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Die Dissertation wurde am 13.04.2015 bei der Technischen Universität München ein-

gereicht und durch die Fakultät für Mathematik am 02.12.2015 angenommen.





Contents

1 Introduction and Motivation 1

2 Basics and Notation 5

2.1 Probability Theory and Transport Maps . . . . . . . . . . . . . . . . . . 5

2.2 The Continuity Equation . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Existence and Construction of Transport Maps . . . . . . . . . . . . . . 14

2.4 The Schrödinger Equation and Bohmian Mechanics . . . . . . . . . . . . 22

2.5 The Dirac-Frenkel Variational Principle . . . . . . . . . . . . . . . . . . 26

2.5.1 Time-dependent, Parametrized Manifolds . . . . . . . . . . . . . 27

2.5.2 Application to a Time-dependent Vector Space . . . . . . . . . . 29

2.6 Phase Space Transformations . . . . . . . . . . . . . . . . . . . . . . . . 32

2.7 Convolutions and Adapted Convolutions . . . . . . . . . . . . . . . . . . 37

2.7.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.7.2 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.7.3 Choosing a proper Adaptation Function µ . . . . . . . . . . . . . 43

2.7.4 Continuity Equation for Convolutions . . . . . . . . . . . . . . . 49

2.8 Radial Basis Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.8.1 The Condition Number of Stiffness and Interpolation Matrices . 54

2.8.2 Approximate Approximations . . . . . . . . . . . . . . . . . . . . 57

3 Choice of the Approximation Manifold 61

3.1 Outline in 1-D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.1.1 Step 1: Centers of the Basis Functions (see Figure 3.1b) . . . . . 62

3.1.2 Step 2: Widths of the Basis Functions (see Figure 3.1c) . . . . . 64

3.1.3 Step 3: Adding a momentum (see Figure 3.1d) . . . . . . . . . . 64

iii



CONTENTS

3.1.4 Step 4: Pulling the Centers Apart (see Figure 3.1e) . . . . . . . . 66

3.1.5 Step 5: Generalization to Higher Dimensions . . . . . . . . . . . 71

3.2 Resulting Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.3 Rigorous Approximation Theory . . . . . . . . . . . . . . . . . . . . . . 79

3.4 Linear independence of the basis functions ηj . . . . . . . . . . . . . . . 89

4 Numerical Experiments 91

4.1 Free Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.2 Harmonic Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.3 Numerical Computation of the Velocity Field vt . . . . . . . . . . . . . . 97

4.4 Morse Potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5 Conclusion and Future Directions 103

A Bohmian Mechanics and the Wigner Transform 105

B Generalized FBI Transform 115

B.1 Hagedorn Wave Packets . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

B.2 Generalized FBI transform . . . . . . . . . . . . . . . . . . . . . . . . . 119

Table of Symbols 127

Bibliography 129

iv



Chapter 1

Introduction and Motivation

The continuity equation, also known as transport equation, advection equation or con-

servation of mass formula, is one of the vital equations in mathematical physics. It is

the basic equation of fluid mechanics and appears in its direct form e.g. in the Vlasov

equation and as part of the Navier-Stokes equations. It also describes the flow of the

position density of the Schrödinger equation.

In this thesis we want to present a possibility to use this equation for the numerical

computation of the solution of the partial differential equation (PDE) it “originates

from”. The class of equations we are going to treat is given in the following definition

and our presentation will be using the Schrödinger equation as the showcase PDE.

Definition 1.1 (evolutionary PDE with underlying continuity equation).

Let 1 ≤ p <∞. We will call a partial differential equation (PDE) of the form

∂tψt = Ft(ψt), ψ0 = ψin, (1.0.1)

with right hand side Ft : L
p(Rd,K)→ Lp(Rd,K) an evolutionary PDE with underlying

continuity equation, if

• it has a unique solution (ψt)t∈R ∈ C1
(
R, Lp ∩ C∞(Rd,K) \ {0}

)
for each ψin ∈

Lp ∩ C∞(Rd,K) \ {0},

• the corresponding probability density ρt =
|ψt|p

‖ψt‖pLp
fulfills the continuity equation

∂tρt + div jt = 0 (1.0.2)

for some current (jt)t∈R ∈ C1
(
R, L1 ∩ C∞(Rd,Rd)

)
.
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1. INTRODUCTION AND MOTIVATION

Numerical methods for many of the mentioned PDEs face at least some of the

following challenges:

(1) high dimensions,

(2) unbounded domains (e.g. Ω = Rd),

(3) structure preservation,

(4) high oscillations.

We will mainly address the first two difficulties, while (3) and (4) will be treated

only in the case of the Schrödinger equation.

(1) and (2) make it impossible to discretize the whole domain and much effort

has been spent in order to filter out the “significant part”, which we will call region

of interest, for a proper discretization. In the case of the Schrödinger equation, this

was often realized by the use of so-called semiclassical methods, which, in the most

simple example, transport the region of interest via classical trajectories. In [Hel81],

Heller presents such a method, which chooses the approximant from a linear span of

Gaussian functions, the centers of which are initially chosen in the region of interest

and propagated classically. For more sophisticated methods, see e.g. [Lub08] for an

overview or [Fao09] for a special example.

Semiclassical methods reach their limits, if the behavior of the quantum mechan-

ical system differs significantly from the classical one. In these situations, classical

trajectories can leave the region of interest after a short period of time.

It is surprising that only few approaches make use of the density ρt = |ψt|2 to

determine the region of interest. One of these methods was presented by Kormann and

Larsson in [Kor12], who modified Heller’s approach by adapting the region of interest

and setting the centers of the Gaussian basis functions manually. However, this appears

to be a difficult choice to make. Therefore, they decide on equidistant centers and equal

widths for all Gaussians, though the method itself allows for more general settings.

Our work can be seen as an automation and generalization of their algorithm. We

explain why equidistant centers, equal widths and radial symmetry are poor choices.

Instead, the presented method selects suitable centers and covariance matrices and

adapts them in time and space automatically. The trouble of choosing a proper region

of interest is avoided.
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We also choose the approximant from a linear span of Gaussian functions. In order

to place the centers of the basis functions in the region of interest, we exploit the

density function ρt in the following way: the higher it gets (in some region), the finer

we discretize (the more basis functions we put in this region). This way, only the

relevant part of Rd is discretized.

This formulation of the idea might not sound much different to the previous one,

however, we hope that the reader will find its realization elegant:

Roughly speaking, instead of manually checking the values of ρt and adapting the

basis functions at each time step, we use of a transport map from Puni to Pρt to deter-

mine the centers (see Sections 3.1 or 3.2 for details). The Jacobian of said transport map

yields proper covariance matrices for the Gaussian basis functions, see the discussion

in Section 3.1.5.

The adaptation in time happens automatically by solving properly chosen ordi-

nary differential equations (ODEs) for the centers and the covariance matrices, which

originate from the evolution of the transport map. For this purpose, it is crucial to un-

derstand the connection between the continuity equation and its characteristic ODEs,

see Section 2.2. In the case of the Schrödinger equation, the resulting propagation of

the centers happens along Bohmian trajectories.

The propagation of the coefficients (the approximant is a linear combination of the

basis functions) does not lie in the focus of our discussion. We will use the Galerkin

approximation associated with the constructed manifold, which in the case of the

Schrödinger equation is referred to as Dirac-Frenkel variational principle and provides

strong error estimates. It is explained in detail in Section 2.5.

The thesis is structured as follows:

In Chapter 2, we will introduce the main ideas of and some theory on the continuity

equation, its probabilistic viewpoint and its connection to transport maps (Section 2.2).

We also present a new method of applying the continuity equation to the construction of

transport maps and sampling points (Section 2.3). This is followed by an introduction

to the Schrödinger equation and its numerical treatment (Sections 2.4 and 2.5), with

special focus on the Bohmian interpretation of quantum mechanics. In this context, we

also illustrate the concept of phase space by explaining the ideas behind the Fourier,

FBI and Wigner transforms and their connection (Section 2.6). In Section 2.7 we
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1. INTRODUCTION AND MOTIVATION

study a generalization to the concept of convolutions required for the choice of a suited

approximation space, while Section 2.8.2 provides us with the proper tool to analyze

its approximation properties.

Chapter 3 starts with a motivational outline of how to construct a reasonable ap-

proximation space in arbitrary dimensions (Section 3.1). Once the approximation space

is chosen, the resulting algorithm to solve a PDE with underlying continuity equation

is determined and written down in detail in Section 3.2. Section 3.3 presents a rigorous

error analysis of the constructed approximation space.

In Chapter 4 the algorithm is finally applied to the Schrödinger equation with two

different potentials, followed by a short conclusion of our results in Chapter 5.

Appendix A demonstrates some connections between quantum mechanics in phase

space and Bohmian mechanics, while Appendix B aims to analyze a new type of phase

space transforms, which generalize the FBI transform and emerged from a collaboration

with my colleagues Johannes Keller and Stephanie Troppmann.
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Chapter 2

Basics and Notation

2.1 Probability Theory and Transport Maps

We will start by introducing some standard notation from probability theory.

Definition 2.1 (probability space, uniform distribution). A set Ω with a σ-algebra

B ⊆ 2Ω is called measurable space (Ω,B). If it is further equipped with a probability

measure P : B → [0, 1], it is called a probability space (Ω,B,P).

If Ω ⊆ Rd (d ∈ N>0 is the dimension), we will always assume that the σ-algebra is

the Borel σ-algebra B(Ω) on Ω. In this case and if the probability measure P is given

by a probability density function ρ ∈ L1(Ω,R≥0), ‖ρ‖L1(Ω) = 1, we will denote it by

Pρ:

Pρ(B) =

∫
B
ρ(x) dx for all B ∈ B(Ω).

Pρ for ρ ≡ 1 on Ω = (0, 1)d will be called the uniform distribution and denoted by Puni.

Definition 2.2 (random variable, pushforward measure, transport map, expectation

value, variance, standard deviation).

Let (Ω1,B1,P) be a probability space, (Ω2,B2) a measurable space and X : Ω1 → Ω2

a measurable map (i.e. X−1(B) ∈ B1 for all B ∈ B2). Then X induces a probability

measure on (Ω2,B2) via

PX(B) := P
(
X−1(B)

)
for all B ∈ B2

and we call

• X an Ω2-valued random variable on Ω1,

• PX the probability distribution of X and X PX -distributed,
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2. BASICS AND NOTATION

• PX the pushforward measure of P (by X): PX = X#P,

• X a transport map from P to PX ,

• EP(X) :=

∫
Ω1

X dP the expectation value of X, if X is real-valued,

• VP(X) := EP

(
[X − EP(X)]2

)
the variance of X,

• σP(X) :=
√

VP(X) the standard deviation of X.

We will use the notations EP, VP and σP, if X = Id, and Eρ(X), Vρ(X) and σρ(X),

if P is given by the probability density ρ. When talking about the distribution PX of

a random variable X : Ω1 → Ω2, the domain (Ω1,B1,P) is often omitted and only the

codomain (Ω2,B2,PX) is mentioned.

Let us state two simple properties of transport maps:

Lemma 2.3. Let (Ω1,B1,P1), (Ω2,B2,P2), (Ω3,B3,P3) be probability spaces andX : Ω1 →
Ω2, Y : Ω2 → Ω3 be transport maps from P1 to P2, from P2 to P3 respectively, i.e.

X#P1 = P2, Y#P2 = P3. Then:

(i) Y ◦X is a transport map from P1 to P3.

(ii) If X is a bijection, then X−1 is a transport map from P2 to P1.

Proof. (i) For all B ∈ B3 we have:

PY ◦X(B) = P1

(
X−1(Y −1(B)

)
= X#P1(Y −1(B))

= P2(Y −1(B)) = Y#P2(B) = P3(B).

(ii) For all B ∈ B1 we have:

X−1
# P2(B) = P2(X(B)) = X#P1(X(B)) = P1(B).

We are going to use transport maps to generate P-distributed points for a given

probability measure P. Before elaborating this issue, let us first specify the term “P-

distributed points”. Following our definition (see below), this formulation can refer to

Monte Carlo points (i.e. independent realizations of a P-distributed random variable),

quasi-Monte Carlo points or just equidistant points in (0, 1)d, if P = Puni. What all

these sets of points have in common is characterized by the following definition.
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2.1 Probability Theory and Transport Maps

Definition 2.4 (distribution of point sequences). Let Ω ⊆ Rd be a domain and P be a

probability measure on Ω. A sequence of finite point sequences
((
x

(N)
1 , . . . , x

(N)
N

))
N∈N

in Ω, often laxly denoted by the sequence (x1, . . . , xN ) or even by the points x1, . . . , xN ,

will be called P-distributed, if for each B ∈ B(Ω)

lim
N→∞

1

N

N∑
j=1

χB
(
x

(N)
j

)
= P(B) .

Remark 2.5. In the case of the points xj ∈ Ω2 ⊆ Rd being independent realizations of

a PX -distributed random variable X : (Ω1,B1,P)→ (Ω2,B2), the convergence has to be

understood in an “almost surely” sense and can be proven by the law of large numbers:

lim
N→∞

1

N

N∑
j=1

χB
(
x

(N)
j

)
= E(χB ◦X) = 1 · P(X ∈ B) + 0 · P(X /∈ B) = PX(B) .

In this case (Monte Carlo points) and the one of quasi-Monte Carlo points, one can

give convergence rates, which are, roughly speaking, O(N−1/2) in the Monte Carlo case

(again in an “almost surely” sense) and O(log(N)dN−1) in the quasi-Monte Carlo case,

see e.g. [Nie92, Theorems 1.1, 2.11 and 3.8]. For point sequences with even higher order

of convergence, see [Dic10]. Equidistant points have a convergence rate of O(N−1/d),

which is known as the “curse of dimensionality”, since the number of points needed to

reach a certain precision grows exponentially with the dimension.

Example 2.6. Equidistant points in (0, 1)d given by

{y1, . . . , yN} =

{(
2k1 − 1

2n
, . . . ,

2kd − 1

2n

)T ∣∣∣∣ kj ∈ {1, . . . , n} ∀j
}
, (2.1.1)

where n ∈ N and N = nd, are Puni-distributed.

Proof. We only have to consider sets of the form B = (0, a1]× · · · × (0, ad], since they

form a generator of the Borel σ-algebra on (0, 1)d, which is closed with respect to

intersections.

1

N

N∑
j=1

χB(yj) =
1

nd

n∑
k1,...,kd=1

d∏
`=1

χ(0,al]

(
2k` − 1

2n

)
=

d∏
`=1

1

n

n∑
k`=1

χ(0,al]

(
2k` − 1

2n

)

=

d∏
`=1

1

n

∣∣∣∣ {k` :
2k` − 1

2n
≤ a`

} ∣∣∣∣ =

d∏
`=1

1

n

∣∣∣∣ {k` : k` ≤
2na` + 1

2

} ∣∣∣∣
=

d∏
`=1

1

n

⌊
2na` + 1

2

⌋
n→∞−−−→

d∏
`=1

a` = Puni(B).
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2. BASICS AND NOTATION

Let us return to the issue of generating P-distributed points for a given probabil-

ity measure P. Naturally, transport maps X from P1 to P2 can be used to transform

P1-distributed points into P2-distributed, which is the statement of the following propo-

sition.

Proposition 2.7. Let Ω1,Ω2 ⊆ Rd, P be a probability measure on Ω1, X : Ω1 → Ω2 a

(Borel-) measurable map and x1, . . . , xN P-distributed points in Ω1.

Then X(x1), . . . , X(xN ) are PX -distributed points in Ω2.

Proof. For each B ∈ B(Ω2) we have:

lim
N→∞

1

N

N∑
j=1

χB (X(xj)) = lim
N→∞

1

N

N∑
j=1

χ[X−1(B)] (xj) = P
(
X−1(B)

)
= PX(B) .

The natural question arising here is, of course, how to construct a transport map

from P1 to P2, once the probability measures are given1.

We will always assume that we are able to produce Puni-distributed points (e.g. by

choosing equidistant points as in (2.1.1)), therefore and in view of Proposition 2.7, we

are mostly interested in a transport map from Puni to P and, if it is bijective, in its

inverse. Let us give a characterization of this kind of transport maps:

Lemma 2.8. Let Ω ⊆ Rd be a domain, ρ ∈ C(Ω) be a probability density function

and R ∈ C1
(
Ω, (0, 1)d

)
be a C1-diffeomorphism. Then R is a transport map from Pρ

to Puni if and only if |detDR| = ρ.

Proof. By the transformation formula we obtain for each B ∈ B(Ω):

Puni(B) =

∫
B

1 dy =

∫
R−1(B)

| detDR(x))|dx and

R#Pρ(B) = Pρ
(
R−1(B)

)
=

∫
R−1(B)

ρ(x) dx.

Therefore the continuity of ρ and DR implies that the equality Puni = R#Pρ(B) holds

if and only if ρ = | detDR|.
1One could also ask for an “optimal” transport map from P1 to P2, where optimality is usually

defined by the minimization of a cost functional, e.g. c(X) =
∫

Ω1
|X(x) − x|2 dP1(x). This is the

standard question of Optimal Transport, see e.g. [Vil08], which will not concern us here.
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2.2 The Continuity Equation

This lemma already answers the question as to how to produce Pρ-distributed points

in one dimension:

Corollary 2.9. Let ρ ∈ C ((a, b),R>0) be a probability density function (−∞ ≤ a <

b ≤ ∞) and R : (a, b) → (0, 1) its cumulative distribution function. Then R is a C1-

diffeomorphism and R−1 is a transport map from Puni to Pρ.

Proof. Since ρ is positive and continuous, R is a C1-diffeomorphism. Lemma 2.8 and

Lemma 2.3 yield the transport map property of R−1.

−1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3

0

0.2

0.4

0.6

0.8

1

 

 
ρ

R
xj
yj

Figure 2.1: The inverse of the cumulative distribution function R of ρ is a transport map

from Puni to Pρ. Therefore the points xj = R−1(yj) are Pρ-distributed, if the points yj are

Puni-distributed (here equidistant in (0, 1)).

Constructing transport maps from P1 to P2 in higher dimensions is a much harder

task, since finding an “anti-derivative” R of ρ with |detDR| = ρ is complicated, and

will be treated in a special case in Section 2.3. We will use the continuity equation as

a technique for the construction. The continuity equation is crucial for this thesis and

will be dealt with in the following chapter.

2.2 The Continuity Equation

The continuity equation is probably the most essential tool in this thesis, since a lot of

theoretical and practical results are based on it. We will use it to

• explain and formalize Bohmian Mechanics (see Section 2.4),

9



2. BASICS AND NOTATION

• derive the theory of quasi-Bohmian trajectories (see Section 2.7.4 and Definition

2.56),

• build up the initial set of P0-distributed points xj,0, j = 1, . . . , N , by constructing

a transport map R−1
0 from Puni to P0 (see Section 2.3),

• propagate Pt-distributed points xj,t, the transport map Rt and its Jacobian DxRt

in time (see Proposition 2.11, Proposition 2.12 and Corollary 2.15 below).

The continuity equation describes the continuous flow of a conserved quantity along a

velocity field vt in terms of its density function ρt, such as a liquid flowing in a stream

of water, electrical charge moving in an electrical field or the probability distribution

describing the position of one or more objects. The third example is the one which

will be crucial for us; therefore, we will choose it in order to present the ideas of the

continuity equation, for which we will discuss two possible points of view:

The first starts with an initial random variable Xin ∈ Rd describing the (collective)

position of objects (most often d = 3n, where n is the number of objects), which is

Pρin-distributed, ρin : Rd → R≥0 being a probability density function. Assume that

the movement of these objects is governed by a well-known (possibly time-dependent)

velocity field vt : Rd → Rd, i.e. we consider the initial value problem

Ẋt = vt(Xt) , X0 = Xin (2.2.1)

(since Xin is a random variable, all Xt also become random variables).

In this case, the probability density function ρt of Xt will be governed by the continuity

equation

∂tρt = −div(ρtvt) , ρ0 = ρin, (2.2.2)

i.e. the continuity equation tells us how the probability density will evolve in time. The

vector field

jt := ρtvt : Rd → Rd

is referred to as current, flux, current density or flux density and describes the direction

and amount of the quantity which flows through a unit area perpendicular to the

direction of the current per time unit.

The second point of view starts with a time-dependent probability density function

ρt : Rd → R≥0, which fulfills an equation of the form (2.2.2) for some velocity field

10



2.2 The Continuity Equation

vt : Rd → Rd. Let us consider a Pρin-distributed random variable Xin, which we want

to evolve in such a way that it stays Pρt-distributed for all times t. Then choosing it

as the solution of (2.2.1) is one correct possibility, since it will guarantee that Xt stays

Pρt-distributed.

Remark 2.10. While in the first case the resulting continuity equation is given uniquely,

the choice for vt in (2.2.1) usually is not. Consider for example a radially symmet-

ric and time-independent probability density ρt = ρ0 : Rd → R≥0, e.g. ρt(x) =

π−d/2 exp
(
−|x|2

)
. Then both choices vt ≡ 0 and ṽt(x) =

(
cos(t) − sin(t)

sin(t) cos(t)

)
x yield a

Pρt-distributed Xt.

The connection between the ordinary differential equation (2.2.1) and the partial differ-

ential equation (2.2.2) described above has been treated in high generality by, among

others, Ambrosio, DiPerna and Lions (see e.g. [Amb08a], [Amb04], [DiP89]), who treat

the continuity equation

d

dt
Pt = −div(Ptvt), Pin = P0, (t, x) ∈ [0, T ]× Rd, (2.2.3)

in the distributional sense, i.e.

d

dt

∫
Rd
ϕdPt =

∫
Rd
vTt ∇ϕdPt for any test function ϕ ∈ C∞c (Rd).

We choose to quote the following result:

Proposition 2.11. Let T > 0 and (Φt)t∈[0,T ] : Rd → Rd be the flow of the ODE

(2.2.1), where

v = (vt)t∈[0,T ] ∈ L1
(

[0, T ],W 1,∞(Rd,Rd)
)
.

Then for any initial probability distribution Pin the continuity equation (2.2.3) has the

unique solution

Pt = Φt#Pin, i.e.

∫
Rd
ϕdPt =

∫
Rd
ϕ(Φt(x)) dPin(x) for any ϕ ∈ C∞c (Rd).

In other words, Φt transports Pin to Pt.

Proof. See e.g. [Amb08a, Proposition 2.1].
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2. BASICS AND NOTATION

In some of our applications of the continuity equation we will not have the bound-

edness of vt ∈ L∞ and even the weaker assumption (see also [Amb08a])

v ∈ L1
(

[0, T ],W 1,∞
loc (Rd,Rd)

)
,

‖v‖
1 + ‖x‖

∈ L1
(

[0, T ], L∞(Rd)
)

can not be guaranteed.

Therefore we state another result, which relies only on vt being locally Lipschitz.

However, it assumes that Pt solves the continuity equation (2.2.3) and concludes “only”

the transport property of the ODE:

Proposition 2.12. Let (Pt)t∈[0,T ] be a continuous (in the weak sense) family of Borel

probability measures solving the continuity equation (2.2.3) with respect to the family

of Borel vector fields (vt)t∈[0,T ], which satisfies the following conditions:

(i)

∫ T

0

∫
Rd
|vt(x)| dPt(x) dt <∞,

(ii)

∫ T

0

(
sup
B
|vt|+ Lip(vt, B)

)
dt <∞ for every compact B ⊂ Rd, where Lip(vt, B)

denotes the (minimal) Lipschitz constant of vt in B.

Then P0-almost every Xin ∈ Rd the ordinary differential equation (2.2.1) has a unique

solution (Xt)t∈[0,T ) and its flow Φt transports P0 to Pt for each t ∈ [0, T ].

Proof. See [Amb08b, Proposition 8.1.8]

Remark 2.13. If the probability measures Pt = Pρt are given by a family of probability

density functions (ρt)t∈[0,T ] ∈ C1(R1+d,R≥0) and the velocity field fulfills (vt)t∈[0,T ] ∈
C1(R1+d,Rd), the condition (ii) in the above proposition is always fulfilled as well as

the continuity of (Pt)t∈[0,T ]. Condition (i) can then be replaced by

ρtvt ∈ L1(Rd,Rd) for each t ∈ [0, T ].

Further, if the assumptions are fulfilled for every T ∈ R, the result can be extended

from the interval [0, T ] to all of R.

Another version of this result, which is tailored to the theory of Bohmian mechan-

ics, was proven by Teufel and Tumulka [Teu05] and shows the existence of Bohmian

trajectories (we present a slightly weaker version):
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2.2 The Continuity Equation

Theorem 2.14. Let (ρt)t∈R be a time-dependent probability density which solves the

continuity equation (2.2.2) for a velocity field vt, such that

J := (ρt, ρtvt)t∈R ∈ C1
(
R1+d,R1+d

)
.

For Xin = x ∈ Rd \ N0, where Nt := {x ∈ Rd | ρt(x) = 0}, there exists a maximal

solution

(Φt(x))t∈(τ−x ,τ
+
x )

:= (Xt)t∈(τ−x ,τ
+
x )

of (2.2.1) and we set for t ∈ R:

Φt : Rd → Rd ∪ {♦}, Φt(x) :=

Φt(x) if t ∈ (τ−x , τ
+
x )

♦ otherwise.

If for every T > 0 and r > 0∫ T

0

∫
Φt(Br(0))\{♦}

∣∣∣ρt(x) div vt(x)
∣∣∣+
∣∣∣ρt(x)vt(x)ᵀ

x

|x|

∣∣∣ dx dt < ∞,

then for Pρ0-almost every Xin ∈ Rd the ordinary differential equation (2.2.1) has a

unique solution (Xt)t∈[0,∞) and the flow Φt transports Pρ0 to Pρt for each t ≥ 0:

Pρt = Φt#Pρ0 .

Proof. See [Teu05, Theorem 1].

Corollary 2.15. Let (ρt)t∈R, (vt)t∈R and (Φt)t∈R fulfill the assumptions of Proposition

2.12 and Remark 2.13 (or alternatively of Theorem 2.14). Further, let (Ω,B,P) be a

probability space and Y0 ∈ C1
(
Ω,Rd

)
be a transport map from P to Pρ0 . Then

(i) Yt := Φt ◦ Y0 is a transport map from P to Pρt ,

(ii) its Jacobian Ψt = DxYt solves the variational equation

∂tΨt(x) = Dxvt(Yt(x)) ·Ψt(x).

Proof. (i) is a straightforward application of Lemma 2.3 to the results of Proposition

2.12 (or alternatively Theorem 2.14).

(ii) The differentiability of Yt is guaranteed by Y0 ∈ C1 and Φt ∈ C1 (the latter follows

from vt ∈ C1). A simple computation shows:

∂tDxYt = Dx∂t(Φt ◦ Y0) = Dx (vt ◦ Yt) = [(Dxvt) ◦ Yt] ·DxYt.

13



2. BASICS AND NOTATION

Corollary 2.15, though simple to prove, gives us the possibility to find transport

maps Yt to Pρt for each t ≥ 0, once we have found a transport map Y0 to Pρ0 , by

just solving the ordinary differential equation 2.2.1. In other words, we can produce

Pρt-distributed points from Pρ0-distributed points (based on Proposition 2.7)!

The last question left is the existence of the initial transport map Y0 and how to

construct such a transport map numerically, which leads us to the next section. Sur-

prisingly, the continuity equation will play an important role once again.

2.3 Existence and Construction of Transport Maps

In this section we will address the existence of transport maps and construct a transport

map in a special case. Both issues make use of the continuity equation in the following

way:

(1) Assume we want to construct a transport map from Pρin and Pρfin
, where ρin, ρfin ∈

L1(Rd) are probability densities. Choose a time-dependent probability density

(ρt)t∈[0,1], with ρ0 = ρin and ρ1 = ρfin. The obvious choice, but by far not the only

interesting one (especially for numerical computations) is

ρt = (1− t)ρin + tρfin.

(2) The next step (which is the difficult one) is to find a (possibly time-dependent)

velocity field (vt)t∈[0,1], such that (ρt)t∈[0,1] solves the continuity equation

∂tρt = −div(ρtvt),

in the upper case −div(ρtvt) = ∂tρt = ρfin − ρin.

(3) By Proposition 2.12, the flow (Φt)t∈[0,1] of the ordinary differential equation ẋt =

vt(xt) is a transport map from Pρ0 to Pρt . In particular, Φt=1 transports Pρin to

Pρfin
.

Let us start with a result on the existence, the idea of which was first presented

by Moser in [Mos65] for compact manifolds. Roughly speaking, he follows the above

steps and shows the existence of (vt)t∈[0,1]. For a summary see e.g. [Vil08, Appendix

to Chapter 1]). It was later generalized to non-compact manifolds by Greene and

Shiohama.
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2.3 Existence and Construction of Transport Maps

Lemma 2.16. Let ρ1, ρ2 ∈ C∞
(
(0, 1)d,R>0

)
be two positive probability density func-

tions. Then there exists a transport map X ∈ C∞
(
(0, 1)d, (0, 1)d

)
from Pρ1 to Pρ2 .

Proof. Since ρ1 and ρ2 are probability densities,

ρ1(B) <∞ and ρ2(B) <∞

for all B ∈ B
(
(0, 1)d

)
. The claim follows from [Gre79, Theorem 1].

Proposition 2.17. Let ρ ∈ C∞(Rd,R>0) be a positive probability density function.

Then there exists a transport map R ∈ C∞
(
Rd, (0, 1)d

)
from Pρ to Puni.

Proof. We will prove this result by first pushing forward Pρ to a proper probability

measure Pρ̃ on (0, 1)d and then apply the upper lemma.

Consider a Gaussian density g(z) = π−1/2 e−z
2

in one dimension and its cumulative

distribution function G(x) = 1
2 (1 + erf(x)). Then

X1 : Rd → (0, 1)d, X1(x) := (G(x1), . . . , G(xd))

is a C∞-diffeomorphism and a transport map from Pρ to Pρ̃, where

ρ̃ =
ρ

| detDxX1|
◦X−1

1 ,

since the transformation formula implies for all A ∈ B
(
(0, 1)d

)
∫
A

(
ρ

|detDxX1|
◦X−1

1

)
(y) dy =

∫
X−1

1 (A)

ρ(x)

|detDxX1(x)|
| detDxX1(x)|

=

∫
X−1

1 (A)
ρ(x) dx.

From |detDxX1(x)| =
∏d
j=1 g(xj) = π−d/2e−|x|

2
we deduce that ρ̃ ∈ C∞

(
(0, 1)d,R>0

)
is a smooth and positive probability density, therefore there exists a transport map

X2 ∈ C∞
(
(0, 1)d, (0, 1)d

)
from Pρ̃ to Puni by Lemma 2.16. As a consequence,

Y = X2 ◦X1 ∈ C∞
(
Rd, (0, 1)d

)
is a transport map from Pρ to Puni by Lemma 2.3(i).

Now let us discuss how to produce Pρ-distributed points by constructing a transport

map from Puni to Pρ.
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2. BASICS AND NOTATION

We will treat the special case of ρ being a weighted sum of normal distributions.

In the general case of ρ ∈ S(Rd), one would have to first approximate ρ by a weighted

sum of normal distributions and then apply our construction, which in this case would

only give an approximate transport map.

Let us start with an introductory example:

Example 2.18. Assume we are able to produce Pρin-distributed points, where

ρin(x) := ρ(x) := (2π)−d/2 e−|x|
2/2

is the standard normal distribution, and our aim is to sample Pρfin
-distributed points,

where

ρfin(x) =
K∑
k=1

wk ρ(x− ak) with ak ∈ Rd, wk > 0,
K∑
k=1

wk = 1, (2.3.1)

is a weighted sum of shifted standard normal distributions. Defining

ρk,t := ρ(x− tak), ρt :=
K∑
k=1

wkρk,t and vk,t := ak,

it is easy to see that each ρk,t, k = 1, . . . ,K, solves a continuity equation:

div(ρk,tvk,t)(x) = vk,t(x)T∇ρk,t(x) + ρk,t(x) div vk,t(x)︸ ︷︷ ︸
=div xk=0

= xk∇ρ(x− txk) = −∂tρk,t(x).

By linearity of the derivatives ∂t and div, the probability density ρt solves the continuity

equation

∂tρt =
K∑
k=1

wk ∂tρk,t = −
K∑
k=1

wk div(ρk,tvk,t) = −div jt for jt :=
K∑
k=1

wkρk,tvk,t.

By Proposition 2.12, the flow Φt corresponding to the velocity field

vt :=
jt
ρt

=

∑K
k=1wkρk,tak∑K
k=1wkρk,t

is a transport map from Pρ0 to Pρt for each t. In particular, Φt=1 is a transport map

from Pρin to Pρfin
.

A straightforward generalization of the upper ideas is given in the following propo-

sition:
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2.3 Existence and Construction of Transport Maps

 

 
ρ0

 

 
ρ1

 

 
ρ0-distributed points xk,0

 

 
ρ1-distributed points xk,1

 

 
Trajectories xk,t

Figure 2.2: Pρ0-distributed points are transported to Pρ1 -distributed points by solving

proper initial value problems.
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2. BASICS AND NOTATION

Proposition 2.19. Let (ρk,t)t∈[0,1], k = 1, . . . ,K, be time-dependent probability den-

sity functions, which fulfill the continuity equations

∂tρk,t = −div(ρk,tvk,t) = −div jk,t, ρk,0 = ρin,

where the initial density ρin coincides for all k = 1, . . . ,K. Then

ρt =

N∑
k=1

wk ρk,t, where the weights wk > 0 fulfill

K∑
k=1

wk = 1,

solves the continuity equation

∂tρt = −div jt, ρ0 = ρin, for jt =
K∑
k=1

wkjk,t.

Proof. As in the upper example, this is a consequence of the linearity of differentiation:

∂tρt =
K∑
k=1

wk ∂tρk,t = −
K∑
k=1

wk div(jk,t) = −div jt.

Corollary 2.20. In the situation of Proposition 2.19, if ρt and

vt :=
jt
ρt

=

∑K
k=1wkjk,t∑K
k=1wkρk,t

fulfill the assumptions of Proposition 2.12, the flow (Φt)t∈R corresponding to the ordi-

nary differential equation

ẋt = vt(xt) (2.3.2)

is a transport map from Pρ0 to Pρt for each t ∈ [0, 1].

We would like to give another application of the upper Proposition and Corollary,

which is slightly more general than the previous example and is based on the following

lemma:

Lemma 2.21. Let X : (Ω,B,P) → Rd be an N (0, Id)-distributed random variable,

a ∈ Rd and B ∈ Rd×d an invertible matrix. Then Y = a + BX is an N (a,BBᵀ)-

distributed random variable. In other words, x 7→ a + Bx is a transport map from

N (0, Id) to N (a,BBᵀ).

18



2.3 Existence and Construction of Transport Maps

Proof. For all A ∈ B(Rd) the transformation y = a+Bx yields:

P(Y ∈ A) = P
(
X ∈ B−1(A− a)

)
= (2π)−d/2

∫
B−1(A−a)

e−x
ᵀx/2 dx

= (2π)−d/2| det(B)|−1

∫
A

exp

[
−1

2
(y − a)ᵀB−ᵀB−1(y − a)

]
dy,

i.e. PY is given by the probability density function

ρ(y) = (2π)−d/2| det(BBᵀ)|−1/2 exp

[
−1

2
(y − a)ᵀ(BBᵀ)−1(y − a)

]
.

Example 2.22. Again, we assume that we are able to produce Pρin-distributed points,

where

ρin(x) := ρ(x) := (2π)−d/2 e−|x|
2/2

is the standard normal distribution, and our aim is to sample Pρfin
-distributed points,

where ρfin is a weighted sum of shifted (not necessarily standard) normal distributions,

ρfin(x) = (2π)−d/2
K∑
k=1

wk | detBk|−1 exp

[
−1

2
(x− ak)ᵀ(BkB

ᵀ
k)−1(x− ak)

]
, (2.3.3)

where ak ∈ Rd, wk > 0,
∑K

k=1wk = 1 and BkB
ᵀ
k is the Cholesky decomposition of the

k-th covariance matrix. For K = 1 (or alternatively for each k = 1, . . . ,K separately)

Lemma 2.21 (together with Proposition 2.12 and Corollary 2.15) tells us how to get

Pρfin
-distributed points . For each k = 1, . . . ,K we have:

• The solution of the initial value problem

ẋt = vk,t(xt), vk,t(x) := ak + (Bk − Id)x0, x0 = Xin

is given by

xt = x0 + t [ak + (Bk − Id)x0] = tak + [tBk + (1− t)Id]x0.

• If Xin is Pρin = N (0, Id)-distributed, then xt is Pρk,t = N (tak, Bk,tB
ᵀ
k,t)-distributed

by Lemma 2.21, where Bk,t := tBk + (1− t)Id and

ρk,t(x) = (2π)−d/2| detBk,t|−1 exp

[
−1

2
(x− tak)ᵀ(Bk,tB

ᵀ
k,t)
−1(x− tak)

]
.
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• By Proposition 2.12, the probability density (ρk,t)t∈R has to be the solution of the

continuity equation

∂tρk,t = −div(jk,t), jk,t = ρk,tvk,t, ρk,0 = ρin

and x1 is ρk,1-distributed. This can also be seen by direct computation instead of

using Lemma 2.21 and Proposition 2.12.

The case K > 1 follows by the same argumentation as in Example 2.18 or from Propo-

sition 2.19 and Corollary 2.20:

Both imply that the probability density function

ρt(x) =

K∑
k=1

wkρk,t

solves the continuity equation

∂tρt = −div(ρtvt) for vt =

∑K
k=1wkjk,t∑N
k=1wkρk,t

.

By Proposition 2.12, the flow Φt corresponding to the initial value problem

ẋt = vt(xt), x0 = xin,

is a transport map from Pρin = N (0, Id) to Pρt. In particular, Φt=1 is a transport map

from Pρin to Pρfin
.

Remark 2.23. So far, we have discussed how to transport N (0, Id) to a weighted sum

of normal distributions. In order to (approximately) transport Puni-distributed points

to Pρ-distributed points for a given probability density ρ, we have to

(i) approximate ρ by a weighted sum of normal distributions ρfin,

(ii) transport the Puni-distributed points to N (0, Id)-distributed points,

(iii) transport the N (0, Id)-distributed points to Pρfin
-distributed points by the upper

algorithm.

The second step (ii) can be performed by the transport map

Y : (0, 1)d → Rd, Yj(y) =
√

2 erf−1 (2yj − 1) , j = 1, . . . , d.

This follows from Corollary 2.9 and the fact that the standard normal distribution fac-

torizes. Alternatives are the Box-Muller method (see [Box58]) and comparable trans-

formations.
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2.3 Existence and Construction of Transport Maps
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ρ0-distributed points xk,0
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Trajectories xk,t

Figure 2.3: Pρ0-distributed points are transported to Pρ1 -distributed points by solving

proper initial value problems.
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2. BASICS AND NOTATION

For our algorithm, we will not only need Φt=1 for constructing Pρ-distributed points,

but also its Jacobian Ψt=1 = DxΦt=1. The latter can be computed by solving a vari-

ational equation along with the ordinary differential equation (2.3.2), which is the

statement of the following proposition (this is basically a reformulation of Corollary

2.15).

Proposition 2.24. Let (Φt)t∈R be the flow corresponding to the ordinary differential

equation

ẋt = vt(xt),

where vt ∈ C1
(
Rd,Rd

)
is a velocity field. Then the propagation of the Jacobian

Ψt = DxΦt is given by the variational equation

∂tΨt = [(Dxvt) ◦ Φt] ·Ψt, Ψ0 = Ed.

Proof. Φ0 = Id implies Ψ0 = Ed. The rest of the proof is analogous to the one of

Corollary 2.15 (with Y0 = Id).

2.4 The Schrödinger Equation and Bohmian Mechanics

In quantum mechanics, the state of a d-dimensional physical system (often d = 3n,

where n is the number of considered particles) with potential V ∈ C1(Rd,R) at time

t is described by the so-called wave function ψt ∈ L2(Rd,C), ‖ψt‖L2 = 1. The time

evolution of the wave function is given by the Schrödinger equation

i∂tψt = Hψt , H = −1

2
∆ + V , ψ0 = ψin . (2.4.1)

The Schrödinger equation was introduced by Erwin Schrödinger in 1926 (see [Sch26])

in a time-independent version, i.e. in form of an eigenvalue problem.

The theory on the existence and uniqueness of solutions of (2.4.1) relies on the

self-adjointness of the Hamiltonian H (see e.g. [Gus11, Theorem 2.16]). However, not

all potentials V yield a self-adjoint Hamiltonian H. A discussion of this issue can be

found in [Ree75]. We will always assume that H is a self-adjoint operator on L2(Rd).

Since a self-adjoint Hamiltonian implies a unitary propagation

ψt = e−itH ψin ,
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2.4 The Schrödinger Equation and Bohmian Mechanics

the L2-norm of the wave function is preserved in time, so the above criterion ‖ψt‖L2 = 1

is meaningful. We will also assume that V grows at most polynomially:

∃k ∈ N ∃C > 0 : V (x) < C(1 + |x|)k for all x ∈ Rd.

The probability density function ρt(x) = |ψt(x)|2 is usually interpreted as the posi-

tion density for the system to be found in state x ∈ Rd at time t (and that is what we

mean by the above formulation “the state is described by the wave function”). This

interpretation dates back to a paper of Max Born, in which he introduced this so-called

Born rule in a footnote, see [Bor26], and can now be found in every textbook on quan-

tum mechanics.

In his famous papers from 1952 (see [Boh52a] and [Boh52b]), David Bohm proposed an

alternative to the standard interpretation, the so-called Copenhagen interpretation of

quantum mechanics in terms of hidden variables, suggesting that the particles follow

deterministic trajectories, which are governed by the wave function. The randomness

described by the probability density ρt originates only from our lack of knowledge on

the initial position of the particles.

In the resulting theory, which is usually referred to as Bohmian mechanics1 or de

Broglie-Bohm theory, the system state, previously described only by the wave function

ψt, is extended by the (collective) position of the particle(s) qt ∈ Rd (again d = 3n,

where n is the number of particles, is the most common case), which evolves in time in

the following way:

q̇t = vt(qt) , vt = =
[
∇ψt
ψt

]
, q0 = qin. (2.4.2)

Since the initial position q0 is afflicted by some uncertainty, so is the position qt at

any time t ∈ R. Following the Born rule, qt may therefore be viewed as a Pρt-distributed

random variable. In order to guarantee that qt actually stays Pρt-distributed for all

times t ∈ R, the formula for the velocity field vt in (2.4.2) had to be chosen in such a

way, that ρt fulfills the corresponding continuity equation:

Proposition 2.25. The time-dependent probability density function ρt = |ψt|2 solves

the continuity equation

∂tρt + div jt = 0, where jt = ρtvt = =
[
ψt∇ψt

]
.

1For a beautiful presentation of Bohmian mechanics see e.g. [Dur09]
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Proof. By the Schrödinger equation (2.4.1), we have

∂tρt = ∂tψ̄t ψt + ψ̄t ∂tψt =
1

2i
∆ψ̄t ψt −

1

i
V ψ̄t ψt −

1

2i
ψ̄t ∆ψt +

1

i
V ψ̄t ψt

= − 1

2i

(
ψ̄t∆ψt − ψt∆ψ̄t

)
= − 1

2i
div
(
ψ̄t∇ψt − ψt∇ψ̄t

)
= −div jt .

Remark 2.26. In summary, if we choose q0 as a Pρ0-distributed random variable or

N Pρ0-distributed initial points qj,0, j = 1, . . . , N , the resulting trajectories of (2.4.2)

will stay Pρt-distributed for all t > 0, as long as the assumptions of Theorem 2.14 are

fulfilled (for a detailed discussion, see [Teu05]). The trajectories
(
qj,t
)
t∈R are called

Bohmian trajectories.

This property is of high interest for the numerical treatment of the Schrödinger

equation, since the points qj,t stay in the “region of interest” (the region where ψt is

far from zero, the higher ρt is in some region, the more points will be lying there) for

all time, see Figure 2.4.

ψ20

ψ0

time

t = 20

t = 0

Figure 2.4: Bohmian trajectories stay |ψt|2-distributed for all times t. The example

shown here is described by formula (4.1.1).
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2.4 The Schrödinger Equation and Bohmian Mechanics

Remark 2.27. We will use further notations for the velocity field vt. Namely, under

the additional assumption that ψt(x) 6= 0 for all x ∈ Rd, we obtain from rewriting

ψt = exp(Tt) = Rt exp(St) (Rt and St being real-valued):

vt = =
[
∇ψt
ψt

]
= =[∇Tt] = ∇St.

The Schrödinger equation can be reformulated to:
∂tRt = −1

2Rt∆St −∇R
ᵀ
t∇St,

∂tSt = −1
2 |∇St|

2 + ∆Rt
2Rt
− V,

(2.4.3)

∂tTt =
i

2
(∆Tt +∇T ᵀ

t ∇Tt)− iV. (2.4.4)

Remark 2.28. Before Bohm’s publications of the equations for vt, they were indepen-

dently discovered by Erwin Madelung in 1926 ([Mad27]) and Louis de Broglie in 1927.

However, they were not well received by the scientific community, which made them fall

into oblivion for over 20 years. Bohm revived, extended and stood up for this theory

and by now, though still lacking acceptance, it has has taken a more prominent role.

Let us say a few words about the theory of Madelung, who gave a hydrodynamic

formulation of quantum mechanics by considering PDEs for the pair (ρt = R2
t , vt =

∇St), which provides a beautiful, self-consistent theory:

∂tρt = −div(ρtvt),

∂tvt = −∇V − 1

2
∇
(
|vt|2 +

∆
√
ρt√
ρt

)
(the first equation is, of course, just the continuity equation). The flow along one

trajectory is given by the ODEs

ẋt = pt := vt(xt),

ṗt = ∂tvt(xt) +Dxvt(xt) · ẋt︸︷︷︸
vt(xt)

= −∇
(
V +

∆
√
ρt

2
√
ρt

)
(xt),

which look a lot like classical equations of motion except for the additional term

Vquant :=
∆
√
ρt

2
√
ρt

, which is added to the potential V . This term was later referred to

as quantum potential, meaning that it has to be added to the usual potential in order

to pass from classical to quantum mechanics. Note that the quantum potential depends

on ρt and thereby indirectly on the wave function, so the Schrödinger equation still has

to be solved in some way for the computation of Bohmian trajectories (this observation

also holds for the upper reformulations of vt).
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2.5 The Dirac-Frenkel Variational Principle

Following the presentation in [Lub08, Chapter II.1], we will now introduce the Dirac-

Frenkel ansatz for approximating the solution of the Schrödinger equation on a smooth

submanifold of the Hilbert space it is defined on.

In Subsection 2.5.1 we will explain how this ansatz has to be modified in the case

of time-dependent parametrized submanifolds.

Assume that the wave function ψt lies in a Hilbert space (H, 〈·, ·〉) and is the solution

to the abstract Schrödinger equation

ψ̇t = −iHψt (2.5.1)

with linear and self-adjoint Hamiltonian H. Assume further that it is approximated

by ut ∈ M , where M is a smooth submanifold of H and let TuM denote the tangent

space of M in the point u. The Galerkin ansatz in this context is to construct the

approximation ut by choosing its time derivative u̇t ∈ TutM in such a way that the

residual of the Schrödinger equation applied to ut is orthogonal to the tangent space

TutM :

Choose u̇t ∈ TutM such that 〈u̇t + iHut , v〉 = 0 for all v ∈ TutM.

In other words, u̇t is the best approximation of −iHut in TutM or the orthogonal

projection of −iHut onto TutM :

u̇t = PTutM (−iHut) . (2.5.2)

This ansatz, called the Dirac-Frenkel variational principle or variational approxi-

mation, has quite a few remarkable properties listed in [Lub08, Chapter II.1], amongst

others conservation of the norm ‖ut‖ (under weak additional assumptions) and the to-

tal energy 〈ut, Hut〉 in time and the existence of the following a posteriori error bound

for the approximant ut:

Proposition 2.29. The error of the variational approximation at time t is bounded

by

‖ut − ψt‖ ≤ ‖u0 − ψ0‖+

∫ t

0
dist (−iHus , TusM) ds.

Proof. See [Lub08, Chapter II.1, Theorem 1.5].
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2.5.1 Time-dependent, Parametrized Manifolds

As mentioned in the introduction, our approximation manifold will be a complex linear

space spanned by Gaussian basis functions, which adapt in time and space to the

function ψt we want to approximate. This makes our manifold time-dependent: Mt :=

spanC {η1,t, . . . , ηN,t}. More generally, let

Mt = {χt(c) | c ∈ Rm} ⊆ H

be a time-dependent smooth manifold parametrized by a map χt : Rm → H which is

differentiable in time. Again, ψt will be approximated by

ψt ≈ ut = χt(ct) ∈Mt,

but in contrast to the time-independent case, the time derivative of ut lies in an affine

linear space, namely the tangent space of Mt in ut shifted by the time derivative of χt

in ct:

u̇t ∈ χ̇t(ct) + TutMt =: T̃utMt.

Projecting the right-hand side of the Schrödinger equation (2.5.1) orthogonally onto the

affine space T̃utMt corresponds to subtracting the shift σt = χ̇t(ct) from the right-hand

side, projecting the result −iHut − σt onto TutMt and then adding the shift again:

u̇t
!

= PT̃utMt
(−iHut) = σt + PTutMt (−iHut − σt) (2.5.3)

T = TutMt

T̃ = T̃utMt
f = −iHut

f − σt

PT (f − σt)

PT̃ (f) = u̇t

σt = χt(ct)

Figure 2.5: Projecting f := −iHut onto an affine linear space T̃ = σt +T by subtracting

the shift σt from f , projecting the result onto T and adding σt again.
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Therefore, the time-dependent formulation of the Dirac-Frankel variational principle is:

Choose u̇t ∈ T̃utMt such that 〈u̇t + iHut , v〉 = 0 ∀v ∈ TutMt.

The error analysis looks very close to the unmodified version and the proof goes anal-

ogously:

Theorem 2.30. Let Mt = {χt(y) | y ∈ Rm} ⊆ H be a time-dependent smooth mani-

fold and its parametrization χt : Rm → H be differentiable in time. The error at time

t of the variational approximation ut = χt(ct) ∈Mt is bounded by

‖ut − ψt‖ ≤ ‖u0 − ψ0‖+

∫ t

0
dist (−iHus − χ̇t(ct) , TusMs) ds.

Proof. Let et := ut − ψt, P⊥ := Id− PTutMt and σt = χ̇t(ct). Subtracting (2.5.1) from

(2.5.3) yields:

ėt = −iHet − P⊥ (−iHut − σt) .

Since H is self-adjoint, taking the inner product with et on both sides and considering

its real part leads to:

< 〈ėt, et〉 = < 〈−iHet , et〉︸ ︷︷ ︸
=0

−<
〈
P⊥ (−iHut − σt) , et

〉
=⇒ ‖et‖

d

dt
‖et‖ ≤

∥∥∥P⊥ (−iHut − σt)
∥∥∥ ‖et‖

=⇒ d

dt
‖et‖ ≤ dist

(
− iHut − σt , TutM

)
.

The norm of the approximant ut is again conserved, but this time the total energy

is not:

Proposition 2.31. The norm of the variational approximation ut is conserved, i.e.
d
dt‖ut‖ = 0, while the total energy is perturbed in the following way:

d

dt
〈ut, Hut〉 = −2<〈σt | P⊥(Hut)〉 ,

where again σt := χ̇t(ct) and P⊥ := Id− PTutMt .
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2.5 The Dirac-Frenkel Variational Principle

Proof. Using the abbreviations ft = −iHut, u̇t = σt + wt with wt ∈ TutMt we get:

d

dt
〈ut | Hut〉 = 2<〈u̇t | Hut〉 = 2<〈σt + wt | Hut〉 = −2=〈σt + wt | −iHut〉

= −2=
[
〈σt | u̇t − σt + P⊥(ft − σt)〉+ 〈wt | u̇t〉

]
= −2=

[
〈σt + wt︸ ︷︷ ︸

u̇t

| u̇t〉 − 〈σt | σt〉+ 〈σt | P⊥ft〉 − 〈σt | P⊥σt〉︸ ︷︷ ︸
〈P⊥σt|P⊥σt〉

]
= −2=〈σt | P⊥ft〉

= 2<〈σt | P⊥(Hut)〉 ,

d

dt
〈ut | ut〉 = 2<〈ut | u̇t〉 = 2<〈ut | −iHut〉 = 2= 〈ut | Hut〉︸ ︷︷ ︸

∈R

= 0.

2.5.2 Application to a Time-dependent Vector Space

We will now derive the ordinary differential equations for the coefficients and the ap-

proximation error when applying the variational principle to a time-dependent vector

space

Mt := span {η1,t, . . . , ηN,t}

with basis functions η1,t, . . . , ηN,t ∈ H, which are differentiable in time.

Proposition 2.32. Let ut =
∑N

j=1 cj,tηj,t ∈ Mt = span {η1,t, . . . , ηN,t} be the varia-

tional approximation of the wave function ψt and H = −1
2∆ + V be the Schrödinger

operator. Then the coefficients cj,t and the error bound Et from Theorem 2.30 fulfill

the ordinary differential equations:

Atċt = Btct , (2.5.4)

Ėt =
√

(c∗tGt − ċ∗tBt) ct , (2.5.5)

where

At = (〈ηj,t | ηk,t〉)j,k=1,...,N ,

Bt = (〈ηj,t | θk,t〉)j,k=1,...,N ,

Gt = (〈θj,t | θk,t〉)j,k=1,...,N ,

ct = (cj,t)j=1,...,N ,

θj,t = −η̇j,t +
i

2
∆ηj,t − iV ηj,t ∀j = 1, . . . , N.
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Proof. The application of the variational principle leads to (for all j = 1, . . . , N):

0
!

= 〈ηj,t | u̇t + iHut〉 =
〈
ηj,t |

N∑
k=1

ċk,tηk,t + ck,tη̇k,t −
i

2
ck,t∆ηk,t + ick,tV ηk,t

〉

⇐⇒
N∑
k=1

ċk,t 〈ηj,t | ηk,t〉︸ ︷︷ ︸
=: ajk,t

=
N∑
k=1

ck,t

〈
ηj,t

∣∣∣
=: θk,t︷ ︸︸ ︷

−η̇k,t +
i

2
∆ηk,t − iV ηk,t

〉
︸ ︷︷ ︸

=: bjk,t

⇐⇒ Atċt = Btct .

By Theorem 2.30 the error bound Et for ‖ut−ψt‖ is the solution of the initial value

problem

Ėt = dist (−iHut − σt , TutMt) , E0 = ‖u0 − ψ0‖,

where as usual σt := χ̇t(ct) =
∑N

j=1 cj,t η̇j,t the shift of the tangent space. Since

TutMt = Mt, we have to find the best approximation wt =
∑N

j=1 dj,tηj,t of (−iHut−σt)
in Mt and compute its distance to Mt. The best approximation step leads to the same

formula for dt as we got for ċt:

For all j = 1, . . . , N we have

0
!

= 〈ηj,t | wt − (−iHut − σt)〉 =

〈
ηj,t |

N∑
k=1

dk,tηk,t −
i

2
ck,t∆ηk,t + ick,tV ηk,t + ck,tη̇k,t

〉

⇐⇒
N∑
k=1

dk,t 〈ηj,t | ηk,t〉 =

N∑
k=1

ck,t

〈
ηj,t |

i

2
∆ηk,t − iV ηk,t − η̇k,t

〉
⇐⇒ Atdt = Btct .

The computation of the distance is an application of the theorem of Pythagoras:

dist(−iHut − σt , Mt)
2 = ‖ − iHut − σt − wt‖2

= ‖ − iHut − σt‖2 − ‖wt‖2

=
N∑

j,k=1

cj,t ck,t 〈θj,t | θk,t〉︸ ︷︷ ︸
=: gjk,t

−
N∑

j,k=1

dj,t dk,t 〈ηj,t | ηk,t〉︸ ︷︷ ︸
=: ajk,t

= c∗tGtct − d∗tAtdt
= (c∗tGt − ċ∗tBt) ct.
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2.5 The Dirac-Frenkel Variational Principle

Example 2.33. Let H = L2(R,R) and Mt ⊆ H be spanned by the basis functions (see

Chapter 3)

ηj,t(x) =

(
2εj,t
π

) 1
4

exp
(
−εj,t (x− xj,t)2 + ipj,t(x− xj,t)

)
,

where εj,t > 0, pj,t, xj,t ∈ R are properly chosen parameters. We omit the index t and

denote xjk := xj − xk, pjk := pj − pk. Using Wolfram Mathematica 9.0, we compute:

ajk00 :=〈ηj | ηk〉 =

√
2

εj + εk
(εjεk)

1
4 exp

[
−

4εjεkx
2
jk + p2

jk − 4i(εkpj + εjpk)xjk

4(εj + εk)

]
,

ajk01 :=〈ηj | (·− xk)ηk〉 =
ajk00

2(εj + εk)
[2εjxjk − ipjk] ,

ajk02 :=〈ηj | (·− xk)2ηk〉 =
ajk00

4(εj + εk)2

[
2(εj + εk)− (pjk + 2iεjxjk)

2
]
,

ajk11 :=〈(·− xj)ηj | (·− xk)ηk〉 =
ajk00

4(εj + εk)2
[2(εj + εk)− (pjk + 2iεjxjk)(pjk − 2iεkxjk)] ,

ajk12 :=〈(·− xj)ηj | (·− xk)2ηk〉 =
ajk00

8(εj + εk)3

[
ip3
jk − 2p2

jk(2εj − εk)xjk−

2ipjk
[
3(εj + εk) + 2εj(εj − 2εk)x

2
jk

]
+ 4xjk

[
2ε2j + εjεk − ε2k − 2ε2jεkx

2
jk

] ]
,

ajk22 :=〈(·− xj)2ηj | (·− xk)2ηk〉

=
ajk00

16(εj + εk)4

[
p4
jk + 4ip3

jkxjk(εj − εk) − 4p2
jk

[
3(εj + εk) + x2

jk(ε
2
j + ε2k − 4εjεk)

]
−

8ipjkxjk(εj − εk)
[
3(εj + εk)− 2εjεkx

2
jk

]
+

12(εj + εk)
2 + 8x2

jk(ε
3
j + ε3k − 3ε2jεk − 3εjε

2
k) + 16ε2jε

2
kx

4
jk

]
,

ajk10 :=akj01 , ajk20 := akj02 , ajk21 := akj12 .

This implies the following results for At, Bt and Gt:

ηj,t(x) =

(
2εj,t
π

) 1
4

exp
(
−εj,t (x− xj,t)2 + ipj,t(x− xj,t)

)
,

∇ηj(x) = ηj(x) [−2εj(x− xj) + ipj ] ,

∆ηj(x) = ηj(x)
[
(−2εj(x− xj) + ipj)

2 − 2εj
]

= ηj(x)
[
4(εj)

2(x− xj)2 − 4iεjpj(x− xj)− (pj)
2 − 2εj

]
,

η̇j(x) = ηj(x)

[(
1

4εj
− (x− xj)2

)
ε̇j + (2εj(x− xj)− ipj) ẋj + i(x− xj)ṗj

]
,
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θj(x) = − η̇j(x) +
i

2
∆ηj(x)− iV ηj(x) = ηj(x)

[
(x− xj)2

(
ε̇j + 2i

(
εj)

2
))︸ ︷︷ ︸

=:Γj2

+

(x− xj) (−2εj ẋj − iṗj + 2εjpj)︸ ︷︷ ︸
=:Γj1

+

(
− ε̇j

4εj
+ ipj ẋj −

i

2
(pj)

2 − iεj
)

︸ ︷︷ ︸
=:Γj0

−iV (x)

]
,

bjk = 〈ηj | θk〉 = ajk00Γk0 + ajk01Γk1 + ajk02Γk2 − i〈ηj | V ηk〉,

gjk = 〈θj | θk〉 = ajk00Γj0Γk0 + ajk01Γj0Γk1 + ajk02Γj0Γk2 + ajk10Γj1Γk0 + ajk11Γj1Γk1 + ajk12Γj1Γk2+

+ ajk20Γj2Γk0 + ajk21Γj2Γk1 + ajk22Γj2Γk2 + 〈ηj | V ηk〉

− i
〈(

Γj0 + Γj1(x− xj) + Γj2(x− xj)2
)
ηj | V ηk

〉
+ i
〈
V ηj |

(
Γk0 + Γk1(x− xk) + Γk2(x− xk)2

)
ηk

〉
.

Note that all integrals exist since we assumed that V grows at most polynomially

(see Section 2.4).

2.6 Phase Space Transformations

In this section, we will discuss three transformations, which will be important for a

deeper understanding of quantum mechanics and its Bohmian interpretation (see Sec-

tion 2.4), adapted convolutions (see Section and 2.7.3), and which prepare us for Ap-

pendices A and B: the Fourier transform, the Fourier-Bros-Iagolnitzer (FBI) transform

and the Wigner transform.

All three transformations can be viewed from various perspectives and we will try

to present two of them. The first is the quantum mechanical point of view, where

the phase space is the Cartesian product of position space and momentum space. The

second viewpoint is time-frequency analysis, where the phase space is the Cartesian

product of time and frequency (in this case the dimension is d = 1 and f is usually

considered real-valued). In the following, S(Rd,C) will denote the Schwartz space of

rapidly decreasing functions.

Definition 2.34 (Fourier transform). The Fourier transform F : S(Rd,C)→ S(Rd,C)

is defined by

Ff(ξ) = (2π)−d/2
∫
Rd
f(y) e−iy

ᵀξ dy .
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The Fourier transform has many important properties, which can be found in e.g.

[Fol89], from which we will only use the following:

Proposition 2.35 (Plancherel Theorem and Fourier Inversion Formula).

The Fourier transform is an isometric isomorphism with inverse

F−1g(x) = (2π)−d/2
∫
Rd
g(ξ) e−ix

ᵀξ dξ .

Proof. See [Fol89].

The isometry property is usually referred to as Plancherel theorem and implies that

the squared modulus of the Fourier transform Fψ of the wave function ψ is also a

probability density function: ‖Fψ‖L2 = 1. While |ψ|2 is usually interpreted as the

probability density for the (joint) position of the considered particles, |Fψ|2 is viewed

as the probability density for their (joint) momentum.

The Fourier inversion formula implies for f ∈ S(Rd,C)

(2π)−d
∫
Rd

∫
Rd
f(x) e−ix

ᵀξ dξ dx = (2π)−d/2
∫
Rd

(2π)−d/2
∫
Rd
f(x) e−ix

ᵀξ dx dξ

= (2π)−d/2
∫
Rd
Ff(ξ) ei0

ᵀξ dξ

= F−1Ff(0) = f(0).

The technique of using “(2π)−d
∫
Rd e

−ixᵀξ dξ” as a δ-distribution will be used several

times in this section, Section 2.7.3 and Appendices A and B.

From the point of view of time-frequency analysis, the Fourier transform yields a

decomposition of the signal f into its frequencies: it indicates to which extent which

frequency ξ occurs in f . However, one is often interested in the local frequencies of f ,

meaning, which frequencies of f occur at (or around) a specific time x. This can be

analyzed using a windowed Fourier transform, also called Gabor transform, which does

not “see” the values of f far from x. Applied to each time x, this yields a mapping

defined on the phase space:

Definition 2.36 (windowed Fourier transform, FBI transform). The windowed Fourier

transform Fσ : S(Rd,C)→ S(Rd × Rd,C) is defined by

Fσf(x, ξ) =π−d/4
∫
Rd
f(y) gσ(x− y) e−iy

ᵀξ dy , where (2.6.1)

gσ(x) =(2πσ2)−d/2 exp

(
−‖x‖

2

2σ2

)
, (2.6.2)
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In the case σ = 1, we will refer to it as the Fourier-Bros-Iagolnitzer (FBI) transform

and denote it by T := F1.
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Figure 2.6: Visualisation of how different frequencies of a function f are represented by

the Fourier transform Ff and the FBI transform Fσf (only the moduli of Ff and Fσf
are plotted).

The width σ of the Gaussian function gσ is a double-edged sword: The smaller it is

chosen, the more accurate the time-frequency description becomes in x-direction, since

only values very close to the considered time x are considered for Fσf(x,·). However,
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the smaller the window, the more “difficult” it becomes to estimate the frequencies

in this small region and the more “blurred” the frequency decomposition Fσf(x,·)
becomes in ξ-direction (in particular, taking the limit σ → 0 does not provide any

useful information).

In quantum mechanics, this statement corresponds to the fact that there can be no

joint probability distribution for position and momentum in phase space, which is a

consequence of Heisenberg’s uncertainty principle. Only a “blurred” version of such a

probability density function can exist, as we will see in Proposition 2.39.

However, there is a replacement for such a probability density, namely the Wigner

transform of f :

Definition 2.37 (Wigner transform). The Wigner transform W : S(Rd,C)→ S(Rd×
Rd,R) is defined by

Wf(x, ξ) = (2π)−d
∫
Rd
f
(
x+

y

2

)
f
(
x− y

2

)
eiy

ᵀξ dy.

Remark 2.38. Usually, the Wigner transform W : S(Rd,C) × S(Rd,C) → S(Rd ×
Rd,C) is defined by

W (f, g)(x, ξ) = (2π)−d
∫
Rd
f
(
x+

y

2

)
g
(
x− y

2

)
eiy

ᵀξ dy.

We will only use its definition on the diagonal, Wf = W (f, f), where it is real-valued,

which can be seen by taking the transformation y 7→ −y in the integral.

Just as expected from a joint probability density in phase space, the Wigner trans-

form Wf of a function f ∈ S(Rd,C) has the marginal densities |f |2 and |Ff |2:

|f(x)|2 =

∫
Rd
Wf(x, ξ) dξ ,

|Ff(ξ)|2 =

∫
Rd
Wf(x, ξ) dx .
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Figure 2.7: Visualisation of how different frequencies of a function f are represented by

the Fourier transform Ff and the Wigner transform Wf .

However, it may attain negative values and is therefore not a probability density

function in the first place, therefore it is often referred to as Wigner quasi-probability

distribution. Still, there are a few results, which can be deduced by treating it as though

it was a probability density function, some of which are presented in Section 2.7 and

Appendix A. Another important trick is to force the Wigner transform to become non-

negative by smoothing it via convolution with a properly scaled Gaussian in phase
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space. This results in a blurred joint probability distribution in phase space, which is

strongly connected to the FBI-transform:

Proposition 2.39. Let

Gσ(x, ξ) =
(
2πσ2

)−d/2
exp

(
−‖x‖

2 + ‖ξ‖2

2σ2

)
.

denote a Gaussian in phase space. Then we have

Wf ∗G1/
√

2 = |T f |2.

Proof. See [Hil97, (3.10)].

Remark 2.40. The resulting transform Hf := Wf ∗ G1/
√

2 = |T f |2 is called the

Husimi transform of f and plays an important role in microlocal analysis. It is the

closest one can get to a joint non-negative probability distribution for position and

momentum in phase space, since for σ < 1/
√

2 the non-negativity of Wf ∗ G1/
√

2 can

no longer be guaranteed. More precisely, one can show that for each σ < 1/
√

2 there

is a function f ∈ S(Rd,C), such that Wf ∗Gσ attains negative values.

2.7 Convolutions and Adapted Convolutions

2.7.1 Motivation

The convolution of two integrable functions f, g : Rd → R

(f ∗ g)(x) =

∫
Rd
f(y) g(x− y) dy

is a basic mathematical tool with applications in probability theory, image processing,

optics, acoustics and many others. If g is a probability density, say a Gaussian density

g(x) = (2πσ2)−d/2 exp

(
−‖x‖

2

2σ2

)
, (2.7.1)

the convolution (f ∗ g)(x) at point x can be viewed as the mean over all f(y), y ∈ Rd,
weighted by the density g(x− y). Convolutions are therefore often used to “flatten” or

“smooth” a function f by some probability density g and g is called a smoothing kernel

in this case.

A natural question arising here is how to choose the standard deviation σ of g, i.e.

how strong we want to smooth the function f . Normally the aim is to flatten out the

bumps and edges without losing the shape of the function completely.
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Assume we have found a proper σ to smooth f , and f̃(x) = f(αx) is a scaled version

of f by some factor α > 0. In this case we also have to scale the density g by the same

factor, g̃ = αdg(αx) (the prefactor αd is just a normalization factor), in order to get an

analogous result (see Figure 2.8):

(f̃ ∗ g̃)(x) = αd
∫
Rd
f(αy) g(α(x− y)) dy =

∫
Rd
f(y) g(αx− y)) dy = (f ∗ g)(αx)

−2 0 2 4
0
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0.4

 

 
f
f ∗ g

(a) The standard deviation of the Gaussian

g from 2.7.1 chosen appropriately to smooth

the function f , here σ = 0.4.
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0.4

 

 

f̃

f̃ ∗ g̃

(b) In order to choose f̃(x) = f(αx) the func-

tion g has to be scaled in the same way to get

an analogous result, here α = 6.

Figure 2.8: Choosing proper standard deviations of the density g to smooth differently

scaled versions of the function f .

One difficulty occurs if the function we want to smooth consists of two well-separated

parts, one with low and the other with high variation, e.g. if we build up a function h

from f and a scaled version of f̃(x) = f(αx) (α > 0), separating them in space by a

shift a > 0:

h(x) = f(x) + f̃(x− a).

Choosing g as a smoothing kernel will be unappropriate for the right part of the function

(not enough smoothing), choosing g̃ for the left part (too much smoothing), see Figure

2.9 (a) and (b).

One possible way of finding the proper scaling of the smoothing kernel for both

parts is to adapt it locally by replacing (f ∗ g)(x) by

(f ∗µ g)(x) :=

∫
f(y) µ(y)d g

(
µ(y)(x− y)

)
dy ,
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2.7 Convolutions and Adapted Convolutions

where µ : Rd → R is a measurable function which scales the density g locally by different

factors µ(y). In our example with shift a = 8 and scaling factor α = 6, the choice

µ(y) =

{
1 if x < 4,

6 if x ≥ 7,
(2.7.2)

seems suitable (see Figure 2.9a).
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(a) g is an appropriate smoothing kernel for the “left part”, but not for the right one.
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(b) g̃ is an appropriate smoothing kernel for the “right part”, but not for the left one.
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(c) Adapted convolutions guarantee an appropriate “width” of the smoothing kernel every-

where. µ is chosen as in equation (2.7.2).

Figure 2.9: Adapted convolutions guarantee an appropriate “width” of the smoothing

kernel everywhere. Here, the shift is a = 8 and the scaling factor is α = 6.

Remark 2.41. There are two possible points of view to describe the smoothing process

of f with g in the convolution f ∗ g:
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• To compute (f∗g)(x) we “sum up” all values f(y), y ∈ Rd, weighted with g(x−y).

• Each value f(y) contributes to the value (f ∗ g)(x) for each x, weighted with

g(x− y).

These viewpoints lead to two possible definitions for the µ-adapted convolution:

• (f ∗µ g)(x) :=

∫
Rd
f(y)µ(x)d g

(
µ(x)(x− y)

)
dy,

• (f ∗µ g)(x) :=

∫
Rd
f(y)µ(y)d g

(
µ(y)(x− y)

)
dy.

While the first definition does not lead to a reasonable theory (e.g. the adapted con-

volution would not be L1-norm preserving), the second definition does. The theory is

presented in the following section in a slightly more general setup.

2.7.2 Theory

Definition 2.42 (adapted convolutions, adaptation function). Let f ∈ L1(Rd), g ∈
Lp(Rd), 1 ≤ p ≤ ∞, µ : Rd → R>0 be a measurable function and

gµ(x, y) := µ(y)d/p g
(
µ(y)(x− y)

)
.

We define the µ-adapted convolution of f with g by

(f ∗pµ g)(x) :=

∫
Rd
f(y) gµ(x, y) dy ,

where 1/p := 0 for p =∞. µ will be called adaptation function. In the case p = 1, we

will omit the upper index and just write f ∗µ g. We will allow the function µ to attain

the values zero and infinity, if supp(f) ⊆ supp(µ), i.e. if µ(y) = 0 implies f(y) = 0,

since this does not affect the integral.

Remark 2.43. 1. This type of convolution is not symmetric and the notation f ∗µg
indicates that g is scaled by µ(y), while f µ∗ g can be used, if f is to be scaled

(we will not need the second notation).

2. The µ-adapted convolution reduces to the common convolution f ∗ g for µ ≡ 1.

Proposition 2.44 (Young’s inequality). Let f ∈ L1(Rd), g ∈ Lp(Rd), 1 ≤ p ≤ ∞ and

µ : Rd → R>0 be a measurable function. Then f ∗pµ g ∈ Lp(Rd) and

‖f ∗pµ g‖p ≤ ‖f‖1 ‖g‖p .
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2.7 Convolutions and Adapted Convolutions

Proof. First note that for p <∞ and y ∈ Rd the transformation formula implies:

‖gµ(·, y)‖pp =

∫
Rd
µ(y)d

∣∣g(µ(y)(x− y)
)∣∣p dx =

∫
Rd
|g (x)|p dx = ‖g‖pp . (2.7.3)

The cases p = 1 and p =∞ are straightforward:

‖f ∗µ g‖1 ≤
∫
Rd

∫
Rd
|f(y)| |gµ(x, y)|dy dx

=

∫
Rd
|f(y)|

∫
Rd
|gµ(x, y)| dx dy

= ‖f‖1 ‖g‖1 ,

‖f ∗∞µ g‖∞ ≤ ess sup
x∈Rd

∫
Rd
|f(y)|

∣∣∣g (µ(y)
1
d (x− y)

)∣∣∣ dy

≤
∫
Rd
|f(y)|dy ess sup

x∈Rd
|g (x)|

≤ ‖f‖1 ‖g‖∞ ,

where ess sup
x∈Rd

|f(x)| := inf
N∈B(Rd)
µ(N)=0

sup
x∈Rd\N

|f(x)|

denotes the essential supremum. Now let 1 < p <∞ and p′ be its conjugate exponent,

i.e. 1
p + 1

p′ = 1. Hölder’s inequality yields

|f ∗pµ g|(x) ≤
∫
Rd
|f(y)|

1
p′ |f(y)|

1
p |gµ(x, y)| dy ≤

∥∥∥|f | 1
p′
∥∥∥
p′

∥∥∥|f | 1p |gµ(x,·)|∥∥∥p .
Together with equation (2.7.3) and the Fubini-Tonelli theorem this implies

‖f ∗pµ g‖pp =

∫
Rd
|f ∗pµ g|p(x) dx

≤
∥∥∥|f | 1

p′
∥∥∥p
p′

∫
Rd

∥∥∥|f | 1p |gµ(x,·)|∥∥∥pp dx

=
∥∥f∥∥p/p′

1

∫
Rd

∫
Rd
|f(y)| |gµ(x, y)|p dy dx

=
∥∥f∥∥p/p′

1

∫
Rd
|f(y)| ‖gµ(·, y)‖pp dy

=
∥∥f∥∥1+p/p′

1
‖g‖pp

≤ ‖f‖p1 ‖g‖
p
p .
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Remark 2.45. We will apply this proposition mostly for p = 1, in which case we also

have: ∫
Rd

(f ∗µ g) (x) dx =

∫
Rd

∫
Rd
f(y) gµ(x, y) dy dx

=

∫
Rd
f(y)

∫
Rd
gµ(x, y) dx dy

=

(∫
Rd
f(y) dy

)(∫
Rd
g(x) dx

)
and, if g is a probability density on Rd,

‖f ∗µ g‖1 =

∫
Rd
|f ∗µ g| (x) dx =

∫
Rd

∫
Rd
|f(y)| gµ(x, y) dy dx

=

∫
Rd
|f(y)|

∫
Rd
gµ(x, y) dx dy =

(∫
Rd
|f(y)|dy

)(∫
Rd
g(x) dx

)
= ‖f‖1 .

Remark 2.46. The generalization of Young’s inequality,

‖f ∗ g‖r ≤ ‖f‖p ‖g‖p

for 1 ≤ p, q ≤ ∞, 1
p + 1

q = 1
r + 1 and f ∈ Lp(Rd), g ∈ Lq(Rd), does not hold

for general adapted convolutions. Also, the adapted convolution is not associative.

However, distributivity and associativity with scalar multiplication can be generalized

to adapted convolutions (the proofs are straightforward).

Also, similar to common convolutions there are slightly modified (but non-symmetric!)

rules for the differentiation of adapted convolutions. We will use the standard multiin-

dex notation,

|α| := α1 + · · ·+ αd , (2.7.4)

∂α := ∂α1
x1
∂α2
x2
· · · ∂αdxd , (2.7.5)

xα := xα1
1 xα2

2 · · ·x
αd
d , x ∈ Rd , (2.7.6)

where α = (α1, . . . , αd) ∈ Nd0.

Proposition 2.47. Let f ∈ L1(Rd), g ∈ Cα(Rd) for some α ∈ Nd, µ : Rd → R>0 be a

measurable function and 1 ≤ p ≤ ∞, such that

∂βg ∈ Lp(Rd) and f · µ|β| ∈ L1(Rd) for all β ∈ Nd, β ≤ α.
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2.7 Convolutions and Adapted Convolutions

Then f ∗pµ g ∈ Cα(Rd) and for all β ∈ Nd, β ≤ α the derivative ∂β (f ∗pµ g) ∈ Lp(Rd) is

given by

∂β
(
f ∗pµ g

)
=
(
f · µ|β|

)
∗pµ ∂βg .

Proof. For all j = 1, . . . , d we have

∂xj
(
f ∗pµ g

)
(x) = ∂xj

(∫
Rd
f(y)µ(y)

d
p g
(
µ(y)(x− y)

)
dy

)
=

∫
Rd
f(y)µ(y)

d
p

+1
(∂xjg)

(
µ(y)(x− y)

)
dy

=
[
(f · µ) ∗pµ ∂xjg

]
(x)

The claim follows by induction and ∂β (f ∗pµ g) ∈ Lp(Rd) follows from Proposition

2.44.

2.7.3 Choosing a proper Adaptation Function µ

In the example from Section 2.7.1 the adaptation function µ was chosen manually to

smooth the function f : Rd → R in a reasonable way, when taking the µ-adapted

convolution with the density g. Let us now discuss how this choice can be performed

automatically in dependence of the function f we want to smooth. We are mostly

interested in the case where g is a probability density function used as a smoothing

kernel, therefore we will restrict ourselves to the case p = 1.

Finding a good dependence for the adaptation function µ = µf on the function f

is a difficult task and will be answered here only partially. We will make the choice

µf (x) =

√∣∣∣∣‖∇f(x)‖2 − f(x) ∆f(x)

2|f(x)|2

∣∣∣∣
plausible, but neither prove uniqueness nor any kind of optimality.

Let us first gather the criteria which we would like our adaptation function µf to

fulfill (see also the motivation section 2.7.1):

Condition 2.48 (Adaptation Conditions). From now on we will say that the mapping

f 7→ µf fulfills the adaptation conditions, if it has the following properties:

(i) Invariance under shifting by a ∈ Rd: µf(·−a)(x) = µf (x− a)

(ii) Invariance under multiplication by a factor α 6= 0: µα·f = µf

(iii) Proper scaling when f is scaled by some α > 0: µf(α··)(x) = α · µf (αx)
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(iv) µf (x) should describe some kind of “variation” of f locally around x ∈ Rd.

Obviously, the fourth property is not a rigorous condition, but just a rule of thumb,

and we will discuss it now. We will start with a global version. A natural way to describe

the variation of a function f ∈ L1(Rd,R) globally is to consider its Fourier transform

since functions with high oscillations tend to have high values of Ff away from the

origin and, if a function f ∈ L1(Rd) is scaled by some factor α > 0, f̃(x) = f(αx), the

frequencies “appearing” in the Fourier transform are also scaled by α:

F f̃(ξ) = (2π)−d/2
∫
Rd
f(αy) e−iy

ᵀξ dy =
(2π)−d/2

αd

∫
Rd
f(y) e−iy

ᵀξ/α dy =
Ff(ξ/α)

αd
.

(2.7.7)

In order to assign a value for the variation to a function f we will therefore consider

the expectation value and variance defined in the following proposition:

Proposition 2.49. Let f ∈W 2,2(Rd,R) \ {0}. The expectation value and variance of

the probability distribution Pρ given by the density

ρ =
|Ff |2

‖Ff‖2
L2

=
|Ff |2

‖f‖2
L2

(here we used the Plancherel theorem 2.35) are:

Eρ = 0 and Vρ =

∫
Rd ‖∇f(z)‖2 − f(z) ∆f(z) dz

2‖f‖2
L2

.

Proof. Since for real-valued functions f

Ff(−ξ) = (2π)−d/2
∫
Rd
f(y) eiy

ᵀξ dy = (2π)−d/2
∫
Rd
f(y) e−iyᵀξ dy = Ff(ξ),

the expectation value of Pρ vanishes. Using the transformation

z1 = y1 − y2, z2 = y1 + y2
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we compute:∫
Rd
|Ff(ξ)|2 ‖ξ‖2 dξ = (2π)−d

∫
R3d

f(y1) f(y2) e−i(y1−y2)ᵀξ ‖ξ‖2 dy1 dy2 dξ

=
(2π)−d

2d

∫
R3d

f

(
z2 + z1

2

)
f

(
z2 − z1

2

)
︸ ︷︷ ︸

=:F (z1,z2)

e−iz
ᵀ
1ξ ξᵀξ dz1 dz2 dξ

= − i(2π)−d

2d

∫
R3d

Dz1F (z1, z2) · ξ e−iz
ᵀ
1ξ dz1 dz2 dξ

= −(2π)−d

2d

∫
R3d

tr
[
D2
z1F (z1, z2)

]
e−iz

ᵀ
1ξ dz1 dξ dz2

= − 1

2d

∫
Rd

tr
[
D2
z1F (0, z2)

]
dz2

=
1

2

∫
Rd
‖∇f(z)‖2 − f(z) ∆f(z) dz

This proves the formula for the variance.

The adaptation function µf , which in this global setting is just an adaptation value

µf ∈ R, can be now assigned the standard deviation of Pρ,

µf := σρ =
√
Vρ,

and the adaptation conditions 2.48 can easily be varified (in a global, x-independent

sense).

However, we are not interested in a global, but in a local adaptation. Therefore

we will study the “local frequency” of f by taking its windowed Fourier transform

Fσf(x, ξ) instead of its Fourier transform.

Again, let us consider the expectation value and variance of the corresponding

probability density in ξ:

Proposition 2.50. Let f ∈ W 2,2(Rd,R) \ {0}. Then for each x ∈ Rd the expectation

value and variance of the probability distribution Pρx given by the density

ρx =
|Fσf(x,·)|2
‖Fσf(x,·)‖2L2

are:

Eρx = 0 and Vρx =
1

2σ2
+

( (
‖∇f‖2 − f ∆f

)
∗ g2

σ

)
(x)

2 (f2 ∗ g2
σ) (x)

.
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Proof. Since for real-valued functions f

Fσf(x,−ξ) = (π)−d/4
∫
Rd
f(y) gσ(x− y) eiy

ᵀξ dy

= (π)−d/4
∫
Rd
f(y) gσ(x− y) e−iyᵀξ dy = Fσf(x, ξ),

the expectation value of Pρx vanishes. Using the transformation

z1 = y1 − y2, z2 = y1 + y2

and denoting

Fx(z1, z2, x) := f

(
z2 + z1

2

)
f

(
z2 − z1

2

)
gσ

(
x− z2 + z1

2

)
gσ

(
x− z2 − z1

2

)
,

we compute∫
Rd
|Fσf(x, ξ)|2 dξ = π−d/2

∫
R3d

f(y1) f(y2) gσ(x− y1) gσ(x− y2) e−i(y1−y2)ᵀξ dy1 dy2 dξ

=
π−d/2

2d

∫
R3d

F (z1, z2, x) e−iz
ᵀ
1ξ dz1 dz2 dξ

= πd/2
∫
Rd
F (0, z2, x) dz2

= 2dπd/2
∫
Rd
f(z)2 gσ(x− z)2 dz

= 2dπd/2
(
f2 ∗ g2

σ

)
(x)

and, using Wolfram Mathematica 9.0,∫
Rd
|Fσf(x, ξ)|2 ‖ξ‖2 dξ

= π−d/2
∫
R3d

f(y1) f(y2) gσ(x− y1) gσ(x− y2) e−i(y1−y2)ᵀξ ‖ξ‖2 dy1 dy2 dξ

=
π−d/2

2d

∫
R3d

F (z1, z2, x) e−iz
ᵀ
1ξ ξᵀξ dz1 dz2 dξ

= − iπ
−d/2

2d

∫
R3d

Dz1F (z1, z2, x) · ξ e−iz
ᵀ
1ξ dz1 dz2 dξ

= −π
−d/2

2d

∫
R3d

tr
[
D2
z1F (z1, z2, x)

]
e−iz

ᵀ
1ξ dz1 dξ dz2

= −πd/2
∫
Rd

tr
[
D2
z1F (0, z2, x)

]
dz2

= 2d−1πd/2
∫
Rd

(
σ−2f(z)2 + ‖∇f(z)‖2 − f(z) ∆f(z)

)
gσ(x− z)2 dz

= 2d−1πd/2
[ (
d σ−2f2 + ‖∇f‖2 − f ∆f

)
∗ g2

σ

]
(x)
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Taking the quotient proves the formula for the variance.

Again we can set

µf (x) := σρx =
√

Vρx =

√√√√ d

2σ2
+

(
(‖∇f‖2 − f ∆f) ∗ g2

σ

)
(x)

2 (f2 ∗ g2
σ) (x)

.

However, while the adaptation conditions 2.48 (i) and (ii) are fulfilled, the scale in-

variance (iii) is violated! The reason for this is that the window of the FBI transform

Fσf does not scale with f , producing the obstructive term 1
2σ2 . Therefore a formula

analogous to (2.7.7) does not hold for FBI-transforms. One might try to adapt the

width σ of the window beforehand, but this would require a priori knowledge of the

local variation µf of f , which we are trying to find by taking the FBI transform in the

first place. Another disadvantage of this choice of µf is the difficulty to calculate the

convolutions in the numerator and denominator in practice.

Since the obstructive term is caused by the width of the window, or in other words,

by the blurry way we look at the function, we will “unblurr” it by replacing the term

|Fσf(x, ξ)|2 in the probability density ρx from Proposition 2.50 with the Wigner trans-

form Wf(x, ξ). This replacement is motivated by the discussion in Section 2.6 and by

Proposition 2.39.

We would like to remind the reader, that the Wigner transform can take negative

values and is therefore not a probability density function. However, since we are going

to use the Wigner transform only to get a good guess on the choice of the adaptation

function µf , we are going to ignore this detail and just compute the expectation value

and variance as we did before:

Proposition 2.51. Let f ∈W 2,2(Rd,R) \ {0}. Treating

ρx =
Wf(x,·)∫

RdWf(x, ξ) dξ
=
Wf(x,·)
|f(x)|2

as a probability density function for each x ∈ Rd, the expectation value and variance

of the probability distribution Pρx are given by

Eρx = 0 and Vρx =
‖∇f(x)‖2 − f(x) ∆f(x)

2|f(x)|2
.
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Proof. Since the Wigner transform is real-valued, we get for real-valued functions f

Wf(x,−ξ) = (2π)−d
∫
Rd
f
(
x+

y

2

)
f
(
x− y

2

)
e−iy

ᵀξ dy

= (2π)−d
∫
Rd
f
(
x+

y

2

)
f
(
x− y

2

)
eiyᵀξ dy = Wf(x, ξ) = Wf(x, ξ),

and therefore the expectation value of Pρx vanishes. For the variance we compute:∫
Rd
Wf(x, ξ) ‖ξ‖2 dξ = (2π)−d

∫
R2d

f
(
x+

y

2

)
f
(
x− y

2

)
︸ ︷︷ ︸

=:F (x,y)

eiy
ᵀξ ξᵀξ dy dξ

= −i(2π)−d
∫
R3d

DyF (x, y) · ξ eiyᵀξ dy dξ

= −(2π)−d
∫
R3d

tr
[
D2
yF (x, y)

]
eiy

ᵀξ dy dξ

= −tr
[
D2
yF (x, 0)

]
=

1

2

(
‖∇f(x)‖2 − f(x) ∆f(x)

)
.

Taking the quotient proves the formula for the variance.

This time, if we choose

µf (x) := σρx =
√

Vρx =

√
|‖∇f(x)‖2 − f(x) ∆f(x)|

2f(x)2
, (2.7.8)

the adaptation conditions 2.48 are fulfilled! Also, the cumbersome integrals resulting

from convolutions no longer exist, making the application of µf very simple in practise,

once the first and second derivatives of f are known.

Remark 2.52. µf is ill-defined in the nodes of f . But, since we are going to use µf

as an adaptation function for the adapted convolution

(f ∗µf g)(x) =

∫
Rd
f(y)µf (y)d g

(
µf (y)(x− y)

)
dy ,

and since for nodes y of f the term f(y) = 0 appears as a factor, this does not cause

any problems.

µf might also have nodes where f does not, which conflicts with Definition 2.42.

In order to avoid all of these issues (and also numerical issues for very small and very
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large values of µf ), we will usually add small positive numbers 0 < ε1, ε2 � 1 to the

numerator and the denominator:

µf (x) =

√
|‖∇f(x)‖2 − f(x) ∆f(x)|+ ε1

2f(x)2 + ε2
.

This also guarantees that c < µf < C for some positive constants c, C > 0, if f,∇f
and ∆f are bounded.

−2 0 2 4 6 8 10 12
0

0.5

1

 

 
µf/10
f
f ∗µf

g

Figure 2.10: µf as given by formula (2.7.8) describes locally the variation of f . Choosing

it as an adaptation function yields a proper scaling of g and thereby a proper smoothing

of f everywhere.

2.7.4 Continuity Equation for Convolutions

Assume that (ρt)t≥0 is a time-dependent probability density which fulfills the continuity

equation

∂tρt = −div(ρtvt) = −div(jt).

Assume further that we want to smooth ρt by considering a convolution ρg,t = ρt ∗ gδt
with a smoothing kernel gδt(x) = δdt g(δtx), δt being a time-dependent parameter, or by

taking an adapted convolution ρg,t = ρt ∗µt g with time-dependent adaptation function

µt = µρt . How does the continuity equation have to be modified in order to describe

ρg,t?

We were surprised that in both cases (see the following two propositions), we could

find explicit formulas for the modified continuity equation:

Proposition 2.53. Let ρt ∈ L1(Rd) be a time-dependent probability density function

which fulfills the continuity equation

∂tρt + div jt = 0 (t ∈ R)
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for some current jt ∈ L1(Rd,Rd), such that (ρt, jt)t∈R ∈ C1
(
R1+d,R1+d

)
.

Further, let g ∈ L1(Rd) ∩ C1(Rd) be another probability density function such that

gδ(x) := δdg(δx), γδ(x) :=
x

δ
gδ(x) = δd−1x g(δx) (x ∈ Rd, δ > 0)

and all their first derivatives are (essentially) bounded: gδ, γδ ∈W 1,∞ for all δ > 0.

Finally, let (δt)t∈[0,∞) ∈ C2(R,R>0). Then for each t ∈ R

ρg,t := ρt ∗ gδt

is a probability density function, which fulfills the continuity equation

∂tρg,t = −div jg,t for jg,t = jt ∗ gδt − δ̇tρt ∗ γδt .

Further, (ρg,t, jg,t)t∈[0,∞) ∈ C1
(
R1+d,R1+d

)
.

Proof. First we observe that for every δ > 0

∂δgδ(x) = dδd−1g(δx) + δdxᵀ∇g(δx) =
d

δ
gδ(x) +

x

δ
∇gδ(x) = div γδ(x).

As a consequence,

∂tρg,t(q) =

∫
Rd
∂tρt(x) gδt(q − x) dx +

∫
Rd
ρt(x) ∂δgδt(q − x) δ̇t dx

= −
∫
Rd

div jt(x) gδt(q − x) dx + δ̇t

∫
Rd
ρt(x) div γδt(q − x) dx

= −
∫
Rd
jt(x)ᵀ∇gδt(q − x) dx + δ̇t

∫
Rd
ρt(x) div γδt(q − x) dx

= − div

(∫
Rd
jt(x) gδt(q − x) dx − δ̇t

∫
Rd
ρt(x) γδt(q − x) dx

)
= − div jg,t(q).

The existence of all integrals follows directly from the assumptions and Proposition

2.44, while (ρg,t, jg,t)t∈[0,∞) ∈ C1
(
R1+d,R1+d

)
follows from (δt)t∈[0,∞) ∈ C2(R,R>0)

and Proposition 2.47.

Proposition 2.54. Let ρt ∈ L1(Rd) be a time-dependent probability density function

which fulfills the continuity equation

∂tρt + div jt = 0 (t ∈ R)

for some current jt ∈ L1(Rd,Rd), such that (ρt, jt)t∈R ∈ C1
(
R1+d,R1+d

)
.

Further, let g ∈ L1(Rd) ∩ C1(Rd) be another probability density function and

γ(x) := x g(x) (x ∈ Rd),
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such that g, γ and all their first derivatives are (essentially) bounded: g, γ ∈W 1,∞.

Finally, let (µt)t∈R ∈ C2
(
R1+d,R>0

)
, such that µt, 1/µt,∇µt, ∂tµt ∈ L∞ are (essen-

tially) bounded for each t ∈ R. Then for each t ∈ R

ρg,t := ρt ∗µt g

is a probability density function, which fulfills the continuity equation

∂tρg,t = −div jg,t for jg,t = jt ∗µt g −
jᵀt∇µt + ρt∂tµt

µ2
t

∗µt γ .

Further, (ρg,t, jg,t)t∈[0,∞) ∈ C1
(
R1+d,R1+d

)
.

Proof. We will use the abbreviation fµ(x, y) := f
(
µ(y)(x− y)

)
for functions

f, µ : Rd → R (note that this notation differs by a prefactor from the one used in

Definition 2.42).

First, we make the following two observations:

divx
[
(x− y) gµt(x, y)

]
= d gµt(x, y) + µt(y) (x− y)ᵀ (∇g)µt(x, y) (2.7.9)

and

−
∫
Rd

div jt(y)µt(y)d gµt(x, y) dy

=

∫
Rd
jt(y)ᵀ∇y

(
µt(y)d gµt(x, y)

)
dy

=

∫
Rd
jt(y)ᵀ

[
dµt(y)d−1∇µt(y) gµt(x, y)

+
(
µt(y)d∇µt(y)(x− y)ᵀ − µt(y)d+1 Id

)
(∇g)µt(x, y)

]
dy

=

∫
Rd
jt(y)ᵀ

[
µt(y)d−1∇µt(y)

(
d gµt(x, y) + µt(y)(x− y)ᵀ(∇g)µt(x, y)

)
− µt(y)d∇x

(
gµt(x, y)

)]
dy

= div

∫
Rd
µt(y)d−1 (jt(y)ᵀ∇µt(y)) gµt(x, y) (x− y)− jt(y)µt(y)d gµt(x, y) dy ,
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where we used equation (2.7.9) in the last step. Combining these two we get:

∂tρg,t(x) =

∫
Rd
∂tρt(y)µt(y)d gµt(x, y) dy

+

∫
Rd
d ρt(y)µd−1

t ∂tµt(y) gµt(x, y) + ρt(y)µt(y)d ∂tµt(y) (x− y)ᵀ (∇g)µt(x, y) dy

= div

∫
Rd
µt(y)d−1 (jt(y)ᵀ∇µt(y)) gµt(x, y) (x− y)− jt(y)µt(y)d gµt(x, y) dy

+

∫
Rd
ρt(y)µt(y)d−1∂tµt(y)

[
d gµt(x, y) + µt(y) (x− y)ᵀ (∇g)µt(x, y)

]
dy

= div

∫
Rd
µt(y)d−1 (jt(y)ᵀ∇µt(y)) gµt(x, y) (x− y)− jt(y)µt(y)d gµt(x, y) dy

+ div

∫
Rd
ρt(y)µt(y)d−1∂tµt(y) gµt(x, y) dy

= −div

∫
Rd
µt(y)d gµt(x, y)

[
jt(y)− x− y

µt(y)

(
jt(y)ᵀ∇µt(y) + ρt(y) ∂tµt(y)

)]
dy .

The existence of all integrals follows directly from the assumptions and Proposition

2.44, while (jg,t)t∈[0,∞) ∈ C1
(
[0,∞)× Rd,Rd

)
follows from Proposition 2.47.

Corollary 2.55. In the situation of Proposition 2.53, Proposition 2.54 respectively,

the initial value problem

ẋt = vg,t (xt) , vg,t =
jg,t
ρg,t

(xt) , x0 = xin (2.7.10)

has a unique solution (xt)t≥0 for ρg,t-almost every initial value xin.

If xin is a Pρg,0-distributed random variable (or xk,in are Pρg,0-distributed points),

then xt (or xk,t) will stay Pρg,t-distributed for all times t ≥ 0.

Proof. This is a direct consequence of Propositions 2.53, 2.54 and Proposition 2.12.

Definition 2.56 (Quasi-Bohmian Trajectories). In the case of Bohmian mechanics,

i.e. vt = =
[
∇ψt
ψt

]
, where ψt is the wave function, the trajectories resulting from the

initial value problem (2.7.10) will be referred to as quasi-Bohmian trajectories.

2.8 Radial Basis Functions

Approximations with radial basis functions (see. e.g. [Buh03], [Wen05]. [Fas07b]) is a

growing field in numerical analysis. Its aim is to approximate a given function f : Ω ⊆
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2.8 Radial Basis Functions

Rd → R by a linear combination of radially symmetric functions ηj(x) = φ(‖x− xj‖),
which are identical up to their centers:

f(x) ≈ u(x) =
N∑
j=1

cj φ(‖x− xj‖), cj ∈ R, xj ∈ Ω, φ ∈ C(Rd,R).

One important advantage of this class of approximations is the arbitrariness of the

choice of the set of centers X = {xj | j = 1, . . . , N}. Instead of having to form a

specific grid, the centers may be scattered in the domain of approximation Ω. The

bounds for the approximation error are usually expressed in terms of the fill distance

hX ,Ω = max
x∈Ω

min
j=1,...,N

‖x− xj‖.

However, this suggests, though by no means necessary, to position the points xj on

some kind of grid or close to one in order to minimize hX ,Ω.

Once the approximation space M = span{ηj | j = 1, . . . , N} is fixed, one has to

decide on the type of approximation, i.e. on how to choose the coefficients cj . A very

common approach is the bestapproximation u =
∑N

j=1 cjηj with respect to some norm

‖·‖, which is normally induced by a scalar product 〈·,·〉, e.g. the L2 norm:

bk := 〈ηk, f〉
!

= 〈ηk, u〉 =

N∑
j=1

cj 〈ηk, ηj〉︸ ︷︷ ︸
=: akj

∀k = 1, . . . , N

i.e. b
!

= Ac

in the matrix-vector notation A = (akj)k,j , b = (bk)k, c = (ck)k. The numerical

solution of this system of linear equations requires for the so-called stiffness matrix A

not to be ill-conditioned, which we will discuss below.

Remark 2.57. Note that the Gramian matrix A appears in the Dirac-Frenkel varia-

tional principle: When applying a time step method to the ODE (2.5.4), in our case

it will be an explicit Runge-Kutta method, one has to solve such linear systems of

equations in each time step.

Another common approximation approach is interpolation of f in X :

b̃k := f(xk)
!

= u(xk) =
N∑
j=1

cj ηj(xk)︸ ︷︷ ︸
ãkj

∀k = 1, . . . , N

i.e. b̃
!

= Ãc.

Again the interpolation matrix Ã must not be ill-conditioned.
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Remark 2.58. Note that the least squares method, which is yet another common

approach, can be expressed as a bestapproximation problem by choosing a proper

(semi-)norm.

2.8.1 The Condition Number of Stiffness and Interpolation Matrices

Since it is difficult to give a general characterization of ill-conditioned matrices, we will

settle for a special case and give an intuitive reasoning: Assume that ηj1 ≈ ηj2 , say

‖ηj1 − ηj2‖ = δ. Then their scalar products with all basis functions ηk are also close to

each other:

| 〈ηj1 , ηk〉 − 〈ηj2 , ηk〉 | = | 〈ηj1 − ηj2 , ηk〉 | ≤ δ‖ηk,t‖ = δ for all k = 1, . . . , N

by the Cauchy-Schwarz inequality (we used that in our case ‖ηk,t‖ = 1).

The same argumentation works for interpolation matrices: Assume ‖ηj1−ηj2‖L∞ =

δ. Then

|ηj1(xk)− ηj2(xk)| ≤ δ for all k = 1, . . . , N.

Therefore we would get two nearly identical rows in the stiffness matrix A and the

interpolation matrix Ã, respectively, making them nearly rank deficient and thereby

ill-conditioned.

In the case of Gaussian radial basis functions

ηj(x) =

(
2ε2

π

) d
4

exp
(
−ε2 ‖x− xj‖2

)
for L2-bestapproximation, (2.8.1)

ηj(x) = exp
(
−ε2 ‖x− xj‖2

)
for interpolation, (2.8.2)

this leads to a simple rule of thumb:

The closer the center xj,t is to the neighboring centers xk,t, the more peaked the

Gaussian ηj,t must be chosen!

Remark 2.59. The prefactors are chosen in such a way, that the diagonals of the

stiffness and interpolation matrices consist only of ones, which improves their condition

numbers. Of course, the prefactors do not vary the approximation space.

In fact, the so-called shape parameter ε satisfies a trade-off principle. Roughly

speaking, the smaller it is, the better the approximation properties, but the worse the

condition number of the stiffness and interpolation matrices. This dependence has
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2.8 Radial Basis Functions

stirred up a wide discussion on how to choose the “optimal” shape parameter, see e.g.

[Fas07a].

To make these connections between the distance of the centers xj , the shape param-

eter ε of the basis functions and the condition number of the stiffness and interpolation

matrices more concrete, let us consider the following example:

Given f ∈ L2(Rd) with support supp(f) ⊆ Ω = (0, 1)d. In order to approximate f

we choose Gaussian radial basis functions of the form (2.8.1) centered on an equidistant

grid X = {x1, . . . , xN} ⊆ Ω, N = nd for some n ∈ N. Assuming that we let the mesh

size h ∼ 1/n go to zero, if we let the shape parameter ε constant in h, neighbored basis

functions would “overlap” more and more (thereby becoming close to one another in the

sense discussed above). Since matrices with at least two similar rows (or columns) are

nearly rank deficient, the condition numbers of the the stiffness and the interpolation

matrices would explode.

However, if we choose the shape parameter ε = ε(h) = h−1E for some constant basic

shape parameter E , the “overlap” of neighbored basis functions stays constant in h and

the condition number, though growing due to a larger matrix size, will not explode as

in the upper example.
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(a) n = 16, ε(h) = h−1E . (b) n = 32, ε(h) = h−1E . (c) n = 64, ε(h) = h−1E .

(d) n = 16, ε(h) = E . (e) n = 32, ε(h) = E . (f) n = 64, ε(h) = E .

Figure 2.11: Visualization of the entries of the stiffness matrix (the results for the inter-

polation matrix are analogous) in dependence of n for various choices of ε(h).
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κ(A) for ǫ(h) = h−1E
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Figure 2.12: Condition numbers of the stiffness matrix A and interpolation matrix B

plotted over n for two different choices for ε(h).
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2.8.2 Approximate Approximations

The above discussion of the condition numbers of stiffness and interpolation matrices

suggests the following choice of basis functions for an equidistant grid X = {x1, . . . , xN} ⊆
Ω = (0, 1)d, N = nd, h = 1/n:

ηj(x) = κ(h) η
(
h−1E(x− xj)

)
.

Here, E > 0 is constant and κ(h) > 0 is a suitably chosen prefactor, which can be

ignored, since it does not influence the approximation space. Further, the so-called

generating function η = φ(‖·‖) ∈ C(Rd,R) denotes a radially symmetric function, which

decays fast enough and thereby keeps the overlap small enough (this last property is

specified below).

This dependence of the shape parameter on the point density, which is referred to

as stationary approximation by Fasshauer (see [Fas07b]) or as approximate approxima-

tion by Maz’ya and Schmidt (see [Maz07]), results in approximation methods that do

not converge in general. Instead, the convergence of the approximation error to zero

can only be reached up to a certain saturation error. The latter can be tuned to be

arbitary small by choosing a proper parameter E > 0 small enough and therefore it

can be neglected in many numerical computations (hence the term “approximate ap-

proximations”). Here we will follow the presentation of [Maz07]. We will start with

the introduction of quasi-interpolation, which will be followed by its error analysis. We

will use the standard multiindex notation (2.7.4) – (2.7.6) extended by:

∇kf := (∂αf)|α|=k , k ∈ N, f ∈ Ck ,

‖∇kf‖Lp(Ω) :=
∥∥(‖∂αf‖Lp(Ω))|α|=k

∥∥
p
, k ∈ N, f ∈W k,p(Ω),

where α = (α1, . . . , αd) ∈ Nd0 and (∂αf)|α|=k denotes the vector of partial derivatives

in lexicographic order. Further, we will assume that the generating function η fulfills

the following conditions:

Definition 2.60 ((extended) decay condition, moment condition). Let d ∈ N and

µ =
⌊
d
2

⌋
+ 1. We say that η ∈ C(Rd,R) fulfills

1. the decay condition, if

∃K1 > 0, K2 > d : |η(x)| ≤ K1(1 + |x|)−K2 , (2.8.3)
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2. the extended decay condition, if

η ∈ Cµ and ∂αη fulfills (2.8.3) for all 0 ≤ |α| ≤ µ, (2.8.4)

3. the moment condition of order K3 ∈ N, if∫
Rd
η(x) dx = 1 and

∫
Rd
xαη(x) dx = 0 for all 1 ≤ |α| ≤ K3, (2.8.5)

These conditions allow us to define quasi-interpolation and discuss its error analysis.

Definition 2.61 (quasi interpolation). Let Ω ⊆ Rd be a domain, f ∈ Lp(Ω), 1 ≤
p ≤ ∞, and η ∈ C(Rd,R) fulfill the decay condition (2.8.3). We define the quasi-

interpolanion with mesh size h > 0 and basic shape parameter E > 0 of f as

(Qhf) (x) := (Qh,E,ηf) (x) := Ed
∑
m∈Zd

f(hm) η

(
E(x− hm)

h

)
, (2.8.6)

where f(hm) := 0 for hm /∈ Ω.

Qhf can be viewed as the semi-discrete convolution with mesh size h

(g1 ∗h g2)(x) =
∑
m∈Zd

g1(hm)g2(x/h−m)

of f with the generating function η(E ··). Using this observation, one can apply Young’s

and Hölder’s inequalities to prove the well-definedness of and an upper bound for Qhf :

Lemma 2.62. Let h, E > 0, η ∈ C(Rd,R) fulfill the decay condition (2.8.3), f ∈
Lp(Rd,R), 1 ≤ p ≤ ∞ and |f |p be Riemann integrable if p <∞. Then

‖f‖p,h :=


(
hd
∑

m∈Zd |f(hm)|p
)1/p

, 1 ≤ p <∞,

supm∈Zd |f(hm)|, p =∞

is uniformly bounded with respect to h and Qhf ∈ Lp(Rd,R) with

‖Qhf‖Lp ≤ C‖f‖p,h

for some constant C = C(p, E , η) > 0, which is independent of f and h.

Proof. See [Maz07, Lemma 2.1, Corollary 2.2 and Remark 2.3].

One possible error estimate of quasi-interpolation is given by the following theorem,

where W k,p denotes the Sobolev space of order k corresponding to the Lp-norm:
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Theorem 2.63. Let Ω ⊆ Rd be a domain, 1 ≤ p ≤ ∞, f ∈ W k,p(Ω,R) and η ∈
C(Rd,R) fulfill the extended decay condition (2.8.4) with constants K1 > 0, K2 > d

and the moment condition of order K3, such that d/p < k < K2.

Then there exists a constant Cη > 0 independent of f, h, E and for every ε > 0 an

E0 > 0 such that for every 0 < E ≤ E0 there exists κ = κ(ε, E) > 0, such that for all

h > 0 the quasi-interpolant Qhf of f satisfies

(i.e. ∃Cη > 0 ∀ε > 0 ∃E0 > 0 ∀0 < E ≤ E0 ∃κ > 0 ∀h > 0)

‖f −Qhf‖Lp(Ωκh) ≤ Cη
(
E−1h

)M ‖∇Mf‖Lp(Ω) + ε
M−1∑
j=0

(
E−1h

)j ‖∇jf‖Lp(Ω) ,

where M = min(K3, k) and Ωτ := {x ∈ Ω : Bτ (x) ⊆ Ω}.

Proof. See [Maz07, Theorem 2.28 and Lemma 2.30].

For a plot showing the convergence of the approximation up to a saturation error

(and how to tune the latter one by decreasing E) see Figures 4.3 and 4.6.
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Chapter 3

Choice of the Approximation

Manifold

The main challenge when applying a numerical method to a PDE, like the variational

principle to the Schrödinger equation, is the choice of a “good” approximation manifold,

meaning that it is (and stays) close to the true solution ψt of the PDE. In our case,

the manifold will be a time-dependent N -dimensional complex vector space Mt =

spanC{η1, . . . , ηN} spanned by Gaussian basis functions ηj and the approximant will

be denoted by

ut =

N∑
j=1

cj,tηj,t ≈ ψt.

We want to stress that the decision for the basis functions to be Gaussian in not essential

for our algorithm, They should, however, fulfill the extended decay condition (2.8.4)

and the moment condition (2.8.5).

The main advantage of our ansatz is the time-dependence of the approximation

manifold - it adapts automatically to the wave function ψt and changes as ψt evolves

in time.

For sake of notation, we will mostly omit the index t in our presentation, since

the choice of the manifold will mainly be explained at a fixed time t. We ask the

reader to keep in mind that ψ, ρ, ρg, R, Rg, v, M, ηj , εj , pj , qj , xj , δ and µ are all

time-dependent quantities and we will deal with their time-evolution in Section 3.2,

where the index t will recur.
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We will begin with an intuitive explanation of our choice of the approximation

manifold in Section 3.1, which will be followed by an accurate presentation of the

resulting algorithm in Section 3.2.

Section 3.3 will address the mathematically rigorous analysis of the manifold’s ap-

proximation properties. The chapter will be completed by a proof of the linear inde-

pendence of our so-called basis functions in a special case.

3.1 Outline in 1-D

The basis functions will be adapted to the wave function in five steps, which we will

present now and four of which will be illustrated in Figure 3.1. This section is meant

to give the reader an intuitive understanding of our ansatz and does not aim at math-

ematical rigour (which will follow in Section 3.3).

As in the last section, N = nd will denote the number of basis functions and h = n−1

the “mesh size”, even though we will not have an actual mesh here. The visualizations

use the example (4.1.1) (for various values of t).

3.1.1 Step 1: Centers of the Basis Functions (see Figure 3.1b)

In order to get a good approximation, we want our basis functions to lie in the region

of interest (i.e. where the wave function is far from zero) and to adapt to it, when it

changes in time. As mentioned in Section 2.4 (see e.g. Remark 2.26), that is exactly

what Bohmian trajectories do - they group up in regions of high values of |ψt| and thin

out with decaying |ψt|. Therefore we will propagate N Bohmian trajectories qj = qj,t

and choose the basis functions to be to be centered at these:

ηj(x) =

(
2ε

π

) d
4

exp
(
−ε (x− qj)2

)
,

where the shape parameter is chosen as ε = h−2E2 with constant basic shape parameter

E > 0, as motivated in Section 2.8. The reason for the choice of the prefactor is given

in Remark 2.59 (scaling the basis functions clearly does not modify the vector space).
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(a) The wavefunction we want to approximate, together with ρt-distributed points qj .
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(b) Gaussian basis functions with constant width, centered in the points qj .
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(c) Gaussian basis functions with adapted widths.
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(d) A momentum term was added.
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(e) The basis functions after “pulling apart” their centers.

Figure 3.1: The construction of a proper approximation basis in four steps (for reasons

of visualisation only a few basis functions are plotted).
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3.1.2 Step 2: Widths of the Basis Functions (see Figure 3.1c)

There are three reasons why a constant (in time and space) shape parameter ε is a bad

choice:

1. The wave function is changing in time. If, for example, it diffuses as in the

case of the free Schrödinger equation, it would be appropriate to flatten out our

Gaussians in order to keep a good approximation.

2. In regions, where the position density is low and we have few centers qj , one

would get a better approximation by choosing flat Gaussians, while a choice of

peaked Gaussians is favorable in high-density-regions.

3. The resulting stiffness matrix At gets ill-conditioned if we choose ε too small in

regions where we have many centers (see section 2.8.1). On the other hand, the

approximation gets terrible if we choose our basis functions too peaked, especially

in regions of low density (and thereby few basis functions).

These disadvantages motivate the following choice of basis functions:

ηj(x) =

(
2εj
π

) d
4

exp
(
−εj (x− qj)2

)
, where εj = εj,t = h−2E2ρt(qj)

β, E , β > 0.

The precise choice of β is discussed in Section 3.1.4.

This way, the basis functions are flat in regions of low density (where there are few

centers qj) and peaked in regions of high density (with many centers qj), leading to a

good approximation while avoiding the ill-conditioning of the stiffness matrix. Also,

the adaption in time happens automatically - if the wave function flattens out, so does

ρt = |ψt|p/‖ψt‖pLp and thereby also the basis functions.

3.1.3 Step 3: Adding a momentum (see Figure 3.1d)

Consider the free Schrödinger equation with a real valued initial wave function. After

some time it will dissolve and become highly oscillatory at the edges (see Figure 3.1a).
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3.1 Outline in 1-D
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(c) Imaginary part of upper wavefunction.

Figure 3.2: In the case of e.g. the free Schrödinger equation (meaning V = 0, see example

(4.1.1)) the wavefunction tends to become highly oscillatory at the edges.

With our ansatz (which approximates the real and the imaginary parts of the wave-

function ψ separately, since the basis functions are real-valued and only the coefficients

may be complex-valued), these oscillations cause serious problems, especially since we

have very few points in these regions. Therefore we will add a “momentum” term to

our basis functions and we already know how to choose it from Bohmian mechanics:

Rewriting the wave function ψ = ReiS in the polar form, the best linear approximation

to S at qj is given

S(x) ≈ S(qj) +∇S(qj)
ᵀ(x− qj) = S(qj) + vᵀ(x− qj),

where v = =
[
∇ψ
ψ

]
is the Bohmian velocity, see (2.4.2) and Remark 2.27. Since the

constant term is handled by the coefficient cj in the approximation ψ ≈ u =
∑N

j=1 cjηj
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3. CHOICE OF THE APPROXIMATION MANIFOLD

we arrive at following choice for the basis functions:

ηj(x) =

(
2εj
π

) d
4

exp
(
−εj (x− qj)2 + ipj(x− qj)

)
, where pj = v(qj).

Remark 3.1. This modification is tailored to the specific case of the Schrödinger

equation and will not be considered for the error analysis in Section 3.3. In the nu-

merical experiments on the Schrödinger equation (Section 4) we will always compare

both cases, with and without momentum term, where we will see that the latter one

performs poorly when the oscillations get higher.

3.1.4 Step 4: Pulling the Centers Apart (see Figure 3.1e)

Our experiments have shown, that the ρ-distributed centers qj tend to stick too close

to each other:
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0.3
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0.5

 

 
ρ

ρ-distributed points
favored points

This has two negative effects:

1. The points do not cover the whole region of interest, but only a small part of

very high density (and there we get too many). This yields a bad approximation

space.

2. If the points are too close to each other, the stiffness matrix A becomes ill-

conditioned (see subsection 2.8.1).

The reason why we chose the centers to be ρt-distributed in the first place was their

localization in the region of interest. In order to keep this property but avoid the
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3.1 Outline in 1-D

above mentioned disadvantages, we will choose new centers xj = xj,t, these being ρg-

distributed instead of ρ-distributed, where we smoothed ρ = ρt by taking its convolution

with another Gaussian centered at zero:

ρg = ρg,t := ρ ∗ gδ , gδ(x) = δdg(δx) , g(x) = π−d/2e−|x|
2
.

Again, the choice of g being a Gaussian is not essential.

The resulting basis functions are:

ηj(x) =

(
2εj
π

) d
4

exp
(
−εj (x− xj)2 + ipj(x− xj)

)
, (3.1.1)

where pj = vt(xj), εj = h−2E2ρg(xj)
β for some κε, β > 0 and the points xj are ρg-

distributed.

The parameter δ = δt is chosen in dependence of the density ρ: high for peaked ρ

and low for wide ρ to get analogous results. We will now discuss the precise choice of

the parameters δ and β using the concept of scale invariance.

Assume our whole approximation problem

(1) ψ ∈ Lp(Rd,C) and ρ =
|ψ|p

‖ψ‖pLp
∈ L1(Rd,R), 1 ≤ p <∞,

(2) ρg = ρ ∗ gδ for some δ > 0,

(3) xj , εj , pj and ηj as in (3.1.1),

(4) ψ ≈ u =
∑N

j=1 cjηj for some c1, . . . , cN ∈ C

is scaled by a factor α > 0 to

(5) ψ̃(x) = αd/pψ(αx) and ρ̃(x) =
|ψ̃(x)|p

‖ψ̃‖pLp
= αdρ(αx),

(6) ρ̃g = ρ̃ ∗ gδ̃ for some δ̃ > 0,

(7) x̃j =
xj
α , ε̃j = h−2E2ρ̃g(x̃j)

β, p̃j = ṽt(x̃j) (where ṽt = =
[
∇ψ̃
ψ̃

]
) and

η̃j(x) =

(
2ε̃j
π

) d
4

exp
(
−ε̃j (x− x̃j)2 + ip̃j(x− x̃j)

)
,

(8) ψ̃ ≈ ũ :=
∑N

j=1 c̃j η̃j for c̃j = α
(2−p)d

2p cj , j = 1, . . . , N ,
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3. CHOICE OF THE APPROXIMATION MANIFOLD

then we demand, in order to keep the approximation properties of the original problem,

that our basis functions and the density ρg are scaled by the same factor:

η̃j(x)
!

= α
d
2 ηj(αx) , ρ̃g(q)

!
= αdρg(αq) (3.1.2)

This demand is justified by the following

Proposition 3.2. Let ψ, ψ̃, u, ũ ∈ Lp(Rd,C), 1 ≤ p < ∞, fulfill conditions (1) – (8)

and (3.1.2). Then

‖ψ̃ − ũ‖Lp = ‖ψ − u‖Lp .

Proof. A simple applications of the transformation formula yields:

‖ψ̃ − ũ‖pLp =

∫
Rd

∣∣∣∣ψ̃(x)−
N∑
j=1

c̃j η̃j(x)

∣∣∣∣p dx

=

∫
Rd

∣∣∣∣α d
pψ(αx)−

N∑
j=1

α
(2−p)d

2p cjα
d
2 ηj(αx)

∣∣∣∣p dx

=

∫
Rd
αd
∣∣∣∣ψ(αx)−

N∑
j=1

cjηj(αx)

∣∣∣∣p dx

=

∫
Rd

∣∣∣∣ψ(x)−
N∑
j=1

cjηj(x)

∣∣∣∣p dx

= ‖ψ − u‖pLp .

Remark 3.3. The prefactors αd/p in ψ̃(x) = αd/pψ(αx) and αd/2 in η̃(x) = αd/2η(αx)

are optional and tailored to the case of the Schrödinger equation. Any other factors

can be chosen, they just have to be compensated by corresponding prefactors in the co-

efficients c̃j . The scaling of the probability density ρ̃(x) = αdρ(αx) remains unaffected

by these manipulations.

We will now show that the choices β = 2
d and δ(ρ) = κδ

∫
Rd ρ

d+1
d (x) dx fulfill our

demand (3.1.2):

Proposition 3.4. Under conditions (1) – (8), the choices

β =
2

d
and δ(ρ) = κδ

∫
Rd
ρ
d+1
d (x) dx,

where κδ > 0 is a positive constant, fulfill the required relations (3.1.2). Furthermore,

〈η̃j , η̃k〉L2 = 〈ηj , ηk〉L2 .
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3.1 Outline in 1-D

Proof. From

δ̃ = δ(ρ̃) = κδ

∫
Rd
ρ̃
d+1
d (x) dx = κδ

∫
Rd
αd+1ρ

d+1
d (αx) dx

y=αx
=

= ακδ

∫
Rd
ρ
d+1
d (y) dy = αδ

we conclude

ρ̃g,δ̃(q) = (ρ̃ ∗ gδ̃)(q) =

∫
Rd
ρ̃(x) gδ̃(q − x) dx

=

∫
Rd
αdρ(αx)αdδdg

(
αδ(q − x)

)
dx

y=αx
= αd

∫
Rd
ρ(y) δdg

(
δ(αq − y)

)
dy

= αd(ρ ∗ gδ)(αq) = αdρg,δ(αq).

Then

ε̃j = h−2E2ρ̃(q̃j)
β = h−2E2

(
αdρ

(
α
qj
α

)) 2
d

= α2εj ,

p̃j = =

[
∇ψ̃
(
x̃j
)

ψ̃
(
x̃j
) ] = =

[
α
d
2

+1∇ψ
(
α
xj
α

)
α
d
2ψ
(
α
xj
α

) ]
= αpj ,

implies:

η̃j(x) =

(
2ε̃j
π

) d
4

exp
(
−ε̃j

(
x− x̃j

)2
+ ip̃j

(
x− x̃j

))
=

(
2α2εj
π

) d
4

exp

(
−α2εj

(
x− xj

α

)2
+ iαpj

(
x− xj

α

))
= α

d
2 ηj(αx),

〈η̃j , η̃k〉L2 =

∫
Rd
η̃j(x) η̃k(x) dx =

∫
Rd
αd/2ηj(αx)αd/2ηk(αx) dx =

∫
Rd
ηj(x) ηk(x) dx

= 〈ηj , ηk〉L2 .

Remark 3.5. We do not need to compute δ precisely - a rough estimate of how well-

localized our ρ is suffices completely. Therefore, we can estimate δ by a Monte-Carlo

quadrature using the Bohmian points qj (the ones which are ρ-distributed):

δ = δ(ρ) = κδ

∫
Rd
ρ
d+1
d (x) dx = κδEρt

(
ρ

1
d
)
≈ κδ

N

N∑
j=1

ρ
(
qj
) 1
d .
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3. CHOICE OF THE APPROXIMATION MANIFOLD

Thus, the basis functions and the density ρg flatten out whenever the wave function

does and in such a way, that the approximation quality (in L2(Rd,C)-sense) is not

reduced.

In many cases, it appears reasonable to adapt the extent of flattening out the density

locally (see Section 2.7.1), which leads to the use of adapted convolutions. In this case,

the new density ρg is defined by

ρg := ρ ∗µρ g

with proper adaptation function µρ : Rd → R (for details, see Section 2.7). This is a

generalization to the common notion of convolutions, since for µρ(x) = δ1/d we arrive

at the former definition of ρg.

Again, we will check the scale invariance of our new choice for ρg, following the

strategy from Proposition 3.4:

Proposition 3.6. Under conditions (1) – (8), where condition (2) is replaced by

ρg = ρ ∗µρ g (2*)

the relations (3.1.2) are fulfilled, if β = 2
d and

µαdρ(α··) = αµρ(αx) (3.1.3)

(compare with the adaptation conditions 2.48). In this case we also have

〈η̃j , η̃k〉L2 = 〈ηj , ηk〉L2 .

Proof. The proof is identical to the one of Proposition 3.4 except for the scaling of ρg:

ρ̃g(q) = (ρ̃ ∗µρ̃ g)(q) =

∫
Rd
ρ̃(x)µρ̃(x)d g

(
µρ̃(x)(q − x)

)
dx

=

∫
Rd
αdρ(αx)αdµρ(αx)d g

(
αµρ(αx)(q − x)

)
dx

y=αx
= αd

∫
Rd
ρ(y)µρ(y)d g

(
µρ(y)(αq − y)

)
dy

= αdρg(αq).

Remark 3.7. The most difficult part after defining a proper density ρg,t and choosing

ρg,0-distributed points xj = xj,0 at time t = 0 is to find a proper way to propagate

them, such that they stay ρg,t-distributed for all times t > 0. This issue is elaborated

in Section 2.7.4. We were surprised to find that it could be performed explicitly in both

cases, ρg,t = ρt ∗ gδt and ρg,t = ρt ∗µt g.
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3.1 Outline in 1-D

3.1.5 Step 5: Generalization to Higher Dimensions

When choosing the approximation space in dimension d > 1, things get a little more

subtle. We now have the freedom to break the radial symmetry of ηj by replacing the

term εj‖x−xj‖2 in the exponent by (x−xj)TΣ−1
j (x−xj), where Σj ∈ Rd×d are positive

definite symmetric matrices (covariance matrices). Consider the following example:

Example 3.8. For α > 0, let Ω = (0, α) × (0, α−1) be a rectangle equipped with the

uniform distribution Pρ, ρ ≡ 1. The map

Rα : Ω→ (0, 1)2, x 7→

(
α−1 0

0 α

)
x

is a transport map from Pρ to Puni, since |DxRα| ≡ 1 (see Lemma 2.8). We choose

Pρ-distributed centers of the basis functions by xj = Rα
−1(yj) with equidistant points

y1, . . . , yN ∈ (0, 1)d (see (2.1.1)). We will discuss two choices of basis functions: the

first radially symmetric with parameter εj = h−2E2ρ(xj)
2/d and the second with covari-

ance matrices Σj =
(
2h−2E2DxRα(xj)

ᵀDxRα(xj)
)−1

, i.e. (see Figure 3.3)

ηαj (x) =

(
2εj
π

) d
4

exp
(
−εj |x− xj |2

)
and

η̃αj (x) =

(
2

π

) d
4 ∣∣h−1EDxRα(xj)

∣∣ 1
2 exp

(
−
∣∣h−1E DxRα(xj)(x− xj)

∣∣2) .
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3. CHOICE OF THE APPROXIMATION MANIFOLD

(a) For α = 1 both cases coincide.

(b) For α > 1 the radial basis functions ηαj are

too close too their neighbors in y-direction,

raising the condition number of the stiffness

matrix, see subsection 2.8.1, and too far in x-

direction, worsening the approximation prop-

erties.

(c) These disadvantages can be compen-

sated by scaling the basis functions – making

them wider in x-direction and thinner in y-

direction. In the case of the choice η̃αj both the

stiffness matrix and the approximation prop-

erties are independent of α.

Figure 3.3: Comparison of the two choices of basis functions (ηαj and η̃αj ) for α = 1, 2

(here N = 25, E = 2).

For the readers who still are not convinced, let us extend our example and compare

the bestapproximation (in L2-sense) of the function f ≡ 1 in M = span{ηαj | j =

1, . . . , N} with the one in M̃ = span{η̃αj | j = 1, . . . , N}. The result for several α is

illustrated in Figure 3.4.
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3.1 Outline in 1-D

(a) For α = 1 both cases coincide: κ(A) = 2.4 · 104, E = 0.067.

(b) For α = 2.5 the radial basis functions ηαj
yield a bad approximation and an

ill-conditioned stiffness matrix:

κ(A) = 2.3 · 104, E = 0.1908.

(c) For α = 2.5 the condition number and the

approximation properties of the basis func-

tions η̃αj do not differ from the case α = 1:

κ(A) = 2.4 · 104, E = 0.067.
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(d) Condition number and L2-Error of the

bestappoximatoin for the basis functions ηαj
plotted over α.
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(e) Condition Number and L2-Error of the

bestappoximatoin for the basis functions η̃αj
plotted over α.

Figure 3.4: Comparison of the approximation errors E and the condition numbers of

the stiffness matrices κ(A) of the two choices of basis functions (ηαj and η̃αj ) for α ∈ [1, 4].

Here, N = 8× 8 = 64, E = 1.25 and the function to be approximated is f ≡ 1 (note that

the highest possible error of a bestapproximation is ‖f‖L2 = 1).
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3. CHOICE OF THE APPROXIMATION MANIFOLD

So, scaling (x− xj) by DxR(xj) deforms the basis functions in a proper way. The

theoretical reason why this is the “correct” way to scale, is given in all detail in Section

3.3 and will now be discussed roughly:

Let us denote the radial basis functions on the unit cube (equipped with the uniform

distribution) and centered on a uniform grid y1, . . . , yN by θ1, . . . , θN (in the upper

example, θj = η1
j ):

θj(y) = φ(‖y − yj‖) for some function φ : R≥0 → R.

R−1 : (0, 1)d → Ω is a deformation of the support of the density and we want not only

our centers to be transformed by it (xj = R−1(yj)), but also the basis functions θj :

ηj ≈ θj ◦R : Ω→ R.

Since the Jacobian DxR(xj) is the best linear approximation of R near the point xj ,

this results in:

(θj ◦R)(x) ≈ θj
(
R(xj)︸ ︷︷ ︸

= yj

+DxR(xj)(x− xj)
)

= φ
(
‖DxR(xj)(x− xj)‖

)
=: ηj(x).

Example 3.9. As a final example consider R given by

R−1
(

(r, ϕ)
)

= (r + 1)

(
cos(πϕ)

sin(πϕ)

)
, (r, ϕ) ∈ (0, 1)2.

In Figures 3.5 and 3.6 one can observe how R−1 not only transforms the centers, but

also deforms the basis functions in a proper way.
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Figure 3.5: Visualisation of the transport map R−1 and the centers of the basis functions

(in red).
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3.2 Resulting Algorithm

Figure 3.6: In order to keep good approximation properties without getting an ill-

conditioned matrix the basis functions are deformed by DxR.

3.2 Resulting Algorithm

In this section, we will sum up the the ideas from the previous section to get a better

overview. Afterwards, we will write down the complete algorithm in bullet point form.

Let 1 ≤ p <∞, ψ = ψt ∈ Lp∩C∞(Rd,K)\{0} be the solution of (1.1) (and the function

we want to approximate) and ρ = ρt = |ψt|p
‖ψt‖pLp

the corresponding probability density at a

fixed time t ∈ R. We define the Gaussian densities g(x) = π−d/2e−|x|
2
, gδ(x) = δdg(δx)

(for δ > 0) and

ρg = ρ ∗ gδ or ρg = ρ ∗µρ g,

with proper scaling parameter δ > 0 or adaptation function µρ ∈ C2
(
Rd,R>0

)
. Both

choices are legitimate. The first is simpler to implement, while the second one is more

general, see Section 2.7. By Proposition 2.17, there exists a transport map Rg ∈

C∞
(
Rd, (0, 1)d

)
from Pρg to Puni and by Proposition 2.7, the points xj = R−1

g (yj) are

Pρg -distributed. Here, y1, . . . , yN are equidistant points in (0, 1)d defined by (2.1.1) and

N = nd for some n ∈ N.

The approximation space M = span{η1, . . . , ηN} ⊆ L2(Rd) is now spanned by the

basis functions

ηj(x) =

(
2

π

) d
4

|Jj |
1
2 exp

(
− |Jj(x− xj)|2

)
, (3.2.1)

where Jj := h−1EDxRg(xj), h = n−1 is the mesh size and E > 0 is the basic shape
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3. CHOICE OF THE APPROXIMATION MANIFOLD

parameter. In dimension d = 1 this formula reduces to

ηj(x) =

(
2εj
π

) d
4

exp
(
−εj |x− xj |2

)
(3.2.2)

with parameter εj = h−2E2ρg(xj)
2. In the special case of the Schrödinger equation the

approximation space can be “improved” by adding a momentum term:

ηj(x) =

(
2

π

) d
4

|Jj |
1
2 exp

(
− |Jj(x− xj)|2 + ipj(x− xj)

)
,

where pj = vt(xj) = =
[
∇ψ
ψ

]
. In our numerical examples, we will always treat both

cases: with and without momentum term (see Section 4).

For the time evolution of the approximation space we need to examine the propa-

gation of xj,t and Jj,t (the differential equations for the other parameters are straight-

forward to compute and are listed below):

By Proposition 2.12, the flow Φg,t of the dynamical system

ẋt = vg,t(xt), vg,t :=
jg,t
ρg,t

,

where jg,t is defined in Propositions 2.53, 2.54 respectively, defines a transport map from

Pρg,0 to Pρg,t . Therefore, the points xj,t = Φg,t(xj,0) =
(
Φg,t ◦R−1

g,0

)
(yj) propagated this

way stay ρg,t-distributed for all t ∈ R by Proposition 2.7 (see also Corollary 2.55).

Let Yg,t := R−1
g,t = Φg,t◦R−1

g,0, then the propagation of its JacobianDyYg,t is described

by Corollary 2.15:

∂tDyYg,t(y) = Dxvt (Yg,t(y)) ·DyYg,t.

Hence, its (scaled) inverse Jj,t = h−1E DxRg,t(xj,t) evolves via

d

dt
Jj,t = −Jj,t

[
d

dt
J−1
j,t︸︷︷︸

=hE−1DyYg,t(yj)

]
Jj,t

= −hE−1Jj,t ·Dxvt (Yg,t(yj)) ·DyYg,t(yj) · Jj,t

= −Jj,t ·Dxvt (xj,t) (3.2.3)

Note that, since we will choose g to be a Gaussian, ρg,t, jg,t, vg,t, Φg,t ∈ C∞ for all

t ∈ R and therefore the differentiability properties of Y0 are inherited by Yt.
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3.2 Resulting Algorithm

After discussing the main points for the propagation of the approximation space

and how the propositions and theorems from Chapter 2 are applied, let us write down

our algorithm for numerical approximation of an evolutionary PDE with underlying

continuity equation (see Definition 1.1) in every detail:

Initialization:

• Define n ∈ N, set N = nd, h = n−1 and define equidistant points y1, . . . , yN in

(0, 1)d by (2.1.1).

• Choose suitable constants E , κδ > 0 and define for x ∈ Rd, δ > 0

g(x) = π−d/2 e−|x|
2
, gδ(x) := δdg(δx), γδ(x) :=

x

δ
gδ(x) = δd−1x g(δx).

• Approximate ρ0 by a weighted sum of normal distributions and construct Pρ0-

distributed points q1,0, . . . , qN,0 by the algorithm described in Section 2.3.

• Compute δ0 = κδ
N

∑N
j=1 ρ0

(
qj,0
) 1
d .

• Compute ρg,0 = ρ0 ∗ gδ0 numerically.

• Approximate ρg,0 by a weighted sum of normal distributions and construct a

transport map Rg,0 ∈ C∞
(
Rd, (0, 1)d

)
from Pρg,0 to Puni and Pρg,0-distributed

points x1,0, . . . , xN,0 by the algorithm described in Section 2.3. More precisely, it

suffices to construct xj,0 = R−1
g,0(yj) as in Section 2.3 and Dy(R

−1
g,0)(yj) by using

Proposition 2.24 instead of the whole transport map.

• Compute pj,0 = v0(xj,0) and Jj,0 := h−1E DxRg,0(xj,0) = h−1E
[
Dy(R

−1
g,0)(yj)

]−1
.

This defines the approximation space M0 = span{η1,0, . . . , ηN,0} by equation

(3.2.1).

• Compute the bestapproximation u0 =
∑N

j=1 cj,0ηj,0 of ψ0 in M0.

Time Evolution:

Since the points qj,t are ρt-distributed, we may approximate
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ρg,t(x) =

∫
Rd
ρt(q) gδt(x− q) dq ≈ 1

N

N∑
j=1

gδt(x− qj,t),

∇ρg,t(x) =

∫
Rd
ρt(q)∇gδt(x− q) dq ≈ 1

N

N∑
j=1

∇gδt(x− qj,t),

jg,t(x) =

∫
Rd
jt(q) gδt(x− q)− δ̇t ρt(q) γδt(x− q) dq

=

∫
Rd

[
vt(q)−

δ̇t
δt

(x− q)
]
ρt(q) gδt(x− q) dq

≈ 1

N

N∑
j=1

[
vt(qj,t)︸ ︷︷ ︸
q̇j,t

− δ̇t
δt

(x− qj,t)
]
gδt(x− qj,t),

Dxjg,t(x) =

∫
Rd

[
vt(q)−

δ̇t
δt

(x− q)
]
ρt(q)∇gδt(x− q)ᵀ︸ ︷︷ ︸
−2δ2

t (x−q)ᵀgδt (x−q)

− δ̇t
δt
ρt(q) gδt(x− q) Id dq

=

∫
Rd

[
− 2δ2

t

(
vt(q)−

δ̇t
δt

(x− q)
)

(x− q)ᵀ − δ̇t
δt

Id

]
ρt(q) gδt(x− q) dq

≈ 1

N

N∑
j=1

[
− 2δ2

t

(
q̇j,t −

δ̇t
δt

(x− qj,t)
)

(x− qj,t)ᵀ −
δ̇t
δt

Id

]
gδt(x− qj,t).

Using these formulas and

vg,t(x) =
jg,t
ρg,t

(x) , Dxvg,t(x) = ρg,t(x)−2
(
Dxjg,t ρg,t − jg,t∇ρᵀg,t

)
(x),

we can compute:

• q̇j,t = vt(qj,t),

• δ̇t =
κδ
dN

N∑
j=1

ρt
(
qj,t
) 1
d
−1 (

∂tρt
(
qj,t
)

+∇ρt(qj,t)ᵀ q̇j,t
)
,

• ẋj,t = vg,t(xj,t),

• ṗj,t = ∂tvt(xj,t) +Dxvt(xj,t) ẋj,t,

• J̇j,t = −Jj,t ·Dxvg,t(xj,t) by equation (3.2.3),

• ċj,t is computed via a Galerkin approximation, which results in the Dirac Frenkel

variational principle in the case of the Schrödinger equation, see Section 2.5.2.
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3.3 Rigorous Approximation Theory

We are finally ready to analyze the approximation error of the manifold constructed

in Section 3.1 (as mentioned in Remark 3.1, the momentum term ipk(x − xk) in the

exponent of the basis functions is tailored particularly to the Schrödinger Equation

and will not be considered here). Throughout this section we will use the following

notation.

Notation 3.10. Our ansatz is to approximate a continuous function ψ ∈W k,p(Rd,R),

1 ≤ p <∞, with k > d/p by the following subspace M ⊆ Lp(Rd,R):

M = span
{
ηj ∈ Lp(Rd,R) | j = 1, . . . , N

}
, ηj(x) = η

(
E
h
DxR(xj)(x− xj)

)
,

where N = nd for some odd n ∈ 2N + 1, h = 1/n is the mesh size, E > 0 is the basic

shape parameter from Definition 2.61 and

(1) η ∈ C1(Rd,R) has bounded support supp(η) ⊆ [−K,K]d for some K > 0 (it there-

fore automatically fulfills the extended decay condition (2.8.4) with arbitrary large

constant K2 > d) and fulfills the moment condition (2.8.5) with constant K3 ≥ 1,

Remark 3.11. Strictly speaking, the Gaussian basis functions we consider do not

have compact support and would have to be “cut off” outside a properly large

region [−K,K]d.

(2) R : Rd → (0, 1)d is a Ck-diffeomorphism and a transport map from Pρ to Puni,

(3) ρ ∈ L1(Rd,R>0) is a suitably chosen continuous and positive probability density

function, usually

ρ =
|ψ|p

‖ψ‖pLp
∗ gδ,

gδ(x) = δdg(δx) being a properly scaled Gaussian probability density function (we

omitted the index g to simplify the notation).

(4) the “centers” xj ∈ Rd are given by xj = R−1(yj), where y1, . . . , yN are equidistant

points in (0, 1)d defined by (2.1.1).

In order to analyze the approximation properties of ψ in M we will proceed in three

steps (see figure 3.7):
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3. CHOICE OF THE APPROXIMATION MANIFOLD

Step 1: We “push” the whole approximation problem from Lp(Rd) to Lpω((0, 1)d), ω(y) =

1/ρ(R−1(y)) for y ∈ (0, 1)d, via R, where Lpω denotes the weighted Lp space defined

below. I.e. we consider

ψρ := ψ ◦R−1, θj := ηj ◦R−1 and Mρ := span{θj | j = 1, . . . , N},

Note that ψρ ∈W k,p
(
(0, 1)d

)
and θj ∈ C1

(
(0, 1)d

)
, since R is a Ck-diffeomorphism.

Step 2: We understand the connection between the approximation errors of

ψ ≈ u =

N∑
j=1

cjηj ∈M and ψρ ≈ uρ := u ◦R−1 =

N∑
j=1

cjθj ∈Mρ .

Step 3: We analyze the approximation properties of ψρ in Mρ using the approximate ap-

proximation theory presented in Section 2.8.2.

Definition 3.12 (weighted Lp norm and space). Let Ω ⊆ Rd be a domain and ω : Ω→
R>0 be a positive Lebesgue-measurable function. We define the weighted Lp norm of

a function g : Ω→ R and the weighted Lp space by

‖g‖Lpω(Ω) :=

(∫
Ω
|g(x)|p ω(x) dx

)1/p

and Lpω(Ω) := Lpω(Ω,R) :=
{
g : Ω→ R | ‖g‖Lpω(Ω) <∞

}/
N ,

where N :=
{
g : Ω→ R | ‖g‖Lpω(Ω) = 0

}
.

We will use the abbreviation Lpω, if it is clear, which domain Ω is considered.

Proposition 3.13. Let ρ ∈ L1(Rd,R>0), R ∈ Ck
(
Rd, (0, 1)d

)
and the weight function

ω(y) = 1/ρ(R−1(y)) fulfill the assumptions of Notation 3.10, A ⊆ Rd be a domain and

Ω := R(A). Then we have for g ∈ Lp(A):

gρ := g ◦R−1 ∈ Lpω (Ω) and ‖g‖Lp(A) = ‖gρ‖Lpω(Ω).

Further, if g ∈ Lpρ(A) then

gρ ∈ Lp(Ω) and ‖g‖Lpρ(A) = ‖gρ‖Lp(Ω) .
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(c) N = 90.

Figure 3.7: The basis functions ηj of M and θj of Mρ for Gaussian η and N = 10, 30, 90.

One can observe the assimilation of the three functions θj highlighted in black. Those θj

closest to the boundary do not share this behavior, since their centers move closer and

closer to the edges.
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3. CHOICE OF THE APPROXIMATION MANIFOLD

Proof. Using Lemma 2.8 and the transformation formula we get:

‖g‖pLp(A) =

∫
A
|g(x)|p dx =

∫
A
|gρ ◦R|p(x) dx =

∫
A

[
|gρ|p

|DxR| ◦R−1
◦R
]

(x) |DxR(x)| dx

=

∫
Ω

|gρ|p(y)

ρ(R−1(y))
dy = ‖gρ‖pLpω(Ω)

,

‖g‖p
Lpρ(A)

=

∫
A
|g(x)|p ρ(x) dx =

∫
A
|gρ ◦R|p(x) |DxR(x)|dx =

∫
Ω
|gρ|p(y) dy

= ‖gρ‖pLp(Ω).

Corollary 3.14. Using Notation 3.10, Proposition 3.13 implies for ψ, u ∈ Lp(Rd,R)

and ψρ = ψ ◦R−1, uρ = u ◦R−1:

‖ψ − u‖Lp = ‖ψρ − uρ‖Lpω .

To get the approximation properties of Mρ under control, we will use the the theory

of approximate approximations presented in Section 2.8.2. This relies on the fact that,

while each basis function ηj is scaled in a different way, the functions θj become shifted

copies of the same function for large N , namely

θj(y) ≈ Ed η
(
E
h

(y − yj)
)
.

Proposition 3.15. Using Notation 3.10 (we allow the additional case p = ∞ here),

let x∗ ∈ Rd, y∗ = R(x∗) and θ∗ = η∗ ◦ R−1, where η∗(x) := Ed η
(E
hDxR(x∗)(x − x∗)

)
.

Then there exists a constant

C = C

(
p, E ,K, ‖DxR(x∗)‖, ‖D2R−1(y∗)‖, max

y∈[−K,K]d
‖∇η(y)‖2,

)
,

such that for all sufficiently small h > 0
∥∥θ∗ − Ed η (Eh (·− y∗))∥∥Lp ≤ Ch1+ d

p , if p <∞,∥∥θ∗ − Ed η (Eh (·− y∗))∥∥Lp ≤ Ch, if p =∞.

For x∗ ∈ A, where A ⊆ Rd is a compact set, the constant

C = C

(
p, E ,K, max

y∈[−K,K]d
‖∇η(y)‖2, A

)
can be chosen uniform with respect to x∗, y∗ respectively.
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Remark 3.16. The prefactor h
d
p appears due to the fact that for p < ∞ and g ∈

Lp(Rd):∥∥g (h−1 ··)∥∥Lp =

(∫
Rd

∣∣g (h−1x
)∣∣p dx

) 1
p

=

(
hd
∫
Rd
|g(x)|p dx

) 1
p

= h
d
p ‖g‖Lp

and therefore both ‖θ∗‖Lp ∼ h
d
p and

∥∥η (Eh (·− y∗))∥∥Lp ∼ h dp .

Proof of Proposition 3.15. LetB := (DxR)−1(x∗)·[−K,K]d. Since supp(η) ⊆ [−K,K]d

and D2R(x) : Rd×Rd → Rd is a bilinear map for each x ∈ Rd, we obtain the following

supports for η∗ and θ∗ and for sufficiently small h > 0:

supp(η∗) ⊆ x∗ +
h

E
B,

supp(θ∗) ⊆ R
(
x∗ +

h

E
B

)
⊆ R(x∗) +

h

E
DxR(x∗)B +

h2

E2

[
D2R

(
x∗ +

h

E
B

)
︸ ︷︷ ︸

bounded on the region of evaluation

]
(B,B)

⊆ y∗ +
h

E
[−(K + 1),K + 1]d.

From now on, let y ∈ [−(K + 1),K + 1]d and h > 0 sufficiently small. Viewing

D2R−1(w) : (0, 1)d × (0, 1)d → Rd as a bilinear map for each w ∈ (0, 1)d and Taylor

expanding R−1 at y∗, we get for some ζ : Rd → (0, 1)

R−1
(
y∗ + hE−1y

)
= R−1(y∗) + hE−1Dy(R

−1)(y∗)y + h2E−2
(
D2R−1(y∗ + hE−1ζ(hE−1y)y)

)
(y, y)

= x∗ + hE−1DxR(x∗)
−1(y + hzh(y)),

where we used that Dy(R
−1)(y∗) = DxR(x∗)

−1 and

zh(y) := E−1JR(x∗)
[
D2R−1(y∗ + hζ(hE−1y)y)

]
(y, y).

Since y ∈ [−(K+ 1),K+ 1]d and R−1 ∈ C2, the function zh is bounded uniformly with

respect to y and h:

∃L = L(‖D2R−1(y∗)‖) > 0 : zh(y) ∈ [−L,L]d for all y ∈ [−(K + 1),K + 1]d.

By Taylor expanding once more, this time η at y, we get for some ζ̃ : Rd → (0, 1)

θ∗

(
y∗ +

h

E
y

)
= Ed η

(
E
h
DxR(x∗)

[
R−1

(
y∗ +

h

E
y

)
− x∗

])
= Ed η (y + hzh(y))

= Ed η(y) + Ed hzh(y)T∇η
(
y + h ζ̃(hzh(y)) zh(y)

)
.
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Since zh(y) ∈ [−L,L]d and ∇η
(
Ey + Ehζ̃(y)z(y)

)
is uniformly bounded with respect

to y ∈ [−(K + 1),K + 1]d for sufficiently small h > 0, this yields uniform convergence

of the form ∥∥∥∥θ∗ − Ed η(Eh (·− y∗)
)∥∥∥∥
∞
≤ Ch,

as well as for p <∞,(
h
− d
p

∥∥∥∥θ∗ − Ed η(Eh (·−y∗)
)∥∥∥∥

Lp

)p
= h−d

∫
Rd

∣∣∣∣θ∗(y)− Ed η
(
E
h

(y − y∗)
)∣∣∣∣p dy

= E−d
∫

[−(K+1),K+1]d

∣∣∣∣θ∗(y∗ +
h

E
y

)
− Ed η (y)

∣∣∣∣p dy

=

∫
[−(K+1),K+1]d

∣∣∣hzh(y)T∇η
(
y + h ζ̃(hzh(y)) zh(y)

)∣∣∣p dy

≤ (2K + 2)d
[

max
y∈[−(K+1),K+1]d

‖zh(y)‖2‖∇η(y)‖2
]p
hp

≤ (2K + 2)d
[
(L
√
d) max

y∈[−K,K]d
‖∇η(y)‖2

]p
hp.

Armed with the knowledge that all basis functions θj are, roughly speaking, shifted

copies of the same continuous function, which fulfills the extended decay and moment

conditions (2.8.4) and (2.8.5), we can now apply the theory of approximate approxi-

mations presented in Section 2.8.2 to analyze the error of ψρ in Mρ.

Theorem 3.17. Using Notation 3.10, let ψ ∈ W k,p(Rd,R), 1 ≤ p < ∞, and ε > 0 be

given. Then there exist constants E0, h0 > 0 such that for all basic shape parameters

0 < E < E0 and all mesh sizes 0 < h < h0 (i.e. for sufficiently large n ∈ 2N + 1), the

approximant

ψ̂ :=
N∑
j=1

ψ
∣∣
A(2)(xj) ηj ∈M

fulfills

‖ψ − ψ̂‖Lp(Rd) < ε.

Remark 3.18. Before proving this theorem, we have to deal with two issues:

(1) Boundary problems: The convergence of the basis functions θj is not uniform in xj

(or yj) since the constant C from Proposition 3.15 depends on x∗. Since the outer

centers yj converge to the boundaries of (0, 1)d as N goes to infinity, this problem
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can not be solved by just choosing N “large enough”, as can also be seen in Figure

3.7.

Also the approximate approximation theory only gives error bounds in Lp, not in

Lpω. Since ω(y) = 1/ρ(R(y)) goes to infinity for y converging to the boundary, the

two norms ‖·‖Lp((0,1)d,R) and ‖·‖Lpω((0,1)d,R) are not equivalent.

(2) In order to apply the theory from Section 2.8.2, we need to bring the points

y1, . . . , yN into the form yj = mh for some m ∈ Zd.

Solving these will require further notation.

Notation 3.19. We will deal with the first problem by “cutting off” the function ψ

outside a sufficiently large ball:

For given ε > 0 choose r1 > r2 > r3 > r4 > 0 such that

A(j) := Brj (0) , Ω(j) := R(Aj) and ω̂ := max
y∈Ω(1)

ω(y)

satisfy

(i) ‖ψ‖Lp(Rd\A3) <
ε

4
,

(ii) ‖ψρ
∣∣
(Ω(2)\Ω(4))‖p,h <

ε

4ω̂C
for all sufficiently small h > 0 with C > 0 and ‖·‖p,h

as in Lemma 2.62,

(iii) r2 =
r1 + r3

2
.

In order to solve the second problem, we shift the unit square Ω = (0, 1)d and all its

subsets and functions defined on it via τ(x) := x− 1
21 to

Ω̃ := τ(Ω) =

(
−1

2
,
1

2

)d
, Ω̃(j) := τ

(
Ω(j)

)
∀j, ỹj = τ (yj) ∀j,

ψ̃ρ := ψρ ◦ τ−1, θ̃j := θj ◦ τ−1, ω̃ := ω ◦ τ−1,

M̃ρ := span
{
θ̃1, . . . , θ̃N

}
.

This way the points ỹj coincide with the points required for quasiinterpolation as stated

in the following lemma.
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ỹjΩ̃k
yjΩk

τ

Figure 3.8: Bringing the points yj into the form hm for some m ∈ Zd, by shifting Ω by

τ(x) = x − 1
21. The sets Ω1 ⊃ Ω2 ⊃ Ω3 ⊃ Ω4 and Ω̃1 ⊃ Ω̃2 ⊃ Ω̃3 ⊃ Ω̃4 are visualized in

red.

Lemma 3.20. Using Notations 3.10 and 3.19, we have for odd n ∈ 2N + 1, N = nd,

h = 1/n:

{ỹ1, . . . , ỹN} =
{
hm | m ∈ Zd, hm ∈ Ω̃

}
.

Proof. Using the definition (2.1.1) of the points yj , we get:

{ỹ1, . . . , ỹN} =

{(
2k1 − 1

2n
− 1

2
, . . . ,

2kd − 1

2n
− 1

2

)T ∣∣∣∣ kj ∈ {1, . . . , n} ∀j
}

=

{(
2k1 − (n+ 1)

2n
, . . . ,

2kd − (n+ 1)

2n

)T ∣∣∣∣ kj ∈ {1, . . . , n} ∀j
}

=

{((
k1 −

n+ 1

2

)
h , . . . ,

(
kd −

n+ 1

2

)
h

)T ∣∣∣∣ kj ∈ {1, . . . , n} ∀j
}

=

{
(m1h , . . . , mdh)T

∣∣∣∣ mj ∈
{
−n− 1

2
,−n− 3

2
, . . . ,

n− 1

2

}
∀j
}

=
{
hm | m ∈ Zd, hm ∈ Ω̃

}
.

We are also going to use the following technical detail:

Lemma 3.21. Let N ∈ N, α ∈ RN with exactly ν ≤ N nonzero entries, 1 ≤ p, q ≤ ∞
and, as usually, 1/q := 0 for q =∞. Then

‖α‖1 ≤ ν
1
q ‖α‖p,
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Proof. Let v ∈ RN be given by vj = sgn(αj), j = 1, . . . , N . Hölder’s inequality yields

‖α‖1 = | 〈v, α〉 | ≤ ‖v‖q‖α‖p = ν
1
q ‖α‖p .

Proof of Theorem 3.17. Using Notations 3.10 and 3.19, we will consider two approxi-

mations of the function

ϕ = ψ̃ρ
∣∣
Ω̃(2) ∈W k,p(Ω̃(2),R).

One is its quasi-interpolant

(Qhϕ) (y) = Ed
∑
m∈Zd

mh∈Ω(2)

ψ(hm) η

(
E(y − hm)

h

)
= Ed

N∑
j=1

ϕ(ỹj) η

(
E(y − ỹj)

h

)

and the other is

ϕ̂ =

N∑
j=1

ϕ(ỹj) θ̃j ∈ M̃ρ.

which are close to each other, since θ̃j ≈ Ed η
(
E(y−ỹj)

h

)
by Proposition 3.15.

More precisely, since θ̃j and Edη
(
E(·−ỹj)

h

)
are scaled by h and ϕ(y) = 0 for all

y /∈ Ω̃(2) there exists a natural number ν ∈ N independent of h, such that for each

y ∈ Rd ∣∣∣∣{j = 1, . . . , N

∣∣∣∣ ϕ(ỹj)θ̃j(y) 6= 0 or ϕ(ỹj)Edη
(
E(y − ỹj)

h

)
6= 0

}∣∣∣∣ ≤ ν
and therefore, Proposition 3.15 and Lemma 3.21 yield for p <∞

‖Qhϕ− ϕ̂‖pLp(Ω̃(1))
≤
∫
Rd

 N∑
j=1

|ϕ(ỹj)|
∣∣∣∣Edη(E(y − ỹj)

h

)
− θ̃j(y)

∣∣∣∣
p

dy

≤
∫
Rd

∥∥∥∥∥
(
|ϕ(ỹj)|

∣∣∣∣Edη(E(y − ỹj)
h

)
− θ̃j(y)

∣∣∣∣)
j=1,...,N

∥∥∥∥∥
p

1

dy

≤
∫
Rd
ν
p
q

∥∥∥∥∥
(
|ϕ(ỹj)|

∣∣∣∣Edη(E(y − ỹj)
h

)
− θ̃j(y)

∣∣∣∣)
j=1,...,N

∥∥∥∥∥
p

p

dy

≤ ν
p
q

N∑
j=1

|ϕ(ỹj)|p
∥∥∥∥Edη(E(y − ỹj)

h

)
− θ̃j(y)

∥∥∥∥p
Lp(Rd)

≤ ν
p
qN max

y∈Ω̃(2)
|ϕ(y)|p Cp

(
h

1+ d
p

)p
≤ ν

p
qCphp max

y∈Ω̃(2)
|ϕ(y)|p,
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where C is the constant from Proposition 3.15. Analogously, for p =∞

‖Qhϕ− ϕ̂‖L∞(Ω̃(1)) ≤ sup
y∈Ω̃(1)

N∑
j=1

|ϕ(ỹj)|
∣∣∣∣Ed η(Eh (y − ỹj)

)
− θ̃j(y)

∣∣∣∣
≤ νCh max

y∈Ω̃(2)
|ϕ(y)|.

So, for 1 ≤ p ≤ ∞ and sufficiently small h > 0,

‖Qhϕ− ϕ̂‖Lp(Ω̃(1)) ≤
ε

8ω̂
. (3.3.1)

Note that

ϕ ◦ τ ◦R = ψ
∣∣
A(2) and

ϕ̂ ◦ τ ◦R =

N∑
j=1

ϕ(ỹj) θ̃j ◦ τ ◦R =
N∑
j=1

ψ
∣∣
A(2)(xj) ηj = ψ̂ ∈M.

As shown below there are, roughly speaking, four errors we need to control:

1 the quasi-interpolation error ‖Qhϕ − ϕ‖Lp
(

Ω̃
(2)
κh

), for which we will use Theorem

2.63 (κ is the constant from said theorem),

2 The quasi-interpolation error “outside Ω̃
(2)
κh ”: ‖Qhϕ− ϕ‖Lp

(
Ω̃\Ω̃(2)

κh

),

3 the difference ‖Qhϕ− ϕ̂‖Lp(Ω̃), since our approximation has to lie in M̃ρ and the

actual approximation is ϕ̂ instead of Qhϕ – here we will apply Proposition 3.15,

4 the error due to “cutting off” the function ψ, see Notation 3.19.

For sufficiently small h we can ensure

suppQhϕ ⊆ Ω̃(1) and Ω̃
(2)
κh := {x ∈ Ω̃(2) : Bκh(x) ⊆ Ω̃(2)} ⊇ Ω̃(3)

and compute using Proposition 3.13:

‖ψ − ψ̂‖Lp(Rd) ≤ ‖ψ − ψ̂‖Lp(A(3)) + ‖ψ̂‖Lp(Rd\A(3)) + ‖ψ‖Lp(Rd\A(3))

≤ ‖ϕ− ϕ̂‖Lpω̃(Ω̃(3)) + ‖ϕ̂‖Lpω̃(Ω̃(1)\Ω̃(3)) + ‖ψ‖Lp(Rd\A(3))

≤ ω̂
(
‖ϕ−Qhϕ‖Lp(Ω̃(3)) + ‖Qhϕ− ϕ̂‖Lp(Ω̃(3))

)
+

+ ω̂
(
‖ϕ̂−Qhϕ‖Lp(Ω̃(1)\Ω̃(3)) + ‖Qhϕ‖Lp(Ω̃(1)\Ω̃(3))

)
+ ‖ψ‖Lp(Rd\A(3))

≤ ω̂

(
‖ϕ−Qhϕ‖Lp(Ω̃(3))︸ ︷︷ ︸

1

+2 ‖Qhϕ− ϕ̂‖Lp(Ω̃(1))︸ ︷︷ ︸
3

+ ‖Qhϕ‖Lp(Ω̃(1)\Ω̃(3))︸ ︷︷ ︸
2

)
+ ‖ψ‖Lp(Rd\A(3))︸ ︷︷ ︸

4

≤ ε,
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3.4 Linear independence of the basis functions ηj

since

1 ≤ ε

4ω̂
for sufficiently small E , h > 0 by Theorem 2.63,

2 ≤ ‖Qh
(
ϕ
∣∣
Ω̃(2)\Ω̃(4)

)
‖Lp(Rd) ≤ ‖Qh

(
ψρ
∣∣
Ω(2)\Ω(4)

)
‖Lp(Rd) ≤ ‖ψρ

∣∣
(Ω(2)\Ω(4))‖p,h ≤

ε

4ω̂
by Lemma 2.62 and Notation 3.19,

3 ≤ ε

8ω̂
by (3.3.1),

4 ≤ ε

4
by Notation 3.19.

Remark 3.22. The proof shows further reasons to choose the (adapted) convolution

ρg,t instead of ρt for the density ρ:

(1) ρg,t is strictly positive even if ρt is not.

(2) Due to the convolution, ψρ is very small at the edges, therefore those basis functions

θj , which are close to the edges and far from radial (see Figure 3.7 or Remark 3.18),

mainly do not enter in the approximation of ψρ.

3.4 Linear independence of the basis functions ηj

In the following, we will justify the term “basis function” by showing the linear inde-

pendence of the functions ηj . Unfortunately, we were able to prove it in the radially

symmetric case, for the general case we refer to the condition number plots of the

Gramian matrix in all numerical experiments, see Chapter 4.

Proposition 3.23. Let N ∈ N, xj , pj ∈ Rd and εj > 0 for j = 1, . . . , N . Then the

functions

ηj(x) = exp
[
−εj(x− xj)2 + ipj(x− xj)

]
are linearly independent in L2(Rd,C), if the centers xj are distinct.

Proof. Assume there exist λ1, . . . , λN 6= 0 (if some λj are zero, consider only those

functions ηj with nonzero λj) , such that

N∑
j=1

λjηj = 0 .

89



3. CHOICE OF THE APPROXIMATION MANIFOLD

Without loss of generality, let ε1 = · · · = εr < εr+1 ≤ · · · ≤ εN for some r ≥ 1.

Choose j∗ = arg maxj=1,...,r ‖xk‖, without loss of generality j∗ = 1. Hence, s :=

maxj=2,...,r x1xj < x2
1 6= 0 (it suffices to treat the case N > 1).

Using the notation µj := −λj
λ1

, µ := max{|µj | : j = 2, . . . , N}, ε := min{εj : j =

r + 1, . . . , N} we obtain from η1 =
∑N

j=2 µjηj :

1 = lim
t→∞

∣∣∣∑N
j=2 µjηj(tx1)

∣∣∣
|η1(tx1)|

≤ lim
t→∞


∣∣∣∑r

j=2 µjηj(tx1)
∣∣∣

|η1(tx1)|
+

∣∣∣∑N
j=r+1 µjηj(tx1)

∣∣∣
|η1(tx1)|


≤ Nµ lim

t→∞

(
max
j=2,...,r

exp[−ε1(tx1 − x2
j )]

exp[−ε1(tx1 − x1)2]
+ max

j=r+1,...,N

exp[−ε(tξ − xj)2]

exp[−ε1(tx1 − x1)2]

)

≤ Nµ lim
t→∞

(
max
j=2,...,r

exp[−ε1(x2
j − x2

1)] exp[2ε1t (s− x2
1)︸ ︷︷ ︸

<0

] +

+ exp[(ε1 − ε)︸ ︷︷ ︸
>0

(tx1)2] max
j=r+1,...,N

exp[2(εxj − ε1x1)x− εx2
j + ε1x

2
1]

)

= 0. 	
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Chapter 4

Numerical Experiments

We are now ready to apply our method to an evolutionary PDE with underlying con-

tinuity equation

∂tψt = Ft(ψt), ψ0 = ψin

∂tρt = −div jt = −div(ρtvt), where ρt =
|ψt|p

‖ψt‖pLp

(see Definition 1.1 for details) on the example of the Schrödinger equation (2.4.1).

We will always assume that the velocity field vt (or the current jt = ρtvt) is given

analytically. This assumption seems absurd in the case of the Schrödinger equation,

since vt = =
[
∇ψt
ψt

]
requires the knowledge of the function ψt, which we want to find in

the first place. However, this procedure will suffice as a proof of concept.

The reason why taking the L2-approximation ut of ψt for the computation of vt is

a bad choice is given in Section 4.3. There, we will also give a possible solution to this

problem, which so far has not been implemented numerically.

Unfortunately, this restriction forces us to treat examples for which the solution

can be computed analytically. As a consequence, we only treat the free Schrödinger

equation with potential V = 0 and the harmonic oscillator with potential V (x) = x2

2 .

Please note that the L2 errors are computed by first calculating the squared error and

then taking the square root. Hence, the smallest possible error we can achieve is given

by
√
εmachine ≈ 1.5 · 10−8.
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4. NUMERICAL EXPERIMENTS

4.1 Free Dynamics

Let us approximate the following solution of the free Schrödinger equation (i.e. V = 0):

ψt = r(ψ1
t + ψ2

t ), where ψjt (x) =

(
σ(t)

π(1 + iσ0t)

) 1
4

exp

[
−σ(t)

2
(x− aj)2

]
, (4.1.1)

σ(t) =
σ0

1 + σ2
0t

2︸ ︷︷ ︸
σ1(t)

+ i
−σ2

0t

1 + σ2
0t

2︸ ︷︷ ︸
σ2(t)

, a1,2 = ±3,

and r > 0 is just a normalization constant which guarantees ‖ψt‖L2 = 1. This example

was taken from [Dec07].

For our algorithm we choose the constants N = 121, E = 0.74, κδ = 0.32 and

perform 30 time steps per time unit.
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Figure 4.1: Bestapproximation error, condition number of the stiffness matrix, error of

the Dirac-Frenkel variational principle and its error bound plotted over time.
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4.1 Free Dynamics
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(a) Bohmian trajectories qj,t.
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(b) Quasi-Bohmian trajectories xj,t.
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(c) Parameters εj,t.
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(d) Parameters pj,t (momentum terms).

Figure 4.2: Bohmian trajectories qj,t, quasi-Bohmian trajectories xj,t and the parameters

εj,t and pj,t computed exactly and numerically over time (for reasons of visualisation every

third trajectory/parameter is plotted).
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4. NUMERICAL EXPERIMENTS
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Figure 4.3: Bestapproximation error and condition number of the stiffness matrix plotted

over the number N of basis functions for different values of the basic shape parameter E .

One can clearly see the saturation of the error for large values of N and also the trade-off-

principle (the smaller E , the better the approximation error, but the worse the condition

number), both described in Section 2.8.2.

4.2 Harmonic Oscillator

Let us approximate the following solution of the harmonic oscillator, i.e. V (x) = x2

2 :

ψt(x) =
1

π1/4
√
Qt

exp
(
−σt

2
(x− qt)2 + ipt(x− qt) + iAt

)
where qt = 2 cos(t),

pt = −2 sin(t),

At = − sin(2t),

Qt =
cos(t)√

2
+ i
√

2 sin(t),

σt =
2 cos(t) + i sin(t)

cos(t) + 2i sin(t)
.

Note that the square root of Qt has to be chosen in such a way that it stays continuous

in time.
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4.2 Harmonic Oscillator

For our algorithm we choose the constants N = 121, E = 0.74, κδ = 0.32 and

perform 1000 time steps per time unit.
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(c) log-log scale, with momentum term.
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Figure 4.4: Bestapproximation error, condition number of the stiffness matrix, error of

the Dirac-Frenkel variational principle and its error bound plotted over time.
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4. NUMERICAL EXPERIMENTS
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(a) Bohmian trajectories qj,t.
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(b) Quasi-Bohmian trajectories xj,t.
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(c) Parameters εj,t.
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(d) Parameters pj,t (momentum terms).

Figure 4.5: Bohmian trajectories qj,t, quasi-Bohmian trajectories xj,t and the parameters

εj,t and pj,t computed exactly and numerically over time (for reasons of visualisation every

third trajectory/parameter is plotted).
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4.3 Numerical Computation of the Velocity Field vt
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Figure 4.6: Bestapproximation error and condition number of the stiffness matrix plotted

over the number N of basis functions for different values of the basic shape parameter E .

One can clearly see the saturation of the error for large values of N and also the trade-off-

principle (the smaller E , the better the approximation error, but the worse the condition

number), both described in Section 2.8.2.

4.3 Numerical Computation of the Velocity Field vt

As mentioned at the beginning of this chapter, we use an analytical formula for the

computation of vt = =
[
∇ψt
ψt

]
. The obvious choice of using our L2-approximation

ut =
∑N

j=1 cj,tηj,t of ψt in order to approximate vt ≈ =
[
∇ut
ut

]
turns out to be unfit for

the following reason:

No matter how well ut approximates ψt (and ∇ut approximates ∇ψt) in the L2

sense, the approximation can get oscillatory in regions of low values of ψt. Consider

our standard example of ψ0 being the weighted sum of two Gaussians and u0 its bestap-

proximation in M0. Figure 4.7 illustrates the oscillations of ut and its result on the

quotient ∇u0
u0

:

97



4. NUMERICAL EXPERIMENTS
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Figure 4.7: While ψ0 is the sum of two Gaussians, its L2-bestapproximation u0 ∈ M0

and its gradient get highly oscillatory in areas of low values of ψ0. Though harmless for

the L2-approximation u0 ≈ ψ0, the resulting approximation ∇u0

u0
≈ ∇ψ0

ψ0
is catastrophic.

One possible solution to this problem is to rewrite ψt = Rte
iSt or ψt = eTt (see
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4.3 Numerical Computation of the Velocity Field vt

Remark 2.27) for some functions Rt, St : Rd → R and Tt : Rd → C and use an

approximation of St or Tt for the computation of vt, since the formulas

vt = ∇St and vt = = [∇Tt]

are much more pleasant from a numerical point of view. However, it is not clear which

type of approximation to choose for Rt and St or for Tt, the time evolution of which is

given by (2.4.3) and (2.4.4).

We suggest to treat the reformulation with Tt in order to avoid the unpleasant term

∆Rt
2Rt

in (2.4.3) (it causes analogous problems to the one described above) and apply a

collocation method for its time propagation. The algorithm will be explained only in

dimension d = 1 and we will use basically the same basis function as before, except for

three aspects:

• We do longer need the momentum term pj,t(x − yj,t) in the exponent, since in

contrary to ψt, Tt does not show oscillatory behavior.

• ψt
|x|→∞−−−−→ 0 implies <[Tt]

|x|→∞−−−−→ −∞, hence Gaussian basis functions alone are

a bad choice for the approximation of Tt. Therefore, we will replace the outer for

basis functions by the monomials 1, x, x2, x3.

• Since we choose a collocation method instead of a Galerkin method, the prefactors

are no longer needed.

In summary, we choose our basis functions to be

ζj,t(x) =



1 for j = 1,

x for j = 2,

exp
(
−εj,t |x− xj,t|2

)
for j = 3, . . . , N − 2,

x2 for j = N − 1,

x3 for j = N,

where εj,t = h−2E2ρg,t(xj,t)
2 (see equation (3.2.2)). The time evolution of Tt,

∂tTt =
i

2
(∆Tt +∇T ᵀ

t ∇Tt)− iV,
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4. NUMERICAL EXPERIMENTS

makes the collocation method for the approximant Θt =
∑N

j=1 dj,tζj,t ≈ Tt gain the

form

∂tΘt(xk,t) =
i

2

(
Θ′t(xk,t) + Θ′′t (xk,t)

2
)
− iV (xk,t) ∀k = 1, . . . , N

⇐⇒
N∑
j=1

ḋj,t ζj,t(xk,t)︸ ︷︷ ︸
=: a

(1)
k,j,t

=
N∑
j=1

dj,t

(
− ∂tζj,t(xk,t)︸ ︷︷ ︸

=: a
(2)
k,j,t

+
i

2
ζ ′′j,t(xk,t)︸ ︷︷ ︸

=: a
(3)
k,j,t

)

+
i

2

( N∑
j=1

dj,t ζ
′
j,t(xk,t)︸ ︷︷ ︸
=: a

(4)
k,j,t

)2

− iV (xk,t) ∀k = 1, . . . , N

⇐⇒ A
(1)
t ḋt =

(
−A(2)

t +
i

2
A

(3)
t

)
dt +

i

2

(
A

(4)
t d
)2

︸ ︷︷ ︸
componentwise

− iV (xt)︸ ︷︷ ︸
componentwise

,

where dt := (dj,t)j , xt := (xj,t)j and A
(α)
t :=

(
a

(α)
k,j,t

)
k,j

for α = 1, . . . , 4.

For j = 3, . . . , N − 2 the derivatives of ζj,t are given by

ζj,t(x) = exp
(
−εj,t (x− xj,t)2

)
,

ζ ′j,t(x) = − 2εj,t(x− xj,t) ζj,t(x),

ζ ′′j,t(x) =
[
4ε2j,t(x− xj,t)2 − 2εj,t

]
ζj,t(x),

∂tζj,t(x) =
[
2εj,tẋj,t(x− xj,t)− ε̇j,t(x− xj,t)2

]
ζj,t(x).

Unfortunately, we were not able to produce a stable implementation of this method so

far.

Instead, we follow a rather “clumsy” approach. We define

ρ̃g,t = ρt ∗ gδ̃t , δ̃t = κδ̃δt,

x̃j,t Pρ̃t-distributed, Θj,t = Tt(x̃j,t).

In each time step, we perform a cubic spline interpolation of the values Θj,t in the nodes

x̃j,t, which we use to compute the propagation of Θj,t (via a collocation method), x̃j,t

and all the parameters of the manifold.
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4.4 Morse Potential

4.4 Morse Potential

We will now apply the above described method with the cubic spline interpolation to

the Schrödinger equation with the Morse potential

V (x) = D
(

1− e−α(x−x∗)
)2
,

where D = 0.0572, α = 0.983, x∗ = 5.03855. The initial data will be a real Gaussian

ψin(x) =
( σ
πε

)1/4
exp

(
− σ

2ε
(x− xin)

)
,

where σ = 0.3289, xin = 4.53. This example was taken from [Kel14], where the

semiclassical formulation of the Schrödinger equation is used:

iε∂tψt = −ε
2

2
∇ψt + V ψt,

where 0 < ε � 1 is the so-called semiclassical parameter (here, ε = 0.0029). Thank

you to Johannes Keller and Caroline Lasser for providing a reference solution for this

example (computed via a Strang splitting):

(a) t = 0. (b) t = 4. (c) t = 8.

(d) t = 12. (e) t = 16. (f) t = 20.

Figure 4.8: Solution ψt of the above problem at different times t.

With only 20 nodes x̃j,t for the cubic spline interpolation, 100 time steps per time

unit and κδ̃ = 3.1 , we can propagate a suitable approximation of the manifold:
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4. NUMERICAL EXPERIMENTS
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Figure 4.9: Bohmian trajectories qj,t, quasi-Bohmian trajectories xj,t and the parameters

εj,t (for reasons of vizualisation every third trajectory/parameter is plotted). Note, how

the Bohmian trajectories stay |ψt|2-distributed.

The application of the Dirac Frenkel variational principle to the Morse potential

causes problems. The potential does not fulfill the assumed conditions (at most poly-

nomial growth, see Section 2.4). Therefore, the integrals 〈ηj,t | V ηk,t〉L2 appearing in

the variational principle (see Example 2.33) might not exist. Nevertheless, we were

able to evolve a reasonable approximation to the wavefunction up to time T = 5 (with

N = 121, E = 0.74, κδ = 0.32 and 600 time steps per time unit.):
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Figure 4.10: L2-error of the Dirac Frenkel variational principle plotted over time.
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Chapter 5

Conclusion and Future Directions

We developed a method using an approximation space, which automatically adapts to

the specific function ψt we want to approximate. The basis functions ηj,t we use for

the approximation also adjust automatically, if the function changes in time. This was

realized by considering the underlying probability density function ρt and its evolution

in time, described by a continuity equation

∂tρt = −div(ρtvt).

More precisely, the centers xj,t of the Gaussian basis functions ηj,t were chosen Pρg,t-

distributed, ρg,t being a modified version of ρt, see Section 3.1.4. One way to put this

into practice is by taking the images of equidistant points y1, . . . , yN ∈ (0, 1)d under

a transport map from Puni to Pρg,t . The Jacobian of this transport map can be used

for choosing suitable covariance matrices of the Gaussian basis functions, see Section

3.1.5.

This adaptation of the approximation space allows a good approximation with

a rather small number of basis function, which is an important step towards high-

dimensional problems. However, breaking the equidistance of the points yj is an ob-

stacle still to be cleared in order to reach this goal. Taking scattered Puni-distributed

points yj (e.g. Monte Carlo or quasi Monte Carlo points) has not yielded profitable

results so far and would be an interesting direction for future research.

So far, our numerical experiments assumed that the velocity field vt is given analyti-

cally (except for the rather negligible attempt in the last experiment). In many cases,
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including the Schrödinger equation, the velocity field depends on the function ψt or the

density ρt and needs to be computed numerically.

We explained the difficulties of such a computation in the case of the Schrödinger

equation, which we could not solve until now. It therefore remains another challenging

task for the future.
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Appendix A

Bohmian Mechanics and the

Wigner Transform

As mentioned in Section 2.6, some results can be deduced by treating the Wigner

transform of the wave function as a probability density function, though in reality it may

take negative values. Some of these results provide an insightful connection to Bohmian

Mechanics, which (based on my knowledge) was first studied by Takabayasi (see [Tak54]

or [Wya06, Chapter 3] for a summary) shortly after Bohm’s famous publications on his

statistical interpretation of quantum mechanics ([Boh52a] and [Boh52b]). Some of the

ideas and formulas already appear in the appendix of Moyal’s paper in 1949 [Moy49],

who, of course, could not make the connection to Bohmian mechanics at that time.

Further contributions were done by Hiley, see e.g. [Hil04].

The main idea is to treat the Wigner quasi-probability distribution Wψ of the wave

function ψ ∈ L2(Rd,C) as a probability density function in phase space (ignoring the

fact that it can take negative values) and “integrating out” the first or the second

argument. Takabayasi refers to this as “projecting onto the coordinate space”, while

Hiley speaks of “shadow manifolds”. The most simple result is to gain the marginal

densities

ρ(x) = |ψ(x)|2 =

∫
Rd
Wf(x, ξ) dξ ,

|Fψ(ξ)|2 =

∫
Rd
Wψ(x, ξ) dx .

But there is more: Taking the expectation value with respect to the probability
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density

ρx =
Wψ(x,·)
ρ(x)

(the denominator ρ(x) is just a normalization term), just as we did in Section 2.7 (see

Proposition 2.51), we arrive at the Bohmian velocity field v = vψ = =
[
∇ψ
ψ

]
. So,

the velocity field suggested by Bohm is nothing other than the expected momentum

(separately for each x ∈ Rd) with respect to the Wigner distribution:

Proposition A.1. For every x ∈ Rd, we have∫
Rd
ξ ρx(ξ) dξ = =

[
∇ψ
ψ

]
.

Proof. Using the Fourier inversion formula we get:∫
Rd
ξ ρx(ξ) dξ =

(2π)−d

ρ(x)

∫
Rd

∫
Rd
ψ
(
x+

y

2

)
ψ
(
x− y

2

)
ξ eiξ

ᵀy dy dξ

=
(2π)−d

ρ(x)

∫
Rd

∫
Rd

1

2i

[
ψ
(
x+

y

2

)
∇ψ

(
x− y

2

)
−∇ψ

(
x+

y

2

)
ψ
(
x− y

2

)]
eiξ

ᵀy dy dξ

=
1

ρ(x)

1

2i

[
ψ(x)∇ψ(x)−∇ψ(x)ψ(x)

]
=
=
[
ψ(x)∇ψ(x)

]
ρ(x)

= =
[
∇ψ
ψ

]
.

Further connections, e.g. to the quantum potential introduced in Section 2.4, can

be made by taking higher moments of Pρx (see [Moy49], [Tak54], [Wya06]).

What we are going to study are the following two aspects:

1. Can an analogous statement be made with the Husimi transform (see Remark

2.40) in place of the Wigner distribution?

2. Using the terminology of Takabayasi, what happens if we “project onto other

subspaces” instead of the coordinate space?

While the first question is answered by the following proposition, the second one

will need a little more preparation.
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Proposition A.2. Let ψ ∈ L2(Rd) denote a wave function (i.e. ρ = |ψ|2 is a probability

density) and Hψ = Wψ ∗ G, where G(x, ξ) = G1(x)G2(ξ) and G1, G2 ∈ S(Rd,R) are

probability densities on Rd, G2 being an even function. Defining

ρH(q) =

∫
Rd
Hψ(q, p) dp , vHψ (q) =

∫
Rd
p
Hψ(q, p)

ρH(q)
dp ,

we get:

ρH = ρ ∗G1 and ρHvHψ = (ρvψ) ∗G1,

where as usually vψ = =
[
∇ψ
ψ

]
denotes the Bohmian velocity field.

Proof. The first part is a simple computation:

ρH(q) =

∫
Rd

(Wψ ∗G)(q, p) dp =

∫
Rd

∫
R2d

Wψ(q − x, p− ξ)G(x, ξ) dx dξ dp

=

∫
R2d

∫
Rd
Wψ(q − x, p− ξ) dp︸ ︷︷ ︸

ρ(q−x)

G1(x) dxG2(ξ) dξ = (ρ ∗G1)(q).

For the second part first observe that (by the Fourier inversion formula)∫
R3d

ξ Wψ(q − x, p− ξ)G(x, ξ) dp dx dξ

= (2π)−d
∫
R4d

ξ ψ
(
q − x+

y

2

)
ψ
(
q − x− y

2

)
eiy

ᵀ(p−ξ)G(x, ξ) dy dp dx dξ

=

∫
R2d

ξ ψ (q − x) ψ (q − x) G(x, ξ) dx dξ

=

∫
Rd
ξ G2(ξ) dξ︸ ︷︷ ︸

= 0, since G2 is even

∫
Rd
ρ (q − x) G1(x) dx

= 0.

As a consequence,

ρH(q) vHψ (q) =

∫
Rd
p (Wψ ∗G)(q, p) dp

=

∫
R3d

pWψ(q − x, p− ξ)G(x, ξ) dx dξ dp

=

∫
R2d

∫
Rd

(p− ξ)Wψ(q − x, p− ξ) dp︸ ︷︷ ︸
ρ(q−x) vψ(q−x)

G(x, ξ) dx dξ

+

∫
R3d

ξ Wψ(q − x, p− ξ) dpG(x, ξ) d(x, ξ)

=
(
(ρvψ) ∗G1

)
(q).
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Let us now turn to the second question:

For simplicity, we will present the theory in dimension d = 1.

In the same way we did before, we can choose a 1-dimensional subspace U of the

phase space other than the axes and “integrate out the orthogonal component” to get

a probability densities “on U”:

v =

(
− sinα

cosα

)

(
z cosα

z sinα

)
α

q

p

U

Figure A.1: 1-dimensional subspace U of the phase space and the direction vector of the

corresponding orthogonal projection.

Definition A.3. We define the following densities on R:

ρα(z) =

∫
R
Wψ

((
z cosα

z sinα

)
+ h

(
− sinα

cosα

))
dh .

Since
∫
R2 Wψ = 1, ρα is a probability density (the positivity will be seen in the proof

of the following proposition). We further define the transformation

(Fα,fαψ)(z) = eifα(z)

∫
R
ψ(y)Kα(z, y) dy,

where

Kα(z, y) =
1√

2πi sinα
exp

[
i

2 sinα

(
cosα(y2 + z2)− 2yz

)]
is the Mehler kernel and fα : R→ R is an arbitrary phase term.

Proposition A.4. For any fα : R→ R,

ρα(z) = |(Fα,fαψ)(z)|2 .
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Proof. Using the linear transformation(
ξ1

ξ2

)
=

(
− sinα 1

2

− sinα −1
2

)
︸ ︷︷ ︸

A

(
h

y

)
, |detA| = | sinα|, ξ1+ξ2 = −2h sinα, ξ1−ξ2 = y

and denoting c := cos(α), s := sin(α), we get for any fα : R→ R:

ρα(z) =

∫
R
Wψ

((
z cosα

z sinα

)
+ h

(
− sinα

cosα

))
dh

=
1

2π

∫
R2

ψ̄
(
zc− hs+

y

2

)
ψ
(
zc− hs− y

2

)
ei(zs+hc)y d(y, h)

=
1

2π|s|

∫
R2

ψ̄ (zc+ ξ1)ψ (zc+ ξ2) ei(zs−
c
2s

(ξ1+ξ2))(ξ1−ξ2) d(ξ1, ξ2)

=
1

2π|s|

∫
R
ψ̄ (zc+ ξ1) ei(zξ1s−

c
2s
ξ2
1) dξ1

∫
R
ψ (zc+ ξ2) e−i(zξ2s−

c
2s
ξ2
2) dξ2

=
1

2π|s|

∣∣∣∣∫
R
ψ (zc+ ξ) e−i(zξs−

c
2s
ξ2) dξ

∣∣∣∣2
=

1

2π|s|

∣∣∣∣ ∫
R
ψ (y) e

i
2s(c(y

2+z2)−2yz+z2c sin2 α) dy

∣∣∣∣2
=

1

2π|s|

∣∣∣∣ eifα(z)

∫
R
ψ (y) e

πi
s (c(y2+z2)−2yz) dy

∣∣∣∣2 .

Remark A.5.

1. For fα = 0 and α = π
2 , the transformation Fα,fαψ is just the Fourier transform

of ψ.

2. The proposition also follows from the facts that the Mehler kernel is the evolution

kernel of the harmonic oscillator and the evolution of the harmonic oscillator

corresponds to a rotation of the Wigner function in phase space. Our proof is

a simple alternative to this argumentation. Thank you to Johannes Keller for

pointing that out to me.

3. The transformation Fα,fα is not defined if α is a multiple of π, but it can be

continuously extended to these cases. The following proposition treats the case

α = 0 exemplarily.

Proposition A.6. (Fα,fαψ)(z)
α→0−→ ψ(z) if fα(z)

α→0−→ 0 for all z ∈ R.
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Proof. It is sufficient to treat the case α ↘ 0. Denoting once again c := cos(α), s :=

sin(α), we obtain for 0 < α < π
2 :

(Fα,fαψ)(z) = eifα(z)

∫
R
ψ(y)

1√
2πis

exp

[
i

2s

(
c(y2 + z2)− 2yz

)]
dy

=
eifα(z)

√
2πis

∫
R
ψ(y) exp

[
ic

2s

((
y − z

c

)2
− z2

(
1

c2
− 1

))]
dy

=
eifα(z)

√
2πis

∫
R
ψ(y) exp

[
ic

2s

(
y − z

c

)2
− is

2c
z2

]
dy

= eifα(z)

∫
R
ψ
(√

2πis ξ +
z

c

)
exp

[
−πc ξ2 − is

2c
z2

]
dξ ,

where we substituted ξ = 1√
2πis

(
y − z

c

)
in the last step. Taking the limit α ↘ 0, we

get:

lim
α↘0
Fα,fαψ(z) = lim

α↘0
lim
R→∞

eifα(z)

∫ R

−R
ψ
(√

2πis ξ +
z

c

)
exp

[
−πc ξ2 − is

2c
z2

]
dξ

= lim
R→∞

∫ R

−R
ψ (z) exp

[
−πξ2

]
dξ

= ψ(z).

Proposition A.7. If fα(x) = a0 + a1x + a2x
2 is a quadratic polynomial, the Wigner

transform of ψ and Fα,fαψ have the following relation:

WFα,fαψ

(
q

p

)
= Wψ

(
q cosα− (p− a1 − 2a2q) sinα

q sinα+ (p− a1 − 2a2q) cosα

)
.

In particular, if fα is constant,

WFα,fαψ = Wψ ◦Dα,

where Dα =

(
cosα − sinα

sinα cosα

)
denotes the rotation matrix.
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Proof. Denoting c = cosα and s = sinα we compute:

2πWFα,fαψ(q, p) =

∫
R
Fα,fαψ

(
q +

y

2

)
Fα,fαψ

(
q − y

2

)
eipy dy

=
1

2π|s|

∫
R3

e
− i

2s

(
cx2

1+c(q+ y
2 )

2−2x1(q+ y
2 )−cx2

2−c(q−
y
2 )

2
+2x2(q− y2 )

)

exp
[
i (py − a1y − 2a2qy)

]
ψ(x1)ψ(x2) d(x1, x2, y)

=
1

2π|s|

∫
R3

exp

[
− i

2s

(
c(x2

1 − x2
2 + 2qy)− 2(x1 − x2)q − (x1 + x2)y

)]
exp

[
iy (p− a1 − 2a2q)

]
ψ(x1)ψ(x2) d(x1, x2, y)

(∗)
=

1

2π

∫
R3

exp

[
− i

2s

(
2cz1z2 + 2cqsz3 − 2qz2 − 2sz3z1

)
+ isz3 (p− a1 − 2a2q)

]
ψ
(
z1 +

z2

2

)
ψ
(
z1 −

z2

2

)
d(z1, z2, z3)

=
1

2π

∫
R2

exp [−iz3 (cq − z1) + isz3 (p− a1 − 2a2q)]∫
R

exp

[
iz2

q − cz1

s

]
ψ
(
z1 +

z2

2

)
ψ
(
z1 −

z2

2

)
dz2 d(z1, z3)

(∗∗)
=

1

2π

∫
R

∫
R

exp
[
iz3

(
s(p− a1 − 2a2q)− cq + z1

)]
Wψ

(
z1,

q − cz1

s

)
dz3 dz1

= Wψ

(
cq − s(p− a1 − 2a2q),

q − c2q + cs(p− a1 − 2a2q)

s

)
= Wψ

(
cq − s(p− a1 − 2a2q) , sq + c(p− a1 − 2a2q)

)
,

where we used the Fourier inversion formula for (∗∗) and the following linear transfor-

mation for (∗):z1

z2

z3

 =


1
2

1
2 0

1 −1 0

0 0 1
s


︸ ︷︷ ︸

A

x1

x2

y

 , | detA| = 1

|s|
, x1 = z1 +

z2

2
, x2 = z1 −

z2

2
.

Corollary A.8. Let fα be constant and ψα = Fα,fαψ. Then

1

ρα(z)

∫
R
Wψ

(
z

(
cosα

sinα

)
+ h

(
− sinα

cosα

))
hdh = =

[
∇ψα

ψα

]
(z).
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Proof. Propositions A.1 and A.7 yield

1

ρα(z)

∫
R
Wψ

(
z

(
cosα

sinα

)
+ h

(
− sinα

cosα

))
hdh =

∫
R

(Wψ ◦Dα)(z, h)

|ψα|2(z)
hdh

=

∫
R

Wψα(z, h)

|ψα|2(z)
hdh

= =
[
∇ψα

ψα

]
(z).

Corollary A.9. If fα(x) = a0 +a2x
2 is a symmetric quadratic polynomial, the relation

between the Wigner transform of ψ and Fα,fαψ becomes:

WFα,fαψ = Wψ ◦Dfα
α , where Dfα

α =

(
cosα+ 2a2 sinα − sinα

sinα− 2a2 cosα cosα

)
(
Dfα
α

)−1
=

(
cosα sinα

− sinα+ 2a2 cosα cosα+ 2a2 sinα

)
.

In particular, WFα,fαψ and Wψ attain the same values, just the coordinates where

the values are taken are “rotated”. We want to visualize this pseudo-rotation Dfα
α on

the example fα(z) = z2

2 cosα sinα by plotting the trajectories:
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Figure A.2: Trajectories (in the variable α) under the pseudo-rotation Dfα
α for various

starting points.
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Appendix B

Generalized FBI Transform

The theory presented in this section originated from a collaboration with my colleagues

Johannes Keller and Stephanie Troppmann.

In Section 2.6, we defined the FBI transform of a function f ∈ S(Rd,C) as its projection

onto a complex Gaussian:

T f(x, ξ) = (2π)−d/2
〈
gx,ξ, f

〉
L2(Rd)

, gx,ξ(y) = π−d/4 exp

(
−|x|

2

2
+ iξᵀ(y − x)

)
(the point of evaluation of T f coincides with the center of the Gaussian in phase space).

Our basic idea is to generalize this transform by plugging in various Hermite func-

tions (i.e. polynomial × Gaussian) in place of gx,ξ, or, even more general, so-called

Hagedorn wave packets, which form an orthonormal basis of L2(Rd). This approach

will be presented in the following section.

In this chapter, we will use semiclassical scaling, which is reflected by adding a small

parameter ε > 0 to the Fourier, the FBI and the Wigner transforms:

Fεf(ξ) = (2πε)−d/2
∫
Rd
f(y) e−iy

ᵀξ/ε dy ,

T εf(x, ξ) = (2πε)−d/2(πε)−d/4
∫
Rd
f(y) exp

(
−|x|

2

2ε
− i

ε
ξᵀ(y − x)

)
dy ,

W εf(x, ξ) = (2πε)−d
∫
Rd
f
(
x+

y

2

)
f
(
x− y

2

)
eiy

ᵀξ/ε dy.

We will further make use of the following Laguerre type polynomials:

Definition B.1. For k ∈ N and α ∈ R let

Lαk (x) =
k∑
j=0

(
k + α

k − α

)
(−x)j

j!
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be the (generalized) Laguerre polynomials associated with γ. For m,n ∈ N, we define

the polynomials

Lm,n(x, y) =

2nm!yn−mLn−mm (−2xy), if m ≤ n,

2mn!ym−nLm−nn (−2xy), if n ≤ m.

B.1 Hagedorn Wave Packets

In his famous papers from 1980 and 1998 ([Hag80] and [Hag98]), George Hagedorn

introduced an orthonormal basis of L2(Rd), which generalizes the common Hermite

basis (and its tensor-product version in dimensions d > 1). We will follow the notation

in [Lub08, Chapter V] and [Las14]:

Definition B.2 (admissible pair). We will call the pair (Q,P ) with Q,P ∈ Cd×d

admissible, if

QᵀP − P ᵀQ = 0,

Q∗P − P ∗Q = 2iId.
(B.1.1)

For q, p ∈ Rd and an admissible pair (Q,P ), we define the corresponding complex

Gaussian by

ϕε0[q, p,Q, P ](x) = (πε)−d/4(detQ)−1/2 exp

(
i

2ε
(x− q)ᵀPQ−1(x− q) +

i

ε
pᵀ(x− q)

)
.

As in the case of Hermite functions, the orthonormal basis results from multiple applica-

tions of the ladder operators (often called raising and lowering operators) A = (Aj)
d
j=1

and A† = (A†j)
d
j=1 to the Gaussian, in this case the proper generalization is

A = A[q, p,Q, P ] = − i√
2ε

(P ᵀopε(x− q)−Qᵀ(−iε∇− p)) ,

A† = A†[q, p,Q, P ] =
i√
2ε

(P ∗opε(x− q)−Q∗(−iε∇− p)) .

The kth Hagedorn wavepacket, k ∈ Nd is defined by

ϕεk = ϕεk[q, p,Q, P ] =
1√
k!

(A†)k ϕε0[q, p,Q, P ],

where we use the multi-index notation

(A†)k = (A†1)k1 ◦ · · · ◦ (A†d)
kd , k! =

d∏
j=1

kj ! .
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Remark B.3. For an admissible pair (Q,P ), one can show that (see [Lub08, Chapter

V])

• Q and P are invertible,

• C = PQ−1 is a complex symmetric matrix with positive definite imaginary part,

• every complex symmetric matrix C with positive definite imaginary part has

a decomposition of the form C = PQ−1 with admissible pair (Q,P ), but this

decomposition is not unique,

• QQ∗ = =[C]−1 is symmetric and positive definite,

• PP ∗ = −=[C−1]−1 is symmetric,

• the ladder operators commute (A†jA
†
k = A†kA

†
j for all j, k = 1, . . . d), therefore the

upper definition is meaningful,

• the Hagedorn wave packets (ϕk)k∈Nd form an orthonormal basis of L2(Rd),

• In the case q = p = 0, Q = Id, P = iId we regain the common Hermite basis for

d = 1 and its tensor product form for d > 1.

Just as in the case of standard Hermite functions, the Hagedorn wavepackets are

(by construction) a product of a polynomial and the (complex) Gaussian ϕε0. Let us

introduce the notation (see [Las14])

ϕεk[q, p,Q, P ](x) =
1√

2|k|k!
pεk[q,Q](x)ϕε0[q, p,Q, P ](x), x ∈ Rd,

where the multivariate polynomials pεk[q,Q], k ∈ Nd are recursively defined by

pε0[q,Q] = 1, pεk+ej
[q,Q] = B†jp

ε
k[q,Q], where

B† = (B†j )
d
j=1 =

2√
ε
Q−1opε(x− q)−

i√
ε
Q∗(−iε∇x).

In the following proposition, we will see that varying q ∈ Rd only results in shifting

the Hagedorn polynomials pεk by q. Therefore, we will abbreviate pεk[0, Q] by pεk and

discuss most results only for pεk.

Proposition B.4. The multivariate polynomials pεk[q,Q] have the following properties

(here x, y, z ∈ Cd and pεk−ej [q,Q] := 0 for kj = 0):
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(1)
(
pεk+ej

(x)
)d
j=1

=
2√
ε
Q−1(x− q)pεk[q,Q](x)− 2Q−1Q

(
kjp

ε
k−ej (x)

)d
j=1

,

(2) pεk(x+ z) =
∑
ν≤k

(
k

ν

)(
2√
ε
Q−1z

)k−ν
pεν(x),

(3)

∫
Rd
pεl (x+ y)pεk(x+ z)|ϕε0(x)|2dx =

d∏
j=1

Llj ,kj
(

1√
ε

(Q−1y)j ,
1√
ε

(Q−1z)j

)
,

(4) pεk[q,Q](x) = pεk[0, Q](x− q),

(5) ∇xpεk =
2√
ε
Q−T (kjp

ε
k−ej )

d
j=1, if kj > 0,

(6) pεk(x+ y) = 2−
|k|
2

∑
ν≤k

(
k

ν

)
pεk−ν

(√
2x
)
pεν
(√

2y
)
.

Proof. For the proofs of (1),(2) and (3) see [Las14].

(4) Roughly speaking, this identity results from the recursive definition of pεk[q,Q]

and the fact that ∇x and the shifting operator τq defined by (τqf)(x) = f(x − q)
commute, while τq ◦ opε(x) = opε(x− q) ◦ τq. More precisely, we have by induction

(we denote the entries of Q−1 by aij and the ones of Q∗ by bij):

pεk+ej
[q,Q] =

[
2√
ε
Q−1opε(x− q)−

√
εQ∗∇x

]
j

pεk[q,Q]

=
2√
ε

d∑
l=1

ajl opε(xl − ql) τq pεk[0, Q]−
√
ε

d∑
l=1

bjl∇xl τq p
ε
k[0, Q]

=
2√
ε

d∑
l=1

ajl τq opε(xl) p
ε
k[0, Q]−

√
ε

d∑
l=1

bjl τq∇xl p
ε
k[0, Q]

= τq

[
2√
ε
Q−1 opε(xl)−

√
εQ∗ τq∇xl

]
j

pεk[0, Q]

= τq p
ε
k+ej

[0, Q].

(5) Combining the recursive definition of the Hagedorn polynomials pεk[q,Q] and the

Rodriguez type formula (1), we obtain

− i√
ε
Q∗ (−iε∇xpεk[q,Q]) = −2Q−1Q

(
kjp

ε
k−ej [q,Q]

)d
j=1

.

Since QQ∗ = =[C]−1 is real-valued (see Remark B.3), we have (Q∗)−1Q−1Q =

(QQ∗)−1Q = ((QQ∗))−1Q = Q−T , which proves the claim.
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B.2 Generalized FBI transform

(6) Applying the three-term recurrence formula thrice, we get by induction over k ∈ Nd:

2
|k|+1

2

(
pεk+ej (x+ y)

)d
j=1

= 2
|k|+1

2

[
2√
ε
Q−1(x+ y)pεk(x+ y)− 2Q−1Q

(
kjp

ε
k−ej (x+ y)

)d
j=1

]
=

2√
ε
Q−1(√2x+

√
2y
)∑
ν≤k

(
k

ν

)
pεk−ν

(√
2x
)
pεν
(√

2y
)

− 2 · 2Q−1Q

(
kj

∑
ν≤k−ej

(
k − ej
ν

)
︸ ︷︷ ︸
(kν)

kj−νj
kj

pεk−ν−ej
(√

2x
)
pεν
(√

2y
))d

j=1

=
∑
ν≤k

(
k

ν

)(
2√
ε
Q−1(√2x

)
pεk−ν

(√
2x
)
− 2Q−1Q

(
(kj − νj) pεk−ν−ej

(√
2x
))d
j=1

)
pεν
(√

2y
)

+
∑
ν≤k

(
k

ν

)(
2√
ε
Q−1(√2y

)
pεk−ν

(√
2y
)
− 2Q−1Q

(
(kj − νj) pεk−ν−ej

(√
2y
))d
j=1

)
pεν
(√

2x
)

=

(∑
ν≤k

(
k

ν

)
pεk−ν+ej

(√
2x
)
pεν
(√

2y
)

+
∑
ν≤k

(
k

ν

)
pεk−ν+ej

(√
2y
)
pεν
(√

2x
)

︸ ︷︷ ︸
ν→k−ν+ej

=
∑
ν≤k+ej ( k

k−ν+ej
)pεν
(√

2y
)
pε
k−ν+ej

(√
2x
)
)d
j=1

=

( ∑
ν≤k+ej

(
k + ej
ν

)
pεk+ej−ν

(√
2x
)
pεν
(√

2y
))d

j=1

.

B.2 Generalized FBI transform

To simplify the presentation, we will use the following notation throughout this chapter:

Notation B.5. We will abbreviate

• z :=

(
q

p

)
∈ R2d, Z :=

(
Q

P

)
∈ C2d×d, ϕεk[z, Z] := ϕεk[q, p,Q, P ],

• Ω :=

(
0 −Id

Id 0

)
∈ R2d×2d,

• Ξ =

(
0 PQ∗

−QP ∗ 0

)
∈ C2d×2d.

We are now ready to define the transforms we mentioned in the introduction of this

chapter:
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B. GENERALIZED FBI TRANSFORM

Definition B.6 (GFBI transform). For an admissible matrix pair Z =

(
Q

P

)
∈ C2d×d,

k ∈ Nd and ε > 0, we define the kth generalized FBI (GFBI) transform via

(T εk,Zf)(z) := (T εk,Q,P f)(q, p) := (2πε)−d/2 〈ϕεk[z, Z], f〉L2(Rd) . (B.2.1)

Proposition B.7. The GFBI transforms T εk,Zf are well-defined isometries from L2(Rd)
to L2(R2d).

Proof. This is an application of [Com12, Proposition 4].

Remark B.8. If Q = Id, P = iId, we regain the common FBI transform for k = 0.

Proposition B.9. The GFBI transform T εk,Z corresponding to the Hagedorn wavepacket

ϕεk[·, Z] of another Hagedorn wavepacket ϕεl [ζ, Z] with phase space center ζ = (x, ξ)T

and the same admissible pair Z =

(
Q

P

)
∈ C2d×d is given by

(
T εk,Z ϕ

ε
l [ζ, Z]

)
(z) = (2πε)−d/2〈ϕεk[z, Z], ϕεl [ζ, Z]〉L2(Rd)

=
e−(‖Z∗Ω(z−ξ)‖2+(z−ξ)TΞ(z−ξ)−4ipT (q−x))/4ε√

2|k+l|+dk!l!(πε)d

d∏
j=1

Llj ,kj
(

i

2
√
ε

[Z∗Ωz̃]j ,
i

2
√
ε

[Z∗Ωz̃]j

)
.

Proof. Using Proposition B.4(3) and abbreviating pεm := pεm[0, Q], ϕε0 := ϕε0[0, Z], q̃ :=

q − x, p̃ := p− ξ, z̃ := z − ζ, C := PQ−1, A := QQ∗ = =[C]−1, we get

(p̃− Cq̃)TA(p̃− Cq̃) = p̃QQ∗p̃− 2p̃TAC∗q̃ + q̃TC∗AC∗q̃

= p̃QQ∗p̃− 2p̃TQP ∗q̃ + q̃TPP ∗q̃ − 2iq̃TC∗q̃

= (Q∗p̃− P ∗q̃)∗(Q∗p̃− P ∗q̃) + q̃TPQ∗p̃− p̃TQP ∗q̃ − 2iq̃TC∗q̃

= ‖Z∗Ωz̃)‖2 + z̃TΞz̃ − 2iq̃TC∗q̃
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and therefore

i

2ε

[
yTCy − (y − q̃)TC(y − q̃) + 2ξT y − 2pT (y − q̃)

]
=− 1

ε

[
yTA−1y − iq̃TCy + ip̃T y +

i

2
q̃TCq̃ − ipT q̃

]
=− 1

ε

[(
y +

i

2
A(p̃− Cq̃)

)T
A−1

(
y +

i

2
A(p̃− Cq̃)

)
+

1

4
(p̃− Cq̃)TA(p̃− Cq̃) +

i

2
q̃TCq̃ − ipT q̃

]
=− 1

ε

[(
y +

i

2
A(p̃− Cq̃)

)T
A−1

(
y +

i

2
A(p̃− Cq̃)

)]

− 1

4ε

[
‖Z∗Ωz̃)‖2 + z̃TΞz̃ − 4ipT q̃

]
.

Using these observations we get:

〈ϕεk[q, p,Q, P ], ϕεl [0, 0, Q, P ]〉

=
(πε)−

d
2 |detQ|−1

√
2|k+l|k!l!

∫
Rd
pεk(y − q) p

ε
l (y − x) ×

e
i

2ε [(y−x)TC(y−x)−(y−q)TC(y−q)+2ξT (y−x)−2pT (y−q)] dy

=
(πε)−

d
2 |detQ|−1

√
2|k+l|k!l!

∫
Rd
pεk(y − q̃) p

ε
l (y) e

i
2ε [y

TCy−(y−q̃)TC(y−q̃)+2ξT y−2pT (y−q̃)] dy

=
1√

2|k+l|k!l!
exp

[
− 1

4ε

(
‖Z∗Ωz̃‖2 + z̃TΞz̃ − 4ipT q̃

)]
×∫

Rd
pεk

(
y − i

2
A(p̃− Cq̃)− q̃

)
pεl

(
y − i

2
A(p̃− Cq̃)

)
|ϕε0(y)|2 dy

=
1√

2|k+l|k!l!
exp

[
− 1

4ε

(
‖Z∗Ωz̃‖2 + z̃TΞz̃ − 4ipT q̃

)]
×

d∏
j=1

Llj ,kj

(
− 1√

ε

[
Q−1

(
i

2
A(p̃− Cq̃) + q̃

)]
j

, − 1√
ε

[
Q−1

(
i

2
A(p̃− Cq̃)

)]
j

)

=
e−[‖Z∗Ωz̃‖2+z̃TΞz̃−4ipT q̃]/4ε

√
2|k+l|k!l!

d∏
j=1

Llj ,kj
(

i

2
√
ε

[Z∗Ωz̃]j ,
i

2
√
ε

[Z∗Ωz̃]j

)
.

For the last step, we used the following observations:

Q−1QQ∗(p̃− Cq̃) = Q−1QQ∗(p̃− Cq̃) = Q∗p̃− Q∗P︸︷︷︸
=P ∗Q+2iId

Q−1q̃ = −Z∗Ωz̃ + 2iQ−1q̃,

Q∗(p̃− Cq̃) = Q∗p̃− QTP︸ ︷︷ ︸
=PTQ

Q−1q̃ = −Z∗Ωz̃.
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Theorem B.10. For each k ∈ Nd, the GFBI transform T εk fulfills

|T εkψ|2 = (W εψ) ∗ σk, where

σk(x, ξ) = 2κ2e
− 1
ε
‖Z∗Ωζ‖2

∑
ν≤k

(−1)k−ν
∣∣∣∣(kν

)(
2Z∗Ωζ√

ε

)ν∣∣∣∣2 .
Remark B.11. σk ∈ S(R2d) decays exponentially in (x, ξ) because the kernel of the

R-linear map

(P ∗,−Q∗) : R2d → Cd

is trivial (making it an isomorphism of R-vector spaces!). In fact, for (x, ξ) ∈ R2d we

have

P ∗x−Q∗ξ = 0 ⇐⇒ ξ = (Q∗)−1P ∗x = (PQ−1)∗x = Cx = <[C]x− i=[C]x .

Since =[C] = (QQ∗)−1 is invertible, ξ can only be real-valued if x = 0 (which implies

ξ = 0).

Definition B.12 (quadratic time-frequency representation, Cohen’s class). Let G be

a sesquilinear form on L2(Rd,C). Then we call

C : L2(Rd,C)→ C, Cf = G(f, f)

a quadratic time-frequency representation. If further for each f ∈ L2(Rd,C)

Cf = W εf ∗ σ

for some σ ∈ S(R2d), we say that C belongs to Cohen’s class.

Remark B.13. For a discussion of quadratic time-frequency representations and Co-

hen’s class see [Gro01, Chapter 4].

Corollary B.14. For each k ∈ Nd, the modulus squared |T εk |2 of the GFBI transform

T εk belongs to Cohen’s class.

Proof. |T εk |2 is a quadratic time-frequency representation, since

Gk(ψ1, ψ2) = (2πε)−d 〈ϕk, ψ2〉 〈ϕk, ψ1〉

is sesquilinear and |T εkψ|2 = Gk(ψ,ψ). The claim follows from Theorem B.10.
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Proof of Theorem B.10. Denoting

A = =[C]−1 = QQ∗ and R = <[C],

we get the following identities:

PP ∗ = CQQ∗C∗ = (R+ iA−1)A(R− iA−1) = RAR+A−1, (B.2.2)

RA = (C − iA−1)A = PQ−1QQ∗ − iId = PQ∗ − iId, (B.2.3)

AR = A(C − iA−1) = QQ∗PQ−1 − iId = Q(P ∗Q+ 2iId)Q−1 − iId = QP ∗ + iId, (B.2.4)

iQZ∗Ωζ = iQ(P ∗x−Q∗ξ) = iAξ − iQP ∗x = iAξ − i(AR− iId)x = x+ iAξ − iARx, (B.2.5)

‖Z∗Ωζ‖2 = ‖P ∗x−Q∗ξ‖2 = xTPP ∗x+ ξTQQ∗ξ − xTPQ∗ξ − ξTQP ∗x

= xT (A−1 +RAR)x+ ξTA−1ξ − xT (RA+ iId)ξ − ξT (AR− iId)x

= xTA−1x+ xTRARx+ ξTA−1ξ − 2xTRAξ.

(B.2.6)

Using the transformation v1 = x+ y
2 , v2 = x− y

2 (i.e. x = v1+v2
2 , y = v1 − v2) and

its application to the term

(v1 − q)TC (v1 − q)− (v2 − q)T C (v2 − q)

=
(
x− q +

y

2

)T
C
(
x− q +

y

2

)
−
(
x− q − y

2

)T
C
(
x− q − y

2

)
= 2i

(
(x− q)T C − C

2i
(x− q) +

1

4
yT
C − C

2i
y − i (x− q)T C + C

2
y

)
= 2i

(
(x− q)T =[C]︸︷︷︸

A−1

(x− q) +
1

4
yT =[C]︸︷︷︸

A−1

y − i (x− q)T <[C]︸︷︷︸
=R

y

)
,
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we get

2kk!(2πε)d(πε)d/2 detQ ((W εψ) ∗ σk) (q, p)

= 2kk!(πε)d/2 detQ

∫
R2d

σk(q − x, p− ξ)
∫
Rd
ψ
(
x+

y

2

)
ψ
(
x− y

2

)
eiξy/ε dy d(x, ξ)

(∗)
=

∫
R2d

exp

[
−1

ε

(
(x− q)TA−1(x− q) +

1

4
yTA−1y − i(p+R(x− q))T y

)]
× pεk

(
x− q − y

2

)
pεk

(
x− q +

y

2

)
ψ
(
x+

y

2

)
ψ
(
x− y

2

)
d(x, y)

=

∫
R2d

exp

[
i

2ε

(
(v1 − q)TC(v1 − q)− (v2 − q)TC(v2 − q) + 2p((v1 − q)− (v2 − q))

)]
× pεk (v2 − q) pεk (v1 − q)ψ (v1)ψ (v2) d(v1, v2)

=

∣∣∣∣∫
Rd
pεk (v − q) exp

[
− i

2ε

(
(v − q)TC(v − q) + 2p(v − q)

)]
ψ (v) dv

∣∣∣∣2
= 2kk!(πε)d/2 detQ

∣∣∣〈φεk[q, p,Q, P ], ψ〉
∣∣∣2

= 2kk!(2πε)d(πε)d/2 detQ
∣∣∣T εkψ∣∣∣2(q, p),

where (∗) holds if and only if (here, κ1 := 2kk!(πε)d/2 detQ)

κ1

∫
Rd
σk(q − x, p− ξ)eiξy/ε dξ = e−

1
ε((x−q)TA−1(x−q)+ 1

4
yTA−1y−i(p+R(x−q))T y)

× pεk

(
x− q − y

2

)
pεk

(
x− q +

y

2

)
⇔ κ1

∫
Rd
σk(x, ξ)e

i(p−ξ)y/ε dξ = e−
1
ε(x

TA−1x+ 1
4
yTA−1y−i(p−Rx)T y)

× pεk

(
x+

y

2

)
pεk

(
x− y

2

)
⇔ κ1

∫
Rd
σk(x, ξ)e

−iξy/ε dξ = e−
1
ε(x

TA−1x+ 1
4
yTA−1y+ixTRy)

× pεk

(
x+

y

2

)
pεk

(
x− y

2

)
⇔ σk(x, ξ) =

e−
1
ε
xTA−1x

κ1
(Fεy )−1

[
e−

1
ε(

1
4
yTA−1y+ixTRy)

× pεk

(
x+

y

2

)
pεk

(
x− y

2

) ]
(ξ).
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This means, the step (∗) is correct for

σk(x, ξ) =
(2πε)−d

κ1︸ ︷︷ ︸
=:κ2

e−
1
ε
xTA−1x

∫
Rd
e−

1
ε(

1
4
yTA−1y+ixTRy−iξT y)

× pεk

(
x+

y

2

)
pεk

(
x− y

2

)
dy

=κ2e
− 1
ε
xTA−1x

∫
Rd
e
− 1
ε

[
( y2 +iARx−iAξ)

T
A−1( y2 +iARx−iAξ)+xTRARx+ξTAξ−2xTRAξ

]

× pεk

(
x+

y

2

)
pεk

(
x− y

2

)
dy

=2κ2e
− 1
ε
‖Z∗Ωζ‖2

∫
Rd
e−

1
ε
zTA−1z

× pεk (x− iARx+ iAξ + z) pεk (x+ iARx− iAξ − z) dz

=2κ2e
− 1
ε
‖Z∗Ωζ‖2

∑
ν1,ν2≤k

(
k

ν1

)(
k

ν2

)(
2√
ε
Q−1(x+ iARx− iAξ)

)k−ν1

×
(

2√
ε
Q−1(x+ iARx− iAξ)

)k−ν2
∫
Rd
e−

1
ε
zTA−1z pεν1

(z) pεν2
(−z) dz︸ ︷︷ ︸

(−1)|ν2|δν1,ν2

=2κ2e
− 1
ε
‖Z∗Ωζ‖2

∑
ν≤k

(−1)ν

∣∣∣∣∣
(
k

ν

)(
2iZ∗Ωζ√

ε

)k−ν∣∣∣∣∣
2

,

where we used the transformation z = y
2 + iARx− iAξ, equations (B.2.5) and (B.2.6)

and the orthogonality relations of the polynomials pεk.
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Table of Symbols

K field of real or complex numbers: K = R or K = C
‖x‖p `p-norm of a vector x ∈ Rd, 1 ≤ d ≤ ∞
|x| = ‖x‖ := ‖x‖2 Euclidean norm of x ∈ Rd
B(Ω) Borel σ-algebra on a topological space Ω
Br(x) := {y ∈ Rd | |y − x| < r} open ball of radius r centered at x ∈ Rd

Br(x) := {y ∈ Rd | |y − x| ≤ r} closed ball of radius r centered at x ∈ Rd

sgn(x) :=


−1 if x < 0

0 if x = 0

1 if x > 0

signum function

1 vector in Rd with all entries equal to one

Ck(Ω, Ω̃) space of k times continuously differentiable functions with domain and
codomain Ω, Ω̃ ⊆ Rd

Ck(Ω) := Ck(Ω,R)
Ckc (Ω) :=

{
f ∈ Ck(Ω,R) | supp(f) is compact

}
space of k times continuously

differentiable functions with compact support
Lp(Ω,K) Lebesgue space with domain Ω ⊆ Rd and codomain K = R or K = C
Lp(Ω) := Lp(Ω,R)
Lp := Lp(Rd,R)
‖f‖p = ‖f‖Lp = ‖f‖Lp(Ω) Lp-norm of a function f ∈ Lp(Ω)

W k,p(Ω,K) Sobolev space of order k corresponding to the Lp-norm with domain
Ω ⊆ Rd and codomain K = R or K = C

W k,p(Ω) := W k,p(Ω,R)
S(Ω,K) Schwartz space of rapidly decreasing functions on Ω ⊆ Rd with

codomain K = R or K = C
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Pρ probability distribution given by the density ρ: Pρ(A) :=
∫
A ρ(x)dx for

A ∈ B(Rd)
Puni uniform probability distribution on (0, 1)d

N (µ,Σ) normal distribution with mean µ ∈ Rd and positive definite covariance
matrix Σ ∈ Rd×d given by the probability density function ρ(x) =
(2π)−d/2|det(Σ)|−1/2 exp

[
−1

2(x− µ)ᵀΣ−1(x− µ)
]

Φ#µ pushforward measure of a probability distribution µ on X via a measur-
able map Φ: X → Y ((X ,BX ) and (Y,BY) being measurable spaces)
defined by (Φ#µ)(B) := µ

(
Φ−1(B)

)
for all B ∈ BY

Dv = Dxv Jacobian (in space) of a C1 vector field v : Rd → Rd
Id Identity map of the considered space
Ed d-dimensional identity matrix
ej := (δij)i=1,...,d unit vector in Rd
tr(A) trace of a quadratic matrix A

—————————————————————————————-
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