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Abstract

This thesis is concerned with the numerical analysis of sparse control problems for elliptic
and parabolic state equations. A focus is set on controls which are measures in space, where the
instationary problem formulation favors fixed-in-space point sources. A general optimization
framework based on a sparsity-preserving regularization and a semismooth Newton method is
developed. A priori error estimates for a suitable finite element discretization of two model
problems are derived. An algorithm for adaptive mesh refinement is proposed.

Zusammenfassung

Diese Arbeit befasst sich mit der numerischen Analyse von Optimalsteuerungsproblemen
mit „Sparsity“ für ellitische und parabolische Zustandsgleichungen. Im Fokus liegen Kontrollen,
die Maße im Ort sind, wobei die instationäre Formulierung feststehende Punktquellen favori-
siert. Ein Optimierungsansatz wird entwickelt, der auf geeigneter Regularisierung und einer
semiglatten Newton-Methode basiert. A priori Fehlerabschätzungen für die Finite Elemente
Diskretisierung von zwei Modellproblemen werden hergeleitet. Ein Algorithmus zur adaptiven
Gitterverfeinerung wird vorgestellt.
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1. Introduction

In this work we consider finite element discretizations and efficient numerical solution methods
for sparse optimal control problems subject to elliptic and parabolic partial differential equa-
tions (PDE). Sparse optimal control problems are problems with (spatially and/or temporally)
distributed controls in combination with control cost (or regularization) terms that favor solu-
tions which are supported only on a “small” set; see below. More precisely, we mean problems
of the type

min
u∈Uad, y∈Y

J(y) + ψ(u),

subject to e(y, u) = 0.
(P)

Here, J is a smooth tracking-type functional for the state variable y, defined on the state
space Y , and e is an (elliptic or parabolic) state equation, coupling the state to the control
variable u. The control is searched for in the convex control set Uad and ψ is a sparsity inducing
functional. In general, the cost or regularization term ψ will be a convex, but not a strictly
convex functional. The canonical example is the L1 norm of a function or the total variation
norm of a measure. Problems of this type arise in different contexts:

• For a cost functional
ψ(u) =

∫
Ω
u(x) dx

with u ≥ 0, we have a linear dependence of the cost on the control u. In some applications,
this is a more appropriate cost functional than an L2-type norm; see, e.g., [VM06; BCS13].

• The L1 norm, defined on a bounded domain Ω as

ψ(u) =
∫
Ω
|u(x)|dx,

and its appropriate generalization to measures, the total variation norm, given by

ψ(u) =
∫
Ω

d|u|(x),

are known to induce sparsity. This means that the optimal solutions of (P) will be
supported only on a possibly very small set (and will be zero everywhere else). In
particular, in the case where the control is searched for in a space of measures, we can
obtain a sum of point sources as the optimal solution. This makes such functionals
useful as regularization terms in the context of inverse problems (see, e.g., [SW09; BP13;
CFG13; CFG14; ACG15]) and actuator placement problems (see, e.g., [Sta09; CK11b;
Bru+12]). Recently, optimal control with sparsity has also been proposed for PDEs
arising as mean-field limits of systems of ODEs; see [FS14].

In practice, to compute solutions of (P), we have to replace the partial differential equation
e by an appropriate discrete approximation and replace the solution spaces Uad and Y by finite
dimensional spaces. Since we consider PDEs of elliptic or parabolic type, finite elements are

1



1. Introduction

a canonical method of choice (especially, since we will deal with highly irregular data). We
obtain the discrete problem

min
u∈Uσad, y∈Y σ

Jσ(y) + ψσ(u),

subject to eσ(y, u) = 0,
(Pσ)

with an additional discretization parameter σ > 0. A strong focus of this work will be the
derivation and analysis of discretization concepts for two concrete problem settings (elliptic and
parabolic; see below). On the one hand, we will be concerned with a priori estimates for σ → 0,
and, on the other hand, we derive an adaptive finite element method based on goal-oriented
a posteriori estimates (for the elliptic problem).
The missing strict convexity of ψ poses difficulties not only in the theoretical analysis, but

also in the numerical and algorithmic treatment. For the computation of solutions to (P), we
will consider an auxiliary problem with an additional Hilbert-space regularization term. It is
given by

min
u∈H∩Uad, y∈Y

J(y) + ψ(u) + γ

2‖u‖
2
H ,

subject to e(y, u) = 0,
(Pγ)

where H is a Hilbert space (such as, e.g., L2(Ω)). Typically, the optimal solutions of (P) are
not contained in H, such that the solutions of (Pγ) have higher regularity. Additionally, the
strong convexity of the regularized problem enables us to give a very general optimization
framework, which is based on a semismooth Newton method. For fixed γ > 0, it can be
formulated and analyzed in a function space setting. Therefore, we can expect that appropriate
concrete realizations of the corresponding algorithms will show mesh-independence in practice
(the number of steps of the algorithm will be essentially independent of the number of degrees
of freedom of the discretization). To compute a solution of the original problem (P), we apply
a continuation method in the parameter γ. We derive a priori estimates of the regularization
error for two model problems. Based on that, we also develop an a posteriori estimation
strategy, which is employed in the adaptive algorithm. Let us point out that the additional
regularization preserves some of the structural properties of the optimal solutions, since (Pγ)
still contains the unmodified (generally nonsmooth) term ψ. In particular, the solutions of the
regularized problem will inherit the sparsity property.
For the theoretical analysis of the discretization and regularization error we will mainly

focus on two characteristic model problems with measure valued controls. The first one is a
tracking-type problem for the Poisson equation given by

min
u∈M(Ωc), y∈Y

1
2‖y − yd‖

2
L2(Ωo) + α

∫
Ωc

d|u|,

subject to
{
−∆y = χΩcu in Ω,

u = 0 on ∂Ω.

The control is searched for in the space of finite Radon measuresM(Ωc) on the (relatively closed)
control set Ωc ⊂ Ω. Note that this space contains controls of the specific form u = ∑N

n=1 unδxn ,
where xn ∈ Ωc and un ∈ R for n = 1, . . . , N , which is a common model for pointwise control
(see, e.g., [Chr81; BMR91; Lio92]). The control cost term is given by the total variation norm∫
Ωc

d|u| = ‖u‖M(Ωc) and the tracking functional is formulated on the observation domain
Ωo. The second model problem (with a parabolic state equation) is, in a sense, the canonical

2



generalization of the elliptic problem. It reads

min
u∈M(Ωc,L2(I)), y∈Y

1
2‖y − yd‖

2
L2(I,L2(Ωo)) + α

∫
Ωc

d|u|,

subject to


∂ty −∆y = χΩcu in I ×Ω,

y = 0 on ∂Ω,
y(0) = y0 in Ω.

Here, the state equation is the linear heat equation with zero Dirichlet boundary conditions.
Again, the control is searched for in a space of measures supported on the control set Ωc.
However, in the parabolic case, we consider the space of vector valued measuresM(Ωc, L2(I)).
The prototypical example for elements of this space are point sources with time-dependent
coefficients of the form u(t) = ∑N

n=1 un(t)δxn for t ∈ I, where xn ∈ Ωc and un ∈ L2(I) for
n = 1, . . . , N .
Let us give some further motivation for the choice of vector measures and the particular

form of the cost term in the parabolic problem. It is motivated on the one hand by the
concept of directional sparsity proposed by Herzog, Stadler, and Wachsmuth [HSW12], where
and an additional quadratic L2(I × Ωc) term is contained in the objective. In fact, for the
regularized problem (Pγ) we will recover exactly their problem formulation. It favors controls
that are zero on “stripes” of the parabolic cylinder; see section 5.4. On the other hand,
the cost term is motivated by the concept of joint sparsity in finite dimensions; see, e.g.,
Fornasier and Rauhut [FR08] and the references given therein. In their setting, a regularization
with an `1(`2) norm is considered. On the discrete level, for the problem (Pσ), we recover
exactly this cost term; see section 5.2. In parallel to the development of this thesis, sparse
controls in the space of vector measures have also been proposed in other contexts. In Kunisch,
Trautmann, and Vexler [KTV14] an optimal control problem for the wave equation is considered.
The problem formulation is motivated by an application to a seismic inverse source location
problem. Furthermore, Henneke [Hen15] proposes the use of sparsity with vector measures in
combination with appropriate control operators for the optimal control of bilinear quantum
systems. In this case, sparsity is applied to a time-frequency representation of the control.
This thesis is structured as follows. In chapter 2 we provide a theoretical framework that

allows for the mathematical discussion of the elliptic and parabolic problem formulation men-
tioned above. In each case, we will discuss a slightly more general problem setting, which
encompasses more general elliptic operators and boundary conditions than the Laplace op-
erator with homogeneous Dirichlet boundary conditions above. It also allows for positivity
constraints on the control and contains the case of boundary control and observation. The
elliptic and parabolic solution theory is based on known results and transposition arguments.
Furthermore, we derive optimality conditions and discuss the sparsity properties of the optimal
solutions. We introduce and discuss the regularized problem (Pγ) and provide some preparatory
results for the analysis of the regularization error.
Chapter 3 is concerned with optimization methods for the regularized problem (Pγ). Here,

we consider a general problem setting (based on a reduced cost functional) that also allows
for the discussion of some nonlinear control problems with convex cost terms. We develop the
optimization framework based on a reformulation of the optimality conditions with the normal
map. We show superlinear convergence of a semismooth Newton method, which is based mainly
on known results, and prove global convergence of a related first order optimization method.
Since a reformulation with the normal map has not been extensively studied in the infinite

3



1. Introduction

dimensional semismooth Newton literature, we include a comparison to other (more commonly
employed) reformulations and highlight what we consider to be the advantages of the proposed
approach.

The finite element discretization of the elliptic model problem introduced above is discussed
in chapter 4. We provide an asymptotic a priori error analysis that improves earlier results
obtained for the same problem. Under additional assumptions, we prove a higher regularity
result for the optimal solutions, which excludes point sources as optimal solutions. This allows
for an (even further) improved error estimate in three spatial dimensions. Furthermore, we
derive an a priori error estimate for the error in the cost functional due to regularization. A
discretization concept for the regularized problem is also presented and a corresponding error
estimate is derived. The discretization of the regularized problem is designed to reproduce the
original discrete problem in the limiting case for γ → 0. Many of the results of this chapter
have already appeared in similar form in [PV13].
Similarly, the parabolic model problem and its appropriate finite element discretization are

discussed in chapter 5. We provide a corresponding a priori error analysis that seems to be
optimal (at least in some aspects). An estimate for the regularization error of the objective is
also provided. Additionally, we apply the problem formulation to an inverse source location
problem to give a practical motivation for the proposed approach. Most of the results of this
chapter have already appeared in similar form in [KPV14].
Chapter 6 is devoted to an adaptive algorithm with local mesh refinement for the solution

of the elliptic problem. Here, the problem is first regularized and then discretized. A heuristic
a posteriori estimation strategy of the regularization error based on an asymptotic model is
introduced and error estimates for the discretization error of the objective functional based on
the dual-weighted-residual approach are derived. The adaptive strategy is based on a balancing
of both error contributions. The effectivity of the error estimates is evaluated in numerical
experiments and practical results are presented. We also compare the discretization concept of
this chapter with the one presented in chapter 4.

4



2. Theoretical framework

In this section we will discuss a theoretical framework to consider a reasonably large class of
sparse control problems with measure valued controls. We will take care to introduce a general
setting that allows us to treat the elliptic case and the parabolic case in a unified way and that
is extensible towards more general problem settings. In the elliptic case, we essentially follow
the ideas in Kunisch and Clason [CK11a; CK11b] and Bredies and Pikkarainen [BP13]. In the
parabolic setting, we provide a problem formulation that favors controls which consists of a
fixed measure in space with time-dependent “coefficients”. Most of the corresponding theory
has already appeared in Kunisch, Pieper, and Vexler [KPV14]. We also refer to Casas, Clason,
and Kunisch [CCK13] for a related parabolic control problem.
This chapter is organized in the following way. In section 2.1 we provide an abstract

problem setting and framework for the discussion of existence of solutions and optimality
conditions. Section 2.2 is devoted to the elliptic problem setting and section 2.3 to the parabolic
setting. In each case, we introduce the corresponding measure space and discuss well-posedness
and regularity of the state equation based on known regularity results and the method of
transposition. Furthermore, we derive optimality conditions. In the parabolic case, we compare
the proposed problem formulation with vector measures to the formulation from [CCK13],
where the optimal solutions have different sparsity properties. In section 2.4 we briefly explain
the relation to a convex duality approach for the analysis of the given problem formulation
(which is used in [CK11a; CK11b]) and draw a parallel to state constrained optimization. The
Hilbert space regularization of the problem is introduced in section 2.5. Finally, we analyze
the regularized problem and provide estimates for the error that arises due to regularization.
We show that the solutions of the regularized problem converge to solutions of the original
problem formulation for vanishing regularization parameter.

2.1. Problem setting

On an abstract level, we consider the constrained minimization problem

min
u∈M, y∈Y

J(y) + ψ(u),

subject to e(y, u) = 0 in W ∗.
(P)

As announced in the introduction, we search for a control u in the Banach spaceM and the
state y in the Banach space Y . The state and control are coupled with the state equation e,
which is formulated as a linear equation in the dual space of a third Banach space W .

2.1.1. Conditions for a well-posed problem

To ensure that (P) has a solution, we state the following general assumptions:

5



2. Theoretical framework

• The space M is formed as the dual space of another, separable Banach space C; the
predual space. We have the identification

M∼= C∗.

However,M will generally not be reflexive, i.e., we have C (M∗. We denote the duality
pairing of u ∈M and ϕ ∈ C by 〈u, ϕ〉 = 〈u, ϕ〉M,C .
We will frequently work with the notion of weak-∗ convergence in M. Recall that a
sequence {un }n ⊂M for n ∈ N converges in the weak-∗ sense towards u ∈M (denoted
by un ⇀∗ u inM) if

〈un, ϕ〉 → 〈u, ϕ〉 for n→∞ for all ϕ ∈ C.

• The (extended real valued) functional ψ : M → R ∪ {+∞} is convex, proper (not
constantly equal to +∞), and (sequentially) weak-∗ lower semicontinuous. Furthermore,
it is bounded from below and radially unbounded, i.e., we require for any sequence
{un }n ⊂M that

‖un‖M →∞ implies ψ(un)→∞ (for n→∞).

• The functional J : Y → R is continuously differentiable (continuously Fréchet differen-
tiable) and bounded from below.

• The spaces Y and W are reflexive. The state equation, which can be written as

〈e(y, u), ϕ〉W ∗,W = 0 for all ϕ ∈W,

admits for all u ∈M a unique state solution y ∈ Y . The corresponding solution operator

S : M→ Y, S(u) = y

is affine linear, bounded and (sequentially) weak-∗ to strong continuous: we require

S(un)→ S(u) in Y for all un ⇀
∗ u inM.

These assumptions will be verified for the concrete problems below.
Since we have supposed the existence of a solution operator for the state equation, we can

define a reduced cost functional. We define the smooth part of the reduced cost functional
f : M→ R as

f(u) = J(S(u))

and the full reduced cost functional j : M→ R ∪ {∞} for (P) as

j(u) = f(u) + ψ(u) = J(S(u)) + ψ(u).

Since the control-to-state mapping is continuous, it follows that f is continuous, as well.

Proposition 2.1. The functional f : M → R is (sequentially) weak-∗ continuous and the
reduced cost functional j : M→ R is (sequentially) weak-∗ lower semicontinuous.
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2.1. Problem setting

SinceM is the dual space of the separable space C, the unit ball inM can be endowed with
a norm (different from the Banach space norm) that induces the weak-∗ topology on the unit
ball of M. As a consequence of this result and the Banach-Alaoglu theorem, any bounded
sequence inM admits a weak-∗ convergent subsequence (which is the sequential version of the
Banach-Alaoglu theorem; see, e.g., [Bre11, Corollary 3.30]).

Theorem 2.2 (Banach-Alaoglu). Let {un}n for n ∈ N be a bounded sequence in M. Then
there exists a subsequence nk for k ∈ N and a u ∈M such that unk ⇀∗ u inM for k →∞.

Based on this and the general assumptions, we can give the following standard existence
result based on the direct method.

Theorem 2.3. The problem (P) possesses at least one global solution

(ū, ȳ) = (ū, S(ū)) ∈M× Y.

Proof. We give a proof for the sake of completeness. Since the functionals J and ψ are bounded
from below and ψ is proper, we have

inf
u∈M

j(u) = ̂ ∈ R.

Take any minimizing sequence {un }n ⊂M for n ∈ N. For n large enough we have

ψ(un) ≤ j(un) = j(ũ) + 1

for some fixed ũ ∈ M where ψ(ũ) is finite. By the radial unboundedness of ψ, it follows that
there exists a C independent of n, such that

‖un‖M ≤ C for all n ∈ N.

With Theorem 2.2, we obtain a subsequence {un }n (denoted again with the same index), such
that un ⇀∗ ū in M for some ū ∈ M. It follows with the lower semicontinuity of j from
Proposition 2.1 that

j(ū) ≤ lim inf
n→∞

j(un) = ̂,

which concludes the proof.

2.1.2. Optimality conditions

To obtain optimality conditions for (P), we recall some concepts from convex analysis (see,
e.g., [ET99]) and nonlinear functional analysis (see, e.g., [Cla13; BS00]). We introduce the
subdifferential of the convex functional ψ at the point u ∈M as the set

∂ψ(u) = {w ∈ C | 〈ũ− u,w〉+ ψ(u) ≤ ψ(ũ) for all ũ ∈M} . (2.1)

Note, that we define the subdifferential as a subset of the predual space C (which is natural if
we endowM with the weak-∗ topology; cf. [ET99]). Furthermore, we denote the directional
derivative of f in direction δu ∈ M by f ′(u)(δu). By the general assumptions and the chain
rule, it follows that f is Gâteaux differentiable in an optimal solution ū. We will verify below
that the derivative of f is represented by a function in the predual space. Therefore, we
identify

f ′(ū)(δu) = 〈∇f(ū), δu〉, (2.2)
where ∇f(ū) ∈ C is the gradient of f at ū. We obtain the following optimality condition.
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2. Theoretical framework

Proposition 2.4. Let ū ∈ M be an optimal solution from Theorem 2.3. We have the varia-
tional inequality

−f ′(ū)(u− ū) + ψ(ū) ≤ ψ(u) for all u ∈M.

With (2.2), this can be expressed as −∇f(ū) ∈ ∂ψ(ū).

Proof. We give the elementary proof for the sake of completeness: By minimality of ū and
convexity of ψ it holds for every u ∈M and λ > 0 that

0 ≤ j(ū+ λ(u− ū))− j(ū) ≤ f(ū+ λ(u− ū))− f(ū) + λ(ψ(ū)− ψ(u)).

Dividing by λ and letting λ→ 0, we obtain the result.

We will compute the gradient of f with the help of the adjoint equation, which is done
separately in the elliptic and parabolic setting in section 2.2 and section 2.3. Furthermore,
we characterize the subdifferential of ψ to obtain optimality conditions. The characteristic
example for the function ψ in this work is given by the norm

ψ(·) = ‖·‖M.

In general, ψ will be positively homogeneous (of degree one), which means that ψ(λu) = |λ|ψ(u)
for any λ ∈ R and u ∈M. It can be easily verified with the definition that all convex, positively
homogeneous (of degree one) functions fulfill the triangle inequality, i.e., ψ(u+v) ≤ ψ(u)+ψ(v)
for all u and v in M. The subdifferential of such functions can be characterized with the
following standard result.

Proposition 2.5. Let ψ(·) be positively homogeneous (of degree one). For any u ∈ M and
w ∈ C, the inclusion w ∈ ∂ψ(u) is equivalent to the conditions

sup
δu∈M,ψ(δu)≤1

〈δu,w〉 ≤ 1 and 〈u,w〉 = ψ(u).

Proof. For completeness, we prove the implication in one direction. The other direction is
proved similarly. We take δu ∈ M arbitrary and set ũ = u + δu in the definition of the
subdifferential (2.1) to obtain

〈δu,w〉 ≤ ψ(u+ δu)− ψ(u) ≤ ψ(δu)

with the triangle inequality. For δu with ψ(δu) ≤ 1 this yields the first condition. For the
second one we insert ũ = λu for λ ∈ R in the definition of the subdifferential to obtain
(1 − λ)〈u,w〉 ≤ (|λ| − 1)ψ(u). From the choice λ = 0 and λ = 2 we obtain the second
condition.

Corollary 2.6. For ψ(·) = ‖·‖M, the inclusion w ∈ ∂ψ(u) is equivalent to the conditions

‖w‖C ≤ 1 and 〈u,w〉 = ψ(u).

Proof. It holds supδu∈M,‖δu‖M≤1〈δu,w〉 = ‖w‖C , which is a consequence of the Hahn-Banach
theorem; see, e.g., [Bre11, Corollary 1.4].
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2.2. Elliptic problem setting

Remark 2.1. Proposition 2.5 can also be derived as a corollary from the equivalent characteri-
zation of w ∈ ∂ψ(u) as

ψ(u) + ψ∗(w) = 〈w, u〉,

where ψ∗ : C → R is the convex conjugate of ψ; see [ET99, Proposition 5.1]. For a positively
homogeneous (of degree one) functional, the convex conjugate is given by the convex indicator
function of the subdifferential of ψ at zero.

For the rest of this chapter, we will additionally assume that ψ is positively homogeneous
(of degree one).

2.2. Elliptic problem setting

In the following, we present the required theory for the discussion of the elliptic problem. We
denote by Ω ⊂ Rd for d ∈ { 2, 3 } a bounded domain, by Γ ⊂ ∂Ω a (relatively) open subset of
the boundary (the set ∂Ω \ Γ is closed). Γ will be the part of the boundary where we impose
Neumann conditions, and ΓD = ∂Ω \ Γ will be the part where we impose Dirichlet conditions.
We are mostly interested in controls of the form

u =
N∑
n=1

unδxn

with un ∈ R and xn ∈ Ω ∪ Γ arbitrary. We do not fix either the position of the xn or the
number of points N . However, the space of linear combinations of Dirac delta functions is not
suitable for existence of an optimal solution in the general case (since it lacks the property from
Theorem 2.2). Therefore, we consider the more general space of finite Radon measures. In
other problem settings, we are interested in positive controls and the realistic cost term is linear,
as mentioned in the introduction. Therefore, the controls are bounded in a L1 norm, which is
not enough to guarantee existence in L1 (it is not reflexive). Again, to ensure existence of a
solution in the general case, one can enlarge the solution space to the finite Radon measures.

2.2.1. Radon measures

For the elliptic problem, the control space is a subspace of the finite (signed) Borel measures
M(Ω̄) on the compact set Ω̄; see, e.g., [Rud87; Els11]. We recall some of the basic properties of
this space. Any u ∈M(Ω̄) can be considered as a countably additive set function u : B(Ω̄)→ R,
where B(Ω̄) denotes the Borel sets on Ω̄. For every u ∈ M(Ω̄), we define the corresponding
total variation measure |u| : B(Ω̄)→ R+ as

|u|(B) = sup
{ ∞∑
n=1
|u(Bn)|

∣∣∣ Bn ∈ B(Ω̄) disjoint partition of B
}
.

The total variation measure is always positive and we denote the corresponding space of positive
measures byM+(Ω̄). The total variation norm is now given as the total variation measure of
the whole set, i.e., we set

‖u‖M(Ω̄) = |u|(Ω̄) for all u ∈M(Ω̄).

9



2. Theoretical framework

We endowM(Ω̄) with this norm, which makes it a Banach space. For any bounded, continuous
function ϕ : Ω̄ → R, we can define the duality pairing between u ∈ M(Ω̄) and ϕ as the
integral

〈u, ϕ〉 =
∫
Ω̄
ϕ(x) du(x).

Furthermore, with the given duality pairing, the spaceM(Ω̄) can be identified with the dual
space of C(Ω̄), the space of bounded, continuous functions: by the Riesz representation theorem
(see, e.g., [Bre11, Theorem 4.31]), it follows that all bounded linear functionals on C(Ω̄) can be
represented as elements ofM(Ω̄). We identify

M(Ω̄) ∼= C(Ω̄)∗,

where C(Ω̄) is endowed as usual with the supremum norm

‖ϕ‖C(Ω̄) = sup
x∈Ω̄
|ϕ(x)|.

By this identification, we also obtain the alternative characterization of the total variation
norm

‖u‖M(Ω̄) = sup
ϕ∈C(Ω̄), ‖ϕ‖C(Ω̄)≤1

〈u, ϕ〉 for all u ∈M(Ω̄).

Note that finite Borel measures on subsets of Rd are regular (and therefore Radon measures;
see, e.g., [Rud87, Theorem 2.18]). Thereby, the support of the measure u ∈ M(Ω̄), which is
defined as

suppu = supp|u| = Ω̄ \
(⋃
{B open | |u|(B) = 0 }

)
,

is a closed set (and therefore suppu ∈ B(Ω̄)). As a consequence of the Lebesgue-Radon-Nikodym
theorem, for any u ∈ M(Ω̄) there exists a unique function sgn u ∈ L1(Ω̄, |u|) (the space of
integrable functions w.r.t. the measure |u|), such that

du = sgn ud|u| and |sgn u(x)| = 1 for x ∈ Ω̄ |u|-almost everywhere.

The expression du = sgn ud|u| is an short-hand notation for
∫
ϕdu =

∫
ϕ sgn ud|u| for all

ϕ ∈ C(Ω̄). Furthermore, with the Jordan decomposition theorem we can split any signed
measure u into the uniquely defined positive and negative part

u = u+ − u− for u+, u− ∈M+(Ω̄),

with u+ and u− of minimal norm. The positive and negative part are given in terms of the
sign function as du+ = (sgn u)+ d|u| and du− = (sgn u)− d|u|, where (·)+ and (·)− denote the
positive and negative part of a function, respectively.
In accordance with the elliptic problem given below, which includes control on the domain

and on the Neumann boundary, we consider the space of Radon measures on the control set,
which is a subset of Ω ∪ Γ . In general, we require the control set

Ωc ⊆ Ω ∪ Γ,

to be relatively closed in Ω ∪ Γ , i.e., it shall hold Ωc = Ω̄c ∩ (Ω ∪ Γ ). It is clear that if we
construct the space of Radon measures on the subset Ωc, we obtain the same object as if we
restrict the spaceM(Ω̄) to the control set, i.e., we can identify

M(Ωc) ∼= {u|Ωc | u ∈M(Ω̄) } .

10



2.2. Elliptic problem setting

Since Ωc is generally not compact, we obtain additional zero boundary conditions for the
predual space of continuous functions. Here, we can identify

M(Ωc) ∼= C0(Ωc)∗,

where C0(Ωc) is the space of continuous and bounded functions which are zero on ∂Ω \ Γ , i.e.,
we define C0(Ωc) as the closure of Cc(Ωc) with respect to the supremum norm, where Cc(Ωc)
denotes the compactly supported continuous functions on Ωc. Note that this identification is
compatible with the previous one, since C0(B) = C(B) holds for any compact set B.

2.2.2. Elliptic equations with measure data

In the following, we briefly outline the known regularity theory that is necessary for the
discussion of the elliptic problem (see also Casas [Cas86]). For a given measure u ∈M(Ω ∪Γ ),
we will consider the convection-diffusion problem with measure valued data given (formally)
by

−∇ · (κ∇y) + β · ∇y + c0y = u|Ω in Ω,
n · (κ∇y) + c1y = u|Γ on Γ,

y = 0 on ∂Ω \ Γ.
(2.3)

We make the general assumptions that ∂Ω is Lipschitz continuous (in the sense of [Gri85,
Definition 1.2.1.1]) and κ ∈ L∞(Ω,Rd×d), β ∈ W 1,∞(Ω,Rd), c0 ∈ L∞(Ω), c1 ∈ L∞(Γ ).
Moreover, the diffusion tensor κ takes values in the symmetric matrices and is uniformly
elliptic, i.e., there exists an ε > 0, such that ξ · κ(x)ξ ≥ ε|ξ|22 for all x ∈ Ω and ξ ∈ Rd.
Furthermore, we make the following standard assumptions to ensure unique solvability: we
require c0 −∇ · β/2 ≥ 0 in Ω and c1 + n · β/2 ≥ 0 on Γ . Moreover, in the case where Γ = ∂Ω,
not both of these expressions can be essentially zero.

We denote by W 1,p(Ω) for p ∈ [1,∞] the usual Sobolev spaces; see [AF03]. For the solution
of the mixed boundary value problem, we introduce the Sobolev spaces W 1,p

0 (Ω ∪ Γ ) with zero
Dirichlet conditions on ΓD = ∂Ω \ Γ as the closure of {ϕ|Ω | ϕ ∈ C∞c (Rd \ ΓD) } in W 1,p(Ω).
We also defineW−1,p′(Ω∪Γ ) for 1/p+1/p′ = 1 as the corresponding dual spaces and abbreviate
H1

0 (Ω ∪ Γ ) = W 1,2
0 (Ω ∪ Γ ) and H−1(Ω ∪ Γ ) = W−1,2(Ω ∪ Γ ). We denote for any p and p′ as

above the extended L2(Ω) duality pairing by

〈f, v〉 = 〈f, v〉
W−1,p′ ,W 1,p

0
for f ∈W−1,p′(Ω ∪ Γ ) and v ∈W 1,p

0 (Ω ∪ Γ ).

Furthermore, we assume that Ω∪Γ is regular in the sense of Gröger; see [Grö89, Definition 2]
or the alternative characterization in [HD+09]. Here, we are mostly interested in the special
case of pure Neumann/Robin or pure Dirichlet conditions, where either Γ = ∂Ω or Γ = ∅. In
this case, regularity follows immediately from the Lipschitz assumption on ∂Ω, so we will not
go into the details. We point out that it holds

W 1,p
0 (Ω ∪ Γ ) =

{
W 1,p

0 (Ω) for Γ = ∅,
W 1,p(Ω) for Γ = ∂Ω,

(2.4)

where the space W 1,p
0 (Ω) is defined as usual. For the weak formulation of (2.3) we define the

bilinear form

a(y, ϕ) = (κ∇y,∇ϕ) + (β · ∇y, ϕ) + (c0y, ϕ) + (c1y, ϕ)Γ
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2. Theoretical framework

for y and ϕ in H1
0 (Ω ∪ Γ ). By (·, ·) and (·, ·)Γ we denote the L2(Ω) and L2(Γ ) inner product,

respectively. The form a can be continuously extended for u ∈W 1,s
0 (Ω∪Γ ) and ϕ ∈W 1,s′

0 (Ω∪Γ )
for any s ∈ (1,∞), where 1/s+ 1/s′ = 1. This is a consequence of Hölders inequality and the
Sobolev trace theorem. Furthermore we recall the definition of the duality pairing

〈u, ϕ〉 =
∫
Ω
ϕ du+

∫
Γ
ϕdu

for u ∈M(Ω ∪Γ ) and ϕ ∈ C0(Ω ∪Γ ). With the Sobolev embedding, the space W 1,s′
0 (Ω ∪Γ ) is

continuously embedded into the Hölder continuous functions for s′ > d. Therefore, we have

W 1,s′
0 (Ω ∪ Γ ) ↪→ C0(Ω ∪ Γ ) for s′ > d.

Thereby, we can give the following weak formulation for (2.3). In the following, we fix Sobolev
indices

s <
d

d− 1 and s′ > d with 1
s

+ 1
s′

= 1.

Definition 2.1. For given u ∈ M(Ω ∪ Γ ), we call y ∈ W 1,s
0 (Ω ∪ Γ ) a weak solution for (2.3)

if it fulfills
a(y, ϕ) = 〈u, ϕ〉 for all ϕ ∈W 1,s′

0 (Ω ∪ Γ ). (2.5)

However, it is well-known that the solutions of the weak formulation (2.5) are not unique
in general; see Prignet [Pri95]. There are different techniques to obtain a unique solution (all
of which lead to the same result in the present setting); see the overview and comparison
in [MPS11]. We will use the method of duality, which goes back to Stampacchia [Sta65], and
apply known regularity results from the literature. First, we consider the dual equation for
w ∈ H1

0 (Ω ∪ Γ ) given as

a(ϕ,w) = 〈f, ϕ〉 for all ϕ ∈ H1
0 (Ω ∪ Γ ) (2.6)

for a given f ∈ H−1(Ω ∪ Γ ). The existence of a unique solution of this equation follows
from classical arguments. With the divergence theorem and the chain rule we can rewrite the
non-symmetric part of the bilinear form as

(β · ∇y, ϕ) = 1
2 [(β · ∇y, ϕ)− (y, β · ∇ϕ)− (∇ · βy, ϕ) + ((n · β)y, ϕ)Γ ] .

In this form, it is evident that a is coercive. We have

a(y, y) = (κ∇y,∇y) + ((c0 −∇ · β/2)y, y) + ((c1 + n · β/2)y, y)Γ .

By our assumptions, we obtain the H1
0 (Ω ∪ Γ ) ellipticity of a. Now, the existence of a unique

solution follows with the Lax-Milgram theorem.
Then, we suppose that f is additionally in W−1,s′(Ω ∪ Γ ) and apply the following regularity

result due to Griepentrog and Recke [GR01]; see also Droniou [Dro00] for a similar result
and [Tro87, Theorem 3.6.(i)] for the case of a C1 domain with open and closed Γ .

Theorem 2.7 (Elliptic regularity [GR01, Theorem 6.3]). For f ∈W−1,s′(Ω ∪ Γ ) with s′ > d,
the unique solution w ∈ W 1,2

0 (Ω ∪ Γ ) to (2.6) is Hölder continuous up to the boundary, i.e.,
there exists a β > 0 such that w ∈ Cβ(Ω̄). Moreover, we have the a priori estimate

‖w‖Cβ(Ω̄) ≤ Cs′‖f‖W−1,s′ (Ω∪Γ )
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We denote the corresponding solution operator of (2.6) by Sdual : W−1,s′(Ω∪Γ )→ C0(Ω∪Γ ).
With this predual solution operator we can construct the solution of the state equation.

Definition 2.2. We call y ∈W 1,s
0 (Ω ∪ Γ ) the solution by duality of (2.3) if it fulfills

〈f, y〉 = 〈u, Sdual(f)〉 for all f ∈W−1,s′(Ω ∪ Γ ). (2.7)

In other words, we set y = S∗dual(u), which directly implies that (2.7) has a unique solution.

Proposition 2.8. For u ∈ M(Ω ∪ Γ ), there exists a unique solution y ∈ W 1,s
0 (Ω ∪ Γ ) (for

every s < d/(d− 1)) in the sense of Definition 2.2 with the corresponding estimate

‖y‖
W 1,s

0 (Ω∪Γ ) ≤ Cs‖u‖M(Ω∪Γ ).

Furthermore, this solution also solves the weak formulation (2.5).

Proof. Since 〈·, y〉 = 〈u, Sdual(·)〉 is a continuous functional on W−1,s′(Ω ∪ Γ ) by Theorem 2.7
and W 1,s

0 (Ω ∪ Γ ) is reflexive, y can be identified with this functional and is therefore uniquely
determined. For any given w ∈W 1,s′

0 (Ω ∪ Γ ) we define the functional fw ∈W−1,s′(Ω ∪ Γ ) by
〈fw, ·〉 = a(·, w). Clearly, it holds w = Sdual(fw). By density of H1

0 (Ω ∪ Γ ) in W 1,s
0 (Ω ∪ Γ ) the

weak formulation of the dual problem (2.6) also holds on this larger space and we have

a(ϕ,w) = 〈fw, ϕ〉 for all ϕ ∈W 1,s
0 (Ω ∪ Γ ).

Therefore, we have a(y, w) = 〈y, fw〉 = 〈u,w〉 and (2.5) is verified.

We denote the corresponding solution operator by S : M(Ω ∪ Γ ) → W 1,s
0 (Ω ∪ Γ ). It can

be easily verified with the definition of the solution by duality that it is weak-∗ to weak
continuous. Furthermore, the Sobolev embedding W 1,s(Ω) ↪→W 1,s−ε(Ω) is compact for ε > 0;
therefore it is weak-∗ to strong continuous with values in W 1,s−ε

0 (Ω ∪ Γ ). Since the limiting
case s = d/(d− 1) is excluded, we can without restriction omit the additional ε to obtain the
following result.

Proposition 2.9. The solution operator S : M(Ω ∪ Γ ) → W 1,s
0 (Ω ∪ Γ ) is weak-∗ to strong

continuous.

Following [MPS11], we can employ an alternative, operator theoretic formulation of the
solution by duality: we introduce the domain of the main part of the elliptic differential
operator as

Ds′ = domW−1,s′ (Ω∪Γ )(∇ · κ∇) = { v ∈ H1
0 (Ω ∪ Γ ) | ∇ · κ∇v ∈W−1,s′(Ω ∪ Γ ) } ,

which is endowed with the graph norm ‖v‖Ds′ = ‖∇ · κ∇v + v‖W−1,s′ (Ω∪Γ ) for v ∈ Ds′ . By
construction, (∇ · κ∇ + Id): Ds′ → W−1,s′(Ω ∪ Γ ) is an isomorphism. It should be noted
that W 1,s′

0 (Ω ∪ Γ ) ⊂ Ds′ with continuous (but generally not dense) embedding. Observe that
the bilinear form a can be canonically extended for y ∈ W 1,s

0 (Ω ∪ Γ ) and ϕ ∈ Ds′ for certain
s′ > d.

Proposition 2.10. Let s′ < 2d/(d− 2) (equivalently, s > 2d/(d+ 2)). Then the bilinear form
a can be continuously extended for y ∈W 1,s

0 (Ω ∪ Γ ) and ϕ ∈ Ds′.
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Proof. For the main part of the differential operator, this follows directly from the definition of
Ds′ . For the lower-order terms, we use for ϕ ∈ Ds′ the continuous embedding Ds′ ↪→ H1

0 (Ω∪Γ )
and the Sobolev trace and embedding theorems; therefore we need s′ <∞ for d = 2 and s′ ≤ 6
for d = 3.

Furthermore, from Theorem 2.7 we deduce the continuous embedding

Ds′ ↪→ Cβ(Ω̄).

Therefore, the pairing 〈u, ϕ〉 can be extended in the same way.

Proposition 2.11. With s′ ∈ (d, 2d/(d − 2)), the solution by duality is given as the unique
solution of

a(y, ϕ) = 〈u, ϕ〉 for all ϕ ∈ Ds′ .

Furthermore, under additional suppositions on the smoothness of the coefficients, the space
Ds′ is again given by W 1,s′

0 (Ω ∪ Γ ).

Theorem 2.12. (Elliptic regularity: smooth case) Suppose that one of the following conditions
is fulfilled:

• ∂Ω is of class C1,β, Γ = ∂Ω or Γ = ∅, and κ ∈ Cβ(Ω̄,Rd×d).
• ∂Ω is Lipschitz, Γ = ∅, κ is the identity, β ≡ 0, c0 ≡ 0, and c1 ≡ 0 (A = −∆ is the

negative Laplacian with zero Dirichlet boundary conditions).
Then there exists a s′ > d, such that for all f ∈W−1,s′(Ω ∪ Γ ) the solution w of (2.6) lies in
W 1,s′

0 (Ω ∪ Γ ), together with the a priori estimate

‖w‖
W 1,s′

0 (Ω∪Γ ) ≤ Cs′‖f‖W−1,s′ (Ω∪Γ ).

Proof. The first result can be found in, e.g., [Tro87, Theorem 1.6.(iv)]. The second result is
due to Jerison and Kenig [JK95].

We will need this higher regularity for the error estimates in chapter 4. In the situation of
Theorem 2.12, the weak formulation (2.5) guarantees uniqueness.

Corollary 2.13. Suppose that one of the conditions of Theorem 2.12 is fulfilled. Then we can
identify

Ds′
∼= W 1,s′

0 (Ω ∪ Γ )

with equivalent norms.

2.2.3. Elliptic optimization problem

The elliptic problem is given in the general case as

min
u∈M(Ωc), y∈W 1,s

0 (Ω)
J(y) + ψ(u),

subject to a(y, ϕ) = 〈χΩcu, ϕ〉 for all ϕ ∈ Ds′ .
(2.8)
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Since the control is supported only on the control set Ωc, we introduce χΩc : M(Ωc)→M(Ω∪Γ )
as the canonical extension by zero operator. The standard example for the convex functional
ψ is the norm

ψ(u) = α‖u‖M(Ωc) =
∫
Ωc
α d|u|.

More generally, we can also consider the weighted norm

ψ(u) =
∫
Ωc
α̂(x) d|u|(x)

for a continuous weight function α̂ : Ω̄c → R+ which fulfills infx∈Ω̄c α̂(x) > 0. To enforce
positivity of the measure, we can add a convex indicator function to ψ, i.e., we consider

ψ(u) = α‖u‖M(Ωc) + IM+(Ωc)(u),

where IM+(Ωc)(u) = 0 for u ∈M+(Ωc) and IM+(Ωc)(u) = +∞ otherwise. It easy to verify that
each of these ψ fulfills the assumptions from section 2.1 withM =M(Ωc).

Proposition 2.14. All of the functionals ψ given above are convex, proper, weak-∗ (sequen-
tially) lower semicontinuous, and radially unbounded.

Proof. The convexity can be checked with the definition and we have ψ(0) = 0. Radial
unboundedness follows from

ψ(u) ≥ inf
x∈Ω̄c

α̂(x)‖u‖M(Ωc) for all u ∈M(Ωc).

Weak-∗ lower semicontinuity of the norm ‖·‖M(Ωc) follows by the Banach-Alaoglu theorem (the
norm ball is weak-∗ compact). For the weighted norm we take a sequence un ⇀∗ u and define
the weighted measures dũn = α̂ dun and dũ = α̂ du. We have 〈ũn − ũ, ϕ〉 = 〈un − u, α̂ϕ〉 → 0
for n → ∞. By construction it holds that

∫
Ωc
α̂ d|un| = ‖ũn‖M(Ωc) (the same holds for u).

Now, we apply the previous result. To prove lower semicontinuity of the indicator function,
we note that u ≥ 0 in the sense of measures is equivalent to 〈u, ϕ〉 ≥ 0 for all ϕ ∈ C(Ωc) with
ϕ ≥ 0.

For the functional J : W 1,s(Ω)→ R we will mostly consider linear quadratic tracking func-
tionals of the form

J(y) = 1
2‖Cobsy − yd‖2L2(Ωo)

for a subset Ωo ⊂ Ω̄ and an appropriate observation operator Cobs : W 1,s(Ω)→ L2(Ωo). With
the continuous Sobolev embedding

W 1,s(Ω) ↪→ L2(Ω) for s ≥ 2d
d+ 2 ,

and since the interval [2d/(d+ 2), d/(d − 1)) is not empty for d ∈ { 2, 3 }, we can consider
distributed tracking on an open subset Ωo ⊂ Ω. We define by Cobs = χΩo : W 1,s(Ω)→ L2(Ωo)
the corresponding observation and restriction operator. We can also consider the case of
boundary observation; cf. section 5.6. Then, Ωo is chosen as a relatively open subset of
Γ . With the trace theorem and the Sobolev embedding we have the chain of continuous
embeddings

W 1,s(Ω) ↪→W 1−1/s,s(Γ ) ↪→ Lq(Γ ) for q = d− s
s(d− 1) .
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Due to the restriction s < d/(d− 1) we can choose an arbitrary q <∞ in the case d = 2 and
q < 2 for d = 3. Therefore, at least in the two dimensional case, a boundary tracking term in
L2 is covered by the general analysis and we define again Cobs as the canonical embedding and
restriction.

2.2.4. Optimality conditions

We define the Lagrange function for u ∈M(Ωc), y ∈W 1,s
0 (Ω ∪ Γ ), and p ∈ Ds′ as

L(u, y, p) = J(y)− a(y, p) + 〈χΩcu, p〉.

By construction, for arbitrary p ∈ Ds′ it holds that f(u) = L(u, y, p) for any u ∈ M(Ωc) and
y = S(u). Now, we fix any û ∈ M(Ωc) and ŷ = S(û). By the linearity of y = S(u) and the
chain rule, it follows directly that

f ′(û)(δu) = L′y(û, ŷ, p̂)(δy) + L′u(û, ŷ, p̂)(δu) for any δu ∈M(Ωc)

where δy = S(δu). Now, we choose p̂ ∈ Ds′ as the solution of the corresponding adjoint
equation

L′y(û, ŷ, p̂)(ϕ) = J ′(ŷ)(ϕ)− a(ϕ, p̂) = 0 for all ϕ ∈W 1,s
0 (Ω ∪ Γ ),

which yields

f ′(û)(δu) = L′u(û, ŷ, p̂)(δu) = 〈χΩcδu, p̂〉 for all δu ∈M(Ωc).

Since p ∈ Ds′ ↪→ C0(Ω ∪ Γ ), this gives the gradient of f . As a corollary of this representation
and Proposition 2.4, we obtain the following optimality condition.

Theorem 2.15. Let (ū, ȳ) = (ū, S(ū)) be the optimal solution of (2.8) from Theorem 2.3.
There exists a unique adjoint state p̄ ∈ Ds′ solving the adjoint equation

a(ϕ, p̄) = J ′(ȳ)(ϕ) for all ϕ ∈W 1,s
0 (Ω ∪ Γ ), (2.9)

which fulfills the variational inequality

− 〈χΩc(u− ū), p̄〉+ ψ(ū) ≤ ψ(u) for all u ∈M(Ωc). (2.10)

Furthermore, we can characterize the subdifferential of ψ for each of the presented cases.

Theorem 2.16. Let ū be an optimal solution of (2.8) and p̄ be the corresponding adjoint state.
i) For ψ(u) =

∫
Ωc
α̂(x) d|u|(x) the variational inequality (2.10) can be equivalently expressed

as

|p̄(x)| ≤ α̂(x) for x ∈ Ωc,
supp ū+ ⊂ {x ∈ Ωc | p̄(x) = −α̂(x) } ,

and supp ū− ⊂ {x ∈ Ωc | p̄(x) = α̂(x) } .

ii) For ψ(u) =
∫
Ωc
α̂(x) du(x)+ IM+(Ωc)(u) the variational inequality (2.10) can be equivalently

expressed as

p̄(x) ≥ −α̂(x) for x ∈ Ωc,
and supp ū ⊂ {x ∈ Ωc | p̄(x) = −α̂(x) } .
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Proof. We only show how conditions from i) and ii) can be derived from the variational inequal-
ity; the reverse direction can be proved similarly. We apply the first part of Proposition 2.5,
which is

sup
ψ(δu)≤1

−〈δu, p̄〉 ≤ 1,

and compute the expression on the left-hand side in each case. By choosing for each x ∈ Ωc the
scaled Dirac delta function δu = ±1/α̂(x) δx in the case i) and δu = −1/α̂(x) δx in the case ii),
we derive the first part of the result. With the second part of Proposition 2.5, we have in both
cases that ∫

Ωc
sgn ū(x)p̄(x) d|ū|(x) =

∫
Ωc
p̄(x) dū(x) = ψ(ū) =

∫
Ωc
α̂(x) d|ū|(x).

We define the function f(x) = α̂(x) − sgn ū(x)p̄(x) for x ∈ Ωc. We have f(x) ≥ 0 for x ∈ Ωc
|ū|-almost everywhere due to the pointwise bounds on p̄ and

∫
Ωc
f(x) d|ū|(x) = 0 with the

previous inequality. This implies that f(x) = 0 for all x ∈ Ωc |ū|-almost everywhere. With
continuity of p̄ we can now derive the conditions on the support of ū+ and ū−.

2.3. Parabolic problem setting

In the following we discuss a class of parabolic problems. We use the same notation and make
the same assumptions on Ω, Γ , and Ωc as in the previous section. Additionally, we denote
the time interval by I = (0, T ) for some T > 0. In the parabolic setting, we are interested in
controls of the form

u(t) =
N∑
n=1

un(t)δxn

with time-dependent coefficients un ∈ L2(I) and xn ∈ Ω ∪ Γ arbitrary. Again, we do not fix
either the coefficient functions, the location of the points xn, or the number N ; we only require
the points to be independent of time. To ensure that the resulting problem is well-posed, we
again enlarge the solution space. In this case a space of vector measures will be the appropriate
choice.

2.3.1. Vector measures

The space of vector measures can defined as the space of the countably additive set functions
u : B(Ω̄) → L2(I) on the Borel sets with values in the Hilbert space L2(I); see, e.g., [Lan83,
Section 12.3] or [Lan93, Section VII.4]. For u ∈ M(Ω̄, L2(I)) the total variation measure
|u| ∈ M+(Ω̄) is defined as

|u|(B) = sup
{ ∞∑
n=1
‖u(Bn)‖L2(I)

∣∣ Bn ∈ B(Ω̄) disjoint partition of B
}

for each B ∈ B(Ω̄) and by |u|(Ω̄) we denote the total variation of u. It is easy to see that we
have

‖u(B)‖L2(I) ≤ |u|(B) (2.11)

for all B ∈ B(Ω̄). The space of vector measures with finite total variation is denoted by
M(Ω̄, L2(I)). Endowed with the total variation norm ‖u‖M(Ω̄,L2(I)) = ‖|u|‖M(Ω̄) = |u|(Ω̄) it
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2. Theoretical framework

is a Banach space. The support of the vector measure u is defined as before with the total
variation measure as

suppu = supp|u|.

For each u ∈ M(Ω̄, L2(I)) we can define a polar decomposition, which consist of the total
variation measure |u| and the function u′ ∈ L1(Ω̄, |u|, L2(I)) (the space of functions with values
in L2(I), which are integrable w.r.t |u|), such that

du = u′ d|u|, (2.12)

which is a short form of
∫
ϕdu =

∫
ϕu′ d|u| in L2(I) for all ϕ ∈ C(Ω̄). The function u′ is the

Radon-Nikodym derivative of u with respect to |u|; see [Lan83, Corollary 12.4.2] or [DU77,
Corollary IV.1.4]. Certainly, u is absolutely continuous with respect to |u| due to (2.11). In
fact we even have u′ ∈ L∞(Ω̄, |u|, L2(I)) with

‖u′‖L∞(Ω̄,|u|,L2(I)) ≤ 1,
and ‖u′(x)‖L2(I) = 1 for x ∈ Ω̄ |u|-almost everywhere.

(2.13)

The first property is a consequence of

‖
∫
B
u′ d|u|‖L2(I) = ‖

∫
B

du‖L2(I) = ‖µ(B)‖L2(I) ≤ |u|(B),

which implies that the |u|-average of u′ lies in the unit ball of L2(I). By the averaging
lemma [Lan83, Theorem 11.5.15] this implies ‖u′(x)‖L2(I) ≤ 1 |u|-almost everywhere. The
second property is implicitly contained in [Lan83, Theorem 12.4.1]. By C(Ω̄, L2(I)) we denote
the space of bounded continuous functions on Ω̄ with values in L2(I), endowed with the
supremum norm

‖v‖C(Ω̄,L2(I)) = sup
x∈Ω̄
‖v(x)‖L2(I).

With the duality pairing defined for u ∈M(Ω̄, L2(I)) and v ∈ C(Ω̄, L2(I)) as

〈u, v〉 =
∫
Ω̄

(u′(x), v(x))L2(I) d|u|(x)

we have a natural injection into the dual space M(Ω̄, L2(I)) ↪→ C(Ω̄, L2(I))∗. In fact this is
an isometric isomorphism. The identification

M(Ω̄, L2(I)) ∼= C(Ω̄, L2(I))∗

for a more general setting is known as Singer’s representation theorem; see, e.g., [Hen96;
Mez09].
As in the elliptic setting, the control set Ωc is a relatively closed subset of Ω ∪ Γ , and we

have the canonical embedding

M(Ωc, L2(I)) ↪→M(Ω̄, L2(I))

with the identification

M(Ωc, L2(I)) ∼= {u ∈M(Ω̄, L2(I)) | suppu ⊆ Ωc } .
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2.3. Parabolic problem setting

Let Cc(Ωc, L2(I)) be the space of continuous functions on Ωc with values in L2(I) which are
compactly supported in Ωc. Then we define C0(Ωc, L2(I)) as the closure of Cc(Ωc, L2(I)) with
respect to the supremum norm. We note that this is equivalent to

C0(Ωc, L2(I)) = {ϕ ∈ C(Ω̄c, L2(I)) | ϕ(x) = 0 for x ∈ ∂Ω \ Γ } .

With the pairing defined for u ∈M(Ωc, L2(I)) and v ∈ C0(Ωc, L2(I)) as before we identify

M(Ωc, L2(I)) ∼= C0(Ωc, L2(I))∗.

There is another canonical space of functions which are L2 in time and continuous in space;
the Lebesgue-Bochner space L2(I, C0(Ωc)). This space is strictly smaller, i.e., we have the
continuous embedding

L2(I, C0(Ωc)) ↪→ C0(Ωc, L2(I)),

which can be directly verified. It has the (larger) dual space L2
w(I,M(Ωc)); we will address

this space and compare it to the space of vector measures in section 2.3.5.

2.3.2. Parabolic equations with measure data

In the following, we briefly outline the necessary results from parabolic regularity theory for
the discussion of the parabolic optimization problem. For a pointwise control problem, the
following regularity results have been obtained by Droniou and Raymond [DR00] (in a more
general setting). For equations with general measures on the parabolic cylinder, see also
Casas [Cas97], Raymond and Zidani [RZ98], and Amann [Ama05]. For a given vector measure
u ∈M(Ω ∪ Γ,L2(I)), we will consider the parabolic equation given (formally) by

∂t y −∇ · (κ∇y) = u|Ω in I ×Ω,
n · (κ∇y) = u|Γ on I × Γ,

y = 0 on I × (∂Ω \ Γ ),
y(0) = 0 in Ω.

(2.14)

We define a suitable solution to equation (2.14) with the method of transposition (as in the
elliptic setting). We make the same regularity assumptions on Ω and Γ and κ as in section 2.2.2.
As before, we fix Sobolev indices

s <
d

d− 1 and s′ > d with 1
s

+ 1
s′

= 1.

We recall from section 2.2.2 the definition of the spaces W 1,s
0 (Ω ∪ Γ ) and the domain Ds′ . We

define the elliptic operator
A : W 1,s

0 (Ω ∪ Γ )→ D∗s′

by the weak formulation

〈Ay, ϕ〉 = a(y, ϕ) = (κ∇y,∇ϕ) for y ∈W 1,s
0 (Ω ∪ Γ ) and ϕ ∈ Ds′ .

We can extend the definition canonically to y ∈ L2(I,W 1,s
0 (Ω ∪ Γ )) and ϕ ∈ L2(I,Ds′) (which

are the usual Lebesgue-Bochner spaces). We denote corresponding extension of the form a and
the operator A again by the same symbol. By 〈· , ·〉I we denote the extended L2(I ×Ω) duality
pairing between L2(I,W 1,s

0 (Ω ∪ Γ )) and its dual L2(I,W−1,s′(Ω ∪ Γ )).
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2. Theoretical framework

At first, we consider for a given right hand side f ∈ L2(I,W−1,s′(Ω ∪ Γ )) the dual equation
to (2.14), which is the backwards in time parabolic equation

−∂tw +A∗w = f in L2(I,W−1,s′(Ω ∪ Γ )),
w(T ) = 0,

(2.15)

where the time derivative is interpreted as the distributional derivative [Ama95, Chapter III.1].
We apply a result on maximal parabolic regularity by Haller-Dintelmann and Rehberg [HDR09]
to characterize the solutions of (2.15).

Theorem 2.17 (Theorem 5.4 in [HDR09]). Suppose that s′ ∈ [2, 2d/(d− 2)). Then the unique
solution w to (2.15) lies in the space

Xs′ = L2(I,Ds′) ∩H1(I,W−1,s′(Ω ∪ Γ ))

with the corresponding a priori estimate

‖w‖Xs′ ≤ Cs‖f‖L2(I,W−1,s′ (Ω∪Γ )). (2.16)

We denote the corresponding solution operator by w = Sdual(f). With Theorem 2.17 it is
an isomorphism on the spaces

Sdual : L2(I,W−1,s′(Ω ∪ Γ ))→ Xs′ .

Moreover, since Ds′ ↪→ Cβ(Ω) for some β > 0, we additionally obtain the embedding

Xs′ ↪→ L2(I, C0(Ω ∪ Γ )).

It should be noted that since L2(I, C0(Ω∪Γ )) ↪→ C0(Ω∪Γ,L2(I)) the adjoint solution operator
maps into the predual space. A very weak solution of the state equation (2.14) can now be given
in the following way: consider dual exponents s′ ∈ (d, 2d/(d− 2)). For any u ∈M(Ω∪Γ,L2(I))
the state y ∈ L2(I,W 1,s

0 (Ω ∪ Γ )) is defined as the solution of the very weak formulation

〈y,−∂tϕ+A∗ϕ〉I = (y0, ϕ(0)) + 〈u, ϕ〉 for all ϕ ∈ Xs′ with ϕ(T ) = 0. (2.17)

With the embedding Xs′ ↪→ X2 and the trace theorem X2 ↪→ C(I, L2(Ω)) (see, e.g., [Ama95,
Theorem III 4.10.2]), the point evaluation ϕ(0) is well defined and continuous in Xs′ . Therefore
for any f ∈ L2(I,W−1,s′(Ω ∪ Γ )) and the corresponding w = Sdual(f) we obtain from the
definition (2.15) that

〈f, y〉I = (y0, w(0)) + 〈u,w〉 ≤ C
(
‖u‖M(Ω∪Γ,L2(I)) + ‖y0‖L2(Ω)

)
‖w‖Xs′ .

By reflexivity of the space L2(I,W 1,s
0 (Ω ∪ Γ )) we now see that the very weak formulation has

a unique solution and with (2.16) we obtain

‖y‖
L2(I,W 1,s

0 (Ω∪Γ )) ≤ Cs
(
‖u‖M(Ω∪Γ,L2(I)) + ‖y0‖L2(Ω)

)
. (2.18)

By choosing appropriate test functions in (2.17) we derive that ∂ty = −Ay+χΩcu holds in the
distributional sense and we obtain ∂ty ∈ L2(I,W−1,s

0 (Ω ∪ Γ )). With this and the integration
by parts formula (see, e.g., [Ama05, Proposition 5.1]) it follows

〈y(0), ϕ(0)〉 = −〈∂ty, ϕ〉I − 〈y, ∂tϕ〉I = (y0, ϕ(0)) ≤ ‖y0‖L2(Ω)‖ϕ(0)‖L2(Ω) (2.19)

for all ϕ ∈ H1(I,W 1,s′
0 (Ω ∪ Γ )) with ϕ(T ) = 0. We can choose ϕ with ϕ(0) ∈ W 1,s′

0 (Ω ∪ Γ )
arbitrarily and conclude y(0) = y0 by density. Finally, we obtain the following result.
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Proposition 2.18. The state equation, given in the weak formulation

〈∂ty, ϕ〉I + a(y, ϕ) = 〈u, ϕ〉 for all ϕ ∈ L2(I,Ds′),
y(0) = y0,

(2.20)

with s′ > d possesses a unique solution y in the space

Y s = L2(I,W 1,s
0 (Ω ∪ Γ )) ∩H1(I,W−1,s(Ω ∪ Γ )),

where 1 ≤ s < d/(d− 1), with the corresponding estimate

‖y‖Y s ≤ Cs
(
‖u‖M(Ω∪Γ,L2(I)) + ‖y0‖L2(Ω)

)
. (2.21)

Proof. We take the unique solution y ∈ Y s of the very weak formulation (2.17), which ful-
fills (2.21) by (2.18) and the representation of the time derivative. The regularity for all
s < d/(d− 1) is a consequence of the Sobolev embedding theorem. We argue that y is also a
solution to the weak formulation (2.20) by applying integration parts in (2.17) to obtain

〈u, ϕ〉 = 〈y,−∂tϕ〉I + a(y, ϕ)− (y0, ϕ(0)) = 〈∂ty, ϕ〉I + a(y, ϕ)

for all ϕ ∈ Xs′ with ϕ(T ) = 0. Since the space {ϕ ∈ Xs′ | ϕ(T ) = 0 } is dense in L2(I,Ds′)
the solution y fulfills (2.20), which proves existence for (2.20). Conversely, uniqueness of the
solution to the weak formulation (2.20) follows by Xs′ ⊂ L2(I,Ds′).

Remark 2.2. The weak formulation (2.20) holds also for test functions ϕ from the subspace
L2(I,W 1,s′

0 (Ω ∪ Γ )). However, if we restrict the test space in this way, we lose uniqueness of
the solution in the general case; cf. section 2.2.2.

We denote the corresponding solution operator for the state equation by y = S(y0, u) =
S(u).

Proposition 2.19. The solution operator S : M(Ω ∪ Γ,L2(I)) → Y s is weak-∗ to weak con-
tinuous. Furthermore, it is weak-∗ to strong continuous with values in L2(I,W 1,s

0 (Ω ∪ Γ )).

Proof. Since un is bounded in M(Ω ∪ Γ,L2(I)), the sequence yn = S(un) is bounded in Y s

with Proposition 2.18. Thus, it contains a weakly converging subsequence (denoted again by
yn) with yn ⇀ ŷ for some ŷ ∈ Y s. By taking the limit in (2.20), we see that ŷ = S(û). The
result follows since this argument can be repeated if we start from any subsequence of un. The
second statement follows from the compact embedding

Y s ↪→ L2(I,W 1,s−ε
0 (Ω ∪ Γ )) for ε > 0,

which follows with the Aubin-Lions lemma; see, e.g., [Lio69, Théorème I.5.1].

In the following we implicitly restrict the parameter s to the interval (2d/(d+ 2), d/(d− 1))
when we use the spaces Y s and Xs′ , unless explicitly mentioned otherwise.
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2.3.3. Parabolic optimization problem

With these preparations we can now state the precise problem formulation in the parabolic
setting:

min
u∈M(Ωc,L2(I)), y∈Y s

J(y) + ψ(u),

subject to
{
〈∂ty, ϕ〉+ a(y, ϕ) = 〈χΩcu, ϕ〉 for all ϕ ∈ L2(I,Ds′),

y(0) = y0.

(2.22)

Again, χΩc denotes the canonical extension by zero

χΩc : M(Ωc, L2(I))→M(Ω ∪ Γ,L2(I)).

For the cost functional J we consider again the quadratic tracking functional

J(y) = 1
2‖Cobsy − yd‖2L2(I×Ωo)

on the observation region I ×Ωo. With the properties of the solution operator from Proposi-
tion 2.19 we can choose Ωo to be an open subset of Ω in the both the two and three dimensional
case. In the two dimensional case, we can additionally consider a boundary tracking term; cf.
section 2.2.3. The convex term ψ is either given by a multiple of the norm

ψ(u) = α‖u‖M(Ωc,L2(I)) =
∫
Ωc
α d|u|(x),

or by a norm plus a convex indicator function to realize positivity constraints for the time-
dependent coefficient,

ψ(u) = α‖u‖M(Ωc,L2(I)) + IM+(Ωc,L2(I))(u).

We say that a vector measure u is positive (non-negative) if the corresponding functional on
C0(Ωc, L2(I)) is non-negative: we have u ∈M+(Ωc, L2(I)) if it holds

〈u, ϕ〉 ≥ 0 for all ϕ ∈ C0(Ωc, L2(I)) with ϕ(t, x) ≥ 0 for (t, x) ∈ I ×Ωc.

It can be verified that M+(Ωc, L2(I)) consists exactly of the measures for which the polar
decomposition du = u′ d|u| with |u| ∈ M+(Ωc) and u′ ∈ L∞(Ωc, |u|, L2(I)) yields a positive
function u′(t, x) ≥ 0 for (t, x) ∈ I ×Ωc.

Proposition 2.20. The two functionals ψ given above are convex, proper, weak-∗ (sequentially)
lower semicontinuous, and radially unbounded.

Proof. The arguments are straightforward and analogous to the ones given in the elliptic case;
cf. Proposition 2.14.

2.3.4. Optimality conditions

Similar to the the elliptic case, we define the Lagrange function for u ∈M(Ωc, L2(I)), y ∈ Y s,
and p ∈ Xs′ as

L(u, y, p) = J(y)− 〈∂ty, p〉I − a(y, p) + 〈χΩcu, p〉+ (y(0)− y0, p(0)).
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We proceed as in the elliptic case. For any û ∈M(Ωc, L2(I)) and ŷ = S(y0, û) we derive

f ′(û)(δu) = L′y(û, ŷ, p̂)(δy) + L′u(û, ŷ, p̂)(δu) for any δu ∈M(Ωc)

where δy = S(0, δu). Again, we choose p̂ ∈ Xs′ as the solution of the corresponding adjoint
equation

L′y(û, ŷ, p̂)(ϕ) = J ′(ŷ)(ϕ)− 〈∂tϕ, p̂〉I − a(ϕ, p̂) + (ϕ(0), p̂(0)) = 0 for all ϕ ∈ Y s.

We can apply integration by parts in time to obtain the equivalent formulation

−〈ϕ, ∂tp̂〉I + a(ϕ, p̂) + (ϕ(T ), p̂(T )) = J ′(ŷ)(ϕ) for all ϕ ∈ Y s.

By choosing special test functions ϕ, we obtain that this condition is equivalent to p̂(T ) = 0
and −∂tp̂ + A∗p̂ = J ′(ŷ) ∈ L2(I,W−1,s′(Ω)); cf. Proposition 2.18. With the unique solution
p̂ ∈ Xs′ of the adjoint equation (see Theorem 2.17), we can now express the gradient of f at û
as

f ′(û)(δu) = L′u(û, ŷ, p̂)(δu) = 〈χΩcδu, p̂〉 for all δu ∈M(Ωc).
As a corollary of this representation and Proposition 2.4, we obtain the following optimality
condition.

Theorem 2.21. For any optimal solution (ū, ȳ) = (ū, S(y0, ū))) of (2.22), there exists a unique
adjoint state p̄ ∈ Xs′ solving the adjoint equation

−〈ϕ, ∂tp̄〉+ a(ϕ, p̄) = J ′(ȳ)(ϕ) for all ϕ ∈ L2(I,W 1,s(Ω ∪ Γ )),
p̄(T ) = 0,

(2.23)

and the subgradient condition

− 〈χΩc(u− ū), p̄〉+ ψ(ū) ≤ ψ(u) for all u ∈M(Ωc, L2(I)). (2.24)

From the variational inequality (2.24) we can derive additional properties of the optimal
control.

Theorem 2.22. Let ū be an optimal solution of (2.22), ū′ d|ū| = dū its polar decomposition,
and p̄ be the corresponding adjoint state.
i) For ψ(u) = α‖u‖M(Ωc,L2(I)) the variational inequality (2.24) can be equivalently expressed
as

‖p̄(x)‖L2(I) ≤ α for all x ∈ Ωc, (2.25)
supp|ū| ⊂ {x ∈ Ωc | ‖p̄(x)‖L2(I) = α } , (2.26)

αū′(x) + p̄(x) = 0 for x ∈ Ωc |ū|-almost everywhere. (2.27)

ii) For ψ(u) = α‖u‖M(Ωc,L2(I)) + IM+(Ωc,L2(I))(u) the variational inequality (2.10) can be
equivalently expressed as

‖p̄−(x)‖L2(I) ≤ α for all x ∈ Ωc, (2.28)
supp|ū| ⊂ {x ∈ Ωc | ‖p̄−(x)‖L2(I) = α } , (2.29)

αū′(x)− p̄−(x) = 0 for x ∈ Ωc |ū|-almost everywhere. (2.30)

Here, p̄− ∈ C0(Ωc, L2(I)) denotes the negative part of p̄ given as p̄−(t, x) = p̄(t, x)− =
−min(0, p̄(t, x)) for (t, x) ∈ I ×Ωc.
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2. Theoretical framework

Proof. We first show i). By Proposition 2.5 we obtain

sup
α‖δu‖M(Ωc,L2(I))≤1

−〈χΩcδu, p̄〉 = 1
α
‖p̄‖C0(Ωc,L2(I)) ≤ 1.

The first equality follows from the inequality |〈χΩcδu, p̄〉| ≤ ‖δu‖M(Ωc,L2(I))‖p̄‖C0(Ωc,L2(I)) and
the fact that equality holds for a special choice of δu (choose δu = −1/α p(x̂)δx̂, where x̂ ∈ Ωc
is a point such that ‖p̄‖C0(Ωc,L2(I)) = ‖p̄(x̂)‖L2(I) is achieved.) This already shows (2.25). With
the second condition from Proposition 2.5 we obtain

−〈χΩc ū, p̄〉 = α‖ū‖M(Ωc,L2(I)) =
∫
Ωc
α d|ū|.

Applying the polar decomposition and reordering we obtain∫
Ωc

(
α+ (ū′(x), p̄(x))L2(I)

)
d|ū|(x) = 0. (2.31)

With the Cauchy-Schwarz inequality and the conditions (2.13) and (2.25) we obtain

− (ū′(x), p̄(x))L2(I) ≤ ‖ū′(x)‖L2(I)‖p̄(x)‖L2(I) ≤ α (2.32)

for x ∈ Ωc |ū|-almost everywhere, which means that the integrand in (2.31) is non-negative.
Therefore it must be zero almost everywhere, i.e., it follows

−(ū′(x), p̄(x))L2(I) = α for x ∈ Ωc |ū|-almost everywhere.

Considering again (2.32), we see that equality can only hold if the conditions

‖p̄(x)‖L2(I) = α and p̄(t, x) = −αū′(t, x)

hold for |ū|-almost all x ∈ Ωc and almost every t ∈ I. This proves (2.27). From the first identity,
we can derive (2.26) using basic measure theoretic arguments: define the function f : Ωc → R+,
f(x) = α − ‖p̄(x)‖L2(I), which is positive and continuous due to p̄ ∈ Xs′ ↪→ C0(Ωc, L2(I)).
Furthermore, it fulfills

∫
Ωc
f(x) d|ū|(x) = 0. We can easily argue that supp|ū| must be a subset

of the zero set {x ∈ Ωc | f(x) = 0 }, for instance by a contradiction argument.
To show ii), we take an arbitrary δu ∈ M+(Ωc, L2(I)) with α‖δu‖M(Ωc,L2(I)) ≤ 1 and

compute
−〈χΩcδu, p̄〉 = −〈χΩcδu, p̄+〉+ 〈χΩcδu, p̄−〉 ≤

1
α
‖p̄−‖C0(Ωc,L2(I)),

using the positivity of δu, where the positive part p̄+ = p̄ + p̄− is defined similarly as the
negative part. Again, equality is achieved for a special choice of δu and we obtain (2.28) by
Proposition 2.5 as before. As in the previous case, we obtain (2.31). In this case, the integrand
in (2.31) is positive as well, due to

−(ū′(x), p̄(x))L2(I) = −(ū′(x), p̄+(x))L2(I) + (ū′(x), p̄−(x))L2(I) ≤ ‖ū′(x)‖L2(I)‖p̄−(x)‖L2(I) ≤ α

for x ∈ Ωc |ū|-almost everywhere. Here, we have used again the positivity of u′ and p̄+. Due
to equality in (2.31) we derive

−(ū′(x), p̄−(x))L2(I) = α for x ∈ Ωc |ū|-almost everywhere,

which implies (2.30) and (2.29) as before.
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2.3. Parabolic problem setting

We can identify a characteristic special case.

Corollary 2.23. Suppose that equality in (2.25) is only achieved in a finite collection of points,

{x ∈ Ωc | ‖p̄(x)‖L2(I) = α } = {xn }n=1,...,N .

Then ū is given by a sum of point sources: for some coefficients cn ≥ 0 for n ∈ { 1 . . . N } we
have

ū = 1
α

N∑
n=1

cn p̄(·, xn) δxn .

Proof. We infer from (2.26) that |ū| = ∑N
n=1 cnδxn for some positive coefficients cn > 0.

Then the time dependent coefficients un ∈ L2(I) are given due to (2.27) by the formula
un(t) = cnū

′(t, xn) = −cn/α p̄(t, xn).

By (2.12), the optimal controls of (2.22) have a “sparsity pattern” which is independent of
time. To emphasize this point, we will compare the problem formulation to a different one,
which does not have this property.

2.3.5. Comparison to another problem formulation

Up to now we have always considered the controls u ∈ M(Ωc, L2(I)) as objects depending
on the spatial variable x ∈ Ωc. Now we want to switch the point of view to consider u as a
variable of t ∈ I. For a given u ∈ M(Ωc, L2(I)) and its polar decomposition du = u′ d|u|, we
can define the control u(t) ∈M(Ωc) at time t by

du(t) = u′(t) d|u| for t ∈ I almost everywhere. (2.33)

Due to (2.13) the polar decomposition u′ is an element of the Hilbert space L2(Ωc, |u|, L2(I)),
which is isometrically isomorphic to L2(I, L2(Ωc, |u|)) with Fubini’s theorem.

From this point of view, it is natural to directly consider controls I 3 t 7→ u(t) ∈ M(Ωc),
such that ‖u(t)‖M(Ωc) is square integrable in time. SinceM(Ωc) is not separable, it is necessary
to distinguish between weakly and strongly measurable functions. We recall from [CCK13] and
the references therein the definition of the Bochner space L2

w(I,M(Ωc)) (of weakly measurable
M(Ωc)-valued functions which are square integrable in time) and the identification of the
dual

L2
w(I,M(Ωc)) ∼= L2(I, C0(Ωc))∗.

We have the continuous embedding

M(Ωc, L2(I)) ↪→ L2
w(I,M(Ωc)), (2.34)

which follows from the (dense) embedding L2(I, C0(Ωc)) ↪→ C0(Ωc, L2(I)). Therefore, for
each u ∈ M(Ωc, L2(I)) the expression u(t) ∈ M(Ωc) for t ∈ I is also defined with the
help of this embedding. We can verify that this is compatible with the definition given
in (2.33) independently of the equivalence representations chosen for u′ : I → L2(Ωc, |u|) and
u : I →M(Ωc). It is obvious that the inclusion (2.34) is strict, i.e., it holds

M(Ωc, L2(I)) ( L2
w(I,M(Ωc)).
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2. Theoretical framework

We will give an example below.
Let us compare the conditions from Theorem 2.22 with the optimality system obtained by

Casas, Clason, and Kunisch [CCK13] for the problem

min
u∈L2

w(I,M(Ωc))
J(S(y0, u)) + α‖u‖L2

w(I,M(Ωc)). (2.35)

For problem (2.35) the optimality condition (see [CCK13, Theorem 3.3]) implies that for almost
all t ∈ I it holds

supp|u(t)| ⊆ {x ∈ Ωc | |p(t, x)| = ‖p(t)‖C0(Ωc) } ,

which means that the support of u(t) is variable over time. Note, that this implies significantly
lower regularity for problem (2.35) in comparison with problem (2.22) under consideration. For
instance, a regularity result such as ū ∈ C(Ī ,M(Ωc)) (cf. Theorem 5.8) cannot be expected.
Indeed, it is false for problem (2.35). We just have to consider as an example the measure
u ∈ L2

w(I,M(Ω̄)), u 6∈ M(Ω̄, L2(I)) with I = Ω = (0, 1) defined by

u(t) = g(t)δt, (2.36)

with a nontrivial smooth function g with g(1) = 0. Here, the Dirac delta function moves in
space as time increases. Such controls can actually be found as optimal solutions of (2.35):
choosing A as the negative Laplacian with homogeneous Neumann boundary conditions it
is possible to construct a desired state yd such that the optimal solution of (2.35) is given
by (2.36). The construction is analogous to the one which will be given in section 5.5.

2.4. An approach with convex duality

In both of the examples that have been presented above, the smooth part of the objective is of
linear quadratic type. More precisely, we can consider most of the given concrete examples as
instances of the problem

min
u∈M

1
2‖Sobsu− yd‖2V + α‖u‖M, (2.37)

where V is a Hilbert space and Sobs : M→ V is a linear control-to-observation operator. In
the concrete elliptic case, we can form Sobs = Cobs ◦ S as the concatenation of the solution
operator S and the observation operator Cobs. In the parabolic setting, S = S(y0, ·) is only
affine linear for y0 6= 0. We can set the observation operator to Sobs = Cobs ◦S(0, ·) and replace
yd by yd + S(y0, ·) to bring it in the form (2.37). The problem (2.37) is convex and due to its
specific structure a dual problem can be identified with the Fenchel duality theorem; see [ET99,
Theorem III.4.1]. This is the approach chosen by Clason and Kunisch [CK11a; CK11b] in the
context of an optimal control problem with an elliptic equation as in section 2.2. There, a dual
problem is derived, which can be equivalently given as

min
v∈V

1
2‖v + yd‖2V ,

subject to ‖S∗obs(v)‖C ≤ α.
(2.38)

Here, S∗obs : V → C is the predual operator of Sobs with (Sobsu, v)V = 〈u, S∗obsv〉 for all u ∈M,
v ∈ V . It can be identified as S∗obs = Sdual ◦C∗obs. The optimal solutions of (2.37) and (2.38) are
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2.5. Hilbert space regularization

linked via the relation v̄ = Sobsū− yd and the optimal solution ū plays the role of the Lagrange
multiplier for the constraint in (2.38). The optimality conditions from Theorem 2.16 can then
be derived or interpreted as complementarity conditions for the constraint on p̄ = S∗obs(v̄) and
the multiplier ū. We remark that a similar analysis would likely also be valid for the parabolic
problem discussed in section 2.3.
Here, we have chosen a direct primal approach with the subdifferential as outlined in sec-

tion 2.1. This is motivated by the fact that this approach can be more easily extended to
nonlinear problem settings, where either S is not (affine) linear or J is not convex. In fact, a
similar approach is used by Casas and Kunisch [CK14] for a problem with a semilinear elliptic
equation. We mention the approach with the dual problem (2.38), since it gives an impor-
tant connection to state constrained optimization; see, e.g., [Cas86]. The analysis of sparse
control problems with measures profits from the advanced level of research in this area. For
instance, for the numerical realization we will introduce a regularized problem in section 2.5.
In terms of the dual problem, this regularization corresponds to a quadratic penalty of the
constraints; see [CK11a; CK11b]. Due to this parallel we are able to adapt techniques from
state constrained optimization (see, e.g., [HK06a; HSW14]) for an improved analysis of the
regularization error. However, in the construction of the optimization algorithms in section 3
(where we can work with L2 controls and bypass the regularity theory for measure valued
controls) we will take special care to also handle the general case, where Fenchel-duality would
not be directly applicable.

2.5. Hilbert space regularization

For the algorithmic realization we consider a regularized problem. In the regularized problem,
the control is searched for in the Hilbert space H. We generally identify H with its dual space
H ∼= H∗ and we abbreviate the inner product and norm in H by

(u, v) = (u, v)H and ‖u‖ = ‖u‖H .

We suppose that the space C is densely embedded into H. Furthermore, we require that the
inner product in H is compatible with the duality pairing betweenM = C∗ and C, such that it
holds

〈u, ϕ〉 = (u, ϕ) for all u ∈ H, and ϕ ∈ C.
Thereby, we have the chain of continuous embeddings

C ↪→ H ∼= H∗ ↪→M.

Recall that since C ↪→ H is dense, the second embedding is injective.
Now we introduce the (Tikhonov-)regularized version of (P). For a positive regularization

parameter γ > 0 we consider the problem

min
u∈H, y∈Y

J(y) + ψ(u) + γ

2‖u‖
2,

subject to e(y, u) = 0 in W ∗.
(Pγ)

We make the same suppositions on J , ψ and e as before. In particular, since H is continuously
embedded intoM, we can reuse the control-to-state mapping from above by concatenating it
with the embedding. We obtain the solution operator

S : H → Y, S(u) = y,
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2. Theoretical framework

denoted again by the same symbol. However, since the space H is smaller thanM, S maps
H to a space of higher regularity than Y , which we will use in the concrete applications. For
u ∈ H, we denote the reduced objective of (Pγ) by

jγ(u) = j(u) + γ

2‖u‖
2 = J(S(u)) + ψ(u) + γ

2‖u‖
2,

and define the corresponding smooth part as

fγ(u) = f(u) + γ

2‖u‖
2 = J(S(u)) + γ

2‖u‖
2.

We defer a concrete description of the regularized problems to chapters 4 and 5. Let us
only point out that for the elliptic problem we will choose H = L2(Ωc) and for the parabolic
problem we will choose H = L2(Ωc, L2(I)) = L2(I ×Ωc). Furthermore, it holds that

‖u‖M(Ω̄) = ‖u‖L1(Ω) for u ∈ L2(Ω),
‖u‖M(Ω̄,L2(I)) = ‖u‖L1(Ω,L2(I)) for u ∈ L2(I ×Ω),

which provides a different interpretation of the considered functionals ψ in the regularized
setting.

2.5.1. Existence and optimality conditions

Under the general conditions from section 2.1 the regularized problem (Pγ) is also well posed.
Since the objective functional contains the squared norm of H, any minimizing sequence is
bounded in H. Furthermore, any weakly converging sequence in H converges also in the weak-∗
sense inM. Thereby, we obtain the following result (in the same way as in Theorem 2.3).

Proposition 2.24. The problem (Pγ) possesses at least one global solution

(ūγ , ȳγ) = (ūγ , S(ūγ)) ∈ H × Y.

Similarly to Proposition 2.4, we can obtain a necessary optimality condition for (Pγ). In the
regularized setting, we define the subdifferential of ψ as in (2.1) as a subset of H. We work
with Gâteaux differentiability in the Hilbert space H, and identify

(∇f(u), δu) = f ′(u)(δu) for u ∈ H.

Due to the compatibility of the duality pairing and the inner product, we obtain the same
expressions for the gradient of f . The gradient of fγ is given by

∇fγ(u) = ∇f(u) + γu for u ∈ H.

Thereby, we obtain the following necessary conditions as in Proposition 2.4.

Proposition 2.25. Let ūγ be an optimal solution of (Pγ). It holds

− (∇f(ūγ) + γūγ , u− ūγ) + ψ(ūγ) ≤ ψ(u) for all u ∈ H. (2.39)

Alternatively, this can be expressed as −∇f(ūγ)− γūγ ∈ ∂ψ(ū).
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2.5. Hilbert space regularization

We can again derive more concrete conditions using the specific structure of ψ. In the original
(unregularized) problem setting, we could only obtain information about the support of |ū|,
cf. sections 2.2.4 and 2.3.4. In the regularized setting, we can derive an explicit formula for
ūγ in terms of the optimal gradient ∇f(ūγ). It is easy to see that (2.39) can be alternatively
expressed as

ūγ = argmin
u∈H

[
(∇f(ūγ), u) + γ

2‖u‖
2 + ψ(u)

]
,

which has a unique solution due to strong convexity. This can be elegantly expressed with
the help of the proximal map of ψ, which we will discuss in section 3.1. We also refer to the
examples in section 3.3.2 and the optimality conditions given for the concrete examples in
chapters 4 and 5.

2.5.2. Regularization error

Define for γ > 0 the value function v as

v(γ) = jγ(ūγ) = j(ūγ) + γ

2‖ūγ‖
2 = J(S(ūγ)) + ψ(ūγ) + γ

2‖ūγ‖
2.

We derive an estimate for the error introduced due to regularization in terms of the cost
functional

j(ū) = inf
u∈M

j(u) = v(0).

Note that the value of the objective in a globally optimal solution from 2.3 is independent of
the specific solution, which may not be uniquely determined. In the context of Moreau-Yosida
regularization of state constrained optimization problems, it is known that the value function
is differentiable and concave; see Hintermüller and Kunisch [HK06a, Proposition 4.1]. In fact,
we can obtain with similar techniques (see also [HK06b; Sch09; Sch13]) that

v′(γ) = 1
2‖ūγ‖

2 ≥ 0, (2.40)

v′′(γ) ≤ 0 (2.41)

for almost all γ ∈ (0,∞). Similar results are also well-known in the context of Tikhonov-
regularization of inverse problems; cf., e.g., [IK92; JLS09; LR10; KKV11].

Proposition 2.26. The value function v : [0,∞)→ [j(ū),∞) is (locally) Lipschitz-continuous,
concave and differentiable for γ ∈ (0,∞) almost everywhere with derivatives as in (2.40)
and (2.41).

Proof. By comparing functional values we can verify that v is concave. In fact, for any γ0 > 0,
γ > 0, and the convex combination γθ = θ γ0 + (1− θ) γ we have

θ v(γ0) + (1− θ) v(γ) ≤ θ jγ0(ūγθ) + (1− θ) jγ(ūγθ)

= j(ūγθ) + θ
γ0
2 ‖ūγθ‖

2 + (1− θ)γ2‖ūγθ‖
2 = jγθ(ūγθ) = v(γθ)

by minimality of jγ0(ūγ0) and jγ(ūγ). The fact that v is concave directly implies that it is
locally Lipschitz-continuous; see, e.g., [BC11, Proposition 8.28]. Furthermore it is differentiable
almost everywhere by Rademacher’s theorem; see, e.g., [EG92, Section 3.1.2]. Existence of the
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2. Theoretical framework

second derivatives almost everywhere and formula (2.41) follows by the Alexandrov theorem;
see, e.g., [EG92, Section 6.4]. It remains to compute the form of the first derivative as in (2.40).
Therefore we consider that for every ε > 0 the difference quotient is bounded from above and
below by

1
ε

(v(γ0 + ε)− v(γ0)) ≤ 1
ε

(jγ0+ε(ūγ0)− jγ0(ūγ0)) = 1
2‖ūγ0‖2

= 1
ε

(jγ0(ūγ0)− jγ0−ε(ūγ0)) ≤ 1
ε

(v(γ0)− v(γ0 − ε))

Therefore, letting ε→ 0 we obtain

dv(γ0, 1) ≤ 1
2‖ūγ0‖2 ≤ −dv(γ0,−1),

where dv(γ0,±1) denotes the directional derivative of v in positive and negative direction (which
exist, since v is concave). This implies v′(γ) = 1/2 ‖ūγ‖2 for γ > 0 almost everywhere.

To show continuity of the value function at zero, which implies the convergence of the
regularized functional values for γ → 0, we can apply a very general argument. For this we
need a special approximating sequence in H of the optimal solution ū ∈M.

Assumption 2.1. Suppose that for ū ∈ M there exists a sequence {un }n∈N ⊂ H with
ψ(un)→ ψ(ū) and un ⇀∗ ū inM for n→∞.

The existence of a sequence with the second property follows in the concrete settings by the
weak-∗ density of H inM. The convergence of the functional values is less obvious. For the
spaces M = M(Ω̄) and H = L2(Ω̄) and the functional ψ(·) = α‖·‖M(Ω̄) we refer to [Bre11,
Problem 24]. We give the analogous argument for vector measures in Appendix A.1.

Proposition 2.27. Suppose that Assumption 2.1 holds. Then the value function is continuous
at zero with limit v(0) = limγ→0+ v(γ) = j(ū).

Proof. Take any optimal ū ∈ M and the sequence {un }n∈N ⊂ H from Assumption 2.1 with
ψ(un)→ ψ(ū) and un ⇀∗ ū inM for n→∞. Then we have for all γ > 0 and all n ∈ N that

v(0) = j(ū) ≤ j(ūγ) ≤ j(ūγ) + γ

2‖ūγ‖
2 = v(γ) ≤ j(un) + γ

2‖un‖
2 (2.42)

by optimality of ū and ūγ . By the convergence of the un we have

j(un) = f(un) + ψ(un)→ f(ū) + ψ(ū) = j(ū) for n→∞

since f is weak-∗ continuous inM(Ωc). Therefore, for any given ε > 0 we can choose nε ∈ N
large enough such that

j(ū) ≤ j(unε) ≤ j(ū) + ε

2 .

Combining this with (2.42) results in

j(ū) ≤ j(unε) + γ

2‖unε‖
2 ≤ j(ū) + ε

2 + γ

2‖unε‖
2.

Note that this inequality holds independently of γ > 0. Choosing now γε ≤ ε/‖unε‖2 we obtain
j(ū) ≤ v(γε) ≤ j(ū) + ε with arbitrary ε > 0, which concludes the proof.
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2.5. Hilbert space regularization

As a consequence of the continuity of the value function, we obtain the (subsequential) weak-∗
convergence of the regularized solutions ūγ to an optimal solution ū of the original problem
formulation for γ → 0.

Theorem 2.28. Consider a sequence of solutions ūγ ∈ H of problem (Pγ) for γ → 0. There
exists a subsequence γn for n ∈ N and a solution ū ∈M of (P) such that

ūγn ⇀
∗ ū inM, for n→∞.

If (P) has a unique solution ū, we have ūγ ⇀∗ ū for any sequence γ → 0.

Proof. As in Theorem 2.3, the values of ψ(ūγ) are bounded by

ψ(ūγ) ≤ jγ(ūγ) ≤ J(S(0))

due to the optimality of ūγ and ψ(0) = 0, and we can select a subsequence γn such that
it holds ūγn ⇀∗ û in M for some û ∈ M. Due to the weak-∗ lower semicontinuity of j it
holds j(û) ≤ limn→∞ jγn(ūγn) = v(0) = j(ū) with Proposition 2.27. Therefore û is an optimal
solution for (P). If the solution is unique, the convergence of the whole sequence follows since
the argument can be repeated if we start from an arbitrary subsequence of ūγ .

Furthermore, the error due to regularization can be expressed as an integral over the regu-
larization term.

Corollary 2.29. Suppose that Assumption 2.1 holds. We have the error representation

jγ(ūγ)− j(ū) = v(γ)− v(0) =
∫ γ

0

1
2‖ūσ‖

2 dσ.

Proof. Since v is locally Lipschitz continuous on (0,∞) by Proposition 2.26, and due to v′(γ) =
1/2 ‖ūγ‖2 almost everywhere, we obtain for 0 < ε < γ that v(γ) − v(ε) =

∫ γ
ε v
′(σ) dσ =∫ γ

ε 1/2 ‖ūσ‖2 dσ. Letting ε→ 0 and applying Proposition 2.27 yields the result.

The preceding arguments were based mainly on the global optimality of the ūγ and little on
the concrete structure of the problem. In a convex setting, which we will address in the next
section, it is possible to show more.

2.5.3. Regularization error in the convex case

In this chapter, we will additionally assume that J is convex. Note that this is the case for a
quadratic tracking functional. Since the solution operator S was already assumed to be affine
linear, the reduced objective functional j is therefore convex, as well. This directly implies
that (Pγ) has a unique solution, since the reduced cost functional

jγ(·) = j(·) + γ

2‖·‖
2

is even strongly convex (see, e.g., [BC11, Corollary 11.8]).

Proposition 2.30. Assume that J is convex. Then, the solution ūγ of (Pγ) is unique.
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Then we obtain the well-known result that the unique optimal solution ūγ depends Lip-
schitz continuously on the regularization parameter γ; see also [HK06a; HK06b; JLS09; LR10;
WW11].

Proposition 2.31. Assume that J is convex. We have for all γ > 0 and ρ > 0 that

‖ūγ − ūρ‖ ≤
|ρ− γ|
γ
‖ūρ‖

Proof. We insert the optimal solutions for ūγ and ūρ into the variational inequality from
Proposition 2.25 for ρ and γ, respectively, which yields

−(∇f(ūρ) + ρūρ, ūγ − ūρ) + ψ(ūγ) ≤ ψ(ūρ),
−(∇f(ūγ) + γūγ , ūρ − ūγ) + ψ(ūρ) ≤ ψ(ūγ).

Adding both inequalities and rearranging results in

(γūγ − ρūρ, ūγ − ūρ) + (∇f(ūγ)−∇f(ūρ), ūγ − ūρ)
= γ‖ūγ − ūρ‖2 + (γ − ρ)(ūρ, ūγ − ūρ) + (∇f(ūγ)−∇f(ūρ), ūγ − ūρ) ≤ 0.

Since f is convex, ∇f : H → H is a monotone operator (see, e.g., [BC11, Proposition 17.10]),
and the last term is positive and can be dropped (for a linear quadratic tracking term as
in (2.37) we even have (∇f(ūγ)−∇f(ūρ), ūγ − ūρ) = ‖Sobs(ūγ − ūρ)‖2). This yields

γ‖ūγ − ūρ‖2 ≤ (ρ− γ)(ūρ, ūγ − ūρ) ≤ |ρ− γ|‖ūρ‖‖ūγ − ūρ‖,

and we divide by ‖ūγ − ūρ‖ to conclude the proof.

It follows that the value function is continuously differentiable with Lipschitz continuous
derivative, which implies that (2.40) holds for all γ > 0.

Proposition 2.32. Assume that J is convex. The value function v is continuously differentiable
with Lipschitz continuous second derivative. It holds

0 ≤ −v′′(γ) ≤ 1
γ
‖ūγ‖2 for γ > 0 almost everywhere.

Proof. Since γ → 1/2 ‖uγ‖2 is continuous, v′ has a continuous representative. We have

v′(γ)− v′(ρ) = 1
2
(
‖ūγ‖2 − ‖ūρ‖2

)
= 1

2(ūγ − ūρ, ūγ + ūρ)

≤ 1
2‖ūγ − ūρ‖‖ūγ + ūρ‖ ≤

|γ − ρ|
2γ ‖ūγ + ūρ‖‖ūρ‖ ≤

|γ − ρ|
2γ

(
‖ūγ‖‖ūρ‖+ ‖ūρ‖2

)
with Proposition 2.31. Dividing by |γ − ρ|, letting ρ → γ, and using concavity of the value
function yields the result.

The previous structural results for the value function will be used for an asymptotic a priori
estimate of the regularization error of the functional in sections 4.5.1 and 5.4.1. Furthermore,
we will use them for an a posteriori estimate of the same error in section 6.2.
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2.5. Hilbert space regularization

2.5.4. Computation of the second derivatives

In chapter 3 we will discuss a second order optimization algorithm for the solution of (Pγ) based
on a semismooth Newton method for the reduced cost functional jγ . Therefore, we require the
gradient and second derivatives of the smooth part f(·) = J(S(·)), while the nonsmooth part ψ
is treated differently. More precisely, we need evaluations of the Hessian at u ∈ H in directions
δu ∈ H. The Hessian is defined as usual by

(ϕ,∇2f(u)δu) = f ′′(u)(ϕ, δu) for all ϕ ∈ H,

where f ′′ is the second derivative of f . To ensure that f is two times continuously differentiable,
we additionally assume that:

• The functional J : Y → R is twice continuously (Fréchet) differentiable.
In the general setting of section 2.1, where S : u 7→ y is affine linear, the derivative of S is given
by S′(·) = S(·)− S(0) and by the chain rule we obtain for u ∈ H that

∇f(u) = (S′)∗J ′(S(u))
∇2f(u)δu = (S′)∗J ′′(S(u))S′(δu) for all δu ∈ H.

As usual, (S′)∗ : Y ∗ → H∗ ∼= H denotes the adjoint of S′. We have already seen in the elliptic
and parabolic case that the gradient ∇f(u) can be expressed with the solution of the adjoint
equation. In the same way, for a given δu ∈ H the Hessian product ∇2f(u)δu can be expressed
with an auxiliary tangent and a second adjoint equation; see below.

A more general setting

However, in the Hilbert space setting, there is no need to restrict attention to problems with
linear state equation. The optimization algorithms we will discuss in chapter 3 are applicable
to a much larger class of optimization problems. There, we can work under the following more
general assumptions on the state equation:

• Define Uad = domψ = {u ∈ H | ψ(u) <∞}. For all u ∈ Uad, the state equation
e(y, u) = 0 in W has a unique solution y = S(u) ∈ Y . The corresponding solution
operator S : H → Y is weak to strong continuous. The operator

e(·, ·) : Y ×H →W ∗

is twice continuously (Fréchet) differentiable on a neighborhood of Y ×Uad and the partial
derivative

e′y(y, u) : Y →W ∗

is an isomorphism for all (y, u) ∈ Y × Uad.
In this setting, we can still show existence of an optimal solution with the same arguments as
in Proposition 2.24. Furthermore, we can compute algorithmically useful expressions for the
gradient and the second derivative (in the sense of continuous Fréchet differentiability).
Remark 2.3. The ideas behind the following computations are well-known; cf. also [Ulb11,
Appendix A.1]. We only sketch the derivation for the sake of completeness. We also mention that
the conditions given above are still very restrictive and fail to cover many interesting problems,
especially in a parabolic setting. However, the results of the computations below remain valid
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2. Theoretical framework

for a much larger class of problems. We also refer to Lions [Lio71], Tröltzsch [Trö10b] and Ito
and Kunisch [IK08, Chapter 5] for different conditions and settings where similar results can
be derived.

We fix some û ∈ Uad and denote ŷ = S(û). There exists an open ball N (û) ⊂ H around û,
such that the solution operator

S : N (û)→ Y with e(S(u), u) = 0 for u ∈ H,

is well-defined and continuously differentiable. This follows with the implicit function theorem;
see, e.g., [Die69, Theorem 10.2.1]. Since e is twice differentiable, this property transfers to
S : N (û)→ Y ; see, e.g., [Die69, Theorem 10.2.3]. This allows to compute the first and second
derivative of f at u. As before, we define the Lagrange function as

L(u, y, p) = J(u)− 〈e(y, u), p〉 for (u, y, p) ∈ U × Y ×W.

As in sections 2.2.4 and 2.3.4, we have for any p ∈W that

f(u) = L(u, S(u), p) for all u ∈ N (û).

By the chain rule it follows for arbitrary p ∈W and any δu ∈ H that

f ′(û)(δu) = L′u(û, ŷ, p)(δu) + L′y(û, ŷ, p)(δy)

where δy = S′(û)(δu) is the solution of the tangent equation, given by

〈e′y(ŷ, û)(δy), ϕ〉 = −〈e′u(ŷ, û)(δu), ϕ〉 for all ϕ ∈W. (2.43)

Now, we choose p̂ ∈ W as the solution of the adjoint equation L′y(û, ŷ, p) = 0, which is given
by

〈ϕ, e′y(ŷ, û)∗p〉 = J ′(ŷ)(ϕ) for all ϕ ∈ Y. (2.44)

Since e′y(ŷ, û) : Y →W ∗ is an isomorphism, the same holds for the transpose e′y(ŷ, û)∗ : W → Y ∗,
and p̂ is uniquely determined. This leads to the representation

f ′(û)(ϕ) = L′u(û, ŷ, p̂)(ϕ) = (e′u(ŷ, û)(ϕ), p̂) for any ϕ ∈ H. (2.45)

Therefore it holds ∇f(û) = e′u(ŷ, û)∗p̂. With this, we can again derive the result of Proposi-
tion 2.25. To obtain a representation for the second derivative, we first argue that the mapping
(u, y) 7→ p, where p is the corresponding solution of (2.44), is continuously differentiable. Again,
this follows by the implicit function theorem. By differentiating (2.45) in direction δu with the
chain rule, it follows now that

f ′′(û)(ϕ, δu) = L′′uu(û, û, p̂)(ϕ, δu) + L′′uy(û, û, p̂)(ϕ, δy) + L′′up(û, û, p̂)(ϕ, δp)
= 〈e′′uu(ŷ, û)(ϕ, δu), p̂〉+ 〈e′′uy(ŷ, û)(ϕ, δy), p̂〉+ 〈e′u(ŷ, û)(ϕ), δp〉 (2.46)

where δy solves the tangent equation (2.43) and δp solves the second adjoint equation

〈ϕ, e′y(ŷ, û)∗δp〉
= J ′′(ŷ)(ϕ, δu)− 〈e′yu(ŷ, û)(ϕ, δu), p̂〉 − 〈e′yy(ŷ, û)(ϕ, δy), p̂〉 for all ϕ ∈ Y. (2.47)

34



2.5. Hilbert space regularization

We see that the gradient of f can be derived by the solution of one auxiliary equation. Similarly,
a product of the Hessian with any given vector can be computed with the help of two additional
equations. This is going to be important for the iterative solution of the linear system of the
Newton method described in chapter 3.

The same formulas can also be derived for the discrete versions of the control problems, which
will be discussed in chapter 4 and chapter 6 for the elliptic and chapter 5 for the parabolic
problem. Then, the computations are based on a discrete version of the Lagrange function.
Furthermore, in the parabolic setting we usually perform integration by parts in time to obtain
a more convenient interpretation of the expression e′y(ŷ, û)∗; cf. section 2.3.4. For a more
detailed exposition and information on the efficient realization in the context of parabolic
equations we also refer to [BMV07; Mei08].
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In this chapter we discuss the theoretical and practical aspects concerning the numerical
solution of the optimization problems considered in this thesis. The methods will be based
on a reduced cost functional and are not be specific to the convex examples discussed in
chapter 2. We employ a reformulation of the optimality system based on the normal map
(due to Robinson [Rob92]), which is different from the reformulation commonly employed in
the infinite dimensional semismooth Newton literature (cf., e.g., [HIK03; Ulb11] or [Sta09;
HSW12] specifically for sparse control problems). In the context of variational inequalities and
generalized equations in the finite dimensional context, optimization algorithms based on the
normal map are well studied: we mention for instance the Newton-Robinson method [Rob94]
and the PATH algorithm [Ral94; DF95]. In the context of semismooth Newton methods,
reformulations based on the normal map are also known; see, e.g., [Ulb11, p. 9]. A systematic
development of an approach with the normal map, specifically for the minimization of the
reduced cost functional of problems of the type (Pγ), appears not to have been done yet. In
this chapter we will develop a corresponding framework. In many places we can use existing
theory: for instance, concerning the locally superlinear convergence of the semismooth Newton
method, we can apply the known results by Ulbrich [Ulb02; Ulb11], Hintermüller, Ito, and
Kunisch [HIK03], and Schiela [Sch08]. However, differences arise in the structure of the linear
system and in the form of the iterates. For instance, in the presence of constraints, the iterates
of a method based on the normal map are admissible, whereas the standard approach generally
produces infeasible iterates.

This chapter is organized as follows. In section 3.1 we introduce some notation and concepts
from convex analysis and introduce the nonsmooth reformulation of the optimality condition
based on the normal map. The theoretical framework allows for a very general class of
minimization problems consisting of a smooth and a convex part. Section 3.2 introduces some
of the necessary theory of semismoothness and semismooth Newton methods that we will need
in the following. Here, we essentially follow [Ulb11]. Furthermore, we analyze the structure
of the Newton system and show how it can be reduced to a symmetric system. Finally, we
discuss conditions for the bounded invertibility of the Newton operator. In section 3.3, we
discuss the necessary theory of semismoothness of superposition operators that we need for
the applications discussed in chapter 2. Here, we essentially follow [Sch08]. Besides, we apply
the theory to the concrete functionals ψ introduced in chapter 2. In particular, we verify the
assumptions made in the previous sections for the case of sparsity and directional sparsity. We
also include the classical case of box-constraints and discuss the case of directional sparsity with
positivity constraints. In section 3.4 we give details on the algorithmic realization. An iterative
solution strategy based on the method of conjugate gradients for the “symmetrized system” is
discussed. Since the semismooth Newton method is in general only locally convergent, we discuss
a globalization strategy and prove global convergence for a first order optimization scheme
based on the normal map (similar to the projected/proximal gradient method). Motivated by
that, we also introduce a heuristic globalization strategy for the semismooth Newton method
based on the reduced cost functional and the truncated conjugate gradients approach due to
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Steihaug [Ste83]. Here, the reformulation with the normal map is essential. In section 3.6 we
systematically compare the normal map formulation to other common formulations. We find
that for linear quadratic, convex problems, all considered methods are similar (i.e., equivalent
under an appropriate interpretation). For problems with nonlinear state equations we explain
the differences that arise in each formulation.

3.1. Nonsmooth reformulation of the optimality condition

Let H be a separable Hilbert space (which is an appropriate L2-space in all of our applications).
We generally abbreviate the inner product in H by (·, ·) and the norm by ‖·‖. We consider the
problem

min
u∈H

jγ(u) = f(u) + ψ(u) + γ

2‖u‖
2 (Pγ)

for a fixed parameter γ ≥ 0. Throughout this chapter we make the following general assump-
tions.

• ψ : H → R ∪ {∞} is a convex, proper, and lower semicontinuous functional. By Uad =
domψ = {u ∈ H | ψ(u) <∞} we denote the admissible set.

• f : H → R is a twice continuously Fréchet-differentiable functional. It is typically of the
form f(u) = J(S(u)) for a C2 functional J : Y → R, a Banach space Y , and a C2 solution
operator S : H → Y ; cf. section 2.5.4.

Remark 3.1. Since the optimization algorithm will only produce admissible controls, we will
only ever insert elements u ∈ Uad into the functional f . Therefore, it is be possible to consider
functionals f that are only defined on a neighborhood of Uad, which is important for some
applications. Here, we require f to be defined on all of H to improve readability. Besides, this
is the case for the problems from chapter 2.

In this general setting the existence of a minimizer can be proved with classical arguments.

Proposition 3.1. Let γ > 0 and f and ψ be bounded from below. Then (Pγ) possesses a
minimizer ū ∈ H.

Proposition 3.2. Let Uad = domψ = {u ∈ H | ψ(u) <∞} be a bounded subset of H.
Then (Pγ) possesses a minimizer ū ∈ Uad.

In the following, the case γ = 0 is included mainly on a formal level. For most of the concrete
combinations of f and ψ considered in this thesis, problem (Pγ) is not well posed for γ = 0,
i.e., the optimal solution cannot be found in the Hilbert space H. In the case that the optimal
solution lies in H, for instance in the presence of control constraints, it is (in principle) possible
to apply the optimization algorithms in this chapter. Most of the convergence analysis will
however only be applicable for γ > 0. For convenience of notation, we abbreviate the smooth
part of the functional by

fγ(·) = f(·) + γ

2‖·‖
2.

This implies
∇fγ(u) = ∇f(u) + γu for all u ∈ U

As an optimality condition, we obtain the following standard result; cf. also Proposition 2.25.
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Proposition 3.3. Suppose that ū is a minimizer of (Pγ). Then we have

−∇fγ(u) ∈ ∂ψ(ū).

Since the subdifferential is not easily accessible algorithmically, we will reformulate the inclu-
sion property from Proposition 3.3 as an equation. For this we introduce the proximal mapping
(alternatively called Prox-operator or proximity mapping), which is due to Moreau [Mor65].

Definition 3.1. We define the proximal map Pc : H → H of the convex functional ψ for the
constant c > 0 as

Pc(q) = u = argmin
ũ∈H

[
c

2‖ũ− q‖
2 + ψ(ũ)

]
. (3.1)

Remark 3.2. Usually, the proximal map is defined for c = 1 and the resulting operator is
denoted by Proxψ; cf. [BC11, Definition 12.23]. The operator Pc can then be obtained as the
proximal map of ψ/c, i.e., we have

Pc(q) = Proxψ/c(q) = argmin
ũ∈H

[1
2‖ũ− q‖

2 + 1
c
ψ(ũ)

]
.

We prefer Pc here, for convenience of notation.

Due to the simple structure of the minimization problem (3.1) it can often be solved analyti-
cally (this is the case for all concrete ψ considered in this thesis). Furthermore, its numerical
computation can be realized in an efficient way. We recall some of the general properties
hereafter.

Proposition 3.4. The proximal mapping (3.1) is a well defined, bounded (nonlinear) operator
Pc : H → Uad ⊂ H. Furthermore:
(i) For all q, u ∈ H we have the equivalence

u = Pc(q) ⇔ c(q − u) ∈ ∂ψ(u).

(ii) Pc is “firmly nonexpansive”, i.e., for all q, q̃ ∈ H we have

‖Pc(q)− Pc(q̃)‖2 ≤ (Pc(q)− Pc(q̃), q − q̃).

(iii) Pc is Lipschitz-continuous with constant one, i.e., for all q, q̃ ∈ H we have

‖Pc(q)− Pc(q̃)‖ ≤ ‖q − q̃‖.

(iv) Pc is a monotone operator, i.e., for all q, q̃ ∈ H we have

(Pc(q)− Pc(q̃), q − q̃) ≥ 0.

Proof. In the proofs of these standard results, which we sketch for completeness, we mainly
follow Bauschke and Combettes [BC11]. First, we see that the minimization problem in (3.1)
has a unique solution due to strong convexity of the functional

u 7→ c

2‖u− q‖
2 + ψ(u).
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Since Uad = domψ is not empty, the minimizer must lie in Uad. Property (i) follows directly from
the equivalent characterization of the minimizer of the convex problem with the subdifferential
as in Proposition 3.3; cf. [BC11, Proposition 16.34]. For properties (ii), (iii) and (iv) we take
q, q̃ ∈ H arbitrary. By writing out the subgradient condition (i) for u = Pc(q) and ũ = Pc(q̃)
we have

ψ(u) + c(q − u, ũ− u) ≤ ψ(ũ),
ψ(ũ) + c(q̃ − ũ, u− ũ) ≤ ψ(u).

Adding both inequalities, dividing by c > 0, and rearranging, we obtain

‖ũ− u‖2 ≤ (q − q̃, u− ũ).

This is the firm nonexpansiveness property (ii); cf. [BC11, Proposition 12.27]. The remaining
two items are direct consequences: with Cauchy-Schwarz on the right-hand side we obtain (iii)
and due to positivity of the left-hand side we obtain (iv).

With the help of the proximal mapping it is possible to reformulate the subdifferential
inclusion property from Proposition 3.3 as an equality. We are going to rely on the concept of
the normal map, which is due to Robinson [Rob92].

Definition 3.2. For any c > 0 we define the normal map of ∇fγ and ψ as

G(q) = c(q − Pc(q)) +∇fγ(Pc(q)). (3.2)

With the help of Proposition 3.4.(i) we see that G(q) = 0 implies the stationarity condition
from Proposition 3.3 for u = Pc(q). In fact, we obtain the following result.

Proposition 3.5. Suppose that ū ∈ H is an optimal solution of (Pγ). Then there exists an
q̄ ∈ H, such that ū = Pc(q̄) and G(q̄) = 0. Moreover, we have

G(q) = 0 ⇔ −∇fγ(Pc(q)) ∈ ∂ψ(Pc(q)).

In other words, G(q) = 0 with u = Pc(q) is equivalent to the stationarity condition from
Proposition 3.3.

Proof. Let ū be an optimal solution of (Pγ). According to Proposition 3.3, we have −∇fγ(ū) ∈
∂ψ(ū). We set

q̄ = ū− 1
c
∇fγ(ū).

We obtain c(q̄ − ū) = −∇fγ(ū) ∈ ∂ψ(ū), which directly implies that ū = Pc(q̄) with Proposi-
tion 3.4.(i). By construction, we have that G(q̄) = 0.

We will base the optimization method on finding a zero of the map G. An instructive
interpretation of this can be given as follows. Moreau’s identity (see, e.g, [BC11, Theorem
14.3]) tells us that we can always decompose a variable q ∈ H into

q = Pc(q) + P ∗c (q) = u+ u∗,

where P ∗c = Prox(ψ/c)∗ is the proximal map of the convex conjugate (ψ/c)∗ : H → R ∪ {∞}
defined as

(ψ/c)∗ (u∗) = sup
u∈H

[
(u∗, u)− 1

c
ψ(u)

]
= 1
c
ψ∗(cu∗).
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By using q = u + u∗ as an optimization variable, we combine the primal iterate u and dual
iterate u∗. It generates both the iterate u and the current candidate cu∗ for the subgradient of
ψ. The first part of the stationarity condition, which is given by cu∗ ∈ ∂ψ(u), is always fulfilled
according to Proposition 3.4.(i). In the optimum, we additionally obtain with Proposition 3.5
that

cū∗ = c(q̄ − ū) = −∇fγ(ū),

which is the second part of the stationarity condition. This is equivalent to G(q̄) = 0.

The important special case

For the function space analysis of the following semismooth Newton method we will have to
suppose γ > 0. In this case, we will always choose the parameter c = γ. By this choice, the
term γPγ(q) cancels and we obtain

G(q) = γq +∇f(Pγ(q)). (3.3)

In this formulation, we can directly obtain the optimal q̄ as a multiple of the gradient of f in
the optimum.

Proposition 3.6. Suppose γ > 0 and set c = γ. The optimal variable q̄ with ū = Pγ(q̄) from
Proposition 3.5 is given by

q̄ = −1
γ
∇f(ū). (3.4)

In other words, we obtain the “proximal” formula

ū = Pγ(q̄) = Pγ

(
−1
γ
∇f(ū)

)
,

giving the optimal control ū in terms of the proximal map of the gradient of f .

In many applications (as in chapter 2) the gradient of f can be represented in terms of the
adjoint state p = p(u) as ∇f(u) = B∗p, where B is a bounded linear operator. In most cases,
the adjoint state p will have higher regularity than u, which results in higher regularity for q̄
due to (3.4). Moreover, we can interpret the method as operating on the variable q = −1/γ B∗p.
This draws a parallel to the “control-reduced approach” used by, e.g., Schiela [Sch08], where the
control is eliminated from the optimality system with the projection formula u = Pγ(−1/γ B∗p).
We will explore the similarities and differences to other reformulations used for semismooth
Newton methods in section 3.6.

3.2. Newton method framework

We will apply a Newton-type method to find a zero of the equation

G(q) = 0. (3.5)

However, the proximal mapping is not differentiable in general (specifically not in the cases
considered in this thesis). Therefore, we work with the concept of semismoothness, which is a
generalization of differentiability for certain nonsmooth functions.
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3.2.1. Semismoothness calculus

In the context of finite dimensional optimization, a generalized differential for locally Lipschitz
continuous functions can be derived from Clarke’s generalized Jacobian. We refer the reader
to the overview in Qi and Sun [QS99], or Ulbrich [Ulb11, Section 2.1]. The construction makes
use of Rademacher’s theorem and cannot be transferred easily to the infinite dimensional
case. In the abstract Banach space setting, we define semismoothness as a relation between
an operator F and another object DF , the candidate for the generalized derivative. In this
section we mainly follow Ulbrich [Ulb11, Section 3.2]. Note, that in contrast to [Ulb11] we
do not discuss multi-valued DF , mainly to simplify notation. The following approach can be
seen as the single-valued special case of the multi-valued approach (and therefore the results
from [Ulb11] are applicable in this setting). The motivation for the definition is to provide a
minimal requirement that allows to show superlinear convergence of Newton’s method.

Definition 3.3. Let V1, V2 be Banach spaces and F : V1 → V2. Furthermore, let DF : V1 →
B(V1, V2). We say that F is semismooth at the point v ∈ V1 with respect to DF (F is
DF -semismooth) if we have

lim
‖δv‖V1→0

1
‖δv‖V1

‖F (v + δv)− F (v)−DF (v + δv)δv‖V2 = 0.

In this case, we refer to DF as a generalized derivative/differential for F .

For a semismooth operator equation F (v) = 0 with boundedly invertible DF (·), superlinear
convergence of Newton’s method can be shown.

Theorem 3.7. Suppose that we have an operator F : V1 → V2, a generalized differential
DF : V1 → B(V1, V2), and a v̄ ∈ V1 with

• F (v̄) = 0,
• F is semismooth at v̄ with respect to the generalized differential DF ,
• the generalized derivatives DF (·) are boundedly invertible in a neighborhood N1(v̄) of v̄

in V1 with a uniform bound

‖DF (v)−1‖V2→V1 ≤M for all v ∈ N1(v̄).

Then there exists a neighborhood N2(v̄) of v̄ in V1, such that for all v0 ∈ N2(v̄) the Newton
iterates vn, defined by

vn+1 = vn −DF (vn)−1F (vn),

converge to limn→∞ vn = v̄. Furthermore, the convergence is superlinear, i.e., we have

‖vn+1 − v̄‖V1 ≤ λn‖vn − v̄‖V1

for a sequence 0 ≤ λn → 0 for n→∞.

Proof. Let us reproduce the proof from Hintermüller, Ito, and Kunisch [HIK03, Theorem 1.1],
since it is short and instructive. By definition, the Newton iterates fulfill

vn+1 − v̄ = −DF (vn)−1 [F (vn)− F (v̄)−DF (vn)(vn − v̄)] .
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We set en = vn − v̄. With the uniform bound on the inverses of DF (vn), we obtain

‖en+1‖V1 ≤M‖F (v̄ + en)− F (v̄)−DF (v̄ + en)en‖V2

for all en ∈ N1(v̄). Due to semismoothness of F at v̄, by choosing e0 = v0− v̄ sufficiently small,
there exists a ρ ∈ [0, 1), such that

‖F (v̄)− F (v̄ + e)−DF (v̄ + e)e‖V2 ≤
ρ

M
‖e‖V1

for all e ∈ V1 with ‖e‖V1 ≤ ‖e0‖V1 = ‖v0 − v̄‖V1 . It follows ‖e1‖V1 ≤ ρ‖e0‖V1 . Furthermore, we
obtain ‖en‖V1 ≤ ρn‖e0‖V1 by induction. Therefore, we have vn → v̄ for n → ∞. Using again
the semismoothness of F , we can choose the constant ρ arbitrarily small for sufficiently high n,
which is the superlinear convergence.

Remark 3.3. The concept of pointwise semismoothness as given in Definition 3.3 requires some
caution. For any given operator F and a given point v̄, it is always possible to construct a
special DF v̄ such that F (v̄+ δv)−F (v̄)−DF v̄(v̄+ δv)δv = 0 for all δv ∈ V1 (this would entail
termination of a corresponding Newton method after the first step). For algorithmic purposes,
we are interested in semismoothness with respect to a generalized differential DF which can
be chosen a priori, without knowledge of the point v̄.

Let us derive a suitable generalized differential for G. First, we can directly see that contin-
uously Fréchet-differentiable functions are semismooth (see [Ulb11, Proposition 3.4]).

Proposition 3.8. Let F : V1 → V2 be continuously differentiable. Then F is semismooth for
all v ∈ V1 with generalized derivative DF = F ′, where F ′ is the Fréchet derivative.

Furthermore, we have the following chain rule (see [Ulb11, Proposition 3.8]).

Proposition 3.9. Let F1 : V1 → V2 be semismooth at v1 with generalized differential DF1 and
let F2 : V2 → V3 be semismooth at v2 = F1(v1) with generalized differential DF2. Furthermore,
let F1 be Lipschitz continuous at v1 and let the generalized derivatives DF2 be uniformly bounded
near v2. Then, the composition F = F2 ◦ F1 : V1 → V3 is semismooth at v1 with generalized
derivative DF defined as DF (v) = DF2(F1(v))DF1(v) for v ∈ V1.

Our goal is to apply this chain rule with F1 = Pc and F2 = ∇f to construct a generalized
differential for ∇f ◦ Pc, which appears in the definition of G. The nontrivial aspect is to
find a suitable generalized derivative DPc : H → B(H) for Pc. It is well known that, in the
infinite dimensional context, we cannot expect semismoothness of Pc, when regarded as an
operator from H to H (we will see this in section 3.3.1). In the concrete examples discussed
in section 3.3, which are superposition operators, we have to impose a norm gap between the
image and preimage space. For now, we formulate this as the following general assumption.

Assumption 3.1. Suppose that there exists a Banach space Hsub ⊂ H, which is continuously
embedded in H, and a generalized derivative DPc : H → B(H) such that Pc, when regarded as
an operator Hsub → H, is semismooth with respect to DPc. In other words, we have for all
q ∈ Hsub that

lim
‖δq‖Hsub→0

1
‖δq‖Hsub

‖Pc(q + δq)− Pc(q)−DPc(q + δq)δq‖ = 0.
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The construction of DPc and the appropriate choice of Hsub are discussed in section 3.3.2 in
the context of concrete examples. The important aspect of Assumption 3.1 is that we can infer
semismoothness of G with respect to the canonical candidate for the generalized derivative.

Proposition 3.10. Suppose that Assumption 3.1 holds. Then G, when regarded as an operator
G : Hsub → H is semismooth for all q ∈ Hsub with the generalized derivative

DG(q) = c(Id−DPc(q)) +∇2fγ(Pc(q))DPc(q).

Proof. We apply the chain rule from Proposition 3.9 to ∇fγ ◦ Pc. For that, recall that Pc is
Lipschitz continuous and the derivatives ∇2f(·) are uniformly bounded near u = Pc(q) due to
continuous Fréchet differentiability. Furthermore, it is clear from the definition that sums of
semismooth functions are semismooth with respect to the canonical generalized derivative.

To be able to apply Theorem 3.7 we would have to suppose that DG(·)−1 : H → Hsub, which
is an unrealistic assumption for any nontrivial subspace Hsub ⊂ H, as we will see in section 3.2.2.
In fact, it is clearly violated in most cases. Consider, e.g., the trivial case f, ψ ≡ 0, where we
obtain DG(·) ≡ γ Id.

The important special case

For the superlinear convergence proof it will be essential to require γ > 0. Consequently, we
choose c = γ. Recall that now, G simplifies to

G(q) = γq +∇f(Pγ(q)).

Since Pγ appears here only behind ∇f , we can get rid of the norm gap for the semismoothness
property of G by imposing a smoothing condition on ∇f .

Assumption 3.2. Let Hsub ⊂ H be the subspace from Assumption 3.1. We assume that
∇f(H) ⊂ Hsub and that ∇f is also continuously Fréchet-differentiable as an operator ∇f : H →
Hsub.

Proposition 3.11. Suppose that c = γ > 0 and that Assumptions 3.1 and 3.2 hold. Then G
can be regarded as an operator G : Hsub → Hsub, which is semismooth for all q ∈ Hsub with the
generalized derivative

DG(q) = γ Id +∇2f(Pγ(q))DPγ(q).

Proof. We apply again Proposition 3.9 to F1 = Pγ : Hsub → H and F2 = ∇f : H → Hsub.

To apply Theorem 3.7, we need to discuss invertibility of the Newton matrices DG(·), which
we will address in the next section.
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3.2.2. Newton system and quadratic model

In the following we will consider the Newton update equation based on the reformulation (3.2),
i.e., the solvability of the linear equation

DG(q) δq = −G(q) (3.6)

for the Newton update δq. The operator DG(q) is generally not symmetric, which is typical
for semismooth Newton methods. However, solving the linear equation (3.6) can be reduced to
the solution of a symmetric system. To this purpose we need to introduce some notation and
concepts.
First, we are going to formulate some additional hypotheses on the generalized differential

DPc of the proximal map Pc, which will be fulfilled for all concrete examples; see section 3.3.2.
Assumption 3.3. For all q ∈ H the generalized derivative DPc(q) : H → H has the properties:
(i) DPc(q) is a bounded operator on H with ‖DPc(q)‖H→H ≤ 1.
(ii) DPc(q) is a positive semidefinite operator, i.e., (DPc(q)δq, δq) ≥ 0 for all δq ∈ H.
(iii) DPc(q) is a self adjoint operator, i.e., DPc(q)∗ = DPc(q).

Let us give some motivation for these assumptions. Recall that Pc is monotone and Lipschitz
continuous with constant one; see Proposition 3.4. If the directional derivative of Pc at q ∈ H
in direction δq exists, we obtain directly that (dPc(q; δq), δq) ≥ 0 and ‖dPc(q; δq)‖ ≤ ‖δq‖.
Moreover, the generalized derivative DPc is related to the second derivatives of the convex
functional ψ. Consider (for simplicity) the case where ψ is twice differentiable at the point
u = Pc(q). With the implicit function theorem it follows that Pc is differentiable at q and
we have the identity ∇2ψ(u) = c(∇Pc(q)−1 − Id). This implies that ∇Pc(q) is a symmetric
operator. We will not go into further detail here. In the following, Assumption 3.3 is regarded
as a restriction on the choice of the generalized differential, which will be verified for each of
the concrete examples.
Remark 3.4. For the semismoothness concept in finite dimensions, where the canonical candidate
for the generalized differential is derived from Clarke’s generalized Jacobian in a systematic way,
all of these assumptions can be proven as theorems; see Milzarek [Mil15]. There, the generalized
derivative of the proximal map can be related to a generalized Hessian; see [HUSN84] for a
definition. Specifically, if Pc is differentiable at the point q it holds ∇Pc(q) = q − 1/c∇2Ψc(q),
where Ψc(q) = c/2‖Pc(q)− q‖2 + ψ(Pc(q)) is the Moreau envelope of ψ. This follows with the
help of the well-known formula ∇Ψc(q) = c(q − Pc(q)); see, e.g., [BC11, Proposition 12.29].
Since the generalized differential DPc is derived from ∇Pc (which exists almost everywhere),
the properties from Assumption 3.3 can be shown. We remark that, if a generalized differential
for a superposition operator is derived from the finite dimensional one via superposition, the
properties from Assumption 3.3 transfer, as we will see in section 3.3.
We briefly sketch the idea behind the computation of the Newton update before giving a

detailed rigorous argument below. Therefore, we fix a q ∈ H and abbreviate

T = DPc(q)

for convenience of notation. Furthermore we denote u = Pc(q). As discussed in the previous
section we consider for (3.2) the generalized derivative given by

DG(q) = c (Id−T ) +∇2fγ(u)T

= c Id +
(
∇2fγ(u)− c Id

)
T.

(3.7)
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Note, that DG(q) is in general not a symmetric operator. However, if we multiply the Newton
system (3.6) by the self-adjoint operator T = DPc(q) from the left, we obtain the system

TDG(q) δq̃ = −TG(q), (3.8)
where the symmetric operator on the left-hand side is given by

TDG(q) = c
(
T − T 2

)
+ T∇2fγ(u)T.

Note, that the equation (3.8) corresponds to the stationarity condition for the quadratic
problem

min
v∈HT

Qq(v) = (TG(q), v) + 1
2(v, TDG(q)v)

= (G(q), T v) + 1
2(Tv,∇2fγ(u)Tv) + c

2(Tv, (Id−T )v).
(3.9)

We will see that, under some conditions to be specified below, we can solve (3.8) for a δq̃ in
an appropriate space HT (which still guarantees Tδq̃ ∈ H). We then observe that it holds
Tδq̃ = Tδq. By taking another look at the full equation (3.6) we derive the representation for
the full Newton step δq as

δq = −1
c

[(
∇2fγ(u)− c Id

)
Tδq̃ +G(q)

]
. (3.10)

Let us make the meaning of (3.8) and (3.10) precise in the following. To discuss solvability
for δq̃, we now introduce the previously mentioned solution space HT = HDPc(q). Let us first
recall that for the bounded, self-adjoint operator T we have the equalities

KerT = (RanT )⊥ and RanT = (KerT )⊥,
linking the range and the kernel of T . In general, T = DPc(q) will have a nontrivial kernel
and its range will not be closed; cf. the discussion in the context of concrete examples in
section 3.3.2. We proceed to define the space HT as the Hilbert space induced by the inner
product derived from the symmetric operator T .
Definition 3.4. Define the symmetric and positive semi-definite form (·, ·)T = (·, T ·) and the
associated seminorm ‖·‖T =

√
(·, ·)T . The space HT is given as

HT =
(
H�KerT

) ‖·‖T
,

which is the closure of the quotient space H/KerT w.r.t. the T -norm.
Proposition 3.12. The bilinear form (·, ·)T , extended in the canonical way to the quotient
space H/KerT , is symmetric and positive definite. ‖·‖T is a norm on H/KerT . Consequently, HT ,
endowed with the inner product (·, ·)T , is a Hilbert space.
Proposition 3.13. The operator T : H → H extends in a natural way to an operator T : HT →
H (denoted with the same symbol), such that

‖T‖HT→H ≤ 1 and T (v + KerT ) = Tv for all v ∈ H.

The elementary proofs of these results are given in Appendix A.2.
By Proposition 3.13, the Newton operator DG(q) can be also considered as an operator

from HT to itself, which is now self-adjoint. The same holds if we regard it as an operator on
the space of equivalence classes H/KerT or the orthogonal complement (KerT )⊥. The proof of
invertibility and the practical solution strategy will be based on this observation. Next, we
discuss conditions under which the operator DG(q) is invertible.
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3.2.3. Invertibility of the Newton operator

With these technical prerequisites we can discuss solvability of the Newton equation. We
consider DG(q) as given in (3.7), abbreviate T = DPc(q), and suppose that Assumption 3.3
holds for all q ∈ H. Note that a uniform bound on the norm of the inverses DG(·)−1 is needed
to show convergence of the semismooth Newton method with Theorem 3.7. Therefore, it is
important to explicitly mark the dependency on the point q ∈ H in the following estimates.

The convex case

Let us assume first that f is given by

f(u) = 1
2‖Su− yd‖

2
Y

for some linear bounded operator S : H → Y , mapping from H to the Hilbert space Y . The
Hessian of f is therefore given as ∇2f(u) = S∗S for all u ∈ H, where S∗ : Y → H is the
Hilbert-space adjoint of S. More generally, we can consider

f(u) = J(Su)

for a convex C2 functional J : Y → R. Then, the Hessian is given by ∇2f(u) = S∗J ′′(Su)S
for all u ∈ H. The important observation is that in this case, the functional f is convex and
therefore the Hessian ∇2f(·) is positive semidefinite. If we suppose additionally that γ > 0,
the Hessian ∇2fγ(·) = γ+∇2f(·) is even positive definite. Under these conditions, the Newton
operator (3.7) is invertible for any q ∈ H. To make the invertibility useful in the context of
Theorem 3.7 and Proposition 3.11 we need to work with the subspace Hsub from Assumption 3.2.
Since ∇f is assumed to be Fréchet differentiable as an operator from H to Hsub, the Hessian
of f has a smoothing property, i.e., it can be regarded as an operator

∇2f(u) : H → Hsub.

With this observation, we obtain the following result.

Lemma 3.14. Assume that f is convex and that c = γ > 0. Furthermore, suppose that
Assumption 3.2 holds. Then, for all q ∈ H the Newton operator DG(q) : H → H as given
in (3.7) is boundedly invertible. Furthermore, we have DG(q)−1(Hsub) ⊂ Hsub with the estimate

‖DG(q)−1‖Hsub→Hsub ≤
1
γ

(
1 + 1

γ
‖∇2f(u)‖H→Hsub

)
, (3.11)

where u = Pγ(q).

Proof. We consider the Newton equation DG(q)v = r for a general right hand side r ∈ H.
Since we have c = γ, the Newton operator has the structure

DG(q) = γ Id +∇2f(u)T.

The auxiliary step is determined by solving

TDG(q)ṽ =
[
γT + T∇2f(u)T

]
ṽ = Tr. (3.12)
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Again, this is equivalent to the minimization of the quadratic functional (3.9) or the variational
formulation (·,DG(q)ṽ)T = (·, r)T . Now, with respect to the Hilbert space HT , we clearly have
continuity and coercivity of the left hand side, i.e., it holds

γ‖w‖2T ≤ γ(w,w)T + (Tw,∇2f(u)Tw) = (w,DG(q)w)T for all w ∈ H,

which is a consequence of the convexity of f . Furthermore the right-hand side is continuous,
i.e., we have

(r, w)T ≤ ‖r‖T ‖w‖T ≤ ‖r‖‖w‖T for all w ∈ H.

Therefore, by the Riesz representation theorem, equation (3.12) admits a unique solution
ṽ ∈ HT with the estimate ‖ṽ‖T ≤ ‖r‖/γ. To obtain the full solution of DG(q)v = r, we set

v = 1
γ

(
r −∇2f(u)T ṽ

)
. (3.13)

Here we have used that T ṽ ∈ H with Proposition 3.13. By reordering equation (3.12) we see
directly that T ṽ = 1/γ (Tr − T∇2f(u)T ṽ). Comparing this with (3.13) immediately shows
Tv = T ṽ. Therefore v solves DG(q)v = r. Supposing additionally that r ∈ Hsub, we directly
obtain v ∈ Hsub from (3.13). The corresponding estimate (3.11) is obvious.

Remark 3.5. i) If we suppose that f is quadratic, the Hessian ∇2f is independent of the point
u. Consequently, the bound (3.11) on the inverse of DG(q) is independent of q.
ii) If we omit in Lemma 3.14 the requirement c = γ and the smoothing property, we can still
show invertibility of DG(q) in the sense of an operator on H. However, such a result will not
be sufficient for the analysis of the semismooth Newton method, in general.

The nonconvex case

For general functionals f we cannot expect ∇2f(u) to be a positive semidefinite operator, which
we used in Lemma 3.14 in a central way. In this case, we impose an a priori assumption on
the coercivity of ∇2fγ(u) = γ +∇2f(u). We will formulate an assumption that allows us to
directly carry over the result of Lemma 3.14.

Lemma 3.15. Suppose that c = γ > 0 and that Assumption 3.2 holds. Furthermore assume
that for a specific q ∈ H and the corresponding u = Pγ(q) there exists a constant ν > 0 such
that

(v,DG(q)v)T = γ(v, v)T + (v,∇2f(u)Tv)T ≥ ν(v, v)T for all v ∈ H. (3.14)

Then the Newton operator DG(q) as given in (3.7) is boundedly invertible. Furthermore, we
have DG(q)−1(Hsub) ⊂ Hsub with the estimate

‖DG(q)−1‖Hsub→Hsub ≤
1
γ

(
1 + 1

ν
‖∇2f(u)‖H→Hsub

)
. (3.15)

To ensure that this result is applicable in the context of Theorem 3.7, the constant ν in
Lemma 3.15 needs to be bounded independently of the point q. To guarantee this for a
neighborhood of a stationary point, we can, for instance, require a stronger second order
condition in this point.
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Proposition 3.16. Suppose that c = γ > 0 and that Assumption 3.2 holds. Assume that for a
q̄ ∈ H and the corresponding ū = Pγ(q̄) there exists a constant 0 < ν̄ ≤ γ such that

(v,∇2fγ(ū)v) ≥ ν̄(v, v) for all v ∈ H.

Then there exists a neighborhood N (q̄) in H such that for all q ∈ N (q̄) the property (3.14) holds
with ν = ν̄/2. Consequently, the result of Lemma 3.15 holds with

‖DG(q)−1‖Hsub→Hsub ≤
1
γ

(
1 + 2

ν̂
sup

q̃∈N (q̄)
‖∇2f(Pγ(q̃))‖H→Hsub

)

for all q ∈ N (q̄).

Proof. We need to verify (3.14). By continuity of ∇2fγ(·), we find an open ball N (ū) in H
around ū, such that for any u ∈ N (ū) it holds

(v,∇2fγ(u)v) = (v,∇2f(u)v) + γ(v, v) ≥ ν̄

2 (v, v) for all v ∈ H.

We define the neighborhood of q̄ as N (q̄) = { q̄ + (u− ū) | u ∈ N (ū) }. Using the Lipschitz
continuity (with constant one) of Pγ , it is easy to verify that Pγ(N (q̄)) ⊂ N (ū). For any
q ∈ N (q̄), we compute

(v,DG(q)v)T = γ(v, v)T + (v,∇2f(u)Tv)T = γ(v, v)T + (Tv,∇2f(u)Tv)

≥ γ(v, v)T − γ(Tv, Tv) + ν̄

2 (Tv, Tv) = ν̄

2 (v, v)T +
(
γ − ν̄

2

)
((v, v)T − (Tv, Tv))

for all v ∈ H, using the uniform coercivity of ∇2fγ(·) from before. Since T is a symmetric,
positive semidefinite operator with norm bound one we have (Tv, Tv) ≤ (v, v)T for all v ∈ H.
Together with γ > ν̄/2, the last term in the previous estimate is positive and we conclude the
proof.

Remark 3.6. The sufficient condition from Proposition 3.16 is not necessary for the result of
Lemma 3.15 (for instance, coercivity of ∇2fγ(ū) is also required to hold on the kernel of T ). It
would we desirable to obtain second order sufficient conditions in the optimal solutions which
are as close as possible to verifiable second order necessary conditions (see, e.g., [CHW12b]
for a sparse control problem) and to derive the coercivity conditions (3.14) from them. For a
control constrained problem, such an analysis can be found in [Ulb11, Section 4.3].

3.3. Superposition operators

In many examples (specifically, in all of the examples considered in this thesis), the variable
u can be understood as a vector valued function u : Ω → Ĥ for a bounded domain Ω and a
separable Hilbert space Ĥ, and the convex functional ψ can be written in the form

ψ(u) =
∫
Ω
ψ̂(u(x)) dx (3.16)

with a convex, proper and lower semicontinuous functional ψ̂ : Ĥ → R ∪ {∞}. Consequently,
the Hilbert space H is chosen as H = L2(Ω, Ĥ) and we have

(u, v) =
∫
Ω

(u(x), v(x))Ĥ dx, ‖u‖2 =
∫
Ω
‖u(x)‖2

Ĥ
dx
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for all v, u ∈ H. The integration in (3.16) is to be understood with respect to the Lebesgue-
Bochner integral for the vector-valued function u. In fact, ψ as in (3.16) is well defined, since
|Ω| is finite (see [BC11, Proposition 9.32]). In this case, the computation of the proximal map
of ψ can be reduced to the computation of the proximal map of ψ̂ in Ĥ.

Proposition 3.17. The proximal map of the functional ψ is given by the pointwise superposition
operator

Pc(q)(x) = P̂c(q(x)) almost everywhere, (3.17)
where P̂c : Ĥ → Ĥ is the proximal map of ψ̂ in Ĥ.

Proof. According to the definition, we have to minimize the functional

u 7→
∫
Ω

c

2‖u(x)− q(x)‖2
Ĥ

+ ψ̂(u(x)) dx

to find u = Pc(q). It is clear that this is equivalent to minimizing the expression under the
integral in a pointwise fashion, which leads to (3.17), since

argmin
û∈Ĥ

[
c

2‖û− q(x)‖2
Ĥ

+ ψ̂(û)
]

= P̂c(q(x)).

More generally, we can also consider the case where ψ̂ additionally depends on x ∈ Ω where
ψ is given as

ψ(u) =
∫
Ω
ψ̂(x, u(x)) dx

However, in the extended real valued setting, the question whether for a given ψ̂ : Ω × Ĥ →
R∪{+∞} the functional ψ as above is well-defined, convex, proper, and lower semicontinuous
is more delicate. On this issue, we refer for instance to Rockafellar [Roc68; Roc71] and the
references therein. Since for most of the problems under consideration here ψ̂ is independent of
x, we do not go into further detail. We only mention that for the case of box-constraints (with
measurable constraints) or for a weighted L1 norm as in section 2.2.3 the questions above can
be answered directly and we can derive an analogous result as in Proposition 3.17.

3.3.1. Semismoothness of superposition operators

In this section, we will describe how semismoothness of proximal maps represented by pointwise
superposition operators can be reduced to semismoothness of the underlying pointwise proximal
map P̂c. Here, we can apply known general results; see Ulbrich [Ulb11, Section 3.3.3] or
Schiela [Sch08]. For completeness, we are going to reproduce the subset of the theory given
in [Sch08] that we need for the discussion of the concrete examples.
Let us first consider a general problem setting for a superposition operator F , induced

by the pointwise operator F̂ . Later, we are going to apply the results with F̂ = P̂c and
F = Pc. However, for the next results, the special construction of P̂c as a proximal mapping
on a Hilbert space will not be of particular importance. Assume that for two given separable
Banach spaces V1, V2, where V1 is continuously embedded into V2, the operator F̂ is given as
an operator F̂ : Ω × V1 → V2, which is measurable in the first argument and continuous in the
second (i.e., F̂ is a Carathéodory function). Now, we define the superposition operator (or
Nemyckii-operator) F by

F (q)(x) = F̂ (x, q(x)).
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Due to the Carathéodory property, F maps measurable functions from Ω to V1 to measurable
functions from Ω to V2. Furthermore, we assume that we have a (pointwise) generalized
differential DF̂ : Ω × V1 → B(V1, V2). To construct a generalized differential for F , we will
consider the superposition

DF (q)(x) = DF̂ (x, q(x)).

We have to explain why DF maps measurable functions to measurable functions. Since we
cannot assume DF̂ to be continuous in the second argument (as will become obvious in sec-
tion 3.3.2), we follow [Sch08] and require DF̂ to be a Baire-Carathéodory function (cf. [AZ08]),
i.e., a function which can be represented as a pointwise limit of Carathéodory functions. For
this, we recall that DF̂ can be alternatively considered as a function of three arguments

DF̂ : Ω × V1 × V1 → V2, (x, q̂, δq̂) 7→ DF̂ (x, q̂)δq̂,

which is linear in the third argument. As motivated before, we now require that DF̂ (x, q̂, δq̂) =
limk→∞DF̂ k(x, q̂, δq̂) for all q̂, δq̂ ∈ V1 and almost all x ∈ Ω, where the DF̂ k are measurable
in the first and continuous in the second and third argument. Since pointwise limits of
measurable functions are measurable, this property guarantees that the superposition of DF
maps measurable to measurable functions. Now, we fix the general assumptions on DF̂ for the
rest of this section.

Assumption 3.4. Assume that F̂ is Carathéodory and uniformly Lipschitz continuous in
the second argument. Assume further that there exists a DF̂ : Ω × V1 → B(V1, V2) which is
Baire-Carathéodory with the following properties:

• The values DF̂ (x, q̂) are uniformly bounded in B(V1, V2) for all q̂ ∈ V1 and x ∈ Ω.
• F̂ (x, ·) : V1 → V2 is semismooth w.r.t. DF̂ (x, ·) for all x ∈ Ω.

Due to Lipschitz continuity of F̂ in the second argument, the superposition operator

F : Lp(Ω, V1)→ Lr(Ω, V2), F (q)(x) = F̂ (x, q(x))

is well defined for 1 ≤ r ≤ p ≤ ∞. For this, we verify that F̂ fullfills the growth bound
‖F̂ (x, q̂)‖V2 ≤ c1 + c2‖q̂‖V1 for x ∈ Ω. The goal is to show semismoothness of F w.r.t. the
generalized differential given by the superposition operator

DF : Lp(Ω, V1)→ B(Lp(Ω, V1), Lr(Ω, V2)), DF (q)(x) = DF̂ (x, q(x))

for any r < p. Note that DF is well defined for every r ≤ p due to ‖DF̂ (x, q̂)δq̂‖V2 ≤ c3‖δq̂‖V1

for x ∈ Ω. We start by defining the following function.

Definition 3.5. Fix a q∗ ∈ Lp(Ω, V1). We define the “pointwise Newton residual” at q∗ as

R̂∗(x, q̂) =


1

‖q̂−q∗(x)‖V1

[
F̂ (q̂)− F̂ (q∗(x))−DF̂ (q̂)(q̂ − q∗(x))

]
for q̂ 6= q∗(x),

0 else

for q̂ ∈ V1 and x ∈ Ω almost everywhere.

We can verify the following properties of R̂∗.

Proposition 3.18. Suppose that Assumption 3.4 holds and let q∗ ∈ Lp(Ω, V1) arbitrary.
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(i) R̂∗(x, ·) is continuous at q̂ = q∗(x) for almost all x ∈ Ω.
(ii) The superposition operator induced by R̂∗, given by

R∗(q)(x) = R̂∗(x, q(x)), Lp(Ω, V1)→ Ls(Ω, V2)

is well defined for any 1 ≤ s ≤ ∞.

Proof. Property (i) follows directly from the semismoothness of F̂ w.r.t. DF̂ as in Assump-
tion 3.4. By the Carathéodory and Baire-Carathéodory assumptions on F̂ and DF̂ , measurabil-
ity of R∗(q) for measurable q is clear (since quotients of measurable functions are measurable).
For the mapping property (ii), we further combine the uniform Lipschitz continuity of F̂ and
the boundedness of DF̂ from Assumption 3.4 to obtain

‖F̂ (q(x))− F̂ (q∗(x))‖V2 + ‖DF̂ (q(x))(q(x)− q∗(x))‖V2 ≤ (c2 + c3)‖q(x)− q∗(x)‖V1

for any q ∈ Lp(Ω, V1) and x ∈ Ω (almost everywhere). Thus, we have verified (ii) for s = ∞.
The case s <∞ is a direct consequence of Hölder’s inequality.

The semismoothness of F w.r.t. DF will be derived with the help of a norm-continuity result
of R∗. Below, we give the relevant special case of Lemma 3.1 in [Sch08].

Lemma 3.19 ([Sch08, Lemma 3.1]). Under Assumption 3.4, the superposition operator R∗

R∗ : Lp(Ω, V1)→ Ls(Ω, V2)

is norm-continuous at the point q = q∗ for any s <∞.

Proof. We give the proof, since it is elementary in this specific situation. Recall that R∗(q∗) = 0
by definition. Assume that qn → q∗ in Lp(Ω, V1) for n → ∞. We define the functions
rn ∈ L∞(Ω) as

rn(x) = ‖R∗(qn)(x)‖sV2 .

By Proposition 3.18.(i), rn converges to zero pointwise almost everywhere in Ω. Furthermore,
it is positive and bounded by (c2 + c3)s as in the proof of Proposition 3.18. Now, we apply
Lebesgue’s dominated convergence theorem to see that ‖R∗(qn)(x)‖Ls(Ω,V2) → 0.

It is noteworthy, that the case s =∞ is not included in Lemma 3.19. This is the main reason
for the so called “norm gap” in the following theorem (see also [Ulb11, Theorem 3.49]).

Theorem 3.20 ([Sch08, Theorem 3.3]). Under Assumption 3.4, for any q∗ ∈ Lp(Ω, V1) the
operator F : Lp(Ω, V1)→ Lr(Ω, V2) is semismooth at q∗ w.r.t. DF for any 1 ≤ r < p ≤ ∞.

Proof. We include the proof for the sake of completeness. By construction, it holds that

F (q)(x)− F (q∗)(x)−DF (q)(x) (q(x)− q∗(x)) = R∗(q)(x) ‖q(x)− q∗(x)‖V1

for x ∈ Ω almost everywhere. Taking the Lr(Ω, V2) norm, we obtain with Hölder’s inequality
on the right-hand side that

‖F (q)− F (q∗)−DF (q)(q − q∗)‖Lr(Ω,V2) =
(∫

Ω
‖R∗(q)(x)‖rV2‖q(x)− q∗(x)‖rV1 dx

)1/r

≤ ‖R∗(q)‖Ls(Ω,V2)‖q − q∗‖Lp(Ω,V1)
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for 1 < s < ∞ given by 1/r = 1/s+ 1/p. Since ‖R∗(q)‖Ls(Ω,V2) → 0 for ‖q − q∗‖Lp(Ω,V1) → 0
with Lemma 3.19, we obtain with δq = q − q∗ that

1
‖δq‖Lp(Ω,V1)

‖F (q∗ + δq)− F (q∗)−DF (q∗ + δq)δq‖Lr(Ω,V2) → 0,

for δq → 0, which concludes the proof.

In the following we will analyze several proximal maps with the help of this theorem and
we will have to verify Assumption 3.4 in each concrete setting. Note, that global Lipschitz
continuity is always fulfilled for proximal maps; cf. Proposition 3.4. Uniform boundedness of the
values of DP̂c(·) is also natural in this setting; cf. Assumption 3.3.(i). The only nontrivial part
will be to verify the pointwise semismoothness, which then enables us to show semismoothness
of

Pc : Hsub = Lp(Ω, Ĥsub)→ H = L2(Ω, Ĥ)

for p > 2 with respect to an algorithmically useful DPc.

Let us further point out that the assumptions on DPc from section 3.2.2, which were needed
for the invertibility of the Newton system, follow from the respective assumptions on the
pointwise proximal map.

Proposition 3.21. Suppose that for a Baire-Carathéodory function DP̂ : Ω×Ĥ → B(Ĥ, Ĥ) the
pointwise operator DP̂ (x, q̂) : Ĥ → Ĥ fulfills Assumption 3.3 for every x ∈ Ω and q̂ ∈ Ĥ (i.e.,
DP̂ (x, q̂) is symmetric, positive semidefinite, and ‖DP̂ (x, q̂)‖Ĥ→Ĥ ≤ 1). Then the superposition
DP : H → B(H,H) on H = L2(Ω, Ĥ) fulfills the same assumption.

Proof. It is straightforward to verify that the superposition operator is symmetric and positive
definite. The norm bound is a consequence of Hölder’s inequality, i.e.,

‖DP (q)δq‖2 =
∫
Ω

(
DP̂ (x, q(x))δq(x)

)2
dx ≤ sup

x∈Ω
‖DP̂ (x, q(x))‖2

Ĥ→Ĥ

∫
Ω
δq2(x) dx.

3.3.2. Concrete examples

Of course, the construction of the algorithm hinges upon the easy (or at least computationally
efficient) practical realization of the proximal map. Unfortunately, the proximal map does
not in general admit a closed form representation. However, for the concrete ψ considered
here, we can always derive explicit formulas. Furthermore, is necessary that we find an
appropriate generalized derivative, which is in general not an automatic process but requires
some mathematical analysis. In the following we discuss the special cases that are considered in
this thesis. We give the concrete formulas for the proximal maps, discuss possible generalized
differentials and point out the concrete choices of the space Hsub in each case. Moreover, we
give concrete interpretations of the spaces HDPc(q), which were introduced to solve the Newton
system in section 3.2.2.
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Box constraints

In the case of box constraints we have an admissible set given by

Uad = {u ∈ L2(Ω) | ua ≤ u ≤ ub almost everywhere } ,

where ua, ub ∈ L∞(Ω) are given lower and upper bounds with ua ≤ ub. Historically, the theory
of semismooth Newton methods in Banach spaces has been shaped by this example (see, e.g.,
Ulbrich [Ulb02], Hintermüller, Ito, and Kunisch [HIK03], or Ito and Kunisch [IK04]). To put it
in the context of the given framework, we set

ψ(u) = IUad(u) =
{

0 if u ∈ Uad,

∞ else.

The Hilbert space is chosen as H = L2(Ω). It is easy to see that the proximal map is given by
the projection onto the admissible set

Pc(q) = Pad(q), where Pad(q)(x) =


q(x) if ua(x) ≤ q(x) ≤ ub(x),
ua(x) if q(x) < ua(x),
ub(x) if q(x) > ub(x),

for all x ∈ Ω. In the following, we will mostly suppress the dependence on the spatial variable
x where no ambiguity arises. In this notation, the directional derivatives are easily computed
as

dPad(q, δq) =


δq where ua < q < ub,

0 where q < ua or q > ub,

δq+ where q = ua,

−δq− where q = ub.

Here, (·)+ = max(0, ·) and (·)− = −min(0, ·) denote the positive and negative part, respectively.
We denote the active and strongly active set at q ∈ H respectively by

A(q) = {x ∈ Ω | q(x) ≤ ua(x) or q(x) ≥ ub(x) } ,
As(q) = {x ∈ Ω | q(x) < ua(x) or q(x) > ub(x) } .

We observe that the directional derivative is linear under the supposition that the “ambiguous”
set A(q) \ As(q) = { q = ua or q = ub } has Lebesgue measure zero. To obtain a suitable
generalized differential, we have to modify the directional derivative on this set. As candidates
for the generalized derivative, usually a choice of

DPad(q)δq =


δq where ua < q < ub,

0 where q < ua or q > ub,

d δq where q = ua or q = ub,

for different d is considered. Note, that DPc(q) is a pointwise multiplication operator. Therefore,
with a slight abuse of notation, we can also specify it in the form

DPad(q) =


1 where ua < q < ub,

0 where q < ua or q > ub,

d where q = ua or q = ub.
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In [HIK03] a constant choice of d ∈ R arbitrary is considered. The construction in [Ulb11,
Section 3.3.2] yields an arbitrary d ∈ L∞(A(q) \ As(q)) which fulfills 0 ≤ d(x) ≤ 1 for almost
all x ∈ A(q) \ As(q). There is no difference in the superlinear convergence theory that can
be developed based on either choice. However, from the point of view of Assumption 3.3 the
restriction 0 ≤ d(x) ≤ 1 is important. We will usually prefer the choice of DPc as the indicator
function of the inactive set I(q) = Ω \ A(q) for convenience of notation. We set

DPad(q) = χI(q) =
{

1 where ua < q < ub,

0 otherwise.

It is easy to see that this construction fulfills Assumption 3.4, which yields the well-known
semismoothness of Pad : Hsub = Lr(Ω)→ H = L2(Ω) for any r > 2 with respect to any DPad
as considered before; see [HIK03; Ulb11]. We will not go into further detail here, since this
is well-established. Furthermore, the verification of Assumption 3.3 is trivial in this case (i.e.,
DPad = χI(q) is a symmetric, positive semidefinite operator on H = L2(Ω) with norm bound
one).

Let us mention that here the space HDPc(q) is isometrically isomorphic to L2(I(q)), which is
the canonical restriction of L2(Ω) to the current inactive set I(q). This follows from

Ker DPc(q) = {u ∈ L2(Ω) | χI(q)u = 0 } = L2(Ω \ I(q))

and the identification

HDPc(q) = L2(Ω)�L2(Ω \ I(q)) = L2(I(q)).

In this case the quotient space is closed w.r.t. the χI(q)-norm. Therefore, the proof of invertibility
of the Newton operator as given in Lemma 3.14 has the following interpretation: on the inactive
sets, the Newton system corresponds to a linear quadratic problem, which can be solved using
the strong convexity. Then an expression for the update on the active sets can be derived with
a pointwise formula. This interpretation corresponds to the usual strategy to prove invertibility
of the in the context of semismooth Newton or active set methods.

Sparsity

A nonsmooth reformulation for sparse optimal control problems in conjunction with semismooth
Newton methods was first discussed in Stadler [Sta09]. For sparse optimal control problems,
we have

ψ(u) = α‖u‖L1(Ω) =
∫
Ω
α|u(x)|dx.

Here, the Hilbert space is chosen as H = L2(Ω). Let us compute the proximal map with
Proposition 3.17. To find the pointwise proximal map û = P̂c(q̂), we have to minimize the
one-dimensional functional

û 7→ c

2(û− q̂)2 + α|û|.

It is easy to see that the optimality condition, given by c(q̂ − û) ∈ α∂|û| is equivalent to
û = 0 if |q̂| ≤ α/c, and û = q̂ − sgn(q̂)α/c otherwise. The solution is therefore given by
P̂c(q̂) = 1/c (c− α/|q̂|)+ q̂ = (q̂ − α/c)+ − (q̂ + α/c)−. Recall that (·)+ = max(0, ·) and
( · )− = −min(0, ·) denote the positive and negative part, respectively. The operator

shrinkα/c(q̂) = (q̂ − α/c)+ − (q̂ + α/c)−

55



3. Algorithmic framework

is sometimes referred to as the “soft-shrinkage” operator for the parameter α/c. Thereby, the
proximal mapping of ψ in H is given as the superposition

Pc(q) = shrinkα/c(q̂) =


q − α/c where q ≥ α/c,
q + α/c where q ≤ −α/c,
0 otherwise.

Similar to the case of box constraints, a generalized derivative can be given by the indicator
function of the inactive set

DPc(q) = χI(q) =
{

1 where |q| > α/c,

0 otherwise,

which is the superposition of DP̂c(q̂) = χ{ |q̂|>α/c }. The verification of the pointwise semis-
moothness and the conditions on the generalized derivative (Assumption 3.3) is the same as in
the previous case of box-constraints; we choose Hsub = Lr(Ω) for some r > 2.

Directional sparsity

The concept of “directional sparsity” and a semismooth Newton method for a corresponding
optimal control formulation were first discussed in Herzog, Stadler, and Wachsmuth [HSW12].
In this case, we consider

ψ(u) = α‖u‖L1(Ω,L2(I)) =
∫
Ω
α‖u(x)‖L2(I) dx,

where I = (0, T ) is a time interval and Ω is a bounded domain. Here, we choose the Hilbert
space as H = L2(Ω,L2(I)) = L2(I ×Ω). In this setting, we think of the pointwise evaluation
of a function u ∈ H at the point x as the function u(x) ∈ L2(I) = Ĥ. Again, we can reduce
the computation of Pc to the minimization of

û 7→ c

2‖û− q̂‖
2
Ĥ

+ α‖û‖Ĥ ,

for a given q̂ ∈ Ĥ. It is clear that û must either be zero, or a positive scalar multiple of q̂.
More specifically, if û is not equal to zero, it follows from the first order conditions that

0 = c (û− q̂) + (α û)/‖û‖Ĥ =
(
c+ α/‖û‖Ĥ

)
û− c q̂.

Taking the Ĥ norm, we obtain c‖û‖Ĥ + α = c ‖q̂‖Ĥ . This directly yields the formula ‖û‖Ĥ =
‖q̂‖Ĥ − α/c. Since ‖û‖Ĥ < 0 is not possible, we must have û = 0 in the case ‖q̂‖Ĥ ≤ α/c, and
we obtain c P̂c(q̂) = c û = (c− α/‖q̂‖Ĥ)+ q̂. By Proposition 3.17, Pc is therefore given by the
“stripe-wise” soft-shrinkage operator

Pc(q)(x) = 1
c

(
c− α/‖q(x)‖Ĥ

)+
q(x) (3.18)

for x ∈ Ω almost everywhere.
The directional derivative of the pointwise proximal map can be easily computed as

dP̂c(q̂; δq̂) = 1
c


(
c− α/‖q̂‖Ĥ

)+
δq̂ + α(q̂,δq̂)Ĥ

‖q̂‖3
Ĥ

q̂ if ‖q̂‖Ĥ > α/c,

α(q̂,δq̂)Ĥ
‖q̂‖3

Ĥ

q̂ if ‖q̂‖Ĥ = α/c and (q̂, δq̂)Ĥ > 0,

0 else.
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Again, it is nonlinear in δq̂ only in the “ambiguous” case where ‖q̂‖Ĥ = α/c. For the pointwise
generalized derivative, a possible choice is given by

DP̂c(q̂)δq̂ = 1
c


(
c− α/‖q̂‖Ĥ

)+
δq̂ + α(q̂,δq̂)Ĥ

‖q̂‖3
Ĥ

q̂ if ‖q̂‖Ĥ > α/c,

0, else.

Note that in this case, the generalized derivative cannot be solely understood as a pointwise
multiplication. We can write the corresponding linear operator schematically as

DP̂c(q̂) =
χ{ ‖q̂‖Ĥ>α/c }

c

((
c− α/‖q̂‖Ĥ

)+ + α

‖q̂‖3
Ĥ

q̂ ⊗ q̂
)
, (3.19)

where (q̂⊗ q̂)( · ) = (q̂, · )Ĥ q̂ is the rank-one product of q̂ with itself. We can show semismooth-
ness of Pc with the help of the general framework. It is a slight generalization of the result
given in [HSW12, Lemma 3.2] (where r ≥ 6 is required).
Lemma 3.22. The proximal mapping (3.18), considered as an operator from Hsub = Lr(Ω, Ĥ)
to H = L2(Ω, Ĥ) for some r > 2, is semismooth with respect to the generalized derivative given
by

DPc(q)δq =
χI(q)
c

((
c− α/‖q‖Ĥ

)+
δq +

α(q, δq)Ĥ
‖q‖3

Ĥ

q

)
for all δq ∈ Lr(Ω, Ĥ), where the stripe-wise inactive set is given by

I(q) = {x ∈ Ω | ‖q(x)‖Ĥ > α/c } .

Moreover, DPc conforms to Assumption 3.3.

Proof. It is possible to show the Baire-Carathéodory property for (3.19) by approximating the
characteristic function with a sequence of continuous functions. However, this was only needed
to ensure that DPc maps measurable functions to measurable functions, which can alternatively
be seen directly. According to section 3.3.1, we now analyze the pointwise proximal map P̂ with
respect to the given DP̂c. It is evident from representation (3.19) that DP̂c(q̂) is a symmetric,
positive semidefinite operator on Ĥ (independently of q̂ ∈ Ĥ). Furthermore, ‖DP̂c(q̂)‖Ĥ→Ĥ ≤ 1
follows from a straightforward computation. With Proposition 3.21, these properties transfer
to DPc(·) : H → H. To prove semismoothness, we will apply Theorem 3.20. It remains to show
that for all q̂∗ ∈ Ĥ we have

R̂∗(q̂) = 1
‖q̂∗ − q̂‖Ĥ

[
P̂c(q̂)− P̂c(q̂∗)−DP̂c(q̂)(q̂∗ − q̂)

]
→ 0 for ‖q̂∗ − q̂‖Ĥ → 0. (3.20)

Define the function F : Ĥ \ { 0 } → Ĥ as F : q̂ → 1/c (c−α/‖q̂‖Ĥ) q̂. F is twice continuously
differentiable with gradient

∇F (q̂) = 1
c

((
c− α/‖q̂‖Ĥ

)
+ α

‖q̂‖3
Ĥ

q̂ ⊗ q̂
)
.

Furthermore, we can write P̂c(·) = χ{ ‖·‖Ĥ>α/c }F (·). We distinguish the cases ‖q̂∗‖Ĥ < α/c

and ‖q̂∗‖Ĥ ≥ α/c. In the first case we have P̂c(q̂∗) = P̂c(q̂) = DPc(q̂)(q̂ − q̂∗) ≡ 0 for all q̂ from
a neighborhood of q̂∗ and (3.20) is trivially fulfilled. In the second case, we have

R̂∗(q̂) = 1
‖q̂∗ − q̂‖Ĥ

{
F (q̂)− F (q̂∗)− F ′(q̂)(q̂ − q̂∗) if ‖q̂‖Ĥ > α/c,

−F (q̂∗) if ‖q̂‖Ĥ ≤ α/c.
(3.21)

57



3. Algorithmic framework

Since q̂∗ 6= 0, we have

F (q̂)− F (q̂∗)− F ′(q̂)(q̂ − q̂∗) ∈ o(‖q̂∗ − q̂‖Ĥ),

due to Fréchet-differentiability of F at q̂∗ and continuity of the derivative. Now, we further
distinguish between ‖q̂∗‖Ĥ = α/c and ‖q̂∗‖Ĥ > α/c. In the first case, we have −F (q̂∗) = 0.
In the second, we again observe that ‖q̂‖Ĥ > α/c for all q̂ with ‖q̂∗ − q̂‖Ĥ ≤ ‖q̂∗‖Ĥ − α/c.
Therefore, R̂∗(q̂)→ 0 for q̂ → q̂∗ is verified for all q̂∗ ∈ Ĥ and we can apply Theorem 3.20 to
conclude the proof.

Let us give an interpretation of the space HDPc(q) from section 3.2.3. Again, the kernel of
DPc(q) corresponds to the current inactive sets, i.e., we have that

Ker DPc(q) = {u ∈ L2(Ω, Ĥ) | χIu = 0 } = L2(Ω \ I(q), Ĥ).

Consequently, the quotient space H/Ker DPc(q) is isometrically isomorphic to the restriction of
H to the inactive sets L2(I(q), Ĥ). However, in this case the space L2(I(q), Ĥ) is not closed if
endowed with the inner product induced by DPc(q), which is given by

(u, v)DPc(q) = 1
c

∫
I(q)

((
c− α/‖q‖Ĥ

)+ (u, v)Ĥ + α

‖q‖3
Ĥ

(q, u)Ĥ(q, v)Ĥ

)
dx

for any u, v ∈ H. In fact, since Ĥ has more than one dimension, the space of functions
u ∈ H with (q(x), u(x))Ĥ = 0 for x ∈ Ω (almost everywhere) is not trivial. For all of these
functions, the product given above corresponds to a weighted inner product with the weight
(c− α/‖q‖Ĥ)+/c. Since the weight is bounded by one, but not necessarily bounded away from
zero, the closure of H/Ker DPc(q) with respect to the inner product given above is larger than
L2(I(q), Ĥ), in general. We obtain the identification

HDPc(q)
∼= {u : I(q)→ Ĥ | ‖u‖DPc(q) <∞}

in the sense of the usual equivalence class construction for Lebesgue spaces.

Directional sparsity with positivity constraints

If we want to additionally enforce positivity of the controls, we consider

ψ(u) = α‖u‖L1(Ω,L2(I)) + I{u≥0 on I×Ω }(u).

As in the previous section, we can reduce the computation of the proximal map Pc to the
computation of the pointwise proximal map corresponding to

ψ̂(û) = α‖û‖L2(I) + I{ û≥0 on I }(û).

It is given by
P̂c(q̂) = 1

c

(
c− α/‖q̂+‖L2(I)

)+
q̂+,

where q̂+ denotes the positive part of q̂ in L2(I). In fact, for any q̂ ∈ L2(I) and the choice
û = 1/c (c− α/‖q̂+‖L2(I))+q̂+ we compute that

c(q̂ − û) = cq̂− +
[
(c− α/‖q̂+‖L2(I))+ − c

]
q̂+ ∈ ∂I{ û≥0 on I }(û) + ∂‖û‖L2(I) ⊆ ∂ψ̂(û)
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using the sum rule for the convex subdifferential. With the equivalent characterization of the
proximal map via the subdifferential (see Proposition 3.4.(i)) we obtain û = Pc(q̂). Therefore,
the proximal map of ψ is given as the superposition

Pc(q) = 1
c

(
c− α/‖q+‖L2(I)

)+
q+. (3.22)

In other words, the proximal map can be decomposed as

Pc = F2 ◦ F1 where F2(q2) = (c− α/‖q2‖L2(I))+q2 and F1(q1) = q+
1 , (3.23)

where F2 is the proximal map of α‖·‖L1(Ωc,L2(I)) form the previous section and F1 is the
projection to the positive cone. With the chain rule, we obtain the following generalized
differential.
Lemma 3.23. The proximal mapping (3.18), considered as an operator from Hsub = Lr(I ×
Ω) = Lr(Ω,Lr(I)) to H = L2(I × Ω) = L2(Ω,L2(I)) for some r > 2, is semismooth with
respect to the generalized derivative given by

DPc(q)δq =
χIΩ(q+)

c

((
c− α/‖q+‖L2(I)

)+
χII×Ω(q)δq +

α(q+, δq)L2(I)
‖q+‖3L2(I)

q+
)

for all δq ∈ Lr(I ×Ω), where the stripe-wise and the space-time inactive set are given by

IΩ(q+) = {x ∈ Ω | ‖q+(x)‖L2(I) > α/c } ,
II×Ω(q) = { (t, x) ∈ I ×Ω | q(t, x) > 0 } .

Moreover, DPc conforms to Assumption 3.3.

Proof. We define the pointwise functions F̂1 : Lr(I)→ L2(I) and F̂2 : L2(I)→ L2(I) according
to (3.23). Semismoothness of F̂1(q̂) = (q̂)+ = max(q̂, 0) with respect to DF1(q̂) = χ{ t∈I|q̂(t)>0 }
follows as in the case of box-constraints (with norm-gap). The semismoothness of F̂2 (with-
out norm-gap) with respect to the generalized differential (3.19) has already been verified in
Proposition 3.22. By the semismooth chain rule (see Proposition 3.9) it follows now that
P̂c = F̂2 ◦ F̂1 : Lr(I)→ L2(I) is semismooth with respect to the generalized differential

DP̂c(q̂) =
χ{ ‖q̂+‖L2(I)>α/c }

c

((
c− α/‖q̂+‖L2(I)

)+
+ α

‖q̂+‖3L2(I)
q̂+ ⊗ q̂+

)
χ{ t∈I|q̂(t)>0 }

=
χ{ ‖q̂+‖L2(I)>α/c }

c

((
c− α/‖q̂+‖L2(I)

)+
χ{ t∈I|q̂(t)>0 } + α

‖q̂+‖3L2(I)
q̂+ ⊗ q̂+

)
.

It is possible to show that DP̂c is a Baire-Carathéodory function by approximating the char-
acteristic functions with appropriate smooth functions. Alternatively, the fact that DPc maps
measurable to measurable functions can again be seen directly. Now, we verify that Assump-
tion 3.3 holds for DP̂c(q̂) : L2(I)→ L2(I). Symmetry and positivity are obvious and the norm
bound ‖DP̂c(q̂)‖L2(I)→L2(I) ≤ 1 for all q̂ ∈ L2(I) can be verified with a direct computation.
Therefore, Assumption 3.3 also holds for the superposition operator DPc(q)(x) = DP̂c(q(x)) on
the space L2(Ω,L2(I)); see Proposition 3.21.
Furthermore, since the embedding Lr(I) ↪→ L2(I) is continuous, P̂c : Lr(I) → L2(I) is

globally Lipschitz continuous and DP̂c(q̂) : Lr(I)→ L2(I) is uniformly bounded for all q̂ ∈ Lr(I).
Now, we apply Theorem 3.20 to obtain semismoothness of the superposition operator Pc(q)(x) =
P̂c(q(x)) from Lr(Ω,Lr(I)) to L2(Ω,L2(I)) with respect to the generalized differential defined
by DPc(q)(x) = DP̂c(q(x)). This directly leads to the form of DPc as given above.
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3.4. Algorithmic aspects

In this section, we will discuss the practical aspects of the proposed optimization methods. In
particular, we will describe an iterative approach to the solution of the Newton system and
globalization strategies.

3.4.1. Iterative solution of the Newton system

In the following, we fix some q ∈ H, abbreviate u = Pc(q), and let T = DPc(q) be the
corresponding generalized derivative of the proximal map. We will discuss a numerical solution
strategy for the linear system DG(q)δq = −G(q). Note, that in most cases it is practically
infeasible to compute a full representation of DG(q), since the functional f involves a control-to-
state mapping associated to a PDE. Therefore, we decide to use an iterative solution procedure.
We have already seen that the Newton operator DG(q) is symmetric with respect to the inner
product (·, ·)T . Moreover, we can expect it to be positive definite for linear quadratic f with
γ > 0 or under a second order condition. Furthermore, we have seen that a solution of the
equation DG(q)δq = −G(q) can be reduced to the solution of the quadratic problem

min
v∈H

Qq(v) = (G(q), v)T + 1
2(v,DG(q)v)T . (3.24)

By Lemma 3.14 (or 3.15) we know that if (3.24) is coercive with respect to the space HT , the
solution to (3.24) can also be found in the original space H. In this section, we will assume
that (3.24) is uniquely solvable (up to equivalence in H/KerT).

The numerical implementation follows closely the theoretical setup. To compute a specific
solution δq̃ ∈ H of (3.24) we apply the method of conjugate gradients (cg-method), which can
be regarded as an iterative minimization for Qq(h). In the method, we compute products of
search directions d ∈ H with the full (in general non-symmetric) system operator DG(q), and
compute inner products with (·, ·)T . Define the Krylov-space

Km = { [DG(q)]kG(q) | k = 0, 1, . . . ,m− 1 } ⊂ H.

Then, performing m steps of conjugate gradients will compute the minimum δq̃m ∈ H of

δq̃m = argmin
v∈Km

Qq(v).

For each m > 0 the minimum δq̃m ∈ H is unique. It is possible that there is a n < m such that
δq̃n is also a minimizer for all ñ > n. In this case the conjugate gradient iteration stops with

TDG(q)δq̃n = −TG(q).

In general, we only obtain an approximate solution δq̃m ∈ Km of (3.24) for some m > 0, based
on an appropriate stopping criterion.
Remark 3.7. i) Since the Hessian ∇2f(·) is typically a compact operator, the Newton operator
DG(·) = γ Id +∇2f(·)T (for c = γ > 0) is a compact perturbation of the identity, and we can
expect superlinear convergence for the cg-method; see, e.g., [Dan67; Win80].
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ii) Usually, a cg-method for the operator DG(q) w.r.t. the inner product induced by T can be
interpreted as a preconditioned cg-method for the symmetric “iteration matrix” Ã = TDG(q)
with the symmetric preconditioner T̃ = T−1. However, since T is typically not invertible,
this is not directly possible here. Moreover, we have seen that even if we factor out the
kernel of T , invertibility is not automatically fulfilled (cf. the discussion of HT for the case of
directional sparsity in section 3.3.2). Consequently, the finite dimensional approximations to
T which appear in practical computations can be arbitrarily ill-conditioned, even if the kernel
is eliminated.

Algorithm 1 Conjugate gradients with final step
r0 = b = −G(q)
d0 = r0
δq0 = 0
for k = 0, 1, . . . do
compute Adk = DG(q)dk ∈ H
βk = ‖rk‖2T

(dk,A dk)T
δqk+1 = δqk + βkdk
rk+1 = rk − βkAdk
if <tolerance reached> then
hk+2 = hk+1 + 1/c rk+1 {final step (3.25)}
return hk+2 {“converged”}

end if
dk+1 = rk+1 + ‖rk+1‖2T

‖rk‖2T
dk

end for

After having achieved a desired tolerance, we perform the additional final step (3.10) to
obtain the full solution. Assume therefore that we have a δq̃ ∈ H solving (3.24) exactly and
denote by δq the full solution of DG(q)δq = −G(q). We compute for the residual R(δq̃) of the
full Newton system (3.2) that

R(δq̃) = −G(q)−DG(q)δq̃ = DG(q)(δq − δq̃) = c(δq − δq̃),

since T (δq− δq̃) = 0. With this identity the full solution δq can be computed from any solution
δq̃ of (3.24) with the formula

δq = δq̃ + 1
c
R(δq̃). (3.25)

Note, that the residual R(δq̃) is a byproduct of the cg-method, which does not require an
additional evaluation of DG(q). The complete procedure is given in Algorithm 1.
Remark 3.8. In practice, it can be desirable to compute an approximate solution of (3.24) only
up to a very large tolerance. Therefore, as an alternative strategy, we can obtain the final
update (3.25) by minimizing the norm of the residual in direction r = R(δq̃) by setting

δq = δq̃ + θr as the minimizer of min
θ∈R
‖DG(q)(δq̃ + θr) +G(q)‖. (3.26)

This might give a more robust computation of the final step in cases where the cg-method fails
to solve (3.24) to a sufficient accuracy (at the expense of the additional evaluation of DG(q)r).
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3.5. Globalization approaches

In the following, we are going to discuss globalization approaches for the described semismooth
Newton method. In many cases, in the context of globalization of semismooth Newton methods,
the local Newton method is complemented by another (possibly completely different) first order
optimization method; see [Ulb11; Mil15]. In each step of the method, a Newton step is
computed. Based on a convergence indicator (e.g., descent in the cost functional), the step
is either accepted or rejected. In the case of rejection, a step of the first order method is
performed. Another approach is a dampening of the Newton steps based on descent in the
squared residual; see [IK09; IK08].

Here, we will focus on a trust-region approach, which tries to achieve a more gradual transition
between a cheap first order optimization step and the more expensive semismooth Newton step.
However, at the moment, we are unable to give a full global convergence analysis, in contrast to,
e.g. [Ulb11]. On the theoretical side, we derive some connections of the reduced cost functional
and the normal map and prove global convergence of a related first order optimization method.
It will turn out, that in the context of a reformulation based on the normal map, the negative
of the current residual G(q) provides a suitable descent direction (which coincidentally is the
first search direction in the cg-method, see Algorithm 1). This result serves to give a partial
theoretical justification of the following trust-region approach. Under some conditions, also a
damped Newton direction is suitable for globalization based on the reduced objective. Let us
point out that this stands in contrast to the standard approach to semismooth Newton; see
section 3.6.

3.5.1. Theoretical aspects

We base a globalization strategy on the descent in the reduced objective functional

q 7→ jγ(Pc(q)).

Recall that jγ(u) = fγ(u) + ψ(u) = f(u) + ψ(u) + γ/2 ‖u‖2. To this purpose, it is necessary
to understand the influence of a perturbation of q on the reduced objective. First, we consider
the convex part and derive a lemma which is related to the continuous differentiability of the
Moreau envelope of a convex function (cf. [BC11, Proposition 12.29]).

Lemma 3.24. Let q, q̃ ∈ H and denote u = Pc(q), ũ = Pc(q̃). Then we have

ψ(ũ) ≥ ψ(u) + c(q − u, ũ− u),
and ψ(ũ) ≤ ψ(u) + c(q − u, ũ− u) + r(q̃, q),

where the remainder is given by r(q̃, q) = c(q̃ − q, ũ− u)− c‖ũ− u‖2.

Proof. The first inequality is a direct consequence of c(q − u) ∈ ∂ψ(u); see Proposition 3.4.(i).
Conversely, the second inequality follows from c(q̃ − ũ) ∈ ∂ψ(ũ), which results in

ψ(ũ) ≤ ψ(u)− c(q̃ − ũ, u− ũ)
= ψ(u) + c(q̃ − ũ, ũ− u)
= ψ(u) + c(q − u, ũ− u) + c(q̃ − q − (ũ− u), ũ− u),

which directly yields the form of the remainder r(q̃, q) given above.
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Next, we consider the differentiable part, where we use the following standard estimate based
on Lipschitz continuity of the gradient of fγ .

Lemma 3.25. Let u, ũ ∈ N ⊂ H for some convex subset of N of H, and denote by Lf the
Lipschitz constant of ∇f on N , i.e., we set

Lf = sup
u,ũ∈N

‖∇f(u)−∇f(ũ)‖
‖u− ũ‖

.

Then we have
fγ(ũ) ≤ fγ(u) + (∇fγ(u), ũ− u) + 1

2(Lf + γ)‖ũ− u‖2.

Now, we show that −G(q) can serve as a “canonical” descent direction for jγ ◦ Pc.

Lemma 3.26. Assume that ∇f is Lipschitz continuous on Uad. Let q ∈ H be arbitrary and
set u = Pc(q). Furthermore, define

qθ = q − θG(q)

for θ > 0 and set uθ = Pc(qθ). Then we have

jγ(uθ) ≤ jγ(u)− 1
2θ‖uθ − u‖

2

for all θ ≤ min { 1/c, 1/(Lf + γ) }.

Proof. First we apply the Lemmas 3.24 and 3.25 to obtain

jγ(uθ) = fγ(uθ) + ψ(uθ)

≤ jγ(u) + (∇fγ(u) + c(q − u), uθ − u) + r(qθ, q) + 1
2(Lf + γ)‖uθ − u‖2

= jγ(u) + (G(q), uθ − u) + r(qθ, q) + 1
2(Lf + γ)‖uθ − u‖2,

using the definition of G. Furthermore, by the choice of qθ, we have G(q) = −(qθ − q)/θ. It
follows

jγ(uθ) ≤ jγ(u)− 1
θ

(qθ − q, uθ − u) + r(qθ, q) + 1
2(Lf + γ)‖uθ − u‖2

= jγ(u) +
(
c− 1

θ

)
(qθ − q, uθ − u) +

(1
2(Lf + γ)− c

)
‖uθ − u‖2,

taking into account that r(qθ, q) = c(qθ − q, uθ − u)− c‖uθ − u‖2. For θ < 1/c the coefficient in
the second term is negative and we have(

c− 1
θ

)
(qθ − q, uθ − u) ≤

(
c− 1

θ

)
‖uθ − u‖2

by the firm nonexpansiveness of the proximal map (see Proposition 3.4.(ii)). This results in

jγ(uθ) ≤ jγ(u) +
(1

2(Lf + γ)− 1
θ

)
‖uθ − u‖2.

For θ ≤ 1/(Lf + γ), the result follows.
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The previous result shows that an optimization step in direction −G(q) with a step-size
θ ≤ min { 1/c, 1/(Lf + γ) } will lead to a guaranteed descent in the objective. Furthermore,
the size of the reduction in the objective value can be related to an expression of the change
in the control u = Pc(q). Based on this, we can prove global convergence of the corresponding
first order algorithm.

Theorem 3.27. Assume that ∇f is Lipschitz continuous on Uad and that jγ is bounded from
below. Take any q0 ∈ H and define

qn+1 = qn − θnG(qn) for n ∈ N0, (3.27)

where θn > 0 with infn∈N0 θn > 0 and supn∈N0 θn ≤ min { 1/c, 1/(Lf + γ) }. Then we have
G(qn)→ 0 for n→∞, i.e., the first order optimality measure converges to zero.

Proof. For convenience of notation, abbreviate un = Pc(qn) for n ∈ N0. According to
Lemma 3.26, we have

jγ(un+1) ≤ jγ(un)− 1
2θn
‖un+1 − un‖2. (3.28)

As a consequence, the functional values jγ(un) are monotonously decreasing and consequently
convergent (jγ is bounded from below). By reordering (3.28) we derive

‖un+1 − un‖2 ≤ 2θn (jγ(un)− jγ(un+1))→ 0 for n→∞,

since the θn are uniformly bounded. Now, we consider the development of the residual along
the iterations. According to the definition of G and qn it holds

G(qn+1) = c(qn+1 − un+1) +∇fγ(un+1)
= c(qn − θnG(qn)− un+1) +∇fγ(un+1)
= (1− cθn)G(qn)− c(un+1 − un) +∇fγ(un+1)−∇fγ(un)

for all n ≥ 0. Applying the norm, using the triangle inequality and once again the Lipschitz-
continuity of ∇f , we obtain

‖G(qn+1)‖ ≤ (1− cθn) ‖G(qn)‖+ (|γ − c|+ Lf ) ‖un+1 − un‖.

Furthermore, we have 0 ≤ (1 − cθn) ≤ (1 − c infn∈N θn) = σ < 1. Define the sequence
gn = ‖G(qn)‖ ≥ 0 for n ∈ N0. It fulfills the estimate gn+1 ≤ σgn + εn with σ < 1 for
perturbations 0 ≤ εn → 0. Therefore, gn must converge to zero for n→∞ (see Proposition A.5
in the Appendix).

Note, that there are two important special cases of algorithm (3.27). The first is valid for
a choice of c ≥ Lf + γ in the definition of the normal map. Then we can choose a constant
step-size θn = θ = 1/c for all k ∈ N0, and we obtain

un+1 = Pc (qn − θ G(qn)) = Pc (un − θ∇fγ(un)) ,

such that the auxiliary variable qn can be eliminated. This is the well-known proximal gradient
method (a generalization of the projected gradient method). The convergence properties of this
method are well understood; see, e.g. [CW05; NN13] and the references therein for the convex
case or [Hin+09] for the projected gradient method in a non-convex, Banach space setting. For
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a globalization strategy in the context of the semismooth Newton method from section 3.2, we
are especially interested in the case γ > 0 with an associated choice of c = γ. In this case, we
can also interpret (3.27) as the damped fixed point iteration

qn+1 = qn − θnG(qn) = (1− τn)qn − τn
1
γ
∇f(Pc(qn)),

with damping parameter τn = γθn ∈ (0, 1] for the optimality condition q̄ = −1/γ∇f(Pc(q̄)).
Based on the globally convergent method from Theorem 3.27, we can now apply the general

trust-region approach from [Ulb11] to globalize the semismooth Newton method from section 3.2,
by alternating between (scaled) Newton and gradient steps in a suitable way. We do not develop
this further here, but refer to [Ulb11, Chapter 7]. In section 3.5.2, we will describe a different
(partly heuristic) trust-region method, that will also fall back to a step in direction −G(q) in the
small-radius case. This method will additionally try to use as much second order information as
possible, by using a modification of the truncated cg-method approach due to Steihaug [Ste83].
Theorem 3.27 provides a first step towards a theoretical justification of this approach.

Another approach to globalization of Newton’s method is a damping of the Newton steps.
In the context of a semismooth reformulation based on the normal map, this appears feasible
as well.

Proposition 3.28. Suppose that Pc is directionally differentiable at q ∈ H in direction δq ∈ H.
Then, the directional derivative of the reduced objective jγ ◦ Pc at the point q ∈ H in direction
δq ∈ H is given by

d[jγ ◦ Pc](q, δq) = d
dτ jγ(Pc(q + τδq)) = (G(q),dPc(q, δq)),

where dPc is the directional derivative of Pc.

Proof. For convenience of notation, define u = Pc(q), uτ = Pc(qτ ), where qτ = q + τδq. By
Lemmas 3.24 and 3.25 we obtain similarly as in the proof of Lemma 3.26 that

jγ(uτ ) = jγ(u) + (G(q), uτ − u) + r̃(qτ , q),

where |r̃(qτ , q)| ≤ ((Lf + γ)/2 + c)‖qτ − q‖2 ≤ Cτ2‖δq‖2, using the Lipschitz continuity of Pc
and (Id−Pc). Dividing by τ , we obtain

1
τ

(jγ(uτ )− jγ(u)) = (G(q), (uτ − u)/τ) +O(τ).

For τ → 0, we obtain (uτ−u)/τ = (Pc(qτ )−Pc(q))/τ → dPc(q, δq), which implies the result.

As a consequence, we can see that the Newton direction is a descent direction, under some
conditions. Let us mention that the following corollary is only a weak result, since it does not
guarantee a sufficiently large decrease (cf. Lemma 3.26).

Corollary 3.29. Suppose that Pc is directionally differentiable at the point q ∈ H. Suppose
that the conditions of Lemma 3.15 are fulfilled and let δq = −DG(q)−1G(q). If we have
dPc(q; δq) = DPc(q)δq, then it follows

d[jγ ◦ Pc](q; δq) = (G(q),DPc(q)δq) ≤ −ν(δq,DPc(q) δq),

where ν > 0 is the coercivity constant from Lemma 3.15.
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Proof. This is a direct consequence of Proposition 3.28, the equality G(q) = −DG(q)δq, the
assumption on dPc(q; δq), and the coercivity of DG(q) in the inner product induced by the
generalized derivative DPc(q) as in (3.14).

We see that a globalization approach based on a damped Newton direction could offer a
promising alternative; at least in steps, where the conditions of Corollary 3.29 are fulfilled.
However, a proper treatment of the nonsmooth aspect of the problem (to guarantee sufficient
descent) and alternative strategies in the case that the prerequisites of Corollary 3.29 are
violated, are still missing.

3.5.2. A trust region method

In the following, we will describe a heuristic trust region approach for the globalization of
the semismooth Newton method from section 3.2. The algorithm is inspired by the truncated
conjugate gradients approach due to Steihaug [Ste83]. In fact, in the smooth setting for ψ ≡ 0
and Pc = Id, we will recover the original algorithm (more precisely, the Hilbert space adaptation
thereof).
First, as a mathematical concept, we define the trust region subproblem at the iterate qn

with the Tn = DPc(qn) as

min
v∈H

Qqn(v) subject to ‖v‖Tn ≤ σn. (3.29)

Note, that the solution of this problem is not unique if Tn has a nontrivial kernel. However,
an approximate minimizer of (3.29) can be obtained by the Steihaug cg-method as described
in Algorithm 2. The globalization strategy will be based on the descent in the objective
functional values jγ(un). We propose to update the trust region radius σn by comparing the
functional decrease

ρact
n = jγ(un+1)− jγ(un) = jγ(Pc(qn + δqn))− jγ(Pc(qn))

to the model decrease predicted by the quadratic model

ρpred
n = Qqn(δqn) = (G(qn), δqn)Tn + 1

2(δqn,DG(qn)δqn)Tn .

The ratio of these two quantities is defined as

ηn = ρact
n /ρpred

n .

By comparing the parameter ηn to one, we have some information about the error from both
approximating f by a quadratic function and from approximating Pc(qn + δqn) − Pc(qn) by
DPc(qn)δqn. For algorithmic purposes, we define two constants 0 < η(1) < η(2) < 1. If ηn > η(1)

we are satisfied with the objective function decrease and will accept the step, otherwise we
will reject it by decreasing the trust region radius. If ηn > η(2), we will accept the step and
additionally increase the trust region radius. A pseudo-code description is given in Algorithm 3.

At present, we are unable to give a satisfactory convergence analysis of Algorithm 3, even
though it seems to perform well in practice. Concerning the global convergence behavior, it
would be desirable to show that it performs no worse that the first order method (3.27) with an
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Algorithm 2 Steihaug cg-method with final step
r0 = b = −G(q)
d0 = r0
δq0 = 0
for k = 0, 1, . . . do
compute Adk = DG(q)dk ∈ H
if (dk, Adk)T ≤ 0 then
δqk+1 = δqk + ζdk with ζ > 0 such that ‖δqk+1‖T = σ
return δqk+1 {“negative curvature”}

end if
βk = ‖rk‖2T

(dk,Adk)T
if ‖δqk + βkdk‖T < σ then
δqk+1 = δqk + βkdk

else
δqk+1 = δqk + ζdk with ζ > 0 so that ‖δqk+1‖T = σ
return δqk+1 {“trust region left”}

end if
rk+1 = rk − βkAdk
if <tolerance reached> then
compute final step with (3.25) (or (3.26))
return δqk+2 = δqk+1 + θrk+1 {“converged”}

end if
dk+1 = rk+1 + ‖rk+1‖2T

‖rk‖2T
dk

end for

Algorithm 3 Trust region method
initial q0 ∈ H
initial σ0 > 0
for n = 0, 1, 2, . . . do
Tn = DPc(qn)
compute δqn from (3.29) with Algorithm 2
if ηn > η(1) then
if ηn > η(2) then
<increased σn+1>

end if
else
qn+1 = qn
<decreased σn+1>

end if
end for

adaptive (e.g., Armijo-type) step-size. However, in contrast to the classical trust-region method
(in the smooth setting) this appears difficult, since the error between the update un+1−un and
the linearized approximation Tn(qn+1 − qn) = Tnδqn cannot be controlled in a systematic way.
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From this point of view a model seems preferable, which is, e.g., of the form

ρ̃pred
n = Q̃qn(δqn) = (G(qn), un+1 − un) + 1

2(δqn,DG(qn)δqn)Tn ,

where un+1 = Pc(qn + δqn) and un = P (qn). Such a model would provide a guarantee for
the behavior of ηn in the small radius case (cf. the proof of Proposition 3.28), which could
ensure that sufficiently large steps can be guaranteed. However, the discrepancy between this
model and the natural quadratic model (for the Newton-method) would have to be taken into
account in Algorithm 2. It would also be desirable to prove an eventual transition to fast local
convergence (i.e., full steps are taken).
Remark 3.9. i) The trust-region method as given in Algorithm 3 fails in a corner-case which
appears frequently for initial guesses q0 far from the optimum. For instance, it appears for
ψ(·) = ‖·‖L1 when we initialize q0 = 0, which results in DPc(q0) = T0 = 0 (all points are
“fixed”). From the point of view of the first-order method with a constant step-size this is not
problematic; cf. Theorem 3.27. However, for T = 0 the radius constraint in (3.29) becomes
meaningless, and the given pseudo-code fails. One practically motivated solution approach is to
provide a special case for T = 0 in the implementation (e.g., an Armijo-line search). Another
approach is to change the radius computations to work with the full norm ‖δq‖ instead of
‖δq‖T . Then, we also modify the final step (3.25) to take the radius constraint into account.
Note however, that we lose the monotonicity of the size of the update δqk in the cg-method.
The quantity ‖δqk‖T is monotonously increasing in each step k; see [Ste83].
ii) Let us comment on the final step (3.25), which is the only modification of Algorithm 2
w.r.t. the original version in [Ste83]. This step is performed only in the case of convergence
up to a sufficient tolerance. In the present theory, where the quadratic problem can be solved
exactly on the smaller space HT , this step is completely invisible from the point of view
of the quadratic model, since it lies in the kernel of T . In practice, where a specific step
δqm ∈ Km ⊂ H is computed by the cg-method (which also contains contributions in the kernel
of T ), the influence of this step is hard to judge: even though the cg-method guarantees only
that ‖R(δqm)‖T is smaller than a prescribed tolerance, computational experience suggests
that the full residual norm ‖R(δqm)‖ is generally of the same order of magnitude. Therefore,
after computing δqm up to a sufficiently high tolerance, the final step is usually negligible.
A mathematical analysis (for the case c = γ) suggest that this is related to the clustering
of the eigenvalues of DG(q) = γ Id +∇2f(u)T : HT → HT around γ, which results from the
typical compactness of the operator ∇2f(u). This effect, which supports the outlined solution
approach, can only be expected if the Krylov space Km is sufficiently large and it is possible
to construct counterexamples. However, the known counterexamples rely on finite termination
of the cg-method, and also support the proposed implementation.

The problems considered in the following chapters are convex (even linear-quadratic with
exception of the cost term ψ). Practical experience shows that, in combination with a continua-
tion strategy in γ, the local semismooth Newton method generally exhibits global convergence
in practice for these problems. Therefore, a globalization strategy is not needed for the follow-
ing numerical experiments. For computational results obtained with the outlined trust-region
method we instead refer to Kunisch, Pieper, and Rund [KPR14] where a time optimal control
problem for the monodomain equations (an instationary reaction-diffusion system arising in
cardiac electrophysiology) is solved with this algorithm. Additional computational results
obtained with this algorithm can be found in Springer [Spr15].
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3.6. Other reformulations

In the semismooth Newton literature, methods for problems of the structure (Pγ) are usually
based on a different reformulation of the optimality condition. In this section we compare the
semismooth Newton algorithm based on the normal map to other, more common formulations.

3.6.1. A reformulation based on the “natural residual”

In this case, the optimization method operates directly on the control u. For the nonsmooth
reformulation, we define

F (u) = c

[
u− Pc

(
u− 1

c
∇fγ(u)

)]
(3.30)

for an arbitrary constant c > 0, which is sometimes referred to as the “natural residual”. It is
easy to see that the stationarity condition for (Pγ) is equivalent to F (u) = 0.
Remark 3.10. Usually, we would leave out the additional scaling factor c. We add it here for
easier comparison with the definition of G as in (3.2). Clearly, the scaling factor does not
matter for the purposes of a Newton-type method due to the affine invariance property.

In each step of the semismooth Newton method, we need to solve the Newton equation

DF (u) δu = −F (u) (3.31)

for the update δu, which will be applied to the variable u directly. The Newton operator
of (3.30) is given as

DF (u) = c (Id−T+) + T+∇2fγ(u). (3.32)

In this case, the operator T+ is given by

T+ := DPc
(
u− 1

c
∇fγ(u)

)
.

Note, that in this formulation we make a quadratic approximation for f at the current iterate
for the control u, whereas the generalized differential of the proximal map is evaluated at the
shifted point u+ := u− 1/c∇fγ(u). For this reason, it is not possible to directly relate DF (u)
to a quadratic approximation of jγ at the point u, which we could do for the Newton operator
DG(q). However, in the optimum, both Newton matrices are transposes of each other.

Proposition 3.30. Suppose that q̄ ∈ H, such that G(q̄) = 0 and set ū = Pc(q̄). Then we have

DF (ū) = DG(q̄)∗.

Proof. In a stationary point we have the identity cq̄ = cū + ∇f(ū). From this follows that
T+ = DPc(ū+) = DPc(q̄) = T . Clearly, we have [c(Id−T )+T ∇2fγ(ū)]∗ = c(Id−T )+∇2fγ(ū)T ,
which implies the claim.

Proposition 3.31. Under the conditions of Lemma 3.15, for any u ∈ H, the Newton operator
DF (u) : H → H is boundedly invertible.
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Proof. We have the identity

DF (u)∗ = c (Id−T+) +∇2fγ(u)T+.

By the same argumentation as in the proof of Lemma 3.15, using the structural properties of
T+ instead of T , the operator on the right hand side is boundedly invertible on H. This implies
the claim with

‖DF (u)−1‖H→H = ‖DF (u)−∗‖H→H = ‖[c(Id−T+) +∇2fγ(u)T+]−1‖H→H .

For the solution of this system we can choose between two approaches. On the one hand,
we can iteratively solve DF (u)δu = −F (u) by using a Krylov subspace method which can
work on non-symmetric matrices. The most obvious choice would probably be the GMRES
method, which has both a well understood convergence theory and easily available stable
implementations. On the other hand, we can again reduce the system to a symmetric form.
First, we multiply (3.31) from the left by Q : H → KerT+ ⊂ H, defined as the orthogonal
projection to KerT+. We obtain the explicit relation

cQ δũ = −QF (u),

where we have used the identity QT+ = T+Q = 0 (T+ and Q are self-adjoint). Now, we split
δu = δu1 + δu2, where δu2 = Qδu = −1/cQF (u) ∈ KerT+ and δu1 ∈ (KerT+)⊥ and obtain

DF (u)δu1 = −F (u)−DF (u)δu2.

Finally, by (formally) parametrizing δu1 as δu1 = T+δũ, we obtain the symmetric system

DF (u)T+δũ =
(
cT+ + T+(∇2fγ(u)− c)T+

)
δũ = −F (u)−DF (u)δu2

in terms of the unknown δũ. We leave out a detailed rigorous justification of the last step at
this point. It can be done as in the proof of Lemma 3.15. Note, that this system can again be
solved with conjugate gradients as discussed in section 3.4.1.

The important special case

As in the case of the reformulation with the normal map, for the Banach space analysis, we
have to suppose that γ > 0. Choosing c = γ gives

F (u) = γu− γPγ
(
−1
γ
∇f(u)

)
,

which again leads to a Newton method that allows for a function space analysis. Here, we
consider F as an operator from H to H. In this case, the Newton operator simplifies to

DF (u) = γ + T+∇2f(u).

This is the most popular formulation in the (infinite dimensional) semismooth Newton literature;
cf., e.g., [HIK03; Sta09; Ulb11; HSW12; HV12].
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The linear quadratic case

In general, an approach based on the normal map (3.2) will lead to a different Newton method
than an approach based on the natural residual (3.30). However, for quadratic f , this gap can
be closed by a correct interpretation. In this case, the Hessian of f is constant on H, i.e.,

∇2f(u) = ∇2f for all u ∈ H.

The discrepancy between both methods vanishes if we relate the optimization variable q to the
shifted point u+ = u− 1/c∇fγ(u). We will only consider the case c = γ > 0 in the following.
Then we have u+ = −1/γ∇f(u) and we obtain the following result.

Proposition 3.32. Suppose that c = γ > 0 and that f is quadratic. Furthermore, take initial
iterates q0, u0 ∈ H, such that

γq0 = −∇f(u0).

Define the Newton iterates according to the normal map and the natural residual inductively as
qn+1 = qn −DG(qn)−1G(qn) and un+1 = un −DF (un)−1F (un) for all n ∈ N0. Then we have

γqn = −∇f(un)

for all n ∈ N0. In this sense, both methods are equivalent.

Proof. Note, that the Newton iterates are well-defined, since the Newton matrices are invertible
according to Lemma 3.14 and Proposition 3.31. The first step u1−u0 fulfills the Newton equation
DF (u0)(u1 − u0) = −F (u0), which reads as(

γ + T ∇2f
)

(u1 − u0) = −γu0 + γPγ(−1/γ∇f(u0)),

where T = DPγ(−1/γ∇f(u0)) = DPγ(q0). Multiplying by −1/γ∇2f from the left and inserting
the relation q0 = −1/γ∇f(u0) we obtain(

γ +∇2f T
) (
−1/γ∇2f(u1 − u0)

)
= ∇2f (u0 − Pγ(q0)) .

Since f is quadratic, the gradient of f is affine linear, i.e., we have ∇f(u)−∇f(ũ) = ∇2f(u− ũ)
for all u, ũ ∈ H. Inserting this expression on the left- and right-hand side, we obtain(

γ +∇2f T
)

(−1/γ∇f(u1)− q0) = ∇f(u0)−∇f(Pγ(q0)) = γq0 −∇f(Pγ(q0)).

It follows that q̃ = −1/γ∇f(u1) solves the Newton system DG(q0)(q̃ − q0) = −G(q0). Since
this system has a unique solution, it holds q1 = −1/γ∇f(u1). The full result follows now by
induction over n ∈ N0.

As a corollary, in the case of a linear quadratic problem with box-constraints, we also obtain
the (essential) equivalence of both approaches to the well-known primal-dual active set strategy;
see [HIK03].
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3.6.2. The “control reduced” approach

Another elegant approach to semismooth Newton for optimal control problems is not based on
the reduced cost functional, but on a reformulation of the KKT system; see Schiela [Sch08].
This approach is particularly useful in the context of the so-called “variational discretization”
concept due to Hinze [Hin05]. We will see that this approach leads to a very similar algorithm,
when compared to the approach on the reduced cost functional with the normal map. To fix
ideas, we consider an abstract nonlinear control problem with a control appearing linearly on
the right-hand side:

min
u∈H,y∈Y

J(y) + ψ(u) + γ

2‖u‖
2,

subject to A(y) = Bu in W ∗.
(3.33)

We suppose that γ > 0. We use the same notation as in section 2.5.4. Here the equation is
given as

e(u, y) = A(y)−Bu = 0 in W ∗,

for y ∈ Y and u ∈ H. The spaces Y and W are reflexive Banach spaces, B : H → W ∗ is a
bounded linear operator and we assume that J : Y → R and A : Y →W ∗ are C2. Furthermore,
we suppose that A(y) = Bu has a unique solution for every u ∈ H and that A′(y) : Y →W ∗ is
an isomorphism for all y ∈ Y . As before, we define the Lagrange function as

L(u, y, p) = J(y)− 〈A(y)−Bu, p〉 for (u, y, p) ∈ H × Y ×W.

The solution operator of the state equation denoted by S : u 7→ y is C2 as a consequence of
the implicit function theorem (cf. section 2.5.4). We obtain the state and adjoint equations
respectively as

Bu−A(y) = 0 in W ∗, (3.34)
J ′(y)−A′(y)∗p = 0 in Y ∗. (3.35)

Define the reduced tracking functional as f(u) = J(S(u)). As in section 2.5.4, we obtain a
representation for the gradient and Hessian of f at a point u as

∇f(u) = B∗A′(y)−∗J ′(y) = B∗p,

∇2f(u) = B∗A′(y)−∗ L′′yy A′(y)−1B.

Therein y = S(u) and p = A′(y)−∗J ′(y) are the corresponding state and adjoint solutions,
and L′′yy = J ′′(y)− 〈A′′(y)(·, ·), p〉 is the second derivative of the Lagrange function w.r.t. the
state.
Now, we sketch the idea behind the control reduced approach: the stationarity condition

for (3.33) is equivalent to the conditions (3.34), (3.35) and the control projection formula

u = Pγ
(
− 1
γB
∗p
)
.

Here, the right-hand side of the control projection formula depends solely on the adjoint state.
Now, we insert this expression into the state equation to obtain the following optimality system,
formulated in terms of the state and adjoint variable as

F (y, p) =
(

J ′(y)−A′(y)∗p
BPγ (−1/γ B∗p)−A(y)

)
= 0.
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To apply a Newton method to the equation using the semismoothness concept, we derive the
(generalized) derivative as

DF (y, p) =
(
L′′yy −A′(y)∗
−A′(y) −1/γ BTB∗

)
,

where T = DPγ (−1/γB∗p) and L′′yy as before.

Proposition 3.33. Take p ∈ W and set u = Pγ(−1/γ B∗p) and y = S(u). Suppose that
(δy, δp) ∈ Y ×W solves the Newton system

DF (y, p)(δy, δp) = −F (y, p).

Then, δq = −1/γ B∗δp solves the Newton equation

DG(q)δq = −G(q),

for q = −1/γ B∗p, where G(q) = γq +∇f(Pγ(q)), as before.

Proof. Writing out the system, we obtain

L′′yyδy −A′(y)∗δp = −J ′(y) +A′(y)∗p,
−A′(y)δy − 1/γ BTB∗δp = 0.

Note, that the right-hand side of the second equation is zero, since y = S(u). Now, we perform
a Schur complement reduction by inserting δy = −A′(y)−1(1/γ BTB∗δp) into the first equation.
We obtain

−A′(y)∗δp− 1/γ L′′yyA′(y)−1BTB∗ δp = −J ′(y) +A′(y)∗p.

Applying B∗A′(y)−∗ from the left and introducing the auxiliary variables q = −1/γ B∗p and
δq = −1/γ B∗δp, we end up with

γ δq +B∗A′(y)−∗L′′yyA′(y)−1B Tδq = −γq −B∗A′(y)−∗J ′(y).

By the representation formulas for the first and second derivative, this is the same as γδq +
∇2f(u)Tδq = −γq −∇f(u).

As a consequence of this, we obtain the following result: combining the control reduced
Newton method with a projection onto the state manifold y = S(u) in each step, we obtain an
equivalent algorithm to the approach from section 3.2.

3.6.3. Comparison

Let us compare the three presented approaches: We have seen that in the case of a quadratic
f (i.e., linear quadratic control problems), the Newton methods resulting from all approaches
are essentially equivalent; see Propositions 3.31 and 3.33. Therefore, there seems to be no clear
advantage of any method over the other in this situation. However, differences arise in the
context of discrete approximations to the infinite-dimensional control problem, for instance in
the context of the “variational discretization” concept as in [Hin05]. Here the control variable
is only discretized implicitly via qσ = Pγ(−1/γ B∗pσ) = Pγ(qσ), where qσ = −1/γ B∗pσ is
searched in a finite dimensional space, but the proximal map is still evaluated analytically.
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Note, that in this case the control variable is not a discrete quantity and it requires additional
implementation effort to evaluate and store it directly; see [HV12]. The control reduced
approach offers an advantage here, since the control is only evaluated implicitly (e.g., with
specialized quadrature formulas or adaptive quadrature; cf. [WGS08], where the control reduced
approach is used in conjunction with an interior point reformulation). The same is true for the
approach with the normal map, where only the auxiliary variable q is stored; cf. also [Spr15]
for a more detailed discussion.
In the case of nonquadratic f (i.e., for control problems with nonlinear state equations), an

appropriate globalization is a crucial issue. Here, the normal map approach seems to offer some
advantages over the natural residual formulation, as discussed in section 3.6.1. We have seen
that the Newton system can be directly related to a quadratic model for the objective function
in the current iterate u = Pc(q) and that a globalization strategy can be based on the cost
functional in a, more or less, straightforward manner. This is not the case in the context of
the natural residual: There, the globalization is usually based on the squared residual ‖F (u)‖2;
see [IK08; IK09]. This is mainly due to the fact that the semismooth Newton method as in
section 3.6.1 produces iterates which are in general inadmissible w.r.t. the constraint u ∈ Uad.
Certainly, a globalization based on the residual is also an option, but it appears to be not the
canonical choice in the context of functional minimization. Note however, that it is also possible
to use the reduced cost functional in this setting if one introduces an additional projection to
the constraint set Uad in each step; see [Ulb11]. Still, the normal map seems to offer a more
direct approach, since feasibility is automatically fulfilled. Moreover, when using the cg-method,
there appears to be a natural transition between a first order and the full semismooth Newton
step.

For the control reduced approach to semismooth Newton, there appears to be no globalization
approach in the literature, to the best of the authors knowledge. However, in this context, we
can mention the approach by Gräser and Kornhuber [Grä08; GK09] (cf. also [HV12]), where a
dual functional is constructed and descent is required w.r.t. this functional. The corresponding
method can also be interpreted as operating on the adjoint variable [GK09, Section 5.1], and
the theory covers a line-search based on a Newton-like direction. However, this approach seems
to be limited to problems with linear state equations.

Let us also mention other related methods for a similar classes of optimization problems. On
the one hand there are related versions of the SQP-method where a semismooth Newton method
is used as an inner solver for the quadratic problem with box-constraints; see, e.g., [HH02;
HH06] and the references therein. On the other hand there are nonlinear variants of the
primal-dual active set method; see, e.g., [BIK99; KR02; IK04]. In both of these approaches,
the optimization is split into an inner and an outer loop. Roughly speaking, in the former case,
the outer iteration linearizes only the smooth parts of the Lagrange function and keeps the
nonsmooth part (the box-constraints) intact. In the latter case, the constraints are linearized
by introducing appropriate active sets and a resulting nonquadratic but smooth optimization
problem has to be solved in the inner loop.
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In this chapter we will consider a priori error estimates for the elliptic model problem given by

min
u∈M(Ωc), y∈Y

1
2‖y − yd‖

2
L2(Ωo) + α‖u‖M(Ωc), (4.1a)

subject to
{
−∆y = χΩcu in Ω,

y = 0 on ∂Ω.
(4.1b)

Here, Ω ⊂ Rd for d ∈ { 2, 3 } is a convex bounded domain with a C2,β-boundary ∂Ω. The
control variable u is searched for in the space of regular Borel measures M(Ωc), where the
control set Ωc ⊂ Ω is relatively closed in Ω, i.e.,

Ωc = Ω̄c \ ∂Ω.

We will make additional assumption on the form of Ωc below (such as ∂Ωc \ ∂Ω polygonal).
The state variable y is the solution of the Poisson equation (4.1b). We consider a standard
linear quadratic tracking term on the observation domain Ωo ⊂ Ω with desired state yd given
in L2(Ωo). For the purpose of optimal regularity and error estimates we will make further
assumptions, such as yd ∈ Lp(Ωo) or yd ∈ L∞(Ωo); see below. The parameter α is assumed to
be positive.
To discretize the problem (4.1), we consider linear finite elements in space and a discretiza-

tion for the control by nodal Dirac delta functions as proposed by Casas, Clason, and Ku-
nisch [CCK12]. We derive estimates for the objective functional of order O(h4−d|ln h|κ) and for
the error of the state on the observation domain of order O(h2−d/2|ln h|κ/2), which improves on
the previous analysis by essentially doubling the rates. The results have already appeared in
similar form in Pieper and Vexler [PV13]. We achieve this by a careful study of the regularity,
Lp estimates for p 6= 2, and by employing uniform finite element error estimates due to Ran-
nacher and Frehse [FR76] and Rannacher [Ran76]. Due to the analogy of problem (4.1) with
a state constrained optimal control problem (cf. section 2.4), we also refer to Deckelnick and
Hinze [DH07], where similar Lp techniques using uniform finite element estimates have been
introduced for the analysis of a state constrained problem (cf. also [Mey08]).
Furthermore, in the case where Ω = Ωo = Ωc, we prove a regularity result for the optimal

solutions. Under the assumption that the desired state is bounded, we show that the optimal
control ū is an element of H−1(Ω), which rules out Dirac delta functions. In this case, we can
derive an improved convergence rate for the optimal states in the three dimensional case. This
result has also already appeared in [PV13]. Let us point out that the mentioned regularity
result is also new if transferred to a state constrained problem (cf. section 2.4). In fact, an
analogous, more general result has subsequently been derived in this context by Casas, Mateos,
and Vexler [CMV14].
Furthermore, we also consider a discretization of the regularized version of problem (4.1).

Motivated by the discretization of the original problem, we consider a discretization of the
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control based on linear finite elements and mass lumping, which is different from a similar
discretization concept proposed in [CHW12a]. For a fixed regularization parameter, we are
able to provide an estimate for a post-processing of the optimal control of optimal order O(h2)
(under an established structural assumption on the optimal solution). Since the regularized
problem is similar to a control constrained problem, this essentially transfers the post-processing
results due to Meyer and Rösch [MR04] for a piece-wise constant discretization to a piece-wise
linear setting.
The chapter is structured as follows. In section 4.1 we discuss regularity of the state and

adjoint state and derive some structural consequences of the optimality conditions. The dis-
cretization of the state and control is introduced in section 4.2. In section 4.3 we derive the
error estimates for the optimal solutions which are valid in the general setting. Section 4.4
contains the estimates which are valid under additional conditions on the control and obser-
vation sets: we give the additional regularity result and the improved estimate, as mentioned
above. The regularized problem is discussed in section 4.5. We give an asymptotic estimate
for the regularization error based on a technique introduced by Hintermüller, Schiela, and
Wollner [HSW14]. We also provide the finite element error analysis for the regularized problem.
Numerical results are given in section 4.6.

Throughout this chapter, we denote by (·, ·) the L2(Ω) inner product and by 〈·, ·〉 the duality
product betweenM(Ω) and C0(Ω).

4.1. Precise regularity and optimality conditions

In the following, we derive precise regularity estimates for the state solution, summarize the
existence and optimality theory for the optimization problem and derive optimality conditions.
As the first step we recall the weak formulation of the state equation (4.1b). For a given
u ∈M(Ω) the solution y is determined by

y ∈W 1,s(Ω) : (∇y,∇ϕ) = 〈χΩcu, ϕ〉 for all ϕ ∈W 1,s′
0 (Ω).

By the general theory in section 2.2.2, the above formulation possesses a unique solution for
all 1 ≤ s < d/(d− 1). Moreover, the behavior of the constant in the a priori estimate for
s→ d/(d− 1) can be estimated in the following way.

Lemma 4.1. For ε > 0 small enough, let sε be given as

sε = d

d− 1 − ε.

There exists a constant C independent of ε, such that for all u ∈M(Ω) and the corresponding
solution y of (4.1b) the following estimate holds:

‖y‖
W 1,sε

0 (Ω) ≤
C

ε
‖u‖M(Ω).

Proof. To obtain the precise dependence of ε we use the continuous embedding of W 1,s′ε
0 (Ω)

into C0(Ω), where s′ε is the conjugate index of sε with

1
s′ε

+ 1
sε

= 1, s′ε > d.
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With [Alt11, Theorem 8.10] we obtain

‖v‖C0(Ω) ≤
C

ε
‖v‖

W
1,s′ε
0 (Ω)

for all v ∈W 1,s′ε
0 (Ω)

with a constant C independent of ε. Using the fact that the Dirichlet Laplacian is an isomor-
phism betweenW 1,s′ε

0 (Ω) andW−1,s′ε(Ω) for ε small enough as in Theorem 2.12 (see also [Mey63;
AK92]), we estimate

‖∇y‖Lsε (Ω) ≤ sup
f∈Ls′ε (Ω,Rd)

(∇y, f)
‖f‖

Ls
′
ε (Ω)

≤ C sup
v∈W 1,s′ε

0 (Ω)

(∇y,∇v)
‖∇v‖

Ls
′
ε (Ω)

,

where C is independent of ε. Since y is the solution of the state equation corresponding to u
we obtain

‖∇y‖Lsε (Ω) ≤ C sup
v∈W 1,s′ε

0 (Ω)

〈u, v〉
‖∇v‖

Ls
′
ε (Ω)

≤ C

ε
‖u‖M(Ω),

which completes the proof.

In the following we use the same notation as in section 2.2. We restrict the parameter s
to the interval [2d/(d+ 2), d/(d− 1)), unless explicitly stated otherwise. We also denote the
state solution y corresponding to u ∈ M(Ωc) by y = S(u), where S : M(Ωc) → W 1,s

0 (Ω) is
the corresponding solution operator. With the continuous embedding of W 1,s

0 (Ω) into L2(Ω),
a reduced cost functional can be defined defined for (4.1). We define for y ∈ W 1,s

0 (Ω) the
tracking functional by

J(y) = 1
2‖χΩoy − yd‖

2
L2(Ωo),

where χΩo : W 1,s
0 (Ω) → L2(Ωo) denotes the canonical embedding and restriction. Note that,

in the following, by an abuse of notation, χΩo will also denote the characteristic function of Ωo.
For u ∈M(Ωc) we define the reduced cost functional by

j(u) = J(S(u)) + α‖u‖M(Ωc).

As in Theorem 2.3 we obtain optimal solutions of (4.1).

Proposition 4.2. The problem (4.1) possesses at least one optimal solution (ū, ȳ) = (ū, S(ū)) ∈
M(Ωc)×W 1,s

0 (Ω).

Note that uniqueness of the optimal solutions can only be expected under further conditions
on Ωc and Ωo, which we will investigate in section 4.4. Nevertheless, the observation of the
optimal state is unique.

Proposition 4.3. For two optimal solutions of the problem (4.1) the values χΩo ȳ coincide.

Proof. The functional 1/2 ‖ ·−yd‖2L2(Ωo) is strictly convex on L2(Ωo). Take two optimal solutions
(ū, ȳ) and (ũ, ỹ). Define the mean value as u1/2 = (ū + ũ)/2 and y1/2 = (ȳ + ỹ)/2 = S(u1/2).
We have

j(u1/2) = 1
2‖χΩoy1/2 − yd‖2L2(Ωo) + α‖u1/2‖M(Ωc) ≤

1
2 (j(ū) + j(ũ)) = j(ū) = j(ũ).

by convexity of the reduced cost functional j. If we suppose now that χΩo ȳ 6= χΩo ỹ, we obtain
even strict inequality, which contradicts the optimality of (ū, ȳ) and (ũ, ỹ).
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Moreover, the following optimality system can be obtained; see section 2.2.4.
Theorem 4.4. There exists a unique adjoint state p̄ ∈W 1,q

0 (Ω) (with q > d) corresponding to
any optimal solution (ū, ȳ) = (ū, S(ū)) of (4.1). It satisfies{

−∆p̄ = χΩo(ȳ − yd) in Ω,
p̄ = 0 on ∂Ω

(4.2)

in the sense of the standard weak formulation and

− 〈χΩc(u− ū), p̄〉+ α‖ū‖M(Ωc) ≤ α‖u‖M(Ωc) for all u ∈M(Ωc). (4.3)

Furthermore, the variational inequality (4.3) is equivalent to the two conditions

‖χΩc p̄‖C0(Ωc) ≤ α, and 〈χΩc ū, p̄〉 = α‖ū‖M(Ωc). (4.4)

This implies that the support of ū is contained in the set {x ∈ Ωc | |p̄(x)| = α } , and for the
Jordan-decomposition ū = ū+ − ū− we have

supp ū+ ⊂ {x ∈ Ωc | p̄(x) = −α } and supp ū− ⊂ {x ∈ Ωc | p̄(x) = α } . (4.5)

Remark 4.1. The optimality condition (4.3) can be equivalently reformulated as

(S(u)− ȳ, χΩo(ȳ − yd)) + α‖u‖M(Ωc) − α‖ū‖M(Ωc) ≥ 0 for all u ∈M(Ωc). (4.6)

The statement of the above theorem directly implies the following corollary on the structure
of the optimal control ū.
Corollary 4.5. There exist a constant η > 0, depending on the data of the problem, such that

supp ū ⊂ Ωη = {x ∈ Ω | dist(x, ∂Ω) > η } , (4.7)

and additionally
dist(supp ū+, supp ū−) > η. (4.8)

The first property implies that the support is compact.

Proof. The adjoint state p̄ belongs to W 1,q(Ω) with q > d and W 1,q(Ω) ↪→ Cβ(Ω̄) with some
β > 0. This implies (due to the homogeneous Dirichlet boundary conditions) the existence of
η > 0, such that

|p̄(x)| < α

2 for x ∈ Ω \Ωη.

We complete the first part of the proof using the statement on the support of ū from Theorem 4.4.
With a similar argument we derive the second statement, since due to (4.5), the adjoint state
attains the values ±α respectively on the support of ū− and ū+.

For the derivation of the error estimate, we also need a standard regularity result for the
Poisson equation; see, e.g., [Gri85, Theorem 2.4.2.5].
Theorem 4.6. (Elliptic regularity) Let f ∈ Lq(Ω) for some q ∈ [2,∞). The unique solution
w ∈ H1

0 (Ω) to the elliptic problem {
−∆w = f in Ω

w = 0 on ∂Ω,

has the regularity w ∈W 2,q(Ω) with the corresponding a priori estimate

‖∇2w‖Lq(Ω) ≤ Cq‖w‖Lq(Ω).
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4.2. Discretization

4.2. Discretization

For the discretization of the state equation we use linear finite elements on a family of shape
regular, quasi-uniform triangulations {Th}h; see, e.g., [BS08]. The discretization parameter hK
denotes the diameter of the cells K ∈ Th and h = maxK∈Th hK the maximum thereof. We set

Ω̄h =
⋃

K∈Th

K̄

and make the usual assumption on the approximation of the boundary:

dist(∂Ω, ∂Ωh) ≤ Ch2.

The space of linear finite elements associated with Th is defined as usual by

Vh =
{
vh ∈ C0(Ω)

∣∣∣ vh|K ∈ P1(K) for all K ∈ Th and vh = 0 on Ω \Ωh
}
.

For a given u ∈M(Ωc) the discrete state solution yh = Sh(u) ∈ Vh is determined by

(∇yh,∇ϕh) = 〈χΩcu, ϕh〉 for all ϕh ∈ Vh. (4.9)

We denote the corresponding reduced cost functional for u ∈M(Ωc) by

jh(u) = J(Sh(u)) + α‖u‖M(Ωc).

To define the approximation of the optimal control problem (4.1) we follow the approach
from [CCK12] and do not discretize the control space (cf. also the variational control dis-
cretization approach by Hinze [Hin05]). The discrete optimal control problem is then given
as

min
u∈M(Ωc)

jh(u). (4.10)

The existence of optimal solutions can be shown as on the continuous level. Since Sh maps an
infinite dimensional space to a finite dimensional one, it can not be injective. Therefore, and due
to missing strict convexity of ‖·‖M(Ωc), the solutions of (4.10) are highly non-unique. However,
following [CCK12], we can identify a class of solutions which is numerically accessible.

By {xn | n = 1, . . . , Nh } we denote the interior nodes of Ωh and by { en | n = 1, . . . , Nh } ⊂
Vh the corresponding nodal basis functions. The standard nodal interpolation operator ih : C0(Ω)→
Vh ⊂ C0(Ω) is given as

ihv =
Nh∑
n=1

v(xn)en.

Furthermore, we introduce the space Mh consisting of linear combination of Dirac delta
functions associated with the nodes xn as

Mh =

 uh =
Nh∑
n=1

un δxn

∣∣∣∣∣∣ un ∈ R, n = 1, . . . , Nh

 ⊂M(Ω).

Now, we additionally discretize the control space M(Ωc) as Mh ∩ M(Ωc). We obtain the
following finite-dimensional optimization problem

min
uh∈Mh∩M(Ωc)

jh(uh). (4.11)
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4. A priori error analysis for an elliptic problem

We will show that, under a compatibility condition on the mesh and the control set, the
problems (4.10) and (4.11) are essentially equivalent. To this purpose, we define the operator
Λh : M(Ω)→Mh by

Λhu =
Nh∑
n=1
〈u, en〉 δxn . (4.12)

Note that Λh : M(Ω)→Mh ⊂M(Ω) can be derived as the transpose of the nodal interpolation
ih. It has the following properties; see [CCK12, Theorem 3.1].

Theorem 4.7. For any u ∈M(Ω) it holds:

(i) 〈Λhu, v〉 = 〈u, ihv〉 for all v ∈ C0(Ω),
(ii) ‖Λhu‖M(Ω) ≤ ‖u‖M(Ω),

(iii) Λhu ⇀
∗ u inM(Ω) and ‖Λhu‖M(Ω) → ‖u‖M(Ω) for h→ 0.

In the following, we suppose that the nodes of the mesh are ordered such that for some
Nc ≤ Nh it holds {xn | n = 1, . . . , Nh, xn ∈ Ωc } = {xn | n = 1, . . . , Nc } . For the derivation
of the error estimates, we have to ensure that the operator Λh defined in (4.12) maps the
control spaceM(Ωc) intoM(Ωc) ∩Mh. Therefore, we require that for each h we have

Ωc ∩Ωh =
⋃

K∈T c
h

K, (4.13)

where T ch ⊂ Th is the collection of all the cells of the triangulation which make up the control
region. Then, we can verify that

Λh(u) ∈M(Ωc) ∩Mh for all u ∈M(Ωc).

Based on the previous identities, it is easy to see that any optimal solution ũ of (4.10) can be
replaced by a discrete optimal solution ūh = Λh(ũ) ∈ M(Ωc) ∩Mh with the same objective
value.

Proposition 4.8. Any solution of the fully discrete problem (4.11) also solves the semidiscrete
problem (4.10). Moreover, for any other solution of (4.10) ũ ∈ M(Ωc) we have that Λhũ =
ūh ∈ Mh ∩M(Ωc) is an optimal solution of both problems. If the solution to (4.1) is unique,
there holds

ūh ⇀
∗ ū inM(Ωc) and ‖ūh‖M(Ωc) → ‖ū‖M(Ωc) for h→ 0.

Proof. We take any solution ũ ∈ M(Ωc) of (4.10) and set ūh = Λhũ. Due to the properties
of Λh it holds that Sh(ūh) = Sh(ũ) and j(ūh) ≤ j(ũ). Due to the minimality of ũ, it follows
jh(ūh) = jh(ũ) and ūh is an optimal solution of (4.10). Since ‖ūh‖M(Ωc) is uniformly bounded
(by minimality of ūh) we can find a û ∈ M(Ωc) and select a sequence ūh ⇀∗ û inM(Ωc) for
h→ 0. By the weak lower semicontinuity of j it follows now that

j(û) ≤ lim inf
h→0

j(ūh) ≤ lim
h→0

jh(ūh) + lim
h→0
|jh(ūh)− j(ūh)| = j(ū),

which implies that û is an optimal solution of (4.1). The convergence of the functional values
jh(ūh)→ j(ū) and the convergence |jh(ūh)−j(ūh)| → 0 for h→ 0 will be shown in Theorem 4.12
(the additional assumptions made there can be dropped, if we are not interested in optimal
rates of convergence). If ū is unique, all thusly constructed subsequences have the same limit
point, and the whole sequence converges.
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4.3. General error estimates

For future reference, let us state again the fully discrete problem. It is given by

min
uh∈Mh, yh∈Vh

1
2‖yh − yd‖

2
L2(Ωo) + α‖uh‖M(Ωc)

subject to (∇yh,∇ϕh) = 〈χΩcuh, ϕh〉 for all ϕh ∈ Vh.
(4.14)

Let us point out that for any uh = ∑
n unδxn ∈ Mh the total variation norm is simply given

by the `1 norm of the underlying nodal vector:

‖uh‖M(Ωc) =
Nc∑
n=1
|un|.

Furthermore, for any uh = ∑
n unδxn ∈ Mh and vh = ∑

n vnen ∈ Vh the duality product is
given simply as the Euclidean inner product of the nodal vectors:

〈χΩcuh, vh〉 =
Nc∑
n=1

unvn.

This means that a finite dimensional equivalent of (4.14) can be derived in a straightforward
way, by introducing appropriate mass and stiffness matrices. For the optimal solutions the
following discrete version of the optimality conditions holds, which can be derived as in the
continuous case.

Theorem 4.9. There exists a unique discrete adjoint state p̄h ∈ Vh, which, for any discrete
solution (ūh, ȳh) ∈Mh ∩M(Ωc)× Vh, fulfills the discrete adjoint equation

(∇ϕh,∇p̄h) = (ȳh − yd, χΩoϕh) for all ϕh ∈ Vh, (4.15)

and the optimality condition

− 〈χΩc(u− ūh), p̄h〉+ α‖ūh‖M(Ωc) ≤ α‖u‖M(Ωc) for all u ∈M(Ωc). (4.16)

As in Remark 4.1, the last condition can be equivalently rewritten as

(yh(u)− ȳh, χΩo(ȳh − yd)) + α‖u‖M(Ωc) − α‖ūh‖M(Ωc) ≥ 0 for all u ∈M(Ωc). (4.17)

Note that in the previous result the optimal solution is found in the discrete space Mh ∩
M(Ωc), whereas the admissible test functions for the variational inequalities (4.16) and (4.17)
can be chosen from the continuous spaceM(Ωc). This construction facilitates the derivation
of error estimates.

4.3. General error estimates

In this section we derive error estimates which are valid in the generic case. Under additional
assumptions on the location of the Ωc and Ωo with respect to each other better estimates are
possible, which we will consider in the following section.
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4. A priori error analysis for an elliptic problem

4.3.1. Estimates for the state solution

In order to prove our main result, we first provide some estimates of the state error for a fixed
control u ∈M(Ω).

Lemma 4.10. Let u ∈ M(Ω) with associated continuous and discrete states y = S(u) and
yh = Sh(u) be given. Then there holds:

(i) ‖y − yh‖Lq(Ω) ≤ Cqh2−d/q′ ‖u‖M(Ω), q ∈
(

1, d

d− 2

)
,

1
q

+ 1
q′

= 1

(ii) ‖y − yh‖L1(Ω) ≤ Ch2|ln h|r ‖u‖M(Ω)

with r = 2 for d = 2 and r = 11/4 for d = 3.

Proof. For the first estimate in case q = 2 we refer to, e.g., [Cas85]. For the general case,
q ∈ (1, d/(d− 2)), we set e = y − yh and

gq(x) = |e(x)|q−1 sgn(e(x)).

By a direct calculation it follows gq ∈ Lq
′(Ω) and

‖gq‖Lq′ (Ω) = ‖e‖q−1
Lq(Ω).

We consider a dual problem for the auxiliary variable w ∈ H1
0 (Ω), which is given by

(∇w,∇ϕ) = (gq, ϕ) for all ϕ ∈ H1
0 (Ω).

We define the corresponding Ritz projection wh ∈ Vh as

(∇wh,∇ϕh) = (gq, ϕh) for all ϕh ∈ Vh.

With the help of this we can write

‖e‖qLq(Ω) = (e, gq) = (∇e,∇w)
= (∇e,∇(w − wh)) = (∇y,∇(w − wh))
= 〈u,w − wh〉 ≤ ‖u‖M(Ω) ‖w − wh‖C0(Ω),

using Galerkin orthogonality for both errors y − yh and w − wh. By elliptic regularity theory
we obtain w ∈W 2,q′(Ω) with

‖∇2w‖Lq′ (Ω) ≤ C‖gq‖Lq′ (Ω)

and since q′ > 2/d, a corresponding L∞-estimate can be obtained. With an inverse estimate
we get

‖w − wh‖C0(Ω) ≤ ‖w − ihw‖C0(Ω) + Ch−d/q
′‖ihw − wh‖Lq′ (Ω),

where ih is the nodal interpolation. With well-known interpolation estimates for the nodal
interpolant in L∞ and Lq′ and a further application of the triangle inequality, we arrive at

‖w − wh‖C0(Ω) ≤ Ch2−d/q′‖∇2w‖Lq′ (Ω) + Ch−d/q
′‖w − wh‖Lq′ (Ω).

The optimal estimate
‖w − wh‖Lq′ (Ω) ≤ Cqh

2‖∇2w‖Lq′ (Ω)
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4.3. General error estimates

was first given in [RS82], albeit only for d = 2. However, the stability of the Ritz projection in
W 1,q′ , which is the central ingredient of the proof, is also known to hold for d = 3 (see [BS08,
Theorem 8.5.3]), so the proof can be repeated one for one. Combining all the estimates, we
obtain for the error ‖e‖Lq(Ω) the estimate

‖e‖qLq(Ω) ≤ ‖u‖M(Ω) ‖w − wh‖C0(Ω)

≤ Cqh2−d/q′ ‖u‖M(Ω)‖e‖
q−1
Lq(Ω),

which gives the desired result.
To obtain the second estimate, we set g1 = sgn(e) ∈ L∞(Ω). There holds

‖e‖L1(Ω) = (e, g1).

As before, we consider the dual variable w ∈ H1
0 (Ω) and its Ritz projection wh ∈ Vh as the

solutions of

(∇w,∇ϕ) = (g1, ϕ) for all ϕ ∈ H1
0 (Ω),

(∇wh,∇ϕh) = (g1, ϕh) for all ϕh ∈ Vh.

Then we obtain using the Galerkin orthogonality for both errors y − yh and w − wh, that

‖e‖L1(Ω) = (e, g1) = (∇e,∇w)
= (∇e,∇(w − wh)) = (∇y,∇(w − wh))
= 〈u,w − wh〉 ≤ ‖u‖M(Ω) ‖w − wh‖C0(Ω).

For the pointwise error in w we use the result from Frehse and Rannacher [FR76] for d = 2
and Rannacher [Ran76] for d = 3 and obtain

‖w − wh‖C0(Ω) ≤ Ch2|ln h|r ‖g1‖L∞(Ω).

This completes the proof.

Via the Sobolev embedding theorem we can easily derive an estimate of the following form

‖y‖Lt(Ω) ≤ Ct‖u‖M(Ω) for all t < d

d− 2 .

for the continuous solutions. For the discrete solutions we can also give a result in the limiting
case for t.

Lemma 4.11. Let u ∈M(Ω) with the discrete solution yh = yh(u) as above. Then we have

‖yh‖L∞(Ω) ≤ C|ln h|3/2‖u‖M(Ω) for d = 2,
‖yh‖L3(Ω) ≤ C|ln h|‖u‖M(Ω) for d = 3.

Proof. In the first step we estimate

‖yh‖L∞(Ω) ≤ C|ln h|1/2‖∇uh‖L2(Ω) for d = 2

by the discrete Sobolev inequality (see [BS08, Lemma 4.9.2]) and

‖yh‖L3(Ω) ≤ C‖∇yh‖L3/2(Ω) for d = 3,
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4. A priori error analysis for an elliptic problem

by the Sobolev embedding. Defining σ = d/(d− 1) (i.e., σ = 2 and σ = 3/2 for d = 2 and
d = 3 respectively), we proceed in a common way with an inverse estimate and the stability of
the Ritz projection with respect to the W 1,s seminorm (see [BS08, Theorem 8.5.3])

‖∇yh‖Lσ(Ω) ≤ C hd/σ−d/s‖∇yh‖Ls(Ω)

≤ Chd/σ−d/s‖∇y‖Ls(Ω),

for any 1 < s < σ, where the constant C is independent of s. Then we choose s = sε = σ − ε
for 0 < ε < σ − 1, which implies that

d

σ
− d

sε
= − ε d

σ(σ − ε) > −ε dσ
−1 = −ε(d− 1).

We obtain by Lemma 4.1 that

‖∇yh‖Lσ(Ω) ≤
C

ε
h−ε(d−1)‖u‖M(Ω).

Choosing now ε = 1/|ln h| we obtain

‖∇yh‖Lσ(Ω) ≤ C|ln h|‖u‖M(Ω),

which, together with the first estimate, completes the proof.

4.3.2. Estimates for the optimal solutions

In the next theorem we provide an error estimate for the error with respect to the cost functional.
To state this theorem we need an assumption on the desired state yd.

Assumption 4.1. We assume

yd ∈
{
L∞(Ω), for d = 2
L3(Ω), for d = 3.

First, we derive an error estimate for the optimal value of the objective functional.

Theorem 4.12. Let Assumption 4.1 be fulfilled. Let moreover ū ∈M(Ωc) be a solution to (4.1)
and ūh ∈Mh be a solution to the discrete problem (4.14). Then there holds

|j(ū)− jh(ūh)| ≤ C h4−d|ln h|κ

with κ = 7/2 for d = 2 and κ = 1 for d = 3.

Proof. By optimality we obtain

j(ū) ≤ j(ūh) and jh(ūh) ≤ jh(ū).

Consequently we have

j(ū)− jh(ū) ≤ j(ū)− jh(ūh) ≤ j(ūh)− jh(ūh)
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4.3. General error estimates

Therefore, it remains to estimate the error with respect to the cost functional for a fixed
u ∈M(Ωc), i.e., to estimate the term

|j(u)− jh(u)| =
∣∣∣∣12‖S(u)− yd‖2L2(Ωo) −

1
2‖Sh(u)− yd‖2L2(Ωo)

∣∣∣∣
and then to apply this estimate for both u = ū and u = ūh. For fixed u ∈M(Ωc) we now use
the notation y = S(u) and yh = Sh(u). There holds:

j(u)− jh(u) = 1
2‖y − yd‖

2
L2(Ωo) −

1
2‖yh − yd‖

2
L2(Ωo)

= 1
2(y − yh, χΩo(y + yh − 2yd))

= −(y − yh, χΩoyd) + 1
2‖y − yh‖

2
L2(Ωo) + (y − yh, χΩoyh).

(4.18)

For the second term in (4.18) we obtain with Lemma 4.10.(i) for q = 2 that

‖y − yh‖2L2(Ωo) ≤ Ch
4−d‖u‖2M(Ωc).

The other terms are estimated separately in two and three spatial dimensions. For d = 2 the
first and last terms in (4.18) are estimated using Lemma 4.10.(ii):

(y − yh, χΩoyd) ≤ ‖y − yh‖L1(Ωo) ‖yd‖L∞(Ωo) ≤ Ch
2|ln h|2‖u‖M(Ωc),

(y − yh, χΩoyh) ≤ ‖y − yh‖L1(Ωo) ‖yh‖L∞(Ωo) ≤ Ch
2|ln h|2‖u‖M(Ωc)‖yh‖L∞(Ωo).

Additionally, by Lemma 4.11 we have ‖yh‖L∞(Ω) ≤ |ln h|3/2‖u‖M(Ωc). For d = 3 we use
Lemma 4.10.(i) with q = 3/2 for the remaining terms in (4.18) to obtain

(y − yh, χΩoyd) ≤ ‖y − yh‖L3/2(Ωo) ‖yd‖L3(Ωo) ≤ Ch‖u‖M(Ωc),

(y − yh, χΩoyh) ≤ ‖y − yh‖L3/2(Ωo) ‖yh‖L3(Ωo) ≤ Ch‖u‖M(Ωc)‖yh‖L3(Ωo).

We apply again Lemma 4.11 and complete the proof.

Remark 4.2. i) Assumption 4.1 is only slightly stronger than the corresponding assumption
in [CCK12], where yd ∈ L4(Ω) in two dimensions and yd ∈ L8/3(Ω) in three dimensions is
assumed. By using a different exponent in the Hölder inequality at the end of the proof of
Theorem 4.12, we can also derive a weaker estimate under such assumptions on yd.
ii) Assumption 4.1 excludes the case where the desired state yd is given as a Green’s function.
However, for construction of irregular examples with known exact solutions (see section 4.6),
it is desirable to choose yd to be the solution of

−∆yd = δx0 in Ω,
yd = 0 on ∂Ω

for some x0 ∈ Ω. For this choice of yd there holds:

yd ∈ Lq(Ω) for all q ∈ (1,∞) for d = 2,
and yd ∈ L3−ε(Ω) for all ε ∈ (0, 1) for d = 3.

The result of Theorem 4.12 can be directly extended to to this situation. In this case an
additional logarithmic term |ln h| will appear.
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4. A priori error analysis for an elliptic problem

In the next theorem we prove the main estimate for the error in the state variable.

Theorem 4.13. Let the conditions of Theorem 4.12 be fulfilled. Then there holds

‖ȳ − ȳh‖L2(Ωo) ≤ Ch
2−d/2|ln h|κ/2.

Proof. We use the optimality condition (4.6), choose u = ūh and obtain

(S(ūh)− ȳ, χΩo(ȳ − yd)) + α‖ūh‖M(Ωc) − α‖ū‖M(Ωc) ≥ 0.

For the corresponding discrete optimality condition (4.17) we choose u = ū resulting in

(Sh(ū)− ȳh, χΩo(ȳh − yd)) + α‖ū‖M(Ωc) − α‖ūh‖M(Ωc) ≥ 0.

Adding these two inequalities we arrive at

(S(ūh)− ȳ, χΩo(ȳ − yd)) + (Sh(ū)− ȳh, χΩo(ȳh − yd)) ≥ 0.

Rearranging the terms we obtain

(ȳh − ȳ, χΩo(ȳ − yd)) + (S(ūh)− ȳh, χΩo(ȳ − yd))
+ (ȳ − ȳh, χΩo(ȳh − yd)) + (Sh(ū)− ȳ, χΩo(ȳh − yd)) ≥ 0,

resulting in

‖ȳ − ȳh‖2L2(Ωo) ≤ (S(ūh)− ȳh, χΩo(ȳ − yd)) + (Sh(ū)− ȳ, χΩo(ȳh − yd))
= (S(ūh)− ȳh, χΩo(ȳ− Sh(ū))) + (S(ūh)− ȳh, χΩo(Sh(ū)− yd)) + (Sh(ū)− ȳ, χΩo(ȳh− yd)).

(4.19)

For the first term in (4.19) we obtain with Lemma 4.10.(i) for p = 2 that

(S(ūh)− ȳh, χΩo(ȳ − Sh(ū))) ≤ ‖S(ūh)− ȳh‖L2(Ωo) ‖ȳ − Sh(ū)‖L2(Ωo)

≤ Ch4−d‖ū‖M(Ωc) ‖ūh‖M(Ωc).

The second and the third term in (4.19) are estimated by the same procedure as in the proof
of Theorem 4.12 resulting in

‖ȳ − ȳh‖2L2(Ωo) ≤ Ch
4−d|ln h|κ.

This completes the proof.

4.4. Improved estimates

In the following we derive improved error estimates, which are only valid under additional
assumptions on the positions of Ωc and Ωc with respect to each other.
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4.4. Improved estimates

4.4.1. Global observation

At first, let us consider the case where the control set is contained in the observation domain,
i.e., where

Ωc ⊂ Ωo.

In this situation, we can provide an error estimate as in Theorem 4.13 for the state and the
control on the whole domain. We start with the observation that the optimal solutions of the
continuous problem are unique.

Proposition 4.14. Assume Ωc ⊂ Ωo. Then, problem (4.1) possesses a unique optimal solution.

Proof. The observation χΩo ȳ of the optimal state is unique; see Proposition 4.3. Additionally,
the optimal control ū is uniquely determined by χΩo ȳ since the control to observation operator
χΩo ◦ S is injective: Take u ∈ M(Ωc) and suppose that χΩoy = 0 for y = S(u). This implies
y = 0 with the maximum principle (cf., e.g., Lemma 4.20 below) and thus u = 0. Therefore,
the optimal solution (ū, ȳ) is unique.

As a preparatory result for the error estimate we need the following lemma.

Lemma 4.15. Assume Ωc ⊂ Ωo. Then, it holds

supp ūh , supp ū ⊂ {x ∈ Ωo | dist(x, ∂Ωo) > η }

for some η > 0 depending only on the problem data.

Proof. We use that the adjoint state p̄ is Hölder continuous as in Corollary 4.5. For the discrete
adjoint states we can obtain the uniform bound

‖p̄h‖C0,β(Ω) ≤ C‖p̄h‖W 1,q(Ω) ≤ C‖p(ȳh)‖W 1,q(Ω) ≤ C‖ȳh − yd‖L2(Ωo) ≤ C‖yd‖L2(Ωo)

using the stability of the Ritz projection in W 1,q for q > d, where p(ȳh) solves the continuous
adjoint equation (4.15) with the discrete ȳh instead of ȳ on the right hand side. Together with
the Dirichlet boundary conditions and the conditions on the support of the optimal controls
we therefore get

supp ūh , supp ū ⊂ {x ∈ Ωc | dist(x, ∂Ω) ≥ η1 } = Aη1

for some η1 > 0 depending on the constant in the estimate before. The set Aη1 is compact, since
Ωc is relatively closed. With Aη1 ⊂ Ωo and Ωo open, we find a suitable η ≤ η1 by considering
that dist(·, ∂Ωo) > 0 must assume a minimum on Aη1 .

Now, we will extend the error estimate for the state from Theorem 4.13 to an estimate on
the whole domain and provide a complementary estimate for the optimal controls.

Theorem 4.16. Assume Ωc ⊂ Ωo and that the conditions of Theorem 4.12 are fulfilled. Then
we have the estimate

‖ȳ − ȳh‖L2(Ω) + ‖ū− ūh‖H−2(Ω) ≤ Cη h2−d/2|ln h|κ/2

with κ as in Theorem 4.12 and η from Lemma 4.15.
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4. A priori error analysis for an elliptic problem

Proof. With the elliptic regularity and Lemma 4.10.(i) we obtain

‖ȳ − ȳh‖L2(Ω) ≤ ‖S(ū − ūh)‖L2(Ω) + ‖S(ūh) − ȳh‖L2(Ω) ≤ ‖ū − ūh‖H−2(Ω) + C h2−d/2.

For the estimate of the control we choose a smooth function ωη ∈ C∞0 (Ω) which is zero on Ω\Ωo
and equal to one on {x ∈ Ωo | dist(x, ∂Ωo) > η } ⊆ Ωc. This is possible due to Lemma 4.15.
Then we have for any ψ ∈ H2(Ω) that

〈ū− ūh, ψ〉 = 〈ū− ūh, ωηψ〉 = (∇S(ū− ūh),∇(ωηψ)) = −(ȳ − S(ūh),∆(ωηψ)).

For the expression in the last term we obtain

∆(ωηψ) = ∆ωηψ + 2∇ωη∇ψ + ωη∆ψ,

and since the derivatives of ωη are bounded and depend only on η, we can estimate

‖∆(ωηψ)‖ ≤ Cη‖ψ‖H2(Ω).

Moreover ∆(ωηψ) = 0 on Ω \Ωo and thus we have

〈ū− ūh, ψ〉 ≤ Cη‖ψ‖H2(Ω)‖ȳ − S(ūh)‖L2(Ωo).

Dividing by ‖ψ‖H2(Ω) and taking the supremum, we obtain

‖ū− ūh‖H−2(Ω) ≤ Cη‖ȳ − S(ūh)‖L2(Ωo)

≤ Cη
(
‖ȳ − ȳh‖L2(Ωo) + ‖ȳh − S(ūh)‖L2(Ωo)

)
≤ Cη h2−d/2|ln h|κ/2,

where we applied Theorem 4.12 and Lemma 4.10.(i) for q = 2. This concludes the proof.

4.4.2. Global control and observation

Now, we consider the case of control and observation on the whole domain, i.e., where

Ωc = Ωo = Ω.

As we have seen in section 4.4.1, the optimal solution of the problem is unique. Furthermore,
we can infer higher regularity of the optimal solution from a regularity assumption on the
desired state. Specifically, we show that if the desired state yd is bounded, the same holds for
the optimal state ȳ. For instance, this immediately rules out Dirac measures for the optimal
controls ū. The main result is given next.

Theorem 4.17. Assume Ωo = Ωc = Ω and that the desired state yd is in L∞(Ω). Then the
optimal state ȳ is also in L∞(Ω) and there holds

‖ȳ‖L∞(Ω) ≤ ‖yd‖L∞(Ω).

For the proof of the result, we need some additional preparation. Let us give first a direct
consequence of this theorem, which is an additional regularity for the optimal control ū and
for the optimal state ȳ.
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Corollary 4.18. Assume Ωo = Ωc = Ω and that the desired state yd is in L∞(Ω). Then the
optimal state ȳ lies in H1

0 (Ω) ∩ L∞(Ω) and the optimal control ū lies in H−1(Ω). There holds

‖∇ȳ‖2L2(Ω) ≤ ‖ū‖M(Ω)‖yd‖L∞(Ω) and ‖ū‖H−1(Ω) = ‖∇ȳ‖L2(Ω).

In order to prove Theorem 4.17 and Corollary 4.18 we use some results from potential theory:
First, introduce the Green’s function GΩ : Ω×Ω → R+∪{+∞} as in, e.g., [AG01; Lan72]. Then,
for a positive measure µ ∈M(Ω), µ ≥ 0 we define the numeric function v∗ : Ω → R+ ∪ {+∞}
by

v∗ = SG(µ) :=
∫
Ω
GΩ(·, x) dµ(x), (4.20)

which is subharmonic and thus lower semicontinuous (see again [AG01]). If we normalize the
Green’s function GΩ by the right constant, we obtain the following simple result.

Proposition 4.19. For a compactly supported µ ∈M(Ω), µ ≥ 0 the weak solution v ∈W 1,s
0 (Ω)

with 1 ≤ s < d/(d− 1) to the problem

−∆v = µ in Ω,
v = 0 on ∂Ω,

(4.21)

is equal to v∗ = SG(µ) (Lebesgue-)almost everywhere.

Proof. With [AG01, Theorem 4.3.8] the function v∗ is a distributional solution of (4.21), and
by a density argument, it is also a weak solution.

With the help of the above representation, we obtain a pointwise representative of the optimal
solution y∗ : Ω → R ∪ {−∞,+∞}, defined as

y∗ := SG(ū+)− SG(ū−) = SG(ū).

Due to (4.7) the measures ū+ and ū− are compactly supported, and with (4.8) y∗ is well
defined with values in R ∪ {−∞,∞}. With Proposition 4.19 we easily derive that y∗ = ȳ
almost everywhere.
The next lemma states (roughly speaking), that if the optimal state is bounded on supp ū,

then it is bounded everywhere on Ω by the same constant. For positive measures of bounded
variation this statement can be directly obtained from [Lan72, Theorem 1.6′] in the two-
dimensional case. For d = 3, the analogous result [Lan72, Theorem 1.10] is stated only for
Ω = Rd. Therefore, we provide a direct proof.

Lemma 4.20. Let ū ∈M(Ω) be the optimal solution of (4.1). If y∗ = SG(ū) is bounded from
above by some constant C+ ≥ 0 on supp ū+, then it is bounded everywhere by C+. Analogously,
if y∗ is bounded from below by some C− ≤ 0 on supp ū−, then y∗ is bounded from below
everywhere by C−.

Proof. Without restriction it suffices to show the first part of the result. Suppose that y∗ ≤ C+

on supp ū+. With (4.8) we estimate

SG(ū+) = y∗ + SG(ū−) ≤ C+ + Cη‖ū−‖M(Ω) on supp ū+ ,
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4. A priori error analysis for an elliptic problem

where Cη = C log(diamΩ/η) for d = 2 and Cη = C/η for d = 3 due to the growth properties
of the Green’s function. Thus, SG(ū+) is bounded on supp ū+ as well. With [AG01, Corollary
4.5.2] we can now construct a sequence of compact sets Ki for i ∈ N with∫

supp ū+\Ki
dū+ = ū+(supp ū+ \Ki)→ 0 for i→∞, (4.22)

such that the functions SG(ū+|Ki) are continuous. Now, we consider the solutions

yi = SG(ū+|Ki)− SG(ū−) ≤ y∗.

Recalling that−SG(ū−) is upper semicontinuous, we obtain that each yi is upper semicontinuous
as well. For each x0 on the boundary of Ω \ supp ū+, which is a subset of supp ū+ ∪ ∂Ω, we
have yi(x0) ≤ y∗(x0) ≤ C+ and with upper semicontinuity

lim sup
x→x0

yi(x) ≤ C+. (4.23)

Using the fact that yi is subharmonic on Ω \ supp q+ and the condition (4.23) we apply the
maximum principle for subharmonic functions [AG01, Theorem 3.1.5], and obtain that yi is
bounded by C+ everywhere on Ω for all i ∈ N.
To complete the proof, it remains to show the convergence yi(x) → y∗(x) for all x ∈

Ω \ supp ū+. Let x ∈ Ω \ supp ū+ be fixed. We denote by δ = dist(x, supp ū+) > 0. There
holds

|yi(x)− y∗(x)| = |SG(ū+|Ki)(x)− SG(ū+)(x)| ≤ Cδ
∫

supp ū+\Ki
dū+ → 0

for i→∞, where we have again used growth properties of the Green’s function and (4.22).

With these preparations we can give proofs of the claimed results.

Proof of Theorem 4.17. Assume the contrary, i.e., that we have constants M, ε > 0, such that
|yd| ≤M almost everywhere in Ω, but |ȳ| > M + ε on some set of positive Lebesgue measure,
i.e.,

|{x ∈ Ω | ȳ(x) > M + ε }| > 0.
Due to Lemma 4.20 we can find a point x̂ ∈ suppu+ where y∗ = SG(ū) is larger than M + ε.
Considering a ball Bη(x) of radius η around this point, we have with Corollary 4.5 that
ū−|Bη(x̂) = 0 and therefore that SG(ū|Bη(x̂)) is lower semicontinuous. We decompose

y∗ = SG(ū|Bη(x̂)) + SG(ū|Ω\Bη(x̂))

and obtain that SG(ū|Ω\Bη(x̂)) is harmonic and consequently continuous on Bη(x̂). This implies
the lower semicontinuity of y∗ on Bη(x̂). Thus, the set

{x ∈ Bη(x) | y∗(x) > M + ε }

is open, and we can find a radius r > 0 such that ȳ ≥ M + ε almost everywhere in the ball
Br(x̂).

Note that x̂ ∈ supp ū+ implies p̄(x̂) = −α with Theorem 4.4. We define w to be the solution
to

−∆w = ε in Br(x̂),
w = 0 on ∂Br(x̂),
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4.4. Improved estimates

which is clearly strictly positive at x̂. Considering the minimum principle for p̃ = p̄− w which
fulfills

−∆p̃ = ȳ − yd − ε ≥ 0 in Br(x̂),
p̃ = p̄ on ∂Br(x̂),

we see that the minimum value pmin = infx∈Br(x̂) p̃(x̂) must be attained for some x′ ∈ ∂Br(x̂).
Comparing with the center x̂ we find

p̄(x′) = p̃(x′) = (p̄− w)(x′) ≤ (p̄− w)(x̂) < p̄(x̂) = −α,

which is a violation of the bounds on the adjoint state (4.4) and thus a contradiction.

Proof of Corollary 4.18. The result can be derived by considering a sequence of smooth ap-
proximations to ū, testing the corresponding state equation with the smooth solution and a
subsequential weak limit argument.

However, the statement directly follows from a well-known classical result: Since y∗ is Borel-
measurable (as the difference of two lower semicontinuous functions) we can pair y∗ with ū,
and since, by the previous theorem, y∗ is bounded, we obtain

‖ū‖M(Ω)‖y∗‖L∞(Ω) ≥ 〈ū, y∗〉 =
∫
Ω
y∗(x) dū(x) =

∫
Ω

∫
Ω
GΩ(x, x̃) dū(x) dū(x̃).

With [Lan72, Theorem 1.20], this implies ∇y∗ ∈ L2(Ω) and∫
Ω

∫
Ω
GΩ(x, x̃) dū(x) dū(x̃) = ‖∇y∗‖2L2(Ω),

which implies the first part of the claim. The second assertion is evident.

In the following we use the additional regularity derived above to provide an improved
estimate under the assumption that yd is bounded.

Theorem 4.21. Suppose Ωo = Ωc = Ω. For both d = 2 and d = 3, let (ū, ȳ) be the solution
to (4.1) and (ūh, ȳh) ∈ Mh × Vh be the discrete solution. Let moreover yd ∈ L∞(Ω), which
implies ȳ ∈ H1

0 (Ω) ∩ L∞(Ω) and ū ∈ H−1(Ω) with Theorem 4.17 and Corollary 4.18. Then
there holds

‖ȳ − ȳh‖L2(Ω) ≤ C h|ln h|r/2,

with the constant r as in Lemma 4.10.

Proof. First, we obtain an L2(Ω) estimate for ȳh− ȳ in terms of an L∞(Ω)-error for the adjoint
state. For that, we use the optimality condition (4.3), choosing u = ūh

−〈ūh − ū, p̄〉+ α‖ū‖M(Ω) ≤ α‖ūh‖M(Ω),

and the optimality condition (4.16) choosing u = ū

−〈ū− ūh, p̄h〉+ α‖ūh‖M(Ω) ≤ α‖ū‖M(Ω).

Adding these two inequalities results in

〈ūh − ū, p̄− p̄h〉 ≥ 0.
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4. A priori error analysis for an elliptic problem

We introduce a discrete dual state p̂h ∈ Vh for the continuous optimal solution defined by

(∇ϕh,∇p̂h) = (ȳ − yd, ϕh) for all ϕh ∈ Vh.

and ŷh = yh(ū), the discrete solution for the continuous optimal control. There holds

0 ≤ 〈ūh − ū, p̄− p̄h〉 = 〈ūh − ū, p̄− p̂h〉+ 〈ūh − ū, p̂h − p̄h〉
= 〈ūh − ū, p̄− p̂h〉+ (∇(ȳh − ŷh),∇(p̂h − p̄h))
= 〈ūh − ū, p̄− p̂h〉+ (ȳh − ŷh, ȳ − ȳh)
= 〈ūh − ū, p̄− p̂h〉+ (ȳ − ûh, ȳ − ȳh)− ‖ȳ − ȳh‖2L2(Ω).

Rearranging terms and using Young’s inequality we obtain

‖ȳ − ȳh‖2L2(Ω) ≤ ‖ūh − ū‖M(Ω)‖p̄− p̂h‖L∞(Ω) + 1
2‖ȳ − ŷh‖

2
L2(Ω) + 1

2‖ȳ − ȳh‖
2
L2(Ω),

which results in
‖ȳ − ȳh‖2L2(Ω) ≤ C‖p̄− p̂h‖L∞(Ω) + ‖ȳ − ŷh‖2L2(Ω), (4.24)

since ‖ū‖M(Ω) and ‖ūh‖M(Ω) are bounded. For the first term we obtain with an L∞-estimate
as in the proof of Lemma 4.10.(ii) that

‖p̄− p̂h‖L∞(Ω) ≤ Ch2|ln h|r‖ȳ − yd‖L∞(Ω).

The square root of the second term in (4.24) can be estimated by

‖ȳ − ŷh‖L2(Ω) ≤ Ch‖ū‖H−1(Ω),

which can be obtained from standard estimates with a simple duality argument. Together with
the improved regularity for ȳ and ū this completes the proof.

4.5. Regularized problem

As discussed in chapter 2, for the numerical computation of optimal controls we are going to
consider a regularized version of the optimal control problem. Here, we consider only the case
where the control set can be written as the relative closure of an open set: we assume that

Ωc = intΩc ∩Ω.

This is needed to explain the space L2(Ωc). We remark that we could also discuss the case
where Ωc is a sufficiently smooth lower-dimensional manifold. However, for the regularity and
error analysis we would have to use different techniques in this case (since we are not in the
setting of a spatially distributed control). The regularized problem is given in the continuous
setting by

min
u∈L2(Ω),y∈H1

0 (Ω)

1
2‖y − yd‖

2
L2(Ωo) + α‖u‖L1(Ωc) + γ

2‖u‖
2
L2(Ωc)

subject to (∇y,∇ϕ) = (χΩcu, ϕ) for all ϕ ∈ H1
0 (Ω),

(4.25)

where γ > 0 is the regularization parameter. For analysis of the problem (4.25) for a fixed
nonzero γ we refer also to [Sta09] and [CHW12b; CHW12a] (in combination with a semilinear
elliptic equation). By strong convexity of the reduced objective function corresponding to (4.25)
we obtain the existence of a unique optimal solution.
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Proposition 4.22. The regularized problem (4.25) has a unique optimal solution (ūγ , ȳγ) ∈
L2(Ωc)× (H1

0 (Ω) ∩H2(Ω)).

To derive optimality conditions for (4.25) we recall the proximal map of the L1 norm from
section 3.3.2, which is given for any q ∈ L2(Ωc) by the Nemyckii operator (the soft-shrinkage
operator)

Pγ(q) = shrinkα/γ(q) = (q − α/γ)+ − (q + α/γ)−.

Thereby, the optimality condition for (4.25) can be obtained as follows.

Theorem 4.23. Corresponding to the unique optimal solution (ūγ , ȳγ) of (4.25) there exists
an adjoint state p̄γ solving the adjoint equation (4.2), which fulfills the variational inequality

− (p̄γ + γūγ , χΩc(u− ūγ)) + α‖ūγ‖L1(Ωc) ≤ α‖u‖L1(Ωc) for all u ∈ L2(Ωc). (4.26)

The variational inequality (4.26) can be alternatively expressed by the pointwise proximal formula

ūγ = Pγ

(
−1
γ
χΩc p̄γ

)
= 1
γ

(
(−χΩc p̄γ − α)+ − (−χΩc p̄γ + α)−

)
. (4.27)

Remark 4.3. The variational inequality (4.26) also has an equivalent pointwise representation.
For every x ∈ Ωc it holds that

−(p̄γ(x) + γūγ(x))(ũ− ūγ(x)) + α|ūγ(x)| ≤ α|ũ| for all ũ ∈ R.

Note that ūγ = 1/γ shrinkα(−χΩc p̄γ) is continuous. The pointwise variational inequality is
simply the (sufficient) optimality condition for the pointwise proximal representation (4.27).

4.5.1. Regularization error analysis

In the case Ω = Ωc = Ωo, convergence of ūγ ⇀∗ ū in M(Ωc) has been shown in [CK11a].
In the general case, we apply Theorem 2.28 from section 2.5. Furthermore, we can derive an
asymptotic a priori estimate for the error in the functional based on the techniques introduced
by Hintermüller, Schiela, and Wollner [HSW14]. For this we need the additional assumption
that Ωc fulfills the cone condition. It is fulfilled, e.g., if Ωc has a Lipschitz boundary (see [AF03,
Chapter 4]). Following their notation, for any domain D ⊂ Ω, we extend the definition of
the space of Hölder continuous functions Cβ(D) for exponents 1 < β ≤ 2. We define it as the
space of continuously differentiable functions with β − 1 order Hölder continuous derivatives
(usually denoted by C1,β−1(D)). Additionally we define the corresponding spaces with zero
boundary conditions as Cβ0 (D) = { v ∈ Cβ(D) | v|∂D = 0 }. Now, we restate the following result
from [HSW14].

Proposition 4.24. For any 0 < β ≤ 1 and v ∈ Cβ(Ωc), we have the interpolation estimate

‖v‖L∞(Ωc) ≤ C‖v‖
1−θ
Cβ(Ωc)‖v‖

θ
L1(Ωc) for θ = β

β + d
.

Furthermore, for any domain D ⊂ Ω and a positive function v ∈ Cβ0 (D) with 0 < β ≤ 2, the
estimate

‖v‖L∞(D) ≤ C‖v‖1−θCβ0 (D)
‖v‖θL1(D) for θ = β

β + d

is valid for all 0 < β ≤ 2.

93



4. A priori error analysis for an elliptic problem

Proof. The second part is proved in [HSW14, Proposition 2.4]. The zero boundary conditions
are needed to ensure that the maximum of v is attained in the interior of D. As indicated
in [HSW14, Remark 2.5], without zero boundary conditions the estimate for β ∈ (0, 1] remains
valid on domains fulfilling the cone condition.

Additionally, we need some a priori estimates for the optimal solutions which are independent
of the regularization parameter.

Proposition 4.25. For any s < d/(d− 1), q < d/(d− 2) and β < 4−d, there exists a constant
C > 0, such that for all γ > 0 the following estimates are valid for the optimal triple (ūγ , ūγ , p̄γ)
of (4.25):

‖ūγ‖L1(Ωc) + γ

2‖ūγ‖
2
L2(Ωc) ≤ C, (4.28)

‖ȳγ‖Lq(Ω) + ‖ȳγ‖W 1,s(Ω) ≤ C, (4.29)
‖p̄γ‖Cβ(Ω) + ‖p̄γ‖W 2,q(Ω) ≤ C. (4.30)

Proof. The estimate (4.28) follows by straightforward arguments using the minimality of ūγ ; cf.
Theorem 2.28. For the state, we apply now Proposition 2.8 and the Sobolev embedding with
1/q = 1/s− 1/d. For the adjoint solution, we use the previous result to obtain an estimate for
χΩo(ȳγ − yd) in Lq(Ω) and then apply Theorem 4.6. The estimate for p̄γ in the Hölder norm
is again a consequence of the Sobolev embedding with β = 2− d/q = 3− d/s.

Thereby, we can obtain the following asymptotic estimate for the regularization error (cf.
[HSW14, Corollary 2.6]).

Proposition 4.26. The error in the objective functional due to regularization is bounded by

0 ≤ jγ(ūγ)− j(ū) ≤ C γs,

where s = 1/3 in two dimensions and s = 1/4− ε (for ε > 0 arbitrary) in three dimensions. If
we suppose that Ωc = Ω, we obtain the improved rate s = 1/2− ε (for ε > 0 arbitrary) in two
dimensions.

Proof. We define the positive and negative support sets of the control by

Ω+ = {x ∈ Ωc | p̄γ(x) > α } ,
Ω− = {x ∈ Ωc | p̄γ(x) < −α } .

With Hölder’s inequality, the optimality conditions, and (4.28) we derive

‖ūγ‖2L2(Ωc) ≤ ‖ūγ‖L1(Ωc)‖ūγ‖L∞(Ωc) ≤ C‖1/γ shrinkα(p̄γ)‖L∞(Ωc)

= C

γ
‖shrinkα(p̄γ)‖L∞(Ωc) = C

γ
max { ‖(p̄γ − α)+‖L∞(Ω+), ‖(p̄γ + α)−‖L∞(Ω−) } .

Now, we apply Proposition 4.24 separately in the case Ωc = Ω and the general case. In the
general case, we set β = min { 1, 4− d− ε } for some ε > 0 according to Proposition 4.25
and note that shrinkα(p̄γ) ∈ Cβ(Ωc), since the max-operator preserves Hölder continuity. We
estimate for θ = β/(β + d) with the first part of Proposition 4.24 that

‖shrinkα(p̄γ)‖L∞(Ωc) ≤ ‖p̄γ‖
1−θ
Cβ(Ωc)‖shrinkα(p̄γ)‖θL1(Ωc).
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In the case Ωc = Ω and d = 2 an improvement is possible: due to the zero Dirichlet boundary
conditions of p̄γ we can guarantee that (p̄γ − α)+|∂Ω+ = 0 and (p̄γ − α)−|∂Ω− = 0. Therefore,
we can apply the second part of Proposition 4.24 with β = 4 − d − ε and θ = β/(d + β) to
obtain

‖(p̄γ − α)+‖L∞(Ω+) ≤ ‖p̄γ‖1−θCβ(Ω)‖(p̄γ − α)+‖θL1(Ω+),

and similarly for the negative part. We proceed in a common way for the choices of β and θ as
indicated above and obtain

‖ūγ‖2L2(Ωc) ≤
C

γ
‖p̄γ‖1−θCβ(Ω)‖shrinkα(p̄γ)‖θL1(Ωc) = Cγθ−1‖p̄γ‖1−θCβ(Ω)‖ūγ‖

θ
L1(Ωc) ≤ Cγ

θ−1,

using again the optimality conditions and the estimates (4.28) and (4.30). Finally, we apply
Corollary 2.29 to compute

0 ≤ jγ(ūγ)− j(ū) =
∫ γ

0

1
2‖ūσ‖

2
L2(Ωc) dσ ≤ Cγθ = Cγβ/(β+d).

This results in s = θ = β/(β + d) for the choices of β indicated above.

4.5.2. Optimization aspects

We can solve the regularized optimization problem with the methods from chapter 3. In the
notation used there, we define the smooth and the convex part of the reduced cost functional
as

f(u) = J(S(u)) and ψ(u) = α‖u‖L1(Ωc) for u ∈ L2(Ωc),
respectively. As usual the reduced cost functional is defined as

jγ(u) = f(u) + ψ(u) + γ

2‖u‖L2(Ωc) for u ∈ L2(Ωc),

Here, S : L2(Ωc)→ H1
0 (Ω)∩H2(Ω) is the solution operator of the state equation. The gradient

and Hessian of f are easily derived as

∇f(u) = S∗(χΩo(S(u)− yd)) and ∇2f = S∗χΩoS,

where S∗ = χΩcSdual and Sdual is the solution operator of the dual equation (∇·,∇p) = (f, ·)
which can be considered as an operator

Sdual : L2(Ω)→ H1
0 (Ω) ∩H2(Ω), f 7→ p.

The proximal map of ψ in L2(Ωc) evaluates to

Pγ(q) = shrinkα/γ(q)

for any given q ∈ L2(Ωc); see section 3.3.2. Since the adjoint solution operator Sdual maps
L2(Ωo) continuously into Cβ(Ω) for some β > 0, we have a more than sufficient norm-gap to
apply the general theory (see also [Sta09]).

Proposition 4.27. Let q̄γ = −1/γ χΩc p̄γ ∈ L2(Ωc) be the optimal auxiliary variable with
ūγ = Pγ(q̄γ). Suppose that for a given q0 ∈ Lr(Ωc) with r > 2, the distance ‖q0 − q̄γ‖Lr(Ωc)
is sufficiently small. Then the semismooth Newton iterates, defined inductively as qk+1 =
qk − DG(qk)−1G(qk) for k ∈ N converge superlinearly in Lr(Ωc) towards q̄γ (cf. section 3.2).
The same holds for uk = Pγ(qk) with limit ūγ.
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Proof. Since f is convex and γ > 0, invertibility of the Newton operator is guaranteed; see
Lemma 3.14. As discussed in section 3.3.2, Pγ : Lr(Ωc) → L2(Ωc) is semismooth w.r.t. the
generalized differential given there. Therefore, the iterates are well-defined. Now, we combine
Theorem 3.7 and Proposition 3.11 with the choice H = L2(Ωc) and Hsub = Lr(Ωc).

In practice, if we solve (4.25) for a large initial parameter γ, we observe global convergence
of the semismooth Newton method. In fact, global convergence for a control constrained
problem was shown by Ito and Kunisch [IK04, Theorem 3.1] (the result is valid for a sufficiently
large regularization parameter γ). Moreover, we observe the same behavior if we reduce the
regularization parameter by a fixed constant and use the optimal solution for the previous
parameter as an initial guess. With this algorithm, a globalization strategy of the semismooth
Newton method is usually not needed.

4.5.3. Discretization of the regularized problem

The regularized problem (4.25) is very similar to a standard problem with control constraints.
In fact, it is well known that (4.25) can be rewritten as a control constrained problem (with
two controls) by splitting it into the positive and negative part u = u+ − u−. The L1 norm
then turns into a linear term in u+ and u−, respectively. For control constrained problems,
we can find many finite element discretization concepts with a rigorous error analysis in the
literature. For the sake of comparison, we briefly present the three most popular of those (in
combination with linear or bilinear finite elements for the state). We will briefly explain the
piece-wise constant, piece-wise linear, and variational discretization concept and summarize the
known error estimates in each case; cf. also the overview given in Tröltzsch [Trö10a]. For all
standard discretization concepts, the state equation is discretized in the standard conforming
way as

(∇yh,∇ϕh) = (χΩcuh, ϕh) for all ϕh ∈ Vh, (4.31)

where uh is searched for in different spaces Uh ⊂ L2(Ωc).

Both the piece-wise linear and piece-wise constant discretization do not yield the unregu-
larized discrete problem (4.11) in the limiting case for γ → 0. The variational concept has
nice theoretical features, but is more difficult to realize in practice. Therefore, we propose a
new variant based on mass lumping, which has a nice connection with the discretization of
the unregularized problem (4.11) and combines an easy implementation with a rigorous error
analysis. Under an established structural assumption on the optimal control of the regularized
problem, we derive an estimate for the discretization error with the optimal order O(h2). The
result (which is analogous to known post-processing results for control constrained problems for
piecewise constant control discretization due to Meyer and Rösch [MR04]) is based on a linear
discretization of the control and seems to be new also in the context of control constrained
optimization.

In the following, we will use the same notations for the discretization Th as in section 4.2
and make the same assumptions. Specifically, we make the same compatibility assumption on
the control set and the mesh as before.
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Piecewise constant controls

Here, the control is discretized with piecewise constant, discontinuous finite elements. It is
searched for in the space

U0
h =

{
uh ∈ L2(Ωc)

∣∣∣ uh|K ∈ P0(K) for all K ∈ T ch
}
.

The control cost term is discretized in the standard conforming way and can be implemented
in a straightforward manner. We obtain an optimality condition giving the optimal control as
ūh,γ = 1/γ shrinkα(−χΩcP 0

h (p̄h,γ)) (cell-wise), where P 0
h : Vh → U0

h is the L2 projection. This
control discretization is considered in [CHW12b; WW11], where an a priori estimate in L2 for
the optimal controls of the order O(h) is derived. This is in agreement with the approximation
properties of piece-wise constants and the usual estimates for control constrained problems;
see, e.g., [ACT02; CT03] and the references therein.
However, higher order reconstructions can be obtained from this discretization with the

post-processing approach. The idea behind the reconstruction is to evaluate the continuous
optimality condition with the discrete optimal adjoint state, i.e., we set

ūσ,γ = P̂γ

(
−1
γ
χΩc p̄h,γ

)
pointwise in Ωc.

Under an additional assumption on the structure of the active sets, which is often fulfilled, one
can show a convergence order of O(h2) for the post-processed controls in L2; see, e.g., [MR04;
RV06] for the control constrained case. This discretization offers a good trade-off between ease
of implementation and accuracy. In the context of the regularization of problem (4.14) it is
inconvenient that there is no direct connection between the solutions of the discrete and the
discrete regularized problem, since the controls are discretized with a nodal basis in the former
and with a cell-wise basis in the latter case.

Piecewise linear controls

Here, the control is discretized with piecewise linear, continuous finite elements. It is searched
for in the space

U1
h =

{
uh = χΩcvh

∣∣∣ vh ∈ Vh }
In this case, the practical implementation is not completely straightforward. For an arbitrary
uh ∈ U1

h , the control cost term

‖uh‖L1(Ωc) =
∫
Ωc
|uh(x)|dx

can not be accurately evaluated with a standard quadrature formula, or even by a matrix
vector product on the level of the nodal vector. Note that the integrand |uh(·)| is not twice
differentiable on a cell K ∈ Th if uh changes sign there and that the L1 norm is not a linear
functional. However, this difficulty can be overcome by splitting the control into a positive and
negative part on the level of coefficient vectors. For uh = χΩc

∑
n unen we can set

uplus
h = χΩc

Nc∑
n=1

(un)+en and uminus
h = χΩc

Nc∑
n=1

(un)−en.
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We have uh = uplus
h − uminus

h with uplus
h , uminus

h ≥ 0 (pointwise in Ωc) and the L1(Ωc) norm can
be implemented as the sum of the two linear functionals

‖uh‖L1(Ωc),h =
∫
Ωc
uplus
h (x) dx+

∫
Ωc
uminus
h (x) dx =

Nc∑
n=1
|un|

∫
Ωc
en(x) dx.

Note that ‖uh‖L1(Ωc),h ≥ ‖uh‖L1(Ωc) for all uh ∈ U1
h . Consequently, we arrive at the discrete

problem (cf. also [WW11, Section 4.4])

min
uh∈U1

h

J(Shuh) + α‖uh‖L1(Ωc),h + γ

2‖uh‖
2
L2(Ωc).

Here, the optimality condition can not be given by a pointwise formula in terms of the adjoint
state. This is due to the fact that the discrete version of the proximal map

P hγ (qh) = argmin
uh∈Vh

γ

2‖uh − qh‖
2
L2(Ωc) + α‖uh‖L1(Ωc),h

does not possess a pointwise solution formula. However, we can obtain the following coordinate-
wise optimality condition, linking the optimal adjoint state p̄h,γ = ∑

n pnen, and the optimal
control ūh,γ = ∑

n unen. We obtain the variational inequality for the discrete problem as

(p̄h,γ + γūh,γ , χΩc(uh − ūh,γ)) + α‖ūh,γ‖L1(Ωc),h ≤ α‖uh‖L1(Ωc),h for all uh ∈ U1
h .

By choosing uh − ūh,γ = ±en for n ∈ { 1, . . . , Nc } we can obtain a corresponding discrete
optimality system.
Remark 4.4. In practice, we observe that the optimal solutions are sparse; for n ∈ { 1, . . . , Nc }
the inequality |(p̄h,γ , χΩcen)| ≤ α

∫
Ωc
en implies ūh,γ(xn) = 0. Furthermore, it seems that the

optimal solutions do not change sign on any given cell for h small enough, which justifies this
implementation of the control cost term. A rigorous explanation of this effect is complicated
by the non-local nature of P hγ : U1

h → U1
h as defined above.

However, even though the implementation of the problem with linear controls is slightly
more involved, the error analysis only yields a rate of O(h) for the controls in L2(Ωc); see, e.g.,
[Cas07; WW11; CHW12a]. A more refined analysis under a similar structural assumption on
the optimal solutions as in the post-processing approach yields an improved rate of O(h3/2); see,
e.g., [Rös06] for a control constrained problem where only the control is discretized or [BV07]
for a convection-diffusion problem using stabilized finite elements. To the best of the authors
knowledge, there are no post-processing results for this discretization to guarantee O(h2)
convergence.

Variational control discretization

In the variational approach due to Hinze [Hin05], the control is initially not discretized at
all, i.e., we search uh ∈ L2(Ωc). The practical realization of this approach is based on the
optimality condition for the resulting semidiscrete problem, which is given by

ūh,γ = Pγ

(
−1
γ
χΩc p̄h,γ

)
pointwise in Ωc,

where p̄h,γ is the corresponding discrete optimal adjoint state. Note that ūh,γ is not an element
of U1

h , in general. However, it can be treated in practice by storing the discrete auxiliary variable
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qh = −1/γχΩcph, or by other techniques; see [HV12]. In the numerical implementation, integrals
of the form (Pγ(qh), ϕh) for ϕh ∈ U1

h have to be evaluated, which can be done by specialized
quadrature formulas or by adaptive quadrature. However, this entails a high implementation
effort.
The advantage of this method lies on the theoretical side: Since (in theory) the control is

not discretized at all, there is no corresponding discretization error. Therefore, for a problem
with control constraints, an L2 error estimate for the controls of order O(h2) can be derived
directly; see [Hin05]. This can be carried over to the problem at hand with minor modifications;
see [WW11, Corollary 4.5]. However, since we will not use this discretization concept (due to
the high implementation effort), we will not go into further detail.

Piecewise linear controls with mass lumping

Since the controls are discretized as nodal Dirac measures in the unregularized problem, we are
interested in a control discretization that yield an equivalent problem to (4.14) in the limiting
case for γ → 0. From the three approaches presented before, this is only the case for the
variational discretization.
Remark 4.5. More precisely, we observe that the optimality conditions for the discretized
problems for γ = 0 yields an optimality condition which implies the inequality

|(p̄h,0, χΩcϕh)| ≤ α
∫
Ωc
ϕh dx for all ϕh ∈ Uh,

where p̄h,0 is the optimal adjoint state and Uh is the respective discrete control space. Note
that only for Uh = L2(Ωc) this condition implies the inequality |p̄h,0| ≤ α pointwise in Ωc
(as in the original discrete problem (4.14)). In the piece-wise constant case we only obtain
|P 0
h p̄h,0| ≤ α and in the piece-wise linear case we obtain a variational inequality involving the

Galerkin mass-matrix (which does not allow for a pointwise resolution, in general).

In the following, we consider an approach based on mass lumping, which yields an equivalent
problem to (4.14) for γ = 0. We propose the following discretization, which is also derived
directly from the regularized problem (4.14). It is given by

min
uh∈U1

h
, yh∈Vh

1
2‖yh − yd‖

2
L2(Ωo) + α‖uh‖L1(Ωc),h + γ

2‖uh‖
2
L2(Ωc),h

subject to (∇yh,∇ϕh) = (χΩcuh, ϕh)h for all ϕh ∈ Vh.
(4.32)

Here, the terms with the subscript h are computed by using the trapezoidal rule for the
evaluation of the integrals from each cell (cf., e.g., [AKV92; Ran08]). For a given function
f ∈ C0(Ωc) we define [∫

Ωc
f(x) dx

]
h

=
∑
K∈T c

h

QTrap,K(f),

where QTrap,K is the trapezoidal rule on the cell K. It is easy to see that with the nodal
interpolation ih we have[∫

Ωc
f(x) dx

]
h

=
[∫
Ωc

(ihf)(x) dx
]
h

=
∫
Ωc

(ihf)(x) dx.

The first equality holds since the trapezoidal rule only evaluates the function in the grid points
xn, where we have (ihf)(xn) = f(xn), and the second holds since the trapezoidal rule is exact
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for cell-wise linear functions. With this, we can directly derive that for uh ∈ U1
h and ϕh ∈ Vh

we have

‖uh‖L1(Ωc),h =
[∫
Ωc
|uh(x)|dx

]
h

=
Nc∑
n=1

dn |uh(xn)|,

‖uh‖2L2(Ωc),h =
[∫
Ωc
uh(x)2 dx

]
h

=
Nc∑
n=1

dn uh(xn)2,

and (χΩcuh, ϕh)h =
[∫
Ωc
uh(x)ϕ(x) dx

]
h

=
Nc∑
n=1

dn uh(xn)ϕh(xn),

(4.33)

where (dn)n for n = 1, . . . , Nc is the diagonal of the lumped mass matrix. It is given by

dn =
∫
Ωc
en(x) dx for n ∈ { 1, . . . , Nc } .

As a consequence of the discrete form of the lumped terms we easily see that the discrete
problem for γ = 0 corresponds to (4.14).

Proposition 4.28. Let ūh = ∑
n unδxn ∈ Mh be an optimal solution of (4.14). Then the

finite element function given by

ūh,0 = χΩc

Nc∑
n=1

un
dn

en ∈ U1
h

solves the regularized problem (4.32) for γ = 0.

Proof. This is a direct consequence of the coordinate-wise expression for the lumped terms and
the algebraic identities

‖ūh,0‖L1(Ωc),h =
Nc∑
n=1
|un| = ‖ūh‖M(Ωc)

and

(χΩc ūh,0, ϕh)h =
Nc∑
n=1

unϕ(xn) = 〈χΩc ūh, ϕh〉,

which holds for any ϕh ∈ Vh.

It is well known that the lumped L2 norm is equivalent to the L2 norm on the discrete space,
i.e., we have the inequalities

cd ‖uh‖2L2(Ωc),h ≤ ‖uh‖
2
L2(Ωc) ≤ ‖uh‖

2
L2(Ωc),h for all uh ∈ U1

h .

for a constant cd depending only on the dimension d. In fact, we have c2 = 1/4 and c3 = 1/5;
cf. [CHW12a, Remark 3.1]. Therefore, it is justified to endow the space U1

h with the lumped
inner product. To see that (4.32) has a unique solution, it suffices to see that the corresponding
reduced cost functional is strongly convex.

Proposition 4.29. The discrete regularized problem (4.32) has a unique optimal solution
(ūh,γ , ȳh,γ) ∈ U1

h × Vh.

By standard arguments, we obtain the following optimality conditions.
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Proposition 4.30. Let (ūh,γ , ȳh,γ) be the optimal solution of (4.32). There exists a corre-
sponding adjoint state p̄h,γ solving the adjoint equation

(∇ϕh,∇p̄h,γ) = (χΩo(ȳh,γ − yd), ϕh) for all ϕh ∈ Vh. (4.34)

It fulfills the following variational inequality

− (p̄h,γ + γūh,γ , χΩc(uh − ūh,γ))h + α‖ūh,γ‖L1(Ωc),h ≤ α‖uh‖L1(Ωc),h for all uh ∈ U1
h , (4.35)

which can be equivalently expressed with the coordinate-wise formula

ūh,γ(xn) = P̂γ

(
−1
γ
p̄h,γ(xn)

)
= −1

γ
shrinkα (p̄h,γ(xn)) for n = 1, . . . , Nc. (4.36)

Proof. The derivation of the adjoint equation and the variational inequality is standard. Let
us justify the coordinate-wise formula: By (4.33) the variational inequality is equivalent to

Nc∑
n=1

dn
[
− (p̄h,γ(xn) + γūh,γ(xn))(uh(xn)− ūh,γ(xn)) + α|uh,γ(xn)|

]
≤

Nc∑
n=1

dn α|uh(xn)|

for all uh ∈ U1
h . Let now i ∈ { 1, . . . , Nc } be fixed. Choosing uh with uh(xi) = ũ ∈ R and

uh(xn) = ūh,γ(xn) for n 6= i, we derive

−(p̄h,γ(xi) + γūh,γ(xi))(ũ− ūh,γ(xi)) + α|uh,γ(xi)| ≤ α|ũ| for all ũ ∈ R.

This is the (sufficient) optimality condition for the problem

ūh,γ(xi) = argmin
u∈R

[
γ

2u
2 + p̄h,γ(xi)u+ α|u|

]
,

which has the solution as given in (4.36).

Remark 4.6. A similar mass lumping for discretization of L1 control costs is also employed
by Casas, Herzog, and Wachsmuth [CHW12a]. However, they consider the standard state
equation (4.31) (without lumping) while the control cost term is evaluated as in (4.32) (with
lumping). As a consequence they also obtain a coordinate-wise formula as in (4.36), where,
however, the adjoint state is replaced with its Carstensen quasi interpolant (see [Car99]). They
prove an L2 error estimate for the controls of order O(h), which is confirmed by the numerical
experiments. This is the same rate as for the P0 discretization and worse than the typical
O(h3/2) rate for P1 and the O(h2) rate for the variational or post-processing approach. In the
following section, we provide an analysis for problem (4.32), where we obtain O(h2) under an
established structural assumption.

4.5.4. Finite element error analysis

In the following, for convenience of notation, we will abbreviate the optimal triples of (4.25)
and (4.32) as

(ū, ȳ, p̄) = (ūγ , ȳγ , p̄γ) and (ūh, ȳh, p̄h) = (ūh,γ , ȳh,γ , p̄h,γ),

i.e., we drop the subscript γ. To obtain an error estimate for (4.32), we have to work with
the discrete (lumped) L2 norm as defined above. We first obtain an estimate for the discrete
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error ‖ūh − ihū‖L2(Ωc),h. Note that this discrete error can be significantly smaller than the
error ‖ūh − ū‖L2(Ωc), which is typically restricted to O(h3/2) by the low regularity of the
optimal control. This technique is also known in the context of discretization of optimal control
problems with ordinary differential equations; see, e.g., [DHV01].
In the following we denote by Sh : U1

h → Vh the solution operator Sh(uh) = yh, where yh is
the solution of the discrete state equation

(∇yh,∇ϕh) = (χΩcuh, ϕh)h for all ϕh ∈ Vh.

Note that we could also extend the definition of Sh for arbitrary continuous controls u ∈
C0(Ωc). However, this is equivalent to setting yh = Sh(ihu) in these cases. We also denote
by Sdual,h : L2(Ω) → Vh the dual solution operator Sdual,h(f) = ph corresponding to the dual
equation

(∇ϕh,∇ph) = (f, ϕh) for all ϕh ∈ Vh.

We define the reduced discrete cost functional jh, the corresponding differentiable part fh, and
the convex part ψh for uh ∈ U1

h as

jh,γ(uh) = fh,γ(uu) + ψh(uh) = J(Sh(uh)) + γ

2‖uh‖
2
L2(Ωc),h + ‖uh‖L1(Ωc),h.

By a straightforward computation, we obtain the expressions for the first and second derivatives
of fh,γ as

f ′h,γ(uh)(δuh) = (χΩo(Sh(uh)− yd), Sh(δuh)) + γ(uh, δuh)h
and f ′′h,γ(uh)(δuh, τuh) = (χΩoSh(τuh), Sh(δuh)) + γ(τuh, δuh)h

for any δuh, τuh ∈ U1
h . Using the adjoint solution operator, we can also introduce corresponding

expressions for the gradient. In the discrete setting it is natural to perform the identification
of the gradient with the lumped mass matrix (to avoid a spurious inverse mass matrix). Since
we have equipped U1

h with the lumped norm we require

(∇fh,γ(uh), ϕh)h = f ′h,γ(uh)(ϕh) for all ϕh ∈ U1
h .

This directly leads to the formula

∇fh,γ(uh) = χΩcSdual,h(χΩo(Sh(uh)− yd)) + γuh

for the reduced gradient. A similar representation holds for the reduced Hessian.

Estimates for the state

To analyze the error of the state equation for a fixed control, it is necessary to consider the
quadrature error. We have the following standard result.

Lemma 4.31. Let uh and ϕh be elements of U1
h . For the mass lumping of the inner product

we have the a priori estimate

|(uh, ϕh)− (uh, ϕh)h| ≤ Ch2‖∇uh‖L2(Ωc)‖∇ϕh‖L2(Ωc).
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This standard result can be found, e.g., in [AKV92; Ran08] (for the case d = 2). The proof
is based on the usual transformation and localization argument and given in Appendix A.3
(also for the case d = 3).

Thereby, we can provide an estimate for the state with a fixed control. Since we evaluate
the right-hand side with mass lumping, we are canonically restricted to continuous controls.
Theorem 4.32. Let u ∈ C0(Ωc) and denote by y = S(u) and yh = Sh(ihu) the state and
discrete state solution, respectively. We have the a priori estimate

‖y − yh‖L2(Ω) ≤ Ch2
(
‖u‖L2(Ωc) + ‖∇ihu‖L2(Ωc)

)
+ ‖ihu− u‖L1(Ωc).

Proof. We introduce the Ritz projection ŷh ∈ Vh of y as the solution of the conforming state
equation (4.31) for uh = u and split the error as

‖y − yh‖L2(Ω) ≤ ‖y − ŷh‖L2(Ω) + ‖ŷh − yh‖L2(Ω).

For the first term we apply the standard finite element error estimate

‖y − ŷh‖L2(Ω) ≤ Ch2‖u‖L2(Ωc),

using the classical Aubin-Nitsche duality argument. For the second term we use a (discrete)
duality argument. We define the dual variable w ∈ H1

0 (Ω) and its Ritz projection wh ∈ Vh as
the solutions of

(∇ϕ,∇w) = (ŷh − yh, ϕ) for all ϕ ∈ H1
0 (Ω), (4.37)

(∇ϕh,∇wh) = (ŷh − yh, ϕh) for all ϕh ∈ Vh. (4.38)

With this, we can write

‖ŷh − yh‖2L2(Ω) = (ŷh − yh, ŷh − yh) = (∇(ŷh − yh),∇wh) = (u,wh)− (ihu,wh)h
= (u− ihu,wh) + (ihu,wh)− (ihu,wh)h
≤ ‖u− ihu‖L1(Ωc)‖wh‖L∞(Ω) + Ch2‖∇ihu‖L2(Ωc)‖∇wh‖L2(Ω),

using the fact that ŷh and yh solve the respective state equations, Hölder’s inequality and
Lemma 4.31. Inserting wh as an admissible test function into (4.38) and using the Cauchy-
Schwarz inequality, we immediately obtain the stability estimate

‖∇wh‖L2(Ω) ≤ C‖ŷh − yh‖L2(Ω).

Furthermore we use the stability of the nodal interpolation and an inverse estimate to derive

‖wh‖L∞(Ω) ≤ ‖ihw‖L∞(Ω) + ‖ihw − wh‖L∞(Ω) ≤ ‖w‖L∞(Ω) + Ch−d/2‖ihw − wh‖L2(Ω).

For the first term we apply the Sobolev embedding and elliptic regularity theory to obtain

‖w‖L∞(Ω) ≤ C‖w‖H2(Ω) ≤ C‖ŷh − yh‖L2(Ω).

For the second term we use standard a priori estimates for the nodal interpolation and the Ritz
projection to obtain

h−d/2‖ihw − wh‖L2(Ω) ≤ h−d/2
(
‖ihw − w‖L2(Ω) + ‖w − wh‖L2(Ω)

)
≤ Ch2−d/2‖ŷh − yh‖L2(Ω).

Combining the estimates, it follows that

‖ŷh − yh‖2L2(Ω) ≤ C
(
‖u− ihu‖L1(Ωc) + h2‖∇ihu‖L2(Ωc)

)
‖ŷh − yh‖L2(Ω).

Dividing by ‖ŷh − yh‖L2(Ω) and combining with the first estimate, we conclude the proof.
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Estimates for the optimal solutions

In this section we will derive a priori estimates for the discretization of the regularized problem.
Note that we will take care to make explicit the dependency of the estimates on the regulariza-
tion parameter γ. All the generic constants which appear in the following are independent of
both h and γ. As a first step we obtain the following stability estimate.

Lemma 4.33. Let (ū, ȳ, p̄) and (ūh, ȳh, p̄h) be the optimal triples of (4.5) and (4.32), respec-
tively. It holds

γ‖ihū− ūh‖L2(Ωc),h ≤ ‖ihp̄− ph(ihū)‖L2(Ωc),h,

where ph(ihū) = Sdual,h(χΩo(Sh(ihū)− yd)) is the discrete adjoint state corresponding to ihū.

Proof. For arbitrary uh ∈ U1
h we have

γ‖ihū− ūh‖2L2(Ωc),h ≤ f
′′
h (uh)(ihū− ūh, ihū− ūh) = f ′h(ihū)(ihū− ūh)− f ′h(ūh)(ihū− ūh)

= (χΩc(ph(ihū) + γihū), ihū− ūh)h − (χΩc(p̄h + γūh), ihū− ūh)h (4.39)

For the second term we use the discrete optimality condition for ūh from Proposition 4.30. The
variational inequality (4.35) implies that

−(χΩc(p̄h + γūh), ihū− ūh)h ≤ ψh(ihū)− ψh(ūh).

Consequently, we use the continuous optimality condition for ū from Theorem 4.23. By a
coordinate-wise interpretation, we obtain

ψh(ihū)− ψh(ūh) =
Nc∑
n=1

dn (α|ū(xn)| − α|ūh(xn)|)

≤ −
Nc∑
n=1

dn (p̄(xn) + γū(xn)) (ū(xn)− ūh(xn)) = −(χΩc(ihp̄+ γihū), ihū− ūh)h,

where the second inequality follows from the pointwise interpretation of the variational inequal-
ity (4.26); see Remark 4.3. We arrive at

γ‖ihū− ūh‖2L2(Ωc),h = (χΩc(ph(ihū)− ihp̄), ihū− ūh)h.

An application of the Cauchy-Schwarz inequality and dividing by ‖ihū− ūh‖L2(Ωc),h yields the
desired result.

Now, we come to the main error estimate for the regularized problem.

Theorem 4.34. Let (ū, ȳ, p̄) and (ūh, ȳh, p̄h) be the optimal triples of (4.5) and (4.32), respec-
tively. We have the a priori estimate

‖ihū− ūh‖L2(Ωc) ≤ Cγ
−1
(
h2
(
1 + γ−1

)
‖ȳ − yd‖L2(Ωo) + ‖ū− ihū‖L1(Ωc)

)
. (4.40)

Proof. By the equivalence of the lumped norm and Lemma 4.33 we have that

‖ihū− ūh‖L2(Ωc) ≤ ‖ihū− ūh‖L2(Ωc),h ≤ Cγ
−1‖ihp̄− ph(ihū)‖L2(Ωc)
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4.5. Regularized problem

We introduce the Ritz projection p̂h = Sdual,h(χΩo(ȳ − yd)) of the optimal adjoint state p̄ and
split

‖ihp̄− ph(ihū)‖L2(Ωc) ≤ ‖ihp̄− p̄‖L2(Ωc) + ‖p̄− p̂h‖L2(Ωc) + ‖p̂h − ph(ihū)‖L2(Ωc).

The first and second term can be estimated by

‖ihp̄− p̄‖L2(Ω) + ‖p̄− p̂h‖L2(Ω) ≤ Ch2‖p̄‖H2(Ω) ≤ Ch2‖ȳ − yd‖L2(Ωo)

by a standard interpolation estimate for the nodal interpolant, the properties of the Ritz-
projection (the standard Aubin-Nitsche duality argument) and elliptic regularity. Furthermore,
we have

‖p̂h − ph(ihū)‖L2(Ωc) ≤ ‖Sdual,h(χΩo(ȳ − S(ihū)))‖L2(Ω) ≤ C‖ȳ − Sh(ihū)‖L2(Ωo)

with a standard stability estimate for the adjoint solution operator on L2(Ω). Now, we apply
Theorem 4.32 to obtain

‖ȳ − Sh(ihū)‖L2(Ωo) ≤ C
(
h2
(
‖ū‖L2(Ωc) + ‖∇ihū‖L2(Ωc)

)
+ ‖ihū− ū‖L1(Ωc)

)
.

The gradient of ihū can be estimated further by using the pointwise optimality condition
ū(x) = P̂γ(−1/γ p̄(x)) for x ∈ Ωc. We have p̄ ∈ H2(Ω) ∩ H1

0 (Ω), which is continuously
embedded into W 1,q

0 (Ω) for all q ≤ 6. Since P̂γ : R→ R is Lipschitz continuous with constant
one, we also have ū ∈W 1,q(Ωc); see, e.g., [Zie89, Theorem 2.1.11]. Therefore, we obtain

‖∇ihū‖L2(Ωc) ≤ C‖∇ihū‖Lq(Ωc) ≤ C‖∇ū‖Lq(Ωc) ≤ Cγ
−1‖p̄‖

W 1,q
0 (Ω)

with the stability of the nodal interpolation in W 1,q(Ω) for q > d. With elliptic regularity we
have

‖p̄‖
W 1,q

0 (Ω) ≤ C‖p̄‖H2(Ω) ≤ C‖ȳ − yd‖L2(Ωo)

and conclude the proof.

In Theorem 4.34 there still appears the interpolation error ū − ihū, which depends on the
unknown solution. A generic estimate using ū ∈ W 1,q(Ωc) for q > d as in the proof of
Theorem 4.34 yields only an estimate of the order O(h). To obtain an optimal O(h2) bound
for this interpolation error we require an additional assumption. We will see that, to obtain
optimal estimates, it is important that this error has to be controlled only in the L1 norm. For
the same error in Lp with 1 ≤ p ≤ ∞ we can only expect an estimate of the order O(h1+1/p).
In the following, we adapt an established structural assumption on the optimal solution from
the literature; cf., e.g., [MR04; Rös06; BV07]. It states, roughly speaking, that the interface
between active and inactive sets of the optimal control has to be sufficiently regular. For
instance, it is fulfilled if the “kink” set {x ∈ Ωc | p̄(x) = ±α } is a smooth d − 1 dimensional
submanifold of the control set.

Assumption 4.2. Let (ū, ȳ, p̄) = (ūγ , ȳγ , p̄γ) be the optimal triple of (4.25). Define the set

Ωkink =
⋃
{K ∈ T ch | {x ∈ K | p̄γ(x) = ±α } 6= ∅ } ,

composed of the cells where the optimal control ū has a kink. Suppose that there exists a
constant Ckink independent of h, such that the size of this set is bounded by

|Ωkink| ≤ Ckinkh.
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4. A priori error analysis for an elliptic problem

Note that the constant in Assumption 4.2 can not be expected to be independent of γ in
the general case. Furthermore, Assumption 4.1 on the desired state needs to be strengthened.
We need yd ∈ Lp(Ω) for some p > d, to obtain Lipschitz continuity of the adjoint state. These
assumptions imply an estimate for the interpolation error.

Proposition 4.35. Suppose that yd ∈ Lp(Ω) for p > d and that Assumption 4.2 holds. Then
we have

‖ū− ihū‖L1(Ωc) ≤ Cγ
−1h2

(
Ckink‖p̄‖W 1,∞(Ωkink) + ‖p̄‖H2(Ω)

)
.

Proof. It remains to estimate ‖ū− ihū‖L1(Ωc) = ‖ū− ihū‖L1(Ωkink) + ‖ū− ihū‖L1(Ωc\Ωkink). On
Ωkink we use the estimate

‖ū− ihū‖L1(Ωkink) ≤ |Ωkink|‖ū− ihū‖L∞(Ωkink) ≤ Ckinkh Ch‖ū‖W 1,∞(Ωkink).

Using the equality ū = Pγ(−1/γ χΩc p̄) = −1/γ shrinkα(χΩc p̄), we obtain the first part of the
estimate. Note that the adjoint state is Lipschitz continuous due to W 2,q(Ω) ↪→ W 1,∞(Ω),
elliptic regularity, and the fact that χΩo(ȳ − yd) ∈ Lq(Ω) for q > d. On the other cells we
estimate

‖ū− ihū‖L1(Ωc\Ωkink) ≤ C‖ū− ihū‖L2(Ωc\Ωkink)

= C
∑

K∈T c
h
, |p̄|K |≥α

γ−1‖p̄− ihp̄‖L2(K) ≤ Cγ−1h2‖∇2p̄‖L2(Ω),

where we have used that either ū|K = 0 or ū|K = −1/γ (p̄|K ± α) for each cell not contained
in Ωkink.

Before we summarize the given a priori estimates, we note that the solution dependent terms
‖p̄γ‖H2(Ω) and ‖ȳγ − yd‖L2(Ωo) can be bounded independently of γ. By elliptic regularity and
minimality of ū we have

‖p̄γ‖2H2(Ω) ≤ C‖ȳγ − yd‖
2
L2(Ωo) ≤ C jγ(ūγ) ≤ C jγ(0) = C‖yd‖2L2(Ωo),

which is obviously independent of γ. However, the term ‖p̄γ‖W 1,∞(Ω) can only be estimated
with a γ dependent constant, since a bound for ȳγ−yd in Lq(Ωo) for q > d is needed. We remark
that for d = 2 such a bound could be obtained as in Proposition 4.24 (using Assumption 4.1)
since ‖ūγ‖L1(Ωc) is bounded independently of γ.

Theorem 4.36. Let (ū, ȳ, p̄) = (ūγ , ȳγ , p̄γ) and (ūh, ȳh, p̄h) = (ūh,γ , ȳh,γ , p̄h,γ) be the optimal
triples of (4.5) and (4.32), respectively. Suppose that yd ∈ Lp(Ω) for p > d and that Assump-
tion 4.2 holds. In the setting of Theorem 4.34 we obtain the a priori estimate

‖ihū− ūh‖L2(Ωc) + ‖ȳ − ȳh‖L2(Ω) + ‖p̄− p̄h‖L2(Ω) ≤ C(γ)h2,

where C(γ) = Cγ−1(1 + γ−1 + γ−1Ckink‖p̄‖W 1,∞(Ω)). Furthermore, we define

ūσ = Pγ(−1/γ p̄h) ∈W 1,∞(Ωc) (4.41)

to be the post-processed discrete optimal control. For ‖ū− ūσ‖L2(Ωc) we have the same estimate
as above. If additionally yd ∈ L∞(Ω), we even have the a priori estimate

‖ū− ūσ‖L∞(Ωc) ≤ C̃(γ)h2|ln h|r

with r as in Lemma 4.10, where C̃(γ) depends continuously on γ.
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4.6. Numerical results

Proof. We combine Proposition 4.35 with Theorem 4.34 to obtain the estimate for the controls.
The estimates for the state and adjoint state follow from this with standard approximation
and stability estimates for the Ritz projection. For the estimate of the post-processed controls,
we derive first an L∞ estimate for the optimal adjoint state using

‖p̄− p̄h‖L∞(Ω) ≤ ‖p̄− p̂h‖L∞(Ω) + ‖p̂h − p̄h‖L∞(Ω).

The first term can be estimated with L∞ estimates as in Lemma 4.10 by

‖p̄− p̂h‖L∞(Ω) ≤ Ch2|ln h|r‖ȳ − yd‖L∞(Ω)

and the second one with a stability estimate as in Theorem 4.32. The result follows now
from ūσ − ū = Pγ(−1/γ p̄h)−Pγ(−1/γ p̄) with the Lipschitz continuous superposition operator
Pγ(q)(x) = P̂γ(q(x)) for x ∈ Ωc.

Remark 4.7. The results for this section are written for a sparse control problem, where the
nonsmooth term is given by

ψ(u) =
∫
Ωc
ψ̂(u(x)) dx with ψ̂(û) = α|û|.

However, the construction using mass lumping and the a priori estimates can be directly
generalized to a problem with an arbitrary convex, proper, and lower semicontinuous functional
ψ̂ : R → R ∪ {+∞}. In fact, everything up to and including Theorem 4.34 can be adapted
line-by-line to this general setting by using the corresponding proximal map P̂γ . For instance,
if we choose

ψ̂(û) = I[ua,ub](û) =
{

0 for ua ≤ u ≤ ub,
+∞ otherwise,

we obtain a discretization concept and corresponding error estimate for a standard linear
quadratic elliptic problem with (constant) box-constraints. In this case, Assumption 4.2 has
to be modified in the obvious way.

4.6. Numerical results

We present some examples to verify the rates of convergence established in sections 4.3 and 4.4.

Example for spatial dimension two

We take Ω = B1(0) as the unit ball and construct a radially symmetric example with the
optimal state given as

ȳ(x) = − 1
2π ln(max{ρ, |x|}),

with a kink in the radial direction at ρ ∈ [0, 1). See Figure 4.1 for the representative cases
ρ = 1/2 and ρ = 0. For ρ = 0 the state ȳ is simply a Green’s function, and the optimal control
is then given by ū = δ0. For ρ > 0 we obtain the surface measure (given in terms of the
1-dimensional Hausdorff measure H1)

ū = 1
2πρH

1|∂Bρ(0)
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4. A priori error analysis for an elliptic problem
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Figure 4.1.: Radially symmetric example for the unit circle in R2 in radial direction r

which, due to the choice of scaling, has a norm of ‖ū‖M(Ω) = 1. The optimal dual state can
then be chosen as any element in H2(Ω) ∩H1

0 (Ω), such that |p̄| ≤ α and p̄|∂Bρ(0) = −α. We
make the specific choice

p̄(x) = h(|x|),

where h ∈ C1([0, 1]) is a piecewise cubic polynomial interpolating h(0) = h(1) = 0, h(ρ) = −α
with the choices h′(ρ) = h′(0) = h′(1) = 0 (for ρ = 0, the conditions h(0) = h′(0) = 0 are
dropped). This yields p̄ ∈ C1(Ω), which is piecewise twice continuously differentiable with
bounded second derivatives, and a matching desired state yd ∈ L∞(Ω) can be computed in
strong formulation as

yd = ∆p̄+ ȳ,

as depicted in Figure 4.1 for ρ ∈ { 0, 1/2 }. For the convenience of the reader, the exact formula
for yd is given by

yd(r) =

 α 6 (3 r−2 ρ)
ρ3 − 1

2π ln(ρ) for r < ρ

α
6 (3 r2−2 rρ−2 r+ρ)

(ρ−1)3r
− 1

2π ln(r) for r ≥ ρ,

where r = |x|.
The convergence rates for a choice of ρ = 1/2 and ρ = 0 are given in Figure 4.2. The inital

grid (refinement level 0) consists of five cells, a small square in the middle and four additional
trapezoids at each edge, glued together at the corners. For both examples we plot the error in
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|j(ū)− jh(ūh)|
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Figure 4.2.: Convergence rates for d = 2 at different refinement levels.

the cost functional J(ū, ȳ)− J(ūh, ȳh) and the L2-error in the state variable. The dashed lines
indicate the orders of convergence O(h2) and O(h), which are what theory predicts for the
respective quantities (up to logarithmic contributions). Since the regularization is present in the
numerical computations, we also report the size of the term γ/2 ‖ūh‖2L2(Ω),h. As a parameter
choice rule, at each refinement level the regularization parameter γ is decreased until

γ

2‖ūh‖
2
L2(Ω),h ≤ Cregh

2

is fulfilled, where Creg > 0 is a constant chosen heuristically in advance. This is done to ensure
that at least the asymptotic best case convergence behaviour of the functional O(|ln h|κh2)
should not be altered by the regularization. For instance, in Figure 4.2a we observe that the
regularization term is an order of a magnitude smaller than the exact functional error, such
that the reported error in the functional should be at least accurate in the first significant
digit.
We see that the observed rates agree with the rates predicted by theory. In Figure 4.2a the

rates seem to be even slightly better, however, this is far from conclusive. In Figure 4.2b, even
though the rate for the functional is somewhat wiggly, we observe the expected rates. The
wiggles could be caused by the fact that the initial mesh was perturbed slightly, and thus the
approximation quality depends for a large part on the smallest distance of a grid-point to the
origin, where the optimal control ū = δ0 is located. If we choose a mesh which has a point at
the origin, the exact control is representable at each level, and the wiggles disappear. In the
Dirac case, due to the low regularity of yd, it is also clear that the rate of almost O(h) for the
state error is the best theoretically possible.

Example for spatial dimension three

The construction of an example in three dimensions is completely analogous, except for the
different Green’s function

ȳ(x) = 1
4π

( 1
max{ρ, |x|} − 1

)
,
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‖ȳ − ȳh‖L2(Ω)

γ
2 ‖ūh‖
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Figure 4.3.: Convergence rates for d = 3 at different refinement levels.

thus we omit a detailed description. The final formula for yd in this case is given by

yd(r) =

 α 6 (4 r−3 ρ)
ρ3 + 1

4π
(1
ρ − 1

)
for r < ρ

α
6 (4 r2−3 rρ−3 r+2 ρ)

(ρ−1)3r
+ 1

4π
(1
r − 1

)
for r ≥ ρ,

where r = |x|. The computational results can be seen in Figure 4.3. Note that the parameter
choice rule for γ is simply the same as before. In this case, the general theory predicts an order
of convergence close to O(h) for the functional and close to O(h1/2) for the L2-error of the
state. This is clearly observed in the case ρ = 0, where the optimal control ū is a single Dirac
delta function; see Figure 4.3b. In this case the rate for the state error is again the theoretically
best possible. However, in the case ρ = 1/2, depicted in 4.3a, where yd is bounded and the
optimal control is a surface measure, the rates are clearly better. For visual comparison we plot
the rates O(h) for the state in accordance with Theorem 4.21, and O(h2) for the functional,
which seems to be the closest match. Here, the order of convergence is the same as in the case
d = 2.
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5. A priori error analysis for a parabolic
problem

In this chapter we will derive a priori finite element error estimates for the parabolic model
problem given by

min
u∈M(Ωc,L2(I)), y∈Y

1
2‖y − yd‖

2
L2(I×Ωo) + α‖u‖M(Ωc,L2(I)), (5.1a)

subject to


∂ty −∆y = χΩcu on I ×Ω,

y = 0 on I × ∂Ω,
y(0) = y0 in Ω.

(5.1b)

Here, Ω ⊂ R2 is a convex domain with a polygonal boundary ∂Ω. The control variable u is
searched for in the space of vector measuresM(Ωc, L2(I)), where the control set Ωc ⊂ Ω is a
(relatively closed) in Ω, i.e., we require

Ωc = Ω̄c \ ∂Ω.

We will make additional assumption on the form of Ωc below (such as ∂Ωc polygonal). The state
variable y is the solution of the heat equation (5.1b) with zero Dirichlet boundary conditions
and initial value y0 ∈ L2(Ω). We consider a standard linear quadratic tracking term on the
observation domain Ωo ⊂ Ω with desired state yd ∈ L2(I × Ωo). For the purpose of optimal
regularity and error estimates we will make the further assumption yd ∈ L2(I, L∞(Ωo)) and
y0 ∈ H1

0 (Ω); see below.
The problem setting (5.1) can be considered as a generalization of a pointwise parabolic

control problem; a problem with a state equation of the form (5.1b) for the special case

u =
N∑
n=1

un(t)δxn for un ∈ L2(I), xn ∈ Ωc,

where the positions xn ∈ Ωc are fixed and only the coefficients un ∈ L2(I) are subject to
optimization. Pointwise parabolic control problems have been investigated by many authors;
see, e.g., [Chr81; Lio92; DR00; MRVM00]. Finite element error estimates for parabolic pointwise
control problems have been obtained by Gong, Hinze, and Zhou [GHZ14] and Leykekhman and
Vexler [LV13]. In particular, we want to point out the latter paper, since the finite element
error analysis of (5.1) given below will heavily rely on the estimates obtained there. A related,
but different, sparse control problem is analyzed in Casas, Clason, and Kunisch [CCK13].
In Casas and Zuazua [CZ13] a control problem for the heat equation with measures on a
subset of the parabolic cylinder is discussed. In the one-dimensional situation the authors
are able to show that the minimizer is given by a finite sum of point sources. In Casas,
Vexler, and Zuazua [CVZ14], where the control acts as an initial condition, the convergence
of a corresponding finite element discretization is shown. With respect to finite element
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5. A priori error analysis for a parabolic problem

discretization of optimal control problems governed by parabolic equations we also refer to
Meidner and Vexler [MV08] for a standard linear quadratic problem with controls in L2(I×Ω).
We provide a numerical analysis for an appropriate finite element discretization of the

problem (5.1). Following [Tho06; MV08; LV13], we employ a dG(0)cG(1) discretization with
linear finite elements in space and piece-wise constants in time (which results in a variant
of the implicit Euler scheme). Additionally, the control is discretized by nodal Dirac delta
functions in space and piece-wise constants in time. We derive an a priori error estimate for
the error between the objective functional values of order O(k+h2) (up to a logarithmic factor)
and between the optimal states on the observation domain of the continuous and discretized
problems of order O(k1/2 + h) (up to a logarithmic factor), where k and h are temporal and
spatial discretization parameters. This estimate seems to be optimal at least with respect to
h; see the discussion in section 5.5. In comparison, the a priori estimates obtained in [CCK13]
are of the order O(k1/2 + h) for the functional and O(k1/4 + h1/2) for the states. However, due
to the more complicated structure of the controls considered there, the analysis given below is
not directly extensible to their problem formulation; cf. the discussion in section 2.3.5. Most
of the results of this chapter have already appeared in similar form in Kunisch, Pieper, and
Vexler [KPV14].

This chapter is structured as follows. In section 5.1 we provide some necessary regularity
results and derive consequences of the optimality conditions. Section 5.2 contains the discretiza-
tion concept and analysis of the discrete problem. The error estimates mentioned above are
contained in section 5.3; at first we derive estimates for the state with a fixed control, then
we turn to estimates for the optimal solutions. The regularized problem is introduced and
analyzed in section 5.4 and an estimate for the regularization error is provided. In section 5.5
we discuss a numerical example to verify the convergence rates in practice. Finally, section 5.6
describes the application to an inverse source location problem to demonstrate the practical
applicability of the problem formulation with vector measures.

5.1. Optimality conditions

In this section we state some regularity results for the heat equation, which are improved w.r.t.
the general analysis in section 2.3.2. They are mostly well-known but needed for an optimal
error analysis. We also derive some consequences of the optimality system, i.e., a condition on
the support and a higher regularity result for the optimal controls.

With respect to the general setting in section 2.3.2 we consider A to be the negative Laplacian
with zero Dirichlet boundary conditions

A = −∆: W 1,s
0 (Ω)→W−1,s(Ω)

on a the two dimensional polygonal and convex domain Ω ⊂ R2. We remark that most of
the following regularity results can be generalized in a suitable way to the general case and to
three dimensions. Some of the finite element estimates employed in section 5.3.1 are, however,
only available for d = 2 and the following techniques are in some cases restricted to two
dimensions.
For a right-hand side u ∈M(Ωc, L2(I)), the state y = S(y0, u) has the regularity

y ∈ L2(I,W 1,s
0 (Ω)) ∩H1(I,W−1,s(Ω))
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for any s < 2; see Proposition 2.18. As before, we denote by S the corresponding solution
operator with y = S(u) = S(y0, u) and abbreviate the reduced cost functional of (5.1a) by

j(u) = f(u) + ψ(u) = J(S(u)) + α‖u‖M(Ωc,L2(I)),

where J(y) = 1/2 ‖y − yd‖2L2(I×Ωo) is the quadratic tracking term. We obtain the following
additional estimate for the state solution.

Proposition 5.1. The state solution y = S(y0, u) lies in the space L2(I, Lq(Ω)) for any
q ∈ [1,∞) with the a priori estimate

‖y‖L2(I,Lq(Ω)) ≤ C q (‖u‖M(Ωc,L2(I)) + ‖y0‖L2(Ω)) (5.2)

with a constant C independent of q.

Proof. We use the Sobolev embedding theorem and argue as in [LV13, Proposition 2.1] to
obtain the dependence of the constant on q in (5.2).

Proposition 5.2. The state y is continuous in time in the sense that

y ∈ C(Ī , (W 1,s
0 (Ω),W−1,s(Ω))1/2,2) ↪→ C(Ī ,W−ε,s(Ω)) (5.3)

for any s < 2 and ε > 0, where (W 1,s
0 (Ω),W−1,s(Ω))1/2,2 is a real interpolation space.

Proof. The result follows by an application of the trace theorem [Ama95, Theorem III 4.10.2]
and we refer to [Tri78, Theorem 4.6.1] for the embedding of the interpolation space.

Remark 5.1. With methods as in Droniou and Raymond [DR00, Theorem 2.4], where a single
point source is considered, it is possible to show that

y ∈ L∞(I, Ls(Ω)) for any s < 2.

Furthermore the mapping t 7→ y(t) ∈ Ls(Ω) is continuous with respect to the weak topology
in Ls(Ω).

As in section 2.3 we see that (5.1) is well-posed and obtain the following optimality system.

Theorem 5.3. There exists a unique adjoint state p̄ ∈ L2(I,W 1,s′
0 (Ω)) (with s′ > d) corre-

sponding to any optimal solution (ū, ȳ) = (ū, S(ū)) of (5.1). It satisfies
−∂tp̄−∆p̄ = χΩo(ȳ − yd) on I ×Ω,

p̄ = 0 on I × ∂Ω,
p̄(T ) = 0 in Ω

(5.4)

in the sense of the standard weak formulation and

− 〈χΩc(u− ū), p̄〉+ α‖ū‖M(Ωc,L2(I)) ≤ α‖u‖M(Ωc,L2(I)) for all u ∈M(Ωc, L2(I)). (5.5)

Furthermore, the variational inequality (5.5) is equivalent to the two conditions

‖χΩc p̄‖C0(Ωc,L2(I)) ≤ α, and 〈χΩc ū, p̄〉 = α‖ū‖M(Ωc),L2(I)). (5.6)

This implies that the support of ū is contained in the set {x ∈ Ωc | |p̄(x)|L2(I) = α } , and for
the polar decomposition dū = ū′ d|ū| we have

ū′(x) = 1
α
p̄(x) for x ∈ Ωc |ū|-almost everywhere. (5.7)
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5. A priori error analysis for a parabolic problem

For the adjoint state we can obtain improved regularity.

Lemma 5.4. Let f ∈ L2(I, L2(Ω)). The solution to the dual equation

− ∂tp−∆p = f, p(T ) = 0 (5.8)

lies in the spaces L2(I,H2(Ω))∩H1(I, L2(Ω)) and C(Ī , H1
0 (Ω)) with the corresponding estimate

‖∂tp‖L2(I,L2(Ω)) + ‖p‖L2(I,H2(Ω)) + ‖p‖C(Ī,H1
0 (Ω)) ≤ C ‖f‖L2(I×Ω).

Proof. This can be proved by combining well-known techniques for parabolic equations (see,
e.g., [Eva10]), with an elliptic regularity result for convex polygonal domains; see [Gri85].

We denote the solution operator of the dual equation by p = Sdual(f). With the previous
result and the Sobolev embedding, the adjoint state from Theorem 5.3 is an element of the
space L2(I, Cδ(Ω̄)) for any δ < 1. For our purposes it will be convenient to exchange the order
in which I and Ω̄ appear.

Proposition 5.5. For any 0 < δ ≤ 1, we have the continuous embedding

L2(I, Cδ(Ω̄)) ↪→ Cδ(Ω̄, L2(I)).

Proof. Take any v ∈ L2(I, Cδ(Ω̄)). For any x and x+ h ∈ Ω̄ it holds

‖p̄(x)− p̄(x+ h)‖2L2(I) =
∫
I
|p̄(t, x)− p̄(t, x+ h)|2 dt

≤
∫
I

(
sup
ξ∈Ω̄
|p̄(t, ξ)− p̄(t, ξ + h)|2

)
dt ≤ ‖p̄‖2

L2(I,Cδ(Ω̄))|h|
2δ.

Taking the square root implies the claim.

By the regularity of the optimal adjoint state, we obtain now that the support of ū must be
compactly supported in Ω.

Proposition 5.6. Define for η > 0 the domain Ωη as

Ωη = {x ∈ Ω | dist(x, ∂Ω) > η } .

There exists η > 0 such that supp ū ⊂ Ωc ∩Ωη, where the constant η depends only on the data
of the problem (5.1).

Proof. With Lemma 5.4, the Sobolev embedding, and Proposition 5.5 we have p̄ ∈ Cδ(Ω̄, L2(I))
for any 0 < δ < 1. The result now follows from the sparsity property of the support (2.26) and
the zero Dirichlet boundary conditions. We have p̄(x) = 0 for all x ∈ ∂Ω and can therefore
choose η < (α/(2‖p̄‖Cδ(Ω̄,L2(I))))1/δ to finish the proof.

Now, we make the following additional assumptions on the data.

Assumption 5.1. We require that the desired state fulfills

yd ∈ L2(I, L∞(Ωo)), (5.9)

and that the initial condition fulfills y0 ∈ H1
0 (Ω).
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5.1. Optimality conditions

The regularity assumption on yd is only slightly stronger than the natural regularity from
Proposition 5.1. The assumption on y0 will only be needed in section 5.3.1 since we employ
optimal order estimates for the state equation in the L2(I × Ω) norm (see Meidner and
Vexler [MV08]). With Assumption 5.1 and Proposition 5.1, the right-hand side of the adjoint
equation (2.23) is even in L2(I, Lq(Ω)) for any q < ∞. For p = Sdual(f) with an arbitrary
f ∈ L2(I, Lq(Ω)) we obtain that

∂tp, ∆p ∈ L2(I, Lq(Ω)), (5.10)

using maximal parabolic regularity; see, e.g., [GKR01]. However, from this we can not in
general infer L2(I,W 2,q(Ω)) regularity without further assumptions on ∂Ω. Nevertheless, we
can obtain this regularity locally in the interior of the domain. To this purpose, we take the
constant η from Proposition 5.6 and define a domain Ωη that fulfills

Ωη ⊂ Ωη ⊂ Ωη/2 ⊂ Ω with ∂Ωη of class C∞.

It is clear, that such an Ωη exists. For this domain, we can formulate the following result.
Lemma 5.7. Let Ωη as defined above with η > 0 from Proposition 5.6. We obtain for any
solution of (5.8) with f ∈ L2(I, Lq(Ω)) for q ∈ [1,∞) that

p|I×Ωη ∈ L2(I,W 2,q(Ωη)) ∩H1(I, Lq(Ωη)), (5.11)

with the a priori estimate

‖p‖L2(I,W 2,q(Ωη)) + ‖∂tp‖L2(I,Lq(Ωη)) ≤ C q
(
‖f‖L2(I,Lq(Ωη/3)) + η−1‖f‖L2(I,L2(Ω))

)
.

Proof. See for instance [LV13, Lemma 2.2], where this is shown for any ball B ⊂ Ωη/2. The
result follows since Ωη ⊂ Ωη/2 can be covered by finitely many balls B ⊂ Ωη/2.

By applying this to the optimal adjoint state p̄ and interpolating between both spaces from
Lemma 5.7 with θ = 1− ε for ε > 0 (see [Ama00, Theorem 5.2]) we obtain

p̄ ∈ C1/2−ε(Ī , C(Ωη)) for any ε > 0. (5.12)

Here, we have used the embedding (W 2,q(Ωη), Lq(Ωη))1−ε,2 ↪→ Cβ(Ωη) for β = 2ε − d/q > 0
and the compact embedding Cβ(Ωη) ↪→ C(Ωη). With the help of the optimality conditions, we
can now derive additional regularity for the optimal controls. We can show that ū(t) ∈M(Ωc)
is continuous in time.
Theorem 5.8. With Assumption 5.1, we obtain the additional regularity

ū ∈ C1/2−ε(I,M(Ωc)) for any ε > 0.

Proof. Using dū = u′ d|u| = −1/αχΩc p̄ d|ū| we have for t1 and t2 in I that

‖ū(t1)− ū(t2)‖M(Ωc) = sup
‖ϕ‖C0(Ω)=1

〈χΩc(ū(t1)− ū(t2)), ϕ〉

= sup
‖ϕ‖C0(Ω)=1

∫
Ωc

1
α

(p̄(t2)− p̄(t1))ϕd|ū| ≤ 1
α
‖p̄(t2)− p̄(t1)‖C0(Ωc∩Ωη) |ū|(Ωc),

due to Proposition 5.6. Therefore, with the regularity (5.12) for p̄ we have

‖ū(t1)− ū(t2)‖M(Ωc) ≤
1
α
‖ū‖M(Ωc,L2(I))‖p̄(t2)− p̄(t1)‖C0(Ωc∩Ωη) ≤ |t2 − t1|1/2−ε

for any t1 and t2 in I, which implies the claim.
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5. A priori error analysis for a parabolic problem

5.2. Discretization and numerical analysis

We discretize the state variable y with (linear) finite elements in space and discontinuous finite
elements (of order r ≥ 0) in time

ykh ∈ Xr
k(I, Vh) ⊂ L2(I,H1

0 (Ω)).

Here, as in chapter 4, Vh ⊂ H1
0 (Ω) denotes the space of linear finite elements on a family of

shape regular quasi-uniform triangulations { Th }h; see, e.g., [BS08]. The finite element space
associated with Th is defined as before by

Vh = { vh ∈ C0(Ω) | vh|K ∈ P1(K) for K ∈ Th }

The discretization parameter h denotes the maximal diameter of cells K ∈ Th. Furthermore,
we suppose that Ωc can be written as the union of a collection of cells or faces of Th for all h;
see section 4.2. For the time discretization we define for any Banach space V the semidiscrete
space

Xr
k(I, V ) = { vk ∈ L2(I, V ) | vk|Im ∈ Pr(Im, V ), m = 1, 2, . . . ,M }

as discontinuous, Banach space valued, piecewise polynomial functions on the disjoint partition
of the temporal interval

Ī = { 0 } ∪ I1 ∪ I2 ∪ . . . ∪ IM ,

where Im = (tm−1, tm] and 0 = t0 < t1 < · · · < tM = T . By km = tm − tm−1 we denote the
step length and by k = maxm km the maximum thereof. We employ the notation

w−m = lim
ε→0+

w(tm − ε), w+
m = lim

ε→0+
w(tm + ε), [w]m = w+

m − w−m

for the left and right sided limits and the jump term (for any w where these limits are defined).
The discrete state equation is then given with the bilinear form

B(y, ϕ) =
M∑
m=1
〈∂ty, ϕ〉Im + (∇y,∇ϕ)I +

M−1∑
m=1

([y]m, ϕ+
m) + (y+

0 , ϕ
+
0 ), (5.13)

defined for y, ϕ ∈ Xr
k(I, Vh). The distributional derivative of a discrete function ∂tykh|Im is

given by the classical derivative of the polynomial (and vanishes for r = 0). The duality pairing
〈· , ·〉Im denotes the pairing of L2(Im,W−1,s(Ω)) with its dual. Therefore this definition can be
extended to y ∈ Xr

k(I, Vh)+Y s and ϕ ∈ Xr
k(I, Vh)+Xs′ . Furthermore, by applying integration

by parts to (5.13) we obtain the equivalent dual formulation

B(y, ϕ) = −
M∑
m=1
〈y, ∂tϕ〉Im + (∇y,∇ϕ)I +

M−1∑
m=1

(−y−m, [ϕ]m) + (y−M , ϕ
−
M ). (5.14)

Then, for any right hand side u ∈ M(Ωc, L2(I)) the discrete dG(r)cG(1) formulation of the
state equation for the discretized state ykh ∈ Xr

k(I, Vh) is given as

B(ykh, ϕkh) = 〈χΩcu, ϕkh〉+ (y0, ϕ
+
kh,0). (5.15)

for all ϕkh ∈ Xr
k(I, Vh). Since the right hand side is a linear functional on the discrete

solution space, existence of a unique solution can be derived with standard arguments (see
Thomée [Tho06]). Therefore, we can define a discrete solution operator with ykh = Skh(u) =
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5.2. Discretization and numerical analysis

Skh(y0, u). This operator and the bilinear form B are compatible with the continuous state
solution y = S(u) in the sense that

B(y, ϕ) = 〈χΩcu, ϕ〉+ (y0, ϕ
+
0 ), (5.16)

for any ϕ ∈ L2(I,W 1,s′
0 (Ω)) with s′ > 2 such that the limits ϕ+

m for m = 0, . . . ,M − 1 are
well defined in W ε,s′(Ω) for some ε > 0. This follows from the state equation (2.20) since
the jump terms in (5.13) vanish due to Proposition 5.2. With this we can verify the Galerkin
orthogonality

B(y − ykh, ϕkh) = 0, (5.17)
for all ϕkh ∈ Xr

k(I, Vh) and therefore ykh is also referred to as the Galerkin projection of
y. We can now formulate a semidiscrete version of (5.1) by replacing the continuous state
equation (2.20) with the discrete equation (5.15). We formulate the semidiscrete problem as

min
u∈M(Ωc,L2(I))

jkh(u) = J(Skh(u)) + α‖u‖M(Ωc,L2(I)). (5.18)

For the derivation of the optimality system, we define the discrete Lagrange function as

Lkh(u, y, p) = J(y)−B(y, ϕ) + 〈χΩcu, p〉+ (y0, p
+
0 )

for any u ∈M(Ωc, L2(I)) and y and p as before. With the same methods as in the continuous
case (cf. section 2.3.4) we can prove the following results.

Proposition 5.9. The problem (5.18) possesses a globally optimal solution ũ ∈M(Ωc, L2(I)).

Proposition 5.10. Let ũ be an optimal solution of (5.18) and ȳkh = Skh(ũ) the corresponding
optimal state. There exists a unique discrete adjoint state p̄kh ∈ Xr

k(I, Vh) solving the adjoint
equation

B(ϕkh, p̄kh) = (χΩo(ȳkh − yd), ϕkh), (5.19)
for all ϕkh ∈ Xr

k(I, Vh) and fulfilling the subgradient condition

− 〈χΩc(u− ũ), p̄kh〉+ α‖ũ‖M(Ωc,L2(I)) ≤ α‖u‖M(Ωc,L2(I)) (5.20)

for all u ∈ M(Ωc, L2(I)). We alternatively express the first condition (5.19) with a solution
operator by p̄kh = Sdual,kh(χΩo(ȳkh − yd)).

Since Skh has a infinite-dimensional kernel, the solutions to (5.18) can not be expected
to be unique. Therefore, as in the elliptic case, we now construct an appropriate subspace
of M(Ωc, L2(I)) with the same approximation properties. By {xn}n for n = 1, 2 . . . , Nc we
denote the nodes of the triangulation Th contained in Ωc and by {en} ⊂ Vh the corresponding
Lagrangian nodal basis functions. We introduce the spaceMh consisting of linear combination
of Dirac delta functional associated with the nodes xn as in section 4.2. A suitable interpolation
operator is now defined by duality as

Λkh : M(Ωc, L2(I))→ Xr
k(I,Mh),

〈Λkhu, ϕ〉 = 〈χΩcu, πkihϕ〉 for all ϕ ∈ C0(Ωc, L2(I))
(5.21)

where ih : C(Ω̄, L2(I))→ L2(I, Vh) is the nodal interpolation operator and πk is the L2 projec-
tion on Xr

k(I, L2(Ω)) ⊂ L2(I ×Ω). The interpolation operator ih is given by

(ihw)(x) =
Nc∑
n=1

w(xn) en(x) for x ∈ Ωc. (5.22)
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5. A priori error analysis for a parabolic problem

We can verify that for any w ∈ C0(Ωc, L2(I)) the projection πk has the pointwise formula

(πkw)(x) =
M(1+r)∑
m=1

(ψm, w(x))L2(I)
‖ψm‖2L2(I)

ψm = π̃k(w(x)) for x ∈ Ωc, (5.23)

where {ψm }m for m = 1, . . . ,M(1 + r) is an orthogonal basis of Xr
k(I,R) with respect to the

inner product in L2(I) and π̃k is the L2 projection in L2(I) onto Xr
k(I,R). Therefore πk and

ih commute and we have for w ∈ C0(Ωc, L2(I))

ih(πk(w)) = πk(ih(w)) =
Nc∑
n=1

M(1+r)∑
m=1

(ψm, w(xn))L2(I)
‖ψm‖2L2(I)

ψm en,

which implies

Λkhu =
Nc∑
n=1

M(1+r)∑
m=1

〈u, ψm en〉
‖ψm‖2L2(I)

ψm δxn .

Remark 5.2. In the case r = 0 we take the piecewise constant functions ψm = χIm as a suitable
orthogonal basis for Xr

k(I,R). In this case the operator Λkh can be written as

Λkhu =
Nc∑
n=1

M∑
m=1

1
km

∫
Im
〈u(t), en〉 dt χIm δn,

which is the same as given in [CCK13, Theorem 4.2].

Lemma 5.11. For any u ∈M(Ωc, L2(I)) we have

〈Λkhu, ϕkh〉 = 〈u, ϕkh〉 for all ϕkh ∈ Xr
k(I, Vh),

and ‖Λkhu‖M(Ωc,L2(I)) ≤ ‖u‖M(Ωc,L2(I)).

Proof. For the first property is immediately clear from the definition since χΩc(πkihϕkh) =
χΩc(ihϕkh) = χΩcϕkh due to the assumptions on Ωc. Furthermore we have

(πk(ihϕ))(x) = π̃k((ihϕ)(x)) for all x ∈ Ωc

with (5.23) and since π̃k is an orthogonal projection we obtain with (5.22) that

‖π̃k((ihϕ)(x))‖L2(I) ≤ ‖(ihϕ)(x)‖L2(I) ≤ ‖ϕ‖C0(Ωc,L2(I)) for all x ∈ Ωc.

With this the estimate ‖πk(ihϕ)‖C0(Ωc,L2(I)) ≤ ‖ϕ‖C0(Ωc,L2(I)) is evident and by

‖Λkhu‖M(Ωc,L2(I)) = sup
ϕ∈C0(Ωc,L2(I))

〈Λkhu, ϕ〉
‖ϕ‖C0(Ωc,L2(I))

and the definition of Λkh as in (5.21) we obtain the second property.

By familiar arguments (cf. section 4.8) it immediately follows that we can restrict the space
for the optimal controls to Xr

k(I,Mh).
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Proposition 5.12. The semi-discrete solution operator Skh : M(Ωc, L2(I))→ Xr
k(I, Vh) fulfills

Skh = Skh ◦ Λkh and for each optimal solution ũ ∈M(Ωc, L2(I)) of (5.18) the discrete control
ūkh = Λkhũ ∈ Xr

k(I,Mh) fulfills
jkh(ũ) = jkh(ūkh)

Thus, ūkh = Λkhũ is also an optimal solution of (5.18).

Therefore, in the following, it suffices to consider the fully discrete problem

min
ukh∈Xr

k
(I,Mh), ykh∈Xr

k
(I,Vh)

1
2‖ykh − yd‖

2
L2(I×Ωo) + α‖ukh‖M(Ωc,L2(I))

subject to
{
B(ykh, ϕkh) = 〈χΩcukh, ϕkh〉+ (y0, ϕ

+
0 )

for all ϕkh ∈ Xr
k(I, Vh).

(5.24)

which can be solved in practice. We point out that for any ukh = ∑
n unδxn ∈ Xr

k(I,Mh)
with un ∈ Xr

k(I,R) the total variation norm is simply given by a weighted `1(`2) norm of the
underlying nodal vector:

‖ukh‖M(Ωc,L2(I)) =
Nc∑
n=1
‖un‖L2(I) =

Nc∑
n=1

M(1+r)∑
m=1

‖ψm‖2L2(I)u
2
n,m

1/2

.

Furthermore, for any ukh = ∑
n unδxn ∈ Mh and vkh = ∑

n vnen ∈ Vh the duality product is
given simply as the corresponding L2(I) inner product of the nodal vectors:

〈χΩcuh, vh〉 =
Nc∑
n=1

(un, vn)L2(I) =
Nc∑
n=1

M(1+r)∑
m=1

‖ψm‖2L2(I)un,mvn,m.

This means that a finite dimensional equivalent of (5.24) can be derived in a straightforward way,
by introducing appropriate mass and stiffness matrices. Furthermore, the state equation (5.19)
can be reformulated as a time-stepping scheme.

Note that for this problem the same optimality system holds as in Proposition 5.10, where
we are allowed to insert any control from M(Ωc, L2(I)) in the subgradient condition (5.20),
instead of only discrete controls. This is a direct consequence of Proposition 5.12 and will be
important for the following error analysis.

5.3. Error estimates

For the error analysis we restrict attention to dG(0), which is a variant of the implicit Euler
method. This restriction arises since we employ optimal estimates for the dG(r)cG(1) method
in the L∞(Ω,L2(I)) norm, which are not considered in the standard finite element literature.
These estimates were obtained recently for two dimensions by Leykekhman and Vexler [LV13]
in the case r = 0. First, we will provide estimates for the state for a fixed control; then, we
turn to estimates for the optimization problem.
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5.3.1. Error analysis for the state

Define ik : C(Ī , V )→ X0
k(I, V ) to be the pointwise interpolation at the right time point in each

interval

ikw =
M∑
m=1

w(tm)χIm , (5.25)

where χIm is the characteristic function of the interval Im. We can obtain the following
interpolation estimates for ik.

Lemma 5.13. For any w = Sdual(f) with f ∈ L2(I, L2(Ω)) we have

‖w − ikw‖L2(I,L2(Ω)) ≤ C k‖f‖L2(I,L2(Ω)), (5.26)
‖w − ikw‖L2(I,H1

0 (Ω)) ≤ C k1/2‖f‖L2(I,L2(Ω)). (5.27)

Proof. First, we note that ikw in L2(I,H1
0 (Ω)) since w ∈ C(Ī , H1

0 (Ω)) with Lemma 5.4. The
interpolation estimates can be obtained with standard techniques. Since (5.27) is not standard,
we will give a proof in Appendix A.3.

In the following estimates we are going to apply the best approximation properties obtained
in [LV13].

Theorem 5.14 ([LV13, Theorem 3.1, Theorem 3.5]). Let w = Sdual(f) be an adjoint solution
and wkh = Sdual,kh(f) its Galerkin projection for some f ∈ L2(I, L2(Ω)) and 1 ≤ q ≤ ∞. Then
we have for every x ∈ Ω that

‖w(x)− wkh(x)‖2L2(I)

≤ C|ln h|2 inf
χ∈X0

k
(I,Vh)

∫
I
‖w(t)− χ(t)‖2L∞(Ω) + h−4/q‖ikw(t)− χ(t)‖2Lq(Ω) dt.

Furthermore, for x ∈ Ωη with η > 4h > 0 we have the local estimate

‖w(x)− wkh(x)‖2L2(I)

≤ C|ln h|3 inf
χ∈X0

k
(I,Vh)

∫
I
‖w(t)− χ(t)‖2L∞(Bη(x)) + h−4/q‖ikw(t)− χ(t)‖2Lq(Bη(x)) dt

+ C η−2|ln h|
∫
I
‖w(t)− wkh(t)‖2L2(Ω) dt.

With this we can prove the following a priori error estimates.

Theorem 5.15. Let y = S(y0, u) and its Galerkin projection ykh = Skh(y0, u) for arbitrary
u ∈M(Ωc, L2(I)) and y0 ∈ H1

0 (Ω). Then we have the a priori estimate

‖y − ykh‖L2(I×Ω) ≤ C|ln h|2(k1/2 + h)
(
‖u‖M(Ωc,L2(I)) + ‖y0‖H1(Ω)

)
. (5.28)

If additionally the measure is supported in the interior of the domain, i.e., suppu ⊂ Ωη for
some η > 0, we obtain the improved estimate in a weaker norm

‖y − ykh‖L2(I,L1(Ω)) ≤ C η−1|ln h|5/2(k + h2)
(
‖u‖M(Ωc,L2(I)) + ‖y0‖H1(Ω)

)
. (5.29)
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Proof. Consider that y = S(y0, 0)+S(0, u) and ykh = Skh(y0, 0)+Skh(0, u). We have S(y0, 0) ∈
L2(I,H2(Ω)) ∩H1(I, L2(Ω)) and the corresponding error estimate

‖S(y0, 0)− Skh(y0, 0)‖L2(I,L2(Ω)) ≤ c (k + h2)‖y0‖H1(Ω)

can be found, e.g., in [MV08]. Without restriction, we suppose y0 = 0 in the following and
employ a duality argument. Define the error e = y − ykh and introduce

g2 = e ∈ L2(I, L2(Ω)),
g1 = ‖e(t)‖L1(Ω) sgn e(t, x) ∈ L2(I, L∞(Ω)),

for the first and second estimate respectively. For l ∈ { 1, 2 } we define the auxiliary dual
variable w = Sdual(gl) and its Galerkin projection wkh = Sdual,kh(gl). We can verify that
B(ϕ,w) = (ϕ, gl)I holds for any ϕ ∈ L2(I,W 1,s(Ω)) with ϕ−m ∈ H−1(Ω) for m = 1, . . . ,M ,
since the jump terms in the dual description of the bilinear form (5.13) vanish due to Lemma 5.4.
We rewrite the error using this identity for w, Galerkin orthogonality for y (see (5.17)), Galerkin
orthogonality for w and (5.16) to obtain

‖y − ykh‖2L2(I,Ll(Ω)) = (y − ykh, gl)I = B(y − ykh, w)
= B(y − ykh, w − wkh) = B(y, w − wkh)
= 〈u, χΩc(w − wkh)〉 ≤ ‖u‖M(Ωc,L2(I))‖w − wkh‖C0(Ωc,L2(I)). (5.30)

In the following, we estimate the last term.
For the first estimate, where l = 2, we apply the global best approximation property from

Theorem 5.14 with the choice χ = πhikw, where ik is the pointwise interpolation defined
in (5.25) and πh : L1(Ω)→ Vh is the Clément interpolation; see, e.g., [BG98]. This results in

‖w − wkh‖C0(Ωc,L2(I))

≤ C|ln h|
(
‖w − πhikw‖L2(I,L∞(Ω)) + h−2/q‖ik(w − πhw)‖L2(I,Lq(Ω))

)
, (5.31)

where we choose any q <∞. The first term is further estimated by

‖w − πhikw‖L2(I,L∞(Ω)) ≤ ‖w − πhw‖L2(I,L∞(Ω)) + ‖πh(w − ikw)‖L2(I,L∞(Ω))

≤ C h‖w‖L2(I,H2(Ω)) + C h−2/q‖πh(w − ikw)‖L2(I,Lq(Ω))

with an interpolation estimate for the Clément interpolation and an inverse estimate with the
same q as above. With the stability of the Clément interpolation in Lq(Ω) and the Sobolev
embedding we obtain

‖πh(w − ikw)‖L2(I,Lq(Ω)) ≤ C ‖w − ikw‖L2(I,Lq(Ω)) ≤ C q ‖w − ikw‖L2(I,H1
0 (Ω)),

see, e.g., [Alt11, Theorem 8.8] for the dependence of the embedding constant on q <∞. With
Lemma 5.13 we then get the estimate

‖πh(w − ikw)‖L2(I,Lq(Ω)) ≤ C q k1/2‖g2‖L2(I,L2(Ω)).

The second term in (5.31) is estimated by the triangle inequality

‖ik(w − πhw)‖L2(I,Lq(Ω))

≤ ‖ikw − w‖L2(I,Lq(Ω)) + ‖w − πhw‖L2(I,Lq(Ω)) + ‖πh(w − ikw)‖L2(I,Lq(Ω)),
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The single terms are treated as before and we arrive at

‖w − wkh‖C0(Ωc,L2(I))

≤ c|ln h|
(
h‖w‖L2(I,H2(Ω)) + h−2/q

(
q k1/2‖g2‖L2(I,L2(Ω)) + h1+2/q‖w‖L2(I,H2(Ω))

))
.

Finally, with the choice q = |ln h| and Lemma 5.4 this implies

‖w − wkh‖C0(Ωc,L2(I)) ≤ c|ln h|
(
h+ q h−2/qk1/2

)
‖g2‖L2(I,L2(Ω))

≤ c|ln h|2
(
h+ k1/2

)
‖y − ykh‖L2(I,L2(Ω)).

(5.32)

Combining (5.30) and (5.32) we obtain the result (5.28).
The second estimate, where l = 1, can be obtained in a similar fashion using the local estimate

from Theorem 5.14 and choosing again χ = πhikw. Then we can use the approximation prop-
erties of the Clément interpolation, Lemma 5.13 and the regularity estimate from Lemma 5.7
for the first two terms and an L2 estimate from [MV08] for the term ‖w − wkh‖L2(I×Ω). We
obtain

‖w − wkh‖C0(Ωc,L2(I)) ≤ c η−1|ln h|1/2
(
1 + qh−2/q

) (
k + h2

)
‖g1‖L2(I,Lq(Ω))

≤ c η−1|ln h|3/2
(
k + h2

)
‖y − ykh‖L2(I,L1(Ω))

(5.33)

with q = |ln h| as above and we obtain (5.29). We omit a more detailed argument since
it is analogous to the one in [LV13, Theorem 4.1], where an estimate for the special case
u(t) = û(t)δx0 for some x0 ∈ Ω and û ∈ L2(I) is proved.

Remark 5.3. It is possible to derive a sharpened version of (5.28) without any |ln h| term if we
require a coupling of k and h of the form

k = ch2

for a constant independent of k and h, see [CCK13, Theorem 4.6]. Whether we can im-
prove (5.28) without such a coupling is an open question to the best of the authors knowledge.
However, such an improvement alone would yield no improvement for the estimates in sec-
tion 5.3.2.

For the error analysis in the following section we need an additional stability property of the
space-time discretization.

Lemma 5.16. We have for every y0 ∈ L2(Ω) and u ∈M(Ωc, L2(I)) that

‖ykh‖L2(I,L∞(Ω)) ≤ C|ln h|
(
‖y0‖L2(Ω) + ‖u‖M(Ωc,L2(I))

)
.

Proof. We start by applying the discrete Sobolev inequality (see [BS08, Lemma 4.9.1])

‖ykh‖2L2(I,L∞(Ω)) =
∫
I
‖ykh(t)‖2L∞(Ω) dt ≤ C|ln h|‖∇ykh‖2L2(I×Ω). (5.34)

Now, we can add the primal and dual representation of the bilinear form as in (5.13) and (5.14)
with y = ϕ = ykh and divide by two, which yields

B(ykh, ykh) = (∇ykh,∇ykh)I + 1
2

M∑
m=1
‖[ykh]m‖2L2(Ω) + 1

2‖y
+
kh,0‖

2
L2(Ω) + 1

2‖y
−
kh,M‖

2
L2(Ω).

122



5.3. Error estimates

This allows us to estimate the L2(I,H1
0 (Ω)) seminorm in terms of the bilinear form and with

the definition of the discrete state equation (5.15) we obtain

‖∇ykh‖2L2(I×Ω) ≤ B(ykh, ykh)− 1
2‖y

+
kh,0‖

2
L2(Ω)

= 〈u, χΩcykh〉+ (y0, y
+
kh,0)− 1

2‖y
+
kh,0‖

2
L2(Ω)

= 〈u, χΩcykh〉 −
1
2‖y

+
kh,0 − y0‖2L2(Ω) + 1

2‖y0‖2L2(Ω)

≤ ‖u‖M(Ωc,L2(I))‖ykh‖L2(I,L∞(Ω)) + 1
2‖y0‖2L2(Ω).

(5.35)

Finally, we apply (5.34) and use Young’s inequality to derive

‖∇ykh‖2L2(I×Ω) ≤ C
(
|ln h|1/2‖u‖M(Ωc,L2(I))‖∇ykh‖L2(I×Ω) + 1

2‖y0‖2L2(Ω)

)
≤ 1

2‖∇ykh‖
2
L2(I×Ω) + C|ln h|

(
‖u‖2M(Ωc,L2(I)) + ‖y0‖2L2(Ω)

)
.

We take the one term to the left-hand side take the square root, and combine the estimate
again with (5.34) on the left-hand side to finish the proof.

5.3.2. Error analysis for the optimal control problem

First we will consider convergence of the functional values.

Lemma 5.17. For every optimal control ū or ūkh we have

max
{
‖ū‖M(Ωc,L2(I)), ‖ūkh‖M(Ωc,L2(I))

}
≤ C

(
‖y0‖L2(Ω) + ‖yd‖L2(I×Ωo)

)
. (5.36)

Proof. For ūkh this is a consequence of the minimality, since

‖ūkh‖M(Ωc,L2(I)) ≤
1
α
J(Skh(y0, 0)) ≤ 1

2α
(
‖Skh(y0, 0)‖L2(I×Ωo) + ‖yd‖L2(I×Ωo)

)
.

The result follows by the stability estimate ‖Skh(y0, 0)‖L2(I×Ω) ≤ C‖y0‖L2(Ω) for the dG(r)cG(1)
method; see (5.35) for u = 0. The proof for ū is similar.

Theorem 5.18. Let ū ∈ M(Ωc, L2(I)) be an optimal solution to (5.1) and ūkh ∈ X0
k(I,Mh)

be a discrete optimal solution to (5.24). We have for the associated optimal functional values

|j(ū)− jkh(ūkh)| ≤ C η−1|ln h|4
(
k + h2

)
, (5.37)

with a constant C independent of k and h, where η is the constant from Proposition 5.6.

Proof. Since we have

j(ū)− jkh(ū) ≤ j(ū)− jkh(ūkh) ≤ j(ūkh)− jkh(ūkh)

by minimality of ū and ūkh, and Proposition 5.12 we obtain

|j(ū)− jkh(ūkh)| ≤ max{|j(ū)− jkh(ū)|, |j(ūkh)− jkh(ūkh)|}.
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5. A priori error analysis for a parabolic problem

Therefore we estimate the functional error j(u) − jkh(u) = J(S(u)) − J(Skh(u)) for a fixed
u ∈M(Ωc, L2(I)). We define y = S(u) and ykh = Skh(u) and by reordering terms and applying
Hölders inequality we get

|j(u)− jkh(u)| = 1
2 |(χΩo(y − ykh), y − ykh + 2ykh − 2yd)I |

≤ 1
2‖y − ykh‖

2
L2(I×Ω) + ‖y − ykh‖L2(I,L1(Ω))‖ykh − yd‖L2(I,L∞(Ω)). (5.38)

The terms which contain y−ykh are treated with estimates (5.28) and (5.29) from Theorem 5.15
respectively. Furthermore we have

‖ykh − yd‖L2(I,L∞(Ω)) ≤ ‖yd‖L2(I,L∞(Ω)) + C|ln h|
(
‖y0‖L2(Ω) + ‖u‖M(Ωc,L2(I))

)
with Lemma 5.16 and (5.9). Together with Lemma 5.17 we have shown (5.37).

We also provide an error estimate for the optimal state solutions on the observation domain.

Theorem 5.19. Let ū ∈M(Ωc, L2(I)) be an optimal solution to (5.1) with associate state ȳ =
S(y0, ū) and ūkh ∈ X0

k(I,Mh) be a discrete optimal solution to (5.24) with ȳkh = Skh(y0, ūkh).
With assumption (5.9) we have the estimate

‖ȳ − ȳkh‖L2(I×Ωo) ≤ C η
−1/2|ln h|2

(
k1/2 + h

)
where η > 0 is the constant from Proposition 5.6.

Proof. We test the continuous subgradient condition (5.5) with the discrete solution, and the
discrete one (5.20) with the continuous solution (which is possible due to Proposition 5.12) to
obtain

−〈χΩc(ūkh − ū), p̄〉+ α‖ū‖M(Ωc,L2(I)) ≤ α‖ūkh‖M(Ωc,L2(I)),

−〈χΩc(ū− ūkh), p̄kh〉+ α‖ūkh‖M(Ωc,L2(I)) ≤ α‖ū‖M(Ωc,L2(I)).

Adding both implies
−〈χΩc(ūkh − ū), p̄− p̄kh〉 ≤ 0.

We introduce as auxiliary variables the Galerkin projections of ȳ and p̄ as ŷkh = Skh(ū) and
p̂kh = Sdual,kh(χΩo(ȳ − yd)). With this, we can reformulate the inequality above to

0 ≤ 〈χΩc(ūkh − ū), p̄− p̄kh〉
= 〈χΩc(ūkh − ū), p̄− p̂kh〉+ 〈χΩc(ūkh − ū), p̂kh − p̄kh〉
= 〈χΩc(ūkh − ū), p̄− p̂kh〉+ (ȳkh − ŷkh, χΩo(ȳ − ȳkh))
= 〈χΩc(ūkh − ū), p̄− p̂kh〉+ (ȳ − ŷkh, χΩo(ȳ − ȳkh))− ‖ȳ − ȳkh‖2L2(I×Ωo)

We bring the last term above on the other side and treat the second with Young’s inequality
to obtain

1
2‖ȳ − ȳkh‖

2
L2(I×Ωo) ≤ 〈χΩc(ūkh − ū), p̄− p̂kh〉+ 1

2‖ȳ − ŷkh‖
2
L2(I×Ωo)

≤ ‖ūkh − ū‖M(Ωc,L2(I))‖p̄− p̂kh‖C0(Ωc,L2(I)) + 1
2‖ȳ − ŷkh‖

2
L2(I×Ωo).
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Since ‖ūkh − ū‖M(Ωc,L2(I)) can be bounded independently of k and h with Lemma 5.17 and
the triangle inequality we obtain an estimate of the optimal state in terms of two Galerkin
projection errors

‖ȳ − ȳkh‖2L2(I×Ωo) ≤ C
(
‖p̄− p̂kh‖C0(Ωc,L2(I)) + ‖ȳ − ŷkh‖2L2(I×Ωo)

)
.

For the second term on the right hand side we apply Theorem 5.15 to obtain

‖ȳ − ŷkh‖2L2(I×Ωo) ≤ C |ln h|
4
(
k + h2

) (
‖ū‖2M(Ωc,L2(I)) + ‖y0‖2H1(Ω)

)
.

For the first term we argue as in Theorem 5.15 for estimate (5.33) to obtain

‖p̄− p̂kh‖C0(Ωc,L2(I)) ≤ C η−1|ln h|1/2
(
1 + q h2/q

) (
k + h2

)
‖ȳ − yd‖L2(I,Lq(Ωo)).

Then we use the regularity assumption on the desired state (5.9) and estimate (5.2) from
Proposition 5.1 for

‖ȳ − yd‖L2(I,Lq(Ωo)) ≤ ‖yd‖L2(I,L∞(Ωo)) + C q
(
‖ū‖M(Ωc,L2(I)) + ‖y0‖L2(Ω)

)
.

Setting q = |ln h| and combining the above estimates, we complete the proof.

5.4. Regularized problem

For the numerical realization, as discussed in in section 2.5, we consider a regularized version
of (5.1). Since we have restricted attention to the case of a two dimensional Ω at the start
of this chapter, we will only discuss this case. However, all of the following results can be
generalized to the three dimensional case in a straightforward way. The regularized problem is
given as

min
u∈L2(I×Ω), y∈Y 2

1
2‖y − yd‖

2
L2(I×Ωo) + α‖u‖L1(Ωc,L2(I)) + γ

2‖u‖
2
L2(I×Ωc)

subject to
{

(∂ty, ϕ) + (∇y,∇ϕ) = (χΩcu, ϕ) for all ϕ ∈ L2(I,H1
0 (Ω))

y(0) = y0

(5.39)

As in the elliptic case, for the case of simplicity, we exclude Ωc with complicated topology
and only consider Ωc which are the relative closure of an open set. In this case Lq(Ωc) for
q ∈ { 1, 2 } is to be understood with respect to the Lebesgue measure. It is clear that the
canonical embedding L1(Ωc, L2(I)) ↪→M(Ωc, L2(I)) is isometric and therefore

‖u‖M(Ωc,L2(I)) = ‖u‖L1(Ωc,L2(I)) =
∫
Ωc
‖u(x)‖L2(I) dx

for u ∈ L1(Ωc, L2(I)). We abbreviate the inner product in L2(I ×Ωc) by (·, ·). For an indepen-
dent analysis of the problem (5.39) we refer to Herzog, Stadler, and Wachsmuth [HSW12].
As discussed in section 3.3.2, the proximal map corresponding to ψ(·) = ‖·‖L1(Ωc,L2(I)) for

the parameter γ > 0 is given by

Pγ(q)(x) = 1
γ

(
γ − α/‖q(x)‖L2(I)

)+
q(x) for q ∈ L2(Ωc, L2(I)).

As a consequence of Proposition 2.25 and this formula, we obtain the following result; cf.
also [HSW12].
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Proposition 5.20. Let γ > 0. Problem (5.39) possesses a unique optimal solution ūγ ∈
L2(I ×Ωc) with corresponding state ȳγ = S(y0, ūγ) and adjoint state p̄γ = Sdual(χΩo(ȳγ − yd)).
The optimality is characterized by the subgradient condition

− (χΩc(u− ūγ), γūγ + p̄γ) + α‖ūγ‖L1(Ωc,L2(I)) ≤ α‖u‖L1(Ωc,L2(I)) (5.40)

for all u ∈ L1(Ωc, L2(I)), which is equivalent to the “stripe-wise” projection formula

ūγ(t, x) = −1
γ

(
1− α/‖p̄γ(x)‖L2(I)

)+
p̄γ(t, x) (5.41)

for almost all (t, x) ∈ I × Ωc. This implies that supp|ūγ | is contained in the closure of
{x ∈ Ωc | ‖p̄γ(x)‖L2(I) > α }.

The regularized problem (5.39) can be solved efficiently with a semismooth Newton method
which admits a Banach space analysis; see [HSW12, Theorem 3.7, Example 1.2]. As before,
the gradient and Hessian of the smooth part of the reduced cost functional f(u) = J(S(u)) are
given by

∇f(u) = χΩcSdual(χΩo(S(u, y0)− yd)) for u ∈ L2(I ×Ωc)
and ∇2f(u)δu = χΩcSdual(χΩo(S(δu, 0)) for u and δu ∈ L2(I ×Ωc).

Since the dual solution operator Sdual maps L2(I ×Ω) continuously into L2(I,H2(Ω)), which
is embedded into Cδ(Ωc, L2(I)) for all 0 < δ < 1 (cf. Proposition 5.5), we have a more than
sufficient norm-gap. In terms of the general framework given in chapter 3, we obtain the
following result.

Proposition 5.21. Let q̄γ = −1/γ χΩc p̄γ be the optimal auxiliary variable with ūγ = Pγ(q̄γ).
Suppose that for a given q0 ∈ Lr(Ωc, L2(I)) with r > 2, the distance ‖q0 − q̄γ‖Lr(Ωc,L2(I))
is sufficiently small. Then the semismooth Newton iterates, defined inductively as qk+1 =
qk −DG(qk)−1G(qk) for k ∈ N converge superlinearly in Lr(Ωc, L2(I)) towards q̄γ. The same
holds for uk = Pγ(qk) with limit ūγ.

Proof. We combine Lemma 3.14, Proposition 3.11, and Theorem 3.7 with the choice H =
L2(Ωc, L2(I)) and Hsub = Lr(Ωc, L2(I)) as in Lemma 3.22; cf. also Proposition 4.27.

Moreover, we obtain the original problem (5.1) in the limiting case for γ → 0; see Theo-
rem 2.28.

Theorem 5.22. For γ → 0 we have j(ū) ≤ jγ(uγ)→ j(ū), where ū is an (arbitrary) optimal
solution of (5.1). Moreover, the sequence of solutions of (5.39) contains an accumulation point
in the sense of weak-∗ convergence and any such accumulation point is an optimal solution
of (5.1).

As before, we use the following procedure to compute ū in practice. In an inner loop, we
use the semismooth Newton method to compute the minimizer ūγ for a small value of γ. Then
we decrease γ and use the previous solution as an initial guess for the new iteration. In the
numerical experiments for this problem, the Newton method exhibited convergence in each
iteration and a globalization strategy was not needed.
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5.4.1. Regularization error

We can obtain the similar estimate for the regularization error as in section 4.5.1 for the elliptic
problem. As before, we need some estimates for the optimal solutions which are independent
of the regularization parameter. We employ the same notation for Cβ for β ∈ (0, 2] as in
section 4.5.1.

Proposition 5.23. Let η > 0 be the constant from Proposition 5.6. For any s < 2, q < ∞
and β < 2, there exists a constant C > 0, such that for all γ > 0 the following estimates are
valid for the optimal triple (ūγ , ūγ , p̄γ) of (5.39):

‖ūγ‖L1(Ωc,L2(I)) + γ

2‖ūγ‖
2
L2(I×Ωc) ≤ C, (5.42)

‖ȳγ‖L2(I,Lq(Ω)) + ‖ȳγ‖L2(I,W 1,s(Ω)) ≤ C, (5.43)
‖p̄γ‖L2(I,Cβ(Ωη)) + ‖p̄γ‖L2(I,W 2,q(Ωη)) ≤ C. (5.44)

Proof. The estimate (5.42) follows by straightforward arguments using the minimality of ūγ ;
cf. Theorem 2.28. For the state, we apply now Proposition 5.1. For the adjoint solution, we
then apply Lemma 5.7. The estimate for p̄γ in the Hölder norm is again a consequence of the
Sobolev embedding with β = 2− 2/q = 3− 2/s.

Thereby, using the technique from Hintermüller, Schiela, and Wollner [HSW14], we can
obtain an asymptotic estimate for the regularization error.

Proposition 5.24. The error in the objective functional due to regularization is bounded by

0 ≤ jγ(ūγ)− j(ū) ≤ C γs, where s = 1/3.

Proof. We can adapt the proof of Proposition 4.26 with some modifications. We start again
with the estimate

‖ūγ‖2L2(I×Ωc) ≤ ‖ūγ‖L1(Ωc,L2(I))‖ūγ‖L∞(Ωc,L2(I)) ≤ C
∥∥∥‖ūγ(·)‖L2(I)

∥∥∥
L∞(Ωc)

= C

γ

∥∥∥(α− ‖p̄γ(·)‖L2(I))+
∥∥∥
L∞(Ωc)

for any γ > 0, using (5.42) and the optimality conditions. With estimate (5.44) and Proposi-
tion 5.5, we obtain that p̄γ ∈ C1(Ωη, L2(I)) (recall that C1 denotes Lipschitz continuity). We
define the positive function

vγ(x) = (α− ‖p̄γ(x)‖L2(I))+ for x ∈ Ωc.

With similar arguments as in Proposition 5.6 we obtain now that the support of v is contained
in the interior of the domain; i.e., we have supp vγ ⊂ {x ∈ Ωc | ‖p̄γ(x)‖ ≥ α } ⊂ Ωη. With the
regularity of p̄γ in the interior of the domain, this implies that vγ is Lipschitz continuous with

‖vγ‖C1(Ωc) ≤ ‖p̄γ‖C1(Ωη ,L2(I)) ≤ ‖p̄γ‖L2(I,C1(Ωη)) ≤ C.

With Proposition 4.24 we obtain now for θ = 2/3 that

‖ūγ‖2L2(I×Ωc) ≤
C

γ
‖vγ‖L∞(Ωc) ≤

C

γ
‖vγ‖1−θC1(Ωc)‖vγ‖

θ
L1(Ωc)

≤ Cγθ−1
∥∥∥1/γ (α− ‖p̄γ(x)‖L2(I))+

∥∥∥θ
L1(Ωc)

= Cγθ−1‖ūγ‖θL1(Ωc,L2(I)) ≤ Cγ
θ−1
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by the definition of vγ , the optimality condition and (5.42). Combining this with Corollary 2.29
yields

0 ≤ jγ(ūγ)− j(ū) =
∫ γ

0

1
2‖ūσ‖

2
L2(I×Ωc) dσ ≤ Cγθ = Cγ1/3,

as claimed above.

5.5. Numerical results

In this section we construct a numerical example which is geared towards verification of
the convergence results in section 5.3.2. A practically motivated example will be given in
section 5.6. We design an example with an explicit solution on the interval I = (0, T ) and the
two dimensional domain Ω = Ωc = Ωo = (−1, 1)× (−1, 1). For the construction of the example
the optimal control is chosen as

ū(t) = T−2 (T − t) δ0,

with a Dirac delta function in the origin. We can give the analytical solution ȳ of ∂ty−∆y = ū
with zero Dirichlet boundary conditions; see Figure 5.1. It can be represented by the series

−1.0 −0.5 0.0 0.5 1.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

ȳ(0.01, ·, 0)
ȳ(0.025, ·, 0)
ȳ(0.05, ·, 0)
ȳ(0.1, ·, 0)

Figure 5.1.: Snapshots of the exact state solution ȳ at x2 = 0 (for T = 0.1).

ȳ(t, x) =
∑

k∈Z,l∈Z
(−1)k+lG(t, x1 + 2k, x2 + 2l), (5.45)

where x = (x1, x2)t and G is the free space solution given by

G(t, x1, x2) = 1
4π T 2

(
(r2/4− T + t)Ei

(
−r2/(4t)

)
+ te−r

2/(4t)
)

and r2 = x2
1 + x2

2 is the squared distance to the origin. The function Ei(s) =
∫∞
−s e

−h/h dh is
the exponential integral. The polar decomposition for ū = ū′|ū| is given by

ū′(t) =
√

3T−3/2 (T − t) , |ū| = 1√
3
T−1/2δ0,
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5.5. Numerical results

and a matching adjoint state p̄ which fulfills the optimality conditions from Theorem 5.3 (and
p̄(T ) = 0) can be chosen as

p̄(t, x) = −α
√

3T−3/2 (T − t) cos (π/2x1) cos (π/2x2) .

The reader may verify that this p̄ fulfills (5.6) and (5.7), which, in turn, implies the variational
inequality (5.5). By inspection of the adjoint equation (5.4) we determine the desired state yd
to be

yd = ȳ + ∂tp̄+ ∆p̄,

for which we can now derive an explicit formula by differentiating p̄.

We choose the final time as T = 0.1 and α = 0.01. For the practical verification of the
convergence results we compute the optimal solutions (ūkh, ȳkh) on an equidistant time grid
with M steps and with a uniform triangulation of the square of different refinement levels. The
series in (5.45) is approximated by the first nine terms, which yields a pointwise accuracy of
about 10−12. We use an adapted iterated quadrature formula in space to evaluate the integrals
containing the singularity near x = 0 with sufficient accuracy. For the temporal integration, we
use the box-rule. The convergence plots are given in Figure 5.2. We also plot the corresponding
rates of convergence as predicted in Theorems 5.18 and 5.19 without the logarithmic factor. As
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10−1

100

22 24 26 28 210

time steps M (k = T
M
)

‖ȳ − ȳkh‖L2(I×Ω)

|j(ū)− jkh(ūkh)|

(a) Time refinement on grid level 7.
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refinement step i (h ∼ 2−2i)

‖ȳ − ȳkh‖L2(I×Ω)

|j(ū)− jkh(ūkh)|

(b) Space refinement with 2048 time
steps.

Figure 5.2.: Error plots of the optimal solutions

we can see, the rates for the functional match the predicted order of almost O(k) and O(h2),
which are plotted for visual comparison. For the state error we make this observation only
in the case of refinement in space: Figure 5.2b clearly shows a rate of O(h) in this case. For
the case of time refinement, we seem to observe in Figure 5.2a a slightly better rate than the
predicted O(

√
k) (until the spatial error starts to dominate from 128 time steps on). For this

reason we give the experimental orders of convergence in Table 5.1, which seem to indicate a
possible rate close to O(k0.8).
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5. A priori error analysis for a parabolic problem

Time steps |j(ū)− jkh(ūkh)| Rate ‖ȳ − ȳkh‖L2(I×Ω) Rate

2 3.458 · 10−3 – 5.543 · 10−2 –
4 1.527 · 10−3 1.17924 3.553 · 10−2 0.641629
8 7.160 · 10−3 1.09267 2.072 · 10−2 0.778014
16 3.470 · 10−4 1.04502 1.172 · 10−2 0.822051
32 1.714 · 10−4 1.01757 6.509 · 10−3 0.848465
64 8.569 · 10−5 1.00013 3.658 · 10−3 0.831381

128 4.316 · 10−5 0.98937 2.291 · 10−3 0.675078
256 2.193 · 10−5 0.97669 1.716 · 10−3 0.416928
512 1.131 · 10−5 0.95550 1.512 · 10−3 0.182591

Table 5.1.: Time refinement on grid level 7 (as in Figure 5.2a).

5.6. Point source identification

In this section we discuss a practical application of the abstract problem formulation to an
inverse source problem. The state equation for the example is a simplified model for the
transport and diffusion of a pollutant y in a lake (cf. [MRVM00]), given as

∂ty − ν∆y + b · ∇y = u in I ×Ω,
ν∂ny = 0 on I × ∂Ω \ Γin,

ν∂ny − n · b y = 0 on I × Γin,

 (5.46)

with initial condition y(0) = 0. The domain Ω describes the surface of the lake, the inflow
boundary Γin is a subset of ∂Ω, ν > 0 is a diffusion parameter and b is assumed to be a static,
smooth and divergence-free vector field (i.e., we assume the influence of y on the flow b to be
negligible). We additionally define a outflow boundary Γout, such that b has the property

n · b


≤ 0 on Γin

≥ 0 on Γout

= 0 on ∂Ω \ (Γin ∪ Γout),

where n : ∂Ω → Rd is the outer normal. The source term u is assumed to consist of a finite
number of pointwise inflows

û =
N∑
i=1

ûi(t)δx̂i (5.47)

where x̂i ∈ Ωc are unknown locations and ûi(t) describes the unknown amount of substance
leaking into the lake at x̂i and time t. Furthermore we assume it is known that x̂i ∈ Ωc, where
Ωc is a line (e.g., a pipeline) intersecting Ω.
A schematic depiction of the setup and exemplary exact data is given in Figure 5.3. Fur-

thermore, the diffusion coefficient is chosen as ν = 0.002 and the vector field b is given by the
negative gradient of a potential Φ on Ω. We set b = −ν∇Φ and require

−∇ · ν∇Φ = 0 in Ω,
ν∂nΦ = 0 on ∂Ω \ (Γin ∪ Γout),
ν∂nΦ = ρin ≥ 0 on Γin,

ν∂nΦ+ σΦ = ρout ≤ 0 on Γin.
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Γin

Γout

Ω

Ωc

x0b(x)

b(x)

(a) Setup for (5.46). (b) Ω, Ωc, x̂1 and x̂2. (c) Coefficients û1 and û2.

Figure 5.3.: Inverse problem setup.

The boundary conditions determine the shape of the velocity field in accordance with the
conditions imposed on ∇· b and −n · b. The penalty factor σ > 0 is introduced to ensure unique
solvability of the equation for Φ.
We solve the state equation for the data given in Figure 5.3. Corresponding snapshots for

some t ∈ I = (0, 10) of the state solution corresponding to the exact data are given in Figure 5.4.

Figure 5.4.: Snapshots of the exact state ŷ at t = 2, 4, 6

For the inverse problem we have available only the concentration of y on the outflow boundary
in the form yobs = ŷ|I×Γout + δ. Here, ŷ is the solution of (5.46) corresponding to the true
source (5.47) and the noise term δ ∈ L2(I × Γout) stands for an additional measurement error
(which we will set to a deterministic function in our numerical experiments). For the concrete
example from Figure 5.4 the corresponding observations are depicted in Figure 5.5.
To give a reconstruction of the source û, we propose to solve the deterministic inverse

problem
min

u∈M(Ωc,L2(I))

1
2‖S(u)− yobs‖2L2(I×Γout) + α‖u‖M(Ωc,L2(I))

where S(u) is the solution of (5.46) corresponding to u. This inverse problem formulation is
similar to the approach described in [BP13], if we would somehow replace the Hilbert space
L2(I) with RM for someM ∈ N. For the concrete example with the depicted data we empirically
determine α = 0.5 to be an appropriate regularization parameter. The optimal state solution
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5. A priori error analysis for a parabolic problem

Figure 5.5.: Snapshots of the observation yobs on the observation boundary Γout (with and
without noise) at t = 2, 4, 6.

Figure 5.6.: Snapshots of the reconstructed ȳ at t = 2, 4, 6 for α = 0.5

ȳ is visualized in Figure 5.6. For the numerical realization we added a small L2 regularization
term as in described in section 5.4, with a value of γ = 10−6 in the depicted simulation. Due to
discretization and the additional L2 regularization, the discrete ūkh does have not the structure
as in (5.47) (for N = 2) since it is the linear combination of more than two Dirac delta
functions. As a postprocessing strategy, to obtain the visualization in Figure 5.7, we group all
the connected components of the grid points in the support of ūkh and identify each of them
with a central point x̃i of the component. In the concrete case we have exactly two components.
Then we identify the spatial part of the of ūkh with |ūkh| ≈

∑
i=1,2 ciδx̃i , where the ci is the

sum over all coefficients of |ūkh| in each component. From the optimality condition (2.27) we
derive a reconstruction of the coefficients of the form ũi(t) = − ci

α p̄kh(t, x̃i); cf. Corollary 2.23.

We see that the outlined reconstruction procedure gives the main structural features of the
exact source û, such as the number and location of the points xi, and a quantitatively adequate
estimate of the coefficients ui (which is in contrast to the results we would obtain with a
regularization approach based on the L2-norm). Certainly, there is a qualitative error between

132



5.6. Point source identification

(a) supp ūkh and reconstructed x̃1
and x̃2.

(b) Reconstructed ũ1 and ũ2.

Figure 5.7.: Postprocessing: visualization of the reconstructed ū.

û and ū which stems from the noise δ and the nonzero regularization parameter α. However,
a detailed study of the reconstruction error for a systematic choice of α depending on the
magnitude of δ (as in [BP13]) is beyond the scope of this work.
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6. A posteriori error analysis and adaptivity

In this chapter, we will consider a solution method based on a adaptive mesh refinement for
an elliptic control problem of the following form:

min
u∈Uad, y∈W 1,s

0 (Ω∪Γ )
J(y) + ψ(u),

subject to e(y, u)(ϕ) = 0 for all ϕ ∈W.
(6.1)

We suppose that ψ : M(Ωc)→ R is the weighted total variation norm

ψ(u) = α

∫
Ωc

d|u|(x),

and Uad are (optional) positivity constraints (either Uad = M(Ωc) or Uad = M+(Ωc)). The
analysis will be done for the elliptic model problem from section 2.2: the state equation is given
by

e(y, u)(·) = a(y, ·)− 〈χΩcu, ·〉,

where a is an elliptic bilinear form (see section 2.2). We assume that the domain Ω is polygonal.
As before, Ωc denotes the control set, and J is a quadratic tracking term on the observation
region Ωo (either distributed or boundary observation),

J(y) = 1
2‖y − yd‖

2
L2(Ωo).

The adaptive algorithm is based on the regularized problem

min
u∈L2(Ωc)∩Uad, y∈H1

0 (Ω∪Γ )
J(y) + ψ(u) + γ

2‖u‖
2,

subject to e(u, y)(ϕ) = 0 for all ϕ ∈ H1
0 (Ω ∪ Γ ).

(6.2)

We consider a discretization of (6.2) based on isoparametric bilinear (or trilinear, in the three
dimensional case) finite elements; see section 6.3.
We derive a posteriori error indicators for the solution of (6.1) on adaptive meshes. The

refinement strategy is based on error indicators for the cost functional, obtained with the
dual-weighted-residual (DWR) approach by Becker, Kapp, and Rannacher [BKR00; BR01].
The error between the cost functional of the continuous and discrete problem are expressed
as weighted residuals of the state equation, adjoint equation, and the optimality condition for
the control, which are then localized to the individual cells of the mesh. Thereby, we hope to
identify an optimal mesh to achieve a specified accuracy for the optimal objective functional.
We do not discuss adaptivity with respect to different “quantities of interest”; cf., e.g., [VW08].
The discretization error estimator (denoted by ηh) and the corresponding indicators are derived
for the regularized problem (6.2). Since the problem (6.2) is similar to a control constrained
optimization problem, we can adapt many of the ideas in Vexler and Wollner [VW08]. The
main idea of our modifications, to cope with the missing differentiability of ψ, is to replace the
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6. A posteriori error analysis and adaptivity

cost term by a linear expression with the subgradient (using the homogeneity of degree one of
ψ and the optimality conditions from Proposition 2.5).

To ensure that the error due to regularization is sufficiently small, the parameter γ has to be
chosen appropriately small. However, a large regularization parameter facilitates the numerical
solution of (6.2) (it leads to more efficient optimization algorithms) and improves the quality
of the error indicators for the discretization error (since they are derived under the assumption
γ > 0). Therefore, we are interested in an accurate estimate of the regularization error in the
optimal functional value. The computational estimate to be derived below, which we denote
by ηγ , is based on an asymptotic model motivated by the a priori analysis of the regularization
error; cf. [IK92; HK06a; HK06b]. In each step, the adaptive strategy will solve the discrete
regularized problem, evaluate the indicators ηγ and ηh such that

j(ū)− jγ,h(ūγ,h) ≈ ηγ + ηh,

and either refine the mesh according to the localization of ηh, or decrease the regularization
parameter. The aim is to balance the relatives size of ηγ and ηh.
Similar methods are used for state constrained problems; see Wollner [Wol10; RVW12] for

a goal-oriented adaptive algorithm in combination with an interior point reformulation. A
related but different approach (which is based on convergence of an interior point method
in function space) has been proposed by Günther and Schiela [SG11]. Other approaches for
the derivation of goal-oriented error estimates for state constrained problems directly work
with the unregularized problem formulation; see Benedix and Vexler [BV09] or Hintermüller
and Hoppe [HH10]. Parameter updates for the regularization parameter in Moreau-Yosida
regularization methods based on a priori estimates have been considered by Hintermüller and
Hinze [HH09].

This chapter is structured as follows. In section 6.1 we explain the error estimation strategy for
the regularization error. Section 6.3 contains the derivation of the discretization error estimator:
First, we compute an equivalent representation for the error in terms of weighted residuals and
a complementarity term. Then, we describe the practical evaluation and localization strategy.
Some further specializations and justifications for the estimators for the case of piece-wise
constant control discretization and piece-wise bilinear control discretization with and without
mass lumping are provided. In section 6.4 we sketch the idea behind the algorithmic strategy.
Section 6.5 contains numerical results, which demonstrate the efficiency of the estimators for two
model problems. Finally, in section 6.6 we compare the adaptive algorithm to the nodal Dirac
discretization from chapter 4 and give an outlook on possibilities for further improvements.

6.1. Problem setup

For the adaptive algorithm we work with the regularized problem for a decreasing sequence of
parameters γ. First, we briefly recapitulate the necessary notation from the previous chapters.
We denote the inner product and norm on L2(Ω) by (·, ·) = (·, ·)L2(Ω). Furthermore, we
abbreviate U = L2(Ωc) and denote the corresponding inner product by (·, χΩc ·). In cases where
no confusion arises, we omit the characteristic function and we also denote the norm in U by
‖·‖ = ‖·‖L2(Ωc). Furthermore, we abbreviate V = H1

0 (Ω ∪ Γ ). The state equation, given by

e(y, u)(ϕ) = a(y, ϕ)− (u, ϕ) = 0 for all ϕ ∈ V (6.3)
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admits a unique solution y = S(u) ∈ V for any given u ∈ U . We define the reduced cost
functionals f and fγ for the smooth part, and j and jγ for the full functional as before by the
relations

jγ(u) = j(u) + γ

2‖u‖
2 = f(u) + ψ(u) + γ

2‖u‖
2 = J(S(u)) + ψ(u) + γ

2‖u‖
2.

For convenience of notation, we only consider the unconstrained setting Uad = U . The modifi-
cations for the general case with constraints are obvious, in each case. As discussed section 2.5,
an optimality condition for (6.2) is given by (6.3), the adjoint equation,

e′y(y, u)(ϕ, p) = a(ϕ, p) = J ′(y)(ϕ) for all ϕ ∈ V, (6.4)

and the optimality condition

e′u(y, u)(ũ, p) + γ(u, ũ) + ψ(u) = (p+ γu, ũ) ≤ ψ(ũ)− ψ(u) for all ũ ∈ U, (6.5)

where (u, y, p) = (ūγ , ȳγ , p̄γ) are the (unique) optimal control, optimal state and optimal adjoint
state, respectively. Furthermore, as in section 3.1, the subdifferential inclusion above can be
rewritten with the proximal map Pγ as

ūγ = Pγ(q̄γ),

where q̄γ ∈ U is the gradient of −1/γ f in the optimum. It is defined by

(q̄γ , ϕ) = −1
γ
e′u(y, u)(ϕ, p̄γ) = −1

γ
(χΩc p̄γ , ϕ) for all ϕ ∈ U.

The proximal map for the parameter c > 0 is given by

Pc(q) = shrinkα/c(q) = (q − α/c)+ − (q + α/c)−.

For an improved estimate of the regularization error, we will require the perturbation of the
solution ūγ with respect to the regularization parameter. To this purpose, we first recall the
definition of the generalized derivative of the proximal map. It is given by

DPc(q)δq = χI(q)δq,

where χI(q) is the characteristic function of the set I(q) = {x ∈ Ωc | −α/c < q(x) < α/c }. Now,
we define the “sensitivity” u̇γ as the unique solution of the auxiliary optimization problem

min
u̇∈L2(I(q̄γ)), ẏ∈V

1
2‖ẏ‖

2
L2(Ωo) + γ

2‖u̇‖
2 + (ūγ , u̇),

subject to a(ẏ, ϕ) = (u̇, ϕ) for all ϕ ∈ V.
(6.6)

With this definition of u̇γ , we can express the second derivative of the value function in an
almost everywhere sense, using the results from Wachsmuth and Wachsmuth [WW11]; see
Proposition 6.1. Furthermore, a straightforward computation reveals that u̇γ can alternatively
given by u̇γ = χI(q̄γ)q̇γ , where the auxiliary variable q̇γ is defined as the solution to the linear
equation

γq̇γ +∇2f(ūγ)DPc(q)q̇γ = −ūγ . (6.7)

Thereby, the solution (6.6) corresponds to a computation of one Newton step for the original
problem (see section 3.2.2). Note, that with this definition of u̇γ we can only obtain the
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directional derivative of the map γ 7→ ūγ in the case where the generalized derivative DPc(q)
coincides with the directional derivative dPc(q, ·). This is exactly the case under the assump-
tion that the set {x ∈ Ωc | −α/c = q̄γ(x) or q̄γ(x) = α/c } has Lebesgue measure zero. To
obtain the derivative in the general case, we would have to replace the generalized derivative
in (6.7) with the directional one, and work with the concept of Bouligand differentiability; see,
e.g., [GV07; GGW08].

6.2. The regularization error

An asymptotic a priori error estimate for the elliptic linear quadratic model problem of the
form

0 ≤ j(ū)− jγ(ūγ) ≤ C γs

for s ∈ (0, 1) has been derived in section 4.5.1. In this section, we will describe two heuristic
strategies to evaluate this error a posteriori, based only on knowledge of the optimal triple
(ūγ , ȳγ , p̄γ). As in section 2.26, we denote the optimal value function by

v(γ) = jγ(ūγ) = j(ūγ) + γ

2‖ūγ‖
2 for γ > 0.

We recall that the value function is concave (see Proposition 2.26) and that the first derivative
is given by

v′(γ) = 1
2‖ūγ‖

2 for γ > 0.

Furthermore, we recall that in the present convex case, the derivative of v is Lipschitz contin-
uous (see Proposition 2.32). Furthermore, the second derivative of the value function can be
computed; cf. also [HK06a; HK06b; WW11].

Proposition 6.1. With u̇γ defined as the solution of (6.6), the second derivative of v can be
expressed as

v′′(γ) = (ūγ , u̇γ) for γ > 0 almost everywhere.

Proof. For the sparse control problem under consideration this result can be found in [WW11,
Lemma 3.5].

Motivated by this result, we will silently assume in the following that for the current value
of γ > 0, the directional derivative in (6.7) is linear (and consequently the value function v
is twice differentiable). As mentioned before, this is equivalent to the assumption that the
set {x ∈ Ωc | q̄γ = −α/γ or q̄γ = α/γ } has Lebesgue measure zero, which is also referred to as
strict complementarity.

Taylor expansion

A very simple strategy to estimate the error is given by a first order Taylor expansion at the
point γ: we approximate

v(0)− v(γ) = −v′(γ)γ +R(γ) ≈ ηtriv
γ = −v′(γ)γ = −γ2‖ūγ‖

2,

where R(γ) is the corresponding remainder, which we neglect. In other words, we declare
that the error between j(ū) and jγ(ūγ) should consist exactly of the regularization term
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v(0)

v(γ)

0 γ

j(ūγ)

Figure 6.1.: v(γ) ≈ v(0) + cγs

ηtriv
γ = −γ/2 ‖ūγ‖2. Of course, this is cheap and trivial to implement, but unfortunately not
asymptotically accurate. Typically, the corresponding effectivity index

Iγeff = j(ū)− jγ(ūγ)
ηtriv
γ

does not converge to one for γ → 0. To understand this, we make for the value function the
ansatz v(γ) ≈ m(γ) = m0 + cγs for some m0 ∈ R, c > 0, and s ∈ (0, 1], which is motivated
by the a priori analysis. For the model function m, we obtain with a simple computation the
identity

−m′(γ)γ = s (m(0)−m(γ)).

Using ηtriv
γ to estimate the error m(0) − m(γ), the resulting effectivity index is given by

Iγeff = (m(0) −m(γ))/(−m′(γ)γ) = s−1 ≥ 1. Unless s is equal to one, we underestimate the
error by a constant factor; this is depicted in Figure 6.1. However, this estimator can be
surprisingly useful in practice. This is due to the fact that the error is underestimated by the
constant factor s−1 (which was bounded by 3 in the two dimensional case and 4 + ε in the
three dimensional case; see Proposition 4.26), and a precise estimate is often not necessary; see
section 6.5.

A model function

Motivated by the a priori analysis and the above discussion, we develop a second estimation
approach. As substitute for the value function, we introduce the model function m, given by

v(γ) ≈ m(γ) = m0 + cγs

for some (m0, c, s); as before. Then, for fixed γ > 0 we choose the parameters (m0, c, s) based
on current data: we require

m(γ) = m0 + cγs = v(γ) = jγ(ūγ),

m′(γ) = csγs−1 = v′(γ) = 1
2‖ūγ‖

2,

m′′(γ) = cs(s− 1)γs−2 = v′′(γ) = (ūγ , u̇γ),
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We have seen that the sensitivity u̇γ can be computed by solving a linear quadratic optimization
problem. Under the assumption of strict complementarity this has a similar computational
effort to the computation of one Newton step for the original problem. Based on this, we define
the estimate

v(0)− v(γ) ≈ ηmod
γ = m0 −m(γ) = −cestγ

sest .

A quick computation reveals that the relations above determine (c, s) to be given by (cest, sest)
with

sest = 1 + γv′′(γ)
v′(γ) and cest = v′(γ)

sestγsest−1 . (6.8)

This implies that ηmod
γ has the closed form representation

ηmod
γ = −cestγ

sest = − γv′(γ)
1 + γv′′(γ)/v′(γ) =

ηtriv
γ

sest
. (6.9)

Therefore, we can give another interpretation of this modified estimator: with the help of the
estimated rate of convergence sest we try to compensate the systematic error that results from
a simple Taylor approximation as for ηtriv

γ .

6.3. The discretization error

In this section, we discretize the regularized problem (6.2). For the state, we use bilinear
(trilinear) isoparametric finite elements and for the control we consider different spaces (cf.
section 4.5.3). We denote for the discretization parameter h the triangulation by Th = {K },
which is a collection of disjoint quadrilaterals (hexahedrals, in three dimensions) with

Ω̄ =
⋃

K∈Th

K̄.

For each K ∈ Th, the map TK : K̂ → K denotes a bilinear (trilinear) transformation from the
reference cell K̂ = (0, 1)d. We assume that for all h the boundary Γ can be exactly represented
by the corresponding faces of the adjacent cell. The space of isoparametric bilinear finite
elements (see, e.g., [BS08, Chapter 10.4]) associated with Th is defined as usual by

Vh =
{
vh ∈ C(Ω̄)

∣∣∣ T−1
K ◦ vh|K ∈ Q1(K̂) for all K ∈ Th

}
∩H1

0 (Ω ∪ Γ ).

The space Q1(K̂) denotes the space of bilinear functions on the unit square (trilinear functions
on the unit cube).

To enable local mesh refinement, we relax the usual regularity assumption on the triangulation
by allowing so-called hanging nodes; cf., e.g., [BR01; BE03; Mei08]. For each K ∈ Th and a
corresponding face F ⊂ ∂K, we require that F is either a subset of ∂Ω, identical to a face of a
neighboring cell, or identical to the disjoint union of two (four, in three dimensions) neighboring
cells. Note that this still results in a conforming finite element space, as defined above, if the
degrees of freedom on the hanging nodes are fixed to the appropriate average of the values of
the neighboring vertices. For details on the practical implementation of this approach we refer
to [CO84]. For the evaluation of the error estimator we additionally assume that Th has patch
structure, i.e., it results from a uniform refinement of a coarse triangulation denoted by T2h.
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The space of piecewise constant functions is defined as

V 0
h =

{
uh ∈ L2(Ω)

∣∣∣ uh|K ∈ P0(K) for all K ∈ Th
}
.

As discussed in section 4.5.3, we consider a discretization of the control with piecewise constants
discontinuous or piecewise bilinear (trilinear) continuous finite elements. In the former case
we define Uh = U0

h = V 0
h ∩ L2(Ωc) and in the latter case we define Uh = U1

h = Vh ∩ L2(Ωc).
We consider the controls on Ωc as restrictions of finite element functions on Ω, which is
always possible and leads to a simple notation. We also use the same mesh for the control
and state variable in the practical implementation. However, from a practical standpoint, it
would certainly be beneficial to consider different meshes for control and state. Since the
error indicators derived below can be separated into errors stemming from control and state
discretization, we will comment on possible extensions into this direction.
The discrete regularized problem is given by

min
u∈Uad∩Uh, y∈Vh

Jh(yh) + ψh(uh) + γ

2‖uh‖
2
h,

subject to eh(yh, uh)(ϕh) = 0 for all ϕh ∈ Vh.
(6.10)

The subscript h for each of the expressions e, J , ψ, and ‖·‖ indicates a possible evaluation of
the corresponding terms by numerical quadrature. The discrete state equation is given as

eh(yh, uh)(ϕh) = ah(yh, ϕh)− (uh, ϕh)h for uh ∈ Uh, yh ∈ Vh, and ϕh ∈ Vh.

Since we work with isoparametric finite elements, we cannot expect to exactly evaluate the
cell-wise contributions for a(yh, ϕh); therefore we also add an h here. In the case where all
transformations TK are linear and the coefficients in the bilinear form are constant in space, a
quadrature formula of sufficiently high order on each cell (e.g., the tensor-product rule resulting
from the two-point Gaussian rule) guarantees an exact evaluation. For the right-hand side an
exact evaluation can be guaranteed if the control set is compatible with the mesh. Additionally,
as motivated by the analysis in section 4.5.3, we will also consider an evaluation of the control
term (uh, ϕh)h with a lower order quadrature rule, i.e., the tensor-product trapezoidal rule,
which is referred to as mass lumping. We will go into more detail below. The discrete tracking
term is given by

Jh(yh) = 1
2‖yh − yd‖

2
L2(Ωo),h = 1

2

[∫
Ωo

(yh − yd)2 dx
]
h

for yh ∈ Vh.

Again, if we use a quadrature formula of sufficiently high order, assume that Ωo is approximated
well by the corresponding cells of the mesh, and assume that yd is smooth, we can expect an
accurate evaluation of this term. The control cost term is defined as

ψh(uh) + γ

2‖uh‖
2
h = α

[∫
Ωc
|uh|dx

]
h

+ γ

2

[∫
Ωc
u2
h dx

]
h

for uh ∈ Uh.

We assume that Ωc is approximated sufficiently well by the triangulation. The L1 norm is
always evaluated with mass lumping, which is motivated by the splitting into positive and
negative part. This is exact in the case that uh is either only positive or only negative on
each single cell; cf. the discussion in section 4.5.3. For the regularization term we choose the
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6. A posteriori error analysis and adaptivity

quadrature formula in accordance with the choice made for the control above. In all cases we
endow the control space Uh with the discrete inner product

(uh, ϕh)h =
[∫
Ωc
uhϕh dx

]
h

for uh ∈ Uh, ϕh ∈ Uh,

where the quadrature rule is chosen as for the regularization term and the control term. Again,
we give a more detailed description below; see section 6.3.2.

We denote the solution operator of the discrete state equation by Sh(uh) = yh. In the
following, we use the approach based on the dual-weighted-residual method (see [BR01]) to
assess the discretization error in the discrete reduced cost functional

jγ,h(uh) = Jh(Sh(uh)) + ψh(uh) + γ

2‖uh‖
2
h

in the optimal solution. Corresponding to the continuous Lagrange functional defined as

L(u, y, p) = J(y)− e(y, u)(p)

for u ∈ U , y ∈ V , and ϕ ∈ V , we define the discrete Lagrange functional as

Lh(uh, yh, ph) = Jh(yh)− eh(yh, uh)(ph)

for uh ∈ Uh yh ∈ Vh, and ϕh ∈ Vh. As before, the unique optimal solution (uh, yh, ph) =
(ūγ,h, ȳγ,h, p̄γ,h) of (6.10) is characterized by the relations

eh(yh, uh)(ϕh) = ah(yh, ϕh)− (uh, ϕh)h = 0 for all ϕh ∈ Vh,
e′h,y(yh, uh)(ϕh, ph) = ah(ϕh, ph) = J ′h(yh)(ϕh) for all ϕh ∈ Vh,

e′h,u(y, u)(ũh, ph) + γ(uh, ũh)h = (ph + γuh, ũh)h ≤ ψh(ũh)− ψh(uh) for all ũh ∈ Uh.

As in the continuous case, we define the auxiliary variable q̄γ,h ∈ Uh by

(q̄γ,h, ϕh)h = −1
γ
e′h,u(ȳh, ūh)(ϕh, p̄γ,h) = −1

γ
(p̄γ,h, ϕh)h for all ϕh ∈ Uh.

In other words, we define q̄γ,h as the (discrete) L2-projection of −1/γ χΩc p̄γ,h on the control
space Uh. In the case of Uh = U1

h (piecewise linear controls) and if Ωc is compatible with the
triangulation, we have q̄γ,h = −1/γ χΩc p̄γ,h. With this variable, we can express the optimality
condition alternatively with a proximal map as

ūγ,h = Pγ,h(q̄γ,h) = argmin
uh∈Uh

[
γ

2‖q̄γ,h − uh‖
2
h + ψh(uh)

]
.

Note that Pγ,h : Uh → Uh will generally not be the same operator as its continuous counterpart
Pγ . In particular, Pγ,h does not generally have a closed form representation; we will give a
more detailed description below.

6.3.1. Finite element error for the regularized problem

We give a reformulation of the error in the functional with the DWR method. Since ψ is not
smooth, we define the optimal subgradients λ̄γ ∈ U and λγ,h ∈ Uh in the subdifferential of ψ
and ψh respectively as

λ̄γ = γ (q̄γ − ūγ) ,
λ̄γ,h = γ (q̄γ,h − ūγ,h) .
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6.3. The discretization error

In fact, with Proposition 3.4.(i), we have λ̄γ ∈ ∂ψ(ūγ) and λ̄γ,h ∈ ∂hψh(ūγ). The subdifferential
∂hψh is defined w.r.t. the inner product in Uh; to be precise, we state again the full form

(λ̄γ,h, ũh)h = γ(q̄γ,h − ūγ,h, ũh)h ≤ ψh(ũh)− ψh(ūγ,h) for all ũh ∈ Uh.

Since ψ and ψh are positively homogeneous (of degree one), we can represent the functional
value with the help of the subgradient (see Proposition 2.5) as

(λ̄γ , ūγ) = ψ(ūγ),
(λ̄γ,h, ūγ,h)h = ψh(ūγ,h).

(6.11)

For convenience of notation, we abbreviate the optimal variables in the following without
subscript γ by

χ̄ = (q̄, λ̄, ȳ, p̄) = (q̄γ , λ̄γ , ȳγ , p̄γ),
χ̄h = (q̄h, λ̄h, ȳh, p̄h) = (q̄γ,h, λ̄γ,h, ȳγ,h, p̄γ,h).

(6.12)

Furthermore, we introduce the modified Lagrange functionals

L̃(χ) = L̃(u, λ, y, p) = L(u, y, p) + (λ, u) + γ

2‖u‖
2,

L̃h(χh) = L̃h(uh, λh, yh, ph) = Lh(uh, yh, ph) + (λh, uh)h + γ

2‖uh‖
2
h.

The Lagrange functions L̃ and L̃h are smooth, so we can proceed to give an estimate for the
error; cf. [BR01, Proposition 2.1], [BKR00, Section 4.3], and [VW08, Section 4.2].

Proposition 6.2. For the optimal variables (6.12) it holds

jγ(ū)− jγ,h(ūh) = L̃(χ̄h)− L̃h(χ̄h)

+ 1
2
[
ρy(χ̄h)(p̄− p̄h) + ρp(χ̄h)(ȳ − ȳh) + ρu(χ̄h)(ū− ūh) + (ū+ ūh, λ̄− λ̄h)

]
, (6.13)

where the residuals ρy, ρp, and ρu are defined as

ρy(χ)(·) = L̃′p(χ) = −e(u, y)(·), (6.14)
ρp(χ)(·) = L̃′y(χ) = J ′(y)(·)− e′y(u, y)(·, p) (6.15)
ρu(χ)(·) = L̃′u(χ) = (γu+ λ, ·)− e′u(u, y)(·, p), (6.16)

for any χ = (u, λ, y, p) ∈ U × U × V × V .

Proof. By construction (see (6.11)), we have

jγ(ū)− jγ,h(ūh) = fγ(ū) + γ

2‖ū‖
2 + ψ(ū)− fγ,h(ūh)− γ

2‖ūh‖
2
h − ψh(ūh)

= L(ū, λ̄, ȳ, p̄)− Lh(ūh, λ̄h, ȳh, p̄h) = L(χ̄)− Lh(χ̄h) = L(χ̄h)− Lh(χ̄h) + L(χ̄)− L(χ̄h)

Since L is smooth, we can apply the usual trick and rewrite the last term as an integral over
the derivative, which is then evaluated with the trapezoidal rule to obtain

L̃(χ̄)− L̃(χ̄h) =
∫ 1

0
L̃′(tχ̄h + (1− t)χ̄)(χ̄− χ̄h) dt = 1

2
[
L̃′(χ̄)(χ̄− χ̄h) + L̃′(χ̄h)(χ̄− χ̄h)

]
.

143



6. A posteriori error analysis and adaptivity

Note that, since L̃′(·)(χ− χh) is linear, the evaluation with the trapezoidal rule is exact. The
result now follows by computing the partial derivatives of L̃. It holds

L̃′(χ̄)(χ̄− χ̄h) = ρy(χ̄)(p̄− p̄h) + ρp(χ̄)(ȳ − ȳh) + ρu(χ̄)(ū− ūh) + (ū, λ̄− λ̄h) = (ū, λ̄− λ̄h),

since the first three terms vanish for the optimal solution χ̄. Similarly, we have

L̃′(χ̄h)(χ̄− χ̄h) = ρy(χ̄h)(p̄− p̄h) + ρp(χ̄h)(ȳ − ȳh) + ρu(χ̄h)(ū− ūh) + (ūh, λ̄− λ̄h).

This yields the result.

Let us give an interpretation to these terms. The term

ηquad
h = L̃(χ̄h)− L̃h(χ̄h)

represents a quadrature error. It depends only on computable, discrete quantities, and can be
assessed in practice by comparing with a higher order quadrature formula. In the case where we
use high order quadrature formulas for the evaluation of the respective quantity, it is neglected
in the numerical experiments. In the case where we use mass lumping, we give more details
below. The terms

ρy(χh)(p̄− p̄h) = (ūh, p̄− p̄h)− a(ȳh, p̄− p̄h) (6.17)
ρp(χh)(ȳ − ȳh) = (χΩo(ȳ − yd), ȳ − ȳh)− a(ȳ − ȳh, p̄h) (6.18)

are the residual of the state equation, weighted by the error of the adjoint variable, and the
adjoint residual, weighted by the error of the state variable. To evaluate this error in practice, we
will replace the exact variables (ȳ, p̄) by (locally) higher order reconstructions; see section 6.3.2.
The term

ρu(χ̄)(ū− ūh) = (γūh + λ̄h, ū− ūh) + (p̄h, ū− ūh) = (γq̄h + p̄h, ū− ūh) (6.19)

is an L2-projection error between γq̄h ∈ Uh and −χΩc p̄h ∈ {χΩcvh | vh ∈ Vh }, weighted by the
error of the control variable. If Ωc is represented exactly by the triangulation, this error is
zero in the case of bilinear controls (i.e., Uh = U1

h). In the other cases, we will replace the
exact variable ū again by a (locally) higher order reconstruction; see section 6.3.2. Finally, the
term

(ū+ ūh, λ̄− λ̄h) (6.20)

can be interpreted as a complementarity error. For instance, it is zero when the subgradients
λ̄ and λ̄h coincide (to ±α) on the combined support of ū and ūh. We will localize this term
with an approach based on a reconstruction the exact adjoint state and the pointwise formula
for the proximal map Pγ .

6.3.2. Error representation

To obtain a computable error, we have to replace the continuous variables (ū, ȳ, p̄) appearing
in (6.14)-(6.16) with computable quantities. For ȳ and p̄, we use an established (heuristic)
approach and replace them with locally higher order reconstructions of the computed solutions
ȳh and p̄h; see [BR01, Section 5]. To this purpose, we define the patch-wise interpolation
operator

i2h : Vh → V 2
2h,
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α

0

−p̄h

−πp̄h

α

0

γπūh

πλ̄h

Figure 6.2.: Higher order reconstructions πp̄h, πūh and πλ̄h

which interpolates the function vh on each patch (a cell of the globally coarsened mesh T2h)
by a biquadratic (triquadratic) function i2hvh ∈ V 2

2h. The space V 2
2h is defined similarly to Vh

on the coarse triangulation T2h with the biquadratic (triquadratic) functions Q2(K̂) on the
reference cell. Then we replace (ȳ, p̄) with (πȳh, πp̄h) = (i2hȳh, i2hp̄h) for the evaluation of
the weights in (6.14) and (6.15); see Becker and Rannacher [BR96] for more details on this
approach. Consequently, we define

ηyh = ρy(χ̄h)(i2hp̄h − p̄h),
ηph = ρp(χ̄h)(i2hȳh − ȳh).

To obtain a locally higher order reconstruction for the optimal control ū and the subgradient
λ̂, we follow Vexler and Wollner [VW08] and evaluate the continuous proximal map Pγ for the
semidiscrete variable πq̄h = −1/γ χΩcπp̄h ∈ L2(Ωc). We set

πuh = Pγ(πq̄h), and πλ̄h = γ (πq̄h − πūh) .

As before, we replace (ū, λ̄) by (πūh, πλ̄h) in the weight for (6.15) and the complementarity
term. We define the corresponding estimators as

ηuh = ρu(χ̄h)(πūh − ūh),
ηλh = (πūh + ūh, πλ̄h − λ̄h).

Note, that these variables are generally not finite element functions and their numerical treat-
ment requires some care. We will use summatory subdivided quadrature formulas, which only
require a pointwise evaluation of these quantities. This is possible, since Pγ possesses a point-
wise representation. A one-dimensional visualization of this approach is given in Figure 6.2.

Then, the error contributions from Proposition 6.2 are localized to the cells of the triangula-
tion Th. The standard approach for ρu and ρz is a cell-wise integration by parts; see, e.g., [BR01].
We will use the filtering approach by Braack and Ern [BE03] in the numerical experiments. The
error contributions for ρu and the complementarity term are localized directly, since they do not
involve partial derivatives. To justify the localization procedure, it is usually argued that the
discrete solutions appearing in the weights of (6.14)–(6.16) can be replaced by an interpolation
of the continuous solution. Then, Galerkin orthogonality is applied in the residuals, which
allows to replace the discrete optimal solution in the weight by an arbitrary discrete variable.
Due to the nonsmoothness of ψ, we can not do this in general; cf. [VW08]. We will further
elaborate in the concrete settings for the control space Uh; cf. also section 4.5.3.

In the following, for clarity of presentation, we neglect the errors from quadrature in a and J ,
and the errors due to the approximation of Ωc by the mesh. Therefore, we make the following
assumption.
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6. A posteriori error analysis and adaptivity

Assumption 6.1. We assume that ah ≡ a, Jh ≡ J , and make a compatibility assumption on
Ωc and the mesh as in chapter 4 and chapter 5.

The otherwise resulting errors are not directly related to the discussion. Furthermore, in the
numerical experiments these assumptions are always fulfilled.

Piecewise constant controls

We discuss the case of piecewise constant controls Uh = U0
h . We give the specialization of

Proposition 6.2.

Proposition 6.3. With Assumption 6.1, we obtain for the optimal variables (6.12) that

jγ(ū)− jγ,h(ūh)

= 1
2
[
ρy(χ̄h)(p̄− ph) + ρp(χ̄h)(ȳ − yh) + ρu(χ̄h)(ū− uh) + (ūh + ū, λ̄− λ̄h)

]
,

where ph ∈ Vh, yh ∈ Vh and uh ∈ U0
h are arbitrary. The residuals ρy, ρp, and ρu are defined as

in Proposition 6.2.

Proof. With Assumption 6.1, all integrals in the Lagrange function can be evaluated exactly
and we have L̃(χ̄h) − L̃h(χ̄h) = 0. With Galerkin orthogonality for the state and adjoint
equation, we have ρy(χ̄h)(ϕh) = ρp(χ̄h)(ϕh) = 0 for any ϕh ∈ Vh. The equality

ρu(χh)(ϕh) = (γūh + λ̄h, ϕh) + (p̄h, ϕh) = (γq̄h + p̄h, ϕh) = 0.

for all ϕh ∈ U0
h follows by definition of λ̄h and q̄h and the fact that (·, ·)h ≡ (·, ·) due to

Assumption 6.1.

As a corollary, we can insert (uh, yh, ph) = (P 0
h ū, ihȳ, ihp̄) in Proposition 6.3 (where ih is the

nodal interpolation and P 0
h is the L2-projection onto U0

h), and give a partial justification for
the localization of the first three terms to cell-wise contributions. For the last term, a rigorous
justification is still missing. In the numerical experiments we usually observe that this term
small (of higher order) when compared to the estimate of the weighted L2-projection error

ρu(χh)(ū− ihū) = (p̄h − γq̄h, ū− P 0
h ū).

Piecewise linear controls with consistent mass

Now, we turn to the case of piecewise linear controls Uh = U1
h . First, we discuss the case

without mass lumping, i.e., where it holds (·, ·)h ≡ (·, ·) with Assumption 6.1. As mentioned
before, we have q̄h = −1/γ χΩc p̄h ∈ U1

h under the compatibility assumption on Ωc and the
triangulation. However, due to the nondiagonal mass matrix of (·, ·) on the space U1

h , the
optimal solution ūh = Pγ,h(q̄h) does not have a closed form solution; cf. section 4.5.3. A similar
remark applies for the subgradient λ̄h = γ(q̄h − ūh). Nevertheless, we obtain the following
result.
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Proposition 6.4. With Assumption 6.1, we obtain for the optimal variables (6.12) that

jγ(ū)− jγ,h(ūh) = 1
2
[
ρy(χ̄h)(p̄− ph) + ρp(χ̄h)(ȳ − yh) + (ūh + ū, λ̄− λ̄h)

]
,

where ph ∈ Vh and yh ∈ Vh are arbitrary. The residuals ρy, ρp, and ρu are defined as in
Proposition 6.2.

Proof. As before, with Assumption 6.1, all integrals in the Lagrange function are evaluated
exactly and we have L̃(χ̄h)−L̃h(χ̄h) = 0. With Galerkin orthogonality for the state and adjoint
equation, we have ρy(χ̄h)(ϕh) = ρp(χ̄h)(ϕh) = 0 for any ϕh ∈ Vh. Therefore it follows that

ρu(χh)(ϕ) = (γūh + λ̄h, ϕ) + (p̄h, ϕ) = (γq̄h + p̄h, ϕ) = 0

for all ϕ ∈ U , and the residual vanishes.

As before, we can insert (yh, ph) = (ihȳ, ihp̄h) in Proposition 6.4, and give a partial justifi-
cation for the localization of the first two terms to cell-wise contributions. For the last term,
we are unable to give a corresponding justification. In the numerical experiments we observe
good effectivity values with the local reconstruction procedure with (πūh, πλ̄h) also in the cases
where the complementarity term gives a significant contribution; see below.

Piecewise linear controls with mass lumping

Now, we discuss the case Uh = U1
h with mass lumping, i.e., where the terms (·, ·)h, ψh, and

‖·‖2h are evaluated with the trapezoidal rule on each cell; cf. section 4.5.3.

Proposition 6.5. With Assumption 6.1 and mass lumping, we obtain for the optimal vari-
ables (6.12) that

jγ(ū)− jγ,h(ūh) = γ

2
[
‖ūh‖2h − ‖ūh‖2

]
+ 1

2
[
ρy(χ̄h)(p̄− ihp̄) + ρp(χ̄h)(ȳ − yh) + (ūh + ū, λ̄− λ̄h)

]
+R,

where yh ∈ Vh is arbitrary and ihp̄ ∈ Vh is the nodal interpolation of p̄. The residuals ρy, ρp,
and ρu are defined as in Proposition 6.2, and the remainder R is given by the quadrature error

R = (ūh, ihp̄− p̄h)− (ūh, ihp̄− p̄h)h.

Proof. With Assumption 6.1, all integrals in the Lagrange function with exception of the control
terms are evaluated exactly. As mentioned before, it holds

λ̄h = γ(q̄h − ūh) = −χΩc p̄h − γūh ∈ U1
h ,

due to the compatibility of Ωc and the triangulation. Therefore, we obtain

L̃(χ̄h)− L̃h(χ̄h) = (λ̄h + p̄h, ūh) + γ

2‖uh‖
2 − (λ̄h + p̄h, ūh)h −

γ

2‖uh‖
2
h = γ

2‖ūh‖
2
h −

γ

2‖ūh‖
2

with λ̄h + χΩc p̄h = −γūh. With Galerkin orthogonality for the adjoint equation, we have
ρp(χ̄h)(ϕh) = 0 for any ϕh ∈ Vh. For the state residual, we can not apply Galerkin orthogonality.
Here, the discrete state equation is given by

a(ȳh, ϕh)− (ūh, ϕh)h for all ϕh ∈ Vh.
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Therefore, we compute

ρy(χ̄h)(ϕh) = a(ȳh, ϕh)− (ūh, ϕh) = (ūh, ϕh)h − (ūh, ϕh) for all ϕh ∈ Vh.

Inserting ϕh = ihp̄ − p̄h gives the form above. The control residual vanishes due to q̄h =
−1/γ χΩc p̄h ∈ U1

h , as in Proposition (6.4).

Motivated by Lemma 4.31, where an estimate for the quadrature error due to mass lumping
of the form

|(ūh, ihp̄− p̄h)− (ūh, ihp̄− p̄h)h| ≤ Ch2‖∇ūh‖L2(Ωc)‖∇(ihp̄− p̄h)‖L2(Ωc)

was derived (in the case of linear finite elements on a shape-regular triangulation), we decide
to neglect the remainder term |R|. By the a priori analysis in section 4.5.4, we can expect
the error ‖ihp̄ − p̄h‖H1(Ω) to be of the order O(h), at least on quasi-uniform meshes. Under
such an assumption, the remainder term is of the order O(h3) (for fixed γ > 0) and therefore
negligible.

6.4. Adaptive strategy

We base the refinement strategy upon the following representation for the combined discretiza-
tion and regularization error:

j(ū)− jγ,h(ūγ,h) = j(ū)− jγ(ūγ) + jγ(ūγ)− jγ,h(ūγ,h) ≈ ηγ + ηh.

The algorithm will solve the optimization problem (6.10) for given initial γ on an initial mesh,
evaluate the indicators given by

ηγ = ηtriv
γ /sest,

ηh = ηquad
h + ηyh + ηph + ηuh + ηλh ,

as defined above. The adaptive strategy is based on an equilibration of both error terms: we
try to keep a balance, such that

|ηγ | ≈ cequi |ηh|

is fulfilled throughout the iterations. Here, cequi ≥ 1 is a chosen equilibration factor. The
introduction of this factor is motivated on the one hand by the corresponding theory, where we
estimate the regularization error on the continuous level, and on the other hand by numerical
experience; see below. In the numerical examples we use the following simple strategy: if |ηγ | >
2 cequi |ηh|, we decrease γ (by a fixed factor), if cequi |ηh| > 2 ηγ , we refine the discretization.
Otherwise, if none of these conditions is fulfilled, we do both steps. The refinement of the
discretization is based upon the localization of the error indicators as discussed above. For the
selection of the relevant cells, different strategies are possible such as the fixed-fraction or the
fixed-error strategy. We will use the optimization approach by Braack [Bra98, Section 4.4.2].
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6.5. Numerical results

In this section we give some numerical evidence for the effectivity of the outlined estimation
strategy. We set up two model configurations; one with global control and observation and
one with control and observation on disjoint subdomains. We compute the effectivity indices
of the discretization error estimator for a sequence of regularization parameters and compare
the relative size of the error contributions due to control and state discretization. We asses
the quality of the regularization error estimate on a sequence of adaptively generated meshes.
The improved practical performance due to adaptivity is demonstrated by comparing with
uniform mesh refinement. We mention that the corresponding algorithm is implemented in
the PDE-optimization library RoDoBo [RoD], using the underlying finite element toolbox
Gascoigne [Gas].

The test problem

We consider the linear quadratic optimal control problem from chapter 4. The weak form e is
in this case given by

e(u, y)(p) = a(y, p)− (u, p) = (∇y,∇p)− (u, p),

and we have V = H1
0 (Ω). The domain for this test example is chosen as the unit square

Ω = (0, 1)2 ⊂ R2. As discussed above, the objective functional consists of ψ(u) = α‖u‖M(Ωc)
and the quadratic tracking J given by

J(y) = 1
2‖y − yd‖

2
L2(Ωo)

for a desired state yd ∈ L2(Ωo). We consider two configurations:
1. Global control and observation: We consider Ωc = Ωo = Ω = (0, 1)2 with the desired

state
yd(x) = 1

σ
exp

(
−|x− xc|

2

2σ2

)
where xc = (1/2, 1/2) is the center and σ = 0.3. The cost parameter is set to α = 0.01.

2. Disjoint control and observation: We consider a control domain in the left quarter of Ω
and an observation domain in the right quarter, i.e., we set

Ωc = {x = (x1, x2) ∈ Ω | x1 < 1/4 } ,
Ωo = {x = (x1, x2) ∈ Ω | x1 > 3/4 } .

The desired state is chosen as yd(x) = sin(πx1) sin(πx2)3, and the cost parameter is set
to α = 0.0001.

By the improved regularity result from section 4.4.2, we know that the optimal solution to the
first problem is an element of H−1(Ω). In fact, by the numerical results we observe that the
solution appears to be a line-measure on a smooth, closed curve with an even more regular,
distributed L2-part in the interior; see Figure 6.3. With the second example, we want to
investigate also the case where the optimal control is a point source (which is possible in the
former configuration only for desired states with singularities; see section 4.6). For this problem,
the numerical results indicate that the optimal control is given by a Dirac delta function in
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(a) control ūγ,h (γ = 10−9) (b) state ȳγ,h (γ = 10−9)

Figure 6.3.: Numerical results for example 1.

(a) control ūγ,h (γ ≈ 10−15) (b) state ȳγ,h (γ ≈ 10−18)

Figure 6.4.: Numerical results for example 2.

the point x = (1/4, 1/2); see Figure 6.4. The underlying initial mesh is chosen as the twice
globally refined unit cube (with 16 initial cells). For both of these examples, the bilinear form
a can always be evaluated exactly and Ωc and Ωo are compatible with the mesh (on all possible
refinements). The tracking term is evaluated with a Gaussian quadrature rule; therefore the
corresponding (neglected) error term is of fourth order, since yd is smooth.

Discretization error

Now, we give some numerical evidence for the accuracy of the proposed estimates for the
discretization error. We compute the effectivity indices

Iheff = j(ūγ)− jγ,h(ūγ,h)
ηh

for fixed γ ∈ { 10−3, 10−5, 10−7, 10−9, 10−11 }. Since no exact value is available, we compare
with a reference value on a fine mesh. Since we noticed in the numerical experiments that the
estimators ηyh and ηph dominate the total error for example 1, we generally give the results for
example 2 in the following, since this allows for a better assessment of the quality of the error
estimators for the control discretization.
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6.5. Numerical results

The values for the approach based on mass lumping are given in Table 6.1. We observe that
the effectivity indices converge to one for fixed γ with increasing fineness of the discretization.
The indices deteriorate for decreasing γ on a fixed mesh, which is to be expected. The indices for

#ref γ = 10−3 γ = 10−5 γ = 10−7 γ = 10−9 γ = 10−11

2 1.01 1.21 1.65 -0.49 -0.05
4 1.07 1.12 1.11 1.74 -0.29
6 1.01 1.07 1.05 1.25 -11.79
8 1.00 1.02 1.03 1.38 1.16
10 – 1.01 1.01 1.12 1.18
12 – 1.01 1.01 1.03 1.10

Table 6.1.: Effectivity indices for example 2 with mass lumping for fixed γ > 0.

the consistent discretization with piece-wise bilinears are given in Table 6.2. For completeness,

#ref γ = 10−3 γ = 10−5 γ = 10−7 γ = 10−9 γ = 10−11

2 3.23 0.69 0.88 0.65 0.02
4 1.00 0.91 0.90 0.95 0.47
6 1.18 1.04 1.06 1.01 1.02
8 2.00 1.03 1.04 1.07 1.01
10 1.12 1.02 0.95 0.98 1.01
12 1.02 1.01 0.97 1.00 1.01

Table 6.2.: Effectivity indices for example 2 with consistent mass for fixed γ > 0.

we also give the indices for piecewise constant discretization in Table 6.3.

#ref γ = 10−3 γ = 10−5 γ = 10−7 γ = 10−9 γ = 10−11

2 3.78 0.81 0.94 0.40 0.01
4 1.05 0.99 0.98 0.98 0.22
6 0.99 1.00 1.01 0.99 0.94
8 0.99 1.00 1.00 0.99 1.02
10 1.01 1.00 1.00 1.00 1.01
12 1.02 1.00 1.00 1.00 1.01

Table 6.3.: Effectivity indices for example 2 with piecewise constants for fixed γ > 0.

Regularization error and adaptive results

To assess the quality of the regularization error estimate, we run the adaptive algorithm for
example 1 with an equilibration factor cequi = 10. Thereby, we try to keep the discretization
error one order of magnitude smaller than the regularization error to ensure that the numerical
solution is sufficiently close to the continuous one (as in the theory). The results for the
effectivity indices defined as

Ĩeff
γ = j(ū)− jγ,h(ūγ,h)

ηγ
and Ieff = j(ū)− jγ,h(ūγ,h)

ηγ + ηh
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are given in table 6.4 (for a selection of generated refinement levels). The given values are
computed with piece-wise bilinear discretization with mass lumping. The results for the other
discretization concepts are similar. We observe that the estimated rate of convergence sest tends

#ref Ndof γ sest ηγ ηh Ĩeff
γ

Ieff

4 447 3.2·10−6 0.97 −2.1·10−3 3.6·10−4 0.83 1.00
6 2345 3.2·10−7 0.90 −2.8·10−4 6.7·10−5 0.80 1.04
8 7337 10−7 0.88 −1.0·10−4 1.9·10−5 0.85 1.04

10 17649 10−8 0.84 −1.5·10−5 5.5·10−6 0.52 0.81
12 57821 3.2·10−9 0.82 −6.1·10−6 1.9·10−6 0.68 1.00
14 194537 10−9 0.81 −2.4·10−6 −1.9·10−6 0.79 0.44
16 513963 10−9 0.81 −2.4·10−6 1.8·10−7 0.92 1.00

Table 6.4.: Numerical results for example 1 (cequi = 10).

to a value of approximately 0.8 for increasing refinement level. The experimental effectivity
Ĩeff

γ is in all cases in the interval (0.5, 1]; i.e., we overestimate the error slightly. However, in
most cases this is explained by the discretization error, as the values of Ieff suggest.
Now, we give the results of the adaptive computation for example 1 and example 2. We

set an equilibration factor of cequi = 2; the corresponding results are given in Table 6.5. We

#ref γ sest ηγ ηh Ieff

2 10−6 0.97 −6.5·10−4 2.0·10−3 0.53
4 3.2·10−7 0.93 −2.5·10−4 2.7·10−4 7.00
6 10−7 0.85 −0.1·10−4 5.3·10−5 1.05
8 10−8 0.83 −1.5·10−5 8.5·10−6 0.95
10 3.2·10−9 0.81 −6.0·10−6 2.2·10−6 1.00
12 3.2·10−10 0.80 −9.7·10−7 1.3·10−6 3.09
13 10−10 0.80 −9.7·10−7 9.8·10−7 1.54

(a) Results for example 1.

#ref γ sest ηγ ηh Ieff

4 10−10 0.72 −1.5·10−5 −1.9·10−5 0.53
6 10−11 0.67 −8.7·10−6 −8.9·10−7 0.95
8 10−13 0.65 −1.0·10−6 −1.1·10−6 0.50

10 10−14 0.65 −5.6·10−7 −1.0·10−7 0.95
12 10−16 0.67 −6.4·10−8 −7.5·10−8 0.56
14 10−17 0.66 −3.5·10−8 −1.4·10−9 0.99
17 10−19 0.67 −6.4·10−9 1.1·10−9 1.42

(b) Results for example 2.

Table 6.5.: Results of the adaptive algorithm (cequi = 2).

observe that the efficiency indices are reasonably close to one for example 2. In the case of
example 1, there are some notable outliers. However, in these cases the estimators ηh and ηγ
are of the same magnitude and have opposing sign, which suggests a cancellation effect. If
we set cequi to a larger value, the efficiency values improve (as in Table 6.4). Note, that for
example 1 the estimated rate of convergence is sest ≈ 0.8, and for example 2 it is sest ≈ 0.67 (on
average throughout the iterations). Therefore we can conclude that also the simple estimator
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6.6. Comparison with a nodal Dirac discretization and outlook

ηtriv
γ = −γ/2 ‖ūγ‖2 from section 6.2 would have yielded good results for these two problems:
the quality of the effectivity indices would be decreased but the outcome of the numerical
computation would be similar to a run with ηmod

γ = ηtriv
γ /sest and the scaled equilibration

constant cequi/sest.
In Figure 6.5 we depict the generated meshes on a moderate refinement level. As expected,

we observe local refinement especially in the areas where the optimal solution has singularities.
This effect is particularly prominent for example 2, where the optimal control is a point source.
Finally, we compare the accuracy that can be achieved with uniform and with local refinement,

(a) Mesh for example 1. (b) Mesh for example 2.

Figure 6.5.: Generated meshes on refinement level 11.

by contrasting the results from Table 6.5 with the analogous results for uniform refinement. To
this purpose, we modify the algorithm from section 6.4 and replace the local refinement step
with a global refinement step. We use the consistent piece-wise bilinear discretization for the
control (which generally seems to result in the smallest discretization error for the control) and
a value of cequi = 1. An approximate description can be given as follows: we stop decreasing the
regularization parameter γ as soon as the estimated regularization error is below the estimated
discretization error and perform a global mesh refinement. We plot the achieved accuracy in
the functional |j(ū)− jγ,h(ūγ,h)| against the number of degrees of freedom Ndof in Figure 6.6.
We observe that the adaptive algorithm achieves a significantly higher accuracy with an equal
number of discretization points.

6.6. Comparison with a nodal Dirac discretization and outlook

The comparison between global and local mesh refinement seemed to clearly favor the local
mesh refinement. However, from the a priori analysis from section 4, we know that a (vari-
ational) discretization of the optimal measure without the introduction of a regularization
parameter is able to achieve the optimal convergence rate O(h2) (up to a logarithmic factor).
Therefore, the comparison of local and global mesh refinement for the point source example
depicted in Figure 6.6b is slightly surprising, since the “global” strategy does not achieve this
convergence rate. Therefore, we also compare the results achieved with the adaptive algorithm
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(a) Comparison for example 1.
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(b) Comparison for example 2.

Figure 6.6.: Accuracy of the objective functional for uniform and adaptive refinement.

to the discretization concept from section 4.2 on a uniform mesh. The results are given in
Figure 6.7. For visual comparison, we also plot the reciprocal of Ndof , which in two dimensions
is asymptotically equal to a constant times h2 on a uniform mesh. We see the expected O(h2)
rate for the uniform discretization, as predicted by the theory in chapter 4. Furthermore, we
observe that the local mesh refinement strategy is able to reproduce a similar accuracy after
some iterations with a slightly lower amount of degrees of freedom. An explanation for the bad
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(a) Comparison for example 1.
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(b) Comparison for example 2.

Figure 6.7.: Accuracy of the objective functional for uniform refinement with the nodal Dirac
discretization and adaptive refinement.

performance of the algorithm based on error equilibration and global mesh refinement (as in
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6.6. Comparison with a nodal Dirac discretization and outlook

Figure 6.6b) can be given by analyzing the structure of the discretization error. By inspection
of the numerical results, we observe that the estimates ηλh/η

quad
h /ηuh associated with the control

discretization heavily dominate the overall error in the later steps for the “global” run from
Figure 6.6b. In contrast, if the nodal Dirac discretization without regularization is employed,
there is no control discretization error, as we have seen in section 4.2. This discussion points
to a weakness of the presented adaptive strategy: since the control is interpreted as a L2

function and discretized with corresponding finite elements, the corresponding discretization
error has to be resolved by the mesh, and we have to invest additional degrees of freedom. As
we can see by comparing Figure 6.6b and Figure 6.7b, this additional effort can be significant.
Furthermore, we also observe a very drastic local refinement around the location of the point
source in Figure 6.5b, which is not only caused by the singularity of the optimal state, but also
to a significant degree by the control discretization error. For such cases, it appears desirable
to also derive an adaptive algorithm for the nodal Dirac discretization concept, to possibly
avoid some of this additional effort. This is left as a subject for future research.

However, an adaptive strategy that produces a mesh which can represent the optimal control
as an L2 function in each step seems also to be valuable. For instance, this is the case if we
are interested in the optimal solution of (6.2) only for a moderately small value of γ or when
the optimal solution possess higher regularity, such as in example 1. Note also, that the O(h2)
rate for the objective functional can not be expected anymore for a global discretization in
three spatial dimensions. Therefore, we can already expect the local algorithm to perform
significantly better than an approach based on global refinement, even if nodal Dirac delta
functions are used for the global discretization and no regularization is employed there.
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A. Appendix

In the appendix we provide some necessary auxiliary results, which are mostly well-known but
not directly available in the literature and mainly of technical nature.

A.1. Approximation of measures by smooth functions

We verify that Assumption 2.1 from section 2.5 holds for the functionals ψ discussed in sec-
tion 2.2.3 and section 2.3. As usual, we assume that Ω is open and Γ ⊂ ∂Ω a relatively closed
part of the boundary. We make the additional assumption that Ωc ⊂ Ω ∪ Γ is the relative
closure in Ω ∪ Γ of an open set, i.e.,

Ωc = int(Ωc) ∩ (Ω ∪ Γ ).

We verify a fundamental lemma that is formulated for elements of the space of vector mea-
suresM(Ωc, Ĥ) and elements of the Hilbert space L2(Ωc, Ĥ) = L2(int(Ωc), Ĥ), where Ĥ is a
separable Hilbert space (cf. section 2.3.1).

Proposition A.1. Let ū ∈M(Ωc, Ĥ). Define ψ as

ψ(u) = ‖u‖M(Ωc,Ĥ) =
∫
Ωc

d|u|(x).

There exists a sequence of functions {un }n∈N ⊂ L2(Ωc, Ĥ) with ψ(un) → ψ(ū) and un ⇀∗ ū
inM(Ωc, Ĥ) for n→∞. If ū is positive, the functions un can also be chosen positively.

Proof. For Ĥ = R we refer to [Bre11, Problem 24]. For the general case, we give a different,
constructive proof based on convolution and duality. We denote by Bη(x) the ball of radius
η > 0 around x ∈ Ωc and introduce the characteristic function ωη(x, y) = χBη(x)(y) and the
weight wη(x) =

∫
Ωc
ωη(x, y) dy for x ∈ Ωc and y ∈ Ωc. It is clear that for each η > 0 the weight

wη(x) is bounded. Since Ωc is the closure of an open set it also holds infx∈Ωc wη(x) > 0. We
define Bη : C(Ωc, Ĥ)→ C(Ωc, Ĥ) for ϕ ∈ C(Ωc, Ĥ) as the average

(Bηϕ)(x) = 1
wη(x)

∫
Ωc
ωη(x, y)ϕ(y) dy for x ∈ Ωc.

By elementary computations we verify that Bη is well-defined, its operator norm is bounded
by one, and that it holds

‖Bηϕ− ϕ‖C(Ωc,Ĥ) → 0 for η → 0 for all ϕ ∈ C(Ωc, Ĥ).

Now, we construct a sequence un ∈M(Ωc, Ĥ) for n ∈ N to approximate ū by duality as

〈un, ϕ〉 = 〈ū, B1/nϕ〉 for ϕ ∈ C0(Ωc, Ĥ).
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By construction, we directly obtain

|〈un − ū, ϕ〉| ≤ ‖ū‖M(Ωc,Ĥ)‖B1/nϕ− ϕ‖C(Ωc,Ĥ) → 0 for n→∞

for all ϕ ∈ C0(Ωc, Ĥ), which implies un ⇀∗ ū inM(Ωc, Ĥ). Furthermore, it holds

‖un‖M(Ωc,Ĥ) = sup
‖ϕ‖C0(Ωc,Ĥ)≤1

〈un, ϕ〉 = sup
‖ϕ‖C0(Ωc,Ĥ)≤1

〈ū, B1/nϕ〉 ≤ ‖ū‖M(Ωc,Ĥ)

Due to the weak lower semicontinuity of the norm, it follows ψ(un) → ψ(ū) for n → ∞. It
remains to see that the un are actually elements of L2(Ωc, L2(I)). In fact, we have un ∈
L∞(Ωc, Ĥ) with

un(y) =
∫
Ωc

ω1/n(x, y)
w1/n(x) dū(x) =

∫
Ωc

ω1/n(x, y)
w1/n(x) ū′(x) d|ū|(x) for x ∈ Ωc,

which can be verified by applying Fubini’s theorem to the expression
∫
Ωc

(un(y), ϕ(y))Ĥ dy with
the above definition. Since the weight w1/n is bounded from below for fixed n ∈ N, each un
is uniformly bounded. It is obvious that un is positive if ū is positive, and we conclude the
proof.

Remark A.1. To extend the previous result also for a weighted integral with continuous weight
α̂ as in section 2.2.3, we can simply replace the measure u by its weighted version ũ defined as
dũ = α̂ du. Then we apply Proposition A.1 to obtain a sequence ũn and set un = ũn/α̂.

A.2. Auxiliary results

We give the proofs of some elementary results that were needed in Chapter 3.
We define the space HT as the Hilbert space induced by the inner product derived from a

symmetric, positive operator T : H → H defined on a Hilbert space H with ‖T‖H→H ≤ 1.

Definition A.1. Define the symmetric and positive semi-definite form (·, ·)T = (·, T ·) and the
associated seminorm ‖·‖T =

√
(·, ·)T . The space HT is given as

HT =
(
H�KerT

) ‖·‖T
,

which is the closure of the quotient space H/KerT w.r.t. the T -norm.

Proposition A.2. The bilinear form (·, ·)T , extended in the canonical way to the quotient
space H/KerT , is symmetric and positive definite. Therefore, ‖·‖T is a norm on H/KerT .

Proof. Symmetry and positivity of (·, ·)T follow from Assumption 3.3. Defining a consistent
extension of (·, ·)T to the quotient space H/KerT is straightforward. (Assume that q1 = q2 + k,
where k ∈ KerT . It follows (·, T q1) = (·, T q2).)

Suppose now that v ∈ H with ‖v‖T = 0. With the spectral calculus for self-adjoint operators,
we can introduce T 1/2 : H → H, since T is positive semi-definite. Since (·, ·)T = (T 1/2·, T 1/2·)
we derive T 1/2v = 0, which implies Tv = T 1/2T 1/2v = 0. In other words, v = 0 + KerT . It
follows that (·, ·)T is positive definite on H/KerT .
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Corollary A.3. HT , endowed with the inner product (·, ·)T , is a Hilbert space.

Proposition A.4. The operator T : H → H extends in a natural way to an operator T : HT →
H (denoted with the same symbol), such that

‖T‖HT→H ≤ 1 and T (v + KerT ) = Tv for all v ∈ H.

Proof. The extension to the quotient space H/KerT with the above properties is clear. Consider
now an element v in the closure of H/KerT , i.e., we have ‖vn − v‖T → 0 for n → ∞ for
some sequence { vn } ⊂ H. Therefore, we have T 1/2vn → T 1/2v in H and we set Tv =
limn→∞ Tvn. Furthermore we have ‖Tv‖ = limn→∞‖Tvn‖ ≤ ‖T 1/2‖H→H limn→∞‖T 1/2vn‖ ≤
limn→∞‖vn‖T = ‖h‖T since ‖T 1/2‖H→H ≤ 1 due to Assumption 3.3.(i). It is now easy to verify
that this extension of T yields a linear operator with the desired properties.

We also needed the following elementary result.

Proposition A.5. Consider a positive real sequence gn ≥ 0 for n ∈ N0, which fulfills the
estimate gn+1 ≤ σgn + εn with σ < 1 for perturbations 0 ≤ εn → 0 for n → ∞. Then gn
converges to zero for n→∞.

Proof. For convenience of notation, we can without restriction assume that g0 = 0. By induction
we have for all n ∈ N and 1 ≤ m ≤ n that

gn ≤
n−1∑
k=0

σn−1−kεk = σn−m
m−1∑
k=0

σm−1−kεk +
n−1∑
k=m

σn−1−kεk ≤
σn−m

1− σ sup
k≥0

εk + 1
1− σ sup

k≥m
εk

by the geometric series. By choosing m sufficiently large, the second term becomes arbitrarily
small, since εn → 0 for n→∞. The first term can be controlled by choosing n > m sufficiently
large, which shows gn → 0 for n→∞.

A.3. Interpolation error estimates

Mass lumping

We prove an estimate for the error due to mass lumping stated in Lemma 4.31, which was
needed in section 4.5.4. We use the same notation and make the same assumptions as there.
For d = 2 a proof of this standard result (which is very similar to the one given below) can be
found, e.g., in [AKV92; Ran08].

Lemma A.6. Let uh and ϕh be elements of U1
h . For the mass lumping of the inner product

we have the a priori estimate

|(uh, ϕh)− (uh, ϕh)h| ≤ Ch2‖∇uh‖L2(Ωc)‖∇ϕh‖L2(Ωc).

Proof. The result is proved with the usual transformation and localization argument based on
the Bramble-Hilbert lemma. We introduce the reference triangle K̂ and define the function

f̂ : K̂ → R, f̂(x) = ûh(x)ϕ̂h(x)

159



A. Appendix

for given linear functions ûh and ϕ̂h ∈ P1(K̂). On the reference cell, the error due to quadrature
is given by

eK̂ =
∣∣∣∣∫
K̂
f̂(x) dx−QTrap,K̂(f̂)

∣∣∣∣ =
∣∣∣∣∫
K̂

[
f̂(x)− (ihf̂)(x)

]
dx
∣∣∣∣ ≤ ‖f̂ − ihf̂‖L1(K̂).

This term is estimated with the help of an interpolation estimate for the nodal interpolation.
We apply [BS08, Theorem 4.4.4] to obtain

‖f̂ − ihf̂‖L1(K̂) ≤ C‖f̂ − ihf̂‖Lq(K̂) ≤ C‖∇
2f̂‖Lq(K̂),

for q = 1 in the case of d = 2 and q > 3/2 in the case of d = 3 with a constant depending only
on q and K̂ (recall that W 2,q(K̂) embeds into the continuous functions for this choice of q).
We compute

∇2f̂ = ∇2 (ûhϕ̂h) = ∇2ûh ϕ̂h + 2∇ûh∇ϕ̂h + ûh∇2ϕ̂h on K̂

with the chain rule. Since ûh and ϕ̂h are linear, the first and the third term vanish. Therefore
we obtain

eK̂ ≤ C‖∇ûh∇ϕ̂h‖Lp(K̂) ≤ C‖∇ûh‖L2q(K̂)‖∇ϕ̂h‖L2q(K̂) ≤ C‖∇ûh‖L2(K̂)‖∇ϕ̂h‖L2(K̂)

with Hölder’s inequality and the equivalence of all Lq(K̂) norms on finite dimensional subspaces
of L∞(K̂) (∇ûh and ∇ϕ̂h are constant). Again, the constant depends only on K̂ and the
(arbitrary) choice of q above.

By a standard transformation argument, this implies for any given cell K ∈ Th the estimate∣∣∣∣∫
K
uh(x)ϕh(x) dx−QTrap,K(uhϕh)

∣∣∣∣ ≤ Ch2
K ‖∇uh‖L2(K)‖∇ϕh‖L2(K),

where the constant C additionally depends on the “shape-regularity” of the mesh (see, e.g.,
[BS08, Section 4.4]). By summing over the contributions from each cell, we finally obtain

|(uh, ϕh)− (uh, ϕh)h| =

∣∣∣∣∣∣
∫
Ωc∩Ωh

uh(x)ϕh(x) dx−
∑
K∈Th

QTrap,K(uhϕh)

∣∣∣∣∣∣
≤ Ch2 ∑

K∈Th

‖∇uh‖L2(K)‖∇ϕh‖L2(K)

≤ Ch2

 ∑
K∈Th

‖∇uh‖2L2(K)

1/2 ∑
K∈Th

‖∇ϕh‖2L2(K)

1/2

= Ch2 ‖∇uh‖L2(Ωc)‖∇ϕh‖L2(Ωc)

with the discrete version of Hölder’s inequality, which concludes the proof.

Nodal interpolation in time

We also give the proof of Lemma 5.13, which was needed for the analysis of the parabolic
control problem in section 5.3. We use the same notation as there and state again the result
for convenience.
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A.3. Interpolation error estimates

Lemma A.7. For any w ∈ L2(I,H2(Ω) ∩H1
0 (Ω)) ∩H1(I, L2(Ω)) we have

‖w − ikw‖L2(I,L2(Ω)) ≤ C k‖∂tw‖L2(I×Ω), (A.1)

‖w − ikw‖L2(I,H1
0 (Ω)) ≤ C k1/2

(
‖∂tw‖L2(I×Ω) + ‖∆w‖L2(I×Ω)

)
. (A.2)

The estimate (A.1) is standard. To prove (A.2), we need an auxiliary result.
Proposition A.8. For any w ∈ L2(I,H2(Ω) ∩H1

0 (Ω)) ∩H1(I, L2(Ω)) we have the estimate

sup
t∈I
‖∇(w(t)− w(T ))‖2L2(Ω) ≤ C ‖∂tw‖L2(I,L2(Ω))‖∆w‖L2(I,L2(Ω)),

where the constant C is independent of T .

Proof. Since w ∈ C(Ī , H1
0 (Ω)) with the trace theorem [Ama95, Theorem III 4.10.2] we have a

unique, continuous representation [0, T ] 3 t 7→ w(t) ∈ H1
0 (Ω) and hence for ∆w(t) ∈ H−1(Ω).

Since ‖∆w(·)‖L2(Ω) is square integrable, it is finite almost everywhere and we can choose a
point t0 ∈ [0, T ], such that

‖∆w(t0)‖2L2(Ω) ≤
1
T

∫ T

0
‖∆w(t)‖2L2(Ω) dt.

We can estimate with the triangle inequality that

sup
t∈I
‖∇(w(t)− w(T ))‖L2(Ω) ≤ 2 sup

t∈I
‖∇(w(t)− w(t0))‖L2(Ω). (A.3)

To estimate the term on the right we define the function v = w−w(t0), which is an element of
L2(I,H2(Ω)∩H1

0 (Ω))∩H1(I, L2(Ω)). By construction, v fulfills v(t0) = 0 and ∂tv = ∂tw and
we can estimate

‖∆v‖L2(I,L2(Ω)) ≤ 2‖∆w‖L2(I,L2(Ω))

by the choice of t0. Now, we can apply a well-known identity, integration by parts and Hölder’s
inequality to obtain for any t ∈ I that

‖∇v(t)‖2L2(Ω)) =
∫ t

t0

d
ds‖∇v(s)‖2L2(Ω)) ds =

∫ t

t0
2 (∂tv(s),−∆v(s)) ds

≤ 2 ‖∂tv‖L2(I,L2(Ω))‖∆v‖L2(I,L2(Ω)) ≤ 4 ‖∂tw‖L2(I,L2(Ω))‖∆w‖L2(I,L2(Ω)),

and we finish the proof by combining this with (A.3).

Proof of Lemma A.7. To show estimate (A.2), we first prove it on the reference interval I ′ =
(0, 1) for an arbitrary ŵ ∈ L2(I ′, H2(Ω) ∩ H1

0 (Ω)) ∩ H1(I ′, L2(Ω)). With Proposition A.8 it
holds on the reference interval that

‖∇(ŵ − ŵ(1))‖2L2(I′,L2(Ω)) ≤ sup
t∈I′
‖∇(ŵ(t)− ŵ(1))‖2L2(Ω)

≤ C ‖∂tŵ‖L2(I′,L2(Ω))‖∆ŵ‖L2(I′,L2(Ω)).

By linear transformation this implies for w, restricted to an arbitrary time interval Im, that
‖w − w(tm)‖2L2(Im,H1

0 (Ω)) ≤ C km‖∂tw‖L2(Im,L2(Ω))‖∆w‖L2(Im,L2(Ω))

≤ C km
(
‖∂tw‖2L2(Im,L2(Ω)) + ‖∆w‖2L2(Im,L2(Ω))

)
.

The final result is obtained by summing these estimates over all intervals Im for m = 1 . . .M
and taking the square root.
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