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Abstract

In this dissertation we analyze and simplify wave functions and
observables in the context of quantum molecular dynamics. The two
main topics we discuss are the structure of Hagedorn wave packets
in position and phase space, and semiclassical approximations for
the propagation of quantum expectations with nonnegative phase
space densities. We provide algorithmic discretizations for these
approximations and illustrate their validity and applicability by
means of numerical experiments.

Zusammenfassung

In dieser Dissertation analysieren und vereinfachen wir Wellen-
funktionen und Observablen im Kontext der molekularen Quan-
tendynamik. Die zwei zentralen, von uns diskutierten Themen
sind die Struktur der Hagedornschen Wellenpakete im Orts- und
Phasenraum sowie semiklassische Approximationen für die Evolu-
tion von Erwartungswerten mit nichtnegativen Phasenraumdichten.
Wir präsentieren algorithmische Diskretisierungen für diese Ap-
proximationen und illustrieren deren Anwendbarkeit anhand von
numerischen Experimenten.
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Introduction

“The underlying physical laws necessary for the
mathematical theory of large parts of physics and the
whole of chemistry are thus completely known, and the
difficulty is only that the exact application of these laws
leads to equations much too complex to be solved. It
therefore becomes desirable that approximate practical
methods of applying quantum mechanics should be de-
veloped, which can lead to an explanation of the main
features of complex atomic systems without too much
computation.”

Paul A. M. Dirac in [Dir29]

As the above quotation of Dirac from 1929 shows, scientists
were already very aware of the immense complexity of quantum
mechanical systems well before the advent of computers and the
corresponding possibility to run numerical simulations. Since those
very first days of modern quantum mechanics, constructing approx-
imations that can be used for simulating the dynamics of actual
molecules is one of the prevailing aims of chemical physics, com-
putational chemistry, and mathematical quantum dynamics.

The central equation of quantum molecular dynamics in the Born-
Oppenheimer approximation is the time-dependent semiclassical
Schrödinger equation

iε∂tψ
ε(t) =

(
− ε2

2 ∆ + V
)

ψε(t), ψε(0) = ψε
0 ∈ L2(Rd).
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Introduction

It governs the evolution of a wave function ψε(t) that represents
the state of the molecule’s nuclei on the potential energy surface
V : Rd → R. The small parameter 0 < ε� 1 arises due to the fact
that nuclei are heavy in comparison with electrons, and causes solu-
tions ψε(t) : Rd → C to be highly oscillatory in both space and time.
This property, together with the high dimensionality of the nuclear
configuration space Rd, imposes severe difficulties for computa-
tions, and makes it clear that the semiclassical Schrödinger equation
is in general “too complex to be solved”. If one even wants to simu-
late realistic model systems “without too much computation”, the
development of powerful approximations is indispensable.

The central aim of this thesis is to pursue and interrelate two lines
of simplifications for molecular quantum systems in the spirit of
the agenda suggested by Dirac.

Firstly, we investigate the structure of Hagedorn wave packets
in position and phase space by making a detailed analysis of their
polynomial prefactors. The Hagedorn wave packets form a particu-
larly simple yet versatile class of highly localized wave functions.
They have proven to be well-suited for the semiclassical analysis
of quantum systems as well as for the construction of numerical
methods for the time-dependent Schrödinger equation. Our main
contribution to the analysis of Hagedorn wave packets is to show
that their phase space representation via Wigner functions is natural
in the sense that it again yields a Hagedorn wave packet in doubled
dimension. Moreover, we are able to provide an explanation for
the uniform factorization of their Wigner functions in phase space,
which has recently been discovered.

Secondly, we discuss various semiclassical approximations for
the quantum evolution of expectation values and wave functions.
Our focus lies on approximate methods for quantum expectations
that simultaneously allow for both rigorous error estimates and ap-
plicable algorithmic discretizations. We present novel phase space
methods for the computation of quantum expectations that utilize
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Quantum Dynamics on Potential Energy Surfaces

smooth probability densities for the representation of the initial
state. One of the main approaches we would like to promote with
this thesis is the simultaneous semiclassical approximation of states
and observables. An example for this beneficial combination of
approximations is provided by our proof of a local Egorov theorem
for long Ehrenfest times.

The two main themes of this dissertation are supported and
enframed by a number of side stages. For instance, we present a
rigorous proof for the Hellmann-Feynman theorem which is widely
applied in chemistry in order to compute gradients of potential
energy surfaces. Evaluating these gradients, in turn, is necessary for
the computation of the classical trajectories utilized by semiclassical
approximations.

Outline of the dissertation

The main corpus of the dissertation consists of 17 chapters that are
arranged into four parts. Many of the chapters come along with
their own introductory remarks that include a placement of their
contents within the literature.

The first part §I is dedicated to a review and exploration of the
foundations of molecular quantum dynamics and potential energy
surfaces. It motivates the investigations in the subsequent parts of
this dissertation. In the first two chapters we review the general
ideas and concepts of quantum systems, Hamiltonian dynamics,
and the Born-Oppenheimer approximation. Afterwards, in chap-
ter §3, we discuss various properties of potential energy surfaces,
like Lipschitz estimates and the diabatization problem. The topic
of §4 is a proof of the Hellmann-Feynman theorem for Coulomb
systems, and in the last chapter §5 we recall the basics of Weyl
calculus.

Part §II contains our analysis of general Hagedorn wave packets.
The preparatory chapter §6 presents ladder operators, generating
functions, and tensor product expansions for a class of generalized
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Introduction

multidimensional Hermite polynomials. In chapter §7 and §8 these
polynomials are used for the analysis of Hagedorn wave packets in
position and phase space, respectively. After a short detour, in §10
we discuss anti-Wick operators and spectrograms, and derive a
spectrogram expansion for Wigner transforms.

In the third part of this thesis we deal with semiclassical approxi-
mations for the propagation of quantum observables, expectation
values, and wave packets. The chapters §11 and §12 present various
approximative methods for the propagation of quantum expec-
tations. Afterwards, in §13 review the semiclassical evolution of
Hagedorn wave packets. The last chapters §14 and §15 of the third
part are dedicated to a study of the long time evolution of wave
packets on stable orbits of the classical flow. As an application we
present a proof for a local Egorov theorem.

Finally, the last part §IV discusses discretizations and numer-
ical experiments for the approximative methods for propagated
quantum expectations that have been presented in the third part.

The first two parts §A and §B of the appendix contain a list of
the used notation, and a short summary of symbol classes for Weyl
quantized operators, respectively. In appendix §E we comment on
the generation of numerical reference solutions, and the remaining
parts of the appendix comprise technical details we omitted for
readability.

The main results

The main new results of this dissertation are the Wigner-Hagedorn
formula from Theorem 3 and the spectrogram expansion of Wigner
transforms from Theorem 4, together with its application to the
propagation of expectation values in Theorem 5. Other results,
which might be of interest, include the rigorous Hellmann-Feynman
Theorem 1 for Coulomb systems, the tensor product expansion the-
orem for Hagedorn wave packets from Theorem 2, the second order
Egorov Theorem 6 for anti-Wick operators, and the local Egorov
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Quantum Dynamics on Potential Energy Surfaces

approximation for long Ehrenfest time scales from Theorem 7.
Most of the results in the chapters §6, §7 and §8 have been ob-

tained together with H. Dietert and S. Troppmann, and can be found
in our preprint [DKT15]. The results in section §12.3 are taken from
our joint publication with C. Lasser [KL13]. We only sketch their
derivation since in a similar form they already appeared in our
Master’s thesis [Kel12]. The example presented in §16.4 as well as
the numerical experiments illustrated in Figure 5 can also be found
in our joint article [KL14] with C. Lasser. Furthermore, the first
parts of Proposition 20 and Theorem 4, respectively, and the approx-
imation with spectrogram densities from §12.2 are joint work with
C. Lasser and T. Ohsawa, and can be found in the preprint [KLO15].
From there we also adopted some of the numerical experiments
in §17.

The primary sources we frequently consulted during our day-to-
day work on this dissertation are the paper [BR02] of A. Bouzouina
and D. Robert on the Egorov theorem, the book of Ch. Lubich
on molecular dynamics [Lub08], the classical monograph of T.
Kato [Kat95], and M. Zworski’s comprehensive introduction to
semiclassical analysis [Zwo12].

Lemmata, Propositions, Theorems

Since we do not follow the usual conventions, let us shortly com-
ment on the terminology we use in this dissertation for presenting
mathematical results. For the sake of clarity we use the following
classification: All the statements in this thesis that are either new,
or come with a new proof, are called ‘Propositions’ or ‘Theorems’,
while the latter denotation is reserved for the central results we
listed above. If we employ or annotate results of other authors, we
use the designation ‘Lemma’. This terminology is also used for
important results that deservedly are referred to as Theorems in
the original reference or in the mathematical community.
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I
Foundations

“ The appropriateness of the language of mathe-
matics for the formulation of the laws of physics is a
wonderful gift which we neither understand nor de-
serve.”

Eugene P. Wigner in [Wig60]

1 Quantum Systems

The theory of quantum mechanics is at the very basis of modern
molecular physics and chemistry. Its origins can be traced back
to Boltzmann’s suggestion that the energy levels of a physical
system might be discrete, and Planck’s subsequent hypothesis of
quantized energy emission in the the black-body radiation problem.
After the concept of wave-particle duality has been extended to
matter, the “old quantum theory” – with Einstein’s explanation
of the photoelectric effect and Bohr’s model of atoms – evolved
into the modern theory of quantum mechanics, first postulated in
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I. Foundations

the seminal works of Heisenberg, Schrödinger, Born and Jordan in
1925 and 1926. The theory of quantum mechnics as well as their
elaboration by von Neumann, Pauli, Dirac, Weyl, Wigner and many
other great scientists did not only revolutionize our understanding
of matter and radiation, but also initiated and accelerated the
development of various fields of mathematics.

In this chapter we recall the basic concepts of mathematical quan-
tum dynamics, and present the fundamental model for the quantum
mechanical description of nonrelativistic molecules.

1.1 States, Observables, Dynamics

In quantum mechanics, the state of a physical system is described
by a vector of unit norm in a separable complex Hilbert space1.
The elements of H are called state vectors. It is a fundamental
postulate of quantum mechanics, see [Dir30], that two normalized
state vectors ψ, φ ∈H represent the same physical state if and only
if they coincide up to a global phase, that is,

ψ = eiαφ

for some α ∈ R. In other words, the physical state associated
with some ψ ∈ H can be identified with the rank one orthogonal
projector |ψ〉〈ψ| on the span of ψ. The state vector ψ itself, however,
is commonly believed not to have a direct physical interpretation.
If the Hilbert space is a space of functions, state vectors are usually
called wave functions.

Remark 1. In statistical physics, projectors |ψ〉〈ψ| with ψ ∈ H are
called pure states. The more general mixed states are defined as nonneg-
ative trace class operators ρ : H →H which satisfy

trH (ρ) = 1.

Mixed states appear as ensembles in quantum statistical mechanics.
1In this thesis we choose all inner products to be left-linear.
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1. Quantum Systems

Quantum mechanical observables are selfadjoint linear operators
on the Hilbert space H . For an observable A and a pure state
|ψ〉〈ψ|, with some normalized ψ ∈H ,

〈ψ, Aψ〉H = trH (A|ψ〉〈ψ|) =: 〈A〉ψ

is called the expectation value of A in the state2 |ψ〉〈ψ|. From a
physical point of view, 〈A〉ψ is the expected measurement result
of the physical quantity represented by A if the system has been
prepared in the state |ψ〉〈ψ|.

According to Born’s probabilistic interpretation of wave func-
tions [Bor26], the probability for obtaining a result in Ω ⊂ R, when
measuring the observable A in the state |ψ〉〈ψ|, is given by

〈ψ, PA(Ω)ψ〉H , (1.1)

where PA is the unique projection-valued measure associated with
the selfadjoint operator A. Hence, 〈A〉ψ can be interpreted as an
expectation value in the usual sense of probability theory.

An observable H that describes the total energy of a physical sys-
tem is called the Hamiltonian of that system. Typically, it describes
the kinetic energy as well as all relevant external and internal forces
acting on the system. Starting from an initial state vector ψ(0) = ψ0,
the evolution t 7→ ψ(t) under a Hamiltonian H is governed by the
time-dependent Schrödinger equation

ih̄∂tψ(t) = Hψ(t) , ψ(0) = ψ0, (1.2)

where h̄ is the reduced Planck constant. If not stated otherwise,
from now on we will only consider time independent Hamiltonians
in order to facilitate a simpler presentation. We are aware of the fact
that this simplification might not be adequate to many important
physical situations.

2Expectation values are obviously invariant under a global change of phase
ψ 7→ eiαψ in the state vector.
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I. Foundations

Stone’s Theorem implies that the unique solution of (1.2) is given
by the strongly continuous one-parameter unitary group generated
by H,

ψ(t) = e−iHt/h̄ψ0, (1.3)

which gives the so-called Schrödinger picture of quantum dynamics.
By the Stone-von Neumann theorem it is physically equivalent to
the Heisenberg picture, which describes the “matrix mechanics” of

A(t) := eiHt/h̄ A0e−iHt/h̄.

for some observable A0. If A0 is time-independent, the evolution of
A(t) is governed by Heisenberg’s equation

∂t A(t) = i
h̄ [H, A(t)], A(0) = A0, (1.4)

where [X, Y] = XY−YX denotes the commutator of X and Y. We
have

〈A0〉ψ(t) = 〈A(t)〉ψ0
,

and, by (1.4), the expectation values of an observable A are con-
served quantities of a quantum system with Hamiltonian H if and
only if A commutes with H. In particular, the norm ‖ψ(t)‖H and
the expected total energy3 〈H〉ψ(t) are preserved for all times.

Suppose that φ ∈H is a normalized eigenvector of H belonging
to the energy level E, that is, φ solves the stationary Schrödinger
equation

Hφ = Eφ.

Then, φ is invariant under time evolution up to a global phase,

e−iHt/h̄φ = e−iEt/h̄φ,

and, for this reason, |φ〉〈φ| is called a stable state or eigenstate
of the system. Often we use the same term for the eigenvector
φ. If H is finite dimensional, the spectral theorem implies the

3If H is time dependent, this conclusion fails.
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1. Quantum Systems

existence of an orthonormal basis consisting of stable states only.
In infinite dimensional Hilbert spaces, however, the spectrum of
an Hamiltonian might contain no eigenvalues at all, in which case
there are no stable states.

1.2 Particle Systems

The appropriate Hilbert space for a single nonrelativistic quantum
particle moving in R3 is given by the function space L2(R3, C2S+1),
where S denotes the spin of the particle type. The pointwise norm
squared |ψ|2 of a normalized wave function ψ ∈ L2(R3, C2S+1) then
is a probability density on R3, such that, in accordance with Born’s
rule (1.1), the integral ∫

Ω
|ψ(x)|2dx

gives the probability of finding the particle within the region Ω ⊂
R3.

If one considers a system of N indistinguishable particles, one
has to guarantee that the outcome of measurements does not de-
pend on the labeling of the particles. This requirement leads to
Pauli’s principle which asserts that the common wave function of
the particles must be either symmetric or antisymmetric under the
exchange of any two of the particles. By the spin-statistics theorem,
particles with half-integer spin, so-called fermions, have antisym-
metric wave functions while Bosons have symmetric wave functions
and integer spin. As a consequence, the fermionic and bosonic
N-particle Hilbert spaces are given by the antisymmetrization or
symmetrization of the nth tensor power of the one-particle space,
respectively.

The focus of this work lies on the dynamics of the nuclei in a
molecule, which are heavy in comparison to electrons. Hence,
nuclear wave functions are typically strongly localized around their
average position and different nuclei repel each other by Coulomb’s
law. Consequently, apart from the high energy regime, the average

13



I. Foundations

positions of any two of the nuclei in a molecular quantum system
will be well-seperated from each other for all times of interest.
In other words, Pauli’s principle can be safely neglected since
the nuclei can be distinguished by their different positions, see
also [Lub08, §I.5.2]. These heuristics justify the common practice to
drop any symmetry or antisymmetry conditions on nuclear wave
functions. We stress that for the much less localized wave functions
of the electrons it is crucial to incorporate the Pauli exclusion
principle in both, theoretical considerations and simulations.

In this work we treat neither the physical effects of nonrelativistic
motion and magnetic fields, nor any corrections from quantum elec-
trodynamics. In other words, the considered model Hamiltonians
will not include any type of spin-orbit coupling. Hence, for our
analysis of effective molecular motion we can ignore the nuclear
spin degrees of freedom.

In summary, for a molecular quantum system with N nuclei and
L electrons we arrive at the model Hilbert space

Hmol := L2(R3N , Hel) ∼= L2(R3N)⊗Hel, (1.5)

which is the tensor product of the nuclear Hilbert space L2(R3N)
and the electronic Hilbert space

Hel ⊂
L⊗

j=1

L2(R3, C2)

consisting of antisymmetric wave functions. Throughout this thesis
we use atomic units for all physical quantities and equations. In
these units the reduced Planck constant h̄, the elementary charge e,
and the electronic mass me all equal unity.

1.3 The Molecular Hamiltonian

We consider a molecule consisting of L electrons with the positions
x = (x1, . . . , xL) ∈ R3L, and N nuclei with the positions X =

14



1. Quantum Systems

(X1, . . . , XN) ∈ R3N . The mass and charge of the jth nucleus are
denoted by mj and Zj > 0, respectively, and we choose the space
Hmol from (1.5) as the system’s Hilbert space.

If the electrostatic interactions between the particles are modeled
by the Coulomb force and there are no external forces and elec-
tromagnetic fields, the nonrelativistic molecular Hamiltonian in
atomic units is given by the Schrödinger operator

Hmol =
L

∑
j=1
− 1

2 ∆xj +
N

∑
k=1
− 1

2mk
∆Xk + ∑

j<k
|xk − xj|−1

−
L

∑
j=1

N

∑
k=1
Zk|xj − Xk|−1 + ∑

j<k
ZjZk|Xk − Xj|−1

= Tel + Tnuc + Vee(x) + Vne(X, x) + Vnn(X). (1.6)

The Laplacians Tel and Tnuc are the nonrelativistic kinectic en-
ergy operators for the electrons and the nuclei, respectively. The
potentials Vee, Vnn > 0 generate the electronic and nucleonic re-
pulsions, and Vne < 0 gives the attraction between electrons and
nuclei. By Kato’s theorem [Kat51, Theorem 1], see also [RS75,
Theorem X.16], Hmol can be realized as a selfadjoint operator on
L2(R3N ,

⊗L
j=1 L2(R3, C2)). The selfadjointness as an operator act-

ing on the closed subspace Hmol follows immediately. Conse-
quently, by (1.3), the Cauchy problem

i∂tψ(t) = Hmolψ(t) , ψ(0) = ψ0 ∈Hmol

has the unique solution

ψ(t) = e−iHmoltψ0 ∈Hmol.

The molecular Hamiltonian can also be rewritten as the sum

Hmol = Tnuc + Hel + Vnn, (1.7)

where the fibered operator

Hel =
∫ ⊕

R3N
Hel(X) dX

15



I. Foundations

is known as the electronic Hamiltonian. The fiber operators

Hel(X) = Tel + Vee + Vne(X, •) (1.8)

describe a system of L electrons if the nuclei have been fixed at the
position X ∈ R3N . Therefore, Hel(X) is often called the clamped
nuclei Hamiltonian.

Since the masses mj of the nuclei are large compared to the
electronic mass me, which equals one in atomic units, the effective
motion of the nuclei typically happens on much larger time scales
than the electronic dynamics. This observation leads to the Born-
Oppenheimer approximation, see §2.4.

1.4 Bound States

It is a natural question to ask if a quantum mechanical model
can explain the stability of many molecules that is observed in
reality. In this context, the issue of “stability of matter” is twofold.
Firstly, in stable atoms the electrons are bound to the nucleus, and
a stable molecule consists of a number of stable atoms that are
bound to each other for long times. Secondly, the electrons do not
collide with the nuclei, despite of their mutual attraction. From
a mathematical viewpoint this corresponds to showing that the
system’s Hamiltonian is bounded from below, and the infimum of
its spectrum gives rise to a stable state.

Many quantum dynamical models — like the molecular Coulomb
Hamiltonian Hmol from (1.6) — have the above stability properties,
see also [LS10] for a compilation of various results. It is a well-
known fact that the spectrum of Hmol is of the form

σ (Hmol) = {α0 ≤ α1 ≤ . . .}∪̇[Σ, ∞),

where the infimum of the essential spectrum Σ can be interpreted as
the minimal energy required to break the molecule into two pieces4.

4This statement paraphrases the HVZ theorem.
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1. Quantum Systems

The eigenvalues α0 ≤ α1 ≤ . . . (counted with their multiplicities)
below the essential spectrum of Hmol are called bound state energies,
and the corresponding eigenstates are known as bound states since
they represent stable configurations of the bound molecule.

The molecular system described by the clamped nuclei Hamil-
tonian (1.8) is stable as well. Its spectrum as an operator on the
electronic fiber Hel is of the form

σ (Hel(X)) = {E0(X) ≤ E1(X) ≤ . . .}∪̇[Σ(X), ∞), (1.9)

with a finite or countable number of bound state energies Ek(X)
below the essential spectrum, and Σ(X) as their only possible
accumulation point. If Hel(X) has at least k bound states, Ek(X) is
given by the kth minimax value

λk(X) = inf
V⊂Hel

dim V=k

sup
ψ∈Hel
‖ψ‖=1

〈ψ, Hel(X)ψ〉Hel
, (1.10)

by invoking Courant’s minimax principle, and otherwise one has
λk(X) = Σ(X). In chemistry the parametrized bound state ener-
gies X 7→ Ek(X) are known as potential energy surfaces (PES). They
appear as effective potentials for the nuclear motion in the Born-
Oppenheimer approximation, see §2.4 and §3.

Evaluating PES numerically by approximately solving the elec-
tronic structure problem

Hel(X)ηj(•, X) = Ej(X)ηj(•, X), ηj(•, X) ∈Hel \ {0}, (1.11)

is the central challenge of quantum chemistry. For the semiclassical
approximations and algorithms presented in this work, however,
we will always assume that the relevant PES can be evaluated with
sufficient accuracy. There is also a wealth of heuristic models and
formulas for the PES in different molecules.
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I. Foundations

2 Hamiltonian

Dynamics

The unitary group (1.3) that solves the time-dependent Schrödinger
equation is a prominent example for the flow of a Hamiltonian sys-
tem. A great variety of dynamical systems allow for a Hamiltonian
formulation, including, for example, nonlinear partial differential
equations like the nonlinear Schrödinger and Korteweg-de Vries
equations, see [HZ07] and [MR99, §3.2]. In this chapter we refor-
mulate both Schrödinger’s equation and the equations of classical
mechanics in the language of Hamiltonian systems. Moreover,
we introduce the Born-Oppenheimer approximation as a subspace
reduction of the full quantum molecular dynamics.

2.1 Abstract Formulation

A smooth manifold M is called symplectic if there is a non-degenerate
closed two-form ω on M. In this case ω is called a symplectic form.
Hamiltonian systems consist of a symplectic manifold (M, ω) and
a Hamiltonian vector field ΞH defined by

ω(•, ΞH) = dH, (2.1)

where H : M → R is a Hamilton function of sufficient regularity.
The integral curves t 7→ z(t) of ΞH satisfy Hamilton’s equation

∂tz(t) = ΞH(z(t)), (2.2)

and constitute the Hamiltonian flow associated with H. Symplec-
tomorphisms (or canonical transformations) are diffeomorphisms
f : M→ M which preserve the symplectic form ω, that is5,

f ∗ω = ω.
5 f ∗ω denotes the pullback of the differential form ω by means of the function f ,

see [MR99, §5.2].
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2. Hamiltonian Dynamics

One can prove that the flow of a vector field X on M consists of
symplectomorphisms if and only if X is a Hamiltonian vector field.

Suppose that XA and XH are Hamiltonian vector fields on (M, ω).
Then, the Poisson bracket {H, A} of A and H is defined as

{A, H} := ω(XA, XH). (2.3)

It determines the evolution of A along the Hamiltonian flow {Φt}t∈R

of H, since
∂t(A ◦Φt) = {H, A} ◦Φt, (2.4)

see [MR99, Proposition 2.7.6]. Consequently, A is constant along
integral curves of ΞH if and only if H and A are in involution,
which means that {H, A} = 0. For comprehensive presentations of
Hamiltonian systems, we refer to the books [AM78, MR99].

2.2 Schrödinger Evolution

Given a complex Hilbert space H , it becomes a symplectic vector
space with the symplectic form

ω(ψ, φ) = −2h̄Im 〈ψ, φ〉H ,

see [MR99, §2.2]. Moreover, if H is a densely defined selfadjoint
operator on H , the energy expectation value

h(ψ) = 〈H〉ψ

defines a Hamilton function6 on the form domain of H. Hamilton’s
equation (2.2) for the energy function h then reads

ih̄∂tψ(t) = Hψ(t),

6 Even if h is not defined on all of H , it still yields a well-defined infinite
dimensional Hamiltonian system, compare [AM78, Definition 5.5.2].
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which we recognize as Schrödinger’s equation (1.2), and the Hamil-
tonian flow associated with h is given by the unitary group gener-
ated by H. In other words, the Schrödinger equation describes a
Hamiltonian system. Let us consider the expectation value

a(ψ) = 〈A〉ψ

of some quantum observable A. Whenever the commutator [H, A]
makes sense, the Poisson bracket (2.3) of h and a is given by

{h, a}(ψ) = 〈[H, A]〉ψ ,

and, hence, (2.4) yields precisely the Heisenberg evolution (1.4) of
expectation values.

Before constructing approximation methods for simulations, it
is often necessary to first simplify the typically large Hilbert space
H of the quantum system. One way of doing this is to constrain
the states to a symplectic submanifold M ⊂ H . This is for in-
stance done in widely applied model reductions like the Born-
Oppenheimer approximation, Gaussian wave packet dynamics,
or time-dependent Hartree-Fock methods. The dynamics on the
submanifold M is then governed by the constrained Hamiltonian
system

ω �M (•, Ξh�M ) = dh �M . (2.5)

The approximative dynamics generated by (2.5) is optimal in the
sense that Ξh�M is the least square approximation of Ξh among all
vector fields on M, see e.g. [Lub08, §II.1.2] or [OL13, Proposition
2.4]. The variational formulation of this symplectic reduction pro-
cedure is known as the Dirac-Frenkel variational principle. It was
used for the first time in [Dir30] in order to derive the equations
for the time-dependent Hartree-Fock method. For more details and
instructive examples we refer to [Lub08, §II], [OL13], and [HZ07].
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2.3 Classical Mechanics

Let us consider Rd as the configuration space of a classical mechan-
ical system. For example, a system of N classical point particles
moving in R3 has the position configuration space R3N . The cotan-
gent bundle T∗Rd ∼= R2d is called the momentum phase space of
classical mechanics. For a phase space vector z = (q, p) ∈ R2d, q
and p are called the position and momentum, respectively.

The phase space R2d is a symplectic manifold with the canonical
symplectic form

Ω ((x, ξ), (q, p)) = ξTq− xT p, (2.6)

which one can also rewrite by means of the antisymmetric bilinear
form

Ω(z, w) = 〈Jz, w〉 with J =
(

0 Id
−Id 0

)
. (2.7)

The symplectic group Sp(R, d) constists of those invertible matrices
S ∈ R2d×2d, for which z 7→ Sz is a linear symplectomorphism. This
is equivalent to the condition that S satisfies

ST JS = J.

In §7.1 we recall more concepts of symplectic linear algebra.
Let h : R2d → R be a Hamilton function. Then, Hamilton’s

equation for h reads

∂tz(t) = J∇h(z(t)), (2.8)

and the Hamiltonian flow Φt : R2d → R2d of (2.8) is a canonical
transformation, that is,(

DΦt(z)
)T JDΦt(z) = J (2.9)

for all t ∈ R and z ∈ R2d. The observables of classical mechanics
are smooth functions a : R2d → R, and the Poisson bracket (2.3) of
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two observables a, b is given by

{a, b}(z) = 〈J∇a(z),∇b(z)〉 . (2.10)

The evolution (2.4) of a along the Hamiltonian flow Φt of h hence
reads

∂t(a ◦Φt) = {h, a} ◦Φt, (2.11)

which can be seen as a classical analog of Heisenberg’s equa-
tion (1.4). We come back to this viewpoint in chapter §11 for
our presentation of the Egorov theorem.

2.4 Born-Oppenheimer Approximation

The approximation of Born and Oppenheimer [BO27] is the most
fundamental simplification in molecular quantum dynamics. It is
commonly used as the starting point for further theoretical investi-
gations and approximations.

Motivated by the mass difference between nuclei and electrons,
the idea is to implement an adiabatic decoupling of the nuclear
and electronic degrees of freedom in order to derive an effective
Hamiltonian acting on nuclear wave functions only. For most
real life molecules this is an enourmous simplification, since the
nuclear configuration space R3N is significantly smaller than the
full configuration space R3(N+L). First mathematical studies of this
approximation have been conducted by Hagedorn [Hag80, Hag87,
Hag88], and Combes, Duclos, and Seiler [CDS81].

For readability, let us assume that all nuclei in the molecule have
the same mass7 m > 0. Then, the molecular Hamiltonian (1.6) on
L2(R3N , Hel) reads

Hmol = − ε2

2 ∆X + Hel + Vnn,

where Hel(X) has been defined in (1.8), and ε =
√

me/m > 0
is small. In order to clarify the main ideas, in this section we

7If the nuclei are not of the same mass, one can use rescaled coordinates.
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only discuss the first order Born-Oppenheimer approximation for
the electronic ground state E0 of the molecular Coulomb system
from §1.3. We furthermore ignore the electronic spin such that
E0 becomes a simple eigenvalue. Later, in §2.5, we comment on
various possible generalizations.

With the notation from §1.4, let η0(•, X) ∈ Hel be a normalized
eigenfunction associated with the ground state energy E0(X) of
Hel(X), and recall that E0 is globally isolated from the rest of the
electronic spectrum. Then, a well-known regularity result [CS78,
Theorem 2] of Combes and Seiler implies that the orthogonal pro-
jector

P0(X) = |η0(•, X)〉〈η0(•, X)| ∈ L(Hel)

on the one-dimensional eigenspace associated with E0(X) is twice
differentiable in X ∈ R3N . Consequently, the range M of the fibered
projector

P0 =
∫ ⊕

R3N
P0(X)dX ∈ L(Hmol)

has the structure of a twice differentiable complex vector subbundle
of Hmol, with the one-dimensional fibers RangeP0(X) ⊂Hel. Since
R3N is contractible, M is a trivial vector bundle and, hence, the nor-
malized eigenfunction η0(•, X) ∈Hel can be chosen differentiably
in X ∈ R3N .

The bundle M can be mapped isometrically into the less com-
plicated nuclear Hilbert space L2(R3N) by means of the unitary
map

U : M→ L2(R3N),
∫ ⊕

R3N
ψ(X)η0(•, X) dX 7→ ψ(X).

We are interested the dynamics on the simpler space L2(R3N) in-
duced by the restricted dynamics (2.5) on the symplectic submani-
fold M. The effective Hamiltonian on L2(R3N) can be computed to
be

U∗P0HmolP0U = 1
2 (−iε∇− εA)2 + E0 + Vnn + ε2

2 φ, (2.12)
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see for example [PST07, (16)] or [Lub08, §II.2.2]. Here,

A(X) = i 〈η0(•, X),∇Xη0(•, X)〉Hel

is the coefficient of the Berry connection, and

φ(X) = 〈∇Xη0(•, X), (Id− P0(X))∇Xη0(•, X)〉Hel

is the Born-Huang potential. Although A formally plays the role
of an electromagnetic vector potential, the origins of the Berry
connection are purely geometric, see also §3.5 for more details.

One intuitively expects the decoupling between nuclear and elec-
tronic dynamics to become stronger as ε gets small. In fact, one can
prove the propagation result (2.16) with errors of size O(ε) for the
first order Born-Oppenheimer Hamiltonian8

H(1)
BO = 1

2 (−iε∇− εA)2 + E0 + Vnn (2.13)

and initial data Ψ(X, x) = ψ(X)η0(x, X) in M of uniformly bounded
total energy in ε. Moreover, Ψ must be localized away from the
nuclear collision set

C = {X ∈ R3N , ∃i 6= j with Xi = Xj}. (2.14)

That is, there is a compact set

K ⊂⊂ R3N \ C with ‖Ψ‖L2(Kc ,Hel)
= O(ε∞), (2.15)

and by the classical propagation of localization sets, see e.g. [MS09,
Corollary 2.6], the propagated wave function stays localized away
from C for all times. Bounding the energy ensures that the nuclei
move on a slower time scale than the electrons, which is crucial
for an adiabatic decoupling of the dynamics to make sense. Then,

8We omitted the Born-Huang potential since its impact on the dynamics is of size
O(ε) and for a proper second order Born-Oppenheimer approximation one needs to
include another term in the Hamiltonian, see [PST07].
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by [MS09, Theorems 12.1 and 12.2] there is a constant C > 0
independent of ε such that9

‖e−iHmolt/εΨ−U∗e−iH(1)
BOt/εψ‖Hmol

≤ Cε(1 + |t|). (2.16)

Hence, one can approximate quantum molecular dynamics by prop-
agating nuclear wave functions ψ ∈ L2(R3N) only. Afterwards, one
can reconstruct a wave function for the whole system by means of
the map U∗. In practice, however, the semiclassical Schrödinger
equation

iε∂tψ(t) = H(1)
BOψ(t), ψ(0) = ψ0 ∈ L2(R3N), (2.17)

is widely treated as a bona fide model for the dynamics of molecules.
In particular, one often only considers nuclear observables of the
form A⊗ IdHel

, and omits the reconstruction of the full wave func-
tion.

2.5 Higher Order and Multiple Surfaces

The Born-Oppenheimer approximation (2.16) is a very special case
of a general adiabatic decoupling result, see e.g. [MS09, Theorem
7.1], which can be applied to a wide class of quantum mechanical
Hamiltonians, notably for Schrödinger operators with electromag-
netic fields and general interaction potentials, see [ST01, PST07,
MS09]. In this section we briefly indicate some possible general-
izations, where we stick to the molecular Hamiltonian Hmol for
presentation purposes.

For deriving higher order Born-Oppenheimer Hamiltonians H(n)
BO ,

which satisfy the estimate (2.16) with errors of size O(εn), one
constructs a so-called super-adiabatic subspace

Mε = Pε
0Hmol, Pε

0 = P0 + O(ε), (2.18)
9 We use the time rescaling t 7→ t/ε in order to capture the effective time scale of

nuclear motion.
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which is invariant under Hmol up to O(ε∞) errors. With the corre-
sponding unitary map Uε : Mε → L2(R3N) into the nuclear Hilbert
space, Thereom 2.1 from [MS09] implies

e−iHmolt/εΨ = (Uε)∗e−iHεt/εUεΨ + O(ε∞(1 + |t|)) (2.19)

for suitable initial data Ψ ∈ Mε. The Hamiltonian Hε admits an
asymptotic expansion in powers of ε that can be used for deriving
a formula for H(n)

BO .
Suppose that we consider a PES E which is only locally sep-

arated10 from the rest of the electronic spectrum within some
bounded open set Ω ⊂ R3N . Then, one can still define the bundle
Mε analoguously to (2.18), and (2.19) holds as long as the prop-
agated state stays localized within Ω. This localization time can
be estimated by means of the techniques discussed in part §III.
However, often the PES on which the initial state is localized has
crossings with other PES in the region of physical interest. For an
adequate description of the dynamics one consequently has to in-
corporate several electronic energy levels, and allow for transitions
between them.

Suppose Ω ⊂ R3N is bounded and contractible, and there are
` ∈ N relevant PES F1, . . . , F` in Ω, which may have crossings in
between each other but are separated from the rest of the electronic
spectrum. Then, one can again construct a bundle Mε, and a unitary
map Uε : Mε → L2(R3N , C`) into the multi-band reference Hilbert
space L2(R3N , C`), such that (2.19) holds as long as the solution
stays localized in Ω. For multiple PES with crossings, however, this
time is in practice hard to estimate due to the absense of Egorov
type theorems.

Example. Suppose that the two PES F1(X) and F2(X) are spectrally
isolated for all X ∈ R3N . If Γ ⊂ C is a positively oriented countour
enclosing F1(X), F2(X) but no other parts of the spectrum of Hel,

10Except for the ground state E0, one expects this to be the generic case.
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the Riesz projector

P(X) =
1

2πi

∮
Γ
(z− Hel)

−1dz (2.20)

is the rank two orthogonal projector on the direct sum of the
eigenspaces associated with F1(X) and F2(X), see [Kat95, §VI.5.4 ].
Then, by [PST07, (56)],

(
H(1)

BO

)
ij
= 1

2

2

∑
k=1

(−δikiε∇− εAik) ·
(
−δkjiε∇− εAkj

)
+ VnnIdC2 + W,

i, j ∈ {1, 2}, is a first order Born-Oppenheimer Hamiltonian. The
matrix W(X) ∈ C2×2 is defined as

Wij(X) =
〈
χi(•, X), Hel(X)χj(•, X)

〉
(2.21)

for some basis {χ1(•, X), χ2(•, X)} of P(X)Hel, and has the eigen-
values {F1(X), F2(X)}.

Aij(X) = i
〈
χi(•, X),∇Xχj(•, X)

〉
(2.22)

are generalized Berry connection coefficients that couple the dy-
namics on the two energy levels F1 and F2. �

Remark 2 (Smooth coefficients). With the techniques from [KMSW92]
one can show that locally the electronic Hamiltonian Hel(X) is unitary
equivalent to an operator that is smooth in X. As a consequence, there is a
frame {χ1(•, X), χ2(•, X)} of P(X)Hel such that both A(X) and W(X)
are smooth functions of X ∈ Ω, see also [MS09, Remark 12.4] and §3.5.
In particular, as has already been observed by Hunziker in [Hun86], the
PES Ek are real analytic functions away from eigenvalue crossings or
hitting thesholds.
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Since many aspects of interesting chemical reactions can be ex-
plained by non-adiabatic transitions between different electronic
energy levels, quantum dynamics on several PES is a topic of great
importance in chemistry, see [DYK04] for an overview. Systems
with eigenvalue crossings are also an active field of mathematical
research, for further reading and examples we refer to Hagedorn’s
monograph [Hag94], and the research articles [CdV03, FKL03, LT05,
LST07, BDLT15].

3 Potential Energy

Surfaces

How do the eigenvalues of a matrix change if one perturbs the
matrix? The answer to this question plays an important role in a
wide range of mathematical areas, including, for example, numeri-
cal linear algebra and random matrix theory; see [Tao12, §1.3]. In
molecular quantum dynamics this problem appears if one explores
the dependence of potential energy surfaces Ej(X) on the nuclear
configuration X. Understanding the regularity properties of PES is
helpful for the a priori analysis of molecular quantum systems as
well as for simulations.

In the first section of this chapter we recall classical results for
Hermitian matrices. Therafter, we discuss their extension to the
selfadjoint family X 7→ Hel(X) of electronic Coulomb Hamiltonians,
and present Lipschitz estimates for PES.

3.1 Eigenvalues of Hermitian Matrices

For a Hermitian matrix M ∈ Cd×d, let λ1(M) ≤ . . . ≤ λd(M)
denote the ordered eigenvalues, which can be computed via the
Courant-Fischer minimax principle (1.10). In [Wey12] Hermann
Weyl derived the following remarkable stability result for the eigen-
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values of Hermitian matrices. We include a short proof.

Lemma 1 (Weyl inequality). Suppose that A, B ∈ Cd×d are Hermitian
matrices. Then, the ordered eigenvalues of A and B satisfy the inequality

max
1≤j≤d

|λj(A)− λj(B)| ≤ ‖A− B‖L(CN). (3.1)

Proof. We start by recalling the Courant-Fischer minimax principle

λk(A) = inf
V⊂CN

dim V=k

sup
x∈V
‖x‖=1

〈x, Ax〉 .

Then, after writing

〈x, Ax〉 = 〈x, Bx〉+ 〈x, (A− B)x〉 , (3.2)

the assertion follows from the estimate

λj(A) ≤ inf
V⊂CN

dim V=j

sup
x∈V
‖x‖=1

(
〈x, Bx〉+ ‖A− B‖L(CN)

)
≤ λj(B) + ‖A− B‖L(CN).

Lemma 1 implies that the ordered eigenvalues of Hermitian
matrices are uniformly Lipschitz continuous in the matrix. In fact,
for every continuous family of matrices one can choose a numbering
of the eigenvalues such that they become continuous, see [Kat95,
§II.5.1]. However, a Lipschitz estimate of the form (3.1) does not
hold in general since the eigenvalues of non-normal matrices can
be unstable, see the examples in [TE05, §3]. Perturbation theory for
eigenvalues has been extensively studied since the works of Rellich
in the 1930s, and a standard reference is the classic monograph of
Kato [Kat95].

As a next step we turn towards differentiable matrix families.
The following simple result for curves of matrices is known as
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Hadamard’s first variational formula. It relates derivatives of eigen-
values to derivatives of the matrix.

Lemma 2 (Hadamard). Let A : R → Cd×d be a differentiable curve
of Hermitian matrices, and λ(t) a continuous eigenvalue of constant
multiplicity m for t in some open set Ω ⊂ R. Then, λ is differentiable in
Ω and one has

∂tλ(t) = 〈v(t), ∂t A(t)v(t)〉 ,

where v(t) is some normalized eigenvector belonging to λ(t).

Proof. The resolvent z 7→ (z − A(t))−1 is differentiable in t for
z away from the eigenvalues of A(t). Consequently, by Riesz’
formula (2.20), the projector P : Ω → Cd×d on the m-dimensional
eigenspace associated with λ is differentiable as well, and the same
holds true for the eigenvalue

λ(t) = 1
m tr (A(t)P(t)) .

We can choose, at least locally, a differentiable eigenvector

A(t)v(t) = λ(t)v(t), (3.3)

which is normalized. Scalar multiplication of

∂t A(t)v(t) + A(t)∂tv(t) = ∂tλ(t)v(t) + λ(t)∂tv(t),

with v(t)∗ gives

〈v(t), ∂t A(t)v(t)〉 = − 〈v(t), A(t)∂tv(t)〉+ ∂tλ(t)

+ λ(t) 〈v(t), ∂tv(t)〉
= ∂tλ(t),

since A is Hermitian.

In physics and chemistry, the generalization of Lemma 2 to
parametrized electronic ground state energies is known as the
Hellmann-Feynman theorem, which is the central topic of §4.
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3.2 An Operator Inequality

It is our aim to generalize Lemma 1 and Lemma 2 to the bound
state energies Ej of the electronic Coulomb Hamiltonian Hel. The
main ingredient is the following Lipschitz type operator inequality
from [HG80], which immediately implies the Lipschitz continuity
of PES. It is also used in chapter §4 for proving the differentiability
of the clamped nuclei Hamiltonian.

Lemma 3 (Hunziker-Günther). Let H0 = − 1
2 ∆. Then, for all X, Y ∈

R3N we have
Hel(Y)− Hel(X) ≤ ‖X−Y‖ZH0 (3.4)

in the sense of quadratic forms, with the charge rescaled norm ‖v‖Z =
a−1

0 ∑N
k=1 |Zkvk| on R3N .

The proof of Lemma 3 heavily relies on the no-binding criterion
for electronic dipoles by Fermi and Teller [FT47], which can be
phrased as follows. Consider a neutral dipole consisting of two par-
ticles with charges ±Z fixed at X, Y ∈ R3, and the corresponding
Coulomb Hamiltonian

Hdip(X, Y,Z) = − 1
2 ∆ +Z(|x− X|−1 − |x−Y|−1). (3.5)

By [HG80, Theorem 1], there is a critical constant a0 ∈ (1.245, 1.288)
such that the spectrum of Hdip(X, Y,Z) consist only of the interval
[0, ∞) if and only if

|Z(X−Y)| ≤ a0,

see also [RS78, §XIII.11] and [Cra67]. One can then rewrite Hel(Y)−
Hel(X)− H0 as a sum of neutral two-point dipole operators, and
apply the Fermi-Teller theorem. A complete proof is contained
in [HG80].

Together with the relative boundness estimate

〈ψ, H0ψ〉 ≤ γ 〈ψ, Hel(X)ψ〉+ α 〈ψ, ψ〉 , (3.6)
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which holds uniformly in X for some γ, α > 0, Lemma 3 implies
the uniform Lipschitz continuity of PES:

Lemma 4 ([HG80]). For any α, γ > 0 that comply with (3.6), there
is a constant Λ ≤ α such that the Courant minimax values λ1(X) ≤
λ2(X) ≤ . . . of Hel(X) satisfy

λk(X)− λk(Y) ≤ Λ‖X−Y‖Z .

As a consequence, the electronic PES X 7→ Ek(X) are uniformly Lipschitz
continuous.

We remark that Lemma 3 can also be read as a Lipschitz inequality
on the operator level. This will become important in our proof of
the Hellmann-Feynman theorem.

3.3 Electronic Binding Forces

Let us take a closer look at the Lipschitz constant Λ for PES from
Lemma 4. As remarked in [HG80, Remark (iv)], it “...gives an upper
bound for the electronic contribution to the binding forces in a molecule...”.
Hence, from a physical viewpoint it is interesting to estimate the
size of Λ. We present two different bounds for Λ. The first one in
Proposition 1 is derived from a direct estimate, while the second
one in §3.4 is deduced from a stability of matter inequality.

Proposition 1. The Lipschitz constant Λ from Lemma 4 satisfies11

Λ ≤ LN2 |Z|2
8 .

Proof. We start with the crude estimate

Hel(X) ≥
L

∑
k=1

N

∑
j=1

1
N

(
− 1

2 ∆xk −ZjN|xk − Xj|−1
)

. (3.7)

11Recall that L and N are the numbers of electrons and nuclei, respectively, and
Zj > 0 is the charge of the jth nucleus.
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by simply ignoring the positive electron-electron repulsion Vee. The
right hand side of (3.7) is a sum of hydrogen type atoms for which
the ground state energy is given by

inf σ
(
− 1

2 ∆xk −ZjN|xk − Xj|−1
)
= −

Z2
j N2

32 .

Consequently, we have

Hel(X) ≥ −LN2 |Z|2
32 ,

and for any K > 1 one obtains the inequality

KHel(X) ≥ − 1
2 ∆ + (K− 1)

L

∑
k=1

(
− 1

2 ∆xk −
K

K−1

N

∑
j=1
Zj|xk − Xj|−1

)

≥ − 1
2 ∆− K2

K−1 LN2 |Z|2
32 .

The assertion follows from the relative boundedness condition (3.6)
since

− 1
2 ∆ ≤ 2Hel(X) + 4LN2 |Z|2

32 . (3.8)

for the optimal choice K = 2.

Consequently, we note that all electronic PES are globally con-
strained to the interval

Ek(X) ∈
[
−LN2 |Z|2

16 , 0
]

, (3.9)

by invoking (3.8) .

3.4 Lipschitz Estimates via Stability

of Matter

In view of the observed stability of molecules in nature the bound
from Proposition 1 is unsatisfactory since one would expect the
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electronic binding forces to be approximately linear in N and L.
For proving such an physically meaningful bound on Λ one can
use the sophisticated stability bounds which have been derived for
clamped nuclei Hamiltonians.

For a nuclear configuration away from the collision set C, and
α > 0, we define the Hamiltonian

Hα(X) = − 1
2 ∆ + α(Vee + Vne(·, X) + Vnn(X)), X /∈ C,

which in contrast to Hel(X) includes the nuclear repulsion potential
Vnn. The electrostatic coupling constant α is given by e2 ≈ 1/137 if
one looks at the Schrödinger equation in natural units. Since we
use atomic units, the electrostatic coupling constant is 1, and we
gain one additional degree of freedom for our estimates.

One stability of matter estimate obtained via Thomas-Fermi den-
sity functional theory is the following result from [LS10, §7.3].

Lemma 5 (Stability via Thomas-Fermi Theory). For normalized wave
functions ψ ∈ Hel that are in the form domain of Hα(X) one has the
inequality

〈ψ, Hα(X)ψ〉 ≥ −0.231α2L22/3

1 + 1.77

√√√√ 1
L

N

∑
j=1
Z7/3

j

2

,

which holds uniformly in X.

Lemma 5 implies the following bound.

Proposition 2. The uniform Lipschitz constant Λ for electronic PES
from Lemma 4 satisfies

Λ ≤ 1.47

√L + 1.77

√√√√ N

∑
j=1
Z7/3

j

2

=: `(N, L,Z).
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Proof. Assume that X /∈ C, and let K > 1 be an arbitrary parameter.
Then, by Lemma 5,

K · H1(X) ≥ − 1
2 ∆ + (K− 1)H

K
K−1 (X)

≥ − 1
2 ∆− K2

4(K−1) `(N, L,Z)

on the form domain of H1(X). Choosing the optimal value of K as
in the proof of Proposition 1 yields

− 1
2 ∆ ≤ 2H1(X) + `(N, L,Z)

= 2Hel(X) + 2Vnn(X) + `(N, L,Z). (3.10)

Consequently, with the operator family

T(X) := − 1
2 ∆− 2Vnn(X)− `(N, L,Z), X /∈ C,

and γ(X) := 2Vnn(X) + `(N, L,Z), Lemma 3 implies that the in-
equality

Hel(X)− Hel(Y) ≤ ‖X−Y‖Z (T(W) + γ(W)) (3.11)

holds in the sense of quadratic forms for for all X, Y ∈ R3N and
W ∈ R3N \ C. Furthermore, by (3.10) we know that12

1(−∞,δ)(Hel(X))T(W)1(−∞,δ)(Hel(X)) ≤ 2δ. (3.12)

for all W ∈ R3N \ C, X ∈ R3N , and δ > 0. By (3.12), for arbitrary
X ∈ R3N and W /∈ C, the eigenspace associated with the PES Ek(X)
is contained in the set

S = {ψ ∈Hel : 〈ψ, T(W)ψ〉 ≤ 2δ‖ψ‖2}

since Σ(X) ≤ 0. Now, we can mimic the proof of Weyl’s inequality

12The spectral projection 1(−∞,δ)(Hel(X)) is defined via Borel functional calculus.
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from Lemma 1. Starting from (3.2), by using (3.11) we estimate

λk (Hel(X)) = inf
V⊂S

dim V=k

sup
ψ∈V
‖ψ‖=1

〈ψ, (Hel(Y) + (Hel(X)− Hel(Y)))ψ〉

≤ inf
V⊂S

dim V=k

sup
ψ∈V
‖ψ‖=1

〈ψ, Hel(Y)ψ〉+ sup
ψ∈S
‖ψ‖=1

〈ψ, (Hel(X)− Hel(Y))ψ〉

≤ λk(Hel(Y)) + ‖X−Y‖Z

(
sup

ψ∈S,‖ψ‖=1
〈ψ, T(W)ψ〉+ γ(W)

)
.

Inserting the definition of S and taking the infimum over all W
yields

λk (Hel(X))− λk (Hel(Y)) ≤ ‖X−Y‖Z (2δ + `(N, L, Z)), (3.13)

and the assertion follows as δ→ 0.

The bound provided in Proposition 2 is physically more meaning-
ful than the one from Proposition 1, since it scales approximately
linear in the number of electrons L and nuclei N. Nevertheless,
in general this upper bound is far from beeing optimal, and PES
typically have much smaller derivatives.

We note that the same proof works for any stability estimate of the
form given in Lemma 5, in particular for Theorem 7.1 from [LS10]
which provides a bound via the Lieb-Thirring inequality and ex-
change energy estimates.

3.5 Berry Connection

In this section we review some properties of the Berry connection,
which arises naturally in the derivation of the Born-Oppenheimer
approximation, see §2.4.

Suppose that the PES Ej is separated from the rest of the elec-
tronic spectrum within some region Ω ⊂ R3N , and let Pj(X) =
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|ηj(•, X)〉〈ηj(•, X)|, X ∈ Ω, denote the projector on the eigenspace
associated with Ej(X). Then,

S = {(X, ψ) : X ∈ Ω, ψ ∈ Pj(X)Hel} (3.14)

is a complex subbundle of the trivial Hilbert space bundle B =
Ω ×Hel 7→ Ω. The Berry connection is the connection induced
on S by the trivial connection on B, see also the comments before
Proposition 6 in [ST13]. If Ω is simply connected, the vector bundle
S is trivial and the coefficients A can be removed by a gauge
transformation

ηj(•, X) 7→ eiα(X)ηj(•, X).

If Ω is not simply connected, S might not be a trivial bundle any-
more, in which case the Berry connection has a physical impact
and its coefficients cannot be gauged away. The study of geo-
metric phases and the Berry connection started with the works of
Berry [Ber84] and Simon [Sim83].

In the case of multiple PES, the off-diagonal gauge potentials Aij,
i 6= j, defined in (2.22) are responsible for non-adiabatic transitions
between the different electronic energy levels. Assume that Ω ⊂
R3N is simply connected and the relevant PES

{Ek}k∈J , |J | = ` < ∞,

are separated from the rest of the electronic spectrum. From [CS78]
we know that the projector P : Ω→ L(Hel) on the trivial eigenspace
bundle associated with {Ek : Ω → R}k∈J is differentiable, and
hence there is a differentiable global frame

F : X 7→ (χ1(•, X), . . . , χ`(•, X)) .

As commented in Remark 2, for such a frame F one can show that
the generalized Berry coefficients Ajk(X) as well as the potential
matrix W(X) defined in (2.21) are smooth functions of X.
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In chemistry, frames of RangeP are called diabatic bases13 if the
non-adiabatic gauge potentials Ajk are smooth. If there is a diabatic
basis in which all gauge potentials Ajk are equal to zero, this frame
is called a strictly diabatic basis, see [MT82]. A necessary condition
for the existence of such a basis is that the gauge field tensors

ωjk = −i
(
∂jAk − ∂kAj

)
+ [Ak,Aj], j, k ∈ {1, . . . , 3N},

vanish in Ω, see [PST07]. Here, Aj denotes the `× ` matrix of the
jth entries of the gauge vector potentials. The matrix-valued maps
ωjk can be seen as off-diagonal generalizations of the curvature
two-form for the Berry connection.

For an adiabatic basis, which consists of bound states associated
with the PES {Ek(X)}k∈J , the situation is different. In an adiabatic
basis the potential matrix W is diagonal with the entries {Ek}k∈J .
However, an adiabatic frame is usually not differentiable, and Aij
and W are only smooth away from crossing points of different PES.
While W is still uniformly Lipschitz continuous by Corollary (4),
the gauge potentials Aij typically exhibit singularities at points
where two PES Ek, Ej, j 6= k ∈ J cross.

3.6 Diabatization

In most applications one usually only knows the approximate
PES and bound states obtained from ab initio calculations. It is a
formidable problem, which is in general unsolved, to find a basis
which is diabatic or at least “quasidiabatic” in the sense that the
gauge potentials Ajk are not too singular.

Suppose we are in the setting of §3.5, with ` relevant PES and
some given frame F(X) = (χ1(•, X), . . . , χ`(•, X)) for the cor-
responding eigenspace bundle. If the unitary change of basis
T : Ω→ U(`) is differentiable almost everywhere, and A denotes
the generalized Berry coefficients for the frame F, in the frame

13 One can identify F also with a frame of the reference space bundle Ω×C` 7→ Ω.

38



3. Potential Energy Surfaces

X 7→ T(X)F(X) the corresponding connection coefficients B are
given by

B(X) = T(X)∗A(X)T(X) + T∗(X)∇T(X), (3.15)

where both A, and ∇T are interpreted as `× ` matrices with vector-
valued entries.

In the chemical literature there exist various heuristic methods
for constructing quasidiabatic bases. The strategy of [PMCK89] is
to impose the incomplete Lorenz gauge

∇ · Bij = 0 , i, j ∈ {1, . . . , `}, (3.16)

that is, the vector potentials are required to be divergence free. Let
us sketch the mathematical heuristics underlying this choice by
looking at minimizers of the functional14

Φ : C∞
c (Ω, u(`))→ R, (3.17)

Φ(S) = 1
2

∫
Ω
‖e−S(X)B(X)eS(X) +∇S(X)‖2

F dX.

We interpret B(X) and ∇S(X) as matrices in C3N`×`, and use the
Frobenius norm

‖B(X)‖F =
√

tr (B(X)∗B(X)).

Φ has a stationary point at 0 if its Fréchet derivative vanishes, that
is,

Φ(S) = Φ(0) + O(‖S‖2) + O(‖∇S‖2) (3.18)

since the “Lagrangian density” of Φ depends on both S, and ∇S.
A Taylor expansion and integration by parts lead to the condition
that the integral∫

Ω
tr
(
S(x)(∇ · B)(x) + (∇ · B)(x)S(x)

)
dx

14 We identify the Lie algebra u(`) with the space of skew-Hermitian matrices.
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has to vanish for all S. Hence, the Lorenz gauge ∇ · B = 0 is a
necessary condition for the frame that gives the coefficients B to be
a local L2-minimizer in the set of all frames that can be reached by
a smooth gauge transformation T : Ω→ U(`).

Example. Let us revisit Rellich’s celebrated two-level Hamiltonian

Hdia = − ε2

2 ∆ · Id2 +

(
x1 x2
x2 −x1

)
(3.19)

acting on L2(R2, C2), which has been extensively studied in [Las04].
It provides a simple model Hamiltonian for a two-level system
with a conical eigenvalue crossing of codimension two. A frame of
eigenfunctions that is smooth away from 0 is given by

ξ+(r, θ) = eiθ/2
(

cos(θ/2)
sin(θ/2)

)
, (3.20)

ξ−(r, θ) = eiθ/2
(
− sin(θ/2)
cos(θ/2)

)
in polar coordinates (r, θ). As expected, the gradient of these
eigenfunctions diverges at the eigenvalue crossing, and the corre-
sponding diagonalized Hamiltonian reads

Had = 1
2

(
−iε∇ · Id2 +

ε

2|x|2

(
x2
−x1

)
·
(

1 i
−i 1

))2

+

(
|x| 0
0 −|x|

)
.

It is striking that the singular coefficients of Had can be gauged
away. In the notation of (3.15), the frame transformation T from
the adiabatic basis (3.20) into the strictly diabatic basis of (3.19) is
given by

T(r, θ) = eiθ/2
(

cos(θ/2) − sin(θ/2)
sin(θ/2) cos(θ/2)

)
, (3.21)

which satisfies the Lorenz gauge condition. �
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4. Hellmann-Feynman Theory

4 Hellmann-Feynman

Theory

In this chapter we investigate the differentiability of the electronic
Coulomb Hamiltonian Hel(X) in the nuclear coodinates via Lips-
chitz analysis. The application of our findings yields a novel proof
for the Hellmann-Feynman theorem, which is a popular and widely
used formula in chemistry that can be employed for computing
derivatives of PES. A passing mention of this result for diatomic
systems can be found in the work of Combes and Seiler [CS78,
Corollary 2], though without a detailed proof.

For later reference, we introduce the differential quotients

Hs
ξ(X) =

Hel(X + sξ)− Hel(X)

s
, ξ = (ξ1, . . . , ξN) ∈ R3N ,

for s > 0, and denote the formal directional derivatives of Hel(X)
in direction ξ by

dHel(X)[ξ] = −
L

∑
j=1

N

∑
k=1
Zk

ξk · (xj − Xk)

|xj − Xk|3
.

For the Sobolev spaces15 Hm := Hm(R3L, C), m ∈ R, we introduce
the duality brackets

〈·, ·〉m,−m : Hm × H−m → C

as continuous extensions of the inner product 〈·, ·〉 on L2 = L2(R3L),
and note that Hm is a Banach space with the norm

‖ψ‖m = ‖(1− ∆)m/2ψ‖L2 .

15For readability we ignore the spin degrees of freedom, but all assertions and
proofs generalize readily.
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4.1 Extension to the Sobolev Rigging

Since 1/|x|2 is not locally square integrable on R3, the domain
of the multiplication operator dHel(X)[ξ] cannot contain all wave
functions in Hel ∩ H2. Moreover, though the spectral projections
on bound state energies of the electronic Hamiltonian Hel(X) are
locally twice differentiable in X, this does not directly imply a cor-
responding regularity of Hel(X) since it is an unbounded operator.
In order to circumvent this problem, we make use of the Hilbert
space rigging

. . .⊂ H2 ⊂ H1 ⊂ L2 ⊂ H−1⊂ H−2⊂ . . . (4.1)

of Sobolev spaces, and extend Hel(X) to its form domain H1, see
also §2 in [Bor98, Appendix B]. The next Proposition confirms
that this extension is natural for the analysis of differentiability
properties.

Proposition 3. Both Hel(X), and dHel(X)[ξ] extend to operators in
L(H1, H−1).

Proof. For Hel(X) this result is well-known, see [Sim71]. For dHel(X)[ξ]
we can make use of Hardy’s inequality, see e.g. [Sei10],∫

R3

|ψ(x)|2
|x|2 dx ≤ 4

∫
R3
|∇ψ(x)|2|dx (4.2)

which holds for all ψ ∈ H1(R3). Hence, for all ψ ∈ H1(R3) and16

φ ∈ C∞
c,{0}(R

3) we can estimate〈
ψ,

xj

|x|3 φ

〉
=

〈
ψ,

xj

|x|3 φ

〉
1,−1
≤ 4‖∇ψ‖L2‖∇φ‖L2 ,

by the Cauchy-Schwarz inequality and (4.2), since C∞
c,{0}(R

3) ⊂
H1(R3) is an invariant core for the multiplication operator xj|x|−3.

16C∞
c,{0}(R

3) contains smooth functions vanishing at the origin, see the definition
in Proposition C.1.
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From the density result from Proposition C.1 in the appendix hence
follows

sup
φ∈H1(R3)

sup
ψ∈H1(R3)

∣∣∣ 〈φ,
xj
|x|3 ψ

〉
1,−1

∣∣∣
‖ψ‖1 |φ‖1

≤ 4

and the extension to dHel(X)[ξ] is obvious.

In order to avoid confusion, in the following we denote the
bounded operator extensions defined on the whole of H1 by Ĥel(X),
Ĥs

ξ(X), and d̂Hel(X)[ξ], respectively. The idea for the proof of the
next result arose during our study of [HG80, KMR11].

Proposition 4. Ĥel : R3N → L(H1, H−1) is locally Lipschitz continu-
ous.

Proof. Let us start with the Lipschitz type difference estimate

〈ψ, (Hel(X)− Hel(Y))ψ〉 ≤ 1
2 |X−Y|Z‖∇ψ‖2

L2 (4.3)

from Lemma 3, which holds in the sense of quadratic forms on H1.
After using the polarization identity, and rewriting evaluations of
sesquilinear forms as duality products, (4.3) implies boundedness
of 

〈
φ, (Ĥel(X)− Ĥel(Y))ψ

〉
1,−1

|X−Y|Z


Y 6=X

⊂ C (4.4)

for all φ, ψ ∈ H1. Then, by fixing an open bounded neighborhood
U of X, the identification of H1 with (H−1)∗ yields boundedness of{

(Ĥel(X)− Ĥel(Y))ψ
|X−Y|Z

}
Y∈U\{X}

⊂ H−1

for every ψ ∈ H1, since subsets of Banach spaces are bounded if
and only if all continuous linear functionals are bounded on it.
Invoking the uniform boundedness principle finishes the proof.
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We refer to [BDBT14] for a thorough discussion of operators
on rigged Hilbert spaces with a focus on generalized spectra and
resolvents.

4.2 Differentiability

The extended electronic Hamiltonian Ĥel is not uniformly Lipschitz
continuous as an operator-valued map. Nevertheless, by general
results from Lipschitz analysis, the local estimate we proved in
Proposition 4 is sufficient to infer existence of partial derivatives,
which will exploit later to prove the Hellmann-Feynman formula.

Proposition 5. The partial derivatives of Ĥel : R3N → L(H1, H−1)
exist everywhere, and are given by d̂Hel(X)[ej], j = 1, . . . , 3N, where ej
denotes the jth unit vector in R3N .

Proof. Lipschitz continuous functions f : Rn → B, with B a Banach
space, are almost everywhere Gâteaux differentiable, see [Kir94,
PZ01]. Consequently, by Proposition 4, Ĥel is Gâteaux differentiable
with respect to the operator norm almost everywhere.

Now, suppose that Ĥel is differentiable at X with directional
derivatives F(X)[ξ], ξ ∈ R3N . We want to show that F(X) =
d̂Hel(X), as expected. We note that the set C∞

c,S(R
3L) of test func-

tions which vanish infinitely fast at the set

S :=
N⋃

k=1

L⋃
j=1

{x ∈ R3L : xj = Xk + sξk, s ∈ [0, 1]}

of all occurring singularities is invariant under both Hs
ξ(X), and

dHel(X). Moreover, for φ ∈ C∞
c,S(R

3L) and ψ ∈ L2(R3L) we have〈
Ĥs

ξ(X)φ, ψ
〉
−1,1
→
〈

d̂Hel(X)[ξ]φ, ψ
〉
−1,1

as s↘ 0 by the dominated convergence theorem, since

Ĥs
ξ(X)φ→ d̂Hel(X)[ξ]φ
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pointwise everywhere. The identification F(X) = d̂Hel(X) follows
from Lemma C.2 since the set C∞

c,S(R
3L) is a fundamental subset of

H1 by Proposition C.1.
Finally, we show that if the partial derivatives of Ĥel exist at

X + Z ∈ R3N , they also exist at X. This step removes the almost
everywhere condition which is an artifact of the Lipschitz argument
we employed. We fix j ∈ {1, . . . , 3N} and choose k ∈ {1, . . . , N} to
be the nucleus for which ej ·Z = (Zk)m for some m ∈ {1, 2, 3}. Then,
by applying the coordinate shift xj 7→ xj + Zk for all j = 1, . . . , L,
with D = (1− ∆)−1/2 one computes

0 = lim
s↘0
‖Ĥs

ej
(X + Z)− d̂Hel(X + Z)[ej]‖2

L(H1,H−1)

= lim
s↘0

sup
ψ∈H1

‖ψ‖1=1

∫
R3L

∣∣∣D (Ĥs
ej
(X + Z)− d̂Hel(X + Z)[ej]

)
ψ(x)

∣∣∣2 dx

= lim
s↘0

sup
ψ∈H1

‖ψ‖1=1

∫
R3L

∣∣∣D (Ĥs
ej
(X)− d̂Hel(X)[ej]

)
ψ(x + W)

∣∣∣2 dx

= lim
s↘0
‖Ĥs

ej
(X)− d̂Hel(X)[ej]‖2

L(H1,H−1)

for W = (Zk, . . . , Zk) ∈ R3L, due to the special form of the differen-
tial quotient and its limit, as well as the invariance of the Laplacian
with respect to shifts.

4.3 Hellmann-Feynman Formulas

Electronic potential energy surfaces appear in the Born-Oppenheimer
approximation as potentials for the effective nuclear motion. Hence,
the semiclassical17 force in between the nuclei in a molecule is
given by the gradient of the relevant PES and the nuclear repulsion,

17Here, semiclassical is meant in the sense that a quantum mechanical object, the
PES, determines the classical evolution of the nuclei.
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see (2.13). The observation that these molecular forces are related
to the derivative of the Hamiltonian goes back to Hellmann [Hel37]
and Feynman [Fey39]. It is a very popular and widely used result in
chemical physics and can be seen as a generalization of Hadamard’s
first variational formula from Lemma 2 to the unbouded Hamilto-
nians Hel(X).

In fact, if one considers differentiable maps into bounded Hilbert
space operators, Hellmann-Feynman type theorems follow almost
immediately, see [Car10]. We present a rigorous mathmatical deriva-
tion of the Hellmann-Feynman theorem for the Coulomb Hamilto-
nian Hel(X) in the spirit of [IZ88], based on the operator analysis
from the previous section. We stress that for our formula we do not
require any further assumptions on the eigenfunctions.

Theorem 1 (Hellmann-Feynman). Let the PES Ek be of locally con-
stant multiplicity m < ∞ around X ∈ R3N . Then, Ek is differentiable
in some open neighborhood U 3 X and there is a corresponding L2-
normalized eigenfunction ψ : U →Hel satisfying

∂Xj Ek(X) =
〈

ψ(X), d̂Hel(X)[ej]ψ(X)
〉

1,−1
, j = 1, . . . , 3N, (4.5)

where ej denotes the jth unit vector in R3N .

Proof. Since the eigenvalue Ek is assumed to be of constant mul-
tiplicity m < ∞ in some simply connected open neighborhood
U 3 X, it is analytic in U as noted in Remark 2. Let P(Y) be
the eigenprojector on the corresponding m-dimensional eigenspace
associated with Ek(Y). By invoking Lemma 1.1 in [KMSW92], the
fibered eigenprojector P induces a trivial vector bundle over U, and
hence we can find a parametrized eigenfunction

U 3 Y 7→ η(Y) ∈ P(Y)Hel ⊂ H2

which is both, continuous and normalized as a H2-valued map.
The symmetry of the quadratic form associated with Hel(X) im-
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plies 〈
η(Y), Ĥel(Y)η(X)

〉
1,−1

= Ek(Y) 〈η(Y), η(X)〉L2

and 〈
η(Y), Ĥel(X)η(X)

〉
1,−1

= Ek(X) 〈η(Y), η(X)〉L2 .

Consequently,

Ek(X + hej)− Ek(X)

h
=

=

1
h

〈
η(X + hej),

(
Ĥel(X + hej)− Ĥel(X)

)
η(X)

〉
1,−1〈

η(X + hej), η(X)
〉

L2

,

and we can pass to the limit h ↘ 0 since Y 7→ η(Y) is norm
continuous in H1, and the partial derivatives in the operator norm
of Y 7→ Ĥel(Y) exist by Proposition 5. We note that ‖η(X)‖2

L2 6= 0
because of the the H2-normalization of η. Consequently, setting

ψ(X) =
η(X)

‖η(X)‖L2

gives the L2-normalization and completes the proof.

We highlight that the right hand side of (4.5) can also be inter-
preted as evaluating the quadratic form associated with dHel(X) on
H1, but not as an L2-inner product. This is due to the fact that the
operator derivative d̂Hel(X)[ej] does not map H2 into L2. Theorem 1
clearly holds as well if we ignore spin degrees of freedom.

Remark 3. In the case m = 1 of a non-degenerate PES, Theorem 1 holds
for every choice of a normalized eigenfunction. This is due to the fact
that the right hand side of (4.5) is invariant under a change of phase that
depends on the nuclear coordinates only.

The generalized Berry coefficients from §2.5 can also be expressed
via the derivatives of the operator Ĥel. The following result is
known as the off-diagonal Hellmann-Feynman formula.
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Proposition 6 (Off-diagonal Hellmann-Feynman formula). Sup-
pose that the PES Ek, E`, k 6= ` ∈ N, satisfy Ek(X) 6= E`(X) at
X ∈ R3N , and let ψk(X), ψ`(X) be corresponding eigenfunctions. We
assume that Y 7→ ψk(Y) can be chosen both H1-continuous and H−1-
differentiable18 in a small neighborhood of X. Then, one has

〈
ψ`(X), ∂Xj ψk(X)

〉
1,−1

=

〈
ψ`(X), d̂Hel(X)[ej]ψk(X)

〉
1,−1

Ek(X)− E`(X)
(4.6)

for all ξ ∈ R3N .

Proof. From the eigenvalue property and the selfadjointness of Hel
we deduce〈

ψ`(X), 1
h

(
Ĥel(X + hξ)− Ĥel(X)

)
ψk(X + hξ)

〉
1,−1

= (E`(X)− Ek(X + hξ))
〈

ψ`(X), 1
h (ψk(X + hξ)− ψk(X))

〉
1,−1

.

Now, the claim follows in the limit h↘ 0 because of the differen-
tiablity of Ĥel, the continuity of Ek, and the regularity assumptions
on ψk.

Proposition 6 strongly supports the intuition that in an adiabatic
basis the generalized Berry connection coefficients Aij from (2.22)
generically exhibit hyperbolic singularities at conical crossings of
PES, see also the example in §3.6. In chemistry, see e.g. [DYK04,
Var09], this observation serves as a main motivation for the devel-
opment of diabatization or quasidiabatization procedures.

Remark 4. The multi-configuration Hartree-Fock method is a very pop-
ular method for ab initio electronic structure calculations in which one
constructs approximate electronic eigenfunctions as sums of antisym-
metrized tensor producs of one-particle wave functions in L2(R3). Since
the derivative dHel(X) is a sum of multiplication operators acting on

18 We can always find an eigenfunction ψk that satisfies one of the both conditions.
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one-particle wave functions only, the computation of gradients of PES via
Theorem 1, or generalized Berry coefficients via Proposition 6, reduces to
a finite number of quadrature problems in R3. This favorable property
is a reason for the popularity of Hellmann-Feynman type formulas in
theoretical and computational chemistry.

5 Weyl Correspondence

It is a natural and important question to ask in how far classical
mechanics can be treated as a limiting case of quantum mechan-
ics. This problem of quantum-classical correspondence has been
an issue of investigation since the first days of quantum theory,
see [Boh20]. Very successful tools for answering this type of ques-
tions are provided by the phase space quantization techniques of
semiclassical analysis, see e.g. [Zwo12, Mar02, Fol89] for compre-
hensive introductions. This chapter shortly reviews the basics of
Weyl calculus. We apply these techniques later on to derive semi-
classical approximations for the dynamics of molecular quantum
systems.

From now on we take a slightly different perspective than in the
chapters before. We view L2(Rd) as the nuclear reference Hilbert
space, and consider selfadjoint Hamiltonians H on L2(Rd) that are
given as the Weyl quantization of some smooth Hamilton function
h on the classical phase space

H = opWe
ε (h), h : R2d → R, (5.1)

see also §5.3 for definitions. The evolution of the quantum system
described by H is then governed by the time-dependent semiclassi-
cal Schrödinger equation

iε∂tψ(t) = opWe
ε (h)ψ(t), ψ(0) = ψ0 ∈ L2(Rd). (5.2)

If one requires the nuclear interaction potential Vnn to be smooth19

19 For example, one can treat the nuclei as extended particles by introducing a
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and stays away from crossings of PES, Born-Oppenheimer Hamil-
tonians of the form (2.13) fit into this framework. Hence, in the
following we will assume that the nuclei evolve in a region where
the relevant PES is well seperated from the rest of the electronic
spectrum. Then, the solutions of (5.2) yield good approximations
for the quantum evolution of the molecule.

5.1 Wigner Functions

There are various ways to represent a quantum state |ψ〉〈ψ| on the
classical phase space R2d. The most popular one is the canonical
Weyl representation based on Wigner functions, which goes back
to [Wig32] and [Moy49].

Definition 1. Let ψ, φ ∈ L2(Rd). The cross-Wigner function (or
simply Wigner function)W(ψ, φ) ∈ L2(R2d) of ψ and φ is defined as

W ε(ψ, φ)(q, p) = (2πε)−d
∫

Rd
eip·y/εψ(q− 1

2 y)φ(q + 1
2 y)dy, (5.3)

andW ε(ψ) :=W ε(ψ, ψ) is called the Wigner transform of ψ.

One can show that Wigner transforms W ε(ψ) are real-valued
continuous functions on phase space. Their marginals20 yield the
position and momentum density of the corresponding state,∫

Rd
W ε(ψ)(q, p)dp = |ψ(q)|2 and (5.4)∫

Rd
W ε(ψ)(q, p)dq = |F εψ(p)|2,

where
F εψ(p) = (2πε)−d/2

∫
Rd

e−ip·y/εψ(y)dy (5.5)

smooth charge density.
20If ψ or F εψ are not integrable, the respective formulas for the marginals might

not absolutely convergent, but still make sense as oscillatory integrals.
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is the semiclassically rescaled Fourier transform. As we shall see
below in §5.3, Wigner transforms are the Weyl symbols of pure
states. In particular, for two normalized wave functions ψ, φ ∈
L2(Rd) we have

W ε(ψ) =W ε(φ)⇐⇒ |ψ〉〈ψ| = |φ〉〈φ|,

and, by (5.4), the Wigner transform has mass one,∫
R2d
W ε(ψ)(z)dz = 1. (5.6)

These properties makeW ε(ψ) a natural candidate for the represen-
tation of the state |ψ〉〈ψ| on the classical phase space. However,
Wigner transforms W ε(ψ) are nonnegative if and only if ψ is a
Gaussian function, as shown in [Hud74, SC83]. Hence, in spite
of the normalization property (5.6), Wigner transforms are generi-
cally not probability densities, and in general not even functions
in L1(R2d). As a consequence, in spite of its formal similarity,
quantum dynamics cannot directly be interpreted as some type of
statistical mechanics on phase space.

Exemplary states for which the Wigner transform becomes nega-
tive are superposition states. They induce highly oscillatory quan-
tum interferences as illustrated by the example in Figure 1. These
interferences can be seen as a phase space indicator of quantum
entanglement, and hence represent a manifestly non-classical effect.
For an extensive discussion and further reading we refer to [Zur03]
and the references given therein. We note that the lack of non-
negativity of Wigner functions can be overcome by using Husimi
transforms or other spectrograms instead, see §10.

Cross-Wigner functions are always square-integrable and satisfy
Moyal’s identity

〈W ε(ψ1, φ1),W ε(ψ2, φ2)〉L2(R2d) =
〈ψ1, ψ2〉L2(Rd) 〈φ1, φ2〉L2(Rd)

(2πε)d ,

(5.7)
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see, e.g., [dG11, §9.4]. Thus, we have

‖W ε(ψ)‖L2(R2d) = (2πε)−d/2‖ψ‖L2(Rd)

and the L2-norm of Wigner functions is invariant under the Schrödinger
evolution. For a deeper analysis of the geometry and phase space
properties of Wigner functions we refer to the monograph of de
Gosson [dG11].

position

m
om

en
tu

m

Example of a Wigner transform on R2

Figure 1: This contour plot shows the Wigner transform of a one-dimensional
wave function representing a superposition of a Gaussian coherent state (right) and
a Lagrangian type delocalized state (left), where the interferences in the middle are
due to the entanglement between the two states. Red color indicates positive, and
blue color negative values of the Wigner transform.

Remark 5. Wigner functions can equivalently be defined via so-called
Grossmann-Royer operators, see [dG11, §9.2.1], which can be seen as
quantized phase space reflections.
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5.2 Heisenberg-Weyl Operators

In the article [Wey27] published in 1927, Hermann Weyl introduced
a quantization procedure for associating Hilbert space operators
to classical phase space functions, which is “ in many ways still the
most satisfactory one”, as Folland writes in [Fol89, p.78]. We will
substantiate this assertion in the following sections.

Weyl’s postulate was to associate the complex exponential

(x, ξ) 7→ ei(x·q+ξ·p), q, p ∈ Rd, (5.8)

with the so-called Heisenberg-Weyl operator

T̂(q,p)ψ(x) = eip·(x− 1
2 q)/εψ(x− q), ψ ∈ L2(Rd), (5.9)

that acts as a unitary transformation on L2(Rd). This quantization
approach is somehow complementary to the one of the previous
section, where we looked at phase space representations of wave
functions. However, as we will see below, these two complementary
views are perfectly compatible.

The quantization rule from (5.9) can be motivated by constructing
“quantized versions” of the phase space translations

T(q,p) : R2d → R2d, T(q,p)(z) = z + (q, p),

where (q, p) ∈ R2d, see [dG11, §8.1.1]. Let us consider the classical
Hamilton function

h(z) = Ω(z, (q, p)), z ∈ R2d,

where Ω is the canonical symplectic form on R2d from (2.6). Then,
T(q,p) can be written as the Hamiltonian flow of h at time t =
1. If one replaces the vector z = (x, ξ) by its naive quantization
ẑ = (x,−iε∇), T̂(q,p) analogously gives the t = 1 propagator for
the semiclassical Schrödinger equation (5.2) with the quantized
Hamiltonian Ω(ẑ, (q, p)),

T̂z = e−izT Jẑ/ε. (5.10)
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The naturality of this quantization procedure becomes more clear if
one revisits the Wigner functions introduced in Definition 1.

Lemma 6. Let ψ, φ ∈ L2(Rd) be wave functions. Then

W ε(T̂zψ, T̂zφ) = TzW ε(ψ, φ) (5.11)

for all z ∈ R2d.

Hence, Heisenberg-Weyl operators truly act as simple phase space
translations if one employs the phase space representation of states
via Wigner functions. This result is a classic; we refer to [dG11,
Proposition 174] for a more general formula incorporating two
different Heisenberg-Weyl operators.

5.3 Quantization

By recalling the properties of the Fourier transform, one can see that
the quantization rule for the exponentials (5.8) already uniquely
determines the quantization opWe

ε (a) of any tempered distribution
a ∈ S ′(R2d). One arrives at the following quantization rule.

Definition 2 (Weyl quantization). For ε > 0, let a ∈ S ′(R2d) be a
(possibly ε-dependent) distribution. Then, the Weyl quantized operator
opWe

ε (a) is defined as the integral operator(
opWe

ε (a)ψ
)
(x) = (2πε)−d

∫
Rd

∫
Rd

ei(x−y)·ξ/εa
(

x+y
2 , ξ

)
ψ(y) dy dξ

(5.12)
for all ψ ∈ S(Rd). We call a the Weyl symbol of opWe

ε (a), and write
a = σWe(opWe

ε (a)).

We note that for any a ∈ S ′(R2d) the integral operator opWe
ε (a)

has a Schwartz kernel in S ′(R2d), due to the properties of the
Fourier transform. Consequently,

opWe
ε (a) : S(Rd)→ S ′(Rd)
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is continuous and (5.12) is well-defined, see also [Zwo12, Theorem
4.2]. Moreover, from Definition 2 one can infer that the adjoint
operator opWe

ε (a)∗ is a Weyl operator with symbol a. In particular,
selfadjoint Weyl operators on L2(Rd) have real-valued symbols,
and the Weyl quantization rule (5.12) arranges the position and
momentum variables symmetrically, that is,

a(q, p) = q · p ⇐⇒ opWe
ε (a) = 1

2 (x · (−iε∇x) + (−iε∇x) · x) .

Example. The Weyl quantization of the classical position and mo-
mentum (q, p) yields the canonical position and momentum ob-
servables (x,−iε∇). Similarly, quantizing the classical kinetic and
potential energies

Ekin(q, p) = 1
2 |p|

2, Epot(q, p) = V(q)

results in the quantum observables

opWe
ε (Ekin) = − ε2

2 ∆, opWe
ε (Epot) = V

for the kinetic and potential energy. As a consequence, the Schrödinger
operator

H = − ε2

2 ∆ + V

is the Weyl quantization of the classical Hamilton function h(q, p) =
1
2 |p|2 + V(q). �

As already indicated by (5.6), Wigner transforms are the Weyl
symbols of pure states, that is

opWe
ε (W ε(ψ)) = (2πε)−d|ψ〉〈ψ| (5.13)

for every ψ ∈ L2(Rd) with ‖ψ‖L2 = 1. Moreover, one can use
Wigner functions to express matrix elements of a Weyl operator via
the phase space integral〈

opWe
ε (a)ψ, φ

〉
L2

=
∫

R2d
a(z)W ε(ψ, φ)(z)dz, (5.14)
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which can easily be checked, compare also (5.17) below.
There is a wealth of theory about classes of Weyl symbols yield-

ing operators with certain regularity or boundedness properties,
see e.g. the monographs [Zwo12, dG11, Ler10] for presentations
with different emphases. In the following Lemma as well as in
appendix B we summarize some of the most important facts. We
would like to stress that symbol classes are not in the focus of this
work.

Lemma 7. Let a ∈ S ′(R2d) such that ∂α
q ∂

β
pa(q, p) ∈ L∞(R2d) for all

|α|, |β| ≤ dd/2e + 1. Then, opWe
ε (a) defines a bounded operator on

L2(Rd), and there is a constant C independent of ε such that

‖opWe
ε (a)‖L(L2) ≤ C sup

|α|,|β|≤dd/2e+1
(q,p)∈R2d

|∂α
q ∂

β
pa(q, p)|. (5.15)

Suppose that b ∈ C∞(R2d) with ∂αb ∈ L1(R2d) for all |α| ≤ 2d + 1.
Then, opWe

ε (b) is a trace class operator on L2(Rd), and

tr(opWe
ε (b)) = (2πε)−d

∫
R2d

b(z)dz. (5.16)

If opWe
ε (a) and opWe

ε (b) are Hilbert-Schmidt operators, one has

tr(opWe
ε (a)opWe

ε (b)) = (2πε)−d
∫

R2d
a(z)b(z)dz. (5.17)

The first assertion (5.15) of Lemma 7 is known as the Calderón-
Vaillancourt Theorem, and can be traced back to [CV72]. The form
of the result we stated here is due to Boulkhemair [Bou99], and
includes a minimal number of derivatives. A proof for the second
assertion can be found in the book of Dimassi and Sjöstrand [DS99,
§9], and one for the third formula in [dG11, Proposition 284].

The composition of two Weyl operators yields again a Weyl oper-
ator that allows for an expansion in powers of ε. The next Lemma
summarizes several results from [Zwo12, §4], see also appendix B
for the definition of order functions and the symbol classes Sδ(m).
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Lemma 8. Let m1, m2 be order functions and suppose a ∈ Sδ(m1) and
b ∈ Sδ(m2) for some 0 ≤ δ ≤ 1

2 . Then,

opWe
ε (a)opWe

ε (b) = opWe
ε (a]b), (5.18)

where the Moyal product of a and b is defined as

(a]b)(z) = e−iεA(∇)(a(z)b(w))
∣∣∣
w=z

(5.19)

with A(∇) = 1
2 Ω(∇z,∇w). It holds a]b ∈ Sδ(m1m2), and for δ < 1

2
we have the asymptotic expansion

a]b ∼
∞

∑
k=0

(−iε)k

2kk!
Ω(∇z,∇w)a(z)b(w)

∣∣∣
diag

in Sδ(m1m2). In particular, we have

a]b = ab+ ε
2i{a, b}+ OSδ(m1m2)

(ε1−2δ),

σWe
(
[opWe

ε (a), opWe
ε (b)]

)
= ε

i {a, b}+ OSδ(m1m2)
(ε3(1−2δ)), (5.20)

where {•, •} is the classical Poisson bracket from (2.10), and [•, •] is the
commutator.

The expansion (5.20) of the Moyal bracket is a starting point for
various semiclassical approximations, and can be used for answer-
ing questions of quantum-classical correspondence. It relates the
Heisenberg evolution of observables generated by the commuta-
tor and the classical evolution determined by the Poisson bracket,
compare §2.2 and §2.3.

5.4 The Semiclassical Limit

The semiclassical parameter ε that appears in the definition of
Weyl quantized operators and the semiclassical Schrödinger equa-
tion (5.2) can represent different physical quantities depending on
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the considered model. In the context of the Born-Oppenheimer ap-
proximation, which is the main application we have in mind for the
methods developed in this work, ε =

√
me/m represents the square

root of the electronic versus average nuclear mass. The semiclassical
limit ε↘ 0 here corresponds to large mass asymptotics, and (5.20)
indicates that quantum observables evolve almost classically for
molecules with heavy nuclei. A rigorous mathematical justification
of this observation is provided by Egorov’s theorem, see §11.

We note that, at least formally, the semiclassical parameter ε

plays the role of the reduced Planck constant h̄ in the Schrödinger
equation (5.2). While we have h̄ = 1 in atomic units, one has
h̄ ≈ 1.054 · 10−34 Js in SI units. Hence, the limit h̄ = ε ↘ 0 can
also be interpreted as the classical limit of quantum mechanics.
This view served as a main motivation for the development of
semiclassical analysis.

For time-independent Schrödinger equations on compact man-
ifolds, the semiclassical limit usually denotes the limit of high
eigenvalues, or high energies. In this context one typically explores
in how far characteristic properties of the classical flow – like peri-
odic orbits or ergodicity – are reflected in the “quantized system”.
Problems of quantum chaos have been an active area of research
in microlocal analysis since decades, starting with Gutzwiller’s
derivation of the trace formula [Gut71], and the proof of the quan-
tum ergodicity theorem, see,e.g., [Shn74, Zel87]. However, many
important questions in this field are still open. We refer to [Sch01]
and [Zwo12, §15] for further reading and many references.
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Interlude
Simpler States and Simpler

Dynamics

Even after conducting the Born-Oppenheimer approximation, the
resulting effective equation for the evolution of the nuclei in a
molecule is still a PDE on a typically high dimensional space.
Computing reliable approximate solutions of these equations by
means of direct numerical discretizations often is unfeasible, and
one needs to conduct further simplifications. For instance, in the
case of a single water molecule H2O one is already confronted with
the task of solving a Schrödinger equation on R9

x ×Rt. A naive
space discretization based on a tensor grid with as little as 10 points
per space direction results in a system of 109 ODEs, see §E.

In the last years there has been a lot of research on numeri-
cal methods for Schrödinger equations that utilize sparse grids
or reduced bases, see e.g. [Yse10, FGL09, Lub08], or [BG04] for a
review. Although these procedures provide enormous simplifi-
cations, they are not powerful enough for entirely breaking the
“curse of dimension”. Moreover, since solutions of the semiclassical
Schrödinger equation are highly oscillatory in space and time21, one
often requires a high spacial and temporal resolution for obtaining
meaningful results, see [JMS11]. For methods that yield reliable
approximations in moderately high dimensions “without too much
computation” one consequently has to incorporate further model
reductions.

In the remaining parts of this thesis we present two classes of
simplifications for semiclassical quantum systems. In part §II we
investigate the structure of Hagedorn wave packets, which form a
class of simple wave functions with many nice properties. They can

21The frequencies are of size O(ε−1)
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also be used for propagating and approximating more general wave
functions. The semiclassical dynamics of a Hagedorn wave packet
can be captured in a particularly simple way, since it employs
only a single classical trajectory describing the center of the wave
packet. In part §III we discuss various phase space methods for
the semiclassical propagation of quantum observables, states, and
Wigner functions. These approximations rely either on Egorov type
results derived from expansions of the form (5.20), or on propagated
Hagedorn wave packets. In §IV, the applicability and validity of
the methods from §III are illustrated by means of various numerical
experiments.

In view of the quotation of Dirac, which we stated at the begin-
ning of the introduction, we provide rigorously derived “practical
methods” for simplifying both, the Hilbert space of wave functions,
and the quantum evolution of observables and states. It is our hope
that in the future our investigations will lead to further simplifica-
tions, novel computational methods, and insights into molecular
quantum systems.
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Wave Packet Analysis

Hagedorn wave packets are multidimensional generalizations of
Hermite functions with arbitrary phase space centers and complex
width matrices. They have been introduced by George Hagedorn
in [Hag81, Hag85] and are generalizations of parametrized Gaus-
sian coherent states, see also the definition in §7. Since the pioneer-
ing works of Hepp and Heller [Hep74, Hel75], parametrized wave
packets have evolved into a central tool of semiclassical analysis.
They have found manifold applications, notably in the computation
of the quantum dynamics of molecules, see [FGL09], or in quantum
optics [Wün99]. Mathematical treatises are for instance contained
in [Lub08, §5] and [Hag98, CR12].

Semiclassical Hagedorn wave packets are prototypes of states
which are highly localized in position and momentum. They can be
constructed as generalized multidimensional harmonic oscillator
eigenstates, and consequently share many properties with usual
Hermite functions, see [LT14]. In this chapter we analyze the struc-
ture of Hagedorn wave packets in configuration and phase space.
Moreover, we introduce anti-Wick quantized operators together
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with the associated spectrograms. This will serve as a basis for the
semiclassical approximations developed in §12.

On Rd, the Hagedorn wave packets are indexed by k ∈Nd and
can be written as

ϕk(x) = pk(x)g(x), (5.1)

where pk is a multivariate polynomial of degree |k|, and g is a
complex Gaussian function independent of k. In §6, we investigate
a class of Hermite type multivariate polynomials that can be used
in a natural way for analyzing the structure of the polynomials
pk. The Wigner-Hagedorn formula presented in §8 is one of the
main results of our thesis. It allows to rewrite Wigner functions
of Hagedorn wave packets as another Hagedorn wave packet on
phase space.

At this point, we would like to highlight that the results in §6–
§8.3 have been obtained in collaboration with Helge Dietert and
Stephanie Troppmann, and can be found in our joint paper [DKT15].
The spectrogram analysis and approximation of Wigner transforms
from §10.4 and §10.5 is based on the joint work [KLO15] with
Caroline Lasser and Tomoki Ohsawa.

6 Multivariate Polyno-
mials of Hermite Type

We investigate collections {qM
k }k∈Nd of multivariate polynomials

with complex coefficients, generated from the three-term recursion
relation (TTRR)

(qM
k+ej

(x))d
j=1 = 2xqM

k (x)− 2M · (k jqM
k−ej

(x))d
j=1, (6.1)

where ej denotes the jth unit vector in Rd. We impose the conditions
qM

0 = 1 and qM
` = 0 for all ` /∈ Nd, and require M ∈ Cd×d to be

symmetric. The latter compatibility condition guarantees that the
polynomials are well-defined.
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Hermite type multivariate polynomials of a closely related form
and their generating functions have already been studied in [Erd39],
and there [App26] is named as the original resource for the defi-
nition of the polynomials. In [Wün00] one can find some results
in the two-dimensional case. Generalized Hermite functions of the
above form are common tools in probability theory and statistics,
see e.g. [Hol96, Wit00], although to the best of our knowledge they
are not very well-known in the mathematical physics community.
As we will see in §7 and §8, the polynomials appear naturally in
the characterization of Hagedorn wave packets in configuration
and phase space. Our presentation of the polynomials is tailored to
this application.

Similarly as for many special polynomials in one variable, the
polynomials qM

k can equivalently be defined via their generating
function, ladder operators, or, if M is invertible, a Rodrigues for-
mula. We start from the TTRR (6.1) and subsequently derive for-
mulas for the aforementioned quantities. This chapter is in large
parts close to [DKT15, §2].

6.1 Growth Bound and Univariate Case

We first present our analysis for the one-dimensional setup in order
to clarify the main ideas. In this case the TTRR reads

Hµ
n+1(x) = 2xHµ

n (x)− 2µnHµ
n−1(x), n ∈N, (6.2)

for some µ ∈ C, where Hµ
0 = 1, and Hµ

−1 = 0. We note that for
µ = 1 the resulting sequence coincides with the classical (physicist’s)
Hermite polynomials. In fact, we will see that many important
properties of Hermite polynomials directly extend to the more
general polynomials {Hµ

n}n∈N.

Example. If µ ∈ (0, ∞), the polynomials are related to the classical
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Hermite polynomials via the rescaling

Hµ
n (x) = µ

n
2 H1

n

(
x√
µ

)
. (6.3)

In other words, Hµ
n corresponds to a Hermite polynomial with

“variance” µ. In the case µ = 0 the simplified recursion generates a
sequence of monomials. �

A central tool in our analysis of the polynomials is their generat-
ing function

g(x, τ) =
∞

∑
n=0

τn

n!
Hµ

n (x). (6.4)

The power series g(x, τ) converges absolutely for all τ ∈ Cd. This
can be seen by employing the following growth estimate for the
general polynomials qM

k .

Proposition 7 (Growth bound). Let M ∈ Cd×d be symmetric. Then,
for all k ∈Nd we have the estimate

|qM
k (x)| ≤ θ(x)|k|

√
k! (6.5)

with the continuous function

θ(x) = 1 + 2
√

2d‖M‖∞ + 4‖x‖∞.

Proof. We prove the claim by induction over |k| = N. The base
clause is obvious, since θ ≥ 1. Now, suppose that (6.5) holds for all
|`| ≤ N, and let k ∈Nd with |k| = N + 1. We can choose a direction
ej such that one has k j ≥ ki for all i = 1, . . . , d. After applying the
TTRR (6.1) in the jth direction, the induction hypothesis yields

|qM
k (x)|

θ(x)|k|
√

k!
≤

2|xj|

θ(x)
√

k j

+ 2‖M‖∞

d

∑
i=1

(k− ej)i

θ(x)2
√

k j(k− ej)i

≤
2|xj|

θ(x)
√

k j

+
2d‖M‖∞

θ(x)2 ,
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where in the second step we utilized the fact that k j ≥ (k− ej)i. The
claim follows from our choice of the function θ.

As a next step, we derive a closed expression for the one-dimensional
generating function g(x, τ). From (6.4) and the assumption Hµ

−1 = 0
one deduces

∂τ g(x, τ) =
∞

∑
n=0

τn

n!
Hµ

n+1(x), τg(x, τ) =
∞

∑
n=0

τn

n!
nHµ

n−1(x),

since g can be differentiated termwise by Proposition 7. Then,
applying the recursion (6.2) gives the differential equation

∂τ g(x, τ) = 2xg(x, τ)− 2τµg(x, τ), (6.6)

which can be solved by separation of variables. Inserting the initial
condition g(x, 0) = Hµ

0 (x) = 1 leads to the explicit expression

g(x, τ) = exp(2xτ − µτ2). (6.7)

Consequently, g(x, τ) is an entire function of both x, and τ, and
one can evaluate the generalized Hermite polynomials via

Hµ
n (x) = ∂n

τ exp(2xτ − µτ2)
∣∣
τ=0.

Equivalently, by invoking Cauchy’s formula, one has

Hµ
n (x) =

n!
2πi

∮
Γ

z−n−1e2xz−µz2
dz

if the positively oriented contour Γ ⊂ C encircles the origin, see
also [Sze75, (5.5.12)].

By recalling the differential equation (6.6), we can also use the
raising operator

a†
µ := 2x− µ∂x, µ ∈ C, (6.8)

for constructing the generalized Hermite polynomials via

Hµ
n = a†

µHµ
n−1 = (a†

µ)
n1. (6.9)
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We remark that a†
µ can be interpreted as the polynomial part of

Dirac’s creation operator for generalized one-dimensional harmonic
oscillator eigenstates, see [Dir30, LT14]. The meaning of this com-
ment will become more clear in §7.2.

The raising operator a†
µ is complemented by the gradient formula

1
2n ∂x Hµ

n (x) = Hµ
n−1(x), (6.10)

which is independent of µ and allows to lower the index of the
polynomials. Formula (6.10) follows from combining (6.9) and (6.2).
The identity

∂x

(
2−n Hµ

n (x)
)
= 2−(n−1)Hµ

n−1(x),

implies that {2−n Hµ
n}n∈N is an Appel sequence, see [App80], and

hence the polynomials {Hµ
n}n∈N have various favorable properties.

For instance, one has the sum rule

Hµ
n (x + y) =

n

∑
j=0

(
n
j

)
Hµ

j (x)(2y)n−j,

which can easily be checked, compare also [LT14, Proposition 3].

Remark 6. The form of the raising operator a†
µ and (6.10) imply that

the polynomials Hµ
n are solutions to the eigenvalue problem(
−µ∂2

x + 2x∂x

)
Hµ

n (x) = 2nHµ
n (x),

which is a type of generalized Hermite differential equation, compare [Sze75,
5.5.2].

6.2 Generating Function and Ladder

Operators

Generalizing the results from the previous paragraph to the mul-
tivariate polynomials qM

k : Rd → C is straightforward. In the
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following we use standard multiindex notation, that is, for k ∈Nd

and x ∈ Cd we set

k! = k1! · · · kd!, xk = xk1
1 · · · x

kd
d , and ∂k = ∂k1

1 · · · ∂
kd
d .

The generating function of the multivariate polynomials is defined
as the power series

f (x, t) = ∑
k∈Nd

tk

k!
qM

k (x), t ∈ Cd, (6.11)

which by Proposition 7 converges absolutely for all t ∈ Cd. Proposi-
tion 8 provides an explicit form for f .

Proposition 8 (Generating function). Let M ∈ Cd×d be symmetric.
Then, the generating function of the polynomials {qM

k }k∈Nd is given by
the entire function

f (x, t) = exp(2xTt− tT Mt). (6.12)

Proof. As a first step, we note that for the indices k = nej, with
n ∈N and j ∈ {1, .., d}, the TTRR (6.1) simplifies to

qM
(n+1)ej

(x) = 2xjqM
nej

(x)− 2nMj,jqM
(n−1)ej

(x). (6.13)

By (6.2), this one-dimensional recursion generates the tensor prod-
uct polynomials

1⊗ . . .⊗ H
Mjj
n ⊗ . . .⊗ 1 ∈ C[x1, . . . , xd], n ∈N. (6.14)

Hence, from (6.7) follows that the generating function f must satisfy
the conditions

f (x, τej) = exp(2xjτj −Mjjτ
2
j ), τ ∈ C, (6.15)

for all coordinate directions j = 1, . . . , d. For arbitrary indices
k ∈Nd we then proceed similarly as in the one-dimensional case.
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One has

∂tj f (x, t) = ∑
k

tk

k!
qM

k+ej
(x) , tj f (t, x) = ∑

k

tk

k!
k jqM

k−ej
(x), (6.16)

since f can be differentiated termwise by Proposition 7. Applying
the TTRR yields the system of differential equations

∇t f = 2x f − 2 f Mt, (6.17)

and we look for a solution that is analytic in t. Since M is symmetric,
we have

∇t(tT Mt) = (M + MT)t = 2Mt,

and the claim follows from imposing the coordinate conditions (6.15).

Remark 7. From the formula for the generating function in Proposi-
tion 8 one can infer that if M is real, the polynomials qM

k coincide up to
a prefactor with the multivariate Hermite polynomials that are used in
probability theory and statistics, see e.g. [Hol96, Wit00].

As in the one-dimensional case, the explicit form of the generating
function allows for an easy evaluation of the polynomials qM

k . For
k ∈Nd, one has

qM
k (x) = ∂k

t exp(2xTt− tT Mt)
∣∣
t=0,

and one can invoke the multidimensional Cauchy formula from
[Hör73, Theorem 2.2.1]

qM
k (x) =

k!
(2πi)d

∮
∂D

e2xTz−zT Mz
d

∏
j=1

z
−kj−1
j dz,

where D ⊂ Cd is a d-dimensional polydisc1 that contains the origin.
The raising operator representation and the gradient formula

translate readily to the multivariate case.
1D is a tensor product of d one-dimensional complex discs.
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6. Multivariate Polynomials of Hermite Type

Proposition 9 (Ladder operators). Let M ∈ Cd×d be symmetric and
k ∈Nd. Then,

(qM
k+ej

)d
j=1 = b†

MqM
k and ∇qM

k = 2(k jqM
k−ej

)d
j=1,

with the vector-valued raising operator b†
M = 2x−M∇x.

Proof. The generating function f from (6.12) satisfies ∇x f = 2t f ,
and ∂tj f simply shifts the summation index in (6.11) by one into
the jth direction. Hence, after recalling (6.17), we obtain the first
assertion from

∇t f = 2x f −M∇x f = b†
M f .

The gradient formula follows as in the one-dimensional case.

With the ladder operators from Proposition 9 one can mimic the
computation of harmonic oscillator eigenvalues. Since

1
2

(
(b†

M)j2k jqM
k−ej

+ ∂xj q
M
k+ej

)
= (2k j + 1)qM

k ,

the polynomials {qM
k }k∈Nd form a set of simultaneous eigenvectors

for the operators2

Tj =
(b†

M)j∂xj + ∂xj(b
†
M)j

2
= (1 + 2xj∂xj)− ∂xj(M∇)j , j = 1, . . . , d.

More precisely, qM
k is an eigenvector of Tj belonging to the eigen-

value 2k j + 1. If there is no direct coupling between the jth and nth
direction, that is, Mjn = Mnj = 0 for some j 6= n, the operators Tj
and Tn commute.

Whenever M is invertible, the raising operator b†
M from Proposi-

tion 9 together with the TTRR gives rise to the multidimensional
Rodrigues formula

qM
k (x) = exp

(
−xT M−1x

)
(−M∇)k exp

(
xT M−1x

)
. (6.18)

2 The operators Tj can be seen as acting on the space of polynomials on Rd.
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We note that the Rodrigues formula (6.18) is in general not suf-
ficient for deducing orthogonality relations for the polynomials.
However, if M−1 is real and positive definite, the polynomials qM

k
are orthogonal with respect to the inner product on the Hilbert
space L2(Rd, exp(−xT M−1x)dx). The construction of suitable in-
ner products for more general complex symmetric matrices M is
possible but less straightforward, see [DKT15, Remark 5].

6.3 Factorization

The Hermite type multivariate polynomials qM
k can exhibit very dif-

ferent structures, depending on the matrix M that governs the mix-
ing between the different coordinate directions in the TTRR (6.1).

Example. If M = diag(λ1, ..., λd) is a diagonal matrix, there is no
mixing between the different coordinate directions. Hence, the
polynomials {qM

k }k∈Nd are simple tensor products

qM
k (x) =

d

∏
j=1

H
λj
kj
(xj) (6.19)

of d one-dimensional generalized Hermite polynomials. �

In fact, it is easy to see that the polynomials qM
k can be written as

a tensor product with s ≤ d factors for all k ∈Nd if and only if their
generating function factorizes into s lower dimensional generating
functions. In particluar, the explicit form of the generating function
from Proposition 8 allows to formulate a simple criterion on when
the polynomials factorize, see the following Proposition 10.

Proposition 10 (Tensor product polynomials). Let M ∈ Cd×d be
symmetric and σ : {1, . . . , d} → {1, . . . , d} be a permutation with
permutation matrix Pσ ∈Nd×d. Then, the following are equivalent:

i) Pσ MPT
σ is a block-diagonal matrix with s blocks.
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6. Multivariate Polynomials of Hermite Type

ii) For the partition

xT PT
σ = (yT

1 , . . . , yT
s ), yj ∈ Rdj ,

s

∑
j=1

dj = d,

of the variable vector x, there are polynomials q
Mj
(Pσk)j

: Rdj → C

such that for all k ∈Nd

qM
k (x) =

s

∏
j=1

q
Mj
(Pσk)j

(yj), (6.20)

where (Pσk)T =
(
(Pσk)T

1 , . . . (Pσk)T
s
)
. Moreover, q

Mj
(Pσk)j

satisfies a

TTRR of the form (6.1) in dj dimensions, with Mj ∈ Cdj×dj and
Pσ MPT

σ = diag(M1, . . . , Ms).

Proof. Suppose that i) holds true. Then, there are m matrices Mj ∈
Cdj×dj with

s

∑
j=1

dj = d, dj ∈N,

such that the generating function of {qM
k }k∈Nd factorizes as

f (x, t) = exp(2xTt− tT Mt) =
s

∏
j=1

exp
(

2yT
j vj − vT

j Mjvj

)
(6.21)

where yj, vj ∈ Cdj are defined by

Pσx = y and Pσt = v. (6.22)

Each of the factors on the right hand side of (6.21) can be recognized

as the generating function for the polynomials {qMj
`j
}PT

σ `∈Nd ob-

tained from a TTRR of the form (6.1) in dimension dj, j ∈ {1, . . . , s}.
Moreover, by Proposition 7, the product of the generating functions
is the generating function of the tensor product.

The other implication follows from Proposition 8 in a similarly
simple way.
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The characterization of factorization from Propostion 10 will
become important in §8.3, where we prove that the Wigner functions
of normalized Hagedorn wave packets always factorize.

6.4 Laguerre Connection

In Proposition 10 we showed that the polynomials qM
k : Rd → C

are tensor products of s ≤ d lower dimensional Hermite type
polynomials for all k ∈ Nd if and only if there is a relabeling
σ : {1, . . . , d} → {1, . . . , d} of the coordinates such that Pσ MPT

σ

is block-diagonal with s blocks. For diagonal M the resulting
polynomials (6.19) are tensor products of d univariate polynomials.
However, if M has offdiagonal entries which are different from zero,
the resulting polynomials qM

k are not anymore tensor products of
univariate polynomials.

We take this as motivation to develop a procedure that allows
to express polynomials qM

k with a potentially complicated matrix
M by means of polynomials qN

k associated with a simpler matrix
N. Our strategy is to describe the effect on the polynomials qM

k
when deleting offdiagonal pairs of entries from the matrix M. Sur-
prisingly, as shown in Proposition 11, on the level of polynomials
this matrix simplification can be rewritten by applying a Laguerre
polynomial

L(α)
n (x) =

n

∑
j=0

(
n + α

n− j

)
1
j!
(−x)j , n ∈N , α ≥ 0,

to raising operators associated with the reduced matrix.
The connections between the classical Hermite and Laguerre poly-

nomials are manifold, see, e.g., [Tha93] and [Sze75, §5.6]. Proposi-
tion 11 provides a novel type of Laguerre connection for the class
of generalized Hermite polynomials qM

k .
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6. Multivariate Polynomials of Hermite Type

For a symmetrix matrix M ∈ Cd×d, we denote by

(M[n, m])ij =

{
0 , {i, j} = {n, m},
Mij , otherwise.

the matrix which arises from M by deleting the offdiagonal entries
Mnm and Mmn.

Proposition 11 (Laguerre Reduction). Let M ∈ Cd×d be symmetric,
and Mnm = µ 6= 0 for some n 6= m. Suppose k ∈ Nd with kn ≥ km.
Then,

qM
k (x) =

(
b†

M

)k
1 (6.23)

=
(

c†
)k−km(en+em)

(−2µ)km km!L(kn−km)
km

(
1

2µ c†
nc†

m

)
1,

where c† = b†
M[n,m] denotes the polynomial raising operator for the reduced

matrix M[n, m]. The case kn < km is analogous.

Proof. We denote by fM the generating function of the polynomials
qM

k derived in Proposition 8, and by fM[n,m] the generating function

for the polynomials qM[n,m]
k . With the shorthand k[n, m] = k −

enkn − emkm one obtains

fM(x, t) = fM[n,m](x, t) exp(−2µtntm)

=

(
∑

k∈Nd

tk

k!

(
c†
)k
)(

1− 2µtntm + 1
2! (2µtntm)

2 − . . .
)

= ∑
k∈Nd

tk (c†)k[n,m]

(k[n, m])!

(
min(kn ,km)

∑
j=0

(−2µ)j

j!
· (c

†
n)

kn−j

(kn − j)!
· (c

†
m)

km−j

(km − j)!
1

)
.

Consequently, due to the definition of the generating function, this
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implies

qM
k (x) =

(
c†
)k[n,m] min(kn ,km)

∑
j=0

kn!km!(−2µ)j

j!(kn − j)!(km − j)!
(c†

n)
kn−j(c†

m)
km−j 1

(6.24)
and we can reorder the sum by means of the index ` = km − j ≥ 0
since kn ≥ km holds by assumption. Thus,

qM
k (x)=

(
c†
)k[n,m]

(−2µ)km km!(c†
n)

kn−km
km

∑
`=0

kn!(− 1
2µ c†

nc†
m)

km−`1

(km − `)!(kn − km + `)!`!

=
(

c†
)k[n,m]

(−2µ)km km!(c†
n)

kn−km L(kn−km)
km

(
1

2µ c†
nc†

m

)
1,

where we utilised that c†
n and c†

m commute.

Proposition 11 provides an expansion of the polynomials qM
k in

terms of the simpler Hermite type polynomials

qM[n,m]
` with ` ≤ k.

In §6.5 we will proceed in the same direction, and derive expansions
of the general polynomials qk

M in terms of simple tensor product
Hermite polynomials.

Remark 8. By inspecting (6.23) one can see that the deleted matrix
entry Mnm does not enter the formula apart from a simple rescaling.
Moreover, the mixing induced by the offdiagonal entry Mnm happens only
within the sets of polynomials that have the same difference of degree in
direction n and m.

In two dimensions there is at most one pair of nonzero offdiagonal
entries of the symmetric matrix M, and hence the analysis simplifies
considerably. Any symmetric matrix M ∈ C2×2 is of the form

M =

(
λ1 λ2
λ2 λ3

)
with λ1, λ2, λ3 ∈ C.
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Hence, applying Proposition 11 at most one time yields a diagonal
matrix that gives rise to tensor product Hermite polynomials of
the form (6.19). The following Corollary 1 contains the complete
charaterization of the polynomials qM

k in two dimensions.

Corollary 1 (Two-dimensional polynomials). Let k ∈N2 with k1 ≥
k2. Then,

qM
k (x)=

(−2λ2)
k2 k2!(a†

λ1
)k1−k2 L(k1−k2)

k2

(
1

2λ2
a†

λ1
a†

λ3

)
1, λ2 6= 0(

a†
λ1

)k1
(

a†
λ3

)k2
1, λ2 = 0

(6.25)
and the case k1 ≤ k2 is analogous.

Proof. Note that (6.19) covers the case λ2 = 0. For λ2 6= 0, a single
application of Proposition 11 yields the desired formula.

Corollary 1 asserts that we can rewrite
(
b†

M
)k via products of the

one-dimensional raising operator a†
• from (6.8). Let us take a closer

look on the form of the polynomials defined on the right hand side
of (6.25). If λ2 = 0, one directly has the factorization

qM
k (x) = Hλ1

k1
(x1)Hλ3

k2
(x2).

Furthermore, in the case λ2 6= 0 one can deduce that each polyno-
mial qM

k is a linear combination of at most min{k1, k2} many tensor
products of the form(

a†
λ1

)n (
a†

λ3

)m
1 = Hλ1

n (x1)Hλ3
m (x2), (6.26)

where n−m = k1 − k2.
A class of polynomials which is of interest with regard to Hage-

dorn wave packets are those polynomials generated from the anti-
diagonal matrix

M =

(
0 λ

λ 0

)
=: Nλ. (6.27)
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Since here the diagonal raising operator a†
0 creates monomials, we

end up with the Laguerre formula

qNλ
k (x) = (−λ)k2 k2!2k1 xk1−k2

1 L(k1−k2)
k2

( 2
λ x1x2

)
(6.28)

whenever λ 6= 0 and k1 ≥ k2. In fact, polynomials of the form (6.28)
with λ = 1 appear in the Wigner function of a pair of Hermite
functions, see [Fol89, §1.6], [LT14, Theorem 1], or §8 for the general
Hagedorn-Wigner formula.

6.5 Tensor Product Representation

In more than two dimensions the mixing matrix M can have more
than one offdiagonal pair of nonzero entries. Then, in order to
arrive at simple Hermite tensor products generated from a diagonal
mixing matrix, one eventually has to apply the Laguerre reduction
from Proposition 11 several times. Hence, a simple characterization
as in the bivariate case is not available anymore. The following
Theorem 2 provides an expansion of the general polynomials in
terms of Hermite tensor product polynomials.

Theorem 2 (Tensor product representation). Let M ∈ Cd×d be
symmetric, and suppose that there are precisely 0 ≤ r ≤ 1

2 d(d − 1)
nonzero offdiagonal pairs of entries Mαj β j = Mβ jαj = λj 6= 0, where
1 ≤ αj < β j ≤ d for all j = 1, . . . , r. Then, for k ∈Nd,

qM
k (x) = ∑

`∈Nr

`j≤min{kαj ,kβj
}

(−2λ)``!
(

kα

`

)(
kβ

`

) d

∏
i=1

HMii
ki−(E`)i

(xi)

where kα ∈ Nr with (kα)j = kαj . The index matrix E ∈ {0, 1}d×r is
defined by

Eij = (eαi + eβi )j.
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Proof. We start by recalling (6.24), which implies

qM
k (x) =

min{kαj ,kβj
}

∑
m=0

m!
(

kαj

m

)(
kβ j

m

)
(−2λj)

mq
M[αj ,β j ]

k−m(eαj+eβj
)
(x)1, (6.29)

for all j = 1, . . . , n. One can use the matrix E in order to write

k−m(eαj + eβ j) = k− (Emêj)

where êj denotes the jth unit vector in Rr. Iterating this proce-
dure until all non-vanishing offdiagonal entries of M are deleted
completes the proof.

By Theorem 2, one can rewrite any polynomial qM
k as a sum of

finitely many tensor product Hermite polynomials

qdiag(M)
` (x) =

d

∏
j=1

H
Mjj
` (xj), ` ≤ k,

associated with the diagonal of M. The number of summands
in the expansion depends on the number of nonzero offdiagonal
entries Mij = Mji 6= 0 of M, and the corresponding indices ki, and
k j. We remark that in the case r = 1 one regains the Laguerre
formula (6.25), multiplied with a tensor Hermite polynomial asso-
ciated with the remaining directions unaffected by the mixing.

Theorem 2 suggests the rule of thumb that the polynomials qM
k

typically become more complicated for matrices M that are not
sparse. As examples, we consider the real coefficient polynomials

qM(j)

k1,k2
∈ R[x1, x2], j ∈ {1, 2, 3, 4},

in two dimensions, generated from the real symmetric matrices

M(1) =

(
1 0
0 1

)
, M(2) =

(
0 1
1 0

)
M(3) = 1√

2

(
1 1
1 −1

)
, M(4) =

( 73
16

1
2

1
2

73
16

)
.
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We only consider real polynomials in order to facilitate their illus-
tration. Note that M(1), M(2), and M(3) are orthogonal whereas
M(4) is not.

−5 0 5

−5

0

5

x1

x 2

qM(1)

4,5 (x)

−5 0 5

−5

0

5

x1

x 2

qM(2)

7,6 (x)

Figure 2: Illustration of the two examplary polynomials qM(1)

4,5 (left) and qM(2)

7,6
(right). The nodal sets of the polynomials are depicted by black lines. Grey coloring
is used for the areas in which the polynomials attain negative values.

For an explicit form of the polynomials qM(1)

4,6 , and qM(2)

7,6 , we
invoke (6.26) and (6.28). We observe that the first polynomial

qM(1)

4,6 (x) = H1
4(x1)H1

6(x2),

is a simple tensor product of two classical Hermite polynomials.
For the second polynomial, one obtains the formula

qM(2)

7,6 (x) = 6!27x1L(1)
6 (2x1x2). (6.30)

The consequences of these simple formulas are reflected in the
structure of the nodal sets3 of the polynomials depicted in figure 2.
The nodal set of the tensor Hermite polynomial qM(1)

4,6 has the form

3The nodal set of a polynomial p : Rd → C is the set of roots {x ∈ Rd : p(x) = 0}.
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of a rectangular grid with 6 horizontal and 4 vertical lines. In
contrast, for qM(2)

7,6 the nodal set contains 6 disjoint hyperbolas. This

is due to the fact that the Laguerre polynomial L(1)
6 has 6 distinct

positive roots.

−5 0 5

−5

0

5

x1

x 2

qM(3)

6,5 (x)

−5 0 5

−5

0

5

x1

x 2

qM(4)

4,7 (x)

Figure 3: Illustration of the bivariate polynomials qM(3)

6,5 (left) and qM(4)

4,7 (right). The
nodal sets of the polynomials are depicted by black lines. Grey coloring is used for
the areas in which the polynomials attain negative values.

In contrast to M(1) and M(2), the matrices M(3) and M(4) have
no vanishing entries. Hence, in view of Theorem 2, we expect the
corresponding polynomials to exhibit more involved structures.
The illustrations of the nodal sets of qM(3)

6,5 and qM(4)

4,7 from figure 3
support this intuition. It is fascinating that for real matrices4 M,
the polynomials qM

k can develop such nontrivial structures. We

find it even more surprising that, by Corollary 1, qM(3)

6,5 and qM(4)

4,7
can be written as a sum of only 5 and 4 Hermite tensor product
polynomials, respectively.

4 M(3) is even orthogonal.

79



II. Wave Packet Analysis

7 Hagedorn Wave

Packets

In general it is not possible to compute explicit solutions for Schrödinger
equations. However, for harmonic oscillator Hamiltonians of the
form

Hho = 1
2

(
−ε2∂2

x + ωx2
)

, ω > 0, (7.1)

both the stationary, and the evolution problem can be solved ana-
lytically. The solutions of the stationary problem

Hhoψ = Eψ, ψ ∈ L2(R), (7.2)

are Hermite functions, and can be computed by means of sim-
ple ladder operators. This “algebraic method” of solving the
Schrödinger equation goes back to Dirac, see [Dir30].

Hagedorn wave packets take the place of the Hermite function
solutions of (7.2) if one considers multidimensional, non-isotropic
generalizations of the harmonic oscillator Hamiltonian (7.1). They
were first introduced in [Hag80], and are also known as generalized
squeezed states in the literature, see [CR12, §3.4]. We take the gen-
eral viewpoint of [GS12, LST15, DKT15] and parametrize Hagedorn
wave packets via positive Lagrangian frames, see also §7.1 for the
background in symplectic linear algebra. In particular, our analysis
includes non-normalized wave packets that can be used for treating
non-selfadjoint evolution problems, see [GS12, LST15].

The ladder operator representation of Hagedorn wave packets
is the topic of §7.2. Afterwards, in §7.4 we discuss the connection
to the polynomials qM

k we investigated in §6. This chapter mainly
resembles the contents of §3 in our joint paper [DKT15].
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7.1 Symplectic Linear Algebra

This section contains a summary of results from symplectic linear
algebra with an emphasis on complex Lagrangian subspaces, see
also [Hör07, §21.6], and [GS12, LST15].

Let us recall from (2.7) that the classical phase space R2d is
a symplectic vector space, equipped with the symplectic form
Ω(z, w) = −zT Jw. Furthermore, the matrix J defines a complex
structure on R2d, that is, J2 = −Id2d. We consider the complexifica-
tion (C2d, ΩC) of phase space, where the symplectic form

ΩC(z, w) = −zT Jw, z, w ∈ C2d, (7.3)

is the holomorphic extension of Ω, see e.g. [Zwo12, §13.2]. As
in [Hö95], we are interested in Lagrangian subspaces of (C2d, ΩC).

Definition 3 (Isotropic and Lagrangian subspaces). Let L ⊂ C2d be
a linear subspace.

i) If ΩC(z, w) = 0 for all z, w ∈ L, L is called an isotropic subspace
of R2d.

ii) If L is an isotropic subspace of complex dimension d, it is called a
Lagrangian subspace.

Due to the non-degeneracy of ΩC, it is easy to see that Lagrangian
subspaces are isotropic subspaces of maximal dimension. By means
of the Hermitian quadratic form iΩC(w, z) on Cd one can further
define positive and negative Lagrangian subspaces, see also [LST15,
§2].

Definition 4 (Positive and negative Lagrangian subspaces). Let
L ⊂ C2d be a Lagrangian subspace. L is called positive (or negative) if

1
2i ΩC(z, z) > 0

(
or i

2 ΩC(z, z) < 0
)

for all z ∈ L.
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The more general Lagrangian submanifolds together with the
associated generating functions and distributions play a prominent
role in the theory of Fourier integral operators. A standard reference
is [Hör09, §25]. In this dissertation we restrict ourselves to linear
Lagrangian subspaces.

Definition 5 (Lagrangian frame). Let Z ∈ C2d×d. Then, the matrix
Z is called isotropic if

ZT JZ = 0, (7.4)

and a Lagrangian frame, if Z has full rank. We call a Lagrangian frame
Z positive , if

1
2i Z∗ JZ =: ΓZ > 0 (7.5)

and normalized if ΓZ = Idd.

Lagrangian frames are precisely the ordered bases of Lagrangian
subspaces. In other words, the image of a (positive) Lagrangian
frame Z ∈ C2d×d is a (positive) Lagrangian subspace of C2d, as one
can easily verify. We employ positive Lagrangian frames in §7.2
for the parametrization of Hagedorn wave packets. Similarly as for
phase space points z = (q, p), for Lagrangian frames Z ∈ C2d×d we
will use the notation Z = (Q; P) with Q, P ∈ Cd×d.

Remark 9. Normalized Lagrangian frames are in one-to-one correspon-
dence with symplectic matrices. If Z is a normalized Lagrangian frame,
then (Re(Z), Im(Z)) ∈ R2d×2d is a symplectic matrix. On the other
hand, given a symplectic matrix S = (A, B) ∈ R2d×2d, the matrix
A + iB ∈ C2d×d defines a normalized Lagrangian frame.

By comparing (7.4) and (7.5), one can immediately see that posi-
tive Lagrangian frames cannot have real entries only. In fact, for a
positive Lagrangian frame Z = (Q; P) ∈ C2d×d one can easily show
that Q and P are invertible, and PQ−1 is complex symmetric with

Im
(

PQ−1
)
=
(

QΓ−1
Z Q∗

)−1
> 0. (7.6)
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In other words, PQ−1 lies in the upper Siegel half space

Σd = {C ∈ Cd×d : C is symmetric and ImC > 0}.

By [GS12, Lemma 2.2] one can actually rewrite any positive La-
grangian subspace as the graph of a linear map induced by a matrix
in the upper Siegel half space. This parametrization is unique for a
large class of Lagrangian subspaces, see [LST15, Lemma 2.3].

A proof for the following Lemma can be found in [LST15, Propo-
sition 2.4].

Lemma 9 (Symplectic metric and complex structure). Let Z ∈
C2d×d be a normalized Lagrangian frame. Then, one has

ZZ∗ = Re (ZZ∗)− i J, (7.7)

and Re (ZZ∗) is a real symmetric, positive definite, symplectic matrix.
Moreover, one has

(Re (ZZ∗) J)2 = −Id2d. (7.8)

We remark that if two normalized Lagrangian frames Z, Y span
the same Lagrangian subspace L, there is an unitary matrix U ∈
U(d) such that Z = YU. In particular ZZ∗ = YY∗ only depends on
the Lagrangian subspace L. Hence, by Lemma 9 and (7.8),

GZ := Re (ZZ∗)−1 = JTRe (ZZ∗) J

defines a symplectic metric, and

JZ = JGZ, J2
Z = −Id2d, (7.9)

a complex structure on phase space, both of which only depend
on the positive Lagrangian subspace L = RangeZ. Since −J JZ is
symmetric and positive definite, the complex structure JZ is called
compatible with the symplectic structure Ω, see [GS12] or [LST15, §2.4].

Let ε > 0 be a small semiclassical parameter. Then, given a
phase space center z = (q, p) ∈ R2d and a positive Lagrangian
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frame Z = (Q; P) ∈ C2d×d, we define the Hagedorn ground state
ϕε

0[Z; z] : Rd → C as

ϕε
0[Z; z](x) = (πε)−

d
4 det(Q)−

1
2 e
( i

2ε (x−q)T PQ−1(x−q)+ i
ε p·(x−q)

)
.

(7.10)
From (7.6) we know that ϕε

0[Z; z] decays exponentially as |x| → ∞,
and hence defines a Schwartz function on Rd. We note that ϕε

0[Z; z]
is only defined up to a global phase since one has to choose a
branch for the square root of det(Q). This phase is typically fixed
by imposing a continuity condition.

Remark 10 (Complex centers). In (7.10), we could also allow for
complex phase space centers z ∈ C2d. This is done in [GS12, LST15],
where the authors consider non-selfadjoint evolution problems for which
the underlying classical Hamiltonian flow is complex.

However, by using the projection

PZ : C2d → R2d, PZ(z) = Rez + JZImz,

it is sufficient to treat wave packets with real centers only, see also [GS12,
Theorem 2.1] or [LST15, Theorem 3.12 and §4.5]. Since in this thesis we
do not deal with non-selfadjoint evolution problems, in the following we
only consider real phase space centers z ∈ R2d.

If Z ∈ C2d×d is a positive Lagrangian frame, it can be normalized
by means of the matrix ΓZ from (7.5). We denote by

Z0 = ZΓ−1/2
Z ,

the normalization of Z. The normalization of the Lagrangian frame
implies the L2-normalization of the corresponding ground state,
since one has

ϕε
0[ZC; z] = det(C)−1/2 ϕε

0[Z; z] (7.11)

for any invertible C ∈ Cd×d, and ‖ϕε
0[Z0; z]‖L2 = 1.
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7. Hagedorn Wave Packets

7.2 Ladder Operators and Excited States

Given a positive Lagrangian frame Z ∈ C2d×d and a phase space
center z ∈ R2d, one constructs the Hagedorn wave packets

ϕε
k[Z; z] = 1√

k!
(A†[Z; z])k ϕε

0[Z; z], k ∈Nd, (7.12)

from the Hagedorn ground state (7.10) by applying the raising
operator

A†[Z; z] = − i√
2ε

Z∗ J(opWe
ε (z)− z), (7.13)

where

opWe
ε (z) =

(
x

−iε∇x

)
denotes the Weyl quantized vector of coordinate symbols, see §5.2.
We introduce the operator A[Z; z] as the formal adjoint of A†[Z; z],

A[Z; z] = i√
2ε

ZT J(opWe
ε (z)− z). (7.14)

If Z = Z0 is normalized, A[Z0; z] acts as a lowering operator, that
is,

Aj[Z0; z]ϕε
k[Z0; z] =

√
k j ϕ

ε
k−ej

[Z0; z]. (7.15)

This property fails to hold for non-normalized Lagrangian frames,
where the appropriate lowering operator is not anymore the formal
adjoint of the raising operator A†[Z; z]. One can prove that the
so-called Lagrangian ideal

I(L, z) = {ψ ∈ S ′(Rd) : A[Z; z]ψ = 0 for all Z with RangeZ = L}

associated with a positive Lagrangian subspace L ⊂ C2d and a
phase space center z ∈ R2d is given by the one-dimensional span of
the ground state ϕε

0[Z0; z] for some normalized Z0 with RangeZ0 =
L, see5 [LST15, Proposition 3.5] or [Hö95, Proposition 5.1]. This

5The lowering operator in [LST15] is defined differently from (7.14), but the proof
works all the same.
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makes sense since by (7.11) the ground states associated with two
different Lagrangian frames that span the same positive Lagrangian
subspace coincide up to a global prefactor. In particular, for two
positive Lagrangian frames Z, Y ∈ C2d×d one has

Aj[Z; z]ϕ0[Y, z] = 0, for all j = 1, . . . , d

if and only if RangeZ = RangeY.
The ladder operators satisfy the following commutation relations,

see [LST15, Lemma 3.2]. We include a proof for the convenience of
the reader.

Lemma 10 (Commutation relations). Let Z, Y be positive Lagrangian
frames and z ∈ R2d. Then, one has[

A†
i [Z; z], A†

j [Y; z]
]
= i

2
(
Z∗ JY

)
ij ,[

Ai[Z; z], Aj[Y; z]
]
= − i

2

(
ZT JY

)
ij

,[
Ai[Z; z], A†

j [Y; z]
]
= i

2

(
ZT JY

)
ij

for all i, j ∈ {1, . . . , d}.

Proof. We start by noting that both Ai[Z; z] and A†
i [Z; z] are Weyl

quantized operators with linear symbols. Moreover, one computes

∇σWe (Ai[Z; z]) ≡ − i√
2ε

JZi, ∇σWe
(

A†
j [Y; z]

)
≡ i√

2ε
JY j,

with Z = (Z1, . . . , Zd) and Y = (Y1, . . . , Yd). Hence, from Lemma 8
we know that[

Ai[Z; z], Aj[Y; z]
]
= −iεopWe

ε

(
{σWe(Ai[Z; z]), σWe(Aj[Y; z])}

)
= i

2

(
ZT

i JT JT JYj

)
= − i

2

(
ZT JY

)
ij
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and the other identities then follow from

A[Z; z] = −A†[Z; z],

which just makes sense as a calculative identity since Z is a negative
Lagrangian frame.

From Lemma 10 and Definition 5 follows that the components of
the raising and lowering operators commute,[

A†
i [Z; z], A†

j [Z; z]
]
= 0,

[
Ai[Z; z], Aj[Z; z]

]
= 0.

Moreover, one has [
Ai[Z; z], A†

j [Z; z]
]
= (ΓZ)ij

and hence the ladder operators associated with a normalized La-
grangian frame satisfy canonical commutation relations.

The Heisenberg-Weyl operator T̂z from (5.10) can be used for
translating Hagedorn wave packets as

ϕε
k[Z; (q, p)] = e−

i
2ε p·qT̂(q,p)ϕε

k[Z; 0],

and the corresponding ladder operators transform accordingly,

T̂wopWe
ε (z)T̂−1

w = opWe
ε (z)− w, w ∈ R2d.

For this reason it is sufficient to consider wavepackets and ladder
operators centered in the origin, and we write

ϕε
k[Z; 0] =: ϕε

k[Z], A[Z; 0] =: A[Z], A†[Z; 0] =: A†[Z]

for readability. In their work on non-selfadjoint quadratic Hamil-
tonians, the authors of [LST15] encounter the situation that the
positive Lagrangian subspace RangeY associated with the ladder
operator A†[Y] is different from the Lagrangian subspace RangeZ
that defines the ground state ϕε

0[Z]. In order to take these wave
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functions into account, we also allow for more general Hagedorn
wave packets of the form

ϕε
k[Z, Y] :=

1√
k!
(A†[Y])k ϕε

0[Z], (7.16)

which are associated with two arbitrary positive Lagrangian frames
Z, Y ∈ C2d×d. Without loss of generality, in the following we can
assume that Z = Z0 is normalized, since by (7.11) this only amounts
to neglecting a prefactor.

7.3 Spectral Properties

Suppose that Z0 = (Q; P) is a normalized Lagrangian frame. Then,
the commutation relations from Lemma 10 together with (7.12)
and (7.15) imply

〈ϕε
k[Z0; z], ϕε

`[Z0; z]〉L2 = δk`. (7.17)

In particular, the Hagedorn wave packets associated with a nor-
malized Lagrangian frame are L2-normalized. One observes that
ϕε

k[Z0; z] is an eigenfunction for the eigenvalue |k|+ d of the quadratic
number operator

NZ0 = A[Z0; z] · A†[Z0; z]

=
1
2ε
(opWe

ε (z)− z)T
(

PP∗ −PQ∗

−QP∗ QQ∗

)
(opWe

ε (z)− z) +
d
2

,

that is elliptic and essentially selfadjoint on L2(Rd). Hence, nor-
malized Hagedorn wave packets can be seen as generalizations
of the Hermite functions, which diagonalize the one-dimensional
Harmonic oscillator (7.1). They appear as the eigenfunctions of
higher dimensional harmonic oscillators of the form6

HZ0
ho = 1

2 (opWe
ε (z)− z)TGZ0(opWe

ε (z)− z). (7.18)

6Since z is real, we can use the real width matrix GZ0 by recalling (7.7).
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7. Hagedorn Wave Packets

where GZ0 ∈ R2d×2d is the symplectic metric associated with a
positive Lagrangian frame Z. Since the normalized Hagedorn
wave packets are orthogonal by (7.17) and form a complete set of
eigenvectors for HZ0

ho ,

{ϕε
k[Z0; z]}k∈Nd (7.19)

is an orthonormal basis of L2(Rd), as has been shown in [Hag98].
If Z is not normalized, the commutation relations from Lemma 10

imply that the Hagedorn wave packets ϕε
k[Z] are typically not or-

thogonal anymore. However, by expressing the ladder operators for
the unnormalized Lagrangian frame in terms of its normalization
one can show that Hagedorn wave packets of different total degree
are still orthogonal.

Proposition 12 (Level orthogonality). Let Z ∈ C2d×d be a positive
Lagrangian frame, and Z0 its normalization. Then,

A†[Z; z] = Γ1/2
Z A†[Z0; z] , A[Z; z] = Γ1/2

Z A[Z0; z]

and {ϕε
k[Z, z]}k∈Nd is a basis of L2(Rd). Furthermore, one has

〈ϕε
k[Z; z], ϕε

`[Z; z]〉L2 = 0 (7.20)

whenever |`| 6= |k|.

Proof. Inspecting the definitions of the ladder operators (7.13) and
(7.14) yields the formulas for the ladder operators. The basis prop-
erty of the unnormalized wave packets {ϕε

k[Z, z]}k∈Nd then follows
from the invertibility of ΓZ, and the fact that

{ϕε
k[Z0; z]}k∈Nd

is a basis of L2(Rd).
We can use the normalized raising operator in order to rewrite

ϕε
k[Z; z] as a linear combination of normalized wave packets

ϕε
k[Z; z](x) = ∑

|`|=k
α`ϕε

`[Z0; z](x) (7.21)
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of the same total degree for some constants α` ∈ C. Consequently
ϕε

k[Z; z] is contained in the eigenspace of NZ0 associated with the
eigenvalue |k| + d. The assertion (7.20) then follows from the
fact that eigenfunctions ϕε

k[Z; z] and ϕε
`[Z; z] belonging to differ-

ent eigenspaces of the selfadjoint operator NZ0 are orthogonal.

From the proof of Proposition 12 follows in particular that the
non-normalized Hagedorn wave packet ϕε

k[Z; z] is an eigenfunction
of the harmonic oscillator HZ0

ho defined in (7.18), belonging to the
eigenvalue ε(|k|+ d

2 ).

7.4 Polynomial Relation

From the definition of the raising operator is it clear that

ϕε
k[Z, Y](x) = pε

k[Z, Y](x)ϕε
0[Z](x),

for some polynomial pε
k[Z, Y] of total degree |k|. In this section,

we interrelate these polynomials to the generalized Hermite poly-
nomials qM

k we analyzed in §6. This will facilitate to extend the
generating function calculus developed for the polynomials qM

k to
Hagedorn wave packets. A generating function for the polynomi-
als pε

k[Z0, Z0] has also been recently derived by George Hagedorn
in [Hag15], but with different techniques.

For simplicity we first state the relation for normalized Hagedorn
wave packets, which can also be found in [LST15].

Lemma 11. Let Z = Z0 = (Q; P) ∈ C2d×d be a normalized La-
grangian frame. Then, the k-th Hagedorn wave packet, k ∈ Nd, can be
rewritten as

ϕε
k[Z](x) =

1√
2|k|k!

qM
k

(
1√

ε
Q−1x

)
ϕε

0[Z](x), (7.22)

where M = Q−1Q is symmetric and unitary, and qM
k is a generalized

Hermite polynomial satisfying the TTRR (6.1).
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7. Hagedorn Wave Packets

The formula from Lemma 11 provides a first connection between
Hagedorn wave packets and the generalized Hermite polynomials
from §6.

Example: Rescaled Hermite functions. From Lemma 11 one can
infer that semiclassically rescaled tensor Hermite functions are a
special case of Hagedorn wave packets, namely those associated
with the normalized Lagrangian frame ZHermite = (Id, iId) ∈ C2d×d.
In this case we have M = Id, and Lemma 11 together with (6.19)
implies

ϕε
k[ZHermite](x) =

(πε)−d/4
√

2|k|k!

d

∏
j=1

H1
kj

(
1√

ε
xj

)
e−
|xj |2

2ε .

�

From Lemma 11 we conclude that the polynomial pε
k[Z0] associ-

ated with the normalized Lagrangian frame Z0 = (Q; P) depends
only on Q, and not on P. Furthermore, the observation

Q ∈ Rd×d ⇐⇒ M = Q−1Q = Id,

by (7.22) and the above example implies that the resulting Hagedorn
wave packet is a usual tensor Hermite function evaluated on the
the transformed coordinates y = Q−1x.

In general, however, the structure of Hagedorn wave packets
can be much more involved. In particular, if Q is not real, M is
typically not block-diagonal, and hence the polynomials pε

k[Z0, Y0]
do not factorize, as can be seen by invoking Proposition 10. In the
following Proposition 13 we extend Lemma 11 to the generalized
Hagedorn wave packets ϕε

k[Z, Y]. In [LST15] one can also find a
proof of (7.23), which uses the projector

πL = i
2 ZZ∗Ω

on the positive Lagrangian subspace L = RangeZ, and the commu-
tation relations from Lemma 10. Our approach is more direct and
employs the polynomial raising operator b†

M from Proposition 9.
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Proposition 13. Let Y = (X; K) ∈ C2d×d and Z = Z0 = (Q; P)
be a positive and a normalized Lagrangian frame, respectively. Define
B = − i

2 Z∗0 JY. Then, for k ∈Nd one has

ϕε
k[Z, Y](x) =

1√
2|k|k!

qM
k

(
1√

ε
B∗Q−1x

)
ϕε

0[Z](x), (7.23)

with the symmetric matrix

M = X∗Q−T B = 1
4 YTGZ0Y + B∗Q−1QB. (7.24)

Proof. We start by checking the symmetry of M and (7.24) which is
necessary for (7.23) to make sense. We know that QQ∗ is a positive
definite matrix with real entries. Hence, the square root of QQ∗ is
real-valued as well, and we obtain the polar decomposition

Q = (QQ∗)1/2U

with some unitary matrix U, and (QQ∗)1/2 ∈ Rd×d. Consequently,

Q−1Q = U−1(QQ∗)−1/2(QQ∗)1/2U = UTU (7.25)

is unitary and complex symmetric, and the symmetry of M follows
readily. The symmetry of Q−1Q furthermore implies that

B∗Q∗ = i
2 (K

∗Q− X∗P)Q∗ = i
2 (K

∗QQ− X∗PQT − 2iX∗)

since PQ∗ = (QP∗ + 2iId)T . We conclude

B∗Q∗Q−T B = i
2 (K

∗QB− X∗PB) + X∗Q−T B

= i
2 Y∗ΩZB + X∗Q−T B

= 1
4 Y∗ΩZZTΩY + X∗Q−T B = − 1

4 Y∗GZ0Y + X∗Q−T B,

where in the last equality we used the isotropy of Y.
Let us recall the definition (7.16) of the wave packets ϕk[Z, Y]. It

is clear from the ladder operator construction that ϕk[Z, Y] is given
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by a polynomial times the ground state ϕε
0[Z]. We prove the special

form of the polynomials asserted in (7.23) by induction over the
total degree |k|.

Since qM
0 ≡ 1, the base clause k = 0 is obviously true. Now,

assume that (7.23) is true for all ` ∈ Nd with |`| = N, and let k
with |k| = N be arbitrary. Then, from (7.16) and the induction
hypothesis follows

ϕk+ei
[Z, Y](x) =

A†
i [Y]√

ki + 1
ϕk[Z, Y](x)

= 2−|k|−1i√
(k+ei)!ε

([
iεX∗∇x − X∗PQ−1x + K∗x

]
i
qM

k

(
1√

ε
B∗Q−1x

))
ϕ0(x)

for all i = 1, . . . , d and ϕ0 = ϕ0[Z, Y]. With the matrix B one can
rewrite

i√
ε

[
iεX∗∇x − X∗PQ−1x + K∗x

]
i
=
[
−
√

εX∗∇x +
2√

ε
B∗Q−1x

]
i
,

and hence

qM
k+ei

(
1√

ε
B∗Q−1x

)
= [−

√
εX∗∇x +

2√
ε
B∗Q−1x]iqM

k

(
1√

ε
B∗Q−1x

)
by recalling the definition of the polynomial raising operator b†

M
from Proposition 9. This observation completes the proof.

The representation of Hagedorn wave packets from Proposition 13
immediately implies a TTRR for the wave packets. For the normal-
ized case see also [Lub08, §V.2].

Corollary 2 (General three-term recurrence relation). Let Z =
Z0 = (Q; P), Y ∈ C2d×d and M be as above. Then, the generalized
Hagedorn wave packets satisfy the TTRR(√

k j + 1ϕε
k[Z, Y](x)

)d

j=1
=
√

2
ε Q−1xϕε

k[Z, Y]

−M
(√

k j ϕ
ε
k−ej

[Z, Y]
)d

j=1
(7.26)
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for all k ∈Nd.

Proof. Using Proposition 13 together with the TTRR (6.1) for the
polynomials qM

k yields the assertion.

In the next chapter §8, we apply Proposition 13 in order to identify
Wigner functions as multiples of Hagedorn wave packets on phase
space. Let us remark at this point that by a similar argument as
in the proof of Proposition 13 one can also derive the appropriate
lowering operator

− i√
2ε

B−1
(

iεXT∇x + KTx
)

ϕε
k[Z] = B−1 A[(X; K)]ϕε

k[Z]

= (
√

ki ϕ
ε
k−ei

[Z])d
i=1,

for the generalized Hagedorn wave packets.

8 Wigner-Hagedorn

Formula

In [LT14] the authors recently proved that the cross-Wigner function
of two normalized Hagedorn wave packets is given by an exponen-
tial function times a tensor product of d bivariate Laguerre poly-
nomials of the form (6.28). This observation generalizes the well-
known Laguerre connection for Hermite functions, see e.g. [Fol89,
§1.9] or [Tha93, §1.3]. In this chapter we provide an explanation
for this phase space factorization result that remarkably holds inde-
pendently from a possible factorization of the corresponding wave
packets in position space. Wigner functions of general Hagedorn
wave packets are of the form

W ε(ϕε
k[Z0, Y], ϕε

`[Z0, Y])](z) = (πε)−de−zT GZ0 zγk,`(z), k, ` ∈Nd,
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8. Wigner-Hagedorn Formula

where GZ0 is the symplectic metric from (7.8). We will use the
shorthand

W ε
k,`[Z, Y] =W ε(ϕε

k[Z, Y], ϕε
`[Z, Y]),

and in the case Z = Y we writeW ε
k,`[Z] :=W ε

k,`[Z, Z]. The polyno-
mial γk,` can be expressed via a generalized Hermite polynomial
qM

k,` on phase space with a lifted matrix M ∈ C2d×2d. For nor-
malized wave packets, that is, if Z0 = Y, one always obtains the
same sparse matrix M . By invoking Proposition 10 this implies the
uniform factorization result.

In §8.1 introduce a lift of Lagrangian frames to the phase space.
Afterwards, in §8.2 we use this lift in order to identify the Wigner
functions W ε

k,`[Z, Y] as generalized Hagedorn wave packets on
phase space. This Wigner-Hagedorn formula from Theorem 3 is
one of the main results of this dissertation. The first three parts of
this chapter are similar to [DKT15, §4], while §8.4 contains a novel
result for expressing cross-Wigner functions in terms of Wigner
transforms.

8.1 Phase Space Lift

We first investigate the Wigner transforms of normalized ground
statesW ε

0,0[Z0]. By solving a Gaussian integral and employing the
normalization of Z0, these Wigner transforms can be explicitely
computed as

W ε
0,0[Z](z) = (πε)−de−

1
ε zT GZ0 z, (8.1)

see [LT14] for the details. For identifying (8.1) with a Hagedorn
ground state on phase space, in view of (7.10) the phase space lift
Z0 = (Q, P) ∈ C4d×2d of the Lagrangian frame Z0 has to satisfy

2iGZ0 = PQ−1. (8.2)

Moreover, for the phase space lift Y ∈ C4d×2d of some positive
Lagrangian frame Y ∈ C2d×d we demand that the lifted raising op-
erator A†[Y ], which is defined similarly as in (7.13), is compatible
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with the Weyl correspondence. That is,

A†
j [Y ]W ε(φ, ψ) =W ε(A†

j [Y]φ, ψ), j = 1, ..., d, (8.3)

A†
j+d[Y ]W ε(φ, ψ) =W ε(φ, A†

j [Y]ψ), j = 1, ..., d,

for all Schwartz functions φ, ψ ∈ S(Rd). This condition determines
the phase space lift Y 7→ Y uniquely, as can be seen from the
following calculation that can also be found in [LST15, §5].

For some test function a ∈ S(R2d) and a positive Lagrangian
frame Y = (Y1 . . . Yd) ∈ C2d×d one computes∫

R2d
W ε(φ, A†

j [Y]ψ)(z)a(z)dz =
〈

Aj[Y]opWe
ε (a)φ, ψ

〉
=
∫

R2d
W ε(φ, ψ)(z) (σWe(Aj[Y])]a)(z)dz

by (5.14) and Lemma 8. Since σWe(Aj[Y]) is a polynomial of degree
one, we get

(σWe(Aj[Y])]a)(z) = i√
2ε

Yj · Jz a(z) + ε
2i∇(

i√
2ε

Yj · Jz) · JT∇a(z)

= i√
2ε

Yj ·
(

Jz + 1
2 (−iε∇)

)
a(z).

Using integration by parts results in the condition

A†
j+d[Y ] = i√

2ε
Yj ·

(
Jz− 1

2 (−iε∇)
)

, j = 1, . . . , d, (8.4)

and the computation for A†
j [Y ] analoguously gives

A†
j [Y ] = i√

2ε
Y j ·

(
−Jz− 1

2 (−iε∇)
)

, j = 1, . . . , d. (8.5)

Recalling the form of the raising operator (7.13) then leads to the
following Definition 6 of the lifted Lagrangian frame.

Definition 6 (Phase space lift). Let Z ∈ C2d×d be a positive La-
grangian frame. Then we define the phase space lift Z ∈ C4d×2d of Z
as

Z =

( 1
2
(
ZZ
)

J(ZZ)J

)
.
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One can easily verify that the phase space lift Y 7→ Y indeed
satisfies the conditions (8.3) and (8.2). The contents of the following
Lemma can also be found in [LST15, §5].

Lemma 12. Let Z = (Q; P) ∈ C2d×d be a positive Lagrangian frame.
Then, the lifted matrix Z = (Q; P) ∈ C4d×2d has the following proper-
ties.

i) Z is a positive Lagrangian frame, and normalized if and only if Z is.

ii) A†[Z ] satisfies (8.3).

iii) If Z = Z0 is normalized, the symplectic metric fulfills 2iGZ0 =
PQ−1 and QQ∗ = Im(2iGZ0)

−1.

Proof. The first property follows from checking the isotropy and
positivity conditions from Definition 5, namely

QTP −PTQ =

(
−ZT JZ 0

0 ZT JZ

)
= 0

1
2i (Q

∗P −P∗Q) = 1
2i

(
−Z∗ JZ 0

0 Z∗ JZ

)
=

(
ΓZ 0
0 ΓZ

)
.

Therefore, Z is normalized if and only if Z is. The second property
follows directly from the construction, see (8.4) and (8.5).

Now, let us assume that Z = (Q; P) is normalized. Then, for
the third part we first note that Q−1 = iP∗, which can easily be
checked. The assertion follows from

QQ∗ = 1
4
(
Z Z

) (ZT

Z∗

)
= 1

2 Re(ZZ∗) = Im(2iGZ0)
−1.

Given a lifted Lagrangian frame Z ∈ C4d×2d, as a next step we
want to charaterize the phase space lift of the matrices B and M
from the polynomial formula in Proposition 13.
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Proposition 14. Let Z = (Q; P) = Z0 ∈ C2d×d be a normalized, and
Y ∈ C2d×d a positive Lagrangian frame. We set B = − i

2 Z∗0 JY, and
consider the lifted Lagrangian frames Z = (Q; P) = Z0 ∈ C4d×2d and
Y ∈ C4d×2d.

i) One has

B := − i
2Z ∗0 J4dY =

(
B 0
0 B

)
with the canonical complex structure7 J4d = J ⊗ Id2 on R4d.

ii) The lifted recursion matrix is given by

M := 1
4Y TGZ0Y +B∗Q−1QB

= 1
4

(
YTGZ0Y 0

0 YTGZ0Y

)
+B∗Q−1QB

and has the block form

M =

(
R F
FT R

)
where R ∈ Cd×d is symmetric, and F ∈ Cd×d is positive definite
with F ≥ 1

2 ΓZ > 0.

iii) In the special case Y = Y0 = Z0 we have B = Id and

M = Q−1Q =

(
0 Id
Id 0

)
. (8.6)

Proof. From Lemma 12 we know that Z , Y are positive Lagrangian
frames, and Z is normalized. We note that the matrices B, M ∈
C2d×2d are defined just as B, M ∈ Cd×d in Proposition 13.

7Here, the tensor product ⊗ is the Kronecker product of matrices.
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The formula for B is a direct calculation. For M one begins by
computing

B∗B =
1
4

Y∗ΩTZ0Z∗0 ΩY

=
1
4

Y∗(GZ0 + iΩ)Y =
1
4
(Y∗GZ0Y + 2ΓY),

and consequently we can rewrite

M = 1
4

(
YTGZ0Y YTGZ0Y + 2ΓT

Y
Y∗GZ0Y + 2ΓY YTGZ0Y

)
. (8.7)

The block structure of M follows immediately.
Showing the special form of M for the situation considered in

the third part is an easy calculation based on the isotropy and
normalization conditions.

Lemma 12 and Proposition 14 provide all the necessary prelimilar-
ies for proving the Wigner-Hagedorn formula Theorem 3. In [LT14]
it has recently been discovered that, for a normalized Lagrangian
frame Z, the Wigner functions {W ε

k,`[Z]}k,`∈Nd can be written as a
phase space Gaussian times a tensor product of Laguerre polyno-
mials. By means of part iii) of Proposition 14 we can explain this
factorization with the special form of the lifted matrix M , see §8.3.

8.2 The Wigner-Hagedorn Formula

Suppose that Z ∈ C2d×d is a positive Lagrangian frame. Then, by
Lemma 12, the lifted Lagrangian frame Z ∈ C4d×2d is positive as
well. Consequently we can lift all our previous results to the phase
space and consequentially find a family of Hagedorn wave packets
in doubled dimensions, see Theorem 3.

In [Hag15], Hagedorn recently derived the generating function
for the polynomials pk that define the normalized wave packets
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ϕε
k[Z]. By combining the polynomial formula Proposition 13 and

the generating function from Proposition 8, we obtain

∑
k∈Nd

tk
√

k!

√
2|k|ϕε

k[Z, Y](x) = e
2√

ε
tT B∗Q−1x−tT Mt

ϕε
0[Z, Y](x) (8.8)

which generalizes the formula for the generating function from [Hag15,
Theorem 1.1] to the wave packets ϕε

k[Z, Y].
If one formally interchanges the integral in the definition of the

Wigner transform with the sum in the generating function, for the
Wigner functions of Hagedorn wave packets one gets

hZ,Y(z, v) := ∑
k,`∈Nd

tks`√
k!`!

√
2|k|+|`|Wk,`[Z, Y](z)

= (πε)−de−zT GZ0 z/εe
2√

ε
vTB∗Q−1z+vTM v

,

with z = (x, ξ), v = (t, s), and the matrices B, M from Proposi-
tion 14. Hence, hZ,Y is of the same form as the generating function
of the Hagedorn wave packets. We note that this formal calculation
can be made rigorous in the case of normalized wave packets. Moti-
vated by this instructive calculation, we state the Wigner-Hagedorn
formula. In order to avoid confusion, we denote Hagedorn wave
packets on phase space by upper case letters Φε

k,`[Z , Y ].

Theorem 3 (Wigner-Hagedorn Formula). Let Z = Z0 = (Q; P) ∈
C2d×dand Y ∈ C2d×d be a normalized and a positive Lagrangian frame,
respectively, and k, ` ∈ Nd. Then, the Wigner functionWk,`[Z, Y] is a
generalized Hagedorn wave packet on phase space,

W ε
k,`[Z, Y] = (2πε)−d/2Φε

(k,`)[Z , Y ],

where Z = (Q, P), Y ∈ C4d×2d are the lifted Lagrangian frames.
Consequently, we have the polynomial formula

W ε
k,`[Z, Y](z) =

(2πε)−d/2
√

2|k|+|`|k!`!
qM
(k,`)

(
1√

ε
B∗Q−1z

)
Φε

0[Z ](z),
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for z ∈ R2d, where the matrices B, M ∈ C2d×2d have been defined in
Proposition 14.

Proof. Let us first consider the ground state Φε
0[Z ]. From part iii)

of Lemma 12 we know that PQ−1 = 2iGZ0 as well as (QQ∗)−1 =
Im(2iGZ0). Consequently,

det(Q)−
1
2 = det(QQ∗)−

1
4 = det(2GZ0)

1
4 = 2

d
2 , (8.9)

and by using (8.1) we get

W ε
0,0[Z](z) = (πε)−de−

1
ε zT GZ0 z = (2πε)−d/2Φε

0[Z ].

For the excited states the major part of the work has already been
done in Lemma 12. By part ii) of Lemma 12 we can apply the phase
space raising operator A†[Y ]. This gives

Wk,`[Z, Y] =
(2πε)−d/2
√

k!`!
(A†[Y ])(k,`)Φε

0[Z ]

= (2πε)−d/2Φε
(k,`)[Z , Y ].

The polynomial formula follows from Proposition 13, since the ma-
trices B and M from Proposition 14 are defined via the Lagrangian
frames Z and Y in the same way as on position space.

By using the Heisenberg-Weyl operators T̂z from §5.2 and the
symplectic covariance of the Wigner function from Lemma 6, The-
orem 3 directly extends to Hagedorn wave packets with different
phase space centers.

Example. A possible application of Therem 3 is to construct ap-
proximations for the Wigner transforms of more general states. For
instance, suppose that the state ψ ∈ L2(Rd) can be written as a
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linear combination of N Hagedorn wave packets8

ψ(x) =
N

∑
j=1

cj ϕ
ε
kj
[Z, Y](x), k1, . . . , kN ∈Nd,

for some c1, . . . , cN ∈ C, where Z, Y ∈ C2d×d are positive La-
grangian frames. Then, Theorem 3 implies that the Wigner trans-
form has a similar form, namely

W ε(ψ) = (2πε)−d/2
N

∑
i,j=1

cicjΦε
(ki ,kj)

[Z , Y ]

= (2πε)−d/2Φε
0[Z , Y ]

(
N

∑
i,j=1

cicj2
−|ki |+|kj |
√

k!`!
qM
(ki ,kj)

(
1√

ε
B∗Q−1z

))

by the sesquilinearity of the Wigner transform. �

The computation or approximation of the Wigner transforms is
one of the central bottlenecks in most phase space propagation
methods for the time-dependent semiclassical Schrödinger equa-
tion (5.2), see §16.2. If one directly uses the Definition 1, for every
evaluation of a Wigner transform one would need to solve a highly
oscillatory quadrature problem on Rd. This is not feasible already
in moderately high dimensions. The Wigner-Hagedorn formula
provides a method for explicitly computing the Wigner transform,
whenever one can expand the considered state in some finite set of
Hagedorn wave packets, see for instance the above example.

8.3 Factorization of Wigner Functions

The Wigner-Hagedorn formula from Theorem 3 shows that the
Wigner function of two Hagedorn wave packets is a Hagedorn

8This finite expansion could for instance be a L2-approximation of the state of
interest.
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wave packet on phase space. Moreover, we can express the Wigner
function W ε

k,` via the generalized Hermite polynomial qM
k,` . This

facilitates to use the results and explicit formulas for the polyno-
mials we derived in §6. In particular, we can use the factorization
condition for the polynomials from Proposition 10 to analyze the
Wigner functions. For normalized Hagedorn wave packets, part iii)
of Proposition 14 ensures that M is always a simple permutation
matrix. This implies the uniform factorization of Hagedorn wave
packets in phase space. Moreover, by employing the explicit expres-
sion for the two-dimensional polynomials, in Corollary 3 we regain
the Laguerre connection from [LT14, Theorem 1].

Corollary 3 (Hagedorn-Laguerre Connection). Suppose Z = Z0 =
(Q; P) ∈ C2d×d is a normalized Lagrangian frame, and k, ` ∈Nd. Then,
for y = 1√

ε
Q−1z,

W ε
k,`[Z](z) =

(πε)−d/2
√

2|k|+|`|k!`!
e−

1
ε zT GZz

d

∏
j=1

qN1
(kj ,`j)

(
yj, yd+j

)
(8.10)

=
(πε)−d/2
√

2|k|+|`|k!`!
e−

1
ε zT GZz

d

∏
j=1
Lkj`j

(
i√
ε
(QTξ − PTx)j

)
with the anti-diagonal matrix N1 ∈ R2×2 from (6.27), and

Lnm(y) =

{
(−1)m2nm!yn−mL(n−m)

m (2|y|2), n ≥ m

(−1)n2mn! (−y)m−n L(m−n)
n (2|y|2), m ≥ n

. (8.11)

Proof. From Theorem 3 we obtain the expression for W ε
k,`[Z] in

terms of the phase space polynomial qM
k,` , and Proposition 14 im-

plies that the mixing matrix M ∈ C2d×2d takes the simple form

M =

(
0 Idd

Idd 0

)
.

By a relabeling of the standard basis, the matrix M can be trans-
formed into a block-diagonal matrix with d blocks of size 2× 2,
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and hence Proposition 10 yields the factorized representation. The
Laguerre connection then follows from inserting the explicit form
of the polynomials qN1

(i,j) from (6.28).

Remark 11. Laguerre connections in the form of Corollary 3 appear
frequently in the quantization of finite and infinite systems. A closely
related result for the Wick quantization of the bosonic Fock space can be
found in [AN08, Proposition 3.5].

We highlight that the Laguerre type polynomials qN1
k from (6.28)

associated with the anti-diagonal matrix N1 precisely define the
polynomial part in the Wigner function W1

m,n[(1, i)] of two one-
dimensional Hermite functions. In the harmonic analysis literature
the Wigner functions of tensorized one-dimensional Hermite func-
tions

W1
k,`[(Id, iId)](x, ξ) =

d

∏
j=1
W1

kj ,`j
[(1, i)](xj, ξ j)

are also known as special Hermite functions, see e.g. [Tha93, §1.3].

Remark 12 (Optimality). The factorization result from Corollary 3 is
optimal in the sense that the polynomials {qM

(k,`)}k,`∈Nd characterizing
the Wigner functions {W ε

k`[Z, Y]}k,`∈Nd of generalized Hagedorn wave
packets can never factorize into more than d polynomials for all k, ` ∈Nd.
This follows from part ii) of Proposition 14, where we proved that the
offdiagonal blocks F, FT of M satisfy F ≥ 1

2 ΓZ > 0. This inequality can
be interpreted as an expression of the non-commutativity of the quantum
position and momentum operators. In other words, there is a lower
bound on the mixing between position and momentum variables in the
polynomials that appear in Wigner functions.

If Y is not a normalized Lagrangian frame, the Wigner func-
tionsW ε

k,`[Z, Y] only factorize under strong additional assumptions.

Corollary 4. Let Y ∈ C2d×d be a positive Lagrangian frame. Suppose
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that there is a normalised Lagrangian frame Z = Z0 = (Q; P) ∈ C2d×d

and a permutation matrix Pσ ∈Nd×d such that Y is isotropic with respect
to GZ0 , that is, YTGZ0Y = 0, and

PT
σ

(
1
2 Y∗GZ0Y + ΓY

)
Pσ ∈ Cd×d

is block-diagonal with n ≤ d blocks. Then,W ε
k,`[Z, Y] is a tensor product

of n wave packets for all k, ` ∈Nd.

Proof. By part ii) of Proposition 14, the additional assumption
YTGZ0Y = 0 implies that the lifted matrix M is of the form

M =

(
0 P−T

σ diag(M1, . . . , Mn)P−1
σ

P−1
σ diag(AT

1 , . . . , AT
n )P−T

σ 0

)
with some square matrices A1, · · · , An. Hence, there is a phase
space permutation matrix Pπ ∈ R2d×2d such that PπMPT

π is
blockdiagonal with n blocks. Now, the claim follows from Theo-
rem 3 and Proposition 10.

8.4 Rewriting cross-Wigner Functions

It is well-known that for some orthonormal basis {φα}α∈J of L2(Rd)
with a countable index set J ,

{(2πε)d/2W ε(φα, φβ)}α,β∈J

is an orthonormal basis of L2(R2d). This follows directly from
Moyal’s identity (5.7), see also [dG11, Proposition 188]. In particular,
for Z = Z0 ∈ C2d×d a normalized Lagrangian frame, the set of
cross-Wigner functions

{(2πε)d/2W ε
k,`[Z0]}k,`∈Nd = {Φε

(k,`)[Z0]}k,`∈Nd

is an orthonormal basis of L2(R2d) consisting of normalized Hage-
dorn wave packets, see also (7.19). As a consequence, one cannot ex-
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press a cross-Wigner functionW ε
k,`[Z0] merely as a linear combina-

tion of some Wigner transformsW ε
mi ,mi

[Z0], m1, m2, . . . ∈Nd. How-
ever, as we shall prove below, the cross-Wigner function W ε

k,`[Z0]
can be written as a finite linear combination of the diagonal Wigner
transforms

W ε
m,m[Z0], ∈Nd with min(k j, `j) ≤ mj ≤ max(k j, `j),

and inverse powers of the ladder operator symbols as additional
prefactors.

Let us first note the special structure of the three-term recurrence
relation satisfied by Wigner functions of normalized Hagedorn
wave packets. For a different derivation of the following result we
refer to Corollary 4 in [LT14].

Proposition 15 (Wigner TTRR). Let Z = Z0 ∈ C2d×d be a normalized
Lagrangian frame. Then, the Wigner functions satisfy the three-term
recurrence relations(√

k j + 1W ε
k+ej ,`

[Z0](z)
)d

j=1
=
√

2
ε (iZ

T
0 Jz)W ε

k,`[Z0](z) (8.12)

+
(√

`jW ε
k,`−ej

[Z0](z)
)d

j=1(√
`j + 1W ε

k,`+ej
[Z0](z)

)d

j=1
=
√

2
ε (−iZ∗0 Jz)W ε

k,`[Z0](z) (8.13)

+
(√

k jW ε
k−ej ,`

[Z0](z)
)d

j=1

for all k, ` ∈Nd.

Proof. The Wigner-Hagedorn formula from Theorem 3 implies that

W ε
k,`[Z0] = (2πε)−d/2Φε

(k,`)[Z0]

with the normalized Lagrangian frame Z0 = (Q; P) ∈ C4d×2d.
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Then, since one has Q−1 = iP , we obtain

Q−1z =

(
iZT

0 Jz
−iZ∗ Jz

)
.

Consequently, invoking the TTRR for Hagedorn wave packets from
Corollary 2, and the special form of M from part iii) of Proposi-
tion 14 completes the proof.

By means of the TTRR from Proposition 15 one can rewrite the
cross-Wigner function of two Hagedorn wave packets via Wigner
transforms.

Proposition 16. Let Z = Z0 ∈ C2d×d be a normalized Lagrangian
frame, and k, ` ∈ Nd. We set α = (max(k j, `j))

d
j=1 ∈ Nd and β =

(min(k j, `j))
d
j=1 ∈Nd. Then,

W ε
k,`[Z](z)=

(
−2a[Z](z)
−2a†[Z](z)

)(β− `
β− k

)√
α!
β! (8.14)

× ∑
m∈Nd

m≤α−β

(
α− β

m

)
(−1)mW ε

β+m,β+m[Z](z)

for all z ∈ R2d with standard multiindex notation, where

a†[Z] = σWe
(

A†[Z]
)

, a[Z] = σWe (A[Z]) , (8.15)

denote the Weyl symbols of the Hagedorn ladder operators.

Proof. We first note that

a†[Z](z) = − i√
2ε

Z∗ Jz, a[Z](z) = i√
2ε

ZT Jz, (8.16)

by the linearity of the Weyl quantization. Moreover, since (8.14) is
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of product form, it suffices to show that

W ε
k,`[Z](z) =

(
−2aj[Z](z)
−2a†

j [Z](z)

)(β j − `j
β j − k j

)√
αj !
β j !

(8.17)

×
αj−β j

∑
i=0

(
αj − β j

i

)
(−1)iW ε

k[j]+iej ,`[j]+iej
[Z](z)

holds for all j = 1, . . . , d, where

k[j] := k + ej(β j − k j) and `[j] := `+ ej(β j − `j).

We prove (8.17) by induction over αj − β j. The base clause k j = `j
is obviously true. Now, suppose that the assertion holds for all
r, s ∈ Nd with max(rj, sj)−min(rj, sj) = n, and let k j + n + 1 = `j.
By (8.12) one has√

k j + 1W ε
k+ej ,`

[Z](z) = 2aj[Z](z)W ε
k,`[Z](z) +

√
`jW ε

k,`−ej
[Z](z)

and hence, for all z 6= 0,

−2aj[Z](z)W ε
k,`[Z](z) =

√
`jW ε

k,`−ej
[Z](z) (8.18)

−
√

k j + 1W ε
k+ej ,`

[Z](z).

From now on, we omit the dependence on z and Z for readabil-
ity. Since k j < `j, we can apply the induction hypothesis to both
summands on the right hand side of (8.18). This yields

W ε
k,`=

(
−2aj

)−n−1
√

αj !
β j !

×
n

∑
i=0

(
n
i

)
(−1)i

(
W ε

k+eji,`[j]+eji
−W ε

k+ej(i+1),`[j]+ej(i+1)

)
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with `[j] as above. By the addition theorem for binomial coefficients
we calculate

n

∑
i=0

(
n
i

)
(−1)i

(
W ε

k+eji,`[j]+eji
−W ε

k+ej(i+1),`[j]+ej(i+1)

)
=

n

∑
i=0

(
n
i

)
(−1)iW ε

k+eji,`[j]+eji
+

n+1

∑
i=1

(
n

i− 1

)
(−1)iW ε

k+eji,`[j]+eji)

=
n+1

∑
i=0

(
n
i

)
(−1)iW ε

k+eji,`[j]+eji
.

For the case k j + n + 1 = `j the proof works similarly by using the
second TTRR for Wigner functions (8.13), and, hence, (8.17) follows.
Applying this procedure iteratively for all directions j = 1, . . . , d,
and noting that the singularity at z = 0 is smoothly removable
complete the proof.

We can rewrite Proposition 16 as

W ε
k,`[Z]=

(
−2a[Z]
−2a†[Z]

)(β− `
β− k

)√
α!
β!

((
1−A†

j [Z ]A†
j+d[Z ]

)d

j=1

)α−β

W ε
β,β[Z]

(8.19)
which shows that our expansion employs a mixing on the ladder
operators on position and phase space.

Furthermore, from Proposition 16 one can see that the imaginary
part of a cross-Wigner function W ε

k,`[Z] is only generated by the
powers of the linear symbols a[Z], a†[Z], since the diagonal Wigner
transformsW ε

k,k[Z], are real-valued.
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9 Excursus
The Hagedorn Semigroup

For a normalized Lagrangian frame Z0 ∈ C2d×d, the elliptic har-
monic oscillator Hamiltonian

Hho(Z0) =
1
2 opWe

ε (z)TGZ0opWe
ε (z), (9.1)

from (7.18) gives rise to the strongly continuous contraction semi-
group

{e−tHho(Z0)}t>0 ⊂ L
(

L2(Rd)
)

, ‖e−tHho(Z0)‖L(L2) ≤ 1, (9.2)

see [Kat95, §9.1]. We call (9.2) the Hagedorn semigroup associated
with Z0. It is a special case of a general harmonic oscillator semi-
group since GZ0 is not only positive definite, but also symplectic.

The motivation for this short excursus is the analysis of Hermite
and Laguerre semigroups conducted in [RT09]. With the results
presented in this chapter we would like to highlight an aspect
which might prove useful for investigations of harmonic oscillator
semigroups in the spirit of [RT09]. We show that every Hagedorn
semigroup consists of Weyl quantized operators with particularly
simple symbols, in contrast to the complicated structure of the
semigroup’s Mehler kernel. Moreover, the choice of the symplectic
metric GZ0 does not influence the structure of the symbols. These
properties strongly suggest to explore generalized Hermite and
Laguerre semigroups with tools of semiclassical analysis. This
could be benefial because of the simple structure of the symbols.

In §7.3 we remarked that the normalized Hagedorn wave packets
{ϕε

k[Z0]}k∈Nd define an orthonormal basis of L2(Rd), namely the
eigenbasis of the harmonic oscillator Hamiltonian (9.1). In other
words, given a function ψ ∈ L2(Rd), we have the L2-convergent
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expansion

ψ =
∞

∑
n=0

Pn[Z0]ψ,

where Pn[Z0] denotes the orthogonal projector on the set

En[Z0] = Span (ϕε
k[Z0] : |k| = n)

spanned by all Hagedorn wavepackets of total degree n. En[Z0] is
an eigenspace associated with the eigenvalue ε(n + d

2 ) of Hho(Z0),
and has the degeneracy

dim En[Z0] =

(
n + d− 1

d− 1

)
. (9.3)

Hence, we could equivalently define the Hagedorn semigroup via

e−tHho(Z0)ψ =
∞

∑
n=0

e−ε
(

n+ d
2

)
tPn[Z0]ψ,

for all ψ ∈ L2(Rd).
Since GZ0 is symmetric, an easy application of Lemma 8 shows

that Hho(Z0) is a Weyl quantized operator with symbol

σWe (Hho(Z0)) (z) = 1
2 zTGZ0 z. (9.4)

Moreover, the general classification of exponentials of quadratic
forms by Hörmander shows that e−tHho(Z0) is a trace class Weyl
operator for all t > 0. From [Hö95, Theorem 4.2] we obtain the
following result.

Proposition 17. Let Z be a normalized Lagrangian frame and t > 0.
Then, e−tHho(Z0) is a Weyl quantized trace class operator with symbol

σWe
(

e−tHho(Z)
)
(z) = cosh(εt)−d exp

(
tanh(−εt)

ε
1
2 zTGZ0 z

)
(9.5)

in the Schwartz class S(R2d).
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Sketch of proof. The statements in [Hö95] are formulated for the case
ε = 1, but the semiclassical formula follows along the same line
of argumentation. One can use the semiclassical expansions from
Lemma 8 and then retrace the proofs in Section 4 of [Hö95]. A key
identity is given by

J3
Z = −JZ,

which holds since JZ is a complex structure by (7.9). Consequently,

tan(−tεJZ) = JZ tanh(−tε), cos(−εtJZ) = JZ cosh(εt),

and we observe that the symbol of the Hagedorn semigroup is a
function of the classical Hamiltonian (9.4), see also [Der93]. From
Lemma 7 we know that the Weyl symbol gives rise to a trace class
operator, since it is of Schwarz class.

Let us comment that since σWe
(

e−tHho(Z)
)
∈ S(R2d), the Hage-

dorn semigroup defines a continuous map on the tempered distri-
butions,

e−tHho(Z) : S ′(R2d)→ S(R2d),

and consequently is a smoothing operator.

Remark 13 (Gibbs ensemble). In view of Remark 1, the normalized,
positive trace class operator

e−tHho(Z)/tr
(

e−tHho(Z)
)

(9.6)

defines a mixed quantum state. If we write t = (kBT)−1, where T
denotes the temperature and kB is the Boltzmann constant, (9.6) defines
the thermal equilibrium state or Gibbs ensemble at temperature T of
a statistical ensemble of particles in Rd with Hamiltonian Hho(Z).

From the Definition 2 of Weyl quantized operators and Lemma 17
one can also compute the Schwartz kernel of the Hagedorn semi-
group. One has

e−tHho(Z)ψ(x) =
∫

Rd
Kε

t (x, y)ψ(y)dy,
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with the generalized Mehler kernel

Kε
t (x, y) =

(2πε)−d

cosh(εt)d

×
∫

Rd
ei(x−y)·ξ/ε exp

(
tanh(−εt)

2ε ( x+y
2 , ξ) · GZ0(

x+y
2 , ξ)

)
dξ.

We recall the standard Gaussian integral formula

(2π)−d/2
∫

Rd
e−

1
2 xT Ax+xTbdx = det(A)−1/2e

1
2 bT A−1b

for A ∈ Rd×d symmetric positive definite, and b ∈ Cd. Then,

Kε
t (x, y) = (2πε)−d/2 det(Q)−1/4

sinh(2εt)d/2

× e−
tanh(εt)

4ε ((x+y)PP∗(x+y)−(x+y)(−PQ∗+iId)(QQ∗)−1(−QP∗−iId)(x+y))

× e
−(x−y)

(QQ∗)−1

ε tanh(εt) (x−y)− i
ε (x−y)T(−PQ∗+iId)(QQ∗)−1(x+y)

= (2πε)−d/2 det(Q)−1/4

sinh(2εt)d/2 e−
tanh(εt)

4ε (2i(x+y)PQ−1(x+y)−(x+y)(QQ∗)−1(x+y))

× e
−(x−y)

(QQ∗)−1

ε tanh(εt) (x−y)+ 1
ε (x−y)T(QQ∗)−1(x+y)+ i

ε (x−y)T PQ−1(x+y)

= (2πε)−d/2 det(Q)−1/4

sinh(2εt)d/2 e−
i tanh(εt)

2ε (x+y)PQ−1(x+y)+ i
ε (x−y)T PQ−1(x+y)

× e
−
(√

tanh(εt)(x+y)
2 +

x−y√
tanh(εt)

)T

(εQQ∗)−1

(√
tanh(εt)(x+y)

2 +
x−y√

tanh(εt)

)
,

and we observe that the Mehler kernel has a much more compli-
cated structure than the Weyl symbol (9.5).
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10 Anti-Wick Operators

and Spectrograms

Pseudodifferential operators provide a way to associate linear op-
erators with functions on phase space. The most popular and
important pseudodifferential calculus is given by the Weyl quanti-
zation procedure we presented in §5.3. The immense popularity of
Weyl operators can be explained by both, compliance with intuitive
quantization rules for quantum mechanical observables, and the
wealth of favorable properties such as the symplectic covariance,
see e.g. Lemma 6 and [dG11, Theorem 215]. However, there are
also drawbacks. Firstly, the major part of the theory of Weyl op-
erators relies on classes of smooth symbols, and every extension
to a more singular setting is a demanding task. We mention the
twisted pseudifferential calculus of Martinez and Sordoni [MS09]
for a method that works for Coulomb potentials. Secondly, some
important properties of symbols, like positivity, are not necessar-
ily reflected in their Weyl quantization. The sharpest available
inequality for Weyl operators is the Fefferman-Phong inequality

opWe
ε (a) + Cε2 ≥ 0, C > 0,

which holds for nonnegative symbols a ≥ 0 that are regular enough9.
We refer to [Ler10, §2.5.3] for a discussion and proofs.

A promising way to overcome the two shortcomings of Weyl op-
erators mentioned above is to switch to the anti-Wick quantization
procedure, which can be used for quantizing very irregular distribu-
tions. In this section we discuss anti-Wick quantized operators and
their relation to the canonical Weyl correspondence. Our approach
is based on the wave packets from §7 and tailored for the semiclas-
sical propagation with probability densities considered in §12. For

9It is for example sufficient if ∂4a belongs to the Sjöstrand algebra, see [Ler10,
Theorem 2.5.10].
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details and further reading we refer to [dG11, §11.4],[Ler10, §2.4]
and [Sch01, §4.1]. A closely related concept in analytic microlocal
analysis is that of a Toeplitz operator, see Remark 14 or [Zwo12,
§13.4] for an introduction.

The Wick and anti-Wick quantization procedures were originally
invented to reflect Wick or anti-Wick ordering of creation and
annihilation operators, see [Ber71], and hence appear naturally
in the analysis of many-particle systems. We refer to [AN08] for
results on the quantization of infinite dimensional systems in the
context of bosonic quantum field theories. For a recent application
of Wick quantization to Bose-Einstein condensation see [LNR15].

In our analysis of quantum molecular dynamics we stick to the
quantization of the finite-dimensional phase space R2d. Particular
versions of the results in section §10.4 can be found in our joint
publication [KLO15].

10.1 Generalized F.B.I. Transforms

For many problems in PDEs and mathematical physics it is often
necessary to analyze a distribution in position and momentum
space simultaneously. A central tool for this microlocalization is
provided by the Fourier-Bros-Iagolnitzer (F.B.I.) transform10

(T εψ)(z) = (2πε)−d/2 〈ψ, ϕε
0[z]〉S ′ ,S (10.1)

of a tempered distribution ψ ∈ S ′(Rd). In the definition (10.1),
ϕε

0[z] := ϕε
0[(Id, iId); z] denotes the isotropic Hagedorn ground

state with phase space center z ∈ R2d. This definition is accordance
with the one in [Mar02, Chapter 3]. In the context of analytic
microlocal analysis one often defines the F.B.I. transform of ψ as
the holomorphic function

(Bψ)(q− ip) = (πε)−3d/42−d/2
∫

Rd
e−

1
2ε (q−ip−x)2

ψ(x)dx. (10.2)

10Here, 〈•, •〉S ′ ,S denotes the extension of the left-linear inner product 〈•, •〉L2 .
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We refer to [Del92, §I.2] or [Zwo12, §13] for more general holo-
morphic phase functions and the relation to complex Lagrangian
submanifolds of C2d. The transformation (10.2) is also known as
the Bargmann or Segal-Bargmann transform. F.B.I. and Bargmann
transforms can for instance be used for exploring the microlocal
or semiclassical regularity of solutions of PDEs, see e.g. [Sjö82] for
the concept of an analytic wavefront set. (10.1) is the most suitable
choice for the analysis of anti-Wick operators.

We also consider generalized F.B.I. transforms defined via the
linear maps

(T ε
k,Zψ)(z) = (2πε)−d/2 〈ψ, ϕε

k[Z; z]〉S ′ ,S (10.3)

where ϕε
k[Z; z], k ∈Nd, is the semiclassical Hagedorn wave packet

associated with the normalized Lagrangian frame Z = Z0 ∈ C2d×d.
We recall some basic properties of the F.B.I. transform in the follow-
ing Lemma 13, which is straightforward to prove.

Lemma 13. Let Z ∈ C2d×d be a normalized Lagrangian frame, and
k ∈Nd.

i) T ε
k,Z : L2(Rd)→ L2(R2d) is an isometry.

ii) The adjoint operator
(
T ε

k,Z

)∗
: L2(R2d)→ L2(Rd) is given by11

(
T ε

k,Z

)∗
u(x) = (2πε)−d/2

∫
R2d

u(z)ϕε
k[Z, z](x)dz

for u ∈ L2(R2d).

iii) T ε
k,Z : S(Rd) → S(R2d) and

(
T ε

k,Z

)∗
: S(R2d) → S(Rd) are

continuous, and the same is true for tempered distributions.

iv) One has
(
T ε

k,Z

)∗
T ε

k,Z = IdL2(Rd).

11The integral has to interpreted as a highly oscillatory integral in the momentum
variable.
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From (10.2) it is easy to see that the image T ε(L2(Rd)) of the
standard F.B.I. transform is given by

{
u ∈ L2(R2d) : e

|p|2
2ε u(q, p) holomorphic in q− ip ∈ Cd} (10.4)

compare also [Mar02, Remark 3.1.3]. In other words, B maps
L2(Rd) into a semiclassical Segal-Bargmann space of square-integrable
holomorphic functions. For a generalized F.B.I. transform T ε

k,Z
with k 6= 0 there is no immediate generalization of the analyticity
property (10.4), since the polynomial prefactor of the wave packet
ϕε

k[Z, (q, p)] depends on q but not on p.
The generalized F.B.I. transforms are closely related to the wave

packet and Gabor transforms in time-frequency analysis, see [dG11,
§9.3.2] and [Pos92]. In fact,

T ε
k,Zψ(q, p) = eipq/εVε

ϕε
k [Z]

ψ(q, p) (10.5)

where Vϕε
k [Z]

denotes the semiclassically rescaled Gabor transform
(or short-time Fourier transform)

Vε
ϕε

k [Z]
ψ(q, p) = (2πε)−d/2

∫
Rd

e−ipy/εψ(y)ϕε
k[Z](y− q)dy (10.6)

with window ϕε
k[Z], see [dG11, Definition 177].

Remark 14 (Toeplitz Quantization). The orthogonal projector BB∗ on
the holomorphic Segal-Bargmann space is called the Bergman projector.
It can be used to define the Toeplitz quantization BB∗aBB∗ of a symbol
a ∈ L∞(R2d) acting on phase space wave functions, see [Zwo12, §13.4].

10.2 Quantization

Similarly as Toeplitz operators are defined by multiplication with
the symbol in a Segal-Bargmann space, see Remark 14, we can use
the F.B.I. transform to define operators via multiplication with the
symbol in phase space.
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Definition 7 (Anti-Wick Quantization). Let Z ∈ C2d×d be a normal-
ized Lagrangian frame and k ∈Nd. For a symbol a ∈ S ′(R2d) we define
the anti-Wick quantized operator opAW

ε,Z,k(a) : S(Rd)→ S ′(Rd) as

opAW
ε,Z,k(a) =

(
T ε

k,Z

)∗
aT ε

k,Z, (10.7)

and abbreviate opAW
ε (a) = opAW

ε,(Id,iId),0(a).

We note that since a defines a continuous multiplication oper-
ator S(R2d) → S ′(R2d), by part iii) of Lemma 13 opAW

ε,Z,k(a) is a
well-defined continuous operator.

Since ϕε
k[Z, z] and T̂z ϕε

k[Z] only differ by a constant phase, one
can equivalently define the anti-Wick quantization of a function
a ∈ S ′(R2d) as the Bochner integral12

opAW
ε,Z,k(a) = (2πε)−d

∫
R2d

a(z)|T̂z ϕε
k[Z]〉〈T̂z ϕε

k[Z]|dz, (10.8)

see e.g. [dG11, Definition 255], where we recall that |ϕε
k[Z]〉〈ϕ

ε
k[Z]|

denotes the rank one orthogonal projector on the span of ϕε
k[Z] ∈

L2(Rd). For general anti-Wick quantization procedures from a
time-frequency perspective see also [BCG04].

Part iv) of Lemma 13 implies that opAW
ε,Z,k(1) = Id. This can also

be deduced from the following Lemma which states that one can
decompose the identity on L2(R2d) by simply shifting a single wave
function, the “window”, in phase space.

Lemma 14 (Completeness). Let ψ ∈ S(Rd) be L2-normalized. Then
one has

(2πε)−d
∫

R2d
|T̂zψ〉〈T̂zψ|dz = IdL2(Rd), (10.9)

where the integral on the left hand side is a Bochner integral.

12If a is not a function, one can still rewrite matrix elements of the integral via
duality brackets.
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Proof. By (5.13), the Weyl symbol of (2πε)−d|T̂zψ〉〈T̂zψ| is given by
the Wigner transformW ε(T̂zψ). Hence, the covariance property for
Wigner functions from Lemma 6 implies

σWe
(
(2πε)−d

∫
R2d
|T̂zψ〉〈T̂zψ|dz

)
=
∫

R2d
W ε(ψ)(z)dz = 1.

Note that ψ is of Schwartz class, such thatW ε(ψ) is integrable and
we can exchange the phase space integral with the one appearing in
the Weyl quantization. The claim follows since opWe

ε (1) = IdL2(Rd).

Lemma 15 summarizes some important properties of anti-Wick
quantized operators. We would particularly like to stress that in
contrast to the Weyl quantization the positivity and boundedness
properties of the symbol directly translate to the anti-Wick operator.

Lemma 15. Anti-Wick quantized operators have the following proper-
ties:

i) Let a ∈ Lp(R2d) for some 1 ≤ p ≤ ∞. Then, opAW
ε,Z,k(a) is bounded

on L2(Rd), with

‖opAW
ε,Z,k(a)‖L2→L2 ≤ CZ,k,p(2πε)−p/d‖a‖Lp

where CZ,k,p is independent of a. If p ≤ 2, opAW
ε,Z,k(a) is compact.

ii) For real-valued symbols a the operator opAW
ε,Z,k(a) is symmetric, and

one has
inf a ≤ opAW

ε,Z,k(a) ≤ sup |a|
in the sense of quadratic forms. In particular,

‖opAW
ε,Z,k(a)‖L2→L2 ≤ sup |a|.

Proof. A proof for the assertions in the case k = 0 can be found in
§4.1 of [Sch01], see in particular Proposition 4.1.5 for the first part.
Another reference is [BC02]. The generalization to k ∈ Nd works
along the same line of argumentation.
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The anti-Wick correspondence is particularly well-suited for the
quantization of measures and characteristic functions. For instance,
the quantization of a delta distribution δz, z ∈ R2d, in phase space
yields the corresponding Hagedorn state

opAW
ε,Z,k(δz) = (2πε)−d|ϕε

k[Z, z]〉〈ϕε
k[Z, z]|.

Moreover, the quantization of characteristic functions results in
approximate semiclassical projection operators, which are useful
for phase space localization estimates. See [Sch01, §4.3 and §4.4]
for details and applications to quantum ergodicity.

10.3 Relation to Weyl Operators

From the Definition 7 of Anti-Wick operators it is not immediately
clear that there is a close relation between Weyl and anti-Wick op-
erators. In fact, one can easily show that anti-Wick operators are
Weyl operators, while the other implication is not true in general.
The Weyl symbol of an anti-Wick operator can be expressed ex-
plicitely via a convolution with a Wigner transform, see also [dG11,
Proposition 258].

Proposition 18. Let a ∈ S ′(R2d). Then opAW
ε,Z,k(a) is a Weyl operator

with smooth symbol

σWe
(

opAW
ε,Z,k(a)

)
= a ∗W ε

k,k[Z],

whereW ε
k,k[Z] is the Wigner transform of ϕε

k[Z]. The situation k = 0 is
typically of the greatest interest.

Proof. Let us first recall that

(2πε)−dσWe
(
|T̂z ϕε

k[Z]〉〈T̂z ϕε
k[Z]|

)
(w) =W ε(T̂z ϕε

k[Z])(w)

=W ε
k,k[Z](w− z)
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is a Schwartz function in w for all z and vice versa.
It suffices to show the asserted operator identity for all matrix

elements. The Wigner function of any pair ψ, φ ∈ S(Rd) is of
Schwartz class. Hence, by (10.8), (10.10), and Fubini’s theorem we
obtain〈

opAW
ε,Z,k(a)ψ, φ

〉
S ′(Rd),S(Rd)

(10.10)

= (2πε)−d
〈

a, 〈ψ|T̂•ϕε
k[Z]〉〈T̂•ϕε

k[Z]|φ〉
〉
S ′(R2d),S(R2d)

=

〈
a,
(∫

R2d
W ε

k,k[Z](w− •)W
ε(ψ, φ)(w)dw

)〉
S ′(R2d),S(R2d)

=
∫

R2d
(a ∗W ε

k,k[Z])(z)W
ε(ψ, φ)(z)dz (10.11)

and the assertion follows from recalling the matrix element for-
mula (5.14) for Weyl quantized operators. The fact that a ∗W ε

k [Z]
is a smooth function follows from basic distribution theory.

Suppose that A is both a Weyl operator and an anti-Wick operator.
Then, on the one hand, from Proposition 18 we know that the reg-
ularity of the Weyl symbol of A is typically much higher than the
regularity of the anti-Wick symbol. On the other hand, (10.11) im-
plies that matrix elements of anti-Wick operators can be evaluated
as 〈

opAW
ε,Z,k(a)ψ, φ

〉
=
∫

R2d
a(z)(W ε(ψ, φ) ∗W ε

k,k[Z])(z)dz (10.12)

and hence the representation of pure states |ψ〉〈ψ| in matrix el-
ements is more regular than via Wigner functions in the Weyl
correspondence. We show in the next section §10.4 that in the anti-
Wick correspondence states are represented by smooth probability
densities on phase space.

Remark 15. Proposition 18 immediately implies a semiclassical expan-
sion of the Weyl symbol of an anti-Wick operator. In particular, the
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principal symbols coincide,

opAW
ε,Z,k(a) = opWe

ε (a + O(ε))

for suitable a.

For deriving higher order semiclassical expansions of the Weyl
symbol and composition formulas one can proceed similarly as
in [Kel12, KL13], see, e.g., §12.1. for second order conversion formu-
las. We remark that suitable symbol classes for anti-Wick calculus
are given by Gelfand-Shilov type spaces of ultradifferentiable func-
tions, see [AMP09, Sol13].

10.4 Spectrograms

Since we are interested in discretizing approximations for propa-
gated expectation values, it is desirable to work in a phase space
representation of quantum mechanics for which states |ψ〉〈ψ| are
represented by smooth probability densities on phase space. For
the anti-Wick correspondence introduced in §10.2 this is indeed
the case. Before proving this important property, we first recall the
concept of a spectrogram from time-frequency analysis.

Definition 8 (Spectrogram). Let ψ, φ ∈ L2(Rd) be normalized and
recall the Gabor transform Vε from (10.6). The non-negative function

Sφ(ψ)(z) := |Vε
φψ(z)|2

is called the Spectrogram of ψ with window φ.

Spectrograms can be used for the simultaneous representation of
wave functions in position and momentum space. As the following
Proposition shows, spectrograms are probability densities on phase
space that are obtained by convolving two Wigner transforms, or
taking the modulus squared of a generalized F.B.I. type transform.
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Proposition 19. Let ψ, φ ∈ L2(Rd) and define φ− = φ(−•). Then,
the spectrogram Sφ(ψ) satisfies

Sφ(ψ)(z) = (2πε)−d∣∣ 〈ψ, T̂zφ
〉

L2

∣∣2 = (W ε(ψ) ∗W ε(φ−))(z)
(10.13)

for all z ∈ R2d, and

∫
R2d

Sφ(ψ)(z)dz = ‖ψ‖2‖φ‖2.

Furthermore, as for Wigner transforms, we have the Weyl-Heisenberg
covariance property

Sφ(T̂zψ)(z) = Sφ(ψ)(z)(• − z). (10.14)

Proof. We start by noting that by definition the Gabor transform

Vε
φψ and (2πε)−d/2

〈
ψ, T̂zφ

〉
L2

only differ by a phase, which yields

the first equality in (10.13). For z = (q, p) we have

W ε(φ)(−z) = (2πε)−d
∫

Rd
φ(−q + y

2 )φ(−q− y
2 )e
−iy·p/εdy

= (2πε)−d
∫

Rd
φ(−q− y

2 )φ(−q + y
2 )e

iy·p/εdy

= (2πε)−d
∫

Rd
φ−(q +

y
2 )φ−(q−

y
2 )e

iy·p/εdy =W ε(φ−)(z).

Consequently, Moyal’s identity (5.7) gives

(W ε(ψ) ∗W ε(φ−))(z) =
∫

R2d
W ε(ψ)(w)W ε(φ)(w− z)dw

=
∫

R2d
W ε(ψ)(w)W ε(T̂zφ)(w)dw

= (2πε)−d∣∣ 〈ψ, T̂zφ−
〉 ∣∣2 ≥ 0.
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For the integral one computes∫
R2d

Sφ(ψ)(z)dz =
∫

R2d
(W ε(ψ) ∗W ε(φ−))(z)dz

=
∫

R2d

∫
R2d
W ε(ψ)(w)W ε(T̂wφ−)(z)dwdz

= ‖ψ‖2‖φ‖2,

since for all w ∈ R2d,∫
R2d
W ε(T̂wφ−)(z)∂z = ‖T̂wφ−‖2 = ‖φ‖2. (10.15)

Finally, for all w ∈ R2d we find

(W ε(T̂zψ) ∗W ε(φ−))(w) =
∫

R2d
W ε(ψ)(y− z)W ε(φ−)(w− y)dy

=
∫

R2d
W ε(ψ)(y)W ε(φ−)(w− y− z)dy

= (W ε(ψ) ∗W ε(φ−))(w− z)

by using the covariance property of the Wigner transform.

Proposition 19 implies that a convolution of two Wigner trans-
forms is always a nonnegative probability density on phase space.
In view of the fact that Wigner transforms generically attain neg-
ative values, this might be surprising at first sight. However, if
one encounters the relation between spectrograms and anti-Wick
operators, it can be explained by the positivity property of anti-
Wick operators from part ii) of Proposition 15. By Proposition 19
and (10.19), we can rewrite expectation values of anti-Wick opera-
tors as 〈

opAW
ε,Z,k(a)ψ, ψ

〉
=
∫

R2d
a(z)Sϕε

k [Z]
(ψ)(z)dz, (10.16)

which is the the expectation value of a with respect to the probability
measure Sϕε

k [Z]
(ψ)(z)dz on phase space. Generalizing the concept

of a spectrogram to offdiagonal matrix elements leads to Husimi
functions, which go back to [Hus40].
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Definition 9. For φ, ψ ∈ L2(Rd), k ∈ Nd, and a normalized La-
grangian frame Z ∈ C2d×d we define the Husimi function of ψ and φ

as
Hε

k,Z(ψ, φ) =W ε(ψ, φ) ∗W ε
k,k[Z] (10.17)

and write Hε
k(ψ, φ) := Hε

k,(Id;iId)(ψ, φ). If ψ = φ, we call the smooth
spectrogram

Hε
k,Z(ψ) = H

ε
k,Z(ψ, ψ) = Sϕε

k [Z]
(ψ) (10.18)

the Husimi transform of ψ.

Remark 16. Note that Hε
k,Z(ψ) = Sϕε

k [Z]
(ψ) is compatible with the

Wigner convolution formula in (10.13), since by Corollary 3 the Wigner
transform of normalized Hagedorn wavepackets is symmetric,W ε

k [Z](z) =
W ε

k [Z](−z).

With the Husimi functions we can then rewrite matrix elements
of anti-Wick operators as〈

opAW
ε,Z,k(a)ψ, φ

〉
=
∫

R2d
a(z)Hε

k,Z(ψ, φ)dz, (10.19)

which is the equivalent of the Wigner function formula (5.14) for
Weyl operators.

In applications one typically only uses the Gaussian version of
the Husimi transform with k = 0, see [AMP09, §4.1] and [AP11].
In particular, the isotropic Gaussian convolution

Hε
0(ψ)(z) = (πε)−d

∫
R2d
W ε(ψ)(w)e−|z−w|2/ε dw, (10.20)

is considered as the standard definition of Husimi transforms,
compare also [Ler10, §2.4.1]. More general Husimi transforms
appear naturally in our semiclassical spectrogram expansion of
Wigner transforms discussed in §10.5.

In contrast to Wigner transforms, Husimi transforms are smooth
probability densities on phase space. Hence, they are better amenable
for numerical sampling purposes, which is the main motivation for
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introducing and applying the semiclassical propagation methods
from §12.

10.5 Spectrogram Expansion of Wigner

Transforms

By Remark 15, the difference between the operators obtained by
Weyl and anti-Wick quantization of the same symbol is of size O(ε).
In other words, for suitable a one has

a ∗W ε
k,k[Z] = a + O(ε)

which can be seen from a simple Taylor expansion. It is a goal
of this section to introduce a quantization procedure that is both
closer to the Weyl correspondence and, at the same time, allows
for a representation of states in terms of spectrograms. This is
possible by formally inverting the convolution in the symbols up to
some error of size O(εk) with k > 1. For simplicity we stick to the
isotropic case Z = (Id, iId), but the same analysis works also for the
more general case. Combining anti-Wick quantizations associated
with different energies, that is, different indices k, makes is possible
to approximate Wigner functions more accurately than just with the
ground state quantization opAW

ε . We first rephrase the Laplacian of
ground state Wigner transforms in terms of higher order Wigner
transforms.

Proposition 20. Let ε > 0 andW ε
k =W ε

k,k[(Id; iId)]. Then,

(1− ε
4 ∆)W ε

0 = (1 + d
2 )W

ε
0 − 1

2 ∑
|k|=1
W ε

k

as well as the higher order formula

(1− ε
4 ∆ + ε2

32 ∆2)W ε
0 = (1 + 1

2 d + d(d+1)
8 )W ε

0

− ( 1
2 + d+1

4 ) ∑
|k|=1
W ε

k +
1
4 ∑
|`|=2
W ε

` .
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Proof. Let z = (q, p) ∈ R2d and set zj = qj + ipj ∈ Cd. We compute

∆W ε
0(z) = (πε)−d∆e−|z|

2/ε = (πε)−d∇ ·
(
− 2

ε z e−|z|
2/ε
)

= (πε)−d
(
− 4d

ε + 4
ε2 |z|2

)
e−|z|

2/ε.

By Corollary 3 or [LT14, Theorem 1],

W ε
ej
(z) = −(πε)−d

(
1− 2

ε |zj|2
)

e−|z|
2/ε, (10.21)

such that we have

d

∑
j=1
W ε

ej
(z) = −(πε)−d

(
2d− d− 2

ε |z|
2
)

e−|z|
2/ε

= −(πε)−d
(

2d− 2
ε |z|

2
)

e−|z|
2/ε + d · W ε

0(z)

and

∆W ε
0(z) = − 2

ε (πε)−d
(

2d− 2
ε |z|

2
)

e−|z|
2/ε

= 2
ε

d

∑
j=1
W ε

ej
(z)− 2d

ε W
ε
0(z).

This gives the first assertion. For the second expansion we start
similarly, and observe

∆2W ε
0 = ∆

(
− 4d

ε W
ε
0 +

4
ε2 |z|2W ε

0

)
= − 4d

ε

(
− 4d

ε + 4
ε2 |z|2

)
W ε

0

+ 4
ε2

(
|z|2

(
− 4d

ε + 4
ε2 |z|2

)
− 8

ε |z|
2 + 4d

)
W ε

0

=W ε
0

(
16d2+16d

ε2 − 32d+32
ε3 |z|2 + 16

ε4 |z|4
)

. (10.22)

127



II. Wave Packet Analysis

Furthermore, by Corollary 3, one computes

∑
i 6=j
W ε

ei+ej
(z) = ∑

i 6=j
W ε

0(z)L1(
2
ε |zi|2)L1(

2
ε |zj|2)

= ∑
i 6=j

(
1− 2

ε |zi|2 − 2
ε |zj|2 + 4

ε2 |zi|2|zj|2
)
W ε

0(z)

=

(
(d2 − d)− 4d−4

ε |z|
2 + 4

ε2

(
|z|4 −

d

∑
j=1
|zj|4

))
W ε

0(z)

as well as

d

∑
j=1
W ε

2ej
(z) =

d

∑
j=1
W ε

0(z)L2(
2
ε |zj|2)

=
d

∑
j=1

(
1− 4

ε |zj|2 + 2
ε2 |zj|4

)
W ε

0(z)

=

(
d− 4

ε |z|
2 + 2

ε2

d

∑
j=1
|zj|4

)
W ε

0(z).

Consequently, we have

∑
i 6=j
W ε

ei+ej
(z) + 2

d

∑
j=1
W ε

2ej
(z) =

(
(d2 + d) + −4d−4

ε |z|2 + 4
ε2 |z|4

)
W0(z)

= 8
(

d2+d
8 − d+1

2ε |z|
2 + 1

2ε2 |z|4
)
W ε

0(z)

= 8
((
− 3(d2+d)

8 + d+1
2ε |z|

2
)
+
(

d2+d
2 − d+1

ε |z|
2 + 1

2ε2 |z|4
))
W ε

0(z)

= 8
((
− 3(d2+d)

8 + d+1
2ε |z|

2
)
+ ε2

32 ∆2
)
W ε

0(z)

since by (10.22) we have

ε2

32 ∆2W ε
0(z) =

(
d2+d

2 − d+1
ε |z|

2 + 1
2ε2 |z|4

)
W ε

0(z).
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Finally, we obtain(
3(d2+d)

8 − d+1
2ε |z|

2
)
W ε

0(z) =
(

d2+d
2 − d+1

2ε |z|
2 − d2+d

8

)
W ε

0(z)

= − d+1
2

ε
4 ∆W0(z)−

(
d2+d

8

)
W ε

0(z)

= d+d2

8 W
ε
0(z)− d+1

4

d

∑
j=1
W ε

ej
(z)

and since

∑
i 6=j
W ε

ei+ej
+ 2

d

∑
j=1
W ε

2ej
= 2 ∑

|`|=2
W ε

` .

we arrive at

(1− ε
4 ∆ + ε2

32 ∆2)W ε
0 =(1 + 1

2 d + d(d+1)
8 )W ε

0 − ( 1
2 + d+1

4 ) ∑
|k|=1
W ε

k

+ 1
4 ∑
|`|=2
W ε

` ,

which completes the proof.

The expansions from Proposition 20 represent the first two re-
spectively three terms in the series of formal deconvolution for the
Husimi transform. They can be applied to approximate Wigner
functions and Weyl symbols of anti-Wick operators up to second or
third oder errors in ε. Since we are interested in the propagation of
expectation values, we state only state the spectrogram expansion
for Wigner transforms. With the same arguments as used in the
proof below one can derive a similar expansion for cross-Wigner
functions and Weyl symbols of anti-Wick operators.

Theorem 4 (Spectrogram Expansion). Let ψ ∈ L2(Rd) and ε > 0.
Then,

W ε(ψ) = (1 + d
2 )H

ε
0(ψ)− 1

2 ∑
|k|=1
Hε

k(ψ)︸ ︷︷ ︸
=:µ2(ψ)

+O(ε2) (10.23)
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as well as the third order formula

W ε(ψ) =
(

1 + 1
2 d + d(d+1)

8

)
Hε

0(ψ)− ( 1
2 + d+1

4 ) ∑
|k|=1
Hε

k(ψ)

+ 1
4 ∑
|`|=2
Hε

`(ψ) + O(ε3)

=: µ3(ψ) + O(ε3)

in the weak sense. The error terms depend on bounds for the fourth or
sixth order derivatives of the applied test function, respectively.

Proof. Let a ∈ S(R2d) be a test function. We only prove the formula
for µ3(ψ), since the proof for µ2(ψ) works in the same way. A
Taylor expansion of the Gaussian convolution implies

W ε
0 ∗ (a− ε

4 ∆a + ε2

32 ∆2a) =(a− ε
4 ∆a + ε2

32 ∆2a) + ε
4 ∆(a− ε

4 ∆a)

+ ε2

32 ∆2a + O(ε3)

=a + O(ε3),

where the error term contains derivatives of a of order six. Integra-
tion by parts yields∫

R2d
a(z)W ε(ψ)(z)dz =

∫
R2d
W ε

0 ∗ (a− ε
4 ∆a + ε2

32 ∆2a)(z)W ε(ψ)(z)dz

+ O(ε3)

=
∫

R2d
(a− ε

4 ∆a + ε2

32 ∆2a)(z)Hε
0(ψ)(z)dz + O(ε3)

=
∫

R2d
a(z)(1− ε

4 ∆ + ε2

32 ∆2)Hε
0(ψ)(z)dz + O(ε3)

and consequently we observe

(1− ε
4 ∆ + ε2

32 ∆2)Hε
0(ψ) =W ε(ψ) ∗

(
(1− ε

4 ∆ + ε2

32 ∆2)W ε
0

)
.

Applying Proposition 20 completes the proof.
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10. Anti-Wick Operators and Spectrograms

Remark 17 (Normalized weight). For a normalized wave function
ψ ∈ L2(Rd), the two densities µ2(ψ) and µ3(ψ) are of mass one,∫

R2d
µ2(ψ)(z)dz =

∫
R2d

µ3(ψ)(z)dz = 1,

as one can easily verify. Moreover, µ2(ψ) and µ3(ψ) are integrable for all
ψ ∈ L2(Rd), which is in general not true for the Wigner transform.

The form of the expansions in Theorem 4 suggests an inductive
proof of higher order spectrogram expansions of Wigner transforms.
We suppose the following closed form of a spectrogram expansion
of Wigner transforms.

Conjecture 1. Let ψ ∈ L2(Rd) and ε > 0. Then, for all N ∈ N one
has

W ε(ψ) =
N

∑
j=0

(−1)j
N

∑
m=j

2−m
(

d− 1 + m
d− 1 + j

)
∑
|k|=j
Hε

k(ψ) + O(εN+1)

in the weak sense.

In figure 4 one can see the Wigner transform, the Husimi trans-
form, and the phase space density µ2(ψ) from Theorem 4 for the
superposition ψ ∈ L2(R) of a Gaussian wave packet and a La-
grangian or WKB type state. While the Wigner transform exhibits
strong oscillations due to the entanglement of the Gaussian wave
packet and the WKB state, see also figure 1, the Husimi transform
does not show any of the oscillations. The new density µ2(ψ) dis-
plays some of the characteristic features of the oscillations in the
Wigner function. We find this observation remarkable, since the
fast oscillations vanish in the limit ε ↘ 0, and the spectrogram
expansion from Theorem 4 only holds in the weak sense.

In our preprint [KLO15] one can find explicit expressions for the
density µ2(ψ) for the cases that ψ is a Gaussian wave packet, a
Gaussian superposition, or a Hermite function.
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Figure 4: Phase space densities for a superposition ψ ∈ L2(R) of a Gaussian
wave packet (right) and a Lagrangian state (left). Negative values are indicated by
blue color. The Husimi transform does not include any of the interferences that
arise in the Wigner transform. However, the corrected density µ2(ψ) already shows
some qualitative features of the oscillations. The momentum axis is compressed for
illustration purposes.
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III
Semiclassical
Propagation

In the previous part §II we analyzed the structure and properties of
Hagedorn wave packets, and derived spectrogram approximations
of Wigner transforms. Both, the wave packet analysis, and the
spectrogram approximation can be seen as simplifications of the
typically highly complicated structure of general quantum states in
position and phase space. The basis property of Hagedorn wave
packets together with the formulas for Wigner transforms and
spectrograms allow for a simplified and explicit representation of a
large variety of quantum states.

After the simplifications of the Hilbert space of wave functions
in §II, we now turn towards approximations for the time evolution
of quantum systems. Part §III is devoted to various semiclassical
propagation results for observables, states, and Wigner functions.
All these approximations are constructed by employing the classical
flow and its linearization. More precisely, they are either based
on Egorov type results derived from pseudifferential commutator
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III. Semiclassical Propagation

expansions of the form (5.20), or they employ propagated Hagedorn
wave packets.

In §11 we make a short review of the Egorov theorem. There-
after, in §12 we discuss semiclassical approximations for quantum
expectation that are well-amenable for numerical purposes, by em-
ploying the phase space representations of states via spectrograms
we explored in §10.5.

In §13 we recall basic results on the propagation of semiclassical
wave packets, and give a short overview over different lines of re-
search that are present in the literature. The analysis in §14 and §15
is motivated by the unexpectedly good long-time behaviour of
semiclassical approximations which is observed in many numerical
experiments.

Annother popular approach to approximate the semiclassical
time evolution of wave functions, which we do not discuss in this
dissertation, are Gaussian beam methods or the Herman-Kluk prop-
agator. Both methods are closely related to the semiclassical Hage-
dorn wave packet dynamics from §13. The equations of motion
governing the evolution of Gaussian beams are essentially equiv-
alent to the ones for evolved Hagedorn wave packets, except for
an additional profile part for the Gaussian beams, see [JMS11, §8.1]
and [Lub08, §II.4 and §V.1]. However, the motivation for Gaussian
beam methods is to avoid the problems occuring at caustics in the
time-dependent WKB approximation. In particular, the focus is on
WKB type initial data, and one is required to sum O(ε−1/2) many
Gaussian beams in order to obtain a decent approximation of WKB
type states. We refer to [JMS11, LRT13] and the references given
therein for an overview over Gaussian beam methods. The Herman-
Kluk propagator or the frozen Gaussian method build on the phase
space representation of states via the F.B.I. transform, see §10.1.
Here, the dynamics simplifies an evolution of the phase prefactors
and classical motion of the Gaussian centers in the superposition
integral. The frozen Gaussian methods go back to the Herman-Kluk
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11. Egorov’s Theorem

approximation [HK84], which is one of the most popular initial
value representation in chemistry. For mathematical analysis of the
Herman-Kluk propagator see [Rob10, SR09], and [LY12a, LY12b]
for general frozen Gaussian approximations.

11 Egorov’s Theorem

In this chapter we recall Egorov’s celebrated theorem for the semi-
classical evolution of quantum observables, which provides one of
the most fundamental yet simple connections between classical and
quantum dynamics. For a suitable Weyl quantized Hamiltonian
H = opWe

ε (h) and an observable opWe
ε (a) it reads

eiHt/εopWe
ε (a)e−iHt/ε = opWe

ε (a ◦Φt) + O(ε2) (11.1)

where Φt is the Hamiltonian flow of h. Consequently, it relates the
solution of Heisenberg’s equation (1.4) for the evolution of quantum
observables with the transport (2.11) of a classical observable along
the Hamiltonian flow. We will give a more precise formulation of
the Egorov theorem in section §11.1.

The result goes back to a short note [Ego69] by Yuri Egorov, and
was later translated to the semiclassical context, see e.g. Robert’s
book [Rob87]. The most general version of the theorem is due to
Bouzouina and Robert in [BR02] and in our presentation we will
keep close to their work. Since the focus of this work lies on second
order semiclassical asymptotics for the evolution with Schrödinger
type Hamiltonians, in order to avoid distracting technicalities we
only consider ε-independent Hamilton functions h.

11.1 Approximate Evolution with ODEs

We use the following common definition of subquadratic and sub-
linear symbols.
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III. Semiclassical Propagation

Definition 10 (Subquadratic and sublinear symbols). A smooth
symbol a : R2d → C is called subquadratic if for all α ∈ N2d with
|α| ≥ 2 there is some Cα > 0 such that

|∂αa(z)| ≤ Cα

holds for all z ∈ R2d. It is called sublinear if the above inequality holds
for all α ∈N2d \ {0}.

For subquadratic Hamilton functions h : R2d → R the classical
flow Φt is globally defined and smooth. Moreover, the resulting
Hamiltonian opWe

ε (h) is essentially selfadjoint on the Schwartz
space, see e.g. Exercise IV.12 in [Rob87] or [Swa08, Proposition 1.7],
and, hence, the quantum evolution (1.3) is well-defined and unique.
For symbols that are not subquadratic one typically requires further
assumptions, such as semi-boundedness, in order to ensure that
the resulting Hamiltonian is not only symmetric, but essentially
selfadjoint.

We adopt the convenient notation from [GL14] by introducing
the generalized Poisson bracket

{a, b}k(x, ξ) = ∑
α,β∈Nd

|α+β|=k

(−1)β

α!β!
∂
(β,α)
(x,ξ) a(x, ξ) ∂

(α,β)
(x,ξ)b(x, ξ), k ∈N,

for two functions a, b ∈ C∞(R2d). The Egorov theorem from [BR02,
Theorem 1.2] for bounded time intervals then reads as follows.

Lemma 16 (Egorov’s theorem). Suppose h : R2d → R is subquadratic,
a : R2d → R is sublinear, and let Φt denote the Hamiltonian flow of h.
Then,

eiHt/εopWe
ε (a)e−iHt/ε = opWe

ε (a(t)) (11.2)

is a Weyl quantized operator with sublinear symbol a(t) : R2d → R,
where H = opWe

ε (h). Moreover, a(t)− a ◦ Φt ∈ S has an asymptotic
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expansion in S

a(t)− a ◦Φt �
∞

∑
n=1

ε2na2n(t),

in even powers of ε, uniformly on bounded time intervals. With a0(t, z) =
a(Φt(z)) one can recursively compute

a2n(t) = ∑
m≤n−1

(− 1
4 )

n−m
∫ t

0
{h, a2m(τ)}2(n−m)+1 ◦Φt−τ dτ (11.3)

for n ≥ 1.

Sketch of proof. Let us give short sketch of the proof in the spirit
of [GL14, §2] without caring about boundedness, domains and so
on. We abbreviate b2n(t) = ∑n

k=0 ε2ka2k(t). One starts by writing
the operator difference as the integral

eiHt/εopWe
ε (a)e−iHt/ε − opWe

ε (b2n(t))

=
∫ t

0

d
ds

(
eiHs/εopWe

ε (b2n(t− s))e−iHs/ε
)

ds

=
∫ t

0
eiHs/ε

(
i
ε [opWe

ε (h), opWe
ε (b2n(t− s))]− d

dt
opWe

ε (b2n(t− s))
)

e−iHs/εds,

where we used that b2n(0) = a. Now, with the asymptotic expan-
sion of the Weyl commutator from Lemma 8 we obtain

i
ε
[opWe

ε (h), opWe
ε (b2n(t− s))] � ∑

j∈N

(− ε2

4 )
jopWe

ε

(
{h, b2n(t− s)}2j+1

)
,

(11.4)
and the construction of b2n(t) implies that the first n terms in the
asymptotic expansion (11.4) precisely coincide with d

dt opWe
ε (b2n(t−

s)).

There are several remarkable facts about the Egorov propagation
theorem presented in Lemma 16. Firstly, despite the fact that the
propagator e−iHt/ε is in general not a pseudodifferential operator,
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the evolved observable (11.2) is a Weyl quantized operator again.
Secondly, the symbols a2n(t) in the expansion only depend on
derivatives of h and a and the classical flow Φt. In other words, the
expression for a2n(t) on the right hand side of (11.3) is completely
local and, hence, a2n(t) can be recursively computed by merely
solving a set of ODEs that involve the symbols a2m(s) with m < n.
This generalization of the “method of characteristics” has been
described and successfully applied in [GL14]. There, one can also
find the explicit ODEs for the first correction a2(t) together with a
numerical integrator.

In [BR02], the authors allow for more general smooth semiclassi-
cal Hamiltonians h � ∑∞

k=0 εkhk with subquadratic principal symbol
h0, sublinear subprincipal symbol h1 and bounded higher order
symbols. In this case the odd symbols a2n+1 do not vanish and
formula (11.3) becomes more involved.

For discretizations of the leading order semiclassical dynamics
determined by the classical flow we refer to §16. In the following,
we mean the second order approximation (11.1) when referring to
the Egorov theorem. Discretized versions of the Egorov theorem
are widely used in physical chemistry since the 1970es, see e.g.
[Mil74, TW04].

11.2 Longer Times

Lemma 16 is formulated for the propagation on bounded time
intervals. However, in order to investigate how the errors in semi-
classical approximations depend on time, it is helpful to consider a
joint limit of small parameters ε and large times t. The ε-dependent
time scale tε up to which a semiclassical approximations is valid
is known as the Ehrenfest time. It is a widely spread physical in-
tuition that semiclassical approximations generically break down
after Ehrenfest times of the size tε ∼ log(1/ε). This is inferred from
the observation that the derivatives of Φt in the worst case grow
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exponentially in time. Ehrenfest times for the Egorov theorem have
been extensively analyzed in [BR02], but there are also various re-
sults on Ehrenfest times for other semiclassical approximations. See
for instance [Fau07] for a long-time analysis of the Gutzwiller trace
formula, or [CFK11] for propagated coherent states in the context
of the nonlinear Schrödinger equation. Below we summarize the
results from [BR02] on Ehrenfest times for two very different classes
of systems. The proof for logarithmic Ehrenfest times can also be
found in [Zwo12, Theorem 11.12].

From [BR02] we recall the following Egorov theorem for logarith-
mic Ehrenfest times, whose proof uses

Γ = sup
z∈R2d

‖JD2h(z)‖

to estimate the stability exponents of the system. Note that Γ is
finite since h is subquadratic.

Lemma 17 (Ehrenfest time for general Egorov). Under the same
assumptions as in Lemma 16, for any N ≥ 1 there is CN > 0 such that
for every 0 < µ and |t| ≤ (2− µ)/(3Γ) log(ε−1) we have

‖opWe
ε (a(t))−

N

∑
k=0

εkopWe
ε (ak(t))‖L(L2) ≤ CNε(µ/2)N+1ε(µ−2)/3·(5d+3).

As a consequence, the Egorov approximation is applicable for
times of the size tε ∼ log(ε−1), although one should note that the
accuracy in ε detoriates more and more as one approaches this
barrier. Note that Lemma 17 gives an estimate on Ehrenfest time
scales on the operator level, that is, the estimate holds uniformly for
all wave functions. While this is satisfying from an analytical point
of view, it might not be very helpful in praxis. For applications one
would be rather interested in the time scales for particular choices
of initial states. We will come back to this point later in §15.3 where
we present a local Egorov theorem that holds for longer times.
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We introduce analyticity (A), Gevrey (G), and integrability (I)
conditions for the classical system and the observable a.

(A) Suppose opWe
ε (h) is selfadjoint, and h admits an analytic con-

tinuation to the strip S(δ) = {z ∈ C2d, ‖Im(z)‖ < δ} with
|h(z)| ≤ C 〈z〉m in S(δ) for some C, m > 0.

(G) Let Ω ⊂ R2d be bounded, open, and invariant under Φt. Sup-
pose supp(a) ⊂ Ω and a is of Gevrey class1 Gs with s > 1.

(I) Suppose there is a symplectomorphism2 κ = (I, φ) : Ω →
Z×Td with Z ⊂ Rd open, such that

κ(Φt(z)) = (I(z), φ(z) + tω(I(z))) ∀z ∈ Ω, t ∈ R.

Furthermore, assume that κ is analytic in some open com-
plex neighborhood of Ω with image in some open complex
neighborhood of Z×Td.

The regularity assumptions (A) and (G) and the Liouville in-
tegrability assumption (I) on the classical flow allow to derive
polynomial Ehrenfest timescales, see [BR02, Theorem 1.13].

Lemma 18 (Integrability Ehrenfest timescale). Suppose (A), (G) and
(I) hold true. Then, for bounded times one has

‖opWe
ε (a)(t)−

N

∑
k=0

εkopWe
ε (ak(t))‖ ≤ CNεN+1|t|(1 + |t|)2N+δd

and hence, for all3 |t| . ε−1/2+µ with µ > 0 one has

‖opWe
ε (a)(t)−

N

∑
k=0

εkopWe
ε (ak(t))‖ ≤ Cε1/2+µ(1+2N+δd)−δd/2

1Here, this means that there is C > 0 such that |∂γa(z)| ≤ Cγ(|γ|!)s for z ∈ Ω. If
s = 1, a is analytic.

2Td denotes the d-dimensional torus.
3The symbol . means the same as the Landau big O(•) notation: |t| ≤ Dε−1/2+µ

for some D > 0.
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for some C > 0, where δd ≤ 5d + 3 is a universal constant .

For highly regular systems one hence expects to observe Ehrenfest
time scales that are algebraic in ε−1. We remark that one can
obtain also expentially small errors by choosing N sufficiently big
in dependence on ε. A similar result as Lemma 18 holds for general
subquadratic Hamilton functions h and smooth symbols a if the
flow Φt is periodic with smoothly varying period in a region that
contains the support of a, see [BR02, Proposition 2.8]. In one space
dimension these prerequisites are not as restrictive as they seem:
Whenever

h(q, p) = 1
2 |p|

2 + V(q)

and the potential V has a well which is non-degenerate4, then
all trajectories in the well from above the bottom to a possible
bifurcation point (or infinity) are periodic.

12 Propagation with

Nonnegative Densities

By Egorov’s theorem, see Lemma 16, the evolution of expectation
values can be approximated as as the weighted phase space integral〈

e−iHt/εψ, opWe
ε (a)e−iHt/εψ

〉
=
∫

R2d
(a ◦Φt)(z)W ε(ψ)(z)dz+O(ε2).

(12.1)
If ψ is a normalized Gaussian state, W ε(ψ) is the density of a
multivariate normal distribution on phase space [SC83]. In this
case (12.1) can be well-approximated by a Monte-Carlo quadrature:
one samples initial phase space points with respect to this normal
distribution, propagates them up to time t along the classical flow,
and then averages a over these values, see also [LR10] and §16.2.

4That is, there are no critical points of the Hamiltonian except for the bottom of
the well.
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However, for more general states the Wigner function is not a prob-
ability density anymore. In this case, following a similar procedure
— for example with importance sampling — can be much more
involved or even computationally unfeasible.

We suggest a different approach based on an approximation of
the Wigner transform by probability densities. In this chapter we
present two different methods to approximate propagated expecta-
tion values by a weighted phase space integral , where the weight
is a probability density that represents the initial state. Moreover,
both approximations have the same asymptotic accuracy O(ε2) as
the Egorov theorem (12.1).

We first present some asymptotic formulas to express Weyl op-
erators as anti-Wick operators with O(ε2) errors and vice versa
in §12.1. Then, in §12.2 we prove a second order approximation that
employs the spectrogram density µ2(ψ) from Theorem 4 for the rep-
resentation of the initial state. This result can be found in our joint
publication [KLO15] with C. Lasser and T. Ohsawa. Section §12.3 is
devoted to an approximation5 that uses the initial state’s Husimi
transform. A comparison of the approximations illustrates that
using a single spectrogram, namely the Husimi transform, requires
to introduce corrections to the dynamics in order to retain errors
of size O(ε2). In contrast, for the linear combination µ2(ψ) of two
probability densities built from the Husimi transform and first order
Hermite spectrograms, one can use the classical flow Φt without
deteriorating the asymptotic accuracy.

12.1 Symbol Conversion

From Proposition 18 we know that the Weyl symbol of an anti-Wick
operator opAW

ε (a) is given by the convolution of a with a phase
space Gaussian. If one wants to express Weyl operators as anti-
Wick operators up to some error that is small in ε, one hence has to

5We already discussed this approximation in [Kel12, KL13].
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12. Propagation with Nonnegative Densities

expand the convolution. The following Lemma contains conversion
formulas for Weyl and anti-Wick operators with errors of size O(ε2).
This order of accuracy is sufficient for the second order propagation
theorems presented in this chapter. We note that with the same
arguments one can obtain approximations with errors of size O(εn)
for any n ∈ N, see also [Kel12, Lemma 3 and Lemma 4]. The
following version is taken from [KLO15], except that we allow for
slightly more general symbols.

Lemma 19. Let a : R2d → R be a symbol of class6 S, and ε > 0.
Then, there are two families rε

j : R2d → R of functions in S with
supε>0 ‖op(rε

j )‖L(L2) < ∞ for j = 1, 2, such that

opAW
ε (a) = opWe

ε (a + ε
4 ∆a) + ε2opWe

ε (rε
1),

opAW
ε (a− ε

4 ∆a) = opWe
ε (a) + ε2opWe

ε (rε
2).

Sketch of proof. This lemma is essentially identical to [Ler10, Propo-
sition 2.4.3] or [KL13, Lemma 1], and hence we only sketch the
proof for the second of the two equivalent identities. We write out
the definition

opAW
ε (a− ε

4 ∆a) = opWe
ε

(
W ε

0 ∗ (a− ε
4 ∆a)

)
and Taylor expand a− ε

4 ∆a around z in the integral

W ε
0 ∗ (a− ε

4 ∆a) = (πε)−d
∫

R2d
(a− ε

4 ∆a)(ζ)e−|z−ζ|2/ε∂ζ.

Due to the symmetry of the Gaussian, all Taylor expansion terms
with odd derivatives of (a− ε

4 ∆a) vanish. The computation

∑
|α|=1

∫
R2d

(πε)−d

(2α)!
(∂2α(a− ε

4 ∆a))(ζ− z)2αe−|z−ζ|2/ε∂ζ = ε
4 ∆(a− ε

4 ∆a)

6That is, a is bounded together with all derivatives, see §B. In this case opWe
ε (a) :

L2 → L2 is bounded.
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then implies that we have the second order approximation

W ε
0 ∗ (a− ε

4 ∆a) = (a− ε
4 ∆a) + ε

4 ∆(a− ε
4 ∆a) + O(ε2)

= a + O(ε2).

The function in the O(ε2) term is again of class S, and hence
bounded together with all its derivatives. Applying the Calderón–
Vaillancourt Theorem, see e.g. [Fol89, §2.5], completes the proof.

12.2 Propagation with Spectrogram

Densities

Let us recall from Theorem 4 that

µ2(ψ) =W ε(ψ) + O(ε2)

in the weak sense, where

µ2(ψ) = (1 + d
2 )H

ε
0(ψ)− 1

2 ∑
|k|=1
Hε

k(ψ)

is a linear combination of the Husimi transform Hε
0(ψ) and the first

order Hermite spectrograms Hε
ej
=W ε(ψ) ∗W ε(ϕej). Using µ2(ψ)

for the representation of the initial state then leads to Theorem 5,
which is one of the main results of this dissertation. For simplicity
we restrict ourselves to bounded observables with symbols in S.

Theorem 5 (Propagation with µ2(ψ)). Suppose h : R2d → R is
subquadratic, H = opWe

ε (h), and ψ ∈ L2(Rd) with ‖ψ‖L2 = 1. Then,
for all a ∈ S, and t ∈ R, there exists a constant C = C(a, h, t) > 0 such
that∣∣∣∣〈e−iHt/εψ, opWe

ε (a)e−iHt/εψ
〉
−
∫

R2d
(a ◦Φt)(z)µ2(ψ)(z)dz

∣∣∣∣ ≤ Cε2,

where Φt : R2d → R2d is the Hamiltonian flow associated with h.
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12. Propagation with Nonnegative Densities

Proof. By Lemma 16 there is a family of symbols rε ∈ S giving
rise to a uniformly bounded family of Weyl quantized operators7

supε>0 ‖opWe
ε (rε)‖L(L2) < ∞ such that

eiHt/εopWe
ε (a)e−iHt/ε = opWe

ε (a ◦Φt) + ε2opWe
ε (rε).

Note that rε depends on h, a, and t. Then, by the construction of
µ2(ψ), we have∫

R2d
(a ◦Φt)(z)µ2(ψ)(z)dz =

∫
R2d

(1− ε
4 ∆)(a ◦Φt)(z)Hε

0(ψ)(z)dz

=
〈

ψ, opAW
ε ((1− ε

4 ∆)(a ◦Φt))ψ
〉

=
〈

ψ, opWe
ε (a ◦Φt)ψ

〉
+ ε2

〈
ψ, opWe

ε (rε
2)ψ
〉

where rε
2 : R2d → R depends of fourth and higher order derivatives

of a ◦ Φt. Evaluating the expectation value for the state ψ hence
yields∣∣ 〈e−iHt/εψ, opWe

ε (a)e−iHt/εψ
〉
−
∫

R2d
(a ◦Φt)(z)µ2(ψ)(z)dz

∣∣
≤
∣∣ 〈e−iHt/εψ, opWe

ε (a)e−iHt/εψ
〉
−
∫

R2d
(a ◦Φt)(z)W ε(ψ)(z)dz

∣∣
+ ε2‖rε

2‖L(L2)

≤ Cε2

by Lemma 19 for some C > 0 independent of ε.

Theorem 5 suggests an O(ε2) approximation to the dynamics of
the expectation values of observables based on the classical flow Φt

and initial sampling from the two probability densities

H0(ψ) =W(ψ) ∗W ε
0 and 1

d

d

∑
j=1
W(ψ) ∗W ε(ϕej).

7Note that opWe
ε (b) is bounded if b ∈ S.
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Alternatively, one can split the integral with the second density
into a sum of d integrals and sample according to the probability
densities W(ψ) ∗ W ε(ϕej), j = 1 . . . d. We discuss an algorithmic
discretization of Theorem 5 in more detail in §16. Let us remark
that since the Hamiltonian h is constant along Φt, the total energy
error in Theorem 5 is independent of time. This is in contrast to
the second order Egorov type theorem with Husimi functions we
present in §12.3. There, the initial energy error is not preserved in
time.

In contrast to the Egorov theorem with Husimi transforms pre-
sented in §12.3, the spectrogram approximation from Theorem 5
not requires to evaluate higher order derivatives of the potential or
the observable. This is an enourmous advantage for applications,
since higher derivatives of PES are typically expensive to evaluate,
if at all accessible.

The main botteleneck of the presented method is that a discretiza-
tion requires to sample from the Husimi transform and the first
order Hermite spectrograms of the initial state. A promising way
to approach this problem could be to use the F.B.I. type representa-
tion of spectrograms from Proposition 19. We stress, however, that
spectrograms have the advantage of beeing probability densities
in contrast to Wigner transforms, which simplifies the sampling
problem considerably.

All in all, Theorem 5 provides the basis for novel semiclassical
approximation methods with simplified densities at almost no
additional cost in comparison to the Egorov theorem.

12.3 Corrected Symbols and Husimi

Dynamics

Let us present a second order Egorov type propagation result
in which the initial state is represented by its Husimi transform.
For this setup one has to include correction terms since Husimi
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12. Propagation with Nonnegative Densities

functions are only ε-close to Wigner functions in contrast to the
spectrogram density µ2(ψ). We summarize the results and refer to
[Kel12, KL13] for more details.

The main idea is to prove a second order propagation theorem
for anti-Wick quantized observables opAW

ε (a), where the dynamics
is governed by a Weyl quantized Hamiltonian H = opWe

ε (h). By
recalling the proof of the Egorov theorem, see the sketch of proof for
Lemma 16, we have to expand the commutator of the Hamiltonian
and the observable in powers of ε. We have the following second
order formula, see [KL13, Lemma 4]. The extension to more general
classes of observables is straightforward.

Lemma 20. Let ε > 0, and suppose h, a : R2d → R are a smooth
function of subquadratic growth and a Schwartz function, respectively.
Then, i

ε

[
opWe

ε (h), opAW
ε (a)

]
is essentially self-adjoint in L2(Rd) with

core S(Rd), and there exists a family of Schwartz functions κε(h, a) :
R2d → R with supε>0 ‖opWe

ε (κε(h, a))‖L(L2) < ∞ such that

i
ε

[
opWe

ε (b), opAW
ε (c)

]
=opAW

ε

(
{b− ε

4 ∆b, c} − ε
2 tr(J D2b D2c)

)
+ ε2opWe

ε (κε(h, a)). (12.2)

The proof of Lemma 20 relies on the semiclassical conversion
formulas from Lemma 19, and the subsequent expansion of Weyl
commutators from Lemma 8. Mimicking the same proof as for
the usual Egorov theorem, we hence arrive at the following sec-
ond order Egorov type result for anti-Wick observables, see[KL13,
Theorem 2].

Lemma 21. Let h : R2d → R be a smooth function of subquadratic
growth, H = opWe

ε (h), and a : R2d → R be a Schwartz function. Then,
for all t ∈ R there exists a constant C = C(a, h, t) > 0 such that all
ε > 0∥∥∥eiHt/εopAW

ε (a)e−iHt/ε − opAW
ε (a ◦Φt

ε − ε
2 Ξt

ε(a))
∥∥∥
L(L2)

≤ Cε2
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where

Ξt
ε(a) =

∫ t

0
tr
(

J D2h D2(a ◦Φτ
ε )
)
◦Φt−τ

ε dτ (12.3)

and Φt
ε : R2d → R2d the Hamiltonian flow associated with hε = h−

ε
4 ∆h.

The integral (12.3) in the correction term can be interpreted as
a solution operator to a set of ODEs applied to the gradient and
Hessian of the anti-Wick symbol a. Hence, for applications and
discretizations a reformulation via differential equations, which
can be integrated simultaneously with the Hamiltonian flow, is
desirable. We arrive at the following Egorov type propagation
theorem with correction ODEs, see also [KL13].

Theorem 6. Let a : R2d → R be a Schwartz function, h : R2d → R a
smooth function of subquadratic growth, and H = opWe

ε (h). Then, for all
t ∈ R there exists a constant C = C(a, h, t) > 0 such that for all ε > 0∥∥∥eiHt/εopAW

ε (a)e−iHt/ε − opAW
ε (Ψt

ε(a))
∥∥∥
L(L2)

≤ Cε2

with

Ψt
ε(a) = a ◦Φt

ε − ε
2

(
tr(Λt

ε (D2a ◦Φt
ε)) + Γt

ε · (∇a ◦Φt
ε)
)

, (12.4)

where Φt
ε : R2d → R2d is the Hamiltonian flow of hε = h− ε

4 ∆h,

∂tΦt
ε = J∇hε ◦Φt

ε, (12.5)

and the flows Λt
ε : R2d → R2d×2d, Γt

ε : R2d → R2d solve

∂tΛt
ε = Mε(t) + Mε(t)Λt

ε + Λt
ε Mε(t)T, Λ0

ε = 0 (12.6)

∂tΓt
ε = Mε(t) Γt

ε + tr(Ci(t)T Λt
ε)

2d
i=1, Γ0

ε = 0 (12.7)

with

Mε(t) : R2d → R2d×2d, Mε(t) = J D2h ◦Φt
ε,

Ci(t) : R2d → R2d×2d, (Ci(t))jk = ∂k(J D2h)ij ◦Φt
ε.
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12. Propagation with Nonnegative Densities

We observe that the corrections required for propagating anti-
Wick observables with O(ε2) errors are twofold. Firstly, one has to
deform the classical trajectories by using the Hamiltonian trajecto-
ries associated with hε = h− ε

4 ∆h. Moreover, the derivatives of a
enter the first order corrections in (12.4). Intuitively, the correction
flows Λt

ε and Γt
ε can be seen as taking care of the curvature of the

phase space metric introduced by the deformed trajectories.
Observables of physical interest are often given in a natural way

by the Weyl quantization of their classical counterparts. For this
reason we would like to apply Theorem 6 for propagating Weyl
quantized observables while retaining the advantage of represent-
ing states via Husimi functions, as for anti-Wick operators. This
can be accomplished by revisiting the conversion formulas from
Lemma 19.

Corollary 5. Under the assumptions of Theorem 6, there exists a con-
stant C = C(a, h, t) > 0 such that∣∣∣∣〈e−iHt/εψ0, opWe

ε (a)e−iHt/εψ0〉L2−
∫

R2d
Ft

ε (a)(z)Hε
0(ψ0)(z) dz

∣∣∣∣ ≤ Cε2

(12.8)
for all ψ0 ∈ L2(Rd) with ‖ψ0‖L2 = 1, where aε = a− ε

4 ∆a and

Ft
ε (a) = aε ◦Φt

ε − ε
2

(
tr(Λt

ε (D2a ◦Φt
ε)) + Γt

ε · (∇a ◦Φt
ε)
)

.

Hε
0(ψ0) is the Husimi transform of ψ.

Proof. With ψt := e−iHt/εψ0, from Theorem 6 and Lemma 19 we
obtain

〈ψt, opWe
ε (a)ψt〉L2 = 〈ψt, opAW

ε (aε)ψt〉L2 + O(ε2)

= 〈ψ0, opAW
ε (Ψt

ε(aε))ψ0〉L2 + O(ε2)

=
∫

R2d
Ψt

ε(aε)(z)Hε(ψ0)(z) dz + O(ε2),

and the assertion follows since Ψt
ε(aε) = Ft

ε (a) + O(ε2).
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III. Semiclassical Propagation

In §16 we present a direcretized version of Corollary 5 . There
we illustrate that the approximation is useful and applicable for
computing evolved expectation values in moderately high dimen-
sions. Note, that the effort for using the Husimi approximation
scales quadratically in the dimension since Λt

ε : R2d → R2d×2d.
This is a drawback when compared to the Egorov theorem or the
spectrogram approximation from Theorem 5.

13 Wave Packet Dynamics

One of the most important properties of the parametrized semiclas-
sical wave packets ϕε

k[Z; z] introduced in §7.2 is that they provide
exact solutions of the time-dependent semiclassical Schrödinger
equation with quadratic potential V if z and Z satisfy underlying
classical equations of motion. This exactness result turns them into
favorable set of ansatz and basis functions for approximations and
numerical discretizations. In particular, they have successfully been
used for the design of Galerkin methods for the approximation of
quantum evolution, see the works of Faou, Gradinaru and Lubich
in [FL06, FG09, FGL09] and the recent paper by Gradinaru and
Hagedorn [GH14]. A comprehensive presentation can be found in
the book of Lubich [Lub08].

Time-evolved parametrized Gaussian wave packet were first intro-
duced in the pioneering works of Hepp and Heller [Hep74, Hel75]
in the 1970es. Since then, they have turned into a central tool for
simulating and analyzing semiclassical quantum dynamics and
exploring problems of chemical physics, see e.g. the works of
Heller [Hel76, Hel81] or the book of Tannor [Tan07].

The mathematical analysis of semiclassical wave packets started
with the works of Hagedorn [Hag80, Hag81, Hag98] and Litte-
john [Lit86]. Since then, evolved semiclassical wave packets have
been applied to a variety of different setups. We would like to
highlight the work of Hagedorn and Joye on semiclassical quan-
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tum dynamics with exponentially small errors up to Ehrenfest
time [HJ99, HJ00], and the application to non-selfadjoint evolution
problems discussed in [GS12, LST15]. Parametrized semiclassical
coherent states have also been used for treating non-linear evolution
problems, see [CFK11, HZ08, Har13] for analysis in the context of
nonlinear Schrödinger equations. For a geometric perspective on
semiclassical wave packet dynamics we refer to [OL13, Ohs15].

In this chapter we rephrase the dynamics of Hagedorn wave
packet in the spirit of [Lub08, chapter 5] and [HJ00] for the La-
grangian frame parametrization ϕε

k[Z; z] introduced in §7.2. We
only consider normalized Hagedorn wave packets, and hence from
now on tacitely assume that Z ∈ C2d×d is a normalized Lagrangian
frame.

13.1 Evolution Equations

As remarked before, evolved Hagedorn wave packets are exact solu-
tions for the time-dependent Schrödinger equation with quadratic
potential, see [Hag98, Theorem 3.4] or Theorem 2.5 in [Lub08, chap-
ter 5]. More precisely, for quadratic potentials the phase space
center z0 of a normalized Hagedorn wave packet ϕε

k[z0; Z0] moves
along a trajectory of the underlying classical Hamiltonian system,
and the Lagrangian frame Z0 evolves acording to the linearization
of the trajectory. That is, for a Weyl quantized Hamiltonian opWe

ε (h)
the phase space center and Lagrangian frame satisfy the equations
of motion8

żt = J∇h(zt), zt|t=0 = z0 ∈ R2d, (13.1)

Żt = JD2h(zt)Zt, Zt|t=0 = Z0 ∈ C2d×d. (13.2)

8As in [LST15], we use the suggestive notation zt instead of z(t) to enhance
readability.
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III. Semiclassical Propagation

The first equation is simply Hamilton’s equation for the classical
energy function h. It gives rise to the Hamiltonian flow

Φt : R2d → R2d, Φt(z0) = zt.

The so-called first variational equation (13.2) describes the lineariza-
tion of the classical flow Φt along the trajectory t 7→ zt. In fact, one
can easily see that the solution of (13.2) is given by

Zt = DΦt(z0)Z0, (13.3)

and, as a consequence, the symplecticity of the Hamiltonian flow
Φt implies that Z(t) stays a normalized Lagrangian frame for all
times.

The proof for the following exactness Lemma then follows from
a straightforward calculation, see [Hag80].

Lemma 22. Let V be a quadratic potential, z0 ∈ R2d and Z0 ∈ C2d×d

a positive Lagrangian frame. Then,

exp
(
−i(− ε2

2 ∆ + V)t/ε
)

ϕε
k[z0; Z0] = eiS(t)/ε ϕε

k[zt; Zt],

where zt and Zt are solutions of (13.1) and (13.2), respectively. S(t) is
the classical action9 associated with the path t 7→ zt.

Lemma (22) extends immediately to Schrödinger operators with
time-dependent quadratic potentials. Hence, for treating more
general potentials one can use locally quadratic expansions around
the classical trajectory. This leads to the following result that can
be found in [Hag98, Theorem 3.5].

Lemma 23. Suppose V ∈ C3(R2d) satisfies −C1 ≤ V(x) ≤ C2eAx2

for some A, C1, C2 > 0. Then, for k ∈Nd, z0 ∈ R2d, and Z0 ∈ C2d×d a

9The classical action associated with a path t 7→ (qt, pt) is defined as S(t) =∫ t
0

1
2 |ps|2 −V(qs)ds.
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positive Lagrangian frame we have

‖ exp
(
−i(− ε2

2 ∆ + V)t/ε
)

ϕε
k[z0; Z0]− eiS(t)/ε ϕε

k[zt; Zt]‖L2≤ C(k, t)ε1/2

for some C(k, t) > 0. Here, zt and Zt denote the solutions of (13.1) and
(13.2), respectively.

The conditions on the potential guarantee that both the quantum
evolution and the classical equations of motion are well-defined for
all times. Moreover, by linearity, both Lemma 22 and Lemma 23
extend to initial conditions that are given by a linear combination
of Hagedorn wave packets. The growth of the constant C(k, t) in
time depends on the stability of the classical Hamiltonian flow Φt.

Since Yt = (ReZt, ImZt) is a symplectic matrix for all t, one can
restate (13.1) and (13.2) as a dynamical system on R2d × Sp(2d, R),
see [Ohs15]. Note, however, that for odd dimensions d the prod-
uct space R2d × Sp(2d, R) is again of odd dimension and hence
cannot be a symplectic manifold . Nevertheless, by using the iden-
tification of the Siegel upper half-space Σd with the quotient space
Sp(2d, R)/U(d), and the fact that the width matrix in Hagedorn’s
parametrization of wave packets can be written as PtQ−1

t ∈ Σd for
the solution Zt = (Qt; Pt) of (13.2), one can interpret the dynamics
of Zt as a lift of the dynamics of PtQ−1

t in the Siegel upper half
space to an evolution of Zt in the symplectic group, see [Ohs15,
Remark 4.1].

13.2 Phase Space Dynamics

Let us take a look at the evolution of Hagedorn wave packets in
phase space. By the Laguerre connection from Corollary 3 we know
that the Wigner function of the two normalized Hagedorn wave
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packets ϕε
k[Z0; z0] and ϕε

`[Z0; z0], k, ` ∈Nd, is given by

W ε
k,`[Z0, z0](x, ξ) =

(πε)−d/2
√

2|k|+|`|k!`!
e−

1
ε (x−q0,ξ−p0)

T GZ0 (x−q0,ξ−p0)

×
d

∏
j=1
Lkj`j

(
i√
ε
(QT

0 (ξ − p0)− PT
0 (x− q0))j

)
,

where z0 = (q0, p0) and Z0 = (Q0; Pt). Here, GZ0 = Re (Z0Z∗0 )
−1 is

the symplectic metric associated with Z0, and

Lnm(y) =

{
(−1)m2nm!yn−mL(n−m)

m (2|y|2), n ≥ m

(−1)n2mn! (−y)m−n L(m−n)
n (2|y|2), m ≥ n

. (13.4)

With the phase space lift from §8.1, the semiclassical time evolu-
tion for the wave packets ϕε

k[Z0; z0] and ϕε
`[Z0; z0] from the previ-

ous section §13.1 determines the evolution of the Wigner function
W ε

k,`[Z0, z0] in phase space: One simply replaces z0 and Z0 in (??) by
the propagated center zt and the Lagrangian frame Zt. In particular,
the symplectic metric evolves according to

GZt = (DΦ−t(z0))
∗GZ0 DΦ−t(z0), (13.5)

such that the stability of the classical flow determines the spreading
of the Wigner function in phase space. We will come back to this
viewpoint in §15, when we consider the long-time semiclassical
evolution of Wigner functions.

There are two different matrix product representations of GZ(t)
with symplectic factors that are useful for analyzing the behaviour
of propagated wave packets in phase space.

Proposition 21 (Two symplectic factorizations). The symplectic met-
ric GZt from (13.5) can be rewritten as

GZt = FT
Zt

FZt = ST
Zt

SZt
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for the real symplectic matrices

FZt = JT(ReZt ImZt)J and SZt =

(
|Qt|−1 0

−|Qt|Re(PtQ−1
t ) |Qt|

)
where Zt = (Qt; Pt) and |Qt| =

√
QtQ∗t .

Proof. The identity with FZt follows directly from the definition of
GZt . For the second factorization one observes that QQ∗ is a real
matrix, and the symplectic metric can be rewritten as

GZt =

(
Im(Ct) + Re(Ct)QtQ∗t Re(Ct) −Re(Ct)QtQ∗t

−QtQ∗t Re(Ct) QtQ∗t

)
where Ct = PTQ−1

T , see also [dG11, Proposition 242] for a related
formula. For the upper left block matrix this can be proved by
employing

PtP∗t = CtQtQ∗t C∗t
= (Re(Ct) + iQ−∗t Q−1

t )QtQ∗t (Re(Ct)− iQ−∗t Q−1
t )

= Re(Ct)QtQ∗t Re(Ct) + Im(Ct)

which holds due to the fact that ImCt = (QtQ∗t )
−1. Similar identi-

ties can be used for the other entries of GZt . The symplecticity of
FZt is a consequence of the fact that Zt is a normalized Lagrangian
frame, and the symplecticity of SZt follows from a direct computa-
tion.

13.3 Exponentially Small Errors

By adding higher order Hagedorn wave packets one can con-
struct approximations in the spirit of Lemma 23 with errors of
size O(εN/2) for any N ∈ N, see [Hag98, Theorem 3.6]. If one
allows an ε-dependent number of wave packets, one can even guar-
antee exponentially small errors up to Ehrenfest time. We sketch
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the proof of the result [HJ00, Theorem 3.1] of Hagedorn and Joye on
exponentially small errors over finite times. We include the crucial
estimates that are the basis of the final result and will be used later
on.

Lemma 24. Suppose V is an analytic potential in a neighborhood of
Sδ = {z ∈ C|Im(zj) ≤ δ} with δ > 0, bounded from below, and satisfies
the growth condition |V(z)| ≤ M exp(τ|z|2) for all z ∈ Sδ and some
M, τ > 0. Fix T, a classical trajectory zt = (qt, pt), and an initial state

ψε
0(x) = ∑

|j|≤J
cε

j(0)ϕε
j [z0; Z0](x).

with some cε
j(0) ∈ C. Then, there is G > 0 such that for all g ∈ (0, G)

there is a constant γg > 0 for which the L2-error between the exact
solution

ψε
t (x) = exp

(
−i(− ε2

2 ∆ + V)t/ε
)

ψε
0 (13.6)

of the time-dependent Schrödinger equation and the approximation

uε
dg/εe(t, x) = eiS(t)/ε ∑

|j|≤J+3dg/εe−3
cε

j(t)ϕε
j [zt; Zt](x)

is bounded by a constant times exp(−γg/ε). The form of the complex
coefficients cε

j(t) can be determined explicitely.

Sketch of proof. The error term

rε
dg/εe(t, x) = iε

d
dt

uε
dg/εe(t, x) +

ε2

2
∆uε
dg/εe(t, x)−V(x)uε

dg/εe(t, x)

can be expanded as

rε
dg/εe(t, x) = eiS(t)/ε

×
dg/εe−1

∑
k=0

εk/2W(dg/εe+1−k)
q(t) (x) ∑

|j|≤J+3dg/εe−3
ck,j(t)ϕε

j [zt; Zt](x)
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13. Wave Packet Dynamics

with the Taylor rest term

W(n)
q(t)(x) = V(x)− ∑

|m|≤n

∂mV(qt)

m!
(x− qt)

m,

and ck,j(t) beeing the jth component of the kth term in the semiclas-
sical expansion

cε(t) = c0(t) + εc1(t) + ε2c2(t) + . . . (13.7)

of the coefficient vector. The approximation error

Eε(t) = ‖uε
dg/εe(t, ·)− ψε

t‖L2

can then be estimated as

Eε(t) ≤ 1
ε

∫ t

0
‖rε
dg/εe(s, ·)‖L2 ds. (13.8)

At this point one chooses b > 0 and introduces the cutoff func-
tions χ1(t, x) = 1|x−qt |≤b and χ2(t, x) = 1− χ1(t, x) on position
space. Then, one estimates the L2-norm of rε

dg/εe(t, ·) on the sup-
ports of χ1 and χ2 seperately.

In order too control the time evolution, Hagedorn and Joye intro-
duce the numbers

D1(T) = max
{

1, sup
0≤|n|,0≤t≤T

δ|n|
(∂nV)(qt)

n!

}
and

D2(T) = max
{

1, sup
0≤t≤T

δ−1
√

2d‖Qt‖
}

which are finite, since V is analytic in Sδ. Moreover, they define

D3 =

(
d + 2
d− 1

)
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III. Semiclassical Propagation

as well as

D4(T) = sup
n∈Nd ,0≤t≤T,|x−qt |≤b

δ|n|
(∂nV)(x)

n!
,

D5(T) = 1 + D1(T)D2(T)2T,

D6(T, `) =
`−1

∑
k=0

δk(2‖Qt‖2)−k/2

D7(T) = D2(T)D3D5(T)

which are all finite quantities. In the following we omit the de-
pendence on T for readability. One can show that the coefficients
satisfy

‖ck(t)‖ ≤
(
(J + 3k)!

J!

)1/2 (D2D3D5)
k

k!
, (13.9)

and ck,j(t) = 0 whenever |j| > J + 3k, see Corollary 5.3 in [HJ00]. A
long and technical calculation leads to the estimates

1
ε

∫ t

0
‖χ1(s, ·)rε

`(s, ·)‖L2 ds ≤ D4ε`/2
(
(J + 3`)!

J!

)1/2 D`+2
2 D`

3
(`− 1)!

D`+1
5

D5 − 1
(13.10)

and

‖χ2(s, ·)rε
`(s, ·)‖L2 ≤ Ce−b2/(12‖Qt‖2ε)D6D`−1

7 (C′ε`‖Qt‖2)1+`/2

(13.11)

for some `-independent constants C, C′ > 0, if ε is small enough.
The claim follows from combining the two estimates for ` = dg/εe
with g small enough.

Let us remark that whenever the trajectory zt is bounded, for
instance if the corresponding connected component of the energy
shell is compact, D1 and D4 can be chosen uniformly for all T. In
the rest of this thesis, we will take the estimates (13.10) and (13.11)
for granted.

158



14. Ehrenfest Time Scales

14 Ehrenfest Time Scales

In section §11.2 we discussed the semiclassical propagation of ex-
pectation values up to the Ehrenfest time, which is determined by
the stability properties of the classical flow. For the dynamics of
wave packets, Hagedorn and Joye in [HJ00] derived propagation
results similar to Lemma 24 for the typical Ehrenfest time scales
of the size tε ∼ log(ε−1). It is the aim of this chapter to use the
analysis of Hagedorn and Joye summarized in §13.3 for proving a
wave packet propagation theorem for the Ehrenfest time associated
with a stable orbit of the classical flow.

14.1 Stable Orbits

The spreading of Wigner functions in phase space is determined
by the stability of the classical flow. That is, by (13.5), the singular
values of DΦt determine the amount by which the Wigner function
is stretched in phase space. For the wave packet propagation
error (13.10), however, also the time evolution of D2(t), that is ‖Qt‖,
comes into play. From (13.3) we know that

Qt = ∂q0(Φ
t(q0, p0)q)Q0 + ∂p0(Φ

t(q0, p0)q)P0

and hence Qt contains the two upper blocks of DΦt(z0). It is easy
to see that given the stability of the flow Φt, the matrix Qt is “stable”
as well.

Proposition 22. Let z0 ∈ R2d and Zt = (Qt; Pt) solve the variational
equation (13.1). Suppose there are C, γ > 0 such that ‖DΦt(z0)‖ ≤
C(1 + |t|)γ for all t. Then,

‖Qt‖, ‖Pt‖ ≤ C(1 + |t|)γ‖Z0‖

for all t, and the eigenvalues 0 < λ1(GZt) ≤ . . . ≤ λ2d(GZt) of GZt
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III. Semiclassical Propagation

satisfy

D(1 + |t|)2γ ≥ λ2d(GZt) ≥ . . . ≥ λ1(GZt) ≥ D−1(1 + |t|)−2γ

for some D > 0.

Proof. The first claim follows from the simple estimate

‖Qt‖ = sup
x∈Rd

‖Qtx‖
‖x‖ (14.1)

≤ sup
x∈Rd

‖Ztx‖
‖x‖ ≤ ‖DΦt‖‖Z0‖, (14.2)

and analogously for Pt. By (13.5), for the second inequality we have

‖GZt‖ = ‖DΦ−t(z0)
TGZ0 DΦ−t(z0)‖ ≤ ‖GZ0‖‖DΦ−t(z0)‖2

(14.3)
and since GZt is symplectic and positive definite, all of its eigenval-
ues appear in pairs λ, λ−1 > 0. Hence,

|λ1(GZt)
−1| = ‖GZt‖

−1 ≥ ‖GZ0‖
−1C−2(1 + |t|)−2γ (14.4)

and the claim follows.

Definition 11 (Stable orbit). Let zt = Φt(z0) be a classical orbit.
We call zt stable with expansion rate γ > 0 if there is C > 0 with
‖DΦt(z0)‖ ≤ C(1 + |t|)γ for all t ∈ R.

In one space dimension – away from hyperbolic fixed points of
the flow – periodic orbits are stable in the sense that ‖DΦt(z0)‖ ≤√

2 + T′(E)2t2, see [dG06, §2.3.4]. In higher dimensions it is in
general a complicated task to determine the stability properties of
an orbit. In the case of periodic orbits one can use Floquet theory,
but for more general trajectories this approach is not applicable.

Consider a stable orbit zt with stability exponent γ > 0, and
a potential V that has an analytic continuation into the strip Sδ
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14. Ehrenfest Time Scales

with |V(z)| ≤ M 〈z〉m for all z ∈ Sδ. Then, one obtains the growth
bounds

D1(t) ≤ C1 · (1 + |t|)m, D2(t) ≤ C2 · (1 + |t|)γ,

D4(t) ≤ C4 · (1 + |t|)m, D5(t) ≤ C5 · (1 + |t|)m+2γ+1,

D6(t, `) ≤ C`
6, D7(t) ≤ C7 · (1 + |t|)m+3γ+1,

for some constants C1, . . . , C7 independent of ε and t, where C3 =
D3. For D1 one employs the analiticity, whereas the inequality
for D2 follows from Proposition 22. The other estimates follow
similarly.

14.2 Long Time Accurate Dynamics on

Stable Orbits

We can use the results from the previous section §14.1 in order to
derive long Ehrenfest times for wave packet propagation on stable
orbits. While the authors of [HJ00] wanted to obtain results for
general systems, we use their results in order to prove exponentially
good accury for stable orbits over longer time intervals that grow
algebraically and not logarithmically in ε−1.

Proposition 23 (Exponential accuracy up to long times ). Suppose
V is an analytic potential in a neighborhood of Sδ = {z ∈ Cd|Im(zj) ≤
δ} with δ > 0, bounded from below, and for some m ≥ 0 satisfies the
growth condition |V(z)| ≤ D 〈z〉m for all z ∈ Sδ. Assume that zt is a
stable classical orbit with expansion rate γ > 0, and fix the initial state

ψε
0(x) = ∑

|j|≤J
cε

j(0)ϕε
j [z0; Z0](x). (14.5)

Then, for every σ′ ∈ (0, 1) small enough there is σ ∈ (0, 1) and α > 0
such that the L2-error between the exact solution (13.6) of the Schrödinger
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III. Semiclassical Propagation

equation and the approximation

uε
dε−σ′ e(t, x) = eiS(t)/ε ∑

|j|≤J+3/εσ′−3

cε
j(t)ϕε

j [zt; Zt](x)

is bounded by exp(−α/εσ) as ε ↘ 0 whenever |t| . ε−1/(6γ+2m+2+δ)

with some δ > 0.

Proof. If ` is large enough, from (13.10) and the estimates for the
quantities Dj from above we can deduce

1
ε

∫ t

0
‖χ1(s, ·)rε

`(s, ·)‖L2 ds ≤A1B`
1(`ε)`/2(1 + |t|)4γ+m+1

×
(
(1 + |t|)3γ+m+1

)`
(14.6)

for some A1, B1 > 0 after applying Stirling’s formula. Further-
more, for the second remainder (13.11) one can similarly prove the
estimate

1
ε

∫ t

0
‖χ2(s, ·)rε

`(s, ·)‖L2 ds ≤A2B`
2(`ε)`/2e−C2/((1+|t|)2γε) (14.7)

×
(
(1 + |t|)4γ+m+1

)`
(14.8)

for some A2, B2, C2 > 0, whenever ` is large enough. The main
ingredient for the second estimate is the inequality for fixed p ∈Nd

and τ ≥ 0

‖χ2(t, x)(x− qt)
peτ(x−qt)

2
ϕε

k[zt; Zt](x)‖2 ≤

≤ Ce−b2/(6‖Qt‖2ε)(2ε‖Qt‖2)peβd |k| Γ(|k|+
d
2 + p)

|k|! (14.9)

which holds for some C, βd > 0 whenever ε is small enough, |k| <
ε−2/3 and t . ε−1/(6γ+2m+2+δ). This estimate can be proved by
retracing the derivation of the inequality (6.23) in [HJ00].
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14. Ehrenfest Time Scales

We want to obtain exponentially small errors for ε↘ 0 and hence
set ` = g(tε)/ε for the Ehrenfest time tε and some function g. We
consequently demand that

g(t)1/2(1 + |t|)3γ+m+1→0 as t→ ∞ and

g(tε)/ε→∞ as ε→ 0.

These conditions are satisfied with g(t) = |t|−6γ−2m−2−δ′ and the
Ehrenfest time tε . ε−1/(6γ+2m+2+δ), and both (14.6) and (14.8)
become exponentially small if δ > δ′ > 0.

Example. Suppose that the orbit zt moves in a region where h gives
rise to an analytic integrable Hamiltonian system in the sense of
condition (I) from above, and contains no hyperbolic fixed points
of the flow Φt. Then, the flow satisfies ‖DΦt(z0)‖ ≤ C(1+ |t|), and
hence γ = 1. If furthermore the trajectory zt is trapped, we can
set m = 0 and arrive at the Ehrenfest time tε . ε−1/(8+δ) for the
approximation from Proposition 23. �

Proposition 23 can be used to derive exponential localization
estimates for propagated wave functions. In the following we
proceed similarly as for the proof of Theorem 3.4 in [HJ00].

Proposition 24 (Localization). Let ψε
t denote the solution of the Schrödinger

equation (13.6) with initial condition (14.5). Then, under the same as-
sumptions as in Proposition 23, for all b > 0 there are C, α > 0 such
that (∫

|x−qt |>b
|ψε

t (x)|2dx
)1/2

≤ C exp(−α/εσ) (14.10)

and (∫
|ξ−pt |>b

|(F εψε
t )(ξ)|2dξ

)1/2
≤ C exp(−α/εσ)

with σ ∈ (0, 1), whenever |t| . ε−1/(6γ+2m+2+δ) and ε is small enough.
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III. Semiclassical Propagation

Proof. We will first prove the localization estimates for the wave
packet approximation uε

dε−σ′ e
(t, •) and then apply Proposition 23.

We show that(∫
|x−qt |>b

|uε
dε−σ′ e(t, x)|2dx

)1/2
≤ C exp(−α/εσ) (14.11)

and(∫
|ξ−pt)|>b

|(F εuε
dε−σ′ e)(t, ξ)|2dξ

)1/2
≤ C exp(−α/εσ) (14.12)

with σ = 1− 2γ
6γ+2m+2+δ > 2/3, as long as |t| . ε−1/(6γ+2m+2+δ).

The first assertion (14.11) is equivalent to an estimate for the
L2-norm of χ2(·, t)uε

dε−σ′ e
, and we can use similar techniques as for

the estimation of the remainder rε
`. We begin by writing down the

semiclassical expansion

‖χ2(·, t)uε
dε−σ′ e(t, ·)‖ ≤

≤
dε−σ′ e−1

∑
j=0

εj/2

 ∑
|k|≤J+3j

|cj,k(t)|2‖χ2(·, t)ϕε
k[zt; Zt](·)‖2

1/2

≤
dε−σ′ e−1

∑
j=0

εj/2‖cj(t)‖

 ∑
|k|≤J+3j

‖χ2(·, t)ϕε
k[zt; Zt](·)‖2

1/2

.

From (13.9) and (14.9) then follows the existence of a constant θ > 0
such that

‖χ2(·, t)uε
dε−σ′ e(t, ·)‖ ≤ e−b2/(12‖Qt‖2ε)

dε−σ′ e−1

∑
j=0

(
(1 + |t|)2m+6γ+2θε

)j/2

holds for ε small. Since |t| . ε−1/(6γ+2m+2+δ), there is a constant
D < 1 such that for ε small enough one has

(1 + |t|)2m+6γ+2θε ≤ D.
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and the observation

exp(−b2/(12‖Qt‖2ε)) ≤ exp(−α/ε
1− 2γ

6γ+2m+2+δ ) (14.13)

for some α > 0 concludes the proof of (14.11). After using the
Fourier formula

F ε ϕε
k[z; Z] = (−i)|k|e−ip·q/ε ϕε

k[Jz; JZ]

and repeating the same proof we obtain the second estimate (14.12).
The assertion for the localization of the wave function ψε

t then
follows by applying the approximation from Proposition 23.

Note that the same result holds for more general initial conditions
given by a superposition of Hagedorn wave packets with phase
space centers on different stable orbits of the classical flow.

15 Localization of

Wigner Functions

In the previous chapter §14 we discussed the long-time evolution of
states that are initially localized on stable orbits of the classical flow.
As a final consequence, in Proposition 24, we derived an exponential
localization estimate for the wave function and its Fourier transform
around the classical trajectory for algebraically long times. However,
this does not immediately imply a L1-localization estimate for the
corresponding Wigner transforms.

The goal of this section is to prove a L1-localization estimate
for the cross-Wigner functions of semiclassically evolved Hage-
dorn wave packets. Moreover, as an application, we combine the
L1-localization estimate with the long-time wave packet approxi-
mations from §14.2 in order to obtain a local Egorov theorem that
holds for Ehrenfest times that are algebraic in ε−1.
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We start by giving a short overview on results for the evolution
equation for Wigner transforms in §15.1. Afterwards, in §15.2 we
prove the L1-estimate for cross-Wigner functions. Finally, §15.3 is
devoted to the proof of a local Egorov theorem.

15.1 Wigner Function Evolution

The quantum evolution of wave functions t 7→ ψ(t) governed by
a selfadjoint Hamiltonian H = − ε2

2 ∆ + V is physically equivalent
to the evolution of the corresponding density operators ρ(t) =
|ψ(t)〉〈ψ(t)| which is described by the von Neumann equation

iε∂tρ(t) = [H, ρ(t)], ρ(0) = |ψ(0)〉〈ψ(0)|.

Recalling from (5.13) that the Weyl symbol of the density operator is
given by the Wigner transform, on the phase space one at formally
obtains the evolution equation

∂tW ε
t (q, p) = − i

ε (h]W
ε
t −W ε

t ]h) (q, p)

= −p · ∇qW ε
t (q, p) + PεW ε

t (q, p). (15.1)

for the Wigner functionsW ε
t :=W ε(ψ(t)). Here, h(q, p) = 1

2 |p|2 +
V(q) is the Weyl symbol of H, and Pε = P(x, ε∇ξ) is a pseudodiffer-
ential operator built from the potential V. Equation (15.1) is known
as the semiclassical Quantum Liouville Equation (QLE), which is
well-posed on L2(R2d) and mass-preserving,

‖W ε
t ‖L2 = ‖W ε

0‖L2 for all t ∈ R,

if H is selfadjoint, see [Mar89]. The evolution of Wigner transforms
and their weak limits as ε→ 0, the so-called Wigner measures, has
drawn considerable interest in the last years, see, e.g., [GMMP97,
Pul06, AP11, ER13, FKGL13].

If one aims to analyze the evolution of expectations values it
would however be much more interesting develop a L1(R2d) theory
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for the (QLE). This is a hard problem since solutions of the (QLE)
are highly oscillatory and can exhibit negative values. This is in
contrast to the evolution of Wigner measures in the semiclassical
limit ε→ 0 that is governed by the Liouville equation

∂tW0
t = {h,W0

t } (15.2)

see e.g. [AP11]. The solutions of (15.2) are determined by the
characteristics associated with the Hamilton function h, and hence
preserve the mass of the Wigner measures. If h is a polynomial
of degree two, the (QLE) reduces to the Liouville equation (15.2).
This is another way of stating that Egorov’s theorem is exact for
quadratic Hamiltonians.

The only rigorous L1 result for solutions of the (QLE) with ε > 0
we are aware of is the analysis for smooth scattering type poten-
tials V ∈ Hs(Rd), s > 1

2 d, from [ER05, ER13]. For a Schrödinger
representation of quantum mechanics in phase space and the corre-
sponding quantization procedures in doubled dimension we refer
to [DdGLP12].

15.2 Exponential L1-Localization in Phase

Space

In this section we extend the localization estimates from (14.11)
and (14.12) for semiclassically propagated wave packets and their
Fourier transform to an L1-esimate for semiclassically propagated
cross-Wigner functions of Hagedorn wave packets.

Since cross-Wigner functions are complex-valued and highly os-
cillatory, it is difficult to analyze them directly. Therefore, we apply
the expansion of cross-Wigner functions in terms of real-valued
Wigner transforms from Proposition 16. This might lead to results
that are far from beeing optimal, but allows for relatively simple
proof techniques. Our assumtions on the potential are as follows:
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Pota,m,δ,zt Let V : Rd → R be a potential that gives rise to a
selfadjoint Hamiltonian, and zt = (qt, pt) be an orbit of
h(q, p) = 1

2 |p|2 + V(q). For a > 0, δ > 0 set

Ba,δ = {x ∈ Rd : ∃t ∈ R with |x− qt| ≤ a + δ}

and suppose V extends to an analytic potential in a neighbor-
hood of

Aa,δ = {z ∈ Cd : Rez ∈ Ba,δ, |Imzj| ≤ δ},

and for some m ≥ 0 satisfies the growth condition |V(z)| .
〈z〉m for all z ∈ Aa,δ.

Note that we can choose m = 0 in Pota,m,δ,zt if the orbit zt is
bounded. In this case, the condition Pota,m,δ,zt reduces to the rel-
atively mild assumption that V should give rise to a selfadjoint
Hamiltonian and extend to an analytic function in a complex neigh-
borhood of the orbit.

Under the above assumptions on the potential V we can prove
a localization estimate for cross-Wigner functions up to Ehrenfest
time. In order to avoid beeing too technical, a lengthy part of the
proof is contained in the Proposition D.1 of the appendix §D.

Proposition 25 (Exponential L1-localization of Wigner functions).
Let zt be a stable orbit with expansion rate γ ≥ 0 and suppose V is a
potential that satisfies the conditions Pota,m,δ,zt with some a, δ > 0 and
m ≥ 0. Let ε > 0 be small, and k, ` ∈ Nd with k j, `j ≤ Cε−σ for some
C > 0 and σ ∈ (0, 2κ + 2

3 ), where

κ :=
1
6

2m + 2 + δ

6γ + 2m + 2 + δ
∈ (0, 1

6 ).

Then, if the positive Lagrangian frames Zt are a solution of (13.2) and ε

is small enough,∫
|z−zt |>a

|W ε
k,`[zt; Zt](z)|dz ≤ De−Γε−2/3−2κ
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for some D, Γ > 0, whenever |t| . ε−1/(6γ+2m+2+δ).

Proof. The symplectic matrix FZt from Proposition 21 can be used
to rewrite the variables w = w(z) = iZt J(z − zt) in the Wigner-
Hagedorn formula as

(
Re(w)
Im(w)

)
=

(
Im(Pt)T −Im(Qt)T

−Re(Pt)T Re(Qt)T

)(
x− q
ξ − p

)
= FZt(z− zt),

where Zt = (Qt; Pt), see [LT14, §5.2]. We can use this transforma-
tion and a shift to the phase space origin to control the spreading of
the Wigner functionW ε

k,`[zt; Zt] in phase space. Since the smallest
singular value of FZt is the square root of the smallest eigenvalue
of GZt , Propositions 21 and 22 together with Corollary 3 yield

∫
|z−zt |>a

|W ε
k,`[zt; Zt](z)|dz =

∫
|F−1

Zt
z|>a
|W ε

k,`[0; (Id; iId)](z)|dz

≤
∫
|z|>aC1(1+|t|)−γ

|W ε
k,`[0; (Id; iId)](z)|dz

≤
∫
|(x,ξ)|>dC2ε1/6−κ

d

∏
j=1
|W ε

kj ,`j
[0; (1; i)](xj, ξ j)|dx dξ,

for some C1, C2 > 0 whenever |t| . ε−1/(6γ+2m+2+δ). We note that
W ε

kj ,`j
[0; (1; i)] are the cross-Wigner functions of one-dimensional

Hermite functions. Employing the inclusion

{(x, ξ) ∈ R2d : |(x, ξ)| > dC2ε1/6−κ} ⊂
d⋃

j=1

{(x, ξ) : |(xj, ξ j)| > C2ε1/6−κ}

together with the L1-norm estimate of Proposition D.1 from ap-
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pendix §D gives∫
|z−zt |>a

|W ε
k,`[zt; Zt](z)|dz =

=
d

∑
j=1

∫
|(xj ,ξ j)|>C2ε1/6−κ

d

∏
r=1
|W ε

kr ,`r
[0; (1; i)](xr, ξr)|dx dξ

≤ αε−(d−1)(σ+δ)
d

∑
j=1

∫
R2

χ|(xj ,ξ j)|>C2ε1/6−κ |W ε
kj ,`j

[0; (1; i)](xj, ξ j)|dxjdξ j

for some α > 0 and all δ > 0. Since we assumed that σ < 2
3 + κ, the

localization estimate from Proposition D.1 implies∫
R2

χ|(xj ,ξ j)|>C2ε1/6−κ |W ε
kj ,`j

[0; (1; i)](xj, ξ j)|dxjdξ j ≤ e−Γε−2κ−2/3

for ε small enough. The proof is complete.

With more restrictive upper bounds for σ in Proposition 25 we
could also prove exponential localization of the Wigner functions
for longer times. However, since we want to combine the result
with the wave packet approximations on Ehrenfest time scales from
Proposition 23, we restricted ourselves to the same Ehrenfest times.

15.3 Application: A Local Egorov

Theorem

In §11.2 we discussed some results from [BR02] on algebraically
long Ehrenfest time scales for the Egorov theorem. The required
conditions (A), (G), and (I) on the Hamiltonian and the observable,
however, are very strong. This is mainly due to the fact that the au-
thors of [BR02] wanted to obtain error estimates that are uniform in
the initial wave function. For most applications, however, uniform
estimates for short Ehrenfest times are not very helpful.
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15. Localization of Wigner Functions

The times up to which discretizations of the Egorov theorem
yield good results in numerical experiments often exceed the theo-
retically predicted Ehrenfest times by many orders of magnitude,
see e.g. our experiments in [KL14]. The goal of this section is
to make a first attempt to close this gap between the “theoretical
and experimental Ehrenfest times”. We are nevertheless aware of
the fact that semiclassical approximations break down at the latest
after times of size O(ε−1/2). In all likelihood, semiclassical analysis
does not provide the appropriate tools to break this barrier, see
also [SVT12] and the introduction of [Fau07]. We consider initial
data of the following form10:

(Ini)z0,N Suppose that the wave function ψε
0 ∈ L2, ‖ψε

0‖L2 = 1, is of
the form

ψε
0(x) = ∑

|j|≤J
cε

j(0)ϕε
j [z0; Z0](x) + OL2(εN+1)

for some positive Lagrangian frame Z0, z0 ∈ R2d, and J ∈N.

However, we can relax the condition on the observable by allowing
for general Gevrey functions in the symbol class S.

(G)global Suppose a ∈ S and a is of Gevrey class Gs with some11

s ≥ 0.

Now, we can combine the results on the long-time wave packet
approximations from §14.2 and the cross-Wigner localization es-
timates from §15.2 in order to derive a local Egorov theorem on
stable orbits of the classical flow up to Ehrenfest times that are
algebraic in ε−1.

Theorem 7 (Local Egorov Theorem). Let ε > 0, N ∈N, and suppose
h(q, p) = 1

2 |p|2 + V(q) satisfies condition (A) such that H = opWe
ε (h)

10The generalization to initial data with several localization centers is obvious.
11In particular, all real-analytic symbols in S are admissable.
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III. Semiclassical Propagation

is selfadjoint. Assume that a : R2d → R fulfills (G)global, ψε
0 ∈ L2 is of

the form (Ini)z0,N , and the Hamiltonian trajectory Γ = {Φt(z0) : t ∈ R}
is bounded.

Then, if there is an open bounded neighborhood N(Γ) of Γ invariant un-
der Φt such that dist(∂N(Γ), Γ) > θ > 0 and h satisfies the integrability
condition (I) on N(Γ), we have

〈
e−iHt/εψε

0 opWe
ε (a)e−iHt/εψε

0

〉
=

N

∑
k=0

εk
〈

ψε
0 opWe

ε (ak(t))ψε
0

〉
+ O(ε7/8+3N/4−δd/8)

for ε small as long as |t| . ε−1/8+µ with µ > 0.

Proof. The integrability condition (I) implies that the Hamiltonian
flow Φt of h satisfies

‖∂αΦt(z)‖ ≤ Cα(1 + |t|)α (15.3)

for all α ∈ N2d and z ∈ N(Γ) with some uniform constants Cα >
0, see also [BR02, Lemma 4.2]. Because of the uniform distance
assumption on N(Γ), we can find an open set Γ ⊂ M(Γ) ⊂ N(Γ)
with

dist(∂M(Γ) , Γ) , dist(∂M(Γ) , ∂N(Γ)) > 1
4 θ > 0. (15.4)

There is a smooth function η : R2d → [0, 1] that satisfies

η(z) =

{
1 z ∈ M(Γ)

0 z ∈ R2d \ N(Γ)
(15.5)

and which is of some Gevrey class Gs′ with s′ > 1, see [Rod93,
§I.1.4]. Now, we can analyze the expectation value close to the
classical trajectory by using the ultra-differentiable partition of
unity 1 = η + (1− η).
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15. Localization of Wigner Functions

Since aη is of Gevrey class and supported in N(Γ), we can apply
the long time Egorov theorem from Lemma 18 which gives

〈
e−iHt/εψε

0 opWe
ε (aη)e−iHt/εψε

0

〉
=

N

∑
k=0

εk
〈

ψε
0 opWe

ε ((aη)k(t))ψε
0

〉
+ O(ε7/8+3N/4−δd/8)

for the considered times. Hence, it remains to estimate the part of
the expectation value away from N(Γ), and to show that we can
replace (aη)k(t) in the above formula by ak(t).

We partition the phase space into a ball around the phase space
center z0 and its complement,〈

ψε
0 opWe

ε ((aη)k(t))ψε
0

〉
=
∫

B
ε1/4 (z0)

W ε(ψε
0)(z)(aη)k(t)(z)dz

(15.6)

+
∫

R2d\B
ε1/4 (z0)

W ε(ψε
0)(z)(aη)k(t)(z)dz,

(15.7)

and treat the integrals (15.6) and (15.7) seperately. For (15.6) we
observe that due to the stability of the flow in N(Γ) one has
Φt(Bε1/4(z0)) ⊂ M(Γ) if |t| . ε−1/8+µ and ε is small enough.
Hence,

(aη)k(t)(z) = ak(t)(z) (15.8)

for all z ∈ Bε1/2+δ(z0) and |t| . ε−1/8+µ by the construction of
(aη)k(t), see Lemma 16. The value of the integral (15.7) is exponen-
tially small in ε by Proposition D.1.

Finally, we have to estimate the value of〈
e−iHt/εψε

0 opWe
ε (a(1− η))e−iHt/εψε

0

〉
. (15.9)

Since t 7→ Φt(z0) is a bounded trajectory that is stable with expan-
sion rate 1, see (15.3), Proposition 23 implies that for every small
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III. Semiclassical Propagation

σ′ > 0 it follows

e−iHt/εψε
0(x) = eiS(t)/ε ∑

|j|≤J+3/εσ′−3

cε
j(t)ϕε

j [zt; Zt](x) + OL2(εN+1)

(15.10)
as long as |t| . ε−1/8+µ and ε is small. The OL2(εN) error contains
the error from the initial condition and the exponentially small
error from the semiclassical time propagation. Moreover, since the
wave packets ϕε

j [zt; Zt], j ∈Nd, are pairwise orthogonal and ϕε
0 is

L2-normalized, from (15.10) we can infer |cε
j(t)| ≤ 2 for all12 j if ε is

small enough. We estimate∣∣ ∑
|k|,|`|≤J+3/εσ′−3

cε
k(t)c

ε
`(t)

〈
ϕε

k[zt; Zt], opWe
ε (a(1− η))ϕε

`[zt; Zt]
〉 ∣∣

≤ 4 ∑
|k|,|`|≤J+3/εσ′−3

∫
R2d

∣∣W ε
k,`[Zt; zt](w)a(w)(1− η)(w)

∣∣dw

≤ 4‖a‖L∞ ∑
|k|,|`|≤J+3/εσ′−3

∫
R2d\M(Γ)

∣∣W ε
k,`[Zt; zt](w)

∣∣dw.

We have zt ∈ M(Γ) by construction, and dist(zt, M(Γ)) ≥ 1
4 θ > 0.

Consequently, applying Proposition 25 leads to the estimate∫
R2d\M(Γ)

∣∣W ε
k,`[Zt; zt](w)

∣∣dw ≤ Ce−Dε−2/3

for some C, D > 0 independent of k, ` ∈ {α ∈ Nd : |α| ≤ J +
3ε−σ′ − 3} if ε is small. Combining this with (15.10) yields an
O(εN+1) bound for (15.9) since a(1− η) is bounded. This completes
the proof.

Theorem 7 implies that the Egorov theorem holds for long Ehren-
fest times that are algebraic in ε−1 if one considers initial wave
functions that are localized in a phase space region where the

12Every number larger than 1 serves as an upper bound for |cε
j (t)| if ε is small.
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15. Localization of Wigner Functions

Hamiltonian dynamics is integrable. Intuitively it is clear that the
behaviour of the Hamiltonian flow and the observable away from
the classical trajectory should not play a role for the error. We rigor-
ously verified this anticipation by using the long time wave packet
approximation from Proposition 23 and the localization estimate for
Wigner functions from Proposition 25. Hence, in comparison with
the results in [BR02], we gain more freedom for the regularity of
the dynamics and the localization of the observable at the price of
loosing some power of ε in the Ehrenfest time. This loss is probably
only due to our proof, since it originates in the involved estimates
for the long-time wave packet approximation from [HJ00] or Propo-
sition 23. We note that our local Theorem implies the algebraic
Ehrenfest time scales of size ε1/8 for more general situations than
captured by the conditions (A), (G), and (I) from [BR02].
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IV
Algorithms and

Applications

The reliable simulation of the dynamics of molecular quantum
systems is one of the central challenges of physical chemistry. In the
Born-Oppenheimer approximation, the evolution of the molecule’s
nuclei in atomic units is governed by a semiclassical Schrödinger
equation of the form

iε∂tψ(t) = opWe
ε (h)ψ(t), ψ(0) = ψ0 ∈ L2(Rd), (15.1)

compare (5.2) and section §2.4. There are two key features of the
solutions of equation (15.1) which make a direct numerical dis-
cretization expensive or — for many real-world systems — even
unfeasible. Firstly, the configuration space is typically high dimen-
sional, d� 1, which makes the use of tensor grids impossible due
to the “curse of dimension”, see e.g. [Lub08, §III.1.2]. Secondly,
solutions of the semiclassical Schrödinger equation are typically
highly oscillatory in space and time, with frequencies of size O(ε−1).
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IV. Algorithms and Applications

The smallness of ε induces severe constraints on the discretization
parameters, since one has to resolve the oscillations.

By direct numerical discretization we typically mean a (pseudo-
)spectral discretization, e.g. Fourier collocation or a Galerkin
method, in space, and a splitting in time, see also appendix E.
For details, discussions, and comparisons of various discretiza-
tions we refer to [Lub08, §III] and [JMS11] and the references given
therein.

In this chapter we discuss discretizations for the evolution of
expectation values that build on the semiclassical Egorov type ap-
proximations presented in chapter III. While these phase space
methods inherit a structural ε-dependent error arising from the
semiclassical approximation, they do not need to resolve high oscil-
lations, and the required computational efforts scale polynomially
(in fact, mostly linear) in the dimension. In §16 we discuss algo-
rithmic discretizations of the Egorov theorem from §11, and the
Husimi and spectrogram approximations from §12. The last chap-
ter §17 is devoted to numerical experiments in various setups and
dimensions.1

16 Discretization

In this chapter we provide discretizations for the semiclassical
approximations of quantum expectations discussed in §III. We
describe and compare four different methods for approximating
the time evolution of the expectation value

t 7→
〈

e−iHt/εψ, opWe
ε (a)e−iHt/εψ

〉
=:
〈

â(t)
〉

ψ
,

where the observable opWe
ε (a) and the Hamiltonian H = opWe

ε (h)
are Weyl quantized operators. Throughout this chapter, by Φt we

1 All simulations have been performed with Matlab 8.3 on a 3.33GHz Intel Xeon
X5680 processor.
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16. Discretization

denote the Hamiltonian flow of h, and by Φt
ε the Hamiltonian flow

of h− ε
4 ∆h. The initial wave function ψ ∈ L2(Rd) is assumed to be

L2-normalized, ‖ψ‖L2 = 1.
We consider the following four phase space approximations as

starting points for the development of numerical methods for the
computation of expectation values.

A Wigner method: Applying the Egorov theorem from §11 yields〈
â(t)

〉
ψ
=
∫

R2d
(a ◦Φt)(z)W ε(ψ)(z)dz + O(ε2) (16.1)

for suitable a, whereW ε(ψ) : R2d → R is the Wigner transform
of ψ.

B Spectrogram method: By Theorem 5, one has the approximation〈
â(t)

〉
ψ
=
∫

R2d
(a ◦Φt)(z)µ2(ψ)(z)dz + O(ε2) (16.2)

= (1 + d
2 )
∫

R2d
(a ◦Φt)(z)Hε

0(ψ)dz

− d
2

∫
R2d

(a ◦Φt)(z) 1
d ∑
|k|=1
Hε

k(ψ)dz + O(ε2)

with the spectrogram phase space density µ2(ψ). Note, that
Hε

0(ψ) and 1
d ∑|k|=1Hε

k(ψ) are smooth probability densities.

C Husimi method: Corollary 5 makes is possible to compute
expectation values via Husimi functions,〈

â(t)
〉

ψ
=
∫

R2d
Ft

ε (a)(z)Hε
0(ψ)(z) dz + O(ε2) (16.3)

= − ε
2

∫
R2d

(
tr(Λt

ε (D2a ◦Φt
ε)) + Γt

ε · (∇a ◦Φt
ε

)
(z)Hε

0(ψ)(z) dz

(16.4)

+
∫

R2d
(aε ◦Φt

ε)(z)Hε
0(ψ)(z) dz + O(ε2)
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where Hε
0(ψ) is the Husimi transform of ψ, and Ft

ε contains
the vector flows Φt

ε, Γt
ε : R2d → R2d as well as the matrix flow

Λt
ε : R2d → R2d×2d.

D naive Husimi method: We simply replace the Wigner transform
in the Wigner method (16.1) by the Husimi transform. The
resulting approximation〈

â(t)
〉

ψ
=
∫

R2d
(a ◦Φt)(z)Hε

0(ψ)(z) dz + O(ε), (16.5)

is of first order in ε, only.

We present algorithmic discretizations of the four methods A–D
from above, based on a sampling from the initial density and in-
tegration of the respective ODEs. Discretizations of the Wigner
method have first been discussed in [LR10], see also our work with
Caroline Lasser in [KL14]. For the discretization of the Husimi
method we refer to our joint publication [KL13] with Caroline
Lasser, and for the spectrogram method to the joint preprint [KLO15]
with Caroline Lasser and Tomoki Ohsawa. In [GL14] one can find a
scheme for discretizing a higher order Egorov approximation with
O(ε4) errors, which in some sense is similar to our discretization of
the Husimi method.

The first section §16.1 contains an algorithmic description of the
phase spce methods derived from approximations A–D. Thereafter,
in §16.2 and §16.3, we discuss the sampling and time propagation
parts of the algorithms in greater detail.

16.1 Phase Space Algorithms

The formulas for the spectrogram and Husimi method both decom-
pose into a linear combination of two phase space integrals with a
probability density as weight. Since the two integrals can be treated
independently, we are left with the task of discretizing phase space
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16. Discretization

integrals of the form2∫
R2d

Θt(z) · (b ◦Φt)(z)p(z)dz =: Ep[Θt · (b ◦Φt)] (16.6)

where p is a probability density, b : R2d → Rk with k ≥ 1, Φt :
R2d → R2d is the Hamiltonian flow associated with some energy
function h, and Θt : R2d → Rk is the vector-valued flow of some
ODE

∂tΘt = A(h, Θt, Φt), Θ0(z) = C ∈ Rk ∀z ∈ R2d, (16.7)

with smooth right hand side. One can see that all integrals appear-
ing in the approximations A–D from above are of this form, except
that the Wigner transformW ε(ψ) is only a probability density for
Gaussian states ψ, see [SC83]. We ignore this restriction for the
moment. Note that one has k = 1 and Θt ≡ 1 for all the phase space
integrals except for the first order correction (16.4) in the Husimi
method. To see that this correction is in fact of the form (16.6) one
can vectorize the matrices Λt

ε and D2a and write down a joint ODE
in R4d2+2d for Λt

ε and Γt
ε, whoose right hand side only depends on

h and Φt
ε, see [KL13, §4.2] for the details.

The algorithmic discretization of (16.6) consists of two steps,
namely sampling from the density p, and integrating the ODEs for
Θt and Φt. In other words, we use the quadrature

Ep[Θt · (b ◦Φt)] ≈ 1
N

N

∑
j=1

Θt(zj) · b(Φt(zj)) =: QN
p [Θ

t · (b ◦Φt)]

(16.8)

≈ QN
p [T

t
τ · (b ◦ f t

τ)] (16.9)

where z1, . . . , zN are distributed according to the probability mea-
sure p(x)dx. Tt

τ and f t
τ are numerical discretizations of Θt and Φt

2The notation Ep[•] highlights that if p is a probability density, the integral is an
expectation value in the sense of probability theory.
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with stepsize τ > 0, respectively. The first quadrature formula (16.8)
corresponds to a space discretization, and (16.9) to an additional
time discretization of the expectation value. The full discretization
of the expectation value then can be implemented in the spirit of
the following Matlab type pseudocode quadrature().

1 function [out] = quadrature(t,h,b,A,p,N,τ)
2 % INPUT: t time for evaluation
3 % h the Hamilton function for Φt

4 % b phase space function
5 % A right hand side of ODE for Θt

6 % p probability density
7 % N number of sampling points
8 % τ time stepping for integrator
9 % OUTPUT: out approximate value of the

10 % phase space integral
11

12 % Sample N points from p(x)dx
13 [z_1,...,z_N] = sample(p,N);
14 % set up initial values for the flow Φt

15 z = [z_1,...,z_N];
16 % set up initial values for Θt

17 T = C*ones(1,N);
18 % apply a numerical solver to integrate the
19 % joint ODE for [Φt;Θt] up to time t with time
20 % stepping τ and initial conditions z and T
21 [z,T] = integrator(z,T,h,A,τ,t)
22 % Compute inner products for all evolved points
23 temp = [T(:,1)’*b(z(:,1)),...,T(:,N)’*b(z(:,N))]
24 % Take the average
25 out = (1/N) * sum(temp)
26 end
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16. Discretization

We are going to explain the sampling and numerical quadrature
substeps sample() and integrator() in more detail in the sec-
tions §16.2 and §16.3 below. The schematic formulation from above
illustrates that the symbol b enters only in the final averaging step,
which is not expensive. Consequently, the main part of the algo-
rithm is independent of b, and the outcome of the sampling and
propagation steps can be used to approximate the integral (16.8)
for all functions (observables) b : R2d → Rk of interest.

16.2 Sampling

The sampling step sample() in the phase space algorithm de-
scribed in §16.1 should create points z1, . . . , zN that are distributed
according to a phase space density representing the initial state ψ,
that is, W ε(ψ), Hε

0(ψ) or 1
d ∑|k|=1Hε

k(ψ). For the Wigner method
this is however a hard or even unsolvable task since Wigner trans-
forms are typically not probability densities. Although there are
techniques to circumvent this sampling problem for certain classes
of states, like stratified or importance sampling, or generalized
Metropolis algorithms, see [KLW09, LR10], it is a source of severe
difficulties. It was our leading motivation for the development of
the Husimi and spectrogram methods to obtain approximations that
build on phase space densities that are well-amenable for numerical
sampling purposes for all types of initial states.

We focus on two different sampling techniques for probability
distributions that are suitable for the moderately high dimensional
setups we are aiming for, namely Monte Carlo and Quasi-Monte
Carlo or low star-discrepancy sampling schemes.

Monte Carlo quadrature

For Monte Carlo sampling one either generates random variables
z1, . . . , zN that are independently and identically distributed with
respect to the probability density p, or, as for Markov chain Monte
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Carlo methods, create a uniformly ergodic Markov chain z1, z2, . . .
with stationary distribution p. Then, by central limit theorems, for
all α > 0 one has the convergence

P

(∣∣Ep[a]−QN
p [a]

∣∣ ≤ αγ(a)√
N

)
=

1√
2π

∫ α

−α
e−x2/2dx

where the constant γ(a) in the quadrature error depends on the
variance of the integrand a, but not on the dimension. As noted
in [KL14, §4.1], for our applications γ(a) typically decreases for
small ε, and the observed accuracy of Monte Carlo quadrature
becomes better in the semiclassical setup.

In [KLO15, §5 and Appendix A] we computed the Husimi func-
tions and first oder Hermite spectrograms for translated Hermite
functions. They give rise to linear combinations of products of two-
dimensional probability distributions that factorize into an uniform
distribution for the angular part and a Gamma distribution for the
radial part. Hence, one can use the routines rand() and gaminv()
in Matlab in order to generate a uniform random sampling on
[0, 1] and transform it back to the radial distribution by means of
the inverse distribution function.

Quasi-Monte Carlo quadrature

In contrast to Monte Carlo methods, Quasi-Monte Carlo quadrature
is totally deterministic. It builds on sequences z1, z2, . . . ∈ R2d that
minimize the star-discrepancy with respect to the measure p(z)dz.
That is, the star-discrepancy

D∗(z1, . . . , zN) = sup
w∈R2d

∣∣ 1
N
]{zj : zj ∈ (−∞, w)} −

∫
(−∞,w)

p(z)dz
∣∣

satisfies D∗(z1, . . . , zN) = O(log(N)2dN−1) as N → ∞, where we
used the convention (−∞, w) := (−∞, w1)× . . .× (−∞, w2d). Then,
for suitable integrands a, by the Koksma-Hlawka inequality it holds∣∣Ep[a]−QN

p [a]
∣∣ ≤ γ(a)(log N)cd

N
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for some constants γ(a) and cd ≥ 2d, see the proof of [HKT04,
Theorem 3.4] or [LR10, §3.2]. Again, numerical experiments suggest
that γ(a) becomes smaller for ε→ 0, and in practice one observes
convergence rates of O(N−1) for moderately high dimensions.

There are various well-known low-discrepancy sequences for the
uniform distribution on the torus [0, 1]d, for instance the Halton
and Sobol sequences3. If the probability density p : R2d → [0, ∞)
factorizes into a product of 2d probability densities p1, . . . , p2d for
which one can evaluate the inverse distribution function, one can
map such a low star-discrepancy sequence on the torus to a low star-
discrepancy sequence for the measure p(z)dz. This is for example
the case for the Husimi transform of isotropic Gaussians, where
one uses the inverse error function. However, for most states
the density p neither factorizes, nor can one access any inverse
distribution function. Hence, one would like to directly generate
low-discrepancy sequences for non-uniform measures on more
general domains. This is a hard problem which to the best of our
knowledge is still more or less unsolved; see [BB09]. Even the
existence of low-discrepancy sequences for non-uniform measures
on the torus has been investigated only recently in [AD14].

For translated Hermite functions we use a heuristic sampling
approach by mimicking the procedure used for Monte-Carlo sam-
plings. We simply replace the uniform random numbers on [0, 1]d

by Halton or Sobol sequences and then transform them to the radial
Gamma distribution by means of the inverse distribution function.
If this procedure, combined with pseudorandom numbers for the
angular part, in fact yields a low star-discrepancy series is an open
question not adressed by the current literature. However, in numer-
ical experiments these heuristical sequences perform very well, see
also the experiments in chapter §17.

3In Matlab they are accessible via the commands haltonset() and
sobolset().
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16.3 Integration of ODEs

The discretization of the phase space approximations described
in §16.1 contains as the substep integration() a numerical
solver for the Hamiltonian flow Φt associated with a Hamilton
function4 h : R2d → R with initial conditions generated by the
initial sampling step sample discussed in §16.2. For the Husimi
method one additionally has to integrate the flows Λt

ε and Γt
ε for

the correction.
For the numerical integration of the Hamiltonian flow Φt it is

crucial to use a symplectic integrator in order to obtain physically
meaningful and accurate solutions, especially over long time inter-
vals.

Definition 12. A numerical one-step integrator for a Hamiltonian
system (R2d, Ω, h) is called symplectic if the one-step map zn+1 =
Fτ(zn) ∈ R2d is symplectic for all step sizes τ > 0.

For the abstract and practical properties of symplectic integrators
we refer to the book of Hairer, Lubich, and Wanner [HLW10, §VI].
In particular, symplectic integrators preserve all first integrals of
the system, like the total energy, and phase space volumes, see e.g.
the illustrations for the pendulum in [HLW10, Figure 3.1 in §VI].
The importance of using a symplectic integrator for the discretized
Egorov theorem (and the other methods) is also illustrated in [LR10,
Figure 4.2], where the non-symplectic ode45 solver from Matlab

is shown to give rise to a drift in energy.
If the Hamilton function has the common form

h(q, p) = 1
2 |p|

2 + V(q), (16.10)

4For the Husimi method one has to use the corrected energy function hε, but this
does not alter the discretization procedure. Therefore, we suppress this possibility
in the rest of the section.
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for computing Φt one has to solve the Hamiltonian system{
q̇t = pt, q0 ∈ Rd

ṗt = −∇V(qt), p0 ∈ Rd
. (16.11)

The structure of (16.11) suggests to approximate Φt by suitable com-
positions of the linear flows Φt

a and Φt
b of the simpler differential

equations{
q̇a

t = 0

ṗa
t = −∇V(qa

t )
and

{
q̇b

t = pb
t

ṗb
t = 0

(16.12)

obtained from splitting the Hamiltonian vector field in (16.11) into
two parts. The most commonly used symplectic splitting method is
the Störmer-Verlet scheme

Fτ = Φτ/2
a Φτ

b Φτ/2
a

(
or F̃τ = Φτ/2

b Φτ
a Φτ/2

b

)
which yields a second order method. Compositions of Φ

αj
a and

Φ
β j
b with suitable step sizes αj and β j can also be used to construct

higher order symplectic splitting methods, see for example the
schemes in [Yos90].

If h is of the form (16.10), the Hessian D2h is independent of the
momentum p, and hence the vector field in the ODE for Λt

ε and Γt
ε

does not depend on the momentum p either, compare Theorem 6.
Consequently, in this case one can integrate the ODE for the full
system by using the splitting (16.12) and propagating Λt

ε and Γt
ε

together with the momentum Φt
a, see also [KL14, §4.2].

For the semiclassical approximations A–D one can solve the
relevent ODEs parallely for all initial data, which allows for a
tremendous speed up. Below one can find a Matlab type pseu-
docode stoermer-verlet() for the popular Störmer-Verlet method
Ft

τ applied for the integration of (16.11) with initial data z1, . . . , zN ∈
R2d. It can be used as integrator in the quadrature() routine
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whenever one only has to solve Hamilton’s equation(16.11) and no
additional ODEs. This is the case for all phase space integrals in the
approximations A–D except for the Husimi correction (16.4), for
which one also has to approximate Λt

ε(zj) and Γt
ε(zj), j = 1, . . . , N.

1 function [out] = stoermer-verlet(z,V,τ,t)
2 % INPUT: z initial conditions [z1, . . . , zN ]
3 % V the potential
4 % τ time stepping for integrator
5 % t time for evaluation
6 % OUTPUT: out [Ft

τ(z1), . . . , Ft
τ(zN)]

7 q = z(1:d,:); % initial positions
8 p = z(d+1:2d,:); % initial momenta
9

10 p = p - (τ/2)*∇V(q); % first half step with Φτ/2
a

11 % apply Fτ as often as it is required to reach
12 % the time t-τ

13 for j=1:((t/τ)-2);
14 q = q + τ*p;
15 p = p - τ*∇V(q);
16 end
17 % do the last step with the integrator
18 q = q + τ*p;
19 p = p - (τ/2)*∇V(q)
20 out = [q,p];
21 end

In order to avoid unnecessary computational efforts, in the above
algorithm we replaced two subsequent steps with Φτ/2

a by a full
step Φτ

a .

16.4 The Error

If one combines the structural ε-dependent errors of the semiclassi-
cal approximations B–D from above with the discretization errors
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16. Discretization

from §16.2 and §16.3, we arrive at the following formulas for the
overall error of the discretized Spectrogram, Husimi, and naive
Husimi methods. In Proposition 26 we do not treat the Wigner
method for which the sampling step is not feasible in general.
As soon as one has a sampling strategy for W ε(ψ), similar error
estimates apply.

Proposition 26. Let ε > 0, t > 0, a ∈ S(R2d), N, M ∈ N and
ψ ∈ L2(Rd). Suppose that f t

τ , gt
τ are order κ symplectic integrators for

Φt, Φt
ε with stepsize τ, and Lt

σ, Gt
σ are order κ approximations for Λt

ε, Γt
ε

with stepsize σ. Then, if we apply Monte-Carlo sampling, one has〈
â(t)

〉
ψ
= (1 + d

2 )Q
N
p0
[a ◦ f t

τ ]− d
2 QN

p1
[a ◦ f t

τ ] + O(ε2 + N−1/2 + τκ)〈
â(t)

〉
ψ
= QN

p0
[aε ◦ gt

τ ]− ε
2 QM

p0
[tr(Lt

σ(D2a ◦ gt
σ)) + Gt

σ · (∇a · gε
σ)]

+ O(ε2 + N−1/2 + τκ + ε(M−1/2 + σκ))〈
â(t)

〉
ψ
= QN

p0
[a ◦ f t

τ ] + O(ε + N−1/2 + τκ)

for the spectrogram (upper) the Husimi (middle), and the naive Husimi
(lower) methods, where p0 = Hε

0(ψ) and p1 = 1
d ∑|k|=1Hε

k(ψ).

The error estimates in the case of Quasi-Monte Carlo quadrature
just differ by the convergence rate in N and M, see §16.2.

Proof. The ε- dependent part in the error is due to the semiclassical
approximation, see (16.2), (16.3), and (16.5), while the parts depen-
dent on N and M stem from the Monte-Carlo quadrature (16.8).
The other errors are due to the approximation of the time evolution
in (16.9).

Let us highlight that for the Husimi method one requires less
sampling points for the quadrature of the correction integral since
it comes with an additional prefactor ε, see also the comments
in [GL14, §3.4]. In order to obtain overall errors of size O(ε2) or
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O(ε), one consequently has to choose the appropriate ε-dependent
number of sampling points, and ε-dependent time stepping for the
numerical integrators.

Example. We apply the Wigner method to a one-dimensional
model for the dynamics of a diatomic iodine molecule I2 on the
lowest PES, see also [KL14]. The degree of freedom is the internu-
clear distance r, and the electronic ground state is modelled by a
Morse potential fitted to data, see [BY73],

VI2(r) = De

(
1− e−α(r−re)

)2
. (16.13)

One has De = 0.0572 hartree, α = 0.983a−1
0 , and re = 5.03855a0,

where the Bohr radius a0 is unity in atomic units. After an en-
ergy rescaling, see [KL14, §V.A], one arrives at the semiclassical
Schrödinger operator

H = − ε2

2 ∂2
r + (1− e−α(r−re))2 (16.14)

with ε =
√

1/(mDe) = 0.0122 , where m = 1.165 · 105 a.u is the
reduced mass. This model has been used for the exploration of
methods in the chemistry literature before, see [FM96, WTS+01,
TW04].

As in [KL14, WTS+01], we consider the Gaussian initial data
ϕε

0[(4.53, 0); (1.38, i)], which implies that the Wigner transform is
a two-dimensional Gaussian function. Hence, the sampling step
poses no difficulties. We use Sobol quasirandom numbers for the
sampling, and choose the Störmer-Verlet scheme for time propaga-
tion.

In figure 5 we depict the error of the Wigner method with respect
to highly accurate reference solutions5 for four observables, and
different values numbers of Sobol points N and time steppings τ.

5The reference solutions are generated by the Fourier split-step method, see also
appendix §E, with 2 · 104 Fourier modes on the interval [3, 11], and 2 · 106 time steps.
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Figure 5: Average errors of the Wigner method applied to four observables on
the time interval [0, 166fs] for the one-dimensional Hamiltonian (16.14) with initial
data ϕε

0[(4.53, 0); (1.38, i)]. We compare different numbers N of Sobol points for the
quadrature, and time steppings τ for the Störmer-Verlet integrator. For the left plot
we use 105 Sobol points, and for the right plot a time stepping of τ = 10−3.

As expected, the overall error of the approximation converges to
the structural error of size O(ε2) of the Egorov theorem whenever
the time steppings become small6, τ ≈ ε, or the number of Quasi-
Monte Carlo quadrature points becomes large, N−1 ≈ ε2, compare
also Proposition 26. �

17 Numerical Experiments

17.1 Accuracy

Let us first present numerical experiments with varying parameter
ε in order to validate the second order accuracy in ε of the Husimi

6Recall that the Störmer-Verlet method is of second order.
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and Spectrogram method, and the first order accuracy of the naive
Husimi method. For this purpose, as in [FGL09, LR10, KL13, GL14,
KLO15] we consider the two-dimensional torsional potential

V(q1, q2) = 2− cos(q1)− cos(q2), q ∈ R2,

and different values 10−3 ≤ ε ≤ 10−1 of the semiclassical parameter.
As initial data we take the Gaussian wave packet ϕε

0[z, (Id, iId)] with
phase space center z = (1, 0, 0, 0). Then, we apply the Husimi and
the spectrogram method to compute the expectation values for the
following classical observables a : R4 → R:

i) Position: a(q, p) = q1 and a(q, p) = q2,

ii) Momentum: a(q, p) = p1 and a(q, p) = p2,

iii) Kinetic energy: a(q, p) = 1
2 |p|2 ,

iv) Potential energy: a(q, p) = V(q),

v) Total energy: a(q, p) = 1
2 |p|2 + V(q).

We compare the outcome of the Husimi and spectrogram method
with highly accurate grid based reference solutions generated by the
split-step Fourier method, see appendix §E and table 3 for details.
The error for the position and momentum expectations is measured
via the euclidean distance on R2. A variety of experiments for the
Wigner method can be found in [LR10] and our joint paper with
Caroline Lasser [KL14].

In all experiments we used the eighth order symplectic splitting
integrator from [Yos90, Table 2.D] with time stepping 10−1 for the
time propagation. For the Husimi and naive Husimi methods we
employed Sobol sequences for the quadrature, see also table 1.
The two panels in figure 6 confirm that the Husimi and naive
Husimi methods are indeed of second respectively first order in ε,
as predicted by Proposition 26.
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Figure 6: Average errors over the time interval [0, 20] for the position, momentum,
and energy expectations computed by the the Husimi (left) and naive Husimi (right)
methods with Sobol sampling. As setup we used the two-dimensional torsional
potential and Gaussian initial data ϕε

0[z0, (Id, iId)] centered in z0 = (1, 0, 0, 0).

Moreover, figure 7 illustrates that the spectrogram method is of
second order in ε. Both, Monte Carlo quadrature and the heuristic
Halton sampling method described in §16.2, yield good results
for the spectrogram method, compare also [KLO15, Figure 6.1 and
Appendix A.3]. The used number of sampling points and required
computation times for the spectrogram method with Halton respec-
tively Monte-Carlo sampling can be found in table 2. As expected,
the computational efforts scale linearly with respect to the number
of initial sampling points.
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Figure 7: Average errors over the time interval [0, 20] for different observables
computed by the the Spectrogram method with Monte Carlo (left) and the heuristic
Halton (right) sampling for the two-dimensional torsional potential and Gaussian
initial data ϕε

0[z0, (Id, iId)] centered in z0 = (1, 0, 0, 0).

ε flow nodes N1 correction nodes N2
10−1 104 103

5 · 10−2 3 · 104 3 · 103

10−2 105 104

5 · 10−3 3 · 105 2 · 104

10−3 106 5 · 104

Table 1: Number of Sobol points N1 for the naive Husimi method and the leading
term in the Husimi method, and number of Sobol points N2 for the first order
correction integral (16.4) in the Husimi method. The results for the Husimi and
naive Husimi algorithm are depicted in Figure 6.
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Experiments for the Husimi method applied to the same two-
dimensional torsional potential with Gaussian superpositions as
initial data can be found in [KL13].

ε MC points comp. time Halton points comp. time
10−1 5 · 104 23s 5 · 104 16s

5 · 10−2 3 · 105 1m59s 105 33s
10−2 6 · 105 7m16s 2 · 105 1m59s

5 · 10−3 1.5 · 106 14m15s 8 · 105 6m50s
10−3 10 · 106 68m30s 2 · 106 18m31s

Table 2: Computational data for the execution of the spectrogram algorithm
for the two dimensional torsional potential and Gaussian initial data centered in
z0 = (1, 0, 0, 0) on the time interval [0, 20]. The computation times are for one run
only.

ε #timesteps comp. domain space grid
10−1 5 · 103 [−3, 3]× [−3, 3] 1536× 1536

5 · 10−2 5 · 103 [−3, 3]× [−3, 3] 1536× 1536
10−2 7.5 · 103 [−2, 2]× [−2, 2] 2048× 2048

5 · 10−3 104 [−2, 2]× [−2, 2] 2048× 2048
10−3 104 [−2, 2]× [−2, 2] 2048× 2048

Table 3: The parameters for the numerically converged, grid-based reference
solutions of the two-dimensional torsional potential. The discretization has been
performed by Fourier collocation in space and Strang splitting in time.

17.2 Quantum Effects: Escape from

a Potential Well

It is important to investigate in how far the semiclassical algorithms
are capable of describing important quantum effects, like the escape
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of a quantum particle from a cubic potential well 7.
For this purpose we consider the Schrödinger operator H =

− ε2

2 ∆ + V with the large semiclassical parameter ε = 0.4642 and
the one-dimensional barrier potential

V(q) = 2.328 · q2 + q3 + 0.025q4, q ∈ R,

see also figure 8. Starting from the Schrödinger operator

− 1
2 h̄2∆ + 1

2 x2 + 0.1x3

with h̄ = 1 from [OL13, PP00], one arrives at the Hamiltonian H
by conducting the space rescaling x 7→ 3

√
0.1x. We add a small

quartic confinement term 0.025 · q4 that prevents trajectories from
finite time blow up, and guarantees that H is essentially self-adjoint
on C∞

c (Rd), see [RS75, Theorem X.28]. The global potential energy
minimum V(xglob) ≈ −4765 is attained at xglob ≈ −28.4, and the
confinement term is negligible in the region of interest close to the
origin.

As initial data we use translated Hermite functions ϕε
k[z0, (1, i)] lo-

calized z0 = (0.4642,−1), which corresponds to the phase space cen-
ter used in [OL13]. Since the associated classical energy h(z0) ≈ 1.1
lies below the barrier energy Vb ≈ 2.03, which is attained at
xmax ≈ −1.62, the classical particle is trapped in the well for all
times. Hence, it moves on a periodic orbit since the configura-
tion space is one-dimensional. The energy of the Gaussian state
ϕε

0[z0, (i, i)] and the excited states ϕε
k[z0, (1, i)], k ∈ N, however, is

larger than the potential barrier. Consequently, the expected phase
space center of the quantum particle will escape from the poten-
tial after short times. We investigate in how far the spectrogram
algorithm is capable of desribing the qualitative dynamics of this
escape process, even when the semiclassical parameter is large.

7This section in large parts corresponds to section §6.2 in our joint work [KLO15]
with Caroline Lasser and Tomoki Ohsawa.
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Figure 8: The cubic barrier potential V with the barrier energy Vb. The energy
h(z0) of the classical particle is smaller than Vb and, hence, the classical particle is
trapped.

In order to obtain numerically converged results, for the spectro-
gram algorithm we used 214 Halton points and the same eighth-
order symplectic integrator as for the experiments presented in §17.1
with time stepping 10−2. This choice results in overall computation
times of 2 seconds. The highly accurate quantum references are
generated by means of a Strang splitting with 215 Fourier modes
on the interval [−40, 4].

As initial data we use the translated Hermite functions ϕε
k[z0, (1, i)]

with k ∈ {0, 1, 3, 6}, and we compare the evolution of the expected
position and momentum obtained by the spectrogram method with
the quantum references. Figure 10 confirms that the spectrogram
method is capable of giving a decent qualitative description of the
escape process, despite the fact that the semiclassical parameter is
large.
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Figure 9: The phase space trajectories of the classical particle, and the trajectories
of the expected phase space centers for the quantum solution, and the spectrogram
approximation for the barrier potential V and the four initial states ϕε

k [z0, (1, i)] with
k ∈ {0, 1, 3, 6}. The border of the classical trapping region is illustrated by the thick
black line.

We furthermore note that the errors become smaller for higher
energy initial data. This can be explained by the shorter times after
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which the trajectories leave the classical trapping region, compare
figure 10, and by the fact that fewer of the classical trajectories
used by the spectrogram method come close to the hyperbolic fixed
point (xmax, 0) of the flow. At such local maxima of the potential
the errors in Egorov’s theorem are known to grow exponentially in
time, see [BR02, Example 6.2].

The spectrogram algorithm can also be used to explore the evolu-
tion of the probability that the particle escaped from the potential
well and can be found within the region (−∞, xmax]. We approxi-
mate this escape probability by

〈ψt, op(r)ψt〉 ≈ ‖ψtχ(−∞,xmax]‖
2
L2 =: Pesc(t), (17.1)

with the smooth symbol r(q, p) = exp(−0.01/(q− xmax)2)1(−∞,xmax](q).
Then, Pesc(t) can be approximated by the spectrogram algorithm.
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Figure 10: Approximate escape probabilities Pesc(t) for a highly accurate quantum
reference, and the results of the spectrogram and Wigner methods for the initial
states ϕε

k [z0, (1, i)] with k ∈ {1, 3} .
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Figure 10 shows by means of the two different initial states
ϕε

k[z0, (1, i)] with k ∈ {1, 3} that the spectrogram algorithm yields
a good qualitative picture of the evolution of escape probabilities.
Moreover, it illustrates that the results are comparable to the out-
come of the Wigner method.

17.3 High Dimensions

In a final experimental setup we demostrate the applicability of
the spectrogram method in moderately high dimensions. For our
experiments, which can also be found in [KLO15, §6.3], we consider
the 32-dimensional Hénon–Heiles tyle potential8

V32(q) = 1
2 |q|

2 + 1.8436
31

∑
j=1

(q2
j qj+1 − 1

3 q3
j+1) + 0.4

31

∑
j=1

(q2
j + q2

j+1)
2,

(17.2)
and the semiclassical parameter ε = 0.0029.

In [NM02], Hénon–Heiles potentials in different dimensions have
been used for benchmark calculations with the multiconfiguration
time-dependent Hartree method (MCTDH) method. There, they
are taken as a model for exploring the dynamics of a hydrogen
atom on a high-dimensional potential energy surface that exhibits
regions of instable motion. As in [RM00], or for the potential well
in §17.2, we add a small quartic confinement in order to obtain a
self-adjoint Hamiltonian, and classical trajectories of finite speed.

We investigate the performance of the Wigner, spectrogram, and
naive Husimi methods for the evolution of potential energies. As
in [NM02, KL14, KLO15], the initial state is a Gaussian wave packet
ψ0 = ϕε

0[z, (Id, iId)] centered at z = (q, p) with p = 0 and qj =
0.1215 for all j = 1, . . . , 32. There is no possibility to generate
reliable references for the the 32-dimensional Henon–Heiles system.

8The two-dimensional version of this potential can be traced back to the
work [HH64] of Hénon and Heiles on celestial mechanics.
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However, since the initial data is Gaussian, there is no difficulty
in the sampling when applying the Wigner method and we can
compare the outcome of the Wigner, the spectrogram, and the
naive Husimi method. We do not include the Husimi method in
this experiment since approximating the flows Λt

ε : R64 → R64×64

and Γt
ε : R64 → R64 for the correction is extremely costy with the

Matlab implementation we used. For all three methods we used
217 Sobol points for the quadrature, and the same eighth order
symplectic integrator as for the calculations in §17.1 and §17.1 with
time stepping 2 · 10−2.
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Figure 11: Approximate dynamics of the expected potential energies measured in
hartree (Eh) for the 32-dimensional Hénon–Heiles system computed by the Wigner,
spectrogram, and naive Husimi methods up to 104 femtoseconds.

Figure 11 illustrates by means of the potential energies that the
outcomes of the Wigner and the spectrogram method are virtually
indistinguishable, while the results of the naive Husimi method
differ substantially.
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Remark 18. For parallel GPU implementations of semiclassical algo-
rithms like the Wigner method, and experiments for Hénon–Heiles systems
in up to 512 dimensions see the recent work of David Sattlegger and Man-
fred Liebmann [LS15].
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Summary and Outlook
In this dissertation we investigated various simplifications for the
states and the dynamics of molecular quantum systems. We started
with a discussion of the Born-Oppenheimer approximation and
potential energy surfaces in the first part §I. Afterwards, in §II
, we investigated the structure of the highly localized Hagedorn
wave packets in configuration and phase space. In part §III we
explored semiclassical approximations for the quantum evolution
of expectation values and states. In part §IV we finally provided
algorithmic discretizations for the expectation value approximations
discussed before, and illustrated their applicability in numerical
experiments.

For the applications in chemistry we have in mind, solving the
corresponding time-dependent Schrödinger equation with direct
numerical methods is computationally unfeasible and the use of
approximations is indespensable. The central goal of our investiga-
tions is the development of approximations for molecular quantum
dynamics that allow for both, applicable algorithmic discretizations,
and rigorous error estimates. In this second demand our approach
differs from many popular approximations that are successfully
applied in chemistry, like the MCTDH method, since for many of
them there are no rigorous convergence results or error estimates.

A strategy which we would like to advertise with this dissertation
is the concerted use of approximations for quantum states and
observables. This combination of wave packet techniques and semi-
classical operator analysis can be useful for the enhancement or
development of semiclassical approximations. One example is the
local Egorov theorem in §15.3, whose proof requires both, the semi-
classical Moyal expansion to approximate the Heisenberg evolution
of quantum observables, and propagated Hagedorn wave packets
to control the errors away from the classical path. Another example
is provided by our Egorov type approximation with spectrogram
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densities, for which we used wave packets to derive the structure
and the explicit form of the new density µ2(ψ).

The results and discussions in this thesis immediately suggest
several generalizations and applications that would be interesting
to address in future research. One could for instance include the
following topics (of varying inticracy):

It would be desirable to exploit the fine properties of Hagedorn
wave packets we derived in §II in numerical schemes for selfadjoint
and non-selfadjoint evolution problems. For instance, the phase
space factorization of the Wigner functions of Hagedorn wave
packets could alleviate the quadrature for the matrix elements in
Galerkin type spacial discretizations of the Schrödinger equation
with wave packet bases, see e.g. [FGL09, GH14].

The Wigner-Hagedorn formula from §8 ensures that the Wigner
functions of Hagedorn wave packets are again Hagedorn wave
packets in phase space. Hence, one could directly develop semi-
classical approximations and numerical methods for the evolution
of Wigner functions in phase space, that is, for solutions of the
Quantum Liouville equation. One could use the same techniques
as for the evolution in configuration space and benefit from the
additional knowledge about the special form of the wave packets.

Another line of investigation would be to generalize the second
order Egorov type propagation result with spectrogram densities
from §12.2 to higher order errors. This can presumably be achieved
without too much effort by proving a higher order spectrogram
expansion in the spirit of Conjecture 1 , and combining it with
higher order versions of the Egorov theorem, see §11. One could
then derive algorithmic discretizations by using similar methods as
in [GL14]. A deeper analysis of the properties of spectrogram ex-
pansions could also be very fruitful for understanding the structure
of quantum states in phase space.

The size of the Ehrenfest time scales for the local Egorov theorem
in §15.3 is determined by the lower bound for the delocalization
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time of the involved wave packets. Nevertheless, we strongly believe
that this bound is due to our proof technique, and the result holds
for the longer Ehrenfest time scales from [BR02]. However, with
standard semiclassical techniques it impossible to prove anything
beyond Ehrenfest time, although numerical experiments suggest
that the approximations are valid for much longer time intervals.
This could serve as a motivation to develop new tools for analyzing
the evolution of quantum systems beyond the Ehrenfest time. A
promising first approach could be to use explicit quantum disper-
sion operators as introduced in [GS12]. Similarly as the advent
of quantum mechanics inspired and stimulated the development
of many fields of mathematics, novel mathematical insights into
the long-time behaviour of quantum systems could in turn deepen
our understanding of the foundations of molecular dynamics and
chemistry.
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Appendix

A Notation

For the sake of completeness, let us summarize some definitions
and denotations for important mathematical objects we use. For
the most part they can be considered as basic knowledge. Note
that in this dissertation we assume the set of natural numbers N to
include zero.

For any two vectors x, y ∈ Cd the inner product is defined as

〈x, y〉 =
d

∑
j=1

xjyj.

The norm of x is given by |x| = ∑d
j=1 |xj|2, and the ‘Japanese

brackets’ are defined as

〈x〉 := (1 + |x|2)1/2, x ∈ Rd.

Let d ∈ N and X ∈ {Rm, Cm} with m ∈ N. We use the spaces of
smooth functions

Cn(Rd, X) :=
{

f : Rd → X is n ∈N∪ {∞} times cont. differentiable
}

Cn
c (R

d, X) :=
{

f ∈ Cn(Rd, X) and f has compact support
}

S(Rd, X) :=
{

f ∈ C∞(Rd, X) : sup
x∈Rd

|xα∂β f (x)| < ∞ ∀α, β ∈Nd}
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where the third one is called the Schwartz space. The dual space
S ′(Rd, X) of the Schwartz space is the space of tempered distribu-
tions. We employ the following infinite-dimensional Banach spaces
(L2 and the Sobolev spaces Hs are actually Hilbert spaces)

Lp(Rd, X) :=
{

f : Rd → X measurable :
( ∫

Rd
| f (x)|pdx

)1/p
< ∞

}
Hs(Rd, Cm) :=

{
f ∈ S ′(Rd, Cm) : 〈ξ〉s (Fψ)(ξ) ∈ L2(Rd, Cm)

}
for p ≥ 1 and s ∈ R. For the definition of the Sobolev spaces we
used the Fourier transform

(Fψ)(ξ) = (2π)−d/2
∫

Rd
e−iξ·xψ(x)dx, ξ ∈ Rd,

which defines a unitary map in L2(Rd, Cm), and maps both the
Schwartz space S(Rd, Cm) and S ′(Rd, Cm) into itself. Whenever
the image space coincides with C we omit the second argument
in the notation. Hence, Cn(Rd, C) = Cn(Rd), Lp(Rd, C) = Lp(Rd)
and so on.

Let (X, ‖ • ‖X) and (Y, ‖ • ‖Y) be Banach spaces. We denote by
L(X, Y) the space of bounded operators from X to Y, and abbreviate
L(X, X) = L(X). Suppose that A : X → Y is bounded. Then the
operator norm of A is defined as

‖A‖L(X,Y) := sup{‖Ax‖Y : x ∈ X with ‖x‖X ≤ 1}.

The adjoint operator of A is defined by

A† : Y∗ → X∗, 〈Ax, y〉Y,Y∗ =
〈

x, A†y
〉

X,X∗

for all (x, y) ∈ X × Y. Here, X∗ and Y∗ denote the dual spaces of
X and Y, respectively, and 〈•, •〉X,X∗ is the duality bracket. The
same definition extends to closed operators A with dense domain
D(A) ⊂ X.

If X is a Hilbert space, one can identify X and X∗ by Riesz’
representation theorem. Then, a densely defined and closed Hilbert
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space operator H : D(H) ⊂ X → X is called selfadjoint if the adjoint
operator coincides with H and has the same dense domain,

H† = H, D(H) = D(H†) ⊂ X.

For the derivatives of a function f : Rd → C we use the conventions

∂j f (x) :=
d

dxj
f (x)

∂α f := ∂α1
1 · · · ∂

αd
d f for α ∈Nd

∇ f := (∂1 f , . . . , ∂d f )T (gradient)

D2 f := (∂i∂j f )d
i,j=1 (Hessian)

∆ f := trD2 f (Laplacian)

and if g : Rd → Rm, we write

Dg := (∂1g, . . . , ∂dg) : Rd → Rm×d (Jacobian).

B Symbol Classes

Any calculus of pseudodifferential operators usually cames along
with appropriate classes of symbols whose quantization results
in linear operators with certain properties. The most well-known
symbol classes are probably the Hörmander classes

Sm
ρ,δ = {a ∈ C∞(R2d) : for all α, β ∈Nd

0∃Cαβ > 0 with

|∂α
ξ ∂

β
x a(x, ξ)| ≤ Cαβ 〈ξ〉m−ρ|α|+δ|β|}

with 0 ≤ δ ≤ ρ ≤ 1, δ < 1. However, the classes Sm
ρ,δ are in a certain

way unbalanced in their treatment of position and momentum, as
symbols are not allowed to be unbounded in the position variables.
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We therefore use the definition of symbol classes from [Zwo12,
§4.4]: A measurable function m : R2d → (0, ∞) is called an order
function, if there are C, N such that

m(w) ≤ C 〈z− w〉N m(z)

for all z, w ∈ R2d. For example, m(z) = 〈z〉 or m(q, p) = 〈x〉α 〈ξ〉β
are order functions. For an order function m we then define the
symbol classes

S(m) = {a ∈ C∞(R2d) : for all α ∈N2d there is Cα > 0 with

|∂αa(z)| ≤ Cαm(z)}

as well as

Sδ(m) = {a ∈ C∞(R2d) : for all α ∈N2d there is Cα > 0 with

|∂αa(z)| ≤ ε−δ|α|Cαm(z)}.

For the case m ≡ 1 we use the shorthands S(1) = S and Sδ(1) = Sδ.
Note that one often has to assume δ < 1

2 in order to obtain mean-
ingful semiclassical expansions. For the quantization of operator-
valued symbols, as used in the context of adiabatic perturbation
theory, we refer to [ST13]. The quantization of molecular Hamiltoni-
ans with singular interactions, like Coulomb potentials, is adressed
in [MS09].

For a definition and discussion of very general symbol classes as-
sociated with metrics on the phase space we refer to the monograph
of N. Lerner [Ler10].

C Fundamental Subsets

Weakly dense subsets can be used for identifying Banach space
operators on some convenient subspace of the domain. We use this
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technique in §4.2 in order to show that the formal derivative of
the electronic Hamiltonian coincides with the derivative taken in
L(H1, H−1).

Let X be a Banach space and V ⊂ X. V is called weakly dense in X
if for all x ∈ X there is a sequence {xn} ⊂ V such that

〈xn, f 〉X,X∗ → 〈x, f 〉X,X∗ (C.1)

for all f ∈ X∗. The following Lemma C.1 follows directly from a
classical diagonal argument.

Lemma C.1. let X be a Banach space, let A ⊂ X be a dense subset,
V ⊂ A, and for all x ∈ A there is a sequence {xn}n ⊂ V such that

〈xn, f 〉X,X∗ → 〈x, f 〉X,X∗

for all f ∈ X∗. Then V is weakly dense in X.

Let us take a look at the density properties of collections of
smooth functions that vanish at a subset of the configuration space,
e.g., at the singularities of a family of multiplication operators. For
any bounded real interval [a, b], a ≤ b, and n ∈N, we can define a
family of smooth, real-valued cutoff functions

κ
[a,b]
n ∈ C∞(R), κ

[a,b]
n : (x) =



1 , x ≤ a− 1
n

κ
[a,b]
n (x) ∈ (0, 1) , x ∈ (a− 1

n , a)
0 , x ∈ [a, b]

κ
[a,b]
n (x) ∈ (0, 1) , x ∈ (b, b + 1

n )

1 , x ≥ b + 1
n
(C.2)

that satisfies

dj

dxj κ
[a,b]
n (x) ≤ Cj · nj, supp

(
dj

dxj κ
[a,b]
n

)
⊂ [a− 1

n , a] ∪ [b, b + 1
n ]

for all x and some constant Cj > 0. We write

κ
[a,a]
n = κa

n,
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and define higher dimensional cutoff functions by taking tensor
products. Let

L = [a1, b1]× . . .× [ak, bk]× {0} × . . . {0} ⊂ Rn

denote an embedding of a k dimensional cuboid into Rn, where 0 ≤
k ≤ n. Then, we define the functions KL

n : Rn → R analoguously to
κ
[a,b]
n via

KL
n(x) = 1−

n

∏
j=1

(1− κ
[aj ,bj ]
n (xj)) , (C.3)

where aj = bj = 0 for all j > k. KL
n is smooth and vanishes

to infinite order when approaching the boundary of L from any
direction. Moreover, it holds

dα

dxα
KL

n(x) ≤ Dαn|α| (C.4)

for α ∈ Nn and some Dα > 0 independent of L. Given any k-
dimensional cuboid C ⊂ Rn, there is an cartesian embedded k-
dimensional cuboid L as above with the same side lengths as C,
and an affine transformation T(x) = Ax + b with some orthogonal
matrix A, such that T(C) = L. We then define

KC
n (x) := KL

n(T(x))

and note that (C.4) still holds for KC
n with the same constants as for

KL
n .
Spaces of smooth functions vanishing at hypercubes are not nec-

essarily dense in Sobolev spaces. However, as the following result
shows, they are weakly dense whenever the order of the Sobolev
space is small enough.

Proposition C.1. Let A =
⋃S

j=1 Ak ⊂ Rm be a finite union of compact
hypercubes Ak in Rd, where9 dk := codim(Ak) ≥ 1. Then, the set of

9The codimension of a set A ⊂ Rd here is defined as codim(A) = d− dim A.
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smooth functions vanishing at A

C∞
c,A(R

d) = {ψ ∈ C∞
c (Rd) : lim

x→x0

ψ(x)
|x− x0|α

= 0 for all x0 ∈ A, α ∈Nd}

is dense in L2(Rd) and Hp(Rd) for all p < 1
2 mink dk, and weakly dense

in H
1
2 mink dk (Rd).

Proof. We only show the weak density approximation property for
functions in C∞

c (Rd). This is enough by the density of C∞
c (Rd) in

L2(Rd) and the Sobolev spaces, see Lemma C.1. Let us define the
family of functions

KA
n (x) =

S

∏
j=1

KAk
j (x)

which vanish to infinite order when approaching A and satisfy
0 ≤ KA

n ≤ 1. Let T1/n(A) = supp(1− KA
n ) denote a cuboid type

neighborhood of width 1
n in Rd around A, and fix ψ ∈ C∞

c (Rd).
Then, it holds ψKA

n ∈ C∞
c,A(R

d) for all n ∈N, and

‖ψ− ψKA
n ‖2

L2 = ‖ψ(1− KA
n )‖2

L2

=
∫

Rm
|ψ(x)|2(1− KA

n (x))2 dx ≤
∫

T1/n(A)
|ψ(x)|2 dx

≤ sup
x∈Rm

|ψ(x)|2 · λd (T1/n(A))→ 0

since the volume of T1/n(A) is of size O(n−mink dk ).
The proof for Sobolev spaces is similar. By definition

‖ψ− ψKA
n ‖2

Hp = ‖ψ− ψKA
n ‖2

L2 + ∑
|α|≤p

‖∂α(ψ− ψKA
n )‖2

L2 ,

and for any α ∈Nd it holds

‖∂α(ψ− ψKA
n )‖2

L2 ≤
(

∑
β+γ=α

(
α

β

)∥∥∥∂βψ∂γ(1− KA
n )
∥∥∥

L2

)2
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where ∂γ(1− KA
n ) has support in T1/n(A). We can estimate∥∥∥∂βψ∂γ(1− KA

n )
∥∥∥2

L2
=
∫

Rd
|∂βψ(x)|2|∂γ(1− KA

n )(x)|2 dx

≤ sup
x∈Rd

|∂βψ(x)|2 λd (T1/n(A)) sup
x∈T1/n(A)

|∂γ(1− KA
n )(x)|2

≤ Cn−mink dk Dγ · n2|γ|

for some C > 0. Moreover, for all φ ∈ C∞
c (Rd) one computes〈

∂α
x(ψ− ψKA

n ), φ
〉
= (−1)|α|

〈
ψ− ψKA

n , ∂α
xφ
〉

→ 0

as n→ ∞. The assertion follows from [Kat95, §III, Lemma 1.31].

We can exploit the (weak) density of C∞
c,A(R

d) in some Sobolev
spaces from Proposition C.1 for identifying the operator derivative
of Ĥel on the Sobolev space H1, see §4.2. The identification result
we use is the following.

Lemma C.2 (Weak fundamental subsets). Let X, Y be reflexive Ba-
nach spaces, A, B ∈ L(X, Y) and suppose 〈ψ, Aφ〉Y∗ ,Y = 〈ψ, Bφ〉Y∗ ,Y
for all ψ ∈ Y∗ and φ ∈ V ⊂ X where V is weakly dense in X. Then, it
holds

〈ψ, Aφ〉Y∗ ,Y = 〈ψ, Bφ〉Y∗ ,Y
for all ψ ∈ Y∗, φ ∈ X.

Proof. First recall, that the adjoint operators A†, B† are well-defined
operators in L(Y∗, X∗), see [Kat95, §III.3.3]. It holds

〈ψ, Aφ〉Y∗ ,Y =
〈

A†ψ, φ
〉

X∗ ,X

for all φ ∈ X, ψ ∈ Y∗. Now let φ ∈ X be arbitrary. Then, by
assumption there is a sequence {φn} ⊂ V which fulfills φn

w→ φ in
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the weak topology of X. Hence, for any ψ ∈ Y∗ we compute

〈ψ, Aφ〉Y∗ ,Y =
〈

A†ψ, φ
〉

X∗ ,X
= lim

n→∞

〈
A†ψ, φn

〉
X∗ ,X

= lim
n→∞

〈
B†ψ, φn

〉
X∗ ,X

=
〈

B†ψ, φ
〉

X∗ ,X

= 〈ψ, Bφ〉Y∗ ,Y

since A†ψ and B†ψ are fixed elements in X∗.

D L1 Estimates for

Hermite cross-Wigner

Functions

We prove an estimate for the L1-norm of the cross-Wigner functions
of two semiclassically rescaled, L2-normalized Hermite functions

hn = ϕε
n[0, 0, 1, i].

where the order n of the Hermite functions is allowed to grow
as ε → 0. It is a well-known fact that all roots xk of the Laguerre
polynomial L(α)

n satisfy xk ≤ 4n+ 2α+ 2. In the semiclassical setting
we can hence infer that the roots yk of y 7→ L(α)

n
( 2

ε y2) lie in the
interval

yk ∈ (0,
√

2εn + εα + ε], k = 1, . . . , n. (D.1)

As usual, we denote the ball of radius r in R2 by

Br = {z ∈ R2 : |z| ≤ r}. (D.2)

Our localization result is the following.
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Proposition D.1 (Phase space L1-estimates). Let σ ∈ (0, 1) and
n, m ∈ N with 0 ≤ n, m ≤ Cε−σ for some C > 0. Then, for all δ > 0
and r(ε) = α

√
ε1−σ−δ with some constant α > 0 one has∫

R2\Br(ε)

|W ε(hm, hn)(z)|dz ≤ e−Γε−σ−δ
(D.3)

for some Γ > 0 independent of n and m if ε > 0 is small enough.
Consequently, for all δ > 0

‖W ε(hm, hn)‖L1 = O(ε−σ−δ)

as ε→ 0.

Proof. Without loss of generality, assume m ≤ n and abbreviate
W ε(hn, hm) =W ε

n,m. Then, by the Wigner-Hagedorn formula from
Corollary 3

W ε
n,m(x, ξ) =

(−1)m2nm!ε−(n−m+2)/2

π
√

2m+nm!n!

× e−(x2+ξ2)/ε(x + iξ)n−mL(n−m)
m ( 2

ε (x2 + ξ2))

and we recall that by the Cauchy-Schwartz inequality

‖W ε
n,m‖L∞ ≤ (πε)−1, (D.4)

see also [dG11, Proposition 183]. By (D.1) and the definition of r(ε)
we know that

(−1)nL(n−m)
n ( 2

ε |z|
2) = |L(n−m)

n ( 2
ε |z|

2)| (D.5)

whenever
z /∈ Br(ε) = {z ∈ R2 : |z| ≤ r(ε)},

and ε is small enough. Now, we will cut the phase space into two
pieces, namely a ball around the origin and its complement. By
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(D.4) we have∫
R2
|W ε

n,m(z)|dz =
∫

R2\B√2r(ε)

|W ε
n,m(z)|dz +

∫
B√2r(ε)

|W ε
n,m(z)|dz

≤
∫

R2\B√2r(ε)

|W ε
n,m(z)|dz + (πε)−1|B√2r(ε)|

and (πε)−1|B√2r(ε)| yields the leading order asymptotics ε−σ−δ of

the L1-norm. We treat the integral over R2 \ B√2r(ε) seperately for
the first decay estimate (D.3). In order to get rid of the phases, we
apply the cross-Wigner expansion from Proposition 16 which yields

W ε
n,m(x, ξ) =

(
i
√

2
ε (ξ + ix)

)m−n√
n!
m!

×
n−m

∑
j=0

(
n−m

j

)
(−1)jW ε

m+j,m+j(x, ξ),

and hence

|W ε
n,m(x, ξ)| ≤

√
n!εn−m

m!2n−m
1

|x + iξ|n−m

n−m

∑
j=0

(
n−m

j

)
|W ε

m+j,m+j(x, ξ)|

≤ (n−m)!
√

n!(
b n−m

2 − 1c!
)2


√

ε
2

|x + iξ|

n−m
n−m

∑
j=0
|W ε

m+j,m+j(x, ξ)|.

(D.6)

By Stirling’s approximation one has

(n−m)!
√

n! ≤ (Cε−σ)!3/2 ≤ eDε−σ log(ε−1) (D.7)

for some D > 0 if ε > 0 is small. Moreover, if z ∈ R2 \ B√2r(ε), it
holds 

√
ε
2

|x + iξ|

n−m

≤ (2α
√

ε−σ−δ)−(n−m)/2 ≤ 1.
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for ε small enough. We note that for any a > 0 one can prove

‖χ{|x|>a}hn‖L2 ≤ C′e−a2/(12ε)eβd |n| (D.8)

for some constants C′, βd independent of ε and n, see also [HJ00,
(6.23) and (7.2)]. The same localization estimate holds for the
semiclassical Fourier transform F εhn. Since by (D.5) the Wigner
transform W ε(hm+j) is positive outside of Br(ε), we consequently
obtain for all j∫

R2\B√2r(ε)

|W ε
m+j,m+j(z)|dz ≤

∫
|x|>r(ε)

W ε
m+j,m+j(x, ξ)dx dξ

+
∫
|ξ|>r(ε)

W ε
m+j,m+j(x, ξ)dx dξ

= ‖χ{|x|>r(ε)}hm+j(x)‖2
L2

x
+ ‖χ{|ξ|>r(ε)}F εhm+j(ξ)‖2

L2
ξ

≤ Ee−αε−σ−δ/6+2βdCε−σ

with some E > 0 by invoking (D.8). Since δ > 0, combining the last
estimate with (D.6) and (D.7) yields∫

R2\B√2r(ε)

|W ε
n,m(z)|dz ≤ αe−Cε−σ−δ/4+βdCε−σ

(Cε−σ)eDε−σ log(ε−1)

≤ e−Γε−σ−δ

for some Γ > 0 if ε is small.

E Reference Solutions

There are many different ways to compute numerical solutions for
the time-dependent Schrödinger equation in low dimensions. For
an overview over some of the most popular methods we refer to
chapter III. in [Lub08], and also [BJM02, JMS11] for the semiclassical
setting.
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The grid-based numerical reference solutions we use in this dis-
sertation are generated by a time-splitting spectral method that uses
Fourier collocation for the space discretization and a Strang split-
ting in time. This scheme is also known as the ‘split-step Fourier
method’. For the convenience of the reader we give a short sketch of
the split-step Fourier method based on the presentation in [Lub08,
§III.1.3 and §III.3.1].

We consider the time-dependent semiclassical Schrödinger equa-
tion for a Hamiltonian

H = − ε2

2 ∆ + V

of Schrödinger type. Moreover, suppose that the solution ψε(t)
with initial condition ψε(0) = ψε

0 ∈ L2(Rd) stays well-localized in
position space within a cuboid [a1, b1]× . . . [ad, bd] for all times of
interest. This is for example the case if the potential V is confining.
Without loss of generality we assume

[a1, b1]× . . . [ad, bd] = [−π, π]d,

since otherwise one can simply shift and rescale. We then can
safely truncate the solutions outside of [−π, π]d and instead of the
Schrödinger equation on Rd solve the corresponding equation on
the torus πTd = [−π, π]d with periodic boundary conditions.

For the space discretization we impose the collocation condition
that the approximate solution u(x, t) ≈ ψε(x, t) shall satisfy the
Schrödinger equation for all points x ∈ GN in the tensor grid

GN = { 1
N (2πk1, . . . , 2πkd) : k1, . . . , kd ∈ {−N/2, . . . , N/2− 1}}

⊂ [−π, π]d,

which is generated from N equidistant grid points per space
direction. One then ends up with the linear equation

iεu̇ =
(
F ε

GN

)−1
TNF ε

GN
u + VNu (E.1)
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where u = (u(x, t))x∈GN is a vector that contains the values of
the approximation on the grid, and F ε

GN
: CGN → CGN is the

discrete semiclassical Fourier transform on GN . Now, one can
exploit that the potential operator is diagonal in position space,
VN = diag({V(x)}x∈GN ), and the discrete Laplacian is diagonal in
momentum space, TN = diag({ 1

2 |ξ|2}ξ∈GN ).

Remark 19. The fact that the grids in position and momentum space
coincide is due to our special choise fo the tensor grid and the domain of
periodicity. In general this is not the case. For instance, if one uses a
Smolyak type sparse grid in position space, the discrete Fourier transform
maps to momenta in a hyperbolic cross, see [Lub08, §III.1.4].

The split-step Fourier method is obtained by using a Strang
splitting numerical integrator for (E.1) that splits the vector field
into the (discrete) kinetic and potential parts, see [Lub08, Algorithm
3.1]. The update formula for a time-step of size h then reads

u(t + h) ≈ e−iVN h/2ε
(
F ε

GN

)−1
e−iTN h/εF ε

GN
e−iVN h/2εu(t), (E.2)

where the matrix exponentials of the diagonal matrices VN , TN are
easily evaluated. For the implementation of F ε

GN
one uses the fast

Fourier transform. If the value of ε is fixed, the symmetric splitting
scheme (E.2) yields a second order method for (E.1). We refer to
the book of Lubich and [JMS11] for further details like, e.g., step
size restrictions on h and N in the semiclassical regime.
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