k is odd
3 · 2 k2−2 if k is even.

Proof. The case for k = 3 can be checked by hand. Now assume k ≥ 4. Any
unoriented Γ-cycle can be oriented arbitrarily and in the case that there is no p ∈ P
such that Vp = P, this induces a cyclic composition [l1, . . . , lt]. It is not hard to
see that the other orientation of the same cycle results in the cyclic composition
[lt, . . . , l1]. Furthermore, the number of 2-colored necklaces where turning over is
allowed, is A000029 in the OEIS. Its formula is given by

1

2k

∑

d|k
ϕ(d)2

k
d +

{
2
k−1

2 if k is odd
3 · 2 k2−2 if k is even.

By another extension of the standard bijection between (ordinary) compositions
of the number k and the k − 1 bit binary numbers we see that, with an offset of
−1, sequence A000029 corresponds to the cyclic compositions where reversing the
orientation is allowed. One can also check by hand, that all cyclic compositions that
had to be excluded in the oriented case give distinct compositions also in the case
that turning over is allowed.
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11. Counting (Weakly) Irreducible Γ-Cycles

Figure 11.5.: Table representations of the nine irreducible oriented Γ-cycle of length
7 that are not induced by (11.1).
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11.3. Counting Irreducible Γ-Cycles

Figure 11.6.: Table representations of the 21 irreducible oriented Γ-cycle of length
8 that are not induced by (11.1).
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12. Glueing Γ-Cycles along Their
Orbits

12.1. An Example

As already mentioned at the end of Section 10.4.2, Γ-cycles might be more interest-
ing if the entries are considered as dependent points instead of free points. In order
to do concrete constructions using a given (oriented) Γ-cycle

−→C one wants to have
information about the length ratios, i.e. about the shape of the Γ-cycle theorem
associated with

−→C . In the context of binomial proofs, this can be easily seen: Here
edges of Γ-cycles can be glued together only if they can be interpreted as a length
ratio along the same edge. One can also go the other way round: one can start with
a Γ-cycle and impose further incidence relations on the points. This may simplify
the statement of the corresponding Γ-cycle theorem in such a way, that an addi-
tional incidence relation can be concluded. In this case, one has generated a new
incidence theorem. We show the procedure in more detail in an example. Consider
the irreducible oriented Γ-cycle associated with the cyclic composition [3, 1, 1, 2]
which is illustrated in Figure 10.2 (c) and in Figure 11.1 (c). In the Γ-cycle theorem
associated to it and illustrated in Figure 10.2 (d), the length ratios are arranged
in two disjoint cycles called orbits (see also Section 12.2). We use this terminology
since the word “cycle” is already in use. In fact, in Part III, a similar structure will
be called “cycle” since no confusion can arise and since there, it is closely related
with cycles in a graph theoretic sense.

In an instance as in Figure 10.2 (d), the corresponding Γ-cycle theorem can be
read as

g p1

p1 b
· b p2

p2 d
· d p3

p3 g
· f q1

q1 c
· c q2

q2 e
· e q3

q3 a
· a q4

q4 f
= 1,

where the labeling of Figure 12.2 gives definitions for the newly introduced points.
Imposing a Ceva configuration on the orbit of length three as shown in Figure 12.2
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12. Glueing Γ-Cycles along Their Orbits

ensures that

g p1

p1 b
· b p2

p2 d
· d p3

p3 g
·

︸ ︷︷ ︸
=1

f q1

q1 c
· c q2

q2 e
· e q3

q3 a
· a q4

q4 f
= 1. (12.1)

Therefore, the other orbit on its own yields 1 in the product. A multi-ratio is a
product

∏

i

ai xi

xi ai+1

(12.2)

where the indices are considered cyclically and ai, xi can be considered to be Eu-
clidean and such that xi is on the line spanned by and distinct from ai and ai+1.
A multi-ratio equaling 1 is in non-degenerate situations equivalent to the fact
that a triangulation with Ceva and Menelaus triangles (such that the number of
Menelaus triangles is even) is possible. For the triangulation we assume that it
is compatible with all points of intersection, i.e. when multiplying all theorems
corresponding to the Ceva and Menelaus triangles, all ratios except for the ones
in (12.2) cancel. For an example, see Figure 12.1. We proceed by demonstrat-

Figure 12.1.: The possibility of triangulating with Ceva and Menelaus configurations
is a necessary and sufficient condition for the multi-ratio being 1 (in a
non-degenerate instance).
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12.1. An Example

ing this equivalence in the example of the remaining 4-orbit in (12.1). We define
z := meet(join(a, c), join(q2, q3)). This imposes a Menelaus configuration on the
triangle with vertices a, e and c. Multiplying the resulting identity

a q3

q3 e
· e q2

q2 c
· c z

z a
= −1

with (12.1) yields
f q1

q1 c
· a q4

q4 f
· c z

z a
= −1.

This equation implies the existence of a Menelaus line and therefore z, q1 and q4

have to be collinear. With this construction, we were able to derive an incidence
theorem on 16 points very easily (see Figure 12.2).

What we just saw was a Euclidean reasoning for an incidence theorem also holding
in projective geometry. Via the area principle, this reasoning can be done via
(formal) determinants yielding a more projective reasoning. It can be summarized
with Figure 12.3 (where we again omit the curly parentheses at the labeling of the
vertices in order to get a clean picture). Black arrows indicate elements of ↑- - -

- - -↓B,H
and each set of non-black arrows, which have the same color, corresponds to an
element in ©B. The Γ-cycle we started with is highlighted in blue. The orbits of
this cycle can be associated with the length ratio colored in green and in shades of
red. However, the graphical version is not enough to see the membership in EB,H
since one has to also reason about the signature. Multiplying all indicated elements
of ↑- - -

- - -↓B,H and all cycles together with their signatures yields an element in EB,H.
In fact, in this example, only the cycles colored in shades of red have signature ε.
Due to the signatures determined, the overall product

{a,q1,q4}
{c,q1,q4}

· {c,q2,q3}
{a,q2,q3}

is proven to be an element of EB,H. Therefore, for any instance P (and non-bold
letters for the corresponding points in the instance) we have

ΦP

(
{a,q1,q4}
{c,q1,q4}

· {c,q2,q3}
{a,q2,q3}

)
=
|a, q1, q4|
|c, q4, q1|

· |c, q2, q3|
|a, q3, q2|

= 1

which implies the concurrence of the lines join(a, c), join(q1, q4) and join(q2, q3).

This procedure can be generalized to other oriented Γ-cycles
−→C . First assume

that all orbits have length ≥ 3. Here one has to impose incidence relations such
that all but one orbit are triangulated with Ceva and Menelaus triangles. Then the
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12. Glueing Γ-Cycles along Their Orbits

Figure 12.2.: Imposing incidence constraints to the Γ-cycle theorem given in Fig-
ure 10.2 results in the incidence theorem stating that the three red
lines are concurrent.
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12.1. An Example

Figure 12.3.: The graphical version of an element of EB,H. The corresponding el-
ement of EB,H yields a proof for the incidence theorem given in Fig-
ure 12.2.
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12. Glueing Γ-Cycles along Their Orbits

last orbit can be triangulated with Ceva and Menelaus triangles as well as long as
the parity of the total number of Menelaus triangles matches the signature of

−→C .
For orbits of length two, the condition, that there exists a triangulation, should be
replaced by the fact that the length ratios along both edges of the orbit are identical.
Certainly, this construction may not be possible in any case, since degenerate

situations may occur when imposing incidence relations. However, it works in many
cases. During this process, there are two steps that are independent of the degen-
erate situations.

• One needs to know the signature of
−→C .

• One needs to know the number, length and shape of the orbits of
−→C .

We will show how these informations can be easily obtained from encodings of the
Γ-cycle in question. Observe that in [2], it is pointed out that glueing the three
orbits of length two of the cycle given by the cyclic composition [1, 1, 1, 1, 1, 1],
yields Pappos’s theorem.

Remark 12.1. Observe that this construction can be generalized in different direc-
tions: first, one can close the orbits not only by triangulating them but also by using
again more general Γ-cycles. We are not restricted to irreducible Γ-cycle. We can
use reducible cycles for closing the orbits and also as a starting point. Of course,
we can obtain all reducible Γ-cycles by combining irreducible ones. The larger the
orbits of the original cycle, the larger are the straightforward possibilities to close
the cycles using irreducible and reducible Γ-cycles. In any cases, informations about
signature and orbits are needed.

12.2. Edges of Γ-Cycles and Informations about Orbits

In order to address the problems of signature and orbits, we consider edges in a
given irreducible oriented Γ-cycle

−→C together with its table representation. Assume
that for all p ∈ P we have Vp 6= P. For an example see Figure 12.4 which is
a continuation of Figure 10.2 and Figure 11.1. To identify the endpoints of the
length ratio of an edge (p,p + 1) (where p and p + 1 are considered to be vertex
names), one takes the blue-violet dot from the column labeled p and the orange
dot from the column labeled p + 1. Due to the labeling conventions, the orange dot
is in position (p + 1,p + 1). For each p ∈ P we define σ(p) such that the dot in
position

(
p, σ(p)

)
is colored in blue-violet. For considerations similar to the ones

done in Section 11.2, σ is a permutation. For each p ∈ P, the edge (σ(p), σ(p) + 1)
induces an length ratio whose blue-violet endpoint is p and whose orange endpoint
is σ(p) + 1. Therefore, the endpoints of all length ratios are given by the pairs

(p, σ(p) + 1).
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The length ratios arrange in orbits. The structure of these orbits can now be defined
on a combinatorial level as the cycles of the permutation σ(p) + 1. They can be
visualized quite well also in the table representation of an irreducible oriented Γ-cycle
as it is done in Figure 12.4. For glueing Γ-cycles Theorem 12.2 and Theorem 12.3
might be interesting.

(f)

f

a

g

b

d

c

e

(g)

Figure 12.4.: Continuation of Figure 10.2 and Figure 11.1: illustration of the com-
binatorics of the orbits.

Figure 12.5.: Figure 11.5 with additional information about orbits and its lengths.
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Figure 12.6.: Figure 11.6 with additional information about orbits and its lengths.
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Theorem 12.2. Let
−→C be an irreducible oriented Γ-cycle of length k ≥ 4.

−→C has
at most three orbits.

Proof. First, assume that for all p ∈ P we have Vp 6= P. We consider the table
representation associated with the oriented Γ-cycle

−→C . Due to the possibility of
a cyclic shifts, we can w.l.o.g. assume that the first row of the table contains at
least three dots and therefore the first rows have a shape as given in Figure 11.3.
The labels of the rows and the vertices in this specific table representation induce a
linear order on the elements of P. Say p is its first element. Now, the last element
is p + k − 1. Using the structure of Figure 11.3 and induction, one sees that in in
columns p + 2 up to the last column p + (k − 1), all dots are located above the
diagonal of the table. This means that it holds

σ−1(x) < x for p + 2 ≤ x ≤ p + (k − 1)

with respect to the given linear order on P. By letting τ(x) = σ(x) + 1 this implies

τ−1(x) = σ−1(x− 1) < x− 1 for p + 2 ≤ x− 1 ≤ p + (k − 1)

and therefore

τ−1(x) < x for p + 3 ≤ x ≤ p + (k − 1).

Thus, there are (at most) three elements x ∈ P such that

τ−1(x) > x.

We are interested in the cycles of τ . Since the cycles of τ and τ−1 are identical and
since each cycle of τ−1 needs to have an element x with τ−1(x) > x, τ as at most
three cycles. Therefore,

−→C has at most three orbits.
By a similar consideration, also the Γ-cycle with an entry q contained in every

vertex has at most two orbits. To see this, one defines σ on P \ {q} and applies
the same considerations as in the previous case. This cycle can be understood a a
Γ-cycle in rank 2.

Theorem 12.3. Let
−→C be an irreducible oriented Γ-cycle. Assume it corresponds

to a cyclic composition [l1, . . . , lt]. For the signature Φ(
−→C ) (see Definition 10.5)

holds
Φ(
−→C ) = εt.

Proof. Let p be an element of P such that in row p there are l + 2 dots for a
l ∈ {l1, . . . , lt}. Locally, we are in the situation depicted in Figure 11.3. For the
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edge (p + 1,p + 2) we have

Φ

(
p + 1

p + 2

)
= Φ

(
{x,p,p + 1}
{p + 2,p,p + 1}

)
= ε · [p,p+1, x]

[p,p+1,p+2]

for some x ∈ P. For the edges (p + i,p + i+ 1) (2 ≤ i ≤ l) we have:

Φ

(
p + i

p + i+ 1

)
= Φ

(
{p + i− 1,p,p + i}
{p + i+ 1,p,p + i}

)
=

[p,p+i− 1, p+i]

[p,p+i,p + i+ 1]
.

Since the edge (p + l,p + l + 1) is edge (q,q + 1) for q = p + l, we can restate the
whole game with q in the role of p. We obtain:

k−1∏

j=0

Φ

(
p + j

p + j + 1

)
=

t∏

r=1


ε · [pr,pr+1, xr]

[pr,pr+1,pr+2]
·
∏

2≤i≤lr

[pr,pr+i− 1, pr+i]

[pr,pr+i,pr + i+ 1]




where each pr corresponds to lr (1 ≤ r ≤ t). Since all determinants are positively
oriented with respect to the given cyclic order of P they cancel and

k−1∏

j=0

Φ

(
p + j

p + j + 1

)
= εt

proves the statement.
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13. Relations between Γ-Cycles and
Results of Grünbaum and
Shephard

As previously mentioned in Section 3.1, the usage of the area method as used here
is taken from Grünbaum and Shephard [53, 52, 54]. Earlier use of the area and
the volume principle was also treated in Section 3.1. In [53] a special kind of
theorems about oriented length ratios is investigated: the cyclically ordered vertices
(v1, . . . , vk) of a k-gon in the affine plane are considered. The authors want to
assign (oriented) length ratios to edges or diagonals in a cyclic way and in such
a fashion that the product of the ratios equals +1 or −1. This means cyclically
putting Figure 3.2 on the edges or diagonals of the polygon. The transversal is
supposed to be spanned by vertices of the k-gon. The formulation of Theorem 3 in
[53] summarizes this. It investigates when one can define and assure that

k∏

i=1

viwi

wi vi+j
= (−1)k (13.1)

(indices considered modulo k) for suitable values of j, r and s and with wi being
the intersection of the line spanned by vi and vi+j and the line spanned by vi+r and
vi+s. Hence, all points of Figure 3.2 are shifted cyclically in the k-gon. In order
to get a better impression, we give an examples in Figure 13.1). In the proof of
the theorem, it is shown, that there is always an underlying [1, . . . , 1]-cycle (or a
statement involving trivially pairwise canceling length ratios). The different cases
in the original formulation of the theorem correspond to different cyclic labelings
of the points in the same given Γ-cycle. We think that this restriction to perfectly
cyclic products of k factors is very strict. At this point, we want to compare this
with Γ-cycle theorems in Definition 10.5. They also give theorems about products
of k oriented length ratios. In principle, they can be quite asymmetric as the one
shown in Figure 10.2. However, there are Γ-cycle theorems that are cyclic but
with period bigger than 1. See Figure 13.2 for Γ-cycle theorems corresponding to
the cyclic compositions [3, 3, 3, 3] (one orbit) and [3, 1, 3, 1, 3, 1] (three symmetric
orbits). The vertices are arranged in a regular manner in order to emphasize the
symmetry. Clearly, the theorems are valid for all positions of the vertices except for
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Figure 13.1.: With k = 5, j = 4, r = 1 and s = 3, (13.1) holds. By applying the
permutation that is given by the cycle (5, 3, 2, 4) to the indices, this is
identical to a figure given in [53]. There, the case k = 5, j = 2, r = 3
and s = 4 is considered.

degenerate situations. Figure 13.2 should be read as follows: blue-violet and orange
line segments supported by the same line form oriented length ratios. The product

∏ length
length

(13.2)

equals +1 or −1 depending on the signature of the underlying Γ-cycle. Due to
Theorem 12.3, the product of length ratios given in (13.2) equals 1 in both cases of
Figure 13.2.

Including Reasonable Dependent Points
Based on the structure of [3, 1, 3, 1, 3, 1], one can also construct theorems about
oriented length ratios including depending points as shown in Figure 13.3. It was
achieved by a procedure which can also be described more generality: we replace
each edge

{a,x,y}
{b,x,y}

of an irreducible oriented Γ-cycle
−→C , which corresponds to a cyclic composition, by

the product of two edges
{a,x,y}
{w,x,y} ·

{w,x,y}
{b,x,y} (13.3)
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Figure 13.2.: Instances of Γ-cycle theorems corresponding to the cyclic compositions
[3, 3, 3, 3] and [3, 1, 3, 1, 3, 1].

for a newly introduced w. This gives a new (reducible) oriented Γ-cycle. In principle,
this induces a Γ-cycle theorem with 2 k length ratios. However, we can also encode
additional collinearities in a set H: for each edge, we choose {a,w,x}, {w,y,b} ∈ H
or {a,y,w}, {w,x,b} ∈ H. Assume the latter option is used for some edge. For
an instance P , applying ΦP to (13.3) yields

a y

y w
· w x
x b

, (13.4)

if we are using non-bold letters to identify the corresponding bold letters. Since the
underlying cycle

−→C is irreducible, there is a first vertex following {b,x,y} in the
cyclic order of the vertices, that does not contain both elements b and x. Therefore,
there are some u and v such that either

{x,b,u}
{v,b,u} or

{b,x,u}
{v,x,u}
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is an edge in the original cycle
−→C . In the general approach given in (13.3), this edge

is transferred to

{x,b,u}
{w′,b,u} ·

{w′,b,u}
{v,b,u} or

{b,x,u}
{w′,x,u} ·

{w′,x,u}
{v,x,u} (13.5)

for some newly introduced w′. Requiring {w′,x,b}, {w′,u,v} ∈ H and applying
ΦP to (13.5) yields

x b

bw′
· ∗ ∗
∗ ∗

or
b x

xw′
· ∗ ∗
∗ ∗

. (13.6)

Hence, in the product of all induced length ratios, two line segments in (13.4) and
(13.6) cancel and a theorem on directed length ratios of less than the assumed 2 k
ratios is derived. In order to state it correctly, one has to generalize the notion of
oriented length ratios along the same supporting line. Therefore we consider numer-
ator and denominator as directed line segments and compare their or orientations.
Line segments with the same orientation have positive ratios while line segments
with different orientations have negative ratios. In Figure 13.3, the ws are indicated
by black dots and they are defined in a way that many ratios cancel. The white
dots are points associated to the entries of the original irreducible Γ-cycle

−→C . The
directions are such that the blue-violet segments point from white points to black
points and the orange segments the other way round. For the underlying cycle
corresponding to the cyclic composition [1, . . . , 1] it is possible to achieve cancella-
tion everywhere giving theorems involving k length ratios. This results in Hoehn’s
(first) theorem for k-gons (see [66, 53]). Observe that the Hoehn’s second theorem
(as given in [53]) can be obtained in essence by a substitution form the first one.

The Selftransversality
The results in [52] can be understood as a generalization of the cyclic products in-
vestigated in [53] to higher dimensions. In [54], the general approach is amplified
such that the (cyclic) transversal (see Figure 3.1) is spanned by points that are in-
tersections of lines spanned by diagonals of the polygon. Two setups are considered.
The first transversality property holds whenever

k∏

i=1

vi−mwi

wi vi+m
= 1,

where indices considered modulo k. Now, wi is the intersection of the reference
line spanned by vi−m and vi+m and the line spanned by vi and zi. Here zi is the
intersection of the line spanned by vi−r and vi−s and the line spanned by vi+r and
vi+s for suitable parameters k, m, r and s. The structures for which this property
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Figure 13.3.: Introducing dependent points in the Γ-cycle associated with
[3, 1, 3, 1, 3, 1] yields a statement about 15 oriented length ratios.

holds can be determined and can be stated concisely in [54, Thm. 1]. Figure 13.4
gives examples for the previous and the following transversality property. A further
generalization of this property leads to the second transversality property stating
that

k∏

i=1

viwi

wi vi+m
= 1

(indices considered modulo k) where again wi is the intersection of the reference line
spanned by vi and vi+m and the line spanned by some yi and zi. yi is intersection of
vi−tvi−u and vi+m+tvi+m+u and zi is intersection of vi−rvi−s and vi+m+rvi+m+s for
suitable parameters k, m, r, s, t and u. There are several parameter sets for which
this property holds. They are listed and proven in [54, Thm. 2–5]. Unfortunately,
the systematics of the admissible parameters is not very concise. It is proven to
be exhaustive up to k = 20. It should be said, that all proofs can be paraphrased
in terms of EB,H by hand calculation. To do so, one needs in essence three tools
which we will describe in the following: first consider a fraction of two determinants
given in the proof. As long as they do not differ by exactly one element, the
ratio can be written as a product of at most three ratios of determinants differing
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13. Relations between Γ-Cycles and Results of Grünbaum and Shephard

Figure 13.4.: Examples for the 1st and the 2nd transversality property taken form
[54] and adjusted to the notation. On the left-hand side, e.g. the values
k = 5, m = 2, r = 1 and s = −1 correspond to the above description.
On the right-hand side k = 5, m = 1, r = 1, s = −1, t = 0 and u = 2
can be taken as parameters.

by exactly one element. E.g. the product
{a,b, c}
{b, c,d} ·

{b, c,d}
{c,d, e} can be used to

model a fraction where the determinants differ by two elements (and assuming
a non-degenerate situation, i.e. {b, c,d} ∈ B). This technique is also used in
Part III (see Section 16.1) in order to have a geometric interpretation of bracket
ratios which cannot be directly interpreted via the area principle. Furthermore,
similar to Remark 10.7, the rearrangement of numerators and denominators into
other ratios can be done by multiplying a suitable Γ-cycle. The last technique used
in the proofs of [54] is the elimination lemma. It states for a being the intersection of
the line spanned by d and e and the line spanned by f and g, and for two additional
points b and c, it holds in non-degenerate situations that

|d, a, b|
|f, a, c| =

|d, e, b|
|f, g, c| ·

|f, g, d|
|e, d, f | .

This can be modeled as the

{d,a,b}
{d, f ,a} ·

{d, f ,a}
{f ,a, c} · {e,d, f}

{d, e,b} ·
{f ,g, c}
{f ,g,d}
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being in EB,H. These three tools can be used to transfer any proof given in [54]
into a statement in BGB. The fact that this translation is possible is not surprising
and fits with the results [39, 38, 40, 41, 118] of Dress and Wenzel, which treat the
relations between different types of Tutte groups. Typically, during the translation
process, there will be very symmetric underlying Γ-cycles. Parts of the structure of
the proof of the first transversality property can be applied to our standard example
(see Figure 10.2, Figure 11.1 and Figure 12.4) giving an identity on oriented length
ratios shown in Figure 13.5.

Figure 13.5.: An identity on oriented length ratios inspired by the proof of the first
transversality property in [54]. The underlying cycle can be identified
with [3, 1, 1, 2] and is also shown in Figure 10.2.
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Part III.

Cayley Factorization
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14. Statement of the Problem and
Progress so Far

This part of the thesis gives a new solution for (a variant of) the Cayley factoriza-
tion problem: we start by describing the problem. We work in rank 3 as it is done
in [104] by Sturmfels and Whiteley. In principle, the ideas can also be generalized
to arbitrary rank by in essence adjusting the definitions in Section 16.1. Cayley
factorization can be understood as translating algebra to geometry. For another
introduction to this more general topic located in the context of Grassmann-Cayley
algebra, see again [37, p. 213 ff.]. Remember from Theorem 5.18 that any synthetic
construction s (see Definition 5.17) is a bracket polynomial B in Λ(P). In order to
see this, one has to evaluate or expand the synthetic construction (see e.g. Chap-
ter 6). Since s is a construction it has a geometric meaning. Say s can be read as the
join of three (dependent) points. In this case, s describes the construction of three
points by means of join and meet. They are collinear if and only if B evaluates to
zero (for a given instance). Theorem 5.18 also states that this bracket polynomial is
multihomogenous and has integer coefficients. In the situation just described, one
translates the collinearity of points into the vanishing of a polynomial. One can also
go a step further: we can also interpret the equality for any resulting number: s
induces a construction of three points by join and meet based on the coordinates
given in P . Computing the determinant of these resulting points will be equivalent
to applying ΦP to B. Interpreting the vanishing of a bracket polynomial is much
more projective then the interpretation of resulting numbers, since the vanishing of
a multihomogeneous bracket polynomial is a projectively invariant property. There-
fore, the vanishing usually gains more attention. In total, we have that s provides a
geometric interpretation for the resulting evaluation B. B in turn is multihomoge-
neous and has integer coefficients. This, and the knowledge of Pascal’s theorem (see
Section 3.10 and Chapter 6) motivates a first version of the Cayley factorization
problem. It is the reversal of the process just described

Problem 14.1 (Cayley factorization). Given a multihomogeneous bracket polynomial
B with integer coefficients. Is there a synthetic construction which equals B in the
bracket ring? If yes, give one, otherwise output “not Cayley factorable”

There are situations, in which a bracket polynomial is derived in an algebraic
manner and a geometric interpretation of it is missing. As mentioned before, one

145



14. Statement of the Problem and Progress so Far

often wants to describe the conditions under which a point configuration P yields

ΦP (B) = 0. (14.1)

Again, due to Section 4.6, this condition describes a projectively invariant property
and the first fundamental theorem of invariant theory (Theorem 4.9) is valid. So
a geometric interpretation of a multihomogeneous bracket polynomial is in fact a
geometric interpretation of a very general concept.

The previously mentioned situations providing B include robotics, statics, rigid-
ity of frameworks and scene analysis (see e.g. [125, 127, 33, 129, 28, 81, 32]). [27,
p. 528] has the intention to “make clear why Cayley factorization of invariant poly-
nomial forms is both a crucial and rather difficult problem.” In order to underline
this intention it provides many examples of possible applications of Cayley factor-
ization within scene analysis and structural mechanics. It is pointed out that the
approach of the special case of multilinear Cayley factorization (see below) has its
limitations and it is suggested to look “for a alternative approach to the factoriza-
tion problem, one which will hopefully respect the advice of geometric intuition.”
We think that our algorithm can go another step in this direction, especially the
interpretation of bracket binomials is very close to geometry. For an example of the
quality of interpretation we refer to Section 16.7. Furthermore, using methods given
by Whiteley in [134] and also outlined by Sturmfels in [102], it can be embedded in a
bigger procedure starting with expressions in coordinates and resulting in synthetic
construction. This may help to interpret non-degeneracy conditions in automated
geometric theorem proving. Furthermore, most references given elsewhere in the
present chapter, as well as [123], also contain introductions and overviews of the
development. The problem is also mentioned in the overview [50, Note 10] over
Rota’s work in invariant theory.

On the concrete problem on Cayley factorization, there exists an algorithm due
to White that decides the special case of the multilinear problem (see [128, 124]).
It is uses the straightening algorithm several times in order to identify possible joins
and meets and in order to factor. A concise exposition of this algorithm is also
given in [102]. In [80] by Li and Wu one can find algorithms for factoring bracket
polynomials up to a specific degree in the brackets. There are also some cases of
addressing very special shapes of bracket polynomials, e.g. [106]. The latter appears
to be a generalization of phenomena in [27].

We will now focus on the approach considered in [104] by Sturmfels and Whiteley.
They give an explicit non-factorable example in order to motivate a variant of the
Cayley factorization problem. We choose a different example which also qualifies
for this purpose. Consider the bracket polynomial which is inspired by Menelaus’s
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theorem depicted in Figure 3.3:

[x1,x2,a][y1,y2,b][z1, z2, c]− [x1,x2,b][y1,y2, c][z1, z2,a] ∈ BP, (14.2)

for some set P containing the distinct points a, b, c, x1, x2, y1, y2, z1 and z2.
This polynomial is multilinear and an execution of White’s algorithm (see [124]) for
deciding the multilinear Cayley factorization problem shows that it is not Cayley
factorable. Alternatively, one can achieve this insight also by an exhaustive testing of
all possible synthetic constructions using each letter of the polynomial exactly once.
However, there is an interpretation of the vanishing of (14.2) in a (non-degenerate)
instance P :

[x1,x2,a]P
[x1,x2,b]P

· [y1,y2,b]P
[y1,y2, c]P

· [z1, z2, c]P
[z1, z2,a]P

= 1.

Due to the area principle (see Section 3.1), in the instance (assuming finite positions
of the points), this translates into an identity where a product of length ratios
along the sides of a triangle equals −1. This is exactly the situation of Menelaus’s
theorem and the identity can be tested by checking for the existence of a Menelaus
line. We state the corresponding construction directly on the symbolic level in the
Grassmann-Cayley algebra yielding a synthetic construction:

(
x1x2 ∧ ab

)(
y1y2 ∧ bc

)(
z1z2 ∧ ca

)

=
(

[x1,x2,b] a− [x1,x2,a] b
)(

[y1,y2, c] b− [y1,y2,b] c
)

(
[z1, z2,a] c− [z1, z2, c] a

)

= [a, c,b]
(

[x1,x2,a][y1,y2,b][z1, z2, c]− [x1,x2,b][y1,y2, c][z1, z2,a]
)
.

This is a bracket monomial multiple of (14.2). In [104] it is shown, that this phe-
nomenon can be generalized to arbitrary bracket polynomials qualified for Cayley
factorization.

Theorem 14.2 (Sturmfels, Whiteley). Given a multihomogeneous bracket polyno-
mial B with integer coefficients. Then there exists a bracket monomial M such that
the product M ·B can be factored yielding a synthetic construction.

This theorem has consequences for testing (14.1) for an instance P : the equation
ΦP (B) = 0 now is known to be equivalent to a ruler construction, which tests
whether three (dependent) points are collinear (or three lines meet in a point), as
long as the point-triples corresponding to the brackets of the monomial M of are
not collinear. Theorem 14.2 motivates the generalized Cayley factorization problem
(see also [102]):
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14. Statement of the Problem and Progress so Far

Problem 14.3 (Generalized Cayley Factorization Problem). Given a multihomoge-
nous bracket polynomial B with integer coefficients. Find a synthetic construction
such that it equals M · B in the bracket ring with a bracket monomial M and the
degree of M in the brackets being minimal among all candidates.

We remark that this version of Cayley factorization is called rational Cayley fac-
torization in [77] by Li. There, it is considered to be of great importance for actual
computations with bracket polynomials. The book also contains a rational Cayley
factorization algorithm for conic geometry. It treats only configurations where sev-
eral points lie on a common conic. For the generalized Cayley factorization problem
one could argue that it is very restrictive to allow only bracket monomial multipliers
and not arbitrary non-zero bracket polynomials. However, bracket monomial have
some advantages: the first one is that the vanishing of a bracket monomial can be
easily interpreted geometrically. Now one could wish to also allow Cayley factorable
multipliers. This could be done but this is less convenient for concrete calculations.
It is much easier to deal with bracket monomials. Furthermore it is non-trivial to
ensure that that a general multiplier monomial does not vanish in BP. These might
be the reasons why the literature states the problem as it does. We follow this
approach as well.

We chose a motivating example different from the one given in [104] and [102]
since it provides a small example where the multiplier monomial consists of only a
single bracket (see also [102, p. 117: Exer. (2)∗ ]). The bound for the monomial M
given in analysis of the original proof of Theorem 14.2 and for the common special
case, that the coefficients of the bracket polynomial are in {−1, 1}, is (see [104,
p. 449])

105 · (# summands in B) · (# brackets per summand of B)

referring to the specific representation of the input bracket polynomial B. The
algorithm given in this thesis will be able to reduce this bound to

9 · (# summands in B − 1) · (# brackets per summand of B).

The size of the synthetic construction is directly reflected in the degree of the mul-
tiplier monomial. Therefore, we obtain a much less complicated construction. The
approach is able to explain the introducing example of Pascal’s theorem by factor-
ing the corresponding bracket polynomial (see Section 16.7). Furthermore, when
locally optimizing the choices in the execution of the algorithm, Pascal’s construc-
tion can be obtained automatically. In [104], the size of the construction is due
to essentially introducing a global coordinate system. The bracket polynomial is
broken up into elementary arithmetic operations which in turn are mimicked by
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von Staudt constructions. In order to use this coordinate system, every calculation
has to be represented on a single geometric line, along which it is geometrically
calculated afterwards. This reduction needs a lot of join and meet operations. In
[102, p. 112] it is commented to by one of the authors as being “far too general to
be of practical use”. This statement goes with the fact that not a single example
of the algorithm is worked out in [104]. Using the letter P for what is called B in
the present text, White comments in [126]: “However, M may be of high degree
and may be non-multilinear (even if P is multilinear) and the resulting geometric
condition equivalent toM P = 0 may be as uninteresting as the geometric construc-
tion corresponding to the complete expansion of P as a determinantal expression
in the coordinates of its points. The monomial M may also be thought of as a
non-degeneracy condition: M must be non-zero in order for P = 0 to imply the
desired geometric condition”. And in [104] it is commented by the authors: “Let us
remark that our factorization theorem is by no means competitive to the White al-
gorithm because it is too general to be useful for geometrically interpreting concrete
algebraic expressions. White’s results, however, suggest that Cayley factorization is
not only an elegant mathematical tool but that it might play a substantial role in
future "Geometric Algebra" computer systems (cf. Section 3). Our theorem shows
that there is no theoretical block to factoring all expressions.”
It is the purpose of this part of the present thesis to reprove Theorem 14.2 giving

a better upper bound for the degree of the multiplier monomial. Furthermore, the
algorithm given in the proof is concise enough to be implemented in Mathematica
using the Combinatorica package ([136], see Chapter 18 for samples of the output).
The approach can be considered as introducing ad-hoc local 1-dimensional coordi-
nate systems whenever the area principle is applied and length ratios are combined.
Chapter 15 demonstrates the main ideas with the help of an instructive example.
The implementation is able to compute Cayley factorizations of even “medium sized”
bracket polynomials. The three following chapters aim to prove the following two
statements:

Theorem 14.4 (Binomial (Generalized) Cayley Factorization). Let P be a finite
set and let B ∈ R[∆(P)] be a multihomogenous bi-nomial of rank 3 with coefficients
in {−1,+1}. Assume B’s summands do not have a common bracket factor and
that they are not in 〈Irepeat〉. Let k ≥ 2 be the degree of B in its brackets. There
is an algorithm running in time O(k3) that outputs two simple Grassmann-Cayley
expressions

1 = a b ∧ 0∞
with a, b, 0, ∞ ∈ P

and
x = A ∧ ∞0

with A ∈ Λ2(P) representing a line

such that
a b ∧ x equals M ·B
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14. Statement of the Problem and Progress so Far

in BP for a bracket monomial M ∈ R[∆(P)] yielding a Cayley factorization of B
(considering M and B as element of BP). Furthermore, me have

deg(M) ≤ 5 k.

Theorem 14.5 ((Generalized) Cayley Factorization). Let P be a finite set and let
B ∈ R[∆(P)] be multihomogenous, with integer coefficients and of rank 3. Assume
B’s summands do not have a common bracket factor. Let k ≥ 2 be the degree of B
in its brackets and l + 1 its number of summands (which are supposed to be not in
〈Irepeat〉). There is an algorithm running in time O(l · k3) that outputs a synthetic
construction identical to M ·B for a bracket monomial M ∈ R[∆(P)]. Furthermore,
the degree of M is bounded by

10 k l + 3α

in the general case (where α is the sum of the absolute values of the coefficients of
B) and by

9 k l

in the case that the coefficients of B lie in {−1,+1}.

Restricting k to be bigger than 1 is no big restriction since multihomogenous
bracket polynomials of degree 1 in its brackets are rather boring: they are just
Z-multiples of a single bracket.

14.1. Conventions about Notions and Evaluations

In Theorem 14.4 and everywhere else in the following, the color in which some let-
ters are printed is not part of the name of the point. It is just used to highlight
the role, a point plays in the current setup. We will use boldface letters for points
in Λ1(P). Whenever the letters 0, ∞, 0′, ∞′, a, b, a′ and b′ are used, they are
elements of P. Furthermore, we will use schematic diagrams that illustrate con-
structions in Λ(P) (see e.g. Section 16.4). These constructions are labeled with
elements of Λ1(P). They are not thought as depicting an instance but to illustrate
the combinatorics of the construction. Instead of only giving a formula in Λ(P) for
constructed points,s we also give the corresponding tensor diagram together with
some rules of evaluation explained in Section 6.3. This evaluation yields the re-
sult stated there and no intermediate step contains more summands than the result
(except for the evaluation in Section 17.1 which can be considered to lie on the
borderline of two and three summands, since integers are constructed). In principle
one can also perform classical evaluations. The formulas are stated in such a way
that evaluating ab ∧ cd as [a,b,d]c − [a,b, c]d (where a, b, c, d ∈ Λ1(P)) also
yields the result stated. With this information at hand, one can also use software
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14.1. Conventions about Notions and Evaluations

as the GrassmannAlgebra package for Mathematica (see [136]), which is available
under www.grassmannalgebra.info together with the accompanying book [13], to
verify the computations. Observe that in classical evaluations it will happen that
the result consists of few (e.g. two) summands but in the steps in between, a lot of
summands are produced.
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15. Instructive Binomial Example

In this chapter, we introduce the main ideas of the binomial Cayley factorization
with the help of an instructive example. The general algorithm will be given in
Chapter 16. We follow [1], which was given earlier. Consider the (representation
of) the multihomogenous bracket binomial (and let P = {a,b, c,d, e, f ,g,h})

B=[a,b,g][a, c, e][b, c, f ][e,d, f ][a, f ,h]−[a, e,g][a,b, c][f ,b,h][f , c, e][a,d, f ]∈BP.

Interpretation as Cycles of Length Ratios In a (non-degenerate) instance P , the
vanishing of the coordinatization of B can be written as

[a,b,g]P
[a, e, g]P

· [a, c, e]P
[a,b, c]P

· [b, c, f ]P
[f ,b,h]P

· [e,d, f ]P
[f , c, e]P

· [a, f ,h]P
[a,d, f ]P

= 1. (15.1)

The combinatorics of the given ratios allow us to apply the area principle. These
combinatorics are highlighted by rearranging and coloring the letters:

[b,a,g]P
[e,g, a]P

· [e, c, a]P
[b,a, c]P

· [c,b, f ]P
[h, f ,b]P

· [d, e, f ]P
[c, f , e]P

· [h,a, f ]P
[d, f ,a]P

= 1. (15.2)

In order to apply it in the instance P , one needs to consider the points that are
symbolically (i.e. in Λ(P)) given by

k = ag ∧ be

l = ac ∧ eb

m = bf ∧ ch

n = ef ∧ dc

o = af ∧ hd.

(15.3)

With this setting, (15.2) reduces to a product of oriented length ratios in the instance
P . The combinatorics of the length ratios can be already seen on a symbolic level
which is shown below.

b

e

c

h

dk
l

m

o

n

(15.4)
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15. Instructive Binomial Example

One can directly read of the product of oriented length ratios for the instance P
(see (15.5)). Without referring to the instance, one can see the cycles in which the
length ratios arrange. This situation is similar to the case of length ratios arranging
themselves in orbits in Chapter 12. Again, we use non-bold letters for points of the
instance P and also for points depending on them by a construction. Therefore,
(15.1) reads as

b k

k e
· e l

l b
· cm

mh
· dn

n c
· h o

o d
= 1, (15.5)

since the transition from (15.1) to (15.2) was possible without any global sign
changes. Furthermore, by grouping the fractions, we highlight the cyclic arrange-
ment of the length ratios.

Shrinking the Length of the Cycles With the help of a Ceva configuration, it is
possible to “shrink” the triangle of length ratios. Therefore we define

z := (n h ∧ o c) d ∧ c h

and Ceva’s theorem (see Section 3.2) implies

dn

n c
· h o

o d
=

h z

z c
.

This reduces (15.5) to

b k

k e
· e l

l b
· cm

mh
· h z

z c
= 1 (15.6)

which also reduces the combinatorics:

b

e

c

h

dk
l

m

o

n

z →
b

e

c

h

k
l

m
z

We record for the general case that plugging in Ceva configurations enables us to
combine two length-ratios into one single length-ratio, as long as they have exactly
one endpoint in common. Depending on the original distribution of signs induced by
applying the area principle, one might want plug in also Menelaus configurations (see
again Section 3.2). So by letting z = n o ∧ c h we can obtain dn

n c
· h o

o d
= − h z

z c
.

Observe that the construction for a Menelaus configuration is less complicated and
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should be preferred in the general case. However, one has to pay attention to the
overall sign and some Ceva configurations may be needed. Since Ceva configurations
do not need outer intersections on the edges of a triangles and are therefore easier
to draw, we use an example with a Ceva configuration.

Combining 2-Cycles or Cross-Ratios We are left with two 2-cycles of length-
ratios. If we look closer at them, we see that in fact, any 2-cycle encodes a cross-ratio
(see also (3.6)). Therefore, (15.6) can be rewritten as

(b, e; k, l) · (c, h;m, z) = 1.

In principle, one can test this property by considering both cross-ratios as numbers
on projective number lines. In order to calculate with such points, one can use
von Staudt’s projective multiplication and addition (see Section 3.7). For that
purpose one first has to express both numbers as cross-ratios with respect to the
same number line. This approach will be used in Section 17.2 in order to add two
cross-ratios.
However, for multiplying two cross-ratios, there is a shortcut described as follows:

There are well-known ruler-constructions that transfer a cross-ratio to another line.
This can be easily seen by the iterative application of the fact that projections of lines
do not alter the cross-ratio of points on the line (see Proposition 3.6). Figure 15.1
shows such a construction which concatenates two projections. I.e. there are ruler

b

q

l

e

h

m

z

c

k

Figure 15.1.: Construction of a point q such that (c, h;m, z) = (e, b; q, l).

constructions for determining a point q such that

(c, h;m, z) = (e, b; q, l).
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15. Instructive Binomial Example

This can be read as

e q

q b
=

e l

l b
· cm

mh
· h z

z c
. (15.7)

Observe that (15.6) contains the right-hand side of this equation. Therefore it can
be reduced to

1 =
b k

k e
· e q

q b
. (15.8)

This equation holds as soon as k = q. Since k is defined to be the intersection
of the line spanned by a and g and the line spanned by b and e (see (15.3)), the
above equation (15.8) reduces to the collinearity of a, g and q. Altogether, we de-
rived a ruler-construction that is able to test whether (15.1) holds. The complete
construction (considered as an element of Λ(P)) is shown in Figure 15.2.

Figure 15.2.: A schematic figure for a generalized Cayley factorization of B.

The fact that this construction has an evaluation as a bracket monomial multiple
of B is not trivial. All constructions used in this example are (variants of the)
building blocks of a more general algorithm stated in Chapter 16. The actual con-
structions used there are a little bit different since they use already existing points to
construct the projections. This keeps the degree of the multiplier monomial small
and leads to a case distinction done in Section 16.5. There, each building block
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comes with an associated evaluation. They are used to express some (intermedi-
ate) points as linear combinations of the points spanning the reference line. The
coefficients correspond to numerators and denominators indicating length ratios.
Furthermore, the constructions in Λ(P) meet all requirements for Cayley factoriza-
tion. I.e. we will prove in the general case that the construction is equal to a multiple
of the input polynomial and that this multiple is a (non-zero) bracket monomial.
In the present example it holds:

a g ∧
(((

(a f ∧ h d) (b h ∧ e d) ∧ e h
) (

a c ∧ e b
)
∧ b h

)

∨
((

((b f ∧ c h) d ∧ (e f ∧ d c) h) c ∧ d h
) (

b h ∧ ed
)
∧ e h

)
∧ b e

)

= M · [a,b,g][a, c, e][b, c, f ][e,d, f ][a, f ,h]− [a, e,g][a,b, c][f ,b,h][f , c, e][a,d, f ]

for a bracket monomial M of degree 8.
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16. Algorithm for Binomials with
Coefficients in {−1,+1}

We generalize the ideas presented in the previous chapter and provide the necessary
computations. The previous chapter will serve as a guideline. An abstract graphical
picture of all the steps of the binomial algorithm is given in Figure 16.1. Let P be a
finite set and let B ∈ R[∆(P)] be a multihomogenous binomial with coefficients +1
or −1. By switching the positions of two elements in some brackets, we can w.l.o.g.
assume that it looks like

[∗, ∗, ∗][∗, ∗, ∗] · · · [∗, ∗, ∗]− [∗, ∗, ∗][∗, ∗, ∗] · · · [∗, ∗, ∗].

Let k ≥ 2 be the degree of B in its brackets. Assume that in each bracket of B
the entries are pairwise distinct elements of P. In Chapter 15 it was crucial that
the area principle could be applied. More precisely, in (15.1), each fraction consists
of a numerator taken from the first summand and a denominator taken from the
second summand. This can be reformulated: each bracket of the first summand of
B is matched with a bracket of the second summand such that the area principle
can be applied. In the example we were lucky, since such a matching was existent.
In the general case, this might not be the case. In this general case, we introduce
some slack variables. In order to bound the number of slack variables and the size
of the construction afterwards, we show the existence of a special matching in the
next section.

16.1. Matching the Brackets of Both Summands

Therefore, let LB be a set which, in the most general case, has to be a multiset. It
shall contain all brackets of the first summand of B: if there are brackets, which
appear more than once in the summand, then add a copy of the bracket for each
additional exponent. Analogously, letMB be the multiset of brackets of the second
summand:

B = [∗, ∗, ∗][∗, ∗, ∗] · · · [∗, ∗, ∗]︸ ︷︷ ︸
constitute LB

− [∗, ∗, ∗][∗, ∗, ∗] · · · [∗, ∗, ∗]︸ ︷︷ ︸
constitute MB

. (16.1)
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16. Algorithm for Binomials with Coefficients in {−1,+1}
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Figure 16.1.: Schematic figure illustrating the general approach.
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16.1. Matching the Brackets of Both Summands

We define a bipartite directed graph G = (LB,MB, E). The set of edges E contains
edges of two types and is the union of

E1 :=
{

(l ,m)
∣∣ l ∈ LB,m ∈MB : the brackets l and m have exactly

two entries in common
}

and

E2 :=
{

(l ,m)
∣∣ l ∈ LB,m ∈MB : the brackets l and m have exactly

one entry in common
}
.

For the example considered in Chapter 15 the graph G is shown below. Straight
arrows indicate edges in E1, dashed ones edges in E2. The thick edges indicate
the selection of fractions in (15.1). They form a perfect matching in G.

[a,b,g] [a, c, e] [b, c, f ] [e,d, f ] [a, f ,h]

[a, e,g] [a,b, c] [f ,b,h] [f , c, e] [a,d, f ]

In the general case we claim:

Lemma 16.1. G has a perfect matching, i.e. there is a P ⊂ E such that no two
edges in P share a vertex and each vertex is contained in an edge in P.

In order to prove this lemma we restate a classical result from graph theory
originally given in [56]. There are many textbooks including it, e.g. [35]. As a matter
of fact, also [31, p. 212] gives a sketch of the proof using vector configurations after
translating the problem to linear algebra.

Theorem 16.2 (Hall’s Marriage Theorem). Let G = (U, V,E) be a bipartite graph.
For a subset W of U we denote by NG(W ) the neighborhood of W in G, i.e. the
set of all vertices adjacent to some element of W . G has a perfect matching if and
only if

|NG(W )| ≥ |W | for all W ⊂ U.

Obviously, the existence of a perfect matching ofG is not affected by passing to the
underlying undirected graph G′ (which is also good for concrete implementations).
We use the directed version of the graph because it fits with the interpretation via
the area principle where the ratios indicate a direction along an edge.
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16. Algorithm for Binomials with Coefficients in {−1,+1}

Proof of Lemma 16.1. Let G′ be the graph obtained from G by forgetting the ori-
entation of the edges. Let W be a subset of LB. Contained in NG′(W ) are all
elements ofMB that have at least one entry in common with any bracket contained
in W . Let vW be the entries in W :

vW :=
⋃

[p,q,r]∈W
{p,q, r}.

Since B is multihomogenous, the elements of vW occur in brackets ofMB as well,
namely ∑

p∈ vW
deg(B,p) ≥ 3 · |W |

times. Since only three of them can share a bracket, at least

1

3

∑

p∈ vW
deg(B,p) ≥ |W |

elements ofMB contain elements of vW . Since all of them are in NG′(W ), we have
|NG′(W )| ≥ |W |.

Let P denote a perfect matching in G. The edges in P ∩E1 are compatible with
the (combinatorics of the) area principle. Consider an edge (l ,m) ∈ P ∩ E2. Here
l and m have exactly one entry in common. Therefore, there is a bracket b ∈ BP
such that both ordered pairs (l , b) and (b,m) have exactly two elements in common
(for an example see Figure 16.2). Let P be the set of ordered pairs P ∩E1 together
with pairs (l , b) and (b,m) for each (l ,m) ∈ P ∩ E2.

[a,b, c]

[c,d, e]

[a,b, c] [a, c,d]

[a, c,d] [c,d, e]

Figure 16.2.: An example on how to resolve an edge in E2.

Now any pair of brackets in P can be interpreted via the area principle. P is the
foundation of all following steps of the algorithm. Obviously we have

∣∣P
∣∣ ≤ 2 k, (16.2)

since k was the degree of B in the brackets and therefore k is also the size of the
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16.2. Geometric Interpretation of the Pairs of Brackets in P

sets LB andMB. P’s connection with B can be summarized as follows:

∏

(l ,m)∈P
l −

∏

(l ,m)∈P
m = N ·


 ∏

l ∈LB
l −

∏

m ∈MB

m


 = N ·B (16.3)

where N is the bracket monomial consisting of all brackets b introduced in the
resolution of P ∩ E2. Therefore we have

deg(N) ≤ k. (16.4)

(16.3) holds due to the definition of P and due to (16.1).

Remark 16.3. For the theoretical result, any perfect matching P in G is good for the
algorithm. However, in a concrete implementation one should prefer edges in E1 over
those in E2, since this reduces the size of the following constructions considerably.

Remark 16.4. If someone, for some reasons, wants to also factor binomials with com-
mon bracket factors, say [a,b, c], he or she can add the two pairs ([a,b, c], [a,b,d])
and ([a,b,d], [a,b, c]) to P (for some d ∈ P) and this will do it.

16.2. Geometric Interpretation of the Pairs of Brackets
in P

In order to state the next definitions and to interpret the bracket pairs P, we
introduce another notation: For σ being a permutation in the symmetric group
S{a,b,c}, we abbreviate [σ(a), σ(b), σ(c)] by the notion [σ(a,b, c)]. With this notion
there are σ and τ such that every element p of P can be written as

p =
(

l ,m
)

=
(

[σ(a,b, c)], [τ(b, c,d)]
)
.

Remember that the colors shall only indicate the role of the points and are not part
of the names of the points. As in (15.3), we define for each pair p ∈ P its edge
information

(p) := (a, bc ∧ ad, d).

It contains all information about the induced length ratios in an instance (compare
(15.5)). Motivated by the expansion [b, c,d] a− [b, c,a] d of bc ∧ ad we define:

µp := [b, c,d] and λp := [b, c,a]

such that
(p) = (a, µp a− λp d, d).
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16. Algorithm for Binomials with Coefficients in {−1,+1}

Observe that µp differs from m only by sgn(τ) and a similar statement holds for λp.
Note also that there is an ambiguity in the definition of (p), λp and µp since
the order of b and c is not determined. In fact, everything what follows in this text
works with either one of the orders chosen. The result just differs by a factor of −1.
For better readability, we use the notation above which can be thought of choosing
an arbitrary order. The notion of any (more general and later modified) 3-tuples

(a, x, b)

as also used in the definition of , shall indicate that x lies on the line spanned
by a and b where a 6= b and a, b ∈ P. In particular, x has a definition of the
shape ∗ ∗ ∧a b and an evaluation as linear combination of the two (distinct!) points
a and b: x evaluates generically to

Mx (µx a− λx b), (16.5)

for some bracket monomials Mx, µx and λx. Observe that the area principle can
be applied by considering

[a,x,q]

[b,q,x]
=
Mx[a, (µx a− λx b),q]

Mx[b,q, (µx a− λx b)]
= −λx

µx
(16.6)

for some q ∈ P \ {a,b} evaluated in an instance. Thus, in any representation of
the same shape as in (16.5), the ratio of the coefficients of a and b in the expansion
of x can be considered as a negated oriented length ratio. This length ratio can
be considered as pointing from a to b. This is the reason why we call 3-tuples in
the shape of (16.5) edges. The calculations following later, in essence keep track of
the exact shape of a specific linear combination describing x. This is done induc-
tively. These conventions on the notation of edges make it easier to keep track of
all calculations.
We proceed with the interpretation of a p ∈ P. We learned before that when

dealing with the area principle, one has to pay attention to the sign. We define for
p given as above

sgn(p) := sgn(τ) · sgn(σ).

The overall sign is given by
ε :=

∏

p ∈P
sgn(p).

This allows us to alter (16.3) in order to obtain

∏

p ∈P
µp − ε ·

∏

p ∈P
λp = ±1 ·


 ∏

(l ,m)∈P
l −

∏

(l ,m)∈P
m


 = N ·B (16.7)

with another bracket monomial N whose degree is not bigger than k.
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16.3. Detecting Cycles

16.3. Detecting Cycles

We saw in (15.4) that the edges corresponding to the length ratios form cycles. In
what follows we will argue that the same holds in the general case: All information
about all length ratios is encoded in

(
P
)

=
{

(p)
∣∣ p ∈ P

}

which might be a multiset. We state:

Lemma 16.5. Forgetting the middle entry in the elements of
(
P
)
indicates

the edges of a graph that can be decomposed into edge-disjoint (simple) cycles. The
decomposition can be done in linear time with respect to the size of

(
P
)
.

Proof. In order to see this, choose any (l ,m) ∈ P. Assume
(
(l ,m)

)
= (∗, ∗,a).

Therefore a is an entry in m . Since B is multihomogenous and due to the definition
of P, there must be a bracket

l ′ ∈
⋃

(r ,s)∈P
r

that contains a and that is paired with another bracket m ′ not containing a. I.e.
there is a

(l ′,m ′) ∈ P with
(
(l ′,m ′)

)
= (a, ∗, ∗).

One can proceed this way until one meets a vertex which was formerly visited. In
this case, a cycle is detected and one can delete all corresponding paired brackets
from P. Also in the new P corresponds to a multihomogenous bracket polynomial
and one can restart the same game with a new (l ,m) ∈ P.

From now on, we will work on the elements of (P) that are organized in
cycles C1, . . . , Ct (see the box on the bottom right in Figure 16.1). By the definition
of , they contain incidence information as described in Section 16.2. In
particular, any edge is of the shape

(a, Mx (µx a− λx b), b).
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16. Algorithm for Binomials with Coefficients in {−1,+1}

16.4. Triangulating Cycles

Assume a cycle contains consecutive edges
(
a, Mx · (µx a− λx b), b

)
and

(
b, My · (µy b− λy c), c

)

with a 6= c. In this case we combine both edges in a single edge (see Figure 16.3).
In contrast to the example in Chapter 15, we prefer using Menelaus configurations

a

b

c

x

y

a

c

z

Figure 16.3.: Combinatorics of edges when using Ceva’s or Menelaus’s construction.

instead of Ceva configurations (see also Figure 3.3). The result is shown in the
scheme below. There the resulting formula is a linear combination of the points
a and c whose coefficients are the (signed) products of the µs and λs. Therefore,(
a, z, c

)
meets all requirements to be an edge.

Menelaus

z := x y ∧ a c = MxMy · [a,b, c]
(
µxµya− λxλyc

)

cayx
b1 b2

a1!b

a2a3
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16.4. Triangulating Cycles

Using a Ceva configuration instead results in a sign change in the linear combination:

Ceva

z := (y a ∧ c x) b ∧ a c = MxMy · [a,b, c]2
(
µxµya + λxλyc

)

cab

c xay

b1 a2

b2
a3 b3

a4

a1!b

A sign change can also be obtained on a single edge. Suppose the edge is given by
(

p
)

= (c, x = ab ∧ cd = [a,b,d]︸ ︷︷ ︸
µp

c− [a,b, c]︸ ︷︷ ︸
λp

d, d)

for some p ∈ P. The harmonic point construction (see Section 3.8) gives

Harmonic Point

z := (b c ∧ a d) (b d ∧ c a) ∧ c d = [b, c,d][a, c,d]
(
µpc + λpd

)

dc

acdba dcb

b1

b2

a2

a3

a1!b
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16. Algorithm for Binomials with Coefficients in {−1,+1}

The processing of the cycles C1, . . . , Ct detected in Section 16.3 is composed of the
building blocks just given and is described as follows:

In the case that ε = −1 we do a case distinction. If there is no cycle of length
bigger than 2 then replace any edge by the edge obtained in the harmonic point con-
struction. Else there is a cycle with length bigger than 2. Replace two consecutive
edges by the edge obtained in the Ceva construction. If ε = 1 we do nothing.

Now, if there are left any cycles of length bigger than 2 we triangulate them by
plugging in Menelaus configurations. This means successively replacing consecutive
edges by the edge obtained in the Menelaus construction. This results in a collection
of 2-cycles. The triangulation can be done in such a way that one edge of the 2-cycle
is in its original state, i.e. there is a p ∈ P such that this edge equals (p).

In any case, we give an evaluation of the points in any resulting 2-cycle: consider
e.g. Ct ⊂ (P). For using (16.7) later on, let C̃t be the (algorithmic) preimage
of Ct under . After triangulation, Ct is transferred to a 2-cycle, say

(
(∞, 1, 0) , (0, x, ∞)

)
with (∞, 1, 0) = (p1) for a p1 ∈ P (16.8)

and with ∞, 0 ∈ P. 1, x are simple Grassmann-Cayley algebra expressions in
Λ1(P). By induction, x has an evaluation as

Mx ·




∏

p ∈ C̃t\{p1}

µp

︸ ︷︷ ︸
=:µx

0 −
(
± 1
) ∏

p ∈ C̃t\{p1}

λp

︸ ︷︷ ︸
=:λx

∞


 (16.9)

for a bracket monomial Mx. The sign in the above equation equals −1 if the cycle
was altered by a construction resulting from ε = −1. Otherwise the sign is +1.
Observe that Mx is really a bracket monomial in BP, since the monomials in the
construction above contain distinct elements of P. This is due to the assumption
a 6= c and the definition of . Furthermore, the cycles detected in Section 16.3
are simple. Observe that we have

deg(Mx) ≤ length(Ct)− 2 (16.10)

if Ct was not altered by a construction resulting from ε = −1. Otherwise we have

deg(Mx) ≤
(

length(Ct)− 2
)

+ 2. (16.11)
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16.5. Combining 2-Cycles or Cross-Ratios

In this section, we give tools to combine two 2-cycles (see Figure 16.4). Inductively,
this allows for combining all 2-cycles. Due to the intuition of 2-cycles already
provided in Chapter 15 and by abusing the notion, we call the 2-cycles cross-ratios
as well. All of the following constructions will result in similar evaluations. Since
we want to keep the degree of the multiplier monomial small, we give a lot of
different constructions which shall be used depending on the current setup. The
setup common to all situations is given as:
((
∞, 1 = (µ1∞ − λ1 0 ), 0

)
,
(
0, x = Mx (µx 0 − λx∞ ), ∞

))
and

((
∞′, 1′ = (µ1′∞′ − λ1′0′), 0′

)
,
(
0′, x′ = Mx′ (µx′0

′ − λx′∞′), ∞′
))

(16.12)
being two 2-cycles. Furthermore, due to (16.8) we can assume that there are a, b,
a′ and b′ in P such that

1 = a b ∧ ∞0 and 1′ = a′ b′ ∧ ∞′ 0′ (16.13)

as well as µ1′ = [a′,b′,0′] and λ1′ = [a′,b′,∞′], 0′ 6=∞′ and in addition {a′,b′,0′}
and {a′,b′,∞′} are pairwise distinct (due to the definition of P). Similar properties
hold for the points in the first cycle.

∞

0

1 x

∞′

0′

1′
x′

∞

0

1
z

Figure 16.4.: Combinatorics of combining two 2-cycles.

The following tables summarize the constructions for a point z. In this step of
the algorithm, both cross-ratios in (16.12) are combined in the single cross-ratio

(
(∞, 1, 0) , (0, z, ∞)

)
.

Observe that also in the case of the resulting 2-cycle, there is a p1 ∈ P such that
(∞, 1, 0) = (p1). The evaluations of z given below all are a bracketmonomial
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16. Algorithm for Binomials with Coefficients in {−1,+1}

multiple of
E∗ := Mx′ ·Mx

(
µ1′µxµx′0− λ1′λxλx′∞

)
. (16.14)

The degree of the multiplier monomial in all cases is

≤ 4.

By (16.6), the multiplier E∗ can be viewed to be a version of (15.7) in Grassmann-
Cayley algebra. Observe that the assumptions on the points used in (16.13) imply
that the bracket monomial multiplies in the evaluations of the constructions below
all do not vanish in BP. If one would not need a monomial multiplier we could save
ourselves the case distinction in the case

∣∣{0,∞,0′,∞′}
∣∣ = 4. We could construct z

by using the fact that in any instance, the six lines induced by 0∞,∞′ 0′, 0 0′,∞∞′,
x 1′ and x′ z are tangent to the same conic. Together with Brianchon’s theorem
(which is the dual of Pascal’s theorem in Section 3.10) this gives a construction for
z. However, the resulting multiplier of degree 4 is not a monomial. The four cases
for

∣∣{0,∞,0′,∞′}
∣∣ = 3 are very similar and therefore only one case is illustrated

detailedly. Furthermore, by possibly exchanging the roles of the points a′ and b′ or
of the two 2-cycles in question, one of the cases given below is applicable. A remark
on the evaluation of the formula given in Case 2 (i): Observe that by 0 = ∞′ and
∞ = 0′ it now holds µ1′ = [a′,b′,∞] and λ1′ = [a′,b′,0]. Similar comments are
also appropriate in the other cases.
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16.5. Combining 2-Cycles or Cross-Ratios

Case 2 (i):
∣∣{0,∞,0′,∞′}

∣∣ = 2: 0 = 0′ and ∞ =∞′

z :=
(
a′ 0 ∧ x b′

) (
b′∞ ∧ x′ a′

)
∧ 0∞ = [0,∞,a′][0,∞,b′]E∗

∞=∞'0=0'

a'∞=∞'b'b'xa' 0=0' x'

b1

b4b3

b2

a1

a2

a3

a4a5

Case 2 (ii):
∣∣{0,∞,0′,∞′}

∣∣ = 2: 0 =∞′ and ∞ = 0′

z :=
((

x′ a′ ∧ b′∞
)
x ∧ a′ 0

)
b′ ∧ 0∞ = [0,∞,b′][0,∞,a′]E∗

∞=0'0=∞'b'

0=∞'a'x

∞=0'b'x' a'

b1

b4

b3

b2

a2

a3

a5

a4

a1!b

171



16. Algorithm for Binomials with Coefficients in {−1,+1}

∣∣{0,∞,0′,∞′}
∣∣ = 3:

Case 3 (i): ∞ =∞′: z :=
(
1′ x ∧ 0 0′

)
x′ ∧ 0∞ = [0,∞,0′]2E∗

∞=∞'0x'

0'0x1'

a1!b

b1

a2

b2

a3

b3
a4

a5

b4

Case 3 (ii): 0 = 0′: z :=
(
1′ x ∧ ∞′∞

)
x′ ∧ 0∞ = [0,∞,∞′]2E∗

Case 3 (iii): ∞ = 0′: z :=
(
x′ x ∧ 0∞′

)
1′ ∧ 0∞ = [0,∞,∞′]2E∗

Case 3 (iv): 0 =∞′: z :=
(
x′ x ∧ ∞0′

)
1′ ∧ 0∞ = [0,∞,0′]2E∗
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16.5. Combining 2-Cycles or Cross-Ratios

Case 4 (i):
∣∣{0,∞,0′,∞′}

∣∣ = 4: |{a′,b′,0}| = 3

z :=
((

a′ b′ ∧ 0∞′
)
x ∧ ∞∞′

)(
x′
(
a′ b′ ∧ 0 0′

)
∧ 0∞′

)
∧ 0∞

= [0,∞,∞′]2[0,0′,∞′][0,a′,b′]E∗

∞0

∞'0

0'0b'a'

x'∞'∞x

∞'0b'a'

b1

b6b5

b4

b3

b2

a2
a3

a4

a5

a6

a7

a1!b
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16. Algorithm for Binomials with Coefficients in {−1,+1}

Case 4 (ii):
∣∣{0,∞,0′,∞′}

∣∣ = 4: |{a′,b′,0}| = 2 and 0 = b′ and ∞ 6= a′

z :=
((

a′ 0 ∧ 0′∞
)
x ∧ 0 0′

)((
0 a′ ∧ ∞∞′

)
x′ ∧ 0′∞

)
∧ 0∞

= [0,∞,0′]2[0,∞,a′][∞,0′,∞′]E∗

∞0=b'

∞0'x'

∞'∞a'0=b'

0'0=b'x

∞0'0=b'a'

b1

b6

b5 b4

b3

b2

a2

a3

a4

a5

a6 a7

a1!b
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16.5. Combining 2-Cycles or Cross-Ratios

Case 4 (iii):
∣∣{0,∞,0′,∞′}

∣∣ = 4: |{a′,b′,0}| = 2 and 0 = b′ and ∞ = a′

z :=
(
x∞′ ∧ 0 0′

)((
x′
(
0 0′ ∧ ∞∞′

)
∧ ∞0

)
0′ ∧ ∞∞′

)
∧ 0∞

= [0,∞,0′][0,∞,∞′][0,0′,∞′][∞,0′,∞′]E∗

∞=a'0=b'

∞'∞=a'0'

∞=a' 0=b'

∞'∞=a'0'0=b'

x'

0'0=b'∞'x

b1

b6

b5

b4

b3

b2

a2

a3

a4

a5

a6

a7

a1!b
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16. Algorithm for Binomials with Coefficients in {−1,+1}

In total Obviously, one can combine all cross-ratios resulting from Section 16.4
(by triangulating C1, . . . , Ct) in a single cross-ratio or 2-cycle

(
(∞, 1, 0) , (0, x, ∞)

)
. (16.15)

By induction and by using (16.14) as well as (16.9) for the shape of the cross-ratios
resulting from Section 16.4, there is a bracket monomial Mx and a p1 ∈ P with
(∞, 1, 0) = (p1) such that

Mx ·


 ∏

p ∈P\{p1}
µp 0 − ε ·

∏

p ∈P\{p1}
λp ∞


 . (16.16)

For a degree bound on Mx we observe that we need to sum up the costs for trian-
gulating the cycles C1, . . . , Ct (see (16.10) and (16.11)) and for t − 1 many times
combining pairs of 2-cycles. This implies

deg(Mx) ≤
t∑

i=1

(
length(Ci)− 2

)
+ 2 + 4 (t− 1)

=
∣∣P
∣∣+ 2 t− 2

≤ 2 k + 2 k − 2

≤ 4 k

(16.17)

since
∑t

i=1 length(Ci) =
∣∣P
∣∣ and t ≤

⌊ |P|
2

⌋
as well as (16.2) which states

∣∣P
∣∣ ≤ 2 k.

16.6. Final Coincidence

Consider the resulting 2-cycle given in (16.15). Due to (∞, 1, 0) = (p1) we
have

1 = a b ∧ ∞0

for some a, b in P and

µp1 = [a,b,0] and λp1 = [a,b,∞].

By (16.16) and due to (16.7) it holds
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16.7. Example: A Derivation of Pascal’s Theorem

a b ∧ x

=Mx ·




∏

p ∈P\{p1}
µp [a,b,0]︸ ︷︷ ︸

µp1

− ε ·
∏

p ∈P\{p1}
λp [a,b,∞]︸ ︷︷ ︸

λp1




=Mx ·N ·B

and with a bracket monomialN with deg(N) ≤ k. Therefore, a b∧x is a generalized
Cayley factorization with multiplier Mx ·N with

deg(Mx ·N) ≤ 5 k.

The algorithm described is linear in k except for the step where it has to find a
perfect matching. The construction of G and finding the matching is possible in
time O(k3) (e.g. the classical algorithm using augmented path which is due to [5]
runs in the given time). This proves Theorem 14.4.

Remark 16.6. Observe that one can also achieve a linear running time with a weaker
upper bound on the degree of the multiplier: Therefore one omits the step in which
a perfect matching is obtained. Instead, one pairs a bracket in LB with any bracket
inMB. In order to apply the area principle, an additional slack variable might has
to be introduced for pairs that have no common letter.

Remark 16.7. It should be remarked that the algorithm is not completely deter-
ministic in the sense that there are various options of choice: in the concrete shape
of the pairing P, in the concrete triangulation of the cycles and in the order and
pattern in which the 2-cycles are combined. This freedom is partially used for local
optimizations in the actual implementation presented in Chapter 18.

16.7. Example: A Derivation of Pascal’s Theorem

One of the smallest non-trivial example only consisting of two 2-cycles is given by
the bracket monomial

B := [a, c, e][a,d, f ][b, c, f ][b,d, e]− [a, c, f ][a,d, e][b, c, e][b,d, f ]. (16.18)

Actually, any pairing P using only edges in E1 (i.e. only edges joining brackets
with exactly two common entries) of B corresponds to two 2-cycles. B belongs
to Pascal’s theorem (see Section 3.10 and also Section 6.1) and the existence of a
synthetic construction describing the bracket polynomial was one of the motivations
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16. Algorithm for Binomials with Coefficients in {−1,+1}

for Cayley factorization. This example is also used in [104, p. 449 ff.] in order
to motivate the use of Cayley factorization. There it is assumed that that they
already possess an efficient subroutine for Cayley factoring non-multilinear bracket
polynomials. Afterwards, they use this routine in order to “detect” Pascal’s theorem.
We will demonstrate in the following that with suitable choices done, our algorithm
can in principle do this. The diagram below indicates all edges in E1. There are
three pairings using only edges in E1 such that the combination of resulting 2-
cycles can be expressed as Case 2 (i) or Case 2 (ii). The other matchings correspond
to a case with

∣∣{0,∞,0′,∞′}
∣∣ = 4 which yields a multiplier monomial of bigger

degree than the cases indicated by
∣∣{0,∞,0′,∞′}

∣∣ = 2. One of these matchings
corresponding to Case 2 (i) or Case 2 (ii) is highlighted by thick edges, the two other
ones have a symmetric structure. The highlighted matching shall be called P.
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16. Algorithm for Binomials with Coefficients in {−1, +1}

for Cayley factorization. This example is also used in [105, p. 449 ff.] in order
to motivate the use of Cayley factorization. There it is assumed that that they
already possess an efficient subroutine for Cayley factoring non-multilinear bracket
polynomial. Afterwards they use this routine in order to “detect” Pascal’s theorem.
We will demonstrate that our algorithm can in principle do this: P can be taken to
be the pairs indicated by

[a, c, e] [a,d, f ] [b,d, e] [b, c, f ]

[a, c, f ] [a,d, e] [b,d, f ] [b, c, e]

which induces ε = +1. The pairing induces the two 2-cycle

e

f

ac ∧ ef
ad ∧ fe

f

e

bd ∧ ef
bc ∧ fe

This resembles the Case 2 (i) labeled with
��{0,∞,0�,∞�}

�� = 2: 0 = 0� and ∞ = ∞�.
We define

z :=
�
eb ∧ (ad ∧ f e)d

� �
d f ∧ (bc ∧ f e)b

�
∧ e f (16.18)

By the results of the previous sections we have

ac ∧ z = [f , e,b][f , e,d] · B

where the multiplier monomial from the combination of 2-cycles. Furthermore, we
have

(ad ∧ f e)d = −[f , e,d]ad and (bc ∧ f e)b = [f , e, c] cb. (16.19)
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which induces ε = +1. The pairing induces the two 2-cycle
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P induces ε = +1 and the two 2-cycles

e

f

ac ∧ ef
ad ∧ fe

e

f

bd ∧ ef
bc ∧ fe

We choose to use Case 2 (i) labeled with
∣∣{0,∞,0′,∞′}

∣∣ = 2: 0 = 0′ and ∞ =∞′.
We define

z :=
(
b f ∧ (a d ∧ f e) d

) (
d e ∧ (b c ∧ f e) b

)
∧ f e. (16.19)

By the results of the previous sections we have

ac ∧ z = [f , e,b][f , e,d] ·B
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16.7. Example: A Derivation of Pascal’s Theorem

where the multiplier monomial comes from the combination of 2-cycles. Further-
more, we have

(a d ∧ f e) d = −[f , e,d] a d and (b c ∧ f e) b = [f , e,b] c b. (16.20)

Therefore, we can substitute (16.20) in (16.19), cancel and conclude

−B = ac∧
((

b f ∧ a d
) (

d e ∧ c b
)
∧ f e

)
= −

(
a c ∧ f e

)
∧
(
b f ∧ a d

) (
d e ∧ c b

)
.

This is a synthetic construction differing from the one given in Section 3.10 only by
a permutation of indices. We have seen similar phenomena also in Section 6.1. We
will argue that the given factorization can be considered as an automatic derivation
of Pascal’s theorem when the algorithm for Cayley factorization is optimized locally.
We already did a local optimization when choosing the matching. After choosing
Case 2 (i) for the combination of 2-cycles, we had to decide which points should
be considered as a′ and b′. Here the given choice should be preferred since it can
be locally simplified using (16.20). Now when choosing Case 2 (ii), adjusting the
roles of points a′ and b′, allows again for local simplifications of the construction and
yields a version of Pascal’s construction. We think that this is due to the beauty and
symmetry of the conic condition. However, the algorithm for Cayley factorization
is close enough to geometry to benefit from this beauty. For further comments on
also automatically deriving (16.18) see [104].
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17. Generalization for Polynomials
with Arbitrary Number of
Summands

An intuition for the general algorithm in terms of length ratios (compare Section 15)
can be provided as follows: Consider a general bracket polynomial

α1[∗, ∗, ∗][∗, ∗, ∗] · · · [∗, ∗, ∗] + · · ·+ αl[∗, ∗, ∗][∗, ∗, ∗] · · · [∗, ∗, ∗]
− αΩ[∗, ∗, ∗][∗, ∗, ∗] · · · [∗, ∗, ∗].

For an instance P , we have

α1[∗, ∗, ∗]P · · · [∗, ∗, ∗]P + · · ·+ αl[∗, ∗, ∗]P · · · [∗, ∗, ∗]P − αΩ[∗, ∗, ∗]P · · · [∗, ∗, ∗]P = 0

⇐⇒
α1[∗, ∗, ∗]P · · · [∗, ∗, ∗]P + · · ·+ αl[∗, ∗, ∗]P · · · [∗, ∗, ∗]P

[∗, ∗, ∗]P · · · [∗, ∗, ∗]P
= αΩ

⇐⇒

α1
[∗, ∗, ∗]P · · · [∗, ∗, ∗]P
[∗, ∗, ∗]P · · · [∗, ∗, ∗]P

+ · · ·+ αl
[∗, ∗, ∗]P · · · [∗, ∗, ∗]P
[∗, ∗, ∗]P · · · [∗, ∗, ∗]P

= αΩ .(17.1)

In principle, the algorithm for the binomial case given in Section 16 can interpret
each of the summands (without the coefficient) as a product of length ratios. It
can output a cross-ratio that contains the same information. They can be combined
using the tool of projective addition (see Section 3.7). In order to combine them, we
have to consider them as numbers on the same projective number line with respect
to the same basis. This is the very general outline of the present chapter.
To work out the details and to achieve a low total upper bound on the multiplier

monomial, we need more than the brief description above. In particular, practical
experiments with large bracket polynomials in an implementation of the algorithm
in Mathematica ([136]) by the author (see Chapter 18 for more information about
the implementation) has shown that it is worth to explicitly factor out some common
factors when appropriate (see below). Unfortunately, this makes the exposition a
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17. Generalization for Polynomials with Arbitrary Number of Summands

little tedious. Let P be a finite set and let B ∈ R[∆(P)] be multihomogenous with
coefficients in Z. Let k ≥ 2 be the degree of B in its brackets and l+ 1 the number
of summands, such that no summand has repeating indices in its brackets and such
that no difference of two summands lies in

〈
Irepeat∪Ialtern

〉
. (Observe that this does

not affect the bounds given in Theorem 14.5.) Furthermore, the summands shall not
have a overall bracket monomial factor. By switching the positions of two elements
in some brackets we can w.l.o.g. assume that all the coefficients αj (1 ≤ j ≤ l + 1)
are in N \ {0} such that B has the following sign pattern:

α1 [∗, ∗, ∗][∗, ∗, ∗] · · · [∗, ∗, ∗]︸ ︷︷ ︸
=:Π1

+ · · ·+ αl [∗, ∗, ∗][∗, ∗, ∗] · · · [∗, ∗, ∗]︸ ︷︷ ︸
=:Πl

− αΩ [∗, ∗, ∗][∗, ∗, ∗] · · · [∗, ∗, ∗]︸ ︷︷ ︸
=:Ω

. (17.2)

Consider the l binomials given below. The right-hand sides are versions where the
common factors F (∗)s are factored out explicitly:

Π1 − Ω = F (1) (L(1) −M(1))︸ ︷︷ ︸
=:B1

,

...

Πl − Ω = F (l) (L(l) −M(l))︸ ︷︷ ︸
=:Bl

.

(17.3)

This implies
F (i) L(i) = Πi and F (i) M(i) = Ω. (17.4)

Let ki denote the degree of Bi (1 ≤ i ≤ l). Since the summands of B are distinct,
all kis are bigger than 1. Due to Theorem 14.4 and Chapter 16, the Bis can be
Cayley factored. In particular, for each (1 ≤ i ≤ l) there is a 2-cycle

Ci :=
(
(∞i, 1i = [ai,bi,0i]︸ ︷︷ ︸

=: µ1i

∞i − [ai,bi,∞i]︸ ︷︷ ︸
=: λ1i

0i , 0i),

(0i, xi = Mxi ( µxi 0i − λxi∞i), ∞i)
)
.

for some ai and bi in P with the following properties:

µxiµ1i = Ni · M(i) and λxiλ1i = Ni · L(i). (17.5)
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which implies
Mxi ·

(
µxiµ1i − λxiλ1i

)
= Mxi ·Ni ·Bi

for suitable bracket monomials Ni such that

deg(Mxi ·Ni) ≤ 5 ki.

Similarly to the situation in Chapter 16, we now are left with l highly preprocessed
2-cycles. In a next step, if necessary, we establish the summands with coefficients
αi 6= 1.

17.1. Constructing the Coefficients

Due to classical literature, the integers can be constructed on projective number
lines. This is often referred to as a harmonic sequence. We also give an (inductive)
evaluation in order to ensure that the multiplier is a bracket monomial. Consider a
i ∈ {1, . . . , l} with αi ≥ 2. We can recursively construct the natural numbers with
respect to the base 0i,∞i,1i.
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17. Generalization for Polynomials with Arbitrary Number of Summands

Constructing the natural numbers m ∈ N \ {0}.

ni(m) :=





1i = µ1i∞i − λ1i 0i = [ai,bi,0i]∞i − [ai,bi,∞i] 0i for m = 1
((

ai 0i ∧ bi ∞i

)
ni(m− 1) ∧ ai ∞i

)
bi ∧ 0i ∞i for m ≥ 2

= (λ1i [0i,∞i,ai][0i,∞i,bi])
m−1

(
mµ1i∞i−λ1i 0i

)

∞i
0ibi

∞i
aini(m-1)

∞i
bi0iai

b2

a2

a3

b3

a1!b

a4!c

b1

Now, ni(αi) and xi can be considered to represent numbers on the same projective
number line. A multiplication of both numbers can be achieved by a von Staudt
construction (see Section 3.7). We define

zi :=
(
0i ai ∧ xi bi

) (
bi∞i ∧ ni(αi) ai

)
∧ 0i∞i.

By a pattern matching (substitute 1i for 1′, xi for x and ni for x′) with the case
described in Case 2 (i) in Section 16.5, we obtain after simplification:

zi = Mxi (λ1i [bi,0i,∞i][ai,0i,∞i])
αi µ1i

(
µxi 0i − αi λxi∞i

)
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By replacing each xi by zi in Ci whenever the corresponding αi is bigger than 1, we
can w.l.o.g. assume xi = Mxi

(
µxi 0i − λxi∞i

)
such that we have (compare (17.5))

µxiµ1i = Ni · M(i) and λxiλ1i = Ni · αi · L(i) (17.6)

which induces

Mxi ·
(
µxiµ1i − λxiλ1i

)
= Mxi ·Ni · (αi L(i) −M(i))

with

deg(Mxi ·Ni) ≤
{

5 ki if αi = 1

5 ki + 3αi + 1 if αi > 1.
(17.7)

Remark 17.1. There are various possibilities to construct the coefficients αi. We
chose the present one because the degree bound only depends on the αi and is not too
complicated. Of course, there are more efficient methods for constructing the natural
numbers than just adding 1s. E.g. we could also use the binary representation
together with Horner’s method in order to constructm ∈ N with a leading monomial
of degree not bigger than 8 · dlog2(m)e. We will not give any details in order to save
space.

17.2. Adding up Two 2-Cycles or Cross-Ratios

We are left with a lot of 2-cycles or cross-ratios C1, . . . , Cl. At this points, literally
all comments from the first part of Section 16.5 apply. With the same settings
as given there we give constructions for combining two 2-cycles. We do the same
case distinction as before. Now the evaluations of z given below all are a bracket
monomial multiple of

E+ = Mx′ ·Mx

(
λ1µ1′µx′µx 0− (λ1′λx′µ1µx + λ1λxµ1′µx′)∞

)
. (17.8)

We put on record that the degree of the multiplier monomial is

≤ 5. (17.9)

The idea behind all of the constructions is just the one given in the beginning of the
chapter: We first express both cross-ratios with respect to the same basis. Then we
perform a projective addition. Furthermore, we want to keep the construction small
(in order to keep the degree of the multiplier small). Therefore, for the addition we
reuse points introduced for changing the projective basis. The points marked with
a circle in the following diagrams give vertices of a quadrilaterals witnessing the
projective addition (compare Section 3.7). In the corresponding quadrilateral a line
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17. Generalization for Polynomials with Arbitrary Number of Summands

is missing. Including this line and intersecting it with the line 0∞, one can see both
parts of the construction: the adjustment of the basis and the projective addition.
In order to interpret the construction for Case 2 (ii), one should observe that one can
exchange the role of the points 0′ and ∞′ when simultaneously exchanging points
1′ and x′. Therefore the same picture is drawn as in the case where 0 = 0′ and
∞ =∞′. However, one has to take into account that the points a′ and b′ determine
1′ (not x′) and therefore both constructions differ. By the same arguments as in
Section 16.5, the multipliers do not vanish in BP. Again, by possibly exchanging
the roles of the points a′ and b′ or of the two 2-cycles in question, one of the cases
given below is applicable. The possibility of being forced to exchange the roles
of the two 2-cycles will make the things more complicated in Section 17.3. Such
a situation arises e.g. if

∣∣{0,∞,0′,∞′}
∣∣ = 4, |{a′,b′,0}| = 2, 0 = b′, ∞ = a′,

{a,b} 6= {0′,∞′}. Clearly, there are constructions that do not need to exchange
the cycles also in this situation. However, those that we know of, all result in a
bigger degree of the multiplier monomial of E+. A remark on the evaluation of the
last formula: the result is identical to −λ1µ1′ E+ which might be confusing when
identifying λs and µs.
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17.2. Adding up Two 2-Cycles or Cross-Ratios

Case 2 (i):
∣∣{0,∞,0′,∞′}

∣∣ = 2: 0 = 0′ and ∞ =∞′

z :=
(
∞ (b′ 0 ∧ a′ 1) ∧ x (b′ 0 ∧ a′∞)

)(
b′ x′ ∧ a′∞

)
∧ 0∞

= [0,∞,a′]2[0,∞,b′]2E+

∞=∞'0=0'

∞=∞'a'x'b'

∞=∞'a'0=0'b'

x

a' 10=0'b'

∞=∞'

b2

a2

b6

a3

b3a4

a1!b

a5

a6

a8

a7
b1!c

b5

b7
b4

c2

c1

c4

c3 c6
c5
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Case 2 (ii):
∣∣{0,∞,0′,∞′}

∣∣ = 2: 0 =∞′ and ∞ = 0′

z := a′
(
∞
(
b′ 0 ∧ 1 (x′ b′ ∧ a′∞)

)
∧ x

(
b′ 0 ∧ a′∞

))
∧ 0∞

= [0,∞,a′]2[0,∞,b′]2E+

∞=0'0=∞'

∞=0'a'0=∞'b'

x

a' ∞=0'b'x'

10=∞'b'

∞=0'

a'

b2

a2

b6

a3

b3
a4

a1!b

a5

a6

a8

a7

b1!c

b5

b7

b4

c2

c1

c4

c3

c6

c5
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∣∣{0,∞,0′,∞′}
∣∣ = 3:

Case 3(i): ∞ =∞′: z :=
((

1 1′ ∧ 0 0′
)
∞ ∧ x 0′

)
x′ ∧ 0∞=[0,∞,0′]3E+

∞=∞'0x'

0'x∞=∞'

0'01'1

b2

a2

b6
a3

b3

a4

a1!b

a5a6

a7

b1!c

b5

b4

c2

c1

c4
c3

c5

Case 3(ii): 0 = 0′: z :=
(
1′ 1 ∧ ∞′∞

) (
x′∞ ∧ ∞′ x

)
∧ 0∞=[0,∞,∞′]3E+

Case 3(iii): ∞ = 0′: z :=
((

1 x′ ∧ 0∞′
)
∞ ∧ x∞′

)
1′ ∧ 0∞=[0,∞,∞′]3E+

Case 3(iv): 0 =∞′: z :=
(
1 x′ ∧ 0′∞

) (
1′∞ ∧ 0′ x

)
∧ 0∞=[0,∞,0′]3E+
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Case 4 (i):
∣∣{0,∞,0′,∞′}

∣∣ = 4: |{a′,b′,0}| = 3

z :=

(
∞
(
x′
(
a′ b′ ∧ 0 0′

)
∧ 0∞′

)
∧ x∞′

)((
a′ b′ ∧ 0∞′

)
1 ∧ ∞∞′

)
∧ 0∞

= [0,∞,∞′]3[0,0′,∞′][0,a′,b′]E+

∞0

∞'∞1

∞'0b'a'

∞'x

∞'0

0'0b'a'

x'

∞

b2
a2

b6

a3
b3

a4

a1!b

a5

a6

a9

a7

b1!c

b5

b7

b4

c2

c1

c4

c3

c6

c5

a8

b8
c7
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Case 4 (ii):
∣∣{0,∞,0′,∞′}

∣∣ = 4: |{a′,b′,0}| = 2 and 0 = b′ and ∞ 6= a′

z :=
(
x′
(
a′ 0 ∧ ∞∞′

)
∧ 0′∞

)((
1
(
a′ 0 ∧ 0′∞

)
∧ 0 0′

)
∞ ∧ 0′ x

)
∧ 0∞

= [0,∞,0′]3[0,∞,a′][∞,0′,∞′]E+

∞0=b'

x0'∞

0'0=b'

∞0'0=b'a'

1

∞0'

∞'∞0=b'a'

x'
b2

a2

b6
a3

b3

a4

a1!b

a5

a6

a8

a7

b1!c

b5

b7

b4

c2

c1

c4

c3

c6

c5
a9

b8
c7
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Case 4 (iii):
∣∣{0,∞,0′,∞′}

∣∣ = 4:
|{a′,b′,0}| = 2,0 = b′,∞ = a′,0′ = b,∞′ = a

z :=
(
x′
(
0 0′ ∧ ∞∞′

)
∧ ∞0′

)(
0′ x ∧ ∞∞′

)
∧ 0∞ = [0,∞,0′][∞,0′,∞′]E+

∞=a'0=b'

∞'=a∞=a'0'=b x0'=b∞=a'

∞'=a∞=a'0'=b0=b'

x'

b2 a2a3

b3a4

a1!b

a5

a6

b1!c

b5

b4

c2

c1

c4

c3
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17.3. Adding up All 2-Cycles or Cross-Ratios

Unfortunately, in the case of adding up 2-cycles, the result differs much more from
the shape of the xi in the original Cis. Therefore, the iterative addition is formulated
differently (see Lemma 17.2 below). As mentioned before, the case distinction done
in Section 17.2 for combining two 2-cycles implies that in some cases, one has to
exchange the roles of both cycles. This implies that one looses the control of which
2-cycles plays which role in the combination. Therefore, the statement and proof of
the following lemma have to be formulated without the knowledge of the role the
cycles play in the combination.

Lemma 17.2. Suppose that the cross-ratios C1, . . . , Cl are combined linearly, i.e.
w.l.o.g. we start by adding the 2-cycles C1 and C2. Then we add C3, C4, . . . by the con-
structions of Section 17.2. Let Aj be the bracket monomial of degree not bigger than
5 that is produced during the addition of Cj as multiplier of E+. The 2-cycle obtained
after adding Cj (2 ≤ j ≤ l) can be written as

((
∞i∗ , 1i∗ , 0i∗

)
,
(
0i∗ , x(j), ∞i∗

))

with some i∗ ∈ {1, . . . , j}. For j ≥ 2 there is an evaluation of x(j) as:

x(j) = Mx(j) ·


µxi∗λ1i∗

j∏

i=1
i6=i∗

M(i) 0i∗ −




j∑

s=1

αs L(s)
j∏

i=1
i 6=s

M(i)


 Ni∗∞i∗




such that there is a bracket monomial Qj of degree j − 2 with

Mx(j) = Qj ·
j∏

i=1
i 6=i∗

Ni

j∏

i=1

Mxi

j∏

i=2

Ai.

Proof. We proceed by induction on j. Let j = 2. We can w.l.o.g. assume that
i∗ = 1. Due to (17.8), x(2) is given as

x(2) = A2 ·Mx1 ·Mx2

·
(
λ11 µ12µx2︸ ︷︷ ︸
M(2)N2

µx1 01 −
(
λ12 λx2︸ ︷︷ ︸
α2L(2)N2

µ11µx1︸ ︷︷ ︸
M(1)N1

+ λ11 λx1︸ ︷︷ ︸
α1L(1)N1

µ12µx2︸ ︷︷ ︸
M(2)N2

)
∞1

)

= A2 ·Mx1 ·Mx2 ·N2

(
µx1λ11M(2) 01 − (α2 L(2)M(1) + α1 L(1)M(2))N1 ∞1

)
.

The underbraces are due to (17.6). This is of the required form. Now let j ≥ 3. The
lemma is considered to be true for j − 1. Therefore there is a i∗ ∈ {1, . . . , j − 1}
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17. Generalization for Polynomials with Arbitrary Number of Summands

such that in step j the to 2-cycles
((
∞i∗ , 1i∗ , 0i∗

)
,
(
0i∗ , x

(j−1),∞i∗
))

and

Cj =
((
∞j , 1j , 0j

)
,
(
0j , xj , ∞j

))

are added. With

µx(j−1) =µxi∗ λ1i∗

j−1∏

i=1
i6=i∗

M(i) and λx(j−1) =Ni∗




j−1∑

s=1

αs L(s)
j−1∏

i=1
i 6=s

M(i)




we have
x(j−1) = Mx(j−1) ·

(
µx(j−1) 0i∗ − λx(j−1)∞i∗

)
.

We distinguish two cases: Case 1: Cj plays the role of
((
∞′ , 1′ , 0′

)
,
(
0′ , x′, ∞′

))

in the addition when using the notions of Section 17.2. Using (17.8) and (17.6) we
obtain

x(j) = Aj ·Mx(j−1) ·Mxj ·
(
λ1i∗µ1jµxjµx(j−1) 0i∗

−(λ1jλxjµ1i∗µx(j−1) +λ1i∗λx(j−1)µ1jµxj )∞i∗

)

= Aj ·Mx(j−1) ·Mxj ·
 λ1i∗ µ1j µxj µxi∗λ1i∗

j−1∏

i=1
i 6=i∗

M(i) 0i∗

−λ1j λxj µ1i∗ µxi∗λ1i∗

j−1∏

i=1
i 6=i∗

M(i) ∞i∗

−λ1i∗ Ni∗




j−1∑

s=1

αs L(s)
j−1∏

i=1
i 6=s

M(i)


 µ1j µxj ∞i∗



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17.3. Adding up All 2-Cycles or Cross-Ratios

= Aj · Qj−1 ·
j−1∏

i=1
i 6=i∗

Ni

j−1∏

i=1

Mxi

j−1∏

i=2

Ai ·Mxj · λ1i∗ ·


 NjM(j) µxi∗λ1i∗

j−1∏

i=1
i6=i∗

M(i) 0i∗

−Nj αj L(j) Ni∗M(i∗)
j−1∏

i=1
i6=i∗

M(i) ∞i∗

−Ni∗

(
j−1∑

s=1

αs L(s)
j−1∏

i=1
i6=s

M(s)


Nj M(j) ∞i∗




= Qj ·
j∏

i=1
i6=i∗

Ni

j∏

i=1

Mxi

j∏

i=2

Ai ·


 µxi∗λ1i∗

j∏

i=1
i 6=i∗

M(i) 0i∗

− Ni∗ αj L(j)
j−1∏

i=1

M(i) ∞i∗

− Ni∗

(
j−1∑

s=1

αs L(s)
j∏

i=1
i6=s

M(i)


∞i∗




withQj := Qj−1·λ1i∗ which by induction has degree j−3+1 = j−2. This proves the
claim in the first case. In Case 2, where Cj plays the role of

((
∞, 1, 0

)
,
(
0, x, ∞

))
,

one analogously computes

Aj ·Mxj ·Mx(j−1)

(
λ1jµ1i∗µx(j−1)µxj 0j−(λ1i∗λx(j−1)µ1jµxj+λ1jλxjµ1i∗µx(j−1))∞j

)
.
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17. Generalization for Polynomials with Arbitrary Number of Summands

This results in

Qj ·
j∏

i=1
i 6=j

Ni

j∏

i=1

Mxi

j∏

i=2

Ai ·


µxjλ1j

j∏

i=1
i6=j

M(i) 0j −




j∑

s=1

αs L(s)
j∏

i=1
i 6=s

M(i)


 Nj∞j




with Qj := Qj−1 · λ1i∗ which is the desired statement in this case.

Remark 17.3. It is also possible to use other patterns for combining the 2-cycles
(e.g. tree-like structures). One can show that Lemma 17.2 can be adjusted in its
formulation and remains still valid. This needs more of bookkeeping of the indices
and the multiplier monomial has higher degree. However, in a concrete implemen-
tation of the algorithm there might be a potential for optimizing the degree of the
multiplier monomial.

17.4. Final Coincidence

Assume that all 2-cycles C1, . . . , Cl have been combined in a single 2-cycle given by
(
(∞i∗ , 1i∗ , 0i∗), (0i∗ , x(l), ∞i∗)

)
.

As already declared in (17.1), in an instance testing B = 0 can be read as

α1
Π1

Ω
+ · · ·+ αl

Πl

Ω
= αΩ

in the corresponding coordination. This equation holds in an instance if and only
if the coordinatization of

ni∗(αΩ) and x(l)

are identical points in the projective plane in an instance. We will define c such
that

ni∗(αΩ) = c bi∗ ∧ 0i∗ ∞i∗

by letting

c :=

{
ai∗ if αΩ = 1(
ai∗ 0i∗ ∧ bi∗ ∞i∗

)
ni∗(αΩ − 1) ∧ ai∗ ∞i∗ otherwise.
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17.4. Final Coincidence

We have
c = Mc

(
(αΩ − 1)µ1i∗ ∞i∗ − λc ai∗

)

with

λc =

{
−[0i∗ ,∞i∗ ,bi∗ ] for αΩ ≥ 2

1 otherwise

Mc =

{
(λ1i∗ [0i∗ ,∞i∗ ,ai∗ ])

αΩ−1[0i∗ ,∞i∗ ,bi∗ ]
αΩ−2 for αΩ ≥ 2

1 otherwise.

(17.10)

For an evaluation of c observe that the construction is contained in the construction
of ni∗(αΩ). Splitting the edges in the tensor diagram representation in the same way
as before in the bigger diagram (see Section 17.1) gives the desired representation.
With this setting it holds due to Lemma 17.2 and due to the above identities that

c bi∗ ∧ x(l)

=Mc ·Mx(l) ·
(
(αΩ − 1)µ1i∗ ∞i∗ bi∗ − λcai∗ bi∗

)

∧


µxi∗λ1i∗

l∏

i=1
i 6=i∗

M(i) 0i∗ −




l∑

s=1

αs L(s)
l∏

i=1
i6=s

M(i)


 Ni∗∞i∗




=Mc ·Mx(l) ·


(αΩ − 1) µ1i∗ µxi∗︸ ︷︷ ︸

=Ni∗ ·M(i∗) by (17.6)

λ1i∗

l∏

i=1
i 6=i∗

M(i) [∞i∗ ,bi∗ ,0i∗ ]

− λc λ1i∗
l∏

i=1
i 6=i∗

M(i) µxi∗ [ai∗ ,bi∗ ,0i∗ ]︸ ︷︷ ︸
=Ni∗ ·M(i∗) by (17.6)

+ λc




l∑

s=1

αs L(s)
l∏

i=1
i 6=s

M(i)


 Ni∗ [ai∗ ,bi∗ ,∞i∗ ]︸ ︷︷ ︸

=λ1i∗



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17. Generalization for Polynomials with Arbitrary Number of Summands

=Mc ·Mx(l) ·Ni∗ · λ1i∗ ·


(αΩ − 1)

l∏

i=1

M(i) [∞i∗ ,bi∗ ,0i∗ ]︸ ︷︷ ︸
=−λc if αΩ≥2

− λc
l∏

i=1

M(i)

+ λc




l∑

s=1

αs L(s)
l∏

i=1
i 6=s

M(i)







=Mc ·Mx(l) ·Ni∗ · λ1i∗ · λc ·
(
−αΩ

l∏

i=1

M(i) +

l∑

s=1

αs L(s)
l∏

i=1
i6=s

M(i)


 .

This bracket polynomial can be further factored. In order to see this, for 1 ≤ s ≤ l
consider

l∏

i=1
i6=s

M(i).

Observe, that F (s) (see (17.3)) is a bracket monomial factor of the above. If it was
not, there would be a overall bracket monomial factor of B due to the definition of
F (s) as maximal common factor of Πs−Ω. But a bracket monomial factor of B was
excluded in the beginning. On the other hand, we have F (s) = Ω

M(s) and therefore

∏l
i=1, i 6=sM(i)

F (s)
=

∏l
i=1M(i)

Ω

which is independent of the particular s chosen. Therefore we can rewrite

c bi∗ ∧ x(l) = Mc ·Mx(l) ·Ni∗ · λ1i∗ · λc ·
∏l
i=1M(i)

Ω
·




l∑

s=1

αs L(s)F (s)
︸ ︷︷ ︸

=Πs

−αΩ Ω




(17.11)

and therefore we obtained a generalized Cayley factorization of B.
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17.5. The Multiplier of the Factorization

The overall multiplier is due (17.11) and due to Lemma 17.2 given by

M :=Mc ·Mx(l) ·Ni∗ · λ1i∗ · λc ·
∏l
i=i∗M(i)

Ω

=Mc ·Ql ·
l∏

i=1

(Ni ·Mxi)

l∏

i=2

Ai. · λ1i∗ · λc ·
∏l
i=1M(i)

Ω
.

(17.12)

We want to give upper bounds on the degree of M . It remains to plug in the
estimates given in (17.7). We distinguish two cases:

Common Special Case
Assume

α1 = · · · = αl = αΩ = 1.

Observe that by switching elements inside of the brackets, this case covers also
α1, . . . , αl, αΩ ∈ {−1,+1}. In this case, M simplifies to

M = Qj ·
l∏

i=1

(Ni ·Mxi)
l∏

i=2

Ai. · λ1i∗ ·
∏l
i=1M(i)

Ω
.

Due to (17.7) and due to the degree of Qj given in Lemma 17.2 we have

deg(M) ≤(l − 2) + 5
l∑

i=1

ki +
l∑

i=2

deg(Ai) + 1 +
l∑

i=1

ki − k

≤(l − 2) + 5 l k + (l − 1) 5 + 1 + l k − k

=6 k l + 6 l − k − 6

≤9 k l

where the estimate on the Ais is due to (17.9) and we use k ≥ 2.
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General Case
In the general case, we can use the representations of Mc and λc given in (17.10)
to bound the overall degree of M as given in (17.12). We get

deg(M) ≤

≤ 3αΩ − 4 + (l − 2) +

l∑

i=1

(5 ki + 3αi + 1) + 5 (l − 1) + 2 +

l∑

i=1

ki − k

≤ 6
l∑

i=1

ki + 3

(
l∑

i=1

αi + αΩ

)
+ 7 l − k − 9

≤ 10 k l + 3

(
l∑

i=1

αi + αΩ

)

where we again used k ≥ 2. Also observe that after using the subroutine for the
binomial case l times, the algorithm is linear in l. The subroutine runs in O(k3).
Therefore, the overall running time is in O(l · k3). This proves Theorem 14.5.
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18. Examples

In this Chapter we give two examples illustrating the execution of the Cayley fac-
torization algorithm. The output was obtained automatically by an implementation
in Mathematica ([136]) and using the Combinatorica package for finding a bipartite
matching and for producing graph representations. The algorithm works exactly as
described earlier. Within this description there is some freedom of choice. Within
the algorithm, some of this freedom is used in order to construct an optimized match-
ing. Furthermore when factoring binomials, the resulting cycles are triangulated in
such a way that the costs of combining the resulting 2-cycles are optimized.
We will give two examples. Both of them have their coefficients in {−1,+1} since

this is often the case when describing geometric properties. The first example is an
extension of the introductive example given in Chapter 15. The second one is given
in Section 18.2 and treats the condition for ten points lying on a common cubic.
Unfortunately, we do not have enough space to show the complete output.

18.1. Example 1

B := [a,b,g][a, c,k][b,a, c][e, f ,h][f ,d, e]

+[a,b,g][a, c, e][a, f , e][b, c,k][h,d, f ]

−[a,b, f ][a,d, f ][a, e,g][c,b,h][k, c, e]

Formatting and pre-processing input:

The bracket polynomial is processed such that it is composed of summands with all
but the last coefficient equal to +1. The last coefficient is -1. Cayley factorization
yields a ∨-∧-sequence to interpret it. Intuition is provided by interpreting the
vanishing of the bracket polynomial:

B = 0

⇐⇒
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18. Examples

[a,c,k][b,a,c][f ,d,e][a,b,g][e,f ,h]
[a,e,g][a,b,f ][c,b,h][k,c,e][a,d,f ] + [a,f ,e][h,d,f ][b,c,k][a,c,e][a,b,g]

[a,e,g][a,b,f ][c,b,h][k,c,e][a,d,f ] = 1

Start of the Main Part of the Algorithm:

Factor all induced fractional equations [∗,∗,∗]...[∗,∗,∗]
[∗,∗,∗]...[∗,∗,∗] = 1

—–Factorize the fractional equation [a,f ,e][h,d,f ][b,c,k][a,c,e][a,b,g]
[a,e,g][a,b,f ][c,b,h][k,c,e][a,d,f ]

= 1

Brackets occurring in the numerator as well as in the denominator can be canceled.
The common elements are: ∅
This reduces the bracket identity in question to:

[a, f , e][h,d, f ][b, c,k][a, c, e][a,b,g]

[a, e,g][a,b, f ][c,b,h][k, c, e][a,d, f ]
= 1

Find a Matching in order to apply the area principle:

Split the big fraction into fractions of the form [∗,∗,∗]...[∗,∗,∗]
[∗,∗,∗]...[∗,∗,∗] . This matches each

bracket of the numerator with a bracket of the denominator. The aim will be to
apply the area principle to each factor [∗,∗,∗]...[∗,∗,∗]

[∗,∗,∗]...[∗,∗,∗] . This is possible as soon as both
brackets differ by exactly one element. In the graph below, we have one vertex per
bracket, but brackets are replaced by corresponding sets of indices. The situations
where the area principle can be applied directly are indicated by green edges. The
red edges indicate situations where the corresponding fraction can by multiplied by
an additional factor [∗,∗,∗]...[∗,∗,∗]

[∗,∗,∗]...[∗,∗,∗] = 1 such that the area principle can be applied

to the product. E.g. [a,b,c]
[c,d,e] ·

[a,c,d]
[a,c,d] can be rearranged to [a,b,c]

[a,c,d] ·
[a,c,d]
[c,d,e] . Due to

Hall’s Marriage Theorem, there exists a perfect matching in the graph below. The
green edges are given weights 2 and the red edges weight 1 and a perfect maximum
matching with maximal total weight is highlighted by the thick edges.
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18.1. Example 1

!a, f, e"
!h, d, f"!b, c, k"

!a, c, e"
!a, b, g"
!a, e, g"

!a, b, f" !c, b, h"
!k, c, e"
!a, d, f"

Apply the area principle to fractions corresponding to the matching just found:

Below, reddish letters indicate the end points of the length ratio. The complete
formula indicates the intermediate point of the length ratio. E.g. ab∧cd) indicates
a length ratio c x

x d
in the corresponding instance. x is the point corresponding to

ab ∧ cd) in the instance.
[a,f ,e]
[a,e,g]

→ (ae ∧ fg)

[h,d,f ]
[a,d,f ]

→ (df ∧ ha)

[b,c,k]
[c,b,h]

→ (bc ∧ kh)

[a,c,e]
[k,c,e]

→ (ce ∧ ak)

[a,b,g]
[a,b,f ]

→ (ab ∧ gf)

Product of sign-errors occurring when applying the area principle: ε = 1

The length ratios induced by applying the area principle to the edges of the matching
arrange in cycles. In the following, the corresponding formulas in Grassmann-Cayley
algebra are called edges or length ratios (which overloads the notation). The con-
structions of Ceva and Menelaus are used to combine two edges that share exactly
one endpoint into a single edge. Therefore, any cycle of the length ratios can be
reduced to a 2-cycle by triangulating the cycle. The combinatorics of the length
ratios is depicted in the first diagram appearing below. Also in general the first
diagram in the row shows the combinatorics of the length ratios left over. The
second diagram shows the triangulation used, and if applicable the edge in which a
sign-error-correction ε was included is highlighted in blue. In the last diagram the
2-cycle resulting from the triangulation is highlighted.
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Find and triangulate Cycles

Length-ratios left over to be processed: (ae ∧ fg) (df ∧ ha) (bc ∧ kh) (ce ∧
ak) (ab ∧ gf)
Cycle found:(ce ∧ ak) (bc ∧ kh) (df ∧ ha)
Intermediate steps in the triangulation with Menelaus triangles:

((bc ∧ kh)(df ∧ ha) ∧ ka)

a

bc

d

e

f g
h

k

a

bc

d

e

f g
h

k

a

bc

d

e

f g
h

k

Length-ratios left over to be processed: (ae ∧ fg) (ab ∧ gf)
Cycle found:(ae ∧ fg) (ab ∧ gf)

a

bc

d

e

f g
h

k

a

bc

d

e

f g
h

k

a

bc

d

e

f g
h

k

Combination of 2-cycles resulting from triangulation

Two 2-cycles can be reduced to a single 2-cycle whose endpoint are the same as the
ones of the starting 2-cycles. In the following, if a 2-cycle is drawn thickly, then
another 2-cycle has been reduced to it in the step before. This other 2-cycle has
vanished from the drawing in this step before. The case distinction is emphasized by
giving the values of {0,∞,0′,∞′} (and also the value of {a′,b′,0} if appropriate)
in the corresponding situation (with the specified order of elements within the sets).
The first complete first formula given the 2-cycles corresponds to the value of 1, the
second one to x.

Current 2-cycles:

(ce ∧ ak) ((bc ∧ kh)(df ∧ ha) ∧ ka)
(ae ∧ fg) (ab ∧ gf)
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a
bc

d

e

f g
h

k

The following 2-cycles are to be combined:

(ce ∧ ak) ((bc ∧ kh)(df ∧ ha) ∧ ka)
(ae ∧ fg) (ab ∧ gf)

We have |{k,a,g, f}| = 4 and |{a, e,k}| = 3 which indicates Case 4 (i) and results
in:

(ce ∧ ak) (((ae∧kf)((bc∧kh)(df ∧ha)∧ka)∧af)((ab∧gf)(ae∧kg)∧
kf) ∧ ka)

Current 2-cycles:

(ce ∧ ak) (((ae∧kf)((bc∧kh)(df ∧ha)∧ka)∧af)((ab∧gf)(ae∧kg)∧
kf) ∧ ka)

a
bc

d

e

f g
h

k

[a,f ,e][h,d,f ][b,c,k][a,c,e][a,b,g]
[a,e,g][a,b,f ][c,b,h][k,c,e][a,d,f ] = 1 whenever the both intermediate points are
identical:
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(ce ∧ ak) (((ae∧kf)((bc∧kh)(df ∧ha)∧ka)∧af)((ab∧gf)(ae∧kg)∧
kf) ∧ ka)

In order to factor the complete bracket polynomial, one has to projectively add

(ce ∧ ak) (((ae∧kf)((bc∧kh)(df ∧ha)∧ka)∧ af)((ab∧gf)(ae∧kg)∧
kf) ∧ ka)

a
bc

d

e

f g
h

k

AND the cross-ratios resulting from factorization of the remaining summands
rewritten as

[a,c,k][b,a,c][f ,d,e][a,b,g][e,f ,h]
[a,e,g][a,b,f ][c,b,h][k,c,e][a,d,f ] = 1

—–Factorize the fractional equation [a,c,k][b,a,c][f ,d,e][a,b,g][e,f ,h]
[a,e,g][a,b,f ][c,b,h][k,c,e][a,d,f ]

= 1

Brackets occurring in the numerator as well as in the denominator can be canceled.
The common elements are: ∅
This reduces the bracket identity in question to:

[a, c,k][b,a, c][f ,d, e][a,b,g][e, f ,h]

[a, e,g][a,b, f ][c,b,h][k, c, e][a,d, f ]
= 1

Find a Matching in order to apply the area principle:

Split the big fraction into fractions of the form [∗,∗,∗]...[∗,∗,∗]
[∗,∗,∗]...[∗,∗,∗] . This matches each

bracket of the numerator with a bracket of the denominator. The aim will be to
apply the area principle to each factor [∗,∗,∗]...[∗,∗,∗]

[∗,∗,∗]...[∗,∗,∗] . This is possible as soon as both
brackets differ by exactly one element. In the graph below, we have one vertex per
bracket, but brackets are replaced by corresponding sets of indices. The situations
where the area principle can be applied directly are indicated by green edges. The
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18.1. Example 1

red edges indicate situations where the corresponding fraction can by multiplied by
an additional factor [∗,∗,∗]...[∗,∗,∗]

[∗,∗,∗]...[∗,∗,∗] = 1 such that the area principle can be applied

to the product. E.g. [a,b,c]
[c,d,e] ·

[a,c,d]
[a,c,d] can be rearranged to [a,b,c]

[a,c,d] ·
[a,c,d]
[c,d,e] . Due to

Hall’s Marriage Theorem, there exists a perfect matching in the graph below. The
green edges are given weights 2 and the red edges weight 1 and a perfect maximum
matching with maximal total weight is highlighted by the thick edges.

!a, c, k"
!b, a, c"!f, d, e"

!a, b, g"
!e, f, h"
!a, e, g"

!a, b, f" !c, b, h"
!k, c, e"
!a, d, f"

Apply the area principle to fractions corresponding to the matching just found:

Below, reddish letters indicate the end points of the length ratio. The complete
formula indicates the intermediate point of the length ratio. E.g. ab∧cd) indicates
a length ratio c x

x d
in the corresponding instance. x is the point corresponding to

ab ∧ cd) in the instance.
[a,c,k]
[k,c,e]

→ (ck ∧ ae)

[b,a,c]
[a,b,f ]

→ (ba ∧ cf)

[f ,d,e]
[a,d,f ]

→ (fd ∧ ea)

[a,b,g]
[a,e,g]

→ (ag ∧ be)
[e,f ,h]
[e,h,b] ·

[e,h,b]
[c,b,h]

→ (eh ∧ fb), (hb ∧ ec)

Product of sign-errors occurring when applying the area principle: ε = −1

The length ratios induced by applying the area principle to the edges of the matching
arrange in cycles. In the following, the corresponding formulas in Grassmann-Cayley
algebra are called edges or length ratios (which overloads the notation). The con-
structions of Ceva and Menelaus are used to combine two edges that share exactly
one endpoint into a single edge. Therefore, any cycle of the length ratios can be
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reduced to a 2-cycle by triangulating the cycle. The combinatorics of the length
ratios is depicted in the first diagram appearing below. Also in general the first
diagram in the row shows the combinatorics of the length ratios left over. The
second diagram shows the triangulation used, and if applicable the edge in which a
sign-error-correction ε was included is highlighted in blue. In the last diagram the
2-cycle resulting from the triangulation is highlighted.

Find and triangulate Cycles

Length-ratios left over to be processed: (ck ∧ ae) (ba ∧ cf) (fd ∧ ea) (ag ∧
be) (eh ∧ fb) (hb ∧ ec)
Cycle found:(ag ∧ be) (hb ∧ ec) (ba ∧ cf) (eh ∧ fb)
Due to ε = −1 a Ceva configuration is used once in the triangulation. The blue
edge reads as (((eh ∧ fb)c ∧ b(ba ∧ cf))f ∧ cb)
Intermediate steps in the triangulation with Menelaus triangles:

((hb ∧ ec)(((eh ∧ fb)c ∧ b(ba ∧ cf))f ∧ cb) ∧ eb)

a

bc

d

e

f g
h

k

a

bc

d

e

f g
h

k

a

bc

d

e

f g
h

k

Length-ratios left over to be processed: (ck ∧ ae) (fd ∧ ea)
Cycle found:(ck ∧ ae) (fd ∧ ea)

a

bc

d

e

f g
h

k

a

bc

d

e

f g
h

k

a

bc

d

e

f g
h

k

Combination of 2-cycles resulting from triangulation

Two 2-cycles can be reduced to a single 2-cycle whose endpoint are the same as the
ones of the starting 2-cycles. In the following, if a 2-cycle is drawn thickly, then
another 2-cycle has been reduced to it in the step before. This other 2-cycle has
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vanished from the drawing in this step before. The case distinction is emphasized by
giving the values of {0,∞,0′,∞′} (and also the value of {a′,b′,0} if appropriate)
in the corresponding situation (with the specified order of elements within the sets).
The first complete first formula given the 2-cycles corresponds to the value of 1, the
second one to x.

Current 2-cycles:

(ag ∧ be) ((hb ∧ ec)(((eh ∧ fb)c ∧ b(ba ∧ cf))f ∧ cb) ∧ eb)
(ck ∧ ae) (fd ∧ ea)

a
bc

d

e

f g
h

k

The following 2-cycles are to be combined:

(ag ∧ be) ((hb ∧ ec)(((eh ∧ fb)c ∧ b(ba ∧ cf))f ∧ cb) ∧ eb)
(ck ∧ ae) (fd ∧ ea)

We have |{e,b, e,a}| = 3 and e = e which indicates Case 3 (ii) and results in:

(ag ∧ be) (((ck∧ ae)((hb∧ ec)(((eh∧ fb)c∧b(ba∧ cf))f ∧ cb)∧ eb)∧
ab)(fd ∧ ea) ∧ eb)

Current 2-cycles:

(ag ∧ be) (((ck∧ ae)((hb∧ ec)(((eh∧ fb)c∧b(ba∧ cf))f ∧ cb)∧ eb)∧
ab)(fd ∧ ea) ∧ eb)
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a
bc

d

e

f g
h

k

[a,c,k][b,a,c][f ,d,e][a,b,g][e,f ,h]
[a,e,g][a,b,f ][c,b,h][k,c,e][a,d,f ] = 1 whenever the both intermediate points are
identical:

(ag ∧ be) (((ck∧ ae)((hb∧ ec)(((eh∧ fb)c∧b(ba∧ cf))f ∧ cb)∧ eb)∧
ab)(fd ∧ ea) ∧ eb)

In order to factor the complete bracket polynomial, one has to projectively add

(ce ∧ ak) (((ae∧kf)((bc∧kh)(df ∧ha)∧ka)∧ af)((ab∧gf)(ae∧kg)∧
kf) ∧ ka)

(ag ∧ be) (((ck ∧ ae)((hb ∧ ec)(((eh ∧ fb)c ∧ b(ba ∧ cf))f ∧ cb) ∧ eb) ∧
ab)(fd ∧ ea) ∧ eb)

a
bc

d

e

f g
h

k

Adding up all cross-ratios

Similar to the situation before, two 2-cycles can be reduced to a single 2-cycle by
projective addition.In the following, if a 2-cycle is drawn thickly, then another 2-
cycle has been reduced to it in the step before.This other 2-cycle has vanished from
the drawing in this step before.
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18.1. Example 1

The following 2-cycles are to be combined:
(ce ∧ ak) (((ae∧kf)((bc∧kh)(df ∧ha)∧ka)∧af)((ab∧gf)(ae∧kg)∧

kf) ∧ ka)
(ag ∧ be) (((ck∧ ae)((hb∧ ec)(((eh∧ fb)c∧b(ba∧ cf))f ∧ cb)∧ eb)∧

ab)(fd ∧ ea) ∧ eb)

We have |{k,a, e,b}| = 4 and |{a,g,k}| = 3 which indicates Case 4 (i) and results
in:

Resulting 2-cycles:

(ce ∧ ak) ((a((((ck ∧ ae)((hb ∧ ec)(((eh ∧ fb)c ∧ b(ba ∧ cf))f ∧ cb) ∧
eb) ∧ ab)(fd ∧ ea) ∧ eb)(ag ∧ ke) ∧ kb) ∧ (((ae ∧ kf)((bc ∧
kh)(df ∧ha)∧ka)∧af)((ab∧gf)(ae∧kg)∧kf)∧ka)b)((ag∧
kb)(ce ∧ ak) ∧ ab) ∧ ka)

a
bc

d

e

f g
h

k

Asking for the final 2-cycle to equal 1 is to ask for the coincidence of both inter-
mediate points of the last remaining length-ratios. Or equivalently:

Result:

ce((a((((ck∧ ae)((hb∧ ec)(((eh∧ fb)c∧b(ba∧ cf))f ∧ cb)∧ eb)∧ ab)(fd∧ ea)∧
eb)(ag ∧ ke) ∧ kb) ∧ (((ae ∧ kf)((bc ∧ kh)(df ∧ ha) ∧ ka) ∧ af)((ab ∧ gf)(ae ∧
kg) ∧ kf) ∧ ka)b)((ag ∧ kb)(ce ∧ ak) ∧ ab) ∧ ka)

Degree of multiplier monomial: 22
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18.2. Example 2: Ten Points on a Cubic

18.2. Example 2: Ten Points on a Cubic

Inspired by Pascal’s theorem, it is natural to ask for a condition for ten points
lying on a common cubic. We will factor a bracket polynomial with 20 summands
describing this situation. This representation is due to Richter-Gebert and to the
knowledge of our research group, it is the shortest known representation of the
polynomial. In particular, this bracket polynomial is far from being multilinear and
we ask for a ruler construction to interpret it. The conic condition is interesting
and of degree two. For cubics, the Cayley factorization might be interesting, since
there can arise more coincidences in the execution of the algorithm.
We know of two different synthetic constructions characterizing the situation: the

first one is due to [17] and [19]. The construction needs some intermediate steps not
carried out in detail in the original references. A straightforward construction, which
also fills the gaps and which was obtained by the author, yields a construction where
the degree of the multiplier polynomial is 626. However, the computation cannot
be carried out in detail and it is unlikely that the multiplier is in fact a monomial.
The second construction is given in [61] and the degree of the multiplier is 113. The
same comments on the shape of the multiplier apply. The following factorization
yields a multiplier monomial of degree 342. This shows, that in concrete instances,
the actual result is much better than the bound given in Theorem 14.5. However,
the optimizations done in the concrete implementation turn out to be useful in the
present example: a first execution of the algorithm lead to a multiplier monomial
of degree 603, a more advanced triangulation of the cycles in the binomial step
of the algorithm yielded 544. Here, common factors in the monomial step were
not factored out. Instead, they were altered such that they could be treated as
to be distinct. The actual factoring out lead to the present degree of 342. The
example is given in order to show that polynomials of this can be treated and
that the degree of the multiplier is not as big as expected. However, we do not
have enough space to give the complete output and large parts are omitted. After
handing in this thesis, the complete output will be made available under http:
//www-m10.ma.tum.de/CayleyFactorizationExtras.
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18. Examples

B := [0,1,9][0,5,2][6,1,2][6,5,9][1,7,8][2,3,7][4,3,9][4,5,7][4,6,8][0,3,8]

−[6,5,2][0,5,9][0,1,2][9,6,1][1,7,8][2,3,7][4,3,9][4,5,7][4,6,8][0,3,8]

−[0,1,8][3,8,7][0,5,9][1,2,7][1,6,9][3,2,0][4,3,9][4,5,7][4,6,8][5,2,6]

+[0,1,9][0,3,5][0,7,8][1,2,7][1,6,8][2,3,9][4,3,8][4,5,7][4,6,9][5,2,6]

−[0,1,9][0,3,8][0,5,7][1,2,7][1,6,8][2,3,5][4,3,9][4,5,6][4,7,8][2,6,9]

+[1,2,9][0,3,9][0,5,8][1,0,6][1,7,8][2,3,7][4,3,8][4,5,7][4,6,9][5,2,6]

+[0,1,8][0,3,9][0,5,7][1,2,7][1,6,9][2,3,8][4,3,6][4,5,9][4,7,8][5,2,6]

+[0,1,9][0,3,8][0,5,6][1,2,6][1,7,8][2,3,9][4,3,7][4,6,9][4,5,8][5,2,7]

+[0,1,9][0,3,2][0,5,8][1,2,6][1,7,8][9,3,6][4,3,8][4,5,6][4,7,9][5,2,7]

+[0,3,8][0,5,9][1,0,7][1,6,9][1,2,8][2,3,6][4,3,9][4,5,6][4,7,8][5,2,7]

−[0,1,8][0,3,5][0,9,6][1,2,6][1,7,9][2,3,8][4,3,9][4,5,6][4,7,8][5,2,7]

−[0,1,8][0,3,9][0,5,6][1,2,6][1,7,9][2,3,5][4,3,8][4,5,7][4,6,9][8,2,7]

+[0,1,8][0,3,9][0,5,2][1,2,7][1,6,9][2,3,6][4,3,8][4,5,6][4,7,9][5,8,7]

−[0,1,9][0,3,8][0,5,7][1,2,7][1,6,8][2,3,9][4,3,5][4,6,9][4,7,8][5,2,6]

−[0,1,8][0,3,9][0,5,2][1,2,7][1,6,9][8,3,7][4,3,8][4,5,7][4,6,9][5,2,6]

+[0,1,8][0,3,9][0,5,3][1,2,7][1,6,9][2,7,8][4,3,8][4,5,7][4,6,9][5,2,6]

−[0,3,9][0,5,8][1,0,2][1,6,9][1,7,8][2,3,6][4,3,8][4,5,6][4,7,9][5,2,7]

+[0,1,9][0,3,8][0,5,2][1,2,6][1,7,8][6,3,9][4,3,9][4,5,6][4,7,8][5,2,7]

−[0,1,9][0,3,8][0,5,3][1,2,6][1,7,8][2,9,6][4,3,9][4,5,6][4,7,8][5,2,7]

−[0,1,8][0,3,9][0,5,6][1,2,6][1,7,9][2,3,8][4,3,5][4,6,9][4,7,8][5,2,7]

Formatting and pre-processing input:

The bracket polynomial is processed such that it is composed of summands with all
but the last coefficient equal to +1. The last coefficient is -1. Cayley factorization
yields a ∨-∧-sequence to interpret it. Intuition is provided by interpreting the
vanishing of the bracket polynomial:

B = 0

⇐⇒

[0,1,9][0,5,2][6,1,2][6,5,9][1,7,8][2,3,7][4,3,9][4,5,7][4,6,8][0,3,8]
[0,1,9][0,3,8][0,5,7][1,2,7][1,6,8][2,3,9][4,3,5][4,6,9][4,7,8][5,2,6] +
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[5,6,2][0,5,9][0,1,2][9,6,1][1,7,8][2,3,7][4,3,9][4,5,7][4,6,8][0,3,8]
[0,1,9][0,3,8][0,5,7][1,2,7][1,6,8][2,3,9][4,3,5][4,6,9][4,7,8][5,2,6] +

[1,0,8][3,8,7][0,5,9][1,2,7][1,6,9][3,2,0][4,3,9][4,5,7][4,6,8][5,2,6]
[0,1,9][0,3,8][0,5,7][1,2,7][1,6,8][2,3,9][4,3,5][4,6,9][4,7,8][5,2,6] +

[0,1,9][0,3,5][0,7,8][1,2,7][1,6,8][2,3,9][4,3,8][4,5,7][4,6,9][5,2,6]
[0,1,9][0,3,8][0,5,7][1,2,7][1,6,8][2,3,9][4,3,5][4,6,9][4,7,8][5,2,6] +

[1,0,9][0,3,8][0,5,7][1,2,7][1,6,8][2,3,5][4,3,9][4,5,6][4,7,8][2,6,9]
[0,1,9][0,3,8][0,5,7][1,2,7][1,6,8][2,3,9][4,3,5][4,6,9][4,7,8][5,2,6] +

[1,2,9][0,3,9][0,5,8][1,0,6][1,7,8][2,3,7][4,3,8][4,5,7][4,6,9][5,2,6]
[0,1,9][0,3,8][0,5,7][1,2,7][1,6,8][2,3,9][4,3,5][4,6,9][4,7,8][5,2,6] +

[0,1,8][0,3,9][0,5,7][1,2,7][1,6,9][2,3,8][4,3,6][4,5,9][4,7,8][5,2,6]
[0,1,9][0,3,8][0,5,7][1,2,7][1,6,8][2,3,9][4,3,5][4,6,9][4,7,8][5,2,6] +

[0,1,9][0,3,8][0,5,6][1,2,6][1,7,8][2,3,9][4,3,7][4,6,9][4,5,8][5,2,7]
[0,1,9][0,3,8][0,5,7][1,2,7][1,6,8][2,3,9][4,3,5][4,6,9][4,7,8][5,2,6] +

[0,1,9][0,3,2][0,5,8][1,2,6][1,7,8][9,3,6][4,3,8][4,5,6][4,7,9][5,2,7]
[0,1,9][0,3,8][0,5,7][1,2,7][1,6,8][2,3,9][4,3,5][4,6,9][4,7,8][5,2,6] +

[0,3,8][0,5,9][1,0,7][1,6,9][1,2,8][2,3,6][4,3,9][4,5,6][4,7,8][5,2,7]
[0,1,9][0,3,8][0,5,7][1,2,7][1,6,8][2,3,9][4,3,5][4,6,9][4,7,8][5,2,6] +

[1,0,8][0,3,5][0,9,6][1,2,6][1,7,9][2,3,8][4,3,9][4,5,6][4,7,8][5,2,7]
[0,1,9][0,3,8][0,5,7][1,2,7][1,6,8][2,3,9][4,3,5][4,6,9][4,7,8][5,2,6] +

[1,0,8][0,3,9][0,5,6][1,2,6][1,7,9][2,3,5][4,3,8][4,5,7][4,6,9][8,2,7]
[0,1,9][0,3,8][0,5,7][1,2,7][1,6,8][2,3,9][4,3,5][4,6,9][4,7,8][5,2,6] +

[0,1,8][0,3,9][0,5,2][1,2,7][1,6,9][2,3,6][4,3,8][4,5,6][4,7,9][5,8,7]
[0,1,9][0,3,8][0,5,7][1,2,7][1,6,8][2,3,9][4,3,5][4,6,9][4,7,8][5,2,6] +

[1,0,8][0,3,9][0,5,2][1,2,7][1,6,9][8,3,7][4,3,8][4,5,7][4,6,9][5,2,6]
[0,1,9][0,3,8][0,5,7][1,2,7][1,6,8][2,3,9][4,3,5][4,6,9][4,7,8][5,2,6] +

[0,1,8][0,3,9][0,5,3][1,2,7][1,6,9][2,7,8][4,3,8][4,5,7][4,6,9][5,2,6]
[0,1,9][0,3,8][0,5,7][1,2,7][1,6,8][2,3,9][4,3,5][4,6,9][4,7,8][5,2,6] +

[3,0,9][0,5,8][1,0,2][1,6,9][1,7,8][2,3,6][4,3,8][4,5,6][4,7,9][5,2,7]
[0,1,9][0,3,8][0,5,7][1,2,7][1,6,8][2,3,9][4,3,5][4,6,9][4,7,8][5,2,6] +

[0,1,9][0,3,8][0,5,2][1,2,6][1,7,8][6,3,9][4,3,9][4,5,6][4,7,8][5,2,7]
[0,1,9][0,3,8][0,5,7][1,2,7][1,6,8][2,3,9][4,3,5][4,6,9][4,7,8][5,2,6] +

[1,0,9][0,3,8][0,5,3][1,2,6][1,7,8][2,9,6][4,3,9][4,5,6][4,7,8][5,2,7]
[0,1,9][0,3,8][0,5,7][1,2,7][1,6,8][2,3,9][4,3,5][4,6,9][4,7,8][5,2,6] +

[1,0,8][0,3,9][0,5,6][1,2,6][1,7,9][2,3,8][4,3,5][4,6,9][4,7,8][5,2,7]
[0,1,9][0,3,8][0,5,7][1,2,7][1,6,8][2,3,9][4,3,5][4,6,9][4,7,8][5,2,6] = 1

Start of the Main Part of the Algorithm:

Factor all induced fractional equations [∗,∗,∗]...[∗,∗,∗]
[∗,∗,∗]...[∗,∗,∗] = 1
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—–Factorize the fractional equation
[1,0,8][0,3,9][0,5,6][1,2,6][1,7,9][2,3,8][4,3,5][4,6,9][4,7,8][5,2,7]
[0,1,9][0,3,8][0,5,7][1,2,7][1,6,8][2,3,9][4,3,5][4,6,9][4,7,8][5,2,6]

= 1

Brackets occurring in the numerator as well as in the denominator can be canceled.
The common elements are: [3,4,5], [4,6,9], [4,7,8]

This reduces the bracket identity in question to:

[1,0,8][0,3,9][0,5,6][1,2,6][1,7,9][2,3,8][5,2,7]

[0,1,9][0,3,8][0,5,7][1,2,7][1,6,8][2,3,9][5,2,6]
= 1

Find a Matching in order to apply the area principle:

!1, 0, 8"
!0, 3, 9"!0, 5, 6"!1, 2, 6"!1, 7, 9"

!2, 3, 8"
!5, 2, 7"
!0, 1, 9"
!0, 3, 8"!0, 5, 7"!1, 2, 7"!1, 6, 8"

!2, 3, 9"
!5, 2, 6"

Apply the area principle to fractions corresponding to the matching just found:

[1,0,8]
[1,6,8]

→ (18 ∧ 06)

[0,3,9]
[0,3,8]

→ (03 ∧ 98)

[0,5,6]
[0,5,7]

→ (05 ∧ 67)

[1,2,6]
[1,2,7]

→ (12 ∧ 67)

[1,7,9]
[0,1,9]

→ (19 ∧ 70)

[2,3,8]
[2,3,9]

→ (23 ∧ 89)
[5,2,7]
[5,2,6]

→ (52 ∧ 76)

Product of sign-errors occurring when applying the area principle: ε = −1

Find and triangulate Cycles

Length-ratios left over to be processed: (18 ∧ 06) (03 ∧ 98) (05 ∧ 67) (12 ∧
67) (19 ∧ 70) (23 ∧ 89) (52 ∧ 76)

Cycle found:(18 ∧ 06) (12 ∧ 67) (19 ∧ 70)
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18.2. Example 2: Ten Points on a Cubic

Due to ε = −1 a Ceva configuration is used once in the triangulation. The blue
edge reads as (((19 ∧ 70)6 ∧ 0(12 ∧ 67))7 ∧ 60)
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Length-ratios left over to be processed: (05∧67) (52∧76) (23∧89) (03∧98)
Cycle found:(23 ∧ 89) (03 ∧ 98)
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Length-ratios left over to be processed: (05 ∧ 67) (52 ∧ 76)
Cycle found:(05 ∧ 67) (52 ∧ 76)
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Combination of 2-cycles resulting from triangulation

Current 2-cycles:

(18 ∧ 06) (((19 ∧ 70)6 ∧ 0(12 ∧ 67))7 ∧ 60)
(23 ∧ 89) (03 ∧ 98)
(05 ∧ 67) (52 ∧ 76)
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The following 2-cycles are to be combined:

(05 ∧ 67) (52 ∧ 76)
(18 ∧ 06) (((19 ∧ 70)6 ∧ 0(12 ∧ 67))7 ∧ 60)

We have |{7,6,6,0}| = 3 and 6 = 6 which indicates Case 3 (iii) and results in:

(05 ∧ 67) (((((19∧70)6∧0(12∧67))7∧60)(52∧76)∧70)(18∧06)∧76)

Current 2-cycles:

(05 ∧ 67) (((((19∧70)6∧0(12∧67))7∧60)(52∧76)∧70)(18∧06)∧76)
(23 ∧ 89) (03 ∧ 98)
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The following 2-cycles are to be combined:

(05 ∧ 67) (((((19∧70)6∧0(12∧67))7∧60)(52∧76)∧70)(18∧06)∧76)
(23 ∧ 89) (03 ∧ 98)
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18.2. Example 2: Ten Points on a Cubic

We have |{7,6,9,8}| = 4 and |{2,3,7}| = 3 which indicates Case 4 (i) and results
in:

(05 ∧ 67) (((23 ∧ 78)(((((19 ∧ 70)6 ∧ 0(12 ∧ 67))7 ∧ 60)(52 ∧ 76) ∧
70)(18 ∧ 06) ∧ 76) ∧ 68)((03 ∧ 98)(23 ∧ 79) ∧ 78) ∧ 76)

Current 2-cycles:

(05 ∧ 67) (((23 ∧ 78)(((((19 ∧ 70)6 ∧ 0(12 ∧ 67))7 ∧ 60)(52 ∧ 76) ∧
70)(18 ∧ 06) ∧ 76) ∧ 68)((03 ∧ 98)(23 ∧ 79) ∧ 78) ∧ 76)
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[1,0,8][0,3,9][0,5,6][1,2,6][1,7,9][2,3,8][4,3,5][4,6,9][4,7,8][5,2,7]
[0,1,9][0,3,8][0,5,7][1,2,7][1,6,8][2,3,9][4,3,5][4,6,9][4,7,8][5,2,6] = 1 whenever the both
intermediate points are identical:

(05 ∧ 67) (((23 ∧ 78)(((((19 ∧ 70)6 ∧ 0(12 ∧ 67))7 ∧ 60)(52 ∧ 76) ∧
70)(18 ∧ 06) ∧ 76) ∧ 68)((03 ∧ 98)(23 ∧ 79) ∧ 78) ∧ 76)

—–Factorize the fractional equation
[1,0,9][0,3,8][0,5,3][1,2,6][1,7,8][2,9,6][4,3,9][4,5,6][4,7,8][5,2,7]
[0,1,9][0,3,8][0,5,7][1,2,7][1,6,8][2,3,9][4,3,5][4,6,9][4,7,8][5,2,6]

= 1

Brackets occurring in the numerator as well as in the denominator can be canceled.
The common elements are: [0,1,9], [0,3,8], [4,7,8]

This reduces the bracket identity in question to:

[5,0,3][1,2,6][1,7,8][2,9,6][4,3,9][4,5,6][5,2,7]

[0,5,7][1,2,7][1,6,8][2,3,9][4,3,5][4,6,9][5,2,6]
= 1
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Find a Matching in order to apply the area principle:

!5, 0, 3"
!1, 2, 6"!1, 7, 8"!2, 9, 6"!4, 3, 9"

!4, 5, 6"
!5, 2, 7"
!0, 5, 7"
!1, 2, 7"!1, 6, 8"!2, 3, 9"!4, 3, 5"

!4, 6, 9"
!5, 2, 6"

Apply the area principle to fractions corresponding to the matching just found:
[5,0,3]
[0,5,7]

→ (50 ∧ 37)

[1,2,6]
[1,2,7]

→ (12 ∧ 67)

[1,7,8]
[1,6,8]

→ (18 ∧ 76)

[2,9,6]
[2,3,9]

→ (29 ∧ 63)

[4,3,9]
[4,3,5]

→ (43 ∧ 95)

[4,5,6]
[4,6,9]

→ (46 ∧ 59)
[5,2,7]
[5,2,6]

→ (52 ∧ 76)

Product of sign-errors occurring when applying the area principle: ε = −1

Find and triangulate Cycles

Length-ratios left over to be processed: (50 ∧ 37) (12 ∧ 67) (18 ∧ 76) (29 ∧
63) (43 ∧ 95) (46 ∧ 59) (52 ∧ 76)

Cycle found:(50 ∧ 37) (18 ∧ 76) (29 ∧ 63)

Due to ε = −1 a Ceva configuration is used once in the triangulation. The blue
edge reads as (((29 ∧ 63)7 ∧ 3(18 ∧ 76))6 ∧ 73)
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18.2. Example 2: Ten Points on a Cubic

Length-ratios left over to be processed: (12∧67) (52∧76) (46∧59) (43∧95)
Cycle found:(46 ∧ 59) (43 ∧ 95)
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Length-ratios left over to be processed: (12 ∧ 67) (52 ∧ 76)
Cycle found:(12 ∧ 67) (52 ∧ 76)
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Combination of 2-cycles resulting from triangulation

Current 2-cycles:

(50 ∧ 37) (((29 ∧ 63)7 ∧ 3(18 ∧ 76))6 ∧ 73)
(46 ∧ 59) (43 ∧ 95)
(12 ∧ 67) (52 ∧ 76)
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18. Examples

The following 2-cycles are to be combined:

(12 ∧ 67) (52 ∧ 76)
(50 ∧ 37) (((29 ∧ 63)7 ∧ 3(18 ∧ 76))6 ∧ 73)

We have |{7,6,7,3}| = 3 and 7 = 7 which indicates Case 3 (ii) and results in:

(12 ∧ 67) (((50∧37)(52∧76)∧36)(((29∧63)7∧3(18∧76))6∧73)∧76)

Current 2-cycles:

(46 ∧ 59) (43 ∧ 95)
(12 ∧ 67) (((50∧37)(52∧76)∧36)(((29∧63)7∧3(18∧76))6∧73)∧76)
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The following 2-cycles are to be combined:

(12 ∧ 67) (((50∧37)(52∧76)∧36)(((29∧63)7∧3(18∧76))6∧73)∧76)
(46 ∧ 59) (43 ∧ 95)

We have |{7,6,9,5}| = 4 and |{4,6,7}| = 3 which indicates Case 4 (i) and results
in:

(12 ∧ 67) (((46 ∧ 75)(((50 ∧ 37)(52 ∧ 76) ∧ 36)(((29 ∧ 63)7 ∧ 3(18 ∧
76))6 ∧ 73) ∧ 76) ∧ 65)((43 ∧ 95)(46 ∧ 79) ∧ 75) ∧ 76)

Current 2-cycles:

(12 ∧ 67) (((46 ∧ 75)(((50 ∧ 37)(52 ∧ 76) ∧ 36)(((29 ∧ 63)7 ∧ 3(18 ∧
76))6 ∧ 73) ∧ 76) ∧ 65)((43 ∧ 95)(46 ∧ 79) ∧ 75) ∧ 76)
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18.2. Example 2: Ten Points on a Cubic
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[1,0,9][0,3,8][0,5,3][1,2,6][1,7,8][2,9,6][4,3,9][4,5,6][4,7,8][5,2,7]
[0,1,9][0,3,8][0,5,7][1,2,7][1,6,8][2,3,9][4,3,5][4,6,9][4,7,8][5,2,6] = 1 whenever the both
intermediate points are identical:

(12 ∧ 67) (((46 ∧ 75)(((50 ∧ 37)(52 ∧ 76) ∧ 36)(((29 ∧ 63)7 ∧ 3(18 ∧
76))6 ∧ 73) ∧ 76) ∧ 65)((43 ∧ 95)(46 ∧ 79) ∧ 75) ∧ 76)

—–Factorize the fractional equation
[0,1,9][0,3,8][0,5,2][1,2,6][1,7,8][6,3,9][4,3,9][4,5,6][4,7,8][5,2,7]
[0,1,9][0,3,8][0,5,7][1,2,7][1,6,8][2,3,9][4,3,5][4,6,9][4,7,8][5,2,6]

= 1

Brackets occurring in the numerator as well as in the denominator can be canceled.
The common elements are: [0,1,9], [0,3,8], [4,7,8]

[omitted output]

In order to factor the complete bracket polynomial, one has to projectively add

(05 ∧ 67) (((23∧78)(((((19∧70)6∧0(12∧67))7∧60)(52∧76)∧70)(18∧
06) ∧ 76) ∧ 68)((03 ∧ 98)(23 ∧ 79) ∧ 78) ∧ 76)

(12 ∧ 67) (((46∧75)(((50∧37)(52∧76)∧36)(((29∧63)7∧3(18∧76))6∧
73) ∧ 76) ∧ 65)((43 ∧ 95)(46 ∧ 79) ∧ 75) ∧ 76)
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(12 ∧ 67) (((46∧75)(((05∧27)(52∧76)∧26)(((39∧62)7∧2(18∧76))6∧
72) ∧ 76) ∧ 65)((43 ∧ 95)(46 ∧ 79) ∧ 75) ∧ 76)

(12 ∧ 07) ((49∧76)((23∧69)((16∧98)((43∧85)((08∧53)((09∧31)((78∧
14)((56∧42)(57∧20)∧40)∧10)∧30)∧50)∧80)∧90)∧60)∧70)

(39 ∧ 02) (((01∧28)(((57∧40)2∧0(78∧24))4∧20)∧08)((((43∧85)(16∧
98) ∧ 95)(03 ∧ 58) ∧ 98)(01 ∧ 29) ∧ 28) ∧ 20)

(39 ∧ 02) (((10∧28)((05∧27)((45∧73)((87∧34)(38∧40)∧30)∧70)∧
20) ∧ 08)((16 ∧ 98)(10 ∧ 29) ∧ 28) ∧ 20)

(01 ∧ 89) (((23∧69)(47∧98)∧68)(((46∧59)((03∧98)((57∧80)(52∧
06) ∧ 86) ∧ 96) ∧ 56)((16 ∧ 98)(43 ∧ 85) ∧ 95) ∧ 96) ∧ 98)

(18 ∧ 06) (((23 ∧ 65)((05 ∧ 67)(19 ∧ 70) ∧ 60) ∧ 05)(((((47 ∧ 58)(27 ∧
81) ∧ 51)((03 ∧ 98)(43 ∧ 85) ∧ 95) ∧ 91)(26 ∧ 15) ∧ 95)(23 ∧
69) ∧ 65) ∧ 60)

(18 ∧ 06) (((03 ∧ 65)(((96 ∧ 04)((12 ∧ 67)(19 ∧ 70) ∧ 60) ∧ 64)((56 ∧
42)(57 ∧ 20) ∧ 40) ∧ 60) ∧ 05)(((23 ∧ 89)(43 ∧ 95) ∧ 85)(03 ∧
68) ∧ 65) ∧ 60)

(23 ∧ 69) (((46∧59)((16∧98)((12∧87)(52∧76)∧86)∧96)∧56)(((09∧
51)(43 ∧ 95) ∧ 91)(07 ∧ 15) ∧ 95) ∧ 96)

(47 ∧ 98) (((((12∧67)((18∧76)((93∧62)(03∧28)∧68)∧78)∧68)(52∧
76) ∧ 78)((43 ∧ 85)(46 ∧ 59) ∧ 89) ∧ 97)(05 ∧ 87) ∧ 89)

(12 ∧ 67) (((48∧57)((07∧ (18∧76)5)(56∧ (52∧76)0)∧76)∧56)(43∧
75) ∧ 76)

(49 ∧ 56) (((23∧68)(43∧65)∧58)(((09∧ (03∧98)1)(18∧ (16∧98)0)∧
98)(23 ∧ 69) ∧ 68) ∧ 65)

(03 ∧ 98) (((47∧58)((05∧87)(23∧79)∧89)∧59)(((16∧08)(43∧85)∧
05)((17 ∧ 82)(19 ∧ 20) ∧ 80) ∧ 85) ∧ 89)

(46 ∧ 59) ((39 ∧ (43 ∧ 95)2)(25 ∧ (26 ∧ 95)3) ∧ 95)
(47 ∧ 58) ((08 ∧ (07 ∧ 85)3)(35 ∧ (43 ∧ 85)0) ∧ 85)
(46 ∧ 89) (((((43∧95)8∧5(10∧89))9∧85)(((32∧09)(16∧98)∧08)((05∧

97)(38 ∧ 70) ∧ 90) ∧ 98) ∧ 95)(47 ∧ 58) ∧ 98)
(46 ∧ 89) (((23∧79)(61∧98)∧78)((43∧95)((09∧51)((78∧14)((57∧

40)(12 ∧ 07) ∧ 47) ∧ 17) ∧ 57) ∧ 97) ∧ 98)
(46 ∧ 89) (((23∧79)(((47∧58)9∧8(43∧95))5∧98)∧78)(((18∧76)((65∧

92)(05 ∧ 27) ∧ 97) ∧ 96)(12 ∧ 67) ∧ 97) ∧ 98)
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18.2. Example 2: Ten Points on a Cubic
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Adding up all cross-ratios

Similar to the situation before, two 2-cycles can be reduced to a single 2-cycle by
projective addition. In the following, in each step, the last two 2-cycles in the list
are combined.
We have |{9,8,9,8}| = 2 and 9 = 9 and 8 = 8 which indicates Case 2 (i).

Resulting 2-cycles:

(05 ∧ 67) (((23 ∧ 78)(((((19 ∧ 70)6 ∧ 0(12 ∧ 67))7 ∧ 60)(52 ∧ 76) ∧
70)(18 ∧ 06) ∧ 76) ∧ 68)((03 ∧ 98)(23 ∧ 79) ∧ 78) ∧ 76)

(12 ∧ 67) (((46 ∧ 75)(((50 ∧ 37)(52 ∧ 76) ∧ 36)(((29 ∧ 63)7 ∧ 3(18 ∧
76))6 ∧ 73) ∧ 76) ∧ 65)((43 ∧ 95)(46 ∧ 79) ∧ 75) ∧ 76)

(12 ∧ 67) (((46 ∧ 75)(((05 ∧ 27)(52 ∧ 76) ∧ 26)(((39 ∧ 62)7 ∧ 2(18 ∧
76))6 ∧ 72) ∧ 76) ∧ 65)((43 ∧ 95)(46 ∧ 79) ∧ 75) ∧ 76)

(12 ∧ 07) ((49 ∧ 76)((23 ∧ 69)((16 ∧ 98)((43 ∧ 85)((08 ∧ 53)((09 ∧
31)((78 ∧ 14)((56 ∧ 42)(57 ∧ 20) ∧ 40) ∧ 10) ∧ 30) ∧ 50) ∧
80) ∧ 90) ∧ 60) ∧ 70)

(39 ∧ 02) (((01 ∧ 28)(((57 ∧ 40)2 ∧ 0(78 ∧ 24))4 ∧ 20) ∧ 08)((((43 ∧
85)(16 ∧ 98) ∧ 95)(03 ∧ 58) ∧ 98)(01 ∧ 29) ∧ 28) ∧ 20)

(39 ∧ 02) (((10 ∧ 28)((05 ∧ 27)((45 ∧ 73)((87 ∧ 34)(38 ∧ 40) ∧ 30) ∧
70) ∧ 20) ∧ 08)((16 ∧ 98)(10 ∧ 29) ∧ 28) ∧ 20)

(01 ∧ 89) (((23∧69)(47∧98)∧68)(((46∧59)((03∧98)((57∧80)(52∧
06) ∧ 86) ∧ 96) ∧ 56)((16 ∧ 98)(43 ∧ 85) ∧ 95) ∧ 96) ∧ 98)

(18 ∧ 06) (((23 ∧ 65)((05 ∧ 67)(19 ∧ 70) ∧ 60) ∧ 05)(((((47 ∧ 58)(27 ∧
81)∧ 51)((03∧ 98)(43∧ 85)∧ 95)∧ 91)(26∧ 15)∧ 95)(23∧
69) ∧ 65) ∧ 60)

(18 ∧ 06) (((03 ∧ 65)(((96 ∧ 04)((12 ∧ 67)(19 ∧ 70) ∧ 60) ∧ 64)((56 ∧
42)(57∧20)∧40)∧60)∧05)(((23∧89)(43∧95)∧85)(03∧
68) ∧ 65) ∧ 60)

(23 ∧ 69) (((46∧59)((16∧98)((12∧87)(52∧76)∧86)∧96)∧56)(((09∧
51)(43 ∧ 95) ∧ 91)(07 ∧ 15) ∧ 95) ∧ 96)

(47 ∧ 98) (((((12∧67)((18∧76)((93∧62)(03∧28)∧68)∧78)∧68)(52∧
76) ∧ 78)((43 ∧ 85)(46 ∧ 59) ∧ 89) ∧ 97)(05 ∧ 87) ∧ 89)
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(12 ∧ 67) (((48∧57)((07∧(18∧76)5)(56∧(52∧76)0)∧76)∧56)(43∧
75) ∧ 76)

(49 ∧ 56) (((23∧68)(43∧65)∧58)(((09∧(03∧98)1)(18∧(16∧98)0)∧
98)(23 ∧ 69) ∧ 68) ∧ 65)

(03 ∧ 98) (((47 ∧ 58)((05 ∧ 87)(23 ∧ 79) ∧ 89) ∧ 59)(((16 ∧ 08)(43 ∧
85) ∧ 05)((17 ∧ 82)(19 ∧ 20) ∧ 80) ∧ 85) ∧ 89)

(46 ∧ 59) ((39 ∧ (43 ∧ 95)2)(25 ∧ (26 ∧ 95)3) ∧ 95)
(47 ∧ 58) ((08 ∧ (07 ∧ 85)3)(35 ∧ (43 ∧ 85)0) ∧ 85)
(46 ∧ 89) (((((43 ∧ 95)8 ∧ 5(10 ∧ 89))9 ∧ 85)(((32 ∧ 09)(16 ∧ 98) ∧

08)((05 ∧ 97)(38 ∧ 70) ∧ 90) ∧ 98) ∧ 95)(47 ∧ 58) ∧ 98)
(46 ∧ 89) ((8(69∧4(46∧89))∧(((23∧79)(61∧98)∧78)((43∧95)((09∧

51)((78∧14)((57∧40)(12∧07)∧47)∧17)∧57)∧97)∧98)(69∧
48))(6(((23∧79)(((47∧58)9∧8(43∧95))5∧98)∧78)(((18∧
76)((65∧92)(05∧27)∧97)∧96)(12∧67)∧97)∧98)∧48)∧98)
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We have |{9,8,9,8}| = 2 and 9 = 9 and 8 = 8 which indicates Case 2 (i).

Resulting 2-cycles:

(05 ∧ 67) (((23 ∧ 78)(((((19 ∧ 70)6 ∧ 0(12 ∧ 67))7 ∧ 60)(52 ∧ 76) ∧
70)(18 ∧ 06) ∧ 76) ∧ 68)((03 ∧ 98)(23 ∧ 79) ∧ 78) ∧ 76)

(12 ∧ 67) (((46 ∧ 75)(((50 ∧ 37)(52 ∧ 76) ∧ 36)(((29 ∧ 63)7 ∧ 3(18 ∧
76))6 ∧ 73) ∧ 76) ∧ 65)((43 ∧ 95)(46 ∧ 79) ∧ 75) ∧ 76)

(12 ∧ 67) (((46 ∧ 75)(((05 ∧ 27)(52 ∧ 76) ∧ 26)(((39 ∧ 62)7 ∧ 2(18 ∧
76))6 ∧ 72) ∧ 76) ∧ 65)((43 ∧ 95)(46 ∧ 79) ∧ 75) ∧ 76)

(12 ∧ 07) ((49 ∧ 76)((23 ∧ 69)((16 ∧ 98)((43 ∧ 85)((08 ∧ 53)((09 ∧
31)((78 ∧ 14)((56 ∧ 42)(57 ∧ 20) ∧ 40) ∧ 10) ∧ 30) ∧ 50) ∧
80) ∧ 90) ∧ 60) ∧ 70)

(39 ∧ 02) (((01 ∧ 28)(((57 ∧ 40)2 ∧ 0(78 ∧ 24))4 ∧ 20) ∧ 08)((((43 ∧
85)(16 ∧ 98) ∧ 95)(03 ∧ 58) ∧ 98)(01 ∧ 29) ∧ 28) ∧ 20)
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18.2. Example 2: Ten Points on a Cubic

(39 ∧ 02) (((10 ∧ 28)((05 ∧ 27)((45 ∧ 73)((87 ∧ 34)(38 ∧ 40) ∧ 30) ∧
70) ∧ 20) ∧ 08)((16 ∧ 98)(10 ∧ 29) ∧ 28) ∧ 20)

(01 ∧ 89) (((23∧69)(47∧98)∧68)(((46∧59)((03∧98)((57∧80)(52∧
06) ∧ 86) ∧ 96) ∧ 56)((16 ∧ 98)(43 ∧ 85) ∧ 95) ∧ 96) ∧ 98)

(18 ∧ 06) (((23 ∧ 65)((05 ∧ 67)(19 ∧ 70) ∧ 60) ∧ 05)(((((47 ∧ 58)(27 ∧
81)∧ 51)((03∧ 98)(43∧ 85)∧ 95)∧ 91)(26∧ 15)∧ 95)(23∧
69) ∧ 65) ∧ 60)

(18 ∧ 06) (((03 ∧ 65)(((96 ∧ 04)((12 ∧ 67)(19 ∧ 70) ∧ 60) ∧ 64)((56 ∧
42)(57∧20)∧40)∧60)∧05)(((23∧89)(43∧95)∧85)(03∧
68) ∧ 65) ∧ 60)

(23 ∧ 69) (((46∧59)((16∧98)((12∧87)(52∧76)∧86)∧96)∧56)(((09∧
51)(43 ∧ 95) ∧ 91)(07 ∧ 15) ∧ 95) ∧ 96)

(47 ∧ 98) (((((12∧67)((18∧76)((93∧62)(03∧28)∧68)∧78)∧68)(52∧
76) ∧ 78)((43 ∧ 85)(46 ∧ 59) ∧ 89) ∧ 97)(05 ∧ 87) ∧ 89)

(12 ∧ 67) (((48∧57)((07∧(18∧76)5)(56∧(52∧76)0)∧76)∧56)(43∧
75) ∧ 76)

(49 ∧ 56) (((23∧68)(43∧65)∧58)(((09∧(03∧98)1)(18∧(16∧98)0)∧
98)(23 ∧ 69) ∧ 68) ∧ 65)

(03 ∧ 98) (((47 ∧ 58)((05 ∧ 87)(23 ∧ 79) ∧ 89) ∧ 59)(((16 ∧ 08)(43 ∧
85) ∧ 05)((17 ∧ 82)(19 ∧ 20) ∧ 80) ∧ 85) ∧ 89)

(46 ∧ 59) ((39 ∧ (43 ∧ 95)2)(25 ∧ (26 ∧ 95)3) ∧ 95)
(47 ∧ 58) ((08 ∧ (07 ∧ 85)3)(35 ∧ (43 ∧ 85)0) ∧ 85)
(46 ∧ 89) ((8(69∧4(46∧89))∧(((((43∧95)8∧5(10∧89))9∧85)(((32∧

09)(16∧ 98)∧ 08)((05∧ 97)(38∧ 70)∧ 90)∧ 98)∧ 95)(47∧
58)∧ 98)(69∧ 48))(6((8(69∧ 4(46∧ 89))∧ (((23∧ 79)(61∧
98)∧ 78)((43∧ 95)((09∧ 51)((78∧ 14)((57∧ 40)(12∧ 07)∧
47)∧17)∧57)∧97)∧98)(69∧48))(6(((23∧79)(((47∧58)9∧
8(43∧95))5∧98)∧78)(((18∧76)((65∧92)(05∧27)∧97)∧
96)(12 ∧ 67) ∧ 97) ∧ 98) ∧ 48) ∧ 98) ∧ 48) ∧ 98)

0

12

3

4

5

6 7

8

9
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18. Examples

We have |{8,5,9,8}| = 3 and 8 = 8 which indicates Case 3 (iv).

[omitted output]

Asking for the final 2-cycle to equal 1 is to ask for the coincidence of both interme-
diate points of the last remaining length-ratios. Or equivalently:

Result:

05((6(27∧1(05∧67))∧ (((23∧78)(((((19∧70)6∧0(12∧67))7∧60)(52∧76)∧
70)(18∧06)∧76)∧68)((03∧98)(23∧79)∧78)∧76)(27∧16))(2((6(27∧1(12∧67))∧
(((46∧75)(((50∧37)(52∧76)∧36)(((29∧63)7∧3(18∧76))6∧73)∧76)∧65)((43∧
95)(46∧79)∧75)∧76)(27∧16))(2(((12∧07)(12∧67)∧06)(((((12∧07)(39∧02)∧
72)0∧((49∧76)((23∧69)((16∧98)((43∧85)((08∧53)((09∧31)((78∧14)((56∧
42)(57∧20)∧40)∧10)∧30)∧50)∧80)∧90)∧60)∧70)2)((0(92∧3(39∧02))∧
(((01∧28)(((57∧40)2∧0(78∧24))4∧20)∧08)((((43∧85)(16∧98)∧95)(03∧58)∧
98)(01∧29)∧28)∧20)(92∧30))(9((0(((8(((0(86∧1(18∧06))∧(((23∧65)((05∧
67)(19 ∧ 70) ∧ 60) ∧ 05)(((((47 ∧ 58)(27 ∧ 81) ∧ 51)((03 ∧ 98)(43 ∧ 85) ∧ 95) ∧
91)(26∧15)∧95)(23∧69)∧65)∧60)(86∧10))(8(((18∧06)(((23∧69)((9(((((12∧
67)((5(((((03 ∧ 98)((((46 ∧ 59)(47 ∧ 58) ∧ 98)5 ∧ ((39 ∧ (43 ∧ 95)2)(25 ∧ (26 ∧
95)3) ∧ 95)8)(((47 ∧ 58)((8(69 ∧ 4(46 ∧ 89)) ∧ (((((43 ∧ 95)8 ∧ 5(10 ∧ 89))9 ∧
85)(((32∧09)(16∧98)∧08)((05∧97)(38∧70)∧90)∧98)∧95)(47∧58)∧98)(69∧
48))(6((8(69∧4(46∧89))∧ (((23∧79)(61∧98)∧78)((43∧95)((09∧51)((78∧
14)((57∧40)(12∧07)∧47)∧17)∧57)∧97)∧98)(69∧48))(6(((23∧79)(((47∧
58)9∧8(43∧95))5∧98)∧78)(((18∧76)((65∧92)(05∧27)∧97)∧96)(12∧67)∧
97)∧98)∧48)∧98)∧48)∧98)∧95)((46∧89)5∧9((08∧ (07∧85)3)(35∧ (43∧
85)0)∧85))∧85)∧95)∧85)9∧ (((47∧58)((05∧87)(23∧79)∧89)∧59)(((16∧
08)(43∧85)∧05)((17∧82)(19∧20)∧80)∧85)∧89)5)(46∧59)∧89)(03∧68)∧
69)∧(((23∧68)(43∧65)∧58)(((09∧(03∧98)1)(18∧(16∧98)0)∧98)(23∧69)∧
68)∧65)9)((03∧69)(49∧56)∧59)∧65)∧75)6∧(((48∧57)((07∧(18∧76)5)(56∧
(52∧ 76)0)∧ 76)∧ 56)(43∧ 75)∧ 76)5)(49∧ 56)∧ 76)(12∧ 87)∧ 86)∧ (((((12∧
67)((18∧76)((93∧62)(03∧28)∧68)∧78)∧68)(52∧76)∧78)((43∧85)(46∧59)∧
89)∧97)(05∧87)∧89)6)((12∧86)(47∧98)∧96)∧89)∧86)((47∧98)6∧8(((46∧
59)((16∧98)((12∧87)(52∧76)∧86)∧96)∧56)(((09∧51)(43∧95)∧91)(07∧
15)∧95)∧96))∧96)∧90)((23∧69)0∧9(((03∧65)(((96∧04)((12∧67)(19∧70)∧
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18.2. Example 2: Ten Points on a Cubic

60)∧64)((56∧42)(57∧20)∧40)∧60)∧05)(((23∧89)(43∧95)∧85)(03∧68)∧
65)∧60))∧60)∧10)∧60)(18∧96)∧90)∧(((23∧69)(47∧98)∧68)(((46∧59)((03∧
98)((57∧80)(52∧06)∧86)∧96)∧56)((16∧98)(43∧85)∧95)∧96)∧98)0)((18∧
90)(01∧89)∧80)∧98)(01∧29)∧28)∧(((10∧28)((05∧27)((45∧73)((87∧34)(38∧
40)∧30)∧70)∧20)∧08)((16∧98)(10∧29)∧28)∧20)8)((01∧28)(39∧02)∧08)∧
20)∧30)∧20)∧70)6∧0(((46∧75)(((05∧27)(52∧76)∧26)(((39∧62)7∧2(18∧
76))6∧72)∧76)∧65)((43∧95)(46∧79)∧75)∧76))∧76)∧16)∧76)∧16)∧76)

Degree of multiplier monomial: 342

!! !!! ! !! !! !!!!!!!!
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!! !!! ! !! !! !! !!!!!!
!!

!! !!! !! !!!! !! !! !! !! !! !! !! !!!

! !!! ! !! !!!!!!
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