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Abstract

This thesis is about efficient methods for constrained parameter identification in full-waveform
seismic inversion. Seismic tomography is a technique to determine the material structure of
the Earth’s subsurface based on the observation of waves that are excited by earthquakes.
This can be stated as a nonlinear PDE-constrained optimization problem governed by the
elastic wave equation.
The main purpose of this thesis is to contribute to theoretical and practical aspects in
full-waveform seismic tomography in the time domain. In particular, we study semismooth
Newton-type methods that can handle additional constraints on the material parameters in
a function space setting. To this end, results on the differentiability of the parameter-to-state
operator are established and a semismooth Newton-PCG trust-region method that uses a
Moreau-Yosida regularization is proposed. Furthermore, we utilize ideas from stochastic pro-
gramming and employ randomized source sampling techniques with inexact Hessian approxi-
mations to efficiently gather information from a large number of seismic events. In addition,
we develop strategies to enhance the practical performance of the proposed methods such as
a multi-frequency inversion and regularization-by-discretization.
Numerical results are presented for inverse problems in geophysical exploration on reservoir-
scale in both, solid and fluid domain. As part of this thesis, a matrix-free MPI-parallelized
implementation that relies on the adjoint-based computation of the gradient and Hessian-
vector products has been developed.
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Zusammenfassung

Die vorliegende Dissertation beschäftigt sich mit seismischer Wellenform-Tomographie. Es
handelt sich hierbei um ein Verfahren, das die Materialstruktur der Erde auf Grundlage von
Messungen von Erdbeben erzeugter seismischer Wellen zu bestimmen versucht. Dies kann
als nichtlineares Optimierungsproblem mit einer partiellen Differentialgleichung als Nebenbe-
dingung formuliert werden. Hierbei ist das physikalische Modell durch die elastische Wellen-
gleichung gegeben.
Ziel dieser Arbeit ist es, einen Beitrag in theoretischen und praktischen Aspekten zur seis-
mischen Wellenform-Tomographie zu leisten. Wir untersuchen ein semiglattes Newton-artiges
Verfahren im Funktionenraum, das zusätzliche Nebenbedingungen an die Materialparameter
erlaubt. Dazu weisen wir die Differenzierbarkeit des Lösungsoperators nach und entwickeln
ein semiglattes Newton-PCG Verfahren mit einer Trust-Region Globalisierung und Moreau-
Yosida Regularisierung. Weiterhin nutzen wir Ideen aus dem Bereich der stochastischen Opti-
mierung und verwenden randomisierte Sampling-Techniken in Kombination mit einer inexak-
ten Approximation des Hesse-Operators, um effizient die Daten von einer Vielzahl seismischer
Quellen zu nutzen. Darüberhinaus entwickeln wir Strategien, um die Effizienz der vorgestell-
ten Verfahren in der Praxis zu verbessern. Dies umfasst unter anderem eine Multi-Frequenz
Inversion und Regularisierung durch Diskretisierung.
Numerische Beispiele für inverse Probleme im Bereich der geophysikalischen Exploration in-
nerhalb eines Reservoirs mit festem und fluidem Medium werden präsentiert. Dazu wurde im
Rahmen der Dissertation eine Matrix-freie Methode implementiert, welche die adjungierten-
basierte Berechnung des Gradienten und von Hesse-Vektor-Produkten erlaubt und Paral-
lelisierung mit MPI unterstützt.
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Chapter 1

Introduction

No human being has ever seen the Earth’s interior. Nevertheless, nowadays we have a quite
strong belief in the tectonic structure, the division into core, mantle and crust and the location
of huge reservoirs of natural resources. So where does our knowledge of the subsurface come
from? Direct ways of measurement are very limited as the world’s deepest borehole Sakhalin-I
in the Okhotsk Sea with about 12.7 km depth [50] reaches less than 0.2% of the distance to
the center of the core. Hence, indirect methods have to be used in order to gain insights of
the Earth’s subsurface and seismic tomography is probably the most important one of them.
Here, the basic principle is similar to magnetic resonance tomography in medical imaging
where measurements of electromagnetic waves are used to reconstruct the structure of tissues
and bones inside the human body. Seismic tomography means to infer the material structure
of the Earth’s interior based on the observation of waves that spread through the subsurface.
When an earthquake occurs, seismic waves are emitted at its hypocenter and can be recorded
in form of seismograms at locations far away from the source. The received signal carries
information about the Earth’s interior structure as the velocity of the travelling waves depends
on the material and reflections occur at the transition of different layers of rock. For a general
overview on seismic tomography we refer to [101, 108, 130].

Detailed knowledge of the structure of the Earth is required to understand the dynamics of
the planet and to explain its history and evolution. There are many fields that benefit from
an accurate image of the Earth’s interior, to which new insights from seismic tomography
can contribute. For instance, it can be used to explain geodynamic processes that happen
in the Earth’s mantle and core. On a regional scale, areas of potential geologic hazards like
volcanoes or landslides might be identified. Furthermore, tomography problems of this kind
are solved to support the search for natural resources, especially for oil and gas. Moreover, a
detailed knowledge of the ocean bottom and shallow subsurface can help to improve reliable
Tsunami warning systems and to monitor adherence to the Comprehensive Nuclear-Test-Ban
Treaty1. Figure 1.1 sketches two examples of use, namely global seismic tomography and
marine geophysical exploration.

Efficient inversion methods that are capable of dealing with a huge amount of observed data
and a large number of computationally expensive numerical simulations are required to pro-
mote future progress in seismic tomography. This work intends to contribute to this long-term
endeavor in theoretical and practical aspects.

1http://www.ctbto.org/the-treaty/
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Chapter 1. Introduction

One of the main challenges in seismic tomography is the uneven distribution of the locations
of seismic sources (earthquakes) and observatories (receivers) on the globe. On the one hand,
earthquakes usually occur only in a few regions of increased seismic activity and in compara-
tively shallow depth. On the other hand, measurements of the wavefield are almost exclusively
available at the Earth’s surface. Furthermore, inaccessible regions like oceans make it hard or
even impossible to observe data with a dense array of receivers around the globe.

earthquakes seismometers

material
anomaly

(a) (b)

Figure 1.1: Two examples of seismic tomography problems on different scales. (a) Global
tomography: Earthquakes with a high magnitude can be recorded by seismometers thousands
of kilometers away from the hypocenter. This data is used to reveal deep structures of the
Earth’s interior. (b) Marine geophysical exploration: A research vessel equipped with an airgun
emits pressure waves into the ocean. A dense array of geophones (red lines) records the
response of reflected and refracted waves at the seafloor. The purpose is to identify deposits
of natural resources.

In an abstract setting, seismic tomography can be formulated as the equation

F (m) = d, (1.1)

where d denotes the measurements (e.g., seismograms), the variable m parameterizes the
material and F is the physical model that maps the material to observable data, see also
Figure 1.2. As a simple physical model, we can, for instance, approximate seismic waves as
ray paths between the locations of sources and receivers. This approach is called traveltime
tomography, since the observable quantity is the arrival time of waves propagating between
both points and the physical model is given by the integral of the material velocity along
the ray path. Here, pioneering work goes back to the 70s of the last century [3, 20]. More
sophisticated models describe the propagation of waves by a partial differential equation
(PDE) which can either be the Helmholtz equation in the frequency domain or variants of
the acoustic or the elastic wave equation in the time domain. This is called full-waveform
seismic tomography since the whole seismogram is used instead of only a few arrival times
of particular wavefronts. There is also an intermediate approach using the eikonal equation
[89]. To the best of our knowledge, full-waveform inversion emerged from the early work of
Tarantola [119] and was further pursued in [105]. All physical models have in common that the
resulting tomography problem is a so-called inverse problem, since the inverse operator F−1 is
not directly available or does not even exist. Inverse problems have the characteristic property
of being “ill-posed” in contrast to Hadamard’s classification of well-posedness, cf. [47], which
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essentially demands that the problem (1.1) has a unique solution for any “reasonable” data
d and that this solution is stable with respect to small perturbations of d. Due to the ill-
posedness, inverse problems are challenging to solve and require special treatment in form
of regularization. For a comprehensive introduction to inverse problems we refer to [47, 120,
131].

Forward Problem d = F (m)

Inverse Problem m = F−1(d)

Figure 1.2: The forward problem maps parameters of the material structure to seismograms.
The inverse problem seeks to identify the material properties of the Earth based on the
observed seismograms and is considered to be ill-posed.

Since this thesis focuses on full-waveform tomography in the time domain, we would like
to comment on the problem setting and relevant literature in this area in more detail. We
consider seismic tomography as an optimization problem with PDE constraints, where the
unknown material parameters are assumed to be spatially heterogeneous and constant in
time. Depending on whether the medium is solid or fluid, the governing equation for the
propagation of seismic waves is either given by the elastic or the acoustic wave equation,
respectively. From the early beginnings in the 80s of the last century, full-waveform inversion
has only become computationally feasible with the availability of high-performance computing
clusters in recent years. Iterative inversion methods based on first-order information have been
applied to 2d and 3d datasets on both, regional and continental scale [52, 53, 76, 118, 124, 135].
A Newton-CG method for the unconstrained parameter identification problem was presented
in [48], see also [26]. Alternative approaches work in the frequency domain and involve the
Helmholtz equation [22, 61, 95, 104]. All of this work has in common that the focus is on
the discretized problem. To the best of our knowledge, little attention has been paid to the
analysis of the infinite-dimensional problem. In [88] some results on the differentiability of
the wavefield with respect to the wave velocity are given for the acoustic wave equation in
1d. One of the main contributions of this thesis is the rigorous treatment of the problem in
a function space setting. We establish results on the existence and uniqueness of solutions to
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Chapter 1. Introduction

the governing equations as well as the differentiability of the material-to-solution operator in
the given setup. Recently and without the author’s knowledge, similar results for the forward
problem have been established independently in [16] for hyperbolic evolution equations and
in [78] for the acoustic wave equation. We note, however, that the results of this thesis require
weaker assumptions on the regularity of the seismic sources. We will comment on that in more
detail in Chapter 2.

Most approaches in full waveform tomography do not incorporate additional constraints on
the material parameters in the formulation of the inverse problem. However, there naturally
exist physical bounds, for instance, the non-negativity of wave velocities or the coercivity of
the elliptic operator. Moreover, the problem is ill-posed and also non-convex with several local
minimizers likely to exist. Therefore, from a modeling perspective, we would like to include
as much prior knowledge as possible into the problem formulation. One way of doing this
is to impose additional constraints on the material parameters based on a priori available
information. This could comprise, for instance, lower and upper bounds on the velocities
of compressional and shear waves. It is also particularly interesting and useful for the joint
inversion for both Lamé coefficients λ and µ which is known to be a challenging problem [106].
Here, our approach allows to control the deviation of both parameter fields by imposing bounds
on the Poisson’s ratio. Moreover, this methodology can be extended to impose constraints on
other physical quantities, for instance, the total mass for problems in global seismology.

We apply the Moreau-Yosida regularization to handle the constraints on the material param-
eters. This penalty method leads to an optimality system involving a semismooth operator
equation. For its solution, we propose a semismooth Newton-CG method and a trust-region
globalization strategy. Semismooth Newton-type methods for optimization problems in func-
tion spaces have been studied extensively in [67, 125, 126] and have been applied to various
types of applications, see, for instance, [86] for an optimal control problem governed by the
wave equation and [69, 70, 71, 72] for problems involving the Moreau-Yosida regularization.
Estimates on the constraint violation have been established in [68, 126].

One may argue, however, that the additional constraints are usually not expected to be active
at the global minimizer. In this case, the Moreau-Yosida regularization comes in handy, as the
penalized problem coincides with the original problem within the feasible region. Furthermore,
in case of soft constraints, the penalty term might actually be interpreted as a different form
of regularization which does not necessitate driving the penalty parameter to infinity.

Another challenge that arises particularly in geophysical exploration is the huge amount of
data, which can consist of tens of thousands of sources [107], such that the observed seismic
traces pile up to several terabytes of data. Hence, it is computationally intractable to incor-
porate all seismic sources individually and different strategies have to be developed. We build
upon ideas from stochastic programming [113], machine learning [28] and related approaches
that have been applied successfully in the frequency domain [15, 61, 97]. Preliminary work
also exists for the acoustic wave equation [112]. The key idea is to trigger several seismic
events simultaneously and to use random weights to accumulate data. We present different
algorithms to tackle this problem, which are based on a sample average approximation. One
of the contributions of this thesis is to accelerate the solution process by using inexact Hessian
information based on mini-batches of the samples.

Efficient inversion methods also rely on a scalable code for the simulation of the wave equation.
During the course of this thesis, a simulation code for variants of the wave equation in two
and three dimensions has been developed. Additionally, we consider wave propagation in a
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coupled system of solid and fluid media. The C++ implementation is parallelized, utilizes
MPI-communication and works matrix-free. Moreover, it is not required to solve a linear
system during the simulation, since an explicit Newmark time-stepping scheme [74] and a
diagonal mass matrix are used. Forward and adjoint simulations are carried out to efficiently
compute the reduced gradient and reduced Hessian-vector products that are required by the
Newton-CG method. The code has been tested on up to 4096 compute cores on a Linux
cluster.

After giving a short summary of each of the following chapters, we will continue this intro-
duction with a brief derivation of the governing equations and summarize important notations.

Chapter 2
In this chapter, we analyze the governing equations. In order to allow for a unified treatment
of both, the elastic and the acoustic wave equation, we start by considering general linear hy-
perbolic equations. After recalling some well-known results on the existence, uniqueness and
regularity of solutions, we consider a coefficient-dependent differential operator and establish
continuity and differentiability of the solution to the hyperbolic equations with respect to
these coefficients.

Chapter 3
We continue with the analysis of the parameter identification problem for seismic tomogra-
phy and prove the existence of a solution to the regularized inverse problem based on the
results from Chapter 2. In the absence of further restrictions, the governing equation might
not be well-defined on the whole space of material parameters. Therefore, we present a cutoff
strategy involving a superposition operator to circumvent this problem which leads to an un-
constrained variant of the inverse problem. In order to explicitly include additional constraints
on the material, on the other hand, we consider the Moreau-Yosida regularization. We propose
a semismooth Newton method with a trust-region globalization for the regularized problem
and, furthermore, we establish estimates for the constraint violation of the Moreau-Yosida
regularized solution.

Chapter 4
Next, we describe the discretization of the problem and the implementation of a parallelized
wave propagation code. Parallel scaling statistics show the applicability of the implementa-
tion to tackle large-scale inverse problems. Furthermore, numerical examples on reservoir scale
problems in 2d and 3d are presented.

Chapter 5
In this chapter, we discuss strategies to substantially reduce the computational effort by con-
sidering simultaneous seismic sources instead of individual events. In particular, we discuss a
sample average approximation model that is accelerated by using inexact Hessian information
based on mini-batches of the samples.
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Chapter 1. Introduction

Chapter 6
We conclude the thesis with a case study on wave propagation at a solid-fluid interface. Prob-
lems of this kind arise, for instance, in marine geophysical exploration of undersea oilfields.
The governing equations are given by a coupled system of the elastic and the acoustic wave
equation with interface conditions between both media. Numerical results are presented for an
elastic inversion of a 3d dataset with a thin layer of water on the top of the domain. In addition,
we discuss a multi-frequency inversion and a regularization-by-discretization approach.

Parts of this thesis have been published or submitted to peer-reviewed journals. The relevant
articles are:

C. Boehm and M. Ulbrich. “Newton-CG Method for Full-Waveform Inversion in a Cou-
pled Solid-Fluid System.” In: Advanced Computing. Ed. by M. Bader, H.-J. Bungartz, and T.
Weinzierl. Vol. 93. Lecture Notes in Computational Science and Engineering. Springer Berlin
Heidelberg, 2013, pp. 99–117.

C. Boehm and M. Ulbrich. “A Semismooth Newton-CG Method for Constrained Param-
eter Identification in Seismic Tomography.”, in revision, 2014.
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1.1. Seismic Wave Propagation

1.1 Seismic Wave Propagation

In this section we briefly summarize the geophysical background of this work and derive the
governing equations for wave propagation in solid and fluid media. Here, we follow [2, 39, 101]
and refer to these references for detailed explanations and a thorough analysis.
In what follows, we consider a d-dimensional domain with d = 2 or d = 3. Let P be a particle
that is initially located at x ∈ Rd at some reference time t0 and then moved to P ′. We
introduce a time-dependent vector field u = u(x, t) which describes the shift in position at
time t compared to the original location at time t0. u is called the displacement field. For the
moment, we ignore the time parameter and look only at a fixed time t. Now, consider a second
point Q, initially located at x+ δx in the vicinity of P .

P
P ′

Q

Q′

0

u(P )

u(Q)

time t0 time t

Figure 1.3: Deformation of a body described by the displacement field u.

Its new position Q′ at time t is then given by x+δx+u(x+δx). Assuming that the displacement
is small we could use a first order expansion and obtain

u(x+ δx) = u(x) +∇u(x)T δx+O(‖δx‖2),

where (∇u(x))ij = ∂uj/∂xi is the transposed Jacobian of the displacement field. We note that
a constant u would describe a simple translation of the body. Since we are rather interested
in its deformation, we take a closer look at the derivatives ∂uj/∂xi. It is important to note,
however, that nonzero derivatives are not necessarily caused by a deformation, but can also
come from a rotation of the body. Hence, we have to split up∇u in order to separate rotational
components from deformation. To this end, we define the strain tensor ε and the rotation
tensor Θ by:

εij =
1

2

(
∂uj
∂xi

+
∂ui
∂xj

)
, i.e., ε =

1

2
(∇u+∇uT ),

Θij =
1

2

(
∂uj
∂xi
− ∂ui
∂xj

)
.

Hence, we obtain ∇u = ε + Θ, where the symmetric strain tensor ε describes the change of
relative position of two points and the rotation tensor Θ corresponds to rigid-body rotations,
cf. section 2.1 in [2].
In the next step, we are interested in a description of forces acting mutually between particles.
Here, traction is a vector defined as the force per unit area that acts on the surface of a volume
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Chapter 1. Introduction

element. Traction is oriented with the unit normal pointing outwards of the surface and is by
definition positive for extensional forces and negative for compressional forces. Since the force
acting on an arbitrary internal surface is a linear function of the orientation of that surface,
we may relate the traction τ(~n) to the stress tensor σ̄ by

τ(~n)i =
d∑
j=1

σ̄ij~nj , i = 1, . . . , d. (1.2)

Here, ~n is the unit normal to the surface. In Cartesian coordinates with unit vectors denoted
by ei, i = 1, . . . , d, σ̄ij is the force acting in direction ei on the surface with normal vector
ej . The diagonal entries of σ̄ are compressional forces and the off-diagonal elements describe
shear forces. Hence, if the stress tensor σ̄(x) at a point x is known, the traction on an arbitrary
surface through x can be computed by (1.2). Stress is defined in force per unit area, i.e., in
N/m2 or Pa. Furthermore, the stress tensor is symmetric, for a derivation we refer again to
[2], section 2.1.

In addition to the contact forces at which particles on both sides of the surface act on each
other, we introduce an external body force f that will describe the seismic source. Furthermore,
we assume a heterogeneous density ρ. Using Newton’s second law, which states that the force
is equal to mass times acceleration, we can now state the first version of the elastodynamic
equations for a compact volume element V with smooth surface S and any time t > t0. Note
that x does not depend on t, i.e., the particle velocity is given by ut and its acceleration by
utt. We obtain: ∫

V
ρutt dV =

∫
V
f dV +

∫
S
τ(~n) dS. (1.3)

By Gauss’s divergence theorem, we deduce that (1.3) can be reformulated to∫
V
ρutt dV =

∫
V
f dV +

∫
V
∇ · σ̄ dV. (1.4)

Finally, we have to relate stresses to the displacements. This can be done by applying the
generalized Hooke’s law which states a linear dependence of the stress tensor on the compo-
nents of the strain tensor, see, for instance [2], section 2.2. With the help of the fourth-order
elastic tensor Ψ, this can be written as

σ̄ij =

d∑
k,l=1

Ψijklε(u)kl. (1.5)

For a compact notation, we write σ̄ = Ψ : ε(u) and refer to a body that obeys (1.5) as linearly
elastic. Although we omitted to state the dependence on location x and time t explicitly, it
should be clear from the derivation above that quantities like displacement, strain, stress,
traction and external forces are functions of both, space and time. The elastic tensor Ψ and
the density ρ only depend on the spatial location.

Now, we have gathered all ingredients to state the elastic wave equation. Here, we consider
a bounded domain Ω ⊂ Rd (again d = 2, 3) with a smooth boundary. The time interval is
denoted by I := (0, T ) with T > 0. For simplicity and without loss of generality, we always
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1.1. Seismic Wave Propagation

assume initial time t0 = 0. The elastic wave equation is then given by
ρutt −∇ · (Ψ : ε(u)) = f on Ω× I,

u(0) = 0 on Ω,
ut(0) = 0 on Ω,

(Ψ : ε(u)) · ~n = 0 on ∂Ω× I.

(1.6)

We recall that the external force induced by the seismic source is denoted by f . Furthermore,
we assume that the system is at rest at initial time and impose homogeneous initial conditions
on u and ut. At the free surface, the traction is zero which is stated in the fourth line of (1.6).
Note that in global seismology we can consider Ω to be the whole globe, i.e., ∂Ω is the surface
of the Earth and the boundary conditions are valid. However, for problems where the domain
Ω is truncated to a subset of the Earth, artificial boundaries are introduced and appropriate
absorbing boundary conditions have to be imposed. This discussion, however, is postponed to
section 4.3.

Parameterization of the Material

The material structure that we seek to determine by solving the tomography problem is
characterized by the elastic tensor Ψ and the density ρ. However, due to the interdependencies
of ρ and Ψ, we will keep the density fixed and invert for Ψ only. Therefore, we take a closer look
at its properties. First of all, we can exploit the symmetry properties Ψijkl = Ψjikl = Ψklij ,
which yields at most 21 independent components for d = 3 (instead of 81). Due to these
symmetries, we directly obtain:

σ̄ij =

d∑
k,l=1

Ψijklε(u)kl =

d∑
k,l=1

1

2
Ψijkl ((∇u)kl + (∇u)lk) =

d∑
k,l=1

Ψijkl
∂ul
∂xk

. (1.7)

A compact representation of the coefficients Ψijkl is often given by the right upper triangular
part of the so-called Voigt matrix, cf. [101], p. 291, that groups the components in the following
way:

ΨV =



Ψ1111 Ψ1122 Ψ1133 Ψ1123 Ψ1113 Ψ1112

Ψ2211 Ψ2222 Ψ2233 Ψ2223 Ψ2213 Ψ2212

Ψ3311 Ψ3322 Ψ3333 Ψ3323 Ψ3313 Ψ3312

Ψ2311 Ψ2322 Ψ2333 Ψ2323 Ψ2313 Ψ2312

Ψ1311 Ψ1322 Ψ1333 Ψ1323 Ψ1313 Ψ1312

Ψ1211 Ψ1222 Ψ1233 Ψ1223 Ψ1213 Ψ1212

 . (1.8)

Examples for ΨV will be given in section 2.4. The general form of Ψ allows the treatment
of anisotropic material. An important special case, however, is a perfectly elastic, isotropic
medium. Here, the tensor simplifies to

Ψijkl = λδijδkl + µ(δikδjl + δilδjk), (1.9)

with the Lamé parameters λ and µ. Alternatively, it can be parameterized in terms of the
bulk modulus κ = λ+ 2

3µ which yields

Ψijkl = (κ− 2

3
µ)δijδkl + µ(δikδjl + δilδjk). (1.10)
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Chapter 1. Introduction

Using (1.9) in (1.7) we obtain

σ̄ij = λδij(∇ · u) + 2µε(u)ij .

Thus, the isotropic elastic wave equation is given by:
ρutt −∇ · (2µε(u) + λ(∇ · u)I) = f on Ω× I,

u(0) = 0 on Ω,
ut(0) = 0 on Ω,

(2µε(u) + λ(∇ · u)I) · ~n = 0 on ∂Ω× I.

(1.11)

In computational seismology, one is often rather interested in the velocities of certain types
of body waves instead of the Lamé coefficients. Here, we distinguish between compressional
and shear waves (see Figure 1.4) and give a short motivation.

undisturbed
medium

compression

dilatation

direction of wave propagation

(a)

undisturbed
medium

direction of wave propagation

p
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(b)

Figure 1.4: (a) Compressional waves (P-waves): Particles move parallel to the direction of the
wave. (b) Shear waves (S-waves): Particles move orthogonal to the direction of the wave.

For simplicity, consider a homogeneous isotropic material, i.e., constant ρ, λ and µ and the
absence of any external force f . Now we introduce y = ∇ · u and by taking the divergence in
the first line of (1.11), we obtain after a short calculation

ρ

λ+ 2µ
ytt −∆y = 0, (1.12)

which is a scalar wave equation with wave speed c = (ρ/(λ+ 2µ))−1/2. Since the components
of y correspond to the diagonal entries of the strain tensor σ̄, this quantity describes com-
pressional deformations. Consequently, solutions to (1.12) are called compressional waves or
P-waves and the velocity is denoted by

vp =

√
λ+ 2µ

ρ
. (1.13)

Similarly, by denoting y = ∇× u and by taking the curl in the first line of (1.11), we obtain

ρ

µ
ytt −∆y = 0. (1.14)
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1.1. Seismic Wave Propagation

Solutions to (1.14) are called shear waves or S-waves and the velocity is denoted by

vs =

√
µ

ρ
. (1.15)

In addition to body waves, which travel through the Earth’s interior and can be characterized
by the P- and S-wave velocity, there are surface waves that propagate along the Earth’s surface.
Important types are, for instance, Love waves and Rayleigh waves. The interested reader is
referred to [2], section 7, or [101], section 10, for a rigorous analysis. In heterogeneous media,
reflections occur at material interfaces which will convert compressional waves into shear
waves and vice versa. Distinguishing the different types of waves in a seismogram is a lot
more complicated in this case.

Wave Propagation in Fluid Media

In an inviscid fluid medium, the governing equation reduces to an acoustic wave equation
since shear stresses are zero and the remaining stress is isotropic. Modeling a fluid medium is
important for several reasons. On the one hand, the outer core of the Earth is liquid. On the
other hand, for problems in marine geophysical exploration it is necessary to incorporate the
ocean layer into the model. Moreover, since the simulation of the acoustic wave equation is
much cheaper than the elastic counterpart, it is often used as the governing equation even for
tomography problems in solid media [12, 57, 112]. Despite some limitations [99], it can at least
be used prior to an elastic inversion to improve the starting model. We assume a constant
density ρF > 0 and denote the displacement potential by u and a pressure source by f . Note
that although it is uncommon to denote the displacement potential by u, we want to discuss
the acoustic and the elastic wave equation in a unified way later on and, therefore, seek for
a general “state variable” u. Furthermore, we have a scalar parameter field m that denotes
the squared velocity of compressional waves in this case. The acoustic wave equation is now
given by 

ρFutt − ρF∇ · (m∇u) = f on Ω× I,
u(0) = 0 on Ω,
ut(0) = 0 on Ω,

u = 0 on ∂Ω× I.

(1.16)

Again, we assume that the system is at rest at initial time and impose homogeneous initial
conditions. At the free surface, we work with homogeneous Dirichlet boundary conditions
which give the fourth line in (1.16).
We conclude this section with two remarks.

Remark 1.1.1.
For certain applications, e.g., in global seismic tomography, it can be advantageous to consider
the elastic wave equation in spherical coordinates. This is not the focus of this thesis but we
refer the interested reader to [55] for its derivation.

Remark 1.1.2.
Other approaches work in the frequency domain, see for instance [130] and the references
therein. In this case, the physical model is given by the Helmholtz equation. A major difference
in tackling tomography problems in the frequency domain is that the PDE operator can often
be factorized by a direct solver. As a consequence, multiple seismic events can be incorporated
at much lower costs than in the time domain.
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Chapter 1. Introduction

1.2 Notation

Here, we provide a short list of notations that are frequently used throughout this thesis.
Note, in particular, that we employ the standard notation of computational seismology which
results in a state variable u and a parameter variable m which is different from common no-
tations in the context of optimal control or PDE-constrained optimization.

General Notation

‖.‖p p-norm in Rn with p ∈ [1,∞]

‖.‖X norm of a Banach space X

X∗ dual space of a Banach space X

(., .)X inner product of a Hilbert space X

〈., .〉X∗,X dual pairing of a Banach space X and its dual X∗

X ↪→ Y Banach space X is continuously embedded in Banach space Y

X ↪→↪→ Y Banach space X is compactly embedded in Banach space Y

Bε(x) closed ball with radius ε centered at x ∈ X
L(X,Y ) space of bounded linear operators from the Banach space X to the Banach

space Y

Li(X;Y ) space of bounded multilinear mappings X ×X × . . . ×X → Y for Banach
spaces X and Y

a⊗ b (outer) product of second order tensors a and b, (a⊗ b)ijkl = aijbkl

A :: B (inner) product of fourth order tensors A and B, A :: B =
∑

ijklAijklBijkl

Inverse Problem

d spatial dimension of the state equation, usually d = 2, 3

u state variable (e.g., displacements in the case of the elastic wave equation)

m ∈M variable that parameterizes the unknown material

Mad admissible set of materials

n dimension of the parameter field

I time interval (if not explicitly mentioned otherwise, we consider I = (0, T ))

Ω ⊂ Rd bounded domain, usually a nonempty, bounded and open set with smooth
boundary

∂Ω boundary of domain Ω
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1.2. Notation

Physical Quantities

ε(u) stress tensor defined by ε(u) = 1
2(∇u+∇uT )

λ, µ Lamé coefficients in isotropic elastic material

Ψ fourth-order tensor of elastic moduli

ρ density

σ̄ stress tensor

vp, vs velocities of compressional and, resp., shear waves

Function Spaces

Lp(Ω) Lebesgue space with functions v : Ω→ R, p ∈ [1,∞]

W k,p(Ω) Sobolev space of functions v ∈ Lp(Ω) with weak derivatives in Lp(Ω) up to
order k, k ≥ 0, p ∈ [1,∞]

Hk(Ω) short form of the Hilbert space W k,2(Ω), k ≥ 0

C(Ω̄) space of continuous functions v : Ω̄→ R
C∞c (Ω) space of infinitely differentiable functions v : Ω → R with compact support

in Ω

Ck,β(Ω̄) space of k-times differentiable functions u : Ω̄→ R with β-Hölder continuous
derivatives, k ≥ 0, β ∈ (0, 1]

W k,p
0 (Ω) closure of C∞c (Ω) in W k,p(Ω)

Lp(I;X) Bochner space of functions on interval I with values in Banach space X,
p ∈ [1,∞], analogously: Ck(Ī;X), Hk(I;X)

F k0 subset of Hk(I;V ∗) with f = 0 near t = 0, V as defined in Chapter 2

Furthermore, C > 0 denotes a generic constant.
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Chapter 2

Existence and Regularity of
Solutions to the State Equation

In this chapter, results on the existence and regularity of solutions to the governing equations
are discussed. We start by recalling some general results for linear hyperbolic equations that
can be found, for instance, in [49, 87, 91]. The reader is also referred to [90] for optimal
control problems governed by hyperbolic equations. However, since the material parameters
enter the state equation as coefficients of an elliptic operator, the forthcoming analysis is more
involved and we cannot directly refer to standard results from the literature cited above. To
this end, we consider linear hyperbolic equations with a parameterized elliptic operator and
establish the continuity and Fréchet differentiability of the solution operator that maps these
parameters to the unique solution of the corresponding PDE. Parts of this section have been
published in [19] for the elastic wave equation. Afterwards, we extend the results to a more
general setting that involves a superposition operator. This enables us, on the one hand, to
treat various different parameterizations of the material and, on the other hand, to ensure
that all values of the coefficients that enter the state equation are physically reasonable. In the
last part of this chapter, we apply the findings to the elastic and the acoustic wave equation.

2.1 Linear Hyperbolic Equations of Second Order

We start by briefly recalling some general results for the existence and the regularity of
solutions to linear second-order hyperbolic PDEs. We consider a bounded domain Ω ⊂ Rd
(d = 2, 3) with a smooth boundary and denote the time interval by I := (0, T ), T > 0. Let V
and H be real Hilbert spaces, V dense in H, that form a Gelfand triple

V ↪→ H = H∗ ↪→ V.

Later on, we will choose

V = {v ∈ H1(Ω)k : v|ΓD = 0} and H = L2(Ω)k with k ∈ {1, d}.

Here, ΓD ⊂ ∂Ω denotes the part of the boundary with Dirichlet-type conditions and ΓD = ∅
corresponds to Neumann-type conditions on every part of the boundary. Let a denote a
continuous time-dependent bilinear form

a : I × V × V → R,
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Chapter 2. Existence and Regularity of Solutions to the State Equation

that has the following properties

∀ v, w ∈ V t 7→ a(t; v, w) is continuously differentiable on Ī , (2.1)

∃ β1, β2 > 0 such that a(t; v, v) + β1 ‖v‖2H ≥ β2 ‖v‖2V ∀ v ∈ V, ∀ t ∈ Ī , (2.2)

a(t; v, w) = a(t;w, v) ∀ v, w ∈ V,∀ t ∈ I. (2.3)

For fixed t ∈ I, we identify a with the operator A(t) ∈ L(V, V ∗) by

a(t; v, w) = 〈A(t)v, w〉V ∗,V ∀ v, w ∈ V

and consider equations

utt(t) +A(t)u(t) = f(t), (2.4)

with initial data

u(0) = u0, ut(0) = u1. (2.5)

Let (2.1) - (2.3) hold. Now, we consider the variational form of (2.4), (2.5) and seek a solution
u satisfying

〈utt(t), v〉V ∗,V + a(t;u, v) = 〈f(t), v〉V ∗,V ∀ v ∈ V

a.e. in (0, T ) and u(0) = u0, ut(0) = u1.

Note, if f ∈ L2(I;H), we continue to write 〈f(t), v〉V ∗,V which is permissible by the embedding
H ↪→ V ∗.

Theorem 2.1.1.
Let (2.1) - (2.3) hold. Furthermore, let u0 ∈ V , u1 ∈ H and f ∈ L2(I;H). Then there exists
a unique solution (u, ut) ∈ L2(I;V )×L2(I;H) that satisfies (2.4) and (2.5) and the mapping

L2(I;H)× V ×H → L2(I;V )× L2(I;H), (f, u0, u1) 7→ (u, ut)

is linear and continuous.

Proof. See Chapter IV, Theorem 1.1 in [90].

In fact, we actually obtain a higher temporal regularity of the solution.

Theorem 2.1.2.
Let (2.1) - (2.3) hold. Furthermore, let u0 ∈ V , u1 ∈ H and f ∈ L2(I;H). Then, after
a possible modification on a set of measure zero, there exists a unique solution (u, ut) ∈
C(Ī;V )× C(Ī;H) that satisfies (2.4) and (2.5). The mapping

L2(I;H)× V ×H → C(Ī;V )× C(Ī;H), (f, u0, u1) 7→ (u, ut)

is linear and continuous.

Proof. See Chapter 3, Theorem 8.2 in [91].

Remark 2.1.3.
Due to the improved regularity of (u, ut) ∈ C(Ī;V )×C(Ī;H), the initial conditions (2.5) are
well-defined.
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2.1. Linear Hyperbolic Equations of Second Order

If we admit a less regular right-hand side f ∈ L2(I;V ∗) and initial data u0 ∈ H, u1 ∈ V ∗, we
obtain the following result.

Theorem 2.1.4.
Let (2.2) and (2.3) hold and let t 7→ a(t; v, w) be twice continuously differentiable on Ī for
all v, w ∈ V . Furthermore, let u0 ∈ H, u1 ∈ V ∗ and f ∈ L2(I;V ∗). Then, after a possible
modification on a set of measure zero, there exists a unique solution (u, ut) ∈ C(Ī;H) ×
C(Ī;V ∗) that satisfies (2.4) and (2.5). The mapping

L2(I;V ∗)×H × V ∗ → C(Ī;H)× C(Ī;V ∗), (f, u0, u1) 7→ (u, ut)

is linear and continuous.

Proof. See Chapter 3, Theorem 9.3, Theorem 9.4 and Remark 9.11 in [91].

By exploiting a higher temporal regularity of the right-hand side and the initial data, we are
able to improve the temporal regularity of the solution.

Theorem 2.1.5 (Improved temporal regularity).
Let (2.1) - (2.3) hold and assume that the operator A in (2.4) does not depend on time t.
Furthermore, we denote

ũ0 = u0, ũ1 = u1, and

ũl =
∂l−2

∂tl−2
f(0)−Aũl−2, recursively for l ≥ 2.

Now, let k ≥ 1, f ∈ Hk−1(I;H) and the following compatibility conditions hold

ũj ∈ V, 0 ≤ j ≤ k − 1, and ũk ∈ H.

Then there exists a unique solution u ∈ Hk−1(I;V ) ∩ Hk(I;H) ∩ Hk+1(I;V ∗) to (2.4) and
(2.5).

Proof. See Satz 30.1 in [134].

Remark 2.1.6 (Improved spatial regularity).
Alternatively, also the spatial regularity of the solution can be improved by assuming a higher
spatial regularity of the right-hand side f and initial data u0 and u1. Similar compatibility
conditions as in Theorem 2.1.5 are required in this case, cf. Chapter 7, Theorem 6 in [49].

With the help of Theorem 2.1.5 we can improve the temporal regularity of the solution if
we admit a higher temporal regularity of the right-hand side. However, this result does not
improve the spatial regularity of u compared to Theorem 2.1.1. On the other hand, following
Remark 2.1.6, a higher spatial regularity of u can be achieved by assuming a higher spatial
regularity of the right-hand side. For the forthcoming analysis, however, we seek for a setting
that yields u(t) ∈ V when f(t) is only in V ∗. This will be continued in the next section.
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2.2 Extensions to a Parameterized Elliptic Operator

In the next step, we generalize the results to the case where the elliptic operator A depends
on coefficients denoted by σ. To avoid confusion, we emphasize that σ is not related to the
stress tensor σ̄ from section 1.1.
For notational simplicity and also with the application of seismic tomography in mind, we
restrict the analysis to time-independent coefficients and homogeneous initial conditions. We
continue to work with hyperbolic equations of the following form. Let n̂ ∈ N and S ⊂ L∞(Ω)n̂

be a nonempty, open and bounded set. We consider a family of continuous bilinear forms
a(σ) : V × V → R and, similar as before, we identify a(σ) with the operator A(σ) ∈ L(V, V ∗)
by

a(σ)(v, w) = 〈A(σ)v, w〉V ∗,V ∀ v, w ∈ V.

Additionally, we introduce a function ρ : Ω→ R and consider equations of the following form:

ρutt(t) +A(σ)u(t) = f(t), (2.6)

with initial data
u(0) = 0, ut(0) = 0. (2.7)

For the further analysis, we compactly write (2.6) and (2.7) with the help of the operator
Ê(u, σ) := ρutt +A(σ)u as:

Ê(u, σ) = f, u(0) = 0, ut(0) = 0. (2.8)

The variational form of (2.8) is given as follows:

〈ρutt(t), v〉V ∗,V + a(σ)(u(t), v) = 〈f(t), v〉V ∗,V ∀ v ∈ V and a.e. t in I. (2.9)

We continue to work with the following assumptions on A and ρ.

Assumption 2.2.1.

(A1) S ⊂ L∞(Ω)n̂ is a nonempty, open, and bounded set and A : L∞(Ω)n̂ → L(V, V ∗) is a
bounded linear operator.

(A2) There exist β1, β2 > 0 independent of σ such that

a(σ)(v, v) + β1 ‖v‖2H ≥ β2 ‖v‖2V ∀ v ∈ V, ∀ σ ∈ S.

(A3) For all σ ∈ S, a(σ) is symmetric, i.e., a(σ)(v, w) = a(σ)(w, v) ∀ v, w ∈ V, ∀σ ∈ S.

(A4) ρ : Ω→ R is sufficiently smooth such that ρv ∈ H1(Ω) for all v ∈ H1(Ω).

(A5) There exist ρa, ρb ∈ R with 0 < ρa ≤ ρ(x) ≤ ρb a.e. on Ω.

Remark 2.2.2.
For d = 2 or d = 3 Assumption 2.2.1 (A4) is satisfied, for instance, if ρ ∈ W 1,3(Ω) ∩ L∞(Ω).
In this case, we have ∇(ρv) = v∇ρ + ρ∇v ∈ L2(Ω) by the embedding H1(Ω) ↪→ L6(Ω) and
the generalized Hölder’s inequality with 1

p + 1
q = 1

2 and p = 6, q = 3 or, resp., p =∞, q = 2.
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Theorem 2.2.3.
Let Assumption 2.2.1 hold and let σ ∈ S. Then the problem given by (2.8) possesses a unique
solution in the following settings:

(i) For every f ∈ L2(I;H) there exists a unique solution

(u, ut) ∈ C(Ī;V )× C(Ī;H).

The mapping L2(I;H)→ C(Ī;V )× C(Ī;H), f 7→ (u, ut) is linear and bounded.

(ii) For every f ∈ L2(I;V ∗) there exists a unique solution

(u, ut) ∈ C(Ī;H)× C(Ī;V ∗).

The mapping L2(I;V ∗)→ C(Ī;H)× C(Ī;V ∗), f 7→ (u, ut) is linear and bounded.

Note that in order to achieve continuity of the solution in time, a suitable modification on a
set of measure zero might be necessary.

Proof. The properties of ρ and σ ensure the applicability of general results for hyperbolic
equations. In fact, we have (ρv, v)H ≥ ρa‖v‖2H for all v ∈ V and thus, the usual energy
estimates can be used. Furthermore, due to Assumption 2.2.1 (A2) and (A3), the existence
and regularity of a unique solution as well as the dependence on the right-hand side f follows
as in the proofs of Theorem 2.1.1 (resp., Theorem 2.1.2) and Theorem 2.1.4. For the sake of
completeness, we show how to derive the energy estimates in the case of f ∈ L2(I;H). This
is an easy generalization of the energy estimates derived in the proof of Chapter 3, Theorem
8.1 in [91]. See also Satz 29.1 in [134] or Chapter 7, Theorem 2 in [49] for similar results. The
following derivation requires to consider an approximate solution which is sufficiently regular
to give meaning to the dual pairings and time derivatives. Since this is analogously done in
all the Theorems cited above, we omit the details and, for simplicity, denote the approximate
solution again by u. Now, we can (formally) test (2.9) with ut(t) ∈ V and obtain for every
fixed t ∈ I

〈ρutt(t), ut(t)〉V ∗,V + a(σ)(u(t), ut(t)) = (f(t), ut(t))H .

Hence, by the symmetry of a (Assumption 2.2.1 (A3)), we obtain

d

dt
[(ρut(t), ut(t))H + a(σ)(u(t), u(t))] = 2(f(t), ut(t))H .

Integrating from 0 to t and using the homogeneous initial data yields

(ρut(t),ut(t))H + a(σ)(u(t), u(t))

= (ρut(0), ut(0))H + a(σ)(u(0), u(0)) + 2

∫ t

0
(f(τ), ut(τ))H dτ

= 2

∫ t

0
(f(τ), ut(τ))H dτ.

With Assumption 2.2.1 (A2) and (ρut(t), ut(t))H ≥ ρa‖ut(t)‖2H , we further deduce

ρa‖ut(t)‖2H + β2‖u(t)‖2V ≤ β1‖u(t)‖2H + 2

∫ t

0
‖f(τ)‖H ‖ut(τ)‖H dτ. (2.10)
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Furthermore, we have

‖u(t)‖H ≤ ‖u(0)‖H +

∫ t

0
‖ut(τ)‖H dτ =

∫ t

0
‖ut(τ)‖H dτ.

Hence, it holds

‖u(t)‖2H ≤ C
∫ t

0
‖ut(τ)‖2H dτ. (2.11)

From (2.10), we obtain with Young’s inequality and (2.11)

‖ut(t)‖2H + ‖u(t)‖2V ≤ C
∫ t

0
‖f(τ)‖2H dτ + C

∫ t

0
‖ut(τ)‖2H dτ.

Finally, from Gronwall’s Lemma we deduce the a priori estimate:

‖ut(t)‖2H + ‖u(t)‖2V ≤ C‖f‖2L2(I;H).

We proceed with the main result of this section, which shows that the regularity of the solution
can be improved if the right-hand side admits a higher temporal regularity.

Theorem 2.2.4.
Let Assumption 2.2.1 hold and let σ ∈ S. We consider f ∈ L2(I;V ∗) with f = 0 near t = 0
and, additionally, ft ∈ L2(I;V ∗). Then there exists a unique solution u = u(σ) to the problem
(2.8) that satisfies

u ∈ C(Ī;V ), ut ∈ C(Ī;H), utt ∈ C(Ī;V ∗),

and the mapping

H1(I;V ∗)→ C(Ī;V )× C(Ī;H)× C(Ī;V ∗), f 7→ (u, ut, utt) (2.12)

is linear and bounded. For fixed f , the solutions u(σ) are uniformly bounded in C(Ī;V ) ∩
C1(Ī;H) for all σ ∈ S.

Proof. The proof follows the lines of the proof of Chapter 3, Theorem 9.3 for the existence
of very weak solutions in [91]. However, the crucial difference is the improved regularity in
space that is obtained by utilizing the higher temporal regularity of the right-hand side. We
consider

fk ∈ H1(I;H) with fk → f in H1(I;V ∗),

and the problem

ρ(uk)tt(t) +A(σ)uk(t) = fk(t), uk(0) = 0, (uk)t(0) = 0. (2.13)

By formally differentiating with respect to t and substituting (uk)t by wk, we obtain

ρ(wk)tt(t) +A(σ)wk(t) = (fk)t(t), wk(0) = 0, (wk)t(0) = 0. (2.14)

Here, we used that f is zero near t = 0. Since (fk)t ∈ L2(I;H), there exists a unique solution
wk ∈ C(Ī;V )∩C1(Ī;H) to (2.14) by Theorem 2.2.3. We define the auxiliary function vk(t) :=∫ t

0 wk(τ) dτ and obtain

vk ∈ C1(Ī;V ), (vk)t = wk ∈ C(Ī;V ), (vk)tt = (wk)t ∈ C(Ī;H).
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Integrating (2.14) in time and inserting the homogeneous initial data yields

0 =

t∫
0

ρ(wk)tt(τ) +A(σ)wk(τ)− (fk)t(τ) dτ = ρ(vk)tt(t) +A(σ)vk(t)− fk(t). (2.15)

By subtracting the original equation (2.13) from (2.15), we obtain

ρ(vk − uk)tt(t) +A(σ)(vk − uk)(t) = 0, (vk − uk)(0) = 0, (vk − uk)t(0) = 0.

Hence, by the uniqueness of the solution due to Theorem 2.2.3, we obtain uk = vk and
(uk)t = wk in [0, T ]. Thus, we have shown that vk is the unique solution to (2.13).
The improved regularity in space remains to be shown. In [91], Chapter 3, proof of Theorem
9.3, the energy estimates

‖(uk)t(t)‖2H + ‖(uk)tt(t)‖2V ∗ ≤ C ‖(fk)t‖
2
L2(I;V ∗) , (2.16)

‖(uk)(t)‖2H + ‖(uk)t(t)‖2V ∗ ≤ C ‖(fk)‖
2
L2(I;V ∗) (2.17)

are derived for a.a. t ∈ I. Furthermore, using Assumption 2.2.1 (A2), (A4) and (A5), we
deduce

β2 ‖uk(t)‖2V ≤ a(σ)(uk(t), uk(t)) + β1 ‖uk(t)‖2H
= 〈fk(t)− ρ(uk)tt(t), uk(t)〉V ∗,V + β1 ‖uk(t)‖2H
≤ ‖fk(t)‖V ∗ ‖uk(t)‖V + |〈(uk)tt(t), ρuk(t)〉V ∗,V |+ β1 ‖uk(t)‖2H
≤ (‖fk(t)‖V ∗ + Cρ ‖(uk)tt(t)‖V ∗) ‖uk(t)‖V + β1 ‖uk(t)‖2H
≤
(
‖fk(t)‖V ∗ + c1 ‖(fk)t‖L2(I;V ∗)

)
‖uk(t)‖V + c2 ‖(fk)‖2L2(I;V ∗) ,

where we used (2.16) and (2.17) in the last inequality. Next, we use Young’s inequality to
obtain (

‖fk(t)‖V ∗ + c1 ‖(fk)t‖L2(I;V ∗)

)
‖uk(t)‖V ≤

1

2β2

(
‖fk(t)‖V ∗ + c1 ‖(fk)t‖L2(I;V ∗)

)2
+
β2

2
‖uk(t)‖2V .

Hence,

β2

2
‖uk(t)‖2V ≤

1

2β2

(
‖fk(t)‖V ∗ + c1 ‖(fk)t‖L2(I;V ∗)

)2
+ c2 ‖(fk)‖2L2(I;V ∗) . (2.18)

Now, by the embedding H1(I;V ∗) ↪→ C(Ī;V ∗), we can estimate ‖fk(t)‖V ∗ ≤ ‖fk‖C(Ī;V ∗) ≤
C ‖fk‖H1(I;V ∗) and finally obtain by combining (2.16) and (2.18):

sup
0≤t≤T

(
‖uk(t)‖2V + ‖(uk)t(t)‖2H + ‖(uk)tt(t)‖2V ∗

)
≤ C ‖fk‖2H1(I;V ∗) . (2.19)

Thus, uk (resp. (uk)t, (uk)tt) remains in a bounded set of L2(I;V ) (resp. L2(I;H), L2(I;V ∗)).
We can therefore extract a weakly convergent subsequence uκ ⇀ ũ in L2(I;V ) as well as
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uκ ⇀ ũ in H1(I;H) and uκ ⇀ ũ in H2(I;V ∗). By the embeddings H1(I;H) ↪→↪→ C(Ī;H)
and H2(I;V ∗) ↪→↪→ C1(Ī;V ∗), we obtain uκ → ũ in C(Ī;H) and (uκ)t → ũt in C(Ī;V ∗).
Therefore, 0 = uκ(0)→ ũ(0) in H, i.e., ũ(0) = 0, and 0 = (uκ)t(0)→ ũt(0) in V ∗, i.e., ũt(0) =
0. Hence, by passing to the limits in (2.13) we find that ũ is a solution to (2.8). The continuous
dependence in (2.12) follows from (2.19), cf. Remark 9.11 in [91]. By Assumption 2.2.1 (A2),
all constants are independent of σ. Thus, the set of unique solutions u(σ) ∈ C(Ī;V )∩C1(Ī;H)
is uniformly bounded for all σ ∈ S and fixed f ∈ H1(I;V ∗).

Theorem 2.2.4 can easily be generalized if the right-hand side admits an even higher temporal
regularity.

Corollary 2.2.5.
Let Assumption 2.2.1 hold. We denote F k := Hk(I;V ∗), k ≥ 1, and F k0 ⊂ F k as the subset of
source functions with f = 0 near t = 0. Then, for every f ∈ F k0 and fixed σ ∈ S, there exists
a unique solution u to the problem (2.8). The mapping

F k0 → Ck−1(Ī;V ) ∩ Ck(Ī;H) ∩ Ck+1(Ī;V ∗), f 7→ u

is linear and bounded. Furthermore, for fixed f ∈ F k0 , the solutions u(σ) are uniformly bounded
in Ck−1(Ī;V ) ∩ Ck(Ī;H) for all σ ∈ S.

Proof. We only have to show the improved temporal regularity of the solution, the rest follows
analogously to Theorem 2.2.4. The regularity of u is obtained by induction and Theorem 2.2.4,
which gives the case k = 1. Now, assume the statement is true for k ∈ N and let f ∈ F k+1

0 .
Similar as in the proof of Theorem 2.2.4 we consider

ρ(w)tt(t) +A(σ)w(t) = ft(t), w(0) = 0, wt(0) = 0. (2.20)

By the induction hypothesis, there exists a unique solution w ∈ Ck−1(Ī;V ) ∩ Ck(Ī;H) ∩
Ck+1(Ī;V ∗) to (2.20). Using the auxiliary function v ∈ Ck(Ī;V ) ∩ Ck+1(Ī;H) ∩ Ck+2(Ī;V ∗)
defined by v(t) =

∫ t
0 w(τ) dτ and integrating (2.20) in time, we find that v is the unique

solution to
ρvtt(t) +A(σ)v(t) = f(t), v(0) = 0, vt(0) = 0.

which concludes the induction step.

Remark 2.2.6.
General hyperbolic equations would require stronger compatibility conditions (cf. Theorem
2.1.5 and Chapter 7, Theorem 6 in [49]) to establish similar results as in Theorem 2.2.4
and Corollary 2.2.5. Since we work with homogeneous initial data, these requirements are
implicitly given by the assumption that f is zero near t = 0.

In the next step, we establish the continuity and Fréchet differentiability of the solution
u = u(σ) with respect to the coefficients σ.

Theorem 2.2.7.
Let Assumption 2.2.1 hold. For all σ ∈ S and f ∈ F k+1

0 , k ≥ 1, the problem given by (2.8)
possesses a unique solution u(σ) ∈ Ck−1(Ī;V ) ∩ Ck(Ī;H) and the mapping

S → Ck−1(Ī;V ) ∩ Ck(Ī;H) σ 7→ u(σ)

is Lipschitz continuous.
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Proof. By Corollary 2.2.5 there exists a unique solution u(σ) ∈ Ck(Ī;V ) ∩ Ck+1(Ī;H) to
(2.8). Let s ∈ L∞(Ω)n̂ such that σ + s ∈ S. Then there also exists a unique solution ũ(s) :=
u(σ + s) ∈ Ck(Ī;V ) ∩ Ck+1(Ī;H) to Ê(ũ(s), σ + s) = f with homogeneous initial data and
‖ũ(s)‖Ck(Ī;V ) ≤ C uniformly for all s with ‖s‖L∞(Ω)n̂ ≤ δ and δ sufficiently small. We denote
the difference by h := ũ(s)− u(σ) and obtain:

0 = Ê(ũ(s), σ + s)− Ê(u(σ), σ)

= ρ(ũtt(s)− utt(σ)) +A(σ + s)ũ(s)−A(σ)u(σ)

= ρhtt +A(σ)h+ (A(σ + s)−A(σ))ũ(s)

= ρhtt +A(σ)h+A(s)ũ(s),

where the last step follows by Assumption 2.2.1 (A1), i.e., the linear dependence of A on the
coefficients. Furthermore, due to f ∈ F k+1

0 and the homogeneous initial conditions, we also
have that ũ(s) is zero near t = 0. Hence, we obtain that h satisfies

Ê(h, σ) = −A(s)ũ(s), h(0) = 0, ht(0) = 0. (2.21)

Since ũ(s) ∈ Ck(Ī;V ) ∩ Ck+1(Ī;H), we obtain −A(s)ũ(s) ∈ Ck(Ī;V ∗) ⊂ Hk(I;V ∗). Hence,
−A(s)ũ(s) ∈ F k0 and we can apply Corollary 2.2.5 to obtain the estimate

‖h‖Ck−1(Ī;V ) + ‖ht‖Ck−1(Ī;H) ≤ C1 ‖A(s)ũ(s)‖Hk(I;V ∗)

≤ C2 ‖s‖L∞(Ω)n̂ ‖ũ(s)‖Ck(Ī;V )

≤ C3 ‖s‖L∞(Ω)n̂ .

Remark 2.2.8.
Note that it is necessary to exploit a higher temporal regularity of the source term in order
to show the continuity (and differentiability) of the state u(σ) with respect to the coefficients
σ. In fact, consider f ∈ L2(I;H) and h := ũ(s) − u(σ) as in the proof of Theorem 2.2.7. We
obtain that h satisfies

Ê(h, σ) = −A(s)ũ(s), h(0) = 0, ht(0) = 0,

and ‖A(s)ũ(s)‖L2(I;V ∗) ≤ C‖s‖L∞(Ω)n̂ . Thus, from the estimate in Theorem 2.2.3 we would
only get that

σ ∈ S 7→ (u(σ), u(σ)t) ∈ C(Ī;H)× C(Ī;V ∗)

is continuous, although (u(σ), u(σ)t) is bounded in the stronger space C(Ī;V )×C(Ī;H). For
f ∈ L2(I;V ∗) the situation is even more critical, because in this case we have ũ(s) ∈ C(Ī;H),
but A(s) ∈ L(V, V ∗).

In the next step, we prove that the solution operator σ 7→ u(σ) is Fréchet differentiable if we
admit an even higher temporal regularity of the right-hand side.
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Theorem 2.2.9.
Let Assumption 2.2.1 hold and consider f ∈ F k+2

0 with k ≥ 1. Then the solution operator
S → Ck−1(Ī;V ) ∩ Ck(Ī;H), σ 7→ u(σ) is Fréchet differentiable.

Proof. Let σ ∈ S and s ∈ L∞(Ω)n̂ with ‖s‖L∞(Ω)n̂ ≤ δ for δ sufficiently small and such
that σ + s ∈ S. Similar as in the proof of Theorem 2.2.7 we define ũ(s) as the solution
to Ê(ũ(s), σ + s) = f with homogeneous initial conditions. In order to show the Fréchet
differentiability of the solution operator, we consider the solution d(σ, s) to the linearized
state equation

Êu(u(σ), σ))d(σ, s) = −Êσ(u(σ), σ) s,

i.e., d(σ, s) satisfies

ρ dtt(σ, s) +A(σ)d(σ, s) = −A(s)u(σ), d(σ, s)(0) = 0, dt(σ, s)(0) = 0. (2.22)

In particular, s ∈ L∞(Ω)n̂ 7→ d(σ, s) ∈ Ck(Ī;V ) ∩ Ck+1(Ī;H) is linear and bounded by
Corollary 2.2.5. Let r := ũ(s) − u(σ) − d(σ, s) denote the remainder term of the Fréchet
derivative. By combining the hyperbolic equations for ũ(s), u(σ) and d(σ, s) we deduce

0 = ρ rtt +A(σ + s)ũ(s)−A(σ)(u(σ) + d(σ, s))−A(s)u(σ)

= ρ rtt +A(σ)r +A(s)(ũ(s)− u(σ)).

Hence, r satisfies Ê(r, σ) = −A(s)(ũ(s) − u(σ)) with homogeneous initial data. With h =
ũ(s)− u(σ), we obtain by Theorem 2.2.7 that h is zero near t = 0, h ∈ Ck(Ī;V )∩Ck+1(Ī;H)
and ‖h‖Ck(Ī;V ) ≤ C‖s‖L∞(Ω)n̂ . Thus, we also have −A(s)h ∈ F k0 and applying Corollary 2.2.5

yields r ∈ Ck−1(Ī;V ) ∩ Ck(Ī;H) as well as the estimate

‖r‖Ck−1(Ī;V ) + ‖rt‖Ck−1(Ī;H) ≤ C1 ‖A(s)h‖Hk(I;V ∗)

≤ C2 ‖s‖L∞(Ω)n̂ ‖h‖Ck(Ī;V )

≤ C3 ‖s‖2L∞(Ω)n̂ .

(2.23)

Hence, the remainder term r satisfies

‖r‖Ck−1(Ī;V ) + ‖rt‖Ck−1(Ī;H) = o
(
‖s‖L∞(Ω)n̂

)
for ‖s‖L∞(Ω)n̂ → 0.

Remark 2.2.10.
Note that the Lipschitz continuity as well as the Fréchet differentiability of the solution op-
erator comes with a loss of temporal regularity of the solution. Indeed, for f ∈ F k+2

0 we
obtain by Corollary 2.2.5 that there exists a unique solution u ∈ Ck+1(Ī;V ). However, by the
preceding Theorems, the mapping σ 7→ u(σ) is only Lipschitz-continuous from S to Ck(Ī;V )
and Fréchet differentiable as a map from S to Ck−1(Ī;V ).

By further pursuing the techniques from Theorem 2.2.9, we can also establish higher-order
Fréchet differentiability of the solution operator under suitable assumptions on the right-
hand side. We proceed as follows. First, we create a candidate for the k-th-order derivative by
differentiating the state equation k times. Next, we show that this directional derivative itself
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satisfies a hyperbolic equation of the same kind and finally, we apply the regularity results
that we established previously and prove that the sensitivity is actually the Fréchet derivative
of order k. Here, we will require the following notation. Let s = (s1, . . . , si) be a tuple of length
i with sj ∈ L∞(Ω)n̂, j = 1, . . . , i. For 1 ≤ j ≤ i we denote by s−j = (s1, . . . , sj−1, sj+1, . . . , si)
the (i− 1)-tuple of all elements of s except sj .
We proceed with the following Lemma.

Lemma 2.2.11.
Let Assumption 2.2.1 hold and let k ≥ 1, f ∈ F k+1

0 and σ ∈ S. Consider 1 ≤ i ≤ k
and s = (s1, . . . , si) with sj ∈ L∞(Ω)n̂ and σ + sj ∈ S, j = 1, . . . , i. Furthermore, we set
d0(σ) := u(σ) and define di := di(σ, s), as the solution of

Ê(d1, σ) = −A(s1) d0(σ), d1(0) = 0, d1
t (0) = 0 (i = 1), (2.24)

Ê(di, σ) = −
i∑

j=1

A(sj) d
i−1(σ, s−j), di(0) = 0, dit(0) = 0 (2 ≤ i ≤ k). (2.25)

Then di ∈ Ck−i(Ī;V ) ∩ Ck−i+1(Ī;H) is uniquely determined by (2.24), (2.25) and

∥∥di∥∥
Ck−i(Ī;V )

+
∥∥dit∥∥Ck−i(Ī;H)

≤ C
i∏

j=1

‖sj‖L∞(Ω)n̂ , 1 ≤ i ≤ k, (2.26)

with a constant C > 0 that depends on f and can be chosen uniformly on S.

Proof. For i = 1 and s1 = (s1) the first part in (2.24) reads as follows:

ρ d1
tt(σ, s

1) +A(σ) d1(σ, s1) +A(s1)u(σ) = 0,

which is the linearized state equation that was obtained in (2.22). By Corollary 2.2.5, u(σ) ∈
Ck(Ī;V ) and since f ∈ F k+1

0 also u(σ) is zero near t = 0. Thus, A(s1)u(σ) ∈ F k0 and we
deduce the existence of a unique solution d1 to (2.24) as well as the estimate∥∥d1

∥∥
Ck−1(Ī;V )

+
∥∥d1

t

∥∥
Ck−1(Ī;H)

≤ C ‖s1‖L∞(Ω)n̂ ,

where the constant C > 0 depends on f and can be chosen uniformly on S. Furthermore,
d1 is zero near t = 0. Note that for i = 1 and s = (s1), s−1 is empty and by setting
d0(σ, ∅) = d0(σ) = u(σ) the right-hand sides in (2.24) and (2.25) coincide. Assume now that
the statement is true for i − 1 with 1 < i ≤ k. By the induction hypothesis, the right-hand

side in (2.25) is in F
k−(i−1)
0 . Hence, applying Corollary 2.2.5 again gives the existence of a

unique solution di ∈ Ck−i(Ī;V ) ∩ Ck−i+1(Ī;H) to (2.25) and

∥∥di∥∥
Ck−i(Ī;V )

+
∥∥dit∥∥Ck−i(Ī;H)

≤
i∑

j=1

C ‖sj‖L∞(Ω)n̂

i∏
p=1,p 6=j

‖sp‖L∞(Ω)n̂

= i C

i∏
j=1

‖sj‖L∞(Ω)n̂ ,

which yields (2.26) for di.
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Lemma 2.2.12.
Let Assumption 2.2.1 hold and consider 1 ≤ i ≤ k, f ∈ F k+1

0 , σ ∈ S, s = (s1, . . . , si) with
sj ∈ L∞(Ω)n̂ and σ + sj ∈ S, j = 1, . . . , i. Furthermore, let s ∈ L∞(Ω)n̂ with σ + s ∈ S. We
define hi(σ, s, s) := di(σ + s, s) − di(σ, s), where di is defined by (2.24) (resp. (2.25)), and,
furthermore, h0(σ, s, ∅) := h0(σ, s) := u(σ + s)− u(σ).

Moreover, let ri(σ, s) := di−1(σ + si, s−i)− di−1(σ, s−i)− di(σ, s).

Then hi = hi(σ, s, s) ∈ Ck−i(Ī;V ) ∩ Ck−i+1(Ī;H) satisfies:

Ê(hi, σ) = −
i∑

j=1

A(sj)h
i−1(σ, s, s−j)−A(s)di(σ + s, s), (2.27)

and hi(0) = 0, hit(0) = 0.

Furthermore, ri = ri(σ, s) ∈ Ck−i(Ī;V ) ∩ Ck−i+1(Ī;H) satisfies:

Ê(ri, σ) = −
i−1∑
j=1

A(sj)r
i−1(σ, s−j)−A(si)h

i−1(σ, si, s−i), (2.28)

and ri(0) = 0, rit(0) = 0.

Proof. By inserting di(σ + s, s) and di(σ, s) into (2.24) (resp. (2.25)) and subtracting both
equations, we obtain

0 = ρ hitt(σ, s, s) +A(σ + s)di(σ + s, s)−A(σ)di(σ, s)

+
i∑

j=1

A(sj)
(
di−1(σ + s, s−j)− di−1(σ, s−j)

)
= Ê(hi, σ) +A(s)di(σ + s, s) +

i∑
j=1

A(sj)h
i−1(σ, s, s−j).

Next, we note that ri(σ, s) = hi−1(σ, si, s−i) − di(σ, s). Since the definition of h0 coincides
with h defined in the proof of Theorem 2.2.7, we obtain from (2.21) and (2.24)

Ê(r1, σ) = −A(s1)u(σ + s1) +A(s1)u(σ) = −A(s1)h0(σ, s1).

Furthermore, for 1 < i ≤ k we obtain from (2.25) for di = di(σ, s) and from (2.27) for
hi−1 = hi−1(σ, si, s−i):

Ê(ri, σ) = Ê(hi−1, σ)− Ê(di, σ)

= −
i−1∑
j=1

A(sj) r
i−1(σ, s−j)−A(si)

(
di−1(σ + si, s−i)− di−1(σ, s−i)

)
= −

i−1∑
j=1

A(sj) r
i−1(σ, s−j)−A(si)h

i−1(σ, si, s−i).
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Now, we can prove the main statement. Here, we apply the same technique as in the proof of
Theorem 2.2.9.

Theorem 2.2.13.
Let Assumption 2.2.1 hold and consider f ∈ F k+2

0 with k ≥ 1. Then the solution operator
S → C(Ī;V ) ∩ C1(Ī;H), σ 7→ u(σ) is k-times Lipschitz continuously Fréchet differentiable.

Proof. Let 1 ≤ i ≤ k, σ ∈ S and sj ∈ L∞(Ω)n̂ with σ + sj ∈ S, j = 1, . . . , i + 1. In the first
step, we inductively derive hi = hi(σ, si+1, s) with s = (s1, . . . , si) is zero near t = 0 as well
as the estimate ∥∥hi∥∥

Ck−i(Ī;V )
+
∥∥hit∥∥Ck−i(Ī;H)

≤ C
i+1∏
j=1

‖sj‖L∞(Ω)n̂ , (2.29)

where the constant C > 0 depends on f and can be chosen uniformly on S.
For i = 0, Theorem 2.2.7 yields h0 = u(σ + s1)− u(σ) ∈ Ck(Ī;V ) and∥∥h0

∥∥
Ck(Ī;V )

+
∥∥h0

t

∥∥
Ck(Ī;H)

≤ C ‖s1‖L∞(Ω)n̂ .

Note that here the temporal regularity is shifted by one, since we have f ∈ F k+2
0 instead of

F k+1
0 this time. Furthermore, since u(σ) and u(σ+ s1) are zero near t = 0, the same holds for
h0.
Assume now that the induction hypothesis is true for i − 1. By Lemma 2.2.11, we obtain
A(si+1)di ∈ F k−i+1

0 with di = di(σ + si+1, s) as well as the estimate

∥∥di∥∥
Ck−i+1(Ī;V )

+
∥∥dit∥∥Ck−i+1(Ī;H)

≤ C
i∏

j=1

‖sj‖L∞(Ω)n̂ , (2.30)

where C is independent of si+1. Note that also the temporal regularity of di has been shifted
by one since f ∈ F k+2

0 . Thus, the right-hand side in (2.27) is in F k−i+1
0 and by Corollary 2.2.5

we deduce ∥∥hi∥∥
Ck−i(Ī;V )

+
∥∥hit∥∥Ck−i(Ī;H)

≤
i∑

j=1

C ‖sj‖L∞(Ω)n̂

∥∥hi−1(σ, si+1, s−j)
∥∥
Ck−i+1(Ī;V )

+ C ‖si+1‖L∞(Ω)n̂

∥∥di(σ + si+1, s)
∥∥
Ck−i+1(Ī;V )

≤ C
i+1∏
j=1

‖sj‖L∞(Ω)n̂ .

Again, since the right-hand side in (2.27) is zero near t = 0, the same holds for hi.
Finally, we note that ri = ri(σ, s) as defined in (2.28) is the remainder term of the i-th Fréchet
derivative and show by induction the following estimate

∥∥ri∥∥
Ck−i(Ī;V )

+
∥∥rit∥∥Ck−i(Ī;H)

≤ C ‖si‖2L∞(Ω)n̂

i−1∏
j=1

‖sj‖L∞(Ω)n̂ . (2.31)

For i = 1, we have already shown in (2.23) that∥∥r1
∥∥
Ck−1(Ī;V )

+
∥∥r1
t

∥∥
Ck−1(Ī;H)

≤ C ‖s1‖2L∞(Ω)n̂ .
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Assume now (2.31) is true for i − 1. Then we obtain by Lemma 2.2.12 and the previous
estimate for hi−1 that the right-hand side in (2.28) is in F k−i+1

0 and∥∥ri∥∥
Ck−i(Ī;V )

+
∥∥rit∥∥Ck−i(Ī;H)

≤ C1

i−1∑
j=1

‖sj‖L∞(Ω)n̂ ‖r
i−1(σ, s−j)‖Ck−i+1(Ī;V )

+ C2 ‖si‖L∞(Ω)n̂ ‖h
i−1(σ, si, s−i)‖Ck−i+1(Ī;V )

≤ C3

i−1∑
j=1

‖sj‖L∞(Ω)n̂ ‖si‖
2
L∞(Ω)n̂

i−1∏
p=1

p 6=j

‖sp‖L∞(Ω)n̂ + C4 ‖si‖L∞(Ω)n̂

i∏
j=1

‖sj‖L∞(Ω)n̂

≤ C ‖si‖2L∞(Ω)n̂

i−1∏
j=1

‖sj‖L∞(Ω)n̂ .

Hence, the remainder term of the i-th derivative satisfies∥∥ri∥∥
Ck−i(Ī;V )

= o
(
‖si‖L∞(Ω)n̂

)
for ‖si‖L∞(Ω)n̂ → 0, 1 ≤ i ≤ k.

The Lipschitz continuity of the derivative follows from (2.29).

There are two immediate generalizations of Theorem 2.2.13 that follow from Corollary 2.2.5
and are stated below.

Corollary 2.2.14.
Let Assumption 2.2.1 hold and consider k ≥ 1, l ≥ 0 and f ∈ F k+l+2

0 . Then it holds:

1. The solution operator σ 7→ u(σ) is k-times Lipschitz continuously Fréchet differentiable
as a map from S to C l(Ī;V ).

2. The solution operator σ 7→ u(σ) is (k + 1)-times Lipschitz continuously Fréchet differ-
entiable as a map from S to C l(Ī;H).

Remark 2.2.15.
Very recently and without the author’s knowledge, similar results as in this section have
been established independently in [16] and [78]. While the first paper considers general hy-
perbolic evolution equations, the latter is restricted to the acoustic wave equation. Both have
in common that they work with stronger assumptions on the right-hand sides, namely f in
Hk(I;H) or even Ck(Ī , H). Since the seismic sources we consider are modeled as smoothed
Dirac measures, requiring only f ∈ Hk(I;V ∗) is clearly advantageous.
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2.3 Generalizations Involving Superposition Operators

In this section, we seek to further generalize the dependence of the elliptic operator A on the
coefficients. Specifically, we want to replace the coefficients σ by a (nonlinear) superposition
operator that acts on some material parameters m before they enter the elliptic operator. The
purpose of this is twofold. On the one hand, we want to be able to treat various parameteri-
zations of different physical quantities in a unified way and, on the other hand, we will use a
superposition operator to ensure the uniform coercivity of A on the whole space of material
parameters without the need of explicit constraints. In order to clarify the notation and to
distinguish it from the preceding subsection, we call m parameters instead of coefficients.
We consider superposition operators of the following form:

Definition 2.3.1 (Nemytskii or superposition operator).
Let Ω ⊂ Rd be a bounded measurable set with finite measure and ϕ : Rn → Rn̂ continuous.
The operator Φ defined by Φ(m)(x) := ϕ(m(x)) that assigns a function Φ(m) : Ω → Rn̂ to
every m : Ω→ Rn is called Nemytskii or superposition operator.

Note that a more general definition of Nemytskii operators can, for instance, be found in [122],
section 4.3. In particular, it would be possible to consider functions ϕ : Ω × Rn → Rn̂ that
depend on x and m, but this is not necessary for our purposes.
In what follows, we will collect some properties on the differentiability of the superposition
operator. Similar results can be found, for instance, in [122] (section 4.3), [109] (section 10.3),
or the monographs [5, 44].

Lemma 2.3.2.
Let ϕ : Rn → Rn̂ be Lipschitz continuous. Then the superposition operator Φ defined by
Φ(m)(x) := ϕ(m(x)) is Lipschitz continuous from L∞(Ω)n to L∞(Ω)n̂.

Proof. For every m ∈ L∞(Ω)n there exists a C > 0 such that ‖m(x)‖∞ ≤ C for almost all
x ∈ Ω, where ‖.‖∞ is the infinity norm in Rn̂. Hence, we obtain

‖Φ(m)‖L∞(Ω)n̂ = ‖ϕ(m(.))‖L∞(Ω)n̂ ≤ ‖ϕ(0)‖∞ + ‖ϕ(m(.))− ϕ(0)‖L∞(Ω)n̂

≤ ‖ϕ(0)‖∞ + L ‖m‖L∞(Ω)n ,

where L denotes the Lipschitz constant of ϕ. Hence, Φ(m) ∈ L∞(Ω)n̂. Furthermore, for
arbitrary m1,m2 ∈ L∞(Ω)n we obtain

‖Φ(m1)− Φ(m2)‖L∞(Ω)n̂ = ‖ϕ(m1(.))− ϕ(m2(.))‖L∞(Ω)n̂ ≤ L‖m1 −m2‖L∞(Ω)n .

Thus, Φ maps Lipschitz continuously from L∞(Ω)n to L∞(Ω)n̂.

In the same way, differentiability properties of ϕ can be carried over to Φ.

Lemma 2.3.3.
Let ϕ : Rn → Rn̂ be k-times Lipschitz continuously differentiable. Then the superposition
operator Φ : L∞(Ω)n → L∞(Ω)n̂, Φ(m)(x) := ϕ(m(x)) is k-times Lipschitz continuously
Fréchet differentiable with(

Φ(k)(m)(h1, . . . , hk)
)

(x) = ϕ(k)(m(x))(h1(x), . . . , hk(x)) ∀ h1, . . . , hk ∈ L∞(Ω)n. (2.32)
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Proof. A similar proof can be found in [122], Lemma 4.12 and Lemma 4.13, for the case
n = n̂ = 1. We only show the case k = 1 but comment on the extension to derivatives of
higher order at the end of the proof, see also Proposition 6.9 in [44] and Satz 4.22 in [122].
Similar as before, for every m ∈ L∞(Ω)n there exists a C > 0 such that ‖m(x)‖∞ ≤ C for
almost all x ∈ Ω and we obtain for every h ∈ L∞(Ω)n

‖ϕ′(m(.))h(.)‖L∞(Ω)n̂ = ‖(ϕ′(0) + ϕ′(m(.))− ϕ′(0))h(.)‖L∞(Ω)n̂

≤ ‖ϕ′(0)h(.)‖L∞(Ω)n̂ + ‖(ϕ′(m(.))− ϕ′(0))h(.)‖L∞(Ω)n̂

≤ (C + L1‖m‖L∞(Ω)n)‖h‖L∞(Ω)n ,

where L1 denotes the Lipschitz constant of ϕ′. Hence, G(m) : L∞(Ω)n → L∞(Ω)n̂, h 7→
ϕ′(m(.))h satisfies G(m) ∈ L(L∞(Ω)n, L∞(Ω)n̂).
Furthermore, G : L∞(Ω)n → L(L∞(Ω)n, L∞(Ω)n̂) is Lipschitz continuous, because we obtain
for arbitrary m1,m2 ∈ L∞(Ω)n

‖G(m1)−G(m2)‖L(L∞(Ω)n,L∞(Ω)n̂) = sup
‖h‖L∞(Ω)n=1

‖(G(m1)−G(m2))h‖L∞(Ω)n̂

= sup
‖h‖L∞(Ω)n=1

‖(ϕ′(m1(.))− ϕ′(m2(.)))h(.)‖L∞(Ω)n̂

≤ L1‖m1 −m2‖L∞(Ω)n .

It remains to be shown that G(m) is the Fréchet derivative of Φ. We define

r(m,h) := Φ(m+ h)− Φ(m)−G(m)h.

The remainder term can be expressed by

r(m,h)(x) = ϕ(m(x) + h(x))− ϕ(m(x))− ϕ′(m(x))h(x)

=

∫ 1

0

(
ϕ′(m(x) + τh(x))− ϕ′(m(x))

)
h(x) dτ.

(2.33)

Hence,

‖r(m,h)(x)‖∞ ≤
∫ 1

0
‖(ϕ′(m(x) + τh(x))− ϕ′(m(x)))h(x)‖∞ dτ

≤
∫ 1

0
τL1‖h(x)‖2∞ dτ ≤

1

2
L1‖h‖2L∞(Ω)n .

(2.34)

Thus, we have ‖r(m,h)‖L∞(Ω)n̂ = o
(
‖h‖L∞(Ω)n

)
for ‖h‖L∞(Ω)n → 0 and Φ is Lipschitz con-

tinuously Fréchet differentiable with derivative Φ′(m) = ϕ′(m(.)).
Now consider k ≥ 2 and let (2.32) be true for k − 1. In the same way as before, we obtain
that ϕ(k)(m(.)) is bounded and that m 7→ ϕ(k)(m(.)) is Lipschitz continuous due to the
Lipschitz continuity of the derivative ϕ(k). Next, we consider the bounded multilinear form
G(k)(m) : L∞(Ω)n × . . .× L∞(Ω)n → L∞(Ω)n̂, (h1, . . . , hk) 7→ ϕk(m(.))(h1, . . . , hk). Setting

rk(m,h1, . . . , hk) :=
(

Φk−1(m+ hk)− Φk−1(m)
)

(h1, . . . , hk−1)−G(k)(m)(h1, . . . , hk)

and repeating (2.33) and (2.34) yields the required estimate for the remainder term of the
Fréchet derivative.
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Remark 2.3.4.
From the proofs of Lemma 2.3.2 and Lemma 2.3.3 we easily observe that similar results can
be obtained for locally Lipschitz continuous ϕ and Φ.

We will now consider a nonempty, open and convex set D ⊂ L∞(Ω)n and a superposition
operator Φ : D → S ⊂ L∞(Ω)n̂ that maps the parameters, which we seek to determine in the
inverse problem, to coefficients, which enter the hyperbolic equation. To this end, we consider
a family of continuous bilinear forms a(Φ(m)) : V ×V → R and, similar as before, we identify
a(Φ(m)) with the operator A(Φ(m)) ∈ L(V, V ∗) by

a(Φ(m))(v, w) = 〈A(Φ(m))v, w〉V ∗,V ∀ v, w ∈ V.

Now, we consider equations

ρutt(t) +A(Φ(m))u(t) = f(t),

with initial data

u(0) = 0, ut(0) = 0,

and compactly write them with the help of the operator E(u,m) := ρutt +A(Φ(m))u as:

E(u,m) = f, u(0) = 0, ut(0) = 0. (2.35)

The variational form of (2.35) reads as follows: For all v ∈ V and a.e. in I:

〈ρutt(t), v〉V ∗,V + a(Φ(m))(u(t), v) = 〈f(t), v〉V ∗,V .

Now, we have to adjust Assumption 2.2.1 to the modified setting and continue to work with
the following assumptions on Φ, A and ρ.

Assumption 2.3.5.

(A1) D ⊂ L∞(Ω)n is a nonempty, open and convex set and Φ : L∞(Ω)n → L∞(Ω)n̂ is a
superposition operator such that there exists an open and bounded neighborhood S ⊂
L∞(Ω)n̂ of Φ(D). Furthermore, we assume that A : L∞(Ω)n̂ → L(V, V ∗) is a bounded
linear operator.

(A2) Assumption 2.2.1 (A2) - (A5) holds for the neighborhood S.

Remark 2.3.6.
Note that the major difference between Assumption 2.3.5 and Assumption 2.2.1 is the fact that
S is required to be bounded while this is not the case for D anymore. Hence, the superposition
operator Φ offers a handy alternative to ensure the well-posedness of the governing equation for
the whole space L∞(Ω)n by mapping all parameters to physically reasonable coefficients. Here,
we do not necessarily have to require that D is convex. However, since D will be associated
with the feasible region of the parameter identification problem in the next chapter, this is
a suitable assumption. On the other hand, if D is convex, we can establish the Lipschitz
continuity of the derivatives with some convenient assumptions on Φ, see Theorem 2.3.9.
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Corollary 2.3.7.
Let Assumption 2.3.5 hold. Then for every f ∈ F k0 with k ≥ 1 and fixed m ∈ D there exists a
unique solution u to the problem (2.35). The mapping

F k0 → Ck−1(Ī;V ) ∩ Ck(Ī;H) ∩ Ck+1(Ī;V ∗), f 7→ u

is linear and bounded and for fixed f ∈ F k0 , the solutions u(m) are uniformly bounded in
Ck−1(Ī;V ) ∩ Ck(Ī;H) for all m ∈ D.

Proof. This is a direct consequence of Corollary 2.2.5 and Assumption 2.3.5.

In the next step, we seek to establish the continuity and Fréchet differentiability of the state u
with respect to the parameters m instead of the coefficients σ. By imposing suitable assump-
tions on the continuity and Fréchet differentiability of the superposition operator Φ, this is a
straightforward extension utilizing the results and techniques from the previous section and
applying the chain rule.

Theorem 2.3.8.
Let Assumption 2.3.5 hold and let Φ be Lipschitz continuous. Then, for all f ∈ F k+1

0 , k ≥ 1,
the mapping

D → Ck−1(Ī;V ) ∩ Ck(Ī;H), m 7→ u(m)

is Lipschitz continuous, where u(m) denotes the unique solution to (2.35).

Proof. The existence of a unique solution u(m) is guaranteed even in the stronger space
Ck(Ī;V ) ∩ Ck+1(Ī;H) by Corollary 2.3.7. Consider m1,m2 ∈ D and let σ1 := Φ(m1) and
σ2 := Φ(m2). We denote the solutions to (2.8) for σ1, σ2 by û(σ1), û(σ2) and obtain by
Theorem 2.2.7

‖u(m1)−u(m2)‖Ck−1(Ī;V ) + ‖ut(m1)− ut(m2)‖Ck−1(Ī;H)

= ‖û(σ1)− û(σ2)‖Ck−1(Ī;V ) + ‖ût(σ1)− ût(σ2)‖Ck−1(Ī;H)

≤ Lσ‖σ1 − σ2‖L∞(Ω)n̂ = Lσ‖Φ(m1)− Φ(m2)‖L∞(Ω)n̂

≤ LσLΦ‖m1 −m2‖L∞(Ω)n ,

where Lσ and LΦ denote the Lipschitz constants from Theorem 2.2.7 and Φ, respectively.

We can now apply the chain rule to derive the differentiability of the parameter-to-solution
operator.

Theorem 2.3.9.
Let Assumption 2.3.5 hold and let Φ be Lipschitz continuous differentiable with Φ′ uniformly
bounded on D, i.e., there exists a K > 0 such that

‖Φ′(m)‖L(L∞(Ω)n,L∞(Ω)n̂) ≤ K ∀ m ∈ D.

Then, for all f ∈ F k+2
0 , k ≥ 1, the parameter-to-solution operator of (2.35)

D → Ck−1(Ī;V ) ∩ Ck(Ī;H), m 7→ u(m)

is Lipschitz continuously differentiable.
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Proof. Again, we denote the solution operator of (2.8) by

û : L∞(Ω)n̂ ⊃ S → Ck−1(Ī;V ) ∩ Ck(Ī;H), σ 7→ û(σ),

which is Lipschitz continuously differentiable by Theorem 2.2.9. Now, we write u(m) =
û(Φ(m)) and applying the chain rule (cf. Theorem 2.2.1 in [31]) yields that m 7→ u(m) is
continuously Fréchet differentiable as a map from D to U := Ck−1(Ī;V ) ∩ Ck(Ī;H) with
derivative given by

u′(m) = û′(Φ(m))Φ′(m).

Moreover, for arbitrary m1,m2 ∈ D, we have

‖u′(m1)− u′(m2)‖L(L∞(Ω)n,U)

= ‖û′(Φ(m1))Φ′(m1)− û′(Φ(m2))Φ′(m2)‖L(L∞(Ω)n,U)

≤ ‖û′(Φ(m1))(Φ′(m1)− Φ′(m2)) + (û′(Φ(m1))− û′(Φ(m2)))Φ′(m2)‖L(L∞(Ω)n,U).

(2.36)

The Lipschitz continuity of û′ (cf. Corollary 2.2.14) together with the boundedness of S implies
that û′(σ) ∈ L(L∞(Ω)n̂, U) is uniformly bounded on S. Hence, together with the Lipschitz
continuity of Φ′, we obtain

‖û′(Φ(m1))(Φ′(m1)− Φ′(m2))‖L(L∞(Ω)n,U) ≤ C‖m1 −m2‖L∞(Ω)n . (2.37)

Furthermore, the boundedness of Φ′ implies the Lipschitz continuity of Φ, cf. Theorem 3.3.2
in [31]. Thus, by the Lipschitz continuity of û′, we deduce

‖(û′(Φ(m1))− û′(Φ(m2)))Φ′(m2)‖L(L∞(Ω)n,U) ≤ K Lû′‖Φ(m1)− Φ(m2)‖L∞(Ω)n̂

≤ K Lû′ LΦ‖m1 −m2‖L∞(Ω)n ,
(2.38)

where Lû′ and LΦ are the Lipschitz constants of û′ and Φ. Hence, we conclude from (2.36),
(2.37) and (2.38)

‖u′(m1)− u′(m2)‖L(L∞(Ω)n,U) ≤ C‖m1 −m2‖L∞(Ω)n .

The analysis can be extended to higher-order derivatives by applying the chain rule several
times. As an alternative, we provide a direct proof of the differentiability of the parameter-
to-solution operator m 7→ u(m) and derive a representation of the k-th Fréchet derivative
as a solution to (2.35) with a different right-hand side. The technique is very similar to the
analysis in the preceding section. However, due to the nonlinearity of Φ the recursive formula
is more involved. To this end, we slightly change the notation. Let s = (s1, . . . , si) be a tuple
of length i with sj ∈ L∞(Ω)n, j = 1, . . . , i. For any subset I ⊆ {1, . . . , i}, we denote by sI
the tuple of length |I| that contains only the sj with j ∈ I. Furthermore, the complement of
I in {1, . . . , i} is denoted by Ic. Hence, sIc is a tuple of length i − |I| with elements sj and
j ∈ {1, . . . , i}\I. We also allow for empty tuples if |I| = 0 or |Ic| = 0, respectively. Moreover,
for τ ∈ L∞(Ω)n, let (s, τ) := (s1, . . . , si, τ) denote the (i+ 1)-tuple of s concatenated with τ .
Lastly, the remainder term of the i-th Fréchet derivative of Φ is denoted by

Ri(m, s) := Φi−1(m+ s)− Φi−1(m)− Φi(m)s.
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In what follows, we will denote the i-th derivative of the solution operator m 7→ u(m) by
u(i)(m). Applying this operator to a tupel s is denoted by u(i)(m)[s]. In order to include the
case i = 0 and to shorten the notation, we use a tuple of length zero and write u(0)(m)[∅] :=
u(0)(m) = u(m).

Theorem 2.3.10.
Let Assumption 2.3.5 hold and consider k ≥ 1 and f ∈ F k+2

0 . Furthermore, let Φ be k-times
Lipschitz continuously Fréchet differentiable with Φ(i)(m) ∈ Li(D;L∞(Ω)n̂), i = 1, . . . , k,
uniformly bounded on D. Then the solution operator D → C(Ī;V ) ∩ C1(Ī;H), m 7→ u(m) is
k-times Lipschitz continuously Fréchet differentiable.
Furthermore, let s = (s1, . . . , si) with sj ∈ L∞(Ω)n and m + sj ∈ D, j = 1, . . . , i. Then the
i-th derivative applied to s is recursively defined by di = u(i)(m)[s] as the unique solution to

E(di,m) = −
i∑

j=1

∑
I⊆{1,...,i}
|I|=j

A(Φ(j)(m)[sI ])u
(i−j)(m)[sIc ], di(0) = 0, dit(0) = 0. (2.39)

Proof. The proof is divided into three parts.
First, we show that di ∈ Ck+1−i(Ī;V ) ∩ Ck+2−i(Ī;H) is uniquely determined by (2.39). In a
second step, we show that m 7→ ui(m) is Lipschitz continuous from D to Li(D;Ck−i(Ī;V ) ∩
Ck−i+1(Ī;H)). Finally, we show that di is the Fréchet derivative by providing an estimate for
the remainder term. Since the technique is very similar to the previous section, we slightly
shorten the presentation.
Part I.
Since the existence of higher-order derivatives follows only from the complete proof, we replace
u(i−j) in (2.39) by di−j and show by induction that di ∈ Ck+1−i(Ī;V ) ∩ Ck+2−i(Ī;H) is
uniquely determined by

E(di,m) = −
i∑

j=1

∑
I⊆{1,...,i}
|I|=j

A(Φ(j)(m)[sI ]) d
i−j(m)[sIc ], di(0) = 0, dit(0) = 0. (2.40)

and ∥∥di∥∥
Ck+1−i(Ī;V )

+
∥∥dit∥∥Ck+1−i(Ī;H)

≤ C
i∏

j=1

‖sj‖L∞(Ω)n , 1 ≤ i ≤ k, (2.41)

with a constant C > 0 that can be chosen uniformly on D. Moreover, we recursively obtain
that di is zero near t = 0 and depends linearly on every sj , j = 1, . . . , i, by Corollary 2.3.7.
For i = 1 and s = (s1), (2.40) reads as follows:

ρ d1
tt +A(Φ(m)) d1 = −A(Φ′(m)s1)u(m), d1(0) = 0, d1

t (0) = 0.

Again by Corollary 2.3.7, we deduce u(m) ∈ Ck+1(Ī;V ) and A(Φ′(m)s1)u(m) ∈ F k+1
0 . Fur-

thermore, with Assumption 2.3.5 and the uniform boundedness of Φ′ we deduce

‖A(Φ′(m)s1)u(m)‖Ck+1(Ī;V ∗) ≤ ‖A(Φ′(m)s1)‖L(V,V ∗)‖u(m)‖Ck+1(Ī;V )

≤ C‖Φ′(m)s1)‖L∞(Ω)n̂‖u(m)‖Ck+1(Ī;V )

≤ C‖s1‖L∞(Ω)n ,
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where the constant C > 0 can be chosen uniformly on D. Hence, by Corollary 2.3.7 there
exists a unique solution d1 to (2.40) which satisfies the estimate∥∥d1

∥∥
Ck(Ī;V )

+
∥∥d1

t

∥∥
Ck(Ī;H)

≤ C ‖s1‖L∞(Ω)n .

Moreover, s ∈ L∞(Ω)n 7→ d1 ∈ Ck(Ī;V ) ∩ Ck+1(Ī;H) is linear and d1 is zero near t = 0.
Assume now that the statement is true for i− 1 with 1 < i ≤ k. By the induction hypothesis,
di−j ∈ Ck+1−(i−j)(Ī;V ), j = 1, . . . , i. I.e., the right-hand side in (2.40) is in F k+2−i

0 . By the
boundedness of Φ(j) and the induction hypothesis for (2.41), we obtain for any I ⊆ {1, . . . , i}

‖A(Φ(j)(m)[sI ]) d
i−j(m)[sIc ]‖Ck+2−i(Ī;V ∗)

≤ C‖Φ(j)(m)[sI ]‖L∞(Ω)n̂‖di−j(m)[sIc ]‖Ck+2−i(Ī;V )

≤ C
∏
j∈I
‖sj‖L∞(Ω)n

∏
j∈Ic
‖sj‖L∞(Ω)n = C

i∏
j=1

‖sj‖L∞(Ω)n .

(2.42)

Thus, Corollary 2.3.7 yields again the existence of a unique solution di ∈ Ck+1−i(Ī;V ) ∩
Ck+2−i(Ī;H) to (2.39) and from (2.42) we deduce∥∥di∥∥

Ck+1−i(Ī;V )
+
∥∥dit∥∥Ck+1−i(Ī;H)

≤ C
i∏

j=1

‖sj‖L∞(Ω)n ,

which is (2.41) for di.
Part II.
Now, we consider hi(m, s) := di(m + s) − di(m) for s ∈ L∞(Ω)n with m + s ∈ D. With the
previously used notation, we have h0(m, s)[∅] = u(m + s) − u(m). For s = (s1, . . . , si) with
sj ∈ L∞(Ω)n, m+sj ∈ D, we insert di(m+s) and, resp., di(m) into (2.40), take the difference
and obtain that hi = hi(m, s)[s] satisfies hi(0) = 0, hit(0) = 0 and

E(hi,m)

=E(di(m+ s)[s],m+ s)− E(di(m)[s],m)−A(Φ(m+ s)− Φ(m))di(m+ s)[s]

= −
i∑

j=1

∑
I⊆{1,...,i}
|I|=j

A(Φ(j)(m+ s)[sI ]) d
i−j(m+ s)[sIc ]−A(Φ(j)(m)[sI ]) d

i−j(m)[sIc ]

−A(Φ(m+ s)− Φ(m))di(m+ s)[s]

=−
i∑

j=0

∑
I⊆{1,...,i}
|I|=j

A((Φ(j)(m+ s)− Φ(j)(m))[sI ])d
i−j(m+ s)[sIc ]

−
i∑

j=1

∑
I⊆{1,...,i}
|I|=j

A(Φ(j)(m)[sI ])h
i−j(m, s)[sIc ].

(2.43)

Next, we show by induction that hi is uniquely determined by (2.43) with homogeneous initial
conditions and satisfies∥∥hi∥∥

Ck−i(Ī;V )
+
∥∥hit∥∥Ck−i(Ī;H)

≤ C ‖s‖L∞(Ω)n

i∏
j=1

‖sj‖L∞(Ω)n , 1 ≤ i ≤ k, (2.44)
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where C > 0 can be chosen uniformly on D.

For i = 1 and s = (s1), (2.43) reads as

E(h1,m) =−A((Φ(m+ s)− Φ(m)))d1(m+ s)[s1]

−A((Φ′(m+ s)− Φ′(m))[s1])u(m+ s)

−A(Φ′(m)[s1])(u(m+ s)− u(m)).

(2.45)

We note that every term on the right-hand side of (2.45) is bounded in the Ck(Ī;V ∗)-norm by
C‖s‖L∞(Ω)n‖s1‖L∞(Ω)n with a constant C independent of m and s. Here, we have to employ (i)
the Lipschitz continuity of Φ and (2.41), (ii) the Lipschitz continuity of Φ′ and the boundedness
of u and (iii) the boundedness of Φ′ and Theorem 2.3.8. Hence, the right-hand side in (2.45)
is in F k0 and Corollary 2.3.7 gives (2.44) for i = 1. Furthermore, since d1(m+ s)[s1], u(m+ s)
and u(m) are zero near t = 0, the same holds true for h1.

Assume now that the statement is true for some i with 1 ≤ i < k. From (2.41) and using the
Lipschitz continuity of Φ(j) we deduce for any I ⊆ {1, . . . , i}, j ∈ {0, . . . , i} and ι = k + 1− i

‖A((Φ(j)(m+ s)−Φ(j)(m))[sI ]) d
i−j(m)[sIc ]‖Cι+j(Ī;V ∗) ≤ C‖s‖L∞(Ω)n

i∏
j=1

‖sj‖L∞(Ω)n . (2.46)

By the induction hypothesis and the boundedness of Φ(j)(m), we also obtain for any I ⊆
{1, . . . , i} and j ∈ {1, . . . , i}

‖A(Φ(j)(m)[sI ])h
i−j(m, s)[sIc ]‖Cι+j−1(Ī;V ∗) ≤ C‖s‖L∞(Ω)n

i∏
j=1

‖sj‖L∞(Ω)n . (2.47)

Hence, every term of the right-hand side in (2.43) is in Cι(Ī;V ∗) ⊂ Hk+1−i(I;V ∗) and,
together with the initial homogeneous conditions, Corollary 2.3.7 gives the existence of a
unique solution hi ∈ Ck−i(Ī;V )∩Ck−i+1(Ī;H) to (2.43). Furthermore, we deduce the estimate
(2.44) from (2.46) and (2.47). In particular, m 7→ di(m) is Lipschitz continuous from D to
Li(D;Ck−i(Ī;V ) ∩ Ck−i+1(Ī;H)).

Part III.
Finally, we consider ri(m, s) := hi−1(m, s)− di(m)s for s ∈ L∞(Ω)n with m+ s ∈ D. Hence,
ri is the remainder term of the i-th derivative. For s = (s1, . . . , si−1) with sj ∈ L∞(Ω)n,
m + sj ∈ D, we have (di(m)s)[s] = di(m)[(s, s)]. Thus, inserting di(m)[(s, s)] into (2.40) and
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rearranging the summations with regard to whether s ∈ I or s ∈ Ic = {1, . . . , i− 1} \I yields

E(di(m)[(s, s)],m) =−
i−1∑
j=1

∑
I⊆{1,...,i−1}

|I|=j

A(Φ(j)(m)[sI ]) d
(i−j)(m)[(sIc , s)]

−
i∑

j=1

∑
I⊆{1,...,i−1}
|I|=j−1

A(Φ(j)(m)[(sI , s)]) d
(i−j)(m)[sIc ]

=−
i−1∑
j=1

∑
I⊆{1,...,i−1}

|I|=j

A(Φ(j)(m)[sI ]) d
(i−j)(m)[(sIc , s)]

−
i−1∑
j=0

∑
I⊆{1,...,i−1}

|I|=j

A(Φ(j+1)(m)[(sI , s)]) d
(i−1−j)(m)[sIc ].

(2.48)

Now, we insert hi−1(m, s) into (2.43), subtract (2.48) and obtain after some rearrangements
that ri = ri(m, s)[s] satisfies ri(0) = 0, rit(0) = 0 and

E(ri,m) =E(hi−1(m, s)[s],m)− E(di(m)[(s, s)],m)

= −
i−1∑
j=0

∑
I⊆{1,...,i−1}

|I|=j

A((Φ(j)(m+ s)− Φ(j)(m))[sI ])d
i−1−j(m+ s)[sIc ]

−
i−1∑
j=1

∑
I⊆{1,...,i−1}

|I|=j

A(Φ(j)(m)[sI ])h
i−1−j(m, s)[sIc ]

−
i−1∑
j=1

∑
I⊆{1,...,i−1}

|I|=j

A(Φ(j)(m)[sI ]) d
(i−j)(m)[(sIc , s)]

−
i−1∑
j=0

∑
I⊆{1,...,i−1}

|I|=j

A(Φ(j+1)(m)[(sI , s)]) d
(i−1−j)(m)[sIc ]

= −
i∑

j=1

∑
I⊆{1,...,i−1}
|I|=j−1

A(Rj(m, s)[sI ]) d
(i−j)(m)[sIc ]

−
i−1∑
j=0

∑
I⊆{1,...,i−1}

|I|=j

A((Φ(j)(m+ s)− Φ(j)(m))[sI ])h
i−1−j(m+ s)[sIc ]

−
i−1∑
j=1

∑
I⊆{1,...,i−1}

|I|=j

A(Φ(j)(m)[sI ])r
i−j(m, s)[sIc ].

(2.49)
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It remains to be shown that ri is uniquely determined by (2.49) with homogeneous initial
conditions and that it satisfies for 1 ≤ i ≤ k

∥∥ri∥∥
Ck−i(Ī;V )

+
∥∥rit∥∥Ck−i(Ī;H)

= o
(
‖s‖L∞(Ω)n

) i−1∏
j=1

‖sj‖L∞(Ω)n for ‖s‖L∞(Ω)n → 0. (2.50)

For i = 1 we have r1(m, s) = h0(m, s) − d1(m)s = u(m + s) − u(m) − d1(m)s and (2.49)
simplifies to

−A(R1(m, s))u(m)−A((Φ(m+ s)− Φ(m))(u(m+ s)− u(m))

Now, using the Fréchet differentiability of Φ and the boundedness of u(m) ∈ Ck+1(Ī;V ) on
D gives

‖A(R1(m, s))u(m)‖Ck+1(Ī;V ∗) = o
(
‖s‖L∞(Ω)n

)
for ‖s‖L∞(Ω)n → 0. (2.51)

Furthermore, using the Lipschitz continuity of both, Φ and the solution operator, we obtain

‖A((Φ(m+ s)− Φ(m))(u(m+ s)− u(m))‖Ck(Ī;V ∗) ≤ C‖s‖2L∞(Ω)n . (2.52)

Hence, combining (2.51) and (2.52) and applying Corollary 2.3.7 yields (2.50) for i = 1.
Assume now, that (2.50) is true for some i with 1 ≤ i < k. Let I ⊆ {1, . . . , i − 1} and
ι = k + 1− i. From the Fréchet differentiability of Φ and (2.41), we obtain for j ∈ {1, . . . , i}

‖A(Rj(m, s)[sI ]) d
(i−j)(m)[sIc ]‖Cι+j(Ī;V ∗) = o

(
‖s‖L∞(Ω)n

) i−1∏
j=1

‖sj‖L∞(Ω)n . (2.53)

Furthermore, for j ∈ {0, . . . , i− 1}, the Lipschitz continuity of Φ(j) and (2.44) yields

‖A((Φ(j)(m+ s)− Φ(j)(m))[sI ])h
i−1−j(m+ s)[sIc ]‖Cι+j(Ī;V ∗)

≤ C‖s‖2L∞(Ω)n

i−1∏
j=1

‖sj‖L∞(Ω)n .
(2.54)

Lastly, for j ∈ {1, . . . , i − 1}, we obtain from the boundedness of Φ(j) and the induction
hypothesis

‖A(Φ(j)(m)[sI ]))r
i−j(m, s)[sIc ]‖Cι+j−1(Ī;V ∗) = o

(
‖s‖L∞(Ω)n

) i−1∏
j=1

‖sj‖L∞(Ω)n . (2.55)

Hence, every term of the right-hand side in (2.49) is in Cι(Ī;V ∗) ⊂ Hk+1−i(I;V ∗) and,
together with the initial homogeneous conditions, Corollary 2.3.7 gives the existence of a
unique solution ri ∈ Ck−i(Ī;V ) ∩ Ck−i+1(Ī;H) to (2.49). Furthermore, by combining (2.53),
(2.54) and (2.55), we obtain (2.50) which concludes the proof.

Again, we can also use a higher temporal regularity of the right-hand side to increase the
temporal regularity of the solution.
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Corollary 2.3.11.
Consider the same Assumptions as in Theorem 2.3.10 and, in addition, let l ≥ 0 and f ∈
F k+l+2

0 . Then, we have:

1. The solution operator m 7→ u(m) is k-times Lipschitz continuously Fréchet differentiable
as a map from D to C l(Ī;V ).

2. The solution operator m 7→ u(m) is (k+ 1)-times Lipschitz continuously Fréchet differ-
entiable as a map from D to C l(Ī;H).

The results of this section provide the suitable framework for problems in seismic tomography
in both, fluid and solid medium. Therefore, we consider the elastic and the acoustic wave
equation in the next step and verify the assumptions of this section. It should be emphasized,
though, that the result are of greater generality and apply to linear hyperbolic equations of
second order with parameters that obey Assumption 2.3.5.

2.4 Parameterization of the Elastic Wave Equation

Now, we return to the discussion of the elastic wave equation and analyze the existence and
regularity of solutions. We set V = H1(Ω)d and H = L2(Ω)d. From (1.6) we recall the strong
form of the elastic wave equation that is given by

ρutt −∇ · (Ψ : ε(u)) = f on Ω× I,
u(0) = 0 on Ω,
ut(0) = 0 on Ω,

(Ψ : ε(u)) · ~n = 0 on ∂Ω× I.

(2.56)

Now, we have to establish a suitable function space setting for the material parameters.
After reducing symmetry relations, the most general case with Ψ ∈ L∞(Ω)d

4
still yields

21 independent components in 3d (cf. section 1.1). However, the ill-posedness of the inverse
problem and the small number of observations that are typically available will not allow for an
accurate identification of this high number of individual components. Consequently, a simpler
model with less unknowns is required. Depending on the parameterization of the governing
equations, the unknown material parameters can be the Lamé parameters, the velocity of
compressional and shear waves, further elasticity parameters like the bulk modulus or variables
that characterize anisotropy. In either case, the unknown parameter field is heterogeneous in
space and does not depend on time. The number of unknowns that we consider in a simplified
model will be denoted by n. The parameterization of the material can now be described with
the help of a superposition operator Ψ : L∞(Ω)n → L∞(Ω)n̂ with n̂ = d4.

Example 2.4.1 (Perfectly elastic isotropic material).
An important special case of the parameterization was already given in (1.9) with perfectly
elastic, isotropic material that is characterized by the Lamé coefficients λ and µ. Hence, we
could set n = 2 and m = (λ, µ) with λ, µ ∈ L∞(Ω) and define the superposition operator
Ψ : L∞(Ω)2 → L∞(Ω)d

4
by

Ψijkl(m) = λδijδkl + µ(δikδjl + δilδjk).

Alternatively, we could work with the isotropic elastic wave equation (1.11) and define λ(m)
and µ(m) themselves as superposition operators.

47



Chapter 2. Existence and Regularity of Solutions to the State Equation

Example 2.4.2 (Anisotropy).
Another relevant parameterization includes anisotropy with Cartesian symmetry. Here, in
addition to λ = λ(m) and µ = µ(m) there are three more components a1, a2, a3 (for d = 3)
that characterize anisotropy along the different coordinate axes. According to [7], the Voigt-
matrix, is given by

ΨV =



λ+ 2µ λ+ a3 λ+ a3 0 0 0
λ+ a3 λ+ 2µ+ a1 λ+ a1 0 0 0
λ+ a3 λ+ a1 λ+ 2µ+ a1 0 0 0

0 0 0 µ 0 0
0 0 0 0 µ+ a2 0
0 0 0 0 0 µ+ a2

 , (2.57)

which completely determines Ψ using (1.8). Here, we assume that a1, a2 and a3 do not depend
on m. Inverting for anisotropic parameters is beyond the scope of this thesis, but could in
principle be incorporated into our framework as well.

Now, we want to apply the results from the previous section to establish the existence of
a unique solution to the elastic wave equation as well as the Fréchet differentiability of the
parameter-to-solution operator. In order to derive the weak form of the elastic wave equation
we consider Ψ = Ψ(m) for a fixed m ∈ L∞(Ω)n and apply Gauss’ Divergence Theorem.
Integration by parts and exploiting the symmetries of Ψ like in (1.7) yield for fixed t (and
sufficiently regular test functions v and w)

−
∫

Ω
(∇ · (Ψ(x) : ε(v)(x, t)))Tw(x, t) dx+

∫
Γ
(Ψ(x) : ε(v)(x, t)) · ~n(x))Tw(x, t) dS(x)

=
∑
i,j,k,l

∫
Ω

[Ψijkl(x) [ε(v)(x, t)]kl]
∂

∂xj
wi(x, t) dx

=
∑
i,j,k,l

∫
Ω

1

2
Ψijkl(x)

(
∂

∂xk
vl(x, t) +

∂

∂xl
vk(x, t)

)
∂

∂xj
wi(x, t) dx

=
∑
i,j,k,l

∫
Ω

1

4
Ψijkl(x)

(
∂

∂xk
vl(x, t) +

∂

∂xl
vk(x, t)

)(
∂

∂xi
wj(x, t) +

∂

∂xj
wi(x, t)

)
dx

= (Ψ : ε(v), ε(w))L2(Ω)d×d .

Hence, for fixed m ∈ L∞(Ω)n, we define the operator A(Ψ(m)) by

〈A(Ψ(m))v, w〉V ∗,V = (Ψ(m) : ε(v), ε(w))L2(Ω)d×d ∀ v, w ∈ V. (2.58)

Obviously, A(Ψ(m)) is bounded and linear in v and w, i.e., A(Ψ(m)) ∈ L(V, V ∗). In the case
of isotropic material (2.58) simplifies to: ∀ v, w ∈ V :

〈A(Ψ(m))v, w〉V ∗,V = (λ(m)∇ · v,∇ · w)L2(Ω) + 2 (µ(m) ε(v), ε(w))L2(Ω)d×d . (2.59)

Reusing the notation from the previous section, we compactly write the elastic wave equation
in the following way

E(u,m) = ρutt +A(Ψ(m))u, u(0) = 0, ut(0) = 0, (2.60)
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and the variational form of (2.60) reads as follows: For all v ∈ V and a.e. in I:

〈ρutt(t), v〉V ∗,V + a(Ψ(m))(u(t), v) = 〈f(t), v〉V ∗,V , (2.61)

where a(Ψ(m)) : V × V → R is defined by the identity

a(Ψ(m))(v, w) = 〈A(Ψ(m))v, w〉V ∗,V ∀ v, w ∈ V.

Now, we have to verify the requirements of Assumption 2.3.5. Due to the symmetry Ψijkl =
Ψklij , the bilinear form a that is identified with (2.58) (resp. (2.59)) is symmetric. We keep
the conditions on the density ρ and modify the first part of Assumption 2.3.5 as follows:

Assumption 2.4.3.

(A1) D ⊂ L∞(Ω)n is a nonempty, open and convex set and Ψ : L∞(Ω)n → L∞(Ω)n̂ is a
superposition operator such that there exists an open and bounded neighborhood S ⊂
L∞(Ω)n̂ of Ψ(D) that satisfies for all σ ∈ S:

a(σ)(v, v) + β1 ‖v‖2H ≥ β2 ‖v‖2V ∀ v ∈ V, (2.62)

with constants β1, β2 > 0 independent of σ.

(A2) Assumption 2.2.1 (A4) and (A5) hold.

We can give a simpler condition for (2.62) in the isotropic case. To this end, we require Korn’s
inequality:

Proposition 2.4.4 (Korn’s inequality).
Let Ω ⊂ Rd, d = 2, 3, be an open, bounded set with piecewise smooth boundary. Then there
exists a constant C > 0 such that

(ε(v), ε(v))L2(Ω)d×d + ‖v‖2L2(Ω)d ≥ C ‖v‖
2
H1(Ω)d ∀ v ∈ H1(Ω)d.

Proof. See Chapter III, Theorem 3.1 in [45].

Lemma 2.4.5.
Let D ⊂ L∞(Ω)n be a nonempty, open and convex set and let λ : L∞(Ω) → L∞(Ω), µ :
L∞(Ω) → L∞(Ω) be superposition operators such that there exist λa, λb, µa, µb ∈ R with
0 < λa < λb, 0 < µa < µb and λa ≤ λ(m)(x) ≤ λb, µa ≤ µ(m)(x) ≤ µb for almost all x ∈ Ω
and all m ∈ D. Then Assumption 2.4.3 (A1) holds.

Proof. By construction there exists an open and bounded neighborhood S ⊂ L∞(Ω)2 of
λ(D) × µ(D) such that for all (λ̂, µ̂) ∈ S it holds λ̂(x) ≥ λa/2, µ̂(x) ≥ µa/2 a.e. in Ω. Thus,
by Proposition 2.4.4, we obtain for all (λ̂, µ̂) ∈ S:

a((λ̂, µ̂))(v, v) = (λ̂∇ · v,∇ · v)L2(Ω) + (2µ̂ ε(v), ε(v))L2(Ω)d×d

≥ 1

2
λa (∇ · v,∇ · v)L2(Ω) + µa (ε(v), ε(v))L2(Ω)d×d

≥ µa
(
C ‖v‖2V − ‖v‖

2
H

)
∀ v ∈ V,

where C is the constant from Korn’s inequality.
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In order to validate (2.62) in the anisotropic case, further physical properties of the elastic
tensor have to be exploited. For a proof we refer to [40].
Using the results from section 2.3, we directly obtain the central result for the elastic wave
equation.

Theorem 2.4.6.
Let Assumption 2.4.3 hold and consider k ≥ 1, l ≥ 0 and f ∈ F k+l+2

0 . Furthermore, let Ψ :
L∞(Ω)n → L∞(Ω)n̂ be k-times Lipschitz continuously differentiable on D and with uniformly
bounded Ψ(k). Then the elastic wave equation (2.60) possesses a unique solution u(m) ∈
Ck+l+1(Ī;V ) ∩ Ck+l+2(Ī;H) for every m ∈ D and the solutions u(m) are uniformly bounded
in Ck+l+1(Ī;V ) ∩ Ck+l+2(Ī;H) for all m ∈ D. Furthermore:

1. The solution operator m 7→ u(m) is k-times Lipschitz continuously Fréchet differentiable
as a map from D to C l(Ī;V ).

2. The solution operator m 7→ u(m) is (k+ 1)-times Lipschitz continuously Fréchet differ-
entiable as a map from D to C l(Ī;H).

Proof. This follows directly from Corollary 2.3.7 and Corollary 2.3.11.

2.5 Parameterization of the Acoustic Wave Equation

We now turn to the acoustic wave equation that governs the propagation of seismic waves in
a fluid medium. Here, the results of section 2.3 can be carried over as well without greater
difficulty. Note that this also extends previous results for the one dimensional acoustic wave
equation presented in [78, 88].
From (1.16) we recall the strong form of the acoustic wave equation

ρFutt − ρF∇ · (m∇u) = f on Ω× I,
u(0) = 0 on Ω,
ut(0) = 0 on Ω,

u = 0 on ∂Ω× I.

(2.63)

Here, we set V = H1
0 (Ω) and H = L2(Ω) such that V ↪→ H = H∗ ↪→ V is a Gelfand triple.

For fixed m ∈ L∞(Ω) we define the operator A(m) by

〈A(m)v, w〉V ∗,V = ρF (m∇v,∇w)L2(Ω)d ∀ v, w ∈ V, (2.64)

and compactly write the acoustic wave equation as

E(u,m) = ρFutt +A(m)u, u(0) = 0, ut(0) = 0. (2.65)

We define a(m) : V × V → R by the identity

a(m)(v, w) = 〈A(m)v, w〉V ∗,V ∀ v, w ∈ V.

and obtain the variational form of the acoustic wave equation as follows:

〈ρFutt(t), v〉V ∗,V + a(m)(u(t), v) = 〈f(t), v〉V ∗,V ∀ v ∈ V and a.a. t ∈ I. (2.66)

Again, we can deduce the existence and uniqueness of solutions to the acoustic wave equation
as well as continuity and differentiability of the material-to-solution operator. Due to the
simpler structure, we do not have to invoke a superposition operator.
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Theorem 2.5.1.
Let ρF > 0 and consider an open, convex and bounded set D ⊂ L∞(Ω) such that there exists
ma > 0 with m(x) ≥ ma for almost all x ∈ Ω. Then, for k ≥ 1, l ≥ 0 and f ∈ F k+l+2

0

the acoustic wave equation (2.65) possesses a unique solution u = u(m) ∈ Ck+l+1(Ī;V ) ∩
Ck+l+2(Ī;H) for every m ∈ D and the set of solutions {u(m) : m ∈ D} ⊂ Ck+l+1(Ī;V ) ∩
Ck+l+2(Ī;H) is bounded. Furthermore,

1. The solution operator m 7→ u(m) is k-times Lipschitz continuously Fréchet differentiable
as a map from D to C l(Ī;V ).

2. The solution operator m 7→ u(m) is (k+ 1)-times Lipschitz continuously Fréchet differ-
entiable as a map from D to C l(Ī;H).

Proof. First, we note

|〈A(m)v, w〉V ∗,V | = ρF | (m∇v,∇w)L2(Ω)d | ≤ ρF ‖m‖L∞(Ω)‖∇v‖L2(Ω)d‖∇w‖L2(Ω)d

≤ C‖v‖V ‖w‖V ∀ v, w ∈ V.

By Poincaré’s inequality, we further deduce

〈A(m)v, v〉V ∗,V ≥ ρFma‖∇v‖2L2(Ω)d ≥ CρFma‖v‖2V ∀ v ∈ V.

Hence, the acoustic wave equation satisfies Assumption 2.2.1 with S = D and the statement
follows from Corollary 2.2.5 and Corollary 2.2.14.

Remark 2.5.2.
Instead of the restrictions on the set D we could alternatively use a superposition operator
Φ : L∞(Ω)→ L∞(Ω) to ensure Φ(m)(x) ≥ ma > 0 for all m ∈ L∞(Ω). We then introduce

〈A(Φ(m))v, w〉V ∗,V = ρF (Φ(m)∇v,∇w)L2(Ω)d ∀ v, w ∈ V. (2.67)

and can work with a setting as in Assumption 2.4.3 to employ the results from section 2.3.
Note that the constant density in the acoustic case can obviously be considered as a special
case of Assumption 2.3.5 (A4) and (A5).
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2.6 Further Perspectives

We conclude this chapter with some remarks on possible extensions and generalizations of
the results. The preceding analysis showed that we rely on a higher temporal regularity of
the right-hand side in order to establish the continuity and differentiability of the parameter-
to-solution operator. The assumptions on the source terms and the regularity of the material
parameters are suitable for the kind of tomography problems that we consider in this thesis,
cf. Remark 3.2.4.
Nevertheless, it would be interesting to investigate possibilities to weaken the assumptions
on the spatial regularity of the seismic source. While it suffices for our purposes to consider
V ∗, a more accurate modeling of point sources can be preferable for certain applications.
In particular, if we want to invert for the seismic source instead of - or in addition to -
the identification of the material structure, a different setting might be necessary. Related
work with point sources and optimal control problems in measure space exists for elliptic and
parabolic problems, see, for instance, [32, 35, 58, 66].
In a different direction, one could also consider a weaker topology of the set of material
parameters. We refer to [16] for results on the continuity and differentiability of the solution
operator for hyperbolic equations involving a weaker topology on the parameter set.
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Chapter 3

Seismic Inverse Problem

In this chapter, we analyze the parameter identification problem for seismic tomography.
Here, we start by showing that there exists a solution to the inverse problem and derive the
adjoint-based representation of the derivatives utilizing the results from the previous chapter.
In a second step, we consider additional constraints on the material parameters and utilize
a Moreau-Yosida regularization which is well known and very often used for problems with
state constraints [69, 70, 71, 72, 102]. This penalty method leads to an optimality system
involving a semismooth operator equation and requires appropriate solution methods. Semi-
smooth Newton-type methods for optimization problems in function spaces have been studied
extensively in [67, 125, 126] and have been applied to various types of applications, see, for
instance, [86] for an optimal control problem governed by the wave equation. We incorporate
the generalized derivatives into a Newton-PCG method with a trust-region globalization.
Furthermore, estimates on the constraint violation that are based on results from [68, 126]
can be established.
The analysis of this chapter is not limited to problems in seismic tomography, but hold in
greater generality for problems in optimal control or parameter identification governed by
linear hyperbolic equations with unknown coefficients. Therefore, we carry out most of the
work based on the results from section 2.3 and use the term state equation. Nevertheless, we
give concrete examples tailored to problems in seismic tomography during the course of this
chapter.
Parts of this chapter have been published in [19] for the elastic wave equation.

3.1 Parameterization of the Material

The preceding analysis of the differentiability of the solution operator has been carried out
with parameters and coefficients in L∞(Ω) which is suitable because the material structure
can in general be quite irregular. On the other hand, we will require a higher regularity for a
suitable regularization to treat the ill-posedness of the inverse problem. In order to overcome
this tradeoff, we split the material properties into a reference model Ψ ∈ L∞(Ω)n̂ that is based
on a priori knowledge and the parameter variable m ∈ L∞(Ω)n that characterizes smooth
variations from this reference model. Furthermore, we choose a Hilbert spaceM ↪→↪→ L∞(Ω)n,
i.e., M is compactly embedded in L∞(Ω)n and work with a parameterization given as follows

Ψ(m) = Ψ + Φ(m). (3.1)
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Here, the superposition operator Φ : L∞(Ω)n → L∞(Ω)n̂ plays the same role as before and only
a slight modification is introduced due to the reference model Ψ. However, this constant offset
does obviously not affect any of the results regarding Lipschitz continuity or differentiability
and, furthermore, it holds Ψ(k)(m) = Φ(k)(m) if the k-th derivative of Φ exists.

Remark 3.1.1.
For problems in global seismology, a suitable reference model based on a priori knowledge is
available, e.g., the Preliminary Reference Earth Model (PREM) [46]. Also, it is a common
approach in seismology to parameterize for smooth variations from a reference model that
often only varies in depth [54, 118, 130].

Building upon the results from section 2.3, we consider the following assumption on the state
equation and the involved superposition operator throughout this chapter:

Assumption 3.1.2.
Let Assumption 2.3.5 hold with the parameterization given by (3.1). Furthermore, with k ≥
1, let Φ : L∞(Ω)n → L∞(Ω)n̂ be k-times Lipschitz continuously Fréchet differentiable with
Φ(i)(m), i = 1, . . . , k, uniformly bounded on D.

We recall the set D that was introduced in the previous chapter when dealing with the
existence of a unique solution to the state equation. In general, Assumption 2.3.5 (A1) will only
hold true for a subset D ( L∞(Ω)n. Consequently, even in the absence of explicit constraints,
we have to restrict the analysis of the inverse problem to the set MD := M ∩ D which
requires some care. To overcome this difficulty, a strategy that allows to choose D = L∞(Ω)n

by utilizing properties of the superposition operator will be discussed in section 3.2.4. In the
meantime, we continue to work with a convex and closed set of admissible material Mad ⊆MD.
Furthermore, and without loss of generality, we assume 0 ∈Mad and Φ(0) = 0. This implies,
in particular, that the reference model is a physically reasonable material, which is certainly
a natural assumption.

3.2 Analysis of the Seismic Inverse Problem

In order to treat tomography problems in solid and fluid media in a unified way, we set n̂ = d4

for the elastic and n̂ = 1 for the acoustic case and use the spaces V and H as defined in
section 2.4 or, respectively, section 2.5. Furthermore, we define

U := L2(I;V ) ∩H1(I;H) ∩H2(I;V ∗)

and consider the state equation

E : U ×M → L2(I;V ∗), E(u,m) := ρutt +A(Ψ(m))u, u(0) = 0, ut(0) = 0. (3.2)

We recall that for the elastic wave equation, A(Ψ(m)) is defined by (2.58) and, respectively,
by (2.67) for the acoustic wave equation.

Remark 3.2.1.
Following the analysis of hyperbolic equations in the previous section, we recall that for a
source f ∈ F l+1

0 with some l ≥ 0, we obtain u ∈ C l(Ī;V )∩C l+1(Ī;H)∩C l+2(Ī;V ∗) ⊂ U , i.e.,
the initial conditions make sense.
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In seismic tomography data is usually taken from several seismic events. We denote the number
of seismic sources by ns and assume to have a set of source functions fi, i = 1, . . . , ns.
Specific assumptions on the regularity of fi will be made later in this section. For every
event there exist measurements on a subdomain Ωδ

i × I, Ωδ
i ⊂ Ω and we denote the data by

uδi ∈ L2(I;L2(Ωδ
i )
d̂) ∩H2(I; (H1(Ωδ

i )
d̂)∗) with d̂ = d for the elastic wave equation and d̂ = 1

for the acoustic wave equation. The seismic inverse problem can now be stated as follows

min
u∈U,m∈Mad

J(u,m) (3.3)

s.t. E(ui,m) = fi, ui(0) = 0, (ui)t = 0, i = 1, . . . , ns,

where u = (u1, . . . , uns)
T ∈ U := Uns is a vector of states for every event, e.g., displacement

fields for the elastic wave equation. Furthermore, the cost functional J : U×M → R has the
special structure

J(u,m) =

ns∑
i=1

Jfit,i(ui) + αJreg(m),

that consists of the accumulated misfit from all seismic sources and a regularization term
Jreg : M → R with parameter α > 0. The misfit functional of event i is denoted by Jfit,i :
U → R and involves data uδi .

Remark 3.2.2.
For notational simplicity, we assume that all seismic events are defined on the same domain Ω×
I. Without any difficulty, however, we could work with event-dependent domains Ωi ⊆ Ω and
different time intervals Ii = [0, Ti], i = 1, . . . , ns. As a consequence, this would require different

spaces Ui, e.g., Ui = L2(Ii, H
1(Ωi)

d̂) ∩ H1(Ii, L
2(Ωi)

d̂) ∩ H2(Ii, (H
1(Ωi)

d̂)∗). Additionally,
we could also consider seismic sources fi and data uδi of different regularity. For a better
readability of the following results, however, we continue to treat all seismic events in a
unified way.

3.2.1 Existence of a Solution

We prove the existence of a solution to the seismic inverse problem (3.3) in the following
setting.

Assumption 3.2.3.
In addition to Assumption 2.3.5, we require:

(A1) M is a Hilbert space with compact embedding M ↪→↪→ L∞(Ω)n.

(A2) For i = 1, . . . , ns: Jfit,i ≥ 0, convex and, with l ≥ 0, there holds:

• either fi ∈ F l0 and C l(Ī;H) 3 ui 7→ Jfit,i(ui) is continuous,

• or fi ∈ F l+1
0 and C l(Ī;V ) 3 ui 7→ Jfit,i(ui) is continuous.

(A3) Jreg : M → R is convex, lower semicontinuous and Jreg(m)→∞ for ‖m‖M →∞.
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Remark 3.2.4.
In seismic tomography it is valid assumption to have homogeneous initial conditions and a
force term that has compact support in (0, T ). This means that the simulation starts with
the system at rest and the excitations at the hypocenter last only for a limited time that
is significantly shorter than the traveltimes to the receiver locations in the far field. The
assumption of a higher temporal regularity of the forcing term can be validated since wavelets
are most commonly used to model the time evolution of the seismic source. Furthermore, we

consider point sources in space which require only a slight smoothing in V ∗ = (H1(Ω)d̂)∗.

Theorem 3.2.5.
Let Assumption 3.2.3 hold. Then the seismic inverse problem (3.3) possesses a solution.

Proof. In a first step we show that the feasible region can be restricted to a convex and closed
set that is bounded in M . Since 0 ∈ Mad ⊂ D, the state equation possesses a solution for
m = 0 and (u(0), 0) ∈ U ×Mad is feasible for (3.3). By Assumption 3.2.3 (A3), there exists
β > 0 such that Jreg(m) > J0 := J(u(0), 0) for all m ∈ M with ‖m‖M > β. We denote
Bβ(0) := {m ∈ M : ‖m‖M ≤ β} and deduce that if a minimizer exists, it must be contained
in Mβ := Mad ∩Bβ(0) which is a nonempty, convex, closed and bounded subset of M .

Now, let (u(mk),mk)k∈N ⊂ U×Mβ be a minimizing sequence with

J(u(mk),mk)→ inf
m∈Mad

J(u(m),m) =: J̄ .

By Assumption 3.2.3 and Corollary 2.3.7, the solutions u(m) are uniformly bounded in U
for all m ∈ Mad ⊆ D. Furthermore, (mk)k∈N ⊂ Mβ, i.e., (mk)k∈N is bounded in M . Hence,
since U and M are reflexive, there exists a weakly convergent subsequence, for simplicity
again denoted by (u(mk),mk)k∈N, with weak limit point (ū, m̄) ∈ U ×M . Next, we show
that the state equation is weakly sequentially continuous. Here, it suffices to consider only
one component of u(mk). For simplicity, we denote uk = u(mk) and the right-hand side by f
(i.e., neglecting the index of the seismic event). For arbitrary v ∈ L2(I;V ), we obtain

|〈E(uk,mk), v〉L2(I;V ∗),L2(I;V ) − 〈E(ū, m̄), v〉L2(I;V ∗),L2(I;V )|

=

∣∣∣∣∫ T

0
〈ρ(uk)tt +A(Ψ(mk))uk(t), v(t)〉V ∗,V − 〈ρūtt +A(Ψ(m̄))ū(t), v(t)〉V ∗,V dt

∣∣∣∣
=

∣∣∣∣∫ T

0
〈ρ((uk)tt − ūtt(t)), v(t)〉V ∗,V + 〈A(Ψ(m̄))(uk(t)− ū(t)), v(t)〉V ∗,V

+〈(A(Ψ(mk))−A(Ψ(m̄)))uk(t), v(t)〉V ∗,V dt
∣∣∣∣

≤
∣∣〈(uk)tt − ūtt, ρv〉L2(I;V ∗),L2(I;V )

∣∣+
∣∣〈A(Ψ(m̄))v, uk − ū〉L2(I;V ∗),L2(I;V )

∣∣
+ C ‖mk − m̄‖L∞(Ω)n ‖uk‖L2(I;V ) ‖v‖L2(I;V ) .

(3.4)

Here, in the last step we used the Lipschitz continuity of Ψ, resp. Φ, for the estimate

〈(A(Ψ(mk))−A(Ψ(m̄)))uk(t), v(t)〉V ∗,V = 〈A(Ψ(mk)−Ψ(m̄))uk(t), v(t)〉V ∗,V
= 〈A(Φ(mk)− Φ(m̄))uk(t), v(t)〉V ∗,V
≤ C‖mk − m̄‖L∞(Ω)n‖uk(t)‖V ‖v(t)‖V .
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Since uk ⇀ ū ∈ U , the first two terms tend to zero as uk ⇀ ū. Moreover, due to the
compact embedding M ↪→↪→ L∞(Ω)n, we obtain ‖mk − m̄‖L∞(Ω)n → 0. Since uk is uniformly
bounded in U , also the last term in (3.4) converges to zero and thus, E(uk,mk) ⇀ E(ū, m̄).
Since E(uk,mk) = f for all k, we obtain E(ū, m̄) = f . Furthermore, by the embeddings
H1(I;H) ↪→↪→ C(Ī;H) and H2(I;V ∗) ↪→↪→ C1(Ī;V ∗), we obtain uk → ū in C(Ī;H) and
(uk)t → ūt in C(Ī;V ∗). Therefore, 0 = uk(0)→ ū(0) in H, i.e., ū(0) = 0, and 0 = (uk)t(0)→
ūt(0) in V ∗, i.e., ūt(0) = 0. Hence, we obtain ū = u(m̄). Since Mad is closed and convex in M ,
it is weakly sequentially closed and thus m̄ ∈Mad. Now, by returning to the full vector, we also
obtain ū = u(m̄). Furthermore, by Assumption 3.2.3 (A2), Jfit,i is convex and continuous, i.e.,
weakly lower semicontinuous, for every i. Thus, by Assumption 3.2.3 (A3), also J is weakly
lower semicontinuous and we obtain

J̄ = lim
k→∞

J(u(mk),mk) = lim inf
k→∞

J(u(mk),mk) ≥ J(ū, m̄).

Hence, (ū, m̄) is a solution to (3.3).

Due to the unique solvability of the state equation for every m ∈ MD, we can replace (3.3)
by the reduced problem:

min
m∈Mad

j(m) := J(u(m),m) (P)

where the displacements u(m) = (u1(m), . . . , uns(m))T solve

E(ui,m) = fi, ui(0) = 0, (ui)t(0) = 0, i = 1, . . . , ns.

Thus, the reduced cost functional j is defined by

j : MD → R, m 7→
ns∑
i=1

Jfit,i(ui(m)) + αJreg(m). (3.5)

The restriction of j to MD instead of M is required, because ui(m) is not necessarily well-
defined on M . Again, we postpone the discussion on the extension of the reduced cost func-
tional to the whole space M to section 3.2.4. Clearly, with the assumptions of Theorem 3.2.5,
there exists also a solution to the reduced seismic inverse problem (P). Fréchet differentiability
of the reduced cost functional can be established under the following assumptions. Note that
in this case the embedding M ↪→ L∞(Ω)n is not required to be compact.

Assumption 3.2.6.
Let Assumption 3.1.2 hold with some k ≥ 1. Furthermore, we require:

(A1) M is a Hilbert space with continuous embedding M ↪→ L∞(Ω)n.

(A2) With l ≥ 0, there holds for i = 1, . . . , ns:

• either fi ∈ F k+l+1
0 and C l(Ī;H) 3 ui 7→ Jfit,i(ui) is k-times continuously Fréchet

differentiable,

• or fi ∈ F k+l+2
0 and C l(Ī;V ) 3 ui 7→ Jfit,i(ui) is k-times continuously Fréchet

differentiable.

(A3) Jreg : M → R is k-times continuously Fréchet differentiable.
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Theorem 3.2.7.
Let Assumption 3.2.6 be satisfied for given k ≥ 1. Then the reduced cost functional j defined
in (3.5) is k-times continuously Fréchet differentiable on MD.

Proof. Assumption 3.2.6 ensures the applicability of Theorem 2.3.10 which gives the unique
solvability of the state equation and the differentiability of the solution operator from D to
C l(Ī;V ) or, respectively, C l(Ī;H). Thus, due to the embedding M ↪→ L∞(Ω)n, the solution
operator is also differentiable as a map with preimage space MD and the differentiability
properties of Jfit,i and Jreg can be carried over to j.

Next, we give a specific example for a typical problem setup in seismic tomography and verify
Assumption 3.2.3 and Assumption 3.2.6.

Example 3.2.8.
Let M = (H2(Ω) ∩ H1

0 (Ω))n, i.e., we have M ↪→↪→ L∞(Ω)n for d = 2, 3. Furthermore,
we assume homogeneous boundary data, since the material at the surface is usually known
and we do not want to update the material parameters at the artificial boundaries of the
computational domain. For notational simplicity, we consider only one seismic event with a
source given by

f(x, t) := s(t)F (x), (3.6)

where the time evolution is modeled by the Ricker wavelet s(t) centered at t0 and with domi-
nant source frequency ω. We assume a point source located at xs ∈ Ω and model the geometry
of the source by a time-invariant moment tensor applied to a smoothed Dirac measure in V ∗,
cf. [92]. The corresponding force vector is denoted by F ∈ V ∗. In order to ensure that f is zero
near t = 0, more precisely, that f ∈ F 3

0 , we smoothly connect s to zero for |t− t0| larger than
a threshold. Data is observed around receiver locations xr1 , . . . , xrp and we set Ωδ =

⋃p
j=1Brj

where Brj is a small ball with center xrj . The cost function is defined by

Jfit(u) :=
1

2

∫ T

0
g(t)‖u(t)− uδ(t)‖2

L2(Ωδ)d̂
dt and Jreg(m) =

1

2
‖m‖2M . (3.7)

Here, g : [0, T ]→ R with g ∈ C∞c (I) and g(t) ≥ 0 is a smooth weighting function that ensures
g(τ) = g(T − τ) = 0 for τ ∈ [0, ε) and some small ε, i.e., the misfit is only computed in a
subinterval of I. With this choice of f and J , Assumption 3.2.3 and Assumption 3.2.6 are
clearly satisfied with k = 2 and l = 0. Note that with l > 0, we can also apply the quadratic
misfit to ut or even utt provided that uδi is sufficiently regular.

For the rest of this chapter, we will continue to work with the cost function given by (3.7)
and f ∈ F 3

0 . In particular, this guarantees that Theorem 3.2.7 is satisfied with k ≥ 2, i.e.,
that the reduced cost functional is at least twice continuously Fréchet differentiable.
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3.2.2 Adjoint-based Representation of the Derivatives

Having established the differentiability of the reduced cost functional, we can use the adjoint
approach to efficiently compute the first and second derivatives of the reduced cost functional
with respect to m. A general derivation can be found, for instance, in [73], section 1.6.
For i = 1, . . . , ns let L̃i : U ×M × U ×H ×H → R be defined by

L̃i(u,m, z, z′, z′′) :=Jfit,i(u) + 〈E(u,m)− fi, z〉L2(I;V ∗),L2(I;V )

+ (u(0), z′)H + (ut(0), z′′)H .

Then the Lagrangian L̃ : U×M ×U×Hns ×Hns → R of the full problem can we written as

L̃(u,m, z, z′, z′′) := αJreg(m) +

ns∑
i=1

L̃i(ui,m, zi, z
′
i, z
′′
i ).

Note that actually E : U ×M → L2(I;V ∗) ⊂ U∗, but we will validate the higher regularity of
the Lagrange multiplier zi ∈ U instead of L2(I;V ) using the results of Chapter 2 in Lemma
3.2.9. The adjoint equation can be stated as

〈L̃u(u,m, z, z′, z′′), û〉U∗,U = 0 ∀ û ∈ U. (3.8)

In the next step, we will show that z′ and z′′ can be expressed with the help of z. Further-
more, we outline that the adjoint equation can be interpreted as a variant of the state equation
backwards in time with a different right-hand side. To this end, we note that the states for
different seismic events i can be separated in (3.3). Likewise, the adjoint states corresponding
to different events can be computed independently. Hence, (3.8) is equivalent to

〈L̃iu(ui,m, zi, z
′
i, z
′′
i ), û〉U∗,U = 0 ∀ û ∈ U, i = 1, . . . , ns,

which gives after expanding the operator:

0 =

∫ T

0
g(t)(ui(t)− uδi (t), û(t))

L2(Ωδ)d̂
dt

+

∫ T

0
〈ρûtt(t), zi(t)〉V ∗,V + 〈A(Ψ(m))û(t), zi(t)〉V ∗,V dt

+ (û(0), z′i)H + (ût(0), z′′i )H ∀ û ∈ U, i = 1, . . . , ns.

(3.9)

Therefore, we restrict the further analysis to a single event and drop the index i to improve
the readability. Using the embeddings H1(I;H) ↪→ C(Ī;H), H2(I;V ∗) ↪→ C1(Ī;V ∗) we can
apply integration by parts and obtain for v, w ∈ U (cf. [90], p. 283):∫ T

0
〈ρvtt(t), w(t)〉V ∗,V dt

= −
∫ T

0
(ρvt(t), wt(t))H dt+ (ρvt(T ), w(T ))H − (ρvt(0), w(0))H

=

∫ T

0
〈ρwtt(t), v(t)〉V ∗,V dt+ (ρvt(T ), w(T ))H − (ρvt(0), w(0))H

− (ρv(T ), wt(T ))H + (ρv(0), wt(0))H .

(3.10)
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Furthermore, for all v, w ∈ V , we have by the symmetry of a(Ψ(m))

〈A(Ψ(m))v, w〉V ∗,V = a(Ψ(m))(v, w) = a(Ψ(m))(w, v) = 〈A(Ψ(m))w, v〉V ∗,V . (3.11)

Hence, we obtain from (3.9), (3.10) and (3.11) for all û ∈ U

0 =

∫ T

0
g(t)(u(t)− uδ(t), û(t))

L2(Ωδ)d̂
+ 〈ρztt(t) +A(Ψ(m))z(t), û(t)〉V ∗,V dt

+ (z′ + ρzt(0), û(0))H + (z′′ − ρz(0), ût(0))H

+ (ρz(T ), ût(T ))H − (ρzt(T ), û(T ))H .

(3.12)

Taking test functions û = ϕv with v ∈ V and ϕ ∈ C∞c (I) then gives on (0, T ):

〈ρztt(t), v〉V ∗,V + 〈A(Ψ(m))z(t), v〉V ∗,V = −g(t)(u(t)− uδ(t), v)
L2(Ωδ)d̂

, ∀v ∈ V.

Furthermore, considering all ϕ ∈ C∞(Ī) with ϕ(T ) = ϕt(T ) = ϕt(0) = 0 gives z′ = −ρzt(0)
and, similarly, considering ϕ ∈ C∞(Ī) with ϕ(T ) = ϕt(T ) = ϕ(0) = 0 yields z′′ = ρz(0).
Likewise, by considering all ϕ ∈ C∞(Ī) with ϕ(0) = ϕt(0) = ϕ(T ) = 0, we obtain ρz(T ) = 0
and test functions with ϕ(0) = ϕt(0) = ϕt(T ) = 0 finally yields ρzt(T ) = 0. We note that due
to Assumption 2.3.5 we have ρv = 0 ⇔ v = 0 for all v ∈ V . Summing up, we can eliminate
z′ and z′′ and interpret the adjoint equation as a vector of state equations backwards in time
with right-hand sides given by −J ′fit,i(ui) and write

E(zi,m) = −J ′fit,i(ui), zi(T ) = 0, (zi)t(T ) = 0, i = 1, . . . , ns. (3.13)

Thus, we can apply the results from Chapter 2 to establish existence, uniqueness and regularity
of the adjoint states.

Lemma 3.2.9.
Let m ∈MD, uδi ∈ L2(I;L2(Ωδ

i )
d̂)×H2(I; (H1(Ωδ

i )
d̂)∗), fi ∈ F 3

0 , i = 1, . . . , ns, and the misfit
functional given by (3.7). Then there exists a unique adjoint state zi(m) ∈ C1(Ī;V )∩C2(Ī;H).
Furthermore, {zi(m) : m ∈ MD} ⊂ C1(Ī;V ) ∩ C2(Ī;H) is bounded and the mapping m 7→
zi(m) is Lipschitz continuous from MD to C(Ī;V ) ∩ C1(Ī;H).

Proof. We use a time transformation τ := T − t in order to work with initial time conditions
and drop the index i. By Corollary 2.3.7, we obtain u(m) ∈ C2(I;V ), hence (u(m)−uδ)1Ωδ ∈
H2(I;V ∗), where 1Ωδ denotes the indicator function on Ωδ ⊆ Ω. Furthermore, g ensures that
the adjoint right-hand side is in F 2

0 . Again by Corollary 2.3.7, we deduce the existence of a
unique adjoint state z(m) ∈ C1(Ī;V ) ∩ C2(Ī;H). Furthermore, since u(m) ∈ U is uniformly
bounded on MD ⊆ D, the adjoint right-hand side is uniformly bounded in H2(I;V ∗) for
all m ∈ MD. Hence, also {z(m) : m ∈ MD} ⊂ C1(Ī;V ) ∩ C2(Ī;H) is bounded. Similar to
the techniques in the previous sections, we obtain for sufficiently small s ∈ M that h :=
z(m+ s)− z(m) satisfies

E(h,m) = f̂ , h(0) = 0, ht(0) = 0, (3.14)

with
f̂ = − (A(Ψ(m+ s))−A(Ψ(m))) z(m+ s)− g (u(m+ s)− u(m)) 1Ωδ .
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3.2. Analysis of the Seismic Inverse Problem

With the linearity of A, the Lipschitz continuity of the superposition operator and the uniform
boundedness of z(m+ s) ∈ C1(Ī;V ) ∩ C2(Ī;H) we obtain

‖ (A(Ψ(m+ s))−A(Ψ(m))) z(m+ s)‖C1(Ī;V ∗)

= ‖ (A(Φ(m+ s)− Φ(m))) z(m+ s)‖C1(Ī;V ∗) ≤ C‖s‖M .

Furthermore, the Lipschitz continuity of the solution operator (cf. Theorem 2.3.8) yields

‖g (u(m+ s)− u(m)) 1Ωd‖C1(Ī;V ) ≤ C‖ (u(m+ s)− u(m)) ‖C1(Ī;V ) ≤ C‖s‖M .

Hence, the right-hand side in (3.14) is in F 1
0 and bounded by C‖s‖M and we deduce the

Lipschitz continuity of the mapping m 7→ z(m) from MD to C(Ī;V ) ∩ C1(Ī;H) by Corollary
2.3.7.

We will continue to denote the unique adjoint state for a given m by z(m) or, respectively,
z(m). Furthermore, in order to simplify the notation we eliminate z′ and z′′ and abbreviate

L(u,m, z) := L̃(u,m, z,−ρzt(0), ρz(0))

and, respectively,

Li(u,m, z) := L̃i(u,m, z,−ρzt(0), ρz(0)).

With the help of the adjoint state z, the first derivative of j is equal to

j′(m) = Lm(u(m),m, z(m)).

Hence, with ui = ui(m) and zi = zi(m), we obtain

〈j′(m), m̂〉M∗,M = α〈J ′reg(m), m̂〉M∗,M +

ns∑
i=1

∫ T

0
〈A(Φ′(m)m̂)ui(t), zi(t)〉V ∗,V dt ∀ m̂ ∈M.

We introduce the form D : M × L2(I;V )× L2(I;V )→M∗ defined by

D(m, v,w)(m̂) =

∫ T

0
〈A(Φ′(m)m̂)v(t), w(t)〉V ∗,V dt ∀ m̂ ∈M. (3.15)

Using the Riesz representation for the derivative of the regularization term, the first derivative
of j at a given m ∈M can then be expressed as

〈j′(m), m̂〉M∗,M = α(m, m̂)M +

ns∑
i=1

D(m,ui(m), zi(m))(m̂) ∀ m̂ ∈M. (3.16)

Now we proceed with specific examples of the first derivatives for the elastic wave equation.

Example 3.2.10.
We consider the elastic wave equation with the full material tensor and A as defined in (2.58).
Then the operator D is given by

D(m, v,w)(m̂) =

∫ T

0

(
(Φ′(m)m̂) : ε(v)(t), ε(w)(t)

)
L2(Ω)d×d

dt

=

∫ T

0

∫
Ω

(ε(v)(x, t)⊗ ε(w)(x, t)) ::
((

Φ′(m)m̂
)

(x)
)
dx dt,
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where we used the usual notation for tensor products, (a ⊗ b)ijkl = aijbkl and A :: B =∑
ijklAijklBijkl.

In the isotropic case, we consider A defined as in (2.59) and obtain

D(m, v,w)(m̂) =

∫ T

0

∫
Ω

(
d∑
i=1

∂

∂xi
ui(x, t)

∂

∂xi
zi(x, t)

)
·
(
λ′(m)m̂

)
(x)

+ 2

 d∑
i,j=1

[ε(u)(x, t)]ij [ε(z)(x, t)]ij

 · (µ′(m)m̂
)

(x) dx dt.

Note that the superscript i in the formulas above refers to the components of the forward
and, respectively, the adjoint wavefield and not to a seismic event.

Later on, it will be helpful to utilize that the derivative of the reduced cost functional is
bounded on bounded subsets of MD.

Lemma 3.2.11.
Let the assumptions of Lemma 3.2.9 hold. Then, for any subset G ⊆ MD that is bounded in
M , j′(m) ∈M∗ is uniformly bounded on G.

Proof. We use the adjoint-based representation of the derivative as given in (3.16). In fact,
for every m in G we obtain for arbitrary m̂ ∈M

|〈j′(m), m̂〉M∗,M | ≤ α‖m‖M‖m̂‖M +

ns∑
i=1

c‖ui(m)‖L2(I;V )‖zi(m)‖L2(I;V )‖m̂‖L∞(Ω)n

≤ (α‖m‖M + C)‖m̂‖M ,
(3.17)

since we have already shown that ui(m) and zi(m) are uniformly bounded on MD. Hence,
j′(m) ∈M∗ is uniformly bounded on any bounded subset G ⊆MD.

Note that the boundedness of G is only required for the derivative of the regularization term.
Alternatively, we could have derived that j′(m) ∈ M∗ is uniformly bounded by utilizing the
Lipschitz continuity of the derivative (Theorem 3.2.7) and the boundedness of G.
Next, we turn to the adjoint-based representation of the second derivatives. To this end, we
require the second derivatives of Li which are given as follows:

〈Liuu(u,m, z)û1, û2〉U∗,U = (gû1, û2)
L2(I;L2(Ωδ)d̂)

,

〈Lium(u,m, z)m̂, û〉U∗,U = D(m, û, z)(m̂),

〈Limu(u,m, z)û, m̂〉M∗,M = D(m, û, z)(m̂),

〈Limm(u,m, z)m̂1, m̂2〉M∗,M =

∫ T

0
〈A(Φ′′(m)(m̂1, m̂2))u(t), z(t)〉V ∗,V dt.

Now, operator-vector products j′′(m)s for a given perturbation s ∈ M can be computed at
the cost of two additional simulations per seismic event. Again, we refer to [73], section 1.6,
for a detailed derivation and just summarize the required steps, which are given as follows.
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3.2. Analysis of the Seismic Inverse Problem

For every i = 1, . . . , ns:

1. Compute a perturbed forward wavefield δsui by solving

E(δsui,m) = −A(Φ′(m)s)ui(m), δsui(0) = 0, (δsui)t(0) = 0. (3.18)

2. Compute a perturbed adjoint wavefield δszi by solving

E(δszi,m) = −g δsui1Ωδ −A(Φ′(m)s)zi(m), δszi(T ) = 0, (δszi)t(T ) = 0. (3.19)

Then, j′′(m)s is given by: ∀ m̂ ∈M

〈j′′(m)s, m̂〉M∗,M = α(s, m̂)M +

ns∑
i=1

(
D(m, δsui, zi(m))(m̂) +D(m,ui(m), δszi)(m̂)

+

∫ T

0
〈A(Φ′′(m)(s, m̂))ui(m)(t), zi(m)(t)〉V ∗,V dt

)
.

Note that the results from Chapter 2 and Lemma 3.2.9 can be applied to deduce that δsui
and δszi are uniquely determined and bounded in U .

3.2.3 Optimality Conditions

Now, we turn to the discussion of first-order optimality conditions for the reduced problem (P).
We recall the assumptions from the previous sections that j is twice continuously differentiable
on MD and Mad ⊆MD is a closed and convex set with 0 ∈Mad. Then the classical result for
necessary first order conditions can be stated:

Theorem 3.2.12.
Let m̄ ∈M be a local solution of (P). Then the following optimality condition holds:

m̄ ∈Mad, 〈j′(m̄), m̂− m̄〉M∗,M ≥ 0 ∀ m̂ ∈Mad. (3.20)

Proof. See Theorem 1.46 in [73].

Note that the necessary optimality conditions (3.20) implicitly also contain the state and
adjoint equation in j′(m). Therefore, we can state an alternative formulation with the help of
the Lagrangian, cf. Corollary 1.3 in [73].

Corollary 3.2.13.
Let (ū, m̄) ∈ U ×Mad be a local solution of (3.3). Then there exists an adjoint state z̄ =
(z̄1, . . . , z̄ns) ∈ U such that the following optimality conditions hold

〈Liz(ūi, m̄, z̄i), ẑ〉U∗,U = 0 ∀ ẑ ∈ U, i = 1, . . . , ns,

〈Liu(ūi, m̄, z̄i), û〉U∗,U = 0 ∀ û ∈ U, i = 1, . . . , ns,

m̄ ∈Mad, 〈Lm(ū, m̄, z̄), m̂− m̄〉M∗,M ≥ 0 ∀ m̂ ∈Mad.

(3.21)

Using the fact that Mad is a closed and convex set and M is a Hilbert space, we can also
rewrite the necessary optimality conditions with the help of a projection operator.
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Corollary 3.2.14.
Let m̄ ∈ M be a local solution of (P) and let PMad

: M → Mad denote the projection onto
Mad with respect to ‖.‖M , i.e., ∀ m ∈M :

PMad
(m) ∈Mad, ‖PMad

(m)−m‖M = min
m̂∈Mad

‖m̂−m‖M . (3.22)

Then m̄ satisfies the following optimality condition:

m̄ = PMad
(m̄− θ∇j(m̄)),

where ∇j(m̄) ∈ M denotes the Riesz representation of j′(m̄) ∈ M∗ and θ > 0 is arbitrary,
but fixed.

Proof. See Lemma 1.11 in [73].

Remark 3.2.15.
Clearly, if a local solution m̄ is in the interior of Mad, i.e., if there exists an open neighborhood
B of m̄ with B ⊂Mad, then the optimality conditions (3.20) simplify and m̄ satisfies j′(m̄) = 0
or, respectively, ∇j(m̄) = 0 In particular, this holds true for every local solution if Mad =
MD = M .

If Mad = MD, the optimality conditions (3.20) or (3.21) already give the starting point for
Newton-type optimization methods. In the presence of additional constraints more work is
required and we will analyze the Moreau-Yosida regularization to handle the feasible set Mad.
In both cases, it will be helpful if the reduced cost functional is well-defined on the whole space
M . Therefore, we proceed with a strategy to ensure this before we turn to the discussion of
suitable optimization methods.

3.2.4 Evaluating the Reduced Cost Functional on M

In this section, we describe a strategy how the reduced cost functional can be extended to M .
What complicates matters and led to the definition of the set MD is the fact that, in general,
Assumption 2.3.5 (A1) is only satisfied on a subset D ( L∞(Ω)n. This means that even in
the absence of explicit constraints, we have to restrict the analysis to the set MD = M ∩ D
instead of seeking a solution to the inverse problem in M . Consequently, we have to work with
an admissible set Mad ⊆ M that satisfies Mad ⊆ MD. A natural way to define Mad would
be to consider constraints on the material parameters which will be dealt with in section
3.3. However, even if we have explicit constraints on the material, we still cannot ensure a
priori that m stays within reasonable bounds, i.e., within MD, during the sequence of the
Moreau-Yosida regularized problems. This may cause two problems. On the one hand, this
can yield an operator A(Ψ(m)) violating Assumption 2.3.5 (A1) such that u(m) might not be
well-defined. On the other hand, difficulties regarding the discretization of the problem arise
since the resolution of the computational grid is based on the source frequency and the wave
velocities. Thus, an unreasonable parameter model might require a very fine mesh.
This motivates a strategy that employs suitable properties of the superposition operator Φ
to circumvent these problems. In particular, we want to ensure that Assumption 2.3.5 (A1)
is satisfied for D = L∞(Ω)n which gives MD = M . To this end, we propose a smooth cutoff
function ϕ which guarantees that the parameters always remain within a certain range. In
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3.2. Analysis of the Seismic Inverse Problem

order to simplify the notation, we present the one-dimensional case, but the extension to
multiple parameter fields is straightforward. Consider x̄l, xl, xu, x̄u ∈ R with x̄l < xl < xu < x̄u
and ϕ : R→ R that satisfies the following properties:

• ϕ is monotonically increasing and at least twice continuously differentiable,

• ϕ ≡ id on [xl, xu] and

• ϕ(R) = [ϕ(x̄l), ϕ(x̄u)].

xl xux̄l x̄u

xl

xu

x

ϕ(x)

Figure 3.1: Smooth cutoff function to ensure that the parameters remain within physically
reasonable bounds. A fourth order polynomial is used for the smooth transition in [x̄l, xl] and
[xu, x̄u].

We now provide a specific example of such a cutoff function that is also depicted in Figure
3.1.

Example 3.2.16.
A cutoff function that has the properties outlined above can be defined as follows:

ϕ(x) :=


ϕ̃l(x̄l), x < x̄l,
ϕ̃l(x), x̄l ≤ x < xl,
x, xl ≤ x ≤ xu,
ϕ̃u(x), xu < x ≤ x̄u,
ϕ̃u(x̄u), x > x̄u,

(3.23)

with fourth order polynomials ϕ̃l and ϕ̃u that satisfy the following interpolation conditions:

ϕ̃l(xl) = xl, ϕ̃′l(xl) = 1, ϕ̃′l(x̄l) = 0, ϕ̃′′l (xl) = 0, ϕ̃′′l (x̄l) = 0,

ϕ̃u(xu) = xu, ϕ̃′u(xu) = 1, ϕ̃′u(x̄u) = 0, ϕ̃′′u(xu) = 0, ϕ̃′′u(x̄u) = 0.
(3.24)

Hence, ϕ̃l and ϕ̃u are uniquely determined by (3.24) and we obtain

ϕ̃l(x) =
1

2(xl − x̄l)3

(
−x4 + 2(xl + x̄l)x

3 − 6xlx̄lx
2 + 2(3xl − x̄l)x̄2

l x+ x3
l (xl − 2x̄l)

)
ϕ̃u(x) =

1

2(xu − x̄u)3

(
−x4 + 2(xu + x̄u)x3 − 6xux̄ux

2 + 2(3xu − x̄u)x̄2
ux+ x3

u(xu − 2x̄u)
)
.
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Now, we can use the cutoff function within the superposition operator Φ in the parame-
terization of A. Thus, we ensure that Assumption 2.3.5 is satisfied with D = L∞(Ω)n, i.e.,
MD = M , and that the reduced cost function is well-defined and differentiable on M . Here,
the inner bounds xl and xu should be chosen large enough to cover all models that are phys-
ically reasonable. In particular, the solution to the inverse problem should only have values
within [xl, xu] such that the cutoff function does not artificially influence the reconstruction.
The outer bounds should be chosen such that [ϕ(x̄l), ϕ(x̄u)] covers only models for which the
state equation is well-defined.

Remark 3.2.17.
Note that the proposed cutoff function ensures that only reasonable values for m enter into
the elliptic operator in the state equation. On the other hand, this does not affect the reg-
ularization term. Thus, while the misfit term of the objective function will not increase for
parameter models that exceed the outer bounds, the regularization term Jreg still penalizes
large deviations from the reference model.

Remark 3.2.18.
The cutoff function is only a valid approach if the bounds induced by the set D are “soft
constraints” in the sense that we do not expect that these bounds are active in the global
minimum of the seismic inverse problem (P). Other bounds should be treated properly by
explicit constraints.

3.3 Constrained Parameter Identification Problem

In this section, we consider the case where additional constraints on the parameters are explic-
itly available. These constraints can be based on a priori knowledge and help to address the
ill-posedness and non-convexity of the problem. In order to simplify the notation, we assume
that for n > 1 every parameter field has the same regularity, i.e., we consider M = Mn

1 with
a Hilbert space M1 ↪→↪→ L∞(Ω).

Remark 3.3.1.
From an application point of view, the assumption M = Mn

1 is reasonable since the different
components of m describe similar quantities, e.g., the velocities of compressional and shear
waves, the bulk modulus or the Lamé coefficients. However, this restriction is mainly done for
notational convenience and we will comment on possible generalizations in Remark 3.3.18.

Now, we introduce additional constraints on the set of feasible parameters. To this end, let
ma,mb ∈ M with ma ≤ 0 < mb. Furthermore, let p ∈ N0, ga, gb ∈ Mp

1 with ga ≤ 0 < gb and
B ∈ Rp×n. We define pointwise constraints on the parameters by

M∞ad =

m ∈ L∞(Ω)n : ma ≤ m ≤ mb, gai ≤
n∑
j=1

bijmj ≤ gbi , i = 1, . . . , p

 . (3.25)

By construction, the set M∞ad is convex and bounded. Furthermore, it is nonempty since
0 ∈M∞ad . In addition, we assume throughout this section that the bounds are given such that
M∞ad ⊂ D, hence Mad = M∞ad ∩MD.
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Remark 3.3.2.
We do not necessarily require that 0 ∈ M∞ad and could in principle allow for more general
bounds ma < mb and ga < gb. However, recalling the parameterization (3.1), it seems reason-
able to assume a feasible reference model, i.e., zero should be a feasible parameter variation.

From the definition of the feasible set it is obvious that simple box constraints can be imposed
by choosing B = 0 or p = 0. Note, however, that (3.25) allows for more general constraints
that act on other physical quantities as well. The following examples show, how lower and
upper bounds on the Poisson’s ratio of the material can be enforced or the difference between
the velocities of P- and S-waves can be limited.

Example 3.3.3.
For isotropic material, the Poisson’s ratio ν can be expressed in terms of the Lamé coefficients
as ν(x) = λ(x)/(2(λ(x)+µ(x))), see [101]. Since λ and µ are positive, lower and upper bounds
in the form νa ≤ ν(x) ≤ νb can be rewritten as 2νaµ + (2νa − 1)λ ≤ 0 and −2νbµ + (1 −
2νb)λ ≤ 0. If we jointly invert for both Lamé coefficients, we can define λ(m) = λ̄ + m1 and
µ(m) = µ̄+m2 with a reference model (λ̄, µ̄). Let ν̄ denote the Poisson’s ratio of the reference
model. Then the inequalities can be rearranged to

(2νa − 1)m1 + 2νam2 ≤ λ̄ (1− νa

ν̄
),

(1− 2νb)m1 − 2νbm2 ≤ λ̄(
νb

ν̄
− 1).

(3.26)

Thus, we set p = 2 and

B =

(
(2νa − 1) 2νa

(1− 2νb) −2νb

)
, gb =

(
λ̄ (1− νa

ν̄ )

λ̄(ν
b

ν̄ − 1)

)
.

Assuming that the reference model has a strictly feasible Poisson’s ratio, we obtain gb > 0.
Note that we only have upper bounds in (3.26), but using the fact that ν ∈ (0, 1

2 ], we could
easily add an (artificial) lower bound by setting

ga =

(
(2νa − 1)mb

1 + 2νama
2

(1− 2νb)ma
1 − 2νbmb

2

)
.

Example 3.3.4.
Let vp and vs denote the velocities of compressional and, respectively, shear waves. Recalling
(1.12) and (1.14), we obtain

µ = ρ v2
s , λ+ 2µ = ρ v2

p.

Thus, if we again consider λ(m) = λ̄+m1 and µ(m) = µ̄+m2 and seek to limit the difference
of the squared velocities of compressional and shear waves by fixed bounds va, vb, i.e.,

va ≤ v2
p − v2

s ≤ vb,

we can define p = 1, B = (1 1) and

ga = ρva − (λ̄+ µ̄), gb = ρvb − (λ̄+ µ̄).
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In order to facilitate the notation for the forthcoming analysis, we define nc := n+ p, Mc :=
Mnc

1 , ψa := (ma, ga)T , ψb := (mb, gb)T and compactly write the set M∞ad defined in (3.25)
with the help of a linear operator S ∈ L(M,Mc) as

M∞ad =
{
m ∈ L∞(Ω)n : ψa ≤ Sm ≤ ψb

}
. (3.27)

3.3.1 Moreau-Yosida Regularization

In this section, we discuss solution strategies for the constrained parameter identification prob-
lem. The constraints induced by M∞ad are handled by the Moreau-Yosida regularization. This
method is commonly used for state-constrained problems, see e.g. [69, 70, 71]. In particular,
we can apply a semismooth Newton method to the penalized problem and establish estimates
on the constraint violation for an increasing penalty parameter. Before we start the analysis,
the assumptions required in this section are summarized for convenience.

Assumption 3.3.5.
In addition to Assumption 3.1.2, we require:

(A1) Assumption 2.3.5 (A1) is satisfied for D = L∞(Ω)n.

(A2) The space of material perturbations is given by M = Mn
1 with a Hilbert space M1 ↪→↪→

L∞(Ω).

(A3) The feasible set Mad is given by M∞ad ∩M with M∞ad ⊂ D as defined in (3.27).

(A4) Jfit and Jreg are given as in Example 3.2.8.

As has been pointed out before, Assumption 3.3.5 (A1) can, for instance, be ensured with the
help of a superposition operator. Note, however, that the superposition operator is only used
in the weak form of the state equation and does not appear in the constraints.
For a fixed γ ∈ (0,∞) we define the penalized problem

min
m∈MD

jγ(m) := j(m) + γφ(m), (Pγ)

with the penalty function

φ(m) :=
1

2

(
‖[Sm− ψb]+‖2L2(Ω)nc + ‖[ψa − Sm]+‖2L2(Ω)nc

)
. (3.28)

Here, [.]+ is a vector defined pointwise by ([v(x)]+)i = max{vi(x), 0}, i = 1, . . . , nc.
Following section 3.2.3, we can state the optimality conditions for the Moreau-Yosida regu-
larized problem. To this end, let m̄γ be a local solution of (Pγ). Then the following first order
optimality conditions hold:

j′(m̄γ) + γS∗
(

[Sm̄γ − ψb]+ − [ψa − Sm̄γ ]+
)

= 0 in M∗. (3.29)

Equivalently, we obtain in variational form

〈j′(m̄γ), m̂〉M∗,M + γ
(

[Sm̄γ − ψb]+ − [ψa − Sm̄γ ]+, Sm̂
)
L2(Ω)nc

= 0 ∀ m̂ ∈M. (3.30)
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We will return to the optimality conditions in section 3.3.2 Before, we want to achieve three
things. First, we show that there exists a solution to the penalized problem (Pγ). Afterwards,
we prove that for a sequence of penalty parameters γ →∞ and solutions (mγ)γ to (Pγ), every
weak limit point will be a solution of (P). Finally, we deduce estimates on the constraint
violation depending on γ. Note that the constraints are formulated in L∞ while the Moreau-
Yosida regularization (3.28) penalizes violation of the constraints in L2. Since ‖vk‖L2(Ω) → 0
does not imply ‖vk‖L∞(Ω) → 0, we will utilize an interpolation inequality between L2 and a
stronger space.

Assumption 3.3.6.

(A1) Either M1 ↪→W 1,q′(Ω) holds for some q′ > d,
or M1 ↪→ C0,β(Ω̄) with 0 < β < 1 and m = 0 on ∂Ω for all m ∈M .

(A2) There exist ψ̄ ∈ R and m̂ ∈ M such that ψai (x) ≤ 0 < ψ̄ ≤ (Sm̂)i(x) < ψbi (x) a.e. in Ω
for all i = 1, . . . , nc.

Lemma 3.3.7 (Interpolation between Lq and W 1,q′).
Let Ω ⊂ Rd be open, bounded and with Lipschitz boundary. Furthermore, let q′ > d and
q ∈ [1,∞]. Then

‖v‖L∞(Ω) ≤ C ‖v‖θW 1,q′ (Ω)
‖v‖1−θLq(Ω) with θ =

dq′

dq′ − (q′ − d)q

and a constant C = C(d, q′, q) that is independent of v and Ω.

Proof. This is a special case of Theorem 5.9 in [1].

Lemma 3.3.8 (Interpolation between L2 and C0,β).
Let Ω ⊂ Rd be open, bounded and v ∈ C0,β(Ω̄) with 0 < β < 1, v ∈ L2(Ω). Furthermore, let
v ≥ 0, and v = 0 on ∂Ω. Then

‖v‖L∞(Ω) ≤ C ‖v‖θL2(Ω)‖v‖
1−θ
C0,β(Ω̄)

with θ =
2β

2β + d

and a constant C = C(d, β) that is independent of v and Ω.

Proof. A proof can be found in [68], Proposition 2.11.

Theorem 3.3.9.
Let Assumption 3.3.5 hold. Then the Moreau-Yosida regularized problem (Pγ) has a solution
mγ for all γ > 0. Furthermore, (mγ)γ>0 is bounded in M . If, in addition, Assumption 3.3.6
(A1) holds, then all weak limit points of (mγ)γ>0 solve the seismic inverse problem (P).

Proof. Similar as in the proof of Theorem 3.2.5, we have to consider a convex and closed set
that is bounded in M (= MD). Since 0 ∈Mad, we have

jγ(0) =
1

2

ns∑
i=1

Jfit,i(ui(0)) =: J0 ≥ 0.
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and with ε :=
√

2J0/α and Bε(0) := {m ∈M : ‖m‖M ≤ ε}, we obtain

jγ(m) = j(m) + γφ(m) ≥ α

2
‖m‖2M > J0 = jγ(0) ∀ m ∈M \Bε(0).

Thus, if a minimizer of (Pγ) exists, it can only be contained in Bε(0).
Next, we note that φ is convex and continuous, hence, jγ is weakly lower semi-continuous and
there exists a solution mγ ∈ Bε(0) to the regularized problem (Pγ) by standard arguments.
Now, let m̄ be a solution to the seismic inverse problem (P). By the optimality of mγ for (Pγ)
we obtain:

α

2
‖mγ‖2M ≤ j(mγ) ≤ j(mγ) + γφ(mγ) = jγ(mγ) ≤ jγ(m̄) = j(m̄). (3.31)

Since (mγ)γ>0 is bounded in M , there exist weak limit points. Moreover, (3.31) yields that
γφ(mγ) is uniformly bounded for all γ > 0 and, hence, φ(mγ)→ 0 for γ →∞. Now, consider a
weak limit point m∗ and a sequence (γk)k∈N with mγk ⇀m∗. Due to the compact embedding
M ↪→↪→ L∞(Ω)n, we have mγk → m∗ in L∞(Ω)n (and also strong convergence in L2(Ω)n).
Let v+

γk
:= [Smγk−ψb]+ +[ψa−Smγk ]+ denote the constraint violation. Since φ(mγk)→ 0 we

deduce
∥∥v+

γk

∥∥
L2(Ω)nc

→ 0. Moreover, (Smγk)k∈N is bounded in Mc and, by Assumption 3.3.6

(A1), also bounded in W 1,q′(Ω)nc with q′ > d or, respectively, in C0,β(Ω̄)nc with 0 < β < 1.
Hence, v+

γk
is either bounded in W 1,q′(Ω)nc or in C0,β(Ω̄)nc . Now, an interpolation inequality

between L2(Ω) and either W 1,q′(Ω) (by Lemma 3.3.7) or C0,β(Ω̄) (by Lemma 3.3.8) yields∥∥v+
γk

∥∥
L∞(Ω)nc

→ 0. Hence, m∗ is feasible for (P).

It remains to be shown that m∗ is a solution to (P). To this end, we note that the sequence
of optimal function values of the penalized problem is monotonically increasing, since

jγk(mγk) ≤ jγk(mγk+1
) ≤ jγk+1

(mγk+1
).

Together with (3.31) this implies that (jγk(mγk))k∈N converges. By the lower semicontinuity
of j, we obtain

j(m∗) ≤ lim inf
k→∞

j(mγk) ≤ lim inf
k→∞

jγk(mγk) = lim
k→∞

jγk(mγk) ≤ j(m̄).

Due to the optimality of m̄, all inequalities above are satisfied with equality. Hence, j(m∗) =
j(m̄) and m∗ solves (P).

In the following, mγ always denotes a solution to (Pγ). Concerning the rate of convergence,
we continue to use the notation v+

γ = [Smγ − ψb]+ + [ψa − Smγ ]+ and state the estimate:

Theorem 3.3.10.
Let Assumption 3.3.5 hold and, additionally, let Assumption 3.3.6 (A1) be satisfied with the
embedding M1 ↪→ W 1,q′(Ω). Furthermore, let (mγk)k∈N ⊂ M be a weakly convergent subse-
quence with mγk ⇀m∗ ∈M . Then the infeasibility of solutions is bounded by

‖v+
γk
‖L2(Ω)nc = o

(
γk
− 1

2

)
(γk →∞)

and

‖v+
γk
‖L∞(Ω)nc = o

(
γ−ηk

)
with η =

q′ − d
q′d+ 2(q′ − d)

.
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Proof. From (3.31) we obtain

jγk(mγk) = j(mγk) +
γk
2
‖v+
γk
‖2L2(Ω)nc ≤ j(m̄),

where m̄ solves (P). Hence,

‖v+
γk
‖2L2(Ω)nc ≤

2

γk
(j(m̄)− j(mγk)) .

By Theorem 3.3.9, m∗ solves (P), hence, j(mγk)→ j(m̄) which shows

‖v+
γk
‖L2(Ω)nc = o

(
γk
− 1

2

)
.

Since (mγk)k∈N is bounded in M , (Smγk)k∈N is bounded in Mc and by Assumption 3.3.6 (A1)
also bounded in W 1,q′(Ω)nc . Thus, an interpolation inequality yields the L∞-estimate similar
to Lemma 8.26 in [126].

Example 3.3.11.
We consider M1 = (H2(Ω)∩H1

0 (Ω)). Then we have M1 ↪→↪→ L∞(Ω) and M1 ↪→W 1,q′(Ω) for
all q′ with 1 ≤ q′ ≤ 6 (d = 2, 3). Thus, for d = 3 we obtain the estimate

‖v+
γk
‖L∞(Ω)nc = o

(
γ
− 1

8
k

)
. (3.32)

Following the derivation in [68], we obtain alternative estimates using interpolation between
L1(Ω) and C0,β(Ω̄).

Theorem 3.3.12.
Let Assumption 3.3.5 hold and, additionally, let Assumption 3.3.6 be satisfied with the embed-
ding M1 ↪→ C0,β(Ω̄) and m = 0 on ∂Ω for all m ∈M . Furthermore, let (mγk)k∈N be a weakly
convergent subsequence with mγk ⇀ m∗ ∈ M . Then we obtain the following estimate on the
constraint violation:

‖v+
γk
‖L∞(Ω)nc ≤ Cγ

−η
k with η =

β

β + d
. (3.33)

Proof. The proof follows from [68], Corollary 2.6, but it requires that γkv
+
γk

is uniformly
bounded in L1(Ω)nc for γk → ∞. In order to show this, we use ψ̄ and m̂ from Assumption
3.3.6 (A2) and define w := mγk − 1

2m̂. Now, we observe that for i = 1, . . . , nc:

(Smγk)i(x) ≥ ψbi (x) ⇒ 2

ψ̄
(Sw)i(x) =

2(Smγk)i(x)− (Sm̂)i(x)

ψ̄
>

(Sm̂)i(x)

ψ̄
≥ 1,

and

(Smγk)i(x) ≤ ψai (x) ⇒ 2

ψ̄
(Sw)i(x) ≤ −(Sm̂)i(x)

ψ̄
≤ −1,
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where we used ψa ≤ 0 in the second part. By testing (3.30) with w we obtain

‖γkv+
γk
‖L1(Ω)nc

=

nc∑
i=1

∫
Ω
γk

(
([Smγk(x)− ψb(x)]+)i + ([ψa(x)− Smγk(x)]+)i

)
dx

≤ 2

ψ̄

nc∑
i=1

∫
Ω
γk

(
([Smγk(x)− ψb(x)]+)i − ([ψa(x)− Smγk(x)]+)i

)
(Sw)i(x) dx

=
2

ψ̄

(
[Smγk − ψ

b]+ − [ψa − Smγk ]+, Sw
)
L2(Ω)nc

= − 2

ψ̄
〈j′(mγk), w〉M∗,M .

(3.34)

Now, with Bε(0) as defined in the proof of Theorem 3.3.9, we have mγk ∈ Bε(0) . Hence,
j′(mγk) is uniformly bounded on Bε(0) by Lemma 3.2.9, and we conclude∣∣∣∣− 2

ψ̄
〈j′(mγk), w〉M∗,M

∣∣∣∣ ≤ c‖w‖M ≤ c(‖mγk‖M +
1

2
‖m̂‖M

)
≤ C. (3.35)

The rest of the proof follows from Corollary 2.6 in [68].

Example 3.3.13.
Again, we consider M1 = (H2(Ω) ∩ H1

0 (Ω)). Hence, we have the embedding M1 ↪→ C0,β(Ω)
with β = 1

2 for d = 2, 3, and for d = 3 we get the estimate

‖v+
γk
‖L∞(Ω)n ≤ Cγ

− 1
7

k . (3.36)

Assumption 3.3.6 (A1) in conjunction with the interpolation inequalities can also be used to
weaken the requirement MD = M in Assumption 3.3.5. Here, the following alternative result
can be stated:

Theorem 3.3.14.
Let Assumption 3.3.6 (A1) and Assumption 3.3.5 but not necessarily D = L∞(Ω)n hold.
Furthermore, let G∞ ⊂ D be a closed, convex set containing a neighborhood of M∞ad . Then,
there exists γ0 > 0 such that the Moreau-Yosida regularized problem (Pγ) has a solution mγ

for all γ > γ0. Furthermore, (mγ)γ≥γ0 is bounded in M and all weak limit points of (mγ)γ≥γ0

solve the seismic inverse problem (P).

Proof. Studying the proof of Theorem 3.3.9 reveals that we only have to show that there
exists a closed, convex and bounded set G ⊂ MD with m̂ ∈ G and γ0 > 0 such that for all
γ ≥ γ0:

jγ(m) > jγ(m̂) ∀ m ∈MD \ G. (3.37)

This will ensure the existence of a solution mγ to (Pγ) in G for all γ ≥ γ0 as well as the
boundedness of (mγ)γ≥γ0 in M .
First, we note that if we choose m̂ ∈ Mad, we only have to show (3.37) for γ = γ0 since this
then implies for all γ ≥ γ0:

jγ(m) ≥ jγ0(m) > jγ0(m̂) = j(m̂) = jγ(m̂) ∀ m ∈MD \ G.

72



3.3. Constrained Parameter Identification Problem

Now, we set G := G∞ ∩ Bε(0) with Bε(0) as defined previously. Next, we prove that there
exists γ0 > 0 such that jγ0(m) > jγ0(0) = J0 for all m ∈ MD \ G. If this does not hold, then
there exist sequences (γk)k∈N with γk →∞ and (mk)k∈N ⊂ Bε(0) \ G∞ with

α

2
‖mk‖2M + γkφ(mk) ≤ jγk(mk) ≤ J0 ∀ k ∈ N, (3.38)

where we already used the fact that jγk(m) ≥ α
2 ‖m‖

2
M > J0 for m /∈ Bε(0). Thus, (mk)k∈N is

bounded inM . Furthermore, (3.38) yields φ(mk)→ 0 and for v+
k := [Smk−ψb]++[ψa−Smk]

+,
we deduce

∥∥v+
k

∥∥
L2(Ω)nc

→ 0. Similar as before, we can now utilize an interpolation inequality to

deduce
∥∥v+

k

∥∥
L∞(Ω)nc

→ 0. Thus, mk ∈ G∞ for k sufficiently large. This is a contradiction.

Summing up the previous results, we need to solve a sequence of penalized problems (Pγ) with
increasing penalty parameters γ in order to compute a solution to (P) . Algorithm 1 describes
this outer loop for solving (3.3) by the Moreau-Yosida penalty method.

Algorithm 1 Penalty Method

1: Choose γ0 > 0, an initial model minit and ε > 0.
2: for k = 0, 1, 2, . . . do
3: Solve (Pγ) using initial model minit to a specified tolerance and obtain solution mγk .

4: if
∥∥v+

γk

∥∥2

L2(Ω)nc
< ε then

5: Stop with m̄ = mγk .
6: else
7: Choose γk+1 > γk and set initial model minit = mγk .
8: end if
9: end for

Note that in our numerical experiments, we update the penalty parameter quite aggressively
instead of solving (Pγ) for a fixed γ to a high accuracy. In particular, γ is increased when the
current iterate is infeasible with some specified tolerances on the L2- and L∞-norm and when
the last steps provided a good progress towards optimality of (Pγ). Here, we usually choose a
reduction of the norm of the gradient by half an order of magnitude as criterion. This works
well for the type of constrained problems we are dealing with in section 4.3 and Chapter 5. We
emphasize, however, that more sophisticated strategies on updating γ exist [70]. This would
be an interesting field for future research.

Remark 3.3.15.
It should be emphasized that due to the non-convexity of the problem, we cannot expect to
attain global solutions of (Pγ). The same holds true for (P). Here, we have to rely on a good
starting point and a suitable regularization parameter.

3.3.2 Optimality Conditions for the Regularized Problem

We recall the optimality conditions for the penalized problem given by 3.29:

j′(m̄γ) + γS∗
(

[Sm̄γ − ψb]+ − [ψa − Sm̄γ ]+
)

= 0 in M∗. (3.39)
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Due to the maximum operator in [.]+, the operator equation (3.39) is not differentiable.
To overcome this difficulty, the concept of generalized derivatives and semismooth operator
equations can be applied. We work with the following definition, cf. [73], Definition 2.1.

Definition 3.3.16 (Semismoothness).
Let X,Y be Banach spaces and G : X → Y continuous. Furthermore, consider a set-valued
mapping ∂G : X ⇒ L(X,Y ). If

sup
H∈∂G(x+s)

‖G(x+ s)−G(x)−Hs‖Y = o(‖s‖X) for ‖s‖X → 0,

then G is called semismooth with generalized derivative ∂G (sometimes also called ∂G-
semismooth).

The classical choice of the generalized derivative for the operator [.]+ is given in the next
Lemma.

Lemma 3.3.17.
Let Assumption 3.3.5 hold. Then the optimality condition (3.29) is a semismooth operator
equation, which can be stated as G(m) = 0 with

G : M →M∗, G(m) := j′(m̄) + γS∗
(

[Sm̄− ψb]+ − [ψa − Sm̄]+
)
,

and with a generalized derivative given by j′′(m̄) + γS∗∂D(m̄)S and ∂D(m̄) defined by

∂Di(m̄)(x)


= 0 ψai (x) < (Sm̄)i(x) < ψbi (x),
= 1 (Sm̄)i(x) < ψai (x) or (Sm̄)i(x) > ψbi (x),
∈ [0, 1] (Sm̄)i(x) = ψai (x) or (Sm̄)i(x) = ψbi (x),

(3.40)

for i = 1, . . . , nc.

Proof. We only have to consider the second part since j′(m̄) is smooth. By definition, we
have S : M → Mc ↪→ L∞(Ω)nc . Furthermore, [.]+ is semismooth from Lq(Ω)nc to L2(Ω)nc

for any q > 2 with a generalized derivative given by ∂D (cf. Proposition 4.1 in [67] with a
straightforward extension to nc > 1). Since S∗ ∈ L(Mc

∗,M∗) and L2(Ω)nc ↪→Mc
∗, we deduce

that (3.29) is semismooth.

We conclude this section with a remark on possible extensions of the problem setting.

Remark 3.3.18.
It would be possible to work with different spaces Mi for every component of the parameters
as long as every one of them is compactly embedded into L∞(Ω) and, furthermore, every Mi

is embedded into W 1,q′(Ω) or C0,β(Ω̄) for applying the interpolation inequalities.

3.4 Trust-Region Newton Method

Now we turn to the discussion of obtaining points satisfying the necessary first-order optimal-
ity conditions (3.29). Following the analysis in the previous sections, we will only consider the
case MD = M . Note that in the absence of additional constraints, the optimality conditions
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are given by j′(m̄) = 0, which can be treated as a special case of (3.29). With the adjoint-
based representation of the first and second derivatives as well as the generalized derivative
that comes from the penalty term, we have everything at hand that is required to apply a
semismooth Newton method to this nonlinear operator equation. The general iterative scheme
- yet without a globalization strategy - is outlined in Algorithm 2.

Algorithm 2 Semismooth Newton Method

1: Choose m0 ∈M .
2: for k = 0, 1, 2, . . . do
3: Choose Hk ∈ ∂G.
4: Obtain sk by solving Hks

k = −G(mk).
5: Update mk+1 = mk + sk.
6: end for

A superlinear rate of convergence of the semismooth Newton method can be established,
provided that m0 is chosen sufficiently close to a solution m̄ and with the textbook regularity
condition

‖H−1‖L(M∗,M) ≤ C ∀ H ∈ ∂G(m) ∀ m ∈ Bδ(m̄), (3.41)

with constants C, δ > 0, cf. Theorem 2.12 in [73]. However, this regularity condition (3.41) is
hard to verify in practice.

Remark 3.4.1.
It is important to note that the superlinear convergence rate can be maintained if the gener-
alized Newton system is solved inexactly. To this end, we might interpret the inexact solution
as the exact solution to a system with a perturbed operator H̃k instead of Hk, cf. Algorithm
3.16 and Theorem 3.18 in [126]. Hereby, we require the Dennis-Moré conditions to be satisfied
for the perturbed operator, see Assumption 3.14 in [126] and [42].

To ensure global convergence, we propose a trust-region scheme. This method is widely used
for globalization of Newton-type methods in finite and infinite dimensions. For a detailed
analysis, we refer to [37, 126] and limit the forthcoming presentation to the general ideas.

We consider the quadratic model

min
s∈M

qk(s) :=
〈
j′γ(mk), s

〉
M∗,M

+ 1
2

〈
(j′′(mk) + γS∗∂D(mk)S)s, s

〉
M∗,M

s.t. ‖s‖M ≤ ∆k.
(3.42)

Here mk denotes the current iterate and ∆k the trust-region radius in iteration k. ∂D(mk) is
a generalized derivative as defined in Lemma 3.3.17. Hereby, the first derivatives j′(mk) and
operator-vector products j′′(mk)s are computed using the adjoint representation outlined in
section 3.2.2. Note that j′′(mk) + γS∗∂D(mk)S in the second term of qk can be replaced by
suitable approximations Hk, for instance, quasi-Newton approximations.

The update of the trust-region radius ∆k and the acceptance of a computed step is controlled
by the ratio of actual reduction, i.e., the decrease of jγ , and predicted ratio, i.e., the decrease
of the quadratic model function qk. Therefore, we define

aredk(s) := jγ(mk)− jγ(mk + s) and predk(s) := −qk(s), (3.43)
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as well as the reduction ratio %k = %k(s
k) with

%k(s) :=
aredk(s)

predk(s)
. (3.44)

More details on the specific implementation of steering the trust-region radius and deciding
whether to accept or reject step sk will be given in the next section.
Proofs for global convergence and the transition to fast local convergence, i.e., a superlinear
rate of convergence, can be found in [126], chapter 7, in great generality and for different
variants of the trust-region algorithm. Here, we require that the norms of the approximated
Hessians Hk are uniformly bounded, i.e., there exists a constant CH such that ‖Hk‖L(M,M∗) ≤
CH for all k.
Approximate solutions to the trust-region subproblem can be efficiently computed by the
Steihaug-CG method [116], which will be explained in the next section.

3.5 Discretized Problem

In this section, we highlight some important considerations to solve the discretized problem.
Let Mh denote the discretized finite element space for M equipped with a nodal basis such
that elements of mh ∈ Mh can be represented as coefficient vectors m ∈ Rnm . Furthermore,
let M ∈ Rnm×nm denote the symmetric and positive definite matrix that is associated with
the inner product, i.e., the inner product of two coefficient vectors v,w ∈ Rnm is given by

(v,w)M := vTMw, (3.45)

and, likewise, the corresponding norm is denoted by

‖v‖M =
(
vTMv

) 1
2 . (3.46)

The specific finite element spaces for the discretization of the material parameters will be
given in section 4.1. Since the focus of this section is the finite-dimensional character of the
trust-region subproblem, we continue to work directly with the reduced problem and postpone
details on the discretization of the state equation. For the moment, it is sufficient to consider
Eh : Rnu × Rnm → Rnu as the discretized version of the state equation. Furthermore, let
jh : Rnm → R denote the discretized reduced cost functional and consider the discrete version
of (Pγ)

min
m∈Rnm

jhγ (m) (P hγ )

Now, we obtain the discretized trust-region subproblem

min
s∈Rnm

qhk (s) := ∇jhγ (mk)T s + 1
2sTHks

s.t. ‖s‖M ≤ ∆k,
(3.47)

where Hk is an approximation of the generalized derivative of jh
′
γ (mh) in Euclidean coordi-

nates. For a proper scaling, we have to formulate the trust-region subproblem in terms of
coefficient vectors and matrices. Let gk := M−1∇jhγ (mk) denote the transformation of the
discrete gradient to the Mh inner product. Similarly, the Hessian approximation Hk has to be
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transformed by H̃k = M−1Hk. We compute an approximate solution sk to (3.47) by the Stei-
haug preconditioned conjugate gradient method [116] that is outlined in Algorithm 3. Here,
M−1 is used as a preconditioner, which might be interpreted as performing the conjugate
gradient iterations in Mh. It is important to note that every CG iteration requires to solve
two additional discretized state equations per seismic source to compute a Hessian-vector
product, see section 3.2.2. This vastly dominates the computational costs of Algorithm 3. In
particular, although in all numerical examples the matrix M will not be diagonal, the costs
of computing M−1v are negligible compared to solving a single state equation.
Algorithm 3 terminates with one of the following cases:

1. negative curvature is encountered (line 8)

2. the next iterate would be outside the trust-region (line 13)

3. the residual is below the specified tolerance (line 17)

4. a maximum number of CG iterations is reached.

Algorithm 3 Trust-region Newton-CG

1: Input: mk, Hk to set up model qhk .
2: Choose εk > 0, maxcg ∈ N.
3: Set i = 0, p0 = 0, r0 = −∇jhγ (mk), z0 = M−1r0, d0 = z0.
4: for i = 0, 1, 2, . . . ,maxcg do
5: Set η = (di,Hkd

i).
6: if η ≤ 0 then
7: Find τ > 0 such that ‖pi + τdi‖M = ∆k.
8: return sk = pi + τdi.
9: end if

10: Set α = (ri, zi)/η, pi+1 = pi + αdi

11: if ‖pi+1‖M ≥ ∆k then
12: Find τ such that ‖pi + τdi‖M = ∆k.
13: return sk = pi + τdi.
14: end if
15: Set ri+1 = ri − αHkd

i.
16: if ‖ri+1‖M/‖ri‖M < εk or i == maxcg then
17: return sk = pi+1.
18: end if
19: Set zi+1 = M−1ri+1, β = (ri+1, zi+1)/(ri, zi), di+1 = zi+1 + βdi.
20: end for

In [116], Theorem 2.1, it is shown that qhk (pi) is strictly decreasing. Furthermore, it can be
shown that ‖pi‖M is increasing and thus, the second termination criterion is reasonable.
Since the problems we consider are non-convex, the Hessian might be indefinite, thus an early
termination of the CG method is crucial, when negative curvature is encountered. In any
case, Algorithm 3 terminates with a descent direction sk. As has been pointed out in the
previous section, the decision, whether sk is accepted for updating mk or not, depends on
the ratio of actual and predicted reduction %k. This procedure is described in Algorithm 4.
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Unless explicitly stated otherwise, all numerical examples use the following configuration in
Algorithm 4: ∆min = 10−12, η0 = 0.001, η1 = 0.25, η2 = 0.75 and τ = 0.9. In particular, we
emphasize that the trust-region radius is only increased, if the current step is sufficiently close
to the trust-region boundary which proved advantageous in our numerical experiments.

Algorithm 4 Update of the Trust-region Radius and Acceptance of Steps

1: Input: trial step sk.
2: Compute %k using (3.44).
3: Choose ∆min ≥ 0, 0 < η0 ≤ η1 < η2 < 1, 0 < β0 < 1 < β1 and τ ∈ (0, 1)
4: if %k ≤ η1 then
5: Set ∆k+1 = max{β0∆k,∆min}.
6: else if %k > η2 and ‖sk‖M > τ∆k then
7: Set ∆k+1 = β1∆k.
8: else
9: Set ∆k+1 = ∆k.

10: end if
11: if %k > η0 then
12: Accept step sk.
13: else
14: Reject step sk.
15: end if

Since the Steihaug-CG method requires many simulations of the state equation, it is highly
desirable to avoid rejecting steps without reusing the information that has already been com-
puted previously. To this end, we propose two strategies to cope with this situation. Both
methods require additional solutions to the state equation only to compute the objective
function (either for computing the actual reduction or checking Armijo’s condition).

In the first case, we assume that all previously computed steps can be stored in memory.
If Algorithm 4 returns with the rejection of the step, we successively reduce the trust-region
radius, reuse the Steihaug-CG steps to compute a new trial step and invoke Algorithm 4 again.
Alternatively, we can continue to use the computed direction sk but perform backtracking steps
to find a point that satisfies Armijo’s condition and update the trust-region radius thereafter
to the norm of the update. This is illustrated in Algorithm 5. Note that in all numerical
examples, we will use γA = 0.001.

Algorithm 5 Handling Rejected Steps

1: Input: rejected step sk from Steihaug-CG method, γA ∈ (0, 1)
2: Set σA = 1.
3: while jhγ (mk + σAsk)− jhγ (mk) > γAσA(gk, sk)M do
4: σA = σA/2.
5: end while
6: Set ∆k+1 = σA‖sk‖M.
7: return sk = σAsk.
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3.6 Discussion and Further Perspectives

In this chapter, we presented the seismic inverse problem and suitable solution strategies.
Restrictions on the admissible material have been introduced in two steps. Initially, we uti-
lized a superposition operator to guarantee that only “reasonable” material enters the state
equation, i.e., coefficients for which the elliptic operator is uniformly coercive and the theory
on existence and uniqueness of solutions can be applied. In a second step, we introduced
explicit constraints on the material parameters and treated them by the Moreau-Yosida regu-
larization. This offers a powerful framework to solve the constrained parameter identification
problem. We want so emphasize the regularizing character of the penalty method. For many
problems in seismic tomography, the constraints are usually not expected to be active in the
global minimum. Nevertheless, constraints can add prior knowledge to the problem formula-
tion and prevent convergence towards “physically unreasonable” local minima. This can be
viewed as a robustification of the inversion process. On the other hand, this means that we do
not necessarily have to drive the penalty parameter to infinity and the penalty term is only
invoked if infeasibilities are encountered during the inversion process.
On a different note, the analysis is not limited to the elastic or the acoustic wave equation and
the results can be applied to other problems in optimal control governed by linear hyperbolic
equations as well.

We conclude this chapter with some remarks on possible extensions. As mentioned before,
this thesis focuses on tomography problems that seek to determine structural parameters
within a domain of interest. In fact, however, for earthquake data neither the source time
function nor the hypocenter (especially, the depth) is known exactly. Typically, the inversion
for source parameters is done in a preprocessing step using simpler physical models that are
mostly based on traveltime tomography [115]. Nevertheless, it would be interesting to pur-
sue an all-at-once approach that simultaneously inverts for source and structural parameters.
It will be challenging, however, to establish a suitable parameterization of the source and
appropriate regularization, because the seismic sources typically only have a small spatial
support.
Regarding the minimization procedure, it would be desirable to work with more sophisticated
preconditioners, especially for the misfit term. A possible approach would reuse the gradients
from the previous iterations and set up an L-BFGS preconditioner [98]. Similar ideas have
been applied to tomography problems in [48]. In addition, there is also related work regarding
efficient preconditioners for Moreau-Yosida regularized problems, see [102].
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Chapter 4

Implementation and Numerical
Results

In this chapter, we discuss the discretization of the inverse problem and the implementation
of a matrix-free MPI-parallelized code for simulating seismic wave propagation and solving
tomography problems. In the second part, we consider examples for problems on reservoir scale
in 2d and 3d. In particular, we discuss adjoint sources, statistics on the parallel performance
of the code and, most importantly, the solution of seismic inverse problems. Parts of this
chapter have been published in [19]. Note that further numerical results follow in Chapter 5
and Chapter 6.

4.1 Discretization of the Wave Equation

We apply a continuous high-order finite element method for the spatial discretization of the
state and an explicit time-stepping scheme. This approach is commonly used in seismic appli-
cations, cf. [51, 103, 123], see also [133] for the analysis of a high-order discontinuous Galerkin
method.

We use different spatial meshes for the discretization of the state and the material parameters.
This is motivated by the fact that the data contains only a limited amount of information and
thus a coarser mesh in the parameter space prevents an over-parameterization. Additionally,
the parameter mesh might be adaptively refined based on goal-oriented error estimates [14, 18]
or prior knowledge to acknowledge the varying amount of information in the data for different
regions of the domain. Note that using different grids for the state and the parameters requires
interpolating the parameter values onto the finer state mesh before every simulation.

Spatial Discretization of the State Space

We consider shape-regular meshes consisting of quadrilateral or, respectively, hexahedral cells
K that cover the computational domain Ω. Let Th = {K} denote the finite element mesh
and h the discretization parameter. Furthermore, let Qs denote the space of polynomials of
degree s in each variable xi, i = 1, . . . , d, defined on the reference cell Kref = [−1, 1]d. We
use the Lagrange polynomials of degree s with the collocation points given by the Gauss-
Lobatto-Legendre (GLL) quadrature rule [74] as basis of Qs. This yields a nodal basis for
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the numerical representation of the elements of Qs. To this end, let ξi, i = 0, . . . , s, denote
the collocation points of the GLL rule on the interval [−1, 1]. Furthermore, let li denote the
Lagrange polynomials associated with the points ξi, i.e.,

li(ξ) =
s∏

j=0,j 6=i

ξ − ξj
ξi − ξj

.

We obtain the polynomial basis on the reference cell by tensorization of the 1d bases, i.e., for
a multi-index ι ∈ {0, . . . , s}d we define

ϕι : Kref → R, ϕι(x) :=

d∏
i=1

lιi(xi).

By definition, the Lagrange polynomials vanish at all but one of the collocation points. Hence,
the Lagrange interpolant of a function v : Kref → R is given by

Iv(x) =
∑

ι∈{0,...,s}d
v(ξι)ϕι(x) with ξι = (ξι1 , . . . , ξιd)

T .

Integrals over the reference cell are approximated by the GLL quadrature rule. To this end,
let wi, i = 0, . . . , s denote the quadrature weights associated with ξi in 1d. We obtain∫

Kref

v(x) dx ≈
∑

ι∈{0,...,s}d
wιv(ξι) with weights wι =

d∏
i=1

wιi ,

which is exact if v ∈ Q2s−1.
Now, we introduce the finite element subspaces V s

h ⊂ V by

V s
h =

{
vh ∈ C(Ω̄)d̂

∣∣∣ vh|K ∈ Q̂s(K)d̂ ∀ K ∈ Th
}
,

where in every component, Q̂s is obtained by bi- or trilinear transformations of the nodal
basis defined on the reference cell. We recall that d̂ = d for the elastic wave equation and
d̂ = 1 in the acoustic case. In all numerical tests presented in this thesis we use s = 4.
Detailed derivations of the spatial discretization of the elastic wave equation using this partic-
ular choice of test functions and quadrature rule can be found multiple times in the literature,
see, for instance, [34, 54, 79, 123]. Therefore, we just summarize the results.
By replacing V by V s

h in (2.61) or (2.66), respectively, we obtain the Galerkin approximation
for the polynomial basis and compute the integrals with the GLL quadrature rule. With
N := dim(V s

h ) and a time-dependent coefficient vector u(t) ∈ C2(Ī)N , the spatially semi-
discrete formulation of the wave equation is a system of linear ordinary differential equations
which can be written in the following form:

M̄utt(t) + K̄u(t) = F̄(t). (4.1)

Here, M̄ ∈ RN×N denotes the mass matrix (weighted by the density to include ρ), K̄ ∈ RN×N
is the stiffness matrix and F̄(t) ∈ RN is the semi-discrete force vector. Most importantly, the
quadrature rule in combination with the interpolation nodes of the Lagrange polynomials
yields a diagonal matrix M̄, which enables an explicit time-stepping scheme. On the other
hand, this introduces an integration error, because the GLL quadrature rule is only exact for
polynomials up to degree 2s− 1.
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4.1. Discretization of the Wave Equation

Temporal Discretization of the State Space

Next, we turn to the temporal discretization of the state equation. Similar to [103], we apply
an explicit Newmark time-stepping scheme to solve the semi-discrete system (4.1). Let

0 = t0 < t1 < . . . < tnt = T

be a partition of the interval Ī and let ∆tk = tk − tk−1, k = 1, . . . , nt denote the time
increment. Now, we introduce a set of independent variables uk,0,uk,1,uk,2 to approximate
u(tk),ut(tk) and utt(tk), respectively. Furthermore, let Fk denote the time-discrete version of
F(tk).
The family of Newmark schemes for the fully discrete system is given by the update formulas

uk+1,2 = −M−1 (Kuk+1,0 − Fk+1) ,

uk+1,0 = uk,0 + ∆tkuk,1 +
1

2
∆t2k ((1− 2β)uk,2 + 2βuk+1,2) ,

uk+1,1 = uk,1 + ∆tk ((1− θ)uk,2 + θuk+1,2) .

(4.2)

This scheme is second-order accurate and conditionally stable for θ = 1/2, see [74], Chapter
9. Furthermore, for β = 0, we obtain an explicit time stepping scheme. Note that M̄ and K̄
are time-invariant since the material parameters do not depend on time and we do not change
the state mesh during the simulation. While M̄ is diagonal and can easily be hold in memory,
matrix-vector products K̄uk+1,0 are computed on the fly without assembling the matrix K̄.
A severe drawback of explicit time-stepping schemes is the limitation of the step-size by the
Courant-Friedrichs-Lewy (CFL) condition:

∆t ≤ CCFL
h

vp
. (4.3)

Here, h denotes the spatial mesh width and vp the wave speed. Loosely speaking, the CFL
condition states that the time step must be chosen smaller than the time it takes the wave
to travel through the cell. When using a global time step, we have to consider the minimum
ratio over all cells in (4.3). Hence, it is desirable to choose the local mesh size according to
the local wave velocity.
Despite this limitation, parallelization can be carried out much easier with the explicit scheme
as we do not have to solve a linear system in every time step due to the diagonal mass matrix.
The explicit Newmark time stepping scheme outlined in (4.2) with β = 0 and θ = 1/2 is
widely used for numerical simulations of seismic wave propagation [34, 54, 79]. Note, however,
that other (explicit) time stepping schemes can be used as well. For instance, a five-stage
fourth-order low-storage Runge-Kutta method is applied in [133].

Spatial Discretization of the Parameter Space

As previously outlined, we separate the discretization of the state and the parameter and
treat both meshes independently. For the parameter mesh, we use a continuous Galerkin
finite element discretization and introduce the finite element subspace

M s
h =

{
mh ∈ C(Ω̄)n

∣∣∣mh|K ∈ Q̂s(K)n ∀ K ∈ TMh
}
.
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Here, TMh denotes the decomposition of Ω̄ for the parameter space. In general, TMh consists
of larger cells than Th, otherwise the small-scale heterogeneities in the material will not be
seen by the wavefield. In all numerical tests we will use a polynomial degree of s = 1, i.e., bi-
or trilinear elements. Note that instead of using the GLL quadrature rule for the parameter
space we apply an exact integration rule, which results in a non-diagonal mass matrix M.

Remark 4.1.1.
We recall the assumptions of Chapter 3, where we require M ↪→↪→ L∞(Ω). In order to justify
the choice of bi- or trilinear elements, we point out the regularizing effect of the discretization
and the equivalence of all norms for the finite dimensional problem. Furthermore, the numer-
ical results neither show oscillating solutions nor undesirable artifacts in the reconstruction,
which justifies the choice of the discretization of the parameter space.

4.2 Implementation

Efficient inversion methods rely on a scalable code for the simulation of the elastic-acoustic
wave equation. As part of this thesis, a software package written in C++ for seismic inversion
has been developed and we briefly highlight some of its features. The implementation aims to
offer a flexible framework to simulate the propagation of seismic waves in solid and fluid media
and to solve related tomography problems. There are three main components: a container to
store seismic sources and observed data, a wave simulation code and optimization routines
to solve the inverse problem. Figure 4.1 shows the individual parts and how interaction is
intended on the different levels.

Seismic data is currently assumed to stem from point-sources, which are accurate enough
to model seismic waves in the far field, and observations in form of seismograms at a set of
receiver locations.

The code has been developed to simulate the acoustic and the elastic wave equation in two
and three dimensions. We also consider the case of wave propagation in a coupled system of
fluid and acoustic media in 3d, see Chapter 6. The implementation is parallelized, utilizes
MPI-communication and works matrix-free. Due to the similar discretization scheme, the im-
plementation is inspired by the SPECFEM3D code [13, 103]. There are, however, significant
differences concerning an object-oriented structure of the code as well as functional extensions
to efficiently compute the gradient and Hessian-vector products. We utilize the Epetra pack-
age, which is part of the Trilinos library [63, 64], to handle the distributed data structures, in
particular, Epetra_FEVector, Epetra_Map and Epetra_Export.

Parallelization is carried out in two stages. Trivially, different seismic events can be simu-
lated in parallel and communication is only required during a post-processing step to add up
the individual contributions to the cost functional and its derivatives. Moreover, the imple-
mentation allows to solve a single event on multiple cores using a spatial partitioning of the
computational domain and communication with MPI. To this end, we employ two layers of
MPI communicators, one acting globally to run the inversion and a local one to manage the
simulation of the wave equation for a single event. On the global layer, the material has to be
distributed across all processors and, in reverse direction, the individual misfits and gradients
have to be accumulated. On the second layer, every seismic event has its own MPI communi-
cator. Here, every processor needs to pass the wavefield at the boundaries of the local domain
to its neighbors in every time step. The second group of communicators is derived from the
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Figure 4.1: Schematic overview of the different components of the seismic inversion toolbox.
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global one by MPI::COMM_WORLD.Split. Thus, both communication patterns can be handled
simultaneously by invoking one of the two layers.
The optimization routines implement the previously described trust-region Newton-PCG
method, which can handle additional constraints on the material parameters by utilizing
the Moreau-Yosida regularization. Forward and adjoint simulations are carried out to effi-
ciently compute the reduced gradient and reduced Hessian-vector products. The computation
of the first derivatives requires the forward displacement field at all time-steps in reverse order.
Moreover, forward and adjoint states need to be accessed again for computing Hessian-vector
products. Note that we do not have to store the perturbed wavefields δsu and δsz, cf. (3.18)
and (3.19), because the contributions to the derivatives can be computed on the fly. Currently,
we store both wavefields on disk, however, if memory poses a bottleneck, checkpointing tech-
niques [59] could be applied. For an alternative strategy, see section 4.4.
The material mesh uses data structures of the deal.ii library [9, 10], which provides various
tools for finite elements. In particular, we utilize functions

• to compute the regularization term and its derivatives,

• to compute the inner product as well as the preconditioner for the Steihaug-CG method,

• to process data for visualization purposes,

• to adaptively refine the grid (see Chapter 6).

As pointed out above, deal.ii is not used for solving the state equation.
Note that in order to offer more flexibility, state and parameter mesh are uncoupled. This
modular structure allows to easily interchange either the simulation code or the optimization
method. Using different meshes for the material and the state requires frequent mapping of
elements from one mesh onto the other. This is necessary in both directions: the material is
mapped onto the state mesh for carrying out the forward and adjoint simulations. In return,
the gradient is computed on the state mesh first, requiring forward and adjoint state, and
then mapped back to the parameter space.
Further information on the implementation and the user interface can be found in the docu-
mentation [17].

4.3 Numerical Results

In this section, we present numerical examples for the wave propagation code and seismic
tomography problems. Because the inverse problem is not convex, we can usually not expect
to converge to a global minimum. To this end, we use the term reconstruction instead of
solution. On the other hand, since all examples are based on synthetic data and we use a
moderate noise level and/or a sufficiently strong regularization, the results look promising.
Before we start with the examples, we collect a few important remarks.
In all numerical examples, we choose the regularization term as the weighted sum of the
L2-norm and the H1-seminorm, i.e., the discrete representation of

α1‖m‖2L2(Ω) + α2‖∇m‖2L2(Ω)d .

Note that we use the same α1/α2-ratio to compute the ‖.‖M-norm of discrete coefficient
vectors. Typically, α2 is a few magnitudes larger than α1 as the L2-regularization would often
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yield oscillating reconstructions. In the rest of this section, all norms on the parameter mesh
are computed using (3.46) and we drop the subscript M. With a slight abuse of notation,
we write ∇jγ(mk) for the discrete gradient that is transformed to the Mh inner product, cf.
section 3.5.

Concerning the size of the computational domain and the frequency of the seismic sources,
all forthcoming examples refer to tomography problems on reservoir scale. This requires, in
particular, to truncate the computational domain artificially at all borders but the surface
and we have to impose absorbing boundary conditions to reduce reflections from non-physical
boundaries. Here, we follow ideas from [80] and apply dampers that relate the traction to the
velocity in the solid domain:

(Ψ : ε(u)) · ~n = vpρ (ut · ~n)~n+ vsρ (ut − (ut · ~n)~n) on Γabs × I.

For the acoustic wave equation, we apply a Sommerfeld-like condition [121] in the fluid domain

∇u · ~n = −c−1ut on Γabs × I.

Here, Γabs ⊂ ∂Ω denotes the artificial boundaries. It is important to note that these absorbing
boundary conditions do not completely eliminate reflections from the boundaries and more
sophisticated strategies exist, for instance, perfectly matched layers [96].

4.3.1 Adjoint and Gradient Computations

In this section, we illustrate the interplay of forward and adjoint sources, wavefields and the
gradient of the material parameters. Here, we choose a similar setup as in the examples of
[124]. We consider a two-dimensional solid domain of 20km × 12km, a single source located
at (5[km], 6[km]) and one receiver at (15[km], 6[km]). In order to eliminate reflections from
artificial boundaries, we extend the computational domain for the simulation. The expansion
spans 12.5km in lateral directions and 18km in depth. The experimental setup is sketched
in Figure 4.2. We use a Ricker wavelet with dominant frequency of 1Hz. The material is
homogeneous with a P-wave velocity of 2500m/s and a constant Poisson’s ratio of 0.25.

F 5

0 5 10 15 20

0

−6

−12

Figure 4.2: Experimental setup for the example in section 4.3.1. The source location is indi-
cated byF, the receiver location by5. Some ray paths of the direct wave as well as reflections
from the free surface are illustrated.
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By assuming a constant Poisson’s ratio, we only have one unknown parameter field left for the
inversion. To keep matters simple, we use ‖u(m)(xr, .)‖2L2(I)2 as cost functional. Obviously,
this is not a useful misfit criterion, but it helps to highlight the regions that the particular
wavefronts are sensitive to. Note that in this case the adjoint source is given by a subinterval
of the recorded signal. Figure 4.3 shows snapshots of the forward and the adjoint displacement
field as well as the interaction of both wavefields.
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Figure 4.3: Snapshots of the forward (left) and the adjoint wavefield (middle) for different
time steps. The contribution to the material gradient from the current time step is depicted
in the right column. Snapshots are taken at 3s, 5s, 8s and 13s.
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The paths along which the waves propagate on the way from the source to the receiver define
the part of the domain, where the data is sensitive to changes of the material parameters.
In other words, the gradient of the misfit with respect to the material coefficients is nonzero
in this area. In Figure 4.4, we depict the gradient for three different scenarios, where either
the whole seismogram or only a subinterval is used to compute the misfit. Hence, we are able
to separate waves that propagate on a direct line from the source to the receiver, from the
wavefronts that are reflected from the free surface. Such preprocessing of the data can be a
powerful tool to consider distinct waveforms and certain parts of the domain. Because of their
shape, the gradient is also called “banana-doughnut kernel” [124, 127] or Fréchet kernel [101]
in geophysical literature.

4.3.2 Parallel Scaling

In this section, we present results on the parallel efficiency of the implementation. The com-
putations have been carried out on two different architectures:

(I) AMD Opteron based 32-way nodes,
Linux Cluster at the Leibniz Supercomputing Centre (LRZ),

(II) Cray XC30 supercomputer based on Intel R© Xeon R© E5 processors,
Piz Daint at the Swiss National Supercomputing Center (CSCS).

All of the following statistics are based on computations using the second configuration.

As a first example, we consider a 2d elastic simulation using the Marmousi model with 32
seismic sources. More details on the model will be given in section 5.2. The computational grid
consists of 197,633 degrees of freedom in space and 6,000 time steps for every source. Note
that by “degrees of freedom” we always refer to the number of grid points. Hence, for vector-
valued problems this number has to be multiplied by the number of individual components to
obtain the total number of unknowns. For instance, for the elastic wave equation, we have d
components of the state and if we jointly invert for λ and µ, we also have two components in
the parameter mesh. The reference configuration uses 32 cores in total and one core per source
to simultaneously solve the elastic wave equation for every event. The number of cores is then
increased up to 1024 cores. At the same time, the number of cores per source is increased from
1 to 32. The results are given in Table 4.1, indicating a reasonably strong parallel performance,
with a parallel efficiency of 88.3% on 1024 cores.
Next, we present weak parallel scaling of a 3d elastic simulation. Here, we consider a domain
of 4km × 4km × 4km and a homogeneous medium. We use a fixed number of 1,000 elements
per core, which amounts in 68,921 degrees of freedom for each core, and increase the number
of processors from 8 to 4096. The number of time steps is fixed to 1,000 for every scenario.
Due to the CFL condition, this requires to successively reduce the simulation time interval
by a factor of 0.5. The weak scaling statistic is given in Table 4.2. In this example, we define
“scaling efficiency” of N cores as the ratio of the total run-time on 8 cores and the total
run-time on N cores. The results indicate only a gradual growth of the computing time when
the number of cores is increased.
As a final example, we present a strong parallel scaling statistic for a forward simulation of the
elastic wave equation. Again, we consider a domain of 4km × 4km × 4km with a homogeneous
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(c) reflected wave

Figure 4.4: Sensitivity of the material with respect to certain time windows of the observed
data. The left image shows the adjoint source in both components. The right column illustrates
the gradient. In (a) the full seismogram is considered to compute the misfit, in (b) only the
P-wave arrival (with time window t ≤ 7s) is used and in (c) the sensitivity with respect to
the reflected waves from the free surface is computed (with time window 10.5s ≤ t ≤ 15s).
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#cores 32 64 128 256 512 1024

#sources 32 32 32 32 32 32
#cores / source 1 2 4 8 16 32
total time (s) 265.3 130.1 66.6 33.7 18.5 9.4

speed-up 1.0 2.04 3.99 7.88 14.36 28.27
par. efficiency 1.000 1.020 0.996 0.985 0.898 0.883

Table 4.1: Parallel scaling statistics for a 2d elastic simulation of 32 sources. Discretization:
12,288 elements with 4th-order shape functions, 197,633 degrees of freedom, 6,000 time steps.

#cores 8 64 512 4096

#elements 8,000 64,000 512,000 4,096,000
#elements / core 1,000 1,000 1,000 1,000

total time (s) 16.7 17.0 17.3 17.9
scaling efficiency 1.000 0.979 0.963 0.935

Table 4.2: Weak scaling statistic for a simulation of the elastic wave equation in 3d. Discretiza-
tion: 1,000 elements per core with 4th order shape functions, 68,921 degrees of freedom per
core, 1,000 time steps (for all configurations).

medium and 4,000 time steps. The spatial discretization uses a mesh size of 200m, which yields
8,000 elements and 531,441 degrees of freedom. The results are given in Table 4.3. Note that
the comparison to a single core is slightly unfair, because the single process can use the total
memory of the node. Nevertheless, the parallel efficiency is very good and we observe nearly
perfect scaling from 8 to 64 nodes, i.e., 1 to 4 full nodes.

#cores 1 2 4 8 16 32 64

#elements / core 8,000 4,000 2,000 1,000 500 250 125
#dofs / core 531,441 269,001 136,161 68,921 35,301 18,081 9,261
total time (s) 458.7 233.4 122.6 67.6 33.4 16.7 8.29
par. efficiency 1 0.982 0.935 0.848 0.859 0.859 0.865

Table 4.3: Strong scaling statistic for a simulation of the elastic wave equation in 3d. Discretiza-
tion: 8,000 elements in total with 4th-order shape functions, 531,441 degrees of freedom, 4,000
time steps.

Summing up, the results indicate the strong parallel performance of the implementation,
which shows the capability to tackle large-scale seismic inverse problems. We assume the
parallel efficiency can be improved further if non-blocking MPI communication is utilized to
full extend.
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4.3.3 Joint Inversion for Both Lamé Coefficients

Now, we turn to the first inverse problem. The results have also been published in [19]. In
this example, we invert for both Lamé coefficients, λ and µ, simultaneously. Here, we use
additional constraints on the Poisson’s ratio of the material to relate both parameter fields
to each other and to ensure that this quantity remains within reasonable bounds. We recall
from Example 3.3.3 that the Poisson’s ratio ν is defined by

ν(x) =
1

2

λ(x)

λ(x) + µ(x)
, x ∈ Ω. (4.4)

By rearranging the terms, we can impose a pointwise lower and an upper bound on the
Poisson’s ratio νa ≤ ν ≤ νb by

2νaµ+ (2νa − 1)λ ≤ 0, −2νbµ+ (1− 2νb)λ ≤ 0. (4.5)

We refer to Example 3.3.3 for a different representation of (4.5) which includes the reference
model.
In this test setup, we consider a time interval of 2.5s and a rectangular domain of 4km ×
4km with a single source in the center of the domain. Furthermore, there are 360 receivers
on a sphere in 1.2km distance from the source. The reference material has a P-wave velocity
of 2500m/s and a constant Poisson’s ratio of 0.25. There are four block perturbations of
the material with a P-wave velocity of either 2750m/s or 2250m/s. These perturbations are
created by modifying either λ or µ, but not both (see first row of Figure 4.5). Thereby,
the Poisson’s ratio varies from 0.15 to 0.31. Data is generated by a simulation using this
material model and adding 2% Gaussian noise. The source is modeled by a Ricker wavelet
with a dominant frequency of 10Hz. The discretized problem has 103,041 spatial grid points
for the parameter and state mesh and 3,000 time steps. Note, however, that the material is
parameterized with bilinear shape functions while the state uses 4th-order polynomials. The
initial model is homogeneous with a P-wave velocity of 2500m/s and a constant Poisson’s
ratio of 0.25.
We impose constraints on the Poisson’s ratio for the inverse problem and restrict ν to
[0.15, 0.31]. The regularization parameters are chosen α1 = 10−10 and α2 = 10−6.
The reconstruction is shown in the second row of Figure 4.5. Here, we show vp and vs computed
from the reconstructed λ and µ and observe that the reconstruction matches the true material
very well. Figure 4.6 shows a shotgather for all receivers before and after the inversion. Here,
the amplitude of the signal is visualized as a function of receiver location (on the horizontal
axis) and time (on the vertical axis). The order of the receivers is clock-wise. The first arrival
around 0.6s shows the P-wave and the second arrival at roughly 1s is the S-wave. While the
arrival times are the same at all locations for the homogeneous initial material, the waves
arrive delayed or premature when the true material is used . In particular, the P-wave arrival
time is affected by all four block perturbations, while the S-wave arrival time is only sensitive
to the first two. We observe a good match of synthetic and observed data. In particular, the
misfit has been reduced by 95% compared to the initial material. Note that the constraints
never become active during the inversion, hence γ is not increased and j and jγ coincide for
every iterate.
In this example, we do not limit the number of CG iterations in Algorithm 3 and choose a
tolerance

εk = 0.01 ∗min{1, ‖∇jγ(mk)‖/‖∇jγ(m0)‖}.
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Figure 4.5: Joint inversion for both Lamé coefficients. All images show the deviation from the
reference material. (a) true P-wave velocity (generated by modifying λ on the left half and µ
on the right). (b) true S-wave velocity (changes only due to µ) (c) reconstruction of P-wave
velocity (d) reconstruction of S-wave velocity.
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Figure 4.6: Shotgather of all receivers using different material. (a) data signal for the true
material, (b) data signal simulated with initial material model, (c) data signal simulated
with the reconstructed material and (d) difference between the data signals for true and
reconstructed material, amplified by a factor of 100.
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The optimization process is shown in Table 4.4. After 22 iterations the norm of the gradient has
been reduced by more than 12 orders of magnitude and we observe a superlinear convergence
rate. However, the number of CG iterations increases significantly for the last 7 iterations.
To investigate a possible improvement, we test different strategies regarding the maximum
number of CG iterations. In order to compare the different configurations, we use a reduction of
the norm of the gradient by 6 orders of magnitude as stopping criterion, which is sufficiently
accurate for inverse problems. The computational effort is summarized in Table 4.5. With
a maximum number of 20 CG iterations, 37 TR-Newton iterations are required and the
total number of simulations is higher than in the previous case. Limiting the number of CG
iterations to 40 provides a good tradeoff. Here, only two additional Newton iterations are
required compared to the unlimited case and the total number of PDEs is about 10% less.
From Figure 4.7 we see the fast local rate of convergence in the unlimited case, which is at least
superlinear. This can not be observed for the other two cases. Nevertheless, the computational
costs are dominated by the simulation of the elastic wave equation. Hence, the limit of 40 CG
iterations gives the best result in terms of computing time.

it jγ(mk)
‖∇jγ(mk)‖
‖∇jγ(m0)‖ cg it ∆

0 1.85586 1.00e+00
1 1.64239 1.15e+00 1 1.00e+06
2 1.37926 1.49e+00 2 2.00e+06
3 1.01413 1.26e+00 3 2.00e+06
4 0.77855 5.58e-01 3 2.00e+06
5 0.63894 6.08e-01 5 4.00e+06
6 0.61081 6.19e-01 9 8.00e+06
7 0.42257 3.94e-01 8 4.00e+06
8 0.36327 2.95e-01 11 4.00e+06
9 0.29691 2.09e-01 12 4.00e+06
10 0.25126 2.31e-01 15 8.00e+06
11 0.22447 1.97e-01 13 4.00e+06
12 0.19257 2.73e-01 18 8.00e+06
13 0.16579 1.82e-01 15 4.00e+06
14 0.14928 3.81e-01 16 8.00e+06
15 0.11612 1.74e-01 19 4.00e+06
16 0.09775 1.77e-01 62 8.00e+06
17 0.09306 2.75e-02 48 8.00e+06
18 0.09245 2.81e-02 68 8.00e+06
19 0.09240 9.88e-04 52 8.00e+06
20 0.09240 7.13e-05 72 8.00e+06
21 0.09240 2.74e-08 74 8.00e+06
22 0.09240 2.24e-13 169 8.00e+06

Table 4.4: Iteration tableau for the test without a limit on the number of CG iterations. Note
that j and jγ coincide in every iteration and we can use the reduction of the norm of the
gradient as stopping criterion. ∆ denotes the trust-region radius.
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max cg it Newton avg. cg it # PDEs

20 37 15.9 1370
40 23 20.4 1060
∞ 21 25.4 1162

Table 4.5: Comparison of the computational effort for different configurations of the Steihaug-
CG method. While the number of Newton iterations decreases when more CG iterations are
allowed, the second configuration achieves the best results in terms of PDE simulations.
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Figure 4.7: The different lines depict the relative norm of the gradient in every iteration. Fast
local convergence can be observed if we do not impose a limit on the number of CG iterations.

In order to analyze the effect of constraints to more extend, we modify the problem formulation
and restrict ν to values in [0.225, 0.275]. Hence, the true material is infeasible and the test setup
is rather of academic nature. We use the previous reconstruction as initial model and restart
the inversion which required 6 iterations and included 2 updates of the penalty parameter.
Since the true model is unattainable, the bounds on the Poisson’s ratio are active in the
reconstruction. This is shown in Figure 4.8. Interestingly, however, the reconstructed P- and
S-wave velocities still look very similar. The final misfit is 0.0378 and, therefore, slightly
larger than in the previous case with 0.0329. Interestingly, however, the reconstructed P- and
S-wave velocities still look very similar with a maximum pointwise difference of 29m/s for
vp and 41m/s for vs. This shows that constraints can be used to add prior knowledge to
the formulation of the inverse problem in order to restrict physical quantities that cannot be
resolved by the measurements.

4.3.4 Borehole Tomography in 3D

In this example, which has also been published in [19], we consider a three-dimensional domain
of 4km × 4km × 4km and a time interval of 6s. There is one seismic source with a dominant
source frequency of 2.5Hz located in the lateral and longitudinal center at 3.75km depth.
Furthermore, there are four boreholes near the corners of the domain equipped with receivers
that measure data every 200m. In addition there is an array of 441 stations near the surface
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Figure 4.8: Joint inversion for both Lamé coefficients with unattainable true material model.
(a) and (b) depict the reconstructed P-wave and S-wave velocity. (c) indicates the Poisson’s
ratio along the diagonal line depicted in (a). The plot shows the true material with the
dotted black line, the previous reconstruction in orange and the reconstruction with “hard
constraints” in blue. Both, lower and upper bounds are active in parts of the domain.
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with 21 receivers each in lateral and longitudinal directions and a 175m spacing. Similar as
in the previous example, the “true” material has a homogeneous P-wave velocity of 2500m/s
with two ball-shaped perturbations of either 2700m/s or 2250 m/s. The material model as
well as the locations of sources and receivers are shown in Figure 4.9(a). Here, we assume a
constant Poisson’s ratio of 0.25 and invert only for λ. Again, the initial model is homogeneous
with a P-wave velocity of 2500m/s. We use the lower and upper bounds of the true material
as constraints for the absolute value of λ, which gives λ ∈ [3.375 · 109, 5.042 · 109].

For the spatial discretization of the elastic wave equation, we use 531,441 grid points and
4,000 time steps. The parameter mesh has 68,921 degrees of freedom and is discretized by 41
× 41 × 41 grid points. Figure 4.9(b) shows the reconstruction, see also Figure 4.10 for slices
through the domain.

(a) true material and setup (b) reconstruction

Figure 4.9: Borehole Tomography. The test setup is shown in (a) with black dots representing
the locations of the receivers and the red dot indicating the position of the seismic source.
Furthermore, the two perturbations of the true material are visualized and projected to the
bottom for a better visibility. (b) shows the reconstruction which captures the perturbations
very well.

Only 6 Newton iterations with a maximum of 40 CG steps are required to solve the problem
to a relative tolerance of 10−6. Hereby, the misfit has been reduced by more than 99%. In
total, 396 PDEs are solved during the inversion. Note that this problem is considerably easier
to solve than the example in section 4.3.3, which has mainly two reasons. On the one hand,
there is only one parameter field to determine instead of both Lamé coefficients. On the other
hand, there is a good coverage of the domain by the receivers at the surface and inside the
boreholes.

Summing up, the numerical experiments of this section show the capability of the previously
discussed inversion methods. As expected, the quality of the reconstruction and the compu-
tational effort to obtain a solution depends on the amount of information that is included in
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Figure 4.10: Borehole tomography reconstruction. The images (a) - (f) depict slices through
the domain for every plane and show the absolute value of λ.
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the data. Further numerical examples can be found in Chapter 5 and Chapter 6. We conclude
this part with some remarks on possible extensions to enhance the practical performance with
regard to robustness and memory requirements.

4.4 Further Perspectives

Misfit Functional

The proper choice of the misfit functional is crucial for the success of the inversion. In our
numerical experiments, we use the L2-misfit which is suitable for the case of synthetic data and
a small amount of Gaussian noise. However, more sophisticated misfit criteria have been tested
and are required to quantify the difference between simulated and observed seismograms for
real data. For instance, in [128] a correlation-based misfit criterion that uses a weighted norm
of the convolution of both signals is proposed, which is very suitable if both signals differ
by a phase shift or a phase rotation. Time-frequency misfits [82, 83]give another alternative,
where phase and amplitude information of the seismograms are separated. See also [23] for an
analysis on robust misfit measures in the frequency domain. A comparative study is beyond
the scope of this thesis, but we note that different criteria can easily be incorporated into the
inversion framework, as long as they are sufficiently smooth, cf. Assumption 3.2.6.

Regularization

In all numerical examples, we consider a Tikhonov-type regularization term, which is often the
classical choice for inverse problems. On the other hand, seismic tomography is strongly related
to problems in image reconstruction which suggests using other types of regularization that
are commonly used in this field. This can include, for instance, a total variation regularization
[48] or exploring sparsity in a curvelet space [29, 65]. While there are limitations with regard to
the infinite-dimensional framework of Chapter 3, it might be a very interesting enhancement
for practical purposes.

Wavefield Compression

For large problems in seismic tomography, I/O operations and memory requirements become
increasingly important. This is due to the fact that forward and adjoint wavefields have to be
processed asynchronously in time. In particular, the forward wavefield has to accessed during
the adjoint simulation for computing the gradient and, furthermore, both forward and adjoint
wavefield are required to compute Hessian-vector products.
Even for mid-size problems this can amount in several terabytes of data. It is well-known that
memory requirements can be traded for additional simulations using checkpointing techniques
[59]. However, this might increase the computing time significantly. A promising alternative
is proposed in [41] where the wavefield is locally compressed using different floating point
accuracies. It would be an interesting field for future research to tailor these methods to the
computation of gradients or Hessian-vector products.
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Randomized Source Sampling

The computational costs of solving the seismic inverse problem are vastly dominated by the
frequent simulations of the wave equation. We recall that ns denotes the number of seismic
events from which data is considered. The conventional formulation of the inverse problem,
which was discussed in Chapter 3, requires ns simulations of the wave equation in order
to evaluate the objective function for a given material model. By using adjoint techniques,
additional ns PDEs have to be solved to compute the gradient. Furthermore, we require 2ns
simulations per CG iteration during the Newton-CG method. Let Nnewt denote the number
of Newton iterations and Nacg the average number of CG steps per Newton iteration. Then
the total number of PDEs that have to be solved is at least 2nsNnewt(1 + Nacg). Additional
simulations might be necessary if steps are rejected due to a poor ratio of actual and predicted
reduction, cf. Algorithm 4. Moreover, the numbers above implicitly assume that it is possible
to store the whole forward and adjoint wavefields for all sources. If this is not feasible due to
memory restrictions, checkpointing techniques [59] have to be employed and the number of
PDEs per iteration increases further. Hence, an approach that reduces the amount of required
simulations is highly desirable.

In seismic tomography, data is usually taken from a large number of seismic events which is in
the order of tens to a few hundreds for problems in global seismology [110, 118] and even 105

to 106 for problems in geophysical exploration on industrial data sets [107]. Here, the number
of required simulations would be computationally intractable if every source was considered
independently. A promising approach, which has been applied successfully to tomography
problems in the frequency domain [61], is to exploit the linearity of the elastic wave operator
with respect to the state and trigger several sources simultaneously as so-called super-shots.
We also refer to [112] for a simplified version in the time domain using the acoustic wave
equation. Note that similar methods are sometimes also called source stacking [30] or source
encoding [15, 81] in the geophysical community.

Building upon ideas from [61], we present an extension that is tailored to Newton-type meth-
ods, where the computational costs can be reduced further by working with an approximation
of the Hessian of the sample average. Note that some of the analysis is restricted to the finite-
dimensional parameter space, but we omit the superscript h to improve the readability. The
numerical examples in this chapter underline the applicability of the proposed method for
tomography problems in the time domain.
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5.1 Source Stacking

In this section, the data is assumed to have the following properties: We consider ns seismic
events with sources denoted by by fi. For each source there exist measurements uδi in Ωobs×I,
Ωobs ⊂ Ω. Note that it is essential for the following analysis that all events are observed at
the same locations. We refer to Remark 5.3.5 for a possible extension.
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Figure 5.1: Illustration of the source stacking approach. The left column shows snapshots
of the wavefield for two individual sources as well as the wavefield for the simultaneously
triggered sources in the bottom row. The common shotgathers for the individual and the
stacked sources are depicted in the right column. The traces start to overlap at roughly 1.6s.

As pointed out above, the key idea is to trigger different seismic sources simultaneously. This is
shown in Figure 5.1 for a simple case with two sources. Note that the wavefronts as well as the
recorded signals overlap in this approach, which can be seen from the common shotgather for
time steps greater than 1.6s. Now, we turn to the general case with a large number of sources.
Here, we combine the individual events by building the weighted sum of the corresponding
right-hand sides. For w ∈ Rns , we define u(m,w) as the unique solution to:

E(u,m) =

ns∑
i=1

wifi, u(0) = 0, ut(0) = 0.

Due to the linear dependence of the elastic wave operator on the right-hand side, we have

u(m,w) =

ns∑
i=1

wiui, where ui solves E(ui,m) = fi, ui(0) = (ui)t(0) = 0. (5.1)
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Consequently, we now compare the seismograms generated by u(m,w) with the weighted sum
of the measured data. To this end, we slightly change the notation of the misfit functional
and allow for two variables, the simulated wavefield and the observed data. Thus, we define

Jfit : U × L2(I;L2(Ωobs)
d̂)→ R and, furthermore,

J(m;w) := Jfit

(
u(m,w),

ns∑
i=1

wiu
δ
i

)
.

It is important to note that, in general, we have J(m;w) 6=
∑ns

i=1wiJfit(ui(m), uδi ). Hence,
there is a potential loss of information using the super-shot approach instead of individual
events. From (5.1) it can be seen that this is solely caused by the nonlinearity of the misfit
functional.

Remark 5.1.1.
The misfit functional has to be chosen carefully such that comparing the accumulated data still
provides a meaningful value. This might be challenging for noisy measurements. In particular,
we assume only a small level of Gaussian noise and use a least squares misfit in our numerical
examples. Note, however, that the same ideas can be applied to various statistics of the
measurement errors - including distributions with large outliers - if the misfit criteria is chosen
appropriately, see [6].

We will continue with different strategies that incorporate the idea of the super-shots into the
inversion process. Beforehand, we introduce the data set that is considered throughout this
section.

5.2 The Marmousi Model

Our study is based on the Marmousi data set provided by the Institut Français du Pétrole
Energies Nouvelles [21, 129]. It consists of a rectangular domain of 9,216m × 3,072m. The
wave velocities are highly heterogeneous and the material contains a series of normal faults
and resulting tilted blocks. The P-wave velocity ranges from 1500m/s to 5500m/s. Note that
the original data set is an acoustic model, however, we generate an elastic model by using the
P-wave velocities of the acoustic model and assuming a constant Poisson’s ratio of 0.25. This
gives the relation λ = µ and we invert for λ only. Due to the constant Poisson’s ratio the
S-wave velocity is given by vs = (1/

√
3)vp. The P-wave velocity profile is depicted in Figure

5.2. In addition, we show two other material models that are considered for our tests.

For setting up the experiment, we place 191 seismic sources at 36m depth. The signal is
recorded by 384 receivers that are distributed equidistantly on a horizontal line at 100m
depth. This setup mimics a marine seismic exploration with sources located in a thin layer
of water at the top of the domain and geophones placed at the bottom of the ocean. Note,
however, that we do not explicitly model the fluid layer by the acoustic wave equation in this
example.

Figure 5.3 depicts snapshots of the elastic wavefield of a single seismic source. The heteroge-
neous media generates a lot of reflections and refractions of the waves. The parameter mesh
is uniformly refined with a 24m spacing which results in 49,665 degrees of freedom.
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Figure 5.2: P-wave velocity profile of the Marmousi data set. (a) “true” Marmousi model
(b) “smooth” Marmousi model (both can be obtained from http://www.reproducibility.

org/RSF/book/data/marmousi/paper_html/). In order to generate a more realistic initial
model, we assume a laterally constant velocity for fixed depth and assign the average value
of the true Marmousi model to it. This leads to the velocity profile in (c).
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5.2. The Marmousi Model

Figure 5.3: Snapshots of the vertical component of the displacement field for the elastic wave
equation. Time flows by column from top to bottom.
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5.3 Sample Average Approximation

Stacking all the data into just one super-shot will probably lead to a considerable loss of
information, for instance, due to interference and cancellation of waves. However, by choosing
several different weight vectors wk and corresponding super-shots, we hope to diminish this
effect, on the one hand, and still be able to reduce the computational costs significantly
compared to individual right-hand sides, on the other hand. Now, consider K ∈ N, W =
{w1, . . . , wK} and the problem

min
m∈Mad

j(m;W) :=
1

|W|
∑
w∈W

J(m;w) + αJreg(m). (5.2)

Throughout this section, we work with the L2 misfit.

Remark 5.3.1.
The formulation of the inverse problem (P) in Chapter 3 is a special case of (5.2). Indeed, for
the choice K = ns and wk = ek - where ek is the k-th unit vector - the two cost functions
coincide if the regularization parameter is scaled with 1/ns.

Remark 5.3.2.
On the other hand, for fixed W, (5.2) might also be interpreted as a special case of (P) with
K seismic events, sources f̂k :=

∑ns
i=1w

k
i fi and measurements ûδk :=

∑ns
i=1w

k
i u

δ
i . Hence, we

can directly deduce - even in the infinite-dimensional case - the existence of a solution to (5.2)
for any fixed set W by Theorem 3.2.5. However, it is not clear whether the optimal solutions
of (P) and (5.2) are related.

We may also interpret problem (5.2) from a stochastic programming perspective. To this end,
we assume the weights wk are i.i.d. samples from a distribution W with support on a subset of
Rns . In this context, the first term of the cost function in (5.2) is then called sample average
approximation (see [113], Chapter 5) providing an estimate for the expected misfit:

E [J(m;w)] ≈ 1

K

K∑
k=1

J(m;wk). (5.3)

Now the questions arise, whether for fixed m the sample average approximation converges to
E[J(m;w)] for K →∞ and, furthermore, whether the solutions to (5.2) converge for K →∞.
To this end, we define

ϕ(m) := E[J(m;w)] + αJreg(m), ϕK(m) :=
1

K

K∑
k=1

(
J(m;wk) + αJreg(m)

)
and denote

ϕ̄ := inf
m∈Mad

ϕ(m) and ϕ̄K := min
m∈Mad

ϕK(m).

Furthermore, the sets of optimal solutions - if they exist - are denoted by M and MK .
In the following, we choose the probability space W to be Rademacher’s distribution, i.e.,
wk ∈ {−1, 1}ns are i.i.d. samples with P (wki = 1) = P (wki = −1) = 0.5. This has been
proposed in [61] as a suitable strategy to choose the weights. For a finite-dimensional parameter
space Mad in (5.2), we obtain the following result:
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Theorem 5.3.3.
Let Mad = MD = Rnm and wk i.i.d. samples of Rademacher’s distribution. Furthermore, we
define ε :=

√
2J0/α with

J0 := max
w∈{−1,1}ns

J(0;w).

Then ϕK(m) converges to ϕ(m) with probability one uniformly on Bε(0). Moreover, it holds
ϕ̄K → ϕ̄ and D(MK ,M) → 0 with probability one as K → ∞, where the deviation D(A,B)
of two sets A,B ⊂ Rnm is defined by

D(A,B) := sup
a∈A

dist(a,B).

Proof. For an arbitrary sample w of Rademacher’s distribution, we observe using (5.1)

‖u(m;w)‖U ≤
ns∑
i=1

|wi| · ‖ui(m)‖U =

ns∑
i=1

‖ui(m)‖U ≤ C,

since ui(m) is uniformly bounded on Mad by Corollary 2.3.7. Furthermore,

‖u(m;w)−
ns∑
i=1

wiu
δ
i ‖L2(I;L2(Ω)d̂)

=‖
ns∑
i=1

wi(ui(m)− uδi )‖L2(I;L2(Ω)d̂)

≤
ns∑
i=1

‖(ui(m)− uδi )‖L2(I;L2(Ω)d̂)
.

Thus, there exist C > 0 independent of w and m such that

|J(m;w) + αJreg(m)| ≤ C ∀ m ∈ Bε(0), ∀ w ∈W. (5.4)

Hence, the first statement follows by the uniform law of large numbers, cf. Theorem 7.48 in
[113]. Furthermore, W is finite, thus minimizing ϕ might itself be interpreted as a special
case of (5.2). In particular, M and MK are nonempty and contained in Bε(0). Thus, the
convergence of the optimal values as well as the convergence of the sets of optimal solutions
is a special case of a more general setting that is proven in Theorem 5.3 in [113].

By employing Rademacher’s distribution, we obtain a finite set W which facilitates the re-
quirements of the cited Theorems considerably. However, Theorem 5.3 and Theorem 7.48 in
[113] can also applied to general distributions with some additional assumptions. Moreover,
the analysis can be extended to the derivatives of ϕ and ϕK .

Remark 5.3.4.
Despite the result from Lemma 5.3.3, it is hard to quantify the quality of the sample average
approximation and the amount of preserved information in practice. We refer to [61] for a
strategy to estimate ϕ̄K−ϕ̄ that relies on solving a few instances of (5.2) for different weights.

We will now assess the practical performance of the sample average approximation by some
numerical tests. First, we consider the acoustic version of the Marmousi model and a source
frequency of 10Hz. We simulate a period of 3.6s and use a mesh with 197,633 grid points in
space and 6,000 time steps. Figure 5.4 shows the sample average for up to 32 super-shots.
Again, we use Rademacher’s distribution for the probability space W .
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Figure 5.4: Sample average of the misfit for up to 32 super-shots. The black crosses denote
the misfits of single super-shots and the blue line depicts the sample average of all preceding
super-shots. The maximum and minimum values are highlighted with a red circle and the green
dashed lines indicate the interval of mean ± empirical standard deviation for 32 super-shots.

In order to clarify the gain of information using several super-shots instead of only one, we
illustrate the gradient for different choices of K in Figure 5.5. To this end, data is generated
with the true material model and the gradient is computed for the smoothed material (see
Figure 5.2(b). We compare the gradient for 1 to 32 super-shots in (a) - (f). Clearly, the gradient
becomes smoother the more super-shots are considered. We also depict the gradient computed
with data from 8 individual seismic events in Figure 5.5(g). While the computational effort is
the same as for 8 super-shots, using super-shots instead of individual sources seems to provide
a significantly better update. In addition, we compute the full gradient of 191 individual
events and visualize the result in Figure 5.5(h). Keeping in mind that the computational costs
are proportional to the number of sources (individual or simultaneous), we observe that a
small number K seems to be a good tradeoff between preserving information and efficiency
of computation.

Remark 5.3.5.
There are some limitations of the sample average approach regarding the application to real
data. On the one hand, data might not be observed at the same locations for all sources.
This is usually the case for earthquake sources but also applies to certain experimental design
setups in geophysical exploration where the array of receivers moves with the source. To
overcome this problem, strategies on extrapolating the wavefield are discussed in [61] and the
references therein. On the other hand, corrupted data, e.g., due to a defective device, can have
a stronger influence with the super-shot approach than with individual sources. Here, either
an appropriate misfit criterion or an effective preprocessing step to filter out corrupted data
is necessary.

108



5.3. Sample Average Approximation

0 2 4 6 8

0

1

2

3

d
ep

th
(k

m
)

length (km)

(a) 1 super-shot

0 2 4 6 8

0

1

2

3

length (km)

(b) 2 super-shots

0 2 4 6 8

0

1

2

3

d
ep

th
(k

m
)

length (km)

(c) 4 super-shot

0 2 4 6 8

0

1

2

3

length (km)

(d) 8 super-shots

0 2 4 6 8

0

1

2

3

d
ep

th
(k

m
)

length (km)

(e) 16 super-shots

0 2 4 6 8

0

1

2

3

length (km)

(f) 32 super-shots

0 2 4 6 8

0

1

2

3

d
ep

th
(k

m
)

length (km)

(g) 8 individual sources

0 2 4 6 8

0

1

2

3

length (km)

(h) all individual sources

Figure 5.5: Gradient of the sample average for the acoustic Marmousi model. In (a)-(f) the
gradient of the sample average misfit using 1, 2, 4, 8, 16, and 32 super-shots is shown. For a
comparison, (g) shows the gradient computed by 8 randomly selected individual events and
(h) displays the full gradient with 191 independent sources. The computational effort increases
by a factor of 2 at a time from (a) to (f) and again by almost a factor of 6 from (f) to (h).
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Now, we return to problem (5.2) and observe that is has the same structure as (P) for fixed
W. Hence, we can readily use the methods from Chapter 3 to solve the inverse problem. As
main advantage of the sample average approximation, the computational costs for evaluating
the objective function or gradient, or performing a conjugate gradient iteration now scale with
factor K = |W| instead of ns. Provided that neither the number of iterations nor the quality
of the reconstruction change considerably for K � ns, this reduces the number of simulations
significantly. In addition, the memory requirements for storing forward and adjoint wavefields
during the CG iterations are also reduced by K/ns.
The most important question is certainly, how the quality of the reconstruction is affected
by K and, furthermore, what the computational effort to obtain a solution is. To this end,
we perform a second test using the elastic version of the Marmousi model and the initial
model depicted in Figure 5.2(c). This is a realistic scenario for a starting model as no further
information apart from a single depth profile is required. The source time function at all
locations is a Ricker wavelet with dominant source frequency of 5Hz. 1% Gaussian noise is
added to the data generated with the true Marmousi material. Again, we use i.i.d. samples of
Rademacher’s distribution for the weights of the super-shots and we do not impose constraints
on the material in this example.
The reconstructions for different numbers of super-shots are shown in Figure 5.6. Note that we
only consider depths up to 1km as the reconstruction becomes less accurate at greater depths
and the error would be dominated by those regions. Compared to 8 super-shots, the recon-
struction using only one super-shot is rather noisy. On the other hand, it is quite remarkable
how much information is preserved already by a single super-shot.
In order to quantify the quality of the reconstruction, we compare it with the true material
model and with respect to three different criteria in Table 5.1. Again, the comparison consid-
ers only up to 1km of depth. In particular, we specify the maximum pointwise error relatively
to the true model and utilize two criteria that are commonly used for the purpose of image
comparison. Here, we compute the 2D correlation coefficient as well as the structural simi-
larity index (SSIM), see [132]. While the different criteria rank the reconstructions in slightly
different order, there is a clear indication that the quality of the reconstruction improves with
the number of super-shots.

1 2 4 8 16

max. error 0.5880 0.5411 0.5618 0.5365 0.5371

corr2 0.8906 0.9008 0.9052 0.9031 0.9042

SSIM 0.3952 0.4072 0.4183 0.4197 0.4213

Table 5.1: Quantitative assessment of the reconstruction. The table indicates the maximum
pointwise error (the smaller the better), the 2D correlation coefficient (corr2, the higher the
better) and the structural similarity index (SSIM, the higher the better).

Table 5.2 compares the accumulated misfit computed with the initial as well as the final model
for the different scenarios. In all cases, the total misfit has been reduced by around 92%.
The computational effort for solving this problem with different numbers of super-shots is
given in Table 5.3. Slightly more Newton iterations are required for smaller number of super-
shots. Afterwards, the number of iterations seem to stabilize around 30, which suggests that
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Figure 5.6: Reconstruction of λ for an increasing number of super-shots in the sample average
approximation. The images show the deviation from the initial model. The reconstructed
material improves with increasing number of super-shots. On the other hand, very few super-
shots already yield a good result.
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1 2 4 8 16

initial misfit 4.6689 4.7902 4.8081 4.8435 4.9401
final misfit 0.3441 0.4089 0.4306 0.4383 0.4404

Table 5.2: Comparison of the initial and final accumulated misfits for different numbers of
super-shots K.

the sample average approach yields a similar behavior of the optimization process for an
improved approximation of the expected value (5.3). As stopping criterion we use a relative
reduction of the norm of the gradient by either 10−3 or 10−6. The CG iterations are terminated
after at most 40 iterations or if the relative residual is less than 0.01.

K
tol = 10−3 tol = 10−6

it Newton avg. cg it # PDEs it Newton avg. cg it # PDEs

1 24 14.3 810 41 25.0 2255
2 25 15.3 1784 46 26.6 5354
4 28 18.8 4796 38 24.4 8196
8 24 17.0 7504 30 21.6 11584
16 23 15.6 13376 31 21.9 24256

Table 5.3: Comparison of the computational effort for different number of super-shots and
different tolerances for the optimality conditions. The table states the number of Newton
iterations, the average number of CG iterations per Newton iteration as well as the total
number of PDE simulations for different numbers of super-shots K.

In the next step, we present an extension to the sample average approach that is tailored to the
previously proposed Newton-type methods and is based on mini-batches of the samples. To this
end, letW = {w1, . . . , wK} be fixed. From the structure of the sample average approximation
there naturally arises the question, whether subsets (or mini-batches) of the samples can be
used to compute the objective function and/or its derivatives. Note that the gradient and
Hessian of j(m;W) share the same structure:

∇j(m;W) =
1

|W|
∑
w∈W

(∇J(m;w) + α∇Jreg(m)) ,

∇2j(m;W) =
1

|W|
∑
w∈W

(
∇2J(m;w) + α∇2Jreg(m)

)
.

Now, we propose a trust-region Newton-CG method using subsamples ofW. Similar ideas have
been applied to problems in machine learning [27]. We formulate Algorithm 6 in a general
way and allow for different subsets of the samples for the objective function and gradient,
on the one hand, as well as for the Hessian vector products, on the other hand. Here, we
only consider the unconstrained and finite-dimensional case, but it can also be applied to the
Moreau-Yosida penalized objective.
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Algorithm 6 Inexact Newton with Mini-Batches

1: Choose initial model m0 and samples H, H0 with ∅ 6= H ⊆ H0 ⊆ W.
2: for k = 0, 1, 2, . . . do
3: Evaluate j(mk;H0) and ∇j(mk;H0).
4: Invoke Algorithm 3 with Hk = ∇2j(mk;H) and retrieve trial step sk.
5: Invoke Algorithm 4 (and Algorithm 5, if necessary).
6: Choose new samples ∅ 6= H ⊆ H0 ⊆ W.
7: end for

The computational costs of applying the Steihaug-CG method in Algorithm 6 are proportional
to |H| instead of |W|. Likewise, the memory requirements are reduced. Note that the condition
H ⊆ H0 is crucial, because for every w ∈ H the forward and adjoint wavefields are required to
compute ∇2j(m;w). Thus, the corresponding state and adjoint equations have to be solved
anyways. Note that the optimality conditions for (5.2) can not be checked using only a subset
H0 ⊂ W. Hence, including a convergence criterion into Algorithm 6 necessitates to compute
∇j(m;W).

The set W in Algorithm 6 might be interpreted in two different ways. On the one hand, we
can chooseW = {e1, . . . , ens} and apply the method to the conventional problem formulation.
This is similar to problems in machine learning, where parameters of a statistical model are
estimated based on a small training set. Following the original idea of the super-shots, on
the other hand, W is not necessarily fixed a priori, as we can choose an arbitrary number of
samples of a probability distribution W . From this point of view, Algorithm 6 is similar to
stochastic descent methods that are outlined in section 5.4.

Now, we evaluate the practical performance of the proposed method by reconsidering the
elastic Marmousi example and using the same setup. Algorithm 6 offers a lot of flexibility to
choose the mini-batches. We consider either K = 8 or K = 16 super-shots and choose H0 =W
in every iteration. The Hessian-vector products during the CG iterations are computed using
only a single super-shot. Here, a different super-shot is chosen cyclical from 1 to K in every
Newton iteration. In both cases, the iterates converge to the same points as before. Table
5.4 summarizes the computational effort for 8 and 16 super-shots. Due to the approximation
of the Hessian the number of Newton iteration increases, which is expected. Furthermore,
the number of rejected steps during the trust-region iteration increases from 2 to 8 (K = 8)
and from 1 to 6 (K = 16). However, and most importantly, compared to the “full Hessian”
the number of PDE simulations reduces considerably, even for a higher tolerance. Here, we
achieve savings of 56% (K = 8) and 75% (K = 16), respectively. In a second test, we increase
the number of super-shots considered for computing the objective and gradient along the way
and continue to approximate the Hessian using only one super-shot. Here, the results do not
further improve. In contrast, increasing K from 1 to 8 results in a total number of 7984 PDEs
(compared to 5058) and increasing K from 8 to 16 requires 8088 simulations (compared to
6112).

Due to the same structure of problem (P) and (5.2), it is straightforward to incorporate
additional constraints. To this end, we perform another test with the Marmousi model and
add lower bounds on the P-wave velocity. In particular, we impose λ ≥ 1.4 · 109 in the
whole domain. Due to the constant Poisson’s ratio this is equivalent (with minor rounding)
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K
tol = 10−3 tol = 10−6

it Newton avg. cg it # PDEs it Newton avg. cg it # PDEs

8 45 17.8 3090 65 23.2 5058
16 42 17.2 3700 62 22.5 6112

Table 5.4: Comparison of the computational effort for different number of super-shots and
different tolerances on the optimality conditions. The Hessian is approximated by only one
super-shot as outlined in Algorithm 6.

K (|H|) tol = 10−3 tol = 10−6

it Newton avg. cg it # PDEs it Newton avg. cg it # PDEs

8 (8) 25 17.9 8264 33 23.3 13704
8 (1) 50 19.6 3440 66 24.0 5092
16 (1) 46 20.7 4384 65 24.4 6358

Table 5.5: Comparison of the computational effort for the Marmousi model with lower bounds.
The number in brackets in the first column indicate the number of super-shots that are used
to compute the Hessian-vector products of the misfit functional.

to vp ≥ 1450[m/s]. This bound is only relevant near the surface as the velocities increase with
depth. Note that the true Marmousi model is feasible with respect to this bound.

In a first scenario, we solve the constrained inverse problem using 8 super-shots for the approx-
imation of the objective, gradient and Hessian-vector products. In addition, we use Algorithm
6 with the same setting as before and compute solutions to the constrained problem with
K = 8 and K = 16. In shallow depth up to 100m there is a slight improvement of the recon-
struction for 8 super-shots compared to the unconstrained case, where the maximum pointwise
error is reduced from 0.22094 to 0.22068. In the rest of the domain the solutions are the same.
In addition, there is a small improvement of the final misfit to 0.438278. The regularization
parameters were chosen identically in all scenarios with α1 = 10−8 and α1 = 5 · 10−5. For
K = 16 the reconstructions in the constrained and unconstrained cases are identical, although
29 of the iterates are infeasible material models which triggers an increase of γ.

Finally, Table 5.5 summarizes the computational effort to solve the constrained problems
using the Moreau-Yosida regularization. The number of required PDE simulations increased
only about 0.7% (K = 8) or 4% (K = 16), respectively, compared to the unconstrained case.

Summing up, this test shows a nice application of constraints where the solution can be
slightly improved by adding prior knowledge to the problem formulation. More importantly,
the computational effort for solving the constrained problem does not increase significantly.
This is also visualized in Figure 5.7, which shows that in both test cases the mini-batch Hessian
based on a single super-shot is more efficient - even to get from tolerance 10−3 to 10−6.
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Figure 5.7: Summary of the computational effort to solve the unconstrained and constrained
inverse problem for K = 8. Even for higher accuracies, the inexact Hessian based on a single
super-shot is more efficient.

5.4 Related Approaches and Further Perspectives

Stochastic Descent Methods

If K and the random weights are fixed, the sample average approximation approach yields a
deterministic optimization problem that can be solved with any choice of nonlinear optimiza-
tion method, for instance Algorithm 6. However, since W is not necessarily fixed a priori and
samples can be chosen randomly in every iteration, the proposed method is closely related to
stochastic descent methods.
In particular, the stochastic gradient descent method (also known as Robbins-Monro method
[111]) is based on the update rule

mk+1 = mk − σ∇j(mk;Wk),

where σ > 0 is a step size and Wk is a small number of samples drawn from the distribution
W that changes in every iteration. Again, we can also allow for randomly picked individual
sources. We refer to [113], section 5.9, for a general overview on the stochastic gradient descent
method. Note, however, that most of the theoretical findings are limited to convex problems.
However, even in the non-convex case, the method often yields good results in practical
applications [61]. A key observation is that the performance of stochastic descent methods
can be accelerated by using a preconditioner, i.e., by modifying the update rule to

mk+1 = mk − σB−1∇j(mk;Wk),

with a symmetric positive definite matrix B approximating the Hessian at the solution m̄. Re-
cently, limited-memory BFGS (L-BFGS) methods [97] as well as variants using Hessian-vector
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products based on mini-batches to construct the L-BFGS approximation [28] for accelerating
the stochastic gradient descent method have been proposed.

Despite being a very interesting topic, a rigorous comparison of stochastic descent methods
and its relation to the sample average approximation is beyond the scope of this thesis and
left for future research.

Source Stacking with Time Shifts

So far, all sources (possibly with weight zero) are triggered simultaneously. However, we can
also introduce a temporal delay and trigger the sources with a time shift. To this end, we
assume that all receiver locations observe continuously in time, i.e., for every event there
exist measurements uδi (θ) for every θ ∈ R with time θ referring to the global time scale.
Furthermore, let fi : [0, T ] → V ∗, i = 1, . . . , ns, denote the source time functions for the
single events. Here, the length of the interval T indicates the duration for which significant
measurements are observed. For simplicity, we assume that this duration is the same for all
events. Note that fi introduces an individual time scale for event i and initial time zero on
this local scale does not mean that all events happen simultaneously. Instead, let θi denote
the initial time of event i on the global time scale. Then, on the global time scale, the period
with significant measurements for event i corresponds to uδi (θ) with θ ∈ [θi, θi + T ].

Now, we extend the source stacking approach by allowing for additional time shifts. To this
end, let w ∈ Rns and τ ∈ [0, (ns − 1)T ]ns denote weight and time shift for every source. We
set

T̄ := T + max
i=1,...,ns

τi

and define the super-shot right-hand side with time shifts as

Fw,τ : [0, T̄ ]→ V ∗, Fw,τ (t) =

ns∑
i=1

1{τi≤t≤τi+T}wifi(t− τi).

Here, 1 denotes the indicator function. We recall the assumptions from the previous chapters
that every seismic source fi is continuous in time and has compact support in [0, T ]. Hence,
these properties also hold for Fw,τ on [0, T̄ ]. The misfit is now computed using measurements
uδi (θ) with θ ∈ [θi − τi, θi + (T̄ − τi)].
Clearly, the sample average approach presented previously can be interpreted as a special case
of this strategy with the choice τi = 0 for all i. Compared to the conventional approach with
individual events, the number of time steps would be reduced by a fraction of T̄ /(nsT ). Since
the number of time steps are roughly proportional to the overall costs of simulating all seismic
events, the same fraction applies to the reduction of the total costs.

In summary, allowing for time shifts might help to reduce the loss of information by shifting
the arrivals of particular wavefronts and still provide significant savings of computational time.

Optimal Experimental Design to Determine the Weights

In all the numerical examples presented above, the weights were chosen as i.i.d. samples of
Rademacher’s distribution, which is motivated by the fact that this distribution is optimal in
the sense that it minimizes the variance of E[J(m;w)] among all distributions with mean zero
and the identity matrix as covariance [75]. Despite this observation, it is not clear, however,
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whether a different choice of the weights could either provide a better descent direction or
result in fewer iterations to solve the problem. More generally, while the computational effort
using super-shots can be reduced substantially, it is also unknown, how much information
is lost by the sample average approximation, especially in the presence of very noisy mea-
surements. Hence, it is desirable to determine the weights such that as much information as
possible is preserved. Therefore, criteria to quantify the quality of information are required.
Related literature exists for linear tomography problems [38, 60] as well as a preliminary
study for the acoustic wave equation [117]. Moreover, general considerations on optimal ex-
perimental design of inverse problems can be found in [62]. Many of these criteria depend on
the spectrum of the Hessian of the sample average approximation. In order to apply these
methods, representing the second derivatives by adjoint techniques will be a crucial ingredient.
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Chapter 6

Wave Propagation at a Solid-Fluid
Interface

Complementing the results from the previous chapters, we conclude this thesis with a case
study on tomography problems with a domain that has both fluid and solid media. To this
end, we present a model that consists of a coupled system of the elastic and the acoustic wave
equation. Hereby, a fundamental assumption is that the location of the interface between
both media is known a priori. Afterwards, we apply the framework for solving tomography
problems that we have developed in the previous chapters. However, a rigorous analysis of
the coupled system in a function space setting is beyond the scope of this section.

Most of the results of this chapter have been published in [18].

mantle

outer core (fluid)

inner core (solid)

crust

1222 km

2258 km

2867 km

25 km

Figure 6.1: Sketch of the inner structure of the Earth with a solid mantle and inner core and
a fluid outer core [46].
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6.1 Motivation

So far, we have treated fluid and solid media separately, considering either the elastic or the
acoustic wave equation. However, in several applications the domain of interest has both solid
and fluid regions which requires appropriate modeling. These problems occur on very different
scales, for instance, in global seismic tomography where the liquid structure of the Earth’s
outer core has to be considered, see Figure 6.1.
On a much smaller scale, problems in marine geophysical exploration require an accurate
model of the ocean. An important application is the search for natural resources, especially
oil reservoirs that are located below the sea. Here, measurements are generated by a research
vessel that emits pressure waves with an airgun. Figure 6.2 sketches the setup for the collection
of reflection and refraction surveys. Geophones buried into the shallow seafloor record the
seismic response from the subsurface. The Valhall oil field in the North Sea is an example for
such an industrial data set with ongoing research [107, 112].

Figure 6.2: Sketch of marine geophysical exploration: A research vessel equipped with an air-
gun cruises the sea and emits pressure waves. The seismic response of reflected and refracted
waves is recorded by a dense array of geophones located at the bottom of the ocean or buried
into the shallow seafloor (shown as red lines).

6.2 Modeling and Inverse Problem

We consider a domain that consists of a solid and a fluid layer. The solid and fluid regions are
denoted by ΩS and ΩF , respectively, and we set Ω = ΩS ∪ΩF ⊂ Rd with d = 2, 3. Throughout
this chapter, we assume that ΩS and ΩF are bounded domains with smooth boundaries and
interface Γint. The remaining parts of the boundaries are denoted by ΓF := ∂ΩF \ Γint and
ΓS := ∂ΩS \Γint, respectively. Figure 6.3 shows the geometry of the domain with both layers.

As has been discussed in the previous chapters, the propagation of waves in the solid medium
is governed by the elastic wave equation and, respectively, by the acoustic wave equation in
the fluid domain. In addition, continuity of traction and continuity of the normal displacement
have to be ensured at the interface, cf. [34]. In the solid medium, we assume a heterogeneous
and positive density ρS and a linear elastic rheology and continue to denote the displacement
field by u. In the fluid domain, we consider an inviscid fluid medium with a homogeneous

120



6.2. Modeling and Inverse Problem
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Figure 6.3: Sketch of a solid-fluid interface. Parts of the incoming waves are reflected to the
acoustic medium while other parts are transmitted to the elastic medium.

density ρF > 0. In order to better distinguish both regions, we introduce a new state variable
χ to denote the displacement potential. The speed of compressional waves in the fluid domain
is assumed to be constant and denoted by c > 0. Furthermore, the normal vector pointing
outwards of the fluid domain is denoted by ~nF and the normal vector pointing outwards of
the solid domain by ~nS , respectively.
In order to cover the more general case we place seismic sources fF and fS into both media.
Note that sources in the acoustic medium are pressure sources. The complete coupled system
in strong form is now given by:

ρFχtt − ρF c2∆χ = fF on ΩF × I,
χ(0) = 0, χt(0) = 0 on ΩF ,

χ = 0 on ΓF × I,

ρSutt −∇ · (Ψ(m) : ε(u)) = fS on ΩS × I,
u(0) = 0, ut(0) = 0 on ΩS ,

(Ψ(m) : ε(u)) · ~nS = 0 on ΓS × I,

(Ψ(m) : ε(u)) · ~nS = −ρFχtt ~nF on Γint × I,
−~nF · ∇χ = ~nS · u on Γint × I.

(6.1)

Here, we work with the same parameterization as in Chapter 3, i.e.,

Ψ(m) = Ψ + Φ(m).

Remark 6.2.1.
Since we focus on marine geophysical exploration, we assume that the fluid medium is known
with a constant density and a constant velocity of compressional waves. Note however, that
we could easily extend the problem formulation using the results from section 2.5 to invert
for the acoustic material as well. This would be interesting for problems in global seismic
tomography that seek to identify the structure of the Earth’s outer core.
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Remark 6.2.2.
Note that the model presented above requires exact knowledge of the location of the interface
between the solid and the fluid medium. Again, this might not be the case for problems
in global seismic tomography. We refer to [36] for a discussion of techniques to identify the
location of such interfaces. In fact, this is an inverse problem itself.

In the next step, we turn to the weak form of (6.1). Let VS := H1(ΩS)d and, furthermore,
let VF := H1

0 (ΓF ,ΩF ) denote the space of all H1-functions that vanish on ΓF . To shorten the
notation, we define the following bilinear forms:

aF : VF × VF → R, aF (v, w) := ρF c
2 (∇v,∇w)L2(ΩF )d ,

aS(Ψ(m)) : VS × VS → R, aS(Ψ(m))(v, w) := (Ψ(m) : ε(v), ε(w))L2(ΩS)d×d ,

aint : L2(ΩF )× L2(ΩS)d → R, aint(v, w) := ρF

∫
Γint

v(x) w(x) · ~nS(x) dS(x).

Here, the normal vector ~nS in the definition of aint is pointing outwards of the solid and into
the fluid domain. The variational form of (6.1) can be written as:
∀ v ∈ VF ,∀ w ∈ VS and a.a. t ∈ I:

ρF 〈χtt(t), v〉V ∗F ,VF + aF (χ(t), v) + c2 aint(v, u(t)) = 〈fF (t), v〉V ∗F ,VF ,
〈ρS utt(t), w〉V ∗S ,VS + aS(m)(u(t), w)− aint(χtt(t), w) = 〈fS(t), w〉V ∗S ,VS .

(6.2)

Analogously to the analysis in Chapter 3, we define the spaces

X := L2(I;VF ) ∩H1(I;L2(ΩF )) ∩H2(I;V ∗F ),

U := L2(I;VS) ∩H1(I;L2(ΩS)d) ∩H2(I;V ∗S ).

Furthermore, we set Y = X × U and let y = (χ, u) denote the state that consists of the
displacement potential in the fluid domain and the displacement field in the solid domain.
The following notation will be useful. For an arbitrary element y ∈ Y we split y = (y1, y2)
with y1 ∈ X and y2 ∈ U . With f = (fF , fS)T , the weak form of the coupled system (6.1) can
be written as:

E(y,m) = f :⇔ (y,m) satisfies (6.2) a.e. in I,

and, additionally, the initial conditions y(0) = 0 and yt(0) = 0 have to be satisfied.
Now, we state the seismic inverse problem for the coupled system. To this end, we consider ns
seismic events with sources fi = (fF )i in the fluid domain. Then, the coupled inverse problem
can be stated as follows:

min
y∈Y, m∈M

J(y,m) s.t. E(yi,m) =

(
fi
0

)
1 ≤ i ≤ ns,

(
y(0)

yt(0)

)
= 0. (6.3)

Here, y = (yi)1≤i≤ns denotes a vector of states for different seismic events and Y := Y ns . Note
that the state yi only enters into the i-th component of E, while the parameters m are the
same for all components. Clearly, (6.3) has the same structure as the seismic inverse problem
from Chapter 3. We consider cost functions J : Y ×M → R of the form:

J(y,m) =

ns∑
i=1

Jfit,i(yi) + αJreg(m),
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6.3. Adjoint Equation

i.e., we allow for observations in both solid and fluid media. In the numerical example in this
section, however, we will consider data observations uδi only in the solid domain, i.e., on Ωi×I
with Ωi ⊂ ΩS . Hence, the misfit term Jfit,i and the regularization term Jreg are given by

Jfit,i(yi) =
1

2
‖ui − uδi ‖2L2(Ωi×I), Jreg(m) =

1

2
‖m‖2M .

Note that a rigorous analysis of the coupled system regarding existence and uniqueness of so-
lutions is beyond the scope of this thesis. Hence, we follow a discretize-then-optimize approach
and consider only the finite-dimensional version of (6.3).

6.3 Adjoint Equation

Similar as before, the state variables for different seismic events can be separated in (6.3).
Hence, the same holds true for the adjoint states and we restrict this section to the analysis
of a single seismic event and drop the index i.

We formally derive the adjoint equation and define L(y,m, z) : Y ×M × Y → R with the
adjoint state z = (z1, z2) as:

L(y,m, z) := J(y,m) +
T∫
0

ρF 〈y1
tt(t), z

1(t)〉V ∗F ,VF dt+
T∫
0

aF (y1(t), z1(t)) dt

+
T∫
0

〈ρS y2
tt(t), z

2(t)〉V ∗S ,VS dt+
T∫
0

aS(Ψ(m))(y2(t), z2(t)) dt

−
T∫
0

aint(y
1
tt(t), z

2(t)) dt+
T∫
0

c2 aint(z
1(t), y2(t)) dt

−
T∫
0

〈fS(t), z2(t)〉V ∗S ,VS dt−
T∫
0

〈fF (t), z1(t)〉V ∗F ,VF dt

−ρF (y1(0), z1
t (0))L2(ΩF ) + ρF (y1

t (0), z1(0))L2(ΩF )

−(ρS y
2(0), z2

t (0))L2(ΩS)d + (ρS y
2
t (0), z2(0))L2(ΩS)d .

(6.4)

Thus, the adjoint equation is given by

Ly(y(m),m, z) = 0, (6.5)

where y(m) denotes the state corresponding to m. By considering the variational form of (6.5)
and carefully integrating by parts with respect to time, we obtain the adjoint equation for
given m and y(m) as

Ead(z,m) = −Jy(y(m),m), z(T ) = 0, zt(T ) = 0. (6.6)

With the assumption of sufficient regularity, the adjoint equation Ead in strong form can
be interpreted as a coupled system like (6.1) backwards in time with final time instead of
initial conditions, interchanged interface conditions and a different right-hand-side. In case
of measurements in both fluid and solid domain, the adjoint source −Jy(y(m),m) will have
support in both media as well.

Now, we turn to the adjoint-based representation of first and second derivatives. To this end,
let z(m) denote the adjoint state for given m, which we assume to be uniquely determined by
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Chapter 6. Wave Propagation at a Solid-Fluid Interface

(6.6). It is important to note that the material parameters m do not appear in the interface
conditions. Now, we introduce the form DSF : M × Y × Y → L(M,R) analogously to section
3.2.2 by

DFS(m, v,w)(s) =

T∫
0

∫
ΩS

(
ε(v1)(x, t)⊗ ε(w1)(x, t)

)
::
((

Φ′(m)s
)

(x)
)
dx dt ∀ s ∈M,

which enables us to express the first derivatives as

j′(m) = DFS(m, y(m), z(m)) + αJ ′reg(m). (6.7)

Furthermore, we note that the weak form (6.2) depends linearly on y and m. Thus, the
derivation of the second derivatives for the coupled system is straightforward. We obtain:

Lyy(y,m, z)(ŷ1, ŷ2) = Jyy(y,m)(ŷ1, ŷ2),

Lym(y,m, z)(m̂, ŷ) =

∫ T

0

(
(Ψ′(m)m̂) : ε(ŷ2)(t), ε(z2)(t)

)
L2(ΩS)d×d

dt,

Lmy(y,m, z)(ŷ, m̂) =

∫ T

0

(
(Ψ′(m)m̂) : ε(ŷ2)(t), ε(z2)(t)

)
L2(ΩS)d×d

dt,

Lmm(y,m, z)(m̂1, m̂2) =

∫ T

0

(
(Ψ′′(m)(m̂1, m̂2)) : ε(y2(t)), ε(z2(t))

)
L2(ΩS)d×d

dt.

In particular, we note that the derivatives have a very similar structure as in the purely
elastic case. Therefore, operator-vector products j′′(m)s for a given perturbation s ∈ M can
be computed at the cost of two additional simulations of the coupled system.
With the adjoint-based representation of the first derivatives and operator-vector products
representing the second derivatives applied to a search direction, we have everything at hand
to apply the trust-region Newton-PCG method presented in section 3.5.

Remark 6.3.1.
Following the analysis from Chapter 3, it would be straightforward to include constraints on
the material as well. However, we restrict the presentation to the unconstrained case and
utilize the superposition operator Φ to ensure positive wave velocities during the inversion.

We continue with a strategy to deal with the difficulty of having several local minima which
is caused by the non-convexity of the problem. This poses a severe challenge when solving the
inverse problem and has not been addressed comprehensively so far in this thesis.

6.4 Multi-Frequency Inversion and Goal-Oriented Adaptivity

High-resolution reconstructions of the material properties require high-frequency information
in the observed data. This introduces several challenges. For increasing frequencies the data is
more prone to errors induced by noisy measurements. Furthermore, it can easily be observed
that the threat of several local minima increases with frequencies. This is shown in Figure 6.4
which considers a Ricker wavelet recorded at 5km distance from the source. We use different
source frequencies of 2Hz, 5Hz and 10Hz. The arrival of the signal might be premature or
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6.4. Multi-Frequency Inversion and Goal-Oriented Adaptivity

delayed if the underlying material has a higher or lower velocity, respectively. We depict the L2-
misfit as a function of the difference in P-wave velocity in a homogeneous medium, indicating
that the basis of attraction around the global minimum shrinks with higher frequencies. In
other words, incorporating higher frequency data during the inversion necessitates an initial
model of increasing quality.
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Figure 6.4: Frequency-dependence of the misfit. The images on the left show the Ricker wavelet
for three different dominant frequencies (2Hz, 5Hz, 10Hz) in black as well as a shifted arrivals
of ± 0.2s in red. On the right-hand side, we depict the resulting L2-misfit as a function of the
difference in P-wave velocity ∆vp. Clearly, the basin of attraction is larger for lower source
frequencies.

Even when more sophisticated misfit criteria are used, this problem is not resolved to full
extend. This observation suggests a multi-frequency approach that sequentially inverts for
increasing source frequencies and reuses the reconstructions for lower frequencies as improved
initial material model for the subsequent inversions. Hereby, a bandpass filter can be used
to down-sample the observed measurements to lower frequencies. This approach, which is
sometimes also referred to as multi-scale inversion, has been proven effective in empirical
studies [25, 54], see also [48].
As another important advantage of this approach, inverting for lower source frequencies can
be carried out on a coarser mesh, since the discretization of the state depends on the wave-
lengths that should be resolved. Due to the CFL condition, this affects spatial and temporal
discretization and provides significant savings.
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Chapter 6. Wave Propagation at a Solid-Fluid Interface

The procedure works as follows:

0. Choose an initial parameter mesh.

For a sequence of increasing source frequencies ω1 ≤ ω2 ≤ . . .

1. Choose the state mesh based on the dominant frequency ωi of the seismic source and
the wave velocities.

2. Solve the discretized problem to a specified tolerance and reuse the reconstruction as
the next initial model.

While the state mesh depends on the velocities and frequency, it is not clear, how the param-
eter mesh should be discretized during the multi-frequency inversion. For a general discussion
of discretization techniques for inverse problems and adaptive mesh refinement, we refer to
[11]. One option is to follow a regularization-by-discretization strategy and combine the multi-
frequency inversion approach with an adaptive grid refinement based on goal-oriented error
estimates. To this end, we add this third step to the procedure above:

3. Adaptively refine the parameter mesh using goal-oriented error estimators.

The adaptively refined grid allows to reduce the number of optimization variables without a
loss of resolution in the reconstruction. In order to capture the material heterogeneities, the
cells of the parameter mesh cannot be smaller than the cells of the state mesh. The process
is sketched in Figure 6.5.

frequency ω1 → ω2 . . . ωk

state mesh

parameter mesh

Figure 6.5: Multi-frequency inversion with goal-oriented adaptivity. For a sequence of increas-
ing source frequencies the parameter mesh is adaptively refined. The state mesh is uniformly
refined based on the source frequency and wave velocities.

In the following, we briefly summarize the main ideas of a posteriori error estimation and goal-
oriented adaptivity following the comprehensive analysis in [14]. In addition, we motivate why
the grid refinement can be carried out already for an inexact solution to the coarse problem.
Further studies on goal-oriented adaptivity for problems governed by parabolic or hyperbolic
PDEs can be found, for instance, in [85, 94]. The main result for a posteriori error estimation
of the discretization error is given as follows, cf. [14]:
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6.4. Multi-Frequency Inversion and Goal-Oriented Adaptivity

Theorem 6.4.1.
Let X be a Banach space and L : X → R a three times Gâteaux differentiable functional.
Furthermore, let X1 ⊂ X be a subspace of X and x̄1 ∈ X1 a stationary point of L on X1, i.e.,

L′(x̄1)(v) = 0 ∀ v ∈ X1.

Now, consider an approximation of this equation by a Galerkin method in a subspace X2 ⊂ X
and a stationary point x̄2 ∈ X2 that satisfies

L′(x̄2)(v) = 0 ∀ v ∈ X2.

If, in addition, x̄1 satisfies
L′(x̄1)(x̄2) = 0, (6.8)

then the difference L(x̄1)− L(x̄2) can be represented in the form

L(x̄1)− L(x̄2) =
1

2
L′(x̄2)(x̄1 − x̂2) +R

with an arbitrary x̂2 ∈ X2 and a cubic remainder term R given by

R =
1

2

1∫
0

L′′′(x̄2 + se)(e, e, e)s(s− 1) ds,

where e := x̄1 − x̄2.

Proof. See [14], Proposition 2.1.

Remark 6.4.2.
If X2 ⊂ X1, then (6.8) is obviously satisfied by the stationarity of x1 in X1.

Following the lines of the proof of Theorem 6.4.1 in [14], Proposition 2.1, we directly obtain
the following variant.

Theorem 6.4.3.
Let X be a Banach space and L : X → R a three times Gâteaux differentiable functional.
Furthermore, let X1 ⊂ X be a subspace of X and x̄1 ∈ X1 a stationary point of L on X1, i.e.,

L′(x̄1)(v) = 0 ∀ v ∈ X1.

Furthermore, we consider a subspace X2 ⊂ X with x2 ∈ X2 and assume x̄1 satisfies

L′(x̄1)(x2) = 0.

Then the difference L(x̄1)− L(x2) can be represented in the form

L(x̄1)− L(x2) =
1

2
L′(x2)(x̄1 − x2) +R

with a cubic remainder term R given by

R =
1

2

1∫
0

L′′′(x2 + se)(e, e, e)s(s− 1) ds,

where e := x̄1 − x2.
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Proof. With e := x̄1 − x2, we obtain

L(x̄1)− L(x2) =

1∫
0

L′(x2 + se)(e) ds

=

1∫
0

L′(x2 + s(x̄1 − x2))(e) ds+
1

2
L′(x2)(e)− 1

2
L′(x2)(e)− 1

2
L′(x̄1)(e),

where we used

L′(x̄1)(e) = L′(x̄1)(x̄1)− L′(x̄1)(x2) = 0.

Now, we can apply the trapezoidal rule for integration to obtain the remainder term:

1∫
0

L′(x2+s(x̄1 − x2))(e) ds− 1

2
L′(x2)(e)− 1

2
L′(x̄1)(e)

=

1∫
0

s(s− 1) L′′′(x2 + se)(e, e, e) ds,

which yields the error representation above.

Remark 6.4.4.
The only difference between Theorem 6.4.1 and Theorem 6.4.3 is that the first derivative of
L is applied to x̄1 − x2 instead of x̄1 − x̂2 with an arbitrary x̂2 ∈ X2. In return, x2 does not
have to be a stationary point of L in X2.

In the context of optimal control or parameter identification problems, this error representa-
tion is applied to the Lagrangian function (6.4). To this end, consider Yh ⊂ Y and Mh ⊂ M
and let (ȳ, m̄, z̄) ∈ Y × M × Y and (ȳh, m̄h, z̄h) ∈ Yh × Mh × Yh be stationary points of
the Lagrangian L for the continuous and discretized problem. Due to the stationarity of
(ȳ, m̄) ∈ Y ×M and, respectively, (ȳh, m̄h) ∈ Yh ×Mh we have

J(ȳ, m̄) = L(ȳ, m̄, z̄), J(ȳh, m̄h) = L(ȳh, m̄h, z̄h).

Thus, applying Theorem 6.4.1 to L yields the estimate

J(ȳ, m̄)− J(ȳh, m̄h) ≈ 1

2
Ly(ȳ

h, m̄h, z̄h)(ȳ − ŷh)

+
1

2
Lm(ȳh, m̄h, z̄h)(m̄− m̂h)

+
1

2
Lz(ȳ

h, m̄h, z̄h)(z̄ − ẑh),

(6.9)

with arbitrary ŷh ∈ Yh, m̂h ∈Mh and ẑh ∈ Yh.
The framework of goal-oriented adaptivity is typically applied to refine the mesh for the
discretization of the state and adjoint equation based on the estimate (6.9). This has been
carried out successfully for forward simulations of the wave equation [8] as well as for optimal
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control problems involving the elastic wave equation [84, 85]. Note, however, that in both cases
the material was homogeneous. In seismic tomography, the potential savings are probably
smaller as the inhomogeneous medium results in many reflected waves with amplitudes at
very different magnitudes that might be equally important for different misfit criteria. On a
different note, integrating an adaptively refined spatial mesh, which changes over time, into
the MPI parallelized code would be a lot more involved. Furthermore, a local time stepping
scheme where the length of the time step is adjusted to the spatial size of the cell might be
required.

For these reasons, we only consider the parameter mesh and assume that state and adjoint
equation are solved exactly for Yh = Y . Hence, we estimate the difference in the reduced cost
functional as

j(m̄)− j(m̄h) ≈ 1

2
Lm(u(m̄h), m̄h, z(m̄h))(m̄−mh).

Here, the first two terms in (6.9) vanish by the assumption Yh = Y .

The remaining difficulty is to approximate the unknown solution m̄ to compute m̄ − mh.
Typically, this is done by a local interpolation in a higher-order finite element space. Assuming
that the parameter mesh has a patch structure, we combine 2d neighboring cells and define
I2

2h as the bi-/tri-quadratic interpolation on the macro cells. This is visualized in Figure 6.6
for 1d. The difference m̄ −mh is then approximated by (I2

2h − id)mh. Although there is no
theoretical justification, this heuristic has been proven effective in many applications [8, 14].

x
xk−1 xk xk+1

I(2)
2h m

h

Figure 6.6: Linear and quadratic interpolation on element patches in 1d.

In particular, we observe that this heuristic does not utilize the fact that mh can be chosen
arbitrarily, which motivates to solve the reduced problem for Mh only inexactly and to apply
Theorem 6.4.3 with the approximate stationary point mh. Loosely speaking, this strategy
assumes that the discretization error dominates the non-stationarity.

The considerations outlined above enable us to adaptively refine the parameter mesh during
the multi-frequency inversion. The grid refinement is implemented using deal.ii [10].

It should be emphasized that there is no theoretical justification of the effectiveness of the
refinement process. Moreover, since the state mesh is not affected, the computational savings
are rather small. Therefore, we choose a high ratio of cells to be refined during the multi-
frequency inversion. On the other hand, the error estimates are cheap to compute, especially as
they do not require the solution of a PDE and involve only the parameter mesh. Furthermore,
we expect some robustification in addition to the regularization term in the objective and
hope to avoid artifacts in the reconstruction that are caused by an over-parameterization of
the material, but not explained by the data.
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6.5 Implementation

Due to the similar structure of the weak form as well as the adjoint equation and the represen-
tation of the derivatives, most of the implementation presented in Chapter 4 can be reused.
In particular, we use fourth-order Lagrange-polynomials as shape functions and apply the
Gauß-Lobatto-Legendre quadrature. In addition to mass matrix M̄S/F , stiffness matrix K̄S/F

and force vector F̄S/F in both media, we obtain an extra term from the interface conditions
which acts on the set of elements that are adjacent to the interface. Similar as for the stiffness
terms, these contributions are computed on the fly, but for notational convenience we denote
this by a matrix B̄S/F . The subscripts are used to indicate solid and fluid domain. For a
complete derivation of the spatial discretization we refer to [33].
For the temporal discretization, we use the Newmark scheme as outlined in (4.2) with β =
0 and θ = 1/2. The main important difference is introduced by the interface conditions
that have to be carefully incorporated into the time-stepping scheme. Following [100], it can
still be carried out fully explicit. To this end, let uk,0,uk,1,uk,2 denote the time-discrete
approximations of u(tk),ut(tk) and utt(tk) and, respectively, xk,0,xk,1,xk,2 the time-discrete
approximation of x, the coefficient vector of the nodal basis representation of χh. Then the
Newmark update formulas are given as follows:

xk+1,0 = xk,0 + ∆tkxk,1 +
1

2
∆t2kxk,2,

uk+1,0 = uk,0 + ∆tkuk,1 +
1

2
∆t2kuk,2,

xk+1,2 = −M̄−1
F

(
K̄Fxk+1,0 + B̄Fuk+1,0 − F̄F,k+1

)
,

uk+1,2 = −M̄−1
S

(
K̄Suk+1,0 + B̄Sxk+1,2 − F̄S,k+1

)
,

xk+1,1 = xk,1 +
1

2
∆tk (xk,2 + xk+1,2) ,

uk+1,1 = uk,1 +
1

2
∆tk (uk,2 + uk+1,2) .

(6.10)

Hereby, the order of the update is important, as xk+1,2 is required for updating uk+1,2. The
order of u and x has to be interchanged for the adjoint equation.

6.6 Numerical Example

Now, we present a numerical example that is inspired by the Valhall oil field in the North Sea.
Prior work on this field can be found in [22, 107, 114]. This example has also been published
in [18]. The geometry is given by a rectangular domain of 8km × 8km × 4km. There is a
layer of water on top of the solid domain with a constant depth of 400m. We use 36 seismic
sources that are triggered simultaneously in the fluid region at 200m depth. The source time
function for all sources is a Ricker wavelet with dominant frequency of 2.5Hz. There are 441
seismic receivers buried into the seafloor at 50m depth that form a dense array of 16km2 in
the center of the domain. In the fluid domain, we set ρF = 1000kg/m3 and c = 1500m/s. In
the solid domain, we assume a constant density of 2300kg/m3 and a constant Poisson’s ratio
of 0.25, i.e., we have the relation vp =

√
3vs for the velocity of compressional and shear waves

and only one parameter field to invert for. The synthetic target model has P-wave velocities
that range from 1400m/s to 3400m/s, see Figure 6.7 for a vertical profile. Data is generated
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Figure 6.7: Vertical cross section of the P-wave velocity of the target model.

by running a simulation with the target model. In order to deal with the difficulties in using
synthetic data and their potential for committing inverse crimes [77], we use a finer mesh for
both, the parameter and the state space and add 2% Gaussian noise to the seismograms. The
reference model varies only vertically and for every fixed depth, we use the average value of
the target model in the horizontal plane as the reference value.
Similar as before, we have to impose absorbing boundary conditions at the artificial boundaries
Γabs
S ⊂ ∂ΩS and Γabs

F ⊂ ∂ΩF of the computational domain:

∇χ · ~n = −c−1χt (x, t) ∈ Γabs
F × I,

(Ψ : ε(u)) · ~n = vpρS (ut · ~n)~n+ vsρS (ut − (ut · ~n)~n) (x, t) ∈ Γabs
S × I.

Furthermore, we enforce Φ(m) = 0 on Γabs
S , i.e., the parameter model is not updated on the

artificial boundaries, in order to avoid artifacts in the reconstruction.
We solve the seismic inverse problem by sequentially inverting for source frequencies of
0.625Hz, 1.25Hz and 2.5Hz. On the finest level, we obtain a parameter mesh with roughly
100,000 degrees of freedom. The state mesh has approximately 300,000 spatial grid points and
1,000 time steps.
Figure 6.8 shows histograms for the misfit at all receiver locations before and after the opti-
mization. The accumulated misfit has been reduced by more than 83%, i.e., there is a good
match between observed and reconstructed data. Figure 6.9 compares the initial, target and
reconstructed parameter model at a vertical cross section through the domain. The inversion
output looks reasonable, especially near the surface. As expected the reconstruction becomes
less accurate at greater depths. Figure 6.11 shows horizontal snapshots of the P-wave velocity
for the reconstructed and the target model. The images show the deviation from the reference
model that is homogeneous for every fixed depth.
The adaptively refined parameter meshes are illustrated in Figure 6.10. Table 6.1 summarizes
the optimization process on the different frequency levels. We use a relative reduction of the
norm of the gradient by 3 orders of magnitude as stopping criterion. The computations were
carried out on a Linux cluster using 32 processors.
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Figure 6.8: (a) Histogram of the misfit at all receiver locations using the initial model.
(b) Histogram obtained with the reconstructed model. Note the different scaling of the x-axis.
The misfit has been reduced by more than 83%. All three components of the seismograms are
used to compute the misfit.
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Figure 6.9: (a) P-wave velocity for a vertical cross section through the domain at the center
of the x-y-plane. (b) Relative error between the reconstruction and the target model.
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(a) (b)

(c)

Figure 6.10: Adaptively refined parameter meshes. (a) and (b) show vertical profiles of the
mesh in the center of the domain after the first and second refinement. (c) depicts the whole
grid after the second refinement. Cells that are colored in dark red indicate the smallest
elements.

frequency # dof it Newton #PDE solves

0.625Hz 4851 22 886
1.25Hz 15949 15 550
2.5Hz 101015 13 384

Table 6.1: Summary of the optimization process. The second column lists the degrees of
freedom of the parameter mesh. On every frequency level, the algorithm was terminated,
after the norm of the gradient had been reduced by three orders of magnitude.
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0 2 4 6 8
0

2

4

6

8

0 2 4 6 8
0

2

4

6

8

(b) vp at 800m depth

0 2 4 6 8
0

2

4

6

8

0 2 4 6 8
0

2

4

6

8

(c) vp at 1500m depth

Figure 6.11: Horizontal snapshots of vp at different depths for the reconstruction (left) and
target model (right). The images show the deviation from the reference model.
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6.7 Further Perspectives

In this chapter, we discussed seismic wave propagation at a solid-fluid interface and focused on
modeling the coupled system and the numerical realization of the inverse problem. To this end,
we proposed some practical enhancements like a multi-frequency inversion and goal-oriented
adaptive mesh refinement of the parameter grid.
Dealing with existence and uniqueness of solutions to the coupled system of PDEs is beyond
the scope of this thesis but would be an interesting field for future research.
Due to the similar structure, the wave propagation code described in Chapter 4 requires only
small changes to incorporate the interface conditions. However, an efficient decomposition of
the computational domain is more challenging, because the fluid elements require significantly
less effort than the solid ones. This has not been exploited to full extend in the current
implementation and could be investigated in the future to improve the performance.
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Chapter 7

Conclusion and Outlook

In this thesis, we considered problems in seismic tomography governed by the elastic and/or
the acoustic wave equation. As some of the main contributions, we rigorously analyzed the
infinite-dimensional problem, provided results on the differentiability of the solution operator
and proved the existence of solutions to the regularized inverse problem. Despite being a field
of very active research, the focus of related literature is often limited to the discretization and
the infinite-dimensional problem has yet not been addressed in full extend.

In addition, the commonly used formulation of the inverse problem without constraints has
been extended. Here, we established a framework that allows for additional restrictions on
the material parameters and utilized the Moreau-Yosida regularization as a proper solution
method. Building upon existing work for state-constrained problems, error estimates for the
violation of the constraints have been established. It is important to note that the results
from Chapter 2 and Chapter 3 are of greater validity and can be applied to general problems
governed by linear hyperbolic PDEs of second order that depend on unknown coefficients.

The numerical results focus on the application to parameter identification in seismic tomo-
graphy. As part of this thesis, an MPI-parallelized code for simulating wave propagation in
solid and fluid media as well as for solving the related inverse problems has been developed.
This software is capable of running on large-scale computing clusters and has been tested on
up to 4096 cores. The framework features the adjoint-based computation of the gradient and
Hessian-vector products as well as a matrix-free algorithm to solve the discretized problem
with a trust-region Newton-PCG method.

The costs of conventional approaches for full-waveform tomography scale proportionally with
the number of seismic sources. Here, randomized source sampling techniques that trigger
different sources simultaneously have been proven to be a successful tool to trade a small
loss of information for huge savings of computational time to solve the inverse problem. In
particular, we accelerated a sample average approximation model by using inexact Hessian
information based on mini-batches of the samples.

Possible extensions and further related questions have already been pointed out at the end
of each chapter. In more general terms, there are two driving forces that can guide future
directions to continue the research of this thesis.

First of all, the optimization methods that have been presented in this work are suitable to
identify local minima. Since the problem is non-convex this might be a severe limitation in
cases where a sufficiently good initial material model is not available. In order to improve this
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situation and to enlarge the basin of attraction, we proposed a multi-frequency inversion and
commented on different misfit criteria. Nevertheless, there is a general trend towards statistical
inverse problems [77, 120], which seek to identify a probability distribution quantifying the
likelihood of all material models, opposed to deterministic inverse problems considered in this
thesis, which select only one specific model. This has already been applied in the context
of seismic tomography [24, 56, 93] and it would be very interesting to combine ideas from
randomized source sampling and the constrained parameter identification problem with a
stochastic Newton Markov chain Monte Carlo method.
Another direction for future research relates to the many new challenges that will arise when
real-world problems using actual recordings from earthquakes or geophysical exploration are
considered. The numerical experiments in this thesis have been carried out with synthetic
data. While the results look very promising, the presented methods yet have to prove their
suitability for application to real data.

138







Appendix A

Preliminaries from Functional
Analysis

In this appendix, we collect some background material from functional analysis. For the sake
of brevity, we restrict the presentation to settings that are relevant for this thesis. It should
be emphasized, however, that many of the subsequently stated results can be generalized, for
instance, with respect to weakened assumptions on Ω. The interested reader is referred to [1,
4, 31, 43, 49].

Proposition A.1 (Poincaré’s inequality).
Let Ω ⊂ Rd be open and bounded. Then there exists a constant C > 0 such that

|u|H1(Ω) ≤ ‖u‖H1(Ω) ≤ C|u|H1(Ω) ∀ u ∈ H1
0 (Ω).

Proof. A proof can be found, for instance, in [43], Satz 6.13 .

Proposition A.2 (Generalized Hölder’s inequality).
Let pi ∈ [1,∞], i = 1, . . . , k, and q ∈ [1,∞] with

k∑
i=1

1

pi
=

1

q
.

Then, for all vi ∈ Lpi(Ω), there holds v = v1v2 . . . vk ∈ Lq(Ω) and

‖v‖Lq(Ω) ≤
k∏
i=1

‖vi‖Lpi (Ω).

Proof. A proof can be found, for instance, in [4], Lemma 1.18.

Proposition A.3 (Young’s inequality).
Let a, b ≥ 0, ε > 0 and p, q ∈ (1,∞) with 1

p + 1
q = 1. Then, with 0p = 0, there holds

ab ≤ ε

p
ap +

ε−q/p

q
bq.
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Proof. A proof can be found, for instance, in [49], Appendix B. Note that the variant including
ε is a straightforward extension by setting ã = ε1/pa and b̃ = ε−1/pb.

Lemma A.4 (Gronwall’s inequality).
Let I = [0, T ] and consider continuous, real-valued and non-negative functions f, g, h defined
on I which satisfy for almost all t ∈ I the integral inequality

f(t) ≤ g(t) +

∫ t

0
f(τ)h(τ) dτ.

Then,

f(t) ≤ g(t) +

∫ t

0
g(τ)h(τ) exp

(∫ t

τ
h(s) ds

)
dτ

for almost all t ∈ I.

Proof. A proof can be found, for instance, in [49], Appendix B.

Theorem A.5 (Weak Gauss-Green theorem).
Let Ω ⊂ Rd be open, bounded and with Lipschitz boundary and p, q ∈ [1,∞] with 1

p + 1
q = 1.

Then for all v ∈ W 1,p(Ω) and w ∈ W 1,q(Ω) the following integration by parts formula holds
for i = 1, . . . , d:∫

Ω

∂

∂xi
v(x)w(x) dx = −

∫
Ω
v(x)

∂

∂xi
w(x) dx+

∫
∂Ω
v(x)w(x)~ni(x) dS(x).

Proof. A proof can be found, for instance, in [4], Theorem A6.8.

In this thesis, we only require the special case p = q = 2. Note that the extension to vector-
valued functions is straightforward.

Definition A.6 (Gâteaux and Fréchet differentiability).
Let X,Y be Banach spaces, S ⊂ X a nonempty open set and F : S → Y .

(i) F is called Gâteaux differentiable at x ∈ S if the directional derivative

dF (x, h) = lim
t↘0+

F (x+ th)− F (x)

t
∈ Y

exists for all h ∈ X and, furthermore, if F ′(x) : X → Y , h 7→ dF (x, h) is bounded and
linear.

(ii) F is called Fréchet differentiable at x ∈ S if F is Gâteaux differentiable at x and the
following estimate for the remainder term holds:

‖F (x+ h)− F (x)− F ′(x)h‖Y = o(‖h‖X) for ‖h‖X → 0.

Furthermore, if F is Gâteaux (Fréchet) differentiable at every x in an open neighborhood of S,
then F is called Gâteaux (Fréchet) differentiable on S. F is called continuously differentiable
if the mapping x 7→ F ′(x) is continuous from X to L(X,Y ).
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Derivatives of higher order can be defined in the same way. With regard to this thesis, we
focus on Fréchet differentiable functions.

Definition A.7 (Second derivatives).
Let X,Y be Banach spaces, S ⊂ X a nonempty open set and F : S → Y Fréchet differentiable.
F is called twice Fréchet differentiable at x ∈ S if F ′ : X → L(X,Y ) is differentiable at x.
The second derivative is denoted by F ′′(x) ∈ L(X,L(X,Y )). To shorten the notation, we write
L2(X;Y ) for the Banach space of bilinear mappings F ′′(x) : X ×X → Y.

Higher order derivatives can be defined analogously and lead to continuous multilinear map-
pings F (k)(x) ∈ Lk(X;Y ). Thus, the approximation condition of the remainder term of the
k-th Fréchet derivative can be expressed as
For all h1, . . . , hk−1 ∈ X:∥∥∥(F (k−1)(x+ h)− F (k−1)(x)− F (k)(x)h)(h1, . . . , hk−1)

∥∥∥
Y

= o (‖h‖X) for ‖h‖X → 0.

The following result states that the order of hi is arbitrary.

Theorem A.8.
Let X,Y be Banach spaces, S ⊂ X a nonempty open set and F : S → Y . If F is k-times
Fréchet differentiable at x ∈ S then the derivative F (k)(x) ∈ Lk(X;Y ) is a multilinear sym-
metric mapping X × X × . . . × X → Y , i.e., for h1, . . . , hk ∈ X and any permutation σ of
{1, . . . , k}, it holds

F (k)(x)(h1, . . . , hk) = F (k)(x)(hσ(1), . . . , hσ(k)).

Proof. See Theorem 5.3.1 in [31].

We frequently require continuous and compact embeddings of Sobolev spaces. For this purpose,
we recall the famous theorem:

Theorem A.9 (Sobolev embedding theorem).
Let Ω ⊂ Rd be open, bounded and with Lipschitz boundary. Furthermore, let k1, k2 ∈ N0,
1 ≤ p1 <∞, 1 ≤ p2 ≤ ∞ and β ∈ [0, 1].

(i) If k1 ≥ k2 and k1− d
p1
≥ k2− d

p2
, then W k1,p1(Ω) is continuously embedded into W k2,p2(Ω),

i.e.,
W k1,p1(Ω) ↪→W k2,p2(Ω).

If k1 > k2 and k1 − d
p1
> k2 − d

p2
, then the embedding is compact, i.e.,

W k1,p1(Ω) ↪→↪→W k2,p2(Ω).

(ii) If k1 − d
p1
≥ k2 + β and β ∈ (0, 1), then W k1,p1 is continuously embedded into Ck2,β(Ω̄),

i.e.,
W k1,p1(Ω) ↪→ Ck2,β(Ω̄).

If k1 − d
p1
> k2 + β, then the embedding is compact, i.e.,

W k1,p1(Ω) ↪→↪→ Ck2,β(Ω̄).

Proof. A proof can be found, for instance, in [1], Theorem 4.12, or, respectively, in [4], Theorem
8.9 and Theorem 8.13.
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Example A.10.
Here are some important special cases of Sobolev embeddings:

(i) For d = 1 and arbitrary k ∈ N, we obtain Hk(Ω) ↪→↪→ Ck−1(Ω̄).

(ii) With k2 = 0, we obtain embeddings into Lp2(Ω), for instance, H2(Ω) ↪→↪→ Lp2(Ω) for
1 ≤ p2 ≤ ∞ and d ∈ {1, 2, 3}.

(iii) For d ∈ {1, 2, 3}, the embedding H1(Ω) ↪→ L6(Ω) is continuous and the embedding
H2(Ω) ↪→↪→ C(Ω̄) is compact.
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