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Abstract

In this thesis, we investigate the dynamics of a scalar wave field in two or more space
dimensions, traveling through a weakly disordered medium. The disorder is modeled by
random spatial fluctuations of the wave speed, but frozen in time, and is of order /¢,
0 < € < 1. On the kinetic scale, with space and time of order !, we prove that the
Wigner function almost surely converges to the solution of a linear Boltzmann equation
as € — 0. Essentially, the only requirements for the initial data are natural ones —
bounded energy and tightness on the kinetic scale.

The proof of the result consists of two steps. First, the limit of the disorder-averaged
Wigner function is identified by a mathematically rigorous expansion into Feynman
graphs. All diagrams except for the “ladder” diagrams are shown to vanish like €€,
C > 0. Using a more involved graph expansion, the [-th moments of the random
fluctuations of the Wigner function are then shown to scale like £“!, from which we
conclude almost sure convergence.

Kurzzusammenfassung

In dieser Arbeit untersuchen wir die Dynamik einer skalaren Welle in mindestens
zwei Raumdimensionen, die durch ein leicht inhomogenes Medium propagiert, dessen
Wellengeschwindigkeit zuféllige, rdumliche, zeitlich konstante Schwankungen der
Groflenordnung /g, 0 < ¢ < 1 aufweist. Wir zeigen, dass die Wignerfunktion auf der
kinetischen Skala, also auf Raum- und Zeitskalen der Ordnung ¢!, im Limes € — 0 fast
sicher gegen die Losung einer linearen Boltzmann-Gleichung konvergiert. Im Wesentlichen
sind die einzigen Voraussetzungen an die Anfangswerte der Wellengleichungen die natiir-
lichen Annahmen von beschrankter Energie und Straffheit auf der kinetischen Skala.

Der Beweis zerfallt in zwei Schritte. Zunédchst wird der Limes der iiber alle Realisierun-
gen des Mediums gemittelten Wignerfunktion mit Hilfe einer Entwicklung in Feynman-
Graphen bewiesen. Dabei verschwinden alle Graphen, die keine ,,Leiter*-Form aufweisen
wie €¢, C' > 0. AnschlieBend zeigen wir mithilfe komplizierterer Feynman-Graphen, dass
die I-ten Momente der zufilligen Schwankungen der Wignerfunktion wie e©! skalieren,
und schlieflen daraus auf fast sichere Konvergenz.
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1. Introduction

1.1. Physics background

Any realistic model for wave motion should allow for the possibility of a spatially het-
erogeneous medium. Among the classical examples of waves interacting with inhomoge-
neous media are cases in which the underlying environment features only one or a few,
macroscopically observable transitions between different material coefficients, such as
the refraction of light (an electromagnetic wave) at the interface of water and air, or the
shoaling of water waves entering from deep into shallower water.

However, a heterogeneous medium may also appear homogenous on a large observation
scale, while inhomogeneities determine the structure on a much smaller scale. This
microscopic structure of the medium is typically unknown or hard to identify, and all
the information available may be the average distance of neighboring inhomogeneities,
the typical fluctuations of the material coefficients and the like. In this situation it is
often appropriate to assume the medium to be random, i.e. to model the coefficients of
the medium as random fields.

Examples from different branches of physics include seismic waves scattering off hetero-
geneities in the earth’s crust [43, 44|, the use of ultrasound to detect the position of
targets in a medium with sound speed fluctuations, [5], or laser light entering a suspension
of submicrometer polystyrene balls in water, [42].

The physical model this thesis will focus on is in several ways a special case of the
above-mentioned examples. First, in what is a slight simplification compared to the
vector-valued elastic or electromagnetic waves mentioned above, we shall only consider

a scalar wave equation
0? 9
—u(x,t) = c(x)* Au(x, t), 1.1
oyl 1) = e()*Au(z, 1 (11)
so that instead of several possibly random parameters (for example magnetic and electric
susceptibility tensors), the only source of randomness will be the wave speed, i.e. the

scalar random field c(z), = € R%.

As is already apparent from the notation, the random field ¢(x) is assumed to depend only
on position z, but not on the time variable ¢, (or, realistically, the medium configuration
varies on a much larger time scale than the time it takes the waves to pass through the
medium. For seismic waves, these two time scales are millennia and seconds, respectively;
for the polystyrene suspension, Brownian motion only requires milliseconds to alter the
configuration of scatterers by a full wavelength, but light crosses the sample (~ lcm) ten
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orders of magnitude faster, [42]). A random wave speed c¢(z,t) quickly decorrelating in
time would substantially simplify the analysis of the long-time behavior of (1.1). In that
case long-term dependencies in the scattering history of the wave are a priori impossible,
and a markovian limit is rather easily obtained. With disorder c¢(z) constant in time,
however, one has to exclude such correlations by carefully tracking the spread of the
wave packet.

The random fluctuations of ¢ will be assumed to be small compared to the average wave
speed. Normalizing the average wave speed to 1, one can thus write

o(x) = 1+ V/EE (@), (1.2)

with a random disorder term ¢ scaled by a prefactor 0 < /e < 1.

The initial data (u(, 0), %u(-,O)) for (1.1) is chosen to be deterministic, in particular
independent of the randomness of the medium, and to have bounded energy E(0) =
[ E(x,0)dz, with the energy density

1
E(x,t) =5 |Vu(z, t)]* +

EL (1.3)

Finally, the typical wavelength of the initial conditions (u(, 0), %u(-, 0)) is taken to be
of the same order of magnitude as the correlation length of the wave speed fluctuations &.
This should prove to be the regime with the most interesting interaction between medium
and wave (for large wave lengths, one expects little scattering to occur due to the A=4~!
wavelength dependence of the Rayleigh scattering cross section; for wavelengths much
shorter than the scale on which the medium varies, one essentially is in the setting of a
semiclassical limit, and the wave nature of the scattering process is lost).

For a wave scattering off a single, compactly supported inhomogeneity of strength /e,
the scattering amplitude scales like 1/ as ¢ — 0, so the portion of the wave energy that
is scattered (in the quantum case, this would rather be the probability of a scattering
occuring) is of order \/&° = ¢, [17]. As ¢ has a correlation length of order 1, a wave
packet encounters O(t) such individual inhomogeneities while traveling for a duration
of microscopic time ¢, and one consequently expects a fraction et of the energy to be
scattered. The shortest time scale on which the weak disorder is expected to have a
noticeable effect are thus microscopic times of order ¢t ~ £~!, motivating the use of a
macroscopic time coordinate T' = t. To keep the average speed of wave propagation
unscaled, we also set the macroscopic space variable to be X = ex. This constitutes the
kinetic scaling. The energy density E°(X,T) = E(X/e, T/e) of the wave does not obey
an autonomous evolution equation, but the Wigner transform, to be defined in Section
1.2, equation (1.9),

WX, K,T) = W(X/e, K, T/e) (1.4)

typically does, [2]. Here, K is the wave-number, which remains unscaled. For each time,
W€ is a function on phase space that can be thought of as a “wavenumber-resolved”
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energy density, [23], from which the spatial energy density can be retrieved by

BA(X,T) = | dAKWS(X, K.T). (1.5)

In applications, direct simulation of the complicated random dynamics of W¢ is avoided
by approximating W¢ by a solution W of the linear Boltzmann equation

0 — K 7

+ 27K |? /Rd dK'§(|K| - |K')ga(K — K') (W(X, K',T) = W(X, K, T)).
(1.6)

Here, g5 is the power spectrum of £, which is the Fourier transform of the correlation
function go(x) = E[£(0)¢(z)]. The sign F arises from the fact that the unperturbed
wave motion exhibits both wave modes that travel according to a dispersion relation
w(k) = +27|k|, and modes with w(k) = —2x|k|.

This approximation is widely employed (the review by Ryzhik, Papanicolaou, Keller,
[35] provides details for several physical settings); numerical simulations of the energy
transport via wave equation and the linear Boltzmann equation coincide remarkably
well, [3], and the use of equation (1.6) for imaging in random media yields satisfactory
experimental results, [4].

Mathematically, the use of this approximation has so far not been fully justfied. In
particular, as W€ is a random quantity, while W is deterministic, the kind of conver-
gence needs to be clarified — does W only approximate the disorder-averaged Wigner
function EW¢, or does the convergence W¢ — W hold in probability or almost surely,
i.e. regardless of the microscopic details of the medium?

A convergence in probability result for the kinetic limit of waves in a weakly random
medium was obtained by Bal, Komorowski and Ryzhik, [2], but only for initial states
with wavelengths much shorter than the correlation length of the medium (i.e. parallel
to the weak coupling limit and the rescaling of time and space variables, the authors
take a high frequency limit and rescale the momentum). The limit dynamics resembles
(1.6), with the Boltzmann collision kernel replaced by the small angle approximation of
the jump process, leading to a diffusion of the momentum on spheres of constant |K|.
Their methods cannot be extended to our case of wavelengths on the same scale as the
correlation length.

Without the high frequency limit, no rigorous mathematical statement about the validity
of the kinetic limit for waves in a continuous, weakly random medium is available as of
now.

To put this theory on a solid footing is the goal of this thesis.
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1.2. Results of the thesis and related work

Generally, a linear Boltzmann equation

%ut(x,k) — _Vw(k) - V(o k) +/Rd Kok, k) (e, ) — e )] (L)

consists of a transport term depending on w(k) (the kinetic energy in the classical! case,
or the dispersion relation for a Schrodinger or wave equation), and of a collision operator
with collision kernel o which is a non-negative (generalized) function. pu; is typically a
measure, and only constitutes a weak solution of (1.7).

For a one-particle random Schrédinger equation i%@b = Hvy with Hamiltonian H =
—A+ AV on R? d > 2, with V a random potential, one can again ask for the time scale
on which the expected number of interactions with the potential V is of order 1; this
leads to the weak coupling, kinetic limit with disorder strength A = /e, and space/time
scaling (z,t) = (X/e,T/e), (¢ — 0). In this limit, the appropriately rescaled and
disorder-averaged Wigner transform of ¢ converges to the solution of a linear Boltzmann
equation; due to the weak coupling, the Boltzmann collision kernel is given by only
the first Born approximation to the quantum scattering process. This was proven for
short macroscopic times 7" and a Gaussian potential V' by Spohn, [38], and extended
to all times T' and a larger class of random potentials with a suitably cut-off Duhamel
expansion of the perturbed Schrédinger dynamics and a subsequent graph expansion by
Erdds and Yau, [16].

The graph expansion technique devised in [16] was subsequently used by Chen, [9],
to obtain the same result for the discrete analog, the Anderson model given by the
Schrodinger operator —Ay, + AV on Z3, with the nearest-neighbor Laplacian and a
random potential i.i.d. on every lattice site. Lukkarinen and Spohn, [32], showed the
corresponding result for the propagation of atom displacements in a three-dimensional
harmonic crystal in the presence of isotope disorder, modeled by a discrete wave equation
with slightly fluctuating coefficients.

In our model, the disorder term in the random wave speed c¢(x) = 1++/e£(x) is given by a
stationary random field with sufficient smoothness and fast enough spatial decorrelation.
For example, £ might be obtained from a Gaussian field, or consist of local “bumps”
distributed with a Poisson point process. By setting ¢ = Vu % i%u/c, the wave

!The linear Boltzmann equation was first rigorously obtained as the scaling limit of a classical particle
system, namely the classical Lorentz gas in the Boltzmann-Grad (low density) limit. In this model, a
single test particle with position and momentum (¢ (¢), p°(t)) € R?¢, d > 2 moves through a random
(say Poisson), density e~ 41 distribution of fixed scatterers with diameter € > 0. As e goes to zero, the
number of interactions the test particle undergoes with the scatterers in a unit time interval remains
of order 1, and (¢°(t),p°(t)) converges to a stochastic process with a linear Boltzmann equation
as forward equation, as shown by Gallavotti, [20] for individual times ¢, and by Spohn, [39, 40] in
distribution on path space.



1.2. Results of the thesis and related work

equation is then transformed into a first order system

(o) e (04 _ v
i) - () o e ()

(VA0 ) (95 VE (VEAEHEVEA VAL VA (s
o —v=a)le) "2 \vrac-evea —veac-ev-a) (v )

(1.8)

which defines a unitary time evolution for ¢ € H = L?(R%; C?). The Wigner transform
of both components v¢,, o € {£}, of a state ¢ € H is given by

€ - z - Ty T Y\ omiyk
We o] (2, k) = e W] [ =,k ) = d/da( )U<—> vk (1.9
[¥o] (2, k) = € [w](g,) e L e (ZH G JUa (-5 )€ (1.9)
In space dimension d > 2, for any sequence of initial states (¢f),, with bounded energy

’WSH?{ < C and fulfilling certain tightness assumptions, it is shown in Theorem 3.1
that

e—0

lim E [ [, dedkw* [(eTey5) | (m,k)a(:c,k)} = /R . tor(da, dR)a(z, k) (1.10)

for o € {£}, a suitable class of test functions a and all 7" > 0. Here, p4 7 is a time-
dependent Borel measure on phase space R?? solving the linear Boltzmann equation (1.6).
The detailed statement of Theorem 3.1 will actually allow for multi-time measurements.

The very similar results for the continuous (R?) and discrete (Z%) case of the Schrédinger
or wave equation are what one would expect from a physical point of view; after all, the
behavior on long space and time scales is investigated and the microscopic details of the
underlying space should have little impact, [17]. The respective proofs, however, differ in
several details. In the lattice setting, the more complicated geometry of the level sets of
the dispersion relation make resolvent estimates and oscillatory integral arguments much
more difficult, [9, 31]. For the continuous wave equation, the unbounded momentum
space (R? as opposed to [0,1)? for the lattice) makes the perturbation V an unbounded
operator, and more caution is required when performing the Duhamel expansion.

While the last few examples, including the topic of this thesis, all concern the weak
coupling limit, this is by no means the only situation in which a random dynamics on
the microscopic scale converges to a linear Boltzmann equation on macroscopic phase
space. In the low density limit, the potential of the Hamiltonian H = —A+ )"V, is
given by a random (density € < 1) configuration of scatterers with shape Vj and center
Yn- Again, on space and time scales (z,t) = (X/e,T/e) and for spatial dimension d > 3,
the disorder-averaged Wigner transform of the wave function converges to the solution
of a linear Boltzmann equation, [13, 18], but now with the full quantum scattering cross
section appearing in the Boltzmann collision kernel.
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All results for the Schrodinger and wave equation mentioned so far only involve the
disorder-averaged Wigner transform. In most applications, one is actually interested
in the transport properties of a concrete, single realization of the medium, and would
thus desire to control the typical deviations from the average, ideally improving the
convergence of the expectation to an almost sure convergence, a phenomenon referred to
as self-averaging.

For the classical Lorentz gas in the low density limit, convergence in probability, [38],
and almost surely (Boldrighini, Bunimovich, Sinai, [6]) was shown for the evolution of
absolutely continuous particle densities, in other words, under the assumption that the
initial coordinates of the particle are randomized independently of the configuration
of the medium. For the Schréodinger or wave equation, the initial state always carries
some randomness by Heisenberg uncertainty. In fact, for the weak coupling, kinetic limit
of the Anderson model in Z3, convergence of the Wigner function has been proven in
probability, [8], and almost surely, [7], under assumptions only slightly stronger than
those for the disorder-averaged result, [9].

In the case of the random wave equation at hand, a similar statement holds. Under
somewhat more restrictive conditions on ¢ and the initial states 1§, we establish in
Theorem 3.3 that for almost all realizations of the medium &,

lim sup
£=07¢(o,7]

dzdkWe {(e—iHsT/gwé) J (z,k)a(z, k) — /R e r(dz, dk)a(z, k)| = 0

(1.11)
for all times 7' > 0 and test functions a. Thus we have shown that the convergence of the
Wigner transform to a linear Boltzmann equation occurs almost surely, and uniformly
on compact time intervals.

R2d

As mentioned earlier, the kinetic scale is the shortest time scale with a nontrivial dynamics.
For the discrete or continuous Anderson model —A + AV in d > 3, A < 1, Erdés,
Salmhofer and Yau, [14, 15], showed that on the larger, diffusive scale z = A\"2R/2X
t = A"27"T, with a small k = x(d) > 0, the disorder-averaged Wigner function converges
to the solution of a heat equation in the X variable. While the diffusion coefficient of
this heat equation can be calculated formally by taking the diffusive limit of the linear
Boltzmann equation, it needs to be pointed out that taking the rigorous diffusive limit
of the Anderson model is much more demanding than the formal two-stage argument
of taking the kinetic limit first, and the diffusive limit of the linear Boltzmann equation
later. A comparable diffusive limit should be expected for the weakly random wave
equation. We leave this as an open problem.

Another possible direction to go beyond the results of this thesis is to stay on the
kinetic scale, but to prove a central limit theorem rather than our almost sure, law
of large numbers type of result. One would have to identify the exact scale of the
random fluctuations in (1.11), and rescale them to obtain a nontrivial limit. For a weakly
random Schrodinger equation (however, under the assumption of rapid decorrelation of
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the potential in time) such a limit exists, and is in fact a solution of the same linear
Boltzmann equation, but with random initial data [28]. At this point, it is not clear
whether or how these results carry over to the case of time-independent random potentials
or wave speeds.

1.3. Mathematical methods and outline of the thesis

To be able to state our results, we first specify the requirements on the random field £ in
Section 2.1 and give two examples for admissible choices of £&. The first task is then to
verify that (1.8) actually defines a unitary time evolution, and how this evolution relates
to an evolution with disorder g limited to a ball of radius R in R%. This is accomplished
by fairly standard PDE arguments in Section 2.2.1.

Next, we compare the dynamics generated by H¢ to the free Hy dynamics with a Duhamel
series, which, however, cannot be fully expanded because of the combinatorial factors
incurred from the moments of ¢ (this is what necessitated the restriction to short kinetic
times in [38]). Instead, as in [16, 32], we only expand up to N = O (|loge|/|log |loge||)
scattering events. This cut-off is IV is small enough to ensure that combinatorical terms

roughly of size N can still be bounded by small positive powers of €; yet, N — oo as
e — 0, so we still have a chance to arrive at the full Dyson series for the solution of the
linear Boltzmann equation.

After reaching the threshold N, one needs to find a “soft” way to stop the expansion. For
the continuous random wave equation, this problem is exacerbated by the fact that the
presence of arbitrarily high powers of V' from (1.8) in the expansion would require £ to be
C*°, an assumption we would like to avoid. Instead V is split up into “well-behaved” and
“uncontrolled” momentum changes, and after encountering an uncontrolled momentum
change, the expansion has to “fade out” in only finitely many steps (as opposed to further
O(|logel|/|log |logel) steps in [32]). A modified Duhamel expansion that accommodates
for these issues is derived in Section 2.2.2, its precise paramters are fixed in Section 4.5.

The linear Boltzmann equation and the Wigner transform are introduced in a standard
fashion, together with appropriate spaces of test functions. As the dispersion relation for
the wave equation, w(k) ~ |k| is not differentiable at the origin (an acoustic singularity),
the linear Boltzmann dynamics is not well-defined for Wigner limit measures with mass
on {k = 0}. This problem was avoided for the discrete case, [32], by the somewhat
unphysical condition |w(0)| > 0. Here, however, we gain a better resolution near the
acoustic singularity by enlarging the space of test functions, generalizing a construction
by Harris, Lukkarinen, Teufel and Theil, [23].

We can then state our main theorems in Section 3, Theorem 3.1 about the convergence of
the averaged Wigner transform, Theorem 3.2 about the vanishing variance of the Wigner
function, and Theorem 3.3 concerning almost sure convergence.
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Theorem 3.1 is shown in Section 4. After performing our version of the Duhamel
expansion, we can use the methods laid out in [16] and [32], that is, a cumulant expansion
of the expectation of each term in the Duhamel series, representing the unitary free
propagators in resolvent form, and visualizing each cumulant as a Feynman graph.

As in [32], we verify that the contributions (amplitudes) of higher order partitions,
crossing pairings and nested pairings as well as the graphs with “too many” scattering
events converge to zero sufficiently fast as ¢ — 0 to beat the growth of the number
of graphs as N — co. A main ingredient are the bounds for resolvent integrals and
oscillatory integrals presented in Appendix B and C. Moreover, as explained above, one
has to show that the uncontrolled momentum jumps vanish in the ¢ — 0 limit, as do
the amplitudes of “non-markovian” graphs, a new feature arising from the inclusion
of multiple measurements. Finally, the contributions of the simple, markovian “ladder
graphs” are shown to converge to the Dyson series for the linear Boltzmann equation.

As for Theorem 3.2, we see in Section 5.1 that all contributions to the variance are given
by Feynman graphs that connect the scattering processes (the “one-particle lines”) of
two particles. The amplitudes of such graphs vanish by the arguments developed in [§]
and refined in [7].

For the proof of Theorem 3.3, assume it is already known that almost sure convergence
holds along a subsequence of €, \, 0. To interpolate between the &,,, we observe that, at
least morally,

9 € —iH®T /e, )€ -8
o Ll {(e %)i] (z,k)a(z, k) ~ & (1.12)
for 8 > 0 possibly large, but finite. Thus, filling in the gaps between the ¢, produces
little error if &, ~ n~% for a fixed, tiny o > 0. To still be able to prove almost sure
convergence by a Borel-Cantelli argument along the sequence (g,,), one thus needs to
control very high (~ 1/a) moments of

» dzdkWe {(e—szT/ %8) J (z,k)a(z, k)
(1.13)
-E » dzdkWe {(e‘”ﬁ/ %6) J (z,k)a(z, k).
In analogy to the variance case, this is achieved in Section 6.1 by analyzing Feynman
graphs that may span multiple one-particle lines. Those Feynman graphs are then
systematically reduced to “stars”, structures in which a Feynman graph connects a
center one-particle line to a number of periphery one-particle lines. The hardest case to
estimate is a “star with only one ray”, i.e. two connected one-particle lines. This brings
us back to Theorem 3.2.
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2. Preliminaries

This chapter aims to introduce the main protagonists of the thesis. In Section 2.1, we
state the exact requirements we have for the disorder term £ in our random wave speed
c(x) =1+ /e&(x), show a few basic properties, and, to make sure we do not prove a
theorem about the empty set, give two examples. The whole thesis heavily relies on
unitarity, Duhamel expansion and support propagation properties of the perturbed wave
dynamics; we establish all those in Section 2.2.

To be actually able to recognize the limit dynamics at the end of our efforts, we devote
Section 2.3 to the linear Boltzmann equation and the corresponding semigroups, and
Section 2.4 to Wigner transforms and their limit measures.

Two conventions will be applied throughout — the definition of the Fourier transform
as the unitary continuation of

Fky = (FNw) = [ depaye=me, (21)
from Schwartz functions f € S(R?) to f € L? (Rd), and the shorthand

(@) = (14 =) (2.2)

for z € R%.

2.1. The random medium

2.1.1. Basic properties
Let (£2,6,P) be a probability space and

E:NxRT SR

(w, ) = &u(x) (23)

be a map such that w — &,(z) is measurable for all z € R?. Thus, ¢ is a random field,
[22]. Throughout this thesis, we will denote by E the expectation with respect to P, i.e.
the average over all realizations of the medium.

We require &, to be continuous on R? for P-almost all w € 2. Therefore, one can
particularly choose {2 to be the space of continuous functions on R¢, and & to be the
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2. Preliminaries

Borel sets on (2 with respect to the topology of locally uniform convergence. We will
only once make use of this explicit choice of {2 — when we construct a counterexample
to Theorem 3.3 in Section 6.3.

Furthermore, we assume £ to be stationary,

(E@1+9)s o E(n +9)) ~ (E@1), - E(0)) (2.4)

for all n € N, x1, ...z, y € R, to be bounded from below,
inf >-C 2.5
inf €(@) > (2.5)

with a deterministic constant C' < oo and to grow at most linearly at infinity, i.e. there
is an almost surely finite random variable M, such that

Eu(z) < My(1 + |z)). (2.6)

To allow for the graph expansion, we furthermore need that all moments of £ are finite,
E[l¢()]) < o0 (2.7)
for all ¢ € [0,00), and that the first m derivatives of £ are almost surely continuous

with
max E [|09¢(2)|?] < oo (2.8)

laf<m

for all ¢ € [0,00) as well. Finally, £ has expectation zero,
B f¢(x)] = 0. (2.9

A key object in our analysis are the cumulants of £, with the n-th cumulant defined as a
function ¢, : R% — R such that for any finite index set I

E[HE(%‘)] = > Il Gum:tea), (2.10)

jET Sen(I) AeS

with the sum running over all partitions S of the set I and A € S denoting an individual
cluster in a given partition S, compare [37], Chapter II, §12, equation (46). The ¢, are
easily shown to exist by mathematical induction based on (2.7), and, due to stationarity,
(2.4),

(1, ey ) = gn(x2 — 21, o0y Ty — 1), (2.11)

with g, : R4"=1) — R. As E[¢(x)] = 0, ¢; and g; vanish identically, and (2.10) simplifies
to

E

Hﬁ(l‘j)] = > JI¢a@:teA, (2.12)

Jel Sen*(I) AeS

12



2.1. The random medium

with 7*(I) comprising only those partitions of I that do not contain clusters with only
one element. Because of (2.8), the (,, are m times continuously differentiable with respect
to every argument, SO
o™ 9%
ozt dxpn
is a continuous function of the z; as long |a;| < m for all j. Thus, for n > 2 one can
define the quantity

Cn(@1, ey ) (2.13)

lgnll,, = |£ll\i)r{n /Rd(n_l) dag..dwy |05 ...05" G (21, ..oy )|

= max /Rd(nil) dyi...dyn—1 ‘8;11...8;‘:_‘11 (Oyy + oo+ 0y )™ gn(va, ...,yn_l)‘

la|<m
(2.14)
which we assume to be finite for all n > 2, with a bound
gnll,, < Cn™ (2.15)
for some C' < co. By standard Fourier calculus, (2.14) ensures a decay
n—1
Gn (D1, s P )| < CF™ lgnll (P2 + o+ po) ™ I o)™, (2.16)
j=1

with a constant Cy only depending on dimension d. For gs, (2.16) reads
52(p)| < CF™ () 72" (2.17)

However, we have to assume that even

)2 < o0, (2.18)

for some B € N, which is the case whenever

T — max max
la|<2m |g|<p

a (xBQQ(x)>‘ (2.19)

is integrable.

Definition 2.1. A random field with all properties listed above is called a field of class
(m, B).

We now want to understand the Fourier transform of £. As £ is typically not integrable,
we use the cutoff version

énla) =x () @) (220)

with R > 0 and x : R? — [0,1] smooth, x(z) = 1 for |z| < 1 and x(z) = 0 for |z| > 2.
By relaxing the cutoff, one obtains

13



2. Preliminaries

Lemma 2.1. Fiz any finite index set I and consider a continuous function f : R4 — C
with
o) <CTI W), (2.21)

jeI

q>0. Then, if m > d+q,

lim E

R—o0

[,.d0r0 HfR ]
- 3, oo TLs (o)t 4)

(2.22)
AeS JEA

Here, A? is the set A with an arbitrary element removed. The choice of this element is
irrelevant because of translation invariance of £ and the delta function in (2.22).

Proof. For all R € (0, 00),

E | T 05" [€r (9))]

jel

. 3 11
< C(‘i[l OSITS\DS(THE [(/Rd dy ’%5}2(9)’) ] (2.23)

<cf"RM max E[|6°¢(0)"]

0<|a|<m

so by Fubini’s theorem the expectation can be pulled into the integral to obtain

E

[, 000 L €to, ]

J€eI

/R\I\d d0F(O)E [/Rllld dle;[[ <£R($j)€_2”$j'9j>]
- S Z*:(I) /R‘”d 4676 /\ 1] dxH( (21 R)e™ 2™ GZ) 11 94 ( —xj, 1 J€ AO

lel AesS
(2.24)
with j4 the missing element, {j4} = A\ A*. By the estimate (2.16),
’g'fZ(pQ? ---,pn)‘ 0 < pl) <Cg" Hgn”m m m m (225)
; I (p1)™ (p2)™ .. (pn)

After applying (2.25) and m > d+¢q to both the last lines of (2.22) and (2.24), a continuity

14



2.1. The random medium

argument shows that it suffices to consider f € Cg° (R‘I ‘d). But for such f,

I%I—Igo ge%:(l /Rmd dﬂf /\I\d dxH ( $Z/R 27Fi17l'91> HS 94 ($j T ] < Aﬁ)

el

— 3 ﬁ

_R]gréo Z /Rmddxf gx x1/R) };[SgA( —xj, ]GA)

= Z /,d TT (9141 (2 = 21+ 5 € A%) X (2, /R)) -
> sm(r) R AeS

(2.26)

If we denote for a single A € S with |A| = n the 0;, j € A by p1,...,p, and the z; by
Y1, .-, Yn and without loss of generality assume z;, = y1, we have

dygn (Y2 = Y1, s Y — Y1) X (y1/R) e 2T 2007 = RAGS (py, ..., pp) X <R2pz>

(2.27)

Rnd

which converges to

6 <§n:pz> In (P25 - Pn) (2.28)

=1
as a distribution as R — o0o. This proves the lemma. O

2.1.2. Example: Poisson bumps

Denote by v, € R%, n € N the points of a Poisson point process with intensity measure
equal to the Lebesgue measure. At every Poisson point there sits an obstacle with shape
¢ : R4 — [0, 00) such that

(67

X o (1:)‘ < 0. (2.29)

d+1+8
sup (z)4T1 ma p

T || <m

The random field £ is then given as
= oz —yn) / dzg(z (2.30)
neN

where we subtracted the integral of ¢ to make the random field centered, E¢(z) = 0.

¢ is stationary by the translation invariance of the Poisson point process, bounded from
below by — [ ¢, and grows only very slowly at infinity,

Lemma 2.2. There is a random variable Y > 0 with E[e¥] < co such that

sup [{(x)| < Y log(r + 2). (2.31)

|lz|<r

for allr > 0.

15



2. Preliminaries

Proof. First, assume ¢ to be supported on the cube W = [~1/2,1/2]¢ and to be bounded
by 0 < ¢ < 1. We furthermore drop the “centering” term and consider only

& (@) =Y oz —yn). (2.32)
neN
Obviously, for any z € R?
0<&(z) <#{yn € x + W} ~ Poi(1). (2.33)

Fixing any r > 0, define the cube V; = {z € R? : |z|s < r}, which can be covered
by (2[r] + 1)¢ disjoint (up to sets of measure zero) translates of W, centered around
z € ZN V. Because each o + W, x € V. is covered by at most 24 of those translates,

sup £*(z) < sup ${yp € 2+ W} <2 max #{y, €z+W} =217, (2.34)
zeV;y zeV; 2€ZNVIr

with Z, the maximum of (2[r] 4+ 1)¢ independent Poisson Poi(1) variables, so

(2[r] + 1)

Il ’
and P(Z, > log(r + 2)) decays faster than any negative power of r. Thus, there is a
random variable R > 0 with all moments finite such that

P(Z, > 1) < (2.35)

sup £*(z) < 2¢log(r +2) (2.36)
JSEVT

for all » > R. For r € [0, R], on the other hand,

sup £*(z) < sup £ (z) < 2d log(R+2) < Yplog(r +2) (2.37)
eV, z€VR

with a random variable Yy = 2¢log(R + 2)/log(2), so E[e’¥?] < oo for all 8 > 0. Thus,
for all r € R?

sup £*(z) < sup {*(z) < Yolog(r +2). (2.38)
je|<r 2€V,

If, instead, ¢ is supported on z + W, z € Z%, and ¢ < b,, then there is a Y, distributed
identically to, but not independent of, Yy such that

sup £*(z) < b,Y, log(r + 2) (2.39)

lz|<r
for all » > 0. If ¢ is chosen generally, with 0 < ¢ < b, on z+ W, z € Z¢ and

d b.=B<x (2.40)

z€Z4

(which is definitely the case for ¢ as in (2.29)), then

sup £ (z) < Z b, Y, log(r +2) =Y log(r + 2) (2.41)

|lz|<r

16



2.1. The random medium

with
E [ey} =EK lH V2| <E Z b;em/z] = Z ng [eﬁyo} < o0. (2.42)
z z z
O
Lemma 2.3. As & is centered, (1 = 0, while for n > 2
Go(area) = [ ay [ ot ).
RT =
n—1
9n ($17 7'/1:77,71) - d dyd)(iy) Qb(l’l - y)7
=t (2.43)

o~

G0ty o p) = 5(p1 + o+ 1) [T 300,

Together with (2.29), this directly implies (2.8), (2.15) and (2.18) for the random field &
at hand, so & is of class (m, B). In particular, Go = |¢|%.

Proof. We only check the first line of (2.43), the others then follow by standard Fourier
calculus. For simplicity, we consider the cumulants ¢, of the non-centered field £* from
(2.32), and can follow [27] in our derivation of the moment-generating function of (. If
for some finite index set I, f; : R — R, [ € I are simple functions, i.e.

k
film) =" oyila,(2) (2.44)
j=1

with k € N, A; C R? disjoint Borel sets of finite measure and aj; € R, the random
variables

k
X = %ft(yn) = ; aiiN(4;), (2.45)

N(A;) being the number of Poisson points in Aj, are well defined. As the N(A;) are
independent for disjoint sets,

k
Hein] = H E |exp (iZale(Aj))
j=1

lel lel

E

k
Lo () (S -1). a0
=1

where we denoted the Lebesgue measure of A; by |A;| and inserted the characteristic
function of a Poisson-|A;|-distributed random variable. Thus,

Hein] = exp </Rd dy (eiZleI fly) _ 1)) , (2.47)

lel

E

17



2. Preliminaries

which by pointwise approximation also holds for general bounded and integrable functions
f; : R® - R. By dominated convergence,

. d ;
| I X _ I | _ E | | it} X
el lel lel t;=0 VjeI

= g < .dil~> exp (/Rd dy (eizla fly) _ 1))

Without loss of generality, we assume I = {1,...,[I|}, I = I\ {1}, first take the ¢;
derivative and then use the product rule |I| — 1 times to see that

HXz] = le_lll (—2(3) {exp (/ ( Den, i) _ 1)) / dye Dien Sl )fl(y)}

SOR: Hxl] [ vt T1 st

JeP(I) |leJ len\J

(2.48)

t;=0 Vjel

(2.49)

Mathematical induction in the size of I then yields a sum over all partitions of I,

E[HXl] > 11 (/ dy [] fiy ) (2.50)

lel Sen(l) AeS leA

and one can read off the cumulants

Cum (X;, ..., X,)) = /Rd dyl:f[lfl(y). (2.51)
With fi(y) = é(z; —y), Il = 1,...,n, the cumulants of £* equal

C (1, / dyH¢> (7 — (2.52)

Forn > 2, ¢, = (. O

2.1.3. Example: Disorder term derived from a Gaussian field

While the random field £ from Section 2.1.2 exhibits a simple explicit formula for the
cumulants, it may take arbitrarily high values, which makes its physical interpretation
as a wave speed questionable, although it is mathematically admissible for our purposes
due to its slow growth behavior. Physically more realistic are random fields £ that are

18



2.1. The random medium

bounded and owe their nice cumulant behavior to exponential mixing. For example, let
K : R% — R be given by its fourier transform

)7(d+1+2m) /2

K(p) = (1+ |27p]? : (2.53)

from which one can directly read off that K is continuous and bounded together with
its first 2m derivatives. Moreover, as its Fourier transform is a non-negative, integrable
function, K is positive definite by the Bochner-Schwarz theorem, [34], and by Theorem
12.1.3 in [12], there exists a probability space (£2, F,P) and a centered Gaussian process
(W(x)) epa With covariance

E[W(x)W(y)] = K(x —y). (2.54)

According to Theorem 1.4.2 in [1], W is almost surely m times continuously differentiable.
For |a] < m, 0SW (x) is again a stationary Gaussian process with covariance

E [05W ()05 W (y)| = (-1 (0K (z — y). (2.55)
In particular,
\SE%E [|0SW (z)|] < o0 (2.56)

for all ¢ € [0, 00). By Theorem 1.14 in [41] one has
K(z) = Cym /]R _dye VIR (2.57)

and therefore

K (@)| < Camae /2 (2.58)

for all multiindices a and all z € R? with |z| > 1.

Now let A, B C R? with dist(A4, B) = r > 1. Let H4 and Hp be the Gaussian Hilbert
spaces generated by the span of {W(x): x € A} and {W (x) : © € B} respectively, and
denote the sigma algebras
A=c(W(x):z€ A) and B=0o (W(x):z € B). (2.59)
By Theorem 10.11 of [25], for random variables X € L? (2, A,P), Y € L? (12, A, P) with
E[X] = E[Y] = 0 and E[X?] = E[Y?] = 1, one has the bound
[EXY]| < ||[P(Ha,Hp)l| =  sup  [E[UV]]. (2.60)
UeH ,,VEHR

E[U2]=E[V?2]=1

Here, P(H 4, Hp) is the projector from H4 onto Hp. To estimate the sup on the right
side of (2.60), it suffices to consider finite sums

U= ZO&]'W(:L‘]') (l’j €A, aj € R),
=1 (2.61)

V=> BW(w) (v € B, B € R).
=1
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2. Preliminaries

In this case,

n

E[UV] =Y aiBiK(zj—u)= Y a;f /Rd dpK (p)e2™(#i—w)»

Ji=1 jil=1 (2.62)
= | K @u@)@)
with
) = 3 g,
= (2.63)
op) = Y- e,
=1
while
L R@l)? = [ apR@)em)? =1. (2.64)

Now proceeding similar as in [10], one can apply a smooth cut-off at radius r to K and
obtain a K, : R? — R such that K,(x) = 0 for all |z| > r, that is close to K in the
sense

H<v>d+2m+1 (K — K,)

n S Came™"?, -
‘(IA(_ f?) (p)) < CymK(p)e™"?, (2.65)

where we used (2.58) and (2.53), and redefined the constant Cy,,. As |z; —y;| > r for
all 7,1,

|, R @ulev(r) = 0 (2.66)

and therefore, by Cauchy-Schwarz,
EUV] < [ dp|(E-K) )] [ulp)otp)
R4

N . B (2.67)
< Came "2 [ pR@Iup)o@)] < Came "%

thus implying exponential mixing (in the sense of exponentially vanishing strong mixing
coefficient, Definition 10.5 in [25]). The same estimate is trivially true for r < 1.

Choose a function ¢ : R — R that is bounded together with its first m derivatives.

Furthermore, assume that
E[p(W(0))] =0, (2.68)

for example by ¢(w) = —¢(—w). Now let
§(z) = o(W(x)). (2.69)
Lemma 2.4. For any choice of d,m € N, £ is of class (m,3) for all 3 € N.
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2.1. The random medium

Proof. Stationarity carries over from W, and boundedness from ¢. The moment bound
on the first m derivatives of £, (2.8), is due to (2.56). £ is centered by (2.68).

The only non-trivial issue are the cumulants. With ni,ne € N, let :Ugl), o a:%ll) €A CR?
and xgz), e x%) € Ay C R? such that dist(A;, As) > r, and define the index set

I={(1,1),..(1,n1),(2,1), ..., (2,m2)} . (2.70)
For any cluster C C I, set C; ={(j,1) € C:7=j}, j =1,2. Then

[1 ¢(Wa)-E

(4:1)€C;y

II ¢ (W(x%)] (2.71)

(4,1 €C;y

is (with the notation analogous to (2.59)) a centered L?(§2, A;,P) variable for j = 1,2,
and therefore

E[(H gZ)(W(a:l(j)))] —]E{ II ¢(W(1’l(1)))]ELn ¢(W(xl(2)))H (2.72)

5heC (1,H)eC 1)eCy

Cl| —
< CamlollSLerr2.

By re-expressing the cumulants in terms of moments (as in [37], Chapter 11, §12, equation
(47)), one has

‘Cm (xl(” : (], l) S I)‘

POR(EIES ISVl I B2

11 5<:c§”>] |

Sen(I) ces JheC
< 3 (18I = DSl Came " (2.73)
Sen(I)
IR CIES HE{ 11 £<x§”>] E[ 1 5(:052))”
Sen(I) ceS (1,h)eC (2,)eC

< Camld 7572 (g +n2))? e/ + 0.

The second to last line vanishes as it looks just like the cumulant for the case that the
f(xl(l)), Il =1,...,n1 are independent of the §($l(2)), Il =1,...,ny. Cumulants for sets of
random variables that decompose into two nonempty independent subsets are always
zero, as can be easily shown inductively from (2.10).

For n > 2, y1,...,yn_1 € R, the set {0, 91, ..., yn_1} can always be decomposed into two
nonempty sets with distance larger or equal to max; |y;|/n. Therefore,

max; |y,
‘gn(ylv "'7yn71)| < |C7’L (Ovyla "'7yn71)| < Cd,m‘|¢||7£°° (’I’L‘)2 eXp (_M)

2n
A+t |yn1|)
2n2 ’

(2.74)

< Capll9ln exp
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and
/Rd(n_n dyr-.dyn-1 |gn (Y1, s Yn-1)| < Cam (4] ]| o)™ ™" (2.75)

Arguing similarly, one can estimate up to m-th derivatives of (,, with respect to every
variable, and thus obtain a constant C' = Cgy, ¢ < 0o such that

gnll, < CnE™ (2.76)

for all integer n > 2.

Finally, (2.18) holds for all 3 € N because 0%ga2(), |a| < 2m decays exponentially in
x. O

Corollary 2.5. By the same token, any centered, stationary random field £ is of class
(m, B) for all B € N if it fulfills the following two conditions:

e & is almost surely m-times continuously differentiable with bounded derivatives

P (max
la|<m
for some deterministic finite C.
e There is a constant C < oo such that for A, B C R with dist(A, B) > r,
|Cov(X,Y)| < (B[X2E[Y?)/2Ce/¢ (2.78)
forall X € L? (2,0 (&(x) i € A),P), Y € L? (2,0 (£&(z) : z € B),P).

(67

(@) < C’) =1 (2.77)

2.2. The perturbed time evolution and its generator

2.2.1. Existence and unitarity

Let ¢ € C1(R%,R) with ¢ > 6 > 0 and at most linear growth at infinity, c¢(x) < M + M|x|
for some M < oo. We first consider the dynamic this wave speed ¢ generates on a
bounded set, and set B = Br(0) C R? to be an open ball of finite radius around the
origin. Set Hp to be the space of functions (u,w) € Hg(B) x L*(B) (employing the
usual notation for Sobolev spaces), endowed with the scalar product

(. wn): (w2 = [ (vw) Vua(z) + W) i (@7)

which makes Hp a Hilbert space. On the dense subspace
Dy = (H*(B) N Hy(B)) x H}(B) C iz, (2.80)
define the operator Ag : Dg — Hp by
Ag(u,w) = (w, —c*(x)Au), (2.81)

which is symmetric with respect to the scalar product (:;-) 5.
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Lemma 2.6. Apg is self-adjoint.

Proof. As ¢ > 6 > 0 everywhere, the operator —c?A is uniformly elliptic. Therefore, by
[19], Chapter 6.2, Theorem 3, there is a 7 > 0 such that the boundary value problem

—Au+yu=g— i/ f on B (2.82)
u=20 on 0B (2.83)

has a weak solution u € H}(B). By the H? regularity theorem ([19], Chapter 6.3,
Theorem 4), u € H%(B). If we now choose w = f —i,/yu € H{, we see that (u,w) € Dp
and

Thus, ran(Ag +i,/7) = # 5. By the same argument, Ar — i,/7 is onto as well, and Ag
is self-adjoint. O
As a self-adjoint operator, AR generates a strongly continuous unitary group e AR,
t € R on Hp, which is strongly differentiable on Dg. Thus, for (ug,wp) € Dp and
(u(t), w(t)) = e~ 4% (ug, wo), (2.85)
one has q
i (u(t), w(t)) = (w(?), —c Au(t)). (2.86)
Setting v = —iw, this actually is the solution to the wave equation
0
—u =
ot (2.87)
0 2 Au
—v=c
ot ’
however only on B, and with the boundary condition
u=0on 0B. (2.88)

To obtain solutions of the wave equation on the full space R?, we use that initially
compactly supported solutions cannot travel to infinity in finite time.

Lemma 2.7. Let B = Bgr(0), R > 0, define for r > 0 ¢, = sup{c(z)|z € B,(0)} and
let r(t) be the solution of 7+ = c,,, starting from some r(0) € (0,R). If T > 0 such that
r(T) < R and (ug, wo) € Hp with ug = wo = 0 on Br(0) \ B(0)(0), then for the solution
of the wave equation (with operator Ar defined on Br(0) as above)

(u(t), w(t)) = e "7 (ug, wp), (2.89)

one has u(t) = v(t) = 0 on Br(0) \ B,)(0), for allt € (=T, T).
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Proof. First, consider (ug,vg) € Dp. Without loss of generality, concentrate on t € [0,T)
w(x,t)

and define
1
E(t :f/ Vu(z,t 24
() =3 B (I (z,t)] @)

As (u(t),w(t)) € Dp for all t € [0,T), the following calculation (which is a generalization

of Theorem 6 in Chapter 2.4 of [19]) is justified due to the strong differentiability of
o—itAR.

2
) dz. (2.90)

d
&E(t) = —Im /Br(t) (Vw(:):,t) -Vu(x,t) + w(:r,t)Au(m,t)) dz
Cr(t) w(z,t) 2
T /8&(” (Wu(%t)ﬁ * c(x) ) 45(@)
= —Im o5, w(z,t) (Vu(z,t) - v(z))dS(z)

Cr(t) w(z,t)|?
+ T /é)BT(t) OVU(x?tHQ * ‘ C(J}) ) dS(x)

w(z,t)
> — —=| |Vu(z,t)|dS 91
Y A o IR (291)
2
Cr(t) / 2 |wlz:t)
+ 5 o8, (\Vu(x,tﬂ + @) dS(x)
2
> <|Vu(x,t)]2+ D) as(z)
2 JoB,.g Cr(t)
2
Cr(t) / 2, |w(@,t)
\Y t ds
5 (\ (e, + %750 ) ast)
>0

where we denoted by v the outward normal of 0B, ;). As E(t) < ||(uo, wo) |% by unitarity
and E(0) = ||(u, wo)||% by assumption,

E(t) = ||(uo, v0) |5 (2.92)
forall ¢ € [0,7"). This proves the lemma for (uo, 1)02 € Dp. For general initial states from
‘Hp, the assertion then follows as Dp is dense in Hp and e AR ig unitary. O
Now let .

H = {(u, w) € H' (Rd> x L? (Rd) : spt(u, w) compact }, (2.93)
which is a pre-Hilbert space with the scalar product
1
(s, w0): (w2 =+ [ (w(x) V() + “W) dr. (2.9
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2.2. The perturbed time evolution and its generator

Also denote the subspace
D= {(u,w) e H? (]Rd) x H! (]Rd) : spt(u, w) compact } (2.95)

Lemma 2.8. Let ¢ € CY(RY R) with ¢ > 6 > 0 and at most linear growth at infinity,
c(x) < M + Mlz| for some M < oo. For balls Bg with radius R around the origin,
define the operator Ag as before. Then for any t € R and (ug,wp) € H, the limit

U(t)(ug, wo) = P}g{lx) e AR (4, wy) (2.96)

exists. U(t) : H—Hisa norm-preserving, strongly continuous group of operators. It is
strongly differentiable on the invariant space D.

Proof. 1f ug, wo are supported in a ball of radius r(0) around the origin, then (ug,wp) €
Hp, for all R > r(0). Moreover, for r(T) as defined above one has the estimate

r(T) < C(M,r(0))eMT, (2.97)
so for all R > C(M,r(0))eMT and all t € (—T,T),

spt (e_itAR(uo, wo)) C int Bg(0). (2.98)

Thus e 4% (ug, wp) is independent of R for R sufficiently large, and U(t)(ug,wo) is
well-defined. The stated properties of U(t) directly carry over from e~ 4z, O

Lemma 2.9. The map & : H — H = L? (Rd; C2)

L (V=Autw/e) (¢
Eelu,w) = 5 <Mu—w/c> = <w+> (2.99)

is norm-preserving. E.(H) is dense in H, so are E.(D) and even &. (Cgo(Rd) X Cgo(Rd)).

Proof. The first assertion is immediate from (2.94). As for the second claim, it is enough
to show that &, (C'SO(RCZ) X C’go(Rd)) is dense. ¢y —v¢_ € L? (Rd> can obviously be
approximated in L? by w/c, with w € C§°(R?). For the approximation of ¥4 +_, note
that v/ —ACS(R?) is dense in L2(RY) as C$°(R?) is dense in S(R?), v/—A : S(RY) —
L2(RY) is continuous, and +/—AS(RY) contains all Schwartz functions with Fourier
transform supported away from zero, which is a dense set in L?(R%). O

We collect our results to find

Theorem 2.10. U(t) is lifted by E. to a norm-preserving, strongly continuous group of
operators acting on a dense subspace of H. Therefore, there is a unique continuous exten-
sion to H, the strongly differentiable unitary group e et : H — H, t € R with generator
H.. On the invariant, dense subspace D = &, (15), e et s strongly differentiable, so
D is a core for H..
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On D, the operator H, is given as

1 <\/—Ac +eV=A —/=Ac+ c\/—A>

H, (2.100)

T2 \VEAc— /A —V/—Ac—cy/-A

with the unperturbed wave equation with ¢ = 1 generated by

Hy = (V? _\%) . (2.101)

Note that H,. actually depends on the particular choice of ¢, while D does not.

2.2.2. Duhamel expansion with smooth cut-off

Before we start to compare the dynamics created by H. and Hy with a Duhamel series
expansion, we have to make two observations about H, as defined in (2.100). First, as c is
acting as a multiplication operator in position space, in momentum space it will formally
be a convolution with ¢, which is only well-defined as a distribution. We will therefore
have to introduce a suitably cut-off version cp of ¢ to justify our calculations. Second, as
v/ —A is a (pseudo)differential operator, iterated applications of H,. will require us to take
arbitrarily high derivatives of the initial state 1y (which does not pose a problem, as one
can concentrate on a dense set of smooth initial states) but also of ¢. A straight-forward
application of a Duhamel expansion as in [32] would therefore require ¢ to be C* (and
actually, in order to obtain suitable bounds for all terms, fulfill very strong estimates
on its derivatives). Therefore, we will have to split up the action of ¢ into a smooth
part, and a rough part that we will only have to apply finitely often, thus making the
Duhamel expansion possible for ¢ that only have finitely many derivatives. As for the
first part, one has

Lemma 2.11. Let c(z) = c,(x), * € R? a C random field with 0 < c,,(z) < M, (1+]|z]),
M, almost surely finite, and let x : R — [0,1] be a smooth function with x(z) =1 for
lz| <1, x(x) = 0 for |x| > 2. Let H, = H., be the (random) self-adjoint operator
associated to c,, and HE be the one belonging to the cut-off field

B(2) = co(z)y (R> . (2.102)
Then for any fized t and g
Hexp (—iHot) Yo — exp (—iH[t) ¢0HH 50 (R— ) (2.103)
both almost surely and in L1(P) for all ¢ < occ.

Proof. First, let o9 € D. The corresponding (ug,wp) with & (ug,wy) = g, are com-
pactly supported, so as in the proof of Lemma 2.8, we find for any given ¢ € R an almost
surely finite R(w) such that

U(t) (’U,(), ’u}o) = exp (—itAR(w)) (UQ, wo). (2.104)
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2.2. The perturbed time evolution and its generator

However, the definition of Ag(,) is the same for ¢, and c® for all R > R(w). This
proves the lemma for 19 € D. The general case follows as D C H is dense and from
unitarity. O

Supressing the w-dependence, we now look more closely at the special case of wave speeds
defined by

c(z) =1+ e&(x) (2.105)

the resulting operators H¢ and their “cut-off” versions H>. As cp is bounded from
above and away from zero, the domain of H5% is explicitely given as the Sobolev space

D (H*") = D (Ho) = H' (R%;C?). (2.106)
Let £r(z) = £(z)x(z/R) denote the cut-off version of £ and define

Ve (MsR +ErV=A  —V=Alg +ErvV -4

R __ &R _ V<
VEVE= IR = o = 5\ = A — ény/= A —M@—&am)' (2.107)

Now fix an L € (0,00). The operator M¢ g multiplying L? (Rd) functions by &g is given
by

~

F (Merf) (k) = [ dpnlk = p)f0) (2108)
in Fourier space for any f € L? (Rd>. We split it up into

Mg r = M¢ g, + Mgoﬁ% = My, + M;o"e" (2.109)
with

~

FMef) (k) = [ dkaéalka k) Fk)g (| = L)
+ [ dpalke = k)T = 9) (il = D kel = L) (2:110)
= /Rd dpEr (ks — k1) f(k1)®(ka, ki, L).
Here, ¢ : R — [0, 1] is smooth, p(s) = 1 if s <0, p(s) = 0 if s > 1/2 and & is given as
Bz, k1 L) = @ (k| = L) + (1= ) (k| ~ D)o (ko —L). (2111

)

Roughly speaking, My, lets the the momentum jump from “small” to (possibly) “large’
momenta or the other way round, but it never maps “large” to “large” momenta - these

cases occur only under Mzough. If&eom (]Rd; R), m > 1 almost surely, one has

IMLfllgrm < Crrwllfllz2 5 (2.112)

with the Sobolev space H™ (Rd) defined by all functions g with g(p)(1+|p|)™ € L? (Rd).

On the other hand, in that case, Mzough almost surely maps H" (Rd> continuously into
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H! (Rd) for all I < min{m,r}. (The operator norms of all these mappings depend on w

and diverge as R, L — oo, but quantitative estimates will only be required lateron). On
D (H 87R>, one can now define

(2.113)

VR:E V=AM + M/ —A —/—AMyp, + M/ —A
L V=AM, — Miv/—A —/—AM — Mpv/—A

and equivalently

g _ L (VEAMER M SR AN MR
L 9 \/jMEOUgh*MEOUgh\/j *MMEOUgh*MEOUgh\/j . .

Almost surely, VLR maps D (H €’R) = H! (]Rd;(CQ) continuously into H™~! (Rd;(CQ),
while U (and therefore V) maps H" (Rd; CQ), r > 1 continuously into H' (Rd; (CQ),
I = min{r,m} — 1.

Lemma 2.12. (Duhamel expansion with “abrupt cut-off”) Let R € (0,00), &g €
cm (Rd) with m > 2, N € N, L = (L1, Lo,...) € (0,00)N, ¢ € D(Ha’R> and any

fized time t > 0, the following expansion holds with all integrals well-defined as Riemann
integrals of continuous H-valued functions.

N-1 N—
e MMy = 37 Fn(t; R, Loe)d + Z E"(t: R, Loy + R (5 R, Ly e}y,
N=0 N=
N
Fy(t;R,L,e)) = / v, 480 )e HosN 41 (i [eVE ). (—in/eV]E e oSty
R+
N

+1
+1
Z 3l> ele SN+1( Z\@UEN)
=1
,zHosN( Z\/VLN 1) ( Z'\/gvlﬁ)efiHoslw’
> s
=1

R
rough /. o
Fy o (R, Le)y = /Rf“ dsé (t
X
; (t
X

N+1 -
REYG R, Ley) = / dsé |t — e TN (i 2V E)
e_ZHOSW(—Z\/EVI{%_l)...(—i\@Vﬁ)e_iHoslw.
(2.115)
Occasionally, we will use the shorthand
' N-1
P (4G R, Lye)y = Fn(t; R, L, &),
N=0
2.116
1 (2.116)
Ry(t; R, Leyp = > FN""(t; R, L,e)y + R2(t; R, L, e)y.
N=1
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2.2. The perturbed time evolution and its generator

Proof. As € D (HE’R> = D (Hy), we can differentiate

die—i-’iHE’Rse—iHosw _ e—i—iHE’RS(Z‘\/ng)e—iHosw. (2117>
S

Integration from 0 to ¢ immediately yields

. . t . .
esz ,Rt¢ _ eszot,l/)_’_/ dsesz ’R(tfs)(_i\/ng)ef’LHQs,lp
0

= FO(tv Ra La5)¢ + Rl(ta R) Lﬁ)ﬂ%

(2.118)

with the integrand a continuous function from [0,t] to H, proving the lemma for N = 1.
Now assume (2.115) holds for some N > 1. We split the V¥ in the R%d term,

N+1

end /.. _ —iHe s . R
RZ(G R, Le)y = /Rf“ dsé (t - Z sl) e N+1(—i/eEVT)

=1
x e MO (—i/eVE ). (—iveViT e oty
_ prough/,.
=Fg (t; R, L, &)Y

N+1 -
—i—/f dsd |t — E S i
RY*

=1
X (—iveVi)e N (—ieVE ). (—ivEVET e ooy,
(2.119)

As ¢ € H! (Rd; (CQ), by the above findings for the VLRN and the fact that Hy is diagonal
in Fourier space,

(81, e 577) (—iﬁVfﬁ)e’iHOsﬁ(—iﬁVfﬁil)...(—i\/EVLI?)e’iHoslw (2.120)

is a continuous function RN — H™M~1 (]R{d; (C2). Since m > 2, the last line of (2.119) is

in D (HE’R) = D (Hy), and we can reiterate the argument leading to (2.118) to rewrite
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the exponential exp (—iH‘g’RsNH),

R2Yt R, Le) = P84 (t; R, L, )

N+1
ZHUSN+1
ﬁ

ZHOS N(—iVeVE ). (—iveVii)e ooy
+ dso N+2 S YN )
N+2 S (AVZ

HN (—ivEVEL) . (—iVeVi e oy

— Fgugh(t; R,L.e)y + Fﬁ(t; R,L,e)+ RS (R, L,e)y.

(2.121)

By mathematical induction, this finishes the proof. O

Y= v+ L 2 (0
+ > (0
+ ® L 2 P

Figure 2.1.: The expansion of Lemma 2.12 for N = 2, with double (single) lines repre-
senting the full propagation generated by H®% (the free dynamics generated
by Hp). The solid diamond denotes a scattering off Vﬁ, while an empty
diamond stands for Ufl , and interaction with the full V# is indicated by a
black bullet.

The physical idea behind the Duhamel expansion in Lemma 2.12 is to interpret the
perturbed dynamics as a free wave that undergoes scattering off inhomogeneities, and
to expand to the N-th scattering event. However, for N < N, one will only continue
to expand in case of a “well-behaved” scattering event (described by VLRN). In case of a
“bad” scattering event (U EN), the expansion is stopped immediately. Now this abrupt
stopping rule has to be smoothed out to guarantee that the remainder terms R%‘d and

N Fﬁ?ugh vanish in the kinetic limit. This is accomplished as in [32] by expanding those
terms a bit further, adding a weak exponential decay. However, once a UEN has occurred,
we can only expand further for finitely many scattering events - m — 2, to be precise.
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2.2. The perturbed time evolution and its generator

Lemma 2.13. Let R € (0,00), &g € C™ with m > 3, § € H™ 2 (R%C?), k> 0 and
7> 0. Then for all M € {1,....,m — 2},

M+1

_ZHE RTQJ) Z \/\]MJF1 < Z 5l> e—i(HQ—iH)SAj+1

=1

(—Z\[VR (—Z\/>VR) —i(Ho—tk Slw
M+41 ]
+K Z / dsé (7’ — Z )e_ZHE’RsM“

=1
X e~ i(Ho—ik S]\/[( vaR) ( i\/gVR)e_i(HO_iH)Sllz

M+1 3 € . - ~
+ forre 450 (T— > sz) ¢ HN ST (i eV R, (—in/EV Ry i HomiR)si ),

M
RY =1

(2.122)

with all integrals well-defined as Riemann integrals of continuous H-valued functions.

Proof. As ) € H™ 2 (]Rd; CQ) cD (H&R) = D (Hy), one can proceed as in the previous
proof to obtain

e_iHE’RTQ;:e—iHOTQZ)_f_/ dse—iHE»R(T—s)(_Z-\/gVR+K)e—i(Ho—m)81[,’ (2.123)
0

which proves the assertion for M = 1. Now assume that M +1 < m — 2 and (2.122)
holds for M. Consider the argument of e i1 i the last line of (2.122). Since the
spaces H” (Rd; C2>, r < m are conserved by the action of e~ iHo=im)snm while VE maps

them to H™ ! (Rd; (CZ), we see that M such operations yield
(—i/EV ). (—iy/EVR)e iHomim)st,), ¢ prm—2-M (Rd; <c2) c H' (Rd; (CQ) o (2.124)
Thus, we can once more apply (2.123) and conclude by mathematical induction. O

Lemma 2.14. (Duhamel expansion with “smooth cut-off”) Let m > 3, R € (0,00),
Ep € CM (Rd), W€ Hm1 (Rd;c2), L= (L, La,..) € (0,000N, k>0 and t > 0. Then
for all M € {1,....,m — 2}, and all N € N, we have for the quantities from Lemma 2.12

Fﬁ?ugh(t‘R L&)y
= Z < rough (t; R, L,e, K 1/}+/¢/ dre= =" (1= T)Gl;\?[u]%,h(r R,L,¢ m)w)

b [ dre T A 0 1, s

(2.125)
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- - o eeeni)
I § = PO ”
+ —e------- ®----mm-- W

Figure 2.2.: The expansion given in Lemma 2.13 with M = 2. As before, the double
solid lines mean propagation by the dynamics created by H*®, while dashed
lines correspond to Hy — ix. The bullets represent V2, while x denotes
“interaction” with the imaginary potential —ik.

Ne{l,...,N — 1}, with

G (s R, L e, k)t
M+N+1

= v dsd (T — lzl sl> e*i(HO*m)s““”\”fl(—i\@VR)...(—i\/EVR)e*i(HO*”‘)“)’N+1
+ =

x (—iVEUf, Je HooN (—i/eVE ). (—iyeV[)e Homy

(2.126)

and

rough/ .

AM,N (3R, L,e, k)Y

MAN P o
= ey dsd | 7 — ; s (—i\@VR)efz(Hofm)sﬁ+N...(—i\@VR)e_Z(HO_m)SN“
X (—in/EUT e oSN (—in/eVE ). (—in/EV] e Tos1q),

(2.127)

Stmilarly,

M-1 t —
R%ld(t;RvL’s)w — Z (G";\f]\[(t;R,L,s, k)Y + K/O dre™H ’R(t_T)G?\?I%(T;R,L,& E)Tﬂ)

M=0
t —iH® R (t—r) gen
+/0 dre (1 )AM?W(T;R,L,s,E)w,
(2.128)
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2.3. The linear Boltzmann equation

with
end .
GMW(T, R,L,e k)

M+N+1

= /Rf“\’“ dsd (T - > sl) e HO=Ma R (i VR (—iy/eV ) Hom i)y,

=1
X (—iy/eV e Hoow (—iv/eVIE ). (—iveV)e oy
(2.129)

and

A%?N(T; R,L,e, k)

M+N ' ‘ ' ‘
= R?“'N dsé (7’— Z Sl) (_i\/ng)efz(Hofm)sﬁJrﬁ_“(_Z‘\@VR)efz(Hofm)sﬁH

=1
« (_i\@VR)efiHoSﬁ(_i\/giﬁ)m(_i\@Vlﬁ)efiHoslw'
(2.130)

Again, all integrals are well-defined as Riemann integrals of H-valued continuous func-
tions.

Proof. Note that, as 1 € H™ ™1 (]Rd; C2>, and by the properties of the VLRN and UEN, all

arguments of the full unitary e~ s on the right side of (2.115) are in H™?2 (]Rd; (CQ).
Thus Lemma 2.13 is applicable, and the claim follows. O

2.3. The linear Boltzmann equation

As soon as the distribution of the random field ¢ is such that go € L! (]Rd) (which will

clearly be the case under the much stricter conditions of Theorems 3.1, 3.2 and 3.3),
g2 will be bounded, continuous and non-negative (the latter by the Bochner-Schwartz
theorem, [34]). Therefore, for each k € R?, the measure vs.(k, -) given by

el B) = [ dW|2k{Ga(hk — K)5(1kl ) (2.131)
B
for any Borel set B C RY is non-negative, and
Owc(k) = e (R, RY), (2.132)

is uniformly bounded for & from compact subsets of R?. For either sign o € {#}, one can
define a Markov process (z(t), k(t))¢>0 with cadlag paths on the space RZ x (]Rd \ {O})k
similar to the one in [32]: For x(0), and k(0) # 0 given, k(t) = k(0) for all ¢ € [0,¢1) with ¢;
an exponentially distributed waiting time with parameter oy (k(0)). The momentum k(¢;)

33



2. Preliminaries

is independent of ¢; and distributed with the probability measure vg.(k(0), -)/0sc(k(0)).
The momentum then jumps again after a waiting time to (which is Exp (os.(k(1)))-
distributed), to a position k(t; +t2) with distribution ve.(k(t1),-)/0sc(k(t1)). The process
k(t) is almost surely piecewise continuous and |k(t)| = |k(0)| # 0, so

[t k(s)
(1) _a/o ey (2.133)

is almost surely well-defined. From the continuity of g3 and the local boundedness of oy
it is easy to see that on Cy (Rd X (Rd \ {0})) (the continuous functions on R?? vanishing

at infinity and on {k = 0}), this process gives rise to a probability semigroup as defined
in Definition 3.4, [29]. Thus, by Theorem 3.26 in the same book, (z(t), k(t))i>o is Feller

and has a generator £, which is densely defined on Cy (]Rd X (Rd \ {O})) The smooth,

compactly supported functions a € C° (Rd X (Rd \ {O})) are a core for £, with
k
(Loa) (x, k) = (/d vee(k, dk")a(z, k’)) — ogc(k)a(x, k) + am -Vga(z, k) (2.134)
R
for such a. For all a € Cj (Rd X (Rd \ {O})), the probability semigroup can be expanded
into

(eﬁ”ta> (x, ko)
o) n
:;]/RW dso...dspd (t—;sl> /Rd usc(kzo,dkl).../Rd vrelbor, k) 1
n n k
exp <—Zasc(kl)sl> a (x + UZslk—l, kn> .
1=0 = |kl

for t > 0, z € R, kg # 0. Note that (2.135) actually defines a (no longer strongly contin-
uous) semigroup on the space of all bounded continuous functions on R? x (]Rd \ {0}),
which, in a slight abuse of notation, we will still refer to as e“e*, t > 0. In particular,
this semigroup now operates on test functions of type FL!(C?), to be defined in Section
2.4.1.

Starting from any bounded Borel measure jg , on R? x (Rd \ {0}) as the initial distri-
bution of (z(0), k(0)), we obtain the distribution at time ¢ > 0 by applying the adjoint
of the semigroup,

pox = (") s (2.136)

The measure fi, is a weak solution of the linear Boltzmann equation

d k
aumt(x, k)= /d Vse(ky AK Vot (2, k') — e (k) prot (2, k) — am - Vattor(z, k) (2.137)
R
in the sense that
d

d
Ma,t(dx7 dk)a(xa k) = 37

dt /RdX(Rd\{O}) pot(dz,dk) (Loa) (z,k)  (2.138)

dt /]Rlix(Rd\{O})

for all a from the domain of £,.

34



2.4. Wigner functions

2.4. Wigner functions

2.4.1. Definition and limit behavior

For functions f € L'(R%), d € N, we define the Fourier transform Ff = f: R? — C as

o~

FN@Iw) = [ dofl)emer, (2.130)

so that the continuous extension F : L?(R?) — L2?(RY) is unitary. For functions defined
on classical phase space, a : R? = R? x ]Rz — C, F and ~ shall denote the Fourier
transform only with respect to the first, position, variable,

(Fa)(p, k) = a(p, k) /R dza(z, k)e 2T, (2.140)

For the moment, one may assume a to be a Schwartz function. To a function ¢ € L2(R?),
one may assign a function W] living on phase space,

W) (2, k) = /Rd dy) (x + Z>¢ <:1: - g) e2mivk (2.141)

the Wigner transform of 1. W takes only real values, but need not be non-negative.
For a small parameter € > 0, the e-scaled Wigner transform is then obtained by a space
scaling,

Weg] (2, k) = e “Wy] (= k) - *d/ d (x y) (x—y) 2mivk (2,142
ety =Wl (k) =< [ ays (24 D)o (2= L)k 1y
We[y)] acts as a tempered distribution on Schwartz functions a € S(R??) by

(WL, a) = /R  drdka(e, k)W [y](z. k)

= o, 9P </Rd dka(p, k)wi (k 3 €2p>> ' (2.143)

Note the discrepancies with, for example, [16] that arise from defining (W¢[¢], a) as linear
in a instead of conjugate linear. The last line of (2.143), which follows from standard
Fourier calculus, shows that we can actually understand W¢[¢] as a continuous linear

functional on the Banach space FL! (Rg; CcP (Rg)) = FL'(CY). This space comprises all

functions a : R?¢ — C for which (p, k) + @(p, k) is continuous in the k variable and the
norm

HU'H]-'Ll(CO) :/ dp <SUP |a(p, k)|> (2.144)
Rd keRd

is finite. The space FL'(C?) is slightly more general than the space defined on page
572 of [30], which also requires a(p, k) to decay to zero as |k| — oo. The latter space, to
which we will refer as X, is separable with the norm from (2.144). For a € FL'(C?),

(WL a)] < llall 2 ooy 19172 (2.145)
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Equivalently, we can introduce the Weyl quantization of the observable a as a bounded
operator Op®(a) : L? — L? given by the expression

F (Op*(a)y) (k) = /Rd dpa (p, k— gzp) Pk — ep), (2.146)

which is defined for Lebesgue-almost all £ € R?. Then
(We[Y], @) = (¥, Op°(a)y) 12 - (2.147)

A large selection of different observables (symbols), quantization procedures and scaling
limits are available in the literature on pseudodifferential operators. The above Weyl
quantization is a reasonable choice because of its duality with the Wigner transform,
and the fact that it maps real a € FL'(C?) to self-adjoint operators on L*(R?), [33]. A
popular choice of observables are various classes of C*(R??) functions with upper (and
sometimes lower, to ensure ellipticity) bounds on the growth of the derivatives, [24, 33].
We will not need to require our observables to be smooth. Finally, the scale parameter
can enter in different fashions. As € — 0, our observables spread out in position space

Op®(a) = Op! (a(ex, k)), (2.148)

but other authors set -
Op°(a) = Op' (a(x,ck)) (2.149)

to scale the momentum variable instead, [21, 33]. While these two definitions are unitary
equivalent, the former is clearly the more intuitive one for the physical setting at hand.

Returning to a from the Schwartz functions for a moment, the inequality (2.145) shows
that for any C' € [0, 00), the set

(W] s e >0, ][9]l 2 < C} C S'(R*) (2.150)

is contained in a polar, and thus weak-* compact subset of S'(R??) by the Alaoglu-
Bourbaki theorem, [26]. As S(R?%) is separable, this is actually even sequential weak-*
compactness. Given an L?-bounded set (1) <>0> it is then interesting to ask what kind
of possible limits in S’'(R??) the convergent subsequences of (W¢ [¢°]).., may have as
e—0.

Lemma 2.15. For each ¢ > 0 let a ¢° € L*(R?) be given such that sup.~g [|1°]|32 < co.
Then one can extract sub-sequences (ep)nen, en — 0, such that Wer [{*"] converges
weak-* in S'(R??), and all limit points are non-negative Borel measures p on R?*® which
are bounded by

/R il k) < Timsup [0 3 (2.151)

Proof. This proof follows the one presented in [30], we reproduce a version of it here
to account for the different scaling of our Wigner function. As we have already seen
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2.4. Wigner functions

above that such sub-sequences (g,,) exist, assume without loss of generality that We[y)¢]
converges to a limit p in S’(R?9) already before selecting a particular subsequence. With
the Kernel

GE (2, k) = 20~ deI#l* /e o= 12mk I /e (2.152)

we define the Husimi transform W§[¢¢] : R?? — C by
Wi[0°] = WeE[W®] = G°. (2.153)
As G¢ € S(R??) and ¢ € L?(R?), it is not hard to verify that for all (z,k) € R??,

P .
/ dze=42y" <z> (ws)_d/4 exp (— [z — 2] ) exp <—27m'kz>
R4 € 2e €

2
Wi %) (2, k) = e~

)

(2.154)
so W§[1°] is non-negative, and for all € > 0
[ oW o k) = 0511 (2.155)
R
On the other hand,
G**xa—a (e = 0) (2.156)

in the topology of S(R?) for all a € S(R??), and, as we can control the action of W¢[1)°]
on S by (2.145) uniformly in €,

|(Weg*] = W', a)| = [(WF[P°, G xa —a)| = 0 (2.157)
as € — 0. Accordingly, for every Schwartz function a > 0,

(1, @) = lim (WE[Ye], @) = lim (W [°], a) > 0, (2.158)

so  is a non-negative tempered distribution, thus a non-negative distribution, and thus
a non-negative Borel measure on R??, [36]. Furthermore, by (2.155)

< Tim ||o° ]2

[, . k) < T 7. (2150)
O

Note that the equality (2.155) produces only an upper bound (2.159) for the limit measure.

This is because energy may be lost to infinity when passing to the ¢ — 0 limit. To avoid
this from happening, in addition to

sup [|[1°]| 32 < oo (Bounded energy), (2.160)
e>0

we introduce two tightness conditions,

lim lim sup / da: |op%(z)]* = 0 (Tightness in scaled position space),
R—oo ¢50 |z|>R/e
(2.161)

37



2. Preliminaries

which is the analogue to initial condition (IC2) in [32], and

~ 2
lim lim sup/ dk wg(k:)‘ =0 (Tightness in momentum space),  (2.162)
|k|>R

R—oo  ¢0

which we have to add here as the momentum space is unbouded in our case. A useful
tool to identify Wigner limit measures will then be the counterpart of equations (B.17)
and (B.29) in [32],

Lemma 2.16. For L*(R?) functions (V%) fulfilling (2.160-2.162), as well as
We[f] — pin S’ as e — 0, and any continuous, bounded function f : R% — C, we have
for all p € R that

hnlj/ dke (k + ep/2)0° (k —ep/2) f j/ p(dz, dk)e*™ P2 f(k), (2.163)
the estimate (2.159) is sharp,
_ 1 €12
[, e, k) = lim 7. (2.164)
and
lim (We[¢<], a) = (u, a) — / u(de, dk)a(z, k) (2.165)
e—0 R2d

holds for all a € FLY(CY).
Proof. First, assume f to be a Schwartz function. The map R? — C,
g /R dARGE( + 2q/2)0° (k — q/2) f (k) (2.166)
is bounded and continuous for all € > 0, so
li [ Ak + 2p/2)(k = ep/2) (k)
e—0 JRd
— lim Tim (VAN) ™ / dge—P=0)?/3? / Ak (k + 2q/2) 0% (k — q/2) £ (k)
e—0 A—)O
(2.167)

provided the limit of the right side exists. If one chooses for fixed p € R%, A > 0 the
function a € S(R??) such that

a(g, k) = (Van) e 0% /X f(k),

2.168
Cl(l‘,k) 27rsz —A\27252 f( ) ( )

equation (2.143) implies
(VN [ dge 0 [ ket eq/2)0(h - 2q/2) £ (b)
R R
_ —d 2mip-x ,—N2m2a? e f y) a(x_y) 2miy-k
5 /Rgddmdkdye e f(k)y <€+2 P - 5)¢ (2.169)

R2d 2
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2.4. Wigner functions

We split up the last integral into the contributions of |z| < R and |z| > R, and see that
—d 2mip-x N2\ W e(T _ Y
5 /}RQddwdye (1 e ) (—y)y (E—I-?)w (5 5
1/2
. lim sup [|¢°|| ;2 (/ W)a( ) ) )
e—0 lz[>R

(2.170)

lim sup
e—0

< (1= 7] o tim e s + 2]

and thus obtain from (2.160) and (2.161) that

lim lim sup
A=0 =0

[ Ak + 2p/2) (k= ep/2) (k)

~(aN [ dgem 0 [ kb (k4 2q/2)0 (k - 2a/2)1 ()| = O,
R4 R4

(2.171)

and therefore

i | A= (k4 ep/2)0%(k = ep/2)f (k)

= lim lim s_d/ dacdkdye%ip'w(3_’\2”2%2f(k:)w6 (x + y)@ba (a; — y) 2k
A—=0e—0 R3d 5 2 € 2 (2 172)

1 omip-x  —N2m2a?
= lim deu(dx,dk)e e f(k)

= [, pldw aR)em e (k).
]de

By (2.162), this generalizes to all bounded and continuous f. In particular, for f =1
and p = 0,

T e 2_ . €112
[t ab) = tim [ k()] = ling 0. (2.173)

For all a € FL'(CY), (2.165) follows from (2.163) by dominated convergence in the last
line of (2.143). O
2.4.2. Examples of Wigner limit measures

Standard examples for sequences of initial states (¢°)_., with convergent Wigner trans-
forms can be found, for example, in [30]. One can construct sequences which concentrate
at a single point in momentum space,

ws( ) =P fem)emor, fe LXRY), ko R,
lim (W#[y° / dza(z, ko) | f(z)? Ya € FLY(CY), (2.174)
= |f()|? (k — ko),
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in position space,
V(@) = f(x —wofe),  feLXRY),m e R,
lim (W#[4)°), a / dka(zo, k \f \ Va e FL'(CY), (2.175)

1= 6(z — zo) ’fk

or even in both variables,

Vf (2) = e f(Ver — wo/VE)eT™ R, f e LP(RY), o, ko € RY,
lim (We[47),a) = [|f|72 alwo, ko) Va € FLY(C?), (2.176)

= fll72 6(z — 20)d(k — ko).

A prominent case that has been studied in the context of random Schrédinger equations
([16], or [8, 9] for the discrete setting) are WKB states

1/}5(%) — 8d/2f(€x)62m'5(eac)/57 (2177)
with f:R?¢ — C and S : R — R Schwartz functions, for which one has
lim (W*[4], @ / dza(z, VS(2) |f(@)?  Vae FLY(CY),

p=If (@) 6(k = VS(x)).

The limit Wigner measures of all the aforementioned examples are singular with respect
to Lebesgue measure; this, however, need not be the case in general. With Schwartz
functions f1, fo € S(R?), set

(2.178)

@) =S f(Vey) fo (2 — =) (2.179)
> At 2 (o 2)

o2
It is easy to show that the Wigner limit measure exists and has a density | f1(z)|? ’ fQ(k)‘
on phase space,

lim (W¥[,a / dzdka(z, k)| f1(z)[? ’ ok ] Ya e FL'(CY),
(2.180)

= |fi(z)? ’ka‘-

It is worth mentioning that all sequences (¢°),. in the examples above have bounded
energy (2.160) and fulfill position and momentum tightness (2.161-2.162). In all five
examples, at least after approximating f € L?(R?) in (2.174-2.176) by Schwartz functions,
the additional condition (3.6) that will be required to obtain Theorem 3.3 also holds for
sufficiently small ag > 0.
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2.4. Wigner functions

2.4.3. Higher resolution near the acoustic singularity

To have observables available that provide higher resolution in the neighborhood of k£ = 0,
we define in analogy to Definition 2.4 in [23] the following generalization of FL!(C?)

Definition 2.2. A function a : RExR{¢xR¢ — C has an admissible infra-red continuation
and we write a € XiR, if @, the Fourier transform of a in the x variable, fulfills the following
« For all p € R? the map (k,k) — a(p, k, k) is continuous.

e The norm

lallx, = 5 dpkii%d [a(p, k. k)| (2.181)

is finite.
e There exists a function b : R x R? x S9-1 — C such that

lim | dp sup [a(p, k, k) — b(p, k. k/|k])| = 0. (2.182)
R—o0 JRd kerd
k>R

For ¢ € L?(R%) and € > 0, the Wigner transform W¢[3] constitutes a bounded linear
functional on X1g by setting

Wolul, @), = [ (/Rd dkd (p, k, ’:) Mzﬁ <I<: - Z’))

K
— [ dz [ dRWE (2, R)a (g; k, > ,
Rd R4 £

(2.183)

with only the first line holding for all a € X1r, while the second line is the more intuitive
formulation for nice enough a. Analogous to (2.146), one can introduce a bounded
L? — L? operator by

FOpin@0) ) = [ i (ph- T2 D) dk-ep). (2189
to obtain
(W), @),y = (1. Opii(a)0). (2.185)

Following the reasoning of [23], the Lemmas 2.15 and 2.16 can be generalized to the
setting at hand, as shown in Appendix A.

Lemma 2.17. For each e > 0 let a ¢ € L*(R?) be given such that (2.160), (2.161) and
(2.162) hold. Then one can extract sub-sequences (€n)nen, €n — 0, such that W [1)°7]
converges weak-* in X1r*. For each convergent subsequence, the limit is of the form

k
lim (W [p], :/ d,dkb(,k,)
nl>ngo< [17/} ] a>xIR RdXR‘iM( x ) x |k’
O L CEX BUEX NS (2.186)
Rdx §d—1

+ <W[77]7 Cl(~, 0, )> :
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with p, p non-negative, bounded Borel measures on R? x RY and R? x S~ respectively,
n € L*(R?), and b associated to a by Definition 2.2. In the last line of (2.186), Wn]
is the unscaled Wigner transform of n as defined in (2.141), tested against the FL'(C®)
function (x,k) — a(z,0,k).

From Lemma 5.2, 5.4 one can directly conclude that the L? norm is conserved while
taking the limit along any of the subsequences from Lemma 2.17,

fim 05015 = e (R RE) + (RO ST 4l (2.18)

n—oo

As will become obvious in Appendix A, the p component of the limit object (y, ', n)
accounts for the part of the energy distributed over wavenumbers that stay of order 1 while
en — 0, 1 represents the portion with macroscopic wavelengths, i.e. with wavenumbers
vanishing like €,,. The defect measure uH stands for the energy stored in wavenumbers
much larger than ¢, but much smaller than 1.

The right side of (2.186) motivates the definition of the following functions.
: k
Q™o (5 k) = b <x k, |k|> (2.188)

is a bounded, continuous function of z € R? and k € R?\ {0}, while
a®*(2,k) = b (2,0, k) (2.189)

is in Cy (Rg X ngl), i.e. a bounded, continuous function on R% x ngl that vanishes

as |z| — oo, and
a™ Oz, k) = a(x,0,k), (2.190)

with (z,k) € R?, is a function in FL'(C?). For a™° ¢ () (Rg X Sg_l), o€ {£} and
t € R, we set

(57 tam=0) (2, k) = a™°(x + okt k), (2.191)
which constitutes a strongly continuous group of operators on Cj (Rﬁ X ngl).

Ezample. The arguably simplemost sequence of states ()., with W* [¢°] converging
in :{IR* is

U (x) = f(x) + ¥ *g(Ver) + e Ph(ew) (2.192)
with f,g,h € L2(R?). Then
W [9°] = (p, ™) (2.193)
with ¢ a measure on R% x R? given by
2
u(da, dk) = §(z) ‘ f(k:)’ dzdk, (2.194)
the measure ,uH defined for z € R? and k € S9! by
(e, dk) = 6(x) ( / drrd1 @(rk:)Q) drdk (2.195)
0
and
n=h. (2.196)
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2.4. Wigner functions

2.4.4. Operators on H

The operators Op®(a), a € FLY(C?) and Opii(a), a € Xr introduced previously are
bounded linear maps L?(R?) — L?(R%). To accommodate for the two-component struc-

ture of H = L? (Rd; (Cz), define the projections Py,,, : H — H by setting

(PU'ZO'I/l/})a' = (PUzal <Z+>> = 5002¢01 (2.197)

for all o1,09,0 € {&} and all » € H. For a = (a;,a_) : R? — C? such that a, €
FLYC? for o € {+,—} one can thus define the bounded operator

Qa(a) — Z Opa (aa_) P, = (OpEO(ClJr) Op€0(a_)> (2198)

oce{t}

on H. Analogously, for a = (a;,a_) : R3¢ — C? such that a, € ¥g for 0 € {4, -}, we
set

2 _ € _ OP%R (at) 0
Qir(a) = Ug{:i} Opig (a0) Pro = ( 5 Opt (a_)> : (2.199)

Both Q°(a) and Qfy(a) are defined as diagonal with respect to the two-component
structure of H, i.e. they do not mix the ¥, and ¥_ components. Observables with
off-diagonal components will be discussed separately in Appendix F.

In terms of Wigner transforms, our focus on diagonal observables implies that we only
consider

e I | ﬁ f _ y 2miy-k
Weo)(z, k) = ¢ /Rddywa (€+2>w0 (5 2>e : (2.200)
with o € {£} and exclude “cross-terms” of the form
. _ o (T Y, (Y 2wk
w [wauwaz](l',k) =& /Rd dywol (E + 2)¢02 (E 2) e (2201)

with o1 # o9 for now.

43






3. Main theorems

Now, we have all definitions available to state our main results. By the duality (2.147),
(2.185) of Wigner transform and Weyl quantization, both formulations can be applied
equally well to describe a measurement of the propagated wave at a macroscopic time
T > 0 with observables ay,a_ € XiR,

(e 5 Qin(e w5, = 30 (We[(e7 G o), o 3)
oce{+}

However, for multiple measurements at times 7, T + 7@ up to TW + ...+ 7™ m
being the number of measurements, the use of Weyl quantizations of the observables, i.e.
of operators Qg (a;), 7 = 1,...,m, is much more convenient. This is how we will present
our first theorem.

Theorem 3.1. For d > 2, choose a random medium of class (d +185,4). Let (1§).
be a sequence of initial states in H with components fulfilling the boundedness and
tightness conditions (2.160-2.162), and assume that the Wigner transforms W€ WSJ},

o € {£} converge, in the sense of (2.186), to (10,0, 1 e 0,0). Then for allm € N, all
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TO, ..., 7™ >0 and all ajs € Xr, (j €{1,...,m}, 0 € {£}), we have

o m-l N
lim <e—"HET(M)/ “ T (Qfwlae ™ 777%) v,

e—0 =1
Qin(am)e T/ H (Qfna)e T2 ¢8>

= > / Mogdx dk)
RIxR

oe{*}
(1) i 2
[ LT ( ‘ clrll?u:ro

+ > / (da, dk)

ds gd— 1 0,0
oefx) TRIXS

Hp(1) 2
eLUT (‘ameso

1,0

H

(m—1) i
.GEUT (‘ qicro

m—1,0

(M) ) )] (5.2

1,0

eEI&IT(ﬁ*l) ( ‘ ameso

(A a) ))] e

_ m—-1 .
+ <e—iHoT(m) H (Ql(a;nacm)e—z’HOT(J)) o,
j=1
_ m—1 .
Ql (a%acro>efiHoT(m) H (Ql (Cl;nacro>e—iH0T(J)) 770>

J=1 H

with the objects on the right hand side defined in Sections 2.3 and 2.4.

Theorem 3.1 will be shown in Chapter 4. The limit can be understood as follows. In the
first summand, the initial Wigner limit measure belonging to the microscopic wavelengths
is propagated by the linear Boltzmann equation for a time 7 and then multiplied by

2
the first observable ‘ micro
T2 then picks up another observable and so on, until the last measurement with az;

is made after m steps. Only this part of the dynamics depends on the dlstrlbutlon Of
the random field &, namely by the definition of £, .

. The resulting measure continues to propagate for a time

mlCI‘O

The structure of the second summand is similar. However, as it accounts for the behavior
of the mesoscopic wavelenghts much larger than the correlation length of ¢ (but much
shorter than the kinetic observation scale), the influence of £ on the wave motion has
completely vanished in the limit (note that the generator £ does not depend on the
distribution of §).

Finally, the third summand describes the propagation of the portion of the wave which
exhibits wavelengths still resolvable on the observation scale. Clearly the wave nature
of its dynamics is fully conserved in the limit, and only governed by the unperturbed
Hamiltonian Hyj.

In a first step towards self-averaging, one can then also show that the same object we
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have considered in Theorem 3.1 also has vanishing variance. This will require slightly
better properties of the random medium, but we can relax the spacial tightness condition
(2.161) for the initial states, as the following theorem does not require the existence of
an initial limit Wigner measure.

Theorem 3.2. For d > 2, choose a random field & of class (d +521,4) and let (Y§).-
be a sequence of initial states in H fulfilling (2.160) and (2.162). Then for all m € N,
al TV, ... T™ > 0 and all ajs € Xr, (j €{1,...,m}, 0 € {£}), we have

m—1
. _GHET) /e —iHeT (@)
;%Var (<e HET 1:[1 (QfR(aj)e e /E) Y6,

J= (3.3)

Qrr (am _ZHET(M/E H (QIR _iHETm/E) ¢8> ) =0.
j=1 H

A proof of Theorem 3.2 is provided in Section 5.4.

Vanishing variance, together with convergence of the expectation from Theorem 3.1,
already shows convergence in probability (and almost sure convergence along a sub-
sequence) to the limit object on the right side of equation (3.2). For the general result
on almost sure convergence presented in Theorem 3.3 below, we have to slightly improve
the differentiability and decorrelation conditions for the field £. Moreover, at one point
in the proof of Theorem 3.3, we will require a deterministic control (instead of the usual
bounds on moments) of the disordered dynamics generated by H¢. To do so, it will be
necessary to assume the existence of an almost surely finite random variable Y > 0 such
that

£@)] + IVE@)| < Y (1 + |2 (3.4)

for all z € R, This is a very mild requirement that in particular holds for the two
examples, the Poisson bumps and the cut-off Gaussian field from Sections 2.1.2 and
2.1.3.

To be able to focus on the main ideas in the proof, given in Section 6.2, we will now limit
ourselves to only one measurement, 72 = 1, and avoid the acoustic singularity altogether
by not allowing the initial states to concentrate near the origin,

- 2
lim lim sup Z /|k|<)\ dk waa(k)’ =0. (3.5)

A—=0 =0 ce{+}

Theorem 3.3. Let d > 2 and the medium be of class (d+1641,4), with growth at infinity
controlled by (3.4). and let (Vf).~, be a sequence of initial states in H such that (2.160-
2.162), and (3.5) hold. Furthermore, let there be non-negative, bounded Borel measures
po+ and pio— on R?® such that We [(15),] converges weak-* to g in FL(C°)", in the
sense of (2.165). Assume finally that there is an ag > 0 such that

n— %0
Yo Y

= 0. (3.6)

lim sup
n—oo
€€ [(n+1)’°‘0 7n*D‘U]
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Then there exists a set of “bad medium configurations” Nex of vanishing probability,
P (Nex) = 0, such that for all realizations of the medium &, with w € 2\ Nex, all T >0
and all a, € FLY(C), o € {&}

limy sup |(W* [(e7E75), | ar) = Grnand] =0, 7)

*
with the measure pi;, = (ec‘”) to,c obtained from propagating po.. with the linear
Boltzmann equation (2.137).

In the statement of Theorem 3.3 there is only one condition that is substantially stronger
compared to Theorems 3.1 and 3.2, namely (3.6). Note that this requirement does not
exclude a special type of initial states, but rather prevents the whole sequence of initial
states from running through too large a part of H. Given almost any configuration of
the random medium, an initial state can be chosen such as to produce large deviations
in (3.7) for exactly this choice of disorder. Although deterministic, i.e. independent of
the random medium, a wild enough sequence (1§), can still turn almost every medium
configuration into a “bad” one. An explicit example in which (3.6) and consequently the
assertion of Theorem 3.3 fails is constructed in Section 6.3. However, as observed at the
end of Section 2.4.2, condition (3.7) can easily be checked to hold true for all “standard”
examples of initial states (1/§)..q, in particular WKB states, which have been at the
center of attention in much of the related literature [8, 9, 16].

It seems appropriate to make a short remark concerning the conditions under which the
above theorems hold. While the assumptions on the initial states are fairly natural, the
extremely high differentiability for the random medium is somewhat unsatisfactory. It
goes without saying that the existence of thousands of derivatives is not a necessary
condition for the Boltzmann equation to emerge in the kinetic limit. The required
medium smoothness could have been considerably reduced by noting that the number of
the “worst-case graphs” often grows much slower than the overall combinatorical terms;
this, however, would have made a much more detailed analysis and classification of
the graphs unavoidable. Another rather wasteful choice is the use of the same stopping
procedure for the Duhamel equation both for the Grugh Arough and the G4, A°" case in
Lemma 2.14. With these and a few other changes, the proofs could probably be tweaked
to permit for a random medium that is only twenty or thirty times differentiable, but at
the price of totally obscuring the main strategy. Presenting the key ideas in a slightly
suboptimal but understandable fashion was clearly preferable to us.
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4. Proof of Theorem 3.1

4.1. Expansion of the dynamics

Instead of directly tackling the case of general observables and initial states as defined
in the assumptions of Theorem 3.1, we concentrate on a narrower class of observables in
the main part of the proof, namely operators on H which, for a fixed £ > 0, are given
as

AS= A5 Ppy + A5_P__. (4.1)

Here, for each j € {1,...,2m — 1} and o € {£}, A5, acts on f € L (Rd) by

A5 F(k) = ajo (k—ep?/2) F (k= ep?). (42)
with the momenta pU) constant rather than integration variables. The functions Ajo -
R? — C are two times differentiable, with

£Gj7g(k)' < o0 (4.3)

aq = Su max max
lasllc- hem 0E (1} <2

for all j € {1,...,2m — 1}. We will use a for the collection of functions a;, and p for the
collection of momenta p(), and denote

Cops = max ‘p(j)' . (4.4)
J

Given an initial state ¢ € H and a vector T' = (T(l), ...T(m)) of observation times

T > 0, consider the random variable that results from propagating the wave with the
perturbed dynamics and measuring it at the times T(l)/s, (T(l) + T(Q))/s, e

J*=J°(H*,4,T,a,p)

(™) N . 7(1)
— <exp <—’LH€6> ( %+1) (Agmfl) eXp <—iH58 (E],

(4.5)
(™M) T7(1)
A exp (—iH€> .. Aj exp (—iHE o) -
€ €
H
Applying a spatial cut-off at R > 0 to produces random variables
T = % (H*", 45, T, a,p) (4.6)
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4. Proof of Theorem 3.1

corresponding to the cut-off generators H=% discussed in and below Lemma 2.11. For
any fixed ¢ and 5 € H, one has

lim T =7° (4.7)

both almost surely and in all L (P), ¢ < oo by Lemma 2.11 and the boundedness of the
operators A5 : H — H.

In addition to the bounded energy assumption(2.160), we also assume for the initial states
Y5 € H that ¢f 4 is supported in a bounded ball {k eR%: |kl < LO }, with L) arbitrary

but fixed, i.e. independent of € > 0. In particular, 1§ € H? (]Rd; (C2> =D (HE’R> for all
R > 0. For an N € N to be optimized later, let
LI =1LO ynt(j-1)N (j €{1,..,m}, neN) (4.8)

n

and denote LU) = (ng),Léj), )

4.1.1. Duhamel expansion

We now expand the right entry of the scalar product (4.5-4.6), first applying Lemma
2.12 to

(1)
Af exp <—1H5RT ) (I

= A5 (P (10 Je; R, LW e) + Ry (T /23 B, LY ¢) ) 5 (4.9)
= AS (Nz:l Fy (T(l)/s;R,L(l),e) + Ry ( /s R, LW )) (0
N=0

Adding a second time interval, we do not touch the remainder term from the first interval,
but expand the contribution of the main term further

T(2) 7(1)
5 exp (—iHs’R€> {exp (—sz RZ_ (I

N-1
=3 4 (Fmein (T?)/; R, L®) ) + Ry_y (T®/e: R, 1P ¢)) (4.10)

x A Fy (T0/e; R, LY, &) 5

(2)
+ A5 exp (-ZHRTE> ARy (TW /2 R, LW, ) 5
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4.1. Expansion of the dynamics

and finally, after ™ expansion steps

(H Aj exp <iH‘€ R )
j=1

)
-y ﬁ

NO 4 4+ N@ <N

+Z > [( 11 Asexp<—zH5RT€()>>x

Jo=1 N 4. 4+ NGo-D<N [ \I=jo+1

(45 Fyo) (T9/e; R, L9, 2) ) o5

XA;QRWUO) (T(jO)/e;R, L(jo),€> ji_[: (A;FNU) ( /5 R, L )>:| wOa
j=

(4.11)
where it is understood that all N e Ny, and the value o) € N is given as
_ Jo—l
AL Z NU (4.12)

All m applications of Lemma 2.12 were justified as long as the random field ¢ is C?,
because ¢5 € D (HE’R) and all operators A; leave the spaces D <H57R> = H'(RY, Cc?)
invariant. On the right side of (4.11), the dynamics has been decomposed into two parts.
As the wave travels through the random medium it may either interact with the random
medium less than altogether N times, with N@) events in the j-th time interval, and the
n-th scattering event in the j-th inteval controlled by the cut-off threshold L%j ). We call
this part of the wave the main part. The remainder, however, consists of all scattering
processes that either lead to at least N interactions, or to a violation of one of the cut-offs
@ as defined in (2.111). The time interval in which the number of scatterings reaches N
or where a scattering event outside the cut-off occurs, is given the index jo.

For simplicity, we rewrite the main and remainder part from (4.11) as

m T
H ASexp | —iH® — vy = AT + ASYS (4.13)
j=1

with ¥§ (main part) and ¥§ (remainder) two random elements of . They implicitely
depend on the observables A; , the momenta p(j), on the times T, on e, the field £
(thus the randomness), R and N. After an analogous expansion of the left argument of
the scalar product in (4.5-4.6) yields ¥’ and ¥'5, we have by (4.7)

E[J) - Jm E (75, A507) i
< limsupE [[(#'5, AS05)| + [(0'5, ASTE)| + (W75, A555)|] | '
R—o0

o1



4. Proof of Theorem 3.1

provided those limits exist.

On the left hand side of (4.14), we compare J¢ to the main part, which is is expected
to converge to the limit object of Theorem 3.1 (modulo the fact that we currently only
work with a reduced class of observables). We hope that the right hand side of (4.14),
which accounts for the impact of the remainder terms, vanishes in the kinetic limit.

4.1.2. Amplitudes for the main part

To deal with the main contribution E [(#'], ASW$)], we need to understand

<FN/(m) (t(M)aR’ L(M)ye) (Ti—[l( gm_j)*FN/(j) < ( ), R, L G) )) T/}Oa
j=1
(4.15)
(HA Fyo (19 R, LV )) 7/10> ,
Jj=1 H

with NG N7V @) ¢ Np. Here, we have replaced the rescaled T by a vector t € RT of
general times t) > 0, and denote It| = tW 4t To brlng all operators on the right
side of the scalar product, set NU), j € {1,...,/m} to be the number of scatterings in the
j-th time interval on the right side of the scalar product, and NG, je{m+1,..,2m}
to be the number N'™H1=7) of scatterings in the 2m + 1 — j-th time interval on the left
side of the scalar product, yielding a vector N € N2™. So, for example, N (1) and N(@™)
belong to the same (the first) time interval, but they are typically not equal. The overall
number of scattering events is

IN| =N 4 4+ NO®) < 9N — 2. (4.16)
Further, set for j € {m +1,...,2m}

; 2mt1—j '
B = LG me (1 N0, (1)
+0) — t(%“_j), |

and let x(j) indicate adjoint operators whenever j € {m + 1,...,2m}. Thus, (4.15)
equals

7j=1

2m—1
<w8,FN<2m) (1™ R, L™ ) (H AsFy (895 R, L), ) )wo> o (418)
H

In time interval j, the wave undergoes N scatterings, so all |N| scattering events can
be labeled by the index set

I(N) ={(j,n) : j € {1,.... 2m},m € {1,., N} (4.19)
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4.1. Expansion of the dynamics

Those scatterings cause N) momentum changes in the j-th time interval, so there are
N 4+ 1 momentum variables for each time interval, and one can collect all momenta in

all time intervals into {ky(lj) (J,n) € IO(N)}, with index set

Io(N) = {(j,n) : € {1,...,2m},n € {0,.., NO} | (4.20)

We introduce an ordering of the index set by defining for (ji,n1), (j2,n2) € Z? the
lexicographic order <, that is

o
(J1,m1) < (J2,m2) & {]1 J2 o8 (4.21)

J1 = jo and ny < no.

The 2x 2 matrix structure of all operators is accounted for by the signs O'(]) (4,n) € In(N).
After encoding the conjugation *(j) in a sign

A lifje{l,...m
L) = it el (4.22)
—lifje{m+1,..,2m},

one obtains the Duhamel expansion of the main term,

m—1

<FN/<’”) (t(m);R,L(m),é') (H ( gm_j)*FN/(j) ( ( ); R L )) wOa

j=1

(H AsFy) (195 R, LU )) ¢0>

=1 H

_ (2m) M

_ /R o, 8 3 /R vt 3

U(QE)e{j:}N@m) a<1)e{i}N(1)+1

- kg +k7 A (j+1 :
) _ G) U+
o ( L) o -1, -) o o)

2

3l

—

1 N(J)

N(J
+

I ew (—27TZ‘]€(J’ (4) ])5])
(J,n)€lo(N)
I e (2180 + 42 ) 42

(Gm)el(N)

qamE i}

I
—

J

x& (kD k2, LD

Voo (007) 05 m (Kiom) -

70 (2m

(4.23)
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4. Proof of Theorem 3.1

The deltas for the k and o variables in (4.23) indicate that the observables A5 add
an —ep) shift to the momentum k, while they are diagonal with respect to the two-
component structure of H. Now we first want to take the expectation and then the
R — oo limit of (4.23). To this end, note that only k(()l) and k‘y(Lj), (j,n) € I(N) are actual
)

integration variables, while kéj
the integration variables kg), (j,n) € I(N) to

, 7 > 1 are already determined by the deltas. We switch

09 = k) — ), (Ge{l,..,m}, ne{l,..,NU}). (4.24)

One thus has to evaluate a limit of the form

. (1) e (n0)
Jm e S [ ar [ a0 (i po0) T GeP),  (429)

se{+}INl+2m (j;n)EI(N)

with f a function continuous in the 6 variables such that

7 (kY. p,0,0)| < Ccy

2m—1
Je(ké”)&(ké%e S+ > 99>)|
(N)

J=1 (jn)EI(N (4.26)
2m—1 | | '
x H llal co H (2L1(1]) 41+ ‘97(1])‘) )
7=l (Gn)EI(N)
Here, the definition of the cut-off function @ was used to estimate
[ 42+ 2 ) (12,2, 9)
(4.27)

< 2min {‘kn_l

DI} o (40,620 10) + 02| <220+ 1+ o).

Thus, by dominated convergence, Lemma 2.1 is applicable (with exponent ¢ = 1) to the
0 integral if m > d 4+ 1, and we can state our findings in the following

Lemma 4.1. With all definitions made as above, for a random field £ of class (m,0),
with m > d+ 1, one has

. 7 7 *(7)
]%gnca)oE<¢SaFN(2m) (( ™R, L™ ¢ ( H FN(J) t(]) R, LY 5) )7/16>

= Y Kk(¢eanLl®LN,S),

Ser*(I(N))

H

(4.28)

where 7 (I(N)) denotes partitions of the set I(N) without single-element clusters. The
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4.1. Expansion of the dynamics

amplitude of the partition S is given as
K (¢5.2,0,p, L, 1, N, S)
- |Vl (2m) (1
(Vem) G dk > /R sy, >

J(QW)G{:I:}N@E)H U(l)E{i}N(l>+1

I1 {5( 3 953’>> g (09 : (.m) eAﬂ)}
AesS (jn)EA

2m—1 k(]+1 +k: . '

() 1 ; 1

1 (s, (B35 )07 0 - ) o, )

j=1 N(J)

om N<J>

11 /  dsDs $U) — 4)

i RIO)JA

H exp( 2m‘k(7‘ ])snj)

(jvn)EIO(N)

[T [l (] | ) o .52, 18)

(4m)EI(N)

— T [0, R

1/)8 1) (ko )¢8 (2m) ko' +e Z p(]) .
190 9 (2m) j=1

(4.29)

For better readability, we have simultaneously used the k and 6 variables as introduced

in (4.24).

The next step is to rewrite the unperturbed time propagation between the scattering
events in resolvent formalism. As in [32], we take | € Ng, 7 > 0, (wp, ..., w;) = w € C*!
with Imw; < 0 and define

! l
K (w, ) = / dsé (7 — Z s;|exp | —i Z wysy | - (4.30)
Ry n=0 n=0
By standard Fourier calculus,

Lemma 4.2. Let 7 > 0, v > 0, and (wo, ...,w;) = w € CH! with Tmw; < 0. While for

=0
d )
e "Ko(w, ) = Qpmtar Y (4.31)
27T a—wo + vy
is only true in a in L2 — L? sense,
K (w,7) = 677/ d—ae_i‘” ﬁ <Z> (4.32)
’ R 27 oo\ — wy, + iy

holds pointwise in T € [0, 00) whenever | > 1.
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4. Proof of Theorem 3.1

To have a unified notation, we will formally use (4.32) also for [ = 0 and will only
comment on this special case if the corresponding contributions really have to be treated
differently.

By Lemma 4.1 and 4.2 and an application of Fubini’s theorem, one obtains the represen-
tation of the amplitude we will use for a large part of our analysis

Lemma 4.3. Under the conditions and with the notation of Lemma 4.1, and for any
v >0,

K (¢6,2,a,p, L, 1, N, S)

_ (JemV o) 0
— (vem) ok S 3

RA(N(2T) 4 1)

U(QE)G{i}N(Qﬁ)JA O’<1)€{:|:}N(1)+1
II {5( 3 97@) g (09 : G.m) eAﬁ)}
AeS (Jn)eA
2m—1 k(]+1) +k(j), ‘ ' '
T (o0, (050 ) (7 0~ o0) s (o0 o)
j:]. ‘77UN(J> 2

2m i
j da) . )06
6%(]) / e,mmtm

Jale] R 27

i
(j,n)go(N) ( () — 27ra(j)r(j)‘k;7(lj)’ + i’y)
H [(_lT (’kj ‘ Szl + ’kg_)l‘ 0—53)) i) (knj)a knj—lv Lnj))}

(Jn)€l(N)

— T (0 6
0.0 ("70 ) 0om | Kol te > .
) 7 n(2m) j=1

(4.33)

Here, the a9) integrations can be interchanged with the k integrals for all j such that
NU) > 1.

4.1.3. Amplitudes for the remainder

Next, an analogue to Lemma 4.1 for the remainder term, i.e. the right side of equation
(4.14) has to be found. Assume that “remainder-type” RW(]U) scattering occurs for the
first time in the jo-th time interval, jo € {1,...,/m}. To apply the smoothed Duhamel
expansion from Lemma 2.14, pick an M € N and a x > 0 to be optimized later. We need
bounds on all terms occuring in this expansion and have to estimate

G]JF\(Z/?J%T}; (t(jo) R, L(Jo ) (H AEFN (() R, L 8)) (U

J7<Jo

2

E : (4.34)

H

o6



4.1. Expansion of the dynamics

for 0 < M < M, 1< Ng, < NUO), as well as the same expression (4.34) with GIZ"\%%,};“

rough end
M,Ngy’ G (JO) or AZ

to avoid redefining most of the notation from the expansion of the main part, we will
without loss of generality proof all estimates in the case jo = m. Even in this case, we
have to accommodate for the fact that the m-th time interval now has a more complicated
scattering structure. There are N e Ny scattering processes in the j-th, j < 7, time
interval, so denote

replaced by A— each as defined in Lemma 2.14. In order

**(Jo)’

N = (N(1>, ...,N(m_l)) , (4.35)
with .
NV <N (4.36)
j=1
so that —
NN - S NO (4.37)
j=1

is positive. In the last time interval, the wave scatters off the medium N times, with

Ngn + M in the G™gh cage,
N + M in the A™ugh cage,
~N™ + M  in the G case,
N™ LM in the 49 case.

N — (4.38)

This time, define N € NZ” by the above NU) for j € {1,...,/}, and NU) = NZm+1-7)
for j € {m+1,...,2m}, so, compared to the expansion of the main part, the vector N
is now always Symmetrlc due to the quadratic structure of (4.34). The index sets I(V),

Ip(N) as well as k), with (4,n) € Ip(N), and 05 for (4,n) € I(N), are given as usually,
(4)

so are the cutoff parameters Lgl) and the signs 0,7’ and 7U). However, again due to the
quadratic structure of (4.34), the observables are slightly different, while a;, and p@)
are defined as before for j € {1,...,7m — 1}, we now have set for j € {m+1,...,2m — 1}
that

Aj+ = Q2m—j+»
O _ ) (4.39)
pY =-=p .
Finally, as the central observable is missing (or rather, the identity on H) in this case,
=1, p™ =0.

It is important to note that both between the main and remainder part, as well
as between the different contributions to the remainder, the NU), p(i), ajs variables
mean slightly different, but structurally closely related objects. To be able to exploit
similarities between the cases without rewording whole paragraphs, we use the same
variables for them as it will always be clear which case is currently under consideration,
so no ambiguities will arise.
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4. Proof of Theorem 3.1

Lemma 4.4. For any M € {0, .. — 1}, a random field & of class (m,0) with m >
N
— 1}’

d+(2+ M), No e NJ'! obeymg (4 36) and Ngy € {1, ..
2

(rough (( ™). R, L ) (H ASFy) (t() R, LU )) (0
2 (4.40)

lim E
R—o00 M, Ngin
j<m

= > R(G™y5.e,k,0,p, L1, N, Nin, M, S)

Sen*(I(N))
with N = Ng, + M and the amplitude R (Grough, e S) of each partition S given as

R (Grouth ¢87 87 ’%7 a7p7 L(O)? t? N<7 NﬁI’U M7 S)

= || (2m) (1)
= e [ > /]R s, B )y
o (2 g (£}N ) 41 cMe{xnM4
1o £ @)oo o]
AeS (Jn)eA

N ()

1
[ At @) / ool >]
(7)

i
< —27m |kn | + iy + ik )
(—i )(‘ ‘ ‘k () ‘ J)) P() (k(]) kfj)le(J’))}

e BRI\ o 6) N g (o0 U+
[T a; o) % 5(koj N 5p(])>5<1\jz<y>"70j )

J
2

3l

I
—

J

sothis
T [

(i,

o ()% ()
(4.41)

with the cutoff function
(m+ 1, N+ 41— Ng,)

@ fO’I" (]7”) =< (maNﬁn) OT( )
PV =31 —®  for (j,n) = (M, Nay) or (jyn) = M+ 1, N+ 41— Ng)  (4.42)
1 for (j,n) = (M, New) and (j,n) < (0 + 1, NI+ +1 — Ngy)
and the damping parameter
(ﬁa Nﬁn) or (.77 n) - (m"i_ 1>N(m+1) _Nﬁn) (443)

G) — =
: K for (j,n) = (7, Nan) and (j,n) < (7 + 1, NOH+D — Ng ).

n

B {o for (j.m)
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4.1. Expansion of the dynamics

Proof. This proof is very similar to the reasoning leading up to Lemmas 4.1 and 4.3, the
only substantial difference being that starting from the Ng,-th interaction in the m-th
interval, the scattering is no longer controlled by the cutoff function @, and the bound
(4.27) is not available for the last M + 1 scattering events. Instead, if Ng, > 1 (which is
in particular always the case if @ = 1 due to the support properties of 128), consider the
last controlled momentum change

S|+ B | <2050+ 1+ |00 | (4.44)
and find for n € {Nﬁn, ...,NW)}
0™ | + |17 < 225D +1+ |0 _1]+ Z (lo™] + o)) (4.45)
to obtain the estimate
il ([65™] + [K0]) < (CANT+ (LO)M 42011 sup b (0m)"
e SRR (4.46)

with some universal C' < co. For all remaining k:,(lj ), j < variables, one can still utilize
the original (4.27). By the same argument for the /ﬁ(lj ), j > m, variables, we have an
estimate analogous to (4.26) with the only difference that some of the 6 variables may
now come with exponents up to M + 2, so Lemma 2.1 applies whenever m > d+ (M + 2).

If Ng, = 1, one has to replace (4.45) by
M+1
(s [ [ ) TT (1] [75)
" M+1

< 0N+ O ) s T (7).

(4.47)

to see that m > d + (M + 2) also suffices in this case. The resolvent formulation is then
a straightforward consequence of Lemma 4.2. O

By the same argument,

Lemma 4.5. For any M € {0,..,M — 1}, any random field & of class (m,0) with
m > d+ (2+ M) and N € NI obeying (4.36)

2
lim E

R—o

Geni(m)((m)RL( )(HAFNm(()RLJ 5))¢0

J<m

o (4.48)

= Y R(G™.¢fenap L0t N, N, M,S).
Ser*(I(N))
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4. Proof of Theorem 3.1

Here, N(™) — N™ LM and the amplitude R (Gend, ...,5’) of each partition S given
almost like R (Grough, . S) in equation (4.41), only with a cutoff function

o) o for (j,n) < (W,N(m)) or (j,n) = (m+ 1, N+ 4 _N(m)) .
T for Gon) = (m, NTY) or (o) < (4 L, NOTD 41 NV
and the damping parameter
o Jo for Gin) < (AN or (j,n) - (w4 1, NOTFD - N (4.50)
Ky = . ’ " N |
ko for Gon) = (N or (,n) 2 (41, N - N0

Now, one is left with estimates for the A™"8" and Aend

M, Nfin M,N
Grough and G terms is the absence of a propagator after the last interaction with the
medium, so the amplitudes are “amputated”, like the K@™P) amplitudes in [32]. This
results in two missing resolvents in Lemmas 4.6 and 4.7, as can be seen in equation

(4.52).

@+ The main difference to the

Lemma 4.6. For ¢ of class (m,0), m >d+ (2+ M), N. € Nom_l obeying (4.56), and
any Ng, € {1, ...,N(m) -1},

2
lim E

R—o

A%ui[hn (t(m);Rv L(m),f) (H ASF NG (t(j);R,L(j)’z’f)) (s

VA gl
J<m

H (4.51)
= Z R(Aroughaw(%vg?H7a7p7L(0)7t7N<aNﬁnaM7S>
Sen*(I(N))
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4.1. Expansion of the dynamics

with N = Ng, + M and the amplitude R (Amugh, ey S) of each partition S given as

R (Am”gh7 V5, e, k0, a,p, L0 t, N, Nan, M, S)

— |V (2m) (1)
= Ve [ b > . /R o, B 3
U(zm)e{i}z\r@m)ﬂ o(l)e{i}N(l)H
1o 5 )00 )
AeS (4j,m)eA
2m—1 (5+1) )
RN G+ .0) G) G+
1 (e, (675 o0 0, - ) 0 )
j:]- J)
n Tl da(j)e,mmt(j)
e R 27
(j,n)ely(N) ( ) — 2mo ])T(] ‘]{3 ])‘ + Z’Y + ZH(])
(3:m)# (@, N (™)), (741,0)
[T [ (4o | o) 0 (.52, 1)
(4,n)EI(N)
= (D)) Je (1)
0,0" (ko ) 0, (2(73371) (ko ) ’
(4.52)
with the cutoff function
P fOT’ (jvn)< (maNﬁn) ( ) (m+1 Nm+1)+1_Nﬁn)
D =1 -0 for (j,n) = (M, Niw) or (j,n) = (m+1, N+ 41— Ny (4.53)
1 for (j,n) = (M, Ngw) and (j,n) < (M + 1, N 1 — Nj,)
and the damping parameter
Ii',(j) — 0 fOT (Jan) = (ma Nﬁn) or (]a TL) (m + 1 N(m+1) Nﬁn) (4 54)
" Ar for (j;n) = (M, Naw) and (j,n) < (m + 1, N7 — Ng,). '

Last but not least,
Lemma 4.7. For ¢ in class (m,0) with m > d + (2 + M) and N- € Nj'~ ! such that
(4.36) holds,

2

lim E

R—o00

ATL(W) ( ™, g (™ ) (H ASFyi) ( t9); R, LW 5)) o

J<m

H (4.55)

= Z R(Aend7w8?€7H7a7p7L(0)7t7N<7N?M7S)
Ser*(I(N))
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4. Proof of Theorem 3.1

with N(™) = ~N™ + M and the amplitude R (Aend, e S) of each partition S given as
in equation (4.52), only with and cut-off functions and damping parameters defined as
in Lemma 4.5,

o _ 2 for Gim) < (7N or (jon) » (m+1, N 41 - NT) (w0
T for Gon) = (m, NT) or (o) < (4 L, NOHD 1 - WD)
) 0 for(j,n) < (m,ﬁ(m)) or (j,n) = (m+ 1, N+ N(m)) (4.57)
kn™ = (™ . i (™ :
K for(j,n)t(ﬁ,]\f( )) or(],n)j(m—i—l,N(mH)—N( )).

4.1.4. Graph representation

To estimate the amplitudes given in Lemmas 4.3 and 4.4-4.7, we will represent the
contribution stemming from a partition S € 7* (I(N)) by a graph similar to the ones
introduced in [16] and also employed in [32]. Our graphs and their classification will
be more complicated due to the more detailed structure of the Duhamel expansion and
the multi-time measurements. As shown in Figures 4.1 and 4.2, the wave function ¢ is
propagated in from the left and the right, with the solid lines denoting the resolvents
regularized only by i7, and the dashed lines the resolvents regularized by i(vy + k). The

graphs are oriented like a scalar product, i.e. with 128 on the right and TZS on the left, so
with respect to our ordering <, indices increase from right to left. The measurements by
observables A; are indicated by empty squares. Following the notation of Figures 2.1 and
2.2, a solid diamond denotes an interaction with the medium when a cut-off @ is present,
an empty diamond represents scattering with 1 — @, and a black bullet a full scattering.
All three kinds of interactions cause a momentum change and thus a 6 variable. Those
variables are grouped together by the delta functions induced by the different clusters
A € S, so we connect all interactions belonging to the same cluster. Note that there are
no one-element clusters as only partitions from 7*(1(V)), i.e. partitions without isolated
elements, contribute.

Definition 4.1. A partition S € 7* (I(N)) is called

o higher order, if it contains an A € S with |A| > 2. Otherwise it is called a
pairing, and

e a crossing pairing, if there are pairs {(j1,n1), (j2,n2)} € S and
{(1,71), (J2,2) } € S with (j1,m1) < (J1,71) < (j2,m2) < (J2, 2),

« a nested pairing if it is a non-crossing pairing for which a j € {1,...,2m} as
well as two pairs {(j,n1),(j4,n2)} € S and {(j,71),(j,n2)} € S exist, such that
n1<ﬁ1<ﬁ2<n2,

e a non-markovian simple pairing if it is not crossing or nested and there is a
pair {(j1,n1), (j2,n2)} € S such that neither j; = ja, nor j3 = 2m + 1 — js.

e a markovian simple pairing otherwise.
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4.2. Basic estimates

A new feature compared to the classification in [32], is the occurence of non-markovian
simple pairings. These account for the correlation of scattering events across different
time intervals.

sssrre—ea

~ ; 3 : 2 y 1 -

Figure 4.1.: An example of a graph. It belongs to a K amplitude in the sense of Lemma
4.3, with m =2, N =(0,2,2,1) and a (higher order) partition S consisting
of one pair and one triple.

bR 75
kY

I .

e

Figure 4.2.: A graph belonging to an R(G™"8" ...) amplitude, with m = 1, Ng, = 2,
M = 1. The partition S is a crossing pairing. Note that in contrast to

Figure 4.1, the observable in the middle is just the identity operator 14 on
H.

4.2. Basic estimates

As in [16, 32], the key ingredient of the proof of Theorem 3.1 is to find increasingly sharp
bounds on the size of all I and R amplitudes, depending on which category of Definition
4.1 the partition S falls into. The first, basic estimates presented in Lemmas 4.8 and 4.9
will suffice for higher order partitions S; the idea for estimates on the contributions of
pairings S will be to improve the proof of the two Lemmas below by exploiting special
structures of S.

Lemma 4.8. (Basic estimate, K amplitudes.) For a random field & of class (d + 2,0)
and any v € (0,1/2],

1 (¢6,2,0,9, L, 1, N, 5))|
< cINl+2m ((L(°)> +mﬁ)2‘N| 11 H9|A|Hd+2
AeS
2m—1

_ N m
x M N2 =151 1og oIV s 12 T [l o
j=1

(4.58)

with a C < oo only depending on dimension d.

63



4. Proof of Theorem 3.1

Proof. Because of the delta functions induced by the clusters A € S, we have for j €
{1,...,2m} and n € {0,..., NU)}

D = kD 423 p0) + 3 09, (4.59)
3<j (7, R)EL(N):

(3,m)=2(3m)
(4,n)<max A(3,7)

where A(7,n) is the cluster A € S that contains (7,72), and max is defined with respect to

<. Now each k variable is either of the form k:(()j), jeA{l,...,2m}, or k:(]) (j,n) € I(N).

In the latter case, (j,n) € I(N) is called “free”, if (j,n) < max A(j,n) (as in this case,

0% is really a new integration variable) and “dependent” if (j,n) = max A(j,n) (because

then, the value of 97(3 ) is already determined by the 07(:;) with (7,7) < (j,n) and the delta
functions). Assume for the moment that NU) > 1 for all j € {1, ..., 2/} and note that
by the estimate

(KDY (69, 55, 1Y) < <+L ]9”]> (ne{l,.,ND}),  (4.60)

a medium smoothness m > d + 2 yields the existence of an only d-dependent constant
C < oo such that

‘IC (wg,a, a,p, L(O),T7 N, S))

. 2m—1
< V(20 4 mw)" N RN g T gl
AcS j=1

/dk 0(1)( )‘

Je{i}|NH—2m

(4.61)
() a® o™
0 (L) L Lo 52 )|

(4,n)EI(N) AeS j,n)EA
1

’ N(@2m)

2m—1
P om (k((]nﬂ 3 p(j))‘
j=1

(jn)elo(N ’a(ﬂ — 2mo )7l |k |+zfy’
N —=d ;o —1
I ()" () ).
(Fm)El(N)
where it is understood that all k£ variables are calculated from the p and 6 variables by
(4.59). For a choice of signs o and a fixed kz(()l), focus on the last three lines of (4.61).

Altogether, there are 2m+| N| resolvents, each belonging to one k variable. For resolvents
associated with the dependent k£ variables, take the L* estimate

1 C
sup - < .
kerd |a £ 27 k| + iy (k) ~ v {a)

(4.62)

For the k) with free (j,n) € I(N), and the k(()j ), we iterate the following procedure
(which is a straightforward generalization of Lemma 4.23 in [32]) until there are no more
resolvents left: Take the largest (with respect to <) remaining (j,n).
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4.2. Basic estimates

o if (j,n) € I(N), D =09 + s by construction and (4.59) the only remaining k
variable depending on 97(3 ), so integrating out 07(3 )
gy ! < Clloen|

Rd ‘Oé(j) . 271_0_7(Lj)7_(j)‘k7(lj')| —|—Z"}/‘ <]€,(zj)> <‘97(lj)>d - <a(])>

C only depending on d.

generates a factor

(4.63)

A\ —NG) .
o if n =0, there is already a factor <a(3)> , NU) > 1 from the estimates (4.62)
and (4.63), and one can integrate out a9,
[ da® .
2 |al) - 2m0f 7D kG| + iy | (a0))

< C|log~|. (4.64)

In total, there are |S| factors of type (4.62), |[N| — |S| factors of type (4.63) and 2m

estimates (4.64). Now only kél) remains to be integrated over, which is trivial thanks to
Y5 € H. The sum over all o can be accounted for by a factor 2INI+2m - After possibly
redefining C, the claim follows. In case that NU) = 0 for some j, there are no al?) or
HELJ ) variables to be integrated over, and one is left with only a factor 1 from the L™
estimate of ‘ ‘ ‘

ké]) — exp (—27T2' ’ké])‘ O’(()])t(‘j)) (4.65)
for these particular j, while all kfg ) belonging to j with N > 1 are treated as before. [

Lemma 4.9. (Basic estimate, R amplitudes.) For & in class (d + 2(M + 2),0), v €

(0,1/2], K >0, M € {0,..., M — 1}, No € NJ" 1, obeying (4.36), Nz, € {1, ...,N(m) —1},
and S € m*(I(N))

R (Gt 5,2, 10,0, LO), 1, N, Niw, M, S|

- — N\ 2|N|+4M+4 M
< cINF2m ((LO)y 4 mN eCobs) M1 H 94| M
( ) AGSH Hd+2(M+2) (4.66)
. m—1
x A MMIN/2 151 log | VT 12 TT a2
j=1

where C is a constant only depending on dimension d. The same bound also holds for
the amplitudes R (Gend, V5, €, K, a, D, LO ¢ N, N, M, S),

R (A ys ek, a,p, LO,t, No, Nin, M, S, and
R <Aend7w8757/<'37 a,p, L(O)7t7N<7W7M7 S);
with N | and thus N appropriately defined by (4.38) in each respective case.

Proof. For the most part, one can follow the proof of Lemma 4.8. The stronger require-
ment m > d + 2(M + 2) and the Cops factor account for the up to M + 1 “uncontrolled”

jumps starting at (7, Ngy,) or (7, W(m)), respectively, as already observed in the proof
of Lemma 4.4. ]
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4. Proof of Theorem 3.1

4.3. Improved estimates

4.3.1. Amputated graphs

In the last proof, we ignored the better estimates that could be obtained from the
resolvents which contain the larger regularizing parameter v + x instead of v, or are
completely missing (for the amputated R(A®9,...) and R(A™U ...)). We will utilize
those improvements in the next Lemma 4.10. If & scales like €?, ¥ < 1, the L> bounds
(4.62) become much smaller, the L! estimates (4.63), however, do not change much due
to their logarithmic dependence on ~y. Therefore, one essentially has to count the number
of L™ estimates in the “fade-out” portion of the Duhamel expansion. In [32], this was
done rather rather coarsely, necessitating a fade-out expansion of length O (W(s)), which
diverges as ¢ — 0. Because of the unbounded momentum space, we need to be able
to stop the expansion in only finitely many steps after the first interaction of the wave
with the “rough” part of the random field, which we achieve by a symmetry argument,
effectively swapping the L' and L> bounds.

Lemma 4.10. (Improved estimate for amputated amplitudes.) Let £ be of class (d +
2(M + 2),0), v € (0,1/2], » € (0,1], N. € NJ' ! such that ({.36) holds, Ng, €

{1, ...,W(m) —1} and S € 7*(I(N)). Then the estimate (4.66) is still valid after the right

hand side has been multiplied by (=L )M+ISI=IN1/2,

Ytk §0

R (AR e, k.0, p, L)1, No, Naw, D, S) |

7) 2|N|+4M+4

< CINI+2m ((L(O)> +mN (£Cons) ™+ };[S Hg‘f“ Hd+2<ﬁ+2>

m—1
Y o \Mm/€ _ N|+2m 2 2
M (L )M(ZYINI2 (o 1 o) INI2IST Log V2T g2 TT las])®
TEES Y i1

(4.67)

The analogous estimate holds for R (Aend,wg,s, k,a,LO ¢t N, N, M, 5’), with the S €
7 (I(N)), and N appropriately defined.

Proof. For the R(Arough, ...) case, take into account the improved resolvent estimates
ignored in the proof of Lemma 4.9. If one defines for each A € S the elements min A and
max A with respect to <, r = |[N| — 2|S| denotes the number of “extra” elements in I(N)
that are neither “minimal” nor “maximal”, that is neither min A nor max A for any A € S.
In the sense of the proof of Lemma 4.8, minimal or extra (j,n) are free, while maximal

(4,n) are dependent. On the other hand, exactly the 2M + 2 resolvents belonging to ks,,] ),

m, Ngn) = (j,n) = (m + 1, M) are “k resolvents” or (for ™ and k™YY are in
0

Nen+M
fact no resolvents at all, but factors of 1. We thus can improve their L estimate (4.62),
which yields an overall improvement by a factor (ylﬁ)h’ with [; the number of “maximal”
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4.3. Improved estimates

(4,m) with (m, Ngn) = (4,n) < (M + 1, M). By symmetry (the choice to integrate out
the resolvents in decreasing < order was arbitrary!), we can also obtain a factor (#—K)b,
I the number of “minimal” (j,n) with (m, Ng, +1) < (j,n) < (m+1, M +1). However,
as each (j,n) € I(N) with (m, Ng, + 1) < (j,n) < (m + 1, M) has to be “minimal”,
“maximal” or “extra’”,

I1 +1s >2M —r, (4.68)

and we pick the larger exponent for ,ﬂ?, which is
max{ly,lo} > M +|S| — |N|/2. (4.69)
The improved estimate for R(A°9,...) follows analogously. O

4.3.2. Crossing pairings

The last two lemmas will provide sufficiently good estimates for higher order partitions
and amputated amplitudes, so in the following, only partitions S that are pairings, and
amplitudes of the types K, R(G,...) and R(G™"#" ...) will be considered. We start
with an estimate for crossing pairings, as defined in Definition 4.1.

Lemma 4.11. (Improved estimate for crossing pairings.) For & in class (d + 3,0),
S e m(I(N)) a crossing pairing, and y € [2eCopsTi, 1/2] there is a C < oo only depending
on dimension d such that

)IC (1/18,5, a,p,L(O),t,N7 S)‘

— _\2IN|+3 Nl/2
< CINI+2 ((L(0)>+mN) ”92|||d+|?(

(4.70)
[N N o
_ 2m+1 2
X ewtl\/g Y IS+ |10g’Y|| HamE ||¢8HH ]._.[ HGJHCO’
j=1
ford >3, and
}IC (QZJS,E,CL,]?, L(O)7t’N’ S)‘
INl+2m (7 (00, 7\ 2IVI+3 |N|/2
<C ((L ) + mN) 1921l a3 (4.71)
N B 2m—1
x €21t e My 7152 1og o VT 812 T (lagllco
j=1

for d = 2.

Proof. We can follow the proof of Lemma 4.16 in [32] word by word to find the existence
of a “loose” crossing. This crossing consists of two pairs {(j1,n1), (j2,n2)} € S and

{(jl,ﬁl) , (jz,ﬁg)} € S with (jl,nl) < (jl,ﬁl) < (jg,’l’Lg) < (jz,’flg), and is loose in the
sense that any other pair {(ji1,71), (j2,72)} € S fulfills (j1,71) < (J1,71) < (j2,n2) if
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4. Proof of Theorem 3.1

and only if (ji,71) < (j2,M2) < (j2,7n2), so the the “crossing interval” between (7;,71)
and (j2,m2) is not connected to the outside by a third pairing. Also, we require that the
crossing we consider is “minimal” in the sense that no further crossing of pairs occurs
within the crossing interval.

Looseness implies that the 6 variables inside the crossing interval cancel, and thus,

- J2—1 - Jj2—1
k;r(ZJQQ _ éﬂ Z p@ 4 9 _ 7%3 Z @) 9(]1
j .71 ] ]1

(4.72)

Note that the “highest” 6 variable that kﬁij) depends on is Ggl). Just as in the proof of
Lemma 4.8, one has to evaluate the last three lines of (4.61), but with a slightly different

Ny —2
order of integration. Also, as & is of class (d+ 3,0), we can utilize a < 53 )> instead of a

<k7(lj)> ! decay for (j,n) = (j1,n1), (j,n) = (J1,71) and (j,n) = (j2, n2). From now on,
assume that all NU) > 1, j € {1,...,2m}, so that the resolvent expansion is applicable.
This is certainly true for j € {j1, 2,71, J2}. All other values of j do not play a particular
role in the proof and can be treated as in the remark at the end of the proof of Lemma
4.8. Compared to the proof in [32], the different possible patterns in the succession of
scatterings and multiple measurements lead one to distinguish three cases that have to
be treated differently.

i) J1=J2,

ii) 7 <79 and there is {(jl,ﬁl) s (jg,’ﬁ,Q)} € S such that (jl,ﬁl) < (jl,ﬁl) < (jQ,O) <
(j2,M2) < (j2,n2), or

iii) neither i) nor ii), so j1 < j2 and the “highest” € variable that k(()jQ)

(1)
00"

depends on
according to (4.72) is

In case i), first take L™ estimates of all resolvents belonging to dependent k:ng ), except
for the resolvent for /@Sz ), which we keep for the moment. For the resolvents belonging to
free k$) or to k:(] ) , one iterates the estimates (4.63) or (4.64), respectively, until arriving
t (J1,71) = (Ja2, nl), which is free. Here, a change of integration variable from 07%511) to
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4.3. Improved estimates

k:gl ") and the dependence structure (4.72) leave us with

dkgl) . 1 ] ]
Rd aliz) — 27_‘_0(]2) k7(11) _ 07(1311) o) — 27_‘_072311) kgf)
- = 2, - —d
< (K9 — g0 </€7g311>> (K9 + h(p,0<,)) s
C, (10g’y>2 . 4.73
o] oy 423,
Sy G (g yrg—9 o
pl1) <a(11)>
¥|0ny

in which A is a function of the p variables and the Gy(lj) with (j,n) < (j1,71); the estimate
is due to Lemma B.1 and independent of h. Now, continue iterating (4.63) or (4.64) for
all (j,n) which are free or have n = 0, with (ji,n1) < (j,n) < (j1,71). As the right side
of (4.73) only depends on 97(3}), it will just be carried along as a factor in the 6 integrals.
In case that j; > j1, the denominator <a(51)> from the right hand side of (4.73) allows
to evaluate the o) integral in the same way as in (4.64). Having arrived at the 07(1]'11)

integral, one changes to the integration variable kr(ff), and obtains, by Lemma B.2,

2 : 1
Ca (log ) /R LAk R 1’ ‘a(ﬁ) — 2mo) [kGD
1
X . 2 .
<k£LJ11)> <k7(1]11) + Q(p7 9—<(j1,p1))>
_ Ca (logy)®
<a(j1)>

d (4.74)

for d > 3, and

Co <10g’Y> / k)

k(]l)

,/ ‘71 ]1) ‘a J1) 27r(7(]1

+i] (k h)> (4.75)
(5 (logv)”
- \ﬁ<a(j1)>
()

for d = 2. For all remaining resolvents belonging to ky’, (j,n) < (j1,n1), one can
directly follow the proof of Lemma 4.8. The only difference is the resolvent belonging to

k(()j 1), which is possibly only regularized by a denominator <a(71)> instead of the <a(j 1)>

appearing in (4.64), so we employ

1
/ daU : _ < Cyllogy|  (6>0) (4.76)
— 2o iKY H—z*y‘(a
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4. Proof of Theorem 3.1

with § = 1/2 for j = j;. Altogether, two L' and one L™ estimate have been replaced
by a factor Cy (log~)? (for d > 3) or Cy (log v)* /y/7 (for d = 2). This yields an overall
improvement by a factor Cy (log~y) (d > 3) or C\/7 (d = 2), and proves the Lemma, for
case 1).

Suppose the crossing is such as described in case ii). The pair {(j1,71), (j2,722)} that
exists by assumption may not be unique, but we now pick one and do not change it during
the proof. One can start again by taking L°° estimates of all dependent kgj ) except for
kg;). Then, integrate out all 6% for free (j,n) and all a¥), but only for (j,n) > (j2,n2),
and j > jo, respectively. Next, call the free (j,n) with (j1,71) < (j,n) < (Jo, Ne)
protected, and for those protected (j,n), switch the integration variables 97(3‘ ) to the

variables kgj ). Those kgj ) as well as the k((]j ) with 71 < j < jo do no longer depend on
any of the other remaining free 6 variables (here, the assumption of a minimal crossing
is important), so one can continue to evaluate the integrals as follows — integrate over
all 955), (j,n) free, but not protected, with (7;,71) < (j,n) < (j2,n2), and over all o),
71 < Jj < 71 in the usual decreasing < order, using the estimates (4.63), (4.64). Do not

touch any of the o9 with ; < j < jo or the protected kﬁlj) for now. In the 97%]11) integral,
(1)

which only involves the kgll) and k2 resolvents, switch to the integration variable ki

to obtain

/ kY S — ! ——
RGO |qU2) — 2702 k:,(:fll) — 090 + f(p)‘ + ify‘ ’a(jl) — 2rg IV k’f:fll) + i’y‘

ni
x (kY — 690 + f(p)) : (k) ? (K5 + h(p, 0~ 5,.)) ‘
o, T (4.77)
G;jllpf(p)‘ V{a)) (ali2)) =
< Co (log ) ifd=2 °

= — if
0%1'11 ) —f(p) ’ \/<a(]l)> <O‘(J2)>

)

as before, just with and additional function f of the p variables. Now, in decreasing <
order, integrate out all resolvents belonging to k:g), with (j,n) protected, or (j,n) = (4,0)
with 71 < j < jo, and then for all (j, n) which are free and fulfill (j1,7n1) < (j,n) < (j1,71)
and all (j,n) = (j,0) with j; < 7 < 71. This can be done with the usual (4.63) and
(4.64) estimates, and by noting that the denominator /(1)) (a(72)) in (4.77) allows

for the (4.76), § = 1/2 bound of the /") and aU?) integrals. (Here we assume 7; > ji.
If 71 = j1, the o) = aU1) integral will only be evaluated after (4.78) or (4.79)). Once
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4.3. Improved estimates

(41)

iV integral by changing to ky;,

again, one can evaluate the 6y

: 1
2 (j1)
Cq (log~) /Rd dk; kG0 _ kr(lellIf(p)’ ‘a(jl) — 2mo) [KGD
1
8 G\? /1.01) d
<kn1 > <kn1 +a(p, 9<(j1,p1))>
_ Ca{logn)’
N <a(j1)>
for d > 3, and
Cy <log ) / 1
2 n1 )
R \/ K5 = k90| — ()] @l - 270 )
_G (logy)”
- ﬁ<a(j1)>
for d = 2. For the remaining integrals, one can follow the proof of the standard estimate

to end up with the same improved estimate as in case i).

(42)

In case iii), keep ki,

and finding

(4.78)

(41)

()

()

again and take L* estimates of all other k'’ resolvents with
dependent (j,n). Then, integrate out all 0% with free (j,n) = (ji,71) and all o)
with j > 71 except for al72). Now, there are three resovents left which depend on Hgll),
namely those belonging to kgll) = 97(:;11) — h(p, 03, 71)), as well as k(”) = k(ﬂ) + f(p)
and I{:,(ff) = gll) - 0,(1‘7'11) + f(p). Here, as before, h is a function of the p variables and the
6% variables with (j,n) < (71,71), while f depends only on the p variables, and by our

assumptions fulfills
J2—1

Zp

J=h

p)|=c¢ < 2eCops (4.80)

for all p from the support of the observables. Therefore, for v > 2eCypsm7,

. , -1 . -1
‘a(h) _ 27‘1’0’(()]2) k(Jll) + f(p)’ + i’y’ < C ’a(JZ 27.‘.0(]2) k(Jl) 4 iv‘ , (4.81)
with a factor C' only depending on dimension d, and one can estimate the 0,%51 1) integral
by
C/ dkgjl) _ _ 1
Rd ni ‘O((jl) _ 27_[_0_72]11) ngll) + Z’}/‘ ’a(jz 27'('0'(]2) k(]l) + Z’Y‘

1 (4.82)

a0 — 200 k5 + £() -

x (k) <J”+f<> f1> <kf:ff)+h<p,9<<]~1,m>)>_d.
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For d > 3, the substitution (B.3) with u = 07(ff) — f(p) yields the estimate

c Cd / 1
_ ’ ‘a(ﬂ) ,01 + Z’Y‘ ’a 72) Qwa(()jZ)pl + iv’ (p1)

1
X -
/0 ‘a(ﬁé) — om0 py + i’y‘ (pa) (4.83)
4 (a(jl)’ a(]?) , fy)

05 — f(p)|

)

with

Na (a(jl), oz(j2),7)
o Cllogy) 7> , <10g ) t !
~ Jau /(@) (atm) el =1abI\ | fia)y —\fla)) )

(4.84)

with a new C depending only on dimension d. One can now take the ali2) integral (there
are no aU2)-dependent resolvents left!) to obtain a factor

/ 3
/ daty (a),a), ) < ¢ llog ) (4.85)
R <a(J1)>

For d = 2, the estimate for (4.82) is of the form

o (04(51)7 Oé(jz),fy)

' (4.86)
‘91(1]11) - f(p))
with 9
!
[ a0, (40,000, 5) < O llogn)” (4.87)

\/7y <a(jl)>
Now one can integrate out in the usual order all free k,(lj), (j1,71) < (4,n) < (J1,71)
and all o9, j; < j < 71, by the standard estimates (4.62), (4.63), and, for the aln)
integral, (4.76) with 6 = 1/2. The rest of the resolvent integrals is taken as in case ii).
In the case at hand, we then have an avoided two L!, one L™ resolvent estimate, as
well as the estimate (4.64) for a%2), and replaced them by factors C (logy)?* (if d > 3)
or C (log7)? /+/7 (d =2). The overall gained factors, again, are Cy (log) (d > 3) or
C,/7 (d = 2), with C' depending only on dimension d. This finishes the proof of Lemma
4.11. O
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4.4. Non-crossing pairings

Lemma 4.12. (Improved estimate for crossing pairings, R(G™"8" ...) and R(G",...)
amplitudes.) For & of class (d + 2(M + 2) + 3,0), v € [2eCopsm, 1/2], k > 0, M €
{0,..., 7 — 1}, N. € N!, such that (4.56) holds, Ngn € {1,..., N — 1}, and S €
7*(I(N)) a crossing pairing,

R (G, 5, e, 1,0, p, L), N, Niw, M, S|

7) 2|N|+4M+7

< cINl+2m ((L(0)> +mN (Cus) MTHT || go 1N/

d+2(M+2)+3 (4.88)
-1

— N|+2m+1 2 2
x M N2y IS 1o V2L e TT [lag|Z0
j=1

ford >3,

R (G, o5, e,k 0,p, LO, 8, N, N, M, S) |

INJ42m (17 (0)\ ) 2V IHAMAT AM+7 ) INI/2
=C (<L )+ mN) (eClobs) 921l 45772y +5 (4.89)
m—1
_ N|+-2mm
x e MeINI72y IS [log N2 116 12 TT N2
j=1
for d = 2, where C' is a constant only depending on dimension d. The analogous

bound also holds for R (Gend,wg,s,m,a,L(O),t,N<,N, M, S), if N and thus N are
appropriately defined.

A\ —2
Proof. The proof is exactly the same as for Lemma 4.11. For the necessary < 5{ )>

A\ —1
instead of a (k) decay for (j,n) = (ji,m), (j,n) = (1, 7) and (j,n) = (j2, na),
one has to assume m > d + 2(M + 2) + 3. As in the proof of Lemma 4.9, the improved
estimates stemming from the resolvents with an additional x are ignored. O

4.4. Non-crossing pairings

4.4.1. Suppression of jumps outside the cut-off ¢

Thanks to Lemma 4.11 and 4.12, we can from now on focus on non-crossing pairings.
Next, we will show that the interaction of the wave with the “rough” part of the medium
is supressed, i.e. that a violation of the cut-off @ will produce amplitudes that vanish in
the € — 0 limit.

Lemma 4.13. (Improved estimate for R(G™"&?, ...) amplitudes, non-crossing pairings.)
For & of class (d + 2(M +2),0), € > 0 such that emCops < %, v € (0,1/2], k > 0,
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4. Proof of Theorem 3.1

M €{0,.., 7 — 1}, N. € NIY with (4.56), Ngn € {1,... N —1}, and S € n*(I(N))
a NOM-crossing pairing,

R (G, 45, e, 5,0, L), No, Ny, M, S|

.  _\2|N|+4M+4 AN 4+4 N|/2
< CNH ((L0) 4 ) (Cors) ™ loalgair o) (4.00)
m—1
s M2 =151 log o INH2T 12 T a2
j=1

with C' a constant depending only on dimension d.

Proof. We can follow the proof of Lemmas 4.8 and 4.9 and find a constant C only
depending on dimension d such that

R (G, 45, 5,0, p, L0, Ne, Niw, M, S|

| N|+4M +4 m—1
L I S e ey | (O

|N|+2m (O)
< N (L) + T2
05 o (K"

5 8550 ()], 680
7 n(2m)

1, (o8 Lt 1o (2 )

(Jm)El(N) AeS
1

N———

(j,;n)Ely(N ‘a(J —2770 T(])’k H‘Z’Y’

T (o) " () ")

GmEI(N)

(1=@) (k) k9 LD) T @) kD, LD).
(4,m)EI(N)
(3m)=(3,7)

(4.91)

Note that this time, we have kept the @ and 1 — & cut-off functions, at least for the k()
§ > mm variables, and used the shorthand (j,n) = (m + 1, N1 41 — Ng,). The key

observation is that (7,7) is the <-largest (j,n) € I(IV) for which both k:,(ljzl and kY are
large. One can distinguish the following types of partitions.

o First, assume that S does not contain pairs {(ji,n1), (j2, n2)} with (j1,n1) < (3,7)
and (j2,n2) > (j,n). In that case,

S0 =o, (4.92)

()= (1)
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4.4. Non-crossing pairings

SO
_ 2m-1 N 2m—1
Koo =k +e Y pD =kP +e Y p9). (4.93)
J=1 j=m+1

Observe that for ki, ks € R?, L € R,
1-— @(kl,kQ,L> = (1 — (p) (kl,kQ,L) (1 — (p) (kl,kQ,L) (494)

is different from zero only if |ki],|k2| > L, so the integrand in (4.91) is nonzero
only if ‘kff)‘ > Lg) > L 4+ 1. On the other hand, by the support properties of ¢,

the integrand is also zero if ‘kﬁgm)‘ > L) and thus, whenever eCopem < 1, the
amplitudes of partitions S with the aforementioned property are always exactly
Zero.

Conversely, if S does contain a pair {(j1,n1), (j2,n2)} with (j1,n1) = (j,7) and
(j2,n2) > (J,n), choose the smallest (with respect to <) such (j2,n2). Define
(J2, 72) to be the direct precursor of (jo,n9) in I(N) with respect to <, and assume
for the moment that (72, 72) = (j, 7). If ng = 1, this means jo = jo — 1, g = NG2)
while (j2,72) = (j2,m2 — 1) if ng > 1. In any case, it is easy to see that, by the
non-crossing property of S, both (j2,n2) and (j2,72) are dependent in the sense of
the proof of Lemma 4.8, and that, by construction

() _ () _
> 0 = >, =0 (4.95)
(G:)=Gm) < 2ma—1) (G:)=Gm <(2.2)

and thus both

B3| = K| = o > L) — <iCons (4.96)
and
k| > L — emCons = LY —1/4> LY + 3/4. (4.97)

Thus, whenever @ (k:(j 2) k:gf2 ), Lg?) # 0, one has

no—17

) . 1 5 1 7
K| < 2 + 5 < L — 5 < [k (4.98)

1 o _
— 5+ emCons < [K| - 1.

One can therefore take the L estimates for the k%) and k‘%) resolvents simulta-
neously,

1
sup - - - . . .
<62 (’a(ﬂ) & 2k + iy (K)) - |ali2) £ 20 |2| + i <k$ﬂf)>)
C

= a0y (al@)y’

(4.99)

gaining an overall improvement of the estimate by a factor ~.
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4. Proof of Theorem 3.1

o Let (j2,n2) be defined as in the last case, but suppose S is such that the precursor

of (]Q,ng) is (j,n), and even that {(7,7), (j2,n2)} € S is a pair. Then |k:7(Lj22)| >
5 1\ — emCops and \k(h 1>k 0) | — emCops but for the integrand of (4.91) to be
d1fferent from zero, both

min { [k, |, [0} > LY (4.100)
d
" min { k72| |62\ } < LG2) + % <Lt % (4.101)

need to hold, which is impossible for meCops < %

o The last possibility is that, with (j2,n2) defined as before, the precursor of (j2,n2)
s (3,n), but {(3,7n), (jo,n2} ¢ S. In that case, for the integrand of (4.91) to be
different from zero,

min{ U eCops , k) } < min{‘kflel ; kf{;) }
4.102

which implies ]k%)\ < ]kr(f) | — 1 whenever emCops < 3. By the structure of S, kg)

and k‘%) are both dependent k variables, so one should take L estimates of their
resolvents. As the singularities of the resolvents do not overlap, one has

1
sup - - - - . .
eSO (‘a(ﬁ - 2mk) | + iy | (k) - [aG2) & 2m(kE2| + i <k§3§)>)
< C
- ¥ <a(j)> <a(j2)> ’

(4.103)

gaining a factor of v again.
O

4.4.2. Decoupling of + and — components

Recall that the remaining partitions are non-crossing pairings S. For given N, and a
pairing S € 7* (I(N)), write a pair as A = {(jA,nA) (54, nA)} with (ja,m4) < (j4,n4).
A gate is characterized as a pair A € S such that (ja,n4 +1) = (j4,n?). Note that the
two elements of the pair are not only required to be consecutive, but the two scatterings
have to occur in the same time interval, on the same side of the scalar product, so

ja = jA. For fixed S, denote the set of gates and their right endpoints as

Sgate = {A € S : Ais a gate},

4.104
Igate = {(jA,nA) tAe Sgate}- ( )
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4.4. Non-crossing pairings

Until now, although the observables A5 and the unperturbed time evolution generated by
Hy are diagonal with respect to the o variables, the time evolution of the )5 component
and the ¥° component of the wave are still coupled due to the off-diagonal elements of
the disorder term V', (2.107). To prove that those two objects decouple in the kinetic
limit, define for a non-crossing pairing S € I(N) the amplitude

K+ (¢5..0,0, L, 1, N, 5)
_ (JEm)N () m
— (Vem) dk S /]R s, B 3

(27m)
Rd(N +1) o'(2m)e{:|:}N(2m)+l U(I)E{:l:}N(l)+l
1{o0) = +1(j,n) € Io(N) \ Tyate |

IL{o 00 ) (0

AEs
2m—1 gt 4 ) . , A
|1 (aj,+ (O o) 8 (kY — ki, — e

J=1

2 (4)
G [ daV¥ o))
e'ytj e i\ I)t\I

R 27

3|

I
—

J

(3
(jym)€Io(N) <a(j) — 271'0'53')7-(]')“{;7(3)‘ + i'y)

]._.[ {(_iT(j)) (‘kﬁf)’ 07(21 + ‘kf(z]—)l‘ Ugj)) P (kéj)a knjzp ng))}
()€l (N)
1/’/6,: (k(()l)) ﬁ (k(()l) + ;g:lp(j)) .
j=1

(4.105)

Once again, for the sake of better readability, k£ and 6 variables were employed simul-
taneously. Compared to the original amplitude K introduced in Lemma 4.3, the only
difference is the indicator function in the third line of (4.105) ensuring that the set of

sign constellations to be summed over is much smaller. The only resolvents that still
come with both signs o) € {£1} are those “contained” within a gate, (j,n) € Igate-

All other agj ) are set to +1, and consequently, only the + components of the observ-
ables a;, and of the initial wave function 1§ contribute. In the same manner, define

IC* (@Z}Sa g, a, ba L(0)7 t, N, S) by replacing
TZS,Jr - 1287,
Aj+ = G- (4.106)
1{o§) = +19(j,n) € Io(N) \ Tgaie } = 1 {0 = =1%(j, n) € Io(N) \ Ignte}

in (4.105). With this definition,

77



4. Proof of Theorem 3.1

Lemma 4.14. (Decoupling of dynamics for + and — components, K amplitudes.) As-
sume that dimension d > 2, and let the random field £ be of class (d+2,0), and suppose
that go furthermore fulfills the conditions of Lemma D.1. (Requiring & to be of class
(d + 2,3) is sufficient). Then, for all § > 0, there is a constant C depending only
on 0, dimension d and go such that for all v € (0,1] and all non-crossing pairings
$ e (I(N)),

]m (¥6.2.0,p, LO, 1, N, S) + K (5, 2,a,p, L1, N, 5)
- K (¢§,€,a,p, L(O),t,N, S)

_ _\N2|N
S C\N|+2m ((L(0)> —i—mN) | ‘||92H|d]—\|]—|2/2 (4.107)
2m—1
x €2 (/) N2 #1260 (1og ) N2 812 T Mlall o -
Jj=1

Proof. The right side of the representation of K in resolvent form, (4.33), is a sum over

all possible choices of |N|+ 2m signs. Consider a summand belonging to one ﬁxed choice
of signs o € {£}HV+27 and assume there is an A € S\ Sgate such that ol A L7 O'(j
( A A

For this particular o and A, set (j,n) = (j,n"), and observe

Z’ 1
a® =200V ED | + iy o) — 276D D [ED) | 4 iy
2ot r i (1K), ] + [k J>D (4.108)

(a( i) — 27ran J)]k(] | + z’y) (a(i) — 2770 T(J |/<: (7) 1+ zfy)

and thus

2r o || + o |

’a( i) — 2mo) 7l “%(1])| + i’y’ ‘a(ﬂ — 27m72717(j)\/£7(l‘721| + i’y’
< 1 n 1
B ’a(j) — 2o P D[] + i’y’ ‘a(j) — om0 7DD | 4+ z”y)'

(4.109)

Therefore, Whlle est1mat1ng (4 33), one can replace the product of those two resolvents

(and the oy; )|k: 1H—an 1|k:n | “interaction term” between them) by their sum. Following
the proof of Lemma 4.8, there are three different possibilites.

o Either, n > 1. Then, by construction, both (j,n — 1) and (j,n) are classified as
dependent, and we have to take L estimates of their respective resolvents by

A\ 2
(4.62). The standard proof would thus yield a factor (C/ﬁ <oz(7)>)) , which now

reduces to (C’/ (v <a(3 >)), gaining a factor v. The loss of decay in al) is not
important as NU) > 1 in this case and (4.64) can still be performed.
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4.4. Non-crossing pairings

e Or, n =1, but still N¥) > 1. In this case, for both summands on the right of
(4.109), we can take the estimate (4.64), making use of an o9 decay stemming
from previous estimates thanks to N > 1. Again, a factor ~ is gained.

o Finally, for n = NU) = 1 there are only two resolvents, so the right side of the
estimate (4.109) is no longer a()-integrable. Still, for § € (0,1), the bound

2w o |kij)1|—|—0'3) k(3)|

|a®) — 27207 |6| + in| |a®) — 2w D r DKL, | +
4

(27T 0-7(lj)|k;7(z]zl| +U£L]21’k£lj)|

N———

o) — 2m0 O] + ”‘5 a0) = 200 rO KD, | + 7 (4.110)
(zn\aﬁi)mﬂly + o) kY |D
’a(ﬂ) 2o |k: | + w’ ‘oz 2%0,2]217(j)|k7(1]21| + iv’d
improves the standard estimate by C5y'~%, § > 0 arbitrarily small.
By symmetry, summands belonging to one fixed choice of signs o € {i}'N I+2m  with an

A € S\ Sgate such that JT(LJ:‘ZI #+ 0%“) are estimated in the same fashion.

Now, consider a choice o € {:I:}'NH'Qm of signs such that there is a gate A € Sgate With

njf)l # Jgjﬂ We write (j,n) = (ja,na), and assume without loss of generality that
7 <m, so 70 =1. In (4.33), one can take the integral over k,(f) and the sum over 07(3)

to obtain, as kflj_l = kv(f)p

(), — k) G N |
im? %:) k) — )92 Qﬂ;rgj) ‘kf{)’ i (07(11) ’kfﬁrl‘ + ‘kr(z])D (07(11) ’kr(l{)rl’ _ ‘k’r(f)D
X qﬁ(knjlh kD) L))
=y (k)09 + iy 1Y)
(4.111)

(Note that @(ké@rl, (j), L,(ll) ) =1 on the support of @(kg}rl, (j), LY )) ) By Lemma D.1
and Lemma D.2,

’h+ ( n4)—17 (4 )+W,L3 )’ ‘th ( M)_l,27r0n+1 ‘kn—kl‘ +Z’y,L( ))‘
+Cy, <L(3)> min( (log ) ‘a —271'0nJrl ‘knﬂ

< égz ( ’kr(z]ll‘ + <L ])> min ((log'y )04 27“7221 ‘kn—i-l

)
2)).

(4.112)
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4. Proof of Theorem 3.1

For each of the three summands in the last term, one can follow the proof of the basic
estimate Lemma 4.8, with the following improvements. For the first summand, every-
thing stays the same, except for the factor v we obtain instead of an C (log~) / <oz(j )>
)

from the usual (4.63) estimate for the gate (the momentum k4 inside the gate is free).

The now missing 1/ <oz(j)> decay does not prevent a later application of an (4.64) esti-
mate, as N@) > 2 (presence of a gate implies at least two scattering events) provides
at least one more such decay factor. This yields an improvement by Cv/ (log~). Next,
for the second summand, note that (j,n + 1) is dependent, so in the standard proof,
there would be an L* estimate for the k:,(lﬂ)_l resolvent, but the fate of the k:,(f_)l resolvent
depends on the structure of the graph—

e if n =1, the k(()j) resolvent would be estimated by (4.64), and the three k(()j), k:gj),
k:éj ) resolvents would yield a factor C (log 7)2 /7. Now, instead, take L> estimates
(")

n'

of all resolvents belonging to k (j',n') dependent, except for k‘éj ). Then follow

the standard algorithm until the highest remaining indices are (7,2) and (j,0) (k:gj )

has already been accounted for by (4.112)). Now, performing the al/) integral
yields, with k = k:éj) = k(()]) and o = a0,

I
d
S‘ip/R Yo = 2a[k[ + inl o + 27]k] + iv] (k)

< C (log7) . (4.113)

Thereafter, one can follow the standard program again, gaining an overall improve-
ment of Cv/ (log~).

o if n > 1, and the indices (j,n + 1) and (j,n — 1) are both dependent, one would
usually estimate both respective resolvents with (4.62) type L estimates for
a factor y~2, and a factor (logy) from the kﬁf ) resolvent. Now, instead, with

k= k;f_?_l = kflj_)l and o = o9,

I ¢
sup . . <
ko la =27 k] + iyl |a+ 27 (k| +iy] (k) ~ (@) y

: (4.114)

yielding an overall improvement by a factor Cy.

o if n > 1, with index (j,n + 1) dependent but (j,n — 1) free, instead of taking an

L°° estimate of the k,(l]ll resolvent, pull it into the 97(321 = k:flj_)l — ¢ integral, to
obtain
. . d
R | — 27| k| + | | + 27|k| 4+ iy| (k) (B — q) (4.115)
S/ " 1 dSCOOgv),
B laf = 27[k| +iv| (k) (k —q) (o)

obtaining an improvement by 7/ (log~) again.
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4.4. Non-crossing pairings

Finally, for the third summand in (4.112), all resolvents are treated in the standard
()

way except for omitting the usual L' estimate for the k;7’ resolvent “inside” the gate

itself (thus gaining a factor (log~y)) and an improved L estimate for the k:;ﬁl resolvent,
namely

in ( (1 () — (@) |.0)
s(1]1)p mln(gj ig'y ‘Oé 2ro, ‘ n+(1j ) < C fjl:()jg; v) (4.116)
k) ‘a 2770n+1 ’an’ + w‘ <k > < >

In this case the overall improvement is Cy.

As the observables are diagonal, (4.1), all sign changes have to originate from a scat-
tering event, i.e. from one of the cases analyzed above. So we have now estimated all
contributions of IC except for K and K_, thus proving the lemma. O

Lemma 4.15. (Decoupling of dynamics for + and — components, R(G*,...) ampli-
tudes.) For dimension d > 2, assume that & is of class (d +2(M +2),0), and let go fur-
thermore fulfill the conditions of Lemma D.1. (This holds if € is of class (d+2(M+2),3)).
Choose M € {0, .. — 1}, No € NIt bounded by (4.36) and define N from N, N,
M as prevzously. Then for all § > 0, there is a constant C depending only on 9,
g2 and dimension d such that for all v € (0,1], k > 0, and all non-crossing pairings
S e (I(N),

‘R (Gend, Vg, e, kya,p, Lt No N, M, S)
— R4 (Gend,wg,a,ﬁ,a,p,L(o),t, N.,N,M, S)

R (Gend,¢g,s k,a,p, L0, t, No, N, M, S)‘ (4.117)

2|N|+4M+4 i NI/2
(€C0obs) M+ || go| NV

N|+2m
< Nl ((L( )+ N) d+2(M+2)

x 2 (g /7) N2 120 (1og ) INH2T |12, H lajlZo -
j=1

Here, the definition of Ry and R_ is analogous to that of the K4+ and K_ amplitudes in
(4.105) and (4.106).

Proof. One can make the same improvements on the proof of Lemma 4.9 as were made
for Lemma 4.8 in the previous proof. For the scattering events without cut-off function @
occurring in this case, one has to use Lemmas D.1 and D.2 for the non-cutoff h,, 4, (k, w)
instead of hy, o, (k,w; L). O

4.4.3. The K™ and R amplitudes

All estimates for K and R amplitudes so far have been derived by using a resolvent
representation. For controlling the contribution of nested and non-markovian pairings,
and eventually identifying the linear Boltzmann equation as the limit, the resolvents will
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4. Proof of Theorem 3.1

no longer be practical; instead, we transform the o) integrals back into time integrals.
We will formulate our arguments only for the X, and R amplitudes, the “—” amplitudes
can be treated in the same fashion.

Definition 4.2. Let S € I(N) be a non-crossing pairing. The parent AofaparAdes
is the “narrowest” pair in S embracing A, that is, from all B € S with min B < min 4 <
max A < max B we choose A to be the one with min B maximal. For A that do not
have a parent in S, we set its parent to be A = {(1,0), (2m, N(*™))} =: 0. We thus have
a map

1S — Su{0} =95, (4.118)

which is not onto and typically not injective, so the set of children
B={Acs:4i=B} (4.119)
of an B € Sy may be either empty or contain several elements.

For (j,n) € Ip(N), also define the momenta

@ =k’ > 67, (4.120)
(3,n)EI(N)
(3,)=(5,m)

which coincide with the k%] ) up to the O(e) contribution of the p variables.

If there are GUY) gates on the j-th time interval, there remain NU) + 1 indices after
integrating out the gates, with NU) = NU) — GU)_and there is an bijective map

{0, NOYI\ {02 (j,m) € Lgaic} = {0,.., NO},

(4.121)
ne(G,n)=n—t{n <n:(j,n') € Iz} -

The size of the reduced index set I(N) \ Igate is ‘N’ =NO 4 .+ N@™)_ The non-gate

scattering events in the j-th interval is RY) = N —2G0) = N -G and the number
of non-gate pairs A € S\ Sgate is

13 INL_ B eIV
- U) = =1 _ () = |
QER 5 EG || n (4.122)
j=1 j=1
For ¢ € R%\ {0}, ¢ # 0, one can set
~_ 4
q=—, (4.123)
|4l

and define everywhere except on a set of Lebesgue measure zero
P(]) :Zp(]) (] G {17"'72m})7
=1

w = 2770 (169, )| + 285 ) - PD) (j € {1,...2m},1 € {0,...NO}).
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4.4. Non-crossing pairings

The contribution of the signs 7)) will show as a factor pa for every A € S\ Sgate,

pa = (—iTUa))(—ir ™), (4.125)

S0 p4 is negative if both scatterings belonging to A occur on the same side of the scalar
product, and positive otherwise. This sign will later give rise to the gain and loss terms
in the linear Boltzmann equation. Employing the above notation, denote as the main
part of the K4 amplitude belonging to a non-crossing pairing S the quantity

/Cimain) (1/18, €,a,p, L(O), t,N, S)
i [ g 0 g WPNEIN =y RS G
=& /]Rd dgq ‘27“]0 ‘ Yo+ | te ; p Vo, + (QQ )
Lo TT o (ad) TL (s (6027 + 052 3 (05))

(3m)€I(N)\Igate A€S\Sgate
2m—1 (4.126)

H @j,+ (‘Imn) H Ko (w ( 1V ))

11 9?(%(1),(1(]) L)
(jan)eI(N)\Igate

II (-0 (@ ]a")) s (- a2h)),

(],TL) Elgate

with the propagators K defined as in (4.30). For j € {1,...,2m — 1}, we have set
G+ _ ()

el ROk

Lemma 4.16. Let d > 2, £ be of class (d+2,0) and suppose go fulfills the conditions of

Lemma D.1. Assume furthermore that there exists a A € (0,1] such that 126(/{) =0 for
|k| < X independently of € > 0. For all 6 > 0, there is a constant C' depending only on

0, d and go such that

Ky (¢5,2,a,p, 10,8, N, §) — /c(mam (¢5,2.0,0, LO, 1, N, 5)|

< CINl2m (<L(°)>+WN) 92110147 (Cons)*
) INI/2 Nz e T 20
x 2/ (g /) (logy) sl IT Nagllen
j=1

x (€[ +7)A™ +4'7)

for all non-crossing pairings S € ©* (I(N)), and all v € [4e (Cops) T, 1].

Proof. First, we will replace the 7T(|k: | + |k: 1|) factors by 27r]k(()1)\ = 27T|q(()1)\ for all
scattering events belonging to non-gate pairs A e S\ Sgate- There are |N| — |N|/2 such
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4. Proof of Theorem 3.1

pairs, which explains the exponent 2|N | — | V| in the first line of (4.126). It is enough to
show how to replace the factor |l<: |+ \k(ﬁ) 1| for (j1,m1) = max A; for an Ay € S\ Sgate,

the min A; case is analogous. There is an 7 < |N|/2 such that 4; = A;_y, (I € {2, ..r})
until A, = {(1,0), (2m, N@™)}. Therefore, with the notation max 4; = (j;, ny),

B0 ] < 00 2 D e
< |k, - | “”\]HZ\Ikn?f — (RG] + 4emCop
r—1 )
=2 Z (R S0 = RS2 1]+ 2[R0 — 6 |+ 46Cobs
<2Z‘|km 1 +8€mcobs
(4.128)

Now assume all replacements of this type for pairs A € S\ Sgate With max A > max A,
have already been accomplished. Then, without needing better decay conditions for go
than in Lemma 4.8, one can follow the proof of that lemma, and observe that the error
from the replacement causes r error terms, a trivial one with an improvement factor
emCyps compared to the basic bound, and 7 — 1 more complicated ones, originating from
the sum in the last line of (4.128). We can utilize each of those summands to estimate

27‘(‘"]{3( |k‘(]l |’

‘ G) — 277 Jl)‘k(]l | + Zf)/‘ ‘a (1) — 27r7'(jl)|]{;££2” —+ ny’
1 1
ST — T G ;
|ali) — 2w 7@ [KGP| + 49| |ald) — 277G [k | + i

(4.129)

from where one can continue as in the proof of Lemma 4.14 after estimate (4.109).
Therefore, one can replace all factors of the type \k(] )] + \kﬁfjﬂ in the definition of the
K4 amplitude by 2|k:(() )\ with an error of the form

(Basic estimate from Lemma 4.8) x C|N|(|N|y* =% + emCyps) (4.130)

with § > 0 arbitrarily small and C depending only on dimension d and §.

Next, one has to approximate the contribution of the gates by the ©, functions defined
in Lemma D.3. Consider a gate, A € Sgate, with min A = (j,n). First, assume, that
7 <m, so 7(1) = 1. In this case, the factors

(0 ) = (oot

have not been replaced by ]k(()l)] in the previous step. Instead, we now integrate out all
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4.4. Non-crossing pairings

factors in (4.105) that depend on k:,(l]) or 07(1) to obtain

Y [k %W—mo

o) a(] Ug)‘kﬁzj)ﬂw () J)‘—i—cr ‘kn-i-l’) (kr(z]-i)-bk(]) L(]))

=hyy (kfﬁpa(j) + W;ngj)) ; ( |
4.132

and estimate

‘h++ (ng)rl?a(j) + i Lf{)) -0y (qn+1|k ’)‘
< by (B2, 09 + i, L(J>) — by (B 2n k) |+ 09 L)) |
+ ‘h++ (k&)l,?ﬂ |+ iy LY )> —hyyt (Q£L]+)1:27T\Q§LJJ)F1| + 1 Lnj))‘
Ry (a0 2mlqlh ] + i LD) = by (G500 1K57), 2w | + i)
- [hy (@165, 276D+ i) = 04 (G167
< 0 (29)" [min ((log) [ — 27T|k;n+1|y 1) + 2mCopsc (log )
+ min ({logy) k6| — kS| (log(|[k§"| = k1)) 1)
+ (Cons)* € (log ) + 7 (log ) ,
(4.133)

where we used Lemma D.1 and Lemma D.3. After replacing the argument k}(w)rl of the
gate functions h4 by Aflj_iﬂk(l)\ = n+1|q0 |, we can also shed the cut-off threshold

L%j ) for all gates, as |k:0 | < L©) < Lgf ). Now, one can again insert the above estimate
into the proof of Lemma 4.8. This way, the last two lines of (4.133) yield the following
improvements. From some summands, one directly obtains a factor € (loge) or v (log ).
We have already seen in the proof of Lemma 4.14 how the summand

min ((log ) [a¥) — 2 [k}, [],1) (4.134)
gives an improvement factor . Finally, the summand
. 1 j 1 j
min ((logy) [[k6”| = K51, 1| (tog(lk§" | — K1) . 1) (4.135)

can be estimated as in (4.128), with an only slightly worse improvement factor of the
form

(INW' =2 4 (Copem)* %) (4.136)

0 > 0 arbitrarily small. To see how to replace gates by © functions for j > 7, observe
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4. Proof of Theorem 3.1

that 7) = —1 and

oy [ anp UL b

o) b al) + 270y ’k: ‘+w

(K] + 09 (K20 )" @) 1, 22

=n (¥)y,09 +i; Y),),
(4.137)

which one can replace by ©_ (qn Jr1|/~30 |) with the same error as before. As we have

already started with the @, functions, we want to change from k(j ) to q( 7
First, note that this easily achieved for the argument of the g5 functions, as

@ (09) = (9 = k5)) = 3 (¢ = o) (4.138)

for all (j,n) € I(IN). Using the differentiability of the observables,

(7+1) (4)
(kT ARy G
aj,+ B) aj,+ (qu)

so all £ arguments in the observables can be replaced with an error proportional to the
basic estimate times 2eCopsm2. Finally, for the cut-off functions,

‘45 (k(])

arguments.

< 26Copstt |l » (4.139)

n—1»

KD, LYY - @ (g <J>1,qg>,Lg>)\ < 2eCConm® (k) kD, LY +1)  (4.140)

and one can therefore replace the arguments of all @ functions with an error consisting
of the standard estimate from Lemma 4.8 times 2|N |eCopsm.  After finishing those

replacements one can always borrow a decay < G )> from g5 and @ just as we got a

< 53)> decay in the proof of Lemma 4.8.

The only task left is to estimate the error of replacing the arguments of the resolvents.
Note for all (j,n) € Ip(N),

KD = ¢ +3 p0) = ¢§) 4 PV (4.141)

J<i

with |PU)| < 2MCypee, and therefore for |q7(~f )\ > AmCopse

)| = g9 — <) PO)| < —— L pip< w (4.142)
2(|gi’| — €| PV))) g’ |
For 0 < ]q ] < 4mCypse,
— 2
169 — 4] - g - PO)| < (4mCobse)” (4.143)

16|
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4.4. Non-crossing pairings

holds trivially, and one has

1 1
a(j) — 27r7'(j) ‘(b(zj) + 5P(J)’ + i’}/ a(j) — 2777'(j) <|q7(,?)| + 5@(3) . P(J)) -+ ’L"7
C(Cobsm5)2
ST N7 ) : , - - ) =~
|a) — 27270) g + £PO)| + in]| |ald) — 277G (|g| + 3 - PO)) + i 10|

(4.144)

for all q,(lj ) % 0. Now we follow the proof of Lemma 4.8 with minor changes. First,
the gate resolvents no longer have to be estimated, as the gates have already be taken
care of. As each of those resolvents would have contributed a factor (log~), this only
yiels a neglible improvement of the basic estimate. For resolvents belonging to free
(4,n) € I(N) \ Igate, we no longer use £ but q,(f ) as integration variable (this is just a

. : @\, G\ !
translation). As mentioned above, we can use ( gy instead of { k;; decays for all
(4,n) € I(N). Finally we fix a certain (7,7) € Io(IV) \ Lgate, for which we want to replace
1 1

_ — . _ (4.145)
a® — 277 ’q,gﬁ +e P(J”)‘ tiy o) — 277 (|qg>| + g9 P(i)) T iy

We assume that the same replacement has already been conducted for (j,n) > (7,7), but
not yet for (j,n) < (3,n). For (j,n) > (7,7), note that the assumption 4 (Copg) Me < v <
1 implies that analogues of (4.62), (4.63), (4.64) can be used without difficulty, namely

1 C

sup —— — — <

49 ) —277() (\qﬁﬂ)] N E(ié]) ] P(J)) N i”Y‘ <q,(1])> (i) ~

gt 1 _ C(logy)

B 1a0) — 20 () + 260 PO) + o] (a) () — a2 @)
/ da o - c<1og7>7

R ’a(j) —2770) (| + 66 - PO)) + m’ (a))y ~  {al))

(4.146)

with a C depending only on dimension d. Arriving at (j,72), suppose that there is an
A € 8\ Sgate such that min A < (7,7) < max A, and choose A with min A maximal.

Note that qgj‘) = q(j). First, assume that (7,7) is dependent, and derive from (4.144)

n
the estimate

1~ _ ] 1 ] <q@>—1
a) = 2270 ¢ +ePO| +iv 0@ 2770 (1] + 35 - PO) +iy|
c

S — =
(aD) g
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4. Proof of Theorem 3.1

with a C dependent only on d. We then follow the original proof of Lemma 4.8 again,

carrying the |q \ \q ] denominator along until we integrate over q( 4) (which is
free), to obtain
dq(JA)
| G ) G e = C e
R 1 qa) — 277(ia) ‘q ia) 4 op JA)‘ + Z’y‘ ]an | <an > <qn]A —q) 1>
(4.148)

because d > 2. This yields the basic estimate with an additional factor C'vy. Second,
©)

assume (7,7) to be free. In that case, the standard proof calls for a g;
which we plug (4.144) and have

integral, into

/ FRE) C(Copsmie)?
R ’a@ — 2@ ]qg? + EP(j)’ + w’ \a@) P (|qg>| +eq? P(i)) + w’
1

91 {a2) (a0 — g2’

X

C'Cobsm6
- <0¢(J~)> ’
(4.149)

gaining a factor € over the basic estimate again. Third, if 7 = 0 plug (4.144) into the
al) integral,

/da C(Cobsm5)2
) — 2770 ’qn +¢ePU ‘—l—wHaU 27 (|Qn)|+€ )P(j))+i’y’|qg)|
Ccobsm€
=T

(4.150)

The denominator |q | is dealt with as before, and again, an extra factor ¢ is gained.

Conversely, assume now that there is no A € S'\ Sgate such that min A < (7,72) < max A.
In this case, (7,7) cannot be free, but for (j,7) dependent or (j,7) = (J,0), the estimates
(4.147) and (4.150) still apply. Their right hand sides can be controlled by

1

(4.151)

y\H

e \

as we now have ¢ = k§", with [k§"| > X on the support of 9§ ..

S =
A short remark concerning the case N = 0is in order. Here, the resolvent representation
is only valid formally, and the change of arguments for the resolvent actually means a
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4.4. Non-crossing pairings

change of arguments in the unitary, which is controlled by

’exp ( 2mird ’q( 7) +epPU ‘t J)> — exp ( omir (|qn)‘ + 5 p(i)) t(i))’
C(Copsme)? 3) (4.152)
T

As before, the |q | is then either integrated over or estimated by 1/A.

To prove the lemma, one now only has to return to expressing the propagation by
unitaries instead of resolvents, applying Lemma 4.2 in the reverse direction compared
to the introduction of the resolvent representation. The graph expansion started with
propagators K ;) on the j-th inteval, but we now only recover Ky ;, as the gates have
been integrated out, so there are no time variables corresponding to “time spent in a
gate” anymore. O

The definition of the main part of the R, (G, ...) amplitudes is rather similar to
(4.126),

Rimain) (C;rend7 1/}87 £, K,a,p, L(O)’ t, N<7N7 M, S)

1 DPRINI=INT — (1), 2
— £INI/2 /Rd dq(() ) ‘27‘('(](() )‘ ‘¢6,+(q(() )>‘

Lo I1 0 () TI (as (69" +050) @ (652))

(jm’)GI(N)\Igate AES\Sgate

s R oo (4.153)
II @i+ (q](f[zj)) T &5 (w(J)jt(J))
j=1 e
I1 qsg)( () q7(1]—) ,L(J)>
(3,n)€l(N)\Igate
I (o o2 2)
Jn gate
For convenience, we again have set q(]H) = Q%Eﬂ for all j € {1,....,2m — 1}. The

only differences of (4.153) and (4.126) are the different definition of N, with N =

Ny M =N+M-ND.. _N (Mm=1) "the missing cutoff function for the last scattering
events

o) _ ¢ for (], n) < (m,NE:Z) or (j,n) - (m+ l,N(TH) +1 —NE:;) (
1 for (j,n)t(m,N ) or (j,n)j(m—l—l,N(m“)—i—l—N ),

the decay parameter x added to the frequencies in the last unitaries

wy = 257 (‘q |+6qn()al) P (j))_mgij()j,l)’ (4.155)
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4. Proof of Theorem 3.1

with

) —

n =

. _ ——m) . _ )
0 for (j,n) < (m,N or (j,n) = (m+1, N+t _N
{ () < ( ) or Gyn) = ( (4.156)

w for(gn)z (m’w(ﬁ)) or (j,n) = (m+ 1, N(m+1) —NW) ;

and the slightly different definition of the observables, (4.39). Following the same rea-
soning as in the proof of Lemma 4.16, one concludes

Lemma 4.17. Let d > 2, let & be a random field of class (d + 2(M + 2),0) and with g2
fulfilling the conditions of Lemma D.1. Assume furthermore that there exists a A € (0, 1]
such that &8(1@) = 0 for |k| < X independently of ¢ > 0, and that M € {0,...,. M — 1}
and N € Nom_l is bounded by (4.36). For 6 > 0 arbitrarily small, there is a constant C
depending only on §, d and go such that for all v,k > 0 with 4e (Cops) M < v < 1 and all
non-crossing pairings S € 7 (I(N))

Ry (G4, 96,2, 0,0, L, t, No, N, M, S)
—RE (Gend 5 e, k,a,p, L0, t, N, N, M, S) |

- N\ 2|N|+4M+4 NI/2 N6
< C‘N|+2 ((L(0)> _|_mN) ” ||‘d+|2/(]wJr2 ( Cobs>4M+6 m2 (4‘157)
m—1
y e2vlt\(€/,y)\N|/2 <1Og7)‘N|+2m H?/JSH?.[ H HajH2cl
j=1

x (1t + At +4170).

4.4.4. Transforming the time integrals

We will now rewrite ic(;“ai“) and Rgrmain)(Gend, ...) in a fashion that facilitates their
analysis for large values of |[N|. Due to the presence of the momentum delta functions,
the integral over the e, (j,n) € I(N)\ Igate in (4.126) and (4.153) has only |N|—|N|/2
free variables, one for each pair that is not a gate. To evaluate the integral, one can
choose for each A = {(ja,n4), (j*,n)} € S\ Sgate an integration variable

ga =g (4.158)

Then for each index (j,n) € I(N) \ Igate With (ja,n4) = (j,n) < (54,n4) that is not
“contained” within a further pair B € A (in the sense that min B < (j,n) < max B),

the delta functions enforce qgj ) = g4. Consequently, for such (j,n) and [ = I(j,n), the

frequency of the propagator is

w” = 2770 (|qa| + £Ga - PV, (4.159)
for the ICS_main) amplitudes, or

w) = 2770 (|qa| + £G4 - PY) = ind), (4.160)
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4.4. Non-crossing pairings

for the R(main)(Gend ...) case. After defining g9 = q(() ), we see that for every (j,n) €
I(N) \ Igate which is not straddled by any pair at all, the momentum equals q(J ) = qo,
and the frequency in this case is w( D = oprl) <|qo| + eqo - PU )). As any remaining, i.e.
non-gate, scattering event is a transition from a parent to a child pair or vice versa, the

arguments of the go functions can be rewritten as
g2 (97(3;;“)) =02 (a4 — 44) ; (4.161)
A € 8\ Sgate. Likewise, one can replace the product of cutoff functions ¢ in (4.126) and
(4.153) by
. , " A
[T (299 (a4,05 L92) @00 (04,04, L) (4.162)
AeS\ Sgate
the product of @ functions by
[I (~6.60 (@3 laol) (4.163)

BeSgate
and finally the observables by
aj+ (qA(j)) (4.164)
with A(j) the “narrowest” pair in A € S'\ Sgate such that min A < (j, N¥)) < max A.

Before transforming the time integral as well, we will plug in for the time variables
tU) the scaled macroscopic times TU) /e, with T, ... 7™ > o, 70) = 7Em+1-9) for
je{m+1,..,2m}and |T| =TW + ...+ T Note that the time integral in (4.126) or
(4.153), from all the propagators taken together,

2m
I Kxvo (w(j),T(j) /E)
o (4.165)

NG NG)
T 80 191 )

is |N|-dimensional. Instead of simply using the times s(]) between two consecutive
scatterings as integration variables, it is advantageous to 1ntroduce time variables that
better represent the structure of the pairing 5.

If Ae S\Sgate, A= {(jl,nl), (jQ,ng)} with (jl,nl) < (jz,ng), define

. 1(G1,m1)—1 ~(j . __
. Yici 7) —i—szl(:j(l) 2 'sl(h) for j1 € {1,...,m} (4.166)
AT 2T -, T — e 9T S for i € {mi+ 1, ..., 2m)
and
. 1(ja,m2)—1 ~(j . __
- i< TG + EZZ(:J(Q) 2) '51(]2) ‘ for jo € {1,...,m} . (4.167)
AT 2T -y, TO) — e 92T 5 for iy € {m+ 1, ..., 2m)
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4. Proof of Theorem 3.1

The (signed) time that is spent “within” this pair A, but not in one of the children pairs
B € A as defined in Definition 4.2 is equal to

ba = ! |:<8:1—8—J4_) - Z (5§_SE>
BEANS\Sgate (4.168)

€
= é (SZ — S—iA_) — Z bp.

BE(AUA..)NS\Sgate

We allow b4 to take both positive or negative values to account for the complex conju-
gation in the scalar product, (so far we used the sign 7U) for the same purpose).
On the other hand, for gates A € Sgate, A = {(ja,n4),(ja,na+ 1)}, let
; Yies TO 4 & yiamath =t 5la) for j € {1,...,m} (4.169)
A = . - _ . . .
AT| — o, T — e Iamat V1500 for ju € {m+1,..., 2m)}

We will use the |N| — |N|/2 variables of s~, the |N| — |[N|/2 different b and |N| — | N|
different r variables as new integration variables. Compared to the § variables, |N|/2 of
them have been scaled with a factor e (the s~ and r), while |N| — |N|/2 of them (the b
variables) are not. This implies that

2m NG

T [ o, 0590052, (Z 1 /€> ST () T

j=1"%¢ I=1 5T A€S\Sgate BESgate

(4.170)

is a transformation with Jacobian e/N/2| which cancels with the prefactor of (4.126) or
(4.153). The integration domain Qg r on the right hand side of (4.170) depends both
on the structure of the pairing S as well as on the lenghts of the single time intervals
encoded in 7. While its structure may be rather intricate, the following observations are

straightforward.

Q5 {(s7.b.r) € RV: (s7.1) € Qs (4.171)
with Qg7 C [0, T)VI/2 such that
INI/2
/ ds~dr < % (4.172)
Qs (IN1/2)!

and, for any given A, A" € S'\ Sgate, B € Sgate and = € R,

- - (2|72t
ds dré (s, —z) < ~—~r~——
Jog 28 (s3=2)

(INl/2=1)1
s (e a2 < TV
/QS,T ds—dré (SA — Sy — ZL') < AN2=DT (4.173)
(

B B 2’TD|N\/271
ds7dré (s —rp—z) < ~—~r~r———.
/Q (3~ s =) (INl/2 = 1)
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4.4. Non-crossing pairings

To see that (4.172) is true, note that for each of the altogether |N|/2 different s~ and
r variables there is a j € {1,...m} such that the variable in question is confined to an
interval of length smaller or equal to TW). If one allows each variable to live on the full
21T = TW + ... 4+ T™ instead, but keeps the order of the time variables (that carries
over from < and the structure of the particular S) intact, the estimate is immediate.
The bound (4.173) comes from the same argument with one degree of freedom removed.
So far, we have only transformed the integration domain of (4.165). The integrand, that
is the phase

o NO) -
[T IT exp (—iw5”) (4.174)
j=11=0
transforms into
[T [exp(—2mibalqal) ha (s=,b,7,p,qa. £)] ho (s~,b,7,p, o, K) - (4.175)

AES\Sgate

The continuous functions hg, h4 are bounded by |h| < 1. They may depend on all time
variables s, b,7 as well as p\¥), j € {1,...,2/m — 1} and (if appropriate) the damping
parameter x > 0; regarding the ¢ variables, hg is a function of gg, however, the h4 for
A € S\ Sgate only depend on the normalized ga = qa/|qa|. So ha is independent of
the absolute values |g4| when A # 0. The last statement is immediate from (4.159) and
from the definition of by in (4.168). In the new variables g4 and s~,b,r, and after an
application of Fubini’s theorem to interchange the g4 and time integrals, the amplitudes
main) and R Lead
+ +

kS (45, 6,0,0, L0, T/e, N, S)
e _ 2m—1
= [ dao Praol MM ()5 (a0 +2 X oY)

/Q [T (dsadba) I drs

gvT AES\Sgate Besgate
d
/ug(\m—uvvz)d Aesl;[g ) 14 (4.176)
gate

[T [pado(aa— a0 (41,05 L82) @ (aa,05, L) )]
AES\Sgate
2m—1
I [a+ (a4)] TT (=6y0m (@5 laol))
Jj=1 Besgate

II  [exp(=2mibalgal) ha (s, 6,7, p,4a,0)] ho (s~ b,7,p, g0, 0)
A€S\ Sgate
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4. Proof of Theorem 3.1

and

Rg_main) (Gend, wg’ £, K, a, ], L(O),T/& N, N, M, S)
- /Rd dgo |2mqo* ™™ 45 (g0)

/Q [I (dsadba) I drs

‘ 2

5.7 A€S\Sgate BESgate
/[R(\NI—\N\/z)d AGSI;Ing dga (4'177)
11 [PA@Q(QA — q;) P9 (CIAa q i ng”) QSS;) (QA, Q4 L,(f;))}
A€ S\ Sgate
2m—1 )
I1 |+ (aa0)] T (~O.0m (@5 - laol))
j=1 BESgate

H [exp (-27TZbA|(]A|) hA (8_7 b7 rDp, Z]\Aa ﬁ)} hO (5_7 bv P, 40, K) )
AES\Sgate

where we used the definitions (4.154) and (4.155) in the case of R(flai“) (Gend, )

4.4.5. Basic estimates — obtaining the 1/N! factor

In the Dyson series (2.135) for the linear Boltzmann equation, the time integral in the
n-th summand is taken over set of n-dimensional volume ¢"/n!. We aim to show the
convergence of the Wigner transform to a solution of a linear Boltzmann equation, so we
should expect that at some point a bound like 1/n!, n being the number of scatterings,
should become available for our amplitudes as well. This will prove crucial to our ability
to actually break off the Duhamel expansion at a suitable cut-off N, and to resummate

the K((Tmain) amplitudes in Section 4.6.

Lemma 4.18. (Basic estimate of the ICSLmain) and Rimain) (Gend, ) amplitudes.) Let
d>2¢>0 k>0 05k =0 for |[k|] > L, and S € «*(I(N)) be a non-
crossing pairing, with N appropriately defined (that is, for R&mam) (Gend, ) amplitudes,

N. € N € Ny ! with (4.36), M € {0,....,M — 1}, N™ = N 4 M, N symmetric).
Furthermore assume that go is such that

[67

am)] < Cyy lg) ™02, (4.178)

max
0q“

0<]al<4

with Cg, < 0o. Then there is a Cy, 4 only depending on go and d such that

NI/2 _
main C ,dL(O) L(O) |T‘ 2m—1

=) (95, e, 0,p, L0, T/, N, S) | < (© (J<V!/2)>' ) 18l TT llasllcs
. 1l

)
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4.4. Non-crossing pairings

and

RE™ (G4, g, 2,1, 0,p, L), T2, N, N, M, S )|

INI/2 _
; (Cg%dL(o) <L(°)>\T!) T nﬁl o2 (4.180)
~ a; .
(|N|/2)' OllH et 211C2

Proof. Without loss of generality, one can concentrate on estimating ICSrmain). Fixing qo,
the p and s—,r, b variables, the dg4 integrals can be estimated as shown in Lemma C.3.
We set ¢ = g2, n = |N| — |N|/2 and

. - A
fA (qAa QA) = PAds (CJAa q Lgljf)) @ (QAa q, LSA )) hA (5_7 bvrapa Q\Aa 0)

e (4.181)
IT [ej+ ()] I (6.0 @a-laol),
jél BESgateﬂA

A(5)=A

and thus have for the last four lines of (4.176) the bound

(CaCy)N=NV2 T (Cyy (b)) (4.182)
AES\Sgatc

0%
8(10‘92((])‘) )

Cr, =Cq (ng,dL(O) <L(0)>)|Sgatemél QT_F lmax sup

j=1 IO“SQ qERd
A@G)=A

in which

Cy = max sup ((q>d+1

(4.183)

S <q>ﬂ ,

with a factor Cy, 4 only depending on dimension and gs. Here, we used the estimate
from Lemma D.3 for the © functions. With the decay

I e (4.184)

AeS\Sgate

and (4.172), the time integrals evaluate to

_ A1y /2
ds~drdb ] (ba)° < C'NHNI/Q/ ds~dr < (CIT) (4.185)

/Q%‘,T A€S\Sgate Qs (IN1/2)!

The remaining qg integral yields a factor ||ig H?_[ Concerning the prefactor, note that every
gate contributes a factor of the form L(®) <L(O)>, while every non-gate pair contributes

(L2, 50 in the worst case (all gates), the L(®) dependence is
N|/2
(2 L<o>>)' 2 (4.186)

This proves the lemma. O
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4. Proof of Theorem 3.1

Corollary 4.19. (Basic estimate of the K4 and R (Gend, ) amplitudes.) Under the
conditions of Lemma 4.18, with the additional assumptions 0 < 4e (Cops) ™ < 1 and

>2d+4(M+2)‘ < o0, (4.187)

sup |g2(q) (g

gER4

there is for any arbitrarily small 6 > 0 a constant C' < oo depending only on &, d and go
such that

s (v5,e,0,p, LO, T/e, N, S|

< (<L(O)> +mﬁ)2\N| <Cobs>3m368(00bs>m\ﬂ <10g6>|N|+2m61—5

(4.188)
IN|/2 .
L) (1,0 T - 2m—1
( < > ' ) C|N\+2m H%”i ”aj”cg,
(V172! 1

and

Ry (G, 5,2, 1, 0,0, 1O, T/e, No, N, M, S|

< Oy + mﬁ)2lN\+4ﬂ+4 (Cobs>4M+7 T3e3(Cobs)TIT] (1o ) INI+2 1-3

IN1/2 _
(L(O) <L(O)> |T|) O\N|+2ﬁ ||w8||2 ﬂﬁl HaH2 )
(NT/2) w1 ailics:

(4.189)

with N appropriately defined in both cases, and S € 7*(N) being any non-crossing
pairing.

Proof. Again, we focus on the K case. As opposed to Lemmas 4.16 and 4.17 the
statement at hand does not require QZS to be supported away from zero, the second
summand in the estimate actually even improves if the support of 126 concentrates at
zero. The reason is that in the proof of Lemmas 4.16 and 4.17, the infrared cutoff A was
only used to replace

’qo + Ep(j)‘ — |qo| + £Go - PV, (4.190)

but was not necessary for the treatment of any of the g4, A # 0. Accordingly, by setting
v = 4e (Cops) M, one can repeat the proof of Lemma 4.16, omitting only the arguments
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4.4. Non-crossing pairings

utilizing the cutoff A, and obtain

\/@ (ng,s,a,b,L(O),t,N, S) S (wg,s,a,b, O ¢ N, S)‘

< VML) LN PN (G
B B -1
% 3{Cobs) T <10g€>\N|+2m WSH?{ H ”aj”01 REy
j=1

(4.191)

Here § > 0 can be chosen arbitrarily small, C' depends only on d, g2 and 4, and the
amplitude ICSme) is still given as in (4.176), only with a slightly different function hg,
which is still bounded by 1. As the key argument in the proof of Lemma 4.18 was the

estimate for the g4, A # 0 integrals, while for the go integral only |hg| < 1 was used, the
bound for ICSLmam) holds just as well for ICS?HX). O

4.4.6. Nested and non-markovian graphs

A closer look at the geometry of QF , will result in an improved estimate for the lc(flai“)

amplitudes associated with nested or non-markovian pairings S.

Lemma 4.20. (Improved estimates of ICSrmain) for nested and non-markovian pairings.)

In addition to the assumptions of Lemma 4.18, assume that S € w* (I(N)) is a nested
or nonmarkovian simple pairing. Then there is a Cy, g < 00 only depending on g2 and d
such that

) (y5,e,0,p, LO, T/e, N, S|

IN/2 _
(CQQ:dL(O) <L(O)> |T’) <10g |T|> 9 <10g 5> HQZ)EHQ 2ﬁ1 ”CL ” (4192>
< 2.
(NI/2— 1! 7 olle L1 llelle

Proof. First, assume that S is a nested pairing. This is exactly the case if there exists a
pair E € S\ Sgate such that jp = 4%, with non-empty children set E # (). Furthermore,
one can always choose F minimal in the sense that it straddles only gates, £ C Sgate-
After selecting any gate G € E, one observes in Figure 4.3 that

bg| > é ‘sg - TG’ (4.193)
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4. Proof of Theorem 3.1

e |be|
Figure 4.3.: A detail of a graph belonging to a nested pairing. Crosses are gates that
have already been integrated over, black diamonds indicate scattering with
cutoff function.

on Q% . We follow the proof of Lemma 4.18, but can improve (4.185)

/Q ds~drdb  J[  (ba)?

5T A€ES\Sgate

g/ ds—dr ] </ dbA<bA>2>/ dbg (bg) 2
Qs,T R lbp>1|sz—ra|

AES\Sgate
A#£E
< ClN‘/Q/ ds~dr min 1,75 (4.194)
Qs,r SE — Tg‘
7|
< C"N‘/Q/ dx min (1, E) / ds~dréd (s;J —rg — m)
|7 2|/ Josr
Q‘T’)|N|/271
< CIN\/2(725 1+ log |T| + |logel),
(] 7= 1725 (L + 1og 1+ log <)

employing (4.173) in the last step.

Now, let S be simple, but non-markovian, and first suppose that there is an £ € S\ Sgate
with either jp < j¥ < m or m < jg < j¥ (i.e. the “culprit” lies completely on one
side of the scalar product). Either, E is just as shown in Figure 4.4, so that there is no
F e EN(S\ Sgate). Or, if the is such an F, as F' is not a gate and S is not a nested
pairing, F also has to straddle an observable, so j¥ > jF > jr > jr. We take the F' as
our new E. After finitely many updates of E, there are no longer any F' € EN(S\ Sgate)-

In this case, with
Tp= Y 7910, (4.195)
j=1

one can easily see from Figure 4.4 that

Ibg| > é ’s;; - TE‘ . (4.196)

The combination of (4.173) and (4.196) yields exactly the same estimate (4.194) as before.
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4.4. Non-crossing pairings

]
’_____‘-"'

elbg
Figure 4.4.: An example of a non-markovian pair £ connecting two scattering events “on
the same side of the scalar product”. Here, j¥ = jg 4+ 2. The presence or
absence of gates does not influence the validity of the argument; the empty
squares, however, are essential, as they indicate the observables, and thus
separate the time intervals 7).

Finally, the other kind of a simple, non-markovian pairing is an .S without non-markovian
scattering “on one side of the scalar product”. In this case, there has to be an E' € S\ Sgate
such that jp <m, j¥ > m and jg +jF # 2m + 1. Without loss of generality, we assume
je+3F > 2m+1, as shown in example Figure 4.5. With Tf defined as before, and using
the notation from Figure 4.5,

b + 3 bp| = L2 > é |55 — Tn|- (4.197)

15
FE(EUE..)NS\Sgate

For any n € N, y > 0,

n

dby (b))~ / dby (by) / dby (by) 2
/|b1+ +bn|>yll—[1 \b||1>yll—[1 Hb||oo>y/nll_[1

~ 1
< n/ Hdbl (b))% < nC™min(1, %) < G min(1, -),

lb1|>y/n i y y

(4.198)
j=m++?2 ‘ j=m+1 ‘ j=m ‘ j=m-—1

S E T E -------------
4 L 2 0 +* O——6—6—[1
z1 T2

Figure 4.5.: An example of a non-markovian pair F involving two scattering events “on
different sides of the scalar product”, with jp = m, j¥ = m + 2 and two
non-gate pairs in the “offspring” of E. Again, gates may exist but are
unimportant.
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4. Proof of Theorem 3.1

so again, there is a universal constant C' < oo such that

/ ds~drdb  J[ (ba)2 < C*‘NW/ ds~drmin |1, —
QESAVT AES\Sgate QS,T SE — TE‘
- IT|
< CINI/2 dz min <1, 6> / ds—dré (sg —Tg — :U) (4.199)
—|T| |x| Qs,T
- 2|T|)INI/2—1
< C‘NWLQ& (1+41log|T'| + [loge]) .

(In[/2 = 1)!

4.5. Collecting the error estimates

So far we have found estimates for single contributions to the graph expansion of main
part and remainder, i.e. for a fixed number of scatterings N € N2™ and a given partition
S e m*(I(N)). We now have to make sure that the bounds for individual contributions
suffice to control the combinatorical factors which result from taking the sum over all
possible N and S by specifying the parameters N, M and x of the expansion.

4.5.1. The main part

From now on, let the random field ¢ be of class (d + 2M + 7,4), and, in addition to
the energy bound (2.160), assume that the initial states (¢§).-, have Fourier transforms
1})\8(/6‘) which vanish whenever |k| < X or |k| > L), with e-independent 0 < A < L) < oc.
Therefore all Lemmas presented in Chapter 4 up to this point are applicable. Returning
to the notation of (4.13-4.14), only the amplitudes of simple markovian pairings S €
Tsm (L (IN)) contribute to the main term, up to an error of

Jim B[O AG0D)] - Y > K (yfe,a,p, L9, T/e, N, S)
> NGN(Q)W Seﬂ'sm(I(N))

N 4. 4N <N(e)
NmFL) L N2 N (e)

- ) > KU (y5,e,0,p, L0, T/e, N, S)
NenzZm Semsm(I(N))
N 4 4N <N(e)
N@+D) 4 4 NE@m) cN(e)
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4.5. Collecting the error estimates

IN

> > K (¥hean L1/ N, )|
NenZm Sem*(I(N))
N 1N N higher order
N@+1) 4 1 N@M) <N (e)

+ Z ‘IC (wg,e,a,p, LO T/e N, S)’

Sen*(I(N))
crossing pairing

+ Z |IC_IC+_IC—|(¢87€7aapaL(0)7T/€7N)S)

Sen*(I(N))
non-crossing pairing

+ 3 ’/@ — jc{main)

Sen*(I1(N))
non-crossing pairing

+ 3 ’/c, _ felmain)

Sen*(I(N))

(¢6.2,0,p, L, T/z, N, 5)

(11)0,5 a,p, L© T/e, N, S)

non-crossing pairing
+ > K (g e0,p, L0, T/e, N, S))|
Sen*(I(N))

nested /non-markovian

+ Z ‘K(mam (1/10,6 a,p, L\ T/e, N, S)‘

Sen*(I(N))
nested /non-markovian

(4.200)

For € € (0,1/(4 (Cons) m)], plugging the appropriate values of v into Lemma 4.8 (y = ¢),
Lemma 4.11 (7 = 2¢ (Cobs) M), Lemma 4.14 (7 = ¢), and Lemma 4.16 (y = 4e (Cops) ™),
as well as an application of Lemma 4.20 produce a bound

_ 2m—1
Nim (N —1+m
(4.200) <cN+m < ™ ) ‘WOHH H lla;

J=1
AN _ N o
X (<L( )> + mN) 1 S(ConmIT] log |2V 2™ (2!

% ( max_ {ED/2DC’D} + 5T|> (4.201)
De{1,....2N—4} A

2m—1
~[(N-—-1+m
e ( 1 ) 1512 T1 llaslcs
7j=1
2N
x (LO) TN =2 (log T) ] log ],
with C' a finite constant depending only on the statistics of the random field £ and
the dimension d. In (4.201), we have omitted the e-dependence of N(e), the binomial

coefficient accounts for the number of possible choices of N, and the factor (2N)! is an
upper bound for the cardinality of I(N). The latter is missing in the second summand of
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4. Proof of Theorem 3.1

(4.201), which only provides the bound for the last two lines of (4.200) — the number of

non-crossing pairings of I(N) is not larger than 4N The contributions of all other terms

are collected in the first summand; by inspection, we notice that the bounds for higher

order partitions and the replacement of IC, by ICc(,main) dominate. The only non-trivial

observation entering (4.201) is that (2.15) implies for any higher order partition S

IN1/2—[S] D/2~IN| ClA| D/2A|N| _ 9\C(l4]-2)
. A1;[SHgA|Hd+2Se CNTL A < <2e M TT (4] -2) o)
< 6D/ZC~«|N|DCD7

where D = |N| —2|S| € {1,...,2N — 4}, C,C < oo are constants only depending on d
and the distribution of £, and the last inequality follows from a convexity argument.

Setting

~_ | loge| W
N =N() = [a : 4.203
&) = |*Tog [og 2] (4.203)

with a € (0,00) to be fixed later, one can now find a C' < oo depending only on m, |1,
the distribution of &, d, L© and C,ps such that

_ 29m—1 _ _
(4:200) < YO g, TT lagles ™ foge ™7 (Ve +5) (1,200
j=1

for sufficiently small £ > 0.

4.5.2. The remainder

For the remainder part, on the other hand, the bound

2
195 [
e .
w3 (N(e) - 21+ go> >
jo=1 Jo = Neno~!
N4 +NG0—D <N (e)
1 , A ' Jo—1 . . ’
H ”alHCO Rﬁ(]'o) (T(]O)/E, R’ L(]O)}g) H (A;:FN(J) (T(])/67 R’ L(j)7€)) wg )
=jo =t B
(4.205)
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4.5. Collecting the error estimates

with N = N(e) = N — . — NGo=D follows from (4.11), and Lemma 2.12 provides
us with the estimate

2
g (19729 T (550 (19729
' o) _q : Jo—1 ' i
< N(]O) Z FR;)ﬁt:)gh( 7o) Je: R, LJO ) (A;FN(J) ( /6 R, LJ )) Y5
Ngn=1 7=l "
2
Rilgm (T(jO)/e; R, L(j0)75> ji_f (AEFN(” ( T /e; R, LY )> ¥6

=1
! (4.206)

For each Ng, € {1, ...,N(j 0 _ 1}, Lemma 2.14 and several applications of the Cauchy-
Schwarz inequality yield

2

e[l s s 1m0,

H

, 2
<2 (T(]U)/a) sup
re[0,7U0) /¢

2
| gz (o 20.0) TT (550 (19/57.10.2)) v
= H
+2 (1 + (kT0) /5)2) MMil sup
M=07€[0,T00) /e]
o 2
e |lem, (.290.2) T (455 (192,09 9) ] |
j=1
74.207)
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4. Proof of Theorem 3.1

and, likewise,

2

E |||Red,) (T<ﬂ0>/a R, LUo), ) i‘[ (AjFN<J (T Je;R, LU ))wo

H

A 2
<2 (T(JO)/s sup
r€[0,700) /]

Jo—1 :

E Aeﬁndﬁ(m) (r;R, L(jO)a5> 11 (AEFN”) (T(j)/a R’L(j)’g))wg
) j=1 H

. o\ M-1
+2 (1 + (kT /e) )M > sw
M=07€[0,TU0) /¢]

' Jo—1 i

B |G g (1 R, 29,2) TT (45Fyer (T9/5 R L, €)) 0
j=1 H

(4.208)

By Lemma 4.6 and Lemma 4.10 (into which we plug the more general choice jp instead
of m, as well as € € (0,1), and v = ¢ < k), we obtain for all Ng, € {1,..., N — 1}

2

Jo—1

lim sup E ||lAxvsh (p R, LU0 ¢ A5FNG) D/e; R, LY e)) 45
R_wo'l‘E[O,T(jo)/g] M, Nin ( ) ]1_[1 ( J g ( )) N

et T __\AN+6M Jo=1
< @N + 63NCN 4 ((LO) 1 W) T () T AT s 2, TT Nl

7=1
(E)M |log5|2ﬁ+2ﬁ+2jo sup xP/2pCD.
K De{0,...2N+2M}
(4.209)

with a C' < oo only depending on d, M and the distribution of £&. The same bound
(4.209) is valid for

2
Jo—
li E AECL R, LU0, AsFy o (T Je: R, L), e
pm, s oo (7 e) 111 (A5Fy (T9) /2 ) s )
(4.210)

According to Lemmas 4.4, 4.9, 4.12 and 4.13, (in which we always set jp instead of
m, choose ¢ € (0,1/(4(Cops) jo), and v = 2¢ (Cops) jo) for all M € {0,...M — 1}, all
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4.5. Collecting the error estimates

Ngn € {1,..., N — 1}, and all r € [0, T /¢] the estimate

. 2
Jo—1
] rough (. (Jo) ep (7). () £
lim E |G (r, R,L ,5) JHI (AJFN(J> (T /e;R,L 5)) vg
- H
< Y [R(GEge ka,p, L0, (TW e, o r)  Ne, Now, M, S|
Sen*(I(N))
higher order
+ 3 R (G, 5 e, m,a,p, L), (T fe, .,7) , Ne, Nin, M, S)|
Sgﬂ*(I(N).) .
crossing pairing
+ Z ‘R (Groughaqbgvgaﬁ)avva(O)a <T(1)/55"'5T> )N<7Nﬁn7M)S>’
Sen*(I(N))
non-crossing pairing
— T v I —_\AN+6M+T7 ¥vi
< (2N + 6M)ICN M ((LO) 4 5y N) (eCiobs) M7
Jo—1 .
eHCorsl 0T |15 15, TT Nlayll* [log e 2H+200
j=1
sup eP2peb

De{1,....2N+2M}
(4.211)

holds. C' is a finite constant only depending on dimension d, M and the distribution of
€.
Finally, due to Lemma 4.5, for all r € [0, T0) /¢]

. 2
G(Je\;dﬁ(m) (r; R, LUO)»E) Ji_f (A;FNW (T(j)/é; R, L(j)’5)> U5

Jj=1

lim E

R—o00

H
< Z ‘7?, (Gend,@bg,e,ﬁ,a,p,L(o), (T(l)/s,...,r) ,No,N, M, S)’

Sen*(I(N))

higher order
- M R (G, 05,2, 5,0,p, LO, (TD /e, ...7) ,No, N, M, S|

Sgw*(I(N).) .
Crossing paliring

+ Y R=Ry =R (G 45,8, 5,0,0, 1O, (T e, ..7) ,N<, N, M, )

Sen* (I(N)')
non-crossing
pairing

+ Y Ry +R_| (Gend, we, e,k a,p, L0, (T(l)/s, r)  N_,N, M, 5)
Ser*(I1(N))
non-crossing
pairing

(4.212)
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4. Proof of Theorem 3.1

so if we plug in Lemma 4.9, 4.12, 4.15 and Corollary 4.19,

2

lim sup E
R=00 1.c10,100) /¢]

G?Edﬁw (r;R,L(jO)’g) jﬁl (AEFNW (T(j)/E;R’ L(j)’€)> vo
: j=1

H

< (2W + 6H)!(<L(0)) + mﬁ)4ﬁ+6ﬁ+7 <Cobs>4ﬁ+10 jgegwobs)mﬂ ‘log€‘2ﬁ+2ﬁ+2jo+l

max ED/QDCD
De{1,2N+2M}
N+M .
0) { ,(0) !
(L <L >|T‘> CN+M+jo |¢ |2 7 |2
+ = 15115 TT Nlasllc
! j=1

(4.213)

for all e € (0,1/4(Cops) Jo), with a C' depending only on the distribution of £, on
dimension d and on M. We have set v = 2¢ (Copg) jo in Lemmas 4.9, 4.12, 4.15 and

made use of the fact that there are no more than 48+ non-crossing pairings of I(N)
whenever |N| < 2N +2M. When applying Corollary 4.19, we estimated the denominator
in the last line of (4.189) by N!, because |[N| > 2N.

After inserting the value from (4.203) for N and
k=k(e) =¢€", (4.214)

for x, with ¢ € (0,1) to be optimized later, we conclude from equations (4.205-4.213),
for sufficiently small £ > 0

Jim E [)053]

m—1
N 2 2
< MO gl IT NosliZe
j=1

9 (N(g)GN(e) llog ¢ |2V )+ +2m <<:>2 VE+ (Z)M5—2> + <§)2N(6)_N(€)> ,
(4.215)

with a C' < oo depending on 71, M, |T, the distribution of &, d, L(®) and Cjy,s, but not
on ¢, ¢ or the functions a;.
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4.5.3. Picking the right parameters

With the choice of parameters

M = 89,

g 141
1

a 707
18

in equations (4.204) and (4.215), there exists an g > 0 depending only on m, |T|, the
statistics of &, dimension d, L and Cyps such that for all 0 < & < &,

lim E[(0]A500)] - Y > KU (¢6,e,a,p, L9, T/z, N, S)
> NGN%H SEWsm(](N))

N 4. N <N (e)
N@m+L) 4 4 N (@) N (e)

main 0
- Z Z ’C(— : (¢875,a,p,L( )7T/€’N7S)
NGN(Q)m SGWsm(I(N))
N4 4+ N <N (e)
NEHD |4 N N (o)

2m—1

1 2
< (1 3) Il IT lagllea =™
j=1

(4.217)
and
m—1
. 2 2 2 1/2700
Jim E (19515, ] < 513 1_11 laj g0 £"/27°0. (4.218)
Analogously, for ¥4 as defined below equation (4.13)
5 2m—1
. 2 2
Jim E[[[25]3] < sl T llaglgs e/2. (4.219)
—00 =1

The extremely tiny exponent in (4.218) is due to choosing M as small as possible.
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From (4.14), (4.217) and (4.218), we conclude

. £ € &
il_I)I(l)E [j (H ,d}()» Ta a,p)]

T (main) € (0)
= lim Zﬁ Skl (¢0,5,a,p,L ,T/s,N,S)
Nenzgm Semsm(I(N))
W4+ N <N (e
N(%HT-AT-:-VN(?%)TN)(E) (4.220)
. (main) e (0)
+ lim > > k" <w0,6,a,p,L ,T/E,N,S)
NeNZT Semsm(I(N))

N 4.+ N <N(e)
N+ 4 4 NE@T) <N ()

provided the limits exist.

4.6. Resummation of the ladder graphs

In this section, we still consider initial states which, in addition to the assumptions of
Theorem 3.1, have a Fourier transform 1§(k) that vanishes whenever |k| ¢ [\, L(]. Also,
we assume that the observables a; are bounded up to the second derivative.

4.6.1. Notation
We now want to resummate the &™) (o0 € {+,—}) amplitudes which belong to the
simple, markovian pairings, S € 7gy (I(N)) and calculate

. (main) € (0)
lim Zﬁ > K (1/)0, e,a,p, L, T/e, N, S) . (4.221)
NeNgm Semsm(I(N))

N 4.+ N <N(e)
Nm+1) 4 4 N(2M) N(e)

To this end, recall that actually the j-th and 2m + 1 — j time intervals are physically the
same. This can be visualized as in Figure 4.6 by bending the right half of the graphs used
so far by 180°, so that corresponding time intervals come to lie parallel to each other.
Simple markovian pairings S now appear as the “ladder graphs” described in [16] and
[32], with the only types of pairs being gates (which have already been integrated over
and appear as crosses) and “rungs”, which always connect opposite time intervals (all
other possibilities would be either nested or non-markovian). For the j-th time interval
(with j from now on only ranging from 1 to ), there are RU) e Ny rungs, and between
two consecutive rungs (or a rung and an observable), there may be Gl(’yp) € Ny gates. Here
1 €{0,...,RY} represents the time slot after the I-th rung in the j-th interval, the time
slot before the first rung being indicated by | = 0, while p € {£} is + for the lower line
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4.6. Resummation of the ladder graphs

§2 .
_ 1, gate (integrated out)
(S * 0 ¢
as
1 1 2 2
Q(() ) qg ) QL() ) qg :
— ai
Pe . 0 * .
—— ———
) @
1,41 1,+

Figure 4.6.: A ladder graph with m = 3, RM) =1, R® = 2, R® = 0. Rungs are
indicated by dotted lines, while crosses represent gates (which have already
been integrated over). For example, G[(fl =3 and GgQJ)r = 1. The momenta
ql(j ) are the same for the — (top) and + (bottom) line. Time variables of

type s(] ) and r(] ) ,, give the spacing of rungs and gates, respectively. The
black dlamonds at the ends of the rungs mean that these scattering events
occur with a cut-off function present.

in Figure 4.6 and — for the upper one. With the short hand

(R )ge{l
G = () serem

1€{0,..., R(J)}
pe{£}

R =>_RY,

(4.222)

7j=1
m RU
=2, i

Jj=11=0 pe{+}

=

Il
o

there is a bijective mapping (N, S) <+ (R, G). The overall number of pairs is of course

the sum of rungs and gates,
IN|/2 = |R|+ |G]|. (4.223)

Accordingly, one can rewrite the sum
> > KW (yg,e,a,p, L0, T/z, N, S)
NEN%m Semsm(I(N))

N 4. +N) <N(e)
N+ 4 4 NE™) <N (e)

(4.224)
Z Z ]C((’.maln) (1/)57 E:7 a? p7 L(O)J T/€7 R’ G) )

ReNT' GEI(R)
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4. Proof of Theorem 3.1

with the last sum running over all G in

m RU
7j=11=0

The sum over R in (4.224) has only finitely many non-zero summands, as the set I-(R)
will be empty if any of the components of R exceeds N (g). However, as e \, 0, N(g) — 0o
and thus I'.(R) approaches

Ny(R) = {G: Gf) e No¥j € {1,....;m}, 1 €{0,.., RV}, p € {#}}. (4.226)

4.6.2. Taking the limit
From Lemma 4.18, one can conclude that

> Kk (95e,a,p, L0, T/, R, G) (4.227)
Gelv(R)

is well-defined for any £ > 0, with

Z K:‘(Tmain) (w6757a7p7L(0)7T/€7R7 G)

Gel:(R)
- > Ky (¢h,e,a,p, L0, T/, R, G) (4.228)
Gelh(R)
< Ty TT el 50 (e 0)
>~ — 0lly Qj o) — g —
R|H (N () - [R]) ! =i
and
. 0 Cm |R 2m—1
K (v e LOT/E R, G)) < S Wl T lasllea (4229)
Gel:(R)

with a constant C' < oo depending on d, g3, L and T, but not on R and . If one
assumes for a moment that there is a limit

: (main) € (0)
?_)r]% Z Ky (wo, g,a,p, L\ T/e, R, G) (4.230)
Gelp(R)

for all R € NI*, dominated convergence applied to the R sum in (4.224) yields
im > > K (yh,e,a,p, L0, T/, R, G)

e—0 .
ReNj' GeIL(R)

=3 dm Y fclmain) (wo,s a,p, L9, T/e, R, G)

e—0
RENT Gely(R)

(4.231)
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4.6. Resummation of the ladder graphs

So the only task remaining is to identify the limit (4.230). For now, we fix a single
configuration of rungs and gates, (R, G) (and thus a particular choice of (IV,S)). By
placing RY) rungs, the j-th time interval is divided into RY) + 1 subintervals, both
on the + and on the — side of the graph, giving rise to time variables sl( 9 > 0 with

1€{0,..,RY} and p € {#} and requirement

RG)

Z sy =TV (4.232)

for all j, p. In turn, by adding the gates between two consecutive rungs, every subinterval
of length sl(’) is divided into G(J) + 1 parts of length rl( D >0,v€ {0,.. G(j }, with

G
S, =5, (4.233)
v=0

Similar to [32], but with an extra index j accounting for the multiple measurements, we
define the time variables

(4.234)

The momentum variables in consideration are still g4, A € S\ Sgate, but as all A are rungs

now, we write them as ql(j), je{l,..,m}, 1 €{0,.,R9}. We will use the variables

qg()J) = q(()] 1) simultaneously to simplify notation. Note that these ql(j ) are not indexed

in the same way as the qq(lj ) introduced before: j now only runs from 1 to 7 instead of 1
to 2, and [ gets only updated after scattering events belonging to rungs, not, as before,
also after gates. Accordingly, (while the cutoff for gates has already dropped out in the

proof of Lemma 4.16) every rung comes with a cutoff function

1 (6,425, @) =@ (42,4, 19) @ (42,4, 19)).
n, = S (1+261). (4:235)

=0

Finally, as all A € S\ Sgate are rungs, the signs p4 defined as in (4.125) all equal +1.
For a simple, markovian pairing with rungs R and gates G, the amplitude in (4.176) can
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4. Proof of Theorem 3.1

thus be rewritten as

]C main) (wo’&- a p,L T/g R, G)
_/ adl ‘2 2|R| %g( o )%70 (q(()l)JFEP(m))

RG)

' G [ ) o () o )

j j j .
jf:[lﬂ /Mdsl /Rdbl VHO/HMdTZ’*” / ard /le r:[g d

R R®
(T(J Z s J)) 5 (Z bl(J))
=
RG) . G\ ' P | |
(s 3o 2= 3o, | )] < 25}

=0 v=0

~
[e=]

m R

[T (06 2) 0., 0.6))

i
< (<6, (3 ‘q(()nD)cE;n exp (2mic (\ ql(j)] +eg? . P 50 /)
 (-n (7)) o (v (4| - PO)2) |

m 2m—1

H Jo(qu) Hlaja(ngglmja)))

j=1 j=m+

(4.236)
The phase associated with a pair (j,1) equals
exp (—Qwia (‘ql(j)’ + z—:qu(j) . P(j)) sl(]J)r/s) exp (27ria (’ql(j)‘ + Etfl(j) . P(2m+1_j)) s?@/e)
= exp (2m’a ‘q(j)’ b(j)) exp <—2m’o?]§j) . (P(j) — P(Qmﬂfj))sl(j))
- exp (5%1051\(3) (P(j) + P(2m+1_j))bl(j)> .
(4.237)

In view of (4.237), the Hjmzl HZR:(;) dql(j) integral of the last four lines in (4.236) can be
bounded by

2m—1

2|G|
A TT (lagle) ()

7j=1
-1 RU+D) X 2Ri_1 | r®
(Mo ™) T (0) 7| T8

(4.238)

j=1 =1 =1
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4.6. Resummation of the ladder graphs

where Lemma C.3 was used with the trivial ancestry relation * that comes with the

ordering of the rungs. Therefore, the b(] ) integrals are bounded independently of €, while
from the geometry of the integration domain, the dsdr integral is less or equal to

m RG) ) -1
\T|GI+ Rl (H (R(j);H 11 G}fg!)) . (4.239)

j=1 I=1 pe{+}

The qél) and p integrals then yield the bound

2 IGI+IR] [ m R -1 om—1
(Cawn (L) 171) (H( NI 1T e )) 13 TT lasllee (4:240)

j=1 I=1 pe{+} j=1

for the amplitude, which is clearly summable over G. Therefore, when plugging (4.236)
into
. (main) (0)
lim Y KY ( ,e.a,b, L0 T/e R, G) , (4.241)
Gelp(R)
dominated convergence and Fubini’s theorem are apphcable to all sums and integrals

as long as one makes sure that the H 1 H dql integral is executed before the

A HR(J) ] integral. Thanks to the <bl(] )> decay for [ > 0 and the identity
b((]j) = —bgj - bg()j), one can use dominated convergence for the bl(j)
eliminate the last factor in (4.237) by observing

integrals,

‘exp (a—:moijl(j) (P(j) + P(zm"’l_j))bl(j)) — 1‘ < min (1, 21 Clopse

b D L (4.242)

and remove the restriction

1{|pf| < 25 e} =1 (4.243)

on the set of full measure {sl(j ) # 0} for all j,I. In the same fashion, dominated
convergence for the bl(J ) integrals and the G sum allows to modify the delta functions in
the fifth line of (4.236), because

G<J> G(J)
(4
llT/chngdM an, —H4G;73+1 dri}pd | s Zn,py
Pp T PP A (4.244)
< |G||T|'S=" min <|T|/|G|,5m%x|bj7l\) (H Gm) ,
J?
Jlp
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4. Proof of Theorem 3.1

We then can integrate out the r variables and have, in case the limit of the right side
exists,

lim )" KW“ (¢8,e,a,p,L<0>,T/e,R,G)

e—0
GGFO
— lim Z / (1)‘2\R\¢OU( )%J( +€P(2m))
EHOGGF
m R ) m RW) m R
/RR“"HUH) dsl] /RH”Hl db /RlelHldq
J J J
7 6= o\ = DO NG (A6
[T {o {79 =2 | TL{ I (=80 (@ |a”]) ") ™ (G11)
j=1 1=0 1=0 | pe{£}

(Az (qz(j) ql(j_) ) T (ql(y)7 ql(J)l,J,l’ G) exp (27”'0 (‘qz(j)’ _ ‘q[()j)’) bl(j))>1(17é0)

(exp ( 27‘(20/\(]) (P(j) — P(Qmﬂ_j))sl(j))) }]

1
H% (qRo)) H 1“3» (qggmjj)))‘
=Tt
! (4.245)

Now we apply Lemma C.4 to the bl(j ), ql(j ) integrals and obtain delta functions

T (4 ) -

=1

::13\

RH 5 (|a”] = |ah]) - (4.246)

T ::]3\

Il
—_
o

J

These delta functions ensure that ‘qlo )‘ = ‘q(()l) < L 5o all cut-off functions 1" are
equal to 1. Only now can one take the sum over G (with the 7 still present, the implicit
dependence of the cutoff thresholds on G would have complicated matters), which is
an exponential series for each value of j, I, p. These series converge uniformly due to
boundedness of their argument resulting from the compact support of @870 and (4.246).

Furthermore, on the support of the deltas,
‘q(l)‘ (]), (4247)

and thus, for each j, [, there is a factor

exp (—@+ (ql(j)) sl(j)) exp (—@_ (ql(j)) sl(‘j)) = exp (—2Re@+ (ql(j)) s}j)) (4.248)
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4.6. Resummation of the ladder graphs

by Lemma D.4.

i (main) (/e (0)
sh—r>r(1) Z Ke (¢075’G7P7L ,T/e, R, G)
Gelp(R)

=tim | g5, (a5”) 95, (a5 +<P™)

e—0
m [RO) ) ( R(J) m R
J
/Rf“” H [ll_[ (dsl )5 (T] )] /RIRM H H dq

=11[l=1

(a3 (6 = a2) o (o] -2}

exp (—2Re9+ (ql(j)) sl(j)) exp (—2m'g(jl(j) . (P(j) _ P(2m+1—j))8l(j)> }

H%a(qu) H aJU<qRQ?m]J)))

Jj=m+1
(4.249)

We recall (4.231), the definitions (2.131), (2.132) of the measure vg. and the cross-section
osc as well as the representation (D.25) of oy, and have by dominated convergence

21—1}(1) Zﬁ Z Kgmain) <w875,a,p,L(0),T/€,R,G)
RENT GET-(R)

:;i_{%/ dQO1)¢og (QO )%o ( + 5P<2m)>
m [RG) ' ' RG) '
DS i wen 11|11 (s 5 (Tm = ;)85]))]
=1 | = -
m R

RL—0 R —0
/RIRId [T1I {(vsc( 9 dgl ))) 1(1#0)

j=11=0

exp( Ou (ql(y)) Sl(j)> exp( 2mU4J) (P — P(2m+1—j))sl(j)> }

™ ‘ om—1 )
H Aj,o (qggﬁ) H Ao (q;gm ]J)))
j=1 j=mm+1

(4.250)

in which all sums and integrals may be taken in arbitrary order according to Fubini’s

theorem. Away from qél) = 0, the last four lines of (4.250) are a bounded, continuous
(1

function of g, ). Because we assume that 156 is supported outside a ball of radius A > 0
around the origin, and that W¢ [@ZSU} converges in ¥g* (and thus in FL'(C?)"), Lemma
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4. Proof of Theorem 3.1

2.16 is applicable. Therefore, the ¢ — 0 limit of the right side exists and equals

;l—% Zﬁ Z Kgmain) (ﬂ)g’g’a?pv L(O)aT/€7R7 G)
ReNp Gel:(R)

1 riP(2m).
— [ o (4,2

oxp (-0 (o) o) exp 2ol (P - P19}
m , 2m—1 o
[T ese (a2) T are (450)).
J=1 j=m+1

(4.251)

The last equation is essentially already the statement of Theorem 3.1, however with a
restricted class of initial states (namely, with an infrared cut-off A\ and an ultraviolet
cut-off L(9) still in place) and observables (the functions aj are C? instead of merely
continuous, and only defined on k space instead of (z, k) momentum space). We will
remove these restrictions in the two sections below.

4.7. Extending the space of test functions
Assume for a moment that 77 = 1, p() = 0 and define the operator Af 1 by (4.2) with

a1y = aj_ : R = [0,1] (4.252)

smooth with bounded derivatives such that a; +(k) = 0 for |k < L) and a; +(k) = 1
for [k| > LO +1/2. If we set Q : H — H to be the projection on the subspace of
functions with Fourier transform supported only on k € R? with |k| > L) + 1/2, we
have

lim supE

e—0

1)
HQ exp (—iH€T> (I

3

|
H (4.253)

() 7@
< limsupkE |( exp | —iH*— | 9§, AJ exp | —iH*— | 95 =0,
e—0 € € H

where we have used (4.220), the support properties of &% and the fact that v in (4.251)
conserves the absolute value of the momentum. Let now pl) € R?, j {1,....,2m — 1}
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4.7. Extending the space of test functions

take arbitrary values, and assume that the functions a; + : R? — C are only bounded and
continuous. Then for any § > 0, there are functions ag-’i : R? — C which are bounded
up to the second derivatives, and fulfill

ma, a;(k) —a%(k)| <dlla ,
s, Jaah) = 43| < 8yl s

1)
g o < llasllo -

C

If the operators Aj and Ai’é are defined from a; and a$ by (4.2), equation (4.253)
immediately implies

(1)
H (Ai — A‘i’a) exp <—iHET€> 6

Iterating this argument for all j from 1 up to m and from 27 — 1 down to 77, one can
see that there is a constant C' such that for all 6 € (0, 1]

2
lim supE

e—0

< 27— 112 2 ) )
<Cs ;1_{% ”1/)0”% Hal||c0 (4.255)

H

hmE Hja (H®, Y5, T,a,p) — TJ° (HE,%,T a 7P)H < Cm\fhm 45113, 271"—[1 lla;ll o -

7=1
(4.256)

But because (4.251) is applicable to a® for all § > 0, and its right side converges as
agi(k) — a;+ (k) uniformly for |k| < L(®) + 1, we actually have

lim E [7° (H, 45, T’ a,p)]

Z / Moa dx dq(()l)) 2miP(2m) g

oce{£}

S % i (e Ea)

RMW=0 R@™=0 =0

m RO 1(1£0)
/R‘R‘dH {(1/ q§J)1’dq(J)))

/N

j=11=0
exp( e (qz(”) (J )) exp (_%Wﬁﬁ () P(2m+l—j))sl(j)) }
m ) 2m—1 @
H Qj,0 (q( ) H aj.o (ngLm J])))
j=1 j=m+1

(4.257)

for all bounded and continuous functions a; +, j € {1,...,2m — 1}.

Next, consider observables which no longer merely live on k-space alone, a; 4 : R? — C,
but are functions on phase space, a;+ : R4 — C, with aj+ € FLYCO) for all j €
{1,...,/m}. Operators Q°(a;) : X — H can then be defined as in (2.198). In view of the
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4. Proof of Theorem 3.1

definition of the + and — components of Q(a;), (2.146), the momenta p), ..., p(m=1)

become integration variables, and by (4.257) and dominated convergence, one can see
that,

m—1
. —ngT(m)/a E( _,L‘HET(j)/E e
lim E [<e ]]:[1 (Q (a))e )7/’0,

Qa(am)e—iHET(m)/sml—_f (Qa(aj)e—iHsT(j)/g) ¢8> ] (4.258)
H

J=1

= dpW...dp#m—1) lim E[7° (H°, 45, T,a(p. ), p)]

Rd(2m—1)

with the k-space-only observables entering in the second line of (4.258) being given for
fixed p € RY2M—1) a9

aj+(k) =d;+ (09, k) (j €{1,...m}),
a1 (k) = Qom_ju (—pV. k) (j € {m+1,..,2m}),

for all k € R?. We replace p™), ..., p™m=1) by P2 pE™) while P() = 0 by definition.
Then, (4.257) and (4.258) yield

(4.259)

w1 _—
limE [<eiH€T(m)/s H (Qs(aj)esz T(J)/z-:) 1/}87

e—0 =1

_ -1 .
Q(am)e T IT (@ (ag)e ) ¢8> ]
H

j=1
(2) (2m) DY 2xipCm).g
g{i}/}ww ,aP®.ap / Hoo (dz, dgi") e
m [RWY) RG)
S5 [undl| T @) (0 E40)]
RO—0 Rm— R+ 1=0 1=0
m RG)
() 1(1#0)
/R\R\d 1—[1 ll_!) { Vsc (qz 1)dql] ))
exXp (—Usc (ql(j)) sl(j)) exp ( QTrZJA(]) (P(j) — P(Qm“_j))sl(j)) }
a]aa ( ]+1 ' 7qR(j)> H a2m —7,0 ( P(J+1) + P( ),qg(Tm ]J)))
J=1 j=m+1

(4.260)

As po + is supported away from {q(()l) = 0} the deltas ensure that all q 7é 0 on the
support of the integrand, and we can therefore restrict all observables to R? x (Rd \ {0}),
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4.7. Extending the space of test functions

so the semigroups (e“+? and their expansion (2.135) are applicable. One can first
group >0

single out

dpmh) [ qpm)

R4 Rd
a m m m- a m m— m—1
Om—1,0 (—P< +2) 4 pl “),q;@fz)) . (p( ) _ pl 1)@2@7%)
( R(mM) o)
E oot o)
R™) =0
(m) _
/’]R Vgc ( dql /]Rd Vsc qR(nL 1)7dqR(7n)) (4 261)

R(™)

H exp (( Osc ( ) + 27rwa . (P(mﬂ) _ P(m))) Sl(m)>

[ (P(m“) - P (m)7q§%ﬁ%>)
N =)

where F denotes Fourier transform in the first variable. The function in the square
brackets of the last line is obtained by pointwise multiplication in (z, k) phase space
and is again an element of FL(CY). Plugging it back into (4.260) therefore produces
another instance of (4.260) with m reduced to m — 1 and the “central observable” no
longer being am » but

(m) —
i 1,0 (¢t ) T (4.262)

Iterating this procedure altogether 7 — 1 times and resubstituting gives us the result

m—1
. ,Z'HET(E)/E el 7iHET(j)/5 c
lim E [<e ]Hl (@%(a)e ) 6,

_ m—l .
Q(am)e T T (@ (ag)e ) ¢8> ]
H

=1

- Z / Mog dx dq(l) / dP(Qﬁ)e%riP(?ﬁ).x
oe{£} Rd
F [eﬁaTﬂ) (‘al,a 2 ..,eC(,T(mﬂ) (!am—LUP (eﬁ”T(m)amg)))} (P( ),q[()l))

= Z/ 110, (dz, dk)

oce{+}
(1) (m-1) (m)
[T (lao* e (Jamo1o* (5" a0 ) ) )] (@, k)

(4.263)
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4.8. Removal of the cut-off for large and small momenta

4.8.1. Decomposing the initial states

We will first show how to remove the infra-red cut-off, the removal of the ultra-violet cut-
off is then eays, cf. Section 4.8.4. For clarity, we will limit ourselves to one measurement,
m = 1. Assume that there is a sequence of initial states ¢§ € H, (¢ > 0) such that both
components ¥ , obey (2.160), (2.161), and (2.162). Moreover, assume that for o € {£},

we [wg’o} converge in X" to a limit object (10,0, ,u{){p, 7M0,0), in the sense of (2.186), as
e — 0. By testing the right side of (2.186) against suitable functions a € Xg, one can
observe that 1 4, ugg and Wno | are uniquely determined, while 7 , is determined up

to a constant phase factor. It is clear, that W¢ [1/)5,0}, if tested only against FL'(C?)
functions, converges to a measure on the entire phase space, namely

fio,o (dz, dk) = po o (dz, dk)1(k # 0) + pfl, (dz, ST1)5(k)dk + |n(2)|* 6 (k)dzdk. (4.264)

Moreover, there is a subsequence S of € — 0 such that
5, (1) = Goa 3 I2RY, (5320, (1.265)

weakly in L2(R?) for o € {#}, where (p, does not need to be equal to 79,. For
¢ :]0,00) — [0, 1] smooth with ¢([0,1]) = {1} and ¢([2,00)) = {0}, and any 0 < 2) <
L <00, and 0 = =, set

DIRE (k) = (1 — (kI /) (k| / L) o (K),
02,0 (k) = @(k|/A) (55 (k) — e~ 2Co 0 (k/2)) (4.266)
Con(k) = e V20 (|k| /N o0 (K/E) .

The only difference to Appendix A is the additional cut-off for large momenta. Just as
shown in Appendix A, one can extract subsequences S” of A\ — 0 and S’ C S of ¢ — 0,
such that for all a € Xig

: cr e, B k
tim (WiELa), = [ w0 (e die (2. o) (0= b/ (/L2

S'2e—0
k .
L AL o AL micro
= /de Ho'y (dz, dk)b (az,k, |k|> = /]R?d oy (dx, dk)a (x,k)
(4.267)

for A, L fixed, as well as

S’laigim <WE [CS:‘?} ’ a>%1R - <W[<0’U]’ Cl(-, 0, )) = <W[7707U]7 a(+,0,-)) = <W[770,0]7 amacro>
(4.268)
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4.8. Removal of the cut-off for large and small momenta

for A fixed, and

. . £ 6,)\ _ H
S”gg\n—m S’lalin—m <W [w<707‘7} ’ a>xIR - /Rdxsd—l 10,0 (dz, dk)b(z, 0, k)
(4.269)
= b (de, dk)a™ (2, k),
RdxGd—1 "
with all cross terms vanishing in the limgr5y o limg/5. o limit. It is important to note
that the poq, u&a and Wino .| are really the original quantities, due to their above-
mentioned uniqueness. In particular, as W[y »| = Wno ], there has to be a z € C with

|z| =1 that (o, = 270,0-
Now let any T > 0 be given, and consider the time-evolved, and thus random, states in

H,

AL o —iHT/e e AL A —iH"T /e, € A _ —iHT/e &\
'(ﬁ; —e ! /€¢€>70 , qr/}€<,T — et /Ew€<707 ; — ol /ECS ) (4.270)

Lo

Also, for o € {+}, we denote by pr, = eﬁ"T,uop and M%(Lf =e Tua\:(f the measures on

phase space obtained by propagating j, and ,u())‘:f with the linear Boltzmann dynam-
ics.

4.8.2. Large wavenumbers

For fixed A, L, the sequence (1/};)57%’)565’ fulfills all assumptions made for initial states

up to Section 4.7 (to be specific, there is and e-independent infrared and ultraviolet

cut-off, and (4.267) shows that Wa[wi)(‘)f,] converges weak-* in FL'(C?)"). Therefore,

the convergence (4.257) (with m = 1, p() = 0 and a1 ,(k) = ¢ (|2k|/)\)) holds for
e\, L .

(45755, with fixed A, L

. |2k|>
s'ggoE [/]Rd dkp ( A

~ L 2] AL |12k |
¢>,T,J’ ] = /]RM NT,g(dxvdk‘)Sﬁ ()\)

o (4.271)
= [ otz die (51 (1= (k1202 oK/ =0,
R2d
and thus, employing (2.182),
. £ 8,/\,L
oim E(WWTCLe),

T -~ e, AL e\, L o

= hm B dp/Rd dka(p, k, k/e) g, (k +ep/2)y2 7 o (k — ep/2)

_ = _ TeNL “eNL

= Jim B [ dp [ Ak, ko) (1 = 4kl NGRS e+ 2 200~ ep2)

_ n B AL AL

= i B [ dp [ dkb, kb — (KNI -+ ep/2)02 s (h — epf2)

:/uw pro(d, dk) (1= ([k| /) @ (|k|/L)?0(x, k, k/|k]).

(4.272)
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4. Proof of Theorem 3.1

In the last equality, the fact that (x,k) — b(z,k, k/|k|)(1 — p(4]k|/N\)) is an FLY(CO)
function was used. Obviously, then

lim  lim E<Wf[¢§fffg],a>xm= /R  hro(dz, dk)b(z, k, k/K|)p(k|/L)®

S"35A—085"2e—0 . (4‘273)
= [, pro(de dR)a k) (kI /L)
R

4.8.3. Small and intermediate wavenumbers

Next, let fg’é\ be either 1/}2)60,(14:) or S’é‘(k:) Therefore, its Fourier transform fg’é‘ is

supported in a ball of radius 2\ around the origin. Recall that
f = e TSN = Tim (U + W) (4.274)
R—o0

in H, for fixed €, A > 0 and with ¥§,¥5 defined in (4.13) (with 7 = 1 and initial state
f51). One has

With the same parameters as in (4.216), the analogue of estimate (4.218) still holds for
the second summand. For the first, however, we have to proceed slightly different than
in Section 4.6, as we can no longer use Lemma 4.16 because fé? does not vanish near

€,A —iHoT /e p&,A
E —e 0 /fo

T

<oy

m + 2B [|5]l3] . (4.275)

the origin. Instead, with m =1, p = p() = 0, the observable a = a®V) : R — C such
that a=1, N = (N(l), N(2)) and the K amplitudes still defined as in in (4.29),

g e

N—-1 N-1
=Y X ¥ Kk(fftea=1p=02)0T/N,9)

N =1 N =1 Ser*(I(N))

+ 3 > Ko (£67 5,a=1,p=0,20,T/2, N, 5))|
NO=1 N@ =1 Sem*(I(N)). o=+
S NON-Crossing

(4.276)

for all A € (0,1) and ¢ € (0,2¢), with 9 > 0 only depending on |T'|, the distribution of
¢, and dimension d. The last line can then be estimated with Corollary 4.19 as

N-1 N-1
Z Z Z Z ’ICO-( g”\,&?,az1,p:0,2)\,T/5,N,S)‘
NMO=1 N@)=1 o==+

Ser*(I1(N))
s non-crossing (4.277)
) 00 CNOENE
< A 2,_:1/19 A .
T LR e
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4.8. Removal of the cut-off for large and small momenta

1SN

2
o ’H with (2.160),

Therefore, controlling ’

, 2
lim limsupE U f;’A - e_’HOT/Efg’AH ] =0. (4.278)

S"3A=0 §/5:50

In the Wigner transform, the cross-terms between f;’A and 7/);>\T’L can now be estimated

by combining (4.271) and (4.278),

2

L ~ YT
L lé]f‘;SEISE /R dp /]R L dka(p, k, k/e) frp(k +ep/2)9S 7, (k — ep/2)

e |[2 . . -~ 1o
o’ ‘ lim limsup [ dpsup |a(p, k', k")]
L2 §73X—=0 S’'3e—0 JRA K k"

<llaflxm

Eﬂ/d dk1(A < || < 2\ + elp])
R

e\ L 2
1/}>,T,a(k)‘ (4_279)

~e AL 2
P24t (k)|

<4lla% ||¢3H?HSH13H§LO 1;{191 sug)IE ” dkL(X < |k| < 3))
E—r

. ML
<tfalfdy, 061 Jim [ (e, di) 1< k] < 3)
—0,

where we used the already established convergence (4.257) from the third last to second
last line.

For the Wigner transform of the small wave-numbers, observe that for o € {£}

lim  lim E<W€ [g;ﬂ ,a>
S""3A—0 5'3e—0 ’ XIR

— I li -~ TeA 92 TE,A . 9
SNBII;\H_)O S’algo /Rd dp /éd dka(p’ k’ k/E)CO,O'(k + Ep/ )go,o(k 6p/ )
exp (2mioT(|k +ep/2| — |k — ep/2]) /)

= lim lim /d dp/d dka(p, ek, k)Co.0(k +p/2)0.0(k — p/2)¢ (W)
R R

S"35X—05"2e—0
ek —ep/2]

= [ dp [ k80,0, 500 (k+ p/2)G0a(k — p/2) exp (2mioT(k + p/2l ~ |k~ p/2))

_ <W [(e—z’HoTno)J ’amacro>]:Ll(CO) .

) exp (2mioT(|k + p/2| — |k — p/2]))

(4.280)
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4. Proof of Theorem 3.1

As for the cross-terms between small and intermediate wave-numbers,

lim  lim E a Gk +ep/2)02, (k — ep/2
Gl Jim (B dp /R L Aka(p, k. k/€)Cro (k +ep/2)¢ L o (k — ep/2)

= im0 [ dp [ k. ek k)G (5 /202 ok~ p/2)

S"3A—0 §'5e—0 (4.281)
ck+ep/2 .
o (L2 exp 2rmioT (ke +-p/2) - - /20)
=0,
because for any fixed p € R4, A > 0 and T > 0,
. N = k+ep/2
exp (2mioT|k + p/2|) a(p, ek, k)Co.0 (k + p/2)e <|€€p/|>
A (4.282)
— exp (2mioT|k +p/2|) a(p, 0, k)00 (k +p/2) (€ —0)
strongly in L? (Rg), while
22 exp (2mioTlk — p/2) 02h (= (k —p/2)) =0 (e—0)  (4.283)

weakly in L? (]Rg).

For intermediate wave-numbers, we consider
e | e
(0 725, ),
= [ a0 [ kit b k)T (5t b0 ep2) (4289
exp (2mioT(|k/e + p/2| — |k/e — p/2]|))

and can follow the arguments of [23], laid out in Appendix A up to equation (A.22) to
see that for fixed A > 0, and with the cut-off function ¢ as defined at the beginning of
Section 4.8.1,

lim
e—0

a0 [ kS, b, k)T ok + 2p/2)02h (k= ep/2)
exp (2mioT(|k/e +p/2| — |k/e —p/2]))
_ /R dp /R k@, k., k/)DZy , (k + 2p/2) 050 o (k — ep/2) (4.285)

exp (2miT - ) (1= (K1) |

=0

For any T > 0, the function ar with

ar(p, ko k) = 8(p, b, k) (1 — o (k])) exp <2mT’:| -p> (4.286)

124



4.8. Removal of the cut-off for large and small momenta

is a Xir function with
H “
aineso — obo T gmeso, (4.287)

Therefore, by (4.269),
lim lim <W‘E [wi:\Tﬂ} ,a>3€IR = lim lim <T/V‘E [wi’:}),a] ,aT>

S"3A—0 S5"32e—0 S"3A—=0 5'3e—0 XIRr

(4.288)
— H LIT meso
= /Rdxsd—l to.o(dz, dk) (e a ) (x,k),
and we have verified the convergence
. € (5 _ LsT _micro 2
Jlim B (W [0z, a), | = [ (o dbgelTame o, k)il
# [ e AR T ) (1259)
Rixgd-1"

W), ] ) o

along the subsequence S’. But such a subsequence S’ can be extracted from any sequence
of ¢, — 0, and the respective limit always has to coincide with the one on the right side
of (4.289). Thus, we have verified (3.2) as € goes to zero continuously, at least for the
case m = 1 and with large-wave-number cut-off L still present. The generalization to
multiple measurements (7 > 1) is tedious, but straightforward.

4.8.4. UV cut-off

To finish the proof of Theorem 3.1, one now only has to remove the cut-off L. From
(2.162), we observe that

~ 2
lim lim sup /Rd dk |5 (k)| (1 = @ (k|/L))* =0, (4.290)

L—oo  ¢0

while

lim 10,0 (dr, k) (|| /L)2a™ (2, k) = / 0.0 (dz, dk)a™e™ (. k)
R4 R4 xRY

L—o00 JRd x
(4.291)
for all a™ir € FLY(CY). Thus, both sides of (3.2) converge to their non-cut-off limits
as L — 0.

*
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5. Vanishing variance

5.1. Graph expansion

5.1.1. Amplitudes for the main part

As in the beginning of Chapter 4, we start out with initial states 1§ € H with bounded
energy sup, ||z/16\|3_[ < o0, and Fourier transforms supported in a ball of radius L(©
around the origin uniform in € > 0. The operators A3, j € {1,...,2m — 1} are given by
(4.1-4.2), again with functions a;, : RY — C bounded up to their second derivative. The
variance of the random variabe Jj; as defined in (4.6) naturally contains contributions
both of the main part and the remainder of the Duhamel expansion (4.11). We will see
in Section 5.4 that one can re-use all estimates for the remainder. In the Section 5.1 at
hand, we therefore focus on controlling the variance of (4.18) for any given N € NZ™
with

N 4+ N™ <N,

_ _ 5.1

N L 4 NC) N (5:1)
To find such an estimate, we follow the notation of [8] and [7], but have to pay attention
to the more complicated structure due to multiple measurements, the “4+” and “—’
components of the wave function 9, and, as the random field £ is not Gaussian, the
presence of higher-order partitions. To motivate the notation, first assume we wanted to

)

calculate
- N = . N ’
lim E|( ¢5, Fyem (t( ™). R, L( m>,s) [T AFvo (tU);R,LU),g) v
i=1 "

(5.2)
To write out the square inside the expectation, we can fall back on the notation introduced
in Section 4.1.2. As the same time intervals t¢) and cut-off thresholds L£{ ) appear in
both factors of the square, the definition (4.17) can still be employed, but for most other
variables we have to introduce a new index r € {1,2}, with » = 1 standing for the
contributions of the original (4.18), and r = 2 for those of its complex conjugate. As
one now has to keep track of 2| N| scattering events, we index them with a set I(N, N),
which is just a union of two disjoint copies of the original I(N) from (4.19),

I(N,N) = {(j,n,r) cjef{l,...ombne{l,.. . N} re {1,2}}. (5.3)
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5. Vanishing variance

As before, we refer to the set of partitions of I(N,N) as w (I(N,N)), and 7* (I(N,N))
is the set of partitions without isolated elements, i.e. clusters of size 1. Finally, the set
oo (L(N, N)) is the set of all partitions that do not contain isolated elements and con-
nect the first and second one-particle line. Thus an S € 7}, (I(N, N)) always contains a
cluster A € S such that there are (ji,n1), (j2,n2) € I(N) with (j1,n1,1), (j2,n2,2) € A.
From the interpretation of I(N, N) as two copies of I(N), it is clear that the set of
partitions that connect the two one-particle lines is just the set of all partitions, except
for those that decompose into partitions of the first and second I(N),

Teonn ([(N, N)) = 7" (I(N, N)) \ (7" (I(N)) x 7*(I(N))) - (5:4)

conn

Between consecutive scatterings, as shown in Figure 5.1, the wave in the r-th one-particle
line travels at a momentum kﬁfl, indexed by (j,n,r) € Io(N, N), with

(N, N)={(Gnr):je{l,..2mbne {0, . NV} re{l,2},  (55)
and has a “4+” and “—” component denoted by 07(13}, again with (j,n,r) € Io(N,N).
Finally, the complex conjugation for r = 2 can be represented by a sign 7, = —(—1)"

which combines with (4.22) to 79 = 7U)r.. For each (j,m,r) € I(N,N), the momentum
change at the corresponding scattering event is

09) =7 (k) = K2, ) . (5.6)

n,

We will later comment on the different choice of signs for r =1 and r = 2.

If, for r € {1,2}, k, denotes the vector of momenta kﬁﬂ, (4,m) € Io(N), and o, is the
collection of all signs (77(1], 2«, the product of all observables reads

Al (kla a1, p, E)
- k(()j;rl) - k%zj) 1 i i . . )
- 7 , G+1) _ 0) G) G4+
(5.7)

on the first one-particle line, and
AQ (k27 02,p, 5)
s k[()j2+1) + k%zj) 2 i ; ) .
= a o ’ ; (G+1) (4) j () (j+1)
— jl;[l (aj,aé{;n (2 0 (k‘oj,z — k]\]/mg - sp(3)> ) <Jz$<j>,2’00]72 )
(5.8)

on the second one-particle line.
To represent the propagation of the wave in resolvent formulation, for each index

j € {1,....2m}, r € {1,2}, there will be a resolvent integral with parameter a&j), and
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5.1. Graph expansion

a, denotes the collection of all such parameters for the r-th one-particle line. The
propagators in resolvent form are then given as

Py (k;?“a Or, 057”77)

. ()

_on)go(]v)( Y —2no ) |k |+m> (5.9)
< IT [ (|6 ey, + (69| o)) @ (k) 852, £9))]
(4,m)EI(N)

on the r-th one-particle line, where the parameter v > 0 can be chosen freely, and will
again be optimized later.

Lemma 5.1. For a random field & of class (m,0), m > d+ 1, and N € NZ™ fulfilling

(5.1),
2m—1
Jim Var <¢5,FN<M> (< ™). R, L™, ) IT AFvo (t(ﬂ R, LY, ) ¢0>
Jj=1 H
= Y V(¥%eanlOtN,S),
Semtonn(I(N,N))
(5.10)
with the amplitude V of a single partition S € 7 (I(N,N)) given by the formula
V (¢5,,0,p, 10,1, N, S)
IN| -2|N| ()
© Z /R<2|N\+4m>d 11 A
USLJ)TE{:‘:} (4,n,r)EIo(N,N)
V(j,n,m)ely(N,N)
I (a ( 5 ew) i ()< Gmor) Aﬁ))
AeS (4,n,r)EA
x A (k1,01,p,€) A2 (k2,02,p,€) (5.11)
/ ﬁ ﬁ( tmdozr)e Za(”t(])>
"

P1 (k1,01,01,7) P2 (ka, 02, a2, 7)

QAP (2m)
X 1/15 ) (k (E) (27m) k) 1
e — )
N(Zm),l

0, O 1

in which v > 0 can be chosen arbitrarily. As in the remark after Lemma 4.2, the resolvent
representation of the propagator for the j-th time interval, both for r =1 and r = 2, is
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5. Vanishing variance

only valid in case NU) > 1. For j with NU) = 0, the respective aﬁj) integral should be

interpreted as the unitary

exp (—271'2'0'7(3‘217'5]')“67(1{2,”(]‘)) , (r=1,2). (5.12)

)

On the other hand, whenever NU) > 1, the agj) and aéj) integral can be interchanged
with the k integrals.

Proof. One can follow the proof of Lemma 4.1 and 4.3 (with the same caveats for the
indices j with NU) = 0) to verify the equation
2

lim E
R—oo

2m—1 .
<w8,FN<2m> (#™: R, L™ <) ( [T A5Fxo) (95 R, L9 <) (”) w8>
H

i=1

= > V(¥heanL®tN,S)
Ser*(I(N,N))
(5.13)

together with all the remarks below (5.11). The only difference to Lemma 4.1 is the
complex conjugation on the second one-particle line. For r = 2, the scattering events

therefore involve a convolution with E}\g, so we have to evaluate terms of the form
51\% (kg% - kq(ﬁm) = gl\% (—kq(aj)z + ka(mjzl,Q) = 51\% (‘97(5)2) ) (5'14)

for (j,n) € I(N), where we have used that the random field £ takes only real values.
This explaines the choice of signs in (5.6).

Directly by taking the square of Lemma 4.1 and 4.3 one has that

— 2
2m—1 .
. __ * . . *(7)

. 2m). 2m .

Jim_ E<¢8,FN(2m) (1@™; R, L™ &) (H APy ((9; R, L9, ¢) ) 3>
Jj=1 H

= > V (v5.e.a,p, L0, 1, N, 5)
Semn*(I(N))xm*(I(N))

(5.15)

with the sum running over all partitions S € 7*(I(N, N)) that decompose into a partition
of the first and of the second particle line. The lemma then follows from (5.4). O

5.1.2. Graph classification

For every S € n ., (I(N,N)), the structure I(N,N) = I(N)UI(N) of the index set
gives rise to the notion of internal clusters, which are A € S such that either all elements

(j,m,r) € A have r =1 (an internal cluster on the first one-particle line) or all elements
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5.1. Graph expansion

— .4 (4) (3) (3) (2) (2) (1) (1)
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Figure 5.1.: Scatterings (black diamonds) and measurements (empty squares) for the
case m = 2, N = (1,1,1,1). The solid lines indicate the propagation of
the wave at a current momentum of kﬁf 2« Two one-particle lines are needed
because of the quadratic structure of the variance. I(N, N) can be identified

with the set of all black diamonds in the graph.

have r = 2 (an internal cluster on the second one-particle line). Clusters A € S that
contain both elements (j1,n1,1) € A and (j2,n2,2) € A are transfer clusters. If |A| = 2,
we speak of internal pairs or transfer pairs, respectively. Accordingly, the partition S
decomposes into S = S1US3USy,, with S7, So being the sets of internal clusters on the
first and second one-particle line, respectively, and S, being the set of all transfer clusters.
If every A € S is indicated in Figure 5.1 by connecting the respective scattering events
(black diamonds) by dotted lines, this visualization of partitions S € n . (I(N,N))
gives rise to the following

Definition 5.1. We classify the partitions in 7, (I(N, N)) similarly to Definition 1
of [7].

o Seml,, (I(N,N)) is called higher order, if there exists an A € S with |A| > 2,
and otherwise, that is, if all clusters A € S are pairs, a pairing.

*

o Anpairing S € 7}, (I(N,N)) has a generalized crossing on the r-th one-particle
line if there is an internal pair {(j1,n1,7), (j2,n2,7)} € S on the r-th particle line,
and a second pair {(j1,71,7), (J2, 12,7')} € S such that, employing the ordering <
of I(N), (jl,nl) < (jl,ﬁl) < (jQ,TLQ) and

— either 7 # 1/, as in Figure 5.2,

— or r =7"and (j2,n2) < (J2,n2).

*

o A pairing S € 7w}, (I(N,N)) without generalized crossing has parallel transfer
pairs if for every possible choice of two transfer pairs

{(jla ni, 1)7 (j2a na, 2)}7 {(jl,fbl, ]-)a (5277:@’ 2)} € Sv (516)

the ordering (ji,m1) < (j1,71) implies (j2,n2) < (j2, N2), as is the case in Figure
5.6
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5. Vanishing variance

*

e A pairing S € 7}, (I(N,N)) without generalized crossing has anti-parallel
transfer pairs if for every possible choice of two transfer pairs

{(jlvnlv 1)7 (j27n27 2)}7 {(jl7ﬁ17 1)7 (j2, 72, 2)} €5, (517)

the ordering (j1,m1) < (j1,71) implies (j2,n2) > (J2,72), as in Figure 5.7. A
pairing S without generalized crossing and only one transfer pair is thus classified
both as having parallel and anti-parallel transfer pairs.

o If a pairing S € n},,, (I(IN,N)) does neither exhibit a generalized crossing nor

(anti-)parallel transfer pairs, we say that it has crossing transfer pairs, for
example the pairing shown in Figure 5.3.

5.2. Basic estimate

In [7, 8], the next step would be a factorization lemma (Lemma 5.3 or Lemma 4 respec-
tively), that essentially factorizes V from (5.11) into the contributions of the first and
second one-particle line. To do so, one would now assign a transfer momentum u to
every transfer cluster A € S, and rewrite the delta function

5( 3 a;{,l) :/Rddué (u— 3 953})5(% 3 95{}2). (5.18)
(jn,r)EA (Jyn,1)€A (4in,2)€eA

For estimates in the spirit of Lemma 4.8, the momentum w could then be considered
as an additional free momentum on, say, the first one-particle line, but as a dependent
momentum on the second one-particle line. In our case, things are a bit more difficult;
while the random potential V from [7, 8] was a Gaussian random field on Z3 with a
Fourier transform V such that

E [V(01)V (05)] = 6(61 + 62) (5.19)

on the momentum space [0,1)3, our analogue of (5.19) always comes with a decay factor
gj4| which does not factor as nicely as (5.18). We will therefore not directly make use of
the notion of transfer momenta; however, (5.18) will influence our definition of free and
dependent indices (j,n,r) in the subsequent lemmas, starting with the following basic
estimate, similar to Lemma 5.5 in [8].

Lemma 5.2. (Basic estimate, V amplitudes.) For { of class (d+2,0) and v € (0,1/2],

‘V (¢8,5,a,p, L(O),t,N, S)’
< CINl+2m ((L(O)) +mﬁ)4|N| el H%II%QT_I_IH%HQCO I Hg\A|Hd+2 (5.20)
j=1 Aes

x N1y =I81] 1og [2INH+4T

with C' < oo only depending on dimension d.
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5.2. Basic estimate

Proof. Assume for the moment that N @) > 1 for all j € {1,...,2m}, so the resolvent
representation of propagators is applicable. We start from

’V (1/18, e,a,p, L ¢, N, S)'

2m—1
< eNIp2IN] g4t H ||aj||é0 Z
J=1 o) ez}

V(gm,r)EIp(N,N)

(4)
/(2IN\+4m)d H dhis

(j,n,r)€lp(N,N)

( ( ) ‘gw (Qn{ .(],n T‘)EAﬁ)‘)
AeS (j,n,r)EA

s (5 (kG — K9, —ep) 5 (kG — K9, , — ep))

,_.

.':l

2m dOérSaJ)
X /R4 ( ) |P1 (klao-laala )PZ (k270-270527/7)|

o (1 0+ 55 (2 ) (5 () = 5 (1))

(5.21)
Multiplying out the last line of (5. 21) produces four different summands, and we will
( ) ( )‘2 In this case, fix a choice of
signs o and switch the integration variables k,(Z 2,, (4,m,r) € Io(N,N) to k:(() 1), k:(12) as well

as 95%2«, (jy,m,r) € I(N,N). Then an argument along the lines of the estimates leading

up to (4.61) provides us with a C' < oo depending only on dimension d, such that the
last five lines of (5.21) are bounded by

IV (< Lo >4uv| H HglAlHdH
/ /Rddkéé ()5 ()
/R?\N\d 4 H (d97(zr) H( ( Z 9]}))

(Jn,r)€I(N,N) AeS

concentrate on the one containing

da(l)...da@m)dag )...dagm)

R4m 1
(j,n,r)elo(N,N) 1 &

I (o) (s ).

(j,n,r)EI(N,N)

1
_271-0-”7'7—7' ’k 'r|+'l'y

(J)
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5. Vanishing variance

~ 2|~ 2
as long as we restrict ourselves to the summand ‘wg (k(()ll) )’ ‘wg (k(()IQ))’ . For notational
simplicity, the k variables are still used, but understood as functions of the integration
variables by

j-1 )
KO =k 43 p0 1m0 30 69 (5.23)
j=1 (G,)EI(N)
(3,7)=2(4,m)

As in the proof of Lemma 4.8, all indices in I(N, N) will now be classified as free or
dependent. For a cluster A € S, let max, A be the largest (with respect to <) (j,n) € I(N)
such that (j,n,r) € A.

Definition 5.2. (Definition of free and dependent indices, if both one-particle lines are
to be integrated out from left to right.) The index (j,n,r) € I(N, N) is dependent,

i) if (j,n,r) € A, with A an internal cluster of the r-th one-particle line, r arbitrary,
and (j,n) = max,A, or

ii) if (j,n,r) € A, with A a transfer cluster, r = 2, and (j,n) = maxaA4,

and free otherwise.

This way, every cluster A consists of exactly one dependent and |A| — 1 free elements,
so one can can replace the third line of (5.22) by

/)
~/R(2IN\7|S\)d H (denjm) ’ (5.24)

(J,n,r)EI(N,N)
G,y free

if one plugs into the integrand

(5.25)

for dependent (j,n,r). Here we have used the notation A(j,n,r) for the unique cluster in
S containing (j,n, 7). The substitution (5.25) yields the appropriate analogue of (4.59),
namely

J—1
7 _ .(D) j ) @
iy =kol +ed P+ Y Yoo+ Y > 44 (5.26)
=1 Aes; (G, 1)EA AcS;,, (Gial)eA
Gim)<maxi A GA)S(Gom) Gy < 0im)

on the first one-particle line and

KO =k +ed p? - 3 S+ Y S0 (527)

F=1 AES9USy  (7,7,2)EA A€ Sty (7,m,1)€A
(,n)<maxg A (5,7)=2(j,n) (4,n)mmaxg A

on the second one-particle line, the last term in (5.27) representing the momentum
transfer between the two one-particle lines caused by the transfer clusters. To estimate
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5.2. Basic estimate

the last four lines of (5.22), one can proceed just as in the proof for Lemma 4.8. First, for
kﬁﬂ with dependent (j,n,r) € I(N, N), the L* bound (4.62) is immediately applicable,
producing factors C/ (’y< U )>) Then, we integrate out all 9,2]7)2, (j,m,2) € I(N,N) free

and aé ), j €{1,...,2m} by an iteration of the following steps (for r = 2)

Iteration 5.1. (Integrating out the r-th one-particle line, from left to right, i.e. decreas-
ing in <.)
o Of all remaining free indices (j,n,r) € I(N,N), and all remaining (j,0,7), j €
{1,...2m}, pick the one with the largest (j,n) with respect to <.
e If n # 0, and thus (j,n,r) € I(N,N), one can check in (5.26-5.27) that /-c%]?« is
the only remaining k variable depending on 97(51 2« Integrating over 97(37 2~ produces a
factor

5) 1 C|log]|
b (J) 271'0',”7} |k‘nr|—|—l’y’< n] ><97(L]72«>d : <Oév("j)> ’

n, (5.28)
with a constant C' < oo depending only on d.

e In case (j,n,r) = (4,0,r), we have made sure by previous steps of our integration

that the only resolvent depending on afnj ) is the one belonging to k:(() 2, while there

H\ "N

is a factor <a , NU) > 1 stemming from the (4.62) and (5.28) bounds, and

we obtain a factor

1
dal < Cllog~| (5.29)
/ 27r0 TT])\k o+ w‘ < >

from the a&j ) integral, C only depending on d.

()

After this procedure, the remaining integrand does no longer depend on any of the k.,

so we do not need to worry about the 6(1) dependence in (5.27) anymore. Consequentely,
we now can apply the analogous procedure to the first one-particle line, i.e. plug in

r = 1 into the above Iteration 5.1, thus integrating out all oY) (j,m,1) € I(N,N) free,

n,1»
and a(J , 7 €{1,...,2m}. Collecting all factors so far, there are |S| contributions from
dependent resolvents, each Cy~1, and 2|N|+4m — |S| factors C|log 7| from the integrals

over the a and independent § variables. After taking the kéll) and kélz) integrals, one has
the bound

4|N|

I () +mN) T o, 19600~ tog VT (5.30)
AeS

for (5.22), where the constant C' has been redefined, but still only depends on d.
So far, this is only a estimate for the last five lines of (5.21) for the choice of the

7 ()]

2
( )‘ . For the contributions of the other summands, we
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5. Vanishing variance

would also need to integrate out the one-particle lines from the “open end” to the
|5
first one-particle line (for the case involving
particle line (for 158 (k(()’ll) ) ‘2

12)\8 (kﬁz%),l) ‘2 12)\8 (kzﬁz%m) ‘2) The assertion follows after absorbing the sum over o
in (5.21) into the constant C.

2

, thus defining free and dependent indices according to > rather than < on the
~ — 2~ 2
¥§ (kﬁg%l)’ (5 (k‘é%)’ ) or second one-

e (5@ [ ticle li both lines (f
U5 ( N(2W>,2) ) one-particle line, or even on both lines (for

In case NU) = 0 for one or several j € {1, ...,2m}, the remark at the end of the proof of
Lemma 4.8 applies. O

5.3. Improved bounds

5.3.1. Crossing estimates

As in Chapter 4, the basic estimate from Lemma 5.2 suffices for higher order partitions
S, and we can turn to pairings, first tackling those with generalized crossings, like Figure
5.2.

Figure 5.2.: For m = 2 and N = (1,1,1,1), a pairing S € 7}, (I(N, N)) that exhibits
a generalized crossing.

Lemma 5.3. (Bound for amplitude V of pairings with generalized crossings.) For & of
class (d+3,0), S € w5, (I(N,N)) a pairing with a generalized crossing on one of its
one-particle lines, and v € [2eConsT, 1/2], there is a C only depending on dimension
d > 2 such that

v (52,00, L9, 1, N, 5)|
2m—1

__ _ —\4|N[+3 N 4
< NPT (O +mN) M gl 10l TT laglée (5:31)
j=1

N| . —|N|+1 2|N|+4m+1
x eNly=INHH T 1og 4| ?IN] :
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5.3. Improved bounds

ford >3, and

V(52,0 1,1, N, 8|
2m—1
N 4 2
Mgl VL 10g s, TT Nlajl2e (5:32)
j=1

< OV (L) +mﬁ)4‘N'+3

3 Ny~ INT+1/2| 1 o [2INI+47

for d = 2.

Proof. Without loss of generality, let a generalized crossing occur on the first one-
particle line. As in the proof of the previous lemma, we will focus on the summand

2
5 (k)[4 (63)
of two pairs denoted by {(j1,n1,1), (j2,n2,1)} and {(j1,71,1), (J2, 2,7) }; in addition
to the requirements of Definition 5.1 we can assume (after finitely many reduction steps)

that the crossing interval, i.e. the set

{(j,n,1) € I(N,N) : (Jv,71) = (4, n) = (j2,m2)} (5.33)

does not contain the crossing interval of another generalized crossing as a proper subset.
While we certainly have NU) > 1 for the relevant indices j = ji, j2, j1, j2, we assume for
simplicity, to make the resolvent expansion work, that N @) > 1 for all je{l,..,2m}.
We invoke m > d + 3 and the fact that S is a pairing to obtain an improved version of
(5.22)

the other cases being similar. Let the generalized crossing consist

__\4|N|+3
(@) +mN) 7 lgallass

[0k [ axgi <01>y <k 0
©)
/RQ\N\d G r)g(N N) n 0 ( (j,n,r)EA an]ﬂ“) )

doz(ll) dOngW)dc»a2 do (Qm)

R4™
11

(j,n,r)elo(N,N) | &

NN CCANCIN

(j,nn")GI(N N)
. |
() )
which we estimate as follows. Adopting the Definition 5.2 of dependent and free indices
(j,n,r) € I(N,N) from the proof of Lemma 5.2, one can take the L estimates of
(4)

all resolvents belonging to k., (j,n,r) dependent, with the exception of the resolvent

(5.34)

1
—271'0,”% |k: |—|—i'y

(J)
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5. Vanishing variance

belonging to k:gf}h which we keep for now. The agj ) and free 97(3; )2
one-particle line are integrated out as in the previous proof. For the first one-particle
line, we are then exactly in the setting of Lemma 4.11, and obtain the same improvement

factor Cy|log~| (if d > 3) or C'/7 (if d = 2) over the basic estimate. O

variables on the second

Lemma 5.4. (Bound for amplitude V of pairings with crossing transfer pairs.) For
¢ of class (d +3,0), S € wl o (I(N,N)) a pairing with crossing transfer pairs, and

~v € (0,1/2], there is a C only depending on dimension d > 2 such that

’V (1/)8, e,a,p, L9 t, N, S)‘

7)4|N‘+3

2m—1
< N ((LO) 4 mN) e gl s 05l T legliée (5:35)

j=1
N|.—~|N|+1 2| N|+4m+1
x elNly~INI | log 7| N ,

ford >3, and

‘V <w§, £,a,Dp, L(O),t, N, S)‘

INJ+2m (7 0 7\ VT3 4y N et T 2 536
< N (1) 4N ) e go | sl TT llagleo (5:36)
j=1
% €|N\,Y—|N|+1/2’log,y‘2|NH-4ﬁ,
ford=2.
P O—e ¥

*

Figure 5.3.: A pairing S € n , (I(N,N)) with crossing transfer pairs. Rotating the
lower one-particle line by 180° will dissolve the present crossings, but create
new ones.

Proof. To make full use of the resolvent expansion, we only present the proof for the
case that all NU) > 1. Again, we differentiate between the four different summands from

~ 2 ~ 2
the last line in (5.21), and first choose |f (k:(()ll) )‘ (A (k:ég)‘ . As the transfer pairs of
S are not parallel, there exist two transfer pairs

{(jla ni, 1>7 (j27 12, 2)}7 {(jl7ﬁ17 1)7 (527ﬁ27 2)} S (5'37)
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5.3. Improved bounds

such that (j1,n1) < (J1,71) and (j2,n2) = (j2,72). As in the beginning of the proof of
Lemma 4.11, in case there are several such structures, we have to make a convenient
choice. A way to do so is laid out in Lemma 8 of [7] — select the smallest possible
index (j2,72) with respect to <, which also determines (j1,71). Then, of all admissible
(j1,m1) < (71,71), choose the <-largest one. For this choice of indices, proceed as in the

—2
>~ 0—— T—e 0 . e
.........
...... X
NI
----------
e e N ”
.......
- A ey
A e —2
......
L 4 1 L 1 2 4 1 L 4 e

Figure 5.4.: The pairing S from Figure 5.3. The wave-functions are in “cis” constella-
tion, and the two pairs {(jla ni, 1)7 (j27 na, 2)} and {(jlv n, 1)7 (527 n2, 2)} are
shown in bold.

proof of Lemma 5.3 to find an improvement of (5.22),

__\4|N|+3
(@) +mN) 7 lgallads

1 1|2 D[22 1)\ |2
[k [ x| ()5 (452)|
/ [T (w09))II (9 9U)
R2INId n,r ' n,r
(j,n,’l")EI(N,N) AeS (],TL,T‘ €A
doa(ll)...da?m)dag)...da(;m) (5.38)

R4™
1
aﬁj) — 2wa,§lr§j)yk§£l| + iy

I1

(j,n,r)EIo(N,N)

NN CCANCIN

(4,n,r)EI(N,N)
) ™ )

One can now argue as in case i) of the proof in Lemma 4.11; case ii) and case iii),
which accounted for the possiblity of an observable within the crossing interval, have
no equivalent here. We classify the indices of I(/N, N) into dependent and free ones as

)

in Definition 5.2, and take the L™ estimates of all kT(«f 7 resolvents, (j,n,r) dependent,

except that we keep the one belonging to (ja,72,2). The following, modified program
will then integrate out the 07(1], ,)ﬂ variables associated with free indices (j,n,r) and the a,(nj ),
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5. Vanishing variance

Instead of integrating out the full second one-particle line at once, we now only integrate
over all 0,(1]; with (j,n) = (j2,72) and (j,n,2) free, and the ag]) with j > 72 according

to the Iteration 5.1. The <-largest remaining £ momentum on the second one-particle

(J2)

line is thus k,” 52> 50 the leftover £ momenta on the second one-particle line can by (5.27)

and choice of (j2,n2) merely depend on 92)1 with (j,n) < (j1,71). Therefore, switching
to r = 1, the Iteration 5.1 can already be used to integrate out all 953)1 as long (j,n,1)
is free and (j,n) > (71,71) and all agj) with 7 > 7;. After reaching this point of the

69" only enters the definition of k") and k%) by

integration procedure, o 2

kL = 05 + k0 + (), 539
k(jQ) _ 9(51) + k(b) ’
n9,2 — “ni,l no—1,29

with f(p) only a function of the p variables.Our choice of (j1,7n1,1) was used in the first

(1)

line. The integration over 6" , 1 therefore produces a factor

[, a9 :}
mi o) — 2ra I 00 4 k) + F(p)] + ]

1,1 1,1
1

051 + k52 5| + ]

(32)

X =
el

< (09, + KO+ 1)) (00 + K2 0) T (09) T (o)

Cal log? for d >3
K o (o) (577
<

= Cy|log | for d =2

\/V KO0, 4 1) k02 <a551>><a<252>>

by Lemma B.1. One can now continue Iteration 5.1 on the first one-particle line, for
free ) with (j1,m1) < (4,n) < (J1,71) and for all agj) with j1 < 7 < 71. By choice of

n,1
(32, M2,2) and (j1,n1, 1), the expression

K+ F0) — K2 | (5.41)

on the right side of (5.40) does not depend on any of the integration variables on this

(jl)

finally be estimated by switching the integration variable to k(J 1)1 = 6?,(11)1 + ¢, q some

section of the iteration, and is just carried along as a constant. The 6,7"7 integral can
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5.3. Improved bounds

linear combination of all momenta not integrated over yet, and applying Lemma B.2,

1
k’ f( ) 22) 2’ ‘agjl) _ 27T0'(j1)17'1( J1)

(31)

nz 1 ni,

sup Cyllog* [k ’

+w‘

><</ffff,)1> <kfff)1 q>7d (5.42)

- Ca|log[?
<Oé§jl)>
for d > 3 and

02|10g’Y\ 1
q \/‘k(]11+ ”j22)12H (41) 27m,2311171(]1)

x (K ’

< éd’10g7|2

T (af)

Fh

(5.43)

for d = 2. The remainder of both one-particle lines can then be handled as in the
derivation of the standard bound, Lemma 5.2. Thus, one L* and two L' resolvent
estimates have been replaced by a factor |logv|? (for d > 3) or |logv[*/\/7 (for d = 2),

yielding an improvement of y|log~| or /7, respectively.

both squared wave-functions sit on the right of the graph. The Case of both squared

-~ 2
c (2m .
( N(@m) 1) ( (2m) 2)‘ 8

entirely analogous after replacing < by > in the definition of freeness, dependence and
integration order. However, the cross-over situation deserves a closer look. Without loss

of generality, consider
HCH NG (5.44)

(wave-function on the right of the first, but on the left of the second one-particle line).
As the transfer pairs of S are not anti-parallel, either, there are two transfer pairs

So far, we have only paid attention to the term including , i.e.

wave-functions on the left, represented by the term

{1, 1, 1), (G2, m2,2) 3, { (1,71, 1), (G2, P2, 2)} € S (5.45)

such that (j1,71) < (71, 71) and (j2, n2) < (j2, 72). Given the choice of several such struc-
tures, select the <-largest possible (j2,72), which also deﬁnes (J1,71); then choose the

98 ()[4 (k50 )

<-largest possible (j1,n1) < (71,71). With this choice, the
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5. Vanishing variance

contribution to the last five lines of (5.21) can be bounded by
4|N|+3 N
V(L) +mN) T lgall s

/ dkm/ Ak, [ (kéll))‘ 5 (Fviom, )‘2
g(J 5 0l
/Rzu\qd G )g(N N) ( AeS ( (],n r)eA " ))

dag)...da?m)d (. da2 (5.46)

R4m™m
I

(4,n,m)elo(N,N)

I ({2

(m)el(N)
CRVNCR

Instead of Definition 5.2, we employ

1

oy’ — 2%07(1];;Tr(j)|k7(32| + iy

I CHRCHRCINEY
> )

Definition 5.3. (Definition of free and dependent indices, if the first one-particle line
is to be integrated out from left to right, but the second one from right to left.) The index
(j,n,r) € I(N,N) is dependent,
i) if (j,n,r) = (j,n,1) € A, with A an internal cluster of first one-particle line and
(j,n) = max; A, or
ii) if (j,n,7) = (j,n,2) € A, with A an internal cluster of second one-particle line and
(j,n) = min1 A, or
iii) if (j,n,7) € A, with A a transfer cluster, r = 2, and (j,n) = ming A,

and free otherwise.

—2
1 1 1 3
\ LI ‘ LI ‘ LI 4 17/)
................... o
Ko e
...............
.................... \
..............
R W
—~12 et et T
m T [}
(e L g O ¢ O ¢ O L g

Figure 5.5.: The pairing S from Figure 5.3. The wave-functions are in “cross-over”
constellation, the two pairs {(j1,71, 1), (j2, 72,2)} and {(j1, 71, 1), (Jo, 712, 2) }
as selected in the proof are shown in bold.
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5.3. Improved bounds

While the k:(l) are still given by (5.26), the £ momenta on the second one-particle line
can be calculated via

R =KD e Y 0 Y S o6 - 9. (5.47)

7=J AeSoUSy,  (5,m,2)EA A€ Sty j,ﬁ,l)EA
(4,m)zming A (3,%) > (4,n) (4,n)<ming A

The L™ estimate (4.62) is taken for the resolvent belonging to kﬁf}m for all dependent
(j,n,2) € I(N, N), except for (j2,72,2), and for all resolvents belonging to kﬁf)l, (j,n,1) €
I(N,N) dependent. One can then integrate out all free 91(1])2 as long as (j,n) < (j2,n2)
and all agj ), j < j2 by plugging r = 2 into the following algorithm

Iteration 5.2. (Integrating out the r-th one-particle line, from right to left, i.e. increas-

ing in <.)

+ Of all remaining free (j,n,7) € I(N,N), and all remaining (j, NU) + 1,r), j €
{1,...2m}, pick the one with the smallest (j,n) with respect to <.

o If n < NU) 41, and thus (j,n,7) € I(N, N), one can check in (5.47) that V)

n—1,r
the only remaining k variable depending on 9,(37 2« Integrating over 07(3, Zn produces a

factor

/d a0 ! < Cllogr] 5 4g)
R

" 0‘7(!) - 27T‘772J21,7«Tr(j)‘k££1,r| + i’Y‘ <k7(7,]21,7"> <0£i];2‘>d - <O‘7("j)> ’

is

with a constant C' < oo depending only on d.

e In case (j,n,r) = (j, N9 + 1,7), we have made sure by previous steps of our
integration that the only resolvent depending on afn] ) is the one belonging to

O\ N NG -
, NU) > 1 stemming from the (4.62) and

k(j ) while there is a decay <ar

N(j)yr’
(5.48) bounds, and we obtain a factor

A |
/ dog?) GRERCITC) W)
R ‘ar — 210 ‘kN(J'),r| + Z’y’ <Ozr >

NG) T

< Cllog ] (5.49)

from the om(nj ) integral, C only depending on d.

The <-smallest remaining & momentum on the second one-particle line is thus the
(J2)

momentum Kz 5,

so the leftover k momenta on the second one-particle line can by

U) with (4,n) = (71,m1). Therefore,

n,1
(9)
n,l

(5.47) and choice of (j2,72) merely depend on 6

switching to r = 1, the Iteration 5.1 can already be used to integrate out all 8

(j,m, 1) is free and (j,n) > (71,71) and all agj) with j > 7;. Now, integrating out 6

as long
(71)

1,1
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5. Vanishing variance

involves only the resolvents belonging to k:gll)l and krg;ll,?’ producing an estimate like

(5.40), namely

Cal log'y\Z ford >3
2%+ 100+ 623 o) (o) -
5.50

Callog | for d =2

\/<a§m > <a<52>>
which does not interfere with ours integrating out the 97(17;)1, (j1,m1) < (4,n) < (J1,71),

and agj ), j1 < j < 71, variables by Iteration 5.1. The 97(3'117)1

bound as (5.42-5.43) did. After all leftover 9(2) and ag) variables have been taken care
of by completing Iteration 5.2, an application of Iteration 5.1 to the rest of the first
one-particle line finishes the proof for the cross-over case, with the same improvement

over the basic Lemma 5.2. OJ

\/ v RS+ ) + k2

integral then yields the same

5.3.2. (Anti-)parallel transfer pairs

In the last proof, the improvement in comparison to the standard estimate originated
~ 2

wf)’ on
the left of the graph, or both of the right), we utilized the existence of two intersecting

2
on the left, one on the

from two different structures: For the “cis” constellation of wave functions (both

transfer pairs, Figure 5.4, while in the “cross-over case”, (one ’@\8
right) two non-intersecting transfer pairs, as highlighted in Figure 5.5 were central to the
argument. The equivalence of those two cases is obvious when the “cross-over” graph is
brought into “cis” form by rotating the second one-particle line by 180° — the previously
non-intersecting pairs then cross each other. At least one of those two arguments fails
when dealing with (anti-)parallel transfer pairs; there is always at least one rotation of
the second one-particle line that makes all intersections vanish, and a different approach
is needed for the proof of the following Lemma.

Lemma 5.5. (Bound for amplitude V for pairings with (anti-)parallel transfer pairs.)
Let £ be of class (d+3,0), v € (0,1/2] and S € 7}, (I(N,N)) be a pairing with parallel
or anti-parallel transfer pairs. There is a C depending only on dimension d > 2 such
that

V(52,00 L9, 1, N, 5)|

7)4|N\+2

2m—1
e __ N 4
< CINHE™ (1) + N e lgallth 153, TT Nlaslieo
7j=1

INIo=INT| 1@ ~ |21V +4m+1 (5.51)
7~ log |

X €

VET (d>3),
%\ .1/5
v (d=2).
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5.3. Improved bounds

v ¥
¥ =
= ¥
¥ v

Figure 5.7.: A pairing with two anti-parallel transfer pairs. Rotating the lower one-
particle by 180° makes all intersections disappear.

Proof. For the whole proof, assume for simplicity that all N > 1, j ¢ {1,...,2m}, so
that the resolvent representation is fully applicable. First, let S € n} ., (I(N,N)) be
a pairing with parallel transfer pairs, and choose {(j1,n1,1), (j2,n2,2)} € S to be the
transfer pair with (j1,71) (and thus (j2,72)) <-maximal. For 1 > 0 to be optimized
later, define

B = {k c R(Q\N|+4m)d . ’krgll’)l _ k(.72)

ng,2

<n} (5.52)

to split up V into

‘V (wg,e,a,p,L(O),t,N, S)‘ < ‘V (wS,E,a,p,L(O),t,N, S,B)‘

+ ‘V (1/18,&?, a,p, L0 ¢ N.S, BC) (5.53)

Y

with V(..., B) and V(..., B°) defined by the right side of (5.11), but with the k integration
domain REINIH4M)d replaced by B or B¢, respectively. To understand the contribution
of V(...,B), first note that, as S has parallel transfer pairs, the arguments of the two
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5. Vanishing variance

wave-functions on the left of the graph in Figure 5.6 are equal to

- 2m—1 )
NG I B S

S (5.54)
kz(vzg% 2 kv(zj;)l 1+ 9(]1)1 +ey oV

Jj=J2

On the other hand, on the set B, as a consequence of the delta functions induced by S,
the arguments of the wave-functions on the right obey

’k(()ll) — k2 +p7| <, (5.55)

)

with p* = 52?1:_11 p) — 5222:_11 pU). This time, an estimate of a product of wave
functions as a sum of squares is too coarse, and we rather write

vV (v5.2,a.p, 2,1, N, 8, B)|

_\4|N| 2l
< (@M +mN) e T Nalgo T |arall,,, >
j=1 Aes o) ey
e (1.(1)
/ Koot |<n 0z

v(j,n,r)€Ig(N,N)
I1 (dg(j)> I1 (s )
R2INId n,r n,r
(j,n,r)EI(N,N) AeS (jyn,r)EA

dagl) . .daggm)dagl) ...doé?m)

RA™
11

(jnr)Elp(N,N) | &

2m—1
wg (k(Jl)l 1 +977‘,711?|. +e€ Z p )

dkg kg |05 (ko1 )

)

1 “\ —d (n#0)
27ranjlr,§1 |k: ]—i—ify (<0nj’2“> <k7(1]’2‘> )

. . om-1
(k,(fzm + 9,(1]117)1 +e Z p(])>

Jj=Jj2

o

J=j1

(5.56)

with a constant C' depending only on dimension d. To estimate the last four lines
of (5.56), we modify Definition 5.2 in such a manner that also (ji,n1,1) is dependent
instead of free, and take the usual L* bounds (4.62) of all resolvents belonging to ka(z], ;,
(4,m,7) € I(N, N) dependent, which now yields one more factor y~! than usual. Iteration

5.1 can then be applied to all 9,2)1, (j,n,1) € I(N,N) free with (j,n) = (j1,n1) and
()

all a”’, j > j1, and likewise to all 955%7 (4,n,2) € I(N,N) free with (j,n) > (j2,n2)

and all aéj ), 7 > jo. Next, the integral over 0( )1 will simply integrate out the last
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5.3. Improved bounds

line of (5.56), for a factor of at most HlﬁSH% We then follow the proof of the standard
estimate, integrating out the remaining « and free 6 variables, on the second and then
on the first one-particle line, with Iteration 5.1. The last four lines of (5.56) have been

completely taken care of, and by Cauchy-Schwarz, the k((),l1)» k'(()g integral is smaller or

equal to n? ]WSH% We therefore have gained an additional factor n%y~! compared to

the standard estimate, and there is an only d-dependent constant C' < oo such that
vV (¥5,.0,p, L1, N, 8, B)|

2m—1
_ L \4lN| N
< N ((1O) N ) e g |V (5l TT lesllze (5:57)
j=1

% 8|N|,}/7\N|71| log,y’2\N|+4mnd'

The contribution of V(..., B¢) can be controlled by the analogue of (5.21), only with the
k integral running only over B¢ instead of REINI+4Md - Again we have to distinguish the
four different summands arising from the last line of (5.21). First, consider the “cis” case,
with both wave functions on the left or both on the right. Without loss of generality, we

only treat the summand containing

35 (W) |5 (KD (5.58)
and thus have to find a bound for
e () +ml) " gl
[ ang [ a2l ()95 ()
oo B, L2 )
(4,m,r)EI(N,N) AeS (J,mr)EA (5'59)

dagl) ...da?m)daél) .. _dagzm)

R4™
1 ) —d ) 1>n7£0
(jan,r)glo(N,N) aS‘j) - 2770'7(572‘7'5])’]{;7({24 + iy (<0nJ’T> <knj,r>
(k)™ () (W2 -l 2 ).

Now we define dependent and free indices (j,n,7) as in Definition 5.2 and take L*°
estimates of all resolvents belonging to kr(f 2«, (j,m,r) € I(N, N) dependent except that we
keep the kfgjé resolvent for now. By Iteration 5.1, all 92{ )2 variables with (j,n,2) € I(N,N)
free and (j,n) > (j2,n2) and all agj), j > jo are integrated out, the same procedure is
applied to the 0,(1])1 with (j,n,1) € I(N, N) free and (j,n) > (j1,n1) and all agj), Jj > i
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5. Vanishing variance

By (5.26-5.27), the only remaining k variables that still depend on 9( b )1 are

KOV, — 000, 4 4GV

ni—1,1°

1
(5.60)
k7(7:722)2 - 9’&,711?[ + k’fljjzl 2
On B¢, one also has ‘kgﬁlm —k 3221 2‘ > 1, and Lemma B.1 lets us bound the 95311)1
integral by
A 1
RS p— —
/Rd 1,1 ‘Ozg]l) _ 271_0_1(1]117)17_1(]1) ( ) )+ km 11 ‘ + w‘
y 1
o8 — 2mo ) 000 + k) o]+ “‘ (5.61)
_92 . . - )
<e(ﬂ)1 + kY > <95311,)1 + kﬁfjll,z> <95311)1>
1/2 i)\ —1/2
%ﬂp <oz§ 1)> / agﬂ) / for d > 3,
Callognl / (7)\ Y2/ (j2)\~1/2 _
Collogrl (o) () for d = 2.

One can then integrate out the remainder of the second and then the first one-particle lines
by Iteration 5.1, just as in the proof of the basic estimate, which has thus been improved
by a factor v|logvy|/n (d > 3), or /v/n (d = 2). The last remaining contribution
to V(...,B°) stems from the wave-functions in “cross-over” position. In case that the
partition S in consideration contains more than one transfer pair, it is straightforward
to just bound 1(B¢) < 1 and apply the “cross-over” portion of the proof of Lemma 5.4
to obtain and improvement factor |log~| (for d > 3) or /¥ (for d = 2). Therefore, for
S with parallel transfer pairings and |St| > 1, the basic estimate Lemma 5.2 still holds
if multiplied by a factor

C (n'r " +/logyIn ! +7llog]) (d>3),

C (7727_1 + \/ZJr \ﬁ) (d=2),

C only depending on dimension d. Optimizing 7 as a function of v proves the result in
this case.

(5.62)

(5.63)

For S € n% ., (I(N,N)) with several transfer pairs, which are anti-parallel, choose a
transfer pair {(j1,n1,1), (j2,n2,2)} and define the set

C = {k e ROV {5} 15020 o| <} (5.64)
Then with analogous definitions to the previous case, one has
V(52,09 L, 1, N, 8,C))|
N2 (17 00y o IV aqe | oend )
¢ (<L )+ mN) e "M gl g 196115 H llajllco (5.65)
=1
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5.4. Proof of Theorem 3.2

The amplitude stemming from the complement C¢, on the other hand, is

v (¢5,.0,p, L)1, N, 8,C°)

N

2m—1

7 =) AN 2 N 4 2

< ONFm ((LO) 4N ) e g |V 55, TT llasli2
j=1

N| —|N o|N|+4mm (5.66)

X{vllogv\(lﬂ/n) (d > 3),
JA+1/m)  (d=2),

where we used Lemma B.1 for the contribution of “cross-over” wave-functions, and argued
as in the proof of Lemma 5.4 for the “cis” wave functions. Optimization of n yields the
same results as before.

Finally, for the last case |Si;| = 1, which is classified as both parallel and anti-parallel,
the Lemma follows by splitting V into
Vv (¥56,0,0, L7, N, S, )|
< |V (v5.,a.p. L0, NS, B) |+ |V (v5.5,a,p, LO,, N, S,C) | (5.67)
+ [V (¢5,2,0,p, L0, 1, N, 8, B°n C°)

)

and applying (5.57) and (5.65) to the first two summands, while controlling both the
“cis” and “cross-over” contributions to the third summand by Lemma B.1. O

5.4. Proof of Theorem 3.2

5.4.1. Collecting the bounds

First, suppose that (¢§).- is still a sequence of initial states obeying (2.160), such that
the Fourier transform 128,0(16), o € {£}, vanishes for all k € R? with |k| > L for some
L) < oo, uniformly in € > 0. Thanks to (4.7) and (4.13),

E[|T° (H®, 4%, T, a,p) —EJ" (H*, 9%, T’ a, p)|]
— lim E Hja (H67R,w€,T, a,p) o Eja (HE’R,wS,T, a,p) H

R—o0

5.68
< Jlim (Var (w5, Azwi))) o
—00

+ lim 2 lazm oo B (119 12|95 |2 + 119209195 ll22 + (1972 194l 195 1] -
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5. Vanishing variance

For the object in the second last line of (5.68), by the Cauchy-Schwarz inequality and
Lemma 5.1

Jim Var (85, A505)

_ 2
: N()—1+ m)
< lim _
R—o00 ( m NEZNST”

N 4. +N) <N (e)
N(m+1) L 4 N(2TM) <N(e)

2m—1 .
Var <¢8,FN<2m) (7™ fe; B, LE™ &) (H A5Fyo) (TO /e R, LD €)™ ) w6>
Jj=1 H
S 2
_(N(E)—-1+m e (0)
_< m ) > > V(¥eapl® T/eNS).
NENgm SeﬂékoI)n(I(N’N))
N 4. 4N <N ()
N+ 4 4 NEM) N (e)
(5.69)

Whenever ¢ is of class (d + 3,0), by Lemmas 5.2-5.5 and because |[7*(I(N,N))| <
(2|N|)! < (4N)!, there is a C' depending only on 7, |T|, L), Cops and the statistics of &
such that

lim Var ((@'], A507))

R—o00
_ - 2m—1
< N+H177 14 |1
<CTTINT gl 31;11 lajllco (5.70)
|log€|4(ﬁ+m) (51/5+N4N max 8DDCD>
De{1,....AN}

for all &€ < 1/(4(Cops)m). In case £ is even of class (d + 2M + 7,4) one can also
use all estimates from Section 4.5.2 for the remainder ¥5. We have to choose N () =
[alloge|/log|logel], as well as k = 7Y and M (the latter two only influence the
estimate (4.215) for ¥§) such that both (4.215) and (5.70) vanish in the £ — 0 limit. To
this end, we have to identify a > 0, ¥ € (0,1) and M € N such that

1
——12a >0
5 a

1
5—2(1—19)—8a>0 (5.71)

24+ M(1—-9)—8a>0
—2(1—-9Y)+a>0

simultaneously hold. Such a triple (a,?, M) can be found whenever M > 257. If M
can be chosen arbitrarily large, and (1 — ¢) arbitrarily small, the optimal choice of a,
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5.4. Proof of Theorem 3.2

a = 1/65 yields a decay rate

Var (J° (H®,9°,T,a,p))

2m—1
<2 (WSH?{ 11 Hacha) E[|l7° (H*, 4%, T,a,p) —EJ" (H",¢*, T, a,p)|]

j=1 (5.72)

, Tl ) )
<C 16l TT llaslee | €/,
j=1

with a finite constant C' that only depends on m, |T7, L) Cyps and the statistics of &.

5.4.2. Extension to general initial data and test functions
Now that we have established

lim Var (7° (H®,¢*,T,a,p)) =0 (5.73)
e—0

for initial states with uniformly compactly supported Fourier transforms, and functions
aj+ : R? — C with two bounded derivatives, we can first relax the observables to be only
bounded and continuous by invoking (4.256). In this step, however, we lose the explicit
control on the convergence speed, (5.72). Next, the boundedness of the functions a; +
and the unitarity of the time evolution e~#°* imply that (5.73) holds for all sequences
of initial states (¢§)s>0 in H that fulfill (2.160) and (2.162).

To further generalize this result to observables a; 1 € FL(C?), recall that
< () / m_l( <'>/)
efiHsT ™) [e H QS(aj)efiHETJ € w&
j=1

. m-1 _
Qa(am)e_iHsT(M)/E H (Qa(aj)e_iHsT(ﬂ/E) ¢8> (5.74)
H

Jj=1

= dp(l)dp@mil)js (H57w87T7a(p7')7p)7

RA(2m—1)

where (5.73) helps us to control the variance of the integrand on the right side for given
values of p\9). Thus,

Var <e_“LFT(m)/E m]_:f (Qa(aj)e_iHET(j)/s) ¢87
Q* (am) —ZHET“"VEWH ( —z‘HfT@/e) ¢6> (5.75)

H

2
< (L @9-dp 7 Var (7 (12,05 72800, )] ) =50
RA(2m—
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5. Vanishing variance

as € — 0 by dominated convergence for the p integral, because

2m—1

a0 (09 k)| T sup
g j:m—‘—l kJ,U

[Var (7° (H®, 45, T a(p, ), p))]'/* <

Gom—j.o (P9, k)

)

(5.76)
with the right side e-independent and integrable in the p variables. The only remaining
task is to replace observables a;, € F L'(C) by general aj0 € Xir, and Q° by Qfg in
equation (5.75). This is achieved in a fashion very similar to Section 4.8; we introduce a
small cut-off parameter A > 0 as in (4.266), to obtain

e A 1 e
%ie),i(k‘) =(1 @(IkAI//\)) V5,0 (k), (5.77)
0:0' (k) = <P(|k’/)\)1/18,a(k>
The functions
A (2, k) = afls™(z, k) (1 — @(4[k| /) (5.78)

are in FL(C?) for A > 0, and by a straightforward generalization of (4.271) to multiple
observation times, as well as (5.75), we have for the large wave-numbers that

e—0

lim Var <<e_’HST(m)/6 H (QIR e tHET ”/8) ¢> b

m—
_iHE (m) —’L e(J) ,
Qir (am)e T/ H (QIR o /€> ‘”€>7A0> )
j=1 H

(5.79)

e—0

_. m= ) )
— lim Var <<e—zH5T( )/a H ( mlcro —1H5T<J>/5> ¢€>,7)(\)’

m—

15 micro —zH“:T(m) e mlcro —iH8T<7) e £,

QF (amige)e T H (e )
J=1 H

=0

for any fixed A > 0. For the small and intermediate (a distinction is not necessary here)
wave-numbers, on the other hand, iteratively applying (4.278) shows that both

A=0 0 £50

lim 1imSupVar (<e—z’HaT(m>/g H (QIR —zHET(j)/g) fg,)\7

- (5.80)

Q1r (am _ZHET(m)/E H (QIR _iHeT(j%) fS’A> ) =0
=1 H
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5.4. Proof of Theorem 3.2

and cross-terms of the form

A—=0 -0 j=1

w1 —
lim lim sup Var <<eiHsT(m)/E H (QfR(aj)eﬂH Tm/g) T/f;’,/\m
B (5.81)
Qir (am ﬂHsT(m)/e H (QIR 7iHET(j)/€) f(f’/\> ) =0
Jj=1 H

vanish. This proves Theorem 3.2.
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6. Higher moments and almost sure
convergence

6.1. Higher moment estimates

As in the previous chapters, instead of directly considering observables in FL'(C?), we
start out from operators A5 : H — H, j € {1,...,2m — 1} defined by (4.2) from C?
functions a; : RY — C2. Also, we consider initial states (1§).., with bounded H-norm
(2.160) and Fourier transform vanishing outside a ball around the origin of radius L(©).
Instead of the variance

E ||J° - EL7]’] (6.1)

of observables [J¢ as defined in (4.5), we now want to control
E [|7° - E[J%)"] (6.2)

for arbitrary large [ € N. Such an estimate has already been found for the discrete
random Schrodinger equation in Theorem 2.2 of [8] — essentially, a bound of type
e¢ was derived for (6.2), with C' > 0 independent of . This, however, is a direct
consequence of the [ = 1 variance case together with the boundedness of the observable.
But for reasonably nice random variables 7%, one should actually hope for (6.2) to be of
order €“!; an improvement that will prove crucial for the establishment of almost sure
convergence, Section 6.2. In [7], such a scaling of the higher moments was derived from
the assumption of a Gaussian random potential, which made the terms of the Duhamel
expansion polynomials of Gaussian variables. Then, the hypercontractivity properties
of the normal distribution, [25], provided a control on higher moments (6.2) in terms
of lower moments (6.1). Here, the random fluctuations ¢ of the wave speed cannot be
Gaussian, as they have to be bounded from below; even-degree polynomials of a suitable
Gaussian field would be admissible on purely mathematical grounds, but unbounded
and thus physically still hard to justify as a wave speed. If we want to stick with our
quite general choice of £, we cannot “a posteriori” upgrade a variance estimate to higher
moment bounds by mere probabilistic methods, but rather have to undertake the full
graph expansion of (6.2). This expansion was already performed in [8], so we can proceed
somewhat similar to define the graphs in the expansion, but will then have to find much
finer estimates of their respective contributions.
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6. Higher moments and almost sure convergence

6.1.1. Amplitudes for the main terms
First, we want to calculate the R — oo limit of

2m—1
B <¢87FN(2"‘) (t(Qm);R,L(Qm),g)* ( H A;FN(J-) ( +). 'R, LY ) ) 7#0>
H

J=1

<wo, e (£ R, L™, )(%ﬁlAFNm(“RL“ &)Y )wo>

7j=1

2l

H
(6.3)

Analogous to Section 5.1, the wave now travels in from the left and from the right of
each of the 2/ individual one-particle lines, undergoing the same number of scatterings
on each line; therefore, the scattering events can be indexed by the index set I(N;2l),
which consists of all (j,n,r) with (j,n) € I(N) and r € {1,...,2l}. As in [8], define the
two-connected partitions as the set of all partitions of I(NN;2l), so that every one-particle
line is connected to at least one other one-particle line (note that this does not coincide
with the standard definition of k-connectedness for graphs, [11]); as always, the star
indicates that we do not consider partitions containing isolated elements

Teomn (L(N320)) = {S € m(I(N;20)) :
|A| >2VA €S,
and Vr € {1,..,21} Ir' #£r, AeS: A #0 # Ay
}.

Here we have denoted for a subset A C I(IN;2l) the restriction of A, of A to the r-th
one-particle line,

A, =1{(j,n) € I(N): (j,n,r) € A}. (6.4)

There is a bijection S <+ (P,(Sp)gep) that maps S € 7l (I(N;20)) to a P €
7 ({1, ...,20}) (which is a partition of {1, ..., 2]} withouth isolated elements) and a collec-
tion (SB)gep, with each Sp a partition from i (L(N; B)). Here

I(N;B) ={(j,n,r): (j,n) € I(N),r € B}, (6.5)

and 7y (I(N; B)) comprises all partitions of the set I(N; B) which
e do not contain one-element clusters,

e do not decompose the set of involved one-particle-lines, or equivalentely, the set B,
into several connectivity components.

In analogy to the [ = 1 (variance) case, the momentum and sign after the n-th scattering

event in the j-th time interval on the r-th one-particle line are denoted by k:(J ) and 07(5 2,
respectively, indexed by

In(N;20) = {(j4,n,7) : (j,n) € Ip(N),r € {1,...,2L}}, (6.6)
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6.1. Higher moment estimates

and to account for complex conjugation in every second of the 2[ factors of (6.3), we
define

m=—(-1" (re{l,..2}

09, = (K9 = k1) ((Gonor) € To(N;20)) (6.7)
NOp—)

With the usual caveats in case NU) = 0 for some j, we extend the notation of the

propagator P, (ky, oy, ap,7y) from (5.9) to all r € {1, ..., 2L}, and denote by A, (k., o, p, €)
the analogue of (5.7) for r odd, and (5.8) for r even.

Lemma 6.1. Whenever £ is of class (d+1,0), m > d+1, and N € N3™ such that (5.1)
holds, one has the representation

lim E

R—o0

j=1

2m—1 .
<w6,FN<2m> (0™ R, L™, <) ( [T 45Fx0 (tU);R,L@,e)*(”) w8>

H
2l

2m—1 .
—E <¢87FN(2m) (t(2m);R7L(2m)35> ( H AEFN(J') (t(]),R,L(J),€) (])) 1/’8>

J=1

H

= X Va(UheanI®LN.S)
Senionn(I(N;20))

= D H( > VB(ws,a,a,p,L@),t,N,SB)),

Per*({1,....21}) BEP \Spert, (I(N;B))
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with the amplitudes Vp given by
VB <w8a g,a,p, L(O)a t: Na SB)

— IVIB2INIBL 3 / I a9
) R(IN[+2m)|B|d ’
o) etxy (Jim,r)€lo(N;B)
v(j,n,r)€Ig(N;B)

( ( 09) ) 94| (97312 (jym,7) € Aﬁ))
AeSp (j,n,r)EA

X HA kT7UT7p7

reB

)
/ H H < »yt(])dar ¢ za(])t(])>
R2m|B|

reBj
H Py kT‘a Or, am,}/)

reB

< TL 0 (W) 5 o ()
7 N (2m)

T
r odd

s H 1110 (1)( ) 0, (2’")) (kﬁ@w)

reB (2m
T even

instead of the special case V from (5.11). If S € w},,,(I(N;2l)) corresponds to P €
7 ({1,...,2m}) and partitions S € 7y, (I(N; B)), B € P, its amplitude is determined
from the Vg by

Var (5,2,a,p, L%, N, 8) = [ Vi (46,200, L1, N, Sp) . (6.10)
BeP

This lemma applies to cases with one or several N = 0 in the same sense as Lemma
5.1.

Proof. The idea behind the structure of the individual amplitudes Vg is the same as for
Lemma 5.1; however, one has to make sure that the sum of amplitudes is taken over the
correct set Wconn( (N;20)) of partitions S. In fact, for the discrete, Gaussian case, it has
already been observed in equation (56) of [8] that the two-connected pairings are the
right choice. For our more general case, introduce random variables X; = X3 = ... X9,
and X2 = X4 = ... = Xgl with

X1=XQ=<1/JS,FN<2m>((m)RL(2m ) (QT_IIAFNO (()RL( ) )¢o> :
n

7j=1
(6.11)
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6.1. Higher moment estimates

As the X, — EX, are centered, the moments-to-cumulants formula, [37], Chapter II, §12,
equation (46), implies

E [f‘l[(xr — EXT)] = > [[ Cum(X, :r € B), (6.12)

r=1 Per*({1,....21}) BEP

({1, ...,2l}) being the partitions of {1, ...,2[} without isolated elements. In particular,
all sets B in (6.12) contain at least two elements, |B| > 2. It follows by an easy induction
argument that

Cum(X, :r € B) = 3 Vi (ng,a,a,p, LO ¢ N, SB) , (6.13)
Spenty (L(N);B)

with 7f,(I(IV); B) defined as above. This proves the lemma. O

6.1.2. Star decomposition

As shown in Figure 6.1, from a given partition S € 7, (I(N;2l)), one can draw a graph

¢ = 4(S) with vertex set {1,...,2l} by connecting two vertices r # r’ by an edge if
and only if there is an A € S with A, # () # A,.. The graph ¢ comprises a set P of
different connectivity components & € P; if we write B = V(%) for the vertex set of 4,
these P and B just correspond to the ones from the last line of (6.8)). Each connectivity
component includes at least two vertices, |B| > 2. For a fixed & € P, pick an arbitrary
spanning tree .7 like in Figure 6.2, let b € B be a leaf of 7, and assign to all » € B the
rank

w(r) = dist(r, b), (6.14)

with dist denoting the distance in .. This gives rise to the two disjoint sets of edges in

7,

Eogg ={zy € E(7) :0 <w(z) < w(y),w(x) odd}, (6.15)

Eeven ={zy € E(7) : 0 < w(z) < w(y),w(x) even} . '
As b is a leaf, we have |Eyqq| + | Feven| = | B| — 2; we choose E; to be the larger of those
two sets, in case of equality, we arbitrarily set Fy = Feypen. We call all edges in Ey as
well as the one edge starting at b strong, all other edges of .7 are weak. There are then
at least |B|/2 strong edges, and removing the weak edges will reduce .7 to a collection
of 5 stars, each consisting of a center vertex ¢; € B s € {1,...,5}, which is connected (by
strong edges) to e; € Ny periphery vertices, which do not have (strong) edges among
each other. Each periphery vertex uniquely corresponds to a strong edge, so

ies > |B|/2. (6.16)
s=1
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6. Higher moments and almost sure convergence

v
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; . e . = 0
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Figure 6.1.: Top: For m = 1 and N = (1,2) and [ = 3, this is a graph resulting from

a partition S € 7}, (I(N;2l)) which consists of pairs and triplets. As in
previous figures, the observable is indicated by an empty square, the black
diamonds are scattering events with cut-off functions present. All scattering
events in the same cluster of S are connected by dotted lines. The partition
of {1,...,6} assigned to S is P = {{1,2,3,4},{5,6}}. Below, the graph 4(S)
is obtained by shrinking each one-particle line into a vertex (dark bullets) and
connecting vertices whenever a cluster from S connects the corresponding

one-particle lines.

The definition of center and periphery is unique whenever e; > 2, for e; = 1 (when the
star is actually just a pair), one can arbitrarily pick one vertex as the “center”. There
may also be isolated centers without a periphery, e; = 0. We then have a decomposition

of B into

B= O K, (6.17)

each K containing all vertices of a star.

We factorize the right hand side of
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6.1. Higher moment estimates

G g

0 1 2 3 4 5 w

v <

o

OoO—e

oO—eo

Figure 6.2.: Top left: A connectivity component % with |B| = 15 vertices. Every dark
bullet symbolizes a one-particle-line. Top right: A spanning tree .7 has been
extracted, we have chosen a leaf b and assigned a rank w to each vertex. In
this case, |Eoqdq| = 6, |Eeven| = 7, 50 E4 = Eeyen. Bottom: We have removed
all but the strong edges and thus isolated 5 = 7 stars, with the center vertices
indicated by circles. Note that two of the stars consist only of their respective
center. The overall number of periphery vertices is Y5_; es = 8 > |B|/2.
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6. Higher moments and almost sure convergence

2m—1
< eNIIBI/2 7 |BIINT 2| Byt H HajHICJ%I Z

g=1 o) eq+}
V(j,n)€Io(N),reB

(9)
/R|B\(IN\+2E):1 ) H dkn,’r

(j,n)€lo(N),reB

I1 (5 ( 3 en{;) G4 (69) = Gy, € Aﬁ)\) (6.18)
AeSp (j,n,r)EA
) Qnﬁl H (5 (ké{:l) B k%zj>,r _ 5p(j)>)

j=1 reB

H |Pr (kTa Or, Oér,’)/)|

reB

< IT (|45 (k6.)
reB

7’//)\8 (kg\?z)m) ,r)

)

into the contributions of the individual stars by defining

Definition 6.1. For a given B, and s € {1, ...,5}, define the set of clusters in Sp that
“reach up to but no further” than the star Kj

Sp(s)={AeSp:IreKs: A, #DNA = Ovr' € Kg,Vs' > s}, (6.19)
and assign to K, the two values

ds = ﬁSB(S)7

(6.20)
fs =|N|(es + 1) — ds.
For a cluster A € Sp, set the sub-cluster
A(s) ={({,n,r) € A:1r € Ks}. (6.21)
In case A € Sp(s), it has the transfer momentum
ua= Y. 09 (6.22)
(j,m,r)EA
TGKS/,S/<S

associated to it. For K, there are ds transfer momenta in total, which we collect in

u(s) = (ua : A € Sp(s)) € RY%, (6.23)
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6.1. Higher moment estimates

For s € {1,...,5} and u € R%% set

Vi, (¥6,2,7.p, L, £, N, S, u)

= sup
o'E{:I:}(INH’Qm)(ES‘Fl)

N )\ —d=3
/R(ESH)(\NH?M)d dkiy H <9"]’T>
(jn)elp(N),reKs Gl ()
AeSE(s) (J,n,r)EA(S)
2m—1 ‘ (6.24)
% H H ( ( LU+ k,(y)]> _Ep(g)»
j=1 rekK;
o I (%)

H |Pr ky,op, ar77)|

8 ) 5 ()

< IT (|
’I"EKS
One can argue similar to equation (107) of [8] to find that there is a constant C' < co
only depending on dimension d such that

’VB <¢8,5,a,p, LO ¢ N, SB)’

2m—1

< elBINI2IBIINI2m) 2Bl TT HajHlBl [T |lg

= co |4
it Aes H Hd+3 (6.25)

S
X H sup VKS (¢87€a77p’L(0)7t7N,SBau>'

s=1 u€R®ds

This estimate corresponds to integrating out Vg, starting from the star Kz down to K1,
bounding the factor contributed by each star Ky by maximizing Vg, over all possible
transfer momenta u = u(s) coming in from “lower” stars Ky, s’ < s.

6.1.3. Bound for a single star

To refer to the one-particle lines within a star, we will no longer use the index r € K, C
B c {1,...,2l}, but rather p € {0,...,es}. The index r can then be uniquely recovered
as r = r(p,s,B). For every K, we utilize the following nomenclature, which is also
illustrated in Figure 6.3:

e p = 0 refers to the center of the star.
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6. Higher moments and almost sure convergence

o the largest values of p, say p € {e;, + 1,...,es}, with e, € {0,...,es}, are reserved
for those peripheral one-particle lines which are connected to the center (i.e. 0-th)
one-particle line by at least one cluster of size > 3. This cluster may not be a
subset of K, but may have its third (fourth,...) member in a different star!

o the peripheral one-particle lines with p € {1, ...,e,} are consequently connected to
the center one-particle line only by pairs (but at least one pair, due to the definition
of the star).

In a slight abuse of notation, we simply overload phrases like “the p-th one-particle line”,
indices (4, n, p), signs 7,, momenta kﬁlj 2), etc. to refer to the obvious objects in the context
of K.

Lemma 6.2. Let d > 2, v,e € (0,1/2], and Ky be a star with s € {1,...,5}, and the
parameters eg, e,, ds and fs defined as above. Its contribution in (6.25) is bounded by

swp Vi, (v5,,7,p, L1, N, S, u)
u€Rd-ds

< CUNI+2m)(es+1) ((L(0)> +m’N’)3lN\(es+1)

2(es+1
g akes ) (6.26)

ot
X [log s H2mHEs L) y=ds (4 log’yD[ : W

ford >3, and

Sup VKS (/(/]6767 77p7 L(O)7t7 N7 SB7u)
ucRd-ds

< CUNI+2m)(es+1) (<L(0)> *]Ny) 3|N|(es+1)

15 2 €s 1
gl (6.27)

es—1
« |10g,y|fs+2m(es+l) ,y*ds (\/77){ 2 -‘

for d =2, with a constant C' < oo only depending on d.

Proof. As always, we simplify matters by assuming N@) > 1 for all j € {1,...,2m}. For
each p € {0, ...,es}, one can bound

3 (W) 198 (5, )| = 5 (|9 (WD) +

~ 2
6 (k[()lg)’ to the last six lines of (6.24),

s (K2 ) ‘2> (6.28)
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6. Higher moments and almost sure convergence

which, for fixed ¢ and u, and “in p notation”, is bounded by

ey
/R<65+1)d 1;[0 <dk09 ( )’ )
) {0) )\ 2
/R<es+1>\N|d ( ] GJ <k”jvp> )
es 2m
7 (6.29)
[ H( )

=0j=1

11 (5 (uA+ >, ag{)p))
A€Sp(s) (jmp)EA(s)
11 H (j)lm G4 il |
Gmetov) =0 \ |05 = 2x0 L k)| + i

with C an only dimension-dependent constant. Possibly after reordering the set {1, ..., e},
one arrives at the situation shown in Figure 6.3 — for each p € {1,...,e,} there is a pair

{(Jo, 19, 0); (Jps i, p) } € S (6.30)

such that (j,,n,) > (j,ny) for all 0 < p’ < p and all pairs

{(jp’anp’?o);(jp’aﬁp’vp,)} € Sp. (631)

Of all (6.30) admissible in that sense, select the pair for which (j,,7,) is smallest with
respect to <.

Definition 6.2. Let the index (j,n,r), (j,n) € I(N), r € Ks have K-internal index
(4,m,p), p € {0,...;es}. We call (j,n,p) dependent if and only if (j,n,p) € A € Sg(s),
defined in Definition 6.1, and this A fulfills all of the following

i. Ay(s) =0 forall p’ > p, and

ii. (j,n) = max,A(s).

Otherwise, (j,n, p) is called free. The unique dependent index belonging to A € Sg(s) is
denoted (54, A p?). This way, the set I(N) x {0, ...,es} decomposes into ds dependent
and fs free mdlces.
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6.1. Higher moment estimates

The k:,(l] 2, in (6.29) are then functions of the integration variables and u by

7j—1
. 1 ) R
IR S RN SR D)
J=1 AeSp\Sg(s) (J(}?Tll;;)je(?ﬁf)):
@)
+ Tp Z Z Qﬁ p
AeSp(s): (G, 7,p)EA(s): (6.32)

pA>pv(iA nA)=(G,n) (G,2)=2(5m)

(2
—Tp > uat Y 055
AeSp(s): (j,'fz,pi)EA(s):
pA=pA(GAnA)=2(n) p<p

In (6.29), one can first take L* bounds like (4.62) on every resolvent belonging to
é{)p, (j,m) € I(N) and p € {0,...,es}, with (j,n,p) dependent, except for (j,, 7, p),
p € {1,....,e;}. Next, we completely integrate out the es-th to e, + 1-th one-particle
lines by the analogue of Iteration 5.1. One is then left with the p-th one-particle lines,

p €{1,...,e,}, which can be taken care of by starting from p = e, and iterating

Iteration 6.1. (“Integrating out a star.”)

i. Assume we have not touched any of the p-th one-particle lines, p € {1,...p — 1}
yet, but that the p/’-th one-particle lines, p' € {p + 1,...e,} have been completely

integrated out. The p-th one-particle line itself may have been integrated out
partially, but all o) with j < j, and all free 6}, (j,n) < (j,,7,) have not been

integrated over yet.

ii. Apply the analogue of Iteration 5.1 to all remaining free 97(3;2,, (j,n) € I(N) with
(j,n) = (Gp 7ip), and all @, j > 7,.

iii. Apply the analogue of Iteration 5.1 to all remaining free 97(5;2), (j,n) € I(N) with
(4,m) = (4psmp), and all oz(()j), J > Jp-
(1)

7771171’

and the L! estimate (4.63) of the k") resolvent. Tteration 5.1 finishes the rest of

n1,0
the 1-st and 0-th one-particle line, and the integration is completed.

iv. In case p = 1, just take the L estimate (4.62) of the resolvent belonging to k

v. In case p > 1, the only £ momenta still depending on 97(5: 2) are

by = o0 + ko

’ , R (6.33)
ké]:’) — _TPQ(JP) + kgﬂp)

P np,0 fp—1,p
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6. Higher moments and almost sure convergence

G(Jp)

so taking the 6,;” integral produces a factor

/ dour) I .
Rd Np, ‘a(()Jp) _271.0,7(1]:2)7_(5];7) TQH(JP +k1(1jpp21,0‘ +i’Y‘

)
Np,0
) 1
0§ — 2o ) 700 | —7,00e, + k99| [+
. . —9 -2 : —d
x (rofh + k59 0) (- eﬁfpﬁé +h ) (097) (6.34)

Cyllog[2 G\ "2/ G\ "1/2
Gp) Gp) Qo A for d > 3,
Toknp—l,O+Tpkﬁp—1,p

Ca|log~| <a(jp)> 1/2 <a(jp)> 1/2 for d = 2
0 P ’
\/7
by Lemma B.1.

Tokij;fll,o‘*‘Tpkf"lj;z
vi. Choose (j*,n*) € I
k‘( ) o depends on 6 J*% via (6.32). Because p > 1, such a (j*,n*) certainly exists,
and we even have (7*5,n*) = (Jp—1,mp—1).

IN

1,p

—~

N) as <-large as possible such that (j*,n*,0) is free, and

—

3

vii. In case (j*,n*,0) € A € S, with A a pair with second element (j.,n., p — 1) in
the p — 1-th one-particle line of the same star K, first apply the analogue of
Iteration 5.1 to the remainder of the p-th one-particle line, and then to the p — 1-th
one-particle line down to, but not including, (j., 7., p — 1). During that process,
as soon as we run into a free 05{ ; variable on which kg ” 217 , depends by (6.32),

k) =K 04, (6.35)
k' being a function of “earlier” # variables, one has by Lemma B.2
/denjk)” G T o)
R4 T()kjp 0—|—T(k’i6’n]r) ay’ i?ﬂ"k‘n 1T+Tr0njr —i—w’

< Lot m00)) <9§3,,1> (6.36)
Cd< 0g )

")

if d > 3, and
o3

/RQ \/‘T K92 o+ 1ok £ 090 |

Np— 1,0
- Cs (log )

* )

| (K, + 00

9 om |6, + 7,00

(6.37)
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6.1. Higher moment estimates

if d =2. We then set ppext = p — 1.

91(1]22,2) Hnjll,%) = 97(1]*72) -2
— {1 * v
i) . w
\gi— O gu) _ pU-) ¥
................................. ﬁl b n*71
o T
miﬁgﬂ o . Q/ﬁ; 2

Figure 6.4.: At this instant of integrating out a star (that originally may have been
larger), p = 2. Iteration 6.1 would jump to vii.

viii. If, as in vii., (j*,n*,0) € A € S, with A a pair with second element (j.,n., p—1)
in the p — 1-th one-particle line of the same star K, but, we do not encounter such
a 95,,]; 2~, take (in case this has not happened yet) the L> estimate of the resolvent
belonging to kfj )p L apply Iteration 5.1 to the 0-th one-particle line down to, but

not including (j*,n*,0), and observe that

2 0_7_09(] ) +k”
O =l A0,

n*

ki
(6.38)

are the only remaining k variables depending on 92 *7[)) Again by Lemma B.2
*) 1
/ a6y G .09 R
R ‘9 +7‘07€”+7Pkn]p—1p + 27 7‘00 0+kn _10’4—17‘
. —2 i~ —d
x <To9ff*,()) + kg*21,0> <97(5*,())> (6.39)
- Ca (log7)

()

if d > 3, and

ael’)

)

A*w

Rt 7] ol =20 ]

Sk sk —2
< (o0 + K, ) (6.40)

Cz (log7)

=)
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6. Higher moments and almost sure convergence

if d = 2. In case (j*,n*) # (Jp—1,Mp-1), We set ppext = p — 1. If (%,n%) =
(jpflanpfl); we have “lost” the pa“ir {(jpflanp*ho%(jpflaﬁ‘pflap_ 1)}5 S50 we
just can integrate out whatever remains of the p — 1-th one-particle line and set

Pnext = p — 2.
02 o =05, s
i —& e
*% _ () - ’ 4
Al — Unya j
@)2 —2
R = 0 ¢ e

Figure 6.5.: In this example, again with a current value of p = 2, Iteration 6.1 would
jump to viii.

ix. Conversely, if instead of vii. or viii., the cluster A € S that contains (j*,n*,0)
is not a pair, or is a pair connecting (j*,n*,0) to any index not on the p — 1-th
one-particle line of the same star, we have by construction that (6.38) and (6.39-
6.40) hold again, but this time, as opposed to viii., we do not have to sacrifice
{(Jps1p,0), (Gp,7p, p)}. We integrate out the remainder of the p-th one-particle line
and set ppext = p — 1.

o 6 o) 2
R e ;
e
. o . =’
9%1
ni,
H%)Z 2
~~~~~ P . 0 — 7

to a part of the graph
already integrated out

Figure 6.6.: In this situation, Iteration 6.1 would jump to ix.

X. If ppext > 1, we are now just in the setting of i., with p replaced by ppext. For

Pnext = 0, however, we apply Iteration 5.1 to the remainder of the O-th one-particle
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6.1. Higher moment estimates

line, and the integration is finished.

Altogether, there is a factor of | log 7| for each of the f free indices (j,n,r), and 2(es+1)m
further such factors from the o integrals. From each of the ds dependent (j,n,r), we
incurred a factor 4! except for all those (7,, 7, p) with p € {2,...,e,} that were treated
in step v. to ix.. of the above iteration. They only contribute a factor |log~| (for d > 3)
or 1/,/7 (for d = 2), and there are (due to the updating rule pyexs > p — 2) at least

-1
{es . W (6.41)
such cases. Taking the k&l; integrals, p € {0,...,es}, and redefining the constant C
finishes the proof. O

In case e, < 1, the above lemma essentially is just a complicated way to rewrite the basic
estimates from Lemma 4.8 and 5.2. In case e, = 0, this is enough, but for e, = 1 (the
star with only one ray), one can argue as in Section 5.3 to obtain

Lemma 6.3. With all other conditions as in Lemma 6.2, let now Kg be a star with
e;, = 1. Then, there is a constant C < oo depending only on d > 2 such that

sup VKS (¢878777p7 L(O)ata N7 SB7u)

ucRd-ds

77 (e 3|N|(es+1) es 77 (es _ d—1
< CONTHMD ((1O) 4l N]) " g e rog 4 (V4
(6.42)
ford >3, and
sup VKS (Tﬂga&%p,L(O),taN, SB,U)
uERd‘ds
< C(INI+2m)(es+1) ((L( )+ m\N\>3lN‘ e t1) WSH%%H) |log7,(\N|+2m)(es+1)+1 A dsnL/5
(6.43)

for d = 2.

6.1.4. Bound for the full amplitudes

Corollary 6.4. For each d > 2, and a random field of class (d+ 3,0), there is a C' < o0
such that for e € (0,1/2] and all S € 7 I(N;20))

‘VQZ (¢5,£,a,p7 LO ¢t N, S)‘

CODI’I(

< C2U(IN|+2m) ((L( ) + *|N|> el 1455113, H las Iz H HQ‘A‘HcHs (6.44)

gl/6 (d:

x | log |2 HINIFDIUIN|=IS)/5 2
s (d>3).
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6. Higher moments and almost sure convergence

Proof. Inserting Lemma 6.2 and 6.3 in (6.25), we obtain for each connectivitiy component
BeP

Vs (v5,,0,p, L, 1, N, Sp))|

3|BIIN

2m—1
_ o | 2|B B
< AP (10 4| v)) " 20 g 28T a2 TT o,
j=1 A€eSp

B
x | log ~| @ HINI+DIBI|BIINI/2 11 s

s=1
(6.45)
where the exponent hg is given as a function of e, € Ny and d > 2 by the table
e, =0]e,=1| e, >2
1 1 [e—1
= 0 5|32 [ 2 W
d>3| 0 Vol e
We observe
Z ds = ‘53‘7
o (6.46)
> (es —e,) < 2(B||IN| - 2|S5]) =: 2D,
s=1
so after setting v = &, the last line of (6.45) is bounded by
s=1
One can easily verify
S S 6 d - 2
es € g Jes/6 (d=2) (6.48)
5 es/5  (d>3)
for all eg € Ny, so, by (6.16),
_ IBIN2 (4 =2)
(2m-+|N|+1)|B| _Dg/10 ) € ( ;
(6.47) < |loge| £ X {EIBI/IO @>3). (6.49)

With Y pcp |B| = 21, taking the product (6.10) over all B € P proves the corollary. [

So far, we have obtained higher-order estimates for the contributions to the main term
of the Duhamel expansion. The G4 and G™"8" parts of the remainder can be bounded
in exactly the same fashion, only with notation from Section 4.1.3 for the variables IV,
N_, Ng,, and N™.
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6.1. Higher moment estimates

Corollary 6.5. For d > 2, ¢ of class (d + 3(M + 2),0), N. € NJ'"! obeying (4.56),

A given by (4.37) and Ngy, € {1,...,N AR — 1}, the identities
2
Jim E |G (t™; R, L™, ¢) (H AsFye (19 R, LV, )) v
<m X
9 12l
- E|Gse (4 R, L0V )(HAFN@(() R, LU )>¢0
Jj<m H
= > V(G yg.e ka0, 1Ot N, Niw, M, S
SEMEonn (I(N;20))
(6.50)
and
2
Him B G?\TN(m)(()RL( )(HAFN(])(()RL ))%
’ <m H
5 |21
— B o (4 R, L7 <) (H AsFyo) (B R, L9, &) | 5
MN
Jj<m ey
= Z V2l (Gend,¢8,6,H,G,L(O),t,N<,W,M,S>
Semtonn (1(N;20))
(6.51)
hold. Here, the individual Vo amplitudes are bounded by
CO(INI+2m)l Alelt| <€M>12(M+1 < >6|N\l+12 (M+1)1
<l 11 HMHM(W 1:1 o (6:52)
1/6 _
« |Tog £ [2ETHIN DI IN|-IS])/5 el (d=2),
" e/ (d>3).

in each case, C' < oo only depending on d.
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6. Higher moments and almost sure convergence

6.1.5. Amplitudes for amputated graphs

As we now want to consider remainder terms of A™"8" type, we need to modify the
observables A, (k;, 0., p,e) by setting them to

2l k?(()JH) + k%zj) ;
T )T (3+1) 4) (9) (3+1)
11 (aj,aéffl) (2 5(“ k]\j,(j _Ep(])) 5( ONG) ag, )

j=1
(6.53)
for r odd, and its complex conjugate, for r even, but a; 4+ now given as in (4.39). Also,
the propagators have to account for the extra decay stemming from &, and the presence
or absence of cutoff functions now,

Pr (kra Or, aTa’Y)

1
s <asf> P T T <>>

(3,m)# @, N ™)), (7+1,0)
T [ (K8 o)) @ (kKL 19))]
(6.54)

U'r(z 1,r + ’kn— 1,r

(Gm)el(N)

with &) and k) defined by (4.53) and (4.54) respectively. The index set I(NV;2l),
however, is (up to the new definition of N) the same as before, and 7*(I(N;2[)) denotes
the set of partitions of I(NV;2l) without clusters of size 1. We can rewrite every S €
7*(I(N;2l)) as a disjoint union

2l
S =ShUSu U Sine(r), (6.55)
r=1

with all clusters A € Sy, having more than two elements |A| > 2, all A € Sy, being transfer
pairs as defined before, i.e. pairs with members belonging to different one-particle lines,
and finally Si,¢(r) being the set of all internal pairs of the r-th one-particle line. Similar
to Lemma 4.6

Lemma 6.6. For £ of class (m,0), withm >d+ (2+ M), N € Nomfl obeying (4.36),
and any Ng, € {1, ...,N(m) — 1},

41
lim E

R—o

Az (4, g, L0 ¢) (H AsFyo) (89 R, L) 8)) v

J<m

n  (6.56)

= Z V2l (Arough’¢67€7’€7 a‘7p7L(O)7t7N<>NﬁH>M7 S) )
Sen*(1(N;20))
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6.1. Higher moment estimates

with the amplitude of each partition S given for an arbitrary choice of v > 0 by

V2l (Arough’ Q;Z)(E]a & R,a,p, L(0)7 ta N<) Nﬁnaﬂv S)

IN|l_2|NJl / n
g iy dk
Z RQIN|+4m)ld H n,r
o) et+) (4,m,r)€lo(N;20)
V(jmﬂ:)elo(N;Ql)

H( ( > 6
AeS (4,n,r)EA
2l

< [T Ar (krsor,p0€)

r=1

/ f—l[ ﬁ ( ,ytmdozr )e Za(”t(])> (6.57)
R4ml

21
H Py (k’l‘a O, Olpy 7, "i)

r=1
Ml () ()
rodd o
x H 1/’0 <1>( )% @) (kﬁ?m)yr),

90,7 N (@) .
T even

where the resolvent integrals are understood as a formal way to write the unperturbed
propagator for all j with NU) = 0.

To have a handle on the resolvents regularized by « + x instead of only ~, we set the
central part of the index set I(N;2l) to be

¢ = {(,n.r) € I(N;20) : (0, Naw +1) < (j,n) 2 (m+ 1, M)} (6.58)

For any S € n*(I(N;2l)) the central part ¢ then decomposes into

2l

¢ =% UG UG, Ul G+, 1) UGine(—, 7)) (6.59)
r=1

Here, for o € {£},

én={(j,n,r) €€ :3A€ Sy : (j,n,r) € A},

7 ={(,nr) €€ :3A€ Sy : (4,n,r) € A, A={(4,n,7); (§',n',r")},or > or'},
Gint(0,7) = {(j,n,7) € C : FA € Sine(r) : (4,n,7) € A, A= {(j,n,7); (5',n', 1)},

(oj,on) = (O‘j ,Jn)}.
(6.60)
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6. Higher moments and almost sure convergence

Lemma 6.7. (Higher moment bound for A™"8" remainder terms.) If £ is of class
(d+ 2(M +2),0), there is a C < oo depending only on dimension d > 2, such that for
any S € m*(I(N;20)), and all e,y € (0,1/2], K >0

‘Vgl (Amugh,wg,a,n,a,p,L(O),t, N, Ngn, M, S)‘

< Diltl GR(N|+2m)! ((L(O)) +mﬁ)4|N|l+(8ﬁ+8)l (£Cp0) EVTHO)

m
(6.61)
x 145115 H a1 1T (l9ar] .
1 1t T
_ 2M1—3|%k|
eI og - [2LINI+27) =151, ~15] (7>
Y+ K
Setting v = €, the last line of (6.61) is bounded by
. c (2Ml—3(|N\l—|S|))+
| Tog [ 2LIN1+2m)—[S| N Ii-S] () (6.62)
K

Proof. Assume that NU) > 1 for all j € {1, ...,2m}; suppose furthermore, without loss
of generality, that |€,[| > |%,,|. Instead of (6.28), we employ

5 (-

for each r € {1, ...,2l}, with a parameter b, € (0,00) to be optimized later. Then

+ b0 (R ) i

) (6.63)

i )

06 (ko )| [ 96 (k5om )| <

[V (AR 45 e, 5,0, p, L), 1, No, Naw, 1, S) |

21

< 272l Z (H b?T> Vo <Arough’w’w87€’,y7nva’p’ L(0)7t7 N<’Nﬁn’M7 S)
we{+}2t \r=1

(6.64)

176



6.1. Higher moment estimates

with

V2l (Arough7 w, ¢67 &% k,a,p, L(O)a tv N<7 NﬁIbM? S)

_ IVl it (N +2m) (<L(0)> +mﬁ)4w” (£Cpe) VT8
m—1
< IT llal™ TT {914 _
1 1® 1 Lo

X | I
ce{£}2U(NI+2m) JRQIN|+4m)id )

(j,n,T)Elo(N;Zl)
AeS (4,m,r)EA

2l 2m—1

% 5 k(]':rl) o k(]) - Ep(j)
7"];[1 ]1_[1 (0 (' N ) (6.65)
2l 2m (7) )
0 dar’ 0 0)40)
8 /R4m 71;[1]1:[1 <€7t 2m © t >

11 11 z
r=1 (4,m) €I (N) Oq(«]) — 27T0'7(’L],7)"7-(J)|k7(z]72‘| + iy + Z'/“igzj)
(3:m)# (@, N (™)), (@+1,0)

(Gn)el(N)

with a finite C' depending only on dimension d. The k integrals are then transformed
into 6 integrals in the usual fashion, and, starting from r = 2, down to r = 1, each of
the one-particle-lines is integrated out, in decreasing < order if w, = 1, and increasing
in < if w, = —1. Each of the altogether 4lm integrals over « variables will produce
factors C|log |, as will the L! resolvent estimates, |A| — 1 of them for each cluster A € S.
However, of the |S| resolvent estimates of L type, a few can be improved from Cy~* to
C(y+ k)~ (or even C, for the missing, “amputated resolvents”) — this is in certainly
the case

« for the k;fl resolvent if @, = 1, and (4,n,7) € €;f U Gins(+,7), and
o for the k’fﬁl,r resolvent if @, = —1, and (j,n,7) € €,;f U Gne(—,7).

Thus, there is a constant C' < co only depending on d such that the last seven lines of
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6. Higher moments and almost sure convergence

(6.65) are bounded by

c(w,9)
CINIH2)| g [2LIN|+2) |51, -5 (7 - H) 7 (6.66)
with the exponent
2l
(@, 8) = |G|+ 3 [Gunlr. 1) (6.67)
r=1

and one can optimize

[Gint (wr,7)| 2l (|t (£,7)|+|Cine (—,7)]) /2
-2l oy _ Y
P> (Hb () >—Hl< ) - (668)

we{+)2 \r=1 THR

with each b, chosen appropriately. From |, | > |%,,|, we conclude
21

1 — 1
G+ 5 D (G ()| (G (=, 7)) 2 O%!Fﬁb=ﬂﬂ—5%m, (6.69)
r=1
which proves equation (6.61). Equation (6.62) then follows from |%},| < 4MI and
[Gnl < > 1A <3 > (JA[=2)=6(IN|l—]S]). (6.70)
AES, AcSy,
O

By the same reasoning, with the appropriate redefinition of N € N3™ for type Aend
remainder terms

Corollary 6.8. (Higher moment estimate for A°d remainder terms.) For dimension
d > 2, a random field & of class (d + 2(M + 2),0), N. € Nom_l obeying (4.36), AR
given by (4.37), we have

Aend e (17 R, 107, )(HAEW(“RL ))%

J<m

41
lim E

R—o00

H (6.71)

= Z V2l (Aend7wg,g,K,,a,p,L(O),t,N<,N’M,S>,
Sen*(I(N;21))

and there is a C' < oo only depending on dimension d such that for all S € 7 (I(N;2l)),
e €(0,1/2], and all k > 0,

[V (49,45, &, 5,0, p, L), N, N, M, S|

< lelltl 2(IN|+2m)l ((L(0)> n WN)MNIH—(SM—FS)Z

X llI H losi’* TT (0]

<€Cobs> (8M+8)l

(6.72)

=) _ e
% | log e[ 2N T+2m) 15 INTL-1S] <

K

> (2Ml73(|N\lf|S|))+
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6.2. Proof of Theorem 3.3

6.2. Proof of Theorem 3.3

6.2.1. Collecting the amplitude bounds

Set the number of measurements to m = 1 and let (¢§).., be a sequence of initial
states in #H fulfilling all conditions of Theorem 3.3, and additionally assume that 1§ 4 (k)

vanishes for |k| > L(®). We discretize the continuous parameter ¢ > 0 by a sequence
(€n)pens> €n = n~ %, with an « to be chosen later. We also fix a time 7" € (0,00). To be
able to vary the strength of disorder independently of space and time scaling, introduce
another parameter ¢ > 0, and denote by H¢ the random operator Hy + ve'V. For
>0, >0,t€Rand o € {£}, define the random state

Yle, e 1] = exp(—iH )5, Yle, e t, 0] = (exp(—iHE/t)@b(ﬁ) (6.73)

in H, and, for any 7 € [0,7], p € R? and any bounded and continuous observable
a+ : R* — C, consider the random variable

X(a,7,p,n)

= sup Z

8n+1 7£n]

/ by (k)P [en, &', 7/2n, 0]k + enp2)Dlen, € 7 /ens o) (k — £np/2)

—IE/ Akt (B)D(en, €' 7 /e, o) (k + np/2)Dlen, €7 en, 0] (k — enp/2)| .
(6.74)

Note that each summand in the Duhamel expansion of ¥[e,,&’,7/en, o] scales like a
non-negative power of ¢, and can be bounded deterministically by setting & to the
largest possible value €,. Thus, there is a constant C7 4 only depending on 7" and d such
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6. Higher moments and almost sure convergence

that

E || X(a,7,p,m)"]

<l d max _ max__ max_ lim
T O<KNM N@) <N 0<Ngp <N 0<M <M B—00

—E (UG, Fyen (72 B L0, 20)” A Fyay (7/en B IO, 20) ), ||
- 41
+ [lallgo (@f“) e [(EHG;}“]%}; (6 R LD, v i)m
sl (sn10.) )
2)21
5 (20
J]

—EHGend (tRL(l) ) e

+E ‘HGR‘}?}%};H (R, L, ) v

Tl (M . <EHG€“@‘ (R, 2O, e0) v
o €n tE[O,?I;E o

Gl (R, LW ) 0

41
H

+ [lafZo <N> sup B[4 (1R, L) e, ) g

t€[0,7/en]
41
o (-

As in previous sections, we set (with possibly different values of b and ¥ than before)

+ llalZo ey sup EHAend (tRLu) ) n
t€[0,7/en]

(6.75)

~ blogen| W
N:Nsn:[ b>0, 6.76
€)= Tiog og ] (670
k= k(ey) =el™? ¥ € (0,1/3). (6.77)

A suitable choice of M will only be determined later, but we assume from now on that
the random field is of class (d+3M +6, 4), making all results of Chapter 4 and Section 6.1
applicable. We therefore use a graph expansion of all expressions on the right hand side
of (6.75), and note that the number of amplitudes to sum over in each case is bounded
by

7" (I(N;20)] < (20(IN|+200))! < (4U(N + D))! (6.78)
Collecting the estimates from Lemmas 6.1, 6.6 and 6.7 and Corollaries 6.4, 6.5 and

6.8, as well as equation (4.211) and (4.213), one can find a C' < oo which depends on
T,d > 2,L©) M, ,9,b,1 and the distribution of &, but not on &,, such that (6.75) is

180



6.2. Proof of Theorem 3.3

bounded by

E [|X (a,7,p,n)["]

T — 41 — 41
N n |14 716N ANI+C K — 9Nl [ K
< OV |l | flalZo (N llog £, | VHHC £lf6 () LN ()

n STL

_ _ 2MI
— 12Nl _au (€
+N llog sn\4Nl+C €n4l <:> ) .

(6.79)

Here, we have already bounded the contribution of the higher cumulants of the random
field in a fashion similar to Section 4.5; for example, setting D = [|N| — |S| for any
partition S € I(N;2l), one obtains the bound

D/10 D/10 HCD N
En g4 _ < max g,/ DY < K7, 6.80
/:ll;[S H ‘ |Hd+3(M+2) De{0,...,2L(N+M)} ( )

in Lemma 6.5, or, in Lemma 6.7, since 9 € (0,1/3),

D —3D < D —-3D 1CD < N ‘
0/ T ol sacrsny < gy M5 3, =5 (/) 7D < KN (681

with C,C, K, K only depending on d, M, 9, b and the distribution of &.

Therefore, whenever ¢ is of class (d + 1641, 4) and one thus can choose M > 545, there
is a 8 > 0 such that for all n,l € N

E[1X(a,7,p,m)*] < Ci (sup 0511 ) ol < (6.52)
€

with C; < oo depending only on [, dimension d, the distribution of &, LO) and T, but not
on n and p (because we have chosen m = 1, so all Cyp,g terms drop out in the Lemmas
of Section 6.1).

6.2.2. Preserving tightness

Now pick and fix a small p > 0, and define R, < oo such that

lim sup/ da |5 (2)]* < p, (6.83)
‘$|2RP/6

e—0
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6. Higher moments and almost sure convergence

and set R, = R, +T. Let x, : R? — [0,1] be smooth, with x,(y) =1 for |y| < R, and
Xp(y) = 0 for |[y| > R, + 1. With these definitions, by Theorem 3.1,

sp 3 [ Az [[en, &', 7/2n, o) (x)|
]Z \x|>(R},+l)/£n | |

e'€lent1,6n

n (|2
< 196" 1%

) ~ T EnP\ ~ G Enp
— inf ZE/RM dpdkX,(p)v {5,1, ,gn,a} <k+ )1/) {sn,e , En,a} (k: — )

e’ €len+1,6n] p

+ [ o IRow)| X (L7 )

< Z/

< Z/| SR po,o(dz, dk) 4+ r(n, p) +/Rd dp |X,(p)| X(1,7,p,n)
o T P

<p+rnp)+Zp,7n).

oy P (20 10, p) + [ b Rp(p) X (17 p.m)

(6.84)

Here, r(n, p) > 0 is a deterministic quantity that can be chosen uniformly for all 7 € [0, T,
with
r(n,p) =0 (n — o0) (6.85)

for p > 0 fixed. Z(p,7,n), on the other hand, is a random variable such that for all
leN

E[|Z(p,7,n)"] < Cipell (6.86)

with C , < oo depending on I, dimension d, the distribution of ¢, LO 1, sup.~q |95l
and p. By the same token,
~ 2
dk |Ylen, e, 7/en, o)(k
! Z/lk|>L<o>+1 [Flem €' 72 )

e'€lent1,8n] o

r(n) + Z(7,n),

(6.87)

with deterministic (n) — 0, and E|Z(7,n)|* < K;P! with some constant K; < oo
depending on the ame parameters as Cj , above (except for p).

6.2.3. Bounding the interpolation error

Fix a single 7 € [0,7], a momentum bound P, € (0,00), a momentum p € RY,
5| < Puax as well as a continuous and bounded function a4 : R? — C. To n € N, assign
a time spacing J,, > 0, a momentum spacing h,, > 0, both to be specified later, as well
as

1 1 )
vp=T ( - ) + —>0. (6.88)
En+1 €n En+1
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6.2. Proof of Theorem 3.3

From (6.84) and (6.87), we see by suitable cut-offs in both position and momentum space
that there is a state flen, e, 7] € H such that || flen, €', 7|5 < [[¢[en, €', 7/en]ll4, and

sup | flen, €7 — Ylen, €7/l ||,
e'€len+1,6n] (689)

<C(p+r(n,p) + Z(p,7,n)+rn)+ Z(7T,n))
with an only d-dependent C' < oo, while
flens€',7,0](z) = 0 whenever |z| > (R, +2)/e, (6.90)
and, with C only d-dependent,

sup > Flen €7, 0l g gy < € (L >21>115\|¢g||ﬂ. (6.91)

e'€lent1,6n] o

By Lemma E.1, there exists an Rp € (R; + 2, oo) depending only on R,/m p, and d as

well as a function ule,,e’,7] : R? — C supported on {\x| <R, /an} such that almost

surely
/e[sup |IV|ulen, €', 7] — flen. €', T, +]) = flen, €' s Tn, —)|l2 < p
&' €lent1,6n
P [19]ulen. ' 7 2 < © (L) sup [|45l, o
C depending only on d. Also, the function
wlen, &, 7)(2) = (1 + Ve'&(2)) (flen, €', T, H(@) = flen, €', T, —(x)) (6.93)

is clearly supported within {]:U| < (R,+2) /5n} Thus, using the map £ from Lemma
2.9,

Flem e T]:1<|vru[ame',ﬂ+ wlen, €, T]/<1+¢?s>>
w7 2 \[Viulen, 7] - wlen, €, 7]/ (1 + VEE) (6.94)
= glJr\/;{ ( [67176/ ] gnag T ) )
fulfills )
|Flens e 7 = Flense' 7|, < o (6.95)

By construction, fle,,e’,7] is an element of D as defined in (2.95), and one can write
for every s € [0,v,] and every €' € [ep41,&p]

. L ~
He_ZHE *flen,e', 7] — flen, €', 7]

< v |HE flens 7)) - (6.96)
H H
But by the unitary equivalence observed in Lemma 2.9 and Theorem 2.10,

HHalf[sn, 5’,?]“1 = ||A (ulen, €', 7], wlen, €', 7)) Hé , (6.97)
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6. Higher moments and almost sure convergence

the norm on the right side defined by the scalar product (2.79), with B = Bp e, (0),
and the operator A given in (2.81), with c¢(x) = 1+ v’¢(z). Therefore

|4 (ulen, ', 7], wlen, &', 7)) |3

= 5 [, 02 (190w 7P + (1 4+ VEE@)? | Aulen ' 7IP)
< C (14 VEY Ryfen)’ (Z |flen. €', 7, 0|3 + Hrku[an,a/,rﬂlip)

2 ~ 2
<C(LOY (14 VEYRy/en) sggllwéllia
13
(6.98)

with an only d-dependent C' < oo and an almost surely finite random variable Y > 0
such that

|€(@)] + [VE(2)| < Y(1+z]) (6.99)
for all z € R,

Altogether, there is a constant C' < co only depending on d such that

sup  sup [[len, €T en + 5] — len, s T/l
e'€len+1,6n] SE[0,vn]
< C(p+r(np) + Z(p,7ym) +r(n) + Z(7,n)) (6.100)

£ 01OV 2 (14 VR, /5 sup 453 -

Furthermore, with the state f[e,,&’,7] from before, and any bounded, continuous ob-
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6.2. Proof of Theorem 3.3

servable a : R4 — C2,

sup sup sup
£ E[an_‘_han} \P|<Pma;; 56[5n+17€n]
n

‘/ Ak (R)Dlens &7 Jens o] (k + ep/2)Dlens €7 fens o] (k — p/2)

- Rddkaa(k)@[emﬁ’f/en, o](k + €nD/2)0en, ', T /2n, 0](k — £1D/2)

< Cwp [l lallco (p+ (. p) + Z(p, 7o) + 1) + Z(7,m)) >
€

+ sup sup sup

5/6[5n+1,5n} \P|<Pm<a;L( 56[5n+175n]

[pP—Ploo<

‘/ dkag (k) flen, €', 7, 0)(k + ep/2) flen, €', 7, 0] (k — ep/2)

/ dka,(k an,a 7,0l(k + ,0/2) f [en,e 7,0](k — €,p/2)
< ng](:)) Hd}OHH Ha’”CO (p + T(n7p) + Z(p7?7n) + r(n) + Z<?7 n))1/2

/
R, +2

+CSU%’H¢8”3—L llallco (enhn + (en — €n+1) Pmax) -
e>

n

(6.101)

Here, (6.89) has been employed in the first estimate. For the second one, we have
bounded

/
<C

L2 —

HVﬂan,E',?, 0]‘ sy (6.102)

by exploiting the support properties of f[e,,&’,7, 0], and finally observed that

lep — end| < enhn + (en — €nt1) Pmax (6.103)

for the choice of parameters in consideration.

Thus, after noting that for all 7 € [0,T], (T + 6n)/ent1 < T + vp, one obtains from
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6. Higher moments and almost sure convergence

(6.100-6.101) a C' < oo only depending on d such that

sup sup sup sup sup sup
FEgnNﬂ[O T} PERRZE € E[En+175n] tE[F/En,(?-‘r(S )/5n+1] \P|<Pmax EE[En+1,€n]
|P| < Pmax Ploo<hn

’/ dkay (K0l £, 01k + ep/2)Ble, &', 1, o] (k — 2p/2)

/ dka,(k en,a T/en,ol(k + £,0/2) [En,e’i T/en, o](k —enp/Z)‘

< Cllal| o sup [[45]l% < sup  (p+7(n, p) + Z(p,7,n) +1r(n) + Z(7,n))"/?
£>0 76, NN[0,T]
/

+ Sup HQpSHH 1057 (€nhn + (gn - En—l—l)Pmax)

n

+supuw0|m< O) v (1+ YR,/ V)

+ sup ||¢8—¢8”||H>-

€€[En+1,En)

(6.104)

For the second to fourth lines of the right side to vanish almost surely (namely on the
event {Y < oco}) in the n — oo limit, it is sufficient that the coefficient in &, = n=% is

contained in a € (0,2/3), spacing paramenters can be chosen to be d, = n~2% and any
sequence h,, — 0, and one has to pick a < «g, so that
: e __ yn= _
Jim sup vg — Vg y 0 (6.105)

e€[(n+1)7*n=7]

holds. On the first line on the right side of (6.104), 7(n) 4+ r(p,n) — 0 deterministically.
For the random variables Z(p,7,n) (and similarly Z(7,n)), observe that the sequence

21
E sup  Z(p,T,n)
7€6,NN[0,T]

is summable in n € N as long as we take [ € N large enough, no matter how small
a, > 0 may be. To achieve this was the whole point of Section 6.1. By a Markov
estimate and the Borel-Cantelli Lemma,

lim sup Z(p,7,n)=0 (6.107)
N0 225, NN[0,T)

almost surely for every choice of p > 0. As p can be arbitrarily small, one deduces that
for a fixed bounded and continuous observable a, the left hand side of (6.104) converges
to zero almost surely as n — oo.
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6.2. Proof of Theorem 3.3

6.2.4. Controlling a single node (¢,,7,p), conclusion

Recalling the definition (6.74) of the random variables X, one also has, for, say, h,, = ¢,
that

2l

_ (2Pmax) Bl
E sup sup X (a,7,P,n) <=0 ule/J 13 llallEo £
TERRAOT] pern Snhd 0 ¢ (6.108)

< G2 +d=pha

for all [ € N. Again, by choosing [ large enough and applying a Borel-Cantelli argument,

sup sup X(a,7,p,n) — 0 (6.109)
T€6,NN[0,T lﬁ‘ehnZd

almost surely as n — co. Because our disorder scaling fulfills /g, 11 < Ve < /g, and
En+1/€n — 1 as n — oo, and all bounds in the proof of Theorem 3.1 are uniform in
7 € [0,T] and |p| < Ppax, it is clear that

lim sup sup sup

n—00 7€[0,T) |P| < Pmax €' €[€n+1,En]

/ Ay (k) Dlem 2,7 )om 0)(k + enP/2)B[ens s F/en, ol (k — £05/2)

a /]R2d U7 o (dx7 dk)ezmﬁxaa(k)

= lim sup sup sup
N0 7€(0,T) |P|< Pmax € €[en+1,6n]

] [ ka0 ()00, &' 7, )+ 0B/ Dl 7 e0s o)k~ 20p/2)

—E/ kg (k) D[ems 2mT/2ms 0]k + enP/2)BlEns ey 7/ ems o] (k — £05/2)

= 0.
(6.110)

Finally, because h,,, d, — 0, the limit measures p, fulfill

sup sup sup sup
7€[0,T7 [p|< Pmax |7—T|<0n [p—p|<hn

/ fira (da, dR)E2™ PP a, (k) — / pir o (da, k)2 PP a, (k)| (6-111)
R2d R2d

—0 (n— 00).

Here, the locally time-uniform tightness of the u, in the x variable was employed to
replace p — p. The same tightness of p, in the x variable, as well as the compact support
(and time-uniform non-concentration at 0, due to assumption (3.5)) of p, in the k variable
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6. Higher moments and almost sure convergence

then allows to approximate the function (x, k) — €2™Pq, (k) by a Cy (]Rd x (R%\ {0}))
function as introduced in Section 2.3. Finally, the strong time continuity of the semigroup
e£o7 1 >0 helps to control the error when replacing 7 — 7.

From (6.104), (6.109), (6.110) and (6.111) one has for fixed bounded and continuous
a:R? — C?, and fixed Pyax € [0,00)

lim sup  sup Z /Rd dka, (ke e, 7/e,0(k + ep/2)0[e, e, 7 /e, o] (k — ep/2)

0 7€(0,7] [P < Prax g1}

a /]de firo (da, dk)e%ip.mao(k) =0
(6.112)

almost surely. The momentum bound P, ,x may then be dropped to see that almost
surely

dka, (k)le, e, 7/e,0|(k + ep/2)0[e, e, 7 /e, o] (k — ep/2)

lim sup
e—0 TE[07T] O’E{:l:}

R4
(6.113)

B /]de firo (da, dk)e%ip.zaa(k) =0

for all p € R%. However, at this point of the proof, the “bad configurations” of the
medium, the exception events N, C {2 of probability zero, may still depend on a.

To amend this, recall that so far we assume that ﬁai is supported in a ball of radius L9,
and consequently, p, +(dz,dk) has no mass on {|k| > L)}, By selecting an observable
a+ : R — [0,1] such that as(k) = 0 for |k| < L and ax(k) = 1 for |k| > LO) +1,
(6.113) implies that

‘2

lim sup Z /k>L(O)+1dk"1/1[575,7'/570](k) =0 (6.114)

=0 TE[O,T] UE{:E}

almost surely. Thus, it suffices to consider bounded and continuous functions a : R4 — C2
which vanish at infinity, which is a separable Banach space with a countable dense set
{a1,as,...}. Whenever the realization of the random field is &,, w € 2\ N’, with
exception event N’ = UX | N,,, P(N") = 0, the convergence (6.113) holds for all p € R?
and all bounded and continuous observables a4. Reasoning as in (4.258) and applying
dominated convergence in the p variable we see that on 2\ N/,

lim sup [(W [(77%05) ] 00) = rnal| =0 (o119

for all ay € FL'(C?). Finally, considering a sequence of initial states (1§).. that only
fulfills (2.162), one can introduce the cut-off L(?), and control the limit L) — oo as in
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6.3. A counterexample

Section 4.8.4. The event N’ = N’ (L(O), T) depends on the choice of time interval [0, 7]
and cut-off parameter L(®). Equation (3.7) then holds for all w € 2\ Ny, with

Nee= U U N(LO.T), P(Ne)=0. (6.116)
TeN 1,0)eN

This finishes the proof.

6.3. A counterexample

For d > 2, fix a T' > 0, and select ¢f = ¢9 € H to be an e-independent state with
components ¢o, 7 0. To simplify our argument, we furthermore assume that qgo has
compact support inside a ball of radius L. < oo around the origin. It is clear that for
o € {£} and all observables a € FL'(C?),

<W€ [(z,ag] ,a> — /Rd po(dz, dk)a(z, k) = (poe,a) (e \v0), 6117)
oz, dR) = 5(a) |0 o (k)| dardk. .

The initial states ¢ trivially fulfill all assumptions of Theorem 3.3, so if we define
T
65 = exp (HHEE) s (6.118)
it is almost surely true that the random variable
Y(a) = max KW 6%0].a) = (") poe, a>‘ (6.119)

vanishes for all a € FL'(C?) in the limit £ \, 0. Here, it is important to note the sign
of L_,, which is a result of propagating ¢f backwards in time. As e N\, 0, the quantity

—~ 2
z.— [ de [¢5:(2)[? + k| 55 (h)| (6.120)
lz|>(T+1)/e

|k|>L+1

also converges to zero almost surely. Let Xq be the space of all a € FL'(C?) such that
a(p, k) — 0 as |k| — oo for almost all p € R%. Because Xq is separable, there exists a
dense, countable subset (a,,),,cy- Furthermore, we fix a sequence of §,, > 0, n € N, such
that >, cn0n < 00. For € > 0, define the event

2u(€) = {Ye(tm) + Zz < 60,VE € (0,¢),Ym € {1,...,n}}, (6.121)

and observe that for any n, {2,,(¢) increases to an event of full probability as € N\, 0. One
can therefore find a decreasing sequence of (e,,), oy such that

e &, (0, as n — o0, and
o P(2,(en)) > 1— 0.
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6. Higher moments and almost sure convergence

The probability space 2 only contains continuous functions R? — R, and therefore has
at most the same cardinality as R, allowing for a function w : (0,e1] — {2 which is a
surjective map

(Ent1,6n] = 20, (6.122)

setting $2,, = 2,,(g,,). Now let, for € € (0,e4],

. € T £

which is not a random state, but deterministic, as we evaluate the random generator H*
only at a single w = w(e). By construction, for n € N, m < n, ¢ € (ep41,nl,

(W [65.0] vam) = ((577) to.0,m )| = Ylam) [w(e)] < 6n, (6.124)
because w(e) € §2,,. By density of the a,, in X, one has
lim (W [45,] a) = <(eTﬁJ)* Ho o) (6.125)

for all a € Xy. Moreover,

[ sl + dk
|z|>T/e |k|>L+1

‘2 = Z. [w(e)] = 0, (6.126)

U5 (k)

as € — 0, so (6.125) even holds for all a € FL'(C?). Except for the condition (3.6),
the sequence (§) c€(0,1] fulfills all requirements for initial states in Theorem 3.3. If the
assertion of the theorem were still true, we would almost surely have that

s (7= (exp (=i T) 5) o) = ((7) () o) (0127

for all @ € X. In fact, however, as )", 6, < 0o, the event
/s .
= I%rglcgf 2, (6.128)

has probability P(£2) = 1. Thus, for an arbitrary w € 2/, there isa N = N(w) < oo such
that w € 2, for all n > N, and for all n > N one can identify an €, = €} (w) € (€n+1,6n)
with w (g],) = w. Accordingly,

T ! /
exp (~iHzH - ) vi = 65" (6.129)
n

for n > N. Concluding, for all w € (', there is a sequence &), (w) — 0 such that along
this sequence, and for this particular w,

lim <WE [(exp <—iHET) w6> ] ,a>
e=el, (w)—0 € .

= lim (W |g5,],0) (6.130)

e=¢}, (w)—0

= (10,0, @)
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6.3. A counterexample

for all a € FLY(C?). As for all T > 0 (and non-vanishing disorder )

(™) (e7°7) pioo # 0.0, (6.131)

this constitutes a contradiction to (6.127) on a set of full probability.
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A. Proof of Lemma 2.17

The proof of Lemma 2.17 given here is a modification of the one found in [23], we present
it to account for the differences between the discrete model, [23], and our continuous
setting. As (¢°)s>0 fulfills conditions (2.160), (2.161) and (2.162), we have from Lemma
2.15 and Lemma 2.16 the existence of a subsequence €, — 0 such that

lim (Wen [°],a) = /]R (e, dk)a(z, k) (A1)

n—oo

for all a € FLY(C?) (not yet Xir). Here, the non-negative, bounded Borel measure y is
defined on the entire phase space R? x R¢, and u({k = 0}) need not be zero. Moreover,
we can assume that along the same subsequence (&),

E;d/?wen (

€n

) U E L2(Rd), (n — o), (A.2)

weakly in Lz(Rd). From now on, to keep notation simple, the subsequence (&,) and
further subsequences to be chosen below will be referred to by (¢). For some A > 0,
performing the infra-red cutoff splits the wave function into three components

U =+ 2 A, (A.3)
with

~

G2 (k) = (1 = (lkl/) 68 (),
P2 (k) = @(kl/A) (97 (k) — e~ (k/e)) (A4)
7 (k) = &2kl /0)7 (k)

and ¢ : [0,00) — [0, 1] a smooth function such that ¢(r) =1 for » < 1 and ¢(r) = 0 for
r > 2.

Now, let a € X1g. First, consider

<W‘5[¢€>’A], a>xm = /Rd dp (/Rd dka (p, k, f) P (k + 5;)&;“ (k - ‘€2p>> . (A5)

and note that on the support of the integrand, |k| > X — ¢|p|/2, so by Definition 2.2 and
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A. Proof of Lemma 2.17

dominated convergence in the p variable,

lim (W05 a),

L [ )T - 2)
o 5 o)

(1= K+ 2p/2/2) (1 = ok ep2/2) 8 (k+ ) (k- )
=t [ ap [ k6 (pk ) (0= el (k5 )97 (k- 7).

with the last line equal to W¢[¢¢] being tested against an ordinary FL'(C?) function.
Thus, from (A.1),

e k
lig (W[ a) = /de u(dar, dk)b (M \k:l) (1= o([E|/N)?. (A7)

e—0

(A.6)

Next, with f&* being either of 1/1< or n°*, for cross-terms like

/Rddp ([Rddkﬁ(p,k,f)wfa,x (k—?)) (A8)

one has on the support of the integrand
A< |k+ep/2] <2X\+¢|p|, (A.9)

and thus, again by dominated convergence in p,

Lo ([ o4 (oo 2022 (6 2) 7 (- 2))

lim
e—0

N ~ 2 — 2
<T 57A -~ / 1 < < €
<t ol [ 7 [, 0 s @ (o KK ] [ b1 [K < 224 elpl [97(0)

N — 2
<t a3, Ty 9717 [ dkL (0 < [kl < 33 [(0)
2 T 12
<ol (T [07]52) [ ntdrdi) (< k] <33,
(A.10)

where we used Lemma 2.16 in the last line. Then, by dominated convergence in k,

Lan( [ 8 (ot ) o0 (e )iz (6 )
Lo ()3 ()7 (- 9)) | o

lim lim
A—=0e—0

(A.11)

= lim lim
A—0e—0
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Now, we substitute k = k/ec in

(W 1] ) .= /R ap / dka<p7 7 ) <|k+§p/2r)@<lk—§p/2l>
n(k+§p/2>n< —:p/2>

~ k 2 k—ep/2
= dp/ dka(p,ek,k)¢(|5+6p/ |><p<‘€ 2/ ‘)
R A A

1 (k+p/2)i(k—p/2).

(A.12)
For any fixed A > 0, we thus have
. € | ,,EA _ 5(k 4+ 1n/92)
tim (W 5] ) = [ dp [ Ak (p.0.5) T+ /207 (k /2 s

= <W[77]’ Cl(', 0, )) .

In the only remaining cross-term, the one between 1/1'5<’>‘ and n°?, the same substitution
k = k/e produces

o)

- (!k ;‘p/?> (gd/Qwa (k — ep/2) _ﬁ<k—§p/2>)

L 5 (A.14)
=/ dp/ dka (p, ek, k) ¢ (Mgp/’) 7 (k+p/2)
Rd  JRd A
ek —ep/2 -~ .
o (B2 (02 (et — epf2) — ik~ py2))
For fixed p € R%, and A > 0, it is immediate from (A.2) that the function
ek —ep/2 ~ N
o (BB (2 - epp) -k -p2)) =0 c=0)  (a19)

weakly in LQ(R ), while

a(p, k. k) (W) G102 » a0 k)7 kip2) (—0) (A16)

strongly in L?(R{). By dominated convergence for the p integral, (A.14) thus vanishes
for e — 0 for every fixed positive A. We are now left with analyzing the limit of

<WE {wi’)\} ’ a>3eIR

5 - (A.17)
:5d /d dp/d dka (p7 ek, E) T/J€<7/\(€E + €p/2)wi>\(gk — €p/2)
R R
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A. Proof of Lemma 2.17

for a € Xir. As noted before, for every fixed A > 0, the function
~ n &q -~ ~
T0) = 920 = ¢ (15 (220 o) - 710) (A18)

converges to 0 weakly in L? (Rg). Moreover, it is tight on position space, which can be
readily seen from the representation

wt @) =2y wfe) = (2) [ an () (2 ) - nw). (a19)

e

with a fixed function y € S(R?), and (2.161). From Lemma A.2, [23], we have for any
subset B C R? with bounded Lebesgue measure that

lim Hw“ =0, (A.20)
£—00 L2(B)
while A > 0 remains fixed. Accordingly, for
~e,\,M ‘q’ ~e,A
MMy = (1- : A21
a (g = (1-¢(55) ) 7@ (A21)

and any A, M € (0,00) fixed,

lim
e—0

/ dp [ dkd (p,ck, k) DMk + p/2) "k — p/2)
R4 R4

- /d dp | dkd (p,ek, k) =M (k + p/2)0" MM (k —p/2)| =0
R R

(A.22)
by (2.160). On the other hand, by definition of Xg,
tim sup | [ dp [ Ak (py ek, k) 2NV 4 p/2) M (1~ p/2)
M—o0 ¢ ) |/RE Rd
= [y [ Ak (k) @A 4 p/2) M (k ~ p/2) = 0.
[p|<M Rd
(A.23)

On the support of the integrand in the last line of (A.23), M < k < \/g, so

lim sup
A—0 e, M

/ dp | kG (p, ek, k) @M (k + p/2)@" M (k — p/2)
|p|<M Rd

- / dp | dkd (p,0,k) @ M (k + p/2)a" M (k — p/2>‘ =0
Ip|<M R4
(A.24)
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as well as

lim sup
M—o0 ED)

[ dp [k (p,0,) BN+ p/2)0 (k= /)
lpl<M JR4

~ k
= [ e [k (0.5 ) EIE p/2)E Y (- py2)| = .
pl<m  Jrd ||
(A.25)

The last line clearly defines a bounded linear functional on the separable Banach space
¢ of all functions ¢ : R? x S4~1 — C such that the Fourier transform in the first variable
¢ fulfills, ¢ € LY(R%; CO(S971)), by

N kN —= _
<c, /1‘57)‘7M> - / dp dke (p, — | o= M (k —|—p/2)w5”\’M(E —p/2). (A.26)
<M Jrd k|

As,)\,M

The functionals are uniformly bounded by

sup |(e, 44| <4 ( dp sup [e(p, k)\) sup [9°] 7 (A.27)
e \M Re k=1 >0

Therefore, by the Banach-Alaoglu theorem, there is, for each choice of A and M, a
subsequence of ¢ — 0 such that along this subsequence AZMM S AMM i @* then,
for each choice of \ there is a subsequence of M — oo such that AN 5 A* along
this subsequence, and finally, along a subsequence A — 0, one has A* = A. One can
show as in [23] that A is given by a non-negative Borel measure u! on R? x S9!, By
diagonalization there is a subsequence \,,, — 0 and a subsequence &, — 0 independent

of it such that

A}iﬂo EEglo <W€n {1/;‘2”7)‘”1} ’ a>3€IR - /RdXSdA 'LLH(dx? dk)b(% 07E)' (A'28)
Together with (A.13) and the A — 0 limit of (A.7), this is just the right side of (2.186).
So far, we have verified that there do exist subsequences W¢[1)°] that converge weak-* in
Xir", and that their limit point are of the form (2.186). That all limit points are of this
form is shown by applying the same reasoning to an arbitrary convergent subsequence,
and noting that there are sub-subsequences along which the limit object has to be of the
above (p, 1t 1) kind.
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B. The two-resolvent integral

Lemma B.1. For all dimensions d > 2 there is a constant Cy such that for all v € (0,1],
a12 €R, and u € R?\ {0}, ¢ € RY,

/ 1 _ Ca_(logn)®
R

s W o 2alh| & ] s = 21k — ] - in] ()2 (= ) (= )~ Tul /o) (] =

for d > 3, while for d =2

1 Cs (log7)
dk , » < . (B.2)
/R2 lan — 2m|k| + iv| | — 27|k — u| + | <k:>2<k‘—u)2 VAlulv{ar) ()

Proof. Let P be the projection on span{u}L, and note that

Pk
ks (I =l 755 ) = (1o (5.3
is a diffeomorphism from R\ span{u} to {p1,pa : |p1 — p2| < Ju| < p1 + pa} x S=2 with
dk = %yd_gdpldpgdw, (B.4)

where y = |PEk|. As, for d > 3,
Worpa)' [ dwrklpr,pa) =) < € (B.5)

with C;l independent of ¢ and p1, p2,

1
/ddk ~ : ~ ~ . 2/, \2/5.  \d-3
RY oy — 2m|k| + iy| o — 27|k — uf + iv[ (k)" (k — w)” (k — q)
1

e
< @ d d - - B.6
STh Y e v ol 2t ol o O
_ Ca_({logy)*
= Jul V{a1) (o)
For d = 2, we cut out the y~! singularity and obtain
1
/ dk . - 3 3
R2,y>5 |y — 27|k| + iy| |ag — 27|k — u| + iy| (k)7 (k — u)
2 o0 oo 1
<= ["a / d . . .
R e e e e T s Y

C  (logy)?

= Tuld Vi@ (an)
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B. The two-resolvent integral

while

1
/ dk S
R2y<s  |ag — 2m|k| + iv|" (k)
d )
< 06/ P <o
0 |on —2mp+iv[” (p) v (o)

By Cauchy-Schwarz, we obtain for § = \/v/|u| (log~)

1 Cs (log )
/RQ dk|a1 —27|k| + iy] |ag — 27|k — u| + iv| <k>2 (k — u>2 < \/W o) <0[2>- (B.9)

O]

Lemma B.2. For all dimensions d > 2, there is a finite constant Cy such that for all
a € R and uniformly in u,q € R?,

dr Cq (log7)
< B.10
/Rd Ik —ul o — 27|k + iv] (k)2 (k — )42~ VAa) (B.10)
ifd>3, and ~
dr Cs (log )
2 Tk — ul ja — 27|k| + i (k) ST (B.11)
ifd=2.

Proof. For d > 3, with the substitution (B.3) for k,

dk
. 2 d—3
R |k — ul la = 2m|k[ 4+ iv| (k)" (k = q)
< C(;l/ /P1+u| P102
= ful Jo P |u|| P sl — 2mp1 + ] (1) (B.12)
< 20’/
o o la- 27rp1 + ] (p1)
- Ca <log*y),
(@)
while for d = 2, the estimate
dk {/@> dp Cs (log~)
< < B.13
R2 \/k — ul |o — 27| k| + iv| (k)* 0 |a— 2mp + iv| (p)>/? (a) (B.13)
follows for all u directly from
sup dk——= Ok = 1) < Cyr. (B.14)
ueR2 JR2 |k - U|
O
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C. Oescillatory integrals

Lemma C.1. For a space dimension d, let m,7,3 €N, with f < d and m >d+r+1
and ¢ : R — C such that
o8

Tqﬁé(Q) <Clp™™ (C.1)

for all multi-indices B with |B] < B. Assume f : R** — C has radial derivatives with
respect to p such that

o .
\Wﬂk,p)\ < Cy(k) (k- p) (C2)

for all p,k € R%, and all n < B. Then, there is a CBd depending only on B,d such that

1) = [ dpo(k = p)f (k. pye 270" (©3)
is bounded by B
1(0)] < Cy5CoC k) ()77 (C.4)
Proof. Observe that for
I(k.p) = [, dpd(p| = p)o(k = p)f(k.2) (©35)
and alln < 3 —1,
o L) < Cu5CaC 0 (p)d_l_” (k] — p) T2 (C.6)
gpn T T A () ’
while for n =
873 I(k <O - E) (k| — p)y~mtd+r—1/2
o7 0] < CusCoCr(h) (K1 = ) . (1)

Therefore, whenever m > d 4 r + 1 and s # 0, one can perform 8 — 1 integrations by
parts on the right side of

I(k) = /0 = dpE(k, p)e2mies (C.8)

without obtaining boundary terms, and then an S-th integration by parts yields the
estimate

[1(k)| < Cy5C4C (k)]s (C.9)
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C. Oscillatory integrals

Together with the trivial estimate

1) < [ dplétk = p)f(k,p)| < Cy5C4Cr(b) (C.10)

the lemma is proven after redefining CE a 0

Lemma C.2. In addition to the assumptions of the previous Lemma C.1, let d > 8 =
Then fora e R, n e Nand 0 < v < ... <, <1, one has, for all k € ]Rd,

¢k —p)f(k,p) ‘
o d - < CaCyCi(k C11
O‘ERvUIG){i} /d p(OH'Wl — 2mo|p|) aCoCr (k) ( )
forn=1,
¢k —p)f(k p) ‘
Y W - < C4C4C5 (k) (lo C.12
OéGR,UIE){:i:} /d p(a +iv1 — 2molp|)(a + ive — 27o|p|) a-¢ f( ) (logv1) ( )

forn =2, and

/ d ¢(k —p)f(k,p)

sup p . -
a " (a+iy —2molp|) - (o + iy, — 2wolp|)

a€R,oe{£}

\sa%@@ﬁﬂ(om

for n > 3, with constants Cyg and C¢(k) defined as before, and Cy just depending on
dimension d > 2. The analogue estimates hold for 0 > vy > ... > .

Proof. For the case of all v; > 0,
n

and thus, by Fubini’s theorem and Lemma C.1

/ dp o(k —p)f(k,p) ‘
Re  (a+iy1 —2molp|) - (a + iy, — 2molpl)

/ ds H exp ((iv — v — 2mio|p|)si) , (C.14)

T =gl H

-2
< Cy204Cy(k / dsexp( ’ylZsl> <Z s,> (C.15)

=1 =1

1 0 u™ 1 e
:Cd’20¢cf(k)("’l—:[)'/() du <u>2 e 7 .

The integral is bounded by a constant C' for n = 1 and by C (log~;) for n = 2. For
n > 3, we can estimate it by

/0 duu 3e 14 = fyf_"/o dza"3e™ = 427" (n — 3)! (C.16)

O]
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Lemma C.3. Let d > 2 and ¢ : R? — C with a constant Cyp <ooandanm >d+1

such that
aoc

dq*
for all multiindices with 0 < |a| < 4. For some n € N, similar to Definition 4.2, let

<q>\ < Cyla)™ (17)

T A{L,..n} = {0,...,n} (C.18)

be a map free of fixed points or cycles, i.e. it can be interpreted as mapping each element
of {1,...n} to its parent, with O the common ancestor of all l € {1,...n}. Furthermore,

2
let functions f; : (Rd\{O}) — C, Il € {1,..n} be given which are not necessarily
differentiable, but have up to second radial derivatives,

ok .
—_— < = .
I%3£00??f2 8\$|kfl(x7y) <Cy (le{l,.,n}, 1=0) (C.19)
and
o7 ok v
—_— < 1,... 2
SUp oI, 8‘x|]8’y|kfl(x’y) <Cp (e{l,...,n}, 1#0) (C.20)

with constants Cy, < oo. Then independently of the exact structure of -, there is a
Cy < oo only depending on dimension d such that

n

/Rdn dgr...dgn ﬁ (¢ (@ —a) fi (@ q) e>10)| < crop T (O () ~2)

sup
q€R? =1 =1
(C.21)
for all by, ...,b, € R.
Proof. For L € {0,...,n}, define the set of children
L={le{l,.,n}:I=1L} (C.22)

and similarly the set of grandchildren L and so forth. The set of all descendants of L is
given as

Kp=LULU... (C.23)

After relabeling we can assume that 0 = {1,...,7}, 1 < r < n and observe that the
integral factorizes

/R _dqy..dg, 11 (¢ (@ — ) fi (@1, ) e—mbzlqz\)
. (C.24)

=1] /Rd dg; fj (g7, 90) ¢ (45 — qo) e~ 211 H; (g5)
j=1
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C. Oscillatory integrals

with
Hj (q;) = /Rd‘,{j‘ ZGHK’ (daus> (@ — 5) fi (ar, @) e 27101} (C.25)

For each j € {1,...,r}, first integrate out the angular part of ¢; to obtain for p € [0, c0)

p) = /Rd dq;6 (lg5] = p) fi (45, 20) ¢ (45 — q0) H; (7)., (C.26)

and observe that there is a constant Cy depending only on dimension d such that for
k=0,1,2

ok p \ 41—k —md—1/2 2| o8
o Fi) < CaCoy (L) ol sup Y | )] |
‘8,0’“ ’ T\ () a; ﬁz::o I
(C.27)
We therefore can conduct two integrations by parts of
| doE(pemiom, (C.28)
0

the first one leaving no boundary terms. As in the proof of Lemma C.1, this yields (with
a new constant Cy)

‘/Rd dg; fj (¢j,q0) ¢ (¢ — qo0) e_mbjlqﬂHj (Qj)‘

)( - (C.29)
b))~

for all j € {1...r}. On the right side of the last equation one can estimate

< CdC¢C’fj (sup Z

3508’]‘6

2 85
H.
S;ljp/gz:o 8’ ]|5 ](q])
: Csyjp az,/; /RdlK I H ql \q \¢ )} [ lg; \fl (ql’qj)} ZMbl‘qll)

Do (arHBp<2

11 (dw (@ — ap) fi (@, ;) e—%ibl\qzl)

leK;\j
(C.30)

with a universal constant C. The number of summands in the sum on the right side is

2
bounded by C (\ Jl+ 1) , while the integral can be estimated in the same fashion as the
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original integral on the left side of (C.24). Iterating this procedure (note that only up to
fourth derivatives of ¢ will be taken), one is left with the estimate

<CdC¢H( 1 +1)° Cy, (b))

=1
(C.31)
with some Cy only depending on d. This already almost looks like (C.21). The factor
[L,(JI| + 1)? can be absorbed into the choice of Cy after deducing from

‘/ da---dgn H ( a—q) fila,q)e 2mbz|qz|)

Sl <n (C.32)
=1
that
IT e +1) <2 (C.33)
=1
O

Lemma C.4. (On-shell scattering. ) Letd>2,m €N and RV, ..., R™ € Ny be given.
For functions ¢ as in (C.17) and f, (j e{1,..m}, 1€ {l,..,RD}) as in (C.20), set

1) m RG) N m RO )
/R\R\ 1_[1 ll_[1 dbl] /R\R\d 1_[1 ll_Il dql‘7
m RU
I g (exp (2 (o] = a”[) o) & (o~ a2) 7 (a"-a))
o (C.34)
with qél) € R4\ {0} arbitrary and
a5 = do (C.35)

forall 5 > 2. Then
m RO
1) = fons E}ﬁ ('3 ([oi” ] = oo} & (a” —ai™s) £ (af”"2)) - (C:36)

Proof. We only treat the case RU) > 0 for all j. After taking the ql(j ) integrals, Lemma
C.3 implies a decay of the form

m—1 RU+D) 2Rpo_1 Lrm o
<R<J>+ D b”“> [T Q)| IL 7). s

j=1 =1 =1 1"=1

205



C. Oscillatory integrals

so by dominated convergence,

) UL pes o0
@)= e Lo 00 L i
m RU) ) ) ) )
i§ 1<exp (21 (|a] ~ |d2]) 89) 6 (4 — a2)) 5 (4, 42))
it

(C.38)

where the limits can be taken in arbitrary order. Now, by Fubini’s theorem, the b(] )
integrals can be evaluated first, leaving us with

i T 26" dg;” G) G ) (G) )
e I B G a4 0

(C.39)

By the continuity and decay properties of the integrand, all 5l(j ) N\, 0 limits can be taken
to immediately obtain (C.36). O
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D. The gate function

Definition D.1. For k € R?, w € C\ R, 01,02 € {—1,1} and L € R, define

k‘ k
h0102 k w = im” Z /d |]11| (U,‘k| + 01|k,‘) (O-/|k’ + JQ‘le (D'l)
o’/e{x1} R

and

(k—k
Royoy (K, w; L) = im? Z / ’92]1/ (o'|k| + a1|K']) (o' || + o2|K|)
o'e{1} — 2mo’ || (D.2)

x &k, k', L).

Lemma D.1. Write w = o + iy with o,y € R, || € (0,1], assume that d > 2 and that
for all multi-indices v with 0 < |v| < 3,

o ~ e
<l (D.3)

87(1,,92(‘1)

Then there is a constant Cgy, 4 only depending on dimension d and the function go such
that

SUD  |hgyoy (K + )| < Cgyq (k)2 (D.4)
«,7Y,01,02
SUp  |Vihoyo, (B, +i7)| < Cyyq (k)7 (D.5)
a,7Y,01,02
0 ) 2
SU |~y (K, + )| < Cgpa () (log ) (D.6)
a,01,02 | O
and 5
sup %hmz (k, o + m)‘ < Cyya (k) (log ). (D.7)
«,01,02

Note that the first two bounds are independent of v as long as v # 0. All estimates are
valid for hy, g, (k,w; L) as well, with the factor (k)* replaced by (L)%

Proof. We only show the case without cut-off, the cut-off case being similar. All four
estimates are a consequence of Lemma C.2. The role of f is played by

fk, k') = (' |k] + o1 [K']) (0[] + o2|K]) (D.8)
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D. The gate function

or by any of the components of the gradient,

(e ) = 82 (k, ). (D.9)
As

O £ K] < () + (W))?, b0

|01 (K, K] < (k) + (K')), .

for all radial k" derivatives, n € Ny, the bound (C.2) is applicable with Cy(k) = 4 (k)?
and r = 2. Now, (D.4) and (D.5) follow from (C.11) with ¢ = 0 g2 for any multiindices
v with 0 < |v] < 1.

As hgy o, (k,w) is holomorophic in w, to estimate the left hand sides of (D.6) and (D.7)
it suffices to consider the w = « + iy derivative, which is

gt o) =int [ o BT O+ ol (16 + )
U&_{Zﬂ}/ ar’ aﬁiﬁ%]ﬁ,)‘k,,) (o' [kl + o K] ('lk] + ol ),
(D.11)
and apply (C.12) with f as above and ¢ = g3. O
Lemma D.2. If there is a finite constant Cy, such that
192(a)] < Cyy ()~ (D.12)

there is a C < oo depending only on gz and dimension d > 2, such that for all k € R?
and v € (0,1],

sup |y (k, 2mo k] +iv)| < C(k| +7)
oce{£1}

sup |hy— (k, 2molk| + iv; L)| < C(|k| +7),

Nea

(D.13)

and likewise for h_ .

Proof. Without loss of generality, choose ¢ = 1 and focus on the hy_ terms without
cutoff,

42Ak_kl k2—k/2
hy_ (k,27r|k:|+i7):2i7r2(27r|k:|—|—z"y)/ ap 4792 ) (KF = [FT) (D.14)

R (2nfk| i) - (2n (R
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SO

|y (K, 2|+ i)| < C'([k[+7) [|62]l 1

Pk — )
"y (|k 2/ dK’ 2
+ (k[ +7) rd  |4m2|k|? — 42 + dmiy|k| — 47 |K|?]
< C"(|k[ +7)
" 2 [~ p
+ C"y(|k| + / dp '
I f 0y G = 2l A2 = 22 & dmin ] — 7]
< C(Ik[ +7),

(D.15)

with constants only depending on dimension d. A fortiori, the same estimate is valid for
the cut-off case. O

While the off-diagonal components hi_ and h_y are small in the above sense, the
diagonal components of A have a non-trivial limit.

Lemma D.3. Under the conditions of Lemma D.1, let o € {£1}. There is a function
O, : R — C such that
n{% hoo (k, 2o |k| + i) = O, (k) (D.16)
5

for all k € RE. There is a constant C only depending on d and go such that
00 (k)| < Clk| (k) (D.17)

and
105 (k1) — O (ka)| < C((k1)? + (k2)?)|k1 — ka| (log [k1 — ko) (D.18)

for all k, k1, ko € R
Proof. From (D.7), we directly obtain for 1 > v >~/ > 0 that
|\hoo (k2100 |k| + i) — hoo (k, 210k +i7')| < C (k)*v (log7) (D.19)
which proves the existence of the limit ©,(k) as well as the estimate
|hoo (k, 210 k| + i) — O (k)| < C (k)* v (log) . (D.20)

The bound (D.17) is a direct consequence of (D.4) for large k, while for k close to zero,
one has by (D.5)

‘hUU (kv 27T0—‘k‘ + 17)’ S |hoa (Oa 0 + 27)‘ + C‘M? (D21>
which yields the assertion after observing that

hoo (0,0 +iy)| < C. (D.22)
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D. The gate function

Finally, regarding the continuity of 6, set v = |k1 — k2| in
|05 (k1) — Ox(k2)| < |hoo (k1,2m0|ki| + i) — hoo (K2, 2m0|ka| + i)
+C((k1) + (k2))*v (log )

<C((k1) + (k2))? ((log ) llk1| — [kl + k1 — k2| + 7 (log ) ,

in which we have used (D.5) and (D.6).
Lemma D.4. Under the conditions of Lemma D.1, for all k € R?,
O_(k) = O4(k)

and
2ReO4 (k) = O (k) + O (k) = e (k).

with os. defined as in (2.152).

Proof. For the first equation,
O_(k)=lim h__(k, —2n|k|+1
(k) = lim h——(k, ~2nk] + )

“tmin? Y[ v BEE oy
Y\0 rea R —27|k| + iy — 2mwo’ |K/|
7k — k') )
= lim ir? / dk’ ga (k o' || + |k
YN0 ,6{21} rd  —27|k| + iy + 2mo’ |K/| ( )
G2k — k) ! 2
= lim (— / o'|k| + |K'|
7\0 ae{zil} 2r|k| — iy — 2mo’ |K/| ( )
— tim oy (6, 22K ) = O (B),
TN\O
where we used that go is real. Second,
2vg2(k — K
2ReO, (k) = hm7r > / 792 )/ —— (o'|k| + K])?.
o'e{£1} + (27|k| — k')
The ¢/ = —1 summand is bounded by

T Ak Gk —K) =0
2 Jrd

and thus, by the continuity and decay properties of go,

2Ga(k — K
9ReO. (k) = lim 7r2/ dx’ 192k = ) S (k| + [K])?
N0 Jrd A2+ (27|k| — 27 |K|)

— (2n|k))? /Rd AR Galk — k)3 (1k] = [K]) = vee (k. BY) = ouclh).
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E. Approximation by waves with
compact support

Lemma E.1. Let f : R? — C such that f € H'(R?), and f(z) =0 for all x € R with
|z| > R, for some R € [1,00). Then for every p € (0,1) there is a Cpq < 0o which
only depends on p and dimension d, a constant Cy only depending on d, and a function
u, € H*(R?) such that

o [IVlup = fllp2 < plfll e, and
o [[IVIupll g < CallFllgn
e u,(x) =0 for all |x| > C,4R.
Note that u, is typically not bounded in L? as p— 0.

Proof. Let a § € (0,1) be given, and choose a smooth function x : R — [0, 1] such that
x(x) =1 for |x| <1 and x(z) =0 for |z| > 2. Observe that

~ 2 62
L k@ =x@n i) < 5 1515 (E.1)
From the support properties of f,
|7, < Ul < RY2 01l (E-2)
SO 9
Lk [x(BR/F)]” < Cas 1113 (E:3)

with a constant Cy < oo only depending on dimension d. For the é- and R-dependent
Schwartz function L : R* — R given as

L(k) = [27k| ™" (1 — x(Rk/5)) x(5k) (E.4)
we thus have

2

2 l? g d 2
/Rd dk"(l - |27T]€|L(k))f(k)‘ < <47T2 + Cad ) £l - (E.5)

The Fourier transform of x is a Schwartz function with [ps X = 1, and it is not hard to
see that for the the function

Lsg = (R/(s?)d;z (g-) «L (E.6)
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E. Approximation by waves with compact support

one has an only dimension-dependent constant Cy such that
|Ls r(k) — L(k)| < CqV/6|Kk| 7. (E.7)

From (E.5) and (E.7), one has

~

[ k(1= k| Lo () F®)|* < Cab 1115 (E8)

with a constant Cyq < o0. Now fix a (thus only p- and d-dependent) § € (0,1) such that
Cy6 < p?, and choose

up(x) = (F (L(S,RA) * f) (x) (E.9)
up(k) = Lsr(k) f(k).
Then clearly
R 1/2
I = Vlagl = ( [, dk|Fo) - 2k, ) <ol Sl (B10)
Furthermore, from (E.4) and (E.7) one has
[2mhiiy (k)] < (1+ Cio) | F(8) (B.11)

and thus, after redefining Cy < oo, |||V|u,||g1 < C4l| f|| g1 uniform in p € (0,1). Finally,

2317
F(Lsn) () = FL)x (‘5R> (5.12)

is supported in a ball of radius 2R§~? around the origin, and thus

up(w) = (F (Lsr) * f) (x) =0 (E.13)
for all |z| > (1+2672) R, and we obtain C, 4 = (1 + 26~2), which, by the choice of 4,
only depends on p and d. O
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F. Off-diagonal observables

In this appendix, we attach a short informal discussion of observables with off-diagonal
entries (or, equivalently, of the off-diagonal entries of a 2 x 2 matrix-valued Wigner
transform). To be on the safe side, we only look at observables a, b that are Schwartz
functions on phase space, and initial states (1§).-o, C H with bounded energy, Fourier
transforms vanishing for |k| ¢ [, L(O)], with e-independent 0 < A < L(® < oo, and with
Wigner limit measures o4+ and g —.

The first thing we note is that the self-averaging properties of the Wigner function are
just as valid for the off-diagonal components, as all estimates derived in Sections 5.3 and
6.1 only involved the absolute value of the resolvents, and were thus independent of the
sign of the phase. It is therefore enough to analyze the disorder-averaged value of the
off-diagonal components of the Wigner transform.

For a single measurement, m = 1, we propagate the state vj for a microscopic time
T /e with the perturbed dynamics and then test it against Op®(a)P_, an off-diagonal
observable; thus we are interested in the ¢ — 0 limit of

E (e~ ""/5y5, Opf(a) Py /o) (F.1)
It is not hard to see that all arguments in Sections 4.1 to 4.5 are still valid, and only the
ladder graphs of section 4.6 contribute. But also all ladders with one or several rungs
are suppressed in the limit — this is because the phases on the different sides of the
ladder do not cancel, but add up, and the ladder contribution can be estimated with
an oscillatory phase argument along the lines of Lemma 4.20. The only graphs left are
degenerate ladders without rungs, with propagators only “decorated” with gates, so

;I_I)no ’E <e_iH6T/6’gZ}8, Opa(a)P7+e_iH8T/81[)8>,H

_ / dp/ dka(p, k)IZS _(k+ 6p/2)126 +(k — Ep/2)6—47ri\k\T/a—29+(k)T
R4 Rd , ,

= 0.
(F.2)

Accordingly, the off-diagonal component is highly oscillatory and vanishes if averaged
over short macroscopic intervals,

: T+o —iH¢T /e, )€ 5 —iH®T /e, e
21_1}(1) s drE <e g5, Op®(a)P_te 1/)0>H = 0. (F.3)
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F. Off-diagonal observables

Multiple measurements are much more exciting. To see why, note that the operator
P_, + P,_ causes a “time-reversal” of the perturbed dynamics

0 1\..[0 1 .
00 D) -

Imagine a wave is emitted and travels for a macroscopic time 71" through the random
medium, is then time-reversed by some mechanism (in practice, a device records the
wave for a short period of time and re-emits the signal in reverse order, [2]), and travels
back by another period of time T, before it is measured by another device. If we model
the time reversal by Op®(b)P_, and the final measurement by Op®(a)P__, a real, we
are interested in

<e_iHsT/SOp5(b)P_+e_iH€T/5w6, Ope(a)P__e—z’HET/aOpa(b)P_+e—iH€T/e¢8>H . (F5)
Again, one can perform a graph expansion, eliminate higher order partitions, crossing
and nested pairings; however due to the time-reversal caused by P__, there is no such
thing as “non-markovian” graphs. The contributions to the limit are more complicated

than for the diagonal case, but can still be calculated by a resummation of somewhat
generalized ladder graphs. We now denote by a solid line the unperturbed propagator

@ -

—_——
n rungs

Figure F.1.: The shorthand for n parallel rungs.

already “dressed” with gates, and introduce an abbreviation for several parallel rungs in
a graph, cf. Figure F.1. With this notation,

lim E <efiH5T/sops(b)lj)__i_efiHsT/swg7 Ops(a)P__efiHsT/sops(b)P_+e7iH5T/sw8>

e—0 )
B Tln;z:[)lg%lc(g,T; rl,m,n) = /RM po,+ (dz, dk)e(x, k).

(F.6)

Here, the amplitudes (g, T;7,l,m,n) are given as the sum of three graphs which are
presented in Figure F.2. The propagated observable ¢ can be identified as

¢ =ef+T (\b\QeL—Ta)
+ 2Re /OT dref+(T=7) [(Eoeﬁ”b) (e£”E> (eE*(T_T)aﬂ (F.7)

~oRe [ dret 70 [(5476) o ((o£76) (o5 e,
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@ oa, ——

Figure F.2.: The definition of an amplitude (g, T; 7,1, m, n).

with Lo = (L4 + £-)/2 the generator of the momentum jump process alone. Note that
for a perfect time reversal (b = 1) one has ¢ = a, as expected.
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