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1. Introduction

This work demonstrates the viability of constructing efficient discontinuous Galerkin (dG)
time discretizations of higher order for optimal control problems governed by systems of
parabolic partial differential equations (PDEs). In particular, we address the issue of
efficient solution of the resulting large implicit time stepping equations and explore two
ways of achieving rapid convergence of higher order dG methods in spite of the typically
low regularity of solutions when additional inequality constraints on the control or state
variables are present.

Using Galerkin-type methods for optimal control problems is desirable since in this
setting discretization and optimization commute (see, e. g., [12]), i. e., discretizing the
optimality system for the continuous problem yields the same result as deriving an
optimality system for the already discretized problem. Compared to, e. g., the continuous
Petrov-Galerkin (cG) methods, dG time stepping has the additional advantage that the
adjoint time discretization is of the same form as the primal one since test and trial
space are identical. This allows for unified treatment of state and adjoint equations in
the analysis and also in the implementation.

Due to the inherent stiffness of parabolic PDEs, the strong A-stability of the dG method
is an advantage compared to cG discretizations which are only A-stable. Since the trial
space is discontinuous, dynamic meshes, i. e., spatial discretizations that vary over time,
can be incorporated in a natural way into the variational formulation. This allows to
resolve local phenomena that travel over time, for example travelling reaction fronts as
seen in the problem given in Section 2.3.3.

When employing higher order versions of implicit single step methods like dG, a major
practical issue, which of course also arises in the context of optimal control problems,
is the efficient solution of the resulting large equation systems for each time step. We
address this problem by an iterative process involving an approximation of the time
stepping equation that can be decoupled. Our method is related to the “Single Newton
Process” proposed by Perez-Rodriguez and co-workers (see, e. g., [87]) and represents an
improvement over our previous approach presented in [91].

To achieve high order of convergence, higher order discretizations for PDEs typically
require sufficient smoothness of the solution and in turn of the problem data. Whereas
for solving PDEs without optimal control we can check the smoothness requirements
on the data a priori, for optimal control problems, the regularity of the control, which
enters the state equation as a datum, is determined by the problem itself. In particular
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1. Introduction

when inequality constraints on the control are present, its regularity can be limited at
the boundaries between active and inactive sets.

We pursue two approaches to address this issue in the context of higher order dG
methods. On the one hand, we construct an almost third order convergent method based
on piecewise linear dG time discretization for a model problem exploiting additional
regularity of the adjoint state and superconvergence properties of the dG solution. On
the other hand, we propose to circumvent the issue of local lack of regularity by using an
hp-adaptive discretization that resolves the parts of the time domain where the solution
is less smooth by low order approximations with small step size while retaining fast
convergence with few higher order time steps where the solution is smooth.

Subsequently, we give a brief overview of the organization of this thesis: In Chapter 2
we give a precise formulation for the class of optimal control problems considered in this
work. Additionally we introduce a set of benchmark problems that we use for testing
numerical algorithms in the later chapters.

Chapter 3 reviews optimality conditions and representation formulas for first and second
derivatives. Subsequently we present the semismooth Newton algorithm we use for
the solution of the optimal control problem. To improve convergence properties of the
algorithm, a heuristic strategy similar to Steihaug cg is discussed. All considerations
in this chapter apply to the undiscretized optimal control problem, ensuring mesh-
independence of the resulting numerical methods.

The discretization of the optimal control problem is introduced in Chapter 4. We first
discretize the state equation in time using discontinuous Galerkin schemes. In preparation
for Chapter 7, where hp adaptivity with respect to time is investigated, we allow the
order of the discretization to vary over time. Subsequently, the resulting semidiscrete
state equation is discretized with respect to the spatial domain using standard finite
elements. Finally we discuss two possibilities for treating the control variable, which is
still left undiscretized at this point, and remark for each of them on the implications on
the realization of the optimization algorithm.

In Chapter 5, we discuss the solution of the discrete time stepping equations for the state
and auxiliary equations. Parts of this chapter have been previously published in Richter,
Springer, and Vexler [91]. We start by analyzing the structure of Newton’s method when
applied to the time stepping equation. The resulting Newton update equation consists of
a block structured linear system, where the number of blocks grows with the order of the
discontinuous Galerkin scheme. We establish a connection to the Runge-Kutta Radau
schemes and show that a decoupling of the blocks of the update equation introduces
complex coefficients. To circumvent this issue, we propose an approximation of the
Newton matrix that allows for decoupling of the blocks over the reals. Subsequently,
an analysis of the convergence properties is carried out, first for linear and then for
nonlinear problems with particular emphasis on semilinear equations. Afterwards we
discuss the practical realization of the resulting time stepping schemes. The chapter is
concluded with numerical tests assessing the performance of the decoupling approach.
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Chapter 6 presents an a priori analysis of a time discretization scheme for a linear
quadratic model problem with control constraints which—in spite of low temporal
regularity of the control—converges with almost third order with respect to the fineness
of the time discretization. To achieve this high order of convergence based on a first
order discontinuous Galerkin discretization, we use a combination of several techniques.
On the one hand, the control is treated with the variational approach due to Hinze [55],
on the other hand we prove superconvergence properties of the adjoint solution. By a
post-processing step using this higher order reconstruction of the adjoint solution, we
obtain an improved control solution which we show to converge with almost third order.
To complete the discussion, we analyze the spatial discretization error and back up the
theoretical results with numerical evidence. The results presented in this chapter are
already published in Springer and Vexler [104].

A completely different approach to resolving non-smooth features of optimal control
problems while using higher order dG time discretizations, is taken in Chapter 7. We
present an adaptive algorithm that contains provisions for assessing the local temporal
smoothness of the solution and changing the order of the time discretization accordingly,
thereby realizing hp adaptivity with respect to the time discretization. In the first
section of the chapter, a posteriori error estimators based on the dual weighted residual
approach as described in Becker and Rannacher [13] are derived, which also account for
errors due to control constraints and numerical quadrature. Subsequently, we discuss
a smoothness indicator, followed by a description of the complete adaptive algorithm.
Numerical studies on three test problems with different non-smooth features complete
the presentation.

Chapter 8 summarizes the presented results and discusses some ideas for possible
extensions.
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2. Problem formulation

In this chapter, after fixing basic notation, we give a precise definition of the problem
class we consider. Subsequently we remark briefly on existence of solutions and discuss
some simple examples that we will employ in the later chapters for numerical tests.

2.1. Basic notations

As usual we will denote Lp spaces and Sobolev spaces over some domain Ω ⊆ Rd,
d = 1, 2, 3 by Lp(Ω) and W k,p(Ω) with 1 ≤ p ≤ ∞ and k ∈ R. The corresponding
Bochner spaces with values in a Banach space H are written as Lp(Ω, H) and W k,p(Ω, H).
For the case p = 2, we use the abbreviation Hk(Ω, H) = W k,2(Ω, H). The space of
bounded linear operators mapping a Banach space U into another Banach space V is
denoted by B(U, V ) and by B(U) if U = V . For elements of some finite dimensional
space Rn, the p norms are written as ‖·‖p.

To introduce the functional analytic setting for the state equation, we consider two
Hilbert spaces V and H such that the embedding V ↪→ H is a continuous dense injection.
If we identify H with its dual, then the spaces V ↪→ H ↪→ V ∗ form a Gelfand triple, i. e.,
the second embedding is a dense injection as well.

With the Gelfand triple and a given finite time interval I = (0, T ) we define the usual
space X := W (I) by

(2.1) X =
{
v ∈ L2(I, V )

∣∣ ∂tv ∈ L2(I, V ∗)
}
.

This construction is commonly employed for analyzing parabolic PDEs, for details see,
e. g., [27] or [117]. We note that the space X embeds continuously into C(Ī , H).

For inner products on a Hilbert space V we employ the notation (·, ·)V , for the space H
we omit the subscript and write (·, ·). The corresponding norms are denoted by ‖·‖V and

‖·‖ respectively. Inner product and norm on the space L2(Î , H) for some interval Î read
(·, ·)Î and ‖·‖Î respectively. For the duality pairing on a space V we write 〈·, ·〉V ∗×V .

2.2. Problem statement

Subsequently we state an abstract framework that all problems considered here can
be cast into. In general, an optimal control problem consists of a cost functional J
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2.2. Problem statement

depending on a state variable u and a control variable q that is to be minimized, equality
constraints that couple q and u, typically in the form of a differential equation, and
possibly further constraints. In our case we consider a parabolic PDE that couples the
state to the control and optionally additional restrictions on the control variable q.

Here, the Hilbert space Q for the control is assumed to be of the form Q = L2(ΩQ) for
some suitable underlying set ΩQ. Note that the case of finite dimensional control is
covered by this definition since we can choose a finite underlying set ΩQ. The considered
cost functional J : Q×X → R takes the form

J(q, u) = J1(u) + J2(u(T )) +
α

2
‖q‖2Q ,

with the continous, two times Fréchet-differentiable functionals J1 : L2(I, V )→ R and
J2 : H → R and a quadratic control cost term weighted by a parameter α ≥ 0. When
considering inverse problems, this term results from Tikhonov regularization.

As in the previous section, let V and H together with V ∗ form a Gelfand triple and
let A : I ×Q× V → V ∗ be a (possibly nonlinear) elliptic differential operator which is
uniformly elliptic in the third argument. We pose the parabolic state equation in an
abstract form as: Find u ∈ X such that

∂tu(t) +A(t, q, u(t)) = 0 for almost all t ∈ I,

u(0) = u0(q).

The initial datum has the form u0 : Q→ H. Note that since the differential operator is
allowed to be non-linear, we can incorporate a non-homogeneous right hand side into the
definition of A. For stating the weak form of this equation, we introduce the semilinear
form a : I ×Q× V × V → R given by

a(t, q, u)(ϕ) = 〈A(t, q, u), ϕ〉V ∗×V .

For semilinear forms we adopt the convention that the form may be non-linear with
respect to all arguments in the first parenthesis, whereas it is linear with respect to the
arguments given in the second parenthesis. For a weak formulation in space and time,
the obvious test space making all occuring terms well-defined is L2(I, V ), resulting in∫

I
〈∂tu, ϕ〉V ∗×V + a(q, u)(ϕ) dt = 0 for any ϕ ∈ L2(I, V ),

u(0) = u0(q).

(2.2)

Note that for simplicity of notation we do not state dependencies on t explicitly. Since
the space X is dense in the space of test functions L2(I, V ), we can restrict ourselves
to consider only test functions from X. This has the benefit that, since u ∈ X and X
is embedded into C(Ī , H), we can couple the initial condition to the weak formulation
resulting in

(2.3)

∫ T

0
〈∂tu, ϕ〉V ∗×V + a(q, u)(ϕ) dt+ (u(0), ϕ(0)) = (u0(q), ϕ(0)) for any ϕ ∈ X.
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2. Problem formulation

As it will turn out, having the initial values coupled to the weak formulation is beneficial
when deriving optimality conditions.

Subsequently, we consider only H = L2(Ω) where Ω ⊆ Rd, d ∈ {1, 2, 3} is assumed to be
a bounded Lipschitz domain. The space V is chosen to match the differential operator
and to take possible Dirichlet boundary conditions into account.

As an additional constraint on the control we require it to be contained in the set of
admissible controls Qad given by

(2.4) Qad =
{
q ∈ Q

∣∣∣ qa ≤ q ≤ qb almost everywhere on ΩQ

}
,

where qa, qb : ΩQ → R∪{±∞} are measurable functions with qa ≤ qb almost everywhere,
i. e., we allow for pointwise box-constraints on the control.

Putting it all together, our optimization problem reads

Minimize J(q, u) subject to

{
(q, u) ∈ Q×X satisfying (2.3),

q ∈ Qad.
(2.5)

Whether this problem admits an optimal solution (q̄, ū) and whether this solution is
unique depends on the structure of the state cost term J1, the spatial differential operator
A, and possibly also on whether the control cost term is present (i. e., α > 0) and on
the properties of Qad. Existence proofs for solutions for a number of subsets of the
considered problem class can be found for example in the textbooks by Tröltzsch [107]
and Lions [69].

2.3. Example problems

In this section we introduce a few example problems that we use later on to test our
numerical algorithms. The first example is the standard linear quadratic optimal control
problem for the heat equation with time-dependent parameter control. Next we discuss
a semilinear test problem with terminal observation. Our last problem models control of
a combustion process by cooling and heating the boundary of the domain.

2.3.1. Linear heat equation with time parameter control

We consider the linear quadratic problem given by: Minimize the cost functional

(2.6a) J(q, u) =
1

2

∫ T

0
‖u(t)− ud(t)‖2L2(Ω) dt+

α

2

∫ T

0

dQ∑
i=0

qi(t)
2 dt
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2.3. Example problems

For the set of time-dependent control parameters we assume q ∈ L2(I,RdQ) for some
dQ ∈ N, and the state variable u is subject to the linear heat equation

∂tu−∆u = f +Gqq in I × Ω

u = 0 on I × ∂Ω

u(0) = u0 in Ω.

(2.6b)

The space V is chosen as V = H1
0 (Ω). For the control we have pointwise inequality

constraints

(2.6c) q ∈ Qad =
{
q
∣∣∣ qa ≤ q(t) ≤ qb for almost all t ∈ I

}
The scalar value α is assumed to be positive, the bounds qa, qb ∈ (R ∪ {±∞})dQ are
given fixed vectors with qa < qb component-wise, and the linear operator Gq : RdQ → H

is given by Gqq =
∑dQ

j=0 qjgj with given functions gj ∈ V . We extend Gq to time-
dependent functions by setting (Gqq)(t) := Gq(q(t)). For the data we assume u0 ∈ V
and ud, f ∈ L2(I,H).

The existence of a unique solution for this problem is shown, e. g., by Tröltzsch [107]. To
embed this problem into our abstract setting, we set

J1(u) =
1

2

∫ T

0
‖u(t)− ud(t)‖2L2(Ω) dt,

J2(u(T )) = 0,

and a(t, q, u)(ϕ) = (∇u,∇ϕ)I − (f +Gqq, ϕ)I ,

and note that Q = L2(I,RdQ) is isomorphic to L2(IdQ).

2.3.2. Semilinear problem with terminal observation

Also for this problem, the control consists of time-dependent parameters entering a source
term. Correspondingly, the control space is set as Q = L2(I,RdQ) for some dQ ∈ N. The
cost functional is given by

(2.7a) J(q, u) =
1

2
‖u(T )− ud‖2L2(Ω) +

α

2

∫ T

0

dQ∑
i=0

qi(t)
2 dt

with some desired terminal state ud ∈ L2(I,H) subject to the semilinear equation

∂tu−∆u+ u3 = f +Gqq in I × Ω,

u = 0 on I × ∂Ω,

u(0) = u0 in Ω,

(2.7b)
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ΓN

ΓN

ΓN ΓN
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30

60

(a) Domain Ω with boundary designations

(b) Initial configuration. Grey indicates fluid; the cooled rods are displayed
in blue

Figure 2.1.: Domain Ω and initial configuration for the combustion example

and the control constraints

(2.7c) q ∈ Qad =
{
q
∣∣∣ qa ≤ q(t) ≤ qb for almost all t ∈ I

}
with qa, qb ∈ (R)dQ The control-to-right-hand-side operator Gq : RdQ → H is assumed to

take the form Gqq =
∑dQ

j=0 qjgj with given functions gj ∈ L∞(Ω). For the right hand
side and the initial datum we require f ∈ L∞(I × Ω) and u0 ∈ L∞(Ω) ∩ V .

Due to the fact that the nonlinear term is not well defined for W (0, T ) ↪→ L
4
3 (I×Ω), this

problem cannot be treated within the functional analytic setting proposed in Section 2.2.
Instead, the space X ∩ L∞(Ω) can be used for the state. For details on the existence
theory for this type of semilinear problem, we refer for example to Neitzel and Vexler [85]
or Chapter 5 in Tröltzsch [107].

2.3.3. Temperature control in combustion

As a practical example of an optimization problem governed by a system of parabolic
partial differential equations we are going to control a combustion process by cooling
at the boundary. The mathematical model for the combustion process is taken from
Lang [65]. We note that our problem setup—involving a time dependent control—is

8



2.3. Example problems

different from the parameter estimation problem considered by Meidner and Vexler [78],
which was built around the same model.

The problem we consider uses a simplified model of a gaseous combustion process which
was derived in Lang [65]. Under the low Mach number hypothesis, the density of the
fluid becomes independent from its pressure. After further approximations, the motion
of the fluid is independent of concentration and temperature and it enters the equation
system for the other two quantities only via a convection term. Here we consider a
stationary fluid, i. e., constant velocity zero. Assuming constant diffusion coefficients,
we introduce the dimensionless temperature variable θ = T−Tunburnt

Tburnt−Tunburnt and the fluid
concentration Y . Then the combustion process is modelled by the two equations

∂tθ −∆θ = ω(Y, θ) in I × Ω,(2.8a)

∂tY −
1

Le
∆Y = −ω(Y, θ) in I × Ω,(2.8b)

where Le is the Lewis number which indicates the ratio of the diffusivities of mass and
temperature. The reaction rate ω on the right hand side is modelled by an Arrhenius
law for a simple one-species reaction process with an approximation for large activation
energy. It is given by

ω(Y, θ) = Y

{
β2

2Lee
β(θ−1)

1+αc(θ−1) , θ > αc−1
αc

0, θ ≤ αc−1
αc

.

Compared to the reaction term used in [65], we removed the singularity at θ = αc−1
αc

by continuing with 0 for smaller θ. This avoids problems if temperature drops below
Tunburnt and is justified from the modelling point of view since for low temperatures the
reaction should come to a stop. We note that the modified reaction term is continuously
differentiable.

The configuration we consider for the control problem is a freely propagating laminar
flame in two space dimensions passing through an obstacle formed by a set of two
parallel rods that can be cooled or heated. We assume that the temperature of each
rod can be controlled individually over time, so the control variable consists of two
time-dependent temperature parameters q1 and q2. The considered spatial domain Ω,
along with a visualization of the configuration at initial time can be seen from Figure 2.1.
For simplicity we assume that the heat exchange at the rods can be modelled by Newton’s
law of cooling which leads to a boundary condition of Robin type. We omitted the
Dirichlet boundary conditions on the left boundary of the domain proposed in [65] since
they are not required here. With the boundary designations as indicated in Figure 2.1(a)
we have the boundary conditions

(2.9)

∂nθ = 0 on ΓN × (0, T ), ∂nY= 0 on ΓN × (0, T ),

∂nθ = kθ(q1 − θ) on Γ1
R × (0, T ), ∂nY= 0 on Γ1

R × (0, T ),

∂nθ = kθ(q2 − θ) on Γ2
R × (0, T ), ∂nY= 0 on Γ2

R × (0, T )

9



2. Problem formulation

Figure 2.2.: Desired mass distribution Yref at final time T = 40

with the two components of the control entering the Robin boundary conditions on
Γ1
R and Γ2

R. As initial condition we set the analytic solution for a one-dimensional
right-travelling flame in the limit β →∞ located left of the obstacle:

θ(0, x) =

{
1 for x1 ≤ x̃1

ex̃1−x1 for x1 > x̃1

on Ω,

Y (0, x) =

{
0 for x1 ≤ x̃1

1− ex̃1−x1 for x1 > x̃1

on Ω.

(2.10)

For our computations, we set x̃1 = 9. Following Lang [65], the remaining parameters are
chosen as Le = 1, αc = 0.8, β = 10 and kθ = 0.1.

To embed the state equations into the abstract setting proposed in Section 2.2, we specify
the state vector as u := (θ, Y ) from the state space X as defined in (2.1) with the spaces
V and H

V = H1(Ω)2, H= L2(Ω)2.

We note that this is the same construction as employed in Meidner [76].

As control space we use Qad =
{
q ∈ L2(I,R2)

∣∣ qa ≤ q ≤ qb}. Since we want to control
the progress of the combustion at the end of the simulation time, the cost functional
consist of a tracking term with terminal observation at time T = 40 of the mass
distribution and a L2 cost term for the control.

J(q, u) =
1

2
‖Y (T )− Yref‖2L2(Ω)) +

α

2
‖q‖2L2(I,R2) .

with the control cost parameter α = 1. The desired mass distribution Yref at final time
is given by

Yref(x) =

{
0, x1 − x2 ≤ x̄,
1− ex̄+x2−x1 , x1 − x2 > x̄,

where x̄ = 37. It is visualized in Figure 2.2. The control constraints are chosen as
qa = −0.1 and qb = 0.5.
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3. Optimality conditions and optimization
algorithms

In the first section of this chapter we discuss optimality conditions for the optimization
problem (2.5) and give cheaply computable representation formulas for first and second
derivatives which can be used in second order optimization algorithms.

The second section presents a semismooth Newton algorithm which is based on a
reformulation of the first order optimality condition in terms of the normal map. This
approach was briefly mentioned by Ulbrich [108] and described in some more detail by
Kunisch, Pieper, and Rund [62] and Kunisch and Rund [64]. We formulate the algorithm
in the continuous setting on the Banach space. How to apply this algorithm in the
discretized setting will be discussed in Section 4.2.

In Section 3.2.2 we describe a practical realization of the algorithm, along with an
extension similar to the Steihaug conjugate gradient method that increases the radius of
convergence.

3.1. Optimality conditions and representation of derivatives

Subsequently we assume that the state equation (2.3) is well posed for every control
q ∈ Qad in the sense that there exists a unique solution and, furthermore, the state
depends continuously on the control. Therefore we can define the continuous solution
operator S : Qad → X, q 7→ u, which is frequently also called the control-to-state mapping
in the literature. Later on we will also use the notation u(q) := S(q) to denote the
state resulting from the control q. We will use analogous notations for further quantities
depending on q via auxiliary equations. Inserting the solution operator into the cost
functional, we can formulate the reduced optimization problem

(3.1) min j(q) s. t. q ∈ Qad,

where the reduced cost functional is given by j(q) = J(q, S(q)). Evidently, this formulation
is equivalent to (2.5). To state optimality conditions and formulate derivative-based
optimization algorithms, we have to make certain differentiability assumptions on the
reduced cost functional. While for linear-quadratic problems, Fréchet differentiability
can be analyzed in a straight-forward fashion, it can be a delicate issue in the non-
linear setting. For our purposes we will subsequently assume that all stated directional
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3. Optimality conditions and optimization algorithms

derivatives are well defined. We denote the directional derivative of a semilinear form
with respect to a variable by the corresponding subscript and a prime and add the
direction at the beginning of the list of linear arguments. For example, the derivative of
a(q, u)(ϕ) with respect to u in direction δu reads

a′u(q, u)(δu, ϕ).

For higher order derivatives, the directions are given in the order of differentiation from
left to right.

To state optimality conditions and the optimization algorithm, we will use some linear
auxiliary equations. Well-posedness of those equations for given (q, u) ∈ Qad × X is
ensured by the following assumption.

Assumption 3.1. For any pair (q, u) ∈ Qad×X, any f ∈ L2(I, V ∗) and any v0, wT ∈ H,
the problems∫

I
〈∂tv, ϕ〉V ∗×V + a′u(q, u)(v, ϕ) dt+ (v(0), ϕ(0)) =

∫
I
〈f, ϕ〉V ∗×V dt+ (v0, ϕ(0))

for all ϕ ∈ X and∫
I
−〈∂tw,ϕ〉V ∗×V + a′u(q, u)(ϕ,w) dt+ (ϕ(T ), w(T )) =

∫
I
〈f, ϕ〉V ∗×V dt+ (wT , ϕ(T ))

for all ϕ ∈ X admit unique solutions v and w in X.

Remark 3.2. This assumption holds for example if we require that for all admissible
pairs (q, u) with q ∈ Qad and u = S(q), the semilinear form ã : I × V × V → R given by
(t, ϕ, ψ) 7→ au(t, q, u(t))(ψ,ϕ) is measurable with respect to t for all ψ,ϕ ∈ V and there
are positive constants C1, C2, and C3 such that

|ã(t)(ψ,ϕ)| ≤ C1 ‖ψ‖V ‖ϕ‖V for all ψ,ϕ ∈ V and almost all t ∈ I, and

ã(t)(ψ,ψ) + C2 ‖ψ‖2 ≥ C3 ‖ψ‖2V for all ψ ∈ V and almost all t ∈ I.

The corresponding standard existence theorem for linear parabolic equations can be
found for example as Theorem 11.7 in [23].

3.1.1. Optimality conditions for the reduced problem

For completeness, we quote the standard necessary first order optimality condition for
the reduced cost functional j as given for example in [107].

Lemma 3.3 (Necessary first order optimality condition). Let Q be a Banach space,
Qad ⊆ Q and j : Q → R be Fréchet-differentiable in an open set containing Qad. If j
attains its minimum in Qad at q̄, then the first order necessary optimality condition

(3.2) j′(q̄)(q − q̄) ≥ 0 for any q ∈ Qad

holds true. If j is convex, then conversely condition (3.2) implies optimality.

12



3.1. Optimality conditions and representation of derivatives

This condition can be reformulated into an equality which will be exploited for the
semismooth Newton method discussed in the next section. Assuming Gâteaux differen-
tiability of the cost functional, we can introduce the gradient ∇j(q) of the reduced cost
functional defined via the Riesz representation theorem by

(∇j(q), δq)Q = j′(q)(δq) for all δq ∈ Q.

Furthermore, we define the L2 projection onto the admissible set PQad
: Q→ Qad given

by the condition

‖q − PQad
(q)‖Q ≤ ‖q − p‖Q for any p ∈ Qad.

Since Qad is convex, PQad
is well defined.

Both parts of the following simple lemma are shown for example in the textbook [57]
(Lemma 1.11 and 1.12).

Lemma 3.4. 1. For any γG > 0, the first order optimality condition (3.2) is equivalent
to the condition

(3.3) q̄ = PQad
(q̄ − γG∇j(q̄)) .

2. For Qad given as in (2.4), the projection PQad
has the explicit representation

(3.4) PQad
(q) = max(qa,min(qb, q))

where the superposition operators min and max denote the pointwise minimum and
maximum of the arguments respectively.

For stating the semismooth Newton method we will use another reformulation of the
optimality condition.

Proposition 3.5. Let γG > 0. A control q̄ ∈ Qad satisfies the first order optimality
condition (3.2) if and only if there exists p̄ ∈ Q such that q̄ = PQad

(p̄) and the condition

(3.5) N (p̄) = 0

holds true, where the map N : Q→ Q is given by

(3.6) N (p) = p− PQad
(p) + γG∇j(PQad

(p)).

Following the naming introduced by Robinson, see, e. g., [92], we call N the normal map.

Proof. Let us assume we have p̄ ∈ Q satisfying N (p̄) = 0. Setting q̄ = PQad
(p̄) we obtain

from (3.6)
p̄ = q̄ − γG∇j(q̄).

Hence the identity (3.3) holds true for q̄.

13



3. Optimality conditions and optimization algorithms

Conversely, for a stationary point q̄ ∈ Qad satisfying (3.3) we set

p̄ = q̄ − γG∇j(q̄)

and obtain on the one hand q̄ = PQad
(p̄) and on the other hand N (p̄) = 0.

Remark 3.6. According to Proposition 3.5, instead of looking for a point q̄ satisfying the
first order optimality condition, we can equivalently search for some p̄ that fulfills (3.5).
The semismooth Newton algorithm described in Section 3.2 employs that idea.

3.1.2. Representation of derivatives and optimality system

The approach taken here for deriving a computationally efficient representation for the
first derivative and the first order optimality system is standard and similar derivations
can be found for example in the textbooks [57,59,107]. For the representation formula
for the second derivative we follow Becker et al. [12].

To make the first order optimality condition accessible for computational evaluation, we
reformulate it in terms of the Lagrangian L : Q×X ×X → R, which for our problem is
given by

(3.7) L(q, u, z) = J(q, u)+(u0(q), z(0))−(u(0), z(0))−
∫
I

[〈∂tu, z〉V ∗×V + a(q, u)(z)] dt.

Obviously, for q ∈ Qad, u = S(q), and arbitrary z ∈ X, the identity j(q) = L(q, u, z)
holds true. Since u solves the state equation, the partial derivative with respect to z in
direction ϕ

L′z(q, u, z)(ϕ) = (u0(q), ϕ(0)) − (u(0), ϕ(0)) −
∫
I

[〈∂tu, ϕ〉V ∗×V + a(q, u)(ϕ)] dt.

vanishes for any ϕ ∈ X. Hence, assuming Fréchet differentiability of J and a with respect
to q and u and Gâteaux-differentiability of the solution operator S, we can differentiate
the Lagrangian with the chain rule. Hence, for any z ∈ X and δq with q + δq ∈ Qad, the
identity

j′(q)(δq) = L′q(q, u, z)(δq) + L′u(q, u, z)(δu)

holds true where δu = S′(q)(δq). Since z ∈ X was arbitrary, we can choose it in such a
way that the second term vanishes, i. e., that the equation L′u(q, u, z)(ϕ) = 0, which can
be stated equivalently as

∫
I
−〈ϕ, ∂tz〉V×V ∗ + a′u(q, u)(ϕ, z) dt+ (ϕ(T ), z(T )) = J ′1(u)(ϕ) + J ′2(u(T ))(ϕ(T )),

(3.8)

holds true for any ϕ ∈ X. The representation (3.8) is obtained by integrating the term
involving the temporal derivative by parts. That this is admissible on the space X
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3.1. Optimality conditions and representation of derivatives

is shown for example in Wloka [117]. Assumption 3.1 ensures the well-posedness of
this adjoint equation. To see that the right hand side and terminal value satisfy the
requirements stated there we note that J ′1(u) is in (L2(I, V ))∗ ∼= L2(I, V ∗) and rewrite
the functional J ′2(u) on H by its Riesz representation.

Summarizing, we get the following statement:

Lemma 3.7 (Representation of the first derivative). Let Assumption 3.1 hold for q ∈ Qad

and u = S(q). We assume further that J1 and J2 are Fréchet-differentiable and that the
semilinear form a is continuously Fréchet-differentiable with respect to q and u. Then,
the derivative of the reduced cost functional in a direction δq is given by

(3.9) j′(q)(δq) = L′q(q, u, z)(δq) = α(q, δq)Q + (u′0(q)(δq), z(0)) −
∫
I
a′q(q, u)(δq, z) dt

where the adjoint state z is a solution of (3.8).

Proof. To apply the above derivation, we need to ensure that the solution operator is
Gâteaux differentiable. With continuous Fréchet-differentiability of the state equation and
Assumption 3.1 this follows from the implicit function theorem (see, e. g., Dieudonne [29,
Theorem 10.2.1]).

Remark 3.8. 1. For many nonlinear problems, the assumption of continuous Fréchet
differentiability of the semilinear form is too strong. In some of those cases Gâteaux
differentiability of the solution operator can be shown directly without relying on the
implicit function theorem, see, e. g., Neitzel and Vexler [85] or Wachsmuth [112].
2. We point out that the adjoint equation inherits the parabolic structure from the state
equation and constitutes a linear parabolic equation with time running backwards. Later
we will see that, thanks to the properties of the discontinuous Galerkin discretization,
also the discrete adjoint equation has the same algebraic structure as the linearization
of the discrete state equation. Hence we can employ the same techniques to solve it
numerically.
3. Once for given q the corresponding state u and adjoint state z are known, the
representation (3.9) is explicit with respect to the direction δq. For numerical realization
after discretization this means that no further PDEs have to be solved to evaluate the
derivative for various directions.

For later use, we introduce the gradient Gimpl of the implicitly defined part J1(u(q)) +
J2(u(q)(T )) of the reduced cost functional j, which is given by

(3.10) (Gimpl(q, u, z), δq)Q = (u′0(q)(δq), z(0)) −
∫
I
a′q(q, u)(δq, z) dt for all δq ∈ Q.

In terms of Gimpl, the representation formula for the first derivative reads

j′(q)(δq) = (αq +Gimpl(q, u(q), z(q)), δq)Q.
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3. Optimality conditions and optimization algorithms

Later on, we will use the short hand notation Gimpl(q) to refer to the implicit part of
the gradient Gimpl(q, u(q), z(q)) for given control q and corresponding state and adjoint
solution u(q) and z(q).

Denoting by ū and z̄ the state and adjoint variables corresponding to the optimal control
q̄, the first order optimality system in terms of the Lagrangian reads

L′z(q̄, ū, z̄)(ϕ) = 0 for all ϕ ∈ X (state equation)(3.11a)

L′u(q̄, ū, z̄)(ϕ) = 0 for all ϕ ∈ X (adjoint equation)(3.11b)

L′q(q̄, ū, z̄)(q − q̄) ≥ 0 for all q ∈ Qad (gradient condition).(3.11c)

Analogous to the optimality condition for the reduced problem, the last condition can
be equivalently stated as

(3.11c∗) q̄ = PQad
(q̄ − γGαq̄ − γGGimpl(q̄, ū, z̄)) .

We note that for α > 0 and γG = 1
α the first two terms in the argument of the projection

in (3.11c∗) cancel out.

For an optimality system in terms of the unprojected variable p we rewrite the normal
map in terms of Gimpl yielding

N (p, u, z) = p+ (γGα− 1)PQad
(p) + γGGimpl(PQad

(p), u, z).

Then, at a local optimum, (p̄, ū, z̄) satisfy

L′z (PQad
(p̄), ū, z̄) (ϕ) = 0 for all ϕ ∈ X,(3.12a)

L′u (PQad
(p̄), ū, z̄) (ϕ) = 0 for all ϕ ∈ X,(3.12b)

N (p̄, ū, z̄) = 0.(3.12c)

For solving the Newton update equations arising in the semismooth Newton method,
we need to solve for the Hessian of the reduced cost functional. We use an iterative
solver for this purpose since assembling the full Hessian is only cost-effective when the
(discretized) control possesses no more than a handful of degrees of freedom. What is
needed is an efficient way to compute an appropriate representation of functionals of the
form

δq 7→ j′′(q)(δq, τq)

for a given iterate q ∈ Qad and a direction τq ∈ Q. We introduce two more linearized
auxiliary problems which are well-posed under Assumption 3.1.

Definition 3.9. For given q, τq ∈ Q and u ∈ X, the tangent equation is given as: find
τu ∈ X satisfying

(3.13)

∫
I
〈∂tτu, ϕ〉V ∗×V + a′u(q, u)(τu, ϕ) dt+ (τu(0), ϕ(0))

= −
∫
I
a′q(q, u)(τq, ϕ) dt+ (u′0(q)(τq), ϕ(0))
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3.1. Optimality conditions and representation of derivatives

for all ϕ ∈ X. Assuming a and J to be twice Fréchet-differentiable, the additional adjoint
equation for given q, τq ∈ Q and u, z, τu ∈ X reads: find τz ∈ X such that

(3.14)

∫
I
−〈ϕ, ∂tτz〉V×V ∗ + a′u(q, u)(ϕ, τz) dt+ (ϕ(T ), τz(T ))

= −
∫
I

[
a′′uq(q, u)(ϕ, τq, z) + a′′uu(q, u)(ϕ, τu, z)

]
dt

+ J ′′1 (u)(τu, ϕ) + J ′′2 (u(T ))(ϕ(T ), τu(T ))

for any ϕ ∈ X.

Lemma 3.10. We assume J and a to be twice continuously Fréchet-differentiable. For
given q ∈ Qad and corresponding u = u(q) ∈ X let Assumption 3.1 hold. Furthermore let
z ∈ X be the solution of the adjoint equation (3.8) and for a direction τq ∈ Q let τu and
τz solve the tangent and additional adjoint equations (3.13) and (3.14) respectively. Then,
for δq ∈ Q the second derivative of the reduced cost functional admits the representation

(3.15) j′′(q)(δq, τq) = α(δq, τq)Q + (u′′0(q)(δq, τq), z(0))

−
∫
I

[
a′′qq(q, u)(δq, τq, z) + a′′qu(q, u)(δq, τu, z) + a′q(q, u)(δq, τz)

]
dt.

Proof. Applying the implicit function theorem to the state equation shows that the
derivative of the solution map S : q 7→ u in q in direction τq is given as the solution τu of
the tangent equation (3.13). In the same way, the derivative of the adjoint map q 7→ z in
q in direction τq is found from the adjoint equation (3.8) through the implicit function
theorem. It is given as the solution τz of the additional adjoint equation (3.14) with τu
as above. Hence, the representation formula (3.15) for the second derivative is obtained
by taking the total derivative of the representation formula (3.9) in direction τq.

Corollary 3.11. Under the assumptions of Lemma 3.10, the Hessian Himpl : Qad → B(Q)
of the implicitly defined part of the reduced cost functional is given by the identity

(3.16) (Himpl(q)δq, τq)Q = (u′′0(q)(δq, τq), z(0))

−
∫
I

[
a′′qq(q, u)(δq, τq, z) + a′′qu(q, u)(δq, τu, z) + a′q(q, u)(δq, τz)

]
dt

for all directions δq, τq ∈ Q, where τu and τz are the solutions of the tangent and
additional adjoint equations corresponding to τq.

Proof. With the same reasoning as above, the identity (3.16) results from total differen-
tiation of equation (3.10).
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3. Optimality conditions and optimization algorithms

3.2. Semismooth Newton method

In this section we outline the semismooth Newton method that we use to solve the
optimization problem (2.5). Using a semismooth Newton approach for optimal control
problems with inequality constraints on the control can be considered well-established
practice. This fact is also resembled by the wealth of publications available on this topic
including the works by Ito and Kunisch [59], Hinze et al. [57], and [108] by Ulbrich.

Algorithms for optimal control problems can be classified by whether they try to solve a
first order optimality system like (3.11) treating q, u, and z as optimization variables or
whether they work on the reduced problem (3.1) with the sole optimization variable q
instead while u and z are dependent quantities. The first type of algorithms is commonly
referred to as all-at-once methods while the latter are called black box methods, for
an early use of those terms, see Frank and Shubin [42] where the two approaches are
compared for an airfoil design problem.

Here we opt for the black-box approach since it allows to use standard PDE solution
algorithms. Furthermore a memory-efficient implementation, which is of particular
importance for time-dependent problems, is more straight-forward than with all-at-once
methods. Another important consideration is that sequential quadratic programming
(SQP) methods, which employ the all-at-once idea, usually only offer a significant gain
in efficiency if the cost of solving linearized partial differential equations is considerably
lower than for solving the full non-linear equation, see Hinze and Kunisch [56]. However,
for the time-stepping method we consider in Chapter 5, solutions of the linearized
equations and of the full state equation have roughly the same cost.

The fundamental idea behind semismooth Newton methods is to apply Newton’s method
for solving equations involving maps that are not globally differentiable in the classical
sense. If the considered maps are semismooth with respect to a suitable generalized
derivative, i. e., they satisfy a certain weakened differentiability requirement, then a
Newton type method employing this generalized derivative exhibits local superlinear
convergence. In the standard approach to a semismooth Newton method for our reduced
optimal control problem, Newton’s method is applied to the optimality condition (3.3)
to solve for the control q. Here, we base on the reformulated optimality condition (3.5)
instead, solving for the unprojected variable p. An obvious benefit of this formulation is
that the active sets of the control constraints can be deduced immediately from p. An
algorithm using the reduced formulation in terms of p for PDE-constrained optimization
problems was published in [62] and [64], however a related idea was presented earlier by
Schiela in Section 6 of [97]. There, a model problem is considered for which p coincides
with the adjoint state z. This fact is used to eliminate the control from the optimality
system (3.11) yielding a semismooth optimality system in u and p = z.

For the reduced formulation in terms of p, we will see that, interpreted in the right way,
the operator that has to be inverted for computing the semismooth Newton update is
self-adjoint and close to the optimum also positive definite. Therefore, in practice, the
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3.2. Semismooth Newton method

conjugate gradient method can be employed for its inversion instead of generic solvers
like GMRES which have higher memory consumption.

To ensure robustness of the method, in particular since we intend to solve problems
with non-linear state equations, a globalization strategy is desirable. For the standard
approach to semismooth Newton solving for the control q, such a strategy built around a
trust region framework is discussed in detail by Ulbrich [108]. Hinze and Vierling [58] use
the approach by Gräser and Kornhuber [48] to give a globalization for linear quadratic
problems with control constraints. This approach is based on a dual optimization problem
and has the benefit that the control q does not have to be computed and stored explicit
which makes it feasible in practice for the so called variational treatment of the control
(see Section 4.2.1). However, it is limited to problems with linear state equation.

For our computations we use a simpler heuristic strategy by Pieper (see [62,89]) to increase
the radius of convergence. It is similar to the Steihaug cg method, see Steihaug [105].
This strategy is motivated by the approach taken to solve the Newton update equation.

3.2.1. Theoretical considerations

In this section, we derive the semismooth Newton method and prove local superlinear
convergence, given that some assumptions on the problem are satisfied. Under stronger
assumptions it is also possible to quantify the rate of convergence. For clarity of
presentation, we do not discuss the corresponding extensions of the results here. However
they are straight-forward with the techniques shown in, e. g., [108] or [97].

We use the following definition for semismoothness of operators on Banach spaces.

Definition 3.12. LetQ, P denote Banach spaces, andG : Q→ P and ∂G : Q→ B(Q,P )
given mappings. The operator G is called ∂G-semismooth at a point q ∈ Q if G is
continuous in a neighbourhood of q and

‖G(q + δq)−G(q)− ∂G(q + δq)(δq)‖P = o(‖δq‖Q)

for ‖δq‖Q → 0.

Remark 3.13. 1. This definition is identical to the one given in [108] apart from the
fact that there, the mapping ∂G is set-valued and the defining property is enforced for
all representatives of the set. Since for the purpose of stating a semismooth Newton
algorithm, a single fixed generalized derivative ∂G is all we need, our simplification poses
no restriction in this context.
2. Evidently, continuously Fréchet differentiable operators are semismooth with respect
to their Fréchet derivative.

To solve (3.5) with the semismooth Newton method we need to ensure that the normal
map N is semismooth with respect to a suitable generalized derivative. As a prepara-
tion, we need a chain rule for semismooth functions, which we quote from [108], and

19



3. Optimality conditions and optimization algorithms

semismoothness of the pointwise projection operator PQad
. For the sake of completeness,

we give a short proof for the latter result employing the techniques proposed in [97].

Lemma 3.14 ( [108, Proposition 3.7]). Let P , Q, R be Banach spaces, U ⊆ P , V ⊆ Q
be open subsets, F : U → Q Lipschitz continuous around p ∈ U , ∂F -semismooth in p
and F (U) ⊆ V . Let furthermore G : V → R be ∂G-semismooth in q = F (p) and ∂G be
bounded around q. Then the composition H = G ◦ F is ∂H-semismooth in p with

∂H : P → B(P,R), p 7→ ∂G(F (p))∂F (p).

Lemma 3.15 (Semismoothness of PQad
). Let 1 ≤ r̂ < r < ∞ and let the operator

χI : Lr(ΩQ)→ B(Lr(ΩQ), Lr̂(ΩQ)) be given as the characteristic function of the inactive
sets defined by

χI(p)(δq)(x) =

{
δq(x), if qa(x) < p(x) < qb(x),

0, otherwise

for almost all x ∈ ΩQ. Then the operator PQad
: Lr(ΩQ)→ Lr̂(ΩQ) defined by (3.4) is

χI-semismooth.

Proof. We define the function πQad
: R× ΩQ → R by

πQad
(s, x) = min(qb(x),max(qa(x), s))

and the function χ̂I : R× ΩQ → R by

χ̂I(s, x) =

{
1, if qa(x) < s < qb(x),

0, otherwise.

Obviously, PQad
(p)(x) = πQad

(p(x), x), i. e., PQad
is the Nemytskii operator corresponding

to πQad
, and χI(p)(δq)(x) = χ̂I(p(x), x)δq(x). We note that πQad

is a Carathéodory
function, i. e., it is continuous with respect to the first argument for almost all x ∈ ΩQ

and measurable with respect to the second argument for any s ∈ R. The function
χ̂I belongs to the larger class of Baire-Carathéodory functions consisting of functions
that can be expressed as pointwise limits of Carathéodory functions almost everywhere
(see [6, Section 1.4]).

To show semismoothness of PQad
at a fixed point p∗ ∈ Lr(ΩQ), we introduce the auxiliary

function ψ∗ : R× ΩQ → R given by

ψ∗(s, x) =

{
πQad

(s,x)−πQad
(p∗(x),x)−χ̂I(s,x)(s−p∗(x))

|s−p∗(x)| , if s 6= p∗(x),

0, if s = p∗(x).

The idea is now to show that the corresponding Nemytskii operator Ψ∗ is well defined
and continuous at p∗ and to conclude semismoothness in p∗ from this fact.
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First, we show that for any x ∈ ΩQ, ψ∗ is continuous with respect to the first argument at
s = p∗(x). For this purpose we consider the characteristic functions χ̂−A, χ̂

+
A : R×ΩQ → R

of the active sets with respect to the lower and upper bounds defined by

χ̂−A(s, x) =

{
1, if s < qa(x),

0, otherwise,

χ̂+
A(s, x) =

{
1, if s > qb(x),

0, otherwise,

and note that

χ̂I(s, x) = 1− χ̂−A(s, x)− χ̂+
A(s, x),

and πQad
(s, x) = χ̂I(s, x)s+ χ̂−A(s, x)qa(x) + χ̂+

A(s, x)qb(x).

Plugging these identities into the definition of ψ∗ yields for s 6= p∗(x)

ψ∗(s, x)|s− p∗(x)| =
(
qb(x)− p∗(x)

) (
χ̂+
A(p∗(x), x)− χ̂+

A(s, x)
)

+ (qa(x)− p∗(x))
(
χ̂−A(p∗(x), x)− χ̂−A(s, x)

)
.

The first summand vanishes if qb(x) = p∗(x) and otherwise vanishes for s in a sufficiently
small neighbourhood of p∗(x). In the same way, the second summand vanishes for
s sufficiently close to p∗(x), which shows that ψ∗ is continuous with respect to s at
s = p∗(x). Hence it is easy to see that ψ∗ is a Baire-Carathéodory function. Furthermore,
we can estimate∣∣∣(qb(x)− p∗(x)

) (
χ̂+
A(p∗(x), x)− χ̂+

A(s, x)
)∣∣∣

=

{
|qb(x)− p∗(x)|, if s < qb(x) < p∗(x) or p∗(x) < qb(x) < s,

0, otherwise

≤ |s− p∗(x)|.

If we estimate the second summand in the same way, we can conclude ψ∗(s, x) ≤ 2
for all p∗ ∈ Lr(ΩQ), s ∈ R and almost all x ∈ ΩQ. Therefore, the Nemytskii operator
Ψ∗ : Lr(ΩQ)→ L∞(ΩQ) given by Ψ∗(p)(x) = ψ∗(p(x), x) is well-defined.

According to Lemma 3.1 in [97], since ψ∗ is a Baire-Carathéodory function and the image
of Ψ∗ is in L∞(ΩQ), continuity of ψ∗ with respect to the first argument at s = p∗(x)
for almost all x ∈ ΩQ implies continuity of Ψ∗ : Lr(ΩQ) → Lr

′
(ΩQ) at p = p∗ for any

r′ <∞.

Noting that

PQad
(p)− PQad

(p∗)− χI(p)(p− p∗) = Ψ∗(p)|p− p∗|,
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3. Optimality conditions and optimization algorithms

where the absolute value | · | is to be read as the corresponding Nemytskii operator, we
choose r′ such that 1

r′ + 1
r = 1

r̂ . Since r̂ < r, we have 1 < r′ <∞ and Hölder’s inequality
yields

‖PQad
(p)− PQad

(p∗)− χI(p)(p− p∗)‖Lr̂(ΩQ)

≤ ‖Ψ∗(p)‖Lr′ (ΩQ) ‖p− p
∗‖Lr(ΩQ) = o(‖p− p∗‖Lr(ΩQ))

as ‖p− p∗‖Lr(ΩQ) tends to zero. Hence we have shown that PQad
is χI-semismooth at

p∗ where p∗ ∈ Lr(ΩQ) was chosen arbitrary.

With these preparations we can show semismoothness of the normal map given that the
implicit part of the reduced gradient satisfies a suitable regularity property. Furthermore
we have to assume α > 0 and γG = 1

α such that the optimality condition (3.5) takes the
form

p+
1

α
Gimpl(PQad

(p)) = 0.

Lemma 3.16. We assume that the image of the implicit part of the reduced gradient
Gimpl(q) = Gimpl(q, u(q), z(q)) is contained in Lr(ΩQ) for some r > 2 and additionally
that Gimpl is continuously Fréchet differentiable when considered as a map from L2(ΩQ)
to Lr(ΩQ). Furthermore, let α > 0 and γG = 1

α . Then the following three statements
hold true.

1. Any unprojected control p ∈ Q that satisfies the first order optimality condition (3.5)
is contained in Lr(ΩQ).

2. The image of the restriction of the normal map N to Lr(ΩQ) is contained in Lr(ΩQ).

3. The restriction of the normal map to the space Lr(ΩQ), N : Lr(ΩQ) → Lr(ΩQ), is
∂N -semismooth with ∂N : Lr(ΩQ)→ B(Q) given by

(3.17) ∂N (p) = Id +
1

α
Himpl(PQad

(p))χI(p).

where χI : Q→ B(Q) is defined as in Lemma 3.15.

Remark 3.17. 1. For many practically relevant optimization problems of the form (2.5)
the gradient of the implicitly defined part of the reduced cost functional can be shown to
have the required smoothing property. As seen from the identity (3.10) it is expressed in
terms of the state and adjoint solutions, which usually possess higher regularity than
the data.
2. For the case α = 0 or other choices for γG, the normal map is not semismooth in
general because the so called “norm gap” between L2(ΩQ) and Lr(ΩQ) is essential for
semismoothness of the projection operator PQad

.

Proof. Under the stated assumptions, the first order optimality condition (3.5) simplifies
to

(3.18) p+
1

α
Gimpl(PQad

(p)) = 0.
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3.2. Semismooth Newton method

With the regularity assumptions on Gimpl we obtain immediately

p = − 1

α
Gimpl(PQad

(p)) ∈ Lq(ΩQ)

and hence statements 1 and 2 are shown.

The first term on the left-hand side of (3.18) is obviously semismooth with the identity
operator Id as generalized derivative, for the second term we verify the assumptions of the
chain rule (Lemma 3.14). According to Lemma 3.15, the inner function PQad

: Lr(ΩQ)→
L2(ΩQ) is χI-semismooth. It is easy to see that it is Lipschitz continuous with constant
1. The outer function Gimpl is by assumption Himpl-semismooth and since the derivative
was assumed to be continuous, it is bounded locally. Hence, part 3 of the claim follows
by invoking the chain rule.

Given semismoothness of the normal map, we can state the following local convergence
result. A proof is given for example in [108] or [97], however, since it is short, we restate
it here for completeness.

Theorem 3.18. Let p̄ ∈ Lr(ΩQ) satisfy the first order optimality condition (3.5) and
assume that there is a neighbourhood of p̄ where ∂N has a bounded inverse in B(Lr(ΩQ))
and the assumptions of Lemma 3.16 hold. Then, there is an open ball Bε(p̄) around p̄ in
Lr(ΩQ) such that for any p0 ∈ Bε(p̄) the semismooth Newton method defined by

(3.19) pk+1 = pk − ∂N (pk)−1N (pk)

converges q-superlinearly towards p̄.

Proof. We choose ε such that for fixed κ < 1 and any p ∈ Bε(p̄), the estimate∥∥∂N (p)−1
∥∥
B(Lr(ΩQ))

‖N (p)−N (p̄)− ∂N (p)(p− p̄)‖Lr(ΩQ) ≤ κ ‖p− p̄‖Lr(ΩQ)

holds true. This is possible since the first factor on the left-hand side is bounded by
assumption and the second one satisfies the defining equation of semismoothness.

Hence, assuming the iterate pk is contained in Bε(p̄) and using the fact that N (p̄) = 0,
we get for the next iterate∥∥∥pk+1 − p̄

∥∥∥
Lp(ΩQ)

=
∥∥∥pk − ∂N (pk)−1N (pk)− p̄

∥∥∥
Lr(ΩQ)

≤
∥∥∥∂N (pk)−1

∥∥∥
B(Lr(ΩQ))

∥∥∥∂N (pk)(pk − p̄)−N (pk) +N (p̄)
∥∥∥
Lr(ΩQ)

≤ κ
∥∥∥pk − p̄∥∥∥

Lr(ΩQ)

and hence pk+1 ∈ Bε(p̄). Since κ < 1, we have shown linear convergence towards p̄. By
definition of semismoothness, the contraction factor approaches zero as pk approaches p̄,
i. e., the convergence is superlinear.
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3. Optimality conditions and optimization algorithms

To ensure that Theorem 3.18 is applicable, we should discuss the assumption of local
boundedness of the inverse of ∂N around p̄ in some more detail. We show that the
following second order sufficient optimality condition ensures that this inverse is bounded
in a neighbourhood of p̄.

Assumption 3.19. There is a constant µ > 0 such that

(3.20) j′′(PQad
(p̄))(τp, τp) ≥ µ ‖τp‖2Q

holds true for any direction τp ∈ Q.

Lemma 3.20. Let the assumptions of Lemma 3.16 be satisfied and let p̄ ∈ Lr(ΩQ)
be a point fulfilling the first order optimality condition (3.5) and the second order
sufficient condition stated in Assumption 3.19. Then there is a Lr(ΩQ) neighbourhood
of p̄ where the inverse of ∂N (p) is well-defined and bounded in B(Lr(ΩQ)) for any p in
this neighbourhood.

Remark 3.21. Obviously, Assumption 3.19 is always satisfied for linear-quadratic problems
with α > 0 by choosing µ = α. Furthermore, we note that the above result can
be generalized to weaker second order sufficient optimality conditions. We refer to
Tröltzsch [107, Section 4.10] and the references therein for a detailed discussion of such
conditions.

Lemma 3.20 is essentially a special case of Lemma 5.9 in [62]. For convenience of the
reader we will give a complete proof nevertheless. As a preparation, we need some
insights into the structure of the operator ∂N .

Let p, b ∈ Lr(ΩQ) be fixed and consider the equation

(3.21) ∂N (p)τp = b.

In order to keep the notation simple, we drop the dependencies on p where appropriate.
The operator ∂N = ∂N (p) has the explicit form

∂N = Id +
1

α
HimplχI

with Himpl = Himpl(PQad
(p)) and χI = χI(p). If χI = Id, i. e., no constraints are active,

then ∂N = 1
α∇

2j(p) is self-adjoint. Together with positive definiteness as required in
Assumption 3.19 this means that there is an inverse in B(Q). Clearly, if constraints are
active on part of the domain, ∂N is not self-adjoint. The idea is now to restrict the
operator to the inactive set I =

{
x ∈ ΩQ

∣∣ qa(x) < p(x) < qb(x)
}

to obtain a self-adjoint
operator again. Formally, this can be accomplished by moving to a quotient space. As
we shall discuss later, the point of view taken here will be useful for the algorithmic
realization of the semismooth Newton update.

We define equivalence classes on Q by grouping all functions that take identical values
on the current inactive sets, i. e., for given q ∈ Q we consider

[q] = {q̂ ∈ Q | χIq = χI q̂ almost everywhere} .
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3.2. Semismooth Newton method

The corresponding quotient space can be defined as

QI = {[q] | q ∈ Q} .

It is easily verified that the bilinear form (·, ·)I : QI ×QI → R given by

([p1], [p2])I = (p1, χIp2)Q for p1, p2 ∈ Q

is an inner product on QI . As usual, the corresponding norm is denoted by ‖·‖I .
Obviously, QI with this inner product is isometric to the space L2(I). We define
the operator [∂N ] : QI → QI by [∂N ][τp] = [∂N τp]. Noting that χI is a self-adjoint
projection operator and hence (·, χI ·)Q = (χI ·, ·)Q = (χI ·, χI ·)Q and using the fact that
Himpl is self-adjoint, we verify for p1, p2 ∈ Q

([∂N ][p1], [p2])I = (χI
(
Id + 1

αHimplχI
)
p1, p2)Q

= (p1,
(
χI + 1

αχIHimplχI
)
p2)Q = ([p1], [∂N ][p2])I ,

that is, [∂N ] is self-adjoint.

The idea is now to construct a solution to the original equation (3.21) from a solution of

(3.22) [N ][τp] = [b]

on the quotient space QI . Let us assume we are given such a solution [τp] with an
arbitrary representative τp ∈ [τp]. Then we set

(3.23) τ̃ p = b− 1

α
HimplχIτp.

Since τp is evaluated only on the inactive set, τ̃ p is uniquely determined. We verify that

χI τ̃ p = χIb− χI
1

α
HimplχIτp = χIτp

and hence τ̃ p ∈ [τp]. Hence, by construction, τ̃ p is the solution of (3.21).

Proof of Lemma 3.20. We first note that due to continuity of the second derivative of
j and of the projection PQad

, there is a neighbourhood of p̄ such that condition (3.20)
holds for all p from that neighbourhood with some constant µ̂ < µ.

We fix a p from that neighbourhood and check that the corresponding operator [∂N ] is
positive definite by verifying for arbitrary [τp] ∈ QI that

([τp], [∂N ][τp])I = (χIτp, χI
(
Id + 1

αHimplχI
)
τp)Q

= (χIτp,
(
Id + 1

αHimpl

)
χIτp)Q

=
1

α
j′′(PQad

(p))(χIτp, χIτp) ≥
µ̂

α
‖χIτp‖2Q =

µ̂

α
‖[τp]‖2I .
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3. Optimality conditions and optimization algorithms

Therefore, for any b ∈ Lr(ΩQ), the equation [∂N ][τp] = [b] admits a unique solution in
QI satisfying

‖[τp]‖I ≤
α

µ̂
‖[b]‖I ≤

α

µ̂
‖b‖Lr(ΩQ) .

We set τ̃ p as in (3.23). As noted above, τ̃ p solves ∂N (q)τ̃ p = b and using the smoothing
property of Himpl, we can estimate

‖τ̃ p‖Lr(ΩQ) =

∥∥∥∥b− 1

α
HimplχIτp

∥∥∥∥
Lr(ΩQ)

≤ ‖b‖Lr(ΩQ) +
1

µ̂
‖Himpl‖B(Q,Lr(ΩQ)) ‖b‖Lr(ΩQ) .

Since the constant µ̂ is independent of the choice of p and Himpl is continuous, this shows
the claim that the inverse of ∂N (p) is uniformly bounded in B(Lr(ΩQ)) for any p from
the chosen neighbourhood.

3.2.2. Algorithmic realization

In this section we discuss how to solve the semismooth Newton update equation and
present a heuristics based on the Steihaug conjugate gradient method that enlarges the
radius of convergence and makes the optimization procedure more robust. The described
algorithm was proposed by Kunisch, Pieper, and Rund (see [64] and [62]).

The Newton update τpk = pk+1 − pk according to (3.19) satisfies

(3.24) ∂N (pk)τpk = −N (pk).

As noted in the previous section, a solution of this equation can be found by first solving

(3.25) [∂N (pk)][τ̂ p] = −[N (pk)]

for [τ̂ p] ∈ QI and then picking the right representative by setting

(3.26) τpk = −N (pk)− 1

α
Himpl(p

k)χI(p
k)τ̂ p = τ̂ p−N (pk)− ∂N (pk)τ̂ p.

From an algorithmic point of view, this formulation has the benefit that the operator
in (3.25) is self-adjoint positive definite. Therefore we can employ the conjugate gradient
(cg) method (see, e. g., Hestenes and Stiefel [53]) for its solution. Arithmetic operations
on ΩQ are realized by performing the corresponding operations on some representative in
Q. The only difference to a cg method operating on Q is that we use the inner product
(·, ·)I . For the active step (3.26) we point out that the second formulation contains the
residual of the Newton update equation for the computed representative τ̂ p, which is
evaluated anyways during the cg algorithm.

A semismooth Newton method implemented in this way requires not only that the initial
value p0 is within the radius of convergence, but also that for all iterates, the operator
[∂N (pk)] remains positive definite. In order to increase robustness of the optimization
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3.2. Semismooth Newton method

procedure if any of the two conditions is not met, we embed it into a trust region-type
algorithm similar to Steihaug conjugate gradient (see Steihaug [105]).

For this purpose, we model the change of the reduced cost functional around the current
iterate given by j(PQad

(pk + τq))− j(PQad
(pk)) by the quadratic model

Mpk(τq) =
1

2
([τq], [∂N (pk)][τq])I + ([τq], [N (pk])I .

Note that the modelling error here consists not only of higher order terms in the Taylor
expansion of j but also of the error caused by the change of the active and inactive sets
which is not accounted for in the model Mpk .

In every step, we fix a trust region radius ∆k, compute a descent direction τpk satisfying∥∥τpk∥∥
Q
≤ ∆k through a modification of the cg based linear solver outlined above, and

compare the actual change j(PQad
(pk + τqk))− j(PQad

(pk)) to the decrease predicted by
the model Mpk(τqk). In the usual way, the decision about accepting the step is based on
whether the quotient ρk of both is larger than a chosen constant. The radius for the
next step is computed based on how close ρk is to one, i. e., how well the model predicts
the behaviour of the cost functional. The details of the algorithm can be seen from the
listing in Algorithm 3.1.

In case for an iterate,
∥∥[N (pk)]

∥∥
I becomes zero, we can not expect to achieve a descent

for the model Mpk . Hence Algorithm 3.1 fails in this case. This would happen if the
current iterate is optimal when fixing the current inactive sets but the inactive sets are
not yet correctly determined or if pk is active everywhere. Obviously this condition
arises when the initial iterate is completely active and when the optimal solution is in
fact completely active. The first case can be resolved by choosing a proper initial iterate
and the latter case can be detected by attempting to perform the active step (3.26).
If, in the local optimum, the bounds are active everywhere, the residual vanishes after
this step. For other cases for which

∥∥[N (pk)]
∥∥
I becomes zero it is less obvious how to

continue the optimization in a meaningful way. During our computations, this issue was
not encountered.

What is left to discuss is the computation of the trust region step τpk. As long as the
matrix [∂N (pk)] is positive definite and the iterates of the cg iteration do not leave
the trust region, we want to solve the Newton update equation (3.24). Otherwise, the
proposed algorithm proceeds similar to the inner solver of Steihaug cg: In case the cg
method encounters a direction with non-positive curvature, its last iterate is scaled up
to the trust region radius and returned as τpk. If a step leaves the trust region radius,
τpk is taken as a linear combination of this step and the preceding one such that its
norm equals the trust region radius ∆k. In those cases we do not perform the active
step (3.26) since it is only valid if Equation (3.25) holds.

If the modified cg iteration terminates with “cg converged”, the active step (3.26) is
performed in the end. Since this step produces the same result for any representative of
the equivalence class [τpk], it does not matter what the algorithm does on the active set
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3. Optimality conditions and optimization algorithms

Algorithm 3.1 Heuristic trust region algorithm

Input: initial value p0 ∈ Q, initial radius ∆0

1: fix 0 < κ0 ≤ κ1 < 1 < κ2, 0 < η1 ≤ η2 ≤ 1, ρmin > 0, and ∆max > 0
2: for k = 0, 1, 2, . . . do
3: compute N (pk)
4: if

∥∥N (pk)
∥∥
Q

small enough then

5: return pk

6: end if
7: if

∥∥[N (pk)]
∥∥
I = 0 then

8: abort
9: end if

10: compute τqk by means of Algorithm 3.2 with radius ∆k

11: compute ρk =
j(PQad

(pk))−j(PQad
(pk+τqk))

−M
pk

(τqk)

12: if ρk < ρmin then
13: pk+1 = pk

14: ∆k+1 = κ0 min(
∥∥τqk∥∥

Q
,∆k)

15: else
16: pk+1 = pk + τqk

17: δk = |ρk − 1|

18: ∆k+1 =


min(κ2 min(

∥∥τqk∥∥
Q
,∆k),∆max), if δk < η1,

min(
∥∥τqk∥∥

Q
,∆k), if η1 ≤ δk ≤ η2,

κ1 min(
∥∥τqk∥∥

Q
,∆k), if η2 < δk

19: end if
20: end for

A = ΩQ \ I. Hence, it would be possible as well to set the active part of the iterates xl

to zero and restrict the algorithm to the inactive sets. However, this would introduce
jumps at the transition between active and inactive sets into the iterates xl while the
update τqk is frequently smooth. Compared to that, our algorithm, which performs
all operations on the complete iterates, preserves this property also if the cg method
terminates preliminary with “non-positive curvature” or “trust region left” and the
active step is not performed.

Numerical tests indicate that for many common test problems, after convergence of the
cg method proposed here, the difference x− x̃ between the final iterate and the corrected
variable x̃ obtained from (3.26) is almost zero. However, a systematic explanation for
this observation is still lacking. If it turned out to be substantiated, this would provide
another justification for operating on full vectors instead of just the inactive parts during
the cg iteration.

We remark that in practice, the tolerance for the cg iteration is not always sufficiently
small to ensure the validity of the relation (3.26), hence to increase robustness, one can
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3.2. Semismooth Newton method

Algorithm 3.2 Inner solver for Algorithm 3.1

Input: b = −N (pk), A = ∂N (pk), ∆
1: r0 = b
2: d0 = b
3: x0 = 0
4: for l = 0, 1, . . . do
5: evaluate Adl

6: if ([dl], [A][dl])I ≤ 0 then
7: xl+1 = xl + θdl such that

∥∥xl+1
∥∥
Q

= ∆ {Go to boundary}
8: return τq = xl+1, “non-positive curvature”
9: end if

10: βl =
‖[rl]‖2I

([dl],[A][dl])I

11: if
∥∥xl + βld

l
∥∥
Q
≥ ∆ then

12: xl+1 = xl + θdl such that
∥∥xl+1

∥∥
Q

= ∆

13: return τq = xl+1, “trust region left”
14: end if
15: xl+1 = xl + βld

l

16: rl+1 = rl − βlAdl
17: if tolerance reached then
18: return τq = xl+1 + b−Axl+1, “cg converged”
19: end if

20: dl+1 = rl+1 +
‖[rl+1]‖2I
‖[rl]‖2I

dl

21: end for

perform a line search in the direction of the residual instead of adding it with factor one
to x. The cost functional for the line search is the norm of the final residual b−Ax̃.
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4. Discretization

So far we considered our optimal control problem in the continuous setting which in
general is infinite-dimensional. For the numerical solution, we replace it by a finite
dimensional approximation. To ensure that the discretized optimality conditions for the
continuous problem are the same as the optimality conditions arising for the discretized
optimal control problem, i. e., “discretize-then-optimize=optimize-then-discretize” holds
true, we use a Galerkin-type discretization for the state variable in both, space and
time. Our approach for the treatment of the state variable follows mostly Meidner and
Vexler [76, 78, 80] with a discontinuous Galerkin discretization in time and standard
conforming finite elements in space. However, we allow the order of the time discretization
to vary over time enabling hp adaptivity.

For the treatment of the control variable, we discuss two possible approaches, the
variational approach first proposed by Hinze, see [55], which avoids a separate control
discretization, and an explicit discretization matching the discretization of the state
variable. The first approach will be used for the almost-third order scheme discussed in
Chapter 6, while for our exploration of hp adaptivity in Chapter 7, we will discretize the
control explicitly.

4.1. Discretization of the state variable

The state variable is discretized according to Rothe’s method. This means that first,
the time dimension is discretized resulting in a semidiscrete formulation which consists
of a system of continuous elliptic equations in space. Subsequently those equations are
discretized on the spatial domain resulting in a fully discrete problem. Compared to
the method of lines, i. e., first discretizing with respect to the spatial domain and then
discretizing the resulting ordinary differential equation (ODE) system in time, this has
the obvious benefit that the spatial discretization can be varied over time. This feature
is essential for an efficient adaptive discretization of, e. g., travelling fronts.

4.1.1. Semidiscretization in time with hp discontinuous Galerkin methods

To discretize the optimization problem (2.5) in time direction, we consider the discontin-
uous Galerkin method. Due to continuity of the exact solution space, it is obviously a
non-conforming discretization.
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4.1. Discretization of the state variable

The first published application of discontinuous Galerkin methods was the (spatial)
discretization of the neutron transport equation, see Lesaint and Raviart [67]. The idea
of using them for time discretization of parabolic PDEs can be traced back to a work
by Jamet [60] in 1978. It is interesting to note that in this early work, the primary
motivation for a discontinuous time discretization was the desire to vary the space
discretization over time. A series of papers by Eriksson, Johnson, and coworkers [32–37]
subsequently built a systematic theory of discontinuous Galerkin time stepping including
a priori and a posteriori error estimation. For a detailed overview of the historical
development of the method, we refer to the survey article [25] by Cockburn et al.

To define the time discretization, we partition the time interval I = (0, T ) by the temporal
nodes

0 = t0 < t1 < t2 < · · · < tM−1 < tM = T

into open intervals Im = (tm−1, tm) for m = 1, . . . ,M . We denote by k ∈ RM the
vector of time step sizes km = |Im|. By abuse of notation we refer to the discretization
parameter, i. e., the maximum of all time steps by k as well. Since we want to allow for
varying the order of discretization over time, we introduce the order vector r ∈ NM0 that
assigns a polynomial order rm ∈ N∪{0} to each time interval Im. Then, the semidiscrete
test and trial space is given by

Xr
k =

{
v ∈ L2(I, V )

∣∣ v|Im ∈ Prm(Im, V )
}
,

where Prm(Im, V ) denotes the space of polynomials of maximal degree rm over Im with
values in V . For functions v ∈ Xr

k we introduce the abbreviations

v(t)− = lim
ε↘0

v(t− ε), v(t)+ = lim
ε↘0

v(t+ ε),

v+/−
m = v(tm)+/−, and [v]m = v+

m − v−m.

We adopt the convention that for some j ∈ Z and an order vector r, the notation r + j
indicates that each component of r is increased by j. Similarly, replacing r by a single
natural number indicates a discretization with constant order.

The standard semidiscrete formulation for the state equation reads: given qk ∈ Q, find
uk ∈ Xr

k , such that

(4.1)
M∑
m=1

(∂tuk, ϕ)Im +
M−1∑
m=1

([uk]m, ϕ
+
m) +

∫ T

0
a(qk, uk)(ϕ) dt

+ (u+
k,0, ϕ

+
0 ) = (u0(qk), ϕ

+
0 ) for any ϕ ∈ Xr

k .

We note that, compared to the state equation (2.3) on the continuous level, jump terms
were added to account for the discontinuities of the solution uk at the interval boundaries.
For a linear state equation with coercive bilinear form, the existence of a unique solution
to the semidiscrete equation was shown for example in [100, Proposition 1.7]. Existence
of a solution of the semidiscrete state equation for a certain class of semilinear equations
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4. Discretization

was shown in [85] in the case rm = 0. However, the proof can be generalized also to
higher orders. Note that both quoted results do not impose any restrictions on the size
of the time step.

To state the semidiscrete optimization problem, we replace the state space X by Xr
k and

the state equation by its semidiscrete equivalent resulting in

Minimize J(qk, uk) subject to

{
(qk, uk) ∈ Q×Xr

k satisfying (4.1),

qk ∈ Qad.
(4.2)

To derive the optimality system for this problem, we formulate the semidiscrete La-
grangian L̂ : Q×Xr

k ×Xr
k → R

(4.3) L̂(qk, uk, zk) = J(qk, uk) + (u0(qk), z
+
k,0) − (u+

k,0, z
+
k,0)

−
M∑
m=1

(∂tuk, zk)Im −
∫ T

0
a(qk, uk)(zk) dt−

M−1∑
m=1

([uk]m, z
+
k,m).

With the same reasoning as for the derivation of the continuous optimality system (3.11),
we obtain that for a local optimum, the triple (q̄k, ūk, z̄k) ∈ Q×Xr

k ×Xr
k satisfies

L̂′z(q̄k, ūk, z̄k)(ϕ) = 0 for all ϕ ∈ Xr
k ,(4.4a)

L̂′u(q̄k, ūk, z̄k)(ϕ) = 0 for all ϕ ∈ Xr
k ,(4.4b)

L̂′q(q̄k, ūk, z̄k)(qk − q̄k) ≥ 0 for all qk ∈ Qad.(4.4c)

Condition (4.4a) is the semidiscrete state equation again. For the adjoint equation (4.4b)
of the semidiscrete problem we obtain after interval-wise integration by parts: given
qk ∈ Q and uk ∈ Xr

k , find zk ∈ Xr
k , such that for all ϕ ∈ Xr

k

(4.5) −
M∑
m=1

(∂tzk, ϕ)Im −
M−1∑
m=1

([zk]m, ϕ
−
m) +

∫
I
a′u(qk, uk)(zk, ϕ) dt+ (z−k,M , ϕ

−
M )=

J ′1(uk)(ϕ) + J ′2(u−k,M )(ϕ−M ).

As expected, this is precisely the discontinuous Galerkin discretization of the continuous
adjoint equation (3.8). The gradient condition is the same as in the continuous case
apart from the fact that all continuous quantities are replaced by their semidiscrete
counterparts. Hence we see that the approaches “discretize-then-optimize” and “optimize-
then-discretize” commute.

The reformulation of the optimality condition in terms of the unprojected variable pk
and the normal map yields the same condition as (3.12c) with all continuous quantities
replaced by the corresponding semidiscrete quantities. In the same way, the representation
formula (3.15) for the second derivative of the reduced cost functional can be translated.
The necessary auxiliary equations are obtained by semidiscretization of their continuous
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4.1. Discretization of the state variable

counterparts (3.13) and (3.14). Their explicit forms can be found for example in [12]
or [76].

For the a priori analysis in Chapter 6 and also for the evaluation of the a posteriori
error indicators presented in Chapter 7, we need certain temporal interpolation and
reconstruction operators. On each discretization interval Im, they are defined in terms
of the nodes of the rm + 1 point Radau quadrature rule (see, e. g., Abramowitz and
Stegun [1, p. 888]), which we subsequently refer to as Radau points. We will make use
of the operators to exploit superconvergence properties of the discontinuous Galerkin
methods at these points. Since the adjoint equation is formulated backwards in time,
also the interpolation nodes have to be reversed such that we get two different versions
of each operator—one for the state solution and one for the adjoint solution.

To give a characterization of the Radau points, we define the (rm + 1)th right Radau
polynomial Rrm+1 on the unit interval [0, 1] by

Rrm+1(τ) = Lrm+1(τ)− Lrm(τ),

where Lj is the Legendre polynomial of degree j. We denote the rm + 1 roots of this
polynomial by τ rm0 , . . . , τ rmr = 1. Transforming them onto the interval Im gives the
points θS

m,j := tm−1 + kmτ
rm
j for j in 0, . . . , rm.

With these preparations, we can define the interpolation operator πS
k : C(Ī , V ) → Xr

k

given interval-wise by

πS
kv(θS

m,j)
− = v(θS

m,j) ∀ j = 0, . . . , rm, m = 1, . . . ,M.

Besides, we introduce a reconstruction operator into a continuous space with higher
polynomial order. Since the reconstruction depends on the initial value, which we did not
include in the definition of the semidiscrete space, the operator takes it as an additional
argument. So the reconstruction is given by π̂S

k : V ×
(
Xr
k ∪ C(Ī , V )

)
→ Xr+1

k ∩ C(Ī , V )
satisfying the conditions

π̂S
k(v0, v)(θS

m,j) = v(θS
m,j)

− ∀j = 0, . . . , rm, m = 1, . . . ,M, and

π̂S
k(v0, v)(0) = v0.

The operator π̂S
k has been used previously, for example by Akrivis et al. [3], Schötzau

and Wihler [102], and Fidkowski [40] to construct a posteriori error estimates or by
Adjerid [2] and Matthies and Schieweck [73] to recover improved solutions from the
computed ones. In Figure 4.1, the effect of the operators πS

k and π̂S
k for fixed order r = 1

is visualized.

For the adjoint operators, we use the time-reversed nodes θD
m,j := tm − kmτ rmj with j =

0, . . . , rm instead. Correspondingly, the adjoint interpolation operator πD
k : C(Ī , V )→ Xr

k

fulfills

πD
k v(θD

m,j)
+ = v(θD

m,j) ∀ j = 0, . . . , rm, m = 1, . . . ,M,
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I1 I2 IM−1 IM0 T

v
πS
kv

I1 I2 IM−1 IM0 T

v
π̂S
k(v0, v)

v0

Figure 4.1.: Visualization of the operators πS
k and π̂S

k for r = 1.

and the adjoint reconstruction operator π̂D
k : V ×

(
Xr
k ∪ C(Ī , V )

)
→ Xr+1

k ∩ C(Ī , V ) is
given by

π̂D
k (vT , v)(θD

m,j) = v(θD
m,j)

+ ∀j = 0, . . . , rm, m = 1, . . . ,M, and

π̂D
k (vT , v)(T ) = vT .

4.1.2. Discretization in space with continuous elements on dynamic meshes

With respect to the spatial domain, semidiscrete functions from the space Xr
k are still

infinite-dimensional, so in order to get a fully discrete state variable, we approximate
the space V by a discrete subspace. Since the space Xr

k allows for discontinuities at
the temporal nodes, it adds no theoretical difficulty if we allow for different discrete
subspaces Vm ⊆ V for each time interval Im. Here, we limit our considerations to spaces
of piecewise polynomials with fixed order on grids consisting of intervals, quadrilaterals,
or hexahedrons respectively.

We first discuss how to construct an appropriate triangulation of the domain Ω. For
simplicity we consider only the case of a polyhedral domain Ω ⊆ Rd, where d ∈ {1, 2, 3}.
This restriction ensures that that the domain can be covered by a polyhedral triangulation.
Techniques for treating domains with curved boundaries are discussed, e. g. by Braess [19].
We partition the domain into open intervals, quadrilaterals, or hexahedrons (more
precisely convex cuboids) respectively in one, two, and three dimensions. Subsequently
we refer to these geometric primitives as cells denoted by K ⊆ Ω. For the resulting
triangulation, we write

Th = {K}

where the mesh parameter h is given as the maximal cell diameter.

We need to impose some assumptions on the triangulation. Since the adaptive refinement
procedure considered in Chapter 7 introduces hanging nodes, we need to weaken the
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4.1. Discretization of the state variable

canonical definition of a regular mesh (see, e. g., Braess [19] or Ciarlet [24]), which does
not allow for hanging nodes. Additionally, to evaluate a posteriori error indicators, the
mesh needs to possess a patch structure.

To state the modified assumptions on the mesh rigorously, we define for two cells
Ki,Kj ∈ Th with Ki ∩Kj 6= ∅ the affine space

Mij =
{
λx+ (1− λ)y

∣∣ λ ∈ R, x, y ∈ Ki ∩Kj

}
.

Furthermore we call a collection of 2d disjoint cells Ki a refinement of a cell K if⋃2d

i=1Ki = K and for each i, Ki contains exactly one corner of the cell K.

Assumption 4.1. For a triangulation Th to be admissible, it has to satisfy the following
conditions.

1. Ω =
⋃
K∈Th K.

2. For K0,K1 ∈ Th with K0 6= K1, we have K0 ∩K1 = ∅.

3. If K0∩K1 6= ∅, then at least one of the conditions K0∩M01 ⊆ K1 or K1∩M01 ⊆ K0

holds true.

4. Let K0∩K1 6= ∅, dM := dimM01 > 0, and K1∩M01 ( K0∩M01. Let furthermore
F0 denote the relative interior of K0 ∩ M01 in M01. We note that F0 can be
regarded as a dM -dimensional cell in M01. Then, for l = 2dM , we assume there
are l − 1 cells K2, . . . ,Kl ∈ Th such that F1, . . . , Fl defined in the same way as F0

above from K1, . . . ,Kl form a refinement of F0.

5. The mesh possesses a patch structure, that is, there is a coarser mesh T2h satisfying
Assumptions 1 to 4 such that Th can be obtained as a global refinement of T2h.

Remark 4.2. If we modify the third assumption to require both, K0 ∩M01 ⊆ K1 and
K1 ∩M01 ⊆ K0, this results in the requirement that whenever edges or faces of cells
have common points, the cells share the whole edge or face respectively. Together with
Assumptions 1 and 2, this is equivalent to the canonical definition of a regular mesh. In
order to allow for adaptive mesh refinement, we relaxed this requirement. Condition 4
permits to refine cells one more time than their neighbours, resulting in hanging nodes,
i. e., degrees of freedom on the boundary of a cell that do not possess a counterpart
on the neighbouring cell. For standard first order elements, these degrees of freedom
correspond to cell corners that lie in the relative interior of edges or faces of neighbouring
cells.

A collection of cells of Th that together form a refinement of a cell in the coarse mesh
T2h as defined in the last condition of the assumption is called a patch.
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4. Discretization

The local approximation spaces on the individual cells are constructed by transformation
from a reference cell. For given s ∈ N, we define the polynomial space Q̂s(K̂) on the
reference cell K̂ = (0, 1)d by

Q̂s(K̂) = span

x 7→
d∏
j=1

x
αj
j

∣∣∣∣∣∣ αj ≤ s, j = 1, . . . , d

 .

Let TK : K̂ → K be a linear, bilinear, or trilinear transformation respectively, i. e.,
TK ∈ Q̂1(K̂)d, that maps K̂ to K. Then the local approximation space on K is given by

Qs(K) =
{
v : K → R

∣∣∣ v ◦ TK ∈ Q̂s(K̂)
}
.

Due to the symmetry properties of the reference cell, this space is well defined although
the choice of TK is not unique. Note that the elements of Qs(K) are in general not
polynomials but rational functions. However their restrictions to the edges of K are
polynomials of maximal order s.

For the standard spatial interpolation estimates that the a priori results for the spatial
discretization quoted in Chapter 6 are based on to hold, a regularity condition for the
mesh is needed. Here, we require that all cells can be obtained by affine transformations
of the reference cell, i. e., we restrict ourselves to parallelogram- or parallelepiped-shaped
cells respectively. With this restriction it is sufficient to assume that there is a constant
ρ > 0 such that uniformly for all K ∈ Th, the condition

1

ρ
≤
|detT ′K |
|K|

≤ ρ

holds true. Conditions for more general cell shapes along with the corresponding
interpolation estimates can be found, e. g., in Apel [4, Section 2.4f.].

With these preparations, we can define the V -conforming and continuous finite element
space V s

h for some polynomial order s ∈ N by

V s
h =

{
v ∈ H1

0 (Ω) ∩ C(Ω)
∣∣ v|K ∈ Qs(K), K ∈ Th

}
.

The continuity requirement on the finite element functions implies that there are no
degrees of freedom associated with the hanging nodes since the corresponding values are
determined by the values of the finite element function on the coarser cell.

For each time interval Im, we fix a triangulation T mh with associated finite element space
V s
h,m. Then the fully discrete space for the state variable reads

Xr,s
k,h =

{
v ∈ L2(I, V )

∣∣ v|Im ∈ Prm(Im, V
s
h,m)

}
.
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4.2. Control discretization

Obviously Xr,s
k,h ⊆ Xr

k and therefore the discrete state equation can be obtained from
the semidiscrete formulation by restricting test and trial space. Hence we have: given
qkh ∈ Q, find ukh ∈ Xr,s

k,h such that

(4.6)
M∑
m=1

(∂tukh, ϕ)Im +
M−1∑
m=1

([ukh]m, ϕ
+
m) +

∫ T

0
a(qkh, ukh)(ϕ) dt

+ (u+
kh,0, ϕ

+
0 ) = (u0(qkh), ϕ+

0 ) for any ϕ ∈ Xr,s
k,h.

Apart from the jump terms, all terms can be evaluated on each time step individually.
So for practical realization of dynamic meshes, only the capability of evaluating H inner
products of functions residing on different meshes is needed. For further details on the
practical realization, we refer to Schmich [98]. To discuss the existence of solutions to
the fully discrete equation, one can apply the results mentioned for the semidiscrete
case. Janssen and Wihler [61] show existence of solutions for fully discrete problems
under more general assumptions on the continuous problem given that the time steps are
chosen sufficiently small. However we point out that for second order parabolic problems
their approach requires a CFL condition.

The optimization problem with fully discrete state reads

Minimize J(qkh, ukh) subject to

{
(qkh, ukh) ∈ Q×Xr,s

k,h satisfying (4.6),

qkh ∈ Qad.
(4.7)

The Lagrangian for this problem is identical to the one for the semidiscrete problem, we
only restrict the spaces for state and adjoint equation to Xr,s

k,h resulting in a map L̂ : Q×
Xr,s
k,h ×X

r,s
k,h → R. Therefore, all optimality conditions and derivative representations

can be transferred from the semidiscrete setting by restricting all occurrences of Xr
k to

Xr,s
k,h and replacing all variables by their discrete counterparts. In particular, we refer to

the adjoint state and the unprojected control for the discrete problem as zkh ∈ Xr,s
k,h and

pkh ∈ Q.

4.2. Control discretization

In the previous section we only discretized the state variable, the control remained an
element of the original space Q. Assuming that this space was not finite dimensional
to begin with, we still have to discuss how to treat the control. In the first part of this
section, we discuss the so called variational approach due to Hinze. It is based on the
observation that for certain problems, after moving to a discrete state variable, a control
satisfying the corresponding gradient condition has simple enough structure to be treated
computationally without separate discretization. A more conventional treatment of the
control by separate discretization is presented in the second part. For both approaches
we remark on the implications for the realization of the semismooth Newton algorithm.
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4. Discretization

4.2.1. Variational treatment of the control

The variational approach proposed by Hinze [55] is applicable to problems where the
control enters the state equation linearly. For the parabolic setting considered here, that
means the state equation (2.3) takes the form
(4.8)∫ T

0
〈∂tu, ϕ〉V ∗×V +â(u)(ϕ) dt+(u(0), ϕ(0)) = (u0+B0q, ϕ(0))+(B1q, ϕ)I for any ϕ ∈ X.

with a semilinear form â : X × X → R, initial value u0 ∈ H, and linear operators
B0 ∈ B(Q,H) and B1 ∈ B(Q,L2(I,H)). Furthermore we assume α > 0. Then the
implicit part of the gradient for the problem with discretized state reads

Gimpl(qkh, ukh, zkh) = B∗0z
+
kh,0 +B∗1zkh.

Since zkh ∈ Xr,s
k,h, we have Gimpl(qkh, ukh, zkh) ∈ Qvar with the linear space Qvar =

span
(
B∗0(V s

h,1) ∪B∗1(Xr,s
k,h)
)

. As image of discrete spaces, this space is discrete in itself.

The discrete version of the optimality condition (3.12c) with γG = 1
α gives

p̄kh = − 1

α

[
B∗0 z̄

+
kh,0 +B∗1 z̄kh

]
,

that is, p̄kh is a discrete quantity from the space Qvar. Hence the necessary optimality
condition for the problem with discrete state equation is equivalent to (p̄kh, ūkh, z̄kh) ∈
Qvar×Xr,s

k,h×X
r,s
k,h satisfying the discrete version of the optimality system (3.12). This is

a fully discrete problem, however for the practical realization of Algorithm 3.1, it has to
be ensured that the projection operator PQad

and the characteristic function χI of the
inactive sets can be evaluated on Qvar. Considering neither PQad

(Qvar) nor χI(Qvar) are
contained in discrete spaces, an exact realization of those two operators is only tractable
if the control constraints qa and qb admit a suitable discrete representation and if the
space Qvar has simple enough structure. In the case of high order discretizations or
complicated operators B0 and B1 the implementation effort for an exact projection can
be prohibitive. On the other hand, as we will see in Chapter 6, the variational approach
can achieve better convergence rates than a discretized control in certain settings.

To illustrate the practical realization of variational control, we discuss it for the linear
example problem with time-dependent parameter control presented in Section 2.3.1
which will also be analyzed in Chapter 6.

In this case, we have B0 = 0 and B1 = Gq. Therefore it can be seen easily that the space
Qvar takes the form

Qvar =
{
p ∈ Q

∣∣∣ p|Im ∈ Prm(Im,RdQ)
}
.

We require qa, qb ∈ Qvar. In order to evaluate the normal map, the temporal integral
(GqPQad

(pkh), ϕ)I has to be evaluated when solving the state equation. If the control
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4.2. Control discretization

constraints are not active anywhere (and hence PQad
= Id), then this is a temporal

integral over piecewise polynomials on each discretization interval. It can be evaluated
exactly when using sufficiently high order quadrature formulas on each interval. If the
constraints change from active to inactive within a discretization interval, then in general,
PQad

(pkh) will have kinks where the polynomial pkh|Im is cut off. Hence, also high order
quadrature formulas only deliver a first order approximation.

As a resolution, we identify the locations of the kinks and partition the discretization
interval for numerical quadrature purposes by those points. Since the dQ components
of pkh − qa and qb − pkh are scalar polynomials, this amounts to finding the roots of
those polynomials. The resulting partition of the discretization intervals can also be
used for computing all temporal integrals containing the characteristic function χI(pkh)
that occur within the linear solver of the semismooth Newton algorithm. Naturally, with
increasing order of discretization, computation of the partition becomes more involved.
However, due to the regularity of the state and adjoint variables, which is limited by
the presence of control constraints, very high orders of discretization are of limited use
anyway. In Chapter 2.3.1 we will show that a piecewise linear discretization in time is
sufficient to achieve the optimal order of convergence implied by the regularity of the
adjoint state. The implementation effort for the variational approach is modest in this
setting.

We point out that the quadrature formula resulting from subdividing the discretization
intervals at the boundaries between active and inactive sets may only be used for
integrating discrete quantities and not problem data. Otherwise during the course of
the optimization, we effectively use a different interpolant of the problem data whenever
the active sets change. That means the discrete optimization problem changes. As
a result, the optimization procedure may not converge at all or converge slower. For
more complicated settings than the considered test problem, where integrals of data
and control can not be separated, one can work with a projection of the data onto the
appropriate discrete space instead.

Remark 4.3. For the usual approach to semismooth Newton working on the control, a
realization requires storing an explicit representation for the projected control variable
qkh and for the corresponding active sets (see Hinze and Vierling [58] for details). By
contrast, our algorithm needs to store only discrete quantities explicitly while active sets
and projected control are only needed as data for discretized PDEs. This makes it a
very natural approach for the variational concept.

4.2.2. Explicit discretization of the control

As seen in the previous section, the variational treatment of the control is restricted
to problems where the control enters the state equation linearly. Furthermore, it
greatly increases complexity of the practical realization, in particular when higher order
discretizations are employed. These limitations do not arise when the control space is
discretized explicitly. On the other hand, an additional discretization error is introduced
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and, since kinks are not resolved, the order of convergence on the boundary between active
and inactive sets is restricted. However, this shortcoming can be addressed by an adaptive
algorithm that takes the error resulting from the control discretization into account.
Therefore, in the context of hp adaptivity, where feasibility of the implementation of
higher discretization orders is required, explicit discretization of the control is the method
of choice.

The resulting fully discrete optimal control problem takes the form

Minimize J(qkhd, ukhd) subject to

{
(qkhd, ukhd) ∈ Qd ×Xr,s

k,h satisfying (4.6),

qkhd ∈ Qd,ad

(4.9)

with Qd ⊆ Q the discrete control space and Qd,ad a suitable discrete admissible set. As
we will see later, it is not always advantageous to set Qd,ad as the intersection of the
continuous admissible set Qad and the discrete space Qd.

Obviously, the choice of the discrete control space Qd depends on the structure of the
continuous control space Q. Subsequently we discuss control discretization for the case
of a control consisting of a set of time-dependent parameters, that is, for a control space
of the form Q = L2(I,RdQ). Most of the considerations presented apply analogously to
the case of a spatially distributed control, which we briefly discuss at the end of this
section.

For discretization of the space Q of time-dependent parameters, we use the same approach
as for semidiscretization of the state in time. Let I1, . . . , IMQ denote a partition of the
time interval I with associated step size vector kQ ∈ RMQ

and order vector rQ ∈ NMQ

0 .
Then the discrete control space is defined as

Qd = Qr
Q

kQ =
{
q ∈ Q

∣∣∣ q|Im ∈ PrQm(Im,RdQ) for m = 1, . . . ,MQ
}
.

In principle, the discretization parameters kQ and rQ for the control discretization can be
chosen independent from the respective parameters k and r for the state. However, for
simplicity of implementation, we only consider an identical discretization, i. e., kQ = k
and rQ = r.

Next, we have to specify the discrete admissible space Qd,ad. The obvious choice would be
Qd∩Qad. However, this option leads to problems with our semismooth Newton algorithm.
This is because the latter relies on the reformulation of the optimality condition (3.2) in
terms of the L2 projection onto the admissible set. While in the continuous setting, the
projection PQad

can be written as a superposition operator acting pointwise, this is true
in the discrete setting only for r = 0.

To see that, let us consider a model configuration for the case r = 1. We consider
the space of linear polynomials on the unit interval P1((0, 1)) and the admissible set
{q ∈ P1((0, 1)) | q ≥ 0}. Then the L2 projection of the polynomial p : x 7→ 2x− 1 to the
admissible set is x 7→ 1

2x, as opposed to the nodal projection, which would be x 7→ x.
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While for r = 1, a simple algebraic representation of the discrete admissible set is still
possible by using a nodal basis with the left and right boundaries of the intervals as
nodes and imposing the constraints on the nodal values, the same is not true for higher
orders. Rewriting Qd,ad = Qd ∩ Qad in terms of a finite number of constraints on a
representation vector of an element of Qd results in non-linear constraints. For orders of
r = 6 and greater it is even impossible to derive a closed form for those constraints since
that would amount to finding extreme values of polynomials of degree 6 and greater.

As a conclusion, an implementation of the semismooth Newton algorithm from Chapter 3
for explicit control discretization with Qd,ad = Qd ∩Qad and high discretization orders is
complicated. This runs contrary to the main motivation behind discretizing the control
explicitly, which was to allow for a simple realization. Hence, we propose to weaken
the admissibility condition on the discrete control. This will allow us to retain the
simple structure of the continuous L2 projection also in the discrete setting. A potential
drawback is that the resulting discrete optimal control is in general not admissible for the
continuous problem. However, in Chapter 7, we will show that the error resulting from
that can be controlled within an adaptive algorithm. If admissibility of the computed
solution is a concern, it can be enforced by a post-processing step, i. e., we can use the
exact pointwise projection of the computed optimal unprojected control p̄khd as the final
result.

For m = 1, . . . ,M , let the nodes of the (rm + 1)-point Gauß-Legendre quadrature rule
on the interval Im be denoted by

tLm,j with j = 0, . . . , rm.

Then we define the discrete admissible set by enforcing the bounds only at these nodes,
i e., we set

Qd,ad =
{
q ∈ Qd

∣∣∣ qa(tLm,j) ≤ q(tLm,j) ≤ qb(tLm,j) for m = 1, . . . ,M and j = 0, . . . , rm

}
.

We use the Lagrange polynomials {ψm,j} corresponding to the Legendre nodes tLm,j with

values in RdQ as a basis to represent the components of the control. A full basis of Qd is
given by

{ψm,j · ei | m = 1, . . . ,M, j = 0, . . . , rm, i = 1, . . . , dQ}

with ei denoting the unit vectors on RdQ . Due to orthogonality of the polynomials, the
respective mass matrix MQ is a diagonal matrix with entries

∫
Im

(ψm,j(t))
2 dt on the

diagonal. For a discrete control qkhd ∈ Qd, let q ∈ RdimQd denote the representation
vector of q with respect to the above basis. Then obviously, the condition qkhd ∈ Qd,ad

translates to component-wise inequality constraints on q.

Next, we look at the structure of the L2 projection PQd,ad : Qd → Qd,ad. Let pkhd ∈ Qd
and qkhd = PQd,ad(pkhd) and consider the corresponding representation vectors p and q.
The vector q solves the minimization problem

Minimize (p− q̂)T MQ (p− q̂) s. t. q̂ ∈ Qd,ad.
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4. Discretization

Since the mass matrix MQ is diagonal, this problem decouples and it is easy to see that
PQd,ad amounts to a component-wise projection of the representation vector p onto the

admissible set. Assuming the bounds qa and qb possess sufficient regularity to allow for
pointwise evaluation, let qa,qb ∈ RdimQd denote the representation vectors of the nodal
interpolants of qa and qb. The projection PQd,ad admits the representation

PQd,ad(p) = max(qa,min(qb,p))

where min and max operate component-wise. Therefore, the generalized derivative
χI,d : RdimQd → B(RdimQd) of PQd,ad satisfies

[χI,d(p)(δq) ]i =

{
δqi, if [qa]i < pi <

[
qb
]
i
,

0, otherwise

for i = 1, . . . ,dimQd. Since PQd,ad and χI,d are simple nodal operations, realization
of Algorithm 3.1 for the fully discrete problem (4.9) is a straightforward task. We
remark that some care has to be taken in the discrete setting to distinguish between
nodal representation vectors and load vectors. Where necessary, load vectors have to be
converted to nodal vectors by multiplying with the inverse mass matrix M−1

Q .

Remark 4.4. If the state equation is of the form (4.8) with B0 = 0, and Qd = B∗1(Xr,s
k,h),

then the fully discrete problem (4.9) can be interpreted as the result of approximating
all integrals involving the control in the state-discrete problem (4.7) by interval-wise
Gauß quadrature with rm + 1 points. So in this special case, the proposed control
discretization is equivalent to treating the control variationally, but instead of resolving
kinks in the control exactly, it is integrated with Gauß quadrature rules, which due to
lack of differentiability of the integrand typically will not achieve their maximal order of
accuracy on intervals with kinks.

As seen above, whenever there is an orthogonal nodal basis of Qd corresponding to the
nodes where Qd,ad enforces the constraints, the corresponding mass matrix is diagonal.
Consequently, the discrete projection PQd,ad and its generalized derivative χI,d act
component-wise on representation vectors with respect to that basis. This general
principle also applies to a control distributed on the spatial domain, a boundary, or the
space-time cylinder. A common approach to spatial control discretization is to use the
same finite element space V s

h as for the state variable. However, in general it is not
feasible to construct a nodal basis consisting of L2 orthogonal functions for such a space.
Therefore, a discontinuous space is more practical in this context.

Here, for problems involving spatially distributed control, we opt for a piecewise constant
discontinuous discretization in space. While only offering first-order accuracy, the mass
matrix is diagonal for the standard basis in this setting. To specify the space Qd for
a distributed control in time and space, i. e., ΩQ = I × Ω, let T mh for m = 1, . . . ,M
denote the triangulation used for the state discretization on each time interval of the
semidiscretization. By Qmh we denote the spaces

Qmh =
{
v ∈ L2(Ω)

∣∣ v|K ∈ P0(K), K ∈ T mh
}
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4.2. Control discretization

of piecewise constant discontinuous functions. Then we use as discrete control space

Qd = {q ∈ Q | q|Im ∈ Prm(Im, Q
m
h ), m = 1, . . . ,M} .

While the combination of low order discretization of the spatial domain and hp dis-
cretization in time is unsatisfying with respect to balancing the accuracy of the two
discretizations, it is beyond the scope of this work to develop viable high order approxi-
mations for a spatially distributed control. We assume the most promising approach to
this issue within the given framework would be to work with piecewise discontinuous
higher order polynomials. A similar route was taken by Wachsmuth and Wurst [110].
Their optimization procedure is based on an interior point algorithm where the penalty
function is only evaluated at the nodes of the chosen quadrature formula. The nodal
values at those points serve as the discrete representation of the control.
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5. Solution of the time stepping equations
for higher order dG methods

In this chapter we focus on the issue of solving the equation systems resulting from the
discrete state and auxiliary equations efficiently. Formulating Newton’s method for the
time stepping equation leads to a system of rm + 1 coupled linear elliptic problems. This
system is closely related to the Newton update equation for the well-known Runge-Kutta
Radau IIA scheme. Since typically, the dimension of the spatial discretization is large
and in the context of hp adaptivity the number of blocks may change in between time
steps, it is desirable to decouple the linearized system for numerical evaluation. However,
for rm ≥ 1, this is not possible without introducing complex coefficients. The same issue
arises for Radau IIA methods.

As we will see, the Jacobians for dG and Radau IIA time stepping equations are in fact
so closely related that any idea developed for treating one can be applied directly to
the other. Therefore we summarize some approaches that have been investigated for
Runge-Kutta methods along with parallel developments for Galerkin time stepping.

The Runge-Kutta methods of Radau IIA type were proposed in 1969 independently by
Axelsson [7] and Ehle [31]. The most wide-spread implementations, the code RADAU5 by
Hairer and Wanner [52, Section IV.8] and the variable order variant RADAU described
in [51], use a simplified Newton method and follow the approach proposed independently
by Butcher [21] and Bickart [17] for decoupling the Newton update system. The resulting
decoupled system has complex coefficients. A very similar approach was developed by
Schötzau and coworkers in [100,101,115] for hp discontinuous Galerkin time discretization
of linear parabolic equations.

In 1974, Axelsson [8, 9] considered approximating the result of a block Gauß elimination
for Radau IIA methods of order 3 and 5 for linear ODE systems resulting from spatial
discretization of parabolic PDEs. The constructed approximation is used to solve for the
last solution component by means of a preconditioned Richardson iteration. In Richter,
Springer, and Vexler [91], essentially the same approximation was used to construct
an inexact Newton method for dG discretizations with polynomial orders up to r = 3
for nonlinear parabolic PDEs. We note that in the case of linear problems without
time dependent coefficients, both methods are equivalent. Basting and Weller [10]
subsequently used the same approximation as a preconditioner for a conjugate gradient
method to solve linear PDEs with piecewise linear dG time discretization.
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5.1. Structure of Newton’s method for the discrete time stepping equation

Cooper and Butcher [26] in 1983 followed a different idea. Instead of working with
Gaussian elimination they proposed to approximate the system in such a way that a
block similarity transform leads to a block triangular system with identical entries on the
diagonal. They developed schemes for Gauß integrators with two to four stages. Their
approach was picked up later by González-Pinto and co-workers to develop approximation
schemes for various implicit Runge-Kutta methods, starting with a scheme for the two-
stage Gauß method in [45] followed by schemes for various three stage methods including
Radau IIA in [46] and for four stage methods in [47]. The same authors proposed a
solver based on the same idea for the two stage Radau IIA method in the context of
time discretization for PDEs, see [87].

We discuss an approach that is based on this idea of finding a suitable approximation,
which after a similarity transform results in a block triangular system. Its main advantage
is that it allows a unified treatment of all orders r within a reasonable range. Schemes
with useful properties for polynomial degrees up to r = 7 are obtained. Although the
schemes for dG(2) and dG(3) resulting from transferring the decouplings for three- and
four-stage Radau IIA integrators given in [46] and [47] are expected to yield faster
convergence for these particular cases, they are obtained by numerical solution of a
heuristic optimization problem modelling some properties of an efficient decoupling.
This precludes a rigorous analysis of their properties. In comparison, our approach has
simple enough structure to do large parts of the analysis without relying on numerical
approximations.

For the convergence analysis of our scheme we will rely on the assumption that the
Jacobian of the spatial differential operator has positive real spectrum. However, where
appropriate, we will also give generalized results that only require the spatial part of the
differential operator to be positive. For convergence in the non-linear case, we adopt a
result by Calvo et al. [22] showing convergence of the corresponding iterative schemes for
Runge-Kutta methods.

5.1. Structure of Newton’s method for the discrete time
stepping equation

Parts of this section were previously published in [91], namely the derivation of the
structure of the time stepping equation in Subsection 5.1.1 and the considerations leading
to the result about the spectrum of the coefficient matrix in Subsection 5.1.3. Starting
from the discrete state equation (4.6), we derive a time stepping formulation and state
Newton’s method for the resulting equation systems. After an approximation of the
Jacobian we obtain the block structured system that will be the starting point for the
decoupling procedure. Throughout this section we will frequently refer to matrices and
vectors of dimension rm + 1 relating to the temporal discretization. To make the index
range for those consistent with the associated polynomial degree, we will use zero-based
indexing for them.
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5. Solution of the time stepping equations for higher order dG methods

5.1.1. Time stepping formulation for the state equation and Newton’s
method

Due to the discontinuity of the test function space Xr,s
k,h at the interval boundaries, it has

a basis consisting only of functions that are supported on a single interval each. Therefore
it is sufficient to test with such functions and with the notation u−kh,0 = Πh,1u0(qkh)

where Πh,1 denotes the L2 projection onto the space Vh,1, the discrete state equation (4.6)
is equivalent to ukh ∈ Xr,s

k,h satisfying

(5.1) (∂tukh, ϕ)Im + (u+
kh,m−1, ϕ

+
m−1) +

∫
Im

a(qkh, ukh)(ϕ) dt = (u−kh,m−1, ϕ
+
m−1)

for all ϕ ∈ Prm(Im, V
s
h,m) and m = 1, . . . ,M .

We note that the equations for a single m are sufficient to determine the solution
ukh|Im ∈ Prm(Im, V

s
h,m) on the corresponding interval, given that the terminal value

u−kh,m−1 on the previous interval is known. The time stepping equations for the auxiliary
problems have the same basic structure apart from the fact that the dual problems are
backward in time. For the remaining chapter we will restrict ourselves to consider only
the equations for a single time step, that is, we work with a single fixed m. In order
to simplify notation, we suppress the dependency on the control qkh, write r and V s

h

instead of rm and V s
h,m, and set N = dimV s

h .

Let {ψi ∈ Pr(Im,R) | i = 0, . . . , r} be a basis of the polynomial space Pr(Im,R) and
{Φn ∈ V s

h |n = 1, . . . , N} be a basis of V s
h . Then, {ψiΦn | i = 0, . . . , r, n = 1, . . . , N}

forms a basis of Pr(Im, V s
h ) and the time stepping equation (5.1) can be rewritten as a

system of (r + 1)N scalar nonlinear equations for each discretization interval

(5.2) (∂tukh, ψiΦn))Im +

∫
I
a(t, ukh)(Φn) · ψi dt+ ψi(tn−1)([ukh]m−1,Φn) = 0,

i = 0, . . . , r, n = 1, . . . , N.

To solve the nonlinear system (5.2) numerically, we apply Newton’s method. Starting
from an initial guess for the solution on the current interval, a sequence of approximations
is computed by repeatedly solving the Newton update equation. Since we restrict our
considerations to the single time interval Im and in order to keep notations simple, we
will denote the Newton iterates by ulkh ∈ Pr(Im, V s

h ) with the iteration index l ∈ N0

without indicating the interval. We define the Newton residuals as

(5.3) Rli,n := −(∂tu
l
kh, ψiΦn)Im −

∫
Im

a(t, ulkh)(Φn) · ψi dt

+ ψi(tm−1)(u−kh,m−1 − u
l
kh(tm−1),Φn), i = 0, . . . , r, n = 1, . . . , N.
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5.1. Structure of Newton’s method for the discrete time stepping equation

Then the Newton update wlkh := ul+1
kh − u

l
kh solves the linear system

(5.4) (∂tw
l
kh, ψiΦn)Im +

∫
Im

a′u(t, ulkh)(wlkh, ψiΦn) dt+ ψi(tm−1)(wlkh(tm−1),Φn)

= Rli,n, i = 0, . . . , r, n = 1, . . . , N.

Next, we write the Newton update in the chosen temporal and spatial basis, that is
wlkh =

∑r
j=0

∑N
n′=1 wl

j,n′ψjΦn′ with real coefficients wl
j,n′ . Collecting the temporal

derivative and jump terms simplifies the update equation to

(5.5)

r∑
j=0

N∑
n′=1

[(∫
Im

∂tψjψi dt+ ψj(tm−1)ψi(tm−1)

)
(Φn′ ,Φn)

+

∫
Im

a′u(t, ulkh)(Φn′ ,Φn) · ψjψi dt

]
wl
j,n′ = Rli,n, i = 0, . . . , r, n = 1, . . . , N.

For given i and j, evaluating the expression
∫
Im
a′u(t, ulkh)(Φn′ ,Φn) · ψjψi dt for all

n, n′ = 0, . . . , N amounts to a weighted temporal integral over the stiffness matrix of the
linearized spatial differential operator, which is usually too expensive to be computed
numerically since it has to be evaluated for each combination of weights ψjψi. Thus, we
approximate it by a suitable mean value∫

Im

a′u(t, ulkh)(Φn′ ,Φn) · ψjψi dt ≈ a′u(ulkh)(Φn′ ,Φn)

∫
Im

ψjψi dt.

Since we perform a Newton iteration even for linear problems and the residual is computed
without this approximation, the accuracy of the computed final solution is not affected.
Rather, the convergence behaviour of the Newton iteration changes. Introducing the
midpoint t̃m := tm−1+tm

2 of the current time interval, the most obvious choice for the
mean value is

a′u(ulkh)(Φn′ ,Φn) := a′u(t̃m, u
l
kh(t̃m))(Φn′ ,Φn),

that is, we evaluate the derivative once at the midpoint of the time interval.

Remark 5.1. For higher order implicit Runge-Kutta methods, typically assembly of the
Newton system involves evaluating the stiffness matrix at several time points, which
is considered too expensive as well. The standard way of dealing with this issue is to
approximate all occurrences of the stiffness matrix by the stiffness matrix evaluated at
the beginning of the time interval with the terminal solution from the last interval, see
for example [52, Section IV.8]. The impact on the convergence of the Newton scheme is
very similar to the approximation proposed here.

We introduce the mass matrix M ∈ RN×N and the averaged stiffness matrix A ∈ RN×N
with the entries

Mn,n′ = (Φn′ ,Φn) and An,n′ = a′u(ulkh)(Φn′ ,Φn) respectively.
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5. Solution of the time stepping equations for higher order dG methods

With the notations

αij :=

∫
Im

∂tψjψi dt+ ψj(tm−1)ψi(tm−1) and βij =
1

km

∫
Im

ψjψi dt,

the Newton update equation with the approximation for the linearized form discussed
above reads


α00M + km β00A α01M + km β01A · · · α0rM + km β0rA

α10M + km β10A
. . .

...
...

. . .
...

αr0M + km βr0A · · · · · · αrrM + km βrrA




wl
0

wl
1

...
wl
r

 =


Rl0
Rl1
...
Rlr

 ,

(5.6)

where the vectors wl
j :=

(
wl
j,1 · · · wl

j,N

)T
and Rli :=

(
Rli,1 · · · Rli,N

)T
collect the

corrections and residual terms respectively for one temporal basis function.

To simplify the notation, we make use of the Kronecker product, which can be defined
for a m× n matrix G with entries gij and a second matrix H, which does not have to
be of the same size as G, as the block matrix

G⊗H =

 g11H g12H . . . g1nH
...

...
. . .

...
gm1H gm2H . . . gmnH

 .

For convenience of the reader, we summarize some elementary properties of the Kronecker
product that we use later on. Let G and H be defined as above.

1. (G⊗H)T = GT ⊗HT .

2. Let P and Q be two further matrices and assume that the number of rows of
P and Q agrees with the number of columns of G and H respectively. Then
(G⊗H)(P⊗Q) = (GP)⊗ (HQ).

3. If G and H are square and invertible, then (G⊗H)−1 = G−1 ⊗H−1.

We introduce the (r+ 1)× (r+ 1) matrices Â := (αij)i,j∈{0,...,r} and B̂ := (βij)i,j∈{0,...,r}
and collect the temporal components wl

j and Rlj of the updates and residuals in the

vectors (wl)T =
(
(wl

0)T · · · (wl
r)
T
)

and (Rl)T =
(
(Rl0)T · · · (Rlr)

T
)
. With these

preparations, the Newton update equation (5.6) takes the more compact form

(5.7)
(
Â⊗M + kmB̂⊗A

)
wl = Rl.

For fixed r we can derive explicit representations for the coefficient matrices Â and B̂ as
shown in the following lemma.
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5.1. Structure of Newton’s method for the discrete time stepping equation

Lemma 5.2. If we represent the temporal basis {ψj} as ψj(t) =
∑r

µ=0 cµj

(
t−tm−1

km

)µ
and denote the corresponding coefficient matrix by C := (cµj)µ,j∈{0,...,r}, we get the
explicit representations

Â = CTGC and B̂ = CTHC

for the coefficient matrices. Here, H denotes the (r+ 1)-dimensional Hilbert matrix, that
is, Hµν = 1

µ+ν+1 , and the entries of G are given by G00 = 1 and Gµν = ν
µ+ν for the

remaining entries.

G can be represented as G = HD + E where D is the representation matrix of the
derivative operator on Pr([0, 1]) with respect to the monomial basis and E = e1e1

T .

Proof. Transforming the integral βij =
∫
Im

1
km
ψjψi dt to the unit interval yields

βij =

∫ 1

0
ψj(kmτ)ψi(kmτ) dτ =

r∑
µ=0

r∑
ν=0

∫ 1

0
cνjcµi τ

µ+ν dτ

=
r∑

µ=0

cµi

r∑
ν=0

∫ 1

0
τµ+ν dτ cνj =

r∑
µ=0

cµi

r∑
ν=0

1

µ+ ν + 1
cνj .

Rewriting this identity in terms of matrix products gives the representation formula for
B̂. To derive a representation for Â we start again by transforming the integral to the
unit interval and get

αij =

∫ 1

0
km∂tψj(kmτ)ψi(kmτ) dτ + ψj(tm−1)ψi(tm−1)

=

∫ 1

0
∂τψj(kmτ)ψi(kmτ) dτ + c0jc0i.

We proceed as above by plugging in the monomial representation for the temporal basis,
evaluating integrals and derivatives of the monomials and rewriting the result in terms
of matrix products.

For order r = 0, the resulting scheme is some variant of the well known implicit Euler
method, depending on how the temporal integrals in the residual terms are evaluated.
This type of scheme is easy to implement on top of existing finite element code for elliptic
spatial problems, as long as the matrices M and A can be assembled, a linear solver
for those matrices is available and elementary vector operations are implemented. If
the order r is greater than 0, however, the update equation (5.6) is a coupled system
where each block resembles the system matrix of implicit Euler with varying coefficients.
Therefore it would be desirable to decouple this block system.
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5. Solution of the time stepping equations for higher order dG methods

5.1.2. Connection to the Runge-Kutta methods of type Radau-IIA

Multiplying (5.7) from left by Â
−1
⊗M−1 gives

(5.8)
(

Id⊗ Id +km

(
Â
−1

B̂
)
⊗
(
M−1A

))
wl = Â

−1
⊗M−1Rl.

The identity matrix of the respective dimension is denoted Id. Plugging in the repre-
sentations for Â and B̂ from Lemma 5.2 gives for the coefficient matrix of the spatial
derivative term

(5.9) A := Â
−1

B̂ =
(
CT (HD + E) C

)−1
CTHC = C−1

(
D + H−1E

)−1
C.

We denote the inner matrix by Aref =
(
D + H−1E

)−1
and after some computations

using the inverse of the Hilbert matrix we obtain the explicit representation

(5.10) Aref =



0 · · · · · · 0 a0

1
. . .

... a1

0 2
. . .

...
...

...
. . .

. . . 0
...

0 · · · 0 r ar


with the coefficients ak = (−1)r+k (r+k)!(r+1)!r!

(k!)2(r−k+1)!(2r+1)!
. Together with the notation L :=

kmM−1A , the Newton update equation can be stated as

(5.11) (Id⊗ Id +A⊗ L) wl = Â
−1
⊗M−1Rl.

Lemma 5.3. When choosing C as the coefficient matrix of the Lagrange basis with the
roots of the rth right Radau polynomial as nodes, the matrix A is identical to the Butcher
tableau of the r + 1 stage Radau-II-A method.

Remark 5.4. This means that the Newton correction equation (5.11) in this case has the
same form as for the corresponding Radau scheme which allows to apply any techniques
known from the Radau scheme for its solution. Since for symmetry reason we do not use
the Radau nodes for the temporal basis, typically a similarity transform is necessary.

Proof. As at the end of Section 4.1.1, let τ r+1
0 , . . . τ r+1

r denote the roots of the right
Radau polynomial Rr+1 of degree r+1 on the unit interval [0, 1]. According to, e. g., [52],
the entries aij of the Butcher scheme Arad for the r + 1 stage Radau-II-A method are
determined by the conditions

r∑
j=0

aijτ
k
j =

τk+1
i

k + 1
for i ∈ 0, . . . , r and k ∈ 0, . . . , r.
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5.1. Structure of Newton’s method for the discrete time stepping equation

Rewriting this equation system in terms of matrix products gives

Arad ·


τ0

0 τ1
0 . . . τ r0

τ0
1 τ1

1 . . . τ r1
...

...
. . .

...
τ0
r τ1

r . . . τ rr

 =


τ10
1

τ20
2 . . .

τr+1
0
r+1

τ11
1

τ21
2 . . .

τr+1
1
r+1

...
...

. . .
...

τ1r
1

τ2r
2 . . . τr+1

r
r+1

 .

Let C denote the coefficient matrix of the Lagrange basis with nodes τ0, . . . , τr. Then
the Vandermonde matrix on the left hand side is the inverse C−1. To show our claim,
we have to show Arad = C−1ArefC. With the above identity this is equivalent to the
condition

C−1Aref = AradC−1 =


τ10
1

τ20
2 . . .

τr+1
0
r+1

τ11
1

τ21
2 . . .

τr+1
1
r+1

...
...

. . .
...

τ1r
1

τ2r
2 . . . τr+1

r
r+1

 .

Evaluating the matrix product on the left gives
τ10
1

τ20
2 . . .

τr0
r

∑r
k=0 akτ

k
0

τ11
1

τ21
2 . . .

τr1
r

∑r
k=0 akτ

k
1

...
...

. . .
...

...
τ1r
1

τ2r
2 . . . τrr

r

∑r
k=0 akτ

k
r

 .

Hence the claim is equivalent to the Radau nodes being the zeros of the polynomial

R̃r+1(t) =
tr+1

r + 1
−

r∑
k=0

akt
k.

Using the explicit representation

Ln(t) = (−1)n
n∑
k=0

(−1)k
(n+ k)!

(k!)2(n− k)!
xk

for the Legendre-polynomials on the interval [0, 1] found, e. g., in [52, Section IV.5],we
can verify easily that the polynomial R̃r+1(t) is a scaled version of the Radau polynomial
Rr+1(t) which shows the claim.

5.1.3. Spectrum of the Coefficient matrix

The formulation (5.11) of the Newton update suggests performing a similarity transform
to turn it into a block diagonal (or block triangular) system with blocks of the form
Id +µjL on the diagonal where µj are the eigenvalues of A. The question of whether this
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5. Solution of the time stepping equations for higher order dG methods

works without introducing complex coefficients is equivalent to the question whether the
eigenvalues of A are real. We note that since the coefficient matrices for different choices
of the temporal basis are similar to each other, the spectrum cannot be influenced by
modifying the temporal basis.

We consider the scalar test equation ∂tu − λu = 0 for u ∈ H1(I) with I = (0, 1) and
u(0) = 1. It is discretized with the discontinuous Galerkin method of order r on the
time grid consisting only of the single interval I. Since the problem is linear without
time-dependent coefficients, Newton’s method with starting value 0 computes the discrete
solution as the first update, that is the nodal representation vector u ∈ Rr+1 of the
discrete solution uk satisfies

(5.12) (Id−λA) u = R

with Rj = ψj(0) for j = 0, . . . , r. Let us assume for now that the temporal basis {ψj}
is a Lagrange basis with the last node at the end of the time interval. Then we have
uk(1) = ur.

Next, we need to establish a link between the dG(r) solution of this problem at final
time 1 and a Padé approximation of the exact solution u(1) = eλ. The [r/r + 1]-Padé
approximation of eλ is a rational function in λ with numerator of maximal degree r and
denominator of maximal degree r + 1 that approximates eλ up to an error of O(λ2r+2).
If numerator and denominator are required to have no common roots, it is uniquely
determined (see, e. g., the survey article by Brezinski and Iseghem [20]). We denote it by

Qr,r+1(λ) = κ(λ)
τ(λ) . It is shown in [88, § 42] that the Padé table for eλ is normal and hence

the denominator of the [r/r + 1]-Padé approximation of eλ has exactly degree r + 1 for
any r and no terms in the Padé approximation cancel out. It is shown by Lesaint and
Raviart during the proof of Theorem 2 in [67] that in fact ur = uk(1) = Qr,r+1(λ).

An alternative way of representing ur is by applying Cramer’s rule to (5.12) yielding

ur =
det
(
(Id−λA)0,...,r, 0,...,r−1 R

)
det(Id−λA)

which is a rational function with respect to λ with degree of numerator and denominator
at most r and r + 1 respectively. Since ur = Qr,r+1(λ), we conclude that apart from a
constant the denominator equals the denominator τ(λ) of the [r/r + 1]-Padé approxima-
tion. Therefore we conclude that the spectrum of A consists of the reciprocals of the
zeros of τ(λ).

Wanner et al. in [113, Theorem 8] show an upper bound for the order of rational
approximations of the exponential based on the degree of the numerator and the number
of non-real-valued roots of the denominator. Inserting the known approximation order
and degree of the numerator for Qr,r+1 into this estimate gives immediately that τ(λ) has
at most one real-valued root. The following lemma summarizes the above considerations.
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Lemma 5.5. The eigenvalues of the matrix A are given as µi = 1
λi

with i = 0, . . . , r,
where λi are the roots of the denominator τ(λ) of the [r/r + 1]-Padé approximation of
eλ. In particular at most one eigenvalue is real-valued.

Remark 5.6. As a consequence of this result, apart from the trivial case r = 0, it is not
possible to decouple the blocks of the Newton system (5.7) without introducing complex
coefficients.

5.2. Approximate decoupling scheme

As shown in the previous section, the matrix A has apart from at most one exception
complex spectrum. Therefore, it is not possible to transform the system (5.8) into
block triangular form with real coefficients. Instead, following the idea of Cooper and
Butcher [26] for Gauß methods, we propose to approximate A by a suitable matrix T
with a single real eigenvalue. Convergence analysis for the linear scheme and for the
resulting non-linear solver will rely on some assumptions on the stiffness matrix which we
discuss in the first part of this section. Next, we introduce the numerical scheme for the
approximate Newton update, followed by convergence results, first for linear equations
with time-independent coefficients and subsequently for nonlinear problems. Finally, the
applicability of the obtained results to a class of semilinear equations is discussed.

5.2.1. Assumptions on the problem

For many standard examples of scalar diffusion-reaction equations, the derivative of the
spatial differential operator is self-adjoint and positive. This motivates to optimize the
approximate Newton scheme to work well for symmetric positive semidefinite stiffness
matrices.

Assumption 5.7. Let a : I × V × V → R be the semilinear form defining the spatial
differential operator. Then for all u ∈ V , t ∈ I, and ϕ,ψ ∈ V we assume

a′u(t, u)(ϕ,ψ) = a′u(t, u)(ψ,ϕ) and

a′u(t, u)(ϕ,ϕ) ≥ 0,

i. e., the derivative of a with respect to u is positive and symmetric.

Remark 5.8. 1. In practice it can be sufficient to require the assumption only for a subset
of pairs (t, u). It just has to be ensured that all iterates that are encountered in the
course of the algorithm are contained in that subset.
2. Obviously, the assumption implies that A is symmetric positive semi-definite. There-
fore, although L = kmM−1A is not necessarily symmetric, it has non-negative real
spectrum. To see that, consider an eigenvalue µ of L and the corresponding eigenvector
v. We have Lv = µv which is equivalent to kmAv = µMv. Multiplying by the conjugate
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5. Solution of the time stepping equations for higher order dG methods

transpose v∗ of v and solving for µ gives µ = km
v∗Av
v∗Mv and, since the right hand side of

this identity is a non-negative real value, the same holds for the eigenvalue µ.

Cases where this assumption clearly is satisfied include spatial differential operators of the
form A(t, u) := −div(G∇u) + g(t, x, u) where G is a symmetric d×d matrix with entries
Gij ∈ L∞(Ω) which is positive semidefinite on Ω. The nonlinearity g : I × Ω× R→ R is
required to be continuously differentiable and non-decreasing with respect to the third
argument for almost all (t, x) ∈ I × Ω. Obviously the equations for the test problems
given in Sections 2.3.1 and 2.3.2 satisfy this characterization and hence Assumption 5.7
is fulfilled by them.

For problems involving transport or systems of equations, this assumption might be too
restrictive. However, when accepting less favourable constants, part of the convergence
results can be shown for the following more general assumption which is satisfied for a
monotone spatial differential operator.

Assumption 5.9. For all u ∈ V , t ∈ I, and ϕ ∈ V we assume

a′u(t, u)(ϕ,ϕ) ≥ 0.

Concerning the state equation of the temperature control problem discussed in Sec-
tion 2.3.3, numerical inspection of the stiffness matrix resulting from a coarse discretiza-
tion indicates that neither of the above assumptions are satisfied. However, as shown in
the numerical tests, the proposed decoupling converges for reasonable size of the time
step nevertheless.

To show convergence of the solution process for non-linear problems, besides one of the
above assumptions, we need to impose the following condition on the sensitivity of the
stiffness matrix to changes of the evaluation points t and u.

Assumption 5.10. For given u ∈ Vh and t ∈ I let A(t, u) denote the corresponding
stiffness matrix with the entries (A(t, u))n,n′ = a′u(t, u)(Φn′ ,Φn). We require that for

any (t, u) ∈ I × Vh, there is δ > 0 and k̄ > 0 such that for any pair of elements (t1, u1)
and (t2, u2) contained in the neighbourhood

Bδ(t, u) =
{

(t̂, û) ∈ I × Vh
∣∣ ‖û− u‖H < δ ∧ |t̂− t| < δ

}
and any k ≤ k̄, the condition∥∥∥(M + kA(t1, u1))−1 k (A(t2, u2)−A(t1, u1))

∥∥∥
M
≤ κ1|t1 − t2|+ κ2 ‖u1 − u2‖H

is satisfied for some positive constants κ1 and κ2 depending only on Bδ(t, u).

Remark 5.11. 1. This resembles an affine-covariant Lipschitz condition for an implicit
Euler time stepping equation with time step k. Such conditions are frequently encoun-
tered in the corresponding convergence theorems for Newton’s method (see for example
Deuflhard [28]).
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5.2. Approximate decoupling scheme

2. For a linear differential operator A without time dependent coefficients, Assump-
tion 5.10 is satisfied trivially. In general, it is difficult to ensure this assumption with
constants κ1 and κ2 independent of the spatial mesh. A more detailed discussion of
the arising issues and possible resolution will be given in Section 5.2.5 for the case of
semilinear reaction-diffusion type equations.

5.2.2. Approximation of the coefficient matrix

As pointed out we will replace A by an approximation T with a spectrum consisting
only of a single (r + 1)-fold real eigenvalue. Since throughout this section we consider
only a single Newton step, for simplicity the iteration index l will be omitted.

Instead of solving (5.11) for the Newton correction w, an approximation w̃ satisfying

(5.13) (Id⊗ Id +T⊗ L) w̃ = Â
−1
⊗M−1R

is computed. The error between w and w̃ can be written as

w−w̃ = w−(Id⊗ Id +T⊗ L)−1 (Id⊗ Id +A⊗ L) w = (Id⊗ Id +T⊗ L)−1 (T−A)⊗Lw.

For a scalar test equation ∂tu+ µu = f this simplifies to

(5.14) w − w̃ = (Id +Tλ)−1 (T−A)λw,

with λ = kmµ. We denote the error matrix by V(λ) = (Id +Tλ)−1 (T − A)λ. Since
we are interested in solving equations where L has positive real spectrum, we choose
as a criterion for a good approximation T that the spectral radius of V is small for all
positive and real λ. It can be verified easily that the spectral radius of V is invariant
under similarity transform of T and A, therefore we can chose the most convenient basis
to construct an approximation T for A.

We start from the reference representation Aref introduced in (5.10) and perform another
similarity transform using the diagonal matrix S with Sjj = (j)! for j = 0, . . . , r to
obtain

Af := SArefS
−1 =



0 · · · · · · 0 b0

1
. . .

... b1

0 1
. . .

...
...

...
. . .

. . . 0
...

0 · · · 0 1 br


with bk = (−1)r+k (r+k)!(r+1)!

k!(r−k+1)!(2r+1)! . This matrix has the form of a companion matrix,

hence its characteristic polynomial is given explicitly as χ(µ) = µr+1 −
∑r

k=0 bkµ
k.

Remark 5.12. Note that the temporal basis corresponding to Af is given by 1
j!

(
t−tm−1

km

)j
with j = 0, . . . , r. So the entries of a given vector with respect to this basis can be
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5. Solution of the time stepping equations for higher order dG methods

interpreted as the coefficients of the Taylor expansion of the corresponding polynomial
around 0 after transforming back to the reference interval [0, 1]. Therefore we subsequently
refer to this basis as Taylor basis.

Now we want to replace the matrix Af by a suitable approximation Tf with spectrum
consisting of a single real (r + 1)-fold eigenvalue, that is, its characteristic polynomial χ̃
has the form χ̃(µ) = (µ− γ)r+1 for a suitable γ. We choose

γ = r+1

√
r!

(2r + 1)!

since for this choice the constant coefficients of χ and χ̃ agree. Denoting the negatives
of the coefficients of χ̃ by b̃k = (−1)r+k

(
r+1
k

)
γr+1−k for k = 0, . . . , r, we propose the

approximation

Tf :=



0 · · · · · · 0 b̃0

1
. . .

... b̃1

0 1
. . .

...
...

...
. . .

. . . 0
...

0 · · · 0 1 b̃r


which obviously has the desired characteristic polynomial.

We evaluate the error matrix Vf(λ) = (Id +Tfλ)−1(Tf −Af)λ, which gives us

Vf(λ) =



1 · · · · · · 0 λb̃0

λ
. . .

... λb̃1

0 λ
. . .

...
...

...
. . .

. . . 1 λb̃r−1

0 · · · 0 λ 1 + λb̃r



−1

[
0 b̃− b

]
λ.

Obviously only the last column of Vf contains non-zero entries, hence its spectrum
consists only of zeros and the eigenvalue µr = (Vf)rr. We can compute this value by
Gaussian elimination and obtain

(5.15) µr =

∑r
k=0(−1)kλk+1(b̃r−k − br−k)
1 +

∑r
k=0(−1)kλk+1b̃r−k

= 1−
1 +

∑r
k=0(−1)kλk+1br−k
(1 + λγ)r+1

.

For the polynomial in the numerator of the last term we note that the identity
1+
∑r

k=0(−1)kλk+1br−k = det(Id +λAf) = det(Id +λA) holds. As noted in Section 5.1.3,
det(Id−λA) is the denominator of the [r/r + 1] Padé approximation of exp(λ). Conse-
quently, det(Id +λA) has to be the denominator of the corresponding approximation for
exp(−λ). This means µr+1 is identical to the error terms we encountered for the block
Gauß elimination in [91]. Therefore for positive and real λ the spectral radius |µr+1| of
Vf is bounded by

ρr = sup
{
|µr|

∣∣ λ ∈ R+
}
.
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Table 5.1.: Characteristic polynomials of A and T an bounds on the spectral radius of V for
different values of r.

r χ(µ) χ̃(µ) ρr

1 µ2 − 2
3µ+ 1

6

(
µ−

√
1
6

)2

0.092

2 µ3 − 3
5µ

2 + 3
20µ−

1
60

(
µ− 3

√
1
60

)3

0.169

3 µ4 − 4
7µ

3 + 1
7µ

2 − 2
105µ+ 1

840

(
µ− 4

√
1

840

)4

0.238

4 µ5 − 5
9µ

4 + 5
36µ

3 − 5
252µ

2 + 5
3024µ

(
µ− 5

√
1

15120

)5

0.301

− 1
15120

5 µ6 − 6
11µ

5 + 3
22µ

4 − 2
99µ

3 + 1
528µ

2
(
µ− 6

√
1

332640

)6

0.359

− 1
9240µ+ 1

332640

6 µ7− 7
13µ

6 + 7
52µ

5− 35
1716µ

4 + 7
3432µ

3
(
µ− 7

√
1

8648640

)7

0.412

− 7
51480µ

2 + 7
1235520µ−

1
8648640

7 . . . . . . 0.460

This means while superlinear convergence is lost, we can expect fast linear convergence
from the approximate Newton update equation

Numerical upper bounds for ρr along with the characteristic polynomials χ and χ̃ are
given in Table 5.1.

Remark 5.13. It can be shown by explicit computation for dG(1) that in general, our
choice of γ is not optimal in the sense that it minimizes supλ≥0 |µr|. For relevant orders
r (r ≤ 7) however, our choice still gives a spectral radius less than 1

2 .

For later usage, we also record an explicit formula for the other entries of the matrix Vf.
Let j be in {0, . . . , r − 1}, then µj = (Vf)jr is given by

(5.16) µj =

j∑
k=0

(−1)j−kλj−k+1
[
b̃k − bk − b̃kµr

]
.

Some computations show that µj is bounded for λ→∞ since the polynomial degrees
of numerator and denominator of the resulting rational function are equal. This is
important for the approximation error estimates with respect to some norm discussed in
Section 5.2.3, since there we exploit the fact that the functions µj stay bounded on the
positive half of the complex plane.
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5. Solution of the time stepping equations for higher order dG methods

To formulate the decoupled approximate Newton update equation, we proceed as shown
for example in [87]. We first transform Tf back to the basis the Newton equation (5.11)
was stated in and obtain

T = C−1S−1TfSC.

For decoupling the approximate system, we want to transform T to a lower triangular
matrix. Since the spectrum of the matrix T consists only of the (r + 1)-fold eigenvalue
γ, there exists a decomposition of T of the form T = γQ(Id−U)−1Q−1 with U being a
strictly lower triangular matrix. Note that since T is similar to Tf, it is not diagonalizable
and therefore we cannot achieve U = 0. To obtain the decomposition of T, we compute a
Schur decomposition of the transpose TT and take the transpose of the result. Replacing
T in (5.13) by this representation we get

(
Id⊗ Id +γ(Q(Id−U)−1Q−1)⊗ L

)
w̃ = Â

−1
⊗M−1R

⇔
((

(Id−U)Q−1
)
⊗ Id +γQ−1 ⊗ L

)
w̃ =

(
(Id−U)Q−1Â

−1
)
⊗M−1R

⇔ Id⊗ (Id +γL)
(
Q−1 ⊗ Id

)
w̃ =

(
(Id−U)Q−1Â

−1
)
⊗M−1R

+
((

UQ−1
)
⊗ Id

)
w̃.

We substitute x̃ :=
(
Q−1 ⊗ Id

)
w̃, introduce the matrix F = (Id−U)Q−1Â

−1
and

multiply from left with Id⊗M to obtain the update scheme

Id⊗ (M + γkmA) x̃ = (F⊗ Id)R+ (U⊗M) x̃,

w̃ = (Q⊗ Id) x̃.
(5.17)

The first equation decouples into individual equations for the temporal components of
x̃. For each component one standard θ step type of equation has to be solved. That
means disregarding the cost for assembling the stiffness matrix, the computational
effort per Newton step is roughly r + 1 times the computational effort for a Newton
step with implicit Euler time stepping. Compared to the schemes we proposed in [91],
the computational effort per Newton step is reduced significantly while the speed of
convergence is comparable. The complete algorithm for solving the time stepping
equation is shown in Algorithm 5.1.

Computing the value γ and the coefficient matrices F, U and Q according to the
presented approach can be automatized with a computer algebra system. This allows
to derive iteration schemes for very high order dG(r) methods with moderate effort.
If the transformation from Tf to T is evaluated numerically, sufficient precision of
the computation has to be ensured since the involved matrices can become severely
ill-conditioned. This is due to the involved transformations to the monomial basis.
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5.2. Approximate decoupling scheme

Algorithm 5.1 Approximate Newton iteration for solving the dG(r) time stepping
equation.

Input: starting value u0

1: for l = 0, 1, 2, . . . do
2: Compute residual Rl from (5.3)
3: for i = 0, . . . , r do
4: Compute x̃li as solution of

(M + γkmA) x̃li =

r∑
j=0

FijR
l
j +

i−1∑
j=0

UijMx̃lj .

5: end for
6: Set w̃l = (Q⊗ Id) x̃l

7: Set ul+1 = ul + w̃l

8: if stopping criterion fulfilled then
9: break

10: end if
11: end for

5.2.3. Convergence analysis for linear problems with time-independent
coefficients

Compared to an exact Newton iteration for the time stepping equation, the proposed
solution process involves two sources of error that can affect the convergence behaviour.
Averaging the Jacobian of the spatial operator over time introduces an error, another
error arises from approximating A by T. To investigate the latter error independent from
the former, we restrict ourselves to linear problems without time-dependent coefficients
in this section before discussing the general nonlinear setting in the next section.

For a linear equation, Newton’s method computes the exact solution with a single
iteration, so the rate of convergence of the approximated scheme can be estimated by

θl =

∥∥∥w̃l −wl
∥∥∥

‖wl‖
≤ ‖Vf(L)‖

where Vf(L) denotes the block matrix obtained from replacing all occurrences of λ in
Vf by L and all fractions by matrix inverses. Here, ‖·‖ denotes some vector norm and
the corresponding induced matrix norm.

It is desirable that the norm to measure convergence in is independent of the spatial
mesh. For a discrete spatial function vh ∈ V s

h , a natural choice of a norm with that
property is the spatial L2 norm which in the discrete setting is given by

‖vh‖L2(Ω) = ‖v‖M =
√

vTMv
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where v is the nodal representation vector of vh. We denote the induced matrix norm
by ‖·‖M as well. For later use, we need the following technical result.

Lemma 5.14. Let X be an (r + 1) × (r + 1) matrix, L = kmM−1A ∈ RN×N , and qk
with k = 0, . . . , r rational functions. By Q(L) we denote the block matrix

Q(L) =

q0(L)
...

qr(L)

 .

Correspondingly, for scalar values λ, Q(λ) becomes a RN vector. If A is symmetric,
then there exists a M-orthonormal basis {w1, . . . ,wN} of RN such that for any vector
w =

∑N
j=1 ωjwj we have the identity

wTQ(L)T (X⊗M)Q(L)w =

N∑
i=0

ω2
iQ(λi)

TXQ(λi)

with λi for i = 1, . . . , N denoting the eigenvalues of L. The basis {w1, . . . ,wN} does not
depend on X and Q(L).

In particular, the estimate∣∣wTQ(L)T (X⊗M)Q(L)w
∣∣ ≤ sup

{∣∣Q(λ)TXQ(λ)
∣∣ ∣∣ λ ∈ σ(L)

}
‖w‖2M

holds true.

Proof. Since the mass matrix M is symmetric positive definite, it possesses a square
root M

1
2 . Due to symmetry of A, the matrix

M
1
2 LM− 1

2 = kmM− 1
2 AM− 1

2

is symmetric as well. Therefore there is an orthonormal basis of RN consisting of
eigenvectors {v1, . . . ,vN} of this matrix. The corresponding eigenvalues are denoted by
λ̄1, . . . , λ̄N . Defining the vectors

wj = M− 1
2 vj , j = 1, . . . , N,

we note that they are the solutions of the generalized eigenvalue problem

Awj = λ̄jMwj

and form an orthonormal basis with respect to the inner product corresponding to
‖·‖M. From the above identity we see that wj are eigenvectors of L with the eigenvalues
λj := kmλ̄j .
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Let w ∈ RN with w =
∑N

j=1 ωjwj . Then we get

wTQ(L)T (X⊗M)Q(L)w =
N∑

i,j=1

ωiωjw
T
i Q(L)T (X⊗M)Q(L)wj

=
N∑

i,j=1

ωiωjw
T
i Q(λi)

T (X⊗M)Q(λj)wj

=
N∑

i,j=1

ωiωjw
T
i MwjQ(λi)

TXQ(λj) =
N∑
i=1

ω2
iQ(λi)

TXQ(λi).

The inequality follows by taking the supremum over the terms containing λi and remem-
bering that

∑N
i=1 ω

2
i = ‖w‖2M.

To measure the convergence of the iterative scheme for the dG time stepping equation,
we need a norm on Pr(Im, Vh). Using the L2(Im × Ω) norm seems natural, however the
following detailed analysis reveals that we cannot guarantee contraction with respect to
this norm. To see that, we restrict the analysis once more to the scalar test problem. For
this configuration, the operator norm induced by the L2 norm can be stated explicitly
for the error estimation matrix. Recalling that the Hilbert matrix H is the mass matrix
for the polynomial space Pr((0, 1)) with respect to the monomial basis, we see that with
the transformation matrix S, B̂f = S−1HS−1 is the temporal mass matrix with respect
to the Taylor basis (see Remark 5.12). As before we denote the corresponding norm by

‖·‖
B̂f

=
(
· T B̂f ·

) 1
2
.

Proposition 5.15. The L2 operator norm ‖Vf‖B̂f
of the error matrix for a scalar test

equation with L = λ is given by

‖Vf(λ)‖
B̂f

=

 1

β − bT B̃−1b

r∑
i,j=0

(B̂f)ij µi(λ)µj(λ)

 1
2

where B̃ ∈ Rr×r, b ∈ Rr, and β ∈ R with[
B̃ b
bT β

]
= B̂f.

Proof. According to definition, we have

(5.18) ‖Vf(λ)‖
B̂f

= sup
w∈Rr+1

w 6=0

‖Vf(λ)w‖
B̂f

‖w‖
B̂f

.

The goal is now to compute a w for which the supremum is attained. Without loss of
generality we can assume wr = 1, since for wr = 0, the numerator vanishes. Then we get

‖Vf(λ)w‖2
B̂f

= wTVf(λ)T B̂fVf(λ)w =
r∑

i,j=0

(B̂f)ij µi(λ)µj(λ).
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Figure 5.1.: Bound for L2 accuracy of approximate Newton

In particular, the numerator is independent of the other components of w. Hence, for
the supremum to be assumed, we have to choose the remaining components of w in such
a way that the denominator is minimized. So with wT = (w̄T wr), we have to minimize

‖w‖2
B̂f

= wT B̂fw =
(
w̄T wr

) [ B̃ b
bT β

](
w̄
wr

)
= w̄T B̃w̄ + 2w̄Tb + β.

Since B̃ is positive definite, the sufficient optimality condition for this linear-quadratic
problem gives

w̄ = −B̃−1b.

Evaluating the quotient in (5.18) for wT =
(
w̄T 1

)
shows the claim.

In Figure 5.1 we plot the L2 norm of the error matrix with respect to λ for r = 1, 2, 3
and positive real λ. One can see that for r > 1, contraction with respect to the L2 norm
can not be guaranteed and also for r = 1 the estimate departs significantly from the
spectral radius of Vf. Therefore the L2 norm is of limited use for analyzing convergence.

From the structure of Vf(λ) we see that this matrix is diagonalizable. According to a
standard result from linear algebra, there exists a norm such that the induced matrix
norm of Vf(λ) equals to its spectral radius. However, we note that this norm depends
on λ or L respectively and therefore in the case of non-linear problems on the current
iterate. Hence for convergence analysis, we have to find a norm that admits a reasonable
contraction bound independent of λ. An obvious candidate is the Euclidean norm
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with respect to the Taylor basis introduced in Remark 5.12. So for a given vector
wT =

(
wT

0 . . . wT
r

)
we define the norm by

‖w‖Id⊗M =

 r∑
j=0

wT
j Mwj

 1
2

.

The following lemma gives an estimate for the corresponding induced operator norm of
the error matrix Vf.

Lemma 5.16. If the spatial differential operator determining the stiffness matrix A
satisfies Assumption 5.7, the norm ‖Vf(L)‖Id⊗M can be bounded by

‖Vf(L)‖Id⊗M ≤ sup
λ∈σ(L)

 r∑
j=0

µj(λ)2

 1
2

where µj, j = 0, . . . , r are the entries in the last column of Vf given in (5.15) and (5.16).

Under the more general Assumption 5.9 on the differential operator, the estimate reads

‖Vf(L)‖Id⊗M ≤ sup
λ∈C+

 r∑
j=0

µj(λ)2

 1
2

instead where C+ = {λ ∈ C | Reλ ≥ 0}.

Proof. We first consider the case when Assumption 5.7 holds and note that in this case,
Lemma 5.14 can be applied. Starting with the definition of the operator norm

‖Vf(L)‖2Id⊗M = sup
w∈R(r+1)·N
w 6=0

wTVf(L)T Id⊗MVf(L)w

wT Id⊗Mw

we can estimate the numerator by Lemma 5.14 with X = Id and qi = µi for i = 0, . . . , r

wTVf(L)T Id⊗MVf(L)w = wT
r

r∑
j=0

µj(L
T )Mµj(L)wr ≤ sup

λ∈σ(L)

 r∑
j=0

µj(λ)2

 ‖wr‖2M .

For the denominator, we have

wT Id⊗Mw ≥ wT
r Mwr = ‖wr‖2M .

This shows the desired bound for the norm.

The more general Assumption 5.9 on the differential operator implies that for any
nodal vector v ∈ RN , the stiffness matrix satisfies vTAv ≥ 0 and hence (v,Lv)M ≥ 0.
Therefore, for any complex vector u ∈ CN we have

Re(u,Lu)M ≥ 0.
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5. Solution of the time stepping equations for higher order dG methods

r ρr ρ̃1
r ρ̃2

r

1 0.092 0.150 0.170
2 0.169 0.173 0.343
3 0.238 0.244 0.493
4 0.301 0.315 0.618
5 0.359 0.381 0.719
6 0.412 0.442 0.802
7 0.460 0.498 0.868

Table 5.2.: Upper bounds ρr, ρ̃
1
r, and ρ̃2

r for the spectral radius and the ‖·‖Id⊗M norm of the
matrix Vf(L)

Hence we can apply the matrix-valued generalization of a theorem going back to von
Neumann, which can be found as Corollary 3 in Nevanlinna [86]. This yields immediately
the estimate

‖Vf(L)‖Id⊗M ≤ sup
λ∈C+

‖Vf(λ)‖Id

and evaluating the matrix norm on the right hand side gives the claim.

Looking at the structure of µj for j = 0, . . . , r, we note that the only singularities occur
at λ = − 1

γ . Also some computations show that the degree of numerator and denominator
are identical for each µj . This means in particular that µj is bounded for Reλ ≥ 0 which
implies that if the differential operator satisfies one of the Assumptions 5.7 or 5.9, then
‖Vf(L)‖Id⊗M is bounded. Approximations for the upper bounds

ρ̃1
r = sup

λ∈R+

 r∑
j=0

µj(λ)2

 1
2

and

ρ̃2
r = sup

λ∈C+

 r∑
j=0

µj(λ)2

 1
2

can be computed numerically and are given in Table 5.2 for dG(1) up to dG(7). As it
turns out, while ρ̃2

r grows larger than one for r ≥ 10, for moderate order, all of them
are less than 1. If L has positive real spectrum, the norm is even reasonably close to
the maximal spectral radius ρr of Vf(L). Hence the following corollary is an immediate
consequence of the above lemma.

Corollary 5.17. Let the matrix X be given as X = CTSTSC. We consider the discrete
dG(r) time time stepping equation with r ≤ 7 for a linear problem without time dependent
coefficients satisfying either Assumption 5.7 or 5.9. Let ū denote the solution of the time
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stepping equation and u0 some arbitrary starting value. Then the iterates ul generated
by Algorithm 5.1 satisfy the estimate∥∥∥ul+1 − ū

∥∥∥
X⊗M

≤ ρ
∥∥∥ul − ū

∥∥∥
X⊗M

,

with contraction rate ρ = ρ̃1
r in the case of Assumption 5.7 and ρ = ρ̃2

r in the case of
Assumption 5.9.

Although the Taylor norm allows for stating the convergence result Corollary 5.17,
it is not the first choice for monitoring convergence in a practical realization of the
approximate Newton scheme. For a nodal basis with the Gauß-Legendre points as nodes,
we observe that its mass matrix X becomes severely ill-conditioned for increasing r
and already for r = 7, the condition number exceeds double precision. Additionally,
numerical tests show that when au is not constant with respect to time, contraction with
respect to this norm is quite sensitive towards approximating the temporal integrals over
au by a mid point evaluation. Using the L2 norm in time instead appears to result in
more robust convergence although we have shown in Proposition 5.15 that contraction
cannot be guaranteed in general. The following result offers a partial explanation of this
phenomenon.

Proposition 5.18. For a linear parabolic equation with time-independent coefficients
that fulfills Assumption 5.7, the approximations ul for the solution ū of the time stepping
equation produced by Algorithm 5.1 satisfy for l ≥ 1∥∥∥ul+1 − ū

∥∥∥
Y⊗M

≤ ρr
∥∥∥ul − ū

∥∥∥
Y⊗M

with the vector norm ‖·‖Y⊗M defined with an arbitrary symmetric positive definite
(r + 1)× (r + 1) matrix Y.

Proof. Without loss of generality we can assume that we operate in the Taylor basis
since positive definiteness of Y is invariant under change of coordinates.

First we observe that for a linear equation with time-independent coefficients the exact
Newton update wl is given by wl = ū− ul Hence for l ∈ N the relationship

ū− ul+1 = ū−
(
ul + w̃l

)
= wl − w̃l = Vf(L)wl = Vf(L)

(
ū− ul

)
holds. Taking the structure of Vf(L) into account, we obtain by induction the explicit
representation

ū− ul =

µ0(L)
...

µr(L)

 (µr(L))l−1 (ūr − u0
r

)
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5. Solution of the time stepping equations for higher order dG methods

for the errors if l > 0. Setting X = Y and qj(λ) = µj(λ)(µr(λ))l−1 in Lemma 5.14, we
obtain

∥∥∥ū− ul
∥∥∥2

Y⊗M
=

N∑
i=1

ω2
i (µr(λi))

2(l−1) (µ0(λi) · · · µr(λi)
)
Y

µ0(λi)
...

µr(λi)


where ωi, i = 1, . . . , N , denote the coefficients of ūr − u0

r with respect to the spatial
basis defined in Lemma 5.14. Hence, we can estimate

∥∥∥ū− ul+1
∥∥∥2

Y⊗M
≤ sup

{
(µr(λ))2

∣∣∣ λ ∈ R+
0

}∥∥∥ū− ul
∥∥∥2

Y⊗M
= ρ2

r

∥∥∥ū− ul
∥∥∥2

Y⊗M
.

Remark 5.19. This result shows that for linear equations satisfying Assumption 5.7,
apart from the initial iteration, contraction with rate ρr can be guaranteed for any
choice of the temporal norm. For nonlinear problems however, the matrix A depends on
the current iterate ul. Besides, an additional error from averaging the Jacobian enters
such that contraction with respect to, e. g. the L2 norm can not be guaranteed also for
later iterates. However, due to the disadvantages of the Taylor norm discussed above,
for algorithmic realization we propose a pragmatic approach. We use the L2 norm of
the update for convergence monitoring but do not require contraction in every single
iteration. This seems to work well in practice. However, in case it is not sufficient, an
alternative would be to use the approximate solution scheme only as an inner linear
solver for the Newton update equation. In this case, the linear convergence theory above
applies again.

5.2.4. Convergence analysis for nonlinear equations

Our convergence analysis for non-linear equations is based on the corresponding result
by Calvo et al. [22] for implicit Runge-Kutta schemes. However, we use a more general
Lipschitz condition (Assumption 5.10). Furthermore, some technical difference in the
proof arises from the fact that in the dG time stepping formulation, the spatial semilinear
form is integrated over time whereas the Runge-Kutta schemes evaluate it only in a few
discrete time points. For the convenience of the reader, we give a complete proof for the
modified result.

Theorem 5.20. For a problem satisfying one of Assumptions 5.7 and 5.9 and addi-
tionally Assumption 5.10 we consider Algorithm 5.1 for solving the dG(r) time stepping
equation on the interval Im with length km. Let ū denote the exact solution of the discrete
time stepping equation. We assume that the initial iterate u0 ∈ Pr(Im, Vh) satisfies∥∥u0 − ū

∥∥
L∞(Im,H)

≤ C1km
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with C1 independent of km. Then there is a time step size k̄ such that for any km ≤ k̄,
Algorithm 5.1 converges to the solution of the time stepping equation and for the iteration
errors el = ū− ul, an estimate of the form∥∥∥el∥∥∥

Id⊗M
≤
(
ρ+ C2km + C3

∥∥e0
∥∥
L∞(Im,H)

)l ∥∥e0
∥∥

Id⊗M

for constants C2 and C3 independent from km holds true where el denotes the nodal
representation of the error term el with respect to the Taylor basis. The value of ρ is
either ρ̃1

r or ρ̃2
r depending on whether Assumption 5.7 or Assumption 5.9 applies.

Remark 5.21. To obtain the required first order accurate initial solution, usually it is
sufficient to use the terminal value from the previous interval, i. e., to set u0(t) = u−kh,m−1

for t ∈ Im. If the terminal value is at least first order accurate and the dG(r) solution ū
on the current interval approximates the exact solution with order 1 pointwise in time,
then a standard interpolation estimate for u0 shows the desired accuracy.

Proof. We choose δ̂ > 0 such that the initial iterate u0 is contained in the ball Bδ̂(ū) ={
u ∈ Pr(Im, Vh)

∣∣∣ ‖u− ū‖L∞(Im,Vh)

}
. For u ∈ Pr(Im, Vh), the norms ‖u‖L∞(Im,Vh) and

‖u‖Id⊗M, where u is the nodal representation of u with respect to the Taylor norm, are
equivalent with constants c1 and c2 independent of km.

We set δ = c1c2δ̂ and consider Bδ(ū). Let the set Nδ be given by

Nδ =
{

(t, v) ∈ I × Vh
∣∣ t ∈ Im, v = u(t̂) for some t̂ ∈ Im and u ∈ Bδ(ū)

}
.

For sufficiently small time step, Nδ is contained in some neighbourhood where Assump-
tion 5.10 applies.

Our next aim is to estimate the error of the (l+ 1)th iterate el+1 = ū−ul+1 = el− w̃l in
terms of the previous error el. For this purpose we assume that, by induction, ul ∈ Nδ.

Writing the update as solution of (5.13) and using the fact that the residual vanishes at
the exact solution of the time stepping equation, i. e., R(ū) = 0, we get

(5.19) el+1 = el + (Id +Tf ⊗ L)−1 Â
−1
⊗M−1

(
R(ū)−R(ul)

)
The difference of the two residuals can be rewritten by the mean value theorem as

(5.20) R(ū)−R(ul) =

∫ 1

0
R′(ul + τel)(el) dτ.

Using the matrix Ḃf(t) with entries
(
Ḃf(t)

)
ij

= ψj(t)ψi(t) and the notation from

Assumption 5.10 for the linearization of the spatial differential operator, a convenient
representation of the derivative of the residual for given nodal solution u and associated
discrete function u ∈ Pr(Im, Vh) reads

R′(u) = −Âf ⊗M−
∫
Im

Ḃf(t)⊗A(t, u(t)) dt.
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With this identity, (5.20) transforms to

R(ū)−R(ul) = −
(

Âf ⊗M +

∫ 1

0

∫
Im

Ḃf(t)⊗A(t, ul(t) + τel(t)) dt dτ

)
el

= −
(

Âf ⊗M + kmB̂f ⊗A +

∫ 1

0

∫
Im

Ḃf(t)⊗
(
A(t, ul(t) + τel(t))−A

)
dt dτ

)
el.

Inserting this equality into (5.19) and using the definition of the matrix Vf(L) results in

el+1 = Vf(L)el + (Id +Tf ⊗ L)−1 Â
−1

f ⊗M−1

·
∫ 1

0

∫
Im

Ḃf(t)⊗
(
A(t, ul(t) + τel(t))−A

)
dt dτ el

= Vf(L)el + (Id +Tf ⊗ L)−1 Â
−1

f ⊗ (Id +L)

·
∫ 1

0

∫
Im

Ḃf(t)⊗
{

(M + kmA)−1
(
A(t, ul(t) + τel(t))−A

)}
dtdτ el.

(5.21)

A bound for the matrix norm of Vf is provided by Corollary 5.17, so it remains to bound
the matrix on the second line. For this purpose, we split it into two factors that we
discuss separately. Using once more the matrix valued version of von Neumann’s theorem
(Corollary 3 in Nevanlinna [86]), we can estimate

(5.22)
∥∥∥(Id +Tf ⊗ L)−1 Â

−1

f ⊗ (Id +L)
∥∥∥

Id⊗M

≤ sup
λ∈C+

∥∥∥(Id +λTf)
−1 (1 + λ) Â

−1

f

∥∥∥
Id

=: κ3.

Since Tf has the (r + 1)-fold eigenvalue γ, which is positive, κ3 is finite. To estimate
the integral terms, we use Assumption 5.10 and note that a short calculation yields

k−1
m

∫
Im

∥∥∥Ḃf(t)
∥∥∥

Id
dt =

∫ 1
0

∑r
j=0

1
(j!)2

t2j dt ≤ 2.

∥∥∥∥∫ 1

0

∫
Im

Ḃf(t)⊗
{

(M + kmA)−1
(
A(t, ul(t) + τel(t))−A

)}
dtdτ

∥∥∥∥
Id⊗M

≤ 1

km

∫
Im

∥∥∥Ḃf(t)
∥∥∥

Id
dt

∫ 1

0
sup
t∈Im

∥∥∥(M + kmA)−1 km

(
A(t, ul(t) + τel(t))−A

)∥∥∥
M

dτ

≤ 2

(
κ1
km
2

+ κ2

∥∥∥el∥∥∥
L∞(Im,H)

)
.

(5.23)

To bound the error el+1, we apply the estimates (5.22) and (5.23) to the representa-
tion (5.21) and obtain∥∥∥el+1

∥∥∥
Id⊗M

≤
(
‖Vf(L)‖Id⊗M + 2κ3

(
κ1
km
2

+ κ2

∥∥∥el∥∥∥
L∞(Im,H)

))∥∥∥el∥∥∥
Id⊗M

.
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Under the assumption that all previous iteration steps were contracting with respect to
the Taylor norm, we have

(5.24)
∥∥∥el∥∥∥

L∞(Im,H)
≤ c1

∥∥∥el∥∥∥
Id⊗M

≤ c1

∥∥e0
∥∥

Id⊗M ≤ c1c2

∥∥e0
∥∥
L∞(Im,H)

and therefore ∥∥∥el+1
∥∥∥

Id⊗M
≤
(
ρ+ C2km + C3

∥∥e0
∥∥
L∞(Im,H)

)∥∥∥el∥∥∥
Id⊗M

.

with C2 = κ1κ3 and C3 = 2c1c2κ2κ3. We see that for sufficiently small time step km, the
iteration is contracting and due to (5.24), we also have ul+1 ∈ Bδ(ū) which completes
the induction argument.

Remark 5.22. It deserves mentioning that the constant κ3 grows very fast with r and
hence for higher order schemes, the above convergence result is of limited practical use.
However, in numerical tests with a semilinear test equation (see Section 5.4.1), we could
not observe extreme growth of the constants C2 and C3.

5.2.5. Applicability of the convergence result to a semilinear model problem

As pointed out in Remark 5.11.2, the validity of the assumptions of Theorem 5.20 for
concrete problems deserves some discussion. As an example, we consider a semilinear
reaction-diffusion equation. For given u0 ∈ V , find u ∈ X ∩ L∞(I × Ω) satisfying

∂tu−∆u+ g(t, x, u) = f in I × Ω,

u(0) = u0

with u0 ∈ L∞(Ω), f ∈ Lq(I × Ω), q > d
2 + 1, and g : I × Ω× R→ R satisfying

1. g is continuously differentiable with respect to u for almost all (t, x) ∈ I × Ω and
there is a K > 0 such that

‖g(·, ·, 0)‖L∞(I×Ω) + ‖g′u(·, ·, 0)‖L∞(I×Ω) ≤ K.

2. The first derivative of g is uniformly Lipschitz-continuous in u on bounded sets,
that is, for any S > 0 there is L(S) > 0 such that

‖g′u(·, ·, u1)− g′u(·, ·, u2)‖L∞(I×Ω) ≤ L(S)|u1 − u2|

for any u1, u2 ∈ R with |u1|, |u2| ≤ S.

3. For almost all (t, x) ∈ I × Ω and all u ∈ R, the monotonicity condition

g′u(·, ·, u) ≥ 0

is fulfilled.
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With these assumptions, well-posedness of the equation can be shown as in Neitzel and
Vexler [85]. The semilinear form corresponding to the problem is given as

a(t, u)(ϕ) = (∇u,∇ϕ) +

∫
Ω
g(t, x, u)ϕdx− (f, ϕ).

Due to the Lipschitz condition on the first derivative of g, the semilinear form is Fréchet
differentiable for u ∈ V ∩ L∞(Ω) and the derivative reads

a′u(t, u)(ψ,ϕ) = (∇ψ,∇ϕ) +

∫
Ω
g′u(t, x, u)ψϕdx.

That this expression satisfies Assumption 5.7 follows immediately from the monotonicity
of g. To satisfy the Lipschitz condition in Assumption 5.10, a further restriction is
required as the proof of the following result shows.

Proposition 5.23. We consider the semilinear problem with the above assumptions
satisfied. Additionally we impose a stronger Lipschitz condition on the derivative of
the non-linearity g, that is, there is a constant L(S) for any S > 0 such that for any
u1, u2 ∈ R and t1, t2 < S, we have

‖g′u(t1, ·, u1)− g′u(t2, ·, u2)‖ ≤ L(S) (|u1 − u2|+ |t1 − t2|) .

Besides, we have to assume that the spatial discretization is quasi-uniform, i. e., the
quotient of the largest and smallest cell diameter is uniformly bounded independent of the
discretization parameter h. Then the discretized semilinear form satisfies Assumption 5.10
with constants κ1 and κ2 independent of the discretization parameter h.

Remark 5.24. That the Lipschitz condition on g′u is enforced globally in u constitutes
a significant restriction. Already for the semilinear example problem with g(t, x, u) =
u3 given in Section 2.3.2, this assumption does not hold. It is needed because in
the proof of the proposition, an estimate of the form ‖g′u(t1, ·, u1)− g′u(t1, ·, u1)‖ ≤
C (‖u1 − u2‖ + |t1 − t2|) with the constant C independent of the discretization parameter
is required. Such an estimate would also hold true without the global Lipschitz condition
if it was known that u1 and u2 were bounded in L∞(Ω). In this case, the constant C
would depend on the L∞ bound. So if we could show that the iterates produced by the
time stepping solver were uniformly bounded in L∞(Ω) (and not only in L2(Ω)), then a
local Lipschitz condition would be sufficient.

Proof. For given t1, t2 ∈ Im and u1, u2 ∈ Vh, let

ν =
∥∥∥(M + kA(t1, u1))−1 k (A(t2, u2)−A(t1, u1))

∥∥∥
M
.

We consider the following discrete problem: given fh ∈ Vh, find vh ∈ Vh such that

ka′u(t1, u1)(vh, ϕ) + (vh, ϕ) = k
(
a′u(t2, u2)(fh, ϕ)− a′u(t2, u2)(fh, ϕ)

)

70



5.3. Practical realization

for all ϕ ∈ Vh. It is easy to see that ν is the smallest constant such that

‖vh‖ ≤ ν ‖fh‖

for any fh ∈ Vh. For the model problem, the above equation reads

k(∇vh,∇ϕ) +

∫
Ω

(
1 + kg′u(t1, x, u1)

)
vhϕdx = k

∫
Ω

(
g′u(t2, x, u2)− g′u(t1, x, u1)

)
fhϕdx.

To derive the stability estimate, we introduce a discrete dual problem which reads: find
zh ∈ Vh satisfying

k(∇ϕ,∇zh) +

∫
Ω

(
1 + kg′u(t1, x, u1)

)
ϕzh dx = k(vh, ϕ) for all ϕ ∈ Vh.

In the same way as in the proof of Lemma 4.5 in Meidner and Vexler [79], for zh an a
priori estimate of the form

‖zh‖L∞(Ω) ≤ C ‖vh‖

with C independent of h can be shown. Since the proof involves an inverse estimate, the
assumption of quasi-uniformity of the spatial mesh is used. Testing the dual equation
with vh and inserting the primal problem gives

k ‖vh‖2 = k(∇vh,∇zh) +

∫
Ω

(
1 + kg′u(t1, x, u1)

)
vhzh dx

= k

∫
Ω

(
g′u(t2, x, u2)− g′u(t1, x, u1)

)
fhzh dx

≤
∥∥g′u(t2, ·, u2)− g′u(t1, ·, u1)

∥∥ ‖fh‖ ‖zh‖L∞(Ω)

≤ CL(S) (‖u2 − u1‖ + |t2 − t1|) ‖fh‖ ‖vh‖

Dividing by ‖vh‖ shows the desired estimate

ν ≤ CL(S) (‖u2 − u1‖ + |t2 − t1|) ,

which completes the proof.

5.3. Practical realization

In this section we discuss some aspects of the practical realization of the time stepping
solver. First, we briefly elaborate on our choice of the termination criterion and subse-
quently present a strategy for detecting and handling convergence problems. Consistent
with the theoretical results, the iteration should be controlled in the affine covariant
setting, i. e., we work in terms of the error of the iterate instead of in terms of the residual.
A systematic discussion of convergence control for implicit ODE solvers in this setting is
given by Gustafsson and Söderlind [50]. We will adopt their approach for our purposes.
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5.3.1. Termination criterion

Since we are interested in approximating the solution of the time stepping equation to a
specific accuracy, for the termination criterion, a good estimate of the corresponding
error is necessary. From the analysis carried out in the last few sections we know that
we can expect at best linear convergence in terms of the error. Assuming the contraction
rate can be bounded from above by the value θ < 1 in the considered norm, the error in
iteration l, el can be bounded in terms of the update w̃l by

(5.25)
∥∥∥el∥∥∥ ≤ θ

1− θ

∥∥∥w̃l
∥∥∥ .

This can be seen by estimating the sum over all remaining updates.

For linear problems with constant coefficients, rigorous upper bounds for the contraction
rate were given in Corrolary 5.17. However, these require the use of the Taylor norm
with respect to the temporal discretization, which is not desirable for practical usage for
the reasons pointed out in Remark 5.19. Additionally in the general case, the contraction
rate can be worse due to the presence of nonlinearities and the averaging error of the
stiffness matrix. As a numerical estimate for the contraction rate in the norm, the
quotient of the norms of two successive iterates can be used. Since this might be too
optimistic, we take the maximum of the contraction rates observed in the last few (e. g.,
three) steps as estimate for the average contraction rate. So in step l we use θ̄l given by

(5.26) θ̄l = max
{
‖w̃l−j‖/‖w̃l−j−1‖

∣∣ j = 0, . . . , 2
}

to estimate the iteration error via (5.25). Apart from some tests with the Taylor norm
reported in Section 5.4, we use the norm defined by B̂⊗M in practice. Since B̂ is the
mass matrix for the reference interval (0, 1), this norm is the L2(Im, H) norm scaled by

1√
km

and therefore equivalent to the L∞(Im, H) norm.

5.3.2. Controlling the iteration

Theorem 5.20 suggests that convergence failures or slow convergence may occur in the
presence of nonlinearities or time-dependent coefficients if the time step was chosen too
large. On the other hand, due to the high accuracy of higher order dG schemes, it is
desirable to use as large as possible time steps for the discretization in order to minimize
the number of degrees of freedom. Ideally, the size of the time steps is determined
in such a way that the degradation of the rate of convergence for large time steps is
balanced against the extra computational work incurred by using smaller time steps. Such
balancing strategies for implicit Runge-Kutta solvers are described for example by Hairer
and Wanner [51] and in a more systematic fashion by Gustafsson and Söderlind [50]. In
this context where only the solution of the forward equation is required, the cost added
through shortening time steps is simply the cost of solving the resulting time stepping
equations. When solving optimal control problems, the situation is more complicated.
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Algorithm 5.2 Convergence control for the time stepping solver

Input: l,
∥∥∥w̃l

∥∥∥,
∥∥∥w̃l−1

∥∥∥,
∥∥∥w̃l−2

∥∥∥,
∥∥∥w̃l−3

∥∥∥, nbad

1: fix TOL, ioverhead, nmax
bad

2: set θl =
‖w̃l‖
‖w̃l−1‖

3: if θl >= 1 then
4: nbad = nbad + 1
5: else
6: compute θ̄l from (5.26)

7: if θ̄l

1−θ̄l

∥∥∥w̃l
∥∥∥ < TOL then

8: return “converged”
9: end if

10: compute i via (5.27) from θl

11: compute θ1/2, l1/2, and i1/2
12: if 2

(
l1/2 + i1/2

)
+ ioverhead < l + i then

13: nbad = nbad + 1
14: end if
15: end if
16: if nbad > nmax

bad then
17: return “shorten time step”
18: end if

In this setting, the state equation has to be solved repeatedly for different values of the
control entering the state equation. This means that once a time step was shortened, the
additional cost arises for every subsequent iteration of the optimization loop although
the temporal dynamics was potentially changed by the updated control in such a way
that the time stepping solver would converge satisfactory also on the larger time step.
Another important consideration is that whenever a time step size changes this means
modifying the optimal control problem and thereby shifting the optimum. This can
severely delay or even inhibit convergence of the optimization. Hence, on the one hand,
the initial discretization should be chosen fine enough to ensure convergence of the
time stepping solver for the majority of time steps in order to minimize the need for
refinements during the optimization algorithm. On the other hand, refinement decisions
due to slow convergence of the time stepping solver should be taken conservatively,
accounting for the additional overhead they cause to the optimization process.

Compared to the Runge-Kutta implementations, when shortening the time step we do not
try to determine an optimal new step size but just half the current discretization interval.
This restriction keeps the change to the time discretization localized to the current
interval. Therefore extending a time dependent control to the modified discretization is
possible without error. To determine whether it pays off to half the time step, we have
to model the effect on the computational cost. The number of solution steps i remaining
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5. Solution of the time stepping equations for higher order dG methods

for given contraction rate θ until a prescribed tolerance TOL is reached can be estimated
by the condition

θi
∥∥∥el∥∥∥ ≤ TOL.

Solving for i and inserting the estimate (5.25) for el gives

(5.27) i ≥ log TOL + log(1− θ)− log w̃l

log θ
− 1.

Consistent with the estimate in Theorem 5.20, we model the dependence of the contraction
rate θ on the size km of the time step by

θ ≈ ρ+ Ckm,

where ρ is the systematic error caused by the approximate decoupling of the Newton
update and the constant C describes the influence of nonlinearities and averaging the
stiffness matrix. In practice, we chose ρ = ρr. Given an estimate for the current
contraction rate θ, the constant C can be determined from this identity. It can be used
to predict the contraction rate θ1/2 resulting from halving the time step. We obtain

θ1/2 ≈
θ + ρ

2
.

Inserting this value into (5.27), we estimate the number of solver iterations i1/2 required

to reach the tolerance for time step size km
2 when starting with an error of magnitude∥∥el∥∥. To obtain an estimate for the total number of solver steps required with time step

km
2 , we have to add the number of iterations l1/2 it takes to reduce the initial error for

the shortened time step to
∥∥el∥∥. It can be approximated as

l1/2 =
log θ

log θ1/2
l.

The decision to shorten the time step is then taken based on whether the relation

2
(
l1/2 + i1/2

)
+ ioverhead < l + i

holds true. The constant ioverhead can be used to account for any extra cost that arises
from increasing the number of time steps by one, e. g., from having to evaluate the cost
functional, its gradient and hessian for an additional time step.

Due to the findings discussed in the Propositions 5.15 and 5.18 we concluded in Re-
mark 5.19 that it can make sense to continue the solution process even if a step did
not result in the expected contraction. Therefore we make provisions to allow for a
limited number of steps with insufficient contraction before shortening the time step. A
prototypical realization of the outlined strategy for controlling the solver is shown in
Algorithm 5.2. For simplicity we omitted special cases arising in the first few iterations
due to insufficient convergence data and some additional heuristics for reusing the Jaco-
bian. In practice, significant computational cost can be saved if the stiffness matrix is
not reassembled after every update of the solution. So we reuse the matrix as long as
possible and employ a heuristic criterion to detect degrading convergence and to decide
about rebuilding it.
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5.4. Numerical results

For linear problems with constant coefficients satisfying Assumption 5.7, the solution
scheme performs as predicted by the theoretical results. Since we can expect that
decoupling schemes based on complex arithmetic perform better in this setting, we do
not provide numerical results for it and present results for two nonlinear model problems
instead. In the first part, we consider solving the state equation of the semilinear problem
introduced in Section 2.3.2. Given that the iterates of the time stepping solver are
globally bounded, the presented nonlinear convergence theorem applies to this problem.
The second part of this section is concerned with solving the state equation of the
combustion example from Section 2.3.3. Since neither of the Assumptions 5.7 and 5.9
apply to this problem, it is not covered by the presented convergence theory. Nevertheless,
as we shall see, our solution scheme proves competitive also for this problem.

5.4.1. Semilinear equation

We consider the state equation (2.7b) of the semilinear example presented in Section 2.3.2.
The control is fixed as q = 0 and the right hand side is chosen as

f(t, x1, x2) = sin(πx1) sin(πx2)

{
π2 cos(π2t) + 10

+
(
sin(π2t) + 10t

) [
2π2 +

(
sin(π2t) + 10t

)2
sin(πx1)2 sin(πx2)2

]}
.

Therefore, the exact solution is given by

u(t, x1, x2) =
(
sin(π2t) + 10t

)
sin(πx1) sin(πx2).

For the time interval, we use I = (0, 1) and the domain is the two-dimensional unit
square.

First, we investigate how the choice of the temporal norm for controlling the iteration
affects the behaviour of the algorithm. We compare the Taylor norm to the scaled
temporal L2 norm. For this purpose we use a fixed spatial discretization with N = 4225
spatial nodes and an initial temporal discretization with a single time step. To monitor
convergence and refine the time discretization if necessary, the procedure outlined in
Algorithm 5.2 is used with nmax

bad = 0 and ioverhead = 10. Since the absolute values of the
two norms are not expected to be comparable, we use a termination criterion based on a
relative tolerance of 10−8 instead of an absolute one.

In Table 5.3 the resulting number of time steps and the total number of linear solution
steps are compared. We see that especially for larger orders, to ensure convergence in
the Taylor norm, significantly shorter time steps are required than for the L2 norm. This
also results in an increase of the total number of linear solution steps required, which
can be seen as an indicator for the total computational cost. However, we note that a
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Table 5.3.: Number of required time steps and resulting total number of linear iterations when
controlling the iteration with either the L2 or the Taylor norm

L2 norm Taylor norm

r M niter M niter

1 3 44 3 45
2 6 105 6 94
3 7 121 8 128
4 5 90 13 205
5 5 99 15 280
6 5 119 14 325
7 5 123 10 256

Table 5.4.: Total number of linear iterations needed to solve the discrete semilinear equation
for M = 5 time steps and N spatial degrees of freedom

N \
r 1 2 3 4 5 6 7

9 71 103 113 121 125 135 134
25 69 103 104 107 114 121 159
81 70 106 105 121 121 178 144
289 69 104 105 121 118 168 146
1089 69 105 105 122 119 177 146
4225 69 105 105 122 119 156 145
16641 69 105 105 122 121 170 145
66049 69 105 105 122 121 154 145
263169 69 105 105 122 121 186 146
1050625 69 104 105 122 121 174 145

very fast growth of the number of time steps with increasing order r is not observed for
the Taylor norm, contrary to what the extreme growth of the constant κ3 in the proof of
Theorem 5.20 would suggest. Nevertheless the cost savings from using the temporal L2

norm are significant enough to prefer it over the Taylor norm for practical computations.

Next, we want to verify that convergence of the time stepping solver is in fact independent
of the fineness h of the spatial mesh for the test example. For this purpose we fix the
number of time steps at M = 5 and solve on a sequence of uniformly refined grids down
to an absolute L2 tolerance of 10−10. In Table 5.4, the total number of linear solution
steps required is listed for orders one up to seven. Clearly, mesh-independent convergence
can be observed.

In Figure 5.2 we plot the L2 error of the computed discrete state relative to the
analytic solution u for the finest spatial discretization in the above setting. As expected,
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10−7
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‖u− ukh‖I
O(e−2r)

Figure 5.2.: L2 error of the discrete solution of the semilinear example for M = 5 time steps
and N = 1050625 spatial nodes

scheme \
M 2 4 8 16 32 64 128 256

approx. diagonalization 15.0 12.5 9.5 7.6 6.6 5.7 5.0 4.4
approx. block elimination 10.5 6.8 4.8 3.9 3.2 2.7 2.3 2.0

full system 8.5 6.0 4.4 3.5 2.7 2.2 2.0 2.0

Table 5.5.: Average number of solver iterations per time step for dG(1) with bilinear elements
in space

exponential convergence with respect to r is observed, validating the correctness of our
implementation.

To assess the computational efficiency of the iterative solver, we compare it to several other
approaches. For the comparison, we consider on the one hand solving the full coupled
Newton update system (5.4) and on the other hand our previous decoupling approach
from [91], which is based on block-wise Gauß elimination with subsequent approximation
of the resulting matrix polynomials. While the decoupled variants solve equations of
dimension N × N , the coupled system has dimension (r + 1)N × (r + 1)N . Hence a
meaningful comparison based on matrix-vector operation counts is not possible. Instead
we compare CPU times for implementations of all variants in the library RoDoBo [93].
For this purpose, we solve the semilinear state equation on a fixed spatial grid with
N = 16641 nodes and a sequence of uniformly refined temporal grids starting with
M = 2 time steps. For all approaches, we use the affine covariant termination criterion
discussed in Section 5.3.1 and require an absolute tolerance of 10−8.
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(a) dG(1) with bilinear finite elements
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(b) dG(1) with biquadratic finite elements
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(c) dG(2) with bilinear finite elements
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(d) dG(2) with biquadratic finite elements
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(e) dG(3) with bilinear finite elements
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(f) dG(3) with biquadratic finite elements

Figure 5.3.: Semilinear test problem: Comparison of average run time per time step for different
solution schemes
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fraction of total computational cost

space discretization
residual
assembly

matrix
assembly

solution of
linear systems

bilinear 56.7% 12.7% 25.7%
biquadratic 42.2% 15.4% 36.8%

Table 5.6.: Distribution of computational cost for dG(1) solver with approximate diagonalization
according to Callgrind [114] for 2 and 4 time steps

In Figure 5.3(a), the average computation times per time step are depicted for a dG(1)
discretization with bilinear finite elements in space. We denote the computation time per
time step for the decoupling based on block diagonalization by tdiag, for the decoupling
variant from [91] by telim, and for solving the full block system by tfull. As expected, the
computational work per time step decreases for all variants as the time steps become
shorter. For dG(1), the performance of all three schemes is reasonably similar, however,
some disadvantage for the proposed approximate block diagonalization is observed.

For the purpose of understanding how the observed performance difference relates to
the performance characteristics of the underlying finite element library, a more detailed
investigation is appropriate. First we note that, of all three schemes, the decoupling
based on approximate diagonalization requires the highest number of solution steps as
seen from Table 5.5. On the other hand, the cost for solving the update equation is lower
than for the other two schemes. Per iteration, two systems of dimension N have to be
solved whereas the decoupling with block elimination needs to solve three such systems
and additionally solve one time for the mass matrix. The full time stepping equation
is a system of dimension 2N . For all three schemes, the cost of evaluating the residual
in each iteration is identical. Therefore the decoupled schemes can only be expected to
gain an advantage over the full scheme if the total cost per iteration is not dominated
by the residual evaluation and therefore the savings in solving the linear systems can
compensate for the additional iterations.

To explore how a shift in this cost distribution affects the performance of the three
schemes, we compare the result for bilinear finite elements to the result when using
biquadratic elements in space. We use the same number of degrees of freedom as in
the bilinear case, hence the cost for assembling the residual stays virtually the same.
Besides, we observe that the number of iterations necessary remains unchanged for all
three schemes. The only major difference from the solver’s point of view is that the
resulting matrices are more densely populated, leading to an increased workload for the
solver in each iteration.

In order to confirm that the workload distribution indeed shifts towards the linear
solver when changing the discretization, we examine the decoupling scheme based on
approximate diagonalization with the profiling tool Callgrind [114]. The results can be
seen in Table 5.6. An increase in the fraction of computing time spent on the linear
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solver is clearly visible as we switch from a bilinear to a biquadratic approximation
in space. We also note that, due to the efficient geometric multigrid solver with ILU
smoother (see Becker and Braack [11]) we employ for our tests, assembling residuals and
matrices constitutes the majority of the computational cost in both configurations.

The computation times per time step for dG(1) time discretization and biquadratic
elements in space are reported in Figure 5.3(b). We see that the scheme solving the full
system takes a greater performance hit from the change of spatial discretization than
the decoupled approaches. However, the savings per time step from using approximate
diagonalization for decoupling instead of approximate block elimination are still not
sufficient to compensate for the increased number of solution steps. The computing times
per time step for dG(2) and dG(3) can be seen from Figures 5.3(c) to 5.3(f). While for
dG(2), the two decoupling schemes perform comparably for both spatial discretization
variants, for dG(3), a clear advantage of the scheme based on approximate diagonalization
is visible for the biquadratic space discretization. For the latter configuration, we
additionally report the solution times tavg for a scheme solving the full Newton system
with averaged Jacobian (Equation (5.6)). It can be seen that tavg is in between tfull and
telim. The same behaviour is observed for the other configurations, therefore we omitted
tavg in Figures 5.3(a) to 5.3(e) in order to maintain readability of the graphs.

In conclusion we found that the decoupled schemes proposed here offer comparable
performance to previous approaches for solving higher order dG schemes for the semilinear
test equation. Since iteration counts tend to be higher than for the alternatives, they
perform best when the linear solver contributes a large fraction of the total computational
cost. Besides, we saw that with increasing order of the time discretization, greater
performance gains can be realized through decoupling.

5.4.2. Combustion problem

As a more realistic problem to test the convergence properties of the decoupling schemes
on, we consider the state equation (2.8) of the combustion problem introduced in
Section 2.3.3. It should be noted that this problem does not satisfy Assumption 5.9. We
simulate the uncontrolled state, that is, we set q = 0. As for the semilinear problem, we
compare the run time of the decoupling based on diagonalization to the decoupling variant
from [91] and to the solution of the exact Newton system. For the spatial discretization,
we compare again bilinear to biquadratic finite elements, each with N = 11041 spatial
degrees of freedom on a uniform mesh. For each scheme, the state equation is solved on
a sequence of equidistant temporal grids with M = 256, 512, 1024, and 2048 subintervals.
The resulting average run times per time step for temporal orders r = 1 to r = 3 are
shown in Figures 5.4(a) to 5.4(f). As before we denote the times for the decoupling
through approximate diagonalization by tdiag, for the decoupling through approximate
block elimination by telim, for the full Newton update by tfull, and for the full Newton
update with averaged Jacobian by tavg. For dG(1) and dG(2), tavg is omitted.
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(a) dG(1) with bilinear finite elements
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(b) dG(1) with biquadratic finite elements
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(c) dG(2) with bilinear finite elements
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(d) dG(2) with biquadratic finite elements

0

5

10

15

20

25

5 · 102 1 · 103 2 · 103

R
u

n
ti

m
e

p
er

ti
m

e
st

ep
[s

]

M

tfull

tavg

telim

tdiag

(e) dG(3) with bilinear finite elements
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(f) dG(3) with biquadratic finite elements

Figure 5.4.: State equation of the combustion problem: Comparison of average run time per
time step for different solution schemes
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Particularly for relatively large time steps, solving the full Newton update equation
carries a significant performance penalty compared to the decoupled schemes. As for
the semilinear test equation, the decoupled schemes suffer less from the increase in cost
for linear solutions than the full variants when going from bilinear to biquadratic finite
elements in space. While in the case of dG(1), once more the decoupling scheme using
diagonalization suffers from a higher number of solver iteration, for orders two and three
it is more efficient than the other approaches. We expect this trend to continue when
increasing the order further, however due to technical restrictions, we did not perform
comparisons with order greater than three.

Overall, the performed tests indicate that the constructed decoupling schemes based
on approximate diagonalization result in at least comparable run times to previous
approaches. At the same time they allow for a straightforward implementation requiring
neither the assembly of large block systems as for the full schemes nor the use of different
linear combinations of the mass and stiffness matrix within the same time step as for the
block elimination schemes. For this reason, they also have the lowest memory footprint
of the considered schemes and allow for convenient change of temporal discretization
order over time, which makes them particularly well-suited for hp time discretization.

Concerning the fact that the constructed decoupling schemes on average require more
iterations to converge than the other decoupling variant, we have to keep in mind that
our specific choice of the approximation T for A was mainly driven by the requirement
of having a simple general construction principle that works the same for all considered
orders and that allows for a detailed theoretical analysis of the approximation properties.
We expect that a more sophisticated approximation could lead to faster converging
numerical schemes.
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6. A priori analysis of a third order scheme
for time parameter control with
constraints

In this chapter, we analyze a discretization scheme for the linear quadratic model
problem (2.6). We show that the presented approach yields convergence with almost
order three with respect to the temporal discretization parameter k and second order
convergence with respect to the spatial discretization parameter h. The materials
presented in this chapter have already been published in Springer and Vexler [104].

Due to the box constraints on the control, the solution of the model problem (2.6)
has limited regularity which restricts the order of convergence we can achieve for the
time discretization. Previous results about time discretization of problems with control
constraints include the works by Lasiecka and Malanowski [66], Malanowski [72], and
Meidner and Vexler [79] that discuss first order convergent schemes and the article by

Rösch [94] that shows convergence with order O(k
3
2 ) for a one-dimensional problem.

More recently, Meidner and Vexler [81] presented a time discretization based on a first
order continuous Petrov-Galerkin scheme for the state and piecewise constant ansatz
functions for the control. After a post-processing step, the resulting approximation for
the control converges with second order. The underlying superconvergence property
of the Petrov-Galerkin scheme was also shown by Apel and Flaig [5] in the context of
parabolic problems without control constraints.

Here, we propose a discontinuous Galerkin time discretization with piecewise linear trial
functions for the state variable. The control is treated with the variational discretization
concept by Hinze as described in Section 4.2.1. We will show that this results in second
order accuracy of the time discretization. Based on this variational solution we perform
a post-processing step and show that the resulting improved optimal control q̃kh (see

Equation (6.50) for its definition) converges with order O(| log k|
1
2 k3) with respect to

the temporal L2 norm. The error introduced by the spatial discretization of the state
variable can be analyzed independently and decreases for conforming bilinear finite
elements with O(h2).

The post-processing is based on a slight modification of the higher order continuous
reconstruction π̂D

k introduced in Section 4.1. Here, we derive optimal order a priori
estimates for this modified reconstruction when applied to the optimal adjoint state.
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The remainder of this chapter is organized as follows: In Section 6.1 we recall the problem
setting and the optimality conditions for the model problem (2.6). The regularity of the
optimal solution is discussed in detail. The second section specifies the discretization of
the problem in time and space and collects tools for the a priori analysis. In Section 6.3 we
derive estimates for the discretization error when solving the state and adjoint equations
for a given fixed control. In particular, we show that, given sufficient regularity, the
reconstruction of the semidiscrete adjoint solution converges with order O(kr+2) for a
discontinuous Galerkin time discretization of order r. The results for r = 1 and for order
s = 1 of the spatial discretization are used in Section 6.4 to derive the error estimate
for the post-processed optimal control. In the final section, we illustrate our results
by a numerical example and provide evidence that the variational treatment of the
control variable is in fact necessary to achieve the proposed order of convergence after
post-processing.

6.1. Optimality conditions and regularity considerations

In this section we recall the problem setting and the resulting optimality conditions and
discuss the regularity of the optimal solution in greater detail.

We assume the spatial domain Ω to be polygonal and convex in order to ensure H2

regularity of the solutions. For a general recipe on how to generalize estimates for
time discretization to non-convex domains, we refer to Flaig et al. [41]. As discussed
in Section 2.3.1, we set V := H1

0 (Ω), H := L2(Ω), and Q = L2(I,RdQ) where dQ is a
positive integer.

A weak form of the state equation (2.6b) can be stated as: Find u ∈ X such that

(∂tu, ϕ)I + (∇u,∇ϕ)I = (f +Gqq, ϕ)I for all ϕ ∈ X,
u(0) = u0 in Ω.

(6.1)

For the data we assume u0 ∈ V and f ∈ L2(I,H). Then there exists a unique control-
to-state mapping q 7→ u(q), Q → X, where u = u(q) is the solution of (6.1) for the
given q. Note that we replaced the duality pairing in the time derivative term by an L2

inner product. This is justified because, as we will see in Lemma 6.1, under the stated
assumptions, the time derivative has values in H. With the usual definitions for the
reduced cost functional

(6.2) j(q) = J(q, u(q))

and the admissible set

(6.3) Qad =
{
q ∈ Q

∣∣∣ qa ≤ q(t) ≤ qb for almost all t ∈ I
}
,

we rewrite the optimal control problem in reduced form as

(6.4) Minimize j(q) subject to q ∈ Qad.
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As pointed out in Section 2.3.1, there exists a unique solution q̄ with corresponding
optimal state ū for this problem. Due to the linear quadratic structure of the problem
and the convexity of Qad, the first order necessary optimality condition is also sufficient
for optimality. It reads

(6.5) j′(q̄)(δq − q̄) ≥ 0 ∀δq ∈ Qad.

For the model problem, the first derivative of the reduced cost functional j can be
computed as

j′(q)(δq − q) = (αq +Gq∗z, δq − q)Q

with the adjoint state z given as solution of the problem: Find z ∈ X such that

−(ϕ, ∂tz)I + (∇ϕ,∇z)I = (u− ud, ϕ)I ∀ϕ ∈ X,
z(T ) = 0.

(6.6)

We have seen in Chapter 3 that the first order optimality condition (6.5) can be expressed
equivalently as

(6.7) q̄ = PQad

(
−α−1Gq∗z̄

)
.

Lemma 6.1. The solution of the state equation (6.1) has the improved regularity

u ∈ H1(I,H) ∩ L2(I,H2(Ω) ∩ V ) ↪→ C(Ī , V )

and satisfies the stability estimate

‖∂tu‖I + ‖∆u‖I + ‖∇u(T )‖ ≤ C
{
‖f‖I + ‖q‖Q + ‖∇u0‖

}
.

Proof. In Evans [38, Chapter 7, Theorem 2] the statement is shown for a domain Ω with
C2 boundary. Looking at the proof, we note that the smoothness requirement on the
boundary of Ω is only needed in step 3 to apply the corresponding elliptic regularity result
Theorem 4 in Chapter 6 on the spatial part of the differential operator. However, this
result can also be shown for convex polygonal domains, see, e. g.,Grisvard [49, Theorem
4.4.3.7] for a two-dimensional domain and Maz’ya and Rossmann [75, Theorem 4.3.2] for
the three-dimensional case.

In what follows, we need some additional regularity assumptions on the data of the
optimal control problem:

Assumption 6.2. We assume the data u0, f and ud satisfy the following conditions:

• u0 ∈ V with ∆u0 ∈ V ,

• f ∈ H1(I,H) ∩ C(Ī , V ),

• ud ∈ H2(I,H) ∩H1(I,H2(Ω) ∩ V ), and ∆ud(T ) ∈ V .
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Lemma 6.3. Let (q̄, ū) be the solution of the optimal control problem (2.6) and z̄ the
corresponding adjoint state. If Assumption 6.2 is satisfied, we obtain the improved
regularities

ū ∈ H2(I,H) ∩H1(I,H2(Ω) ∩ V ) ↪→ C1(Ī , V ),

z̄ ∈ H3(I,H) ∩H2(I,H2(Ω) ∩ V ) ↪→ C2(Ī , V ), and

q̄ ∈W 1,∞(I,RdQ).

Moreover we have the stability estimates

‖∂t∆ū‖I +
∥∥∂2

t ū
∥∥
I
≤ C

{
‖f‖H1(I,H) + ‖q̄‖

H1(I,RdQ )
+ ‖∇f(0)‖

+ ‖∇∆u0‖
}

and∥∥∂3
t z̄
∥∥
I

+
∥∥∂2

t ∆z̄
∥∥
I

+
∥∥∇∂2

t z̄(T )
∥∥ ≤ C{∥∥∂2

t ud
∥∥
I

+ ‖∇∂tud(T )‖ + ‖∇∆ud(T )‖

+ ‖f‖H1(I,H) + ‖∇f(0)‖ + ‖∇f(T )‖

+ ‖q̄‖
H1(I,RdQ )

+ ‖q̄(T )‖RdQ + ‖∇∆u0‖
}
.

Proof. The stated regularity results for ū and q̄ and the stability estimate for ū are
shown by Meidner and Vexler in [81, Proposition 2.3]. Furthermore, the authors prove
that the adjoint solution satisfies z̄ ∈ H2(I,H) ∩H1(I,H2(Ω) ∩ V ) ↪→ C1(Ī , V ) with
the stability estimate

‖∂t∆z̄‖I +
∥∥∂2

t z̄
∥∥
I
≤ C

{
‖ud‖H1(I,H) + ‖∇ud(T )‖ + ‖f‖I + ‖q̄‖Q + ‖∇u0‖

}
.

Using the regularity already shown, we verify that ẑ := ∂tz̄ satisfies the equation

(6.8) − ∂tẑ −∆ẑ = ∂t(ū− ud)

with the terminal condition

(6.9) ẑ(T ) = ∂tz̄(T ) = −∆z̄(T )− (ū− ud)(T ) = −(ū− ud)(T )

since z̄(T ) = 0 and hence −∆z̄(T ) = 0. We differentiate equation (6.8) formally another
time with respect to the time variable resulting in

(6.10) − ∂tz̃ −∆z̃ = ∂2
t (ū− ud).

for a new variable z̃. For the terminal condition of this equation we set

z̃(T ) = ∂tẑ(T ) = −∆ẑ(T )− ∂t(ū− ud)(T )

= −∂t(ū− ud)(T ) + ∆(ū− ud)(T ) = (∂tud −∆ud)(T )− (f +Gq q̄)(T ).

In the second line, the terminal condition (6.9) for ẑ and the state equation (6.1) were
plugged in.
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We note that with Assumption 6.2 and the shown regularity for q̄, the terminal value for
z̃ is in V . Hence we can apply the regularity result from Lemma 6.1 to Equation (6.10).
This gives z̃ ∈ H1(I,H) ∩ L2(I,H2(Ω) ∩ V ). The corresponding stability estimate reads

‖∂tz̃‖I + ‖∆z̃‖I + ‖∇z̃(T )‖
≤ C

(∥∥∂2
t (ū− ud)

∥∥
I

+ ‖∇ (∂tud(T )−∆ud(T ))‖ + ‖∇f(T )‖ + ‖q̄(T )‖RdQ
)
.

The first term on the right hand side can be estimated by the stability estimate for the
state equation. We verify in the same way as in the proof of Theorem 27.2 in Wloka [117]
that in fact z̃ = ∂2

t z̄. This completes the proof.

6.2. Auxiliary results for the semidiscrete and discrete problem

In this section we specify the assumptions needed on the discretization and collect
auxiliary results relating to the semidiscrete and discrete problems.

6.2.1. Semidiscrete problem

For the temporal discretization of the state equation, we consider a discontinuous Galerkin
discretization as described in Section 4.1.1. However, we do not allow for varying the
order of the discretization over time, i. e., the order vector r is constant. Additionally,
we require the following regularity condition on the temporal mesh.

Assumption 6.4. We impose a regularity condition on the temporal mesh and require
that there is a constant κ ≥ 1 independent of the mesh width k such that

κ−1 ≤ km
km−1

≤ κ ∀m = 2, 3, . . . ,M.

Introducing the bilinear form B : Xr
k ×Xr

k → R given by

B(uk, ϕ) :=
M∑
m=1

(∂tuk, ϕ)Im + (∇uk,∇ϕ)I +
M−1∑
m=1

([uk]m, ϕ
+
m) + (u+

0 , ϕ
+
0 )(6.11)

the dG(r) semidiscrete state equation reads: For given control q, find uk ∈ Xr
k such that

B(uk, ϕ) = (f +Gqq, ϕ)I + (u0, ϕ
+
0 ) ∀ϕ ∈ Xr

k .(6.12)

A semidiscrete adjoint type equation with some given right hand side g and terminal
condition zk(T ) = 0 takes the form

(6.13) B(ϕ, zk) = (ϕ, g)I ∀ϕ ∈ Xr
k .
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6. A priori analysis of a third order scheme for time parameter control with constraints

Remark 6.5. As noted for example in [80], the continuous solution u of (6.1) for given
control q ∈ Q fulfills the semidiscrete state equation as well. Hence, although the dG(r)
semidiscretization is non-conforming, we get Galerkin orthogonality, i. e.,

B(u− uk, ϕ) = 0 ∀ϕ ∈ Xr
k(6.14)

holds.

The semidiscrete optimization problem reads:

(6.15) Minimize J(qk, uk) subject to (6.12) and (qk, uk) ∈ Qad ×Xr
k .

The adjoint equation has the form (6.13) with right hand side g := ūk − ud. From
interval-wise integration by parts with respect to time we obtain a dual representation
of the bilinear form B.

(6.16) B(ϕ,ψ) = −
M∑
m=1

(ϕ, ∂tψ)Im + (∇ϕ,∇ψ)I −
M−1∑
m=1

(ϕ−m, [ψ]m) + (ϕ−M , ψ
−
M ).

The first order optimality condition for the semidiscrete problem is given as

(6.17) (αq̄k +Gq∗z̄k, δq − q̄k)Q ≥ 0 ∀δq ∈ Qad,

or, equivalently,

(6.18) q̄k = PQad

(
−α−1Gq∗z̄k

)
.

Later on, we need the following stability estimates for the semidiscrete equations:

Theorem 6.6. For the solution uk ∈ Xr
k of the semidiscrete state equation (6.12) with

right-hand side f ∈ L2(I,H), control q ∈ Qad and initial condition u0 ∈ V the stability
estimate

‖uk‖2I +
M∑
m=1

‖∂tuk‖2Im + ‖∆uk‖2I +
M∑
m=1

k−1
m ‖[uk]m−1‖2

≤ C
(
‖f +Gqq‖2I + ‖u0‖2 + ‖∇u0‖2

)
holds when defining the jump [uk]0 as u+

k,0 − u0. The constant C depends only on the
domain Ω, the final time T and the order r of the semidiscretization.

Proof. See Meidner and Vexler [80, Theorems 4.1 and 4.3].
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6.2. Auxiliary results for the semidiscrete and discrete problem

Corollary 6.7. The solution zk ∈ Xr
k of the semidiscrete adjoint equation (6.13) for

any right hand side g ∈ L2(I,H) satisfies the stability estimate

‖zk‖2I +
M∑
m=1

‖∂tzk‖2Im + ‖∆zk‖2I +
M∑
m=1

k−1
m ‖[zk]m‖

2 ≤ C ‖g‖2I .

Here, the jump term [zk]M at final time is set to be −z−k,M .

Lemma 6.8. For the solution zk of the semidiscrete adjoint equation (6.13) we have
additionally the stability estimate

‖zk‖L∞(I,H) ≤ C ‖g‖I

with the constant C only depending on the domain Ω, the final time T , and the order r
of the discretization.

Remark 6.9. An analogous estimate can be shown for the semidiscrete state solution. It
reads

‖uk‖L∞(I,H) ≤ C (‖f +Gqq‖I + ‖u0‖ + ‖∇u0‖) .

Proof. We estimate the spatial L2 norm of zk at a fixed time t∗ ∈ I with t∗ 6= tm for any
m. Therefore let m∗ denote the smallest index such that tm∗ > t∗. Then, the norm of
zk(t

∗) can be written as

‖zk(t∗)‖ =

∥∥∥∥∥−
∫ tm∗

t∗
∂tzk dt−

M∑
m=m∗+1

∫
Im

∂tzk dt−
M∑

m=m∗

[zk]m

∥∥∥∥∥ .
We define the function vk interval-wise by vk|Im = ∂tzk. Together with the triangle
inequality we obtain

‖zk(t∗)‖ ≤
∥∥∥∥−∫ T

t∗
vk dt

∥∥∥∥ +
M∑

m=m∗

‖[zk]m‖ .

The sum on the right hand side can be estimated by means of Corollary 6.7, giving

M∑
m=m∗

‖[zk]m‖ ≤
M∑
m=1

k
1
2
m · k

− 1
2

m ‖[zk]m‖ ≤
√
T

(
M∑
m=1

1

km
‖[zk]m‖2

) 1
2

≤ C ‖g‖I .

For the integral term, we get with Hölder’s inequality and the stability estimate from
Corollary 6.7 ∥∥∥∥−∫ T

t∗
vk dt

∥∥∥∥ ≤ √T ‖vk‖I ≤ C ‖g‖I .
This shows the claim.
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6. A priori analysis of a third order scheme for time parameter control with constraints

Additionally we need the following stability estimate for a semidiscrete auxiliary adjoint
equation:

Theorem 6.10. Let w ∈ L2(I,H2(Ω) ∩ V ) be given. Then the solution yk ∈ Xr
k of the

equation

(6.19) B(ϕ, yk) = (ϕ,w)I ∀ϕ ∈ Xr
k

satisfies the estimate

∥∥∆2yk
∥∥
I

+

(
M∑
m=1

‖∂t∆yk‖Im

) 1
2

≤ C ‖∆w‖I .

The proof uses a Galerkin approximation in the spatial variable and is given in detail in
Appendix A.

As key tools for obtaining and proving almost third order convergence of our time
discretization we need several projection and interpolation operators which we collect
below. For completeness, we also include the operators πD

k and π̂D
k , which were already

introduced in Section 4.1.1.

1. The L2 projection Π0
k onto the space of piecewise constant functions in time given

by

Π0
k : L2(I, V )→ X0

k , Π0
kv
∣∣
Im

=
1

km

∫
Im

v(t) dt.

2. A projection Pk : C(Ī , V )→ Xr
k that is defined interval-wise by the two conditions

(Pkv − v, ϕ)Im = 0 ∀ϕ ∈ Pr−1(Im, V ),(6.20a)

Pkv(tm)− = v(tm)−(6.20b)

for each m = 1, . . . ,M . This operator is commonly employed in the error analysis
of discontinuous Galerkin methods, see, e. g., Thomée [106, Chapter 12].

3. The interpolation operator πD
k : C(Ī , V ) → Xr

k at the left Radau nodes on each
interval as introduced in Section 4.1.1.

4. The operator π̂D
k , which is also known from Section 4.1.1. Here we will adopt

the convention that π̂D
k v := π̂D

k (v(T )−, v) for a function v ∈ Xr
k ∪ C(Ī , V ). For

a continuous function, this means that the actual terminal value is used as first
parameter, whereas for a piecewise discontinuous function, the operator leaves the
function on the final interval IM unmodified as depicted in Figure 6.1.

5. A modified reconstruction operator π̃D
k : Xr

k ∪ C(Ī , V ) → Xr+1
k ∩ C(Ī , V ), which

treats the terminal interval differently than π̂D
k . It is determined by the two

conditions

π̃D
k v
∣∣
IM−1∪IM

∈ Pr+1(IM−1 ∪ IM , V ), and(6.21a)

π̃D
k v
∣∣
Im

= π̂D
k v ∀m = 1, . . . ,M − 1.(6.21b)
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I1 I2 IM−1 IM0 T

v
π̂D
k v

I1 I2 IM−1 IM0 T

v
π̃D
k v

Figure 6.1.: Visualization of the operators π̂D
k and π̃D

k for r = 1.

That means we extend the reconstruction polynomial on the second-last interval
onto the last interval. A visualization is given in Figure 6.1. The modification is
necessary for Lemma 6.16 to hold.

Since all of the above operators act only on the time variable, we can extend the
definitions in the obvious way to control-type variables by replacing the spatial spaces
V and H by RdQ while requiring the same temporal regularities. We will use the same
notations for those operators acting on time-dependent functions with values in RdQ .

Lemma 6.11. Let v ∈ H1(I,H). For the operators defined above we have the estimates

∥∥v −Π0
kv
∥∥
I
≤ Ck ‖∂tv‖I ,(6.22)

and if we require additionally v ∈ C(Ī , V )

∥∥v − Pk v∥∥I ≤ Ckr+1
∥∥∂r+1

t v
∥∥
I

for v ∈ Hr+1(I,H),(6.23) ∥∥v − πD
k v
∥∥
I
≤ Ckr+1

∥∥∂r+1
t v

∥∥
I

for v ∈ Hr+1(I,H),(6.24) ∥∥v − π̂D
k v
∥∥
I
≤ Ckr+2

∥∥∂r+2
t v

∥∥
I

for v ∈ Hr+2(I,H),(6.25) ∥∥v − π̃D
k v
∥∥
I
≤ Ckr+2

∥∥∂r+2
t v

∥∥
I

for v ∈ Hr+2(I,H).(6.26)

Proof. All of the above estimates can be shown in the standard way by transforming
each interval to the unit interval, applying the Bramble-Hilbert Lemma and transforming
back, for the estimate (6.23) this is done in the proof of Theorem 12.1 in Thomée [106].
For the reconstruction operator π̃D

k , the last two discretization intervals are treated as a
single interval.
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6. A priori analysis of a third order scheme for time parameter control with constraints

6.2.2. Discrete problem

For the spatial discretization of the model problem we limit ourselves to the case of a
fixed spatial mesh Th for all time steps. Using the corresponding space V s

h the definition
of the fully discrete state space simplifies to

Xr,s
k,h =

{
ϕ ∈ L2(I, V )

∣∣ ϕ|Im ∈ Pr(Im, V s
h ), m = 1, . . . ,M

}
⊆ Xr

k .

Then the discrete state equation reads: for given control q ∈ Q find ukh ∈ Xr,s
k,h such that

(6.27) B(ukh, ϕ) = (f +Gqq, ϕ)I ∀ϕ ∈ Xr,s
k,h.

For the state-discrete optimal control problem we have

(6.28) Minimize J(qkh, ukh) subject to (6.27) and (qkh, ukh) ∈ Qad ×Xr,s
k,h,

and the corresponding adjoint equation is: find zkh ∈ Xr,s
k,h such that

(6.29) B(ϕ, zkh) = (ϕ, g)I ∀ϕ ∈ Xr,s
k,h

with g := ukh−ud. The first order optimality condition for the optimal solution (q̄kh, ūkh)
in terms of the corresponding adjoint state z̄kh can be stated as

(6.30) (αq̄kh +Gq∗z̄kh, δq − q̄kh)I ≥ 0 ∀δq ∈ Qad,

or, equivalently

(6.31) q̄kh = PQad

(
− 1

α
Gq∗z̄kh

)
.

We quote the following stability estimate from Theorem 4.6 and Corollary 4.7 in Meidner
and Vexler [80]:

Theorem 6.12. Let Πh : V → V s
h denote the L2 projection onto the space V s

h . For the
solution ukh ∈ Xr,s

k,h of the discrete state equation (6.27) with right hand side f ∈ L2(I,H),
control q ∈ Qad and initial condition u0 ∈ V the stability estimate

‖ukh‖2I + ‖∇ukh‖2I ≤ C
{
‖f +Gqq‖2I + ‖∇Πhu0‖2I + ‖Πhu0‖2I

}
holds. The solution zkh of the discrete adjoint equation (6.29) with some right hand side
g ∈ L2(I,H) satisfies

‖zkh‖2I + ‖∇zkh‖2I ≤ C ‖g‖
2
I .

We note that the control for the discrete optimal control problem (6.28) is still from the
infinite dimensional space Q. As pointed out, we employ the variational approach and
hence a discretization of the control is not necessary for an algorithmic solution of the
problem.
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6.3. Error estimates for the state and adjoint solution with
fixed control

In this section we derive error estimates for the semidiscrete and discrete state and adjoint
state computed from a given fixed control q. For the state equation we quote results for
the temporal discretization error with respect to the L2(I,H) and the L∞(I,H) norms.
Subsequently we derive an a priori estimate for the error of the reconstructed adjoint
solution which is obtained by applying the reconstruction operator π̃D

k to the computed
semidiscrete adjoint solution. Given sufficient regularity of the solutions, we show that
for a dG(r) semidiscretization, the L2(I,H) error of the reconstruction converges with
order r + 2 with respect to the step size k to the exact adjoint solution, that is, we
gain one power of k compared to the plain dG(r) solution. When setting r = 1, the
regularities shown in Lemma 6.3 are sufficient to apply the estimate to the solution of
the optimal control problem.

Throughout this section we assume to be given a fixed control q ∈ Q and denote the
corresponding continuous state solution by u(q) and the solution of the semidiscrete
problem (6.12) with control q by uk(q). The solution of the adjoint equation (6.6)
with u(q) entering the right hand side is represented by z(q) and the solution of the
semidiscrete adjoint equation (6.13) with uk(q) on the right hand side by zk(q). The
notations ukh(q) and zkh(q) are used analogously.

6.3.1. Estimates for the semidiscrete state solution

The following result for the error with respect to the L2(I,H) norm can be found for
example as Theorem 5.1 in Meidner and Vexler [80].

Theorem 6.13. The error with respect to the L2(I,H) norm between the solution
u = u(q) of Equation (6.1) and the solution uk = uk(q) of its semidiscretization (6.12)
can be estimated by

‖u− uk‖I ≤ Ck
r+1
∥∥∂r+1

t u
∥∥
I

provided that the exact solution u is in Hr+1(I,H).

In Thomée [106, Theorem 12.4], an estimate for the L∞(I,H) norm error is given:

Theorem 6.14. For the error between the solution u = u(q) of Equation (6.1) and the
solution uk = uk(q) of its semidiscretization (6.12) we have the estimate

‖u− uk‖L∞(I,H) ≤ Cγ(k)kr+1
∥∥∂r+1

t u
∥∥
L∞(I,H)

with the logarithmic factor γ(k) := | log k|
1
2 + 1.

Note that this estimate requires Assumption 6.4 on the regularity of the temporal mesh.
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6. A priori analysis of a third order scheme for time parameter control with constraints

6.3.2. Superconvergence of the reconstructed semidiscrete adjoint solution

Next we show that the reconstruction π̃D
k zk(q) converges with one order more to the

exact adjoint solution than zk(q) w. r. t. the L2(I,H) norm. We assume r ≥ 1 since the
dG(0) method does not have this superconvergence property.

Theorem 6.15. For the reconstruction π̃D
k zk computed from the solution zk = zk(q) of

the semidiscrete adjoint equation (6.13) with right hand side uk(q)− ud the estimate∥∥z − π̃D
k zk

∥∥
I
≤ Ckr+2

( ∥∥∂r+1
t ∆z

∥∥
I

+
∥∥∂r+2

t z
∥∥
I

+
∥∥∂r+1

t u
∥∥
I

)
holds true where z = z(q) is the solution of the adjoint equation (6.6) with u = u(q)
entering the right hand side.

As a preparation for the proof of Theorem 6.15, we need the following Lemma.

Lemma 6.16. The reconstruction operator π̃D
k : Xr

k → Xr+1
k is stable with respect to

the L2(I,H) norm, that is, there is a constant C independent of k such that for any
vk ∈ Xr

k ∥∥π̃D
k vk

∥∥
I
≤ C ‖vk‖I .

Proof. Consider an interval Im with m 6= M . Then∥∥π̃D
k vk

∥∥
Im
≤
∥∥π̃D

k vk − vk
∥∥
Im

+ ‖vk‖Im

According to Makridakis and Nochetto [71, Lemma 2.2] we have for the first term

∥∥π̃D
k vk − vk

∥∥2

Im
= kmα

2
2 ‖[vk]m‖

2 ≤ Ckm
(∥∥∥v+

k,m

∥∥∥2
+
∥∥∥v−k,m∥∥∥2

)
,

where the constant α2 is determined by the order r. The Lobatto quadrature rule with
r + 2 nodes is exact for polynomials of up to degree 2r + 1 and has positive weights
(see, e. g., Michels [83]). Let ωj with j = 0, . . . , r + 1 denote the weights of the Lobatto
quadrature rule on the unit interval and cm,j the corresponding nodes transformed onto
the interval Im. Note that cm,0 = tm−1 and cm,r+1 = tm. Then we obtain for the
left-sided limit v−k,m at tm the estimate

1

ωr+1

∫
Im

‖vk‖2 dt =
km
ωr+1

ω0

∥∥∥v+
k,m−1

∥∥∥2
+

r∑
j=1

ωj ‖vk(cm,j)‖2 + ωr+1

∥∥∥v−k,m∥∥∥2


≥ km

∥∥∥v−k,m∥∥∥2
.

For the right-sided limit v+
k,m we proceed similarly and get

km

∥∥∥v+
k,m

∥∥∥2
≤ km
km+1

1

ω0
‖vk‖2Im+1

.
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Due to the assumption we made for the temporal mesh, the ratio km
km+1

is bounded by κ.
So apart from the last subinterval we get

(6.32)

M−1∑
m=1

∥∥π̃D
k vk − vk

∥∥2

Im
≤ C

M−1∑
m=1

km

(
‖vk‖2Im + ‖vk‖2Im+1

)
≤ C ‖vk‖2I .

The last interval IM requires a separate treatment. Therefore we will show that there
exists a constant C > 0 depending only on the mesh regularity parameter κ and the
order of discretization r such that

(6.33)

∫
IM

∥∥π̃D
k vk

∥∥2
dt ≤ C

∫
IM−1

∥∥π̃D
k vk

∥∥2
dt

holds. To see this, we transform the temporal integrals such that the integral over IM−1

is transformed to the negative unit interval (−1, 0), which gives∫
IM−1

∥∥π̃D
k vk

∥∥2
dt =

∫ 0

−1

1

kM−1

∥∥π̃D
k vk(tM−1 + kM−1τ)

∥∥2
dτ

and ∫
IM

∥∥π̃D
k vk

∥∥2
dt =

∫ kM
kM−1

0

1

kM−1

∥∥π̃D
k vk(tM−1 + kM−1τ)

∥∥2
dτ.

We define the polynomial p : R→ R with maximum degree 2r + 2 by requiring p(τ) :=
1

kM−1

∥∥π̃D
k vk(tM−1 + kM−1τ)

∥∥2
for τ ∈

(
−1, kM

kM−1

)
. Since the values of p are non-

negative, the second integral can be estimated by∫ kM
kM−1

0

1

kM−1

∥∥π̃D
k vk(tM−1 + kM−1τ)

∥∥2
dτ =

∫ kM
kM−1

0
p(τ) dτ ≤

∫ κ

0
p(τ) dτ

When considering both integrals as L1 norms on the finite dimensional polynomial space
P2r+2(R) we see that those two norms are equivalent and in particular there exists a
constant C such that∫

IM

∥∥π̃D
k vk

∥∥2
dt ≤

∫ κ

0
p(τ) dτ ≤ C

∫ 0

−1
p(τ) dτ = C

∫
IM−1

∥∥π̃D
k vk

∥∥2
dt.

The constant C depends only on κ and r. Hence the estimate (6.33) is shown and
together with (6.32) we obtain the assertion.

Proof of Theorem 6.15. The error
∥∥z − π̃D

k zk
∥∥
I

is split into two parts. We note that the

identity π̃D
k ◦ πD

k = π̃D
k holds true for arguments in C(Ī , V ). Together with Lemma 6.16,

we have

(6.34)
∥∥z − π̃D

k zk
∥∥
I
≤
∥∥z − π̃D

k z
∥∥
I

+
∥∥π̃D

k (z − zk)
∥∥
I
≤
∥∥z − π̃D

k z
∥∥
I

+ C
∥∥πD

k z − zk
∥∥
I
.
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The first term is bounded by the projection estimate (6.26), which results in∥∥z − π̃D
k z
∥∥
I
≤ Ckr+2

∥∥∂r+2
t z

∥∥
I
.

For the second term we pose a discrete dual equation (which is a forward equation again):
find wk ∈ Xr

k satisfying

B(wk, ϕ) = (πD
k z − zk, ϕ)I ∀ϕ ∈ Xr

k .

We choose ϕ = πD
k z − zk ∈ Xr

k which gives us

(6.35)
∥∥πD

k z − zk
∥∥2

I
= B(wk, π

D
k z − zk) = B(wk, π

D
k z − z) +B(wk, z − zk).

To estimate the first term on the right hand side we note that (πD
k z)

+
m = z+

m and hence
the jump terms in representation (6.11) of the bilinear form B vanish. We get

(6.36) B(wk, π
D
k z − z) =

M∑
m=1

(∂twk, π
D
k z − z)Im + (∇wk,∇(πD

k z − z))I .

For the first term we make use of the fact that the Radau quadrature formula with r+ 1
nodes is exact for polynomials up to degree 2r (see [1]). Using the auxiliary operator π̂D

k

we get the identity

(∂twk, π
D
k z)Im = (∂twk, π̂

D
k z)Im ,

since on both sides we have a temporal integral over a polynomial with respect to time
with the polynomial on the left having degree 2r − 1 and the polynomial on the right
having degree 2r. Hence, both can be evaluated exactly with Radau’s integration formula,
which gives the same result in both cases. With the above identity we obtain for the
first term of (6.36)

M∑
m=1

(∂twk, π
D
k z − z)Im =

M∑
m=1

(∂twk, π̂
D
k z − z)Im ≤

(
M∑
m=1

‖∂twk‖2Im

) 1
2 ∥∥π̂D

k z − z
∥∥
I
.

With the interpolation estimate (6.25) for π̂D
k and the stability estimate for ∂twk from

Theorem 6.6, this gives the estimate

(6.37)

M∑
m=1

(∂twk, π
D
k z − z)Im ≤ Ckr+2

∥∥∂r+2
t z

∥∥
I

∥∥πD
k z − zk

∥∥
I

for the time derivative term of (6.36).

To estimate the second term on the right hand side of (6.36), we split it into two parts
using the L2 projection Π0

k into the space X0
k ,

(6.38) (∇wk,∇(πD
k z− z))I = (∇(wk −Π0

kwk),∇(πD
k z− z))I + (∇Π0

kwk,∇(πD
k z− z))I .
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6.3. Error estimates for the state and adjoint solution with fixed control

To estimate the first term, we integrate by parts with respect to the spatial domain and
obtain

(∇(wk −Π0
kwk),∇(πD

k z − z))I = (wk −Π0
kwk,−∆(πD

k z − z))I
The temporal interpolation operator πD

k commutes with the Laplacian and together with
the error estimates (6.22) and (6.24) for Π0

k and πD
k , we get

(∇(wk −Π0
kwk),∇(πD

k z − z))I ≤ C

(
M∑
m=1

k2
m ‖∂twk‖

2
Im

) 1
2 ∥∥πD

k ∆z −∆z
∥∥
I

≤ C

(
M∑
m=1

k2
m ‖∂twk‖

2
Im

) 1
2

kr+1
∥∥∂r+1

t ∆z
∥∥
I
.

The stability estimate from Theorem 6.6 gives the desired estimate for the first term
of (6.38),

(6.39) (∇(wk −Π0
kwk),∇(πD

k z − z))I ≤ Ckr+2
∥∥πD

k z − zk
∥∥
I

∥∥∂r+1
t ∆z

∥∥
I
.

For the second term we have, since the temporal L2 projection commutes with spatial
derivatives,

(∇Π0
kwk,∇(πD

k z − z))I = −
M∑
m=1

(Π0
k∆wk, π

D
k z − z)Im .

The product (Π0
k∆wk, π

D
k z) is a polynomial of degree r < 2r with respect to time.

Thus with the same reasoning as we used when estimating the temporal derivative
term, πD

k z can be replaced by π̂D
k z without changing the value of the above expression.

Subsequently applying the interpolation estimate (6.25) and taking the continuity of Π0
k

into consideration gives

(∇Π0
kwk,∇(πD

k z − z))I = −
M∑
m=1

(Π0
k∆wk, π̂

D
k z − z)Im

≤ C
M∑
m=1

kr+2
m ‖∆wk‖Im

∥∥∂r+2
t z

∥∥
Im

≤ Ckr+2
∥∥πD

k z − zk
∥∥
I

∥∥∂r+2
t z

∥∥
I
.

(6.40)

In the last step we used again Theorem 6.6. Plugging equations (6.37), (6.38), (6.39),
and (6.40) into (6.36) we get for the first term of (6.35)

(6.41) B(wk, π
D
k z − z) ≤ Ckr+2

∥∥πD
k z − zk

∥∥
I

(∥∥∂r+2
t z

∥∥
I

+
∥∥∂r+1

t ∆z
∥∥
I

)
.

We use the projection operator Pk into the semidiscrete space to split the second term
on the right hand side of (6.35) into two parts

(6.42) B(wk, z − zk) = (wk, u− uk)I = (wk, u− Pku)I + (wk, Pku− uk)I .
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6. A priori analysis of a third order scheme for time parameter control with constraints

Due to Condition (6.20a), we have (Π0
kwk, u−Pku)I = 0 and hence the first term can be

bounded using the interpolation estimates (6.22) and (6.23) for Π0
k and Pk respectively,

which gives

(wk, u− Pku)I = (wk −Π0
kwk, u− Pku)I ≤ Ckr+2

(
M∑
m=1

‖∂twk‖2Im

) 1
2 ∥∥∂r+1

t u
∥∥
I
.

For the second term we use another duality argument. Let yk be the solution of the
semidiscrete dual equation

(6.43) B(ϕ, yk) = (ϕ,wk)I ∀ϕ ∈ Xr
k .

Then testing with Pku− uk results in

(6.44) (wk, Pku− uk)I = B(Pku− uk, yk) = B(Pku− u, yk) +B(u− uk, yk),

where the last term vanishes due to Galerkin orthogonality. For the first term we expand
the bilinear form in its dual formulation and note that the jump terms vanish due
to Condition (6.20b). Since the time derivative ∂tyk|Im is in Pr−1(Im, V ), the time
derivative terms vanish as well with Condition (6.20a). This leaves only the spatial
operator, that is,

B(Pku− u, yk) = (∇(Pku− u),∇yk)I = (Pku− u,−∆yk + Π0
k∆yk)I .

In the last step we performed integration by parts and used the orthogonality condi-
tion (6.20a). The interpolation estimates (6.22) and (6.23) together with the stability
estimates Theorem 6.10 for Equation (6.43) and Theorem 6.6 for the equation for wk
finally result in

B(Pku− u, yk) ≤ Ckr+2
∥∥∂r+1

t u
∥∥
I

(
M∑
m=1

‖∂t∆yk‖Im

) 1
2

≤ Ckr+2
∥∥∂r+1

t u
∥∥
I
‖∆wk‖I

≤ Ckr+2
∥∥∂r+1

t u
∥∥
I

∥∥πD
k z − zk

∥∥
I
.

Plugging this estimate into Equation (6.44) gives an estimate for the second term on the
right hand side of (6.42). Collecting all estimates shows the claim.

Remark 6.17. In the same way as in the proof of Theorem 6.15, it can be shown that for
the reconstruction π̃S

kuk of the semidiscrete state, which is defined analogously to π̃D
k ,

the estimate

(6.45)
∥∥u− π̃S

kuk
∥∥
I
≤ Ckr+2

(∥∥∂r+1
t ∆u

∥∥
I

+
∥∥∂r+2

t u
∥∥
I

)
holds if the exact solution u is in Hr+2(I,H)∩Hr+1(I,H2(Ω)∩V ). For our optimization
problem, we cannot apply this estimate, even in the case r = 1 since the optimal state ū
will be in H2(I,H) but in general not in H3(I,H). However, we will use this kind of
reconstruction to approximate the weights for the temporal a posteriori error indicator
developed in Section 7.1. The rigorous analysis carried out here provides a partial
justification for that. Additionally, the result for the state equation can be used for
improving numerical solutions of parabolic PDEs outside the optimization context.
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6.3.3. Error analysis for the spatial discretization

We briefly summarize the results we need about the error between semidiscrete and
discrete state and adjoint solutions for fixed control.

Theorem 6.18. For the solution ukh of the discrete state equation (6.27) and the
semidiscrete solution uk satisfying (6.12), the a priori error estimate

‖uk − ukh‖I ≤ Ch
s+1
∥∥∇s+1uk

∥∥
I

holds true with the constant C independent of k and h if uk ∈ L2(I,Hs+1(Ω)).

If additionally zk ∈ L2(I,Hs+1), the solutions zk of the semidiscrete adjoint equa-
tion (6.13) with right hand side uk − ud and zkh of the discrete adjoint equation (6.29)
with right hand side ukh − ud fulfill the estimate

‖zk − zkh‖I ≤ Ch
s+1
(∥∥∇s+1uk

∥∥
I

+
∥∥∇s+1zk

∥∥
I

)
.

Proof. Both parts of the claim are shown as Theorem 5.5 and as step in the proof of
Lemma 6.2 in Meidner and Vexler [80] respectively.

Corollary 6.19. The error π̃D
k zk − π̃D

k zkh between the reconstructed semidiscrete and
discrete adjoint solution satisfies the a priori bound∥∥π̃D

k zk − π̃D
k zkh

∥∥
I
≤ Chs+1

(∥∥∇s+1uk
∥∥
I

+
∥∥∇s+1zk

∥∥
I

)
.

Proof. Applying Lemma 6.16 to the left hand side of the estimate reduces it to the
statement of Theorem 6.18.

6.4. Error analysis for the optimal control problem

Now we turn to the analysis of the discretization error for the control-constrained optimal
control problem (6.4). Looking at the temporal and spatial regularity of the optimal
state and adjoint state as discussed in Lemma 6.3, we observe that the error estimates in
Theorem 6.15 and Corrollary 6.19 can only be applied for the case r = s = 1. Therefore,
in this section we restrict our considerations to first order elements in both, time and
space.

Remark 6.20. Choosing an order s > 1 for the spatial discretization can lead to improved
convergence with respect to h if we require a domain Ω with smooth boundary and
enforce additional compatibility conditions on the data.
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6. A priori analysis of a third order scheme for time parameter control with constraints

6.4.1. Time discretization

As a preparation for our main result we show almost second order convergence of the
control with respect to the L∞(I,RdQ) norm. Therefore, we proceed as Hinze [55] by
first proving convergence with order O(k2) with respect to the L2(I,H) norm.

Lemma 6.21. For the error between the solution q̄ of the continuous optimal control
problem (6.4) and the solution q̄k of the semidiscrete problem (6.15) we have the estimate

‖q̄ − q̄k‖Q ≤ Ck
2
(
α−

1
2

∥∥∂2
t ū
∥∥
I

+ α−1
∥∥∂2

t z̄
∥∥
I

)
and for the corresponding state error we obtain

‖ū− ūk‖I ≤ Ck
2
(∥∥∂2

t ū
∥∥
I

+ α−
1
2

∥∥∂2
t z̄
∥∥
I

)
.

Proof. Testing the optimality condition (6.5) with δq = q̄k, its semidiscrete counter-
part (6.17) with q̄, and adding up the results gives

α ‖q̄ − q̄k‖2Q ≤ (Gq∗ (z̄ − z̄k) , q̄k − q̄)Q
= (z̄ − zk(ū), Gq (q̄k − q̄))I + (zk(ū)− z̄k, Gq (q̄k − q̄))I .

(6.46)

Here, zk(ū) denotes the solution of the semidiscrete adjoint with ū entering the right
hand side. For the second term on the right, we apply the semidiscrete state equation
followed by Galerkin orthogonality and the semidiscrete adjoint and obtain

(zk(ū)− z̄k, Gq (q̄k − q̄))I = B(ūk − ū, zk(ū)− z̄k)
= B(ūk − uk(q̄), zk(ū)− z̄k) = (ūk − uk(q̄), ū− ūk)I .

We plug this result into (6.46) and add on both sides ‖ū− ūk‖2I . With the scaled version
of Young’s inequality, this yields

α ‖q̄ − q̄k‖2Q + ‖ū− ūk‖2I ≤ (z̄ − zk(ū), Gq (q̄k − q̄))I
+ (ūk − uk(q̄), ū− ūk)I + (ū− ūk, ū− ūk)I
≤ ‖Gq‖ ‖z̄ − zk(ū)‖I ‖q̄ − q̄k‖Q + ‖ū− uk(q̄)‖I ‖ū− ūk‖I

≤ 1

2α
‖Gq‖2 ‖z̄ − zk(ū)‖2I +

α

2
‖q̄ − q̄k‖2Q

+
1

2
‖ū− uk(q̄)‖2I +

1

2
‖ū− ūk‖2I .

Therefore we have with the a priori estimate Theorem 6.13, applied once to the state
equation and once to the adjoint equation

α

2
‖q̄ − q̄k‖2Q +

1

2
‖ū− ūk‖2I ≤

1

2α
‖Gq‖2 ‖z̄ − zk(ū)‖2I +

1

2
‖ū− uk(q̄)‖2I

≤ Ck4
(∥∥∂2

t ū
∥∥2

I
+ α−1

∥∥∂2
t z̄
∥∥2

I

)
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which results in the desired estimates

‖q̄ − q̄k‖Q ≤ Ck
2
(
α−

1
2

∥∥∂2
t ū
∥∥
I

+ α−1
∥∥∂2

t z̄
∥∥
I

)
and

‖ū− ūk‖I ≤ Ck
2
(∥∥∂2

t ū
∥∥
I

+ α−
1
2

∥∥∂2
t z̄
∥∥
I

)
.

Lemma 6.22. For the error between the solution q̄ of the continuous optimal control
problem (6.4) and the solution q̄k of the semidiscrete problem (6.15) with respect to the
L∞(I,RdQ) norm, the estimate

‖q̄ − q̄k‖L∞(I,RdQ )
≤ α−1k2

{
γ(k)

∥∥∂2
t z̄
∥∥
L∞(I,H)

+
∥∥∂2

t ū
∥∥
I

+ α−
1
2

∥∥∂2
t z̄
∥∥
I

}
holds true with the logarithmic factor γ(k) = | log k|

1
2 + 1 as introduced in Theorem 6.14.

Proof. Taking into account that ‖PQad
(f)− PQad

(g)‖
L∞(I,RdQ )

≤ ‖f − g‖
L∞(I,RdQ )

, the

optimality conditions (6.7) and (6.18) yield

(6.47) ‖q̄ − q̄k‖L∞(I,RdQ )
≤ α−1 ‖Gq‖ ‖z̄ − z̄k‖L∞(I,H) .

We introduce an auxiliary adjoint solution z̃k ∈ Xr
k satisfying

B(ϕ, z̃k) = (ϕ, ū− ud)I ∀ϕ ∈ Xr
k

and split the adjoint error into

‖z̄ − z̄k‖L∞(I,H) ≤ ‖z̄ − z̃k‖L∞(I,H) + ‖z̃k − z̄k‖L∞(I,H) .

The first term can be estimated by the supremum norm estimate from Theorem 6.14
applied backward in time, which gives

(6.48) ‖z̄ − z̃k‖L∞(I,H) ≤ Cγ(k)k2
∥∥∂2

t z̄
∥∥
L∞(I,H)

.

For the second term we apply the stability estimate from Lemma 6.8 and the state error
bound from Lemma 6.21 to obtain

(6.49) ‖z̃k − z̄k‖L∞(I,H) ≤ C ‖ū− ūk‖I ≤ Ck
2
(∥∥∂2

t ū
∥∥
I

+ α−
1
2

∥∥∂2
t z̄
∥∥
I

)
.

Plugging the inequalities (6.48) and (6.49) into (6.47) shows the claim.

Definition 6.23. Let M := {1, 2, . . . ,M} denote the set of all time indices. For a
given z ∈ X ∪Xr

k we define the sets of active and inactive indices for each of the dQ
components of the resulting control by

Ai(z) :=
{
m ∈M

∣∣∣ ∃t ∈ Im :
(
−α−1Gq∗z(t)

)
i
> qbi ∨

(
−α−1Gq∗z(t)

)
i
< qai

}
and

Ii(z) :=
{
m ∈M

∣∣∣ ∃t ∈ Im :
(
−α−1Gq∗z(t)

)
i
∈ (qai , q

b
i )
}
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6. A priori analysis of a third order scheme for time parameter control with constraints

respectively where i ∈ {1, . . . , dQ}. For convenience we also define the sets

Ei(z) :=
{
m ∈M

∣∣∣ ∀t ∈ Im :
(
−α−1Gq∗z(t)

)
i

= qbi ∨
(
−α−1Gq∗z(t)

)
i

= qai

}
.

Note that Ai(z) ∪ Ii(z) ∪ Ei(z) =M for any i ∈ {1, . . . , dQ} and any z ∈ X ∪Xr
k .

With this notation we can introduce the set K of critical indices collecting all intervals
where at least one component is both active and inactive for either of the functions z̄
and πD

k z̄. The remaining indices are collected in the set R.

K :=

dQ⋃
i=1

{
[Ai(z̄) ∩ Ii(z̄)] ∪

[
Ai(πD

k z̄) ∩ Ii(πD
k z̄)
]}
,

R :=M\K.

Assumption 6.24. We assume that the set K satisfies∑
m∈K
|Im| ≤ Ck

for a constant C independent from k.

Remark 6.25. Similar assumptions are used frequently in the context of error estimates for
higher order schemes and post-processing of optimal control problems. As examples, we
mention Meyer and Rösch [82] and Vexler and coworkers [14, 79, 81, 96]. The assumption
is satisfied if the boundary of the active set for the continuous problem consists of finitely
many points and additionally the time derivative of

(
−α−1Gq∗z̄

)
i

in those points has
non-zero value.

With this assumption, we get the following estimate for the reconstructed semidiscrete
adjoint solution.

Theorem 6.26. Let the Assumptions 6.2, 6.4, and 6.24 be fulfilled. Then the error
between the optimal adjoint z̄ of the continuous problem (6.4) and the piecewise quadratic
reconstruction π̃D

k z̄k of the adjoint for the semidiscrete problem (6.15) satisfies∥∥z̄ − π̃D
k z̄k

∥∥
I
≤ C(α)k3

{
γ(k)

∥∥∂2
t z̄
∥∥
L∞(I,H)

+
∥∥∂2

t ū
∥∥
I

+
∥∥∂2

t z̄
∥∥
I

+
∥∥∂3

t z̄
∥∥
I

+
∥∥∂2

t ∆z̄
∥∥
I

}
where the constant C(α) can be estimated by C(α) ≤ C

(
1 + α−

5
2

)
and γ(k) is given by

γ(k) = | log k|
1
2 + 1.

With Lipschitz continuity of PQad
we immediately get the main result of this section.

Corollary 6.27. Let (q̄k, ūk, z̄k) be the solutions of the semidiscrete optimization problem.
Then for the control solution q̃k obtained by the post-processing step

(6.50) q̃k = PQad

(
−α−1Gq∗π̃D

k z̄k
)
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the estimate

‖q̄ − q̃k‖Q ≤ C(α)k3
{
γ(k)

∥∥∂2
t z̄
∥∥
L∞(I,H)

+
∥∥∂2

t ū
∥∥
I

+
∥∥∂2

t z̄
∥∥
I

+
∥∥∂3

t z̄
∥∥
I

+
∥∥∂2

t ∆z̄
∥∥
I

}
holds true with C(α) ≤ C

(
α−1 + α−

7
2

)
.

A key ingredient for the proof of Theorem 6.26 are the following two auxiliary controls
which are constructed in a similar fashion as in Rösch and Simon [95].

Definition 6.28. The function pk ∈ L2(I,RdQ) is given piecewise as

pk|Im =

{
q̄k, if m ∈ K,
πD
k q̄, if m ∈ R,

that is, it is identical to the semidiscrete solution on the critical set and interpolates
the exact solution on the remaining intervals. In particular, this function is a linear
polynomial on each subinterval. Additionally, we will use the function p̂k ∈ L2(I,RdQ)
given by

p̂k|Im =

{
q̄k, if m ∈ K,
q̄, if m ∈ R.

We emphasize that pk and p̂k are not related to the unprojected control we introduced
in Chapter 3.

Lemma 6.29. For the difference between the semidiscrete adjoint states computed from
the exact control q̄ and the auxiliary control pk, the estimate

‖zk(q̄)− zk(pk)‖I ≤ C(α)k3
(
γ(k)

∥∥∂2
t z̄
∥∥
L∞(I,H)

+
∥∥∂2

t ū
∥∥
I

+
∥∥∂2

t z̄
∥∥
I

+
∥∥∂3

t z̄
∥∥
I

)
holds true with C(α) ≤ Cα−1

(
1 + α−

1
2

)
and γ(k) = | log k|

1
2 + 1.

Proof. We start with an estimate for the difference between the corresponding semi-
discrete states uk(q̄) and uk(pk). With the semidiscrete adjoint (6.13) and the semidiscrete
state equation (6.12) we get

‖uk(q̄)− uk(pk)‖2I = B(uk(q̄)− uk(pk), zk(q̄)− zk(pk))
= (Gq(q̄ − pk), zk(q̄)− zk(pk))I .

(6.51)

For convenience, we introduce the abbreviation vk := zk(q̄)− zk(pk). Then, using the
auxiliary control p̂k and the L2 projection Π0

k onto the space of piecewise constant
functions we split the right hand side into

(Gq(q̄ − pk), vk)I = (Gq(q̄ − p̂k), vk)I + (Gq(p̂k − pk), vk −Π0
kvk)I

+ (Gq(p̂k − pk),Π0
kvk)I .

(6.52)
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6. A priori analysis of a third order scheme for time parameter control with constraints

Each of the three terms on the right hand side can be estimated separately. For the first
term, we obtain since q̄ and p̂k agree on Im for m ∈ R

(Gq q̄ −Gqp̂k, vk)I =
∑
m∈K

∫
Im

(Gq q̄ −Gqp̂k, vk) dt

≤
∑
m∈K
|Im| ‖Gq‖ ‖q̄ − p̂k‖L∞(Im,RdQ )

‖vk‖L∞(Im,H)

≤ C
∑
m∈K
|Im| ‖q̄ − q̄k‖L∞(I,RdQ )

‖vk‖L∞(I,H) .

Plugging the estimate from Lemma 6.22, the maximum norm stability estimate from
Lemma 6.8, and Assumption 6.24 into this inequality yields

(6.53) (Gq(q̄ − p̂k), vk)I

≤ Cα−1k3
(
γ(k)

∥∥∂2
t z̄
∥∥
L∞(I,H)

+
∥∥∂2

t ū
∥∥
I

+ α−
1
2

∥∥∂2
t z̄
∥∥
I

)
‖uk(q̄)− uk(pk)‖I .

The second term of (6.52) vanishes on all intervals in the critical set K since pk = p̂k
there. Hence we have

(Gq(p̂k − pk), vk −Π0
kvk)I ≤ ‖Gq‖

∑
m∈R

∥∥q̄ − πD
k q̄
∥∥
RdQ

∥∥vk −Π0
kvk
∥∥
Im

≤ Ck

∑
m∈R

dQ∑
i=1

∥∥q̄i − πD
k q̄i
∥∥2

L2(Im)

 1
2 ( M∑

m=1

‖∂tvk‖2Im

) 1
2

.

(6.54)

To estimate the factor involving the control, we note that for each component q̄i of the
optimal control, all interval indices in R are contained either in the active set Ai(z̄)\Ii(z̄),
the inactive set Ii(z̄) \ Ai(z̄), or the rest set Ei(z̄) belonging to the index i. For the
indices in the active set and the rest set, component q̄i is constant on the corresponding
intervals. Hence the difference (q̄ − πD

k q̄)i vanishes on those intervals. On the inactive
intervals, the component is in H3(I,R) since the relationship q̄i = −α−1(Gq∗z̄)i holds
and z̄ is in H3(I,H). Hence we can apply an interpolation estimate for πD

k and obtain

( ∑
m∈R

dQ∑
i=1

∥∥q̄i − πD
k q̄i
∥∥2

L2(Im)

) 1
2

=
( dQ∑
i=1

∑
m∈R∩Ii(z̄)

∥∥q̄i − πD
k q̄i
∥∥2

L2(Im)

) 1
2

≤ Ck2
( dQ∑
i=1

∑
m∈R∩Ii(z̄)

∥∥∂2
t q̄i
∥∥2

L2(Im)

) 1
2

≤ Cα−1k2
( M∑
m=1

∥∥∂2
t z̄
∥∥2

Im

) 1
2
.
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6.4. Error analysis for the optimal control problem

Plugging this estimate into Equation (6.54) yields for the second term of (6.52) the
bound

(Gq(p̂k − pk), vk −Π0
kvk)I ≤ Cα−1k3

∥∥∂2
t z
∥∥
I

(
M∑
m=1

‖∂tvk‖2Im

) 1
2

≤ Cα−1k3
∥∥∂2

t z
∥∥
I
‖uk(q̄)− uk(pk)‖I .

(6.55)

In the last step the stability estimate from Corollary 6.7 was used.

For estimating the third term on the right hand side of (6.52), we introduce a third
auxiliary control p̃k given by

p̃k|Im =

{
q̄k, if m ∈ K,
π̂D
k q̄, if m ∈ R.

We observe that (Gqpk,Π
0
kvk) is a polynomial of degree one with respect to time

on each interval Im with m ∈ R. Since the two point Radau quadrature formula
integrates polynomials up to degree two exactly, we have the identity (Gqpk,Π

0
kvk)Im =

(Gqp̃k,Π
0
kvk)Im and hence

(Gq(p̂k − pk),Π0
kvk)I =

∑
m∈R

(Gq(p̂k − p̃k),Π0
kvk)Im ≤ Cα−1k3

∥∥∂3
t z̄
∥∥
I
‖vk‖I .

The last step involves the interpolation estimate (6.25) which can be applied since for
intervals with index in R every component of the control q̄ is either constant or in
H3(Im,R). Using the stability estimate from Corollary 6.7 for the semidiscrete adjoint,
we obtain as estimate for the third term

(6.56) (Gq(p̂k − pk),Π0
kvk)I ≤ Cα−1k3

∥∥∂3
t z̄
∥∥
I
‖uk(q̄)− uk(pk)‖I .

Putting Equations (6.51), (6.52), (6.53), (6.55), and (6.56) together and dividing
everything by ‖uk(q̄)− uk(pk)‖I gives

‖uk(q̄)− uk(pk)‖I
≤ Cα−1k3

{
γ(k)

∥∥∂2
t z̄
∥∥
L∞(I,H)

+
∥∥∂2

t ū
∥∥
I

+ (1 + α−
1
2 )
∥∥∂2

t z̄
∥∥
I

+
∥∥∂3

t z̄
∥∥
I

}
.

The desired estimate for ‖zk(q̄)− zk(pk)‖I is obtained from this inequality by means of
the stability estimate Corollary 6.7 for the semidiscrete adjoint.

With these preparations we can prove the main result of this section:

Proof of Theorem 6.26. We start by splitting the error into the two parts∥∥z̄ − π̃D
k z̄k

∥∥
I
≤
∥∥z̄ − π̃D

k zk(q̄)
∥∥
I

+
∥∥π̃D

k (zk(q̄)− z̄k)
∥∥
I
.
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6. A priori analysis of a third order scheme for time parameter control with constraints

For the first term, we use the estimate in Theorem 6.15. To bound the second term, we
exploit the L2 stability of the reconstruction operator π̃D

k and split further∥∥π̃D
k (zk(q̄)− z̄k)

∥∥
I
≤ C ‖zk(q̄)− z̄k‖I
≤ C (‖zk(q̄)− zk(pk)‖I + ‖zk(pk)− z̄k‖I) .

The first term on the right hand side can be estimated with Lemma 6.29 and for the
second term the stability estimates from Corollary 6.7 and Theorem 6.6 give

(6.57) ‖zk(pk)− z̄k‖I ≤ C ‖pk − q̄k‖Q .

To estimate the term on the right hand side, we first observe that the inequality

(6.58) (Gq∗πD
k z̄ + αpk, q̄k − pk)Q ≥ 0

holds true. This can be seen as follows: we write

(Gq∗πD
k z̄ + αpk, q̄k − pk)Q =

∑
m∈K

(Gq∗πD
k z̄ + αpk, q̄k − pk)RdQ

+
∑
m∈R

dQ∑
i=1

((Gq∗πD
k z̄ + αpk)i, (q̄k − pk)i)L2(Im)

and show that each of the addends is non-negative. For the critical set K the factor
q̄k − pk vanishes on the corresponding intervals due to the definition of pk. On the
remaining intervals we have to distinguish whether constraints are active or not, that is,
for each component q̄i of the control we have to consider the cases m ∈ Ii(z̄)\Ai(z̄), m ∈
Ai(z̄)\Ii(z̄), and m ∈ Ei(z̄). If m ∈ Ii(z̄)\Ai(z̄), then we have pointwise (Gq∗z̄+αq̄)i = 0
on the interval Im. Therefore, on Im the interpolant (Gq∗πD

k z̄ + αpk)i = πD
k (Gq∗z̄ + αq̄)i

vanishes.

In the other two cases, one of the constraints is active, that is, the component q̄i has
either the constant value qai or the constant value qbi on Im. So in particular we have
pk = q̄. Since πD

k z̄ interpolates z̄ in two points on Im, we know that m is also in Ai(πD
k z̄)

or Ei(πD
k z̄) respectively and therefore according to the definition of the set R not in

Ii(πD
k z̄). From the optimality condition (6.7), the value of −α−1(Gq∗z̄)i is either less or

equal qai or greater or equal qbi on Im and hence we get for the projection

−α−1(Gq∗πD
k z̄)i

{
≤ qai , if q̄i = qai ,

≥ qbi , if q̄i = qbi .

Therefore on the interval Im, we have pointwise

(Gq∗πD
k z̄ + αpk)i

{
≥ 0, if q̄i = qai ,

≤ 0, if q̄i = qbi
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6.4. Error analysis for the optimal control problem

and, since q̄k is in the admissible set and pk = q̄ for m ∈ R,

(q̄k − pk)i

{
≥ 0, if q̄i = qai ,

≤ 0, if q̄i = qbi .

So in total we have ((Gq∗πD
k z̄ + αpk)i, (q̄k − pk)i)L2(Im) ≥ 0.

Testing the semidiscrete optimality condition (6.17) with δq = pk gives

(6.59) (Gq∗z̄k + αq̄k, pk − q̄k)Q ≥ 0.

By adding up the relations (6.58) and (6.59) we get

(Gq∗(πD
k z̄ − z̄k), q̄k − pk)Q − α ‖q̄k − pk‖

2
Q ≥ 0.

We split the first term and obtain the estimate

α ‖q̄k − pk‖2Q ≤ (Gq∗(πD
k z̄ − zk(q̄)), q̄k − pk)Q

+ (Gq∗(zk(q̄)− zk(pk)), q̄k − pk)Q + (Gq∗(zk(pk)− z̄k), q̄k − pk)Q.

(6.60)

The first term on the right hand side is estimated as in the proof of Theorem 6.15 giving

(Gq∗(πD
k z̄ − zk(q̄)), q̄k − pk)Q ≤ C

∥∥πD
k z̄ − zk(q̄)

∥∥
I
‖q̄k − pk‖Q

≤ Ck3
( ∥∥∂2

t ∆z
∥∥
I

+
∥∥∂3

t z
∥∥
I

+
∥∥∂2

t u
∥∥
I

)
‖q̄k − pk‖Q .

(6.61)

To bound the second term we use Lemma 6.29 to get

(Gq∗(zk(q̄)− zk(pk)), q̄k − pk)Q ≤ C ‖zk(q̄)− zk(pk)‖I ‖q̄k − pk‖Q
≤ C(α)k3

[
γ(k)

∥∥∂2
t z̄
∥∥
L∞(I,H)

+
∥∥∂3

t z̄
∥∥
I

+
∥∥∂2

t ū
∥∥
I

+
∥∥∂2

t z̄
∥∥
I

]
‖q̄k − pk‖Q

(6.62)

with C(α) ≤ Cα−1
(

1 + α−
1
2

)
.

Finally the third term on the right hand side of (6.60) is estimated by applying the
semidiscrete state equation followed by the semidiscrete adjoint equation, which results
in

(6.63)
(Gq∗(zk(pk)− z̄k), q̄k − pk)Q = −B(uk(pk)− ūk, zk(pk)− z̄k)

= −‖uk(pk)− ūk‖2I ≤ 0.

Plugging the estimates (6.61), (6.62) and (6.63) into (6.60), dividing by α ‖q̄k − pk‖Q
and using Young’s inequality to obtain 1 + α−1 + α−

3
2 ≤ C

(
1 + α−

3
2

)
gives

(6.64)
‖pk − q̄k‖Q ≤ C(α)k3

{
γ(k)

∥∥∂2
t z̄
∥∥
L∞(I,H)

+
∥∥∂2

t ū
∥∥
I

+
∥∥∂2

t z̄
∥∥
I

+
∥∥∂3

t z̄
∥∥
I

+
∥∥∂2

t ∆z̄
∥∥
I

}
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6. A priori analysis of a third order scheme for time parameter control with constraints

with C(α) ≤ C
(
α−1 + α−

5
2

)
. Plugging this estimate into (6.57), collecting all the

resulting terms and estimating the factors involving α where appropriate with Young’s
inequality yields the claim.

6.4.2. Spatial discretization

The error that the spatial discretization causes on the post-processed solution can be
assessed independently. We show the following estimate.

Theorem 6.30. For the error π̃D
k z̄k − π̃D

k z̄kh between the reconstruction of the semidis-
crete optimal adjoint and the reconstruction of the adjoint z̄kh belonging to the discrete
optimal control problem (6.28) the estimate∥∥π̃D

k (z̄k − z̄kh)
∥∥
I
≤ C

(
1 + α−1

)
h2
{∥∥∇2ūk

∥∥
I

+
∥∥∇2z̄k

∥∥
I

}
holds true.

Proof. To show the claim, we split

(6.65)
∥∥π̃D

k (z̄k − z̄kh)
∥∥
I
≤
∥∥π̃D

k z̄k − π̃D
k zkh(q̄k)

∥∥
I

+
∥∥π̃D

k (zkh(q̄k)− z̄kh)
∥∥
I
.

Corollary 6.19 estimates the first term on the right hand side. For the second term we
use first the stability estimate in Lemma 6.16 and subsequently the stability estimates
in Theorem 6.12 for the fully discrete state and adjoint equations which give

(6.66)

∥∥π̃D
k (zkh(q̄k)− z̄kh)

∥∥
I
≤ C ‖zkh(q̄k)− z̄kh‖I ≤ C ‖ukh(q̄k)− ūkh‖I
≤ C ‖q̄k − q̄kh‖Q .

To estimate the term q̄k − q̄kh we test the optimality conditions (6.17) and (6.30) with
δq = q̄kh and δq = q̄k respectively and add up the results. This gives

(αq̄k +Gq∗z̄k − (αq̄kh +Gq∗z̄kh) , q̄kh − q̄k)Q ≥ 0.

Hence,

α ‖q̄k − q̄kh‖2Q ≤ (z̄k − z̄kh, Gq (q̄kh − q̄k))I
= (z̄k − zkh(q̄k), G

q (q̄kh − q̄k))I + (zkh(q̄k)− z̄kh, Gq (q̄kh − q̄k))I .
(6.67)

For the second term, using the discrete state equation (6.27) followed by the discrete
adjoint (6.29) we obtain

(zkh(q̄k)− z̄kh, Gq (q̄kh − q̄k))I = B (zkh(q̄k)− z̄kh, ūkh − ukh(q̄k))

= −‖ūkh − ukh(q̄k)‖2I ≤ 0.

Therefore, Equation (6.67) gives the estimate

(6.68) ‖q̄k − q̄kh‖Q ≤ Cα
−1 ‖z̄k − zkh(q̄k)‖I .

Plugging this result into (6.66), applying Theorem 6.18 and collecting the resulting terms
on the right hand side of Equation (6.65) shows the assertion.
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6.5. Numerical validation

Corollary 6.31. For the reconstructed fully discrete solution q̃kh = PQad

(
−α−1π̃D

k z̄kh
)
,

we have the estimate

‖q̃kh − q̄‖Q ≤ C1(α)k3
{
γ(k)

∥∥∂2
t z̄
∥∥
L∞(I,H)

+
∥∥∂2

t ū
∥∥
I

+
∥∥∂2

t z̄
∥∥
I

+
∥∥∂3

t z̄
∥∥
I

+
∥∥∂2

t ∆z̄
∥∥
I

}
+ C2(α)h2

{∥∥∇2ūk
∥∥
I

+
∥∥∇2z̄k

∥∥
I

}
with C1(α) ≤ C

(
α−1 + α−

7
2

)
and C2(α) ≤ C

(
α−1 + α−2

)
.

Proof. The error is split into

‖q̃kh − q̄‖Q ≤ ‖q̃kh − q̃k‖Q + ‖q̃k − q̄‖Q ,

we estimate the first term using Lipschitz continuity of PQad
and Theorem 6.30, and the

second term by Corollary 6.27.

6.5. Numerical validation

For the numerical tests, we consider the case dQ = 1, that is, a control consisting of one
time dependent parameter. As spatial domain we use the unit square Ω = (0, 1)2. The
data and exact solutions of the test problems are stated in terms of the eigenfunctions

wk(x) = 2 sin(kπx1) sin(kπx2)

of the Laplacian on the unit square. We denote the corresponding eigenvalues by
λk = 2k2π2. The operator Gq is defined through (Gqq)(t, x) := q(t)wk(x) and for the
right hand side of the state equation we set f = 0.

For solving the discrete optimal control problem, we use the semismooth Newton
method discussed in Section 3.2. All computations were done using the software package
RoDoBo [93].

Our test example is constructed such that the third derivative of the adjoint state with
respect to time has a jump at the point where the control constraint becomes inactive.

We consider the time interval I = (1
2 , 1) and the control constraints qa = −

√
3

2α and

qb =
√

3
2α . The remaining data are chosen as

ud(t, x) = (π cos(πt)− λk sin(πt))

(
1 +

1

α(λ2
k + π2)

)
wk(x),

u

(
1

2
, x

)
=

(
πe

1
6
λk
(
π
√

3− λk
)

2λkα(λ2
k + π2)

−
√

3

2λkα

)
wk(x),

k = 1, and α = 0.1. For this choice of data, the optimal control is given by

q̄(t) =

{
−
√

3
2α , if t ≤ 2

3 ,

− sin(π(1−t))
α , otherwise.
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6. A priori analysis of a third order scheme for time parameter control with constraints
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(a) Refinement of the spatial grid for M =
16 time steps
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(b) Refinement of the time steps for tri-
angulation with N = 1050625 nodes

Figure 6.2.: Discretization error
∥∥π̃D

k z̄kh − z̄
∥∥
I

for spatial and temporal refinement

and for the optimal adjoint we obtain

z̄(t, x) =

{
z1(t)wk(x), if t ≤ 2

3 ,

sin(π(1− t))wk(x), otherwise,

where

z1(t) =
π2
√

3 cosh
(
λk
(
t− 2

3

))
+ πλk sinh

(
λk
(
t− 2

3

))
2αλ2

k

(
λ2
k + π2

)
+ sin(πt)

(
1 +

1

α
(
λ2
k + π2

))− √
3

2αλ2
k

.

We assess the L2(I,H) errors of the reconstructed adjoint for spatial and temporal
discretization separately: to investigate the error of the spatial discretization, we fix the
number of time steps at M = 16; for the temporal error we consider a fixed uniform spatial
triangulation with N = 1050625 nodes. In Figure 6.2(a), the error

∥∥π̃D
k z̄kh − z̄

∥∥
I

for a
sequence of uniform refinements of the spatial grid is shown. Second order convergence

with respect to the mesh width h =
√

1
N is observed down to where the error contribution

of the time discretization dominates.

Figure 6.2(b) shows the development of the error when refining the width k = 1
M of

the time steps. The highest numerical order of convergence we observe is about 2.85,
considerably less than predicted by Theorem 6.26. However, we note a slight increase of
the observed order of convergence as the time steps decrease, up to the point where the

110



6.5. Numerical validation

10−10

10−8

10−6

10−4

10−2

100

101 102

M

∥∥π̃D
k z̄kh − z̄

∥∥
I

O(k3)

Figure 6.3.: Discretization error
∥∥π̃D

k z̄kh − z̄
∥∥
I

for biquadratic space discretization (s = 2) with
N = 263169 nodes and uniform refinement of the time steps.

spatial discretization error becomes dominant. Hence, it is reasonable to assume that the
third order convergence will become apparent for smaller time steps and therefore can
only be observed for an even finer spatial discretization. We substantiate this assumption
by a computation using biquadratic finite elements in space, i. e., s = 2, which makes
sense here since the solutions of our test problem are smooth with respect to the spatial
variable. The result when refining the time step for a fixed spatial discretization with
N = 263169 nodes is plotted in Figure 6.3. We observe a maximal estimated order of
convergence of 2.97.

As evidence that the variational treatment of the control is in fact necessary to guarantee
the almost third order error estimate for the post-processed solution, we consider an
ODE version of the model problem (2.6). This avoids the spatial discretization error
and therefore makes it easier to observe the influence of the control treatment on
the time discretization. We compare our solution approach to two variants of control
discretization with piecewise linear discontinuous Ansatz functions. On the one hand we
consider the discretization with constraints only enforced at the Gauß nodes discussed
in Section 4.2.2. On the other hand we look at the more conventional approach where
the control constraints are enforced globally for the discrete control. Since application of
the semismooth Newton method is problematic in the latter case, we use a primal-dual
active set strategy instead, see, e. g., Kunisch and co-workers [15,63]. The scalar ODE
problem reads: Minimize

J(q, u) =
1

2

∫ 1

0
(u(t)− ud(t))2 dt+

α

2

∫ 1

0
q(t)2 dt

subject to

∂tu+ u = q, u(0) = 0, and

1 ≤ q(t) ≤ 2 a. e.
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Figure 6.4.: Discretization errors
∥∥π̃D

k z̄k − z̄
∥∥
I
,
∥∥π̃D

k z̄σ − z̄
∥∥
I
, and

∥∥π̃D
k z̄kd − z̄

∥∥
I

for the ODE
example

with q ∈ L2((0, 1)) and u ∈ H1((0, 1)). We specify the data as

ud(t) =
3

100
(2− t) +


2− 2e−t, t < 1

3 ,

6− 3t−
(

3e
1
3 + 2

)
e−t, 1

3 ≤ t ≤
2
3 ,

1 +
(

3e
2
3 − 3e

1
3 − 2

)
e−t, t > 2

3 ,

and α = 0.01. Our regularity assumptions are obviously satisfied for the given data. The
resulting optimal solutions are given by

q̄(t) =


2, t < 1

3 ,

3− 3t, 1
3 ≤ t ≤

2
3 ,

1, t > 2
3 ,

ū(t) = ud(t) +
3

100
(t− 2), and

z̄(t) =
3

100
(t− 1).

We denote the discrete optimal control, state, and adjoint resulting from the discretized
control with discretized constraints by q̄kd, ūkd, and z̄kd respectively and for the solution
with discrete control but exact enforcement of the constraints by q̄σ, ūσ, and z̄σ.

We examine the L2(I) error of the reconstructed adjoint for all three treatments of the
control on a sequence of uniformely refined temporal grids. In Figure 6.4 the development
of the errors

∥∥π̃D
k z̄k − z̄

∥∥
L2(I)

,
∥∥π̃D

k z̄σ − z̄
∥∥
L2(I)

and
∥∥π̃D

k z̄kd − z̄
∥∥
L2(I)

with respect to the

number of time steps M is shown. It can be seen that while the reconstruction obtained
from variational control treatment converges with third order, the error of π̃D

k z̄σ decreases
only with second order. The error with respect to π̃D

k z̄khd appears to converge slightly
better, however, its order is still clearly less than three.
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6.5. Numerical validation

Remark 6.32. In the example the control is piecewise linear, so the main contribution
to the observed error stems from the two discretization intervals containing kinks. For
more general examples, it can be difficult to observe the different behaviour of the two
discretizations because frequently the error caused by the kinks is dominated by the
error contribution from approximating the control on the rest of the interval. Since the
latter seems to be of third order for both, the error for the discretized control will be
dominated by the second order component originating from the kinks only for very small
time steps.
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7. A posteriori error control and hp
adaptivity

The a priori analysis presented in Chapter 6 approaches the goal of constructing a rapidly
converging higher order dG time discretization for a control-constrained parabolic problem
by carefully tailoring the discretization scheme to the regularities of the optimization
variables. In this chapter, we explore a different approach. For many problems, low
regularity occurs on the boundary between the active and inactive sets resulting from
the control constraints. Since this boundary in the case of space-independent control
frequently consists of only a few isolated kinks, typically we expect that non-smoothness
is only encountered locally in time.

In this chapter we aim at resolving this localized non-smoothness by an adaptive mesh
refinement procedure based on appropriate a posteriori error indicators. On the parts of
the time domain where the solution is smooth, we would like to profit from the good
approximation properties of high order dG schemes. However, on the parts of the time
interval where the solution is not smooth, using high order schemes implies unnecessary
overhead. Therefore, we use an hp adaptive algorithm, i. e., on time steps that are
marked for refinement by the adaptive algorithm, either the temporal grid can be refined
(h refinement) or the order of discretization can be increased (p refinement).

For an hp adaptive algorithm, two main ingredients are required. After solving the
optimization problem for a given discretization, a procedure is needed to determine
which regions of the temporal and spatial meshes need refinement in order to reach the
desired accuracy. Suitable a posteriori error indicators form the basis of this step. In
order to perform hp refinement, as opposed to pure h adaptivity, additionally we have
to decide where to increase the order and where to refine the mesh. For this purpose, an
hp refinement strategy has to be defined.

Due to the high computational cost involved in solving optimization problems with
PDE constraints, h adaptive discretization schemes for such problems have received
considerable attention in recent years. In many cases, error estimates with respect to
the energy norm of the underlying PDE are used. As an example, we mention the early
contributions [68, 70] by Liu and coworkers. For optimal control problems however, it is
frequently reasonable to base the refinement procedure on the approximation error of
the value of the cost functional. This has the desirable effect that primarily those parts
of the optimization variables are resolved well which have most influence on the cost
functional.
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Such goal oriented error estimates are usually formulated in the context of the dual
weighted residual (DWR) error estimation framework. For a general introduction to
the method, we refer to the survey article [13] by Becker and Rannacher. For parabolic
optimal control problems with dG time discretization and continuous finite elements in
space, error estimates of DWR type with respect to the cost functional are derived by
Meidner and Vexler [78]. We adapt their error estimates to our context and augment
them by estimates for the errors due to control constraints and numerical quadrature. To
approximate the exact state and adjoint solution occurring in the weights of the temporal
error estimators, we exploit the superconvergent reconstruction that was introduced in
Section 4.1.1. This allows for an interval-wise evaluation of the error estimator, implying
no restrictions for the choice of the temporal hp grid.

To our knowledge, the only works on hp discretization in the context of optimal control
problems are the articles [16,110,111] by Wachsmuth, Wurst, and co-authors that consider
spatial hp refinement for linear quadratic elliptic problems. Their approach for handling
problems with control constraints is based on the energy error. For the solution of elliptic
PDEs without optimal control, the combination of goal oriented error estimation and
hp refinement was considered for example by Heuveline and Rannacher [54] and Šoĺın
and Demkowicz [103]. Schötzau and co-authors [100–102] discuss hp adaptivity for dG
time discretization driven by a priori knowledge on the solution and energy-based error
indicators.

For the decision whether to perform h or p refinement, many different strategies have been
proposed; for an overview we refer to Mitchell and McClain [84], where the numerical
performance of thirteen hp refinement strategies is compared. The strategies producing
the optimal discretizations in this comparison rely on computing a reference solution on
a mesh that is uniformly refined in both h and p. Šoĺın and Demkowicz [103] employ
such a strategy. However, they also use the reference solution for evaluating the weights
in their DWR error estimator such that the computational effort for computing the
reference solution can be justified.

Since the reconstruction procedure from Chapter 6 allows us to evaluate the error
estimator without additional computations on finer discretizations, we would like to
avoid them also for the hp refinement strategy. Under this restriction, the strategy
performing best in Mitchell and McClain [84] is due to Mavriplis [74]. It uses the decay
rate of the Legendre coefficients of the local discrete approximation to estimate the
smoothness of the solution. The strategy we will employ here is a simple heuristics
proposed more recently by Wihler [116] and is based on a similar idea: the local
smoothness of the exact solution is estimated by monitoring certain Sobolev embedding
constants for the local discrete solution. Its main advantages are its simple structure
and the fact that it is applicable also to low order schemes.

We organize this chapter as follows: Sections 7.1 and 7.2 respectively discuss the two main
ingredients of the hp adaptive procedure, the a posteriori error indicators for the various
error contributions, and the smoothness indicator driving the hp refinement strategy. In
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7. A posteriori error control and hp adaptivity

Section 7.3 we show how they can be combined to form the complete adaptive algorithm.
Numerical results are reported in Section 7.4.

7.1. DWR error estimators for the error with respect to the
cost functional

In this section, we derive a posteriori error estimators for the discretization error with
respect to the cost functional. Our derivation is similar to the one of Meidner and
Vexler [78]. However, due to the control constraints, additional terms arise. For treating
them, we proceed similar as Vexler and Wollner [109] in the case of elliptic problems with
control constraints. A further extension becomes necessary due to the use of high order
time discretization: as noted for example by Schmich and Vexler [99] and confirmed by
some numerical experiments, the quadrature error from integrating nonlinearities and,
in particular problem data, can contribute significantly to the overall discretization error
when using high order schemes. Although we use quadrature formulas of sufficiently
high order, taking the quadrature error into account improves the accuracy of the error
prediction on coarse meshes. In [77], Meidner and Richter analyze a time stepping
scheme that can be interpreted as a Galerkin scheme with numerical quadrature. We
adopt their approach for estimating the quadrature error numerically.

As in Chapter 4, we will discuss only the case of a time dependent parameter control, i. e.,
Q = L2(I,RdQ). However, an extension of the presented error estimates to distributed
control in space is straightforward. Since we use identical time discretization for control
and state, we estimate the errors resulting from both time discretizations combined.
The error due to the spatial discretization of the state however has to be accounted for
separately in order to decide whether refinement with respect to time or space has to be
performed.

7.1.1. Derivation of the error estimators

In order to fix notation, we introduce the semidiscrete state equation with numerical
quadrature for the temporal integrals as: given qτ , find uτ ∈ Xr

k satisfying

(7.1)

M∑
m=1

[(∂tuτ , ϕ)Im +Qm (a(qτ , uτ )(ϕ))] +

M−1∑
m=1

([uτ ]m, ϕ
+
m)

+ (u+
τ,0, ϕ

+
0 ) = (u0, ϕ

+
0 ) for any ϕ ∈ Xr

k ,

where Qm : C(Īm) → R is the interpolatory quadrature rule used on interval Im for
evaluation of the temporal integrals. We assume that the quadrature rule has sufficiently
high order that bilinear terms involving only discrete quantities are integrated exactly.
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7.1. DWR error estimators for the error with respect to the cost functional

Here, we will typically use the (rm + 1)-point Gauß formula, which clearly has this
property. The time discrete optimization problem with quadrature reads

Minimize Jτ (qτ , uτ ) = Jτ1 (uτ ) + J2(u−τ,M ) +
α

2
‖qτ‖2Q

subject to

{
(qτ , uτ ) ∈ Qd ×Xr

k satisfying (7.1),

qτ ∈ Qd,ad.

(7.2)

The notation Jτ1 indicates that any temporal integrals occurring in J1 are replaced by
the chosen quadrature rule. As usual we denote the optimal solution of this problem
along with the corresponding adjoint state by (q̄τ , ūτ , z̄τ ) and the associated Lagrangian
by L̂τ .

Let Qhm denote the spatial quadrature formula employed on the mesh T mh for the mth

time interval. As for the time discretization we assume the quadrature to have sufficiently
high order that all bilinear terms in the state equation are integrated exactly. We also
ensure that the jump terms are integrated exactly. In practice this is accomplished by
working on the common refinement of two subsequent spatial discretizations. We state
the fully discrete problem with numerical quadrature as:

Minimize Jσ(qσ, uσ) = Jσ1 (uσ) + Jσ2 (u−σ,M ) +
α

2
‖qσ‖2Q(7.3)

subject to (qσ, uσ) ∈ Qd,ad ×Xr,s
k,h satisfying

M∑
m=1

(∂tuσ, ϕ)Im +

M∑
m=1

Qm
(
Qhm (a(qσ, uσ)(ϕ))

)
+

M−1∑
m=1

([uσ]m, ϕ
+
m)

+(u+
σ,0, ϕ

+
0 ) = Qh1

(
u0ϕ

+
0

)
for any ϕ ∈ Xr,s

k,h.

(7.4)

Again, the superscript σ for the two components of the cost functional indicates that
all integrals are replaced by quadrature rules. The optimal solutions are denoted by
(q̄σ, ūσ, z̄σ) and the Lagrangian by L̂σ.

To separate influences of the time and space discretization, we split the functional error
by

J(q̄, ū)− Jσ(q̄σ, ūσ) = J(q̄, ū)− Jτ (q̄τ , ūτ ) + Jτ (q̄τ , ūτ )− Jσ(q̄σ, ūσ)

into the two parts

ητ ≈ J(q̄, ū)− Jτ (q̄τ , ūτ ) and ησ ≈ Jτ (q̄τ , ūτ )− Jσ(q̄σ, ūσ)

for which we derive separate error indicators. For the convenient formulation of the
error indicators, we introduce some abbreviations. The triple consisting of optimal
control, state, and adjoint state is denoted by ξ = (q̄, ū, z̄). Correspondingly we define
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7. A posteriori error control and hp adaptivity

ξτ = (q̄τ , ūτ , z̄τ ) and ξσ = (q̄σ, ūσ, z̄σ). For given ζk = (qk, uk, zk) ∈ Q ×Xr
k ×Xr

k , the
residuals of the optimality system without quadrature are defined as

ρq(ζk)(δq) = L̂′q(ζk)(δq) = α(qk, δq)Q −
∫
I
a′q(qk, uk)(δq, zk) dt,

ρu(ζk)(ϕ) = L̂′z(ζk)(ϕ) = (u0 − u−k,0, ϕ
+
0 ) −

M∑
m=1

(∂tuk, ϕ)Im

−
M−1∑
m=1

([uk]m, ϕ
+
m) −

∫
I
a(qk, uk)(ϕ) dt,

ρz(ζk)(ϕ) = L̂′u(ζk)(ϕ) = J ′1(uk)(ϕ) + J ′2(u−k,M )(ϕ−M )− (z−k,M , ϕ
−
M )

+
M∑
m=1

(∂tzk, ϕ)Im +
M−1∑
m=1

([zk]m, ϕ
−
m) −

∫
I
a′u(qk, uk)(zk, ϕ) dt,

with δq ∈ Q and ϕ ∈ X +Xr
k .

Assumption 7.1. We assume that the continuous, time-discrete, and discrete optimal
control problems admit optimal solutions ξ, ξτ , and ξσ. Furthermore we require the
functionals J1, J2, and the semilinear form a to be three times Gâteaux differentiable
with respect to q and u.

Proposition 7.2. Under Assumption 7.1, the temporal discretization error with respect
to the cost functional admits the representation

J(q̄, ū)− Jτ (q̄τ , ūτ ) =
1

2

{
ρu(ξτ )(z̄ − πD

k z̄) + ρz(ξτ )(ū− πS
k ū)

+ρq(ξτ )(q̄ − q̄τ ) + ρq(ξ)(q̄ − q̄τ )}+ L̂(ξτ )− L̂τ (ξτ ) +Rτ

with the remainder term

Rτ =
1

2

{
ρu(ξτ )(πD

k z̄ − z̄τ ) + ρz(ξτ )(πS
k ū− ūτ ) +

∫ 1

0
L̂′′′(ξτ + seτ )(eτ , eτ , eτ )s(s− 1) ds

}
where πS

k and πD
k denote the temporal interpolation operators at the Radau nodes as

introduced in Section 4.1.1 and eτ = ξ − ξτ the difference between the exact and the time
discrete optimal triple.

Proof. For the time discretization error, we have the identity

J(q̄, ū)− Jτ (q̄τ , ūτ ) = L̂(ξ)− L̂(ξτ )︸ ︷︷ ︸
(I)

+ L̂(ξτ )− L̂τ (ξτ )︸ ︷︷ ︸
(II)

.

The term (II) represents the quadrature error for evaluating the Lagrangian and can be
estimated numerically. For the first term, we proceed as in the proof of Proposition 2.1
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7.1. DWR error estimators for the error with respect to the cost functional

in Becker and Rannacher [13] by rewriting the difference as an integral and applying the
trapezoidal rule. Setting eτ = ξ − ξτ , we get

(I) =

∫ 1

0
L̂′(ξτ + seτ )(eτ ) ds =

1

2
L̂′(ξτ )(eτ )︸ ︷︷ ︸

(III)

+
1

2
L̂′(ξ)(eτ )︸ ︷︷ ︸

(IV)

+Rτ1

with the remainder term

Rτ1 =
1

2

∫ 1

0
L̂′′′(ξτ + seτ )(eτ , eτ , eτ )s(s− 1) ds.

In the term (III), the optimal triple ξτ does not match the Lagrangian since the latter
is defined without numerical quadrature. For the state and adjoint residual, we proceed
as in Meidner and Richter [77] by inserting the desired interpolants πS

k ū and πD
k z̄. The

gradient residual is left unmodified yielding

(III) =
1

2

{
ρq(ξτ )(q̄ − q̄τ ) + ρu(ξτ )(z̄ − πD

k z̄) + ρz(ξτ )(ū− πS
k ū)
}

+Rτ2

with the remainder term

Rτ2 =
1

2

{
ρu(ξτ )(πD

k z̄ − z̄τ ) + ρz(ξτ )(πS
k ū− ūτ )

}
.

Since, as noted in Remark 6.5, the continuous state and adjoint satisfy the semidiscrete
equations, the corresponding derivatives of the Lagrangian at ξ vanish and we have

(IV) =
1

2
ρq(ξ)(q̄ − q̄τ )

Setting Rτ = Rτ1 +Rτ2 and collecting all terms shows the desired error representation
for the temporal discretization error.

Remark 7.3. 1. Assuming at least first order convergence of the discrete scheme with
quadrature, we expect that in many configurations, the remainder term Rτ2 is of higher
order than the quadrature error term (II). For a rigorous discussion in the case of
a fractional-step-θ scheme and a semilinear model problem, we refer to Meidner and
Richter [77]. The remainder term Rτ1 is the usual term encountered in DWR error
indicators and is typically expected to be of higher order as well.
2. If no control constraints are present, the gradient condition is satisfied with equality.
Hence, the two control residual terms vanish, and—apart from the modifications due to
quadrature error—we get the usual error representation for a problem without inequality
constraints as given in Meidner and Vexler [78].
3. On time intervals where both, q̄ and q̄τ are inactive, the control residuals vanish.
Where both controls are active over the whole discretization interval, they cancel each
other out. Therefore, the control residuals can be considered as a measure for the error
caused by mismatch between the active sets of the continuous and semidiscrete solutions.
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7. A posteriori error control and hp adaptivity

Additionally, they account for errors due to the difference between the admissible sets
Qad and Qd,ad.
4. Vexler and Wollner [109] derive their error representation from an extended Lagrangian
that contains separate multipliers for the inequality constraints. However it can be
verified that the resulting terms containing the residuals with respect to control and
multiplier are equivalent to the sum of the control residuals at the exact and at the
discrete solution, weighted by the difference of the solutions. Therefore our representation
for the discretization error is actually very similar to theirs.

For the spatial error indicator, we have the following representation. The proof is
virtually identical to the time discretization error.

Proposition 7.4. Under Assumption 7.1, the spatial discretization error with respect
to the cost functional can be represented as

J(q̄τ , ūτ )− Jτ (q̄σ, ūσ) =
1

2
{ρτu(ξσ)(z̄τ − ihz̄τ ) + ρτz(ξσ)(ūτ − ihūτ )

+ρτq (ξσ)(q̄τ − q̄σ) + ρq(ξτ )(q̄τ − q̄σ)
}

+ L̂τ (ξσ)− L̂σ(ξσ) +Rσ

with the remainder term

Rσ =
1

2

{
ρτu(ξσ)(ihz̄τ − z̄σ) + ρτz(ξσ)(ihūτ − ūσ)

+

∫ 1

0
(L̂τ )′′′(ξσ + seσ)(eσ, eσ, eσ)s(s− 1) ds

}
where ih : Xr

k → Xr,s
k,h is defined interval-wise as the standard nodal interpolation operator

into the space Vh,m applied pointwise in time and eσ = ξτ − ξσ denotes the difference
between the time discrete and the fully discrete solution triple. The residuals ρτu, ρτz ,
and ρτq are obtained from ρu, ρz, and ρq by replacing all temporal integrals with the
corresponding quadrature rule.

Remark 7.5. Although the control discretization does not change when moving from
the time discrete to the fully discrete problem, the two control residual terms do not
vanish when inequality constraints are present. This is due to the fact that the space
discretization of the state will in general affect the active and inactive sets for the control
constraints.

7.1.2. Practical realization

In this section we show how the abstract error representations given in Propositions 7.2
and 7.4 can be used to construct computable a posteriori error indicators ητ and ησ, and
how the error contributions can be localized.
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7.1. DWR error estimators for the error with respect to the cost functional

Temporal estimator

We recall the representation for the time discretization error from Proposition 7.2

(7.5) J(q̄, ū)− Jτ (q̄τ , ūτ ) =
1

2
ρu(ξτ )(z̄ − πD

k z̄) +
1

2
ρz(ξτ )(ū− πS

k ū)︸ ︷︷ ︸
(I)

+
1

2
ρq(ξτ )(q̄ − q̄τ ) +

1

2
ρq(ξ)(q̄ − q̄τ )︸ ︷︷ ︸

(II)

+ L̂(ξτ )− L̂τ (ξτ )︸ ︷︷ ︸
(III)

+Rτ .

This error representation still depends on several unknown quantities, which we have to
approximate by suitable means. For this purpose, we discuss each of the terms (I) to
(III) separately. The remainder term Rτ is dropped for numerical evaluation.

For the state and adjoint residuals collected in (I), the weights z̄ − πD
k z̄ and ū − πS

k ū
have to be approximated. The superconvergence results shown in Chapter 6 serve as
a motivation to replace ū and z̄ by the higher order reconstructions π̂S

k(u0, ūτ ) and
π̂D
k (z̄+

τ,M , z̄τ ) of the semidiscrete solutions where the terminal value z̄+
τ,M is given by the

identity (z̄+
τ,M , ϕ) = J ′2(ū−τ,M )(ϕ) for any ϕ ∈ V . We note that true superconvergence of

the reconstruction is not required here, as long as the local interpolation error is captured
well enough. Therefore, although we did not discuss whether a suitable generalization of
the superconvergence result of Theorem 6.15 also holds for a variable order discretization
and although regularity requirements might be violated for higher orders, it is still
reasonable to expect the approximation of the weight via reconstruction to be sufficient.

If the order is r = 0, the reconstruction operator π̂S
k interpolates the values of the solution

at the end of each discretization interval with a piecewise linear function. This means
it is identical to the usual reconstruction employed in this case (see, e. g., Meidner and
Vexler [78]).

After approximation of the weights, the error representation still depends on the time-
discrete solution ξτ . However, only the fully discrete solution ξσ is accessible numerically.
Therefore, we replace all time-discrete quantities by their fully discrete counterparts. For
convenience of notation, we write the resulting reconstructions as

ũ := π̂S
k(ū−σ,0, ūσ) and z̃ := π̂D

k (z̄+
σ,M , z̄σ)

where ū−σ,0 is the L2 projection of the initial value onto the space Vh,1 and z̄+
σ,M denotes

the terminal value for the optimal adjoint of the fully discrete problem. Taking note
of the identities πS

k ◦ π̂S
k = Id and πD

k ◦ π̂D
k = Id for functions in Xr

k , we obtain the
computable approximation

(7.6) (I) ≈ 1

2
ρu(ξσ) (z̃ − z̄σ) +

1

2
ρz(ξσ) (ũ− ūσ) =: η1

τ .

The evaluation of the state and adjoint residual terms can be simplified by a structural
observation about the weight functions which is found as part of Lemma 2.2 in Makridakis
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and Nochetto [71]. On each discretization interval Im, the weight ũ− ūσ is a polynomial
of degree rm + 1 that vanishes at the rm + 1 Radau points θSm,j with j = 0, . . . , rm and

takes the value [ūσ]m−1 at the left end point tm−1 of the interval. Let `Sm denote the
Lagrange polynomial of degree rm + 1 that is one at tm−1 and zero at all θSm,j . Then
obviously, the weight satisfies

ũ− ūσ
∣∣
Im

= −[ūσ]m−1 `
S
m

for m = 1, . . . ,M . Recalling the definition of the adjoint residual ρz, we see that the
jump terms vanish since the left limit of the weight function at each temporal node is
zero. Additionally we note that the term involving the time derivative of the adjoint is an
intervalwise polynomial of degree 2rm. The (rm + 1)-point Radau quadrature integrates
such a polynomial exactly and since the weight function is zero at the quadrature nodes,
also the time derivative terms vanish. Together, the adjoint residual has the simplified
representation

(7.7) ρz(ξσ) (ũ− ūσ)

=

M∑
m=1

{
J ′1(ūσ)(−[ūσ]m−1 χIm `

S
m)−

∫
Im

a′u(q̄σ, ūσ)(z̄σ,−[ūσ]m−1 `
S
m) dt

}
.

In the same way, using the Lagrange polynomial `Dm ∈ Prm+1(Im) that is one at the right
interval boundary and zero at the reversed Radau nodes θDm,j with j = 0, . . . , rm, we
obtain the identity

z̃ − z̄σ
∣∣
Im

= [z̄σ]m `
D
m

for m = 1, . . . ,M . The resulting representation for the state residual reads

(7.8) ρu(ξσ) (z̃ − z̄σ) = −
M∑
m=1

∫
Im

a(q̄σ, ūσ)([z̄σ]m `
D
m) dt.

To evaluate the control residuals collected in the term (II) of Equation (7.5), an
approximation for the exact control q̄ is required. Since the smoothness of q̄ is limited by
the control constraints, we cannot expect an interpolation of q̄τ into a space with higher
polynomial order to yield an improved approximation. Therefore we follow the approach
of Vexler and Wollner [109] and reconstruct an improved control q̃ by a post-processing
step. For this purpose, we evaluate the projection condition (3.11c∗) using again the
higher order reconstructions for state and adjoint. Due to the true time-discrete solutions
being inaccessible for numerical computation, we once again substitute the fully discrete
values. The reconstructed control reads

q̃ = PQad

(
− 1

α
Gimpl (q̄σ, ũ, z̃)

)
.
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7.1. DWR error estimators for the error with respect to the cost functional

Then the control residual for the time-discrete solution can be evaluated after replacing
semidiscrete by discrete quantities. In place of the exact solution quantities in the second
control residual term we use the approximation ξ̃ = (q̃, ũ, z̃) such that we get

(7.9) (II) ≈ 1

2
ρq(ξσ)(q̃ − q̄σ) +

1

2
ρq(ξ̃)(q̃ − q̄σ) =: η2

τ .

When evaluating those two terms in practice, it has to be taken into account that
the control reconstruction q̃ can be non-smooth also in the interior of a discretization
interval. Therefore care has to be taken to ensure sufficient accuracy when integrating
the residuals. For a modest number dQ of control parameters it is feasible to use an
adaptive quadrature algorithm such as the one given by Gander and Gautschi [43] for
this purpose. This ensures a sufficiently accurate resolution of possible kinks in the
reconstructed control q̃.

Finally, in the third term in (7.5) stemming from the quadrature error, we replace the
semidiscrete by the discrete solution yielding

(7.10) (III) ≈ L̂(ξσ)− L̂τ (ξσ) =: η3
τ .

Collecting the terms from Equations (7.6), (7.9), and (7.10), we get the temporal error
indicator

(7.11) ητ = η1
τ + η2

τ + η3
τ .

To make evaluation of this error estimator feasible in practice, we approximate the
occurring exact integrals by some suitable quadrature procedure that is more accurate
than the one used in the computation of the discrete solution. We opt for subdividing the
discretization intervals into a number of microintervals and applying the (rm + 1)-point
Gauß rule on each of them.

Since the goal of an adaptive procedure is not only an accurate estimation of the overall
discretization error but also the targeted refinement of those parts of the discretization
that contribute most to the global error, localized error information for each time interval
is needed besides the global error indicator ητ . Localizing the contributions η1

τ and η3
τ

is straightforward since both record interval-wise information: the weights in η1
τ are

approximations of local interpolation errors, and quadrature errors occur independently
on each discretization interval.

The control residual terms in η2
τ contain an approximation of the difference between

exact and discrete control as weight. So an error measured on one interval can not
necessarily be reduced by refining that particular interval because the weight is a global
quantity. This is a difficulty encountered generally when applying a dual weighted
residual type error estimator to a problem with control constraints. It also arises for the
error estimators given by Wollner and Vexler. Therefore, although there is no rigorous
justification, we localize also η2

τ by splitting the residuals into interval-wise contributions.
In practice, we observed that η2 was usually considerably smaller than η1

τ and that it
decreased with approximately the same rate.
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Spatial estimator

The weights in the representation for the spatial error given in Proposition 7.4 depend
on the unknown semidiscrete solution variables q̄τ , ūτ , and z̄τ . To derive a computable
error indicator, we proceed in the same way as for the temporal error estimator and
approximate them by an improved reconstruction ξ̃τ = (q̃τ , ũτ , z̃τ ) computed from the
discrete solutions q̄σ, ūσ, and z̄σ. In the case of bilinear elements (s = 1), we use the
usual patch-wise biquadratic interpolation operator (see, e. g., Meidner and Vexler [78])

for the reconstruction of state and adjoint, which we denote i
(2)
2h : Xr,1

k,h → Xr,2
k,2h. We

set ũτ = i
(2)
2h ūσ and z̃τ = i

(2)
2h z̄σ. A post-processing step gives a corresponding control

reconstruction

q̃τ = PQd,ad

(
− 1

α
Gimpl (q̄σ, ũτ , z̃τ )

)
.

With the identity ih ◦ i
(2)
2h = Id, the resulting error indicator reads

(7.12)

ησ =
1

2

{
ρu(ξσ)(z̃τ − z̄σ) + ρz(ξσ)(ũτ − ūσ) + ρq(ξσ)(q̃τ − q̄σ) + ρq(ξ̃τ )(q̃τ − q̄σ)

}
+ L̂τ (ξσ)− L̂σ(ξσ)

Same as for the time discretization error, exact spatial integrals have to be approximated
by some more accurate quadrature formula. For biquadratic elements (s = 2), we use an

interpolation operator i
(4)
2h : Xr,2

k,h → Xr,4
k,2h into the space of patch-wise bi-quartic elements

instead of the operator i
(2)
2h . Subsequently, we will not consider spatial discretizations

with even higher order.

Concerning the localization of the spatial error indicators, we follow the approach of
Braack and Ern [18] for treating the state and adjoint residual terms, which allows to
filter out oscillatory behaviour. For a detailed description in the setting of parabolic
optimal control problems, we refer to Meidner [76]. The quadrature error terms are
already defined in terms of local contributions. More problematic is the question of
a suitable localization for the control terms. For time dependent parameter control
they do not contain information on the spatial distribution of the origin of the error.
Therefore we propose to localize them only in time and distribute the resulting error
terms uniformly to all cells of the spatial grid corresponding to each time step.

7.2. Smoothness indicator based on continuous Sobolev
embeddings

To decide whether to perform h or p refinement on a given time interval marked for
refinement, we use a heuristic proposed by Wihler [116] to estimate the smoothness
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properties of the solution. It is based on the observation that for the one-dimensional
embedding

H1(I) ↪→ L∞(I),

the embedding constant given by

sup
v∈H1(I),v 6=0

‖v‖L∞(I)

‖v‖H1(I)

is attained for a very smooth v whereas if v approaches a non-smooth function, i. e., a
function in L∞ which is not in H1, the quotient of the norms approaches zero. This
observation is exploited by monitoring this quotient for appropriate derivatives of the
discrete approximation. If the quotient grows too small, we assume that the function
being approximated by the discretization is not contained in the considered Sobolev
space.

Here, we will adopt an improved formulation of this smoothness indicator given by
Fankhauser, Wihler, and Wirz in [39]. For each discretization interval Im, we consider
the functional Sm : H1(Im, H)→ R given by

(7.13) Sm(v) =

‖v‖L∞(Im,H)

(
k
− 1

2
m ‖v‖Im +

√
km
2 ‖∂tv‖Im

)−1

, if v 6= 0,

1, if v = 0.

Proposition 7.6. The smoothness indicators Sm for m = 1, . . . ,M can be bounded by

0 ≤ Sm(v) ≤ 1

for any v ∈ H1(Im, H). If v is constant in time, they take the value 1.

Proof. Both parts of the claim are shown for scalar functions in the proof of Proposition 1
in [39]. However, the proofs given there apply without changes to H-valued functions.

From Theorem 6.13 we know that a dG(r) discretization converges with optimal order
r+ 1 with respect to the L2(I,H) norm if the solution is in Hr+1(I,H). Therefore when
deciding for a given interval Im whether to increase the order rm in the next iteration to
rm+1, it would be ideal to check whether the exact solution is in Hrm+2(Im, H). However,
since the discrete solution is a polynomial of degree rm on Im, all time derivatives of
order greater than rm vanish. Therefore the smoothness indicator Sm yields no useful
information when applied to the r th

m or any higher time derivative of the discrete solution.

Wihler [116] proposes to base p-refinement decisions on the value of Sm(∂rm−1
t uk) where

uk is the discrete solution. While this is possible for any piecewise polynomial dis-
cretization of order one or greater, specifically for dG time discretization, there is a
further possibility. Since the reconstructions π̂S

k and π̂D
k offer a—typically even more

accurate—approximation of the exact solution which has one polynomial order more
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7. A posteriori error control and hp adaptivity

than the discrete solution, we can also evaluate the smoothness indicators for the r th
m

time derivative of the reconstructed solution. An added benefit is that smoothness
information can also be obtained on intervals with order rm = 0.

For our optimal control problem, we propose to monitor the smoothness of state and
adjoint variable. We will not consider a smoothness indicator for the control variable
since there is no meaningful higher order reconstruction for the control available in the
presence of constraints. However, limited temporal regularity of the control will typically
also limit the temporal regularity of the state solution, therefore, to a certain extent, it
should be captured by the smoothness indicator for the state solution.

This leads to the following simple refinement strategy: on each interval Im that is marked
for refinement, we compute the values

SSm = Sm
(
∂rmt

[
π̂S
kuσ

∣∣
Im

])
and SDm = Sm

(
∂rmt

[
π̂D
k zσ

∣∣
Im

])
.

These values are compared to a threshold value τ̂ , which is fixed a priori. If one of the
smoothness indicators is less than τ̂ , the time interval is refined by bisection; if both
indicators exceed the threshold, indicating a sufficiently smooth local solution, the order
rm is increased instead.

Concerning the choice of the threshold value, we note that the r th
m time derivative of

the higher order reconstruction on the interval Im is a linear polynomial with respect to
time. In [39], it was shown that for scalar linear polynomials, the smoothness indicator

is bounded from below by
√

3√
6+1
≈ 0.502. Therefore, a sensible value for τ̂ should be

larger than this bound.

7.3. Adaptive algorithm

The adaptive algorithm follows the usual pattern with a main loop consisting of the four
steps

solve→ estimate→mark→ refine.

We give a brief description of each of them.

The step solve involves solving the optimal control problem on the current discretization
with the proposed semismooth Newton trust region algorithm, see Algorithm 3.1. As
a result, we get the optimal triple (q̄σ, ūσ, z̄σ). Since the reconstruction of the control
used in the a posteriori error indicators relies on the assumption that the computed
solution satisfies the discrete optimality system, an accurate error estimation can only
be expected if the optimization algorithm has converged to a reasonably low tolerance.

Within the estimate operation, the error indicators ητ and ησ are evaluated as described
in Section 7.1. Additionally, the corresponding localized error contributions have to be
stored. For the temporal error estimator this results in one local error indicator ηmτ for
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Algorithm 7.1 Adaptive algorithm with hp adaptivity in time and h adaptivity in
space.

1: chose an initial temporal mesh given by the node vector k and the order vector r
and spatial meshes Tm for each time step

2: loop
3: solve the discrete optimal control problem (7.3) with Algorithm 3.1
4: compute the error indicators ητ and ησ by (7.11) and (7.12) and store local

contributions
5: if desired accuracy reached then
6: break
7: end if
8: if ce |ησ| > |ητ | then
9: determine spatial cells to be refined by Dörfler marking

10: compute new spatial grids by refining the marked cells
11: end if
12: if ce |ητ | > |ησ| then
13: determine time intervals to be refined by Dörfler marking
14: for each marked interval Im do
15: evaluate SSm and SDm
16: if min(SSm,SDm) ≥ τ̂ then
17: set discretization order on Im to rm + 1
18: else
19: refine Im by inserting a new temporal node
20: end if
21: end for
22: end if
23: end loop

each time interval Im and for the spatial estimator, we get localized indicators ηm,nσ with
n = 1, . . . , Nm and m = 1, . . . ,M for each spatial node on each time interval.

Based on the localized error indicators, the mark step decides which time discretization
intervals and which spatial grid cells require refinement. For an efficient space-time
discretization, it is desirable to balance the spatial and temporal discretization errors.
This can be done by an equilibration strategy as discussed for example in Meidner and
Vexler [78]. We fix an equilibration constant ce > 1 of moderate size. The spatial
discretization is considered for refinement whenever ce |ησ| > |ητ | and conversely the
time discretization is refined when ce |ητ | > |ησ|. Consequently, if both errors differ by
a factor larger than ce, we do not mark any cells of the discretization with the smaller
error for refinement.

For the marking itself, many different criteria have been proposed. Since the models
involved in mesh optimization approaches like the one described in Richter [90] become
rather complex when working on hp grids, we opt for a simple marking strategy which is
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7. A posteriori error control and hp adaptivity

a variant of the approach originally proposed by Dörfler [30]. We apply it separately to
the space and time discretizations. Given a set of local error indicators

{
ηj
∣∣ j ∈M}

with some index set M, a minimal subset R ⊆M is determined such that∑
j∈R

∣∣ηj∣∣ ≥ θD ∑
j∈M

∣∣ηj∣∣
with a chosen parameter θD ∈ (0, 1). In practice this is accomplished by sorting the error
indicators by absolute value. Subsequently, the discretization cells corresponding to the
index set R are marked for refinement. The parameter θD controls how aggressively the
mesh is being refined. While θD = 1 would correspond to global refinement, smaller
values cause less cells to be refined in each iteration. Whereas a careful refinement tends
to lead to a more optimized final mesh, this has to be traded off against the cost of the
higher number of mesh adaption iterations required to reach a prescribed error tolerance.
For practical purposes, we have found values around θD = 0.5 to yield a reasonable
balance.

After having marked subsets of spatial cells and time discretization intervals, the final
step refine performs the actual refinement. For the spatial discretization, which in our
case has fixed polynomial order s, we can rely on well-tested strategies, which also ensure
that the new meshes still satisfy the mesh regularity assumptions made in Section 4.1.2
with regard to hanging nodes and patch structure. This is accomplished by refining
further cells where necessary.

When refining the marked time intervals, a decision has to be made for each interval
whether to perform h or p refinement. For this purpose, the smoothness indicators SSm
and SDm are evaluated. If min(SSm,SDm) ≥ τ̂ , then the discretization order rm on the
current interval is increased by one, otherwise the interval is split into two subintervals
and each of them is assigned the order rm.

An outline of the complete adaptive algorithm is given in Algorithm 7.1.

7.4. Numerical tests

Subsequently we present test results for the adaptive algorithm on the three test examples
introduced in Section 2.3. For the linear quadratic model problem and the semilinear
problem, we increase the difficulty through the choice of the problem data.

7.4.1. Linear quadratic model problem

In this section we revisit the linear quadratic model problem introduced in Section 2.3.1.
To test how well the adaptive solver handles rapidly changing temporal dynamics and
non-smoothness in time, we select on the one hand a small value for the regularization
parameter α, leading to an optimal control which approaches bang-bang structure on
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Figure 7.1.: Optimal control q̄ for the model problem

part of the time interval. On the other hand, we chose a desired state with a discontinuity
with respect to time. Additionally, the initial state is specified far from the desired state
such that a large control activity at the beginning of the discretization interval needs to
be resolved.

For the time interval and the spatial domain, we consider I = (0, 1) and Ω = (0, 1)2. As
in Section 6.5, the problem data are specified in terms of the first eigenfunction of the
Laplacian given by

(7.14) w1(x) = 2 sin(πx1) sin(πx2).

and we consider a one-dimensional time parameter control (i. e., dQ = 1) with the control
operator defined by Gq(q)(t) = q(t)w1. The remaining problem data are given by

f = 0, u0 = −200w1, ud(t, x) =

{
−w1(x), where t < 2

3 ,

w1(x), where t ≥ 2
3

,

qa = −2, qb = 200, and α = 10−4. The resulting optimal control q̄ can be seen in
Figure 7.1. We note that there is very large control activity up to around t = 0.14 in
order to steer the state from the initial value closer to the desired state. Up to about
t = 2

3 the control approaches a bang bang structure, and after that, it transitions into a
free arc with an additional discontinuity in the first derivative caused by the jump in
the desired state. From a computation on a fine uniform discretization with 1024 dG(4)
steps in time and biquadratic finite elements in space, we obtain a reference value J̄ for
the cost functional at the optimum (q̄, ū).

To investigate whether the proposed smoothness indicators are suited to detect the local
temporal irregularities of the optimal solution (q̄, ū, z̄), we solve the problem for various
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Table 7.1.: Effectivity index Iτeff for uniform time discretization with M time steps and fixed
order r on a fixed spatial discretization

M
\ r 0 1 2 3 4 5 6 7

2 12.66 4.96 4.02 4.81 -1.74 1.55 0.81 -0.04
4 4.27 3.40 4.06 2.09 -0.90 -0.65 0.06 0.53
8 2.37 2.08 1.62 1.22 2.49 0.37 -1.08 0.89
16 1.65 1.50 1.35 0.39 0.54 -0.70 0.46 1.04
32 1.32 1.23 1.28 -1.28 0.67 0.52 1.48 0.75
64 1.16 1.11 -0.16 0.71 0.91 0.89 0.57 0.47
128 1.08 1.04 0.90 1.74 1.19 0.91 0.75 0.72
256 1.04 1.02 1.32 1.18 1.23 1.06 0.96 0.63

orders of the time discretization on an equidistant time grid with M = 32 intervals, and
a fixed uniform spatial discretization with biquadratic elements and N = 1089 degrees
of freedom.

In Figures 7.2(a) to 7.2(d), we plot the resulting values of the smoothness indicators
SSm and SDm exemplary for orders r = 0, 2, 4, 6. For reference, we also include the
corresponding discrete optimal control q̄σ. Clearly, for all displayed orders, the smoothness
indicators identify the transitions between active and inactive sets as regions with reduced
regularity of the state. For the adjoint state, the lack of regularity at the jump of the
desired state is indicated. The results for odd time discretization orders are similar.

To assess the quality of the hp adaptive time refinement independent from the spatial
discretization at first, we consider once again a fixed biquadratic spatial discretization,
this time with N = 289 nodes. A reference value J̄h of the functional for this space
discretization is obtained by solving with constant order 4 on a fine uniform time grid
with M = 8192 time steps. To assess the quality of the temporal error estimator, we
define the effectivity index

Iτeff =
J̄h − Jσ(q̄σ, ūσ)

ητ
.

In Table 7.1, the values of this effectivity index for uniform temporal grids and fixed
order r are listed. For orders 0 and 1 we observe relatively accurate error quantification
as soon as the temporal grid is fine enough to resolve the basic features of the solution.
For the higher orders however, we see some outliers which are presumably related to the
fact that higher order polynomials can fail to approximate the non-smooth features of
the solution even qualitatively.

For the hp-adaptive algorithm, we set the parameter controlling the hp-refinement
strategy to τ̂ = 0.6 and start the computation with a dG(1) discretization consisting of 4
intervals. In Table 7.2 , we list the resulting number of time steps M , the total number
of temporal degrees of freedom Mtot =

∑M
m=1(rm + 1), and the effectivity index for

each iteration. Despite the low number of temporal degrees of freedom and the varying
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(a) order r = 0
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(b) order r = 2
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(c) order r = 4
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(d) order r = 6

Figure 7.2.: Values of the smoothness indicators SSm and SDm for discrete solutions on M = 32
time intervals and N = 1089 spatial degrees of freedom
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|J̄
h
−
J

(q̄
σ
)|

Mtot

hp solution
uniform r = 1
uniform r = 4
uniform r = 7

M Mtot Iτeff

4 8 3.40
5 10 2.08
5 11 1.59
5 12 1.39
6 15 1.82
6 16 2.55
7 18 2.34
8 22 0.87
9 25 0.43

10 29 1.05
11 32 1.18
11 33 0.96

Figure 7.3 & Table 7.2: Convergence plot and effectivity indices for hp-adaptive time dis-
cretization of the linear model problem on fixed spatial grid

order of discretization, the accuracy of the error estimation appears to be at least as
good as for the uniform discretizations. A convergence plot, comparing the convergence
speed with respect to the cost functional to uniform time discretizations of orders 1,
4, and 7, is given in Figure 7.3. We observe that the adaptive procedure requires a
considerably lower number of degrees of freedom to approximate the cost functional to a
given accuracy than any of the uniform discretizations.

To test the error equilibration between time and space discretization, we run the full
Algorithm 7.1 on the model problem. The initial discretization consists of 4 time intervals
with dG(1) and a biquadratic spatial discretization with N = 81 nodes. Due to the simple
structure of the solutions in space, we keep the spatial mesh fixed over the whole time
domain. The equilibration factor ce is set to 5. From the results reported in Table 7.3,
we see that the equilibration leads to fast convergence of the overall error. Besides, it can
be observed that the value of the spatial error indicator is practically independent from
the temporal discretization. The effectivity index for the full discretization is given by

Ieff =
J̄ − Jσ(q̄σ, ūσ)

η
.

The temporal mesh produced in the final iteration of the hp adaptive procedure is
visualized in Figure 7.4. For reference, we also visualize the resulting discrete control.
Whereas the large control activity at the beginning of the discretization interval is
resolved by p-refinement, the two critical areas are resolved by h-refinement at order 2.
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Table 7.3.: Space-time adaptivity with error equilibration and variable temporal order for the
linear model problem

M Mtot N ητ ησ J̄ − Jσ(q̄, ū) Ieff

4 8 81 4.234 · 101 2.347 · 10−1 1.444 · 102 3.39
5 10 81 2.155 · 101 2.481 · 10−1 4.500 · 101 2.06
5 11 81 1.675 · 100 2.291 · 10−1 2.888 · 100 1.52
5 12 81 1.304 · 10−1 2.258 · 10−1 3.991 · 10−1 1.12
6 15 289 8.234 · 10−2 1.386 · 10−2 1.638 · 10−1 1.70
6 16 289 2.583 · 10−2 1.384 · 10−2 7.950 · 10−2 2.00
7 18 1089 1.427 · 10−2 8.636 · 10−4 3.428 · 10−2 2.26
8 22 1089 1.217 · 10−2 8.638 · 10−4 1.145 · 10−2 0.88
9 25 1089 2.236 · 10−3 8.638 · 10−4 1.829 · 10−3 0.59
10 29 1089 4.039 · 10−3 8.636 · 10−4 5.092 · 10−3 1.04
11 32 4049 1.924 · 10−3 6.279 · 10−5 2.331 · 10−3 1.17
11 33 4049 7.769 · 10−4 6.279 · 10−5 8.112 · 10−4 0.97
12 37 4049 3.231 · 10−4 6.279 · 10−5 2.370 · 10−4 0.61
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Figure 7.4.: Temporal mesh produced by Algorithm 7.1 for the linear quadratic model problem
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Figure 7.5.: Convergence of the functional value for hp-adaptive discretization of the semilinear
problem

7.4.2. Semilinear problem with incompatible terminal observation

We consider the semilinear problem given in Section 2.3.2 on the unit square Ω = (0, 1)2

and the unit time interval (0, 1). As problem data, we specify u0 = 0, f = 0, ud = 1,
qa = −1, qb = 1, and α = 10−2. The control consists of two time-dependent functions
(i. e., dQ = 2) and the control-to-right-hand-side operator Gq is given by Gq(q1, q2) =
q1w1(x) + q2, where w1 again denotes the first eigenfunction of the Laplacian as defined
in (7.14).

The particular challenge in the problem setup lies in the choice of the desired state
ud = 1 which is not contained in the space V . This results in an incompatible terminal
condition—and therefore a startup singularity—for the adjoint equation. For the space
discretization of the problem, we use Q2 elements and a reference solution is obtained by
a computation with dG(4) on a fine temporal and spatial mesh. Since we do not expect
the solution to have features that travel through the spatial domain, we do not consider
moving meshes, but rather use the same spatial discretization for the whole time domain.

A convergence plot for the full hp adaptive algorithm is given in Figure 7.5 For refer-
ence, we included the results of a uniform discretization in space and time with error
equilibration and dG(4) elements. We remark that in the last iterate of the adaptive
computation, the time discretization uses as little as 12 time intervals with 41 temporal
degrees of freedom. The corresponding hp mesh can be seen in Figure 7.4. Strong h
refinement can be seen at the end of the time interval, where the startup singularity
of the adjoint has to be resolved. Moving away from the singularity, gradually both
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Figure 7.6.: Temporal mesh produced by Algorithm 7.1 for the semilinear problem

Table 7.4.: Space-time adaptivity for the combustion problem with moving meshes and variable
temporal order

M Mtot Nmax dimXr,s
k,h ητ ησ J̄ − Jσ(q̄, ū) Ieff

140 280 2833 793240 1.708 · 10−2 −8.793 · 10−2 2.730 · 10−1 -3.85
163 335 3599 1052583 −3.223 · 10−4 1.248 · 10−1 1.978 · 10−1 1.59
163 335 5575 1344053 −2.506 · 10−3 7.024 · 10−2 8.319 · 10−2 1.23
164 337 10059 2020319 −2.778 · 10−3 2.673 · 10−2 3.088 · 10−2 1.29
167 374 16917 3736426 −5.279 · 10−4 1.378 · 10−2 8.711 · 10−3 0.66
171 382 25855 5554526 −1.116 · 10−4 9.732 · 10−3 6.561 · 10−3 0.68

the time step size and the order are increased up to the irregularity due to the control
becoming inactive, which is resolved with h refinement at order 3.

7.4.3. Combustion problem

In this section we revisit the combustion control problem introduced in Section 2.3.3.

To test adaptivity in space and time for the combustion problem, we start with an initial
discretization consisting of M = 80 equidistant dG(1) time steps and bilinear finite
elements in space on a uniform grid consisting of N = 2833 nodes. Presumably due
to reentrant corners in the domain, in our experiments, the increased accuracy of Q2

elements did not justify their higher computational cost. For an accurate solution of the
problem, the travelling flame front has to be resolved in space. Hence, for an efficient
solution, it is crucial to allow the spatial mesh to vary over time. In Figures 7.7(a)
to 7.7(c), we plot the spatial grids, the fluid concentration Y , and the associated
component of the adjoint state for a few selected time steps to give an impression of the
solution and the effects of adaptivity in space. It can be seen that the spatial meshes
resolve the features of both solutions comparatively well.
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(a) t = 10

(b) t = 27

(c) t = T = 40

Figure 7.7.: Adapted spatial mesh, concentration component Y of the state solution and
corresponding component of the adjoint for selected time steps
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Figure 7.8.: Control and temporal grid for the last iteration of the adaptive algorithm for the
combustion problem

In Table 7.4, the results produced by the adaptive algorithm are listed. The reference
value J̄ ≈ 18.66172 for the cost functional was obtained from additional iterations of the
adaptive algorithm. This is due to the fact that a computation on a uniformly refined
discretization with dimXr,s

k,h = 414 259 800, which took more than 8 CPU months to
complete, was only able to confirm the first three significant digits.

The increase in the number of temporal grid cells observed in Table 7.4 is for the most
part not caused by adaptive refinement but rather results from convergence failures
of the time stepping solver. We also see that the temporal error seems to decrease
considerably faster than the spatial error. This highlights on the one hand the superior
accuracy of higher order dG methods over more conventional schemes like implicit
Euler. On the other hand it shows that for solving this type of problem with high
accuracy requirements, the hp time discretization should be complemented by a space
discretization of comparable accuracy. Since an appropriate discretization has to resolve
features like reentrant corners in the domain and steep gradients around the flame front,
we would expect hp adaptivity on the space domain to be the most promising approach
for this purpose.
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7. A posteriori error control and hp adaptivity

In Figure 7.8, we depict the temporal mesh used during the last iteration of the adaptive
algorithm, along with the corresponding discrete optimal control. Looking at the
distribution of the few temporal p-refinements that take place, we see that as we would
expect for terminal observation, mainly the end of the time interval needs to be resolved
with higher accuracy. As already pointed out, practically all h-refinements visible where
not triggered by the adaptive algorithm but by convergence failures of the time stepping
solver.
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8. Conclusion and outlook

In this work we demonstrated the viability of higher order discontinuous Galerkin methods
as an efficient means of time discretization for optimal control problems governed by
parabolic PDEs. Two key questions we identified in this context were how to efficiently
solve the resulting large equation systems for the time step equations and how to obtain
fast convergence in spite of relatively low regularity of the solutions of optimal control
problems when additional inequality constraints are present.

To address the first question, we proposed an approximation of the Newton update
matrix for the time stepping equation based on ideas originally developed by Cooper
and Butcher [26] for Runge-Kutta methods. This approximation results in a simplified
update system where the temporal components of the solution decouple and therefore in
a significant reduction of the computational cost per solver iteration. The implications
of this approximate decoupling on the convergence of the time stepping solver were
analyzed in detail. For linear problems with constant coefficients, we established fast
linear convergence of the resulting scheme independent of the size of the time step.
Numerical results showed that the proposed scheme compared favourably to other
approaches in terms of computational costs.

For the second question of dealing with the regularity restrictions caused by control
constraints, we presented two approaches. The first one was exploiting the improved
regularity of the adjoint state over control and state to construct a discretization that
achieves globally almost third order convergence with respect to the time step. It is
based on a piecewise linear dG time discretization combined with variational treatment
of the control variable and a post processing step using superconvergence properties
of the discontinuous Galerkin method. For this scheme, we carried out a rigorous a
priori error analysis for a linear-quadratic model problem resulting in error estimates of
optimal order.

Our second approach to resolving irregularities caused by inequality constraints was
to resolve them by adaptive hp refinement of the time discretization. We developed
an hp-adaptive procedure for the time discretization, coupled with h-adaptivity for the
spatial discretization and tested it on three example problems. We observed that the
algorithm successfully detected non-smoothness caused by control constraints, but also
non-smoothness due to irregular data and incompatible initial conditions. However, a
more realistic test example also showed that in the presence of strong nonlinearities
which limit the length of the time steps, gains from hp adaptivity can only be realized
for very strict accuracy requirements. Nevertheless we argue that also in this case, the
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8. Conclusion and outlook

use of dG schemes with order 1 or 2 can help to produce more accurate results than
common time stepping schemes like implicit Euler or Crank-Nicholson.

Overall we demonstrated that a proper use of higher order discontinuous Galerkin time
discretization schemes can help to obtain highly accurate solutions of optimization
problems with parabolic PDEs while minimizing the number of degrees of freedom spent
on the time discretization. Based on our results, we identify some promising questions
left for further investigations.

Concerning the time stepping equation solver, a convergence analysis with respect to
stronger norms would be desirable since this would help in showing mesh-independence
of the maximal size of the time step for more general problems. A classical application
domain for Radau methods, which, as we have seen are closely related to the discontinuous
Galerkin approach, are differential algebraic problems. Therefore it might be promising
to investigate under which conditions the proposed decoupling scheme can also be applied
to partial differential algebraic equations (PDAEs). Furthermore, an application of the
proposed approximation techniques to higher order continuous Galerkin methods should
allow the derivation of efficient schemes also for this class of discretizations.

Possible generalizations of the a priori analysis include terminal observation and semilinear
problems. Concerning hp adaptivity, as already pointed out in Section 7.4, it would be
desirable to consider hp adaptivity in both, time and space such that the accuracy of the
spatial discretization can match the temporal precision while minimizing the number of
degrees of freedom also in space.
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A. Proof of Theorem 6.10

The proof is similar to Theorem 5 in [38, Chapter 7.1] where higher order stability
estimates for a continuous parabolic problem are shown. Just as there, a Galerkin
approximation with respect to the spatial variable is used. Let {vn}n∈N be an orthonormal
basis of H consisting of eigenfunctions of −∆ defined on V . Then we define the spaces
VN and Xr

kN by

VN := span {vn | n ≤ N} ,
Xr
kN :=

{
v ∈ L2(I, VN )

∣∣ v|Im ∈ Pr(Im, VN ), m = 1, . . . ,M
}
.

Replacing the test and trial spaces in Equation (6.19) by Xr
kN leads to a sequence of

Galerkin approximations ykN of the semidiscrete solution yk. In a first step we have to
show that for those approximations the stated stability estimates hold.

Lemma A.1. For the Galerkin approximations ykN as defined above we have the stability
estimate ∥∥∆2ykN

∥∥
I

+

(
M∑
m=1

‖∂t∆ykN‖2Im

) 1
2

≤ C ‖∆w‖I

with a constant C independent of N .

Proof. To get the estimate for the first term we test with ϕ = ∆3ykN , which exists since
ykN is a linear combination of eigenvectors of ∆, resulting in

−
M∑
m=1

(∆3ykN , ∂tykN )Im − (∆3ykN ,∆ykN )I

−
M−1∑
m=1

(∆3y−kN,m, [ykN ]m) − (∆3y−kN,M , y
−
kN,M ) = (∆3ykN , w)I .

We apply Green’s formula to each term and get

M∑
m=1

(∇∆ykN , ∂t∇∆ykN )Im −
∥∥∆2ykN

∥∥2

I
+

M−1∑
m=1

(∇∆y−kN,m, [∇∆ykN ]m) +
∥∥∥∇∆y−kN,M

∥∥∥2

= (∆2ykN ,∆w)I .
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With the two identities

(∇∆ykN , ∂t∇∆ykN )Im =
1

2

∥∥∥∇∆y−kN,m

∥∥∥2
− 1

2

∥∥∥∇∆y+
kN,m−1

∥∥∥2

and

(∇∆y−kN,m, [∇∆ykN ]m) =
1

2

∥∥∥∇∆y+
kN,m

∥∥∥2
− 1

2

∥∥∥∇∆y−kN,m

∥∥∥2
− 1

2
‖[∇∆ykN ]m‖2

we obtain

−
∥∥∆2ykN

∥∥2

I
−
M−1∑
m=1

1

2
‖[∇∆ykN ]m‖2 −

1

2

∥∥∥∇∆y−kN,M

∥∥∥2
= (∆2ykN ,∆w)I ,

which immediately gives the estimate for the first term∥∥∆2ykN
∥∥
I
≤ ‖∆w‖I .

In order to obtain the second estimate, we test with the interval-wise defined function ϕ
where ϕ

∣∣
Im

= (t− tm)∂t∆
2ykN for a fixed index m and ϕ = 0 otherwise. Using the dual

formulation (6.16) of the bilinear form, we note that the jump terms vanish and we get

−((t− tm)∂t∆
2ykN , ∂tykN )Im − ((t− tm)∂t∆

2ykN ,∆ykN )Im = ((t− tm)∂t∆
2ykN , w)Im .

We apply Green’s formula with respect to the spatial variable on each of the three terms
and obtain after reordering∫

Im

(tm − t) ‖∂t∆ykN‖2 dt =

∫
Im

(tm − t)(∂t∆ykN ,−∆w −∆2ykN ) dt

≤
(∫

Im

(tm − t) ‖∂t∆ykN‖2 dt

) 1
2
(∫

Im

(tm − t)
∥∥−∆w −∆2ykN

∥∥2
dt

) 1
2

.

Together with the inverse estimate (4.5) from [80], which reads in our case

‖ykN‖2Im ≤ Ck
−1
m

∫
Im

(tm − t) ‖ykN‖2 dt

with C independent of N , we obtain the estimate

‖∂t∆ykN‖2Im ≤ Ck
−1
m

∫
Im

(tm − t) ‖∂t∆ykN‖2 dt

≤ Ck−1
m

∫
Im

(tm − t)
∥∥−∆w −∆2ykN

∥∥2
dt

≤ C
∥∥−∆w −∆2ykN

∥∥2

Im
≤ C

(
‖∆w‖2Im +

∥∥∆2ykN
∥∥2

Im

)
.

Summing over all time intervals yields

M∑
m=1

‖∂t∆ykN‖2Im ≤ C
(
‖∆w‖2I +

∥∥∆2ykN
∥∥2

I

)
which shows the second estimate.
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A. Proof of Theorem 6.10

Proof of Theorem 6.10. From Lemma A.1 we have

∥∥∆2ykN
∥∥
I

+

(
M∑
m=1

‖∂t∆ykN‖2Im

) 1
2

≤ C ‖∆w‖I

with C independent of N . Therefore the sequence {ykN}n∈N is bounded with respect to
the norm ‖·‖Y given by

‖yk‖2Y = ‖yk‖2I +
∥∥∆2yk

∥∥2

I
+

M∑
m=1

‖∂t∆yk‖2Im

and there exists a sub-sequence
(
ykNj

)
j∈N that converges weakly with respect to the

Y norm to a limit ỹk which satisfies the estimate∥∥∆2ỹk
∥∥
I

+ ‖∂t∆ỹk‖I ≤ C ‖∆w‖I .

To complete the proof, we need to show that ỹk is in fact the solution yk of the semidiscrete
problem (6.19). Therefore we note that the stability estimate in Corollary 6.7 also works
for the Galerkin approximations ykN with the constant C independent of N . We fix N̄ ,
then for any ϕ ∈ Xr

kN̄
and for any Nj ≥ N̄ the identity

(A.1) −
M∑
m=1

(ϕ, ∂tykNj )Im − (ϕ,∆ykNj )I −
M∑
m=1

(ϕ−, [ykNj ]m) = (ϕ,w)I

holds true. Since
∑M

m=1

∥∥∂tykNj∥∥2

I
,
∥∥∆ykNj

∥∥
I

and
∑M

m=1

∥∥[ykNj ]m
∥∥2

are bounded by the
stability estimate we can extract a subsequence such that (A.1) holds for the weak limit
which has to be ỹk again. Passing to the limit N̄ →∞ shows that in fact ỹk = yk.
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[115] T. Werder, K. Gerdes, D. Schötzau, and C. Schwab. hp-discontinuous
Galerkin time stepping for parabolic problems. Comput. Methods Appl. Mech.
Engrg., 190(49-50):pp. 6685–6708, 2001.

[116] T. P. Wihler. An hp-adaptive strategy based on continuous Sobolev embeddings.
J. Comput. Appl. Math., 235(8):pp. 2731–2739, 2011.

[117] J. Wloka. Partial differential equations. Cambridge University Press, Cambridge,
1987.

156


	Introduction
	Problem formulation
	Basic notations
	Problem statement
	Example problems
	Linear heat equation with time parameter control
	Semilinear problem with terminal observation
	Temperature control in combustion


	Optimality conditions and optimization algorithms
	Optimality conditions and representation of derivatives
	Optimality conditions for the reduced problem
	Representation of derivatives and optimality system

	Semismooth Newton method
	Theoretical considerations
	Algorithmic realization


	Discretization
	Discretization of the state variable
	Semidiscretization in time with hp discontinuous Galerkin methods
	Discretization in space with continuous elements on dynamic meshes

	Control discretization
	Variational treatment of the control
	Explicit discretization of the control


	Solution of the time stepping equations for higher order dG methods
	Structure of Newton's method for the discrete time stepping equation
	Time stepping formulation for the state equation and Newton's method
	Connection to the Runge-Kutta methods of type Radau-IIA
	Spectrum of the Coefficient matrix

	Approximate decoupling scheme
	Assumptions on the problem
	Approximation of the coefficient matrix
	Convergence analysis for linear problems with time-independent coefficients
	Convergence analysis for nonlinear equations
	Applicability of the convergence result to a semilinear model problem

	Practical realization
	Termination criterion
	Controlling the iteration

	Numerical results
	Semilinear equation
	Combustion problem


	A priori analysis of a third order scheme for time parameter control with constraints
	Optimality conditions and regularity considerations
	Auxiliary results for the semidiscrete and discrete problem
	Semidiscrete problem
	Discrete problem

	Error estimates for the state and adjoint solution with fixed control
	Estimates for the semidiscrete state solution
	Superconvergence of the reconstructed semidiscrete adjoint solution
	Error analysis for the spatial discretization

	Error analysis for the optimal control problem
	Time discretization
	Spatial discretization

	Numerical validation

	A posteriori error control and hp adaptivity
	DWR error estimators for the error with respect to the cost functional
	Derivation of the error estimators
	Practical realization

	Smoothness indicator based on continuous Sobolev embeddings
	Adaptive algorithm
	Numerical tests
	Linear quadratic model problem
	Semilinear problem with incompatible terminal observation
	Combustion problem


	Conclusion and outlook
	Acknowledgements
	Proof of Theorem 6.10
	List of Tables
	List of Figures
	List of Algorithms
	Bibliography

