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Vollständiger Abdruck der von der Fakultät für Mathematik der Technischen

Universität München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr. Noam Berger Steiger
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Abstract

This thesis covers three different but interconnected topics in the broad field of finan-

cial engineering. It is concerned with representations of univariate distributions on the

positive real line, the construction of specific multivariate distributions, and the model-

ing of discrete cash dividends for stock prices. Based on Laplace inversion methods, a

convenient representation for the density of distributions of a large subclass of infinitely

divisible distributions on the positive real line is developed. This result can be used to

numerically derive the density when closed algebraic expressions are unknown or difficult

to evaluate. Similar results are proven for distribution functions and option-like deriva-

tives. Furthermore, new families of min-stable multivariate exponential distributions

are constructed using a first-passage time construction. These can be of particular use

for portfolio credit risk models as they are tractable also in high dimensions. Finally, a

new and flexible approach for the modeling of stock prices with discrete cash dividends

is presented. It allows to incorporate non-deterministic dividend payments into almost

any stock price model while retaining tractability.

Zusammenfassung

Diese Arbeit behandelt drei verschiedene, aber miteinander verknüpfte Themen aus dem

umfassenden Gebiet der Finanzmathematik, welche alle konkreten Anwendungsbezug

aufweisen. Konkret beschäftigt sie sich mit Repräsentationen von Verteilungen auf den

positiven reellen Zahlen, der Konstruktion einer bestimmten Klasse von multivariaten

Verteilungen und der Modellierung diskreter Dividendenzahlungen in Aktienmodellen.

Basierend auf Laplace Inversions-Methoden wird eine handhabbare Repräsentation der

Dichte von Verteilungen einer speziellen Unterklasse der positiven, unendlich teilbaren

Verteilungen hergeleitet. Dieses Ergebniss kann für die numerische Berechnung dieser

Dichte verwendet werden, falls keine geschlossene oder praktikable Darstellung bekannt

ist. Ähnliche Ergebnisse für Verteilungsfunktionen und Derivate mit Optionsstruktur

werden abgeleitet. Des Weiteren werden neue Familien sogenannter minimum-stabiler

multivariater Exponentialverteilungen konstruiert. Für deren Konstruktion wird ein

Zusammenhang zwischen einer bestimmten Familie stochastischer Prozesse und dieser

Klasse multivariater Verteilungen ausgenutzt. Die resultierenden Verteilungen sind ins-

besondere nützlich für die Modellierung von großen Kreditportfolios, da sie auch in

hohen Dimensionen leicht zu handhaben sind. Abschließend wird ein neuer und flexibler
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Ansatz zur Modellierung von Aktien mit diskreten Dividendenzahlungen vorgestellt, der

es erlaubt, nahezu jedes Aktienmodell um nicht deterministische Dividendenzahlungen

zu erweitern.
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1 Introduction

Financial mathematics is a wide field, covering diverse areas ranging from mathematical

foundations to concrete applications. During my research, I had the great opportunity

to work on several topics, which, though interlinked, were from quite different areas of

this discipline. As a direct consequence, this thesis does not revolve around one common

topic. Instead, three different topics are covered, their similarity being their applica-

bility to financial engineering. The thesis is structured in two parts, a theoretically

motivated one consisting of Chapters 3 and 4 (with Chapter 2 introducing the mathe-

matical background), and a practically motivated one consisting of Chapter 5.1 Whereas

the theoretically motivated part is concerned with representations of distributions on the

positive real line and the construction of specific multivariate distributions, the second

part deals with the modeling of discrete cash dividends for stock prices.

Chapter 3 deals with distributions on the positive real line, which can be characterized

by means of several concepts, among others probability densities and integral transforms

such as the Laplace transform. Although Laplace transforms represent an elegant way

to deal with distributions, probability densities allow for a more intuitive understanding

and are necessary in many applications. If only the Laplace transform of a distribution

is known, Laplace inversion methods provide a natural starting point to represent the

probability density in terms of its Laplace transform. However, it is well known that the

standard inversion integrals (which are path integrals in the complex plane) are difficult

to evaluate numerically due to their often highly oscillating behavior and unbounded-

ness. The standard method to cope with the first issue consists of transforming the path

of the integral in the complex plane. The mathematical idea behind that is Cauchy’s

Theorem. Although simple on an abstract level, showing the admissibility of such path

transforms for a given problem is difficult. Proving the admissibility of a certain path

transform for a very large class of distributions (see Theorem 3.3) and illustrating its

1Thus, the structure of this thesis mirrors in some sense my then two-pronged work activities. While
working as a research and teaching assistant at university, I also worked part-time in the financial
industry as a financial engineer.
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tractability constitutes our main contribution in Chapter 3. The class considered is

the Bondesson class, a large subclass of positive infinitely divisible distributions, includ-

ing many important distributions such as the positive stable law, the inverse Gaussian

law, the Gamma law, and the Hartman–Watson law. In addition, as a side product,

similar results for distribution functions and prices of certain financial products can be

derived. Since positive infinitely divisible distributions are characterized by Bernstein

functions, those functions play a crucial role in our derivation. Thus, Section 2.2 provides

an introduction to positive infinitely divisible distributions and their link to Bernstein

functions.

The second part of our theoretically motivated work, Chapter 4, is located in the area of

multivariate distributions. While there is no direct link to our work on one-dimensional

probability densities, there are mathematical concepts that are relevant for both. Bern-

stein functions, in particular, also play a crucial role in Chapter 4, and can thus be

seen as the theoretical link between both chapters. Min-stable multivariate exponential

(MSMVE) distributions represent an important class of multivariate distributions and

are thoroughly studied on an abstract level. Recently, Mai and Scherer (2014) stated an

elegant correspondence between the extendible subclass of these multivariate distribu-

tions and a certain class of one-dimensional stochastic processes. Our main contribution

can be seen as complementing this abstract correspondence with concrete examples,

thereby constructing new classes of MSMVE distributions, allowing for helpful stochas-

tic representations (see Theorems 4.4 and 4.12). As the number of existing MSMVE

models which are tractable in high dimensions is limited, this result is of importance

on its own and can be of particular use for portfolio credit risk models. The intercon-

nectedness of the diverse mathematical concepts involved, such as stochastic processes,

multivariate distributions, and integral transform representations, makes this chapter

appealing from a theoretical point of view. The necessary mathematical concepts are

introduced in Sections 2.3 and 2.4.

When valuing stock derivatives, i.e. financial products whose value depends on the devel-

opment of an underlying stock, most research focuses on capturing the most prominent

features of the stock price evolution. Considerable progress has been made in incorpo-

rating effects such as stochastic/local volatility, price jumps, and default risk. However,

in some situations, normally secondary features also come into play, and their appropri-

ate modeling becomes vital. Such a feature, namely the existence of discrete dividend

payments, is considered and analyzed in Chapter 5, and a potential approach to deal

2
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with it is presented.2 The general idea is quite vivid, yet (see the representation in

Theorem 5.6) it provides a new, elegant, and flexible approach to deal with the problem

considered. Its applicability is illustrated in a small case study.

Chapter 2 introduces the mathematical background needed for Chapters 3 and 4. Tak-

ing account of the many areas concerned, starting from scratch is not possible, so we

confined ourselves to an introduction of the most vital concepts. Everything that is

not essential for a clear understanding is omitted to keep the exposition as elegant as

possible. On the other hand, connections between different elements are highlighted

and short proofs are added whenever they foster the understanding of underlying ideas.

Subsequently, Chapters 3 and 4 present the theoretically motivated results on densities

of distributions of the Bondesson class and MSMVE distributions. Finally, Chapter 5

presents the practically motivated part on the modelling of discrete cash dividends. No

extensive mathematical background is needed and the necessary concepts and definitions

are introduced there. As each of the three main topics is motivated separately, each of

the main chapters starts with the motivation of its distinct aim.

The work presented resulted in several academic papers, see Bernhart and Mai (2014a);

Bernhart and Mai (2015); Bernhart et al. (2015a); Bernhart et al. (2015b), which have

been published in peer-reviewed journals or conference proceedings. Consequently, some

chapters are strongly related to the respective publications, which we will always state

explicitly at the beginning of the chapter.

2This chapter is considerably influenced by my work as a financial engineer at XAIA Investment GmbH.

3



Contents

4



2 Mathematical background

In this chapter, the most relevant mathematical concepts are introduced. As Chapter 3

deals with positive infinitely divisible distributions, this class of distributions and their

link to Bernstein functions, which are needed in Chapter 4 as well, is presented in Section

2.2. Subsequently, a class of stochastic processes, called IDT subordinators, is introduced

in Section 2.3, as these processes play a central role for the results in Chapter 4. This is

due to their relation with min-stable multivariate exponential distributions, which are

introduced in Section 2.4.

2.1 Notations and definitions

First of all, let us introduce the necessary notations and definitions.

• Let N, Q, R, and C denote, respectively, the sets of natural, rational, real, and

complex numbers, with Q+ and R+ the collections of their non-negative elements,

and N0 := N∪{0}. For a complex number z, <(z) represents its real part and =(z)

its imaginary part. |B| denotes the number of elements in a set B. For two real

numbers x1 and x2, x1 ∧ x2 denotes their minimum. Rd is the d-dimensional real

coordinate space of column vectors x = (x1, . . . , xd)
ᵀ, with xi ∈ R, i = 1, . . . , d,

and “ᵀ” the symbol for the transpose of a matrix. Rd+ and similar expressions

mean the respective subsets of Rd. Furthermore, let e1 := (1, 0, . . . , 0)ᵀ, . . . , ed :=

(0, , . . . , 0, 1)ᵀ denote the d vectors of the canonical basis and 0 := (0, . . . , 0)ᵀ the

zero vector. Given a vector x = (x1, . . . , xd)
ᵀ, x(1) ≤ . . . ≤ x(d) represents the

ordered list of its elements.

• B(Rd) denotes the Borel σ-algebra on Rd and for all subsets A ⊂ Rd, we define B(A)

simply as the restriction of B(Rd) to A. Unless stated explicitly, when considering

a measure µ on some set, it is always assumed that the corresponding measure

5



space consists of the respective Borel σ-algebra. Its Laplace transform µ̂ is defined

by

µ̂(x) :=

∫
[0,∞)

e−xuµ(du), for x > 0.

The convolution of two finite measures µ1 and µ2 is denoted by µ1 ?µ2. δx denotes

the Dirac measure centered on the point x.

• For a function g : R→ R, the expression g(n) represents the n-th derivative of this

function, with g(0) = g and the alternative expression g(1) = g′. The sets Ck denote

the sets of k times continuously differentiable functions, with C∞ :=
⋂
k∈NC

k.

Furthermore, g(a+) := limh↘0 g(a + h) and g(a−) := limh↘0 g(a − h), whenever

existent.

• (Ω,F ,P) denotes a probability space with event space Ω, σ-Algebra F , and proba-

bility measure P. By E, the corresponding expectation operator is denoted. When-

ever considering a random object (random variable, random vector, or stochastic

process), this is assumed to be defined on a probability space, though we will omit

that statement in most cases. If it is clear from the context, several random ob-

jects are assumed to be defined on the same probability space. L(.) represents

the induced measure of a random object, i.e. for example for a random variable

X : (Ω,F)→ (R,B(R)), L(.) denotes the measure P(X−1(.)) defined on (R,B(R)).

a.s. stands for “almost surely”, a.e. for “almost everywhere” w.r.t. the Lebesgue

measure, and iid for “independent and identically distributed”. A stochastic pro-

cess H denotes a family of real random variables {Ht}t≥0, the function t 7→ Ht(ω)

with ω ∈ Ω is called a path. Furthermore,
d
= denotes equality in distribution and

P→ convergence in distribution.

• For a random variable X, X ∼ Exp(λ) with λ > 0 means that L(X)(A) =∫
A λ exp(−λ s) ds for A ∈ B(R+), i.e. the random variable has an exponential

distribution with parameter λ. Analogously, X ∼ U([a, b]) with a < b means that

L(X)(A) =
∫
A 1/(b− a) ds for A ∈ B([a, b]), i.e. the random variable is uniformly

distributed on [a, b]. Furthermore, X ∼ N (µ, σ2) denotes a normally distributed

random variable with mean µ and variance σ2, i.e. its distribution is given by

L(X)(A) =
∫
A 1/
√

2π σ2 exp(−(s − µ)2 /(2σ2)) ds for A ∈ B(R). Finally, a ran-

dom variable X is said to be Γ(c, d)-distributed with c, d > 0, if its distribution is

given by L(X)(A) =
∫
A d

c/Γ(c) sc−1 exp(−d s) ds for A ∈ B(R+).

6



2.2 Positive infinitely divisible distributions

• Γ : (0,∞)→ R denotes the Gamma function defined by Γ(t) :=
∫∞

0 st−1 exp(−s) ds.

It has an analytic extension to C\{0,−1,−2, . . .}. Furthermore, γ : (0,∞)2 → R
denotes the incomplete Gamma function defined by γ(t, x) :=

∫ x
0 s

t−1 exp(−s) ds.

2.2 Positive infinitely divisible distributions

Infinitely divisible (ID) distributions constitute an important class of distributions as

they arise naturally in many applications. Since our applications are restricted to positive

ID distributions, we will focus on these, which has the convenient side effect that the

corresponding theory can be proven in a very elegant way. In Section 2.2.1, we will

introduce the general theory and give a simple and elegant proof of the central Lévy–

Khintchine representation. This representation is crucial as the resulting correspondence

with Bernstein functions will be needed in the subsequent chapters. In Section 2.2.2, we

will present well-known subclasses of positive ID distributions and famous examples.

2.2.1 General theory

We formulate the crucial property in terms of probability measures here, whereas in the

literature it is sometimes also described using random variables. Most of this section

follows along the lines of Schilling et al. (2010), while the proof of the Lévy–Khintchine

representation also relies on (Steutel and van Harn, 2004, Chapter III).

Definition 2.1 (ID probability measures)

A probability measure µ is called ID if, for any n ∈ N, there exists a probability measure

µn such that

µn?n := µn ? . . . ? µn︸ ︷︷ ︸
n times

= µ. (2.1)

ID distributions have been awarded a lot of attention, especially in the second half of

the twentieth century. A central tool in this context is the characterization of these

distributions via their characteristic functions. When restricting ourselves to positive

ID distributions, the Laplace transform (see Widder (1946); Doetsch (1976) for the

standard textbooks on the theory of Laplace transforms) assumes the central role of

the characteristic function and there is a link to so-called Bernstein functions. We will

7



2.2.1 General theory

derive the main result, relying almost exclusively on the powerful Bernstein’s Theorem.

To state it, the notion of complete monotonicity is needed.

Definition 2.2 (Completely monotone functions)

A function g : (0,∞)→ R is a completely monotone (c.m.) function if g ∈ C∞ and

(−1)ng(n)(x) ≥ 0, ∀n ∈ N0, x > 0. (2.2)

We will state Bernstein’s Theorem in its general form for arbitrary measures.

Theorem 2.3 (Bernstein’s Theorem)

Let g : (0,∞) → R be a c.m. function. Then it is the Laplace transform of a unique

measure µ on [0,∞), i.e. for all x > 0,

g(x) = µ̂(x) =

∫
[0,∞)

e−xuµ(du). (2.3)

Conversely, whenever µ̂(x) <∞ for every x > 0, x 7→ µ̂(x) yields a c.m. function.

Proof

For an elegant proof, see (Schilling et al., 2010, Theorem 1.4). �

Corollary 2.4 (Bernstein’s Theorem for probability measures)

Let g : (0,∞)→ R be a c.m. function with g(0+) = 1. Then it is the Laplace transform

of a unique probability measure µ on [0,∞). Conversely, for every probability measure

µ on [0,∞), µ̂ yields a c.m. function with µ̂(0+) = 1.

Proof

Follows easily from Theorem 2.3 and the observation that µ̂(0+) = µ
(
[0,∞)

)
via mono-

tone convergence. �

Another important class of functions are so-called Bernstein functions, which will be

used to characterize possible Laplace transforms of positive ID probability measures.

For a whole book on this topic, see Schilling et al. (2010). We will adopt a slightly

restricted definition.

Definition 2.5 (Bernstein functions)

A function Ψ : (0,∞) → R is a Bernstein function if Ψ ∈ C∞,Ψ(x) ≥ 0 for all x > 0,

Ψ(0+) = 0, and

(−1)n−1Ψ(n)(x) ≥ 0, ∀n ∈ N, x > 0. (2.4)

8



2.2 Positive infinitely divisible distributions

It admits a unique representation via

Ψ(x) = ξ x+

∫
(0,∞)

(
1− e−xu

)
ν(du), (2.5)

with ξ ≥ 0, the so-called drift term, and ν a measure on (0,∞) satisfying
∫

(0,∞)(1 ∧
u) ν(du) < ∞, the so-called Lévy measure. Furthermore, for each such pair (ξ, ν),

Equation (2.5) defines a Bernstein function.

Remark 2.6

Note that Bernstein functions are usually defined without the restriction Ψ(0+) = 0,

which then yields an additional positive constant in the representation. This term cor-

responds to the related measures being sub-probability measures on [0,∞), respectively

probability measures on [0,∞], having positive mass at ∞. When talking about corre-

sponding Lévy subordinators, this is usually referred to as the killing of a subordinator.

Remark 2.7

The representation of Bernstein functions in Definition 2.5 follows from applying Bern-

stein’s Theorem (Theorem 2.3) to the first derivative of Ψ, see (Schilling et al., 2010,

Theorem 3.2).

With these definitions at hand, we are now able to state the main characterization of

positive ID distributions via their Laplace exponent, known as the Lévy–Khintchine

formula, which is attributed to Lévy (1934) in the general case. As it is essential for our

work and as it can be proven without requiring much more than Bernstein’s Theorem,

we give a proof here. It follows along the lines of the proof in (Steutel and van Harn,

2004, Chapter III).

Theorem 2.8 (Lévy–Khintchine representation)

A probability measure µ on [0,∞) is ID if and only if

µ̂(x) = e−Ψ(x), x > 0, (2.6)

with Ψ a Bernstein function.

Proof

Starting from a positive ID probability measure, one can define Ψ(x) := − log
(
µ̂(x)

)
for

x > 0, as µ̂(x) > 0 for all x > 0. From Corollary 2.4 follows that 1 = µ̂(0+) ≥ µ̂(x) for

all x > 0 and thus Ψ(0+) = 0,Ψ(x) ≥ 0 for all x > 0. It remains to show that Ψ′ is c.m.,

as can be seen from Equation (2.4). From µ being ID it follows that for every n ∈ N

9



2.2.1 General theory

there exists a positive measure µn with µn?n = µ or, equivalently, µ̂nn = µ̂ = exp(−Ψ).

One can rewrite

e−
1
n

Ψ(x) = µ̂n(x), x > 0,

which is thus c.m. as the Laplace transform of a positive distribution (Corollary 2.4).

Considering the m-th convolution with m ∈ N, one can conclude that exp(−(m/n) Ψ) is

c.m. for arbitrary m,n ∈ N and thus exp(−qΨ) is c.m. for any q ∈ Q+. As every t > 0

can be written as the limit of a sequence of rational numbers, exp(−tΨ) is c.m. for every

t > 0 as the pointwise limit of c.m. functions, see the continuity property (Schilling et al.,

2010, Corollary 1.7) or (Steutel and van Harn, 2004, Proposition A.3.7(iv)). The result

could be derived using (Schilling et al., 2010, Theorem 3.6 (iii) ⇒ (i)) or alternatively,

using the continuity property again, since

Ψ′(x) = lim
t↘0
−1

t

∂

∂x
µ̂t(x) = lim

t↘0
−1

t

∂

∂x
e−tΨ(x),

representing Ψ′ as the pointwise limit of c.m. functions. For this, one has to observe

that − ∂
∂x exp(−tΨ(x)) is c.m. as the derivative of a c.m. function multiplied by (−1).

Conversely, starting from a Bernstein function Ψ, it follows that

gt(x) := e−tΨ(x), is c.m. for each t > 0 with gt(0+) = 1.

This is proven in (Schilling et al., 2010, Theorem 3.6 (i) ⇒ (iii)) or (Steutel and van

Harn, 2004, Proposition A.3.7(vi)), showing that the composition of a c.m. function

(here exp(−t x)) and a Bernstein function is always c.m.. Using Corollary 2.4, we

can define for each n ∈ N a probability measure µn corresponding to µ̂n = g1/n =

exp(−1/nΨ). For this, it follows that

µn?n = µ, via µ̂nn = µ̂ = exp(−Ψ),

proving the claim. �

Remark 2.9

The crucial result for the derivation is again Bernstein’s Theorem, using its representa-

tion in Corollary 2.4. Apart from that, one only needs two smaller results, namely the

continuity property (Schilling et al., 2010, Corollary 1.7), stating that the pointwise limit

of a c.m. function is again c.m., and (Schilling et al., 2010, Theorem 3.6 (i) ⇒ (iii)),

10



2.2 Positive infinitely divisible distributions

stating that the composition of a c.m. function and a Bernstein function is again c.m..

In total, one can observe that the proof is significantly easier than for ID distributions on

the real line, where an important tool is the approximation of distributions via compound

Poisson distributions, see, e.g., (Sato, 1999, Chapter 2). For a more probabilistic proof

of Theorem 2.8, see, e.g., (Bertoin, 1999, Theorem 1.2).

Remark 2.10

As the Laplace transform µ̂ can also be defined for x = 0 and as Ψ can be continuously

extended via Ψ(0) := Ψ(0+) = 0, we will in the following often consider Bernstein

functions as functions on [0,∞).

2.2.2 Classes of positive infinitely divisible distributions

Having introduced the Lévy–Khintchine representation, we are now able to define several

classes of positive ID distributions via the pair (ξ, ν) in Equation (2.5) describing the

corresponding Bernstein function. As the drift term ξ only represents a constant additive

term, it will be ignored in the following. Denoting byM the set of all Lévy measures ν,

we can define the following subsets:

U := {ν ∈M : ν(dx) = g(x)dx, g non-increasing} ,

L := {ν ∈M : ν(dx) = g(x)dx, x g(x) non-increasing} ,

BO := {ν ∈M : ν(dx) = g(x)dx, g c.m.} ,

T := {ν ∈M : ν(dx) = g(x)dx, x g(x) c.m.} .

The class of distributions corresponding to U is called “Jurek class” or class of “s-self-

decomposable distributions”, see Jurek (1985), restricted to distributions on R+. They

have a representation as limit distributions of sums of “shrunken” random variables, see

(Jurek, 1985, Remark 2.1). For a couple of equivalent conditions in terms of the Lévy

measure, see (Jurek, 1985, Theorem 2.2). All other defined classes are subclasses of U ,

thus, the following Lemma applies to all of them. It will be helpful in Chapter 3, where

we are concerned with the numerical computation of probability densities.

Lemma 2.11 (Absolute continuity - I)

A distribution of the Jurek class is absolutely continuous with respect to the Lebesgue

measure if and only if ∫
(0,∞)

g(x)dx =∞.

11



2.2.2 Classes of positive infinitely divisible distributions

Proof

The first direction follows from (Steutel and van Harn, 2004, Proposition III.4.16). Con-

versely, if
∫

(0,∞) g(x)dx <∞ holds, it is easy to recognize the corresponding distribution

as a compound Poisson distribution which has positive mass at {0} (respectively {ξ}).�

The class of distributions corresponding to L is called class of “selfdecomposable distribu-

tions”, again restricted to distributions on R+. Their investigation has a long tradition,

for a nice account of which see, e.g., (Sato, 1999, p. 117f). An alternative definition of

this class can be given as limit distributions of sums of independent random variables

forming a null array, see (Sato, 1999, Theorem 15.3). They constitute a subclass of U ,

as from x g(x) non-increasing it follows that g, being the product of a non-increasing

function and 1/x, is non-increasing as well.

We will call class T the “Thorin class” as it was first investigated and introduced by

Thorin (1977a,b) as the smallest class of distributions closed under convolution and

(weak) convergence which contains all Gamma distributions. The definition gives rise to

the alternative name “generalized Gamma convolutions”. The corresponding Bernstein

functions are called Thorin–Bernstein functions, see (Schilling et al., 2010, Chaper 8).

Famous examples of this class are the Pareto, Weibull, log-normal, and F-distribution

as is shown, e.g., in Bondesson (1979), who proves that probability densities of a specific

form correspond to distributions of the Thorin class.

The class BO, called the “Bondesson class”, is the most relevant one for us as Chapter

3 is devoted to the numerical computation of the density of distributions of this class.

This class has been considered for the first time in Bondesson (1981) under the name

generalized convolutions of mixtures of exponential distributions (“g.c.m.e.d.”). Proba-

bilistically, it can be introduced as the smallest class of distributions closed under (weak)

convergence and convolution containing mixtures of exponential distributions, see (Sato,

1999, Definition 51.9). The corresponding Bernstein functions are called complete Bern-

stein functions, see (Schilling et al., 2010, Chapter 6), and, using Bernstein’s Theorem

for the densities of their Lévy measures, they allow for an alternative representation

via

Ψ(x) = ξ x+

∫ ∞
0

x

x+ t
σ(dt), x ≥ 0, (2.7)

with σ a measure on (0,∞) satisfying
∫

(0,∞) 1/(1 + t)σ(dt) < ∞, called the Stieltjes

measure, see (Schilling et al., 2010, Theorem 6.2(ii)). Conversely, if a representation with

12



2.2 Positive infinitely divisible distributions

a Stieltjes measure as given in Equation (2.7) exists, Ψ can be shown to be a complete

Bernstein function. The relation between the measures ν and σ is given by g(s) =∫
(0,∞) exp(−t s) t σ(dt). We can state Lemma 2.11 in terms of the Stieltjes measure,

which coincides with (Bondesson, 1981, Theorem 6.1).

Corollary 2.12 (Absolute continuity - II)

A distribution of the Bondesson class is absolutely continuous with respect to the Lebesgue

measure if and only if σ
(
(0,∞)

)
=∞.

Proof

It is enough to observe that from the stated relation between the measures ν and σ follows

the equality
∫

(0,∞) g(x)dx =
∫

(0,∞) σ(dt). The rest follows from Lemma 2.11. �

An easy way to derive a new Bondesson distribution from a given Bondesson distribution

is provided by exponential tilting (see Rosiński (2007)). The resulting distribution can

be defined via its Lévy measure or via its probability density. It is also of the Bondesson

class, as the corresponding Lévy density is derived from the initial Lévy density g by

g̃(s) = exp(−h s) g(s) with h > 0 and the product of two completely monotone functions

is again completely monotone, see (Schilling et al., 2010, Corollary 1.6). The Bernstein

function of the exponentially tilted distribution is given by Ψ̃(x) := Ψ(x+h)−Ψ(h) and

the probability density is given by multiplying the original density with exp(−h s+Ψ(h)).

For the same reason, replacing exp(−h s) by an arbitrary completely monotone function

q with q(0+) = 1, proper tempered distributions as investigated in Rosiński (2007),

restricted to our (positive, one-dimensional) setting, are also part of the Bondesson

class.

For an illustration of the connection between all four classes of distributions see the

so-called Venn diagram in Figure 2.1, which is borrowed from (Schilling et al., 2010, p.

90). Integral representations for all classes presented will be given in Remark 2.29 in the

next section. We end this section with a list of distributions of the Bondesson class, on

the one hand to illustrate how large it is and on the other hand as they will be needed

in Chapter 3. For the most part, it is along the lines of the introduction of Bernhart

et al. (2015a).

Positive stable distribution

The class of positive, strictly stable distributions can be characterized by ΨSt
α,β(x) =

β xα, 0 < α < 1, β > 0. It is obvious that ΨSt
α,β fulfills the defining properties of a Bern-

13



2.2.2 Classes of positive infinitely divisible distributions

U = Jurek class

BO = Bondesson
class

T = Thorin class

L = Selfdecomposable class

Figure 2.1 Venn diagram illustrating the relation between the different classes of pos-
itive ID distributions defined on page 11.

stein function in Definition 2.5 and one can show that it allows for the representations

ΨSt
α,β(x) = β

∫ ∞
0

(1− e−s x)
α s−1−α

Γ(1− α)
ds = β

∫ ∞
0

x

x+ s

sin(απ)

π
sα−1 ds, x ≥ 0.

Consequently (those results are found in (Schilling et al., 2010, Chapter 15)),

ν(ds) = β
α

Γ(1− α)
s−1−α ds, σ(ds) = β

sin(απ)

π
sα−1 ds.

It is known that the related probability density fSt
α,β is a C∞-function, see (Nolan, 2012,

Theorem 1.9), though the latter is in general not known in closed form. This class

of distributions is of great importance in physics, see Penson and Górska (2010) and

the many references therein. In that paper, a closed-form expression for the density

for rational numbers α = k/l, k ≤ l, is derived. This expression, however, is stated

in terms of hypergeometric functions which are not easy to evaluate numerically. The

importance of this distribution in finance results from the fact that it represents one of

the standard examples of heavy-tailed distributions. For instance,
∫∞

0 xcµ(dx) =∞ for

c > α, see Wolfe (1975), i.e., intuitively speaking, the tails are so heavy that not even the

14



2.2 Positive infinitely divisible distributions

expected value exists (as α < 1). A famous approach for deriving the density for general

stable distributions is presented in Nolan (1997), which is based on a distribution-specific

contour transformation. Using the relation

fSt
α,β(x) = β−

1
α fSt

α,1

(
β−

1
α x
)
, (2.8)

the formula can be written as

fSt
α,1(x) = 1{x>0}

α
(
x
γ

) 1
α−1

γ π (1− α)

∫ π/2

−π/2
gα(u) e

−
(
x
γ

) α
α−1 gα(u)

du, (2.9)

gα(u) =
(

cos
(π α

2

)) 1
α−1

( cosu

sin(α(π2 + u))

) α
α−1 cos(π2α+ (α− 1)u)

cosu
,

γ =
(

cos
(π α

2

)) 1
α
.

Alternatively, a series representation is known, which, according to Penson and Górska

(2010), was derived by Humbert (1945). For an impression of the general shape of the

stable density for different values of α, Figure 2.2 is included.

Furthermore, so-called exponentially tilted stable distributions (see Barndorff-Nielsen

and Shephard (2001)) with Laplace exponent ΨtSt
α,β,h(x) = β ((x+ h)α − hα) = ΨSt

α,β(x+

h)−ΨSt
α,β(h) are also in the Bondesson class with density f tSt

α,β,h(x) = fSt
α,β(x) exp(−hx+

ΨSt
α,β(h)). The same holds true for proper tempered stable distributions as introduced

in Rosiński (2007), restricted to our setting.

Inverse Gaussian distribution

The Inverse Gaussian (IG) distribution (for a detailed introduction, see Seshadri (1993))

constitutes another famous Bondesson distribution. It is characterized by the Bernstein

function

ΨIG
β,η(x) = β (

√
2x+ η2 − η), β, η > 0, x ≥ 0.

The corresponding density is known and given by

f IG
β,η(x) =

β√
2π

x−
3
2 exp

(
η β − 1

2

(β2

x
+ η2 x

))
, x > 0.
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0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

3

 

 

α=0.3 α=0.9

α=0.3,0.4,...,0.9

Figure 2.2 Density of the stable distribution for different values of α, computed with
the approach presented in Chapter 3.
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2.2 Positive infinitely divisible distributions

Shuster (1968) derives a closed-form expression for its cumulative distribution function

in terms of the standard normal cumulative distribution function. The name of this

distribution is motivated by the fact that a random variable with such a distribution

can be constructed via

inf{t > 0 : η s+Ws = β},

with W = {Ws}s≥0 a standard Brownian motion, see, e.g., (Applebaum, 2004, p. 51)1.

One can observe that this distribution represents a specific example of an exponentially

tilted stable distribution, with α = 0.5, h = η2/2, (α = 0.5 is one of the few examples

where the stable probability density has a simple form) and the related measures can

thus be derived from the previous paragraph:

ν(ds) =
√

2β
1

2 Γ(0.5)
s−1.5 e−

η2

2
s ds, σ(ds) =

√
2β

sin(0.5π)

π

(s− η2/2)0.5

s
1{s>η2/2} ds.

Gamma distribution

As another example with known density, the Gamma distribution is presented. It is

characterized by the Bernstein function

ΨGa
β,η(x) = β log(1 +

x

η
), β, η > 0, x ≥ 0,

and its density equals

fGa
β,η(x) =

ηβ

Γ(β)
xβ−1 exp(−η x), x > 0.

The related measures are (see (Schilling et al., 2010, Chapter 15))

ν(ds) = β
e−η s

s
ds, σ(ds) = β

1

s
1{s>η} ds,

where the expression for σ can easily be verified by computing the related integral and

the expression for ν follows from the given relation between the two measures. The

easiest way to notice that ΨGa
β,η is indeed a Bernstein function is via the given Stieltjes

representation or via the observation that Ψ
′Ga
β,η = β/(η + x).

1Actually, it is shown there that the corresponding Lévy subordinator (see Lemma 2.17 below) can be
constructed via Λt := inf{t > 0 : η s+Ws = β t}.
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2.2.2 Classes of positive infinitely divisible distributions

Non-central χ2 distribution

The non-central chi-squared respectively χ2 distribution appears very often in the liter-

ature, in statistics as well as in various financial applications. Its relevance in finance

stems from its relation with so-called Bessel processes. Because of this, it will also show

up in Chapter 5. The non-central χ2 distribution with β degrees of freedom and non-

centrality parameter η, sometimes abbreviated by χ2(β, η), can be defined in terms of

its probability density, which is given by

fχ
2

β,η(x) =
∞∑
i=0

e−η/2 (η/2)i

i!
fGa
β/2+i,1/2(x), β, η, x > 0. (2.10)

One can recognize that this distribution may also be regarded a Poisson mixture of

Gamma distributions.2 Its importance in statistics stems from its relation to the normal

distribution, as, given X1, . . . , Xk independent random variables with Xi ∼ N (mi, 1),

mi > 0, i = 1, . . . , k, the random variable
∑k

i=1X
2
i has a non-central χ2 distribution

with β = k and η =
∑k

i=1m
2
i . For other stochastic representations and a nice account

of its appearances in mathematical finance, see Mai (2014b). The related distribution

function can be easily computed from its density, yielding

Fχ
2

β,η(x) =

∫
[0,x]

fχ
2

β,η(s) ds =
∞∑
i=0

e−η/2 (η/2)i

i!

γ(β/2 + i, x/2)

Γ(β/2 + i)
, x > 0. (2.11)

There are many alternative representations for this expression, see, e.g., Larguinho et al.

(2013). Furthermore, the corresponding Laplace transform can be computed from the

density, using the results for Gamma distributions, as

µ̂(x) = e
−ΨGa

β/2,1/2
(x)
e−

η x
1+2 x = e

−ΨGa
β/2,1/2

(x)− η x
1+2 x , x ≥ 0. (2.12)

2Another very interesting class of Bondesson distributions can be defined by the similar mixture

fβ,η(x) =

∞∑
i=0

e−β/2 (β/2)i

i!
fGa
β/2+i,η/2(x), β, η, x > 0.

This class of distributions yields the pre-image of Gamma distributions under the integral transform
Φf1 introduced below in Remark 2.29. As Gamma distributions are part of T and thus also L, Remark
4.3 applies, which shows that all these distributions have a representation via the convolution of L(Λ1)
and L(

∫∞
0

exp(−s) dΛs), with Λ a compound Poisson subordinator with exponentially distributed
jumps.
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2.2 Positive infinitely divisible distributions

Consequently, the Bernstein function Ψχ2

β,η corresponding to a non-central χ2 distribution

is given by

Ψχ2

β,η(x) = ΨGa
β/2,1/2(x) +

η x

1 + 2x
, β, η > 0, x ≥ 0.

The second summand can be easily recognized as a complete Bernstein function stating

its Stieltjes measure σ(ds) = η/2 δ1/2(ds), with δ1/2(ds) denoting the Dirac measure cen-

tered around 1/2.3 Consequently, the given expression is indeed a (complete) Bernstein

function as these are stable under summation. For reasons of completeness, we state the

related measures

ν(ds) =

(
β
e−s/2

2 s
+
η

4
e−s/2

)
ds, σ(ds) =

β

2 s
1{s>1/2} ds+ η/2 δ1/2(ds).

Hartman–Watson distribution

Finally, we present the Hartman–Watson distribution. The Hartman–Watson distribu-

tion arises as the first hitting time of certain diffusion processes, see Kent (1982), and

is of paramount interest in mathematical finance in the context of Asian option pricing,

see Yor (1992); Barrieu et al. (2004); Gerhold (2011). This is due to the fact that it plays

an important role when investigating certain exponential functionals of Brownian mo-

tion. The distribution can be defined via its Laplace transform µ̂(x) := I√2x(r)/I0(r),

r, x > 0, where Iν(z) is called the modified Bessel function of the first kind. For z, ν ∈ C,

Iν(z) is introduced as the solution to a differential equation, has a series representation4

via

Iν(z) :=
(z

2

)ν ∞∑
m=0

1

m! Γ(m+ ν + 1)

(z
2

)2m
, (2.13)

and for each z 6= 0, it is an entire function in ν (see (Abramowitz and Stegun, 1965,

p. 374f)). It was shown in Hartman (1976) that this distribution is infinitely divisible.

Moreover, it follows from a result in Kent (1982) that it is also part of the Bondesson

3Actually, this summand represents the Bernstein function corresponding to a compound Poisson dis-
tribution with Exp(1/2)-distributed jumps and intensity η/2.

4We restrict ourselves to ν 6∈ −1,−2, . . ., to avoid confusion about the definition of the Gamma function.
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2.2.2 Classes of positive infinitely divisible distributions

class. The corresponding complete Bernstein function is consequently given by

ΨHW
r (x) = − log

(
I√2x(r)/I0(r)

)
, r > 0, x ≥ 0.

However, a closed-form expression of the corresponding Lévy density is, to the best

of our knowledge, unknown. The same holds true for the related probability density

fHW
r , for which Yor (1992) (result originally derived in Yor (1980)) states an integral

representation via fHW
r (x) = θ(r, x)/I0(r), with

θ(r, x) :=
r e

π2

2 x

√
2π3 x

∫ ∞
0

e−
y2

2 x
−r cosh(y) sinh(y) sin

(π y
x

)
dy. (2.14)

Figure 2.3 illustrates the general form of the density of the Hartman–Watson law.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5
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f r(x
)

 

 

r=1.5

r=0.5

r=0.5,0.75,...,1.5

Figure 2.3 Densities of the Hartman–Watson distribution for several values of r, com-
puted with the approach presented in Chapter 3.
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2.3 IDT subordinators

2.3 IDT subordinators

IDT subordinators constitute an interesting class of stochastic processes and we will

introduce them in this section. The acronym IDT is motivated by the term “infinitely

divisible with respect to time”.5 The reason for investigating IDT subordinators in the

present thesis is the paper Mai and Scherer (2014), respectively the link between these

processes and certain multivariate dependence models established therein. This link will

be introduced in Section 2.4.4, and in Chapter 4 we will make use of this connection.

In the present section, we define IDT subordinators (Section 2.3.1), investigate their

properties (Section 2.3.2), and present a possible construction of large families of IDT

subordinators (Section 2.3.4), for which the definition of an integral with respect to Lévy

subordinators (Section 2.3.3) is needed.

2.3.1 Definition of IDT subordinators

To the best of our knowledge, IDT processes have been investigated only in few recent

papers (see, e.g., Mansuy (2005); Es-Sebaiy and Ouknine (2007); Hakassou and Ouknine

(2011)), with Mansuy (2005) being the first work defining them explicitly. It is sometimes

differentiated between “strong” and “weak” IDT processes, but here we will restrict our

attention to strong IDT processes and omit the prefix strong from here on.

Definition 2.13 (IDT process)

A stochastic process H = {Ht}t≥0 is called an IDT process if it satisfies the condition

{Ht}
d
= {H(1)

t/n + . . .+H
(n)
t/n}, ∀n ∈ N, (2.15)

where H(1), . . . ,H(n) are independent copies of H and equality in distribution of processes

means equality of all finite-dimensional marginal distributions.

We define IDT subordinators simply as non-decreasing, càdlàg IDT processes starting

at 0. The name is motivated by the idea of subordination, where subordination is the

transformation of a process by a random (non-decreasing) time change with a process

independent of the original process. Originally, the non-decreasing processes used were

Lévy subordinators, but here we consider a broader class. The concept of subordination

5I became aware of the definition of this class for the first time in an early version of Mai and Scherer
(2014) and it caught my attention because of its simplicity. At that point, we did not even know if
this class of processes existed in the literature already.
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2.3.1 Definition of IDT subordinators

is attributed to Bochner (1949) and it was first used in finance in Clark (1973). Another

name for those processes that can be found, e.g., in Barndorff-Nielsen et al. (2006a), is

chronometers, again motivated by the idea of time-change.

Definition 2.14 (IDT subordinator)

An a.s. non-decreasing, càdlàg IDT process H = {Ht}t≥0 with H0 = 0, a.s., is called an

IDT subordinator.

Remark 2.15

Mai and Scherer (2014) define IDT subordinators with the additional condition that it

approaches infinity, a.s.. Their motivation for this is the following: Starting from an

exponentially distributed random variable E ∼ Exp(1) independent of an IDT subordi-

nator H, the property “E < Ht for at least one t > 0, a.s.,” is needed. We will show

later on that this is fulfilled for every IDT subordinator except the trivial case H ≡ 0.

Furthermore, they allow the process to take values in [0,∞]. We will ignore this aspect

in our exposition of IDT subordinators as we do not need it for our results, and as the

general literature on those processes does not include it. We will explicitly mention this

property when stating the main result of Mai and Scherer (2014).

The most famous subclass of IDT processes, respectively IDT subordinators, is given

by Lévy processes, respectively Lévy subordinators. For completeness, we recall their

definition (for a textbook account of those processes, see, e.g., Sato (1999)) in the one-

dimensional case, see (Sato, 1999, Definition 1.6).

Definition 2.16 (Lévy processes and subordinators)

A stochastic process X = {Xt}t≥0 on R is a Lévy process if the following conditions are

satisfied:

(1) For any 0 ≤ t0 < t1 < . . . < tn, n ∈ N, the increments Xt0 , Xt1 −Xt0 , . . . , Xtn −
Xtn−1 are independent random variables.

(2) X0 = 0, a.s..

(3) For every t ≥ 0 and ε > 0, lims→t P (|Xs −Xt| > ε) = 0, i.e. Xs converges to Xt

in probability for s→ t.

(4) L(Xs+t −Xs) does not depend on s, so the increments are homogeneous.

(5) There is Ω0 ∈ F with P(Ω0) = 1, such that for all ω ∈ Ω0, Xt(ω) is càdlàg, which

means the process is càdlàg a.s..
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2.3 IDT subordinators

A non-decreasing Lévy process is called a Lévy subordinator.

We will always denote Lévy subordinators by Λ and assume that for every ω ∈ Ω,

Λt(ω) is càdlàg, non-decreasing, and Λ0(ω) = 0 (see, e.g. (Sato, 1999, p. 197)), which

basically is a convenient indistinguishable modification of a Lévy subordinator. We will

not investigate Lévy subordinators in detail here, all relevant properties will be proven

in the next section for the superclass of IDT subordinators. However, representing the

only well-known subclass, they are crucial for our understanding of IDT subordinators

and we will need some of their properties to emphasize the differences. The necessary

properties will be stated without proof in the following lemma.

Lemma 2.17 (Uniqueness marginal distribution)

For every ID distribution µ on R, there is a Lévy process X = {Xt}t≥0 with L(X1) = µ.

It is unique up to identity in law. In particular, X is a subordinator if and only if

µ
(
(−∞, 0]

)
= 0, i.e. if µ is a positive ID distribution.

Proof

The first statement follows from (Sato, 1999, Corollary 11.6), the second from (Sato,

1999, Theorem 24.11). �

We start proving that Lévy subordinators indeed are IDT subordinators, which is well

known and easy to proof.

Lemma 2.18 (Lévy subordinators as IDT subordinators)

A Lévy subordinator is an IDT subordinator.

Proof

Actually, Lévy processes are IDT processes, as Condition (2.15) can be shown to hold

for all Lévy processes using only basic properties: Starting from a Lévy process X and

for n ∈ N considering iid copies X(1), . . . , X(n), it is clear from Definition 2.16 that

X
(1)
t/n + . . . + X

(n)
t/n representing the sum of independent Lévy processes is again a Lévy

process. Furthermore,

X
(1)
1/n + . . .+X

(n)
1/n

d
= X

(1)
1/n +X

(2)
2/n −X

(2)
1/n + . . .+X

(n)
n/n −X

(n)
(n−1)/n

d
= X

(1)
1/n +X

(1)
2/n −X

(1)
1/n + . . .+X

(1)
n/n −X

(1)
(n−1)/n

d
= X1,

using only independence and homogeneity of increments. From this, Condition (2.15)

follows by the uniqueness of the one-dimensional marginal distribution stated in Lemma

2.17. The claim follows from the fact that Lévy subordinators fulfill all remaining prop-

erties by definition. �
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2.3.2 Properties of IDT subordinators

Lemma 2.17 shows that a Lévy process is uniquely determined by its one-dimensional

marginal distributions and in particular from positive marginal distributions it follows

that it is non-decreasing. While the first property does not hold for general IDT pro-

cesses, it is not clear on first sight if non-decreasingness follows from positiveness. The

following example shows that it does not.

Example 2.19

Let {Λt}t≥0 denote a Lévy subordinator. Define a process {Yt}t≥0 via Yt := Λa t − Λt

with a > 1. This yields an IDT process which follows directly from the IDT property

of a Lévy subordinator. It has positive one-dimensional marginals, but it is not non-

decreasing, which can be easily seen when considering, e.g., a simple Poisson process.

Furthermore, it can be already seen from this simple example that IDT subordinators do

not necessarily possess independent increments.

Instead of subtracting, one could add Λt in Example 2.19, which then would yield an

IDT subordinator. This was actually the starting point for the development of the

idea we will present in Section 2.3.4, where IDT subordinators are constructed from the

increments of a Lévy subordinator. We present another well-known example which is of

quite pathological structure.

Example 2.20

Let M denote a positive stable random variable, i.e. a random variable with Bernstein

function Ψ(x) = ΨSt
α,1(x) = xα, see Section 2.2.2. Then it is well known, see (Mansuy,

2005, Example 2.1), (Es-Sebaiy and Ouknine, 2007, Example 3.1), or (Mai and Scherer,

2014, Example 3.2), that the definition Ht := t1/αM, t ≥ 0, yields an IDT subordinator.

In the next section, important properties of IDT subordinators are investigated to pro-

vide the necessary insights for the following considerations.

2.3.2 Properties of IDT subordinators

There are many interesting properties of IDT subordinators stated in the literature, and

many links to other classes of processes are established. However, we will focus on the

essential aspects only. The most obvious property, which also represents the connection

to Section 2.2, is the infinite divisibility of the margins of an IDT subordinator.

24



2.3 IDT subordinators

Lemma 2.21 (Laplace transform)

Let H be an IDT subordinator. Ht is positive ID, for all t ≥ 0. With Ψ the Bernstein

function corresponding to H1, one has

E
[
e−xHt

]
= e−tΨ(x), t ≥ 0, x > 0. (2.16)

Proof

The infinite divisibility follows easily from Condition (2.15). It is easy to prove Equation

(2.16) for t ∈ Q+. For arbitrary t ≥ 0, the result follows from the fact that H is a.s.

continuous from the right, for a more detailed proof see (Mai and Scherer, 2014, Lemma

3.7). �

Remark 2.22

Note that stochastic continuity of the process is not needed in the proof of Lemma 2.21

and that it is not stated as a necessary property of an IDT subordinator. Instead, it

follows naturally from the càdlàg and non-decreasing property and Condition (2.15).

Remark 2.23

From Lemma 2.21 follows that the one-dimensional marginal distributions of an IDT

subordinator H equal the one-dimensional marginal distributions of the Lévy subordinator

Λ with L(Λ1) = L(H1), which exists according to Lemma 2.17. This is a result stated

quite often in the literature, see, e.g., (Mansuy, 2005, Proposition 4.1).

Not only the one-dimensional marginal distributions of an IDT subordinator are infinitely

divisible, but all finite-dimensional marginal distributions are. This can be easily seen

from the fact that for any n ∈ N,

(Ht1 , . . . ,Htn)
d
=

(
n∑
i=1

H
(i)
t1/n

, . . . ,

n∑
i=1

H
(i)
tn/n

)
d
=

n∑
i=1

(
H

(i)
t1/n

, . . . ,H
(i)
tn/n

)
.

Consequently, IDT subordinators are a subclass of ID processes as defined, e.g., in

Maruyama (1970); Barndorff-Nielsen et al. (2006a).6 In particular, they represent a sub-

class of chronometers and of infinitely temporally selfdecomposable processes as defined

in Barndorff-Nielsen et al. (2006a). The latter fact was already observed in (Mansuy,

2005, Proposition 6.2).

6Via that observation we originally discovered the existence of IDT processes in the literature.
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2.3.2 Properties of IDT subordinators

Futhermore, it is interesting to note that the scaling property in Equation (2.16) also

holds for the multivariate Laplace transform of multidimensional marginals of H, see,

e.g., (Mai and Scherer, 2014, proof of Theorem 5.3), which actually represents a condition

equivalent to Equation (2.15).

Lemma 2.24 (Alternative characterization)

Consider a non-decreasing, right-continuous process {Ht}t≥0 with H0 = 0, a.s.. H is an

IDT subordinator if and only if

E
[
e−
∑n
i=1 xiHti s

]
= E

[
e−
∑n
i=1 xiHti

]s
, ∀n ∈ N, s > 0, xi > 0, ti ≥ 0, i ∈ {1, . . . , n}.

Proof

When showing necessity, the general idea is analogous to the proof of Lemma 2.21,

see also (Mai and Scherer, 2014, proof of Theorem 5.3). Sufficiency follows by setting

s = 1/n for n ∈ N and using uniqueness of the Laplace transform. �

As mentioned before, IDT subordinators represent a subclass of ID processes. Barndorff-

Nielsen et al. (2006a) characterize ID processes via a set of Lévy measures and Maruyama

(1970) via a “big” Lévy measure. Using the multivariate scaling property in Lemma

2.24, IDT subordinators can also be uniquely characterized via those characteristics with

additional conditions. However, both approaches do not yield a “simple” construction

of IDT subordinators, which would have been helpful. Instead, in Barndorff-Nielsen

et al. (2006a) existence is proven via application of Kolmogorov’s extension theorem and

in Maruyama (1970) via integrals with respect to Poisson random measures on a path

space. Nevertheless, these results provide an intuitive understanding of how big the class

of IDT subordinators really is.

Another way of looking at IDT subordinators is to consider them as random variables

taking values in the path space, see, e.g., (Mansuy, 2005, Section 5). Without going into

details, it is obvious from Equation (2.15) that in this space, IDT subordinators (and

also IDT processes) would represent infinitely divisible random variables. The converse

direction does not hold true in general and (Mansuy, 2005, Lemma 5.1) states sufficient

conditions. Actually, IDT processes remind more of a form of stable random variables,

as the sum of independent copies equals in distribution a “scaled” (time-scaled) random

variable of the original form.

Finally, we want to show that the exceedance property mentioned in Remark 2.15 holds.
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2.3 IDT subordinators

Lemma 2.25 (Finite first-passage time)

Let H = {Ht}t≥0 denote a non-trivial IDT subordinator, i.e. H 6≡ 0, and E an Exp(1)-

distributed random variable independent of E. It holds that

P(E < Ht, for at least one t > 0) = 1.

Proof

We prove the equivalent statement P(E ≥ Ht,∀t > 0) = 0. Using that H is a.s. non-

decreasing, it is enough to show that P(E ≥ Hn, for infinitely many n ∈ N) = 0. This

follows using the Borel–Cantelli Lemma, since

∞∑
n=1

P(E ≥ Hn) =

∞∑
n=1

e−nΨ(1) =

∞∑
n=1

(
e−Ψ(1)

)n
=

e−Ψ(1)

1− e−Ψ(1)
<∞,

where we used that P(E ≥ Hn) = E[exp(−Hn)] = exp(−nΨ(1)), see Lemma 2.21, and

the fact that Ψ(1) > 0 for H 6≡ 0. �

2.3.3 An integral with respect to Lévy subordinators

For the general construction of IDT subordinators investigated in Section 2.3.4, one

needs the notion of an integral with respect to a Lévy subordinator. The construction

is not new and shows up in the literature in similar form, see, e.g., Mansuy (2005) or

Hakassou and Ouknine (2011). However, it is not clear when the expressions used there

actually exist, as they are stated under quite vague conditions on an involved measure

(the measure has to be a “good” measure).

To make our exposition precise, we have to define the integral of a function f with

respect to a Lévy subordinator Λ, giving a meaning to the expression “
∫
f dΛ”. The

most general way would be to use Rajput and Rosinski (1989), who define integrals

with respect to an ID “(independently scattered) random measure”. It is shown in Sato

(2004) that this is equivalent (when defining those ID random measures over R+ and

ensuring stochastic continuity via an additional condition) to integrals with respect to

natural additive processes. However, Sato (2004) treats only integrals over bounded

intervals and the unbounded case is given by the limit in probability, whereas in Rajput

and Rosinski (1989), there is no distinction between both cases. Alternatively, Jurek

(1985) defines the integral using pathwise formal integration by parts (again for bounded

intervals, treating the unbounded case as the limit in probability).
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2.3.3 An integral with respect to Lévy subordinators

We are dealing with the comfortable case that the integral can be defined pathwise as

a Lebesgue–Stieltjes integral due to the fact that the involved process is non-decreasing

and f is positive. It might, however, take the value∞, which triggers additional consid-

erations based on the above literature. We will start from the definition in Rajput and

Rosinski (1989) as it is the most general case, in particular treating unbounded integrals

directly. We will show that this definition coincides almost surely with our pathwise

definition, enabling us to state sufficient conditions for the existence of the integral and

to use all results of Rajput and Rosinski (1989) on its distribution. It is not too difficult

to do so but allows us to be precise in our statements.

It is possible to define an ID random measure µΛ on B([0,∞)) with µΛ([0, t]) = Λt,

for any t ≥ 0, see (Sato, 2004, Theorem 3.2). We will omit the exact definition of

an ID random measure here and instead observe that for every ω ∈ Ω, we can define

a measure µΛ as above via the Stieltjes measure corresponding to the function t 7→
Λt(ω), which yields a simpler way to define the corresponding ID random measure in

our case. Intuitively speaking, a random measure is a random process with independent

increments, which almost surely fulfills the properties of a measure. We proceed defining

the integral as it is done in (Rajput and Rosinski, 1989, Section 2) and denoting it by∫ r
. For a simple function f =

∑n
j=1 xj 1Aj with Aj ∈ B([0,∞)) and bounded, for every

j ∈ {1, . . . , n}, n ∈ N, the integral is defined via∫ r

A
f dΛ :=

n∑
j=1

xj µΛ(A ∩Aj), (2.17)

for any A ∈ B([0,∞)). A measurable function f : ([0,∞),B([0,∞))) → (R,B(R)) is Λ-

integrable, if: (i) there exists a sequence of simple functions fn such that fn converges to

f almost everywhere (with respect to the Lebesgue measure); (ii) for every A ∈ B([0,∞))

the sequence of integrals of fn as defined in Equation (2.17) converges in probability.

The integral is then defined as this (well-defined) limit, i.e.∫ r

[0,∞)
fn dΛ

P→
∫ r

[0,∞)
f dΛ.

Linking the pathwise Lebesgue–Stieltjes integral to the integral definition of Rajput and

Rosinski (1989), the following theorem includes all relevant aspects. It is formulated only

for non-negative functions f so that we stay within the cosmos of positive distributions.
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2.3 IDT subordinators

Theorem 2.26 (Integral with respect to Lévy subordinators)

(i) For f a measurable, non-negative function and Λ = {Λt}t≥0 a Lévy subordinator,

the integral
∫ r

[0,∞) f dΛ exists if and only if

∫ ∞
0

(
ξ f(s) +

∫ ∞
0

(1 ∧ (x f(s))) ν(dx)

)
ds <∞,∫ ∞

0

∫ ∞
0

(1 ∧ (x2 f(s)2)) ν(dx) ds <∞, (2.18)

with ξ denoting the drift and ν the Lévy measure of the Bernstein function ΨΛ

corresponding to Λ.

(ii) Assume the conditions in Equation (2.18) to be fulfilled. Denoting by
∫

[0,∞) f dΛ

the pathwise Lebesgue–Stieltjes integral, it holds that∫ r

[0,∞)
f dΛ =

∫
[0,∞)

f dΛ, a.s.,

and thus
∫

[0,∞) f dΛ exists. Furthermore, the distribution of
∫

[0,∞) f dΛ is positive

ID with Bernstein function Ψ given by

Ψ(x) =

∫ ∞
0

ΨΛ (x f(s)) ds, x > 0, (2.19)

with ΨΛ denoting the Bernstein function corresponding to Λ (see Lemma 2.21).7

Proof

Proof of (i): This is the result of (Rajput and Rosinski, 1989, Theorem 2.7), observing

that λ is given by the Lebesgue measure, ρ(s, dx) = ν(dx), a(s) ≡ ξ and σ(s) ≡ 0.

Proof of (ii): Based on (Rajput and Rosinski, 1989, proof of Theorem 2.7), given the

conditions in Equation (2.18), there exist simple functions fn ≥ 0, fn ≤ f , fn → f

everywhere, such that ∫ r

[0,∞)
f(s) dΛs := lim

n→∞

∫ r

[0,∞)
fn(s) dΛs,

where the limit is taken in probability. Thus, we know there exists a subsequence {nk}k∈N

7This result is stated in the literature quite often in various forms, see, e.g., (Sato, 2004, Proposition 4.3),
(Jurek and Vervaat, 1983, Lemma 1.1), and also in work focused on applications, see, e.g.,(Eberlein
and Raible, 1999, Lemma 3.1).
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2.3.3 An integral with respect to Lévy subordinators

for which the convergence is a.s., i.e. there is a nullset N such that ∀ω ∈ Ω\N

∞ >

(∫ r

[0,∞)
f(s) dΛs

)
(ω) = lim

k→∞

(∫ r

[0,∞)
fnk(s) dΛs

)
(ω)

= lim
k→∞

(∫
[0,∞)

fnk(s) dΛs

)
(ω) = lim

k→∞

∫
[0,∞)

fnk(s) d(Λs(ω))

= lim inf
k→∞

∫
[0,∞)

fnk(s) d(Λs(ω)) ≥
∫

[0,∞)
f(s) d(Λs(ω)),

using Fatou’s Lemma for the last inequality. The crucial step is the second equality

where we use that, for simple functions, both integral definitions coincide. Consequently,

the pathwise defined expression is finite a.s. as well. It is easy to see that it coin-

cides with the definition as limit in probability, starting as in the previous computations

and using dominated convergence since now we have proven that f is integrable almost

surely. The fact that the resulting distribution is ID follows from (Rajput and Rosinski,

1989, Theorem 2.7) and positivity is clear from the construction. The form of the Bern-

stein function follows with (Rajput and Rosinski, 1989, Proposition 2.6), observing that

K(x, s) = ΨΛ(x). �

Remark 2.27

Part (ii) is the important part of Theorem 2.26, we only took the detour over the integral

definition of Rajput and Rosinski (1989) to use their results on existence and properties

of the integral for our pathwise definition. Essentially, Theorem 2.26 simply proves that

the pathwise (almost sure) limit exists if the limit in probability exists, and that both

coincide. However, one has to pay attention to the slightly differing definitions involved.

Having proven this, we can work with the pathwise definition in the following.

Remark 2.28

Alternatively, we could have introduced the pathwise integral similar to Jurek and Vervaat

(1983), defining it for intervals [a, b], 0 < a < b < ∞, and searching conditions for its

almost sure convergence when a and b approach the corresponding limits (almost sure

convergence in this context is equivalent to convergence in distribution, see (Jurek and

Vervaat, 1983, Lemma 1.2)). However, we decided to use existing results, starting from

the most general available definition and using its well-known properties.

Remark 2.29

Based on Theorem 2.26(ii), for a given suitable function f , the expression
∫

[0,∞) f dΛ

can be considered a mapping from the set of Lévy subordinators to the set of positive ID

distributions. Combining this observation with the fact that Lévy subordinators are in
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2.3 IDT subordinators

a one-to-one correspondence to positive ID distributions (see Lemma 2.17), the integral

expression can be consideread a mapping from the set of positive ID distributions onto

itself. It will be denoted by Φf , with

Φf : L(Λ1) 7→ L

(∫
[0,∞)

f dΛ

)
,

and we will use it simultaneously on the level of the involved Lévy measures, i.e. Φf :

νΛ 7→ ν∫ , where νΛ is the Lévy measure corresponding to the Lévy subordinator Λ and ν∫
denotes the Lévy measure corresponding to the distribution of

∫
[0,∞) f dΛ. This type of

function is well known by the name stochastic integral mapping and investigated, e.g., in

Barndorff-Nielsen et al. (2006b); Sato (2006). It is of interest to state the domain and

the range of a given mapping Φf and the pre-images of known subclasses. In Section

4.2.1, we will investigate one such function in more detail. Here, we will only state

a couple of well-known results restricted to the case of non-negative distributions. For

f0(s) := exp(−s), Jurek and Vervaat (1983) show that Φf0 is a one-to-one mapping

Φf0 : Mlog → L, with Mlog := {ν ∈ M :
∫

(2,∞) log(u)ν(du) < ∞}. For f1(s) :=

(1− s)+ = max{1− s, 0}, it is shown in Jurek (1985) that Φf1 is a one-to-one mapping

Φf1 : M → U . Finally, for f2(s) := log(1/s)+ = max{log(1/s), 0}, it is shown in

Barndorff-Nielsen et al. (2006b) that this yields a one-to-one function Φf2 : M → BO

with Φf2(L) = T .

Remark 2.30

From the fact that Λ0 = 0, a.s., it follows that µΛ({0}) = 0, a.s.. Consequently,∫
[0,∞) f dΛ =

∫
(0,∞) f dΛ holds and there is no need to distinguish between both cases.

Thus, we will often simply denote the integral by
∫∞

0 f dΛ.

2.3.4 Construction of families of IDT subordinators

The construction of families of IDT subordinators we investigate is based on a known

construction of IDT processes, see (Mansuy, 2005, Example 2.2) or (Hakassou and

Ouknine, 2011, Example 3.1). Both references consider a slightly different notation

than we will, constructing an IDT process H = {Ht}t≥0 from a Lévy process Λ via

Ht :=
∫∞

0 Λs t σ(ds), with σ a “good” measure. σ is called a “good” measure if the

integral expression exists and consequently, using integration by parts, the alternative

representation Ht =
∫∞

0 σ([s/t,∞)) dΛs is assumed to hold. We will start from this al-

ternative representation, replacing σ([s,∞)) by a decreasing non-negative function f(s).
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2.3.4 Construction of families of IDT subordinators

Having introduced the integral with respect to Lévy subordinators in the previous sec-

tion, we are now able to state a construction of IDT subordinators in the same spirit

but with concrete conditions on f ensuring existence. A shortened version of this result

can be found in Bernhart et al. (2015b).

Lemma 2.31 (A class of IDT subordinators)

Define pathwise

Ht :=

∫ ∞
0

f(s/t) dΛs, t > 0, (2.20)

with H0 := 0, for f a measurable, non-negative, non-increasing, left-continuous function,

fulfilling ∫ ∞
0

(
ξΛ f(s) +

∫ ∞
0

(1 ∧ (x f(s))) νΛ(dx)

)
ds <∞,∫ ∞

0

∫ ∞
0

(1 ∧ (x2 f(s)2)) νΛ(dx) ds <∞,

where ξΛ and νΛ are the drift and the Lévy measure of the subordinator Λ. Then H =

{Ht}t>0 yields an IDT subordinator.

Proof

The two integral conditions stated above are sufficient conditions for the existence of the

integral (for t = 1) stated in Theorem 2.26. As shown in Lemma 5.13 in Barndorff-

Nielsen et al. (2006a), the existence of the integral for t = 1 ensures the existence for

any t > 0. This is clear as replacing f(s) by f(s/t) in the conditions stated in Theorem

2.26 can be reduced, using a change of variable, to above expressions multiplied by t.

Thus, for all ω ∈ Ω such that the expression is finite for all t ∈ N, we will consider the

process defined in Equation (2.20), otherwise we set it to zero. Furthermore,

Ht =

∫ ∞
0

f(s/t) dΛs ≥
∫ ∞

0
f(s/u) dΛs = Hu, t ≥ u,

as f is non-increasing. In addition, for arbitrary u > 0

lim
t↘u

Ht −Hu = lim
t↘u

∫ ∞
0

f(s/t)− f(s/u) dΛs =

∫ ∞
0

f
(
(s/u)−

)
− f(s/u) dΛs = 0,

as f is left-continuous, using dominated convergence (for u = 0, one can use the same

idea). Finally, for the crucial IDT property, the general idea is as follows: denoting by
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2.3 IDT subordinators

Λ(1), . . . ,Λ(n) iid copies of Λ,

H
(1)
t/n + . . .+H

(n)
t/n =

∫ ∞
0

f(n s/t) dΛ(1)
s + . . .+

∫ ∞
0

f(n s/t) dΛ(n)
s

=

∫ ∞
0

f(n s/t) d
(

Λ(1)
s + . . .+ Λ(n)

s

)
d
=

∫ ∞
0

f(n s/t) dΛn s =

∫ ∞
0

f(s/t) dΛs = Ht,

where the equality in distribution follows from the IDT property of Lévy subordinators,

which also holds when considering multivariate marginal distributions. To state this

point in a mathematically more rigorous way, note that for every non-negative, left-

continuous, decreasing function f(s), there exists a sequence of functions fk of the form

fk(s) =
∑k

i=1 ci 1(ai,bi](s), ai < bi, ci ≥ 0, with fk ↗ f (applying, e.g., the procedure in

the proof of (Elstrodt, 1999, Theorem III.4.13), where such a sequence is constructed).

The advantage when using functions of this specific form is that the corresponding integral

with respect to a Lévy subordinator only depends on the value of the subordinator at

finitely many points. For any finite-dimensional sequence t1, . . . , td, d ∈ N, one can

observe(
H

(1)
t1/n

+ . . .+H
(n)
t1/n

, . . . ,H
(1)
td/n

+ . . .+H
(n)
td/n

)
=

(∫ ∞
0

f(n s/t1) d
(

Λ(1)
s + . . .+ Λ(n)

s

)
, . . . ,

∫ ∞
0

f(n s/td) d
(

Λ(1)
s + . . .+ Λ(n)

s

))
= lim
k→∞

(∫ ∞
0

f
(t1)
k (s) d

(
Λ(1)
s + . . .+ Λ(n)

s

)
, . . . ,

∫ ∞
0

f
(td)
k (s) d

(
Λ(1)
s + . . .+ Λ(n)

s

))
,

with f
(ti)
k , i ∈ 1, . . . , d, denoting different sequences, where the limit exists a.s. as we

have seen above. Furthermore, because of the form of the functions fk, the expression in

brackets is a (multivariate) function of the process
(

Λ
(1)
s + . . .+ Λ

(n)
s

)
at finitely many

points. As any finite-dimensional marginal distribution of
(

Λ
(1)
s + . . .+ Λ

(n)
s

)
coincides

with that of Λn s, which follows from a Lévy subordinator being an IDT subordinator, it

follows that(∫ ∞
0

f
(t1)
k (s) d

(
Λ(1)
s + . . .+ Λ(n)

s

)
, . . . ,

∫ ∞
0

f
(td)
k (s) d

(
Λ(1)
s + . . .+ Λ(n)

s

))
d
=

(∫ ∞
0

f
(t1)
k (s) dΛn s, . . . ,

∫ ∞
0

f
(td)
k (s) dΛn s

)
.

Since the second expression converges a.s. to the integral expressions with respect to Λn s,
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2.4.1 Definition of MSMVE distributions

the distributions of both limits have to coincide, which yields(
H

(1)
t1/n

+ . . .+H
(n)
t1/n

, . . . ,H
(1)
td/n

+ . . .+H
(n)
td/n

)
d
=

(∫ ∞
0

f(n s/t1) dΛn s, . . . ,

∫ ∞
0

f(n s/td) dΛn s

)
= (Ht1 , . . . ,Htd) .

This proves the statement in a mathematically rigorous way. �

2.4 MSMVE distributions

In this section, an important class of multivariate distributions is introduced, the so-

called min-stable multivariate exponential (MSMVE) distributions. This sets the stage

for Chapter 4, which is devoted to constructing new parametric families of this class.

Section 2.4.1 presents the necessary definitions, from which important properties are

derived in Section 2.4.2. The relevance of MSMVE distributions is, among others, based

on their connection with other important classes of distributions, which will be illustrated

in Section 2.4.3. Section 2.4.4 concludes with stochastic representations and the crucial

link to IDT subordinators.

2.4.1 Definition of MSMVE distributions

In Esary and Marshall (1974), several definitions of multivariate distributions with ex-

ponential minima are presented. All of them can be considered ideas to lift the concepts

and properties of the one-dimensional exponential law to higher dimensions when relying

on min-stability as characterizing property. The following definition introduces two of

the ideas, among them MSMVE distributions.

Definition 2.32 (MSMVE and EM distributions)

A random vector (X1, . . . , Xd)
ᵀ with support [0,∞)d is said to have an MSMVE distri-

bution, if for all non-empty subsets I ⊂ {1, . . . , d} and ci > 0, i ∈ 1, . . . , d, mini∈I{ciXi}
has an exponential distribution.

If this property is only required to hold for c1 = . . . = cd, the random vector is said to

have a distribution with exponential minima (EM).
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2.4 MSMVE distributions

MSMVE distributions can be found in Esary and Marshall (1974) as distributions ful-

filling condition “(c)”, the name “MSMVE” can be found, e.g., in (Joe, 1990, Chapter

6), whereas in De Haan and Pickands (1986), these distributions are simply called “min-

stable”, and in Pickands (1989), they are called “(multivariate) negative exponential

distributions”. EM distributions are defined in Esary and Marshall (1974) as distribu-

tions fulfilling condition “(a)”, obviously representing a superclass of MSMVE distri-

butions. For reasons of completeness, we also introduce a famous subclass of MSMVE

distributions, the so-called Marshall–Olkin (MO) distributions, first defined in Marshall

and Olkin (1967) and also considered in Esary and Marshall (1974) as multivariate ex-

ponential distributions. A random vector (X1, . . . , Xd)
ᵀ with support [0,∞)d is said to

have an MO distribution if its distribution can be constructed via

Xi := min
∅6=I⊂{1,...,d}: i∈I

{EI} , i = 1, . . . , d, (2.21)

with EI independent and exponentially distributed.8 It represents a typical shock-model

construction with exponential shocks. From this construction and the min-stability of the

exponential law, it is obvious that MO distributions are MSMVE distributions as well.

In total, denoting the corresponding classes of distributions via the same abbreviations,

we have

MO ( MSMVE ( EM,

see, e.g., Esary and Marshall (1974). A last concept of Esary and Marshall (1974) we

want to introduce is the notion of distributions “marginally equivalent in minimums”.

Two EM distributions are marginally equivalent in minimums if for the accordingly

distributed random vectors (X1, . . . , Xd)
ᵀ and (X̃1, . . . , X̃d)

ᵀ, it follows

L
{

min
i∈I
{Xi}

}
= L

{
min
i∈I

{
X̃i

}}
, for all ∅ 6= I ⊂ {1, . . . , d}.

In the following, we will focus on MSMVE distributions as Chapter 4 is devoted to the

construction of new families of this class of distributions. However, if possible, results

are proven for the broader class of EM distributions.

8Some of the EI might have parameter λI = 0, corresponding to EI = ∞. As MO distributions are
not of particular relevance for the rest of the work, details are omitted. For a nice treatise on these,
see (Mai and Scherer, 2013, Chapter 3).
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2.4.2 Properties of MSMVE distributions

2.4.2 Properties of MSMVE distributions

The next lemma collects a number of easy to derive but important properties of MSMVE

distributions, denoted in terms of their survival functions F̄ (x) := P (X1 > x1, . . . , Xd >

xd), where x = (x1, . . . , xd)
ᵀ, with xi ≥ 0, i ∈ 1, . . . , d.

Lemma 2.33 (Properties of MSMVE distributions)

(i) Let F̄ be the survival function of an MSMVE distribution. Then it holds that

F̄ (x)t = F̄ (tx), ∀x ∈ [0,∞)d, t > 0. (2.22)

(ii) Conversely, if the survival function F̄ of a random vector (X1, . . . , Xd)
ᵀ with

F̄ (0) > 0 satisfies condition (2.22), the corresponding distribution is an MSMVE

distribution.

(iii) Let F̄ be the survival function of an MSMVE distribution. Then it has a represen-

tation via

F̄ (x) = exp (−`(x)) ,∀x ∈ [0,∞)d, (2.23)

with ` := − log
(
F̄
)
, ` : Rd+ → R+, a homogeneous function of order 1, i.e. `(tx) =

t `(x).

Proof

Property (i) follows directly from the definition. To be precise, one has for x 6= 0:

F̄ (tx) = P (X1 > tx1, . . . , Xd > txd) = P (Xi/xi > t,∀i : xi > 0)

= P

(
min
i:xi>0

{Xi/xi} > t

)
= P

(
min
i:xi>0

{Xi/xi} > 1

)t
= F̄ (x)t,

where we have used the characteristic property plus the fact that P(Xi > 0) = 1, i =

1, . . . , d, as the one-dimensional marginals are exponentially distributed as well. For

x = 0, the property is obvious.

Part (ii) follows from the fact that F̄ (0) > 0 implies F̄ (0) = 1 and F̄ (x) > 0 for

all x ∈ [0,∞)d. The second implication follows as from F̄ (x) = 0 for an arbitrary

x ∈ [0,∞)d, F̄ (0) = 0 can be derived using Equation (2.22) and continuity from below.

The rest follows analogously to the computations in Part (i).

Part (iii) is simply Part (i) rewritten. �
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2.4 MSMVE distributions

Based on Lemma 2.33(iii), we are able to introduce so-called stable tail dependence

functions.

Definition 2.34 (Stable tail dependence function)

The function ` : Rd+ → R+ in Equation (2.23) is called a stable tail dependence function

if we assume the one-dimensional marginals of (X1, . . . , Xd)
ᵀ to be unit exponentials,

i.e. if additionally `(ei) = 1 for all unit vectors ei, i = 1, . . . , d.

Remark 2.35

One can assign a unique stable tail dependence function to every MSMVE distribution.

This is due to the fact that for any MSMVE distributed random vector (X1, . . . , Xd)
ᵀ,

there exist constants ci > 0 such that ciXi ∼ Exp(1), i = 1, . . . , d. Consequently,

F̄ (x) = P (X1 > x1, . . . , Xd > xd) = P (c1X1 > c1 x1, . . . , cdXd > cd xd)

= exp (−`(c1 x1, . . . , cd xd)) ,

with ` a stable tail dependence function, which will be called “the” stable tail dependence

function of this distribution.

An important consequence of Lemma 2.33 and Remark 2.35 is that every MSMVE dis-

tribution can be characterized by the corresponding tail dependence function. Because

of that, in the following, we will often treat MSMVE distributions via their stable tail

dependence functions. Some necessary conditions for stable tail dependence functions,

as, e.g., homogeneity, follow directly from the definition. An interesting affiliated ques-

tion is to find sufficient conditions for such a function to be a stable tail dependence

function. There are several results based on representations via measures on subspaces

of Rd, see, e.g., (Resnick, 1987, Proposition 5.11), for a collection of the corresponding

results. Furthermore, Molchanov (2008) characterizes them as support functions of spe-

cific (normalized) convex sets, so called max-zonoids. The characterization of Hofmann

(2009) is refined in (Ressel, 2013, Theorem 6), who proves that a function ` : Rd+ → R+

is a stable tail dependence function if and only if it is homogeneous of order 1, fully

d-max-increasing, and `(e1) = . . . = `(ed) = 1. The fully d-max-decreasingness prop-

erty is basically a rewriting of the d-increasingness property of the associated MSMVE’s

distribution function after transformation to survival functions and then applying the

log-transform.

In the well-studied bivariate case, it follows from homogeneity that a stable tail de-

pendence function ` is characterized by the so-called Pickands dependence function
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2.4.2 Properties of MSMVE distributions

A : [0, 1] → [1/2, 1], which is defined by A(t) := `(t, 1 − t). Sufficient conditions for

a function to be a bivariate Pickands dependence function are known, see (Gudendorf

and Segers, 2010, Theorem 2.3): A is a bivariate Pickands dependence function if and

only if A is convex and max{t, 1− t} ≤ A(t) ≤ 1, for all t ∈ [0, 1]. Concerning measures

of dependence, like concordance measures and tail dependence coefficients9, it is well

known for a bivariate MSMVE vector (X1, X2) that these measures can be computed

easily from A (see, e.g., Gudendorf and Segers (2010)), e.g.

τ =
∫ 1

0
t (1−t)
A(t) dA′(t), (Kendall’s τ),

ρ = 12
∫ 1

0
1

(1+A(t))2 dt− 3, (Spearman’s ρ),

λL = 2
(
1−A(1/2)

)
, (lower tail-dependence coefficient),

λU = 1{A(1/2)=1/2}, (upper tail-dependence coefficient).

From the restrictions on A, it is clear that λU = 0 unless A(t) = max{t, 1−t}, which cor-

responds to F̄ (x1, x2) = exp(−max{c1 x1, c2 x2}), with c1, c2 as in Remark 2.35. Thus,

unless X2 = c1/c2X1, i.e. perfect dependence, the upper tail dependence coefficient is

zero.

Before we introduce the link between MSMVE distributions and other important classes

of distributions, we want to present one last property which will give us some intuitive

guidance for a result presented later. It can be stated not only for MSMVE distributions,

but on the level of EM distributions. We have to introduce the concept of exchangeability

first.

Definition 2.36 (Exchangeability)

The distribution of a random vector (X1, . . . , Xd)
ᵀ is said to be exchangeable if it is in-

variant under arbitrary permutations, i.e. if L ((X1, . . . , Xd)
ᵀ) = L

(
(Xπ(1), . . . , Xπ(d))

ᵀ
)

for every permutation π : {1, . . . , d} → {1, . . . , d}.

9To keep this section readable, we only sketch the definition of those measures in a footnote, as they do
not represent a crucial aspect of this work. For more information on that topic, the interested reader is
referred to Joe (1990), McNeil et al. (2005), or Nelsen (2006). We only consider bivariate random vec-
tors with continuous marginals for reasons of simplicity. Kendall’s τ and Spearman’s ρ are measures
for the dependence of a bivariate random vector, where concordance is used as a concept of depen-
dence. Both are invariant under strictly increasing transformations of the components of the vector
and “normalized” to the interval [−1, 1]. For a bivariate random vector (X1, X2) with distribution
function F and margins F1 and F2, they are defined via τ := 4

∫
R2 F (x)dF (x)−1 = 4E[F (X1, X2)]−1,

and ρ := 12
∫
R2 F1(x1)F2(x2)dF (x) − 3 = 12E[F1(X1)F2(X2)] − 3. Tail-dependence in turn

is a measure of “dependence in the extremes” of a bivariate vector, which is also invariant un-
der strictly increasing transformations. The lower tail-dependence coefficient λL can be defined
as λL := limx↘0 P(F1(X1) ≤ x|F2(X2) ≤ x), and the upper tail-dependence coefficient λU via
λU := limx↗1 P(F1(X1) > x|F2(X2) > x), whenever these limits exist.
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2.4 MSMVE distributions

For exchangeable distributions, the distribution of mini∈I{Xi} only depends on the size

of I, i.e. on |I|. For exchangable MSMVE distributions, we denote the parameters of

the corresponding exponential distributions by λi, i.e. mini∈I{Xi} ∼ Exp(λ|I|) for every

∅ 6= I ⊂ {1, . . . , d}. It follows, for example, that the one-dimensional marginals are

unit exponentials if λ1 = 1. It is possible to derive a necessary condition for the finite

sequence {λi}i=1,...,d. To our knowledge, this has not been stated for EM distributions

before.

Lemma 2.37 (Necessary condition)

Let {λi}i=1,...,d denote the parameter sequence corresponding to an exchangeable EM

vector (X1, . . . , Xd)
ᵀ and define λ0 := 0. Then, this sequence has to be d-alternating,

i.e.

∇d−kλk :=
d−k∑
i=0

(−1)i
(
d− k
i

)
λk+i ≤ 0, k = 0, 1, . . . , d− 1. (2.24)

Proof

One could directly modify the proof of necessity of (Mai and Scherer, 2009a, Theo-

rem 3.1), as it can be generalized to all random vectors with distributions fulfilling

P(Yi < y, i ∈ I) = yλ|I| , y ∈ [0, 1]. Such a random vector is defined via the expression

(exp(−X1), . . . , exp(−Xd))
ᵀ. Alternatively, (Esary and Marshall, 1974, Theorem 4.1)

proves that for the given EM distribution, there exists an MO distribution marginally

equivalent in minimums, i.e. with the same sequence {λi}i=1,...,d. By direct applica-

tion of (Mai and Scherer, 2009a, Theorem 3.1) to this MO distribution, it follows that

the sequence a0 := λ1/λ1 = 1, a1 := (λ2 − λ1)/λ1, . . . , ad−1 := (λd − λd−1)/λ1 is d-

monotone, i.e. ∇d−k−1ak ≥ 0, k = 0, 1, . . . , d. The claim is established using the equality

∇d−kλk = −λ1∇d−k−1ak. �

Remark 2.38

On first sight, it is not clear why Lemma 2.37 is included here. It will be seen later that

for exchangeable sequences of EM random variables, there is a connection to positive ID

distributions. This link can already be motivated by the result stated here: Similar as

in Mai and Scherer (2009a), one can use (Gnedin and Pitman, 2008, Corollary 4.2),

which basically states that if Equation (2.24) holds for all d ∈ N, there is a positive

ID distribution (here, on [0,∞]) with the corresponding Bernstein function fulfilling

Ψ(i) = λi, i ∈ N. For an explicit investigation of exactly this connection in a special

case, see Mai (2014c).
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2.4.3 Link to other distributions

2.4.3 Link to other distributions

The importance of MSMVE distributions is to a large part due to their relation to other

distributions, in particular multivariate extreme-value distributions. This link will be

illustrated in the present section. Multivariate extreme-value distributions are very well

studied, see, e.g., Resnick (1987); (Joe, 1997, Chapter 6); Kotz and Nadarajah (2000),

and arise in many applications. For their introduction, we follow Resnick (1987). They

are defined as the limit distributions of component-wise maxima of iid random vectors,

when scaling these appropriately. To be precise, let (Z1, . . . , Zd)
ᵀ denote a random

vector with distribution function F and (Z
(j)
1 , . . . , Z

(j)
d )ᵀ, j ∈ N, iid copies of it. The

component-wise maxima of the first n copies are defined via M
(n)
i := maxj≤n{Z(j)

i } for

i = 1, . . . , d. Assume now that there exist normalizing sequences {a(n)
i }n∈N, i = 1, . . . , d,

with all a
(n)
i > 0, and {b(n)

i }n∈N, i = 1, . . . , d, such that for n→∞,

P
((
M

(n)
i − b(n)

i

)
/a

(n)
i ≤ xi, i = 1, . . . , d

)
= F

(
a

(n)
1 x1 + b

(n)
1 , . . . , a

(n)
d xd + b

(n)
d

)n
→ G(x),

weakly for a distribution function G with non-degenerate marginals. By “weakly”, we

mean pointwise-convergence for all points of continuity of G and by a “degenerate distri-

bution”, we mean a Dirac distribution. The distributions corresponding to such distri-

bution functions G are called multivariate extreme-value (MEV) distributions. A very

helpful result, stated, e.g., in (Resnick, 1987, Proposition 5.10), is the fact that it is

possible to standardize the problem to fixed marginal distributions, e.g. to marginal dis-

tributions with the distribution function Θc(x) := exp(−c/x), x > 0 with some c > 0.

The standardization works as described in the following remark, which is stated verbally

to avoid introducing cumbersome additional notation.

Remark 2.39 (Resnick (1987), Proposition 5.10)

For any random vector with MEV distribution, there is a component-wise transformation

(strictly increasing on the support of the components) such that the resulting vector

has an MEV distribution with marginal distributions given by Θ1.10 Furthermore, the

corresponding vector (Z1, . . . , Zd)
ᵀ can also be transformed component-wise such that

10We can explicitly state the component-wise transform. For (Y1, . . . , Yd)
ᵀ an MEV distribution,

each Yi has to follow a one-dimensional extreme-value distribution, i.e. one of the distributions
given in (Resnick, 1987, Proposition 0.3). In particular, all the marginal distribution functions
Gi, i = 1, . . . , d have to be continuous and strictly increasing on their support. The vector given by
(−1/ log(G1(Y1)), . . . ,−1/ log(Gd(Yd)))

ᵀ has the desired distribution.
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2.4 MSMVE distributions

the resulting distribution of maxima converges to the transformed MEV distribution with

desired marginals. The converse holds true as well.

From this follows that it is enough to investigate MEV distributions with marginal

distributions of the form Θ1. We want to consider those with marginal distributions of

the form Θc with arbitrary values for c, which basically corresponds to a linear scaling

of the respective marginals. This yields exactly all distributions with non-degenerate

marginals that satisfy the condition

G(tx)t = G(x), ∀x ∈ [0,∞)d, t > 0, (2.25)

see (Resnick, 1987, Proposition 5.9) combined with (Resnick, 1987, Proposition 5.10(b)).

These distributions coincide with so-called max-stable processes as defined in De Haan

(1984) (restricted to non-degenerate marginals). We will also call them max-stable

(though max-stable sometimes refers to a broader class, see, e.g., (Resnick, 1987, Section

5.4)).

Definition 2.40 (Max-stable distributions)

A random vector (Y1, . . . , Yd)
ᵀ is said to be max-stable, if its marginals are non-degenerate

and its distribution function G fulfills Equation (2.25).

Having defined max-stable distributions as a class of standardized MEV distributions,

we are able to state their connection to MSMVE distributions.

Lemma 2.41 (Connection between MSMVE and max-stable distributions)

A random vector (Y1, . . . , Yd)
ᵀ is max-stable if and only if the random vector (X1, . . . , Xd)

ᵀ

defined via (X1, . . . , Xd)
ᵀ := (1/Y1, . . . , 1/Yd)

ᵀ has an MSMVE distribution.

Furthermore, G is the distribution function of a max-stable distribution if and only if it

has the form

G(x) = exp

(
−`
(
c1

x1
, . . . ,

cd
xd

))
, x ∈ (0,∞)d,

with ` a stable tail dependence function and constants ci > 0, i = 1, . . . , d, such that

Yi ∼ Θci.

Proof

The claim follows easily from Lemma 2.33. �

Lemma 2.41 establishes a first link between MSMVE distributions and MEV distribu-

tions via max-stable distributions. One can deduce, e.g., why the study of stable tail
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2.4.3 Link to other distributions

dependence functions might be crucial for both classes of distributions and how to derive

stochastic representations for one class from the other. It is even possible to explicitly

state a connection between ` and the distribution of the initially introduced random vec-

tor (Z1, . . . , Zd)
ᵀ. More precisely, according to, e.g., (Segers, 2012, Equation (2.5)),

`(x) = lim
n→∞

nP
(
F1(Z1) > 1− x1

n
, or ..., or Fd(Zd) > 1− xd

n

)
, x ∈ [0,∞)d,

with F1, . . . , Fd denoting the marginal distribution functions of F . When using the

language of copulas, the link between MEV and MSMVE distributions might be stated

in even more elegant form, but the introduction of additional concepts is required. We

will only shortly define copulas and the most relevant properties, for more information,

the interested reader is referred to Joe (1997); Nelsen (2006); Mai and Scherer (2013).

Definition 2.42 (Copulas)

A function C : [0, 1]d → [0, 1] is called a (d-dimensional) copula, if there is a probability

space (Ω,F ,P) supporting a random vector (U1, . . . , Ud)
ᵀ with Ui ∼ U([0, 1]), i = 1, . . . , d,

such that

C(u1, . . . , ud) = P(U1 ≤ u1, . . . , Ud ≤ ud), u1, . . . , ud ∈ [0, 1].

The crucial result in the world of copulas is Sklar’s Theorem, which can be found in the

next lemma.

Lemma 2.43 (Crucial properties)

(i) (Sklar’s Theorem) Let F be a d-dimensional distribution function with margins

F1, . . . , Fd. Then, there exists a (d-dimensional) copula C such that

F (x1, . . . , xd) = C (F1(x1), . . . , Fd(xd)) ,

for all (x1, . . . , xd)
ᵀ ∈ Rd. C is unique if F1, . . . , Fd are continuous. Conversely,

with C a copula and F1, . . . , Fd univariate distribution functions, the above equation

defines a d-dimensional distribution function.

(ii) (Sklar’s Theorem for survival copulas) Let F̄ be a d-dimensional survival function

with marginal survival functions F̄1, . . . , F̄d. Then, there exists a (d-dimensional)

copula C, the so-called survival copula, such that for all (x1, . . . , xd)
ᵀ ∈ Rd it holds
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2.4 MSMVE distributions

that

F̄ (x1, . . . , xd) = C
(
F̄1(x1), . . . , F̄d(xd)

)
.

C is unique if F̄1, . . . , F̄d are continuous. Conversely, with C a copula and F̄1, . . . , F̄d

survival functions, the above equation defines a d-dimensional survival function.

(iii) Let (X1, . . . , Xd)
ᵀ be a random vector with copula C and Tj : R → R functions

strictly increasing on the support of Xj for all j = 1, . . . , d. Then, the random

vector (T1(X1), . . . , Td(Xd))
ᵀ also has copula C.

(iv) Let (X1, . . . , Xd)
ᵀ be a random vector with copula C and Tj : R → R functions

strictly decreasing on the support of Xj for all j = 1, . . . , d. Then, the random

vector (T1(X1), . . . , Td(Xd))
ᵀ has survival copula C.

Proof

For (i) and (ii), see (Mai and Scherer, 2013, Theorem 1.2 and Theorem 1.3). In the

case of continuous marginals, the idea is to simply consider (F1(X1), . . . , Fd(Xd))
ᵀ. Part

(iii) exists in many versions, we cited a very precise one from (Embrechts and Hofert,

2013, Proposition 4). Part (iv) follows easily from Part (iii) using that 1−Tj constitute

strictly increasing functions and using continuity of the copula to get an expression for

survival functions. �

Intuitively speaking, the concept of copulas allows to separate marginal distributions and

dependence structure and to analyze them separately. This is the reason for its major

importance in theory and practice. Coming back to MSMVE and MEV distributions,

one can show that they share the same dependence structure, which is basically only an

alternative way to formulate Lemma 2.41 combined with Remark 2.39.

Lemma 2.44 (Connection between MSMVE and MEV distributions)

The set of copulas of MEV distributions (also called extreme-value copulas, see, e.g.,

Gudendorf and Segers (2010)) coincides with the set of survival copulas of MSMVE

distributions.

Consequently, copulas of MEV distributions have the form

C(u1, . . . , ud) = exp
(
− ` (− log(u1), . . . ,− log(ud))

)
, u1, . . . , ud ∈ (0, 1],

with ` a stable tail dependence function.
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2.4.4 Stochastic representations

Proof

Starting from an arbitrary MEV distribution, Remark 2.39 states that one gets a max-

stable distribution via a component-wise transform which is strictly increasing on the

support of each margin. Consequently, both share the same copula with Lemma 2.43(iii).

Starting from an arbitrary MSMVE distribution, it is easy to transform it to an MSMVE

distribution with unit exponential marginals, see, e.g., Remark 2.35, whereas the survival

copula remains unchanged. Now, the claim follows from Lemma 2.41, using that 1/y is

strictly decreasing and thus, copula and survival copula are interchanged with Lemma

2.43(iv).

The given form follows from the fact that the survival function of an MSMVE distribution

with unit exponential marginals can be written as

F̄ (x) = exp (−`(x1, . . . , xd)) = exp
(
−`
(
− log

(
F̄1(x1)

)
, . . . ,− log

(
F̄d(xd)

)))
. �

An alternative second way to state the link between both classes of distributions would

be to represent MSMVE distributions as limit distributions of component-wise minima,

see, e.g., Pickands (1989), but we will not include this aspect here.

2.4.4 Stochastic representations

In this section, we present two stochastic representations for MSMVE distributions. The

first holds for all of them, the second only for a subclass. Stochastic representations are

important for several reasons: (a) they allow for a better understanding, (b) can be

helpful for the derivation of further properties, and (c) can serve as a starting point

when developing simulation algorithms.

Both stochastic representations can even be given for random sequences {Xi}i∈N, not

only for random vectors. A stochastic sequence is called MSMVE (or EM), if the crucial

property presented in Definition 2.32 holds for all finite subsets I ∈ N.11 The first repre-

sentation, the so-called spectral representation, can be found in De Haan and Pickands

(1986) and is basically a slight adaption of (De Haan, 1984, Theorem 2).

11One could also require it to hold for infinite subsets if Exp(∞) = δ0 is considered an exponential
distribution, where δ0 denotes the Dirac measure at 0. However, this property is already implied by
the property for finite subsets.
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2.4 MSMVE distributions

Lemma 2.45 (Spectral representation of MSMVE sequences)

{Xi}i∈N denotes an MSMVE sequence if and only if it has a representation via

Xi := inf
l∈N

{∑l
k=1Ek
fi(Ul)

}
, i ∈ N,

with {Ei}i∈N a sequence of iid Exp(1)-distributed random variables, {Ui}i∈N a sequence

of iid U([0, 1])-distributed random variables independent thereof, and fi : [0, 1] → R+,

with
∫ 1

0 fi(s)ds <∞ for i ∈ N.

Proof

See (De Haan and Pickands, 1986, Theorem 2.1). There, it is stated with {Sl, Ul}l∈N
an enumeration of points of a homogeneous Poisson process with unit intensity on the

strip [0, 1] × R+, which can be constructed as above to avoid introducing the necessary

mathematical definitions: It is well known that
∑l

k=1Ek, l ∈ N, yields an enumeration

of points of a homogeneous Poisson process on R+, the rest follows using (Resnick, 1987,

Proposition 3.8). �

The second representation, which we call IDT-frailty representation, only holds for ex-

changeable sequences. A random sequence {Xi}i∈N is called exchangeable if all finite

subsets are exchangeable in the sense of Definition 2.36. The famous De Finetti’s Theo-

rem proves that exchangeable sequences allow for a conditional independence structure,

which was used in Mai and Scherer (2014) to derive the following representation.

Theorem 2.46 (IDT-frailty representation of exchangeable MSMVE seq.)

An exchangeable random sequence {Xi}i∈N is MSMVE if and only if it allows for a

representation via

Xi := inf {t > 0 : Ht > Ei} , i ∈ N, (2.26)

with {Ei}i∈N a sequence of iid Exp(1)-distributed random variables and {Ht}t≥0 an IDT

subordinator (on [0,∞]) independent thereof.

For exchangeable MO sequences, the analogous result holds with H a (killed) Lévy sub-

ordinator.

Proof

See (Mai and Scherer, 2014, Theorem 5.3). A first-passage time construction as in

Equation (2.26) follows from De Finetti’s Theorem where H is called the conditional

cumulative hazard process. The IDT property is then shown to correspond to the MSMVE
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2.4.4 Stochastic representations

property of the random sequence. The result for MO sequences is shown (formulated on

the level of copulas) in Mai and Scherer (2009a). �

Remark 2.47

This representation consequently holds for all random vectors that can be constructed as

a part of an exchangeable sequence. A given (necessarily exchangeable) random vector

is called extendible if such a sequence exists. For more information on exchangeability,

extendibility, and its implications, see, e.g., Aldous (1985).

Remark 2.48

A similar result as in Theorem 2.46 also holds for EM sequences, see (Mai and Scherer,

2014, Theorem 1.1): An exchangeable random sequence is EM if and only if a represen-

tation as in Equation (2.26) holds with H a subordinator that fulfills Equation (2.15)

only for one-dimensional marginal distributions. These processes are called weak IDT

subordinators which are a superclass of IDT subordinators for which, e.g., Lemma 2.21

holds as well. Now, we are able to make sense of Lemma 2.37 and Remark 2.38. If

an exchangeable MSMVE sequence is extendible, among others, the parameter sequence

{λi}i=1,...,d can be extended to a sequence {λi}i∈N that fulfills Equation (2.24) for all

d ∈ N. With (Gnedin and Pitman, 2008, Corollary 4.2), it follows that there is a posi-

tive ID distribution (on [0,∞]) with λi = Ψ(i). This is exactly the marginal distribution

of the corresponding (weak) IDT subordinator, as for |I| = i, i ∈ N, t ≥ 0,

e−λi t = P
(

min
j∈I
{Xj} > t

)
= P

(
min
j∈I
{Ej} > Ht

)
= E

[
e−iHt

]
= e−tΨ(i),

where the third equality follows from the fact that minj∈I {Xj} ∼ Exp(i).

In particular, EM sequences constructed via a first-passage time construction (as in

Equation (2.26)) are marginally equivalent in minimums if and only if the corresponding

(weak) IDT subordinators share the same one-dimensional marginal distribution.

Remark 2.49

Lemma 2.45 can be formulated slightly different for exchangeable sequences according to

(De Haan and Pickands, 1986, Theorem 5.1), replacing the sequence of functions fi by a

function f0 and a function transformation called Piston, as exchangeability implies strict

stationarity.

The implication of Theorem 2.46 which is most important for our work is the fact that,

starting from an IDT subordinator, construction (2.26) yields an MSMVE sequence.

Based on this result, we will construct new MSMVE families in Chapter 4. Starting
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2.4 MSMVE distributions

from a subordinator and determining the resulting MSMVE distribution, one has to

compute quantities of the form

P (Xi > xi, i ∈ I) = E
[
e−
∑
i∈I Hxi

]
,

for finite I ⊂ N, xi > 0, i ∈ I. Basically, one has to be able to compute the multivariate

Laplace transform of H restricted to natural numbers.

Furthermore, using Lemma 2.50, which is taken from Mai (2014a), it is possible to

construct not only exchangeable sequences, but also non-exchangeable vectors, e.g. based

on factor-model motivations. This is important as it also stresses the applicability of

these models beyond the cosmos of exchangeable models.

Lemma 2.50 (Multi-factor MSMVE distributions)

Consider a probability space (Ω,F ,P) supporting n+ 1 ∈ N independent, non-decreasing

IDT subordinators H̃(i) = {H̃(i)
t }t≥0, i = 0, . . . , n, and an independent iid sequence

E1, . . . , Ed of exponential random variables with unit mean. Moreover, let A = (ai,j) ∈
Rd×(n+1) be an arbitrary matrix with non-negative entries, having at least one positive

entry per row. We define the vector-valued stochastic process

Ht =


H

(1)
t

H
(2)
t
...

H
(d)
t

 := A ·


H̃

(0)
t

H̃
(1)
t
...

H̃
(n)
t

 =


a1,0 H̃

(0)
t + . . .+ a1,n H̃

(n)
t

a2,0 H̃
(0)
t + . . .+ a2,n H̃

(n)
t

...
...

ad,0 H̃
(0)
t + . . .+ ad,n H̃

(n)
t

 ,

whose component processes are all IDT subordinators. The random vector (X1, . . . , Xd)
ᵀ

defined via

Xk := inf{t > 0 : H
(k)
t > Ek}, k = 1, . . . , d,

has an MSMVE law.12

Proof

See (Mai, 2014a, Lemma 4.4). �

12Note that by defining the entries of the matrix A appropriately and interpreting the processes H̃(i) as
stochastic drivers, dedicated factor models can be constructed.
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3 The density of distributions from the

Bondesson class

3.1 Motivation

In this chapter, we derive a convenient representation for the probability density of dis-

tributions from the Bondesson class, which was introduced in Section 2.2.2. On the one

hand, we have seen that it is a very large class, including important distributions (e.g.

the stable distribution and the Hartman–Watson distribution) for which closed-form

expressions of the respective probability density functions are unknown. On the other

hand, it is easy to define new distributions in terms of the corresponding Laplace expo-

nent, since complete Bernstein functions are well studied (for a list of over one hundred

complete Bernstein functions, see (Schilling et al., 2010, p. 218ff)). Moreover, whenever

the distribution of the first hitting time of a diffusion is studied, it is of the Bondesson

class as well, as is shown in Bondesson (1981). In all cases, a convenient representation

for the probability density would be desirable to be able to work with these distributions.

The range of possible areas of application is huge: In mathematical finance, they play an

important role, in particular due to the direct link to Lévy subordinators. This class of

processes has gained considerable attention, among others through the concept of time-

change, see, e.g., Clark (1973), Carr and Wu (2004), or Mendoza-Arriaga et al. (2010).

An example where these processes, and thus also the corresponding distributions, play

a role in dependence modeling can be found in Mai and Scherer (2009b).

There is only a small number of positive, infinitely divisible distributions whose density is

known in closed form and one typically treats those distributions by their Laplace trans-

form. Therefore, when looking for convenient representations of the densities, Laplace

inversion constitutes a natural starting point, but the basic approach based on integra-

tion along the Bromwich contour often suffers from numerical instabilities, as we will see

below.
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We present an alternative representation relying on the idea of contour transformation of

the Bromwich integral. The integration path of Kiesel and Lutz (2011) is considered and

it is shown that this helps to circumvent undesirable features of the original integrand,

primarily the highly oscillating behavior. Additionally, it allows for a transformation of

the integral to a finite integration interval, consequently avoiding truncation errors. The

idea of contour transformation is quite popular and there are many papers proposing

such transforms, e.g., Talbot (1979), Evans and Chung (2000), Abate and Valko (2004),

López-Fernández and Palencia (2004), or Weideman and Trefethen (2007). These ap-

proaches are typically formulated very generally. However, checking the admissibility

conditions for a given problem or distribution can be quite difficult. In practical ap-

plications, these methods are therefore often used heuristically, i.e., without actually

checking admissibility.1 In a joint project with Jan-Frederik Mai, Steffen Schenk, and

Matthias Scherer, we investigated this aspect for a whole class of distributions, the

Bondesson class, resulting in the paper Bernhart et al. (2015a). The main aspects of

this chapter are published in that paper and stem from joint work with the co-authors,

whereas some results for the Hartman–Watson law are published in Bernhart and Mai

(2014a). Consequently, parts of this chapter exhibit a considerable conformity with these

references.

The main contribution of this chapter consists of proving the admissibility of our trans-

formation for the Bondesson class (see Theorem 3.3). The approach is then investigated

for a couple of examples and the results outline the exceptional suitability in terms of

stability and efficiency.

The remainder of this chapter is structured as follows: Section 3.2 presents the main

theoretical result. Remarks on the numerical implementation of the resulting formula

and results of numerical tests can be found in Section 3.3. Section 3.4 summarizes the

results and concludes.

3.2 Integral representation of fµ

Let µ denote a distribution from the Bondesson class, as introduced in Section 2.2.2.

Consequently, its Laplace exponent is a complete Bernstein function admitting a rep-

1I encountered the problem of checking admissibility for the first time during my master thesis, when I
considered the pricing of CDO tranches in a default model based on scale mixtures of Marshall–Olkin
copulas as introduced in Bernhart et al. (2013).
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3.2 Integral representation of fµ

resentation as given in Equation (2.7). The following property of complete Bernstein

functions is crucial when considering contour transformations.

Lemma 3.1 (Analytic extension of complete Bernstein functions)

Assume that Ψ is a complete Bernstein function. Then Ψ has an analytic extension to

C \ (−∞, 0], with the representation

Ψ(z) = ξ z +

∫
(0,∞)

z

z + t
σ(dt), z ∈ C \ (−∞, 0],

where σ is the Stieltjes measure on (0,∞) satisfying
∫

(0,∞)(1 + t)−1 σ(dt) <∞.

Proof

See (Schilling et al., 2010, Theorem 6.2 (v) and (vi)). �

Assumption 3.2 (W.l.o.g. we neglect the drift)

From here on, we assume the drift ξ to equal zero, as it only corresponds to a constant

additive term, which can be easily incorporated into a density or distribution function.

Furthermore, let fµ denote the corresponding probability density which we know to exist

if and only if σ
(
(0,∞)

)
=∞ (see Corollary 2.12). A natural starting point for deriving

the density, if only the Laplace exponent is known, is the Bromwich inversion formula,

see (Widder, 1946, Theorem 7.3):

fµ(x) = lim
R→∞

1

2π i

∫ a+i R

a−i R
ex z e−Ψ(z) dz, a, x > 0. (3.1)

The sole assumption made in the present chapter is that Equation (3.1) holds. Conditions

ensuring this for a given x are bounded variation in a neighborhood of x and continuity

of fµ(.) at x, see (Widder, 1946, Theorem 7.3). This can easily be verified to hold for all

x > 0 for a specific distribution by investigating its Laplace exponent, e.g., by applying

(Sato, 1999, Proposition 28.1), which states that fµ is in C1 if
∫
R | exp(−Ψ(−i s)) s|ds <

∞. Alternatively, if the Lévy density g is known in closed form, one can try to verify

sufficient conditions starting from (Steutel and van Harn, 2004, Proposition III.4.16),

who state that fµ fulfills the following functional equation2:

x fµ(x) =

∫ x

0
fµ(x− u)u g(u) du, x > 0.

2For example, continuity can be shown if u g(u) is bounded on every interval (0, x], and fµ ∈ C1 can be
shown along the lines of the proof of (Elstrodt, 1999, Proposition V.3.7) if the derivative of u g(u) is
uniformly continuous.
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One can further simplify Equation (3.1) by

fµ(x) = lim
R→∞

1

2π i

∫ a+i R

a−i R
ex z e−Ψ(z) dz

= lim
R→∞

1

2π i

(∫ a+i R

a
ex z e−Ψ(z) dz −

∫ a−i R

a
ex z e−Ψ(z) dz

)
= lim

R→∞

1

2π i
2 i=

(∫ a+i R

a
ex z e−Ψ(z) dz

)
= lim

R→∞

1

π
=
(∫ a+i R

a
ex z e−Ψ(z) dz

)
, (3.2)

where the third equality is valid as the integrand satisfies f(s) = f(s). Consequently,

even though we started from a Cauchy principal value (the upper and lower bound

simultaneously going to infinity), we end up with a one-sided limit. However, from that

we can not derive that the limiting integral in the last equality exists, as this is not

guaranteed for its real part. But when stating the resulting formula as the integral over

the imaginary part, one gets a non-diverging integral.

The main formula of this chapter is given in the following theorem. It provides an

alternative, convenient integral representation for the density of an arbitrary distribution

of the Bondesson class, given in terms of its Laplace exponent. For a specific family of

complete Bernstein functions, the involved imaginary part can be resolved easily.

Theorem 3.3 (Main representation)

If µ is a distribution of the Bondesson class with Laplace exponent Ψ and if Equation

(3.1) holds for the density fµ and x > 0, then

fµ(x) =
M ex a

π

∫ 1

0
=
(
e−xM log(v) (b i−a) e−Ψ(a−M log(v) (b i−a)) (b i− a)

) dv

v
, (3.3)

with arbitrary parameters a, b > 0 and M > 2/(a x). This integral is a proper Rieman-

nian integral as one can show that the integrand vanishes for v ↘ 0.

Remark 3.4 (Basic ideas)

This theorem is based on two ideas:

1. It is well known that integration along the Bromwich contour {z(u) = a+ i u : 0 ≤
u <∞} is numerically challenging, since the integrand is typically highly oscillating

due to the first factor ex z = ea ei u. For an exemplary integrand when computing the

stable density, see Figure 3.1. Therefore, it is often more convenient to perform

the Laplace inversion along a different contour ending in the left half plane, as
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3.2 Integral representation of fµ
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Bromwich integrand for x=60%−quantile

Figure 3.1 Bromwich integrand (i.e. the resulting integrand when evalu-
ating Equation (3.2)) on [0, 100] for x the 60%-quantile of the
stable distribution with α = 0.3, a = 1/x.

along such a contour, the absolute value of the first factor |ex z| = exp(x<(z))

decreases. This can also be seen in Figure 3.2. A popular example for such a path

transform is Talbot (1979). However, changing the integration contour in general

requires additional conditions on the involved Laplace transforms, which can be

very hard to verify. One can show for instance that positive stable distributions

as presented in Section 2.2.2 with α > 0.5 do not satisfy the sufficient conditions

stated in Talbot (1979). To recognize this, consider s = y i − u, u > 0, for an

arbitrary y > 0. In the stable case, we have∣∣∣e−Ψ(s)
∣∣∣ = e−(y2+u2)α/2 cos(αϕ(u)), ϕ(u) := π − arctan(y/u).

As for α > 0.5, ∃u0 : ∀u > u0, cos(αϕ(u)) < 0, the absolute value of the Laplace

transform does not vanish for u ↗ ∞, thus violating the sufficient condition

| exp(−Ψ(s))| → 0 uniformly in <(s) ≤ 0 for |s| → ∞, which is stated in Tal-

bot (1979). Kiesel and Lutz (2011) perform the Laplace inversion of an integrated

CIR-process along the contour

γ(u) = a+ u (b i− a), 0 ≤ u <∞, a, b > 0. (3.4)

The first step consists of showing that this contour is always admissible3 for our

3We will see in Section 3.3 that it is indeed also more convenient than the Bromwich contour.
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Figure 3.2 <(ex z e−Ψ(z)) (top figure) and =(ex z e−Ψ(z)) (bottom figure)
for the stable distribution with α = 0.3 and x the respec-
tive 60%-quantile. The Bromwich contour (black line) and
the transformed path (green line) for parameters a = 1/x and
b = 2/x are plotted.
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3.2 Integral representation of fµ

setup of a distribution of the Bondesson class.

2. Having transformed the contour, one still faces the problem of truncation, as the

integral is indefinite. In a second step, a substitution to a finite integration interval,

the interval [0, 1], is applied. It is shown that the resulting integrand vanishes

for v ↘ 0 and we can thus extend the integrand continuously, yielding a proper

Riemannian integral.

Proof (of Theorem 3.3)

Step (1): In a first step, we show that it is possible to transform the integral in Equation

(3.2) to the new path γ, as defined by Equation (3.4), which corresponds to

lim
R→∞

1

π
=
(∫ a+i R

a
ex z e−Ψ(z) dz

)
= lim

R→∞

1

π
=
(∫

γR
ex z e−Ψ(z) dz

)
, x > 0, (3.5)

where γR denotes the path of γ for 0 ≤ u ≤ R. Using Lemma 3.1, we know that the

integrand has an analytic extension to C\ (−∞, 0]. The equivalence is thus proven using

Cauchy’s Theorem (for an elegant introduction, see, e.g., Jänich (2004)): For R > 0,

consider the following closed contour in the upper half plane consisting of three parts

CR1 , C
R
2 , and CR3 :

CR1 : a+ i u, 0 ≤ u ≤ R,

CR2 : a+Rei u,
π

2
≤ u ≤ π − arctan(b/a),

CR3 : a+ u (b i− a), 0 ≤ u ≤ R√
a2 + b2

.

<

=

a

R

b

CR1

CR3

CR2

By Cauchy’s Theorem, it holds that

0 =

∫
CR1

ex z e−Ψ(z) dz +

∫
CR2

ex z e−Ψ(z) dz −
∫
CR3

ex z e−Ψ(z) dz.

Therefore, it remains to show that

lim
R→∞

∫
CR2

ex z e−Ψ(z) dz = 0.
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This statement requires a very technical proof that is stated in Lemma 3.5 below. As a

result of Step (1), with ∂
∂uγ(u) = b i− a, we derive the representation

fµ(x) =
1

π

∫ ∞
0
=
(
ex γ(u) e−Ψ(γ(u)) (b i− a)

)
du. (3.6)

Step (2): When numerically evaluating Equation (3.6), one still faces the problem of

truncation as the interval is unbounded. Thus, we apply a substitution to the finite

interval (0, 1], defining u = −M log(v), v ∈ (0, 1], with a constant M > 0. This yields

fµ(x) =
M

π

∫ 1

0
=
(
ex (a−M log(v) (−a+b i)) e−Ψ(a−M log(v) (−a+b i)) (b i− a)

) dv

v
,

which as such does not remove the difficulties as this still could represent an improper

integral at v = 0. However, we can show that for M > 2/(a x), the new integrand

vanishes for v ↘ 0 and thus, the integral can be considered a proper integral on a finite

interval. Let h denote the integrand of the integral before substitution,

h(u) = =
(
ex γ(u) e−Ψ(γ(u)) (b i− a)

)
, u > 0.

We have

|h(u)| ≤
√
a2 + b2

∣∣∣ex (a+u (b i−a)) e−Ψ(a+u (b i−a))
∣∣∣.

As for u > 1, we can rewrite a + u(b i − a) = a + u
√
a2 + b2 exp(i ϕ), with ϕ =

π − arctan(b/a), we can use the additional estimate stated in Lemma 3.5, Part (iii).

Consequently, there exists u0 > 0 (using the notation of Lemma 3.5, one could write

u0 = R0/
√
a2 + b2) such that for u > u0,

|h(u)| ≤
√
a2 + b2 ea x+1︸ ︷︷ ︸

:=ĉ

exp
(ux

2

√
a2 + b2 cos(ϕ)︸ ︷︷ ︸

=−a

)
≤ ĉ e−

a u x
2 .

Thus, for the integrand after substitution, h(−M log(v))/v, for small values of v it holds

∣∣∣h(−M log(v))

v

∣∣∣ ≤ ĉ vM a x
2

v
= ĉ vM

ax
2
−1.

Therefore, we can conclude that for M > 2/(a x) the new integrand vanishes for v ↘ 0.�

Lemma 3.5 (Technical lemma)

Under the conditions stated in Theorem 3.3 and for the contour CR2 defined in the proof
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3.2 Integral representation of fµ

of that theorem,

lim
R→∞

∫
CR2

ex z e−Ψ(z) dz = 0, x > 0.

Proof

(i) We start by proving the following helpful statement. For a similar statement, see

(Schilling et al., 2010, Proof of Corollary 6.5):

For u ∈ [π/2, π − arctan(b/a)] and t > 0, we have

∣∣∣ 1

a+ t+Rei u

∣∣∣ ≤ √
2√

1− cos(arctan(b/a))︸ ︷︷ ︸
=:ca,b

1

R+ t+ a
.

Proof:

Considering the function

fu,R : [−(R+ a),∞)→ [0,∞), t 7→ R+ t+ a

|a+ t+Rei u|
,

we want to show that for every u ∈ [π/2, π − arctan(b/a)]

fu,R(t) =
R+ t+ a√

(a+ t+R cos(u))2 + (R sin(u))2
≤ ca,b.

It holds that limt→∞ fu,R(t) = 1 and fu,R(·) is continuous. Further,

∂

∂t
fu,R(t) =

1√
(a+ t+R cos(u))2 + (R sin(u))2

×
(

1− (R+ t+ a)(R cos(u) + t+ a)

(a+ t+R cos(u))2 + (R sin(u))2

)
.

It follows that

∂

∂t
fu,R(t) ≤ 0,

⇔ (R+ t+ a)(R cos(u) + t+ a) ≥ (a+ t+R cos(u))2 + (R sin(u))2,

⇔ (t+ a)R (1− cos(u)) ≥ R2(1− cos(u)),

⇔ t ≥ R− a.
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Thus, for u in the given interval,

max
t∈[0,∞)

fu,R(t) ≤ max
t∈[−(R+a),∞)

fu,R(t) = fu,R(R− a) =
2R

R |1 + ei u|

=
2√

2 + 2 cos(u)
=

√
2√

1 + cos(u)
≤

√
2√

1− cos(arctan(b/a))
= ca,b.

(ii) Now, we show that we can find R0 > 0 such that ∀R > R0 and u ∈ [π/2, π −
arctan(b/a)], it holds that

exp

(
− a<

(
Ψ(a+Rei u)

a+Rei u

))
≤ e,

and

exp

(
−R cos(u)<

(
Ψ(a+Rei u)

a+Rei u

))
≤ exp

(
−R cos(u)

x

2

)
.

Proof:

Using the statement in (i), we can show that

lim
R→∞

∣∣∣∣∣Ψ(a+Rei u)

a+Rei u

∣∣∣∣∣ = 0,

uniformly in u ∈ [π/2, π − arctan(b/a)], which is basically a slight extension of

(Schilling et al., 2010, Corollary 6.5), where a = 0 is considered. From this, the

two claims will be derived. For u ∈ [π/2, π − arctan(b/a)], using the Stieltjes

representation of Ψ, it holds that∣∣∣∣∣Ψ(a+Rei u)

a+Rei u

∣∣∣∣∣ =

∣∣∣∣∣
∫ ∞

0

1

a+Rei u + t
σ(dt)

∣∣∣∣∣ ≤
∫ ∞

0

∣∣∣∣∣ 1

a+Rei u + t

∣∣∣∣∣σ(dt)

(i)

≤ ca,b

∫ ∞
0

1

a+R+ t
σ(dt).

Using 1/(R+t+a) ≤ 1/(t+1) for R > 1−a and
∫∞

0 1/(1+t)σ(dt) <∞, dominated

convergence yields the convergence of the right-hand side to zero for R→∞. Thus,

uniform convergence to zero of the left-hand side is shown. Consequently, we can
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3.2 Integral representation of fµ

find R0 > 0 such that ∀R > R0 and u ∈ [π/2, π − arctan(b/a)], it holds that∣∣∣∣∣<
(

Ψ(a+Rei u)

a+Rei u

)∣∣∣∣∣ ≤
∣∣∣∣∣Ψ(a+Rei u)

a+Rei u

∣∣∣∣∣ ≤ min
(1

a
,
x

2

)
.

From this follows, for all R > R0,

<

(
Ψ(a+Rei u)

a+Rei u

)
≥ −1

a
,

and thus

exp

(
− a<

(
Ψ(a+Rei u)

a+Rei u

))
≤ exp

(
− a

(
− 1

a

))
= e.

Furthermore, for all R > R0,

<

(
Ψ(a+Rei u)

a+Rei u

)
≤ x

2
,

and thus, as cos(u) ≤ 0 for u ∈ [π/2, π − arctan(b/a)], it follows that

exp

(
−R cos(u)︸ ︷︷ ︸

≥0

<

(
Ψ(a+Rei u)

a+Rei u

))
≤ exp

(
−R cos(u)

x

2

)
.

(iii) For R > R0 from (ii), with u ∈ [π/2, π − arctan(b/a)], one can show the following

estimate: ∣∣∣ex (a+Rei u) e−Ψ(a+Rei u)
∣∣∣ ≤ ega(R) ex a+1 e

x
2
R cos(u),

with

ga(R) := −
∫

(0,∞)

R2 sin(π − arctan(b/a))2

(t+ a)2 +R2
σ(dt).

From this, one can also deduce the following statement, which is helpful for Step

(2) of Theorem 3.3. Using that ga(R) ≤ 0, it holds that∣∣∣ex (a+Rei u) e−Ψ(a+Rei u)
∣∣∣ ≤ ex a+1 e

x
2
R cos(u).
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Proof:

Consider z := a + Rei u with a,R > 0 and u ∈ [π/2, π − arctan(b/a)]. We can

rewrite∣∣∣e−Ψ(z)
∣∣∣ = exp

(
−<

(
z

Ψ(z)

z

))
= exp

(
−<(z)<

(Ψ(z)

z

)
+ =(z)=

(Ψ(z)

z

))
.

Furthermore, it holds that

=(z)=
(Ψ(z)

z

)
= R sin(u)

∫
(0,∞)

=
( 1

t+ a+Rei u

)
︸ ︷︷ ︸

=
−R sin(u)

(t+a+R cos(u))2+(R sin(u))2

σ(dt)

= −
∫

(0,∞)

R2 sin(u)2

(t+ a+R cos(u))2 + (R sin(u))2
σ(dt)

≤ −
∫

(0,∞)

R2 sin(π − arctan(b/a))2

(t+ a+R cos(u))2 + (R sin(u))2
σ(dt)

= −
∫

(0,∞)

R2 sin(π − arctan(b/a))2

(t+ a)2 +R2 + 2 (t+ a)R cos(u)
σ(dt)

≤ −
∫

(0,∞)

R2 sin(π − arctan(b/a))2

(t+ a)2 +R2
σ(dt)

= ga(R).

Therefore, we obtain for R > R0 from (ii)

∣∣∣ex (a+Rei u) e−Ψ(a+Rei u)
∣∣∣ ≤ ex (a+R cos(u)) e

−<(a+Rei u)<
(

Ψ(a+Rei u)

a+Rei u

)
ega(R)

= ex (a+R cos(u)) e
−(a+R cos(u))<

(
Ψ(a+Rei u)

a+Rei u

)
ega(R)

(ii)

≤ ex (a+R cos(u)) e e−R cos(u) x
2 ega(R)

= ega(R) ex a+1 e
x
2
R cos(u).

(iv) Considering the initial expression, it follows for R > R0 from (ii)

∣∣∣ ∫
CR2

ex z e−Ψ(z) dz
∣∣∣ =

∣∣∣ ∫ π−arctan(b/a)

π/2
ex (a+Rei u) e−Ψ(a+Rei u)R i ei u du

∣∣∣
≤ R

∫ π−arctan(b/a)

π/2

∣∣∣ex (a+Rei u) e−Ψ(a+Rei u)
∣∣∣ du
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3.2 Integral representation of fµ

(iii)

≤ R

∫ π−arctan(b/a)

π/2
ega(R) ex a+1 e

x
2
R cos(u) du

≤ Rega(R) ex a+1

∫ π

π/2
e
x
2
R cos(u) du

= Rega(R) ex a+1

∫ π/2

0
e−

x
2
R sin(u) du

≤ Rega(R) ex a+1

∫ π/2

0
e−

xuR
π du

≤ ega(R) ex a+1 π

x

(
1− e−

xR
2

)
≤ ega(R) ex a+1 π

x
,

where in the second from last line, we estimate sin(u) ≥ 2u/π.

(v) If we can show that

ega(R) R→∞−→ 0,

then by (iv), the claim follows.

Proof:

We see that

0 ≤ lim
R→∞

ega(R) = elimR→∞ ga(R)

= e
− limR→∞

∫
(0,∞)

R2 sin(π−arctan(b/a))2

(t+a)2+R2 σ(dt)
,

where the actual existence of these limits follows from the following considerations.

Using Fatou’s Lemma,

lim inf
R→∞

∫
(0,∞)

R2 sin(π − arctan(b/a))2

(t+ a)2 +R2
σ(dt)

≥
∫

(0,∞)
lim inf
R→∞

R2 sin(π − arctan(b/a))2

(t+ a)2 +R2
σ(dt)

=

∫
(0,∞)

sin(π − arctan(b/a))2 σ(dt)

= sin(π − arctan(b/a))2 σ((0,∞)) =∞.

Here, Corollary 2.12 is used which states that σ((0,∞)) =∞ is necessary for the

existence of a density. It follows that

lim
R→∞

∫
(0,∞)

R2 sin(π − arctan(b/a))2

(t+ a)2 +R2
σ(dt) =∞,
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and, thus,

lim
R→∞

ega(R) = 0. �

Corollary 3.6 (Integral representation of distribution function)

If µ is a distribution of the Bondesson class, for every x > 0 one has

µ([0, x]) =
M ex a

π

∫ 1

0
=
(
e−xM log v (b i−a) e

−Ψ(a−M log v (b i−a))

a−M log v (b i− a)
(b i− a)

) dv

v
,

with arbitrary parameters a, b > 0 and M > 2/(a x). This integral is a proper Riemann

integral as one can show that the integrand vanishes for v ↘ 0.

Proof

The cumulative distribution function is obviously of bounded variation and furthermore,

following from (Bondesson, 1981, Theorem 6.1), continuous at every x > 0. The Laplace

transform of µ([0, x]) is given by exp(−Ψ(z))/z, which follows by application of Tonelli’s

Theorem. Thus, the result follows similarly to the proof of Theorem 3.3. Using the

additional factor 1/z in Part (iv) of Lemma 3.5 allows to estimate |R/z| = R/|a +

R exp(i u)| via a constant. Consequently, it is sufficient to estimate exp(ga(R)) ≤ 1 and

one does not need σ((0,∞)) =∞. Hence, the result holds without requiring the existence

of a density. �

Remark 3.7

The value of µ({0}) can be easily derived from ν. If ν
(
(0,∞)

)
= σ

(
(0,∞)

)
= ∞,

µ({0}) = 0 follows from Lemma 2.12. If λ := ν
(
(0,∞)

)
< ∞, the corresponding

distribution is a compound Poisson distribution and thus, µ({0}) = exp(−λ), see also

(Bondesson, 1981, Theorem 6.1).

The following corollary is useful in the context of call option pricing via Laplace methods

in the spirit of Carr and Madan (1999), Raible (2000), or Eberlein et al. (2010). More

precisely, it can be used to compute expected values of the form E[(exp(−X)−K)+] =

K E[(exp(−X− ln(K))−1)+], where the random variable X has a distribution from the

Bondesson class. Expected values of the form E[(exp(−X + y) − 1)+] for y > 0 can be

computed via Laplace inversion of exp(−Ψ(z))/(z (z− 1)), where Ψ denotes the Laplace

exponent corresponding to X. An intuitive explanation for this (which holds in case X

exhibits a density) is that the expected value (as a function of y) can be interpreted as

the density of a convolution of the density of X and a modified payoff function, whose
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3.2 Integral representation of fµ

Laplace transform is given by 1/(z (z− 1)) (for <(z) > 1). Then, the Laplace transform

of this convolution is given as the product of the Laplace transforms and we can apply

Laplace inversion to get the expected value (for a given value of y, e.g. y = − ln(K)). For

a derivation of this result under very general conditions, see Eberlein et al. (2010). The

following corollary can be used whenever one is pricing call options on an asset whose

distribution has a representation as exp(−X), with X being distributed according to a

Bondesson distribution. It might be less helpful for equity modeling (as the distribution

has support [0, 1]), but there are applications when pricing CDO tranches in models like

Mai and Scherer (2009b), as is explicitly shown in Mai (2013).

Corollary 3.8 (Integral representation of an option-like structure)

Let f(.) be a non-negative function with Laplace transform exp(−Ψ(z))/(z (z − 1)) (for

<(z) > 1), where Ψ(.) denotes a complete Bernstein function. If the Bromwich inversion

formula in Equation (3.1) (with a > 1) is valid for f(.), it holds that

f(x) =
M ex a

π

∫ 1

0
=
( e−xM log v (b i−a) e−Ψ(a−M log v (b i−a))

(a−M log v (b i− a)) (a− 1−M log v (b i− a))
(b i− a)

) dv

v
,

with arbitrary parameters a > 1, b > 0 and M > 2/(a x). This integral is a proper

Riemann integral as one can show that the integrand vanishes for v ↘ 0.

Proof

The restriction a > 1 is needed, since we know that the Laplace transform can be ana-

lytically extended to C \ (−∞, 1]. The result follows similarly to the proof of Theorem

3.3. Analogously to the previous corollary, using the additional factor 1/(z (z− 1)), it is

sufficient to estimate exp(ga(R)) ≤ 1 and one does not need σ((0,∞)) = ∞, hence the

distribution corresponding to Ψ need not be absolutely continuous. �

Remark 3.9 (A remark on hyperbolic contours)

Having a look at the proof of Lemma 3.5, in particular Part (iv), where the absolute

value of the integral is estimated versus the integral of the absolute value, it becomes

clear that also the integral over a contour which is a subset of CR2 converges to zero

with R approaching ∞. Consequently, one can show analogously to Step (1) in Theorem

3.3 that it is possible to transform the integral to the hyperbolic contours as defined in

López-Fernández and Palencia (2004) (and revised in Weideman and Trefethen (2007)).

This is due to the fact that those hyperbolic contours always enclose a linear contour as

used here and, consequently, the connecting contour in Step (1) of an analogous proof

can be defined as a subset of CR2 .
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3.3.1 Remarks on the parameter choice

3.3 Implementation and numerical tests

Having motivated and derived Equation (3.3), it remains to confirm that numerical re-

sults justify our deliberations and to show how to choose the free parameters a, b, and

M . The issue of parameter choice is dealt with in Section 3.3.1. Furthermore, three

numerical tests are conducted to investigate our approach: In Section 3.3.2, the accu-

racy of the derived representation is tested by comparing the results with analytically

available densities, namely those of the Gamma and Inverse Gaussian distribution. Fur-

thermore, in Section 3.3.3, the approach is used to compute the distribution function of

the non-central χ2 distribution and to check the results. In Section 3.3.4, the approach is

compared with alternative numerical approaches available for deriving the stable density.

Finally, the stability of the approach is examined when considering the Hartman–Watson

density in Section 3.3.5.

3.3.1 Remarks on the parameter choice

So far, the choice of the free parameters a, b, and M has not been considered. One wants

to choose the free parameters in a way that renders the resulting integral representation

convenient for a computation by numerical methods. Though the general representation

holds for all admissible parameter constellations, some might yield “nicer” integrands.

Considering a, we follow the argumentation and choice of Kiesel and Lutz (2011): a

is chosen as 1/x, which yields a constant factor exp(a x) for different values of x and,

furthermore, prevents the factor from “exploding” for large values of x. Taking this into

account, the condition on M (M > 2/(a x), see Equation (3.3)) is simplified to M > 2

and we always chose M = 3, which is also proposed in Kiesel and Lutz (2011).

The remaining and most critical parameter choice is the choice of b. In general, there is

a trade-off to acknowledge: On the one hand, small values for b correspond to a “faster”

decrease of the factor exp(x z), as the real part is decreasing faster along the new contour.

On the other hand, the smaller b, the closer the new contour gets to possible singularities

along the negative real line. In most of the examples that we implemented, i.e. for the

Inverse Gaussian, Gamma, non-central χ2, and Hartman–Watson distribution, we found

that the choice b = 2a provides a robust algorithm, although we used b = a for the

Hartman–Watson distribution, as this yields a slightly smoother result. However, there

are families of distributions where further investigations might be necessary. This is due
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3.3 Implementation and numerical tests

to the fact that, even though a vanishing integrand at v = 0 is guaranteed, this does

not prevent the integrand from oscillating close to zero, as our estimate in the proof of

Theorem 3.3 holds for

v < exp

(
−M R0√

a2 + b2

)
,

for some R0 > 0, only. When considering the stable distribution and choosing the

parameter b arbitrarily, such problems can be observed. By using the example of the

stable density, we explain considerations that might circumvent such problems.

For a more intuitive presentation, we consider the integrand before the transformation

to the interval [0, 1]. Problems of the final integrand close to zero correspond to the

behavior of the previous integrand for large values of u. Considering the absolute value

of the Laplace transform of a positive, stable distribution along the new contour, we

have for u > 1 ∣∣∣e−Ψ(γ(u))
∣∣∣ = e−<(γ(u)α) = e−((1−u)2 a2+u2 b2)

α/2
cos(αϕ(u)),

with 0 < ϕ(u) := π − arctan(b u/(a (u − 1)) < π. In order to prevent this term from

“exploding”, we seek to have cos(αϕ(u)) ≥ 0 for large u, which in this case is equivalent

to αϕ(u) ≤ π/2. For α ≤ 0.5, this is obviously true for every choice of b and consequently,

we follow the previous argumentation and choose b = 2a. For α > 0.5, one can show

that

αϕ(u) ≤ π/2, ∀u > 1 ⇔ b ≥ a tan
(π
α

(α− 0.5)
)

:= b̂.

Consequently, we have shown that for b ≥ b̂, the absolute value of the Laplace transform

considered is bounded by 1 along the corresponding path (at least for u > 1). As on the

other hand we want to choose a small b, we set b = b̂ for α > 0.5 in the numerical test

presented in Section 3.3.4.

3.3.2 Test against known probability densities

In a first step, the tractability of the derived representation is tested by numerically

evaluating it for densities that are known in convenient analytical form. For the quadra-

ture, a simple trapezoid rule is used as more sophisticated algorithms might cover up

interesting effects. We consider the Gamma and the Inverse Gaussian distribution and

compare the known densities to the numerical results. Both are parameterized by pairs
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3.3.3 Test using the non-central χ2 distribution function

(β, η) and the combinations (β, η) ∈ {1, 1.5, 2, . . . , 10}× {1, 1.5, 2, . . . , 10} are taken into

account. The densities are evaluated at 1000 equidistant points from the 0.5%-quantile

to the 99.5%-quantile of the respective distribution. The trapezoid rule for evaluating

the integral in Equation (3.3) is employed using 1000 equidistant grid points.

The high accuracy of the results indicated in Table 3.1 suggests a very tractable in-

tegrand. Consequently, the smooth behavior of the exemplary integrands depicted in

Figure 3.3 is not surprising. Based on these results, it seems promising to investigate

other, more “difficult” probability distributions.

Density Abs. error (max/mean) Rel. error (max/mean)

Gamma 4.51E-6/4.78E-7 5.57E-5/3.62E-6
IG 7.95E-6/3.50E-7 7.36E-5/1.41E-6

Table 3.1 Density calculation for Inverse Gaussian and Gamma distribution by numer-
ical evaluation of Equation (3.3) and comparison to exact values. Maximum
and average absolute and relative errors over all parameter combinations and
evaluation points are listed.

3.3.3 Test using the non-central χ2 distribution function

Having investigated the suitability of the new integral representation when testing against

known probabilities, in a second step, we want to test it using the distribution function

of the non-central χ2 distribution. There are closed-form expressions available, e.g. via

Equation (2.11), but implementing these is not a trivial task and has triggered some

research, see, e.g., Larguinho et al. (2013) for a comparison of several approaches, of

which Benton and Krishnamoorthy (2003) performs best. The aim of this section is to

show that the approach presented is applicable and its straight-forward implementation

(using Corollary 3.6) yields reliable results.

To check for the stability of this approach, we implement the resulting representation

using MATLABs quadrature algorithm quadgk and compare the results to MATLABs

built-in implementation of the non-central χ2 distribution function, ncx2cdf. Regarding

the investigated parameters, we follow Benton and Krishnamoorthy (2003) and, for

several combinations of x and β, investigate 10000 randomly selected values of η.4 Using

4To be precise, for the (x, β)-combinations (5, 5), (12, 12), (400, 200), (300, 290), the values of η
are drawn as absolute values of N (2, 1)-distributed random variables, for the combinations
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3.3 Implementation and numerical tests
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Figure 3.3 Resulting integrand in Equation (3.3) for the Gamma (upper figure) and
the Inverse Gaussian (lower figure) distribution, β = 5, η = 5, with the
values for x chosen as 4 equally spaced points starting, respectively ending,
with the 0.5% and 99.5%-quantiles.
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3.3.4 Test using the stable density

quadgk with its default settings, over all 160000 evaluations, this results in a maximum

relative deviation of 3.97E-06 from MATLABs built-in function. The average relative

error amounts to 1.97E-09. Changing the stopping criteria of the quadrature algorithm,

the precision can be tuned arbitrarily. However, the lesson should not be to use our

representation instead of the especially designed algorithm. Instead, it allows us to

observe that even for such a distribution, whose implementation requires quite some

attention, our representation yields a simple to implement and reliable algorithm. No

additional considerations regarding the implementation were necessary. This might serve

as a an encouraging sign with respect to other distributions for which, so far, no robust

representations exist.

3.3.4 Test using the stable density

Since the results of the previous sections suggest the tractability of the approach pre-

sented, it is now tested in a more complex setup. Therefore, we consider the positive

stable distribution. As mentioned in Section 2.2.2, there is in general no simple closed-

form expression available for the corresponding density. We compare the results for

the density based on the new representation to results based on Nolan’s representation

(Equation (2.9)), which is tailor-made for this problem.

Using Equation (2.8), it is sufficient to consider fSt
α,1 which corresponds to ΨSt

α,1(x) = xα.

All parameter values α ∈ {0.01, 0.02, . . . , 0.05, 0.10, 0.20, . . . , 0.90, 0.95, 0.96, . . . , 0.99}
are taken into account. As the distribution function is not known in closed form, Corol-

lary 3.6 is used to compute quantiles. We will again consider 1000 points between the

0.5%-quantile and the 99.5%-quantile of each distribution, however, this time the points

are log-spaced to locate more points in the area with higher probability mass, taking into

consideration the heavy tails of the distribution. The parameters are set as described

in Section 3.3.1 and as a quadrature algorithm for both approaches, the target-oriented

Matlab built-in integration algorithm quadgk is used.

The results are described in Table 3.2, comprising the time needed for the computations

and the maximum relative deviation of the new approach’s results from Nolan’s inver-

(40, 20), (60, 40), (220, 200), (340, 280), the values of η are drawn as absolute values of N (20, 1)-
distributed random variables, for the combinations (290, 10), (500, 220), (800, 520), (1500, 30), the val-
ues of η are drawn as absolute values of N (280, 1)-distributed random variables, and for the combi-
nations (1000, 5), (1200, 200), (1300, 290), (1500, 30), the values of η are drawn as absolute values of
N (1000, 1)-distributed random variables.
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3.3 Implementation and numerical tests

sion formula’s results. Two observations can be made: Firstly, the time needed for the

computations is similar in both cases. Secondly, the results of the new approach devi-

ate only marginally from the benchmark results based on Equation (2.9).5 Keeping in

mind that Nolan’s inversion formula was specifically developed for stable densities, the

results of the new representation seem astonishingly good as it is a very general formula

applicable to all Bondesson densities. Thus, the results suggest that the corresponding

integrand should be tractable and smooth. To illustrate the improvements made over

the initial Bromwich integrand, Figure 3.4 depicts how the initially presented integrand

in Figure 3.1 changes with the new representation. As expected, it is very smooth and

tractable. In Figure 3.5, the integrand for two other parameters and values is depicted,

a low value α = 0.1, and a high value α = 0.9. The parameters are chosen as described

in Section 3.3.1, i.e. for α = 0.9, the value of b is chosen as b̂. If instead b = 2 a was

chosen, for x = 0.6 one could observe the difficulties described in Section 3.3.1, i.e. an

integrand oscillating considerably close to 0. This effect is more pronounced for even

higher values of α in combination with small quantiles.
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New integrand for x=60%−quantile

Figure 3.4 Resulting integrand in Equation (3.3) for the same parameter constellation
as in Figure 3.1, with x the 60%-quantile of the stable distribution with
α = 0.3.

Completing the picture, we investigate the behavior of the resulting density outside the

given quantile-based range. For that, we consider α = 0.01, which obviously has the

most extreme quantiles, and compute the density with our approach outside of the given

interval. Even there, the computed density exhibits a smooth and regular behavior, as

5The comparably higher value for α = 0.3 results from one single grid point, where quadgk has minor
difficulties when integrating over Nolan’s contour. Splitting the integral into two parts, this problem
is removed.

69



3.3.4 Test using the stable density
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Figure 3.5 Resulting integrand in Equation (3.3) for the stable distribution with α =
0.1 (upper figure, three of the lines coincide for the given scale) and α = 0.9
(lower figure), with the values for x chosen as 4 log-spaced points starting,
respectively ending, with the 0.5% and 99.5%-quantiles.
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3.3 Implementation and numerical tests

α 0.5%-quantile 99.5%-quantile Time (N/T) Max. relative deviation from N

0.01 2.24E-73 5.49E+229 1.42/1.05 1.40E-05
0.02 3.73E-37 5.49E+114 1.37/1.06 7.01E-06
0.03 4.52E-25 2.53E+76 1.26/1.06 6.47E-05
0.04 5.06E-19 1.71E+57 1.24/1.07 3.50E-06
0.05 2.18E-15 5.37E+45 1.22/1.08 3.15E-06
0.10 4.39E-08 5.14E+22 1.15/1.05 1.39E-06
0.20 2.35E-04 1.48E+11 1.08/1.07 1.47E-06
0.30 0.005 1.95E+07 1.04/1.10 1.00E-03
0.40 0.023 2.08E+05 1.03/1.13 3.11E-07
0.50 0.063 1.27E+04 1.03/1.27 5.65E-07
0.60 0.132 1.82E+03 1.25/1.06 1.20E-09
0.70 0.236 408.350 1.23/1.11 7.99E-09
0.80 0.385 113.914 1.28/1.42 3.12E-07
0.90 0.603 30.779 1.48/1.86 4.63E-07
0.95 0.758 12.708 1.70/2.43 2.11E-06
0.96 0.795 9.990 1.77/2.65 3.29E-06
0.97 0.836 7.491 1.85/2.93 7.60E-06
0.98 0.881 5.180 1.97/3.37 5.31E-06
0.99 0.933 3.028 2.14/4.17 1.07E-05

Table 3.2 Comparison of Nolan’s inversion algorithm (N) and integration over the new
representation (T) for stable distributions. The quantiles of the respective
distribution and the time (CPU time in seconds) required by both methods to
evaluate 1 000 density points are listed. Furthermore, the maximum relative
deviation of (T) with respect to Nolan’s approach is given.

can be seen in Figure 3.6.

3.3.5 Test using the Hartman–Watson density

Having observed the astonishing stability of numerical implementations of the stable

density based on the new representation, testing it for other problematic cases seems

natural. The Hartman–Watson distribution (see Section 2.2.2) represents an interesting

candidate for this. The following aspects are partially published in Bernhart and Mai

(2014a), where the approach is additionally compared to other Laplace inversion tech-

niques. Though the Hartman–Watson distribution is of high relevance in particular in

mathematical finance, the numerical evaluation of its density still poses a serious prob-

lem. Equation (2.14) states the best known representation but its instabilities are well

documented, see, e.g., Barrieu et al. (2004); Ishiyama (2005). In this section, we inves-

tigate if the new representation suffers from similar problems. As there is no reliable

benchmark method, only stability considerations are taken into account.
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3.3.5 Test using the Hartman–Watson density
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Figure 3.6 Density of the stable stable distribution with α = 0.01 computed from the
new representation outside of the quantile-based range used in Table 3.2,
i.e. left of the 0.05%-quantile (left figure) and right of the 99.5%-quantile
(right figure).
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3.3 Implementation and numerical tests

One particular challenge with this method is that the modified Bessel function Iν needs

to be evaluated for complex ν. A straight-forward implementation sufficient for our

needs is achieved by using the partial sums related to the representation in Equation

(2.13). It has the advantage that error bounds can be computed, as for r > 0 and

Sνn(r) :=
∑n

m=0
1

m! Γ(m+ν+1) ( r2)2m+ν , one can compute

|Sνn(r)− Iν(r)| ≤
(r

2

)<(ν)
∞∑

m=n+1

1

m! |Γ(m+ ν + 1)|

(r
2

)2m
.

Using the Gamma functional equation Γ(z+1) = Γ(z) z, it is easy to see that |Γ(z+1)| ≥
|Γ(z)| for |z| ≥ 1. Thus, for n ≥ −<(ν)− 1, the sequence {|Γ(m+ ν + 1)|}m=n+1,n+2,...

is increasing, yielding

|Sνn(r)− Iν(r)| ≤
(
r
2

)<(ν)

|Γ(n+ ν + 2)|

∞∑
m=n+1

1

m!

(
r2

4

)m
,

where the series term is the residual of the Taylor expansion of exp(−r2/4), which

allows for a closed-form estimate. Consequently, one is able to choose n such that

the modified Bessel function is approximated up to a required accuracy. Using the

Gamma functional equation, one has to compute the complex Gamma function only

once which further increases efficiency. The complex Gamma function is computed

using the Lanczos approximation, see Lanczos (1964).6 More evolved approaches for

computing the modified Bessel function might be helpful when one is trying to fine-tune

the accuracy of the numerical approach. As we are mainly interested in its stability,

the implementation presented is sufficient for our needs. As in the previous section,

Equation (3.3) is implemented using the MATLAB quadrature algorithm quadgk.

For small values of x, stability issues of Equation (2.14) are well known. Figure 3.7

replicates the problems described in Ishiyama (2005) and compares the resulting density

to results derived with the new representation. It can be observed that the new approach

does not suffer from similar problems. Indeed, the resulting integrand exhibits a tractable

structure, as can be seen in Figure 3.8. Figure 3.7 also zooms in on the result for the

new representation, illustrating that compared to the results in the previous section, the

approach here obviously exhibits minor errors (as the value of the density is negative).

However, they are not severe and are caused by the approximation of the modified

6We use the implementation of P. Godfrey published on http://www.mathworks.com/matlabcentral/

fileexchange/3572-gamma.
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Bessel function, which can be seen when increasing the accuracy of the approximation.

An explanation for the very large quantiles in Figure 3.8 can be found in Figure 2.3,

which illustrates that this law exhibits heavy tails for small values of r.
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Figure 3.7 A comparison of the values for the Hartman–Watson density for r = 0.5
based on the approach presented and Equation (2.14) (upper figure). The
lower figure zooms in on the results for the new approach.

3.4 Conclusion

In this chapter, a new integral representation for densities of the Bondesson class in

terms of their Laplace exponent was derived. It was derived via a contour transform

of the original Laplace inversion, a main contribution of the work presented being the
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Figure 3.8 Resulting integrand in Equation (3.3) for the Hartman–Watson density for
r = 0.5, with the values for x chosen as 4 log-spaced points in the interval in
Figure 3.7 (upper figure), and starting, respectively ending, with the 0.5%
and 99.5%-quantiles (lower figure).
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proof of the applicability of the involved contour transform for all Bondesson distribu-

tions. Furthermore, as an interesting corollary, it was shown that the approach is also

applicable for distribution functions and option-like structures. Numerical tests confirm

the tractability and smoothness of the resulting representation. Consequently, building

algorithms based on it yields nice results as the involved integrand is of a convenient

form.7 In general, applications might be found in all areas where positive infinitely

divisible distributions or Lévy subordinators play a role.

7Actually, having implemented the formula for the stable density in several projects, we never experi-
enced any stability issues.
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4 Constructing MSMVE distributions

from Bernstein functions

4.1 Motivation

In Section 2.4, we presented so-called MSMVE distributions, which constitute an impor-

tant family of multivariate distributions, among others due to their relation to extreme-

value distributions illustrated in Section 2.4.3. Furthermore, as a natural extension of

the exponential distribution to higher dimensions, these are also interesting for applica-

tions such as credit portfolio models. A natural, widespread, and robust way to model

the default times of single components of a credit portfolio (e.g. bonds or loans) is based

on the exponential distribution. For a portfolio manager, it is daily business to express

the default risk associated with a single credit-risky asset in terms of an exponential

rate often called the “credit spread”. However, it is not obvious how to model the joint

distribution of the default times of multiple credit-risky assets. Though copula methods

(see, e.g., Schönbucher and Schubert (2001); Cherubini et al. (2004)) are applicable, us-

ing a “true” multivariate exponential model seems to be more promising. In particular

as the available data is usually scarce, exponential concepts should be used because such

concepts naturally fit the intuitive motivation of modeling lifetimes.

Though the class of MSMVE distributions is very well studied on an abstract level, the

number of known parametric families is rather small. Even though Molchanov (2008),

Hofmann (2009), and Ressel (2013) have proven necessary and sufficient conditions for a

function ` to provide a stable tail dependence function, these conditions are not easy to

check analytically for a given function. Furthermore, the number of parametric models

for which concrete stochastic representations (and thus sampling strategies) are known

is even smaller. For most families, it is only known that the spectral representation of

De Haan (1984) (see Lemma 2.45) exists or an implicit stochastic representation as a

limit distribution (see Section 2.4.3) can be stated.
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Motivated by the above considerations, there is some recent work aiming at the construc-

tion of new and flexible parametric families in high dimensions, see, e.g., Fougères et al.

(2009); Durante and Salvadori (2010); Ballani and Schlather (2011); Segers (2012). In

the same spirit, the aim of the present chapter is to develop new parametric models that

have a convenient stochastic representation based on the representation stated in Theo-

rem 2.46. We will develop two similar classes of MSMVE distributions, giving rise to a

huge quantity of parametric stable tail dependence functions in arbitrary dimensions.1

Furthermore, the underlying stochastic model can be used for efficient simulations, in

particular in high dimensions, to construct non-exchangeable extensions (see Lemma

2.50), and to investigate statistical properties of the associated MSMVE distribution.

As a side product, tractable examples of IDT processes are constructed, and related

integral transforms are investigated.

To be more precise, using Lemma 2.31, we will construct tractable families of IDT

subordinators by specifying two suitable choices of the function f , denoted f1 and f2.

These families of processes yield MSMVE distributions via Theorem 2.46 respectively

the IDT-frailty construction therein. Furthermore, they are tractable enough to allow

for the computation of the required quantities characterizing the MSMVE distributions.

Having investigated two instances of this general approach, a second aim of this chapter

is to present a classification of all MSMVE distributions that can be constructed using

IDT subordinators which are defined as in Lemma 2.31. We will show how they arise

as limits of an extended shock-model construction. Such results help to improve the

intuitive understanding of this class of distributions and the underlying dependence

structure.

The class of distributions constructed here seems to be particularly useful for credit

portfolio modeling. An intuitive understanding of the dependence structure used is

crucial whenever the data available is scarce, as this requires an additional assessment of

suitability. Furthermore, those portfolios can become quite large and it is often necessary

to simulate from their distribution. Finally, the frailty construction employed has one

further advantage: In the case of a large homogeneous portfolio, the relative portfolio

loss for any point in time, i.e. the portion of defaulted entities in the portfolio until this

point, can be efficiently approximated using a Glivenko–Cantelli type of reasoning, as

applied, e.g., in Mai et al. (2013). This results in formulas comparable to the famous

1Similar to Joe (1990), the aim is to introduce new classes of models, while an application of these in
practice requires a further, very detailed investigation of particular parametric families, which lies
outside the scope of this work.
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4.2 A first construction based on f1(s) = (1− s)+

Vasicek formula, see, e.g., Vasicek (2002), which allow an efficient evaluation of more

complex securities like loss tranches and an easy computation of risk measures like the

portfolio Value-at-Risk.

The remainder of this chapter is structured as follows: In Section 4.2, a specific fam-

ily of IDT subordinators (based on f1) is investigated and the corresponding MSMVE

distribution is determined. A similar example (based on f2) is sketched in Section 4.3.

A note on simulation can be found in Section 4.4 and in Section 4.5, the general class

of distributions attainable by our construction is investigated. Section 4.6 concludes.

This chapter is based on work I completed under supervision of Jan-Frederik Mai and

Matthias Scherer. A condensed version of the results of this chapter can be found in

Bernhart et al. (2015b).

4.2 A first construction based on f1(s) = (1− s)+

We examine the construction of Lemma 2.31 using the function f1(s) = (1 − s)+ :=

max{1 − s, 0}, which obviously fulfills the conditions stated in Lemma 2.31 for every

Lévy subordinator, i.e. we consider the IDT subordinator

Ht :=

∫ ∞
0

(
1− s

t

)
+

dΛs =

∫ t

0

(
1− s

t

)
dΛs, t > 0, (4.1)

with H0 := 0. The process H has an alternative representation using integration by

parts, namely

Ht :=
1

t

∫ t

0
Λsds, t > 0, (4.2)

which can be seen as some kind of moving average of the increasing process Λ. From

Equation (4.1) it can be seen that pathwise, Ht equals a Williamson 2-transform evalu-

ated at 1/t, see, e.g., Williamson (1956) for the definition of Williamson d-transforms.

Consequently, one can deduce that Ht = ψ(1/t) with ψ a (random) convex and non-

increasing function. It can be seen from the representation in Equation (4.2) that Ht

equals the product of a differentiable function and a function that is a.e. differentiable,
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4.2.1 Attainable marginal distributions

a.s.. Consequently, the paths of H are a.e. differentiable, a.s.. Furthermore,

Ht+x −Hx =
1

t+ x

∫ x+t

x
Λsds−

t

x (x+ t)

∫ x

0
Λsds

=
1

t+ x

∫ x+t

x
(Λs − Λx) ds+

tΛx
x+ t

− t

x+ t
Hx

d
=

1

t+ x

∫ t

0
Λ̃sds+

t

x+ t
(Λx −Hx) =

t

x+ t
H̃t +

t

x+ t
(Λx −Hx),

where Λ̃ is an independent copy of Λ and H̃ the corresponding independent copy of H.

Consequently, the increments, given the path of Λ up to time x, can be decomposed

into a stochastic component independent of the previous evolution and a component

measurable with respect to Fx := σ(Λs, 0 ≤ s ≤ x). However, as the value of Λx can not

be recovered from Hx, H is not Markovian.

We start with an analysis of the marginal distributions of H that are attainable in this

construction in Section 4.2.1, and then investigate the resulting MSMVE distribution in

Section 4.2.2.

4.2.1 Attainable marginal distributions

In a first step, we analyze possible marginal distributions of H that can arise from this

construction. This will be helpful when investigating the resulting MSMVE distribution

in a second step. However, we also consider this of interest in its own right and, thus,

present the results in some detail. Let ΨΛ be the Laplace exponent of Λ1, νΛ the corre-

sponding Lévy measure, and aΛ its drift term. For the resulting IDT subordinator H,

we denote its associated Bernstein function by ΨH with Lévy measure νH and drift aH .

Let Φf1 denote the integral transform considered, i.e. Φf1 : L(Λ1) 7→ L
(∫ 1

0 (1− s) dΛs

)
,

which we will use simultaneously on the level of corresponding Lévy measures Φf1 : νΛ 7→
νH , see Remark 2.29. It can be shown that the resulting Lévy measure νH = Φf1(νΛ)

possesses a non-increasing density.

Lemma 4.1 (Lévy measures associated with H)

(i) The Lévy measure νH possesses a density gH with respect to the Lebesgue measure,

given by

gH(y) =

∫ ∞
y

νΛ(dx)

x
, y > 0,
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4.2 A first construction based on f1(s) = (1− s)+

and the drift of H is given by aH := aΛ/2.

(ii) For any non-negative, measurable function h∫ ∞
0

h(x) νH(dx) =

∫ ∞
0

1

x

(∫ x

0
h(y) dy

)
νΛ(dx).

Proof

We only prove (ii), as (i) can be proven along the same lines (see, e.g., (Barndorff-

Nielsen et al., 2008, Example 6.3 (1))). For H =
∫ 1

0 (1− s) dΛs, Equation (2.19) in

Theorem 2.26 yields

ΨH(x) =

∫ 1

0
ΨΛ

(
x (1− s)

)
ds, x ≥ 0,

as f1(s) = (1− s)+ is obviously integrable. One has

νH(B) =

∫ 1

0
νΛ

(
B/(1− s)

)
ds =

∫ 1

0
νΛ(B/s) ds, B ∈ B(R+). (4.3)

Thus, for any non-negative, measurable function h,∫ ∞
0

h(x) νH(dx) =

∫ 1

0

∫ ∞
0

h(x s) νΛ(dx) ds =

∫ ∞
0

∫ 1

0
h(x s) ds νΛ(dx)

=

∫ ∞
0

1

x

(∫ x

0
h(y) dy

)
νΛ(dx),

proving the claim. �

Actually, one can show even more. As mentioned in Remark 2.29, it can be shown

that Φf1 : M → U in a surjective manner, i.e. every Bernstein function possessing a

non-increasing density can be reached by the given construction. This result has already

been shown in Jurek (1985) for distributions on general Banach spaces, as he shows that

all such distributions admit a representation as
∫ 1

0 sdΛs
d
=
∫ 1

0 (1−s) dΛs. Even more, he

showed that the mapping Φf1 is one-to-one. Furthermore, it can be seen from Equation

(4.3) that Φf1 is a so-called “Upsilon transform” in the sense of Barndorff-Nielsen et al.

(2008), with dilation measure γ(dx) = 1[0,1]dx, from which more results can be derived,

e.g., on continuity properties of the transform Φf1 .

We will present a detailed analysis of the integral transform. Not the complete analysis

is necessary for the rest of the chapter, however, we hope that it is of interest on its
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4.2.1 Attainable marginal distributions

own. Furthermore, the results allow to explicitly compute the pre-image of important

distributions, which is crucial for finding the stochastic representation of the MSMVE

laws defined in Section 4.2.2.

Lemma 4.2 (Analysis of Φf1)

(a) Φf1 :M→ U and the mapping is one-to-one.

(b) Φ−1
f1

(
g(x)dx

)
= −x g′(x)dx for g a c.m. Lévy density.

(c) It holds that Φ−1
f1

(T ) ⊂ BO and

Φ−1
f1

(T ) =
{
ν ∈M : ν(dx) = f(x)dx,

with f(x) = −x g′(x), g a Thorin Lévy density
}

=

{
ν ∈M : ν(dx) = f(x)dx,

with f(x) =

∫
(0,∞)

exp(−x s) d(sw(s)), w ∈W

}
,

where

W :=
{
w : (0,∞)→ [0,∞) is non-decreasing, left-continuous,∫ ∞

0
(1 + t)−1 t−1w(t) dt <∞

}
.

(d) Φf1(BO) ⊂ BO, but Φ−1
f1

(BO) 6⊂ BO, and

Φ−1
f1

(BO) =
{
ν ∈M : ν(dx) = f(x)dx,

with f(x) = x

∫
(0,∞)

exp(−x s)s η(ds), η ∈ V
}
,

where

V :=

{
η measure on (0,∞),

∫ ∞
0

(s−1 ∧ 1) s−1 η(ds) <∞
}
.

(e)

Φ−1
f1

(L) =

{
ν ∈M : ν(dx) =

f(x)

x
dx+ d(−f(x)), with f ∈ F

}
,
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4.2 A first construction based on f1(s) = (1− s)+

where

F :=

{
f : (0,∞)→ [0,∞), decreasing,

∫ ∞
0

(s−1 ∧ 1) f(s) ds <∞
}
.

Proof

(a) This is the result in (Jurek, 1985, Theorem 2.6) restricted to distributions on R+.

Here, we only give a short proof of surjectivity as Φf1(M) ⊂ U follows from Lemma

4.1 already. Let g be the right-continuous version of a non-increasing Lévy density

on (0,∞), i.e.
∫∞

0 (1 ∧ u) g(u) du <∞ and thus limu→∞ g(u) = 0. Therefore, one

can define a measure on (0,∞) by ν̃((u,∞)) := g(u). Setting ν(dx) := x ν̃(dx)

defines the pre-image of the desired distribution as

g(u) =

∫
(y,∞)

ν̃(dx) =

∫
(y,∞)

ν(dx)

x
,

and as ν ∈M, which follows from

∞ >

∫ ∞
0

(1 ∧ u) g(u) du =

∫ ∞
0

(1 ∧ u)

∫
(y,∞)

ν(dx)

x
du

=

∫ ∞
0

1

x

∫
(0,x)

(1 ∧ u) du ν(dx) =

∫ 1

0

x

2
ν(dx) +

∫ ∞
1

x− 0.5

x
ν(dx)

≥ 1

2

∫ ∞
0

(1 ∧ x) ν(dx).

This shows that Φf1(M) = U .

(b) Using Lemma 4.1(i), it is easy to see that starting from ν(dx) = −x g′(x)dx, for

the resulting density gH it holds

gH(y) =

∫ ∞
y

ν(dx)

x
=

∫ ∞
y

−x g′(x) dx

x
= g(y).

(c) Each Thorin Lévy density is also c.m., as it can be written as the product of 1/x and

a c.m. function (and the product of c.m. functions being c.m. again). Consequently,

from (b) follows that every ν ∈ Φ−1
f1

(T ) can be written as ν(dx) = f(x)dx with

f(x) = −x g′(x) and g a Thorin Lévy density. Since −x g′(x) = g(x)+(−(x g(x))′)

is c.m. as the sum of two c.m. functions, we know that ν ∈ BO and thus Φ−1
f1

(T ) ⊂
BO. Moreover, we use results in (Schilling et al., 2010, Remark 8.3), which state
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4.2.1 Attainable marginal distributions

that for every Thorin density g there exists a function w ∈W with

g(x) =

∫
(0,∞)

e−x sw(s)ds, x g(x) =

∫
(0,∞)

e−x sdw(s).

Thus,

f(x) = g(x)− (x g(x))′ =

∫
(0,∞)

e−x sw(s)ds+

∫
(0,∞)

e−x ss dw(s)

=

∫
(0,∞)

e−x s (w(s)ds+ s dw(s)) =

∫
(0,∞)

e−x sd (sw(s)) .

(d) For ν ∈ BO with c.m. Lévy density g it follows that Φf1(ν) has a decreasing Lévy

density gH with

gH(y) =

∫ ∞
y

ν(dx)

x
=

∫ ∞
y

g(x)dx

x
.

Thus g′H(y) = −g(x)/x, where g(x)/x is c.m., which proves that gH is c.m. and

Φf1(ν) ∈ BO.

Again, from (b) follows that every ν ∈ Φ−1
f1

(BO) can be written as ν(dx) =

f(x)dx with f(x) = −x g′(x) and g a c.m. Lévy density. One can deduce that

x exp(−x) ∈ Φ−1
f1

(BO), which is not c.m., proving Φ−1
f1

(BO) 6⊂ BO.The represen-

tation of Φ−1
f1

(BO) follows analogously to the previous steps, as every c.m. Lévy

density g can be written as the Laplace transform of a measure η ∈ V , see (Schilling

et al., 2010, proof of Theorem 6.2).

(e) Every Lévy density g corresponding to a distribution in L has a representation as

g(x) = f(x)/x with f ∈ F . Furthermore, using integration by parts in the third

equality below,∫ ∞
x

1

y

(
f(y)

y
dy + d(−f(y))

)
= −

(∫ ∞
x

1

y
df(y) +

∫ ∞
x

−1

y2
f(y) dy

)
= −

(∫ ∞
x

1

y
df(y) +

∫ ∞
x

f(y) d(1/y)

)
= −

(
lim
z→∞

f(z)

z
− f(x)

x

)
=
f(x)

x
= g(x). �

Remark 4.3 (Remark on representation of Φ−1
f1

(L))

The right-continuous modifications of functions f in our representation of Φ−1
f1

(L) have
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4.2 A first construction based on f1(s) = (1− s)+

a meaning in the stochastic representation proven in (Jurek, 1985, Theorem 4.5): Ev-

ery distribution in Φ−1
f1

(L) can be written as the convolution of an ID measure µ and

L
( ∫∞

0 exp(−s) dΛs
)
, where µ has a Lévy measure in Mlog corresponding to d(−f), f ∈

F , and Λ is a Lévy subordinator with L(Λ1) = µ.

More precisely, it holds that ν = d(−f) ∈ Mlog ⇔ f ∈ F and for a subordinator Λ with

Lévy measure ν, the expression
∫∞

0 exp(−s) dΛs can be defined if and only if ν ∈Mlog,

see, e.g., (Jurek and Vervaat, 1983, Theorem 2.3) (they consider the equivalent condition∫∞
1 log(x+ 1) ν(dx) <∞). Furthermore, the Lévy measure corresponding to the defined

integral has Lévy density f(x)/x, which follows analogously to the steps in Lemma 4.1

The previous lemma does not only characterize the pre-images of important classes of

distributions, it also allows for their explicit computation. Using the previous results,

we can further conclude that for every Lévy subordinator with marginal distributions

in the Jurek class, we can find another non-decreasing process with the same marginal

distributions and a.e. differentiable paths, a.s..

4.2.2 The corresponding MSMVE family

It is known that for all d ≥ 2, (X1, . . . , Xd)
ᵀ constructed as in Equation (2.26) exhibits

an MSMVE distribution which corresponds to a stable tail dependence function `. In

the given construction, ` can be computed explicitly. In particular, it is a function of the

Bernstein function ΨH . This constitutes a very flexible class of stable tail dependence

functions, since one can plug in any desired Bernstein function of the Jurek class.

Theorem 4.4 (Constructing parametric MSMVE families - I)

For every Bernstein function ΨH with drift aH , Lévy measure νH ∈ U , and ΨH(1) = 1,

the function

`(x1, . . . , xd) =
d∑d

j=1 1/x(j)

ΨH(d)

−
d−1∑
i=1

(
d− i+ 1∑d
j=i 1/x(j)

− d− i∑d
j=i+1 1/x(j)

)
ΨH

d− i− d∑
j=i+1

x(i)/x(j)


is a stable tail dependence function for every d ≥ 2. A random vector (X1, . . . , Xd)

ᵀ with
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4.2.2 The corresponding MSMVE family

the respective MSMVE distribution can be constructed via

Xk := inf

{
t > 0 : Ek <

∫ t

0

(
1− s

t

)
dΛs

}
, k = 1, . . . , d,

with Λ = {Λt}t≥0 a Lévy subordinator with drift aΛ = 2 aH and Lévy measure νΛ =

Φ−1
f1

(νH), and an iid sequence {Ek}k∈N of unit exponential random variables independent

of Λ.

Remark 4.5 (Defining ` for xi = 0)

Actually, the expression for ` in Theorem 4.4 is only defined for values x1, . . . , xd > 0.

However, since the construction yields `(x1, . . . , xd) = − log
(
E
[

exp (−Hx1 − . . .−Hxd)
])

and H0 = 0, it is obvious that the case xi = 0 for at least one i ∈ {1, . . . , d} has a sim-

ple solution: for I := {i ∈ {1, . . . , d} : xi = 0} with k := |I|, one has `(x1, . . . , xd) =

`(x(1), . . . , x(d)) = `(0, . . . , 0, x(k+1), . . . , x(d)) = `(x(k+1), . . . , x(d)) and `(0, . . . , 0) = 0.

The same observation holds true for Theorem 4.12 below.

Proof (of Theorem 4.4)

It follows from Lemma 4.2 that there exists a Lévy subordinator Λ with drift aΛ =

2 aH , νΛ = Φ−1
f1

(νH), such that the marginal distribution of the IDT subordinator Ht =∫ t
0 (1− s/t) dΛs corresponds to the Bernstein function ΨH . Using this process H in the

IDT-frailty construction of Theorem 2.46, we observe

P(X1 > x1, . . . , Xd > xd) = exp
(
− `(x1, . . . , xd)

)
= E

[
exp (−Hx1 − . . .−Hxd)

]
= E

[
exp

(
−

d∑
i=1

∫ ∞
0

(
1− s

xi

)
+

dΛs

)]

= E

[
exp

(
−
∫ ∞

0

d∑
i=1

(
1− s

xi

)
+

dΛs

)]

= exp

(
−
∫ ∞

0
ΨΛ

(
d∑
i=1

(
1− s

xi

)
+

)
ds

)
,

where in the last step, we use Theorem 2.26(ii) again. Following Remark 4.5, we con-

sidered x1, . . . , xd > 0. Consequently, we find

`(x1, . . . , xd) = aH

d∑
j=1

xj +

∫ x(d)

0

∫ ∞
0

1− exp

(
−u

d∑
i=1

(
1− s

xi

)
+

)
νΛ(du) ds. (4.4)
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4.2 A first construction based on f1(s) = (1− s)+

We proceed with three helpful equalities:

−x(d) = − 1∑d
j=1

1
x(j)

−
d−1∑
i=1

(
1∑d

j=i+1
1
x(j)

− 1∑d
j=i

1
x(j)

)
, (4.5)

which follows from a telescope argument applied to the right hand side. Furthermore,

one has

x(d) =
d∑d

j=1
1
x(j)

−
d−1∑
i=1

(
1∑d

j=i+1
1
x(j)

− 1∑d
j=i

1
x(j)

)(
d∑

j=i+1

x(i)

x(j)
− (d− i)

)
, (4.6)

as (
1∑d

j=i+1
1
x(j)

− 1∑d
j=i

1
x(j)

)(
d∑

j=i+1

x(i)

x(j)
− (d− i)

)
=
d− i+ 1∑d
j=i

1
x(j)

− d− i∑d
j=i+1

1
x(j)

,

so again, we can use a telescope argument. Finally,

d∑
j=1

xj =
d2∑d

j=1
1
x(j)

−
d−1∑
i=1

(
d− i+ 1∑d
j=i

1
x(j)

− d− i∑d
j=i+1

1
x(j)

)(
d− i−

d∑
j=i+1

x(i)

x(j)

)
, (4.7)

which can be shown by rearranging(
d− i+ 1∑d
j=i

1
x(j)

− d− i∑d
j=i+1

1
x(j)

)(
d− i−

d∑
j=i+1

x(i)

x(j)

)
=

(d− i+ 1)2∑d
j=i

1
x(j)

− (d− i)2∑d
j=i+1

1
x(j)

− x(i),

so again, we can use another telescope argument.

For the second term in Equation (4.4), we can compute, defining x(0) := 0,

∫ x(d)

0

∫ ∞
0

1− exp

(
−u

d∑
i=1

(
1− s

xi

)
+

)
νΛ(du) ds

=

∫ ∞
0

x(d) −
d∑
i=1

∫ x(i)

x(i−1)

exp

−u d∑
j=i

(
1− s

x(j)

) ds νΛ(du)

=

∫ ∞
0

x(d) −
d∑
i=1

e−u (d−i+1)

u
∑d

j=i
1
x(j)

(
e
ux(i)

∑d
j=i

1
x(j) − e

ux(i−1)

∑d
j=i

1
x(j)

)
νΛ(du)

87



4.2.2 The corresponding MSMVE family

=

∫ ∞
0

1

u

(
ux(d) − x(d) +

e−u d∑d
j=1

1
x(j)

+

d−1∑
i=1

e
u

(∑d
j=i+1

x(i)
x(j)
−(d−i)

)(
1∑d

j=i+1
1
x(j)

− 1∑d
j=i

1
x(j)

))
νΛ(du)

where now the aim is to bring this in a specific form such that Lemma 4.1(ii) is applicable,

=

∫ ∞
0

1

u

(
ux(d) +

e−u d − 1∑d
j=1

1
x(j)

+
d−1∑
i=1

(
1∑d

j=i+1
1
x(j)

− 1∑d
j=i

1
x(j)

)(
e
u

(∑d
j=i+1

x(i)
x(j)
−(d−i)

)
− 1

))
νΛ(du)

having replaced −x(d) using Equation (4.5), which yields exactly the missing constants

to rewrite the expression as an integral

=

∫ ∞
0

1

u

(∫ u

0
x(d) −

d e−s d∑d
j=1

1
x(j)

+
d−1∑
i=1

e
s

(∑d
j=i+1

x(i)
x(j)
−(d−i)

)

×

(
d∑

j=i+1

x(i)

x(j)
− (d− i)

)(
1∑d

j=i+1
1
x(j)

− 1∑d
j=i

1
x(j)

)
ds

)
νΛ(du)

=

∫ ∞
0

x(d) −
d e−u d∑d
j=1

1
x(j)

+
d−1∑
i=1

e
u

(∑d
j=i+1

x(i)
x(j)
−(d−i)

)

×

(
d∑

j=i+1

x(i)

x(j)
− (d− i)

)(
1∑d

j=i+1
1
x(j)

− 1∑d
j=i

1
x(j)

)
νH(du)

where in the last step, we used Lemma 4.1(ii),

(4.6)
=

∫ ∞
0

d∑d
j=1

1
x(j)

(
1− e−d u

)
−

d−1∑
i=1

(
d− i+ 1∑d
j=i

1
x(j)

− d− i∑d
j=i+1

1
x(j)

)

×

(
1− e

u

(∑d
j=i+1

x(i)
x(j)
−(d−i)

))
νH(du).

From Equation (4.4) follows that one has to add the term aH
∑d

j=1 xj to the above

expression in order to compute `. According to Equation (4.7), aH
∑d

j=1 xj can be

88



4.2 A first construction based on f1(s) = (1− s)+

rewritten as

aH

d∑
j=1

xj =
d∑d

j=1
1
x(j)

aH d−
d−1∑
i=1

(
d− i+ 1∑d
j=i

1
x(j)

− d− i∑d
j=i+1

1
x(j)

)
aH

(
d− i−

d∑
j=i+1

x(i)

x(j)

)
,

and the claim follows. �

Remark 4.6

By choosing the drift aH ∈ [0, 1] one can interpolate between a deterministic process

(aH = 1 implying Ht = t) and a “completely random” process (aH = 0), which for

the corresponding multivariate distribution of (X1, . . . , Xd)
ᵀ means interpolating between

independence and the maximal dependence attainable by the given random structure. In

the following examples, we will always set the drift to zero.

Having a closer look at the resulting dependence structure of (X1, . . . , Xd)
ᵀ, it might

be interesting to consider the Pickands dependence function A : (0, 1) → [1/2, 1] of the

corresponding bivariate distribution. As the distribution is exchangeable, A has to be

symmetric and it is sufficient to consider and visualize it for 0 < t ≤ 0.5:

A(t) = `(t, 1− t) = 2 t(1− t) ΨH(2) + (1− t)(1− 2 t) ΨH

(
1− t

1− t

)
. (4.8)

It is obvious that A ∈ C∞ on (0, 1/2) (and thus on (1/2, 1)), as ΨH is. Using the

symmetry around t = 1/2, A is (continuously) differentiable on (0, 1) if the left derivative

at t = 1/2 is zero, which is shown in Lemma 4.7. Consequently, the bivariate distribution

is absolutely continuous.2 This fact is intuitively clear from the stochastic model as the

process H does not exhibit jumps, and thus it can not jump across several trigger

variables Ek at the same time.

Lemma 4.7 (Derivative at t = 1/2)

For A as defined in Equation (4.8), it holds that

lim
t↗1/2

A′(t) = 0.

2This can be easily seen considering the a.e. existing density ∂x1∂x2F (x1, x2), which denotes the second
order partial derivative.
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4.2.2 The corresponding MSMVE family

Proof

It is easy to see that for t < 1/2

A′(t) = (2− 4 t) ΨH(2) + (4 t− 3) ΨH

(
1− t

1− t

)
− 1− 2 t

1− t
Ψ′H

(
1− t

1− t

)
.

Consequently,

lim
t↗1/2

A′(t) = −2 lim
t↗1/2

(1− 2 t) Ψ′H

(
1− 2 t

1− t

)
.

The drift term of the Bernstein function can be ignored, yielding

lim
t↗1/2

A′(t) = −2 lim
t↗1/2

(1− 2 t)

∫ ∞
0

u e−u ( 1−2 t
1−t )νH(du)

= −2 lim
t↗1/2

∫ ∞
0

(1− 2 t)u e−u ( 1−2 t
1−t )νH(du)

= −2

∫ ∞
0

lim
t↗1/2

(1− 2 t)u e−u ( 1−2 t
1−t )νH(du) = 0,

where we have used dominated convergence, as it holds that

(1− 2 t)u e−u ( 1−2 t
1−t ) ≤ min(u, 1). �

Using the well-known formulas for bivariate upper and lower tail dependence coefficients

λU and λL stated in Section 2.4.2, one can compute

λL = 2
(
1−A(1/2)

)
= 2−ΨH(2), λU = 1{ΨH(2)=1} = 0.

In our construction, λU is always zero as perfect dependence can only be constructed

using a process that jumps from 0 directly to ∞. There is a nice relation between the

lower tail dependence coefficient and H. As λL = 2 + log(E[exp(−H1)2]), it is increasing

in the variance of exp(−H1). This fits with the intuitive interpretation that the higher

the variability of H (near zero), the higher the probability of joint early hitting of the

exponential triggers, the higher the lower tail dependence.

We present two examples of possible parametrizations. An example with a very simple

form is based on the positive α-stable case.

Example 4.8

ΨH(x) = xα, α ∈ (0, 1), is attainable (respectively part of the Jurek class U) as νH(dx) =
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4.2 A first construction based on f1(s) = (1− s)+

g(x) dx, with

g(x) =
α

Γ(1− α)
x−1−α, x > 0,

see Section 2.2.2, which is a decreasing density. It actually is a c.m. function and

consequently, the distribution is part of the Bondesson class, i.e. νH ∈ BO ⊂ U . Using

Lemma 4.2, we can compute the density f of νΛ = Φ−1
f1

(νH) as f(x) = −x g′(x) = (1 +

α) g(x). Consequently, the corresponding Λ is an α-stable subordinator. The resulting

bivariate Pickands dependence function is

A(t) = t(1− t) 2α+1 + (1− t)1−α (1− 2 t)1+α, 0 < t ≤ 0.5.

For α ∈ (0, 1), this interpolates between complete dependence and independence as can

be seen in Figure 4.1. The lower tail dependence coefficient is given by λL = 2 − 2α.

Though A appears to exhibit a kink at t = 1/2, we know from previous computations that

it is indeed differentiable. In Figure 4.2, the dependence function for the case d = 3 and

α = 0.5 can be found.

Another simple class of Bernstein functions is based on the compound Poisson distribu-

tion. We present one specific instance.

Example 4.9

ΨH = (1 + a)x/(x+ a), a > 0, is attainable as νH(dx) = g(x) dx, with

g(x) = (1 + a) a e−a x, x > 0,

which corresponds to a compound Poisson process with intensity (1 + a) and Exp(a)-

distributed jumps. The related Lévy process is a compound Poisson process with intensity

(1 + a) and Γ(2, a)-distributed jumps, as can be seen from its Lévy measure νΛ(dx) =

Φ−1
f1

(νH(dx)) = (1 + a) a2 x exp(−a x) dx (see Lemma 4.2). The resulting bivariate

Pickands dependence function is

A(t) = (1 + a) (1− t)
(

4 t

2 + a
+

(1− 2 t)2

1− 2 t+ a (1− t)

)
, 0 < t ≤ 0.5,

and the lower tail dependence coefficient is given by λL = 2/(2 + a), i.e. every value in

(0, 1] is attainable.
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Figure 4.1 Bivariate Pickands dependence functions for Example 4.8 (ΨH(x) = xα)
and different values of α.
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Figure 4.2 Trivariate Pickands dependence function A(t1, t2) := `
(
t1, t2, 1− (t1 + t2)

)
,

t1, t2 ≥ 0 with 0 ≤ t1 + t2 ≤ 1, for Example 4.8 (ΨH(x) = xα) with α = 0.5.
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The number of parametric families of attainable Bernstein functions is huge. As men-

tioned earlier, (Schilling et al., 2010, pp. 218–277) list more than one hundred complete

Bernstein functions, which are a proper subclass of the attainable Bernstein functions,

see Section 2.2.2. A small selection of interesting examples can be found in Table 4.1.

In many cases, one can also compute the corresponding Lévy process. If, e.g., H is dis-

tributed according to a compound Poisson distribution, the corresponding subordinator

is a compound Poisson process, as, using Lemma 4.1, it follows that

νΛ

(
(0,∞)

)
=

∫ ∞
0

νΛ(dx) =

∫ ∞
0

1

x

(∫ x

0
dy

)
νΛ(dx) =

∫ ∞
0

h(x) νH(dx) = νH
(
(0,∞)

)
,

and a distribution is compound Poisson if and only if its Lévy measure is finite. Figure

4.3 and Figure 4.4 indicate how different attainable shapes look like.

4.3 A second construction based on f2(s) = log+(1/s)

As a second family, we examine the construction of Lemma 2.31 using the function

f2(s) = log+(1/s) := max{log(1/s), 0}, which results in

Ht :=

∫ t

0
log

(
t

s

)
dΛs, t > 0,

with H0 := 0. This approach does not yield closed form solutions for arbitrary sub-

ordinators, but it allows finding a convenient expression for the corresponding stable

tail dependence function such that tractable instances can be constructed easily. From

(Barndorff-Nielsen et al., 2006b, Proposition 2.3) it follows that f2 fulfills the integrability

conditions in Lemma 2.31 for every Lévy subordinator. Furthermore, the corresponding

integral transform mapping L(Λ1) to L(
∫ 1

0 log (1/s) dΛs) is well known and thoroughly

investigated in arbitrary dimensions, see Barndorff-Nielsen et al. (2006b) and also Re-

mark 2.29. Denoting the transform restricted to distributions on R+ by Φf2 , they show

that Φf2(M) = BO, Φf2(L) = T , and that Φf2 is one-to-one. We provide a short proof

of the first result as it is helpful for understanding the transform itself. ΨH , ΨΛ, and

the related expressions are defined analogously to Section 4.2.
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Figure 4.3 The bivariate Pickands dependence functions resulting from Theorem 4.4
for different ΨH corresponding to the α-stable case, CP1, the Gamma case,
and the IG case as defined in Table 4.1. The parameters are chosen such
that all models exhibit a Spearman’s ρ of 0.5.
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Figure 4.4 A contour plot for the trivariate Pickands dependence function resulting
from Theorem 4.4 for different choices of ΨH , comparing the α-stable case
and CP1. The dotted lines correspond to CP1. Parameters are chosen as
in Figure 4.3. Though the two-dimensional models seem to be similar, the
three-dimensional dependence structures differ considerably.
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Lemma 4.10 (Structure of ΨH)

Using f2, ΨH has a representation

ΨH(x) = aH x+

∫ ∞
0

x

x+ t
σH(dt), x ≥ 0,

with aH = aΛ and σH(B) :=
∫∞

0 1B(1/u)νΛ(du), B ∈ B(R).

Proof

Similar as in Lemma 4.1, for x ≥ 0 we see

ΨH(x) =

∫ ∞
0

ΨΛ (x f2(s)) ds =

∫ 1

0
ΨΛ

(
x log+(1/s)

)
ds

= aΛ x

∫ 1

0
log+(1/s) ds+

∫ 1

0

∫ ∞
0

1− exp
(
−ux log+(1/s)

)
νΛ(du) ds

= aΛ x+

∫ ∞
0

∫ 1

0
1− sux ds νΛ(du)

= aΛ x+

∫ ∞
0

x

x+ 1/u
νΛ(du) = aΛ x+

∫ ∞
0

x

x+ t
σH(dt). �

Remark 4.11

Using Lemma 4.10, Φf2(M) = BO follows from the observation that σH as defined above

is a Stieltjes measure if and only if νΛ is a Lévy measure, as∫ ∞
0

(1 ∧ u) νΛ(du) =

∫ ∞
0

(
1 ∧ 1

s

)
σH(ds),

and

1

1 + s
≤
(

1 ∧ 1

s

)
≤ 2

1 + s
.

Consequently, Lemma 4.10 defines a direct connection between the characteristics of ΨH

and ΨΛ as we can write the Stieltjes measure of H in terms of the Lévy measure of Λ.

We will make use of this fact below.

What is interesting in this context is that the process H itself has an alternative rep-

resentation, using integration by parts, as shown in (Barndorff-Nielsen et al., 2006b,

Proposition 2.4), via

Ht =

∫ t

0

Λs
s

ds = lim
u↘0

∫ t

u

Λs
s

ds, (4.9)
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4.3 A second construction based on f2(s) = log+(1/s)

where the limit is a.s.. In the context of the construction in Equation (2.26), this can

be interpreted as an intensity model with intensity λs := Λs/s, s > 0, λ0 := aΛ, in the

spirit of, e.g., Duffie and Gârleanu (2001). It is defined consistently, as lims↘0 λs = aΛ

a.s., see (Sato, 1999, p. 351). This is a peculiar construction, as it follows, assuming the

first and second moment of Λ to exist, that E[λs] = aΛ +
∫∞

0 x νΛ(dx) independent of

s and Var[λs] = 1/s
( ∫∞

0 x2 νΛ(dx)
)

for s > 0. Thus, the variance of the intensity is

exploding close to 0 and vanishing for large s.

4.3.1 The corresponding MSMVE family

As we have seen in Lemma 4.10 and Remark 4.11, for an arbitrary Stieltjes measures

σH one can find a corresponding Lévy measure. We will use this fact and state the

dependence function of the resulting multivariate distribution in terms of the Stieltjes

measures, such that arbitrary Stieltjes measures can be plugged in. Notice that Remark

4.5 also applies to Theorem 4.12.

Theorem 4.12 (Constructing parametric MSMVE families - II)

For every complete Bernstein function ΨH with Stieltjes measure σH and drift aH such

that ΨH(1) = 1, the function

`(x1, . . . , xd) =
d∑
i=1

x(i)

aH +

∫ ∞
0

 d∏
j=i+1

x(i)

x(j)

1/s

s

(s+ d− i+ 1) (s+ d− i)
σH(ds)


(4.10)

denotes a stable tail dependence function for every d ≥ 2. A stochastic representation of

an MSMVE distribution (X1, . . . , Xd)
ᵀ with stable tail dependence function ` and unit

exponential marginals is given by

Xk := inf

{
t > 0 : Ek <

∫ t

0
log

(
t

s

)
dΛs

}
,

with Λ a Lévy subordinator with drift aΛ = aH and Lévy measure νΛ given by νΛ(B) :=∫∞
0 1B(1/u)σH(du), B ∈ B(R), and an iid sequence {Ek}k∈N of unit exponential random

variables independent of Λ.

Proof

From Lemma 4.10 and Remark 4.11 we know that there exists a Lévy subordinator Λ with

drift aΛ = aH and Lévy measure νΛ, such that Ht =
∫ t

0 log (t/s) dΛs has a marginal dis-
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4.3.1 The corresponding MSMVE family

tribution corresponding to ΨH . Using this H in the IDT-frailty construction in Theorem

2.46, we obtain

`(x1, . . . , xd) = aH

d∑
j=1

xj +

∫ x(d)

0
ΨνΛ

(
d∑
i=1

log+

(xi
s

))
ds,

where following Remark 4.5, we consider x1, . . . , xd > 0. For the second term, we com-

pute

∫ x(d)

0
ΨνΛ

(
d∑
i=1

log+

(xi
s

))
ds

=

∫ ∞
0

∫ x(d)

0
1− exp

(
−u

(
d∑
i=1

log+

(xi
s

)))
ds νΛ(du)

=

∫ ∞
0

x(d) −
d∑
i=1

∫ x(i)

x(i−1)

exp

−u
 d∑
j=i

log
(x(j)

s

) ds νΛ(du)

=

∫ ∞
0

x(d) −
d∑
i=1

∫ x(i)

x(i−1)

(∏d
j=i x(j)

sd−i+1

)−u
ds νΛ(du)

=

∫ ∞
0

x(d) −
d∑
i=1

 d∏
j=i

x(j)

−u ∫ x(i)

x(i−1)

su (d−i+1)ds νΛ(du)

=

∫ ∞
0

x(d) −
d∑
i=1

 d∏
j=i

x(j)

−u xu (d−i+1)+1
(i) − xu (d−i+1)+1

(i−1)

u (d− i+ 1) + 1
νΛ(du)

=

∫ ∞
0

x(d)
u

u+ 1

−
d−1∑
i=1

 d∏
j=i

x(j)

−u x
u (d−i+1)+1
(i)

u (d− i+ 1) + 1
−

 d∏
j=i+1

x(j)

−u x
u (d−(i+1)+1)+1
(i)

u (d− (i+ 1) + 1) + 1

 νΛ(du)

=

∫ ∞
0

x(d)
u

u+ 1
−

d−1∑
i=1

 d∏
j=i+1

x(j)

−u xu (d−i)+1
(i)

[
1

u (d− i+ 1) + 1
− 1

u (d− i) + 1

]
νΛ(du)

=

∫ ∞
0

x(d)
u

u+ 1
−

d−1∑
i=1

x(i)

 d∏
j=i+1

x(j)

x(i)

−u [ 1

u (d− i+ 1) + 1
− 1

u (d− i) + 1

]
νΛ(du)

=

∫ ∞
0

x(d)
1

1 + s
−

d−1∑
i=1

x(i)

 d∏
j=i+1

x(j)

x(i)

−1/s [
s

(d− i+ 1) + s
− s

(d− i) + s

]
σH(ds)
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4.3 A second construction based on f2(s) = log+(1/s)

=

d∑
i=1

x(i)

∫ ∞
0

 d∏
j=i+1

x(i)

x(j)

1/s

s

(s+ d− i+ 1) (s+ d− i)
σH(ds).

The claim follows. �

At least two approaches are possible when looking for tractable specifications. As there

exists a direct link between σH and νΛ, one can start from both sides. It is, for exam-

ple, possible to start from σH corresponding to a desired ΨH and try to compute the

expression in Theorem 4.12. Schilling et al. (2010) lists the Stieltjes measures for many

of the known complete Bernstein functions. One could also start from a νΛ such that

the Laplace transform of the measure νΛ(du)/(nu + 1) for n ∈ N is known in closed

form. This can be seen from the third from last line of the computation in the proof of

Theorem 4.12.

We present one example of a possible parametrization starting from the Laplace exponent

ΨH .

Example 4.13

ΨH(x) = (1 + a)x/(x + a), a > 0 is attainable and corresponds to a compound Poisson

distribution with intensity (1+a) and jump-size distribution Exp(a). This coincides with

the Bernstein function in Example 4.9 in the previous section (also called CP1 in Table

4.1), i.e. it is possible to construct a process H using f2 which has the same marginal

distributions as the process constructed in Example 4.9 using f1. Thus, the minima

of subsets of the two different resulting MSMVE sequences have the same exponential

distributions (in particular, the two sequences are marginally equivalent in minimums),

though their multivariate distributions differ.

The corresponding Stieltjes measure is determined as σH(ds) = (1 + a)δa(s). It is easy

to see that νΛ = Φ−1
f2

(σH) is given by νΛ(ds) = (1 + a)δ1/a(s), so Λ is a Poisson process

with fixed jump-size 1/a and intensity (1 + a). A closed-form solution for ` defined in

Equation (4.10) is given by

`(x1, . . . , xd) =
d∑
i=1

x(i)

 d∏
j=i+1

x(i)

x(j)

1/a

a (a+ 1)

(a+ d− i+ 1) (a+ d− i)
.

The bivariate Pickands dependence function for 0 < t < 0.5 can be stated as

A(t) = (1− t) + t

(
t

1− t

)1/a a

a+ 2
.
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The dependence functions of this model and the one of Example 4.9 are compared in Fig-

ure 4.5. It can be observed that both approaches yield considerably different dependence

functions.
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Figure 4.5 The bivariate Pickands dependence functions for Example 4.9 and Example
4.13, which share the same Bernstein function ΨH , but are based on different
families of IDT subordinators. The parameters are chosen such that both
models exhibit a Spearman’s ρ of 0.5.

4.4 A note on simulation

As mentioned before, the stochastic representation of (X1, . . . , Xd)
ᵀ as an IDT-frailty

model can be used to develop efficient simulation algorithms. When the involved Lévy

subordinators are compound Poisson processes, simulating is straight-forward. Other
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4.4 A note on simulation

Lévy subordinators can be approximated by compound Poisson processes, see, e.g.,

Damien et al. (1995), or more involved schemes can be developed based on the given

representation. We compare Example 4.9 with Example 4.13, which both yield CP1, i.e.

ΨH(x) = (1+a)x/(x+a), a > 0, as the desired (complete) Bernstein function for H, i.e.

the resulting models are marginally equivalent in minimums (if the same parameter a

is chosen). In Example 4.9, this corresponds to Λ(1) being a compound Poisson process

with intensity (1 + a) and Γ(2, a)-distributed jumps, i.e.

H
(1)
t =

∫ t

0

(
1− s

t

)
dΛ(1)

s , t > 0,

has the desired Laplace exponent. For the family f2, as described in Example 4.13,

this corresponds to Λ(2) being a Poisson process with deterministic jump-size 1/a and

intensity (1 + a), i.e.

H
(2)
t =

∫ t

0
log

(
t

s

)
dΛ(2)

s , t > 0,

yields a second construction with the desired marginal distribution. Denoting by τi, i ∈
N, the jump times of a Poisson process with intensity (1 + a), one can rewrite

H
(1)
t =

∑
τi≤t

Gi

(
1− τi

t

)
, t ≥ 0,

H
(2)
t =

1

a

∑
τi≤t

log

(
t

τi

)
, t ≥ 0,

where Gi, i ∈ N, are iid Γ(2, a)-distributed. To illustrate the construction, sample paths

are shown in Figure 4.6, where the same jump times are used to emphasize the differences

of the resulting paths.

Based on these representations, it is clear how to sample from the construction in Equa-

tion (2.26). Exemplary scatterplots can be found in Figure 4.7, where we transformed the

marginals to uniform distributions on [0, 1] so that samples from the related extreme-

value survival copulas are obtained for reasons of better comparability. Example 4.9

yields more samples close to the diagonal, which can be explained by the additional

randomness introduced through the random variables Gi. High values of Gi correspond

to a steep increase of H(1), which increases the probability of imminent triggering for

both components within a short time period.
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Figure 4.6 Simulated paths of the processes H(1) and H(2) where a = 2 is chosen.
For comparison, a path of the simple compound Poisson process H(0) with
Exp(a)-distributed jumps is added, which has the same marginal distribu-
tion. For all processes, the same jump times are used.
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4.4 A note on simulation
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Example 4.12

Figure 4.7 Scatterplots with 800 samples of the survival copulas of the MSMVE dis-
tribution generated by Example 4.9 and Example 4.13. The corresponding
Pickands dependence functions are depicted in Figure 4.5 and the same
parameters are chosen. Contour lines of the related densities are added.
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4.5 Analysis of the arising subclass

Having presented two tractable instances in Section 4.2 and 4.3, in this section, the

class of all distributions arising from the general IDT-frailty construction with IDT

subordinators constructed as in Lemma 2.31 is investigated. We call those distributions

ILF distributions and define the related class of distributions as follows:

ILF :=
{
{Xi}i∈N constructed as in Equation (2.26) with H given as in Lemma 2.31

}
=
{
{Xi}i∈N : Xi := inf

{
t > 0 : Ei <

∫ ∞
0

f(s/t)dΛs

}
, with

Λ a Lévy subordinator, f a suitable function, Ei iid Exp(1)
}
,

where a “suitable” function f fulfills the conditions in Lemma 2.31. The aim of this

section is, on the one hand, to give a better understanding of the underlying dependence

structure, and, on the other hand, characterize the resulting subclass of exchangeable

MSMVE distributions.

We will illustrate the relation between ILF distributions and a generalization of the

Marshall–Olkin shock model, see Equation (2.21). For that, we first have to define so-

called scaled minima of Lévy-frailty (SMLF) distributions, where, based on Theorem

2.46, exchangeable MO sequences are also called Lévy-frailty distributions. In this sec-

tion, to be consistent to the previous sections, we will only consider exchangeable MO

sequences that correspond to Lévy subordinators without killing and call them exMO

sequences.3

SMLF :=

{
{X(l)

i }i∈N : X
(l)
i := min

{Xl (i−1)+1

a1
, . . . ,

Xl i

al

}
, i ∈ N,with

aj > 0, j = 1, . . . , l, l ∈ N, X ∈ exMO

}
.

Consequently, SMLF sequences arise from exMO sequences by taking minima over l-

dimensional scaled subsets, where l is called the order of the SMLF distribution. The

definition is illustrated below, where {Xi}i∈N denotes the exMO or Lévy-frailty sequence

3The results and also the construction in Lemma 2.31 could without much effort be extended starting
from killed subordinators. However, this would not add much value and is therefore omitted.
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4.5 Analysis of the arising subclass

and {X(l)
i }i∈N the resulting SMLF sequence.

X1, X2, . . . , Xl, Xl+1, Xl+2, . . .

⇓

X1
a1
, X2

a2
, . . . , Xl

al

∣∣∣ Xl+1

a1
,

Xl+2

a2
, . . . X2 l

al

∣∣∣ X2 l+1

a1
. . .

︸ ︷︷ ︸
min

=:X
(l)
1

︸ ︷︷ ︸
min

=:X
(l)
2

. . .

It is easy to see that an SMLF sequence is not an exMO sequence unless a1 = . . . =

al. Furthermore, it is clear from the definition that SMLF sequences are exchangeable

as well. The main result of this section will be that SMLF ⊂ ILF ⊂ SMLF, where

SMLF denotes the set of all distributions that arise as limits in distributions of SMLF

distributions. While this result on its own does not provide additional insights into

the underlying dependence structure, together with an intuitive representation of SMLF

distributions, it becomes very meaningful.

In a first step, the following lemma provides an intuitive representation for SMLF dis-

tributions.

Lemma 4.14 (Generalized shock representation for SMLF vectors)

Let (X
(l)
1 , . . . , X

(l)
d )ᵀ denote a random vector which is part of an SMLF sequence of order

l. Then, it allows for a representation via

X
(l)
i = min

∅6=I⊂{1,...,d}:i∈I

{
min

0≤j≤l|I|−1

{
E

(j)
I

aπIi (j)

}}
, i = 1, . . . , d, (4.11)

with all E
(j)
I ∼ Exp(λ

(j)
|I| ) independent, a1, . . . , al > 0 the positive constants in the defini-

tion of the SMLF distribution and πIi : {0, 1, . . . , l|I| − 1} → {1, . . . , l} for i ∈ I. This is

defined via πIi (j) = π
|I|
|{m∈I:m≤i}|(j), where πki (j) are given by the unique representation

j =

k∑
i=1

li−1 (πki (j)− 1).

It is furthermore necessary that λ
(j1)
k = λ

(j2)
k , if πk· (j1) is a permutation of πk· (j2).

Remark 4.15

πIi are functions such that
(
πIi1(j), . . . , πIi|I|(j)

)
0≤j≤l|I|−1

yields an enumeration of the
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points of {1, . . . , l}|I|. One way to define this is as described above. To allow for a

more intuitive understanding of the representation in Lemma 4.14, the representation is

written out in full for d = l = 2:

X
(2)
1 := min

{
1

a1
E

(0)
1 ,

1

a2
E

(1)
1 ,

1

a1
E

(0)
12 ,

1

a2
E

(1)
12 ,

1

a1
E

(2)
12 ,

1

a2
E

(3)
12

}
= min

{
E1, E12,

1

a2
E

(1)
12 ,

1

a1
E

(2)
12

}
,

X
(2)
2 := min

{
1

a1
E

(0)
2 ,

1

a2
E

(0)
2 ,

1

a1
E

(0)
12 ,

1

a1
E

(1)
12 ,

1

a2
E

(2)
12 ,

1

a2
E

(3)
12

}
= min

{
E2, E12,

1

a1
E

(1)
12 ,

1

a2
E

(2)
12

}
,

where in the second form, the random variables affecting the components equally are

combined to improve clarity of the exposition, defining

E1 := min

{
1

a1
E

(0)
1 ,

1

a2
E

(1)
1

}
, E2 := min

{
1

a1
E

(0)
2 ,

1

a2
E

(0)
2

}
,

E12 := min

{
1

a1
E

(0)
12 ,

1

a2
E

(3)
12

}
.

Thus, additional shocks are added to a Marshall–Olkin shock model, which affect the

corresponding components scaled by differing constants. This can be seen as an extension

of usual shock models, which are completely characterized and analyzed in Mai et al.

(2015).

Furthermore, one could also combine shocks which obviously affect components in the

same way, as was done in the above example, and rewrite Equation (4.11) as

X
(l)
i = min

∅6=I⊂{1,...,d}:i∈I

EI , min
0≤j≤l|I|−1

j 6∈N0 (l|I|−1)/(l−1)

{
E

(j)
I

aπIi (j)

} , i = 1, . . . , d.

Using that representation, the resemblance to Marshall–Olkin models becomes more clear.

Proof (of Lemma 4.14)

For every subvector (X1, . . . , Xl d)
ᵀ of an exMO sequence, there exists an exchangeable

Marshall–Olkin shock representation as given in Equation (2.21). Plugging this repre-

sentation into the definition of the SMLF distribution and consolidating all shocks that

only enter components of a specific subvector I with a given vector of scalar factors(
aπIi1 (j), . . . , aπIi|I| (j)

)ᵀ
, the stated representation can be found. �
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4.5 Analysis of the arising subclass

Remark 4.16

Obviously, Equation (4.11) defines an exchangeable distribution. It is tempting to gen-

eralize this definition to the non-exchangeable case, however, we pass on that due to the

already quite cumbersome notation. It is obvious that for every parameter specification,

Equation (4.11) defines an exchangable distribution in a given dimension d ∈ N. For

readers familiar with the paper Mai and Scherer (2009a), it seems reasonable to ask for

extendibility of the given distribution. It seems natural to assume that the extendible

subclass is exactly given by SMLF. This poses an interesting question but lies outside the

scope of this thesis.

Lemma 4.14 provides some insights into the dependence structure underlying an SMLF

distribution. It can be seen as a shock model, where compared to usual shock models,

shocks affect the different components scaled by different factors. It is obvious from

the given representation that SMLF distributions are MSMVE distributions. We will

investigate their relation to the ILF class.

Theorem 4.17 (Relation of ILF and SMLF)

It holds that SMLF ⊂ ILF ⊂ SMLF.

Proof

We start proving SMLF ⊂ ILF: Let X(l) = {X(l)
i }i∈N denote a sequence with an SMLF

distribution and X = {Xi}i∈N the extendible MO sequence appearing in its definition.

From Theorem 2.46 it follows that the extendible MO sequence has a stochastic repre-

sentation via Xi := inf{t > 0 : Ei < Λt}, with {Ei}i∈N an iid Exp(1) sequence and Λ a

Lévy subordinator. Consequently, for an arbitrary finite subset I ⊂ N and xi > 0, i ∈ I,

it holds that

P
(
X

(l)
i > xi, i ∈ I

)
= P

(
X(i−1) l+j

aj
> xi, 1 ≤ j ≤ l, i ∈ I

)
= P

(
X(i−1) l+j > aj xi, 1 ≤ j ≤ l, i ∈ I

)
= E

∏
i∈I

l∏
j=1

e−Λaj xi

 = E

[∏
i∈I

e−
∑l
j=1 Λaj xi

]

= P (Yi > xi, i ∈ I) ,

with

Yi := inf

t > 0 : Ei <
l∑

j=1

Λaj t

 .
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As
∑l

j=1 Λaj t =
∫∞

0

∑l
j=1 1[0,aj t](s) dΛs =

∫∞
0

∑l
j=1 1[0,aj ](s/t) dΛs, the first claim fol-

lows.

Now, we want to prove that ILF ⊂ SMLF: For a given random sequence X = {Xi}i∈N,

we have to find a sequence {Xk}k∈N with Xk := {X(lk)
i,k }i∈N such that Xk

d→ X for

k →∞.

As we know that
∫∞

0 f(s) dΛs exists a.s., we know that for every sequence fk ↗ f point-

wise, limk→∞
∫∞

0 fk(s) dΛs =
∫∞

0 f(s) dΛs follows by dominated convergence. Analo-

gously, limk→∞
∫∞

0 fk(s/t) dΛs =
∫∞

0 f(s/t) dΛs follows. This statement holds in par-

ticular for the sequence of function {fk}k∈N constructed in (Elstrodt, 1999, Theorem

III.4.13), which are of the form

fk(s) =
k 2k∑
j=0

k

2k
1Aj (s) =

1

2k

k 2k∑
j=0

1[0,aj ](s),

and fulfill fk ↗ f pointwise. It follows that

∫ ∞
0

f(s/t)dΛs = lim
k→∞

∫ ∞
0

fk(s/t) dΛs = lim
k→∞

∫ ∞
0

1

2k

k 2k∑
j=0

1[0,aj ](s/t) dΛs

= lim
k→∞

∫ ∞
0

k 2k∑
j=0

1[0,aj ](s/t) d

(
1

2k
Λs

)
= lim

k→∞
H

(k)
t ,

with H
(k)
t defined accordingly. It is clear from the first part of this theorem that the ILF

sequences corresponding to H(k), Xk = {X(lk)
i,k }i∈N, are elements of ILF ∩ SMLF for

every k. Furthermore, it holds for arbitrary finite subsets I ⊂ N and xi > 0, i ∈ I, that

P
(
X

(lk)
i,k > xi, i ∈ I

)
= E

[∏
i∈I

e−
∫∞
0 fk(s/xi) dΛs

]
= e−

∫∞
0 ΨΛ(

∑
i∈I fk(s/xi)) ds

k→∞→ e−
∫∞
0 ΨΛ(

∑
i∈I f(s/xi)) ds = P (Xi > xi, i ∈ I) ,

where the convergence follows from the fact that fk ↗ f and thus, as Ψ is increasing and

continuous, Ψ(
∑

i∈I fk)↗ Ψ(
∑

i∈I f), so dominated convergence can be applied. Thus,

the second part of the claim is established. �

Corollary 4.18 (Survival function of SMLF vector)

The survival function of an SMLF vector (X
(l)
1 , . . . , X

(l)
d )ᵀ with a1, . . . , al > 0, con-

structed from an exMO sequence corresponding to a Lévy subordinator Λ with Bernstein

110



4.6 Conclusion

function ΨΛ, is given by

P(X
(l)
1 > x1, . . . , X

(l)
d > xd) = exp

− d l∑
j=1

z(j)

(
ΨΛ(d l − j + 1)−ΨΛ(d l − j)

) ,

with zj l+i := aj xi and z(1) ≤ . . . ≤ z(d l) the corresponding ordered list.

Proof

This follows from the proof of Theorem 4.17 and the observation therein that the corre-

sponding function f is given by f(s) =
∑l

j=1 1[0,aj ](s). �

From Theorem 4.17 follows that all ILF distributions can be approximated arbitrarily

close by SMLF distributions. Consequently, every ILF random vector can be approx-

imated by a shock construction as given in Lemma 4.14. This allows for a better un-

derstanding of the class ILF and can also be helpful when looking for approximating

simulation schemes etc..

4.6 Conclusion

The present chapter developed two new classes of MSMVE distributions that give rise

to many parametric families. The analysis conducted shows that these new classes

are quite flexible. One clear advantage of the models presented is the availability of

concrete stochastic models allowing for efficient simulation even in high dimensions. As

a side product, results on integral transform representations and IDT subordinators were

derived. Furthermore, we were able to relate the general class of distributions arising

from the construction used to other well-known families, in particular we could give an

approximation by extended shock models.
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5 Modeling of discrete cash dividends

5.1 Motivation

For the pricing of derivatives with stocks as underlying, one has to model the future

behavior of the stock, ideally incorporating the most prominent stylized features of

the stock price evolution. Most research has been focused on modeling non-constant

volatility, price jumps, or default risk, and considerable progress has been made in this

regard. The effect of discrete cash dividends is often considered of secondary importance,

i.e. it can not be fully ignored but is often treated using some rough rules of thumb.

Thus, dividends are typically assumed to be payed continuously. However, in practice,

dividends are payed at discrete dates, in most cases in cash. This has the effect that,

loosely speaking, at the same moment the dividend is payed, the value of the stock

decreases by the value of the dividend. This is clear as at that moment, holding the

stock loses the entitlement to receiving the dividend, i.e. the value of the stock should

decrease by the value of this disappeared benefit. We will ignore any kind of tax effects

and consequently assume the value of the dividend to equal the size of the cash dividend

and the size of the resulting jump in the stock price. Figure 5.1 illustrates an example

of such a jump.

It is obvious that this systematic “negative” impact on the stock price evolution may not

be ignored when pricing derivatives on the stock. A simple and also quite tractable way

to incorporate it is to consider a continuously payed dividend. However, assuming it to

be paid continuously does not meet the requirements when trying to consistently price

derivatives with different maturities. Consider for example two European call options,

which give the holder the right and not the obligation to buy a specific underlying stock

at a specific date (the maturity) for a specified price (the strike price). Assume that

one of them is maturing the day before the dividend is payed, the other the day after

the dividend is payed, and that both have the same strike price. Naturally, the first

should be worth considerably more than the second, as it entitles the holder to buy

113



Figure 5.1 Exemplary stock price development around an ex-dividend date (here, Al-
lianz SE is considered). It is clearly observable that the stock price started
trading considerably lower on the ex-dividend date. A dividend of 4.50
EUR was payed which almost coincides with the size of the jump. Source:
Bloomberg.
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5.1 Motivation

the stock including the dividend at the same price as the second option, where one can

buy the stock excluding the dividend payment. However, modeling the dividend to be

continuously paid would yield almost the same price for both options. This example

illustrates the necessity of properly modeling discrete cash dividends for the purpose

of consistently pricing derivatives with different maturities. Similar examples can be

constructed using American type options, i.e. options that allow for exercising the option

at a freely chosen date before maturity.

Having observed the necessity of modeling discrete cash dividends, one has to consider

which features of discrete dividend payments should be reproduced by a model. In par-

ticular for derivatives with long maturities, there is a considerable uncertainty about the

involved dividend payments. Consequently, it would be desirable to allow for stochastic

dividend payments with flexible structures that are able to replicate a trader’s view.

Furthermore, in many applications, it is required to consistently price classical stock

derivatives (e.g. put and call options) and credit products (i.e. products whose value de-

pends on the creditworthiness of a company, as e.g., corporate bonds, government bonds,

credit default swaps, etc.) with differing maturities. For that purpose, more complex

credit-equity models have been developed that include the possibility of a default event

into the stock price model. Thus, approaches are needed which allow for embedding

discrete cash dividends into such quite complex credit-equity models.

However, so far, the existing literature does not provide a sufficient solution for all those

requirements. There exist several papers investigating rules of thumb-type approaches

to deal with discrete cash dividends in the Black–Scholes framework, see, e.g., Bos and

Vandermark (2002); Frishling (2002); Bos et al. (2003); Buryak and Guo (2011), and

further work that is concerned with the implementation of “piecewise Black–Scholes

models”, see, e.g., Haug et al. (2003); Vellenkoop and Nieuwenhuis (2006); Veiga and

Wystup (2009); Étoré and Gobet (2011). In addition to that, there exists the paper Korn

and Rogers (2005) dealing with proportional dividends in a Lévy process setting, and,

rather recently, Buehler (2010) investigated affine dividends in a quite general setting.

None of these approaches, however, sufficiently addresses all the requirements presented,

which served as a motivation to start to work on that topic. The aim was to find a

general framework that is very flexible with respect to the form of the dividends as well

as the types of stochastic processes that can be used.

In contrast to the previous two chapters, this chapter is more practically oriented, i.e.

with a focus on applications in mathematical finance. No deep results on the involved
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5.1.2 Existing approaches and our contribution

mathematical concepts are needed and therefore, these concepts are not included in

Chapter 2 introducing the mathematical background. Instead, we tried to keep this

chapter autonomous, introducing the necessary notation in the next subsection and

requiring a basic level of background knowledge as it is included in a standard course

on continuous time finance.1 The results of this chapter are based on joint work with

Jan-Frederik Mai. A less mathematical and simplified description of the key points of

this chapter is published in Bernhart and Mai (2015).

5.1.1 Notation

As usual, we consider a filtered probability space (Ω,F , {Ft}t≥0,P), where the filtration

(a family of σ-algebras fulfilling certain consistency conditions) {Ft}t≥0 represents the

available knowledge at each point in time t ≥ 0. Furthermore, S = {St}t≥0 denotes the

stock price process, which is {Ft}t≥0-adapted. At deterministic dates 0 < t1 < t2 < . . .,

the stock is assumed to pay non-negative dividend amounts Dt1 , Dt2 , . . ., with Dtk an

Ftk -measurable random variable for all k ∈ N. For simplicity, we assume the so-called

ex-dividend dates, i.e. the first dates the stock trades without the entitlement to the

dividends, to coincide with the payment dates. Furthermore, we ignore any tax effects,

i.e. the stock holder is assumed to receive the full dividend payment2, and consequently,

for simple no-arbitrage arguments, the following relation has to hold

Stk = Stk− −Dtk , ∀k ∈ N.

A deterministic short rate {rt}t≥0 is considered, i.e. we ignore any interest rate risk.

Consequently, the value of the corresponding bank account can be defined as Nt =

exp
(∫ t

0 rs ds
)

and the discount factor for an interval [t, T ] is given by B(t, T ) :=

Nt/NT = exp
(
−
∫ T
t rs ds

)
.

5.1.2 Existing approaches and our contribution

A considerable portion of the existing approaches to deal with discrete cash dividends

consists of tractable modifications of the classical Black–Scholes model. Their evident

1For example, we will not introduce definitions of put and call options (we only did that in the motiva-
tion to keep it understandable for people without background knowledge), the general pricing theory,
etc..

2Alternatively, one could consider Dtk to represent the after-tax value of the dividend.
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purpose is to yield call and put prices that can be computed by changing the input

parameters of the well-known Black–Scholes formula. Frishling (2002) introduces two

such approaches and warns against their unthinking use. The dividend amounts are

assumed to be deterministic in this setup. In the first approach, also called “escrowed

model” in Haug et al. (2003) and Vellenkoop and Nieuwenhuis (2006), instead of the

stock, the stock minus the present value of all discounted dividends3 before the maturity

T of the derivative considered, i.e.

At := St −
∑

t<tk≤T
B(t, tk)Dtk , t ≤ T,

is modeled as a geometric Brownian motion. Consequently, AT = ST , i.e. ST can be

considered the value of a geometric Brownian motion with starting value A0 = S0 −∑
t<tk≤T B(t, tk)Dtk . In the Black–Scholes formula, this is reflected by a change of the

spot value. Most of the criticism leveled at this approach can be related to unthinking

use of it, as we will see later on.

The second approach, the so-called “forward model”, see Vellenkoop and Nieuwenhuis

(2006), models the stock price plus the previously received dividends4 (reinvested at the

riskless rate), i.e.

Xt := St +
∑

0<tk≤t
Dtk/B(t, tk), t ≥ 0,

as a geometric Brownian motion. Similar to the escrowed model, this only corresponds to

a modification of the strike price in the Black–Scholes formula for European options.

However, some authors argue that modeling the stock price as a piecewise geometric

Brownian motion between the dividend dates, the so-called “piecewise lognormal model”,

is closer to reality. Therefore, mixtures between the escrowed and the forward model are

introduced in Bos and Vandermark (2002); Bos et al. (2003); Buryak and Guo (2011) to

achieve a closer approximation of the option prices in the piecewise lognormal model.

By contrast, Vellenkoop and Nieuwenhuis (2006) directly work on the piecewise lognor-

mal model and present a modification of the tree pricing method to compute option

values in this context. Veiga and Wystup (2009) and Étoré and Gobet (2011) propose

different approximations based on Black–Scholes prices using Taylor expansions. The

3Here, the dividend payments are assumed to be known at t = 0.
4As for the escrowed approach, dividend payments are assumed to be known at t = 0.
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work of Haug et al. (2003) is theoretically formulated for a broader model class, but

basically yields an iterated integration scheme to price options in the piecewise lognor-

mal model. Furthermore, Haug et al. (2003) is one of the first to allow for a little more

flexibility than affine dividends, i.e. dividend payments that do not depend linearly on

the stock price. This is actually necessary to ensure the stock price being nonnegative

in the piecewise lognormal model.

There exists not much work outside this Black–Scholes cosmos. Korn and Rogers (2005)

consider proportional dividends in a setup driven by Lévy processes. We essentially

choose the same starting point for our approach, but aim at more generality. Finally, the

most elaborate work on discrete cash dividends is Buehler (2010), allowing for almost

arbitrary driving processes and considering credit risk as well. However, only affine

dividends, i.e. dividends of the form Dtk = ak Stk + bk, with ak, bk ≥ 0, are considered

and it is necessary to make assumptions about Dtk for all k ∈ N.

To summarize, the existing literature is, with few exceptions, concerned with extensions

of the Black–Scholes model. Furthermore, dividends are either constant or of affine form.

However, especially for long-dated derivatives, more flexible forms are important that

allow for constant dividends in the short run and more evolved parametric forms in the

long run, which are able to capture a trader’s view. The aim of this work is to develop

a general framework which incorporates all these aspects and retains tractability. The

underlying idea of our approach is that the stock price is considered as the expected

sum over all future discounted dividends, a deliberation motivated by the well-known

dividend discount model in economics, see, e.g., Gordon (1959), but also by work in

mathematical finance, see, e.g., the starting point of Korn and Rogers (2005). By that,

it is already ensured that the model is free of arbitrage, as will be pointed out.

The contribution of the present chapter consists of the following points:

1. For a modeling horizon [0, T ], in Section 5.2 we present a generic approach to

construct a stochastic model for the stock price process and the dividend payments

before T from an arbitrary closed martingale. Our ansatz is inspired by an idea

of van Binsbergen et al. (2012), who split the stock price into “short-term assets”

and “long-term assets” (in order to extract their respective values from derivative

quotes). This ansatz allows to add flexible models for discrete cash dividends to an

arbitrary no-dividend-paying stock price model. Regarding the resulting structure,

it may also be considered an extension of the escrowed model.
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2. It is discussed what is required in order to make our generic modeling approach

applicable in practice. Tree pricing for arbitrary, path-dependent derivatives is

possible whenever a tree-approximation for the underlying martingale is available.

Such approximations are standard for most diffusion-driven models, see, e.g., Ap-

pendix F of Brigo and Mercurio (2006), and e.g. also available for Lévy-driven

models, see, e.g., Maller et al. (2006). In some rare cases, it is even possible to

circumvent tree pricing by transferring closed pricing formulas from the underly-

ing no-dividend-paying stock price model to our setup. Sometimes, these formulas

can at least be used in order to speed up tree pricing. Furthermore, we discuss

desirable properties that make the specific parametric models convenient for imple-

mentation. The approach is flexible enough to allow for various dividend models

apart from the often applied assumption of affine dividends. All these practical

aspects can be found in Section 5.3.

3. In a case study, the generic framework is applied to the setup of the JDCEV credit-

equity model of Carr and Linetsky (2006). We choose this specific model in order

to highlight that our approach is well-suited to incorporate flexible discrete cash

dividend parameterizations into stock price models that are far outside the Black–

Scholes cosmos, distinguishing the present article from many earlier references on

dividend modeling. This case study can be found in Section 5.4.

5.2 Consistent modeling of a stock price with discrete cash

dividends

In this section, the general modeling framework is presented. In Section 5.2.1, we intro-

duce the general ansatz and its implications. Section 5.2.2 shows how this ansatz can

be transformed into a very flexible and tractable approach, representing one of the main

contributions of this work.

5.2.1 The general modeling approach

Motivated by the dividend discount model which is well known in economics and often

attributed to Gordon (1959), and by work in mathematical finance, see, e.g., Korn and

Rogers (2005), the stock price process St at time t is considered to equal the expected
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sum over all future discounted dividend payments. This represents the central starting

point for modeling the stock price in the present work, and we will see that it has some

considerable advantages with respect to arbitrage-free pricing.

Definition 5.1 (Stock price model)

On the given probability space, the stock price process S = {St}t≥0 is defined via

St := E
[∑
tk>t

B(t, tk)Dtk

∣∣∣Ft], t ≥ 0, (5.1)

where S0 is assumed to exist, i.e. we assume that S0 <∞.

Throughout, we consider this ansatz as the most sophisticated and desirable definition of

the stock price, and we search for arbitrage-consistent abstractions, respectively simpli-

fications, in order to achieve practical viability. Though Equation (5.1) already imposes

some structure on the stock price process, it will be shown later that almost every classi-

cal no-dividend model can be embedded into this framework. This is due to the central

“truncation”-idea presented in the next section.

A natural next step consists in investigating the absence of arbitrage in this ansatz.

We will see that starting from this approach ensures the resulting model to be “free

of arbitrage”, though this term needs some additional clarification below. This is also

explicitly stated as a justification for this approach in Korn and Rogers (2005), who

state that “because we have begun by modeling the process of dividends, we never fall

into the kind of inconsistencies that bedevil many common industry approaches” (Korn

and Rogers, 2005, p. 46).

Whenever holding a stock yields additional profits, be it dividend payments or earnings

from lending out the stock, a crucial quantity to consider is the wealth that results from

holding the stock. A simple way to model this wealth is to assume that the received

dividend cash amounts are re-invested at the riskless rate. Additionally discounting this

wealth results in the discounted wealth process X.

Definition 5.2 (Discounted wealth)

The process X = {Xt}t≥0 that describes the discounted wealth from investing in the stock

and reinvesting received dividends in the bank account is defined by

Xt := B(0, t)
(
St +

∑
0<tk≤t

Dtk

B(tk, t)

)
, t ≥ 0. (5.2)
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5.2 Consistent modeling of a stock price with discrete cash dividends

It is easy to see that X is a (closed) martingale.

Lemma 5.3 (Martingale property)

The process X = {Xt}t≥0 is a closed martingale.

Proof

A simple reformulation of Equation (5.2) yields

Xt = E
[ ∑
tk>0

B(0, tk)Dtk

∣∣∣Ft] = E
[
X∞

∣∣∣Ft] ,
with X∞ :=

∑
tk>0B(0, tk)Dtk the present value of a stock investment. Recall that

X∞ ∈ L1(Ω,F ,P) is equivalent to our assumption S0 <∞. �

This is already sufficient for the model to be free of arbitrage. The term free of arbi-

trage requires some additional comments in the continuous setting, here we will employ

the concept of “no free lunch with vanishing risk” (NFLVR) as defined by Delbaen and

Schachermayer (1994), generalizing strategies commonly known as arbitrage opportu-

nities. It is known that - presupposed a positive stock price and ignoring dividend

payments - the property (NFLVR) is implied by (and even equivalent to) the existence

of a measure equivalent to P such that under this measure all discounted stock prices

are local martingales. That is a version of the fundamental theorem of asset pricing, in

its most general form developed by Delbaen and Schachermayer (1998) and here in the

form stated in Jarrow et al. (2007), dropping the condition of locally boundedness using

that the involved processes are positive. When considering dividends or other proceeds

from holding a stock, the wealth process has to be considered instead of the stock price

process. According to Lemma 5.3, the probability measure P under which we defined the

processes S and X is already such a measure, so the property (NFLVR) follows directly.

Consequently, valuing derivatives in this setup via expectations of discounted payoffs

yields arbitrage-free prices.

Remark 5.4 (Incorporation of repo margins)

It would also be possible to include repo margins in this framework, as it is done, e.g.,

in Buehler (2010). That means one additionally considers the possibility to lend out the

stock and, simplifying the mechanics a little, to earn a fee on the stock value in return.

This can be modeled by an instantaneous repo margin δt (similar to the instantaneous

short rate rt). It has the following meaning: When directly reinvesting the proceeds of

lending out the stock into the stock, starting with one unit of the stock and doing so for
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a time period [t, T ] results in exp(
∫ T
t δs ds) units of the stock. To incorporate this, one

would have to change Equation (5.1) to

St := E
[∑
tk>t

B(t, tk) exp
(∫ tk

t
δs ds

)
Dtk

∣∣∣Ft], t ≥ 0.

For X, when considering the proceeds from lending, this would result in

Xt = E
[ ∑
tk>0

B(0, tk) exp
(∫ tk

0
δs ds

)
Dtk

∣∣∣Ft].
In total, all results would remain true and one would basically change from rt to rt− δt,
however, one has to ensure that the assumption S0 <∞ still holds. If the risk of changes

in the repo margin is ignored, i.e. δt is assumed to be deterministic, this can be done

easily. For an analysis of the effect of stochastic repo rates for distressed stocks, see

Bernhart and Mai (2014b).

Remark 5.5

At first sight, it seems that Equation (5.1) has to hold necessarily for arbitrage-free mar-

kets under any pricing measure. Actually, this is not true. (NFLVR) is equivalent to the

existence of a measure equivalent to P such that under this measure all discounted assets

are local martingales. However, even in complete markets, Jarrow et al. (2007) show

that under such an equivalent local martingale measure, Equation (5.1) need not hold in

general. In fact, following their definition, assuming (NFLVR) to hold and the market

to be complete, Equation (5.1) holds if the market is “free of bubbles”. Equivalently,

starting from these assumptions, it is possible to find a measure P such that Equation

(5.1) holds.

So the only restriction imposed by starting from Equation (5.1) is that it excludes the ex-

istence of bubbles as defined in Jarrow et al. (2007). However, apart from this restriction

our setup is still general enough to comprise the whole battery of classical no-dividend

models used in practice, as will be illustrated in the next section.

5.2.2 A tractable reformulation

The critical observation for the reformulation presented is the fact that for practical

applications, a model for the stock price process is only required on a finite time interval

[0, T ], i.e. one only has to model {St}t∈[0,T ] for some finite modeling horizon T > 0. This
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is due to the fact that all common derivatives have a finite maturity.5 We will make use

of this observation to make Equation (5.1) more tractable.

Obviously, the above quite general formulation is inconvenient due to the infinite series,

though tractable special cases can indeed be defined, see, e.g., Korn and Rogers (2005).

However, these tractable cases have to rely on very restrictive assumptions such as

proportional dividends. In contrast, our approach to render the general formula (5.1)

tractable and flexible consists of “truncating” the dividend series at the finite modeling

horizon T and allowing for an almost arbitrary process to model the remaining part

after T . It is shown below how this embeds classical modeling approaches and allows to

extend them to incorporate very flexible dividend models for Dtk with 0 < tk ≤ T . It is

very important to emphasize the dependence of the resulting model on the choice of T

to avoid any misunderstandings (this aspect will be examined in more detail in Section

5.3.1).

As mentioned before, we split X∞ into dividends obtained before and after T :

X∞ =
∑

0<tk≤T
B(0, tk)Dtk +

∑
tk>T

B(0, tk)Dtk︸ ︷︷ ︸
=:Y∞

.

Introducing a second closed martingale {Yt}t≥0 via Yt := E[Y∞|Ft] (one could also write

Y
(T )
∞ and Y

(T )
t to emphasize the dependence on T ), we obtain from this together with

Equation (5.2) that for t ∈ [0, T ]

Xt = E[X∞|Ft] = E
[ ∑

0<tk≤T
B(0, tk)Dtk

∣∣∣Ft]+ Yt

=
∑
tk≤t

B(0, tk)Dtk +B(0, t)St.

From this, the central representation can be easily derived.

Theorem 5.6 (Central reformulation)

On the interval [0, T ], the stock price allows for the representation

St =
1

B(0, t)
Yt +

∑
t<tk≤T

B(t, tk)E
[
Dtk

∣∣∣Ft], t ∈ [0, T ], (5.3)

5There are exceptions like upper Tier 2 bonds, which often are perpetual bonds, but to deal with them,
one usually considers them to be finite as well.
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with Y the closed martingale introduced above.

This is the main formula we want to use, and it allows for the following two-step proce-

dure to model {St}t∈[0,T ]:

(1) Model the process {Yt}t∈[0,T ] as your favorite, non-negative closed martingale that

is a Markov process6, with appropriately chosen filtration, e.g.:

– (Non-defaultable case:) Define Ft := σ(Ys : s ≤ t), i.e. consider the natural

filtration of {Yt}t∈[0,T ] as market filtration.

– (Credit-equity modeling case:) In credit-equity models, such as in the case of

a defaultable Markov diffusion (see, e.g., Carr and Linetsky (2006); Linetsky

(2006); Bielecki et al. (2011)), {Yt}t∈[0,T ] is often modeled via Yt = Zt 1{τ>t}

where {Zt}t∈[0,T ] represents the pre-default process and τ the “default time”.

This default time can be observed in the market and hence needs to be

incorporated into Ft, as it is not necessarily measurable with respect to

the filtration generated by Z. This issue is usually resolved by defining

Ft := σ(Zs : s ≤ t) ∨ σ(1{τ≤s} : s ≤ t) respectively its usual augmenta-

tion if necessary.

(2) Model Dtk ≥ 0 for 0 < tk ≤ T arbitrary, Ftk -measurable. Here, we will consider

Dtk := ftk(Ytk) for some measurable function ftk satisfying ftk(0) = 0. The latter

is a consistency condition for credit-equity models, which basically says that there

are no dividend payments after default. The construction furthermore ensures that

Dtk is Ftk -measurable.

For the special case of no dividend payments in [0, T ], i.e. t1 > T , it follows easily that

Yt = Xt and Equation (5.3) reduces to

St =
1

B(0, t)
Yt, t ∈ [0, T ].

This is clearly consistent with any classical model without dividends, i.e. any classical

model can be formulated like that. Since the model interval is finite, it suffices to model

{Yt}t∈[0,T ] such that YT is integrable in order to guarantee that the martingale is closed.

This is indeed the case in all classical models.

6In general, the Markov property is not necessary. For the approach presented, however, it considerably
simplifies our considerations with respect to pricing. Therefore, this assumption is made in the
following.
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It is helpful for understanding the procedure presented that Yt has an intuitive meaning

related to the forward price. Let F (t, T ) denote the fair forward strike price, i.e. the price

one would agree on at time t < T , for buying the stock at T . In case of deterministic

(riskless) dividends, a simple replicating strategy respectively no-arbitrage consideration

yields

F (t, T ) =
1

B(t, T )

(
St −

∑
t<tk≤T

B(t, tk)Dtk

)
, t ∈ [t, T ].

Under the (for long maturities T somewhat artificial) assumption that the considered

future dividend payments are traded assets (via dividend swaps or similar derivatives),

a replicating strategy yields the same formula for non-deterministic dividend payments,

replacing the dividend payments by their market value. Assuming E[Dtk | Ft] to coincide

with that market value, or directly pricing under P (in contrast to the previously men-

tioned argument that is only based on static replication without modeling at all), the

following expression for the fair forward price has to hold7,8

F (t, T ) = E[ST | Ft] =
1

B(t, T )

(
St −

∑
t<tk≤T

E
[
Dtk

∣∣∣Ft]), t ∈ [t, T ].

Consequently, F (t, T ) = Yt/B(0, T ), i.e. the martingale {Yt/B(0, T )}t∈[0,T ] denotes pre-

cisely the forward strike process for an equity forward with maturity T . In other words,

we basically model the forward with maturity T and earlier dividends are considered

functions of this forward.

Allowing Dtk to depend not only on Ytk but additionally on tk is very flexible in the

sense that one could, e.g., include already announced dividend payments (e.g. by set-

ting ftk(y) = ctk1{y>0} with announced dividend amount ctk > 0). Furthermore, the

approach bears some similarities with the so-called escrowed approach, used for example

by Roll (1977); Geske (1979); Whaley (1981), as the stock price minus the present value

of the dividends is modeled. It could be seen as an extension of that approach, allowing

for more flexible dividend structures and almost arbitrary driving processes. However,

our derivation explicitly highlights the dependence of the model on T .

7This actually yields a possible approach to extract the market value of future dividend payments from
other market quotes, as will be mentioned later on.

8Note that there is no explicit consideration of credit risk. Due to the replication argument, it does
not show up in the St-term, and regarding the dividends considered, it is implicitly incorporated by
the expected value respectively market value.
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Remark 5.7

a) A similar splitting is applied to the dividends of a whole stock index in van Bins-

bergen et al. (2012). The first part is called the short-term asset and the second

the long-term asset. Market data from derivatives markets is used to extract the

price of the first one, even subdivided into different dividend strips.

b) The number S0 is obviously observable. Furthermore, the equation

Y0 +
∑

0<tk≤T
B(0, tk)E[Dtk ] = S0,

has to hold, i.e. Y0 and the sum of expected discounted dividend payment amounts

on [0, T ] must sum up to the initial stock price. Consequently, one of both deter-

mines the other. Either, Y0 can be directly implied from market data due to the

relation with the forward value. Or, the expected discounted dividend payments are

extracted from derivative quotes or determined otherwise, which in turn determines

Y0. Having found Y0 ≥ 0 and having modeled Y as a non-negative process, the non-

negativity of S is ensured. This is helpful as thus, no additional restrictions on

the dividend payment amounts as used, e.g., in Haug et al. (2003) are needed. A

further advantage of this approach over other approaches as, e.g., Korn and Rogers

(2005) or Buehler (2010), is that one only has to model a finite number of dividend

payments. All dividend payments after T (for which it would be difficult to extract

market values from derivatives) are enclosed in the process {Yt}. This abstraction

allows to concentrate on quite flexible modeling approaches for dividends before T ,

which will be seen in the next section.

c) It can not be stressed enough that the resulting model depends on the specific choice

of T . The arbitrage opportunities, which the escrowed model allegedly admits, see,

e.g., Beneder and Vorst (2002); Haug et al. (2003), follow directly from ignoring the

dependence on T , i.e. by inconsistently modeling Y
(T1)
t like Y

(T2)
t with T1 < tk < T2.

This fact will be highlighted in more detail in the next section.

d) Since interest rates are deterministic, the model is driven by only one stochastic

factor being {Yt}t∈[0,T ]. However, it is possible that {Yt}t∈[0,T ] itself consists of

several stochastic factors, e.g. stochastic volatility models such as, e.g., Heston

(1993). However, for applications it is useful to ensure the existence of efficient

tree approximations of {Yt}t∈[0,T ], which is considerably more complicated when it

consists of several factors.
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e) Some authors argue that the dividend payments Dtk should depend on Stk , see,

e.g., affine dividend structures as used in Villiger (2006) or Buehler (2010). In

contrast, we define them dependent on Ytk , mainly due to viability. This is a

small difference but might be considered a theoretical flaw. However, starting from

Equation (5.1), it does not seem logically consistent to model the dividend as a

function of a quantity the dividend is part of. Furthermore, we think that - apart

from the obvious advantage with regards to tractability - our approach also has

another advantage. The underlying idea for a dependence of Dtk on Stk is that

the evolution of the stock price is a good indicator for the economic well-being of

the company, and thus also for the dividend payment amount. But why should

a dividend payment at tk, causing a drop in the stock price, be an indicator for a

lower dividend payment at tk+1? Exactly this effect would be observable for expected

future dividend amounts at ex-dividend dates in the case of direct dependence on

the stock price. On the contrary, as {Yt}t∈[0,T ] does not exhibit a jump triggered by

dividend payments, this effect is not observed for our modeling ansatz. Still, the

evolution of {Yt}t∈[0,T ] can be considered a good indicator for the economic well-

being of the firm due to the relation to the forward, so the basic idea is similar.

As stated before, the modeling approach presented is very flexible with respect to the

model choice for {Yt}t∈[0,T ]. Consequently, everyone should be able to use the model

which incorporates all the features considered necessary. However, one recommendation

can be deduced from our ansatz to ensure logical consistence: We decompose the stock

and explicitly model the value of the dividend payments until T . Assuming the amounts

of these payments to be fixed, e.g. if the dividend payment is already announced, these

payments represent something like the coupon payments of a corporate bond. Model-

ing {Yt}t∈[0,T ] as a non-defaultable diffusion, such as, e.g., in the Black–Scholes world,

those payments contribute to the stock price being discounted with the riskless rate.

Thus, their value might be significantly overestimated compared to the value of similar

payments due by the same company, traded in bond markets. This is in particular un-

desirable as in the capital structure, coupon payments should rank higher than dividend

payments. A defaultable diffusion model overcomes this problem, which explains why

the choice of such a model seems to be more “natural” in the present context. Stated

differently, there is a model inherent incentive for using credit-equity approaches, since

explicitly considering dividend payments introduces a similarity to debt instruments.
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5.3 Practical aspects

We want to explain how the approach presented in the previous section can be put to use.

Arising questions, possible answers and solutions to common problems are illustrated.

The general procedure for pricing derivatives will usually be as follows:

1. Define the modeling horizon [0, T ] and choose a closed martingale {Yt}t∈[0,T ]. Sec-

tion 5.3.1 highlights the dependence of the resulting model on the choice of T .

2. Determine
∑

0<tk≤T B(0, tk)E[Dtk ] respectively the starting value Y0 of the closed

martingale {Yt}t∈[0,T ]. Consequently, determine E[Dtk ] for all tk ≤ T and choose

the functional form ftk consistent with the previous assumptions. Section 5.3.2

illustrates that procedure.

3. Price derivatives, e.g. as explained in Section 5.3.3.

5.3.1 Dependence on T

Our modeling approach with dividends is naturally equipped with a modeling termina-

tion T . The choice of T is crucial for a reasonable implementation of the model: On the

one hand, T has to be large enough such that the maturity of every derivative considered

is included in [0, T ] to allow for a consistent valuation of these products. On the other

hand, one wants to choose T as small as possible to reduce the number of dividend

payments that have to be modeled (all dividends before T ).

Once T and the related model on the interval [0, T ] in Equation (5.3) has been fixed, the

pricing of every product has to rely on that model. This means in particular that even for

derivatives with maturity T1 < t1, the involved expression for St, t ≤ T1, includes a term

representing every dividend payment until T . This might seem unnecessarily complex

or even counterintuitive to some, but it is the only way for a consistent modeling of

products with maturities in the range considered.9

As the so-called escrowed model could be considered a special case of our approach and

as it is often claimed that this model allows for arbitrage opportunities, we investigate

the related examples and show how these arbitrage opportunities result precisely from

9Buehler (2010) argues for a similar structure, even modeling all dividends.
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ignoring the advice stated here. The example presented here is constructed similarly to

examples found in Beneder and Vorst (2002); Frishling (2002); Haug et al. (2003).

Example 5.8

Consider two American call options on a stock with strike 130 and maturities 1 and

363/365, S0 = 100, one already fixed dividend payment D364/365 = 7, and a constant

short rate r = 6%. We choose T = 1, which is a straight-forward choice based on

the previous considerations. Furthermore, {Yt}t∈[0,1] is assumed to follow a geometric

Brownian motion with σ = 30%. This yields

St = Y0e
(r−σ

2

2
) t+σWt + 7 e−r (364/365−t)1{t<364/365}, t ∈ [0, 1],

as a model for the stock, with {Wt}t∈[0,1] a standard Brownian motion and Y0 ≈ 93.41.

Let VA(t, T, St,K) denote the price of an American call option with maturity T and

strike K at time t, given the stock value St, and VE the European equivalent. Applying

the pricing approaches presented later, this yields for the two American call option values

VA(0, 1, 100, 130) = 4.284 and VA(0, 363/365, 100, 130) = 4.267.10 These two prices seem

reasonable on first sight and there is (of course) no arbitrage opportunity arising from

them. However, ignoring the dependence of the model on T and wrongly assuming that

the given properties of Y also hold for the model with maturity 363/365, i.e. wrongly

assuming Y (363/365) to be distributed as Y (1), would yield

St = 100 e(r−σ
2

2
) t+σWt , t ∈ [0, 363/365].

This approach corresponds to carelessly applying the escrowed model. The price of the

shorter American call option arising from this model can easily be computed. It is well

known that in such a framework this price equals the price of a European call option given

by VA(0, 363/365, 100, 130) = VE(0, 363/365, 100, 130) = 4.883. This price, together

with the above price for the option with maturity 1, would yield an obvious arbitrage

opportunity, selling the short-dated option versus the long-dated option. Consequently,

the example clarifies the problems that can arise from ignoring the dependence of the

model specification on T . The arguments brought forward against the escrowed model

are based exactly on such examples.

10Alternatively, in this simple setup, for the computation of VA(0, 1, 100, 130), the previously mentioned
Roll–Whaley–Geske approach (see Roll (1977); Geske (1979); Whaley (1981)) is applicable. Fur-
thermore, using basic inequalities, it can be shown that the value of VA(0, 363/365, 100, 130) can be
computed as the value of a European call option in a Black-Scholes model with starting value Y0,
volatility σ, and strike 130−D ∗ exp(−r/365).
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5.3.2 Parametric form of dividend payments

One of the important modeling aspects is the modeling of Dtk for the involved tk ≤ T .

In a first step, one has to determine the corresponding expected values E[Dtk ]. Based

on the previously presented link to the forward,
∑

0<tk≤T B(0, tk)E[Dtk ] respectively Y0

might be extracted from market prices of derivatives. Either, the forward strike price for

the maturity considered is directly observable, or it can be extracted from option prices

using the put-call parity. For some stocks, there might even be available values for the

individual E[Dtk ] separately, using the whole option surface, several forward strike prices,

or dividend futures. Alternatively, one could use simpler approaches, either relying on

analyst forecasts or employing simple rules of thumb as E[Dtk ] = c with a constant c ≥ 0.

A reasonable value for c might be S0/
∑

tk>0B(0, tk), which is an observable quantity,

and is consistent with the untruncated ansatz in Equation (5.1). However, we do not

want to elaborate on that aspect here.

Having fixed E[Dtk ] for the relevant k, one has to define ftk consistently, i.e. one has to

make sure that the following equations are fulfilled:

E[Dtk ]
!

= E[ftk(Ytk)].

A convenient choice is

ftk(y) := E[Dtk ]
h(y)

E[h(Ytk)]
, (5.4)

with a function h : [0,∞) → [0,∞) satisfying h(0) = 0 and having a desired shape.11

In this context and in particular for the pricing of derivatives later on, a closed form

expression for the distribution of Ytk is highly desirable such that the normalizing de-

nominator can be numerically computed for arbitrary functions h. It is even better to

look for specific choices of h and Yt such that closed form solutions are available.

Regarding the shape of h, there are basically no restrictions. It is reasonable to choose

a non-decreasing function, which still leaves space for many different considerations.

Three different illustrative dividend specifications will be considered in this document,

with the aim to present the flexibility of the model rather than to give an exhaustive

overview of possible specifications:

11Actually, one could also write htk as the choice of the shape might of course be different for different
tk. However, for reasons of clarity of notation, we omitted that additional index.
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• h1(y) = y, which corresponds to dividend payments proportional to Yt,

• h2(y) = 1{y>b} with b ≥ 0, which corresponds to a dividend payment in case

the process Yt is above a specific threshold, where the dividend amount does not

depend on the level of exceedance,

• as an example of a more complex specification, the following function is chosen:

h3(y) =


Y0

(
y
l Y0

)a
, y ≤ l Y0,

Y0, l Y0 < y ≤ uY0,

y − (u− 1)Y0, y > uY0,

with a ≥ 1 and 0 < l < 1 < u. This corresponds to a constant dividend in an

interval (defined by l and u) enclosing the expected value of the process. Above

this interval, the dividend payment is increasing linearly with the value of the

process. Below the interval, it is decreasing with the speed defined by a.

The form of the three different specifications is sketched in Figure 5.2. Note that hi

only defines the shape of the functions ftk , the absolute values of the functions hi are

irrelevant as the functions will be normalized in order to guarantee consistency. An

example for the resulting normalized functions ftk can be found in Figure 5.4 below.

y

h(y)

b l Y0 uY0Y0

Y0

1

h1

h2

h3

Figure 5.2 A sketch of the form of the three different specifications of h.
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5.3.3 Derivatives pricing

In the presented setting, the stock price St for t ∈ [0, T ] is given by

St =
1

B(0, t)
Yt +

∑
t<tk≤T

B(t, tk)E
[
ftk(Ytk)

∣∣∣Ft] , (5.5)

i.e. it is given as the sum of Yt and conditional expectations of the form E[ftk(Ytk)| Ft] =

E[ftk(Ytk)|Yt]. It follows that St = gt(Yt), t ∈ [0, T ], with functions gt for which ideally

closed-form expressions are available or which can be evaluated numerically in an efficient

way. This depends on the choice of the functions h, as the computation of such a

conditional expectation essentially boils down to computing E[h(Ytk)|Yt].

The essential implication of this observation is that a derivative on S can be consid-

ered a derivative on Y . However, even if there are closed formulas available for those

involved conditional expectations, in most cases, it will not be possible to derive closed

form expressions for the pricing of derivatives on the stock. Thus, pricing requires tree

approximations or comparable techniques. One of the major advantages of the approach

described in the present chapter is that tree pricing including dividends is easily possible

for every specification of {Yt}t∈[0,T ] for which efficient tree approximations are known.

This includes most of the standard processes like geometric Brownian motion, exponen-

tial Lévy processes (see Maller et al. (2006)) or 1, 5-factor credit-equity models (see, e.g.,

Carr and Linetsky (2006); Linetsky (2006); Bielecki et al. (2011)), for which standard

methods such as presented in Appendix F of Brigo and Mercurio (2006) can be applied.

Thus, special dividend adjustment methods for the construction of trees as presented in

Vellenkoop and Nieuwenhuis (2006) are not necessary.

The pricing procedure is rather simple12:

Algorithm 5.9

(i) Build a tree for Y on [0, T ], i.e. for a discrete set of time points 0 < u1 < . . . <

uN = T , which includes the dividend payment dates.

(ii) Consider the derivative as a derivative on Y and use standard backward induction

techniques. Whenever required, compute the value of Suk = guk(Yuk), k < N .

12Showing convergence of tree pricing algorithms is by no means a simple task, see, e.g., Müller (2009)
for a well-explained illustration of the necessary steps. For convergence of American-type options, see
Amin and Khanna (1994). However, if convergence is proven for a given model for Y and a specific
derivative, it is only required to extend this convergence result to the derivative given by substituting
Yt by gt(Yt).
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Depending on the number of derivatives priced, their type, and the computational efforts

needed to compute the functions guk , this procedure might be quite slow. Therefore, we

propose the following approximation of the above pricing procedure:

Algorithm 5.10

(i) Build a tree for Y on [0, T ], i.e. for a discrete set of time points 0 < u1 < . . . <

uN = T , which includes the dividend payment dates.

(ii) At the end nodes, representing t = uN = T , set ST = YT /B(0, T ).

(iii) Using standard backward induction techniques, the value of Suk , k < N, at every

node can be derived using Equation (5.5), since the expected discounted value of

future dividend payments can be seen as a derivative itself. Thus, its value at

every node is obtained via the tower property of conditional expectation. This can

be done while simultaneously pricing the derivatives considered, thus no additional

backward induction is required.

For most applications, at least one of these two tree pricing routines should be effi-

cient and easy to apply. However, the following example illustrates that there are some

business cases for which further considerations need to be made.

Example 5.11

Assume we want to price an upper Tier 2 bond consistent with a battery of short-dated

equity options, i.e. we want to use a credit-equity model. Such bonds are perpetual with

call features, i.e. we have infinite maturity and American style features. For this, we

can set up a defaultable Markov diffusion model, adapted to our dividend framework. It

is standard (and unavoidable) to tackle the infinite maturity problem by truncation, i.e.

assume a finite but very long maturity T < ∞. Due to the long maturity, tree pricing

takes its time. Therefore, and because of data availability, one might have the idea to

fit the model to the (much shorter-dated) equity option data, e.g. a battery of puts and

calls, and then price the upper Tier 2 bond using the fitted parameters. However, for the

pricing of these shorter-dated options using Algorithm 5.9 or 5.10, one still would have

to use the “long” tree for the interval [0, T ]. Hence, the calibration routine might be very

tedious.

There is a way to circumvent this issue. In fact, Algorithm 5.9 allows to build a consistent

tree for the interval [0, T1] only, with T1 < T . One can even combine both algorithms,

i.e. one can use Algorithm 5.10, in Step (i) building a tree for Y on [0, T1] only. For that,

in Step (ii), one has to compute the value of SuN using Equation (5.5) as in Algorithm
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5.9, i.e. setting SuN = guN (YuN ). Then, one can proceed with Step (iii) as usual. For the

purpose presented in Example 5.11, this procedure should be considerably more efficient

than using the larger tree for the interval [0, T ].

To illustrate the procedure, one step of the corresponding tree for a defaultable diffusion

(and basically every other specification allowing for tree approximations) is illustrated

in Figure 5.3. We explain how to compute the stock price at the node Yui = x0 of the

tree in time step ui from the nodes at time step ui+1 which can be reached from the

given node. In Figure 5.3, these are four nodes, which can be reached with respective

probabilities p1, . . . , p4, with p1 + . . . + p4 = 1. In the JDCEV model, one transition

probability corresponds to defaulting, i.e. p4 = P
(
Yui+1 = 0

∣∣Yui = x0

)
. With

x0, d0 x2, d2

x1, d1

x3, d3

default

Yui Yui+1

p2

p1

p3

p4

Figure 5.3 A sketch of one step of the corresponding tree.

dj := E
[ ∑
ui+1<tk≤T

B(ui+1, tk)Dtk

∣∣∣Yui+1 = xj

]
, j = 1, 2, 3,

Equation (5.5) implies that the stock price at these nodes is given by sj := xj/B(0, ui+1)+

dj , j = 1, 2, 3. Furthermore, d0, the expected sum of future dividends at the previous

time step ui, given Yui = x0, can be computed either via

d0 = B(ui, ui+1)
3∑
j=1

pj dj ,
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in case ui+1 is no dividend date, or via

d0 = B(ui, ui+1)

3∑
j=1

pj
(
dj + fui+1(xj)

)
,

in case ui+1 is a dividend date (with corresponding dividend payoff function fui+1). The

stock price at this node is given accordingly via s0 = x0/B(0, ui) + d0. The pricing of

derivatives can be performed analogously using the computed values of the stock price

at every node, additionally taking into account the path leading to a possible default.

5.4 Case study

In this section, the proposed approach is illustrated by presenting a possible implemen-

tation. Consistent with our previous reasoning for a joint modeling of credit and equity

components respectively defaultable stock price models, the jump to default extended

constant elasticity of variance (JDCEV) model of Carr and Linetsky (2006) is chosen

for the closed martingale process {Yt}t∈[0,T ]. Furthermore, this model choice is able to

clearly demonstrate the claimed flexibility of the approach presented - distinguishing it

from many of the aforementioned references.

5.4.1 The martingale Y

The JDCEV model represents one of the most popular defaultable stock price models,

as it incorporates the most relevant features of the stock price plus a default component

while still retaining analytical tractability. Here, a slightly changed notation and some

simplifications of the original model are employed. For a thorough analysis of the JDCEV

model, the reader is referred to the original paper Carr and Linetsky (2006).

A probability space (Ω,F ,P) which supports a Brownian motion {Wt}t≥0 and an inde-

pendent random variable E ∼ Exp(1) is considered. For a given maturity T , {Yt}t∈[0,T ]

is defined as

Yt = Zt 1{τ>t},
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5.4.1 The martingale Y

where {Zt}t∈[0,T ] represents a pre-default process and τ the company’s default time. The

pre-default process is modeled as the solution to the SDE

dZt = Zt

(
λ

(
Zt
Z0

)2β

dt+ σZβt dWt

)
, Z0 = Y0 > 0, λ > 0, σ > 0, β < 0,

where 0 is defined as a killing boundary for those parameter constellations that enable

a diffusion to zero. Furthermore, the default time τ is modeled via τ := min{τ̂ , τ0},
with

τ0 := inf {t ∈ [0, T ] : Zt = 0} ,

and

τ̂ := inf

{
t ∈ [0, T ] :

∫ t

0
λ

(
Zs
Z0

)2β

ds > E

}
.

As usual, inf ∅ := ∞, where ∅ denotes the empty set. Consequently, default is defined

as the first time either the pre-default process diffuses to zero or the jump to default

governed by τ̂ occurs.13 The jump to default is modeled using a generic reduced-form

approach with the default intensity given as a function of the pre-default process. The

considered filtration {Ft}t≥0 is defined by Ft = σ(Zs : s ≤ t) ∨ σ(1{τ>s} : s ≤ t). The

model can be seen as an extension of the CEV model including a jump to default compo-

nent which is modeled via a reduced-form approach. Using the given parameterization,

the different parameters allow for an intuitive interpretation. The parameter β governs

the relation between the level, the volatility, and the default intensity of {Yt}t≥0. The

instantaneous default intensity λ (Zs/Z0)2β is linked to the evolution of the process,

where λ represents its starting value. The drift of the pre-default process includes the

default intensity to ensure the martingale property of the process {Yt}t≥0.

The distinguishing feature of the model is that important building blocks like European

claims with no recovery and fixed recovery payments can be priced in closed form. This

result is shown by expressing the pre-default process as a time-changed Bessel process

and subsequently applying a change of measure. This change of measure removes the

typical quantities stemming from the reduced-form approach and under the resulting

13In Carr and Linetsky (2006), it is claimed that τ̂ < τ0, a.s., which would simplify the exposition of the
model. However, the results shown in their paper do not depend on that property with exception of
Proposition 5.5(ii), which we will not make use of. Consequently, we use the original presentation of
the model.
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measure, the Bessel process can not diffuse to zero anymore. By that, the involved

expectations can be transformed to expectations of functions of a random variable with

known density. As we have seen that a known density can be very helpful with regard

to specifying a function ftk for the dividend payment, the following lemma from the

original paper is very useful.

Lemma 5.12 (Proposition 5.4 in Carr and Linetsky (2006))

Let X ∼ χ2(2 (ν + 1/|β|) + 2, Y
2|β|

0 /(t σ2|β|2)), with ν := 1
|β|

(
λ
σ2Y

−2β
0 − 0.5

)
, which

denotes a non-central χ2 distribution as introduced in Section 2.2.2. Then

E
[
h(Zt)1{τ>t}

]
= Y0 E

[(
|β|
√
t σ2X

)−1/|β|
h

((
|β|
√
t σ2X

)1/|β|
)]

.

Consider a function h : [0,∞)→ [0,∞) satisfying h(0) = 0. As we can write E [h(Ytk)] =

E
[
h(Ztk)1{τ>tk}

]
, the quantities required for the construction of ftk as defined in Equa-

tion (5.4) can be computed numerically using the density of the non-central χ2 distribu-

tion. For “nice” h, e.g. of polynomial structure, even closed-form expressions involving

Kummer functions are available, see Corollary 5.13. However, for all computations in

this thesis we used the integration with respect to the density of a χ2 distribution, which

worked both accurately and quickly.

In the sequel, unless stated otherwise, the following parameter specifications are used:

S0 = 100, β = −1, λ = 150bp = 0.015, σ Y β
0 = 20%, T = 5, tk = k, E[Dtk ] = 4, for

k = 1, . . . , 5. The riskless rate is assumed to be given by r = 4%.

5.4.2 The dividend specifications

The three different dividend specifications h1, h2, and h3 presented in Section 5.3.2 will

be considered in our case study. For the purpose of normalization in Equation (5.4), one

has to compute E [hi(Ytk)]. Because of the previously mentioned distinguishing feature of

the JDCEV model, its tractability, closed form solutions for h2 and h3 can be computed

based on Lemma 5.12, whereas for h1 it is obvious that E [h1(Ytk)] = Y0.

Corollary 5.13 (Closed form expressions)

With Φ+(p, k; δ, η) := E
[
Xp1{X>k}

]
and Φ−(p, k; δ, η) := E

[
Xp1{X≤k}

]
denoting the

truncated p-th moments of a χ2(δ, η) distributed random variable X, for which series
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representations can be found in Lemma 5.1 in Carr and Linetsky (2006), the following

holds:

E [h2(Ytk)] =
Y0

(|β|2tkσ2)
1

2|β|
Φ+

(
− 1

2|β|
, k̂(b); δ, η

)
,

E [h3(Ytk)] =
Y 2−a

0

la
(
|β|2tkσ2

)a−1
2|β| Φ−

(
a− 1

2|β|
, k̂(l Y0); δ, η

)
+

Y 2
0

(|β|2tkσ2)
1

2|β|
Φ+

(
− 1

2|β|
, k̂(l Y0); δ, η

)
+ Y0 Φ+

(
0, k̂(uY0); δ, η

)
− uY 2

0

(|β|2tkσ2)
1

2|β|
Φ+

(
− 1

2|β|
, k̂(uY0); δ, η

)
,

where k̂(x) := x2|β|

tk|β|2σ2 , δ = 2 (ν + 1/|β|) + 2, ν as in Lemma 5.12, and η =
Y

2|β|
0

t σ2|β|2 . For

b = 0, the first expression is reduced to a non-truncated moment which can be computed

using the Kummer confluent hypergeometric function.

Proof

The claim follows easily from Lemma 5.12. The series representations for the truncated

moments can be determined computing the integral with respect to the density in Equation

(2.10) term by term. �

These functions can be very helpful if one wants to speed up calculations. As mentioned

before, the absolute values of the functions hi are irrelevant as these functions are nor-

malized in the definition of ftk in Equation (5.4). In Figure 5.4, a comparison of the

different dividend specifications after normalization for t2 = 2 is depicted. Additionally,

the distribution of Yt2 is illustrated as a barplot in the background. The bar on the left

illustrates the probability of a default until t2.

5.4.3 Resulting option prices

Having presented possible tractable specifications for ftk , the impact on the pricing of

derivatives is examined. In particular, we consider stock options. The general impact of

the inclusion of dividends on the pricing of those options is well-known, thus allowing us

to focus on how the results differ for different dividend specifications. For the pricing,

tree techniques as described in Section 5.3.3 are used. The tree for the JDCEV model
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Figure 5.4 The resulting functions ft2 for the different specifications of h, together with
the distribution of Y2. From top to bottom, h1, h2 with b = 0 and h3 with
l = 0.8, u = 1.2, a = 2 are used. The vertical dashed line indicates Y0. The
functions are normalized such that E[Dt2 ] = 4 holds.
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is constructed by applying the techniques described in Appendix F of Brigo and Mer-

curio (2006) to the Bessel process in Proposition 5.1 of Carr and Linetsky (2006), and

subsequently applying the corresponding transformation. Actually, this approach can be

applied to price a wide range of complex derivatives, including also hybrid derivatives as,

e.g., convertible bonds. As stock options are well understood and the interesting effects

can thus be identified easily, the investigation is restricted to this class of derivatives.

The typical shape of American and European call option prices for different maturities

in the presence of discrete dividend payments can be observed in Figure 5.5 and Fig-

ure 5.6.14 It is worth noting that the pattern observed in Bos et al. (2003) indicating

obvious arbitrage for an escrowed model can not be found. Whereas the value of Amer-

ican call options (with fixed strike price) is increasing with increasing maturity, one can

observe a downward jump of European call option prices at ex-dividend dates. This is

also intuitively clear as after that point, the option does not include the right to receive

the dividend payment. In contrast to that, the holder of an American call option has

the possibility to receive the dividend by opting for early exercise, in case this is more

favorable. The kinks in the value of American call options have a simple intuitive ex-

planation as well. Extending the maturity of an American call option to cover just an

additional dividend payment date has almost no impact on the option value. In most

cases, the option would rather be exercised before the final dividend date than directly

after it because of the downward jump of the stock value. Furthermore, it is clear that

the value of European call options with maturity T1 = T = 5 does not depend on the

dividend specification, which is also confirmed in Figure 5.6.

More interesting is the relative order of the option values in Figure 5.5 and Figure 5.6

for the different specifications of the dividends. Here, one can observe that the modeling

of the dividend payments has a considerable impact. We observe V h1
A (0, ., S0, S0) ≥

V h3
A (0, ., S0, S0) ≥ V h2

A (0, ., S0, S0), which also holds for other strike prices (see Figure

5.7) and actually also for European call options. One can try to explain this from

different perspectives. Starting from a technical deliberation, the stock price St can be

considered (for a moment neglecting the riskless interest rate) as the sum of Yt and a

14To highlight the distinctions, we additionally include the prices resulting from modeling a continu-
ously paid dividend. Since one needs comparable prices, one has to employ a somewhat artificial
construction. Starting from Equation (5.5) and using the same driving stochastic factor, we consider

St := 1/B(0, t)YtD exp

(
−
∫ t

0

q(s) ds

)
, t ≥ 0

with a constant D > 0 and a piecewise constant function q. These quantities are chosen such that
the expected stock price at dividend dates coincides with the true expected values.
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second term representing the value of future dividends before T , which is a function

of Yt. Apart from the jumps at ex-dividend dates, the second term is a deterministic

function of Yt. The higher the change of the second term with a change of Yt, i.e. the

higher the delta, the higher the volatility of St and consequently the higher the value

of an American call option. Judging from the convexity/concavity of the form of the

different cash dividends, it is clear that V h1
A ≥ V h2

A , whereas V h3
A should lie in between.

Another more concrete perspective is linked to the probability of early exercise. From

the usual deliberations as, e.g., in Roll (1977), one knows that early exercise of an option

is more likely the higher the dividend payment and the deeper in the money the option

is just before the ex-dividend date. The higher the probability of early exercise, the

higher the value of an American call option. Again, higher dividend values are the most

likely for a dividend specification based on h1 and the least likely for h2, thus yielding

another explanation for the order of the option prices. In total, the differences in prices

caused by the different dividend specifications are not negligible.

In Figure 5.7, the implied Black volatility for American call options with maturity T = 3,

different strike values and the different dividend specifications is shown. One can observe

that the relative order between different dividend specifications is retained also for dif-

ferent strike prices. Furthermore, the shape of the implied volatility skew is very similar

to the one induced by the original JDCEV model, see, e.g., the skew corresponding to

the continuously paid dividend or (Carr and Linetsky, 2006, Figure 3). That means the

general form of the implied volatility skew is maintained from the model for Y , slightly

increasing the original skew. That observation might be in particular helpful when one

has to choose a model for the underlying closed martingale.

5.5 Conclusion

Based on the fundamental ansatz of considering the stock price as the sum of expected

discounted dividends, a flexible approach for the modeling of discrete cash dividends

was developed. It bears some similarities to the escrowed approach, while allowing for

more complex dividend modeling and ensuring arbitrage-free prices. Almost any kind of

stochastic process can be used, in particular it is possible to embed defaultable processes,

which seems to be important or at least reasonable for discrete cash dividends. Practical

implications were discussed and possible dividend specifications were presented. Finally,
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Figure 5.5 The value of American at-the-money (ATM) call options for different ma-
turities and the different dividend specifications. Additionally, the values
resulting from modeling a continuously payed dividend are added.
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Figure 5.6 The value of European ATM call options for different maturities and the
different dividend specifications. Additionally, the values resulting from
modeling a continuously payed dividend are added.
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Figure 5.7 The implied Black volatility of American call options with maturity t = 3,
for different dividend specifications (including a continuously paid dividend)
and different strike values.

the impact of different dividend specifications was investigated in a case study in the

context of a defaultable Markov diffusion setup.
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6 Conclusion

The results of this thesis can be divided into three different parts, mirroring the structure

of the thesis. In Chapter 3, a new integral representation for the density of distributions

of the Bondesson class was derived. The main contribution consists of the proof of

admissibility of the involved contour transform for all these distributions. As a corollary,

the applicability of the approach for distribution functions and option-like structures

was shown. Numerical tests confirm the tractability and smoothness of the resulting

representation.

In Chapter 4, two new and flexible classes of MSMVE distributions were developed,

which give rise to many parametric families. The resulting distributions are in partic-

ular suitable for the modeling of large credit portfolios, as they are tractable also in

high dimensions and allow for an intuitive understanding of the underlying dependence

structure. Furthermore, we were able to embed the resulting family of distributions into

the context of other well-known distributions.

Finally, in Chapter 5, a new approach for the modeling of discrete cash dividends was

presented. It allows to incorporate quite flexible, non-deterministic dividend structures

into almost any kind of stock price model. Practical implications were discussed and

illustrated in a short case study.

145



146



Bibliography

Abate, J. and Valko, P. (2004). Multi-precision Laplace transform inversion. Interna-

tional Journal for Numerical Methods in Engineering, 60(5):979–993.

Abramowitz, M. and Stegun, I. A., editors (1965). Handbook of mathematical functions.

Dover Publications, New York.

Aldous, D. J. (1985). Exchangeability and related topics. In École d’Été de Probabilités
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Bielecki, T. R., Crépey, S., Jeanblanc, M., and Rutkowski, M. (2011). Convertible

bonds in a defaultable diffusion model. In Kohatsu-Higa, A., Privault, N., and Sheu,

S.-J., editors, Stochastic Analysis with Financial Applications, volume 65 of Progress

in Probability, pages 255–298. Springer, Basel.

Bochner, S. (1949). Diffusion equation and stochastic processes. Proceedings of the

National Academy of Sciences of the United States of America, 35(7):368–370.

Bondesson, L. (1979). A general result on infinite divisibility. The Annals of Probability,

7(6):965–979.

Bondesson, L. (1981). Classes of infinitely divisible distributions and densities. Zeitschrift

für Wahrscheinlichkeitstheorie und verwandte Gebiete, 57(1):39–71.

Bos, M. and Vandermark, S. (2002). Finessing fixed dividends. Risk, pages 157–158.

Bos, R., Gairat, A., and Shepeleva, A. (2003). Dealing with discrete dividends. Risk,

pages 109–112.

Brigo, D. and Mercurio, F. (2006). Interest Rate Models: Theory and Practice. Springer

Finance. Springer, Berlin Heidelberg New York, 2nd edition.

Buehler, H. (2010). Volatility and dividends. Working paper, TU Berlin.

Buryak, A. and Guo, I. (2011). New analytic approach to address put–call parity viola-

tion due to discrete dividends. Applied Mathematical Finance, 19(1):37–58.

Carr, P. and Linetsky, V. (2006). A jump to default extended CEV model: An application

of Bessel processes. Finance and Stochastics, 10(3):303–330.

Carr, P. and Madan, D. (1999). Option valuation using the fast Fourier transform.

Journal of Computational Finance, 2(4):61–73.

Carr, P. and Wu, L. (2004). Time-changed Lévy processes and option pricing. Journal
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sided Lévy stable distributions. Physical Review Letters, 105(21):210604.

Pickands, J. (1989). Multivariate negative exponential and extreme value distributions.

In Hüsler, J. and Reiss, R.-D., editors, Extreme Value Theory, volume 51 of Lecture

Notes in Statistics, pages 262–274, New York. Springer.
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processes. Osaka J. Math., 41(1):211–236.

155



Bibliography

Sato, K.-I. (2006). Two families of improper stochastic integrals with respect to Lévy
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Schönbucher, P. J. and Schubert, D. (2001). Copula-dependent defaults in intensity

models. Working paper, SSRN eLibrary.

Segers, J. (2012). Max-stable models for multivariate extremes. REVSTAT – Statistical

Journal, 10(1):61–82.

Seshadri, V. (1993). The Inverse Gaussian distribution: a case study in exponential

families. Oxford science publications. Clarendon Press.

Shuster, J. (1968). On the Inverse Gaussian distribution function. Journal of the Amer-

ican Statistical Association, 63(324):1514–1516.

Steutel, F. W. and van Harn, K. (2004). Infinite Divisibility of probability distributions

on the real line. Pure and applied mathematics. Marcel Dekker, Inc., New York Basel.

Talbot, A. (1979). The accurate numerical inversion of Laplace transforms. Journal of

the Institute of Mathematics and its Applications, 23(1):97–120.

Thorin, O. (1977a). On the infinite divisbility of the Pareto distribution. Scandinavian

Actuarial Journal, 1977(1):31–40.

Thorin, O. (1977b). On the infinite divisibility of the lognormal distribution. Scandina-

vian Actuarial Journal, 1977(3):121–148.

van Binsbergen, J., Brand, M., and Koijen, R. (2012). On the timing and pricing of

dividends. American Economic Review, 102(4):1596–1618.

Vasicek, O. A. (2002). Loan portfolio value. Risk, pages 160–162.

Veiga, C. and Wystup, U. (2009). Closed formula for options with discrete dividends

and its derivatives. Applied Mathematical Finance, 16(6):517–531.

Vellenkoop, M. and Nieuwenhuis, J. (2006). Efficient pricing of derivatives on assets

with discrete dividends. Applied Mathematical Finance, 13(3):265–284.

Villiger, R. (2006). Valuation of American call options. Wilmott Magazine, pages 64–67.

156



Bibliography

Weideman, J. A. C. and Trefethen, L. N. (2007). Parbolic and hyperbolic contours for

computing the Bromwich integral. Mathematics of Computation, 76(259):1341 – 1356.

Whaley, R. E. (1981). On the valuation of American call options on stocks with known

dividends. Journal of Financial Economics, 9(2):207–211.

Widder, D. V. (1946). The Laplace transform. Number 6 in Princeton Mathematical

Series. Princeton University Press.

Williamson, R. (1956). Multiply monotone functions and their Laplace transforms. Duke

Mathematical Journal, 23(2):189–207.

Wolfe, S. J. (1975). On moments of probability distribution functions. In Ross, B., editor,

Fractional Calculus and Its Applications, volume 457 of Lecture Notes in Mathematics,

pages 306–316. Springer, Berlin Heidelberg.

Yor, M. (1980). Loi de l’indice du lacet brownien, et distribution de hartman–watson.

Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete, 53(1):71–95.

Yor, M. (1992). On some exponential functionals of Brownian motion. Advances in

Applied Probability, 24(3):509–531.

157



Bibliography

158



List of Tables

3.1 Density calculation for Inverse Gaussian and Gamma distribution by nu-

merical evaluation of Equation (3.3) and comparison to exact values.

Maximum and average absolute and relative errors over all parameter

combinations and evaluation points are listed. . . . . . . . . . . . . . . . . 66

3.2 Comparison of Nolan’s inversion algorithm (N) and integration over the

new representation (T) for stable distributions. The quantiles of the re-

spective distribution and the time (CPU time in seconds) required by

both methods to evaluate 1 000 density points are listed. Furthermore,

the maximum relative deviation of (T) with respect to Nolan’s approach

is given. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.1 Possible choices for ΨH together with their Lévy densities gH , νΛ(dx) =

Φ−1
f1

(gHdx), and the corresponding type of Λ (where CP denotes a com-

pound Poisson process). The restrictions α ∈ (0, 1), a > 0, β > 0, η > 0

have to hold. All are also complete Bernstein functions. Furthermore, we

define c := log(1 + 1/β) and d :=
√

2 + η2 − η which we need to ensure

ΨH(1) = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

159



List of Tables

160



List of Figures

2.1 Venn diagram illustrating the relation between the different classes of

positive ID distributions defined on page 11. . . . . . . . . . . . . . . . . . 14

2.2 Density of the stable distribution for different values of α, computed with

the approach presented in Chapter 3. . . . . . . . . . . . . . . . . . . . . . 16

2.3 Densities of the Hartman–Watson distribution for several values of r, com-

puted with the approach presented in Chapter 3. . . . . . . . . . . . . . . 20

3.1 Bromwich integrand (i.e. the resulting integrand when evaluating Equa-

tion (3.2)) on [0, 100] for x the 60%-quantile of the stable distribution

with α = 0.3, a = 1/x. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.2 <(ex z e−Ψ(z)) (top figure) and =(ex z e−Ψ(z)) (bottom figure) for the sta-

ble distribution with α = 0.3 and x the respective 60%-quantile. The

Bromwich contour (black line) and the transformed path (green line) for

parameters a = 1/x and b = 2/x are plotted. . . . . . . . . . . . . . . . . 54

3.3 Resulting integrand in Equation (3.3) for the Gamma (upper figure) and

the Inverse Gaussian (lower figure) distribution, β = 5, η = 5, with the

values for x chosen as 4 equally spaced points starting, respectively ending,

with the 0.5% and 99.5%-quantiles. . . . . . . . . . . . . . . . . . . . . . . 67

3.4 Resulting integrand in Equation (3.3) for the same parameter constella-

tion as in Figure 3.1, with x the 60%-quantile of the stable distribution

with α = 0.3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.5 Resulting integrand in Equation (3.3) for the stable distribution with

α = 0.1 (upper figure, three of the lines coincide for the given scale) and

α = 0.9 (lower figure), with the values for x chosen as 4 log-spaced points

starting, respectively ending, with the 0.5% and 99.5%-quantiles. . . . . . 70

161



List of Figures

3.6 Density of the stable stable distribution with α = 0.01 computed from the

new representation outside of the quantile-based range used in Table 3.2,

i.e. left of the 0.05%-quantile (left figure) and right of the 99.5%-quantile

(right figure). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.7 A comparison of the values for the Hartman–Watson density for r = 0.5

based on the approach presented and Equation (2.14) (upper figure). The

lower figure zooms in on the results for the new approach. . . . . . . . . . 74

3.8 Resulting integrand in Equation (3.3) for the Hartman–Watson density

for r = 0.5, with the values for x chosen as 4 log-spaced points in the

interval in Figure 3.7 (upper figure), and starting, respectively ending,

with the 0.5% and 99.5%-quantiles (lower figure). . . . . . . . . . . . . . . 75

4.1 Bivariate Pickands dependence functions for Example 4.8 (ΨH(x) = xα)

and different values of α. . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.2 Trivariate Pickands dependence function A(t1, t2) := `
(
t1, t2, 1−(t1 +t2)

)
,

t1, t2 ≥ 0 with 0 ≤ t1 +t2 ≤ 1, for Example 4.8 (ΨH(x) = xα) with α = 0.5. 93

4.3 The bivariate Pickands dependence functions resulting from Theorem 4.4

for different ΨH corresponding to the α-stable case, CP1, the Gamma

case, and the IG case as defined in Table 4.1. The parameters are chosen

such that all models exhibit a Spearman’s ρ of 0.5. . . . . . . . . . . . . 96

4.4 A contour plot for the trivariate Pickands dependence function resulting

from Theorem 4.4 for different choices of ΨH , comparing the α-stable case

and CP1. The dotted lines correspond to CP1. Parameters are chosen

as in Figure 4.3. Though the two-dimensional models seem to be similar,

the three-dimensional dependence structures differ considerably. . . . . . . 97

4.5 The bivariate Pickands dependence functions for Example 4.9 and Exam-

ple 4.13, which share the same Bernstein function ΨH , but are based on

different families of IDT subordinators. The parameters are chosen such

that both models exhibit a Spearman’s ρ of 0.5. . . . . . . . . . . . . . . . 102

4.6 Simulated paths of the processes H(1) and H(2) where a = 2 is chosen.

For comparison, a path of the simple compound Poisson process H(0)

with Exp(a)-distributed jumps is added, which has the same marginal

distribution. For all processes, the same jump times are used. . . . . . . 104

162



List of Figures

4.7 Scatterplots with 800 samples of the survival copulas of the MSMVE dis-

tribution generated by Example 4.9 and Example 4.13. The corresponding

Pickands dependence functions are depicted in Figure 4.5 and the same

parameters are chosen. Contour lines of the related densities are added. . 105

5.1 Exemplary stock price development around an ex-dividend date (here,

Allianz SE is considered). It is clearly observable that the stock price

started trading considerably lower on the ex-dividend date. A dividend

of 4.50 EUR was payed which almost coincides with the size of the jump.

Source: Bloomberg. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.2 A sketch of the form of the three different specifications of h. . . . . . . . 131

5.3 A sketch of one step of the corresponding tree. . . . . . . . . . . . . . . . 134

5.4 The resulting functions ft2 for the different specifications of h, together

with the distribution of Y2. From top to bottom, h1, h2 with b = 0 and h3

with l = 0.8, u = 1.2, a = 2 are used. The vertical dashed line indicates

Y0. The functions are normalized such that E[Dt2 ] = 4 holds. . . . . . . . 139

5.5 The value of American at-the-money (ATM) call options for different

maturities and the different dividend specifications. Additionally, the

values resulting from modeling a continuously payed dividend are added. . 142

5.6 The value of European ATM call options for different maturities and the

different dividend specifications. Additionally, the values resulting from

modeling a continuously payed dividend are added. . . . . . . . . . . . . . 142

5.7 The implied Black volatility of American call options with maturity t = 3,

for different dividend specifications (including a continuously paid divi-

dend) and different strike values. . . . . . . . . . . . . . . . . . . . . . . . 143

163


	Introduction
	Mathematical background
	Notations and definitions
	Positive infinitely divisible distributions
	General theory
	Classes of positive infinitely divisible distributions

	IDT subordinators
	Definition of IDT subordinators
	Properties of IDT subordinators
	An integral with respect to Lévy subordinators
	Construction of families of IDT subordinators

	MSMVE distributions
	Definition of MSMVE distributions
	Properties of MSMVE distributions
	Link to other distributions
	Stochastic representations


	The density of distributions from the Bondesson class
	Motivation
	Integral representation of f
	Implementation and numerical tests
	Remarks on the parameter choice
	Test against known probability densities
	Test using the non-central 2 distribution function
	Test using the stable density
	Test using the Hartman–Watson density

	Conclusion

	Constructing MSMVE distributions from Bernstein functions
	Motivation
	A first construction based on f1(s)=(1-s)+
	Attainable marginal distributions
	The corresponding MSMVE family

	A second construction based on f2(s)=log+(1/s)
	The corresponding MSMVE family

	A note on simulation
	Analysis of the arising subclass
	Conclusion

	Modeling of discrete cash dividends
	Motivation
	Notation
	Existing approaches and our contribution

	Consistent modeling of a stock price with discrete cash dividends
	The general modeling approach
	A tractable reformulation

	Practical aspects
	Dependence on T
	Parametric form of dividend payments
	Derivatives pricing

	Case study
	The martingale Y
	The dividend specifications
	Resulting option prices

	Conclusion

	Conclusion
	Bibliography
	List of Tables
	List of Figures

