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Zusammenfassung

Diese Arbeit entwickelt einen neuen iterativen Algorithmus für eine Klasse konvexer
Optimierungsprobleme mit Nebenbedingungen, die unter anderem bei Variationsmo-
dellen aus der Bildverarbeitung auftreten. Das neue Verfahren überwindet Probleme
etablierter Methoden wo Schrittweitenbeschränkungen zu langsamer Konvergenz füh-
ren. Basierend auf der Theorie monotoner Operatoren werden Konvergenzeigenschaf-
ten entwickelt. Numerische Experimente, primär mit Modellen für Bewegungsseg-
mentierung in Echtzeit, die in dieser Arbeit ebenfalls entwickelt werden, zeigen die
Leistung des neuen Verfahrens.

Der neue Algorithmus ist ein implizites proximal Verfahren. Er ist nicht anfällig ge-
genüber steifen Systemen, im Gegensatz zu einigen proximalen Verfahren, wie zum
Beispiel das proximale Gradientenverfahren, oder aktuelle primal-duale Methoden.
Solche steifen Systeme können unter anderem auch von Regularisierungstermen aus
Bildverarbeitungsproblemen herrühren. Schwierigkeiten, die bei der Berechnung des
impliziten Verfahrens auftreten, können mit einer Näherung überwunden werden. Die-
se Näherung bewahrt die Eigenschaften des exakten Verfahrens und ist zusätzlich ef-
fektiv berechenbar, liefert aber nur eine nicht-exakte Lösung. Wir zeigen jedoch, dass
der Abstand zwischen exakter und nicht-exakter Lösung beschränkt und direkt pro-
portional zur verwendeten Schrittweite ist.
Das implizite proximal Verfahren kann auch als Update-Schritt in eine ”Splitting“-
Methode, wie die ”Alternating Direction Method of Multipliers“, (ADMM), integriert
werden. In dieser Form wird der neue Algorithmus auf das Problem der Bewegungsseg-
mentierung angewandt, wo er im Vergleich zum primal-dualen Algorithmus, sowie
dem klassischen ADMM um einen Faktor fünf bis zehn schneller ist, gleichzeitig aber
mindestens gleich gute Bewegungssegmentierungen liefert. Letztendlich arbeiten wir
auf einen echtzeitfähigen Algorithmus für die Bewegungssegmentierung hin.
Zu diesem Zweck werden Modelle für zwei- und mehrteilige Bewegungssegmentie-
rung vorgeschlagen. Aus unterschiedlichen variationellen Modellen zur Bewegungs-
segmentierung wird ein Modell aus zwei Gebieten (”2L-Modell“) aufgebaut. Damit
erhält man eine Segmentierung in einen bewegten Vordergrund und einen bewegten
Hintergrund zusammen mit einer Abschätzung für einen konstanten oder affinen Be-
wegungsvektor für jedes der beiden Gebiete. Zur Erweiterung auf mehrere Gebiete
(”nL-Modell“) werden zwei Modelle vorgeschlagen. Basierend auf existierenden Ideen
aus der Mehrgebietssegmentierung und jüngsten Ansätzen zur Bewegungssegmentie-
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rung wird das 2L-Modell mit zusätzlichen Label-Funktionen erweitert. Im zweiten
Modell kommt ein Verfahren zur Anwendung, das direkt aus dem erwähnten 2L-Modell
hervorgeht. Dazu wird zunächst nur ein Gebiet mit einem konstanten oder affinen Be-
wegungsvektor versehen. Die sich aus der Unterteilung des Restgebietes ergebenden,
bewegten Gebiete, erhalten ihre zugehörigen Bewegungsvektoren in einem Nachbear-
beitungsschritt. Während das erste nL-Modell mit zusätzlichen Labelfunktionen für
n Gebiete in den numerischen Testumgebungen eine etwa n-mal längere Rechenzeit
als das 2L-Modell benötigte, war das zweite Modell fast genauso schnell wie das 2L-
Modell, dafür aber weniger robust.
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Abstract

This thesis develops a new iterative method for a class of convex constrained opti-
mization problems, which occur inter alia in imaging models based on variational ap-
proaches. The new method overcomes problems of established optimization methods,
such as step size restrictions and resulting slow convergence. Convergence properties
are derived, based on monotone operator theory. Numerical experiments, primarily on
the application of real-time motion segmentation, for which suitable models are devel-
oped, show the performance of the new method.

The developed optimization algorithm is an implicit proximal method. It is not prone
to stiff systems, to which some proximal methods, e.g. the proximal gradient method
or recent primal-dual methods, are sensitive. Such stiff systems can also arise from
regularization terms in imaging problems. Challenges with calculations required for
the implicit method are overcome by an approximation, which preserves the properties
of the exact method and is efficiently computable, but gives only an inexact solution.
However, we show that the distance between the exact and inexact solution is bounded
and proportional to the step size.
The implicit proximal method can also be included into the update steps of splitting
methods as the alternating direction method of multipliers (ADMM). In this form, it
is applied to the motion segmentation application, where it outperforms the primal-
dual algorithm and the classical ADMM by a factor of five to ten in runtime, while the
resulting motion segmentations are equally good or better. Eventually, we aim for a
real-time capable algorithm for the motion segmentation problem.
For this purpose, suitable models for two-label and multi-label motion segmentation
are proposed. From different variational motion segmentation models a two-label mo-
tion segmentation model is assembled, which yields a segmentation into a moving fore-
ground and a moving background, as well as an estimate for a constant or affine motion
vector for each of these two regions. For the task of multi-label motion segmentation,
two models are proposed. The first works with an adaption of a two-label model with
multiple labeling functions, which is based on existing ideas of multi-label segmenta-
tion and also more recent motion segmentation approaches. The second model uses
a technique which is derived directly from the mentioned two-label model. Only one
area is modeled with a constant or affine motion vector, while the remaining moving
regions are segmented and provided with motion vectors in a post processing step.
While the first multi-label approach for n regions usually takes about n times as long as
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the two-label approach, the second approach is almost as fast as the two-label approach
— but less robust.
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1 Introduction

“Much like Newton’s method is a standard tool for solving unconstrained smooth min-
imization problems of modest size, proximal algorithms can be viewed as an analogous
tool for nonsmooth, constrained, large-scale, or distributed versions of these problems.“

[Parikh and Boyd, 2013]

Many of the algorithms used and evolved for recent imaging models are based on
optimization methods developed since the 1950s, in particular on the proximal point
method. Bit by bit, it turned out that between these recently used algorithms many
connections, often even equivalences exist, and some are special cases of others, which
is in general not an easy task to show. Nevertheless some of the algorithms are more
easy to adapt to problems and to implement, and therefore became well established
and used in many applications throughout different manuscripts. However, it turns
out that for some applications these algorithms work only for very small step sizes,
causing slow convergence. For other applications, the step size restrictions are less se-
vere or can be violated without loosing the convergence properties of the algorithms in
practice.
Such problems have also arisen in the theory of ordinary differential equations, where
the characteristic of a problem yielding the small step size restriction which prevents
the algorithm from converging in reasonable time was called stiffness. It turned out
that explicit schemes, as the explicit Euler scheme, are prone to stiffness, while implicit
schemes are not. Even though proximal algorithms are of implicit nature by construc-
tion, many of the above optimization algorithms contain explicit gradient steps.
The task we consider is to find a segmentation of an image sequence into moving objects
with associated motion vectors preferably in real-time. This problem is a combination
of motion estimation, where a motion vector is defined for every pixel of the image do-
main, and segmentation, where the image is partitioned into regions with similar prop-
erties. Both tasks have been studied intensively and sought to be solved in real-time,
for example in advanced driver assistance systems, (traffic) surveillance, medical imag-
ing and assistance systems, or motion sensing input devices mostly known from video
game consoles. Even though the models for both separated tasks, together with suitable
algorithms, have experienced large development, the combination of both tasks turns
out to be one of those problems, where the step size restriction of the used algorithm is
a crucial point.
In the following work, we analyze some well established methods for variational imag-
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CHAPTER 1. INTRODUCTION

ing models with special attention to explicit schemes, and develop a new proximal
method with a fully implicit scheme that overcomes the problems with stiff systems,
while trying to preserve an easily implementable structure. Since the iterates of im-
plicit schemes tend to be computationally involved, we focus in particular on efficient
solvability and approximations that are fast to compute.

Related work. The name proximal operators was probably coined in the work of
[Moreau, 1962] in the 1960s while the relationship between proximal operators and
resolvents was explored in [Rockafellar, 1976] through the handling of the subdifferen-
tial as a monotone operator. Already in the 1950s gradient methods were investigated
through numerical methods for ordinary differential equations in [Arrow et al., 1958].
Algorithms, such as the alternating iterative scheme of [Bregman, 1967], were invented
independently while connections were explored later.
In [Esser, 2009, Esser et al., 2010, Setzer, 2011, Yin et al., 2008] similarities of Bregman
iterations, the method of multipliers and first order primal-dual methods, which are
based on the proximal point method, are analyzed. A connection of proximal methods
and the Douglas–Rachford splitting is provided in [Eckstein and Bertsekas, 1992]. A
recent survey by [Boyd et al., 2011] on the alternating direction method of multipliers
(ADMM), and its sequel [Parikh and Boyd, 2013] on proximal methods give a com-
prehensive overview on algorithms and applications including detailed references on
previous work and historical development. In the recent monograph of [Bauschke and
Combettes, 2011], monotone operator theory is explored in detail with connections to
the mentioned algorithms.
These algorithms are extensively utilized in computer vision applications, and in par-
ticular in motion estimation and segmentation. For example, in [Goldstein et al., 2010]
the split Bregman method is proposed for the segmentation of images, and in [Möllen-
hoff et al., 2013] the ADMM is compared with the primal-dual algorithm on minimal
partition problems. In [Pock et al., 2009,Chambolle and Pock, 2011] a primal-dual algo-
rithm based on proximal methods is presented and applied to many different imaging
problems, such as optical flow, segmentation and inpainting.
The combination of motion estimation and segmentation has been addressed in many
works, among them are [Brox and Weickert, 2004] and [Cremers and Soatto, 2005],
where the motion segmentation problem has been formulated in the variational frame-
work for segmentation by [Chan et al., 2000, Vese and Chan, 2002] with optical flow
data terms. More recently, a motion segmentation model has been proposed in [Unger
et al., 2012], where the authors propose a convex constraint model, which is solved by
the primal-dual algorithm from [Chambolle and Pock, 2011].

Contribution. The contribution of this thesis lies in the analysis of the optimization
methods and convergence properties, and the resulting development of a new implicit
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algorithm, which overcomes the problem of explicit algorithms with stiff systems. Fur-
ther, a convergence analysis for the new method is provided. Possible simplifications
and approximations of parts which are challenging to compute, due to the implicit step,
are proposed and analyzed. The new algorithm is tested and compared with other state
of the art algorithms, primarily on motion segmentation examples, but also on further
imaging tasks such as denoising and inpainting.
In addition, different (convex) models for two-label and multi-label motion segmenta-
tion are presented, and a new model for fast multi-label motion segmentation is pro-
posed, tested and compared with the other models, utilizing our newly developed al-
gorithm.

Outline. This thesis is structured as follows:

• In the second and third chapter models for different imaging problems are pre-
sented. Chapter 2 introduces the concept of variational methods in imaging and
presents, in preparation for the motion segmentation task, different models for
optical flow and segmentation. Also further imaging tasks such as denoising and
inpainting are addressed briefly. In chapter 3, two-label and multi-label motion
segmentation models are adapted from the combination of optical flow and seg-
mentation models given in chapter 2. Further, a new model for multi-label motion
segmentation is proposed.

• The fourth and fifth chapter are about algorithms for convex optimization prob-
lems, which often arise from imaging problems. In chapter 4, well known algo-
rithms used for imaging tasks are presented and compared. Based on the theory
of monotone operators, proximal methods are introduced and the primal-dual
algorithm and the ADMM are described and compared. In chapter 5, a new prox-
imal algorithm is developed, which has no step size restriction and hence is not
prone to stiff systems. Further, convergence properties and fixed points of the
new algorithm are analyzed.

• Chapter 6 connects application and algorithms. The algorithms given in chap-
ters 4 and 5, are adapted to the motion segmentation problem and compared on
several examples, with respect to runtime and accuracy.

• Chapter 7 finally summarizes our findings and gives an outlook on future work.
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2 Tools and Models for Mathematical

Imaging

In this chapter, a technique for imaging problems based on solving partial differential
equations is described, the concept of variational methods. All applications described
and analyzed in this work use a variational approach, thus a brief introduction is given
here using the example of image denoising.
Further, different approaches for segmentation and optical flow are explained which
are the basis of our motion segmentation model which is given in chapter 3.

2.1 Variational Methods

In variational approaches, model assumptions are formulated as penalty terms and
added in a so called energy functional. These add a high value (or cost) to the functional if
the model assumption is not fulfilled and a low value otherwise. Therefore, the function
minimizing this energy functional, possibly respecting additional constraints, fulfills
the formulated assumptions best and is the solution to the given problem.
Mathematically speaking, the penalizer terms are formulated as functions of the form
Fi : H → [0, ∞) on a real Hilbert space H with inner product 〈·, ·〉H and induced norm
‖·‖H. The energy functional is given by

J(u) = F1(u) + F2(u) + . . . , (2.1)

and the solution u∗ minimizes J(u). In order to find a minimizer u∗, one analyzes
(local) optimality conditions derived from the variation of u around u∗ - hence the name
variational method.
In image processing applications, the energy functionals can often be divided into two
parts, the data terms and the regularization terms. The data terms consist of all pe-
nalizer terms measuring the pixelwise error according to the application, for example,
for a denoising application, the difference between the noisy image and the reconstruc-
tion. The regularization term also includes neighboring attributes, such as smoothness
assumptions.
The result of the optimization depends highly on the regularization and thus on the
assumptions we make.
Many tasks in image processing are inverse problems such as deconvolution, which are
often ill-posed. [Chan and Shen, 2005]
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CHAPTER 2. TOOLS AND MODELS FOR MATHEMATICAL IMAGING

A very common assumption is that large parts of the image are considered smooth,
which means that every pixel is in a way connected to its neighboring pixel. In the
following we introduce different regularization terms using this assumption.
As an example for an energy functional with data term and regularization term, we
consider a variational model for denoising. Let f : Ω→ R be a noisy gray-value image,
and the image domain Ω ⊂ R2. We seek to reconstruct the original image u : Ω → R

without noise. As a first assumption, the difference between the noisy image f and u
should be small, yielding the data term. Thus, a function is used, that penalizes high
differences. In this example, we use the quadratic function

Fdata(u) =
1
2

∫
Ω
( f (x)− u(x))2 dx. (2.2)

This data term alone is of course not sufficient to reconstruct a noise-free image. There-
fore a second assumption is introduced, the regularization. As already said, we assume,
that most areas in the image will be smooth, i.e. differences in the gray-values between
neighboring pixels are small. The gradient of the image provides information on neigh-
boring pixels and again, we choose a quadratic function to penalize large gray-value
changes, i.e. large values in the gradient of the reconstructed image u:

Freg(u) =
1
2

∫
Ω
‖∇u(x)‖2

2 dx. (2.3)

This regularization is sometimes referred to as the classical Tikhonov regularization, cf.
[Bredies and Lorenz, 2011,Chan and Shen, 2005,Tikhonov, 1963]. The energy functional
for the denoising problem reads

J(u) =
1
2

∫
Ω
(u(x)− f (x))2 + µ ‖∇u(x)‖2

2 dx, (2.4)

where µ > 0 is a weighting parameter.
The Euler-Lagrange equation, yielding an elliptic partial differential equation, is given
by

µ∆u(x) = u(x)− f (x), (2.5)

with Neumann boundary conditions. The Euler-Lagrange equation is a necessary con-
dition for a sufficiently smooth minimizer of J. In some cases, the quadratic func-
tion in the regularization term forces too much blurring on the edges. This suggests
another regularization term, the so called total variation regularization (TV). The TV-
regularization term is given by

FTV(u) = sup
{∫

Ω
u div ϕ dx

∣∣ ϕ ∈ D(Ω, R2), ‖ϕ‖∞ ≤ 1
}

, (2.6)

whereD(Ω, R2) is the space of compactly supported infinitely often differentiable func-
tions ϕ : Ω→ R2 and ‖ϕ‖∞ = supx∈Ω ‖ϕ(x)‖2 the supremum norm, see e.g. [Bredies
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2.1. VARIATIONAL METHODS

Figure 2.1: Upper row: original and noisy image. Lower row: denoising with quadratic
regularization term (left) and TV regularization (right).

and Lorenz, 2011]. For sufficiently smooth functions u, there is a more intuitive repre-
sentation for the TV-regularization (2.6):

FTV(u) =
∫

Ω
‖∇u(x)‖2 dx, (2.7)

but this representation is not applicable for functions u that are discontinuous, i.e. func-
tions that can represent images with edges or small structures. Thus, for functions with
jump discontinuities, the total variation regularization from (2.6) has to be used. Also,
functional (2.7) is not lower-semicontinuous on the associated Sobolev space of weakly
differentiable functions. Lower semicontinuity is an essential property for the theory
of the algorithms presented in chapters 4 and 5, which can be retained for functions
for which (2.6) is well-defined and finite, cf. [Bredies and Lorenz, 2011, section 6.3.3].
These functions are so called functions with bounded variation. In Figure 2.1 a denoising
example is shown with a quadratic regularization (left) and a TV-regularization (right).
We can observe that in the denoising result with TV-regularization there are more sharp
edges than in the denoising result with quadratic regularization.
All functions considered so far where defined on an open domain Ω ⊂ R2. However,
images consist of a finite number of pixels, represented as matrices or long vectors,
f ∈ Rm×n, or f ∈ RN , where m, n denotes the number of pixels in two dimensions,
while N = m · n is the total number of pixels in the image domain Ω. Using this
discrete setting with appropriate discrete adaptations of the gradient and divergence
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CHAPTER 2. TOOLS AND MODELS FOR MATHEMATICAL IMAGING

operator, cf. chapter 6, the total variation representations in Equations (2.6) and (2.7)
are equivalent. However, since the continuous notation is more intuitive and easy to
read, we keep using it, although Ω is going to be a finite set in what follows.

2.2 Segmentation

The segmentation of an image is the partition of the image domain into pairwise disjoint
regions. One considered case is gray values to be similar inside one region. The mean
gray value over each region is used to approximate the original image through the
segmented regions.

2.2.1 Piecewise Constant Mumford–Shah Model

One of the first variational image models is the model by Mumford and Shah [Mumford
and Shah, 1989] for denoising and segmentation.
Let Ω be the two-dimensional image domain. The image domain shall be divided into
areas with piecewise constant color / gray value. The more areas the model includes,
the more detailed the segmentation. Let f : Ω → R denote the image. The segmenta-
tion model with only two areas is given by

J(c1, c2, C) =
∫

ω
( f (x)− c1)

2 dx +
∫

Ω\ω
( f (x)− c2)

2 dx︸ ︷︷ ︸
Jdata

+µL(C)︸ ︷︷ ︸
Jreg

, (2.8)

where L(C) is the length of the contour dividing the image domain Ω into two areas,
ω and Ω\ω, and c1 and c2 are the mean color- / gray-values in the areas. µ > 0 is
a weighting parameter. The model consists of the data term, Jdata, which models the
image data, and a regularization term, Jreg, which prevents the contour from getting
fractal, i.e. prefers short contours.
By minimizing this functional, a segmentation can be found. Since the functional is
not convex, the solution is not unique. In some applications not only global, but also
local minima of the segmentation functional are interesting. In this case the user has to
decide, which solution is best for the application.
In order to find more than two regions the following model by [Mumford and Shah,
1989] is given.

J(ci, C) =
n

∑
i=1

∫
ωi

( f (x)− ci)
2 dx + µL(C) (2.9)

n is the number of areas and ci the mean color-/gray-value in ωi.
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2.2. SEGMENTATION

2.2.2 Segmentation with Level Sets - Chan–Vese

The introduction of a level set function ϕ : Ω→ R by Chan–Vese [Chan et al., 2000]
simplifies the Mumford-Shah model, since there is only one integral left. The contour C,
which divides the different areas is defined by the zero level set C = {x ∈ Ω| ϕ(x) = 0}
of the level set function. For the level set function signed distance functions can be used.
By introducing a Heaviside function H and a Dirac measure δ

H(z) =

{
1 z ≥ 0

0 z < 0
, δ(z) =

d
dz

H(z), (2.10)

the functional in (2.8) can be explained by an integral over the whole domain Ω

J(c1, c2, ϕ) =
∫

Ω
( f (x)− c1)

2H(ϕ) + ( f (x)− c2)
2(1− H(ϕ)) dx

+ µ
∫

Ω
δ(ϕ) ‖∇ϕ‖ dx

=
∫

Ω

(
( f (x)− c1)

2 − ( f (x)− c2)
2)H(ϕ) + ( f (x)− c2)

2 dx︸ ︷︷ ︸
Jdata

+ µ
∫

Ω
δ(ϕ) ‖∇ϕ‖ dx︸ ︷︷ ︸

Jreg

(2.11)

with c1, c2 are the mean gray values in the areas and µ > 0 is a parameter. The functional
is divided into the same two terms as (2.8), Jdata, the data term and Jreg, the regulariza-
tion of the level set. The regularization term in this case prevents the zero level set from
getting fractal.
In order to minimize the functional, typically the Heaviside function H(z) and the Dirac
measure δ(z) are replaced by regularized versions, Hε and δε, see e.g. [Chan et al., 2000].
The minimization with respect to the mean gray-values and the level set function is
alternated until convergence.
The functional (2.11) is not convex in ϕ, therefore the algorithm may get stuck in a local
minimum depending on the initialization.
If one is only interested in a global solution and does not have good initializations, a
convex model should be chosen.

2.2.3 Convexification: Labeling Model

Since the functional (2.11) is depending on the level set function ϕ only indirectly
through the Heaviside function H, [Chan et al., 2004] proposed replacing the Heavi-
side function of the level set function by a labeling function u : Ω→ [0, 1] that is directly

9
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connected to x. The new functional

J(u) =
∫

Ω
(( f (x)− c1)

2 − ( f (x)− c2)
2)u(x) + µ ‖∇u(x)‖ dx (2.12)

is convex in u, which can be seen by analyzing the terms in J(u): the first term is linear
in u and thus convex, and the second term is the norm which is also convex in u. Since
the sum of convex functions is convex, J(u) is convex in u.
The segmented areas are found by thresholding with a parameter ϑ ∈ [0, 1]:

Ω1 = {x ∈ Ω|u(x) ≥ ϑ}
Ω2 = {x ∈ Ω|u(x) < ϑ}

The model is also convex in c1, c2, but not in the joint variable (u, c1, c2). Thus c1, c2 are
fixed and are calculated separately by minimizing the functional

J(c1, c2) =
∫

Ω
(( f (x)− c1)

2 − ( f (x)− c2)
2)u(x) + ( f (x)− c2)

2 dx (2.13)

for fixed u. A minimizer (u∗, c∗1 , c∗2) can be computed by alternating minimization with
respect to u and c1, c2.
Due to convexity, functional (2.12) has a global minimum (not necessarily unique) in
u for every c1, c2. In [Chan et al., 2004] the authors proved, that for any given c1, c2 a
global minimizer for (2.8) is given by the minimum of equation (2.12).
Open Problem: An open question is, whether the alternating minimization with respect to c1, c2

and u respectively leads to a global minimum.
This convex approach with the labeling function u will from now on be called the label-
ing model.

2.2.4 Multilabel Segmentation

Using the presented models, the Chan–Vese model and the labeling model, only two
areas can be separated, ϕ < 0 and ϕ > 0 or u ≥ ϑ and u < ϑ respectively. To adapt the
model for segmentation with more than two areas, different approaches can be used.
The first idea is to include more level set functions or labeling functions. In [Vese and
Chan, 2002] the authors suggested defining the areas by an overlapping of different
level set functions, i.e. with two level set functions, ϕ1, ϕ2, four areas Ωi, i = 1, . . . , 4
can be segmented:

Ω1 = {x ∈ Ω|ϕ1(x) > 0∧ ϕ2(x) > 0}
Ω2 = {x ∈ Ω|ϕ1(x) < 0∧ ϕ2(x) > 0}
Ω3 = {x ∈ Ω|ϕ1(x) > 0∧ ϕ2(x) < 0}
Ω4 = {x ∈ Ω|ϕ1(x) < 0∧ ϕ2(x) < 0}

(2.14)

10
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Thus up to n areas can be defined with a set of only m = dlog2(n)e level set functions,
ϕi : Ω→ R.
This idea can also be adapted to the labeling model (2.12), such that it can be adapted
for multi-label segmentation by including multiple labeling functions u.

Convexified Chan–Vese. The multi-label model by Chan–Vese can be adapted to the
convex model directly, but one has to find a way to define the areas (2.14), and include
them into the model. In [Li et al., 2010], a multi-label model based on this idea is
introduced

J(u, c) =
m

∑
i=1

∫
Ω
‖∇ui(x)‖2 dx + µ

2m

∑
k=1

∫
Ω
( f (x)− ck)

2Mk dx, (2.15)

where e.g. for m = 2 the Mk are explicitly given by

M1 = u1u2 M2 = u1(1− u2)

M3 = (1− u1)u2 M4 = (1− u1)(1− u2).

The drawback is, that since the areas are defined by multiplication of the labeling func-
tions ui the functional is no longer convex in the variable (u1, u2).

Second idea. Another idea is to introduce one labeling function ui ∈ [0, 1]|Ω| for every
label Ωi ⊂ Ω, thus for a partition of Ω into n labels, n labeling functions ui are needed.
Also an additional constraint has to be introduced in order to avoid labeling functions
to overlap. This constraint can be realized by the sum of the labeling functions, as in
e.g. [Nieuwenhuis et al., 2013]

∑
i

ui(x) = 1. (2.16)

Functional lift idea. In several manuscripts, as e.g. [Brown et al., 2012, Brown et al.,
2009, Pock et al., 2008], an idea is presented that defines the different labels by lifting
the labeling function into a higher dimension. Therefore a super-level set function φ :
Ω× Γ → [0, 1] is introduced. Since we do not follow this approach, details are omitted
here, but to apply this idea also on the motion segmentation problem could be a topic
of future studies.

2.3 Optical Flow

We now address the problem of motion estimation, also called optical flow estimation.
The optical flow of an image sequence is a vector field on the image domain. The
vector field describes for each pixel the motion displacement vector between two or
more images. Here, we only take the information from two images to calculate the
displacement field.

11
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2.3.1 Aperture Problem and Occlusions

Pixels with the same color/gray-value, or areas with the same texture cannot be matched
uniquely to pixels in the consecutive images. This is called the aperture problem, be-
cause it occurs if the observed area is too small and not connected to its surroundings.
For example, the motion of the roof of a car, which is homogenous in color and texture,
can only be estimated by connecting it to the motion of the rest of the car. Thus, if the
observed area is too small, the movement cannot be determined uniquely. Therefore
additional assumptions to estimate the optical flow are necessary.
Further, during an image sequence some regions may appear or disappear over time,
i.e. the region is visible in one image but not in the consecutive image of the sequence.
These regions are called occlusions. The pixels in this area cannot be matched to pixels
in other images. The optical flow in these regions is undefined. Here, we do not model
occlusions. See [Ayvaci et al., 2010] for an optical flow model with occlusions.

2.3.2 Local and Global Methods

Let f : Ω×R→ R, Ω ∈ R2 be the image sequence depending on the spatial coordi-
nate x ∈ Ω and the time t ∈ R. The displacement field defining the optical flow is given
by the flow field v : Ω×R→ R3. In order to estimate the vector field v(x, t), it is neces-
sary to make assumptions on constancy over time. A natural choice is the assumption,
that the gray-values of objects do not change over time, i.e. the gray-value f (x, t) in a
point x ∈ Ω and time t stays the same, if it has moved to x(t + ∆t) = x(t) + v∆t(x)
in the consecutive image f (· , t + ∆t). This assumption is called gray value constancy
assumption:

f (x, t) = f (x + v∆t(x), t + ∆t), ∀x ∈ Ω, t ∈ R (2.17)

where v∆t(x) is the spatial flow vector and ∆t is the time step between the images in
the sequence.
In order to resolve for v(x, t), the equation is linearized by a first order Taylor expansion
of the right hand side

f (x + v∆t(x), t + ∆t) = f (x, t) + 〈∇ f (x, t), v(x, t)〉+O(‖v‖2). (2.18)

Assuming differentiability in Ω, we denote by∇ f the derivative of the image sequence
in two spatial and one time direction, ∇ f = (∂x1 f , ∂x2 f , ∂t f )T, with (x1, x2) ∈ Ω.
Putting equations (2.17) and (2.18) together, and omitting terms of higher order, one
obtains the so called optical flow constraint (OFC)

〈∇ f (x, t), v(x, t)〉 = 0, ∀x ∈ Ω, t ∈ R. (2.19)

Note, that due to the linearization, the optical flow constraint is only reasonable for
small displacements. Further, since occlusions and other changes in the image are not
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modeled by the OFC, one should not expect equation (2.19) to hold for the whole image
domain and thus, there will always be errors.
On its own the OFC is not sufficient to determine a unique solution. Often, large areas
of the image are smooth (low texture) and the image derivative is zero there. Thus,
in these areas equation (2.19) is fulfilled for every v, which is the effect of the aperture
problem. Consequently, a second assumption is needed, connecting the pixel to its
surroundings. We discuss two possibilities, a global and a local assumption.

Global assumption. In the early work of Horn and Schunck [Horn and Schunck, 1981],
the authors suggested to introduce a spatial regularizer, and formulate the problem
with the regularizer and the optical flow constraint as a variational model. Their regu-
larizer is based on a global smoothness assumption for the estimated flow field penal-
izing the squared norm of the gradient of the flow field. Their variational model for
optical flow estimation reads:

J(v) =
∫

Ω
〈∇ f (x, t), v〉2 + µ

(∥∥∥∇(vx)
(1)
∥∥∥2

2
+
∥∥∥∇(vx)

(2)
∥∥∥2

2

)
dx (2.20)

where µ > 0 is a regularization parameter, and (vx)(1) is the first component of the vec-
tor field ((vx)(1), (vx)(2)). The chosen regularization term yields dense, smooth flow
fields. It is also possible to choose a TV regularization term, which allows discontinu-
ities in the optical flow field, as done e.g. in [Zach et al., 2007].

Local assumption. In contrary to the Horn–Schunck method, Lucas and Kanade [Lu-
cas et al., 1981] developed a local method. They overcome the aperture problem by
assuming, that the optical flow vectors are constant on small parts of the image, i.e. a
small part D of the image domain Ω is chosen to compute a constant flow vector v on
the selected area D which yields a linear system. Let xi ∈ D, for indices i = 1, . . . , k:∇ f (x1, t)T

...
∇ f (xk, t)T

 (
v∆t

∆t

)
= 0. (2.21)

If the area D is chosen large enough, such that the matrix consisting of the spatial and
temporal image derivatives has full rank, a vector v can be determined for D through
least squares. Thus, the optical flow is computed on a local and not a global neighbor-
hood.
In [Bruhn et al., 2005], the authors suggested a combination of local and global meth-
ods. In order to model the local neighborhood, a convolution with a Gaussian kernel1

1A discrete 2-dimensional Gaussian kernel can be computed by Kρ(i, j) = gi,j

∑i,j gi,j
, where gi,j = e

− i2+j2

2ρ2 .
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Kρ with standard deviation ρ is used together with the regularization from the Horn–
Schunck method:

min
v

∫
Ω
Kρ ? 〈∇ f (x, t), v〉2 + µ(‖∇v1‖2

2 + ‖∇v2‖2
2) dx, (2.22)

where ? denotes the convolution. Through a sufficiently large smoothing, or a scaling
of the image, also large displacements can be modeled, which are usually not covered
by the optical flow constraint.
Since smoothing and scaling can improve the calculated optical flow, and can speed up
calculations, in [Bruhn et al., 2006] the authors propose several multigrid schemes. In
an earlier article, [Bruhn et al., 2005] used a sophisticated coarse-to-fine strategy, to han-
dle large displacements. Further, a presmoothing step, i.e. a convolution of the input
images with a Gaussian kernel, is suggested to remove noise and get better results.

Gradient constancy assumption. Unfortunately, for some sequences, or parts of the
sequences, the optical flow constraint is not valid, if for example the gray-values change
over time due to illumination changes. Then, further assumptions on the flow field can
be made to increase the quality of the optical flow estimation. In case of illumination
changes over time, e.g. reflections, the spatial image gradient is assumed to be constant
over time.

∇x f (x, t) = ∇x f (x + vx, t + ∆t)

This model is discussed in several works, cf. for example [Otte and Nagel, 1995]. Fur-
ther, higher order data terms can be found in [Bruhn, 2006].

Remark 2.1 (Color Images). For color images different approaches can be used. The
above equations can for example be formulated for each color channel resulting in a
linear system over all three channels. Here we only assume gray value images.

2.4 Further Imaging Applications

Further applications such as image zooming, deconvolution or inpainting can be mod-
eled through a variational formulation with different regularization terms. The total
variation is often used as regularization, but as for the denoising problem at the begin-
ning of this chapter, also other regularizations can be used. Also the gradient operator
can be replaced by another operator. For example, the problem of joint inpainting and
denoising, where missing parts of an image f should be reconstructed in a natural way,
can be modeled with different linear operators: The image domain is given by Ω and
the inpainting domain, i.e. the missing part of the image, is given by Ω′ ⊂ Ω. A possible
model is given by

min
u

∫
Ω
‖Φu(x)‖+ µ

2

∫
Ω\Ω′

(u(x)− f (x))2 dx, (2.23)
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where the operator Φ can be the gradient operator yielding the total variation regu-
larization, or, as suggested in [Chambolle and Pock, 2011], the fast discrete curvelet
transform, which according to [Chambolle and Pock, 2011] leads to better results.
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3 Models for Motion Segmentation

In this chapter we discuss models for real-time motion segmentation, i.e. the segmen-
tation of moving objects on a moving background. The motion segmentation models
are related closely to the segmentation models. Instead of penalizing a deviation of the
mean gray value, a penalization for flow vectors is used. In order to achieve real-time
performance, on the one hand, the model must be simple such that the calculations are
fast and, on the other hand, the optimization algorithm has to converge fast. Different
models are presented in this chapter, and we discuss optimization algorithms in the
next two chapters.
At first, we analyze models dividing only foreground and background, thus a seg-
mentation of only two areas. One area does not necessarily consist of one connected
component. Further, we assume that the movement in each of these two areas can be
modeled by a constant motion vector.
Then, we examine different multi-label models, which allow to find a segmentation for
multiple objects moving in multiple directions on a moving background.
At last, we discuss an affine motion model as replacement for the constant motion vec-
tor.

3.1 Two-Label Model

In the two-label model the image domain should be divided into two areas, a moving
object, or multiple objects with similar motion, and the rest of the image with a different
motion. These two areas can be seen as foreground and background. In the following,
several approaches for the two-label model are presented.

3.1.1 Chan–Vese Model with Optical Flow

The Chan–Vese Model with an optical flow data term inside the segmentation model
was proposed in [Cremers and Soatto, 2005] and [Brox et al., 2006]. Inside the areas ωi

a constant flow vi is assumed.
In [Cremers and Soatto, 2005], the authors suggest calculating the flow vectors as fol-
lows. The data term used in their functional for every area ωi ⊂ Ω is

Jωi(vi) =
∫

ωi

〈vi, T(x, t)vi〉2
‖vi‖2

2

dx, with T(x, t) =
∇ f (x, t)∇ f (x, t)T

‖∇ f (x, t)‖2
2

. (3.1)
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These data terms are a normalized version of the OFC. The motion segmentation model
with TV-regularization then reads

J(v1, v2, ϕ) =
∫

Ω

〈v1, T(x, t)v1〉2
‖v1‖2

2

H(ϕ(x)) +
〈v2, T(x, t)v2〉2
‖v2‖2

2

(
1− H

(
ϕ(x)

))
dx

+ µ
∫

Ω
δ(ϕ(x)) ‖∇ϕ(x)‖2 dx.

(3.2)

Here ϕ is the level set function and H is the Heaviside function.
The model given in [Brox et al., 2006], is much more complex. It is also based on level set
functions, but in addition to the OFC, a gradient constancy assumption is included into
the model with good results. Their results were accurate but the proposed algorithm
was not fast.
Both models use multiple level set functions to model more than two areas. Further,
both models are, as the level-set model for segmentation, not convex. Thus, the solution
depends on the initialization and will probably be a local and not a global minimum.

3.1.2 Labeling Model with Optical Flow

We choose a convex labeling model for motion segmentation, as done in [Tichmann
and Junge, 2014]. Starting with a two-label model, the labeling function u : Ω→ [0, 1]
is introduced. As the computations should be fast, a simple model is chosen, and thus,
we choose a squared optical flow constraint as data term. For the regularization term,
we choose a total variation regularization since we want to allow sharp edges. The
resulting minimization problem reads

min
u,v1,v2

∫
Ω
‖∇u(x)‖2 + µ

(
〈∇ f (x, t), v1〉2 u(x) + 〈∇ f (x, t), v2〉2

(
1− u(x)

))
dx

subject to u(x) ∈ [0, 1]
(3.3)

where f (x, t) denotes the image sequence at a fixed time t and µ > 0 is a weighting pa-
rameter. v1 and v2 are the constant motion vectors for the regions ω = {x ∈ Ω|u(x) >
ϑ} and Ω\ω = {x ∈ Ω|u(x) ≤ ϑ}, where ϑ ∈ (0, 1) is a threshold usually chosen as
ϑ = 0.5.
The functional is convex in u and in v1, v2, but not in the joint variable (u, v1, v2). The
nonconvexity can be seen on the following example: if (u∗, v1, v2) is a solution to (3.3),
then (1 − u∗, v2, v1) is also a solution. For fixed (v1, v2) a global solution exists with
respect to u, and vice versa, for fixed u, a unique solution with respect to (v1, v2). Typ-
ically, the variables are minimized alternatingly. If a good segmentation u is already
given, the motion vectors can be calculated explicitly by minimizing over v1 and v2.
Otherwise, the segmentation u is calculated by minimization with respect to u and
afterwards u is fixed and the functional is minimized with respect to v1, v2. The algo-
rithms are explicitly given in chapter 6.
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Remark 3.1. If the test sequence has big illumination changes, the gradient constancy
assumption can be included into this model, as done for the level set model in [Brox
et al., 2006].

3.2 Multi-Label Model

In contrast to the two-label model, which can only handle one moving object, the multi-
label model should be able to model multiple objects with different motion and a mov-
ing background.

3.2.1 Multiple Labeling Functions

Usually, the two-label models are adapted straightforward to a multi-label model, using
techniques from multi-label segmentation by introducing multiple labeling functions
ui. These models tend to need some a priori knowledge about the number of labels.
The adaption of the Chan–Vese multiphase model has been proposed in e.g. [Cremers
and Soatto, 2005] and [Brox et al., 2006]. A convex multi-label model has been pro-
posed in [Unger et al., 2012]. However, their algorithm needs good initializations to be
reasonably fast.
It turns out that for a direct adaption from two-label to multi-label motion segmen-
tation, the initialization is a crucial point. With good initializations, which means an
initialization which is close to the desired solution, the algorithms might work well.
Without a good initialization, the alternating minimization between the flow vectors vi

and the labeling functions ui turns out to slow down convergence. This is due to the
fact that most multi-label models are only convex in the single labeling function ui and
not in all labeling functions simultaneously.
In the following, we review some multi-label models with different methods of han-
dling the regions to be segmented.

Introducing multiple labeling functions. We start with the multi-label model, which
models every region by a labeling function. The resulting optical flow errors and regu-
larizations are summed in the objective functional.

min
ui ,vi

∫
Ω

∑
i

(
‖∇ui(x)‖2 + µ 〈∇ f (x, t), vi〉2 ui(x)

)
dx (3.4)

subject to ui(x) ∈ [0, 1] (3.5)

Here, a constraint or term has to be added to assure that the labels cover the whole
image domain Ω and do not overlap. Different approaches are possible and presented
in the following.
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Convex Chan–Vese adaption. In [Li et al., 2010], the authors propose a multi-label
model for segmentation inspired by the Chan–Vese level-set model from [Vese and
Chan, 2002]. As for the segmentation multi-label model m labeling functions are in-
troduced for 2m areas, and we include the optical flow data term:

J(u, v) =
m

∑
i=1

∫
Ω
‖∇ui(x)‖2 dx + µ

2m

∑
k=1

∫
Ω
〈∇ f (x, t), vi〉2 Mk dx, (3.6)

where e.g. for m = 2 the Mk are explicitly given by

M1 = u1u2 M2 = u1(1− u2)

M3 = (1− u1)u2 M4 = (1− u1)(1− u2).

This model is nonconvex in (u1, u2), and in our experiments, it did not work with the
motion segmentation data term.

Labeling functions sum up to 1. Another possibility is to add the constraint that the
sum of all labels equals one as done for example in [Unger et al., 2012]. The minimiza-
tion problem is given by

min
ui ,vi

∫
Ω

∑
i

(
‖∇ui(x)‖2 + µ 〈∇ f (x, t), vi〉2 ui(x)

)
dx,

subject to ui(x) ≥ 0, ∑
i

ui(x) = 1.
(3.7)

This enforces on the one hand, that the whole image domain is covered, but on the
other hand, since u can take values in the interval [0, 1], does not necessarily enforce
that the labeling functions do not overlap.

Prevent overlapping of ui. The background can also be calculated through the other
labels via (1− ∑i ui), as done in the two-label model, with an additional vector v0 for
the background:

min
ui ,vi

∫
Ω

∑
i

(
‖∇ui(x)‖2 + µ 〈∇ f (x, t), vi〉2 ui(x)

)
+ µ 〈∇ f (x, t), v0〉2

(
1−∑

i
ui(x)

)
dx,

subject to ui(x) ∈ [0, 1]
(3.8)

Unfortunately, this also does not prevent the labeling functions ui from overlapping.
Thus, we propose to add an additional term penalizing overlapping labels through
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pairwise multiplication of the labeling functions ui:

min
ui ,vi

∫
Ω

∑
i

(
‖∇ui(x)‖2 + µ 〈∇ f (x, t), vi〉2 ui(x)

)
dx

+
∫

Ω
µ 〈∇ f (x, t), v0〉2

(
1−∑

i
ui(x)

)
+ ∑

i,j, i 6=j
ui(x)uj(x) dx,

subject to ui(x) ∈ [0, 1]

(3.9)

As with the Chan–Vese like adaption from [Li et al., 2010], this model is only convex in
ui, but not in the joint variable u = (u1, u2, . . . ).
For computation, the labels ui and vi are updated alternatingly, i.e. for a given set of mo-
tion vectors vi the labels ui are updated one by one and afterwards the vi are updated.
We observe, that during this alternating minimization the labels ui do not converge si-
multaneously but sequentially, if at all. Thus, the labels can be calculated consecutively
instead of simultaneously, i.e. we start with the two label model and calculate a vector
v1, a background vector v0 and a labeling function u1. When the first label u1 has con-
verged, u1 is fixed and a second label u2 together with a motion vector v2 is introduced
and so on. The advantage of this scheme is that the number of labels does not have to
be known a priori. The drawback is, that the computation time rises at least linearly
with the number of labels.

3.2.2 Error-Label Function

We propose a multi-label model directly derived from the two label model. We do
not introduce multiple labeling functions and vectors, but reduce the two label model
even further, and only calculate one vector. The second error term, given by 〈∇ f , v2〉
in the two-label model, is replaced by a constant parameter ξ > 0. The model reads as
follows:

min
u,v

∫
‖∇u(x)‖2 + µ

(
ξu(x) + 〈∇ f (x, t), v〉2

(
1− u(x)

))
dx,

subject to u(x) ∈ [0, 1].
(3.10)

One segmented area corresponds to vector v. Every part of the image domain, for
which the vector v does not fit, i.e. areas in which the error 〈∇ f , v〉2 is larger than ξ will
belong to the second area.

Remark 3.2. A similar technique is also used in the task of classification, where a so
called rejection class is introduced, where all image elements, which do not fulfill the
criteria of the classification are put, cf. [Steger et al., 2007].

The areas of the image, which do not belong to the vector v, i.e. which are part of the
error-label, can include multiple moving objects, and are possibly not connected. These
areas have to be analyzed in a post processing step, in order to possibly find multiple
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regions and corresponding motion vectors. In this post processing step, the resulting
error-label is decomposed into connected components, and constant vectors for each
connected component are calculated. The calculation of a constant vector for a given
region can be realized efficiently.

This model is advantageous in different aspects but also has some drawbacks. First,
the minimization is independent of the number of moving objects. Also, it is almost as
fast as the two-label model. A drawback is, that a new parameter, ξ, has been intro-
duced, which has to be chosen appropriately. Further, objects moving close together in
different directions will be represented in the error-label through one connected com-
ponent. Thus, theses areas are not separated in the post processing step, and have to be
separated in further post processing steps with a different approach.

3.3 Affine Motion Model

Instead of assuming a piecewise constant movement, i.e. a constant vector for each
label, an affine model can be used. The advantage of the affine model is, that also
zooming or rotating motions can be captured. Affine motion models can be added
easily into the motion segmentation models, as done in [Cremers and Soatto, 2005]
or [Unger et al., 2012].
We use a similar affine model: For each region the motion vector v inside the region is
defined via the matrix H ∈ R3×2 :

v = Hx =

(
h1 h3 h5

h2 h4 h6

)x1

x2

1

 , (3.11)

where x1 and x2 are the two image coordinates. Now instead of two parameters for
each motion vector, the six parameters hi have to be calculated.
The resulting two-label minimization problem reads as follows:

min
u,H1,H2

∫
Ω
‖∇u(x)‖2 + µ

(
〈∇ f (x, t), H1x〉2 u(x) + 〈∇ f (x, t), H2x〉2

(
1− u(x)

))
dx,

subject to u(x) ∈ [0, 1].
(3.12)

Depending on the application, it is also possible to add an affine motion model only for
the background and use piecewise constant models for the foreground motion.
If we include the affine motion model only into one of the two segmented areas, we
have to include an additional assumption. Here, we want to apply the affine model
to the background and we include the additional assumption that the background is
always the largest area in the image. The two areas are defined by ω = {x ∈ Ω|u(x) >
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0.5} and Ω\ω = {x ∈ Ω|u(x) ≤ 0.5}. Since u(x) ∈ [0, 1], these terms are included in
the functional via multiplication of the associated error terms with u and (1− u). The
background should be modeled by Ω\ω = {x ∈ Ω|u(x) ≤ 0.5}, thus, the affine motion
model has to be included with the term (1− u). In order to guarantee that the back-
ground is calculated with the affine model, we include a term penalizing

∫
Ω u(x) dx.

J(u) =
∫

Ω
‖∇u(x)‖2 +µ

(
〈∇ f (x, t), v〉2 u(x) + 〈∇ f (x, t), Hx〉2

(
1− u(x)

))
+ νu(x) dx,

(3.13)
where ν > 0 is a parameter.
The error label model can also be combined with the affine motion model for affine
background motion or, in the post processing step, for the connected components from
the error label.

min
u,H

∫
‖∇u(x)‖2 + µ

(
ξu(x) + 〈∇ f (x, t), Hx〉2

(
1− u(x)

))
dx,

subject to u(x) ∈ [0, 1].
(3.14)

The given models for two-label and multi-label motion segmentation can be solved
through established methods for imaging problems, as e.g. the primal-dual algorithm
or the alternating direction method of multipliers. However, the performance of these
algorithms is not fast enough for a real-time application. In the next two chapters, we
analyze properties of existing algorithms for convex constrained problems of the form
usually arising from imaging models, and present a new algorithm.
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4 Optimization Algorithms for Convex

Problems

Optimization problems arising from variational imaging models are nowadays sought
to be convex in order to derive a global solution, such as the models presented in chap-
ter 3. In this chapter, we analyze methods based on the theory of monotone operators
associated with convex functionals. In the first part, we present some fundamental
methods such as the proximal point method and the proximal gradient method, of
which well-established methods are often special cases. We analyze, which require-
ments on the objective functionals are essential for the existence of a minimizer and
how the minimizer can be related to a fixed point of an operator. Further, the theory
providing convergence results for the iteration with averaged operators is given. In the
second part, the handling of convex set constraints and equality constraints in optimiza-
tion problems is given. Augmented Lagrangian functions and the concept of duality is
therefor presented. In the third part, composite functionals are analyzed, which are
either transformed into a primal-dual formulation, or through a splitting of the vari-
ables, into an augmented Lagrangian formulation. These transformed problems are
solved with a primal-dual method, and the alternating direction method of multipliers
(ADMM), which are both special cases of the proximal point method. In the last part,
we analyze two variants of these methods—which will turn out to be equivalent—in
order to achieve a better understanding and intuition on how the algorithms work.

4.1 Minimization of Convex Functionals

We start with some basic definitions, which can be found in detail in [Bauschke and
Combettes, 2011].

Definition 4.1 (Convex proper closed functional).

1. A functional F : H → (−∞, ∞] on a real Hilbert space H, with scalar product
〈·, ·〉H, and induced norm ‖·‖H, is called convex if for all x, y ∈ H and λ ∈ [0, 1]

F(λx + (1− λ)y) ≤ λF(x) + (1− λ)F(y). (4.1)

It is called strictly convex if for all x, y ∈ H, x 6= y and λ ∈ (0, 1)

F(λx + (1− λ)y) < λF(x) + (1− λ)F(y). (4.2)
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2. The effective domain of F is

dom F = {x ∈ H|F(x) < ∞}. (4.3)

A functional F is called proper if its effective domain is not empty, dom F 6= ∅.

3. The functional F is closed, if its epigraph

epi F = {(x, t) ∈ H×R|F(x) ≤ t} (4.4)

is a closed set. Further, if the epigraph is a closed convex nonempty set, the func-
tional is proper convex and closed.

4. The functional F is lower semicontinuous at x ∈ H if, for every sequence xn → x, it
holds that F(x) ≤ lim inf F(xn).

Lemma 4.2. A proper convex function is closed, if and only if it is lower semicontinuous.

For the convex proper and lower semicontinuous function F(x) we want to solve the
problem

min
x

F(x). (4.5)

First, we analyze which assumptions are needed for the existence of a minimizer in
problem (4.5).

Definition 4.3 (Coercive function). The function F : H → (−∞, ∞] on the Hilbert space
H is coercive, if

lim
‖x‖→∞

F(x) = ∞. (4.6)

Using the above definitions, we can formulate the theorem on the existence of a mini-
mizer.

Theorem 4.4 ( [Bauschke and Combettes, 2011, prop. 11.14]). Let H be a real Hilbert
space, F : H → (−∞, ∞] proper convex and lower semicontinuous, and let C be a closed
convex subset ofH such that C ∩ dom F 6= ∅. Suppose that one of the following holds:

1. F is coercive.

2. C is bounded.

Then F has a minimizer over C.

With this theorem the existence of a not necessarily unique minimizer can be shown.
Next, we analyze optimality conditions for a minimizer of (4.5).

The functional F does not need to be differentiable. If the functional F is not differen-
tiable a generalization of the gradient is used, the subgradient:
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Definition 4.5 (Subgradient, Subdifferential). A subgradient w ∈ H at x of a convex
functional F : H → (−∞, ∞] is defined by

F(x) + 〈w, y− x〉 ≤ F(y) ∀y ∈ H. (4.7)

The subdifferential of F at x is defined by the set of all subgradients in x.

∂F(x) = {w ∈ H | F(x) + 〈w, y− x〉 ≤ F(y), ∀y ∈ H} (4.8)

We assume that the functional F is subdifferentiable, i.e. the subdifferential is not empty,
∂F(x) 6= ∅.
A simple characterization of the minimizers of a proper functional is provided by Fer-
mat’s Rule, cf. [Bauschke and Combettes, 2011, chapter 16]:

Theorem 4.6 (Optimality condition, Fermat’s rule). x∗ ∈ H minimizes the convex proper
functional F : H → (−∞, ∞), if and only if 0 ∈ ∂F(x∗).

Proof. x∗ ∈ H is a minimizer of F(x) if and only if F(x∗) ≤ F(x), ∀x ∈ H.
Thus F(x∗) ≤ F(x) + 〈0, x− x∗〉 , ∀x ∈ H, which is by Definition 4.5 equivalent to
0 ∈ ∂F(x∗).

Remark 4.7. The subdifferential is defined in general also for non-convex functionals,
but we only use convex functionals here.

Now, if a minimizer exists we want to find one. We seek to solve these optimization
problems through iterative methods which we analyze in the following.

4.1.1 Monotone Operators

In order to find minimizers we use iterative methods where the iteration is defined by
the application of operators. The iteration with an appropriate operator should con-
verge to a fixed point of the operator and its fixed point should be a minimizer of the
original problem. We therefore analyze which operators fulfill these conditions.
As is known, iterations with contractions, i.e. operators with Lipschitz constant smaller
than 1, converge to a fixed point, cf. the Banach fixed point theorem from [Banach,
1922]. But also operators that are not contractive but nonexpansive can be useful for
iterations. Properties for nonexpansive operators are analyzed in the following defini-
tions and theorems, which can be found in [Bauschke and Combettes, 2011].

Definition 4.8 (Nonexpansive operator). LetK be a nonempty subset ofH. An operator
T : K → H is called nonexpansive if the following inequality holds:

‖Tx− Ty‖ ≤ ‖x− y‖ ∀x, y ∈ K. (4.9)
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Iterations with nonexpansive operators do not necessarily converge to a fixed point of
the operator such as for example with rotations or reflections. However, iterations with
a damping of a nonexpansive operator, called averaged operator, converge to a fixed
point.

Definition 4.9 (Averaged operator). Let K be a nonempty subset of H and α ∈ (0, 1).
An operator T : K → H is called α-averaged, if there exists a nonexpansive operator
N : K → H such that

T = (1− α)I + αN, (4.10)

where I is the identity operator.

The averaged operator T has the same fixed points as N. The next theorem states the
convergence of an iteration with an averaged operator T to a fixed point.

Theorem 4.10 ( [Bauschke and Combettes, 2011, section 5.2]). Let an α-averaged operator
T : K → K, and x0 ∈ K be given. Set

xk+1 := T(xk), ∀k ∈N. (4.11)

Then, (xk)k∈N converges weakly to a fixed point of T, and (Txk − xk)k∈N converges strongly
to 0.

Therefore, iterations with nonexpansive operators can be shown to converge to a fixed
point if they can be formulated as an averaged operator.

Remark 4.11. In our setting the real Hilbert space H = Rn is finite dimensional, and
thus weak convergence implies strong convergence.

Theorem 4.12 ( [Parikh and Boyd, 2013]). The class of averaged operators is closed under
composition.

Thus, given the averaged operators T and P, iterations of the composition T ◦ P will
converge to a fixed point of T ◦ P.

Remark 4.13. Clearly, contractions are a subset of the class of averaged operators and
thus a composition of an averaged operator with a contraction will, with theorem 4.10
also converge to a fixed point.

A special class of averaged operators are firmly nonexpansive operators. Firm nonex-
pansiveness is a stronger property than nonexpansiveness and can be written as fol-
lows:

Definition 4.14 (Firmly nonexpansive operator). An operator T : H → H is called
firmly nonexpansive if

‖Tx− Ty‖2 ≤ 〈x− y, Tx− Ty〉 (4.12)
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T(x)− T(y)

α2(1− α) 0
x− y T(x)− T(y)

0
x− y

α-averaged operator T, α = 0.8 firmly nonexpansive operator T, with α = 0.5

Figure 4.1: Illustration of the effect of averaged operators and firmly nonexpansive op-
erators inspired by [Eckstein and Bertsekas, 1992]. If, without loss of gen-
erality, ‖x− y‖ = 1, and x − y is on the unit circle (shown in black), then
T(x)− T(y) will be an element of the inner blue disk including its bound-
ary, which has radius α and is shifted to x− y.

The connection between firmly nonexpansive operators and averaged operators is given
by the following theorem from [Bauschke and Combettes, 2011, Chapter 4]:

Theorem 4.15. An operator T : K → H is α-averaged with α ∈ (0, 1
2 ], if and only if T is

firmly nonexpansive.

In Figure 4.1 the effect of an α-averaged operator in R2 with α = 0.8 and a firmly non-
expansive operator is illustrated. Applying a nonexpansive operator N, N(x)− N(y)
will be an element of the large disk including the black boundary. But, by applying an
α-averaged operator T, T(x) − T(y) will be an element of the inner blue disk, which
has radius α, or, for a firmly nonexpansive operator, radius α ≤ 0.5. The blue disk is
touching the black boundary only at the point x − y. Therefore, ‖x− y‖ will decrease
by applying an averaged operator except if it does not change at all. This supports the
intuition why iteration with α-averaged operators converge.

Remark 4.16. Note that nonexpansive operators are necessarily single-valued.

One type of firmly nonexpansive operators, particularly interesting in our case are
proximal operators, also called proximal mappings, cf. [Parikh and Boyd, 2013].

Definition 4.17 (Proximal Operator). The proximal operator of a lower semicontinuous
proper convex functional F : H → (−∞, ∞] is defined by

proxτF(y) = argmin
x∈H

{
F(x) +

1
2τ
‖x− y‖2

H

}
, (4.13)

with τ > 0, y ∈ H.
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The next propositions provides a rule for computing subdifferentials of transformations
of convex functions, in particular, when linearity and the chain rule can be applied.

Definition 4.18 ( [Bauschke and Combettes, 2011]). Let C be a convex subset ofH.

1. The smallest closed linear subspace ofH containing C is denoted by span(C).

2. The conical hull of C is the smallest cone inH containing C, denoted by cone(C).

3. The interior of C is the largest open set that is contained in C, denoted by int(C).

4. The strong relative interior of C is given by

sri(C) = {x ∈ C | cone(C − x) = span(C − x)}, (4.14)

where A− B := {x− y|x ∈ A, y ∈ B} for two sets A and B.

Proposition 4.19 ( [Bauschke and Combettes, 2011, Section 16.4]). LetX ,Y be real Hilbert
spaces, let F : X → (−∞, ∞] and G : Y → (−∞, ∞] be convex, proper and lower semicon-
tinuous, and let K : X → Y be a bounded linear operator. If 0 ∈ sri(dom G− K(dom F)),
then

∂(F + G ◦ K) = ∂F + K∗ ◦ (∂G) ◦ K, (4.15)

where K∗ is the adjoint of K.

The following result provides a more intuitive way to handle the strong relative interior
condition in terms of the interior of dom(G)− K dom(F):

Proposition 4.20 ( [Bauschke and Combettes, 2011, Proposition 6.19]). Let dom(F) ⊂ X
and dom(G) ⊂ Y be convex sets, and K : X → Y be a bounded linear operator. Then

0 ∈ int(dom G− K(dom F)) ⇒ 0 ∈ sri(dom G− K(dom F)). (4.16)

Especially, if dom(F) 6= ∅, i.e. F is proper, and dom(G) = Y , then the requirements of
Proposition 4.19 are fulfilled.

Definition 4.21 (Resolvent). Let a possibly multivalued operator S : H → H be given.
The mapping

(I + τS)−1 : y 7→ x (4.17)

where x is a solution of y ∈ (I + τS)(x) is called the resolvent of S with parameter τ > 0.
Note, that the resolvent might not exist for every combination of S and τ.

With the following theorems from [Eckstein and Bertsekas, 1992], it can be seen that the
proximal operator is firmly nonexpansive.

Definition 4.22. An operator S : H → H is monotone if

〈x1 − x2, y1 − y2〉 ≥ 0 ∀x1, x2 ∈ H, y1 ∈ Sx1, y2 ∈ Sx2. (4.18)
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Theorem 4.23. Let a possibly multivalued operator S : H → H and τ > 0 be given. Then S
is monotone if and only if the resolvent (I + τS)−1 is single-valued and firmly nonexpansive.

Theorem 4.24. If F is proper convex and lower semicontinuous, its subdifferential ∂F is mono-
tone.

From these theorems we can see, that for a proper convex and lower semicontinuous
function F the resolvent operator (I + τ∂F)−1 is single-valued and firmly nonexpansive.
Further, it can be shown, that the proximal operator is equivalent to the resolvent of ∂F,

proxτF = (I + τ∂F)−1, (4.19)

which can be seen directly by applying Fermat’s rule to (4.13). Thus we can formulate
the following corollary:

Corollary 4.25. If F is proper convex and lower semicontinuous, the proximal operator proxτF
is firmly nonexpansive.

Since the proximal operator is firmly nonexpansive it is an averaged operator, with
Theorem 4.15.
A connection between the proximal operator and the minimizer of the functional F
associated with the proximal operator is given by the following theorem:

Theorem 4.26 (Fixed Point, [Parikh and Boyd, 2013]). The point x∗ minimizes F if and
only if it is a fixed point of proxτF, i.e. x∗ = proxτF (x∗).

From Theorems 4.10 and 4.26, we can see that the iteration with the proximal operator
will converge to a fixed point, hence to a minimizer of F.

Corollary 4.27. Let F be convex proper and lower semicontinuous. The iteration

xk+1 := proxτF (xk) (4.20)

with arbitrary x0 will converge for k→ ∞ to a minimizer of F, if one exists.

This corollary immediately suggests the proximal point algorithm (cf. [Rockafellar, 1976]),
which is given by

Algorithm 1 proximal point algorithm, [Rockafellar, 1976]

1. choose a step size τ > 0 and an initial point x0 ∈ X

2. iterate for k = 0, 1, . . .
xk+1 := proxτF(xk). (4.21)
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The proximal point algorithm can be interpreted as an implicit gradient descent step
with step size τ. By definition of the proximal operator in 4.17, the iterates are given by

xk+1 = proxτF (xk) = argmin
x∈H

{
F(x) +

1
2τ
‖x− xk‖2

H

}
. (4.22)

The necessary and sufficient condition for xk+1 to minimize the strongly convex func-
tion on the right hand side of (4.22) is:

0 ∈ τ∂F(xk+1) + xk+1 − xk (4.23)

Since the resolvent operator is single valued and thus xk+1 is unique, this is equivalent
to the implicit gradient step

xk+1 = xk − τ∂F(xk+1). (4.24)

We call this update implicit, since the subgradient is evaluated at the point xk+1 instead
of xk as for an explicit update step.

4.1.2 Convex Composite Functionals F(x) + G(x)

In this section we consider composite functionals, where the proximal operator of func-
tional J is hard to compute, but the objective functional can be split into F and G,
J(x) = F(x) + G(x). It might be more easy to handle F or G separately.
We consider the problem where the objective functional can be split into two function-
als, one of which is differentiable:

min
x

F(x) + G(x), (4.25)

where F : H → (−∞, ∞], G : H → R, F convex proper and lower semicontinuous, and
G is convex and differentiable.
The optimality conditions are given by the following theorem from [Bauschke and
Combettes, 2011, section 26.1]:

Theorem 4.28 (optimality conditions). Let F and G be defined as in problem (4.25) and
0 ∈ sri(dom G− dom F). Then

x∗ is a solution to problem (4.25) ⇔ 0 ∈ ∂F(x∗) +∇G(x∗). (4.26)

These optimality conditions can be derived from Fermat’s rule, Theorem 4.6, and Propo-
sition 4.19.

32



4.1. MINIMIZATION OF CONVEX FUNCTIONALS

Proximal gradient method. An algorithm handling the functionals F and G sepa-
rately is the proximal gradient method, also called forward-backward splitting.

Algorithm 2 proximal gradient method, cf. [Parikh and Boyd, 2013]

1. choose a step size τ > 0 and an initial point x0 ∈ X

2. iterate for k = 0, 1, . . .

xk+1 := proxτF(xk − τ∇G(xk)), (4.27)

The splitting of the objective function into differentiable and non-differentiable terms is
not unique, thus different splittings lead to different algorithms. The proximal gradient
method is a combination of an implicit and explicit gradient step, therefore it is also
known as forward-backward splitting.
As described in [Parikh and Boyd, 2013], the proximal gradient method can be used as
a fixed point iteration to find a minimizer of the objective functional:

Theorem 4.29 ( [Parikh and Boyd, 2013, Chapter 4.2.1]). A point x∗ minimizes F(x) +
G(x) if and only if

x∗ = proxτF (x∗ − τ∇G(x∗)), (4.28)

with τ > 0.

Proof. The proof analyzes and rearranges the optimality condition to derive a proximal
formulation through the resolvents of F and G:

0 ∈ ∂F(x∗) +∇G(x∗) (4.29)

0 ∈ τ∂F(x∗)− x∗ + x∗ + τ∇G(x∗) (4.30)

(I + τ∂F)(x∗) 3 (I − τ∇G)(x∗) (4.31)

Since the resolvent operator of F is single valued, the following equations can be de-
rived:

x∗ = (I + τ∂F)−1(I − τ∇G)(x∗) (4.32)

= proxτF (x∗ − τ∇G(x∗)) (4.33)

If ∇G is Lipschitz continuous with constant L, this method is guaranteed to converge
for step sizes τ ∈ (0, 2/L), see also [Parikh and Boyd, 2013] for further details.
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Proximal Newton-type method. The proximal gradient method is a first order method.
For composite functions with a smooth part, [Lee et al., 2012] proposed a proximal
Newton-type method, which also uses second order information on the smooth part.
Consider the problem

min
x

F(x) + G(x), (4.34)

which has a smooth part G : X → R and a non-smooth part F : X → R, i.e. G is a
closed, convex, continuously differentiable function and its gradient ∇G is Lipschitz
continuous. F is a closed, convex but not necessarily differentiable function, but its
proximal operator can be evaluated efficiently. The scaled proximal operator is defined
as follows.

Definition 4.30. Let a convex proper lower semicontinuous function F : X → (−∞, ∞],
and a symmetric positive definite matrix H be given. The scaled proximal operator with
matrix H is defined by

proxH
τF (v) = arg min

x
F(x) +

1
2τ
‖x− v‖2

H , (4.35)

where ‖x‖H = 〈x, Hx〉1/2
X is the norm on the Hilbert space X weighted by the symmet-

ric positive definite matrix H.

A line search method is given by

xk+1 = xk + τ∆xk, (4.36)

where τ is a step length and ∆xk is a search direction, where τ is chosen adaptively to
the search direction. The proximal Newton-type method approximates only the smooth
part G with a local quadratic model:

Ĝk(y) = G(xk) + 〈∇G(xk), y− xk〉+
1
2
‖y− xk‖2

Hk
, (4.37)

where Hk = ∇2G(xk). A proximal Newton-type search direction ∆xk solves the sub-
problem

∆xk = arg min
d

F(xk + d) + Ĝk(xk + d)

= arg min
d

F(xk + d) + G(xk) + 〈∇G(xk), d〉X +
1
2
‖d‖2

Hk

= arg min
d

F(xk + d) + 〈∇G(xk), d〉X +
1
2
‖d‖2

Hk

(4.38)

The proximal Newton-type search directions in terms of the scaled proximal operator,
(4.35), reads

∆x = proxH
F

(
x− H−1∇G(x)

)
− x. (4.39)
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The generic proximal Newton-type method is given by

Algorithm 3 proximal Newton-type method, cf. [Lee et al., 2012]

1. choose an initial point x0 ∈ X

2. iterate for k = 0, 1, . . .

(i) choose Hk, a positive definite approximation to the Hessian

(ii) compute a search direction:

∆xk = proxHk
F

(
xk − H−1

k ∇G(xk)
)
− xk (4.40)

(iii) select a step size τk with line search

(iv) xk+1 = xk + τk∆xk

In [Lee et al., 2012], the proximal Newton-type method is proved to converge globally,
if the subproblems are evaluated exactly. Further, if the functionals F and G are strongly
convex the method converges quadratically.

4.2 Convex Constrained Optimization

The problems under consideration in this section are those of minimizing a convex
proper and lower semicontinuous function F with respect to additional constraints. In
the first part, affine constraints are analyzed, while in the second part the case of closed
convex set type constraints is investigated.

4.2.1 Equality Constraint

Consider the primal formulation of the convex constrained minimization problem:

min
x

F(x), subject to Kx = b, (4.41)

where F : X → (−∞, ∞] is proper convex and lower semicontinuous and K : X → Y is
a bounded linear operator, and X ,Y are real Hilbert spaces. The constraint is modeled
through the Lagrangian

L(x, y) = F(x) + 〈Kx− b, y〉Y . (4.42)

The introduced variable y is called the Lagrangian multiplier. It can be seen as a penaliza-
tion for violating the constraint. Therefore, the new problem is a saddle point problem.
We want to minimize w.r.t. x and maximize w.r.t. the Lagrangian multiplier y.

max
y

min
x
L(x, y) (4.43)
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The optimality conditions for non differentiable F, stated in the following theorem, can
be found in [Bauschke and Combettes, 2011, sections 19 and 26].

Theorem 4.31 (Optimality conditions). Let the functional F and operator K be defined as in
problem (4.41), and suppose b ∈ K(dom F). Then x∗ is a solution to (4.41) if and only if

Kx∗ = b and 0 ∈ ∂F(x∗) + K∗y∗, (4.44)

in which case y∗ is a Lagrangian multiplier associated with x∗, and (x∗, y∗) is a saddle point of
the Lagrangian L(x, y).

The Lagrangian multiplier is also called the dual variable, and problem (4.41) is also
called the primal problem. With the dual variable, the dual problem can be formulated
in terms of the convex conjugate of function F, cf. e.g. [Bauschke and Combettes, 2011,
chapter 13].

Definition 4.32 (Convex conjugate). Let F : X → (−∞, ∞] be a proper functional on a
real Hilbert space X . Then F∗ : X → (−∞, ∞] defined by

F∗(z) = sup
x∈X
〈z, x〉X − F(x) (4.45)

is called the convex conjugate or (Fenchel-) conjugate of F.

Remark 4.33. Note that the adjoint of the linear operator K : X → Y , denoted by K∗

should not be confused with the convex conjugate of functional F : X → (−∞, ∞],
denoted by F∗, cf. Definition 4.32.

The dual function is given by

G(y) = inf
x
L(x, y) = −F∗(−K∗y)− 〈b, y〉Y . (4.46)

Then, the dual problem or dual formulation is given by

max
y

G(y), subject to y ∈ Y . (4.47)

Note, that for the optimal value of the primal problem (4.41), F(x∗), and of the dual
problem (4.47), G(y∗), usually a duality gap exists, i.e. F(x∗) 6= −G(y∗). However, if
the requirements of Theorem 4.31 are fulfilled, there is no duality gap.

Proximal operators of the convex conjugate F∗, which might be easier to compute,
can be derived through Moreau’s identity, also known as Moreau’s decomposition,
cf. [Bauschke and Combettes, 2011, section 14.1]

Theorem 4.34 (Moreau’s identity). Let F be convex proper and lower semicontinuous, τ > 0
and the conjugate of F be denoted by F∗. Then the following equality holds:

proxτF (x) = x− τprox 1
τ F∗

( x
τ

)
(4.48)
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Augmented Lagrangian. The following method, which should solve the constrained
problem in (4.41), is based on an augmented Lagrangian, with a quadratic augmenta-
tion term.

Definition 4.35 (Augmented Lagrangian). Consider again the constrained minimiza-
tion problem

min
x

F(x), subject to Kx = b. (4.41)

The augmented Lagrangian is given by

Lλ(x, y) = F(x) + 〈y, Kx− b〉Y +
λ

2
‖Kx− b‖2

Y , (4.49)

with the augmentation parameter λ > 0.

A solution x∗ with Lagrangian multiplier y∗ for problem (4.41) is given by a saddle
point of

max
y

min
x
Lλ(x, y). (4.50)

The augmented Lagrangian can also be seen as the Lagrangian for the problem

min
x

F(x) +
λ

2
‖Kx− b‖2

Y , subject to Kx = b, (4.51)

which has the same minimizer(s), x∗, as problem (4.41), since the quadratic augmenta-
tion term is zero if the constraint is fulfilled.
A basic algorithm working on the augmented Lagrangian formulation is the method
of multipliers, see i.e. [Boyd et al., 2011] for further details. The method of multipli-
ers solves the saddle point problem by alternatingly minimizing with respect to x and
maximizing with respect to the dual variable y:

Algorithm 4 Method of Multipliers, cf. [Boyd et al., 2011]

1. choose an augmentation parameter λ > 0, an initial point x0 ∈ X and set y0 =

0 ∈ Y .

2. iterate for k = 0, 1, . . .

xk+1 = arg min
x

F(x) + 〈yk, Kx− b〉Y +
λ

2
‖Kx− b‖2

Y

yk+1 = yk + λ(Kxk+1 − b)

The update of y is a gradient ascent step with step size λ. Analyzing the optimality
conditions, it can be observed, that this step size leads to a fulfillment of the second
optimality condition, cf. [Boyd et al., 2011]:
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Optimality Conditions. The optimality conditions for problem (4.41) in the differen-
tiable case are given by

Kx∗ − b = 0, ∇F(x∗) + K∗y∗ = 0 (4.52)

After the minimization with respect to x in iteration k, xk+1 minimizes Lλ(x, yk) by
definition. Thus,

0 = ∇xLλ(xk+1, yk) (4.53)

= ∇F(xk+1) + K∗
(
yk + λ(Kxk+1 − b)

)
(4.54)

= ∇F(xk+1) + K∗yk+1 (4.55)

By using the step size λ, the second optimality condition in (4.52) is fulfilled automati-
cally after updating y with the gradient ascent step.

Remark 4.36. The fulfillment of the optimality condition with the method of multipliers
also works for non-differentiable functions with the subgradient, cf. [Boyd et al., 2011].

The augmented Lagrangian can also be transformed into an equivalent scaled form,
which can be more convenient to use. Completing the square yields the form

〈u, v〉+ λ

2
‖u‖2 =

λ

2

(
2
〈

u, λ−1v
〉
+ 〈u, u〉+

〈
λ−1v, λ−1v

〉
−
〈

λ−1v, λ−1v
〉)

(4.56)

=
λ

2

∥∥∥u + λ−1v
∥∥∥2
− λ

2

∥∥∥λ−1v
∥∥∥2

(4.57)

For u := Kx− b and the scaled dual variable ŷ := λ−1v we obtain the scaled form of the
augmented Lagrangan:

Lλ(x, ŷ) = F(x) +
λ

2
‖Kx− b + ŷ‖2

Y −
λ

2
‖ŷ‖2

Y . (4.58)

If the method of multipliers is applied to the scaled augmented Lagrangian, by replac-
ing the dual variable with the scaled dual variable ŷ := λ−1y, the step size in the update
for ŷ will be 1:

ŷk+1 = ŷk + Kxk+1 − b (4.59)

4.2.2 Convex Set

Consider the problem of minimizing a function over a closed convex set:

min
x

F(x), subject to x ∈ C, (4.60)

where C is a convex closed set and F : H → (−∞, ∞] is a convex, proper and lower
semicontinuous functional.
The optimality condition for the constrained problem is given by the following theorem
[Bauschke and Combettes, 2011, section 26.2]. For the differentiable case, the optimality
conditions can be found in [Boyd and Vandenberghe, 2004, Chapter 4.2.3].
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Theorem 4.37 (Optimality condition). Let F be a function as defined in problem (4.60), C a
convex closed subset ofH and let 0 ∈ sri(C − dom F). A point x∗ is optimal if and only if

x∗ ∈ C and ∃w ∈ ∂F(x∗) : 〈w, y− x∗〉H ≥ 0 ∀y ∈ C. (4.61)

The constraint can be modeled by adding an indicator function for C to the objective
function.

Definition 4.38 (Indicator function). The indicator function on a convex set C is given
by

δC(x) =

{
0 if x ∈ C
∞ if x /∈ C.

(4.62)

Using the indicator function on the constrained optimization problem, the problem can
be rewritten as an unconstrained optimization problem:

min
x

δC(x) + F(x). (4.63)

The indicator function is not differentiable. In the following, we will see, that using the
proximal point method on the indicator function yields a projection onto the set C.

Definition 4.39 (Orthogonal projection). The orthogonal projection onto a set C ⊂ H,
where H is a Hilbert space with inner product 〈·, ·〉H is a linear mapping PC : H → H
where for all v ∈ H the following conditions hold:

1. PC(v) ∈ C

2. 〈v−PC(v), y−PC(v)〉H ≤ 0 ∀y ∈ C

Assume F is differentiable. The proximal gradient method, given in algorithm 2, ap-
plied on the problem (4.63) with the substitution for the gradient step vk := xk −
τ∇F(xk) yields

xk+1 = proxτδC
(xk − τ∇F(xk)) = arg min

x

(
δC(x) +

‖x− vk‖2
H

2τ

)
(4.64)

= arg min
x∈C

(
‖x− vk‖2

H
2τ

)
= PC(vk) = PC(xk − τ∇F(xk)). (4.65)

The argument is minimized for x = vk. If vk /∈ C, then the orthogonal projection PC(vk)

is the unique element in C that minimizes the distance to vk.

Proposition 4.40. Let H be a real Hilbert space with inner product 〈·, ·〉H and norm ‖·‖H,
and C ⊂ H a convex set. The point x∗ is the unique solution to

min
x∈C

F(x), F(x) :=
1
2
‖x− v‖2

H ,

if and only if x∗ = PC(v).
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Proof. F is strictly convex and bounded from below, thus has a unique minimizer and
since C is convex and closed, has a unique minimizer on C. There are two different
cases whether v lies inside or outside the set C: If v ∈ C, the orthogonal projection of v
is given by PC(v) = v and v minimizes the unconstrained problem minx F(x).
If v minimizes the unconstrained problem minx F(x), x∗ = v and x∗ ∈ C: PC(v) =

PC(x∗) = x∗

If v /∈ C, the optimality condition for a minimizer x∗ to the constrained optimization
problem minx∈C F(x) is given by 〈∇F(x∗), y− x∗〉H ≥ 0, ∀y ∈ C. With ∇F(x∗) =

x∗ − v we have
〈x∗ − v, y− x∗〉H ≥ 0 ∀y ∈ C. (4.66)

Assume x∗ = PC(v):

〈PC(v)− v, y−PC(v)〉H ≥ 0 ∀y ∈ C, (4.67)

which is the definition of the orthogonal projection, 〈v−PC(v), y−PC(v)〉H ≤ 0 for all
y ∈ C.

4.3 Convex Composite with Operator K: F(Kx) + G(x)

Consider the problem
min

x
F(Kx) + G(x), (4.68)

where X is a real Hilbert space with inner product 〈·, ·〉X and induced norm ‖ · ‖X ,
K : X → Y is a continuous linear operator into another Hilbert space Y , F : Y →
(−∞, ∞] is a convex lower semicontinuous functional and G : X → (−∞, ∞] is proper,
convex and lower semicontinuous. The optimality conditions given in this section can
be found in [Bauschke and Combettes, 2011, chapters 19 and 26].

Theorem 4.41 (Optimality conditions). Let F, G and K be defined as in problem (4.68) and
let 0 ∈ sri(dom F− K(dom G)). Then

x∗ is a solution to problem (4.68) ⇔ 0 ∈ K∗∂F(Kx∗) + ∂G(x∗). (4.69)

In the following, two different method classes for problem (4.68) are presented, those
operating on a primal-dual formulation and methods operating on an augmented La-
grangian formulation through a splitting.

4.3.1 Augmented Lagrangian

The idea behind this method is to introduce a new variable together with an equality
constraint and formulate the problem through an augmented Lagrangian. The new
variable is created through a splitting of the primal variable x.
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Splitting. A new variable z is introduced together with the constraint z = Kx:

min
x,z

F(z) + G(x), subject to z = Kx (4.70)

For the split problem, the (scaled) quadratic augmented Lagrangian, with augmenta-
tion parameter σ > 0 is given by:

Lσ(x, z, y) = F(z) + G(x) +
σ

2
‖Kx− z + y‖2

Y −
σ

2
‖y‖2

Y (4.71)

The associated optimization problem reads

max
y

min
x,z
Lσ(x, z, y) (4.72)

The optimality conditions for the equality constrained minimization problem (4.70) are
given by

Theorem 4.42 (Optimality conditions). Let the functionals F, G and operator K be defined
as in problem (4.68), and 0 ∈ sri(dom F− K(dom G)). Then (x∗, z∗) is a solution to (4.68) if
and only if

Kx∗ = z∗ and

{
0 ∈ ∂F(z∗)− y∗, and

0 ∈ ∂G(x∗) + K∗y∗,
(4.73)

where y∗ is a Lagrangian multiplier associated with (x∗, z∗).

The augmented Lagrangian is minimized with respect to x, z alternatingly and, as done
in the method of multipliers, given in algorithm 4, maximized in the dual variable y via
a gradient ascent step.
The update steps for the alternating direction method of multipliers (ADMM) using the
scaled form of the augmented Lagrangian with σŷ = y read as follows

Algorithm 5 alternating direction method of multipliers(ADMM), cf. [Boyd et al., 2011]

1. choose augmentation parameter σ > 0, and an initial point x0 ∈ X , z0 = Kx0 ∈ Y
and set y0 = 0 ∈ Y .

2. iterate for k = 0, 1, . . .

xk+1 = arg min
x

G(x) +
σ

2
‖Kx− zk + ŷk‖2

Y (4.74)

zk+1 = arg min
z

F(z) +
σ

2
‖Kxk+1 − z + ŷk‖2

Y (4.75)

ŷk+1 = ŷk + Kxk+1 − zk+1 (4.76)
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Convergence. In several manuscripts, the algorithm is shown to converge, e.g. [Eck-
stein and Bertsekas, 1992]. In [Boyd et al., 2011], a general proof is given and their
convergence result is presented here:

Theorem 4.43 (Convergence ADMM, [Boyd et al., 2011]). If the extended real valued func-
tions F : Y → (−∞, ∞] and G : X → (−∞, ∞] are closed, proper, and convex and the
Lagrangian L has a saddle point (x∗, z∗, y∗), i.e.

L(x∗, z∗, ŷ) ≤ L(x∗, z∗, ŷ∗) ≤ L(x, z, ŷ∗) (4.77)

holds for all x, z, y, then the ADMM iterates satisfy:

1. Residual convergence: rk := Kxk − zk → 0 as k→ ∞.

2. Objective convergence: F(zk) + G(xk) → p∗ as k → ∞, i.e. , the objective function of
the iterates approaches the optimal value p∗.

3. Dual variable convergence: yk → y∗ as k→ ∞, where y∗ is a dual optimal point.

The assumptions of this theorem include, that L(x∗, z∗, y∗) is finite for any saddle point
(x∗, z∗, y∗). This also implies, that F(z∗) < ∞ and G(x∗) < ∞.
The ordering of the updates in the ADMM is not important for convergence. As de-
scribed in [Boyd et al., 2011], the update ordering can be changed and also multiple
iterations per update are possible.
As for the method of multipliers, the gradient ascent step in the update of y or ŷ with
step size σ or 1, respectively, leads to a fulfillment of one of the three optimality condi-
tions, cf. [Boyd et al., 2011]: After the minimization with respect to z in iteration k, zk+1

minimizes Lσ(xk+1, z, ŷk) by definition. Thus,

0 ∈ ∂F(zk+1)− σ(Kxk+1 − zk+1 + ŷk) (4.78)

= ∂F(zk+1)− σŷk+1, (4.79)

which, with σŷ = y gives the second optimality condition.
Further, the algorithm will also converge for suitable inexact minimization in the up-
date steps, which can be shown with the convergence results on the Douglas–Rachford
splitting, which is equivalent to the ADMM, by [Eckstein and Bertsekas, 1992].

Remark 4.44. The ADMM is not only equivalent to the Douglas–Rachford splitting but
also many different methods, such as the split Bregman method, cf. [Goldstein and
Osher, 2009], which is sometimes not easy to see. For example, performing a Douglas–
Rachford splitting on the dual formulation is equivalent to the ADMM on the primal
formulation and vice versa. These equivalences have been intensively studied in [Boyd
et al., 2011, Esser et al., 2010, Setzer, 2011].
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Minimizations w.r.t. x, z. The minimization with respect to z, in equation (4.75), can
be transferred directly into a proximal point algorithm:

zk+1 = prox 1
σ F(Kxk+1 + yk). (4.80)

Due to the operator K, the minimization with respect to x, in equation (4.74), cannot be
written as a proximal operator directly. Therefore, different methods can be used:

Gauss–Seidel Iteration(s). If G is differentiable the optimality condition or Euler–Lagrange
equations lead to

∇G(x) + σK∗Kx = σK∗(zk − yk). (4.81)

Depending on G, in particular if G is linear or quadratic, this leads to a system of
linear equations which is solved by a Gauss–Seidel iteration:

(∇G + σK∗K)xk+1 = σK∗(zk − yk), (4.82)

or, if G(x) is linear in x and ∇G constant, we have:

(σK∗K)xk+1 = σK∗(zk − yk)−∇G. (4.83)

In the literature some authors claim, that one step of the Gauss–Seidel iteration
during the update of x, i.e. before updating z and y (which we call a Gauss–Seidel
sweep in the following), is enough for the ADMM to converge, cf. [Goldstein et al.,
2010]. Thus, with one Gauss–Seidel sweep only an approximate solution of the
linear system is calculated. With the partition (∇G + σK∗K) = Lx + Lq, where Lx

and Lq are lower and upper triangular matrices, the Gauss–Seidel sweep reads

xk+1 = Lx
−1 (σK∗(zk − yk)− Lqxk) . (4.84)

In [Boyd et al., 2011], the authors suggest as an alternative also to do more than
one Gauss–Seidel sweep. We will analyze the effect of different numbers of Gauss–
Seidel sweeps on the convergence of the method in chapter 6.
In [Goldstein et al., 2010], also further constraints are involved which are updated
through projections after the Gauss–Seidel step.

Linearization. Another possibility for the update of (4.74) in algorithm 5 is to do a lin-
earization of the quadratic norm, or a proximal gradient step for the x-update,
where the quadratic penalization term is used as the differentiable term for the
proximal gradient method:

xk+1 = proxτG (xk − σK∗(Kxk − zk + yk)) (4.85)
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Proximal Newton-type update. As with the linearization, also a proximal Newton-type
method can be integrated into the update step. Assume that G is nonsmooth, the
gradient and the Hessian H of the smooth part are given by

∇Lsmooth(x, zk, yk) = σK∗Kx− σK∗(zk − yk), (4.86)

H(x) = σK∗K, (4.87)

and the proximal Newton-type search direction reads

∆x = proxσK∗K
G

(
xk −

1
σ
(K∗K)−1(σK∗Kxk − σK∗(zk − yk))

)
(4.88)

= proxσK∗K
G

(
(K∗K)−1K∗(zk − yk)

)
. (4.89)

This search direction and thus the update step might be hard to compute due to the
scaled proximal operator and the inverse of K∗K. In chapter 6, we will see that if G
is a composition of a nonsmooth and a linear function, the proximal Newton-type
method is equivalent to the Gauss–Seidel method.

The ADMM with the proximal gradient step update in x, (4.85), is called the linearized
ADMM and is also known as split inexact Uzawa method, cf. [Parikh and Boyd, 2013].
The algorithm with the proximal gradient update in x in terms of proximal operator is
given by:

Algorithm 6 Linearized ADMM, cf. [Parikh and Boyd, 2013]

1. choose step sizes τ > 0, augmentation parameter σ > 0, and an initial point
x0 ∈ X , z0 = Kx0 ∈ Y and set y0 = 0 ∈ Y .

2. iterate for k = 0, 1, . . .

xk+1 = proxτG (xk − τσK∗(Kxk − zk + yk)) (4.90)

zk+1 = prox 1
σ F (Kxk+1 + yk) (4.91)

yk+1 = yk + Kxk+1 − zk+1 (4.92)

4.3.2 Primal-Dual Formulation

The primal-dual formulation for problem (4.68) reads as follows

min
x∈X

max
y∈Y

−F∗(y) + G(x) + 〈Kx, y〉Y . (4.93)

The optimal point (x∗, y∗) is a saddle point, since it maximizes (4.93) with respect to y
and minimizes (4.93) with respect to x.
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The optimality conditions for an optimal point (x∗, y∗) can be derived with Theorem
4.6:

0 ∈ −∂F∗(y∗) + Kx∗ (4.94)

0 ∈ ∂G(x∗) + K∗y∗ (4.95)

A fixed point iteration based on the resolvent operator can be derived by introducing
two step sizes σ, τ > 0

0 ∈ −σ∂F∗(y∗) + y∗ − y∗ + σKx∗ (4.96)

0 ∈ −τ∂G(x∗) + x∗ − x∗ − τK∗y∗ (4.97)

Rearranging leads to

(I + σ∂F∗)y∗ 3 y∗ + σKx∗ (4.98)

(I + τ∂G)x∗ 3 x∗ − τK∗y∗ (4.99)

Since the resolvent is single valued, we have

y∗ = (I + σ∂F∗)−1(y∗ + σKx∗) = proxσF∗ (y∗ + σKx∗) (4.100)

x∗ = (I + τ∂G)−1(x∗ − τK∗y∗) = proxτG (x∗ − τK∗y∗) (4.101)

The update steps can also be interpreted as an alternating proximal gradient descent
and proximal gradient ascent method on the saddle point formulation (4.93).

From this fixed point equations, different algorithms can be derived. Among the old-
est are the explicit Arrow–Hurwicz method, and the semi-implicit Arrow–Hurwicz
method, cf. [Arrow et al., 1958].

Later, different extrapolation or preconditioning steps were included, as e.g. in [Esser
et al., 2010, Nesterov, 2005, Pock et al., 2009]

One algorithm became popular recently, and is introduced here explicitly. It is also
based on proximal gradient descent and ascent steps, but includes an additional ex-
trapolation step for acceleration:

x̄k+1 = xk+1 + θ(xk+1 − xk)

where θ ∈ [0, 1] is an extrapolation parameter. In [Chambolle and Pock, 2011] conver-
gence properties are analyzed and it is applied to different imaging problems.
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Algorithm 7 primal-dual (PD), [Chambolle and Pock, 2011, Pock et al., 2009, Popov,
1980]

1. choose step sizes τ, σ > 0, an extrapolation parameter θ ∈ [0, 1], an initial point
(x0, y0) ∈ X ×Y , and set x̄0 = x0.

2. iterate for k = 0, 1, . . .

yk+1 = proxσF∗(yk + σKx̄k)

xk+1 = proxτG(xk − τK∗yk+1)

x̄k+1 = xk+1 + θ(xk+1 − xk)

Convergence. The primal dual algorithm is a first order method and, for θ = 1, it
is shown in [Chambolle and Pock, 2011] to converge as O(k−1). In [Chambolle and
Pock, 2011], it has also been shown that for uniformly convex problems a convergence
rate of O(k−2) can be achieved. Following [Nesterov, 2005,Chambolle and Pock, 2011],
this algorithm has the optimal asymptotic convergence rate, and cannot be improved
further. However, it comes with a step size restriction which yields a large number of
iteration steps in praxis. In the following, we examine equivalences of this algorithm
with the ADMM.

4.3.3 Equivalences

As described in [Parikh and Boyd, 2013], the described methods are special cases of the
proximal point and the proximal gradient method. As already mentioned, connections
and equivalences between several primal-dual algorithms and augmented Lagrangian
methods are analyzed and discussed in e.g. [Esser et al., 2010].
For a better understanding of the connections between the different methods, we show
the equivalence of the primal-dual algorithm and the linearized ADMM here, cf. [Tich-
mann and Junge, 2014].
We start with the primal dual formulation of optimization problem (4.68)

min
x

max
y
〈Kx, y〉 − F∗(y) + G(x) (4.102)

and the primal-dual algorithm described in algorithm 7

yk+1 = proxσF∗

(
yk + σK((1 + θ)xk − θxk−1)

)
(4.103)

xk+1 = proxτG

(
xk − τK∗yk+1

)
. (4.104)

We reformulate Moreau’s Identity (4.34)

proxσF∗ (σx) = σx− σprox 1
σ F (x). (4.105)
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Applying Moreau’s Identity to equation (4.103) gives

yk+1 = proxσF∗

(
yk + σK((1 + θ)xk − θxk−1)

)
(4.106)

= proxσF∗

{
σ

(
1
σ

yk + θK(xk − xk−1)︸ ︷︷ ︸
=:ηk

+Kxk
)}

(4.107)

= proxσF∗

(
σ(ηk + Kxk)

)
(4.108)

(4.105)
= σ(ηk + Kxk)− σ prox 1

σ F

(
ηk + Kxk

)
︸ ︷︷ ︸

=:zk+1

(4.109)

= σ(ηk + Kxk − zk+1). (4.110)

Equation (4.110) applied to the definition ηk := 1
σ yk + θK(xk − xk−1) gives for k + 1

ηk+1 =
1
σ

yk+1 + θK(xk+1 − xk) = ηk + Kxk − zk+1 + θK(xk+1 − xk) (4.111)

= ηk − zk+1 + K(xk + θ(xk+1 − xk)) (4.112)

= ηk + θKxk+1 − zk+1 + (1− θ)Kxk. (4.113)

We apply equation (4.110) to the update step given in equation (4.104):

xk+1 = proxτG

(
xk − τK∗yk+1

)
= proxτG

(
xk − τσK∗(ηk + Kxk − zk+1)

)
(4.114)

The algorithm now reads:

zk+1 = prox 1
σ F

(
Kxk + ηk

)
(4.115)

xk+1 = proxτG

(
xk − τσK∗(Kxk − zk+1 + ηk)

)
(4.116)

ηk+1 = ηk − zk+1 + K(xk + θ(xk+1 − xk)), (4.117)

which is a more general version of the linearized ADMM with the extrapolation pa-
rameter θ ∈ [0, 1] from the primal-dual algorithm.
For θ = 1 we obtain the linearized ADMM using a proximal point method in the first
update step and a proximal gradient method in the second update step:

zk+1 = prox 1
σ F

(
Kxk + ηk

)
(4.118)

xk+1 = proxτG

(
xk − τσK∗(Kxk − zk+1 + ηk)

)
(4.119)

ηk+1 = ηk + Kxk+1 − zk+1 (4.120)

From this formulation, we can see that the step size given in the primal-dual algorithm
is also the step size for the proximal gradient step in the x-update of the linearized
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ADMM. We study the restriction on the step-size τ, given in the primal-dual algorithm,
and associated problems in detail in the next chapter.
Let us summarize our findings for this section:

Proposition 4.45. For θ = 1 the linearized ADMM given in algorithm 6 and the primal-dual
algorithm given in algorithm 7 are equivalent.

Further, we have a general version of the linearized ADMM including the extrapolation
step with parameter θ, which is designed to speed-up the convergence of the primal-
dual algorithm, even though the convergence is only proven for θ = 1.
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5 Implicit Algorithms for Convex Problems

The methods presented in the previous section usually work well but come with a step
size restriction. In some cases the step size has to be very small and the algorithms
need a lot of iterations. Therefore, we investigate this phenomenon and the step size
restriction and propose a new stable algorithm in the following. The Hilbert spaces in
this chapter are finite dimensional.

5.1 Step Size Restrictions and Stiffness

First we examine, what causes the step size restriction in the described methods by
analyzing the proximal gradient method on an example. Then, we consider stiffness—
a problem often encountered during the numerical treatment of ordinary differential
equations—which is related to the step size restriction and affects the required number
of iteration steps in explicit methods.

5.1.1 Example: Proximal Gradient Method

The linearized ADMM, which is equivalent to the primal-dual method, uses a proximal
gradient step with a step size restriction in the update of variable x. We analyze this
update step first. The problem is given by (cf. equation (4.74))

min
x

F(x) +
σ

2
‖Kx− z + y‖2

Y , (5.1)

where F : X → (−∞, ∞] is a proper convex and lower semicontinuous functional on
a finite dimensional Hilbert space X and K : X → Y is a linear operator into another
finite dimensional Hilbert space Y . σ > 0 is the parameter of the quadratic penalty in
the augmented Lagrangian. The associated proximal gradient update step, described
in equation (4.85), is given by:

xk+1 = proxτF (xk − τσK∗(Kxk − zk + yk)), (5.2)

with guaranteed convergence for step sizes τ < 2
σ‖K∗K‖ , where ‖K∗K‖ is the operator

norm induced by the norms on the Hilbert spaces, cf. [Parikh and Boyd, 2013].
In order to simplify the analysis of this method, we consider the related problem

min
x

F(x) +
1
2
‖Kx‖2

Y + 〈b, x〉X︸ ︷︷ ︸
G(x)

. (5.3)
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The proximal gradient method is given by

xk+1 = proxτF (xk − τ∇G(x))

= proxτF (xk − τ(K∗Kxk + b)) = (I + τ∂F)−1((I − τK∗K)xk − τb
)
,

(5.4)

with ∇G Lipschitz continuous with constant L, to be specified below.

5.1.2 Convergence

In the view of averaged operators and the convergence theory we can get an idea, where
the step size restriction comes from. Therefore, in the following, we examine for which
step sizes τ the update step of the proximal gradient method can be described as an av-
eraged operator, and thus the convergence theory of the previous chapter is applicable.
In this section, for better readability, the norm ‖·‖H on the Hilbert space H is written
without the subscript.

The proximal gradient method can be seen as the composition of two operators. From
Theorem 4.12, we know that the composition of averaged operators is also an aver-
aged operator. The proximal gradient method in consideration is a composition of the
operators P and T:

(I + τ∂F)−1((I − τK∗K)xk − τb) = P ◦ T(xk). (5.5)

The operator P := (I + τ∂F)−1 is the resolvent of the subgradient ∂F, thus P is firmly
nonexpansive and an averaged operator. Now we analyze if T := (I − τK∗K)( · )− τb
is also an averaged operator. With the following lemma, we deal with translations:

Lemma 5.1. Let v ∈ H, and the averaged operator M = (1− α)I + αN be given, with N
nonexpansive. Then the operators S1 := M( · ) + v, and S2 := M( · + v) are averaged
operators.

Proof. First the operator S1 := M( · ) + v is written in the form of an averaged operator:

M( · ) + v = (1− α)I( · ) + αN( · ) + v = (1− α)I( · ) + α (N( · ) + v
α
)︸ ︷︷ ︸

=:N̂( · )

(5.6)

Now, it can be seen, that the operator N̂( · ) is nonexpansive:∥∥N̂(x1)− N̂(x2)
∥∥ =

∥∥∥N(x1) +
v
α
− N(x2)−

v
α

∥∥∥ = ‖N(x1)− N(x2)‖ ≤ ‖x1 − x2‖ .
(5.7)

The proof of the second statement, that S2 is an averaged operator, is analogous to the
first.
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Hence, we rewrite T without the translation and show that T̂ is an averaged operator

T̂ := I − τK∗K = (1− α)I + α (I − τ

α
K∗K)︸ ︷︷ ︸

=:N

, (5.8)

and try to find out, whether N is nonexpansive for some α ∈ (0, 1). The operator K∗K is
symmetric positive semidefinite, i.e. its spectrum satisfies σ(K∗K) ≥ 0, (K∗K)∗ = K∗K,
and it can be orthogonally diagonalized1 with the diagonal matrix D, K∗K = S∗DS,
‖K∗K‖ = ‖D‖.

‖N(x)− N(y)‖ =
∥∥∥x− y− τ

α
K∗K(x− y)

∥∥∥ =
∥∥∥S∗S(x− y)− τ

α
S∗DS(x− y)

∥∥∥ (5.9)

z=S(x−y)
=

∥∥∥z− τ

α
Dz
∥∥∥ =

∥∥∥(I − τ

α
D)z

∥∥∥ ≤ max
∣∣∣1− τ

α
σ(D)

∣∣∣ ‖z‖ (5.10)

= max
∣∣∣1− τ

α
σ(D)

∣∣∣ ‖S(x− y)‖ = max
∣∣∣1− τ

α
σ(D)

∣∣∣ ‖x− y‖ . (5.11)

The largest eigenvalue of D is defined by λmax := max σ(D), which is in our case equal
to the Lipschitz constant L = λmax. We have

σ(D) ⊂ [0, L] ⇔ σ(I − τ

α
D) ⊂ [1− τ

α
L, 1] (5.12)

|1− τ

α
L| ≤ 1 ⇔ τ ≤ 2α

L
α<1
<

2
L

(5.13)

Since α < 1, N is nonexpansive if the step size τ < 2/L. With Theorem 4.10 the iteration
with P ◦ T converges to a fixed point, if one exists.

Remark 5.2. If the operator K∗K does not have the eigenvalue 0, it can be shown, that the
operator T := I − τK∗K is a contraction for τ < 2/L. The composition of a contractive
operator and a nonexpansive operator is a contraction, and, with the Banach fixed point
theorem, will converge to the unique fixed point.

5.1.3 Eigenvalue Analysis - Stiffness

The term stiffness is used, if for an iterative method, the step sizes become too small
such that to many steps are required for a sufficiently accurate solution. What exactly
is meant by “too small”, depends on the problem. In the following part, this is studied
further and possible consequences are investigated.
In the previous section, we have seen, that the step size restriction arises from the gra-
dient descent step, the explicit step of the proximal gradient method, which handles the

1The orthogonal diagonalization does only work in the described way, if the norm on the Hilbert space
is the Euclidian norm. However, the main result needed in this context, ‖A∗A‖ = max |σ(A∗A)|, also
holds for a norm induced by the scalar product 〈·, ·〉M, with an arbitrary symmetric positive semidefi-
nite matrix M: ‖A∗A‖M = max |σ(A∗A)|, where the adjoint is of course taken with respect to 〈·, ·〉M.
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minimization of functional G(x) in equation (5.3), and can be determined by the largest
eigenvalue λmax of the operator K∗K. Consider the problem

min
x

1
2
‖Kx‖2

Y , (5.14)

which is minimized through the explicit gradient method. As can easily be seen, the
minimizer of problem (5.14) is given by 0, provided K has full rank. Therefore, the
iterates should converge to zero. The explicit gradient method for this problem is given
by

xk+1 = xk − τK∗Kxk = (I − τK∗K)xk, (5.15)

with the step size restriction 0 < τ < 2/λmax. The first iterate, i.e. the initial value
x0 ∈ X , where X has finite dimension, dim(X ) = n, can be represented in terms of the
eigenvectors of K∗K:

x0 = ∑
i

vi, with K∗Kvi = λivi, (5.16)

where vi denotes the (scaled) eigenvectors and λi the eigenvalues. The first gradient
step then reads

x1 = (I − τK∗K)∑
i

vi = ∑
i
(1− τλi)vi, (5.17)

and the kth step is given by
xk = ∑

i
(1− τλi)

kvi. (5.18)

Considering the step size restriction, it can again be seen, that |1− τλi| < 1 for all i, and
|1− τλi|k → 0 for k→ ∞. Now, the crucial point is how fast |1− τλi|k will converge to
zero. Since the iterates xk are represented through a basis of eigenvectors, we can see
how fast every eigenvector vi will converge to zero depending on how close to zero its
corresponding eigenvalue |1− τλi|k is:

xk = (1− τλ0)
kv0 + . . . + (1− τλn−1)

kvn−1. (5.19)

Assume that the spectrum of the matrix K∗K ranges over several scales, i.e. there are
eigenvalues close to zero and also large eigenvalues, such that the quotient λmax/λmin

is large, e.g. λmax/λmin = O(103) or more, which gives a criterion for stiffness. Further,
assume that the eigenvalues are sorted, i.e. λ0 is the largest eigenvalue and λn−1 is the
smallest. In Figure 5.1, the eigenvalues defined by λi = exp(− i

4 ), i = 0, . . . , n− 1, are
plotted together with |1− τλi| (left) and |1− τλi|100 (right) for τ = 1 = 1/λmax and for
τ = 2− ε < 2/λmax, ε � 1, which reaches almost the step size restriction. We can see,
that for large λi, the factor, (1− τλi), in front of the corresponding eigenvector vi after
100 iterations is almost zero, thus for those i corresponding to the larger eigenvalues,
the iteration converges fast. However, for the smaller eigenvalues of K∗K, the iteration
almost does not converge at all. After 100 iterations, |1− τλi|100 is still almost one for
some λi, i.e. the iterate xk will consist of large parts of the vi corresponding to small
eigenvalues, while the vi corresponding to large eigenvalues are damped to zero.
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Figure 5.1: Eigenvalues λi of the matrix K∗K, and eigenvalues (1− τλi)
k of the iteration

matrix (I − τK∗K)k for k = 1 (left) and k = 100 (right) for step sizes τ ∈
{1, 2− ε}.

5.2 Implicit Proximal Method

In order to circumvent the step size restriction and obtain an unconditionally stable
method we propose a fully implicit update step. Consider again the problem

min
x

F(x) +
1
2
‖Kx‖2

Y + 〈b, x〉X , (5.20)

where F : X → (−∞, ∞] is proper convex and lower semicontinuous, K : X → Y is
a linear operator between Hilbert spaces and b ∈ X . Our implicit proximal gradient
algorithm is given by:

Algorithm 8 implicit proximal method

1. choose a step size τ > 0 and an initial point x0 ∈ X

2. iterate for k = 0, 1, . . .

xk+1 = prox(I+τK∗K)
τF

(
(I + τK∗K)−1(xk − τb)

)
, (5.21)

with the scaled proximal operator from Definition 4.30.

Note, that there is no restriction on τ in this update.
At first we show, that a fixed point of the implicit proximal iteration (5.21) minimizes
the objective functional (5.20). Then we show, that the fixed point iteration will con-
verge to a fixed point.
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5.2.1 Fixed Points

In order to show, that a fixed point of (5.21) minimizes (5.20), we rewrite the scaled
proximal operator with the following lemma:

Lemma 5.3. If there exists a decomposition H = I + τK∗K, then the scaled proximal operator
can be written as

proxH
τF

(
H−1v

)
= arg min

x
F(x) +

1
2
‖Kx‖2

Y +
1

2τ
‖x− v‖2

X . (5.22)

This can be seen as the proximal operator with function G(x) = F(x) + 1
2 ‖Kx‖2

Y , i.e.

proxH
τF

(
H−1v

)
= proxτG (v). (5.23)

Proof. We show that the terms in (5.22) and (4.35) only differ by a constant, thus the
following equation holds:

τ ‖Kx‖2 + ‖x− v‖2 =
∥∥∥x− H−1v

∥∥∥2

H
+ C, (5.24)

with constant C, and the norm on the finite dimensional Hilbert space X weighted by
the symmetric positive definite matrix H is given by ‖x‖H = 〈x, Hx〉1/2

X . The matrix
H = (I + τK∗K) is symmetric, i.e. H∗ = H.

τ ‖Kx‖2 + ‖x− v‖2 = τ 〈x, K∗Kx〉+ 〈x, x〉 − 2 〈x, v〉+ 〈v, v〉 (5.25)

= 〈x, (I + τK∗K)x〉 − 2 〈x, v〉+ c1 (5.26)

= 〈x, Hx〉 − 2 〈x, v〉+ c1, (5.27)

where c1 is constant in x. Further,∥∥∥x− H−1v
∥∥∥2

H
=
〈

x− H−1v, Hx− v
〉

(5.28)

= 〈x, Hx〉 − 〈x, v〉 −
〈

Hx, H−1v
〉
+
〈

v, H−1v
〉

(5.29)

= 〈x, Hx〉 − 2 〈x, v〉+ c2 (5.30)

where c2 is constant in x.

With this lemma, we have that if G(x) = F(x) + 1
2 ‖Kx‖2

Y is proper convex and lower
semicontinuous, the scaled proximal operator inherits the properties of the proximal
operator, stated in the previous chapter. This follows directly from the properties of F.
Now, we study fixed points of the scaled proximal operator.

Theorem 5.4. A point x∗ ∈ X solves the minimization problem (5.20), if and only if

x∗ = proxH
τF

(
H−1(x∗ − τb)

)
, (5.31)

with H := (I + τK∗K), i.e. if x∗ is a fixed point of the implicit proximal gradient iteration.
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Proof. The optimality condition for x∗ solving (5.20) is

0 ∈ ∂F(x∗) + K∗Kx∗ + b (5.32)

0 ∈ −τ∂F(x∗) + x∗ − x∗ − τK∗Kx∗ − τb (5.33)

x∗ + τ∂F(x∗) + τK∗Kx∗ 3 x∗ − τb (5.34)

x∗ + τ∂
(

F(x∗) +
1
2
‖Kx∗‖2 ) 3 x∗ − τb (5.35)

x∗ ∈ (I + τ∂F̂)−1(x∗ − τb), (5.36)

in the last step, we used the substitution F̂(x) := F(x) + 1
2 ‖Kx‖2. With Lemma 5.3, the

last equation is equivalent to

x∗ = proxτF̂ (x∗ − τb) = proxH
τF

(
H−1(x∗ − τb)

)
. (5.37)

5.2.2 Convergence

The implicit proximal gradient method can also be seen as a composition of the two
operators

P := prox(I+τK∗K)
τF ( · ), and (5.38)

T := (I + τK∗K)−1( · − τb). (5.39)

i.e. the iteration reads
xk+1 = P ◦ T(xk). (5.40)

We have

Theorem 5.5. Let F : X → (−∞, ∞] be proper convex and lower semicontinuous, K : X → Y
a linear operator between Hilbert spaces and b ∈ X . The implicit proximal gradient method

xk+1 = prox(I+τK∗K)
τF

(
(I + τK∗K)−1(xk − τb)

)
,

converges to a fixed point x∗ ∈ X as k→ ∞, for τ > 0.

To show Theorem 5.5, we again analyze, if the operators P and T are averaged op-
erators, cf. Theorem 4.10. With Lemma 5.3, the scaled operator can be written as a
proximal operator with function F̂(x) := F(x) + 1

2 ‖Kx‖2. F̂ is convex proper and lower
semicontinuous, thus the scaled proximal operator inherits the properties of the proxi-
mal operator. In particular, P is firmly nonexpansive and hence an averaged operator.
Thus, it remains to show that T is an averaged operator.
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Proof of Theorem 5.5. With Lemma 5.1 an averaged operator is averaged after translation
with a constant. Therefore we only discuss the operator T = (I + τK∗K)−1( · ) in the
next part.
Since K∗K is positive semidefinit, and ‖K∗K‖ = max σ(K∗K), we have that ‖K∗K‖ ≥ 0.
The spectrum of (I + τK∗K) is given by

σ(I + τK∗K) = {1 + τλ | λ is eigenvalue of K∗K}. (5.41)

Further, the eigenvalues of H−1 can be determined through

(I + τK∗K)v = (1 + τλ)v ⇒ (I + τK∗K)−1v =
1

1 + τλ
v. (5.42)

Now, we rewrite T = (1− α)I + αN in the form of an averaged operator and show that
N is nonexpansive for at least one α ∈ (0, 1). We use the substitution H := (I + τK∗K)
in the following.

H−1 = (1− α)I−(1− α)I + H−1︸ ︷︷ ︸
=:αN

⇒ N =
1
α
(H−1 − (1− α)I). (5.43)

Since N is a linear operator, it is sufficient to determine for which alpha ‖N‖ ≤ 1:

‖N‖ = 1
α

∥∥∥H−1 − (1− α)I
∥∥∥ =

1
α

∥∥∥(I + τK∗K)−1 − (1− α)I
∥∥∥ (5.44)

We examine the spectra of the matrices:

σ(K∗K) ≥ 0 ⇒ σ(H) ≥ 1 ⇒ 0 < σ((I + τK∗K)−1) ≤ 1 (5.45)

⇒ −1 < σ((I + τK∗K)−1 − I) ≤ 0 (5.46)

⇒ α− 1 < σ
(
(I + τK∗K)−1 − I + αI

)
≤ α (5.47)

⇒ 1− 1
α
<

1
α

σ
(
(I + τK∗K)−1 − (1− α)I

)
≤ 1 (5.48)

We conclude that with

1− 1
α
≥ −1 ⇔ α ≥ 1

2
, (5.49)

N is a nonexpansive operator for α ≥ 1
2 :

‖N‖ ≤ 1 if α ≥ 1
2

. (5.50)

Choosing α = 1/2, N is a nonexpansive operator and thus T is an averaged operator
and, with Theorem 4.15, T is a firmly nonexpansive operator.
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Remark 5.6 (Proof of Theorem 5.5 with Resolvent Argument). The operator T := (I +
τK∗K)−1 can also be seen as the resolvent (I + τ∇Ĝ)−1 for the function Ĝ(x) = 1

2 ‖Kx‖2.
Hence, for every proper convex and lower semicontinuous function Ĝ, the resolvent
(I + τ∇Ĝ)−1 is equivalent to the proximal operator proxτĜ, which is firmly nonexpan-
sive, by Corollary 4.25, and thus an averaged operator, by Theorem 4.15. Thus, the
implicit proximal gradient method converges also for more general proper, convex and
lower semicontinuous functions Ĝ.

5.2.3 Eigenvalue Analysis

Now, we analyze, how the iterates of the implicit method behave with respect to stiff-
ness. Consider again the minimization problem

min
x

1
2
‖Kx‖2

Y . (5.14)

As done in section 5.1.3, we study the eigenvalues of the iteration matrix. The implicit
iteration is given by

xk+1 = (I + τK∗K)−1xk, (5.51)

for τ > 0. The initial x0 can again be represented in terms of eigenvectors of K∗K

x0 = ∑
i

vi, with K∗Kvi = λivi, (5.52)

where vi denotes the (scaled) eigenvectors and λi the eigenvalues. The first gradient
step then reads

x1 = (I + τK∗K)−1 ∑
i

vi = ∑
i
(1 + τλi)

−1vi, (5.53)

and the k-th step is given by

xk = ∑
i
(1 + τλi)

−kvi. (5.54)

Again, we can examine, how fast the components of xk corresponding to the ith eigen-
vector converge to zero. In Figure 5.2 the values for |1 + τλi|−1 and |1 + τλi|−100 are
shown for τ ∈ {1, 20}. The eigenvalues λi = exp(− i

4 ), i = 0, . . . , n− 1 are chosen as
in Figure 5.1. We can observe, that the convergence for τ = 1 = 1/λmax has no advan-
tage over the explicit gradient method for small λi, however, since there is no step size
restriction, for τ = 20 the convergence is much better, even for the smallest λi.
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Figure 5.2: Eigenvalues λi of the matrix K∗K and the iteration matrix (I + τK∗K)−k, i.e.
(1 + τλi)

−k for k = 1 (left) and k = 100 (right), for step sizes τ ∈ {1, 20}.

5.3 Inexact Evaluation

The scaled proximal operator is possibly difficult to evaluate, thus we propose an ap-
proximation of the scaled proximal operator with a non-scaled one. The implicit itera-
tion then reads

xk+1 = P̃(T(xk)), (5.55)

with

P̃ := proxτF ( · ), and (5.38a)

T := (I + τK∗K)−1( · − τb), (5.39)

where the proximal operator can be evaluated more easily and possibly explicitly. The
inexact implicit proximal method is given by

Algorithm 9 inexact implicit proximal method

1. choose a step size τ > 0 and an initial point x0 ∈ X

2. iterate for k = 0, 1, . . .

xk+1 = proxτF

(
(I + τK∗K)−1(xk − τb)

)
. (5.56)

At first we have to show the existence of a fixed point for the inexact iteration. Un-
fortunately, we could not find an optimization problem corresponding to the inexact
fixed point iteration. Therefore, we analyze the existence of a fixed point for the inexact
iteration and compare the inexact fixed point to the exact fixed point.
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5.3.1 Existence of Fixed Points

The existence of a fixed point of the inexact iteration can be shown through the follow-
ing fixed point theorem:

Theorem 5.7 (Browder-Göhde-Kirk). Let D be a nonempty bounded closed convex subset of
a real Hilbert space H and let S : D → D be a nonexpansive operator. Then the set of fixed
points is not empty:

{x ∈ D|S(x) = x} 6= ∅. (5.57)

For further details, see [Bauschke and Combettes, 2011, Chapter 4.3]. The operator in
consideration is the concatenation of the operators P̃ and T, i.e. S = P̃ ◦ T. As shown in
the previous section, T is an averaged operator, hence nonexpansive, and the proximal
operator P̃ for the convex proper lower semicontinuous functional F is nonexpansive.
Therefore, the restriction T : D → H is also nonexpansive for any D ⊂ H. Thus, it
would suffice to find a convex closed set D ⊂ H such that S(D) ⊂ D.
Suppose dom(F) = D is a bounded convex set, then the requirements are fulfilled. If
dom(F) = H, the domain dom F has to be restricted in a way, that for a sufficiently
large closed convex bounded subset D the function is defined by e.g. F̃(x) = F(x), if
x ∈ D, and F̃(x) = ∞, otherwise. This restriction does not affect the properties of F,
i.e. F̃ is still proper, convex and lower semicontinuous, but the proximal operator of F̃
is nonexpansive with proxF̃ : H → D, and thus the requirements of Theorem 5.7 are
fulfilled. For practical purposes this restriction of F is reasonable, since in applications
we usually are not interested in solutions with arbitrarily large norm.

5.3.2 Convergence to Exact Solution

In [Rockafellar, 1976], inexact evaluations of the resolvent operator in the proximal
point algorithm are analyzed. The resolvents are allowed to be evaluated approxi-
mately, if the sum of all errors is finite. In [Eckstein and Bertsekas, 1992], these results
are extended and carried over to splitting methods, which are special cases of the prox-
imal point algorithm, in particular the Douglas–Rachford splitting and the ADMM.
Their result, adapted to our setting, is given in the following theorem:

Theorem 5.8 ( [Eckstein and Bertsekas, 1992]). Let F : X → (−∞, ∞] be a convex proper
lower semicontinuous function, Sk = (I + τk∂F)−1 a firmly nonexpansive operator, and let
(xk) be such that

xk+1 = S̃k(xk) ∀k ≥ 0, where
∥∥S̃k(xk)− Sk(xk)

∥∥ ≤ εk ∀k ≥ 0, (5.58)

and (εk), (τk) are sequences such that
∞

∑
k=0

εk < ∞, and inf
k≥0

τk > 0. (5.59)

Then (xk) converges weakly to a fixed point of S, if one exists.
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The following theorem gives an estimate for the scaled and non-scaled proximal oper-
ator:

Theorem 5.9 ( [Milzarek, 2015]). The scaled proximal operator is Lipschitz continuous with
respect to the scaling matrix H∥∥∥proxH1

F (x)− proxH2
F (x)

∥∥∥ ≤ L ‖H1 − H2‖F , (5.60)

where ‖ · ‖F is the Frobenius norm.

With this theorem, we can estimate that the error of the inexact iteration depends lin-
early on τ: ∥∥∥proxH

F (xk)− proxI
F (xk)

∥∥∥ ≤ L ‖H − I‖F = τL ‖K∗K‖F (5.61)

However, there is no sequence (τk) → 0, with ∑∞
k=0 τk < ∞ and infk≥0 τk > 0. Thus,

Theorem 5.9 does not yield a way to fulfill the requirements of Theorem 5.8. We have
to assume that the fixed points of the exact and the inexact iteration are generally not
identical. Therefore, in the next part, we analyze if the distance of the fixed points of
the inexact iteration and the exact iteration is bounded.

5.3.3 Comparison of Fixed Points

As shown above, for a fixed τ > 0 a fixed point of the inexact iteration, x̃, will exist, but
will not necessarily be a fixed point of the correct iteration and thus, will not minimize
(5.20). We compare the fixed points and examine if x̃ lies close to x, and thus, gives a
good approximated result through an easy iteration.
The fixed points of the different iterations are given by

x = proxH
τF

(
H−1(x− τb)

)
, and (5.62)

x̃ = proxτF

(
H−1(x̃− τb)

)
, (5.63)

with H = I + τK∗K, symmetric positive definite. For better readability, we substitute
the constant b̂ = τH−1b.

Estimation. The estimate for the fixed points reads as

‖x− x̃‖ =
∥∥∥proxH

τF

(
H−1x− b̂

)
− proxτF

(
H−1 x̃− b̂

)∥∥∥ (5.64)

≤
∥∥∥proxH

τF

(
H−1x− b̂

)
− proxτF

(
H−1x− b̂

)∥∥∥ (5.65)

+
∥∥∥proxτF

(
H−1x− b̂

)
− proxτF

(
H−1 x̃− b̂

)∥∥∥ (5.66)

NE
≤
∥∥∥proxH

τF

(
H−1x− b̂

)
− proxτF

(
H−1x− b̂

)∥∥∥+ ∥∥∥H−1x− H−1 x̃
∥∥∥ . (5.67)
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We used the nonexpansiveness of the proximal operator in the last inequality. To esti-
mate

∥∥∥proxH
τF

(
H−1x− b̂

)
− proxτF

(
H−1x− b̂

)∥∥∥ in (5.67), we use Theorem 5.9. Since
we have no information on the constant L, we follow the ideas from [Milzarek, 2015,Lee
et al., 2012] to obtain a refined estimate of the first term in (5.67):

For y = H−1x − b̂, we define p := proxH
τF (y) − y and p̃ := proxτF (y) − y. Through

the optimality conditions of the scaled proximal operator and the proximal operator at
p + y and p̃ + y, respectively, p and p̃ can be written as an element of the subgradient
of F:

p + y = proxH
τF (y) = arg min

x
F(x) +

1
2τ
‖x− y‖2

H (5.68)

p̃ + y = proxτF (y) = arg min
x

F(x) +
1

2τ
‖x− y‖2 (5.69)

The optimality conditions are given by

0 ∈ τ∂F(p + y) + H(p + y− y) ⇔ − 1
τ

Hp ∈ ∂F(p + y) (5.70)

0 ∈ τ∂F( p̃ + y) + p̃ + y− y ⇔ − 1
τ

p̃ ∈ ∂F( p̃ + y) (5.71)

Due to the definition of the subgradient in Definition 4.5, one derives the following
inequalities:

F(p + y)− 1
τ
〈Hp, p̃− p〉 ≤ F( p̃ + y) (5.72)

F( p̃ + y)− 1
τ
〈 p̃, p− p̃〉 ≤ F(p + y) (5.73)

These inequalities are summed and rearranged to give

〈 p̃, p̃− p〉 ≤ 〈Hp, p̃− p〉 (5.74)

Completing the square on the left side by adding 〈p, p− p̃〉 and applying the Cauchy–
Schwarz inequality as done in [Milzarek, 2015] yields

‖p− p̃‖2 ≤ 〈(H − I)p, p− p̃〉
C-S
≤ ‖(H − I)p‖ · ‖p− p̃‖ (5.75)

Substituting the definitions of p and p̃ we have

‖p− p̃‖ =
∥∥∥proxH

τF

(
H−1x− b̂

)
− proxτF

(
H−1x− b̂

)∥∥∥ (5.76)

≤
∥∥∥(H − I)

(
proxH

τF

(
H−1x− b̂

)
− H−1x + b̂

)∥∥∥ . (5.77)
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Next, we use the fixed point equation, (5.62), i.e. x = proxH
τF

(
H−1x− b̂

)
, which gives

∥∥∥proxH
τF

(
H−1x− b̂

)
− proxτF

(
H−1x− b̂

)∥∥∥ ≤ ∥∥∥(H − I)((I − H−1)x + b̂)
∥∥∥ (5.78)

=
∥∥∥(H − I)2H−1x + (H − I)b̂

∥∥∥ (5.79)

We now return to the comparison of the fixed points from inequality (5.67). With the
estimate (5.79) and the substitutions H = I + τK∗K, and b̂ = τH−1b we have

‖x− x̃‖ ≤
∥∥∥τ2(K∗K)2H−1x + τ2K∗KH−1b

∥∥∥+ ∥∥∥H−1x− H−1 x̃
∥∥∥ , (5.80)

Let λi denote the eigenvalues of K∗K. The eigenvalues of (K∗K)2H−1 are given by
λ2

i
1+τλi

, and the maximal value is given by max
{

σ((K∗K)2H−1)
}
= λ2

max
1+τλmax

, where λmax

denotes the largest eigenvalue of K∗K. Then we have

‖x− x̃‖ ≤ τ2λ2
max

1 + τλmax

(
‖x‖+ 1

λmax
‖b‖︸ ︷︷ ︸

=:c1

)
+
∥∥∥H−1(x− x̃)

∥∥∥ (5.81)

The eigenvalues of the matrix H−1 are given by 1
1+τλ . We assume for now, that the

smallest eigenvalue of K∗K, denoted by λmin is not zero, i.e. λmin > 0. This yields an
upper bound for the relative error of the fixed points depending on the eigenvalues of
the matrix K∗K with the constant c1:

‖x− x̃‖ ≤ τ2λ2
max

1 + τλmax
(‖x‖+ c1) +

1
1 + τλmin

‖x− x̃‖ (5.82)

(1 + τλmin) ‖x− x̃‖ ≤ τ2λ2
max

1 + τλmin

1 + τλmax
(‖x‖+ c1) + ‖x− x̃‖ (5.83)

This yields
‖x− x̃‖
‖x‖ ≤ τ

λ2
max

λmin

1 + τλmin

1 + τλmax

(
1 +

c1

‖x‖

)
(5.84)

This relative error of the fixed points depends linearly on the step size τ. In the worst
case, for λmin = 0, the constant λmax

λmin
will be infinity. But one can bring forward the

argument that this is only the case if (x − x̃) is an element of the kernel of K∗K, i.e.
(x − x̃) ∈ Ker(K∗K) and is thus collinear with the eigenvector corresponding to the
eigenvalue λmin = 0. In the next paragraph, this is studied further.

Eigenvalue Analysis. To get a better estimate, especially when λmin = 0, we investi-
gate the eigenvalues and associated eigenvectors of H−1 in (5.81) and estimate the part
of (x− x̃) that is collinear with the eigenvector of H−1 corresponding to eigenvalue 0.
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We treat the first part of (5.81) as a constant c = τ2λ2
max

1+τλmax
(‖x‖+ c1) for now and substi-

tute z = x− x̃
‖z‖ ≤ c +

∥∥∥H−1z
∥∥∥ . (5.85)

The spectrum of H−1 ∈ Rn×n satisfies σ(H−1) ⊂ (0, 1]. The eigenvalue 1 corresponds
to the eigenvalue 0 of the matrix K∗K. Let v ∈ Rn be an eigenvector to eigenvalue 1,
and let ‖v‖ = 1, then H−1v = v. Further, let v⊥ denote the orthogonal subspace to v,
with dim(v⊥) = n− 1 and v ⊥ v⊥. Then, z can be represented through the eigenvectors

Rn = v⊕ v⊥ ⇔ ∀z ∈ Rn : ∃η, η⊥ ∈ R and w ∈ v⊥ : z = ηv + η⊥w. (5.86)

Without loss of generality, we assume, that ‖w‖ = 1 and thus ‖z‖2 = η2 + η2
⊥. Next,

we consider the quadratic norm:∥∥∥H−1z
∥∥∥2

=
∥∥∥H−1(ηv + η⊥w)

∥∥∥2
= ‖ηv‖2 +

∥∥∥η⊥H−1w
∥∥∥2

= η2 + η2
⊥

∥∥∥H−1w
∥∥∥ . (5.87)

Since w is by definition orthogonal to v, the last norm can be estimated with the second
largest eigenvalue of H−1, denoted by Λ2 < 1, and substitute η2

⊥ = ‖z‖2 − η2∥∥∥H−1z
∥∥∥2

= η2 + η2
⊥

∥∥∥H−1w
∥∥∥ ≤ η2 + η2

⊥Λ2
2 (5.88)

= η2 + (‖z‖2 − η2)Λ2
2 = Λ2

2 ‖z‖
2 + (1−Λ2

2)η
2. (5.89)

Now, we get back to the original estimate (5.81) and rewrite it as follows

c ≥ ‖z‖ −
∥∥∥H−1z

∥∥∥ = ‖z‖ −
√

Λ2
2 ‖z‖

2 + (1−Λ2
2)η

2 (5.90)

=

(
1−

√
Λ2

2 + (1−Λ2
2)

η2

‖z‖2

)
‖z‖ . (5.91)

We consider the term η2/‖z‖2. By definition, η2 ≤ ‖z‖2, however, if z is not collinear
with v, then η2 < ‖z‖2. Thus, the quotient will be smaller than one, η2/‖z‖2 < 1.
Further, if the quotient is very small, i.e. η2/‖z‖2 � 1 the estimate can be written as

‖z‖ . c
1−Λ2

. (5.92)

The second largest eigenvalue of H−1 can be calculated from the second smallest eigen-
value of K∗K, denoted by λ2, and Λ2 = 1

1+τλ2
. Substituting the constant

c =
τ2λ2

max
1 + τλmax

(‖x‖+ c1), (5.93)

estimate (5.92) reads in terms of λ2

‖z‖ = ‖x− x̃‖ . τ
λ2

max
λ2

1 + τλ2

1 + τλmax
(‖x‖+ c1). (5.94)
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This calculation can be repeated with the same arguments for larger eigenvalues than
λ2. Let z be the partition of the eigenvectors vi, where ‖vi‖ = 1:

z = ∑
i

ηivi. (5.95)

If the first η1, . . . , ηk−1 are all very small, i.e. the part of z in direction of vi, with i =

1, . . . , k− 1, is small, then estimate (5.94) can be written in terms of λk:

‖x− x̃‖ . τ
λ2

max
λk

1 + τλk

1 + τλmax

(
‖x‖+ ‖b‖

λmax

)
. (5.96)

However, for which k this estimate holds, depends on (x− x̃).
Further refinements depend on the eigenvalues and eigenvectors of the matrix, and
therefore require further knowledge of the eigenvalues of the matrix K∗K. We will ana-
lyze this estimate of the fixed points for the motion segmentation model in chapter 6.

The result of this section is summarized in the following proposition:

Proposition 5.10. Let x∗ be a fixed point of the exact implicit proximal method (5.21), and
let x̃∗ be a fixed point of the inexact implicit proximal method (5.55). Suppose there exists an
ε > 0 and a decomposition x− x̃ = v + w, where v ∈ ker(K∗K), and w⊥ ker(K∗K), such
that ‖v‖ < ‖x̃− x‖ − ε for all τ, then

‖x− x̃‖ = O(τ), as τ → 0. (5.97)

5.4 ADMM with Implicit Update

The implicit proximal gradient method can be included into the update step of dif-
ferent splitting methods. Here we replace the x-update step of the ADMM by the new
method, using a more general formulation of the method, where the differentiable parts
of the objective function are split into stiff and non-stiff parts. We again consider the
subproblem for the minimization of the augmented Lagrangian with respect to x, (4.74):

min
x

G(x) +
σ

2
‖Kx− z + y‖2

Y .

We define G = G1 + G2, where G2 is differentiable and ∇G2 is non-stiff, and G1 is
non-differentiable. The problem now reads:

min
x

G1(x) + G2(x) +
σ

2
‖Kx− z + y‖2

Y . (5.98)

We split2 the (sub-)gradient into stiff, non-stiff and non differentiable terms for the im-
plicit proximal algorithm from equation (5.21):

∂G1(x)︸ ︷︷ ︸
non-diff.

+ σK∗Kx︸ ︷︷ ︸
stiff

+ σK∗(−z + y) +∇G2(x)︸ ︷︷ ︸
non-stiff

, (5.99)

2Before this step, we have to ensure that the requirements of proposition 4.19 are fulfilled.

64



5.4. ADMM WITH IMPLICIT UPDATE

which can be written as

∂
(

G1(x) +
σ

2
‖Kx‖2

Y

)
+ σK∗(−z + y) +∇G2(x). (5.100)

The resulting update step reads

xk+1 =
(

I + τ∂(G1 +
σ

2
‖K(·)‖2

Y )
)−1

(xk − τ(σK∗(yk − zk+1) +∇G2(xk))) (5.101)

= prox
τ(G1+

σ
2 ‖K(·)‖

2
Y ))

(xk − τ(σK∗(yk − zk+1) +∇G2(xk))) (5.102)

= proxτF̂ (xk − τ(σK∗(yk − zk+1) +∇G2(xk))), (5.103)

where F̂(x) = G1(x) + σ
2‖Kx‖2

Y . In terms of the scaled proximal operator for function
G1, we obtain the following algorithm

Algorithm 10 implicit ADMM

1. choose a step size τ > 0, an augmentation parameter σ > 0, and an initial point
(x0, y0) ∈ X ×Y , z0 = Kx0 ∈ Y .

2. iterate for k = 0, 1, . . .

xk+1 = prox(I+τσK∗K)
τG1

(
(I + τσK∗K)−1

(
xk − τ(σK∗(yk − zk) +∇G2(xk))

))
(5.104)

zk+1 = proxσ−1F (Kxk+1 + yk) (5.105)

yk+1 = yk + Kxk+1 − zk+1 (5.106)

Note that again, since we treat the operator K∗K implicitly, there is no major restriction
on the step sizes τ and the penalizing parameter σ in order to guarantee convergence.

Convergence. The update step with the scaled proximal operator in (5.104) is exact,
thus the convergence results given in Theorem 4.43 hold for the fully implicit ADMM.
If the scaled proximal operator cannot be evaluated explicitly, an approximation has to
be used. The convergence results for the ADMM state, that the ADMM also converges
for suitable inexact minimization in the update steps, cf. [Boyd et al., 2011].

Inexact Convergence. Convergence to the same fixed point with inexact minimiza-
tion requires, that the sum of the errors between the exact and inexact iterates for a
fixed step size τ is finite, cf. [Eckstein and Bertsekas, 1992]. These requirements are
similar to those cited in section 5.3.2, and we have already seen, that one cannot expect
the algorithm to converge to the same fixed point as the exact iteration. The implicit
ADMM with an inexact update is given in algorithm 11.
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Algorithm 11 inexact implicit ADMM

1. choose a sequence of step sizes τk > 0 or a fixed step size τ > 0, an augmentation
parameter σ > 0, and an initial point (x0, y0) ∈ X ×Y , z0 = Kx0 ∈ Y.

2. iterate for k = 0, 1, . . .

xk+1 = proxτkG1

(
(I + τkσK∗K)−1

(
xk − τk(σK∗(yk − zk) +∇G2(xk))

))
(5.107)

zk+1 = proxσ−1F (Kxk+1 + yk) (5.108)

yk+1 = yk + Kxk+1 − zk+1 (5.109)

As shown in section 5.3, a fixed point of the inexact iteration exists, to which the al-
gorithm will converge. In chapter 6, we will see, that for larger step sizes τ, the ap-
proximated fixed point x̃ will still give reasonable results for the motion segmentation
example. But due to the approximation error growing with the step size τ, the values
for τ and σ will at some point be restricted by accuracy requirements.
However, an adaptive step size strategy can be chosen, where τk decreases during the
iteration. A sequence τk, where for small k the step size τk is large, and, once the itera-
tion starts to converge, τk decreases, could have the advantage of fast convergence, and
its final solution could be close to the fixed point of the exact iteration.
Further, the feasibility of the implicit proximal method will depend on whether the
resulting linear systems involving the operator K∗K will be efficiently solvable. For total
variation regularized problems this is true, because the linear systems can be solved
through a fast Fourier transform.

66



6 Numerical Results and Evaluation

In this chapter, we apply the different algorithms and variations, presented in the pre-
vious chapters, to the motion segmentation problem and compare performance, with
respect to speed and robustness.
In the first part, we discuss the existence of minimizers and how the presented meth-
ods are applicable on the motion segmentation models given in chapter 3. The tested
algorithms are the primal-dual algorithm, the ADMM with Gauss–Seidel update and
the new implicit ADMM. Also, implementational details of the different algorithms are
given, and a fast method to solve the linear system arising from the implicit step is
provided.
Further, we analyze performance of the different algorithms on the two-label model
in comparison to each other, considering the theory derived in chapters 4 and 5. We
examine the influence of different step sizes on the performance of the implicit ADMM.
In the end, we show the performance on the multi label model, since it is based directly
on the two-label model.
Finally, we compare the primal-dual algorithm with the implicit ADMM on the inpaint-
ing and the denoising model.

6.1 Algorithms Applied to Motion Segmentation

We now apply the algorithms from chapters 4 and 5 to the two-label motion segmenta-
tion model from equation (3.3).
The labeling function is denoted by u : Ω→ [0, 1] and the two motion vectors are called
v = (v1, v2). The operator K from chapters 4 and 5 is given by a discrete approximation
of the gradient operator, with ∇, and the adjoint, K∗, is given by a discrete approxima-
tion of the divergence operator, − div, cf. section 6.1.4. The functional F : Y → [0, ∞]

together with the operator K defines the total variation regularization of the labeling
function u,

F(Ku) =
∫

Ω
‖∇u(x)‖2 dx. (6.1)

The functional G : X → (−∞, ∞] represents the data term penalizing the squared
optical flow constraint:

G(u) = µ
∫

Ω
〈∇ f (x, t), v1〉2 u(x) + 〈∇ f (x, t), v2〉2

(
1− u(x)

)
dx, (6.2)
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The objective functional is given by

J(u, v) =
∫

Ω
‖∇u(x)‖2 + µ

(
〈∇ f (x, t), v1〉2 u(x) + 〈∇ f (x, t), v2〉2

(
1− u(x)

))
dx,

(6.3)
and the minimization problem is given by

min
u(x)∈[0,1],v

J(u, v). (6.4)

The constraint u(x) ∈ [0, 1] is included through the indicator function δC on the convex
hypercube C = [0, 1]|Ω|, as given in section 4.2.2:

δC(u) =

{
0 if u ∈ [0, 1]|Ω|

∞ otherwise.
(6.5)

Thus, the unconstrained minimization problem reads

min
u,v

J(u, v) + δC(u). (6.6)

The optimization problem is solved by alternating minimization with respect to u and v,
i.e. vn is fixed and un = arg minu J(u, vn) is solved. Afterwards vn+1 = arg minv J(un, v)
is computed while un is fixed. The minimizer of minv J(un, v) (and un fixed) is explicitly
given by solving two 2× 2-systems (cf. section 6.1.1) and since J(v, un) is convex in v,
the solution is the global minimizer with respect to v for a fixed un. The minimization
with respect to u, given in section 6.1.2, is carried out through the optimization algo-
rithms from chapters 4 and 5.
Since the minimization with respect to u for fixed v is sometimes also carried out by an
iterative algorithm, we call the alternating minimization between u and v the outer iter-
ation denoted with indices n, while the iteration for solving arg minu Jv(u) with fixed v
is called the inner iteration, denoted with indices k.

6.1.1 Motion Vectors

While minimizing Ju(v) := J(un, v) with respect to v for fixed un the terms indepen-
dent of v can be omitted, since the value of the objective function is irrelevant, and the
resulting objective functional is given by

Ju(v) =
∫

Ω
µ〈∇ f (x, t), v1〉2un(x) + µ〈∇ f (x, t), v2〉2)(1− un(x)) dx. (6.7)

The unique minimizer of Ju(v) with respect to v = (v1, v2) ∈ R2 × R2 is calculated
through

vn+1 = arg min
v

Ju(v). (6.8)
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The solution of (6.8) is given by the linear system

Auv̂1 = bu (6.9)

(A− Au)v̂2 = b− bu, (6.10)

yielding v1 = (v̂1, 1)T and v2 = (v̂2, 1)T, where

A =

 ∫
Ω ( fx1)

2 ∫
Ω fx1 fx2∫

Ω fx2 fx1

∫
Ω (Ix2)

2

 , b =

 ∫Ω fx1 ft∫
Ω fx2 ft


and

Au =

 ∫Ω u ( fx1)
2 ∫

Ω u fx1 fx2∫
Ω u fx2 fx1

∫
Ω u ( fx2)

2

 , bu =

 ∫Ω u fx1 ft∫
Ω u fx2 ft

 ,

where fx1 , fx2 , ft denote the partial derivatives of the image, ∂x1 f , ∂x2 f , ∂t f , respectively.
The linear system can be solved analytically and can be computed very fast. For further
speedup, the matrix A and vector b can be precalculated and the matrix Au and bu can
be calculated from previous steps with increments du = un+1 − un:

Aun+1 = Aun + Adu. (6.11)

Since the increments du will become sparse during the iteration, this can speed up the
calculation.

6.1.2 Labeling Function

For the computation of arg minu J(u, vn), the constant term can also be omitted and the
objective functional reduces to

Jv(u) =
∫

Ω
‖∇u(x)‖2 + µ

(
〈∇ f (x, t), (vn)1〉2 − 〈∇ f (x, t), (vn)2〉2

)
u(x) dx + δC(u)

(6.12)

=
∫

Ω
‖∇u(x)‖2 + µs(vn)u(x) dx + δC(u), (6.13)

where s(vn) = 〈∇ f (x, t), (vn)1〉2 − 〈∇ f (x, t), (vn)2〉2 is the optical flow error. In the
following, the optical flow error for a fixed vn is denoted by sv := s(vn).

Requirements. First, we check whether the requirements of the theory presented in
chapter 4 are fulfilled. Therefore, we have to check, if the functionals F and G are
proper, convex and lower semicontinuous, if the condition in Proposition 4.19,
0 ∈ sri(dom G− K(dom F)), is satisfied, and if a minimizer of Jv(u) exists.
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The functional term corresponding to F ◦ K : Y → [0, ∞] is given by the total variation
regularization and G : X → (−∞, ∞] is the data term. The Hilbert spaces X ,Y can
be associated with RN and R2N respectively, with the corresponding Euclidean scalar
product and norm ‖·‖X and ‖·‖Y . The pixelwise Euclidean norm is denoted by ‖·‖2.
As given in chapter 2, the total variation regularization is convex, proper and lower
semicontinuous. The operator K : X → Y , defined through a discrete approximation
of the gradient, is a bounded linear operator. The function G(u) consists of two parts,
the linear term µsvu(x), and the indicator function δC(u). Both terms are clearly convex,
proper and lower semicontinuous.
We have

F(u) = ‖u‖Y ⇒ dom(F) = Y = R2N (6.14)

G(u) =
∫

Ω
µsvu dx + δC(u) ⇒ dom(G) = C ⊂ RN . (6.15)

The domain of F is the whole space R2N , and the domain of G is not empty, therefore
dom F − K(dom G)) = R2N , hence 0 ∈ int(dom F− K(dom G)) and thus Proposition
4.20 yields 0 ∈ sri(dom F− K(dom G)).
Further, Jv(u) should have a minimizer on the hypercube C = [0, 1]|Ω|. Since C is a
closed, convex and bounded subset of X , with Theorem 4.4, Jv(u) has a minimizer on
C.

Thus, all requirements are fulfilled, and we can apply the primal-dual algorithm, the
ADMM with a Gauss–Seidel update and the implicit ADMM to the motion segmenta-
tion model.

The primal-dual algorithm for functional Jv. In order to apply the primal-dual algo-
rithm to the motion segmentation model, we use the primal-dual formulation

min
u

max
w
〈∇u, w〉Y + G(u)− F∗(w), (6.16)

with F(u) =
∫

Ω ‖∇u(x)‖2 dx, thus the convex conjugate F∗ is the indicator function of
the dual norm unit ball. The functional G(u) is given by G(u) =

∫
Ω µsvu(x) dx + δC(u).

The optimality conditions for a saddle point (u∗, w∗) are given by

0 ∈ ∇u∗ − ∂F∗(w∗) (6.17)

0 ∈ ∂δC(u∗) + µsv + div(w∗), (6.18)

where the subgradient of G(u) is given by ∂G(u) = ∂δC(u) + µsv. The update for w
is performed by the proximal gradient ascent method, and the update for u is calcu-
lated through the proximal gradient descent method. The primal-dual algorithm with
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extrapolation step from algorithm 7 is given by

wk+1 = proxσF∗ (wk + σ∇ūk) (6.19)

uk+1 = proxτδC
(uk + τdiv(wk+1)− τµsv) (6.20)

ūk+1 = uk+1 + θ(uk+1 − uk), (6.21)

for step sizes τ, σ > 0 and extrapolation parameter θ ∈ [0, 1].
The update of w can be easily computed through a so called shrinkage or soft threshold-
ing, Sλ : Y → Y with parameter λ, cf. [Esser, 2009]. Consider the problem

Sλ(z) = proxλ‖·‖Y
(z) = arg min

w

∫
Ω

(
‖w‖2 +

1
2λ
‖w− z‖2

)2
, (6.22)

then the solution is given by

Sλ(z) =

{
(‖z‖2 − λ) z

‖z‖2
if ‖z‖2 > λ

0 otherwise.
(6.23)

This can be written as
Sλ(z) = max{0, ‖z‖2 − λ} z

‖z‖2
, (6.24)

and, such that there are no issues with ‖z‖2 = 0, we can rewrite it as

Sλ(z) =
(

1−min
{

1,
λ

‖z‖2

})
z =

(
1− 1

max{1, 1
λ ‖z‖2}

)
z, (6.25)

which has implementational advantages over (6.24). With Moreau’s identity given in
equation 4.34, we can derive the shrinkage formula for (6.19) and thus the proximal
operator for the conjugate function F∗:

proxσF∗{wk + σ∇ūk︸ ︷︷ ︸
z

} = z− σprox 1
σ F

( z
σ

)
= z− σ

(
1− 1

max{1, σ
∥∥ z

σ

∥∥
2}

)
z
σ

(6.26)

=
wk + σ∇ūk

max{1, ‖wk + σ∇ūk‖2}
. (6.27)

In the update step of u, the proximal operator for the indicator function results in the
projection PC , which is defined by

PC(u) = argmin
û∈C

‖u− û‖X , (6.28)

as described in section 4.2.2. The step size restriction can be estimated with τσ <

2/‖K∗K‖ = 1/4, where ‖K∗K‖ = 8 can be calculated in the experiments, or by an
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eigenvalue analysis. With these instantiations the primal-dual algorithm 7 now more
concretely reads as

Algorithm 12 primal-dual (PD) for motion segmentation

1. choose step sizes τ, σ > 0, with τσ < 1/4, an extrapolation parameter θ ∈ [0, 1],
an initial point (u0, w0) ∈ X ×Y , and set ū0 = u0.

2. iterate for k = 0, 1, . . .

wk+1 =
wk + σ∇ūk

max(1, ‖wk + σ∇ūk‖2)
(6.29)

uk+1 = PC(uk + τdiv(wk+1)− τµsv) (6.30)

ūk+1 = uk+1 + θ(uk+1 − uk), (6.31)

Since the linearized ADMM, which uses the proximal gradient method in the u-update,
is equivalent to the primal-dual algorithm, if the updates for u and d are exchanged, cf.
section 4.3.3, we do not give this algorithm here explicitly for the motion segmentation
model.

Remark 6.1. For the motion segmentation application, changing the update ordering in
the ADMM slows down convergence a little bit. Thus, in the experiments, we stick to
the update ordering, where u is updated first and afterwards d and b.

The ADMM with Gauss–Seidel for functional Jv. In the ADMM, the new variable
d := ∇u is introduced together with the equality constraint ∇u− d = 0. The quadratic
augmented Lagrangian (scaled form) for the motion segmentation problem reads

L(u, d, b) =
∫

Ω

(
‖d‖2 + µsvu +

σ

2
‖∇u− d + b‖2

2

)
, (6.32)

where b is the Lagrangian multiplier. The associated optimization problem is given by

max
b

min
u∈[0,1]|Ω|, d

L(u, d, b). (6.33)

The ADMM for the motion segmentation model is given by

uk+1 = arg min
u∈[0,1]|Ω|

∫
Ω

(
µsvu +

σ

2
‖∇u + bk − dk‖2

2

)
(6.34)

dk+1 = prox 1
σ F (∇uk+1 + bk) (6.35)

bk+1 = bk +∇uk+1 − dk+1, (6.36)
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where F(d) =
∫

Ω ‖d‖2. The proximal operator of functional F can be computed through
the shrinkage formula given in (6.25), which yields a well-defined update for d, even if
‖∇uk+1 + bk‖2 = 0:

dk+1 =

(
1− 1

max(1, σ‖∇uk+1 + bk‖2)

)
(∇uk+1 + bk). (6.37)

The gradient ascent step in the dual variable b can also be computed easily. As already
seen in chapter 4, the update with respect to u is more complicated. A traditional vari-
ant of the ADMM uses a Gauss–Seidel method for the update of u, as done in [Goldstein
et al., 2010] for the segmentation problem.
The optimal u in the unconstrained case must satisfy the Euler-Lagrange equation

∆uk+1 =
µ

σ
sv + div(dk − bk), (6.38)

where ∆ = −K∗K is the Laplacian matrix. An approximate solution of this system can
be obtained by one step of the Gauss–Seidel iteration for the unconstrained problem.
To enforce the constraint u ∈ [0, 1]|Ω|, the iterates uk are projected onto C = [0, 1]|Ω|

through an orthogonal projection after the Gauss–Seidel iteration. In matrix form, the
scheme then reads

Algorithm 13 ADMM with Gauss–Seidel for motion segmentation

1. choose penalty parameter σ > 0 and initial points u0 ∈ X , d0, b0 ∈ Y , where
b0 = 0.

2. iterate for k = 0, 1, . . .

uk+1 = PC
[

Lx
−1
(

σ−1µsv + div(dk − bk)− Lquk

)]
(6.39)

dk+1 =

(
1− 1

max(1, σ‖∇uk+1 + bk‖2)

)
(∇uk+1 + bk) (6.40)

bk+1 = bk +∇uk+1 − dk+1, (6.41)

with Lx and Lq are the lower and upper triangular matrices of the Laplacian ma-
trix ∆, such that ∆ = Lx + Lq (the diagonal is included in Lx).

Sometimes more than one Gauss–Seidel sweep yields faster convergence. Then, some
iterations of the Gauss–Seidel algorithm are calculated before the projection onto [0, 1]|Ω|.
Afterwards, b and d are updated. We study this in the experiments.

The implicit ADMM for the functional Jv. We now apply our ideas from chapter 5
to the motion segmentation problem. As for the ADMM with Gauss–Seidel iterations,
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the augmented Lagrangian is deduced from the substitution of the variable d = ∇u
(splitting). As done for the primal-dual algorithm, we model the constraint u ∈ [0, 1]|Ω|

through the indicator function δC(u), with C = [0, 1]|Ω|. The augmented Lagrangian
then reads

L(u, d, b) =
∫

Ω

(
‖d‖2 + µsvu

)
+ δC(u) +

∫
Ω

(σ

2
‖∇u− d + b‖2

2

)
, (6.42)

where b is the Lagrangian multiplier. The associated optimization problem is given by

max
b

min
u, d
L(u, d, b). (6.43)

The ADMM is then given by

uk+1 = arg min
u

∫
Ω

(
µsvu

)
+ δC(u) +

∫
Ω

(σ

2
‖∇u + bk − dk‖2

2

)
(6.44)

dk+1 = ∇uk+1 + bk −
1
σ

proxσF∗ (σ(∇uk+1 + bk)) (6.45)

bk+1 = bk +∇uk+1 − dk+1. (6.46)

As for the ADMM with Gauss-Seidel update, the update for d is performed as given in
equation (6.37). The implicit update step of u, given in equation (5.104), can be written
in terms of the scaled proximal operator for δC(u), or in terms of the proximal operator
for function Ĝ(u) = δC(u) + σ

2

∫
Ω ‖∇u‖2

2 dx. The update is given as follows:

uk+1 = proxτĜ
{ =:p︷ ︸︸ ︷

uk − τ[µsv − σ div(bk − dk)]
}

(6.47)

= arg min
u

(
δC(u) +

λ

2
‖∇u‖2

Y +
‖u− p‖2

X
2τ

)
(6.48)

= arg min
u∈C

(
λ

2
‖∇u‖2

Y +
‖u− p‖2

X
2τ

)
(6.49)

= arg min
u∈C

1
2τ

∥∥∥u− (I − τσ∆)−1 p
∥∥∥2

(I−τσ∆)
(6.50)

= P (I−τσ∆)
C

[
(I − τσ∆)−1 p

]
(6.51)

= P (I−τσ∆)
C

[
(I − τσ∆)−1

(
uk + τλ div(bk − dk)− τµsv

)]
(6.52)

= prox(I−τσ∆)
τδC

(
(I − τσ∆)−1

(
uk + τλ div(bk − dk)− τµsv

))
, (6.53)

where ∆ is the discrete approximation of the Laplacian operator derived from −∆ =

−div ·∇ = K∗K. The implicit ADMM yields a projection using the norm induced by
the matrix I − τσ∆ onto set C. This projection is much more complicated to compute
than the orthogonal one using the norm induced by the identity matrix. Thus, we use
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the approximation described in chapter 5.3 yielding the orthogonal projection for the
motion segmentation example. The algorithm 10 then reads

Algorithm 14 inexact implicit ADMM for motion segmentation

1. choose penalty parameter σ > 0, step size τ > 0 and initial points u0 ∈ X ,
d0, b0 ∈ Y .

2. iterate for k = 0, 1, . . .

uk+1 = PC [(I − τσ∆)−1(uk + τσdiv(bk − dk)− τµsv)] (6.54)

dk+1 =

(
1− 1

max(1, σ‖∇uk+1 + bk‖2)

)
(∇uk+1 + bk) (6.55)

bk+1 = bk +∇uk+1 − dk+1. (6.56)

The update of u requires the solution of a linear system, which can be demanding if one
aims at real-time application. Here, if we assume periodic boundary conditions, the
operator I − τσ∆ has a circular structure and the linear system can be solved efficiently
via the Fast Fourier Transform (FFT), which is described in detail in the next section.
In section 5.3, we predicted, that the error between the exact minimizer and the ap-
proximate solution will increase with the step size τ. We will analyze these differences
numerically in the next section and compare the results to the theory given in 5.3. Al-
though the accuracy of the segmentation decreases with larger step sizes τσ, we still
obtain reasonable segmentations also with large step sizes.

Remark 6.2. One might also try to evaluate the projection with respect to the matrix
I − τσ∆ explicitly. This yields very expensive and difficult calculations, or again an
iterative algorithm. During experiments, it turned out, that the additional cost for cal-
culating the exact projection was too high for a real-time application and did not yield
better results. Thus, in this work, we do not follow this trail any further.

The proximal Newton-type method for functional Jv. As suggested in section 4.3,
we use the proximal Newton-type method for the update step with respect to u in the
ADMM, and include the constraint [0, 1]|Ω| through the indicator function δ[0,1]|Ω| . Then,
the functional F and the smooth functional G are given by

uk+1 = arg min
u

δ[0,1]|Ω|(u)︸ ︷︷ ︸
=:F(u)

+
∫

Ω
µsvu +

σ

2
‖∇u + bk − dk‖2

2︸ ︷︷ ︸
=:G(u)

. (6.57)
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The updates for b and d are handled as in the ADMM with Gauss–Seidel update. The
gradient and Hessian of G are given by

∇uG(uk) = µsv − σ∆uk + σdiv(dk − bk)) (6.58)

H = −σ∆. (6.59)

The proximal Newton-type update step reads:

uk+1 = P−σ∆
C

[
∆−1

(µ

σ
sv + div(dk − bk)

)]
(6.60)

If the projection P−σ∆
C , which is difficult to solve, is approximated as for the implicit

ADMM by PC , and the inner linear system is solved by a Gauss–Seidel iteration, the
proximal Newton-type update step is equivalent to the ADMM with Gauss–Seidel up-
date.

Remark 6.3. Periodic boundary conditions should not be applied in this case, since the
linear system will become singular.

6.1.3 Fast Solution of the Linear System

A fast solution of the linear system, arising from the implicit update step in equation
(6.54) is important for the efficiency of the implicit ADMM. Fortunately, if we choose
periodic boundary conditions, the operator (I − τσ∆) is a circulant matrix and can be
diagonalized by a fast Fourier transform, and solved efficiently.
For a circulant matrix the multiplication with a vector is equivalent to a convolution
with the first column of the Matrix

Ax = α ? x, α = A(1 : m , 1), (6.61)

with the circulant matrix

A =



a b . . . c
c a b . . .

c a b . . .

. . .
b . . . c a


In the Fourier space a convolution is a multiplication of the Fourier transforms

F{α ? x} = F{α}F{x}. (6.62)

In this part, u is assumed to have periodic boundary conditions in every dimension.
The discrete Laplacian is given by

∆u = Lxu + uLy, (6.63)
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with u ∈ Rm×n and the matrices Lx ∈ Rm×m and Ly ∈ Rn×n, which both have the same
circular structure:

Lx =



−2 1 0 . . . 0 1
1 −2 1 0 . . . 0

. . .

1 0 . . . 0 1 −2


∈ Rm×m. (6.64)

Consider the problem, equivalent to the update step in u in equation (6.54) in algorithm
14 without the projection,

(I − τσ∆)uk+1 = B, (6.65)

where B ∈ Rm×n and uk+1 ∈ Rm×n. Let lx = Lx(1 : m , 1) be the first column of Lx,
and ly = Ly(1 , 1 : n) is the first row of Ly. A two-dimensional Fourier transform for
the equation reads

Fx{Fy{B}} = Fx{Fy{uk+1 − τ(Lxuk+1 + uk+1Ly)}} (6.66)

= Fx{Fy{uk+1}} − τσFx{Fy{(lx ? uk+1 + uk+1 ? ly)}} (6.67)

= Fx{Fy{uk+1}}[1− τσ(Fx{lx}+Fy{ly})], (6.68)

where lx ? uk+1 is the convolution of lx with each column of uk+1, and uk+1 ? ly is the
convolution of each row of uk+1 with ly. The solution uk+1 ∈ Rm×n for the linear system
in (6.54) is given by the componentwise division

uk+1 = F−1
x

{
F−1

y

{ Fx{Fy{B}}
1− τσ(Fx{lx}+Fy{ly})

}}
, (6.69)

with B = uk + τσdiv(bk − dk)− τµsv.

Remark 6.4. The linear system can be solved in a similar way with a discrete cosine
transform in case Neumann boundary conditions are applied.

6.1.4 Implementational Details

Discretization. The images are given as a pixel grid, thus this grid is used for dis-
cretization. The gradient and the divergence operator are approximated with finite dif-
ferences on the pixel grid. The mesh size, i.e. the distance between two pixels, is chosen
to be one. As already mentioned in the previous section, the operator K = ∇ and its
adjoint K∗ = −div. Thus, it would be convenient, if the discrete approximations fulfill

〈∇u, w〉R2N = − 〈u, div w〉RN , (6.70)
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which holds if the discrete gradient and divergence are chosen as follows. The gradi-
ent of the labeling function u is calculated through forward differences in the spatial
directions x and y with homogeneous Dirichlet boundary conditions:

∇xu(x, y) =

{
u(x + 1, y)− u(x, y) if x = 1, . . . , m− 1

0− u(x, y) if x = m

}
, y = 1, . . . , n (6.71)

∇yu(x, y) =

{
u(x, y + 1)− u(x, y) if y = 1, . . . , n− 1

0− u(x, y) if y = n

}
, x = 1, . . . , m (6.72)

The divergence operator is calculated through backward differences:

div
(

u1

u2

)
= ∇∗xu1 +∇∗yu2, (6.73)

with

∇∗xu1(x, y) =

{
u1(x, y)− u1(x− 1, y) if x = 2, . . . , m

u1(x, y) if x = 1

}
, y = 1, . . . , n (6.74)

∇∗yu2(x, y) =

{
u2(x, y)− u2(x, y− 1) if y = 2, . . . , n

u2(x, y) if y = 1

}
, x = 1, . . . , m (6.75)

The discrete approximation of the Laplacian matrix is given by K∗K = −div ·∇ = −∆.

Remark 6.5. The choice of the discretization is crucial for the validity of equation (6.70).
A proof of (6.70) for the given discretization can be found in [Bredies and Lorenz, 2011].

Orthogonal Projection. The orthogonal projection P[0,1]|Ω| onto the set [0, 1]|Ω|, with
|Ω| = N is realized component wise

P[0,1]N (u(xi)) = max{min{u(xi), 1}, 0}, i = 1, . . . , N. (6.76)

Initialization. There are different variants of initializing the algorithms. Since the ob-
jective functional is convex in u, the algorithm can be initialized with a randomly cho-
sen u and will converge to a global minimizer. However, the theory does not cover the
outer iteration, which alternatingly minimizes the motion vectors and the segmenta-
tion. An initialization closer to the segmentation result might yield faster convergence
for the motion vectors. One possibility is to initialize the algorithms with a smoothed
version of the difference of two consecutive images u0 = Kρ ? | f (x, t + 1) − f (x, t)|,
where Kρ is a Gaussian kernel with standard deviation ρ and ? denotes the convo-
lution. This initialization for the segmentation u will at least cover the edges of the
moving objects. This may lead to a better approximation of the motion vectors in the
first loop and thus, may lead to a faster convergence.
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Figure 6.1: Comparison of convergence of different algorithms with fixed precalculated
motion vectors v on the “cars6” sequence. The relative error of the objective
function, ‖J − J∗‖ / ‖J∗‖, is plotted against the iterations (left) and runtime
in seconds (right).

For the ADMM, the second primal variable is always initialized with the constraint
d = ∇u. The dual variable is initialized by b = 0, but other initializations are also pos-
sible, e.g. b = 1. For the primal-dual algorithm, the dual variable w is initialized with
w = ∇u and ū = u.

Stopping Criterion. As a stopping criterion for all algorithms throughout the numer-
ical experiments, the pixelwise error of the iterates ‖uk − uk−1‖X /N < tol is tested,
where N is the total number of pixels in the image domain Ω and tol is a predefined
tolerance.

6.2 Performance Analysis

In this section, the performance of the primal-dual algorithm, the ADMM with a Gauss–
Seidel update and the implicit ADMM are measured by the value of the objective func-
tional the algorithm achieved at the end. We assume, that similar functional values
belong to similar good segmentation results.
The performance of the algorithms is first analyzed with fixed motion vectors, since the
convergence results do not cover the alternating minimization with respect to u and
v. We expect, that the convergence with fixed motion vectors will be as predicted in
theory.
All convergence results in this section are compared on the “cars6” sequence from the
Berkeley segmentation dataset from [Brox and Malik, 2010]. In the segmentation re-
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Figure 6.2: Comparison of convergence of primal-dual algorithms with fixed precalcu-
lated motion vectors v for different step sizes τ on the “cars6” sequence. The
objective function value is plotted against the iterations (left) and runtime in
seconds (right).

sults, further sequences from this dataset, and the self-made sequences “bird”, “plane”
and “skiing” are used.
In order to compare the different algorithms, the weighting parameters are set to µ = 2
and σ = 2 in the following experiments for all algorithms. Further, all algorithms are
implemented in Matlab and run on a 2.2 GHz Intel Core i7.

6.2.1 Convergence of Segmentation for Fixed Motion Vectors

For the convergence results with fixed motion vectors, the motion vectors from previ-
ously calculated motion segmentation results are used. The motion vectors are fixed
and the algorithms only calculate the segmentations u. The convergence results for
the primal-dual algorithm (PD) with step size τ = 1/12, θ = 1, the ADMM with 5
Gauss–Seidel sweeps (GS) and the implicit ADMM (iG) with τ ∈ {2, 10} are shown in
Figure 6.1, where the relative errors of the objective functional, ‖J − J∗‖/‖J∗‖, is plotted
against the iterations (left) and the runtime (right). For all algorithms σ = 2 is fixed,
otherwise the functional values would vary for different σ. Due to its small step size τ,
the primal-dual algorithm needs a lot of steps to converge. Although each iteration can
be computed efficiently and fast, the overall runtime is longer compared to the other
methods. The ADMM with Gauss–Seidel update needs only a few iterations, but each
iteration needs more computation time. The implicit ADMM takes around 40 iterations
with τ = 2 and only half of that for τ = 10, while each iteration can be computed suffi-
ciently fast. Further, for all methods a linear convergence can be observed in Figure 6.1.

80



6.2. PERFORMANCE ANALYSIS

0 10 20 30 40

10−5

10−3

10−1

101

iterations

re
la

ti
ve

er
ro

r:
ob

je
ct

iv
e

fu
nc

ti
on

0 5 · 10−2 0.1 0.15 0.2 0.25

10−5

10−3

10−1

101

runtime [s]

re
la

ti
ve

er
ro

r:
ob

je
ct

iv
e

fu
nc

ti
on

τ = 2
τ = 5
τ = 10
τ = 20
τ = 50

Figure 6.3: Comparison of convergence of stable ADMM with fixed precalculated mo-
tion vectors v for different step sizes τ on the “cars6” sequence. The relative
error of the objective function is plotted against the iterations (left) and run-
time in seconds (right).

The algorithms are also tested individually with different step sizes. The primal-dual
algorithm is analyzed for different step sizes τ ∈ {1/16, 1/12, 1/10, 1/8}, for σ = 2
and θ = 1. In Figure 6.2, the objective function value is plotted against the number of
iterations and runtime. We can observe, that for τ = 1/10, the algorithm converges,
but only after many iterations, and for τ = 1/8 an oscillatory, non-convergent behavior
can be observed. Therefore, in this example, the effect of stiffness, described in section
5.1.3, can be observed nicely. In order to prevent the iterates from oscillating, the step
size has to be reduced, but then the algorithm takes many iterations to converge. Even
though each update in the primal-dual algorithm can be computed very fast, the overall
runtime cannot be reduced.
The convergence of the inexact implicit ADMM, given in algorithm 14, is analyzed for
different step sizes τ ∈ {2, 5, 10, 20, 50}. The algorithm has no step size restriction,
however, as theoretically discussed in section 5.3, the error of the approximation in-
creases with the step size τ. In Figure 6.3, the relative error of the objective function,
‖J − J∗‖/‖J∗‖, is again plotted against iterations and runtime. We can observe, that for
larger step sizes, the algorithm takes less iterations and, since the runtime only depends
on the number of iterations, the runtime decreases with increasing τ. However, analyz-
ing the minimum values of the objective functional achieved by the algorithm, it can be
observed, that the minima also grow with τ, but only barely. We will analyze this error
yielded by larger step sizes in more detail in the next sections. It can also be observed
in Figure 6.3 that near the optimal solution for larger step sizes τ, the algorithm does
not converge directly, but jumps back a few times.
As mentioned in section 4.3, different numbers of Gauss–Seidel sweeps on the segmen-
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Figure 6.4: Comparison of convergence of ADMM with Gauss–Seidel update with fixed
precalculated motion vectors v with different numbers of Gauss–Seidel
sweeps in each iteration on the “cars6” sequence. The relative error of the
objective function is plotted against the iterations (left) and runtime in sec-
onds (right).

tation u before updating d and b, can lead to faster convergence. This can be seen in
Figure 6.4. The ADMM with Gauss–Seidel update was tested with only one sweep of
the Gauss–Seidel step, with 5 sweeps, and with 20 sweeps. The number of iterations
decreases by more than a factor of two from 1 to 5 sweeps and also from 5 sweeps to 20
sweeps. However, while the runtime with 5 sweeps decreases significantly in view of
the update with one Gauss–Seidel sweep, the update with 20 sweeps takes longer per
iteration and increases the overall runtime. In this example, the update with 5 Gauss–
Seidel sweeps was the fastest.

6.2.2 Convergence of Segmentation and Motion Vectors

For the convergence of the segmentation u with fixed motion vectors v the algorithms
converge, as shown in the theoretical results. The convergence of the alternating min-
imization scheme between u and v is not covered by the given theory, but we observe
that convergence seems to be given in this case. In Figure 6.5 the convergence results
for the objective functional value of the primal-dual algorithm, the ADMM with five
Gauss–Seidel sweeps and the implicit ADMM with step sizes τ ∈ {2, 20} are shown.
In the lower plot, the convergence of the relative error of the vectors, ‖vk − v∗‖ / ‖v∗‖
is plotted, and in the upper plot the convergence of the objective functional value is
plotted. Again, the algorithms are compared according to the number of iterations (left
plots) and the runtime (right plots). We can observe, that the segmentation starts to
converge only after the motion vectors have converged, i.e. the relative error of the mo-
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Figure 6.5: Comparison of convergence of different algorithms on the “cars6” sequence.
Upper plots: relative error of the objective function value is plotted against
the iterations (left) and runtime (right); Lower plots: relative error of the
motion vectors, ‖v− v∗‖ / ‖v∗‖ is plotted against the iterations (left) and
runtime in seconds (right)

tion vector is near zero. This behavior can be observed for all three algorithms. For the
primal-dual algorithm, the phase until the motion vectors converge takes longest, and
the ADMM with Gauss–Seidel update takes second longest. For the implicit ADMM
with τ = 2, the vectors converge fast, while with τ = 20 the vectors and thus the seg-
mentation converges almost immediately. One can argue that this behavior correlates
with the shape and the smoothness of the iterates of u.
Therefore, we analyze the Fourier transforms of the iterates. In Figure 6.6, some iter-
ates and their frequencies of the implicit ADMM (left) and the primal-dual (right) are
shown. The frequencies are only shown on a 20×20 frequency grid, where the constant
frequency is in the center. Dark color represents a low value and yellow and white
a high value in the frequency plot. The values of iterates are between 0 (blue) and 1
(red), the value 0.5 is shown in green. On the bottom of the figure, the convergence
of the motion vectors is plotted against the iterates and the chosen iterates are high-
lighted with red dots. The first picture in both methods shows the initialization with
the time derivative of the image sequence, | f (x, t + 1) − f (x, t)|. Further iterates are
chosen at similar states of the iteration with the two algorithms. For both methods,
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Figure 6.6: Six iterates and corresponding Fourier transforms of the ADMM with im-
plicit proximal method and primal-dual algorithm on an image pair of the
“cars6” sequence. Only a grid of the largest 21×21 frequencies is shown next
to the iterates, with the constant frequency in the center. The convergence
of the motion vectors is shown on the bottom, where the chosen iterates are
highlighted. Left: implicit ADMM, right: primal-dual. Colors: iterates: blue
= 0, green = 0.5 , red = 1; frequencies: black = 0, white = 2100.84
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the upper three pictures show iterates before the motion vector has converged and the
lower three pictures show iterates after, or during the convergence of the motion vec-
tor. The frequency-values of the iterates of the implicit ADMM are large around the
center, which means that the segmented area in the iterates is large and smooth. Ana-
lyzing the frequencies in the iterates of the primal-dual algorithm, we can observe that
they also gather around the center, but the values are much smaller than the iterates of
the implicit ADMM. Further, the frequency in the center, corresponding to the constant
part of the iterates, is much larger for the implicit ADMM than for the primal-dual al-
gorithm, thus the segmented area is larger. This can also be observed in the plot of the
iterates itself. It seems that the iterates of the primal-dual algorithm converge to the so-
lution from the inside, while the iterates of the implicit ADMM approach the solution
from outside, i.e. the segmentation is growing during the iteration of the primal-dual
algorithm and shrinking during the iteration of the implicit ADMM.

In chapter 2.3, methods for optical flow calculation were given, where local and global
methods are combined, hence a smoothing with a Gaussian kernel was beneficial for
optical flow calculations. According to the aperture problem the estimation of a vector
is better for a large region. Since we have seen in the Fourier plots of the iterates, the
iterates of the implicit ADMM cover a larger area than the iterates of the primal dual,
this might be the reason, why the motion vectors converge faster while iterating with
the implicit ADMM. In Figure 6.6, it can also be observed that in the end of the iteration,
the solution is almost binary.

In Figure 6.7 the motion segmentation results are given for two-label motion segmen-
tation with constant motion vectors in each region. In table 6.1 the corresponding val-
ues for iterations, runtime and functional values are given explicitly for the tested se-
quences using the primal-dual algorithm, the ADMM with Gauss–Seidel update with
different numbers of sweeps and the implicit ADMM for step sizes τ ∈ {2, 20}. All
image sequences are scaled. The best result in each category is printed in bold font.
The implicit ADMM with both step sizes is faster than the primal-dual, and the clas-
sical ADMM (Gauss–Seidel update) for all sequences. Only once, in particular for the
“bird” sequence, the best objective functional value J is produced by the primal dual
algorithm. It can also be seen, that while the runtime decreases for the implicit ADMM
with τ = 20, the functional value increases, i.e. we assume, that the segmentation re-
sults are less accurate than with τ = 2, or by using the other algorithms. This can be
verified in the motion segmentation results in Figure 6.7, where the segmentations are
given. However, this criterion does not hold for all cases, e.g. for the “cars1” sequence,
as a human, we would rate the segmentation produced by the implicit ADMM with
τ = 20 better than the one produced by the primal-dual algorithm, while the objective
functional values are worse. Hence, as predicted in chapter 3, the values of the objec-
tive function produced by the implicit ADMM and a fixed step sizes τ, increase with
the step size τ. A few examples of the corresponding segmentations can be seen in
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primal-dual
algorithm, τ = 0.08

ADMM, Gauss–Seidel
update, 5 sweeps

implicit ADMM,
τ = 2

implicit ADMM,
τ = 20

Figure 6.7: Motion segmentation for different examples. Top to bottom: “cars6”,
“cars1”, “people1”, “bird”, “plane”, “skiing1”. Algorithms with different
step sizes τ, parameters for all examples: σ = 2, µ = 2. Motion vectors are
color coded according to a color wheel: red indicates motion to the right,
blue to the lower left corner, green to the upper left corner. Color intensity
is proportional to the length of the motion vector.
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sequence algorithm τ iterations time [s] J

cars6,
size: 480×640,
scaled: 160×213

primal-dual 1/12 669 3.04 353.4
ADMM (Gauss–Seidel 5) - 181 1.80 351.3
ADMM (Gauss–Seidel 20) - 41 0.98 351.1
implicit ADMM 2 71 0.51 349.8
implicit ADMM 20 29 0.22 360.1

cars1,
size: 480×640,
scaled: 120×160

primal-dual 1/12 305 0.80 1281
ADMM (Gauss–Seidel 5) - 175 1.05 1275
ADMM (Gauss–Seidel 20) - 52 0.74 1295
implicit ADMM 2 58 0.25 1264
implicit ADMM 20 54 0.23 1341

people1,
size: 480×640,
scaled: 160×213

primal-dual 1/12 658 3.02 1077
ADMM (Gauss–Seidel 5) - 54 0.57 1070
ADMM (Gauss–Seidel 20) - 26 0.65 1073
implicit ADMM 2 37 0.27 1070
implicit ADMM 20 19 0.15 1076

bird,
size: 500×801,
scaled: 167×267

primal-dual 1/12 775 5.04 205.5
ADMM (Gauss–Seidel 5) - 131 2.11 200.4
ADMM (Gauss–Seidel 20) - 74 2.54 205.5
implicit ADMM 2 69 0.77 202.7
implicit ADMM 20 17 0.22 223.1

plane,
size: 301×651,
scaled: 151×326

primal-dual 1/12 999 7.10 542.2
ADMM (Gauss–Seidel 5) - 87 1.44 526.4
ADMM (Gauss–Seidel 20) - 45 1.70 528.2
implicit ADMM 2 59 0.75 525.4
implicit ADMM 20 35 0.48 536.7

skiing1,
size: 601×601,
scaled: 200×200

primal-dual 1/12 574 3.69 757
ADMM (Gauss–Seidel 5) - 58 0.77 750.2
ADMM (Gauss–Seidel 20) - 33 0.98 752.6
implicit ADMM 2 35 0.30 750
implicit ADMM 20 19 0.17 755.3

Table 6.1: Step size, number of iterations, runtime in seconds and final value of the ob-
jective functional J for the three algorithms under comparison and 6 different
image sequences. The best values are written in bold font.
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Figure 6.7 and in table 6.1, and further results are given in section 6.3.1.

6.2.3 Analysis of Inexact Fixed Points

As shown in chapter 5.3, the difference between the inexact solution ũ and the exact
solution u can be estimated by

‖u− ũ‖
‖u‖ ≤ τσ

λ2
max
λk

1 + τσλk

1 + τσλmax

(
1 +

∥∥ µ
σ sv − div(b− d)

∥∥
λmax ‖u‖

)
, (6.77)

where λmax is the maximal eigenvalue of the matrix K∗K which is the negative Lapla-
cian matrix, i.e. λmax = 8, and 0 < λk ≤ λmax is also an eigenvalue of K∗K, but not
the smallest. This estimate only holds if the component of (u − ũ) in the direction of
the eigenvectors associated with the smallest eigenvalues λ1, . . . , λk−1 is negligible, cf.
equation (5.96).
First, we analyze, which values the left hand side can take. If u is a proper solution,
which is not thresholded, i.e. pixels belonging to the foreground are 1, pixels on the
background are 0, and only a few pixels on the border are in (0, 1), then, the worst case
for ũ, i.e. an ũ ∈ [0, 1]N maximizing ‖u− ũ‖ is approximately ũ = 1− u, thus, roughly
speaking, every pixel has a wrong value. This yields

‖u− ũ‖
‖u‖ ≈

√
N
‖u‖ . (6.78)

However, since (1− ũ) models one area while ũ models the second area, ũ = (1− u) is
also a valid solution and will therefore be flipped to ũ = 1− ũ to match u. Thus, we as-
sume that for u and ũ it always holds that ‖u‖ <

√
N/2. Otherwise the segmentations

are flipped to u = 1− u. If ũ is the constant zero vector, i.e. no segmentation has been
found, the left side of (6.77) will be equal to 1. The worst case error is attained if half of
the pixels are wrong:

‖ũ− u‖ ≤
√

N
2

. (6.79)

If ‖u‖ = α
√

N, with α < 1, describing the size of the correct area, we can write the
worst case for the left side of (6.77) in terms of the size of the correct area in relation to√

N:
‖u− ũ‖
‖u‖ ≤ 1

α
√

2
. (6.80)

For a specific motion segmentation problem (“cars6”, scaled size 240× 320), the eigen-
value λk, and the factor α can be approximated through experiments. Even though the
smallest eigenvalue larger than zero of −∆ is λ2 = O(10−4), it turns out that through
an a posteriori calculation, the factor 1/(1 + τλk) in equation (5.81) can be estimated
with

∥∥(I + τ∆)−1(u− ũ)
∥∥ / ‖u− ũ‖ ≈ 0.67, where for τ = 1, we obtain λk ≈ 0.5. The
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factor of the area size is approximately α ≈ 0.15. However, even for a relatively small
τ = 1, the right hand side of estimation (6.77) will be larger than 10, while the left hand
side is smaller than 5:

‖u− ũ‖
‖u‖︸ ︷︷ ︸
≤5 ∀u,ũ

≤ τ
λ2

max
λk

1 + τλk

1 + τλmax︸ ︷︷ ︸
>10 for τ=1

(
1 +

∥∥ µ
σ sv − div(b− d)

∥∥
λmax ‖u‖

)
︸ ︷︷ ︸

>1

.

Thus, (6.77) holds for the motion segmentation example, but is not helpful in estimating
errors of the inexact solution, especially for large step sizes τ > 10, since we have
already seen on a few examples in the previous chapter, that the results with large step
sizes are not bad at all. Therefore, a better a priori estimation of ‖u− ũ‖ in equation
(5.67) is desirable, since the approximation due to the nonexpansiveness of the proximal
operator in this inequality is already too rough. Further experimental results on the
quality of the motion segmentations for larger step sizes τ can be found in section 6.3.1.

6.3 Parameter Study

In this section, the results of the implicit ADMM are measured on the segmentation
results compared to a “pseudo” ground truth. Since most real-world sequences do not
have a ground truth, i.e. manually segmented images, a “pseudo” ground truth is gen-
erated by a long iteration of an algorithm with a small step size. The resulting pseudo
ground truth segmentations are verified visually and corrected by hand, if necessary.

Accuracy. As measurement of the segmentation result, we choose an accuracy mea-
sure. After the thresholding of the labeling function u with threshold ϑ = 0.5, the
segmentation at each pixel is either 0 or 1, i.e. u ∈ {0, 1}N . The thresholded segmen-
tation is compared pixel-wise to the pseudo ground truth. A pixel which is 0 in the
segmentation and 1 in the ground truth (gt) is marked “false” and vice versa, otherwise
it is marked “correct”. Thus the pixel-wise difference |u− gt| is in each pixel either 0 for
correct or 1 for false. To measure the accuracy, the number of correct pixels is compared
to the number of false pixels. A pixel is correct, if it is not false, thus

#correct = N − # f alse (6.81)

where N is the total number of pixels. The accuracy is given by

acc =
#correct

#correct + # f alse
=

N − # f alse
N

(6.82)

Further, we want to mark the solution u = 1− gt also as correct, thus both solutions, u
and 1− u, are measured and the minimum is taken.

acc =
N −min{# f alse(u, gt), # f alse(1− u, gt)}

N
∈ [ 1

2 , 1] (6.83)
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Figure 6.8: For every image pair of the “cars6” sequence the accuracy is plotted against
the number of iterations for different step sizes τ ∈ {3, 7, 20, 50, 100} for the
implicit ADMM.

Therefore, the worst accuracy will be 1/2 instead of zero, since (1− u), which would
yield the largest error, is also a valid solution and therefore has accuracy 1.

Weighting Parameters. The weighting parameter µ and the penalization parameter
σ yield good results if they are chosen in [1, 5]. If the objects in the sequences have low
contrast (e.g. a dark car on dark background), it might be beneficial to increase the data
term parameter µ, but in general for the two-label model a good choice is µ = 2 and
σ = 2. For the multi-label models, this choice is more critical for good results, as we
will see in section 6.4.

6.3.1 Step Size

Since we have already seen, that the value of the objective functional will increase with
the step size τ, we now analyze the influence of the step size on the accuracy of the
segmentation result. Since the algorithm has no direct step size restriction, we use the
step sizes τ ∈ {3, 7, 20, 50, 100} on different image sequences and compare the results.
In Figure 6.8 the results for the different step sizes are plotted for the “cars6” sequence.
The accuracy for one image pair with step size τ is plotted against the number of it-
erations, i.e. for every consecutive image pair of the “cars6” sequence, a red circle is
plotted for the calculation with step size τ = 3. The number of iterations is chosen over
the runtime here, since the computation of one iterate takes roughly the same amount
of time for every τ, but the runtime can be disturbed by background activities during
the computation of a long test series, while the number of iterations cannot be affected
at all. The black horizontal line shows the accuracy for u = 0, i.e. when no objects are
found. This accuracy depends on the size of the objects in the sequence. The closer a
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Figure 6.9: Comparison of convergence of the implicit ADMM on the “cars6” sequence
with and without a reduction of the step size during the iteration. Objective
function value is plotted against the iterations.

point lies to the black line, the smaller is the correct part of the segmented area, or the
error around the segmented object is about as large as the object itself.
It can be seen that with increasing step size τ the number of iterations and accuracy
decreases. Comparing τ = 3 and τ = 7, the runtime decreases while the accuracy
stays almost the same. For some larger τ, this behavior turns around, i.e. the runtime
stays almost the same, while the accuracy decreases significantly. This behavior has its
optimum in the upper left corner, hence the points nearest to this corner are optimal
which are in this case τ = 20. The largest step size τ = 100 does in general not give
good results on this example.

Step size adaption. In this paragraph, a step size adaption is tested. The iteration is
started with a large step size, and then decreased abruptly to a small step size. The
challenging part is to identify the right timing when the step size should be decreased.
The problem is that after the reduction of the step size, the objective function value
increases a little bit before it decreases. We assume that this is due to a bad initialization
of the dual variable, but could not find an explanation or a way to prevent this behavior.
Initializations of the dual variable are also studied in section 6.3.3. In this example we
chose the iterate when the motion vectors are almost converged to decrease the step
size. In Figure 6.9 the convergence of an iteration starting with τ = 50 and then
decreasing to τ = 2 is shown, with the convergence of τ = 50 and τ = 2 without
changing the step size. In the left plot the objective functional value is plotted against
the number of iterations and in the right plot against the runtime. In table 6.2 the
number of iterations, the runtime and the value of the objective function is given for
fixed step sizes τ ∈ {2, 5, 50} and for the iterations with a reduction of the step size
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algorithm τ iterations time [s] J
implicit ADMM 2 71 0.64 349.83
implicit ADMM 5 37 0.27 351.01
implicit ADMM 50 26 0.19 371.67
implicit ADMM step size reduction 50→2 43 0.32 349.96
implicit ADMM step size reduction 50→5 39 0.29 350.57

Table 6.2: Step size, number of iterations and objective function value for the implicit
ADMM with and without a reduction of the step size during the iteration on
the “cars6” sequence.

from τ = 50 to τ = 5 and from τ = 50 to τ = 2. For the reduction from τ = 50 to τ = 2,
the objective functional value decreased in comparison to the objective functional value
of τ = 50, and decreased the number of iterations and runtime in comparison to the
iteration with τ = 2, but, of course takes longer than the iteration with τ = 50. The
reduction from τ = 50 to τ = 5 has almost no benefit over the iteration with τ = 5
without a step size reduction for this example. Thus, if a high accuracy is needed, for
some examples, it might be beneficial to start the iteration with a large step size and
decrease the step size, after a few iterations.

6.3.2 Scaling and Gaussian Smoothing

Another factor, which has an influence on the runtime of the algorithm is the prepro-
cessing of the images by scaling or the convolution with a Gaussian kernel. As already
discussed in chapter 2.3 the convolution with a Gaussian kernel or a scaling can be ben-
eficial for optical flow estimation, especially if large displacements are to be expected
in the image sequence.
In the shown experiments, all image sequences /image pairs are scaled and smoothed
through a convolution with a Gaussian kernel in a preprocessing step. Too much scal-
ing or smoothing causes the moving objects to vanish, and it is not possible to achieve
a segmentation. Up to now, the scaling and smoothing was chosen arbitrarily, but since
the smoothing may have a positive, but also a negative effect on the segmentation, this
parameter is analyzed in the experiments. The results are given in Figure 6.10. The
“cars6” sequence is scaled down to three different sizes by a scaling factor of 1, 1/2
and 1/4, (top to bottom in Figure 6.10), and smoothed with a Gaussian kernel with
different standard deviations ρ ∈ {1, 3, 6}. The accuracy of the segmentation results
compared to the pseudo ground truth, which is computed for the whole sequence, i.e.
for every image pair in the sequence, is plotted against the runtime. For all image sizes
the most accurate results are achieved by the smallest standard deviation ρ, shown with
red circles. It can be observed, that the accuracy decreases on the smaller images, but
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Figure 6.10: For every image pair of the sequence the error is plotted against the accu-
racy for different sizes and different Gaussian filters with standard devia-
tion ρ for the “cars6” sequence with the implicit ADMM.
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Figure 6.11: For every image pair of the “cars6” sequence the accuracy is plotted against
the number of iterations (left) and runtime in seconds (right) with and with-
out a dual initialization in addition to the primal initialization.

the computation times are much faster. However, between the largest and the second
largest image size, the accuracy decreases only a little, while the runtime decreases sig-
nificantly by a factor of 4. Between the second largest and the smallest images, the
decrease in runtime is very low, while the accuracy decreases significantly (note the
scaling of the vertical axis).
Thus, an optimal parameter combination can be chosen for every image sequence, but
the parameter choice is always a choice between speed and accuracy.

6.3.3 Initializations and Pyramid scheme

If a whole image sequence should be segmented, the segmentations u, the primal vari-
able, of previously calculated images can be used as an initialization of consecutive
image pairs. The dual variable can be initialized either by b = 0, or also with the result
of the previously calculated images. Further, in order to speed up the iteration and im-
prove the segmentation, a pyramid scheme can be applied on the images. The motion
segmentation is calculated on a scaled image, and the results are used to initialize the
unscaled image to get more accurate results. In the experiments the primal variable u
and the dual variable b are scaled to the larger grid and used as an initialization. The
idea of pyramid schemes is related to multigrid calculations.
In Figure 6.11 the results are shown for a primal initialization with the segmentation
u of the previous image pair (red), and for a combined primal and dual initialization
with the results of the previous image pair. The black line at the bottom of the plot
again visualizes the error of the “empty segmentation”, where u = 0. The accuracy
is plotted against iteration and runtime. The initialization with both, primal and dual
variable, gains a plus in speed but loses accuracy.
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6.4 Multi-label Motion Segmentation

The experiments for multi-label segmentation are carried out on a multi-label model
with multiple labeling functions and on the error-label model. The optimization prob-
lems are solved with the inexact implicit ADMM given in algorithm 11.

6.4.1 Models

Multiple labeling functions. As described in chapter 3.2, multiple labeling functions
ui are introduced. We use the following multi-label model from equation (3.9):

min
ui ,vi

∫
Ω

∑
i

(
‖∇ui(x)‖2 + µ 〈∇ f , vi〉2 ui(x)

)
+ µ 〈∇ f , v0〉2

(
1−∑

i
ui(x)

)
+ ∑

i,j, i 6=j
ui(x)uj(x) dx,

subject to ui(x) ∈ [0, 1]

(3.9)

In order to minimize this functional with the (inexact) implicit ADMM, for each la-
beling function ui a second variable di and a dual variable bi has to be included. The
minimization for the motion vectors vi and the labeling functions ui is also carried out
alternatingly. The updates for the ui for fixed motion vectors vi is carried out sequen-
tially for all i. The inexact implicit ADMM for multi-label motion segmentation is given
by:

Algorithm 15 inexact implicit ADMM for multi-label motion segmentation

1. choose penalty parameter σ > 0, step size τ > 0, number of labels K and initial
points (ui)0 ∈ X , (di)0, (bi)0 ∈ Y , for i = 1, . . . , K.

2. iterate for n = 0, 1, . . .

(i) calculate motion vectors (vi)n for every (ui)n with (6.9)

(ii) calculate motion errors (sv)i for i = 0, . . . , K

(iii) iterate for i = 0, 1, . . .,K
calculate (ui, di, bi)n+1 with algorithm 14

This update scheme can also be performed with any other optimization algorithm pre-
sented in the previous sections. However, since the implicit ADMM performed best
on the two-label model, and the update steps are equivalent to a two-label update for
every labeling function ui, the implicit ADMM is also used here.
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multiple label functions error label

Figure 6.12: Motion segmentation for different examples. Top to bottom: “cars5”,
“cars3”, “people2”, “Hamburg taxi”. Multi-label segmentation with dif-
ferent algorithms: left: multiple labeling functions, right: method with one
error label. Motion vectors are color coded according to a color wheel: red
indicates motion to the right, blue to the lower left corner, green to the up-
per left corner. Color intensity is proportional to the length of the motion
vector.
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sequence algorithm τ µ #labels / ξ iterations time [s]
cars5, size: 480×640,
scaled: 160×213

multiple labels 20 3.5 3 28 0.67
error label 20 3.5 1.1 35 0.27

cars3, size: 480×640,
scaled: 160×213

multiple labels 20 2 2 25 0.34
error label 20 3.5 1.1 32 0.23

people2, size: 480×640,
scaled: 160×213

multiple labels 4 2 2 59 0.93
error label 20 3.5 1.1 23 0.17

Hamburg taxi,
size: 191×256

multiple labels 10 2.5 3 102 3.80
error label 20 3.5 1.1 41 0.45

Table 6.3: Step size, parameter µ, ξ or number of labels, number of iterations and run-
time in seconds for the two algorithms under comparison and 4 different im-
age sequences.

Error-label method. The error-label model from section 3.2.2 is implemented simi-
larly to the two-label model. The objective functional uses a replacement for the data
term sv = 〈 f (x, t), v〉2 − ξ

J(u, v) =
∫

Ω
‖∇u(x)‖2 + µ

(
〈∇ f (x, t), v〉2 − ξ

)
u(x) dx + δC(u), (6.84)

with the error ξ > 0. The segmentation is calculated with the inexact implicit ADMM
in algorithm 14. The vector v is calculated as described in section 6.1.1, with only one
vector. Hence, only the 2 by 2 linear system in equation (6.9) has to be solved.

6.4.2 Results

The motion segmentations are performed on the “cars5”, “cars3”, and “people2” se-
quence from the Berkeley segmentation dataset, and on the “Hamburg taxi” sequence.
The segmentation results for the model with multiple labeling functions and the error-
label model are shown in Figure 6.12. The corresponding parameters, in particular, the
step size τ, weighting parameter µ, the number of labeling functions used in the com-
putation and the parameter ξ for the error-label, are given in table 6.3 together with
the number of iterations and the runtime. The parameter σ for the quadratic penalty of
the augmentation term in the Lagrangian is σ = 2 for all calculations. Due to the new
parameter ξ, the parameter µ in the error label model has to be chosen larger than in
the model with multiple labels. Since the modeling is different, the objective function
value cannot be compared.
In Figure 6.12, the segmentation produced by the model with multiple labeling func-
tions (left), is shown by the contour lines ui = 0.5, marked with different colors. In the
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segmentation of the “cars5” sequence, two objects that move in similar directions are
labeled with only one function ui.
In table 6.3, it can be seen, that the error-label model is faster on every sequence. In the
first sequences, i.e. “cars5”, the motion segmentation is equally good for both methods,
and for the “cars3” sequence, the motion segmentation of the error-label model is better,
since the moving car in the left of the image is also detected, which moves almost in the
same direction as the moving background. However, for moving objects that are close
to each other the error-label model only computes one object and the mean vector in
this region. This can be observed in the “people2” and “Hamburg taxi” sequence. In
order to separate these objects, further post processing steps are needed. One idea is
to perform a two-label segmentation on the segmented region, or to test the deviations
from the optical flow constraint for different test vectors, but the post processing step
for the error-label model is a topic of future work.

6.5 Affine Motion Segmentation

The affine motion model is used in the two-label model and in the error-label model.
While for small foreground objects a constant motion vector is usually a good choice,
the background motion can be a rotation or a more complex camera motion. Thus, in
the following experiments, the background is modeled by the affine model, while the
foreground is modeled by a constant vector. In order to enforce the affine motion model
on the background, an additional weighting parameter is used, as described in chapter
2. As for the models with constant vectors, the minimization of the segmentation and
the affine motion parameters is performed in an alternating scheme.

6.5.1 Models

The models for motion segmentation with affine background movement from chapter
3.3 are used here, in particular the two-label model and the error-label model. Both
models can be solved by the algorithms for the two-label model, but since the implicit
ADMM performed best on the two-label model, we also use this algorithm here.

Affine two-label model. For the two-label model with affine motion, the following
functional is used in the experiments: The resulting two-label minimization problem
reads as follows:

J(u) =
∫

Ω
‖∇u(x)‖2 + µ 〈∇ f , v〉2 u(x) + µ 〈∇ f , Hx〉2

(
1− u(x)

)
+ νu(x) dx + δC(u),

where ν > 0 is a parameter enforcing the background to be modeled with the affine
motion model.
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sequence algorithm τ µ ξ iterations time [s]
cars7, size: 480×640,
scaled: 160×213

two-label affine 10 2 - 19 0.18
error label affine 20 1.8 1.1 49 0.53

skiing2, size: 1001×800,
scaled: 334×267

two-label affine 10 2 - 14 0.50
error label affine 20 2 1.5 30 1.03

Table 6.4: Step size, weighting parameters µ, ξ, number of iterations and runtime in
seconds for the two label algorithm and the error label algorithm with an
affine background model for the motion vector.

Affine error-label model. The error-model also consists of a penalty for the back-
ground to be modeled by an affine motion model, i.e. the background is modeled with
an affine motion, while the foreground will be segmented by the error label. The model
used in the experiments is given by:

min
u,H

∫
‖∇u(x)‖2 + µ

(
ξu(x) + 〈∇ f , Hx〉2

(
1− u(x)

))
+ δC(u) dx, (6.85)

where ξ > 0 is the weighting for the error-label.

6.5.2 Affine Parameters

The affine motion is given by the matrix H ∈ R3,2:

v = Hx =

(
h1 h3 h5

h2 h4 h6

)x1

x2

1

 , (6.86)

where x1 and x2 are the two image coordinates.
The entries of the matrix H, hi, i = 1, . . . 6, for a fixed segmentation u are calculated
through a system of linear equations, similar to the calculation of the constant motion
vectors. Let X = (x1, x2, 1)T and Ix1 , Ix2 , It denote the partial derivatives of the image,
∂x1 I, ∂x2 I, ∂t I, respectively. With

XXT =

 x2
1 x1x2 x1

x1x2 x2
2 x2

x1 x2 1

 (6.87)

the matrix Au ∈ R6×6 and vector bu ∈ R6 are given by

Au =

 ∫Ω u (Ix1)
2 [XXT]

∫
Ω uIx1 Ix2 [XXT]∫

Ω uIx2 Ix1 [XXT]
∫

Ω u (Ix2)
2 [XXT]

 , bu =

 ∫Ω uIx1 ItX∫
Ω uIx2 ItX

 , (6.88)
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Two-label affine Error label affine

Figure 6.13: Motion segmentation for different examples. Top to bottom: “cars7”, “ski-
ing2”. Left: Two-label segmentation with affine background, right: error-
label segmentation with affine background. Motion vectors are color coded
according to a color wheel: red indicates motion to the right, blue to the
lower left corner, green to the upper left corner. Color intensity is propor-
tional to the length of the motion vector.
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The matrix h ∈ R6 is given by
Auh = bu. (6.89)

As in the calculation of the constant motion vectors, the matrix H for the second region
is calculated through

A1−uh = b1−u. (6.90)

6.5.3 Results

The calculations are performed by the implicit ADMM on the “cars7” sequence from
the Berkeley segmentation database, and a self-made sequence called “skiing2”. In both
sequences, the camera is rotated around the optical axis while following the moving ob-
ject roughly. In Figure 6.13 the motion segmentations are given for the sequences with
affine background motion. The vectors are color-coded, as for the previous motion seg-
mentations, i.e. in the case of affine motion, the background is multicolored according
to the movement of the background induced by the camera rotation. In the image pair
of the “cars7” sequence depicted in 6.13, the background rotates clockwise and moves
to the right, and in the image pair of “skiing2” sequence, the background rotates clock-
wise and moves to the left. Both segmentations appear to be equally good in quality. In
table 6.4, the values for the step size τ, parameter µ, and ξ, for the error-label, as well
as the iterations and runtimes are given. It turns out, that the two-label model is faster
than the error-label model, even though the error-label model uses a larger step-size.
In the lower right corner the affine motion segmentation of the “skiing2” sequence is
included as a flip-book.

6.6 Implicit ADMM for Denoising and Inpainting

In this section, we compare the primal-dual algorithm with the implicit ADMM on
further imaging problems.

Denoising. First we revisit the denoising example from Chapter 2, with TV-regularization,
also called the Rudin-Osher-Fatemi (ROF) model, cf. [Rudin et al., 1992]

J(u) =
∫

Ω
‖∇u(x)‖2 +

µ

2
(u(x)− f (x))2 dx, (6.91)

where f : Ω→ R is the noisy image, u is the reconstruction and µ is a parameter.
The primal-dual algorithm for ROF denoising can be found in [Chambolle and Pock,
2011].
A splitting is used to introduce the variable d = ∇u, and the augmented Lagrangian
reads

Lσ(u, d, b) =
∫

Ω
‖d(x)‖2 +

µ

2
(u(x)− f (x))2 +

σ

2
‖∇u(x)− d(x) + b(x)‖2 dx. (6.92)
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Figure 6.14: Upper row: original and noisy image. Lower row: denoising with the
primal-dual algorithm (left) and the implicit ADMM (right).

Since there are no constraints on the function u, the implicit update step can be eval-
uated explicitly, i.e. without an approximation. The implicit ADMM for the denoising
model is given by

Algorithm 16 implicit ADMM for denoising

1. choose penalty parameter σ > 0, step size τ > 0 and initial points u0 ∈ X ,
d0, b0 ∈ Y .

2. iterate for k = 0, 1, . . .

uk+1 = (I + τµI − τσ∆)−1
(

uk + τ
(
σdiv(bk − dk)− µ f

))
(6.93)

dk+1 =

(
1− 1

max(1, σ‖∇uk+1 + bk‖2)

)
(∇uk+1 + bk) (6.94)

bk+1 = bk +∇uk+1 − dk+1. (6.95)

The convergence results are given in Figure 6.15. Even though the implicit ADMM
needs about half as many iterations as the primal-dual algorithm, the overall runtime
of the implicit ADMM is longer than the primal-dual algorithm. The results of the
denoising are equally good, which can be seen in Figure 6.14. In this example the ex-
trapolation parameter for the primal-dual algorithm is chosen as θ = 0.8 which reduced

102



6.6. IMPLICIT ADMM FOR DENOISING AND INPAINTING

0 5 10 15 20

101.5

102

iterations

er
ro

r

0 2 · 10−2 4 · 10−2 6 · 10−2 8 · 10−2

101.5

102

runtime [s]

er
ro

r

primal-dual
implicit ADMM

Figure 6.15: Comparison of convergence of the primal-dual algorithm and the implicit
ADMM on the denoising problem. The error is plotted against the itera-
tions (left) and runtime in seconds (right).

the number of iterations. A topic of future work is, whether the extrapolation param-
eter can be included in the implicit ADMM through similar calculations as in section
4.3.3, and it also yields an acceleration for the implicit ADMM.

Inpainting. As a second example we analyze the task of joint inpainting and denois-
ing. The variational model, already given in section 2.4, reads

min
u

∫
Ω
‖Φu‖+ µ

2

∫
Ω\Ω′

(u(x)− f (x))2 dx, (6.96)

where the operator Φ is chosen as a fast discrete curvelet transform, which according
to [Chambolle and Pock, 2011] leads to better results than a total variation regulariza-
tion. An advantage of the discrete curvelet transformation is that the inverse curvelet
transform is simply computed as the adjoint of the forward transform Φ∗Φ = I, cf.
[Candes et al., 2006]. In [Chambolle and Pock, 2011], also the primal-dual algorithm for
the given inpainting model can be found.

The inpainting domain Ω′ is modeled through the diagonal matrix D ∈ {0, 1}N×N . As
for the denoising problem, the implicit update step can be evaluated explicitly. The
implicit ADMM for the inpainting model reads
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Figure 6.16: Upper row: original and noisy image. Lower row: inpainting with the
primal-dual algorithm (left) and the implicit ADMM (right).

Algorithm 17 implicit ADMM for inpainting

1. choose penalty parameter σ > 0, step size τ > 0 and initial points u0 ∈ X ,
d0, b0 ∈ Y .

2. iterate for k = 0, 1, . . .

uk+1 = (I − τσI + τµD)−1
(

uk − τ
(
σΦ∗(bk − dk)− µD f

))
(6.97)

dk+1 =

(
1− 1

max(1, σ‖Φuk+1 + bk‖2)

)
(Φuk+1 + bk) (6.98)

bk+1 = bk + Φuk+1 − dk+1. (6.99)

The inpainting results together with the original and the image with missing data are
given in Figure 6.16. The lower left picture shows the result of the primal-dual algo-
rithm and the lower right picture shows the result of the implicit ADMM. In Figure 6.17
the convergence results of both algorithms are given. The implicit ADMM again only
needs about half of the iterations of the primal-dual algorithm, but for the inpainting
problem with a discrete curvelet transform, the computation of one iteration is equally
fast.
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Figure 6.17: Comparison of convergence of the primal-dual algorithm and the implicit
ADMM on the inpainting problem. The error is plotted against the itera-
tions (left) and runtime in seconds (right).
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7 Conclusion

Conclusion. We have proposed a new proximal algorithm for the minimization of con-
vex functionals over convex sets which uses an implicit gradient update instead of a
half explicit one in one descent step. The new algorithm is stable without restriction
on the step size, hence it is not prone to stiff systems. Computational challenges with
a scaled proximal operator appearing in our algorithm can be handled through an ap-
proximation. We investigated convergence properties of the exact and the approximate
algorithm, thereby relying on the theory of monotone and averaged operators.
In the numerical experiments, the implicit algorithm is included into an alternating di-
rection method of multipliers (ADMM) routine, where it requires significantly fewer
iterates than standard schemes. As a tradeoff, in each step a linear system of equa-
tions has to be solved. In problems where this can be performed efficiently significant
runtime improvements can be achieved. This is backed by our numerical experiments
on the motion segmentation problem with several standard and self-made image se-
quences. Further, we proposed variational two-label and multi-label motion segmen-
tation models and developed a new model for multi-label motion segmentation based
on the two-label model, the error-label model, which performs a multi-label motion
segmentation almost as fast as a two-label motion segmentation.

Future Work. We have shown, that the linearized ADMM is equivalent to the primal-
dual algorithm for the extrapolation parameter θ = 1, and that this extrapolation step
can also be included in the linearized ADMM. The extrapolation can speed up conver-
gence for the primal-dual algorithm, and the question is, if it can be included also into
the implicit ADMM, and whether it can improve the convergence.
Also, as indicated by the numerical results in sections 6.3.3 and 6.3.1, the inititialization
of the dual variable influences the convergence. Further studies on the initialization
of the dual variable could lead to faster convergence in pyramid schemes, and could
improve step size adaptation strategies.
Moreover, the implicit proximal method can be extended to solve problems of the form
F(Ax) + G(Bx), where F and G are convex functions, and A and B are linear operators.
With this extension, the implicit proximal method can be applied to the function lifting
models. Also, a multi-label motion segmentation model based on the function lifting
idea could be developed.
Furthermore, the error-label model can be extended with additional post processing
steps to separate remaining areas in the error-label. This can be achieved by a two-label
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motion segmentation on the remaining area, or, if the areas are small, by a successive
partitioning of the area and calculating vectors on each partition. Depending on the
error produced by the calculated vector, the area is partitioned again, until the error is
small.
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