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Abstract

In this thesis, we investigate the dynamics of a scalar wave field in two or more space
dimensions, traveling through a weakly disordered medium. The disorder is modeled by
random spatial fluctuations of the wave speed, but frozen in time, and is of order

√
ε,

0 < ε � 1. On the kinetic scale, with space and time of order ε−1, we prove that the
Wigner function almost surely converges to the solution of a linear Boltzmann equation
as ε → 0. Essentially, the only requirements for the initial data are natural ones —
bounded energy and tightness on the kinetic scale.
The proof of the result consists of two steps. First, the limit of the disorder-averaged
Wigner function is identified by a mathematically rigorous expansion into Feynman
graphs. All diagrams except for the “ladder” diagrams are shown to vanish like εC ,
C > 0. Using a more involved graph expansion, the l-th moments of the random
fluctuations of the Wigner function are then shown to scale like εCl, from which we
conclude almost sure convergence.

Kurzzusammenfassung

In dieser Arbeit untersuchen wir die Dynamik einer skalaren Welle in mindestens
zwei Raumdimensionen, die durch ein leicht inhomogenes Medium propagiert, dessen
Wellengeschwindigkeit zufällige, räumliche, zeitlich konstante Schwankungen der
Größenordnung

√
ε, 0 < ε � 1 aufweist. Wir zeigen, dass die Wignerfunktion auf der

kinetischen Skala, also auf Raum- und Zeitskalen der Ordnung ε−1, im Limes ε→ 0 fast
sicher gegen die Lösung einer linearen Boltzmann-Gleichung konvergiert. ImWesentlichen
sind die einzigen Voraussetzungen an die Anfangswerte der Wellengleichungen die natür-
lichen Annahmen von beschränkter Energie und Straffheit auf der kinetischen Skala.
Der Beweis zerfällt in zwei Schritte. Zunächst wird der Limes der über alle Realisierun-
gen des Mediums gemittelten Wignerfunktion mit Hilfe einer Entwicklung in Feynman-
Graphen bewiesen. Dabei verschwinden alle Graphen, die keine „Leiter“-Form aufweisen
wie εC , C > 0. Anschließend zeigen wir mithilfe komplizierterer Feynman-Graphen, dass
die l-ten Momente der zufälligen Schwankungen der Wignerfunktion wie εCl skalieren,
und schließen daraus auf fast sichere Konvergenz.
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1. Introduction

1.1. Physics background

Any realistic model for wave motion should allow for the possibility of a spatially het-
erogeneous medium. Among the classical examples of waves interacting with inhomoge-
neous media are cases in which the underlying environment features only one or a few,
macroscopically observable transitions between different material coefficients, such as
the refraction of light (an electromagnetic wave) at the interface of water and air, or the
shoaling of water waves entering from deep into shallower water.
However, a heterogeneous medium may also appear homogenous on a large observation
scale, while inhomogeneities determine the structure on a much smaller scale. This
microscopic structure of the medium is typically unknown or hard to identify, and all
the information available may be the average distance of neighboring inhomogeneities,
the typical fluctuations of the material coefficients and the like. In this situation it is
often appropriate to assume the medium to be random, i.e. to model the coefficients of
the medium as random fields.
Examples from different branches of physics include seismic waves scattering off hetero-
geneities in the earth’s crust [43, 44], the use of ultrasound to detect the position of
targets in a medium with sound speed fluctuations, [5], or laser light entering a suspension
of submicrometer polystyrene balls in water, [42].
The physical model this thesis will focus on is in several ways a special case of the
above-mentioned examples. First, in what is a slight simplification compared to the
vector-valued elastic or electromagnetic waves mentioned above, we shall only consider
a scalar wave equation

∂2

∂t2
u(x, t) = c(x)2∆u(x, t), (1.1)

so that instead of several possibly random parameters (for example magnetic and electric
susceptibility tensors), the only source of randomness will be the wave speed, i.e. the
scalar random field c(x), x ∈ Rd.
As is already apparent from the notation, the random field c(x) is assumed to depend only
on position x, but not on the time variable t, (or, realistically, the medium configuration
varies on a much larger time scale than the time it takes the waves to pass through the
medium. For seismic waves, these two time scales are millennia and seconds, respectively;
for the polystyrene suspension, Brownian motion only requires milliseconds to alter the
configuration of scatterers by a full wavelength, but light crosses the sample (∼ 1cm) ten
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1. Introduction

orders of magnitude faster, [42]). A random wave speed c(x, t) quickly decorrelating in
time would substantially simplify the analysis of the long-time behavior of (1.1). In that
case long-term dependencies in the scattering history of the wave are a priori impossible,
and a markovian limit is rather easily obtained. With disorder c(x) constant in time,
however, one has to exclude such correlations by carefully tracking the spread of the
wave packet.
The random fluctuations of c will be assumed to be small compared to the average wave
speed. Normalizing the average wave speed to 1, one can thus write

c(x) = 1 +
√
εξ(x), (1.2)

with a random disorder term ξ scaled by a prefactor 0 <
√
ε� 1.

The initial data
(
u(·, 0), ∂∂tu(·, 0)

)
for (1.1) is chosen to be deterministic, in particular

independent of the randomness of the medium, and to have bounded energy E(0) =∫
E(x, 0)dx, with the energy density

E(x, t) = 1
2 |∇u(x, t)|2 + 1

2c(x)2

∣∣∣∣ ∂∂tu(x, t)
∣∣∣∣2 . (1.3)

Finally, the typical wavelength of the initial conditions
(
u(·, 0), ∂∂tu(·, 0)

)
is taken to be

of the same order of magnitude as the correlation length of the wave speed fluctuations ξ.
This should prove to be the regime with the most interesting interaction between medium
and wave (for large wave lengths, one expects little scattering to occur due to the λ−d−1

wavelength dependence of the Rayleigh scattering cross section; for wavelengths much
shorter than the scale on which the medium varies, one essentially is in the setting of a
semiclassical limit, and the wave nature of the scattering process is lost).
For a wave scattering off a single, compactly supported inhomogeneity of strength

√
ε,

the scattering amplitude scales like
√
ε as ε→ 0, so the portion of the wave energy that

is scattered (in the quantum case, this would rather be the probability of a scattering
occuring) is of order

√
ε

2 = ε, [17]. As ξ has a correlation length of order 1, a wave
packet encounters O(t) such individual inhomogeneities while traveling for a duration
of microscopic time t, and one consequently expects a fraction εt of the energy to be
scattered. The shortest time scale on which the weak disorder is expected to have a
noticeable effect are thus microscopic times of order t ∼ ε−1, motivating the use of a
macroscopic time coordinate T = εt. To keep the average speed of wave propagation
unscaled, we also set the macroscopic space variable to be X = εx. This constitutes the
kinetic scaling. The energy density Eε(X,T ) = E(X/ε, T/ε) of the wave does not obey
an autonomous evolution equation, but the Wigner transform, to be defined in Section
1.2, equation (1.9),

W ε(X,K, T ) = ε−dW (X/ε,K, T/ε) (1.4)

typically does, [2]. Here, K is the wave-number, which remains unscaled. For each time,
W ε is a function on phase space that can be thought of as a “wavenumber-resolved”

2



1.1. Physics background

energy density, [23], from which the spatial energy density can be retrieved by

Eε(X,T ) =
∫
Rd

dKW ε(X,K, T ). (1.5)

In applications, direct simulation of the complicated random dynamics of W ε is avoided
by approximating W ε by a solution W of the linear Boltzmann equation

∂

∂T
W (X,K, T )(x, k) = ∓ K

|K|
· ∇XW (X,K, T )

+ |2πK|2
∫
Rd

dK ′δ(|K| − |K ′|)ĝ2(K −K ′)
(
W (X,K ′, T )−W (X,K, T )

)
.

(1.6)

Here, ĝ2 is the power spectrum of ξ, which is the Fourier transform of the correlation
function g2(x) = E[ξ(0)ξ(x)]. The sign ∓ arises from the fact that the unperturbed
wave motion exhibits both wave modes that travel according to a dispersion relation
ω(k) = +2π|k|, and modes with ω(k) = −2π|k|.

This approximation is widely employed (the review by Ryzhik, Papanicolaou, Keller,
[35] provides details for several physical settings); numerical simulations of the energy
transport via wave equation and the linear Boltzmann equation coincide remarkably
well, [3], and the use of equation (1.6) for imaging in random media yields satisfactory
experimental results, [4].

Mathematically, the use of this approximation has so far not been fully justfied. In
particular, as W ε is a random quantity, while W is deterministic, the kind of conver-
gence needs to be clarified — does W only approximate the disorder-averaged Wigner
function EW ε, or does the convergence W ε → W hold in probability or almost surely,
i.e. regardless of the microscopic details of the medium?

A convergence in probability result for the kinetic limit of waves in a weakly random
medium was obtained by Bal, Komorowski and Ryzhik, [2], but only for initial states
with wavelengths much shorter than the correlation length of the medium (i.e. parallel
to the weak coupling limit and the rescaling of time and space variables, the authors
take a high frequency limit and rescale the momentum). The limit dynamics resembles
(1.6), with the Boltzmann collision kernel replaced by the small angle approximation of
the jump process, leading to a diffusion of the momentum on spheres of constant |K|.
Their methods cannot be extended to our case of wavelengths on the same scale as the
correlation length.

Without the high frequency limit, no rigorous mathematical statement about the validity
of the kinetic limit for waves in a continuous, weakly random medium is available as of
now.

To put this theory on a solid footing is the goal of this thesis.

3



1. Introduction

1.2. Results of the thesis and related work

Generally, a linear Boltzmann equation

d
dtµt(x, k) = −∇kω(k) · ∇xµt(x, k) +

∫
Rd

dk′σ(k′, k)
[
µt(x, k′)− µt(x, k)

]
(1.7)

consists of a transport term depending on ω(k) (the kinetic energy in the classical1 case,
or the dispersion relation for a Schrödinger or wave equation), and of a collision operator
with collision kernel σ which is a non-negative (generalized) function. µt is typically a
measure, and only constitutes a weak solution of (1.7).
For a one-particle random Schrödinger equation i d

dtψ = Hψ with Hamiltonian H =
−∆+ λV on Rd, d ≥ 2, with V a random potential, one can again ask for the time scale
on which the expected number of interactions with the potential V is of order 1; this
leads to the weak coupling, kinetic limit with disorder strength λ =

√
ε, and space/time

scaling (x, t) = (X/ε, T/ε), (ε → 0). In this limit, the appropriately rescaled and
disorder-averaged Wigner transform of ψ converges to the solution of a linear Boltzmann
equation; due to the weak coupling, the Boltzmann collision kernel is given by only
the first Born approximation to the quantum scattering process. This was proven for
short macroscopic times T and a Gaussian potential V by Spohn, [38], and extended
to all times T and a larger class of random potentials with a suitably cut-off Duhamel
expansion of the perturbed Schrödinger dynamics and a subsequent graph expansion by
Erdős and Yau, [16].
The graph expansion technique devised in [16] was subsequently used by Chen, [9],
to obtain the same result for the discrete analog, the Anderson model given by the
Schrödinger operator −∆nn + λV on Z3, with the nearest-neighbor Laplacian and a
random potential i.i.d. on every lattice site. Lukkarinen and Spohn, [32], showed the
corresponding result for the propagation of atom displacements in a three-dimensional
harmonic crystal in the presence of isotope disorder, modeled by a discrete wave equation
with slightly fluctuating coefficients.

In our model, the disorder term in the random wave speed c(x) = 1+
√
εξ(x) is given by a

stationary random field with sufficient smoothness and fast enough spatial decorrelation.
For example, ξ might be obtained from a Gaussian field, or consist of local “bumps”
distributed with a Poisson point process. By setting ψ± = ∇u ± i ∂∂tu/c, the wave

1The linear Boltzmann equation was first rigorously obtained as the scaling limit of a classical particle
system, namely the classical Lorentz gas in the Boltzmann-Grad (low density) limit. In this model, a
single test particle with position and momentum (qε(t), pε(t)) ∈ R2d, d ≥ 2 moves through a random
(say Poisson), density ε−d+1 distribution of fixed scatterers with diameter ε > 0. As ε goes to zero, the
number of interactions the test particle undergoes with the scatterers in a unit time interval remains
of order 1, and (qε(t), pε(t)) converges to a stochastic process with a linear Boltzmann equation
as forward equation, as shown by Gallavotti, [20] for individual times t, and by Spohn, [39, 40] in
distribution on path space.
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1.2. Results of the thesis and related work

equation is then transformed into a first order system

i
d
dt

(
ψ+
ψ−

)
= Hε

(
ψ+
ψ−

)
= (H0 +

√
εV )

(
ψ+
ψ−

)

=
(√
−∆ 0
0 −

√
−∆

)(
ψ+
ψ−

)
+
√
ε

2

(√
−∆ξ + ξ

√
−∆ −

√
−∆ξ + ξ

√
−∆√

−∆ξ − ξ
√
−∆ −

√
−∆ξ − ξ

√
−∆

)(
ψ+
ψ−

)
,

(1.8)

which defines a unitary time evolution for ψ ∈ H = L2(Rd;C2). The Wigner transform
of both components ψσ, σ ∈ {±}, of a state ψ ∈ H is given by

W ε[ψσ](x, k) = ε−dW [ψ]
(
x

ε
, k

)
= ε−d

∫
Rd

dyψσ
(
x

ε
+ y

2

)
ψσ

(
x

ε
− y

2

)
e2πiy·k. (1.9)

In space dimension d ≥ 2, for any sequence of initial states (ψε0)ε>0 with bounded energy
‖ψε0‖

2
H ≤ C and fulfilling certain tightness assumptions, it is shown in Theorem 3.1

that

lim
ε→0

E
[∫

R2d
dxdkW ε

[(
e−iH

εT/εψε0

)
σ

]
(x, k)a(x, k)

]
=
∫
R2d

µσ,T (dx,dk)a(x, k) (1.10)

for σ ∈ {±}, a suitable class of test functions a and all T ≥ 0. Here, µ±,T is a time-
dependent Borel measure on phase space R2d solving the linear Boltzmann equation (1.6).
The detailed statement of Theorem 3.1 will actually allow for multi-time measurements.

The very similar results for the continuous (Rd) and discrete (Zd) case of the Schrödinger
or wave equation are what one would expect from a physical point of view; after all, the
behavior on long space and time scales is investigated and the microscopic details of the
underlying space should have little impact, [17]. The respective proofs, however, differ in
several details. In the lattice setting, the more complicated geometry of the level sets of
the dispersion relation make resolvent estimates and oscillatory integral arguments much
more difficult, [9, 31]. For the continuous wave equation, the unbounded momentum
space (Rd as opposed to [0, 1)d for the lattice) makes the perturbation V an unbounded
operator, and more caution is required when performing the Duhamel expansion.

While the last few examples, including the topic of this thesis, all concern the weak
coupling limit, this is by no means the only situation in which a random dynamics on
the microscopic scale converges to a linear Boltzmann equation on macroscopic phase
space. In the low density limit, the potential of the Hamiltonian H = −∆+∑

n Vyn is
given by a random (density ε� 1) configuration of scatterers with shape V0 and center
yn. Again, on space and time scales (x, t) = (X/ε, T/ε) and for spatial dimension d ≥ 3,
the disorder-averaged Wigner transform of the wave function converges to the solution
of a linear Boltzmann equation, [13, 18], but now with the full quantum scattering cross
section appearing in the Boltzmann collision kernel.
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1. Introduction

All results for the Schrödinger and wave equation mentioned so far only involve the
disorder-averaged Wigner transform. In most applications, one is actually interested
in the transport properties of a concrete, single realization of the medium, and would
thus desire to control the typical deviations from the average, ideally improving the
convergence of the expectation to an almost sure convergence, a phenomenon referred to
as self-averaging.
For the classical Lorentz gas in the low density limit, convergence in probability, [38],
and almost surely (Boldrighini, Bunimovich, Sinai, [6]) was shown for the evolution of
absolutely continuous particle densities, in other words, under the assumption that the
initial coordinates of the particle are randomized independently of the configuration
of the medium. For the Schrödinger or wave equation, the initial state always carries
some randomness by Heisenberg uncertainty. In fact, for the weak coupling, kinetic limit
of the Anderson model in Z3, convergence of the Wigner function has been proven in
probability, [8], and almost surely, [7], under assumptions only slightly stronger than
those for the disorder-averaged result, [9].

In the case of the random wave equation at hand, a similar statement holds. Under
somewhat more restrictive conditions on ξ and the initial states ψε0, we establish in
Theorem 3.3 that for almost all realizations of the medium ξ,

lim
ε→0

sup
τ∈[0,T ]

∣∣∣∣∫
R2d

dxdkW ε
[(
e−iH

ετ/εψε0

)
±

]
(x, k)a(x, k)−

∫
R2d

µ±,τ (dx, dk)a(x, k)
∣∣∣∣ = 0

(1.11)
for all times T ≥ 0 and test functions a. Thus we have shown that the convergence of the
Wigner transform to a linear Boltzmann equation occurs almost surely, and uniformly
on compact time intervals.

As mentioned earlier, the kinetic scale is the shortest time scale with a nontrivial dynamics.
For the discrete or continuous Anderson model −∆ + λV in d ≥ 3, λ � 1, Erdős,
Salmhofer and Yau, [14, 15], showed that on the larger, diffusive scale x = λ−2−κ/2X̃,
t = λ−2−κT̃ , with a small κ = κ(d) > 0, the disorder-averaged Wigner function converges
to the solution of a heat equation in the X̃ variable. While the diffusion coefficient of
this heat equation can be calculated formally by taking the diffusive limit of the linear
Boltzmann equation, it needs to be pointed out that taking the rigorous diffusive limit
of the Anderson model is much more demanding than the formal two-stage argument
of taking the kinetic limit first, and the diffusive limit of the linear Boltzmann equation
later. A comparable diffusive limit should be expected for the weakly random wave
equation. We leave this as an open problem.
Another possible direction to go beyond the results of this thesis is to stay on the
kinetic scale, but to prove a central limit theorem rather than our almost sure, law
of large numbers type of result. One would have to identify the exact scale of the
random fluctuations in (1.11), and rescale them to obtain a nontrivial limit. For a weakly
random Schrödinger equation (however, under the assumption of rapid decorrelation of
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1.3. Mathematical methods and outline of the thesis

the potential in time) such a limit exists, and is in fact a solution of the same linear
Boltzmann equation, but with random initial data [28]. At this point, it is not clear
whether or how these results carry over to the case of time-independent random potentials
or wave speeds.

1.3. Mathematical methods and outline of the thesis

To be able to state our results, we first specify the requirements on the random field ξ in
Section 2.1 and give two examples for admissible choices of ξ. The first task is then to
verify that (1.8) actually defines a unitary time evolution, and how this evolution relates
to an evolution with disorder ξR limited to a ball of radius R in Rd. This is accomplished
by fairly standard PDE arguments in Section 2.2.1.

Next, we compare the dynamics generated byHε to the freeH0 dynamics with a Duhamel
series, which, however, cannot be fully expanded because of the combinatorial factors
incurred from the moments of ξ (this is what necessitated the restriction to short kinetic
times in [38]). Instead, as in [16, 32], we only expand up to N = O (| log ε|/| log | log ε||)
scattering events. This cut-off is N is small enough to ensure that combinatorical terms
roughly of size NN can still be bounded by small positive powers of ε; yet, N →∞ as
ε→ 0, so we still have a chance to arrive at the full Dyson series for the solution of the
linear Boltzmann equation.

After reaching the threshold N , one needs to find a “soft” way to stop the expansion. For
the continuous random wave equation, this problem is exacerbated by the fact that the
presence of arbitrarily high powers of V from (1.8) in the expansion would require ξ to be
C∞, an assumption we would like to avoid. Instead V is split up into “well-behaved” and
“uncontrolled” momentum changes, and after encountering an uncontrolled momentum
change, the expansion has to “fade out” in only finitely many steps (as opposed to further
O(| log ε|/| log | log ε|) steps in [32]). A modified Duhamel expansion that accommodates
for these issues is derived in Section 2.2.2, its precise paramters are fixed in Section 4.5.

The linear Boltzmann equation and the Wigner transform are introduced in a standard
fashion, together with appropriate spaces of test functions. As the dispersion relation for
the wave equation, ω(k) ∼ |k| is not differentiable at the origin (an acoustic singularity),
the linear Boltzmann dynamics is not well-defined for Wigner limit measures with mass
on {k = 0}. This problem was avoided for the discrete case, [32], by the somewhat
unphysical condition |ω(0)| > 0. Here, however, we gain a better resolution near the
acoustic singularity by enlarging the space of test functions, generalizing a construction
by Harris, Lukkarinen, Teufel and Theil, [23].

We can then state our main theorems in Section 3, Theorem 3.1 about the convergence of
the averaged Wigner transform, Theorem 3.2 about the vanishing variance of the Wigner
function, and Theorem 3.3 concerning almost sure convergence.
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1. Introduction

Theorem 3.1 is shown in Section 4. After performing our version of the Duhamel
expansion, we can use the methods laid out in [16] and [32], that is, a cumulant expansion
of the expectation of each term in the Duhamel series, representing the unitary free
propagators in resolvent form, and visualizing each cumulant as a Feynman graph.
As in [32], we verify that the contributions (amplitudes) of higher order partitions,
crossing pairings and nested pairings as well as the graphs with “too many” scattering
events converge to zero sufficiently fast as ε → 0 to beat the growth of the number
of graphs as N → ∞. A main ingredient are the bounds for resolvent integrals and
oscillatory integrals presented in Appendix B and C. Moreover, as explained above, one
has to show that the uncontrolled momentum jumps vanish in the ε → 0 limit, as do
the amplitudes of “non-markovian” graphs, a new feature arising from the inclusion
of multiple measurements. Finally, the contributions of the simple, markovian “ladder
graphs” are shown to converge to the Dyson series for the linear Boltzmann equation.

As for Theorem 3.2, we see in Section 5.1 that all contributions to the variance are given
by Feynman graphs that connect the scattering processes (the “one-particle lines”) of
two particles. The amplitudes of such graphs vanish by the arguments developed in [8]
and refined in [7].

For the proof of Theorem 3.3, assume it is already known that almost sure convergence
holds along a subsequence of εn ↘ 0. To interpolate between the εn, we observe that, at
least morally,

∂

∂ε

∫
R2d

dxdkW ε
[(
e−iH

ετ/εψε0

)
±

]
(x, k)a(x, k) ∼ ε−β (1.12)

for β > 0 possibly large, but finite. Thus, filling in the gaps between the εn produces
little error if εn ∼ n−α for a fixed, tiny α > 0. To still be able to prove almost sure
convergence by a Borel-Cantelli argument along the sequence (εn), one thus needs to
control very high (∼ 1/α) moments of∫

R2d
dxdkW ε

[(
e−iH

ετ/εψε0

)
±

]
(x, k)a(x, k)

− E
∫
R2d

dxdkW ε
[(
e−iH

ετ/εψε0

)
±

]
(x, k)a(x, k).

(1.13)

In analogy to the variance case, this is achieved in Section 6.1 by analyzing Feynman
graphs that may span multiple one-particle lines. Those Feynman graphs are then
systematically reduced to “stars”, structures in which a Feynman graph connects a
center one-particle line to a number of periphery one-particle lines. The hardest case to
estimate is a “star with only one ray”, i.e. two connected one-particle lines. This brings
us back to Theorem 3.2.
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2. Preliminaries

This chapter aims to introduce the main protagonists of the thesis. In Section 2.1, we
state the exact requirements we have for the disorder term ξ in our random wave speed
c(x) = 1 +

√
εξ(x), show a few basic properties, and, to make sure we do not prove a

theorem about the empty set, give two examples. The whole thesis heavily relies on
unitarity, Duhamel expansion and support propagation properties of the perturbed wave
dynamics; we establish all those in Section 2.2.
To be actually able to recognize the limit dynamics at the end of our efforts, we devote
Section 2.3 to the linear Boltzmann equation and the corresponding semigroups, and
Section 2.4 to Wigner transforms and their limit measures.
Two conventions will be applied throughout — the definition of the Fourier transform
as the unitary continuation of

f̂(k) = (Ff)(k) =
∫
Rd

dxf(x)e−2πik·x, (2.1)

from Schwartz functions f ∈ S(Rd) to f ∈ L2
(
Rd
)
, and the shorthand

〈x〉 =
(
1 + |x|2

)1/2
(2.2)

for x ∈ Rd.

2.1. The random medium

2.1.1. Basic properties

Let (Ω,S,P) be a probability space and

ξ : Ω × Rd → R
(ω, x) 7→ ξω(x)

(2.3)

be a map such that ω 7→ ξω(x) is measurable for all x ∈ Rd. Thus, ξ is a random field,
[22]. Throughout this thesis, we will denote by E the expectation with respect to P, i.e.
the average over all realizations of the medium.
We require ξω to be continuous on Rd for P-almost all ω ∈ Ω. Therefore, one can
particularly choose Ω to be the space of continuous functions on Rd, and S to be the
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2. Preliminaries

Borel sets on Ω with respect to the topology of locally uniform convergence. We will
only once make use of this explicit choice of Ω — when we construct a counterexample
to Theorem 3.3 in Section 6.3.
Furthermore, we assume ξ to be stationary,

(ξ(x1 + y), ..., ξ(xn + y)) ∼ (ξ(x1), ..., ξ(xn)) (2.4)

for all n ∈ N, x1, ...xn, y ∈ Rd, to be bounded from below,

inf
x∈Rd

ξ(x) ≥ −C (2.5)

with a deterministic constant C <∞ and to grow at most linearly at infinity, i.e. there
is an almost surely finite random variable Mω such that

ξω(x) ≤Mω(1 + |x|). (2.6)

To allow for the graph expansion, we furthermore need that all moments of ξ are finite,

E [|ξ(x)|q] <∞ (2.7)

for all q ∈ [0,∞), and that the first m derivatives of ξ are almost surely continuous
with

max
|α|≤m

E [|∂αx ξ(x)|q] <∞ (2.8)

for all q ∈ [0,∞) as well. Finally, ξ has expectation zero,

E [ξ(x)] = 0. (2.9)

A key object in our analysis are the cumulants of ξ, with the n-th cumulant defined as a
function ζn : Rdn → R such that for any finite index set I

E

∏
j∈I

ξ(xj)

 =
∑

S∈π(I)

∏
A∈S

ζ|A| (xl : l ∈ A) , (2.10)

with the sum running over all partitions S of the set I and A ∈ S denoting an individual
cluster in a given partition S, compare [37], Chapter II, §12, equation (46). The ζn are
easily shown to exist by mathematical induction based on (2.7), and, due to stationarity,
(2.4),

ζn(x1, ..., xn) = gn(x2 − x1, ..., xn − x1), (2.11)

with gn : Rd(n−1) → R. As E [ξ(x)] = 0, ζ1 and g1 vanish identically, and (2.10) simplifies
to

E

∏
j∈I

ξ(xj)

 =
∑

S∈π∗(I)

∏
A∈S

ζ|A| (xl : l ∈ A) , (2.12)
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2.1. The random medium

with π∗(I) comprising only those partitions of I that do not contain clusters with only
one element. Because of (2.8), the ζn are m times continuously differentiable with respect
to every argument, so

∂α1

∂xα1
1
...
∂αn

∂xαnn
ζn(x1, ..., xn) (2.13)

is a continuous function of the xj as long |αj | ≤ m for all j. Thus, for n ≥ 2 one can
define the quantity

‖gn‖m = max
|αl|≤m

∫
Rd(n−1)

dx2...dxn
∣∣∂α1
x1 ...∂

αn
xn ζn(x1, ..., xn)

∣∣
= max
|αl|≤m

∫
Rd(n−1)

dy1...dyn−1
∣∣∣∂α1
y1 ...∂

αn−1
yn−1

(
∂y1 + ...+ ∂yn−1

)αm gn(y1, ..., yn−1)
∣∣∣

(2.14)

which we assume to be finite for all n ≥ 2, with a bound

‖gn‖m ≤ Cn
Cn (2.15)

for some C <∞. By standard Fourier calculus, (2.14) ensures a decay

|ĝn(p1, ..., pn−1)| ≤ Cmnd ‖gn‖m 〈p1 + ...+ pn−1〉−m
n−1∏
j=1
〈pj〉−m , (2.16)

with a constant Cd only depending on dimension d. For g2, (2.16) reads

|ĝ2(p)| ≤ C2m
d 〈p〉

−2m . (2.17)

However, we have to assume that even

sup
p

max
|β|≤β

∣∣∣∣∣ ∂β∂pβ ĝ2(p)
∣∣∣∣∣ 〈p〉2m <∞, (2.18)

for some β ∈ N, which is the case whenever

x 7→ max
|α|≤2m

max
|β|≤β

∣∣∣∣ ∂α∂xα
(
xβg2(x)

)∣∣∣∣ (2.19)

is integrable.

Definition 2.1. A random field with all properties listed above is called a field of class
(m,β).

We now want to understand the Fourier transform of ξ. As ξ is typically not integrable,
we use the cutoff version

ξR(x) = χ

(
x

R

)
ξ(x) (2.20)

with R > 0 and χ : Rd → [0, 1] smooth, χ(x) = 1 for |x| < 1 and χ(x) = 0 for |x| > 2.
By relaxing the cutoff, one obtains
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2. Preliminaries

Lemma 2.1. Fix any finite index set I and consider a continuous function f : R|I|d → C
with

|f(θ)| ≤ C
∏
j∈I
〈θj〉q , (2.21)

q ≥ 0. Then, if m > d+ q,

lim
R→∞

E

∫
R|I|d

dθf(θ)
∏
j∈I

ξ̂R(θj)


=

∑
S∈π∗(I)

∫
R|I|d

dθf(θ)
∏
A∈S

δ

∑
j∈A

θj

 ĝ|A| (θj : j ∈ A]
)
.

(2.22)

Here, A] is the set A with an arbitrary element removed. The choice of this element is
irrelevant because of translation invariance of ξ and the delta function in (2.22).

Proof. For all R ∈ (0,∞),

E

∏
j∈I
〈θj〉m

∣∣∣ξ̂R (θj)
∣∣∣
 ≤ C̃ |I|md max

0≤|α|≤m
E
[(∫

Rd
dy
∣∣∣∂αy ξR(y)

∣∣∣)|I|]

≤ C |I|md R|I|d max
0≤|α|≤m

E
[
|∂αξ(0)||I|

] (2.23)

so by Fubini’s theorem the expectation can be pulled into the integral to obtain

E

∫
R|I|d

dθf(θ)
∏
j∈I

ξ̂R(θj)


=
∫
R|I|d

dθf(θ)E

∫
R|I|d

dx
∏
j∈I

(
ξR(xj)e−2πixj ·θj

)
=

∑
S∈π∗(I)

∫
R|I|d

dθf(θ)
∫
R|I|d

dx
∏
l∈I

(
χ(xl/R)e−2πixl·θl

) ∏
A∈S

g|A|
(
xj − xjA : j ∈ A]

)
(2.24)

with jA the missing element, {jA} = A \A]. By the estimate (2.16),

|ĝn(p2, ..., pn)| δ
(

n∑
l=1

pl

)
≤ Cmnd ‖gn‖m

δ(p1 + ...+ pn)
〈p1〉m 〈p2〉m ... 〈pn〉m

. (2.25)

After applying (2.25) andm > d+q to both the last lines of (2.22) and (2.24), a continuity
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argument shows that it suffices to consider f ∈ C∞c
(
R|I|d

)
. But for such f ,

lim
R→∞

∑
S∈π∗(I)

∫
R|I|d

dθf(θ)
∫
R|I|d

dx
∏
l∈I

(
χ(xl/R)e−2πixl·θl

) ∏
A∈S

g|A|
(
xj − xjA : j ∈ A]

)
= lim

R→∞

∑
S∈π∗(I)

∫
R|I|d

dxf̂(x)
∏
l∈I

χ(xl/R)
∏
A∈S

g|A|
(
xj − xjA : j ∈ A]

)
= lim

R→∞

∑
S∈π∗(I)

∫
R|I|d

dxf̂(x)
∏
A∈S

(
g|A|

(
xj − xjA : j ∈ A]

)
χ (xjA/R)

)
.

(2.26)

If we denote for a single A ∈ S with |A| = n the θj , j ∈ A by p1, ..., pn and the xj by
y1, ..., yn and without loss of generality assume xjA = y1, we have∫

Rnd
dygn (y2 − y1, ..., yn − y1)χ (y1/R) e−2πi

∑
l
yl·pl = Rdĝn (p2, ..., pn) χ̂

(
R

n∑
l=1

pl

)
(2.27)

which converges to

δ

(
n∑
l=1

pl

)
ĝn (p2, ..., pn) (2.28)

as a distribution as R→∞. This proves the lemma.

2.1.2. Example: Poisson bumps

Denote by yn ∈ Rd, n ∈ N the points of a Poisson point process with intensity measure
equal to the Lebesgue measure. At every Poisson point there sits an obstacle with shape
φ : Rd → [0,∞) such that

sup
x
〈x〉d+1+β max

|α|≤m

∣∣∣∣ ∂α∂xαφ(x)
∣∣∣∣ <∞. (2.29)

The random field ξ is then given as

ξ(x) =
∑
n∈N

φ(x− yn)−
∫
Rd

dzφ(z), (2.30)

where we subtracted the integral of φ to make the random field centered, Eξ(x) = 0.
ξ is stationary by the translation invariance of the Poisson point process, bounded from
below by −

∫
φ, and grows only very slowly at infinity,

Lemma 2.2. There is a random variable Y ≥ 0 with E[eY ] <∞ such that

sup
|x|≤r

|ξ(x)| ≤ Y log(r + 2). (2.31)

for all r ≥ 0.
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Proof. First, assume φ to be supported on the cubeW = [−1/2, 1/2]d and to be bounded
by 0 ≤ φ ≤ 1. We furthermore drop the “centering” term and consider only

ξ∗(x) =
∑
n∈N

φ(x− yn). (2.32)

Obviously, for any x ∈ Rd

0 ≤ ξ∗(x) ≤ ] {yn ∈ x+W} ∼ Poi(1). (2.33)

Fixing any r ≥ 0, define the cube Vr = {x ∈ Rd : |x|∞ ≤ r}, which can be covered
by (2dre + 1)d disjoint (up to sets of measure zero) translates of W , centered around
z ∈ Z ∩ Vdre. Because each x+W , x ∈ Vr is covered by at most 2d of those translates,

sup
x∈Vr

ξ∗(x) ≤ sup
x∈Vr

] {yn ∈ x+W} ≤ 2d max
z∈Z∩Vdre

] {yn ∈ z +W} = 2dZr, (2.34)

with Zr the maximum of (2dre+ 1)d independent Poisson Poi(1) variables, so

P(Zr > l) ≤ (2dre+ 1)d
l! , (2.35)

and P(Zr > log(r + 2)) decays faster than any negative power of r. Thus, there is a
random variable R ≥ 0 with all moments finite such that

sup
x∈Vr

ξ∗(x) ≤ 2d log(r + 2) (2.36)

for all r > R. For r ∈ [0, R], on the other hand,

sup
x∈Vr

ξ∗(x) ≤ sup
x∈VR

ξ∗(x) ≤ 2d log(R+ 2) ≤ Y0 log(r + 2) (2.37)

with a random variable Y0 = 2d log(R + 2)/ log(2), so E[eβY0 ] <∞ for all β > 0. Thus,
for all r ∈ Rd

sup
|x|≤r

ξ∗(x) ≤ sup
x∈Vr

ξ∗(x) ≤ Y0 log(r + 2). (2.38)

If, instead, φ is supported on z +W , z ∈ Zd, and φ ≤ bz, then there is a Yz distributed
identically to, but not independent of, Y0 such that

sup
|x|≤r

ξ∗(x) ≤ bzYz log(r + 2) (2.39)

for all r ≥ 0. If φ is chosen generally, with 0 ≤ φ ≤ bz on z +W , z ∈ Zd and∑
z∈Zd

bz = β <∞ (2.40)

(which is definitely the case for φ as in (2.29)), then

sup
|x|≤r

ξ∗(x) ≤
∑
z

bzYz log(r + 2) = Y log(r + 2) (2.41)
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2.1. The random medium

with
E
[
eY
]

= E
[∏
z

ebzYz

]
≤ E

[∑
z

bz
β
eβYz

]
=
∑
z

bz
β
E
[
eβY0

]
<∞. (2.42)

Lemma 2.3. As ξ is centered, ζ1 ≡ 0, while for n ≥ 2

ζn (x1, ..., xn) =
∫
Rd

dy
n∏
l=1

φ(xl − y),

gn (x1, ..., xn−1) =
∫
Rd

dyφ(−y)
n−1∏
l=1

φ(xl − y),

ĝn(p1, ..., pn−1) = φ̂ (−p1...− pn−1)
n−1∏
l=1

φ̂(pl),

ζ̂n(p1, ..., pn) = δ(p1 + ...+ pn)
n∏
l=1

φ̂(pl).

(2.43)

Together with (2.29), this directly implies (2.8), (2.15) and (2.18) for the random field ξ
at hand, so ξ is of class (m,β). In particular, ĝ2 = |φ̂|2.

Proof. We only check the first line of (2.43), the others then follow by standard Fourier
calculus. For simplicity, we consider the cumulants ζ∗n of the non-centered field ξ∗ from
(2.32), and can follow [27] in our derivation of the moment-generating function of ζ∗n. If
for some finite index set I, fl : Rd → R, l ∈ I are simple functions, i.e.

fl(x) =
k∑
j=1

αlj1Aj (x) (2.44)

with k ∈ N, Aj ⊂ Rd disjoint Borel sets of finite measure and αlj ∈ R, the random
variables

Xl =
∑
n∈N

fl(yn) =
k∑
j=1

αljN(Aj), (2.45)

N(Aj) being the number of Poisson points in Aj , are well defined. As the N(Aj) are
independent for disjoint sets,

E

∏
l∈I

eiXl

 =
k∏
j=1

E

exp

i∑
l∈I

αljN(Aj)

 =
k∏
j=1

exp
(
|Aj |

(
ei
∑

l∈I αlj − 1
))
, (2.46)

where we denoted the Lebesgue measure of Aj by |Aj | and inserted the characteristic
function of a Poisson-|Aj |-distributed random variable. Thus,

E

∏
l∈I

eiXl

 = exp
(∫

Rd
dy
(
ei
∑

l∈I fl(y) − 1
))

, (2.47)
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which by pointwise approximation also holds for general bounded and integrable functions
fl : Rd → R. By dominated convergence,

E

∏
l∈I

Xl

 =
∏
l̃∈I

(
−i d

dtl̃

)
E

∏
l∈I

eitlXl

∣∣∣∣∣∣
tj=0 ∀j∈I

=
∏
l̃∈I

(
−i d

dtl̃

)
exp

(∫
Rd

dy
(
ei
∑

l∈I fl(y) − 1
))∣∣∣∣∣∣

tj=0 ∀j∈I

.

(2.48)

Without loss of generality, we assume I = {1, ..., |I|}, I1 = I \ {1}, first take the t1
derivative and then use the product rule |I| − 1 times to see that

E

∏
l∈I

Xl

 =
∏
l̃∈I1

(
−i d

dtl̃

){
exp

(∫
Rd

dy
(
e
i
∑

l∈I1
fl(y) − 1

))∫
Rd

dyei
∑

l∈I1
fl(y)

f1(y)
}

=
∑

J∈P(I1)
E

∏
l∈J

Xl

∫
Rd

dyf1(y)
∏

l̃∈I1\J

fl̃(y).

(2.49)

Mathematical induction in the size of I then yields a sum over all partitions of I,

E

∏
l∈I

Xl

 =
∑

S∈π(I)

∏
A∈S

∫
Rd

dy
∏
l∈A

fl(y)

 (2.50)

and one can read off the cumulants

Cum (X1, ..., Xn) =
∫
Rd

dy
n∏
l=1

fl(y). (2.51)

With fl(y) = φ(xl − y), l = 1, ..., n, the cumulants of ξ∗ equal

ζ∗n (x1, ..., xn) =
∫
Rd

dy
n∏
l=1

φ(xl − y). (2.52)

For n ≥ 2, ζn = ζ∗n.

2.1.3. Example: Disorder term derived from a Gaussian field

While the random field ξ from Section 2.1.2 exhibits a simple explicit formula for the
cumulants, it may take arbitrarily high values, which makes its physical interpretation
as a wave speed questionable, although it is mathematically admissible for our purposes
due to its slow growth behavior. Physically more realistic are random fields ξ that are
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2.1. The random medium

bounded and owe their nice cumulant behavior to exponential mixing. For example, let
K : Rd → R be given by its fourier transform

K̂(p) =
(
1 + |2πp|2

)−(d+1+2m)/2
, (2.53)

from which one can directly read off that K is continuous and bounded together with
its first 2m derivatives. Moreover, as its Fourier transform is a non-negative, integrable
function, K is positive definite by the Bochner-Schwarz theorem, [34], and by Theorem
12.1.3 in [12], there exists a probability space (Ω,F ,P) and a centered Gaussian process
(W (x))x∈Rd with covariance

E [W (x)W (y)] = K(x− y). (2.54)

According to Theorem 1.4.2 in [1],W is almost surely m times continuously differentiable.
For |α| ≤ m, ∂αxW (x) is again a stationary Gaussian process with covariance

E
[
∂αxW (x)∂αyW (y)

]
= (−1)|α|

(
∂2αK

)
(x− y). (2.55)

In particular,
max
|α|≤m

E [|∂αxW (x)|q] <∞ (2.56)

for all q ∈ [0,∞). By Theorem 1.14 in [41] one has

K(x) = Cd,m

∫
R2m

dye−
√
|x|2+|y|2 (2.57)

and therefore ∣∣∣∣ ∂α∂xαK(x)
∣∣∣∣ ≤ Cd,m,αe−|x|/2 (2.58)

for all multiindices α and all x ∈ Rd with |x| ≥ 1.
Now let A,B ⊂ Rd with dist(A,B) = r ≥ 1. Let HA and HB be the Gaussian Hilbert
spaces generated by the span of {W (x) : x ∈ A} and {W (x) : x ∈ B} respectively, and
denote the sigma algebras

A = σ (W (x) : x ∈ A) and B = σ (W (x) : x ∈ B) . (2.59)

By Theorem 10.11 of [25], for random variables X ∈ L2 (Ω,A,P), Y ∈ L2 (Ω,A,P) with
E[X] = E[Y ] = 0 and E[X2] = E[Y 2] = 1, one has the bound

|E[XY ]| ≤ ‖P (HA, HB)‖ = sup
U∈HA,V ∈HB
E[U2]=E[V 2]=1

|E[UV ]| . (2.60)

Here, P (HA, HB) is the projector from HA onto HB. To estimate the sup on the right
side of (2.60), it suffices to consider finite sums

U =
n∑
j=1

αjW (xj) (xj ∈ A,αj ∈ R),

V =
n∑
l=1

βlW (yl) (yl ∈ B, βl ∈ R).
(2.61)
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2. Preliminaries

In this case,

E[UV ] =
n∑

j,l=1
αjβlK(xj − yl) =

n∑
j,l=1

αjβl

∫
Rd

dpK̂(p)e2πi(xj−yl)·p

=
∫
Rd

dpK̂(p)u(p)v(p)
(2.62)

with

u(p) =
n∑
j=1

αje
−2πixj ·p,

v(p) =
n∑
l=1

βle
−2πiyl·p,

(2.63)

while ∫
Rd

dpK̂(p)|u(p)|2 =
∫
Rd

dpK̂(p)|v(p)|2 = 1. (2.64)

Now proceeding similar as in [10], one can apply a smooth cut-off at radius r to K and
obtain a Kr : Rd → R such that Kr(x) = 0 for all |x| ≥ r, that is close to K in the
sense ∥∥∥〈∇〉d+2m+1 (K −Kr)

∥∥∥
L1
≤ Cd,me−r/2,∣∣∣(K̂ − K̂r

)
(p)
∣∣∣ ≤ Cd,mK̂(p)e−r/2,

(2.65)

where we used (2.58) and (2.53), and redefined the constant Cd,m. As |xj − yl| ≥ r for
all j, l, ∫

Rd
dpK̂r(p)u(p)v(p) = 0 (2.66)

and therefore, by Cauchy-Schwarz,

|E[UV ]| ≤
∫
Rd

dp
∣∣∣(K̂ − K̂r

)
(p)
∣∣∣ |u(p)v(p)|

≤ C̃d,me−r/2
∫
Rd

dpK̂(p)|u(p)v(p)| ≤ C̃d,me−r/2,
(2.67)

thus implying exponential mixing (in the sense of exponentially vanishing strong mixing
coefficient, Definition 10.5 in [25]). The same estimate is trivially true for r < 1.
Choose a function φ : R → R that is bounded together with its first m derivatives.

Furthermore, assume that
E [φ(W (0))] = 0, (2.68)

for example by φ(w) = −φ(−w). Now let

ξ(x) = φ(W (x)). (2.69)

Lemma 2.4. For any choice of d,m ∈ N, ξ is of class (m,β) for all β ∈ N.
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2.1. The random medium

Proof. Stationarity carries over from W , and boundedness from φ. The moment bound
on the first m derivatives of ξ, (2.8), is due to (2.56). ξ is centered by (2.68).
The only non-trivial issue are the cumulants. With n1, n2 ∈ N, let x(1)

1 , ..., x
(1)
n1 ∈ A1 ⊂ Rd

and x(2)
1 , ..., x

(2)
n2 ∈ A2 ⊂ Rd such that dist(A1, A2) ≥ r, and define the index set

I = {(1, 1), ...(1, n1), (2, 1), ..., (2, n2)} . (2.70)

For any cluster C ⊂ I, set Cj = {(̃, l) ∈ C : ̃ = j}, j = 1, 2. Then

∏
(j,l)∈Cj

φ
(
W (x(j)

l )
)
− E

 ∏
(j,l)∈Cj

φ
(
W (x(j)

l )
) (2.71)

is (with the notation analogous to (2.59)) a centered L2(Ω,Aj ,P) variable for j = 1, 2,
and therefore∣∣∣∣∣∣E

 ∏
(j,l)∈C

φ
(
W (x(j)

l )
)− E

 ∏
(1,l)∈C1

φ
(
W (x(1)

l )
)E

 ∏
(2,l)∈C2

φ
(
W (x(2)

l )
)∣∣∣∣∣∣

≤ Cd,m‖φ‖
|C|
L∞e

−r/2.

(2.72)

By re-expressing the cumulants in terms of moments (as in [37], Chapter II, §12, equation
(47)), one has∣∣∣ζ|I| (x(j)

l : (j, l) ∈ I
)∣∣∣

=

∣∣∣∣∣∣
∑

S∈π(I)
(|S| − 1)!(−1)|S|−1 ∏

C∈S
E

 ∏
(j,l)∈C

ξ(x(j)
l )

∣∣∣∣∣∣
≤

∑
S∈π(I)

(|S| − 1)!|S|‖φ‖n1+n2
L∞ Cd,me

−r/2

+

∣∣∣∣∣∣
∑

S∈π(I)
(|S| − 1)!(−1)|S|−1 ∏

C∈S
E

 ∏
(1,l)∈C

ξ(x(1)
l )

E
 ∏

(2,l)∈C
ξ(x(2)

l )

∣∣∣∣∣∣
≤ Cd,m‖φ‖n1+n2

L∞ ((n1 + n2)!)2 e−r/2 + 0.

(2.73)

The second to last line vanishes as it looks just like the cumulant for the case that the
ξ(x(1)

l ), l = 1, ..., n1 are independent of the ξ(x(2)
l ), l = 1, ..., n2. Cumulants for sets of

random variables that decompose into two nonempty independent subsets are always
zero, as can be easily shown inductively from (2.10).
For n ≥ 2, y1, ..., yn−1 ∈ Rd, the set {0, y1, ..., yn−1} can always be decomposed into two
nonempty sets with distance larger or equal to maxj |yj |/n. Therefore,

|gn(y1, ..., yn−1)| ≤ |ζn (0, y1, ..., yn−1)| ≤ Cd,m‖φ‖nL∞ (n!)2 exp
(
−maxj |yj |

2n

)
≤ Cd,m‖φ‖nL∞n2n exp

(
−|y1|+ ...+ |yn−1|

2n2

)
,

(2.74)
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2. Preliminaries

and ∫
Rd(n−1)

dy1...dyn−1 |gn(y1, ..., yn−1)| ≤ Cd,m (4‖φ‖L∞)n n4n. (2.75)

Arguing similarly, one can estimate up to m-th derivatives of ζn with respect to every
variable, and thus obtain a constant C = Cd,m,φ <∞ such that

‖gn‖m ≤ Cn
Cn (2.76)

for all integer n ≥ 2.
Finally, (2.18) holds for all β ∈ N because ∂αx g2(x), |α| ≤ 2m decays exponentially in
x.

Corollary 2.5. By the same token, any centered, stationary random field ξ is of class
(m,β) for all β ∈ N if it fulfills the following two conditions:

• ξ is almost surely m-times continuously differentiable with bounded derivatives

P
(

max
|α|≤m

∣∣∣∣ ∂α∂xα ξ(x)
∣∣∣∣ < C

)
= 1 (2.77)

for some deterministic finite C.
• There is a constant C <∞ such that for A,B ⊂ Rd with dist(A,B) > r,

|Cov(X,Y )| ≤ (E[X2]E[Y 2])1/2Ce−r/C (2.78)

for all X ∈ L2 (Ω, σ (ξ(x) : x ∈ A) ,P), Y ∈ L2 (Ω, σ (ξ(x) : x ∈ B) ,P).

2.2. The perturbed time evolution and its generator

2.2.1. Existence and unitarity

Let c ∈ C1(Rd,R) with c ≥ θ > 0 and at most linear growth at infinity, c(x) ≤M +M |x|
for some M < ∞. We first consider the dynamic this wave speed c generates on a
bounded set, and set B = BR(0) ⊂ Rd to be an open ball of finite radius around the
origin. Set H̃B to be the space of functions (u,w) ∈ H1

0 (B) × L2(B) (employing the
usual notation for Sobolev spaces), endowed with the scalar product

〈(u1, w1); (u2, w2)〉B = 1
2

∫
B

(
∇u1(x) · ∇u2(x) + w1(x)w2(x)

c2(x)

)
dx (2.79)

which makes H̃B a Hilbert space. On the dense subspace

D̃B =
(
H2(B) ∩H1

0 (B)
)
×H1

0 (B) ⊂ H̃B, (2.80)

define the operator AR : D̃B → H̃B by

AR(u,w) = (w,−c2(x)∆u), (2.81)

which is symmetric with respect to the scalar product 〈·; ·〉B.
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2.2. The perturbed time evolution and its generator

Lemma 2.6. AR is self-adjoint.

Proof. As c ≥ θ > 0 everywhere, the operator −c2∆ is uniformly elliptic. Therefore, by
[19], Chapter 6.2, Theorem 3, there is a γ > 0 such that the boundary value problem

−c2∆u+ γu = g − i√γf on B (2.82)
u = 0 on ∂B (2.83)

has a weak solution u ∈ H1
0 (B). By the H2 regularity theorem ([19], Chapter 6.3,

Theorem 4), u ∈ H2(B). If we now choose w = f − i√γu ∈ H1
0 , we see that (u,w) ∈ D̃B

and
AR(u,w) + i

√
γ(u,w) = (f, g). (2.84)

Thus, ran(AR + i
√
γ) = H̃B. By the same argument, AR − i

√
γ is onto as well, and AR

is self-adjoint.

As a self-adjoint operator, AR generates a strongly continuous unitary group e−itAR ,
t ∈ R on H̃B, which is strongly differentiable on D̃B. Thus, for (u0, w0) ∈ D̃B and

(u(t), w(t)) = e−itAR(u0, w0), (2.85)

one has
i

d
dt(u(t), w(t)) = (w(t),−c2∆u(t)). (2.86)

Setting v = −iw, this actually is the solution to the wave equation

∂

∂t
u = v

∂

∂t
v = c2∆u,

(2.87)

however only on B, and with the boundary condition

u = 0 on ∂B. (2.88)

To obtain solutions of the wave equation on the full space Rd, we use that initially
compactly supported solutions cannot travel to infinity in finite time.

Lemma 2.7. Let B = BR(0), R > 0, define for r ≥ 0 cr = sup {c(x)|x ∈ Br(0)} and
let r(t) be the solution of ṙt = crt, starting from some r(0) ∈ (0, R). If T > 0 such that
r(T ) < R and (u0, w0) ∈ H̃B with u0 = w0 = 0 on BR(0) \Br(0)(0), then for the solution
of the wave equation (with operator AR defined on BR(0) as above)

(u(t), w(t)) = e−itAR(u0, w0), (2.89)

one has u(t) = v(t) = 0 on BR(0) \Br(|t|)(0), for all t ∈ (−T, T ).
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Proof. First, consider (u0, v0) ∈ D̃B. Without loss of generality, concentrate on t ∈ [0, T )
and define

E(t) = 1
2

∫
Br(t)

(
|∇u(x, t)|2 +

∣∣∣∣w(x, t)
c(x)

∣∣∣∣2
)

dx. (2.90)

As (u(t), w(t)) ∈ D̃B for all t ∈ [0, T ), the following calculation (which is a generalization
of Theorem 6 in Chapter 2.4 of [19]) is justified due to the strong differentiability of
e−itAR :

d
dtE(t) = −Im

∫
Br(t)

(
∇w(x, t) · ∇u(x, t) + w(x, t)∆u(x, t)

)
dx

+
cr(t)

2

∫
∂Br(t)

(
|∇u(x, t)|2 +

∣∣∣∣w(x, t)
c(x)

∣∣∣∣2
)

dS(x)

= −Im
∫
∂Br(t)

w(x, t) (∇u(x, t) · ν(x)) dS(x)

+
cr(t)

2

∫
∂Br(t)

(
|∇u(x, t)|2 +

∣∣∣∣w(x, t)
c(x)

∣∣∣∣2
)

dS(x)

≥ −cr(t)
∫
∂Br(t)

∣∣∣∣∣w(x, t)
cr(t)

∣∣∣∣∣ |∇u(x, t)|dS(x)

+
cr(t)

2

∫
∂Br(t)

(
|∇u(x, t)|2 +

∣∣∣∣w(x, t)
c(x)

∣∣∣∣2
)

dS(x)

≥ −
cr(t)

2

∫
∂Br(t)

|∇u(x, t)|2 +
∣∣∣∣∣w(x, t)
cr(t)

∣∣∣∣∣
2
dS(x)

+
cr(t)

2

∫
∂Br(t)

(
|∇u(x, t)|2 +

∣∣∣∣w(x, t)
c(x)

∣∣∣∣2
)

dS(x)

≥ 0,

(2.91)

where we denoted by ν the outward normal of ∂Br(t). As E(t) ≤ ‖(u0, w0)‖2B by unitarity
and E(0) = ‖(u0, w0)‖2B by assumption,

E(t) = ‖(u0, v0)‖2B (2.92)

for all t ∈ [0, T ). This proves the lemma for (u0, v0) ∈ D̃B. For general initial states from
H̃B, the assertion then follows as D̃B is dense in H̃B and e−itAR is unitary.

Now let
H̃ =

{
(u,w) ∈ H1

(
Rd
)
× L2

(
Rd
)

: spt(u,w) compact
}
, (2.93)

which is a pre-Hilbert space with the scalar product

〈(u1, w1); (u2, w2)〉H̃ = 1
2

∫
Rd

(
∇u1(x) · ∇u2(x) + w1(x)w2(x)

c2(x)

)
dx. (2.94)
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Also denote the subspace

D̃ =
{

(u,w) ∈ H2
(
Rd
)
×H1

(
Rd
)

: spt(u,w) compact
}
. (2.95)

Lemma 2.8. Let c ∈ C1(Rd,R) with c ≥ θ > 0 and at most linear growth at infinity,
c(x) ≤ M + M |x| for some M < ∞. For balls BR with radius R around the origin,
define the operator AR as before. Then for any t ∈ R and (u0, w0) ∈ H̃, the limit

U(t)(u0, w0) = lim
R→∞

e−itAR(u0, w0) (2.96)

exists. U(t) : H̃ → H̃ is a norm-preserving, strongly continuous group of operators. It is
strongly differentiable on the invariant space D̃.

Proof. If u0, w0 are supported in a ball of radius r(0) around the origin, then (u0, w0) ∈
H̃BR for all R > r(0). Moreover, for r(T ) as defined above one has the estimate

r(T ) ≤ C(M, r(0))eMT , (2.97)

so for all R > C(M, r(0))eMT and all t ∈ (−T, T ),

spt
(
e−itAR(u0, w0)

)
⊂ intBR(0). (2.98)

Thus e−itAR(u0, w0) is independent of R for R sufficiently large, and U(t)(u0, w0) is
well-defined. The stated properties of U(t) directly carry over from e−itAR .

Lemma 2.9. The map Ec : H̃ → H = L2
(
Rd;C2

)
Ec(u,w) = 1

2

(√
−∆u+ w/c√
−∆u− w/c

)
=
(
ψ+
ψ−

)
(2.99)

is norm-preserving. Ec(H̃) is dense in H, so are Ec(D̃) and even Ec
(
C∞0 (Rd)× C∞0 (Rd)

)
.

Proof. The first assertion is immediate from (2.94). As for the second claim, it is enough
to show that Ec

(
C∞0 (Rd)× C∞0 (Rd)

)
is dense. ψ+ − ψ− ∈ L2

(
Rd
)
can obviously be

approximated in L2 by w/c, with w ∈ C∞0 (Rd). For the approximation of ψ+ +ψ−, note
that

√
−∆C∞0 (Rd) is dense in L2(Rd) as C∞0 (Rd) is dense in S(Rd),

√
−∆ : S(Rd) →

L2(Rd) is continuous, and
√
−∆S(Rd) contains all Schwartz functions with Fourier

transform supported away from zero, which is a dense set in L2(Rd).

We collect our results to find

Theorem 2.10. U(t) is lifted by Ec to a norm-preserving, strongly continuous group of
operators acting on a dense subspace of H. Therefore, there is a unique continuous exten-
sion to H, the strongly differentiable unitary group e−iHct : H → H, t ∈ R with generator
Hc. On the invariant, dense subspace D = Ec

(
D̃
)
, e−iHct is strongly differentiable, so

D is a core for Hc.
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On D, the operator Hc is given as

Hc = 1
2

(√
−∆c+ c

√
−∆ −

√
−∆c+ c

√
−∆√

−∆c− c
√
−∆ −

√
−∆c− c

√
−∆

)
, (2.100)

with the unperturbed wave equation with c ≡ 1 generated by

H0 =
(√
−∆ 0
0 −

√
−∆

)
. (2.101)

Note that Hc actually depends on the particular choice of c, while D does not.

2.2.2. Duhamel expansion with smooth cut-off

Before we start to compare the dynamics created by Hc and H0 with a Duhamel series
expansion, we have to make two observations about Hc as defined in (2.100). First, as c is
acting as a multiplication operator in position space, in momentum space it will formally
be a convolution with ĉ, which is only well-defined as a distribution. We will therefore
have to introduce a suitably cut-off version cR of c to justify our calculations. Second, as√
−∆ is a (pseudo)differential operator, iterated applications of Hc will require us to take

arbitrarily high derivatives of the initial state ψ0 (which does not pose a problem, as one
can concentrate on a dense set of smooth initial states) but also of c. A straight-forward
application of a Duhamel expansion as in [32] would therefore require c to be C∞ (and
actually, in order to obtain suitable bounds for all terms, fulfill very strong estimates
on its derivatives). Therefore, we will have to split up the action of c into a smooth
part, and a rough part that we will only have to apply finitely often, thus making the
Duhamel expansion possible for c that only have finitely many derivatives. As for the
first part, one has

Lemma 2.11. Let c(x) = cω(x), x ∈ Rd a C1 random field with 0 < cω(x) ≤Mω(1+|x|),
Mω almost surely finite, and let χ : Rd → [0, 1] be a smooth function with χ(x) = 1 for
|x| ≤ 1, χ(x) = 0 for |x| ≥ 2. Let Hω = Hcω be the (random) self-adjoint operator
associated to cω, and HR

ω be the one belonging to the cut-off field

cRω (x) = cω(x)χ
(
x

R

)
. (2.102)

Then for any fixed t and ψ0∥∥∥exp (−iHωt)ψ0 − exp
(
−iHR

ω t
)
ψ0
∥∥∥
H
→ 0 (R→∞) (2.103)

both almost surely and in Lq(P) for all q <∞.

Proof. First, let ψ0 ∈ D. The corresponding (u0, w0) with Ecω(u0, w0) = ψ0, are com-
pactly supported, so as in the proof of Lemma 2.8, we find for any given t ∈ R an almost
surely finite R(ω) such that

U(t)(u0, w0) = exp
(
−itAR(ω)

)
(u0, w0). (2.104)
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However, the definition of AR(ω) is the same for cω and cRω for all R ≥ R(ω). This
proves the lemma for ψ0 ∈ D. The general case follows as D ⊂ H is dense and from
unitarity.

Supressing the ω-dependence, we now look more closely at the special case of wave speeds
defined by

c(x) = 1 +
√
εξ(x) (2.105)

the resulting operators Hε and their “cut-off” versions Hε,R. As cR is bounded from
above and away from zero, the domain of Hε,R is explicitely given as the Sobolev space

D
(
Hε,R

)
= D (H0) = H1

(
Rd;C2

)
. (2.106)

Let ξR(x) = ξ(x)χ(x/R) denote the cut-off version of ξ and define

√
εV R = Hε,R −H0 =

√
ε

2

(√
−∆ξR + ξR

√
−∆ −

√
−∆ξR + ξR

√
−∆√

−∆ξR − ξR
√
−∆ −

√
−∆ξR − ξR

√
−∆

)
. (2.107)

Now fix an L ∈ (0,∞). The operator Mξ,R multiplying L2
(
Rd
)
functions by ξR is given

by
F (Mξ,Rf) (k) =

∫
Rd

dpξ̂R(k − p)f̂(p) (2.108)

in Fourier space for any f ∈ L2
(
Rd
)
. We split it up into

Mξ,R = Mξ,R,L +M rough
ξ,R,L = ML +M rough

L , (2.109)

with

F (MLf) (k2) =
∫
Rd

dk1ξ̂R(k2 − k1)f̂(k1)ϕ (|k1| − L)

+
∫
Rd

dpξ̂R(k2 − k1)f̂(k1)(1− ϕ) (|k1| − L)ϕ (|k2| − L)

=
∫
Rd

dpξ̂R(k2 − k1)f̂(k1)Φ(k2, k1, L).

(2.110)

Here, ϕ : R→ [0, 1] is smooth, ϕ(s) = 1 if s ≤ 0, ϕ(s) = 0 if s ≥ 1/2 and Φ is given as

Φ(k2, k1, L) = ϕ (|k1| − L) + (1− ϕ) (|k1| − L)ϕ (|k2| − L) . (2.111)

Roughly speaking, ML lets the the momentum jump from “small” to (possibly) “large”
momenta or the other way round, but it never maps “large” to “large” momenta - these
cases occur only under M rough

L . If ξ ∈ Cm
(
Rd;R

)
, m ≥ 1 almost surely, one has

‖MLf‖Hm ≤ CL,R,ω ‖f‖L2 , (2.112)

with the Sobolev space Hm
(
Rd
)
defined by all functions g with ĝ(p)(1+ |p|)m ∈ L2

(
Rd
)
.

On the other hand, in that case, M rough
L almost surely maps Hr

(
Rd
)
continuously into
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H l
(
Rd
)
for all l ≤ min{m, r}. (The operator norms of all these mappings depend on ω

and diverge as R,L→∞, but quantitative estimates will only be required lateron). On
D
(
Hε,R

)
, one can now define

V R
L = 1

2

(√
−∆ML +ML

√
−∆ −

√
−∆ML +ML

√
−∆√

−∆ML −ML

√
−∆ −

√
−∆ML −ML

√
−∆

)
(2.113)

and equivalently

URL = 1
2

(√
−∆M rough

L +M rough
L

√
−∆ −

√
−∆M rough

L +M rough
L

√
−∆√

−∆M rough
L −M rough

L

√
−∆ −

√
−∆M rough

L −M rough
L

√
−∆

)
. (2.114)

Almost surely, V R
L maps D

(
Hε,R

)
= H1

(
Rd;C2

)
continuously into Hm−1

(
Rd;C2

)
,

while URL (and therefore V R) maps Hr
(
Rd;C2

)
, r ≥ 1 continuously into H l

(
Rd;C2

)
,

l = min{r,m} − 1.

Lemma 2.12. (Duhamel expansion with “abrupt cut-off”) Let R ∈ (0,∞), ξR ∈
Cm

(
Rd
)
with m ≥ 2, N ∈ N, L = (L1, L2, ...) ∈ (0,∞)N, ψ ∈ D

(
Hε,R

)
and any

fixed time t > 0, the following expansion holds with all integrals well-defined as Riemann
integrals of continuous H-valued functions.

e−iHε,Rtψ =
N−1∑
N=0

FN (t;R,L, ε)ψ +
N−1∑
N=1

F rough
N (t;R,L, ε)ψ +Rend

N
(t;R,L, ε)ψ,

FN (t;R,L, ε)ψ =
∫
RN+1

+

dsδ
(
t−

N+1∑
l=1

sl

)
e−iH0sN+1(−i

√
εV R

LN
)...(−i

√
εV R

L1)e−iH0s1ψ,

F rough
N (t;R,L, ε)ψ =

∫
RN+1

+

dsδ
(
t−

N+1∑
l=1

sl

)
e−iHε,RsN+1(−i

√
εURLN )

× e−iH0sN (−i
√
εV R

LN−1)...(−i
√
εV R

L1)e−iH0s1ψ,

Rend
N

(t;R,L, ε)ψ =
∫
RN+1

+

dsδ

t− N+1∑
l=1

sl

 e−iH
ε,Rs

N+1(−i
√
εV R)

× e−iH0sN (−i
√
εV R

L
N−1

)...(−i
√
εV R

L1)e−iH0s1ψ.

(2.115)

Occasionally, we will use the shorthand

Fmain
N

(t;R,L, ε)ψ =
N−1∑
N=0

FN (t;R,L, ε)ψ,

RN (t;R,L, ε)ψ =
N−1∑
N=1

F rough
N (t;R,L, ε)ψ +Rend

N
(t;R,L, ε)ψ.

(2.116)
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Proof. As ψ ∈ D
(
Hε,R

)
= D (H0), we can differentiate

d
dse+iHε,Rse−iH0sψ = e+iHε,Rs(i

√
εV R)e−iH0sψ. (2.117)

Integration from 0 to t immediately yields

e−iHε,Rtψ = e−iH0tψ +
∫ t

0
dse−iHε,R(t−s)(−i

√
εV R)e−iH0sψ

= F0(t;R,L, ε)ψ +R1(t;R,L, ε)ψ,
(2.118)

with the integrand a continuous function from [0, t] to H, proving the lemma for N = 1.
Now assume (2.115) holds for some N ≥ 1. We split the V R in the Rend

N
term,

Rend
N

(t;R,L, ε)ψ =
∫
RN+1

+

dsδ

t− N+1∑
l=1

sl

 e−iH
ε,Rs

N+1(−i
√
εV R)

× e−iH0sN (−i
√
εV R

L
N−1

)...(−i
√
εV R

L1)e−iH0s1ψ

= F rough
N

(t;R,L, ε)ψ

+
∫
RN+1

+

dsδ

t− N+1∑
l=1

sl

 e−iH
ε,Rs

N+1

× (−i
√
εV R

L
N

)e−iH0sN (−i
√
εV R

L
N−1

)...(−i
√
εV R

L1)e−iH0s1ψ.

(2.119)

As ψ ∈ H1
(
Rd;C2

)
, by the above findings for the V R

LN
and the fact that H0 is diagonal

in Fourier space,

(s1, ..., sN ) 7→ (−i
√
εV R

L
N

)e−iH0sN (−i
√
εV R

L
N−1

)...(−i
√
εV R

L1)e−iH0s1ψ (2.120)

is a continuous function RN → Hm−1
(
Rd;C2

)
. Since m ≥ 2, the last line of (2.119) is

in D
(
Hε,R

)
= D (H0), and we can reiterate the argument leading to (2.118) to rewrite
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the exponential exp
(
−iHε,RsN+1

)
,

Rend
N

(t;R,L, ε)ψ = F rough
N

(t;R,L, ε)ψ

+
∫
RN+1

+

dsδ

t− N+1∑
l=1

sl

 e−iH0sN+1

× (−i
√
εV R

L
N

)e−iH0sN (−i
√
εV R

L
N−1

)...(−i
√
εV R

L1)e−iH0s1ψ

+
∫
RN+2

+

dsδ

t− N+2∑
l=1

sl

 e−iH
ε,Rs

N+2(−i
√
εV R)

× e−iH0sN+1(−i
√
εV R

L
N

)...(−i
√
εV R

L1)e−iH0s1ψ

= F rough
N

(t;R,L, ε)ψ + FN (t;R,L, ε)ψ +Rend
N+1(t;R,L, ε)ψ.

(2.121)

By mathematical induction, this finishes the proof.

ψ = ψ + ψ

+

+

ψ

ψ

Figure 2.1.: The expansion of Lemma 2.12 for N = 2, with double (single) lines repre-
senting the full propagation generated by Hε,R (the free dynamics generated
by H0). The solid diamond denotes a scattering off V R

L1
, while an empty

diamond stands for URL1
, and interaction with the full V R is indicated by a

black bullet.

The physical idea behind the Duhamel expansion in Lemma 2.12 is to interpret the
perturbed dynamics as a free wave that undergoes scattering off inhomogeneities, and
to expand to the N -th scattering event. However, for N < N , one will only continue
to expand in case of a “well-behaved” scattering event (described by V R

LN
). In case of a

“bad” scattering event (URLN ), the expansion is stopped immediately. Now this abrupt
stopping rule has to be smoothed out to guarantee that the remainder terms Rend

N
and∑

N F
rough
N vanish in the kinetic limit. This is accomplished as in [32] by expanding those

terms a bit further, adding a weak exponential decay. However, once a URLN has occurred,
we can only expand further for finitely many scattering events - m− 2, to be precise.
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2.2. The perturbed time evolution and its generator

Lemma 2.13. Let R ∈ (0,∞), ξR ∈ Cm with m ≥ 3, ψ̃ ∈ Hm−2
(
Rd;C2

)
, κ > 0 and

τ > 0. Then for all M ∈ {1, ...,m− 2},

e−iHε,Rτ ψ̃ =
M−1∑
M=0

∫
RM+1

+

dsδ
(
τ −

M+1∑
l=1

sl

)
e−i(H0−iκ)sM+1

× (−i
√
εV R)...(−i

√
εV R)e−i(H0−iκ)s1ψ̃

+κ
M∑
M=1

∫
RM+1

+

dsδ
(
τ −

M+1∑
l=1

sl

)
e−iHε,RsM+1

× e−i(H0−iκ)sM (−i
√
εV R)...(−i

√
εV R)e−i(H0−iκ)s1ψ̃

+
∫
RM+1

+

dsδ

τ −M+1∑
l=1

sl

 e−iH
ε,Rs

M+1(−i
√
εV R)...(−i

√
εV R)e−i(H0−iκ)s1ψ̃,

(2.122)

with all integrals well-defined as Riemann integrals of continuous H-valued functions.

Proof. As ψ̃ ∈ Hm−2
(
Rd;C2

)
⊂ D

(
Hε,R

)
= D (H0), one can proceed as in the previous

proof to obtain

e−iHε,Rτ ψ̃ = e−iH0τ ψ̃ +
∫ τ

0
dse−iHε,R(τ−s)(−i

√
εV R + κ)e−i(H0−iκ)sψ̃, (2.123)

which proves the assertion for M = 1. Now assume that M + 1 ≤ m − 2 and (2.122)
holds for M . Consider the argument of e−iH

ε,Rs
M+1 in the last line of (2.122). Since the

spaces Hr
(
Rd;C2

)
, r ≤ m are conserved by the action of e−i(H0−iκ)sM , while V R maps

them to Hr−1
(
Rd;C2

)
, we see that M such operations yield

(−i
√
εV R)...(−i

√
εV R)e−i(H0−iκ)s1ψ̃ ∈ Hm−2−M

(
Rd;C2

)
⊂ H1

(
Rd;C2

)
. (2.124)

Thus, we can once more apply (2.123) and conclude by mathematical induction.

Lemma 2.14. (Duhamel expansion with “smooth cut-off”) Let m ≥ 3, R ∈ (0,∞),
ξR ∈ Cm

(
Rd
)
, ψ ∈ Hm−1

(
Rd;C2

)
, L = (L1, L2, ...) ∈ (0,∞)N, κ > 0 and t > 0. Then

for all M ∈ {1, ...,m− 2}, and all N ∈ N, we have for the quantities from Lemma 2.12

F rough
N (t;R,L, ε)ψ

=
M−1∑
M=0

(
Grough
M,N (t;R,L, ε, κ)ψ + κ

∫ t

0
dre−iHε,R(t−r)Grough

M,N (r;R,L, ε, κ)ψ
)

+
∫ t

0
dre−iHε,R(t−r)Arough

M,N
(r;R,L, ε, κ)ψ

(2.125)
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ψ̃ = ψ̃ + ψ̃

+

+

ψ̃

ψ̃

ψ̃+κ κ

Figure 2.2.: The expansion given in Lemma 2.13 with M = 2. As before, the double
solid lines mean propagation by the dynamics created by Hε,R, while dashed
lines correspond to H0 − iκ. The bullets represent V R, while κ denotes
“interaction” with the imaginary potential −iκ.

N ∈ {1, ..., N − 1}, with

Grough
M,N (τ ;R,L, ε, κ)ψ

=
∫
RM+N+1

+

dsδ
(
τ −

M+N+1∑
l=1

sl

)
e−i(H0−iκ)sM+N+1(−i

√
εV R)...(−i

√
εV R)e−i(H0−iκ)sN+1

× (−i
√
εURLN )e−iH0sN (−i

√
εV R

LN−1)...(−i
√
εV R

L1)e−iH0s1ψ

(2.126)

and

Arough
M,N

(τ ;R,L, ε, κ)ψ

=
∫
RM+N

+

dsδ

τ −M+N∑
l=1

sl

 (−i
√
εV R)e−i(H0−iκ)s

M+N ...(−i
√
εV R)e−i(H0−iκ)sN+1

× (−i
√
εURLN )e−iH0sN (−i

√
εV R

LN−1)...(−i
√
εV R

L1)e−iH0s1ψ.

(2.127)

Similarly,

Rend
N

(t;R,L, ε)ψ =
M−1∑
M=0

(
Gend
M,N

(t;R,L, ε, κ)ψ + κ

∫ t

0
dre−iHε,R(t−r)Gend

M,N
(r;R,L, ε, κ)ψ

)

+
∫ t

0
dre−iHε,R(t−r)Aend

M,N
(r;R,L, ε, κ)ψ,

(2.128)

32



2.3. The linear Boltzmann equation

with

Gend
M,N

(τ ;R,L, ε, κ)ψ

=
∫
RM+N+1

+

dsδ

τ −M+N+1∑
l=1

sl

 e−i(H0−iκ)s
M+N+1(−i

√
εV R)...(−i

√
εV R)e−i(H0−iκ)s

N+1

× (−i
√
εV R)e−iH0sN (−i

√
εV R

L
N−1

)...(−i
√
εV R

L1)e−iH0s1ψ

(2.129)

and

Aend
M,N

(τ ;R,L, ε, κ)ψ

=
∫
RM+N

+

dsδ

τ −M+N∑
l=1

sl

 (−i
√
εV R)e−i(H0−iκ)s

M+N ...(−i
√
εV R)e−i(H0−iκ)s

N+1

× (−i
√
εV R)e−iH0sN (−i

√
εV R

L
N

)...(−i
√
εV R

L1)e−iH0s1ψ.

(2.130)

Again, all integrals are well-defined as Riemann integrals of H-valued continuous func-
tions.

Proof. Note that, as ψ ∈ Hm−1
(
Rd;C2

)
, and by the properties of the V R

LN
and URLN , all

arguments of the full unitary e−iHε,Rs on the right side of (2.115) are in Hm−2
(
Rd;C2

)
.

Thus Lemma 2.13 is applicable, and the claim follows.

2.3. The linear Boltzmann equation

As soon as the distribution of the random field ξ is such that g2 ∈ L1
(
Rd
)
(which will

clearly be the case under the much stricter conditions of Theorems 3.1, 3.2 and 3.3),
ĝ2 will be bounded, continuous and non-negative (the latter by the Bochner-Schwartz
theorem, [34]). Therefore, for each k ∈ Rd, the measure νsc(k, ·) given by

νsc(k,B) =
∫
B

dk′|2πk|2ĝ2(k − k′)δ(|k| − |k′|) (2.131)

for any Borel set B ⊆ Rd is non-negative, and

σsc(k) = νsc
(
k,Rd

)
, (2.132)

is uniformly bounded for k from compact subsets of Rd. For either sign σ ∈ {±}, one can
define a Markov process (x(t), k(t))t≥0 with càdlàg paths on the space Rdx ×

(
Rd \ {0}

)
k

similar to the one in [32]: For x(0), and k(0) 6= 0 given, k(t) = k(0) for all t ∈ [0, t1) with t1
an exponentially distributed waiting time with parameter σsc(k(0)). The momentum k(t1)
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is independent of t1 and distributed with the probability measure νsc(k(0), ·)/σsc(k(0)).
The momentum then jumps again after a waiting time t2 (which is Exp (σsc(k(t1)))-
distributed), to a position k(t1 +t2) with distribution νsc(k(t1), ·)/σsc(k(t1)). The process
k(t) is almost surely piecewise continuous and |k(t)| = |k(0)| 6= 0, so

x(t) = σ

∫ t

0
ds k(s)
|k(s)| (2.133)

is almost surely well-defined. From the continuity of ĝ2 and the local boundedness of σsc
it is easy to see that on C0

(
Rd ×

(
Rd \ {0}

))
(the continuous functions on R2d vanishing

at infinity and on {k = 0}), this process gives rise to a probability semigroup as defined
in Definition 3.4, [29]. Thus, by Theorem 3.26 in the same book, (x(t), k(t))t≥0 is Feller
and has a generator Lσ which is densely defined on C0

(
Rd ×

(
Rd \ {0}

))
. The smooth,

compactly supported functions a ∈ C∞c
(
Rd ×

(
Rd \ {0}

))
are a core for Lσ, with

(Lσa) (x, k) =
(∫

Rd
νsc(k,dk′)a(x, k′)

)
− σsc(k)a(x, k) + σ

k

|k|
· ∇xa(x, k) (2.134)

for such a. For all a ∈ C0
(
Rd ×

(
Rd \ {0}

))
, the probability semigroup can be expanded

into(
eLσta

)
(x, k0)

=
∞∑
n=0

∫
Rn+1

ds0...dsnδ
(
t−

n∑
l=0

sl

)∫
Rd
νsc(k0,dk1)...

∫
Rd
νsc(kn−1, dkn)

exp
(
−

n∑
l=0

σsc(kl)sl
)
a

(
x+ σ

n∑
l=0

sl
kl
|kl|

, kn

)
.

(2.135)

for t ≥ 0, x ∈ R, k0 6= 0. Note that (2.135) actually defines a (no longer strongly contin-
uous) semigroup on the space of all bounded continuous functions on Rd ×

(
Rd \ {0}

)
,

which, in a slight abuse of notation, we will still refer to as eLσt, t ≥ 0. In particular,
this semigroup now operates on test functions of type FL1(C0), to be defined in Section
2.4.1.
Starting from any bounded Borel measure µ0,σ on Rd ×

(
Rd \ {0}

)
as the initial distri-

bution of (x(0), k(0)), we obtain the distribution at time t ≥ 0 by applying the adjoint
of the semigroup,

µσ,t =
(
eLσt

)∗
µ0,σ. (2.136)

The measure µσ,t is a weak solution of the linear Boltzmann equation
d
dtµσ,t(x, k) =

∫
Rd
νsc(k, dk′)µσ,t(x, k′)− σsc(k)µσ,t(x, k)− σ k

|k|
· ∇xµσ,t(x, k) (2.137)

in the sense that
d
dt

∫
Rd×(Rd\{0})

µσ,t(dx,dk)a(x, k) = d
dt

∫
Rd×(Rd\{0})

µσ,t(dx, dk) (Lσa) (x, k) (2.138)

for all a from the domain of Lσ.
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2.4. Wigner functions

2.4. Wigner functions

2.4.1. Definition and limit behavior

For functions f ∈ L1(Rd), d ∈ N, we define the Fourier transform Ff = f̂ : Rd → C as

(Ff)(p)f̂(p) =
∫
Rd

dxf(x)e−2πix·p, (2.139)

so that the continuous extension F : L2(Rd)→ L2(Rd) is unitary. For functions defined
on classical phase space, a : R2d = Rdx × Rdk → C, F and ·̂ shall denote the Fourier
transform only with respect to the first, position, variable,

(Fa)(p, k) = â(p, k)
∫
Rd

dxa(x, k)e−2πix·p. (2.140)

For the moment, one may assume a to be a Schwartz function. To a function ψ ∈ L2(Rd),
one may assign a function W [ψ] living on phase space,

W [ψ](x, k) =
∫
Rd

dyψ
(
x+ y

2

)
ψ

(
x− y

2

)
e2πiy·k (2.141)

the Wigner transform of ψ. W takes only real values, but need not be non-negative.
For a small parameter ε > 0, the ε-scaled Wigner transform is then obtained by a space
scaling,

W ε[ψ](x, k) = ε−dW [ψ]
(
x

ε
, k

)
= ε−d

∫
Rd

dyψ
(
x

ε
+ y

2

)
ψ

(
x

ε
− y

2

)
e2πiy·k. (2.142)

W ε[ψ] acts as a tempered distribution on Schwartz functions a ∈ S(R2d) by

〈W ε[ψ], a〉 =
∫
R2d

dxdka(x, k)W ε[ψ](x, k)

=
∫
Rd

dp
(∫

Rd
dkâ(p, k)ψ̂

(
k + εp

2

)
ψ̂

(
k − εp

2

))
.

(2.143)

Note the discrepancies with, for example, [16] that arise from defining 〈W ε[ψ], a〉 as linear
in a instead of conjugate linear. The last line of (2.143), which follows from standard
Fourier calculus, shows that we can actually understand W ε[ψ] as a continuous linear
functional on the Banach space FL1

(
Rdp;C0(Rdk)

)
= FL1(C0). This space comprises all

functions a : R2d → C for which (p, k) 7→ â(p, k) is continuous in the k variable and the
norm

‖a‖FL1(C0) =
∫
Rd

dp
(

sup
k∈Rd

|â(p, k)|
)

(2.144)

is finite. The space FL1(C0) is slightly more general than the space defined on page
572 of [30], which also requires â(p, k) to decay to zero as |k| → ∞. The latter space, to
which we will refer as X0, is separable with the norm from (2.144). For a ∈ FL1(C0),

|〈W ε[ψ], a〉| ≤ ‖a‖FL1(C0) ‖ψ‖
2
L2 . (2.145)
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Equivalently, we can introduce the Weyl quantization of the observable a as a bounded
operator Opε(a) : L2 → L2 given by the expression

F (Opε(a)ψ) (k) =
∫
Rd

dpâ
(
p, k − εp

2

)
ψ̂(k − εp), (2.146)

which is defined for Lebesgue-almost all k ∈ Rd. Then

〈W ε[ψ], a〉 = 〈ψ,Opε(a)ψ〉L2 . (2.147)

A large selection of different observables (symbols), quantization procedures and scaling
limits are available in the literature on pseudodifferential operators. The above Weyl
quantization is a reasonable choice because of its duality with the Wigner transform,
and the fact that it maps real a ∈ FL1(C0) to self-adjoint operators on L2(Rd), [33]. A
popular choice of observables are various classes of C∞(R2d) functions with upper (and
sometimes lower, to ensure ellipticity) bounds on the growth of the derivatives, [24, 33].
We will not need to require our observables to be smooth. Finally, the scale parameter ε
can enter in different fashions. As ε→ 0, our observables spread out in position space

Opε(a) = Op1 (a(εx, k)) , (2.148)

but other authors set
Õpε(a) = Op1 (a(x, εk)) (2.149)

to scale the momentum variable instead, [21, 33]. While these two definitions are unitary
equivalent, the former is clearly the more intuitive one for the physical setting at hand.
Returning to a from the Schwartz functions for a moment, the inequality (2.145) shows
that for any C ∈ [0,∞), the set

{W ε[ψ] : ε > 0, ‖ψ‖L2 ≤ C} ⊂ S ′(R2d) (2.150)

is contained in a polar, and thus weak-* compact subset of S ′(R2d) by the Alaoglu-
Bourbaki theorem, [26]. As S(R2d) is separable, this is actually even sequential weak-*
compactness. Given an L2-bounded set (ψε)ε>0, it is then interesting to ask what kind
of possible limits in S ′(R2d) the convergent subsequences of (W ε [ψε])ε>0 may have as
ε→ 0.

Lemma 2.15. For each ε > 0 let a ψε ∈ L2(Rd) be given such that supε>0 ‖ψε‖
2
L2 <∞.

Then one can extract sub-sequences (εn)n∈N, εn → 0, such that W εn [ψεn ] converges
weak-* in S ′(R2d), and all limit points are non-negative Borel measures µ on R2d which
are bounded by ∫

R2d
µ(dx,dk) ≤ lim sup

n→∞
‖ψεn‖2L2 . (2.151)

Proof. This proof follows the one presented in [30], we reproduce a version of it here
to account for the different scaling of our Wigner function. As we have already seen
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above that such sub-sequences (εn) exist, assume without loss of generality that W ε[ψε]
converges to a limit µ in S ′(R2d) already before selecting a particular subsequence. With
the Kernel

Gε(x, k) = 2dε−de−|x|2/εe−|2πk|2/ε, (2.152)
we define the Husimi transform W ε

H [ψε] : R2d → C by

W ε
H [ψε] = W ε[ψε] ∗Gε. (2.153)

As Gε ∈ S(R2d) and ψε ∈ L2(Rd), it is not hard to verify that for all (x, k) ∈ R2d,

W ε
H [ψε](x, k) = ε−d

∣∣∣∣∣
∫
Rd

dzε−d/2ψε
(
z

ε

)
(πε)−d/4 exp

(
−|x− z|

2

2ε

)
exp

(
−2πik · z

ε

)∣∣∣∣∣
2

,

(2.154)
so W ε

H [ψε] is non-negative, and for all ε > 0∫
R2d

dxdkW ε
H [ψε](x, k) = ‖ψε‖2L2 . (2.155)

On the other hand,
Gε ∗ a→ a (ε→ 0) (2.156)

in the topology of S(R2d) for all a ∈ S(R2d), and, as we can control the action of W ε[ψε]
on S by (2.145) uniformly in ε,

|〈W ε
H [ψε]−W ε[ψε], a〉| = |〈W ε[ψε], Gε ∗ a− a〉| → 0 (2.157)

as ε→ 0. Accordingly, for every Schwartz function a ≥ 0,

〈µ, a〉 = lim
ε→0
〈W ε[ψε], a〉 = lim

ε→0
〈W ε

H [ψε], a〉 ≥ 0, (2.158)

so µ is a non-negative tempered distribution, thus a non-negative distribution, and thus
a non-negative Borel measure on R2d, [36]. Furthermore, by (2.155)∫

R2d
µ(dx, dk) ≤ lim

ε→0
‖ψε‖2L2 . (2.159)

Note that the equality (2.155) produces only an upper bound (2.159) for the limit measure.
This is because energy may be lost to infinity when passing to the ε→ 0 limit. To avoid
this from happening, in addition to

sup
ε>0
‖ψε‖2L2 <∞ (Bounded energy), (2.160)

we introduce two tightness conditions,

lim
R→∞

lim sup
ε→0

∫
|x|>R/ε

dx |ψε(x)|2 = 0 (Tightness in scaled position space),

(2.161)
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which is the analogue to initial condition (IC2) in [32], and

lim
R→∞

lim sup
ε→0

∫
|k|>R

dk
∣∣∣ψ̂ε(k)

∣∣∣2 = 0 (Tightness in momentum space), (2.162)

which we have to add here as the momentum space is unbouded in our case. A useful
tool to identify Wigner limit measures will then be the counterpart of equations (B.17)
and (B.29) in [32],
Lemma 2.16. For L2(R2) functions (ψε)ε>0 fulfilling (2.160-2.162), as well as
W ε[ψε]→ µ in S ′ as ε→ 0, and any continuous, bounded function f : Rd → C, we have
for all p ∈ Rd that

lim
ε→0

∫
Rd

dkψ̂ε(k + εp/2)ψ̂ε(k − εp/2)f(k) =
∫
R2d

µ(dx, dk)e2πip·xf(k), (2.163)

the estimate (2.159) is sharp,∫
R2d

µ(dx,dk) = lim
ε→0
‖ψε‖2L2 , (2.164)

and
lim
ε→0
〈W ε[ψε], a〉 = 〈µ, a〉 =

∫
R2d

µ(dx, dk)a(x, k) (2.165)

holds for all a ∈ FL1(C0).

Proof. First, assume f to be a Schwartz function. The map Rd → C,

q 7→
∫
Rd

dkψ̂ε(k + εq/2)ψ̂ε(k − εq/2)f(k) (2.166)

is bounded and continuous for all ε > 0, so

lim
ε→0

∫
Rd

dkψ̂ε(k + εp/2)ψ̂ε(k − εp/2)f(k)

= lim
ε→0

lim
λ→0

(
√
πλ)−d

∫
Rd

dqe−(p−q)2/λ2
∫
Rd

dkψ̂ε(k + εq/2)ψ̂ε(k − εq/2)f(k)
(2.167)

provided the limit of the right side exists. If one chooses for fixed p ∈ Rd, λ > 0 the
function a ∈ S(R2d) such that

â(q, k) = (
√
πλ)−de−(p−q)2/λ2

f(k),
a(x, k) = e2πip·xe−λ

2π2x2
f(k),

(2.168)

equation (2.143) implies

(
√
πλ)−d

∫
Rd

dqe−(p−q)2/λ2
∫
Rd

dkψ̂ε(k + εq/2)ψ̂ε(k − εq/2)f(k)

= ε−d
∫
R3d

dxdkdye2πip·xe−λ
2π2x2

f(k)ψε
(
x

ε
+ y

2

)
ψε
(
x

ε
− y

2

)
e2πiy·k

= ε−d
∫
R2d

dxdye2πip·xe−λ
2π2x2

f̂(−y)ψε
(
x

ε
+ y

2

)
ψε
(
x

ε
− y

2

)
.

(2.169)
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We split up the last integral into the contributions of |x| ≤ R and |x| > R, and see that

lim sup
ε→0

∣∣∣∣∣ε−d
∫
R2d

dxdye2πip·x
(
1− e−λ2π2x2)

f̂(−y)ψε
(
x

ε
+ y

2

)
ψε
(
x

ε
− y

2

)∣∣∣∣∣
≤
(
1− e−λ2π2R2) ∥∥∥f̂∥∥∥

L1
lim sup
ε→0

‖ψε‖2L2 + 2
∥∥∥f̂∥∥∥

L1
lim sup
ε→0

‖ψε‖L2

(∫
|z|>R/ε

|ψε(z)|2
)1/2

,

(2.170)

and thus obtain from (2.160) and (2.161) that

lim
λ→0

lim sup
ε→0

∣∣∣∣∫
Rd

dkψ̂ε(k + εp/2)ψ̂ε(k − εp/2)f(k)

−(
√
πλ)−d

∫
Rd

dqe−(p−q)2/λ2
∫
Rd

dkψ̂ε(k + εq/2)ψ̂ε(k − εq/2)f(k)
∣∣∣∣ = 0,

(2.171)

and therefore

lim
ε→0

∫
Rd

dkψ̂ε(k + εp/2)ψ̂ε(k − εp/2)f(k)

= lim
λ→0

lim
ε→0

ε−d
∫
R3d

dxdkdye2πip·xe−λ
2π2x2

f(k)ψε
(
x

ε
+ y

2

)
ψε
(
x

ε
− y

2

)
e2πiy·k

= lim
λ→0

∫
R2d

µ(dx,dk)e2πip·xe−λ
2π2x2

f(k)

=
∫
R2d

µ(dx,dk)e2πip·xf(k).

(2.172)

By (2.162), this generalizes to all bounded and continuous f . In particular, for f ≡ 1
and p = 0, ∫

R2d
µ(dx, dk) = lim

ε→0

∫
Rd

dk
∣∣∣ψ̂ε(k)

∣∣∣2 = lim
ε→0
‖ψε‖2L2 . (2.173)

For all a ∈ FL1(C0), (2.165) follows from (2.163) by dominated convergence in the last
line of (2.143).

2.4.2. Examples of Wigner limit measures

Standard examples for sequences of initial states (ψε)ε>0 with convergent Wigner trans-
forms can be found, for example, in [30]. One can construct sequences which concentrate
at a single point in momentum space,

ψε(x) = εd/2f(εx)e2πik0·x, f ∈ L2(Rd), k0 ∈ Rd,

lim
ε→0
〈W ε[ψε], a〉 =

∫
Rd

dxa(x, k0) |f(x)|2 ∀a ∈ FL1(C0),

µ = |f(x)|2 δ(k − k0),

(2.174)
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in position space,

ψε(x) = f(x− x0/ε), f ∈ L2(Rd), x0 ∈ Rd,

lim
ε→0
〈W ε[ψε], a〉 =

∫
Rd

dka(x0, k)
∣∣∣f̂(k)

∣∣∣2 ∀a ∈ FL1(C0),

µ = δ(x− x0)
∣∣∣f̂(k)

∣∣∣2 ,
(2.175)

or even in both variables,

ψε(x) = εd/4f(
√
εx− x0/

√
ε)e2πix·k0 , f ∈ L2(Rd), x0, k0 ∈ Rd,

lim
ε→0
〈W ε[ψε], a〉 = ‖f‖2L2 a(x0, k0) ∀a ∈ FL1(C0),

µ = ‖f‖2L2 δ(x− x0)δ(k − k0).

(2.176)

A prominent case that has been studied in the context of random Schrödinger equations
([16], or [8, 9] for the discrete setting) are WKB states

ψε(x) = εd/2f(εx)e2πiS(εx)/ε, (2.177)

with f : Rd → C and S : Rd → R Schwartz functions, for which one has

lim
ε→0
〈W ε[ψε], a〉 =

∫
Rd

dxa(x,∇S(x)) |f(x)|2 ∀a ∈ FL1(C0),

µ = |f(x)|2 δ(k −∇S(x)).
(2.178)

The limit Wigner measures of all the aforementioned examples are singular with respect
to Lebesgue measure; this, however, need not be the case in general. With Schwartz
functions f1, f2 ∈ S(Rd), set

ψε(x) = εd/4
∑
y∈Zd

f1
(√
εy
)
f2

(
x− y√

ε

)
. (2.179)

It is easy to show that the Wigner limit measure exists and has a density |f1(x)|2
∣∣∣f̂2(k)

∣∣∣2
on phase space,

lim
ε→0
〈W ε[ψε], a〉 =

∫
R2d

dxdka(x, k)|f1(x)|2
∣∣∣f̂2(k)

∣∣∣2 ∀a ∈ FL1(C0),

µ = |f1(x)|2
∣∣∣f̂2(k)

∣∣∣2 . (2.180)

It is worth mentioning that all sequences (ψε)ε>0 in the examples above have bounded
energy (2.160) and fulfill position and momentum tightness (2.161-2.162). In all five
examples, at least after approximating f ∈ L2(Rd) in (2.174-2.176) by Schwartz functions,
the additional condition (3.6) that will be required to obtain Theorem 3.3 also holds for
sufficiently small α0 > 0.
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2.4.3. Higher resolution near the acoustic singularity

To have observables available that provide higher resolution in the neighborhood of k = 0,
we define in analogy to Definition 2.4 in [23] the following generalization of FL1(C0)

Definition 2.2. A function a : Rdx×Rdk×Rdk → C has an admissible infra-red continuation
and we write a ∈ XIR, if â, the Fourier transform of a in the x variable, fulfills the following

• For all p ∈ Rd, the map (k, k) 7→ â(p, k, k) is continuous.
• The norm

‖a‖XIR
=
∫
Rd

dp sup
k,k∈Rd

|â(p, k, k)| (2.181)

is finite.
• There exists a function b : Rd × Rd × Sd−1 → C such that

lim
R→∞

∫
Rd

dp sup
k∈Rd
|k|≥R

∣∣∣â(p, k, k)− b̂(p, k, k/|k|)
∣∣∣ = 0. (2.182)

For ψ ∈ L2(Rd) and ε > 0, the Wigner transform W ε[ψ] constitutes a bounded linear
functional on XIR by setting

〈W ε[ψ], a〉XIR
=
∫
Rd

dp
(∫

Rd
dkâ

(
p, k,

k

ε

)
ψ̂

(
k + εp

2

)
ψ̂

(
k − εp

2

))

=
∫
Rd

dx
∫
Rd

dkW ε[ψ](x, k)a
(
x, k,

k

ε

)
,

(2.183)

with only the first line holding for all a ∈ XIR, while the second line is the more intuitive
formulation for nice enough a. Analogous to (2.146), one can introduce a bounded
L2 → L2 operator by

F (OpεIR(a)ψ) (k) =
∫
Rd

dpâ
(
p, k − εp

2 ,
k

ε
− p

2

)
ψ̂(k − εp), (2.184)

to obtain
〈W ε[ψ], a〉XIR

= 〈ψ,OpεIR(a)ψ〉 . (2.185)

Following the reasoning of [23], the Lemmas 2.15 and 2.16 can be generalized to the
setting at hand, as shown in Appendix A.

Lemma 2.17. For each ε > 0 let a ψε ∈ L2(Rd) be given such that (2.160), (2.161) and
(2.162) hold. Then one can extract sub-sequences (εn)n∈N, εn → 0, such that W εn [ψεn ]
converges weak-* in XIR

∗. For each convergent subsequence, the limit is of the form

lim
n→∞

〈W εn [ψεn ] , a〉XIR
=
∫
Rd×Rd∗

µ(dx,dk)b
(
x, k,

k

|k|

)
+
∫
Rd×Sd−1

µH(dx, dk)b(x, 0, k)

+ 〈W [η], a(·, 0, ·)〉 .

(2.186)
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with µ, µH non-negative, bounded Borel measures on Rd×Rd∗ and Rd×Sd−1, respectively,
η ∈ L2(Rd), and b associated to a by Definition 2.2. In the last line of (2.186), W [η]
is the unscaled Wigner transform of η as defined in (2.141), tested against the FL1(C0)
function (x, k) 7→ a(x, 0, k).

From Lemma 5.2, 5.4 one can directly conclude that the L2 norm is conserved while
taking the limit along any of the subsequences from Lemma 2.17,

lim
n→∞

‖ψεn‖2L2 = µ
(
Rd × Rd∗

)
+ µH

(
Rd × Sd−1

)
+ ‖η‖2L2 . (2.187)

As will become obvious in Appendix A, the µ component of the limit object (µ, µH, η)
accounts for the part of the energy distributed over wavenumbers that stay of order 1 while
εn → 0, η represents the portion with macroscopic wavelengths, i.e. with wavenumbers
vanishing like εn. The defect measure µH stands for the energy stored in wavenumbers
much larger than εn but much smaller than 1.
The right side of (2.186) motivates the definition of the following functions.

amicro(x, k) = b

(
x, k,

k

|k|

)
(2.188)

is a bounded, continuous function of x ∈ Rd and k ∈ Rd \ {0}, while
ameso(x, k) = b (x, 0, k) (2.189)

is in C0
(
Rdx × Sd−1

k

)
, i.e. a bounded, continuous function on Rdx × Sd−1

k that vanishes
as |x| → ∞, and

amacro(x, k) = a (x, 0, k) , (2.190)
with (x, k) ∈ Rd, is a function in FL1(C0). For ameso ∈ C0

(
Rdx × Sd−1

k

)
, σ ∈ {±} and

t ∈ R, we set (
eLH

σ tameso
)

(x, k) = ameso(x+ σkt, k), (2.191)

which constitutes a strongly continuous group of operators on C0
(
Rdx × Sd−1

k

)
.

Example. The arguably simplemost sequence of states (ψε)ε>0 with W ε [ψε] converging
in XIR

∗ is
ψε(x) = f(x) + εd/4g(

√
εx) + εd/2h(εx) (2.192)

with f, g, h ∈ L2(Rd). Then
W ε [ψε] ⇀ (µ, µH, η) (2.193)

with µ a measure on Rd × Rd∗ given by

µ(dx, dk) = δ(x)
∣∣∣f̂(k)

∣∣∣2 dxdk, (2.194)

the measure µH defined for x ∈ Rd and k ∈ Sd−1 by

µH(dx,dk) = δ(x)
(∫ ∞

0
drrd−1 |ĝ(rk)|2

)
dxdk (2.195)

and
η = h. (2.196)
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2.4.4. Operators on H

The operators Opε(a), a ∈ FL1(C0) and OpεIR(a), a ∈ XIR introduced previously are
bounded linear maps L2(Rd)→ L2(Rd). To accommodate for the two-component struc-
ture of H = L2

(
Rd;C2

)
, define the projections Pσ2σ1 : H → H by setting

(Pσ2σ1ψ)σ =
(
Pσ2σ1

(
ψ+
ψ−

))
σ

= δσσ2ψσ1 (2.197)

for all σ1, σ2, σ ∈ {±} and all ψ ∈ H. For a = (a+, a−) : R2d → C2 such that aσ ∈
FL1(C0) for σ ∈ {+,−} one can thus define the bounded operator

Qε(a) =
∑

σ∈{±}
Opε (aσ)Pσσ =

(
Opε (a+) 0

0 Opε (a−)

)
(2.198)

on H. Analogously, for a = (a+, a−) : R3d → C2 such that aσ ∈ XIR for σ ∈ {+,−}, we
set

QεIR(a) =
∑

σ∈{±}
OpεIR (aσ)Pσσ =

(
OpεIR (a+) 0

0 OpεIR (a−)

)
. (2.199)

Both Qε(a) and QεIR(a) are defined as diagonal with respect to the two-component
structure of H, i.e. they do not mix the ψ+ and ψ− components. Observables with
off-diagonal components will be discussed separately in Appendix F.
In terms of Wigner transforms, our focus on diagonal observables implies that we only
consider

W ε[ψσ](x, k) = ε−d
∫
Rd

dyψσ
(
x

ε
+ y

2

)
ψσ

(
x

ε
− y

2

)
e2πiy·k, (2.200)

with σ ∈ {±} and exclude “cross-terms” of the form

W ε[ψσ1 , ψσ2 ](x, k) = ε−d
∫
Rd

dyψσ1

(
x

ε
+ y

2

)
ψσ2

(
x

ε
− y

2

)
e2πiy·k (2.201)

with σ1 6= σ2 for now.
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Now, we have all definitions available to state our main results. By the duality (2.147),
(2.185) of Wigner transform and Weyl quantization, both formulations can be applied
equally well to describe a measurement of the propagated wave at a macroscopic time
T > 0 with observables a+, a− ∈ XIR,

〈
e−iHεT/εψε0, Q

ε
IR(a)e−iHεT/εψε0

〉
H

=
∑

σ∈{±}

〈
W ε

[(
e−iHεT/εψε0

)
σ

]
, aσ

〉
XIR

. (3.1)

However, for multiple measurements at times T (1), T (1) +T (2), up to T (1) + ...+T (m), m
being the number of measurements, the use of Weyl quantizations of the observables, i.e.
of operators QεIR (aj), j = 1, ...,m, is much more convenient. This is how we will present
our first theorem.

Theorem 3.1. For d ≥ 2, choose a random medium of class (d + 185, 4). Let (ψε0)ε>0
be a sequence of initial states in H with components fulfilling the boundedness and
tightness conditions (2.160-2.162), and assume that the Wigner transforms W ε

[
ψε0,σ

]
,

σ ∈ {±} converge, in the sense of (2.186), to (µ0,σ, µ
H
0,σ, η0,σ). Then for all m ∈ N, all
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T (1), ..., T (m) > 0 and all aj,σ ∈ XIR, (j ∈ {1, ...,m}, σ ∈ {±}), we have

lim
ε→0

E

〈e−iHεT (m)/ε
m−1∏
j=1

(
QεIR(aj)e−iH

εT (j)/ε
)
ψε0,

QεIR(am)e−iHεT (m)/ε
m−1∏
j=1

(
QεIR(aj)e−iH

εT (j)/ε
)
ψε0

〉
H


=

∑
σ∈{±}

∫
Rd×Rd∗

µ0,σ(dx,dk)

[
eLσT

(1)
(∣∣∣amicro

1,σ

∣∣∣2 ...eLσT (m−1)
(∣∣∣amicro

m−1,σ

∣∣∣2 (eLσT (m)
amicro
m,σ

)))]
(x, k)

+
∑

σ∈{±}

∫
Rd×Sd−1

µH
0,σ(dx,dk)

[
eL

H
σ T

(1)
(∣∣∣ameso

1,σ

∣∣∣2 ...eLH
σ T

(m−1)
(∣∣∣ameso

m−1,σ

∣∣∣2 (eLH
σ T

(m)
ameso
m,σ

)))]
(x, k)

+
〈

e−iH0T (m)
m−1∏
j=1

(
Q1(amacro

j )e−iH0T (j))
η0,

Q1(amacro
m )e−iH0T (m)

m−1∏
j=1

(
Q1(amacro

j )e−iH0T (j))
η0

〉
H

(3.2)

with the objects on the right hand side defined in Sections 2.3 and 2.4.

Theorem 3.1 will be shown in Chapter 4. The limit can be understood as follows. In the
first summand, the initial Wigner limit measure belonging to the microscopic wavelengths
is propagated by the linear Boltzmann equation for a time T (1) and then multiplied by
the first observable

∣∣∣amicro
1,σ

∣∣∣2. The resulting measure continues to propagate for a time
T (2), then picks up another observable and so on, until the last measurement with amicro

m,σ

is made after m steps. Only this part of the dynamics depends on the distribution of
the random field ξ, namely by the definition of Lσ.
The structure of the second summand is similar. However, as it accounts for the behavior
of the mesoscopic wavelenghts much larger than the correlation length of ξ (but much
shorter than the kinetic observation scale), the influence of ξ on the wave motion has
completely vanished in the limit (note that the generator LH

σ does not depend on the
distribution of ξ).
Finally, the third summand describes the propagation of the portion of the wave which
exhibits wavelengths still resolvable on the observation scale. Clearly the wave nature
of its dynamics is fully conserved in the limit, and only governed by the unperturbed
Hamiltonian H0.

In a first step towards self-averaging, one can then also show that the same object we
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have considered in Theorem 3.1 also has vanishing variance. This will require slightly
better properties of the random medium, but we can relax the spacial tightness condition
(2.161) for the initial states, as the following theorem does not require the existence of
an initial limit Wigner measure.
Theorem 3.2. For d ≥ 2, choose a random field ξ of class (d+ 521, 4) and let (ψε0)ε>0
be a sequence of initial states in H fulfilling (2.160) and (2.162). Then for all m ∈ N,
all T (1), ..., T (m) > 0 and all aj,σ ∈ XIR, (j ∈ {1, ...,m}, σ ∈ {±}), we have

lim
ε→0

Var

〈e−iHεT (m)/ε
m−1∏
j=1

(
QεIR(aj)e−iH

εT (j)/ε
)
ψε0,

QεIR(am)e−iHεT (m)/ε
m−1∏
j=1

(
QεIR(aj)e−iH

εT (j)/ε
)
ψε0

〉
H

 = 0.

(3.3)

A proof of Theorem 3.2 is provided in Section 5.4.

Vanishing variance, together with convergence of the expectation from Theorem 3.1,
already shows convergence in probability (and almost sure convergence along a sub-
sequence) to the limit object on the right side of equation (3.2). For the general result
on almost sure convergence presented in Theorem 3.3 below, we have to slightly improve
the differentiability and decorrelation conditions for the field ξ. Moreover, at one point
in the proof of Theorem 3.3, we will require a deterministic control (instead of the usual
bounds on moments) of the disordered dynamics generated by Hε. To do so, it will be
necessary to assume the existence of an almost surely finite random variable Y ≥ 0 such
that

|ξ(x)|+ |∇ξ(x)| ≤ Y (1 + |x|) (3.4)
for all x ∈ Rd. This is a very mild requirement that in particular holds for the two
examples, the Poisson bumps and the cut-off Gaussian field from Sections 2.1.2 and
2.1.3.
To be able to focus on the main ideas in the proof, given in Section 6.2, we will now limit
ourselves to only one measurement, m = 1, and avoid the acoustic singularity altogether
by not allowing the initial states to concentrate near the origin,

lim
λ→0

lim sup
ε→0

∑
σ∈{±}

∫
|k|<λ

dk
∣∣∣ψ̂ε0,σ(k)

∣∣∣2 = 0. (3.5)

Theorem 3.3. Let d ≥ 2 and the medium be of class (d+1641, 4), with growth at infinity
controlled by (3.4). and let (ψε0)ε>0 be a sequence of initial states in H such that (2.160-
2.162), and (3.5) hold. Furthermore, let there be non-negative, bounded Borel measures
µ0,+ and µ0,− on R2d such that W ε [(ψε0)σ] converges weak-* to µ0,σ in FL1(C0)∗, in the
sense of (2.165). Assume finally that there is an α0 > 0 such that

lim
n→∞

sup
ε∈[(n+1)−α0 ,n−α0 ]

∥∥∥ψε0 − ψn−α0
0

∥∥∥
H

= 0. (3.6)
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3. Main theorems

Then there exists a set of “bad medium configurations” Nex of vanishing probability,
P (Nex) = 0, such that for all realizations of the medium ξω with ω ∈ Ω \Nex, all T > 0
and all aσ ∈ FL1(C0), σ ∈ {±}

lim
ε→0

sup
τ∈[0,T ]

∣∣∣〈W ε
[(

e−iHε
ωτ/εψε0

)
σ

]
, aσ

〉
− 〈µτ,σ, aσ〉

∣∣∣ = 0, (3.7)

with the measure µτ,σ =
(
eLστ

)∗
µ0,σ obtained from propagating µ0,σ with the linear

Boltzmann equation (2.137).

In the statement of Theorem 3.3 there is only one condition that is substantially stronger
compared to Theorems 3.1 and 3.2, namely (3.6). Note that this requirement does not
exclude a special type of initial states, but rather prevents the whole sequence of initial
states from running through too large a part of H. Given almost any configuration of
the random medium, an initial state can be chosen such as to produce large deviations
in (3.7) for exactly this choice of disorder. Although deterministic, i.e. independent of
the random medium, a wild enough sequence (ψε0)ε>0 can still turn almost every medium
configuration into a “bad” one. An explicit example in which (3.6) and consequently the
assertion of Theorem 3.3 fails is constructed in Section 6.3. However, as observed at the
end of Section 2.4.2, condition (3.7) can easily be checked to hold true for all “standard”
examples of initial states (ψε0)ε>0, in particular WKB states, which have been at the
center of attention in much of the related literature [8, 9, 16].
It seems appropriate to make a short remark concerning the conditions under which the
above theorems hold. While the assumptions on the initial states are fairly natural, the
extremely high differentiability for the random medium is somewhat unsatisfactory. It
goes without saying that the existence of thousands of derivatives is not a necessary
condition for the Boltzmann equation to emerge in the kinetic limit. The required
medium smoothness could have been considerably reduced by noting that the number of
the “worst-case graphs” often grows much slower than the overall combinatorical terms;
this, however, would have made a much more detailed analysis and classification of
the graphs unavoidable. Another rather wasteful choice is the use of the same stopping
procedure for the Duhamel equation both for the Grough, Arough and the Gend, Aend case in
Lemma 2.14. With these and a few other changes, the proofs could probably be tweaked
to permit for a random medium that is only twenty or thirty times differentiable, but at
the price of totally obscuring the main strategy. Presenting the key ideas in a slightly
suboptimal but understandable fashion was clearly preferable to us.

48



4. Proof of Theorem 3.1

4.1. Expansion of the dynamics

Instead of directly tackling the case of general observables and initial states as defined
in the assumptions of Theorem 3.1, we concentrate on a narrower class of observables in
the main part of the proof, namely operators on H which, for a fixed ε > 0, are given
as

Aεj = Aεj,+P++ +Aεj,−P−−. (4.1)

Here, for each j ∈ {1, ..., 2m− 1} and σ ∈ {±}, Aεj,σ acts on f ∈ L2
(
Rd
)
by

Âεj,σf(k) = aj,σ
(
k − εp(j)/2

)
f̂
(
k − εp(j)

)
. (4.2)

with the momenta p(j) constant rather than integration variables. The functions aj,σ :
Rd → C are two times differentiable, with

‖aj‖C2 = sup
k∈Rd

max
σ∈{±}

max
|α|≤2

∣∣∣∣ ∂α∂kαaj,σ(k)
∣∣∣∣ <∞ (4.3)

for all j ∈ {1, ..., 2m− 1}. We will use a for the collection of functions aj,σ and p for the
collection of momenta p(j), and denote

Cobs = max
j

∣∣∣p(j)
∣∣∣ . (4.4)

Given an initial state ψε0 ∈ H and a vector T =
(
T (1), ...T (m)

)
of observation times

T (j) > 0, consider the random variable that results from propagating the wave with the
perturbed dynamics and measuring it at the times T (1)/ε, (T (1) + T (2))/ε, ...,

J ε = J ε (Hε, ψε0, T, a, p)

=
〈

exp
(
−iHεT

(m)

ε

)(
Aεm+1

)∗
...
(
Aε2m−1

)∗ exp
(
−iHεT

(1)

ε

)
ψε0,

Aεm exp
(
−iHεT

(m)

ε

)
...Aε1 exp

(
−iHεT

(1)

ε

)
ψε0

〉
H
.

(4.5)

Applying a spatial cut-off at R > 0 to produces random variables

J εR = J ε
(
Hε,R, ψε0, T, a, p

)
(4.6)
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4. Proof of Theorem 3.1

corresponding to the cut-off generators Hε,R discussed in and below Lemma 2.11. For
any fixed ε and ψε0 ∈ H, one has

lim
R→∞

J εR = J ε (4.7)

both almost surely and in all Lq (P), q <∞ by Lemma 2.11 and the boundedness of the
operators Aεj : H → H.

In addition to the bounded energy assumption(2.160), we also assume for the initial states
ψε0 ∈ H that ψ̂ε0,± is supported in a bounded ball

{
k ∈ Rd : |k| ≤ L(0)

}
, with L(0) arbitrary

but fixed, i.e. independent of ε > 0. In particular, ψε0 ∈ H1
(
Rd;C2

)
= D

(
Hε,R

)
for all

R > 0. For an N ∈ N to be optimized later, let

L(j)
n = L(0) + n+ (j − 1)N (j ∈ {1, ...,m}, n ∈ N) (4.8)

and denote L(j) =
(
L

(j)
1 , L

(j)
2 , ...

)
.

4.1.1. Duhamel expansion

We now expand the right entry of the scalar product (4.5-4.6), first applying Lemma
2.12 to

Aε1 exp
(
−iHε,RT

(1)

ε

)
ψε0

= Aε1

(
Fmain
N

(
T (1)/ε;R,L(1), ε

)
+RN

(
T (1)/ε;R,L(1), ε

))
ψε0

= Aε1

N−1∑
N=0

FN
(
T (1)/ε;R,L(1), ε

)
+RN

(
T (1)/ε;R,L(1), ε

)ψε0
(4.9)

Adding a second time interval, we do not touch the remainder term from the first interval,
but expand the contribution of the main term further

Aε2 exp
(
−iHε,RT

(2)

ε

)
Aε1 exp

(
−iHε,RT

(1)

ε

)
ψε0

=
N−1∑
N=0

Aε2

(
Fmain
N−N

(
T (2)/ε;R,L(2), ε

)
+RN−N

(
T (2)/ε;R,L(2), ε

))
×Aε1FN

(
T (1)/ε;R,L(1), ε

)
ψε0

+Aε2 exp
(
−iHε,RT

(2)

ε

)
Aε1RN

(
T (1)/ε;R,L(1), ε

)
ψε0

(4.10)
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4.1. Expansion of the dynamics

and finally, after m expansion steps m∏
j=1

Aεj exp
(
−iHε,RT

(j)

ε

)ψε0
=

∑
N(1)+...+N(m)<N

m∏
j=1

(
AεjFN(j)

(
T (j)/ε;R,L(j), ε

))
ψε0

+
m∑
j0=1

∑
N(1)+...+N(j0−1)<N

 m∏
l=j0+1

Aεl exp
(
−iHε,RT

(l)

ε

)×
×Aεj0RN(j0)

(
T (j0)/ε;R,L(j0), ε

) j0−1∏
j=1

(
AεjFN(j)

(
T (j)/ε;R,L(j), ε

))ψε0,
(4.11)

where it is understood that all N (j) ∈ N0, and the value N (j0) ∈ N is given as

N
(j0) = N −

j0−1∑
j=1

N (j). (4.12)

All m applications of Lemma 2.12 were justified as long as the random field ξ is C2,
because ψε0 ∈ D

(
Hε,R

)
and all operators Aεj leave the spaces D

(
Hε,R

)
= H1(Rd;C2)

invariant. On the right side of (4.11), the dynamics has been decomposed into two parts.
As the wave travels through the random medium it may either interact with the random
medium less than altogether N times, with N (j) events in the j-th time interval, and the
n-th scattering event in the j-th inteval controlled by the cut-off threshold L(j)

n . We call
this part of the wave the main part. The remainder, however, consists of all scattering
processes that either lead to at least N interactions, or to a violation of one of the cut-offs
Φ as defined in (2.111). The time interval in which the number of scatterings reaches N
or where a scattering event outside the cut-off occurs, is given the index j0.
For simplicity, we rewrite the main and remainder part from (4.11) as m∏

j=1
Aεj exp

(
−iHε,RT

(j)

ε

)ψε0 = AεmΨ
ε
1 +AεmΨ

ε
2 (4.13)

with Ψ ε1 (main part) and Ψ ε2 (remainder) two random elements of H. They implicitely
depend on the observables Aεj , the momenta p(j), on the times T (j), on ε, the field ξ

(thus the randomness), R and N . After an analogous expansion of the left argument of
the scalar product in (4.5-4.6) yields Ψ ′ε1 and Ψ ′ε2, we have by (4.7)∣∣∣∣E [J ε]− lim

R→∞
E
[〈
Ψ ′
ε
1, A

ε
mΨ

ε
1
〉]∣∣∣∣

≤ lim sup
R→∞

E
[∣∣〈Ψ ′ε1, AεmΨ ε2〉∣∣+ ∣∣〈Ψ ′ε2, AεmΨ ε1〉∣∣+ ∣∣〈Ψ ′ε2, AεmΨ ε2〉∣∣] , (4.14)
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4. Proof of Theorem 3.1

provided those limits exist.
On the left hand side of (4.14), we compare J ε to the main part, which is is expected
to converge to the limit object of Theorem 3.1 (modulo the fact that we currently only
work with a reduced class of observables). We hope that the right hand side of (4.14),
which accounts for the impact of the remainder terms, vanishes in the kinetic limit.

4.1.2. Amplitudes for the main part

To deal with the main contribution E [〈Ψ ′ε1, AεmΨ ε1 〉], we need to understand
〈
FN ′(m)

(
t(m);R,L(m), ε

)m−1∏
j=1

(
Aε2m−j

)∗
FN ′(j)

(
t(j);R,L(j), ε

)ψε0, m∏
j=1

AεjFN(j)

(
t(j);R,L(j), ε

)ψε0
〉
H

,

(4.15)

with N (j), N ′(j) ∈ N0. Here, we have replaced the rescaled T (j)

ε by a vector t ∈ Rm+ of
general times t(j) > 0, and denote |t| = t(1) + ...+ t(m). To bring all operators on the right
side of the scalar product, set N (j), j ∈ {1, ...,m} to be the number of scatterings in the
j-th time interval on the right side of the scalar product, and N (j), j ∈ {m+ 1, ..., 2m}
to be the number N ′(2m+1−j) of scatterings in the 2m+ 1− j-th time interval on the left
side of the scalar product, yielding a vector N ∈ N2m

0 . So, for example, N (1) and N (2m)

belong to the same (the first) time interval, but they are typically not equal. The overall
number of scattering events is

|N | = N (1) + ...+N (2m) ≤ 2N − 2. (4.16)

Further, set for j ∈ {m+ 1, ..., 2m}

L(j)
n = L

(2m+1−j)
N(j)+1−n, n ∈ {1, ..., N (j)},

t(j) = t(2m+1−j),
(4.17)

and let ∗(j) indicate adjoint operators whenever j ∈ {m + 1, ..., 2m}. Thus, (4.15)
equals〈

ψε0, FN(2m)

(
t(2m);R,L(2m), ε

)∗2m−1∏
j=1

AεjFN(j)

(
t(j);R,L(j), ε

)∗(j)ψε0
〉
H

. (4.18)

In time interval j, the wave undergoes N (j) scatterings, so all |N | scattering events can
be labeled by the index set

I(N) =
{

(j, n) : j ∈ {1, ..., 2m}, n ∈ {1, ..., N (j)}
}
. (4.19)
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4.1. Expansion of the dynamics

Those scatterings cause N (j) momentum changes in the j-th time interval, so there are
N (j) + 1 momentum variables for each time interval, and one can collect all momenta in
all time intervals into

{
k

(j)
n : (j, n) ∈ I0(N)

}
, with index set

I0(N) =
{

(j, n) : j ∈ {1, ..., 2m}, n ∈ {0, ..., N (j)}
}
. (4.20)

We introduce an ordering of the index set by defining for (j1, n1) , (j2, n2) ∈ Z2 the
lexicographic order ≺, that is

(j1, n1) ≺ (j2, n2)⇔
{
j1 < j2 or
j1 = j2 and n1 < n2.

(4.21)

The 2×2 matrix structure of all operators is accounted for by the signs σ(j)
n , (j, n) ∈ I0(N).

After encoding the conjugation ∗(j) in a sign

τ (j) =
{

+1 if j ∈ {1, ...,m},
−1 if j ∈ {m+ 1, ..., 2m},

(4.22)

one obtains the Duhamel expansion of the main term,〈
FN ′(m)

(
t(m);R,L(m), ε

)m−1∏
j=1

(
Aε2m−j

)∗
FN ′(j)

(
t(j);R,L(j), ε

)ψε0, m∏
j=1

AεjFN(j)

(
t(j);R,L(j), ε

)ψε0
〉
H

=
∫
Rd(N(2m)+1)

dk(2m) ∑
σ(2m)∈{±}N(2m)+1

...

∫
Rd(N(1)+1)

dk(1) ∑
σ(1)∈{±}N(1)+1

2m−1∏
j=1

a
j,σ

(j)
N(j)

k(j+1)
0 + k

(j)
N(j)

2

 δ (k(j+1)
0 − k(j)

N(j) − εp(j)
)
δ
(
σ

(j)
N(j) , σ

(j+1)
0

)
2m∏
j=1

∫
RN

(j)+1
+

ds(j)δ

N(j)∑
n=0

s(j)
n − t(j)


∏

(j,n)∈I0(N)
exp

(
−2πi

∣∣∣k(j)
n

∣∣∣σ(j)
n τ (j)s(j)

n

)
∏

(j,n)∈I(N)

[
(−iτ (j)√επ)

(∣∣∣k(j)
n

∣∣∣σ(j)
n−1 +

∣∣∣k(j)
n−1

∣∣∣σ(j)
n

)
ξ̂R
(
k(j)
n − k

(j)
n−1

)
×Φ

(
k(j)
n , k

(j)
n−1, L

(j)
n

)]
ψ̂ε

0,σ(1)
0

(
k

(1)
0

)
ψ̂ε

0,σ(2m)
N(2m)

(
k

(2m)
N(2m)

)
.

(4.23)
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4. Proof of Theorem 3.1

The deltas for the k and σ variables in (4.23) indicate that the observables Aεj add
an −εp(j) shift to the momentum k, while they are diagonal with respect to the two-
component structure of H. Now we first want to take the expectation and then the
R→∞ limit of (4.23). To this end, note that only k(1)

0 and k(j)
n , (j, n) ∈ I(N) are actual

integration variables, while k(j)
0 , j > 1 are already determined by the deltas. We switch

the integration variables k(j)
n , (j, n) ∈ I(N) to

θ(j)
n = k(j)

n − k
(j)
n−1 (j ∈ {1, ...,m}, n ∈ {1, ..., N (j)}). (4.24)

One thus has to evaluate a limit of the form

lim
R→∞

E
∑

σ∈{±}|N|+2m

∫
Rd

dk(1)
0

∫
R|N|d

dθf
(
k

(1)
0 , p, σ, θ

) ∏
(j,n)∈I(N)

ξ̂R(θ(j)
n ), (4.25)

with f a function continuous in the θ variables such that

∣∣∣f (k(1)
0 , p, σ, θ

)∣∣∣ ≤ Cε,t
∣∣∣∣∣∣ψ̂ε

(
k

(1)
0

)
ψ̂ε

k(1)
0 + ε

2m−1∑
j=1

p(j)
σ +

∑
(j,n)∈I(N)

θ(j)
n

∣∣∣∣∣∣
×

2m−1∏
j=1
‖aj‖C0

∏
(j,n)∈I(N)

(
2L(j)

n + 1 +
∣∣∣θ(j)
n

∣∣∣) .
(4.26)

Here, the definition of the cut-off function Φ was used to estimate∣∣∣∣∣∣k(j)
n

∣∣∣σ(j)
n−1 +

∣∣∣k(j)
n−1

∣∣∣σ(j)
n

∣∣∣Φ (k(j)
n , k

(j)
n−1, L

(j)
n

)
≤ 2 min

{∣∣∣k(j)
n−1

∣∣∣ , ∣∣∣k(j)
n

∣∣∣}Φ (k(j)
n , k

(j)
n−1, L

(j)
n

)
+
∣∣∣θ(j)
n

∣∣∣ ≤ 2L(j)
n + 1 +

∣∣∣θ(j)
n

∣∣∣ . (4.27)

Thus, by dominated convergence, Lemma 2.1 is applicable (with exponent q = 1) to the
θ integral if m > d+ 1, and we can state our findings in the following

Lemma 4.1. With all definitions made as above, for a random field ξ of class (m, 0),
with m > d+ 1, one has

lim
R→∞

E
〈
ψε0, FN(2m)

(
t(2m);R,L(2m), ε

)∗2m−1∏
j=1

AεjFN(j)

(
t(j);R,L(j), ε

)∗(j)ψε0
〉
H

=
∑

S∈π∗(I(N))
K
(
ψε0, ε, a, p, L

(0), t, N, S
)
,

(4.28)

where π∗ (I(N)) denotes partitions of the set I(N) without single-element clusters. The
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4.1. Expansion of the dynamics

amplitude of the partition S is given as

K
(
ψε0, ε, a, p, L

(0), t, N, S
)

= (
√
επ)|N |

∫
Rd(N(2m)+1)

dk(2m) ∑
σ(2m)∈{±}N(2m)+1

...

∫
Rd(N(1)+1)

dk(1) ∑
σ(1)∈{±}N(1)+1

∏
A∈S

δ
 ∑
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a
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2
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∏
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n

)
∏

(j,n)∈I(N)

[
(−iτ (j))
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n
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Φ
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 .
(4.29)

For better readability, we have simultaneously used the k and θ variables as introduced
in (4.24).

The next step is to rewrite the unperturbed time propagation between the scattering
events in resolvent formalism. As in [32], we take l ∈ N0, τ ≥ 0, (w0, ..., wl) = w ∈ Cl+1

with Imwl ≤ 0 and define

Kl (w, τ) =
∫
R+

l+1
dsδ

(
τ −

l∑
n=0

sl

)
exp

(
−i

l∑
n=0

wlsl

)
. (4.30)

By standard Fourier calculus,

Lemma 4.2. Let τ ≥ 0, γ > 0, and (w0, ..., wl) = w ∈ Cl+1 with Imwl ≤ 0. While for
l = 0

e−γτK0(w, τ) =
∫
R

dα
2π e

−iατ i

α− w0 + iγ
(4.31)

is only true in a in L2
α → L2

τ sense,

Kl (w, τ) = eγτ
∫
R

dα
2π e

−iατ
l∏

n=0

(
i

α− wn + iγ

)
(4.32)

holds pointwise in τ ∈ [0,∞) whenever l ≥ 1.
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4. Proof of Theorem 3.1

To have a unified notation, we will formally use (4.32) also for l = 0 and will only
comment on this special case if the corresponding contributions really have to be treated
differently.
By Lemma 4.1 and 4.2 and an application of Fubini’s theorem, one obtains the represen-
tation of the amplitude we will use for a large part of our analysis
Lemma 4.3. Under the conditions and with the notation of Lemma 4.1, and for any
γ > 0,

K
(
ψε0, ε, a, p, L

(0), t, N, S
)

= (
√
επ)|N |

∫
Rd(N(2m)+1)

dk(2m) ∑
σ(2m)∈{±}N(2m)+1

...
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∏
A∈S

δ
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n
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)
2m−1∏
j=1

a
j,σ

(j)
N(j)

k(j+1)
0 + k

(j)
N(j)

2

 δ (k(j+1)
0 − k(j)

N(j) − εp(j)
)
δ
(
σ

(j)
N(j) , σ

(j+1)
0

)
2m∏
j=1

[
eγt

(j)
∫
R

dα(j)

2π e−iα
(j)t(j)

]
∏

(j,n)∈I0(N)

(
i
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n τ (j)|k(j)

n |+ iγ

)
∏

(j,n)∈I(N)

[
(−iτ (j))

(∣∣∣k(j)
n

∣∣∣σ(j)
n−1 +

∣∣∣k(j)
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∣∣∣σ(j)
n

)
Φ
(
k(j)
n , k

(j)
n−1, L

(j)
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)]

ψ̂ε
0,σ(1)

0

(
k

(1)
0
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ψ̂ε

0,σ(2m)
N(2m)

k(1)
0 + ε

2m−1∑
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p(j)

 .
(4.33)

Here, the α(j) integrations can be interchanged with the k integrals for all j such that
N (j) ≥ 1.

4.1.3. Amplitudes for the remainder

Next, an analogue to Lemma 4.1 for the remainder term, i.e. the right side of equation
(4.14) has to be found. Assume that “remainder-type” R

N
(j0) scattering occurs for the

first time in the j0-th time interval, j0 ∈ {1, ...,m}. To apply the smoothed Duhamel
expansion from Lemma 2.14, pick an M ∈ N and a κ > 0 to be optimized later. We need
bounds on all terms occuring in this expansion and have to estimate

E

∥∥∥∥∥∥Grough
M,Nfin

(
t(j0);R,L(j0), ε

)∏
j<j0

AεjFN(j)

(
t(j);R,L(j), ε

)ψε0
∥∥∥∥∥∥

2

H

, (4.34)

56



4.1. Expansion of the dynamics

for 0 ≤ M < M , 1 ≤ Nfin < N
(j0), as well as the same expression (4.34) with Grough

M,Nfin

replaced by Arough
M,Nfin

, Gend
M,N

(j0) or Aend
M,N

(j0) , each as defined in Lemma 2.14. In order
to avoid redefining most of the notation from the expansion of the main part, we will
without loss of generality proof all estimates in the case j0 = m. Even in this case, we
have to accommodate for the fact that them-th time interval now has a more complicated
scattering structure. There are N (j) ∈ N0 scattering processes in the j-th, j < m, time
interval, so denote

N< =
(
N (1), ..., N (m−1)

)
, (4.35)

with
m−1∑
j=1

N (j) < N (4.36)

so that

N
(m) = N −

m−1∑
j=1

N (j) (4.37)

is positive. In the last time interval, the wave scatters off the medium N (m) times, with

N (m) =


Nfin +M in the Grough case,
Nfin +M in the Arough case,
N

(m) +M in the Gend case,
N

(m) +M in the Aend case.

(4.38)

This time, define N ∈ N2m
0 by the above N (j) for j ∈ {1, ...,m}, and N (j) = N (2m+1−j)

for j ∈ {m + 1, ..., 2m}, so, compared to the expansion of the main part, the vector N
is now always symmetric due to the quadratic structure of (4.34). The index sets I(N),
I0(N) as well as k(j)

n , with (j, n) ∈ I0(N), and θ(j)
n for (j, n) ∈ I(N), are given as usually,

so are the cutoff parameters L(j)
n and the signs σ(j)

n and τ (j). However, again due to the
quadratic structure of (4.34), the observables are slightly different, while aj,σ and p(j)

are defined as before for j ∈ {1, ...,m− 1}, we now have set for j ∈ {m+ 1, ..., 2m− 1}
that

aj,± = a2m−j,±,

p(j) = −p(2m−j).
(4.39)

Finally, as the central observable is missing (or rather, the identity on H) in this case,
am ≡ 1, p(m) = 0.
It is important to note that both between the main and remainder part, as well

as between the different contributions to the remainder, the N (j), p(j), aj,σ variables
mean slightly different, but structurally closely related objects. To be able to exploit
similarities between the cases without rewording whole paragraphs, we use the same
variables for them as it will always be clear which case is currently under consideration,
so no ambiguities will arise.
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4. Proof of Theorem 3.1

Lemma 4.4. For any M ∈ {0, ...,M − 1}, a random field ξ of class (m, 0) with m >

d+ (2 +M), N< ∈ Nm−1
0 obeying (4.36) and Nfin ∈ {1, ..., N

(m) − 1},

lim
R→∞
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∥∥∥∥∥∥Grough
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)ψε0
∥∥∥∥∥∥

2
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R
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(0), t, N<, Nfin,M, S
) (4.40)

with N (m) = Nfin +M and the amplitude R
(
Grough, ..., S

)
of each partition S given as

R
(
Grough, ψε0, ε, κ, a, p, L

(0), t, N<, Nfin,M, S
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]
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(4.41)

with the cutoff function

Φ(j)
n =


Φ for (j, n) ≺ (m,Nfin) or (j, n) � (m+ 1, N (m+1) + 1−Nfin)
1− Φ for (j, n) = (m,Nfin) or (j, n) = (m+ 1, N (m+1) + 1−Nfin)
1 for (j, n) � (m,Nfin) and (j, n) ≺ (m+ 1, N (m+1) + 1−Nfin)

(4.42)

and the damping parameter

κ(j)
n =

{
0 for (j, n) ≺ (m,Nfin) or (j, n) � (m+ 1, N (m+1) −Nfin)
κ for (j, n) � (m,Nfin) and (j, n) � (m+ 1, N (m+1) −Nfin).

(4.43)
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4.1. Expansion of the dynamics

Proof. This proof is very similar to the reasoning leading up to Lemmas 4.1 and 4.3, the
only substantial difference being that starting from the Nfin-th interaction in the m-th
interval, the scattering is no longer controlled by the cutoff function Φ, and the bound
(4.27) is not available for the last M + 1 scattering events. Instead, if Nfin > 1 (which is
in particular always the case if m = 1 due to the support properties of ψ̂ε0), consider the
last controlled momentum change∣∣∣k(m)

Nfin−1

∣∣∣+ ∣∣∣k(m)
Nfin−2

∣∣∣ ≤ 2L(m)
Nfin−1 + 1 +

∣∣∣θ(m)
Nfin−1

∣∣∣ (4.44)

and find for n ∈
{
Nfin, ..., N

(m)
}

∣∣∣k(m)
n

∣∣∣+ ∣∣∣k(m)
n−1

∣∣∣ ≤ 2L(m)
Nfin−1 + 1 +

∣∣∣θ(m)
Nfin−1

∣∣∣+ n∑
l=Nfin

(∣∣∣θ(m)
l

∣∣∣+ ∣∣∣θ(m)
l−1

∣∣∣) (4.45)

to obtain the estimate
Nfin+M∏
n=Nfin−1

(∣∣∣k(m)
n

∣∣∣+ ∣∣∣k(m)
n−1

∣∣∣) ≤ (C(|N |+ 〈L(0)〉))M+2M ! sup∑
en=M+2

Nfin+M∏
n=Nfin−1

〈
θ(m)
n

〉en
(4.46)

with some universal C <∞. For all remaining k(j)
n , j ≤ m variables, one can still utilize

the original (4.27). By the same argument for the k(j)
n , j > m, variables, we have an

estimate analogous to (4.26) with the only difference that some of the θ variables may
now come with exponents up to M + 2, so Lemma 2.1 applies whenever m > d+ (M + 2).
If Nfin = 1, one has to replace (4.45) by

(∣∣∣k(m−1)
N(m−1)

∣∣∣+ ∣∣∣k(m−1)
N(m−1)−1

∣∣∣)M+1∏
n=1

(∣∣∣k(m)
n

∣∣∣+ ∣∣∣k(m)
n−1

∣∣∣)

≤ (C(|N |+ 〈L(0)〉))M+2M !
〈
θ

(m−1)
N(m−1)

〉M+2 〈
εp(m−1)

〉M+1
sup∑
en=M+2

M+1∏
n=1

〈
θ(m)
n

〉en
,

(4.47)

to see that m > d+ (M + 2) also suffices in this case. The resolvent formulation is then
a straightforward consequence of Lemma 4.2.

By the same argument,

Lemma 4.5. For any M ∈ {0, ...,M − 1}, any random field ξ of class (m, 0) with
m > d+ (2 +M) and N< ∈ Nm−1

0 obeying (4.36)

lim
R→∞

E

∥∥∥∥∥∥Gend
M,N

(m)

(
t(m);R,L(m), ε

)∏
j<m

AεjFN(j)

(
t(j);R,L(j), ε

)ψε0
∥∥∥∥∥∥

2

H

=
∑

S∈π∗(I(N))
R
(
Gend, ψε0, ε, κ, a, p, L

(0), t, N<, N,M, S
)
.

(4.48)
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4. Proof of Theorem 3.1

Here, N (m) = N
(m) + M and the amplitude R

(
Gend, ..., S

)
of each partition S given

almost like R
(
Grough, ..., S

)
in equation (4.41), only with a cutoff function

Φ(j)
n =

Φ for (j, n) ≺
(
m,N

(m)) or (j, n) �
(
m+ 1, N (m+1) + 1−N (m))

1 for (j, n) �
(
m,N

(m)) or (j, n) �
(
m+ 1, N (m+1) + 1−N (m)) (4.49)

and the damping parameter

κ(j)
n =

0 for (j, n) ≺
(
m,N

(m)) or (j, n) �
(
m+ 1, N (m+1) −N (m))

κ for (j, n) �
(
m,N

(m)) or (j, n) �
(
m+ 1, N (m+1) −N (m))

.
(4.50)

Now, one is left with estimates for the Arough
M,Nfin

and Aend
M,N

(m) . The main difference to the
Grough and Gend terms is the absence of a propagator after the last interaction with the
medium, so the amplitudes are “amputated”, like the K(amp) amplitudes in [32]. This
results in two missing resolvents in Lemmas 4.6 and 4.7, as can be seen in equation
(4.52).

Lemma 4.6. For ξ of class (m, 0), m > d+ (2 +M), N< ∈ Nm−1
0 obeying (4.36), and

any Nfin ∈ {1, ..., N
(m) − 1},

lim
R→∞

E

∥∥∥∥∥∥Arough
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(
t(m);R,L(m), ε

)∏
j<m

AεjFN(j)
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2

H

=
∑

S∈π∗(I(N))
R
(
Arough, ψε0, ε, κ, a, p, L

(0), t, N<, Nfin,M, S
) (4.51)
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4.1. Expansion of the dynamics

with N (m) = Nfin +M and the amplitude R
(
Arough, ..., S

)
of each partition S given as

R
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Arough, ψε0, ε, κ, a, p, L

(0), t, N<, Nfin,M, S
)
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(4.52)

with the cutoff function

Φ(j)
n =


Φ for (j, n) ≺ (m,Nfin) or (j, n) � (m+ 1, N (m+1) + 1−Nfin)
1− Φ for (j, n) = (m,Nfin) or (j, n) = (m+ 1, N (m+1) + 1−Nfin)
1 for (j, n) � (m,Nfin) and (j, n) ≺ (m+ 1, N (m+1) + 1−Nfin)

(4.53)

and the damping parameter

κ(j)
n =

{
0 for (j, n) ≺ (m,Nfin) or (j, n) � (m+ 1, N (m+1) −Nfin)
κ for (j, n) � (m,Nfin) and (j, n) � (m+ 1, N (m+1) −Nfin).

(4.54)

Last but not least,

Lemma 4.7. For ξ in class (m, 0) with m > d + (2 + M) and N< ∈ Nm−1
0 such that

(4.36) holds,

lim
R→∞

E

∥∥∥∥∥∥Aend
M,N

(m)

(
t(m);R,L(m), ε

)∏
j<m

AεjFN(j)

(
t(j);R,L(j), ε

)ψε0
∥∥∥∥∥∥

2

H

=
∑

S∈π∗(I(N))
R
(
Aend, ψε0, ε, κ, a, p, L

(0), t, N<, N,M, S
) (4.55)
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4. Proof of Theorem 3.1

with N (m) = N
(m) + M and the amplitude R

(
Aend, ..., S

)
of each partition S given as

in equation (4.52), only with and cut-off functions and damping parameters defined as
in Lemma 4.5,

Φ(j)
n =

Φ for (j, n) ≺
(
m,N

(m)) or (j, n) �
(
m+ 1, N (m+1) + 1−N (m))

1 for (j, n) �
(
m,N

(m)) or (j, n) �
(
m+ 1, N (m+1) + 1−N (m)) (4.56)

κ(j)
n =

0 for (j, n) ≺
(
m,N

(m)) or (j, n) �
(
m+ 1, N (m+1) −N (m))

κ for (j, n) �
(
m,N

(m)) or (j, n) �
(
m+ 1, N (m+1) −N (m))

.
(4.57)

4.1.4. Graph representation

To estimate the amplitudes given in Lemmas 4.3 and 4.4-4.7, we will represent the
contribution stemming from a partition S ∈ π∗ (I(N)) by a graph similar to the ones
introduced in [16] and also employed in [32]. Our graphs and their classification will
be more complicated due to the more detailed structure of the Duhamel expansion and
the multi-time measurements. As shown in Figures 4.1 and 4.2, the wave function ψε is
propagated in from the left and the right, with the solid lines denoting the resolvents
regularized only by iγ, and the dashed lines the resolvents regularized by i(γ + κ). The
graphs are oriented like a scalar product, i.e. with ψ̂ε0 on the right and ψ̂ε0 on the left, so
with respect to our ordering ≺, indices increase from right to left. The measurements by
observables Aεj are indicated by empty squares. Following the notation of Figures 2.1 and
2.2, a solid diamond denotes an interaction with the medium when a cut-off Φ is present,
an empty diamond represents scattering with 1− Φ, and a black bullet a full scattering.
All three kinds of interactions cause a momentum change and thus a θ variable. Those
variables are grouped together by the delta functions induced by the different clusters
A ∈ S, so we connect all interactions belonging to the same cluster. Note that there are
no one-element clusters as only partitions from π∗(I(N)), i.e. partitions without isolated
elements, contribute.

Definition 4.1. A partition S ∈ π∗ (I(N)) is called
• higher order, if it contains an A ∈ S with |A| > 2. Otherwise it is called a

pairing, and
• a crossing pairing, if there are pairs {(j1, n1) , (j2, n2)} ∈ S and
{(̃1, ñ1) , (̃2, ñ2)} ∈ S with (j1, n1) ≺ (̃1, ñ1) ≺ (j2, n2) ≺ (̃2, ñ2),

• a nested pairing if it is a non-crossing pairing for which a j ∈ {1, ..., 2m} as
well as two pairs {(j, n1) , (j, n2)} ∈ S and {(j, ñ1) , (j, ñ2)} ∈ S exist, such that
n1 < ñ1 < ñ2 < n2,

• a non-markovian simple pairing if it is not crossing or nested and there is a
pair {(j1, n1) , (j2, n2)} ∈ S such that neither j1 = j2, nor j1 = 2m+ 1− j2.

• a markovian simple pairing otherwise.
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4.2. Basic estimates

A new feature compared to the classification in [32], is the occurence of non-markovian
simple pairings. These account for the correlation of scattering events across different
time intervals.

ψ̂ε0ψ̂ε0
k

(1)
0k

(2)
0k

(2)
1k

(2)
2k

(3)
0k

(3)
1k

(3)
2k

(4)
0k

(4)
1

Aε1Aε2Aε3

Figure 4.1.: An example of a graph. It belongs to a K amplitude in the sense of Lemma
4.3, with m = 2, N = (0, 2, 2, 1) and a (higher order) partition S consisting
of one pair and one triple.
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k

(2)
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(2)
3

ψ̂ε0ψ̂ε0

Figure 4.2.: A graph belonging to an R(Grough, ...) amplitude, with m = 1, Nfin = 2,
M = 1. The partition S is a crossing pairing. Note that in contrast to
Figure 4.1, the observable in the middle is just the identity operator 1H on
H.

4.2. Basic estimates

As in [16, 32], the key ingredient of the proof of Theorem 3.1 is to find increasingly sharp
bounds on the size of all K and R amplitudes, depending on which category of Definition
4.1 the partition S falls into. The first, basic estimates presented in Lemmas 4.8 and 4.9
will suffice for higher order partitions S; the idea for estimates on the contributions of
pairings S will be to improve the proof of the two Lemmas below by exploiting special
structures of S.

Lemma 4.8. (Basic estimate, K amplitudes.) For a random field ξ of class (d + 2, 0)
and any γ ∈ (0, 1/2],∣∣∣K (ψε0, ε, a, p, L(0), t, N, S

)∣∣∣
≤ C |N |+2m

(
〈L(0)〉+mN

)2|N | ∏
A∈S

∥∥∥g|A|∥∥∥
d+2

× e2γ|t|ε|N |/2γ−|S| |log γ||N |+2m ‖ψε0‖
2
H

2m−1∏
j=1
‖aj‖C0 ,

(4.58)

with a C <∞ only depending on dimension d.

63



4. Proof of Theorem 3.1

Proof. Because of the delta functions induced by the clusters A ∈ S, we have for j ∈
{1, ..., 2m} and n ∈ {0, ..., N (j)}

k(j)
n = k

(1)
0 + ε

∑
̃<j

p(̃) +
∑

(̃,ñ)∈I(N):
(̃,ñ)�(j,n)

(j,n)≺maxA(̃,ñ)

θ
(̃)
ñ , (4.59)

where A(̃, ñ) is the cluster A ∈ S that contains (̃, ñ), and max is defined with respect to
≺. Now each k variable is either of the form k

(j)
0 , j ∈ {1, ..., 2m}, or k(j)

n , (j, n) ∈ I(N).
In the latter case, (j, n) ∈ I(N) is called “free”, if (j, n) ≺ maxA(j, n) (as in this case,
θ

(j)
n is really a new integration variable) and “dependent” if (j, n) = maxA(j, n) (because
then, the value of θ(j)

n is already determined by the θ(̃)
ñ with (̃, ñ) ≺ (j, n) and the delta

functions). Assume for the moment that N (j) ≥ 1 for all j ∈ {1, ..., 2m} and note that
by the estimate〈

k(j)
n

〉
Φ
(
k(j)
n , k

(j)
n−1, L

(j)
n

)
≤
〈1

2 + L(j)
n +

∣∣∣θ(j)
n

∣∣∣〉 , (n ∈ {1, ..., N (j)}), (4.60)

a medium smoothness m ≥ d+ 2 yields the existence of an only d-dependent constant
C <∞ such that∣∣∣K (ψε0, ε, a, p, L(0), T,N, S

)∣∣∣
≤ C |N |

(
〈L(0)〉+mN

)2|N |√
ε
|N |
e2γ(t(1)+...+t(m)) ∏

A∈S

∥∥∥g|A|∥∥∥
d+2

2m−1∏
j=1
‖aj‖C0

∑
σ∈{±}|N|+2m

∫
Rd

dk(1)
0

∣∣∣∣ψ̂ε0,σ(1)
0

(
k

(1)
0

)∣∣∣∣
∣∣∣∣∣∣ψ̂ε0,σ(2m)

N(2m)

k(1)
0 + ε

2m−1∑
j=1

p(j)

∣∣∣∣∣∣
∏

(j,n)∈I(N)

(∫
Rd

dθ(j)
n

)∫
R2md

dα(1)...dα(2m) ∏
A∈S

δ
 ∑

(j,n)∈A
θ(j)
n

∏
(j,n)∈I0(N)

1∣∣∣α(j) − 2πσ(j)
n τ (j)|k(j)

n |+ iγ
∣∣∣∏

(j,n)∈I(N)

(〈
θ(j)
n

〉−d 〈
k(j)
n

〉−1
)
,

(4.61)

where it is understood that all k variables are calculated from the p and θ variables by
(4.59). For a choice of signs σ and a fixed k

(1)
0 , focus on the last three lines of (4.61).

Altogether, there are 2m+|N | resolvents, each belonging to one k variable. For resolvents
associated with the dependent k variables, take the L∞ estimate

sup
k∈Rd

1
|α± 2π|k|+ iγ| 〈k〉

≤ C

γ 〈α〉
. (4.62)

For the k(j)
n with free (j, n) ∈ I(N), and the k(j)

0 , we iterate the following procedure
(which is a straightforward generalization of Lemma 4.23 in [32]) until there are no more
resolvents left: Take the largest (with respect to ≺) remaining (j, n).
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4.2. Basic estimates

• if (j, n) ∈ I(N), k(j)
n = θ

(j)
n + ... is by construction and (4.59) the only remaining k

variable depending on θ(j)
n , so integrating out θ(j)

n generates a factor∫
Rd

dθ(j)
n

1∣∣∣α(j) − 2πσ(j)
n τ (j)|k(j)

n |+ iγ
∣∣∣ 〈k(j)

n

〉〈
θ

(j)
n

〉d ≤ C| log γ|〈
α(j)〉 , (4.63)

C only depending on d.

• if n = 0, there is already a factor
〈
α(j)

〉−N(j)

, N (j) ≥ 1 from the estimates (4.62)
and (4.63), and one can integrate out α(j),∫

R
dα(j) 1∣∣∣α(j) − 2πσ(j)

0 τ (j)|k(j)
0 |+ iγ

∣∣∣ 〈α(j)〉 ≤ C| log γ|. (4.64)

In total, there are |S| factors of type (4.62), |N | − |S| factors of type (4.63) and 2m
estimates (4.64). Now only k(1)

0 remains to be integrated over, which is trivial thanks to
ψε0 ∈ H. The sum over all σ can be accounted for by a factor 2|N |+2m. After possibly
redefining C, the claim follows. In case that N (j) = 0 for some j, there are no α(j) or
θ

(j)
n variables to be integrated over, and one is left with only a factor 1 from the L∞
estimate of

k
(j)
0 7→ exp

(
−2πi

∣∣∣k(j)
0

∣∣∣σ(j)
0 t(j)

)
(4.65)

for these particular j, while all k(̃)
n belonging to ̃ with N (̃) ≥ 1 are treated as before.

Lemma 4.9. (Basic estimate, R amplitudes.) For ξ in class (d + 2(M + 2), 0), γ ∈
(0, 1/2], κ > 0, M ∈ {0, ...,M − 1}, N< ∈ Nm−1

0 , obeying (4.36), Nfin ∈ {1, ..., N
(m)− 1},

and S ∈ π∗(I(N))∣∣∣R (Grough, ψε0, ε, κ, a, p, L
(0), t, N<, Nfin,M, S

)∣∣∣
≤ C |N |+2m

(
〈L(0)〉+mN

)2|N |+4M+4
〈εCobs〉4M+4 ∏

A∈S

∥∥∥g|A|∥∥∥
d+2(M+2)

× e2γ|t|ε|N |/2γ−|S| |log γ||N |+2m ‖ψε0‖
2
H

m−1∏
j=1
‖aj‖2C0 ,

(4.66)

where C is a constant only depending on dimension d. The same bound also holds for
the amplitudes R

(
Gend, ψε0, ε, κ, a, p, L

(0), t, N<, N,M, S
)
,

R
(
Arough, ψε0, ε, κ, a, p, L

(0), t, N<, Nfin,M, S
)
, and

R
(
Aend, ψε0, ε, κ, a, p, L

(0), t, N<, N,M, S
)
,

with N (m), and thus N appropriately defined by (4.38) in each respective case.

Proof. For the most part, one can follow the proof of Lemma 4.8. The stronger require-
ment m ≥ d+ 2(M + 2) and the Cobs factor account for the up to M + 1 “uncontrolled”
jumps starting at (m,Nfin) or (m,N (m)), respectively, as already observed in the proof
of Lemma 4.4.
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4. Proof of Theorem 3.1

4.3. Improved estimates

4.3.1. Amputated graphs

In the last proof, we ignored the better estimates that could be obtained from the
resolvents which contain the larger regularizing parameter γ + κ instead of γ, or are
completely missing (for the amputated R(Aend, ...) and R(Arough, ...)). We will utilize
those improvements in the next Lemma 4.10. If κ scales like εϑ, ϑ < 1, the L∞ bounds
(4.62) become much smaller, the L1 estimates (4.63), however, do not change much due
to their logarithmic dependence on γ. Therefore, one essentially has to count the number
of L∞ estimates in the “fade-out” portion of the Duhamel expansion. In [32], this was
done rather rather coarsely, necessitating a fade-out expansion of length O

(
N(ε)

)
, which

diverges as ε → 0. Because of the unbounded momentum space, we need to be able
to stop the expansion in only finitely many steps after the first interaction of the wave
with the “rough” part of the random field, which we achieve by a symmetry argument,
effectively swapping the L1 and L∞ bounds.

Lemma 4.10. (Improved estimate for amputated amplitudes.) Let ξ be of class (d +
2(M + 2), 0), γ ∈ (0, 1/2], κ ∈ (0, 1], N< ∈ Nm−1

0 such that (4.36) holds, Nfin ∈
{1, ..., N (m)−1} and S ∈ π∗(I(N)). Then the estimate (4.66) is still valid after the right
hand side has been multiplied by ( γ

γ+κ)M+|S|−|N |/2, so∣∣∣R (Arough, ψε0, ε, κ, a, p, L
(0), t, N<, Nfin,M, S

)∣∣∣
≤ C |N |+2m

(
〈L(0)〉+mN

)2|N |+4M+4
〈εCobs〉4M+4 ∏

A∈S

∥∥∥g|A|∥∥∥
d+2(M+2)

e2γ|t|( γ

γ + κ
)M ( ε

γ
)|N |/2(γ + κ)|N |/2−|S| |log γ||N |+2m ‖ψε0‖

2
H

m−1∏
j=1
‖aj‖2 .

(4.67)

The analogous estimate holds for R
(
Aend, ψε0, ε, κ, a, L

(0), t, N<, N,M, S
)
, with the S ∈

π∗(I(N)), and N appropriately defined.

Proof. For the R(Arough, ...) case, take into account the improved resolvent estimates
ignored in the proof of Lemma 4.9. If one defines for each A ∈ S the elements minA and
maxA with respect to ≺, r = |N |− 2|S| denotes the number of “extra” elements in I(N)
that are neither “minimal” nor “maximal”, that is neither minA nor maxA for any A ∈ S.
In the sense of the proof of Lemma 4.8, minimal or extra (j, n) are free, while maximal
(j, n) are dependent. On the other hand, exactly the 2M + 2 resolvents belonging to k(j)

n ,
(m,Nfin) � (j, n) � (m + 1,M) are “κ resolvents” or (for k(m)

Nfin+M and k
(m+1)
0 ) are in

fact no resolvents at all, but factors of 1. We thus can improve their L∞ estimate (4.62),
which yields an overall improvement by a factor ( γ

γ+κ)l1 , with l1 the number of “maximal”
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(j, n) with (m,Nfin) � (j, n) � (m + 1,M). By symmetry (the choice to integrate out
the resolvents in decreasing ≺ order was arbitrary!), we can also obtain a factor ( γ

γ+κ)l2 ,
l2 the number of “minimal” (j, n) with (m,Nfin + 1) � (j, n) � (m+ 1,M + 1). However,
as each (j, n) ∈ I(N) with (m,Nfin + 1) � (j, n) � (m + 1,M) has to be “minimal”,
“maximal” or “extra”,

l1 + l2 ≥ 2M − r, (4.68)

and we pick the larger exponent for γ
γ+κ , which is

max{l1, l2} ≥M + |S| − |N |/2. (4.69)

The improved estimate for R(Aend, ...) follows analogously.

4.3.2. Crossing pairings

The last two lemmas will provide sufficiently good estimates for higher order partitions
and amputated amplitudes, so in the following, only partitions S that are pairings, and
amplitudes of the types K, R(Gend, ...) and R(Grough, ...) will be considered. We start
with an estimate for crossing pairings, as defined in Definition 4.1.

Lemma 4.11. (Improved estimate for crossing pairings.) For ξ in class (d + 3, 0),
S ∈ π∗(I(N)) a crossing pairing, and γ ∈ [2εCobsm, 1/2] there is a C <∞ only depending
on dimension d such that∣∣∣K (ψε0, ε, a, p, L(0), t, N, S

)∣∣∣
≤ C |N |+2m

(
〈L(0)〉+mN

)2|N |+3
‖g2‖|N |/2d+3

× e2γ|t|√ε|N |γ−|S|+1 |log γ||N |+2m+1 ‖ψε0‖
2
H

2m−1∏
j=1
‖aj‖C0 ,

(4.70)

for d ≥ 3, and∣∣∣K (ψε0, ε, a, p, L(0), t, N, S
)∣∣∣

≤ C |N |+2m
(
〈L(0)〉+mN

)2|N |+3
‖g2‖|N |/2d+3

× e2γ|t|√ε|N |γ−|S|+1/2 |log γ||N |+2m ‖ψε0‖
2
H

2m−1∏
j=1
‖aj‖C0

(4.71)

for d = 2.

Proof. We can follow the proof of Lemma 4.16 in [32] word by word to find the existence
of a “loose” crossing. This crossing consists of two pairs {(j1, n1) , (j2, n2)} ∈ S and
{(̃1, ñ1) , (̃2, ñ2)} ∈ S with (j1, n1) ≺ (̃1, ñ1) ≺ (j2, n2) ≺ (̃2, ñ2), and is loose in the
sense that any other pair {(̂1, n̂1) , (̂2, n̂2)} ∈ S fulfills (̃1, ñ1) ≺ (̂1, n̂1) ≺ (j2, n2) if
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4. Proof of Theorem 3.1

and only if (̃1, ñ1) ≺ (̂2, n̂2) ≺ (j2, n2), so the the “crossing interval” between (̃1, ñ1)
and (j2, n2) is not connected to the outside by a third pairing. Also, we require that the
crossing we consider is “minimal” in the sense that no further crossing of pairs occurs
within the crossing interval.

Looseness implies that the θ variables inside the crossing interval cancel, and thus,

k(j2)
n2 = k

(̃1)
ñ1 + ε

j2−1∑
j=̃1

p(j) + θ(j2)
n2 = k

(̃1)
ñ1 + ε

j2−1∑
j=̃1

p(j) − θ(j1)
n1

= k
(̃1)
ñ1 − k

(j1)
n1 + ε

j2−1∑
j=̃1

p(j) + k
(j1)
n1−1.

(4.72)

Note that the “highest” θ variable that k(j2)
n2 depends on is θ(̃1)

ñ1 . Just as in the proof of
Lemma 4.8, one has to evaluate the last three lines of (4.61), but with a slightly different
order of integration. Also, as ξ is of class (d+ 3, 0), we can utilize a

〈
k

(j)
n

〉−2
instead of a〈

k
(j)
n

〉−1
decay for (j, n) = (j1, n1), (j, n) = (̃1, ñ1) and (j, n) = (j2, n2). From now on,

assume that all N (j) ≥ 1, j ∈ {1, ..., 2m}, so that the resolvent expansion is applicable.
This is certainly true for j ∈ {j1, j2, ̃1, ̃2}. All other values of j do not play a particular
role in the proof and can be treated as in the remark at the end of the proof of Lemma
4.8. Compared to the proof in [32], the different possible patterns in the succession of
scatterings and multiple measurements lead one to distinguish three cases that have to
be treated differently.

i) ̃1 = j2,

ii) ̃1 < j2 and there is {(̂1, n̂1) , (j2, n̂2)} ∈ S such that (̃1, ñ1) ≺ (̂1, n̂1) ≺ (j2, 0) ≺
(j2, n̂2) ≺ (j2, n2), or

iii) neither i) nor ii), so ̃1 < j2 and the “highest” θ variable that k(j2)
0 depends on

according to (4.72) is θ(̃1)
ñ1 .

In case i), first take L∞ estimates of all resolvents belonging to dependent k(j)
n , except

for the resolvent for k(j2)
n2 , which we keep for the moment. For the resolvents belonging to

free k(j)
n or to k(j)

0 , one iterates the estimates (4.63) or (4.64), respectively, until arriving
at (̃1, ñ1) = (j2, ñ1), which is free. Here, a change of integration variable from θ

(̃1)
ñ1 to
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k
(̃1)
ñ1 and the dependence structure (4.72) leave us with∫

Rd
dk(̃1)

ñ1

1∣∣∣α(j2) − 2πσ(j2)
n2

∣∣∣k(̃1)
ñ1 − θ

(j1)
n1

∣∣∣+ iγ
∣∣∣ ∣∣∣α(̃1) − 2πσ(̃1)

ñ1

∣∣∣k(̃1)
ñ1

∣∣∣+ iγ
∣∣∣

×
〈
k

(̃1)
ñ1 − θ

(j1)
n1

〉−2 〈
k

(̃1)
ñ1

〉−2 〈
k

(̃1)
ñ1 + h(p, θ≺(̃1,ñ1))

〉−d

≤


Cd∣∣∣θ(j1)
n1

∣∣∣ 〈log γ〉2

〈α(̃1)〉 if d ≥ 3,

C2√
γ

∣∣∣θ(j1)
n1

∣∣∣
〈log γ〉
〈α(̃1)〉 if d = 2 ,

(4.73)

in which h is a function of the p variables and the θ(j)
n with (j, n) ≺ (̃1, ñ1); the estimate

is due to Lemma B.1 and independent of h. Now, continue iterating (4.63) or (4.64) for
all (j, n) which are free or have n = 0, with (j1, n1) ≺ (j, n) ≺ (̃1, ñ1). As the right side
of (4.73) only depends on θ(j1)

n1 , it will just be carried along as a factor in the θ integrals.
In case that ̃1 > j1, the denominator

〈
α(̃1)

〉
from the right hand side of (4.73) allows

to evaluate the α(̃1) integral in the same way as in (4.64). Having arrived at the θ(j1)
n1

integral, one changes to the integration variable k(j1)
n1 , and obtains, by Lemma B.2,

Cd 〈log γ〉2
∫
Rd

dk(j1)
n1

1∣∣∣k(j1)
n1 − k

(j1)
n1−1

∣∣∣ ∣∣∣α(j1) − 2πσ(j1)
n1

∣∣∣k(j1)
n1

∣∣∣+ iγ
∣∣∣

× 1〈
k

(j1)
n1

〉2 〈
k

(j1)
n1 + q(p, θ≺(j1,p1))

〉d
≤ C̃d 〈log γ〉3√〈

α(j1)〉
(4.74)

for d ≥ 3, and

C2 〈log γ〉
√
γ

∫
R2

dk(j1)
n1

1√∣∣∣k(j1)
n1 − k

(j1)
n1−1

∣∣∣ ∣∣∣α(j1) − 2πσ(j1)
n1

∣∣∣k(j1)
n1

∣∣∣+ iγ
∣∣∣ 〈k(j1)

n1

〉2

≤ C̃2 〈log γ〉2
√
γ
〈
α(j1)〉

(4.75)

for d = 2. For all remaining resolvents belonging to k
(j)
n , (j, n) ≺ (j1, n1), one can

directly follow the proof of Lemma 4.8. The only difference is the resolvent belonging to
k

(j1)
0 , which is possibly only regularized by a denominator

√〈
α(j1)〉 instead of the

〈
α(j1)

〉
appearing in (4.64), so we employ∫

R
dα(j) 1∣∣∣α(j) − 2πσ(j)

0 |k
(j)
0 |+ iγ

∣∣∣ 〈α(j)〉δ ≤ Cδ| log γ| (δ > 0) (4.76)
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with δ = 1/2 for j = j1. Altogether, two L1 and one L∞ estimate have been replaced
by a factor Cd 〈log γ〉3 (for d ≥ 3) or C2 〈log γ〉2 /√γ (for d = 2). This yields an overall
improvement by a factor Cγ 〈log γ〉 (d ≥ 3) or C√γ (d = 2), and proves the Lemma for
case i).

Suppose the crossing is such as described in case ii). The pair {(̂1, n̂1), (j2, n̂2)} that
exists by assumption may not be unique, but we now pick one and do not change it during
the proof. One can start again by taking L∞ estimates of all dependent k(j)

n except for
k

(j2)
n2 . Then, integrate out all θ(j)

n for free (j, n) and all α(j), but only for (j, n) � (j2, n2),
and j > j2, respectively. Next, call the free (j, n) with (̂1, n̂1) � (j, n) ≺ (j2, n̂2)
protected, and for those protected (j, n), switch the integration variables θ(j)

n to the
variables k(j)

n . Those k(j)
n as well as the k(j)

0 with ̂1 < j ≤ j2 do no longer depend on
any of the other remaining free θ variables (here, the assumption of a minimal crossing
is important), so one can continue to evaluate the integrals as follows — integrate over
all θ(j)

n , (j, n) free, but not protected, with (̃1, ñ1) ≺ (j, n) ≺ (j2, n2), and over all α(j),
̃1 < j < ̂1 in the usual decreasing ≺ order, using the estimates (4.63), (4.64). Do not
touch any of the α(j) with ̂1 < j ≤ j2 or the protected k(j)

n for now. In the θ(̃1)
ñ1 integral,

which only involves the k(̃1)
ñ1 and k(j2)

n2 resolvents, switch to the integration variable k(̃1)
ñ1

to obtain

∫
Rd

dk(̃1)
ñ1

1∣∣∣α(j2) − 2πσ(j2)
n2

∣∣∣k(̃1)
ñ1 − θ

(j1)
n1 + f(p)

∣∣∣+ iγ
∣∣∣ ∣∣∣α(̃1) − 2πσ(̃1)

ñ1

∣∣∣k(̃1)
ñ1

∣∣∣+ iγ
∣∣∣

×
〈
k

(̃1)
ñ1 − θ

(j1)
n1 + f(p)

〉−2 〈
k

(̃1)
ñ1

〉−2 〈
k

(̃1)
ñ1 + h(p, θ≺(̃1,ñ1))

〉−d

≤


Cd∣∣∣θ(j1)

n1 −f(p)
∣∣∣ 〈log γ〉2√
〈α(̃1)〉〈α(j2)〉 if d ≥ 3,

C2√
γ

∣∣∣θ(j1)
n1 −f(p)

∣∣∣
〈log γ〉√
〈α(̃1)〉〈α(j2)〉 if d = 2 ,

(4.77)

as before, just with and additional function f of the p variables. Now, in decreasing ≺
order, integrate out all resolvents belonging to k(j)

n , with (j, n) protected, or (j, n) = (j, 0)
with ̂1 < j ≤ j2, and then for all (j, n) which are free and fulfill (j1, n1) ≺ (j, n) ≺ (̃1, ñ1)
and all (j, n) = (j, 0) with j1 < j ≤ ̃1. This can be done with the usual (4.63) and
(4.64) estimates, and by noting that the denominator

√〈
α(̃1)〉 〈α(j2)〉 in (4.77) allows

for the (4.76), δ = 1/2 bound of the α(̃1) and α(j2) integrals. (Here we assume ̃1 > j1.
If ̃1 = j1, the α(̃1) = α(j1) integral will only be evaluated after (4.78) or (4.79)). Once
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4.3. Improved estimates

again, one can evaluate the θ(j1)
n1 integral by changing to k(j1)

n1 and finding

Cd 〈log γ〉2
∫
Rd

dk(j1)
n1

1∣∣∣k(j1)
n1 − k

(j1)−f(p)
n1−1

∣∣∣ ∣∣∣α(j1) − 2πσ(j1)
n1

∣∣∣k(j1)
n1

∣∣∣+ iγ
∣∣∣

× 1〈
k

(j1)
n1

〉2 〈
k

(j1)
n1 + q(p, θ≺(j1,p1))

〉d
≤ C̃d 〈log γ〉3√〈

α(j1)〉
(4.78)

for d ≥ 3, and

C2 〈log γ〉
√
γ

∫
R2

dk(j1)
n1

1√∣∣∣k(j1)
n1 − k

(j1)
n1−1 − f(p)

∣∣∣ ∣∣∣α(j1) − 2πσ(j1)
n1

∣∣∣k(j1)
n1

∣∣∣+ iγ
∣∣∣ 〈k(j1)

n1

〉2

≤ C̃2 〈log γ〉2
√
γ
〈
α(j1)〉

(4.79)

for d = 2. For the remaining integrals, one can follow the proof of the standard estimate
to end up with the same improved estimate as in case i).
In case iii), keep k(j2)

n2 again and take L∞ estimates of all other k(j)
n resolvents with

dependent (j, n). Then, integrate out all θ(j)
n with free (j, n) � (̃1, ñ1) and all α(j)

with j > ̃1 except for α(j2). Now, there are three resovents left which depend on θ(̃1)
ñ1 ,

namely those belonging to k(̃1)
ñ1 = θ

(̃1)
ñ1 − h(p, θ≺(̃1,ñ1)), as well as k(j2)

0 = k
(̃1)
ñ1 + f(p)

and k(j2)
n2 = k

(̃1)
ñ1 − θ

(j1)
n1 + f(p). Here, as before, h is a function of the p variables and the

θ
(j)
n variables with (j, n) ≺ (̃1, ñ1), while f depends only on the p variables, and by our
assumptions fulfills

|f(p)| = ε

∣∣∣∣∣∣
j2−1∑
j=̃1

p(j)

∣∣∣∣∣∣ ≤ 2εCobsm (4.80)

for all p from the support of the observables. Therefore, for γ ≥ 2εCobsm,∣∣∣α(j2) − 2πσ(j2)
0

∣∣∣k(̃1)
ñ1 + f(p)

∣∣∣+ iγ
∣∣∣−1
≤ C

∣∣∣α(j2) − 2πσ(j2)
0

∣∣∣k(̃1)
ñ1

∣∣∣+ iγ
∣∣∣−1

, (4.81)

with a factor C only depending on dimension d, and one can estimate the θ(̃1)
ñ1 integral

by

C

∫
Rd

dk(̃1)
ñ1

1∣∣∣α(̃1) − 2πσ(̃1)
ñ1

∣∣∣k(̃1)
ñ1

∣∣∣+ iγ
∣∣∣ ∣∣∣α(j2) − 2πσ(j2)

0

∣∣∣k(̃1)
ñ1

∣∣∣+ iγ
∣∣∣

× 1∣∣∣α(j2) − 2πσ(j2)
n2

∣∣∣k(̃1)
ñ1 + f(p)− θ(j1)

n1

∣∣∣+ iγ
∣∣∣

×
〈
k

(̃1)
ñ1

〉−2 〈
k

(̃1)
ñ1 + f(p)− θ(j1)

n1

〉−2 〈
k

(̃1)
ñ1 + h(p, θ≺(̃1,ñ1))

〉−d
.

(4.82)
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4. Proof of Theorem 3.1

For d ≥ 3, the substitution (B.3) with u = θ
(j1)
n1 − f(p) yields the estimate

C · C ′d∣∣∣θ(j1)
n1 − f(p)

∣∣∣
∫ ∞

0
dρ1

1∣∣∣α(̃1) − 2πσ(̃1)
ñ1 ρ1 + iγ

∣∣∣ ∣∣∣α(j2) − 2πσ(j2)
0 ρ1 + iγ

∣∣∣ 〈ρ1〉

×
∫ ∞

0
dρ2

1∣∣∣α(j2) − 2πσ(j2)
n2 ρ2 + iγ

∣∣∣ 〈ρ2〉

≤
ηd
(
α(̃1), α(j2), γ

)
∣∣∣θ(j1)
n1 − f(p)

∣∣∣ ,

(4.83)

with

ηd
(
α(̃1), α(j2), γ

)
≤ C 〈log γ〉√〈

α(j2)〉 min

 1
γ
√〈

α(̃1)〉 〈α(j2)〉 , 〈log γ〉∣∣|α(̃1)| − |α(j2)|
∣∣
 1√〈

α(j2)〉 + 1√〈
α(̃1)〉

 ,
(4.84)

with a new C depending only on dimension d. One can now take the α(j2) integral (there
are no α(j2)-dependent resolvents left!) to obtain a factor

∫
R

dα(j2)ηd
(
α(̃1), α(j2), γ

)
≤ C ′ 〈log γ〉3√〈

α(̃1)〉 . (4.85)

For d = 2, the estimate for (4.82) is of the form

η2
(
α(̃1), α(j2), γ

)
√∣∣∣θ(j1)

n1 − f(p)
∣∣∣ (4.86)

with ∫
R

dα(j2)η2
(
α(̃1), α(j2), γ

)
≤ C ′ 〈log γ〉2
√
γ
√〈

α(̃1)〉 . (4.87)

Now one can integrate out in the usual order all free k(j)
n , (j1, n1) ≺ (j, n) ≺ (̃1, ñ1)

and all α(j), ̃1 < j ≤ ̃1, by the standard estimates (4.62), (4.63), and, for the α(̃1)

integral, (4.76) with δ = 1/2. The rest of the resolvent integrals is taken as in case ii).
In the case at hand, we then have an avoided two L1, one L∞ resolvent estimate, as
well as the estimate (4.64) for α(j2), and replaced them by factors C 〈log γ〉4 (if d ≥ 3)
or C 〈log γ〉3 /√γ (d = 2). The overall gained factors, again, are Cγ 〈log γ〉 (d ≥ 3) or
C
√
γ (d = 2), with C depending only on dimension d. This finishes the proof of Lemma

4.11.
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4.4. Non-crossing pairings

Lemma 4.12. (Improved estimate for crossing pairings, R(Grough, ...) and R(Gend, ...)
amplitudes.) For ξ of class (d + 2(M + 2) + 3, 0), γ ∈ [2εCobsm, 1/2], κ > 0, M ∈
{0, ...,M − 1}, N< ∈ Nm−1

0 , such that (4.36) holds, Nfin ∈ {1, ..., N
(m) − 1}, and S ∈

π∗(I(N)) a crossing pairing,∣∣∣R (Grough, ψε0, ε, κ, a, p, L
(0), t, N<, Nfin,M, S

)∣∣∣
≤ C |N |+2m

(
〈L(0)〉+mN

)2|N |+4M+7
〈εCobs〉4M+7 ‖g2‖|N |/2d+2(M+2)+3

× e2γ|t|ε|N |/2γ−|S|+1 |log γ||N |+2m+1 ‖ψε0‖
2
H

m−1∏
j=1
‖aj‖2C0 ,

(4.88)

for d ≥ 3,∣∣∣R (Grough, ψε0, ε, κ, a, p, L
(0), t, N<, Nfin,M, S

)∣∣∣
≤ C |N |+2m

(
〈L(0)〉+mN

)2|N |+4M+7
〈εCobs〉4M+7 ‖g2‖|N |/2d+2(M+2)+3

× e2γ|t|ε|N |/2γ−|S|+1/2 |log γ||N |+2m ‖ψε0‖
2
H

m−1∏
j=1
‖aj‖2C0 ,

(4.89)

for d = 2, where C is a constant only depending on dimension d. The analogous
bound also holds for R

(
Gend, ψε0, ε, κ, a, L

(0), t, N<, N,M, S
)
, if N (m) and thus N are

appropriately defined.

Proof. The proof is exactly the same as for Lemma 4.11. For the necessary
〈
k

(j)
n

〉−2

instead of a
〈
k

(j)
n

〉−1
decay for (j, n) = (j1, n1), (j, n) = (̃1, ñ1) and (j, n) = (j2, n2),

one has to assume m ≥ d+ 2(M + 2) + 3. As in the proof of Lemma 4.9, the improved
estimates stemming from the resolvents with an additional κ are ignored.

4.4. Non-crossing pairings

4.4.1. Suppression of jumps outside the cut-off Φ

Thanks to Lemma 4.11 and 4.12, we can from now on focus on non-crossing pairings.
Next, we will show that the interaction of the wave with the “rough” part of the medium
is supressed, i.e. that a violation of the cut-off Φ will produce amplitudes that vanish in
the ε→ 0 limit.

Lemma 4.13. (Improved estimate for R(Grough, ...) amplitudes, non-crossing pairings.)
For ξ of class (d + 2(M + 2), 0), ε > 0 such that εmCobs <

1
4 , γ ∈ (0, 1/2], κ > 0,
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4. Proof of Theorem 3.1

M ∈ {0, ...,M − 1}, N< ∈ Nm−1
0 with (4.36), Nfin ∈ {1, ..., N

(m) − 1}, and S ∈ π∗(I(N))
a non-crossing pairing,∣∣∣R (Grough, ψε0, ε, κ, a, L

(0), t, N<, Nfin,M, S
)∣∣∣

≤ C |N |+2m
(
〈L(0)〉+mN

)2|N |+4M+4
〈εCobs〉4M+4 ‖g2‖|N |/2d+2(M+2)

× e2γ|t|ε|N |/2γ−|S|+1 |log γ||N |+2m ‖ψε‖2H
m−1∏
j=1
‖aj‖2C0 ,

(4.90)

with C a constant depending only on dimension d.

Proof. We can follow the proof of Lemmas 4.8 and 4.9 and find a constant C only
depending on dimension d such that∣∣∣R (Grough, ψε0, ε, κ, a, p, L

(0), t, N<, Nfin,M, S
)∣∣∣

≤ C |N |+2m
(
〈L(0)〉+mN

)2|N |+4M+4
〈εCobs〉4M+4 ε|N |/2e2γ|t| ‖g2‖|N |/2d+2(M+2)

m−1∏
j=1
‖aj‖2C0

∑
σ

∫
Rd

dk(1)
0

∣∣∣∣ψ̂ε0,σ(1)
0

(
k

(1)
0

)∣∣∣∣
∣∣∣∣∣ψ̂ε0,σ(2m)

N(2m)

(
k

(1)
0

)∣∣∣∣∣
∏

(j,n)∈I(N)

(∫
Rd

dθ(j)
n

)∫
R2md

dα(1)...dα(2m) ∏
A∈S

δ
 ∑

(j,n)∈A
θ(j)
n

∏
(j,n)∈I0(N)

1∣∣∣α(j) − 2πσ(j)
n τ (j)|k(j)

n |+ iγ
∣∣∣∏

(j,n)∈I(N)

(〈
θ(j)
n

〉−d 〈
k(j)
n

〉−1
)

(1− Φ)
(
k

(̂)
n̂−1, k

(̂)
n̂ , L

(̂)
n̂

) ∏
(j,n)∈I(N)
(j,n)�(̂,n̂)

Φ(k(j)
n−1, k

(j)
n , L(j)

n ).

(4.91)

Note that this time, we have kept the Φ and 1− Φ cut-off functions, at least for the k(j),
j > m variables, and used the shorthand (̂, n̂) = (m + 1, N (m+1) + 1 −Nfin). The key
observation is that (̂, n̂) is the ≺-largest (j, n) ∈ I(N) for which both k(j)

n−1 and k(j)
n are

large. One can distinguish the following types of partitions.
• First, assume that S does not contain pairs {(j1, n1), (j2, n2)} with (j1, n1) � (̂, n̂)

and (j2, n2) � (̂, n̂). In that case, ∑
(j,n)�(̂,n̂)

θ(j)
n = 0, (4.92)
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4.4. Non-crossing pairings

so

k
(m)
N(2m) = k

(1)
0 + ε

2m−1∑
j=1

p(j) = k
(̂)
n̂ + ε

2m−1∑
j=m+1

p(j). (4.93)

Observe that for k1, k2 ∈ Rd, L ∈ R,

1− Φ (k1, k2, L) = (1− ϕ) (k1, k2, L) (1− ϕ) (k1, k2, L) (4.94)

is different from zero only if |k1|, |k2| ≥ L, so the integrand in (4.91) is nonzero
only if

∣∣∣k(̂)
n̂

∣∣∣ ≥ L(̂)
n̂ ≥ L(0) + 1. On the other hand, by the support properties of ψ̂ε,

the integrand is also zero if
∣∣∣k(m)
N(2m)

∣∣∣ > L(0), and thus, whenever εCobsm < 1, the
amplitudes of partitions S with the aforementioned property are always exactly
zero.

• Conversely, if S does contain a pair {(j1, n1), (j2, n2)} with (j1, n1) � (̂, n̂) and
(j2, n2) � (̂, n̂), choose the smallest (with respect to ≺) such (j2, n2). Define
(̃2, ñ2) to be the direct precursor of (j2, n2) in I(N) with respect to ≺, and assume
for the moment that (̃2, ñ2) � (̂, n̂). If n2 = 1, this means ̃2 = j2− 1, ñ2 = N (̃2),
while (̃2, ñ2) = (j2, n2 − 1) if n2 > 1. In any case, it is easy to see that, by the
non-crossing property of S, both (j2, n2) and (̃2, ñ2) are dependent in the sense of
the proof of Lemma 4.8, and that, by construction∑

(̂,n̂)≺(j,n)�(j2,n2−1)
θ(j)
n =

∑
(̂,n̂)≺(j,n)�(̃2,ñ2)

θ(j)
n = 0, (4.95)

and thus both ∣∣∣k(̃2)
ñ2

∣∣∣ ≥ ∣∣∣k(̂)
n̂

∣∣∣− εmCobs ≥ L
(̂)
n̂ − εmCobs (4.96)

and ∣∣∣k(j2)
n2−1

∣∣∣ ≥ L(̂)
n̂ − εmCobs ≥ L

(̂)
n̂ − 1/4 ≥ L(j2)

n2 + 3/4. (4.97)

Thus, whenever Φ
(
k

(j2)
n2−1, k

(j2)
n2 , L

(j2)
n2

)
6= 0, one has∣∣∣k(j2)

n2

∣∣∣ ≤ L(j2)
n2 + 1

2 ≤ L
(̂)
n̂ −

1
2 ≤

∣∣∣k(̃2)
ñ2

∣∣∣− 1
2 + εmCobs ≤

∣∣∣k(̃2)
ñ2

∣∣∣− 1
4 . (4.98)

One can therefore take the L∞ estimates for the k(̃2)
ñ2 and k(j2)

n2 resolvents simulta-
neously,

sup
|k(j2)
n2 |≤|k

(̃2)
ñ2
|− 1

4

 1∣∣∣α(̃2) ± 2π|k(̃2)
ñ2 |+ iγ

∣∣∣ 〈k(̃2)
ñ2

〉
·
∣∣∣α(j2) ± 2π|k(j2)

n2 |+ iγ
∣∣∣ 〈k(j2)

n2

〉


≤ C

γ
〈
α(̃2)〉 〈α(j2)〉 ,

(4.99)

gaining an overall improvement of the estimate by a factor γ.
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• Let (j2, n2) be defined as in the last case, but suppose S is such that the precursor
of (j2, n2) is (̂, n̂), and even that {(̂, n̂), (j2, n2)} ∈ S is a pair. Then |k(j2)

n2 | ≥
|k(̂)
n̂−1| − εmCobs and |k(j2)

n2−1| ≥ |k
(̂)
n̂ | − εmCobs but for the integrand of (4.91) to be

different from zero, both

min
{∣∣∣k(̂)

n̂−1

∣∣∣ , ∣∣∣k(̂)
n̂

∣∣∣} ≥ L(̂)
n̂ (4.100)

and
min

{∣∣∣k(j2)
n2−1

∣∣∣ , ∣∣∣k(j2)
n2

∣∣∣} ≤ L(j2)
n2 + 1

2 ≤ L
(̂)
n̂ −

1
2 (4.101)

need to hold, which is impossible for mεCobs <
1
2 .

• The last possibility is that, with (j2, n2) defined as before, the precursor of (j2, n2)
is (̂, n̂), but {(̂, n̂), (j2, n2} /∈ S. In that case, for the integrand of (4.91) to be
different from zero,

min
{∣∣∣k(̂)

n̂ − εmCobs
∣∣∣ , ∣∣∣k(j2)

n2

∣∣∣} ≤ min
{∣∣∣k(j2)

n2−1

∣∣∣ , ∣∣∣k(j2)
n2

∣∣∣}
≤ L(j2)

n2 + 1
2 ≤ L

(̂)
n̂ −

1
2 ≤

∣∣∣k(̂)
n̂

∣∣∣− 1
2 ,

(4.102)

which implies |k(j2)
n2 | ≤ |k

(̂)
n̂ | −

1
2 whenever εmCobs <

1
2 . By the structure of S, k(̂)

n̂

and k(j2)
n2 are both dependent k variables, so one should take L∞ estimates of their

resolvents. As the singularities of the resolvents do not overlap, one has

sup
|k(j2)
n2 |≤|k

(̂)
n̂ |−

1
2

 1∣∣∣α(̂) ± 2π|k(̂)
n̂ |+ iγ

∣∣∣ 〈k(̂)
n̂

〉
·
∣∣∣α(j2) ± 2π|k(j2)

n2 |+ iγ
∣∣∣ 〈k(j2)

n2

〉


≤ C

γ
〈
α(̂)〉 〈α(j2)〉 ,

(4.103)

gaining a factor of γ again.

4.4.2. Decoupling of + and − components

Recall that the remaining partitions are non-crossing pairings S. For given N , and a
pairing S ∈ π∗ (I(N)), write a pair as A =

{
(jA, nA), (jA, nA)

}
with (jA, nA) ≺ (jA, nA).

A gate is characterized as a pair A ∈ S such that (jA, nA + 1) = (jA, nA). Note that the
two elements of the pair are not only required to be consecutive, but the two scatterings
have to occur in the same time interval, on the same side of the scalar product, so
jA = jA. For fixed S, denote the set of gates and their right endpoints as

Sgate = {A ∈ S : A is a gate} ,
Igate = {(jA, nA) : A ∈ Sgate} .

(4.104)
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4.4. Non-crossing pairings

Until now, although the observables Aεj and the unperturbed time evolution generated by
H0 are diagonal with respect to the σ variables, the time evolution of the ψε+ component
and the ψε− component of the wave are still coupled due to the off-diagonal elements of
the disorder term V , (2.107). To prove that those two objects decouple in the kinetic
limit, define for a non-crossing pairing S ∈ I(N) the amplitude

K+
(
ψε0, ε, a, p, L

(0), t, N, S
)

= (
√
επ)|N |

∫
Rd(N(2m)+1)

dk(2m) ∑
σ(2m)∈{±}N(2m)+1

...

∫
Rd(N(1)+1)

dk(1) ∑
σ(1)∈{±}N(1)+1

1

{
σ(j)
n = +1∀(j, n) ∈ I0(N) \ Igate

}
∏
A∈S

{
δ
(
θ

(jA)
nA

+ θ(jA)
nA

)
ĝ2
(
θ(jA)
nA

)}
2m−1∏
j=1

aj,+
k(j+1)

0 + k
(j)
N(j)

2

 δ (k(j+1)
0 − k(j)

N(j) − εp(j)
)

2m∏
j=1

[
eγt

(j)
∫
R

dα(j)

2π e−iα
(j)t(j)

]
∏

(j,n)∈I0(N)

(
i

α(j) − 2πσ(j)
n τ (j)|k(j)

n |+ iγ

)
∏

(j,n)∈I(N)

[
(−iτ (j))

(∣∣∣k(j)
n

∣∣∣σ(j)
n−1 +

∣∣∣k(j)
n−1

∣∣∣σ(j)
n

)
Φ
(
k(j)
n , k

(j)
n−1, L

(j)
n

)]

ψ̂ε0,+

(
k

(1)
0

)
ψ̂ε0,+

k(1)
0 + ε

2m−1∑
j=1

p(j)

 .
(4.105)

Once again, for the sake of better readability, k and θ variables were employed simul-
taneously. Compared to the original amplitude K introduced in Lemma 4.3, the only
difference is the indicator function in the third line of (4.105) ensuring that the set of
sign constellations to be summed over is much smaller. The only resolvents that still
come with both signs σ(j)

n ∈ {±1} are those “contained” within a gate, (j, n) ∈ Igate.
All other σ(j)

n are set to +1, and consequently, only the + components of the observ-
ables aj , and of the initial wave function ψε0 contribute. In the same manner, define
K−

(
ψε0, ε, a, b, L

(0), t, N, S
)
by replacing

ψ̂ε0,+ → ψ̂ε0,−

aj,+ → aj,−

1

{
σ(j)
n = +1∀(j, n) ∈ I0(N) \ Igate

}
→ 1

{
σ(j)
n = −1∀(j, n) ∈ I0(N) \ Igate

} (4.106)

in (4.105). With this definition,
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4. Proof of Theorem 3.1

Lemma 4.14. (Decoupling of dynamics for + and − components, K amplitudes.) As-
sume that dimension d ≥ 2, and let the random field ξ be of class (d+ 2, 0), and suppose
that g2 furthermore fulfills the conditions of Lemma D.1. (Requiring ξ to be of class
(d + 2, 3) is sufficient). Then, for all δ > 0, there is a constant C depending only
on δ, dimension d and g2 such that for all γ ∈ (0, 1] and all non-crossing pairings
S ∈ π∗ (I(N)),∣∣∣K+

(
ψε0, ε, a, p, L

(0), t, N, S
)

+K−
(
ψε0, ε, a, p, L

(0), t, N, S
)

− K
(
ψε0, ε, a, p, L

(0), t, N, S
)∣∣∣

≤ C |N |+2m
(
〈L(0)〉+mN

)2|N |
‖g2‖|N |/2d+2

× e2γ|t|(ε/γ)|N |/2γ+1−δ 〈log γ〉|N |+2m ‖ψε0‖
2
H

2m−1∏
j=1
‖aj‖C0 .

(4.107)

Proof. The right side of the representation of K in resolvent form, (4.33), is a sum over
all possible choices of |N |+ 2m signs. Consider a summand belonging to one fixed choice
of signs σ ∈ {±}|N |+2m, and assume there is an A ∈ S \ Sgate such that σ(jA)

nA−1 6= σ
(jA)
nA

.
For this particular σ and A, set (j, n) = (jA, nA), and observe

i

α(j) − 2πσ(j)
n τ (j)|k(j)

n |+ iγ
− i

α(j) − 2πσ(j)
n−1τ

(j)|k(j)
n−1|+ iγ

=
2πσ(j)

n τ (j)i
(
|k(j)
n−1|+ |k

(j)
n |
)

(
α(j) − 2πσ(j)

n τ (j)|k(j)
n |+ iγ

) (
α(j) − 2πσ(j)

n−1τ
(j)|k(j)

n−1|+ iγ
) , (4.108)

and thus

2π
∣∣∣σ(j)
n |k(j)

n−1|+ σ
(j)
n−1|k

(j)
n |
∣∣∣∣∣∣α(j) − 2πσ(j)

n τ (j)|k(j)
n |+ iγ

∣∣∣ ∣∣∣α(j) − 2πσ(j)
n−1τ

(j)|k(j)
n−1|+ iγ

∣∣∣
≤ 1∣∣∣α(j) − 2πσ(j)

n τ (j)|k(j)
n |+ iγ

∣∣∣ + 1∣∣∣α(j) − 2πσ(j)
n−1τ

(j)|k(j)
n−1|+ iγ

∣∣∣ .
(4.109)

Therefore, while estimating (4.33), one can replace the product of those two resolvents
(and the σ(j)

n |k(j)
n−1|+σ

(j)
n−1|k

(j)
n | “interaction term” between them) by their sum. Following

the proof of Lemma 4.8, there are three different possibilites.
• Either, n > 1. Then, by construction, both (j, n − 1) and (j, n) are classified as

dependent, and we have to take L∞ estimates of their respective resolvents by
(4.62). The standard proof would thus yield a factor

(
C/(γ

〈
α(j)

〉
)
)2
, which now

reduces to
(
C/(γ

〈
α(j)

〉
)
)
, gaining a factor γ. The loss of decay in α(j) is not

important as N (j) > 1 in this case and (4.64) can still be performed.
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4.4. Non-crossing pairings

• Or, n = 1, but still N (j) > 1. In this case, for both summands on the right of
(4.109), we can take the estimate (4.64), making use of an α(j) decay stemming
from previous estimates thanks to N (j) > 1. Again, a factor γ is gained.

• Finally, for n = N (j) = 1 there are only two resolvents, so the right side of the
estimate (4.109) is no longer α(j)-integrable. Still, for δ ∈ (0, 1), the bound

2π
∣∣∣σ(j)
n |k(j)

n−1|+ σ
(j)
n−1|k

(j)
n |
∣∣∣∣∣∣α(j) − 2πσ(j)

n τ (j)|k(j)
n |+ iγ

∣∣∣ ∣∣∣α(j) − 2πσ(j)
n−1τ

(j)|k(j)
n−1|+ iγ

∣∣∣
≤

(
2π
∣∣∣σ(j)
n |k(j)

n−1|+ σ
(j)
n−1|k

(j)
n |
∣∣∣)δ∣∣∣α(j) − 2πσ(j)

n τ (j)|k(j)
n |+ iγ

∣∣∣δ ∣∣∣α(j) − 2πσ(j)
n−1τ

(j)|k(j)
n−1|+ iγ

∣∣∣
+

(
2π
∣∣∣σ(j)
n |k(j)

n−1|+ σ
(j)
n−1|k

(j)
n |
∣∣∣)δ∣∣∣α(j) − 2πσ(j)

n τ (j)|k(j)
n |+ iγ

∣∣∣ ∣∣∣α(j) − 2πσ(j)
n−1τ

(j)|k(j)
n−1|+ iγ

∣∣∣δ

(4.110)

improves the standard estimate by Cδγ1−δ, δ > 0 arbitrarily small.
By symmetry, summands belonging to one fixed choice of signs σ ∈ {±}|N |+2m, with an
A ∈ S \ Sgate such that σ(jA)

nA−1 6= σ
(jA)
nA are estimated in the same fashion.

Now, consider a choice σ ∈ {±}|N |+2m of signs such that there is a gate A ∈ Sgate with
σ

(jA)
nA−1 6= σ

(jA)
nA+1. We write (j, n) = (jA, nA), and assume without loss of generality that

j ≤ m, so τ (j) = 1. In (4.33), one can take the integral over k(j)
n and the sum over σ(j)

n

to obtain, as k(j)
n+1 = k

(j)
n−1,

iπ2∑
σ

(j)
n

∫
Rd

dk(j)
n

ĝ2(k(j)
n+1 − k

(j)
n )

α(j) − 2πσ(j)
n

∣∣∣k(j)
n

∣∣∣+ iγ

(
σ(j)
n

∣∣∣k(j)
n+1

∣∣∣+ ∣∣∣k(j)
n

∣∣∣) (σ(j)
n

∣∣∣k(j)
n+1

∣∣∣− ∣∣∣k(j)
n

∣∣∣)
× Φ(k(j)

n+1, k
(j)
n , L(j)

n )

= h+−
(
k

(j)
n+1, α

(j) + iγ;L(j)
n

)
.

(4.111)

(Note that Φ(k(j)
n+1, k

(j)
n , L

(j)
n+1) = 1 on the support of Φ(k(j)

n+1, k
(j)
n , L

(j)
n ).) By Lemma D.1

and Lemma D.2,∣∣∣h+−
(
k

(j)
n+1, α

(j) + iγ;L(j)
n

)∣∣∣ ≤ ∣∣∣h+−
(
k

(j)
n+1, 2πσ

(j)
n+1

∣∣∣k(j)
n+1

∣∣∣+ iγ;L(j)
n

)∣∣∣
+ Cg2

〈
L(j)
n

〉2
min

(
〈log γ〉

∣∣∣α(j) − 2πσ(j)
n+1

∣∣∣k(j)
n+1

∣∣∣∣∣∣ , 2)
≤ C̃g2

(
γ +

∣∣∣k(j)
n+1

∣∣∣+ 〈
L(j)
n

〉2
min

(
〈log γ〉

∣∣∣α(j) − 2πσ(j)
n+1

∣∣∣k(j)
n+1

∣∣∣∣∣∣ , 2)) .
(4.112)
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4. Proof of Theorem 3.1

For each of the three summands in the last term, one can follow the proof of the basic
estimate Lemma 4.8, with the following improvements. For the first summand, every-
thing stays the same, except for the factor γ we obtain instead of an C 〈log γ〉 /

〈
α(j)

〉
from the usual (4.63) estimate for the gate (the momentum k

(j)
n inside the gate is free).

The now missing 1/
〈
α(j)

〉
decay does not prevent a later application of an (4.64) esti-

mate, as N (j) ≥ 2 (presence of a gate implies at least two scattering events) provides
at least one more such decay factor. This yields an improvement by Cγ/ 〈log γ〉. Next,
for the second summand, note that (j, n+ 1) is dependent, so in the standard proof,
there would be an L∞ estimate for the k(j)

n+1 resolvent, but the fate of the k(j)
n−1 resolvent

depends on the structure of the graph—

• if n = 1, the k(j)
0 resolvent would be estimated by (4.64), and the three k(j)

0 , k(j)
1 ,

k
(j)
2 resolvents would yield a factor C 〈log γ〉2 /γ. Now, instead, take L∞ estimates

of all resolvents belonging to k(j′)
n′ , (j′, n′) dependent, except for k(j)

2 . Then follow
the standard algorithm until the highest remaining indices are (j, 2) and (j, 0) (k(j)

1
has already been accounted for by (4.112)). Now, performing the α(j) integral
yields, with k = k

(j)
2 = k

(j)
0 and α = α(j),

sup
k

∫
R

dα |k|
|α− 2π|k|+ iγ| |α+ 2π|k|+ iγ| 〈k〉

≤ C 〈log γ〉 . (4.113)

Thereafter, one can follow the standard program again, gaining an overall improve-
ment of Cγ/ 〈log γ〉.

• if n > 1, and the indices (j, n + 1) and (j, n − 1) are both dependent, one would
usually estimate both respective resolvents with (4.62) type L∞ estimates for
a factor γ−2, and a factor 〈log γ〉 from the k(j)

n resolvent. Now, instead, with
k = k

(j)
n+1 = k

(j)
n−1 and α = α(j),

sup
k

|k|
|α− 2π|k|+ iγ| |α+ 2π|k|+ iγ| 〈k〉

≤ C

〈α〉 γ
, (4.114)

yielding an overall improvement by a factor Cγ.
• if n > 1, with index (j, n + 1) dependent but (j, n − 1) free, instead of taking an
L∞ estimate of the k(j)

n+1 resolvent, pull it into the θ(j)
n−1 = k

(j)
n−1 − q integral, to

obtain ∫
Rd

dk |k|
|α− 2π|k|+ iγ| |α+ 2π|k|+ iγ| 〈k〉 〈k − q〉d

≤
∫
Rd

dk 1
||α| − 2π|k|+ iγ| 〈k〉 〈k − q〉d

≤ C 〈log γ〉
〈α〉

,

(4.115)

obtaining an improvement by γ/ 〈log γ〉 again.
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4.4. Non-crossing pairings

Finally, for the third summand in (4.112), all resolvents are treated in the standard
way except for omitting the usual L1 estimate for the k(j)

n resolvent “inside” the gate
itself (thus gaining a factor 〈log γ〉) and an improved L∞ estimate for the k(j)

n+1 resolvent,
namely

sup
k

(j)
n+1

min
(
〈log γ〉

∣∣∣α(j) − 2πσ(j)
n+1

∣∣∣k(j)
n+1

∣∣∣∣∣∣ , 2)∣∣∣α(j) − 2πσ(j)
n+1

∣∣∣k(j)
n+1

∣∣∣+ iγ
∣∣∣ 〈k(j)

n+1

〉 ≤ C 〈log γ〉〈
α(j)〉 . (4.116)

In this case the overall improvement is Cγ.
As the observables are diagonal, (4.1), all sign changes have to originate from a scat-
tering event, i.e. from one of the cases analyzed above. So we have now estimated all
contributions of K except for K+ and K−, thus proving the lemma.

Lemma 4.15. (Decoupling of dynamics for + and − components, R(Gend, ...) ampli-
tudes.) For dimension d ≥ 2, assume that ξ is of class (d+ 2(M + 2), 0), and let g2 fur-
thermore fulfill the conditions of Lemma D.1. (This holds if ξ is of class (d+2(M+2), 3)).
Choose M ∈ {0, ...,M − 1}, N< ∈ Nm−1

0 bounded by (4.36) and define N from N , N<,
M as previously. Then, for all δ > 0, there is a constant C depending only on δ,
g2 and dimension d such that for all γ ∈ (0, 1], κ > 0, and all non-crossing pairings
S ∈ π∗ (I(N)),∣∣∣R (Gend, ψε0, ε, κ, a, p, L

(0), t, N<, N,M, S
)

−R+
(
Gend, ψε0, ε, κ, a, p, L

(0), t, N<, N,M, S
)

− R−
(
Gend, ψε0, ε, κ, a, p, L

(0), t, N<, N,M, S
)∣∣∣

≤ C |N |+2m
(
〈L(0)〉+mN

)2|N |+4M+4
〈εCobs〉4M+4 ‖g2‖|N |/2d+2(M+2)

× e2γ|t|(ε/γ)|N |/2γ1−δ 〈log γ〉|N |+2m ‖ψε0‖
2
H

m−1∏
j=1
‖aj‖2C0 .

(4.117)

Here, the definition of R+ and R− is analogous to that of the K+ and K− amplitudes in
(4.105) and (4.106).

Proof. One can make the same improvements on the proof of Lemma 4.9 as were made
for Lemma 4.8 in the previous proof. For the scattering events without cut-off function Φ
occurring in this case, one has to use Lemmas D.1 and D.2 for the non-cutoff hσ1σ2 (k,w)
instead of hσ1σ2 (k,w;L).

4.4.3. The K(main)
σ and R(main)

σ amplitudes

All estimates for K and R amplitudes so far have been derived by using a resolvent
representation. For controlling the contribution of nested and non-markovian pairings,
and eventually identifying the linear Boltzmann equation as the limit, the resolvents will
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4. Proof of Theorem 3.1

no longer be practical; instead, we transform the α(j) integrals back into time integrals.
We will formulate our arguments only for the K+ andR+ amplitudes, the “−” amplitudes
can be treated in the same fashion.

Definition 4.2. Let S ∈ I(N) be a non-crossing pairing. The parent Ǎ of a pair A ∈ S
is the “narrowest” pair in S embracing A, that is, from all B ∈ S with minB ≺ minA ≺
maxA ≺ maxB we choose Ǎ to be the one with minB maximal. For A that do not
have a parent in S, we set its parent to be Ǎ = {(1, 0), (2m,N (2m))} =: 0. We thus have
a map

·̌ : S → S ∪ {0} = S0, (4.118)
which is not onto and typically not injective, so the set of children

B =
{
A ∈ S : Ǎ = B

}
(4.119)

of an B ∈ S0 may be either empty or contain several elements.

For (j, n) ∈ I0(N), also define the momenta

q(j)
n = k

(1)
0 +

∑
(̃,ñ)∈I(N)
(̃,ñ)�(j,n)

θ
(̃)
ñ , (4.120)

which coincide with the k(j)
n up to the O(ε) contribution of the p variables.

If there are G(j) gates on the j-th time interval, there remain Ñ (j) + 1 indices after
integrating out the gates, with Ñ (j) = N (j) −G(j), and there is an bijective map{

0, ..., N (j)
}
\ {n : (j, n) ∈ Igate} →

{
0, ..., Ñ (j)

}
,

n 7→ l(j, n) = n− ]
{
n′ < n : (j, n′) ∈ Igate

}
.

(4.121)

The size of the reduced index set I(N) \ Igate is
∣∣∣Ñ ∣∣∣ = Ñ (1) + ...+ Ñ (2m). The non-gate

scattering events in the j-th interval is R(j) = N (j)−2G(j) = Ñ (j)−G(j), and the number
of non-gate pairs A ∈ S \ Sgate is

1
2

2m∑
j=1

R(j) = |N |2 −
2m∑
j=1

G(j) =
∣∣∣Ñ ∣∣∣− |N |2 . (4.122)

For q ∈ Rd \ {0}, q 6= 0, one can set

q̂ = q

|q|
, (4.123)

and define everywhere except on a set of Lebesgue measure zero

P (j) =
j−1∑
̃=1

p(̃) (j ∈ {1, ..., 2m}),

w
(j)
l = 2πτ (j)

(
|q(j)
n(j,l)|+ εq̂

(j)
n(j,l) · P

(j)
)

(j ∈ {1, ..., 2m}, l ∈ {0, ..., Ñ (j)}).
(4.124)
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4.4. Non-crossing pairings

The contribution of the signs τ (j) will show as a factor ρA for every A ∈ S \ Sgate,

ρA = (−iτ (jA))(−iτ (jA)), (4.125)

so ρA is negative if both scatterings belonging to A occur on the same side of the scalar
product, and positive otherwise. This sign will later give rise to the gain and loss terms
in the linear Boltzmann equation. Employing the above notation, denote as the main
part of the K+ amplitude belonging to a non-crossing pairing S the quantity

K(main)
+

(
ψε0, ε, a, p, L

(0), t, N, S
)

= ε|N |/2
∫
Rd

dq(1)
0

∣∣∣2πq(1)
0

∣∣∣2|Ñ |−|N | ψ̂ε0,+
q(1)

0 + ε
2m−1∑
j=1

p(j)

 ψ̂ε0,+ (q(1)
0

)
∫
Rd|Ñ|

∏
(j,n)∈I(N)\Igate

(
dq(j)
n

) ∏
A∈S\Sgate

(
ρAδ

(
θ

(jA)
nA

+ θ(jA)
nA

)
ĝ2
(
θ(jA)
nA

))
2m−1∏
j=1

aj,+
(
q

(j)
N(j)

) 2m∏
j=1

KÑ(j)

(
w(j), t(j)

)
∏

(j,n)∈I(N)\Igate

Φ
(
q(j)
n , q

(j)
n−1, L

(j)
n

)
∏

(j,n)∈Igate

(
−Θτ (j)

(
q̂

(j)
n+1

∣∣∣q(1)
0

∣∣∣) δ (q(j)
n+1 − q

(j)
n−1

))
,

(4.126)

with the propagators K defined as in (4.30). For j ∈ {1, ..., 2m − 1}, we have set
q

(j+1)
0 = q

(j)
N(j) .

Lemma 4.16. Let d ≥ 2, ξ be of class (d+ 2, 0) and suppose g2 fulfills the conditions of
Lemma D.1. Assume furthermore that there exists a λ ∈ (0, 1] such that ψ̂ε0(k) = 0 for
|k| < λ independently of ε > 0. For all δ > 0, there is a constant C depending only on
δ, d and g2 such that∣∣∣K+

(
ψε0, ε, a, p, L

(0), t, N, S
)
−K(main)

+

(
ψε0, ε, a, p, L

(0), t, N, S
)∣∣∣

≤ C |N |+2m
(
〈L(0)〉+mN

)2|N |
‖g2‖|N |/2d+2 〈Cobs〉2m2

× e2γ|t|(ε/γ)|N |/2 〈log γ〉|N |+2m ‖ψε0‖
2
H

2m−1∏
j=1
‖aj‖C1

×
(
(ε2|t|+ γ)λ−1 + γ1−δ

)
(4.127)

for all non-crossing pairings S ∈ π∗ (I(N)), and all γ ∈ [4ε 〈Cobs〉m, 1].

Proof. First, we will replace the π(|k(j)
n | + |k(j)

n−1|) factors by 2π|k(1)
0 | = 2π|q(1)

0 | for all
scattering events belonging to non-gate pairs A ∈ S \ Sgate. There are |Ñ | − |N |/2 such
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pairs, which explains the exponent 2|Ñ | − |N | in the first line of (4.126). It is enough to
show how to replace the factor |k(j1)

n1 |+ |k
(j1)
n1−1| for (j1, n1) = maxA1 for an A1 ∈ S \Sgate,

the minA1 case is analogous. There is an r ≤ |N |/2 such that Al = Ǎl−1, (l ∈ {2, ...r})
until Ar = {(1, 0), (2m,N (2m))}. Therefore, with the notation maxAl = (jl, nl),∣∣∣|k(j1)

n1−1|+ |k(j1)
n1 | − 2|k(1)

0 |
∣∣∣ ≤ ∣∣∣|k(j1)

n1−1| − |k
(j1)
n1 |

∣∣∣+ 2
∣∣∣|k(j1)

n1 | − |k
(2m)
N(2m) |

∣∣∣+ 4εmCobs

≤
∣∣∣|k(j1)

n1−1| − |k
(j1)
n1 |

∣∣∣+ 2
r∑
l=2

∣∣∣|k(jl−1)
nl−1 | − |k(jl)

nl
|
∣∣∣+ 4εmCobs

≤ 2
r−1∑
l=1

∣∣∣|k(jl)
nl−1| − |k

(jl)
nl
|
∣∣∣+ 2

r−1∑
l=2

∣∣∣|k(jl−1)
nl−1 | − |k

(jl)
nl−1|

∣∣∣+ 2
∣∣∣|k(jr−1)

nr−1 | − |k
(2m)
N(2m) |

∣∣∣+ 4εmCobs

≤ 2
r−1∑
l=1

∣∣∣|k(jl)
nl−1| − |k

(jl)
nl
|
∣∣∣+ 8εmCobs.

(4.128)

Now assume all replacements of this type for pairs A ∈ S \ Sgate with maxA � maxA1
have already been accomplished. Then, without needing better decay conditions for g2
than in Lemma 4.8, one can follow the proof of that lemma, and observe that the error
from the replacement causes r error terms, a trivial one with an improvement factor
εmCobs compared to the basic bound, and r− 1 more complicated ones, originating from
the sum in the last line of (4.128). We can utilize each of those summands to estimate

2π
∣∣∣|k(jl)

nl−1| − |k
(jl)
nl |

∣∣∣∣∣∣α(jl) − 2πτ (jl)|k(jl)
nl |+ iγ

∣∣∣ ∣∣∣α(jl) − 2πτ (jl)|k(jl)
nl−1|+ iγ

∣∣∣
≤ 1∣∣∣α(jl) − 2πτ (jl)|k(jl)

nl |+ iγ
∣∣∣ + 1∣∣∣α(jl) − 2πτ (jl)|k(jl)

nl−1|+ iγ
∣∣∣ ,

(4.129)

from where one can continue as in the proof of Lemma 4.14 after estimate (4.109).
Therefore, one can replace all factors of the type |k(j)

n |+ |k(j)
n−1| in the definition of the

K+ amplitude by 2|k(1)
0 | with an error of the form

(Basic estimate from Lemma 4.8)× C|N |(|N |γ1−δ + εmCobs) (4.130)

with δ > 0 arbitrarily small and C depending only on dimension d and δ.
Next, one has to approximate the contribution of the gates by the Θσ functions defined
in Lemma D.3. Consider a gate, A ∈ Sgate, with minA = (j, n). First, assume, that
j ≤ m, so τ (j) = 1. In this case, the factors(∣∣∣k(j)

n

∣∣∣+ σ(j)
n

∣∣∣k(j)
n−1

∣∣∣) =
(∣∣∣k(j)

n

∣∣∣+ σ(j)
n

∣∣∣k(j)
n+1

∣∣∣) (4.131)

have not been replaced by |k(1)
0 | in the previous step. Instead, we now integrate out all

84



4.4. Non-crossing pairings

factors in (4.105) that depend on k(j)
n or σ(j)

n , to obtain

iπ2∑
σ

(j)
n

∫
Rd

dk(j)
n

ĝ2
(
k

(j)
n − k(j)

n+1

)
α(j) − 2πσ(j)

n

∣∣∣k(j)
n

∣∣∣+ iγ

(∣∣∣k(j)
n

∣∣∣+ σ(j)
n

∣∣∣k(j)
n+1

∣∣∣)2
Φ(k(j)

n+1, k
(j)
n , L(j)

n )

= h++
(
k

(j)
n+1, α

(j) + iγ;L(j)
n

)
,

(4.132)

and estimate∣∣∣h++
(
k

(j)
n+1, α

(j) + iγ;L(j)
n

)
−Θ+

(
q̂

(j)
n+1|k

(1)
0 |
)∣∣∣

≤
∣∣∣h++

(
k

(j)
n+1, α

(j) + iγ;L(j)
n

)
− h++

(
k

(j)
n+1, 2π|k

(j)
n+1|+ iγ;L(j)

n

)∣∣∣
+
∣∣∣h++

(
k

(j)
n+1, 2π|k

(j)
n+1|+ iγ;L(j)

n

)
− h++

(
q

(j)
n+1, 2π|q

(j)
n+1|+ iγ;L(j)

n

)∣∣∣
+
∣∣∣h++

(
q

(j)
n+1, 2π|q

(j)
n+1|+ iγ;L(j)

n

)
− h++

(
q̂

(j)
n+1|k

(1)
0 |, 2π|k

(1)
0 |+ iγ

)∣∣∣
+
∣∣∣h++

(
q̂

(j)
n+1|k

(1)
0 |, 2π|k

(1)
0 |+ iγ

)
−Θ+

(
q̂

(j)
n+1|k

(1)
0 |
)∣∣∣

≤ C
〈
L(j)
n

〉2 [
min

(
〈log γ〉 |α(j) − 2π|k(j)

n+1||, 1
)

+ 2mCobsε 〈log ε〉

+ min
(
〈log γ〉 ||k(1)

0 | − |k
(j)
n+1||

〈
log(||k(1)

0 | − |k
(j)
n+1||)

〉
, 1
)

+ 〈Cobsm〉2 ε 〈log ε〉+ γ 〈log γ〉
]
,

(4.133)

where we used Lemma D.1 and Lemma D.3. After replacing the argument k(j)
n+1 of the

gate functions h++ by q̂
(j)
n+1|k

(1)
0 | = q̂

(j)
n+1|q

(1)
0 |, we can also shed the cut-off threshold

L
(j)
n for all gates, as |k(1)

0 | ≤ L(0) ≤ L(j)
n . Now, one can again insert the above estimate

into the proof of Lemma 4.8. This way, the last two lines of (4.133) yield the following
improvements. From some summands, one directly obtains a factor ε 〈log ε〉 or γ 〈log γ〉.
We have already seen in the proof of Lemma 4.14 how the summand

min
(
〈log γ〉 |α(j) − 2π|k(j)

n+1||, 1
)

(4.134)

gives an improvement factor γ. Finally, the summand

min
(
〈log γ〉 ||k(1)

0 | − |k
(j)
n+1||

〈
log(||k(1)

0 | − |k
(j)
n+1||)

〉
, 1
)

(4.135)

can be estimated as in (4.128), with an only slightly worse improvement factor of the
form (

|N |γ1−δ + 〈Cobsm〉2 ε1−δ
)
, (4.136)

δ > 0 arbitrarily small. To see how to replace gates by Θ functions for j > m, observe
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that τ (j) = −1 and

iπ2∑
σ

(j)
n

∫
Rd

dk(j)
n

ĝ2
(
k

(j)
n − k(j)

n+1

)
α(j) + 2πσ(j)

n

∣∣∣k(j)
n

∣∣∣+ iγ

(∣∣∣k(j)
n

∣∣∣+ σ(j)
n

∣∣∣k(j)
n+1

∣∣∣)2
Φ(k(j)

n+1, k
(j)
n , L

(j)
n+1)

= h−−
(
k

(j)
n+1, α

(j) + iγ;L(j)
n+1

)
,

(4.137)

which one can replace by Θ−
(
q̂

(j)
n+1|k

(1)
0 |
)
with the same error as before. As we have

already started with the Θσ functions, we want to change from k
(j)
n to q(j)

n arguments.
First, note that this easily achieved for the argument of the ĝ2 functions, as

ĝ2
(
θ(j)
n

)
= ĝ2

(
k(j)
n − k

(j)
n−1

)
= ĝ2

(
q(j)
n − q

(j)
n−1

)
(4.138)

for all (j, n) ∈ I(N). Using the differentiability of the observables,∣∣∣∣∣∣aj,+
k(j+1)

0 + k
(j)
N(j)

2

− aj,+ (q(j)
N(j)

)∣∣∣∣∣∣ ≤ 2εCobsm ‖aj‖C1 , (4.139)

so all k arguments in the observables can be replaced with an error proportional to the
basic estimate times 2εCobsm

2. Finally, for the cut-off functions,∣∣∣Φ (k(j)
n−1, k

(j)
n , L(j)

n

)
− Φ

(
q

(j)
n−1, q

(j)
n , L(j)

n

)∣∣∣ ≤ 2εCCobsmΦ
(
k

(j)
n−1, k

(j)
n , L(j)

n + 1
)

(4.140)

and one can therefore replace the arguments of all Φ functions with an error consisting
of the standard estimate from Lemma 4.8 times 2|N |εCobsm. After finishing those
replacements, one can always borrow a decay

〈
q

(j)
n

〉−1
from ĝ2 and Φ just as we got a〈

k
(j)
n

〉−1
decay in the proof of Lemma 4.8.

The only task left is to estimate the error of replacing the arguments of the resolvents.
Note for all (j, n) ∈ I0(N),

k(j)
n = q(j)

n + ε
∑
̃<j

p(̃) = q(j)
n + εP (j) (4.141)

with |P (j)| ≤ 2mCobsε, and therefore for |q(j)
n | > 4mCobsε∣∣∣|k(j)

n | − |q(j)
n | − εq̂(j)

n · P (j)
∣∣∣ ≤ 1

2(|q(j)
n | − ε|P (j)|)

|εP (j)|2 ≤ (2mCobsε)2

|q(j)
n |

. (4.142)

For 0 < |q(j)
n | < 4mCobsε,∣∣∣|k(j)

n | − |q(j)
n | − εq̂(j)

n · P (j)
∣∣∣ ≤ (4mCobsε)2

|q(j)
n |

(4.143)
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holds trivially, and one has∣∣∣∣∣∣ 1
α(j) − 2πτ (j)

∣∣∣q(j)
n + εP (j)

∣∣∣+ iγ
− 1
α(j) − 2πτ (j)

(
|q(j)
n |+ εq̂

(j)
n · P (j)

)
+ iγ

∣∣∣∣∣∣
≤ C(Cobsmε)2∣∣∣α(j) − 2πτ (j)

∣∣∣q(j)
n + εP (j)

∣∣∣+ iγ
∣∣∣ ∣∣∣α(j) − 2πτ (j)

(
|q(j)
n |+ εq̂

(j)
n · P (j)

)
+ iγ

∣∣∣ |q(j)
n |

,

(4.144)

for all q(j)
n 6= 0. Now we follow the proof of Lemma 4.8 with minor changes. First,

the gate resolvents no longer have to be estimated, as the gates have already be taken
care of. As each of those resolvents would have contributed a factor 〈log γ〉, this only
yiels a neglible improvement of the basic estimate. For resolvents belonging to free
(j, n) ∈ I(N) \ Igate, we no longer use k(j)

n but q(j)
n as integration variable (this is just a

translation). As mentioned above, we can use
〈
q

(j)
n

〉−1
instead of

〈
k

(j)
n

〉−1
decays for all

(j, n) ∈ I(N). Finally we fix a certain (̃, ñ) ∈ I0(N) \ Igate, for which we want to replace
1

α(̃) − 2πτ (̃)
∣∣∣q(̃)
ñ + εP (̃)

∣∣∣+ iγ
→ 1

α(̃) − 2πτ (̃)
(
|q(̃)
ñ |+ εq̂

(̃)
ñ · P (̃)

)
+ iγ

. (4.145)

We assume that the same replacement has already been conducted for (j, n) � (̃, ñ), but
not yet for (j, n) ≺ (̃, ñ). For (j, n) � (̃, ñ), note that the assumption 4 〈Cobs〉mε ≤ γ ≤
1 implies that analogues of (4.62), (4.63), (4.64) can be used without difficulty, namely

sup
q
(j)
n

1∣∣∣α(j) − 2πτ (j)
(
|q(j)
n |+ εq̂

(j)
n · P (j)

)
+ iγ

∣∣∣ 〈q(j)
n

〉 ≤ C〈
α(j)〉 γ ,∫

Rd
dq(j)
n

1∣∣∣α(j) − 2πτ (j)
(
|q(j)
n |+ εq̂

(j)
n · P (j)

)
+ iγ

∣∣∣ 〈q(j)
n

〉〈
q

(j)
n − q(j)

n−1

〉d ≤ C 〈log γ〉〈
α(j)〉 ,

∫
R

dα(j) 1∣∣∣α(j) − 2πτ (j)
(
|q(j)
n |+ εq̂

(j)
n · P (j)

)
+ iγ

∣∣∣ 〈α(j)〉 ≤ C 〈log γ〉〈
α(j)〉 ,

(4.146)

with a C depending only on dimension d. Arriving at (̃, ñ), suppose that there is an
A ∈ S \ Sgate such that minA � (̃, ñ) ≺ maxA, and choose A with minA maximal.
Note that q(jA)

nA = q
(̃)
ñ . First, assume that (̃, ñ) is dependent, and derive from (4.144)

the estimate∣∣∣∣∣∣ 1
α(̃) − 2πτ (̃)

∣∣∣q(̃)
ñ + εP (̃)

∣∣∣+ iγ
− 1
α(̃) − 2πτ (̃)

(
|q(̃)
ñ |+ εq̂

(̃)
ñ · P (̃)

)
+ iγ

∣∣∣∣∣∣
〈
q

(̃)
ñ

〉−1

≤ C〈
α(̃)〉 |q(̃)

ñ |
(4.147)
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with a C dependent only on d. We then follow the original proof of Lemma 4.8 again,
carrying the |q(̃)

ñ | = |q(jA)
nA | denominator along until we integrate over q(jA)

nA (which is
free), to obtain

∫
Rd

dq(jA)
nA∣∣∣α(jA) − 2πτ (jA)

∣∣∣q(jA)
nA + εP (jA)

∣∣∣+ iγ
∣∣∣ |q(jA)

nA |
〈
q

(jA)
nA

〉〈
q

(jA)
nA − q

(jA)
nA−1

〉d ≤ C 〈log γ〉 ,

(4.148)
because d ≥ 2. This yields the basic estimate with an additional factor Cγ. Second,
assume (̃, ñ) to be free. In that case, the standard proof calls for a q(̃)

ñ integral, into
which we plug (4.144) and have

∫
Rd

dq(̃)
ñ

C(Cobsmε)2∣∣∣α(̃) − 2πτ (̃)
∣∣∣q(̃)
ñ + εP (̃)

∣∣∣+ iγ
∣∣∣ ∣∣∣α(̃) − 2πτ (̃)

(
|q(̃)
ñ |+ εq̂

(̃)
ñ · P (̃)

)
+ iγ

∣∣∣
× 1

|q(̃)
ñ |
〈
q

(̃)
ñ

〉〈
q

(̃)
ñ − q

(̃)
ñ−1

〉d
≤ C̃Cobsmε〈

α(̃)〉 ,

(4.149)

gaining a factor ε over the basic estimate again. Third, if ñ = 0 plug (4.144) into the
α(̃) integral,
∫
R

dα(̃) C(Cobsmε)2∣∣∣α(̃) − 2πτ (̃)
∣∣∣q(̃)
ñ + εP (̃)

∣∣∣+ iγ
∣∣∣ ∣∣∣α(̃) − 2πτ (̃)

(
|q(̃)
ñ |+ εq̂

(̃)
ñ · P (̃)

)
+ iγ

∣∣∣ |q(̃)
ñ |

≤ C̃Cobsmε

|q(̃)
ñ |

.

(4.150)

The denominator |q(̃)
ñ | is dealt with as before, and again, an extra factor ε is gained.

Conversely, assume now that there is no A ∈ S \Sgate such that minA � (̃, ñ) ≺ maxA.
In this case, (̃, ñ) cannot be free, but for (̃, ñ) dependent or (̃, ñ) = (̃, 0), the estimates
(4.147) and (4.150) still apply. Their right hand sides can be controlled by

1
|q(̃)
ñ |
≤ 1
λ
, (4.151)

as we now have q(̃)
ñ = k

(1)
0 , with |k(1)

0 | ≥ λ on the support of ψ̂ε0,+.

A short remark concerning the caseN (̃) = 0 is in order. Here, the resolvent representation
is only valid formally, and the change of arguments for the resolvent actually means a
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change of arguments in the unitary, which is controlled by∣∣∣exp
(
−2πiτ (̃)

∣∣∣q(̃)
ñ + εP (̃)

∣∣∣ t(̃))− exp
(
−2πiτ (̃)

(
|q(̃)
ñ |+ εq̂

(̃)
ñ · P

(̃)
)
t(̃)
)∣∣∣

≤ C(Cobsmε)2

|q(̃)
ñ |

t(̃).
(4.152)

As before, the |q(̃)
ñ | is then either integrated over or estimated by 1/λ.

To prove the lemma, one now only has to return to expressing the propagation by
unitaries instead of resolvents, applying Lemma 4.2 in the reverse direction compared
to the introduction of the resolvent representation. The graph expansion started with
propagators KN(j) on the j-th inteval, but we now only recover KÑ(j) , as the gates have
been integrated out, so there are no time variables corresponding to “time spent in a
gate” anymore.

The definition of the main part of the R+(Gend, ...) amplitudes is rather similar to
(4.126),

R(main)
+

(
Gend, ψε0, ε, κ, a, p, L

(0), t, N<, N,M, S
)

= ε|N |/2
∫
Rd

dq(1)
0

∣∣∣2πq(1)
0

∣∣∣2|Ñ |−|N | ∣∣∣ψ̂ε0,+(q(1)
0 )

∣∣∣2∫
Rd|Ñ|

∏
(j,n)∈I(N)\Igate

(
dq(j)
n

) ∏
A∈S\Sgate

(
ρAδ

(
θ

(jA)
nA

+ θ(jA)
nA

)
ĝ2
(
θ(jA)
nA

))
2m−1∏
j=1

aj,+
(
q

(j)
N(j)

) 2m∏
j=1

KÑ(j)

(
w(j), t(j)

)
∏

(j,n)∈I(N)\Igate

Φ(j)
n

(
q(j)
n , q

(j)
n−1, L

(j)
n

)
∏

(j,n)∈Igate

(
−Θτ (j)

(
q̂

(j)
n+1

∣∣∣q(1)
0

∣∣∣) δ (q(j)
n+1 − q

(j)
n−1

))
.

(4.153)

For convenience, we again have set q(j+1)
0 = q

(j)
N(j) for all j ∈ {1, ..., 2m − 1}. The

only differences of (4.153) and (4.126) are the different definition of N , with N (m) =
N

(m) +M = N+M−N (1)...−N (m−1), the missing cutoff function for the last scattering
events

Φ(j)
n =

Φ for (j, n) ≺
(
m,N

(m)) or (j, n) �
(
m+ 1, N (m+1) + 1−N (m))

1 for (j, n) �
(
m,N

(m)) or (j, n) �
(
m+ 1, N (m+1) + 1−N (m))

,
(4.154)

the decay parameter κ added to the frequencies in the last unitaries

w
(j)
l = 2πτ (j)

(
|q(j)
n(j,l)|+ εq̂

(j)
n(j,l) · P

(j)
)
− iκ(j)

n(j,l), (4.155)
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with

κ(j)
n =

0 for (j, n) ≺
(
m,N

(m)) or (j, n) �
(
m+ 1, N (m+1) −N (m))

κ for (j, n) �
(
m,N

(m)) or (j, n) �
(
m+ 1, N (m+1) −N (m))

,
(4.156)

and the slightly different definition of the observables, (4.39). Following the same rea-
soning as in the proof of Lemma 4.16, one concludes

Lemma 4.17. Let d ≥ 2, let ξ be a random field of class (d+ 2(M + 2), 0) and with g2
fulfilling the conditions of Lemma D.1. Assume furthermore that there exists a λ ∈ (0, 1]
such that ψ̂ε0(k) = 0 for |k| < λ independently of ε > 0, and that M ∈ {0, ...,M − 1}
and N< ∈ Nm−1

0 is bounded by (4.36). For δ > 0 arbitrarily small, there is a constant C
depending only on δ, d and g2 such that for all γ, κ > 0 with 4ε 〈Cobs〉m < γ ≤ 1 and all
non-crossing pairings S ∈ π∗ (I(N))∣∣∣R+

(
Gend, ψε0, ε, κ, a, p, L

(0), t, N<, N,M, S
)

−R(main)
+

(
Gend, ψε0, ε, κ, a, p, L

(0), t, N<, N,M, S
)∣∣∣

≤ C |N |+2m
(
〈L(0)〉+mN

)2|N |+4M+4
‖g2‖|N |/2d+2(M+2) 〈εCobs〉4M+6m2

× e2γ|t|(ε/γ)|N |/2 〈log γ〉|N |+2m ‖ψε0‖
2
H

m−1∏
j=1
‖aj‖2C1

×
(
(ε2|t|+ γ)λ−1 + γ1−δ

)
.

(4.157)

4.4.4. Transforming the time integrals

We will now rewrite K(main)
+ and R(main)

+ (Gend, ...) in a fashion that facilitates their
analysis for large values of |N |. Due to the presence of the momentum delta functions,
the integral over the q(j)

n , (j, n) ∈ I(N)\ Igate in (4.126) and (4.153) has only |Ñ |− |N |/2
free variables, one for each pair that is not a gate. To evaluate the integral, one can
choose for each A = {(jA, nA), (jA, nA)} ∈ S \ Sgate an integration variable

qA = q(jA)
nA

. (4.158)

Then for each index (j, n) ∈ I(N) \ Igate with (jA, nA) � (j, n) ≺ (jA, nA) that is not
“contained” within a further pair B ∈ A (in the sense that minB � (j, n) ≺ maxB),
the delta functions enforce q(j)

n = qA. Consequently, for such (j, n) and l = l(j, n), the
frequency of the propagator is

w
(j)
l = 2πτ (j)

(
|qA|+ εq̂A · P (j)

)
, (4.159)

for the K(main)
+ amplitudes, or

w
(j)
l = 2πτ (j)

(
|qA|+ εq̂A · P (j)

)
− iκ(j)

n , (4.160)
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4.4. Non-crossing pairings

for the R(main)
+ (Gend, ...) case. After defining q0 = q

(1)
0 , we see that for every (j, n) ∈

I(N) \ Igate which is not straddled by any pair at all, the momentum equals q(j)
n = q0,

and the frequency in this case is w(j)
l = 2πτ (j)

(
|q0|+ εq̂0 · P (j)

)
. As any remaining, i.e.

non-gate, scattering event is a transition from a parent to a child pair or vice versa, the
arguments of the ĝ2 functions can be rewritten as

ĝ2
(
θ(jA)
nA

)
= ĝ2

(
qA − qǍ

)
, (4.161)

A ∈ S \ Sgate. Likewise, one can replace the product of cutoff functions Φ in (4.126) and
(4.153) by ∏

A∈S\Sgate

[
Φ(jA)
nA

(
qA, qǍ, L

(jA)
nA

)
Φ

(jA)
nA

(
qA, qǍ, L

(jA)
nA

)]
, (4.162)

the product of Θ functions by ∏
B∈Sgate

(
−Θτ (jB)

(
q̂B̌ · |q0|

))
(4.163)

and finally the observables by
aj,+

(
qA(j)

)
(4.164)

with A(j) the “narrowest” pair in A ∈ S \ Sgate such that minA � (j,N (j)) ≺ maxA.
Before transforming the time integral as well, we will plug in for the time variables
t(j) the scaled macroscopic times T (j)/ε, with T (1), ..., T (m) > 0, T (j) = T (2m+1−j) for
j ∈ {m+ 1, ..., 2m} and |T | = T (1) + ...+ T (m). Note that the time integral in (4.126) or
(4.153), from all the propagators taken together,

2m∏
j=1

KÑ(j)

(
w(j), T (j)/ε

)

=
2m∏
j=1

∫
RÑ

(j)+1
+

ds̃(j)
0 ...ds̃(j)

Ñ(j)δ

Ñ(j)∑
l=1

s̃
(j)
l − T

(j)/ε

 Ñ(j)∏
l=0

exp
(
−iw(j)

l s̃
(j)
l

) (4.165)

is |Ñ |-dimensional. Instead of simply using the times s̃(j)
l between two consecutive

scatterings as integration variables, it is advantageous to introduce time variables that
better represent the structure of the pairing S.
If A ∈ S \ Sgate, A = {(j1, n1), (j2, n2)} with (j1, n1) ≺ (j2, n2), define

s+
A =


∑
j<j1 T

(j) + ε
∑l(j1,n1)−1
l=0 s̃

(j1)
l for j1 ∈ {1, ...,m}

2|T | −∑j<j1 T
(j) − ε

∑l(j1,n1)−1
l=0 s̃

(j1)
l for j1 ∈ {m+ 1, ..., 2m}

(4.166)

and

s−A =


∑
j<j2 T

(j) + ε
∑l(j2,n2)−1
l=0 s̃

(j2)
l for j2 ∈ {1, ...,m}

2|T | −∑j<j2 T
(j) − ε

∑l(j2,n2)−1
l=0 s̃

(j2)
l for j2 ∈ {m+ 1, ..., 2m}

. (4.167)
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The (signed) time that is spent “within” this pair A, but not in one of the children pairs
B ∈ A as defined in Definition 4.2 is equal to

bA = 1
ε

(s−A − s+
A

)
−

∑
B∈A∩S\Sgate

(
s−B − s

+
B

)
= 1
ε

(
s−A − s

+
A

)
−

∑
B∈(A∪A...)∩S\Sgate

bB.

(4.168)

We allow bA to take both positive or negative values to account for the complex conju-
gation in the scalar product, (so far we used the sign τ (j) for the same purpose).
On the other hand, for gates A ∈ Sgate, A = {(jA, nA), (jA, nA + 1)}, let

rA =


∑
j<jA

T (j) + ε
∑l(jA,nA+1)−1
l=0 s̃

(jA)
l for jA ∈ {1, ...,m}

2|T | −∑j<jA
T (j) − ε

∑l(jA,nA+1)−1
l=0 s̃

(jA)
l for jA ∈ {m+ 1, ..., 2m}

. (4.169)

We will use the |Ñ | − |N |/2 variables of s−, the |Ñ | − |N |/2 different b and |N | − |Ñ |
different r variables as new integration variables. Compared to the s̃ variables, |N |/2 of
them have been scaled with a factor ε (the s− and r), while |Ñ | − |N |/2 of them (the b
variables) are not. This implies that

2m∏
j=1

∫
RÑ

(j)+1
+

ds̃(j)
0 ...ds̃(j)

Ñ(j)δ

Ñ(j)∑
l=1

s̃
(j)
l − T

(j)/ε

→ ∫
QεS,T

∏
A∈S\Sgate

(
ds−AdbA

) ∏
B∈Sgate

drB

(4.170)
is a transformation with Jacobian ε|N |/2, which cancels with the prefactor of (4.126) or
(4.153). The integration domain QεS,T on the right hand side of (4.170) depends both
on the structure of the pairing S as well as on the lenghts of the single time intervals
encoded in T . While its structure may be rather intricate, the following observations are
straightforward.

QεS,T ⊂
{

(s−, b, r) ∈ R|Ñ | : (s−, r) ∈ QS,T
}
, (4.171)

with QS,T ⊂ [0, T ]|N |/2 such that∫
QS,T

ds−dr ≤ (2|T |)|N |/2
(|N |/2)! (4.172)

and, for any given A,A′ ∈ S \ Sgate, B ∈ Sgate and x ∈ R,∫
QS,T

ds−drδ
(
s−A − x

)
≤ (2|T |)|N |/2−1

(|N |/2− 1)! ,∫
QS,T

ds−drδ
(
s−A − s

−
A′ − x

)
≤ (2|T |)|N |/2−1

(|N |/2− 1)! ,∫
QS,T

ds−drδ
(
s−A − rB − x

)
≤ (2|T |)|N |/2−1

(|N |/2− 1)! .

(4.173)
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4.4. Non-crossing pairings

To see that (4.172) is true, note that for each of the altogether |N |/2 different s− and
r variables there is a j ∈ {1, ...m} such that the variable in question is confined to an
interval of length smaller or equal to T (j). If one allows each variable to live on the full
2|T | = T (1) + ...+ T (2m) instead, but keeps the order of the time variables (that carries
over from ≺ and the structure of the particular S) intact, the estimate is immediate.
The bound (4.173) comes from the same argument with one degree of freedom removed.
So far, we have only transformed the integration domain of (4.165). The integrand, that
is the phase

2m∏
j=1

Ñ(j)∏
l=0

exp
(
−iw(j)

l s̃
(j)
l

)
(4.174)

transforms into

∏
A∈S\Sgate

[
exp (−2πibA|qA|)hA

(
s−, b, r, p, q̂A, κ

)]
h0
(
s−, b, r, p, q0, κ

)
. (4.175)

The continuous functions h0, hA are bounded by |h| ≤ 1. They may depend on all time
variables s−, b, r as well as p(j), j ∈ {1, ..., 2m − 1} and (if appropriate) the damping
parameter κ > 0; regarding the q variables, h0 is a function of q0, however, the hA for
A ∈ S \ Sgate only depend on the normalized q̂A = qA/|qA|. So hA is independent of
the absolute values |qA| when A 6= 0. The last statement is immediate from (4.159) and
from the definition of bA in (4.168). In the new variables qA and s−, b, r, and after an
application of Fubini’s theorem to interchange the qA and time integrals, the amplitudes
K(main)

+ and R(main)
+ read

K(main)
+

(
ψε0, ε, a, p, L

(0), T/ε,N, S
)

=
∫
Rd

dq0 |2πq0|2|Ñ |−|N | ψ̂ε0,+(q0)ψ̂ε0,+

q0 + ε
2m−1∑
j=1

p(j)


∫
QεS,T

∏
A∈S\Sgate

(
ds−AdbA

) ∏
B∈Sgate

drB∫
R(|Ñ|−|N|/2)d

∏
A∈S\Sgate

dqA

∏
A∈S\Sgate

[
ρAĝ2(qA − qǍ)Φ

(
qA, qǍ, L

(jA)
nA

)
Φ
(
qA, qǍ, L

(jA)
nA

)]
2m−1∏
j=1

[
aj,+

(
qA(j)

)] ∏
B∈Sgate

(
−Θτ (jB)

(
q̂B̌ · |q0|

))
∏

A∈S\Sgate

[
exp (−2πibA|qA|)hA

(
s−, b, r, p, q̂A, 0

)]
h0
(
s−, b, r, p, q0, 0

)

(4.176)
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and
R(main)

+

(
Gend, ψε0, ε, κ, a, p, L

(0), T/ε,N<, N,M, S
)

=
∫
Rd

dq0 |2πq0|2|Ñ |−|N |
∣∣∣ψ̂ε0,+(q0)

∣∣∣2∫
QεS,T

∏
A∈S\Sgate

(
ds−AdbA

) ∏
B∈Sgate

drB∫
R(|Ñ|−|N|/2)d

∏
A∈S\Sgate

dqA

∏
A∈S\Sgate

[
ρAĝ2(qA − qǍ)Φ(jA)

nA

(
qA, qǍ, L

(jA)
nA

)
Φ

(jA)
nA

(
qA, qǍ, L

(jA)
nA

)]
2m−1∏
j=1

[
aj,+

(
qA(j)

)] ∏
B∈Sgate

(
−Θτ (jB)

(
q̂B̌ · |q0|

))
∏

A∈S\Sgate

[
exp (−2πibA|qA|)hA

(
s−, b, r, p, q̂A, κ

)]
h0
(
s−, b, r, p, q0, κ

)
,

(4.177)

where we used the definitions (4.154) and (4.155) in the case of R(main)
+

(
Gend, ...

)
.

4.4.5. Basic estimates — obtaining the 1/N ! factor

In the Dyson series (2.135) for the linear Boltzmann equation, the time integral in the
n-th summand is taken over set of n-dimensional volume tn/n!. We aim to show the
convergence of the Wigner transform to a solution of a linear Boltzmann equation, so we
should expect that at some point a bound like 1/n!, n being the number of scatterings,
should become available for our amplitudes as well. This will prove crucial to our ability
to actually break off the Duhamel expansion at a suitable cut-off N , and to resummate
the K(main)

σ amplitudes in Section 4.6.

Lemma 4.18. (Basic estimate of the K(main)
+ and R(main)

+

(
Gend, ...

)
amplitudes.) Let

d ≥ 2, ε > 0, κ > 0, ψ̂ε0(k) = 0 for |k| > L(0), and S ∈ π∗(I(N)) be a non-
crossing pairing, with N appropriately defined (that is, for R(main)

+

(
Gend, ...

)
amplitudes,

N< ∈ N ∈ Nm−1
0 with (4.36), M ∈ {0, ...,M − 1}, N (m) = N

(m) + M , N symmetric).
Furthermore assume that g2 is such that

max
0≤|α|≤4

∣∣∣∣ ∂α∂qα ĝ2(q)
∣∣∣∣ ≤ Cg2 〈q〉

−d−3 , (4.178)

with Cg2 <∞. Then there is a Cg2,d only depending on g2 and d such that

∣∣∣K(main)
+

(
ψε0, ε, a, p, L

(0), T/ε,N, S
)∣∣∣ ≤

(
Cg2,dL

(0)
〈
L(0)

〉
|T |
)|N |/2

(|N |/2)! ‖ψε0‖
2
H

2m−1∏
j=1
‖aj‖C2

(4.179)
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and ∣∣∣R(main)
+

(
Gend, ψε0, ε, κ, a, p, L

(0), T/ε,N<, N,M, S
)∣∣∣

≤

(
Cg2,dL

(0)
〈
L(0)

〉
|T |
)|N |/2

(|N |/2)! ‖ψε0‖
2
H

m−1∏
j=1
‖aj‖2C2 .

(4.180)

Proof. Without loss of generality, one can concentrate on estimating K(main)
+ . Fixing q0,

the p and s−, r, b variables, the dqA integrals can be estimated as shown in Lemma C.3.
We set φ = ĝ2, n = |Ñ | − |N |/2 and

fA
(
qA, qǍ

)
= ρAΦ

(
qA, qǍ, L

(jA)
nA

)
Φ
(
qA, qǍ, L

(jA)
nA

)
hA
(
s−, b, r, p, q̂A, 0

)
2m−1∏
j=1

A(j)=A

[aj,+ (qA)]
∏

B∈Sgate∩A

(
−Θτ (jB) (q̂A · |q0|)

)
,

(4.181)

and thus have for the last four lines of (4.176) the bound

(CdCφ)|Ñ |−|N |/2
∏

A∈S\Sgate

(
CfA 〈bA〉

−2
)

(4.182)

in which

Cφ = max
|α|≤4

sup
q∈Rd

(
〈q〉d+1

∣∣∣∣ ∂α∂qα ĝ2(q)
∣∣∣∣) ,

CfA = Cd
(
Cg2,dL

(0)
〈
L(0)

〉)|Sgate∩A| 2m−1∏
j=1

A(j)=A

[
max
|α|≤2

sup
q∈Rd

∣∣∣∣ ∂α∂qαaj,+ (q)
∣∣∣∣
]
,

(4.183)

with a factor Cg2,d only depending on dimension and g2. Here, we used the estimate
from Lemma D.3 for the Θ functions. With the decay∏

A∈S\Sgate

〈bA〉−2 (4.184)

and (4.172), the time integrals evaluate to∫
QεS,T

ds−drdb
∏

A∈S\Sgate

〈bA〉−2 ≤ C |Ñ |−|N |/2
∫
QS,T

ds−dr ≤ (C̃|T |)|N |/2
(|N |/2)! . (4.185)

The remaining q0 integral yields a factor ‖ψε0‖
2
H. Concerning the prefactor, note that every

gate contributes a factor of the form L(0)
〈
L(0)

〉
, while every non-gate pair contributes

(L(0))2, so in the worst case (all gates), the L(0) dependence is(
L(0)

〈
L(0)

〉)|N |/2
. (4.186)

This proves the lemma.
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Corollary 4.19. (Basic estimate of the K+ and R+
(
Gend, ...

)
amplitudes.) Under the

conditions of Lemma 4.18, with the additional assumptions 0 < 4ε 〈Cobs〉m ≤ 1 and

sup
q∈Rd

∣∣∣ĝ2(q) 〈q〉2d+4(M+2)
∣∣∣ <∞, (4.187)

there is for any arbitrarily small δ > 0 a constant C <∞ depending only on δ, d and g2
such that∣∣∣K+

(
ψε0, ε, a, p, L

(0), T/ε,N, S
)∣∣∣

≤

(〈L(0)〉+mN)2|N | 〈Cobs〉3m3e8〈Cobs〉m|T | 〈log ε〉|N |+2m ε1−δ

+

(
L(0)

〈
L(0)

〉
|T |
)|N |/2

(|N |/2)!

C |N |+2m ‖ψε0‖
2
H

2m−1∏
j=1
‖aj‖C2 ,

(4.188)

and ∣∣∣R+
(
Gend, ψε0, ε, κ, a, p, L

(0), T/ε,N<, N,M, S
)∣∣∣

≤

(〈L(0)〉+mN)2|N |+4M+4 〈Cobs〉4M+7m3e8〈Cobs〉m|T | 〈log ε〉|N |+2m ε1−δ

+

(
L(0)

〈
L(0)

〉
|T |
)|N |/2

(|N |/2)!

C |N |+2m ‖ψε0‖
2
H

m−1∏
j=1
‖aj‖2C2 ,

(4.189)

with N appropriately defined in both cases, and S ∈ π∗(N) being any non-crossing
pairing.

Proof. Again, we focus on the K+ case. As opposed to Lemmas 4.16 and 4.17 the
statement at hand does not require ψ̂ε0 to be supported away from zero, the second
summand in the estimate actually even improves if the support of ψ̂ε0 concentrates at
zero. The reason is that in the proof of Lemmas 4.16 and 4.17, the infrared cutoff λ was
only used to replace ∣∣∣q0 + εP (j)

∣∣∣→ |q0|+ εq̂0 · P (j), (4.190)

but was not necessary for the treatment of any of the qA, A 6= 0. Accordingly, by setting
γ = 4ε 〈Cobs〉m, one can repeat the proof of Lemma 4.16, omitting only the arguments
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utilizing the cutoff λ, and obtain

∣∣∣K+
(
ψε0, ε, a, b, L

(0), t, N, S
)
−K(aux)

+

(
ψε0, ε, a, b, L

(0), t, N, S
)∣∣∣

≤ C |N |+2m(〈L(0)〉+mN)2|N | 〈Cobs〉3m3

× e8〈Cobs〉m|T | 〈log ε〉|N |+2m ‖ψε0‖
2
H

2m−1∏
j=1
‖aj‖C1 ε

1−δ.

(4.191)

Here δ > 0 can be chosen arbitrarily small, C depends only on d, g2 and δ, and the
amplitude K(aux)

+ is still given as in (4.176), only with a slightly different function h0,
which is still bounded by 1. As the key argument in the proof of Lemma 4.18 was the
estimate for the qA, A 6= 0 integrals, while for the q0 integral only |h0| ≤ 1 was used, the
bound for K(main)

+ holds just as well for K(aux)
+ .

4.4.6. Nested and non-markovian graphs

A closer look at the geometry of QεS,T will result in an improved estimate for the K(main)
+

amplitudes associated with nested or non-markovian pairings S.

Lemma 4.20. (Improved estimates of K(main)
+ for nested and non-markovian pairings.)

In addition to the assumptions of Lemma 4.18, assume that S ∈ π∗ (I(N)) is a nested
or nonmarkovian simple pairing. Then there is a Cg2,d <∞ only depending on g2 and d
such that

∣∣∣K(main)
+

(
ψε0, ε, a, p, L

(0), T/ε,N, S
)∣∣∣

≤

(
Cg2,dL

(0)
〈
L(0)

〉
|T |
)|N |/2

(|N |/2− 1)!
〈log |T |〉 ε 〈log ε〉

|T |
‖ψε0‖

2
H

2m−1∏
j=1
‖aj‖C2 .

(4.192)

Proof. First, assume that S is a nested pairing. This is exactly the case if there exists a
pair E ∈ S \ Sgate such that jE = jE , with non-empty children set E 6= ∅. Furthermore,
one can always choose E minimal in the sense that it straddles only gates, E ⊂ Sgate.
After selecting any gate G ∈ E, one observes in Figure 4.3 that

|bE | ≥
1
ε

∣∣∣s−E − rG∣∣∣ (4.193)
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E

s−E rG

︸ ︷︷ ︸
ε |bE |

Figure 4.3.: A detail of a graph belonging to a nested pairing. Crosses are gates that
have already been integrated over, black diamonds indicate scattering with
cutoff function.

on QεS,T . We follow the proof of Lemma 4.18, but can improve (4.185)∫
QεS,T

ds−drdb
∏

A∈S\Sgate

〈bA〉−2

≤
∫
QS,T

ds−dr
∏

A∈S\Sgate
A6=E

(∫
R

dbA 〈bA〉−2
)∫
|bE |≥ 1

ε |s−E−rG|
dbE 〈bE〉−2

≤ C |N |/2
∫
QS,T

ds−drmin

1, ε∣∣∣s−E − rG∣∣∣


≤ C |N |/2
∫ |T |
−|T |

dxmin
(

1, ε
|x|

)∫
QS,T

ds−drδ
(
s−E − rG − x

)
≤ C |N |/2 (2|T |)|N |/2−1

(|N |/2− 1)! 2ε (1 + log |T |+ |log ε|) ,

(4.194)

employing (4.173) in the last step.
Now, let S be simple, but non-markovian, and first suppose that there is an E ∈ S \Sgate
with either jE < jE ≤ m or m < jE < jE (i.e. the “culprit” lies completely on one
side of the scalar product). Either, E is just as shown in Figure 4.4, so that there is no
F ∈ E ∩ (S \ Sgate). Or, if the is such an F , as F is not a gate and S is not a nested
pairing, F also has to straddle an observable, so jE ≥ jF > jF ≥ jE . We take the F as
our new E. After finitely many updates of E, there are no longer any F ∈ E∩ (S \Sgate).
In this case, with

TE =
jE−1∑
j=1

τ (j)T (j), (4.195)

one can easily see from Figure 4.4 that

|bE | ≥
1
ε

∣∣∣s−E − TE∣∣∣ . (4.196)

The combination of (4.173) and (4.196) yields exactly the same estimate (4.194) as before.
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E

s−E TE︸ ︷︷ ︸
ε |bE |

Figure 4.4.: An example of a non-markovian pair E connecting two scattering events “on
the same side of the scalar product”. Here, jE = jE + 2. The presence or
absence of gates does not influence the validity of the argument; the empty
squares, however, are essential, as they indicate the observables, and thus
separate the time intervals T (j).

Finally, the other kind of a simple, non-markovian pairing is an S without non-markovian
scattering “on one side of the scalar product”. In this case, there has to be an E ∈ S\Sgate
such that jE ≤ m, jE > m and jE + jE 6= 2m+ 1. Without loss of generality, we assume
jE + jE > 2m+ 1, as shown in example Figure 4.5. With TE defined as before, and using
the notation from Figure 4.5,∣∣∣∣∣∣∣bE +

∑
F∈(E∪E...)∩S\Sgate

bF

∣∣∣∣∣∣∣ = x1 − x2
ε

≥ 1
ε

∣∣∣s−E − TE∣∣∣ . (4.197)

For any n ∈ N, y > 0,∫
|b1+...+bn|≥y

n∏
l=1

dbl 〈bl〉−2 ≤
∫
‖b‖1≥y

n∏
l=1

dbl 〈bl〉−2 ≤
∫
‖b‖∞≥y/n

n∏
l=1

dbl 〈bl〉−2

≤ n
∫
|b1|≥y/n

n∏
l=1

dbl 〈bl〉−2 ≤ nCn min(1, n
y

) ≤ C̃n min(1, 1
y

),

(4.198)

︸ ︷︷ ︸
x1

︸ ︷︷ ︸
x2

E

s−E TE

j = m+ 1 j = m j = m− 1j = m+ 2

Figure 4.5.: An example of a non-markovian pair E involving two scattering events “on
different sides of the scalar product”, with jE = m, jE = m + 2 and two
non-gate pairs in the “offspring” of E. Again, gates may exist but are
unimportant.
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so again, there is a universal constant C̃ <∞ such that

∫
QεS,T

ds−drdb
∏

A∈S\Sgate

〈bA〉−2 ≤ C̃ |N |/2
∫
QS,T

ds−drmin

1, ε∣∣∣s−E − TE∣∣∣


≤ C̃ |N |/2
∫ |T |
−|T |

dxmin
(

1, ε
|x|

)∫
QS,T

ds−drδ
(
s−E − TE − x

)
≤ C̃ |N |/2 (2|T |)|N |/2−1

(|N |/2− 1)! 2ε (1 + log |T |+ |log ε|) .

(4.199)

4.5. Collecting the error estimates

So far we have found estimates for single contributions to the graph expansion of main
part and remainder, i.e. for a fixed number of scatterings N ∈ N2m

0 and a given partition
S ∈ π∗(I(N)). We now have to make sure that the bounds for individual contributions
suffice to control the combinatorical factors which result from taking the sum over all
possible N and S by specifying the parameters N , M and κ of the expansion.

4.5.1. The main part

From now on, let the random field ξ be of class (d + 2M + 7, 4), and, in addition to
the energy bound (2.160), assume that the initial states (ψε0)ε>0 have Fourier transforms
ψ̂ε0(k) which vanish whenever |k| < λ or |k| > L(0), with ε-independent 0 < λ < L(0) <∞.
Therefore all Lemmas presented in Chapter 4 up to this point are applicable. Returning
to the notation of (4.13-4.14), only the amplitudes of simple markovian pairings S ∈
πsm(I(N)) contribute to the main term, up to an error of∣∣∣∣∣∣∣∣∣∣∣∣∣

lim
R→∞

E
[〈
Ψ ′
ε
1, A

ε
mΨ

ε
1
〉]
−

∑
N∈N2m

0
N(1)+...+N(m)<N(ε)

N(m+1)+...+N(2m)<N(ε)

∑
S∈πsm(I(N))

K(main)
+

(
ψε0, ε, a, p, L

(0), T/ε,N, S
)

−
∑

N∈N2m
0

N(1)+...+N(m)<N(ε)
N(m+1)+...+N(2m)<N(ε)

∑
S∈πsm(I(N))

K(main)
−

(
ψε0, ε, a, p, L

(0), T/ε,N, S
)
∣∣∣∣∣∣∣∣∣∣∣∣∣
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≤
∑

N∈N2m
0

N(1)+...+N(m)<N(ε)
N(m+1)+...+N(2m)<N(ε)

 ∑
S∈π∗(I(N))

higher order

∣∣∣K (ψε0, ε, a, p, L(0), T/ε,N, S
)∣∣∣

+
∑

S∈π∗(I(N))
crossing pairing

∣∣∣K (ψε0, ε, a, p, L(0), T/ε,N, S
)∣∣∣

+
∑

S∈π∗(I(N))
non-crossing pairing

|K − K+ −K−|
(
ψε0, ε, a, p, L

(0), T/ε,N, S
)

+
∑

S∈π∗(I(N))
non-crossing pairing

∣∣∣K+ −K(main)
+

∣∣∣ (ψε0, ε, a, p, L(0), T/ε,N, S
)

+
∑

S∈π∗(I(N))
non-crossing pairing

∣∣∣K− −K(main)
−

∣∣∣ (ψε0, ε, a, p, L(0), T/ε,N, S
)

+
∑

S∈π∗(I(N))
nested/non-markovian

∣∣∣K(main)
+

(
ψε0, ε, a, p, L

(0), T/ε,N, S
)∣∣∣

+
∑

S∈π∗(I(N))
nested/non-markovian

∣∣∣K(main)
−

(
ψε0, ε, a, p, L

(0), T/ε,N, S
)∣∣∣
 .

(4.200)

For ε ∈ (0, 1/(4 〈Cobs〉m)], plugging the appropriate values of γ into Lemma 4.8 (γ = ε),
Lemma 4.11 (γ = 2ε 〈Cobs〉m), Lemma 4.14 (γ = ε), and Lemma 4.16 (γ = 4ε 〈Cobs〉m),
as well as an application of Lemma 4.20 produce a bound

(4.200) ≤CN+m
(
N − 1 +m

m

)2

‖ψε0‖
2
H

2m−1∏
j=1
‖aj‖C1

×
(〈
L(0)

〉
+mN

)4N+1
e8〈Cobs〉m|T | |log ε|2N+2m (2N)!

×
(

max
D∈{1,...,2N−4}

{
εD/2DCD

}
+ ε|T |

λ

)

+ CN
(
N − 1 +m

m

)2

‖ψε0‖
2
H

2m−1∏
j=1
‖aj‖C2

×
〈
L(0)

〉2N
|T |N−2 〈log |T |〉 ε| log ε|,

(4.201)

with C a finite constant depending only on the statistics of the random field ξ and
the dimension d. In (4.201), we have omitted the ε-dependence of N(ε), the binomial
coefficient accounts for the number of possible choices of N , and the factor (2N)! is an
upper bound for the cardinality of I(N). The latter is missing in the second summand of
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4. Proof of Theorem 3.1

(4.201), which only provides the bound for the last two lines of (4.200) — the number of
non-crossing pairings of I(N) is not larger than 4N . The contributions of all other terms
are collected in the first summand; by inspection, we notice that the bounds for higher
order partitions and the replacement of Kσ by K(main)

σ dominate. The only non-trivial
observation entering (4.201) is that (2.15) implies for any higher order partition S

ε|N |/2−|S|
∏
A∈S

∥∥∥g|A|∥∥∥
d+2
≤ εD/2C |N |

∏
A∈S
|A|C|A| ≤ εD/2C̃ |N |

∏
A∈S

(|A| − 2)C(|A|−2)

≤ εD/2C̃ |N |DCD,

(4.202)

where D = |N | − 2|S| ∈ {1, ..., 2N − 4}, C, C̃ < ∞ are constants only depending on d
and the distribution of ξ, and the last inequality follows from a convexity argument.

Setting

N = N(ε) =
⌈
a
| log ε|

| log | log ε||

⌉
, (4.203)

with a ∈ (0,∞) to be fixed later, one can now find a C <∞ depending only on m, |T |,
the distribution of ξ, d, L(0) and Cobs such that

(4.200) ≤ CN(ε)+1 ‖ψε0‖
2
H

2m−1∏
j=1
‖aj‖C2 N(ε)6N(ε) |log ε|2N+2m

(√
ε+ ε

λ

)
(4.204)

for sufficiently small ε > 0.

4.5.2. The remainder

For the remainder part, on the other hand, the bound

‖Ψ ε2‖
2
H

≤ m
m∑
j0=1

(
N(ε)− 2 + j0

j0 − 1

) ∑
N∈Nj0−1

0
N(1)+...+N(j0−1)<N(ε)

m−1∏
l=j0
‖al‖2C0

∥∥∥∥∥∥RN(j0)

(
T (j0)/ε;R,L(j0), ε

) j0−1∏
j=1

(
AεjFN(j)

(
T (j)/ε;R,L(j), ε

))
ψε0

∥∥∥∥∥∥
2

H

,

(4.205)
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with N (j0) = N(ε)−N (1) − ...−N (j0−1), follows from (4.11), and Lemma 2.12 provides
us with the estimate

∥∥∥∥∥∥RN(j0)

(
T (j0)/ε;R,L(j0), ε

) j0−1∏
j=1

(
AεjFN(j)

(
T (j)/ε;R,L(j), ε

))
ψε0

∥∥∥∥∥∥
2

H

≤ N (j0)

N(j0)−1∑
Nfin=1

∥∥∥∥∥∥F rough
Nfin

(
T (j0)/ε;R,L(j0), ε

) j0−1∏
j=1

(
AεjFN(j)

(
T (j)/ε;R,L(j), ε

))
ψε0

∥∥∥∥∥∥
2

H

+

∥∥∥∥∥∥Rend
N

(j0)

(
T (j0)/ε;R,L(j0), ε

) j0−1∏
j=1

(
AεjFN(j)

(
T (j)/ε;R,L(j), ε

))
ψε0

∥∥∥∥∥∥
2

H

 .
(4.206)

For each Nfin ∈
{

1, ..., N (j0) − 1
}
, Lemma 2.14 and several applications of the Cauchy-

Schwarz inequality yield

E


∥∥∥∥∥∥F rough

Nfin

(
T (j0)/ε;R,L(j0), ε

) j0−1∏
j=1

(
AεjFN(j)

(
T (j)/ε;R,L(j), ε

))
ψε0

∥∥∥∥∥∥
2

H


≤ 2

(
T (j0)/ε

)2
sup

r∈[0,T (j0)/ε]

E


∥∥∥∥∥∥Arough

M,Nfin

(
r;R,L(j0), ε

) j0−1∏
j=1

(
AεjFN(j)

(
T (j)/ε;R,L(j), ε

))
ψε0

∥∥∥∥∥∥
2

H


+ 2

(
1 +

(
κT (j0)/ε

)2
)
M

M−1∑
M=0

sup
r∈[0,T (j0)/ε]

E


∥∥∥∥∥∥Grough

M,Nfin

(
r;R,L(j0), ε

) j0−1∏
j=1

(
AεjFN(j)

(
T (j)/ε;R,L(j), ε

))
ψε0

∥∥∥∥∥∥
2

H

 ,
(4.207)
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and, likewise,

E


∥∥∥∥∥∥Rend

N
(j0)

(
T (j0)/ε;R,L(j0), ε

) j0−1∏
j=1

(
AεjFN(j)

(
T (j)/ε;R,L(j), ε

))
ψε0

∥∥∥∥∥∥
2

H


≤ 2

(
T (j0)/ε

)2
sup

r∈[0,T (j0)/ε]

E


∥∥∥∥∥∥Aend

M,N
(j0)

(
r;R,L(j0), ε

) j0−1∏
j=1

(
AεjFN(j)

(
T (j)/ε;R,L(j), ε

))
ψε0

∥∥∥∥∥∥
2

H


+ 2

(
1 +

(
κT (j0)/ε

)2
)
M

M−1∑
M=0

sup
r∈[0,T (j0)/ε]

E


∥∥∥∥∥∥Gend

M,N
(j0)

(
r;R,L(j0), ε

) j0−1∏
j=1

(
AεjFN(j)

(
T (j)/ε;R,L(j), ε

))
ψε0

∥∥∥∥∥∥
2

H

 .
(4.208)

By Lemma 4.6 and Lemma 4.10 (into which we plug the more general choice j0 instead
of m, as well as ε ∈ (0, 1), and γ = ε < κ), we obtain for all Nfin ∈ {1, ..., N − 1}

lim
R→∞

sup
r∈[0,T (j0)/ε]

E


∥∥∥∥∥∥Arough

M,Nfin

(
r;R,L(j0), ε

) j0−1∏
j=1

(
AεjFN(j)

(
T (j)/ε;R,L(j), ε

))
ψε0

∥∥∥∥∥∥
2

H


≤ (2N + 6M)!CN+M+j0

(
〈L(0)〉+ j0N

)4N+6M
〈εCobs〉4M+4 e2|T | ‖ψε0‖

2
H

j0−1∏
j=1
‖aj‖2C0

( ε
κ

)M |log ε|2N+2M+2j0 sup
D∈{0,...,2N+2M}

κD/2DCD,

(4.209)

with a C < ∞ only depending on d, M and the distribution of ξ. The same bound
(4.209) is valid for

lim
R→∞

sup
r∈[0,T (j0)/ε]

E


∥∥∥∥∥∥Aend

M,N
(j0)

(
r;R,L(j0), ε

) j0−1∏
j=1

(
AεjFN(j)

(
T (j)/ε;R,L(j), ε

))
ψε0

∥∥∥∥∥∥
2

H

 .
(4.210)

According to Lemmas 4.4, 4.9, 4.12 and 4.13, (in which we always set j0 instead of
m, choose ε ∈ (0, 1/(4 〈Cobs〉 j0), and γ = 2ε 〈Cobs〉 j0) for all M ∈ {0, ...M − 1}, all
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Nfin ∈ {1, ..., N − 1}, and all r ∈ [0, T (j0)/ε] the estimate

lim
R→∞

E


∥∥∥∥∥∥Grough

M,Nfin

(
r;R,L(j0), ε

) j0−1∏
j=1

(
AεjFN(j)

(
T (j)/ε;R,L(j), ε

))
ψε0

∥∥∥∥∥∥
2

H


≤

∑
S∈π∗(I(N))

higher order

∣∣∣R (Grough, ψε0, ε, κ, a, p, L
(0),

(
T (1)/ε, ..., r

)
, N<, Nfin,M, S

)∣∣∣
+

∑
S∈π∗(I(N))

crossing pairing

∣∣∣R (Grough, ψε0, ε, κ, a, p, L
(0),

(
T (1)/ε, ..., r

)
, N<, Nfin,M, S

)∣∣∣
+

∑
S∈π∗(I(N))

non-crossing pairing

∣∣∣R (Grough, ψε0, ε, κ, a, p, L
(0),

(
T (1)/ε, ..., r

)
, N<, Nfin,M, S

)∣∣∣
≤ (2N + 6M)!CN+M+j0

(
〈L(0)〉+ j0N

)4N+6M+7
〈εCobs〉4M+7

e2〈Cobs〉j0|T | ‖ψε0‖
2
H

j0−1∏
j=1
‖aj‖2 |log ε|2N+2M+2j0

sup
D∈{1,...,2N+2M}

εD/2DCD

(4.211)

holds. C is a finite constant only depending on dimension d, M and the distribution of
ξ.
Finally, due to Lemma 4.5, for all r ∈ [0, T (j0)/ε]

lim
R→∞

E


∥∥∥∥∥∥Gend

M,N
(j0)

(
r;R,L(j0), ε

) j0−1∏
j=1

(
AεjFN(j)

(
T (j)/ε;R,L(j), ε

))
ψε0

∥∥∥∥∥∥
2

H


≤

∑
S∈π∗(I(N))

higher order

∣∣∣R (Gend, ψε0, ε, κ, a, p, L
(0),

(
T (1)/ε, ..., r

)
, N<, N,M, S

)∣∣∣
+

∑
S∈π∗(I(N))

crossing pairing

∣∣∣R (Gend, ψε0, ε, κ, a, p, L
(0),

(
T (1)/ε, ..., r

)
, N<, N,M, S

)∣∣∣
+

∑
S∈π∗(I(N))

non-crossing
pairing

|R −R+ −R−|
(
Gend, ψε0, ε, κ, a, p, L

(0),
(
T (1)/ε, ..., r

)
, N<, N,M, S

)

+
∑

S∈π∗(I(N))
non-crossing

pairing

|R+ +R−|
(
Gend, ψε0, ε, κ, a, p, L

(0),
(
T (1)/ε, ..., r

)
, N<, N,M, S

)

(4.212)
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so if we plug in Lemma 4.9, 4.12, 4.15 and Corollary 4.19,

lim
R→∞

sup
r∈[0,T (j0)/ε]

E


∥∥∥∥∥∥Gend

M,N
(j0)

(
r;R,L(j0), ε

) j0−1∏
j=1

(
AεjFN(j)

(
T (j)/ε;R,L(j), ε

))
ψε0

∥∥∥∥∥∥
2

H



≤

(2N + 6M)!(〈L(0)〉+mN)4N+6N+7 〈Cobs〉4M+10 j3
0e

8〈Cobs〉m|T | |log ε|2N+2M+2j0+1

max
D∈{1,2N+2M}

εD/2DCD

+

(
L(0)

〈
L(0)

〉
|T |
)N+M

N !

CN+M+j0 ‖ψε0‖
2
H

j0−1∏
j=1
‖aj‖2C2 ,

(4.213)

for all ε ∈ (0, 1/4 〈Cobs〉 j0), with a C depending only on the distribution of ξ, on
dimension d and on M . We have set γ = 2ε 〈Cobs〉 j0 in Lemmas 4.9, 4.12, 4.15 and
made use of the fact that there are no more than 4N+M non-crossing pairings of I(N)
whenever |N | ≤ 2N+2M . When applying Corollary 4.19, we estimated the denominator
in the last line of (4.189) by N !, because |N | ≥ 2N .

After inserting the value from (4.203) for N and

κ = κ(ε) = εϑ, (4.214)

for κ, with ϑ ∈ (0, 1) to be optimized later, we conclude from equations (4.205-4.213),
for sufficiently small ε > 0

lim
R→∞

E
[
‖Ψ ε2‖

2
H

]
≤ CN(ε)+1 ‖ψε0‖

2
H

m−1∏
j=1
‖aj‖2C2

×
(
N(ε)6N(ε) |log ε|2N(ε)+2M+2m

((
κ

ε

)2√
ε+

(
ε

κ

)M
ε−2

)
+
(
κ

ε

)2
N(ε)−N(ε)

)
,

(4.215)

with a C <∞ depending on m, M , |T |, the distribution of ξ, d, L(0) and Cobs, but not
on ε, ψε0 or the functions aj .
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4.5. Collecting the error estimates

4.5.3. Picking the right parameters

With the choice of parameters

M = 89,

θ = 141
145 ,

a = 1
18 ,

(4.216)

in equations (4.204) and (4.215), there exists an ε0 > 0 depending only on m, |T |, the
statistics of ξ, dimension d, L(0) and Cobs such that for all 0 < ε < ε0,

∣∣∣∣∣∣∣∣∣∣∣∣∣
lim
R→∞

E
[〈
Ψ ′
ε
1, A

ε
mΨ

ε
1
〉]
−

∑
N∈N2m

0
N(1)+...+N(m)<N(ε)

N(m+1)+...+N(2m)<N(ε)

∑
S∈πsm(I(N))

K(main)
+

(
ψε0, ε, a, p, L

(0), T/ε,N, S
)

−
∑

N∈N2m
0

N(1)+...+N(m)<N(ε)
N(m+1)+...+N(2m)<N(ε)

∑
S∈πsm(I(N))

K(main)
−

(
ψε0, ε, a, p, L

(0), T/ε,N, S
)
∣∣∣∣∣∣∣∣∣∣∣∣∣

≤
(

1 + 1
λ

)
‖ψε0‖

2
H

2m−1∏
j=1
‖aj‖C2 ε

1/19,

(4.217)

and

lim
R→∞

E
[
‖Ψ ε2‖

2
H

]
≤ ‖ψε0‖

2
H

m−1∏
j=1
‖aj‖2C2 ε

1/2700. (4.218)

Analogously, for Ψ ′ε2 as defined below equation (4.13)

lim
R→∞

E
[∥∥Ψ ′ε2 ∥∥2

H

]
≤ ‖ψε0‖

2
H

2m−1∏
j=m+1

‖aj‖2C2 ε
1/2700. (4.219)

The extremely tiny exponent in (4.218) is due to choosing M as small as possible.

107



4. Proof of Theorem 3.1

From (4.14), (4.217) and (4.218), we conclude

lim
ε→0

E [J ε (Hε, ψε0, T, a, p)]

= lim
ε→0

∑
N∈N2m

0
N(1)+...+N(m)<N(ε)

N(m+1)+...+N(2m)<N(ε)

∑
S∈πsm(I(N))

K(main)
+

(
ψε0, ε, a, p, L

(0), T/ε,N, S
)

+ lim
ε→0

∑
N∈N2m

0
N(1)+...+N(m)<N(ε)

N(m+1)+...+N(2m)<N(ε)

∑
S∈πsm(I(N))

K(main)
−

(
ψε0, ε, a, p, L

(0), T/ε,N, S
) (4.220)

provided the limits exist.

4.6. Resummation of the ladder graphs

In this section, we still consider initial states which, in addition to the assumptions of
Theorem 3.1, have a Fourier transform ψ̂ε0(k) that vanishes whenever |k| /∈ [λ, L(0)]. Also,
we assume that the observables aj are bounded up to the second derivative.

4.6.1. Notation

We now want to resummate the K(main)
σ (σ ∈ {+,−}) amplitudes which belong to the

simple, markovian pairings, S ∈ πsm(I(N)) and calculate

lim
ε→0

∑
N∈N2m

0
N(1)+...+N(m)<N(ε)

N(m+1)+...+N(2m)<N(ε)

∑
S∈πsm(I(N))

K(main)
σ

(
ψε0, ε, a, p, L

(0), T/ε,N, S
)
. (4.221)

To this end, recall that actually the j-th and 2m+ 1− j time intervals are physically the
same. This can be visualized as in Figure 4.6 by bending the right half of the graphs used
so far by 180◦, so that corresponding time intervals come to lie parallel to each other.
Simple markovian pairings S now appear as the “ladder graphs” described in [16] and
[32], with the only types of pairs being gates (which have already been integrated over
and appear as crosses) and “rungs”, which always connect opposite time intervals (all
other possibilities would be either nested or non-markovian). For the j-th time interval
(with j from now on only ranging from 1 to m), there are R(j) ∈ N0 rungs, and between
two consecutive rungs (or a rung and an observable), there may be G(j)

l,ρ ∈ N0 gates. Here
l ∈ {0, ..., R(j)} represents the time slot after the l-th rung in the j-th interval, the time
slot before the first rung being indicated by l = 0, while ρ ∈ {±} is + for the lower line
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4.6. Resummation of the ladder graphs

ψ̂ε

ψ̂ε

a1 a2

a3

a4a5

q
(1)
0 q

(1)
1 = q

(2)
0 q

(2)
1 q

(2)
2 = q

(3)
0

gate (integrated out)s
(2)
1,−︷ ︸︸ ︷

︸ ︷︷ ︸
s
(2)
1,+

︸ ︷︷ ︸
r
(1)
1,+,1

Figure 4.6.: A ladder graph with m = 3, R(1) = 1, R(2) = 2, R(3) = 0. Rungs are
indicated by dotted lines, while crosses represent gates (which have already
been integrated over). For example, G(3)

0,− = 3 and G(2)
2,+ = 1. The momenta

q
(j)
l are the same for the − (top) and + (bottom) line. Time variables of
type s(j)

l,ρ and r
(j)
l,ρ,ν give the spacing of rungs and gates, respectively. The

black diamonds at the ends of the rungs mean that these scattering events
occur with a cut-off function present.

in Figure 4.6 and − for the upper one. With the short hand

R =
(
R(j)

)
j∈{1,...m}

G =
(
G

(j)
l,ρ

)
j∈{1,...m}

l∈{0,...,R(j)}
ρ∈{±}

|R| =
m∑
j=1

R(j),

|G| =
m∑
j=1

R(j)∑
l=0

∑
ρ∈{±}

G
(j)
l,ρ ,

(4.222)

there is a bijective mapping (N,S)↔ (R,G). The overall number of pairs is of course
the sum of rungs and gates,

|N |/2 = |R|+ |G|. (4.223)

Accordingly, one can rewrite the sum∑
N∈N2m

0
N(1)+...+N(m)<N(ε)

N(m+1)+...+N(2m)<N(ε)

∑
S∈πsm(I(N))

K(main)
σ

(
ψε0, ε, a, p, L

(0), T/ε,N, S
)

=
∑

R∈Nm0

∑
G∈Γε(R)

K(main)
σ

(
ψε0, ε, a, p, L

(0), T/ε,R,G
)
,

(4.224)
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4. Proof of Theorem 3.1

with the last sum running over all G in

Γε(R) =

G : G(j)
l,ρ ∈ N0∀j, l, ρ; 2

m∑
j=1

R(j)∑
l=0

G
(j)
l,ρ < N(ε)− |R|∀ρ

 . (4.225)

The sum over R in (4.224) has only finitely many non-zero summands, as the set Γε(R)
will be empty if any of the components of R exceeds N(ε). However, as ε↘ 0, N(ε)→∞
and thus Γε(R) approaches

Γ0(R) =
{

G : G(j)
l,ρ ∈ N0∀j ∈ {1, ...,m}, l ∈ {0, ..., R(j)}, ρ ∈ {±}

}
. (4.226)

4.6.2. Taking the limit

From Lemma 4.18, one can conclude that∑
G∈Γ0(R)

K(main)
σ

(
ψε0, ε, a, p, L

(0), T/ε,R,G
)

(4.227)

is well-defined for any ε > 0, with∣∣∣∣∣∣
∑

G∈Γε(R)
K(main)
σ

(
ψε0, ε, a, p, L

(0), T/ε,R,G
)

−
∑

G∈Γ0(R)
K(main)
σ

(
ψε0, ε, a, p, L

(0), T/ε,R,G
)∣∣∣∣∣∣

≤ Cm+|R|+N(ε)

|R|!
(
N(ε)− |R|

)
+

!
‖ψε0‖

2
H

2m−1∏
j=1
‖aj‖C2 → 0 (ε→ 0)

(4.228)

and∣∣∣∣∣∣
∑

G∈Γε(R)
K(main)
σ

(
ψε0, ε, a, p, L

(0), T/ε,R,G
)∣∣∣∣∣∣ ≤ Cm+|R|

|R|! ‖ψ
ε
0‖

2
H

2m−1∏
j=1
‖aj‖C2 (4.229)

with a constant C < ∞ depending on d, g2, L(0) and T , but not on R and ε. If one
assumes for a moment that there is a limit

lim
ε→0

∑
G∈Γ0(R)

K(main)
σ

(
ψε0, ε, a, p, L

(0), T/ε,R,G
)

(4.230)

for all R ∈ Nm0 , dominated convergence applied to the R sum in (4.224) yields

lim
ε→0

∑
R∈Nm0

∑
G∈Γε(R)

K(main)
σ

(
ψε0, ε, a, p, L

(0), T/ε,R,G
)

=
∑

R∈Nm0

lim
ε→0

∑
G∈Γ0(R)

K(main)
σ

(
ψε0, ε, a, p, L

(0), T/ε,R,G
)
.

(4.231)
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4.6. Resummation of the ladder graphs

So the only task remaining is to identify the limit (4.230). For now, we fix a single
configuration of rungs and gates, (R,G) (and thus a particular choice of (N,S)). By
placing R(j) rungs, the j-th time interval is divided into R(j) + 1 subintervals, both
on the + and on the − side of the graph, giving rise to time variables s(j)

l,ρ ≥ 0 with
l ∈ {0, ..., R(j)} and ρ ∈ {±} and requirement

R(j)∑
l=0

s
(j)
l,ρ = T (j) (4.232)

for all j, ρ. In turn, by adding the gates between two consecutive rungs, every subinterval
of length s(j)

l,ρ is divided into G(j)
l,ρ + 1 parts of length r(j)

l,ρ,ν ≥ 0, ν ∈ {0, ..., G(j)
l,ρ }, with

G
(j)
l,ρ∑

ν=0
r

(j)
l,ρ,ν = s

(j)
l,ρ . (4.233)

Similar to [32], but with an extra index j accounting for the multiple measurements, we
define the time variables

s
(j)
l =

s
(j)
l,+ + s

(j)
l,−

2 ,

b
(j)
l =

s
(j)
l,− − s

(j)
l,+

ε
.

(4.234)

The momentum variables in consideration are still qA, A ∈ S\Sgate, but as all A are rungs
now, we write them as q(j)

l , j ∈ {1, ...,m}, l ∈ {0, ..., R(j)}. We will use the variables
q

(j)
R(j) = q

(j+1)
0 simultaneously to simplify notation. Note that these q(j)

l are not indexed
in the same way as the q(j)

n introduced before: j now only runs from 1 to m instead of 1
to 2m, and l gets only updated after scattering events belonging to rungs, not, as before,
also after gates. Accordingly, (while the cutoff for gates has already dropped out in the
proof of Lemma 4.16) every rung comes with a cutoff function

Υ
(
q

(j)
l , q

(j)
l−1, j, l,G

)
= Φ

(
q

(j)
l , q

(j)
l−1, L

(j)
n+

)
Φ
(
q

(j)
l , q

(j)
l−1, L

(j)
n−

)
,

nρ =
l−1∑
l̃=0

(
1 + 2G(j)

l,ρ

)
.

(4.235)

Finally, as all A ∈ S \ Sgate are rungs, the signs ρA defined as in (4.125) all equal +1.
For a simple, markovian pairing with rungs R and gates G, the amplitude in (4.176) can
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4. Proof of Theorem 3.1

thus be rewritten as

K(main)
σ

(
ψε0, ε, a, p, L

(0), T/ε,R,G
)

=
∫
Rd

dq(1)
0

∣∣∣2πq(1)
0

∣∣∣2|R| ψ̂ε0,σ (q(1)
0

)
ψ̂
ε

0,σ

(
q

(1)
0 + εP (2m)

)
m∏
j=1

R(j)∏
l=0

∫
R+

ds(j)
l

∫
R

db(j)l

G
(j)
l,+∏

ν=0

∫
R+

dr(j)
l,+,ν

G
(j)
l,−∏

ν′=0

∫
R+

dr(j)
l,−,ν′

∫
R|R|d

m∏
j=1

R(j)∏
l=1

dq(j)
l

m∏
j=1

δ
T (j) −

R(j)∑
l=0

s
(j)
l

 δ
R(j)∑
l=0

b
(j)
l


R(j)∏
l=0

δ
s(j)

l,+ −
G

(j)
l,+∑

ν=0
r

(j)
l,+,ν

 δ
s(j)

l,− −
G

(j)
l,−∑

ν=0
r

(j)
l,−,ν

1

{∣∣∣b(j)l ∣∣∣ ≤ 2s(j)
l /ε

}


m∏
j=1

R(j)∏
l=0

[(
ĝ2
(
q

(j)
l − q

(j)
l−1

)
Υ
(
q

(j)
l , q

(j)
l−1, j, l,G

))1(l 6=0)

×
(
−Θ−σ

(
q̂

(j)
l

∣∣∣q(1)
0

∣∣∣))G(j)
l,− exp

(
2πiσ

(∣∣∣q(j)
l

∣∣∣+ εq̂
(j)
l · P

(2m+1−j)
)
s

(j)
l,−/ε

)
×
(
−Θσ

(
q̂

(j)
l

∣∣∣q(1)
0

∣∣∣))G(j)
l,+ exp

(
−2πiσ

(∣∣∣q(j)
l

∣∣∣+ εq̂
(j)
l · P

(j)
)
s

(j)
l,+/ε

) ]
m∏
j=1

aj,σ
(
q

(j)
R(j)

) 2m−1∏
j=m+1

aj,σ
(
q

(2m−j)
R(2m−j)

)
.

(4.236)

The phase associated with a pair (j, l) equals

exp
(
−2πiσ

(∣∣∣q(j)
l

∣∣∣+ εq̂
(j)
l · P

(j)
)
s

(j)
l,+/ε

)
exp

(
2πiσ

(∣∣∣q(j)
l

∣∣∣+ εq̂
(j)
l · P

(2m+1−j)
)
s

(j)
l,−/ε

)
= exp

(
2πiσ

∣∣∣q(j)
l

∣∣∣ b(j)l ) exp
(
−2πiσq̂(j)

l · (P
(j) − P (2m+1−j))s(j)

l

)
· exp

(
επiσq̂

(j)
l · (P

(j) + P (2m+1−j))b(j)l
)
.

(4.237)

In view of (4.237), the ∏m
j=1

∏R(j)
l=1 dq(j)

l integral of the last four lines in (4.236) can be
bounded by

C
|R|
d,g2

2m−1∏
j=1

(
‖aj‖C2

) 〈
L(0)

〉2|G|

m−1∏
j=1

〈b(j)
R(j) +

R(j+1)∑
l′=1

b
(j+1)
l′

〉−2
R(j)−1∏
l=1

〈
b
(j)
l

〉−2

R(m)∏
l′′=1

〈
b
(m)
l′′

〉−2
,

(4.238)
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4.6. Resummation of the ladder graphs

where Lemma C.3 was used with the trivial ancestry relation ·̌ that comes with the
ordering of the rungs. Therefore, the b(j)l integrals are bounded independently of ε, while
from the geometry of the integration domain, the dsdr integral is less or equal to

|T ||G|+|R|
 m∏
j=1

R(j)!
R(j)∏
l=1

∏
ρ∈{±}

G
(j)
l,ρ !

−1

. (4.239)

The q(1)
0 and p integrals then yield the bound

(
Cd,g2

〈
L(0)

〉2
|T |
)|G|+|R| m∏

j=1

R(j)!
R(j)∏
l=1

∏
ρ∈{±}

G
(j)
l,ρ !

−1

‖ψε0‖
2
H

2m−1∏
j=1
‖aj‖C2 (4.240)

for the amplitude, which is clearly summable over G. Therefore, when plugging (4.236)
into

lim
ε→0

∑
G∈Γ0(R)

K(main)
σ

(
ψε0, ε, a, b, L

(0), T/ε,R,G
)
, (4.241)

dominated convergence and Fubini’s theorem are applicable to all sums and integrals
as long as one makes sure that the ∏m

j=1
∏R(j)
l=1 dq(j)

l integral is executed before the∏m
j=1

∏R(j)
l=1 db(j)l integral. Thanks to the

〈
b
(j)
l

〉−2
decay for l > 0 and the identity

b
(j)
0 = −b(j)1 − ... − b

(j)
R(j) , one can use dominated convergence for the b

(j)
l integrals,

eliminate the last factor in (4.237) by observing

∣∣∣exp
(
επiσq̂

(j)
l · (P

(j) + P (2m+1−j))b(j)l
)
− 1

∣∣∣ ≤ min
(
1, 2πmCobsε

∣∣∣b(j)l ∣∣∣) . (4.242)

and remove the restriction
1

{∣∣∣b(j)l ∣∣∣ ≤ 2s(j)
l /ε

}
→ 1 (4.243)

on the set of full measure {s(j)
l 6= 0} for all j, l. In the same fashion, dominated

convergence for the b(j)l integrals and the G sum allows to modify the delta functions in
the fifth line of (4.236), because

∣∣∣∣∣∣∣
∏
j,l,ρ

∫
R
G

(j)
l,ρ

+1
+

dr(j)
l,ρ δ

s(j)
l,ρ −

G
(j)
l,ρ∑

ν=0
r

(j)
l,ρ,ν

−∏
j,l,ρ

∫
R
G

(j)
l,ρ

+1
+

dr(j)
l,ρ δ

s(j)
l −

G
(j)
l,ρ∑

ν=0
r

(j)
l,ρ,ν


∣∣∣∣∣∣∣

≤ |G||T ||G|−1 min
(
|T |/|G|, εmax

j,l
|bj,l|

)∏
j,l,ρ

G
(j)
l,ρ !

−1

.

(4.244)
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We then can integrate out the r variables and have, in case the limit of the right side
exists,

lim
ε→0

∑
G∈Γ0(R)

K(main)
σ

(
ψε0, ε, a, p, L

(0), T/ε,R,G
)

= lim
ε→0

∑
G∈Γ0(R)

∫
Rd

dq(1)
0

∣∣∣2πq(1)
0

∣∣∣2|R| ψ̂ε0,σ (q(1)
0

)
ψ̂ε0,σ

(
q

(1)
0 + εP (2m)

)
∫
R|R|+m+

m∏
j=1

R(j)∏
l=0

(
ds(j)

l

) ∫
R|R|

m∏
j=1

R(j)∏
l=1

(
db(j)l

) ∫
R|R|d

m∏
j=1

R(j)∏
l=1

dq(j)
l

m∏
j=1

δ
T (j) −

R(j)∑
l=0

s
(j)
l

R(j)∏
l=0

 ∏
ρ∈{±}

(
−Θρσ

(
q̂

(j)
l

∣∣∣q(1)
0

∣∣∣) s(j)
l

)G(j)
l,ρ
(
G

(j)
l,ρ !
)−1

(
ĝ2
(
q

(j)
l − q

(j)
l−1

)
Υ
(
q

(j)
l , q

(j)
l−1, j, l,G

)
exp

(
2πiσ

(∣∣∣q(j)
l

∣∣∣− ∣∣∣q(j)
0

∣∣∣) b(j)l ))1(l 6=0)

(
exp

(
−2πiσq̂(j)

l · (P
(j) − P (2m+1−j))s(j)

l

))


m∏
j=1

aj,σ
(
q

(j)
R(j)

) 2m−1∏
j=m+1

aj,σ
(
q

(2m−j)
R(2m−j)

)
.

(4.245)

Now we apply Lemma C.4 to the b(j)l , q(j)
l integrals and obtain delta functions

m∏
j=1

R(j)∏
l=1

δ
(∣∣∣q(j)

l

∣∣∣− ∣∣∣q(j)
0

∣∣∣) =
m∏
j=1

R(j)∏
l=1

δ
(∣∣∣q(j)

l

∣∣∣− ∣∣∣q(j)
l−1

∣∣∣) . (4.246)

These delta functions ensure that
∣∣∣q(j)
l

∣∣∣ =
∣∣∣q(1)

0

∣∣∣ ≤ L(0), so all cut-off functions Υ are
equal to 1. Only now can one take the sum over G (with the Υ still present, the implicit
dependence of the cutoff thresholds on G would have complicated matters), which is
an exponential series for each value of j, l, ρ. These series converge uniformly due to
boundedness of their argument resulting from the compact support of ψ̂ε0,σ and (4.246).
Furthermore, on the support of the deltas,

q̂
(j)
l

∣∣∣q(1)
0

∣∣∣ = q
(j)
l , (4.247)

and thus, for each j, l, there is a factor

exp
(
−Θ+

(
q

(j)
l

)
s

(j)
l

)
exp

(
−Θ−

(
q

(j)
l

)
s

(j)
l

)
= exp

(
−2ReΘ+

(
q

(j)
l

)
s

(j)
l

)
(4.248)
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by Lemma D.4.

lim
ε→0

∑
G∈Γ0(R)

K(main)
σ

(
ψε0, ε, a, p, L

(0), T/ε,R,G
)

= lim
ε→0

∫
Rd

dq(1)
0 ψ̂ε0,σ

(
q

(1)
0

)
ψ̂ε0,σ

(
q

(1)
0 + εP (2m)

)
∫
R|R|+m+

m∏
j=1

R(j)∏
l=0

(
ds(j)

l

)
δ

T (j) −
R(j)∑
l=0

s
(j)
l

∫
R|R|d

m∏
j=1

R(j)∏
l=1

dq(j)
l

m∏
j=1

R(j)∏
l=0

{(∣∣∣2πq(j)
l

∣∣∣2 ĝ2
(
q

(j)
l − q

(j)
l−1

)
δ
(∣∣∣q(j)

l

∣∣∣− ∣∣∣q(j)
l−1

∣∣∣))1(l 6=0)

exp
(
−2ReΘ+

(
q

(j)
l

)
s

(j)
l

)
exp

(
−2πiσq̂(j)

l · (P
(j) − P (2m+1−j))s(j)

l

)}
m∏
j=1

aj,σ
(
q

(j)
R(j)

) 2m−1∏
j=m+1

aj,σ
(
q

(2m−j)
R(2m−j)

)
.

(4.249)

We recall (4.231), the definitions (2.131), (2.132) of the measure νsc and the cross-section
σsc as well as the representation (D.25) of σsc, and have by dominated convergence

lim
ε→0

∑
R∈Nm0

∑
G∈Γε(R)

K(main)
σ

(
ψε0, ε, a, p, L

(0), T/ε,R,G
)

= lim
ε→0

∫
Rd

dq(1)
0 ψ̂ε0,σ

(
q

(1)
0

)
ψ̂ε0,σ

(
q

(1)
0 + εP (2m)

)
∞∑

R(1)=0

...
∞∑

R(m)=0

∫
R|R|+m+

m∏
j=1

R(j)∏
l=0

(
ds(j)

l

)
δ

T (j) −
R(j)∑
l=0

s
(j)
l


∫
R|R|d

m∏
j=1

R(j)∏
l=0

{(
νsc
(
q

(j)
l−1,dq

(j)
l

))1(l 6=0)

exp
(
−σsc

(
q

(j)
l

)
s

(j)
l

)
exp

(
−2πiσq̂(j)

l · (P
(j) − P (2m+1−j))s(j)

l

)}
m∏
j=1

aj,σ
(
q

(j)
R(j)

) 2m−1∏
j=m+1

aj,σ
(
q

(2m−j)
R(2m−j)

)
(4.250)

in which all sums and integrals may be taken in arbitrary order according to Fubini’s
theorem. Away from q

(1)
0 = 0, the last four lines of (4.250) are a bounded, continuous

function of q(1)
0 . Because we assume that ψ̂ε0 is supported outside a ball of radius λ > 0

around the origin, and thatW ε
[
ψ̂ε0,σ

]
converges in XIR

∗ (and thus in FL1(C0)∗), Lemma
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2.16 is applicable. Therefore, the ε→ 0 limit of the right side exists and equals

lim
ε→0

∑
R∈Nm0

∑
G∈Γε(R)

K(main)
σ

(
ψε0, ε, a, p, L

(0), T/ε,R,G
)

=
∫
R2d

µ0,σ
(
dx,dq(1)

0

)
e2πiP (2m)·x

∞∑
R(1)=0

...
∞∑

R(m)=0

∫
R|R|+m+

m∏
j=1

R(j)∏
l=0

(
ds(j)

l

)
δ

T (j) −
R(j)∑
l=0

s
(j)
l


∫
R|R|d

m∏
j=1

R(j)∏
l=0

{(
νsc
(
q

(j)
l−1,dq

(j)
l

))1(l 6=0)

exp
(
−σsc

(
q

(j)
l

)
s

(j)
l

)
exp

(
−2πiσq̂(j)

l · (P
(j) − P (2m+1−j))s(j)

l

)}
m∏
j=1

aj,σ
(
q

(j)
R(j)

) 2m−1∏
j=m+1

aj,σ
(
q

(2m−j)
R(2m−j)

)
.

(4.251)

The last equation is essentially already the statement of Theorem 3.1, however with a
restricted class of initial states (namely, with an infrared cut-off λ and an ultraviolet
cut-off L(0) still in place) and observables (the functions aj are C2 instead of merely
continuous, and only defined on k space instead of (x, k) momentum space). We will
remove these restrictions in the two sections below.

4.7. Extending the space of test functions

Assume for a moment that m = 1, p(1) = 0 and define the operator Aε1,± by (4.2) with

a1,+ = a1,− : Rd → [0, 1] (4.252)

smooth with bounded derivatives such that a1,±(k) = 0 for |k| ≤ L(0), and a1,±(k) = 1
for |k| ≥ L(0) + 1/2. If we set Q : H → H to be the projection on the subspace of
functions with Fourier transform supported only on k ∈ Rd with |k| ≥ L(0) + 1/2, we
have

lim sup
ε→0

E

∥∥∥∥∥Q exp
(
−iHεT

(1)

ε

)
ψε0

∥∥∥∥∥
2

H


≤ lim sup

ε→0
E
[〈

exp
(
−iHεT

(1)

ε

)
ψε0, A

ε
1 exp

(
−iHεT

(1)

ε

)
ψε0

〉
H

]
= 0,

(4.253)

where we have used (4.220), the support properties of ψ̂ε0 and the fact that νsc in (4.251)
conserves the absolute value of the momentum. Let now p(j) ∈ Rd, j ∈ {1, ..., 2m − 1}
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4.7. Extending the space of test functions

take arbitrary values, and assume that the functions aj,± : Rd → C are only bounded and
continuous. Then for any δ > 0, there are functions aδj,± : Rd → C which are bounded
up to the second derivatives, and fulfill

max
|k|≤L(0)+1

∣∣∣aj(k)− aδj(k)
∣∣∣ ≤ δ ‖aj‖C0 ,∥∥∥aδj∥∥∥

C0
≤ ‖aj‖C0 .

(4.254)

If the operators Aε1 and Aε,δ1 are defined from a1 and aδ1 by (4.2), equation (4.253)
immediately implies

lim sup
ε→0

E

∥∥∥∥∥(Aε1 −Aε,δ1

)
exp

(
−iHεT

(1)

ε

)
ψε0

∥∥∥∥∥
2

H

 ≤ Cδ2 lim
ε→0
‖ψε0‖

2
H ‖a1‖2C0 . (4.255)

Iterating this argument for all j from 1 up to m and from 2m− 1 down to m, one can
see that there is a constant C such that for all δ ∈ (0, 1]

lim
ε→0

E
[∣∣∣J ε (Hε, ψε0, T, a, p)− J ε

(
Hε, ψε0, T, a

δ, p
)∣∣∣] ≤ Cm√δ lim

ε→0
‖ψε0‖

2
H

2m−1∏
j=1
‖aj‖C0 .

(4.256)
But because (4.251) is applicable to aδ for all δ > 0, and its right side converges as
aδj,±(k)→ aj,±(k) uniformly for |k| ≤ L(0) + 1, we actually have

lim
ε→0

E [J ε (Hε, ψε0, T, a, p)]

=
∑

σ∈{±}

∫
R2d

µ0,σ
(
dx, dq(1)

0

)
e2πiP (2m)·x

∞∑
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...
∞∑

R(m)=0

∫
R|R|+m+

m∏
j=1

R(j)∏
l=0

(
ds(j)

l

)
δ

T (j) −
R(j)∑
l=0

s
(j)
l


∫
R|R|d

m∏
j=1

R(j)∏
l=0

{(
νsc
(
q

(j)
l−1,dq

(j)
l

))1(l 6=0)

exp
(
−σsc

(
q

(j)
l

)
s

(j)
l

)
exp

(
−2πiσq̂(j)

l · (P
(j) − P (2m+1−j))s(j)

l

)}
m∏
j=1

aj,σ
(
q

(j)
R(j)

) 2m−1∏
j=m+1

aj,σ
(
q

(2m−j)
R(2m−j)

)
(4.257)

for all bounded and continuous functions aj,±, j ∈ {1, ..., 2m− 1}.
Next, consider observables which no longer merely live on k-space alone, aj,± : Rd → C,
but are functions on phase space, aj,± : R2d → C, with aj,± ∈ FL1(C0) for all j ∈
{1, ...,m}. Operators Qε(aj) : H → H can then be defined as in (2.198). In view of the
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4. Proof of Theorem 3.1

definition of the + and − components of Qε(aj), (2.146), the momenta p(1), ..., p(2m−1)

become integration variables, and by (4.257) and dominated convergence, one can see
that,

lim
ε→0

E

〈e−iHεT (m)/ε
m−1∏
j=1

(
Qε(aj)e−iH

εT (j)/ε
)
ψε0,

Qε(am)e−iHεT (m)/ε
m−1∏
j=1

(
Qε(aj)e−iH

εT (j)/ε
)
ψε0

〉
H


=
∫
Rd(2m−1)

dp(1)...dp(2m−1) lim
ε→0

E [J ε (Hε, ψε0, T, â(p, ·), p)] ,

(4.258)

with the k-space-only observables entering in the second line of (4.258) being given for
fixed p ∈ Rd(2m−1) as

aj,±(k) = âj,±(p(j), k) (j ∈ {1, ...,m}),
aj,±(k) = â2m−j,±(−p(j), k) (j ∈ {m+ 1, ..., 2m}),

(4.259)

for all k ∈ Rd. We replace p(1), ..., p(2m−1) by P (2), ..., P (2m), while P (1) = 0 by definition.
Then, (4.257) and (4.258) yield

lim
ε→0

E

〈e−iHεT (m)/ε
m−1∏
j=1

(
Qε(aj)e−iH

εT (j)/ε
)
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H
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e2πiP (2m)·x
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R(j)∏
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−2πiσq̂(j)
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(j) − P (2m+1−j))s(j)
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−P (j+1) + P (j), q
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)
.

(4.260)

As µ0,± is supported away from
{
q

(1)
0 = 0

}
, the deltas ensure that all q(j)

l 6= 0 on the
support of the integrand, and we can therefore restrict all observables to Rd×

(
Rd \ {0}

)
,
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so the semigroups
(
eL±t

)
t≥0

and their expansion (2.135) are applicable. One can first
single out

∫
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dP (m+1)
∫
Rd

dP (m)

âm−1,σ
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)
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(
q
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l

)
+ 2πiσq̂(m)

l ·
(
P (m+1) − P (m)
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s

(m)
l

)
âm,σ

(
P (m+1) − P (m), q

(m)
R(m)

)
= F

[
am−1,σ

(
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(m)
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)
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] (
P (m+2) − P (m−1), q

(m−1)
R(m−1)

)
,

(4.261)

where F denotes Fourier transform in the first variable. The function in the square
brackets of the last line is obtained by pointwise multiplication in (x, k) phase space
and is again an element of FL1(C0). Plugging it back into (4.260) therefore produces
another instance of (4.260) with m reduced to m − 1 and the “central observable” no
longer being am,σ but

am−1,σ
(
eLσT

(m)
am,σ

)
am−1,σ. (4.262)

Iterating this procedure altogether m− 1 times and resubstituting gives us the result

lim
ε→0

E

〈e−iHεT (m)/ε
m−1∏
j=1

(
Qε(aj)e−iH

εT (j)/ε
)
ψε0,

Qε(am)e−iHεT (m)/ε
m−1∏
j=1

(
Qε(aj)e−iH

εT (j)/ε
)
ψε0

〉
H


=

∑
σ∈{±}

∫
R2d

µ0,σ
(
dx, dq(1)

0

) ∫
Rd

dP (2m)e2πiP (2m)·x

F
[
eLσT

(1) (|a1,σ|2 ...eLσT
(m−1) (|am−1,σ|2

(
eLσT

(m)
am,σ

)))] (
P (2m), q

(1)
0

)
=

∑
σ∈{±}

∫
R2d

µ0,σ(dx,dk)

[
eLσT

(1) (|a1,σ|2 ...eLσT
(m−1) (|am−1,σ|2

(
eLσT

(m)
am,σ

)))]
(x, k)

(4.263)
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4.8. Removal of the cut-off for large and small momenta

4.8.1. Decomposing the initial states

We will first show how to remove the infra-red cut-off, the removal of the ultra-violet cut-
off is then eays, cf. Section 4.8.4. For clarity, we will limit ourselves to one measurement,
m = 1. Assume that there is a sequence of initial states ψε0 ∈ H, (ε > 0) such that both
components ψε0,± obey (2.160), (2.161), and (2.162). Moreover, assume that for σ ∈ {±},
W ε

[
ψε0,σ

]
converge in XIR

∗ to a limit object (µ0,σ, µ
H
0,σ, η0,σ), in the sense of (2.186), as

ε → 0. By testing the right side of (2.186) against suitable functions a ∈ XIR, one can
observe that µ0,σ, µH

0,σ and W [η0,σ] are uniquely determined, while η0,σ is determined up
to a constant phase factor. It is clear, that W ε

[
ψε0,σ

]
, if tested only against FL1(C0)

functions, converges to a measure on the entire phase space, namely

µ̃0,σ(dx, dk) = µ0,σ(dx, dk)1(k 6= 0) +µH
0,σ(dx, Sd−1)δ(k)dk+ |η(x)|2 δ(k)dxdk. (4.264)

Moreover, there is a subsequence S of ε→ 0 such that

ε−d/2ψε0,σ

( ·
ε

)
⇀ ζ0,σ 3 L2(Rd), (S 3 ε→ 0), (4.265)

weakly in L2(Rd) for σ ∈ {±}, where ζ0,σ does not need to be equal to η0,σ. For
ϕ : [0,∞)→ [0, 1] smooth with ϕ([0, 1]) = {1} and ϕ([2,∞)) = {0}, and any 0 < 2λ <
L <∞, and σ = ±, set

ψ̂ε,λ,L>,0,σ(k) = (1− ϕ(|k|/λ))ϕ(|k|/L)ψ̂ε0,σ(k),

ψ̂ε,λ<,0,σ(k) = ϕ(|k|/λ)
(
ψ̂ε0,σ(k)− ε−d/2ζ̂0,σ (k/ε)

)
,

ζ̂ε,λ0,σ(k) = ε−d/2ϕ(|k|/λ)ζ̂0,σ (k/ε) .

(4.266)

The only difference to Appendix A is the additional cut-off for large momenta. Just as
shown in Appendix A, one can extract subsequences S′′ of λ→ 0 and S′ ⊂ S of ε→ 0,
such that for all a ∈ XIR

lim
S′3ε→0

〈
W ε[ψε,λ,L>,0,σ], a

〉
XIR

=
∫
R2d

µ0,σ(dx,dk)b
(
x, k,

k

|k|

)
(1− ϕ(|k|/λ))2 ϕ(|k|/L)2

:=
∫
R2d

µλ,L0,σ (dx, dk)b
(
x, k,

k

|k|

)
=
∫
R2d

µλ,L0,σ (dx,dk)amicro (x, k)

(4.267)

for λ, L fixed, as well as

lim
S′3ε→0

〈
W ε

[
ζε,λ0,σ

]
, a
〉
XIR

= 〈W [ζ0,σ], a(·, 0, ·)〉 = 〈W [η0,σ], a(·, 0, ·)〉 = 〈W [η0,σ], amacro〉

(4.268)
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for λ fixed, and

lim
S′′3λ→0

lim
S′3ε→0

〈
W ε

[
ψε,λ<,0,σ

]
, a
〉
XIR

=
∫
Rd×Sd−1

µH
0,σ(dx, dk)b(x, 0, k)

=
∫
Rd×Sd−1

µH
0,σ(dx, dk)ameso(x, k),

(4.269)

with all cross terms vanishing in the limS′′3λ→0 limS′3ε→0 limit. It is important to note
that the µ0,σ, µH

0,σ and W [η0,σ] are really the original quantities, due to their above-
mentioned uniqueness. In particular, as W [ζ0,σ] = W [η0,σ], there has to be a z ∈ C with
|z| = 1 that ζ0,σ = zη0,σ.
Now let any T > 0 be given, and consider the time-evolved, and thus random, states in
H,

ψε,λ,L>,T = e−iHεT/εψε,λ,L>,0 , ψε,λ<,T = e−iHεT/εψε,λ<,0, ζε,λT = e−iHεT/εζε,λ0 . (4.270)

Also, for σ ∈ {±}, we denote by µT,σ = eLσTµ0,σ and µλ,LT,σ = eLσTµλ,L0,σ the measures on
phase space obtained by propagating µ0,σ and µλ,L0,σ with the linear Boltzmann dynam-
ics.

4.8.2. Large wavenumbers

For fixed λ, L, the sequence
(
ψε,λ,L>,0,σ

)
ε∈S′

fulfills all assumptions made for initial states
up to Section 4.7 (to be specific, there is and ε-independent infrared and ultraviolet
cut-off, and (4.267) shows that W ε[ψε,λ,L>,0,σ] converges weak-* in FL1(C0)∗). Therefore,
the convergence (4.257) (with m = 1, p(1) = 0 and a1,σ(k) = ϕ (|2k|/λ)) holds for(
ψε,λ,L>,0,σ

)
ε∈S′

with fixed λ, L

lim
S′3ε→0

E
[∫

Rd
dkϕ

( |2k|
λ

) ∣∣∣ψ̂ε,λ,L>,T,σ

∣∣∣2] =
∫
R2d

µλ,LT,σ(dx, dk)ϕ
( |2k|
λ

)
=
∫
R2d

µ0,σ(dx,dk)ϕ
( |2k|
λ

)
(1− ϕ(|k|/λ))2 ϕ(|k|/L)2 = 0,

(4.271)

and thus, employing (2.182),

lim
S′3ε→0

E
〈
W ε[ψε,λ,L>,T,σ], a

〉
XIR

= lim
S′3ε→0

E
∫
Rd

dp
∫
Rd

dkâ(p, k, k/ε)ψ̂ε,λ,L>,T,σ(k + εp/2)ψ̂ε,λ,L>,T,σ(k − εp/2)

= lim
S′3ε→0

E
∫
Rd

dp
∫
Rd

dkâ(p, k, k/ε)(1− ϕ(4|k|/λ))ψ̂ε,λ,L>,T,σ(k + εp/2)ψ̂ε,λ,L>,T,σ(k − εp/2)

= lim
S′3ε→0

E
∫
Rd

dp
∫
Rd

dkb̂(p, k, k/|k|)(1− ϕ(4|k|/λ))ψ̂ε,λ,L>,T,σ(k + εp/2)ψ̂ε,λ,L>,T,σ(k − εp/2)

=
∫
R2d

µT,σ(dx,dk) (1− ϕ(|k|/λ))2 ϕ(|k|/L)2b(x, k, k/|k|).
(4.272)
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In the last equality, the fact that (x, k) 7→ b(x, k, k/|k|)(1 − ϕ(4|k|/λ)) is an FL1(C0)
function was used. Obviously, then

lim
S′′3λ→0

lim
S′3ε→0

E
〈
W ε[ψε,λ,L>,T,σ], a

〉
XIR

=
∫
R2d

µT,σ(dx,dk)b(x, k, k/|k|)ϕ(|k|/L)2

=
∫
R2d

µT,σ(dx,dk)amicro(x, k)ϕ(|k|/L)2.
(4.273)

4.8.3. Small and intermediate wavenumbers

Next, let f ε,λ0,σ be either ψε,λ<,0,σ(k) or ζε,λ0,σ(k). Therefore, its Fourier transform f̂ ε,λ0,σ is
supported in a ball of radius 2λ around the origin. Recall that

f ε,λT = e−iHεT/εf ε,λ0 = lim
R→∞

(Ψ ε1 + Ψ ε2 ) (4.274)

in H, for fixed ε, λ > 0 and with Ψ ε1 , Ψ ε2 defined in (4.13) (with m = 1 and initial state
f ε,λ0 ). One has

E
[∥∥∥f ε,λT − e−iH0T/εf ε,λ0

∥∥∥2

H

]
≤ 2E

[∥∥∥Ψ ε1 − e−iH0T/εf ε,λ0

∥∥∥2

H

]
+ 2E

[
‖Ψ ε2‖

2
H

]
. (4.275)

With the same parameters as in (4.216), the analogue of estimate (4.218) still holds for
the second summand. For the first, however, we have to proceed slightly different than
in Section 4.6, as we can no longer use Lemma 4.16 because f̂ ε,λ0,σ does not vanish near
the origin. Instead, with m = 1, p = p(1) = 0, the observable a = a(1) : Rd → C such
that a ≡ 1, N =

(
N (1), N (2)

)
and the K amplitudes still defined as in in (4.29),

lim
R→0

E
[∥∥∥Ψ ε1 − e−iH0T/εf ε,λ0

∥∥∥2

H

]

=
N−1∑
N(1)=1

N−1∑
N(2)=1

∑
S∈π∗(I(N))

K
(
f ε,λ0 , ε, a ≡ 1, p = 0, 2λ, T/ε,N, S

)
≤
∥∥∥f ε,λ0

∥∥∥2

H
ε1/19

+
N−1∑
N(1)=1

N−1∑
N(2)=1

∑
S∈π∗(I(N))

S non-crossing

∑
σ=±

∣∣∣Kσ (f ε,λ0 , ε, a ≡ 1, p = 0, 2λ, T/ε,N, S
)∣∣∣

(4.276)
for all λ ∈ (0, 1) and ε ∈ (0, ε0), with ε0 > 0 only depending on |T |, the distribution of
ξ, and dimension d. The last line can then be estimated with Corollary 4.19 as

N−1∑
N(1)=1

N−1∑
N(2)=1

∑
S∈π∗(I(N))

S non-crossing

∑
σ=±

∣∣∣Kσ (f ε,λ0 , ε, a ≡ 1, p = 0, 2λ, T/ε,N, S
)∣∣∣

≤
∥∥∥f ε,λ0

∥∥∥2

H

ε1/19 + λ
∞∑

N(1),N(2)=1

CN
(1)+N(2)

((N (1) +N (2))/2)!

 .
(4.277)
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Therefore, controlling
∥∥∥f ε,λ0

∥∥∥2

H
with (2.160),

lim
S′′3λ→0

lim sup
S′3ε→0

E
[∥∥∥f ε,λT − e−iH0T/εf ε,λ0

∥∥∥2

H

]
= 0. (4.278)

In the Wigner transform, the cross-terms between f ε,λT and ψε,λ,L>,T can now be estimated
by combining (4.271) and (4.278),

lim
S′′3λ→0

lim sup
S′3ε→0

E
∣∣∣∣∫

Rd
dp
∫
Rd

dkâ(p, k, k/ε)f̂ ε,λT,σ(k + εp/2)ψ̂ε,λ,L>,T,σ(k − εp/2)
∣∣∣∣2

≤‖a‖XIR

∥∥∥f ε,λ0

∥∥∥2

L2
lim

S′′3λ→0
lim sup
S′3ε→0

∫
Rd

dp sup
k′,k′′

∣∣â(p, k′, k′′)
∣∣

E
∫
Rd

dk1(λ ≤ |k| ≤ 2λ+ ε|p|)
∣∣∣ψ̂ε,λ,L>,T,σ(k)

∣∣∣2
≤4‖a‖2XIR ‖ψ

ε
0‖

2
H lim
S′′3λ→0

lim sup
S′3ε→0

E
∫
Rd

dk1(λ ≤ |k| ≤ 3λ)
∣∣∣ψ̂ε,λ,L>,T,σ(k)

∣∣∣2
≤4‖a‖2XIR ‖ψ

ε
0‖

2
H lim
S′′3λ→0

∫
R2d

µλ,LT,σ(dx,dk)1(λ ≤ |k| ≤ 3λ)

=0,

(4.279)

where we used the already established convergence (4.257) from the third last to second
last line.

For the Wigner transform of the small wave-numbers, observe that for σ ∈ {±}

lim
S′′3λ→0

lim
S′3ε→0

E
〈
W ε

[
ζε,λT,σ

]
, a
〉
XIR

= lim
S′′3λ→0

lim
S′3ε→0

∫
Rd

dp
∫
Rd

dkâ(p, k, k/ε)ζ̂ε,λ0,σ(k + εp/2)ζ̂ε,λ0,σ(k − εp/2)

exp (2πiσT (|k + εp/2| − |k − εp/2|)/ε)

= lim
S′′3λ→0

lim
S′3ε→0

∫
Rd

dp
∫
Rd

dkâ(p, εk, k)ζ̂0,σ(k + p/2)ζ̂0,σ(k − p/2)ϕ
( |εk + εp/2|

λ

)
ϕ

( |εk − εp/2|
λ

)
exp (2πiσT (|k + p/2| − |k − p/2|))

=
∫
Rd

dp
∫
Rd

dkâ(p, 0, k)ζ̂0,σ(k + p/2)ζ̂0,σ(k − p/2) exp (2πiσT (|k + p/2| − |k − p/2|))

=
〈
W
[(

e−iH0T η0
)
σ

]
, amacro

〉
FL1(C0)

.

(4.280)

123



4. Proof of Theorem 3.1

As for the cross-terms between small and intermediate wave-numbers,

lim
S′′3λ→0

lim
S′3ε→0

E
∫
Rd

dp
∫
Rd

dkâ(p, k, k/ε)ζ̂ε,λT,σ(k + εp/2)ψ̂ε,λ<,T,σ(k − εp/2)

= lim
S′′3λ→0

lim
S′3ε→0

εd/2
∫
Rd

dp
∫
Rd

dkâ(p, εk, k)ζ̂0,σ(k + p/2)ψ̂ε,λ<,0,σ(ε(k − p/2))

ϕ

( |εk + εp/2|
λ

)
exp (2πiσT (|k + p/2| − |k − p/2|))

=0,

(4.281)

because for any fixed p ∈ Rd, λ > 0 and T ≥ 0,

exp (2πiσT |k + p/2|) â(p, εk, k)ζ̂0,σ(k + p/2)ϕ
( |εk + εp/2|

λ

)
→ exp (2πiσT |k + p/2|) â(p, 0, k)ζ̂0,σ(k + p/2) (ε→ 0)

(4.282)

strongly in L2(Rdk), while

εd/2 exp (2πiσT |k − p/2|) ψ̂ε,λ<,0,σ(ε(k − p/2)) ⇀ 0 (ε→ 0) (4.283)

weakly in L2(Rdk).
For intermediate wave-numbers, we consider

E
〈
W ε

[
ψ̂ε,λ<,T,σ

]
, a
〉
XIR

=
∫
Rd

dp
∫
Rd

dkâ(p, k, k/ε)ψ̂ε,λ<,0,σ(k + εp/2)ψ̂ε,λ<,0,σ(k − εp/2)

exp (2πiσT (|k/ε+ p/2| − |k/ε− p/2|))

(4.284)

and can follow the arguments of [23], laid out in Appendix A up to equation (A.22) to
see that for fixed λ > 0, and with the cut-off function ϕ as defined at the beginning of
Section 4.8.1,

lim
ε→0

∣∣∣∣∫
Rd

dp
∫
Rd

dkâ(p, k, k/ε)ψ̂ε,λ<,0,σ(k + εp/2)ψ̂ε,λ<,0,σ(k − εp/2)

exp (2πiσT (|k/ε+ p/2| − |k/ε− p/2|))

−
∫
Rd

dp
∫
Rd

dkâ(p, k, k/ε)ψ̂ε,λ<,0,σ(k + εp/2)ψ̂ε,λ<,0,σ(k − εp/2)

exp
(

2πiσT k

|k|
· p
)

(1− ϕ(|k|/ε))
∣∣∣∣

= 0

(4.285)

For any T ≥ 0, the function aT with

âT (p, k, k) = â(p, k, k)(1− ϕ(|k|)) exp
(

2πiσT k

|k|
· p
)

(4.286)
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4.8. Removal of the cut-off for large and small momenta

is a XIR function with
ameso
T = eLH

σ T ameso. (4.287)

Therefore, by (4.269),

lim
S′′3λ→0

lim
S′3ε→0

〈
W ε

[
ψε,λ<,T,σ

]
, a
〉
XIR

= lim
S′′3λ→0

lim
S′3ε→0

〈
W ε

[
ψε,λ<,0,σ

]
, aT

〉
XIR

=
∫
Rd×Sd−1

µH
0,σ(dx,dk)

(
eLH

σ T ameso
)

(x, k),
(4.288)

and we have verified the convergence

lim
S′3ε→0

E
[〈
W ε

[
ψε<,T,σ

]
, a
〉
XIR

]
=
∫
Rd×Rd∗

µ0,σ(dx,dk)eLσT amicro(x, k)ϕ(|k|/L)2

+
∫
Rd×Sd−1

µH
0,σ(dx,dk)eLH

σ T ameso(x, k)

+
〈
W
[(

e−iH0T η0
)
σ

]
, amacro

〉
FL1(C0)

(4.289)

along the subsequence S′. But such a subsequence S′ can be extracted from any sequence
of εn → 0, and the respective limit always has to coincide with the one on the right side
of (4.289). Thus, we have verified (3.2) as ε goes to zero continuously, at least for the
case m = 1 and with large-wave-number cut-off L still present. The generalization to
multiple measurements (m > 1) is tedious, but straightforward.

4.8.4. UV cut-off

To finish the proof of Theorem 3.1, one now only has to remove the cut-off L. From
(2.162), we observe that

lim
L→∞

lim sup
ε→0

∫
Rd

dk
∣∣∣ψ̂ε0(k)

∣∣∣2 (1− ϕ(|k|/L))2 = 0, (4.290)

while

lim
L→∞

∫
Rd×Rd∗

µ0,σ(dx, dk)ϕ(|k|/L)2amicro(x, k) =
∫
Rd×Rd∗

µ0,σ(dx, dk)amicro(x, k)

(4.291)
for all amicro ∈ FL1(C0). Thus, both sides of (3.2) converge to their non-cut-off limits
as L→ 0.
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5. Vanishing variance

5.1. Graph expansion

5.1.1. Amplitudes for the main part

As in the beginning of Chapter 4, we start out with initial states ψε0 ∈ H with bounded
energy supε>0 ‖ψε0‖

2
H < ∞, and Fourier transforms supported in a ball of radius L(0)

around the origin uniform in ε > 0. The operators Aεj , j ∈ {1, ..., 2m− 1} are given by
(4.1-4.2), again with functions aj,σ : Rd → C bounded up to their second derivative. The
variance of the random variabe J εR as defined in (4.6) naturally contains contributions
both of the main part and the remainder of the Duhamel expansion (4.11). We will see
in Section 5.4 that one can re-use all estimates for the remainder. In the Section 5.1 at
hand, we therefore focus on controlling the variance of (4.18) for any given N ∈ N2m

0
with

N (1) + ...+N (m) < N,

N (m+1) + ...+N (2m) < N.
(5.1)

To find such an estimate, we follow the notation of [8] and [7], but have to pay attention
to the more complicated structure due to multiple measurements, the “+” and “−”
components of the wave function ψε, and, as the random field ξ is not Gaussian, the
presence of higher-order partitions. To motivate the notation, first assume we wanted to
calculate

lim
R→∞

E

∣∣∣∣∣∣
〈
ψε0, FN(2m)

(
t(2m);R,L(2m), ε

)∗2m−1∏
j=1

AεjFN(j)

(
t(j);R,L(j), ε

)∗(j)ψε0
〉
H

∣∣∣∣∣∣
2

.

(5.2)
To write out the square inside the expectation, we can fall back on the notation introduced
in Section 4.1.2. As the same time intervals t(j) and cut-off thresholds L(j)

n appear in
both factors of the square, the definition (4.17) can still be employed, but for most other
variables we have to introduce a new index r ∈ {1, 2}, with r = 1 standing for the
contributions of the original (4.18), and r = 2 for those of its complex conjugate. As
one now has to keep track of 2|N | scattering events, we index them with a set I(N,N),
which is just a union of two disjoint copies of the original I(N) from (4.19),

I(N,N) =
{

(j, n, r) : j ∈ {1, ..., 2m}, n ∈ {1, ..., N (j)}, r ∈ {1, 2}
}
. (5.3)
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5. Vanishing variance

As before, we refer to the set of partitions of I(N,N) as π (I(N,N)), and π∗ (I(N,N))
is the set of partitions without isolated elements, i.e. clusters of size 1. Finally, the set
π∗conn (I(N,N)) is the set of all partitions that do not contain isolated elements and con-
nect the first and second one-particle line. Thus an S ∈ π∗conn (I(N,N)) always contains a
cluster A ∈ S such that there are (j1, n1), (j2, n2) ∈ I(N) with (j1, n1, 1), (j2, n2, 2) ∈ A.
From the interpretation of I(N,N) as two copies of I(N), it is clear that the set of
partitions that connect the two one-particle lines is just the set of all partitions, except
for those that decompose into partitions of the first and second I(N),

π∗conn (I(N,N)) = π∗ (I(N,N)) \ (π∗(I(N))× π∗(I(N))) . (5.4)

Between consecutive scatterings, as shown in Figure 5.1, the wave in the r-th one-particle
line travels at a momentum k

(j)
n,r, indexed by (j, n, r) ∈ I0(N,N), with

I0(N,N) =
{

(j, n, r) : j ∈ {1, ..., 2m}, n ∈ {0, ..., N (j)}, r ∈ {1, 2}
}
, (5.5)

and has a “+” and “−” component denoted by σ
(j)
n,r, again with (j, n, r) ∈ I0(N,N).

Finally, the complex conjugation for r = 2 can be represented by a sign τr = −(−1)r

which combines with (4.22) to τ (j)
r = τ (j)τr. For each (j, n, r) ∈ I(N,N), the momentum

change at the corresponding scattering event is

θ(j)
n,r = τr

(
k(j)
n,r − k

(j)
n−1,r

)
. (5.6)

We will later comment on the different choice of signs for r = 1 and r = 2.
If, for r ∈ {1, 2}, kr denotes the vector of momenta k(j)

n,r, (j, n) ∈ I0(N), and σr is the
collection of all signs σ(j)

n,r, the product of all observables reads

A1 (k1, σ1, p, ε)

=
2m−1∏
j=1

a
j,σ

(j+1)
0,1

k(j+1)
0,1 + k

(j)
N(j),1

2

 δ (k(j+1)
0,1 − k(j)

N(j),1 − εp
(j)
)
δ
(
σ

(j)
N(j),1, σ

(j+1)
0,1

)
(5.7)

on the first one-particle line, and

A2 (k2, σ2, p, ε)

=
2m−1∏
j=1

a
j,σ

(j+1)
0,2

k(j+1)
0,2 + k

(j)
N(j),2

2

 δ (k(j+1)
0,2 − k(j)

N(j),2 − εp
(j)
)
δ
(
σ

(j)
N(j),2, σ

(j+1)
0,2

)
(5.8)

on the second one-particle line.
To represent the propagation of the wave in resolvent formulation, for each index
j ∈ {1, ..., 2m}, r ∈ {1, 2}, there will be a resolvent integral with parameter α(j)

r , and
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5.1. Graph expansion

αr denotes the collection of all such parameters for the r-th one-particle line. The
propagators in resolvent form are then given as

Pr (kr, σr, αr, γ)

=
∏

(j,n)∈I0(N)

(
i

α
(j)
r − 2πσ(j)

n,rτ
(j)
r |k(j)

n,r|+ iγ

)

×
∏

(j,n)∈I(N)

[
(−iτ (j)

r )
(∣∣∣k(j)

n,r

∣∣∣σ(j)
n−1,r +

∣∣∣k(j)
n−1,r

∣∣∣σ(j)
n,r

)
Φ
(
k(j)
n,r, k

(j)
n−1,r, L

(j)
n

)] (5.9)

on the r-th one-particle line, where the parameter γ > 0 can be chosen freely, and will
again be optimized later.

Lemma 5.1. For a random field ξ of class (m, 0), m > d + 1, and N ∈ N2m
0 fulfilling

(5.1),

lim
R→∞

Var
〈
ψε0, FN(2m)

(
t(2m);R,L(2m), ε

)∗2m−1∏
j=1

AεjFN(j)

(
t(j);R,L(j), ε

)∗(j)ψε0
〉
H

=
∑

S∈π∗conn(I(N,N))
V
(
ψε0, ε, a, p, L

(0), t, N, S
)
,

(5.10)

with the amplitude V of a single partition S ∈ π∗(I(N,N)) given by the formula

V
(
ψε0, ε, a, p, L

(0), t, N, S
)

= ε|N |π2|N | ∑
σ

(j)
n,r∈{±}

∀(j,n,r)∈I0(N,N)

∫
R(2|N|+4m)d

∏
(j,n,r)∈I0(N,N)

dk(j)
n,r

∏
A∈S

δ
 ∑

(j,n,r)∈A
θ(j)
n,r

 ĝ|A| (θ(j)
n,r : (j, n, r) ∈ A]

)
×A1 (k1, σ1, p, ε)A2 (k2, σ2, p, ε)

×
∫
R4m

2∏
r=1

2m∏
j=1

(
eγt

(j) dα(j)
r

2π e−iα
(j)
r t(j)

)
P1 (k1, σ1, α1, γ)P2 (k2, σ2, α2, γ)

× ψ̂ε
0,σ(1)

0,1

(
k

(1)
0,1

)
ψ̂ε

0,σ(2m)
N(2m),1

(
k

(2m)
N(2m),1

)
× ψ̂ε

0,σ(1)
0,2

(
k

(1)
0,2

)
ψ̂ε

0,σ(2m)
N(2m),2

(
k

(2m)
N(2m),2

)
,

(5.11)

in which γ > 0 can be chosen arbitrarily. As in the remark after Lemma 4.2, the resolvent
representation of the propagator for the j-th time interval, both for r = 1 and r = 2, is

129



5. Vanishing variance

only valid in case N (j) ≥ 1. For j with N (j) = 0, the respective α(j)
r integral should be

interpreted as the unitary

exp
(
−2πiσ(j)

n,rτ
(j)
r |k(j)

n,r|t(j)
)
, (r = 1, 2). (5.12)

On the other hand, whenever N (j) ≥ 1, the α(j)
1 and α(j)

2 integral can be interchanged
with the k integrals.

Proof. One can follow the proof of Lemma 4.1 and 4.3 (with the same caveats for the
indices j with N (j) = 0) to verify the equation

lim
R→∞

E

∣∣∣∣∣∣
〈
ψε0, FN(2m)

(
t(2m);R,L(2m), ε

)∗2m−1∏
j=1

AεjFN(j)

(
t(j);R,L(j), ε

)∗(j)ψε0
〉
H

∣∣∣∣∣∣
2

=
∑

S∈π∗(I(N,N))
V
(
ψε0, ε, a, p, L

(0), t, N, S
)

(5.13)

together with all the remarks below (5.11). The only difference to Lemma 4.1 is the
complex conjugation on the second one-particle line. For r = 2, the scattering events
therefore involve a convolution with ξ̂R, so we have to evaluate terms of the form

ξ̂R
(
k

(j)
n,2 − k

(j)
n−1,2

)
= ξ̂R

(
−k(j)

n,2 + k
(j)
n−1,2

)
= ξ̂R

(
θ

(j)
n,2

)
, (5.14)

for (j, n) ∈ I(N), where we have used that the random field ξ takes only real values.
This explaines the choice of signs in (5.6).
Directly by taking the square of Lemma 4.1 and 4.3 one has that

lim
R→∞

∣∣∣∣∣∣E
〈
ψε0, FN(2m)

(
t(2m);R,L(2m), ε

)∗2m−1∏
j=1

AεjFN(j)

(
t(j);R,L(j), ε

)∗(j)ψε0
〉
H

∣∣∣∣∣∣
2

=
∑

S∈π∗(I(N))×π∗(I(N))
V
(
ψε0, ε, a, p, L

(0), t, N, S
)

(5.15)

with the sum running over all partitions S ∈ π∗(I(N,N)) that decompose into a partition
of the first and of the second particle line. The lemma then follows from (5.4).

5.1.2. Graph classification

For every S ∈ π∗conn (I(N,N)), the structure I(N,N) = I(N)∪̇I(N) of the index set
gives rise to the notion of internal clusters, which are A ∈ S such that either all elements
(j, n, r) ∈ A have r = 1 (an internal cluster on the first one-particle line) or all elements
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Figure 5.1.: Scatterings (black diamonds) and measurements (empty squares) for the
case m = 2, N = (1, 1, 1, 1). The solid lines indicate the propagation of
the wave at a current momentum of k(j)

n,r. Two one-particle lines are needed
because of the quadratic structure of the variance. I(N,N) can be identified
with the set of all black diamonds in the graph.

have r = 2 (an internal cluster on the second one-particle line). Clusters A ∈ S that
contain both elements (j1, n1, 1) ∈ A and (j2, n2, 2) ∈ A are transfer clusters. If |A| = 2,
we speak of internal pairs or transfer pairs, respectively. Accordingly, the partition S
decomposes into S = S1∪̇S2∪̇Str, with S1, S2 being the sets of internal clusters on the
first and second one-particle line, respectively, and Str being the set of all transfer clusters.
If every A ∈ S is indicated in Figure 5.1 by connecting the respective scattering events
(black diamonds) by dotted lines, this visualization of partitions S ∈ π∗conn (I(N,N))
gives rise to the following

Definition 5.1. We classify the partitions in π∗conn (I(N,N)) similarly to Definition 1
of [7].

• S ∈ π∗conn (I(N,N)) is called higher order, if there exists an A ∈ S with |A| > 2,
and otherwise, that is, if all clusters A ∈ S are pairs, a pairing.

• A pairing S ∈ π∗conn (I(N,N)) has a generalized crossing on the r-th one-particle
line if there is an internal pair {(j1, n1, r), (j2, n2, r)} ∈ S on the r-th particle line,
and a second pair {(̃1, ñ1, r), (̃2, ñ2, r

′)} ∈ S such that, employing the ordering ≺
of I(N), (j1, n1) ≺ (̃1, ñ1) ≺ (j2, n2) and
– either r 6= r′, as in Figure 5.2,
– or r = r′ and (j2, n2) ≺ (̃2, ñ2).

• A pairing S ∈ π∗conn (I(N,N)) without generalized crossing has parallel transfer
pairs if for every possible choice of two transfer pairs

{(j1, n1, 1), (j2, n2, 2)}, {(̃1, ñ1, 1), (̃2, ñ2, 2)} ∈ S, (5.16)

the ordering (j1, n1) ≺ (̃1, ñ1) implies (j2, n2) ≺ (̃2, ñ2), as is the case in Figure
5.6
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5. Vanishing variance

• A pairing S ∈ π∗conn (I(N,N)) without generalized crossing has anti-parallel
transfer pairs if for every possible choice of two transfer pairs

{(j1, n1, 1), (j2, n2, 2)}, {(̃1, ñ1, 1), (̃2, ñ2, 2)} ∈ S, (5.17)

the ordering (j1, n1) ≺ (̃1, ñ1) implies (j2, n2) � (̃2, ñ2), as in Figure 5.7. A
pairing S without generalized crossing and only one transfer pair is thus classified
both as having parallel and anti-parallel transfer pairs.

• If a pairing S ∈ π∗conn (I(N,N)) does neither exhibit a generalized crossing nor
(anti-)parallel transfer pairs, we say that it has crossing transfer pairs, for
example the pairing shown in Figure 5.3.

5.2. Basic estimate

In [7, 8], the next step would be a factorization lemma (Lemma 5.3 or Lemma 4 respec-
tively), that essentially factorizes V from (5.11) into the contributions of the first and
second one-particle line. To do so, one would now assign a transfer momentum u to
every transfer cluster A ∈ Str, and rewrite the delta function

δ

 ∑
(j,n,r)∈A

θ(j)
n,r

 =
∫
Rd

duδ

u− ∑
(j,n,1)∈A

θ
(j)
n,1

 δ
u+

∑
(j,n,2)∈A

θ
(j)
n,2

 . (5.18)

For estimates in the spirit of Lemma 4.8, the momentum u could then be considered
as an additional free momentum on, say, the first one-particle line, but as a dependent
momentum on the second one-particle line. In our case, things are a bit more difficult;
while the random potential V from [7, 8] was a Gaussian random field on Z3 with a
Fourier transform V̂ such that

E
[
V̂ (θ1)V̂ (θ2)

]
= δ(θ1 + θ2) (5.19)

on the momentum space [0, 1)3, our analogue of (5.19) always comes with a decay factor
ĝ|A| which does not factor as nicely as (5.18). We will therefore not directly make use of
the notion of transfer momenta; however, (5.18) will influence our definition of free and
dependent indices (j, n, r) in the subsequent lemmas, starting with the following basic
estimate, similar to Lemma 5.5 in [8].

Lemma 5.2. (Basic estimate, V amplitudes.) For ξ of class (d+ 2, 0) and γ ∈ (0, 1/2],∣∣∣V (ψε0, ε, a, p, L(0), t, N, S
)∣∣∣

≤ C |N |+2m
(
〈L(0)〉+mN

)4|N |
e4γ|t| ‖ψε0‖

4
H

2m−1∏
j=1
‖aj‖2C0

∏
A∈S

∥∥∥g|A|∥∥∥
d+2

× ε|N |γ−|S|| log γ|2|N |+4m,

(5.20)

with C <∞ only depending on dimension d.
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5.2. Basic estimate

Proof. Assume for the moment that N (j) ≥ 1 for all j ∈ {1, ..., 2m}, so the resolvent
representation of propagators is applicable. We start from∣∣∣V (ψε0, ε, a, p, L(0), t, N, S

)∣∣∣
≤ ε|N |π2|N |e4γ|t|

2m−1∏
j=1
‖aj‖2C0

∑
σ

(j)
n,r∈{±}

∀(j,n,r)∈I0(N,N)∫
R(2|N|+4m)d

∏
(j,n,r)∈I0(N,N)

dk(j)
n,r

∏
A∈S

δ
 ∑

(j,n,r)∈A
θ(j)
n,r

 ∣∣∣ĝ|A| (θ(j)
n,r : (j, n, r) ∈ A]

)∣∣∣


×
2m−1∏
j=1

(
δ
(
k

(j+1)
0,1 − k(j)

N(j),1 − εp
(j)
)
δ
(
k

(j+1)
0,2 − k(j)

N(j),2 − εp
(j)
))

×
∫
R4m

2∏
r=1

2m∏
j=1

(
dα(j)

r

2π

)
|P1 (k1, σ1, α1, γ)P2 (k2, σ2, α2, γ)|

×
(∣∣∣ψ̂ε0 (k(1)

0,1

)∣∣∣2 +
∣∣∣ψ̂ε0 (k(2m)

N(2m),1

)∣∣∣2)(∣∣∣ψ̂ε0 (k(1)
0,2

)∣∣∣2 +
∣∣∣ψ̂ε0 (k(2m)

N(2m),2

)∣∣∣2) .
(5.21)

Multiplying out the last line of (5.21) produces four different summands, and we will
concentrate on the one containing

∣∣∣ψ̂ε0 (k(1)
0,1

)∣∣∣2 ∣∣∣ψ̂ε0 (k(1)
0,2

)∣∣∣2. In this case, fix a choice of
signs σ and switch the integration variables k(j)

n,r, (j, n, r) ∈ I0(N,N) to k(1)
0,1, k

(1)
0,2 as well

as θ(j)
n,r, (j, n, r) ∈ I(N,N). Then an argument along the lines of the estimates leading

up to (4.61) provides us with a C < ∞ depending only on dimension d, such that the
last five lines of (5.21) are bounded by

C |N |
(
〈L(0)〉+mN

)4|N | ∏
A∈S

∥∥∥g|A|∥∥∥
d+2∫

Rd
dk(1)

0,1

∫
Rd

dk(1)
0,2

∣∣∣ψ̂ε0 (k(1)
0,1

)∣∣∣2 ∣∣∣ψ̂ε0 (k(1)
0,2

)∣∣∣2
∫
R2|N|d

∏
(j,n,r)∈I(N,N)

(
dθ(j)

n,r

) ∏
A∈S

δ
 ∑

(j,n,r)∈A
θ(j)
n,r


∫
R4m

dα(1)
1 ...dα(2m)

1 dα(1)
2 ...dα(2m)

2∏
(j,n,r)∈I0(N,N)

∣∣∣∣∣ 1
α

(j)
r − 2πσ(j)

n,rτ
(j)
r |k(j)

n,r|+ iγ

∣∣∣∣∣
∏

(j,n,r)∈I(N,N)

(〈
θ(j)
n,r

〉−d 〈
k(j)
n,r

〉−1
)
,

(5.22)
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as long as we restrict ourselves to the summand
∣∣∣ψ̂ε0 (k(1)

0,1

)∣∣∣2 ∣∣∣ψ̂ε0 (k(1)
0,2

)∣∣∣2. For notational
simplicity, the k variables are still used, but understood as functions of the integration
variables by

k(j)
n,r = k

(1)
0,r + ε

j−1∑
̃=1

p(̃) + τr
∑

(̃,ñ)∈I(N)
(̃,ñ)�(j,n)

θ
(̃)
ñ,r. (5.23)

As in the proof of Lemma 4.8, all indices in I(N,N) will now be classified as free or
dependent. For a cluster A ∈ S, let maxrA be the largest (with respect to≺) (j, n) ∈ I(N)
such that (j, n, r) ∈ A.

Definition 5.2. (Definition of free and dependent indices, if both one-particle lines are
to be integrated out from left to right.) The index (j, n, r) ∈ I(N,N) is dependent,

i) if (j, n, r) ∈ A, with A an internal cluster of the r-th one-particle line, r arbitrary,
and (j, n) = maxrA, or

ii) if (j, n, r) ∈ A, with A a transfer cluster, r = 2, and (j, n) = max2A,
and free otherwise.

This way, every cluster A consists of exactly one dependent and |A| − 1 free elements,
so one can can replace the third line of (5.22) by∫

R(2|N|−|S|)d

∏
(j,n,r)∈I(N,N)
(j,n,r) free

(
dθ(j)

n,r

)
, (5.24)

if one plugs into the integrand

θ(j)
n,r = −

∑
(̃,ñ,r̃)∈A(j,n,r)

(̃,ñ,r̃) free

θ
(̃)
ñ,r̃ (5.25)

for dependent (j, n, r). Here we have used the notation A(j, n, r) for the unique cluster in
S containing (j, n, r). The substitution (5.25) yields the appropriate analogue of (4.59),
namely

k
(j)
n,1 = k

(1)
0,1 + ε

j−1∑
̃=1

p(̃) +
∑
A∈S1

(j,n)≺max1A

∑
(̃,ñ,1)∈A

(̃,ñ)�(j,n)

θ
(̃)
ñ,1 +

∑
A∈Str

∑
(̃,ñ,1)∈A

(̃,ñ)�(j,n)

θ
(̃)
ñ,1 (5.26)

on the first one-particle line and

k
(j)
n,2 = k

(1)
0,2 + ε

j−1∑
̃=1

p(̃) −
∑

A∈S2∪Str
(j,n)≺max2A

∑
(̃,ñ,2)∈A

(̃,ñ)�(j,n)

θ
(̃)
ñ,2 +

∑
A∈Str

(j,n)�max2A

∑
(̃,ñ,1)∈A

θ
(̃)
ñ,1 (5.27)

on the second one-particle line, the last term in (5.27) representing the momentum
transfer between the two one-particle lines caused by the transfer clusters. To estimate
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5.2. Basic estimate

the last four lines of (5.22), one can proceed just as in the proof for Lemma 4.8. First, for
k

(j)
n,r with dependent (j, n, r) ∈ I(N,N), the L∞ bound (4.62) is immediately applicable,

producing factors C/
(
γ
〈
α

(j)
r

〉)
. Then, we integrate out all θ(j)

n,2, (j, n, 2) ∈ I(N,N) free
and α(j)

2 , j ∈ {1, ..., 2m} by an iteration of the following steps (for r = 2)

Iteration 5.1. (Integrating out the r-th one-particle line, from left to right, i.e. decreas-
ing in ≺.)

• Of all remaining free indices (j, n, r) ∈ I(N,N), and all remaining (j, 0, r), j ∈
{1, ...2m}, pick the one with the largest (j, n) with respect to ≺.

• If n 6= 0, and thus (j, n, r) ∈ I(N,N), one can check in (5.26-5.27) that k(j)
n,r is

the only remaining k variable depending on θ(j)
n,r. Integrating over θ(j)

n,r produces a
factor ∫

Rd
dθ(j)

n,r

1∣∣∣α(j)
r − 2πσ(j)

n,rτ
(j)
r |k(j)

n,r|+ iγ
∣∣∣ 〈k(j)

n,r

〉〈
θ

(j)
n,r

〉d ≤ C| log γ|〈
α

(j)
r

〉 , (5.28)

with a constant C <∞ depending only on d.
• In case (j, n, r) = (j, 0, r), we have made sure by previous steps of our integration

that the only resolvent depending on α(j)
r is the one belonging to k(j)

0,r, while there

is a factor
〈
α

(j)
r

〉−N(j)

, N (j) ≥ 1 stemming from the (4.62) and (5.28) bounds, and
we obtain a factor∫

R
dα(j)

r

1∣∣∣α(j)
r − 2πσ(j)

0,rτ
(j)
r |k(j)

0,r|+ iγ
∣∣∣ 〈α(j)

r

〉 ≤ C| log γ| (5.29)

from the α(j)
r integral, C only depending on d.

After this procedure, the remaining integrand does no longer depend on any of the k(·)
·,2,

so we do not need to worry about the θ(·)
·,1 dependence in (5.27) anymore. Consequentely,

we now can apply the analogous procedure to the first one-particle line, i.e. plug in
r = 1 into the above Iteration 5.1, thus integrating out all θ(j)

n,1, (j, n, 1) ∈ I(N,N) free,
and α(j)

1 , j ∈ {1, ..., 2m}. Collecting all factors so far, there are |S| contributions from
dependent resolvents, each Cγ−1, and 2|N |+ 4m−|S| factors C| log γ| from the integrals
over the α and independent θ variables. After taking the k(1)

0,1 and k(1)
0,2 integrals, one has

the bound

C |N |+2m
(
〈L(0)〉+mN

)4|N | ∏
A∈S

∥∥∥g|A|∥∥∥
d+2
‖ψε0‖

4
H γ
−|S|| log γ|2|N |+4m (5.30)

for (5.22), where the constant C has been redefined, but still only depends on d.
So far, this is only a estimate for the last five lines of (5.21) for the choice of the
summand

∣∣∣ψ̂ε0 (k(1)
0,1

)∣∣∣2 ∣∣∣ψ̂ε0 (k(1)
0,2

)∣∣∣2. For the contributions of the other summands, we
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5. Vanishing variance

would also need to integrate out the one-particle lines from the “open end” to the∣∣∣ψ̂ε0∣∣∣2, thus defining free and dependent indices according to � rather than ≺ on the

first one-particle line (for the case involving
∣∣∣ψ̂ε0 (k(2m)

N(2m),1

)∣∣∣2 ∣∣∣ψ̂ε0 (k(1)
0,2

)∣∣∣2) or second one-

particle line (for
∣∣∣ψ̂ε0 (k(1)

0,1

)∣∣∣2 ∣∣∣ψ̂ε0 (k(2m)
N(2m),2

)∣∣∣2) one-particle line, or even on both lines (for∣∣∣ψ̂ε0 (k(2m)
N(2m),1

)∣∣∣2 ∣∣∣ψ̂ε0 (k(2m)
N(2m),2

)∣∣∣2). The assertion follows after absorbing the sum over σ
in (5.21) into the constant C.
In case N (j) = 0 for one or several j ∈ {1, ..., 2m}, the remark at the end of the proof of
Lemma 4.8 applies.

5.3. Improved bounds

5.3.1. Crossing estimates

As in Chapter 4, the basic estimate from Lemma 5.2 suffices for higher order partitions
S, and we can turn to pairings, first tackling those with generalized crossings, like Figure
5.2.

ψ̂εψ̂ε

ψ̂εψ̂ε

Figure 5.2.: For m = 2 and N = (1, 1, 1, 1), a pairing S ∈ π∗conn (I(N,N)) that exhibits
a generalized crossing.

Lemma 5.3. (Bound for amplitude V of pairings with generalized crossings.) For ξ of
class (d + 3, 0), S ∈ π∗conn (I(N,N)) a pairing with a generalized crossing on one of its
one-particle lines, and γ ∈ [2εCobsm, 1/2], there is a C only depending on dimension
d ≥ 2 such that∣∣∣V (ψε0, ε, a, p, L(0), t, N, S

)∣∣∣
≤ C |N |+2m

(
〈L(0)〉+mN

)4|N |+3
e4γ|t| ‖g2‖|N |d+3 ‖ψ

ε
0‖

4
H

2m−1∏
j=1
‖aj‖2C0

× ε|N |γ−|N |+1| log γ|2|N |+4m+1,

(5.31)
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for d ≥ 3, and∣∣∣V (ψε0, ε, a, p, L(0), t, N, S
)∣∣∣

≤ C |N |+2m
(
〈L(0)〉+mN

)4|N |+3
e4γ|t| ‖g2‖|N |d+3 ‖ψ

ε
0‖

4
H

2m−1∏
j=1
‖aj‖2C0

× ε|N |γ−|N |+1/2| log γ|2|N |+4m,

(5.32)

for d = 2.

Proof. Without loss of generality, let a generalized crossing occur on the first one-
particle line. As in the proof of the previous lemma, we will focus on the summand∣∣∣ψ̂ε0 (k(1)

0,1

)∣∣∣2 ∣∣∣ψ̂ε0 (k(1)
0,2

)∣∣∣2, the other cases being similar. Let the generalized crossing consist
of two pairs denoted by {(j1, n1, 1), (j2, n2, 1)} and {(̃1, ñ1, 1), (̃2, ñ2, r

′)}; in addition
to the requirements of Definition 5.1 we can assume (after finitely many reduction steps)
that the crossing interval, i.e. the set

{(j, n, 1) ∈ I(N,N) : (̃1, ñ1) � (j, n) � (j2, n2)} (5.33)

does not contain the crossing interval of another generalized crossing as a proper subset.
While we certainly have N (j) ≥ 1 for the relevant indices j = j1, j2, ̃1, ̃2, we assume for
simplicity, to make the resolvent expansion work, that N (j) ≥ 1 for all j ∈ {1, ..., 2m}.
We invoke m ≥ d+ 3 and the fact that S is a pairing to obtain an improved version of
(5.22)

C |N |
(
〈L(0)〉+mN

)4|N |+3
‖g2‖|N |d+3∫

Rd
dk(1)

0,1

∫
Rd

dk(1)
0,2

∣∣∣ψ̂ε0 (k(1)
0,1

)∣∣∣2 ∣∣∣ψ̂ε0 (k(1)
0,2

)∣∣∣2
∫
R2|N|d

∏
(j,n,r)∈I(N,N)

(
dθ(j)

n,r

) ∏
A∈S

δ
 ∑

(j,n,r)∈A
θ(j)
n,r


∫
R4m

dα(1)
1 ...dα(2m)

1 dα(1)
2 ...dα(2m)

2∏
(j,n,r)∈I0(N,N)

∣∣∣∣∣ 1
α

(j)
r − 2πσ(j)

n,rτ
(j)
r |k(j)

n,r|+ iγ

∣∣∣∣∣
∏

(j,n,r)∈I(N,N)

(〈
θ(j)
n,r

〉−d 〈
k(j)
n,r

〉−1
)

〈
k

(j1)
n1,1

〉−1 〈
k

(̃1)
ñ1,1

〉−1 〈
k

(j2)
n2,1

〉−1
,

(5.34)

which we estimate as follows. Adopting the Definition 5.2 of dependent and free indices
(j, n, r) ∈ I(N,N) from the proof of Lemma 5.2, one can take the L∞ estimates of
all resolvents belonging to k(j)

n,r, (j, n, r) dependent, with the exception of the resolvent
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5. Vanishing variance

belonging to k(j2)
n2,1, which we keep for now. The α(j)

2 and free θ(j)
n,2 variables on the second

one-particle line are integrated out as in the previous proof. For the first one-particle
line, we are then exactly in the setting of Lemma 4.11, and obtain the same improvement
factor Cγ| log γ| (if d ≥ 3) or C√γ (if d = 2) over the basic estimate.

Lemma 5.4. (Bound for amplitude V of pairings with crossing transfer pairs.) For
ξ of class (d + 3, 0), S ∈ π∗conn (I(N,N)) a pairing with crossing transfer pairs, and
γ ∈ (0, 1/2], there is a C only depending on dimension d ≥ 2 such that∣∣∣V (ψε0, ε, a, p, L(0), t, N, S

)∣∣∣
≤ C |N |+2m

(
〈L(0)〉+mN

)4|N |+3
e4γ|t| ‖g2‖|N |d+3 ‖ψ

ε
0‖

4
H

2m−1∏
j=1
‖aj‖2C0

× ε|N |γ−|N |+1| log γ|2|N |+4m+1,

(5.35)

for d ≥ 3, and∣∣∣V (ψε0, ε, a, p, L(0), t, N, S
)∣∣∣

≤ C |N |+2m
(
〈L(0)〉+mN

)4|N |+3
e4γ|t| ‖g2‖|N |d+3 ‖ψ

ε
0‖

4
H

2m−1∏
j=1
‖aj‖2C0

× ε|N |γ−|N |+1/2| log γ|2|N |+4m,

(5.36)

for d = 2.

ψ̂εψ̂ε

ψ̂εψ̂ε

Figure 5.3.: A pairing S ∈ π∗conn (I(N,N)) with crossing transfer pairs. Rotating the
lower one-particle line by 180◦ will dissolve the present crossings, but create
new ones.

Proof. To make full use of the resolvent expansion, we only present the proof for the
case that all N (j) ≥ 1. Again, we differentiate between the four different summands from
the last line in (5.21), and first choose

∣∣∣ψ̂ε0 (k(1)
0,1

)∣∣∣2 ∣∣∣ψ̂ε0 (k(1)
0,2

)∣∣∣2. As the transfer pairs of
S are not parallel, there exist two transfer pairs

{(j1, n1, 1), (j2, n2, 2)}, {(̃1, ñ1, 1), (̃2, ñ2, 2)} ∈ S (5.37)
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5.3. Improved bounds

such that (j1, n1) ≺ (̃1, ñ1) and (j2, n2) � (̃2, ñ2). As in the beginning of the proof of
Lemma 4.11, in case there are several such structures, we have to make a convenient
choice. A way to do so is laid out in Lemma 8 of [7] — select the smallest possible
index (̃2, ñ2) with respect to ≺, which also determines (̃1, ñ1). Then, of all admissible
(j1, n1) ≺ (̃1, ñ1), choose the ≺-largest one. For this choice of indices, proceed as in the

∣∣∣ψ̂ε∣∣∣2

∣∣∣ψ̂ε∣∣∣2

Figure 5.4.: The pairing S from Figure 5.3. The wave-functions are in “cis” constella-
tion, and the two pairs {(j1, n1, 1), (j2, n2, 2)} and {(̃1, ñ1, 1), (̃2, ñ2, 2)} are
shown in bold.

proof of Lemma 5.3 to find an improvement of (5.22),

C |N |
(
〈L(0)〉+mN

)4|N |+3
‖g2‖|N |d+3∫

Rd
dk(1)

0,1

∫
Rd

dk(1)
0,2

∣∣∣ψ̂ε0 (k(1)
0,1

)∣∣∣2 ∣∣∣ψ̂ε0 (k(1)
0,2

)∣∣∣2
∫
R2|N|d

∏
(j,n,r)∈I(N,N)

(
dθ(j)

n,r

) ∏
A∈S

δ
 ∑

(j,n,r)∈A
θ(j)
n,r


∫
R4m

dα(1)
1 ...dα(2m)

1 dα(1)
2 ...dα(2m)

2∏
(j,n,r)∈I0(N,N)

∣∣∣∣∣ 1
α

(j)
r − 2πσ(j)

n,rτ
(j)
r |k(j)

n,r|+ iγ

∣∣∣∣∣
∏

(j,n,r)∈I(N,N)

(〈
θ(j)
n,r

〉−d 〈
k(j)
n,r

〉−1
)

〈
k

(j1)
n1,1

〉−1 〈
k

(̃1)
ñ1,1

〉−1 〈
k

(̃2)
ñ2,1

〉−1
.

(5.38)

One can now argue as in case i) of the proof in Lemma 4.11; case ii) and case iii),
which accounted for the possiblity of an observable within the crossing interval, have
no equivalent here. We classify the indices of I(N,N) into dependent and free ones as
in Definition 5.2, and take the L∞ estimates of all k(j)

n,r resolvents, (j, n, r) dependent,
except that we keep the one belonging to (̃2, ñ2, 2). The following, modified program
will then integrate out the θ(j)

n,r variables associated with free indices (j, n, r) and the α(j)
r .
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5. Vanishing variance

Instead of integrating out the full second one-particle line at once, we now only integrate
over all θ(j)

n,2 with (j, n) � (̃2, ñ2) and (j, n, 2) free, and the α(j)
2 with j > ̃2 according

to the Iteration 5.1. The ≺-largest remaining k momentum on the second one-particle
line is thus k(̃2)

ñ2,2, so the leftover k momenta on the second one-particle line can by (5.27)
and choice of (̃2, ñ2) merely depend on θ(j)

n,1 with (j, n) � (̃1, ñ1). Therefore, switching
to r = 1, the Iteration 5.1 can already be used to integrate out all θ(j)

n,1 as long (j, n, 1)
is free and (j, n) � (̃1, ñ1) and all α(j)

1 with j > ̃1. After reaching this point of the
integration procedure, θ(̃1)

ñ1,1 only enters the definition of k(̃1)
ñ1,1 and k(̃2)

ñ2,2 by

k
(̃1)
ñ1,1 = θ

(̃1)
ñ1,1 + k

(j1)
n1,1 + f(p),

k
(̃2)
ñ2,2 = θ

(̃1)
ñ1,1 + k

(̃2)
ñ2−1,2,

(5.39)

with f(p) only a function of the p variables.Our choice of (j1, n1, 1) was used in the first
line. The integration over θ(̃1)

ñ1,1 therefore produces a factor

∫
Rd

dθ(̃1)
ñ1,1

1∣∣∣α(̃1)
1 − 2πσ(̃1)

ñ1,1τ
(̃1)
1

∣∣∣θ(̃1)
ñ1,1 + k

(j1)
n1,1 + f(p)

∣∣∣+ iγ
∣∣∣

× 1∣∣∣α(̃2)
2 − 2πσ(̃2)

ñ2,2τ
(̃2)
2

∣∣∣θ(̃1)
ñ1,1 + k

(̃2)
ñ2−1,2

∣∣∣+ iγ
∣∣∣

×
〈
θ

(̃1)
ñ1,1 + k

(j1)
n1,1 + f(p)

〉−2 〈
θ

(̃1)
ñ1,1 + k

(̃2)
ñ2−1,2

〉−2 〈
θ

(̃1)
ñ1,1

〉−d

≤



Cd| log γ|2∣∣∣k(j1)
n1,1

+f(p)−k(̃2)
ñ2−1,2

∣∣∣√〈α(̃1)
1

〉〈
α

(̃2)
2

〉 for d ≥ 3

C2| log γ|√
γ

∣∣∣k(j1)
n1,1

+f(p)−k(̃2)
ñ2−1,2

∣∣∣√〈α(̃1)
1

〉〈
α

(̃2)
2

〉 for d = 2

(5.40)

by Lemma B.1. One can now continue Iteration 5.1 on the first one-particle line, for
free θ(j)

n,1 with (j1, n1) ≺ (j, n) ≺ (̃1, ñ1) and for all α(j)
1 with j1 < j ≤ ̃1. By choice of

(̃2, ñ2, 2) and (j1, n1, 1), the expression

∣∣∣k(j1)
n1,1 + f(p)− k(̃2)

ñ2−1,2

∣∣∣ (5.41)

on the right side of (5.40) does not depend on any of the integration variables on this
section of the iteration, and is just carried along as a constant. The θ(j1)

n1,1 integral can
finally be estimated by switching the integration variable to k(j1)

n1,1 = θ
(j1)
n1,1 + q, q some
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5.3. Improved bounds

linear combination of all momenta not integrated over yet, and applying Lemma B.2,

sup
q
Cd| log γ|2

∫
Rd

dk(j1)
n1,1

1∣∣∣k(j1)
n1,1 + f(p)− k(̃2)

ñ2−1,2

∣∣∣ ∣∣∣α(j1)
1 − 2πσ(j1)

n1,1τ
(j1)
1

∣∣∣k(j1)
n1,1

∣∣∣+ iγ
∣∣∣

×
〈
k

(j1)
n1,1

〉−2 〈
k

(j1)
n1,1 − q

〉−d
≤ C̃d| log γ|3√〈

α
(j1)
1

〉
(5.42)

for d ≥ 3 and

sup
q

C2| log γ|
√
γ

∫
R2

dk(j1)
n1,1

1√∣∣∣k(j1)
n1,1 + f(p)− k(̃2)

ñ2−1,2

∣∣∣ ∣∣∣α(j1)
1 − 2πσ(j1)

n1,1τ
(j1)
1

∣∣∣k(j1)
n1,1

∣∣∣+ iγ
∣∣∣

×
〈
k

(j1)
n1,1

〉−2

≤ C̃d| log γ|2
√
γ

√〈
α

(j1)
1

〉
(5.43)

for d = 2. The remainder of both one-particle lines can then be handled as in the
derivation of the standard bound, Lemma 5.2. Thus, one L∞ and two L1 resolvent
estimates have been replaced by a factor | log γ|3 (for d ≥ 3) or | log γ|2/√γ (for d = 2),
yielding an improvement of γ| log γ| or √γ, respectively.

So far, we have only paid attention to the term including
∣∣∣ψ̂ε0 (k(1)

0,1

)∣∣∣2 ∣∣∣ψ̂ε0 (k(1)
0,2

)∣∣∣2, i.e.
both squared wave-functions sit on the right of the graph. The case of both squared
wave-functions on the left, represented by the term

∣∣∣ψ̂ε0 (k(2m)
N(2m),1

)∣∣∣2 ∣∣∣ψ̂ε0 (k(2m)
N(2m),2

)∣∣∣2 is
entirely analogous after replacing ≺ by � in the definition of freeness, dependence and
integration order. However, the cross-over situation deserves a closer look. Without loss
of generality, consider ∣∣∣ψ̂ε0 (k(1)

0,1

)∣∣∣2 ∣∣∣ψ̂ε0 (k(2m)
N(2m),2

)∣∣∣2 (5.44)

(wave-function on the right of the first, but on the left of the second one-particle line).
As the transfer pairs of S are not anti-parallel, either, there are two transfer pairs

{(j1, n1, 1), (j2, n2, 2)}, {(̃1, ñ1, 1), (̃2, ñ2, 2)} ∈ S (5.45)

such that (j1, n1) ≺ (̃1, ñ1) and (j2, n2) ≺ (̃2, ñ2). Given the choice of several such struc-
tures, select the ≺-largest possible (̃2, ñ2), which also defines (̃1, ñ1); then choose the
≺-largest possible (j1, n1) ≺ (̃1, ñ1). With this choice, the

∣∣∣ψ̂ε0 (k(1)
0,1

)∣∣∣2 ∣∣∣ψ̂ε0 (k(2m)
N(2m),2

)∣∣∣2
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5. Vanishing variance

contribution to the last five lines of (5.21) can be bounded by

C |N |
(
〈L(0)〉+mN

)4|N |+3
‖g2‖|N |d+3∫

Rd
dk(1)

0,1

∫
Rd

dk(2m)
N(2m),2

∣∣∣ψ̂ε0 (k(1)
0,1

)∣∣∣2 ∣∣∣ψ̂ε0 (k(2m)
N(2m),2

)∣∣∣2
∫
R2|N|d

∏
(j,n,r)∈I(N,N)

(
dθ(j)

n,r

) ∏
A∈S

δ
 ∑

(j,n,r)∈A
θ(j)
n,r


∫
R4m

dα(1)
1 ...dα(2m)

1 dα(1)
2 ...dα(2m)

2∏
(j,n,r)∈I0(N,N)

∣∣∣∣∣ 1
α

(j)
r − 2πσ(j)

n,rτ
(j)
r |k(j)

n,r|+ iγ

∣∣∣∣∣
∏

(j,n)∈I(N)

(〈
θ

(j)
n,1

〉−d 〈
k

(j)
n,1

〉−1 〈
θ

(j)
n,2

〉−d 〈
k

(j)
n−1,2

〉−1
)

〈
k

(j1)
n1,1

〉−1 〈
k

(̃1)
ñ1,1

〉−1 〈
k

(̃2)
ñ2−1,1

〉−1
.

(5.46)

Instead of Definition 5.2, we employ

Definition 5.3. (Definition of free and dependent indices, if the first one-particle line
is to be integrated out from left to right, but the second one from right to left.) The index
(j, n, r) ∈ I(N,N) is dependent,

i) if (j, n, r) = (j, n, 1) ∈ A, with A an internal cluster of first one-particle line and
(j, n) = max1A, or

ii) if (j, n, r) = (j, n, 2) ∈ A, with A an internal cluster of second one-particle line and
(j, n) = min1A, or

iii) if (j, n, r) ∈ A, with A a transfer cluster, r = 2, and (j, n) = min2A,
and free otherwise.

∣∣∣ψ̂ε∣∣∣2

∣∣∣ψ̂ε∣∣∣2

Figure 5.5.: The pairing S from Figure 5.3. The wave-functions are in “cross-over”
constellation, the two pairs {(j1, n1, 1), (j2, n2, 2)} and {(̃1, ñ1, 1), (̃2, ñ2, 2)}
as selected in the proof are shown in bold.
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While the k(·)
·,1 are still given by (5.26), the k momenta on the second one-particle line

can be calculated via

k
(j)
n,2 = k

(2m)
N(2m),2 − ε

2m−1∑
̃=j

p(̃) +
∑

A∈S2∪Str
(j,n)�min2A

∑
(̃,ñ,2)∈A

(̃,ñ)�(j,n)

θ
(̃)
ñ,2 −

∑
A∈Str

(j,n)≺min2A

∑
(̃,ñ,1)∈A

θ
(̃)
ñ,1. (5.47)

The L∞ estimate (4.62) is taken for the resolvent belonging to k(j)
n−1,2 for all dependent

(j, n, 2) ∈ I(N,N), except for (̃2, ñ2, 2), and for all resolvents belonging to k(j)
n,1, (j, n, 1) ∈

I(N,N) dependent. One can then integrate out all free θ(j)
n,2 as long as (j, n) ≺ (̃2, ñ2)

and all α(j)
2 , j < ̃2 by plugging r = 2 into the following algorithm

Iteration 5.2. (Integrating out the r-th one-particle line, from right to left, i.e. increas-
ing in ≺.)

• Of all remaining free (j, n, r) ∈ I(N,N), and all remaining (j,N (j) + 1, r), j ∈
{1, ...2m}, pick the one with the smallest (j, n) with respect to ≺.

• If n < N (j) + 1, and thus (j, n, r) ∈ I(N,N), one can check in (5.47) that k(j)
n−1,r is

the only remaining k variable depending on θ(j)
n,r. Integrating over θ(j)

n,r produces a
factor∫

Rd
dθ(j)

n,r

1∣∣∣α(j)
r − 2πσ(j)

n−1,rτ
(j)
r |k(j)

n−1,r|+ iγ
∣∣∣ 〈k(j)

n−1,r

〉〈
θ

(j)
n,r

〉d ≤ C| log γ|〈
α

(j)
r

〉 , (5.48)

with a constant C <∞ depending only on d.

• In case (j, n, r) = (j,N (j) + 1, r), we have made sure by previous steps of our
integration that the only resolvent depending on α

(j)
r is the one belonging to

k
(j)
N(j),r

, while there is a decay
〈
α

(j)
r

〉−N(j)

, N (j) ≥ 1 stemming from the (4.62) and
(5.48) bounds, and we obtain a factor∫

R
dα(j)

r

1∣∣∣α(j)
r − 2πσ(j)

N(j),r
τ

(j)
r |k(j)

N(j),r
|+ iγ

∣∣∣ 〈α(j)
r

〉 ≤ C| log γ| (5.49)

from the α(j)
r integral, C only depending on d.

The ≺-smallest remaining k momentum on the second one-particle line is thus the
momentum k

(̃2)
ñ2−1,2, so the leftover k momenta on the second one-particle line can by

(5.47) and choice of (̃2, ñ2) merely depend on θ
(j)
n,1 with (j, n) � (̃1, ñ1). Therefore,

switching to r = 1, the Iteration 5.1 can already be used to integrate out all θ(j)
n,1 as long

(j, n, 1) is free and (j, n) � (̃1, ñ1) and all α(j)
1 with j > ̃1. Now, integrating out θ(̃1)

ñ1,1
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5. Vanishing variance

involves only the resolvents belonging to k(̃1)
ñ1,1 and k(̃2)

ñ2−1,2, producing an estimate like
(5.40), namely

Cd| log γ|2∣∣∣k(j1)
n1,1 + f(p) + k

(̃2)
ñ2,2

∣∣∣√〈α(̃1)
1

〉〈
α

(̃2)
2

〉 for d ≥ 3

C2| log γ|√
γ
∣∣∣k(j1)
n1,1 + f(p) + k

(̃2)
ñ2,2

∣∣∣√〈α(̃1)
1

〉〈
α

(̃2)
2

〉 for d = 2
(5.50)

which does not interfere with ours integrating out the θ(j)
n,1, (j1, n1) ≺ (j, n) ≺ (̃1, ñ1),

and α(j)
1 , j1 < j ≤ ̃1, variables by Iteration 5.1. The θ(j1)

n1,1 integral then yields the same
bound as (5.42-5.43) did. After all leftover θ(·)

·,2 and α(·)
2 variables have been taken care

of by completing Iteration 5.2, an application of Iteration 5.1 to the rest of the first
one-particle line finishes the proof for the cross-over case, with the same improvement
over the basic Lemma 5.2.

5.3.2. (Anti-)parallel transfer pairs

In the last proof, the improvement in comparison to the standard estimate originated
from two different structures: For the “cis” constellation of wave functions (both

∣∣∣ψ̂ε0∣∣∣2 on
the left of the graph, or both of the right), we utilized the existence of two intersecting
transfer pairs, Figure 5.4, while in the “cross-over case”, (one

∣∣∣ψ̂ε0∣∣∣2 on the left, one on the
right) two non-intersecting transfer pairs, as highlighted in Figure 5.5 were central to the
argument. The equivalence of those two cases is obvious when the “cross-over” graph is
brought into “cis” form by rotating the second one-particle line by 180◦ — the previously
non-intersecting pairs then cross each other. At least one of those two arguments fails
when dealing with (anti-)parallel transfer pairs; there is always at least one rotation of
the second one-particle line that makes all intersections vanish, and a different approach
is needed for the proof of the following Lemma.
Lemma 5.5. (Bound for amplitude V for pairings with (anti-)parallel transfer pairs.)
Let ξ be of class (d+ 3, 0), γ ∈ (0, 1/2] and S ∈ π∗conn (I(N,N)) be a pairing with parallel
or anti-parallel transfer pairs. There is a C depending only on dimension d ≥ 2 such
that ∣∣∣V (ψε0, ε, a, p, L(0), t, N, S

)∣∣∣
≤ C |N |+2m

(
〈L(0)〉+mN

)4|N |+2
e4γ|t| ‖g2‖|N |d+3 ‖ψ

ε
0‖

4
H

2m−1∏
j=1
‖aj‖2C0

× ε|N |γ−|N || log γ|2|N |+4m+1

×

γ
d−1
d+1 (d ≥ 3),

γ1/5 (d = 2).

(5.51)
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ψ̂εψ̂ε

ψ̂εψ̂ε

Figure 5.6.: A pairing with two parallel transfer pairs.

ψ̂εψ̂ε

ψ̂εψ̂ε

Figure 5.7.: A pairing with two anti-parallel transfer pairs. Rotating the lower one-
particle by 180◦ makes all intersections disappear.

Proof. For the whole proof, assume for simplicity that all N (j) ≥ 1, j ∈ {1, ..., 2m}, so
that the resolvent representation is fully applicable. First, let S ∈ π∗conn (I(N,N)) be
a pairing with parallel transfer pairs, and choose {(j1, n1, 1), (j2, n2, 2)} ∈ S to be the
transfer pair with (j1, n1) (and thus (j2, n2)) ≺-maximal. For η > 0 to be optimized
later, define

B =
{
k ∈ R(2|N |+4m)d :

∣∣∣k(j1)
n1,1 − k

(j2)
n2,2

∣∣∣ < η
}

(5.52)

to split up V into

∣∣∣V (ψε0, ε, a, p, L(0), t, N, S
)∣∣∣ ≤ ∣∣∣V (ψε0, ε, a, p, L(0), t, N, S,B

)∣∣∣
+
∣∣∣V (ψε0, ε, a, p, L(0), t, N, S,Bc

)∣∣∣ , (5.53)

with V(...,B) and V(...,Bc) defined by the right side of (5.11), but with the k integration
domain R(2|N |+4m)d replaced by B or Bc, respectively. To understand the contribution
of V(...,B), first note that, as S has parallel transfer pairs, the arguments of the two
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wave-functions on the left of the graph in Figure 5.6 are equal to

k
(2m)
N(2m),1 = k

(j1)
n1−1,1 + θ

(j1)
n1,1 + ε

2m−1∑
j=j1

p(j),

k
(2m)
N(2m),2 = k

(j2)
n2−1,1 + θ

(j1)
n1,1 + ε

2m−1∑
j=j2

p(j).

(5.54)

On the other hand, on the set B, as a consequence of the delta functions induced by S,
the arguments of the wave-functions on the right obey∣∣∣k(1)

0,1 − k
(1)
0,2 + p∗

∣∣∣ < η, (5.55)

with p∗ = ε
∑j1−1
j=1 p(j) − ε

∑j2−1
j=1 p(j). This time, an estimate of a product of wave

functions as a sum of squares is too coarse, and we rather write∣∣∣V (ψε0, ε, a, p, L(0), t, N, S,B
)∣∣∣

≤ (Cε)|N |
(
〈L(0)〉+mN

)4|N |
e4γ|t|

2m−1∏
j=1
‖aj‖2C0

∏
A∈S

∥∥∥g|A|∥∥∥
d+2

∑
σ

(j)
n,r∈{±}

∀(j,n,r)∈I0(N,N)∫∣∣∣k(1)
0,1−k

(1)
0,2+p∗

∣∣∣<η dk(1)
0,1dk(1)

0,2

∣∣∣ψ̂ε0 (k(1)
0,1

)∣∣∣ ∣∣∣ψ̂ε0 (k(1)
0,2

)∣∣∣
∫
R2|N|d

∏
(j,n,r)∈I(N,N)

(
dθ(j)

n,r

) ∏
A∈S

δ
 ∑

(j,n,r)∈A
θ(j)
n,r


∫
R4m

dα(1)
1 ...dα(2m)

1 dα(1)
2 ...dα(2m)

2∏
(j,n,r)∈I0(N,N)

∣∣∣∣∣ 1
α

(j)
r − 2πσ(j)

n,rτ
(j)
r |k(j)

n,r|+ iγ

∣∣∣∣∣
(〈
θ(j)
n,r

〉−d 〈
k(j)
n,r

〉−1
)(n6=0)

∣∣∣∣∣∣ψ̂ε0
k(j1)

n1−1,1 + θ
(j1)
n1,1 + ε

2m−1∑
j=j1

p(j)

∣∣∣∣∣∣
∣∣∣∣∣∣ψ̂ε0

k(j2)
n2−1,1 + θ

(j1)
n1,1 + ε

2m−1∑
j=j2

p(j)

∣∣∣∣∣∣
(5.56)

with a constant C depending only on dimension d. To estimate the last four lines
of (5.56), we modify Definition 5.2 in such a manner that also (j1, n1, 1) is dependent
instead of free, and take the usual L∞ bounds (4.62) of all resolvents belonging to k(j)

n,r,
(j, n, r) ∈ I(N,N) dependent, which now yields one more factor γ−1 than usual. Iteration
5.1 can then be applied to all θ(j)

n,1, (j, n, 1) ∈ I(N,N) free with (j, n) � (j1, n1) and
all α(j)

1 , j > j1, and likewise to all θ(j)
n,2, (j, n, 2) ∈ I(N,N) free with (j, n) � (j2, n2)

and all α(j)
2 , j > j2. Next, the integral over θ(j1)

n1,1 will simply integrate out the last
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line of (5.56), for a factor of at most ‖ψε0‖
2
H. We then follow the proof of the standard

estimate, integrating out the remaining α and free θ variables, on the second and then
on the first one-particle line, with Iteration 5.1. The last four lines of (5.56) have been
completely taken care of, and by Cauchy-Schwarz, the k(1)

0,1, k
(1)
0,2 integral is smaller or

equal to ηd ‖ψε0‖
2
H. We therefore have gained an additional factor ηdγ−1 compared to

the standard estimate, and there is an only d-dependent constant C <∞ such that∣∣∣V (ψε0, ε, a, p, L(0), t, N, S,B
)∣∣∣

≤ C |N |+2m
(
〈L(0)〉+mN

)4|N |
e4γ|t| ‖g2‖|N |d+2 ‖ψ

ε
0‖

4
H

2m−1∏
j=1
‖aj‖2C0

× ε|N |γ−|N |−1| log γ|2|N |+4mηd.

(5.57)

The contribution of V(...,Bc) can be controlled by the analogue of (5.21), only with the
k integral running only over Bc instead of R(2|N |+4m)d. Again, we have to distinguish the
four different summands arising from the last line of (5.21). First, consider the “cis” case,
with both wave functions on the left or both on the right. Without loss of generality, we
only treat the summand containing

∣∣∣ψ̂ε0 (k(1)
0,1

)∣∣∣2 ∣∣∣ψ̂ε0 (k(1)
0,2

)∣∣∣2 , (5.58)

and thus have to find a bound for

C |N |
(
〈L(0)〉+mN

)4|N |+2
‖g2‖|N |d+3∫

Rd
dk(1)

0,1

∫
Rd

dk(1)
0,2

∣∣∣ψ̂ε0 (k(1)
0,1

)∣∣∣2 ∣∣∣ψ̂ε0 (k(1)
0,2

)∣∣∣2
∫
R2|N|d

∏
(j,n,r)∈I(N,N)

(
dθ(j)

n,r

) ∏
A∈S

δ
 ∑

(j,n,r)∈A
θ(j)
n,r


∫
R4m

dα(1)
1 ...dα(2m)

1 dα(1)
2 ...dα(2m)

2∏
(j,n,r)∈I0(N,N)

∣∣∣∣∣ 1
α

(j)
r − 2πσ(j)

n,rτ
(j)
r |k(j)

n,r|+ iγ

∣∣∣∣∣
(〈
θ(j)
n,r

〉−d 〈
k(j)
n,r

〉−1
)n 6=0

〈
k

(j1)
n1,1

〉−1 〈
k

(j2)
n2,2

〉−1
1

(∣∣∣k(j1)
n1,1 − k

(j2)
n2,2

∣∣∣ ≥ η) .

(5.59)

Now we define dependent and free indices (j, n, r) as in Definition 5.2 and take L∞

estimates of all resolvents belonging to k(j)
n,r, (j, n, r) ∈ I(N,N) dependent except that we

keep the k(j2)
n2,2 resolvent for now. By Iteration 5.1, all θ(j)

n,2 variables with (j, n, 2) ∈ I(N,N)
free and (j, n) � (j2, n2) and all α(j)

2 , j > j2 are integrated out, the same procedure is
applied to the θ(j)

n,1 with (j, n, 1) ∈ I(N,N) free and (j, n) � (j1, n1) and all α(j)
1 , j > j1.
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5. Vanishing variance

By (5.26-5.27), the only remaining k variables that still depend on θ(j1)
n1,1 are

k
(j1)
n1,1 = θ

(j1)
n1,1 + k

(j1)
n1−1,1,

k
(j2)
n2,2 = θ

(j1)
n1,1 + k

(j2)
n2−1,2.

(5.60)

On Bc, one also has
∣∣∣k(j1)
n1−1,1 − k

(j2)
n2−1,2

∣∣∣ ≥ η, and Lemma B.1 lets us bound the θ(j1)
n1,1

integral by ∫
Rd

dθ(j1)
n1,1

1∣∣∣α(j1)
1 − 2πσ(j1)

n1,1τ
(j1)
1

∣∣∣θ(j1)
n1,1 + k

(j1)
n1−1,1

∣∣∣+ iγ
∣∣∣

× 1∣∣∣α(j2)
2 − 2πσ(j2)

n2,2τ
(j2)
2

∣∣∣θ(j1)
n1,1 + k

(j2)
n2−1,2

∣∣∣+ iγ
∣∣∣

×
〈
θ

(j1)
n1,1 + k

(j1)
n1−1,1

〉−2 〈
θ

(j1)
n1,1 + k

(j2)
n2−1,2

〉−2 〈
θ

(j1)
n1,1

〉−d
≤


Cd| log γ|2

η

〈
α

(j1)
1

〉−1/2 〈
α

(j2)
2

〉−1/2
for d ≥ 3,

C2| log γ|√
γη

〈
α

(j1)
1

〉−1/2 〈
α

(j2)
2

〉−1/2
for d = 2.

(5.61)

One can then integrate out the remainder of the second and then the first one-particle lines
by Iteration 5.1, just as in the proof of the basic estimate, which has thus been improved
by a factor γ| log γ|/η (d ≥ 3), or

√
γ/η (d = 2). The last remaining contribution

to V(...,Bc) stems from the wave-functions in “cross-over” position. In case that the
partition S in consideration contains more than one transfer pair, it is straightforward
to just bound 1(Bc) ≤ 1 and apply the “cross-over” portion of the proof of Lemma 5.4
to obtain and improvement factor γ| log γ| (for d ≥ 3) or √γ (for d = 2). Therefore, for
S with parallel transfer pairings and |Str| > 1, the basic estimate Lemma 5.2 still holds
if multiplied by a factor

C
(
ηdγ−1 + γ| log γ|η−1 + γ| log γ|

)
(d ≥ 3), (5.62)

C

(
η2γ−1 +

√
γ

η
+√γ

)
(d = 2), (5.63)

C only depending on dimension d. Optimizing η as a function of γ proves the result in
this case.
For S ∈ π∗conn (I(N,N)) with several transfer pairs, which are anti-parallel, choose a
transfer pair {(j1, n1, 1), (j2, n2, 2)} and define the set

C =
{
k ∈ R(2|N |+4m)d :

∣∣∣k(j1)
n1,1 + k

(j2)
n2−1,2

∣∣∣ < η
}
. (5.64)

Then with analogous definitions to the previous case, one has∣∣∣V (ψε0, ε, a, p, L(0), t, N, S, C
)∣∣∣

≤ C |N |+2m
(
〈L(0)〉+mN

)4|N |
e4γ|t| ‖g2‖|N |d+2 ‖ψ

ε
0‖

4
H

2m−1∏
j=1
‖aj‖2C0

× ε|N |γ−|N |−1| log γ|2|N |+4mηd.

(5.65)
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The amplitude stemming from the complement Cc, on the other hand, is
∣∣∣V (ψε0, ε, a, p, L(0), t, N, S, Cc

)∣∣∣
≤ C |N |+2m

(
〈L(0)〉+mN

)4|N |+2
e4γ|t| ‖g2‖|N |d+3 ‖ψ

ε
0‖

4
H

2m−1∏
j=1
‖aj‖2C0

× ε|N |γ−|N || log γ|2|N |+4m

×
{
γ| log γ|(1 + 1/η) (d ≥ 3),
√
γ(1 + 1/√η) (d = 2),

(5.66)

where we used Lemma B.1 for the contribution of “cross-over” wave-functions, and argued
as in the proof of Lemma 5.4 for the “cis” wave functions. Optimization of η yields the
same results as before.

Finally, for the last case |Str| = 1, which is classified as both parallel and anti-parallel,
the Lemma follows by splitting V into

∣∣∣V (ψε0, ε, a, p, L(0), t, N, S,
)∣∣∣

≤
∣∣∣V (ψε0, ε, a, p, L(0), t, N, S,B

)∣∣∣+ ∣∣∣V (ψε0, ε, a, p, L(0), t, N, S, C
)∣∣∣

+
∣∣∣V (ψε0, ε, a, p, L(0), t, N, S,Bc ∩ Cc

)∣∣∣ ,
(5.67)

and applying (5.57) and (5.65) to the first two summands, while controlling both the
“cis” and “cross-over” contributions to the third summand by Lemma B.1.

5.4. Proof of Theorem 3.2

5.4.1. Collecting the bounds

First, suppose that (ψε0)ε>0 is still a sequence of initial states obeying (2.160), such that
the Fourier transform ψ̂ε0,σ(k), σ ∈ {±}, vanishes for all k ∈ Rd with |k| > L(0) for some
L(0) <∞, uniformly in ε > 0. Thanks to (4.7) and (4.13),

E [|J ε (Hε, ψε, T, a, p)− EJ ε (Hε, ψε, T, a, p)|]

= lim
R→∞

E
[∣∣∣J ε (Hε,R, ψε, T, a, p

)
− EJ ε

(
Hε,R, ψε, T, a, p

)∣∣∣]
≤ lim
R→∞

(
Var

(〈
Ψ ′
ε
1, A

ε
mΨ

ε
1
〉))1/2

+ lim
R→∞

2 ‖am‖C0 E
[
‖Ψ ′ε1‖H‖Ψ ε2‖H + ‖Ψ ′ε2‖H‖Ψ ε1‖H + ‖Ψ ′ε2‖H‖Ψ ε2‖H

]
.

(5.68)
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5. Vanishing variance

For the object in the second last line of (5.68), by the Cauchy-Schwarz inequality and
Lemma 5.1

lim
R→∞

Var
(〈
Ψ ′
ε
1, A

ε
mΨ

ε
1
〉)

≤ lim
R→∞

(
N(ε)− 1 +m

m

)2 ∑
N∈N2m

0
N(1)+...+N(m)<N(ε)

N(m+1)+...+N(2m)<N(ε)

Var
〈
ψε0, FN(2m)

(
T (2m)/ε;R,L(2m), ε

)∗2m−1∏
j=1

AεjFN(j)

(
T (j)/ε;R,L(j), ε

)∗(j)ψε0
〉
H

=
(
N(ε)− 1 +m

m

)2 ∑
N∈N2m

0
N(1)+...+N(m)<N(ε)

N(m+1)+...+N(2m)<N(ε)

∑
S∈π∗conn(I(N,N))

V
(
ψε0, ε, a, p, L

(0), T/ε,N, S
)
.

(5.69)

Whenever ξ is of class (d + 3, 0), by Lemmas 5.2-5.5 and because |π∗(I(N,N))| ≤
(2|N |)! ≤ (4N)!, there is a C depending only on m, |T |, L(0), Cobs and the statistics of ξ
such that

lim
R→∞

Var
(〈
Ψ ′
ε
1, A

ε
mΨ

ε
1
〉)

≤CN+1N
8N ‖ψε0‖

4
H

2m−1∏
j=1
‖aj‖2C0

|log ε|4(N+m)
(
ε1/5 +N

4N max
D∈{1,...,4N}

εDDCD

) (5.70)

for all ε < 1/(4 〈Cobs〉m). In case ξ is even of class (d + 2M + 7, 4) one can also
use all estimates from Section 4.5.2 for the remainder Ψ ε2 . We have to choose N(ε) =
da| log ε|/ log | log ε|e, as well as κ = ε1−ϑ and M (the latter two only influence the
estimate (4.215) for Ψ ε2 ) such that both (4.215) and (5.70) vanish in the ε→ 0 limit. To
this end, we have to identify a > 0, ϑ ∈ (0, 1) and M ∈ N such that

1
5 − 12a > 0

1
2 − 2(1− ϑ)− 8a > 0

−2 +M(1− ϑ)− 8a > 0
−2(1− ϑ) + a > 0

(5.71)

simultaneously hold. Such a triple (a, ϑ,M) can be found whenever M ≥ 257. If M
can be chosen arbitrarily large, and (1 − ϑ) arbitrarily small, the optimal choice of a,
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a = 1/65 yields a decay rate

Var (J ε (Hε, ψε, T, a, p))

≤2

‖ψε0‖2H 2m−1∏
j=1
‖aj‖C2

E [|J ε (Hε, ψε, T, a, p)− EJ ε (Hε, ψε, T, a, p)|]

≤C

‖ψε0‖4H 2m−1∏
j=1
‖aj‖2C2

 ε1/131,

(5.72)

with a finite constant C that only depends on m, |T |, L(0), Cobs and the statistics of ξ.

5.4.2. Extension to general initial data and test functions

Now that we have established

lim
ε→0

Var (J ε (Hε, ψε, T, a, p)) = 0 (5.73)

for initial states with uniformly compactly supported Fourier transforms, and functions
aj,± : Rd → C with two bounded derivatives, we can first relax the observables to be only
bounded and continuous by invoking (4.256). In this step, however, we lose the explicit
control on the convergence speed, (5.72). Next, the boundedness of the functions aj,±
and the unitarity of the time evolution e−iHεt imply that (5.73) holds for all sequences
of initial states (ψε0)ε>0 in H that fulfill (2.160) and (2.162).
To further generalize this result to observables aj,± ∈ FL1(C0), recall that〈

e−iHεT (m)/ε
m−1∏
j=1

(
Qε(aj)e−iH

εT (j)/ε
)
ψε0,

Qε(am)e−iHεT (m)/ε
m−1∏
j=1

(
Qε(aj)e−iH

εT (j)/ε
)
ψε0

〉
H

=
∫
Rd(2m−1)

dp(1)...dp(2m−1)J ε (Hε, ψε0, T, â(p, ·), p) ,

(5.74)

where (5.73) helps us to control the variance of the integrand on the right side for given
values of p(j). Thus,

Var
〈

e−iHεT (m)/ε
m−1∏
j=1

(
Qε(aj)e−iH

εT (j)/ε
)
ψε0,

Qε(am)e−iHεT (m)/ε
m−1∏
j=1

(
Qε(aj)e−iH

εT (j)/ε
)
ψε0

〉
H

≤
(∫

Rd(2m−1)
dp(1)...dp(2m−1) [Var (J ε (Hε, ψε0, T, â(p, ·), p))]1/2

)2
→ 0

(5.75)
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as ε→ 0 by dominated convergence for the p integral, because

[Var (J ε (Hε, ψε0, T, â(p, ·), p))]1/2 ≤
m∏
j=1

sup
k,σ

∣∣∣âj,σ(p(j), k)
∣∣∣ 2m−1∏
j=m+1

sup
k,σ

∣∣∣â2m−j,σ(p(j), k)
∣∣∣ ,

(5.76)
with the right side ε-independent and integrable in the p variables. The only remaining
task is to replace observables aj,σ ∈ FL1(C0) by general aj,σ ∈ XIR, and Qε by QεIR in
equation (5.75). This is achieved in a fashion very similar to Section 4.8; we introduce a
small cut-off parameter λ > 0 as in (4.266), to obtain

ψ̂ε,λ>,0,σ(k) = (1− ϕ(|k|/λ)) ψ̂ε0,σ(k),

f̂ ε,λ0,σ (k) = ϕ(|k|/λ)ψ̂ε0,σ(k).
(5.77)

The functions
amicro
j,σ,λ (x, k) = amicro

j,σ (x, k) (1− ϕ(4|k|/λ)) (5.78)

are in FL1(C0) for λ > 0, and by a straightforward generalization of (4.271) to multiple
observation times, as well as (5.75), we have for the large wave-numbers that

lim
ε→0

Var

〈e−iHεT (m)/ε
m−1∏
j=1

(
QεIR(aj)e−iH

εT (j)/ε
)
ψε,λ>,0,

QεIR(am)e−iHεT (m)/ε
m−1∏
j=1

(
QεIR(aj)e−iH

εT (j)/ε
)
ψε,λ>,0

〉
H


= lim
ε→0

Var

〈e−iHεT (m)/ε
m−1∏
j=1

(
Qε(amicro

j,λ )e−iHεT (j)/ε
)
ψε,λ>,0,

Qε(amicro
m,λ )e−iHεT (m)/ε

m−1∏
j=1

(
Qε(amicro

j,λ )e−iHεT (j)/ε
)
ψε,λ>,0

〉
H


=0

(5.79)

for any fixed λ > 0. For the small and intermediate (a distinction is not necessary here)
wave-numbers, on the other hand, iteratively applying (4.278) shows that both

lim
λ→0

lim sup
ε→0

Var

〈e−iHεT (m)/ε
m−1∏
j=1

(
QεIR(aj)e−iH

εT (j)/ε
)
f ε,λ0 ,

QεIR(am)e−iHεT (m)/ε
m−1∏
j=1

(
QεIR(aj)e−iH

εT (j)/ε
)
f ε,λ0

〉
H

 = 0

(5.80)
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and cross-terms of the form

lim
λ→0

lim sup
ε→0

Var

〈e−iHεT (m)/ε
m−1∏
j=1

(
QεIR(aj)e−iH

εT (j)/ε
)
ψε,λ>,0,

QεIR(am)e−iHεT (m)/ε
m−1∏
j=1

(
QεIR(aj)e−iH

εT (j)/ε
)
f ε,λ0

〉
H

 = 0

(5.81)

vanish. This proves Theorem 3.2.
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6. Higher moments and almost sure
convergence

6.1. Higher moment estimates

As in the previous chapters, instead of directly considering observables in FL1(C0), we
start out from operators Aεj : H → H, j ∈ {1, ..., 2m − 1} defined by (4.2) from C2

b
functions aj : Rd → C2. Also, we consider initial states (ψε0)ε>0 with bounded H-norm
(2.160) and Fourier transform vanishing outside a ball around the origin of radius L(0).
Instead of the variance

E
[
|J ε − E[J ε]|2

]
(6.1)

of observables J ε as defined in (4.5), we now want to control

E
[
|J ε − E[J ε]|2l

]
(6.2)

for arbitrary large l ∈ N. Such an estimate has already been found for the discrete
random Schrödinger equation in Theorem 2.2 of [8] — essentially, a bound of type
εC was derived for (6.2), with C > 0 independent of l. This, however, is a direct
consequence of the l = 1 variance case together with the boundedness of the observable.
But for reasonably nice random variables J ε, one should actually hope for (6.2) to be of
order εCl; an improvement that will prove crucial for the establishment of almost sure
convergence, Section 6.2. In [7], such a scaling of the higher moments was derived from
the assumption of a Gaussian random potential, which made the terms of the Duhamel
expansion polynomials of Gaussian variables. Then, the hypercontractivity properties
of the normal distribution, [25], provided a control on higher moments (6.2) in terms
of lower moments (6.1). Here, the random fluctuations ξ of the wave speed cannot be
Gaussian, as they have to be bounded from below; even-degree polynomials of a suitable
Gaussian field would be admissible on purely mathematical grounds, but unbounded
and thus physically still hard to justify as a wave speed. If we want to stick with our
quite general choice of ξ, we cannot “a posteriori” upgrade a variance estimate to higher
moment bounds by mere probabilistic methods, but rather have to undertake the full
graph expansion of (6.2). This expansion was already performed in [8], so we can proceed
somewhat similar to define the graphs in the expansion, but will then have to find much
finer estimates of their respective contributions.
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6. Higher moments and almost sure convergence

6.1.1. Amplitudes for the main terms

First, we want to calculate the R→∞ limit of

E

∣∣∣∣∣∣
〈
ψε0, FN(2m)

(
t(2m);R,L(2m), ε

)∗2m−1∏
j=1

AεjFN(j)

(
t(j);R,L(j), ε

)∗(j)ψε0
〉
H

−E
〈
ψε0, FN(2m)

(
t(2m);R,L(2m), ε

)∗2m−1∏
j=1

AεjFN(j)

(
t(j);R,L(j), ε

)∗(j)ψε0
〉
H

∣∣∣∣∣∣
2l

.

(6.3)

Analogous to Section 5.1, the wave now travels in from the left and from the right of
each of the 2l individual one-particle lines, undergoing the same number of scatterings
on each line; therefore, the scattering events can be indexed by the index set I(N ; 2l),
which consists of all (j, n, r) with (j, n) ∈ I(N) and r ∈ {1, ..., 2l}. As in [8], define the
two-connected partitions as the set of all partitions of I(N ; 2l), so that every one-particle
line is connected to at least one other one-particle line (note that this does not coincide
with the standard definition of k-connectedness for graphs, [11]); as always, the star
indicates that we do not consider partitions containing isolated elements

π∗conn(I(N ; 2l)) = {S ∈ π(I(N ; 2l)) :
|A| ≥ 2 ∀A ∈ S,
and ∀r ∈ {1, ..., 2l} ∃r′ 6= r,A ∈ S : Ar 6= ∅ 6= Ar′

} .

Here we have denoted for a subset A ⊂ I(N ; 2l) the restriction of Ar of A to the r-th
one-particle line,

Ar = {(j, n) ∈ I(N) : (j, n, r) ∈ A} . (6.4)

There is a bijection S ↔
(
P, (SB)B∈P

)
that maps S ∈ π∗conn(I(N ; 2l)) to a P ∈

π∗({1, ..., 2l}) (which is a partition of {1, ..., 2l} withouth isolated elements) and a collec-
tion (SB)B∈P , with each SB a partition from π∗full(I(N ;B)). Here

I(N ;B) = {(j, n, r) : (j, n) ∈ I(N), r ∈ B} , (6.5)

and π∗full(I(N ;B)) comprises all partitions of the set I(N ;B) which
• do not contain one-element clusters,
• do not decompose the set of involved one-particle-lines, or equivalentely, the set B,

into several connectivity components.
In analogy to the l = 1 (variance) case, the momentum and sign after the n-th scattering
event in the j-th time interval on the r-th one-particle line are denoted by k(j)

n,r and σ(j)
n,r,

respectively, indexed by

I0(N ; 2l) = {(j, n, r) : (j, n) ∈ I0(N), r ∈ {1, ..., 2l}} , (6.6)
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6.1. Higher moment estimates

and to account for complex conjugation in every second of the 2l factors of (6.3), we
define

τr = −(−1)r (r ∈ {1, ..., 2l})

θ(j)
n,r = τr

(
k(j)
n,r − k

(j)
n−1,r

)
((j, n, r) ∈ I0(N ; 2l))

τ (j)
r = τrτ

(j).

(6.7)

With the usual caveats in case N (j) = 0 for some j, we extend the notation of the
propagator Pr (kr, σr, αr, γ) from (5.9) to all r ∈ {1, ..., 2l}, and denote by Ar (kr, σr, p, ε)
the analogue of (5.7) for r odd, and (5.8) for r even.

Lemma 6.1. Whenever ξ is of class (d+ 1, 0), m > d+ 1, and N ∈ N2m
0 such that (5.1)

holds, one has the representation

lim
R→∞

E

∣∣∣∣∣∣
〈
ψε0, FN(2m)

(
t(2m);R,L(2m), ε

)∗2m−1∏
j=1

AεjFN(j)

(
t(j);R,L(j), ε

)∗(j)ψε0
〉
H

−E
〈
ψε0, FN(2m)

(
t(2m);R,L(2m), ε

)∗2m−1∏
j=1

AεjFN(j)

(
t(j);R,L(j), ε

)∗(j)ψε0
〉
H

∣∣∣∣∣∣
2l

=
∑

S∈π∗conn(I(N ;2l))
V2l

(
ψε0, ε, a, p, L

(0), t, N, S
)

=
∑

P∈π∗({1,...,2l})

∏
B∈P

 ∑
SB∈π∗full(I(N ;B))

VB
(
ψε0, ε, a, p, L

(0), t, N, SB
) ,

(6.8)
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6. Higher moments and almost sure convergence

with the amplitudes VB given by

VB
(
ψε0, ε, a, p, L

(0), t, N, SB
)

= ε|N ||B|/2π|N ||B|
∑

σ
(j)
n,r∈{±}

∀(j,n,r)∈I0(N ;B)

∫
R(|N|+2m)|B|d

∏
(j,n,r)∈I0(N ;B)

dk(j)
n,r

∏
A∈SB

δ
 ∑

(j,n,r)∈A
θ(j)
n,r

 ĝ|A| (θ(j)
n,r : (j, n, r) ∈ A]

)
×
∏
r∈B
Ar (kr, σr, p, ε)

×
∫
R2m|B|

∏
r∈B

2m∏
j=1

(
eγt

(j) dα(j)
r

2π e−iα
(j)
r t(j)

)
∏
r∈B
Pr (kr, σr, αr, γ)

×
∏
r∈B
r odd

ψ̂ε
0,σ(1)

0,r

(
k

(1)
0,r

)
ψ̂ε

0,σ(2m)
N(2m),r

(
k

(2m)
N(2m),r

)

×
∏
r∈B
r even

ψ̂ε
0,σ(1)

0,r

(
k

(1)
0,r

)
ψ̂ε

0,σ(2m)
N(2m),r

(
k

(2m)
N(2m),r

)
.

(6.9)

instead of the special case V from (5.11). If S ∈ π∗conn(I(N ; 2l)) corresponds to P ∈
π∗ ({1, ..., 2m}) and partitions SB ∈ π∗full(I(N ;B)), B ∈ P , its amplitude is determined
from the VB by

V2l
(
ψε0, ε, a, p, L

(0), t, N, S
)

=
∏
B∈P
VB

(
ψε0, ε, a, p, L

(0), t, N, SB
)
. (6.10)

This lemma applies to cases with one or several N (j) = 0 in the same sense as Lemma
5.1.

Proof. The idea behind the structure of the individual amplitudes VB is the same as for
Lemma 5.1; however, one has to make sure that the sum of amplitudes is taken over the
correct set π∗conn(I(N ; 2l)) of partitions S. In fact, for the discrete, Gaussian case, it has
already been observed in equation (56) of [8] that the two-connected pairings are the
right choice. For our more general case, introduce random variables X1 = X3 = ...X2l−1
and X2 = X4 = ... = X2l with

X1 = X2 =
〈
ψε0, FN(2m)

(
t(2m);R,L(2m), ε

)∗2m−1∏
j=1

AεjFN(j)

(
t(j);R,L(j), ε

)∗(j)ψε0
〉
H

.

(6.11)
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6.1. Higher moment estimates

As the Xr −EXr are centered, the moments-to-cumulants formula, [37], Chapter II, §12,
equation (46), implies

E
[ 2l∏
r=1

(Xr − EXr)
]

=
∑

P∈π∗({1,...,2l})

∏
B∈P

Cum(Xr : r ∈ B), (6.12)

π∗({1, ..., 2l}) being the partitions of {1, ..., 2l} without isolated elements. In particular,
all sets B in (6.12) contain at least two elements, |B| ≥ 2. It follows by an easy induction
argument that

Cum(Xr : r ∈ B) =
∑

SB∈π∗full(I(N);B)
VB

(
ψε0, ε, a, p, L

(0), t, N, SB
)
, (6.13)

with π∗full(I(N);B) defined as above. This proves the lemma.

6.1.2. Star decomposition

As shown in Figure 6.1, from a given partition S ∈ π∗conn(I(N ; 2l)), one can draw a graph
G = G (S) with vertex set {1, ..., 2l} by connecting two vertices r 6= r′ by an edge if
and only if there is an A ∈ S with Ar 6= ∅ 6= Ar′ . The graph G comprises a set P of
different connectivity components B ∈ P ; if we write B = V (B) for the vertex set of B,
these P and B just correspond to the ones from the last line of (6.8)). Each connectivity
component includes at least two vertices, |B| ≥ 2. For a fixed B ∈ P , pick an arbitrary
spanning tree T like in Figure 6.2, let b ∈ B be a leaf of T , and assign to all r ∈ B the
rank

w(r) = dist(r, b), (6.14)

with dist denoting the distance in T . This gives rise to the two disjoint sets of edges in
T ,

Eodd = {xy ∈ E(T ) : 0 < w(x) < w(y), w(x) odd} ,
Eeven = {xy ∈ E(T ) : 0 < w(x) < w(y), w(x) even} .

(6.15)

As b is a leaf, we have |Eodd|+ |Eeven| = |B| − 2; we choose E+ to be the larger of those
two sets, in case of equality, we arbitrarily set E+ = Eeven. We call all edges in E+ as
well as the one edge starting at b strong, all other edges of T are weak. There are then
at least |B|/2 strong edges, and removing the weak edges will reduce T to a collection
of s stars, each consisting of a center vertex cs ∈ B s ∈ {1, ..., s}, which is connected (by
strong edges) to es ∈ N0 periphery vertices, which do not have (strong) edges among
each other. Each periphery vertex uniquely corresponds to a strong edge, so

s∑
s=1

es ≥ |B|/2. (6.16)
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ψ̂ε ψ̂ε

ψ̂εψ̂ε

ψ̂ε ψ̂ε

ψ̂εψ̂ε

ψ̂ε ψ̂ε

ψ̂εψ̂ε 6

5

4

3

2

1

1 2

3 4

G (S)

5

6

r

Figure 6.1.: Top: For m = 1 and N = (1, 2) and l = 3, this is a graph resulting from
a partition S ∈ π∗conn(I(N ; 2l)) which consists of pairs and triplets. As in
previous figures, the observable is indicated by an empty square, the black
diamonds are scattering events with cut-off functions present. All scattering
events in the same cluster of S are connected by dotted lines. The partition
of {1, ..., 6} assigned to S is P = {{1, 2, 3, 4}, {5, 6}}. Below, the graph G (S)
is obtained by shrinking each one-particle line into a vertex (dark bullets) and
connecting vertices whenever a cluster from S connects the corresponding
one-particle lines.

The definition of center and periphery is unique whenever es ≥ 2, for es = 1 (when the
star is actually just a pair), one can arbitrarily pick one vertex as the “center”. There
may also be isolated centers without a periphery, es = 0. We then have a decomposition
of B into

B =
s⋃
s=1

Ks, (6.17)

each Ks containing all vertices of a star.

We factorize the right hand side of∣∣∣VB (ψε0, ε, a, p, L(0), t, N, SB
)∣∣∣
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6.1. Higher moment estimates

b

0 1 2 3 4 5 w

B T

Figure 6.2.: Top left: A connectivity component B with |B| = 15 vertices. Every dark
bullet symbolizes a one-particle-line. Top right: A spanning tree T has been
extracted, we have chosen a leaf b and assigned a rank w to each vertex. In
this case, |Eodd| = 6, |Eeven| = 7, so E+ = Eeven. Bottom: We have removed
all but the strong edges and thus isolated s = 7 stars, with the center vertices
indicated by circles. Note that two of the stars consist only of their respective
center. The overall number of periphery vertices is ∑s

s=1 es = 8 ≥ |B|/2.
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6. Higher moments and almost sure convergence

≤ ε|N ||B|/2π|B||N |e2|B|γ|t|
2m−1∏
j=1
‖aj‖|B|C0

∑
σ

(j)
n,r∈{±}

∀(j,n)∈I0(N),r∈B∫
R|B|(|N|+2m)d

∏
(j,n)∈I0(N),r∈B

dk(j)
n,r

∏
A∈SB

δ
 ∑

(j,n,r)∈A
θ(j)
n,r

 ∣∣∣ĝ|A| (θ(j)
n,r : (j, n, r) ∈ A]

)∣∣∣
 (6.18)

×
2m−1∏
j=1

∏
r∈B

(
δ
(
k

(j+1)
0,r − k(j)

N(j),r
− εp(j)

))

×
∫
R2|B|m

∏
r∈B

2m∏
j=1

(
dα(j)

r

2π

)
∏
r∈B
|Pr (kr, σr, αr, γ)|

×
∏
r∈B

(∣∣∣ψ̂ε0 (k(1)
0,r

)∣∣∣ ∣∣∣ψ̂ε0 (k(2m)
N(2m),r

)∣∣∣)

into the contributions of the individual stars by defining

Definition 6.1. For a given B, and s ∈ {1, ..., s}, define the set of clusters in SB that
“reach up to but no further” than the star Ks

SB(s) =
{
A ∈ SB : ∃r ∈ Ks : Ar 6= ∅ ∧Ar′ = ∅∀r′ ∈ Ks′ , ∀s′ > s

}
, (6.19)

and assign to Ks the two values

ds = ]SB(s),
fs = |N |(es + 1)− ds.

(6.20)

For a cluster A ∈ SB, set the sub-cluster

A(s) = {(j, n, r) ∈ A : r ∈ Ks} . (6.21)

In case A ∈ SB(s), it has the transfer momentum

uA =
∑

(j,n,r)∈A
r∈Ks′ ,s

′<s

θ(j)
n,r (6.22)

associated to it. For Ks, there are ds transfer momenta in total, which we collect in

u(s) = (uA : A ∈ SB(s)) ∈ Rd·ds . (6.23)
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6.1. Higher moment estimates

For s ∈ {1, ..., s} and u ∈ Rd·ds , set

VKs
(
ψε0, ε, γ, p, L

(0), t, N, SB, u
)

= sup
σ∈{±}(|N|+2m)(es+1)∫

R(es+1)(|N|+2m)d

∏
(j,n)∈I0(N),r∈Ks

dk(j)
n,r

∏
(j,n)∈I(N)
r∈Ks

〈
θ(j)
n,r

〉−d−3

∏
A∈SB(s)

δ
uA +

∑
(j,n,r)∈A(s)

θ(j)
n,r


×

2m−1∏
j=1

∏
r∈Ks

(
δ
(
k

(j+1)
0,r − k(j)

N(j),r
− εp(j)

))

×
∫
R2(es+1)m

∏
r∈Ks

2m∏
j=1

(
dα(j)

r

2π

)
∏
r∈Ks

|Pr (kr, σr, αr, γ)|

×
∏
r∈Ks

(∣∣∣ψ̂ε0 (k(1)
0,r

)∣∣∣ ∣∣∣ψ̂ε0 (k(2m)
N(2m),r

)∣∣∣)

(6.24)

One can argue similar to equation (107) of [8] to find that there is a constant C < ∞
only depending on dimension d such that∣∣∣VB (ψε0, ε, a, p, L(0), t, N, SB

)∣∣∣
≤ ε|B||N |/2C |B|(|N |+2m)ε2|B|γ|t|

2m−1∏
j=1
‖aj‖|B|C0

∏
A∈SB

∥∥∥g|A|∥∥∥
d+3

×
s∏
s=1

sup
u∈Rd·ds

VKs
(
ψε0, ε, γ, p, L

(0), t, N, SB, u
)
.

(6.25)

This estimate corresponds to integrating out VB, starting from the star Ks down to K1,
bounding the factor contributed by each star Ks by maximizing VKs over all possible
transfer momenta u = u(s) coming in from “lower” stars Ks′ , s′ < s.

6.1.3. Bound for a single star

To refer to the one-particle lines within a star, we will no longer use the index r ∈ Ks ⊂
B ⊂ {1, ..., 2l}, but rather ρ ∈ {0, ..., es}. The index r can then be uniquely recovered
as r = r(ρ, s,B). For every Ks, we utilize the following nomenclature, which is also
illustrated in Figure 6.3:

• ρ = 0 refers to the center of the star.
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6. Higher moments and almost sure convergence

• the largest values of ρ, say ρ ∈ {es + 1, ..., es}, with es ∈ {0, ..., es}, are reserved
for those peripheral one-particle lines which are connected to the center (i.e. 0-th)
one-particle line by at least one cluster of size ≥ 3. This cluster may not be a
subset of Ks, but may have its third (fourth,...) member in a different star!

• the peripheral one-particle lines with ρ ∈ {1, ..., es} are consequently connected to
the center one-particle line only by pairs (but at least one pair, due to the definition
of the star).

In a slight abuse of notation, we simply overload phrases like “the ρ-th one-particle line”,
indices (j, n, ρ), signs τρ, momenta k(j)

n,ρ, etc. to refer to the obvious objects in the context
of Ks.

Lemma 6.2. Let d ≥ 2, γ, ε ∈ (0, 1/2], and Ks be a star with s ∈ {1, ..., s}, and the
parameters es, es, ds and fs defined as above. Its contribution in (6.25) is bounded by

sup
u∈Rd·ds

VKs
(
ψε0, ε, γ, p, L

(0), t, N, SB, u
)

≤ C(|N |+2m)(es+1)
(
〈L(0)〉+m|N |

)3|N |(es+1)
‖ψε0‖

2(es+1)
H

× |log γ|fs+2m(es+1) γ−ds (γ| log γ|)
⌈
es−1

2

⌉ (6.26)

for d ≥ 3, and

sup
u∈Rd·ds

VKs
(
ψε0, ε, γ, p, L

(0), t, N, SB, u
)

≤ C(|N |+2m)(es+1)
(
〈L(0)〉+m|N |

)3|N |(es+1)
‖ψε0‖

2(es+1)
H

× |log γ|fs+2m(es+1) γ−ds (√γ)
⌈
es−1

2

⌉ (6.27)

for d = 2, with a constant C <∞ only depending on d.

Proof. As always, we simplify matters by assuming N (j) ≥ 1 for all j ∈ {1, ..., 2m}. For
each ρ ∈ {0, ..., es}, one can bound

∣∣∣ψ̂ε0 (k(1)
0,ρ

)∣∣∣ ∣∣∣ψ̂ε0 (k(2m)
N(2m),ρ

)∣∣∣ ≤ 1
2

(∣∣∣ψ̂ε0 (k(1)
0,ρ

)∣∣∣2 +
∣∣∣ψ̂ε0 (k(2m)

N(2m),ρ

)∣∣∣2) (6.28)

We shall only consider the contribution of
∣∣∣ψ̂ε0 (k(1)

0,ρ

)∣∣∣2 to the last six lines of (6.24),
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which, for fixed σ and u, and “in ρ notation”, is bounded by

C |N |(es+1)
(
〈L(0)〉+m|N |

)3|N |(es+1)

∫
R(es+1)d

es∏
ρ=0

(
dk(1)

0,ρ

∣∣∣ψ̂ε0 (k(1)
0,ρ

)∣∣∣2)
∫
R(es+1)|N|d

∏
(j,n)∈I(N)

es∏
ρ=0

(
dθ(j)

n,ρ

〈
θ(j)
n,ρ

〉−d 〈
k(j)
n,ρ

〉−2
)

∫
R2(es+1)m

es∏
ρ=0

2m∏
j=1

(
dα(j)

ρ

2π

)

∏
A∈SB(s)

δ
uA +

∑
(j,n,ρ)∈A(s)

θ(j)
n,ρ


∏

(j,n)∈I0(N)

es∏
ρ=0

 1∣∣∣α(j)
ρ − 2πσ(j)

n,ρτ
(j)
ρ |k(j)

n,ρ|+ iγ
∣∣∣
 ,

(6.29)

with C an only dimension-dependent constant. Possibly after reordering the set {1, ..., es},
one arrives at the situation shown in Figure 6.3 — for each ρ ∈ {1, ..., es} there is a pair

{(jρ, nρ, 0); (̃ρ, ñρ, ρ)} ∈ SB (6.30)

such that (jρ, nρ) � (jρ′ , nρ′) for all 0 < ρ′ < ρ and all pairs

{
(jρ′ , nρ′ , 0); (̃ρ′ , ñρ′ , ρ′)

}
∈ SB. (6.31)

Of all (6.30) admissible in that sense, select the pair for which (̃ρ, ñρ) is smallest with
respect to ≺.

Definition 6.2. Let the index (j, n, r), (j, n) ∈ I(N), r ∈ Ks have Ks-internal index
(j, n, ρ), ρ ∈ {0, ..., es}. We call (j, n, ρ) dependent if and only if (j, n, ρ) ∈ A ∈ SB(s),
defined in Definition 6.1, and this A fulfills all of the following

i. Aρ′(s) = ∅ for all ρ′ > ρ, and

ii. (j, n) = maxρA(s).

Otherwise, (j, n, ρ) is called free. The unique dependent index belonging to A ∈ SB(s) is
denoted (jA, nA, ρA). This way, the set I(N)× {0, ..., es} decomposes into ds dependent
and fs free indices.
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6.1. Higher moment estimates

The k(j)
n,ρ in (6.29) are then functions of the integration variables and u by

k(j)
n,ρ = k

(1)
0,ρ + ε

j−1∑
̂=1

p(̂) + τρ
∑

A∈SB\SB(s)

∑
(̂,n̂,ρ)∈A(s):
(̂,n̂)�(j,n)

θ
(̂)
n̂,ρ

+ τρ
∑

A∈SB(s):
ρA>ρ∨(jA,nA)�(j,n)

∑
(̂,n̂,ρ)∈A(s):
(̂,n̂)�(j,n)

θ
(̂)
n̂,ρ

− τρ
∑

A∈SB(s):
ρA=ρ∧(jA,nA)�(j,n)

uA +
∑

(̂,n̂,ρ̂)∈A(s):
ρ̂<ρ

θ
(̂)
n̂,ρ̂

 .
(6.32)

In (6.29), one can first take L∞ bounds like (4.62) on every resolvent belonging to
k

(j)
n,ρ, (j, n) ∈ I(N) and ρ ∈ {0, ..., es}, with (j, n, ρ) dependent, except for (̃ρ, ñρ, ρ),
ρ ∈ {1, ..., es}. Next, we completely integrate out the es-th to es + 1-th one-particle
lines by the analogue of Iteration 5.1. One is then left with the ρ-th one-particle lines,
ρ ∈ {1, ..., es}, which can be taken care of by starting from ρ = es and iterating

Iteration 6.1. (“Integrating out a star.”)

i. Assume we have not touched any of the ρ̃-th one-particle lines, ρ̃ ∈ {1, ...ρ − 1}
yet, but that the ρ′-th one-particle lines, ρ′ ∈ {ρ + 1, ...es} have been completely
integrated out. The ρ-th one-particle line itself may have been integrated out
partially, but all α(j)

ρ with j ≤ ̃ρ and all free θ(j)
n,ρ, (j, n) � (̃ρ, ñρ) have not been

integrated over yet.

ii. Apply the analogue of Iteration 5.1 to all remaining free θ(j)
n,ρ, (j, n) ∈ I(N) with

(j, n) � (̃ρ, ñρ), and all α(j)
ρ , j > ̃ρ.

iii. Apply the analogue of Iteration 5.1 to all remaining free θ(j)
n,0, (j, n) ∈ I(N) with

(j, n) � (jρ, nρ), and all α(j)
0 , j > jρ.

iv. In case ρ = 1, just take the L∞ estimate (4.62) of the resolvent belonging to k(̃1)
ñ1,1,

and the L1 estimate (4.63) of the k(j1)
n1,0 resolvent. Iteration 5.1 finishes the rest of

the 1-st and 0-th one-particle line, and the integration is completed.

v. In case ρ > 1, the only k momenta still depending on θ(jρ)
nρ,0 are

k
(jρ)
nρ,0 = τ0θ

(jρ)
nρ,0 + k

(jρ)
nρ−1,0,

k
(̃ρ)
ñρ,ρ = −τρθ(jρ)

nρ,0 + k
(̃ρ)
ñρ−1,ρ,

(6.33)
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so taking the θ(jρ)
nρ,0 integral produces a factor∫

Rd
dθ(jρ)

nρ,0
1∣∣∣α(jρ)

0 − 2πσ(jρ)
nρ,0τ

(jρ)
0

∣∣∣τ0θ
(jρ)
nρ,0 + k

(jρ)
nρ−1,0

∣∣∣+ iγ
∣∣∣

× 1∣∣∣α(̃ρ)
ρ − 2πσ(̃ρ)

ñρ,ρτ
(̃ρ)
ρ

∣∣∣−τρθ(jρ)
nρ,0 + k

(̃ρ)
ñρ−1,ρ

∣∣∣+ iγ
∣∣∣

×
〈
τ0θ

(jρ)
nρ,0 + k

(jρ)
nρ−1,0

〉−2 〈
−τρθ

(jρ)
nρ,0 + k

(̃ρ)
ñρ−1,ρ

〉−2 〈
θ

(jρ)
nρ,0

〉−d

≤



Cd| log γ|2∣∣∣τ0k(jρ)
nρ−1,0+τρk

(̃ρ)
ñρ−1,ρ

∣∣∣
〈
α

(jρ)
0

〉−1/2 〈
α

(̃ρ)
ρ

〉−1/2
for d ≥ 3,

C2| log γ|√
γ

∣∣∣τ0k(jρ)
nρ−1,0+τρk

(̃ρ)
ñρ−1,ρ

∣∣∣
〈
α

(jρ)
0

〉−1/2 〈
α

(̃ρ)
ρ

〉−1/2
for d = 2,

(6.34)

by Lemma B.1.
vi. Choose (j∗, n∗) ∈ I(N) as ≺-large as possible such that (j∗, n∗, 0) is free, and

k
(jρ)
nρ−1,0 depends on θ(j∗)

n∗,0 via (6.32). Because ρ > 1, such a (j∗, n∗) certainly exists,
and we even have (j∗, n∗) � (jρ−1, nρ−1).

vii. In case (j∗, n∗, 0) ∈ A ∈ S, with A a pair with second element (j∗, n∗, ρ − 1) in
the ρ − 1-th one-particle line of the same star Ks, first apply the analogue of
Iteration 5.1 to the remainder of the ρ-th one-particle line, and then to the ρ−1-th
one-particle line down to, but not including, (j∗, n∗, ρ − 1). During that process,
as soon as we run into a free θ(j)

n,r variable on which k(̃ρ)
ñρ−1,ρ depends by (6.32),

k
(̃ρ)
ñρ−1,ρ = k′ ± θ(j)

n,r, (6.35)

k′ being a function of “earlier” θ variables, one has by Lemma B.2∫
Rd

dθ(j)
n,r

1∣∣∣τ0k
(jρ)
nρ−1,0 + τρ(k′ ± θ(j)

n,r)
∣∣∣ ∣∣∣α(j)

r ± 2π
∣∣∣k(j)
n−1,r + τrθ

(j)
n,r

∣∣∣+ iγ
∣∣∣

×
〈
k

(j)
n−1,r + τrθ

(j)
n,r

〉−2 〈
θ(j)
n,r

〉−d
≤ C̃d 〈log γ〉√〈

α
(j)
r

〉
(6.36)

if d ≥ 3, and∫
R2

dθ(j)
n,r√∣∣∣τ0k

(jρ)
nρ−1,0 + τρ(k′ ± θ(j)

n,r)
∣∣∣ ∣∣∣α(j)

r ± 2π
∣∣∣k(j)
n−1,r + τrθ

(j)
n,r

∣∣∣+ iγ
∣∣∣ 〈k(j)

n−1,r + τrθ
(j)
n,r

〉2

≤ C̃2 〈log γ〉〈
α

(j)
r

〉
(6.37)
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6.1. Higher moment estimates

if d = 2. We then set ρnext = ρ− 1.

θ
(j1)
n1,0 = θ

(j∗)
n∗,0

θ
(̃1)
ñ1,1 = θ

(j∗)
n∗,1

θ
(j2)
n2,0

θ
(̃2)
ñ2,2

θ
(j)
n,1

∣∣∣ψ̂ε∣∣∣2
∣∣∣ψ̂ε∣∣∣2
∣∣∣ψ̂ε∣∣∣2

Figure 6.4.: At this instant of integrating out a star (that originally may have been
larger), ρ = 2. Iteration 6.1 would jump to vii.

viii. If, as in vii., (j∗, n∗, 0) ∈ A ∈ S, with A a pair with second element (j∗, n∗, ρ− 1)
in the ρ− 1-th one-particle line of the same star Ks, but, we do not encounter such
a θ(j)

n,r, take (in case this has not happened yet) the L∞ estimate of the resolvent
belonging to k(j∗)

n∗,ρ−1, apply Iteration 5.1 to the 0-th one-particle line down to, but
not including (j∗, n∗, 0), and observe that

k
(jρ)
nρ−1,0 = τ0θ

(j∗)
n∗,0 + k′′,

k
(j∗)
n∗,0 = τ0θ

(j∗)
n∗,0 + k

(j∗)
n∗−1,0

(6.38)

are the only remaining k variables depending on θ(j∗)
n∗,0. Again by Lemma B.2∫

Rd
dθ(j∗)

n∗,0
1∣∣∣θ(j∗)

n∗,0 + τ0k′′ + τρk
(̃ρ)
ñρ−1,ρ

∣∣∣ ∣∣∣α(j∗)
0 ± 2π

∣∣∣τ0θ
(j∗)
n∗,0 + k

(j∗)
n∗−1,0

∣∣∣+ iγ
∣∣∣

×
〈
τ0θ

(j∗)
n∗,0 + k

(j∗)
n∗−1,0

〉−2 〈
θ

(j∗)
n∗,0

〉−d
≤ C̃d 〈log γ〉√〈

α
(j∗)
0

〉
(6.39)

if d ≥ 3, and

∫
R2

dθ(j∗)
n∗,0√∣∣∣θ(j∗)

n∗,0 + τ0k′′ + τρk
(̃ρ)
ñρ−1,ρ

∣∣∣ ∣∣∣α(j∗)
0 ± 2π

∣∣∣τ0θ
(j∗)
n∗,0 + k

(j∗)
n∗−1,0

∣∣∣+ iγ
∣∣∣

×
〈
τ0θ

(j∗)
n∗,0 + k

(j∗)
n∗−1,0

〉−2

≤ C̃2 〈log γ〉〈
α

(j)
r

〉
(6.40)
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6. Higher moments and almost sure convergence

if d = 2. In case (j∗, n∗) 6= (jρ−1, nρ−1), we set ρnext = ρ − 1. If (j∗, n∗) =
(jρ−1, nρ−1), we have “lost” the pair {(jρ−1, nρ−1, 0), (̃ρ−1, ñρ−1, ρ− 1)}, so we
just can integrate out whatever remains of the ρ − 1-th one-particle line and set
ρnext = ρ− 2.

θ
(j1)
n1,0 = θ

(j∗)
n∗,0

θ
(̃1)
ñ1,1 = θ

(j∗)
n∗,1

θ
(j2)
n2,0

θ
(̃2)
ñ2,2

∣∣∣ψ̂ε∣∣∣2
∣∣∣ψ̂ε∣∣∣2
∣∣∣ψ̂ε∣∣∣2

Figure 6.5.: In this example, again with a current value of ρ = 2, Iteration 6.1 would
jump to viii.

ix. Conversely, if instead of vii. or viii., the cluster A ∈ S that contains (j∗, n∗, 0)
is not a pair, or is a pair connecting (j∗, n∗, 0) to any index not on the ρ − 1-th
one-particle line of the same star, we have by construction that (6.38) and (6.39-
6.40) hold again, but this time, as opposed to viii., we do not have to sacrifice
{(jρ, nρ, 0), (̃ρ, ñρ, ρ)}. We integrate out the remainder of the ρ-th one-particle line
and set ρnext = ρ− 1.

θ
(j1)
n1,0

θ
(̃1)
ñ1,1

θ
(j2)
n2,0

θ
(̃2)
ñ2,2

θ
(j∗)
n∗,0

∣∣∣ψ̂ε∣∣∣2
∣∣∣ψ̂ε∣∣∣2
∣∣∣ψ̂ε∣∣∣2

︷ ︸︸ ︷
to a part of the graph
already integrated out

Figure 6.6.: In this situation, Iteration 6.1 would jump to ix.

x. If ρnext ≥ 1, we are now just in the setting of i., with ρ replaced by ρnext. For
ρnext = 0, however, we apply Iteration 5.1 to the remainder of the 0-th one-particle
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6.1. Higher moment estimates

line, and the integration is finished.

Altogether, there is a factor of | log γ| for each of the fs free indices (j, n, r), and 2(es+1)m
further such factors from the α(j)

r integrals. From each of the ds dependent (j, n, r), we
incurred a factor γ−1 except for all those (̃ρ, ñρ, ρ) with ρ ∈ {2, ..., es} that were treated
in step v. to ix.. of the above iteration. They only contribute a factor | log γ| (for d ≥ 3)
or 1/√γ (for d = 2), and there are (due to the updating rule ρnext ≥ ρ− 2) at least⌈

es − 1
2

⌉
(6.41)

such cases. Taking the k(1)
0,ρ integrals, ρ ∈ {0, ..., es}, and redefining the constant C

finishes the proof.

In case es ≤ 1, the above lemma essentially is just a complicated way to rewrite the basic
estimates from Lemma 4.8 and 5.2. In case es = 0, this is enough, but for es = 1 (the
star with only one ray), one can argue as in Section 5.3 to obtain

Lemma 6.3. With all other conditions as in Lemma 6.2, let now Ks be a star with
es = 1. Then, there is a constant C <∞ depending only on d ≥ 2 such that

sup
u∈Rd·ds

VKs
(
ψε0, ε, γ, p, L

(0), t, N, SB, u
)

≤ C(|N |+2m)(es+1)
(
〈L(0)〉+m|N |

)3|N |(es+1)
‖ψε0‖

2(es+1)
H |log γ|(|N |+2m)(es+1)+1 γ−dsγ

d−1
d+1

(6.42)

for d ≥ 3, and

sup
u∈Rd·ds

VKs
(
ψε0, ε, γ, p, L

(0), t, N, SB, u
)

≤ C(|N |+2m)(es+1)
(
〈L(0)〉+m|N |

)3|N |(es+1)
‖ψε0‖

2(es+1)
H |log γ|(|N |+2m)(es+1)+1 γ−dsγ1/5

(6.43)

for d = 2.

6.1.4. Bound for the full amplitudes

Corollary 6.4. For each d ≥ 2, and a random field of class (d+ 3, 0), there is a C <∞
such that for ε ∈ (0, 1/2] and all S ∈ π∗conn(I(N ; 2l))∣∣∣V2l

(
ψε0, ε, a, p, L

(0), t, N, S
)∣∣∣

≤ C2l(|N |+2m)
(
〈L(0)〉+m|N |

)6|N |l
ε4lε|t| ‖ψε0‖

4l
H

2m−1∏
j=1
‖aj‖2lC0

∏
A∈S

∥∥∥g|A|∥∥∥
d+3

× | log ε|2(2m+|N |+1)lε(l|N |−|S|)/5
{
εl/6 (d = 2),
εl/5 (d ≥ 3).

(6.44)
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Proof. Inserting Lemma 6.2 and 6.3 in (6.25), we obtain for each connectivitiy component
B ∈ P∣∣∣VB (ψε0, ε, a, p, L(0), t, N, SB

)∣∣∣
≤ C |B|(|N |+2m)

(
〈L(0)〉+m|N |

)3|B||N |
ε2|B|γ|t| ‖ψε0‖

2|B|
H

2m−1∏
j=1
‖aj‖|B|C0

∏
A∈SB

∥∥∥g|A|∥∥∥
d+3

× | log γ|(2m+|N |+1)|B|ε|B||N |/2
s∏
s=1

γhs−ds ,

(6.45)

where the exponent hs is given as a function of es ∈ N0 and d ≥ 2 by the table

es = 0 es = 1 es ≥ 2
d = 2 0 1

5
1
2

⌈
es−1

2

⌉
d ≥ 3 0 1

2

⌈
es−1

2

⌉
.

We observe
s∑
s=1

ds = |SB|,

s∑
s=1

(es − es) ≤ 2(|B||N | − 2|SB|) =: 2DB,

(6.46)

so after setting γ = ε, the last line of (6.45) is bounded by

| log ε|(2m+|N |+1)|B|
s∏
s=1

ε(es−es)/5+hs+DB/10. (6.47)

One can easily verify
es − es

5 + hs ≥
{
es/6 (d = 2)
es/5 (d ≥ 3)

(6.48)

for all es ∈ N0, so, by (6.16),

(6.47) ≤ | log ε|(2m+|N |+1)|B|εDB/10 ×
{
ε|B|/12 (d = 2),
ε|B|/10 (d ≥ 3).

(6.49)

With ∑B∈P |B| = 2l, taking the product (6.10) over all B ∈ P proves the corollary.

So far, we have obtained higher-order estimates for the contributions to the main term
of the Duhamel expansion. The Gend and Grough parts of the remainder can be bounded
in exactly the same fashion, only with notation from Section 4.1.3 for the variables N ,
N<, Nfin, and N

(m).
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Corollary 6.5. For d ≥ 2, ξ of class (d + 3(M + 2), 0), N< ∈ Nm−1
0 obeying (4.36),

N
(m) given by (4.37) and Nfin ∈ {1, ..., N

(m) − 1}, the identities

lim
R→∞

E


∣∣∣∣∣∣∣
∥∥∥∥∥∥Grough

M,Nfin

(
t(m);R,L(m), ε

)∏
j<m

AεjFN(j)

(
t(j);R,L(j), ε

)ψε0
∥∥∥∥∥∥

2

H

− E

∥∥∥∥∥∥Grough
M,Nfin

(
t(m);R,L(m), ε

)∏
j<m

AεjFN(j)

(
t(j);R,L(j), ε

)ψε0
∥∥∥∥∥∥

2

H

∣∣∣∣∣∣∣
2l


=
∑

S∈π∗conn(I(N ;2l))
V2l

(
Grough, ψε0, ε, κ, a, p, L

(0), t, N<, Nfin,M, S
)
,

(6.50)

and

lim
R→∞

E


∣∣∣∣∣∣∣
∥∥∥∥∥∥Gend

M,N
(m)

(
t(m);R,L(m), ε

)∏
j<m

AεjFN(j)

(
t(j);R,L(j), ε

)ψε0
∥∥∥∥∥∥

2

H

− E

∥∥∥∥∥∥Gend
M,N

(m)

(
t(m);R,L(m), ε

)∏
j<m

AεjFN(j)

(
t(j);R,L(j), ε

)ψε0
∥∥∥∥∥∥

2

H

∣∣∣∣∣∣∣
2l


=
∑

S∈π∗conn(I(N ;2l))
V2l

(
Gend, ψε0, ε, κ, a, L

(0), t, N<, N,M, S
)

(6.51)

hold. Here, the individual V2l amplitudes are bounded by

C(|N |+2m)le4lε|t|
〈
εM

〉12(M+1)l 〈
L(0) +mN

〉6|N |l+12(M+1)l

× ‖ψε0‖
4l
H
∏
A∈S

∥∥∥g|A|∥∥∥
d+3(M+2)

m−1∏
j=1
‖aj‖4lC0

× | log εn|2(2m+|N |+1)lε(l|N |−|S|)/5
n

{
εl/6 (d = 2),
εl/5 (d ≥ 3).

(6.52)

in each case, C <∞ only depending on d.
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6.1.5. Amplitudes for amputated graphs

As we now want to consider remainder terms of Arough type, we need to modify the
observables Ar (kr, σr, p, ε) by setting them to

2m−1∏
j=1

a
j,σ

(j+1)
0,r

k(j+1)
0,r + k

(j)
N(j),r

2

 δ (k(j+1)
0,r − k(j)

N(j),r
− εp(j)

)
δ
(
σ

(j)
N(j),r

, σ
(j+1)
0,r

)
(6.53)

for r odd, and its complex conjugate, for r even, but aj,± now given as in (4.39). Also,
the propagators have to account for the extra decay stemming from κ, and the presence
or absence of cutoff functions now,

Pr (kr, σr, αr, γ)

=
∏

(j,n)∈I0(N)
(j,n)6=(m,N(m)),(m+1,0)

(
i

α
(j)
r − 2πσ(j)

n,rτ
(j)
r |k(j)

n,r|+ iγ + iκ
(j)
n

)

×
∏

(j,n)∈I(N)

[
(−iτ (j)

r )
(∣∣∣k(j)

n,r

∣∣∣σ(j)
n−1,r +

∣∣∣k(j)
n−1,r

∣∣∣σ(j)
n,r

)
Φ(j)
n

(
k(j)
n,r, k

(j)
n−1,r, L

(j)
n

)]
(6.54)

with Φ
(j)
n and κ

(j)
n defined by (4.53) and (4.54) respectively. The index set I(N ; 2l),

however, is (up to the new definition of N) the same as before, and π∗(I(N ; 2l)) denotes
the set of partitions of I(N ; 2l) without clusters of size 1. We can rewrite every S ∈
π∗(I(N ; 2l)) as a disjoint union

S = Sh ∪ Str ∪
2l⋃
r=1

Sint(r), (6.55)

with all clusters A ∈ Sh having more than two elements |A| > 2, all A ∈ Str being transfer
pairs as defined before, i.e. pairs with members belonging to different one-particle lines,
and finally Sint(r) being the set of all internal pairs of the r-th one-particle line. Similar
to Lemma 4.6

Lemma 6.6. For ξ of class (m, 0), with m > d+ (2 +M), N< ∈ Nm−1
0 obeying (4.36),

and any Nfin ∈ {1, ..., N
(m) − 1},

lim
R→∞

E

∥∥∥∥∥∥Arough
M,Nfin

(
t(m);R,L(m), ε

)∏
j<m

AεjFN(j)

(
t(j);R,L(j), ε

)ψε0
∥∥∥∥∥∥

4l

H

=
∑

S∈π∗(I(N ;2l))
V2l

(
Arough, ψε0, ε, κ, a, p, L

(0), t, N<, Nfin,M, S
)
,

(6.56)
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with the amplitude of each partition S given for an arbitrary choice of γ > 0 by

V2l
(
Arough, ψε0, ε, κ, a, p, L

(0), t, N<, Nfin,M, S
)

= ε|N |lπ2|N |l ∑
σ

(j)
n,r∈{±}

∀(j,n,r)∈I0(N ;2l)

∫
R(2|N|+4m)ld

∏
(j,n,r)∈I0(N ;2l)

dk(j)
n,r

∏
A∈S

δ
 ∑

(j,n,r)∈A
θ(j)
n,r

 ĝ|A| (θ(j)
n,r : (j, n, r) ∈ A]

)
×

2l∏
r=1
Ar (kr, σr, p, ε)

×
∫
R4ml

2l∏
r=1

2m∏
j=1

(
eγt

(j) dα(j)
r

2π e−iα
(j)
r t(j)

)
2l∏
r=1
Pr (kr, σr, αr, γ, κ)

×
2l∏
r=1
r odd

ψ̂ε
0,σ(1)

0,r

(
k

(1)
0,r

)
ψ̂ε

0,σ(2m)
N(2m),r

(
k

(2m)
N(2m),r

)

×
2l∏
r=1
r even

ψ̂ε
0,σ(1)

0,r

(
k

(1)
0,r

)
ψ̂ε

0,σ(2m)
N(2m),r

(
k

(2m)
N(2m),r

)
,

(6.57)

where the resolvent integrals are understood as a formal way to write the unperturbed
propagator for all j with N (j) = 0.

To have a handle on the resolvents regularized by γ + κ instead of only γ, we set the
central part of the index set I(N ; 2l) to be

C =
{

(j, n, r) ∈ I(N ; 2l) : (m,Nfin + 1) � (j, n) � (m+ 1,M)
}
. (6.58)

For any S ∈ π∗(I(N ; 2l)) the central part C then decomposes into

C = Ch ∪ C +
tr ∪ C−tr ∪

2l⋃
r=1

(Cint(+, r) ∪ Cint(−, r)) . (6.59)

Here, for σ ∈ {±},

Ch = {(j, n, r) ∈ C : ∃A ∈ Sh : (j, n, r) ∈ A} ,
C σ

tr =
{
(j, n, r) ∈ C : ∃A ∈ Str : (j, n, r) ∈ A,A = {(j, n, r); (j′, n′, r′)}, σr > σr′

}
,

Cint(σ, r) =
{
(j, n, r) ∈ C : ∃A ∈ Sint(r) : (j, n, r) ∈ A,A = {(j, n, r); (j′, n′, r)},

(σj, σn) � (σj′, σn′)
}
.

(6.60)
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Lemma 6.7. (Higher moment bound for Arough remainder terms.) If ξ is of class
(d+ 2(M + 2), 0), there is a C < ∞ depending only on dimension d ≥ 2, such that for
any S ∈ π∗(I(N ; 2l)), and all ε, γ ∈ (0, 1/2], κ > 0

∣∣∣V2l
(
Arough, ψε0, ε, κ, a, p, L

(0), t, N<, Nfin,M, S
)∣∣∣

≤ e4γl|t|C2(|N |+2m)l
(
〈L(0)〉+mN

)4|N |l+(8M+8)l
〈εCobs〉(8M+8)l

× ‖ψε0‖
4l
H

m−1∏
j=1
‖aj‖4l

∏
A∈S

∥∥∥g|A|∥∥∥
d+2(M+2)

× ε|N |l| log γ|2l(|N |+2m)−|S|γ−|S|
(

γ

γ + κ

)2Ml− 1
2 |Ch|

.

(6.61)

Setting γ = ε, the last line of (6.61) is bounded by

| log ε|2l(|N |+2m)−|S|ε|N |l−|S|
(
ε

κ

)(2Ml−3(|N |l−|S|))+
. (6.62)

Proof. Assume that N (j) ≥ 1 for all j ∈ {1, ..., 2m}; suppose furthermore, without loss
of generality, that |C +

tr | ≥ |C−tr |. Instead of (6.28), we employ

∣∣∣ψ̂ε0 (k(1)
0,r

)∣∣∣ ∣∣∣ψ̂ε0 (k(2m)
N(2m),r

)∣∣∣ ≤ 1
2

(
br
∣∣∣ψ̂ε0 (k(1)

0,r

)∣∣∣2 + b−1
r

∣∣∣ψ̂ε0 (k(2m)
N(2m),r

)∣∣∣2) (6.63)

for each r ∈ {1, ..., 2l}, with a parameter br ∈ (0,∞) to be optimized later. Then

∣∣∣V2l
(
Arough, ψε0, ε, κ, a, p, L

(0), t, N<, Nfin,M, S
)∣∣∣

≤ 2−2l ∑
$∈{±}2l

( 2l∏
r=1

b$rr

)
V2l

(
Arough, $, ψε0, ε, γ, κ, a, p, L

(0), t, N<, Nfin,M, S
)

(6.64)
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with

V2l
(
Arough, $, ψε0, ε, γ, κ, a, p, L

(0), t, N<, Nfin,M, S
)

= ε|N |le4γl|t|C2(|N |+2m)l
(
〈L(0)〉+mN

)4|N |l
〈εCobs〉(8M+8)l

×
m−1∏
j=1
‖aj‖4l

∏
A∈S

∥∥∥g|A|∥∥∥
d+2(M+2)

max
σ∈{±}2l(|N|+2m)

∫
R(2|N|+4m)ld

∏
(j,n,r)∈I0(N ;2l)

dk(j)
n,r

∏
A∈S

δ
 ∑

(j,n,r)∈A
θ(j)
n,r


×

2l∏
r=1

2m−1∏
j=1

(
δ
(
k

(j+1)
0,r − k(j)

N(j),r
− εp(j)

))

×
∫
R4ml

2l∏
r=1

2m∏
j=1

(
eγt

(j) dα(j)
r

2π e−iα
(j)
r t(j)

)

2l∏
r=1

∣∣∣∣∣∣∣∣
∏

(j,n)∈I0(N)
(j,n)6=(m,N(m)),(m+1,0)

1
α

(j)
r − 2πσ(j)

n,rτ
(j)
r |k(j)

n,r|+ iγ + iκ
(j)
n

∣∣∣∣∣∣∣∣
×

2l∏
r=1
$r=1

∣∣∣∣ψ̂ε0,σ(1)
0,r

(
k

(1)
0,r

)∣∣∣∣2 ∏
(j,n)∈I(N)

〈
θ(j)
n,r

〉−d 〈
k(j)
n,r

〉−1


×
2l∏
r=1

$r=−1

∣∣∣∣∣ψ̂ε0,σ(2m)
N(2m),r

(
k

(2m)
N(2m),r

)∣∣∣∣∣
2 ∏

(j,n)∈I(N)

〈
θ(j)
n,r

〉−d 〈
k

(j)
n−1,r

〉−1
 ,

(6.65)

with a finite C depending only on dimension d. The k integrals are then transformed
into θ integrals in the usual fashion, and, starting from r = 2l, down to r = 1, each of
the one-particle-lines is integrated out, in decreasing ≺ order if $r = 1, and increasing
in ≺ if $r = −1. Each of the altogether 4lm integrals over α variables will produce
factors C| log γ|, as will the L1 resolvent estimates, |A|−1 of them for each cluster A ∈ S.
However, of the |S| resolvent estimates of L∞ type, a few can be improved from Cγ−1 to
C(γ + κ)−1 (or even C, for the missing, “amputated resolvents”) — this is in certainly
the case

• for the k(j)
n,r resolvent if $r = 1, and (j, n, r) ∈ C +

tr ∪ Cint(+, r), and

• for the k(j)
n−1,r resolvent if $r = −1, and (j, n, r) ∈ C +

tr ∪ Cint(−, r).

Thus, there is a constant C <∞ only depending on d such that the last seven lines of
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(6.65) are bounded by

C2l(|N |+2m)| log γ|2l(|N |+2m)−|S|γ−|S|
(

γ

γ + κ

)c($,S)
, (6.66)

with the exponent

c($,S) =
∣∣∣C +

tr

∣∣∣+ 2l∑
r=1
|Cint($r, r)| , (6.67)

and one can optimize

2−2l ∑
$∈{±}2l

( 2l∏
r=1

b$rr

(
γ

γ + κ

)|Cint($r,r)|
)

=
2l∏
r=1

(
γ

γ + κ

)(|Cint(+,r)|+|Cint(−,r)|)/2
, (6.68)

with each br chosen appropriately. From |C +
tr | ≥ |C−tr |, we conclude

|C +
tr |+

1
2

2l∑
r=1

(|Cint(+, r)|+ |Cint(−, r)|) ≥
1
2 (|C | − |Ch|) = 2Ml − 1

2 |Ch| , (6.69)

which proves equation (6.61). Equation (6.62) then follows from |Ch| ≤ 4Ml and

|Ch| ≤
∑
A∈Sh

|A| ≤ 3
∑
A∈Sh

(|A| − 2) = 6 (|N |l − |S|) . (6.70)

By the same reasoning, with the appropriate redefinition of N ∈ N2m
0 for type Aend

remainder terms
Corollary 6.8. (Higher moment estimate for Aend remainder terms.) For dimension
d ≥ 2, a random field ξ of class (d + 2(M + 2), 0), N< ∈ Nm−1

0 obeying (4.36), N (m)

given by (4.37), we have

lim
R→∞

E

∥∥∥∥∥∥Aend
M,N

(m)

(
t(m);R,L(m), ε

)∏
j<m

AεjFN(j)

(
t(j);R,L(j), ε

)ψε0
∥∥∥∥∥∥

4l

H

=
∑

S∈π∗(I(N ;2l))
V2l

(
Aend, ψε0, ε, κ, a, p, L

(0), t, N<, N,M, S
)
,

(6.71)

and there is a C <∞ only depending on dimension d such that for all S ∈ π∗ (I(N ; 2l)),
ε ∈ (0, 1/2], and all κ > 0,∣∣∣V2l

(
Aend, ψε0, ε, κ, a, p, L

(0), t, N<, N,M, S
)∣∣∣

≤ e4εl|t|C2(|N |+2m)l
(
〈L(0)〉+mN

)4|N |l+(8M+8)l
〈εCobs〉(8M+8)l

× ‖ψε0‖
4l
H

m−1∏
j=1
‖aj‖4l

∏
A∈S

∥∥∥g|A|∥∥∥
d+2(M+2)

× | log ε|2l(|N |+2m)−|S|ε|N |l−|S|
(
ε

κ

)(2Ml−3(|N |l−|S|))+
.

(6.72)
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6.2. Proof of Theorem 3.3

6.2.1. Collecting the amplitude bounds

Set the number of measurements to m = 1 and let (ψε0)ε>0 be a sequence of initial
states in H fulfilling all conditions of Theorem 3.3, and additionally assume that ψ̂ε0,±(k)
vanishes for |k| > L(0). We discretize the continuous parameter ε > 0 by a sequence
(εn)n∈N, εn = n−α, with an α to be chosen later. We also fix a time T ∈ (0,∞). To be
able to vary the strength of disorder independently of space and time scaling, introduce
another parameter ε′ > 0, and denote by Hε′ the random operator H0 +

√
ε′V . For

ε > 0, ε′ > 0, t ∈ R and σ ∈ {±}, define the random state

ψ[ε, ε′, t] = exp(−iHε′t)ψε0, ψ[ε, ε′, t, σ] =
(
exp(−iHε′t)ψε0

)
σ

(6.73)

in H, and, for any τ ∈ [0, T ], p ∈ Rd and any bounded and continuous observable
a± : Rd → C, consider the random variable

X(a, τ , p, n)
= sup

ε′∈[εn+1,εn]

∑
σ∣∣∣∣∫

Rd
dkaσ(k)ψ̂[εn, ε′, τ/εn, σ](k + εnp/2)ψ̂[εn, ε′, τ/εn, σ](k − εnp/2)

− E
∫
Rd

dkaσ(k)ψ̂[εn, ε′, τ/εn, σ](k + εnp/2)ψ̂[εn, ε′, τ/εn, σ](k − εnp/2)
∣∣∣∣ .

(6.74)

Note that each summand in the Duhamel expansion of ψ[εn, ε′, τ/εn, σ] scales like a
non-negative power of ε′, and can be bounded deterministically by setting ε′ to the
largest possible value εn. Thus, there is a constant CT,d only depending on T and d such
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that

E
[
|X(a, τ , p, n)|2l

]
≤ C lT,d max

0≤N(1),N(2)<N
max

0≤Nfin<N
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0≤M<M
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〉
H

∣∣∣2l
+ ‖a‖2lC0

(
NMκ

εn
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H
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]

+ ‖a‖2lC0

(
Mκ
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)4l
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[(
E
∥∥∥Gend

M,N

(
t;R,L(1), εn

)
ψεn0

∥∥∥2

H

)2l

+ E
∣∣∣∣∥∥∥Gend

M,N

(
t;R,L(1), εn

)
ψεn0

∥∥∥2

H
− E

∥∥∥Gend
M,N

(
t;R,L(1), εn

)
ψεn0
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H

∣∣∣∣2l
]

+ ‖a‖2lC0

(
N

εn

)4l

sup
t∈[0,τ/εn]

E
∥∥∥Arough

M,Nfin

(
t;R,L(1), εn

)
ψεn0

∥∥∥4l

H

+ ‖a‖2lC0 ε
−4l
n sup

t∈[0,τ/εn]
E
∥∥∥Aend

M,N

(
t;R,L(1), εn

)
ψεn0

∥∥∥4l

H

}
.

(6.75)

As in previous sections, we set (with possibly different values of b and ϑ than before)

N = N(εn) =
⌈

b |log εn|
|log |log εn||

⌉
b > 0, (6.76)

κ = κ(εn) = ε1−ϑ
n ϑ ∈ (0, 1/3). (6.77)

A suitable choice of M will only be determined later, but we assume from now on that
the random field is of class (d+3M+6, 4), making all results of Chapter 4 and Section 6.1
applicable. We therefore use a graph expansion of all expressions on the right hand side
of (6.75), and note that the number of amplitudes to sum over in each case is bounded
by

|π∗ (I(N ; 2l))| ≤
(
2l(|N |+ 2M)

)
! ≤ (4l(N +M))! (6.78)

Collecting the estimates from Lemmas 6.1, 6.6 and 6.7 and Corollaries 6.4, 6.5 and
6.8, as well as equation (4.211) and (4.213), one can find a C < ∞ which depends on
T, d ≥ 2, L(0),M, ϑ, b, l and the distribution of ξ, but not on εn, such that (6.75) is
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bounded by

E
[
|X(a, τ , p, n)|2l

]
≤ CN ‖ψεn0 ‖

4l
H ‖a‖

2l
C0

(
N

16Nl |log εn|4Nl+C εl/6n
(
κ

εn

)4l
+N

−2Nl
(
κ

εn

)4l

+N12Nl |log εn|4Nl+C ε−4l
n

(
εn
κ

)2Ml
)
.

(6.79)

Here, we have already bounded the contribution of the higher cumulants of the random
field in a fashion similar to Section 4.5; for example, setting D = l|N | − |S| for any
partition S ∈ I(N ; 2l), one obtains the bound

εD/10
n

∏
A∈S

∥∥∥g|A|∥∥∥
d+3(M+2)

≤ max
D∈{0,...,2l(N+M)}

εD/10
n DCD ≤ KN , (6.80)

in Lemma 6.5, or, in Lemma 6.7, since ϑ ∈ (0, 1/3),

εDn (εn/κ)−3D ∏
A∈S

∥∥∥g|A|∥∥∥
d+2(M+2)

≤ max
D∈{0,...,2l(N+M)}

εDn (εn/κ)−3DDC̃D ≤ K̃N (6.81)

with C, C̃,K, K̃ only depending on d, M , ϑ, b and the distribution of ξ.

Therefore, whenever ξ is of class (d+ 1641, 4) and one thus can choose M ≥ 545, there
is a β > 0 such that for all n, l ∈ N

E
[
|X(a, τ , p, n)|2l

]
≤ Cl

(
sup
ε>0
‖ψε0‖

4l
H

)
‖a‖2lC0 ε

βl
n (6.82)

with Cl <∞ depending only on l, dimension d, the distribution of ξ, L(0) and T , but not
on n and p (because we have chosen m = 1, so all Cobs terms drop out in the Lemmas
of Section 6.1).

6.2.2. Preserving tightness

Now pick and fix a small ρ > 0, and define Rρ <∞ such that

lim sup
ε→0

∫
|x|≥Rρ/ε

dx |ψε0(x)|2 < ρ, (6.83)
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and set R′ρ = Rρ + T . Let χρ : Rd → [0, 1] be smooth, with χρ(y) = 1 for |y| ≤ R′ρ and
χρ(y) = 0 for |y| ≥ R′ρ + 1. With these definitions, by Theorem 3.1,

sup
ε′∈[εn+1,εn]

∑
σ

∫
|x|>(R′ρ+1)/εn

dx
∣∣ψ[εn, ε′, τ/εn, σ](x)

∣∣2
≤ ‖ψεn0 ‖

2
H

− inf
ε′∈[εn+1,εn]

∑
σ

E
∫
R2d

dpdkχ̂ρ(p)ψ̂
[
εn, ε′,

τ

εn
, σ

](
k + εnp

2

)
ψ̂

[
εn, ε

′,
τ

εn
, σ

](
k − εnp

2

)
+
∫
Rd

dp |χ̂ρ(p)|X(1, τ , p, n)

≤
∑
σ

∫
|x|>R′ρ

µT,σ(dx,dk) + r(n, ρ) +
∫
Rd

dp |χ̂ρ(p)|X(1, τ , p, n)

≤
∑
σ

∫
|x|>Rρ

µ0,σ(dx,dk) + r(n, ρ) +
∫
Rd

dp |χ̂ρ(p)|X(1, τ , p, n)

≤ ρ+ r(n, ρ) + Z(ρ, τ , n).
(6.84)

Here, r(n, ρ) ≥ 0 is a deterministic quantity that can be chosen uniformly for all τ ∈ [0, T ],
with

r(n, ρ)→ 0 (n→∞) (6.85)

for ρ > 0 fixed. Z(ρ, τ , n), on the other hand, is a random variable such that for all
l ∈ N

E
[
|Z(ρ, τ , n)|2l

]
≤ Cl,ρεβln (6.86)

with Cl,ρ <∞ depending on l, dimension d, the distribution of ξ, L(0), T , supε>0 ‖ψε0‖H
and ρ. By the same token,

sup
ε′∈[εn+1,εn]

∑
σ

∫
|k|>L(0)+1

dk
∣∣∣ψ̂[εn, ε′, τ/εn, σ](k)

∣∣∣2
≤ r(n) + Z(τ , n),

(6.87)

with deterministic r(n) → 0, and E |Z(τ , n)|2l ≤ Klε
βl
n with some constant Kl < ∞

depending on the ame parameters as Cl,ρ above (except for ρ).

6.2.3. Bounding the interpolation error

Fix a single τ ∈ [0, T ], a momentum bound Pmax ∈ (0,∞), a momentum p ∈ Rd,
|p| ≤ Pmax as well as a continuous and bounded function a± : Rd → C. To n ∈ N, assign
a time spacing δn > 0, a momentum spacing hn > 0, both to be specified later, as well
as

νn = T

( 1
εn+1

− 1
εn

)
+ δn
εn+1

> 0. (6.88)
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From (6.84) and (6.87), we see by suitable cut-offs in both position and momentum space
that there is a state f [εn, ε′, τ ] ∈ H such that ‖f [εn, ε′, τ ]‖H ≤ ‖ψ[εn, ε′, τ/εn]‖H and

sup
ε′∈[εn+1,εn]

∥∥f [εn, ε′, τ ]− ψ[εn, ε′, τ/εn]
∥∥2
H

≤ C (ρ+ r(n, ρ) + Z(ρ, τ , n) + r(n) + Z(τ , n))
(6.89)

with an only d-dependent C <∞, while

f [εn, ε′, τ , σ](x) = 0 whenever |x| > (R′ρ + 2)/εn (6.90)

and, with C only d-dependent,

sup
ε′∈[εn+1,εn]

∑
σ

∥∥f [εn, ε′, τ , σ]
∥∥
H1(Rd) ≤ C

〈
L(0)

〉
sup
ε>0
‖ψε0‖H . (6.91)

By Lemma E.1, there exists an R̃ρ ∈
(
R′ρ + 2,∞

)
depending only on R′ρ, ρ, and d as

well as a function u[εn, ε′, τ ] : Rd → C supported on
{
|x| ≤ R̃ρ/εn

}
such that almost

surely

sup
ε′∈[εn+1,εn]

∥∥|∇|u[εn, ε′, τ ]− f [εn, ε′, τ ,+]− f [εn, ε′, τn,−]
∥∥
L2 ≤ ρ

sup
ε′∈[εn+1,εn]

∥∥|∇|u[εn, ε′, τ ]
∥∥
H1 ≤ C

〈
L(0)

〉
sup
ε>0
‖ψε0‖H ,

(6.92)

C depending only on d. Also, the function

w[εn, ε′, τ ](x) = (1 +
√
ε′ξ(x))

(
f [εn, ε′, τ ,+](x)− f [εn, ε′, τ ,−](x)

)
(6.93)

is clearly supported within
{
|x| ≤ (R′ρ + 2)/εn

}
. Thus, using the map E from Lemma

2.9,

f̃ [εn, ε′, τ ] = 1
2

(
|∇|u[εn, ε′, τ ] + w[εn, ε′, τ ]/(1 +

√
ε′ξ)

|∇|u[εn, ε′, τ ]− w[εn, ε′, τ ]/(1 +
√
ε′ξ)

)
= E1+

√
ε′ξ

(
u[εn, ε′, τ ], w[εn, ε′, τ ]

)
,

(6.94)

fulfills ∥∥∥f̃ [εn, ε′, τ ]− f [εn, ε′, τ ]
∥∥∥
H
≤ ρ. (6.95)

By construction, f̃ [εn, ε′, τ ] is an element of D̃ as defined in (2.95), and one can write
for every s ∈ [0, νn] and every ε′ ∈ [εn+1, εn]∥∥∥∥e−iHε′sf̃ [εn, ε′, τ ]− f̃ [εn, ε′, τ ]

∥∥∥∥
H
≤ νn

∥∥∥Hε′ f̃ [εn, ε′, τ ]
∥∥∥
H
. (6.96)

But by the unitary equivalence observed in Lemma 2.9 and Theorem 2.10,∥∥∥Hε′ f̃ [εn, ε′, τ ]
∥∥∥2

H
=
∥∥A (u[εn, ε′, τ ], w[εn, ε′, τ ]

)∥∥2
B , (6.97)
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6. Higher moments and almost sure convergence

the norm on the right side defined by the scalar product (2.79), with B = BR̃ρ/εn(0),
and the operator A given in (2.81), with c(x) = 1 +

√
ε′ξ(x). Therefore

∥∥A (u[εn, ε′, τ ], w[εn, ε′, τ ]
)∥∥2
B

= 1
2

∫
Rd

dx
(∣∣∇w[εn, ε′, τ ]

∣∣2 + (1 +
√
ε′ξ(x))2 ∣∣∆u[εn, ε′, τ ]

∣∣2)
≤ C

(
1 +
√
ε′Y R̃ρ/εn

)2
(∑

σ

∥∥f [εn, ε′, τ , σ]
∥∥2
H1 +

∥∥|∇|u[εn, ε′, τ ]
∥∥2
H1

)

≤ C
〈
L(0)

〉2 (
1 +
√
ε′Y R̃ρ/εn

)2
sup
ε>0
‖ψε0‖

2
H ,

(6.98)

with an only d-dependent C < ∞ and an almost surely finite random variable Y ≥ 0
such that

|ξ(x)|+ |∇ξ(x)| ≤ Y (1 + |x|) (6.99)

for all x ∈ Rd.

Altogether, there is a constant C <∞ only depending on d such that

sup
ε′∈[εn+1,εn]

sup
s∈[0,νn]

∥∥ψ[εn, ε′, τ/εn + s]− ψ[εn, ε′, τ/εn]
∥∥2
H

≤ C (ρ+ r(n, ρ) + Z(ρ, τ , n) + r(n) + Z(τ , n))

+ C
〈
L(0)

〉2
ν2
n

(
1 + Y R̃ρ/

√
εn
)2

sup
ε>0
‖ψε0‖

2
H .

(6.100)

Furthermore, with the state f [εn, ε′, τ ] from before, and any bounded, continuous ob-
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6.2. Proof of Theorem 3.3

servable a : Rd → C2,

sup
ε′∈[εn+1,εn]

sup
|p|≤Pmax
|p−p|∞≤hn

sup
ε∈[εn+1,εn]

∑
σ∣∣∣∣∫

Rd
dkaσ(k)ψ̂[εn, ε′, τ/εn, σ](k + εp/2)ψ̂[εn, ε′, τ/εn, σ](k − εp/2)

−
∫
Rd

dkaσ(k)ψ̂[εn, ε′, τ/εn, σ](k + εnp/2)ψ̂[εn, ε′, τ/εn, σ](k − εnp/2)
∣∣∣∣

≤ C sup
ε>0
‖ψε0‖H ‖a‖C0 (ρ+ r(n, ρ) + Z(ρ, τ , n) + r(n) + Z(τ , n))1/2

+ sup
ε′∈[εn+1,εn]

sup
|p|≤Pmax
|p−p|∞≤hn

sup
ε∈[εn+1,εn]

∑
σ∣∣∣∣∫

Rd
dkaσ(k)f̂ [εn, ε′, τ , σ](k + εp/2)f̂ [εn, ε′, τ , σ](k − εp/2)

−
∫
Rd

dkaσ(k)f̂ [εn, ε′, τ , σ](k + εnp/2)f̂ [εn, ε′, τ , σ](k − εnp/2)
∣∣∣∣

≤ C sup
ε>0
‖ψε0‖H ‖a‖C0 (ρ+ r(n, ρ) + Z(ρ, τ , n) + r(n) + Z(τ , n))1/2

+ C sup
ε>0
‖ψε0‖

2
H ‖a‖C0

R′ρ + 2
εn

(εnhn + (εn − εn+1)Pmax) .

(6.101)

Here, (6.89) has been employed in the first estimate. For the second one, we have
bounded

∥∥∥∇f̂ [εn, ε′, τ , σ]
∥∥∥
L2
≤ C

R′ρ + 2
εn

‖ψε0‖H (6.102)

by exploiting the support properties of f [εn, ε′, τ , σ], and finally observed that

|εp− εnp| ≤ εnhn + (εn − εn+1)Pmax (6.103)

for the choice of parameters in consideration.

Thus, after noting that for all τ ∈ [0, T ], (τ + δn)/εn+1 ≤ τ + νn, one obtains from
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6. Higher moments and almost sure convergence

(6.100-6.101) a C <∞ only depending on d such that

sup
τ∈δnN∩[0,T ]

sup
p∈hnZd
|p|≤Pmax

sup
ε′∈[εn+1,εn]

sup
t∈[τ/εn,(τ+δn)/εn+1]

sup
|p|≤Pmax
|p−p|∞≤hn

sup
ε∈[εn+1,εn]

∑
σ∣∣∣∣∫

Rd
dkaσ(k)ψ̂[ε, ε′, t, σ](k + εp/2)ψ̂[ε, ε′, t, σ](k − εp/2)

−
∫
Rd

dkaσ(k)ψ̂[εn, ε′, τ/εn, σ](k + εnp/2)ψ̂[εn, ε′, τ/εn, σ](k − εnp/2)
∣∣∣∣

≤ C ‖a‖C0 sup
ε>0
‖ψε0‖H

(
sup

τ∈δnN∩[0,T ]
(ρ+ r(n, ρ) + Z(ρ, τ , n) + r(n) + Z(τ , n))1/2

+ sup
ε>0
‖ψε0‖H

R′ρ + 2
εn

(εnhn + (εn − εn+1)Pmax)

+ sup
ε>0
‖ψε0‖H

〈
L(0)

〉
νn
(
1 + Y R̃ρ/

√
εn
)

+ sup
ε∈[εn+1,εn]

‖ψε0 − ψ
εn
0 ‖H

)
.

(6.104)

For the second to fourth lines of the right side to vanish almost surely (namely on the
event {Y < ∞}) in the n → ∞ limit, it is sufficient that the coefficient in εn = n−α is
contained in α ∈ (0, 2/3), spacing paramenters can be chosen to be δn = n−2α and any
sequence hn → 0, and one has to pick α ≤ α0, so that

lim
n→∞

sup
ε∈[(n+1)−α,n−α]

∥∥∥ψε0 − ψn−α0

∥∥∥
H

= 0 (6.105)

holds. On the first line on the right side of (6.104), r(n) + r(ρ, n)→ 0 deterministically.
For the random variables Z(ρ, τ , n) (and similarly Z(τ , n)), observe that the sequence

E

( sup
τ∈δnN∩[0,T ]

Z(ρ, τ , n)
)2l
 ≤ T

δn
sup

τ∈[0,T ]
E
[
Z(ρ, τ , n)2l

]
≤ TCl,ρεβln δ−1

n

≤ TCl,ρn(2−βl)α

(6.106)

is summable in n ∈ N as long as we take l ∈ N large enough, no matter how small
α, β > 0 may be. To achieve this was the whole point of Section 6.1. By a Markov
estimate and the Borel-Cantelli Lemma,

lim
n→∞

sup
τ∈δnN∩[0,T ]

Z(ρ, τ , n) = 0 (6.107)

almost surely for every choice of ρ > 0. As ρ can be arbitrarily small, one deduces that
for a fixed bounded and continuous observable a, the left hand side of (6.104) converges
to zero almost surely as n→∞.
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6.2. Proof of Theorem 3.3

6.2.4. Controlling a single node (εn, τ , p), conclusion

Recalling the definition (6.74) of the random variables X, one also has, for, say, hn = εn,
that

E


 sup
τ∈δnN∩[0,T ]

sup
p∈hnZd
|p|≤Pmax

X(a, τ , p, n)


2l
 ≤ (2Pmax)dT

δnhdn
Cl sup

ε>0
‖ψε0‖

4l
H ‖a‖

2l
C0 ε

βl

≤ C̃ln(2+d−βl)α,

(6.108)

for all l ∈ N. Again, by choosing l large enough and applying a Borel-Cantelli argument,

sup
τ∈δnN∩[0,T ]

sup
p∈hnZd
|p|≤Pmax

X(a, τ , p, n)→ 0 (6.109)

almost surely as n→∞. Because our disorder scaling fulfills √εn+1 ≤
√
ε′ ≤ √εn and

εn+1/εn → 1 as n → ∞, and all bounds in the proof of Theorem 3.1 are uniform in
τ ∈ [0, T ] and |p| ≤ Pmax, it is clear that

lim
n→∞

sup
τ∈[0,T ]

sup
|p|≤Pmax

sup
ε′∈[εn+1,εn]∣∣∣∣E ∫

Rd
dkaσ(k)ψ̂[εn, ε′, τ/εn, σ](k + εnp/2)ψ̂[εn, ε′, τ/εn, σ](k − εnp/2)

−
∫
R2d

µτ ,σ(dx,dk)e2πip·xaσ(k)
∣∣∣∣

= lim
n→∞

sup
τ∈[0,T ]

sup
|p|≤Pmax

sup
ε′∈[εn+1,εn]∣∣∣∣E ∫

Rd
dkaσ(k)ψ̂[εn, ε′, τ/εn, σ](k + εnp/2)ψ̂[εn, ε′, τ/εn, σ](k − εnp/2)

−E
∫
Rd

dkaσ(k)ψ̂[εn, εn, τ/εn, σ](k + εnp/2)ψ̂[εn, εn, τ/εn, σ](k − εnp/2)
∣∣∣∣

= 0.
(6.110)

Finally, because hn, δn → 0, the limit measures µτ fulfill

sup
τ∈[0,T ]

sup
|p|≤Pmax

sup
|τ−τ |≤δn

sup
|p−p|≤hn∣∣∣∣∫

R2d
µτ,σ(dx,dk)e2πip·xaσ(k)−

∫
R2d

µτ ,σ(dx,dk)e2πip·xaσ(k)
∣∣∣∣

→ 0 (n→∞).

(6.111)

Here, the locally time-uniform tightness of the µτ in the x variable was employed to
replace p→ p. The same tightness of µτ in the x variable, as well as the compact support
(and time-uniform non-concentration at 0, due to assumption (3.5)) of µτ in the k variable
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6. Higher moments and almost sure convergence

then allows to approximate the function (x, k) 7→ e2πip·xaσ(k) by a C0
(
Rd × (Rd \ {0})

)
function as introduced in Section 2.3. Finally, the strong time continuity of the semigroup
eLστ , τ ≥ 0 helps to control the error when replacing τ → τ .

From (6.104), (6.109), (6.110) and (6.111) one has for fixed bounded and continuous
a : Rd → C2, and fixed Pmax ∈ [0,∞)

lim
ε→0

sup
τ∈[0,T ]

sup
|p|≤Pmax

∑
σ∈{±}

∣∣∣∣∫
Rd

dkaσ(k)ψ̂[ε, ε, τ/ε, σ](k + εp/2)ψ̂[ε, ε, τ/ε, σ](k − εp/2)

−
∫
R2d

µτ,σ(dx,dk)e2πip·xaσ(k)
∣∣∣∣ = 0

(6.112)

almost surely. The momentum bound Pmax may then be dropped to see that almost
surely

lim
ε→0

sup
τ∈[0,T ]

∑
σ∈{±}

∣∣∣∣∫
Rd

dkaσ(k)ψ̂[ε, ε, τ/ε, σ](k + εp/2)ψ̂[ε, ε, τ/ε, σ](k − εp/2)

−
∫
R2d

µτ,σ(dx,dk)e2πip·xaσ(k)
∣∣∣∣ = 0

(6.113)

for all p ∈ Rd. However, at this point of the proof, the “bad configurations” of the
medium, the exception events Na ⊂ Ω of probability zero, may still depend on a.

To amend this, recall that so far we assume that ψ̂ε0,± is supported in a ball of radius L(0),
and consequently, µτ,±(dx,dk) has no mass on {|k| > L(0)}. By selecting an observable
a± : Rd → [0, 1] such that a±(k) = 0 for |k| ≤ L(0) and a±(k) = 1 for |k| ≥ L(0) + 1,
(6.113) implies that

lim
ε→0

sup
τ∈[0,T ]

∑
σ∈{±}

∫
|k|≥L(0)+1

dk
∣∣∣ψ̂[ε, ε, τ/ε, σ](k)

∣∣∣2 = 0 (6.114)

almost surely. Thus, it suffices to consider bounded and continuous functions a : Rd → C2

which vanish at infinity, which is a separable Banach space with a countable dense set
{a1, a2, ...}. Whenever the realization of the random field is ξω, ω ∈ Ω \ N ′, with
exception event N ′ = ∪∞r=1Nar , P(N ′) = 0, the convergence (6.113) holds for all p ∈ Rd
and all bounded and continuous observables a±. Reasoning as in (4.258) and applying
dominated convergence in the p variable we see that on Ω \N ′,

lim
ε→0

sup
τ∈[0,T ]

∣∣∣〈W ε
[(

e−iHετ/εψε0

)
σ

]
, aσ

〉
− 〈µτ,σ, aσ〉

∣∣∣ = 0 (6.115)

for all a± ∈ FL1(C0). Finally, considering a sequence of initial states (ψε0)ε>0 that only
fulfills (2.162), one can introduce the cut-off L(0), and control the limit L(0) →∞ as in
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Section 4.8.4. The event N ′ = N ′
(
L(0), T

)
depends on the choice of time interval [0, T ]

and cut-off parameter L(0). Equation (3.7) then holds for all ω ∈ Ω \Nex, with

Nex =
⋃
T∈N

⋃
L(0)∈N

N ′
(
L(0), T

)
, P (Nex) = 0. (6.116)

This finishes the proof.

6.3. A counterexample

For d ≥ 2, fix a T > 0, and select φε0 = φ0 ∈ H to be an ε-independent state with
components φ0,σ 6= 0. To simplify our argument, we furthermore assume that φ̂0 has
compact support inside a ball of radius L < ∞ around the origin. It is clear that for
σ ∈ {±} and all observables a ∈ FL1(C0),〈

W ε
[
φε0,σ

]
, a
〉
→
∫
Rd
µ0(dx,dk)a(x, k) = 〈µ0,σ, a〉 (ε↘ 0),

µ0,σ(dx,dk) = δ(x)
∣∣∣φ̂0,σ(k)

∣∣∣2 dxdk.
(6.117)

The initial states φε0 trivially fulfill all assumptions of Theorem 3.3, so if we define

φεT = exp
(

+iHεT

ε

)
φε0, (6.118)

it is almost surely true that the random variable

Yε(a) = max
σ

∣∣∣〈W ε
[
φεT,σ

]
, a
〉
−
〈(

eTL−σ
)∗
µ0,σ, a

〉∣∣∣ (6.119)

vanishes for all a ∈ FL1(C0) in the limit ε↘ 0. Here, it is important to note the sign
of L−σ, which is a result of propagating φε0 backwards in time. As ε↘ 0, the quantity

Zε =
∫
|x|>(T+1)/ε

dx |φεT (x)|2 +
∫
|k|>L+1

dk
∣∣∣φ̂εT (k)

∣∣∣2 (6.120)

also converges to zero almost surely. Let X0 be the space of all a ∈ FL1(C0) such that
â(p, k) → 0 as |k| → ∞ for almost all p ∈ Rd. Because X0 is separable, there exists a
dense, countable subset (am)m∈N. Furthermore, we fix a sequence of δn > 0, n ∈ N, such
that ∑n∈N δn <∞. For ε > 0, define the event

Ωn(ε) = {Yε̃(am) + Zε̃ < δn,∀ε̃ ∈ (0, ε),∀m ∈ {1, ..., n}} , (6.121)

and observe that for any n, Ωn(ε) increases to an event of full probability as ε↘ 0. One
can therefore find a decreasing sequence of (εn)n∈N such that

• εn ↘ 0, as n→∞, and
• P (Ωn(εn)) > 1− δn.
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6. Higher moments and almost sure convergence

The probability space Ω only contains continuous functions Rd → R, and therefore has
at most the same cardinality as R, allowing for a function ω : (0, ε1] → Ω which is a
surjective map

(εn+1, εn]→ Ωn, (6.122)
setting Ωn = Ωn(εn). Now let, for ε ∈ (0, ε1],

ψε0 = exp
(

+iHε
ω(ε)

T

ε

)
φε0, (6.123)

which is not a random state, but deterministic, as we evaluate the random generator Hε

only at a single ω = ω(ε). By construction, for n ∈ N, m ≤ n, ε ∈ (εn+1, εn],∣∣∣〈W ε
[
ψε0,σ

]
, am

〉
−
〈(

eTL−σ
)∗
µ0,σ, am

〉∣∣∣ = Yε(am) [ω(ε)] ≤ δn, (6.124)

because ω(ε) ∈ Ωn. By density of the am in X0, one has

lim
ε→0

〈
W ε

[
ψε0,σ

]
, a
〉

=
〈(

eTL−σ
)∗
µ0,σ, a

〉
(6.125)

for all a ∈ X0. Moreover,∫
|x|>T/ε

dx |ψε0(x)|2 +
∫
|k|>L+1

dk
∣∣∣ψ̂ε0(k)

∣∣∣2 = Zε [ω(ε)]→ 0, (6.126)

as ε → 0, so (6.125) even holds for all a ∈ FL1(C0). Except for the condition (3.6),
the sequence (ψε0)ε∈(0,ε1] fulfills all requirements for initial states in Theorem 3.3. If the
assertion of the theorem were still true, we would almost surely have that

lim
ε→0

〈
W ε

[(
exp

(
−iHεT

ε

)
ψε0

)
σ

]
, a

〉
=
〈(

eTL+σ
)∗ (

eTL−σ
)∗
µ0,σ, a

〉
(6.127)

for all a ∈ X. In fact, however, as ∑n δn <∞, the event

Ω′ = lim inf
n→∞

Ωn (6.128)

has probability P(Ω′) = 1. Thus, for an arbitrary ω ∈ Ω′, there is a N = N(ω) <∞ such
that ω ∈ Ωn for all n ≥ N , and for all n ≥ N one can identify an ε′n = ε′n(ω) ∈ (εn+1, εn]
with ω (ε′n) = ω. Accordingly,

exp
(
−iHε′n

ω

T

ε′n

)
ψ
ε′n
0 = φ

ε′n
0 , (6.129)

for n ≥ N . Concluding, for all ω ∈ Ω′, there is a sequence ε′n(ω) → 0 such that along
this sequence, and for this particular ω,

lim
ε=ε′n(ω)→0

〈
W ε

[(
exp

(
−iHεT

ε

)
ψε0

)
σ

]
, a

〉
= lim
ε=ε′n(ω)→0

〈
W ε

[
φε0,σ

]
, a
〉

= 〈µ0,σ, a〉

(6.130)
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for all a ∈ FL1(C0). As for all T > 0 (and non-vanishing disorder ξ)(
eTL+σ

)∗ (
eTL−σ

)∗
µ0,σ 6= µ0,σ, (6.131)

this constitutes a contradiction to (6.127) on a set of full probability.
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A. Proof of Lemma 2.17

The proof of Lemma 2.17 given here is a modification of the one found in [23], we present
it to account for the differences between the discrete model, [23], and our continuous
setting. As (ψε)ε>0 fulfills conditions (2.160), (2.161) and (2.162), we have from Lemma
2.15 and Lemma 2.16 the existence of a subsequence εn → 0 such that

lim
n→∞

〈W εn [ψεn ] , a〉 =
∫
R2d

µ(dx,dk)a(x, k) (A.1)

for all a ∈ FL1(C0) (not yet XIR). Here, the non-negative, bounded Borel measure µ is
defined on the entire phase space Rdx × Rdk, and µ({k = 0}) need not be zero. Moreover,
we can assume that along the same subsequence (εn),

ε−d/2n ψεn
( ·
εn

)
⇀ η 3 L2(Rd), (n→∞), (A.2)

weakly in L2(Rd). From now on, to keep notation simple, the subsequence (εn) and
further subsequences to be chosen below will be referred to by (ε). For some λ > 0,
performing the infra-red cutoff splits the wave function into three components

ψε = ψε,λ> + ψε,λ< + ηε,λ, (A.3)

with

ψ̂ε,λ> (k) = (1− ϕ(|k|/λ)) ψ̂ε(k),

ψ̂ε,λ< (k) = ϕ(|k|/λ)
(
ψ̂ε(k)− ε−d/2η̂ (k/ε)

)
,

η̂ε,λ(k) = ε−d/2ϕ(|k|/λ)η̂ (k/ε) ,

(A.4)

and ϕ : [0,∞)→ [0, 1] a smooth function such that ϕ(r) = 1 for r ≤ 1 and ϕ(r) = 0 for
r ≥ 2.

Now, let a ∈ XIR. First, consider

〈
W ε[ψε,λ> ], a

〉
XIR

=
∫
Rd

dp
(∫

Rd
dkâ

(
p, k,

k

ε

)
ψ̂ε,λ>

(
k + εp

2

)
ψ̂ε,λ>

(
k − εp

2

))
, (A.5)

and note that on the support of the integrand, |k| ≥ λ− ε|p|/2, so by Definition 2.2 and
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A. Proof of Lemma 2.17

dominated convergence in the p variable,

lim
ε→0

〈
W ε[ψε,λ> ], a

〉
XIR

= lim
ε→0

∫
Rd

dp
(∫

Rd
dkb̂

(
p, k,

k

|k|

)
ψ̂ε,λ>

(
k + εp

2

)
ψ̂ε,λ>

(
k − εp

2

))

= lim
ε→0

∫
Rd

dp
∫
Rd

dkb̂
(
p, k,

k

|k|

)
(1− ϕ(|k + εp/2|/λ)) (1− ϕ(|k − εp/2|/λ)) ψ̂ε

(
k + εp

2

)
ψ̂ε
(
k − εp

2

)
= lim
ε→0

∫
Rd

dp
∫
Rd

dkb̂
(
p, k,

k

|k|

)
(1− ϕ(|k|/λ))2 ψ̂ε

(
k + εp

2

)
ψ̂ε
(
k − εp

2

)
,

(A.6)

with the last line equal to W ε[ψε] being tested against an ordinary FL1(C0) function.
Thus, from (A.1),

lim
ε→0

〈
W ε[ψε,λ> ], a

〉
XIR

=
∫
R2d

µ(dx,dk)b
(
x, k,

k

|k|

)
(1− ϕ(|k|/λ))2 . (A.7)

Next, with f ε,λ being either of ψε,λ< or ηε,λ, for cross-terms like∫
Rd

dp
(∫

Rd
dkâ

(
p, k,

k

ε

)
ψ̂ε,λ>

(
k + εp

2

)
f̂ ε,λ

(
k − εp

2

))
, (A.8)

one has on the support of the integrand

λ ≤ |k + εp/2| ≤ 2λ+ ε|p|, (A.9)

and thus, again by dominated convergence in p,

lim
ε→0

∣∣∣∣∣
∫
Rd

dp
(∫

Rd
dkâ

(
p, k,

k

ε

)
ψ̂ε,λ>

(
k + εp

2

)
f̂ ε,λ

(
k − εp

2

))∣∣∣∣∣
2

≤lim
ε→0
‖a‖XIR

∥∥∥f̂ ε,λ∥∥∥2

L2

∫
Rd

dp sup
k′,k′′

∣∣â (p, k′, k′′)∣∣ ∫
Rd

dk1 (λ ≤ |k| ≤ 2λ+ ε|p|)
∣∣∣ψ̂ε(k)

∣∣∣2
≤4 ‖a‖2XIR

lim
ε→0
‖ψε‖2L2

∫
Rd

dk1 (λ ≤ |k| ≤ 3λ)
∣∣∣ψ̂ε(k)

∣∣∣2
≤4 ‖a‖2XIR

(
lim
ε→0
‖ψε‖2L2

)∫
R2d

µ(dx,dk)1 (λ ≤ |k| ≤ 3λ) ,

(A.10)

where we used Lemma 2.16 in the last line. Then, by dominated convergence in k,

lim
λ→0

lim
ε→0

∣∣∣∣∣
∫
Rd

dp
(∫

Rd
dkâ

(
p, k,

k

ε

)
f̂ ε,λ

(
k + εp

2

)
ψ̂ε,λ>

(
k − εp

2

))∣∣∣∣∣
= lim
λ→0

lim
ε→0

∣∣∣∣∣
∫
Rd

dp
(∫

Rd
dkâ

(
p, k,

k

ε

)
ψ̂ε,λ>

(
k + εp

2

)
f̂ ε,λ

(
k − εp

2

))∣∣∣∣∣ = 0.
(A.11)
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Now, we substitute k = k/ε in〈
W ε

[
ηε,λ

]
, a
〉
XIR

= ε−d
∫
Rd

dp
∫
Rd

dkâ
(
p, k,

k

ε

)
ϕ

( |k + εp/2|
λ

)
ϕ

( |k − εp/2|
λ

)
η̂

(
k + εp/2

ε

)
η̂

(
k − εp/2

ε

)
=
∫
Rd

dp
∫
Rd

dkâ (p, εk, k)ϕ
( |εk + εp/2|

λ

)
ϕ

( |εk − εp/2|
λ

)
η̂ (k + p/2)η̂ (k − p/2) .

(A.12)

For any fixed λ > 0, we thus have

lim
ε→0

〈
W ε

[
ηε,λ

]
, a
〉
XIR

=
∫
Rd

dp
∫
Rd

dkâ (p, 0, k) η̂ (k + p/2)η̂ (k − p/2)

= 〈W [η], a(·, 0, ·)〉 .
(A.13)

In the only remaining cross-term, the one between ψε,λ< and ηε,λ, the same substitution
k = k/ε produces

ε−d
∫
Rd

dp
∫
Rd

dkâ
(
p, k,

k

ε

)
ϕ

( |k + εp/2|
λ

)
η̂

(
k + εp/2

ε

)
ϕ

( |k − εp/2|
λ

)(
εd/2ψ̂ε (k − εp/2)− η̂

(
k − εp/2

ε

))
=
∫
Rd

dp
∫
Rd

dkâ (p, εk, k)ϕ
( |εk + εp/2|

λ

)
η̂ (k + p/2)

ϕ

( |εk − εp/2|
λ

)(
εd/2ψ̂ε (εk − εp/2)− η̂ (k − p/2)

)
.

(A.14)

For fixed p ∈ Rd, and λ > 0, it is immediate from (A.2) that the function

ϕ

( |εk − εp/2|
λ

)(
εd/2ψ̂ε (εk − εp/2)− η̂ (k − p/2)

)
⇀ 0 (ε→ 0) (A.15)

weakly in L2(Rdk), while

â (p, εk, k)ϕ
( |εk + εp/2|

λ

)
η̂ (k + p/2)→ â (p, 0, k) η̂ (k + p/2) (ε→ 0) (A.16)

strongly in L2(Rdk). By dominated convergence for the p integral, (A.14) thus vanishes
for ε→ 0 for every fixed positive λ. We are now left with analyzing the limit of〈

W ε
[
ψε,λ<

]
, a
〉
XIR

=εd
∫
Rd

dp
∫
Rd

dkâ (p, εk, k) ψ̂ε,λ< (εk + εp/2)ψ̂ε,λ< (εk − εp/2)
(A.17)
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A. Proof of Lemma 2.17

for a ∈ XIR. As noted before, for every fixed λ > 0, the function

ŵε,λ(q) = εd/2ψ̂ε,λ< (εq) = ϕ

( |εq|
λ

)(
εd/2ψ̂ε (εq)− η̂ (q)

)
(A.18)

converges to 0 weakly in L2(Rdq). Moreover, it is tight on position space, which can be
readily seen from the representation

wε,λ(x) = ε−d/2ψε,λ< (x/ε) =
(
λ

ε

)d ∫
Rd

dyχ
(
λ|x− y|

ε

)(
ε−d/2ψε (y/ε)− η (y)

)
, (A.19)

with a fixed function χ ∈ S(Rd), and (2.161). From Lemma A.2, [23], we have for any
subset B ⊂ Rd with bounded Lebesgue measure that

lim
ε→∞

∥∥∥ŵε,λ∥∥∥
L2(B)

= 0, (A.20)

while λ > 0 remains fixed. Accordingly, for

ŵε,λ,M (q) =
(

1− ϕ
( |q|

2M

))
ŵε,λ(q) (A.21)

and any λ,M ∈ (0,∞) fixed,

lim
ε→0

∣∣∣∣∫
Rd

dp
∫
Rd

dkâ (p, εk, k) ŵε,λ(k + p/2)ŵε,λ(k − p/2)

−
∫
Rd

dp
∫
Rd

dkâ (p, εk, k) ŵε,λ,M (k + p/2)ŵε,λ,M (k − p/2)
∣∣∣∣ = 0

(A.22)

by (2.160). On the other hand, by definition of XIR,

lim
M→∞

sup
ε,λ

∣∣∣∣∫
Rd

dp
∫
Rd

dkâ (p, εk, k) ŵε,λ,M (k + p/2)ŵε,λ,M (k − p/2)

−
∫
|p|≤M

dp
∫
Rd

dkâ (p, εk, k) ŵε,λ,M (k + p/2)ŵε,λ,M (k − p/2)
∣∣∣∣∣ = 0.

(A.23)

On the support of the integrand in the last line of (A.23), M ≤ k ≤ λ/ε, so

lim
λ→0

sup
ε,M

∣∣∣∣∣
∫
|p|≤M

dp
∫
Rd

dkâ (p, εk, k) ŵε,λ,M (k + p/2)ŵε,λ,M (k − p/2)

−
∫
|p|≤M

dp
∫
Rd

dkâ (p, 0, k) ŵε,λ,M (k + p/2)ŵε,λ,M (k − p/2)
∣∣∣∣∣ = 0,

(A.24)
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as well as

lim
M→∞

sup
ε,λ

∣∣∣∣∣
∫
|p|≤M

dp
∫
Rd

dkâ (p, 0, k) ŵε,λ,M (k + p/2)ŵε,λ,M (k − p/2)

−
∫
|p|≤M

dp
∫
Rd

dkb̂
(
p, 0, k

|k|

)
ŵε,λ,M (k + p/2)ŵε,λ,M (k − p/2)

∣∣∣∣∣ = 0.

(A.25)

The last line clearly defines a bounded linear functional on the separable Banach space
C of all functions c : Rd × Sd−1 → C such that the Fourier transform in the first variable
ĉ fulfills, ĉ ∈ L1(Rd;C0(Sd−1)), by〈

c, Λε,λ,M
〉

=
∫
|p|≤M

dp
∫
Rd

dkĉ
(
p,

k

|k|

)
ŵε,λ,M (k + p/2)ŵε,λ,M (k − p/2). (A.26)

The functionals Λε,λ,M are uniformly bounded by

sup
ε,λ,M

∣∣∣〈c, Λε,λ,M〉∣∣∣ ≤ 4
(∫

Rd
dp sup
|k|=1

|̂c(p, k)|
)

sup
ε>0
‖ψε‖2L2 . (A.27)

Therefore, by the Banach-Alaoglu theorem, there is, for each choice of λ and M , a
subsequence of ε → 0 such that along this subsequence Λε,λ,M ∗

⇀ Λλ,M in C∗, then,
for each choice of λ there is a subsequence of M → ∞ such that Λλ,M ∗

⇀ Λλ along
this subsequence, and finally, along a subsequence λ → 0, one has Λλ ∗

⇀ Λ. One can
show as in [23] that Λ is given by a non-negative Borel measure µH on Rd × Sd−1. By
diagonalization there is a subsequence λm → 0 and a subsequence ε′n → 0 independent
of it such that

lim
λm→0

lim
ε′n→0

〈
W ε′n

[
ψ
ε′n,λm
<

]
, a
〉
XIR

=
∫
Rd×Sd−1

µH(dx,dk)b(x, 0, k). (A.28)

Together with (A.13) and the λ→ 0 limit of (A.7), this is just the right side of (2.186).
So far, we have verified that there do exist subsequences W ε[ψε] that converge weak-* in
XIR

∗, and that their limit point are of the form (2.186). That all limit points are of this
form is shown by applying the same reasoning to an arbitrary convergent subsequence,
and noting that there are sub-subsequences along which the limit object has to be of the
above (µ, µH, η) kind.
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B. The two-resolvent integral

Lemma B.1. For all dimensions d ≥ 2 there is a constant Cd such that for all γ ∈ (0, 1],
α1,2 ∈ R, and u ∈ Rd \ {0}, q ∈ Rd,∫

Rd
dk 1
|α1 − 2π|k|+ iγ| |α2 − 2π|k − u|+ iγ| 〈k〉2 〈k − u〉2 〈k − q〉d−3 ≤

Cd
|u|

〈log γ〉2√
〈α1〉 〈α2〉

,

(B.1)
for d ≥ 3, while for d = 2∫

R2
dk 1
|α1 − 2π|k|+ iγ| |α2 − 2π|k − u|+ iγ| 〈k〉2 〈k − u〉2

≤ C2 〈log γ〉√
γ|u|

√
〈α1〉 〈α2〉

. (B.2)

Proof. Let P be the projection on span{u}⊥, and note that

k 7→
(
|k|, |k − u|, Pk

|Pk|

)
= (ρ1, ρ2, ω) (B.3)

is a diffeomorphism from Rd \ span{u} to {ρ1, ρ2 : |ρ1 − ρ2| < |u| < ρ1 + ρ2}×Sd−2 with

dk = ρ1ρ2
|u|

yd−3dρ1dρ2dω, (B.4)

where y = |Pk|. As, for d ≥ 3,

y(ρ1, ρ2)d−3
∫
Sd−2

dω 〈k(ρ1, ρ2, ω)− q〉−d+3 ≤ C ′d (B.5)

with C ′d independent of q and ρ1, ρ2,∫
Rd

dk 1
|α1 − 2π|k|+ iγ| |α2 − 2π|k − u|+ iγ| 〈k〉2 〈k − u〉2 〈k − q〉d−3

≤ C
′
d

|u|

∫ ∞
0

dρ1

∫ ∞
0

dρ2
1

|α1 − 2πρ1 + iγ| |α2 − 2πρ2 + iγ| 〈ρ1〉 〈ρ2〉

≤ Cd
|u|

〈log γ〉2√
〈α1〉 〈α2〉

.

(B.6)

For d = 2, we cut out the y−1 singularity and obtain∫
R2,y>δ

dk 1
|α1 − 2π|k|+ iγ| |α2 − 2π|k − u|+ iγ| 〈k〉2 〈k − u〉2

≤ 2
|u|δ

∫ ∞
0

dρ1

∫ ∞
0

dρ2
1

|α1 − 2πρ1 + iγ| |α2 − 2πρ2 + iγ| 〈ρ1〉 〈ρ2〉

≤ C

|u|δ
〈log γ〉2√
〈α1〉 〈α2〉

,

(B.7)
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B. The two-resolvent integral

while ∫
R2,y≤δ

dk 1
|α1 − 2π|k|+ iγ|2 〈k〉4

≤ Cδ
∫ ∞

0

dρ
|α1 − 2πρ+ iγ|2 〈ρ〉4

≤ C δ

γ 〈α1〉2
.

(B.8)

By Cauchy-Schwarz, we obtain for δ =
√
γ/|u| 〈log γ〉∫

R2
dk 1
|α1 − 2π|k|+ iγ| |α2 − 2π|k − u|+ iγ| 〈k〉2 〈k − u〉2

≤ C2 〈log γ〉√
γ|u|

√
〈α1〉 〈α2〉

. (B.9)

Lemma B.2. For all dimensions d ≥ 2, there is a finite constant C̃d such that for all
α ∈ R and uniformly in u, q ∈ Rd,∫

Rd

dk
|k − u| |α− 2π|k|+ iγ| 〈k〉2 〈k − q〉d−3 ≤

C̃d 〈log γ〉√
〈α〉

(B.10)

if d ≥ 3, and ∫
R2

dk√
|k − u| |α− 2π|k|+ iγ| 〈k〉2

≤ C̃2 〈log γ〉
〈α〉

(B.11)

if d = 2.

Proof. For d ≥ 3, with the substitution (B.3) for k,∫
Rd

dk
|k − u| |α− 2π|k|+ iγ| 〈k〉2 〈k − q〉d−3

≤ C
′
d

|u|

∫ ∞
0

dρ1

∫ ρ1+|u|

|ρ1−|u||
dρ2

ρ1ρ2

ρ2 |α− 2πρ1 + iγ| 〈ρ1〉2

≤ 2C ′d
∫ ∞

0

dρ1
|α− 2πρ1 + iγ| 〈ρ1〉

≤ C̃d 〈log γ〉√
〈α〉

,

(B.12)

while for d = 2, the estimate∫
R2

dk√
|k − u| |α− 2π|k|+ iγ| 〈k〉2

≤ C
∫ ∞

0

dρ
|α− 2πρ+ iγ| 〈ρ〉3/2

≤ C̃2 〈log γ〉
〈α〉

(B.13)

follows for all u directly from

sup
u∈R2

∫
R2

dkδ(|k| − r)√
|k − u|

≤ C
√
r. (B.14)
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C. Oscillatory integrals

Lemma C.1. For a space dimension d, let m, r, β ∈ N, with β ≤ d and m ≥ d+ r + 1
and φ : Rd → C such that ∣∣∣∣∣ ∂β∂qβ φ(q)

∣∣∣∣∣ ≤ Cφ 〈q〉−m (C.1)

for all multi-indices β with |β| ≤ β. Assume f : R2d → C has radial derivatives with
respect to p such that ∣∣∣∣ ∂n∂|p|n

f(k, p)
∣∣∣∣ ≤ Cf (k) 〈k − p〉r (C.2)

for all p, k ∈ Rd, and all n ≤ β. Then, there is a Cβ,d depending only on β, d such that

I(k) =
∫
Rd

dpφ(k − p)f(k, p)e−2πi|p|s (C.3)

is bounded by
|I(k)| ≤ Cd,βCφCf (k) 〈s〉−β . (C.4)

Proof. Observe that for

Ĩ(k, ρ) =
∫
Rd

dpδ(|p| − ρ)φ(k − p)f(k, p) (C.5)

and all n ≤ β − 1,∣∣∣∣ ∂n∂ρn Ĩ(k, ρ)
∣∣∣∣ ≤ Cd,βCφCf (k)

(
ρ

〈ρ〉

)d−1−n
〈|k| − ρ〉−m+d+r−1/2 , (C.6)

while for n = β ∣∣∣∣∣ ∂β∂ρβ Ĩ(k, ρ)
∣∣∣∣∣ ≤ Cd,βCφCf (k) 〈|k| − ρ〉−m+d+r−1/2 . (C.7)

Therefore, whenever m ≥ d + r + 1 and s 6= 0, one can perform β − 1 integrations by
parts on the right side of

I(k) =
∫ ∞

0
dρĨ(k, ρ)e−2πiρs (C.8)

without obtaining boundary terms, and then an β-th integration by parts yields the
estimate

|I(k)| ≤ Cd,βCφCf (k)|s|−β. (C.9)
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C. Oscillatory integrals

Together with the trivial estimate

|I(k)| ≤
∫
Rd

dp |φ(k − p)f(k, p)| ≤ Cd,βCφCf (k), (C.10)

the lemma is proven after redefining Cβ,d.

Lemma C.2. In addition to the assumptions of the previous Lemma C.1, let d ≥ β = 2.
Then for α ∈ R, n ∈ N and 0 < γ1 ≤ ... ≤ γn ≤ 1, one has, for all k ∈ Rd,

sup
α∈R,σ∈{±}

∣∣∣∣∫
Rd

dp φ(k − p)f(k, p)
(α+ iγ1 − 2πσ|p|)

∣∣∣∣ ≤ CdCφCf (k) (C.11)

for n = 1,

sup
α∈R,σ∈{±}

∣∣∣∣∫
Rd

dp φ(k − p)f(k, p)
(α+ iγ1 − 2πσ|p|)(α+ iγ2 − 2πσ|p|)

∣∣∣∣ ≤ CdCφCf (k) 〈log γ1〉 (C.12)

for n = 2, and

sup
α∈R,σ∈{±}

∣∣∣∣∫
Rd

dp φ(k − p)f(k, p)
(α+ iγ1 − 2πσ|p|) · · · (α+ iγn − 2πσ|p|)

∣∣∣∣ ≤ CdCφCf (k)γ2−n
1 (C.13)

for n ≥ 3, with constants Cφ and Cf (k) defined as before, and Cd just depending on
dimension d ≥ 2. The analogue estimates hold for 0 > γ1 ≥ ... ≥ γn.

Proof. For the case of all γl > 0,
n∏
l=1

i

α+ iγl − 2πσ|p| =
∫
Rn+

ds
n∏
l=1

exp ((iα− γl − 2πiσ|p|)sl) , (C.14)

and thus, by Fubini’s theorem and Lemma C.1∣∣∣∣∫
Rd

dp φ(k − p)f(k, p)
(α+ iγ1 − 2πσ|p|) · · · (α+ iγn − 2πσ|p|)

∣∣∣∣
≤ Cd,2CφCf (k)

∫
Rn+

ds exp
(
−γ1

n∑
l=1

sl

)〈
n∑
l=1

sl

〉−2

= Cd,2CφCf (k) 1
(n− 1)!

∫ ∞
0

duu
n−1

〈u〉2
e−γ1u.

(C.15)

The integral is bounded by a constant C for n = 1 and by C 〈log γ1〉 for n = 2. For
n ≥ 3, we can estimate it by∫ ∞

0
duun−3e−γ1u = γ2−n

1

∫ ∞
0

dxxn−3e−x = γ2−n
1 (n− 3)! (C.16)
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Lemma C.3. Let d ≥ 2 and φ : Rd → C with a constant Cφ < ∞ and an m ≥ d + 1
such that ∣∣∣∣ ∂α∂qαφ(q)

∣∣∣∣ ≤ Cφ 〈q〉−m (C.17)

for all multiindices with 0 ≤ |α| ≤ 4. For some n ∈ N, similar to Definition 4.2, let

·̌ : {1, ...n} → {0, ..., n} (C.18)

be a map free of fixed points or cycles, i.e. it can be interpreted as mapping each element
of {1, ...n} to its parent, with 0 the common ancestor of all l ∈ {1, ...n}. Furthermore,
let functions fl :

(
Rd \ {0}

)2
→ C, l ∈ {1, ...n} be given which are not necessarily

differentiable, but have up to second radial derivatives,

sup
x,y 6=0

max
0≤k≤2

∣∣∣∣∣ ∂k∂|x|k
fl(x, y)

∣∣∣∣∣ ≤ Cfl (l ∈ {1, ..., n}, ľ = 0) (C.19)

and

sup
x,y 6=0

max
0≤j,k≤2

∣∣∣∣∣ ∂j∂|x|j
∂k

∂|y|k
fl(x, y)

∣∣∣∣∣ ≤ Cfl (l ∈ {1, ..., n}, ľ 6= 0) (C.20)

with constants Cfl < ∞. Then independently of the exact structure of ·̌, there is a
Cd <∞ only depending on dimension d such that

sup
q0∈Rd

∣∣∣∣∣
∫
Rdn

dq1...dqn
n∏
l=1

(
φ
(
ql − qľ

)
fl
(
ql, qľ

)
e−2πibl|ql|

)∣∣∣∣∣ ≤ CndCnφ
n∏
l=1

(
Cfl 〈bl〉

−2
)
(C.21)

for all b1, ..., bn ∈ R.

Proof. For L ∈ {0, ..., n}, define the set of children

L =
{
l ∈ {1, ..., n} : ľ = L

}
(C.22)

and similarly the set of grandchildren L and so forth. The set of all descendants of L is
given as

KL = L ∪ L ∪ ... (C.23)

After relabeling we can assume that 0 = {1, ..., r}, 1 ≤ r ≤ n and observe that the
integral factorizes∫

Rdn
dq1...dqn

n∏
l=1

(
φ
(
ql − qľ

)
fl
(
ql, qľ

)
e−2πibl|ql|

)
=

r∏
j=1

∫
Rd

dqjfj (qj , q0)φ (qj − q0) e−2πibj |qj |Hj (qj) ,
(C.24)

203



C. Oscillatory integrals

with
Hj (qj) =

∫
Rd|Kj |

∏
l∈Kj

(
dqlφ

(
ql − qľ

)
fl
(
ql, qľ

)
e−2πibl|ql|

)
. (C.25)

For each j ∈ {1, ..., r}, first integrate out the angular part of qj to obtain for ρ ∈ [0,∞)

Fj(ρ) =
∫
Rd

dqjδ (|qj | − ρ) fj (qj , q0)φ (qj − q0)Hj (qj) , (C.26)

and observe that there is a constant Cd depending only on dimension d such that for
k = 0, 1, 2
∣∣∣∣∣ ∂k∂ρkFj(ρ)

∣∣∣∣∣ ≤ CdCφCfj
(
ρ

〈ρ〉

)(d−1−k)+

〈ρ− |q0|〉−m+d−1/2

sup
qj

2∑
β=0

∣∣∣∣∣ ∂β

∂|qj |β
Hj(qj)

∣∣∣∣∣
 .

(C.27)
We therefore can conduct two integrations by parts of∫ ∞

0
dρFj(ρ)e−2πiρbj , (C.28)

the first one leaving no boundary terms. As in the proof of Lemma C.1, this yields (with
a new constant Cd)∣∣∣∣∫

Rd
dqjfj (qj , q0)φ (qj − q0) e−2πibj |qj |Hj (qj)

∣∣∣∣
≤ CdCφCfj

sup
qj

2∑
β=0

∣∣∣∣∣ ∂β

∂|qj |β
Hj(qj)

∣∣∣∣∣
 〈bj〉−2

(C.29)

for all j ∈ {1...r}. On the right side of the last equation one can estimate

sup
qj

2∑
β=0

∣∣∣∣∣ ∂β

∂|qj |β
Hj(qj)

∣∣∣∣∣
≤ C sup

qj

∑
α,β∑

l
(αl+βl)≤2

∣∣∣∣∣∣∣
∫
Rd|Kj |

∏
l∈j

(
dql

[
∂αl|qj |φ (ql − qj)

] [
∂βl|qj |fl (ql, qj)

]
e−2πibl|ql|

)

∏
l∈Kj\j

(
dqlφ

(
ql − qľ

)
fl
(
ql, qľ

)
e−2πibl|ql|

)∣∣∣∣∣∣∣
(C.30)

with a universal constant C. The number of summands in the sum on the right side is
bounded by C

(
|j|+ 1

)2
, while the integral can be estimated in the same fashion as the
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original integral on the left side of (C.24). Iterating this procedure (note that only up to
fourth derivatives of φ will be taken), one is left with the estimate∣∣∣∣∣

∫
Rdn

dq1...dqn
n∏
l=1

(
φ
(
ql − qľ

)
fl
(
ql, qľ

)
e−2πibl|ql|

)∣∣∣∣∣ ≤ CndCnφ
n∏
l=1

(
(|l|+ 1)2Cfl 〈bl〉

−2
)

(C.31)
with some Cd only depending on d. This already almost looks like (C.21). The factor∏
l(|l|+ 1)2 can be absorbed into the choice of Cd after deducing from

n∑
l=1
|l| ≤ n (C.32)

that
n∏
l=1

(|l|+ 1) ≤ 2n. (C.33)

Lemma C.4. (On-shell scattering.) Let d ≥ 2, m ∈ N and R(1), ..., R(m) ∈ N0 be given.
For functions φ as in (C.17) and f (j)

l , (j ∈ {1, ...,m}, l ∈ {1, ..., R(j)}) as in (C.20), set

I
(
q

(1)
0

)
=
∫
R|R|

m∏
j=1

R(j)∏
l=1

db(j)l
∫
R|R|d

m∏
j=1

R(j)∏
l=1

dq(j)
l

m∏
j=1

R(j)∏
l=1

(
exp

(
2πi

(∣∣∣q(j)
l

∣∣∣− ∣∣∣q(j)
0

∣∣∣) b(j)l )φ (q(j)
l − q

(j)
l−1

)
f

(j)
l

(
q

(j)
l , q

(j)
l−1

))
,

(C.34)

with q(1)
0 ∈ Rd \ {0} arbitrary and

q
(j)
0 = q

(j−1)
R(j−1) (C.35)

for all j ≥ 2. Then

I
(
q

(1)
0

)
=
∫
R|R|d

m∏
j=1

R(j)∏
l=1

(
dq(j)
l δ

(∣∣∣q(j)
l

∣∣∣− ∣∣∣q(j)
0

∣∣∣)φ (q(j)
l − q

(j)
l−1

)
f

(j)
l

(
q

(j)
l , q

(j)
l−1

))
. (C.36)

Proof. We only treat the case R(j) > 0 for all j. After taking the q(j)
l integrals, Lemma

C.3 implies a decay of the form

m−1∏
j=1

〈b(j)
R(j) +

R(j+1)∑
l′=1

b
(j+1)
l′

〉−2
R(j)−1∏
l=1

〈
b
(j)
l

〉−2

R(m)∏
l′′=1

〈
b
(m)
l′′

〉−2
, (C.37)
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C. Oscillatory integrals

so by dominated convergence,

I
(
q

(1)
0

)
= lim

β
(j)
l
↘0

∀j,l

∫
R|R|

m∏
j=1

R(j)∏
l=1

db(j)l exp
(
−β(j)

l

∣∣∣b(j)l ∣∣∣) ∫
R|R|d

m∏
j=1

R(j)∏
l=1

dq(j)
l

m∏
j=1

R(j)∏
l=1

(
exp

(
2πi

(∣∣∣q(j)
l

∣∣∣− ∣∣∣q(j)
0

∣∣∣) b(j)l )φ (q(j)
l − q

(j)
l−1

)
f

(j)
l

(
q

(j)
l , q

(j)
l−1

))
,

(C.38)

where the limits can be taken in arbitrary order. Now, by Fubini’s theorem, the b(j)l
integrals can be evaluated first, leaving us with

lim
β

(j)
l
↘0

∀j,l

∫
R|R|d

m∏
j=1

R(j)∏
l=1

 2β(j)
l dq(j)

l

(β(j)
l )2 + 4π2

(∣∣∣q(j)
l

∣∣∣− ∣∣∣q(j)
0

∣∣∣)2φ
(
q

(j)
l − q

(j)
l−1

)
f

(j)
l

(
q

(j)
l , q

(j)
l−1

) .
(C.39)

By the continuity and decay properties of the integrand, all β(j)
l ↘ 0 limits can be taken

to immediately obtain (C.36).
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D. The gate function

Definition D.1. For k ∈ Rd, w ∈ C \ R, σ1, σ2 ∈ {−1, 1} and L ∈ R, define

hσ1σ2 (k,w) = iπ2 ∑
σ′∈{±1}

∫
Rd

dk′ ĝ2(k − k′)
w − 2πσ′ |k′|

(
σ′|k|+ σ1|k′|

) (
σ′|k|+ σ2|k′|

)
(D.1)

and

hσ1σ2 (k,w;L) = iπ2 ∑
σ′∈{±1}

∫
Rd

dk′ ĝ2(k − k′)
w − 2πσ′ |k′|

(
σ′|k|+ σ1|k′|

) (
σ′|k|+ σ2|k′|

)
× Φ(k, k′, L).

(D.2)

Lemma D.1. Write w = α+ iγ with α, γ ∈ R, |γ| ∈ (0, 1], assume that d ≥ 2 and that
for all multi-indices ν with 0 ≤ |ν| ≤ 3,∣∣∣∣ ∂ν∂qν ĝ2(q)

∣∣∣∣ ≤ C̃g2 〈q〉
−d−3 . (D.3)

Then there is a constant Cg2,d only depending on dimension d and the function g2 such
that

sup
α,γ,σ1,σ2

|hσ1σ2 (k, α+ iγ)| ≤ Cg2,d 〈k〉
2 , (D.4)

sup
α,γ,σ1,σ2

|∇khσ1σ2 (k, α+ iγ)| ≤ Cg2,d 〈k〉
2 , (D.5)

sup
α,σ1,σ2

∣∣∣∣ ∂∂αhσ1σ2 (k, α+ iγ)
∣∣∣∣ ≤ Cg2,d 〈k〉

2 〈log γ〉 , (D.6)

and
sup

α,σ1,σ2

∣∣∣∣ ∂∂γhσ1σ2 (k, α+ iγ)
∣∣∣∣ ≤ Cg2,d 〈k〉

2 〈log γ〉 . (D.7)

Note that the first two bounds are independent of γ as long as γ 6= 0. All estimates are
valid for hσ1σ2 (k,w;L) as well, with the factor 〈k〉2 replaced by 〈L〉2.

Proof. We only show the case without cut-off, the cut-off case being similar. All four
estimates are a consequence of Lemma C.2. The role of f is played by

f(k, k′) =
(
σ′|k|+ σ1|k′|

) (
σ′|k|+ σ2|k′|

)
(D.8)
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D. The gate function

or by any of the components of the gradient,

fj(k, k′) = ∂

∂kj
f(k, k′). (D.9)

As

|∂n|k′|f(k, k′)| ≤ (〈k〉+
〈
k′
〉
)2,

|∂n|k′|fj(k, k′)| ≤ (〈k〉+
〈
k′
〉
),

(D.10)

for all radial k′ derivatives, n ∈ N0, the bound (C.2) is applicable with Cf (k) = 4 〈k〉2
and r = 2. Now, (D.4) and (D.5) follow from (C.11) with φ = ∂ν ĝ2 for any multiindices
ν with 0 ≤ |ν| ≤ 1.
As hσ1σ2 (k,w) is holomorophic in w, to estimate the left hand sides of (D.6) and (D.7)
it suffices to consider the w = α+ iγ derivative, which is

∂

∂w
hσ1σ2 (k,w) = −iπ2 ∑

σ′∈{±1}

∫
Rd

dk′ ĝ2(k − k′)
(w − 2πσ′ |k′|)2

(
σ′|k|+ σ1|k′|

) (
σ′|k|+ σ2|k′|

)
=− iπ2 ∑

σ′∈{±1}

∫
Rd

dk′ ĝ2(k − k′)
(α+ iγ − 2πσ′ |k′|)2

(
σ′|k|+ σ1|k′|

) (
σ′|k|+ σ2|k′|

)
,

(D.11)

and apply (C.12) with f as above and φ = ĝ2.

Lemma D.2. If there is a finite constant Cg2 such that

|ĝ2(q)| ≤ Cg2 〈q〉
−d−1 , (D.12)

there is a C < ∞ depending only on g2 and dimension d ≥ 2, such that for all k ∈ Rd
and γ ∈ (0, 1],

sup
σ∈{±1}

|h+− (k, 2πσ|k|+ iγ)| ≤ C(|k|+ γ)

sup
L,σ
|h+− (k, 2πσ|k|+ iγ;L)| ≤ C(|k|+ γ),

(D.13)

and likewise for h−+.

Proof. Without loss of generality, choose σ = 1 and focus on the h+− terms without
cutoff,

h+− (k, 2π|k|+ iγ) = 2iπ2(2π|k|+ iγ)
∫
Rd

dk′ 4π
2ĝ2(k − k′)

(
|k|2 − |k′|2

)
(2π|k|+ iγ)2 − (2π |k′|)2 , (D.14)
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so

|h+− (k, 2π|k|+ iγ)| ≤ C ′(|k|+ γ) ‖ĝ2‖L1

+ C ′γ(|k|+ γ)2
∫
Rd

dk′ ĝ2(k − k′)
|4π2|k|2 − γ2 + 4πiγ|k| − 4π|k′|2|

≤ C ′′(|k|+ γ)

+ C ′′γ(|k|+ γ)2
∫ ∞

0
dρ ρ

〈ρ〉 〈ρ− 2π|k|〉 |4π2|k|2 − γ2 + 4πiγ|k| − ρ2|
≤ C(|k|+ γ),

(D.15)

with constants only depending on dimension d. A fortiori, the same estimate is valid for
the cut-off case.

While the off-diagonal components h+− and h−+ are small in the above sense, the
diagonal components of h have a non-trivial limit.

Lemma D.3. Under the conditions of Lemma D.1, let σ ∈ {±1}. There is a function
Θσ : Rd → C such that

lim
γ↘0

hσσ (k, 2πσ|k|+ iγ) = Θσ(k) (D.16)

for all k ∈ Rd. There is a constant C only depending on d and g2 such that

|Θσ(k)| ≤ C|k| 〈k〉 (D.17)

and
|Θσ(k1)−Θσ(k2)| ≤ C(〈k1〉2 + 〈k2〉2)|k1 − k2| 〈log |k1 − k2|〉 (D.18)

for all k, k1, k2 ∈ Rd.

Proof. From (D.7), we directly obtain for 1 ≥ γ ≥ γ′ > 0 that∣∣hσσ (k, 2πσ|k|+ iγ)− hσσ
(
k, 2πσ|k|+ iγ′

)∣∣ ≤ C 〈k〉2 γ 〈log γ〉 , (D.19)

which proves the existence of the limit Θσ(k) as well as the estimate

|hσσ (k, 2πσ|k|+ iγ)−Θσ(k)| ≤ C 〈k〉2 γ 〈log γ〉 . (D.20)

The bound (D.17) is a direct consequence of (D.4) for large k, while for k close to zero,
one has by (D.5)

|hσσ (k, 2πσ|k|+ iγ)| ≤ |hσσ (0, 0 + iγ)|+ C|k|, (D.21)

which yields the assertion after observing that

|hσσ (0, 0 + iγ)| ≤ Cγ. (D.22)
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D. The gate function

Finally, regarding the continuity of Θσ, set γ = |k1 − k2| in

|Θσ(k1)−Θσ(k2)| ≤ |hσσ (k1, 2πσ|k1|+ iγ)− hσσ (k2, 2πσ|k2|+ iγ)|
+ C(〈k1〉+ 〈k2〉)2γ 〈log γ〉
≤C(〈k1〉+ 〈k2〉)2 (〈log γ〉 ||k1| − |k2||+ |k1 − k2|+ γ 〈log γ〉) ,

(D.23)

in which we have used (D.5) and (D.6).

Lemma D.4. Under the conditions of Lemma D.1, for all k ∈ Rd,

Θ−(k) = Θ+(k) (D.24)

and
2ReΘ+(k) = Θ+(k) +Θ−(k) = σsc(k), (D.25)

with σsc defined as in (2.132).

Proof. For the first equation,

Θ−(k) = lim
γ↘0

h−−(k,−2π|k|+ iγ)

= lim
γ↘0

iπ2 ∑
σ′∈{±1}

∫
Rd

dk′ ĝ2(k − k′)
−2π|k|+ iγ − 2πσ′ |k′|

(
σ′|k| − |k′|

)2
= lim

γ↘0
iπ2 ∑

σ′∈{±1}

∫
Rd

dk′ ĝ2(k − k′)
−2π|k|+ iγ + 2πσ′ |k′|

(
σ′|k|+ |k′|

)2
= lim

γ↘0
(−i)π2 ∑

σ′∈{±1}

∫
Rd

dk′ ĝ2(k − k′)
2π|k| − iγ − 2πσ′ |k′|

(
σ′|k|+ |k′|

)2
= lim

γ↘0
h++(k, 2π|k|+ iγ) = Θ+(k),

(D.26)

where we used that ĝ2 is real. Second,

2ReΘ+(k) = lim
γ↘0

π2 ∑
σ′∈{±1}

∫
Rd

dk′ 2γĝ2(k − k′)
γ2 + (2π|k| − 2πσ′ |k′|)2

(
σ′|k|+ |k′|

)2
. (D.27)

The σ′ = −1 summand is bounded by
γ

2

∫
Rd

dk′ĝ2(k − k′)→ 0, (D.28)

and thus, by the continuity and decay properties of ĝ2,

2ReΘ+(k) = lim
γ↘0

π2
∫
Rd

dk′ 2γĝ2(k − k′)
γ2 + (2π|k| − 2π |k′|)2

(
|k|+ |k′|

)2
= (2π|k|)2

∫
Rd

dk′ĝ2(k − k′)δ
(
|k| − |k′|

)
= νsc

(
k,Rd

)
= σsc(k).

(D.29)
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E. Approximation by waves with
compact support

Lemma E.1. Let f : Rd → C such that f ∈ H1(Rd), and f(x) = 0 for all x ∈ Rd with
|x| ≥ R, for some R ∈ [1,∞). Then for every ρ ∈ (0, 1) there is a Cρ,d < ∞ which
only depends on ρ and dimension d, a constant Cd only depending on d, and a function
uρ ∈ H2(Rd) such that

• ‖|∇|uρ − f‖L2 ≤ ρ ‖f‖H1, and
• ‖|∇|uρ‖H1 ≤ Cd ‖f‖H1,
• uρ(x) = 0 for all |x| > Cρ,dR.

Note that uρ is typically not bounded in L2 as ρ→ 0.

Proof. Let a δ ∈ (0, 1) be given, and choose a smooth function χ : Rd → [0, 1] such that
χ(x) = 1 for |x| ≤ 1 and χ(x) = 0 for |x| ≥ 2. Observe that∫

Rd
dk
∣∣∣(1− χ(δk))f̂(k)

∣∣∣2 ≤ δ2

4π2 ‖f‖
2
H1 . (E.1)

From the support properties of f ,∥∥∥f̂∥∥∥
L∞
≤ ‖f‖L1 ≤ Rd/2 ‖f‖L2 , (E.2)

so ∫
Rd

dk
∣∣∣χ(Rk/δ)f̂(k)

∣∣∣2 ≤ Cdδd ‖f‖2L2 (E.3)

with a constant Cd < ∞ only depending on dimension d. For the δ- and R-dependent
Schwartz function L : Rd → R given as

L(k) = |2πk|−1 (1− χ(Rk/δ))χ(δk) (E.4)

we thus have ∫
Rd

dk
∣∣∣(1− |2πk|L(k)) f̂(k)

∣∣∣2 ≤ ( δ2

4π2 + Cdδ
d

)
‖f‖2H1 . (E.5)

The Fourier transform of χ is a Schwartz function with
∫
Rd χ̂ = 1, and it is not hard to

see that for the the function

Lδ,R =
(
R/δ2

)d
χ̂

(
R

δ2 ·
)
∗ L (E.6)
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E. Approximation by waves with compact support

one has an only dimension-dependent constant Cd such that

|Lδ,R(k)− L(k)| ≤ Cd
√
δ|k|−1. (E.7)

From (E.5) and (E.7), one has∫
Rd

dk
∣∣∣(1− |2πk|Lδ,R(k)) f̂(k)

∣∣∣2 ≤ C̃dδ ‖f‖2H1 (E.8)

with a constant C̃d <∞. Now fix a (thus only ρ- and d-dependent) δ ∈ (0, 1) such that
C̃dδ ≤ ρ2, and choose

uρ(x) = (F (Lδ,R) ∗ f) (x)
ûρ(k) = Lδ,R(k)f̂(k).

(E.9)

Then clearly

‖f − |∇|uρ‖L2 =
(∫

Rd
dk
∣∣∣f̂(k)− |2πk|ûρ(k)

∣∣∣2)1/2
≤ ρ ‖f‖H1 . (E.10)

Furthermore, from (E.4) and (E.7) one has

|2πkûρ(k)| ≤ (1 + C ′dρ)
∣∣∣f̂(k)

∣∣∣ (E.11)

and thus, after redefining Cd <∞, ‖|∇|uρ‖H1 ≤ Cd‖f‖H1 uniform in ρ ∈ (0, 1). Finally,

F (Lδ,R) (x) = FL(x)χ
(
δ2x

R

)
(E.12)

is supported in a ball of radius 2Rδ−2 around the origin, and thus

uρ(x) = (F (Lδ,R) ∗ f) (x) = 0 (E.13)

for all |x| ≥
(
1 + 2δ−2)R, and we obtain Cρ,d =

(
1 + 2δ−2), which, by the choice of δ,

only depends on ρ and d.

212



F. Off-diagonal observables

In this appendix, we attach a short informal discussion of observables with off-diagonal
entries (or, equivalently, of the off-diagonal entries of a 2 × 2 matrix-valued Wigner
transform). To be on the safe side, we only look at observables a, b that are Schwartz
functions on phase space, and initial states (ψε0)ε>0 ⊂ H with bounded energy, Fourier
transforms vanishing for |k| /∈ [λ, L(0)], with ε-independent 0 < λ < L(0) <∞, and with
Wigner limit measures µ0,+ and µ0,−.

The first thing we note is that the self-averaging properties of the Wigner function are
just as valid for the off-diagonal components, as all estimates derived in Sections 5.3 and
6.1 only involved the absolute value of the resolvents, and were thus independent of the
sign of the phase. It is therefore enough to analyze the disorder-averaged value of the
off-diagonal components of the Wigner transform.

For a single measurement, m = 1, we propagate the state ψε0 for a microscopic time
T/ε with the perturbed dynamics and then test it against Opε(a)P−+, an off-diagonal
observable; thus we are interested in the ε→ 0 limit of

E
〈

e−iHεT/εψε0,Opε(a)P−+e−iHεT/εψε0

〉
H

(F.1)

It is not hard to see that all arguments in Sections 4.1 to 4.5 are still valid, and only the
ladder graphs of section 4.6 contribute. But also all ladders with one or several rungs
are suppressed in the limit — this is because the phases on the different sides of the
ladder do not cancel, but add up, and the ladder contribution can be estimated with
an oscillatory phase argument along the lines of Lemma 4.20. The only graphs left are
degenerate ladders without rungs, with propagators only “decorated” with gates, so

lim
ε→0

∣∣∣E〈e−iHεT/εψε0,Opε(a)P−+e−iHεT/εψε0

〉
H

−
∫
Rd

dp
∫
Rd

dkâ(p, k)ψ̂ε0,−(k + εp/2)ψ̂ε0,+(k − εp/2)e−4πi|k|T/ε−2Θ+(k)T
∣∣∣∣ = 0.

(F.2)

Accordingly, the off-diagonal component is highly oscillatory and vanishes if averaged
over short macroscopic intervals,

lim
ε→0

∫ T+δ

T−δ
dτE

〈
e−iHετ/εψε0,Opε(a)P−+e−iHετ/εψε0

〉
H

= 0. (F.3)
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F. Off-diagonal observables

Multiple measurements are much more exciting. To see why, note that the operator
P−+ + P+− causes a “time-reversal” of the perturbed dynamics(

0 1
1 0

)
Hε

(
0 1
1 0

)
= −Hε. (F.4)

Imagine a wave is emitted and travels for a macroscopic time T through the random
medium, is then time-reversed by some mechanism (in practice, a device records the
wave for a short period of time and re-emits the signal in reverse order, [2]), and travels
back by another period of time T , before it is measured by another device. If we model
the time reversal by Opε(b)P−+, and the final measurement by Opε(a)P−−, a real, we
are interested in〈

e−iHεT/εOpε(b)P−+e−iHεT/εψε0,Opε(a)P−−e−iHεT/εOpε(b)P−+e−iHεT/εψε0

〉
H
. (F.5)

Again, one can perform a graph expansion, eliminate higher order partitions, crossing
and nested pairings; however due to the time-reversal caused by P−+, there is no such
thing as “non-markovian” graphs. The contributions to the limit are more complicated
than for the diagonal case, but can still be calculated by a resummation of somewhat
generalized ladder graphs. We now denote by a solid line the unperturbed propagator

n =

︸ ︷︷ ︸
n rungs

· · ·

Figure F.1.: The shorthand for n parallel rungs.

already “dressed” with gates, and introduce an abbreviation for several parallel rungs in
a graph, cf. Figure F.1. With this notation,

lim
ε→0

E
〈

e−iHεT/εOpε(b)P−+e−iHεT/εψε0,Opε(a)P−−e−iHεT/εOpε(b)P−+e−iHεT/εψε0

〉
H

=
∞∑

r,l,m,n=0
lim
ε→0
K(ε, T ; r, l,m, n) =

∫
R2d

µ0,+(dx,dk)c(x, k).

(F.6)
Here, the amplitudes K(ε, T ; r, l,m, n) are given as the sum of three graphs which are
presented in Figure F.2. The propagated observable c can be identified as

c =eL+T
(
|b|2eL−T a

)
+ 2Re

∫ T

0
dτeL+(T−τ)

[(
L0eL+τb

) (
eL+τb

) (
eL−(T−τ)a

)]
− 2Re

∫ T

0
dτeL+(T−τ)

[(
eL+τb

)
L0
((

eL+τb
) (

eL−(T−τ)a
))]

,

(F.7)
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Figure F.2.: The definition of an amplitude K(ε, T ; r, l,m, n).

with L0 = (L+ + L−)/2 the generator of the momentum jump process alone. Note that
for a perfect time reversal (b ≡ 1) one has c = a, as expected.
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