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Abstract

The description of certain evolution equations as Wasserstein gradient flows attained great inter-
est in the mathematical community in recent years, and opened new perspectives in analytical
and numerical treatments of many problems with physical importance. In this thesis, a La-
grangian formulation is used to derive numerical schemes for a wide class of second and fourth
order equations. The aim is to construct numerical solvers that inherit as many structure from
the continuous flows as possible. This yields efficient, stable and easy-to-implement numerical
schemes and further enables a successful study of the schemes’ convergence, long-time asymp-
totics of discrete solutions and other qualitiative issues.

Zusammenfassung

Die Interpretation zahlreicher physikalisch interessanter Evolutionsgleichungen als Wasserstein-
Gradientenflissse wurde in den letzten Jahren mit groflem Interesse in der mathematischen
Fachwelt wahrgenommen, nicht zuletzt weil dies das Verstidndnis vieler physikalischer Prozesse
verbesserte. In dieser Arbeit werden numerische Verfahren fiir eine weite Klasse von Gleichungen
zweiter und vierter Ordnung beschrieben, welche auf eine Lagrange-Formulierung dieser Wasser-
stein Gradientenfliisse basieren. Bei der Diskretisierung wird insbesondere darauf geachtet die
Struktur der Gradientenfliisse in den numerischen Verfahren beizubehalten, was zu effizienten
und stabilen numerischen Schemata fiihrt, die zusétzlich einfach zu implementieren sind. Der
Erhalt von Struktureigenschaften der Gleichungen ermoglicht insbesondere die Konvergenz der
Schemata, das Langzeitverhalten von diskreten Losungen oder andere qualitative Eigenschaften

zu untersuchen.
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CHAPTER 1

Introduction

The history of Wasserstein gradient flows began a long time ago when Monge formulated his op-
timal transportation problem in 1781. This problem quickly became popular and the Academy
of Sciences in Paris (“I’Académie des Sciences”) even offered a reward for its solution, which was
then claimed by Appell [App86]. A relaxed formulation of Monge’s problem was later intro-
duced by Kantorovich in the forties of the 20th century [Kan42,Kan04]. In 1975, he received
the Nobel Prize in Economic Science for his research on this topic. However, Kantorovich’s
representation of the optimal transportation problem initiated the definition of a metric on the
set of (probability) measures — the Wasserstein distance.

It took another three decades until a link between certain evolution equations and the
notion of optimal transportation was found. A first step in this direction was provided by
the extensive work of De Giorgi, who studied time-discrete variational approaches for several
evolution equations on general metric spaces, see for instance [DG93]. Then in [JKO98],
Jordan, Kinderlehrer and Otto stated a semi-discrete (in time) variational scheme for the Fokker-
Planck equation. The key observation was that the equation’s evolution can be understood as
a steepest descent for the free energy with respect to the Wasserstein distance. The geometric
intuition has then been established and used for a rigorous analysis of the porous medium
equation by Otto [Ott01] and was received with great interest in the mathematical community.
The underlying idea for the temporal approximation in both works [DG93] and [JKO98] is
the same, although they have been developed independently of each other. That is why the
scheme was later known as the JKO-scheme (Jordan, Kinderlehrer and Otto) or the minimizing
movement scheme (De Giorgi). In recent years, more and more evolution equations have been
successfully reformulated as Wasserstein gradient flows, and the minimizing movement scheme

became a popular tool for deriving fully discrete numerical schemes for a wide class of equations.

Optimal transportation and the Wasserstein distance

In what follows, we want to give a formal introduction into the topic of optimal transportation.
For a more detailed explanation we refer to [Vil03, Vil09], which constitutes the main guide
for this introductive section.

Let Q1,95 be two open domains in R%, d € N, and p, v two probability measures defined on
Q1 and €9, respectively. For the purposes of illustration, let us imagine that p describes the
allocation of some goods in €21, whereas v represents the needs of those goods in €2,. In order
to satisfy the needs, we are interested in moving all goods from 2y to 22, but any transport
is associated with some effort described by a convex cost function ¢ : Q5 x Q9 — R u {+00}.

This means, heuristically spoken, that one has to “pay” ¢(z,y) for the transport of a single good
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lying at « € 21 to a point y € 25. The optimal transportation problem is now formally stated
as follows: How can we transport all goods from €y to Qs with minimal total cost?
This problem can be written in a proper mathematical way that is known as the Kantorovich

optimal transportation problem:
Minimize I(7):= f c(xz,y)dr(xz,y) for =mell(p,v). (1.1)
XxY

Here, II(p,v) is the set of all transport plans connecting p and v, which means that 7 is a
measure on X X Y with marginals y and v,

(A x Q) = pu(A) and 7w( x B) =v(B) for any measurable A < Q;, B < Qy.  (1.2)

The restrictions in (1.2) assure that any good is transported from 4 to Qo by = € II(u, v).

®
+

Y Qo

F1cURE 1.1. A schematic picture of the optimal transportation problem: How
is it possible to transport all goods from 2; to 29 with minimal total cost?

In this thesis we are only considering the quadratic cost functional c(z,y) := | — y|?, which
shall be fixed from now on. We further consider the case that both domains are equal, hence
Q = Q1 = Q9. Let us assume in the following that the allocations of goods and of needs in 2
can vary. Then the above minimization problem can be formulated in terms of © and v, and the

minimal cost transporting p to v can be interpreted as a value of the measures’ distance:

Definition 1.1. The L?-Wasserstein distance between two probability measures ju,v on € is
defined by

Wa(p,v)? = nt | I(), (1.3)

where I(7) is given as in (1.1) with c(x,y) = |z — y|>.

If 4 and v are absolutely continuous with respect to a fixed measure on 2 with densities u
and v, then we henceforth write — by abuse of notation — Wh(u, v) instead of Wa(u, v).

As the definition suggests, one can analogously define LP-Wasserstein distances for p > 1
and even for p = +00. However, we are always considering the case p = 2 and call the metric in

(1.3) the L?-Wasserstein distance or just Wasserstein distance.
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L?>-Wasserstein gradient flows

In the forthcoming section, we want to give a brief and very formal introduction to L?-Wasserstein

gradient flows and motivate a link to solutions u to the continuity equation, i.e.
dru+ div (uv) =0 in (0, +00) x Q

with an arbitrary velocity field v. The section’s content is mostly inspired by the introductive
Chapter 1.3 of [AGS05] that is essentially based on [Amb95] by Ambrosio. To motivate the
connection between L?-Wasserstein gradient flows and the continuity equation we mainly follow
the ideas of [Ott01], which we recommend to the more interested reader.

Let us start with the Euclidean space R? equipped with the scalar product (-, -y and the norm
| - |2, which is the simplest setting for introducing the notion of gradient flows. We furthermore
consider a smooth function £ : R — R. Then the gradient V& of £ can be defined by validity
of

%E(U(t)) _ <V6’(v(t)), iv(t)> (1.4)

for any regular curve v with values in R?. We then say that a curve u : (0, +0) — R? is a

gradient flow along &, if it is a solution to

%u(t) = —Vé’(u(t)). (1.5)
From the geometrical point of view, a gradient flow always follows the direction in which &
decreases at most, which is why u(t) is also called a curve of steepest descent or a curve of
maximal slope.

If one is interested in extending the notion of gradient flows to the more general setting of
metric spaces, the characterization in (1.5) turns out to be disadvantageous, since a definition
of a gradient as in (1.4) or of a time derivative is not available in general. Therefore we observe
that a solution to (1.5) admits the equivalent representation

d
@ < H

This is more convenient for a generalization, since the first norm on the right-hand side of (1.6)

of, - glveon]; 19

can be replaced by the metric derivative |u'| of u and the second one by a strong upper gradient
g for £, which are both purely metric objects. If V' is a metric space and £ is a functional
defined on V| we then call an absolutely continuous curve u : (0,+00) — V a curve of maximal
slope for £ with respect to the strong upper gradient g, if

%5( (1) < —*\ (NG —fg t)? (1.7)
for almost every ¢ € (0, +00). We are going to discuss the above objects and the resulting metric

formulation of curves of maximal slopes more detailed in Section 3.5.

The link between L?-Wasserstein gradient flows and the continuity equation. In this
thesis we denote by P"(€2) the set of all positive and integrable density functions on a certain
domain Q < R%, d € N, with a fixed mass M > 0. For the sake of simplicity, let us assume
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in this section that M = 1, hence densities in P"(2) are probability densities. The set P"(Q2)
is known to be a differentiable manifold. Without going into any details, let us think of the

tangent vector space on P"(2) at any point u € P"(Q2) as follows
Tan, P"(Q2) = {s :Q —> R, such that j sdx = O} :
)

To define a L?-Wasserstein gradient flow along a functional £ : P"(€2) — R u {+00}, one can
exploit the metric structure of (P”(2), Ws) and use (1.7). But in order to link L2-Wasserstein
gradient flows with the continuity equation, we want to motivate another approach. To this end,
we are going to introduce a metric tensor g. There are infinitely many choices for g and any
of them possibly induces another metric on P"(2), hence another gradient flow. An important
obervation in [Ott01] was that one can choose a metric tensor g that induces the L2-Wasserstein
distance: Define the metric tensor g, : Tan, P"(£2) x Tan, P"(2) at the point u € P"(2), such
that

Gu(s1,52) = f (Vp1,Vp2)udz,
Q

where each tangent vector s € Tan, P"(£2) can be represented by a function p : Q@ — R through
the identity

s = —div(uVp).

The set of probability densities P"(Q2) equipped with the metric tensor g is known to form a
Riemannian manifold, which is the required structure to define the notion of gradient flows.
Consider for the moment an entropy/energy functional £ : P"(2) — R u {400} that is assumed
to be of the form

E(u) = fﬂ o(u)dz

with an integrand ¢ : [0,+00) — R that satisfies sufficient regularity assumptions, which we
won’t specify in this section. Following Otto’s calculus in [Ott01], a gradient flow along & with

respect to the L?-Wasserstein distance is now formally written as
Oru = — gradyy, E(u), (1.8)
where the gradient is defined by the metric tensor and the (first) variational derivative of &

through the identity

g (grady, £().5) = 500 s] o= [ S(wsdo

for any s € Tan, P"(€2). Note that this definition of the gradient is of the same kind as (1.4),
since the variational derivative of £ in direction s is attained by differentiating £(u(t)) along

curves of the form u(t) = u + ts. In terms of the metric tensor, the gradient flow equation in
(1.8) has to be read as

9u (Oru, s) = —gu (gradyy, £(u),s) for any s € Tan, P"(Q).



L2-WASSERSTEIN GRADIENT FLOWS 5

Explicitly, using the representation s = — div(uVp), the gradient flow equation has the form
J Orupdr — J ¢ (u) div(uVp) dz = 0. (1.9)
Q Q

This representation of the L?-Wasserstein gradient flow equation is the starting point of the in-
vestigations in this thesis. Indeed, (1.9) is nothing else than a weak formulation of the continuity
equation with a special choice of the velocity field,

dru + div (uv(u)) =0, (1.10)

which is going to be the equation of our main interest in this thesis. The velocity field v(u) is

a gradient field depending on the first variational derivative of £ evaluated at u,
0&(u)
= — — . 1.11
v - v (2) (111)

Approximation of Wasserstein gradient flows by minimizing movement. We already
mentioned [JKO98] by Jordan, Kinderlehrer and Otto, who derived a time-implicit semi-discrete
scheme for a wide class of second order evolution equations by employing the equations’ varia-
tional structure. Under certain assumptions on the functional £, their scheme can be applied to
equations that have the form of the continuity equation (1.10) with a velocity field as in (1.11).

Pr(©)

FIGURE 1.2. Schematic representation of a L?-Wasserstein gradient flow and its
approximations through the minimizing movement scheme

To this end, let 7 > 0 be a fixed time step size. Then the minimizing movement scheme,

or JKO-scheme, for the continuity equation (1.10) can be formulated as follows: Starting with

an initial datum u® € P"(12), define recursively a sequence of density functions (u?)%_, as the
solutions of the following minimization problem
1
u? = arg min — Wy (u, u21)? + E(u). (1.12)

uePr(Q) 2T
To guarantee the well-posedness of the minimizing movement scheme one has to guarantee

the existence of a sequence that solves the minimization problem in (1.12). The solvability of

the minimization problem is mostly attained by assuming a certain convexity property for the
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entropy/energy functional £, but even this does not always have to be required, as one can see
in some examples for fourth order equations.

Evolution equations with Wasserstein gradient flow structure

By now, many evolution equations with an important physical meaning have been shown to carry
an underlying Wasserstein gradient flow structure. In this thesis, we are especially interested in
second and fourth order equations as listed below. The gradient flow structure of the following

equations is going to be discussed later in the corresponding chapters.

Drift-diffusion equation. In the case of second order evolution equations, we are considering

a wide class of drift-diffusion equations, which are given by
Oru = AP(u) + div(uVV).

The function P is in general assumed to be smooth with (super-) linear growth and V' denotes
a certain drift-potential. The most popular examples for equations of this form are the heat
equation or porous medium equations. Nowadays, equations of this kind are well studied and
results for existence or long-time behaviour can be found in almost every book about partial
differential equations, we refer for instance to [Eval0].

The heat equation, which is the above equation with P(u) = u and mostly formulated
without drift-potential V', describes the diffusion of heat in a homogeneous medium. If the
observed domain €2 is bounded, solutions to the heat equation are known to attain a steady
state that describes a total equilibration of the heat in the medium. Otherwise, if Q = R,
solutions of the heat equation propagate with infinite speed: For an initial distribution of heat
u® at t = 0 that is possibly concentrated on a compact region, the solution u(t) immediately
becomes strictly positive on the whole domain as ¢ > 0. Moreover, solutions asymptotically
diverge like Gaussians as time goes to infinity.

For P(u) = u™ with m > 1, which turns the above equation into a porous medium equation
with slow diffusion, the model describes the diffusion of gas in a porous medium, for instance.
Similar to the heat equation before, solutions move towards an equilibrium in a bounded domain,
but the asymptotic behaviour changes tremendously in case of an unbounded domain because
of the solutions’ finite speed of propagation. This can be exemplified in more detail studying a
special class of self-similar solutions, the so-called Barenblatt profiles, which can be imagined as
reversed paraboloids that are extended by zero in regions where the paraboloids are negative.
For the reader more interested in this topic, we refer to [V4z92] which provides a mathematical
overview about the theory of porous medium equations.

The asymptotic behaviour of the above equations is interesting insofar as certain fourth order
equations share the same behaviour. This is going to be discussed in more detail in Chapter 4.

DLSS equation. The DLSS equation — also known as quantum-drift-diffusion equation —
was first analyzed by Derrida, Lebowitz, Speer and Spohn in [DLSS91a, DLSS91b| and is
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given by

o+ aiv (w9 (24 7)) <o,

where V' denotes a certain drift-potential. It rises from the Toom model [DLSS91a,DLSS91b]
in one spatial dimension on the half-line [0, +00) and was used to describe interface fluctuations
therein. Moreover, the DLSS equation also finds application in semi-conductor physics, namely
as a simplified model (low-temperature, field-free) for a quantum drift diffusion system for
electron densities, see [JP0O].

From the analytical point of view, a big variety of results in different settings has been
developed over the last few decades. For results on existence and uniqueness, we refer for instance
to [BLS94,Fis13,GJT06,GST09,JMO08,JP00], and to [CCT05,CT02a,CDGJ06,GST09,
JMO08,JT03,MMS09] for qualitative and quantitative descriptions of the long-time behaviour.
For the reader unfamiliar with the numerous analytical results on the DLSS equation, we refer
to the review article [JM10] of Jiingel and Matthes, where the authors mentioned especially the
existence of a nonnegative weak solution to the DLSS equation in higher dimension. The main
reason that makes the research on this topic so nontrivial is the lack of comparison/maximum
principles as available in the theory of second order equations. Unfortunately, the absence
of these analytical tools should not be underestimated, as the work [BLS94] by Bleher et al.
demonstrates. In [BLS94], the authors show that as long as a solution u to the DLSS equation is
strictly positive, one can prove that it is even C*-smooth, but there are no results for regularity
available from the moment when u touches zero. The question if strict positivity of the initial
datum u? already implies strict positivity of solutions at any time is a difficult task and remains
open until now, despite much effort and some recent progress in that direction, see [Fis14]. In
order to deal with more general initial data, alternative theories for nonnegative weak solutions
consistently gain in importance. Take for instance [GST09, JMO08]|, where existence of weak

solutions to the DLSS equation is shown on grounds of the a priori regularity estimate
Viu € Li([0, +00); H*(T))

(T stands for the torus in R?), by just considering nonnegative initial functions u” with finite

Boltzmann entropy.

Thin film equation. The mathematical and physical literature devotes great attention to the
family of thin film equations due to its physical importance. The general representation with a

(potentially nonlinear) mobility function m is
dpu + div (m(u)VAu +uVV) = 0.

Equations of this form give a dimension-reduced description of laminar flow with a free liquid-
air-interface [ODB97]. In case of linear mobility m(u) = u — which is the situation we are
going to consider in this thesis — the thin film equation can also be used to describe the pinching
of thin necks in a Hele-Shaw cell in one spatial dimension, hence it is sometimes referred to as
the Hele-Shaw flow.
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The analytical treatment of the fourth order degenerate thin film equations is far from
trivial, but there exists a rich literature on this topic: One of the first results available in the
mathematical literature was provided by Bernis and Friedman [BF90]. Later on a vast number
of results to numerous mobility functions of physical meaning was treated in [BDPGG98].
A major problem in the equations’ analysis is the lack of comparison/maximum principles,
similar to the situation of the DLSS equation: In zones on which the solution w is strictly
positive, the usage of classical parabolic theory yields C'®-regularity. But there is no guarantee
that solutions stay strictly positive, unfortunately. This is why one is typically interested in
solutions that are not strictly positive but have a compact, time-dependent support. In the
analysis of such nonnegative solutions the framework of energy and entropy methods play a key
role, see for instance [CU07, CT02b, GO01,LMS12]. Using energy/entropy estimates, the
gained regularity is usually something of the type L ([0, +o0); H1(Q)) n L ([0, +o0); H?(R)),
but no better. However, there are several other references to this topic, for instance Griin et
al. [ BG15, DPGG98, Grii04], concerning long-time behaviour of solutions and the nontrivial

question of spreading behaviour of the support.

Aim of the thesis

In this thesis, the focus is on deriving structure-preserving and convergent numerical schemes for
the second and fourth order evolution equations discussed above, which respect the equations’
variational structure. For this purpose, I make use of the well-known fact that the equations’
underlying L2-Wasserstein gradient flows can be equivalently written as L2-gradient flows using
a Lagrangian formalism. The procedure in (1.12) then turns into a minimization problem on
the set of transport maps. The main idea for deriving full discretizations for the evolution equa-
tions is to study the new “Lagrangian” minimization problem restricted to a finite-dimensional
subspace of transport maps. The resulting Lagrangian numerical schemes provide an alter-
native perspective to “classical” Eulerian approaches: Instead of studying the differences in
the altitude of discrete densities at fixed positions, the discrete evolution of fixed mass pack-
ages is considered, which is in accordance with the notion of optimal transport. Furthermore,
discrete solutions to the presented particle schemes inherit various structural properties from
the continuous flows by construction, like dissipation of the entropy/energy, mass and positivity
preservation. The conservation of those properties and the preserved variational structure of the
schemes (that basically results from the sophisticated adaptation of the minimizing procedure
(1.12) in terms of transportation maps) are crucial for the analysis of convergence or long-time
behaviour of discrete solutions. For instance, the dissipation of the respective entropy/energy
easily yields at least a weak (with respect to the L?-Wasserstein distance) compactness result
following essentially the standard procedure developed in [JKO98].

In this thesis, I try to derive results for the convergence, the long-time behaviour or other
qualitative properties of the schemes’ solutions by exploiting the preserved variational structure.
I am able to derive strong convergence of solutions to the schemes towards weak solutions of the
respective equations at least in one spatial dimension, where I make use of one or more Lyapunov

functionals to gain the essential a priori estimates. Also results on the long-time asymptotic
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of discrete solutions are going to be presented. In higher spatial dimensions, the variational
formulation of the scheme and the preserved convexity of the considered entropies yield at least

a stability result for the numerical approximation.

General notations and preliminary remarks

In this thesis, we always denote by € an open and especially connected subset of R¢, d > 1,
and call Q a spatial domain. In addition we define for any given mass M > 0 the mass domain
M := [0, M]. Furthermore, N denotes the set of all positive natural numbers and we write
No =Nu {O}

Derivatives. Fix two integers p,d € N. In general, we denote by f’ or % f the first and by f®
or % f the pth derivative of a real-valued function s — f(s) that is defined on a certain open
subset of R. If f is defined on a one-dimensional spatial domain €2, then we sometimes use the
notation f, for the first derivative of f to specify that f only depends on the one-dimensional
spatial domain 2. Higher order derivations are then denoted by f.., frze and so on.

Let us now consider a real-valued function (z1,...,z4) — f(z1,...,24) defined on an open
subset of R?. Then we denote by 0y, f, ..., 0x ,f the partial derivatives of f with respect to the
associated component. For notational simplicity, we will also write sometimes f,, or Jif for
Oz, f. For higher order partial derivatives, we use the notations

éﬁk or axkxkf
—_——
p times
for ke {1,...,d}.

Let us now consider functions f : © — R and v = (v1,...,v4)? : Q@ — R? on a spatial
domain Q < R? and write = (z1,...,24)7 for x € Q. Then the spatial derivative of f is
denoted by D f and we write DP f for higher order derivatives. Of course, the gradient V f of f
and the divergence of div(v) of v are given by

d
Vi= (0 fr 00, /)T and  div(v) = > v, (1.13)
k=1

and we write Af = div(Vf) for the Laplacian of f. We finally note that if f or v in addition
depend on a time variable ¢ € (0, +o0), then the operators in (1.13) are understood to act only

on the spatial variable x € €.

Spaces and norms. Let an arbitrary integer d € N be given. Then we denote by (:,-) the
standard inner product of two vectors, which induces the Euclidean norm |X|2 = \/@ on R%,
We further write |%||,, = max{|zy| : k = 1,...,d} for the maximum norm on R<.

For an arbitrary positive and integrable function u : Q@ — [0, +00) we introduce for any
vector-valued function f : Q — R? the weighted LP-norm

1/p
T ( [ 1@ dx) for any p e [1, +0).
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All such functions with finite norm form the set LP(€Q; u). For p = +00 we furthermore introduce
analogously the set of essentially bounded functions L*(2) with the norm

[llLe0 () := esssup [ f ()]

xe

In the special case p = 2 the weighted L?-norm is induced by the weighted scalar product

gy = fQ (f(x),g(x)>u(z)dz for all f,g:Q — R

To simplify the notation, we write (-, )1, |- | zr() and LP(€2), if the density u is equal to 1, hence
if one integrates with respect to the Lebesgue measure. We further introduce the set H'(£2) of

functions with finite H'-norm that is defined for any function f :  — R by

1/2
£y = (1 12y + 1efI22y) -

Furthermore, we denote for any p € Nou{+00} by CP(A; B) the set of all p-times continuously
differentiable functions mapping A < R? on B € R. We also use C(A; B) for p = 0. If B = R,
we just write CP(A). In addition we write f € CE(A), if f is compactly supported in A and
feCP(A).

Let us now consider continuous functions f that are defined on an interval I € R and have
values in a metric space X equipped with a metric d. We introduce for a € (0, 1) the set C%(I; X)
of a-Holder continuous (or just Holder continuous) functions f that satisfy

d
Iflcea(rx) :=supd(f(z),g) + sup M <10
zel eyelazy 1T —Y[S

for an arbitrary g € X. Note that the boundedness of a function f with respect to | - |ca(r;x)
is independent of the choice of g. If the metric space X is equal to the Euclidean space R? and

I = Q for a one-dimensional spatial domain €2, we set g = 0 and simply write | - [ca(q) and
ce(Q).
Next, we assume any time interval I < [0, +o0), a certain vector space V' with norm | - |y

and take a function f that depends on time and admits values in V. Then we write f € LP(I; V),
if

1/p
v = ([ 1ol ar) <.

In addition to the above spaces, we write f € LP (Q), f € HL (Q) or f € C2.(Q), if

feLrP(K), fe HY(K) or f e C*(K) is satisfied for any compact subset K < Q. Furthermore, if
I is again a time interval and f € LP(IC; V) is fulfilled for any compact subset K < I, then we
write f € LT (I;V). Analogously we write f € C.(I; X) or f e L} (I;V),if fe C*K;X) or

f e LP(K; V), respectively, for any compact subset I < I.
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We recall that the total variation of a function f € L!(a,b) defined on an interval (a,b) with

a,be R U {£oo}, a < b, is given by

b
TV [f] :=sup {f f(x)¢'(z)dx : ¢ € Lip(a,b), compactly supported with sup |p(z)] < 1},
a z€(a,b)

(1.14)
where Lip(a, b) is the set of all Lipschitz-continuous functions. An analogue definition — most
appropriate for functions f : (a,b) — R that are piecewise smooth on intervals and only have

jump discontinuities — is
J-1
TV [f] =sup{2 |[f(rjs1) —f(r)] : JeN;a<ri<rg<---<ry< b}. (1.15)

We further introduce the notation
[f]z :=lim f(z) — lim f(z)
z|T 1T
for the height of the jump in the value of f(z) at = = Z.

L?-Wasserstein distance and the push-forward operator. Assume that a certain mass M > 0 is

fixed. Then we introduce the set of regular densities with mass M,
P(Q) = {u:Q—> [0, +00) : f u(x)dx—M}. (1.16)
Q

In addition, we define the set of regular densities with mass M and finite second moment as
follows:

uePy(Q) <= weP'(Q) and f]xQu(:n)dw<+oo. (1.17)
Q

Note that in order to guarantee more flexibility in the numerical experiments we do not fix a
certain mass M for the whole thesis. Nevertheless, we neglect M in the notation of P"(£2) and
P5(Q) to simplify the heavy notation in the forthcoming chapters. Instead, we mention at the
beginning of each chapter the considered mass to clarify which M is used in (1.16) and (1.17).

The Wasserstein distance on P"(2) is defined as in Definition 1.1 with the difference that
we allow an arbitrary mass M > 0. Without going into any details about the topology on
PT(Q) that is induced by the Wasserstein distance W, let us give a useful characterization of
convergence in the metric space (P"(2), Ws): A sequence of densities uj converges towards u
with respect to Wh, if

lim f |z 2ug () dz = J |z]?u(z)dz  and  lim | o(z)ug(z)dz —J o(x)u(z)de
k—o0 Jo Q k—o Jo Q

for any continuous and bounded function ¢ : @ — R. We also say that u; converges weakly
towards u. We refer to [AGS05].

In this thesis a transport map or transportation map is always assumed to be a map from 2
to 2 that is at least measurable.

Next, let us introduce the push-forward operator: Let an arbitrary density w € P"(€2) and
a transportation map T : @ —  be given. Then the push-forward T 4w of w € P"(2) through
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T is defined by validity of

f o(x)Typw(r)de = J o(T(z))w(z)dx (1.18)
T(Q) Q

for all continuous and bounded functions ¢ :  — R. If the map T :  — € is in addition
injective and differentiable such that det D T(x) > 0 for almost every x € (2, then equation

(1.18) allows an explicit representation for the push-forward,

Tyw T (1.19)

w
= ———o0
detDT

for almost every x € ().

Reader’s guide

The thesis is partitioned into two parts:

In Part 1, we assume the spatial domain {2 to be one-dimensional. In the introductive
Chapter 2 we especially explain the Lagrangian formulation of Wasserstein gradient flows in one
spatial dimension and introduce the general discrete setting that is required for our numerical
schemes.

We start our numerical investigations by studying a class of second order evolution equations
in Chapter 3 and provide three convergence results, each different in its nature: First, we gain
a compactness result exploiting the dissipation of the entropy along discrete solutions, which
suffices to pass to the limit in a discrete weak formulation. The main content of this proof is
already published in a joint work with my PhD-supervisor Daniel Matthes [MO14a]'. Second,
a natural generalization of gradient flows in the setting of metric spaces — the notion of curves
of maximal slopes — is translated and analyzed in the fully discrete case. We can show that
solutions to our scheme for second order equations converge in this alternative formalism, using
the framework of I'-convergence. The third convergence result is based on a “consistency-
stability”-argument.

Afterwards, we extend the numerical scheme to a family of fourth order equations in Chap-
ter 4. The dissipation of entropy and energy functionals along discrete solutions and the long-
time behaviour is analyzed, and the convergence of discrete stationary solutions to the respective
continuous ones is proven. Chapter 4 is essentially based on a paper [Osb14] that I published
online and have submitted. Furthermore, we show convergence of the scheme for the DLSS equa-
tion using both the entropy and energy dissipation under very weak assumptions on the initial
density, see Chapter 5. The results of Chapter 5 are again joint work with my PhD-supervisor
Daniel Matthes and can be found online [MO14b]. The paper [MO14b] is submitted and in
revision.

Finally, an alternative numerical scheme for the thin film equation is presented in Chapter 6.
Again by making use of two Lyapunov functionals, we obtain convergence of discrete solutions
towards a weak formulation of the thin film equation. Chapter 6 is based on a submitted paper
that is joint work with my PhD-supervisor Daniel Matthes.

The journal can be found online at http://journals.cambridge.org/action/displayJournal?jid=MZA or
http://www.esaim-m2an.org/
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In the shorter Part 2, we are interested in the numerical treatment of evolution equations
in two and higher dimensions. A scheme for a wide class of second order equations that is
again based on a Lagrangian formulation of the minimizing movement scheme is derived, see
Chapter 7. The presented approach is shown to preserve many structural properties from the
continuous equations and a proof of the scheme’s stability is provided. The presented content of
Chapter 7 is part of recent research with Oliver Junge and my PhD-supervisor Daniel Matthes.

Among some concluding remarks in Chapter 8, a numerical scheme for fourth order equations
on a two-dimensional domain is sketched. The basic idea is the same as in Chapter 4 for the

one-dimensional case.






Part 1

One-dimensional case






CHAPTER 2

Preliminaries and Notation

In the first part of this thesis we are considering the case of a one-dimensional spatial domain
Q < R that satisfies either 2 = (a,b) with —00 < a < b < 40 or 2 = R. Hence we set a = —o0
and b = +00 in the second case.

For the one-dimensional case, this preliminary chapter is intended to introduce some funda-
mental results about the L?-Wasserstein distance and gradient flows in Lagrangian coordinates
and provides the main idea for the ansatz of our discretization that is used in this thesis. An
important observation that is one of our main motivations to introduce the Lagrangian point of
view is, that the L?-Wasserstein distance between two density functions possesses a convenient
representation in terms of the densities’ pseudo-inverse distribution functions, see Lemma 2.1
below. Therefore, we use Lagrangian coordinates to derive discrete submanifolds of Pj(€2), and
the explicit representation of the L?-Wasserstein distance then paves the way for various natural
and easy-to-handle choices of discrete metrics on these submanifolds, see Section 2.2. Equipped
with a suitable discretization of the space of density functions and the L2-Wasserstein distance,
continuous gradient flows can be translated into the discrete setting, which further leads to

numerical schemes for the respective evolution equations, see Section 2.3.

2.1. Lagrangian coordinates

For each density u in the set of nonnegative density functions P5(£2) with total mass M, one
defines its distribution function U : Q — [0, M] by

v - | “u(y) dy. (2.1)

For densities u that are not strictly positive, the distribution function U is not invertible. How-
ever, it makes sense to define the pseudo-inverse distribution function X : M — € on the
mass-domain M = [0, M] for u € P5(2) by

X() =inf{xeQ: U(x) > &} forall £ e M, (2.2)

since it allows for a comfortable representation of the L?-Wasserstein distance in one spatial

dimension, see for instance [Vil03, Theorem 2.18]:

Lemma 2.1. Let ug,u; € P5() have pseudo-inverse distribution functions Xo,X; : M — Q.
Then their Wasserstein distance amounts to

Wa(uo, u1) = || Xo — X1 r2(m)- (2.3)

17
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We also name X a Lagrangian or Lagrangian map. A characteristic property of a Lagrangian

map is the validity of the following change of variables formula,

f so(a:)u(a:)dx=j S(X(6)) d, (2.4)
Q M

that is fulfilled for every bounded and continuous test function ¢.

Assume further u € P5(£2) to be a strictly positive density function. Then its correspond-
ing pseudo-inverse distribution function is the well-defined inverse function of its distribution
function. Thus X = U~!, and X is an element of

X:={XeLip(M;Q): a<X(0) < X(M) < b, X strictly increasing},

where Lip(M; Q) is the set of locally Lipschitz-continuous functions on M with values in Q.
Owing to the Lipschitz-continuity of U and X, we can differentiate the identity U o X(£) = £ at
almost every £ € M and obtain the relation

u(X(£))Xe(€) =1 for almost every £ € M. (2.5)

2.1.1. The gradient flow in Lagrangian coordinates. As already mentioned in the in-
troductive chapter before, we are interested in deriving fully discrete numerical schemes for
evolution equations that carry a L?-Wasserstein gradient flow structure.

In this part of the thesis we will consider integral functionals € : P5(Q) — R u {+0} of the

form
E(u) = fQ h(z,u,uy) dz (2.6)

with an integrand h : © x [0,400) x R — R which is assumed to carry enough regularity to
justify all the computations that follow. The variational derivative of the above functional £ at

u € P3(£) is then given by (assuming u smooth enough)

56(;5?) = hr(if, u(l’), UCB(:E)) - (hp(l’, u(l‘), u$($)))ma

where (x, 7, p) denote the variables of h. For such a functional £, we want to find a discretization

for the continuity equation in (1.10) with the associated velocity field from (1.11). In one spatial
dimension, (1.10) reads as follows: Find u : (0, 4+00) x Q — [0, +00) such that

Oru + Oz(uv(u)) =0 fort >0 and z € Q, where v(u) = —0, <6f5§f)> . (2.7)

The starting point for our numerical approach of equation (2.7) is its Lagrangian representation.
The reasons for using the Lagrangian point of view are essentially twofold: On the one hand, the
Lagrangian representation of the L?-Wasserstein distance from Lemma 2.1 allows an convenient
calculation of the distance between arbitrary densities. On the other hand, the L?-Wasserstein
gradient flow for £ turns into an L2-gradient flow for ¢(X) := £(u o X) that is

OX(t,€) = v(u) o X(£,€) for (£,€) € (0, +0) x M, (2.8)
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which might be more convenient to handle as the original gradient flow, we refer for instance
to [CT04] by Carrillo and Toscani. To make this nontrivial issue more comprehensible, let us
link equation (2.7) and equation (2.8) by the following formal calculation:

Since each solution u of (2.7) is of mass M, its Lagrangian map X : (0, +o0) x M — Q maps

the mass domain M into Q, so that

X(t:,6)
&= f u(t, x) dz, (2.9)

for each £ € M and for any time t. Note especially that the left-hand side of (2.9) is independent
of t. Applying a time derivative in equation (2.9) and using that u is a solution of the continuity
equation in (2.7) hence yields

X(16)
0 — OX(t, E)ult, X (1, €)) + f orult, X (£, €)) da

aX(t,ﬁ)
= 0 X(t, &)u(t, X(t,€)) j Oz (uv(u))(t,z) dx

a

= (0X(t,€) = v(u) o X(t, ) ult, X(t,€)),
which induces (2.8).

2.1.2. Discretization in time. To study solutions to (2.8), one can for instance use a time
discretization of (2.8) using Euler’s implicit scheme, which turns out to be de facto equivalent
to the minimizing movement scheme in (1.12).

To this end, it is necessary to introduce a decomposition of the real and nonnegative timeline
[0, +00), which shall be provided as follows: Fix a positive value 7 > 0 and introduce varying
time step sizes 7 = (11, T2, ...) with 7,, € (0,7]. Then a temporal decomposition of [0, +o0) with
maximal step width 7 is defined by

n
{0=ty<t1 <...<tp<...}, where tntzZTj, (2.10)
j=1

In addition we assume the time decomposition to be quasi-uniform, hence there exists a 7-
independent constant @; € R, such that

T/T <@, where T :=minm,. (2.11)

neN

Henceforth, a temporal decomposition is always declared by the vector of time step sizes T,
which induces a partition of the time interval [0, +o0) by (2.10). For a fixed temporal decompo-
sition with time step sizes T = (71, 72, ...), a semi-discretization in time of (2.8) is attained by
exploiting Euler’s implicit scheme. This yields an approximative sequence of Lagrangian maps
(X9, XL, ...) recursively defined by

Xn

:= arg min &, (7, X, X2 1), (2.12)
X
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where the minimum is taken over all measurable transports mapping the mass domain M onto

the spatial domain Q, and
1
€ (0, X, X¥) 1= [ X = X* 72y + E(X). (2.13)

Especially in one spatial dimension, in which one has a close relation between the L?-norm of
Lagrangian maps and the L?-Wasserstein distance of the associated density functions via (2.3),
this minimization procedure turns out to yield a practical ansatz for deriving numerical schemes.
For later purposes, we introduce for a given temporal decomposition 7 a time interpolation
as follows: If (g,);_, is a sequence with entries in an arbitrary metric space V, then its time
interpolation {q},. : [0, +00) — V with respect to the decomposition 7 is defined by

qo for t=0,

{a}- () == (2.14)

qn for te (th—1,tn].
2.2. Spatial discretization — Ansatz space and discretized metric

Inside the space X of inverse distribution functions, we define the finite-dimensional subspace
X¢ of those functions, which are piecewise affine with respect to a given partition & of M into
sub-intervals that depend on a spatial decomposition parameter K € N. Correspondingly, there
is a finite-dimensional submanifold P; . (Q) of P5(2) consisting of those densities, whose inverse

distribution functions belong to X¢. Densities in Pj g(Q) are piecewise constant.

2.2.1. Ansatz space. Since we shall work simultaneously in the spaces P E(Q) and X¢, we
need to introduce various notations. The notation in later sections becomes easier using the
following sets of integers and half-integers between 0 and K that are
1/2 13 1
It ={1,2,... . K—1}, Ix=1IL0{0,K} and I/*= {5,5,...,1;{—5}.
We will now introduce the notations for our decomposition of the mass domain M = [0, M|
and the spatial domain Q. A vector £ = (o, ...,{k) with entries &; such that

0= <& < <k 1<ék=M

defines a partition of the mass domain M into K-many sub-intervals. We denote the lengths of

the intervals by
Op_1 =& — & forallk=1,... K.
2

We further set § = minneﬂl/g 5, and § = max .. Let us further assume that 6 and & satisfy
K

k:e]Ill,é2
the following constraint on the mesh-ratio: There exists a K-independent constant @y € R, such

that
Qg 1= S/Q < Qo,

hence £ is always chosen to be a quasi-uniform decompostion of the mass domain M.
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For a discretization of €2, two situations arise depending on the boundedness of §2:
(1) If 2 is a bounded domain, decompositions are given by the (non-equidistant) grids from

p£={§=($1,...,l‘K_1): a<x1<...<:vK_1<b}§QK_1.

By definition, X € r¢ is a vector with K — 1 components, but we shall frequently use

the convention that
xo=a and xg =b. (2.15)

(2) If Q = R, we consider decompositions that are (non-equidistant) grids from

;£={§=($0,...,xK): —OO<$0<...<JIK<+OO}§QK+1.

Compared to the previous situation, we just do not fix ¢y and zx but let them move
arbitrarily in R. Consequently the number of degrees of freedom rises, hence X € r¢ is
a vector with K + 1 components.

In any case, one obtains decompositions of {2 with r¢ = O, where the number of degrees of
freedom N € N is given by

K —1 for bounded €2,

K+1 for Q=R

N =

In the convex set X of inverse distribution functions, we single out the R-dimensional open and
convex subset

Xe = {X € X : X piecewise affine on each [&;_1,&], for £ =1,.. .,K}.

There is a one-to-one correspondence between grid vectors X € r¢ and inverse distribution func-
tion X € X¢, explicitly given by

X =Xe[®] = ) aby, (2.16)

kEHK

where the 6, : M — R are the usual affine hat functions with 0;(&,) = 5 ¢, i.e.

(€ — fk—l)/%_%, ifl<
k(&) = 4 (Ers1 — 5)/5k+%, if 0 <

0, otherwise.

k < K and f € [gkflvék]a
k< K-1and é € (£k7£k+1]7

Due to this particular relation between the set r¢ and the Lagrangian maps in X¢, we are going
to call vectors in X € r¢ Lagrangian vectors. Furthermore, the locally constant density function
ug[X] € P3(Q) associated to X¢[X] is

](x), (2.17)
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where we define

J
7 =1z¢[X] = (212, .-+, 2K —1/2) With weights z, = . (2.18)
xn+% - xn—%

The choice of Z is such that each interval (z, _1,x, L1 ] contains a total mass of d,. The function
2 2

1 in (2.17) denotes the indicator function given by

14(2) 1 forxe AnQ,
Alz) =
0 forx¢ AnQ,

for any subset A of R. Depending on the domain €2, we introduce the following convention:

z1 for bounded €2, 21 for bounded (2,

10 and - Eey = 0 for @ = R

1 (2.19)
> |0 forQ=R

This convention reflects the no-flux boundary conditions in case of a bounded domain €2, whereas
it mimics the compact support of the locally constant density ug[X] if = R.
We finally introduce the associated R-dimensional submanifold

P3e(§2) := ugre] = {u e P3(Q) : u = ug[X] for some X € r¢} < P5(Q2)
as the image of the injective map ug : r¢ — 77575(9).

— R R e
LT3 - mmmm - - -

1
, :
1 1
1 1
1 1
Ty Fr-=--=-=-=-=-==-=-=-- 1 1
1 1 1
5. L :
3 1 1 1
ol A
Ss 1 1 1 1
3 : A
1 05 1 1 1 1
2 2 i) : : : :
1 1 1 1
x 1 1 1 1 é‘
T @ w2 w o] & & & M

FIGURE 2.1. A typical density function u € Py .(€2) (left) with inverse distribu-
tion function X € X¢ (right).

2.2.2. A metric on the ansatz space. Below, we illustrate the idea for definitions of
“Wasserstein-like” metrics d¢ on the ansatz space 735,5(9). The restriction of the genuine L2-
Wasserstein distance W, to 77575(52) appears as a natural candidate for d¢. Due to the convenient
representation of W5 in one spatial dimension, see Lemma 2.1, the reduction of W, on the dis-
crete submanifold 77575(9) induces a homogeneous quadratic form in terms of r¢. More precisely,
one attains the following result:
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Lemma 2.2. Fiz a discretization &, and let u°,u' € 73575((2) have representations u® = ug[X°]
and u' = ug[] with 0, %' € 1, respectively. Then

Wo(u, ut)? = (X0 — HTW,(x° — 1) (2.20)

with a symmetric tridiagonal matriz Wo € R¥®. The coefficients [Walp of Wa are given by

2(5k+1 +5k 1) l=k
1
[Woli = | 0k(£)0u(§)dE == 16,1, l=k+1, (2.21)
Q 6 k:+2
0, else

for any l = k with

for bounded $2,

k,lely =
for Q@ =R.
We further use the convention that §_1 = 65 +1=01 n (2.21). Moreover, Wy satisfies
2 2
2
2 Z kot 0 1)} < vTWau < 3 Z (8—1 + O 1 )R- (2.22)
keHN kel%

for every v e RX

Proof. The first statement of this lemma follows by straight-forward calculations. To prove
(2.22), we consider that X = K + 1, since the other case then easily follows by restriction. So
let v € RE*! be given and observe that

K

BUTWQ’U = Z(5k_ +5k U + Z 5k 1vkvk 1-
k=0 k=1

NI
N\»—A

Applying Young’s inequality to the second sum yields together with a rearrangement of the sums

_72 el T Yoz 25k 1URUK—1 < 12 Oy %+5k+§)”2'

k=0

[\)

The above result points out that
de(u’,u') = @ —HITWE - =) for any u° = ug[%%] and u' = ug[%'] (2.23)

with W = Wy is obviously the most natural choice for dg, since it gives the right value for the
L?-Wasserstein distance between two locally constant density functions. Nevertheless, we are
going to see in later chapters that another choice for W in (2.23) can also lead to a satisfying
metric on Pj .(€2), as long as W satisfies

VT WY < FTWoi < o W (2.24)

for any ¥ € RY and &-independent constants c1,¢; > 0. Such a condition for W is crucial for the
study of weak compactness (with respect to the L?-Wasserstein distance) of dg¢-bounded subsets

of Pj¢(%).
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In particular, we are going to study two different options for d¢ in this thesis:

(1) In case of second order evolution equations (Chapter 3), we consider a non-equidistant
mass decomposition &, and choose the metric d¢ induced by the tridiagonal matrix
defined in (2.21).

(2) In case of fourth order evolution equations (Chapter 4-6), we are always going to

consider an equidistant mass decomposition of the form
£E=(0,0,...,(K—1)6, M) (2.25)

with 6 = MK~! for a certain integer K € N, and choose d¢ induced by W = 6I. Here,
I € R®*® denotes the identity matrix.

Considering an equidistant mass decomposition as in (2.25), it is easy to check by a slight change
of the proof of (2.22) in Lemma 2.2 that W = 41 satisfies (2.24) with the constants ¢; = ¢ and
Cy = 1.

Once one has fixed a matrix W € R¥® as mentioned above, one can define a metric de
on Pj () through (2.23). With the rescaled scalar product (:,-), and norm |- defined for
v, w e R® by
1/2

s (2.26)

(F,Wye = VIWW and [¥], = (7, ¥)
the distance d¢ is conveniently written as

dg(lls[}_{’()],u§[}_{'1]) = Hffl — XOHE .

Note that

1 -0 -1 -1 =0 =0 =1
6 IR =% < [Xe[¥T = Xe[®] 20y < R =%
is then trivially satisfied for both choices W = W5 and W = . Therefore, the metrics Ws and
dg are equivalent in Py ((02), i.e.
1
gdg(uo, u') < Wa(u®,ut) < dg(u®, ut) (2.27)
for any u®, ul e Py (82).

We shall not elaborate further on the point in which sense the thereby defined metric dg¢
depending on W is a good approximation of the L?-Wasserstein distance on P g(Q) However,
the respective results in the following chapters validate our choices a posteriori. For results
concerning the I'-convergence of discretized transport metrics to the Wasserstein distance see

[GM13].

2.2.3. Functions on the metric space (P;.(Q2),d¢). When discussing functions on the sub-
manifold Pie (€2) in the following, we always assume that these are given in the form f : ¢ — R.
We denote the first derivative of f by dzf : r¢ — RY and the second one by 6}% frire— R¥XR

where the components are given through

[0:F @)k = 00, f(X) and  [2F )]kt = Ou,0u f(R)- (2.28)
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Example 2.3. Each component z, of 7 = z¢[X] is a function on y¢, and

e_1—€e__1
gz = —22 12 "% (2.29)
Or
Here, e, € RN denotes the kth canonical unit vector, hence
(ex,¥) = yp for any vector ¥ € R® with entries yj, and k € T’¥. (2.30)

If Q) is bounded, hence X = K — 1, we use the convention ey = e = 0.

Assume for the moment that a matrix W € R¥*® is fixed and take the associated rescaled
scalar product (-, )¢ as defined in (2.26). Then we introduce the gradient

Vef (%) = W o f(R),
where the scaling by W~! is chosen such that

FVef @) = O vibn, fR)

N
kel

for arbitrary vectors ¥ € RX.

2.3. The basic idea for a numerical scheme

In the following section, we first want to discuss the general strategy of deriving numerical
schemes to (2.7) in this Part 1, see Subsection 2.3.1 below. We then present in Subsection 2.3.2
some preliminary results for solutions to the schemes that inherit the special structure of the

chosen approach.

2.3.1. Fully discretization. The general idea for deriving numerical schemes — indepen-
dently of the equation’s order — is a discretization of the minimizing movement scheme in
Lagrangian coordinates.

So fix a pair A = (7;&), consisting of a temporal decomposition 7 described as in (2.10),
and a spatial decomposition & of the mass domain M as before in Section 2.2. We further fix a
discrete metric dg on Pj ((£2) as mentioned above in the Subsection 2.2.2, which is induced by
a matrix W satisfying (2.24).

In view of (2.13), it is hence necessary to find a discretization E of the entropy € in terms
of Lagrangian vectors r¢. The choice of such a functional strongly depends on the specific
character of €. Take for instance an entropy of the form €(X) = { V(0 X) d§ for any function
¢ : (0,+00) — R, then a natural candidate for E is the restriction E(X) = €(0:X¢[X]) for any
X € r¢. But we will also consider entropies with integrands depending on higher derivatives of
X that call for a more sophisticated choice of E.

However, let us assume for the moment that an adequate discretization of € : X — R is
given by the functional E : rg — R. Furthermore, fix a discrete metric d¢ accordingly to the
previous Section 2.2. Then a natural discretization of the minimizing movement scheme in
terms of Lagrangian maps is gained by the following iterative procedure: Starting from a given

) € ¢, we define recursively a sequence Xa = (XX,%4,...) by choosing each vector X} as a
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global minimizer of X — Ea (7, X, )‘(Z_l) with Ea : (0,7] x r¢ X r¢ defined by

En(0,%, %) = % |R— %2+ E(®). (2.31)
It is ad hoc not clear, if the functional X +— Ea(7,,X,X{) even possesses a global minimizer,
but this can mostly be guaranteed by choosing 7 > 0 sufficiently small. However, for the
sake of simplicity, let us assume for the rest of this section the existence of 7 > 0, such that
X — Ea(0,%,X*) attains at least one global minimizer for any X* € r¢ and o € (0, 7].

In practice, one wishes to define Xp as — preferably unique — solution of the system of
Euler-Lagrange equations associated to Ea(7,, -,)‘(’Z*I), which leads to the implicit Euler time
stepping;:

SR _VE(). (2.32)

Tn
If a solution Xa of iteratively defined minimizers of (2.31) indeed solves the system of Euler-
Lagrange equations (2.32) is strongly dependent on the choice of E and on the maximal time

step size 7, and is a highly nontrivial claim.

2.3.2. Entropy dissipation and weak compactness. Let us assume in this subsection that
XA = ()?OA, )ZlA, ...) is a sequence of Lagrangian vectors that successively solve the minimization
problem (2.31). Furthermore, denote by ua = (ug[€Q], ug[¥4],...) its corresponding sequence
of density functions.

The above minimization procedure turns out to carry many powerful properties which pos-
itively effect the analysis of iteratively defined sequences of minimizers XA. As a direct conse-
quence one can even prove compactness of the corresponding sequence of density functions ua,
at least in a weak sense.

But before we come to this, let us show the following.

Lemma 2.4. The sequence XA = (}Z’ON ilA, ...) of iteratively defined minimizers of the functional

X > Ea(1h,%, )‘(’Z_l) satisfies
E(XX) < E(XA) for alln =0, (2.33)
[$3 — %[ < 2ER) (tr — tn) for all i =n > 0. (2.34)

If in addition X solves the system of Euler-Lagrange equations (2.32), then for any N € N

N on _on—1]? N

S 5 FATXA | > [VEERR)[; < 2B(K)). (2.35)
T

n=1 I3 n=1

Proof. The monotonicity (2.33) follows (by induction on n) from the definition of XX as mini-

mizer of Ea (7, -, %% 1):

1 12 _ _ _ _
E(}_{Z) < o H)—{’Z - )_{Z 1”5 + E()_{yg) = EA(Tna}_{ZQ_{Z 1) < EA(Tn’}_{Z 175{2 1) = E()—{*Z 1)'
n
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Moreover, summation of these inequalities from n = n + 1 to n = 7 yields

5o (5 -) .
> 5| | <E)-EF)<ER).
n=n+1 n

For n = 0 and m — o0, we immediately get (2.35) using (2.32). If instead we combine the

estimate with Jensen’s inequality, we obtain
n

on _ gn—l1 n on _ gn—l1 2 1/2
H}_{Z . }_(,ﬂAug < Z - HXA XA HE < < Z T [HXA XA ’5] > (tﬁ . tﬂ) 1/2’
n 1

n—nt1 Tn Tn
which leads to (2.34). O

Throughout Part I of this thesis, we are going to use for a sequence A = (7; &) consisting of

a temporal decomposition 7 and a spatial decomposition & the short-hand notation
A — 0,

meaning that 7 — 0 and 0 — 0 in the limit. For the sake of notational simplicity, denote
henceforth by XA and ua not only the sequences of vectors XX and densities u)x , respectively,

but also the sequences defined by the assignements A — XA and A — uAa.

Proposition 2.5. Assume that E()_(’OA) < & uniformly in A for a fized constant € > 0. Then
for any T > 0, there exists a function us € CV2([0,T];P5(Q)) and a subsequence of A (still
denoted by A), such that {ua},. (t) — u«(t) in P3(Q) uniformly with respect to time t € [0,T]
as A — 0.

Proof. Fix any T' > 0. We can use the same techniques as in [AGS05, Theorem 11.1.6] thanks
to the result in (2.27): By connecting every pair of sequenced discrete values uzfl,uz with a
constant speed geodesic, i.e.

t—1tp— tn, —t
{uay, (t) == ug { z 15{’2 + = )_{Z_l} for t € (tn-1,tn],
Tn Tn

we obtain a family of Lipschitz-continuous curves satisfying for any s,t € (t,—1, t,]

Wa((uad, (s), (ua), (1))

—t— tn, — t—t,— t, —t
:f ‘<5 nolyn o sxgl> (" Ixy + 2 Xgl>
M

Tn Tn Tn Tn

s—1 2 n n—1|2 s—1 ? n ., n—1\2

Tn n

2

d¢

Then for arbitrary s,t € [0,T], s <t and n,m € N such that s € (t,—1,t,] and t € (ty, tm+1],
we get together with (2.34) and the metric equivalence (2.27)

Wa((ua), (s), Cun)r (£) < Wa({ua), (s), up) + Walui, uX) + Walug, (uayy (t))

th — S
<z Wg(uz_l, ur) + Wa(uR,ux) +
Tn Tm+1

< Vs —1tC,

t—tm

Wa(uR, uR*h) (2.36)
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where C' > 0 just depends on £. Analogously one proves

Wa({ua}, (1), (uay, (1)) < v/7C for any ¢ € [0, 7]

with another A-independent constant C' > 0. We can therefore invoke the Arzela-Ascoli Theo-
rem A.1, which yields the relative compactness of the family (ua). in C°([0,T]; P5(£2)). Hence
there exists u, € C7*([0,T]; P5(Q)), such that

sup Wa(Cua), (1), ux(t)) — 0
te[0,T]

and

sup Wa({ua}, (), ux(t)) < v/7C + sup Wa((ua), (t), ux(t)) — 0
te[0,T7 t€[0,T1]

as A — 0. This proves the claim. O



CHAPTER 3

Second order drift-diffusion equation

The contents of Sections 3.1-3.4 of this chapter and especially the main results in Theorem
3.3 and Theorem 3.4 are already published in a joint work with my PhD-supervisor Daniel
Matthes [MO14a]!

3.1. Introduction

In the following chapter, we propose and study a fully discrete Lagrangian scheme for the
following nonlinear drift-diffusion equation with no-flux boundary conditions on the bounded
interval Q = (a,b),

O = Ogi P(u) + 0y (uV,) for t > 0 and z € Q, (3.1)
0xP(u) +uVy =0 fort >0 and x € 09, (3.2)
u=u">0 att=0, (3.3)

where V :  — R is assumed to be in C?(Q2) and P : [0, +00) — [0, +00) is a nonnegative and

monotonically increasing function that satisfies the following assumptions:

e One can find a strictly convex function ¢ : [0, +o0) — R with ¢(0) = 0, such that

P(r) =r¢/(r) — o(r). (3.4)

e 7 +— P(r) is linear or has superlinear growth. In addition, we assume the existence of

an integer p > 1 and of constants ¢,¢,d, d € (0, +00), such that
P(r)?>c? —d and P(r)/r <P +d. (3.5)

for any r € (0, +00).
Typical examples for P satisfying the above conditions are P(r) = r (heat equation) or P(r) = r™
for m > 1 (porous medium equation with slow diffusion).

0

Furthermore, the initial datum u" is assumed to be integrable with total mass M > 0, i.e.

memzm

which shall be fixed for the rest of this chapter. This means especially that u® € P (Q) with
P5(Q) as defined in (1.17).

Remark 3.1. The technical assumptions in (3.5) are only minor restrictions for the choice of

P. In fact, these assumptions mainly assure that P(r) does not behave “too badly” close tor =0,

The journal can be found online at http://journals.cambridge.org/action/displayJournal?jid=MZA or
http://www.esaim-m2an.org/

29
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and that P does not increase exponentially fast as r — +00. However, one can get rid of (3.5) by
considering a CFL-condition for the temporal and spatial decompositions, which fixes a relation
between T and 5. A proof including such a CFL-condition was done in [MO14a]. This is why
we are going to present an alternative approach that involves the assumptions (3.5), which are

less restrictive than a CFL-condition.

Studies on Lagrangian schemes for (3.1) are widespread in the literature. MacCamy and
Sokolovsky [MS85] presented already a discretization that is almost identical to ours, for (3.1)
with P(u) = u?2 and V = 0. Another pioneering work in this direction is the paper by Russo
[Rus90], who compares several (semi-)Lagrangian discretizations in the linear case P(u) = u;
extensions to two spatial dimensions are also discussed. Later, Budd et al. [ BCHR99] used a
moving mesh to capture self-similar solutions of the porous medium equation on the whole line.
We further refer to [BCW10] by Burger et al., describing a numerical scheme for nonlinear
diffusion equations using a mixed finite element method.

The connection between Lagrangian schemes and the gradient flow structure of equation
(3.1) was investigated by Kinderlehrer and Walkington [KW99] and in a series of unpublished
theses [Roe04,Lev02]. In a recent paper by Westdickenberg and Wilkening [WW10], a similar
scheme for (3.1) is obtained as a by-product in the process of designing a structure preserving
discretization for the Euler equations.

In the aforementioned works, numerical schemes are defined and used in experiments; qual-
itative properties and convergence are not studied analytically. Some analytical investigations
have been carried out by Gosse and Toscani [GT06a]: For a Lagrangian scheme with explicit
time discretization, they prove comparison principles and rigorously discuss stability and con-
sistency.

Similar approaches are also available for chemotaxis systems [BCCO8], for non-local aggre-
gation equations [CM10,CW], and for convolution-diffusion equations [GTO06b].

3.1.1. Gradient flow structure. The link between equation (3.1) and the continuity equation
in (2.7) (or (1.10), respectively) is given by the entropy

£(u) = L S(u(z)) dz + L w(@)V (z) e, (3.6)

which corresponds to (2.6) using the integrand h(x,r,p) = ¢(r) + rV(z). The induces velocity
field is then given in terms of the first variational derivative of £ by

0P
v(u) = =0 (¢'(u) + V) = — (x u(u) + V$> : (3.7)
As we have mentioned in the introduction, this means that a solution to (3.1) satisfying the
no-flux boundary condition (3.2) can be interpreted as a L?-Wasserstein gradient flow in the

potential landscape of the entropy &, see [Ott01]. Written in terms of Lagrangian coordinates
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X, the L?-Wasserstein gradient flow for £ turns into an L?-gradient flow for
1

E(uoX) - fM b (W) 2X(€) dé + fM V(X(6)) de

=f (26X (€)) dé + f V(X(6) de.
M M

with the integrand ¢ : (0, +00) — R defined by v (s) = s¢(1/s). Here we used the change of
variables z = X(¢) and relation (2.5) under the integral in (3.6). Using that ;X = v(u) o X, see
(2.8) from Section 2.1.1, it is easily verified that this L2-gradient flow has the form

0X = 2 (2¢X) — Vi(X). (3.8)
Indeed, using that ¢/(s~1) = —P(s), which follows from (3.4), one achieves

0P (u)

X =v(u)oX =— ( + VI> oX = —0¢P(uoX) — Vy(X) = 09/ (0eX) — Vo(X).

Let us finally remark that the functional £ is A-convex along geodesics in Ws with

A = min Vg (), (3.9)
€2

which has been first observed by McCann [McC97]. Consequently, the L2-Wasserstein gradient
flow is A-contractive.? Hence, two solutions u, v converge (A > 0) or diverge (A < 0) at most at

an exponential rate of A with respect to Wh, i.e.,

Wa(u(t), v(t)) < Wa(u®,v%)e ™ for all t > 0. (3.10)

3.1.2. Description of the numerical scheme. We are now going to present a numerical
scheme for (3.1) using the gradient flow representation in (3.8), which is practical, stable and
easy to implement.

Before we come to the proper definition of the numerical scheme, we fix a spatio-temporal
discretization parameter A = (7;&) as follows: For a given 7 > 0, introduce varying time
step sizes T = (11, 72,...) with 7, € (0, 7], then a time decomposition of [0, +00) is defined by
(tn)po with ¢, := 377, 7; as in (2.10). As spatial discretization, fix K € N and introduce an
arbitrary but quasi-uniform spatial decomposition & = (&, ...,&k) of the mass domain M as
in Subsection 2.2.1. Furthermore, fix the discrete metric dg on Pj .(€2) that is induced by the
matrix Wy from (2.21), hence dg(u,v) = Wa(u,v) for any locally constant density functions
u,v € Py ().

Our numerical scheme is now defined as a discretization of equation (3.8):

Numerical scheme. Fiz a discretization parameter A = (1;&). Then a numerical scheme for
(3.1) is defined as follows:
20 0

(1) For n = 0, fiz an initial sequence of monotone values X := (29,...,2%_,) € r¢ and
set :U8 = a and :L‘?( = b by convention. The vector )?% describes a non-equidistant
decomposition of 0 = [a, b].

Note that A-contractivity with A < 0 is a weaker property than contractivity of the flow. Indeed, trajectories may
diverge, but not faster than in (3.10).
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(2) Forn =1, recursively define Lagrangian vectors X3 = (x7,...,2%_,) € te as solutions

to the K — 1 equations
1 o e Tkl — X Tk — Th—
—[Waz - 537Y)], =w’(’“gl ’“) - w’(k : 1)

Tn k+1 5k—%

- j V(X [Z](6)) 0k (€) e
M

with k = 1,..., K — 1. We later show in Proposition 3.9 that the solvability of the
system (3.11) is guaranteed.

(3.11)

The above procedure (1) — (2) yields a sequence of monotone vectors Xa := (X0, %h, ..., X%, -.),
and each entry XX defines a spatial decomposition of the compact interval [z, 2% ] < 2, n e N.
Fizing an index k € {1,..., K}, the sequence n — x} defines a discrete temporal evolution of
spatial grid points in Q, and if one assigns each interval [x}_,,2}] a constant mass package
5k—%7 the map n — [x}_,,x}] characterizes the temporal movement of mass. Hence X is
uniquely related to a sequence of locally constant density functions ua := (uOA,ulA, ce UK ),

where each function uy : Q@ — R fulfills

ui(e) =uglil = ), —
x 1 X 1
rel}/? Ft3 K—3
according to the definition of ug in (2.17).
Remark 3.2. In order to satsify the initial condition that u(0,-) = u® in (3.3), a suitable choice

of the initial grid )_{’OA is required. One can for instance define }EOA such that each grid point

satisfies
<y
& = J ud(z) dz
:EO
k—1
fork=1,...,K —1. It is easy to verify that the corresponding local density converges towards

u® with respect to the L?-Wasserstein distance, see for instance Lemma 3.24.

At the first glance, it seems unclear in which sense (3.11) is a discretization of the L*-gradient
flow from (3.8). To motivate the above approach, multiply (3.8) by a locally affine hat function
0; and integrate with respect to £, then integration by parts yields

f 01 X0, d¢ = —f W (0 X) 0By, dé —J V, (X)) dé
M M M

1 Skt 1 Ek
- [T e g -

5k+% &k 51@—% Ep—1

(06X) dé — LA V, (X0 de.

For this equation, we apply a finite element discretization by replacing X with a discrete La-
grangian map X¢[X]. Then a discretization of the time derivative using the respective difference
quotient, and the identity [Wa]x = SM 0r0; d¢ immediately yields (3.11).

Note that there are infinitely many (and maybe more “obvious”) ways to discretize the
right-hand side in (3.8). However, the one in (3.11) can be derived as a natural restriction of

the L2-Wasserstein gradient flow in the potential landscape of the original entropy &£, and hence
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provides the crucial a priori estimate for the discrete-to-continuous limit using the dissipation of
the entropy along discrete solutions. This circumstance is going to be discussed later in Section
3.2.1.c in more detail.

From now on we denote a solution to the above scheme by Xa = ()‘(’OA,f(’lA, ...) and its
corresponding sequence of densities by ua = (uQ,ul,...), where the components ¥} and u}
correlate through the map ua : r¢ — Pj (€2).

3.1.3. Main results. For the moment, fix a discretization parameter A = (7;§).
Let us further introduce a “discretized” version of the entropy £ on the set of Lagrangian
vectors ¢ by

. _ xn+% - nf% _
BE) = ) = X aw( ) | vixeR@)d 62
NEH}(/Q " M
which is nothing else than the restriction of £ to the set of piecewise constant density functions
in the language of Lagrangian vectors.

Our first result pictures the qualitative properties of discrete solutions to (3.11).

Theorem 3.3. Assume that 7'+ X > 0. From any initial density uOA = ug [}Z&] with Lagrangian
vector }?()A, a sequence XX satisfying (3.11) can be constructed by inductively defining XX as the
unique global minimizer of

- Lo g2 =
R G % — =X 1”5 + E(). (3.13)

The sequence of associated densities uan = (uQ,uk,...) with entries u} = ug[X%] then has the
following properties:

e Positivity and conservation of mass: For each n € N, u} s a strictly positive function
and has mass equal to M.
e Dissipation: The entropy & is dissipated, i.e. E(uX) < E(UZ_l).

e Contraction: If va is another sequence solving recursively (3.13), then
A
Wa(uk, vR) < e T mWh(uQ, vQ ). (3.14)

Positivity, conservation of mass, and dissipation of the entropy follow immediately from the
scheme’s construction, while the contraction property and even well-posedness are nontrivial
claims.

The main theorem of this chapter is the proof of convergence, which can be formulated as

follows.

Theorem 3.4. Let a strictly positive initial density u® be given. Furthermore, choose Lagrangian
vectors ) such that u) = ug[¥Q] converges to u® weakly in L' (Q) as A — 0 and

£ :=supE(ul) < +oo. (3.15)
A
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For each A, construct a discrete approximation Xa according to the procedure described in
(3.11). Then there exist a subsequence of ua (still denoted by A) and a limit function us
in C'llo/f([(), +0); P5(S2)) such that:

e {up}, converges to u, strongly in Li ([0, +0) x Q).

loc
e u, satisfies the following weak formulation of (3.1):

o0 o0
f f uxOppde dt + J J P(ts)0zpp — usVyOzp da dt = 0, (3.16)
0 JQ 0 JQ

for any test function o € C®((0,+0) x Q) with compact support in (0,+00) x Q and
Ozp(t,a) = 0zp(t,b) = 0.

Remark 3.5. The consistency and stability calculations in Section 3.6, see especially Proposi-
tion 3.32, provide a rate of convergence of order T + 32, if solutions to (3.1) are assumed to be
sufficiently smooth, see Remark 3.30. Numerical experiments confirm the analytically observed

rate, see Section 3.7.

At this point we want to remark that the above convergence result even holds true if one
neglects the strict positivity of the initial density u?. For this, one has to choose strictly positive
density functions uoA that converge weakly towards u° and satisfy an upper bound as in (3.15).
The resulting sequence of strictly positive densities ua that is gained by the numerical scheme
then still converges strongly towards a density u, solving the weak formulation of (3.1). As the
proof of Theorem 3.4 will show, one of the main ingredients of the compactness results is the
uniform boundedness of the initial approximation uOA. A more detailed argumentation can be
found in [MO14a].

Furthermore, using the abstract notion of I'-convergence we show in in Section 3.5 that the
limit curve uy is a curve of maximal slope, which constitutes the natural generalization of a
gradient flow in the setting of metric spaces [AGS05, ALS06, Ort05, Ser11].

Theorem 3.6. In addition to the assumptions in Theorem 3.4, assume that A as defined in
(3.9) satisfies A = 0. Then the limit curve uy € CI/Q([O, +0); P5(Q)) of Theorem 3.4 is a curve

loc
of maximal slope for €, hence u, especially satisfies

3 [ el a5 [ 106 (untr) ar = £ (0) = En(0)

for any t € [0,400). The proper definitions of |ul|, |0€| (ux(r)) and of the notion of curves of

mazximal slope are listed in Definition 3.20, see Section 3.5.

3.1.4. Key estimates. In what follows, we give a formal outline for the derivation of the main
a priori estimate for the fully discrete solutions.

The first main estimate is related to the gradient flow structure of (3.1): It is the potential
flow of the entropy € with respect to the L?-Wasserstein distance W,. The consequences, which
are immediate from the abstract theory of gradient flows [AGSO05], are that ¢t — E(u(t)) is
monotone, and that each solution “curve” t — u(t) is globally Hélder—%—continuous with respect

to Whs. In order to carry over these properties to our discretization, the latter is constructed
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as a gradient flow of a flow potential E with respect to a particular metric d¢ on the space of
locally constant density functions, see Section 3.2.1.c below for more details.

The second main estimate is a discrete interpretation of the following a priori estimate, which
is essential in the continuous theory of well-posedness of (6.1): Solutions to (3.1) dissipate the
entropy £ and the respective estimate is formally derived by an integration by parts (assuming
vV =0),

d

_EE(U) - L ¢/ (1) 0rsP(u) do = L U(axCﬁl(u))Q du,

where we again use the identity (3.4). Adapting this estimate in terms of locally constant density
functions, the best one can hope for is a control on the total variation instead of the derivative,
see Proposition 3.13. Nevertheless, this is the perfect regularity estimate to obtain our main

compactness result stated in Proposition 3.16.

3.2. Discretization in space and time
3.2.1. Properties of the entropy — continuous and discrete case.

3.2.1.a. The entropy in Lagrangian coordinates. To study the scheme’s properties, it is essential
to get an idea of the continuous entropy £ rewritten in terms of Lagrangian coordinates. As
already mentioned in Section 3.1.1 before, a change of variables x = X(¢) under the integral of
€ yields E(u) = €(X) for any density u € P5(Q2) with pseudo-inverse distribution function X,
where

¢(X) := f V(0:X(€)) d¢ +J V(X(9)) d¢, (3.17)

M M

and 1(s) = s¢(1/s). Due to the requirements on P and ¢, it turns out that v satisfies

P(s)=¢(s ) —s 1 (s = =P(s71), and ¢”"(s) =s 2P'(s7!) > 0. (3.18)

Thus 1 is a strictly convex function. Furthermore, 1 gets arbitraryly large close to zero, i.e.

lim(s) = ¢(1) + lim 1 P(o™ ') do = (1) + lim Pl

= 400, 3.19
510 510 J, r>w0 ), p P ( )

where the last equality is a result of the linearity of P, respectively of P’s superlinear growth.
This behaviour of 1 is crucial to prove the well-posedness of (3.11), but before we come to this,

we are going to show the following lemma.

Lemma 3.7. The functional € is bounded from below,

b—a
¢X)=E:=M (w( i ) + A) : (3.20)
and it is A-convex on X with the X given in (3.9), i.e.
A0 1 _ 0 1 AsL=9) b0 w1p2
E((1— 35X+ sX") < (1—5)€(X") + s€(X") — IXY = X720 (3.21)

for all X°, X! € X and every s € [0,1].



36 3. SECOND ORDER DRIFT-DIFFUSION EQUATION

Proof. Since ¢ is convex, the lower bound follows by Jensen’s inequality:

&(X) M@Z)(J 0eX (¢ jf) MgleisrllV(:z)dﬁ.

By definition of A, this yields (3.20). Next, let X°, X! € X and s € [0, 1] be given. Again by the
convexity of ¢ : (0, +00) — R, it follows in particular that

f w((1—s>&gxo<§>+sagX1(£>)d§<<1—s>f w(agx()(f))dusf $(2:X1(€)) de.
M M M

By using Taylor expansions, one gets for arbitrary y, z € Q and s € [0, 1]

A
Esz(y —2)? and

V(z) >V((1 —s)y + sz) +(1— S)Vm((l —s)y+ sz) (z—y)+ %(1 — 8)2(y — z)2.

Adding the first inequality multiplied by (1 — s) to the second multiplied by s yields

Vy) >V((1 —s)y + sz) + st((l —s)y + sz) (y—2z) +

A
V(A =s)y+sz) <(1—s)V(y) +sV(z)— 55(1 —5)(y — 2)%
In combination, this implies inequality (3.21). O

3.2.1.b. The discretized entropy. The restriction of the energy € from (3.17) to the subspace
X¢ is naturally associated to the functional E : r¢ — R with

E(X) = E(X¢[X]) = E(ug[x]),

which was already defined in (3.12). Rememeber the explicit representation of E,

K

T — Tg—1 —

- 2 ey () | vxeRie) a6
k=1 O, i M

for every X € r¢. Note especially that by the linearity of the map X — X¢[X], the functional E

inherits the boundedness and convexity from &. It is further easy to verify that the gradient

vector 0zE(X) = [0, E(X )]K ' e RE—1 is given by

. Tpy1 — T T — Tj— .
[exB@)], = —0' (T () 4 [ RO 62
k+1 k—3 M
2 2
Using once again that 1(s™') = —P(s) and Z = u¢[X], a more compact representation of the

gradient is provided by

0B(% 2 5Pk B ([ VX))o (323)

1/2 k‘EH+

where e;, € RE~! denotes the kth canonical unit vector with the convention ey = ex = 0, as

in Example 2.3. The Hessian matrix 02E(X) = [dpmxkE(x)]K '

e € RE-Dx(K-1) i3 symmetric
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with

9 nf% - enJr% enf% - en+% T
E(X 8P (24)
e = 3 et () ()

1/2

(3.24)
2 f o (Xe[R1(6))0(€)01(€) € ) exe]

kel
Lemma 3.8. E is bounded from below by £ defined in (3.20). Further, it is A\-convex with
respect to the quadratic structure induced by Wao, i.e., é’ﬁE(}‘(’) — AWy is positive semi-definite for
arbitrary XV € re. Consequently,

(& -2, VeER) - KERY)), = A5 - Hs (3.25)
is satisfied for every X0, %' € te-

Proof. Boundedness from below is a consequence of (3.20) and the definition of E by restriction
of €. Convexity is a direct consequence of the convexity (3.21) of &, taking into account (2.20)
and (2.21), and that X — X¢[X] is a linear map. The estimate (3.25) is obtained by Taylor

expansion. O

8.2.1.c. Interpretation of the scheme as a discrete Wasserstein gradient flow. Throughout this
section, we fix a pair A = (7; &) consisting of a spatial decomposition &€ of the mass domain M
and varying time step sizes T = (71,72, ...) that induces a temporal decomposition of [0, +o0)
by

{0=ty<ti<...<ty<..}, where t,:= Y 7,

with 7, € (0, 7] and 7 > 0.
Starting from the discretized entropy E we approximate the spatially discrete gradient flow

equation
X = —V¢E(X) (3.26)

also in time, using minimizing movements. For each y € r¢, introduce the Yosida-regularized

entropy Ea(:,-,¥) : [0,7] x r¢ by
oo 1 . . S
Ea(0,X,¥) = — HX ~ 7l + E®). (3.27)

A fully discrete approximation ¥a = (¥Q,%4,...) of (3.26) is now defined inductively from a
given initial datum X2 A by choosing each X} as a global minimizer of Ea (7, -, }“{'Z_l). Below, we
prove that such a minimizer always exists (see Proposition 3.9).

For practical applications, one would like the sequence XA to be the unique solution of the
Euler-Lagrange equations associated to Ea (7, -,)‘(’Z_l), which leads to the implicit Euler time
stepping

2 on—1
TEA _ _VE®R) (3.28)

Tn
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which is exactly the same as (3.11) from the defintion of our scheme in Section 3.1.2. Equivalence
of (3.28) and the minimization problem is guaranteed at least for sufficiently small 7 > 0, as the

following Proposition shows.

Proposition 3.9. Assume that 771+ X > 0 with A € R defined in (3.9), and let u) = ue[XA] in

PQE(Q) be given. Then there are sequences ua = (uQ,uk,...) and Xa = (XX, %4,...), uniquely
related by the map ug : r¢ — Py () from (2.17), such that u} € Py ¢(Q) is the unique minimizer
of Ex (T, - uz_l) on PE,E(Q)’ and X} is the unique minimizer of Ea (7, ',5(’2_1), for everyn € N.

Moreover, X} is the unique solution in r¢ to the system of Euler-Lagrange equations

—(®-%1) = ~VeE(), (3.29)
n

with 0zE(X) explicitly given in (3.22).

Proof. Fix n € N. It suffices to prove that X — Ea(7,, X, )_{'Z_l) has a unique minimizer in the
open set r¢. To this end, observe that

Ba(r 2,057 = BE) - 5 =3 g+ g+ ) [ 257
for every X € r¢. From Lemma 3.7, we know that the sum of the first two terms on the right-hand
side constitutes a convex function in X € r¢. Since 7, L4 X >0 for any n € N, and since W is
positive definite by Lemma 2.2, the last term is strictly convex. Thus, Ea (7, -, )‘(’Z_l) possesses
at most one critical point in re.

Let further ()—{»j)?ozo be a minimizing sequence for Ea (7,,, -, )?Z_l) in r¢. Since each of the K —1
components ;. belongs to the compact interval Q, we may assume without loss of generality
that X/ converges to some X* € %' 1t remains to prove that X* € re. Since (¥ )3020 is a
minimizing sequence, Ea (7, %/ ,)'(’Z_l) is bounded. Hence one obtains for arbitrary ¢ € ]I%2 by
Jensen’s inequality that

J J
1o n1y2 Tl TV N
C>— & -3 + Do — 2 ) + | V(Xe[#](9)) d¢
2Tn 1/2 6H M
Kely
J J J
-2 b—a— () , —2a) )
So( 2 T2 ) L (M- a2 M.
Lw< 5L ) + ( L)w M o 6L +
Since 1(s) — oo for s | 0, this implies that m{+l — xf_l > ed, > 0 with some € > 0 for all j,
2 2
and thus also $f+; —z* | > €d, > 0, implying X* € r¢. By continuity of Ea (7, -,)‘(’Zfl) on re,
2 2

it follows that X* is a minimizer. Consequently, Ea (7, -, >_<’Z_1) possesses a unique critical point

in r¢, thus the corresponding Euler-Lagrange equations (3.29) are uniquely solvable. ]

Remark 3.10. The above proof especially shows that X — Ea(0,%,§) is (6071 + \)-convex for
any o € (0,7] and any y € re.
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8.2.1.d. Metric contraction. The above results show impressively the importance of the scheme’s
structural preservation, and as we are going to prove in this section, the inherited convexity of E
from € is the key-ingredient for the discrete analogue (3.14) of the metric contraction in (3.10).
The following proposition is a first step towards (3.14) of Theorem 3.3,

Proposition 3.11. Ifva = (UOA, le, ...) 1s any other discrete solution of the numerical scheme,
then

(14 27 ) Wa(uk, vR)? < Wa (w1 0l (3.30)
for all n e N.

Proof. For XA, ya such that X = ug[xXX], and v} = ug[yA] for any n € N, we know by
Proposition 3.9 that

Wa(X3 — %A 1) = —mE(XR), and Wo(JR —FA ) = —TdEFR).
Substracting these equations, we obtain
W (X3 — 7X) + 7 (RE(RR) — E(FR)) = Wa(RX ' = 7A ). (3.31)
Since Wy is a positive-definite and symmetric matrix, one can find a symmetric and again
positive-definite matrix denoted by W;/ — its square root — such that WI/ 2VVI/ 2 = Wsy. As
a next step, we multiply (3.31) with W, 2 and take the norm on both sites in (3.31), then we
obtain
(KA — FR)TW2(RR —FA) + 27 (RX — 7A)" (-E(XR) — <E(FR))
<SE T -TA D T Wy —ﬁ_l)‘
Combining this with the convexity property (3.25), we arrive at the recursive relation
(1+227) (R = FA) W2 (X3 —7X) < RX ' = FA )T Wo(RA ' =72 ).
Iteration of this estimate and application of (2.21) yields (3.30). O
This result establishes the basis for the proof of the exponential decay rate given in Theo-
rem 3.3. Effectively, (3.14) is just an application of the following version of the dicrete Gronwall

lemma: Assume (c,)2, and (yn)n_, to be sequences with values in (0, +00), which satisfy
(1 + ¢n)yn < yn—1 for any n € N. Then

_Zn 1 <k
UYn < yoe “F=01ter  for any n € N.

This statement can be easily proven by induction. Therefore, one attains (3.14) and together
with Proposition 3.9 all claims of Theorem 3.3 are proven.

3.3. A priori estimates and compactness

Throughout this section, we consider a sequence A = (7;&) of discretization parameters such
that § — 0 and 7 — 0 in the limit, formally denoted by A — 0. Furthermore, we assume that
a fully discrete solution ¥a = (X1,%L,...) is given for each A-mesh, defined by (3.11).
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3.3.1. Entropy inequalities. The following estimates for the entropy E are immediate con-

clusions from Lemma 2.4.

Lemma 3.12. Let XA be a solution of the numerical scheme. Then for every N € N,

N

1 _
2 57, 78~ 571 g < BE) - BEY) (3.32)

N
Z 3” IVERR) e < E(RA) — E(ZX). (3.33)

3.3.2. Bound on the total variation. Below, we derive a bound on the time-integrated total
variation of the considered discrete solution ua which is independent of the discretization A.
This bound provides the key a priori estimate for the convergence proof in the next section.
The use of total variation (instead of Sobolev norms) is natural in our context, since it can be
directly evaluated on the piecewise constant profiles ux .

Recall the definition (1.14) of the total variation of a function f € L'(€2). If f is a piecewise
constant function, taking values fj on intervals (xj_1,x], with our usual convention a = zy <
x] < --- < xg = b, then the integral in (1.14) amounts to

K-1
| 7@ =S @0 o= 3 e fe)eo),
k=1 k=1

where we have used that ¢(a) = ¢(b) = 0. Consequently, for such f the supremum in (1.14)

equals

K-1
V1= 2 e = fil (3.34)
k=1

and is attained for every ¢ € Lip(2) with ¢(zr) = sgn(fx — fr+1) at k=1,..., K — 1.

Proposition 3.13. Assume ua to be a solution of the numerical scheme. Then

T
| TviP(ual 2 <), (3.39
0
for every time horizon T > 0, where
C(T) = 2M?[2(€ - €) + T'sup [V («)|?]. (3.36)
e

Proof. Fix a time index n. Furthermore, let ¥ € RX~! with components y;, € [—1, 1] be given,
where we use the convention that yo = yx = 0. Then, in view of (3.23), we have for Z{ = ug[X}]
that

(VEB(R). 9 = Y 6P 3 ([ va(Xel9I€)00() a6
rel /2 " keri, M

(3.37)
)= PG+ X ([ VXl 00) e

kel L kel

I
—~
}-U
—
??‘N§
+
N|=
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remember yo = yx = 0. Respecting that |§]; < M||¥]w we can take the supremum over all ¥
with ||[¥] < 1in (3.37). Then the Cauchy-Schwarz inequality yields

sup Z (P(2}

A1) =~ Py < MVEB(R) | + M sup [Va(a)],
xe

IFlo0<1 kel :
where the supremum on the left-hand side is attained for the vector ¥ € RX~! with components
Y = Sgn(P(ZZ+1) —P(z) 1)) at k=1,...,K —1. Due to (3.34) and

2 2
1](23),

T2

n E n
up = Zﬁ]_(xn 1733n
K/_f K
1/2
rely

we conclude that

TV [P(uA)] < M[VeERA) | + M sup [Va(z)|.

H£ el
To obtain (3.35), take the square on both sides, sum the resulting inequalities from n = 1 to
n = N with a sufficiently large integer N € N with T > Zﬁ;l Tn, and apply the energy estimate

(3.33). O

The above result yields in combination with (3.5) the following corollary for the time inter-

polation {ua}, of ua, remember definition (2.14).

Corollary 3.14. Assume ua to be a solution of the numerical scheme. Then for any T > 0 one
can find a constant C' > 0 independent of A, such that P({ua}..)/{ua}, is uniformly bounded
in LY([0,T] x Q).

Proof. Fix any time horizon 7" > 0. First note that the above bound on the total variation
of P({ua},) in (3.35) yields the uniform boundedness of P({ua},) in L([0,T]; L*(2)), hence
there exists a constant C' > 0 such that

T
L IP({ua} )7 dt < C.

Due to the first assumption on P in (3.5), we immediately get that

T T
c fo [{unr [2 g d < L [P({ua) ) Brgoy dt + T(b—a)d < C+ T(b—a)d,  (3.38)

hence {ua}, is uniformly bounded in LP([0,T]; L*(£2)). Finally apply the second inequality in
P({ua},)

(3.5), then
T
fo {ua},

This shows the assumption due to the (3.38). O

T
dt < cf | {uny e g dt + T(b — a)d.
0

L (Q)
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3.3.3. Convergence of time interpolant. In this section, we prove Theorem 3.4. Let an
arbitrary time horizon 7 > 0 and an initial condition u® € P5(Q) with £(u®) < oo be given.
Accordingly, we denote by N, is the smallest integer with Zg;l Tn > 1. Throughout this
section, we assume all the hypotheses of Theorem 3.4:

e The initial conditions u} € P3.¢(£2) converge to u® weakly in L'(Q).

e Uniform boundedness with respect to the discretization A,

ag <az <o, E(ui)<E <.

Denote by ua the corresponding discrete solutions obtained as in Proposition 3.9, then the

following weak convergence result is a well-known consequence of the energy estimate (3.32).

Proposition 3.15. Every subsequence of {ua}, contains a sub-subsequence that converges lo-
cally uniformly with respect to time in Wa to a limit curve uy € 01/2([0, +00); P5(£2)).

loc

Proof. Fix T' > 0, then we can apply Proposition 2.5 due to the entropy estimates in (3.32)
and (3.33), which yields the locally uniform convergence of {ua}.. with respect to time ¢ € [0, 7]
in Wy to a limit curve up € CV2([0,T]; P5(Q)). Clearly, the argument applies to every choice
of T'> 0. Using a diagonal argument, one constructs a limit curve wu, € Cﬁ)/ 3 ([0, +00); P5(2))
such that ur is the restriction of us to [0,T].

0

A stronger compactness result is needed for the convergence proof.

Proposition 3.16. Every subsequence of {ua}, contains a sub-subsequence (still denoted by
{ua}, ), such that for any T >0

{ua}, —> usx  strongly in L*([0,T] x Q),
P({ua},) — P(ux) strongly in L*([0,T] x Q),
where uy 15 the limit curve from Proposition 3.15.

The proof of this proposition is an application of the Aubin-Lions compactness principle.

Specifically, we use:
Theorem 3.17. [Adapted from Theorem 2 in [RS03]] Assume for any time horizon T > 0
that:

(1) There is a normal coercive integrand § : L'(2) — [0, 0], i.e., § is measurable, lower

semi-continuous and has compact sublevels in L' (), for which the following is true:

T
supf F({ua}, (t))dt < 0. (3.39)
A JO
(2) The {ua}, are integral equicontinuous with respect to Wa,
T—h
lim sup Wa({ua}, (t+ h),{ua}, (t))dt = 0. (3.40)
hi0 A Jo

Then the sequence ({ua},)a is relatively compact in Li ([0, +o0) x €2).

loc
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Let § : L'(Q) — R U {+m} be given by F(u) = TV [P(u)]* — possibly +00 — if u is
nonnegative with {;, u(z)dz = M, and by +00 otherwise.

Lemma 3.18. § is lower semi-continuous and has relatively compact sublevels.

Proof. Let A¢ := §1((—w;c]) € LY(Q) be a sublevel of §. By [Giu84, Theorem 1.19], the
set Bo := {P(u) |u € A¢c} is relatively compact in L'(£2); here we use the fact that our domain
Q is an interval, so that TV [P(u)]* < C and Yo u(z)dz = M induce a uniform bound on
the BV-norm of P(u). Thus, if (us)®, is a sequence in A¢, converging to ug in L'($), then
also (P(ug))2, converges to P(up) in L'(£2). By lower semi-continuity of the total variation
TV [] [Giu84, Theorem 1.9], the lower semi-continuity of § follows.

To conclude compactness of A¢, it suffices to prove that the mapping u — P(u) is L'(£)-
continuously invertible. For that, let a sequence (f;)j~, in B¢ be given, which converges to
some fo in L'(Q). Since the map r — P(r) is strictly increasing, positive, and continuous
with superlinear growth it possesses a strictly increasing, positive and continuous inverse with
sublinear growth. Hence, there is a uniquely determined sequence of functions u, € Ag such
that P(us) = f; for all £ € N, and a unique uy € A¢c with P(ug) = fo. We wish to show that wuy
converges to ug in L'(€). By standard arguments, we can assume without loss of generality that
the fy converge to fy pointwise a.e. By continuous invertibility of r — P(r), the u; converge to
ug pointwise a.e. Moreover, by construction,

Supf P(ug(z))dx = supj fe(z)dz < o0,
LeN JQ LeN JQ
so we can invoke Vitali’s Theorem — recall the superlinear growth of P — to conclude strong

convergence of uy to ug. O

Proof of Proposition 3.16. Fix any arbitrary time horizon T" > 0. It suffices to show that
every subsequence of {ua},. contains a sub-subsequence which is relatively compact. In view
of Proposition 3.15, we may thus assume — without loss of generality — that {ua}.. converges
uniformly with respect to t € [0, 7] in P5(Q) to a curve u, € CY2([0,T]; P5(2)). The verification
of (3.40) is easily gained by following the analogue proof of [DFM14, Proposition 4.8] step-
by-step. Furthermore, the estimate in (3.39) is a direct consequence of the regularity estimate
(3.35). Thus Theorem 3.17 provides relative compactness of {ua}. in L*([0,T] x Q). Since
L'-convergence implies weak convergence, it actually follows that {ua}, converges to us in
LY([0,T] x €2). Without loss of generality, we may even assume that {ua},. converges to wu,
a.e. on [0,7] x . By continuity of P, also P({ua},) converges to P(us) a.e. on [0,T] x .
Furthermore, (3.34) implies

LT LP( {ua), (t,2))> dzdt < 2(b — a) jzjl TH[P(bJ‘fa)Q FTV[P@A)P .

which is A-uniformly bounded because of the regularity estimate (3.35). We can finally invoke
Vitali’s Theorem to conclude that P({ua},) tends to P(us) in L'([0,7] x ), due to the growth
property of P. O
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3.4. Weak formulation and the limit equation

It is easily verified by applying integration by parts that a weak formulation of (3.1) with the
no-flux boundary conditions can be stated as follows: Find w : [0, +00) x Pj (€2), such that

Q0 o0
f J upn dz dt + f j P(u)p"n — uVyp'ndzdt =0, (3.41)
0 Jo 0 Ja

for any test function p € C*®(Q) with p'(a) = p/(b) = 0 and any n € CZ((0,+w)). Note
especially that the weak formulation (3.16) is equivalent to (3.41). Simply observe that any
v € CP((0,40) x Q) can be approximated by linear combinations of products n(t)p(z) with
functions n € C*((0,+0)) and p e C*().

An alternative way to derive this weak formulation is obtained by studying the variation
of the entropy £ along a Wasserstein gradient flow generated by an arbitrary test function p,
which describes a transport along the velocity field p’. The corresponding entropy functional is
@(u) = {, p(a)ulz) da.

The aim of this section is to show that the limit curve u, from Proposition 3.16 satisfies this
weak formulation and attains the initial datum u® weakly as ¢ | 0. To this end, the idea from
the continuous case can be adapted to derive a discrete analogue of the weak formulation for
our variational numerical scheme. Henceforth, fix an arbitrary spatial test function p € C*(2)
with p/(a) = p/(b) = 0 and choose w > 0, such that

4
Ioleaey = D 16® o) < @. (3.42)
=0

As already mentioned, we can use the same variational methods as in [MO14a] to show
that {ua},. inherits a discrete analogue to the weak formulation (3.41). Hence, we study the

variations of the entropy E along the vector field ¥(X) generated by the potential

() = | p(Xels) e
M
for any arbitrary smooth function p € C*(Q) with p’(a) = p'(b) = 0. That is why we define

¥(X) = Ve®(3), where [0x®(X)], = JM PXENOR(E)dE, k=1,....,K—1.  (3.43)

Later on, we will use the compactness results from Proposition 3.16 to pass to the limit, which
yields our main result in Theorem 3.4.
The proof of this theorem will be treated in two essential steps

(1) We show the validity of a discrete weak formulation for {ua}.., using a discrete flow
interchange estimate.

(2) Then we pass to the limit using Proposition 3.16.

Lemma 3.19 (discrete weak formulation). For any p € C*(Q2) with p'(a) = p'(b) = 0 and
ne CP((0,4m)), the solution XX with ux = ug[Xx] of the minimization problem (3.13) fulfills

N

> XR) — (XL -
3 () ZES A i (VeBRR), A (R)) - O + OFF),  (3.44)
n=0

Tn
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where we use the short-hand notation
P'R) = (p'(x1),....0 (xKx-1)) -

Proof. As a first step, we prove that both vectors p(X) and ¥(X) almost coincide for any X € re,

ie.

P )¢ < 35°@a(b— a)*. (3.45)

Hence, denote by X = X¢[X] the corresponding Lagrangian map of X and choose any k =

[¥(%) -

1,..., K — 1, then a Taylor expansion shows that
P (Xe[X(8)) = p'(xx) + p"(2) (@), — 2p-1)0k—1(€) (3.46)
= p(zk-1) + 0" (@) (zk — T6-1)0k(8) (3.47)

for all £ € [€x—1,&k], where &, & € Q denote suitable intermediate values depending on £. Multiply
(3.46) by 6, multiply (3.47) by ;_1, and sum these up to obtain that

P (Xe[X1(€)) = o' (xr)0k(E) + o' (2—1)0k—1(€) + Ri(€) (3.48)

where the error term Ry, fulfills, recalling (3.42),

&k Ekt1
f Ri(€)] dE < wl(ag — 21) f 00(€)001(€) dE + (g — 17) f 00 (€)1 (€) e
M - k1 &k
< %5((9% — 2p—1) + (Tps1 — 1)) (3.49)

Furthermore, define the vector fi = Wy (V(X) — p/(X)), then each component of [i is given by

k+1

pk = E:l (P' (Xe[=]) = ), P'(%'Wj)@k dg,

j=k—1
due to [Walr; = §,,0k0;dE. Substitute (3.48) and (3.49) into the integral, then Young’s
inequality yields the bound
25
18

forevery k = 1,..., K —1. Recalling the lower estimate on Wy in (2.22), it follows for v = W;lu
that

|| < ((zh = 21-1) + (@41 — 21)?)

- o S 6 K-1 tv2ab K-1 ,
[¥65) = D¢ = "Wyl < 5 3 ik 3 (@ = 2-1)? + (@1 — 21)?)
~ k=1 k=1

< dwlay(b—a)?,

proving our claim (3.45).
Let us now invoke the proof of (3.44). A Taylor expansion of p for X, X’ € X yields

p(X) = p(X) = T(X = X')* < J(X)(X - X)),
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which implies for X’ = X¢[¥2 '] and X = X¢[¥R] by integration

K-1

B(RR) - (A )~ 5 [RA - XX e < Y IKA - %X e fM P (Xe[RAD)OR(€) de
k=1

= (& -3 V&‘i’(ﬂ»g
= T (VeE(XA), VeR(XA))¢ -
Owing to (3.45), the last term can be estimated as follows,
(VEEB(RR), Ve®(Xh))e = (VeE(FR), p'(FA)), + {VeE(XR), V(XA) — ' (FR)),
< (VEEFR), p'(RR))e + [VeEEA) | [VER) — /&R, (3.51)
< (VEE(RA), p/(RA))g + Vo (b — a) [VeB(ER))

(3.50)

Inequality (3.50) in combination with (3.51) then yields after multiplication with 7(¢,) and

summation over n € N,

e TR) — @R
Z 7an(tn) (q}( 3)- 264 )—<V£E(>?Z),p’(>?’£>g>‘

Tn
N
<Inlleoo, o0 Zm %4 — <72 + Inlleo oy Vom(b —a) 3. 7 [VeB(EA)]
n=1 n=1

1
The right-hand side is of order O(7) + O(6?), due to (3.32) and (3.33). An analogue calculation
)

replacing p with —p leads finally to (3.44). g

Proof of Theorem 3.4. It still remains to prove that the limit curve from Proposition 3.16
complies with the weak formulation in (3.16)
To this end, we want to pass to the limit in the discrete weak formulation in (3.44). As an

immediate observation, we note that

S e MR RER) _§ o [ AR O
n=1 n

n=1 M Tn

=—Zm”< Tn”(”f pl) (ual, (tn,2) da

— f J x)uy(t, x) da dt,

as A — 0. So the proof of Theorem 3.4 is done, as soon as we know that

o0 Q0
D) run(ta) (VER(R). /(8 — = | | Plusdn—uVagnazar, (352

n=1
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as A — 0. So assume suppn € [0,7] for any 7" > 0, and fix N € N such that Zgll Tn > T.
First observe that (3.22) implies for any integer n = 1,..., N,

& ’ Tpq — T / Ty — Tp_ //on
(VBB =~ %, E () - (w)]mw

K-1
" JM Vi (X[RAD) ) /(2760 A€ = AT + A5

We consider both terms on the right-hand side separately. Using that ¢'(1/r) = —P(r) and that
p'(a) = p'(b) = 0, we see that the first term equals

K xr —
_ kglwf(w)wm o 1) = 2 j

with a suitable &3, € (2}}_,, 2}) by the intermediate value theorem. Multiplying A} with 7,7(t,)

=) (i) de,

f”k_% 1

and summing over n = 1,..., N yields

N» Ny
S r(t) AT = S Tt f P(u})p"(x) dz dt + R, (3.53)
n=1 n=1 Q

where the residuum fulfills due to |p”"(Zx) — p"(2)| < w(a} —a}_,) for any = € (z}_;,2})
N. K
[R1| < @|n]coqory Z 2 K~ T 1)2

f({mddt
) |

< 0wl coqo1) j {un}

0
Here we used that
_1
2
1 n n
2 TP -y
for any = € (2} _,,2}] and k = 1,..., K. Hence the residuum vanishes as A — 0, due to

Corollary 3.14. For the second term A%, we perform a change of variables:

34
J Vi (0% + 251 0x—1) (¢ (2F)0k + p'(2_1)0k—1) dE = f Va(2)p' (&) ———— da,

&, an_, L — L1

Ty 61{ 1

with some intermediate value & € (z}_,,x}). Summation over k = 1,..., K again provides due
to a Taylor expansion p’ in &

Ny Ny
St Az = S m(tn)f V,(2)p (2)ulk (z) dz + Ro, (3.54)
n=1 n=1 Q
with a residuum that is bounded by
|Ra| < @wT'(b— a)|nllcoo,r) max |Vl

Combining (3.53), (3.54), and the compactness result in Proposition 3.16 finally gives (3.52). []
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3.5. An alternative proof using ['-convergence

In this section, we are going to discuss an alternative proof of convergence for the special case
A = 0 that can be obtained by exploiting the equation’s variational structure more deeply. In
particular, the theory on perturbed A-contractive gradient flows developed by Serfaty [Serl1]
and Ortner [Ort05] indicates an alternative route towards the same goal, making use of the
machinery of ['-convergence.

Before we can claim the main result of this section, we have to define an equivalent notion

of solutions to the L2-Wasserstein gradient flow equation, see [AGS05, Theorem 11.1.3].

Definition 3.20. We call a function u : [0, +00) — P5(§2) a curve of maximal slope for & if it
satisfies the following two conditions:

(1) u is (locally) absolutely continuous: There exists a function A € L2 ([0,+)), such
that

for all s,t € [0, +00)
(2) w fulfills
S e(u(n) < — o[ (1) — 3 108P? (ult)) (3.55)

where |u'| is the metric derivative of u and |0€| (u) is the local slope of € at u,

1)) 1= i PR3 4 sy 2O

The formalism of curves of maximal slope constitutes the natural generalization of a gradient
flow in the setting of metric spaces [AGS05, Theorem 11.1.3], and is well studied for the non-
discretized set Pj (), see for instance [AGS05, ALS06,0rt05,Ser11] and others.

Our definition of a curve of maximal slope slightly differs from the typical one from the
literature, see for instance [AGSO05, Definition 1.3.2], where a strong upper gradient for £ is
used in (3.55) instead of the local slope. However, one can show that the local slope [0€] is
a strong upper gradient for £ due to the A-convexity of £ and the additional assumption that
A = 0. More precisely, the local slope |0€| satisfies

Eu(s)) — £(u(t))] < f 28] (u(r) || () dr (3.56)

for any locally absolutely continuous curve u : [0, +o0) — P5(£2) and for any s,t € [0,400)
with s < ¢, which essentially is the definition of a strong upper gradient according to [AGS05,
Defintion 1.2.1]. This inequality is a nontrivial result that is a consequence of [AGS05, Theorem
2.4.9] and [AGSO05, Theorem 1.2.5]: The first theorem guarantees that the local slope and the
global slope coincide if £ is A-convex with some A > 0. Since the global slope is not needed in
this thesis, we refer to [AGSO05, Definition 1.2.4] for a proper definition. The second theorem
shows that the global slope of £ is a strong upper gradient for £ in terms of (3.56), if & is
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lower semi-continuous. Note that the lower semi-continuity of £ results from the continuity of
its integrand ¢, see [AGS05, Remark 9.3.8].
As a consequence of (3.56) one obtains in particular that

E(u(s)) — E(u(t)) < ;L ‘u”2 (r)dr + ;L ]5‘€|2 (u(r))dr (3.57)

for any locally absolutely continuous curve u : [0, +00) — P5(Q2) and for s,t € [0, +o0) with
s <t.

Remark 3.21. If u is a curve of mazimal slope for €, then one has equality in (3.55) owing to
(3.57).

The aim of this section is to proof Theorem 3.6, which was essentially formulated as follows.

Theorem 3.22. In addition to the assumptions in Theorem 8.4, assume that £ is A-convex
according to the definition in (3.21) with A = 0. Then the limit curve u, € Cllo/f([O, +0); P5(£2))
of Theorem 3.4 is a curve of mazimal slope for £, hence u, especially satisfies for any t € [0, +00)

the equality

;JO ) () dr + ;L 1082 (s () dr = E(u(0)) — E(ua (). (3.58)

Remark 3.23. Note that Theorem 3.22 is essentially a conclusion of the strong convergence
result in Theorem 3.4 and [AGS05, Theorem 11.1.3]. Nevertheless, it is interesting from the
analytical point of view to apply the notion of I'-convergence directly to solutions of our scheme,

which demonstrates once more the particular structural preservation of our approximation.

The proof of Theorem 3.22 is discussed in the following two subsections. Before we can
treat the content of the above theorem, we introduce a discrete local slope for the entropy &£
in terms of Lagrangian vectors in Subsection 3.5.1 and prove its lower semi-continuity. Making
use of this new object, we can show that a solution to our numerical scheme indeed converges
towards a curve of maximal slope. For this purpose, a similar strategy as developed in [Ser11]
and [Ort05] is applied, see Subsection 3.5.2.

3.5.1. Lower semi-continuity of the entropy and discrete local slope. Lower semi-
continuity is one of the main ingredients for any kind of I'-convergence proof. It turns out that
under the assumptions on the entropy, £ and 0€ accomplish this essential property, i.e. for any
u € P3(£2) and arbitrary sequence (uy)j._, of density functions converging towards u in W, one
obtains
h;?l,igolfg(uk) > E(u) and li]?iiolclf 0] (ug) = |0&] (u). (3.59)
The lower semi-continuity of &£ results from the continuity of its integrand ¢, see [AGSO05,
Remark 9.3.8]. We further refer to Section 4.1 of [ALS06] and especially to Example 4.4
within. However, for our purpose we just need the lower semi-continuity of &£.
All attempts to translate a I'-convergence proof into the discrete case stand or fall by trans-

ferring those powerful properties to the discrete case. One of the main questions in this context



50 3. SECOND ORDER DRIFT-DIFFUSION EQUATION

is the following: Is it even possible to approximate each density function u € P5(Q2) by functions

of the discrete submanifolds Pj .(€2)? The following lemma gives a positive answer.

Lemma 3.24. Let us denote by U£ PgE(Q) the union of all finite-dimensional submanifolds
5¢(§2) = P3() with spatial decompositions & as described in Section 2.2. Then | Jg Pj ¢(€2)

is dense in P5(Q) with respect to the L*-Wasserstein distance. In particular, for any density

u € P3(2) an approximating sequence X¢ of Lagrangian vectors in r¢ can be explicitly given by

Tk
X¢ € re with components that satisfy f u(s)ds = 6k7%, (3.60)

Tp—1

s0 that ug[%¢] — u with respect to the L?-Wasserstein distance as § — 0.

Proof. To prove the above assertion, we will reformulate it in terms of Lagrangian coordinates.
For any decomposition & introduce a projection map m¢ : X — X¢ on the space of Lagrangian
maps, such that for all X € X.

me[X] = > wbp(§), with o =X(&), k=1,...,K — 1, and 2o = a, 7 = b.

k‘E]IK

Note that m¢ : X — X¢ is well-defined, although X € X does not have to be continuous. The
reason for this is the possibility to evaluate any function X € X at least at any point £ € [0, M),
thanks to definition (2.2). If we can show

(id —7¢) X 2 (1) < V(b — @) (3.61)

for any X € X, then the lemma is proven, since the associated sequence u¢ of density functions
with Lagrangian maps m¢[X] fulfills

Wa(u,ug) = |me[X] = X[ p2p) — 0

as & — 0, due to (2.3). For the proof of (3.61), note first that X and m¢[X] are monotonically
increasing. Thus, for any & € (§k—1, &k

(X(&k) = X(&k—1)), k=2,...,K -1,
1X(&) — me[X](9)] < { (X(&1) — a), k=1,
(b—X(Ex-1)), k=K.

Therefore one obtains |X(§) — m¢[X](€)] < (b— a) for any { € M, which further yields

K g
J(id =) X220 = f IX(6) — me[X)(€) 2 de
k=1YEk—1

K-1

<o(b—a)| D] (X(&) = X(&-1)) + (X(&) —a) + (b— X(€k-1))
k=2

—6(b—a)

This proves (3.61) and closes the proof. O
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For the forthcoming calculations we want to introduce a discrete counterpart to the local
slope of |0€|: For any X € r¢, define the discrete local slope [0¢E| of E at X by

ER® -EF)"
|0¢E| (X) = limsup ( (Xl _,(y))
Jere:§—% % — YHg

: (3.62)

The main challenge in this section is now to prove that the discrete local slope |0¢E| of E satisfies
a discrete formulation of the lower semi-continuity similar to the one in (3.59). Therefor, we are
going to derive an alternative representation to (3.62) for the discrete local slope, which is more
convenient for analytical treatments as (3.62).

For this purpose we first analyze |0€|: Note that the functional u — & (o, u,v) given by
1
ST(Ta u, U) = TWZ(ua U)2 + 6(u)
o

is (6= + A)-convex for any v € P5(Q2) and any o € (0,7), which is a consequence of the -
convexity of £ and the representation

E(o,u,v) = E(u) — %Wg(u, v)% + %(071 + MW (u,v)2.

This property allows the alternative representation of the local slope |0€| (u) through

_ w Ew) —E() A i
agl(u)—vepmr;#u( Wh(u.0) + 5 Wa(u, )) . (3.63)

A proof of this claim can be found in [AGS05, Theorem 2.4.9] and can be easily adapted to
the discrete setting. Indeed, the (0~! + A)-convexity of the functional % — Ea(0,%,¥) for any
Y € 1¢ and o € (0,7) (see Remark 3.10) and the metric equality [X — ¥, = Wa(ug[x], ue[¥])
from (2.20) yield that one can repeat the proof [AGS05, Theorem 2.4.9] step-by-step to show
that

+

. EX)—-EY) X, . .

0Bl ) = sup (PEZIW L Mg g ) (3.64)
verey2x \ X —¥le

To verify (3.64), one can also argue as follows: Since Theorem 2.4.9 in [AGSO05] is stated for

arbitrary metric spaces, it is in particular applicable to the space (Pj¢(€2),d¢).
The proof of the following lemma relies on the method used in [Ort05, Proposition 13].

Lemma 3.25. For any u € P5(N2), there exists a sequence of Lagrangian vectors Xg, such that

ue[Re] = ue — u with respect to the L*-Wasserstein distance and
E(ug) — E(u) (3.65)

as 6 — 0. Moreover, the discrete local slope is lower semi-continuous with respect to the L?-
Wasserstein distance in the following sence: If ug[Xe] — w with respect to the L?-Wasserstein

distance for any sequence X¢, then

liminf |0¢E| (X¢) = |0€] (u). (3.66)
0—0
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Proof. To prove (3.65) we take any u € P5 () with £(u) < +00 — otherwise the proof is trivial.
So for any arbitrary decomposition &, define a sequence X¢ with components as in (3.60), then
the corresponding sequence of densities ug = ug[X¢] converges towards u w.r.t Wh, see Lemma
3.24. Therefore we get

& (ug) Z Lk 1 <k—$k1> = i:: (zk — Tp-1) < k—la:k 1Jxk1u(s)ds>
Z f ) = £(u),

using Jensen’s inequality. Taking the limsup of both sides yields limsups_,, & (ue) < £(u) and
since £ is lower semi-continous, we especially obtain limys_, £(ua) = £(u).
To prove (3.66) it is essential to use the representation of the local slope as in (3.63), which

guarantees the existence of a sequence (fuj)?';o that satisfies

E(u) — E(v; A *
|0&] (u) = JHI{.IO (g/\/)g(u, v(j)]) + §W2(u vj)) :
Furthermore, define sequences X¢ and ¥; ¢ according to Lemma 3.24, such that ug[Xg] converges
to u and ug[¥;¢]| to v; for any j € N, both with respect to the L?-Wasserstein distance. By
means of (3.65) and the equality Wa(ug[Xe], ug[¥e]) = [Xe — }7375”5 we get

+
liminfs E(Xg) — lims_, E(y;
j—00 limg_,, [Xe — Vjielle
+
E(Xe) — E(¥; A
< lim liminf (}i&) - Fse) + 5 [%e — yj,&”g :
T >0 50 IXe — Vjielle 2

For further estimation, note that

E(Xe) — E(fj¢)
I%e — Vel

liminf
6—0

)

+
£> for any j € N,

)\H—» —
+ — | Xe —
2 £ )

E(X¢) — E(V¢)
|%e — Vjelle

o Ao o
<lim inf sup +§”X£— 7

6—0 jeN

so taking the limit with respect to j in the last inequality we get due to (3.64)

EX) - Efe) A
|0€| (u) < lim inf sup (Xf) = (Vs¢) + — |IXe — ¥,
550 jeN \  IXe —Viele 2

+
6—0
]

3.5.2. The convergence result. A reader familiar with the theory in [AGSO05, Part 1] or
[Ser11,0rt05] will observe that the strategy used below is closely related to the one in [Ser11]
and [Ort05].
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From now on, we will always make the following assumptions, which are essentially the same
as in Theorem 3.3 and 3.4:

o We assume T fine enough, i.e.
LA >0. (3.67)
e We suppose that the initial discretization uOA of u is chosen such that
Wo(ul,u’) — 0, EWR) — £(u?), (3.68)
as A — 0 and E(ul)) < € for fixed € > 0.

Note that the first point (3.67) guarantees the existence of minimizers. The second one is an
essential tool for the proof of the subsection’s main theorem.

In this subsection, let XA be a solution of the numerical scheme in (3.11), which especially
satisfies (3.13) from Theorem 3.3. Furthermore, denote by ua the respective sequence of locally
constant density functions, which converges towards a limit curve u, € Cllo/ C2 ([0, +00); P5(2)) as
A — 0, see Theorem 3.4.

Before we can formulate the next lemma, we have to introduce some additional notation for

the solution Xa:

Definition 3.26 (discrete metric derivative and discrete De Giorgi’s variational in-
terpolation). Suggest XA to be a solution of our scheme in (3.11). Then for any n € N and
t € (tn—1,tn], the discrete metric derivative of Xa is given by
<k — =377
[X’AJ (t) := = 2 K% (3.69)
Tn
Moreover, define the De Giorgi’s variational interpolation by
g = argminEA(t — t,—1,%, %X ) fort€ (th_1,tn], n €N, (3.70)
)?E;rg
and introduce similarly to the discrete metric derivative the map Ga : (0, +00) — Ry,
ot on—1
X\ — X\
= M for any t € (tp—1,tn]. (3.71)
t—1tn_1

Lemma 3.27. Suppose that Xa is a solution to our scheme in (3.11), thus especially solves

Gal(t)

successively the discrete minimizing movement scheme in (3.11). Then

% Ln [%al” (6) dt + % L:_l |Ga(®)?dt < E(XXY) — E(XR) (3.72)

n—1

for any t e ((n — 1)r,n7], n € N. Furthermore, there exists a subsequence of Xa, not relabeled,
a non-increasing function ¢ : [0, 400) — [0, 0] and functions A,G € L% ([0, +o0)), such that
for any T >0

|€a| — A weakly in L*([0,T]) and A > |ul| almost everywhere, (3.73)
) — lt) = E(u(t)) for any te[0,T], (3.74)
0B ({Za} (£)) — G weakly in L*([0,T]) (3.75)
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as A — 0. Here, uy denotes the limit curve from Proposition 3.16 that is in addition locally
absolutely continuous, i.e. Wa(ux(s), ux(t)) < Sz A(r)dr for any s < t.

Proof. Equation (3.72) immediately follows from (A.3), see Lemma A.5, and the previous
definitions of the discrete metric derivative (3.69) and of Ga in (3.71).

Summing over n € N in (3.72) yields

L (* = |2 L(* 2 r
QJ |ZA ] () dt + 2f |IGa(t)|?dt < & - €,
0 0
where £ is the lower bound of € (and therefore of £ and E as well), see (3.20). Hence [X/\|
is uniformly bounded in L?([0, +00)). Therefore a weakly convergent subsequence and a limit
function A € L2 ([0, 4+0)) exist, such that the first statement in (3.73) is satisfied. Furthermore,
the above estimate can be combined with the definition of Ga in (3.71) and the slope estimate
(A.2) from Lemma A.5. This yields
1 [ _
5 |, 106BI (i), (0)at <E -,

and proves the existence of G € L2 ([0, +o0)), such that (3.75) holds true. On top of that, one
can apply Helly’s Theorem A.2 on the sequence of non-increasing functions t — E({Xa}.. (¢)),
which guarantees the existence of a non-increasing function ¢(t) with the limit property in
(3.74). That especially proves (3.74) due to the lower semi-continuity of £.

It still remains to prove the estimate A > |u/|. For this, introduce for any time t € [0, +00)

J J
n(t) = max{j: t > Z o} and nX(t) =min{j: ¢ < Z Tn}-
n=1 n=1

Then (2.20) and the definition of |X/y | yield for any s < ¢

ni (0 o PN AR
Wa({ual () fus), 1) < ) Waluhoul )= X

J=njx(s)+1 Jj=nx(s)+1
KOOI
= |us| (r) dr.
t
nA(S)
Passing to the limit on both sides as A — 0 yields Wha(u4($), us(t)) < Si A(r)d(r). O

Owing to the above convergence results and the lim/lim inf-properties in (3.65) and (3.66),

we can now give a proof of the main convergence result of this section, Theorem 3.22.
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Proof of Theorem 3.22. Making use of the above results in Lemma 3.27 and the lower

semi-continuity of the discrete slope in (3.66) yield for any ¢ € [0, +00)
1 72 1 (" 2
3 . |u*| (r)dr + B . |0E|* (us (7)) dr + € (us(t))

t t
<1f A2(r) dr+liminf1f |6EE|2({>EA}T (r))dr + ¢(t)
2 Jo A—0 2 g

<lim inf (; fo |20 )% (r) dr + % L |Ga(r)|?dr + E({Xa), (t))> (3.76)
<timsup (5 [ % 0)ar+ 5 [ 160 dr+ B((za), )
=limsup E({Za}, (0)) = limsup £ (ug[¥A]) = £(u).

A—0 A—

Furthermore, one has that

E(u) — E(unlt)) < fo €12 (un(r)) dr + fo [ (r) dr,

due to (3.57). This yields equality in (3.76) and consequently (3.58). 0

3.6. Consistency and stability

In the following, we are going to show that our numerical scheme is consistent and stable. This
can further be used to prove an alternative convergence result to the one we already stated in
Theorem 3.4.

For the rest of this section we fix an arbitrary time horizon 7' > 0 and define for any temporal
decomposition 7 an integer N, € N such that T' < 27]:[;0 T < (T'+ 1) is fulfilled.

As a first step, we prove the scheme’s consistency which means in particular the following:

Proposition 3.28. Assume X € CP([0,T] x M) with p = 4 to be a smooth solution of the

Lagrangian formulation of (3.1), i.e.

X = 0y’ (0eX) — Vu(X). (3.77)

Let A = (1;&) be a family of discretization parameters, such that any spatial decomposition &
satisfies

5k+%—(5k_%=(’)(32) foranyk=1,..., K — 1. (3.78)

Furthermore, denote by ya the restriction of X to the respective meshes, given by yi = X(t,, x)
foranyneNgandk=1,... , K —1.

Then Ja satisfies the system of Euler-Lagrange equations (3.29) with an error of order
O(r) + (9(32) + O(8"/1). More precisely, the sequence of vectors Ja = (Fh,---,Ax") with
VA € RE=Y and components

n__ n—1
= I 4 [VeBe(7A)],

Tn
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satisfies
N+ on =2 —=p
err 1= max VAle < C(r+6" +67 /1), (3.79)
n=
with 6 = max, /2 0k and T = min,en 7, as defined in (2.11)
K

Remark 3.29. Note that the requirement (3.78) is naturally induced by the smoothness of
solution X, if one chooses € such that the initial grid 37% on ) is uniform, i.e. §; := (yg —ygfl)
is independent of k. Then a Taylor expansion on the associated distribution function U of X
around the point 29 yields due to (2.1) and (2.9)

2

Bvs — 01 = Ulyln) — 20(50) + U(yd_y) = B2U"(3)) + O(5%) = OF),

since the smoothness of 0¢X(0,&y) yields d, = O(0)

Remark 3.30. The term O(Sp/z) in err indicates a certain CFL-condition for the temporal and
spatial decompositions, but this can be neglected for sufficiently smooth solutions X of (3.77).

To make the proof of the above claim more readable, we introduce the following — more

technical — lemma.

Lemma 3.31. Consider the same assumption as before in Proposition 3.28. Then for any
k=1,...,K—1andn=1,..., N, the residuum

0,1 +6k—l

R" := bt 5 2 atX(tn7§k) + [aﬁE(ﬁ)]k (3'80)

fulfills |R"| < C3°.

Proof. In view of equation (3.77), the claim that |R"| < C3” is equivalent to

Opy2 +0p_1 =3
[EGA)], = ———5— (%' (%X) (tn, &) = Va(X(t, &) + O(5) (3.81)

With this in mind, remember the explicit representation of JzE(yX ) in (3.22), that is
yn o yn yn . yni
o)), = —v' (I g () [ vkl ouce) de
k+d k—3 M
foreach k =1,..., K —1and n = 1,..., N-. Let us treat both terms separately. First note
that the definition of XA and a Taylor expansion yield

52

1
kil

6

=n -n 6k

= OeX (s &) £ 22X (s &) + —=2 02X (b, &) + O(3°),

2
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hence

Yk T o VE — Vi1
¢( 5k >+¢)< 5k—% >

Ot 01 _
= (agxosn, 66) + —2 2 0BX (b, €) + — 20X (tn &) + 0<53>) (3.82)
/ 5’“‘% 2 62—% 3 <3
| 06X (b, €)= 523X (b, &) + — 208X (1 &) + OF) |.

A further Taylor expansion for the function v’ then shows that

52

1
kil

6

/ 5ki% 2

5 02X (tn, k) + 0(53))

62

1
k]

6

6k+l
20X (b 60) +

:¢/(55X(tn, gk)) + W(%X(tm &c)) ( (}gX(tny fk) + 0(63))

2
Op1 Ot 1

. L Y L (3.83)
m L2 A2 L2 13
+ ¥ (09X (tn, &) O X (tn, §k) + 0 X (tn, &) +O(07) | +0O(57)

2 6

6ki " 2 k3 n 3
V" (0 X(tn, E)) O X(tn, &) + T@ZJ (OeX(tn, &k)) 02X (tn, &k)

2

N[

=1/ (0eX (tn, &k)) *
5i+z <3
+ g 9" (06X (tn, &) (0FX)*(tn, &) + O(2"),
Combining (3.82) with (3.83), we obtain due to the assumption on the decomposition £ in (3.78)
that
N w,(y}iy - YZ> N W(YZ(;— YZ_1>
k+3 k—2

5]“‘% + 6"”’_% " 2 52"‘% B 5'%_% " 3
= R Xl ) (0 )~ R X ) X8
52 '

k+3 52*l " 2712 =3
- 0K (1, ) (02X (0, 66) + OF)
Opr1 + 05 1 -3
- R 0 0 X) 1, ) + O,
where the last term corresponds to the first term in (3.81).
For the second term of 0zE(yX) we once again use the smoothness of X and a Taylor

expansion,

|| VeI de = [ (ViltK(t.6) + Vea (X1 ) (Xel5BIO) — X(t0,60)
M M

1

+ 5 Vi (8) (XelFAIE) — X (b, 60))") 01(6) €
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where & lies between X(t,,,&k—1) and X(¢y,&k+1). Due to

5k+ 1+ 6k 1
[GCEEE——
M
we further obtain the representation
5k+ 1+ 5]{77
[ vexelsaI©)00) ae -5 (X 0) (3:85)

Ve (Xt &) jM (Xe[FAl(E) — X(ta, &))00(6) dE (386

f Vi () (Xe[FAIE) — X, &) 200 () . (3.87)

The first term in (3.85) is the second term in (3.81) and it is easly seen by a Taylor expansion
that the third term in (3.87) has to be of order (’)(53). Therefore we have to study the second
term (3.86). To this aim, note that the locally affine function X¢[§R ] satisfies

X [72](6) = X(tn, &) + (X(tn, Er—1) — X(tn, &) Op—1(§)  for € € [Er—1, &),
e X(tn, &) + (X(tn, Ep1) — X(tn, &) Or+1(€)  for € € (Ep—1, &),

and therefore

(X(tn, &—1) — X(tn, &) Or—1(€)  for € € [€—1, &,
(X(tn: Ekv1) — X(tn: &) Orr1(E)  for € € (&1, &)

Furthermore, another Taylor expansion shows that

_ <2
Hence inserting (3.88) and (3.89) into the second term (3.86), one attains

Xel[FAl() — X(tn, &) = { (3.88)

X(tn, &) | (Xe[FAIE) — X(tn, &)k (€) d€

M

ke
Xt &) f Xty €01) — X(tas €4)) 01 (€)00(6) dé

§k+1 (3.90)
+ Vao (X(tn, &) J (X(tn, &rt1) — X(tn, &k)) Orr1(€) 01 (€) dE
5ﬁ+ 513 L <3
:me(X(tm gk)) #aﬁx(tm ’gk’) + 0(5 )7

where we used in the last equation that

Opt

1
)

J 0 (§)0r+1(£) A€ =
M



3.6. CONSISTENCY AND STABILITY 59

for any k € {1,..., K — 1}. Putting all results for the terms (3.85) - (3.87) together, we finally
conclude that

[ vexelgal@)oe) ae - T X0 60) + 0@
which in particular shows in combination with (3.84) the claim in (3.81). O

Proof of Proposition 3.28. To get the required rate on the error, one has to investigate
- 1 -
[Wﬂg]k = 7[W2(37Z — YA 1)]k + [afE(ﬁ)]k
n
The main challenge is to simplify the term [Wg (YA — ﬂfl)]k. For this purpose, remember the
definition of the matrix Wy in (2.21) which satisfies for arbitrary y € r¢
6k_%yk—l + 2((51434—% + 5k_%)yk‘ + 5k+%yk’+1 for k = 2,..., K -2
6[Wayle = < 2(0s + 01)y1 + 0392 for k =1, (3.91)
2 2 2
6K_%yK—2+2(5K_% +5K_%)y1<_1 for k=K — 1.
Let us first fix an index k € {2,..., K — 2}. Furthermore, define the intermediate point
O 1 — 0y

&k 1= & + %ﬁ € [€k—1, Et1],
which is chosen such that
0= 1 (&r—1 = &) + 2(0pp 1 + 1) (E — &) + 01 (Sh1 — &) = 0. (3.92)
Then a Taylor expansion yields for any n =1,..., N,

_ _ _ P=LolX (t,, &) _ _
X(tn,€) = Xt &) + 0eX(tn, &) (€ — &) + D M(f — &) +0(8) (3.93)

1=2
remember X € CP([0,T] x M). Let us now consider Wyy’X for any n = 1,..., N, then one
attains due to (3.91)

6[W2}_’Z]k = 6k_%X(tm gk—l) + 2(5}94_% + 5k—%)X(tm Ek) + 5kz+%X(tm §k+1)'
Applying (3.92) and (3.93) further yields

. _ _ P AX (t,, §
=2

(Ep—1 — fk)l>

_ _ tn, _
+200 41 + 0, 1) (X(tn,ﬁk) + 0eX(tn, &) (& — &) + Z gk (& — €k)l>

_ = O X (tn, _
+ 01 (X(tn,ﬁk) + 0eX (tn, §) (Eps1 — &) + Z M(§k+l - §k)l>
+ o

= 3(Gpp 1 + 1) X(tn, &) + AR + o
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with
L, ZX(tnagk)
P20y o) ) (G = &)
=2 ’
P 3UX (ty, €5) _ Py OLX (tn, &k) _
+ 01 122 %(ék—l — &)t + Ju 122 %(ék—kl — &)

The same calculation can be done for n — 1 instead of n, thus one obtains

Opy1 +0p 1 _ AR — AR

(Xt &) = X(tn1,6)) + — o+ 0" /1),

(3.94)

L [Wo3 - 73], =

Tn

First note, that one can apply Taylor expansions with respect to time in each summand of A},

which yields

An— A1 -
S 0T (3.95)

67,
Next, another two Taylor expansions lead to

X(tn)gk) - X(tn—bgk) _ at

Tn

X(tn, &) + (Ep — &) 00X (tn, &) + O(T) + o). (3.96)

,_.

k—=

_ é
Combining (3.94), (3.95) and (3.96) with the identity & — & = % (3.92) yields

[Work], = ~ W3 — 72 Y], + [BEE ],

Tn

5k+1 +0p_1 5§+ 62 1
- 50X (tn, &) + 20,0eX (tn, &) + [O:B(FA)],

+067) + 00 + 0 /).

An analogue calculation shows the same result for the indices k = 1 and k = K — 1. Therefore,
as a result of Lemma 3.31 and the assumption on the spatial decomposition £ in (3.78), we

conclude that
IWoR oo < CGr +8° + 6" /1)

independently of n. Gerschgorin’s Theorem yields %é < p < 0 for any eigenvalue i of Wy and

_1
therefore [W, ? |2 < /5. As an immediate consequence, one obtains

1
WL, = W, Wil < | EVETIW e < St + 8 4 7

for any n € N and furthermore by Cauchy—Schwarz inequality

N+ . 3_ -2 =
err:r}}j{“hﬁ“g max«/<yA,WﬂA> max||W2WAH2 \/gozg(TJré +5p/z).



3.6. CONSISTENCY AND STABILITY 61

Proposition 3.32 (Stability). Let A = (7;&) be a family of discretization parameters, such
that any spatial decomposition & satisfies (3.78) and any temporal decomposition T is chosen
fine enough, i.e. 1 + A1, #0 for anyn =1,..., Nr. For each A, assume ua to be a solution of
the numerical scheme as described in Section 3.1.2. Furthermore, let u : [0,T] x Q — [0, 400)
be a smooth solution of (3.1) such that X € CP([0,T'] x M) with p = 4 solves (3.77). Moreover,
define the sequence up = (ug[FA], ug[¥als-..) with ¥a defined as in Proposition 3.28. Then

1 1—2)\
Wh(ua, wk)? < [ Wa(uQ, uld)? + tn———en? ) " 17w (3.97)
1+ 27y
where err is the error of consistency defined in (3.79) and Ty := inf,en(A1y,). Moreover,
sup Wa(fun},, {ul},) <C(r+5 +0"/1) (3.98)
te[0,T7]

is satisfied as long as Wa(u,ul) < s’

Proof. The proof follows the same idea as the one of (3.30). From Proposition 3.9 and Propo-

sition 3.28, we know that
FX —FA "+ T VeE(FR) = 7% and XX — X4+ 1 VEE(RR) = 0.
Multiply both equations with W;/ % and substract them, then
1/2 -,

1/2/on -n —1/2 -n —n 1/2 /) on— o
Wy (74 — F4) + 7 W, 2 (BB(FR) — B(RL)) = W (7t — 2571 + 7 Wy 25%.

As a next step, take the norm on both sides, then the convexity property (3.25) and Young’s
inequality yield

2 — —12 2 - 1 -
(1+2X7) |74 — RAlg < 787" — =2 e + 72 174z + 27 (Fa~ — 2L 7R,

< (1 + Tn) Hﬁ - l“£ —i—Tn 1 +Tn) ” H{

1417 Tn(172)‘)
Trone, = L+ 1o,

a2 < (1 Tn(1 = 20)\ |1 o112 Tn(l + 7n)
s - gl < (1 2GS 20 bt -l 2 e

Due to the elemental equality we finally conclude that

(=23 . = (I+7%) |
HXA YAHg"’ ZTkaH — kH ZTk+11+27:/\ H k+1‘

9

£

which proves (3.97) due to the discrete Gronwall Lemma A.3. The statement in (3.98) is a
consequence of (3.97) and the order of consistency (3.79). O

This result provides an alternative proof of convergence, since we have already seen in
Lemma 3.24 that {ua}, converges towards the smooth solution u of (3.1) with respect to the

L?-Wasserstein distance, at least pointwise in time.
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3.7. Numerical results

In all numerical experiments below, we used an equidistant time decomposition 7, i.e. 7, = T
for all n € N.

3.7.1. Implementation.

3.7.1.a. Choice of the initial condition. The numerical scheme is phrased in Lagrangian coor-
dinates: The discretization & = (£, &1, . .., &k ) of the reference domain M is fixed, whereas the
corresponding grid points X" = (x7,...,2'%_;) € r¢ on the interval 2 evolve in (discrete) time.
In the numerical experiments that follow, our choice for the discretization of the initial condition

is to use an equidistant grid X0 with K vertices on €,
) =a+k(b—a)/K,

and an accordingly adapted mesh € on M, with

T
& =U%x}), where U%z)= J u’(y)dy for all z € Q

a

is the initial datum’s distribution function. This discretization has the property that

0 0

J u(z)dazzj up(x)dz forallk=1,... K.

0 0
Th—1 Th—1

8.7.1.b. Time stepping. Each time step in the numerical scheme consists of solving the system
of Euler-Lagrange equations (3.11). In practice, this is done with a damped Newton method,
which guarantees that the constraint X} € ¢ — ie. that a < 27 < --- < 2% _; < b —is
propagated from the n — 1st to the nth iterate. Remember that we are looking for the unique
root in g¢ of the functional

1

OeEA (T, % B) = TWa(R— B371) + O4E(R),
T

which defines the nth time iterate X} . For the evaluation of 0Ea (7, X, 5('2_1) and its Jacobian
1
OZEA(T, X, X371) = =Wy + 02E(%),
T

an explicit expression for the integrals

oy (fM Vo Xe[] ds) - | Voo Xeloe)ae

is needed. Denoting by U an anti-derivative of V', one finds after integration by parts that

&k 1 _
¥, o XeRI00(€) dé — — f V() L= gy
§k—1 Tk — Tk—1 xk—xkl

- 57_% ~ U(zx) — B(wg-1)
— (Ve )

T — Tk—1
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and an analogue expression for the integral from & to &;11. In combination, we obtain

Oz, JM Vo Xe[X](§) dE = mmﬂfﬁk) — V(wp—1)) + m(m($k+l) — B(xp))

0, 1 0,1
+V(xk)< -1 Ok )

k+1

Ll — Tk-1 Tr+1 — Tk

and furthermore for any k,m e {1,..., K — 1},

( 261(:7% 26k+%
G (V) = B(xe-1) + Gy (Vlzpe) — BVlay))
Op_1 Ot L 01 Opsd
B —2V(z) ((%-9615—1)2 * (l’k+1—2xk)2 —Va (Ik—$k2—1)2 B (Ik+1—2xk)2> , m=k
o 20, 1 1
—m(m(l’k) —Y(zp1)) + (xk,kzi,il)z (V(zk) + V(zk-1)) m=Fk—1
0, otherwise.
\

This enables an explicit representation for the Hessian aéEA (1,%, }E’Zfl), using (3.24).

3.7.2. Numerical experiments. The following numerical experiments are performed for the

porous medium equation with quadratic nonlinearity,
Op = Oy’ + 0z (Vzu),

on the interval Q = (a,b) = (—1,1). For the potential V, we choose V(z) = —1 cos(rz), and as
initial datum, we take the following function of unit mass M = 1:

240 — 28072 + 4237*
8074

u(z) = C(—cos(2mz) + 1.5) ((x + 0.5)* + 1) with C = (3.99)

3.7.2.a. Reference Solution. Our numerical reference resolution is calculated with K = 5000
spatial grid points and a time step size 7 = 1072, Figure 3.1/left shows snapshots of the
reference solution’s spatial density after the first couple of time steps. One observes the typical
behaviour for nonlinear drift diffusion equations: On a very short time scale, diffusion reduces
the extrema of the initial mass distribution; subsequently, the drift dominates and transports
the mass towards the equilibrium (dotted line) on a longer time scale. Figure 3.1/right displays
the corresponding particle trajectories in the Lagrangian picture, i.e. how the points 7 move

with (discrete) time n for fixed k.

3.7.2.b. Fizedr. In a first series of experiments, we fix the time step 7 = 1072 and vary the num-
ber of spatial grid points K. In Figure 3.2/left, the corresponding L!-distances to the reference
solution wuyer obtained in 3.7.2.a above are shown as a function of time. Figure 3.2/right shows
the L'-errors at T' = 0.2. The observed convergence rate is of order K 2, which corresponds to

the analytically observed rate from Section 3.6.

3.7.2.c. Fized K. Next, we study the decay of the L'-error under refinement of the temporal
discretization for fixed K = 400. In Figure 3.3/left, the error is plotted at the fixed terminal
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FIGURE 3.1. Left: evolution of the (reference) solution ua with initial condition
(3.99) at times t = 0,7,...,207 = 0.2, with time step size 7 = 1072 and K = 5000
grid points. The dotted line shows the stationary solution. Right: associated
particle trajectories.
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FIGURE 3.2. Numerical error analysis with fixed time step 7 = 1072, using
K = 25,50, 100,200, 400, 800, 1600 grid points. Left: evolution of the L'-error
I {uat, (£) = tref(t) || 1 (). Right: order of convergence at terminal time 7" = 0.2.

time T' = 0.2 for various choices of 7. The observed order of convergence is 7, which is again in

agreement with the consistency result in Section 3.6.

8.7.2.d. Weakly convergent initial datum. In order to illustrate that it sufficies to approximate
the original initial condition u® by its discretizations uQ just weakly in L*(Q), we use perturbed
discrete initial data u0A7 . that are biased by high-frequency oscillations of fixed amplitude 0.1, as
indicated in Figure 3.3/right. As expected, the perturbation already becomes almost invisible
after the first time step, and the discrete solution ua . is indistinguishable from the one computed
with unperturbed initial conditions uOA.
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—— 1 _eror
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lluy(T) = u (DIl 2

-1

10 10° 107 10
Time step size 1

FiGUrRE 3.3. Left: numerical error analysis with fixed K = 400. We analyze
the Ll-error | {ua}, (T) — Uref(T)| 1 () at terminal time 7" = 0.2 using 7 =
1074,5-1074,1073,5-1073,1072,5-1072, 10~ L. Right: initial condition u% _ with
high frequency perturbation. 7

3.7.2.e. A discontinuous initial datum. For the last two series of experiments, we change the
initial condition u". This first series is carried out with the discontinuous inital datum

() = 0.1, if |z| > 0.75 or |z| < 0.25, (3.100)

0.9, otherwise.

As in experiment 3.7.2.b we fix a time step size that is 7 = 5- 1072 and vary the number of grid
points K. Figure 3.4/right displays the observed Ll-error at final time 7" = 0.2. In contrast
to experiment 3.7.2.b, the approximation error is zero initially, since the step function v can
be discretized exactly. However, the error jumps to a positive value in the first time step and
shows a very similar qualitative behaviour to that in experiment 3.7.2.b. Although the observed
error at final time T' = 0.2 is slightly larger than the one of experiment 3.7.2.b, the order of
convergence is again K 2.

3.7.2.f. A merely nonnegative initial datum. For this last series of experiment, we consider the
initial condition

ud(z) = (—cos(2mz) + 1.5) ((z + 0.5) + 1) x ~(@=05)(x+05) forfa] <05 (3.101)

0 for |x| > 0.5,

which vanishes outside of the subinterval [—0.5,0.5] < 2. The numerical scheme is not directly
applicable to u°, but to any of its strictly positive approximations u° + ¢, see Figure 3.5/left. As
already mentioned in Section 3.1.3 one can expect the sequence of solutions with initial densities
u® + ¢ to converge towards the solution of (3.1) with the nonpositive density u’ as ¢ — 0 and
A — 0. The qualitative numerical results at T" = 0.6 for various choices of ¢ > 0 are given in
Figure 3.5/right.
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FIGURE 3.4. Left: evolution of the solution ua with initial condition (3.100) at
times t = 0,7,...,407 = 0.2, with time step 7 = 5- 1072 and K = 5000 grid
points. Right: numerical error analysis for discrete solutions with the discontin-
uous initial datum from (3.100), using a fixed time step 5-7 = 10~ and varying
K = 25,50, 100, 200, 400, 800, 1600.
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FIGURE 3.5. The merely nonnegative initial condition u° from (3.101) is ap-
proximated by strictly positive data u’ + e. Left: discrete initial profiles for
e =10"1,1072,1073,107%,107°. Right: qualitative behaviour of corresponding
discrete solutions at 7' = 0.6, using 7 = 1073, K = 200.



CHAPTER 4

A family of fourth order equations

The content of this chapter is based on a submitted paper, see [Osb14] for a preprint. The
proof of Theorem 4.4 is based on a submitted paper that is joint work with my PhD-supervisor

Daniel Matthes [MO14b]. This paper is currently in revision.

4.1. Introduction

In this chapter, we are going to study a fully discrete Lagrangian scheme for a family of nonlinear
fourth order equations of the type

Opu + Oy (U0 (U 1055u®)) + Ay(zu) =0 for t >0 and z € Q, (4.1)
u=u">0 att=0. (4.2)

We are going to study both cases for the spatial domain € as discussed in Chapter 2, hence
Q = (a,b) is bounded or 2 = R. In case of a bounded domain 2 = (a, b) we consider in addition

no-flux boundary conditions which are
Opu =0, wudy(u* '0u®) + Azu =0 fort >0 and z € Q. (4.3)

The initial density u® > 0 is assumed to be integrable with total mass M > 0, and we assume
that M = 1 for reasons of simplification. Depending on the spatial domain, we consider the

following additional requirements for the initial density:

(1) If Q is bounded, then we assume u® to be strictly positive.
(2) If Q = R, then we suppose that u° is compactly supported and strictly positive on its
support supp(u”), which is assumed to be an interval.

In any case, we have that u® € P5(2) by means of (1.17).

We are especially interested in the long-time behaviour of discrete solutions and their rate
of decay towards equilibrium. For the exponent in (4.1), we consider values « € [%, 1], and
assume A > 0. The most famous examples for parabolic equations described by (4.1) are the
so-called DLSS equation for a = %, (first analyzed by Derrida, Lebowitz, Speer and Spohn
in [DLSS91a,DLSS91b] with application in semiconductor physics) and the thin film equation
for a = 1 — indeed, for other values of «, references are very rare in the literature, except the
paper [MMS09] by Matthes, McCann and Savaré.

Due to the physically motivated origin of equation (4.1) (especially for a = % and a = 1), it is
not surprising that solutions to (4.1) carry many structural properties as for instance nonnegativ-
ity, the conservation of mass and the dissipation of (several) entropy functionals. In Section 4.2.1,

we are going to list more properties of solutions to (4.1). For the numerical approximation of

67
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solutions to (4.1), it is hence natural to ask for structure-preserving discretizations that inherit
at least some of those properties. A minimum criteria for such a scheme should be the preserva-
tion of nonnegativity, which can already be a difficult task, if standard discretizations are used.
So far, many (semi-)discretizations for certain equations described by (4.1) have been proposed
in the literature, and most of them keep some basic structural properties of the equation’s un-
derlying nature. Take for example [BEJ14,CJT03,JP01,JV07], where positivity appears as
a conclusion of Lyaponov functionals — a logarithmic/power entropy [BEJ14, CJT03,JP01]
or some variant of a (perturbed) information functional. But there is only a little number of
examples, where structural properties of equation (4.1) are adopted from the discretization by
construction. A very first try in this direction was a fully Lagrangian approach for the DLSS
equation by Diiring, Matthes and Pina [DMM10], which is based on its L?-Wasserstein gradient

flow representation and thus preserves nonnegativity and dissipation of the Fisher information.

4.1.1. Gradient flow structure. As in the case of second order equations described in Chap-
ter 3, there is a natural connection between the continuity equation (2.7) and the equations in
(4.1) that is given by the a-dependent family of perturbed information functionals

Far(u) = 2104f ((9 U ) de + = f \x!Q (z)dz. (4.4)

So if we consider the functional & = F,  in (2.6), hence h(z,r,p) = § r2e=Dp? + )‘\a:|2r, then
the induced velocity field for the continuity equation in (2.7) is given by
v(u) = 0, (u* 1 0peu®) + Az (4.5)

and the continuity equation equals (4.1). Therefore, solutions to (4.1) can be interpreted as
L?-Wasserstein gradient flows in the potential landscape of the entropies Fax, see [DMOS]
by Denzler and McCann. This issue was further considered by Gianazza, Savaré and Toscani
[GSTO09] in the case a = , and by Giacomelli and Otto [GO01,0tt98] for a = 1.

Similar to the second order equations in Chapter 3, the L?-Wasserstein gradient flows along

Fa,x further allow an interpretation as L?-gradient flows along the functionals

1 1\7* 1 /\ )

where X is the pseudo-inverse distribution function of . Those LQ—gradient flows have the form

u(t,X(t,€)).  (4.6)

0 X = 5 8§(Za+28§§Za+ ) + AX, where Z(t,§) :=

1
0 X(t 5)
This identity is formally verified using that 0,X = v(u) o X, see (2.8) from Section 2.1.1: The
explicit representation of v(u) from (4.5) yields

0 X =v(u) o X = 05 (u* 1 0ppu®) 0 X + AX = 0¢((u 0 X)* 1 (0ppu®) 0 X)Z + AX
= (95 (Zaag (65(20‘)2)) Z + \X.

From this point on, elementary calculations show that this equation is equivalent to (4.6).
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4.1.2. Description of the numerical scheme. The following family of numerical schemes
for the highly nonlinear equations (4.1) is based on a finite element discretization of (4.6) with
local linear spline interpolants, so it is kind of the simplest discretization procedure possible.
Note in addition that the schemes’ formulations are almost the same for both situations, bounded
domain or Q = R, and just differ by means of (2.19). However, we are going to show later in
Section 4.2.2.b that our numerical approximation is equivalent to a natural restriction of a L2-
Wasserstein gradient flow in the potential landscape of the discretized version of the perturbed
information functional F, .

Let us fix a spatio-temporal discretization parameter A = (7; &) in the following way: Given
7 > 0, introduce varying time step sizes 7 = (11,72, ...) with 7, € (0, 7], and define a time de-
composition (t,)5_, of [0, +00) as in (2.10). As spatial discretization we fix K € N and introduce
an equidistant spatial decomposition of the mass domain M, so one gets & = (o, ...,{x) with
& = ké for any k = 0,..., K and the k-independent mesh size § = MK ~!'. We further fix the
discrete metric d¢ on 73575((2) that is induced by the matrix W = 61 € R®*® hence we especially
have

(V,W)e =6(V,w) and [V], =~/0(¥,V),

for any ¥, w € R®. Further introduce the central first and second order finite difference operators
Dé and D% that associate difference quotients depending on an extended “doubled-grid” in the
following way: For each vector of the form § = (y_%,yg,y%,yl, e ,yK_l,yK_%,yK,yKJr%) we
have

[Déy’]k = (ykJr% — ykié)/5 for k=0,...,K and
1 1 (4.7)
g7 K — 3

Our numerical scheme is now defined as a standard discretization of equation (4.6):

[DE Yle = (Ynt1 — 2ys + y,{_l)/52 for k=

Numerical scheme. Fiz a discretization parameter A = (1;€). Then for any (a, A) € [3,1] x

[0, 4+00) a numerical scheme for (4.1) is recursively given as follows:

(1) For n = 0, fix an initial Lagrangian vector X € ¢ < QX. If Q is bounded, then we fix
xo = a and xg = b in accordance with (2.15).

(2) Forn =1, recursively define Lagrangian vectors Xx € re as solutions to the system with
a number of N equations given by

xy — xz_l 200 1 3 1
_ D [ n\o+ D2 =n\ o+ ] A 4.8
P (20é+1) I3 (Z ) 2[ E(Z ) 2] k+ T, ( )

where k € I. The values z; 1 =0 are defined as in (2.18) with convention (2.19). We

2
later show in Proposition 4.6 that the solvability of the system (4.8) is guaranteed.

From now on we denote a solution to the above scheme by ¥a = (¥},%h,...) and its
corresponding sequence of densities by ua = (u%,ulA, ...), where the components X} and ux
correlate through the map ug : re — Py (€2).
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We will see later in Section 4.2.1, that the information functional F, ) can be derived using

the dissipation of the entropy

Ao n W2 e (31]
Ha(u) = J Pol(u)dr + J |z|?u(x) dz, where @q(s):= a—1/ ,
@ 2 Ja O128n(s), a= 3

with constants O, := v2a/(2a + 1) and A, ) := 4/A/(2a + 1). As replacements for the entropy
Ha,n and the perturbed information functional F, , we introduce

ga—1/2 1
— Aa . aa—1/2° o e (77 1]

Ha,)x(x) =0 Z fa(zn) + 2)\5 Z |xk|2a with fa(s) = 12 12 (4'9)

neﬂ}(m kel @1/2 1[1(8), o =3

and
Foa(X) =020 ] ﬂ L2 D7 Lkl (4.10)
a\ = 0, 5 5 k- .
kelk kellg

Remember that xg = a and zx = b are fixed if Q is bounded.

4.1.3. Familiar schemes. As already mentioned before in Chapter 3, the idea to derive nu-
merical schemes respecting the Wasserstein gradient flow structure of second order equations is
not new in the literature.

This circumstance changes dramatically if one is interested in the numerical treatment of
fourth order equations as in (4.1). In fact, we are just aware of a little number of schemes
concerning the limiting cases a = % and a = 1. Especially, Lagrangian schemes for fourth order
equations are relatively rare.

For the quantum drift diffusion equation, a = %, we mention the paper [DMM10] by
Diiring, Matthes and Pina. The fully discrete scheme described therein is — as far as we know
— the only one available in the literature that inherits the equations gradient flow structure.
The authors translate (4.1) for a = % into its Lagrangian formulation and generate a proper
solution of the minimizing movement scheme on a submanifold of the set of density functions.
Hence the scheme produces a discrete mass-preserving solution at any time iteration, which
dissipates the Fisher information and adapts the naturally given L2-Wasserstein gradient flow
structure from the continuous into the discrete setting. Another work that contains at least
some parallels to the above approach is [PU99], where a scheme for the bipolar (stationary)
quantum drift-diffusion model is presented, which is based on a quasi-gradient method.

In case of @ = 1, alternative Lagrangian discretizations for (6.1) or related thin film type
equations have been proposed in [CN10, GT06b], but only dissipation of the energy has been
studied there, and no rigorous convergence analysis has been carried out. As far as we know,
there is only a little number of publications that make use of the dissipation of more than one
entropy/energy functional to gain compactness results. Take for instance [Grii03,GR00,ZB00],
where the authors even prove convergence in higher dimensions, but only on regions where the

obtained limit curve is strictly positive.
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4.1.4. Main results. In this section, fix a discretization A = (7;&) with 7,6 > 0.

All analytical results that will follow, arise from the very fundamental observation that
solutions to the scheme defined in Section 4.1.2 can be successively derived as minimizers of the
discrete minimizing movement scheme

- . -n—112 -
X EHX_XA Hg + Faa (), (4.11)
see Proposition 4.6. An immediate consequence of the minimization procedure is that solutions

X\ dissipate the functional F, y.

4.1.4.a. Results for & = R. Concerning the long-time behaviour of solutions Xa, remarkable

similarities to the continuous case appear, if 2 = R. Assuming first the case A > 0, it turns

n

out that the unique minimizer i’g“ of H, ) is even a minimizer of the discrete information

functional F, ), and the corresponding set of density functions ugﬁn = ug [igli“] converges for

d — 0 towards a Barenblatt-profile b, » or Gaussian by 5, respectively, that is defined by

a— —1/2
bax = (a — b|x\2)i/( 1/2), b= & 2/= Ta/ Ay for o> 1/2 and (4.12)
by = ae M2l for o = 1/2, (4.13)

where a € R is chosen to conserve unit mass. Beyond this, solutions X} satisfying (4.8) converge

as n — o towards a minimizer )E'Enm

of F  with an exponential decay rate which is “asymptot-
ically equal” to the one obtained in the continuous case. The above results are merged in the

following theorems:

Theorem 4.1. For A\ > 0, any sequence of vectors Xa satisfying (4.11) dissipates the entropies

H, ) and F, ) at least exponentially, i.e.
. . 2
HO&)\(%) - gl,l)rxl < (Ha,)\(}_(%) - Hgl,‘,{l) 671+>\;tn’ and (4-14)
: : __2)

Foa(RR) — o < (Faa(RA) —Faiy) e o, (4.15)
with Hg“)r\‘ = Ha,A(f{?in) and FS‘;} = Fa,A(igﬁn). The associated sequence of densities ua
furthermore satisfies

; : __2A
[ — 2, ) < Can (Flan (R2) — HRD) "t (4.16)
for any time step n € N, where c, x > 0 depends only on o, \.

Theorem 4.2. Assume X\ > 0. Then the sequence of minimizers ufénin satisfies

ugﬁn —> b, strongly in LP(Q) for any p > 1 (4.17)
as 6 — 0.

Let us now consider the zero-confinement case A\ = 0. In the continuous setting, the long-
time behaviour of solutions to (4.1) with A = 0 can be studied by a rescaling of solutions to
(4.1) with A > 0. We are able to translate this method into the discrete case and derive a
discrete counterpart of [MMSO09, Corollary 5.5], which describes the intermediate asymptotics
of solutions that approach self-similar Barenblatt profiles as t — co.
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Theorem 4.3. Assume A = 0 and take a sequence of vectors X} satisfying (4.11). Then there

exists a constant co, > 0 depending only on «, such that

N 1
[ux — bz7a’0”L1(Q) < ca\/Hml(i’g) — HQHH(RZ)—l’ with  RA := (1 +a,(2a + 3)tn) br(2a¥3)

where bR 40 @5 @ rescaled discrete Barenblatt profile and a-,br > 0, such that ar,b; — 1 for

T — 0, see Section 4.3.3 for more details.

In view of the results about the long-time behaviour of discrete solutions, we want to point
out that the ideas for the proofs of Theorem 4.1 and 4.3 are mainly guided by the techniques
developed in [MMSO09]. The remarkable observation in this chapter is the fascinating structure
preservation of our discretization, which allows us to adapt nearly any calculation from the

continuous theory for the discrete setting.

4.1.4.b. Results for bounded Q@ = (a,b). In the special case that o = % and () is bounded, we
can even prove convergence of the discrete solution towards a weak solution of (4.1) under very

weak requirements on the initial datum.

Theorem 4.4. Fiz o = % and let a nonnegative initial condition u® with ”Hl/g’,\(uo) < o be

given. Choose initial conditions i& such that uOA converges to u® weakly as A — 0, and

Haon = sup Hy /o AER) <o and  lim (7 + 0)F1/ V&) = 0.
A ’ A—0 ’

For each A, construct a discrete approzimation XA according to the procedure described in (4.8)
above. Then, there are a subsequence with A — 0 and a limit function u, € C((0,+00) x Q)
such that:

o {ua}.,. converges to us locally uniformly on (0,+00) x Q,
o Vux € L ((0,+00); H(Q)),
o u, satisfies the following weak formulation of (4.1) with o = %

Q0

©¢]
f j Orp uy da dt + J ©(0,2)u’(z) da + f N (uy, p)dt =0,
0 JQ Q 0

with

1
N(ua (P) = 5 JQ OzazP Ogt + 40200 (6;5\/5)2 dz,

for every test function ¢ € C*([0,+0) x Q) that is compactly supported in [0, +00) x
and satisfies Oz p(t,a) = Oz(t,b) =0 for any t € [0, +00).

The proof of this theorem is long and contains many technical difficulties, this is why we are

going to treat it in the subsequent Chapter 5.

4.2. Discretization in space and time

In this section, we try to get a better intuition of the scheme in Section 4.1.2. Foremost, we will
derive (4.8) as a discrete system of Euler-Lagrange equations of a variational problem that rises
from a L2-Wasserstein gradient flow restricted to a discrete submanifold Pj E(Q) of the space of

probability measures P5(2) on Q. This is why the numerical scheme in Section 4.1.2 satisfies
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several discrete analogues of the structural properties of equation (4.1), which are going to be
discussed in the subsequent section. We will point out that some of the inherited properties
are obtained by construction (for instance preservation of mass and dissipation of the entropy),
where others are caused by the underlying dicsrete gradient flow structure and the smart choice
of the discrete L?-Wasserstein distance.

If Q = R, it is possible to prove that the entropy and the information functional share the
same minimizer even in the discrete case, and solutions to the discrete gradient flow converge with
an exponential rate to this stationary state. The proof of this observation is more sophisticated,
that is why we dedicate an own section (Section 4.3) to the treatment of this special property.

4.2.1. The information functionals as the auto-dissipation of the entropies. The
family of fourth order equations (4.1) carries a bunch of remarkable structural properties. The
most fundamental one is the conservation of mass, i.e. ¢+ |u(t,)|L1(q) is a constant function
for t € [0,400) and attains the value M = |u?| ri()- This is a naturally given property, if
one interprets solutions to (4.1) as gradient flows in the potential landscape of the perturbed
information functional

1

Far(u) = % jﬂ ((E‘IUO‘)2 dz + % JQ |z 2u(z) dz, (4.18)

equipped with the L?-Wasserstein distance W,. As an immediate consequence, Fa,n is a Lya-
punov functional, and one can find infinitely many other (formal) Lyapunov functionals at least
for special choices of a — see [BLS94, CCT05,JMO06] for a = 3 or [BG15, CT02b, GOO01]
for a = 1. Apart from F, ), one of the most important of such Lyapunov functionals is given
by the A, y-convex entropy

A A a5a+1/2 Q€ (l 1]
Haox(u) = f Ya(u)dz + a’J‘ \a:|2u($) dz, @a(s) = a—1/2 12 . (4.19)
Q 2 Q @1/28111(8), o = 5

It turns out that the functionals F, y and H, ) are not just Lyapunov functionals, but share
numerous remarkable similiarities. One can indeed see (4.1) as a higher order extension of the
second order porous media/heat equation [JKO98|

050 = Oz (VTY2) 4 Ay 20 (zu), (4.20)

which corresponds to the L?-Wasserstein gradient flow of Ha,n. But in view of our numerical
approximation, the most interesting connection between the functionals F, x and H, ) is the
following: The unperturbed functional F,p, i.e. A = A,y = 0, equals the dissipation of Ha g
along its own gradient flow,

d
ds

where dsv = ©,022 (UO‘H/ 2). In view of the gradient flow structure, this relation makes equation

Fao(v(s)) = ——Hao(v(s)), (4.21)

(4.1) the “big brother” of the porous media/heat equation (4.20), and implies many structural
consequences, see for instance [DMO08, MMSO09]. For instance, the A-convexity of H, )\ in
combination with (4.21) paves the way for useful a priori estimates that lead to compactness
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results as in [MIMSO09]. Another astonishing common feature that is a direct corollary from
(4.21) is the correlation of F, ) and M, by the so-called fundamental entropy-information
relation in case that {2 = R. This relation allows to study the long-time behaviour of solutions
to (4.1) in a graceful way, and even to prove that the stationary solutions of (4.1) are identically
equal to the ones of (4.20). We are going to discuss the fundamental entropy-information relation

and its consequences more deeply in Section 4.3.

4.2.2. Structure-preservation of the numerical schemes.

4.2.2.a. Ansatz space and discrete entropy/information functionals. The entropies H,  and
Faox as defined in (4.19) and (4.4) are functionals on P5(€2). If we first consider the zero-
confinement case A = 0, one can derive in analogy to Chapter 3 the discretization in (4.9) of
Ha,0 just by restriction to the finite-dimensional submanifold Pj .(€2) of P5(€2). Thus using ¢q
and f, from (4.9) and (4.19), a change of variables x = X¢[X], and the definition (2.18) of the

X-dependent vectors 7, one attains

Hoo(8) = Hoolueld)) = | ga(uelsl) do =5 3 falan)

1/2
rel

Note that this is perfectly compatible with (4.9). Obviously, one cannot derive the discrete
information functional F, o in the same way, since JF, o is not defined on Pj g(Q) So instead of

restriction, we mimic property (4.21) that is

Fo,0(X) = (VeHa (%), VeHa 0(X)), (4.22)

for any X € r¢. Using furthermore the calculation in (2.29) one gains the explizit representation
of the gradient 0zH, »(X),

T Skt
0xHao(R) = Oab D) 2e 72, (4.23)

HGHl/Z

remember Example 2.3 and (2.30) within, where we defined ey, as the kth canonical unit vector
with the convention ey = ex = 0 in case of bounded ). In analogy, one can write for the

discretized information functional

1 atl

T

Foo(X) = [VeHoo(R)|s = 035 ) (252) :
kEHK

In the case of positive confinement A > 0, we note that the drift potential u — {, |z[*u(z) dz
fulfills an equivalent representation in terms of Lagrangian coordinates that is

X f ()2 d¢. (4.24)
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In our setting, the simplest discretization of this functional is hence attained by summing over
all values xp, weighted with 6. This yields

. o Aan . oA
Ha,)\(x) = Ha,U(X) + %5 Z |l‘k|2 and Foz,)x(X) = Fa,O(X) + 55 Z |xk|2
kelx kel
as an extension to the case of positive A, which is nothing else than (4.9) and (4.10).
A first structural property of the above simple discretization is convexity retention from the

continuous to the discrete setting:

Lemma 4.5. The functional X — H,, \ is Ay \-convez, i.e.

Aa,)\
2

Hoz,)\((l - 5)}_() + 55’3) < (1 - S)Ha)\(i) + SHa,)\(}?) - (1 - 8)86 Z |$k - yk’|27 (425)

kJG]IK

for any X,y € r¢ and s € (0,1).

Proof. The statement in (4.25) is essentially a corollary of Lemma 3.8 replacing Wy by 41, and
due to the A, x-convexity of X — %(5 kel 1TE] O

4.2.2.b. Interpretation of the scheme as a discrete Wasserstein gradient flow. Starting from
the discretized information functional F, y we approximate the spatially discrete gradient flow

equation
0% = ~VeFo (%) (4.26)

also in time, using minimizing movements. Remember the temporal decomposition of [0, 4+00)

given by
n
{0=tg<t1 <...<tp<...}, where ¢, ::ZTJ’
j=1

using time step sizes T := (71,72,...) with 7, < 7 and 7 > 0. For each § € r¢, introduce the

Yosida-reqularized information functional FaA’)‘(~, 5¥):[0,7] xxt¢ = R by
@ >‘ 3 1 hed -2 —
FA'(0,%7) = o X = Flg + Far (). (4.27)

A fully discrete approximation ¥a = (XQ,%4,...) of (4.26) is now defined inductively from a
given initial datum X9 by choosing each ¥ as a global minimizer of FZ’)\(Tn, .7}_{,2,1)‘ Below,
we prove that such a minimizer always exists (see Proposition 4.6).
In practice, one wishes to define X’y as — preferably unique — solution to the Euler-Lagrange

equations associated to FOA"/\(TH, -, %41, which leads to the implicit Euler time stepping:

> on—1

% = —VFoa(R). (4.28)
Using the explicit representation of 0gF, ), it is immediately seen that (4.28) is indeed the
same as (4.8). Equivalence of (4.28) and the minimization problem is guaranteed at least for

sufficiently small 7 > 0, as the following proposition shows.
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Proposition 4.6. For each discretization A and every initial condition X° € te, the sequence of
equations (4.28) can be solved inductively. Moreover, if T > 0 is sufficiently small with respect to
§ and Fy \(X°), then each equation (4.28) possesses a unique solution with Fy (%) < Fa A (X0),

and that solution is the unique global minimizer of FOA")‘(T,L, . )'(’Z_l).

The proof of this proposition is a consequence of the following rather technical lemma.

Lemma 4.7. Fix a spatial discretization § and a bound C' > 0. Then for every ¥ € r¢ with
Fo . (¥) < C, the following are true:
e For each o > 0, the function FZ’)\(O', -, V) possesses at least one global minimizer X* € re
which satisfies the system of Euler-Lagrange equations

- §

= —VeFo\(X%).

e There exists a Tc > 0 independent of § such that for each o € (0,7¢), the global
minimizer X* € r¢ is strict and unique, and it is the only critical point of FOA"X(U, )
with Fo \(X) < C.

Proof. Fix ¥ € r¢ with F \(¥) < C, and define the nonempty (since it contains ¥) sublevel
set Ag = (FOA")‘(J, ~,)7))_1([O, C]) € re. If Q is bounded, it is clear that any X € A¢ lies in the
interval [a,b]. So if @ = R, then any X € Ac satisfies |§ — X[, < v20C due to Fo \ > 0. This

implies that
20C [20C
Yo — T<x0<xK<yK+ 5 (4.29)

Hence, there is an interval [—L, L], such that all components of an arbitrary X € A lie in
[—L, L], independent of the boundedness of Q.

Let Z = z¢[X], and observe that z, > §/(2L) for each z € ]I%Q. From here, it follows further
that

+1 3 za+% za+% )\
aT+ 5 —
ati J 2 atl  atl k+i o k-1
N < — < —_—2 2
St (gp) = XAt () (03 : (430)
k‘EHK k‘GHK kGHK
This implies that the differences z, LT, 1= d/z, have a uniform positive lower bound

on Ac. In combination with (4.29) it follows that A¢ is a compact subset in the interior of
te. Consequently, the continuous function FOA")‘(U, -, ¥) attains a global minimum at X* € re.
Since X* € A¢ lies in the interior of X, it satisfies agFaA’)\(U, X*,¥) = 0, which is the system of
Euler-Lagrange equations. This proves the first claim.

Since Fy ) : r¢ — R is smooth, its restriction to the compact set Ac is Ac-convex with some

Ac € R, ie., &)%FQA()?) > Aol e R¥® for all X € Ac. Independently of ¥, we have that

L . )
6)2?]?2’)‘(0, Xy) = a?gFa,)\(X) + ;Ha
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which means that X — F3(0, %, 7) is strictly convex on A¢ if

O<o<T10:= .
RN

Consequently, each such FOA")‘(U, -,¥) has at most one critical point X* in the interior of A¢, and

this X* is necessarily a strict global minimizer. O

Lemma 4.8. If Q = (a,b) is bounded, then

ZOH_% Zoa-i—% o\ 1/a 41
1 7 <1 aTy
(Z:)or‘r% < Ml—l/q 5 Z k+35 5 k—3 i <bM > 2 (431)
k‘E]IK —a
foranym e N, any k € ]I}f and g = 1. Consequently
M a+§
(M7 < OV (MFao(R4))'2 + ( ; ) for all ke /2. (4.32)
—a

Proof. In case of a bounded domain, any component of X} lies in [a, b], one can hence inter-
change 2L by (b — a) in (4.30) from the previous proof. The estimate in (4.31) is then attained
by a simple modification of the estimate in (4.30). The second claim (4.32) immediately follows
by (4.31) for ¢ = 2 and the definition of F,, o. O

4.3. Analysis of the long-time behaviour and equilibria for 2 = R

Henceforth, let 2 = R for the rest of the chapter. In the following, we will analyze the long-
time behaviour in the discrete setting and will especially prove Theorem 4.1, Theorem 4.2, and
Theorem 4.3.

As already shown in [MMS09], a key-ingredient for the analysis of the equations‘ equilibria
and long-time behaviour is the correlation of F,, ) and H, x by the so-called fundamental entropy-

information relation: For any u € Pj(Q2) with H, x(u) < 0, one obtains
Far(u) = |gradyy, Har|* + (20 — 1)Ag \Haa(u), for any A >0, (4.33)

see [MMSO09, Corollary 2.3]. In addition, a typical property of diffusion processes like (4.1)
or (4.20) with positive confinement X\, A, ) > 0 is the convergence towards unique stationary
solutions u® and v®, respectively, independent of the choice of initial data. It is maybe one of
the most surprising facts that both equations (4.1) and (4.20) share the same steady state, i.e.
the stationary solutions u® and v* are identical. Those stationary states are solutions of the

elliptic equations
022 (P()) 4+ A0z (zu) = 0, (4.34)

with P(s) := O,5*t1/2 and have the form of Barenblatt profils or Gaussians, respectively, see
definition (4.12) and (4.13). This was first observed by Denzler and McCann in [DMO8], and
further studied in [MMSO09] using the Wasserstein gradient flow structure of both equations

and their remarkable relation via (4.21).
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As a further conclusion of our natural discretization, we get a discrete fundamental entropy-

information relation analogously to the continuous one in (4.33).

Corollary 4.9. For any A > 0 and every X € ¢ with Hyo(X) < 00, we have

Fop(%) = [VeHar(R)[g + 20 — DA Ha(X) forae (3,1] and (4.35)
.35
S N2
Fip2 (%) = [VeH o (®)] + Arjzn for a= 3.
Remark 4.10. At first glance, it seems that there is a discontinuity of o+ F ) at a = %, but

this is a fallacy. For a > %, the second term on the right-hand side of (4.35) is explicitly given
by

z?ilﬂ A
(20 = DA aHoa(®) = 20— DAay [ ©ad 3} N

1/2
rely

5 |5l
2 3

Aoy o
= 2000000 Y. 227V 4 (20 1) 27* )3 -

1/2
rely

-1

For a | %, one gets Ao x — Ao n, Oa — % and especially 5ZHGH1/Q 2 2 . M =1. The
K

drift-term vanishes since (2a — 1) — 0.

Proof of Corollary 4.9. Let us first assume « € (%, 1]. A straight-forward calculation using
the definition of |.|¢, V¢ and dzH, \ in (4.23) yields

||V£HQ,A()2) = 5_1 <aiHa,A()z)v a}?Ha,)\ (§)>

2

k
_1

= vaHOQO()_(')HZ - 26011\04,)\5 Z Z? 2 + Ai’)\é 2 ‘xk‘Q. (436)

ne]l%z kel

Here we used the explicit representation of 0zH, 1 (X), see (4.23),

atl €1 T €yl
OHoa(R) =Oad D) 2 =2+ Mand ) mrer,
rel}/? kel
and especially the definition of (2.18), which yields
le_;—e+; ll’_;—l‘+1
s1{ e, PR BN W zrer ) = Ouhgy 20 Lot2 T FTY
0 ’ ’ 0
HEH%Z kel HEH%Z
_1
= —Oahapd D oz
EEH%Z

Since a # %, we can write 20, = (2a — 1)-2e Further note that the relation A, ) =

a—1/2°
VA (20 + 1) yields

A2 __ A AL Y _A 1_a—1/2 _2 1_2&—1
2T 20 4+1  2\a+1/2) 2 a+1/2) 2 20 +1)°
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Using this information and the definition of H, o, we proceed in the above calculations by

A 200 — 1
N _ 2\ _ — i o 2
IVEHaA@)2 = Fao(5) — (20 — DAaHao(®) + 5 (1 . 1) 5 Jaul
kE]IK
. = )\ 2 Agz,)\ 2
= Foo(X) = (20 = DAayHao(X) + 50 D k= (20— 1)—~d P
k‘E]IK kE]IK

=F, ) (X) — 2a —1)A \H )\ (X).

In case of a = %, we see that O/, = %, and Ay » = 4/A/2. We hence conclude in (4.36) that

S S A S
|VeHy )2 (X) Hz = HV5H1/2,0(X)HZ —Aq1jo00 Z z0 + 590 Z [2k]? = Faa(X) — Ay

HEH}(/Q kel

O

For the following reason, the above representation of F,  is indeed a little miracle: From
a naive point of view, one would ideally hope to gain a discrete counterpart of the fundamen-
tal entropy-information relation (4.33), if one takes the one-to-one discretization of the L2-
Wasserstein distance, which is (in the language of Lagrangian vectors) realized by X — (X, WaX)
with Wy from (2.21) instead of our simpler choice X — [%[¢. Indeed, with this ansatz, the above
proof would fail at the moment at which one tries to calculate the scalar product of dgH, o and
0z (X, WaX) = 2W,oX. This is why our discretization of the L?-Wasserstein distance by the norm
|l¢ seems to be the right choice, if one is interested in a structure-preserving discretization.

Let us proceed in the analysis of the schemes’s long-time behaviour. For this purpose, we

are going to prove first the existence of minimizers of Hy x:

Lemma 4.11. For each o € [3,1], the functional H, ) admits a unique minimizer )‘(’Tgnin ere. If

2
we further assume Ay \ > 0, then
Bod o zpinf? < Haa(®) - Hon(G2) < — 1 |VeHun ()12 4.37)
2 ¢ e a,\ a, \Ag = 2Aa,)\ oA\ I3 .

for any X € x¢

Proof. To prove that the convexity of Hy ), see (4.25), implies the existence of a minimizer of
H,, ) we first have to guarantee that X — H, »(X) is bounded from below. Since this is trivially
valid for @ > 1/2, we consider a@ = 1/2 and refer the result in Lemma A.7, which eventually
shows that

B 2/ 2N 2,/7 B AL
Hjpa(%) >~ (M +[215)  + 5 IRlE > =255 (V1 + I=lg) + 5 I%1¢

One can hence find two constants ¢y > 0 and d) > 0 depending on A, such that Hj 5(X) >

c H)?HZ — dy, which further shows that H, ) are bounded from below at least by —d, for all
€ (3,1]. Further take C' > 0 such that A¢ := H_ ' ([~d\, C]) is not empty, then

1% ¢

€] < € <

2

)\5(0 + d,\).
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Hence, there is an interval [—L, L], such that all components of A, lie in [—L,L]. From this
point on, one can proceed as in Proposition 3.9 to show that H, ) has a unique minimizer.
Deviding (4.25) by s > 0 and passing to the limit as s | 0 yields

Aa,)\

H, (%) — Hoa(7) < (VeHa (). — 7 — 7l -

The second inequality of (4.37) now follows from Young’s inequality |pg| < e[p|* + (2¢)'1|q|?
with & = (20A41) "}, and even holds true for arbitrary 7 € Te.
To get the first inequaltiy of (4.37), we set X = >_<'I£nin and again devide (4.25) by s > 0, then

Ho o ((1— )%™ + 57) — Han(F9™) . , Aoy
e 3 a, M\ Xg < Ha,)\(Y) —H, )\(Xgnn) - ;7

where the left-hand side is obviously nonnegative for any s > 0. Since s > 0 was arbitrary, the

: 2
s >X£ _yHg’

statement is proven. O

Corollary 4.12. The unique minimizer X?m

€ r¢ of Hy x s a minimizer of Fo ). Furthermore,
one has

2a+1

Foa(X) = Fap(3E™) < |VeHa ) (4.38)
for any X € x¢

Proof. Equality (4.35) and 2a — 1 > 0 shows that X — F, \(X) is minimal, if one has that
|[VeHax(¥)[ = 0 and Hq \(X) is minimal. This is the case for X = X?m The representation in
(4.35) further implies

Fa,)\( ) Fa )\(}—(»I&nm)

=|[VeHo (X H£ |VeHq A (R "mm ||'£ — DA (Hon(X) — Hy ,\(igmn))
—min 2a
~ VeI + (20— Do (Har() - Han(") < (14 221} 1902,
where we used (4.37) in the last step. O

4.3.1. Entropy dissipation — the case of positive confinement A > 0. In this section,
we pursue the discrete rate of decay towards discrete equilibria and try to verify the statements
in Theorem 4.1 to that effect. That is why we assume henceforth A > 0.

Lemma 4.13. A solution XA to the discrete minizing movement scheme (4.11) dissipates the

entropies Hy \ and F ) at least exponentially, i.e.
(1+427,A) (Hon(RR) — HOW) < Hopn(Z3 ") —HIY  and (4.39)
(1+27,) (Faa($4) ~ FIR) < Foa(33) — I (4.40)
for any time step n > 1.
Proof. Due to (4.35), the gradient of the information functional F, ) is given by
0xFa(X) = 2671 (0xHo A (%) 02H, 0 (R) + (20 — 1) Ag 20 Ha A (X),
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which yields in combination with the A, y-convexity of H, x and (4.28)
Ho \(R3) — Haa(RR)
>Tn (VeFaa(RA), VeHa A (KR ))e
2275, (VeHa A (KR ), 3Ha A () VeH A (RR)), + (200 = DAa ) [VeHon (RA) [
227 8o [VeHaa(RR) [z + 7020 = Ao [VeHaa(KR) g = 7020+ 1)Aax | VeHan (X)) -
(4.41)

Using inequality (4.37), we conclude that

(1+ 270 (20 + 1)AZ ) (Hon(RR) — Hop(RF™)) < Hop(RX) — Ho a(RF™)

)

for any n € N. Since (2« + 1)A2 , = ), this shows (4.39).
To prove (4.40), we proceed as follows: First introduce for o > 0 the vector X, € r¢ as the

unique minimizer of

7 5 I = AL + Haa(7),
which is further a solution to the system of Euler-Lagrange equations, hence

X, — XX S
2 = —VeHo ) (%o).

This especially induces by passing to the limit as ¢ | 0 that

Xy — XK

lim =22 = —VH, ,(X}). (4.42)
ol0 g ’

Furthermore, note that X} is a minimizer of X — FZ”\(Tn,f{’, %2!) by definition of ¥a as a

solution to the numerical scheme. This implies in particular that
1 —192 1, _12 -
E ”)_(Z - )_(Z 1H§ + Foz,k(}_{g) < E ”XU - }_{Z 1H§ + Fa,)\(xa)a
and therefore

Par(%4) ~ Faa() < o (15— 537117 - %4 - <4 7[2)

1 . R _ _
< g I8 = Sl (% — <37+ IRA ~ %57

We now devide both side by ¢ and pass to the limit as ¢ | 0, then we get

(VeFa(XR), VEHo £ (XR ) < “V£Ha,\(XA le KA — =X, (4.43)
due to (4.42). Furthermore, we have seen in (4.41), among other estimates, that

7n(20 4+ Ao [VeHaaFA) g < 7 (VeFaa(FA): VeHaa (FR))e -
This yields in combination with (4.43)

70 (20 + 1)Aa [VeHa (RA) g < [ VeHan(RA) [RA - 3571 -
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As a consequence, we get two types of inequalities, namely

(20 + DA |VeHaA(ZR)[, < |2 — %3 Y|, and
€= ¢ (4.44)
QTnA(Fa,A(XA) — Faa(ZPM)) < |74 — 237"

where we used A, ) = 4/A/(2a + 1) and (4.38). To get the desired estimate, fix ¥x ' and denote

now by X! a minimizer of

- L. —112 —
¥= - 7 =53 g + Far(®)
for o € (0,7,]. Then X2 connects ¥4 ' and £% and the monotonicity of o — F, x(X¥7) and (4.44)
yields for any o € (0, 7]
20 A (Fa\(FR) — Far (™)) < 2m3A(Fan(X5) — Fan(Zg™)) e
4.45
12
< x5 =27
Now apply (A.3) from Lemma A.5, which induces in this special case
—1112 -1
R I g
Foal@) + g o€ [ 150 R dr — Foah )
n 0 202
Inserting (4.45) in the above equation then finally yields
(1+27)) (Faa(FR) = Faa (%)) < Fap(8X) = Fan(EE™),
and the claim is proven. O

Remark 4.14. In the continuous situation, the analogue proofs of (4.39) and (4.40) require
a deeper understanding of variational techniques. An essential tool in this context is the flow
interchange lemma, see for instance [MMS09, Theorem 3.2]. Although one can easily proof a
discrete counterpart of the flow interchange lemma, it is not essential in the above proof, since

the smoothness of X — Hy \(X) allows an explict calculation of its gradient and hessian.

Lemma 4.13 paves the way for the exponential decay rates of Theorem 4.1. Effectively, (4.14)
and (4.15) are just applications of the following version of the discrete Gronwall lemma: Assume
(en)p_o and (yn)a_ to be sequences with values in [0, +00), satisfying (1 + ¢p)yn < yn—1 for any
n € N, then

-y 1 %k
UYn < yoe =0 1+e  for any n € N.

This statement can be easily proven by induction. Furthermore, inequality (4.16) is then a
corollary of (4.14) and a Csiszar-Kullback inequality, see [CIJM™01, Theorem 30].

4.3.2. Convergence towards Barenblatt profiles and Gaussians. Let us again assume

A > 0. As already mentioned, the stationary solutions u® and v* of (4.1) and (4.20), respecively,
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are identical. Those stationary states have the form of Barenblatt profils or Gaussians, respec-

tively,

a—1/2
V2a

_ 2
by = ae Mpalel® for ¢ = 1/2,

bax = ( b| ‘ )1/Oé 1/2)7 b=

)

Ay for o> 1/2 and

where a € R is chosen to conserve unit mass.
To prove the statement of Theorem 4.2, we are going to show that the sequence of functionals
M5y 1 P(Q) — (—o0, +00] given by

Haor(u) forue 73575(9),

HEA(U) = R
+0 for u ¢ Pj ()

I'-congerves towards H, . More detailed, for any u € P5(2) the following points are satisfied:
(i) liminfs_g ’Hi)\(u;g) > Ho o (u) for any sequence ug with lims_,o Wa(ug, u) = 0.
(ii) There exists a recovery sequence ug of u, i.e. limsups_, Hg’/\(US) < Haa(u) and
lims_,o Wa(ug,u) = 0.
The I'-convergence of Hi y towards H, ) is a powerful property, since it implies convergence of

the sequence of minimizers u?in = uglX g‘m] towards by x or by y, repsectively, with respect

min at

to the L2-Wasserstein distance, see [Bra02]. To conclude even strong convergence of Ug
least in LP(Q)) for arbitrary p > 1, we proceed similarly as in [MO14a, Proposition 18] To
understand this, recall that the definition of the total variation of a function f € L(Q2) in (1.14)

that is

T™Vf] —sup{ff () da

¢ € Lip(Q2) with compact support, sup |¢(x)| < 1}. (4.46)
e}

If f is a piecewise constant function with compact support [zo,zk], taking values f,_1 on
2

intervals (zx—_1, zk], then the integral in (4.46) amounts to

K K—1
zr—0
L f(2)¢ () da = ,;1 [f@)e@)],, 0= ];1 (frmr = fra2)o(zn) + fro(zo) = fre_1p(ax).
Consequently, for such f, the supremum in (4.46) equals
K-1
= 20 Wier = froal + 12l + | f5 (4.47)
k=1

and is attained for every ¢ € Lip(Q)) with values ¢(zx) = sgn(fx — fry1) at k=1,..., K — 1,
(o) = sgn(f1) and p(rk) = —sgn(fx_1).

Lemma 4.15. For any a € [%, 1], assume X3 e ¢ to be the unique minimizer of Hy )\ and
declare the sequence of functions u£ = ug[X g“n]. Then
urgnin — bq,x, strongly in LP(Q) for anyp > 1 (4.48)

as 6 — 0.
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Proof. We will first prove the I'-convergence of Hg ), towards H, x. The first requirement (7)
is a conclusion of the lower semi-continuity of H, .

For the second point (ii), we fix u € P5(Q) and assume X : M — [—00,4+00] to be the
Lagrangian map of u. If there exists an bounded interval I < 2 such that the whole mass of w is
concentrated in I, i.e. SI udx = M, then one can introduce an interpolation u¢ of v analogously
to Lemma 3.24 by pointwise evaluation of the pseudo-inverse distribution function X, such that
(4) holds true. So let us assume that there is no such interval, hence §,udz < M for any
compact subset K € 2, and further assume without loss of generality that the center of mass is
at © = 0, i.e. S(ioo u(z)dz = M /2. Then one can find for any £ > 0 a compact set of the form
K = [L1, L] with L1 < 0 < Ly, and an integer K € N, such that

Lq +00
J |z]2u(z)dz <&, and J u(z)dr = J u(z)de =6 := MK™! (4.49)
Q\]C —Q0 L2

The first statement is valid due to the boundedness of the second momentum of u, and the last
one is satisfied since one can choose K € N arbitrarily large. An immediate consequence of the
above choises is that 26L? < ¢ for L = max{|Ly|,|La|} due to

L1 —+00

2(L% + L3)6 = L%f

—00

u(z)dz + L3 f

u(z)de < f lz]2u(z) dz < e.
Lo

Q\K

Using § = MK~! we define an equidistant decomposition & of the mass domain M. We
furthermore declare xg = —2L, xx = 2L and xzj, = X(&) for any k = 1,..., K —1 and introduce
the locally constant density wug € PQE(Q) that corresponds to the Lagrangian map X¢[X]. This
procedure defines a sequence of densities ug, since € > 0 was arbitrary, and we are going to
prove that wug is the right choice for the recovery sequence. To prove the convergence in the
L?-Wasserstein distance, we fix ¢ > 0. Then the last property of u in (4.49) yields especially
that 1 = Ly and xx_1 = Lo Furthermore, since X and X¢[X] are monotonically increasing, one
obtains for any & € [£1,&x—1] that

IX(€) — Xe[R](6)] < (X(&) — X(&k—1)) < 2L, with € € [&_1, & k=2,..., K — 1.

Therefore
K—1
IX - X&[ﬂ”%%[&,g,{,l]) < 20L Z (X(&) — X(&r-1)) < 20L7 <, (4.50)
k=2

where we used x1 = L; and xx_1 = Lo. As a next step, we note that |z1], |[rx_1| < L and
|zo| = |x x| = 2L, which yields
| [*ug (z) da

|Xe[X]]72 - J
L2(M\[€1,6k-1]) [0,z \[z1,2K_1]

XK X1
:5f |z|? dz + 0 f]x\Qda; (4.51)

TK —TK-1 TK -1 T1— o Zo

) 4
< 3 (2% + 2%_1 + 25 + 25) < §5L2 < Te,



4.3. ANALYSIS OF THE LONG-TIME BEHAVIOUR AND EQUILIBRIA FOR © =R 85

where we used the elementary equality (a® — b%) = (a — b)(a® + b? + ab). Combining (4.49),
(4.50), and (4.51), and the fact that X(M\[£1,Ex—1]) = Q\K, we finally conclude

Wa(u, ug) = [X = Xe[X]| L2000 < X = Xe[X]lL2(g 61017y + IX = XX 220161 1])
\f—i_ ng[ ]“L2 M\[f1,§K 1 + HXHL2 M\[flagK 1])

1/2
<AVE+VTe+ (JQ\K |z 2u(z) d:c) < 44/e.

This shows ug — u in L?-Wasserstein as § — 0. The second point in (i) easily follows by using
Jensen’s inequality,

xlﬂ‘f’% 5
He, \(ug) = Hon(ug) = Yo | ————— | da
. To1—T, 1
ne][}? K= RT3 2

1/2 Kt+5 K—

) ds = JIK o (u(s)) ds.

Zo

Kely

sl

Taking the limes superior on both sides proves limsup;_,, ’Hg y(ug) < Hax(u). Since Hy y is

1
2

lower semi-continuous, we especially obtain limg_,q ”Hi \(ug) = Hy\(u).

To conclude the convergence of ugmin towards b, ) with respect to W» and the conver-
gence of H,, A(_'g“n) towards Hq a(ba,n), we invoke [Bra02, Theorem 1.21]. Therefore note
that inf,epy () ’Hg y(u) = Hg ,\(i’?m) by definition of 7—[2 y» hence the minimum of ’Hg )\ is ugﬂn.
Furthermore, each functional 7—[57)\ has precompact sublevels which is a consequence of A > 0
and Prokhorov’s Theorem, see for instance [AGS05, Theorem 5.1.3]. Since Hi,A I'-converges
towards Hq z, all requirements for [Bra02, Theorem 1.21] are satisfied.

Let us finally prove (4.48). The convergence of Hm)\(_’?m) to Ha,a(ba,x) yields on the one
hand the uniform boundedness of H,, A(_'g“n) with respect to the spatial discretization parameter
0, and on the other hand the uniform boundedness of F, A(_’g“n) which is a conclusion of (4.35)
and V¢eH,, ,\(_'Igmn) = (0. One can now proceed analogously to the proof of Proposition 3.13
to verify that the term F, )( mm) is an upper bound on the total variation of P(u mm) with
P(s) := ©,5*t1/2, Take any arbitrary ¥ € RE+! with ||| < 1. Then

(VeHao(FE), 5, = (VeHan (R, 75, — Aan (T, 5, (1.52)
and the left-hand side can be reformulated, using (4.23),

<V§Ha,0(i2nin)7Y>£ = Z P(ZH)(yn—% - yn+%)

ne]ll/2

- Z (P(zk+%) - P(Zk_%))yk + P(z

+
kelj,

Jyo = Pzg_1)yx

1
2
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Respecting that |¥], < M|§]. we can take the supremum over all ¥ with ¥, < 1 in (4.52).
Then the Cauchy-Schwarz inequality and the representation of TV [-] in (4.47) yields

TV [P(ug™)] < M| VeHu (&™) + AanM 3¢

which is uniformly bounded from above due to (4.35) and the uniform boundedness of F, ,\(*g“n).

This proves the uniform boundedness of TV [ (ug““)] Further note that the superlinear growth
of s — P(s) especially yields that u — P(u) is LP(2)-continuously invertible for any p > 1, which
can be shown by adapting the prove of Lemma 3.18. Together with [Giu84, Proposition 1.19],
we conclude (4.48) O

4.3.3. Entropy dissipation — the case of zero confinement A = 0. We will now consider

equation (4.1) in case of vanishing confinement A = 0, hence
Opu = —0y (u&x(uaflﬁmua)) for (¢t,z) € (0, +0) x Q, (4.53)

and u(0) = u® for arbitrary initial density u® € P4 (). From the continuous theory, it is known
that solutions to (4.53) or (4.20) with A, » = 0 branches out over the whole set of real numbers
Q) = R, hence converges towards zero at almost every point. This matter of fact makes rigorous
analysis of the long-time behaviour of solutions to (4.53) more difficult as in the case of positive
confinement. However, the unperturbed functionals H, o and F, o satisfy the scaling property,
see again [MMSO09],

Heao(u) =7~ D2H, o(u) and  Fao(dpu) = r~ TV E, o(u), (4.54)

for any r > 0 and d,u(z) := r~Lu(r~1z) with u € P5(£2). Due to this, it is possible to find weak
solutions to a rescaled version of (4.53) by solving problem (4.1) with A = 1. More precisely,
the following lemma is satisfied, see for instance [MMSO09, Lemma 5.4]:

Lemma 4.16. A function ue L2 ((0,+00); W22(Q)) is a weak solution to (4.1) with A = 1, if

loc

and only if
. ) 1/(20:+3)
w(t,-) = dgpu(log(R(t)), ), with R(t):= (1+ (2a+ 3)t) (4.55)
is a weak solution to (4.53).

A consequence of the above lemma is that one can describe how a solution w to (4.53)
vanishes asymptotically as t — oo, although the gained information is not very strong and
useful: In fact, the first observation (without studying local asymptotics in more detail) is,
that w decays to zero with the same rate as the rescaled (time-dependent) Barenblatt-profile
b} o defined by b}, o(¢, ) := dp(;)ba,1, with R(t) of (4.55). It therefore exists a constant C' > 0
depending only on ”Ha,o (w?) = Hao(u") with

lw(t,-) = b ot )z < CR(EH), (4.56)

for any ¢ > 0. In [MIMSO09], this behaviour was described using weak solutions constructed by
minimizing movements. We will adopt this methods to derive a discrete analogue of (4.56) for

our discrete solutions Xa of (4.27).
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First of all, we reformulate the scaling operator 9, for fixed r > 0 in the setting of monoton-
ically increasing vectors ¥ € r¢. Since d,u(z) := r~tu(r~!.) for arbitrary density in P5(Q2), the

same can be done for ug = ug[X], hence

K _ K
au(—EiTlél *1—575 1 — ug[r
rug(z) = (x  1,@ 1](7' T) = (re__1,rz 1](37) = ug[rx](x)

— k—5 "kt 5 — K—3 Kt+3
=1 T — Th_1 2 2 el TTp —TTE—1 2 2

for any x € €. The natural extension of 0, to the set r¢ is hence

-

0,X :=rX, with corresponding 0,7 = z¢[0,X] = r~'Z.

As a consequence of this definition, we note that a discrete scaling property for H, o and Fq g

is valid, i.e. for any » > 0 and X € ¢,

H,0(0,%) = r~ " V2H, ((X) and Fap(0,%) = r TV F, (). (4.57)

)

The first equality is fulfilled due to Hy0(X) = Ha,0(ug[X]) and the scaling property (4.54) of
the continuous entropy functions. The analogue claim for F, o in (4.57) follows by inserting 9,X
into 0zH, 0 and using 0,7 = r~1Z, then

OxHo0(0,%) = 0a0 > (9,7,)" "2

1/2
kel

= Fo0(0:%) = |VeHao(0,%)[7 = 1~ [VeHao(®) [ = r~P* VFo0(%).

r— (a+1/2) a)ZHoa,O (}—(»)

This scaling properties can now be used to build a bridge between solutions of discrete
minimizing movement schemes with A = 0 and those with positive confinement. The following
Lemma is based on the proof of Theorem [MMS09, Theorem 5.6], but nevertheless, it is an

impressive example for the powerful structure-preservation of the numerical scheme.

Lemma 4.17. Assume X* € t¢ and fir 7> 0 and R > S > 0. Then X € x¢ is a minimizer of

—

1 A
A - o - — —
Vo PNy 50) = oIV - ¢ + Fao(d) + 5 15 (4.58)

if and only if 0pX € r¢ minimizes the functional

~

N VP 1 A .
W o FONF, W,05%%) = = |[W — 05%*[ + Fao(W) + = | W]z, with
27 521 o (4.59)
s rgperz o SUFA) R
TR

Proof. To simplify the proof, we first show that we can assume S = 1 without loss of generality,
which is because of the following calculation: If for R > S > 0 the vector dzX minimizes (4.59),
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then the linearity of ||, and (4.57) yield

~

~ 2
FOAF, 055, 05%) = % |S~ oR% — f*Hz + S, (ST 0RR) + 522 HS*aRiHZ

1
_ S*(QaJrl)
278

gt F 4 Paolog) + 50 o ~||§)

= §~CFDEONF 0%, %),

with R = £ > 1 > 0 and the new constants

(1+A1)—R/S (1+A1)-R
7R/S B *R ’

~ TSR2a+QS—(2a+3) _ T§2a+3 and X _ S2a+3

hence 95X minimizes Fy (T 05X, XF).
So assume S = 1 and R > 1 in (4.59) from now on. Further introduce the functional
g:rgxR—->R

—

1 I o r N
9(F.7) = 5 005 = g + 17 Fan(d) + 5L+ A —1) [Fe.
then by definition
l9(§,1) = FONr,7,%%) and  (TR**T%)7¢(F, R) = FY (7,087, %°). (4.60)

For fixed ¥ € r¢, a straight-forward calculation shows that the derivative of r — g(¥,r) satisfies

S o ok o 1 S
org(¥, 1) = 0¥ — X, ¥)¢ + Fao(¥) — 5 H 7z + S+ AT —7) 1712
- f — 1 1 )\ -2 _ 1 — —»* . % f & -2
= — (& D + Fao§) + 5 (L+ A7) 7]z = 5 |7 — ¢ HX Iz + Fao &) + 5 171
2 2 2

. 1
=9(¥1) -5 Ix* Iz

Hence, if X minimizes (4.58), then the same vector minimizes § — g¢(¥,1) and furthermore

¥ — 0pg(¥,r) for any r > 0. By integration one attains
T
S S S S -
9F) 9@ 1) = | 2.9(7.5)ds = (r ~ Do)~ 5 1%712)
1

. - L.
= g(Y7T) = Tg(Ya 1) - (7’ - 1)5 HX*HZ

for any r > 1 and ¥ € r¢. This means especially that for arbitrary » > 1, the function g(¥,r) is
minimal if and only if g(¥, 1) is so. In combination with (4.60) this proves that dzX is a minimizer
of (4.59). By integration of dsg(¥, s) over [r~!, 1], r > 1, one can analogously prove that if X € r¢

is a minimizer of (4.59), the rescaled vector ? Rq% has to be a minimizer of (4.58). O

Before we prove the claim of Theorem 4.3, let us introduce the rescaled discrete Barenblatt-

profile. Define inductively for n = 0

S0=1, SP=(Q1+m)S" " (4.61)

T
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Zmin

Further take the minimizer Xg"" € r¢ of the functional X — Hg,1(X). Then denote the scaled

vector b’k A0 = 0gp _'g““ and define its corresponding density function b’y a0 = Ug [BZ o 0] AThis
function can be interpreted as a self-similar solution of (4.59) with initial density ug[X g““] A=0

and with time steps 7, inductively defined by 7, := 7,7~ 1(S7)2+2,

Proof of Theorem 4.3. As already mentioned above, we define a sequence of functions S
inductively through (4.61) and declare a new partition of the time scale [0, +o0) by

n
{0=80 <8 <..<8n<..}, wheres,:= > 7 and 7 :=7SF (552" (4.62)

and we write T = (71,72,...). As a first consequence of the iterative character of the above
object, we note that (1 + x) < e* causes S? < e’ for any n = 0. Moreover,

n

_ 2 TkSk 1 Sk 20+2 __ Z 1 7 2a+2(5k 1)2a+3 < (1 +T)2a+2 Z e (2a+3)tg— 1
k=1 k=1 k=1

This is an useful observation, insofar as the right-hand side is a lower sum of the integral
(1 4 7)%0+2 Sé” e(203)s 4s hence

An < (1 + 7_)205+2(2a + 3)—1[6(206+3)tn _ 1]
) (4.63)
— ¢ " < (14 ar8,(20 + 3)) 1/(2a+3),
with ar = (1 + 7)~(2*2) converging to 1 as 7 — 0. For a given solution X of (4.58) with
A =1 and fixed discretization A = (7;&), it is not difficult to check that the recursively defined
sequence of vectors dg»X3 is a solution to (4.59) for S = Sl R=8S" A=0and 7 = 7,
defined in (4.62). Henceforth, we write X2 = 0g»XX with the discretization A = (7:¢). We can

A
hence use the discrete scaling property of H, » and invoke (4.39) of Lemma 4.13, then

2a-1 on n n— on rn—
(1427,)(S7) 2 (Ha 1<X5) - Ha,l(bA,a,O)) (57 1) (Ha 1<X5 1) Ha,l(bA,o},o))
2a 1 =, —
— (14 27)(1 +7) " 2 ( 1(%3) = Ha (DA 0.0)) < Han(851) — Haa (b3 1)

— (1+27) (Ha1 (£3) = Han (B3 0.0) < Haa (851 = Haa (B3 1),

)

2a—1

(4.64)

where we used in the last step (1 + 7,,) > 1. As before in the proof of (4.14) of Theorem 4.1,
this yields for any n > 1

Ha,l(i%) - Ha,l(gg,a,O) < (Ha,l(io

A
2
< (Ha,l()_(%) - Ha l(igmn)) (1 + aT§R(2a + 3))7m’

2ty

) —H, 1(xg““))e*ﬁ

with b, = 1+ 27, due to (4.63). Theorem 4.3 is proven, using b} , o = g [BA@,O] and a Csiszar-
Kullback inequality, see [CITM*01, Theorem 30]. O
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4.4. Numerical results

In view of the next chapter, the implementation of the numerical scheme is explained for both
cases N = K + 1, although the numerical experiments in this chapter are formulated only on
Q =R, hence X = K + 1.

4.4.1. Non-uniform meshes. An equidistant mass grid — as used in the analysis above —
leads to a high spatial resolution of regions where the values of ua are large, but provides a
very poor one if ua is small. Since we are interested in regions of low density, and especially
in the evolution of supports, it is natural to use a non-equidistant mass grid with an adapted
spatial resolution, like we did in Section 2.2: The mass discretization of M is determined by
a vector &€ = (£0,&1,60, ..., Ex_1,€K), With 0 = & < & < -+ < €x_1 < g = M and we
accordingly introduce d;_ 1= & —&_q for all k = 1,..., K. The piecewise constant density
function u € Pg(§2) corresponding to a vector X € R® is now given by u = ug[X] with 7 = zg[X]
that respects the convention as defined in (2.19), hence 1= 2kl = 0if N =K+1, or
z1 =2 and zp 1= 21 if N = K — 1, respectively. The Wasserstein-like metric (and its
corresponding norm) needs to be adapted as well: For this we introduce the diagonal matrix

1
5(5143-&—% +5k—%)v

where k € i or k € ]I}r(, respectively. Here we use the additional convention that

W e RNXN, with entries [W] 5 =

61 =iy =0,

The scalar product ¢:,-)z and its induced norm ||z are then adapted in means of Section 2.2.2
using the diagonal matrix W. Hence the metric gradient of a function f : g — R at X € 173 is
given by Vg f (X) = W10z f(X) € R®. Otherwise, we proceed as before just with the difference
that A = (&;7): The entropy is discretized by restriction, and the discretized information
functional is the self-dissipation of the discretized entropy. Explicitly, the resulting fully discrete
gradient flow equation attains the form
%~ <y

= ~VFan(5). (4.65)

Tn

4.4.2. Implementation. To guarantuee the existence of an initial vector XX € r¢ in case of
N = K + 1, which “reaches” any mass point of u%, i.e. [0, 2%] = supp(u®), one has to consider
initial density functions u" with an interval as compact support. If X = K — 1, hence Q = (a, b)
is bounded, we set 2) = a and z9, = b.

In the numerical experiments that follows, our choice for the discretization of the initial
condition is to use an equidistant grid X° with K vertices on Q, 29 = ¢ + k(zx — z0)/K, and

an accordingly adapted mesh & on M, with

& =f " (y) dy.

0
o
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Starting from the initial condition )?%, the fully discrete solution is calculated inductively by
solving the implicit Euler scheme (4.65) for given 5(’2_1. In each time step, a damped Newton

iteration is performed, with the solution from the previous time step as initial guess.

4.4.3. Numerical experiments. For the first series of numerical experiments, we consider

the initial density function

WO 0.25|sin(z)| - (0.5 + 1,>0(x)), =€ [—7, 7], (4.66)
0, z e R\[—, 7. '

We further perform all experiments with o = 1.

0 - - 0 - E 0
Space x Space x Space x

0.7 0.71 0.7

0.6 0.6 0.6

0.5 051 0.5

0.4 041 0.4

0.3 031 0.3

0.2 021 0.2

0.1 0.1r 0.1

IS
N
IS
A
N
IN
IN

0 -2 0 - 2 0
Space x Space x Space x

FIGURE 4.1. Evolution of a discrete solution ua, evaluated at different times
t =0,0.05,0.1,0.15,0.175,0.25 (from top left to bottom right). The red line is
the corresponding Barenblatt-profile by, .

4.4.8.a. FEvolution and exponential decay rates. As a first numerical experiment, we want to
analyze the rate of decay in case of positive confinement A = 5. For that purpose, consider
the initial density function (4.66). Figure 4.1 shows the evolution of the discrete density ua at
times ¢t = 0.05,0.1,0.15,0.175,0.225, using K = 200. The two initially separated clusters quickly
merge, and finally change the shape towards a Barenblatt-profile (red line).

The exponential decay of the entropies H, y and F, ) along the solution can be seen in Fig-
ure 4.2/left for K = 25,50, 100, 200, where we observe the evolution for ¢ € [0,0.8]. Note that we
write Hy \(t) = Ho A(XR) and F, 5(t) = Fo A (%) for t € (tn—1,ts], and set Hy A (0) = Hy A (RQ)
and F, 5(0) = FoA(X¥1). As the picture shows, the rate of decay does not really depend on the

choice of K, since the curves lie de facto on the top of each other. Furthermore, the curves are
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10° 10°
--- Hf’m e —=— .2 - error
10" | — H, - HTT } i
100 7 o ng)\ e_z)\t 1 10 ¢
e [T RO

10 L
1072}
10°%}
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10" : : : 10" ‘ ‘ : : ‘ :
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Time t Number of grid points K

FIQURE 4.2. Left: numerically observed decay of Hg x(t) — Hgl/{‘ and Fy, \(t) —

it along a time period of ¢ € [0,0.8], using K = 200, in comparison to the upper
bounds Hg’A exp(—2At) and ]:2)\ exp(—2At) with Hg’/\ = (Hax(u®)—Haox(ban))
and ]—"g’ y o= (Far(u®) = Far(ba,r)), respectively. Right: convergence of discrete

minimizers uglm with a rate of K15,
bounded from above by (Ha,x(u?) —Ha,x(ba,x)) exp(—2A¢t) and (Fax(u?)—Fa x(ba,y)) exp(—2At)
at any time, respectively, as (4.14) and (4.15) from Theorem 4.1 postulate. One can even rec-
ognize that the decay rates are bigger at the beginning, until the moment when ua finishes its
“fusion” to one single Barenblatt-like curve. After that, the solution’s evolution mainly consists
of a transversal shift towards the stationary solution b, , which is reflected by a henceforth

constant rate of approximately —2\.

4.4.3.b. Rate of convergence towards equilibrium. Consider again a positive confinement with
A = 5 and the initial density as given in (4.66). Figure 4.3/right pictures the convergence of uénin
towards b, x. We used several values for the spatial discretization, K = 25, 50, 100, 200, 400, 800,
and plotted the L?-error. The observed rate of convergence is K17,

4.4.8.c. Self-similar solutions. A very interesting consequence of Section 4.3.3 is, that the exis-
tence of self-similiar solutions bequeath from the continuous to the discrete case. In more detail,
this means the following: Set A = 0 and define for ¢ € [0, +0o0)

b o(t ) = dpyba, with R(t) := (1+ (2o + 3)t) "), (4.67)

then b}, ; is a solution of the continuous problem (4.53) with ul = ba0(0,-). In the discrete
setting, solutions to (4.65) with A = 0 are inductively given by an initial vector BOA,Q’O with
corresponding density uQ = ug [BOA@@] that approaches b}, ((0, ), and Bz,a,o = Ds;LBOA’mO with
S defined as in (4.61), for further n > 1.

As Figure 4.3 shows, the resulting sequence of densities ua (black lines) approaches the con-
tinuous solution b}, ; of (4.67) (red lines) astonishingly well, even if the discretization parameters
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0.4

03[

0.2

0.1

Space x

FIGURE 4.3. Snapshots of the densities b}, 4(¢,-) (ved lines) and ua (black lines)
for the initial condition b}, ;(0,-) at times t = 0 and t = 0.1 - 104, i =0,...,3,
using K = 50 grid points and the time step size 7 = 1073.

are choosen quite rough. In this specific case we used K = 50 and 7 = 1072, The discrete and
continuous solutions are evaluated at times ¢t = 0,0.1, 1, 10, 100.






CHAPTER 5

Proof of Theorem 4.4 — Fourth order DLSS equation

The content of this chapter is joint work with my PhD-supervisor Daniel Matthes. A preprint
of the submitted paper can be found online [MO14b]. The paper is currently in revision.

5.1. Introduction

In the following chapter, we are going to study the numerical scheme from Chapter 4 for equation
(4.1) in the special case that a = %, A =0, and Q = (a,b) is a bounded domain. More precisely,

we consider the no-flux boundary problem

axac\/a _
O + Oy <u0w< i )) =0 forzeQandt>0, (5.1)
azm\/a _
Oyu =0, u&x< i >—0 for t > 0 and z € 092, (5.2)
u=u’>0 att=0. (5.3)

Equation (5.1) is known as the DLSS equation, where the acronym refers to Derrida, Lebowitz,
Speer and Spohn. Originally, the four authors derived (5.1) on the half line (0, 4+00) to describe
fluctuations of the interface between regions of predominantly positive and negative splins in
the anchored Toom model [DLSS91a, DLSS91b]|. This equation later rises from the field of
semiconductor physics as a low-temperature, field-free limit of the well-established quantum
drift diffusion model, see [DMRO05,Jiin09], and hence got more and more of great interest.

In view of the content in Subsection 4.1.1, let us remember that solutions to (5.1) can be
interpreted as a L?-Wasserstein gradient flow in the potential landscape of the so-called Fisher

information,
F(u) := Fipo(u) = JQ (@nm)zdx.

5.1.1. Description of the numerical scheme and main result. For the sake of complete-

ness, let us shortly summarize the main aspects of the numerical scheme decribed in Section 4.1.2
1

2
Fix a spatio-temporal discretization parameter A = (7;&), where 7 consists of varying time

with o = 3, and reformulate the main Theorem 4.4 from the previous chapter.

step sizes (11, T2, ...) with 73, € (0, 7], and & = (o, . . .,£x) provides an equidistant decomposition
of the mass domain M with constant mesh size § = MK ~'. Further remember that Pj () is
equipped with the discrete metric d¢ that is induced by the matrix W = 4l € RE-DX(K-1) ag

suggested in Section 2.2.2. Then the numerical scheme from Section 4.1.2 with o = % yields at

95
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any time step n = 1,2,... a recursively defined vector X} € r¢ that is a solution to

1 nos—22) o+ v —2 +
sp—ap 1 (L) RURE B Zk—% L) Pkl Zk—— Zk—g
o 20 | k+y 52 k= 52 ’

(5.4)

N|=

where the values 2} , > 0 are defined as in (2.18) with convention (2.19). The problem in (5.4)
2

is well-posed, remember Proposition 4.6, and a solution X} of (5.4) is especially a solution to
the implicit Euler time stepping
= -1
TR L V). (5.5)
Tn
Here we use the simplified notation F = F; ), for the discretized Fisher information, that is
defined by the discrete auto-dissipation of the entropy Hjs . More precisely, we define the

discretized Boltzmann entropy H as the restriction of the Boltzmann entropy H,

H(u) := 2H150(u) = Jﬂ u(z) In (u(z)) dz,

to the set of locally constant densities, i.e. H(X) = H(ug[X]) for any X € rg. Then H = 2H, 59
and F has the form

Pl T A1 2
P - IVeHEIE -5 Y ()

EI[}(/Q

Furthermore, remember the definition of the K — 1 canonical unit vectors e; € RE€~1 in Exam-

ple 2.3 in case of N = K — 1, then we obtain for the derivatives of H

1
Crtd

OG:H(R) =0 ) SR B (5.6)
ne]ll/Q
—e_ 1 e 1—e  1\7T
2 H+§ k=35 ,Lg-l,-5
GH(RE) =0 ), 2 ( > < 5 > (5.7)
neI[l/2
and further
4 _2 O2H(R)0-H (R 1 9 Zr+1 — 22k + Zk—1 €Cetl T €1
VeF(R) = - GHER)GHE) = 5 ) 2 = ; . (5.8)

EH%Q

The explicit representation of the gradient shows that the implicit Euler stepping in (5.5) equals
(5.4).

The aim of this chapter is to verify the following convergence result for solutions of the
numerical scheme in case of « = 5, A = 0, and the bounded domain Q = (a, b), as already stated

in Theorem 4.4:

27
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Theorem 5.1. Let a nonnegative initial condition u® with H(u®) < o be given. Choose initial
conditions >‘(’& such that uOA converges to u® weakly as A — 0, and

H = szp H(xY) <o and iiglO(T +0)F(FQ) = 0. (5.9)
For each A, construct a discrete approzimation Xa according to the procedure described in (4.11)
from Chapter 4 before, i.e. }_(’OA gives an approximation of the initial datum u® and XX solves
(5.4) at any iteration n € N. Then there exist a subsequence with A — 0 and a limit function
ux € C((0, +00) x Q) such that:

o {ua}, converges to uy locally uniformly on (0,+00) x Q,

o Vi€ L2 ((0,+00); HY(Q)),

o u, satisfies the following weak formulation of (5.1):

©0] o0
J f Orp uy da dt + J ©(0,2)u’(z) dz + f N (uy, p)dt =0, (5.10)
0o Jo Q 0
with
N(u,¢) = % f Ouap Oxtt + 4050 (0p/)” d, (5.11)
Q

for every test function ¢ € C®([0, +00) x Q) that is compactly supported in [0, +0) x Q
and satisfies Opp(t,a) = Opp(t,b) =0 for any t € [0, +0).

Remark 5.2. (1) Quality of convergence: Since {ua}, is piecewise constant in space and
time, uniform convergence is obviously the best kind of convergence that can be achieved.

(2) Rate of convergence: Numerical ezperiments with smooth initial data u® show that the
rate of convergence is of order T + 82, see Section 5.4.

(3) Initial condition: We emphasize that our only hypothesis on u® is H(u®) < o0, which
allows the same general initial conditions as in [GSTO09, JMO08]. If F(u®) happens to
be finite, and also supy F(XX) < o0, then the uniform convergence of {ua}. holds up
tot =0.

(4) No uniqueness: Since our notion of solution is too weak to apply the uniqueness re-
sult from [Fis13], we cannot exclude that different subsequences of {ua}, converge to

different limits.

The claims of this theorem are proven separately: The first two points about the convergence
and the regularity of the limit curve are provided in the Propositions 5.11 and 5.13 from Sec-
tion 5.2, whereas the validity of the weak formulation is shown in Proposition 5.14, Section 5.3.

In most papers from the literature attending the DLSS equation from a variational point of
view, the domain 2 is considered to be R (or RY for a higher-dimensional formulation of (5.1)),
see for instance [MIMS09], hence no boundary conditions appear. Similar Neumann boundary
conditions as ours in (5.2) appear in [GSTO09], but instead of u, = 0 the authors state the
condition (y/u); = 0 on 0. Therefore we give a short justification why the definition of the
weak formulation in Theorem 5.1 suits problem (5.1) with boundary conditions (5.2): Assume
therefore u : [0,4+00) x Q — [0, +00) to be a sufficient smooth solution of (5.10) which satisfies
the boundary conditions (5.2). Then for any test function that complies with the requirements



98 5. PROOF OF THEOREM 4.4 — FOURTH ORDER DLSS EQUATION

in Theorem 5.1, repetetive integration by parts yields

2N (u, p) = JQ OxUOzzzp + 4(550\/5)28”@ dz = [@cuamcp]izz + fﬂ (—&mu + 4(8x\/ﬁ)2) Ozzpdx

D[ (Bt Ao ) 2220+ [ 20 (Pt 4 )) e

= [ax (u@m In u) go]zzz - J Opx (u(@m In u)) pdx Lo f Orx (u&m In u) pdz,
Q Q

where we use the following identity:

Oz (u0pz In ) = 2ud, <6I\%a> : (5.12)

A further integration by parts with respect to the time derivative then shows that w is a solution
to (5.1).

5.1.2. Key estimates. In what follows, we give a formal outline for the derivation of the main
a priori estimates on the fully discrete solutions.

In the continuous theory of well-posedness of (5.1), two crucial a priori estimates are provided
by the dissipation of the Fisher information F and the Boltzmann entropy . Formally, the

corresponding estimates are easily derived by an integration by parts:

Or (uam\/(;ff» 4y — QJ " [ax (@%/ﬂﬂz dr  (5.13)

Q

d
——Flu) =2 JQ IO

—EH(U) = IJ (Inu 4 1) Oy (u Opp Inu) dz = 1j (g Inu)? dez, (5.14)
at 2 ), 2 ),

where we again use the identity in (5.12).

In view of our numerical scheme, it turns out that the explicit estimate in (5.13) is useless
for our purpose. In fact, we are not able to give a useful meaning to the right-hand side of (5.13)
in the discrete setting. The only information from (5.13) that finds a discrete counterpart in the
later calculations is that F is a Lyapunov functional, but this is a trivial conclusion from the
gradient flow structure of (5.1). An even stronger implication from the gradient flow structure
is, that each solution ¢ — u(t) is globally Holder-3-continuous with respect to Wa, see [AGS05].
Fortunately, these properties are inherited to our discretization, remember Section 4.2.2.b from
Chapter 4, where we show that solutions to (5.4) are gradient flows of the flow potential F
(which approximates F in a certain sense) with respect to the particular metric d¢ on the space
of piecewise constant density functions ’Pg’g(Q).

Conversely, an interpretation of (5.14) in terms of our discretization is possible. Using
Lagrangian coordinates and Z = u o X, the above expression turns into

1J U(Opy Inu)? da = 1f 7% (0eeZ)* dE,

2 Ja 2 Jm
which we shall eventually work with, see Lemma 5.5. The formulation of an H?-estimate would
require a global C'M!-interpolation of the piecewise constant densities ua that respects positivity,

which seems impractical. Instead, we settle for a control on the total variation of the first
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derivative 0;+/tia of a simple locally affine interpolation %A, see Proposition 5.8. This TV-
control is a perfect replacement for the H?-estimate in (5.14) and is the source for compactness,
see Proposition 5.13.

5.1.3. Spatial interpolations. In the following, we fix a Lagrangian vector X € r¢ and denote
its corresponding density ug[x] by v and its Lagrangian map X¢[X] by X. We furthermore write
Z = z¢[X]. Recall that u € Pj.(€2) is piecewise constant with respect to the (non-uniform) grid
(a,x1,...,2K5-1,b). To facilitate the study of convergence of weak derivatives in the forthcoming

sections, we introduce also piecewise affine interpolations 2 : M — (0, +o0) and 4 : Q — (0, +00).

Tl

1
1
1
1
1
1
1
L

a

1
1
1
ry T2 T3 Tyq b

FIGURE 5.1. A density u € P;,(2) (dashed line in blue) with its associated
piecewise affine interpolation u (red line).

1/2

In addition to & = ké for k € Ik, introduce the intermediate points {, = kd for xk € I};".

Accordingly, introduce the intermediate values for the vectors X and z:

Ty = §(xn+l +x,. 1) forke ]I}?,
’ : (5.15)
_ 1 for k e It
2k = §(Zk+% +Zk7%) Oor K € lg.
Now define
e Z: M — R as the piecewise affine interpolation of the values (21, z23,...,2,_1) with
2 2 2
respect to the equidistant grid (5%7537 e ,gKfé), and
e U: [a,b] — R as the piecewise affine function with
toX =7Z. (5.16)

Our convention is that 2(§) = z1 for 0 < § < 0/2 and 2(§) = 21 for M —6/2 < £ < M, and
2 2
accordingly u(x) = z1 for x € [a,z1] and U(x) = 25 _1 for x € [z, _1,b]. The definitions have
2 2 2 2
been made such that

op = X(&), 2 = 2(&) = dxy) for all ke I 0 I}/ (5.17)
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Notice that u is piecewise affine with respect to the “double grid” (a,x LT T b), but
in general not with respect to the subgrid (a,z1,...,2x-1,b). By direct calculation, we obtain
~ R e S T ki T Ph-1
é’xu|(x o) = z = 2 2 =z_1 2 2 for k e Ix\{0},
S T — Tp_1 T — Th—1 2 1)
2.1 — 2 21— 2, 1 21— 2, 1 (5.18)
~ k+5 k+z = “k—=z k+z = “k—=
é’xu|(x 5 1) = : = 2 L =1 — 2 for ke Ig\{K}.
kolpy 1 l‘kJr% — Tk Tp—1 — Tk 2 )

Trivially, we also have that 0,4 vanishes identically on the intervals (a,z1) and (z K1) b).

1
2
5.1.4. A discrete Sobolev-type estimate. The following inequality plays a key role in our
analysis, especially for the control of error terms in the weak formulation later in Section 5.3.
Recall the conventions (2.19) that z_1

=ziand 2z, , 1 = 25 1.
2 2 K+3 K—3

Lemma 5.3. For any X € r¢,

Zk+7 Zp_1 Zr+1 — 22 + Zk—1 2
i3 (M) ew (=)L e

]{?EH+ 1/2

Proof. Due to the conventions on 7, one can even sum over all k € [ on the left-hand side of
(5.19). By “summation by parts”

Zpp1 — 21\ * Zppl — 25 1\?
(A):5Z <25 2) = Z(Zk+§_zk_;)<25 2)

kel g kel
3 3
_ Z - <zn+1_zn> <Z,€—Z,€1)
= " Zers TR _ [ ZE TR
= 5 5
el

Using the elementary identity (p> — ¢3) = (p — q)(p* + ¢% + pq) for arbitrary real numbers p, g,
and Young’s inequality, one obtains further

(4)

2+l — 225 + 2k—1
—0 Z #r 52 X
1/2
KEl L

2 2
Zr+1 — Rk Zk — Zr—1 Zr+1 — 2k Zr — Zr—1
Q) ) () ()

< 30 5 2+l — 22k + 21 [(Zﬁ+1_zf€>2+ (ZH_ZH—1>2]
= 5 K
=, 5 5 5
1/2
3 Zt+1 — 22 + 2 2 A Zk—f N
<§ 5 Z Z,z|: K+1 6; n1:| <45Z ( > ) )
rel}/? =

1/2

Note that the last sum above is again equal to (A), hence deviding both sides with (A)"Y* yields

the desired estimate. O
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5.2. A priori estimates and compactness

Throughout this section, we consider a sequence A = (7;&) of discretization parameters such
that § — 0 and 7 — 0 in the limit, formally denoted by A — 0. We assume that a fully
discrete solution o = (¥Q,%k,...) is given for each A-mesh, defined by (5.4). The sequences
up, Ua, 2a and Xa of spatial interpolations are defined from the respective XA accordingly. For
notational simplification, we write the entries of the vectors XX and ZX and their intermediate
values defined in (5.15) as xg, xx and z, 2,, respectively, whenever there is no ambiguity in the
choice of A and the time step n.

For the sequence of initial conditions ¥}, we assume that 4% — u® weakly in L'(f), that

there is some finite H with
H(EX) <H forall A, (5.20)
and that

(r+0)F(FA) — 0 as A -0, (5.21)

5.2.1. Energy and entropy dissipation. The following estimates for the discrete Fisher

information F are immediate conclusions from Lemma 2.4.

Lemma 5.4. The discrete Fisher information F is monotone, i.e. F(X}) < FEL '), and
furthermore
€A — %&]l¢ < 2F(X) (tw— ta) for all >0 >0, (5.22)
o) R an—1 2 0
i = > |[VeF(RA)[g < 2F(XA). (5.23)
n=1 ¢ n=1

The key to our convergence analysis is a refined a priori estimate, which follows from the
dissipation of the entropy H along the fully discrete solution.

Lemma 5.5. The entropy H is monotone, i.e., H(X}) < H(Xy~ D), and furthermore

—220 42" \?
Zrna Z < +1 7 1) < 2H. (5.24)

n=1 1/2

Proof. By convexity of H and the discrete evolution (5.5), we have

H(x) ") - H®R) > (VeH(RA), X4 " — 4D, = 7 (VeH(RR), VeF(R4)),

for each n > 1. Evaluate the (telescopic) sum with respect to n and use that H(X) > 0 for any
X € ¢ to obtain

0¢]

' 7 (VeH(RR), VeF(A))e < H(R).

n=1
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It remains to make the scalar product explicit, using (5.6) and (5.8). For any X € r¢ one obtains

(VeH(R), VeF (X)),

— _ T
:é Z 52 (ZHJrl — 2z, + Z/{l) <Zk+§ Zk_é) (e’ﬁ'é en_;> ey
2 " 52 0 o

1/2 +
kel ™, kelp

_5 Z 22 ZH+1_2'ZH+ZH—1)2
- )

2 e 62
1/2
HEHIé
where we use that z_1 = z1 and gl = Zp_1, according to our convention (2.19) in case of
2 2 2 2
N=K-—1. O

We draw several conclusions from (5.24). The first is an a priori estimate on the {-derivative
of the affine functions 2}, that is

0

3 | 0eZR s gy < 18T (5.25)

n=1

The estimate is an immediate consequence of (5.19) and (5.24).
Remark 5.6. Morally, a bound on ¢2 in L*(M) corresponds to a bound on 0,~/4 in L*(1).

The a priori estimate (5.25) is the basis for almost all of the further estimates. For instance,
the following control on the oscillation of the z-values at neighboring grid points is a consequence
of (5.25).

Lemma 5.7. One has

© ZZ+; 4 Z;?_; 4 _
IR [(zn : 1) + (zn z 1) } < 36(b — a)'H. (5.26)
1 1

Moreover, given T > 0, then for each Ny € N with T < ij;o o < (T + 1), one obtains

i“‘g [(

2 21 2 _
“1) () ] <6V20b— a)X(T + VRS2 (5.21)

1 1
2 k+3

n
k—
n

n

Z 1
k+3
n

z
k

n=

Proof. Due to the definition of z¢[X], one has that z, > /(b — a) for all k. Consider the first

term in the inner summation in (5.26):

21

Z ZIHW

d no
k—L

+
kel

B 1)4 s Z ( n(S >4(ZZ+§ ;22—5)4 < (b—a)4H22||4L4(Q)'
+

z
kel k—%

The same estimate is attained for the second term. The claim (5.26) is now directly deduced
from (5.25) above. The proof of the second claim (5.27) is similar, using the Cauchy-Schwarz
inequality instead of the modulus estimate:

1/2
z" 2" /

IS S ) e

z
kelf, k=3 kelf, k=3 kell, k-3
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Use estimate (A.4), sum over n = 1,..., N, and apply the Cauchy-Schwarz inequality to this

second summation. This yields

Ny ZZ-&-l 2 N+ 1/2 0 1/2
DEEDY (z" 2 _ 1) < 8Y%(b - a)? (Z m) <Z TnIIEZ‘i4(Q>) :
n=1 kEH';{ k—% n=1 n=1
Invoking again (5.25) and recalling that 27]:[;0 o < (T'+ 1), we arrive at (5.27). O

5.2.2. Bound on the total variation. We are now going to prove the main consequence
from the entropy dissipation H(X%) < H(X}), namely a control on the total variation of ,/T}.
This estimate is the key ingredient for obtaining strong compactness in Proposition 5.13. For
this purpose, recall that an appropriate definition of the total variation of a function f e L'(Q)

is given by (1.15), i.e.
J-1
TV [f] :sup{z |f(rjz1) — f(ry)] : JeN;a<rm <rp<---<ry< b}. (5.28)
j=1
Proposition 5.8. One has that
0 2
DTV | Gug 0% | < 20(b—a)TL. (5.29)
27TV [0y

Proof. Fix n. Observe that 4/u’} is smooth on § except for the points x1,x1,..., 2,1, with
. . . 2 2
derivatives given by

I 1 N N 1 ~n 2
A A

Therefore, 0,4/u'X is monotonically decreasing in between the (potential) jump discontinuities

at the points x1,x1,...,2,_1. Furthermore, recall that
2 2

O/ UX(x) =0 forall x € (a,a+9/2) and all x € (b—0/2,b). (5.31)

It follows that the supremum in (5.28) can be realized (in the limit £ | 0) for a sequence of just

J =2(2K — 1) many points 75, chosen as follows:
T5i—1 = Tip —€ and 1y =z +e, fori=1,... 2K -1
On the one hand,

ax\/ﬁ(rgi—l) — 0o\ UA(75;)

(5.32)

lim
el0

- |[ee/aa], |-
Ti/2
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On the other hand, since 0,/ is monotone decreasing in between r5; and 5, |, and vanishes
near the boundary by (5.31), we have that

2K—-2 2K—-1

I CCCARLAEC AN B MW CVECARLAEAC )

<) [[am /ag}] + [[am/ag]] (5.33)
kel T el -
Summarizing (5.32) and (5.33), we obtain the estimate
TV [on/fig | <2 ] Mam faz] |+2 Y Mam faz] | (5.34)
kel} o 1/2 o

KElR

Let us omit the index n in the forthcoming calculation. In view of (5.18), we have that

2
on 1 (Zkfé _Zk+%) +
H&xq/uAﬂxk—Q\/a 5 for ke I,
A~ 1 K -2 K K—
Hﬁm /uZﬂm = §ﬂ/z,€ Ertl ; t+ Zn-1 for kK € H%Q.

Accordingly, using that 1/zx < (1/z,,1+1/z;,_1)/2 by the arithmetic-harmonic mean inequality,
2 2

2 [[6 \/QT}] 0 Z (Zkfé_Zm%)Q 1
x A . - A D) :
kell}; ol 2 kell}; 0 V3
1/2
1 -1 — Zp4 1 4 1) 1/2 1 ~n 112 1/2
<5 (02 [252] ( > 2,{) = 51262 () (0 — )2,
kel kel
(5.35)
and also
Z [[a /anﬂ _ é Z p Zk+1 — 22& + Zk—1 1
T A K 2 '
EH%Q o 2 e]I}(/Q 0 \/2
1/2 (5.36)
1 Zit1 — 22k + 21 2
<79 > zg[ s = ] (b—a)"/?.

1/2
kel

Combine (5.35) with the L*(M)-bound from (5.25), and (5.36) with the entropy dissipation
inequality (5.24). Finally insert this into (5.34) to obtain the claim (5.29). O

5.2.3. Convergence of time interpolants. Recall that we require the a priori bound (5.20)
on the initial entropy, but only (5.21) on the initial Fisher information. This estimate improves

over time.
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Lemma 5.9. For every n = 1, one has that

1/2
F(X}) < 3m (2H> (nz) Y2, (5.37)

where @ is defined in (2.11). Consequently, {F(Xa)}, (t) is bounded for each t > 0, uniformly
in A.

Proof. Since F(X}) is monotonically decreasing in n (for fixed A), it follows that
2

n n Zj - Zj
1 L 1 5 k+i k-1
F(x}) < — = — —_—
(%3) n Z F(%a) 2n Z Z 1)
J=1 J=1 el
1/9 . . A\ 1/2
<E ZTj(SZl ZTj(SZ 75
J=1 " eI} J=1 pelf
1 o Mo\ 12
< %(nTM)l/z(léiH)l/Q = 3@ (27-[) (nz) "2,
where we used in the last step that 7/7 < @y, see (2.11). O

The above estimate yields a A-uniform bound on {F(Xa)}. (t) for any ¢ > 0, but remember
that {F(Xa)}, (0) can even diverge for 6 — 0. This is why one cannot expect uniform con-
vergence on time intervals including the value ¢ = 0 in the convergence results below. In the
following, we denote by [t,t] < (0, +00) a time intervals with 0 < ¢ < < 0.

Lemma 5.10. We have that, for each [t,t] < (0,400),

sup [0z {ta}, ()] r2(0) < %, (5.38)
telt,t]
sup |[{ua}, (t) = {uat, @)]re@) — 0, as A —0 (5.39)
te[t,t]
sup |[{ua}; ()] r=() < . (5.40)
te[L,7]

Moreover, the functions {ua},. and {ta},. are uniformly bounded on [t,] x €.

Proof. For each n € N,

n _.n n n
o1 2 _ n Zk""% %k 2 n n “ Zk_; 2
H muAHLQ(Q) - Z (xk—&-l J"k’) n _n + (:Ek - xk—l) n n
a? | — xp —al
kel k+3 k—3
n n n _.n
Pl TRl Pl T F 12 .
<4 < F(XX) max z
2 1) a 12
kel i, rely

Now combine this with the estimates (5.37) from above and (4.32) from the previous chapter to
obtain (5.38). Estimate (5.39) follows directly from the elementary observation that

sup uf (v) — B4 (@) < max|of ) — 2, | < OF(RR) < F(Y),

n 1
k+3

+
€S kel 2
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and an application of (5.21). Finally, (5.40) is a consequence of (5.38) and (5.39). First, note
that

I{aa}, )iy < Hualr Olzie) + 1{aa}, () = {ua}, (O] < M +0F(Fp)

is uniformly bounded. Now apply the interpolation inequality
~ ~ 2/3 ~ 1/3
Hiad, (@) < Clos faa, O g [ {ia), 01X,
to obtain the bound in (5.40). O
Proposition 5.11. There exists a function u : (0, +00) x Q — [0, +00) with

eC’/

e (0, +00); P3()) 1 Lig.((0, +00); H (2)), (5.41)
and there exists a subsequence of A (still denoted by A), such that, for every [t,t] < (0, +00),

the following are true:
{ua}, (t) — ux(t) in P3(Q), uniformly with respect to t € [t,1], (5.42)
{ua}, , {ua}, — us uniformly on [t,t] x Q. (5.43)

Proof. Fix [t,t] < (0,+00). From the discrete energy inequality (5.22), the bound on the Fisher
information in Lemma 5.9, and the equivalence (2.27) of d¢ with the usual L*-Wasserstein dis-
tance W, one can proceed analogously to the proof of Proposition 2.5 to conclude the existence
of a subsequence of {ua}_ that converges to a limit curve u; € CV/2([t,7]; P5(2)) at least uni-
formly with respect to t € [t,t]. Clearly, the previous argument applies to every choice of ¢ > 0.
Using a diagonal argument, one constructs a limit u, defined on all (0, +00), such that u; is the
restriction of uy to [t,00). Note especially that in addition to the weak convergence in (5.42),
one obtains that {Xa}, (t) converges to X,(t) in L*(M), uniformly with respect to ¢ € [t, 7],
where X, € q{f((o, +00); L?(M)) is the Lagrangian map of u,. The reason for this is once
again (2.27).

For proving (5.43), it suffices to show that {ua}, — s uniformly on [t, ] x Q: Indeed, (5.39)
implies that if {@ia }.. converges uniformly to some limit, so does {ua},. As an intermediate step

towards proving uniform convergence of {ua}.., we show that
Ua(t) — u(t) in L*(Q), uniformly in t € [t,7]. (5.44)

For t € [t, 1], we expand the L?-norm as follows:

s, () = ue®la@ = | [({@a), — ) fual, ] (t0) da
# [ [({@a), = ) ({0a), — fus),)|(t.0) do
j ({aa}, — u*)u*](t x)dx.
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On the one hand, observe that

s | [(@s) = w) (s}, = fua),)] (o) da

< sup ((IH{aaby Ol=(9) + lus®) o) [ {Haty () — {uaty (O] @0)

te[t,t]

which converges to zero as A — 0, using the conclusions from Lemma 5.10. On the other hand,
we can use property (2.4) to write

L [(ia), —u) fua), |(t2) do - L [({ia), — ueu](r.2) o
- | [fade =] xal, o) ac - | [@a), - (X000 ae

We regroup terms under the integrals and use the triangle inequality. For the first term, we

obtain
sup |[| () (40X}, (:9) — (i) (X :0) ) g
telt,t
{Xa}t - (t,8)
< |0z {u ,y)dyd
;liqu L*t& {ua},|(ty)dydg

< sup j 102 (B} |20 Ko — (Xa}s [(£.6)V2 d
te[t,7] JM

< sup (102 (@), O]z X0 = (Xa)r O 50 )

A similar reasoning applies to the integral involving u, in place of {tia},.. Together, this proves
(5.44), and it further proves that u, € L®([¢t,]; H'(£2)), since the uniform bound on 7@ from
(5.38) is inherited by the limit.

Now the Gagliardo-Nirenberg inequality (A.1) provides the estimate

| {aat, () = we(®)|crsia) < ClH{AaL, (8) = we @177 )| {Ba)s () = wa(®) oy (5.45)

Combining the convergence in L?(Q2) by (5.44) with the boundedness in H'(Q) from (5.38), it
readily follows that @ia(t) — us(t) in CY/%(Q), uniformly in t € [t,7]. This clearly implies that
{ua},. — u, uniformly on [¢,t] x Q. O

Remark 5.12. In view of the above convergence proof, notice that we just used the convergence
of {in}, towards {ua}, in L*(Q) uniformly with respect to time t € [t,1], instead of the stronger
result in (5.39).

Proposition 5.13. Under the hypotheses and with the notations of Proposition 5.11, we have
that \/ux € L*((0, +o0); HY(2)), and

{Via} — v strongly in L([t,7); H'(%) (5.46)

for any [t,t] < (0,+0) as A — 0.
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Notice that d,/ux € L2([0,%] x Q) for each £ > 0, but strong convergence takes place only
on each [t,t] x Q.

Proof of Proposition 5.13. Fix [t,t] < (0,+00). We are going to prove that for any A and

neN,
22 o) <7 H\/i oy Y [&”\/ﬁ] (5.47)

is satisfied. To this end, remember that |/u} is differentiable on any interval (z

o

e
kel u ]Il/ 2y {K}, and that 0,/ is monotonically decreasing due to (5.30). This implies

together with the fundamental theorem of calculus that

T T
J |02z /WA | = —f Opan /WA = Hm  Opq /UK (2) — hm Our /UK ()
T 1 z, zlT _% Ty

2

1, for
2

Nl

for any x € I} U ]I%2 u {K}. Further, recall that 0,4/4 () = 0 for all € (a,a + 6/2) and all
x € (b—6/2,b). Therefore,

Z f \/Zﬁw u} do < H\/ﬁ

relh U2 0 K% rel UL}/

<o T [W@ ~

By integration by parts and a rearrangement of the terms one obtains together with (5.48) that

Lo Z f |Ozz /TR | d

Py "2 (5.48)

2
A S :HGIH u]; L TGy
- ¥ [ ag(x)ax\/ﬁ( ”0 f \/aam an do
nel[}u]llmu{K} 2
0] oy TV 2R

This shows (5.47). Take further two arbitrary discretizations Ay, Ay and apply the above result

to the difference {\/da, } _—{\/ta,} . Using that TV [f — g] < TV [f] + TV [g] we obtain by
integration with respect to time that

ft {m} _a””{ QAQ}T 12(Q)
- e [T, - {5

te[t,t]

(effrvfefvan) Jeaviadvan) [ a)

2

X

2}THLOO(Q)
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This shows that {«/ﬁA}T is a Cauchy-sequence in L2([t,7]; H'(2)), remember (5.29) and espe-
cially (5.39), and its limit has to coincide with ,/u, in the sense of distributions, due to the
uniform convergence of {\/QA}T to \/ux on [t,t] x Q. O

5.3. Weak formulation of the limit equation

To close the proof of Theorem 5.1, we are going to verify that the limit curve u, obtained in
Proposition 5.11 is indeed a weak solution to (5.1) with no-flux boundary conditions (5.2). The

idea for this is the same as in Section 3.4 from Chapter 3 before:

(1) We first show the validity of a discrete weak formulation for {ua}._, using a discrete

-
flow interchange estimate.
(2) Using the results from Proposition 5.13, we pass to the limit in the discrete weak
formulation.
From now on, ¥a = (¥}, %4, ...) with its derived functions ua, lia, Xa is a (sub)sequence
for which the convergence results stated in Proposition 5.11 and Proposition 5.13 are satisfied.
We continue to assume (5.20) and (5.21). The goal of this section is to prove the following.

Proposition 5.14. For every p € C*(Q) with p'(a) = p'(b) = 0, and for everyn € CL ([0, +x0)),

the limit curve us satisfies

@ / 0 * _
[0 ([ plouetearan) at o) [ s as s [ aoN @t =o, (519
where the highly nonlinear term N from (5.11) is given by
N(u,p) = ;J [p" (z)0zu(t, z) + 4p"(x)(0x\/ﬂ(t,a:))2] dz. (5.50)
Q

Note especially that the weak formulation (5.10) is equivalent to (5.49). Simply observe that
any ¢ € C®([0, +o0) x Q) that has a compact support in [0, +00) x Q and satisfies d,¢(t,a) =
Ozp(t,b) = 0 for any ¢ € [0,+0), can be approximated by linear combinations of products
n(t)p(z) with functions n € C*([0,+0)) and p € C*®(Q), which satisfies the requirements
formulated in Proposition 5.14.

For definiteness, fix a spatial test function p € C*(Q) with p'(a) = p'(b) = 0, and a temporal
test function n € CP([0,+o0)) with suppn < [0,T) for a suitable T > 0. Denote again by
N; € N an integer with 27]:[;1 T € (T,T 4+ 1). Let w > 0 be chosen such that

Ipllcae) <@ and  [nler(jo,400)) < @- (5.51)

For convenience, we assume 6 < 1 and 7 < 1. In the estimates that follow, the non-explicity
constants possibly depend on Q, T, w, and H, but not on A.

Lemma 5.15 (discrete weak formulation). A solution to the numerical scheme satisfies

f p(XK) — (X3 )

Tn

0
Z T (tn-1)
n=1

dé — (VeF(RR), ' (RR))| < O(rF(A) + (6F(x4))"?),

(5.52)
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where we use the short-hand notation p'(X) := (p'(x1),...,p'(xx—-1)) for any X € re.

Proof. A Taylor expansion of the term in the inner integral yields

— n n— n n— 2
pXR) = p(KE) ) <XA—XA> L&) (H) L e

Tn Tn 2 Tn

where X symbolizes suitable intermediate values in M. We analyze the first term on the right-
hand side of (5.53): Using the representation (2.16) of XA in terms of hat functions 0, we can

write its integral as follows,

X7 — Xn1 2 — e\ e
f p(XR) <H> =} (’“’“) f pXR)Okds.  (5.54)
M Tn + Tn §k—1
kel
Moreover, since
Ek+1
f 0(€) dé = 5, (5.55)
k—1
the validity of the system of Euler-Lagrange equations (5.5) yields that
X — X — xn_l £k+1
(VR (RA), 7/ (72)) = <p’<>-<’z> BoRTN oy ( k ) | ptamrence) ag
g k‘e]l+ fkfl
(5.56)

Finally, observing that

[XA() = @kl < (@hyq —af—y)  for each £ & (&1, &k11);

we can estimate the difference of the terms in (5.54) and (5.56) making use of the bound (5.51)

on p as follows:

Tn
at = e on
<> Tnf |0/ (XK(€)) — o' (a})|0x(€) d€ (5.57)
kel f; Bt
n n—1
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Combining (5.53) and (5.57), the claim is proven due to

n=1 Tn
n n—1
v A= XQ
—_— = d
. fM< = ) (© 5)
" A 2 1/2 N 1/2
.Tn xn— T
(G g (155)) (G gen-ar
n= kel} n=l gel}
2
DT & X% —Xz_l
5
2 n=1 n L2(M)

<w?(2(b - a)?T) PP (SF (RQ)) 2 + w2(rF (),
where we used the energy estimate (5.23) and the bound (A.4) in the last step. O

In what follows, we are going to prove that the weak formulation (5.49) is indeed the limit
of the discrete weak formulation from Lemma 5.15, as A — 0. The two main steps for this

identification are to establish the following estimates, respectively:

J-T (n'(t) L p(z) {ua}, (t,z)dz + n(t) {<p (Xa), VeF(Xa) >£} ) dt

eLA = o
(5.58)
#1(0) | plo)ul(@)de| < CEFER) + ((FEA)),
and
T
= || n<t><; | @0 sl () + 4 @02 {Vaa)_(t.0)?] o -

< C61/4

— {(VeF(ER). 0 (2) )dt

We proceed by proving (5.58) and (5.59). At the end of this section, it is shown how the claim
(5.49) follows from (5.58) and (5.59) on basis of the convergence for {ua},. obtained previously.

The first estimate in (5.58) is a consequence of Lemma 5.15:
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Proof of (5.58). Using that n(t,) = 0 for any n > N, we obtain after “summation by parts”:

) JOTU’(t) (L o(a) {ual, (t,2) dx> dt = — ij (J:_l 7' (t) dt L p(z)u} (x) dx)

n=1

- % o (”(t”) — 1ltn-1) fM poXA(6) d§> (5.60)

o X" —poXn—t
B o (77(%1) JMP XA ~po X3 (@d&)m(O)fMpoX&(&)df.

Tn

=

Finally observe that

N

T
L U(t) {<pl(§A)a VEF(XA)>£}T (t) dt — Z Tnn(tnfl) <VEF()_(Z)7 :0/()_{2)>§

n=1

. 1/2
<Z @’ [VeF (X3 HZ)

R =

o\ 1/2

< (X

< (T +1)=*r) *2="F (1) = C'F(RA) 7,

L n(t) dt - (ta_s)

using the energy estimate (5.23). We conclude that

(5.60) o X" (&) —poXnt
L (\n tnl\UM” A =20 X8 ) g (9R(sh), 0/ (7R,

)

where we used (5.52). L]

T
n=1 n

< CTFR)Y? + C(rF(E) + (GF (L)),

The proof of (5.59) is treated essentially in 2 steps. In the first one we rewrite the term
(VeF(R), p ()ZZ)>€ (see Lemma 5.16) and use Taylor expansions to identify it with the corre-
sponding integral terms of (5.50) up to some additional error terms, see Lemmata 5.17-5.19.
Then we use the strong compactness result of Proposition 5.13 to pass to the limit as A — 0 in

the second step.

Lemma 5.16. With the short-hand notation p'(X) = (p'(z1),...,p (xx-1)) for any X € r¢, one
has that

~2(VEF(R4). 7/ (Rh)) = A} — AL + A} + A7, (5.61)
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2
kel 0 221?—1—%217;—%
n _ N n 2 n 2
n_yg 2 bt kg (Z’H%) " (Zk—é) pl(@y) = p' (@) — (@, — )" (ag)
3 el t 1) 2 52 9
Clr
n _ N n 2 n 2
1=20 2 kg ks (Z’H%) i (Zk_%) pl(@y_q) — p'(ay) — (af_y — ap)p" (a})
! Pyt J 2 52
=

Proof. Fix some time index n € N (omitted in the calculations below). Recall the representation
of V¢F from (5.8). By a “summation by parts”, it follows that

o 2k Zi — Zp_ p'(a:mr%) - p’(:c’%%)
—2(VsF(Ra), P/ (Ra)), = =0 ), < (“ i 1)2< 5 )

HI/Q

-5 ) (Z’“+1 _ Z’“‘) 1 (22 Plapen) —p(an) o plaw) — p'(xk—l)) .

k+ k—
I~::e]1+ 0 0

[N
(o)

N

Using the elementary identity (for arbitrary numbers p+ and q4)

P+ + - q+ +q-
P+Q+ —P—q— = %(cﬂ —q-)+ (ps —pf)%,
we further obtain
— 2<V§F(§A)7PI(§A)>£
R T SAYg e
=6 2 2 2 2 - 5.62
2 () | () (62
€l
pppl — 2L le+§ + le—% p (k1) — 20" (z1) + o/ (z-1)
+6 ) 5 5 2 . (5.63)
kel

The sum in (5.62) equals AT. In order to see that the sum in (5.63) equals —A% + A% + AJ,

simply observe that the identity
Tyl — Tk Th_1 — Tk 1 1 Pyl T Ap-d

—+ = — = — s

makes the coefficient of p”(xy) vanish. O
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Lemma 5.17. There is a constant C; > 0 expressible in Q, T, B and H such that

N

Ry = ZTn

n=1

A7 -2 | QR 0 X4 dg\ <Oy,
M

Proof. First, observe that by definition of Z},

21— Ze_1N2 (€
J 2¢3% (€) 2 P o X4 (€)d¢ = Z (b) f kts5 g n (€) de,
M kEH+ 5 gk,l
K 2
and therefore, by Holder’s inequality,
R, < R/R}}?, (5.64)
with, recalling (5.25),
— Z;Z,; 4 o . B
o= Z DY (f) < N Tl BRIy < 9, (5.65)
n=1 kel n=1
N+ Zn 1 + Zn 1 (7 _ (T E 1
ki =g Pl (a) P (@) 2 (S AL
Ry = Z Tn0 Z [ 2 5 : ktl 5 oLl 3 Pl o X} df] . (5.66)
n=1 kel gkf%

To simplify Ry, let us fix n (omitted in the following), and introduce Z; € [zj,xk+1] and
Z, € [xp—1, ;] such that

Pl@ry) = plan-1) _ plae) = pxn) | plan) = pl(@r-1)
) ) )
Lol — T Tkl — X "(zF ",
”('%Ij) k+15 k +p”(xlj) Ic+15 k _ pz( k:) 4 pz( k)
k+3 k-1

For each k € I};, we have that — recalling (5.55) —

~+
Zk-’r% + Zk’_% (p”(ﬁkj) + J£k+2 /! o XA dg
2 2t Zk 1 5

SIEs

1
2

=

Zp 1
£ 1)) + (222 4 1) ) 5f p" o Xa dé

k+2 “h—1
1 Zp._ 1 2yl
B e (2 )
“rtl “k—1
2 §k+% " 1~ 2 é-k // I (~—
—g . [p OXA—p({L‘k)]df—g ’ [,0 OXA_p(xk)]d§
k

Since & lies in [zg,xp41] and Xa(€) € [xp, 2., 1] for each € € [£, €, 1], one obtains that
k k+1 k+3

IXa(€) — & | < 41 — T, and therefore

2 5k+%
5L [" 0 Xa () = " (F0)] A€ < 2 (wx1 — ). (5.67)
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A similar estimate is satisfied for the other integral. Thus
2 ZZ 1 2
e $0a 5 [« (B o]

Recalling the estimates (5.27) and (A.4), we further conclude that
Ry, < @*(6(b — a)*(H(T + 1)0)"% + 4T (b — )?9), (5.68)
remember Z € (T, T+1). In combination with (5.64) and (5.65), this proves the claim. [

Lemma 5.18. There is a constant Cy > 0 expressible in Q, T, w and H such that
N

Ry := ZTn

n=1

A5 - [ 22RO 0 XA (0) de| < Cad'
M
Proof. The proof is almost identical to (and even easier than) the one for Lemma 5.17 above.
Again, we have a decomposition of the form
1/2 51/2
Ry < RQQ R2£ )
where R, equals Ry, from (5.65) and

)
Rop = 27"52 [ Z

( %)2 "em 1S+ " n 2
L (xk>—5L oo xp de]”
k— 1

1%

n=l elf +3 k=3 k=3
By writing
S S Ve S R P LT P
227, i1 2 ! 2 z;;r% 2 zg_% ’
and observing — in analogy to (5.67) — that
1 §k+% " "
5 Lk_l |p" 0 Xa(€) = p" (k)| d€ < w(xpps — 1),
3
we obtain the same bound on Ry, as the one on Ryp from (5.68). O

Lemma 5.19. There is a constant Cs > 0 expressible in Q, T, w and H such that

R3 := ZTn

1 N n
Ay — 5 JM 0e2R (€)p" o XA (€) d€| < C36M/1.

Proof. Arguing like in the previous proofs, we first deduce — now by means of Holder’s in-
equality instead of the Cauchy-Schwarz inequality — that

Rs < Ry'RI*,
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where R3, = Ri4, and

Ny n 2 n 2
N CE ) D™ ) — ) — (e — 2o (ap)
n=1 kel
4/3
_l sk % n XZ df
20 € 1
Introduce intermediate values ic,j such that
//.n //.n n ny M/ .n 1 n n\2 M/ ~+ 62 N ~+
P (@fi1) — P (af) — (xpq — )" (7)) = i(xk+1 —xp)p (%) = Wﬂ (% )-
k+3
Thus we have that
n 2 n 2
Gl )" G () = PG = Gy =D ) L (S
2 52 20 Je | 4
k=3
n 2
1 “p1 1 (Sk+)
(=2 ) v )o@ -5 | e xR dg
4 z" 20
k+§ %
n n
L[ k-1 “h—1 1S+l
_ = u 2 41 _ 2 9 ,OM(SE;:) _ J 3 [p/”OXZ _p///(jl-:)] de.
4 Z0 AL 20 J¢

By the analogue of (5.67), it follows further that

N o 43/ 4/3
T 1 1
k-1 k-1
4/3 2 2 n n 4/3
Rsp < 2w / Z Tno Z o +1 o —1 + (Ik-&-l - ﬂfk_l) /
n=1 kel f. k+i k+1
4 1/3 2\ 2/3
N ng - n

<o [ Y ms Y [ 241 PIRD I R

n=1 k‘E]IIt k+§ n=1 keﬂ;r( kJr%
+2a3(T + 1)(b — )3,

where we used (A.4). At this point, the estimates (5.26) and (5.27) are used to control the first
and the second sum, respectively.

O
Along the same lines, one proves the analogous estimate for A4 in place of As. It remains
to identify the integral expressions inside R; to R3 with those in the weak formulation (5.49).

Lemma 5.20. One has that

| een@noxs@ac= [ s a (5.69)
M Q

S || ey oxa@as—a (n/n) @) as
n=1

< Cs6Y4 (5.70)
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Proof. The starting point is relation (5.16) that is

117
ZA(§) = uR o XX(§) (5.71)
for all £ € M. Both sides of this equation are Lipschitz continuous in £, and are differentiable
except possibly at £1,&1,...,&,_ 1. At points ¢ of differentiability, we have that
0eZR (&) = atip © XA(§)0eXA(E)
variables © = X'X () to obtain the integral on the right

Substitute this expression for 0¢ZX () into the left-hand side of (5.69), and perform a change of

0eZX (€)?

Next, take the square root in (5.71) before differentiation, then calculate the square and
divide by 0¢X'X (£) afterwards. This series of calculations ends in

o\ 2
IERGEERG) = (aﬂﬂ\/i) o XA(§)0:XA(§)

n
Performing the same change of variables as before, this proves that

J aEEnA(E)Q p// o
M ZR(§)0eXR(€)

2
©ds =4[ (ey/2R) @) (@) (5.72)
Q
It remains to estimate the difference between the &-integrals in (5.70) and in (5.72), respectively.
To this end, observe that for each £ € (§k=§k+%) with some k € I}, one has 0¢X% (§) = 1z 1
2
and Za (&) € [zk_%, zk+%] Hence, for those &,
2"
‘1—A7L1¢L‘< 1- 2
Zx(£)0e XK (€) Zk,%
If instead & € (&,_1,&;), then this estimate is satisfied with the roles of Zp1 and 2
changed Consequently, using once again (5.25) and (5.27)
Tn J OZR(€)%p" o XK (&) dé

2

[ inter-
6622(5)2 P”
M ZA(€) XK (€)

<w;mh%%w

o XA(£)d¢
1
1— — d¢
ZR(§)2:XK(€)
- n 2 n 2\ 1/2
O N’ “k+ L “k+ L
<@ meam nﬁZ e I L
n=1 kelh | k=3 k=3
< 3#/2(6@ )2T1/2”H1/2<51/2 12
since Z < T + 1 by hypothesis. This shows (5.70).
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Proof of (5.59). Combining the discrete weak formulation (5.61), the change of variables
formula (5.69) and (5.70), and the definitions of R; to Rs, it follows that

, 5
ez A < wRs + w Z n f [0c2Xp" 0 XA(E) + 02X (§)%0" 0 XK (§)] dE = D" A,
“ :

5
<@ ) Ri<w) Cio'h
=1 =1

This implies the desired inequality (5.59). O

ot

We are now going to finish the proof of this section’s main result, Proposition 5.14. Un-
fortunately, one can not just apply the convergence results from Proposition 5.11 and Propo-
sition 5.13 “straight-forward”, since they are mostly stated for arbitrary, but compact time
intervals [t,t] < (0,+00). To assure the convergence results for the respective time integrals

over (0,7, repetitive applications of Vitali’s Theorem are needed.

Proof of Proposition 5.14. Owing to (5.58) and (5.59), we know that

U z) {uat, (tax)dﬂ?dtJr??(O)f p(x)up () dz

Q

+L n(t)lfg[ ()0 {Tin}, (t,x)+4p”(x)a${\/ﬁ} (t,2)2] de dt

2 T

<epa +ean < O((TFEQ)) + OFRQ))V2 + 61/4).

By our assumption (5.21) on F(X}), the expression on the right-hand side vanishes as A — 0.
To obtain (5.49) in the limit A — 0, we still need to show the convergence of the integrals to
their respective limits.

A technical tool is the observation that, for each p € [1, 4],

—supZTn(SZ P < o,

€H1/2

thanks to the estimates (4.31) and (5.25). For the first integral, we use that {ua}. converges to
ux with respect to W, locally uniformly on arbitrary [¢,t] < (0, 400). Thus clearly

[ pta) ua, oy e — | playus(t,a)da

for each t € (0,7"). In order to pass to the limit with the time integral, we apply Vitali’s Theorem.
To this end, observe that

[

2

N,
dt < @w?(b— a) Z TnJ u (z)? dz
— Q

=w?(b— 2 Tn0 Z 2" < Qraw?(b—a).

n=1 1/2
kel

(1) fﬂ plw) {un}y (t 7) da
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Next, using the strong convergence from (5.46), it follows that

0p {lin}, =2 {‘/%}T 0oN/Tin —> 2/ix Oty = Ot

strongly in L'(Q) for almost every t € (0,7). Again, we apply Vitali’s Theorem to conclude
convergence of the time integral, on grounds of the following estimate:
2

T
[ o [ s @), el at <o me (0.0
— 27 2 /2 1 1
:w(b—a27n52< ’*) <k+22 k_2>
n=1 k:e]l*

2N 4 1/2 N 1/2
_ ) -
Z Tn Z < k- 2) Z ) Z (2")? 97—[1/2 §/2w2(b—a),

n=1 el

where we used (5.25). Finally, the strong convergence (5.46) also implies that

(2 {n}, )" — (Oei/itx)’

strongly in L'(Q), for almost every ¢ € (0,T). One more time, we invoke Vitali’s Theorem, using

that
LT dt<w ZT,—LJ 856\/7)4 (x)dx

n(t) Lp”(m)ﬁ {M} (t.2)da|

2
P 2 n n
z z
1 k 1 k41 k—L1
@ E e Y | ——2 -2 +|1-5-2
zZ" Z"
n=1 k‘E]I+ k—5 k+5
1/2 - 4 49\ 1/2
_ ) 4 / © o ) P L
2 Tkt k-3 kt+3 k—3
<w E ) E E Tno E l—zn + 1_2” .
n=1 ke]I+ n=1 ke]l}*'{ k—% k+1

The two terms in the last line are uniformly controlled in view of (5.25) and (5.27), respectively.

O

5.4. Numerical results

We fix 2 = (0,1) for all experiments described below, hence X = K — 1.

As in the numerical investigations of the previous chapter, we are going to use non-uniform
meshes for our numerical experiments in order to make our discretization more flexible. The

choice of non-uniform meshes, of initial grids 5{& and the scheme’s implementation are hence
analogue to Section 4.4.1 and 4.4.2.
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FIGURE 5.2. Left: snapshots of the densities ua for the initial condition (5.73)
at times t = 0 and ¢t = 10°, ¢ = —6,...,—3, using K = 200 grid points and the
time step size 7 = 107%. Right: associated particle trajectories.

5.4.1. Numerical experiments. Our main experiments are carried out using the by now
classical test case from [BLS94] that is

u®(z) = € + cos'®(m2) (5.73)
with e = 1073.

5.4.1.a. FEwvolution of discrete solution. Figure 5.2 provides a qualitative picture of the evolution
with initial condition u°: The plot on the left shows the density function ua at several instances
in time, the plot on the right visualizes the motion of the mesh points {x;},. associated to the
Lagrangian maps Xa in continuous time. It is clearly seen that the initial density has a very
flat minimum (which is degenerated of order 16) at x = 1/2, which bifurcates into two sharper
minima at later times, and eventually becomes one single minimum again. This behaviour
underlines that no comparison principles are valid for the DLSS equation. Both figures have

been generated using K = 200 spatial grid points and constant time step sizes 7, = 7 = 1075.

5.4.1.b. Reference solution. To measure the quality of our numerical scheme, we compare all
our numerical results with those of the scheme described in [DMM10], which is fully variational
as well, but uses different ansatz functions for the Lagrangian maps. Even without a rigorous
result on uniqueness of weak solutions, it seems reasonable to expect that both schemes should
approximate the same solution. A technical issue with the comparison of our solution to the
reference solution is that both use a different way for the reconstruction of the density from
the Lagrangian map. This difference camouflages the true approximation error in the plain
L?-differences. For a fair comparison, we calculate the L2-difference of the linear interpolations

of the values for the density with respect to the nodes of the Lagrangian maps.

5.4.1.c. Fized 7. In a first series of experiments, we study the decay of the L?-error under
refinement of the spatial discretization. For this purpose, we fix a time decomposition with
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FIGURE 5.3. Numerical error analysis for u? from (5.73). Left: fixed time step
size 7 = 107® and K = 25,50,100,200 spatial grid points. The L?-errors are
evaluated at T = 5-1075. Right: fixed K = 800 using 7 = 107°,5-1076,1076,5-
1077,1077,5 - 1078. The error is evaluated at 7' = 1075,

constant time step sizes 7, = 7 = 107% and vary the number of spatial grid points, using
K = 25,50,100,200. Figure 5.3/left shows the corresponding L2-error between the solution to
our scheme and the reference solution, evaluated at time 7" = 107°. It is clearly seen that the
error decays with an almost perfect rate of §2ocK —2.

5.4.1.d. Fired K. For the second series of experiments, we keep the spatial discretization pa-
rameter K = 800 fixed and run our scheme with the time step sizes 7 = 107°,5-107%,1076,5 .
1077,1077,5 - 1078, respectively, where the time decompositions 7 are always chosen to have
constant time step sizes 7, = 7. The corresponding L?-error at 7' = 107° is plotted in Fig-
ure 5.3/right. It is proportional to 7.

5.4.1.e. Discontinuous initial data. One of the conclusions of Theorem 5.1 is that the discrete
approximations ua converge also for (a large class of ) non-regular initial data u". For illustration
of this feature, we consider the discontinuous initial density function
0 1 for z € [0,3] U [3,1],
Udiscont = 105 forze(,2) (5.74)
313
instead of u® from (5.73). According to our hypothesis (5.9), we need to use a sufficiently high
spatial and temporal resolution. In practice, this is done in an adaptive way: The K points of
the initial grid )_(’OA are not placed equidistantly, but with a higher refinement around the points
of discontinuity; the applied time steps 7, are extremely small (down to 10~!3) during the initial
phase of the evolution, and get larger (up to 107?) at later times.
Figure 5.4 provides a qualitative picture of the fully discrete evolution for K = 200 grid
points: Snapshots of the discrete density function ua are shown on the left, corresponding
snapshots of the logarithmic density are shown on the right. Note that within a very short time,
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FIGURE 5.4. Snapshots of the densities ua for the initial condition (5.74) at
times t = 0 and t = 10*, ¢ = —13,—11,...,—5,—3, using K = 200 grid points
with linear (left) and logarithmic (right) scaling.
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FIGURE 5.5. Left: associated particle trajectories of ua using the initial condi-
tion (5.74). Right: Numerical error analysis for ul. . . from (5.74) with fixed

7 and K = 25,50,100,200 spatial grid points. The L?-errors are evaluated at
T =1075.

peaks of relatively high amplitude are generated near the points where u is discontinuous. The

associated Lagrangian maps are visualized in Figure 5.5/left. Notice the fast motion of the grid

points near the discontinuities.

To estimate the rate of convergence, we performed a series of experiments using K =
25,50, 100 and 200 spatial grid points. For comparison, we calculated a highly refined solu-

tion of the following semi-implicit reference scheme,

ulty — upy !
% = —AQ (U?e?1A2 ln(u?of))’
n
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where Ajs is the standard central difference operator As. We use K = 800 spatial grid point for
the reference scheme. An adaptive choice of the time steps 7,, needs to be made in order to avoid
that the reference solution u,s breaks down because of loss of positivity. The L?-differences of
the densities and of their logarithms have been evaluated at T = 1078, see Figure 5.5/right. As
expected, the rate of convergence is no longer quadratic in docK ~'; instead, the error decays

approximately linearly.






CHAPTER 6

The thin film equation — an alternative approach

The content of this chapter is joint work with my PhD-supervisor Daniel Matthes and is sub-

mitted. An online version of the paper is unfortunately not available so far.

6.1. Introduction

In this last chapter about the numerical treatment of evolution equations in one spatial dimen-
sion, we are going to study an alternative numerical approach to the one defined in Chapter 4
for equation (4.1) in the special case that & = 1 and A = 0, but with an additional, more general
potential term. We further assume = (a,b) to be a bounded domain in this chapter. More

precisely, we consider the no-flux boundary problem

Oru = —0y (u&mmu) + Oy (qu) for t >0 and z € Q, (6.1)
Oz =0, u(Opzgu—Vy) =0 fort>0and x e df, (6.2)
u=u’>0 att=0. (6.3)

The initial density is assumed to be integrable with total mass M > 0, which is fixed for the rest
of this chapter. We further assume that the potential V' € C2(Q) is nonnegative with bounded
second derivative,

V=0, A:=sup|Vi(z)| <oo, (6.4)

e

a typical choice being V' (z) = %:ﬂ.

6.1.1. Gradient flow structure. The gradient flow structure of (6.1) is quite the same as
the one of equation (4.1) with o = 1 explained in Section 4.1.1, except for the drift-term: It is
well known that (6.1) can be written as a gradient flow in the energy landscape of the following
(modified) Dirichlet functional,

. 1
DV (u) = D(u) + V(u), with D(u) = 2f

(Owu)de and V(u)zf V(z)u(x)dz, (6.5)
Q

Q

with respect to the L2-Wasserstein distance [GOO1]. Using D" for £ in (2.6) (which corresponds
to h(z,r,p) = 3|p|> + V(z)r), then the induced velocity field for the continuity equation (2.7) is
given by

V(u) = Opgatt — V.

In analogy to the calculations in Section 4.1.1 of Chapter 4, the Hele-Shaw equation (6.1) can
be expressed in terms of X — remember that we denote by X the pseudo-inverse distribution

125
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function of u — by

2 5 3 1

which further equals the L?-gradient flow along the functional

DV (uoX) = ;CJM [ag <a§x>ra§1xd“£w V(X)d¢.

Since we are looking for an easy discretization of (6.6), it is advisable to reformulate the right-
hand side to get rid of the non-integer exponents. Elementary manipulations show that equation
(6.6) is equivalent to

X = o (;Z36552 + iz2a&(z2)> L V(X). (6.7)

Note at this point that there are infinitely many equivalent ways to rewrite the right-hand
side of equation (6.6), and in view of the numerical scheme described in the next section,
there are accordingly infinitely many (non-equivalent!) central finite-difference discretizations.
The right choice of the representation of (6.6) strongly depends on the desired objective. The
convergence result which we are going to derive in this chapter only applies to the particular
finite-difference discretizations of (6.6), see (6.8), since only for that one, we obtain “the right”
Lyapunov functionals that provide the a priori estimates for the discrete-to-continuous limit.
The discretization of (6.7) in (4.8) from Chapter 4 allows an adequate analysis of the schemes
long-time behaviour, due to the interpretation of the discretized Dirichlet functional as the
auto-dissipation of the respective discrete entropy.

6.1.2. Description of the numerical scheme. As in the previous chapters, we define a
numerical scheme for (6.1) as a standard finite element discretization of (6.7) using local linear
spline interpolants. By the right choice for the discretization DV of the perturbed Dirichlet
functional DV, we are going to show later in Section 4.2.2.b, that the attained numerical scheme
equals a natural restriction of a L?-Wasserstein gradient flow in the potential landscape of DV

Let us fix a spatio-temporal discretization parameter A = (7;&) in the following way: Given
7 > 0, introduce varying time step sizes T = (71, 72, ...) with 7, € (0, 7], and define a time de-
composition (t,)_, of [0, +00) as in (2.10). As spatial discretization we fix K € N and introduce
an equidistant spatial decomposition of the mass domain M, so one gets & = (&, ...,£x) with
& = ko for any k = 0,..., K and the k-independent mesh size § = MK ~!. We further fix the
discrete metric dg on 735’5(9) that is induced by the matrix W = 6T € RE=D*(E=1) "yemember
that © = (a,b) is assumed to be bounded, hence 8 = K — 1. That especially induces

(W) = 0T W) and 7] = /65,9

for any v, w € RE~!. Furthermore, we introduce the central first and second order finite differ-

ence operators Dé and DZ in analogy to (4.7), see Chapter 4.
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Numerical scheme. Fiz a discretization parameter A = (1;€). Then the numerical scheme
for (6.1) is defined as follows:
(1) For n = 0, fix an initial Lagrangian vector XA := (29,...,2% ) € r¢ with the usual
convention xg =a and :c(}( =b.
(2) For n > 1, recursively define Lagrangian vectors Xx € re as solutions to the system
consisting of K — 1 equations

n—1
Ty —x 1., P . n
Tk Tk - k= Dé [2(2 )3 Dg[z ]+ Z<Z )2 Dg[(z )2]] + Va(zr), (6.8)
n k
where the values z; , > 0 are defined as in (2.18) with convention (2.19). We later
2

show in Proposition 6.5 that the solvability of the system (6.8) is guaranteed.

From now on we denote a solution to the above scheme by ¥a = (¥),%h,...) and its
corresponding sequence of densities by ua = (uOA,ulA, ...), where the components XX and u}
correlate through the map ug : r¢ — PQT’E(Q). Moreover, we introduce for any integer n € Ny
piecewise affine interpolations @ : 2 — (0,+00) and 2} : M — (0, +00) of uX and u} o X},
respectively, in analogy to Section 5.1.3 of Chapter 5. The associate sequences are then denoted

by 1a = (aQ,dk,...) and Za = (2%, 2%, .. .), respectively.

6.1.3. Main results. For the statement of our first result, fix a discretization parameter

A = (1;¢). On monotone vectors X € REF! with 7 = z¢[%], introduce the functionals

. R 5 Zk"i‘l +Zk_l zk_;’_l _Zk_l 2
HE):=d Y logls). DV(R)e= ) Y i ( - ) £ Vo),
k‘EHK

1/2 +
kel K/ kel

which are discrete replacements for the Boltzmann entropy and the modified Dirichlet energy

functionals, respectively.

Theorem 6.1. From any initial vector )?OA € r¢, a sequence of Lagrangian vectors X} satisfying

(6.8) can be constructed by inductively defining XX as a global minimizer of

- L. —1)2 Vi

Xl—)EHX—)_(yZ Hg+D (X). (6.9)
This sequence of vectors XX dissipates both the Boltzmann entropy and the discrete Dirichlet
energy in the sense that

HEFR) <HELYH +7mAM  and DY(ER) <DV(EXY.

To state our main result about convergence, recall the definition (2.14) of the time inter-
polant. Further, A symbolizes a whole sequence of mesh parameters from now on, and we write

A — 0 to indicate that 7 — 0 and § — 0 simultaneously.

Theorem 6.2. Let a nonnegative initial condition u® € H'(Q) of finite second moment be given.

Choose initial approzimations X} such that u) = u[&\] — u® weakly in H(Q) as A — 0, and

DV :=supDV(XA) < 0, H:=supH(EEQ) < . (6.10)
A A
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For each A, construct a discrete approximation Xa according to the procedure described in
Theorem 6.1 above. Then, there are a subsequence with A — 0 and a limit density function
ux € C([0, +0) x Q) such that:

o {Ua}, converges to uy locally uniformly on [0, +00) x €,

o uy e L2 ([0, +o0); HL(Q)),

loc
o u,(0) =,
e u, satisfies the following weak formulation of (6.1):
e} e}
f f Orpuy dt d + f N (us, @) dt =0, (6.11)
0 Jo 0
with
1
N(u, ) := B f Opt2Opznp + 3(0xu)28mgo dz + J Voulpp de (6.12)
Q Q

for every test function p € C*((0, +00) x Q) that is compactly supported in (0, +00) x Q
and satisfies Oz(t,a) = Ozp(t,b) =0 for any t € (0, +0).

Remark 6.3. (1) Rate of convergence: Numerical experiments with smooth initial data u°
show that the rate of convergence is of order T + 82, see Section 6.5.
(2) No uniqueness: Since our notion of solution is very weak, we cannot exclude that
different subsequences of {ua}, converge to different limits.
(3) Initial approximation: The assumptions in (6.10) are not independent: Boundedness
of DV(XQ) implies boundedness of H(XX) from above.

As in the proof of the respective result of Chapter 5 about the DLSS equation, the claims
of Theorem (6.2) are proven separately: The first two claims about the convergence and the
regularity of the limit curve are provided in the Propositions 6.12 and 6.13 from Section 6.3,
whereas the validity of the weak formulation is shown in Proposition 6.14, Section 6.4.

A similar weak formulation for (6.1) was formulated in [MMSO09], but on the whole space
of real numbers, hence no boundary conditions appear. To motivate that (6.11) is a valid
choice for a weak formulation to the problem (6.1) with the no-flux boundary conditions in
(6.2), let us assume that u : [0, +0) x Q@ — [0, +0) is a sufficiently smooth solution of (6.11)
satisfying the boundary conditions (5.2). Furthermore, choose any test function ¢ that satisfies
the requirements in Theorem 6.2, then repetetive integration by parts yields (for simplicity, we

assume V = 0)

1

1

= [2u6xuﬁmg0]izz ~3 f (2u8mu — (3xu)2) Ozt d
0

(6:2) —% [(Quﬁmu — (8xu)2) @cp]zj; + JQ ua:vmmu al‘gpdx

= [ué’mxu @]iiz - f Oz (UO0yzru) p dx 62 _ J Oz (U0pzzu) p da.
Q Q
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A further integration by parts with respect to the time derivative then shows that w is a solution
to (6.1).

6.1.4. Key estimates. In what follows, we give a very formal outline for the derivation of the
main a priori estimates on the fully discrete solutions.

In the continuous theory of well-posedness of (6.1), two main a priori estimates are provided
by the dissipation of the (modified) Dirichlet functional DV and the Boltzmann entropy #, and

the respective estimates are formally derived by an integration by parts (assuming V' = 0):

—ED(U) = J Ozt Opg (U Opgpu) dx = J U ((?mmu)2 dz, (6.13)
dt Q Q

—E’H(u) = J (logu + 1) 0y (U Opgpu) do = f (Oppu)? dzz. (6.14)
dt Q Q

Notice that energy dissipation does not provide L2([0,T]; H3(R))-regularity, due to the degen-
eracy.

In view of our numerical scheme, we are going to show in Section 6.2.1 that discrete so-
lutions to (6.8) are gradient flows of the discretized energy DV (which approximates DV in a
certain sense) with respect to the metric d¢, which is equivalent to the “real” L?-Wasserstein
distance restricted to 73575 (©2). The corresponding fully discrete energy estimates are collected
in Proposition 6.8. Unfortunately, we cannot extract further information from the dissipation
of DV and a useful interpretation of (6.13) in the discrete setting is missing.

However, by convexity of X — H(X), we are able to give a meaning to (6.14) in terms of our
discretization. Using Lagrangian coordinates and Z = w o X, the above expression turns into

2., 1 212
L(amu) d = 4JMZ(6§§Z) d,

which is, unfortunately, algebraically more difficult to handle than the equivalent functional

f u® (dzxlogu)® dr = J 72 (0ee7)* d, (6.15)
Q M

which we shall eventually work with, see Lemma 6.9. Obviously, piecewise constant densities
ua are impractical for the analytical treatment of an HZ2-estimate. Therefore we proceed as
before in Chapter 5 and study the total variation of the first derivative d,ua, where ua is a
locally affine interpolation of ua. This TV-control is a perfect replacement for the H?-estimate

in (6.14), and is the source for compactness, see Proposition 6.13.

6.2. Discretization in space and time

6.2.0.a. Ansatz space and discrete entropy/information functionals. To derive a suitable dis-
cretization of D and DY from (6.5), we use a similar approach to that in Chapter 4. To this
end, note that the Dirichlet functional can be written as the dissipation of the quadratic Reny:

entropy Q(u) := % SQ u? dz along the heat flow, which can be motivated by the formal calculation

d 1 B } 9
EQ(U) =3 fg V0ze do = 5 Jg(ﬁxv) dz, (6.16)



130 6. THE THIN FILM EQUATION — AN ALTERNATIVE APPROACH

where 0;v = 0zzv. That is why we introduce the functionals H, Q : r¢ — R as restrictions of H
and Q on ¢, i.e.

H(%) = H(ue[%]) = L we[] log (ugl€]) dz = 5 " log(z),

€H1/2

Q) = Queli) = | (uel))”do = 5 IS

1/2

Using (2.29), we obtain an explicit representation of the gradients,

1 _;'_l R (5 elﬁ)—l - elﬁ-’rl
OxH(R) =0 ), zn — s &QE) = > Zﬁ#» (6.17)
H€H1/2 REH}KQ

and — for later references — also of the Hessians,

—e 1 e 1—e 1\7T
2H . H+§ H_E H+§
02 =4 Z > ,

1/2

- 0 €Ll — €l €1 —€,1 T
a§Q(x):2zzg< 5 z)( 25 2>'

1/2
kel

(6.18)

|

A key property of our simple discretization ansatz is the preservation of convexity of X — H(X)
and X — Q(X), which immediately follows by inspection of the Hessians in (6.18).

Following the discrete analogue to the calculation in (6.16), one attains a discretization for
the energy functional D from (6.5) that is

S Zol+ 2, 1 (21— 2, 1\2
D) o= (Ve VeQUe - § 3 g (P 2) 0 o)

2
1/2
ke]IIé

Remark 6.4. Although this discretization follows the same idea as the one of Fio9 = D in
Chapter 4, that is “discretization by dissipation”, it is conceptually different in the sense that
the discrete flow along D dissipates H = H, 5 o instead of Hy o, see Lemma 6.9.

It remains to define a discrete counterpart for the potential V. A change of variables in the

definition in (6.5) yields
= f V(z)u(x)dx = J V(X)d¢,
Q M
Thus, a suitable discretization V of V is given by

%) =6 >, V(zp).

kGHK

In summary, our discretization DV of DV is

DY (%) = D(X) + V(%) = (VeH(%), VeQ(R))e + V().
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6.2.1. Interpretation of the scheme as a discrete Wasserstein gradient flow. We want
to discretize the spatially discrete gradient flow equation

0% = —VeDY (%) (6.20)

also in time, using minimizing movements. To this end, fix a time step width 7 > 0; we combine
the spatial and temporal mesh widths in a single discretization parameter A = (7;&). For each
¥ € ¢, introduce the Yosida-regularized Dirichlet functional DX(-, 5¥):[0,7] xrg = R by

N -
DA(0,%) = 5 [R = F]¢ + D" (%).

A fully discrete approximation ¥a = (X%,%4,...) of (6.20) is now defined inductively from a
given initial datum )?OA by choosing each X\ as a global minimizer of DX (T, )‘(’Z_l). Below, we
prove that such a minimizer always exists, see Lemma 6.6.
In practice, one wishes to define X’y as — preferably unique — solution to the Euler-Lagrange
equations associated to DX (7, -, }‘(ygfl), which leads to the implicit Euler time stepping:
2 gn—1
A - VD () - -

Using (6.17) and (6.18), a straight-forward calculation shows that (6.21) is precisely the numer-

(ZHR) - Q) + 2Q[R) - :HE)) + VeV, (621)

ical scheme (6.8) from the introduction. Equivalence of (6.21) and the minimization problem
for DX is guaranteed at least for sufficiently small 7 > 0.

Proposition 6.5. For each discretization A and every initial condition X° € Xe, the sequence of
equations (6.21) can be solved inductively. Moreover, if T > 0 is sufficiently small with respect
to & and DV (), then each equation (6.21) possesses a unique solution with DV (X) < D(XY),

and that solution is the unique global minimizer of DX (T, ',5('2_1).

The proof of this proposition is a consequence of the following rather technical lemma.

Lemma 6.6. Fiz a spatial discretization parameter § and let C > 0. Then for every y € r¢ with
DY (¥) < C, the following points are fulfilled:
e For each o > 0, the function DX(O‘, -, ¥) possesses at least one global minimizer X* € ¢
which satisfies the system of Euler-Lagrange equations

% —

= VDV ().

o

o There exists a 7¢ > 0 independent of § such that for each o € (0,7¢), the global
minimizer X* € ye is strict, unique, and the only critical point of DX(U,-,}?’) with
DY(X) <C.

Proof. Fix § € r¢ with DY (¥) < C, and define the nonempty (since it contains §) sublevel
set Ag = (DX(U, -,37’))71([0, C]) < re. From here, one can proceed analogously to the proof

of Lemma 4.7, if one can guarantee that the differences z, x,__1 = 0/z, have a uniform
2

+% T Yk
positive lower bound on A, for any X € Ac. For this purpose, observe that z, = 0/(b — a) for
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each z €1 Ié and arb1trary 7 = z¢[X], hence

Z |zk+1 ~ Fg— 1|

kel

2
1) Zk+l_zk,l
(et ) (mes e (52)

21+ 2, 1
+ “k+3 k—5 +
kelly 2 2 kel

< (2(b—a))"*DY(®)"2 < (4(b — a)C) /2,

Zk

[N

where we used (A.4). This shows the desired lower bound on Tyl =T 1 = 0/ 2. O

6.2.2. A discrete Sobolev-type estimate. The following inequality plays a key role in our

analysis. Recall the definition of the intermediate value 2z = %(zk f1tz 1 ) and the conventions
2 2

z

1=2z1 and Iyl = 2K from (2.19).

Lemma 6.7. For any X € r¢,

ol — Zp-1 _ 2
52%( by K ) 75 Z (z““ Q;;Jrz“‘l). (6.22)

]{?EH+ 1/2

Proof. Due to the conventions on Z, one can even sum up over all k£ € [ on the left-hand side
of (6.22). By “summation by parts”

Zpe1 — 21\ * _3 3
(A) =90 Z 2 (252> Y Z Zk(zk+% _Zk—%) (Zk:+% _zk—%)

kelx kelx
07 & 3 3
= 2};%; [(Zk 12, 8)(5 1 =2 8)" = (51 F 2 1) (51 — 2 ) ]
07 ¢ 3 3
= Qézk—%[(zk—3 — )y~ 2 g)” F (Bmg — B ) (Eg g — 2 y)

2 — 32 — 3].
+ Zk—%(zk—% Zk—g) Zkfé(zmé Zk—%)
Rearranging terms yields

(A) =—(4) - 5 2 Z/% [(zn - ZH—I)S — (Zr41 — ch)g]

1/2
kel

and further using the identity (p® — ¢®) = (p — q)(p® + ¢ + pq) for arbitrary real numbers p, q,

5—3
(A) = Y Z z;% [(ZH - Zm—l)?) — (k1 — Zﬁ)g]

1/2
kel

- Z zi[Dé z]ﬁ[(zﬁ — 2o 1)+ (Zres1 — 20)? + (2 — 201) (Zrg1 — z,{)].

1/2
kel
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Invoke Holder’s inequaltiy and the elementary estimate pg < %(p2 + ¢?) to conclude that

N|=
N |=

2 972
@< oY 2z |9 Z 2 [<—2—1> N (W) ]
2 rell/? e1l/? d )
K

3 1

2 2
3 z — Zk1 4 Ztl — 2 4

<=16 Z z3[Dg z]7 5 Z 2k <Fv> I <H>

’ 2 HEHI/Q 0

rel

=

3 1
“2 0 Y amea | @k
ne]l}f

2

step. ]

where we have used an index shift and the conventions z_1 = z1 and zj 1= in the last

[

6.3. A priori estimates and compactness

Throughout this section, we consider a sequence A = (7;&) of discretization parameters such
that § — 0 and 7 — 0 in the limit, formally denoted by A — 0. We assume that a fully
discrete solution ¥ = (¥1,%4,...) is given for each A-mesh, defined by inductive minimization
of the respective DX. The sequences ua, iia, 2a and Xa of spatial interpolations are defined
from the respective %a accordingly. For the sequence of initial conditions X%, we assume that
aQ — u® weakly in L1(Q), and that the uniform boundedness of DY (¥} ) and H(XQ) is fulfilled
accordingly to (6.10).

6.3.1. Energy and entropy dissipation. The following estimates for the modified discrete
Dirichlet functional DV are immediate conclusions from Lemma 2.4.

Proposition 6.8. The discrete Dirichlet functional DV is monotone, i.e. DV (%) < DV(X3 ).
Furthermore, one has

%A - Hg 2DV (X)) (tg —tn) forallm=n >0, (6.23)
oz -z

2, ™= Z 7 [VeDY (23) < 2DV (F). (6.24)
n=1 ¢ n=1

The previous estimates were completely general. The following estimate is very particular
for the problem at hand. For convenience, assume that 7 < 1 in the following.

Lemma 6.9. One has that H satisﬁes H(xR) < HEY ) + 7AM. Moreover, for arbitrary

T >0 and each N, € N with Y7 7, € (T, T + 1),
— 2z + 2 2 —
Z b Y ( ( = > < C\(T, H) (6.25)
n=0 e 1/2

is satisfied with the A-independent constant Cy(t,h) := 4(h + AM(t + 1)).
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Proof. Fix T' > 0. Convexity of H implies that

H(Z3 ') —H(ZR) = (VeH(RR), XA — XA )¢ = 0 (VeH(ZR), VeD" (X)) -
for each n = 1,..., N+. Summation of these inequalities over n yields
Ny
> (VeH(RR), VeD" (%4)), < HFA) — H(EX"). (6.26)
n=1

To estimate the right-hand side in (6.26), observe that H(X)) < H by hypothesis, and that
H(ZA™) is bounded from below, see Lemma A.7.

We turn to estimate the left-hand side in (6.26) from below. Recall that DY = D + V. For
the component corresponding to V we find, using (6.17) and (6.4),

) - Vz(%ﬁ-%)

(VeH(RR), VeV(RR ) =6 ), zn 5
H€H1/2
_xn-i-l
> | —sup |Viz(z ) Z z,.i 2‘2 —AM.
zeQ) e 1/2

This shows in particular H(X%) < H(X¥x ') +7,AM due to (6.26). The component corresponding
to D is more difficult to estimate. Owing to (6.17) and (6.18), we have that

4(VeD(X), VeH (X)),
= 4(VeH(), V;Q(X)V:H(X >£+4<V£Q§ VQH(>2)V£H(>E)>£
2

Zr+1l — 22k + 21 Zral — 22k + Zuo1 20222422
=26 Y 2 ( 5 > +9 2 ( 5 > ( =

e 1/2 1/2

for any X € r¢. Further estimates are needed to control the second sum from below. Observing
that

2 2
zl%"rl — 2Z:% + z:%—l -9 Zr+l — 22k + Zk—1 i Zk+l — Rk n Rk—1 — Rk
52 T 5? 5 5

and that 2pg > —%pQ - %q2 for arbitrary real numbers p, g, we conclude that

4(VeD(X), VeH()),

2 _ 4
Zitl — 22k + Zr—1 20 R4l — 21
(4—)6 E ( 52 > iy Zk<252

1/2

Now set X = X} and apply inequality (6.22). O

6.3.2. Bound on the total variation. The following lemma contains the key estimate to
derive compactness of fully discrete solutions in the limit A — 0. Below, we prove that from

the entropy dissipation (6.25), we obtain a control on the total variation of 0,u% .
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For this purpose, recall that an appropriate definition of the total variation of a function
f e LY(Q) is given by (1.15), i.e

TV [f] =sup{2 1f(rjs1) = frj)| : JeEN,a<r <ry<--- <1y < b}. (6.27)
j=1
Proposition 6.10. For any T > 0 and N, € N with Z € (T,T + 1), one has that
N, o
DTV [AR]° < (b— a)Ca (T, H), (6.28)
n=1

with the A-independent constant Co(t, h) := 22Cy(t, h) where C1(t, h) is given in Lemma 6.9.

Proof. Fixn > 1. The function d,uy is locally constant on each interval (z! ., z}). Therefore,
2

the total variation of d,u} is given by the sum over all jumps at the points of discontinuity,

TV [0:03] = Y [[00tAley| + D) [0:0K ]l - (6.29)

+ 1/2
kel rely

In view of (5.18), one obtains by direct calculation for the derivative of u} that

ZITcLJrl o 22—1

~n _on P 2
‘ x;:%’xz) e for k € Ix\{0},

P

o Gkl TRl
= —2 2 f I \{K}.
= A T ke

Furthermore, 0, vanishes identically on the intervals (a,z'7) and (27, 1,b). This implies
2 2

n
1 Zp_1

P 2
028 ]y = 6 (’“*5) for k e I,

— 220 +
[0xuA]e, | = 62 < ;2 & 1) forf-;e}ll/2

We substitute this into (6.29), use Holder’s inequality, and apply (6.22) to obtain as a conse-
quence of elementary estimates that

TV [0, U]
2 =2y
K+l T Tk—1
<5y (*2 5 2) +6 Y 2|[DEZR]M
kel rel 3/

[NIE
[NIES

53 (-

z
kel f k kel
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We square both sides, multiply by 7,, and sum over n = 0,...,N,. An application of the
entropy dissipation inequality (6.25) yields the desired bound (6.28). O

6.3.3. Convergence of time interpolants. The a priori estimates from the previous sub-

sections implicate a series of results for solutions to the scheme:

Lemma 6.11. There is a constant C > 0 just dependent on DV and Q, such that the following

estimates are uniformly satisfied as A — 0:

sup [0z {tia}, (D)]12(0) < C, (6.30)
te[0,+00)
sup | {ua}, (t) = {uat, (D)1 o) < €9, (6.31)
te[0,+0)
sup [ {uat, (8)]peo) < C. (6.32)
te[0,4+0)

Moreover, the functions {ua},. and {ta},. are uniformly bounded on [0, +00) x €.

Proof. For each n € N,

2" =27 =20
Ha an H2 _ Z (l,n _xn) k+% k2 + (xn_xn ) k k_% 2
TUAlL2(Q) — k+1 k " " k k—1 "
kel ’ kty Tk * MR T Mg
K
2 2" z z
= [xk—l o k+3 k—%>2+$k oy ( ht k—é)z]
n n n n
et 2 Ty — Ty 2 Ty — @y
b=l (Phel T Apo1N2 .
—5 Y (—5—=2) <)
kel f
K

This shows (6.30). For proving (6.31), we start with the observation that

n

|uk (z) — uA (2)] < ]zZJr% - zk_%| for all = € [z7 ? o

k—%’xk+%
which is a consequence of the definition of the piecewise affine function @}. Therefore,
V2 20 =2
Z* I
k
)

+ +
kel kely,

n 2 1/2
1
k— My My

—Z
Juk — X pr) <6 ). 6
kel

< 4(2(b—a)"*D(x3)"?,

which shows (6.31). Finally, (6.32) is a consequence of (6.30) and (6.31). First, note that

Haaly Ol < Hual, Ol + 1 {8a}, () = {ual, Ol@) < M+ C6

is uniformly bounded. Now apply the interpolation inequality

| {and, (Dlze@) < Clow {ia}, (O)7ag) | {Ea)s 0)1g)

to obtain the uniform bound in (6.32). O
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Proposition 6.12. There exists a function uy : [0, +00) x Q — [0, +0) with

us € G2 ([0, +00); P5 () A L, ([0, +o0); HY()), (6.33)

loc

and there exists a subsequence of A (still denoted by A), such that for every [0,T] < [0, 400)
with T > 0 the following assertions hold true:

{ua}, (t) — ux(t) in Py(Q), uniformly with respect to t € [0,T1], (6.34)
{ua}, — us uniformly on [0,T] x Q. (6.35)

Proof. Fix T > 0. The proof of (6.34) is a consequence of Proposition 2.5 and the entropy
estimates in (6.23) and (6.24). Note especially that in addition to the weak convergence in
(6.34), one has that {Xa}.. () converges to X, (t) in L?(M), uniformly with respect to ¢ € [0,77],
where X, € Cllo/ (:2 ([0, +00); L2(M)) is the Lagrangian map of us. The reason for this is once
again (2.27).

Following the proof of Proposition 5.11 in Chaper 5, we see that the convegence result in
(6.35) and the regularity stated in (6.33) for the limit curve uy can be attained, if the following
assumptions are fulfilled:

sup |0z {ua}, (D)2 and  sup [{ual; (£)]Le()
te[0,+0) te[0,+00)
are A-uniformly bounded, and
sup [ {ta}, (t) = {ua}, ()L — 0
te[0,+0)
as A — 0, see Remark 5.12. Since these requirements coincide with the properties of ua shown

in Lemma 6.11, an one-to-one adaption of the proof of Proposition 5.11 completes the proof. [

Proposition 6.13. Under the hypotheses and with the notations of Proposition 6.12, we have
that

{TUn}, —> us  strongly in L*([0,T]; H*(Q)) (6.36)
for any T >0, as A — 0.

Proof. Fix T' > 0. Remember that @)y is differentiable with locally constant derivatives on
12 v {K}, and it especially fulfills 0,uk (z) = 0 for all
x € (a,a+ §/2) and all x € (b — §/2,b). Therefore, integration by parts and a rearrangement of

any interval (z, 1,z,] for k € I}. U I}/
2

the terms yield

L

EEA DY f LiAGIAdr = Y [GA(2)0E4()]
relL UIY2U{K} " hd rel L U2 U{K )

< [aalpee (o) TV [2UA] -

x=x,—0

Take further two arbitrary discretizations A1, Ao and apply the above result to the difference
{ta, },—{ua,},. Using that TV [f — g] < TV [f]+TV [¢g] we obtain by integration with respect
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to time that

T
[ 100 @211 = 20 80} g
1/2

T
<12 s 80~ el (2], TV ) TV (300, )
€lv,

This shows that {iia}.. is a Cauchy-sequence in L*([0,T]; H'(2)) — remember (6.28) and es-
pecially the convergence result in (6.35) — and its limit has to coincide with u in the sense of

distributions, due to the uniform convergence of {ua}, to us on [0,T] x €. O

6.4. Weak formulation of the limit equation

To close the proof of Theorem 6.2, we are going to verify that the limit curve w, obtained
in Proposition 6.12 is indeed a weak solution to (6.1) with no-flux boundary conditions (6.2).
It seems that following the same strategy as applied in Chapter 3 or Chapter 5 is the right
method to attain this aim. Therefore, we are first going to show the validity of a discrete weak
formulation for {ua},, using a discrete flow interchange estimate. Then the convergence result
of Proposition 6.13 suffices to pass to the limit in the discrete weak formulation, which shows
that the limit curve u, satisfies (6.11) from Theorem 6.2.

From now on, ¥a = (X%, %k, ...) with its derived functions ua, @ia, Xa is a (sub)sequence
for which the convergence results stated in Proposition 6.12 and Proposition 6.13 are satisfied.

We continue to assume (6.10). The goal of this section is to prove the following:

Proposition 6.14. For every p € C*(Q) with p'(a) = p'(b) = 0, and for every n € CF((0, +0)),

the limit curve uy satisfies

f f Orpuy dt dz —i—f N (us, @) dt =0, (6.37)

where the highly nonlinear term N from (6.12) is given by
f 0z (u?)p" + 3(0pu)?p” dz + J Vyup' da. (6.38)

Note that the weak formulation (6.11) is equivalent to (6.37). Simply observe that any
p € C™((0,4+m) x Q) that has a compact support in (0,+00) x Q and satisfies 0,p(t,a) =
Ozp(t,b) = 0 for any t € [0,+00), can be approximated by linear combinations of products
n(t)p(x) with functions n € CX((0,+0)) and p € C®(R), which satisfies the requirements
formulated in Proposition 6.14.

For definiteness, fix a spatial test function p € C*(Q) with p'(a) = p'(b) = 0, and a temporal
test function n € C((0, +oo)) with suppn < (0,7") for a suitable 7' > 0. Denote again by
N € N an integer with Z € (T, T +1). Let @ > 0 be chosen such that

HPHG4 <w and |nfeio+u) < @ (6.39)

For convenience, we assume 6 < 1 and 7 < 1. In the estimates that follow, the non-explicity
constants possibly depend on Q, T, @, and DV, but not on A.
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Lemma 6.15 (discrete weak formulation). A solution to the numerical scheme satisfies

f p(XZ)_p(le)df<ngV<>zz>,p’(fz>>g <C(r+6),  (640)
M

Tn

0
Z T (tn—1)
n=1

where we use the short-hand notation p'(X) := (p'(x1),...,p'(xK—-1)) for any X € re.

Proof. The proof follows the same idea as the one of Lemma 5.15. Here, we additionally use

that DV(f('Z) is uniformly bounded by DV for any index n € Ny, especially for n = 0. O

As in the previous Chapter 5, the identification of the weak formulation in (6.37) with the
limit of (6.40) is splitted in two main steps: In the first one, we estimate the term that more or
less describes the error that is caused by approximating the time derivative in (6.37) with the
respective difference quotient in (6.40),

era = ‘ fo ) (n’(t) |, o) tuad, ) da ) {CVEDV (). /(530 | (t)) dt

< 0(7'—1—51/2).

(6.41)

Since this temporal approximation does not demand the specific represenation of DY, one can
conveniently adapt the proof of (5.58) from the previous chapter to get the respective result in
(6.41), using in addition the energy estimates (6.23) and (6.24).

The second much more challenging step is to prove the error estimate

627A =
0

JT 1 " 2 1" 2
005 | " @tus)0) + 30" (@)0 fua )2 (t.a) o
(6.42)

+ L Vi(2) {uat, p'(z) dz — {<V5DV(§<’Z),p’(§Z)>E}T (t)) dt| < Cs'/4,

which, heuristically spoken, gives a rate of convergence of {<V£Dv(fg), 0 ()E"Z)> 5}1- towards the
nonlinear term N (us, p) from (6.38). The proof of (6.42) is treated essentially in 2 steps. In the
first one we rewrite the term (VDY (X}), o/ (XX )) ¢ (see Lemma 6.16), and use Taylor expansions
to identify it with the corresponding integral terms of (6.38) up to some additional error terms,
see Lemmata 6.19-6.23. Then we use the strong compactness result of Proposition 6.13 to pass
to the limit as A — 0 in the second step.

Lemma 6.16. With the short-hand notation p'(X) = (¢'(x1),...,p (xx—1)) for any X € r¢, one
has that

—(VeDY(RR), 0/ (R4))e = AT + A3 + A5 — A + AT + A + AY, (6.43)
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where
on — n L 2 , ,
_ k+3 —3 2 2 p ($k+1) p(xp_y)
71hb—(5]</,2]1+ ( 2 5 2) <(Z/:L+%) +(ZZ_%) +ZZ+§ZZ_§)< 28 ,
Clg
n _m 2
o0y (BB e (k) — Aa)
2 4 et 0 k—&-% 5 5
Elg
n _m 2
SIS WY i Ot /Y
374 2 ) (Zk_%) 5 5
kel ;
n _n 2 n 3 n 3
T=90 2 zk+§ Zk_% (Zk+%) " (zk_%) p”(ltn)
4 o) 24m lzn ) k/»
kel k+1%k—1
n _ N n 3 n 3
s Z (zk+2 Zk_§> (Zk+%) + (Zk—%) <p/(xk+1) —p ($k> _ (xZ+1 _ xZ)P”(xZ)>
5 B b
kel 0 2 62
n _ N n 3 n 3
no5 Y (k k) e (p/(xz‘l) Ai) — (@ 1—wz>pﬂ<xz>>
6 - bl
kel 0 2 62
P=6 > V(zp) (z})
kel L

Proof. Fix some time index n € N (omitted in the calculations below). Recall the representation
of V¢DV as

1
T2
with corresponding gradients and hessians in (6.17) and (6.18). Multiplication with p’(Xa) then
yields

n . ) Zepl — 2z, + Z—1 ,0/(.%',{_,'_;) - p’(xm_;)
(VDY )G = ) Y 3( : ) < i

VDY (%) (02H(%)0:Q() + 02Q(X)zH (X))

52
HGH%Q
2 2 2
n 1) Z 2 Z/i-i-% o 22“ + Zﬁ—% pl(xﬁ-‘r%) - p/(xm—%)
- z
g e 52 5
KG]IK/

16 3 Vi (a)-

kel L

Observing that

2 2 2 2 2
z —2z5+ 2z z — 22 + Zp_ zZ —Z Zk—1— %
+1 K —1 k+1 K k—1 Kk+1 K Kk—1 K
" u 2z + + | — ,

92 " 62

- 5
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we further obtain that

Zopl 2%t 2 L (@ 1) = p'(2,_1)
(VDY (£4). 7/ (Fa))e =8 Y 3( : ) (P P =@y )

52

ne]l}f
+ As + A3 + A7,
It hence remains to show that (A) = A; — Ay + A5 + Ag, where

Zpl — 2z, + 21 ,Ol(flf,ﬁé) —p'(@,_1)
(A):_5222< = )( 5 )

1/2
kel

[NIES

After “summation by parts” and an application of the elementary equality (for arbitrary numbers
pt and ¢1)

P+ + - q+ +q-
Prqy —P-q- = %(CH —q-) + (p+ —p—)%,
one attains
6 o (Pt = A [Ber T el ) [0 ) = p@e)
(A) _ 2 Z 2 2 2 2 +1 —1
2 et ) ) )
Clx
) PRyl T Ap-l Zli—l+zl?:+l P (xps1) — 20 (k) + p/(xp_1)
+ = Z 2 2 2 3 +1 P\ Tk P\ Tk—1
2 et ) ) )
Cly
C 0y (e () () = 2 )Y g g
T 5 5 5 P

T
kel

where we additionally used the identity (p* —¢3) = (p—q)(p* +¢*> +pq) in the last step. In order
to see that the last sum in (6.44) equals to —A4 + A + Ag, simply observe that the identity

Tht1 — Tk | Th—1 — Tk 1 1 _ Zk-i—% - Zk—%
1 1) 2y,

+1 %l Ze+d%e-1
makes the coefficient of p”(xy) vanish. O

For the analysis of the terms in (6.43), we need some sophisticated estimates presented in
the following two lemmata. The first one gives a control on the oscillation of the z-values at
neighboring grid points:

Lemma 6.17. For any p,q € {1,2} with p+ q < 3 one has that

N 2 =2t P (2 )
ki T k-1 ket L
PRI R e | R (6.45)
) (2™, )e
n=1 kel k¥ 3
Proof. Instead of (6.45), we are going to prove that
N 2" =2 P2, 1
K+l T Fk—1| [Pkl
DIRET I as: 2| | =2 | <oVt (6.46)
) 20
n=1 kel [ k¥ 3
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is satisfied for any p,q € {1,2} with p + ¢ < 3, which implies (6.45) because of the following
considerations: The situation is clear for ¢ = 1, thus assume ¢ = 2 in (6.45). Then (6.46) is an
upper bound on (6.45), due to

2

n 2 n n
i %) gl gl
-1 +2 —1
( n )2 o on
k:i k¥i k¥
forany n=1,..., N .
To prove (6.46), we first apply Holder’s inequality,
_.n p|.n q P p+q .
Zk—% “htl ot Zk—% 5
Sy |t I TP :
z z
n=l kel} kT3 n=1  kert [
AN . N, 5 N\
k—1
T 0z 72 0 T zp
(Snyon () ) [Se ()]
n=1 " gelj n=1 ket ktl
(6.47)

with v = 1 — 224 The first factor is uniformly bounded due to (6.22) and (6.25). For the second
term, we use (6.32) and (A.4) to achieve

g
a

52 o ). 2 T < (T +1)8(b— a)e | {@}, | = (o1x) < C(T +1)3(b—a)a,
n=1 ke]l+ Z +%
which shows (6.46), due to o > 1. O

Lemma 6.18. For any p € {1,2} one obtains that

Z Tn0 Z 2y

n=1 kE]I+

2

_1
2 (e —af )P < 08V (6.48)

2 T2

Proof. Appling Hélder’s inequality,
2

N. n _ N
3 B n ZkJr% Zk*% ( n _an )p
Tn k 5 Th+1 — Th—1
= +
n=1 " kel}
1/2 1/2
N‘r ZIZ+1 - ZZ 1 4 / N‘r /
n 2 2 n(,n n 2
< 2 Tn0 Z 2k 5 Z Tnd Z 2 (Tgpy — 25 -)™
n=l gelj n=l gelj

The first sum is uniformly bounded thanks to (6.22) and (6.25), and the second one satisfies

1/2
N
S Y A — i )® | <OV DAY, 12 omyeay (b — )7,
n=1 kel

where we used (6.32) and (A.4). O
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Lemma 6.19. There is a constant C1 > 0 expressible in Q, T, w and DV such that

N

R1 = ZTn

n=1

Ap =3 [ OB XA d&‘ <Gt
Proof. Let us introduce the term

zZr 1 — 2 €yl
" o [ Ckrr T Skl [ "
By =9 2 k <2(52 J oo X{ () dé.
n

N——
\}

kel
First observe that by definition of Z},
2 2 2 n Z&; - Z;L; 2
| m@naeoxa@a- ¥ (A
M kel

hence we get for B

H $(6)23A (€)% 0 XA(€) d¢ — By
M

k+

N

n n 2

201 T2 1 §. 1

k+= k—s3 k+3 n
<Jw E (252) L "?Z(f)—Zk‘d§<3w6 E 2y

kel k—% kel L

This especially implies, due to (6.45) that

N

2,

n=1

By =3 | SO XA ds\ < o5

143

(6.49)

For simplification of Ry, let us fix n (omitted in the following), and introduce Z; € [xk, Tj41]

and 7, € [w}—1, 2] such that

pl(i1) = p(ai—1) _ pl(aker) —p'() | p'(zn) — P (k1)

20 20 20
~+ "(m—
A\ Th+1 — Tk 1yt Lh+1 — Tk _1 p”(mk) p (xk)
P 55— +P @) — 55— =5 < P o
2

Recalling that

Eht1
L 0(€) dt = 5,
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one has for each k € }I}r{,

1 (=t I"(m— 3 1
(4) =3 (Zz+l +20 1+ Zk+%2k_%> (p i) + 7 (xk)> - J T o Xa de
2 2

Pyl Zr—1 0 £ 1
2
1 Zp—1 N 1 “e-1 .
=171 (2 + . j) Pl (E) + 19+ 2+ =2 2 | p"(E)
k+3 k+3
2
1 Zk+1 1 . 3 (sl
+ =z 2+ 2 0" (3) + -2 2+ 2" (&, —J *ap" oXad
4k+;< zk—1>p(k) 1°%k—3 Zz_l p(k) 5 . kP A dg
2 2
2
1 P -1 N
=71 | -1 (2 j _1> Tl | 2 =1 (E)
kt3 k+i
2
1 P+l 1 o
T Al (z j - 1) T 21 2 -1 A" (@)
k=3 k-1
3 ﬁkJr% " "~ 3 £k+% 1 /([ ~—
~ 5 2k p oXA—p(:rk)]df—Q(S zi[p" o Xa — p"(E;,)] d¢.
&1 &1

Applying the trivial identity (for arbitrary numbers p and q)

((E) o3

the above term finally reads as

(4) =2 5 ) o (2 ) |
== |z - z — z

4|7 gl ’ gl o

1 Zk+% zk+l

- —1)+2 21| p"(z 51
" [z‘”% (k >+ E <k )]p " o

3 (el 3 (Ckel
_ k+2 2k [p// o XA _ p//(fél-::-)] dé. N k:+2

2 Je | 25 )
k—5 k—

Zk [p” o XA — p”(i';)] dé.

1
2

Since 5:,": lies between the values z and 1, and Xa(€) € [z, 7, 1] for each § € [&, 6, 1], we
2 2
conclude that [Xa(§) — | < zx+1 — g, and therefore

3 6’“’% 1 "t 3
% . zk]p" 0 Xa(§) — p"(&)] € < 5w2k($k+1 — T). (6.52)
k
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A similar estimate is valid for the other integral over [&; _ 1 &i] and for the integrals with p"(z, ).
Thus, combining (6.51) and (6.52) with 2}, < 22} and the definition of A7, one attains that

[NIES

n n 2 n n
n n n Zk""% Zk_% Zk"'% Zk_%
AT - By <2 ) o [ —2—2 —1 ]+ —1
* 1) z”; ) zZ .
kel -3 +3

n _n 2
n Zk""% Zk_% n n
+ 3w }: R\ T s (Th1 — Tk1),

kel [
and further, applying (6.45) and (6.48),
N,
DT lAT = B < €5t (6.53)
n=1
By triangle inequality, (6.49) and (6.53) provide the claim. O

Along the same lines, one proves the analogous estimate for A3 and A% in place of A}:

Lemma 6.20. There are constants Cy > 0 and Cs > 0 expressible in Q, T, w and DV such
that
Ny

Ry = ZTn

n=1
N

R3 := ZTn

n=1

1 on on '/ n
A5 1 [ OO 0 XA(0) ae] < Cas'

1 ~n ~n n
a5 1 [ 3OO 0 XA (0 ae] < o'

Lemma 6.21. There is a constant Cq > 0 expressible in Q, T, w and DV such that

N

Ry = ZTn

n=1

A7 - jM S (€)0eZR (€)% 0 XA (€) dg\ < i,

Proof. The proof is almost identical to the one for Lemma 6.19 above. As before, we introduce
the term

Zl?—&-l o zl?—l ? 1 (Sked
Byi=0d) | —2—2 f "o XR(€)dg
5 5 Je,

and get due to (6.45), analogously to (6.49), that

N

S By - f S(€)0e 3R (6% 0 XL (€) dg‘ < C5lA. (6.54)
n=1 M
By writing
3 3
()" + () _Zn<ZZ—$ 1) zn<ZZ+é )+
227 2" IRLAD k\ yn N ks

k+3%k-1 k+d k—1
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one obtains that

(2, 1)% + (7 _1)° €esl
+3 k—2 1 (Sk+d
e e AC IR IREVAED (SR
Zjt L1 €1
2t 20 ¢
k-1 k+1 1 }
= (Gt ) (G ) -5 | A XA - e ag
k+l k-1 &

Observing — in analogy to (6.52) — that
lngr%n//Xn /lnd< n(..n n
s c Zk|P o XA(&) —p (ka)‘ § < wzk(%ﬁé — Ty )s
k=%
we obtain the same bound on |A} — BY| as before on |A} — BY|, i.e.

n _n 2 n n
n_ gn o s “k+d k-3
|A4—B4|<w22k 5 -1+ -1

kel ). k—3 k+3
2
ZIZLJrl o ZIZ—l
n 2 2 n n
+w Z T s (Th1 — Th—1)-
kel

Again, applying (6.45) and (6.48), we get

N
A} - By < €8V, (6.55)

n=1
and the estimates (6.54) and (6.55) imply the desired bound on Rjy. O

Lemma 6.22. There is a constant Cs > 0 expressible in 2, T', @w and DV such that
N

Rs5 := Z’Tn

n=1

1

Ag — 2] ZR(£)0eZR (€)p" o XA (€) dg‘ < 64,
M

Proof. The idea of the proof is the same as in the previous proofs. Let us define similar to B}
the term

201 — 2 1 &1
n n k+1 -1} 1 k+d "
By =46} P+l (252> 25] *p" o XK (6) de.

kel S}
Note in particular that we weight the integral here with zl?+ 1. Then
2
n n
1 ~ ~ ]_ Zk+l - zkfl £k+l
5| @@ xs© - B < jo 7 <5>f YE(e) - ., e
M + £ 1 2
kel f k=3
1 el T A1 |5y !
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where we used that by definition of 2},

o 2 m Z}z‘*‘l B zg_l
| m©eem@eoxy©u- Y (2
M *
kel
This especially implies, due to (6.45) that

Ny

2,

n=1

B~ 5 [ (OO0 0 X5(6 a < o (6.56)
M

Furthermore, one can introduce intermediate values 50,: such that

1 9 mo- 52 3
P (@) = p'(x) — (2fyg —ap)p"(af) = §($Z+1 — ) p’”(x;!) = Wﬂ”’(iﬁl—:)-
k+3
Using the identity
()P + (Z) 1 kel . G [(E)? . et [ Z-y )
no \2 n 2 n )
2 2<Zk+%) 2 4 (Zk+%) 4 Zord

we thus have — using again (6.50) — that

PoL 3_|_ P 3
Gy + () (p’<wz+1>—p'<xz>—<xz+1—xz>p"<xz>> L[5 o Xy ae

> _
2 5 2 e,
2 (Zn 1)2 2ty 2 &1
k=3 k—35 k+35 k—3 1 k+3 n " n "y~
. 1)+ 1) [ [ e X - ] de
2 k+ 2 k
4 (z;‘+%) 4 20 20 € 1 t3

2

Observing — in analogy to (6.52) — that

i §k+% Zn| "o X — MM de < w n n _n
kP © A(é) p (xk)| 5\ Zk+ ('Tk+ mk,l)’
20 Je 2
-2

ol
ol

n

and Zorl < 2z}, we obtain the following bound on |A} — BZ|:

D=

P — n L (Zn 1)2 on L
w k+ k—3 k—s5 k—5
|A§—BQ|<4Zz,@< 5 2> e 2)2_1 + 2 _q

+
kel

n )

n Zk+% zk*% n n

+w 2 S (@1 — Th—1)-
kelt

Again, applying (6.45) and (6.48), we get

N
> T lAz — B < €54, (6.57)

n=1

and the estimates (6.56) and (6.57) imply the desired bound on Rj. O
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Arguing like in the previous proof, one shows the analogous estimate for Ay in place of Af.
It remains to analyze the potential term AZ, where we instantaneously identify the &-integral

with the z-integral:

Lemma 6.23. There is a constant C7 > 0 expressible in Q, T and w such that

< Cr9.

n_ fQ Vo (o)l (x) de

Proof. Since the product V,p; is a smooth function on the domain €2, we can invoke the mean-

value theorem and find intermediate values Z, such that

8% Velaboala) — | V(RRO)(XA€) 0] <6 3 (Vo) @lalyy ~ o))

+ +
kel kel

<o0(b—a) ilelg ‘Vw(x)Pz(x>‘

1
2

The claim then follows by a change of variables. O

It remains to identify the integral expressions inside R; to Rs with those in the weak for-
mulation (6.37).

Lemma 6.24. One has that

| sm@az©r o x3© = 5 | a(@r@) () da. (6.59)
M

Q
N

Rg := ZTn

n=1

J ZA(€)(0eZR)*(€)p" 0 XA (€) d€ —J (0,aK)% ()" () da| < Cs6M* (6.59)
M Q

for a constant Cg > 0 expressible in Q), T, w and DV.

Proof. The starting point is the relation (5.16) between the locally affine interpolants uX and
ZX that is
ZA(E) = up o XX (§) (6.60)
for all £ € M. Both sides of this equation are differentiable at almost every £ € M, with
0¢ZA(§) = dzU © XR(£) e XA ()
Substitute this expression for 0¢Z () into the left-hand side of (6.58), and perform a change of
variables = XX (£) to obtain the integral on the right.
Next observe that the z-integral in (6.59) can be written as
~ 1
| @@ @) do = [ (@RI 5 o XA de, (6.61)
Q M EAN
using (6.60). It hence remains to estimate the difference between the &-integral in (6.59) and
(6.61), respectively. To this end, observe that for each & € (&, &, 1) with some k € [}, one has
2
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0e Xk (&) = l/z]:;l and Za(§) € [zk_%,zﬂé]. Hence, for those &,
2

n

- gl
OO | T,
If instead & € (&, 1 ,&k), then this estimate is satisfied with the roles of zer 1 and 2!, inter-
changed. Consequently, ’ ’
n 1 n
| @Enr©men o Xa©d — | 0RO 50 2 XA de
M M eXA(6)
1
<w az252”§<1— >d§
n n 2
Rl T & 1 2y, 1 Zp_1
<w52zg< an B ) ( AR S| ) 2-1),
+ 0 Zp_1 g+
kel, 2 2
which is again at least of order O(¢ i), as we have seen before in (6.45). O

Proof of (6.42). Combining the discrete weak formulation (6.43), the change of variables
formulae (6.58) and (6.59), and the definitions of R; to Rsg, it follows that

N.
A n 3 n n
v < ol @ 3l || OO XBO U+ [ FAO@EOF 0 XA ()
n=1
7
+ | Valo) fual, @@y d = Y 7
1=1
7 7
<w ) R} <w ) Cis"*
i=1 i=1
This implies the desired inequality (6.42). ]

We are now going to finish the proof of this section’s main result, Proposition 6.14.

Proof of Proposition 6.14. Owing to (6.41) and (6.42), we know that

r / 1 Vi 2 /" 2
| 70 ] p@ sl ) de e n03 | o (sl ) + 30 @)@ fuah, P ta) da

0

# | Valo) fual, (L)oo
Q

<epa +ean < O(1+6Y4).

To obtain (6.37) in the limit A — 0, we still need to show the convergence of the integrals to
their respective limits, but this is no challenging task anymore: Note that (6.36) implies

Oz {ua}, — Ozus strongly in LQ([O,T] x ), (6.62)
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hence (05 {ua},)? converges to (dyus)? in L1([0,T] x Q). Furthermore, we have that
2u{ua}?) = 2{ual, o {ua), — 2unla(un) = 0u(u2) (6.63)

in L2([0,7] x Q). Here we used (6.62) and that {ua}_ converges to u, uniformly on [0,7] x £
due to (6.35). Hence, (6.62) and (6.63) suffice to pass to the limit in the second integral. Finally
remember the weak convergence result in (6.34), {ua}, — us in P5(€Q) with respect to time,
hence the convergence of the first and third integral is assured as well.

O

6.5. Numerical results

We fix Q = (0, 1) for all experiments described below and furthermore use V' = 0 for the rest of
this section.

As in the numerical investigations of the previous two chapters, we are going to use non-
uniform meshes for our numerical experiments in order to make our discretization more flexible.
The choice of non-uniform meshes and the implementation of initial grids }?()A are hence analogue
to Section 4.4.1 and 4.4.2. Furthermore, the entropy is discretized by restriction, and the
discretized information functional is the dissipation of the discretized Renyi entropy along the
discretized heat flow. Explicitly, the resulting fully discrete gradient flow equation attaines the

form
MRy pV(@) = W (BHE) - 4QE + 2QE)  GHE),  (664)

where W e RE-D>*(E-1) ig the diagonal matrix with entries
1
Wlkr = 5(5;“_% +5k—%)7 k=1,..., K —1.

To solve (6.64), a damped Newton scheme in analogy to Section 4.4.1 and 4.4.2 is applied.

6.5.1. Numerical experiments. In a paper of Gruen and Beck [BG15], the authors ana-
lyzed, among other things, the behaviour of equation (6.1) on the bounded domain (0,1) with
Neumann-boundary conditions and the initial datum

w(z) = (z—0.5)*+1073, 2zeQ=(0,1), with mass M = 0.0135. (6.65)
This case is interesting insofar as the observed film seems to rip at time ¢ = 0.012.

6.5.1.a. Evolution of discrete solutions. Figure 6.1 shows the evolution of ua for K = 400
and 7 = 1077 at times t = 0,0.0022,0.012,0.04, the associated particle flow is printed in Fig-
ure 6.2/left. It is clearly seen that the strictly positive initial density has a minimum at z = 1/2,
which bifurcates into two minima at later times, and eventually becomes one single minimum
again. As discussed in [BG15], the film seems to rip at time ¢t = 0.012. At later times, the ob-
served “degeneracy” alleviates and the film moves towards a stationary state, which is a constant
function with mass M.
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FIGURE 6.1. Evolution of a discrete solution ua, evaluated at different times
t =0,0.002,0.012,0.04 (from top left to bottom right)

6.5.1.b. Rate of convergence. For the analysis of the scheme’s convergence with initial datum
u® from (6.65), we compare solutions of the scheme with w,ef, which is obtained by solving (6.64)
on a much finer grid, which is A = (&,.¢; Tref). To define &,;, we introduce the equidistant grid
T = k:Kr;% on Q= (0,1), with k =0, ..., Ky and Ko = 1600. Then the entries & are always
chosen, such that

G = f " W0(y) dy,

g
for any k = 0,..., K. For the temporal discretization, we use T, with constant time step
sizes 7, = 5- 1078,

To verify the scheme’s convergence at least numerically, we study the decay of the LP-
errors, p € {1,2, +00}, under refinement of the spatial discretization. For this purpose, we fix
a time decomposition with constant time step sizes 7, = 7 = 1077 and vary the number of
spatial grid points, using K = 25,50, 100,200,400. Figure 6.2/right shows the corresponding
LP-errors between the solution to our scheme and the reference solution u,ef, evaluated at time
T = 10~%. Here, a time decomposition T,e with constant time step sizes 7, = 5 - 1078 is used

for the reference solution. It is clearly seen that the errors decay with an almost perfect rate of
§20c K2,
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FIGURE 6.2. Left: associated particle flow of ua for initial datum (5.73). Right:

rate of convergence, using K = 25,50, 100, 200,400 and 7 = 10~7. The errors are
evaluated at time ¢ = 1074,



Part 2

Two-dimensional case



Compared to the one-dimensional case discussed in the first part of this thesis, the degree of
difficulty of the L?-Wasserstein distance’s analysis instantaneously increases as soon as one con-
siders higher dimensions, unfortunately. The existence of solutions to the Kantorovich optimal
transportation problem, (1.1), is well studied and several proofs are available, see for instance
the content of Chapter 2 of [Vil03] for a duality-based proof. But the lack of an easy and prac-
tical representation of the L?-Wasserstein distance between two arbitrary densities — similar to
the one in Lemma 2.1 for one spatial dimension — seems to be the bottleneck for a convenient
numerical investigation of L?-Wasserstein gradient flows.

In the forthcoming chapter we describe a discretization of L?-Wasserstein gradient flows for
a family of second order evolution equations on the basis of the following fundamental result:
For any densities u,v € P5(2) the optimal transportation map pushing u to v is provided by
the gradient of a convex function. More precisely, there exists a transportation map V¢ that is
the unique gradient (i.e. uniquely determined at almost every x € € R?) of a convex function
such that v = (Vy)4u and

Wa(u,v) = JQ |z — Vo(x)|?u(x) dz.

A proof of this statement can be found for instance in [Vil03, Theorem 2.12]. The optimal
transportation map Vy is also called the Brenier map, which is due to Brenier’s achievements
in the field of optimal transportation, see in particular his work [Bre91] or Chapter 3 in [Vil03]
about Brenier’s polar factorization theorem.

Motivated by the above characterization of the L?-Wasserstein distance, we choose again a
Lagrangian formulation of the considered L2?-Wasserstein gradient flows to derive a numerical
scheme. The underlying idea for our approach is the following: Fix a finite-dimensional set of
gradients of convex functions, which forms a set of “potential” optimal transportation maps.
Then we solve recursively the minimizing movement scheme (1.12) restricted to the subset of
density functions that can be reached by pushing the minimizer of the previous time step through
an arbitrary optimal transportation map from the fixed finite-dimensional set. A particular
property of the gained scheme is the consecutive change of the set of density functions, which
is used for solving the minimization problem, in each time step. This sounds impractical for
numerical implementations at the first glance, but as we are going to figure out in the following,
the Lagrangian reformulation of the minimizing movement scheme constitutes an appropriate

and convenient formulation for a numerical treatment.



CHAPTER 7

Second order drift-diffusion equation

This chapter provides joint work in progress with Oliver Junge and my PhD-supervisor Daniel
Matthes.

7.1. Introduction

In this chapter, we propose and study a fully variational numerical scheme of the following

second order equation with no-flux boundary condition on the spatial domain Q = (0,1)?:

dyu = AP (u) + div(uVV) for ¢t >0 and z € Q, (7.1)
(VP(u) + uVV i) =0 fort >0 and x € 092, (7.2)
u=u’>0 att=0. (7.3)

0

Here, 7i(x) denotes the outward normal vector at x € 0. The strictly positive initial density u
is assumed to be in L!'(Q) with unit mass M = 1. The drift potential V :  — R is assumed
to be at least in C%(Q), and P : [0, +00) — R is a nonnegative and monotonically increasing

function that satisfies the following assumptions:

e One can find a strictly convex function ¢ : [0, +00) — R with ¢(0) = 0, such that
P(r) = r!(r) — 6(r). (7.4)
e r — P(r) is linear or has superlinear growth, such that
r— r~Y2P(r) is non-decreasing for r € (0, +0). (7.5)

Common examples for second order equations that have the above form in (7.1) are the heat
equation (P(u) = u and usually with V' = 0) or porous medium equations with slow diffusion
(P(u) = «™ with m > 1).

Under the given regulartiy assumptions, there are many possibilities to design appropriate
numerical schemes for (7.1), for instance by using finite elements/volume methods or finite
differences. The following approach is special insofar as it makes use of the equations underlying
gradient flow structure, which paves the way to derive a scheme that inherits several structural
properties of solutions to (7.1) by construction, for instance preservation of mass and positivity,
and dissipation of the entropy.

In what follows, we give a brief introduction to the equation’s gradient flow structure. For
the more intrested reader, we especially refer to [AGS05, ALS06, ESG05,Vil03].

7.1.1. Gradient flow structure. We summarize some basic facts about the variational for-

mulation of (7.1). The divergence form in combination with the no-flux boundary condition

155
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implies the conservation of mass and we shall consider M = 1 from now on. Similar to Chap-

ter 3 we consider an entropy functional £ given by

£(u) — J (u(z)) dz + J w(@)V(z) de (7.6)
Q Q
for u € P5(€2). Using the entropy, equation (7.1) can be reformulated in terms of the continuity

equation
Oru + div(uv(u)) = 0, (7.7)

where the velocity field v(u) is given by the gradient of the first variational derivative of &
evaluated at u, i.e.

v(u) = -V (5552“)) — V() +V) - - (

Using the representation of equation (7.1) in (7.7), the no-flux boundary condition then reads

W;(“) + vv) . (7.8)

as

(v(u(t, x)),7i(z)) = 0 (7.9)
for (¢,2) € (0,4+00) x 0.
As we have already mentioned in the one-dimensional situation in Chapter 3, the functional
€ is A-convex along geodesics in W [McC97], where A € R is chosen such that

D?V > AL (7.10)

Here, I € R?*2 denotes the identity matrix and D? V' is the hessian of V. The A-convexity of £
is a powerful ingredient in several analytical applications, which is why we aim to inherit this

feature to our numerical scheme.

7.1.2. The gradient flow in Lagrangian coordinates. It is a well-known fact that the

L?-Wasserstein gradient flow turns into a L2-gradient flow for
detDT
T > &(Tuw) :f W (e(:n))
Q

w(@) w(z)dx + f V(T(2))w(z)dx (7.11)
with 1(s) := s¢(s™!). Here we used the explicit representation of the push-forward Tyw of a

Q

density w € P§(€2) through a transportation map T : Q — Q as given in (1.19). This special
relation was first observed by Evans, Gangbo and Savin [ESGO05] and then further analyzed by
Ambrosio, Lisini and Savaré [ALS06]. A simple formal argument indicates (we refer to [ALS06]
for a proper proof of the following assumption) that the L?-gradient flow along the functional
T— €& (T#uo) is a solution to the “ordinary differential equation”
T =v(u)oT for (¢t z)e (0,+0) x Q,
(7.12)
T(0,z) =2 for z e,

when u solves (7.1). Using (7.8), the right-hand side in (7.12) attains the explicit form

v(u)oT = P'(uoT) {Vu“] oT +[VV]oT.
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Equation (7.12) means in particular that a solution w to the continuity equation (7.7) with the

velocity field in (7.8) has an one-to-one connection to a transportation map T that solves (7.12).

7.1.3. Description of the numerical scheme. Throughout this section, we fix a time step

size 7 that induces a temporal decomposition of [0, 4+0) by
{0=toy<ti1 <...<tp<...}, where t,:=nr.

Unlike the notation used in the first part of this thesis, we denote by 7 the temporal decompo-
sition parameter, which in particular shall emphasize the usage of a uniform decomposition of
the time line.

The derivation of our numerical scheme for (7.1) is once more based on a specific discretiza-

tion of the minimizing movement scheme, which works in the situation at hand as follows: Given

0 0

a time step 7 > 0, one defines inductively — starting from u;

= u° — approximations u” of

u(nT,-) as minimizers in P4 () of the “penalized entropy functional” & (-,u”~1), given for n € N
by

u = argmin &, (v, u™ 1), with & (v,u) := iVVg(U,u) + &(v). (7.13)

veP3 (Q) 27

To obtain a full spatio-temporal discretization of (7.1) we first introduce a spatio-temporal
discretization parameter A = (7; K), where K € N and 7 is chosen as above. The idea is again to
perform the minimization in (7.13) on a A-dependent discrete submanifold of P (§2). Compared
to the one-dimensional case the situation becomes more delicate in higher dimensions, since an
explicit formula of the L?-Wasserstein disctance between two arbitrary densities u,v € P ()
is not available. To circumvent this problem, remember that Monge’s optimal transportation
problem for two arbitrary densities u,v € P§(2) admits a solution that is always a gradient of
a certain potential function, i.e. v = tyu with t € X, where

teX = t=Vp:Q—>Q, with a convex function ¢ that is ( )
7.14

almost every differentiable with det(D? ) > 0 for almost every x € €.
Note that the condition det(D? ) > 0 for almost every x € Q basically guarantees that v = tyu
with t = Vg is a regular density, see [AGS05, Lemma 5.5.3]. This motivates the following
derivation of a fully discrete numerical scheme for (7.1): Instead of solving (7.13) restricted to a
fixed time-independent discrete submanifold of P5(£2) (as we did in one spatial dimension), we
restrict the set of admissible optimal transports X to a finite-dimensional subset X dependent
on the spatial discretization parameter K € N, fix n € N, and minimize v — ST(v,uZ*I) over
all densities v € Py (Q). Here, Py () is an iteratively defined submanifold of P5(2), which
contains all densities v € P5(Q) that can be reached by the pair (v’ ',t) constituted by the
solution uz_l of the previous time step (n — 1) and an optimal transportation map t € Xk, i.e.

P;}((Q) = {v = tyud : te Xk} and

(7.15)
775?((9) = {v = tyuX ' te Xx and u ! solves (7.13) restricted to 73;7;(_1(9)}
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for n > 1. There are infinitely many admissible choices for X, for instance one can choose
locally affine or quadratic spline interpolations of transportation maps in X. In this thesis we

use a Fourier-ansatz that is

K
X ={t=id+ Z 2kiVor + zp € R, such that detDt >0 3, (7.16)
k,1=0
with
k() := cpycos(kmxy) cos(Imxzy)  for x = (x1,x2) € . (7.17)

The coefficients ¢, > 0 are chosen such that the vectors Vi, have unit L2(Q2)-norm for (k,1) #
(0,0), see (7.34) for a proper definition. With this specific choice of X — we are going to prove
in Lemma 7.6 that Xx is indeed a finite-dimensional subspace of X — the numerical scheme

reads as follows:

Numerical scheme. Fiz a spatio-temporal discretization A = (1; K) consisting of a time step
size T > 0 and a parameter K € N. Then
(1) Forn =0, fiz an initial density function u} = u® € P5(Q).
(2) Forn > 1, recursively define densities uk as solutions to the minimization problem
ux = argmin E-(v,ux ), (7.18)
UEP;:?((Q)
where Py5- () changes with each time iteration as given in (7.15).

The above procedure (1) — (2) yields a sequence of densitiy functions that is going to be
denoted by ua = (uOA, ulA, ...) from now on. Compared to other approaches that exploit the
equation’s underlying variational structure (for instance [CM10,CW ,MO14a,0sb14,MO14b]
and many more), the finite-dimensional submanifold P;nK(Q) does not only depend on the spa-
tial discretization K, but also on the previous evolution of uzfl. Hence, our set of discrete
density functions 77;7;(((2) changes with every time step. Further note that our approach guar-
entees that two consecutively calculated discrete minimizers are always connected by an optimal
transportation map, without explicitely solving Monge’s optimal transportation problem.

We are going to prove later in Proposition 7.1 that the minimization problem (7.18) possesses
a unique solution for our choice of P;TIL{(Q) under an additional assumption on the integrand of
the entropy £.

It is convenient for later purposes to introduce some additional notation. We define the set
of indices Tx := {(k,1) € N? : |(k,])]lo < K}\{(0,0)} and write Z = (2x) (s yez, for a vector
7 e REFD?=1 with components z; € R. Furthermore, define the map

7e REFD* -1, ti|Z] :=id + Z 2V okl (7.19)
(k,D)eZx

with ¢k as in (7.17). Note that we exclude the index (k,I) = (0,0) since pgg is a constant
function. Furthermore, we denote by 0zf(Z) the gradient of a function f : REFD*~1 _, R with
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respect to Z, i.e.
0
0zf(Z =—f(Z
[0z (Z)] (k) aZklf(z)
for any (k,l) € Zx. If ua is a solution to the numerical scheme, let us finally introduce for any

index n € Ny the matrix W,, € RIEFD?=Dx((K+1)?~1) given by

[Wn] (k1),(hj) = J;] <v90kl, v@hj> UZ dzx. (720)

7.1.4. Main results. Let us assume in the following that a spatio-temporal discretization
A = (1; K) consisting of a time step size 7 > 0 and a parameter K € N is fixed. We further
assume for the rest of this chapter the validity of the following general assumptions on the initial
density u®:

>0 and E&(u’) < +oo. (7.21)
The first result pictures the qualitative poperties of solutions to our numerical scheme:

Proposition 7.1. Assume that the temporal decomposition parameter satisfies 75 + X > 0.
Furthermore, suppose that the integrand ¢ : [0, +00) — R of the entropy & satisfies

s2¢(1/s) — +o0 as s 0. (7.22)

Then the numerical scheme described in Section 7.1.3 is well-posed. More precisely, the mini-
mization problem (7.18) possesses a unique solution for any n = 1.
Moreover, a sequence of solution ua = (u,uk,...) to (7.18) satisfies the following proper-
ties:
o Conservation of mass and positivity: Any solution uX to (7.18) lies in P5(£2).
o Entropy dissipation: E(u}) < E(ux ') for anyn > 1.

Positivity, conservation of mass and dissipation of the entropy are trivial conclusions from
the scheme’s construction, whereas the statement of well-posedness is a nontrivial claim that
follows from Lemma 7.10. Note further that the condition (7.22) on the integrand of £ seems to
be of a technical nature, since numerical experiments show that one can apply the scheme for
more general choices of ¢, see Section 7.5.

The next result shows that solutions to the numerical scheme satisfy a discrete Euler-

Lagrange equation:

Proposition 7.2. Under the same requirements as in Proposition 7.1, there exists a unique
sequence taA = (tOA,tlA,...) of optimal transportation maps t € X and a unique sequence of
vectors Za = (7%, 7n, . ..) with ZX € REHD?=1 - cyieh that

th = tx[ZX], and t} satisfies uR = (X o fz_l 0...0 tOA)#“O

for any n € Ng. Moreover, each vector Zx in Za, n = 1, is a solution to the system of discrete

FEuler-Lagrange equations

1 R = n—
;anlz + 0z€ ((fK[Z])#uA 1) = 0. (7.23)
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The above result shows that solutions ua to the numerical scheme are uniquely related to a
sequence of vectors Za with entries that solve the system of Euler-Lagrange equations (7.23).

One can now ask for stability of the scheme at least in each time iteration. More precisely, we
are interested in an error estimate for the difference between an arbitrary vector ¥ € R(¥ +1)*-1
and the “scheme’s solution” ZR at time step n € N. This error is expressible in terms of the

residuum 7"[¥] defined by

= 1 . - _
Y'[¥] = — Wiy + 028 ((U{[Y])#Uz 1) (7.24)
and we can prove the following stability result:

Proposition 7.3. Assume that ua is a solution to the numerical scheme and Za is the associated
sequence of vectors which solve the system of Euler-Lagrange equations (7.23) at any time step
n € N. Then

(1 +207) [txl78] — 651 s g 1) < 72 T Wi 7DD
for any y € REFD?=1 " phere Y [¥] is defined as in (7.24).

Unfortunatelly, we can not prove that discrete solutions to the scheme converge towards
solutions to (7.1), so far. However, note that the above stability result in combination with a
proof of the scheme’s consistency can possibly be used to gain a convergence result.

We finally remark that the numerical scheme and all the above results can be easily extended
for higher dimensions d > 3, just by a slight adaptation of the set of Lagrangian maps Xk in
(7.16), see Remark 7.9.

7.1.5. Related schemes. As we have already mentioned in Chapter 3, the construction of
numerical schemes for (7.1) as a solution of discrete Wasserstein gradient flows with Lagrangian
representation is not new in the literature. Especially in one spatial dimension, studies on
Lagrangian schemes for (7.1) that are familiar to our ansatz are popular, take for instance
[AB13,BCHR99, GT06a, KW99, MS85 MO14a, Roe04, WW10|.

Based on the reformulation of (7.1) in terms of evolving diffeomorphisms [ESGO05], Carrillo
and Moll [CM10] derived a Lagrangian discretization of aggregation equations in two space
dimensions. Another approach on basis of the gradient flow structure of (7.1) in dimension two
was formulated by Burger et al [ BCW10], using the hydrodynamical formulation of the Wasser-
stein distance [BBO0O0] instead of the Lagrangian approach. However, there are unfortunately no
analytical results concerning convergence or qualitative properties available for the numerical
schemes in the aforementioned works. We are indeed just aware of one paper about the second
order equation (7.1), the work [BCMO14] by Benamou, Carlier, Mérigot and Oudet, in which a
proof of convergence for the scheme therein is given: Similar to our approximation, the authors
define recursively a sequence of optimal transportation maps that is gained by minimizing the
perturbed entropy functional in terms of Lagrangian coordinates. The main difference to our
scheme is that the minimum is taken over a set consisting of Legendre-Fenchel transforms, which

makes an implementation of the scheme more sophisticated.
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7.2. Discretization in space and time

Before we discuss the properties of our approach in Subsection 7.2.2 and its connection to
the minimizing movement scheme in Subsection 7.2.3 in more detail, we want to study the

Lagrangian formulations of the L?-Wasserstein distance and the entropy &.

7.2.1. Lagrangian coordinates. Since we are interested in a Lagrangian description of equa-
tion (7.1), it is necessary to specify the relation between densities in P5(£2) and transportation
maps T on Q. This link is provided by the push-forward operator as defined in (1.18). In case
of differentiable and bijective maps T : Q — €, equation (1.18) allows an explicit representation
as

Tyw oT~! for almost every z € , (7.25)

w
" detDT
see also (1.19). So starting from an arbitrary (regular) reference density w, its push-forward
Tw through the transportation map T declares a new density that occurs by transporting
mass packages distributed by w from a position z € Q2 to T(z).

7.2.1.a. L?>-Wasserstein distance in Lagrangian coordinates. In terms of Lagrangian coordi-

nates, the L2-Wasserstein disctance between two densities u,v € P5(Q) is given by
Wa(u,v)?* = min {J |z — t(z)|3u(x) dz : t: Q — Q measurable with v = t#u} . (7.26)
Q

This minimization problem corresponds to the original formulation of Monge’s optimal trans-
portation problem, and possesses a solution— the optimal transportation map or Brenier map
connecting u and v — see for instance [AGS05,Vil03]. As already mentioned at the beginning
of Part 2, there exists in particular a function t: Q — € with v = tyu, which is the gradient of
a convex potential function ¢ : @ — R, hence te X.

Let us assume in the following that T : 2 — ) is an arbitrary transportation map and
t: Q — Q is the gradient of a convex function, i.e. t € X. Then the above considerations
provide an explicit characterization of the L?-Wasserstein distance between the densities T#u0

and (to T)xu® in a purely Lagrangian formalism, i.e.
d(t,T) := |T —to T||L2(Q’uo) = Wa((to T)gu’, Tyu), (7.27)
where we use the explicit formula in (7.25).

7.2.1.b. The entropy in Lagrangian coordinates. As already mentioned, the entropy £ can be

written in terms of Lagrangian coordinates using the push-forward operator,
detDT
T — &(T4w) :f W <e(gj)>
Q

(@) w(z)dz + J V(T(z))w(z)dz,
where w € P5(€2) stands for an arbitrary reference density and ¥(s) = s¢(s~!). The function

Q

1 is decreasing, strictly convex and satisfies ¥(s) — 400 as s | 0 due to the assumptions on
P, remember the calculations in (3.18) and (3.19) from Chapter 3. These properties of i) are
crucial to proof the well-posedness of our numerical scheme. But before we come to this, we want

to state a purely Lagrangian formulation of the entropy functional, which reflects the iterative
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character of the above proceeding: Let ¢, T : 2 — € be two transportation maps, then define
E(t,T) := £((to T)xu?). (7.28)

Equipped with this notation, we are going to show that the A-convexity of £ yields an analogue
convexity result for the map t — E(t, T). The preservation of this property is a key ingredient
for many results that will follow in the forthcoming sections. To this end, we first show the

following claim.
Lemma 7.4. The function r — r2¢(r=2), r € (0, +), is non-increasing and convez.
Proof. Set f(r) = r2¢(r~2), then the first derivative satisfies
f'ir) =2ré(r=2) — 2 1¢/(r72) = —2r(r72¢’(r72) — qS(r*Q)) = —2rP(r7?) <0,
due to the nonnegativity of P. For the second derivative, we further get
f'(r) = =2P(r2) + 4 2P/ (r72) = 4(7“_2P'(r_2) - *P(T_2)).
Hence, convexity of f is equivalent to

sP'(s) = =P(s),

N —

which is further fulfilled owing to (7.5). O

Lemma 7.5. Let T : Q — Q be an arbitrary transportation map. Then t — E(t, T) is bounded

from below, i.e.
Et,T) > Mmi(rll V(z) + ¢(M), (7.29)
xE

for any t : Q — Q. Furthermore, the restriction of t — E(t,T) to the set of optimal trans-
portation maps X is A-convex in the following sense: For any t°,t' € X and s € [0,1], one

obtains

s(1—s)

E((1-8)t"+st|,T) < (1= 8)E(’, T) + sB(t', T) = A= [[t" = ' [L2qr 00y, (7:30)

where X is defined as in (7.10).

Proof. Let T : 2 — € be fixed. Due to the convexity of s — ¢(s) the functional t — E(t, T)
satisfies,

B(LT) > Muig V(o) + | o((to ) ) do > Mmin Vi) + 0 < | oyt dx)

= MIIIEI(IZI V(x) + ¢(M),

where we used Jensen’s inequality and (7.25). This shows the boundedness of t — E(t, T) from
below.

To prove (7.30), we proceed analogously to the proof of Proposition 9.3.9 in [AGS05]: First
note that for any s € [0,1] and t°,t! € X, the map ts := (1 — s)t° + st! is the gradient of the
convex function (1—s)p° +se!, where V! = t%1. Therefore, t; € X for any s € [0,1]. Since t%!
are gradients of convex and almost everywhere differentiable functions such that det(D t>!) > 0
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for almost every z € , Dt%! are diagonalizable with strictly positive eigenvalues (by [AGS05,

Theorem 6.2.7]). Let us further define t} := t' o (t°)71. Then the derivative Dt} is diagonalizable
with strictly positive eigenvalues as well, which induces that the map

s det ((1—s)I+ sDt(l))% (7.31)

is concave on [0, 1]. For simplification let us first investigate the map s — E(ts, T) under the
assumption that V = 0. Then by a substitution with (t° o )1,

E(t;, T) =f 0 (detD(tSOT)> u® dz

Q ud

:L¢ <det (1= s)I+sDt)- [W] o (0 oT)—1> [detDzi)T)] o (oT) " da,

where we used
detD(ts 0 T) = det (D [(1 — s)id +stj] o (t° o T))
= [det (1 = s)I+sDtj)] o (t° o T) - det D(t° o T).

Using v(s) = s¢(s~!) and the definition of the push-forward, the function s — E(ts, T) can be
reformulated as

_ (to o T)#uo
E(t, T) = L ) (det (= SD%)> det (1 — s)I+ sDt}) da.

Notice that for almost every x € €2,

(tooT)#uo
e (det ((1 _S)H-l-SDt(l))) det ((1 _3)H+3Dté)

is convex, since it can be interpreted as the composition of the convex and non-increasing map

r > r2¢(r=2) (Lemma 7.4) with the concave function in (7.31). In case of V' = 0, we conclude
that

E((1- )t +st, T) < (1 - s)E(°,T) + sE(t',T).

If V # 0, a Taylor expansion yields for s € [0, 1]

1—
V(- 9)+s9) < (- V() + V() - ATy
which shows (7.30) after integration of the inequality. 0

7.2.1.c. The minimizing movement scheme in Lagrangian coordinates. Using the notation from
Section 7.2.1.a and Section 7.2.1.b, the minimization problem (7.13) can be reformulated as
follows:
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Given a time discretization consisting of a time step 7 > 0, an initial density function
u’ € Pr(Q), and an initial transport map TY = id, define inductively a set of transport
maps (T?)%_,, such that T? = t? o T?~! and t” solves
1
" = argmin E, (£, T"!), with E,(t,T):= Q—d(t,T)z +E(t,T), (7.32)
teXx T

forn > 1.

It is immediately seen that u” = (T?)4u® is a solution of (7.13), hence the above procedure is
equivalent to the minimizing movement scheme as in Subsection 7.1.3. One can therefore apply
standard arguments from the literature (we once again refer to [AGS05]) to conclude that the
(77! + \)-convex functional t — E,(t, T) has a unique minimizer in X, hence (7.32) is uniquely
solvable. Furthermore, each t* from the sequence of minimizers (t1,2,...) is a solution to
JE.(t, T2 )

ot

In this context we call w admissible for t € X, if t + w is still a measurable map from {2 onto

[w] =0, for any smooth and admissible velocity field w. (7.33)

itself, hence it especially does not cross the boundary of2.

7.2.2. Properties of the spatial discretization. In this subsection, we want to justify our
choice of the finite-dimensional space Xx in (7.16) and discuss the resulting consequences and
properties for our scheme. To this end, remember that our ansatz functions are of the form
—2—. (k1) # (0,0
or1 € B = {cgr cos(kmar) cos(Imwa) ey, With ¢ = { TVEHE (k1) # (0,0), (7.34)
’ 1, else.

The coefficients cy; > 0 are defined in such a way that V| r2(q) = 1. Furthermore, note that
% is chosen such that any function ¢ in span ‘B satisfies the linear boundary constraint

(Vo(z),n(z)y =0 for any x € d. (7.35)

Let us fix K € N for the rest of this section and introduce B = {@g : [(k, 1) < K}.
Then the ((K 4 1)? — 1)-dimensional space X as defined in (7.16) satisfies

Xk ={t=id+ > zuVew: o€ Bx and zy € R such that detDt>0p.  (7.36)
(kvl)EIK
The condition det Dt > 0 is equivalent to strict convexity of the corresponding potential func-
tions. We further introduce the set of coefficients 3,

3K =3 7= (20) (k)ezy ¢ 1+ Z 2w Veon € Xg p € REFD L

(k)elx
The set 3x is closely related to X through the map tx defined in (7.19), since any optimal
transportation map t € X can be written as tx|[Z] for a certain vector Z in 3.
The following lemma concludes that X is indeed an affine subspace of the set of optimal
transportation maps X from 2 to €:
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Lemma 7.6. Any map t in Xk is a diffeomorphism mapping  onto €.

Remark 7.7. This result is valid for any choice of B, as long as functions in B are smooth

and satisfy the linear boundary constraint in (7.35).

Proof of Lemma 7.6. We prove that any t € X is a bijective map with values in ). Fix an
arbitrary t € X given by t = id + Z(kJ)GIK 2k Vpgr. Then the strict convexity of the respective
potential function yields that t is strictly monotone, i.e. there exists a constant ¢ > 0 such that

{t(x) = t(y),z —y) = clz —yl3 (7.37)
for any x,y € . Further note that the boundary condition (Vy, 7y = 0 for ¢ € B immediately
yields that each corner of €2, (0,0), (0,1),(1,0),(1,1), is mapped on itself.

Next, we prove that values on the boundary 02 remain on the boundary. For this we fix two
neighbouring vertices, for instance v; = (0,0) and vy = (0,1). Then each intermediate value in
{0} x [0,1] is attained by Avy + (1 — X)ve for any A € [0, 1] and satisfies

0 = (t(Avy + (1 = Nvg),ii(Avy + (1 — Nwg)) = <t(Av1 + (1 = Nwg), <—01> >,

hence t(Av; + (1 — A\)va) € {0} x [0, 1]. By the monotonicity of t in (7.37) and due to t(vy) = v1

and t(v2) = wvg, this shows that the restriction of t to {0} x [0, 1] is bijective with values in

{0} x [0,1]. One analogously shows the same statement for the other parts of the boundary.
As a next step, let us assume that there is a value = €  with t(z) ¢ Q. By continuity it

easily follows that

t.:=id+e Z 2k Vo
(kelx
is an element of X for any € € [0, 1] and that there exists a value € € [0, 1] such that tz(z) € 09.
Due to the behaviour on the boundary, there further exists a value yz € 02 with tz(yz) = tz(x),

but this contradicts the monotonicity since
0 = (te(z) — te(ye), @ — ye) = clw — yell5 > 0.

This shows that t : 2 — Q. Finally note that the injectivity is a consequence of the monotonicity
and surjectivity follows from the continuity and the fact that the boundary is mapped onto itself.

0

7.2.2.a. The restriction ofd and E to X . The one-to-one identification between optimal trans-
portation maps t € X and vectors Z € 3x via the map tx leads to a new representation of the

L?-Wasserstein distance,
d(tg[Z], T)? = (Z,W,[T]Z), with [WQ[T]](kl),(hj) —L [(Vori, Viond] o Tul () dz. (7.38)

The matrix W[T] depends on the transport T and the initial density u®, unfortunately, but it
allows an explicit evaluation of the L?-Wasserstein disctance between two densities T#uo and

(to T)#u0 just by calculating a “matrix-vector-matrix”-product. Note in addition, that the
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definition of Z — tx[Z] implies

<z — 7L, Wy[T) (2 — 2! )y = f It [2° — 7] —id |3 Tyu® da

(7.39)

- f k(2] — tx 2113 T g da
Q

for any 7°,7' € 3x.
As the following lemma shows, our discretization even preserves one of the most important

properties from the continuous setting, namely A-convexity of the entropy:

Lemma 7.8. Let T : Q — Q be an arbitrary transportation map. Then Z — E(tx[Z], T)
is bounded from below by the same bound as € in (7.29). Furthermore, Z — E(tx[Z],T) is

\-convez in the following sense: For arbitrary vectors 7°

E((1 - s)tx[2°] + stx[Z'], T)

.7 € 35 and s € [0,1], one obtains

s 7.40
<(1 - s)E(g[Z°].T) + sE(tx[Z'], T) — )\5(12) (7 =7 Wa[T)(Z’ = 7)), A

where X is defined by (7.10).

Proof. Fix T : Q@ — Q. The boundedness of Z — E(tx[Z], T) immediately follows from Lemma
7.5 and the definition of E in (7.28). To prove (7.40), note that the map Z — tx[Z] obviously
satisfies ti[(1 — 5)Z0 + s7!] = (1 — s)tx[Z°] + stx[Z] for s € [0,1]. Then (7.40) is a consequence
of (7.30), see again Lemma 7.5 and (7.39). O

Remark 7.9. The above ansatz for the spatial discretization is easily adaptable to the higher-
dimensional situation (0,1), d = 2: It suffices to replace the set of ansatz functions By by its
multi-dimensional counterpart

By = {4,0,.i = H;lzléH COS(Rijj)}ne{o,...,K}d
with adapted coefficients ¢y, where k = (K1, ..., Kkq) are multi-indices with components that satisfy
kj €40,...,K} forj=1,...,d. It is easily verified that functions in By still validate the no-
flux boundary condition. Furthermore, the above results (especially Lemma 7.6 and Lemma 7.8)
still hold true for the respective multi-dimensional extensions of X and 3, and all results that

follow in the subsequent sections can be adapted as well.

7.2.3. The numerical scheme in Lagrangian coordinates. We have already seen in Sub-
section 7.2.1.c that the minimizing movement scheme (7.13) has an equivalent formulation in
terms of Lagrangian coordinates, see (7.32). It turns out that one can easily rewrite our numer-
ical scheme as introduced in Section 7.1.3 in the same way: Instead of minimizing (7.18) over
the time-dependent and discrete submanifolds Py’ (Q2), we perform the minimization in (7.32)
with X replaced by Xg. This yields the following Lagrangian representation of our numerical
scheme:
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Given a discretization A = (7, K) consisting of a time step 7 > 0, a spatial discretization

K, an initial density function u® € P5(f), an initial vector ZX = 0 € 3x and the initial

transport TQA = id. Then define inductively a sequence of vectors Za = (Z%, ZIA, ...), such

that ZX solves

Zx = argmin E_ (tx[7], TZ_I) (7.41)
ZE3K

for n > 1, and set T} = tx[7k] o T’ '. Further denote t} = tx[7%], vk = (T%)xu’, and

we write Za = (72,74, .- .), ta = (10, th,...), ua = (u},ul,...) and Ta = (TQ, Th,...).
It is easily seen that this formulation is indeed equivalent to the original one in Section 7.1.3. The
main difference is, that the Lagrangian representation makes the dependence of P;?((Q) on the
previous solution uz_l a dependence of E; on TZ_l. An immediate advantage of the Lagrangian
characterization in (7.41) is that it is much easier to handle for numerical applications, since
the set over which one performs the minimization is fixed and does not change with every time
iteration.

To show that the numerical scheme is well-posed, one has to guarantee that the minimization
problem in (7.41) is solvable. Compared to the analogue problem in Proposition 3.9 in one spatial
dimension, the situation becomes more complicated for higher dimensions. The reason for this
is that t — E(t,T) can even be bounded from above for transport maps t with degenerating
determinants if the set where det(D t(x)) = 0 is small enough, although the integrand ¢ of E has
the property that ¥ (s) — +00 as s | 0. Nevertheless, we can at least guarantee the existence of
a minimizer of Z — E,(tx[Z], T), if the integrand of entropies E increases faster at zeros than
s
Lemma 7.10. Suppose that w = T#uo > 0 for an arbitrary transportation map T : Q@ — Q and
E(w) < C for a constant C' > 0. Further assume 7-* + X > 0. If the integrand of E satisfies
s1(s) — +00 for s | 0, then the functional Z — E,(tx|[Z], T) has a unique minimizer in 3.

Proof. Using the representation of the L?-Wasserstein disctance (7.38) in terms of the matrix
W, [T], the functional Z — E.(tx[Z], T) attains the form

B, (tx[7), T) = BU[7), T) + 5 & Wo[T}2)
_ E({7],T) - %@3 WolTJ) + 3 (7" + X) (7 Wal T

Since 7+ E(t[Z], T) is A-convex, see Lemma 7.8, and 7~ + X is supposed to be strictly positive,
one concludes that E.(tx[Z], T) is strictly convex. The boundedness of 7 — E(t[Z], T) from
below further implies

E, (tx[7],T) > E({7],T) > Mmin V() + 6(M).

Thus, Z — E,(tx[Z], T) attains at most one critical point in 3x. Let further (77 )j~o be a minimiz-
ing sequence 7’ for Z — E, (tx[Z], T) with Z/ € 3x, which converges towards infz;, E;(tx[Z], T).
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Then there exists an index J € N, such that all vectors ZZ with j > J have to satisfy
E,(tx[#], T) e [Mmlgl;lV(ac) + ¢(M),C].
xTe

The continuity of the map 7 — E,(tx[Z], T) then yields the boundedness of the sequence 7/ in
R(K+1)2_1, this is why one can find a subsequence that converges to a vector z* € RE+1)?-1
with det(D tx[Z*]) > 0. It remains to show that Z* is in jx, i.e. that det(D tx[Z*]) > 0.

Remember the definition of Z — tx[Z] in (7.19). For any Z € 3k, the derivative of tx[Z] is
hence given by

D fK[Z] =1+ Z 2kl D? pr  with

(k,1)eTk
D2 v — Row  Orppm) 2w —k? cos(kmry) cos(Imwa)  klsin(kmzy) sin(lmzs)
Pkl D210k 03Pk VE2+ 12\ Eklsin(krzy)sin(irxe)  —12 cos(kmzy) cos(lmas)

and its determinant furthermore satisfies for any x € Q2

det (D 4 [7)(a)

= 1= D wflen |1 D) zudon |- D1 2zni0120k210n
(k’Z)EIK (kvl)EIK (k)l)v(hz.])EIK
1
=1- 2 2p tr (D2 SOkl) + 5 Z ZklZhj tr (COf(D2 @kl) D2 gahj) . (7.42)
(kvl)GIK (kal)z(hyj)GIK

Here we use the short-hand notations ¢; and do for the partial derivatives with respect to the first
and second spatial component, respectively. Equation (7.42) especially shows that det(D tx[Z])
is a trigonometric polynomial. Take again the minimizer Z*, which satisfies det(D tx[z*]) = 0.
So assume 7 € €2 to be a point of degenerating determinant, i.e. det(D tx[z*](Z)) = 0. Then one
can invoke for instance the power series definition of cosines and sines to see that the term in
(7.42) has maximal quadratic growth close to the root Z — in fact one just has to exclude that
(7.42) grows linearly at &, but this can be done since det(D tx[Z*]) would even attain negative
values in this case which would contradict to det(D tx[Z*]) = 0. This is why one can assume

the existence of a constant ¢ > 0 and a sufficient small radius > 0, such that
det (D tk[7*](z)) < |z — Z|3 for any z € B5(Z) = {x e R*: |2 — F|5 < 6} < Q.

The above inequality can be used to show that the assumed existence of the root T € ) contra-
dicts the boundedness of E, (tx[7*], T): Set w = T4u and remember that 1 is a convex and de-
creasing function. One can hence apply Jensen’s inequality, which yields with C, := SIBT w(z) dz

C > MI;1€1S121V(:I:) +f Y (W) wdx

<det D ’LK

=MminV(z)+C, | ¢
ze) B,

> Mmin V() + Cyu) (Cl, f det (D tc[7]) d:z:)

T
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for any r € (0,4). Since w is assumed to be strictly positive, one can find a constant w > 0 with
w > w, and further C, > wr?s. Due to the monotonicity of ¢, the above calculation yields for
r € (0,6) small enough

1
C > erne%l V(z)+ Cpp <C’7‘ JBT det(D tx[Z*]) dx)

2 T
> M min V(x) + wrimp ( WCJ o3 dJ>
zel) Cr 0

> MminV(z) + wrn mwert = MminV(z) + wr?n cr?

> M min > M min -

zeQ) . wrm 2C, e v wrm 2w )’
%

where the right-hand side tends to 400 as r — 0. This proves Z* € 3k, which is the unique
minimizer of Z — E;(tx[Z], T) due to the convexity. O

The above result implies the well-posedness of our numerical scheme.

Proof of Proposition 7.1. The definition of 1 (s) = s¢(1/s) obviously implies the relation

si(s) = s*¢(1/s),

which shows that the condition s¢(s) — 0 as s | 0 and (7.22) are equivalent. We have to prove
that the scheme in Section 7.1.3 has a unique solution at any time iteration n € N. Starting
with n = 1, one can immediately apply Lemma 7.10 due to the strict positivity of «® and
E(u®) < +o0, see (7.21). Hence there exists a unique minimizer 7\ € 3x of Z — E,(tx[7Z], TQ)
with TQ = id, and uk := (th)4u’, where t} := tx[74] is the unique minimizer of (7.18). By
construction, u} satisfies £(uk) < E(uQ) with u} = u?, and u}, is strictly positive since u} is the
push-forward of the strictly positive density u” through the transportation map tlA with striclty
positive determinant det(D tlA). Therefore, ulA satisfies the requirements of Lemma 7.10 and one
can proceed as before. This proves by induction the existence of a sequence ua = (u%, ulA, o)

of strictly positive densities that solve (7.18) and satisfy £(u}) < E(ux ') for any n > 1. [

Due to the above results, we know that the minimization problem in (7.41) has a unique
minimizer in jx at each time step n € N. From this observation, it is not far to conclude that
these minimizers satisfy the discrete Euler-Lagrange equation (7.23).

Proof of Proposition 7.2. Fix n € N. Remember that 3x consists of vectors Z in RE+1)?-1

that satify det(Dtx[Z]) > 0. This yields by continuity of Z — det(D tx[Z]) that 3x is an open
subset of RUETD* =1 Thyg 7%, is the root of the derivative of 7 — E.(tx[7], TA '), i.e. 7}
satisfies

1
~Wo 17} + 0Bt [7A], T Y =o0. (7.43)

Due to the definition of W,,_1 in (7.20) and the representation of the L?-Wasserstein distance
(7.38) in terms of Lagrangian maps, we conclude that W,_; = W, [TZ*I]. Finally note that

€ ((txf)) 4ui ) = Bltx[2). TR).
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Therefore, the equations in (7.23) and (7.43) are identical, which proves the claim. ]

Remark 7.11. The identity W,—1 = WQ[TZ_l] provides an alternative representation of the

system of Euler-Lagrange equations in (7.23) or (7.43), which is the following:

OE(tX, TA )
ot

for all (k,l) € Ix. This reflects in particular the variational character of our scheme, since

1

~Wa1ZA + GE(tx[ZA], TR ) = [Ver] =0, (7.44)

discrete solutions ZR to (7.41) can alternatively be found by variation of t — E,(t, TZ_I) along
gradients Vg of functions in By .

7.3. Proof of the scheme’s stability

It remains to prove the scheme’s stability as formulated in Proposition 7.3. Therefore, take a
solution ua to the scheme with associated sequence of vectors Za which solves the system of

Euler-Lagrange equations due to Proposition 7.2. Our aim is to prove that

(14 27) e 28] — 5120 g1 < 7 G171 Wi LA 50) (7.45)

(K+1)2—

for any y € R L'and any n € N, where the residuum 4"[¥] can be formulated as

SN[ 1 v v N
T'[F] = —Waa 7 + Bk (7], TX h.

5
I

The proof of (7.45) is essentially based on the preserved A-convexity of Z — E(tx[Z], T).

K+1)2—

Proof of Proposition 7.3. Fix n > 1 and an arbitrary vector y € R( L To simplify the

—

notation, we write 4 = 4"[¥] in the following. Let us first conclude from the A-convexity of the
functional 7 +— E(tx[Z], TA ') in (7.40) that

(7= ¥,0:B(tk[7), TAY) = B [7], TA ) 2 AE = §, Waa (7 7)), (7.46)

for any 7 € 3, which is gained by Taylor expansion. Furthermore, Z{ and ¥ satisfy by definition
1 1

;Wn_lz’g + 0;E(tk[ZA], TA 1) =0 and —Woa + OFE(tk[F], TN ) =7 (7.47)

since W,,_1 is a symmetric and positive definite matrix, one can define uniquely a symmetric and

71/—21 71/,2 1W:L/,2 1 = W, _1. Multiply

both equations in (7.47) with TW;i/f and take the difference, then

positive definite matrix W — its square root — such that W

—~1/2 -,

W2 (7 = 78) + 7W, P (0Bt [7], TXY) — 0Btk [7K], TR 1)) = 7W,, 2.

n—1

Taking the norm on both sides yields the estimate

(F =7k, Wn1(F — ZR)) + 27 (7 — ZX, B (tx[7], TX ') — 07E(tx[7ZX], TA ')
<27, W L), (7.48)

Due to the representation formula of W,,_; in (7.38) and (7.39) one attains

G =78 W5 = 7)) = | tcl7] — el 3wy
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Together with the convexity estimate in (7.46), we further conclude with (7.48) that
112
(1 +227) [txc74] = 51 s g,
< ltwlZA] = tre 7 2 (un ) + 27 (F = ZR, Btk [F]. TA ) — zE(tx [Z3]. TX ™))
<7’ <'77 W;£17> )

which proves the assumption. O

7.4. Implementation

The iterative character of our scheme — in form of the minimization procedure (7.41) or the
system of Euler-Lagrange equations (7.43) — requires an explicit computation of the terms
t— d(t, TX ') and t — E(t, TX ') at any time iteration n > 1. Unfortunately, those integrals
cannot be evaluated explicitly for

—1 —1 1
T =ty o...oty,

which consists of successively iterated discrete optimal transportation maps. It is hence necessary
to apply some kind of integral quadrature:

fg [ p(x), T(), (to T)(z)) dz ~ Q[ f(x.p. T, to T)],

where
K¢

Q¢ f(z,p, T, toT)] := Z wir f (@, p(n1), T(zpr), (o T) ()
ki1

with certain sample points { = (xkl)fj:l and weights (wkl)kK’le. In our numerical experiments
in Section 7.5, we are going to use an integral quadratures of the following kind:
Take K € N and decompose Q = [0, 1]? using (Kj)?-many squares of the same size (quadrilateral
decomposition of 2). Then an approximation of the integral on each square is gained by applying
a GauB quadrature using (K)?-many weights per square, hence one has K? = K g - K2 sample
points in total.

Fixing a suitable choice of integral quadrature Q¢, one can adopt the formulation of our
numerical scheme in (7.41) just by replacing the functions d(t, T) and E(t, T) from (7.28) and
(7.27) with

d¢(t, T) = (Qg[|T—toT|2u0])%7 and
Ec(t,T) = O, [¢, ([detD(f)] oT: detDT> uo] |

w0
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The resulting procedure then reads as follows:

Given a discretization A = (7, K, ) consisting of a time step 7 > 0, a spatial discretization
K and a ¢-dependend integral quadrature, an initial density function u° € P5(Q), and
an initial transport map TQ = id € Xk, define inductively a set of transportation maps
Ta = (TQ, Th,...), such that Tk =t} o Tx ! and t} solves
th = argmin %d%(t, T + Ee(t, TX ) (7.49)
teX i

for n > 1. Furthermore, set u} = (TR)xu’.

Of course, the above scheme is equivalently expressible in terms of vectors Z € 3x, analogously
to (7.41).
As before, this fully-discrete numerical scheme preserves important structural properties
from the continuous minimizing movement scheme in (7.13):
(1) Conservation of mass and positivity: This is a consequence of the choice of X, which
is independent of the integral quadrature Q.
(2) Discrete entropy dissipation: E¢ (%, T ') < E¢(id, T 1) for n > 1.
(3) Convexity: Following the proof of Lemma 7.8, it is clear that the integrand of E(t, T)
itself is convex for almost every x € 2. This implies the convexity of t — E¢(t, T) for
arbitrary T : Q — (). Especially the discretized perturbed entropy functional

7> o-deltild), T) + Be(te[2), T5 ) (7.50)

restricted to the convex set jx is A-convex.
(4) Wasserstein-consistency: Dependent on the quadrature rule, there exists a rate a > 0,
such that for arbitrary t, T

dc(’t, T) = WQ((t o T)#UO, T#UO) + 0(5?)

with maximal mesh width 54 = max{\:cij — xiil,ji1| D T4j, Ti+1,5+1 € C}
An iterative implementation of the above scheme (7.49) is now given by proceeding as follows:

e Choose a set of weights and sample points ¢ for an integral quadrature.

e Start with n = 0, set tQ(s) = TA(s) = s, [det D(t} o TQ)](s) = 1 for all s € ¢ and
save the evaluation vector & = TQ (¢) that describes the initial position of the sample
points, as well as Gger = [det D(t) o TQ)](C).

e Perform the following iteration:

(1) Set n=n+1

(2) Calculate t" € X by solving the minimization problem in (7.49). For this, calcu-
late the variational derivative as in (7.43) and solve the system of Euler-Lagrange
equations.

(3) Set Gget = [det DER](S) - Gget and & = t"(S). The set & now pictures the
temporal evolution of the sample points at time t = nr.

(4) Stop if the final time is attained, otherwise go to (1).

e Recover the set of density functions u} = [ﬁ] o(TR)™! for n > 1.
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It is ad hoc not clear if one can indeed find a vector in 3x that solves the system of Euler-
Lagrange equations, since the existence result of Proposition 7.1 (or Lemma 7.10, respectively)
is not applicable in the new situation. Numerically, one can solve the system of Euler-Lagrange
equations due to the convexity of (7.50) by using Newton’s method, but note that it is not
possible to guarantee that the gained solution t" lies in Xi. The reason for this is that one
has just a finite number of points — the iteratively transported sample points Tz_l(c ) — for
which one can check that det(Dt") is strictly positive. To circumvent this problem at least in
numerical applications, one can define in addition to the set of sample points ¢ a large set of
random numbers (,,,q with values in Q. Then one can check the positivitiy of det(D t"*) in each
Newton step on the iteratively transported set T (¢ ana)-

7.5. Numerical results

In all experiments below we choose P(s) = s2. Note that this choice is not covered from

Proposition 7.1 that guarentees the existence of solutions to the numerical scheme. However,
the numerical results indicate that one can neglect the conditions of Proposition 7.1 on P in
practical applications.

For the integral approximation as explained in Section 7.4, we always choose K, = 2K and
use a Gaufl quadrature with four weights per square, which yields a total number of K g = 16K?
sample points.

7.5.1. Numerical experiments.

7.5.1.a. Reference solution. To study the evolution of discrete solutions and the numerical
convergence, we compare our scheme with functions s = (u?ef, u%ef, ...), where each time step

Upg, = 1, is a solution to the standard finite element scheme given by

n_ ,n—1
J % Oy dz = j (V (™2, V0> +u (VV, V0 do, k1 =0,... K. (7.51)
Q Q

We use the ansatz u = f{j; ! ur0k;, where the functions 60y; are tensor products of locally
affine functions 6y, : (0,1) — R that fulfill

_1 1 for k=1,
O(l- K ;) =
0 for k #1,
forany k =1,..., K — 1. In order to satisfy the no-flux boundary condition, we further set

01(z) =1 for x € (0, Kf) and Ok, ,1(z) =1forze (1 - K1)

In all numerical experiments below, we use Kot = 400 and 7 = 5-107%.

7.5.1.b. Fvolution and decay of the entropy. In the first series of numerical investigations, we
consider the positive initial density

u’ = C (0.1 + zy (cos(4ma1) — 1.2) (cos(2mzs) — 1)), (7.52)
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where C' > 0 is such that «° has unit mass, and study the discrete evolution of the numerical

scheme with P(s) = s? and a “double-well”-like potential that is
Vi(z) = —)\(cos(27mc1) — 1) (cos(47rx2) — 1) (7.53)
for A = 0.75.

The evolution of the scheme’s solution ua and its corresponding transport map Ta for
K = 32 is plotted in Figure 7.1. Starting from the initial density that has 2 local maxima, the
solution shows a slow diffusion that is typical for a porous medium equation at the very first
time iterations, but then a certain “splitting” of the density arises that is caused by the influence
of the drift-potential V. Two elevations evolve and move towards the stationary solution with
increasing time.

Figure 7.2/right pictures the observed decay of the entropy £(ux) compared with the one
gained by the standard finite element scheme using locally affine ansatz functions. As the figure

points out, both curves perfectly lie on top of each other.
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FIGURE 7.1. Evolution of the solution to the initial density (7.52) and its trans-
port maps Ta at time t = 0,2.5-1073,4-1073 and t = 5 - 1072

7.5.1.c. Rate of convergence. For the next experiment, we again use the initial datum in (7.52),
and fix V' = 0. To study the convergence of the scheme, we run a series of numerical simulations
using the time step width 7 = 5-107% and K = 4,8,12,16,20,24. The gained numerical
solutions ua are compared with the solution wu.es of the finite element scheme. To approximate
the L?-norm of the difference ua — uyef, note that
u’(2)
det DTR

2
det(DT?) dz,
2

— Uret(nT, TR)

HUZ - uref(nTa )”%Q(Q) = fﬂ '

for any n € N. This norm is numerically approximated by a Gaul quadrature using 400 sample
points. Figure 7.2/left shows the obtained L?-error that is evaluated at 7' = 0.01. The observed

rate of convergence behaves approximately like K 3.

7.5.1.d. Convexity. It is a well-known fact from the continuous theory that two solutions u;
and uy of a L?-Wasserstein gradient flow along a A-convex entropy functional contract or diverge
as

WQ(Ul (t), U,Q(t)) < W (U1 (0), UQ(O))G_M. (7.54)

Since convexity is just locally preserved by our scheme at any time step, see Lemma 7.8, it is ad

hoc not clear if (7.54) is valid, and even more, it is not clear how one can compare two numerical
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FIGURE 7.2. Left: numerically obtained L?-norm of the differences ua — tref
evaluated at final time T = 0.01, using K = 4,8,12,16,20,25. Right: observed
decay of the entropy.
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FIGURE 7.3. The exponential decay of [T} - — TR - z2(qu0) using K = 12,
7=10"3,n=0,...,100 and the initial densities uOA,g and uOA,77 from (7.55).
solutions with different initial densities. To study (7.54) numerically, we choose V (z) = 5|3
with A = 10 and fix the discretization parameters K = 12 and 7 = 1073. Furthermore, we

consider u° = 1 and take two perturbed densities uOA = and ug s defined by

U(]A,gz(idJr Z 5sz<P1cz>

u?  and U&WZ(id—f- Z nklv@kl> u®. (7.55)
(k)eTx #*

# (k,1)eTk

The vectors € and 77 have entries with random numbers with a maximal absolute value of
1.25-1075, but in order to enlarge the difference between both densities in (7.55), we randomly
add in each vector a single entry that has an absolute value of 5-10~2. However, £ and 17 are

chosen such that the corresponding transport maps are still gradients of convex functions. We

then run the numerical scheme for both perturbed initial densities to get solutions ua s and
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up, ;- In the semi-logarithmic plot in Figure 7.3, one can see the time evolution of
HTZ,g - TZ,ﬁHL%Q,Uﬁ): n=0,...,100, (756)

which is the best approximation to Wh(ux -, ux 77) we can accomplish with our method. Similar
to the continuous theory, the difference in (7.56) decays exponentially and satisfies the same

upper-bound as in (7.54).






CHAPTER 8

Concluding remarks

The last chapter of this thesis is intended to provide some concluding remarks to the presented

results and some ideas for possible extensions of the used methods.

Part 1. One-dimensional case. The results for our numerical schemes stated in one spa-
tial dimension are in general satisfiying and confirm the used approximations. For almost all
schemes, a proof of convergence is provided and several structural properties from the continuous
equations are preserved in the discrete setting.

The usage of piecewise constant density functions for the schemes’ derivations has its pros
and cons. On the one hand the resulting schemes are easy to implement and the handling
with piecewise constant functions makes the analytical investigation of the schemes relatively
convenient. But on the other hand a more sophisticated ansatz (for instance using spline inter-
polants with more regulartiy) would very likely yield to better rates of convergence. Take for
example the scheme for the DLSS equations by Diiring, Matthes and Pina [DMM10], where
a locally quadratic spline interpolation is used for the approximation of Lagrangian maps with
corresponding continuous and differentiable density functions. Numerical experiments suggest
a better rate of convergence for the scheme in [DMM10] than for our scheme in Chapter 5.
Unfortunately, a proof of convergence for [DMM10)] is still missing. For this purpose, I once
tried to proceed similarly as in Chapter 5 to derive a compactness result for discrete solutions
to the scheme in [DMM10], which turned out to be a difficult task that I haven’t solved yet.

Another point that calls for improvement is the usage of equidistant spatial decompositions
in the approaches for fourth order equations. It seems that all analytical results can be adapted
to non-equidistant meshes as well without changing the main ideas of proceeding. However, this

generalization is absent and could be the content of future considerations.

Part 2. Two-dimensional case. Unfortunately, there are many open questions for our scheme
in dimension two: The convergence result in Section 3.6 indicates that the obtained stability
result in combination with a consistency result can suffice to show convergence of the scheme
in Chapter 7, but a proof of consistency is still missing. Furthermore, it is not clear if one
can find useful a priori estimates that yield compactness of discrete solutions. Any effort to
exploit the variational structure of our scheme to find appropriate estimates as in the one-
dimensional situation in Chapter 3 failed so far, even for other choices of ansatz functions —
for instance, we attempted locally affine and quadratic spline interpolations of the Lagrangian
maps instead of the Fourier-ansatz presented in this thesis. A part from that, the approximation
of solutions to (7.1) starting with discontinuous initial density functions is unconvincing, since

strong oscillations occur along points of initial discontinuity because of the Gibbs phenomenon.

179
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But there are also many positive arguments that justify the way of our approximation.
Many important structural properties are preserved by construction, for example preservation
of mass, dissipation of the entropy and the A-convexity of the entropy along discrete geodesics.
In addition, the preserved variational character of our scheme in Chapter 7 enables an extension
to fourth order equations in the same spirit as in Chapter 4 in the one-dimensional case. Take
for instance the Boltzmann entropy #(u) = §, ulog(u) dz and define analogously to (7.28) the

Lagrangian representation
H(t,T) := H((to T)yu’)

for any density u® and transportation maps t, T : © — Q with Q = (0,1)2. Then a discrete
formulation of the auto-dissipation of the Boltzmann entropy according to the one-dimensional
definition in (4.22) would be (using the notation of Chapter 7)

7 F(tx[2), T) = (0H(tx[2], T), Wo[ T] ' ;H (1 [2), T))

which can be used as a discretization of the Fisher information F(u) = i, |V+/u[*dz. Note
that this approach of the Fisher information is much easier to implement than for instance a
“straight-forward” restriction of F to X, 7 — F((tx[7Z] o T)xu®). A numerical scheme for the
DLSS equation on the domain 2 is then provided by the following recursively defined procedure,

where we again use the notation of Chapter 7:

Given a discretization A = (7, K) consisting of a time step 7 > 0, a spatial discretization
K, an initial density function u° € P5(Q), an initial vector ZA = 0 € 3, and the initial
transport TQ = id. Then define inductively a sequence of vectors Za = (ZQ, 7, - - -), such

that ZX solves

1
Zx = argmin —d(tK[Z],TZ*l) + F(tK[Z],Tzfl) (8.1)
Ze3 K 2T
for n > 1, and set Ty = tx[7X] o T’ . Further denote t} = tx[7}], u} = (T})xu’, and
we write Za = (Z2,7h,---), ta = ({0, th,...), ua = (uQ,uk,...) and Ta = (TQ, TY,...).
The well-posedness of the above scheme is not studied so far, but initial numerical experiments
show that the above minimization procedure seems to be numerically solvable using Newton’s
method. A first comparison with solutions to the one-dimensional scheme of Chapter 5 further-
more indicates that solutions to the above numerical approximation have the same qualitative
behaviour: In Figure 8.1, we plot the evolution to solutions of the scheme in Chapter 5 and to
the scheme described in (8.1), using the initial densities
ul(z) = C1(0.3 + cos'®(wx)) for z € (0,1), and (5.2)
8.2
ud(x) = C5(0.3 + cos'®(ma1) + cos'®(may)) for & = (21,22) € (0,1)%,
respectively. The constants Cy,Cs > 0 are chosen such that the initial densities have unit
mass. This first experiment motivates that the analysis of the scheme in (8.1) appears to be an

interesting issue for future researches.
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FIGURE 8.1. Solutions to the scheme in Chapter 5 (left) and to the scheme
in (8.1) (right) using the initial densities in (8.2) and evaluated at ¢t =
0,1075,107%,107%. The plots on the right-hand side are cutted to improve the
visibility.






Appendix

A.1. General results from the literature

In this first section of the Appendix, we want to list some useful results from the literature which
are crucial for the convergence analysis of our numerical schemes in one spatial dimension.

First of all, we state one of many possible formulations of the well-known Arzela-Ascoli
Theorem.

Theorem A.1 (Arzela-Ascoli Theorem). Let Q = (a,b) be a bounded interval or Q = R.
Further let [t,t] < [0, +00) be a compact time interval, let KK = P5(S2) be a sequentially compact
set with respect to the L*-Wasserstein distance, and uy, : [t,t] — P5(Q) be curves such that

up(t) e K for any ke N, t € [t,1],
Wa(ug(s), up(t)) < Clt — s|'/2  for any s,t € [t,], uniformly in k.

Then there exists a subsequence k' of k and a limit curve u € CV2([t,t]; P5(Q)), such that
ugr — u uniformly with respect to t € [t,t] as k' — oo.

Proof. The claim of this theorem is a special case of [AGS05, Proposition 3.3.1]. O
The next result is about the convergence of non-increasing functions.

Theorem A.2 (Helly’s Theorem). Suppose (¢n);c_ to be a sequence of non-increasing func-
tions, such that @y : [0,T] — [—00, +00] for any T > 0. Then there exist a subsequence (¢n)n_g
and a non-increasing function ¢ : [0,T] — [—0, +0] such that @,/ (t) — @(t) for any t € [0,T]

as n' — .
Proof. See [AGS05, Lemma 3.3.3] O
Finally, let us formulate the following discrete Gronwall Lemma.

Lemma A.3 (Discrete Gronwall Lemma). Let g, € [0,+20), n =0,..., N, such that

n—1 n—1
Qn<QO+26k+Zquk forany n=1,...,N,
k=0 k=0

where Ly € (0,40) and e € R for k=0,...,N —1. Then

n—1 n—1
an < (qo + 2 €k)eXp(Z L) forany n=1,...,N.
k=0 k=0

Proof. A proof of this statement easily follows by induction. O
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A.2. Some technical lemmas for the one-dimensional case

In the last section of the Appendix, some technical results are provided.

Lemma A.4 (Gargliardo-Nirenberg inequality). For each interval 2 € R and f € H'(Q),
one has that

[ Flevsy < O/2 P12 o) 1 F 1 oy (A.1)

Proof. Assume first that f > 0. Then, for arbitrary = < y, x,y € 2, the fundamental theorem
of calculus and Holder’s inequality imply that

3
[F@)*? = )| < 5 j - f@PI @)z < Sle =y 1o e
Since f = 0, we can further estimate

F(@) = F@) < | F @) = F@)27° < (3/2)2P) =y Vo1 F oy L F 310 -

This shows (A.1) for nonnegative functions f. A general f can be written in the form f = f, —f_,

where f1 > 0. By the triangle inequality, and since || f+ [ g1 0y < [ flm1 ()

1/3 1 3
[Flenssiay < IF+lovs@y + 1F-lovsy < 23/2)%2 | Fl gy | Fl
This proves the claim. O

For the forthcoming lemmata, we use the notation as introduced in Section 2.2 about the
spatial discretization. Therefore let us fix in the following a spatial decomposition & of the mass
domain M and denote by r¢ the set of Lagrangian vectors with entries in {2, which can be
bounded or equal to R. Furthermore, take a norm |- | ¢ as mentioned in Subsection 2.2.2 which
is induced by one of the matrices Wq or dI (in case of an equidistant mass decomposition), both
satisfying (2.24).

Lemma A.5. Take a functional E : x¢ — R and fix any X € ¢ and 7 > 0. Furthermore, assume
that

L
2% I¥

attains a (not necessarily unique) minimizer for any o € (0, 7], which we denote by X,. Further-

7 Ea(0,7,%) with Ea(0,¥,%) = — %+ £(F)

more, denote by

(e
|0cE| (%) = limsup (BR
Vere:y—x

the discrete local slope |0¢E| of E at X.
Then for any o € (0, 7], the following points are satisfied:

e Discrete slope estimate: The discrete local slope |0¢E| (X) fulfills

1% — %]
. .

|0¢E| (X5) < (A.2)
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e The map 0 — Ea(0,%X,,X) is Lipschitz-continuous and

%o —=le (7 1% — = , .
T€ + L TS dr = E(X) — E(XU). (A3)

Proof. The following proof uses the same techniques as applied to Lemma 3.1.3 and Theorem
3.1.4 in [AGSO05]. By definition of X, one achieves

<o (I~ 512 - 1%, - %2)

2% £ 3
Lo o o o e = . o

= 55 X = ¥le = 1% = Xl¢) (IX = Fl¢ + 1%> — %)

< g _ ¢ X— X, — X

< 5 %0 = 7l (1% = 7l + I — )
for any ¥ € r¢, where we used the triangle inequality in the last step. Divide both sides by
%> — ¥l¢, then one attains the desired inequality since
[% — ¢

06B| (%) < tmsup o (1%~ Flg + %o — %le) =~

yerg:y—%o
To derive the Lipschitz-continuity of 0 — Ea(0,%,,X), take any two 09,01 € (0,7], 09 < 071,
then Ea(00,Xs,,X) < Ea(00,%,,,X) yields

01 — 0

EA(UOaxooa ) EA(GI7X011 ) EA(O_(]aXO'p ) EA(O’l,Xgl,X): Hxa'l_X

20001

Analogously one gets Ea (00, X5y, X) — Ea(01,%5,,%X) > $5-20 %5, — >ZH£ and further

L g, - 52 < DalowFon®) “Ba(on 8,9 L

o1 — 09 = 20001 %1 XH€

20001
This yields the local Lipschitz continuity and passing to the limit as oy 1 ¢ and o7 | o for any

€ (0, 7], we obtain

d LR =g
Qo PR X = m T
Equation (A.3) then follows by integration. O

Lemma A.6. For each p > 1 and X € r¢ with 7 = z¢[X], one has that
K} p
2 (2) = g~y < ox - ) (A1)
/@EH%Q HGH}</2
Proof. The first equality is simply the definition (2.18) of z,. Since one has trivially that

1/2 . .
1 — 2,1 < xi — 2o for each HZGHIé , and since p — 1 = 0, one attains
2

,ﬁ_,
2 (:CnJr% - xnfé)p < (liK - xo)p—l Z (‘Tn+l - xnfé) = (:CK - xo)p' 0

2
HEH}(/? /{GH%Q

Lemma A.7 (Lower bound on Boltzmann entropy). For each X € t¢, one has that

. 2¢/m Lo\ /2
HE > -2 (4 1s3)
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where H : xg — R is the restriction of the Boltzmann entropy H(u SQ uln(u) dx to re, i.e.

J X] In(ug[x]) da.

Proof. This statement is trivial if Q = (a,b) is a bounded domain, due to the convexity of

s +— sln(s) and Jensen’s inequality:

Hw) = b~a) Lumubc?a > (b-a) (fgubci$a> 8 <Lzub(ima> M In (b]\f )

This especially implies the boundedness of the restriction. Hence let us assume that Q@ = R

and let u € P5(2) be a nonnegative density of mass M with finite second moment. Since

—slogs < 2e~1s'/2 for all s > 0, one obtains

*j ulnud:z:gf Vudz
Q € Ja

1/2 1/2 1/2
< 2 <j dxg) <f 1+ SCQ)de> = 2ym (M —I—J xzudm> .
& QO 1+ QO (& [¢)

In particular, this inequality is fulfilled for u = ug[X] with Lagrangian map X¢[x]:

CH(E) < 2*? (M+J Xe[ dg)lﬂ_

Observing that
[ xelsag - waz 0 <

the claim follows. O
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