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Abstract

Recent events like �oods, hurricanes, and other environmental catastrophes have shown
the importance of accounting for dependence between di�erent types of risks in insur-
ance modelling. Neglecting dependence can lead to severe underestimation of risk in a
portfolio context. This thesis presents a realistic, yet mathematically tractable model to
describe the joint behaviour of multiple claim arrival processes that are stochastically de-
pendent. The processes are derived from independent Poisson processes by introducing a
Lévy subordinator as common stochastic clock. The model supports simultaneous claim
arrivals and captures the often observable phenomenon of overdispersion in claim count
data. A very e�cient simulation routine is available and distributional properties like
the Laplace transform, probability mass function, and (mixed) moments are derived in
closed form. A convenient approximation for the aggregate claim number distribution in
high-dimensional applications is given as well. Furthermore, four methods for estimating
the model parameters from historical data are presented and their performance is studied
in a Monte Carlo simulation and using a set of real-world claim arrival data. Finally, the
e�ect of the model on pricing and risk management of (re-)insurance products is studied
and possible model extensions are discussed.
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Zusammenfassung

Die Modellierung von Abhängigkeiten zwischen verschiedenen versicherungstechnischen
Risiken hat aufgrund groÿer Schadensereignisse durch Hurrikane, groÿ�ächige Über-
schwemmungen und andere Naturkatastrophen in jüngster Vergangenheit stark an Bedeu-
tung gewonnen. Werden vorhandene Abhängigkeiten im Modellierungsansatz vernachläs-
sigt, kann dies zu einer deutlichen Unterschätzung das Gesamtrisikos führen. In dieser
Arbeit wird ein multivariater Prozess für Schadenszeitpunkte vorgestellt, der eine realis-
tische Abbildung von Abhängigkeiten ermöglicht und zudem mathematisch handhabbar
ist. Der Prozess setzt sich aus unabhängigen Poisson Prozessen zusammen, welche ge-
meinsam in stochastischer Zeit in Gestalt eines Lévy Subordiantors durchlaufen werden.
Die Konstruktion erzeugt Abhängigkeit und scha�t die Möglichkeit für gebündelt auf-
tretende Schäden, wodurch sich insbesondere Überdispersion in Schadensdaten abbilden
lässt, welche in Anwendungen häu�g beobachtbar ist. Ein e�zienter Algorithmus für die
Simulation des Modells wird vorgestellt und wichtige Verteilungskenngröÿen werden ge-
schlossen berechnet, darunter die Zähldichte selbst, die zugehörige Laplace transformierte
sowie die (gemischten) Momente. Eine Näherung für die Verteilung der Gesamtschadens-
zahl in hochdimensionalen Anwendungen ist ebenso vorhanden. Darüber hinaus werden
vier Methoden zur Schätzung der Modellparameter aus historischen Daten vorgestellt
und deren Qualität im Rahmen einer Monte Carlo Simulation und anhand von realen
Schadensdaten untersucht. Abschlieÿend werden die Auswirkungen des Modells auf die
Bewertung von (Rück-)Versicherungsprodukten untersucht und mögliche Modellerweite-
rungen diskutiert.
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1 Introduction

For many applications in the area of non-life insurance, for instance premium and risk
reserve calculations, modelling the aggregate claim amount of a portfolio of insurance
policies is essential. In the collective risk model, a point process determines the arrival
times of claims and a sequence of random variables describes the claim amounts. For its
natural interpretation and mathematical tractability, the classical risk model assumes a
Poisson process for the claim arrivals and independent and identically distributed (iid)
claim sizes which are independent of the claim number process. Claims generated from a
Poisson process arrive one after another without the possibility of claim cluster arrivals,
an assumption often violated in real-world applications, in particular if a portfolio or even
business line outcome is concerned and multiple claims can originate from a single event.
Claim cluster arrivals relate to overdispersion in claim count data, i.e. excess variance
over the mean, which is often observed in real data but cannot be accommodated by
the Poisson process. Hence, since the introduction of the classical risk model, multiple
extensions of this modelling approach have been proposed and studied, among these the
application of Cox processes for the claim number process.

Furthermore, in traditional actuarial theory individual risks are assumed to be independ-
ent. In many real-world situations, however, this is not the case, in particular if risks are
subject to the same claim-generating in�uences, e.g. economic or environmental factors.
For instance, claims in a �ooding insurance portfolio for risks that are located along the
same river or shore are prone to the same �ooding events and thus exhibit positive de-
pendence. Besides, a �ooding event mostly causes claims to other lines of business such as
private health insurance, thus generating dependencies across business sectors as well. In
the presence of dependence between risks, the law of large numbers, which is at the core
of classical rate making, may no longer hold and the diversi�cation e�ect from pooling
various risks may reduce considerably, hence, making the portfolio outcome signi�cantly
riskier than in the case of independence. If the increased riskiness is not re�ected in the
modelling approach, premiums and risk reserves will be underestimated, putting the solv-
ability and continuity of the business in jeopardy. While also a�ecting direct insurers, the
problem is intensi�ed if non-linear reinsurance contracts come into play. In particular,
in the light of regulatory frameworks such as Solvency II and the increasing complexity
of (re-)insurance products such as multi-line products, the development of multivariate
insurance models has gained importance in recent years. However, while there is only one
way to model independence, in�nitely many di�erent dependence structures are possible
and building multidimensional models that feature realistic dependence structures while
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1 Introduction

still being mathematically tractable is a matter of ongoing research, see Lindskog and
McNeil (2003), Pfei�er and Ne²lehová (2004), or Bäuerle and Grübel (2005), for instance.

Every mathematical model is a simpli�cation of a real-world phenomenon and a careful
selection of the properties that have to be captured in the model is necessary. There is al-
ways a trade-o� between how accurately a model describes the reality and how tractable
it remains: �tting the model to available data and the computation of various quantities
of actuarial interest have to be possible. In addition, it is often desirable that the model
has a natural interpretation which enables an intuitive understanding of the model dy-
namics and, hence, allows to assess the suitability for the problem at hand beyond the
mere �t to the available data.

Figure 1.1 Trade-o� in modelling real-world phenomena.

Dependence can arise in claim sizes or between claim sizes and claim numbers. In this
thesis, however, the focus lies on modelling dependencies in multivariate claim number
processes. In the area of credit default modelling, a very elegant approach based on
conditionally independent processes has been successfully exploited to generate realistic
credit default patterns. This approach is utilized to generate a tractable yet realistic
and comprehensible multivariate model for claim arrivals featuring dependence as well
as claim clusters.

The multivariate claim number process is built from independent Poisson processes using
an independent Lévy subordinator as common time-change, or operational time, resulting
in a multivariate Cox process. Due to the jumps of the subordinator, claims in the time-
changed process can occur simultaneously and, since the subordinator a�ects all marginal
processes, dependence is generated. This construction is an extension of the Lévy-frailty
model introduced in Mai and Scherer (2009b) for modelling credit default times, where
only the �rst arrival time in each component is relevant. Their model has proven to
account for various observed default patterns, e.g. simultaneous defaults and positive
lower tail dependence, while still being mathematically tractable and many of their res-
ults can be recovered for the generalized version studied in this thesis. Even though the

2



1 Introduction

generalized model will be primarily studied in the context of insurance modelling, one ap-
plication in credit risk modelling will be presented as well: in the well-known CreditRisk+

model Poisson random variables are considered as approximation for Bernoulli default
indicators and dependence is generated via gamma distributed mixing variables. Hence,
the model studied here is a time-dynamic extension of the static CreditRisk+ model, as
will be further discussed in Section 6.2.

In this thesis, an extensive study of the proposed model, the parameter estimation from
historical data, and the application to insurance modelling is given. Initial results in
the �eld are collected and generalized in many regards; such a comprehensive treatment
of this speci�c set-up has to the best of our knowledge not been available so far. The
distributional properties of the model are investigated in detail and many quantities of
interest, e.g. the Laplace transform, probability mass function, and (mixed) moments of
the process distribution at any point in time, are available in closed-form. Furthermore,
the process has a representation as Poisson cluster process, i.e. as compound Poisson
process with non-negative discrete jump size distribution, which is explicitly known and
o�ers a deeper understanding of the model dynamics. An e�cient sampling algorithm is
available as well as a large portfolio approximation. Thus, the model is highly tractable
even in high dimensions. Still, it features dependence as well as overdispersion and cluster
arrivals in claim count data and, hence, can account for the occurrence of catastrophic
events. As the dependence generating mechanism, i.e. the common stochastic clock, is
explicitly known, the model has also a very natural interpretation and its dynamics can
be well understood.

Given the detailed study of the process, estimation procedures for the model paramet-
ers are formulated and tested � in a simulation study as well as on real-word data. The
model has an intensity parameter for each of its components, just as independent Poisson
models have. The only additional parameters compared to the standard approach are
the Lévy subordinator parameters, the number of which ranges between a few and only
a single one. Hence, the parameters can be expected to be determined form historical
data reasonably well and without being too sensitive to single outliers.

The impact of the model on insurance premiums and other risk measures is studied as
well. Whereas at a �xed point in time the process distribution resembles the one of a
comparable mixed Poisson process, the dynamics over time are decisively di�erent due
to the Lévy and Poisson cluster properties. Thus, calculating insurance premiums or risk
reserves for a one year time horizon does not result in di�erent numbers, but a dynamic
model o�ers a consistent framework over any possible time horizon and allows for the
application of ruin theory. In addition, since a dynamic model provides not only inform-
ation about the total outcome but also about the evolvement of the claim numbers, its
suitability for a speci�c application can be more readily assessed and more information
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1 Introduction

for the estimation of the model parameters is available.

The basic version of the model is investigated in much detail in this thesis. This way,
the properties and dynamics of the process and, hence, also its limitations can be fully
understood. However, many actuarial applications may ask for additional stylized facts
to be incorporated in the modelling approach. The proposed model lends itself very well
to formulate such extensions and a few possibilities like adding a seasonal e�ect or incor-
porating multiple Lévy subordinators to generate a more �exible dependence structure
are discussed as well. While for these extensions most quantities are no longer available
in closed-form, the models are still manageable through simulation.

Whereas this thesis focuses on the application in insurance modelling, Cox and Poisson
cluster processes are of interest in a variety of areas, basically wherever counting of any
kind is involved. For instance, in inventory control problems they are used to describe
incoming demand, see Galliher et al. (1959) and Kemp (1967). In �nancial modelling,
Cox processes turn up in credit risk management to count defaults of credit-risky securit-
ies, for instance in Lando (1998). More recently, they have been utilized as order arrival
processes for electronic trading environments, see Cont et al. (2010). Operational risk
management would be another potential area for application, to name only a few.

The remainder of the thesis is organized as follows. In Chapter 2 the necessary notation
and mathematical tools are introduced. In particular, the fundamental properties of the
stochastic processes constituting the building blocks of the proposed model, namely the
Poisson process and its generalizations as well as Lévy processes in general and subordin-
ators in particular, are reviewed. In Chapter 3 the model is introduced and categorized.
Following the model set-up, an e�cient sampling algorithm is presented. Furthermore,
other dependence generating modelling approaches and the current literature on the topic
are reviewed. In particular, the relationship with the Lévy-frailty model for credit risk
modelling is discussed. Chapter 4 studies in detail the mathematical properties of the
process as well as its compound Poisson representation. Formulas for the Laplace trans-
form, probability mass function, and moments of the distributions are derived and the
dependence structure is studied. The matter of implementing the results is addressed
as well. In Section 4.3, a large portfolio approximation for the aggregate claim number
process in a model with increasing dimensionality is presented. Estimation of the model
parameters from historical data is the topic of Chapter 5. Four estimation methods are
introduced and their quality is tested in an extensive simulation study. In addition, the
procedures are applied to a set of real-world claim number data, namely the Danish �re
insurance data. In Chapter 6, applications and extensions of the model are discussed.
Section 6.1 incorporates iid claim sizes in the model and examines the e�ect on important
actuarial risk measures, in particular premiums for insurance and reinsurance products.
Section 6.2 puts some more thought into the model with iid claim sizes as well as further
model extensions, namely with an additional deterministic time transformation and with

4



1 Introduction

multiple subordinators. The latter extension leads to a time-dynamic version of the fam-
ous CreditRisk+ model which is brie�y discussed as well. Finally, Chapter 7 concludes
and suggests some related questions for further research.
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2 Mathematical preliminaries

This chapter introduces the fundamental mathematical concepts and tools for the re-
mainder of the thesis. In Section 2.1 the notation is established and fundamental know-
ledge about random vectors and stochastic processes is reviewed. In this thesis a mul-
tivariate claim number process constructed from Poisson processes and a Lévy subor-
dinator is studied. For a rigorous treatment of this process, a sound understanding of
the Poisson process and its extensions is essential; the relevant material is covered in
Section 2.2 of this chapter. Mostly, claim number processes are studied using the theory
and terminology of general point processes, which is also brie�y discussed in the second
section. The particular process examined in this thesis, however, also belongs to the class
of Lévy processes and will be mainly studied from this perspective. Section 2.3 therefore
gives a review of the fundamental properties of such processes. Overall, this chapter
attempts to give a sound overview of the processes and further mathematical objects
relevant for this thesis; for a thorough treatment further references are given within each
section.

2.1 Notation and mathematical tools

We start by establishing the notation for the remainder of the thesis. Let N and N0 :=
N ∪ {0} denote the set of positive and non-negative integers, respectively. For the real
numbers we use R, for the non-negative subset R≥0, and for the positive subset R>0.
Throughout the thesis, d ∈ N is some positive integer usually specifying the dimension.
We use a dot to indicate that a space is punctured at the origin:

Ṙd≥0 := Rd≥0 \ {0},

where 0 ∈ Rd is the vector with d zero entries, the dimension being either clear from the
context or speci�cally stated. In general, vectors are considered as column vectors and
mainly written in bold font, that is

x := (x1, . . . , xd)
′ ∈ Rd,

6



2 Mathematical preliminaries

where (·)′ is denoting the transpose of the vector. The i-th unit vector for some 1 ≤ i ≤ d
is given by ei and

|x| := |x1|+ · · ·+ |xd|, ‖x‖ :=
√
x2

1 + · · ·+ x2
d

denote the 1-norm and the Euclidean norm, respectively. For any scalar y ∈ R and vector
y ∈ Rd, notations like

x ≤ y, x ≤ y or x = y, x = y

are to be understood component-wise. This applies to xk, k ∈ N0, as well:

xk := (xk1, . . . , x
k
d)
′.

Furthermore, multi-index notation is used, that is for any d-tuple k ∈ Nd0:

xk := xk1
1 . . . xkdd and k! := k1! . . . kd!,

and for the multinomial coe�cient:

(
|k|
k

)
:=
|k|!
k!

=
(k1 + · · ·+ kd)!

k1! . . . kd!
.

For a sequence of real vectors {xn}n∈N0 the indexing

xn := (x1n, . . . , xdn)′

is used and the di�erence operator is de�ned by

∆xn := xn − xn−1, n ∈ N.

For real-valued functions f(x) with domain Rd, higher order partial derivatives are de-
noted by

7



2 Mathematical preliminaries

f (k)(x) :=
∂|k|f

∂k1x1 . . . ∂kdxd
(x),

and for the evaluation at a certain point x∗ ∈ Rd the short-hand notation

f (k)(x∗) := f (k)(x)
∣∣∣
x=x∗

is used. For any subset A ⊂ Rd, the cardinality of A is given by |A| and the indicator
function of A, that is the function returning 1 for any argument in A and zero otherwise,
by 1A(·).

The Lebesgue measure on the d-dimensional Euclidean space equipped with the corres-
ponding Borel σ-algebra B(Rd) is denoted by Leb(·); the dimension will again be clear
from the context. In general, on a measurable space (E,Σ) the Dirac measure in some
point c ∈ E is

δc : Σ→ {0, 1}, A 7→

{
1 if c ∈ A,
0 otherwise.

Throughout this thesis all random objects live on a probability space (Ω,F ,P) with
sample space Ω, σ-algebra F , and probability measure P. For an Rd-valued random
variable X := (X1, . . . , Xd)

′, let PX denote the push-forward measure induced by X on
(Rd,B(Rd)) and FX the (cumulative) distribution function. As usual, the expectation
and covariance operator are

E[X] := (E[X1], . . . ,E[Xd])
′, Cov[X,Y ] := (Cov[Xi, Yj ])1≤i,j≤d.

Variance Var[X] and correlation Cor[X,Y ] are de�ned accordingly. Given some σ-
algebra G ⊂ F , the conditional expectation of X given the information in G is written
as E[X|G].

Let F be a univariate distribution function. The generalized inverse or quantile function
of F is

F−1(u) := inf{x ∈ R : F (x) ≥ u}, u ∈ [0, 1],

8



2 Mathematical preliminaries

using the convention inf ∅ := −∞. A detailed discussion of the properties of generalized
inverse functions is given in Embrechts and Hofert (2013). A copula C : [0, 1]d → [0, 1]
is the distribution function of a d-dimensional random variable with uniform U[0, 1]
marginals. Following Sklar's theorem, which was originally stated in Sklar (1959), a
copula CX exists for any random vector X on Rd such that

FX(x) = CX(FX1(x1), . . . , FXd(xd)), x ∈ Rd.

If the marginal distributions are continuous, the copula is unique. On the other hand,
given some copula CX as well as d univariate distribution functions FX1 , . . . , FXd , the
function de�ned by the right-hand side of the above equation de�nes a proper distribution
function. Details on copulas can be found in Nelsen (2006) or Mai and Scherer (2012b).
These references also provide more details on the dependence measures mentioned brie�y
in the following.

Let X = (X11, X21)′ be a bivariate random variable. Two measures for the degree of
monotonic dependence are Spearman's rho and Kendall's tau. Spearman's rho is de�ned
as

ρS(X1, X2) := Cor[FX1(X1), FX2(X2)].

Kendall's tau measures the di�erence between the probability of concordance and discord-
ance. LetX1 = (X11, X21)′, X2 = (X12, X22)′ be independent and identically distributed
(iid) copies of X, then:

ρτ (X1, X2) := P((X11 −X12)(X21 −X22) > 0)− P((X11 −X12)(X21 −X22) < 0).

Both de�nitions are extended to d-dimensional random vectors by considering the matrix
of pairwise measures, comparable to the de�nition of a correlation matrix. A measure
of extremal dependence is given by the coe�cients of upper and lower tail dependence.
These are de�ned for a continuously distributed bivariate random vector X as

UTD(X1, X2) := lim
u↑1

P(X1 > F−1
X1

(u)|X2 > F−1
X2

(u)),

LTD(X1, X2) := lim
u↓0

P(X1 ≤ F−1
X1

(u)|X2 ≤ F−1
X2

(u)),

9



2 Mathematical preliminaries

given the limits in [0, 1] exist. Note that in this de�nition X1 and X2 are interchangeable.
If the coe�cients are larger than (equal to) zero, then X1 and X2 are called asymptot-
ically dependent (independent) in the upper or lower tail, respectively.

Comparing any two random objects, the notation `
d
=' means that the objects on the left-

and right-hand side have the same distribution. For random vectors X, Y on Rd this
corresponds to equality of the distribution functions, see (Kallenberg, 2002, Chapter 3,
Lemma 3.3, p.48):

X
d
= Y ⇔ FX = FY .

A sequence of random vectors {Xn}n∈N is said to converge in distribution to a random

vector X for n → ∞, written Xn
d−→ X, if the induced probability measures PXn

converge weakly to PX , written PXn

w−→ PX , that is if

lim
n→∞

E[f(Xn)] = E[f(X)], ∀f ∈ Cb(Rd,R),

where Cb(Rd,R) is the set of all continuous and bounded functions f : Rd → R.

In the univariate case, let Lp(Ω,F ,P) for some p > 0 be the set of all random variables
X with �nite absolute p-th mean, that is E[|X|p] < ∞. Convergence of a sequence of
random variables {Xn}n∈N in Lp to a random variable X ∈ Lp in the p-the mean is
de�ned as:

Xn
Lp−→ X, n→∞ :⇔ lim

n→∞
E[|Xn −X|p] = 0.

Furthermore, convergence in distribution is de�ned as follows:

Xn
P−→ X :⇔ lim

n→∞
P(|Xn −X| > ε) = 0, ∀ε > 0.

The characteristic function of a d-dimensional random vector X, which always exists, is
denoted by

ΦX(v) := E[exp{iv′X}], v ∈ Rd,

10



2 Mathematical preliminaries

with i being the imaginary unit. This function completely determines the distribution
of X and moments � if existent � can be derived from derivatives of the characteristic
function evaluated at the origin. For non-negative random vectors Y on Rd≥0, it is more
convenient to work with the Laplace transform:

ϕY (u) := E[exp{−u′Y }], u ∈ Rd≥0.

As we will mainly be concerned with non-negative random objects in the following, the
main properties of the Laplace transform are presented in more detail.

Theorem 2.1 (Properties of the Laplace transform)
Let Y be a non-negative random vector on Rd≥0 with Laplace transform ϕY (·).

(i) Linear transformation: For all A ∈ Rd×d≥0 , b ∈ Rd≥0, the Laplace transform of the
linear transform AY + b ful�ls:

ϕAY +b(u) = exp{−u′b}ϕY (A′u), u ∈ Rd≥0.

(ii) Multiplication rule: If Z is a random vector on Rd≥0 independent of Y , then it holds
for the Laplace transform of the convolution Y +Z:

ϕY +Z(u) = ϕY (u)ϕZ(u), u ∈ Rd≥0.

(iii) Uniqueness: The distribution of Y is uniquely determined by its Laplace transform.
Let Z∗ be another random vector on Rd≥0, then:

Y
d
= Z∗ ⇔ ϕY (u) = ϕZ∗(u), ∀u ∈ Rd≥0.

(iv) Lévy's continuity theorem: Let {Yn}n∈N be a sequence of d-dimensional non-negative
random vectors. The sequence converges in distribution to a random vector Y on
Rd≥0 i� the Laplace transforms converge pointwise:

Yn
d−→ Y , n→∞ ⇔ lim

n→∞
ϕYn(u) = ϕY (u), ∀u ∈ Rd≥0.

11



2 Mathematical preliminaries

Proof. The properties of the Laplace transform in the univariate case are studied in detail
in (Feller, 1971, Chapter XIII.1-4). In the multivariate case, statement (i) can easily be
seen from the de�nition of the Laplace transform and statement (ii) follows by calculation
from the univariate case, see also (Kallenberg, 2002, Chapter 5, p.84). Statement (iv) can
be concluded from the univariate case using the Cramér�Wold device which states that

Yn
d−→ Y i� for all u ∈ R≥0 it holds that u′Yn

d−→ u′Y , see (Kallenberg, 2002, Chapter
5, Theorem 5.5, p.87). It follows also from (Kallenberg, 2002, Chapter 5, Theorem 5.3,
p.86). Finally, statement (iii) is a consequence of statement (iv).

Of particular interest in the following will be the derivatives of a Laplace transform; here
it will be su�cient to consider the univariate case.

Theorem 2.2 (Derivatives of the Laplace transform)
The Laplace transform ϕY (·) of a non-negative univariate random variable Y is com-
pletely monotone, that is derivatives of all order n ∈ N0 exist and alternate in sign:

(−1)nϕ
(n)
Y (u) ≥ 0, u > 0.

Moreover, the derivatives have the representation:

(−1)nϕ
(n)
Y (u) = E[Y n exp{−uY }], u > 0.

For u→ 0, the derivatives converge to a �nite or in�nite limit. This limit is �nite i� the
n-th moment of Y exists and is �nite; then it holds:

E[Y n] = (−1)nϕ
(n)
Y (0).

Proof. The results can, for instance, be found in (Feller, 1971, Chapter XIII.2, p.430).

An even stronger statement regarding complete monotonicity and Laplace transforms
can be formulated: a function ϕ(·) on R≥0 is the Laplace transform of a probability dis-
tribution i� it is completely monotone and ϕ(0) = 1. This result goes back to Bernstein
(1929) and a proof can be found in (Feller, 1971, Chapter XIII.4, Theorem 1, pp.439).
A detailed study of completely monotone functions can be found in Schilling et al. (2012).

For any random vector X, the cumulant generating function is de�ned as the logarithm
of the moment generating function:

12
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gX(v) := logE[exp{v′X}], v ∈ Rd.

Formally, it can be written as gX(v) = log ΦX(−iv). Accordingly, for a non-negative
random vector Y it can be written gY (u) = logϕY (−u). For dimension d = 1, the so-
called cumulants are obtained by evaluating the derivatives of the cumulant generating
function at zero:

κn := g
(n)
X (0), n ∈ N.

If existent, (central) moments of the distribution can be derived from the cumulants and
vice versa, see (Johnson et al., 1992, Chapter B5 and B6, pp.40) for details.

Following (Rolski et al., 1999, Chapter 2.5, p.49), we call a random variable X heavy-
tailed if

E[exp{uX}] =∞, ∀u > 0.

Following this de�nition, the tails of heavy-tailed distributions have no exponential
bound, that is for all s > 0:

lim
u→∞

exp{su}P(X > u) =∞.

Compared to `well-behaved' distributions where the probability of large values decreases
exponentially fast to zero, heavy-tailed distributions are regarded as `dangerous' in in-
surance applications as huge values are more likely.

A stochastic process X = {Xt}t≥0 on Rd is used to model how a stochastic system
evolves over time and can be understood either as a family of random vectors Xt or
as a function-valued random object, that is a measurable map X : Ω → U ⊂ Rd×R≥0 .
The sample paths are denoted by X(ω) : t 7→ Xt(ω). As the time index is given in
subscript, the components or marginal processes Xi := {Xi

t}t≥0, i = 1, . . . , d, are indexed
in superscript. For a multi-parameter time t ∈ Rd≥0, the multi-parameter process is
denoted by

Xt := (X1
t1 , . . . , X

d
td)
′.

13
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This notation is used for a univariate process X = {Xt}t≥0 as well, that is

Xt := (Xt1 , . . . , Xtd)
′.

Furthermore, let σ(X) := σ({Xt : t ≥ 0}) denote the completed σ-algebra generated by
the paths of X.

For a second stochastic process Y = {Y }t≥0 on Rd we write again X
d
= Y if the

processes are identical in law. The distribution of a process is determined by the system
of �nite-dimensional distributions, i.e.

X
d
= Y ⇔ (Xt1 , . . . ,Xtk)

d
= (Yt1 , . . . ,Ytk), ∀t ∈ Rk≥0, ∀k ∈ N,

see (Kallenberg, 2002, Chapter 3, Proposition 3.2, p.48). A sequence {Xn}n∈N of
stochastic processes is said to converge to a stochastic process X in �nite dimensional

distributions, written Xn fdd−→X, if the �nite dimensional distributions converge:

(Xn
t1 , . . . ,X

n
tk

)
d−→ (Xt1 , . . . ,Xtk), n→∞, ∀t ∈ Rk≥0, ∀k ∈ N.

Convergence in distribution for stochastic processes is de�ned accordingly to the de�ni-
tion for random vectors as weak convergence of the respective probability measures, that
is

Xn d−→X, n→∞ :⇔ lim
n→∞

E[f(Xn)] = E[f(X)], ∀f ∈ Cb(U,R),

where Cb(U,R) is the space of continuous and bounded functions on the function space
U ⊂ Rd×R≥0 . However, we need to choose a topology on the in�nite-dimensional space
U to �x the notion of continuity (and convergence).

If U is the space of continuous functions, that is stochastic processes on U have con-
tinuous sample paths, the space is usually equipped with the supremum norm which
induces the topology of uniform convergence. In the following, the wider class of pro-
cesses with càdlàg paths is studied, thus for U the space of càdlàg functions, which are
right-continuous with existing left limits, are considered, written D(R≥0,Rd). This space
is usually endowed with the Skorohod J1-topology that was �rst introduced in Skorokhod
(1956) and is together with the corresponding Borel σ-algebra known as the Skorohod
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space. Consider the restriction D([0, T ],Rd) for some time horizon T > 0. Then func-
tions fn ∈ D([0, T ],Rd), n ∈ N, converge to some function f ∈ D([0, T ],Rd}) in the
J1-topology if for all n ∈ N there exists some monotone bijection hn : [0, T ]→ [0, T ] with
h(0) = 0 and h(T ) = T such that

sup
0≤t≤T

|hn(s)− s|+ sup
0≤t≤T

‖fn(hn(s))− f(s)‖ −→ 0, n→∞.

If hn(t) = t can be chosen, this de�nition reduces to the one of uniform convergence.
In general, the notion of uniform convergence is too strong to accommodate jumps in
càdlàg functions. Using the transformation hn time is allowed to wiggle a bit � the `a bit'
being speci�ed by the �rst part of the upper expression � and the corresponding wiggle
in space gives some relaxation to the requirement on the convergence of jumps: while
they still need to be of almost the same size, they do not need to occur at exactly the
same time. More details can be found in Pollard (1984), Billingsley (2009), and Jacod
and Shiryaev (2003).

It should be noted that even though the �nite dimensional distributions determine the
process distribution, convergence of the �nite dimensional distributions of processes does
in general not lead to convergence in distribution; for this, the sequence needs to ful�l
some additional tightness condition, see (Kallenberg, 2002, Chapter 16).
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2.2 The Poisson process and its generalizations

In this thesis we are interested in modelling the arrivals of claims over time in actuarial
applications. The standard processes for this purpose are still the Poisson process and
its generalizations, which are reviewed in this section. The Poisson process is studied
in many textbooks on actuarial science and statistics, see e.g. Panjer et al. (1992) and
Mikosch (2009). See also Kingman, J. F. C. (1964), Grandell (1997), and Grandell (1991)
for more details.

The Poisson process is a stochastic process based on the Poisson distribution. A random
variable N is Poisson distributed with intensity λ > 0, written N ∼ Poi(λ), if

P(N = k) =
λk

k!
exp{−λ}, k ∈ N0.

The Poisson distribution is the limiting case of the binomial distribution B(n, λn) if the
number n of trials or events converges to in�nity while the success or occurrence rate
shrinks as λ

n . Due to this property the Poisson distribution is sometimes called the law
of small numbers: it is the distribution of the number of occurrences if many events are
possible but each happens only rarely.

One important property of the distribution is the equality of mean and variance:

E[N ] = λ = Var[N ].

Thus, the distribution has a variance to mean ration � called dispersion index � of one.
As the Poisson distribution is the benchmark distribution for count data, other counting
distributions are said to be overdispersed or underdispersed if they have a dispersion
index greater or smaller than one, respectively.

We start with the general de�nition of the Poisson process before having a closer look at
the homogeneous and inhomogeneous case.

De�nition 2.3 (Poisson process)
A Poisson process is a stochastic process N = {Nt}t≥0 with the following properties:

(i) Càdlàg paths: The paths of N are almost surely (a.s.) càdlàg functions, that is
right-continuous with existing left limits.
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(ii) Start at zero: N0 = 0 a.s.

(iii) Independent increments: For any 0 ≤ t0 < t1 < · · · < tn < ∞, n ∈ N, the
increments ∆Nti are mutually independent for i = 1, . . . , n.

(iv) Poisson increments: For a càdlàg function µ : R≥0 → R≥0 with µ(t) < ∞ for all
t ≥ 0, the increments have the following distribution:

Nt −Ns ∼ Poi(µ(t)− µ(s)), 0 ≤ s < t <∞.

The function µ is called mean-value function of N .

It comes naturally to call µ the mean-value function as it describes the expectation of
the process increments:

E[Nt −Ns] = µ(t)− µ(s), 0 ≤ s < t <∞.

The classical Poisson process is the homogeneous Poisson process with linear mean-value
function,

µ(t) = λt, t ≥ 0,

for some λ > 0 called intensity. In this case, the increments are not only independent
but also stationary, that is

Nt −Ns
d
= Nt−s, 0 ≤ s < t <∞,

and N is a Lévy process, see Section 2.3. In the following, if not explicitly referred to as
inhomogeneous, a Poisson process is assumed to be homogeneous.

Though often not �exible enough, the Poisson process still serves as benchmark process
for counting claim arrivals in actuarial applications where it was �rst introduced by
Filip Lundberg in 1903. In the context of the collective risk model it was later studied
extensively in Harald Cramér's work in the 1930s. As it will serve as starting point for the
claim number process studied in this thesis, a few important properties are summarized
in the following theorem.
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Theorem 2.4 (Properties of the homogeneous Poisson process)
Let N = {Nt}t≥0 be a homogeneous Poisson process with intensity λ > 0 and let

Tj := inf{t > 0 : Nt ≥ j}, j ∈ N,

be the jump arrival times. Then the following properties hold:

(i) Inter-arrival times: The inter-arrival times Ej := ∆Tj, j ∈ N, where T0 := 0,
follow an exponential distribution with mean λ−1:

Ej
iid∼ Exp(λ), j ∈ N.

(ii) Order-statistics property: The conditional distribution of (T1, . . . , Tn) given {Nt =
n} for some n ∈ N equals the distribution of the order statistics U(1), . . . , U(n) of iid

random variables Ui
iid∼ U[0, t] uniformly distributed on the respective time interval.

(iii) Superposition of Poisson processes: Let Ñ be another Poisson process with intensity
λ̃ > 0 independent of N , then N+Ñ is again a Poisson process with intensity λ+λ̃.

(iv) Early jump arrivals:

P(Nt = k) =


1− λt+ o(t) if k = 0,

λt+ o(t) if k = 1,

o(t) otherwise,

with the limiting behaviour o(t)
t → 0 for t ↓ 0.

Proof. For (i) and (ii) see (Mikosch, 2009, Chapter 2.1.4, Theorem 2.1.6, p.16; Chapter
2.1.6, Theorem 2.1.11, p.25). Property (iii) is discussed in (Cont and Tankov, 2003,
Chapter 2.5.3, Proposition 2.13, p.52), and (iv) can be found in (Denuit et al., 2007,
Chapter 1.3, p.21).

The Poisson process can equally be de�ned as renewal processes based on its independent
and exponentially distributed inter-arrival times, i.e.

Nt :=

∞∑
j=1

1{E1+···+Ej≤t},
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see (Billingsley, 2009, Section 23, pp.316); then the process is automatically càdlàg. From
this representation it is obvious that a.s. no jumps larger than size one occur and, hence,
that N is a simple counting process (that is right-continuous with jumps in {0, 1}). Fur-
thermore, independent Poisson processes a.s. never jump together, see (Kingman, J. F.
C., 1964, Chapter 2.2, Disjointness Lemma, p.14).

The inhomogeneous Poisson process can be de�ned through a deterministic time-change
of a homogeneous Poisson process. Let N be a homogeneous Poisson precess with in-
tensity λ = 1 and µ(·) a valid mean-value function according to De�nition 2.3, then the
process de�ned by Nµ(t), t ≥ 0, is easily understood to be an inhomogeneous Poisson
process with mean-value function µ. Conversely, every inhomogeneous Poisson process
has a representation as time-changed Poisson process, see (Mikosch, 2009, Chapter 2.1.3,
pp.14). For this reason µ is sometimes called operational time, see e.g. (Bühlmann, 1970,
Chapter 2.2.3., pp.49): whereas time runs linearly for a homogeneous Poisson process, it
speeds up or slows down according to µ for an inhomogeneous Poisson process.

If µ is continuous and strictly increasing with µ(t) → ∞ for t → ∞, then the inverse
function µ−1 exists and the inhomogeneous Poisson process can be converted back to
a homogeneous one with intensity 1 by a time-change with µ−1, see (Mikosch, 2009,
Chapter 2.1.3, Proposition 2.1.5, p.15). This is often bene�cial as working with the
homogeneous process is more convenient. If µ is not continuous and µ−1 denotes only
the generalized inverse, then µ ◦ µ−1 is no longer the identity function, thus switching
between the inhomogeneous and homogeneous process no longer works.

In many applications it even is assumed that µ is absolutely continuous, that is a non-
negative measurable function λ(·) exists such that

µ(t) =

∫ t

0
λ(s) ds, t ≥ 0.

The function λ(·) is called intensity function and for a homogeneous Poisson process with
intensity λ > 0 it is λ(t) = λ, t ≥ 0.

Like the homogeneous Poisson process, the inhomogeneous Poisson process can be rep-
resented by its jump arrival times. However, in any case other than the homogeneous
one the inter-arrival times are no longer independent or identically distributed and the
process is no longer a renewal process, see (Mikosch, 2009, Chapter 2.1.5, p.22). Further-
more, given discontinuities in the mean-value function, jumps of sizes larger than one are
possible and in this case the process is no longer a simple counting process.
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(Inhomogeneous) Poisson processes are often studied as general point processes, i.e. as
a random measures on the non-negative integers, and referred to as Poisson random
measures (PRM). In this case, the de�nition readily extends to the multivariate case.

De�nition 2.5 (Poisson random measure (PRM))
Consider a measurable space (E, E) where E ⊂ Rd and E := B(E). Let µ be a (non-
negative) Radon measure, that is a measure with µ(A) <∞ for all compact sets A ∈ E .
Then a PRM with mean measure µ is a mapping

N : E × Ω→ N0, (A,ω) 7→ N(A,ω),

such that it holds:

(i) For almost all ω ∈ Ω, N(·, ω) is an integer-valued Radon measure and for all
measurable sets A ∈ E , N(A, ·) <∞ is an integer-valued random variable.

(ii) For all sets A ∈ E it is N(A) ∼ Poi(µ(A)).

(iii) For any pairwise disjoint sets A1, . . . , An ∈ E , n ∈ N, the random variables N(Aj),
j = 1, . . . , n, are mutually independent.

If µ is absolutely continuous with respect to the Lebesgue measure, then the non-negative
function λ(·) with

µ(A) =

∫
A
λ(x) dx, A ∈ E ,

is called the intensity measure. If µ(·) = λLeb(· ∩ E) for the Lebesgue measure Leb(·)
and some λ > 0, then N is called a homogeneous PRM.

For E = R, the PRM N with mean value measure µ corresponds to the Poisson process
with mean-value function speci�ed as

Nt := N(0, t], µ(t) := µ(0, t], t > 0.

On the other hand, given a Poisson process N with mean-value function µ, the (random)
measures of the PRM representation are speci�ed via the generating sets of B(E) as:
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N(s, t] := Nt −Ns, µ(s, t] := µ(t)− µ(s), 0 ≤ s < t <∞,

see also (Kingman, J. F. C., 1964, Chapter 2.1, p.14).

For any PRM N exists a random sequence {Tj}j∈N in E such that N has a representation
in terms of Dirac measures as

N(A) =

∞∑
j=1

δTj (A), A ∈ E ,

see (Cont and Tankov, 2003, Chapter 2.6.1, p.58). For E = R, these points can be
associated to the jump arrival times in the process representation. Given a univariate
homogeneous Poisson process, the arrival times can be represented as increasing partial
sums of iid exponential random variables, see Theorem 2.4. An introduction to point
processes in general and PRMs in particular can be found in Mikosch (2009) or Em-
brechts et al. (1997). A more rigorous treatment is, for instance, given in Resnick (1987)
or Daley and Vere-Jones (2003, 2007).

The Poisson distribution, though very intuitive in the context of insurance modelling,
not always �ts the observed claim count data. As discussed in the beginning, the Poisson
distribution has a variance to mean ratio of one and can therefore often not match the
variability observed in claim count data. One common way to create greater �exibil-
ity is randomizing the intensity parameter; the resulting distributions are called mixed
Poisson distributions. More precisely, a random variable M is said to be mixed Poisson
distributed if a non-negative random variable Λ ≥ 0 exists such that the probability
mass function of M is given by the expectations of Poisson probabilities with random
parameter Λ:

P(M = k) = E[
Λk

k!
exp{−Λ}], k ∈ N0.

These distributions provide a good model for heterogeneous populations: the claim fre-
quency varies with regard to the random e�ect Λ and can therefore account for the dif-
ferences in the individual claim frequencies. By applying the tower rule for conditional
expectations it can be found:

E[M ] = E[Λ], Var[M ] = E[Λ] + Var[Λ].
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It follows that these distributions have a variance to mean ratio larger than one, i.e. they
are suitable for overdispersed claim count data.

On a process level, this approach corresponds to randomizing the mean-value function.

De�nition 2.6 (Mixed Poisson and Cox process)
Let N = {Nt}t≥0 be a homogeneous Poisson process with intensity λ = 1. Independently,
let Λ = {Λt}t≥0 be a stochastic process that has a.s. non-decreasing càdlàg paths with
Λ0 = 0 and Λt < ∞, t < ∞. Then the process {NΛt}t≥0 is called a Cox process
directed by Λ. If there exists a non-negative process λ = {λt}t≥0 such that Λ has
the representation

Λt
d
=

∫ t

0
λs ds, t ≥ 0,

then λ is called intensity process. If Λt = Λt, t ≥ 0, for some non-negative random
variable Λ, then the transformed process is called a mixed Poisson process.

Cox processes were introduced in Cox (1955) under the name of doubly-stochastic Poisson
processes and further studied, for instance, in Bartlett (1963). Like Poisson processes,
they are often studied as general point processes where the directing process corresponds
to a random measure given by

Λ(s, t] := Λt − Λs, 0 ≤ s < t <∞.

A mixed Poison process can be understood as randomization of a homogeneous Poisson
process. Conditioned on the outcome of the mixing variable, a mixed Poisson process
becomes a homogeneous Poisson process. In case of a non-degenerate mixing variable Λ,
however, a mixed Poisson process has no longer independent increments.

Accordingly, a Cox process can be understood as randomization of an inhomogeneous
Poisson process. Even though in general it also loses the independent increment property
of the underlying Poisson process, this property can be preserved given a suitable choice
of the directing process Λ, as will be seen later on. If the directing process is continuous
and converges to in�nity over time, the Cox process, like the inhomogeneous Poisson
process, can be transformed back to a homogeneous Poisson process with intensity one,
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see (Grandell, 1991, Chapter 2.1, p.39). This transformation even works in the mul-
tivariate case: using a suitable time-change, a multivariate Cox process can be converted
into independent Poisson processes, see Brown and Nair (1988). In this thesis, however,
we will study a multivariate Cox process with a Lévy subordinator as directing process.
Given the discontinuities of the subordinator, a transformation back to the independent
Poisson case is no longer possible.

This section concludes with another (multivariate) extension of the (homogeneous) Pois-
son process using compounding. Let N be a univariate random variable with values in
N0 and Y be a d-dimensional random vector, then the random variableM de�ned as

M :=
N∑
j=1

Yj ,

with Y1,Y2, . . . iid copies of Y independent of N , is said to have a compound distribution
with primary distribution N and secondary distribution Y . The classical case, which is
of main concern in this thesis, is the compound Poisson case where N follows a Poisson
distribution; the corresponding process is the compound Poisson process.

De�nition 2.7 (Compound Poisson process)
Let N = {Nt}t≥0 be a Poisson process with intensity λ > 0. Let Y be a d-dimensional
random variable and Y1,Y2, . . . be iid copies of Y independent of N . Then the process
M = {Mt}t≥0 de�ned as

Mt :=

Nt∑
j=1

Yj , t ≥ 0,

is called compound Poisson process.

In the classical Cramér�Lundberg model, a univariate compound Poisson process is used
to model the evolution of the aggregate claim amount of an insurance portfolio: the
Poisson process describes the claim arrivals over time and each claim is assigned an iid
random claim size. This approach is readily extended to more general claim number
processes like inhomogeneous Poisson or Cox processes.

Compounding can also be used to generate new claim number processes by choosing
non-negative integer-valued jump size distributions. In this case, the claims arrive in
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clusters with distribution speci�ed by Y ∈ Nd0, and the clusters arrive according to N . If
N is a Poisson process as in De�nition 2.7, the resulting process is called Poisson cluster
process. In Galliher et al. (1959) and Kemp (1967), compound Poisson distributions
with non-negative integer-valued secondary distribution were studied under the name of
stuttering Poisson distribution; hence, the corresponding processes are also be referred
to as stuttering Poisson processes.

The compound Poisson process can be understood as a marked PRM on E = R≥0×Rd,
where an independent mark � the jumps size Yj � is assigned to the jump arrival points Tj
of the Poisson process. More precisely, the jump measure associated with the compound
Poisson process M is given by

M(A) := |{j ∈ N : (Tj ,Y
′
j )′ ∈ A}|, A ∈ B(E).

and, hence,M is a Poisson random measure with mean measure λLeb×PY , see (Mikosch,
2009, Chapter 7.3.2, Proposition 7.3.3, p.247). Given this observation, the properties of
the following remark do not come as much of a surprise.

Remark 2.8 (Decomposition and superposition of the compound Poisson process)
According to the space-time decomposition or thinning property of the compound Poisson
process, for Ai ∈ B(E) disjoint sets, i = 1, . . . , d, the processes

M i
t :=

Nt∑
j=1

Yj1Ai((Tj ,Y
′
j )′), t ≥ 0,

are mutually independent and have themselves a compound Poisson representation, see
(Mikosch, 2009, Chapter 3.3.2, Theorem 3.3.6, p.116). In other words, in the compound
Poisson model the aggregate claim amount in non-overlapping time intervals and for
non-overlapping layers of claim sizes � quantities that are, for instance, relevant in rein-
surance applications � are themselves independent compound Poisson processes.

In addition, the superposition of independent compound Poisson processes remains in
the same class as well. More precisely, let

M i
t =

N i
t∑

j=1

Yij
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be independent compound Poisson processes with intensities λi > 0 and independent
jump sizes Yi, i = 1, . . . , d. For ease of notation, only the univariate case is considered.
Then the aggregate process

∑d
i=1M

i
t is a compound Poisson process as well with intensity

λ =
∑d

i=1 λi. The jump size distribution Y of the aggregate process is the discrete
mixture of the individual jump size distributions, that is for a random variable J on
{1, . . . , d} with P(J = i) = λi/λ it holds:

Y =
d∑
i=1

1{J=i}Yi,

see (Mikosch, 2009, Chapter 3.3.1, Proposition 3.3.4, p.113). By the law of total prob-
ability it holds for the distribution of Y :

P(Y ∈ B) =
d∑
i=1

λi
λ
P(Yi ∈ B), B ∈ B(R).

N

25



2 Mathematical preliminaries

2.3 Lévy processes and subordinators

In this thesis, a Cox process directed by a Lévy subordinator is considered, a process
which is itself a Lévy subordinator. Hence, the process is mainly study from the per-
spective and with the methodologies of Lévy processes. For this purpose, an introduc-
tion to Lévy processes in general and subordinators in particular is given in this section.
Some standard references are Sato (1999), Bertoin (1998), Applebaum (2004), Schoutens
(2003), and Cont and Tankov (2003).

Lévy processes are mainly characterized by their independent and stationary increments.
They can be understood as a stochastic version of linear functions: whereas linear func-
tions have constant increments, Lévy processes have iid increments. Alternatively, they
can be seen as the continuous time extension of discrete time random walks with iid
step size distribution. Two important examples of Lévy processes have already been
introduced in the previous section: the homogeneous and the compound Poisson pro-
cess. These two form together with linear functions and Brownian motions the building
blocks of general Lévy processes, as will be discussed in more detail after the the formal
de�nition.

De�nition 2.9 (Lévy process)
A d-dimensional stochastic process X = {Xt}t≥0 is called a Lévy process if it has the
following properties:

(i) Càdlàg paths: The paths of X are almost surely càdlàg functions.

(ii) Start at zero: X0 = 0 a.s.

(iii) Independent increments: For any 0 ≤ t0 < t1 < · · · < tn < ∞, n ∈ N, the
increments ∆Xi, are mutually independent, i = 1, . . . , n.

(iv) Stationary increments: For any 0 ≤ s < t <∞, it is Xt −Xs
d
= Xt−s.

(v) Stochastic continuity: For all t ≥ 0 and ε > 0 it is lim
s→t

P(‖Xs −Xt‖ > ε) = 0.

A Lévy processes with component-wise a.s. non-decreasing paths is called a Lévy subor-
dinator.

The structure of the sample paths of a Lévy process is characterized in the famous
Lévy�Itô decomposition, which was developed in Lévy (1934) and Itô (1987); a detailed
derivation and discussion can be found in (Sato, 1999, Chapter 4, Section 19 and 20,
pp.119). It is shown there that a Lévy process is the superposition of a linear function,
a di�usion part given by a Brownian motion, and a jump component. The linear part
is fully characterized by a real vector specifying the slope and the Brownian motion
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is determined by a symmetric positive-semide�nite covariance matrix, called di�usion
matrix. Jumps occur at the points of discontinuity of the Lévy process, that is where

∇Xt := Xt − lim
s↑t
Xs > 0.

Due to the stochastic continuity of the process, these jumps cannot appear at �xed points
in time with a positive probability. Furthermore, due to the càdlàg property of the paths,
only countably many jumps can occur on any time interval and the number of jumps
with larger norm than some arbitrary barrier ε > 0 has to be �nite. The number of small
jumps, on the other hand, can be in�nite, yet has to be still countable, see (Billingsley,
2009, Chapter 3.12, pp.121). More precisely, consider on R≥0 × Ṙd the jump measure

J(A) := |{t ≥ 0 : (t,∇X ′t)′ ∈ A}|, A ∈ B(R≥0 × Ṙd),

and de�ne on Ṙd the so-called Lévy measure as the expected number of jumps with a
certain size in a unit time interval:

νX(B) := E[J([0, 1]×B)], B ∈ B(Ṙd).

The drift vector, di�usion matrix, and Lévy measure together fully determine the distri-
butional properties of the Lévy process and are therefore called the characteristic triplet.
As the process has only �nitely many big jumps, it holds for any ε > 0:

∫
‖x‖≥ε

νX(dx) <∞.

Thus, the Lévy measure νX is a Radon measure on Ṙd, i.e. it is �nite on any compact
set not containing zero, and the jump measure J can be shown to be a marked PRM
with mean measure Leb × νX , see (Sato, 1999, Chapter 4, Section 19, Theorem 19.2,
p.120). Consequently, jumps with a norm larger than some barrier ε � the barrier is
usually chosen as ε := 1 � can be represented as a compound Poisson process.

For the small jumps some more care has to be taken. The Lévy measure may have a
non-integrable singularity at zero due to the possibility of in�nitely many small jumps,
but it has to at least ful�l the following integrability condition:
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∫
‖x‖<ε

‖x‖2 νX(dx) <∞.

The sum over the small jumps not necessarily converges; instead, the sum of the com-
pensated jumps has to be considered and the compensation has to be accounted for in
the linear part of the Lévy process. Hence, in general the vector characterizing the linear
part in the characteristic triplet depends on the chosen cutting level ε for the jump sizes.
If the Lévy measure ful�ls the additional integrability condition

∫
‖x‖<ε

‖x‖ νX(dx) <∞,

the small jumps are well behaved and no compensation is necessary. The cutting function
for the small jumps can be removed and the whole jump part of the Lévy process can
be understood as the superposition of a possibly in�nite number of (compound) Poisson
processes, see (Sato, 1999, Chapter 2, Section 8, Remark 8.4, pp.38). In this case, the
vector characterizing the linear part is called the drift of the Lévy process.

In the following, we are primarily working with Lévy subordinators which always ful-
�l the stronger integrability condition for the Lévy measure. In addition, they have a
non-negative drift, the Lévy measure is concentrated on Ṙd≥0 � that is the jump sizes are
non-negative � and they have no di�usion part � that is the Gaussian di�usion matrix
is zero and the characteristic triplet reduces to a characteristic tuple. Hence, a Lévy
subordinator can be seen as a linearly increasing process a�ected by random upward
jumps. This notion will be made precise in Theorem 2.12.

In general, the Lévy processes that have no di�usion part and ful�l the stronger integ-
rability condition for the Lévy measure are exactly the Lévy processes with paths of a.s.
�nite variation, see (Sato, 1999, Chapter 4, Section 21, Theorem 21.9, pp.140). Further-
more, if the di�usion part is zero and the Lévy measure �nite, that is if νX(Ṙd) < ∞,
the processes are of �nite activity and correspond to the compound Poisson processes
with drift, see (Sato, 1999, Chapter 4, Section 21, Theorem 12, p.135). In this case, the
Lévy measure has the form νX = λPY with intensity parameter λ = νX(Ṙd) and jump
size distribution PY = λ−1νX . If νX(Ṙd) = ∞, the jump times are countable dense in
R≥0, see (Sato, 1999, Chapter 4, Section 21. Theorem 21.3, p.136).

We now take a closer look at the distribution of Lévy processes at a certain point in time,
which is in�nitely divisible.
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De�nition 2.10 (In�nite divisibility)
The distribution of a random vector X is in�nitely divisible if for each n ∈ N a random
vector Xn exists such that for n iid copies Xn

k of Xn it holds

X
d
= Xn

1 + · · ·+Xn
n .

If X and all Xn are discrete, then the distribution is called discretely in�nitely divisible.

Due to the independent and stationary increment property it can easily be seen that the
distribution of a Lévy process at any point in time has to be in�nitely divisible; in fact,
even a one-to-one relationship exists between in�nitely divisible distributions and Lévy
processes.

Theorem 2.11 (Lévy processes and in�nite divisibility)
For a Lévy process X = {Xt}t≥0, the distribution PXt is in�nitely divisible for any t ≥ 0
and it holds for the characteristic function:

ΦXt(v) = ΦX1(v)t, v ∈ Rd.

Furthermore, for any in�nitely divisible distribution F exists a Lévy processX = {Xt}t≥0

such that X1 ∼ F , and this process is unique up to identity in law.

Proof. See (Sato, 1999, Chapter 2, Section 7, Lemma 7.9 and Theorem 7.10, p.35; Section
11, Corollary 11.6, p.63).

From the above theorem it directly follows that compound Poisson distributions are
in�nitely divisible as they correspond to compound Poisson processes which are Lévy
processes. In addition, the subset of discretely in�nitely divisible distributions coincides
with the set of compound Poisson distributions with integer-valued jump-size distribu-
tion (and Lévy measure), see (Sato, 1999, Chapter 5, Setion 27, Corollary 27.5, p.176).
Furthermore, the non-negative in�nitely divisible distributions correspond to Lévy sub-
ordinators, a result which is shown for the one-dimensional case in detail in (Sato, 1999,
Chapter 5, Section 24, Theorem 24.11, p.153); for the multivariate case see (Barndor�-
Nielsen et al., 2001, Proposition 3.1).

The distribution of a Lévy process is determined by its distribution at time t = 1, thus
this distribution is the only degree of freedom in specifying the process. The famous
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Lévy�Khintchine representation, which goes back to Lévy (1934) and Khintchine (1937),
completely characterizes this distribution in terms of the Lévy characteristics. The expli-
cit results are given here for the special case of Lévy subordinators, as these results will
be of importance later on in this thesis. Whereas in most textbooks Lévy subordinators
are only studied in dimension one, for this thesis we particularly consider the multivariate
case. Furthermore, due to the non-negativity of the process increments, it is convenient
to work with the Laplace transform rather than the characteristic function.

Theorem 2.12 (Lévy�Khintchine representation for Lévy subordinators)
Let X = {Xt}t≥0 be a d-dimensional Lévy subordinator. Then X is fully characterized
by a positive drift vector bX ∈ Rd≥0 and a σ-�nite Lévy measure νX concentrated on Ṙd≥0

and satisfying the integrability condition

∫
Rd≥0

min{1, ‖x‖} νX(dx) <∞.

The Laplace transform ϕXt of Xt can be expressed in terms of the so-called Laplace
exponent ΨX : Rd≥0 → R≥0 by

ϕXt(u) = exp{−tΨX(u)}, t ≥ 0,u ∈ Rd≥0,

and the Laplace exponent is derived from the characteristics of the subordinator as

ΨX(u) = u′bX +

∫
Rd≥0

(1− exp{−u′x}) νX(dx), u ∈ Rd≥0.

Proof. In the case of a univariate subordinator, this follows from the results on general
Lévy processes given in (Sato, 1999, Chapter 2, Section 8, pp.37) together with the
the results on univariate subordinators given in (Sato, 1999, Chapter 4, Section 21,
Theorem 21.5, p.137). The multivariate version is stated in (Barndor�-Nielsen et al.,
2001, Proposition 3.1) and was derived from results in (Skorohod, 1991, Chapter 3.3,
Theorem 21, pp.156) on stochastically continuous processes with independent increments
living on cones, considering that Rd≥0 is a particular cone in Rd.

The Laplace exponent is closely connected to the cumulant generating function of the
Lévy process which is linear in time according to the theorem:
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ΨX(u) = − logϕX1(u) = −gX1(−u), u ∈ Rd≥0.

For a univariate Lévy subordinator Λ = {Λt}t≥0, the Laplace exponent ΨΛ is a Bernstein
function, i.e. a non-negative function with completely monotone �rst derivative, ful�lling
ΨΛ(0) = 0. More precisely, for all n ∈ N it holds:

(−1)n+1Ψ
(n)
Λ (x) ≥ 0, x > 0,

see (Feller, 1971, Chapter XIII.7, Theorem 1, p.450). For a thorough study of Bernstein
functions see Schilling et al. (2012); there it is also shown that any Bernstein function
starting in zero has a representation as in Theorem 2.12 and is thus the Laplace exponent
of a subordinator, see (Schilling et al., 2012, Theorem 3.2 and Theorem 3.6).

In case of a multivariate Lévy subordinator, the Lévy measure also contains the informa-
tion about the dependencies between the marginal processes, as is stated in the following
theorem.

Theorem 2.13 (Marginals and independence of a Lévy subordinator)
Consider a d-dimensional Lévy subordinator X = {Xt}t≥0 with drift bX := b ∈ Rd≥0 and

Lévy measure νX . Then the characteristic tuple of the marginal processes Xi = {Xi}t≥0

are given w.l.o.g. for i = 1:

bX1 = b1, νX1(B) = νX(B × Rd−1
≥0 ), B ∈ B(R>0).

Furthermore, the marginal processes of X are independent if and only if they never jump
together. In terms of the Lévy measure this translates into having support in {x ∈ Ṙd≥0 :
x1 · · ·xd = 0} and in this case it holds:

νX(B) =
d∑
i=1

νXi(Bi), B ∈ Ṙd≥0,

where Bi := {x ∈ R : xei ∈ B}, i = 1, . . . , d.
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Figure 2.1 Sample paths of Lévy subordinator families: The �gure shows three
sample paths for each subordinator family introduced in Example 2.14.
(Top-left) Poisson process with intensity λ = 1; (top-right) compound Pois-
son process with intensity λ = 10/3 and Gamma(1.5, 5) jump size distribu-
tion; (middle-left) gamma subordinator with β = η = 2.25; (middle-right)
inverse Gaussian subordinator with β = η = 1.5; (bottom-left) stable sub-
ordinator with α = 0.8. The parameters of the �rst four subordinators have
been chosen such that mean and variance are identical; the stable subordin-
ator always has in�nite mean and variance.
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Proof. The result can be found in (Cont and Tankov, 2003, Chapter 5.4, Proposition 5.2
and Proposition 5.3, p.144); even though only the bivariate case is considered there, the
multivariate version follows in the same fashion.

Example 2.14 (Families of Lévy subordinators)
Five common examples of univariate Lévy subordinators Λ = {Λt}t≥0 are introduced in
the following; Figure 2.1 shows sample paths for each case.

(i) Poisson process with intensity λ > 0:
According to De�nition 2.3, the in�nitely divisible distribution of the Poisson pro-
cess is the Poisson distribution, that is Λt ∼ Poi(λt). From the Laplace transform,
see (Sato, 1999, Chapter 1, Section 2, Example 2.7, p.10), it can be seen that the
Laplace exponent is:

ΨΛ(u) = λ(1− exp{−u}), u ≥ 0.

Then the Lévy characteristics are:

bΛ = 0; νΛ(B) = λδ1(B), B ∈ B(R>0).

(ii) Compound Poisson process with intensity λ > 0 and random jump size Y > 0:
By de�nition, the in�nitely divisible distribution of the process is a compound
Poisson distribution. Again, from the Laplace transform, see (Sato, 1999, Chapter
1, Section 4, pp.18), the Laplace exponent is found to be:

ΨΛ(u) = λ(1− ϕY (u)), u ≥ 0,

where ϕY is the Laplace transform of Y . Then the Lévy characteristics are:

bΛ = 0; νΛ(B) = λP(Y ∈ B), B ∈ B(R>0).

(iii) Gamma subordinator with parameters β, η > 0:
The gamma subordinator is the Lévy process corresponding to the gamma distri-
bution, see (Applebaum, 2004, Chapter 1.3, Example 1.3.22, p.52), i.e. for each
t > 0 it is Λt ∼ Gamma(βt, η) with density:
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fΛt(x) =
ηβt

Γ(βt)
xβt−1 exp{−ηx}1{R>0}, x ∈ R,

where Γ(·) denotes the gamma function. The corresponding Laplace exponent is:

ΨΛ(u) = β log
(

1 +
u

η

)
, u ≥ 0.

The Lévy measure of the gamma subordinator is absolutely continuous with respect
to the Lebesgue measure and the Lévy characteristics are:

bΛ = 0; νΛ(dx) = β exp{−ηx}1

x
1R>0(x)dx.

(iv) Inverse Gaussian subordinator with parameters β, η > 0:
The inverse Gaussian subordinator stems from the inverse Gaussian distribution,
see (Applebaum, 2004, Chapter 1.3, Example 1.3.21, p.51), that is Λt ∼ IG(βt, η)
for t > 0 with density:

fΛt(x) =
βt√
2πx3

exp
{
− 1

2x
(ηx− βt)2

}
1R>0(x), x ∈ R,

and Laplace exponent:

ΨΛ(u) = β(
√

2u+ η2 − η), u ≥ 0.

The Lévy measure of the process is again absolutely continuous with respect to the
Lebesgue measure and the Lévy characteristics are, see (Schoutens, 2003, Chapter
5.3.4, p.53):

bΛ = 0; νΛ(dx) =
1√
2π
βx−

3
2 exp

{
− 1

2
η2x
}
1R>0(x)dx.
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(v) Stable subordinator with parameter 0 < α < 1:
The stable subordinator, see (Applebaum, 2004, Chapter 1.3, Example 1.3.18,
p.51), is characterized by its stable distribution, i.e. using the parametrization
S(α, β, σ) from (Applebaum, 2004, Chapter 1.2, Theorem 1.2.21, p.33):

Λt ∼ S
(
α, 1, cos

(πα
2
t
) 1
α
)
.

It follows for the Laplace exponent:

ΨΛ(u) = uα, u ≥ 0,

and the Lévy characteristics are:

bΛ = 0; νΛ(dx) =
α

Γ(1− α)
x−1+α

1R>0(x)dx.

Note that the moment generating function does not exist in any point v > 0; if
it did, it would be given by E[exp{vΛt}] = exp{−tΨΛ(−v)} which is not a well-
de�ned real function, see (Sato, 1999, Chapter 5, Section 25, Theorem 25.17, p.165).
Hence, the distribution is heavy-tailed and moments of all order in N are in�nite.

All �ve given examples of Lévy subordinators can be extended by a non-negative drift
b > 0, that is

Λ̃t := bt+ Λt.

In this case the drift of the process becomes bΛ̃ = b, the Lévy measure νΛ̃ = νΛ remains
unchanged, and the Lévy exponent has to be adjusted to:

ΨΛ̃(u) = bu+ ΨΛ(u), u ≥ 0.
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Having �xed the notation and covered the mathematical preliminaries, this chapter in-
troduces the model that is studied in this thesis. Section 3.1 presents the set-up and gives
a �rst characterization of the multivariate process. A study of the claim arrival times
in Section 3.2 helps to formulate an e�cient sampling algorithm for the model, which
o�ers the possibility to numerically evaluate distribution-related quantities which cannot
be analytically solved. In Section 3.3, important literature on the topic is reviewed and
the relationship with the Lévy-frailty model for credit default times is established.

3.1 Model set-up

Consider d ∈ N insurance portfolios, each consisting of a single policy or a collection of
policies, and let the univariate processes Li := {Lit}t≥0 count the claims arriving in each
portfolio i = 1, . . . , d up to time t ≥ 0. To describe the joint behaviour of these pro-
cesses, we not only need a model for each process Li, but must also specify the dependence
structure between them. Thus, a model for the full d-dimensional claim number process
L := (L1, . . . , Ld)′ is necessary. Di�erent approaches to this task will be discussed in
Section 3.3. In this thesis, we follow a probabilistic construction where L is speci�ed as
a multivariate Poisson process that is time-changed by a Lévy subordinator. As we will
see, this approach allows for an intuitive understanding of the model properties, which
include many typical features of claim count data, while preserving mathematical tract-
ability.

In the traditional modelling approach, claim arrivals in each portfolio i are assumed to
follow independent homogeneous Poisson processes N i := {N i

t}t≥0 with individual in-
tensities λi > 0. Let N := (N1, . . . , Nd)′ be the corresponding multivariate Poisson
process with independent marginals and intensity vector λ := (λ1, . . . , λd)

′. Naturally,
all limitations of the univariate Poisson model apply to the multivariate version as well.
As was noted in Section 2.2, the dispersion observed in the claim count data often exceeds
that predicted by the Poisson distribution, which is one reason why extensions based on
mixed Poisson distributions, that is mixed Poisson and Cox processes, have gained in
popularity. Furthermore, claims produced from a univariate homogeneous Poisson pro-
cess always arrive one after another, while in many real-world applications claims can and
do arrive simultaneously. This feature directly extends to this multivariate process as
well: due to the independence of the marginal processes, simultaneous claim arrivals are
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a.s. impossible for each component as well as between di�erent components, as mentioned
in Section 2.2. Thus, the multivariate Poisson process with independent marginals fails
to account for cluster arrivals or for any dependence between claims arriving in di�erent
portfolios.

The basic Poisson model will now be extended such that the new model allows for sim-
ultaneous claim arrivals and captures dependence between the individual portfolios. We
introduce an additional source of randomness independent of N , namely a Lévy subor-
dinator Λ := {Λt}t≥0 with characteristic tuple (bΛ, νΛ), serving as a stochastic clock or
operational time. As mentioned in Section 2.3, a Lévy subordinator can be understood
as a process that increases linearly with drift bΛ and is a�ected by random upward jumps.
The Lévy measure νΛ encodes all information about the size and timing of the jumps.
Like real time the subordinator paths start at zero and are almost surely non-decreasing.
But while real time grows linearly, the new time can randomly run slower or faster than
real time, depending on the jump activity of the subordinator. High activity periods
represent times of high market intensity with many claims coming in, and large subor-
dinator jumps may be directly linked to catastrophic events.

In the following the claim number process L is assumed to be the basic Poisson process
N if run through according to the random time Λ:

{Lt}t≥0 := {NΛt}t≥0. (M)

This approach naturally generates dependence between the portfolios in the model as the
stochastic factor Λ similarly a�ects all components. Furthermore, while the underlying
Poisson process gives rise to only jumps of size one, the subordinator and therefore time
can now jump, leading to simultaneous claim arrivals within and between the individual
portfolios in the time-changed process.

The parameter set of Model (M) consists of the d intensities λi of the underlying Poisson
processes as well as the subordinator parameters. As can be seen in Example 2.14, a
Poisson process or stable subordinator is characterized by a single parameter, an inverse
Gaussian or gamma subordinator by two parameters. For the compound Poisson process,
the number of parameters depends on the chosen jump size distribution; for gamma-
distributed jumps the compound Poisson process has three parameters. Adding a drift
to any of the subordinators increases the number of parameters by one. Depending on
the speci�c application, it may be desirable that the operating time, although randomly
running faster or slower, behaves on average like real-time, that is E[Λt] = t holds for all
t ≥ 0. Due to the linearity of the �rst moment of a Lévy process, imposing the following
assumption to ensure time-normalization is su�cient:
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E[Λ1] = 1. (TN)

This will be discussed in more detail in Chapter 4. Time-normalization does not neces-
sarily need to be imposed, but it does improve the interpretation of this subordinator as
stochastic time and enables the recovery of the expected claim numbers λ in the Poisson
model, as will be shown later in Proposition 4.15. To ful�l this condition, one parameter
of the subordinator has to be set in advance, reducing the total number of subordinator
parameters by one. With or without time-normalization, Model (M) has only a relat-
ively modest number of additional parameters compared to the basic independent Poisson
model. Thus, the model o�ers a better description of many claim arrival patterns while
providing a good chance that each additional parameter can be determined reasonably
well from the available data. This topic will be discussed further in Chapter 5. Exten-
sions of the time-changed model incorporating an even richer variety of default patterns
at the cost of an increased number of parameters will be discussed in Chapter 6.

Figure 3.1 shows an example of how the univariate Poisson claim arrivals are changed
if observed while following a stochastic clock1. The upper chart shows one realization
of an inverse Gaussian subordinator which is one realization of time. The subordinator
parameters were chosen such that Assumption (TN) holds. In this particular realization,
however, the subordinator path rises well above 10, the level expected in T = 10. In the
�gure's lower chart, the sampled claim arrivals of an independent Poisson process are
visualized in grey. If these claims are observed with regard to the subordinator sample
path, they arrive in clusters marked in blue. The size of these clusters depends on the
jump activity of the time path. In Figure 3.2 the example is extended to dimension d = 2.
Due to a lower intensity chosen for component 2 compared to component 1, the overall
number of jumps is smaller and the cluster sizes tend to be smaller as well. However, as
both components are a�ected by the same time realization, relatively large clusters tend
to occur simultaneously in both.

By de�nition, the time-changed process L is a multivariate Cox process in the sense that
each marginal process Li is a univariate Cox process as in De�nition 2.6. The directing
processes are all driven by the Lévy subordinator Λ, but each is scaled by the component-
speci�c intensity λi, that is the directing processes are λiΛ, i = 1, . . . , d. At each point
in time t ≥ 0, the marginals are, therefore, distributed according to a mixed Poisson
distribution with the in�nitely divisible mixing variable λiΛt.

Two main factors contribute to the very good mathematical tractability of this mul-
tivariate Cox process L. First, the dependence between the marginal processes is solely
introduced by the common stochastic clock Λ. Given the sigma-algebra σ(Λ) generated

1The data for Figures 3.1 and 3.2 was sampled using Algorithm 3.3.
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Figure 3.1 Claim arrivals before and after time-change: The �gure illustrates the
claim arrivals of the underlying Poisson process as well as the time-changed
process in dimension d = 1. The upper chart shows one sample path of
an inverse Gaussian subordinator with no drift (b = 0, β = η = 1) and
with time horizon T = 10. The lower chart illustrates the claim arrivals of
a Poisson process with intensity λ1 = 10 in grey; the claim arrivals of the
Poisson process time-changed by the subordinator sample path are plotted
in blue.
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Figure 3.2 Bivariate claim arrivals: The �gure illustrates a bivariate extension of
Figure 3.1. The upper chart shows the claim arrivals (left) and the claim
arrival process (right) of the univariate example of Model (M) from Fig-
ure 3.1 (λ1 = 10 and inverse Gaussian subordinator with parameters b = 0,
β = η = 1). For the lower chart, the model is extended by a second com-
ponent with intensity λ2 = 5; again, the claim arrivals and the claim arrival
process are plotted.
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by the subordinator, the marginal processes L1, . . . , Ld are independent. More precisely,
given the outcome Λt = Λ̂t, t ≥ 0, the processes are independent inhomogenous Poisson
processes with mean value function λiΛ̂t and the multivariate conditional distribution in
k ∈ Nd0 is:

P(Lt = k|σ(Λ)) =

d∏
i=1

P(N i
Λt = ki|σ(Λ)) =

d∏
i=1

(λiΛt)
ki

ki!
exp{−λiΛt}

=
λk

k!
Λ
|k|
t exp{−|λ|Λt}.

Due to the subordinator jumps, the paths of Λ are not continuous and hence not dif-
ferentiable2. It follows that, in contrast to many studies of inhomogeneous Poisson and
Cox processes, no (random) intensity function exists. Furthermore, the process cannot
be converted back to the underlying independent Poisson process by a time-change with
the inverse of the directing process (see Section 2.2).

Secondly, as the Poisson process is itself a Lévy subordinator and the family of Lévy
subordinators is closed under subordination, the new process L inherits the convenient
increment properties of the Lévy subordinator class. Moreover, the only Lévy process
with piecewise constant paths is a compound Poisson process, hence L is a Poisson
cluster process: the d-dimensional clusters of claims, seen in Figure 3.2, are iid and the
arrival times are determined by an independent Poisson process. These properties will
be discussed in detail in Chapter 4.

Remark 3.1 (Aggregated claim number process)
The superposition N̄ :=

∑d
i=1N

i of the underlying independent Poisson processes is
again a Poisson process with intensity |λ| (see Theorem 2.4). Therefore the aggregate
claim number process

L̄ :=

d∑
i=1

Li

in Model (M) is itself a Poisson process time-changed by the subordinator Λ, namely:

{L̄t}t≥0 = {N̄Λt}t≥0. (3.1)

2Except for the degenerate case of Λt = bΛt where the time-changed model consists again of homogen-
eous independent Poisson processes.

41



3 Model set-up and characterization

Due to this observation all results derived in the following for L can be directly transferred
to the aggregate process L̄ by choosing dimension d = 1 and intensity |λ|. N
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3.2 Arrival times and simulation

In this section, a probabilistic construction of the claim arrival times in Model (M) is
given. This construction can be exploited to set up an e�cient sampling algorithm. As
for the Poisson process, a one-to-one correspondence exists between the claim arrival
times and the claim number process in the time-changed model. Let τij be the arrival
time of claim number j ∈ N in portfolio i = 1, . . . , d, that is:

τij := inf{t > 0 : Lit ≥ j}.

The claim number processes L can be recovered from the component-wise sequences of
its claim arrival times via:

Lit =

∞∑
j=1

1{τij≤t}, t ≥ 0. (3.2)

The following proposition shows how the claim arrival times of L can be constructed as
�rst-passage times of the subordinator over increasing trigger levels with exponentially
distributed step sizes.

Proposition 3.2 (Probabilistic construction of claim arrival times)

Independently for all portfolios i = 1, . . . , d, let Eij
iid∼ Exp(λi) for j ∈ N be independent

and identically distributed trigger steps following an exponential law with component-
speci�c expectation λ−1

i . Let the claim arrival times be given as

τij := inf{t > 0 : Ei1 + · · ·+ Eij ≤ Λt}, i = 1, . . . , d, j ∈ N. (3.3)

Then the claim number process L resulting from Equation (3.2) can be represented as in
Model (M) with the components of N de�ned by the inter-arrival times Eij:

N i
t :=

∞∑
j=1

1{Ei1+···+Eij≤t}, t ≥ 0.
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3 Model set-up and characterization

Proof. The processes N i
t are by de�nition independent Poisson processes. For any t ≥ 0

it holds:

{τij ≤ t} = {inf{s > 0 : Ei1 + · · ·+ Eij ≤ Λs} ≤ t} = {Ei1 + · · ·+ Eij ≤ Λt}.

It follows for the processes de�ned by Equation (3.2):

Lit :=

∞∑
j=1

1{τij≤t} =

∞∑
j=1

1{Ei1+···+Eij≤Λt} = N i
Λt , t ≥ 0,

As this is the representation in Model (M), the proof is established.

By exploiting this probabilistic construction and the conditional independence, a simu-
lation routine for the multivariate claim number process L can easily be implemented
using the following algorithm. It should be noted that the algorithm equally works for
other kinds of directing processes than Lévy subordinators. All that is necessary is a
sampling routing for the chosen process.

Algorithm 3.3 (Sampling routine)
Let T > 0 be some �xed time horizon. A sample path {L̂t}t∈[0,T ] of the time-changed
process L can be generated using the following steps:

(1) Simulate a path {Λ̂t}t∈[0,T ] of the Lévy subordinator Λ on [0, T ].

(2) Repeatedly draw independent exponentially distributed trigger steps with parameter
λi for each portfolio i = 1, . . . , d until their sum exceeds the level Λ̂T of the subordin-
ator path at time T . Compute the claim arrival times according to Equation (3.3).

(3) Determine the sample path {L̂t}t∈[0,T ] from the sampled claim arrival times using
Equation (3.2).

As stated in Theorem 2.4, given the total number of jumps of a Poisson process within a
certain time interval, the arrival times of these jumps have the distribution of the order
statistics of a corresponding number of random variables uniformly distributed on the
respective time interval. Using this, Step (2) in Algorithm 3.3 can be replaced by:
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3 Model set-up and characterization

(2′) For each portfolio i = 1, . . . , d, draw the total number L̂iT of claims at time T from
a Poi(λiΛ̂T ) distribution. Then draw L̂iT independent samples Ûij , j = 1, . . . , L̂iT ,
from a uniform distribution on [0, Λ̂T ]. For the order statistics Ui(j), evaluate:

τ̂ij := inf{t > 0 : Ûi(j) ≤ Λ̂t}.

Using this algorithm, paths of L can be sampled quickly. For instance, it took only 43
seconds on a standard computer (2.4 GHz Intel Core 2 Duo processor, 4.00 GB RAM)
to draw the 5000 bivariate samples for λ = (75, 100)′, time interval [0, 1], and with an
inverse Gaussian subordinator generated for Figure 4.3. If certain relevant quantities
cannot be calculated analytically, they can, hence, be easily approximated employing a
Monte Carlo simulation. Furthermore, increasing the dimension d by adding an addi-
tional portfolio to the model is particularly convenient as it requires only one additional
run through Steps (2) and (3), without changing the previous sampling results. Fig-
ure 3.3 provides an illustration of the algorithm. In the upper left chart, one sample
path of an inverse Gaussian subordinator is plotted for a time horizon of T = 1. The
subordinator parameters have been chosen such that time normalization holds. In the
upper right chart, sampled trigger levels for the �rst portfolio are added to the graph,
�ve in this case. On the left-hand side of the middle row, the �rst-passage times of
the subordinator are evaluated to yield the claim arrival times for portfolio one. As the
subordinator overshoots trigger levels two and three with a single jump, these two claims
arrive simultaneously. The chart on the middle row on the right-hand side shows the
claim (cluster) arrivals of L1

t . In the bottom row, a sample of a second portfolio is added
to the existing results. In this case two trigger levels are sampled before time T and
the �rst happens to be overshot by the same subordinator jump as trigger level one of
portfolio one, leading to simultaneous claim arrivals in both portfolios.

If Λ is a �nite activity subordinator, i.e. a (compound) Poisson process (with drift), it can
be directly sampled in terms of its arrival times similarly to Step (2) or Step (2′), only
adding iid jump sizes and accounting for the drift, if applicable. In this case the whole
sample path {Λ̂t}t∈[0,T ] of the subordinator is known, which allows for the time-changed
process to be sampled without discretization error. For an in�nite activity subordinator,
a sample path needs to be evaluated on a discrete time grid. For instance, let K ∈ N
be the chosen number of simulation steps and h := T/K the resulting step size on an
equidistant grid. Then {Λ̂tk}k=1,...,K for tk := hk can be sampled by accumulating iid in-
crement samples of the distribution of Λh. By evaluating the �rst-passage times, however,
arrivals within any time step (tk−1, tk] will be delayed to the next grid point tk. Hence,
the simulated path of the claim number process on non-grid points will always be less
than or equal to the real path. Furthermore, the discretization error leads to more claims
arriving simultaneously than predicted by the model. Hence, the real distribution of the
jump sizes is always stochastically dominated in �rst-order by the empirical distribution
generated from the simulation, that is the empirical cumulative distribution function is
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Figure 3.3 Sampling algorithm: The �gure illustrates the steps in Algorithm 3.3.
The upper left chart shows one sample path of an inverse Gaussian subor-
dinator with no drift (b = 0, β = η = 3) and with time horizon T = 1. The
upper right chart visualizes the trigger steps sampled for the �rst compon-
ent with intensity λ1 = 4 and the middle left chart adds the evaluated claim
arrival times; the chart on the right-hand side shows the claim (cluster)
arrivals. In the bottom row charts, a sample of a second portfolio with
intensity λ2 = 2 is added.
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3 Model set-up and characterization

pointwise smaller than the real one. By choosing a su�ciently small step size, however,
the discretization error should be small. For more information on how to sample from
Lévy processes, see (Cont and Tankov, 2003, Chapter 6) or (Schoutens, 2003, Chapter 8).

The inter-arrival times of the time-changed process are no longer iid, thus the process
is no renewal process. The distribution of the arrival and the inter-arrival times will
be discussed in Chapter 4. This section concludes with a closer look at the conditional
arrival times. Due to the conditional independence property of the model, the sequences
of claim arrival times (τi1, τi2, . . . ) are independent for i = 1, . . . , d given the σ-algebra
σ(Λ). From the transformation theorem for densities (see (Czado and Schmidt, 2011,
Chapter 1.1, Theorem 1.2, p.5)) it follows for the joint density of the �rst successive
n ∈ N trigger levels (Ei1, Ei1 + Ei2, . . . , Ei1 + · · ·+ Ein):

f(t1, . . . , tn) := λni exp{−λitn}1Sn(t1, . . . , tn), t1, . . . , tn ∈ R,

where Sn := {s1, . . . , sn ∈ R : 0 ≤ s1 ≤ · · · ≤ sn}. It follows that for the conditional
joint survival probability of the �rst n claim arrival times (τi1, . . . , τin) it holds:

P(τi1 > t1, . . . , τin > tn|σ(Λ)) =

∫ ∞
Λt1

. . .

∫ ∞
Λtn

f(s1, . . . , sn) dsn · · · ds1.

Due to jumps in the subordinator paths, no conditional density exists. For any single
claim number j ∈ N, the sum of j independent Exp(λi)-distributed random variables has
an Erlang distribution with shape parameter j and rate λi. Thus, given σ(Λ), the arrival
times τij are conditionally independent for all i = 1, . . . , d with conditional survival
probability:

P(τij > t|σ(Λ)) =

j−1∑
k=0

(λiΛt)
k

k!
exp{−λiΛt}, t ≥ 0.
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3 Model set-up and characterization

3.3 Literature review

This sections provides references relevant to the topic of this thesis. Due to the vast
amount of work in this �eld, the overview can by no means be comprehensive and only
touches upon several important areas. Furthermore, many more references will be given
throughout the thesis for speci�c aspects where they arise.

At a �xed point in time, the process presented in this thesis follows a multivariate mixed
Poisson distribution with joint mixing variable. This class of distributions can be gener-
alized to multivariate mixing distributions, see Karlis and Xekalaki (2005) and references
therein for the bivariate case, in particular regarding mixtures with gamma, inverse Gaus-
sian, and Poisson distributions generating bivariate negative binomial (a special case of
the negative multinomial distribution as discussed in (Johnson et al., 1997, Chapter 36,
pp.93)), Sichel, and Neyman type A distributions (cf. Remark 4.8). For more details, see
also Kocherlakota (1988). Dey and Chung (1992) investigate multivariate mixed Poisson
distributions, in particular with a gamma-distributed mixing variable, and an estimation
approach for the intensities; they also develop a general formula for the multivariate
probability mass function (cf. Theorem 4.2). Partrat (1994), for instance, examine com-
pounding with multivariate mixed Poisson distributions for actuarial applications.

Randomizing joint parameters is merely one approach to generate dependency in (dis-
crete) random variables; another route is via superposition of independent random vari-
ables in a shock model approach, or more generally using copula functions. In the
following review, however, the focus is on time-dynamic processes rather than static ran-
dom vectors. In particular, an overview over the technique of random time-change in
general and with respect to Cox processes in particular is given and di�erent methods
discussed in the literature for generating tractable multivariate claim number processes
are summarized. Finally, the occurrence of Cox processes in credit risk modelling and in
particular the Lévy-frailty model, which is closely related to the model examined in this
thesis, will be discussed.

Bochner (1949, 1955) introduced and studied the transformation of a process through a
random time-change with an independent Lévy subordinator, called subordination, and
Clark (1973) �rst exploited the method for modelling speculative price series. A more
recent survey of the development of Lévy �nancial asset models through time-changing
Brownian motions can be found in Carr and Wu (2004). Prause (1999), Luciano and
Schoutens (2006), Luciano and Semeraro (2007), and Semeraro (2008), to name only
a few, present multivariate models in this �eld; the latter two consider subordination
employing multivariate subordinators.
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3 Model set-up and characterization

The Poisson process (which is itself a Lévy subordinator) is the process most frequently
studied under operational time in the class of point processes. In Section 2.2, the univari-
ate inhomogeneous Poisson process was introduced as a Poisson process time-changed
with a deterministic mean-value function and the Cox process was presented as a Pois-
son process directed by a suitable mean-value process. For the latter, several speci�c
choices for the directing process have been studied in the literature, mostly de�ned via
an intensity process. One common example are shot-noise intensities that are de�ned
as

λt :=

Nt∑
j=1

Xjf(t− Tj), t ≥ 0,

for arrival times Tj , j ∈ N, commonly speci�ed via a second Poisson process, a sequence
of iid random variables Xj , j ∈ N, independent of the arrival times, and a deterministic
function f with f(t) = 0 for t < 0. In many applications f(t) := exp{−αt} for α > 0,
i.e. the intensity jumps at times Tj with magnitudes Xj and the e�ects wear o� over
time, with exponential decay rate α. Dassios and Jang (2003) propose shot-noise driven
Cox processes as claim arrival processes for catastrophic events; the resulting risk process
and ruin probabilities are investigated in Albrecher and Asmussen (2006). Moller et al.
(1998) examine log-normal intensity processes and also consider a bivariate extension.
Actuarial applications, in particular pricing of stop-loss contracts, for shot-noise driven
Cox processes are studied in Basu and Dassios (2002). Hellmund et al. (2008) propose a
unifying approach where the intensity process is de�ned as an integral w.r.t. a Lévy basis
and Dario, A. De G. and Simonis (2011) focus on a�ne intensity processes, in particular
Feller processes.

However, a Cox process with intensity process di�ers from the Cox processes presented in
this thesis, which is directed by a Lévy subordinator, since the former does not support
simultaneous claim arrivals due to the continuity of its mean-value process. Far fewer
publications can be found which examine Cox processes with discontinuous time-change
processes, even in the univariate case. Kumar et al. (2011) choose inverse Gaussian and
stable subordinators as directing processes and derive the di�erence-di�erential equations
for the probability mass function of the time-changed Poisson process. In Beghin and
Macci (2014), fractional Poisson and Poisson cluster processes that result from a time-
change with a stable subordinator (or its generalized inverse) and their probability mass
functions are investigated, see also Orsingher and Polito (2012). Di Crescenzo et al.
(2015) consider the time-change of a compound Poisson process with an independent
Poisson process and �nd expressions for the probability mass function in terms of Bell
polynomials (see Section 4.1).
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Lee and Whitmore (1993) examine the more general case of time-changing a Markov
process through a process with non-negative and independent increments. They also
build a multivariate process by time changing independent univariate processes with a
common randomized time. Closely related to this thesis, they give special attention to
time-changing a Poisson process with so-called Hougaard processes, a subclass of Lévy
subordinators including, for instance, the inverse Gaussian, stable, and � as a boundary
case � gamma subordinator. The probability generating function as well as the com-
pound Poisson representation (see Section 4.2) are derived in this setting for the univari-
ate case. Furthermore, in Hougaard et al. (1997) a recursive formula for the probability
mass function of a univariate mixed Poisson distribution with Hougaard mixing variable
is presented. In addition, methods of statistical inference for these kinds of processes are
discussed and applied to epileptic seizure count data.

Apart from using a common time-change as proposed in this thesis, other approaches
have been employed to build tractable multivariate claim number processes for actuarial
applications. The models mentioned in the following, however, exclude multiple sim-
ultaneous claim arrivals in any component and generally try to retain (mixed) Poisson
marginals. For modelling dependencies in collective risk processes, Pfei�er and Ne²le-
hová (2004) suggest, among other approaches, a copula-based construction method to
generate dependent Poisson processes: at a �nite time horizon a copula is imposed on
a random vector consisting of independent Poisson processes and the evolvement of the
now dependent Poisson processes up to this time horizon is found using the order stat-
istics property (see Theorem 2.4). Lindskog and McNeil (2003) follow a shock model
approach where the superposition of independent Poisson processes is used to introduce
dependence. More precisely, let Ñ(k) = {Ñt(k)}t≥0 for k ∈ {0, 1}d be independent
Poisson processes with intensity λ̃(k) counting the shocks (or claim arrivals) a�ecting all
components where k has entry one. The resulting dependent claim number process N
is de�ned via its components as

N i
t :=

∑
k∈{0,1}d
ki=1

Ñ i
t (k), t ≥ 0.

If all possible shocks are to be included, 2d−1 processes have to be considered; hence, the
number of parameters quickly increases with the dimensionality of the problem. Vari-
ous extensions and modi�cations of this approach are investigated in the publication as
well. Bäuerle and Grübel (2005) create a multivariate counting process with Poisson
marginales by thinning and shifting arrival points of a univariate Poisson process. They
investigate the dependence properties of the resulting process and also explore some actu-
arial applications. Shifting of arrival points generates dependence over time, a property
Lévy processes do not support. In Bäuerle and Grübel (2008), a multivariate pure birth
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process with dependencies between the marginal birth rates is introduced and its applic-
ations to actuarial questions is examined. Zocher (2005) studies multivariate counting
processes in general and multivariate mixed Poisson processes with joint mixing variable
in particular. While the evolution of the mixed Poisson process over time di�ers from the
multivariate Cox process studied in this thesis, the distribution at a �xed point in time is
mixed Poisson in both cases and the probability mass function can be similarly (except
for the component-speci�c intensities) expressed in terms of derivatives of a generating
function of the mixing variable, cf. Section 2.2. Zocher also investigates a generalization
with a multivariate mixing distribution.

Since (compound) Poisson processes are Lévy processes, a potential approach to gener-
ating multivariate processes with marginals of this kind is via Lévy copulas (see Tankov
(2003), Kallsen and Tankov (2006), and Section 4.2). As for the static case of random vec-
tors and copulas, Lévy copulas make it possible for multivariate Lévy processes to specify
the dependence structure separately from the marginal processes. Hence, this approach
allows retaining marginal Poisson processes, if desirable, or choosing compound Poisson
or Poisson cluster processes instead. Bäuerle and Blatter (2011) use Lévy copulas to
generate multivariate risk processes in actuarial applications and study optimal control
problems; Bregman and Klüppelberg (2005) consider the estimation of ruin probabilit-
ies, in particular for a Clayton Lévy copula; Esmaeili and Klüppelberg (2010) focus on
parameter estimation. Avanzi et al. (2011) compare di�erent Lévy copulas and study
their �t to a real-world insurance data set. Closely related, Lévy copulas and compound
Poisson marginals are used to model the joint dynamics of operational risks, for instance
in Böcker and Klüppelberg (2008).

Cox processes, usually with an existing intensity process, have been successfully applied
in credit risk modelling, where the �rst jump time of the process de�nes the default
time of a credit-risky asset (or a Poisson approximation is used, see Remark 6.9), see
Lando (1998). To generate tractable multivariate models for this application, Giesecke
and Tomecek (2005) follow a top-down approach by proposing a Poisson process with a
continuous time-change as aggregate process and applying random thinning to generate
consistent models for the underlying components, see also Giesecke et al. (2011). Mul-
tivariate Cox processes with dependent intensity processes were studied as a bottom-up
approach in Du�e and Gârleanu (2001), Jarrow and Yu (2001), or Das et al. (2007),
among others. In Mai and Scherer (2009b), a time-change with a common Lévy sub-
ordinator and, hence, no intensity process is presented. As this construction is directly
linked to the process studied in this thesis, it will be presented in more detail in the
following subsection. However, in credit risk modelling the focus by nature lies on the
�rst (or � in case of a top-down approach � �rst few) arrival times of the Cox process,
whereas for actuarial applications later arrival times are equally important.
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Extension of the Lévy-frailty model

Model (M) is a natural extension of the Lévy-frailty model introduced in Mai and Scherer
(2009b) and further studied in Mai and Scherer (2009a). This model was designed for
application in credit-risk modelling. Thus, rather than the claim arrival times of a port-
folio of insurance policies, the credit default times of a portfolio of d credit-risky assets
are considered. While there may be multiple claims on an insurance policy, a loan can
default only once, hence, only a model for the vector of random (`�rst') default times
(τ1, . . . , τd) ∈ Rd+ is necessary. In the Lévy-frailty model, the default times are construc-
ted as �rst-passage times of a Lévy subordinator Λ = {Λt}t≥0 over iid exponential trigger

variables Ei
iid∼ Exp(1), i.e.

τi := inf{t > 0: Ei ≤ Λt}, i = 1, . . . , d.

From Proposition 3.2 it naturally follows that the default times in this de�nition cor-
respond to the �rst claim arrival times τ11, . . . τd1 in Model (M) with unit intensities
λ1 = · · · = λd = 1.

The Lévy-frailty model can account for many observed default patterns while still being
mathematically tractable and most of the tractability can be preserved in the extension
presented here. The extension of the sampling algorithm, which is available for the Lévy-
frailty model, to the process proposed here has already been presented in Algorithm 3.3.
Furthermore, the vector of default times in the Lévy-frailty model follows the Marshall�
Olkin distribution, which is characterized by its multivariate lack-of-memory property,
see Marshall and Olkin (1967). The survival copula can be derived in closed form as
follows:

Ĉ(u) =
d∏
i=1

u
{ΨΛ(i)−ΨΛ(i−1)}/ΨΛ(1)
(i) , u ∈ [0, 1]d,

where u(i) denotes again the order statistics and ΨΛ is the Laplace exponent of Λ. The
copula has a singular component as P(τ1 = · · · = τd) > 0, thus the model accounts for
default clustering. Furthermore, the copula has a positive lower tail dependence:

LTD(τi, τj) = 2− ΨΛ(2)

ΨΛ(1)
, i 6= j ∈ {1, . . . , d}.

52



3 Model set-up and characterization

The distribution in Model (M) as well as clustering and joint early claim arrivals will be
studied in detail in Sections 4.1 and 4.2.

The loss given default of credit-risky assets is often assumed to be a deterministic constant
and equal for all assets. Hence, considering as portfolio loss process L̄t the number of
defaults that have occurred up to time t is su�cient:

L̄t :=

d∑
i=1

1{τi≤t}, t ≥ 0.

For the pricing of credit derivatives, expectations E[f(L̄t)] for potentially non-linear func-
tions f(·) have to be evaluated. Of particular interest in credit applications is the pricing
of collateralized debt obligations, which correspond to evaluating collar type functions
f(x) = min(max(0, x − l), u − l) for some u > l ≥ 0. Thus, the distribution of the
portfolio loss, which is available in closed form in the Lévy-frailty model, is needed. In
addition, an approximation for large homogeneous portfolios can be found: for increasing
number d of assets, the normalized portfolio loss 1

d L̄t converges uniformly and in L2 to
1− exp{−Λt}. The distribution of the aggregate process in Model (M) together with the
distribution of the process itself will be examined in detail in Section 4.1 and a large port-
folio approximation will be derived in Section 4.3. Stop-loss reinsurance contracts are the
equivalent of collateralized debt obligations in actuarial applications, and these contracts
will be investigated in Section 6.13. For insurance modelling, however, the assumption
of constant and identical claim sizes is not realistic, so at least iid claim size distribu-
tions need to be incorporated in the model. This extension will be discussed in Chapter 6.

In credit risk modelling, the model parameters are usually determined from calibration
to market data: the parameters are chosen such that the model-predicted prices closely
match the observed market prices for certain liquidly traded credit derivatives. As in-
surance products are traditionally not liquidly traded, the model parameters are usually
estimated from historical portfolio data. Therefore, di�erent estimation procedures for
Model (M) will be presented in Chapter 5.

Finally, it is worth mentioning that the Lévy-frailty model can be incorporated in the
general framework of conditionally iid default models, see Mai et al. (2013). For a non-
decreasing càdlàg process {Ft}t≥0 with F0 = 0, limt→∞ Ft = 1 a.s. and iid uniform

random variables Ui
iid∼ U[0, 1] independent of the process, the default times are de�ned

as:

3It should be mentioned that pricing in �nancial applications is usually done w.r.t. a risk-neutral pricing
measure, whereas in actuarial applications the physical measure is used. An overview of the di�erent
pricing approaches can be found in Embrechts (1993).
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τi := inf{t > 0: Ui ≤ Ft}, i = 1, . . . , d.

For the Lévy-frailty model Ft := 1− exp{−Λt} and most of the results discussed above
for this model can be recovered in the generalized setting. Hence, many extensions and
variations of the Lévy-frailty model remain tractable, for instance, considering Ft :=
1− exp{−ΛMt} for an independent mixing variable M > 0 as in Bernhart et al. (2013)
or Ft := 1 − exp{−Λ∫ t

0 λs ds} for a suitable positive process λ = {λt}t≥0 as in Mai et al.

(2014). Extensions of this kind cannot always be easily transferred to Model (M), as
they usually destroy the Lévy property of the process which is fundamental for many
of the results derived throughout this thesis. Possible extensions of the model and their
limitations will be discussed in Sections 4.1 and 6.2.
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In this chapter, the properties of the proposed model are studied in detail. For the
application and estimation of the process it is essential to fully understand how the model
behaves and to be able to handle it analytically. Section 4.1 focuses on the the �nite-
dimensional distribution of the process and develops closed formulas for the probability
mass function and many related quantities. In Section 4.2 the Lévy characteristics of the
time-changed model are derived, which directly lead to a second stochastic representation
of the process as multivariate Poisson cluster process. This representation not only o�ers
a deeper understanding of the model dynamics and its dependence structure, it also
enables a robust and speedy computation of the process distribution. In Section 4.3 the
convergence of the aggregate process for increasing model dimension is examined and a
large portfolio approximation is presented.

4.1 Process distribution

This section contains a thorough analysis of the process distribution. In Algorithm 3.3 an
e�cient sampling routine for the time-changed process L was given, so the distribution of
the process can always be approximated using the empirical distribution generated from
a Monte Carlo simulation. For certain applications, however, e.g. estimation procedures
as will be presented in Chapter 5, it may be convenient or even necessary to have a
faster way of calculating probabilities. In the given model, an analytic expression for the
probability mass function is available and an e�cient way of quickly evaluating it will be
established.

As discussed in Section 3.1, Model (M) de�nes a multivariate Lévy process. The process
is even a multivariate Lévy subordinator, as it has component-wise almost surely non-
decreasing paths. We start by deriving the Laplace exponent, which determines the
Laplace transform and thus characterizes the distributional properties of the process.

Proposition 4.1 (Laplace exponent of the claim number processes)
The claim number process L is a d-dimensional Lévy subordinator with Laplace exponent
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ΨL(x) = ΨΛ

( d∑
i=1

λi(1− exp{−xi})
)
, x ∈ Rd≥0.

Proof. It can be found, for instance, in (Sato, 1999, Chapter 6, Theorem 30.4) that a
Lévy subordinator time-changed by an independent Lévy subordinator is itself a Lévy
subordinator and the Laplace exponent of the new process is found by composition, that
is

ΨL(x) = ΨΛ(ΨN (x)), x ∈ Rd≥0.

The claim follows by plugging in the Laplace exponent of the Poisson process N , which
is, due to independence, the sum of the exponents of the marginal Poisson processes
given in Example 2.14:

ΨN (x) =

d∑
i=1

ΨN i(xi) =

d∑
i=1

λi(1− exp{−xi}).

It directly follows from Proposition 4.1 for the marginal processes Li and, together with
Remark 3.1, also for the aggregate claim number process L̄:

ΨLi(x) = ΨΛ(λi(1− exp{−x})), ΨL̄(x) = ΨΛ(|λ|(1− exp{−x})), x ≥ 0.

As a Lévy process, the proposed model has independent and stationary increments. This
property, which is largely responsible for the good mathematical tractability of the model,
is useful for many applications as it guarantees model consistency over time and exposure
size. More precisely, according to the model the distribution of the number of claims over
a certain time period like one year does not change over time and does not in�uence the
distribution in any following year. The Lévy property ensures that the type of distribu-
tion does not depend on the length of the time interval considered and that the expected
claim frequency is proportional to this length. Furthermore, if the business volume is
increased by adding additional entities to the portfolio then � all else being equal � the
expected number of claims in the model will increase accordingly (see (Klugman et al.,
2004, Chapter 4.6.11, pp.108)). However, these assumptions may be too restrictive for
certain applications, for instance, if contagion e�ects are observed, as may be the case in
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motor insurance policies where an accident caused by a policyholder increases the like-
lihood of future accidents, or if a seasonal e�ect in�uences claim arrivals that originate
from certain types of natural catastrophes. When modelling motor insurance claim num-
bers, (Denuit et al., 2007, Chapter 2.9, pp.90) argue that independence can be assumed
between di�erent policyholders, though assuming independence over time for a single
policyholder seems questionable. Chapter 6 sketches some extensions of the model which
incorporate such properties by relaxing the Lévy property.

From the results of Proposition 4.1, the distributional properties of the model have
already been fully characterized and the probability mass function can be derived from the
Laplace transform employing numerical inversion techniques, see for instance Abate and
Whitt (1992) and Widder (1952). However, by exploiting the conditional independence of
the construction, the distribution of the claim number processes can be obtained explicitly
with regard to derivatives of the Laplace transform of the selected subordinator and thus,
ultimately, in terms of derivatives of its Laplace exponent, which often can be calculated
more easily. The following Theorem 4.2 provides the distribution of the process at one
�xed point in time.

Theorem 4.2 (Distribution of the claim number process)
The distribution of the claim number process L in Model (M) at some �xed time t ≥ 0
is given by

P(Lt = k) =
(−λ)k

k!
ϕ

(|k|)
Λt

(|λ|) (4.1)

=
(−λ)k

k!
ϕΛt(|λ|)B|k|(−tΨ

(1)
Λ (|λ|), . . . ,−tΨ(|k|)

Λ (|λ|)), k ∈ Nd0, (4.2)

where B|k|(·) denotes the |k|-th complete Bell polynomial.

Proof. Due to the tower rule for conditional expectations and the conditional independ-
ence of the components, it follows for the claim number vector Lt:

P(Lt = k) = E[P(N1
Λt = k1, . . . , N

d
Λt = kd|σ(Λ))] = E

[ d∏
i=1

P(N i
Λt = ki|σ(Λ))

]
= E

[ d∏
i=1

λkii
ki!

Λkit exp{−λiΛt}
]

=
λk

k!
E[Λ

|k|
t exp{−|λ|Λt}].
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The last term in the above equation can be expressed in terms of the |k|-th derivative of
the Laplace transform ϕΛt of Λt. In particular, for all x > 0 it holds:

ϕ
|k|
Λt

(x) = (−1)|k| E[Λ
|k|
t exp{−xΛt}]. (4.3)

This follows by induction considering that di�erentiation inside the expectation operator
is possible as all derivatives exist and are bounded and continuous and thus the di�erenti-
ation lemma for parameter dependent integrals can be applied, see (Feller, 1971, Chapter
XIII.2, p.435), for instance. Together with the calculation before, Equality (4.3) proves
Equality (4.1). The second part follows from Faà di Bruno's Formula for multivariate
derivatives of composition functions, as the Laplace transform of a subordinator is a
composition of the exponential function and the Laplace exponent. In particular, it can
be derived from Riordan (1946) or Johnson et al. (1992) that for a smooth function f(x)
it holds for k ∈ N0:

dk

dk x
exp{f(x)} = exp{f(x)}Bk(f (1)(x), . . . , f (k)(x)).

Using f(x) := −tΨΛ(x), which is smooth as ΨΛ is a Bernstein function as mentioned in
Section 2.3, proves Equality (4.2).

Note that the probabilities in Theorem 4.2 are indeed non-negative, as the Laplace trans-
form ϕΛt is a completely monotone function, i.e. the derivatives exist and alternate in
sign, see Theorem 2.2. The distribution of the marginal processes as well as the ag-
gregate process can again be directly concluded from the multivariate results. In the
following we will discuss the evaluation of Equation (4.1) and (4.2). It is, however, worth
mentioning that Equation (4.3) o�ers an alternative approach to calculating the prob-
abilities numerically by means of a Monte Carlo simulation for the subordinator only.
Compared to a simulation of the full model as discussed in the beginning of this section,
this approach does not require drawing trigger levels for all components and evaluating
�rst-passage times as in step (2) and (3) of Algorithm 3.3. While this approach comes
at the additional cost of evaluating Equation (4.1), it will often be more e�cient.

Remark 4.3 (Generalization of the directing process)
The proof of Equality (4.1) does not make any use of the special property of Λ being a
Lévy subordinator but rather holds for any non-negative directing process as long as it is
independent of N . If gΛt(x) is the cumulant generating function of the directing process
at time t ≥ 0 and g̃Λt(x) := gΛt(−x) which exists for all x ≥ 0, then Equality (4.1) holds
as
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P(Lt = k) =
(−λ)k

k!
ϕΛt(|λ|)B|k|(g̃

(1)
Λt

(|λ|), . . . , g̃(|k|)
Λt

(|λ|)).

In the special case of a Lévy subordinator it is g̃Λt(x) = −tΨΛ(x). Furthermore, Propos-
ition 4.1 can also be extended to this generalized case as it always holds due to the tower
rule for conditional expectations for the Laplace transform of the time-changed process:

ϕLt(x) = E[exp{−x′NΛt}] = E[E[exp{−x′NΛt}|σ(Λ)]] = E[ϕNΛt
(x)]

= E[exp{−ΛtΨN (x)}] = ϕΛt(ΨN (x)).

N

Due to the in�nite divisibility property, the distribution of any Lévy process is determ-
ined by its distribution at one point in time and thus Theorem 4.2 already fully de�nes
the process distribution. By exploiting the Lévy properties, the �nite-dimensional dis-
tribution of the process is given explicitly in the following corollary.

Corollary 4.4 (Finite-dimensional distribution of the claim number process)
Let n ∈ N, 0 := t0 ≤ t1 ≤ · · · ≤ tn, and 0 := k0 ≤ k1 ≤ · · · ≤ kn for kj ∈ Nd0,
j = 1, . . . , n. Then the �nite-dimensional distribution of the claim number process L is
given as:

P(Lt1 = k1, . . . ,Ltn = kn) = (−λ)kn
n∏
j=1

1

∆kj !
ϕ

(|∆kj |)
Λ∆tj

(|λ|).

Proof. As was shown in Proposition 4.1, the claim number process L is a Lévy processes.
It follows by the independent and stationary increment property:

P(Lt1 = k1, . . . ,Ltn = kn) = P(∆Lt1 = ∆k1, . . . ,∆Ltn = ∆kn)

=

n∏
j=1

P(L∆tj = ∆kj).

Together with the univariate results of Theorem 4.2 the claim is established.
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Remark 4.5 (Additive directing process)
The results of Corollary 4.4 no longer hold for general time-change processes like in
Remark 4.3, as we make use of both Lévy increment properties, independence as well
as stationarity. However, if the assumption of stationarity is relaxed and Λ is only
assumed to be an additive process with non-decreasing paths, a similar result can still
be found. For instance, a Lévy process time-changed by a continuous increasing function
v : R≥0 → R≥0 starting in zero, that is v(0) = 0, is an additive process, see (Sato, 1999,
Chapter 1, Example 1.7, p.4). Then it still holds by the independent increment property
and Remark 4.3:

P(Lt1 = k1, . . . ,Ltn = kn) = (−λ)jn
n∏
j=1

1

∆kj !
ϕ

(∆kj)
∆Λtj

(|λ|).

For evaluating this formula, the Laplace transform of the increments needs to be known.
In general, for an additive process X on Rd≥0 with non-decreasing paths it can be shown
that at each point in time t ≥ 0, the distribution of Xt is still in�nitely-divisible and,
hence, a Lévy�Khintchine representation of the Laplace transform can be given, but only
in terms of time-dependent characteristics (bXt , νXt), called spot characteristics. More
precisely,

ϕXt(x) = exp{−ΨXt(x)} x ∈ Rd≥0,

with an exponent that is no longer necessarily linear in time:

ΨXt(x) = x′bXt +

∫
Rd≥0

(1− exp{−u′x}) νXt(dx).

The spot characteristics uniquely determine the law of the process. For a Lévy subordin-
ator it is bXt = tbX1 and νXt = tνX1 . The distribution of the increments Xt −Xs,
0 ≤ s < t, is in�nitely divisible as well with the so-called forward characteristics
(bXt − bXs , νXt − νXs). An overview over additive processes can be found in (Cont
and Tankov, 2003, Chapter 14), for details see (Sato, 1999, Chapter 9). N

Following Corollary 4.4, even to deal with the �nite-dimensional process distribution it
is enough to be able to quickly evaluate Equation (4.1) or (4.2) for the multivariate
process distribution at one point in time. The following corollary shows that, in fact, it
is su�cient to calculate the distribution in dimension one.
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Corollary 4.6 (Multivariate from univariate distribution)
For the distributions of the claim number process L in Model (M) and its aggregate
process L̄ it holds at any �xed time t ≥ 0:

P(Lt = k) =
λk

|λ||k|

(
|k|
k

)
P(L̄t = |k|), k ∈ Nd0.

Proof. By Theorem 4.2 and Remark 3.1, it holds for the aggregate process L̄ for all t ≥ 0:

P(L̄t = k) =
(−|λ|)k

k!
ϕ

(k)
Λt

(|λ|)

=
(−|λ|)k

k!
ϕΛt(|λ|)Bk(−tΨ

(1)
Λ (|λ|), . . . ,−tΨ(k)

Λ (|λ|)), k ∈ N0. (4.4)

Comparing this with the result for the multivariate process in Theorem 4.2 establishes
the claim.

According to this corollary, it is su�cient to calculate the probabilities of the univariate
model as the probabilities of multivariate models can be deduced by suitable rescaling,
something that proves particularly useful for the e�cient implementation of the probab-
ility mass function. Note that the relationship also holds true for the generalized setting
of Remark 4.3. Furthermore, increasing the dimension of the model only changes the
evaluation point λ of the Laplace transform derivatives and the scaling factor. Hence,
rather than the high-dimensional case, the more challenging question is to e�ciently
calculate the tail of the distribution, as it requires high-dimensional derivatives of the
Laplace transform, a problem that will be addressed speci�cally in the following. Be-
fore beginning, it should be noted that implementing the rescaling directly using built-in
functions for factorials and multinomial coe�cients quickly leads to numerical instabilit-
ies, as these quantities grow too explosively when considering the tail of the distribution.
For instance, in MATLAB® the factorials from 171 onwards are treated as ∞. Jointly,
the rescaling coe�cient

c(k) :=
λk

|λ||k|

(
|k|
k

)
(4.5)

is well-behaved, as can be established from the result in Corollary 4.6 due to the bounded-
ness of probability measures. It can also be proven in general using the multinomial
theorem which states that

|λ||k| =
∑
|l|=|k|

(
|k|
l

)
λl,
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where the sum is over all vectors l ∈ Nd0 having the same 1-norm as k, see (Comtet, 1974,
Chapter 1.10, Theorem B, p.28). As all summands are non-negative and one of them
corresponds to k, it follows immediately that

0 ≤ λk

|λ||k|

(
|k|
k

)
≤ 1, k ∈ Nd0.

The numerical problems can be avoided by simply calculating the rescaling coe�cient
stepwise in a loop.

Algorithm 4.7 (Rescaling coe�cient)
The rescaling coe�cient c(k), k ∈ Nd0, can be computed iteratively using the following
algorithm:

INPUT λ; k; d;

START λ := |λ|; K := |k|; temp := 0; c(k) := 1;

FOR i = 1, . . . , d

FOR j = 1, . . . , ki

c(k) = c(k) ∗ λi
λ
∗ temp+ j

j
;

END

temp = temp+ ki;

END

RETURN c(k);

Of course, if the probability mass function is to be evaluated not only at a single point
but rather on a whole grid, it is reasonable to store the results of any iteration to avoid
unnecessarily recalculating the same quantities multiple times.

As the univariate distribution essentially governs the full model dynamics, we will take a
closer look at it in the following. By de�nition, the marginal distributions in the general
setting of Remark 4.3 are mixed Poisson distributions at each point in time. In the
special setting chosen here, with the time-change process a Lévy subordinator, the mixing
distribution is an in�nitely divisible distribution; more precisely, the mixing distribution
is the in�nitely divisible distribution of the subordinator scaled by the component-speci�c
intensity. Thus, the marginal distributions of the time-changed process vary only by this
scaling factor. Univariate mixed Poisson distributions have been studied extensively and,
hence, in this case results like Equation (4.2) have been known for some time, see for
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instance (Grandell, 1997, Chapter 2, p.14). These kinds of distributions have been used
for a wide range of applications where the Poisson distribution showed a poor �t due
to the heterogeneity present in the population or portfolio considered. By multiplying
the mean frequency of the Poisson distribution with a positive random variable, the
model frequency varies and thus can account for the di�erent individual frequencies
observed in the portfolio. Usually, the expectation of the random e�ect is �xed at one to
preserve on average the observed portfolio frequency, in line with our time-normalization
Assumption (TN). A good overview of the properties of mixed Poisson distributions
with further references is given in Karlis and Xekalaki (2005), see also (Grandell, 1997,
Chapter 2, pp.14). One interesting property is given in Shaked's two crossing theorem
which was proven in Shaked (1980). It states that there exist two integers 0 ≤ k1 < k2

such that the probability mass function of the mixed Poisson distribution is less than
or equal to the probability mass function of a Poisson distribution with the same mean
for values k1 + 1, . . . , k2 and greater or equal otherwise. In our model, this means that,
given Assumption (TN), the distribution of the time-changed process has an excess of
zeros and a heavier right tail compared to the underlying Poisson process.

Example 4.8 (Families of mixed Poisson distributions)
Some subordinators lead to well-known families of mixed Poisson distributions, cf. (Klug-
man et al., 2004, Chapter 4.6.10, pp.103). In the following, the univariate claim number
distributions resulting from a gamma, inverse Gaussian and Poisson subordinator with
no drift are identi�ed.

(i) Gamma subordinator � negative binomial distribution:
Choosing Λ as gamma subordinator with parameters β, η > 0 and with no drift,
the Laplace transform ϕΛt at any point in time t ≥ 0 is according to Example 2.14:

ϕΛt(x) =
(

1 +
x

η

)−βt
, x ≥ 0.

In this case the mixing distribution is a gamma distribution and the resulting
mixed Poisson distribution is known to be a negative binomial distribution. This
can easily be derived from Theorem 4.2. By induction, it follows for the derivatives
of the Laplace transform of any order k ∈ N:

ϕ
(k)
Λt

(x) = −βt(−βt− 1) · · · (−βt− k + 1)
1

ηk
(1 +

x

η
)−βt−k

= (−1)k(βt+ k − 1) · · ·βt
( 1

η + x

)k( η

η + x

)βt
.

Using Equation (4.1), the distribution of any marginal process Lit is found to be:
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P(Lit = k) =
(−λi)k

k!
ϕ

(k)
Λt

(λi) =

(
k + βt− 1

k

)( λi
η + λi

)k( η

η + λi

)βt
.

This is the probability mass function of the negative binomial distribution:

Lit ∼ NegBin
(
βt,

λi
η + λi

)
.

The negative binomial distribution is a popular alternative to the Poisson distribu-
tion under the presence of overdispersion and very well studied. Some details and
many references can be found in (Johnson et al., 1992, Chapter 5, pp.199). An ex-
ample for the shape of the probability mass function in comparison to the Poisson
distribution and other mixed Poisson distributions can be seen in Figure 4.1. There,
the parameters of the gamma subordinator are set such that Assumption (TN)
holds.

(ii) Inverse Gaussian subordinator � Sichel distribution:
According to Example 2.14, the density fΛt of an inverse Gaussian subordinator Λ
with parameters β, η > 0 and with no drift is for any t > 0 given by

fΛt(x) =
βt√
2πx3

exp
{
− 1

2x
(ηx− βt)2

}
1R>0(x).

The scaled process λiΛt for any i = 1, . . . , d then has density:

fλiΛt(x) = fΛt

( x
λi

) 1

λi
.

This follows easily from integration by substitution for x > 0:

P(λiΛt ≤ x) = P
(

Λt ≤
x

λi

)
=

∫ x
λi

0
fΛt(s) ds =

∫ x

0
fΛt

( r
λi

) 1

λi
dr.

Furthermore, it can be shown by a straightforward calculation that this is the
density of an IG(β̃t, η̃) distribution with parameters:

β̃ := β
√
λi and η̃ :=

η√
λi
.
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In (Johnson et al., 1992, Chapter 15, pp.455), the distribution of the mixture of a
Poisson with an inversion Gaussian random variable is given. There, the inverse
Gaussian distribution is parametrized in α > 0, 0 < θ < 1. By comparison of the
density functions it can be found that it has to hold:

β̃t = α

√
θ

2
and η̃ =

√
−2
(

1− 1

θ

)
.

Then it can be concluded for the distribution:

P(Lit = k) =

√
2α

π

Kk− 1
2
(α)

k!
exp{α

√
1− θ}

(αθ
2

)k
, k ∈ N0,

where K.(·) is the modi�ed Bessel function of the second kind, see (Johnson et al.,
1992, Section A12, p.30), and:

α = βt
√

2λiη2, and θ =
2λi

2λi + η2
.

This distribution is a special two parameter subclass of the three parameter Sichel
distribution. Some alternative parametrizations and a recursive formula for the
probability mass function are referenced in (Johnson et al., 1992, Chapter 15,
pp.455). An example for the shape of the probability mass function can again
be found in Figure 4.1. The parameters of the inverse Gaussian subordinator have
been set such that Assumption (TN) holds and the variance matches the variance
in the gamma subordinator case.

(iii) Poisson process � Neyman type A distribution:
If Λ is a Poisson process with no drift and intensity ξ > 0, the mixture distribution
is a Neyman type A distribution, see (Johnson et al., 1992, Chapter 6, pp.368) for
details and important properties. The probability mass function is given by:

P(Lit = k) =
exp{−λi + λi exp{−ξ}}ξk

k!

k∑
j=1

S(k, j)λji exp{−jξ},

where S(k, j) are the Stirling numbers of the second kind. We will discuss these
numbers further after Corollary 4.15. Figure 4.1 again shows exemplarily the shape
of the probability mass function. As before, the parameter is set such that Assump-
tion (TN) holds and the variance matches the variance in the gamma and inverse
Gaussian case.
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Figure 4.1 Univariate claim number distributions for di�erent subordinators:

For dimension d = 1, intensity λ1 = 10, and time horizon T = 1, the �gure
shows the probability mass function of the underlying Poisson process as
well as the time-changed process for di�erent directing Lévy subordinators:
inverse Gaussian (b = 0, β = η = 1), gamma (b = 0, β = η = 1), Poisson
(b = 0, ξ = 1), stable (b = 0, α = 0.3). The parameters of the inverse
Gaussian, gamma, and Poisson subordinator have been set such that mean
and variance are both one. For the stable subordinator, mean and variance
are in�nite. The point masses of the distributions are marked with a cross;
the connecting lines are provided only to aid visualization.
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In Hofert et al. (2012) maximum likelihood estimation for Archimedean copulas is studied.
These copulas are de�ned by an Archimedean generator f : [0,∞]→ [0, 1] as

Cf (u) = f(f−1(u1) + · · ·+ f−1(uk)), u ∈ [0, 1]k.

To avoid confusion we use f for the generator where in the paper they use Ψ. Also, we
denote the dimension of the copula by k rather than d as it corresponds in our setting
to the tail of the distribution, not the dimension of the model. It was shown in Kimber-
ling (1974) that f de�nes a proper copula in all dimensions k ∈ N0 i� it is completely
monotone. Furthermore, we discussed in Section 2.1 that according to Bernstein's The-
orem, a function is completely monotone i� it is the Laplace transform of a non-negative
random variable. From the families of Archimedean copulas studied in this paper, two
are connected to Lévy subordinators, as their generator stems from an in�nitely divisible
distribution: the Clayton copula corresponding to a gamma distribution and the Gumbel
copula corresponding to a stable distribution. For likelihood inference on the copulas,
the k-dimensional derivatives of the generators are studied in the paper particularly with
the high-dimensional case in mind, that is for large values of k, which in our setting
corresponds to the far tail of the distribution. They argue that using computer algebra
systems to evaluate these derivatives causes numerical problems quickly and results, if
they can be obtained at all, take a long time and are unreliable. They derive algebraic
expressions for the derivatives in a slightly reduced setting to ours for the gamma and
the stable case which are implemented in the R package nacopula in a numerically robust
way. Our more general setting can easily be derived from their results in the following
way.

For the Clayton copula, they consider the generator fθ(x) = (1 + x)−
1
θ , which is the

Laplace transform of a Gamma(1
θ , 1) distribution, θ > 0. In our setting it is Λt ∼

Gamma(βt, η), that is we have the parametrization θ := 1
βt and consider a general second

parameter η > 0. It follows for the Laplace transform:

ϕΛt(x) =
(

1 +
x

η

)−tβ
= f 1

βt

(x
η

)
.

By the chain rule for di�erentiation, the derivatives of ϕΛt can be derived from the ones
of fθ implemented in the nacopula package as

ϕ
(k)
Λt

(x) = f
(k)
1
βt

(x
η

)
η−k.
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The results for the stable subordinator, which corresponds to the Gumbel copula, may
be less relevant to practical applications due to the non-existing moments of the stable
distribution. This not only prevents the time-normalization condition to hold, but partic-
ularly leads to an in�nite number of expected claims on any time-interval, an assumption
that most likely is not appropriate to any real-world insurance business. Furthermore,
the in�nite expectation makes simulating the process di�cult. However, from the results
in Hofert et al. (2012) we can deduce the probability mass function in this case. They
consider the generator

fα(x) = exp{−xα},

and �nd for its derivatives the formula

f (k)
α (x) = fα(x)x−k

k∑
j=1

xαj
k!

j!

j∑
l=1

(−1)l
(
j

l

)(
αl

k

)
.

The generator fα corresponds to the Laplace transform of Λ in t = 1. For general t ≥ 0,
it is:

ϕΛt(x) = exp{−txα} = f (k)
α (t

1
αx),

and it can again be concluded by the chain rule that

ϕ
(k)
Λt

(x) = f (k)
α (t

1
αx)t

k
α .

Together with Theorem 4.2 the distribution of the time-changed process can be con-
cluded. Figure 4.1 again shows the shape of the probability mass function for α = 0.3.
Note that mean and variance are in�nite and particularly do not match the ones of the
other subordinator choices.

In case of the gamma subordinator with no drift, derivatives of the Laplace transform
of the subordinator were found easily. For the inverse Gaussian, Poisson, and stable
subordinator with no drift, the derivatives have been found as well, but calculations are
not as straightforward. For other subordinators or if a drift is added, the calculation may
become even more complicated. In many cases, however, the derivatives of the Laplace
exponent are easily available. For the important subordinator families introduced in
Example 2.14, these derivatives are summarized in Table 4.6. Then, the derivatives
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of the Laplace transform and the probability mass function can be computed via the
complete Bell polynomials as in Equation (4.2). Table 4.1 shows the Bell polynomials
and the corresponding marginal probabilities up to k = 3. Table 4.2 presents as example
some marginal probabilities jointly for two consecutive points in time along Corollary 4.4.
In general, the complete Bell polynomials Bk := Bk(x1, . . . , xk) can be computed as sum
over the incomplete Bell polynomials Bk,l := Bk,l(x1, . . . , xk−l+1), l ≤ k, which again can
be computed by a recursion relation, see Wheeler (1987):

Bk,l =
k−l+1∑
m=1

(
k − 1

m− 1

)
xmBk−m,l−1,

where B0,0 = 1, Bk,0 = 0 for k ≥ 1, B0,l = 0 for l ≥ 1, and

Bk =
k∑
l=1

Bk,l, B0 := 1.

The coe�cients Bk,l can be stored in a lower triangular matrix and then the Bk are eval-
uated as the column totals. However, the calculations again require binomial coe�cients
which grow fast in k. For instance, in MATLAB® we start to run into trouble when
considering k ≥ 58, which is not at all unrealistic in a model with high expected claim
numbers λ. Evaluation time for k = 57 is around 1.5 seconds. More details on Bell poly-
nomials can be found in (Comtet, 1974, Chapter 3.3, pp.133 and pp.307). There a table
of the Bk,l for 1 ≤ l ≤ k ≤ 12 is given. It can be seen that the summation terms grow
pretty quickly, for instance for B12 the coe�cient for x2

1x
2
2x

2
3 is 415, 800. In Section 4.2

we will discuss a recursive evaluation scheme to avoid these numerical di�culties and to
speed up the evaluation.

Cumulative process distribution and claim arrival times

Calculating the cumulative distribution function or the tail of the distribution can be
done simply by summation of the probability mass function. For high claim numbers,
this may become cumbersome due to the increasing number of summation terms. For
this case it is helpful to observe that the cumulative distribution function is closely linked
to a Taylor approximation of the Laplace transform.

Theorem 4.9 (Tails of the claim number process distribution)
For the tail of the distribution of the time-changed process Lt and its aggregate process
L̄t it holds in t ≥ 0:
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Bell polynomial and process distribution

k = 0 B0 ≡ 1
P(Lit = 0) = exp{−tΨΛ(λi)}

k = 1 B1(x1) = x1

P(Lit = 1) = λitΨ
(1)
Λ (λi) exp{−tΨΛ(λi)}

k = 2 B2(x1, x2) = x2
1 + x2

P(Lit = 2) =
λ2
i

2 (t2Ψ
(1)
Λ (λi)

2 − tΨ(2)
Λ (λi)) exp{−tΨΛ(λi)}

k = 3 B3(x1, x2, x3) = x3
1 + 3x1x2 + x3

P(Lit = 3) =
λ3
i

6 (t3Ψ
(1)
Λ (λi)

3 − 3t2Ψ
(1)
Λ (λi)Ψ

(2)
Λ (λi) + tΨ

(3)
Λ (λi)) exp{−tΨΛ(λi)}

Table 4.1 Bell polynomials and univariate claim number distribution: The
table gives the Bell polynomials and the probabilities of the univariate mar-
ginal claim number process Li in time t ≥ 0 up to order k = 3.

P(Lit1 = k1, L
i
t2 = k2)

k1 = 0, k2 = 1 λi∆t2Ψ
(1)
Λ (λi) exp{−t2ΨΛ(λi)}

k1 = 0, k2 = 2
λ2
i

2 ((∆t2)2Ψ
(1)
Λ (λi)

2 −∆t2Ψ
(2)
Λ (λi)) exp{−t2ΨΛ(λi)}

k1 = 1, k2 = 2 λ2
i t1∆t2Ψ

(1)
Λ (λi)

2 exp{−t2ΨΛ(λi)}

Table 4.2 Univariate claim number distribution at two points in time: The
table gives selected probabilities of the marginal claim number process Li

jointly at two consecutive points in time 0 ≤ t1 < t2.
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∞∑
k=n+1

∑
|k|=k

P(Lt = k) = P(L̄t > n) = RnϕΛt(0; |λ|), n ∈ N0, (4.6)

where the last term is the residual of a Taylor expansion of ϕΛt in |λ| evaluated in zero:

RnϕΛt(0; |λ|) =
(−1)n+1

n!

∫ |λ|
0

xnϕ
(n+1)
Λt

(x) dx = o(|λ|n).

The limiting behaviour o(|λ|n) holds in |λ| → 0, that is

lim
|λ|→0

RnϕΛt(0; |λ|)
|λ|n

= 0.

Proof. In general, due to the smoothness of ϕΛt , the Taylor expansion at point a ≥ 0
evaluated in u ≥ 0 is given as

ϕΛt(u) =
∞∑
k=0

(u− a)k

k!
ϕ

(k)
Λt

(a) =
n∑
k=0

(u− a)k

k!
ϕ

(k)
Λt

(a) +RnϕΛt(u; a),

with residual term

RnϕΛt(u; a) :=
∞∑

k=n+1

(u− a)k

k!
ϕ

(k)
Λt

(a) =

∫ u

a

(u− x)n

n!
ϕ

(n+1)
Λt

(x) du = o(|u− a|n),

for u → a, see for instance (Apostol, 1962, Chapter 7.5). Setting a := |λ| and u := 0
gives

1 = ϕΛt(0) =

∞∑
k=0

(−|λ|)k

k!
ϕ

(k)
Λt

(|λ|) =
∞∑
k=0

P(L̄t = k) = P(L̄t ≤ k) +RnϕΛt(0; |λ|).

This proves the second equality in Equation (4.6). By the multinomial theorem, it is
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(−|λ|)k

k!
=
∑
|k|=k

(−|λ|)k

k!
,

so it follows:

P(L̄t ≤ k) =
k∑
k=0

(−|λ|)k

k!
ϕ

(k)
Λt

(|λ|) =
k∑
k=0

ϕ
(k)
Λt

(|λ|)
∑
|k|=k

(−λ)k

k!

=

k∑
k=0

∑
|k|=k

(−λ)k

k!
ϕ

(|k|)
Λt

(|λ|).

This proves the �rst equality in Equation (4.6) and concludes the proof.

Note that with this theorem we have an explicit representation of the cumulative dis-
tribution function of the aggregate claim number process L̄, and consequently for the
marginals Li of the multivariate process L as well, but not for the multivariate distribu-
tion of L. The summation in Equation (4.6) does not cover all k > n for some n ∈ Nd0 but
rather all |k| > n for n ∈ N0. The theorem provides, however, still a means of calculating
aggregate and tail quantities more conveniently. For the residual term of a Taylor series
expansion, other (approximative) solutions are available, see for instance Apostol (1962).
Evaluating the residual in the given integral form analytically may only on rare occasions
be possible. It can, however, easily be approximated numerically given the availability
of an e�cient implementation for the derivatives of the Laplace transform ϕΛt(x) or the
probabilities in the univariate case for varying intensity x, that is P(Lxt = k) for Lxt from
Model (M) with d = 1 and λ1 = x. For instance, a simple Riemann sum with m ∈ N
steps and step size h := |λ|

m can be calculated:

∫ |λ|
0

(−1)n+1

n!
xnϕ

(n+1)
Λt

(x) dx ≈ h
m∑
j=1

(−1)n+1(jh)n

n!
ϕ

(n+1)
Λt

(jh)

= h

m∑
j=1

n+ 1

jh
P(Ljht = n+ 1).

By using quadrature rules or other methods for numerical integration, some care should
by taken when including zero as grid point. While the whole integrand is well-behaved
at zero, ϕ(n+1)

Λt
itself may not if the (n+1)-th moment of the subordinator does not exist.
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The results from Theorem 4.9 are also helpful for considering the distribution of claim
arrival times, which directly correspond to the cumulative distribution function of the
process.

Corollary 4.10 (Survival probabilities of the claim arrival times)
For any claim number vector j ∈ Nd it holds for the distribution of the vector τj :=
(τ1j1 , . . . , τdjd)

′ of the j-th arrival times:

P(τj > t) =
∑

0≤k<j

(−λ)k

k!
ϕ

(|k|)
Λt

(λ), t ≥ 0.

For the marginals i = 1, . . . , d and some j ∈ N, this formula simpli�es to:

P(τij > t) =

j−1∑
k=0

(−λi)k

k!
ϕ

(k)
Λt

(λi) = 1−Rj−1ϕΛt(0;λi), t ≥ 0. (4.7)

Proof. The proof follows from the two Theorems 4.2 and 4.9 together with the observation
that the claim arrival times and the claim number process are related via {τj > t} =
{Lt < j}.

From Equation (4.2) we know that the derivatives ϕ(k)
Λt

(x), if understood as functions
in t, are di�erentiable in t as they are the product of an exponential and a polynomial.
Thus, the arrival times have a continuous distribution and a density exists even though
no conditional density exists as was discussed in Section 3.1. The inter-arrival times,
however, have a singular component due to the possibility of multiple claims to arrive
simultaneously. This will be discussed in more detail in Section 4.2.

Some evaluations of the marginal distributions can be found in Table 4.3. Of course,
the results from the above theorem can be extended to the case of �nite-dimensional
distributions P(τj1 > t1, . . . , τjn > tn) for non-decreasing sequences {tk}k=1,...,n and
{jk}k=1,...,n, n ∈ N, by Corollary 4.4. For instance, it can be calculated for the i-th
marginal:

P(τi1 > t1, τi2 > t2) = exp{−t2ΨΛ(λi)}(1 + λi∆t2Ψ
(1)
Λ (λi)),

P(τi1 > t1, τi2 > t2, τi3 > t3) = exp{−t3ΨΛ(λi)}[1 + λi(t3 − t1)Ψ
(1)
Λ (λi)

+ λ2
i (

(∆t3)2

2
+ ∆t3∆t2)Ψ

(1)
Λ (λi)

2 − λ2
i

2
∆t3Ψ

(2)
Λ (λi)].
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P(τij > t)

j = 1 exp{−tΨΛ(λi)}

j = 2 (1 + λitΨ
(1)
Λ (λi)) exp{−tΨΛ(λi)}

j = 3 (1 + λitΨ
(1)
Λ (λi) +

λ2
i

2 t
2Ψ

(1)
Λ (λi)

2 − λ2
i

2 tΨ
(2)
Λ (λi)) exp{−tΨΛ(λi)}

Table 4.3 Distribution of claim arrival times: The table shows the survival prob-
abilities in t ≥ 0 of the individual claim arrival times τij of L up to j = 3.

Multi-parameter process distribution

It is possible to extend the result of Theorem 4.2 about the distribution of Lt to the
multi-parameter process where all marginals of the process are considered at di�erent
points in time rather than all at the same time. For this purpose, we introduced for a
multi-parameter time t ∈ Rd≥0 the notation:

Lt := (L1
t1 , . . . , L

d
td

)′ and Λt := (Λt1 , . . . ,Λtd)
′.

For ease of notation, multi-parameter times t with non-decreasing components are con-
sidered in the following, that is 0 ≤ t1 ≤ · · · ≤ td. The generalization to arbitrary
multi-parameter times can always be found by suitable permutation. For instance, the
following lemma gives for t with non-decreasing entries the Laplace transform of the vec-
tor process Λt, which will be needed in Corollary 4.12. If t is any multi-parameter time
and π : {1, . . . , d} → {1, . . . , d} a permutation such that π(t) has non-decreasing entries,
then the lemma can be applied to

ϕΛt(x) = ϕΛπ(t)
(π(x)).

Lemma 4.11 (Laplace transform of the multi-parameter subordinator)
Let t ∈ Rd≥0 be a multi-parameter time with 0 ≤ t1 ≤ · · · ≤ td and set t0 := 0. Then the
Laplace transform ϕΛt(x) of the d-dimensional process Λt is given by:

ϕΛt(x) = exp
{
−

d∑
i=1

∆tiΨΛ(xi + · · ·+ xd)
}
, x ∈ Rd≥0.
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Proof. The Laplace transform of Λt can be derived in terms of the Laplace exponent
ΨΛ by exploiting the Lévy property of independent and stationary increments. Using
Λti = Λt1 + (Λt2 − Λt1) + · · ·+ (Λti − Λti−1) it follows:

ϕΛt(x) = E
[

exp
{
−

d∑
i=1

xiΛti

}]
= E

[
exp

{
−

d∑
i=1

(xi + · · ·+ xd)(Λti − Λti−1)
}]

=

d∏
i=1

E[exp{−(xi + · · ·+ xd)Λ∆ti}] =

d∏
i=1

ϕΛ∆ti
(xi + · · ·+ xd)

= exp
{
−

d∑
i=1

∆tiΨΛ(xi + · · ·+ xd)
}
.

Corollary 4.12 (Distribution of the multi-parameter claim number process)
Let t ∈ Rd≥0 be a multi-parameter time with 0 ≤ t1 ≤ · · · ≤ td and set t0 := 0. The
distribution of the claim number process Lt in Model (M) in time t is given by:

P(Lt = k) =
(−λ)k

k!
ϕ

(k)
Λt

(λ), k ∈ Nd0. (4.8)

Proof. The proof follows in a similar fashion to the proof of Theorem 4.2. By the tower
rule for conditional expectations it holds:

P(Lt = k) = E
[ d∏
i=1

P(N i
Λti

= ki|σ(Λ))
]

=
λk

k!
E[Λkt exp{−λ′Λt}].

The last term can be expressed in terms of partial derivatives of the Laplace transform
ϕΛt(x) = E[exp{−x′Λt}] of Λt as:

ϕ
(k)
Λt

(x) = (−1)|k| E[Λkt exp{−x′Λt}], x ∈ Rd≥0.
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By Lemma 4.11, the Laplace transform ϕΛt(x) is the product of univariate Laplace
transforms which are completely monotone. As complete monotonicity is closed under
multiplication, see (Schilling et al., 2012, Chapter 1, Corollary 1.6, p.5), the probability
mass function of the multi-parameter process is indeed non-negative. Furthermore, the
multivariate derivative ϕ(k)

Λt
can also be expressed in terms of derivatives of the Laplace

exponent ΨΛ by means of a multivariate version of Faà di Bruno's formula, see Con-
stantine and Savits (1996) or Hardy (2006). Note also that using Corollary 4.12, the
results about the distribution of the claim arrival times from Corollary 4.10 can be ex-
tended to the more general case P(τj > t) for some multi-parameter time t ∈ Rd≥0.

Moments of the process distribution

Before we have a closer look at the (mixed) moments of the claim number process, a
result about the the heavy-tailedness of the distribution characterized by the moment
generating function is given.

Proposition 4.13 (Heavy-tailedness of the claim number process)
The marginal distributions of L are heavy-tailed i� the distribution of the subordinator
is heavy-tailed.

Proof. As Lt is a Lévy process, it is su�cient to check for heavy tails at time t = 1.
Using Proposition 4.1 for the Laplace exponent of L1, it follows:

E[exp{xLi1}] = exp{−ΨLi(−x)} = exp{−ΨΛ(λi(1− exp{x}))}, x > 0.

The Poisson exponent λi(1− exp{x}) converges to −∞ for x→∞ and is zero for x = 0.
Due to its continuity, it takes on all vales in between and the following equivalence holds:

E[exp{xLi1}] =∞ ∀x > 0 ⇔ exp{−ΨΛ(−x)} =∞ ∀x > 0.

This is the criterion for heavy-tailedness of the subordinator distribution, so the claim is
established.

From the subordinator families introduced in Example 2.14, only the stable and the
compound Poisson process with heavy-tailed jump size distribution are heavy-tailed.
Following (Cont and Tankov, 2003, Chapter 3.6, Proposition 3.14, p.92), a subordinator
has for some x > 0 �nite exponential moment E[exp{xΛt}] i�
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∫ ∞
1

exp{xΛt} νΛ(dt) <∞;

then it holds E[exp{xΛt}] = ϕΛt(−x).

The moments of the distribution of Lt can be derived from evaluating derivatives of its
Laplace transform in zero. Alternatively, they can be concluded from the moments of the
selected subordinator. The following remark sums up the properties of the subordinator
moments before Theorem 4.15 discusses the implications on the moments of the time-
changed process.

Remark 4.14 (Moments of the Lévy subordinator)
The existence of the moments of a Lévy process is not a time-dependent property, that
is if a moment exists at some time in time it exists for all t ≥ 0. In particular, it
holds for the subordinator Λ that the n-th moment E[Λnt ], n ∈ N, exists if and only
if
∫∞

0 xn νΛ(dx) < ∞, as this term determines the cumulants of the distribution. The
cumulant generating function is gΛt(x) = −tΨΛ(−x), hence, it follows for the cumulants,
if they exist:

κn = g
(n)
Λt

(0) = (−1)n+1tΨ
(n)
Λ (0).

Obviously, as the cumulant generating function is linear in time, the cumulants are
as well. From the Lévy�Khintchine representation it follows for the derivatives of the
exponent considering that di�erentiation under the integral is permissible:

Ψ
(n)
Λ (x) = bΛ1{1}(n) +

∫ ∞
0

(−1)n+1tn exp{−xt} νΛ( dt), x ≥ 0.

Evaluating in zero � if �nite � gives the following result for the cumulants in terms of
the characteristic tuple:

κn = t
(
bΛ1{1}(n) +

∫ ∞
0

tn νΛ(dt)
)
,

see also (Cont and Tankov, 2003, Chapter 3.6, Proposition 3.13, pp.91). The �rst cu-
mulant equals the mean, second and third equal the second and third central moment,
respectively, see (Johnson et al., 1992, Chapter B6, p.45):
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E[Λt] = κ1 = tΨ
(1)
Λ (0) = tE[Λ1],

Var[Λt] = κ2 = −tΨ(2)
Λ (0) = tVar[Λ1],

E[(Λt − E[Λt])
3] = κ3 = tΨ

(3)
Λ (0) = tE[(Λ1 − E[Λ1])3].

Particularly, these quantities are all linear in time. Note that this relationship between
cumulants and (central) moments in general no longer holds for higher orders. For the
Lévy subordinators primarily studied in this thesis, these moments are given explicitly
in terms of the subordinator parameters in Table 4.4. As is well known or follows from
a simple calculation, the second and third general moments can be calculated from the
cumulants as:

E[Λ2
t ] = κ2 + κ2

1 = tVar[Λt] + t2 E[Λ1]2,

E[Λ3
t ] = κ3 + 3κ2κ1 + κ3

1.

In general, moments are connected to cumulants via Bell polynomials, see (Johnson et al.,
1992, Chapter B5 and B6, pp.40):

E[Λnt ] = Bn(κ1, . . . , κn).

This is also obvious from the argumentation in the proof of Theorem 4.2 given that the
exponential of the cumulant generating function is the moment generating function.

For two points in time 0 ≤ t1 ≤ t2, the mixed moments can by derived by a simple
calculation exploiting the independent and stationary increment property:

E[Λt1Λt2 ] = E[Λt1(Λt2 − Λt1 + Λt1)] = E[Λt1(Λt2 − Λt1)] + E[Λ2
t1 ]

= E[Λt1 ]E[Λt2−t1 ] + Var[Λt1 ] + E[Λt1 ]2

= t1(t2 − t1)E[Λ1]2 + t1 Var[Λ1] + t21 E[Λ1]2

= t1t2 E[Λt1 ]2 + t1 Var[Λ1].

Then it follows for the covariance of the process between those two points in time:

Cov[Λt1 ,Λt2 ] = E[Λt1Λt2 ]− E[Λt1 ]E[Λt2 ] = Var[Λt1 ] = t1 Var[Λ1].

This covariance reduces to the variance of the overlapping time period which is in line
with the property of Lévy processes to have no dependence over time. N
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Theorem 4.15 (Moments and covariance of the claim number processes)
For n ∈ N, the n-th moment of any component Li of L exists i� the n-th moment of the
subordinator exists. In this case it holds:

E[Lnt ] =
n∑
k=0

S(n, k)E[Λkt ]λ
k, t ≥ 0,

where S(n, k) denotes the Stirling numbers of the second kind. In particular, existence
assumed, it is

E[Lt] = tE[Λ1]λ,

Var[Lt] = t(E[Λ1]λ+ Var[Λ1]λ2),

E[(Lt − E[Lt])
3] = t(E[Λ1]λ+ 3Var[Λ1]λ2 + E[(Λ1 − E[Λ1])3]λ3).

For the full covariance matrix between two points in time 0 ≤ t1 ≤ t2, it holds:

Cov[Lt1 ,Lt2 ] = Cov[Lt1 ,Lt1 ] = t1(Var[Λ1]λλ′ + E[Λ1]diag(λ)),

where diag(λ) denotes the matrix with only diagonal non-zero entries given by λ.

Proof. The claim about the moments of L follows again from conditioning on σ(Λ) and
using the moments of the underlying Poisson processes that can be found in (Johnson
et al., 1992, Chapter 4.3, p.161):

E[Nn
t ] =

n∑
k=0

S(n, k)(tλ)k.

Mean as well as second and third moment follow by straightforward calculation and ap-
plying Remark 4.14. To show that the covariance matrix between di�erent points in time
reduces to the covariance for the overlapping time interval follows for the diagonal entries
directly from Remark 4.14 and for the o�-diagonal entries from a similar calculation. It
remains to be shown that the expression for Cov[Lit, L

j
t ], i 6= j, is valid. As always, it is

Cov[Lit, L
j
t ] = E[LitL

j
t ]− E[Lit]E[Ljt ].
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The mixed moment can again be calculated by the tower rule:

E[LitL
j
t ] = E[E[N i

ΛtN
j
Λt
|σ(Λ)]] = E[E[N i

Λt |σ(Λ)]E[N j
Λt
|σ(Λ)]]

= E[λiΛtλjΛt] = λiλj E[Λ2
t ].

Together with the formula for the second moment of the subordinator from Remark 4.14
and the result about the mean of the time-changed process from before, this concludes
the proof.

Theorem 4.15 focuses on the higher dimensional moments of the marginal distributions.
For a generalization to higher dimensional mixed moments E[Lkt ], k ∈ Nd0 (of general
processes), see (Johnson et al., 1997, Chapter 2.2, pp.2).

The result about the mean of the time-changed process validates the time-normalization
Assumption (TN) introduced in Section 3.1. We can now state the following equival-
ence:

(TN) ⇔ Ψ
(1)
Λ (0) = 1.

The implications of this equivalence on the parameters of the selected subordinator are
given for the processes introduced in Example 2.14 in Table 4.4.

The Stirling numbers of the second kind S(n, k), which appear in the formula for the
higher order moments, are known from combinatorics as they are equal to the number
of ways a set of n elements can be partitioned into k indistinguishable and non-empty
subsets. For details on Stirling numbers, see (Comtet, 1974, Chapter 5, pp.205). The
Stirling numbers are linked to the complete Bell polynomials by

S(k, l) = Bk,l(1, . . . , 1)

and can be e�ciently computed using the following triangular scheme:

S(n, k) = S(n− 1, k − 1) + kS(n− 1, k), 1 ≤ k ≤ n,
S(0, 0) = 1, S(n, 0) = S(0, k) = 0.
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subordinator E[Λ1] Var[Λ1] E[(Λ1 − E[Λ1])3] (TN)

Poisson + drift b+ ξ ξ ξ ξ = 1− b
b ≥ 0, ξ > 0

compound Poisson + drift b+ ξ E[Y ] ξ E[Y 2] ξ E[Y 3] ξ = 1−b
E[Y ]

b ≥ 0, ξ > 0, Y ≥ 0

gamma + drift b+ β
η

β
η2 2 β

η3 β = η(1− b)
b ≥ 0, β, η > 0

inverse Gaussian + drift b+ β
η

β
η3 3 β

η5 β = η(1− b)
b ≥ 0, β, η > 0

stable + drift ∞ ∞ ∞ �
b ≥ 0, 0 < α < 1

Table 4.4 Moments of subordinator families: The table summarizes mean, vari-
ance, and third central moment in time t = 1 for the subordinator families
introduced in Example 2.14. For other points in time t ≥ 0 the given formulas
have to be multiplied with t.

k = 1 k = 2 k = 3 k = 4

n = 1 1
n = 2 1 1
n = 3 1 3 1
n = 4 1 7 6 1

Table 4.5 Stirling numbers: The table summarizes the Stirling numbers of the second
kind S(n, k) for 1 ≤ k ≤ n up to k = n = 4.
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For k > n, the Stirling numbers are zero which allows for the results to be stored in a
lower triangular matrix. The values for 1 ≤ k ≤ n ≤ 4 can be found in Table 4.5; a table
up to order 27 is given in (Comtet, 1974, pp.310).

Often in real-world application overdispersion in claim count data is observed, cf. Hou-
gaard et al. (1997), that is the index of dispersion de�ned as variance to mean ratio is
larger than one, the dispersion index of the benchmark Poisson distribution. The pres-
ence of overdispersion points towards concentrated or clustered claim occurrences. For
the time-changed processes Lit studied here, the index is DI(Lit) � existence assumed:

DI(Lit) =
Var[Lit]

E[Lit]
= 1 + λi

Var[Λ1]

E[Λ1]
= DI(N i

1) + λi DI(Λ1).

The dispersion index for Lévy processes is not a time-dependent quantity but remains
constant over time. To account for this, we simply skip the time parameter in the
notation when appropriate and write, for example, DI(Li). The dispersion index here
is always greater than one, the value of the underlying Poisson process, as we have to
add the dispersion of the subordinator scaled by the intensity of the Poisson process.
Hence, the process features overdispersion as is a well-known fact for any mixed Pois-
son distribution. This property can also be understood intuitively as the process at
hand explicitly supports the arrival of claim clusters. Thus, the construction is explicitly
suitable for application to overdispersed data and the degree of overdispersion can be
adjusted by choosing a suitable subordinator as a stochastic clock. By imposing the
time-normalization Assumption (TN), the mean of the subordinator in t = 1 is one and
the dispersion index is reduced to the variance of the subordinator.

Dependence structure of the process distribution

From Theorem 4.15, and if the second moment of the subordinator exists, the correlation
between marginals i 6= j can be concluded to be:

Cor[Li, Lj ] =
Cov[Li1, L

j
1]√

Var[Li1]Var[Lj1]
=

λiλj Var[Λ1]√
(λi E[Λ1] + λ2

i Var[Λ1])(λj E[Λ1] + λ2
j Var[Λ1])

=
1√

(1 + (λi DI(Λ))−1)(1 + (λj DI(Λ))−1)
.

Note that the correlation is, again, not a time-dependent property as time will always
cancel out in the calculation. This property is accounted for in the notation Cor[Li, Lj ]
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as it was for the dispersion index before. Since the subordinator a�ects all components
similarly, the dependence generated is naturally non-negative. This formula makes ex-
plicit that the correlation always takes values in [0, 1] � which is not surprising as Sundt
(2000) has already shown that discretely in�nitely divisible distributions only allow for
non-negative correlations � and depends on the dispersion index of the subordinator (or,
in case of time-normalization, the variance) as well as the intensities involved. For �xed
intensities λi, λj > 0, the correlation grows with an increasing dispersion index and the
following holds:

DI[Λ]→ 0 ⇒ Cor[Li, Lj ]→ 0,

DI[Λ]→∞ ⇒ Cor[Li, Lj ]→ 1.

On the other hand, given a certain positive dispersion index DI[Λ] > 0, the correlation
grows with increasing intensities (assume λj > 0 �xed):

λi → 0 ⇒ Cor[Li, Lj ]→ 0,

λi →∞ ⇒ Cor[Li, Lj ]→ 1.

It should also be stressed that the correlation between any pair of components is funda-
mentally governed by the Lévy subordinator and only varies by a certain scaling with the
component-speci�c intensities, which, obviously, limits the possible range of correlation
patterns, as the correlation between any pairs will be similar. To create greater �exib-
ility, additional subordinators can be introduced in the model, an approach that will be
discussed in Chapter 6.

Correlation, though the most widely used measure, is just one measure of stochastic de-
pendence. Since correlation is a moment-based measure, it can often be easily calculated.
However, the distributions need to have �nite second moments or else the correlation is
unde�ned. In many insurance applications heavy-tailed distributions are of importance,
thus this restriction often limits the usefulness of the correlation as a dependence meas-
ure in these cases. Furthermore, correlation is the canonical measure for the multivariate
normal distribution. In this case mean and correlation fully characterize the distribution
and, hence, the dependence. In general, however, such full characterization is not the
case. Correlation only measures the degree of linear association between pairs of ran-
dom variables and thus may lead to a severe underestimation of the true dependence.
Most obviously, and in contrast to the normal case, the correlation can be zero while
the random variables are not independent. In general, thus, two models with the same
correlation may have a signi�cantly di�erent dependence structure. For instance, ex-
treme values may show a much higher tendency to occur together in one case than in
another, though the correlation is the same. If the model neglects this and only accounts
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for the observed correlation, the result may be to overestimate the diversi�cation e�ect
and severely underestimate the risks involved for an insurer. For example, the worst
obtainable value at risk (VaR) for a portfolio with given marginal distributions does not
necessarily correspond to the highest possible correlation. This stems from the fact that
the VaR is not subadditive and situations may exist where the VaR of the sum even
exceeds the sum of VaRs of the individuals. Much research regarding bounds for the dis-
tribution of a sum with given marginals but unspeci�ed dependence structure has been
carried out, see for instance see Frank et al. (1987).

Many other dependence measures are proposed as alternatives to the correlation coef-
�cient (in statistics it is called the Pearson's correlation coe�cient). Among the most
popular are Spearman's rho (statistics: Spearman's rank correlation coe�cient) and
Kendall's tau (statistics: Kendall's rank correlation coe�cient). While the former meas-
ures linear correlation between ranks, the latter measures linear correlation between
concordances. Lower and upper tail dependence coe�cients are particularly concerned
with extreme values and seek to measure asymptotical dependence in the lower and upper
tail, respectively. These measures are, in the case of continuous distributions, copula-
based in that they do not depend on the marginal distributions. For the de�nition of
these measures, see Section 2.1. For more details on the fallacies in using correlation
as a dependence measure and the rationale behind using copulas and copula-associated
dependence measures, see Embrechts et al. (2002).

From Sklar's theorem introduced in Sklar (1959) it is known that the dependence struc-
ture can be separated from the marginal distributions by a copula function. In case
of a continuous distribution, the copula is unique and can be derived in terms of the
distribution function and the generalized inverse functions of the marginals, that is for a
random vector X on Rd it is

CX(u1, . . . , ud) = FX(F−1
X1

(u1), . . . , F−1
Xd

(ud)), u ∈ [0, 1]d. (4.9)

This uniqueness only holds if all marginal distributions are continuous, so designating
the copula function `the dependence structure' may only be justi�ed in this case. In
particular, continuity is not given for the multivariate discrete claim number distribu-
tions studied here, where the copula is following Equation (4.9) only speci�ed at the
non-equidistant grid points FX1(N0)× · · ·×FXd(N0). Simply extending the de�nition to
any ui ∈ [0, 1] does not in general even de�ne a proper copula. There can only certain
bounds, called Carly bounds, be given within which the copula varies, see Carley (2002).
This lack of identi�ability also translates to any measure of concordance, see Scarsini
(1984). Using the Carly bounds, only ranges for measures like Kendall's tau and Spear-
man's rho can be given, which may indeed be pretty broad. As both these measures are
rank-based, ties have to be taken into account in the discrete case for the calculation.
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Di�erent options are discussed like neglecting ties or splitting them in a reasonable way;
however, in any case the measures are no longer independent of the marginal distribu-
tions. The coe�cients of tail dependence may no longer be well de�ned or even exist at
all. For a detailed discussion of copulas and dependence measures in the discrete case,
see Genest and Ne²lehová (2007).

Later in Chapter 6 we will look at an alternative approach for measuring the depend-
ence in the given model. For now, while keeping the limitations in mind, we will still
look not only at the multivariate distribution but also at the copula of Lt, t ≥ 0, for
some examples to gain a better understanding of the dependence structure generated in
the model. While the multivariate distribution function can be calculated explicitly, an
analytic formula for the copula � where it is de�ned � is not available. It can, however,
be calculated from Equation (4.9).

In the following examples, we look at a time horizon of T = 1 and select the subordinator
parameters such that the time-normalization condition holds. In Figure 4.2, a scatter
plot and a contour plot of the copula generated from an inverse Gaussian subordinator
is shown. The intensities have been set rather low as λ = (5, 5)′ and the subordinator
parameters have been selected such that the correlation of the time-changed process is
roughly 81%. For the scatter plot, the marker size corresponds to the number of equal
observations. The points being symmetrically grouped around the bisecting line corres-
ponds to symmetric dependence generated in the model. Positive dependence in the sense
of concordance can be observed from the many concordant pairs. As discussed earlier,
values only exist at certain grid points and, due to the low intensities, the grid points in
the lower right corner are rather far apart while the number of equal observation points
is high. This complicates an interpretation of the plot, so we increase the intensities to
achieve a more detailed study of the dependence in the following.

Let the intensities be λ = (75, 100)′. Note that to keep the same level of correlation of
approximately 81% after increasing the intensities, the subordinator parameters have to
be adjusted in order to decrease the subordinator variance accordingly. Figure 4.3 o�ers
an overview of the resulting bivariate distribution. The upper left plot shows the probab-
ility mass functions of the two marginal distributions. While similar in shape, the masses
for the second component are shifted to higher values due to the higher intensity of the
second component. They also spread out more, as the intensity factors into the variance.
The upper right plot shows the bivariate probability mass function, while the middle row
shows the functional copula and its contour plot. In the bottom row, the left-hand side
shows a scatter plot of 5000 sampled values from the model using Algorithm 3.3, while
the right-hand side shows the respective scatter plot of the copula. Compared to the low
intensity case before, the copula scatter plot is now much more �lled out and many fewer
observation points lie on top of each other, which makes it easier to interpret. As before,
the points group symmetrically around the bisecting line pointing towards symmetric
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Figure 4.2 Bivariate claim number copula for an inverse Gaussian subordin-

ator and low intensities: For dimension d = 2, time T = 1, intensity
λ = (5, 5)′, and an inverse Gaussian subordinator (b = 0, β = η = 1.1),
the �gure shows a scatter plot (left) and a contour plot (right) of the claim
number copula. The parameters have been set such that time-normalization
holds and the correlation of the time-changed process is approximately 81%.
The scatter plot is generated from 5000 samples and the marker size corres-
ponds to the number of respective observations.
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dependence. The non-uniform intensities, in particular, do not a�ect the symmetry of
the dependence structure. It is now more obvious that the dependence is stronger in
extreme scenarios, pointing towards positive tail dependence, a property often observed
in real-world applications. As discussed in Section 3.1, the model can feature the sim-
ultaneous arrival of a large quantity of claims which could be interpreted as the result
of a catastrophic event. Here we now see that bivariate dependence in case of extreme
outcomes is particularly high. Thus, the model lends itself well to modelling the joint
outcome of portfolios which show exposure to the same kind of catastrophic risk. From
the sample, we calculated the empirical Kendall's tau as 0.597 and Spearman's rho as
0.782 using the respective build-in MATLAB® functions1.

For comparison, Figure 4.4 shows the results in a setting with lower correlation of roughly
29%. The scatter plot of the copula shows only a slight concentration of observation
points around the bisecting line and the corners are much less pronounced. Overall, the
copula is much closer to the independence copula. The empirical Kendall's tau is given
by 0.193, Spearman's rho by 0.281.

In Figure 4.5, the copulas generated from an inverse Gaussian subordinator (top), a
gamma subordinator (middle), and a compound Poisson process with gamma-distributed
jump sizes are compared using scatter and contour plots. The parameters of the three
subordinators have been set to yield about the same correlation in the time-changed
process. The level of correlation is increased, compared to the examples before, to 97.5
(Kendall's tau/Spearman's rho: inverse Gaussian� 0.828/0.956; gamma � 0.854/0.956;
compound Poisson � 0.875/0.977). Nevertheless, the di�erence between the plots is not
particularly pronounced. Due to the comparably high intensities, the variance of the sub-
ordinator has to be rather low (0.44), even for this high level of correlation. Hence, it is
not too surprising that the e�ect of di�erent subordinators is not very strong. Note, how-
ever, that the gamma subordinator and the compound Poisson process create a somewhat
stronger dependence in the lower tail compared to the inverse Gaussian subordinator,
while the inverse Gaussian subordinator tends to dominate in the upper tail. Further-
more, the compound Poisson process shows a pronounced marker at the origin. Compared
to the in�nite-activity subordinators, the compound Poisson process has a positive prob-
ability of not jumping at all until T = 1 � particularly in this setting as the intensity
is only ξ = 10/3 � in which case no claims occur. This property of the �nite activity
subordinators was also perceptible in the marginal Neyman Type A distribution for a
Poisson process in Figure 4.1.

So far, we have only considered subordinators with no drift. Assuming (TN), b ∈ [0, 1]
has to hold for any drift. If the drift is one, the subordinator reduces to a linear function

1The ties in the calculation of Spearman's rho are accounted for by averaging the values of the a�ected
ranks. For Kendall's tau, the tie-adjusted version tau-b is calculated. For details we refer to the
MATLAB® documentation and the references given there.
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Figure 4.3 Bivariate claim number distribution for an inverse Gaussian subor-

dinator and high correlation: For dimension d = 2, time T = 1, intensity
λ = (75, 100)′, and an inverse Gaussian subordinator (b = 0, β = η = 4.5),
the �gure shows: (top-left) probability mass functions of marginals; (top-
right) bivariate probability mass function; (middle-left) functional copula;
(middle-right) contour plot of copula; (bottom-left) scatter of process values;
(bottom-right) scatter of copula. The parameters have been set such that
time-normalization holds and the correlation of the time-changed process is
approximately 81%. The scatter plots are generated from 5000 samples and
the marker size corresponds to the number of respective observations.
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Figure 4.4 Bivariate claim number distribution for an inverse Gaussian subor-

dinator and low correlation: For dimension d = 2, time T = 1, intensity
λ = (75, 100)′, and an inverse Gaussian subordinator (b = 0, β = η = 14.5),
the �gure shows: (top-left) probability mass functions of marginals; (top-
right) bivariate probability mass function; (middle-left) functional copula;
(middle-right) contour plot of copula; (bottom-left) scatter of process values;
(bottom-right) scatter of copula. The parameters have been set such that
time-normalization holds and the correlation of the time-changed process is
approximately 29%. The scatter plots are generated from 5000 samples and
the marker size corresponds to the number of respective observations.
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Figure 4.5 Bivariate copula of the claim number distribution for di�erent

subordinators: For dimension d = 2, time T = 1, and intensity λ =
(75, 100)′, the �gure shows scatter plots (left) and contour plots (right) of
the claim number copulas for an inverse Gaussian (top; b = 0, β = η = 1.5),
gamma (middle; b = 0, β = η = 2.25), and compound Poisson subordinator
with gamma distributed jumps (bottom; b = 0, ξ = 10/3, β = 1.5, η = 5).
The parameters have been set such that time-normalization holds and the
correlation of the time-changed process is approximately 97.5%. The scatter
plots are generated from 5000 samples and the marker size corresponds to
the number of respective observations.
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and no dependence is generated. In general, a drift decreases the overall subordinator
variance, and hence the dependence in the model, but the drift can be counteracted by
increasing the variance of the stochastic part of the subordinator (given it is �nite). For
instance, for the parameters of an inverse Gaussian subordinator with time-normalization
it holds β = (1− b)η and the variance is

Var[Λ1] =
1− b
η2

.

Thus, for any value of b less than one, the variance can take values from zero to ∞ by
adjusting η and, consequently, the correlation in the model can vary between zero and
one. However, even given the same correlation, the distribution structure is di�erent
if generated with di�erent levels of subordinator drift. Figure 4.6 compares the model
for an inverse Gaussian subordinator and a correlation of about 81% in cases with no
drift (blue) and with a high drift of b = 0.8 (green). The upper left plot shows one
sample path of the subordinator for each setting. It can be seen that these paths look
fundamentally di�erent � the one with a strong drift and few high jumps, the other with
many very small jumps. The middle and bottom plots on the left-hand side compare the
marginal distributions. While the center of the distributions remains around the same
values, the distribution in the no-drift setting has a much more pronounced peak and a
fatter right tail. The upper plot on the right-hand side compares the contour plots of
the copulas and the middle and lower plots show a scatter plot of the copula in the two
settings. These scatter plots look di�erent, particularly in the tails. In the setting with
drift, dependence in the upper tail is stronger compared to the setting with no drift due
to the higher probability of large subordinator jumps, while the dependence in the lower
tail is smaller due to the continuous drift.
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Figure 4.6 E�ect of a subordinator drift on the bivariate claim number dis-

tribution: For dimension d = 2, time T = 1, intensity λ = (75, 100)′, and
an inverse Gaussian subordinator with no drift (blue: b = 0, β = η = 4.5)
and with drift (green: b = 0.8, β = 0.4, η = 2), the �gure shows: (top-left)
one sample path of the subordinator for each setting; (middle-left) com-
parison of marginal distribution of �rst component; (bottom-left) compar-
ison of marginal distribution of second component; (top-right) comparison
of copula contour plot; (middle-right) scatter of copula in setting with no
drift; (bottom-right) scatter of copula in setting with drift. The parameters
have been set such that time-normalization holds and the correlation of the
time-changed process is around 81%. The scatter plots are generated from
5000 samples and the marker size corresponds to the number of respective
observations.
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4.2 Lévy and compound Poisson characterization

In the previous section, the distribution of the time-changed process L was studied in
detail. Many of the results given there can be recovered with only slight modi�cations for
more general time-change processes than a Lévy subordinator, see Remarks 4.3 and 4.5.
In this section, the Lévy properties are fully exploited to gain an even more thorough
understanding of the nature of the process L and its dependence structure. As a result, a
stable and e�cient recursive evaluation method for the process distribution is formulated.

As discussed in Section 4.1, subordination of a Lévy process results in another Lévy pro-
cess and subordination of a Lévy subordinator � which is the case for the claim number
process proposed in Model (M) � generates a Lévy subordinator. In the previous section,
the multivariate distribution and in particular the copula of the process L were studied
to obtain a �rst idea about the dependence structure introduced in the model by the
common time-change. However, copulas are static objects and represent the dependence
structure (if it may be called this at all in the case of a discrete distribution) at a certain
point in time. While the distribution of a Lévy process is completely determined by its
distribution at one point in time, the copula of the coordinates of the process at one
point in time can in general not describe the evolution of the dependence structure over
time, see (Cont and Tankov, 2003, Chapter 5.4, p.143).

The dependence structure of a Lévy process is of a special kind: due to the Lévy prop-
erties, no dependence over time exists. Dependencies between components can be gen-
erated in a general Lévy process by correlating the Brownian motion component, see
Section 2.3. As a Lévy subordinator has no di�usion component, dependence is solely
created by simultaneous jumps, see Theorem 2.13. Therefore, for a deeper understanding
of the dependence structure, the Lévy measure, which encodes all information about size
and timing of the jumps, has to be examined.

For subordination of Lévy processes, the Lévy characteristics of the new process can
be derived from those of the original process and the subordinator. The result can be
found in many textbooks on Lévy processes for the subordination of a general Lévy
process, i.e. in terms of a characteristic triplet that depends on a certain cutting function
for the small jumps. As we are concerned with subordination of a Lévy subordinator,
the transformation of the characteristics for this particular setting, i.e. in terms of a
characteristic tuple, is given in the following Lemma.

Lemma 4.16 (Subordination of a Lévy subordinator)
Let X = {Xt}t≥0 be a d-dimensional Lévy subordinator with characteristics bX , νX
and let Λ = {Λt}t≥0 be an independent univariate Lévy subordinator with characteristics
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bΛ, νΛ. Then the process Y := {XΛt}t≥0 is a Lévy subordinator with the following
characteristics:

bY = bΛbX ,

νY (B) = bΛνX(B) +

∫ ∞
0

P(Xt ∈ B) νΛ(dt), B ∈ B(Ṙd≥0).

Proof. The general result in terms of the characteristic triplet (γX , AX , νX) where γX
corresponds to the truncation function 1{‖x‖≤1} for small jumps is stated in (Sato, 1999,
Chapter 6, Section 30, pp.197):

AY = bΛAX ,

νY (B) = bΛνX(B) +

∫ ∞
0

P(Xt ∈ B) νΛ(dt), B ∈ B(Ṙd≥0),

γY = bΛγX +

∫ ∞
0

∫
‖x‖≤1

xP(Xt ∈ dx) νΛ(dt).

A Lévy subordinator has no di�usion part, thus AX as well as AY are zero matrices. As
the Lévy measure is not a�ected by the truncation of small jumps, it is the same in both
characterizations, which proofs the representation of νY given in the Lemma. The drift
bX corresponds to γX by

bX = γX −
∫
‖x‖≤1

x νX(dx),

see (Sato, 1999, Chapter 2, Section 8, Remark 8.4, pp.38). As this relationship holds for
bY and γY as well, it follows for the drift:

bY =γY −
∫
‖x‖≤1

x νY (dx)

=bΛγX +

∫ ∞
0

∫
‖x‖≤1

xP(Xt ∈ dx) νΛ(dt)

−
∫
‖x‖≤1

x
{
bΛ νX(dx) +

∫ ∞
0

P(Xt ∈ dx) νΛ(dt)
}

=

=bΛ

{
γX −

∫
‖x‖≤1

x νX(dx)
}

= bΛbX .
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Using Lemma 4.16, the characteristics of the time-changed process L are stated in the
following Theorem.

Theorem 4.17 (Lévy characteristics of the claim number processes)
The Lévy subordinator L speci�ed in Model (M) by a time-change with the Lévy subor-
dinator Λ has no drift and discrete Lévy measure:

bL = 0; νL(k) = −(−λ)k

k!
Ψ

(|k|)
Λ (|λ|), k ∈ Ṅd0.

The Lévy measure is �nite with total mass νL(Ṅd0) = ΨΛ(|λ|).

Proof. According to Example 2.14, the marginal Poisson processes N i of the underlying
process N in Model (M) have the following characteristics:

bN i = 0; νN i(B) = λiδ1(B), B ∈ B(R>0).

As the Poisson process only allows for jumps of size one, its Lévy measure only has a
point mass in one. In particular, it is a discrete measure and can be written as

νN i(k) = λi1{1}(k), k ∈ N.

From the multiplicative relation of the Laplace transform of a vector with independent
components, namely ϕN (x) =

∏d
i=1 ϕN i(xi), see Theorem 2.1, together with the Lévy�

Khintchine representation in Theorem 2.12 it can be concluded for the characteristics of
the process N :

bN = (bN1 , . . . , bNd)′, νN (B) =
d∑
i=1

νN i(Bi), B ∈ B(Ṙd≥0),

where Bi := {x ∈ R : xei ∈ B}; see also Theorem 2.13 and (Barndor�-Nielsen et al.,
2001, after Lemma 3.2, p.167). Given the speci�cs of N , it follows:

bN = 0; νN (k) =
d∑
i=1

λi1{ei}(k) = λk1{1}(|k|), k ∈ Ṅd0.
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From Lemma 4.16 it can be concluded that bL = bΛbN = 0 holds for the drift of L.
Furthermore, due to the discrete distribution of the Poisson process, the Lévy measure
of L is discrete as well and it holds:

νL(k) = bΛνN (k) +

∫ ∞
0

P(Nt = k) νΛ(dt)

= bΛλ
k
1{1}(|k|) +

λk

k!

∫ ∞
0

t|k| exp{−|λ|t} νΛ(dt), k ∈ Ṅd0.

According to the Lévy�Khintchine representation in Theorem 2.12, the Laplace exponents
ΨΛ of Λ can be calculated from the characteristics by

ΨΛ(x) = bΛx+

∫ ∞
0

(1− exp{−tx}) νΛ(dt), x ≥ 0.

As was done in the proof of Theorem 4.2 for the Laplace transform, it can be concluded
from the di�erentiation lemma for parameter dependent integrals by induction that it
holds for the k-th derivative of the Laplace exponent:

Ψ
(k)
Λ (x) = bΛ1{1}(k) + (−1)k+1

∫ ∞
0

tk exp{−tx} νΛ(dt), x > 0.

Together, it follows for the Lévy measure of L:

νL(k) = bΛλ
k
1{1}(|k|) + (−1)|k|+1λ

k

k!
(Ψ(|k|)(|λ|)− bΛ1{1}(|k|))

= −(−λ)k

k!
Ψ

(|k|)
Λ (|λ|).

The total mass of the Lévy measure follows from the Taylor series expansion of ΨΛ at
point |λ| evaluated in zero, together with the multinomial theorem:

νL(Ṅd0) = −
∑
k∈Ṅd0

(−λ)k

k!
Ψ

(|k|)
Λ (|λ|) = −

∞∑
k=1

Ψ
(k)
Λ (|λ|)

∑
|k|=k

(−λ)k

k!

= −
∞∑
k=1

Ψ
(k)
Λ (|λ|)(−|λ|)k

k!
= −ΨΛ(0) + ΨΛ(|λ|) = ΨΛ(|λ|).

96



4 Distribution and properties

Note that the Laplace exponent ΨΛ is a Bernstein function, i.e. its derivatives of all order
k ∈ N exist and alternate in sign:

(−1)k+1Ψ(k)(x) ≥ 0, x > 0,

see Section 2.3. Thus the Lévy measure in Theorem 4.17 is indeed non-negative. In con-
trast to the derivatives of the Laplace transform, the derivatives of the Laplace exponent
of the subordinator families introduced in Example 2.14 can easily be calculated in closed
form; these derivatives as well as the induced Lévy measure are summarized in Table 4.6.
Some considerations regarding a stable and e�cient implementation will be given later on.

Remark 4.18 (Lévy measure of the claim number process)
As discussed in Section 2.3, the jump measure J of a Lévy process X,

J(A) := |{t ≥ 0 : (t,∇X ′t)′ ∈ A}|, A ∈ B(R≥0 × Ṙd),

is a marked PRM and its mean measure is the product measure Leb×νX of the Lebesgue
measure and the Lévy measure of the process. Considering the discreteness of the time-
changed process L and De�nition 2.5 of a PRM, it follows for L that multivariate jumps
of a certain size arrive according to independent homogeneous Poisson processes, where
the intensity is determined by the mass assigned by the Lévy measure to the respective
jump size. More precisely, let N(k) := {Nt(k)}t≥0 for k ∈ Ṅd0 be the process counting
the jumps of L of size k:

Nt(k) := |{0 ≤ s ≤ t : ∇Ls = k}|, t ≥ 0.

Then N(k) is a Poisson process with intensity νL(k), and for di�erent k the processes
are independent. In particular, the number of (simultaneous) claims of size k in any
given time interval follows a Poisson distribution with mean

E[|{0 ≤ s ≤ t : ∇Ls = k}|] = tνL(k), t ≥ 0.

To construct the process L from a shock model approach as, for instance, in McNeil
et al. (2005), where dependence is generated by the superposition of Poisson shock pro-
cesses a�ecting certain components (cf. Section 3.3), one would need according to the
representation
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Λ Poisson process with drift: b ≥ 0, ξ > 0

ΨΛ(x) bx+ ξ(1− exp{−x})

Ψ
(k)
Λ (x) bδ1(k) + (−1)k+1ξ exp{−x}

νL(k) λk

k! (bδ1(|k|) + ξ exp{−|λ|}

Λ compound Poisson process with drift: b ≥ 0, ξ > 0, Y ≥ 0

ΨΛ(x) bx+ ξ(1− ϕY (x))

Ψ
(k)
Λ (x) bδ1(k)− ξϕ(k)

Y (x)

νL(k) λk

k! (bδ1(|k|) + (−1)|k|ξϕ
(k)
Y (|λ|))

Λ gamma subordinator with drift: b ≥ 0, β > 0, η > 0

ΨΛ(x) bx+ β log(1 + x
η )

Ψ
(k)
Λ (x) bδ1(k) + (−1)k−1(k − 1)!β(η + x)−k

νL(k) λk(|k|−1)!
k! (bδ1(|k|) + β(η + |λ|)−|k|)

Λ inverse Gaussian subordinator with drift: b ≥ 0, β > 0, η > 0

ΨΛ(x) bx+ β(
√

2x+ η2 − η)

Ψ
(k)
Λ (x) bδ1(k) + (−1)k−1β(2x+ η2)

1
2
−k∏k−1

j=1(2j − 1)

νL(k) λk

k! (bδ1(|k|) + β(2|λ|+ η2)
1
2
−|k|∏|k|−1

j=1 (2j − 1))

Λ stable subordinator with drift: b ≥ 0, 0 < α < 1

ΨΛ(x) bx+ xα

Ψ
(k)
Λ (x) bδ1(k) + (−1)k−1xα−kα

∏k−1
j=1(j − α)

νL(k) λk

k! (bδ1(|k|) + |λ|α−|k|α
∏|k|−1
j=1 (j − α))

Table 4.6 Derivatives of Laplace exponent for di�erent subordinators and

Lévy measure of L: The table shows the Laplace exponent and its de-
rivatives of order k ∈ N as well as the Lévy measure of the time-changed
process L in k ∈ Ṅd0 for the families of Lévy subordinators introduced in
Example 2.14. The empty product is to be understood as one.
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{Lt}t≥0 =
{ ∑
k∈Ṅd0

Nt(k)k
}
t≥0

.

an in�nite number of shocks � one for each possible jump size. Hence, in a shock model
approach an in�nite number of Poisson intensities would need to be speci�ed, whereas
in the given approach based on a common time-change only d intensities and the subor-
dinator parameters are necessary. N

The behaviour of the (joint) jumps of L is characterized in Remark 4.18. As discussed
at the beginning of this section, the joint jumps carry information about the dependence
structure of the process. For multivariate distributions, copulas are used to separate
the dependence structure from the marginal distributions. A comparable concept is
available for Lévy processes, so called Lévy copulas that separate the marginals of the
Lévy measure from its dependence structure. In contrast to a probability measure with
values in [0, 1] and total mass one, a Lévy measure may have in�nite mass with a non-
integrable singularity at zero, see the discussion in Section 2.3. Therefore, the theory of
copulas is not directly transferable to the Lévy measure. Lévy copulas were introduced
in Tankov (2003) and Kallsen and Tankov (2006) to provide the necessary adjustments,
see also (Cont and Tankov, 2003, Chaper 5.5 and 5.6, pp.145) for an introduction. The
case is simpli�ed if the Lévy process has only non-negative jumps, in particular for Lévy
subordinators, where the Lévy copula is comparable to a survival copula of a probability
distribution. Let νX be the Lévy measure of a d-dimensional Lévy subordinator X and
let the so-called tail integral be denoted by G(·):

G(x) := νX([x1,∞)× · · · × [xd,∞)), x ∈ Rd>0.

Furthermore, let Gi(x) := G(xei), x > 0, be the marginal tail integrals. Then the Lévy
copula is a function CLX : Rd>0 → R≥0 (which exits) such that

G(x) = CLX(G1(x1), . . . , Gd(xd)).

Tail integrals are used in the de�nition as these quantities are always �nite � the origin
is by de�nition not included in the calculation. In the special case of the claim num-
ber process L studied here, the Lévy measure νL is �nite and can be normalized by
its total mass to a probability measure ΨΛ(|λ|)−1νL. Then the Lévy copula is indeed
only a scaled version of the survival copula and we can proceed to study the distribution
function and the copula of ΨΛ(|λ|)−1νL rather than the Lévy measure νL and its Lévy
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copula. Of course, the distribution is again discrete, so the limitations of the copula
function discussed at the end of the previous section have to be kept in mind.

As discussed in Section 2.3, Lévy processes with �nite activity, i.e. without Gaussian part
and with �nite Lévy measure, are compound Poisson processes (with drift). Since L has
in addition piecewise constant paths with values in Nd0, it has to be a Poisson cluster
process and ΨΛ(|λ|)−1νL is the cluster size distribution; this observation is made precise
in the following corollary.

Corollary 4.19 (Poisson cluster process representation of the claim number process)
The claim number process L has a representation as d-dimensional Poisson cluster pro-
cess. Let M = {Mt}t≥0 be a univariate Poisson process with intensity λM := ΨΛ(|λ|)
and let Y ∼ ΨΛ(|λ|)−1νL be a random vector on Ṅd0, that is

P(Y = k) = ΨΛ(|λ|)−1νL(k) = −(−λ)k

k!

Ψ
(|k|)
Λ (|λ|)

ΨΛ(|λ|)
, k ∈ Ṅd0.

Then, using iid copies Y1,Y2, . . . of Y independent of M , the process L has the repres-
entation

{Lt}t≥0
d
=
{ Mt∑
j=1

Yj

}
t≥0

,

and the cluster size distribution Y has the Laplace transform

ϕY (x) = 1− ΨL(x)

ΨΛ(|λ|)
= 1−

ΨΛ

(
|λ| −

∑d
i=1 λi exp{−xi}

)
ΨΛ(|λ|)

, x ∈ Rd≥0.

Proof. As stated in Section 2.3, a Lévy process with piecewise constant paths is a com-
pound Poisson process (or a zero process), see (Sato, 1999, Chapter 4, Section 21, The-
orem 12, p.135) and, due to its non-negativity and discreteness, L even has to be a Poisson
cluster process. Furthermore, it was mentioned in Section 2.3 that Leb× νL is the mean
measure of the marked PRM counting the jumps of L. According to the discussion after
De�nition 2.7, the mean measure of a compound Poisson process is λMLeb × PY ; this
result is also explicitly stated in (Cont and Tankov, 2003, Chapter 33, Proposition 3.5,
p.75). Hence, it is νL = λMPY and according to Theorem 4.17:
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ΨΛ(|λ|) = νL(Ṙd≥0) = λMP(Y ∈ Ṙd≥0) = λM .

The Laplace exponent of a compound Poisson process in the univariate case was intro-
duced in Example 2.14; the multivariate version can be found in (Sato, 1999, Chapter 1,
Section 4, pp.18):

ΨL(x) = λM (1− ϕY (x)), x ∈ Rd≥0.

According to Proposition 4.1, the Laplace exponent of L also has the following repres-
entation:

ΨL(x) = ΨΛ

( d∑
i=1

λi(1− exp{−xi})
)

= ΨΛ

(
|λ| −

d∑
i=1

λi exp{−xi}
)
, x ∈ Rd≥0.

Equating the two expressions and solving for ϕY shows the formula given in the corollary
for the Laplace transform of Y and concludes the proof.

According to the above corollary, the claims in Model (M) arrive in clusters of iid random
size Y , and the cluster arrivals are determined by the Poisson process M with intensity
ΨΛ(|λ|). In comparison, in the underlying model N consisting of independent Poisson
processes, the claims arrive one after another, that is with jump size in {e1, . . . , ed}, and
with intensity |λ|. Furthermore, given the compound Poisson representation of L, the
observations in Remark 4.18 simply re�ect the space-time decomposition property of the
compound Poisson process given in Remark 2.8.

Remark 4.20 (In�nitely divisible mixed Poisson vs. compound Poisson distributions)
In the univariate case, (Feller, 1968, Chapter 12.2, p.290) show that the non-negative,
discretely in�nitely divisible distributions coincide with the compound Poisson distribu-
tions on the non-negative integers. The multivariate version was discussed more recently
in Sundt (2000). This connection was already given in Section 2.3, as it is directly linked
to Lévy process theory. Theorem 2.11 states that the in�nitely divisible distributions
directly correspond to Lévy processes and, following the discussion about the Lévy�Itô
decomposition, the only Lévy processes with paths in Nd0 are Poisson cluster processes.
Furthermore, a univariate mixed Poisson distribution is discretely in�nitely divisible �
and hence a compound Poisson distribution with support N0 � if its non-negative mixing
variable is in�nitely divisible, see (Grandell, 1997, Chapter 2, Proposition 2.5, p.27). The
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opposite of the statement is not generally true, but counterexamples are rather complic-
ated to construct, see the discussion in (Grandell, 1997, Chapter 2, pp.28). Given the
one-to-one relationship of in�nitely divisible distributions and Lévy processes � and in the
non-negative case Lévy subordinators � `nearly all' univariate Poisson cluster processes
can be generated using the construction in Model (M), i.e. through time-changing a Pois-
son process with an independent Lévy subordinator. In the multivariate case, however,
the construction is more limited. The marginal processes cannot be selected freely but
are closely connected by the common subordinator. In addition, the dependence between
the marginal processes is generated by the subordinator, therefore not every dependence
structure can be imposed. N

Remark 4.21 (Marginal vs. univariate jump size distribution)
Applying Corollary 4.19 to the univariate case it is easily concluded that each marginal
process Li of L can be represented as a Poisson cluster process with Poisson process M̃ i =
{M̃ i

t}t≥0 with intensity λM̃
i

= ΨΛ(λi) and cluster size distribution Ỹi ∼ ΨΛ(λi)
−1νLi(λi),

that is

P(Ỹi = k) = −(−λi)k

k!

Ψ
(k)
Λ (λi)

ΨΛ(λi)
, k ∈ N.

It should be noted, however, that Ỹi does not coincide with the marginal Yi of the
multivariate cluster size distribution Y . The marginal Yi corresponds to the cluster size
distribution of the compound Poisson representation of Li with claim arrival intensity
λM = ΨΛ(|λ|). Whereas Ỹi is concentrated on N, Yi has a positive mass at zero as in
the multivariate version a jump is recorded if at least one component � not necessarily
component i � jumps. The distribution function of Yi could be calculated directly from
the distribution of Y as (w.l.o.g. for i = 1):

P(Y1 = k) =

{∑
k∈Ṅd−1 P(Y = (0,k′)′) if k = 0,∑
k∈Nd−1 P(Y = (k,k′)′) if k ∈ N.

It is easier to observe that the two compound Poisson representations are connected by
zero-in�ation of the jump size distribution. Consider a general Poisson cluster process

Kt∑
j=1

Zj , t ≥ 0,
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where K = {Kt}t≥0 is a Poisson process with intensity ζ > 0 and Z is a jump size
distribution concentrated on the positive integers N. Let J be a Bernoulli random variable
with

P(J = 0) = 1− P(J = 1) =: p.

Then the zero-in�ation Z̃ of Z is de�ned as

Z̃ := 01{J=0} + Z1{J=1} = JZ

and has the distribution

P(Z̃ = k) =

{
p if k = 0,

(1− p)P(Z = k) if k ∈ N.

Let now K̃ = {K̃t}t≥0 be an independent Poisson process with intensity ζ̃ > 0 and
consider the Poisson cluster process

K̃t∑
j=1

Z̃j , t ≥ 0.

By the space-time decomposition property of compound Poisson processes, see Remark 2.8,
jumps of size zero arrive according to a Poisson process with intensity pζ̃. Independently,
jumps of sizes in N arrive according to a Poisson process with intensity (1−p)ζ̃. Choosing
ζ̃ := ζ

1−p therefore establishes the equality

{ Kt∑
j=1

Zj

}
t≥0

d
=
{ K̃t∑
j=1

Z̃j

}
t≥0

.

Now back to the distribution of the jump sizes Yi of the claim number process Li. Com-
paring the jump intensities it has to hold:

p = 1− λM̃
i

λM
= 1− ΨΛ(λi)

ΨΛ(|λ|)
.
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Then it can be concluded for the marginal distribution Yi of Y :

P(Yi = k) =

1− ΨΛ(λi)
ΨΛ(|λ|) if k = 0,

ΨΛ(λi)
ΨΛ(|λ|)P(Ỹi = k) = − (−λi)k

k!
Ψ

(k)
Λ (λi)

ΨΛ(|λ|) if k ∈ N.

All considerations are readily extended to the multivariate case, that is for some 1 ≤ r ≤ d
the r-dimensional marginals, w.l.o.g. (Y1, . . . , Yr)

′, have the following distribution:

P((Y1, . . . , Yr)
′ = k) =

1− ΨΛ(λ1+...+λr)
ΨΛ(|λ|) if k = 0 ∈ Nr0,

− (−λ1)k1 ...(−λr)kr
k!

Ψ
(|k|)
Λ (λ1+...+λr)

ΨΛ(|λ|) if k ∈ Ṅr0.

By rescaling with the total mass of the Lévy measure it follows for the r-dimensional
marginals ν1,...,r

L of the Lévy measure νL:

ν1,...,r
L (k) =

{
ΨΛ(|λ|)−ΨΛ(λ1 + . . .+ λr) if k = 0 ∈ Nr0,
− (−λ1)k1 ...(−λr)kr

k! Ψ
(|k|)
Λ (λ1 + . . .+ λr) if k ∈ Ṅr0.

Hence, the marginal measure ν1,...,r
L of the Lévy measure νL coincides on Ṅr0 with the Lévy

measure of (L1, . . . , Lr)′ but has additional mass ΨΛ(|λ|)−ΨΛ(λ1+. . .+λr) in zero. This
information is useful, as it tells us how often certain components jump alone or together.
For instance, jumps only in component 1 occur if L jumps but none of the components
L2, . . . , Ld jumps, hence with intensity ν2,...,d

L (0) = ΨΛ(|λ|)−ΨΛ(λ2 + · · ·+ λd). N

Remark 4.22 (Compound Poisson decomposition)
As discussed in Remark 4.18, to construct L from a shock model approach, an in�n-
ite number of shocks have to be considered � one for each possible jump size � and
consequently an in�nite number of parameters needs to be speci�ed. Using the space-
time decomposition property, the process also has a representation as the superposi-
tion of independent Poisson cluster processes, where each of these cluster processes con-
siders simultaneous jumps a�ecting exclusively certain components. Let for all elements
I ∈ P({1, . . . , d}), the power set of {1, . . . , d}, the independent Poisson processes Ñ(I)
count the number of simultaneous claim arrivals exclusively to components in I, that is:

Ñt(I) := |{t > 0 : ∇Lit > 0 for i ∈ I and ∇Lit = 0 for i /∈ I}|.
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Following this approach, 2d − 1 intensities and as many (multivariate) jump size distri-
butions need to be speci�ed, more precisely

(
d
i

)
i-dimensional jump size distributions for

i = 1, . . . , d. In the given model in dimension d = 2 and for a non-trivial subordinator2

the following decomposition holds:

{Lt}t≥0
d
=
{( Ñt(e1)∑

j=1

Z1j ,

Ñt(e2)∑
j=1

Z2j

)′
+

Ñt(1)∑
j=1

Xj

}
t≥0

,

where Ñ(e1), Ñ(e2), Ñ(1) are independent Poisson processes with intensity ΨΛ(λ1+λ2)−
ΨΛ(λ2), ΨΛ(λ1 + λ2)−ΨΛ(λ1), and ΨΛ(λ1) + ΨΛ(λ2)−ΨΛ(λ1 + λ2), respectively. The
jump size distributions Z1, Z2,X are independent and concentrated on N, N, and N2,
respectively. In particular, the distribution of the jumps exclusively a�ecting component
one is for k ∈ N:

P(Z1 = k) = P(Y1 = k|Y1 > 0, Y2 = 0) =
P(Y1 = k, Y2 = 0)

P(Y2 = 0)

=
νL(k, 0)

ΨΛ(λ2 + λ1)−ΨΛ(λ2)
.

The distribution of Z2 follows accordingly. The joint jump size distribution X has
dependent components and for k, l ∈ N it holds:

P(X1 = k,X2 = l) =
νL(k, l)

ΨΛ(λ1) + ΨΛ(λ2)−ΨΛ(λ2 + λ1)
.

Due to the concavity of the Laplace exponent (and excluding the case ΨΛ(x) = ax for
some a > 0 corresponding to independence of the processes L1

t and L
2
t ), the denominator

is indeed non-negative in both cases. N

Remark 4.23 (Multivariate from univariate jump size distribution)
As for the process distribution, the multivariate jump distribution can be calculated from
the univariate distribution of the aggregate jumps by rescaling. More precisely, it holds
similarly to Corollary 4.6:

P(Y = k) = c(k)P(Ȳ = k), k ∈ Ṅd0,
2If Λt = at for some a > 0, then the components L1

t and L2
t remain independent and a.s. never jump

together.
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where c(k) is the rescaling coe�cient from Equation (4.5), which can be implemented
using Algorithm 4.7, and Ȳ := 1′Y is the aggregate claim size distribution, that is

P(Ȳ = k) = −(−|λ|)k

k!

Ψ
(k)
Λ (|λ|)

ΨΛ(|λ|)
, k ∈ Nd.

Of course, a similar relationship holds for the Lévy measure. N

It was already mentioned after Theorem 4.17 that the derivatives of the Laplace exponent
as well as the Lévy measure � or the jump size distribution � can be calculated analytic-
ally in the subordinator families introduced in Example 2.14; the results are presented in
Table 4.6. For a numerically stable implementation for high values of k ∈ N, an iterative
calculation is often preferable due to similar considerations as those for the implementa-
tion of the rescaling coe�cient. Consider for instance an inverse Gaussian subordinator
with parameters β, η > 0 and with no drift. Then it holds:

Ψ
(1)
Λ (x) = β(2x+ η2)−

1
2 ; Ψ

(k)
Λ = − 2k − 3

2x+ η2
Ψ

(k−1)
Λ (x), k = 2, 3, . . . .

Adding a drift b > 0 to the subordinator changes the Laplace exponent to ΨΛ̃(x) =
ΨΛ(x) + bx and accordingly

Ψ
(k)

Λ̃
(x) = bδ1(k) + Ψ

(k)
Λ (x), x ≥ 0.

In particular, adding a drift increases the number of solitary jumps, that is jumps of size
one in only a single component. Together, the Lévy measure can be computed using the
following algorithm.

Algorithm 4.24 (Univariate Lévy measure for inverse Gaussian subordinator)
For dimension d = 1 in Model (M) with some intensity λ > 0 and an inverse Gaussian
subordinator with drift, the Lévy measure on (1, . . . , k), k ∈ N, can be implemented as
follows:
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INPUT λ; b; β; η; k;

START ν := 0 ∈ Rk;

ν(1) := λ ∗ β ∗ (2 ∗ λ+ η2)−1/2;

FOR j = 2, . . . , k

ν(j) =
λ

j
∗ ν(j − 1) ∗ j ∗ 2− 3

2 ∗ λ+ η2
;

END

ν(1) = ν(1) + b ∗ λ;

RETURN ν;

For calculating the univariate jump size distribution, a �nal step for rescaling ν with
ΨΛ̃(λ)−1 has to be added. According to Remark 4.21, for the i-th marginal Lévy measure
in a d-dimensional model with intensity λ, the algorithm has to be called using λ = λi
and an additional entry for zero has to be added:

ν(0) = ΨΛ̃(|λ|)−ΨΛ̃(λi).

For the marginal jump size distribution, rescaling has to be done with ΨΛ̃(|λ|)−1. Con-
sidering another subordinator, the initialization step ν(1) and the iteration step ν(j)
have to be adjusted accordingly; a summary can be found in Table 4.7. Note that for
the gamma subordinator an iterative calculation is not necessary for numerical stability
as the factorial terms cancel out:

ν(k) =
β

k

(
1 +

η

λ

)−k
, k ∈ N.

Iterative calculation is, however, useful for calculating all quantities up to a high order.
Ideally, though, scaling with k−1 is then done as a �nal step after the iteration.

Furthermore, for e�ciency in calculating quantities at higher dimensions, implementing
the calculation directly is better than rescaling the univariate quantities in most sub-
ordinator cases. The jump size distribution can also be approximated by the empirical
distribution generated in a Monte Carlo simulation of the model employing Algorithm 3.3.
As mentioned previously, for an in�nite activity subordinator Λ some bias � though small
if choosing a �ne grid for sampling the subordinator paths � towards overestimating the
probabilities of larger jump sizes compared to smaller ones should be expected.
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subordinator ν(1) ν(j) = ν(j − 1) ∗ ...

Poisson ξλ exp(−λ) λ
j

ξ > 0

compound Poisson with gamma ξβλ
η

(
1 + λ

η

)−β−1
β+j−1

j
λ

η+λ

ξ, β, η > 0

gamma λ
η+λβ

k−1
k

λ
η+λ

β, η > 0

inverse Gaussian λβ(2λ+ η2)−1/2 2j−3
j

λ
2λ+η2

β, η > 0

stable αλα j−1−α
j

α > 0

Table 4.7 Iterative computation of univariate Lévy measure in the time-

changed model for di�erent subordinators: The table summarizes the
initialization ν(1) and iteration step ν(j) , j = 2, 3, . . . , for calculating the
Lévy measure of the time-changed process in Model (M) in dimension one
with intensity λ > 0. The di�erent subordinator families have been intro-
duced in Example 2.14.
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Example 4.25 (Families of jump size distributions)
In Example 4.8, the univariate claim number distributions resulting from a gamma,
inverse Gaussian and Poisson subordinator with no drift were identi�ed. In these cases,
also the jump size distributions are known distribution families, see (Klugman et al.,
2004, Chapter 4.6.10, pp.103). Let in the following Y be the jump size in Model (M)
with dimension d = 1 and intensity λ > 0. Figure 4.7 illustrates an example of the jump
size distribution in each case for the same parameter setting as in Figure 4.1.

(i) Gamma subordinator - logarithmic jump size distribution:
Choosing a gamma subordinator with parameters β, η > 0 it holds for the jump
size distribution in the univariate time-changed model according to Table 4.6:

P(Y = k) =
1

k log
(

1 + λ
η

)( λ

η + λ

)k
, k ∈ N.

This is the distribution of a logarithmic random variable with parameter θ := λ
η+λ ∈

[0, 1], see (Johnson et al., 1992, Chapter 7, Section 1, p.285).

(ii) Inverse Gaussian subordinator - extended truncated negative binomial jumps size
distribution:
According to Table 4.6, the jump size distribution resulting from an inverse Gaus-
sian subordinator with parameters β, η > 0 in the univariate case is:

P(Y = k) =
1

k!

( λ

2λ+ η2

)k √
2λ+ η2√

2λ+ η2 − η

k−1∏
j=1

(2j − 1), k ∈ N.

A random variable Z has a negative binomial distribution, if it holds:

P(Z = k) =

(
k + r − 1

k

)
pk(1− p)r, k ∈ N0,

where r > 0 and 0 < p < 1. The extended negative binomial distribution allows
for −1 < r < 0, see (Klugman et al., 2004, Chapter 4.6.6, p.87). For the zero-
truncation Z̃ it is according to Remark 4.21:

P(Z̃ = k) =
P(Z = k)

1− P(Z = 0)
=

(
k + r − 1

k

)
pk

(1− p)r

1− (1− p)r
, k ∈ N.

By some calculation and observing that
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− 1

2kk!

k−1∏
j=1

(2j − 1) =

(
k + 3

2

k

)
,

it follows that the jump size Y is extended negative binomial distributed with
parameters

r := −1

2
, p :=

2λ

2λ+ η2
.

Note that according to Remark 4.21 one could also consider the un-truncated neg-
ative binomial distribution if the jump intensity is adjusted from ΨΛ(λ) to ΨΛ(λ)

1−(1−p)r .

(iii) Poisson process - truncated Poisson jump size distribution:
From Table 4.6 it follows for the jump size distribution corresponding to a time-
change with a Poisson process with intensity ξ > 0:

P(Y = k) =
λk

k!

exp{−λ}
1− exp{−λ}

, k ∈ N.

Note that the jump size distribution does not depend on the subordinator parameter
at all. The subordinator does, however, a�ect the jump intensity ΨΛ(λ). For
Z ∼ Poi(λ) it follows that

P(Y = k) =
P(Z = k)

1− P(Z = 0)
, k ∈ N,

hence, Y is distributed according to a zero-truncated Poisson distribution with
intensity λ, i.e. it follows the distribution of the underlying Poisson process in
Model (M) in t = 1 except for the truncation of zeros.
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Figure 4.7 Univariate jump size distributions for di�erent subordinators: The
�gure shows the univariate jump size distributions corresponding to the
setting in Figure 4.1 (d = 1, λ1 = 10) for an inverse Gaussian (b = 0,
β = η = 1), gamma (b = 0, β = η = 1), Poisson (b = 0, ξ = 1), and
stable subordinator (b = 0, α = 0.3). The parameters of the inverse Gaus-
sian, gamma, and Poisson subordinator have been set such that mean and
variance are both one. For the stable subordinator, mean and variance are
in�nite. The point masses of the distributions are marked with a cross; the
connecting lines are provided only to aid visualization.
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Tails and moments of the cluster size distribution

Tails of the Lévy measure and the cluster size distribution can � similarly to the process
distribution � be calculated by the residual of a Taylor expansion of ΨΛ. The following
corollary gives the result for the Lévy measure.

Corollary 4.26 (Tails of the Lévy measure of the claim number process)
For the tails of the Lévy measure of the time-changed process L and the aggregate process
L̄ it holds:

∞∑
k=n+1

∑
|k|=k

νL(k) =

∞∑
k=n+1

νL̄(k) = ΨΛ(|λ|)−
n∑
k=1

νL̄(k) = −RnΨΛ(0; |λ|), n ∈ Ṅ0,

where RnΨΛ(0; |λ|) is de�ned as in Theorem 4.9 as residual of the Taylor expansion of
ΨΛ in |λ| evaluated in zero:

RnΨΛ(0; |λ|) =
(−1)n+1

n!

∫ |λ|
0

xnΨ
(n+1)
Λ (x) dx = o(|λ|n).

Proof. The Taylor expansion of ΨΛ has been given in the proof of Theorem 4.17. The
remainder of the proof follows in the same fashion as the proof of Theorem 4.9.

Following the above corollary, the lower tail of the multivariate Lévy measure can, of
course, be calculated as well considering the total mass ΨΛ(|λ|), that is

n∑
k=1

∑
|k|=k

νL(k) = ΨΛ(|λ|)−
∞∑

k=n+1

∑
|k|=k

νL(k) = ΨΛ(|λ|) +RnΨΛ(0; |λ|).

The corollary also states the results for the univariate aggregate process L̄, which can
be transferred to any univariate model speci�cation; for the marginal measures νLi , it
follows with Remark 4.21:

−RnΨΛ(0; |λ|) =

∞∑
k=n+1

νLi(k) = ΨΛ(λi)−
n∑
k=1

νLi(k) = ΨΛ(|λ|)−
n∑
k=0

νLi(k).
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For a stable subordinator, the computation of the residual can be done analytically with
the results in Table 4.6:

−RnΨΛ(0;x) =
(−1)n

n!

∫ x

0
yn(−1)nyα−n−1α

n∏
j=1

(j − α) dy

=
α

n!

n∏
j=1

(j − α)

∫ x

0
yα−1 dy =

xα

n!

n∏
j=1

(j − α).

In general, the residual can be approximated numerically as discussed after Theorem 4.9
for the residual of ϕΛt .

The (mixed) moments of the jump size distribution can be derived from its Laplace
transform. Heavy-tailedness is, of course, inherited from the process distribution which
again inherits it from the subordinator.

Theorem 4.27 (Moments and heavy-tailedness of the jumps size distribution)
If existent, mean vector and covariance matrix of the jump size distribution Y of the
claim number process L in Model (M) are:

E[Y ] =
E[Λ1]

ΨΛ(|λ|)
λ =

1

λM
E[L1],

Cov[Y ,Y ] =
(Var[Λ1]

ΨΛ(|λ|)
− E[Λ1]2

ΨΛ(|λ|)2

)
λλ′ +

E[Λ1]

ΨΛ(|λ|)
diag(λ)

=
1

λM
Cov[L1,L1]− 1

λ2
M

E[L1]E[L1]′.

The marginal jump size distributions are heavy-tailed i� the distribution of the subordin-
ator is heavy-tailed.

Proof. First and second moment of Y can be derived from evaluating derivatives of the
Laplace transform ϕY in zero, that is:

E[Yi] = ϕ
(ei)
Y (0), E[YiYj ] = −ϕ(ei+ej)

Y (0), i, j = 1, . . . , d.
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For the univariate case, this was mentioned in Theorem 2.2; the multivariate result
follows, for instance, from (Johnson et al., 1997, Chapter 2.2, pp.3). The derivatives can
be found as:

ϕ
(ei)
Y (x) =−

Ψ
(1)
Λ

(
|λ| −

∑d
k=1 λk exp{−xk}

)
ΨΛ(|λ|)

λi exp{−xi}

ϕ
(ei+ej)
Y (x) =−

Ψ
(2)
Λ

(
|λ| −

∑d
k=1 λk exp{−xk}

)
ΨΛ(|λ|)

λiλj exp{−xi − xj}

+ 1{i}(j)
Ψ

(1)
Λ

(
|λ| −

∑d
k=1 λk exp{−xk}

)
ΨΛ(|λ|)

λi exp{−xi}.

Evaluating these expressions in zero, using Remark 4.14 about the subordinator moments
and Theorem 4.15 about the moments of the claim number process, and calculating the
(co-)variance as Cov[Yi, Yj ] = E[YiYj ] − E[Yi]E[Yj ] gives the results formulated in the
proposition. The statement on heavy-tailedness is shown similarly to the corresponding
statement about the process distribution given in Proposition 4.13. By de�nition, the
distribution of Yi is heavy-tailed i� ϕYi(−x) =∞ for all x > 0. According to Theorem 2.1
and Corollary 4.19 it is

ϕYi(−x) = ϕY (−xei) = 1− ΨΛ(λi(1− exp{x}))
ΨΛ(|λ|)

.

Hence the following equivalence holds:

ϕYi(−x) =∞ ∀x > 0 ⇔ ΨΛ(−x) = −∞ ∀x > 0

⇔ exp{−ΨΛ(−x)} =∞ ∀x > 0,

where the last statement is the de�nition of heavy-tailedness of Λ.

Dependence structure of the cluster size distribution

In Figure 4.8, the bivariate copulas of the jump size distributions in the setting of Fig-
ure 4.5 for an inverse Gaussian, gamma, and compound Poisson process are illustrated.
While the copulas of the process distributions looked rather similar in Figure 4.5, the
copulas of the jump sizes do look di�erent. The scatter plot of the copula in the inverse
Gaussian case has many fewer distinct observation points with much greater intens-
ity than the one in the compound Poisson case; the gamma case ranges somewhere in
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between. This is not surprising considering the univariate distributions in Figure 4.7,
where in the inverse Gaussian case more mass is allocated at small jump sizes, while in
the Poisson case jump sizes tend to be larger. Table 4.8 summarizes mean, standard
deviation, and correlation of the jump sizes as well as the jump intensity in the three
cases: for the inverse Gaussian subordinator, the jump intensity is by far the highest of
the three, while expected jump size and standard deviation are low in comparison. For
the compound Poisson subordinator, the relation is exactly the other way round, and for
the gamma subordinator the values range between the other ones. Consequently, while
expectation and variance of the claim number distribution at any point in time are the
same in all three cases according to the selected parameters, the evolution of the claim
number process over time is very di�erent: in the inverse Gaussian case, many small
claim clusters are accumulated whereas in the compound Poisson case fewer clusters of
larger size occur. The dependence structure, however, may not be as di�erent as a �rst
glance at the pictures suggests. The correlation of the jump sizes, in any case, are very
similar in the three examples. However, the discreteness of the distributions together
with the di�erences in the marginals makes comparing the copulas di�cult, see the dis-
cussion at the end of Section 4.1.

subordinator λM E[Y ]
√
Var[Y ] Cor[Y1, Y2]

inverse Gaussian 25.90 (2.90, 3.86)′ (9.54, 12.67)′ 0.7530
b = 0, β = η = 1.5

gamma 9.83 (7.63, 10.18)′ (14.28, 18.95)′ 0.7535
b = 0, β = η = 2.25

compound Poisson + gamma 3.32 (22.61, 30.14)′ (18.96, 25.07)′ 0.7560
b = 0, ξ = 10

3 , β = 1.5, η = 5

Table 4.8 Characteristics of jump sizes for di�erent subordinators: The table
summarizes for the subordinator and parameter choices of Figure 4.8 mean,
standard deviation, and correlation of the jump size distribution as well as
jump intensity of the time-changed process.

Distribution of the claim arrival times

The Poisson cluster process representation of the claim number process can also be used
to get a better understanding of the claim inter-arrival times τij . The distribution of
the arrival times was already discussed in Section 4.1. For the inter-arrival times it was
mentioned in Section 3.1 that they are � as for any non-trivial inhomogeneous Poisson or
Cox process, see Section 2.2 � no longer iid. In addition, the distribution has a singularity
in zero due to the possibility of simultaneous jumps. These observations can be made
explicit by exploiting the Poisson cluster representation of the process.
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Figure 4.8 Bivariate copula of the jump size distribution for di�erent subor-

dinators: Corresponding to the setting in Figure 4.5 (d = 2, λ = (75, 100)′),
the �gure shows scatter plots (left) and contour plots (right) of the jump
size copulas stemming from an inverse Gaussian (top; b = 0, β = η = 1.5),
gamma (middle; b = 0, β = η = 2.25), and compound Poisson subordin-
ator with gamma distributed jumps (b = 0, ξ = 10/3, β = 1.5, η = 5).
Time-normalization holds and the correlation of the time-changed process is
around 97.5%. The scatter plots are generated from 5000 samples and the
marker size corresponds to the number of respective observations.
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The arrival time of the �rst claim in each component can be concluded from Corollary 4.10
or from observing that it coincides with the �rst arrival time of the Poisson process
counting the cluster arrivals in the respective univariate model:

τi1 ∼ Exp(ΨΛ(λi)), i = 1, . . . , d.

From there on, successive claims have a positive probability of arriving in the same cluster
and hence having an inter-arrival time of zero. Let Ỹi be the zero-de�ated cluster size
distribution of component i. If for some j = 2, 3, ... the inter-arrival time ∆τij is zero,
the claims number j− 1 and j need to have arrived in the same cluster. Due to the zero-
de�ation, at least one claim arrives in each cluster, hence, a maximum of j − 1 clusters
can have arrived. Together, it follows from the law of total probability for j = 2, 3, ...:

P(∆τij = 0) =

j−1∑
n=1

P(claim no. j and j − 1 of component i arrive in cluster no. n)

= P(Ỹi1 ≥ j) +

j−2∑
n=1

P(Ỹi1 + . . .+ Ỹin < j − 1, Ỹi1 + · · ·+ Ỹi(n+1) ≥ j)

= P(Ỹi ≥ j) +

j−2∑
n=1

j−2∑
k=n

P(Ỹi1 + · · ·+ Ỹin = k, Ỹi(n+1) ≥ j − k)

= P(Ỹi ≥ j) +

j−2∑
n=1

j−2∑
k=n

P(Ỹi1 + · · ·+ Ỹin = k)P(Ỹi ≥ j − k).

As this formula depends on j, the inter-arrival times are not identically distributed.
Furthermore, it is

P(∆τi3 = 0,∆τi2 = 0) = P(Ỹi ≥ 3),

which is unequal to:

P(∆τi3 = 0)P(∆τi2 = 0) = (P(Ỹi ≥ 3) + P(Ỹi = 1)P(Ỹi ≥ 2))P(Ỹi ≥ 2).

This con�rms that the inter-arrival times are indeed no longer independent. Except for
the point mass at zero, however, the distribution is absolutely continuous as, given that
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successive claims do not arrive in the same cluster, they arrive in successive clusters �
which have exponentially distributed inter-arrival times:

P(∆τij > t) = P(∆τij > t|∆τij > 0)P(∆τij > 0) + P(∆τij > t|∆τij = 0)P(∆τij = 0)

= P(∆τij > t|∆τij > 0)P(∆τij > 0)

= exp{−ΨΛ(λi)t}(1− P(∆τij = 0)), t > 0.

As a measure of extremal dependence, the probability of joint early claim arrivals is given
in the following proposition.

Corollary 4.28 (Joint early claim arrivals)
For the d-dimensional claim number process L in Model (M), consider two di�erent
components 1 ≤ i, k ≤ d , i 6= k, and let νj , νk be either the respective marginal Lévy
measures or the Lévy measures in corresponding univariate models; accordingly, let νik
be either the bivariate marginal Lévy measure or the Lévy measure in a corresponding
bivariate model. Then the probability of the joint early occurrence of the j-th claim to
portfolio i and the l-th claim to portfolio k for some j, l ∈ N is given as:

lim
t↓0

P(τij ≤ t|τkl ≤ t) =

∑∞
m1=j

∑∞
m2=l νik(m1,m2)∑∞
m=l νik(m)

=1− 1

ΨΛ(λk)−
∑l−1

m=1 νk(m)

(
ΨΛ(λi + λk)−ΨΛ(λi)

+

j−1∑
m=1

νi(m)−
j−1∑
m1=0

l−1∑
m2=0

m1+m2>0

νik(m1,m2)
)
.

For a single component and claim numbers j > l it is

lim
t↓0

P(τij ≤ t|τil ≤ t) = 1−
∑j−1

m=l νi(m)

ΨΛ(λi)−
∑l−1

m=1 νi(m)
.

Proof. Consider the Poisson cluster process representation of L where the claim clusters
arrive according to a Poisson process M with intensity λM = ΨΛ(|λ|) and with d-
dimensional random jump size Y . Then it holds by de�nition of the conditional probab-
ility and the law of total probability:
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P(τij ≤ t|τkl ≤ t) =
P(τij ≤ t, τkl ≤ t)

P(τkl ≤ t)
=

P(Lit ≥ j, Lkt ≥ l)
P(Lkt ≥ l)

=

∑∞
m=0 P(Mt = m)P(

∑m
r=1 Yir ≥ j,

∑m
r=1 Ykr ≥ l)∑∞

m=0 P(Mt = m)P(
∑m

r=1 Ykr ≥ l)
.

According to Theorem 2.4, the limiting behaviour of P(Mt = m) for t ↓ 0 is λM t + o(t)
for m = 1 and o(t) for m ≥ 2, thus it follows:

lim
t↓0

P(τij ≤ t|τkl ≤ t) = lim
t↓0

ΨΛ(|λ|)tP(Yi1 ≥ j, Yk1 ≥ l) + o(t)

ΨΛ(|λ|)tP(Yk1 ≥ l) + o(t)

= lim
t↓0

ΨΛ(|λ|)P(Yi1 ≥ j, Yk1 ≥ l) + o(1)

ΨΛ(|λ|)P(Yk1 ≥ l) + o(1)

=
ΨΛ(|λ|)P(Yi1 ≥ j, Yk1 ≥ l)

ΨΛ(|λ|)P(Yk1 ≥ l)
.

Omitting the index 1 in the jumps size notation and applying the principle of inclusion
and exclusion, it holds:

P(Yi ≥ j, Yk ≥ l) =1− P(Yi < j)− P(Yk < l) + P(Yi < j, Yk < l)

=1−
j−1∑
m=0

P(Yi = m)−
l−1∑
m=0

P(Yk = m)

+

j−1∑
m1=0

l−1∑
m2=0

P(Yi = m1, Yk = m2).

To get a representation which does not depend on whether the marginals or a respective
lower-dimensional version of the model is considered, cf. Remark 4.21, we switch to the
Lévy measure and treat the zero case separately from the rest of the sums. Then we get
for the nominator:
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ΨΛ(|λ|)P(Yi ≥ j, Yk ≥ l) =ΨΛ(|λ|)(1− P(Yi = 0)− P(Yk = 0) + P(Yi = 0, Yk = 0))

−
j−1∑
m=1

νi(m)−
l−1∑
m=1

νk(m) +

j−1∑
m1=0

l−1∑
m2=0

m1+m2>0

νik(m1,m2)

=ΨΛ(λi) + ΨΛ(λk)−ΨΛ(λi + λk)−
j−1∑
m=1

νi(m)

−
l−1∑
m=1

νk(m) +

j−1∑
m1=0

l−1∑
m2=0

m1+m2>0

νik(m1,m2).

For the denominator it holds accordingly:

ΨΛ(|λ|)P(Yk ≥ l) = ΨΛ(|λ|)(1− P(Yk < l)) = ΨΛ(λk)−
l−1∑
m=1

νk(m).

Together this establishes the claim on the arrival times in two di�erent components. For
the claim numbers j > l of the same component Li, it is

P(τij ≤ t|τil ≤ t) =
P(Lit ≥ j, Lit ≥ l)

P(Lit ≥ l)
=

P(Lit ≥ j)
P(Lit ≥ l)

,

thus the claim follows from the previous considerations.

The probability of joint early claim arrivals for a single component is indeed a number
in [0, 1] as it can be re-written:

lim
t↓0

P(τij ≤ t|τil ≤ t) = 1−
∑j−1

m=l νi(m)∑∞
m=l νi(m)

.

Then the denominator has positive summation terms from l to∞, while in the nominator
the summation stops at j − 1.

As mentioned in the proof, the probability of joint early claim arrivals corresponds to
the claim number process as
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lim
t↓0

P(τij ≤ t|τkl ≤ t) = lim
t↓0

P(Lit ≥ j|Lkt ≥ l).

Hence, the quantity is equally a measures of extremal dependence of the claim number
processes. It is for i 6= k closely related to the lower tail dependence coe�cient of the
claim arrival times, which is according to Section 2.1:

LTD(τij , τkl) = lim
u↓0

P(τij ≤ F−1
τij (u)|τkl ≤ F−1

τkl
(u)).

If j = l and λi = λk, the two quantities coincide as the marginal distributions and their
inverse are the same. Then it holds for all j ∈ N:

LTD(τij , τkj) = 2−
ΨΛ(2λi)−

∑j−1
m1,m2=0
m1+m2>0

νik(m1,m2)

ΨΛ(λi)−
∑j−1

m=1 νi(m)
.

In particular, for j = 1 and λi = 1 the lower tail dependence coe�cient of the Lévy-frailty
model is recovered, cf. Section 3.3:

LTD(τi1, τk1) = 2− ΨΛ(2)

ΨΛ(1)
.

For i 6= k and arbitrary λi, λk, it is

lim
t↓0

P(τi1 ≤ t|τk1 ≤ t) = 1− ΨΛ(λi + λk)−ΨΛ(λi)

ΨΛ(λk)
.

Remember that ΨΛ(λi), ΨΛ(λk), and ΨΛ(λi+λk) are the intensities of non-zero jumps in
Li, Lk, and (Lit, L

k
t )
′, respectively, and ΨΛ(λi + λk)−ΨΛ(λi) is the intensity of non-zero

jumps only in k, not i. Hence, if the processes rarely jump together � i.e. dependence
is small � then ΨΛ(λi + λk) ≈ ΨΛ(λi) + ΨΛ(λk) and the probability above is close to
zero. If however the processes mostly jump together � i.e. dependence is strong - then
ΨΛ(λi + λk) ≈ ΨΛ(λi) ≈ ΨΛ(λk) and the probability is close to one.
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Alternative calculation of the claim number process distribution

We conclude this section by taking another look at the distribution of the claim number
process L. In Section 4.1 di�erent ways of calculating this distribution were discussed.
Numerically, the distribution can be approximated by the empirical distribution gen-
erated in a Monte Carlo simulation of the time-changed model using Algorithm 3.3;
alternatively, subordinator paths can be sampled to compute a Monte Carlo estimate
using Equation (4.3). However, often neither of these approaches is fast enough, par-
ticularly concerning estimation methods directly based on the distribution function as
will be discussed in Chapter 5. Analytically, the distribution can be calculated using
derivatives of the Laplace transform of the directing subordinator. The crucial point is
not computation in high dimension d � multivariate probabilities can be derived from
univariate ones by rescaling � but calculating probabilities far in the tail which corres-
ponds to evaluating high order derivatives of the Laplace transform. In some cases the
derivatives can be calculated in closed form (see Example 4.8), although the derivations
were lengthy in most cases and not straightforwardly implemented in a robust way. The
derivatives of the Laplace transform can also be calculated by means of Bell polynomials
from the derivatives of the Laplace exponent which are readily available for the subor-
dinators introduced in Example 2.14. However, evaluating high order Bell polynomials
is numerically challenging as well.

In addition to Lévy subordinators, the given methods for calculating the process dis-
tribution at one point in time are also available for more general directing processes in
Model (M). For the numerical methods, all that is necessary is a way of sampling the
directing process. For the analytical methods, the applicability depends on the availab-
ility of derivatives of the Laplace transform or the cumulant generating function. In the
following, an e�cient and robust recursive evaluation method is introduced that makes
particular use of the Lévy nature of the process and therefore can not be applied to other
directing processes.

The time-changed process L only has a representation as a Poisson cluster process in
the Lévy case. A classical approach in the actuarial literature for evaluating compound
distributions is Panjer's recursion scheme. This method was �rst introduced in Panjer
(1981) and has since been much discussed. While it generally delivers an approximation
of the compound distribution, it provides a precise solution if the primary distribution is
either Poisson, binomial or negative binomial, and if in addition the secondary distribu-
tion has lattice support � conditions which are both ful�lled by a Poisson cluster process.
The results for the univariate case are given in the following corollary; the multivariate
quantities follow from rescaling according to Corollary 4.6.

Corollary 4.29 (Panjer's recursion for the distribution of the claim number process)
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Let Y be the jump size in Model (M) with dimension d = 1 and intensity λ > 0. Then
the distribution of the process L at some point in time t > 0 can be computed recursively
using the following relation:

P(Lt = k) =
tΨΛ(λ)

k

k∑
j=1

jP(Y = j)P(Lt = k − j), k ∈ N,

together with the initial value P(Lt = 0) = exp{−tΨΛ(λ)}.

Proof. According to (Mikosch, 2009, Chapter 3.3, Theorem 3.3.9, p.122), given any
primary distribution Ñ ful�lling for some a, b ∈ R the relation

P(Ñ = k) =
(
a+

b

n

)
P(Ñ = k − 1), k ∈ N,

and a secondary distribution X with values in N0, it holds for the compound distribution

S :=
∑Ñ

j=1Xj :

P(S = k) =
1

1− aP(X = 0)

k∑
j=1

(
a+

bj

k

)
P(X = j)P(S = k − j), k ∈ N.

For a Poisson distribution it is a = 0 and b equals the intensity. Hence, the recursion
presented in the corollary follows from the Poisson cluster process representation of Lt
from Corollary 4.19 with Poisson process Mt with intensity λM = ΨΛ(λ) and jump size
distribution Y concentrated on N. Furthermore, given P(Y = 0) = 0, the starting value
for the recursion is found to be:

P(Lt = 0) = P(Mt = 0) = exp{−tΨΛ(λ)}.

Multivariate versions of Panjer's recursion are available (see for instance Sundt (1999));
however, they are rather complicated and therefore often of less practical use in applic-
ations. For the model here, a multivariate version is unnecessary, as one can deduce
the multivariate distribution from the univariate case, which is a big advantage. As
discussed in Section 4.1, the evaluation time for Bell polynomials � approximately the
runtime for a single evaluation point of the process distribution � in MATLAB® on a
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standard computer (2.4 GHz Intel Core 2 Duo processor, 4.00 GB RAM) is around 1.5
seconds for order k = 57, while for higher orders the results are unreliable. For com-
parison, in the bivariate setting of Figures 4.3 and 4.4, the evaluation time for the full
distribution at values {1, . . . , 150} × {1, . . . , 200} using Panjer's recursion was only 0.05
and 0.01 seconds, respectively.

At the beginning of Section 4.1, an additional method for calculating the process distribu-
tion was mentioned: inverting the Laplace transform or the characteristic function. This
method even works in case of a more general time-change process and is also very fast.
It delivers, however, a numerical approximation while Panjer's recursion provides precise
results in the given setting. For more about the advantages and disadvantages of using
Panjer's recursion or transform inversion methods, see Embrechts and Frei (2009).
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4.3 Large portfolio approximation

In this section, the convergence of the aggregate claim number process in Model (M) is
studied for increasing dimension d → ∞. It will be shown that the process, normalized
by the dimension, converges to � and can hence be approximated by � the directing Lévy
subordinator scaled with the average intensity. It was discussed in Section 4.1 that in
calculating the distribution of the process, the dimension of the model only enters into
the evaluation point of the derivatives of the Laplace transform and the scaling factor.
The most e�ort goes into calculating the derivatives of high order, that is evaluating the
tail of the distribution. However, an increase in dimension leads to a shift of the mass
of the distribution to higher values and, hence, it becomes necessary to calculate the
distribution further in the tail. For this reason, an approximation may be useful.

Consider the set-up of Model (M) for increasing dimension d → ∞. For this purpose,
let N1 = {N1

t }t≥0, N
2 = {N2

t }t≥0, . . . be a sequence of independent univariate Poisson
processes with intensities λ1, λ2, · · · > 0. The average of the intensities is assumed to
converge to some constant λ̄ > 0, that is:

lim
d→∞

1

d

d∑
i=1

λi = λ̄. (A)

Furthermore, let Λ = {Λt}t≥0 be an independent Lévy subordinator and consider the
sequence of time-changed processes Li := {N i

Λt
}t≥0. The normalized aggregate time-

changed process up to component d ∈ N is denoted by d−1L̄d and the average aggregate
intensity by d−1λ̄d:

1

d
L̄d :=

{1

d

d∑
i=1

N i
Λt

}
t≥0

,
1

d
λ̄d :=

1

d

d∑
i=1

λi, d ∈ N.

The following theorem states that the normalized aggregate process 1
d L̄

d converges to
the scaled directing subordinator λ̄Λ for increasing dimension d.

Theorem 4.30 (Large portfolio approximation)
Considering Model (M) for increasing dimension d ∈ N, where the intensities ful�l As-
sumption (A), the normalized aggregate process converges in �nite-dimensional distribu-
tions to the scaled subordinator:
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1

d
L̄d =

{1

d

d∑
i=1

N i
Λt

}
t≥0

fdd−→ λ̄Λ, d→∞.

Furthermore, if the subordinator has �nite k-th moment for some k ∈ N, then the con-
vergence holds in the k-th mean:

lim
d→∞

∫ T

0
E
[
|1
d
L̄dt − λ̄Λt|k

]
dt = 0, T > 0.

Proof. For any time t > 0, convergence in distribution of 1
d L̄

d
t to λ̄Λt is shown by point-

wise convergence of the Laplace transforms according to Theorem 2.1. All processes
involved are Lévy processes, hence the Laplace transforms have a representation via the
respective Laplace exponents, i.e. ϕΛt(x) = exp{−tΨΛ(x)}. As the exponential function
is continuous, it is su�cient to show convergence of the Laplace exponents. The Laplace
exponent of the aggregate process follows from Proposition 4.1 and Remark 3.1:

ΨL̄d(x) = ΨΛ

( d∑
i=1

λi(1− exp{−x})
)

= ΨΛ(λ̄d(1− exp{−x})), x > 0.

Furthermore, following Theorem 2.1 it is ϕ 1
d
L̄t

(x) = ϕL̄t(
x
d ) and hence

Ψ 1
d
L̄d(x) = ΨL̄d

(x
d

)
= ΨΛ

(
λ̄d

(
1− exp

{
− x

d

}))
, x > 0.

Accordingly, the Laplace exponent of the scaled subordinator is Ψλ̄Λ(x) = ΨΛ(λ̄x). The
Laplace exponent is continuous as well, so it is su�cient to show convergence of the
function arguments. For the exponential function it holds:

1− exp
{
− x

d

}
=
x

d
+ o
(1

d

)
, d→∞, x > 0.

Together with Assumption (A), it follows:

lim
d→∞

λ̄d
(

1− exp
{
− x

d

})
= lim

d→∞

λ̄d
d

(x+ o(1)) = λ̄x, x > 0.
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Together with the fact that Ψ 1
d
L̄d(0) = Ψλ̄Λ(0) = 0 for all d ∈ N, pointwise convergence

of the Laplace exponent � and the Laplace transform � is shown for all x ≥ 0 and hence

d−1L̄dt
d−→ λ̄Λt is proven. Convergence of the �nite dimensional distributions follows

from the Lévy property of the processes. Consider for any n ∈ N w.l.o.g. consecutive
points in time 0 := t0 ≤ t1 ≤ · · · ≤ tn and let t := (t1, . . . , tn)′. Following Lemma 4.11,
the Laplace transform of the random vector λ̄Λt is:

ϕλ̄Λt
(x) = exp

{
−

n∑
i=1

∆tiΨλ̄Λ(xi + · · ·+ xn)
}

=
n∏
i=1

ϕλ̄Λ∆ti
(xi + · · ·+ xn), x ∈ Rd≥0.

Accordingly, the Laplace transform of the random vector d−1L̄dt is:

ϕ 1
d
L̄dt

(x) =
n∏
i=1

ϕ 1
d
L̄d∆ti

(xi + · · ·+ xd), x ∈ Rd≥0.

The product of the Laplace transforms converges due to convergence of the n factors,

thus d−1L̄dt
d−→ λ̄Λt holds and convergence of the processes in �nite dimensional distri-

butions is established.

For the second mode of convergence, we start by showing that convergence in the k-th
mean holds for any time t > 0 given the k-th moment of Λ exists. Let for now k ∈ N be
even. Using the multinomial theorem and the formula for the moments of the Poisson
distribution as in the proof of Theorem 4.15, it follows:

E
[∣∣∣1
d
L̄dt − λ̄Λt

∣∣∣k] =E
[(1

d
L̄dt − λ̄Λt

)k]
=

k∑
j=0

(
k

j

)
(−λ̄)k−j

dj
E[(L̄dt )

jΛk−jt ]

=
k∑
j=0

(
k

j

)
(−λ̄)k−j

dj
E[Λk−jt E[(L̄dt )

j |σ(Λ)]]

=
k∑
j=0

(
k

j

)
(−λ̄)k−j

dj
E[Λk−jt

j∑
l=0

S(j, l)λ̄ldΛ
l
t]

=

k∑
j=0

(
k

j

)
(−λ̄)k−j

dj

j∑
l=0

S(j, l)λ̄ld E[Λk−j+lt ].
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The number of summation terms is �xed for given k and the only quantities dependent
on d are the factor d−j in the outer summation and λ̄ld in the inner summation. For
indices 0 ≤ l < j ≤ k, the summation term is scaled with

λ̄ld
dj

=

(
λ̄d
d

)l
1

dj−l
.

While the �st factor converges to λ̄l according to Assumption (A), the second factor
converges to zero as l − j > 0. Thus, all these summation terms vanish for d → ∞ and
only the behaviour of the terms corresponding to 0 ≤ l = j ≤ k remains to be examined:

lim
d→∞

E
[∣∣∣1
d
L̄dt − λ̄Λt

∣∣∣k] = lim
d→∞

k∑
j=0

(
k

j

)
(−λ̄)k−j

dj
S(j, j)λ̄jd E[Λkt ]

=E[Λkt ] lim
d→∞

k∑
j=0

(
k

j

)
(−λ̄)k−j

(
λ̄d
d

)j

=E[Λkt ]
k∑
j=0

(
k

j

)
(−λ̄)k−j λ̄j = E[Λkt ](−λ̄)k

k∑
j=0

(
k

j

)
(−1)j

=E[Λkt ](−λ̄)k(1− 1)k = 0.

This proves d−1L̄dt
Lk−→ λ̄Λ for k ∈ N even. Convergence of the integral w.r.t. time up

to some horizon T > 0 follows as the only factors dependent on t are the subordinator
moments E[Λjt ]. According to Remark 4.14, these moments are found by evaluating the
j-th complete Bell polynomial in the �rst j cumulants of Λt. The cumulants are linear
in t, hence the moments are a polynomial in t and the integral is �nite given the k-th
moment of the subordinator is �nite. Following this, the convergence in d is not a�ected
by the integral and

lim
d→∞

∫ T

0
E
[∣∣∣1
d
L̄dt − λ̄Λt

∣∣∣k] dt = 0

holds for k even. For k+ 1 odd, convergence is shown similarly to the even case by using
the inequality

∣∣∣1
d
L̄dt − λ̄Λt

∣∣∣k+1
=
∣∣∣1
d
L̄dt − λ̄Λt

∣∣∣(1

d
L̄dt − λ̄Λt

)k
≤
(1

d
L̄dt + λ̄Λt

)(1

d
L̄dt − λ̄Λt

)k
.
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The result about the convergence of the aggregate process is not too surprising con-
sidering that the in�nitely divisible distributions are the limit sequences of compound
Poisson distributions (see (Feller, 1971, Chapter XVII.1, Theorem 3, p.557)) and every
Lévy process is the limit of a possibly in�nite number of compound Poisson processes,
as was discussed in Section 2.3. While in the Lévy�Itô representation the convergence is
considered speci�cally regarding the small jumps, here the subordinator is approximated
by compound Poisson processes on the increasingly �ne grid d−1N.

Whereas from convergence in the k-th mean follows convergence in probability, from
which again follows convergence in distribution (see (Kallenberg, 2002, Chapter 4, Pro-
position 4.12, p.68, and Lemma 4.7, p.66)), existence of the k-th subordinator moment
has to be assumed in this case. In the above theorem, convergence in distribution is
shown regardless of the existence of subordinator moments. Furthermore, according to
(Kallenberg, 2002, Chapter 1, Lemma 1.29, p.15), from convergence in the k-th mean
follows convergence of the absolute k-th moments. As in the given setting the processes
are non-negative, it follows in case of existing k-th subordinator moment:

lim
d→∞

1

dk
E[(L̄dt )

k] = λ̄k E[Λkt ].

The result about convergence in distribution of the aggregate process can be exploited for
approximations in high-dimensional applications. This may be particularly relevant for
the pricing of certain reinsurance contracts, cf. Section 6.1. According to the de�nition
of convergence in distribution � see Section 2.1 � it holds for all continuous and bounded
functions f ∈ Cb(R,R):

lim
d→∞

E
[
f
(1

d
L̄dt

)]
= E[f(λ̄Λt)], t ≥ 0.

For instance, calculating the expected number of claims within a speci�ed layer, that is
for some 0 < a < b the expectation

E[min{max{L̄dt − a, 0}, b}],

corresponds to the continuous and bounded function f(x) = min{max{x − a, 0}, b}.
Thus, the following approximation is valid for large d ∈ N:

E[min{max{L̄dt − a, 0}, b}] ≈ E[min{max{dλ̄Λt − a, 0}, b}].
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For comparison, the normalized aggregate process d−1
∑d

i=1N
i in the underlying Poisson

model converges in �nite dimensional distributions to a linear function with slope λ̄. This
can be shown by convergence of the Laplace exponent similarly to the above proof:

lim
d→∞

Ψ 1
d

∑d
i=1 N

i(x) = lim
d→∞

λ̄d

(
1− exp

{
− x

d

})
= λ̄x, d→∞, x > 0.

It also follows from the law of large numbers for independent (but not necessarily
identically distributed) random variables, for instance in the version given in (Feller,
1968, Chapter X.5, pp.253). Versions with di�erent assumptions can be found, for in-
stance, in (Feller, 1971, Chapter VII.8, Theorem 3, p.239) and (Czado and Schmidt,
2011, Chapter 1.4, Theorem 1.29, p.26). Model (M) can also be compared to the
model with the same marginal processes but without dependence. For this purpose, let
Λ1 = {Λ1

t }t≥0,Λ
2 = {Λ2

t }t≥0, . . . be independent copies of the subordinator Λ = {Λt}t≥0

� the copies are assumed to be independent of the Poisson processes as well � and consider
the process

{(N1
Λ1
t
, . . . , Nd

Λdt
)′}t≥0.

The behaviour of the normalized aggregate process d−1
∑d

i=1N
i
Λit

for increasing dimen-

sion can also be determined from the law of large numbers due to the independence of
the components. Assuming suitable conditions are met, it holds:

1

d

d∑
i=1

(N i
Λit
− E[N i

Λit
]) −→ 0, d→∞.

The convergence holds almost surely or at least in probability, thus it also holds in
distribution. Given Assumption (A), it follows:

lim
d→∞

1

d

d∑
i=1

E[N i
Λit

] = tE[Λ1] lim
d→∞

1

d

d∑
i=1

λi = λ̄tE[Λ1].

Thus, the process convergences in distribution to λ̄E[Λ1]t for any point in time t ≥ 0 and
due to the Lévy property, the process converges in �nite-dimensional distributions to the
linear function with slope λ̄E[Λ1]. If Assumption (TN) for time-normalization holds, the
limit is the same as in the independent Poisson case.
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Figure 4.9 Large portfolio approximation: For dimension d = 10 (upper row) and
d = 100 (lower row), intensity λi = 10 for i = 1, . . . , d, time horizon T = 1,
and an inverse Gaussian subordinator (b = 0, β = η = 4.5), the �gure
shows three sample paths each of the scaled subordinator 10Λt (left), of
the normalized aggregate underlying Poisson process d−1

∑d
i=1N

i
t (right),

and of the corresponding normalized aggregate time-changed process d−1L̄dt
(middle).
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In Figure 4.9 the aforementioned convergence results are visualized. On the right-hand
side, three paths of a normalized aggregate Poisson process corresponding to dimension
d = 10 (upper chart) and d = 100 (lower chart) are plotted. The intensities are assumed
to be homogeneous. For d = 100, the paths are already almost linear. On the left-
hand side, three paths of an inverse Gaussian subordinator scaled with the intensity are
plotted in the upper as well as the lower chart. In the middle column, the normalized
aggregate process in the time-changed model corresponding to the subordinator paths
on the left and the Poisson paths on the right are shown. While in the low-dimensional
case the paths look still di�erent from the subordinator paths, in the high-dimensional
case the paths closely resemble each other. In general, convergence of �nite-dimensional
distributions does not necessarily mean that the paths of the processes look alike or even
similar � a counterexample can be found in (Billingsley, 2012, Chapter 4.23, pp. 327)
� but for Lévy processes, this is the case. The following corollary gives the result on
pathwise approximation speci�cally for the process at hand, but holds in fact for Lévy
processes in general.

Corollary 4.31 (Pathwise approximation)

In the setting of Theorem 4.30, a sequence of processes X1, X2, . . . exists such that Xd d
=

d−1L̄d for all d ∈ N and

sup
0≤s≤t

∣∣∣Xd
s −

1

d
L̄ds

∣∣∣ P−→ 0, d→∞, t ≥ 0.

Furthermore, the convergence of the processes holds in distribution in the Skorohod J1-
topology.

Proof. Given the convergence of the processes in distribution at one point in time, which
was proven in Theorem 4.30, the �rst statement follows from (Kallenberg, 2002, Chapter
15, Theorem 15.17, p.298) and the second statement follows from (Jacod and Shiryaev,
2003, Chapter VII.3, Corollary 3.6, p.415).

Finally, convergence in distribution for Lévy processes also means convergence of the
characteristics. The results given in (Sato, 1999, Chapter 2.8, Theorem 8.7, pp.41) for
general Lévy processes can be adapted to the speci�c case of the Lévy subordinator
studied here similarly to the proof of Theorem 4.17. According to Remark 3.1 and
Theorem 4.17, the aggregate process L̄d has zero drift bL̄d = 0 and its Lévy measure is
concentrated on N:

νL̄d(k) = −(−λ̄d)k

k!
Ψ

(k)
Λ (λ̄d), k ∈ N.
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The normalized process d−1L̄d has zero drift b 1
d
L̄d = 0 as well and the jumps are shifted

from k ∈ N to k/d, hence the Lévy measure is ν 1
d
L̄d(l) = νL̄d(ld) for l ∈ d−1N. The Lévy

measure converges vaguely on R>0 to νλ̄Λ(·) = νΛ(λ̄−1·), that is for all continuous and
bounded functions f ∈ Cb(R>0,R) it holds:

lim
d→∞

∫
(0,∞]

f(x) ν 1
d
L̄d(dx) = lim

d→∞

∞∑
k=1

f
(k
d

)
νL̄d(k) =

∫
(0,∞]

f(x) νλ̄Λ(dx).

The drift b 1
d
L̄d = 0 of d−1L̄d does not directly converge to the drift bλ̄Λ = λ̄bΛ of λ̄Λ.

This is obvious as the subordinator may be selected with non-zero drift. Instead, the
following convergence holds:

lim
d→∞

(
b 1
d
L̄d +

∫
(0,1]

x ν 1
d
L̄d(dx)

)
= lim

d→∞

d∑
k=1

k

d
νL̄d(k) = bλ̄Λ +

∫
(0,1]

x νλ̄Λ(dx).
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This chapter treats the problem of estimating the model parameters from historical
claim count data. In general, statistical inference for multivariate processes is far from
trivial and often computationally expensive. In Section 5.1 four estimation procedures
are developed which essentially try to �t a multivariate distribution, either the in�nitely
divisible process distribution or the jump size distribution (and jump intensity). Since in
Chapter 4 the methods for an e�cient evaluation of these distributions were established,
the estimation procedures can be implemented without much di�culty, as will be dis-
cussed in Section 5.2. An extensive simulation study will then be carried out to examine
the quality and asymptotical properties of the estimators. In Section 5.3, the methods
are applied to the set of Danish �re insurance data in order to test the e�ectiveness of
the estimation procedures as well as the model itself in a real-world setting.

5.1 Estimation procedures

In this section, four estimation methods will be presented for the parameters of Model (M),
two for discrete observation points of the process exploiting the Lévy property and the
results about the in�nitely divisible distribution of the process, and another two based on
the knowledge of the realized process path up to some �nite time horizon using the com-
pound Poisson representation. For an introduction to statistical inference, see Casella
and Berger (2002) and Davison (2003). An overview speci�cally for actuarial applica-
tions is given in Klugman et al. (2004). Estimation methods for stochastic processes are
discussed in Basawa and Prakasa Rao (1980). Estimation of multivariate distributions
and processes with multiple parameters is often computationally di�cult. The results
derived in Chapter 4 for the process and jump-size distribution, however, enable an e�-
cient implementation of the presented methods.

Separating the marginals from the dependence structure � for the multivariate distribu-
tion of the process at one point in time via a copula function or for the dynamic process
via a Lévy copula � and following a two-step estimation approach (e.g. the method of
inference function for margins (IFM), see Joe and Xu (1996) and Joe (2005)) is di�cult in
the given setting: neither of the (Lévy) copula functions is available in closed form and,
more importantly, the in�uence of the model parameters cannot be isolated to either the
marginals or the dependence structure. Estimation based on dependence measures like
Kendall's tau or Spearman's rho face the same problem. In addition, the di�culties in
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using copulas and copula-based dependence measures for count data have been discussed
in Section 4.1; see also Genest and Ne²lehová (2007).

The parameter set that has to be estimated consists of the d intensities in the vector
λ and the subordinator parameters, which will be denoted by vector θ in the follow-
ing. Throughout this chapter, the dependence of quantities on the parameters is often
emphasised in the notation, e.g. it will be written

E[Lt;λ,θ] or P(Lt = k;λ,θ),

for E[Lt] or P(Lt = k), respectively. The parameter space for λ is Rd>0, the parameter
space for θ depends on the selected subordinator and will be denoted by Θ. For an inverse
Gaussian subordinator with drift, for instance, it is θ := (b, β, η)′ ∈ Θ := [0, 1) × R2

>0,
i.e. the total number of parameters in the model d + 3. Without drift and if the time-
normalization Assumption (TN) is imposed, only one subordinator parameter β = η > 0
needs to be estimated in addition to λ (cf. Table 4.4). Since all estimators discussed in
the following will be speci�ed via minimization (or maximization) problems, optimization
methods considering constraints will be necessary. As the number of subordinator para-
meters is relatively modest in most cases, the number of intensities will dominate in high
dimensional applications. If high dimensionality renders the joint optimization infeasible
in the time-changed model, time-normalization may be imposed and the estimator λ̂ for
the intensities may be selected upfront as the sample mean of the process distribution
after one time unit, i.e. for the observation L̂T of L at the �nite time-horizon T > 0:

λ̂ :=
1

T
L̂T . (5.1)

Hence, (5.1) is the moment and maximum likelihood estimator for the underlying in-
dependent Poisson process N . Given the estimated intensities λ̂, only the remaining
subordinator parameters need to be determined from the methods presented in the fol-
lowing. Note, however, that this two-step procedure does not correspond to a separation
of marginals and dependence structure as discussed above, since the subordinator para-
meters in�uence both, the marginal distribution as well as the dependence structure.

For each additional component in the model, one additional parameter, namely the in-
tensity of the new component, is introduced; the number of subordinator parameters
remains the same. Observations of the new component, however, reveal not only in-
formation about its intensity but also about the subordinator. Hence, the quality of the
estimators for θ can be expected to increase if the dimensionality of the model increases.
Overall, the number of parameters of the model relative to its dimension and, hence, the
dimension of the observations is low enough to give rise to the hope that the parameters
can be determined reasonably well from the following estimation methods.
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Discrete monitoring

Assume that the process L is observed up to a �nite time horizon T > 0 on a discrete
time grid 0 := t0 < t1 < . . . < tn := T with n ∈ N monitoring points. For convenience,
we assume an equidistant grid with step size h := T/n, i.e. tj := hj for j = 0, . . . , n.
Denote the observations of L at times tj as

l̂j = (l̂1j , . . . , l̂dj)
′ := L̂tj , j = 1, . . . n,

and set l̂0 := 0. From a process perspective, these panel data are only a single partial ob-
servation {l̂j = L̂tj}j=1,...,n of L, i.e. one path of the process is observed at n grid points.

Following the Lévy property of the process L, however, the increments ∆l̂j = l̂j − l̂j−1,
j = 1, . . . , n, are iid observations of the in�nitely divisible distribution Lh of the process
L at the step size h. Hence, estimation methods for the process L with only one partial
observation can be reduced to estimation methods for the multivariate distribution Lh
with n observations ∆l̂j . In the following, two approaches will be discussed, one based
on the method of moments and the other using maximum likelihood estimation. For
general Lévy processes, these methods are discussed in (Cont and Tankov, 2003, Chapter
7, pp.207).

For univariate distributions the method of moments intends to match the empirical
sample moments with the model predicted moments. If the same number of moments are
taken into consideration as there are parameters to be estimated, the result is a system
of equations where the number of unknowns equals the number of equations and, ideally,
there should be a unique solution. In reality, however, no solution may exist or none
within the admissible parameter range. In such cases, the method (or the model) may
be rejected or the parameters minimizing the error, for instance in a least-square sense,
within the feasible set may be selected instead. The minimum error parameters are also
typically chosen if more moments than parameters are included or a generalized method
of moments with more advanced moment conditions is applied.

In the multivariate setting here, matching the expectation gives d equations. Including
the second (mixed) moments adds another d(d + 1)/2 equations. The total number of
parameters in the model is d intensities plus the subordinator parameters. Hence, in
most applications the system of equations will already be overdetermined if the �rst and
second moments are included, thus we restrict our considerations to this case. Otherwise,
additional higher moments may be added as necessary.

Instead of pure moments, we match relative central moments to account for scale dif-
ferences of the various quantities. To counteract dependence between the empirical mo-
ments, data-based and non-diagonal weighting matrices for the vector of moments can
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be considered, see Hansen (1982). The distance is measured in a least-square sense,
i.e. using the (squared) Euclidean norm for the expectation based vector part and the
(squared) Frobenius norm for the matrix based covariance part. We formulate the �rst
estimation method using the results from Theorem 4.15. For the sake of readability, we
suppress the dependence of the objective function on the observations in the notation;
we will do so as well for the other methods presented in the remainder of this section.

Estimation 5.1 (Moment matching (M1))
Given equidistant observations l̂0 := 0 ≤ l̂1 ≤ · · · ≤ l̂n with step size h, let m̂ denote
the sample mean vector:

m̂ := Ê[Lh] :=
1

n
l̂n.

Furthermore, let Q̂ denote the unbiased sample covariance matrix with components

Q̂ik := Ĉov[Lih, L
k
h] :=

1

(n− 1)

n∑
j1=1

n∑
j2=1

(∆l̂ij1 −mi)(∆l̂kj2 −mk), i, k = 1, . . . , d.

Then the estimators λ̂M1 of the intensities λ and θ̂M1 of the subordinator parameters θ
in Model (M) are de�ned via the optimization problem

{λ̂M1, θ̂M1} := arg min
λ∈Rd>0,θ∈Θ

fM1(λ,θ), (M1)

with objective function

fM1(λ,θ) :=
d∑
i=1

(E[Lih;λi,θ]− m̂i

E[Lih;λi,θ]

)2
+

d∑
i=1

d∑
k=1

(Cov[Lih, L
k
h;λi, λk,θ]− Q̂ik

Cov[Lih, L
k
h;λi, λk,θ]

)2

=

d∑
i=1

(
1− m̂i

hλi E[Λ1;θ]

)2
+

d∑
i=1

(
1− Q̂ii

h(Var[Λ1;θ]λ2
i + E[Λ1;θ]λi)

)2

+ 2

d−1∑
i=1

d∑
k=i+1

(
1− Q̂ik

hVar[Λ1;θ]λiλk

)2
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As discussed at the beginning of this section, if the time-normalization Assumption (TN)
is imposed and E[Lh] = hλ holds, the intensities may be set upfront via the sample
mean:

λ̂ :=
1

h
m̂ =

1

T
l̂n.

Since the subordinator only a�ects the covariance part in this case, the approach may
be reasonable for this method. The estimation problem then reduces to:

θ̂M1 := arg min
θ∈Θ

d∑
i=1

d∑
k=1

(Cov[Lih, L
k
h; λ̂i, λ̂k,θ]− Q̂ik

Cov[Lih, L
k
h; λ̂i, λ̂k,θ]

)2
.

Either way, often the optimization cannot be solved analytically by equating the �rst
partial derivatives to zero and testing the second derivative (particularly considering the
restrictions on the parameter space) and numerical optimization routines are necessary.
The runtime, however, is expected to be short as mean and variance are known in closed
form for many subordinators. Of course, this estimation approach considers by de�nition
only parts of the full distribution of Lh. In particular, only linear dependence between
the components is included and any further dependence is neglected, compare the dis-
cussion at the end of Section 4.1. For very high-dimensional problems or insu�cient data
that render other methods intractable, this simple approach may prove useful. In addi-
tion, the estimators can be used as starting values for more advanced methods. Though
often not unbiased, the generalized method of moment produces consistent and asymp-
totically normal estimators in many cases, see Hansen (1982). These properties will be
investigated in a simulation study in Section 5.2.

In contrast to the moment matching Method (M1), maximum likelihood estimation is
based on the full distribution function. The aim is to choose the parameters that make the
observations most likely to occur. Using the results from Theorem 4.2 and Corollary 4.4,
the log-likelihood function for the given observations is:

lM2(λ,θ) := ln
{ n∏
j=1

P(Lh = ∆l̂j ;λ,θ)
}

=
n∑
j=1

ln
{(−λ)∆l̂j

∆l̂j !
ϕ

(|∆l̂j |)
Λh

(|λ|;θ)
}

=
d∑
i=1

l̂in ln{λi} −
d∑
i=1

n∑
j=1

ln{∆l̂ij !}+
n∑
j=1

ln{(−1)|∆l̂j |ϕ
(|∆l̂j |)
Λh

(|λ|;θ)}.

Note that the second term is independent of the parameters and, thus, can be neglected
in the optimization. Together, the following maximum likelihood estimation method can
be formulated.
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Estimation 5.2 (Maximum likelihood for increments (M2))
Given equidistant observations l̂0 := 0 ≤ l̂1 ≤ · · · ≤ l̂n with step size h, the estimators
λ̂M2 of the intensities λ and θ̂M2 of the subordinator parameters θ in Model (M) are
de�ned via the optimization problem

{λ̂M2, θ̂M2} := arg max
λ∈Rd>0,θ∈Θ

fM2(λ,θ), (M2)

with objective function

fM2(λ,θ) :=
d∑
i=1

l̂in ln{λi}+
n∑
j=1

ln{(−1)|∆l̂j |ϕ
(|∆l̂j |)
Λh

(|λ|;θ)}.

Analytical solutions for the maximum likelihood estimators can in general not be found,
even in the univariate case (cf. (Klugman et al., 2004, Chapter 12.5, pp.383)); see also
Stein et al. (1987) for the multivariate extension of the Sichel distribution and (John-
son et al., 1997, Chapter 36.5, pp.102) for the negative binomial distribution. As for
Method (M1), the optimization problem has to be solved numerically. Hence, the log-
likelihood function needs to be evaluated repeatedly in multiple optimization steps and
thus the tractability of this method strongly depends on the availability of quick and
stable evaluation routines for the probabilities of L, or derivatives of the Laplace trans-
form of Λ � a problem discussed at length in Section 4.1 and 4.2. In particular, the results
of Corollary 4.29 enable an e�cient and reliable implementation of these quantities such
that the optimization can be carried out in a reasonable amount of time, as will be seen
in Section 5.2. Maximum likelihood estimators are under certain regularity conditions
consistent and asymptotically normal, see (Ser�ing, 2002, Chapter 4.2, pp.143). These
properties will be investigated heuristically in the following section.

Finally, it is worth mentioning that, given only discrete observation points, it is unknown
whether the increments are the result of many small or few large jumps of L. Hence,
it may come to identi�ability problems regarding the parameters for any estimation
method based solely on such data, particularly if a subordinator drift is included in the
modelling approach, see the discussion along Figure 4.6 in Section 4.1. Decreasing the
step size of the grid increases the number of observations for the two estimation methods.
If no clusters arrive within some time interval, intermediate steps reveal no additional
information, but an increasingly �ne grid isolates the cluster arrivals. Taking the limit,
the process is continuously monitored and the precise arrival times and sizes of all clusters
are recorded. Two estimation methods speci�cally for his setting will be discussed in the
remainder of this section.
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Continuous monitoring

Ideally, the claim number process L is monitored continuously up to a �nite time horizon
T > 0, providing one observation {L̂t}0≤t≤T of L on [0, T ]. As L is a Poison cluster
process, the arrival times and jump sizes of each cluster of claims are recorded in this
scenario. Let m̂ ∈ N0 be the total number of incoming clusters in the time period [0, T ],
0 := ŵ0 < ŵ1 < . . . < ŵm̂ the successive cluster arrival times, and ŷ1, . . . , ŷm̂ the corres-
ponding cluster sizes. From these data, a discrete observation of L can be extracted and
the previously discussed Methods (M1) and (M2) can be applied. To exploit all available
information, two more estimation methods are proposed in the following based on the
Poisson cluster process representation of L.

Firstly, maximum likelihood estimation is used jointly for the iid cluster inter-arrival
times and the iid cluster sizes, cf. the approach in (Basawa and Prakasa Rao, 1980,
Chapter 6.4, pp.105) for univariate compound Poisson processes. The maximum likeli-
hood method requires no iid samples, it is su�cient that the joint likelihood function
of the observations is available, i.e. the probability of observing the given data in the
model, which reduces for point observations of continuous distributions to the mass of
the density function at the observation point. For a general compound Poisson process,
where the jump size distribution is speci�ed independently of the Poisson arrival process,
maximum likelihood estimation can be performed separately for both parts. In the given
setting, however, the parameters a�ect both, jump size and jump intensity, making a
joint optimization necessary.

Theorem 5.3 (Loglikelihood function of compound Poisson process)
Given an observation period [0, T ] with m̂ ∈ N0 cluster arrivals at times ŵ0 := 0 < ŵ1 <
. . . < ŵm̂ and with sizes ŷ1, . . . , ŷm̂, the log-likelihood function of the observations from
Model (M) is

lM3(λ,θ) :=− TΨΛ(|λ|;θ) +
d∑
i=1

ĉi ln{λi} −
d∑
i=1

m̂∑
j=1

ln{ŷij !}

+
m̂∑
j=1

ln{(−1)|ŷj |+1Ψ
(|ŷj |)
Λ (|λ|;θ)},

where ĉi :=
∑m̂

j=1 ŷij is the sum over all jumps of component i = 1, . . . , d.

Proof. Following Corollary 4.19, the cluster arrival times Wj in Model (M) stem from
a Poisson process with intensity ΨΛ(|λ|), hence, the inter-arrival times ∆Wj are iid
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Exp(ΨΛ(|λ|))-distributed random variables. For m̂ arrivals before T at times ŵ1, . . . , ŵm̂,
the joint likelihood is:

f1(λ,θ) :=P(∆Wm̂+1 > T − ŵm̂;λ,θ)
m̂∏
j=1

ΨΛ(|λ|;θ) exp{−∆ŵjΨΛ(|λ|;θ)}

= exp{−(T − ŵm)ΨΛ(|λ|;θ)}ΨΛ(|λ|;θ)m̂ exp{−ŵm̂ΨΛ(|λ|;θ)}
= exp{−TΨΛ(|λ|;θ)}ΨΛ(|λ|;θ)m̂.

The likelihood function of the iid cluster sizes follows also from Corollary 4.19:

f2(λ,θ) :=

m̂∏
j=1

P(Y = ŷj ;λ,θ) =

m̂∏
j=1

−(−λ)ŷj

ŷj !

Ψ
(|ŷj |)
Λ (|λ|;θ)

ΨΛ(|λ|;θ)

= ΨΛ(|λ|;θ)−m̂
λ
∑m̂
j=1 ŷj∏m̂

j=1 ŷj !

m̂∏
j=1

(−1)|ŷj |+1Ψ
(|ŷj |)
Λ (|λ|).

Due to the independence of the cluster arrival process and the cluster sizes, the joint
log-likelihood function is the logarithm of the product of the two likelihood functions:

lM3(λ,θ) := ln{f1(λ,θ)f2(λ,θ)} = −TΨΛ(|λ|;θ) +
d∑
i=1

m̂∑
j=1

ŷij︸ ︷︷ ︸
=ĉi

ln{λi}

−
d∑
i=1

m̂∑
j=1

ln{ŷij !}+

[∑
j=1

m̂ ln{(−1)|ŷj |+1Ψ
(|ŷj |)
Λ (|λ|;θ)}.

The third term in the log-likelihood function lM3 does not depend on the parameters
and can be neglected in the optimization.

Estimation 5.4 (Maximum likelihood for compound Poisson process (M3))
Given an observation period [0, T ] with m̂ ∈ N0 cluster arrivals with sizes ŷ1, . . . , ŷm̂,
the estimators λ̂M3 of the intensities λ and θ̂M3 of the subordinator parameters θ in
Model (M) are de�ned via the optimization problem
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{λ̂M3, θ̂M3} := arg max
λ∈Rd>0,θ∈Θ

fM3(λ,θ), (M3)

with objective function

fM3(λ,θ) :=− TΨΛ(|λ|;θ) +
d∑
i=1

ĉi ln{λi}+
m̂∑
j=1

ln{(−1)|ŷj |+1Ψ
(|ŷj |)
Λ (|λ|;θ)}.

Solving this optimization numerically is more convenient than in case of the maximum
likelihood estimation in Method (M3), as the objective function depends on the deriv-
atives of the Laplace exponent of the subordinator rather than the Laplace transform,
which are mostly available in closed form (cf. Section 4.2).

The second approach we study for continuous monitoring is based on the Lévy measure
νL of L. It follows from the space-time decomposition property of the compound Poisson
process (see Remark 2.8 and Remark 4.18) that clusters of all sizes k ∈ Ṅd0 arrive as inde-
pendent Poisson processes N(k) with intensity νL(k;λ,θ). The moment and maximum
likelihood estimator for the intensity parameter of a Poisson process is the �nal process
level normalized with the length of the observation period, i.e. for a cluster of size k the
estimator is

N̂T (k)

T
=
|{j = 1, . . . , m̂ : ŷj = k}|

T
,

cf. the proof of Theorem 5.3 or see, for instance, (Davison, 2003, Chapter 6.5.1, p.277)).
Hence, we may estimate the parameters of Model (M) such that the distance between
observed and model predicted intensities of cluster arrivals of all sizes is minimized in
a least-square sense, which equates to the minimum distance estimator for the Lévy
measure:

arg min
λ∈Rd>0,θ∈Θ

∑
k∈Ṅd0

(
νL(k;λ,θ)− |{j = 1, . . . , m̂ : ŷj = k}|

T

)2
.

The in�nite summation needs to be truncated at some point. Using the information
about the tail of the Lévy measure, see Corollary 4.26, a maximum level K ∈ N for
considering the cluster sizes |k| ≤ K individually can be selected and a �nal term for the
tail can be added. The approach is made explicit in the following using Theorem 4.17
and Corollary 4.26.
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Estimation 5.5 (Intensity-based method (M4))
Given an observation period [0, T ] with m̂ ∈ N0 cluster arrivals of sizes ŷ1, . . . , ŷm̂,
the estimators λ̂M4 of the intensities λ and θ̂M4 of the subordinator parameters θ in
Model (M) are de�ned via the optimization problem

{λ̂M4, θ̂M4} := arg min
λ∈Rd>0,θ∈Θ

fM4(λ,θ), (M4)

with objective function

fM4(λ,θ) :=
∑
k∈Ṅd0
|k|≤K

(
− (−λ)k

k!
Ψ

(|k|)
Λ (|λ|;θ)− |j = 1, . . . , m̂ : {ŷj = k}|

T

)2

+
(
−RnΨΛ(0; |λ|;θ)− |{j = 1, . . . , m̂ : |ŷj | > K}|

T

)2
,

where RnΨΛ(0; |λ|;θ) is the residual of a Taylor expansion of ΨΛ in |λ| evaluated in zero.

As for all methods discussed so far, the optimization has to be performed numerically.
This method quickly becomes computationally expensive for increasing dimension (and
expected claim numbers) due to the rising number of tuples k that have to be considered.
Thus, the threshold K needs to be selected such as to achieve a reasonable trade-o�
between �tting the tail and guaranteeing tractability of the method. A possible approach
that will be explored in Section 5.2, is to set K as the aggregate sample mean plus one
standard deviation of the observed cluster sizes:

K :=
⌊ 1

m̂
L̂T +

( 1

m̂− 1

m̂∑
j=1

(ŷj − L̂T )2
) 1

2
⌋
, (5.2)

where L̂T = m̂−1
∑m̂

j=1 ŷj is the process level at the end of the observation period and
b·c denotes the �oor function. If K is still high, a boundary for the left tail may be
considered as well; it should, however, be made sure that solitary jumps of individual
components are still included as these contain valuable information about the depend-
ence structure. The approach can also be modi�ed to consider only selected cluster sizes
which are of most importance for the speci�c application, while disregarding the rest in
the estimation. If the observation period is short, the number of observations for indi-
vidual cluster sizes will be small; particularly in high dimensional applications with many
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expected claims, where a huge number of cluster sizes are possible but appear with low
intensities, many cluster sizes will not occur at all and their estimated intensities will be
zero. Thus, a su�ciently long observation period may be crucial for the performance of
this method.

Finally, it is worth mentioning that both Methods (M3) and (M4) depend only on the
length of the observation period T , the number of cluster arrivals m̂, and the observed
cluster sizes ŷ1, . . . , ŷm̂; the cluster arrival times ŵ1, . . . , ŵm̂ are not explicitly necessary
for the calculation of these estimators.

144



5 Estimation

5.2 Simulation study

The performance of the estimation procedures introduced in the previous section will
now be investigated in a simulation study. For di�erent speci�cations of the model in
dimension d = 3, m = 500 sample paths of the claim number process L are generated
using Algorithm 3.3. Estimators λ̂j and θ̂j from all Methods (M1)�(M4) are calculated in
each scenario j = 1, . . . ,m and Monte Carlo estimates for expectation, standard deviation
(std), relative bias (rbias), and root-mean-square error (rmse) of the distribution of the
estimators are computed as sample means, e.g. for λ̂1:

Ê[λ̂1] :=
1

m

m∑
j=1

λ1j , ˆstd[λ̂1] :=
( 1

m− 1

m∑
j=1

(λ̂1j − Ê[λ̂1])2
) 1

2
,

ˆrbias[λ̂1] :=
Ê[λ̂1]− λ1

λ1
, ˆrmse[λ̂1] :=

( 1

m

m∑
j=1

(λ̂1j − λ1)2
) 1

2
.

To gain insight into the asymptotical properties of the estimators, two time horizons
T ∈ {1, 10} are compared for each setting. In particular, we want to �nd out if the
estimators appear to be consistent, i.e. converge to the true parameters, and asymptot-
ically normal, which would enable the construction of con�dence intervals.

Two di�erent Lévy subordinators are chosen for the time-change, an inverse Gaussian
and a gamma subordinator, as the resulting Sichel and inverse Gaussian distributions
are popular choices for insurance count data with overdispersion. Since the results are
quite similar, the inverse Gaussian case is presented in detail here and the data for the
gamma case are collected in Appendix A. As was discussed after Algorithm 3.3, the in-
verse Gaussian and the gamma subordinator both are of in�nite activity and need to be
sampled on a discrete time-grid, which leads to some bias towards overestimating the
jump sizes of the time-changed process. Thus, some (small) portion of the error of the
estimators from Methods (M3) and (M4) has to be attributed to the simulation routine
rather than the estimation procedures. However, the in�uence of the discretization error
should be low, since a very �ne grid with one million steps per time unit was chosen for
sampling the subordinator paths. For Methods (M1) and (M2), the sampled paths of
the time-changed process are discretized with 365 steps per time unit, corresponding to
daily observations of the process.

For both subordinator choices, two distinct settings are investigated, one with high and
another with low dependence and variance in the time-changed model. More precisely,
the parameters of the subordinators are set such that the subordinator variance is ap-
proximately Var[Λ1] ≈ 0.05 and Var[Λ1] ≈ 0.005, respectively; then it follows from
Theorem 4.15 in the �rst case (low dependence and variance):
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Var[L1] ≈ (63, 103, 150)′, Cor[L1] ≈

 1 0.23 0.26
0.23 1 0.30
0.26 0.30 1

 ,

and in the second case (strong dependence and high variance):

Var[L1] ≈ (175, 356, 600)′, Cor[L1] ≈

 1 0.75 0.77
0.75 1 0.81
0.77 0.81 1

 .

In addition, for both subordinator types and subordinator variance settings, a model
with no subordinator drift and another with drift b = 0.4 is examined. Assumption (TN)
is always imposed by �xing one subordinator parameter, i.e.

η := β or η :=
β

1− b

in case of no drift or with drift b, respectively, for both subordinator types (cf. Table 4.4).
Thus, the total number of parameters to be estimated is four in the models without
drift and �ve otherwise, with subordinator parameter vectors θ = β and θ = (b, β)′,
respectively. The admissible set Θ in the former case is R>0, and in the latter due to
time-normalization (η = β/(1−b) > 0 needs to hold) [0, 1)×R>0. The intensity vector is
set to λ := (50, 75, 100)′. Since time-normalization is assumed, the intensities correspond
to the expected number of claims per time unit. All subordinator parameter settings as
well as the corresponding jump intensities and expected jump sizes in the time-changed
model are summarized in Table 5.1. In the case of low subordinator variance, the jump
intensities are higher and the jump sizes on average smaller than in the high variance
case, leading to more observation points for Methods (M3) and (M4). Adding a drift
has the same e�ect, i.e. the jump intensities increase and the average jump sizes decrease.

Simulation and optimization are implemented in MATLAB® and performed on a stand-
ard computer (3.33 GHz Intel Core i5 processor, 4.00 GB RAM). Multidimensional con-
strained optimization is a highly non-trivial problem and topic of ongoing research, but
a discussion of optimization algorithms and their convergence properties is beyond the
scope of this thesis and the study relies on the build-in `fmincon' function with `sqp
solver' for constrained non-linear optimization problems. The termination settings for
the solver are left at their default values, e.g. the termination tolerance for the parameters
as well as the objective function is 10−6. The initial intensity values for the solver are set
to the sample mean; for the subordinator parameters, the initial values are calculated via
moment matching for the aggregate claim number process, as discussed in the following
remark.
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subordinator drift Var b β η E[Y ;θ] ΨΛ(|λ|;θ)

inverse Gaussian no low 0 14.5 14.5 (0.31, 0.46, 0.62)′ 162.33
high 0 4.5 4.5 (0.65, 0.97, 1.29)′ 77.33

yes low 0.4 6.9 11.5 (0.28, 0.42, 0.56)′ 177.15
high 0.4 2.1 3.5 (0.39, 0.59, 0.78)′ 127.80

gamma no low 0 210 210 (0.33, 0.49, 0.65)′ 152.93
high 0 21 21 (0.97, 1.45, 1.94)′ 51.68

yes low 0.4 78 130 (0.30, 0.45, 0.59)′ 168.36
high 0.4 7.5 12.5 (0.45, 0.67, 0.89)′ 112.08

Table 5.1 Parameter settings for the simulation study: The table summarizes the
parameters for the inverse Gaussian and gamma subordinator in the settings
with and without drift as well as with high and low subordinator variance.
In addition, the expected jump sizes and jump intensities in each setting are
given.

Remark 5.6 (Initial parameters for the optimization algorithm)
Let l̂0 := 0 ≤ l̂1 ≤ · · · ≤ l̂n for n := 365T be the discrete observations of L in any single
Monte Carlo run. Then for all four estimation methods, the initial intensity parameters
in the optimization algorithm are set to the sample mean:

λ̂0 :=
1

T
l̂n.

The initial subordinator parameters θ̂0 are determined from central moment matching of
the aggregate process. The models with no drift have only a one subordinator parameter,
hence, the initial value is found as the solution to the variance condition:

Var[L̄1; λ̂0,θ]
!

=
1

n

n∑
j=1

(|l̂j | − |λ̂0|)2 =: zm2.

Since the models with drift feature two subordinator parameters, an additional equation
for the third central moment is added:

E[(L̄1 − E[L̄1])3; λ̂0,θ]
!

=
1

n

n∑
j=1

(|l̂j | − |λ̂0|)3 =: zm3.

The equations can be solved analytically using Theorem 4.15 and Table 4.4; the results
are summarized in Table 5.2. However, the existence of a solution is not guaranteed and,
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in addition, the condition θ̂0 ∈ Θ needs to be ful�lled for the initial values to be valid.
If the calculated solutions are not admissible, moment matching for the sum of any two
out of the three components of L, or even any individual component, may be given a
try. If neither leads to a valid initial parameter vector, some default values need to be
chosen. In the model without drift, if the solution for β is invalid, the initial value is
set to β̂0 = 10 in the following study. In the model with drift, if the estimator for the
drift is invalid, the default is b̂0 = 0.5, and if the estimator for β is invalid, the default is
β̂0 = 5. N

inverse Gaussian gamma

no drift β̂0 |λ̂0|
(

h
zm2−h|λ̂0|

) 1
2 h|λ̂0|2

zm2−h|λ̂0|

with drift b̂0 1− 3(zm2−h|λ̂0|)2

h|λ̂0|(zm3+2h|λ̂0|−3zm2)
1− 2(zm2−h|λ̂0|)2

h|λ̂0|(zm3+2h|λ̂0|−3zm2)

β̂0
3

3
2 (zm2−h|λ̂0|)

5
2

h|λ̂0|
1
2 (zm3+2h|λ̂0|−3zm2)

3
2

4(zm2−h|λ̂0|)3

h(zm3+2h|λ̂0|−3zm2)2

Table 5.2 Initial values of subordinator parameters for the optimization: For
an inverse Gaussian and gamma subordinator, both with and without drift,
and assuming time-normalization, the table presents the initial subordinator
parameters for the optimization algorithm that are generated from a moment
estimation approach for the aggregate process L̄.

Finally, the moments of the process distribution for Method (M1) as well as the jump size
distribution and Lévy measure for Methods (M3) and (M4) are directly implemented us-
ing the results derived for the two chosen subordinators in Chapter 4. For Method (M4),
the threshold K is selected according to Equation (5.2). The process distribution for
Method (M2) is implemented using Panjer's recursion as derived in Corollary 4.29.

Setting: inverse Gaussian subordinator (no drift)

The initial parameters calculated as discussed in Remark 5.6 are valid input parameters
for the optimization in all Monte Carlo runs � for the short and long time-horizon as
well as for the low and high variance setting. Table 5.3 summarizes the runtimes of the
optimization procedures and the objective function values (ofv) for all four estimation
methods. The ofv for the estimators is always better (i.e. smaller for Methods (M1)
and (M4), larger for Methods (M2) and (M3)) than for the true parameters and im-
proves in the order of ten with increasing time horizon of the same order. As to be
expected, Method (M1) has by far the shortest runtime and Method (M3) is always con-
siderably faster than Method (M2). For increasing time horizon, the computation times
for Methods (M1) and (M4) remain approximately the same, whereas for Methods (M2)
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and (M3) computation takes considerably longer due to the increasing number of terms
in the objective function. Hence, while Method (M2) is quicker than Method (M4) for
a short time-horizon, Method (M4) is much quicker in the long run. In the case of high
subordinator variance, runtimes for Methods (M1) and (M2) are almost unchanged com-
pared to the low variance case (even slightly faster); Method (M3), however, gets faster
due to the on average lower number of observations and Method (M4) slows down as the
expected jump size and, thus, the number of terms in the objective function increases.

(M1) (M2) (M3) (M4)
T 1 10 1 10 1 10 1 10

runtime low 0.456 0.423 39.5 227 9.45 60.8 75.1 73.8
high 0.439 0.413 34.3 211 2.95 30.8 127 118

ofv low 0.268 0.0234 -574 -5750 337 3340 1.78 0.164
high 0.0559 0.00617 -413 -4180 13.9 125 0.257 0.0201

Table 5.3 Runtime and ofv for inverse Gaussian subordinator (no drift): The
table summarizes runtimes and objective function values (ofv) for the estima-
tion Methods (M1)�(M4) in the setting with an inverse Gaussian subordinator
(without drift) with low and high variance and for short and long time hori-
zon. The runtime is expressed in minutes and all quantities are given with 3
signi�cant digits.

The estimation results for the low and high variance setting are summarized in Tables 5.4
and 5.5, respectively. Boxplots can be found in Figures A.1�A.4 in the Appendix A. Over-
all, the estimators are on average close to the true parameter values, i.e. the relative bias
is small. The highest deviations occur for the estimators of the subordinator parameter β
for the short time horizon, in particular for Method (M1). The rbias for the subordinator
parameter increases in the high variance case for Methods (M1)�(M3), whereas for the
intensities the deviations tend to decrease. For Method (M4) it is often the other way
round.

The estimated parameters from Methods (M2) and (M3) are very close to each other,
in particular for the intensities. The root-mean-squared di�erence between the estim-
ators from these two methods are given in Table 5.6 (see Table A.1 in Section A for
the other methods). There it can be seen that the estimators for the intensities are
almost identical; more precisely, they are both very close to the moment estimators of
the intensities that were chosen as initial values. For the subordinator parameter β, the
di�erence is more pronounced, in particular for the short time horizon in the low vari-
ance setting. In terms of the rmse, β̂M3 tends to be closer to the real parameter than β̂M2.

The rmse of all estimates is lowest for Method (M3). In the low variance setting,
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λ1 = 50 λ2 = 75 λ3 = 100 β = 14.5
T 1 10 1 10 1 10 1 10

Ê (M1) 51.899 50.270 78.803 75.434 104.908 100.654 15.524 14.615
(M2) 50.224 50.196 75.868 75.030 100.386 100.184 14.786 14.539
(M3) 50.224 50.197 75.868 75.030 100.386 100.184 14.699 14.510
(M4) 49.993 50.252 75.745 75.036 99.983 100.175 14.743 14.508

ˆstd (M1) 10.769 3.300 14.608 4.450 22.020 6.134 2.894 0.891
(M2) 7.759 2.540 9.559 3.104 12.032 3.871 1.992 0.659
(M3) 7.759 2.540 9.559 3.104 12.032 3.871 1.598 0.525
(M4) 9.720 3.069 12.150 3.782 13.693 4.531 1.775 0.562

ˆrbias (%) (M1) 3.798 0.540 5.071 0.578 4.908 0.654 7.062 0.794
(M2) 0.448 0.393 1.157 0.040 0.386 0.184 1.971 0.268
(M3) 0.448 0.393 1.157 0.040 0.386 0.184 1.375 0.068
(M4) −0.015 0.503 0.994 0.049 −0.017 0.175 1.679 0.054

ˆrmse (M1) 10.935 3.311 15.095 4.472 22.561 6.168 3.070 0.898
(M2) 7.763 2.548 9.599 3.104 12.038 3.875 2.013 0.660
(M3) 7.762 2.548 9.598 3.104 12.038 3.875 1.610 0.525
(M4) 9.720 3.079 12.173 3.782 13.693 4.535 1.792 0.562

Table 5.4 Estimation results for low variance inverse Gaussian subordinator (no drift): The table presents the
Monte Carlo estimates for mean, standard deviation, relative bias, and root-mean-square error of all parameter
estimators in case of the low variance inverse Gaussian subordinator without drift for short and long time horizon.
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λ1 = 50 λ2 = 75 λ3 = 100 β = 4.5
T 1 10 1 10 1 10 1 10

Ê (M1) 50.221 50.116 76.385 75.259 101.602 100.001 5.151 4.601
(M2) 49.945 50.063 75.368 75.028 99.778 99.833 4.645 4.520
(M3) 49.944 50.066 75.367 75.032 99.777 99.838 4.616 4.514
(M4) 53.110 50.113 79.952 75.334 105.965 100.479 4.555 4.497

ˆstd (M1) 14.357 4.551 21.878 6.360 26.817 8.304 1.110 0.414
(M2) 13.840 4.135 20.295 5.827 25.385 7.871 0.811 0.246
(M3) 13.839 4.136 20.295 5.828 25.385 7.872 0.767 0.236
(M4) 24.928 6.168 34.717 8.277 44.161 11.034 1.041 0.291

ˆrbias (%) (M1) 0.441 0.233 1.847 0.346 1.602 0.001 14.475 2.234
(M2) −0.110 0.127 0.491 0.038 −0.222 −0.167 3.222 0.441
(M3) −0.111 0.132 0.490 0.043 −0.223 −0.162 2.580 0.312
(M4) 6.220 0.226 6.602 0.446 5.965 0.479 1.230 −0.073

ˆrmse (M1) 14.359 4.552 21.922 6.365 26.864 8.304 1.287 0.426
(M2) 13.840 4.136 20.298 5.827 25.385 7.873 0.823 0.247
(M3) 13.840 4.137 20.298 5.828 25.386 7.874 0.776 0.236
(M4) 25.122 6.169 35.068 8.284 44.562 11.044 1.042 0.291

Table 5.5 Estimation results for high variance inverse Gaussian subordinator (no drift): The table presents the
Monte Carlo estimates for mean, standard deviation, relative bias, and root-mean-square error of all parameter
estimators in case of the high variance inverse Gaussian subordinator without drift for short and long time horizon.
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Method (M1) consistently performs worst; in the high variance setting, however, the
Method (M4) has higher rmse for the intensities. Method (M2) outperforms Meth-
ods (M1) and (M4) where the intensities are concerned; for the subordinator parameter,
Method (M2) does better than Method (M1), but Method (M4) has a lower rmse in
case of low subordinator variance. For increasing time horizon from one to ten, the rmse
overall tends to decrease roughly as

√
10, i.e. it increases in square-root w.r.t. time. For

the intensity estimators of Method (M4) in the high variance setting, which are rather
o� for the short time horizon, the improvement is stronger. Finally, the rmse for the
intensities is smaller in the low variance setting, but for the subordinator parameter all
methods perform better in the high variance case. For an additional comparison in terms
of the Pitman closeness criterion, i.e. the probability that the absolute deviation for one
method is smaller than for another, see Table A.2.

λ1 λ2 λ3 β
T 1 10 1 10 1 10 1 10

low 0.000797 0.00209 0.00120 0.00262 0.00165 0.00314 1.21 0.384
high 0.00302 0.00478 0.00478 0.00708 0.00595 0.00926 0.222 0.0638

Table 5.6 Di�erence between estimators from Methods (M2) and (M3) for in-
verse Gaussian subordinator (no drift): The table presents the root-
mean- squared di�erence between the estimators from the two Methods (M2)
and (M3) in case of an inverse Gaussian subordinator without drift in the
setting with low and high variance as well as for short and long time horizon
(3 signi�cant digits).

The subordinator parameter is mainly responsible for the degree of dependence in the
model and, in general, strong positive dependence often aids the estimation of the respect-
ive parameters. In (Joe, 2014, Chapter 5.7, pp.234), the Kullback�Leibler divergence,
which measures the di�erence between two densities, is employed to determine the sample
size necessary to distinguish between di�erent models with a given high probability. If
applied to copula models, it is shown that for weak positive dependence this sample size is
higher, i.e. it is harder to discriminate between models. In addition, it is also pointed out
that discrete distributions overall require a much larger sample size than continuous ones.

Table 5.7 presents the p-values of a chi-squared goodness-of-�t test for normality of the
estimators. For the short time-horizon T = 1, the null hypothesis of normality has to be
rejected for a signi�cance level α = 5% in many cases. For low subordinator variance,
the intensity estimators of Method (M4) and two of the intensity estimators of Meth-
ods (M2) and (M3) test positive. In the high variance case, the hypothesis of normality
has to be rejected in all cases but for β̂M2. For the longer time-horizon T = 10, however,
the null hypothesis cannot be rejected for any estimator. Figures 5.1�5.4 show qq-plots
for all estimators to illustrate how closely their distributions resemble the normal distri-
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bution: for T = 10, the estimator quantiles closely match the normal quantiles, whereas
for T = 1 deviations still appear in the tails, in particular in the high variance setting.
These deviations are not surprising, considering that the parameter space is restricted
to the positive line: the variance of the estimators needs to be small in order for the
distribution to be close to the normal distribution.

λ1 = 50 λ2 = 75 λ3 = 100 β = 14.5/4.5
T 1 10 1 10 1 10 1 10

(M1) low 0.00 0.28 0.03 0.07 0.00 0.66 0.00 0.13
high 0.00 0.33 0.00 0.24 0.00 0.59 0.00 0.75

(M2) low 0.03 0.42 0.35 0.54 0.83 0.66 0.00 0.41
high 0.00 0.33 0.00 0.26 0.00 0.62 0.07 0.69

(M3) low 0.03 0.42 0.35 0.54 0.83 0.66 0.00 0.43
high 0.00 0.34 0.00 0.22 0.00 0.54 0.00 0.59

(M4) low 0.17 0.25 0.33 0.54 0.76 0.18 0.00 0.15
high 0.00 0.14 0.00 0.15 0.00 0.36 0.01 0.22

Table 5.7 Chi-squared test for inverse Gaussian subordinator (no drift): The
table presents the p-values of a chi-squared goodness-of-�t test for normality
of the estimators in case of the inverse Gaussian subordinator without drift
in the setting with low and high variance as well as for short and long time
horizon.

Setting: inverse Gaussian subordinator with drift

In the case of the model speci�ed with an inverse Gaussian subordinator with drift, the
initial parameters calculated as discussed in Remark 5.6 turn out to be invalid in about
20% (low variance) and 40% (high variance) of the simulation runs for T = 1, mainly
due to the requirements on the drift. For T = 10, the parameters only fail once and ten
times in the 500 runs, respectively. However, the ofv after the optimization is again in
all scenarios and for all estimation methods better than for the true parameters, also in
case of default initial values. Compared to the setting without drift, the runtime of the
optimization routines increases, but the qualitative behaviour remains the same. The
values can be found in Table 5.8.

Estimated mean, std, rmse, and bias of the estimators are summarized in Tables 5.9
and 5.10. For boxplots, see Figures A.5�A.8. In the low variance case, the quality of the
intensity estimators is not too di�erent from the setting without drift; for the subordin-
ator parameter β, however, rbias and rmse mostly increase. In particular, the rbias for
Methods (M2)�(M4) for T = 1 is considerably higher, roughly of order 10 or more, and
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Figure 5.1 qq-plots of intensity estimators for low variance inverse Gaussian

subordinator (no drift): The �gure illustrates qq-plots of the intensity
estimators in case of the low variance inverse Gaussian subordinator without
drift for short and long time horizon.

154



5 Estimation

−5 0 5

10

20

30

N(0,1) quantiles

q
u
a
n
ti
le
s
o
f
β̂
M

1
(T

=
1
)

−5 0 5
10

15

20

N(0,1) quantiles

q
u
a
nt
il
es

o
f
β̂
M

1
(T

=
1
0
)

−5 0 5

10

20

30

N(0,1) quantiles

q
u
a
nt
il
es

o
f
β̂
M

2
(T

=
1
)

−5 0 5
10

15

20

N(0,1) quantiles

q
u
a
nt
il
es

o
f
β̂
M

2
(T

=
1
0
)

−5 0 5

10

20

30

N(0,1) quantiles

q
u
a
nt
il
es

o
f
β̂
M

3
(T

=
1
)

−5 0 5
10

15

20

N(0,1) quantiles

q
u
a
nt
il
es

o
f
β̂
M

3
(T

=
1
0
)

−5 0 5

10

20

30

N(0,1) quantiles

q
u
a
n
ti
le
s
o
f
β̂
M

4
(T

=
1
)

−5 0 5
10

15

20

N(0,1) quantiles

q
u
a
nt
il
es

o
f
β̂
M

4
(T

=
1
0
)

Figure 5.2 qq-plots of subordinator estimators for low variance inverse Gaus-

sian subordinator (no drift): The �gure illustrates qq-plots of the estim-
ators for the subordinator parameter β in case of the low variance inverse
Gaussian subordinator without drift for short and long time horizon.

155



5 Estimation

−5 0 5
0

50

100

150

200

N(0,1) quantiles

q
u
a
nt
il
es

o
f
λ̂
M

1
(T

=
1
)

 

 
λ̂
M1
1

λ̂
M1
2

λ̂
M1
3

−5 0 5

50

100

150

N(0,1) quantiles

q
u
a
nt
il
es

o
f
λ̂
M

1
(T

=
1
0
)

 

 
λ̂
M1
1

λ̂
M1
2

λ̂
M1
3

−5 0 5
0

50

100

150

200

N(0,1) quantiles

q
u
a
nt
il
es

o
f
λ̂
M

2
(T

=
1
)

 

 
λ̂
M2
1

λ̂
M2
2

λ̂
M2
3

−5 0 5

50

100

150

N(0,1) quantiles
q
u
a
n
ti
le
s
o
f
λ̂
M

2
(T

=
1
0
)

 

 
λ̂
M2
1

λ̂
M2
2

λ̂
M2
3

−5 0 5
0

50

100

150

200

N(0,1) quantiles

q
u
a
nt
il
es

o
f
λ̂
M

3
(T

=
1
)

 

 
λ̂
M3
1

λ̂
M3
2

λ̂
M3
3

−5 0 5

50

100

150

N(0,1) quantiles

q
u
a
nt
il
es

o
f
λ̂
M

3
(T

=
1
0
)

 

 
λ̂
M3
1

λ̂
M3
2

λ̂
M3
3

−5 0 5
0

50

100

150

200

N(0,1) quantiles

q
u
a
nt
il
es

o
f
λ̂
M

4
(T

=
1
)

 

 
λ̂
M4
1

λ̂
M4
2

λ̂
M4
3

−5 0 5

50

100

150

N(0,1) quantiles

q
u
a
nt
il
es

o
f
λ̂
M

4
(T

=
1
0
)

 

 
λ̂
M4
1

λ̂
M4
2

λ̂
M4
3

Figure 5.3 qq-plots of intensity estimators for high variance inverse Gaussian

subordinator (no drift): The �gure illustrates qq-plots of the intensity es-
timators in case of the high variance inverse Gaussian subordinator without
drift for short and long time horizon.
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Figure 5.4 qq-plots of subordinator estimators for high variance inverse Gaus-

sian subordinator (no drift): The �gure illustrates qq-plots of the estim-
ators for the subordinator parameter β in case of the high variance inverse
Gaussian subordinator without drift for short and long time horizon.
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(M1) (M2) (M3) (M4)
T 1 10 1 10 1 10 1 10

runtime low 0.709 0.526 70.1 415 17.4 118 116 114
high 0.727 0.526 75.2 597 13 104 209 154

ofv low 0.385 0.0273 -575 -5780 430 4290 0.872 0.0849
high 0.128 0.00893 -482 -4860 246 2460 0.195 0.0144

Table 5.8 Runtime and ofv for inverse Gaussian subordinator with drift: The
table summarizes runtimes and objective function values (ofv) for the estima-
tion Methods (M1)�(M4) in the setting with an inverse Gaussian subordinator
with drift, low as well as high variance and for short and long time horizon.
The runtime is expressed in minutes and all quantities are given with 3 sig-
ni�cant digits.

for Method (M1) the bias even increases for the longer time horizon. For the drift, the
rbias of Methods (M1) and (M2) is rather high (approximately 14% in the former and
−15% in the latter case) for T = 1; for Method (M2) it strongly improves for the longer
time horizon, but for Method (M1) it changes to approximately −12%. The rmse of the
drift, however, is low for all estimation methods.

In the setting with high variance, it is particularly obvious that Method (M1) struggles
to accurately capture the subordinator parameters. Conversely, Method (M4) works well
for the subordinator parameters but is far o� for the intensities in the short run, though it
strongly improves for the longer time horizon. This is mainly due to outliers, as can be see
in the accompanying boxplot in Figure A.7. Calculating the median of the Monte Carlo
samples as a robust estimator rather than the mean, the values improve considerably,
see Table 5.11. A robust estimator for the rmse can be computed as follows:

ˆrmserob(λ̂i) :=
[
( ˆmedian(λ̂i)− λi)2 +

( ˆmedian(| ˆmedian(λ̂i)− λ̂i|)
Φ−1(3

4)

)2] 1
2
,

where Φ(·) denotes the cumulative normal distribution function. The ˆrmserob for the
intensity estimators from Method (M4) are also given in Table 5.11. Though these errors
are still highest among all methods, they are much lower than before. For a detailed dis-
cussion of robust statistics see Huber and Ronchetti (2009). Methods (M2) and (M3) are
again almost indistinguishable for the intensities and close for the subordinator paramet-
ers with a slight edge for Method (M3), see also Table A.3 containing the rmse for the
di�erences between the estimators from all methods. The results of the Pitman closeness
criterion are summarized in Table A.4.
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λ1 = 50 λ2 = 75 λ3 = 100 d = 0.4 β = 6.9
T 1 10 1 10 1 10 1 10 1 10

Ê (M1) 51.687 50.068 78.463 75.803 106.385 100.704 0.455 0.351 7.262 7.976
(M2) 49.550 49.880 74.572 75.230 100.358 100.248 0.341 0.394 8.791 7.058
(M3) 49.550 49.880 74.572 75.230 100.358 100.248 0.370 0.395 7.950 7.002
(M4) 50.405 49.925 76.450 75.334 102.895 100.380 0.374 0.397 7.680 6.938

ˆstd (M1) 11.772 3.522 18.639 5.016 21.939 6.587 0.282 0.107 4.936 2.159
(M2) 7.374 2.549 10.207 2.994 11.524 3.899 0.191 0.059 4.646 1.194
(M3) 7.374 2.550 10.207 2.994 11.524 3.899 0.116 0.035 3.135 0.820
(M4) 9.774 2.921 14.706 3.413 18.459 4.492 0.137 0.038 4.192 0.980

ˆrbias (%) (M1) 3.374 0.136 4.618 1.071 6.385 0.704 13.740 −12.168 5.245 15.597
(M2) −0.900 −0.240 −0.571 0.306 0.358 0.248 −14.861 −1.602 27.404 2.284
(M3) −0.900 −0.239 −0.571 0.307 0.358 0.248 −7.385 −1.179 15.212 1.475
(M4) 0.809 −0.150 1.933 0.446 2.895 0.380 −6.390 −0.724 11.299 0.551

ˆrmse (M1) 11.892 3.522 18.958 5.080 22.849 6.625 0.287 0.117 4.950 2.413
(M2) 7.388 2.552 10.216 3.003 11.529 3.907 0.200 0.060 5.016 1.205
(M3) 7.387 2.552 10.216 3.003 11.529 3.907 0.119 0.035 3.306 0.826
(M4) 9.782 2.922 14.777 3.430 18.684 4.508 0.140 0.038 4.264 0.980

Table 5.9 Estimation results for low variance inverse Gaussian subordinator with drift: The table presents the
Monte Carlo estimates for mean, standard deviation, relative bias, and root-mean-square error of all parameter
estimators in case of the low variance inverse Gaussian subordinator with drift for short and long time horizon.
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λ1 = 50 λ2 = 75 λ3 = 100 d = 0.4 β = 2.1
T 1 10 1 10 1 10 1 10 1 10

Ê (M1) 50.653 50.120 77.278 75.478 101.462 100.405 0.409 0.271 3.106 3.018
(M2) 49.982 49.969 74.944 75.215 98.969 100.200 0.395 0.398 2.516 2.139
(M3) 49.983 49.971 74.944 75.216 98.969 100.203 0.409 0.400 2.332 2.120
(M4) 78.216 51.697 117.093 77.563 155.561 103.679 0.340 0.391 2.110 2.088

ˆstd (M1) 13.775 4.807 20.099 6.791 26.869 8.720 0.284 0.109 2.245 0.879
(M2) 12.637 4.133 17.819 5.992 24.270 7.856 0.106 0.036 1.105 0.247
(M3) 12.638 4.133 17.819 5.992 24.271 7.856 0.095 0.032 0.790 0.195
(M4) 63.145 7.364 95.720 11.105 124.334 14.572 0.145 0.045 1.275 0.357

ˆrbias (%) (M1) 1.305 0.241 3.037 0.638 1.462 0.405 2.300 −32.192 47.887 43.735
(M2) −0.035 −0.062 −0.075 0.286 −1.031 0.200 −1.197 −0.404 19.789 1.869
(M3) −0.034 −0.059 −0.074 0.289 −1.031 0.203 2.221 0.048 11.027 0.956
(M4) 56.433 3.393 56.124 3.417 55.561 3.679 −14.985 −2.143 0.458 −0.579

ˆrmse (M1) 13.790 4.808 20.228 6.808 26.909 8.730 0.284 0.169 2.460 1.272
(M2) 12.637 4.133 17.819 5.996 24.292 7.859 0.106 0.036 1.181 0.250
(M3) 12.638 4.133 17.820 5.996 24.293 7.859 0.096 0.032 0.824 0.196
(M4) 69.162 7.557 104.566 11.397 136.183 15.029 0.157 0.046 1.275 0.357

Table 5.10 Estimation results for high variance inverse Gaussian subordinator with drift: The table presents the
Monte Carlo estimates for mean, standard deviation, relative bias, and root-mean-square error of all parameter
estimators in case of the high variance inverse Gaussian subordinator with drift for short and long time horizon.
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The p-values of a chi-squared goodness-of-�t test for normality of the estimators are
summarized in Table 5.12. For the short time horizon, the null hypothesis has to be
rejected in almost all cases. For T = 10, the p-values mostly increase and in many cases
normality can no longer be rejected for the signi�cance level α = 5%. The results are
con�rmed in the qq-plots in Figures 5.5�5.10. However, in the low variance setting the
estimators of the �rst two intensities from Method (M1) as well as the β estimators from
Methods (M1)�(M3) still signi�cantly deviate from the normal distribution; in the high
variance setting, normality has to be rejected for the intensity estimators of Method (M4)
and the β estimator of Method (M1).

λ1 λ2 λ3

T 1 10 1 10 1 10

ˆmedian 56.114 51.008 80.384 75.463 107.321 101.772

ˆrmserob 26.592 6.077 35.298 9.911 44.462 12.612

Table 5.11 Estimated median and robust rmse for intensity estimators from

Method (M4): The table presents the estimated median and the robustly
estimated rmse for the intensity estimators from Method (M4) in the case
of an inverse Gaussian subordinator with drift and high variance.

parameter λ1 = 50 λ2 = 75 λ3 = 100 β = 6.9/2.1
T 1 10 1 10 1 10 1 10

(M1) low 0.00 0.03 0.00 0.03 0.00 0.16 0.01 0.02
high 0.00 0.33 0.00 0.23 0.00 0.52 0.00 0.00

(M2) low 0.24 0.78 0.01 0.67 0.05 0.92 0.00 0.02
high 0.00 0.13 0.00 0.12 0.00 0.76 0.00 0.07

(M3) low 0.20 0.89 0.00 0.67 0.04 0.93 0.00 0.00
high 0.00 0.19 0.00 0.12 0.00 0.75 0.00 0.40

(M4) low 0.00 0.34 0.00 0.89 0.00 0.47 0.00 0.54
high 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.13

Table 5.12 Chi-squared test for inverse Gaussian subordinator with drift: The
table presents the p-values of a chi-squared goodness-of-�t test for normality
of the estimators in case of the inverse Gaussian subordinator with drift in
the setting with low and high variance as well as for short and long time
horizon.
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Figure 5.5 qq-plots of intensity estimators for low variance inverse Gaussian

subordinator with drift: The �gure illustrates qq-plots of the intensity
estimators in case of the low variance inverse Gaussian subordinator with
drift for short and long time horizon.
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Figure 5.6 qq-plots of subordinator drift estimators for low variance inverse

Gaussian subordinator with drift: The �gure illustrates qq-plots of the
estimators for the subordinator drift b in case of the low variance inverse
Gaussian subordinator with drift for short and long time horizon.
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Figure 5.7 qq-plots of subordinator β estimators for low variance inverse

Gaussian subordinator with drift: The �gure illustrates qq-plots of
the estimators for the subordinator parameter β in case of the low variance
inverse Gaussian subordinator with drift for short and long time horizon.

164



5 Estimation

−5 0 5
0

50

100

150

200

N(0,1) quantiles

q
u
a
nt
il
es

o
f
λ̂
M

1
(T

=
1
)

 

 
λ̂
M1
1

λ̂
M1
2

λ̂
M1
3

−5 0 5

50

100

150

N(0,1) quantiles

q
u
a
nt
il
es

o
f
λ̂
M

1
(T

=
1
0
)

 

 
λ̂
M1
1

λ̂
M1
2

λ̂
M1
3

−5 0 5
0

50

100

150

200

N(0,1) quantiles

q
u
a
nt
il
es

o
f
λ̂
M

2
(T

=
1
)

 

 
λ̂
M2
1

λ̂
M2
2

λ̂
M2
3

−5 0 5

50

100

150

N(0,1) quantiles

q
u
a
nt
il
es

o
f
λ̂
M

2
(T

=
1
0
)

 

 
λ̂
M2
1

λ̂
M2
2

λ̂
M2
3

−5 0 5
0

50

100

150

200

N(0,1) quantiles

q
u
a
nt
il
es

o
f
λ̂
M

3
(T

=
1
)

 

 
λ̂
M3
1

λ̂
M3
2

λ̂
M3
3

−5 0 5

50

100

150

N(0,1) quantiles

q
u
a
nt
il
es

o
f
λ̂
M

3
(T

=
1
0
)

 

 
λ̂
M3
1

λ̂
M3
2

λ̂
M3
3

−5 0 5
0

50

100

150

200

N(0,1) quantiles

q
u
a
nt
il
es

o
f
λ̂
M

4
(T

=
1
)

 

 
λ̂
M4
1

λ̂
M4
2

λ̂
M4
3

−5 0 5

50

100

150

N(0,1) quantiles

q
u
a
nt
il
es

o
f
λ̂
M

4
(T

=
1
0
)

 

 
λ̂
M4
1

λ̂
M4
2

λ̂
M4
3

Figure 5.8 qq-plots of intensity estimators for high variance inverse Gaussian

subordinator with drift: The �gure illustrates qq-plots of the intensity
estimators in case of the high variance inverse Gaussian subordinator with
drift for short and long time horizon.

165



5 Estimation

−5 0 5
−1

−0.5

0

0.5

1

1.5

N(0,1) quantiles

q
u
a
nt
il
es

o
f
b̂
M

1
(T

=
1
)

−5 0 5

0

0.2

0.4

0.6

N(0,1) quantiles

q
u
a
nt
il
es

o
f
b̂
M

1
(T

=
1
0
)

−5 0 5
−1

−0.5

0

0.5

1

1.5

N(0,1) quantiles

q
u
a
nt
il
es

o
f
b̂
M

2
(T

=
1
)

−5 0 5

0

0.2

0.4

0.6

N(0,1) quantiles
q
u
a
n
ti
le
s
o
f
b̂
M

2
(T

=
1
0
)

−5 0 5
−1

−0.5

0

0.5

1

1.5

N(0,1) quantiles

q
u
a
n
ti
le
s
o
f
b̂
M

3
(T

=
1
)

−5 0 5

0

0.2

0.4

0.6

N(0,1) quantiles

q
u
a
nt
il
es

o
f
b̂
M

3
(T

=
1
0
)

−5 0 5
−1

−0.5

0

0.5

1

1.5

N(0,1) quantiles

q
u
a
nt
il
es

o
f
b̂
M

4
(T

=
1
)

−5 0 5

0

0.2

0.4

0.6

N(0,1) quantiles

q
u
a
nt
il
es

o
f
b̂
M

4
(T

=
1
0
)

Figure 5.9 qq-plots of subordinator drift estimators for high variance inverse

Gaussian subordinator with drift: The �gure illustrates qq-plots of the
estimators for the subordinator drift b in case of the high variance inverse
Gaussian subordinator with drift for short and long time horizon.
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Figure 5.10 qq-plots of subordinator β estimators for high variance inverse

Gaussian subordinator with drift: The �gure illustrates qq-plots of the
estimators for the subordinator parameter β in case of the high variance
inverse Gaussian subordinator with drift for short and long time horizon.
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Summary

Though no estimation method consistently outperforms all the others, the maximum
likelihood-based Methods (M2) and (M3) have in this study produced the overall most
reliable estimates. Whereas the intensity estimators from these two methods were in
all settings almost equal, Method (M3) performed slightly better for the subordinator
parameters and, in addition, is considerably less computationally expensive. However,
Method (M3) requires that the cluster sizes are precisely monitored (the arrival times
are not necessary), i.e. it is necessary to di�erentiate exactly which claims belong to the
same clusters, a requirement that cannot always be ful�lled in real-world applications,
as will be seen, for instance, in the following section. Method (M1) is the fastest of all
methods, but had often di�culties producing the correct subordinator parameters. The
usefulness of Method (M4) strongly depended on a su�ciently long observation period;
otherwise the method struggled with outliers for the intensity estimators.

Finally, if time-normalization is assumed, it is reasonable to set the intensities upfront to
the sample mean, which produced good estimates, and determine only the subordinator
parameters from the presented estimation methods. This way the dimensionality of the
optimization problems is greatly reduced, particularly in high-dimensional applications,
which leads not only to a signi�cant reduction in computation time, but most likely also
to more robustness of the optimization routine. The intensity estimators from Meth-
ods (M2) and (M3) were always close to the sample mean anyway and Methods (M1)
and (M4) performed worse rather than better. Without time-normalization, however,
the full optimization problem needs to be solved.
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5.3 Real-world data example

In this section, the estimation methods developed and tested in the previous sections are
applied to real-world claim arrival data, namely the well-known Danish �re insurance
data (see www.macs.hw.ac.uk/ mcneil/data.html). For the period 01/1980 to 12/1990,
the day of occurrence and the total losses in the categories building, content, and pro�t
of 2167 �re events are recorded. To �t Model (M), d = 3, to the �re data, Meth-
ods (M1) and (M2) can be straightforwardly employed using a daily observation grid.
Methods (M3) and (M4) can only be applied under the assumption that the simultan-
eous occurrences of claims were precisely recorded as such. The claim cluster sizes in
the categories building, content, and pro�t vary between zero and �ve for the �rst two
categories, and between zero and three for the latter. For the aggregate process, the
cluster sizes lie between one and eleven and the total number of cluster arrivals is 1645.
Figure 5.11 illustrates the three claim number processes as well as their cluster arrivals.
For the categories buildings and content, the claim number processes appear almost lin-
ear which �ts the Lévy nature of the proposed model. Furthermore, large clusters tend
to appear simultaneously, as severe �re events mostly cause high damages in all categor-
ies. Hence, a common source of randomness represented through the Lévy subordinator
seems like a reasonable modelling approach. In the pro�ts category, the observations ap-
pear to suggest a trend towards higher cluster sizes over time. Since such a trend cannot
be covered with the presented model, a suitable model extension, as will be discussed in
Section 6.2, may be necessary.

Figure 5.12 shows the monthly moving average of the daily process increments as well
as the sample autocorrelation function up to a one-year lag for all categories. The plot
con�rms that no strong trend is apparent for the categories building and content, but a
slight upward trend is present in the pro�t data. Furthermore, no serial correlation is
revealed for any of the three categories, which supports the Lévy assumption. According
to the model, the multivariate cluster arrival times are generated by a Poisson process,
thus the observed inter-arrival times should be iid exponentially distributed for the model
to be applicable. A histogram of the observations together with the estimated density of
an exponential distribution is plotted in Figure 5.13. The �t is not very convincing, but
this was to be expected since the arrival times are reported on a daily basis rather than
precisely.

In the presented modelling approach, the time-normalization Assumption (TN) is im-
posed and an inverse Gaussian and gamma subordinator are chosen for the time-change.
The data was �rst �tted to the models including a drift component for both subordin-
ator choices. Since only Method (M1) detected a non-zero drift, which was of order 10−6,
only the estimation results for the models with no subordinator drift are presented in
the following.
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Figure 5.11 Danish �re insurance data: The �gure illustrates the claim arrivals of
the Danish �re insurance data. The top charts shows the claim number
processes for the three categories building, content, and pro�t; the bottom
three charts present the cluster arrivals in each category.
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Figure 5.12 Moving average and autocorrelation of Danish �re insurance

data: The �gure illustrates the daily increments of the claim number pro-
cesses including the monthly moving average (left) and the autocorrelation
function up to a one-year lag (right) for the three categories building, con-
tent, and pro�t.
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Figure 5.13 Histogram of cluster inter-arrival times of Danish �re insurance

data: The �gure presents a histogram of the inter-arrival times of (mul-
tivariate) claim clusters in the Danish �re insurance data. The estimated
density of an exponential distribution is added to the plot in red.

The initial parameter determined as suggested in Remark 5.6 are valid in both settings;
the initial intensities are

λ̂0 = (180.909, 152.636, 56.000)′,

and the initial subordinator parameters for the inverse Gaussian and gamma case, re-
spectively, are

β̂IG0 = 15.163, β̂gamma0 = 229.910.

The estimation results for both subordinator choices and all four estimation methods
are summarized in Table 5.13. The intensity estimators for Methods (M1)�(M3) are, as
they should be, almost identical for the inverse Gaussian and the gamma setting. Fur-
thermore, the intensity estimators from the two maximum likelihood methods are again
close to the initial values, i.e. the sample mean, while the estimated intensities from
Method (M1) are a bit lower. Method (M4), however, does not produce reasonable es-
timators for λ1 and λ3 in the case of an inverse Gaussian subordinator. Hence, we restrict
our attention to the comparison of the results from Methods (M1)�(M3) in the following.
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5 Estimation

For the subordinator parameter, the estimators in the inverse Gaussian and gamma case
naturally di�er. In order to amount to the same subordinator variance, (βIG)2 = βgamma

needs to hold (cf. Table 4.4). This equality is approximately ful�lled for the estimators
of Method (M1), while for the two maximum likelihood methods there is some deviation.
Furthermore, in each subordinator setting, the β estimators of Methods (M1) and (M2)
are quite close, whereas the estimators from Method (M3) are considerably smaller. For
both subordinator choices, a smaller β value corresponds to a higher subordinator vari-
ance and, hence, larger expected cluster sizes (with lower intensities). As was mentioned
in the beginning of this section, Method (M3) (and Method (M4)) should only be applied
if all claim clusters are recorded separately; due to the daily data, however, it may be
the case that clusters occurring on the same day are aggregated and recorded as a single
cluster instead. If this was the case, it would lead to overestimating the cluster sizes and
could partly explain the discrepancy in the estimated subordinator parameters.

λ1 λ2 λ3 β

inverse Gaussian (M1) 149.178 143.371 55.394 11.497
(M2) 180.907 152.636 55.999 11.243
(M3) 180.909 152.636 56.000 6.826
(M4) 338.588 196.590 0.566 2.546

gamma (M1) 149.179 143.374 55.395 132.193
(M2) 180.906 152.632 55.999 148.969
(M3) 180.911 152.639 56.001 88.812
(M4) 178.634 119.212 8.942 53.997

Table 5.13 Estimation results Danish �re insurance data: The table presents
the estimators from Methods (M1)�(M4) for the Danish �re claim arrival
data for Model (M) with an inverse Gaussian and a gamma subordinator
(without drift) as time-change process.

Figure 5.14 illustrates the observed claim number processes in each category together
with sample paths from the models with an inverse Gaussian and a gamma subordin-
ator using the estimated parameters of Methods (M1)�(M3). The models based on the
gamma subordinator produce smoother paths compared to the inverse Gaussian case,
which better resembles the observed data. The paths for the categories building and
content that are sampled using the estimators from Method (M1) are very close to each
other for both subordinator choices, which is not in line with the observed relationship
between these two categories. As to be expected, being based on Lévy processes, no
setting can account for the observed non-linearity of the pro�t claim number process.
Overall, the sample paths from the gamma subordinator setting based on the estimated
parameters from Methods (M2) and (M3) seem to provide the best �t.

Studying the aggregate cluster sizes of the observed process as well as a sample of each
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Figure 5.14 Sample paths of Danish �re insurance data and �tted models:

The top chart shows the observed sample paths of the claim number pro-
cesses from the Danish �re insurance data in the three categories building,
content, and pro�t. The charts in the bottom three rows present sample
paths of the �tted models based on an inverse Gaussian (left) and a gamma
(right) subordinator using the estimated parameters from Methods (M1)�
(M3). (Method (M4) is excluded due to the in part unreliable estimation
results.)
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5 Estimation

�tted model illustrated in Figure 5.15, all models show a tendency to allow for higher
jump sizes than the ones observed, in the inverse Gaussian setting even more so than in
the gamma setting, which is in line with the less smooth sample paths. The e�ect is most
pronounced in the cluster sizes corresponding to the estimators from Method (M3). The
same observation holds true for the component-wise clusters presented in Figures A.27-
A.29 in the Appendix. Of course, higher jump sizes correspond to lower jump intensities,
as can be seen in Table 5.14. The individual jump intensities of each category are con-
siderably lower in all models compared to the observed values, in particular so for the
estimators from Method (M3). On the other hand, the joint jump intensities corres-
ponding to Methods (M1) and (M2) are much higher then they should be, whereas for
Method (M3) they �t almost perfectly. As the joint jumps are responsible for the de-
pendence between the components, it follows that the models based on the estimators
from Method (M3) more adequately capture the dependence structure in the data com-
pared to the other estimators, but for the price of a reduced �t to the marginal processes.
This observation is con�rmed when looking at the observed and theoretical component-
wise standard deviations and pairwise correlations presented in Table 5.15. All models
overestimate the standard deviations, but for the estimators from Method (M3) the de-
viation is highest. The correlations, however, are always underestimated but this time
Method (M3) outperforms the other two methods.

Overall, the gamma subordinator seems to o�er a better �t than the inverse Gaussian
subordinator, but in its basic form no model speci�cation is �exible enough to provide
a perfect �t to the Danish �re insurance data. As the subordinator in�uences both, the
variability of the marginal processes as well as the dependence structure, limitations exist
for the outcomes that can be generated in the model. Choosing the estimated parameters
from Methods (M1) or (M2) gives preference to a better �t of the marginal processes
compared to the dependence structure, whereas the estimators from Method (M3) should
be chosen if capturing the dependence structure is given higher priority compared to
matching the marginal processes. Introducing additional subordinators in the model-
ling approach, as will be discussed in Section 6.2, may provide the increased �exibility
necessary to overcome this trade-o� and describe the Danish �re insurance data more
comprehensively.
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Figure 5.15 Cluster sizes of aggregate Danish �re insurance data and �tted

models: The top chart shows the observed cluster sizes of the aggregate
claim number processes from the Danish �re insurance data. The charts in
the bottom three rows present sampled aggregate cluster sizes of the �tted
models based on an inverse Gaussian (left) and gamma (right) subordinator
using the estimated parameters from Methods (M1)�(M3). (Method (M4)
is excluded due to the in parts unreliable estimation results.)
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L1 L2 L3 L̄

observed 140.091 123.909 51.000 149.546

inverse Gaussian (M1) 123.354 108.285 47.475 214.886
(M2) 122.019 107.190 47.191 211.916
(M3) 91.352 81.447 39.368 149.546

gamma (M1) 113.986 101.475 46.691 181.488
(M2) 118.428 105.080 47.5391 191.437
(M3) 98.658 88.824 43.422 149.545

Table 5.14 Jump intensities of Danish �re insurance data and �tted models:

The table summarizes the observed jump intensities of the individual claim
number processes from the Danish �re insurance data in the three categories
building, content, and pro�t as well as for the joint/aggregate claim number
process. In addition, the theoretical jump intensities of the �tted models
with inverse Gaussian and gamma subordinator using the estimated para-
meters from Methods (M1)�(M3) are presented. (Method (M4) is excluded
due to the in part unreliable estimation results.)

std(.) Cor(., .) in %
L1

1 L2
1 L3

1 L1
1, L

2
1 L1

1, L
3
1 L2

1, L
3
1

observed 14.774 13.335 7.826 85.2 53.9 63.3

inverse Gaussian (M1) 17.819 17.288 8.866 52.5 39.6 39.2
(M2) 20.972 18.356 8.989 56.7 42.5 41.0
(M3) 29.721 25.548 11.104 78.1 65.9 64.7

gamma (M1) 17.819 17.288 8.866 52.5 39.6 39.2
(M2) 20.015 17.579 8.778 52.7 38.7 37.2
(M3) 23.440 20.371 9.556 65.1 50.9 49.4

Table 5.15 Standard deviation and correlation of Danish �re insurance data

and �tted models: The table summarizes the empirical standard devi-
ations and correlations of the individual claim number processes from the
Danish �re insurance data in the three categories building, content, and
pro�t. In addition, the theoretical quantities of the �tted models with in-
verse Gaussian and gamma subordinator using the estimated parameters
from Methods (M1)�(M3) are presented. (Method (M4) is excluded due to
the in part unreliable estimation results.)
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6 Applications and extensions

In Section 6.1 of this chapter, actuarial applications of the presented model are examined
in more detail. For this purpose, iid claim sizes are introduced and premium principles
and other actuarial risk measures are evaluated. The results are compared to those
stemming from a claim number process with independent Poisson marginals and, in ad-
dition, to those of a claim number process with the same Poisson cluster marginals as the
proposed model, but independence between the components. In Section 6.2, the model
extension with iid claim sizes is investigated in more detail and two more extensions are
introduced, namely a deterministic time-change and multivariate subordination. A de-
terministic time-change breaks up the stationarity of the process increments and o�ers,
for instance, the possibility to incorporate a seasonal e�ect in the model. Multivariate
subordination provides the �exibility to generate inhomogeneous marginals (beyond a
mere di�erence in the intensity parameters) and a wider variety of dependence struc-
tures. In addition, a time-dynamic version of the well-known CreditRisk+ model can be
formulated. All extensions, however, reduce the mathematical tractability of the model
and lead to an increased reliance on numerical evaluation methods.

6.1 Premium calculation and dependence ordering

Traditionally, the core business of insurance and reinsurance companies has been to sell
risk coverage. Pooling multiple risks, the insurer expects to pro�t from the diversi�cation
e�ect that makes the aggregate outcome of the portfolio less risky or volatile and, hence,
more manageable than the individual risks. Let random variables Xi ≥ 0, i ∈ N, describe
the individual risks and assume for simplicity that the risks are iid with mean µ and
variance σ2. Then the strong law of large numbers predicts that the normalized portfolio
outcome d−1

∑d
i=1Xi converges to µ for d→∞. In particular, in the limit the variance

Var[d−1
∑d

i=1Xi] = d−1σ2 is zero and the outcome becomes almost surely deterministic.
With dependencies between the risks, however, the law of large numbers in general
no longer holds and the portfolio may be signi�cantly riskier than in the independent
case: convergence may be slower and the limit may no longer be deterministic (cf. also
Section 4.3). More precisely, in general it holds for the portfolio variance:

Var
[1

d

d∑
i=1

Xi

]
=
σ2

d
+

2

d2

d∑
i=1

d∑
j=i+1

Cov[Xi, Xj ].
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6 Applications and extensions

If the risks are positively correlated with Cor[Xi, Xj ] = ρ > 0 for all i 6= j, it follows:

Var
[1

d

d∑
i=1

Xi

]
=
σ2

d
+
d(d− 1)

d2
ρσ2 =

σ2

d
+
(

1− 1

d

)
ρσ2 −→ ρσ2, d→∞.

Thus, neglecting dependence in the modelling approach leads to underestimating the
risks involved. In this thesis, a multivariate model for claim numbers has been presented
which incorporates arrivals of claim clusters as well as positive dependence. Hence, the
model predicts larger portfolio variance than independent Poisson models due to the in-
creased variance of each individual component and the positive correlation between the
di�erent components. Of course, variance (or correlation) is only one possible measure
of risk and does not account for the full dependence structure (see the discussion in
Section 4.1). In this section, the e�ect of the model on various actuarial risk measures
and in particular premium principles is studied and a comparison is made �rstly with
the basic independent Poisson model, excluding both dependence and cluster arrivals.
Secondly, a comparison is made with the process that features the same marginals, i.e.
incorporates component-wise cluster arrivals, but assumes independence and, hence, ex-
cludes the possibility of simultaneous claim arrivals in multiple components.

Let a random variable X ≥ 0 represent an actuarial risk. A premium principle Π is a
mapping that assigns X a non-negative value Π(X). The premium is thought of as the
�nancial compensation the insurer receives in return for taking on the risk X (excluding
any operational costs) and should be low enough to attract customers but high enough to
guarantee solvability and pro�tability of the insurer. In particular, premium principles
constitute risk measures and, hence, should assign higher values to perceived greater
risks. The net or actuarial premium is de�ned as the expectation E[X] of X (under
the physical measure P). Obviously, as the insurer has to cover the incoming claims
obligations, the actuarial premium has to be a lower bound on the premium charged to
the customers. Due to the uncertainty of X, the insurer needs to add a safety loading
Π(X)−E[X] > 0 to create a reserve for adverse outcomes and avoid ruin. If two risks have
the same expectation, the risk that has a thicker tailed distribution will be considered
less attractive since extreme outcomes are more likely. In general, a premium principle is
a function of the distribution function FX of X. For the various methods of developing
premium principles and a discussion of their respective properties, see (Rolski et al.,
1999, Chapter 3, pp.79), Goovaerts et al. (1984), and Bühlmann (1970). Some common
principles derived from the actuarial premium are:

expectation principle: Πe(X) = E[X] + θE[X],

variance principle: Πv(X) = E[X] + θVar[X],

standard deviation principle: Πs(X) = E[X] + θ
√
Var[X],
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6 Applications and extensions

where a suitable scaling parameter θ > 0 is chosen, for instance, from ruin probabilities
or solvency capital requirements. Often, premium principles are generated using utility
theory. Let w > 0 be the initial wealth and u(·) a utility function, i.e. a non-decreasing
and � given that risk aversion is plausible in this setting � concave function. Then the
so-called zero-utility premium is the solution of the following equation:

u(w −Π(X)) = E[u(w −X)].

The expectation principle can be embedded in this framework using a linear utility func-
tion and the exponential principle is de�ned via the utility u(x) = − exp{−θx} as:

exponential principle: Πex(X) =
1

θ
logE[exp{θX}].

The quantile principle directly considers the tail of the risk:

quantile principle: Πq(X) = F−1
X (1− ε) = V aRX(1− ε),

where 0 < ε < 1. The (1 − ε)-quantile of X, or value at risk with level p := 1 − ε, is
the amount that is not exceeded with (high) probability p. This risk measure is used in
the Solvency II regulatory framework to determine the required capital an insurer has to
hold in order to be able to pay incoming claims with high probability.

We start with considering a direct insurer facing actuarial risks X1, . . . , Xd ≥ 0. Each
risk may consist of a single policy, a portfolio of policies, or even a business line outcome

and is represented through a collective risk model. The claim sizes Zi1, Zi2, · · ·
d
= Zi ≥ 0

are assumed to be iid for each component i = 1, . . . , d and independent for di�erent com-
ponents. For the random vector consisting of the independent jump sizes, the notation
Z := (Z1, . . . , Zd)

′ is employed. As d-dimensional claim number process, three cases are
compared: the time-changed Poisson process Lt = (N1

Λt
, . . . , Nd

Λt
)′ which was introduced

in Model (M), the independent Poisson process Nt = (N1
t , . . . , N

d
t )′ used as building

block for Model (M), and the process Mt := (N1
Λ1
t
, . . . , Nd

Λdt
)′ with iid copies Λ1,Λ2, . . .

of Λ which has the same marginals as L but no dependence, cf. Section 4.3. All three
processes, as well as the respective aggregate processes L̄t =

∑d
i=1N

i
Λt
, N̄t =

∑d
i=1N

i
t ,

and M̄t =
∑d

i=1N
i
Λit
, have compound Poisson representations, which can be found in 6.1.

The table also contains the probability mass functions together with mean and variance
of the process distributions. The results for L and the univariate marginals M i of M
follow from Chapter 4 and the results for N and the vectorM are a consequence of the
space-time decomposition property of the compound Poisson process, see Remark 2.8. It
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should be noted that closed form expressions of the multivariate process and jump-size
distributions could be given in all three cases and the jump size distributions of the ag-
gregate processes are available in closed form as well. However, the distributions of the
aggregate processes can only be given for the claim number processes N and L. In case
of M , the distribution needs to be calculated, for instance, using Panjer's recursion �
which delivers precise results in this setting. However, as was discussed in Sections 4.1
and 4.2, it is often preferable to evaluate the formulas for the distributions of Lt and L̄t
using Panjer's recursion as well.

If Assumption (TN) holds, i.e. the �rst moment of the subordinator Λ exists and ful�ls
E[Λ1] = 1, the expected number of claims is identical for all three claim number processes.
The component-wise variance � assuming existence � of the Poisson cluster processes
L and M are also identical and, given time-normalization, exceed the variance of the
Poisson process N . However, as the components of L positively correlate whereas the
components of M are independent, the variance of the aggregate process L̄ exceeds the
variance of M̄ , w.l.o.g. in t = 1:

Var[L̄1] = |λ|+ Var[Λ1]|λ|2 ≥ Var[M̄1] = |λ|+ Var[Λ1]λ′λ ≥ Var[N̄1] = |λ|.

The �rst equality holds as the square of the sum |λ|2 is larger than (or equal to in di-
mension one) the sum of the squares λ′λ.
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distribution

in k ∈ Nd0
(−λ)k

k! ϕ
(|k|)
Λt

(|λ|) (−λ)k

k!

∏d
i=1 ϕ

(ki)
Λt

(λi)
λk

k! exp{−|λ|t}

agg. distribution

in k ∈ N0
(−|λ|)k
k! ϕ

(k)
Λt

(|λ|) Panjer |λ|k
k! exp{−|λ|t}

jump intensity ΨΛ(|λ|)
∑d

i=1 ΨΛ(λi) |λ|

jump distribution

in k ∈ Nd −(−λ)k

k!
Ψ

(|k|)
Λ (|λ|)
ΨΛ(|λ|)

∑d
i=1 1{kiei}(k)−(−λi)ki

ki!
Ψ

(ki)
Λ (λi)∑d

j=1 ΨΛ(λj)

∑d
i=1 1{ei}(k) λi|λ|

agg. jump distribution

in k ∈ N −(−|λ|)k
k!

Ψ
(k)
Λ (|λ|)

ΨΛ(|λ|)
∑d

i=1
−(−λi)k

k!
Ψ

(k)
Λ (λi)∑d

j=1 ΨΛ(λj)
1{1}(k)

mean tE[Λ1]λ tE[Λ1]λ tλ

agg. mean tE[Λ1]|λ| tE[Λ1]|λ| t|λ|

variance t(E[Λ1]λ+ Var[Λ1]λ2) t(E[Λ1]λ+ Var[Λ1]λ2) tλ

agg. variance t(E[Λ1]|λ|+ Var[Λ1]|λ|2) t(E[Λ1]|λ|+ Var[Λ1]λ′λ) t|λ|

Table 6.1 Comparison of characteristics of claim number processes L,M , and N : The table summarizes the
characteristics of the time-changed claim number process Lt, the processMt with the same marginal distributions
but independence, and the processNt with independent Poisson components, as well as the corresponding aggregate
processes L̄t, M̄t, and N̄t, t ≥ 0.
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The compound vector processes with secondary distributions Z1, . . . , Zd describes the
component-wise total claim amount, for instance in terms of L:

( L1
t∑

j=1

Z1j , . . . ,

Ldt∑
j=1

Zdj

)′
. (6.1)

Then the total portfolio outcome is the aggregate compound process
∑d

i=1

∑Lit
j=1 Zij .

The following theorem summarizes mean and (co-)variance of the compound vector and
aggregate process given the claim number process L.

Theorem 6.1 (Mean and variance of the compound process)
Let L be the d-dimensional claim number process speci�ed in Model (M) and let Z be a
d-dimensional random vector with independent, non-negative components. Then it holds
for mean and variance of the i-th compound process in Equation (6.1), i = 1, . . . , d, given
the �rst and second moment of the subordinator and claim size distribution exist:

E
[ Lit∑
j=1

Zij

]
= tλi E[Zi]E[Λ1], Var

[ Lit∑
j=1

Zij

]
= t(λi E[Z2

i ]E[Λ1] + λ2
i E[Zi]

2 Var[Λ1]).

The covariance between di�erent components i 6= k is:

Cov
[ Lit∑
j=1

Zij ,

Lkt∑
j=1

Zkj

]
=tE[Zi]E[Zk]λiλk Var[Λ1].

Mean and variance of the aggregate process are:

E
[ d∑
i=1

Lit∑
j=1

Zij

]
= tλ′ E[Z]E[Λ1],

Var
[ d∑
i=1

Lit∑
j=1

Zij

]
= t(λ′ E[Z2]E[Λ1] + Var[Λ1](λ′ E[Z])2).

Proof. Mean and variance of a compound sum exist if the �rst and second moment of
the primary and the secondary distribution exist. Then it holds for each component i:
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E
[ Lit∑
j=1

Zij

]
= E[Lit]E[Zi], Var

[ Lit∑
j=1

Zij

]
= E[Lit]Var[Zi] + Var[Lit]E[Zi]

2.

These results can be found using the tower rule for conditional expectations with con-
ditioning on the outcome of the claim number process L1

t as shown, for instance, in
(Mikosch, 2009, Chapter 3.1.1, p.73). It follows for the expectation using Table 6.1:

E
[ Lit∑
j=1

Zij

]
= tλi E[Zi]E[Λ1],

and for the variance:

Var
[ Lit∑
j=1

Zij

]
= tλi E[Λ1]Var[Zi] + t(λi E[Λ1] + λ2

i Var[Λ1])E[Zi]
2

= t(λi E[Z2
i ]E[Λ1] + λ2

i E[Zi]
2 Var[Λ1]).

Using the tower rule and exploiting the conditional independence of the marginal pro-
cesses, we compute for the mixed moment of two components i 6= k:

E
[ Lit∑
j=1

Zij

Lkt∑
j=1

Zkj

]
=E

[
E
[ Lit∑
j=1

Zij

Lkt∑
j=1

Zkj |σ(Li, Lk)
]]

=E
[
E
[ Lit∑
j=1

Zij |σ(Li)
]
E
[ Lkt∑
j=1

Zkj |σ(Lk)
]]

=E[Lit E[Zi]L
k
t E[Zk]] = E[Zi]E[Zk]E[LitL

k
t ].

Then it follows for the covariance:

Cov
[ Lit∑
j=1

Zij ,

Lkt∑
j=1

Zkj

]
=E

[ Lit∑
j=1

Zij

Lkt∑
j=1

Zkj

]
− E

[ Lit∑
j=1

Zij

]
E
[ Lkt∑
j=1

Zkj

]
=E[Zi]E[Zk](E[LitL

k
t ]− E[Lit]E[Lkt ])

=E[Zi]E[Zk]Cov[Lit, L
k
t ] = tE[Zi]E[Zk]λiλk Var[Λ1].
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Finally, the expectation of the aggregate compound Poisson process follows from sum-
mation of the component-wise expectations, and for the variance it holds:

Var
[ d∑
i=1

Lit∑
j=1

Zij

]
=

d∑
i=1

d∑
k=1

Cov
[ Lit∑
j=1

Zij ,

Lkt∑
j=1

Zkj

]

= t(λ′ E[Z2]E[Λ1] + Var[Λ1]

d∑
i=1

d∑
k=1

λiλk E[Zi]E[Zk])

= t(λ′ E[Z2]E[Λ1] + Var[Λ1](λ′ E[Z])2).

The mean and variance of the compound vector process w.r.t M are identical to the
respective values of the compound vector process w.r.t L. For the Poisson process N it
holds:

E
[ N i

t∑
j=1

Zij

]
= Var

[ N i
t∑

j=1

Zij

]
= λi E[Zi].

The expectation of the aggregate compound process is found from the summation of the
component-wise expectations and is, given time-normalization, identical in all three cases.
For both claim number processes N and M , the components of the compound vector
process are again independent. Hence, the covariance between the components is zero
and the variance of the aggregate compound process is the sum of the component-wise
variances. For N that is:

Var
[ d∑
i=1

N i
t∑

j=1

Zij

]
= tλ′ E[Z2],

and for M that is:

Var
[ d∑
i=1

M i
t∑

j=1

Zij

]
= t(λ′ E[Z2]E[Λ1] + (λ2)′ E[Z]2 Var[Λ1]).

In particular, it follows analogously to the case without compounding that the variance
in the model using the claim number process L exceeds the variance present in case of
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using M which in turn exceeds, given time-normalization (or E[Λ1] ≥ 1), the variance
in case of N .

If the risk of the direct insurer is the total portfolio outcome, then given time-normalization
the actuarial premium as well as the premium due to the expected value principle coin-
cide in all three cases as they are una�ected by variance or dependence. If, however, the
risks are compared using the variance or standard deviation principle, the premium in the
presence of dependence and cluster arrivals (i.e. for L) exceeds the premium in case of in-
dependence and cluster arrivals (i.e. forM) which in turn exceeds the premium if neither
dependence nor cluster arrivals are accounted for (i.e. for N). Putting it di�erently, if
dependence and cluster arrivals are present in the claim count data but neglected in the
modelling approach, the premium to be charged will likely be underestimated. The vari-
ance and standard deviation principles are only sensitive to the variance and covariance
of the compound process. Hence, choosing a model with the same marginal distributions
and the same correlations as L will result in the same premium. For the exponential
and quantile principle, this is in general no longer true. We will later see that for the
exponential premium as well as any zero-utility premium the same ordering holds as for
the variance and covariance principles, though generally not for the quantile principle.

If the risk is a non-linear function of the aggregate portfolio outcome, even the actuarial
premium is no longer una�ected by the dependence structure, which is particularly true
for non-proportional reinsurance contracts. Reinsurance represents a risk transfer from a
direct insurer (cedant) to another insurer. The direct insurer thereby converts uncertain
payments to its customers due to claims into �xed premium payments to the reinsurer.
For an introduction to reinsurance and its economic function see Liebwein (2009). In
proportional reinsurance contracts, the risk is split proportionally between the direct
insurer and the reinsurer. Here, the actuarial premium for the reinsurer is the respective
portion of the actuarial premium of the direct insurer; hence, we are basically back in the
case discussed previously for the direct insurer. For non-proportional reinsurance, the two
most prominent examples are per risk excess-of-loss and stop-loss contracts. In a per risk
excess-of-loss contract, the reinsurer covers of each incoming claim the portion exceeding
a speci�ed retention or priority r > 0 for the direct insurer. In a stop-loss contract, the
reinsurer covers the excess amount of the annual aggregate claims over a retention. With
these non-proportional contracts, the actuarial premium can no longer be directly derived
from the premium calculated by the direct insurer and a self-contained calculation for
the reinsurer is necessary. In experience rating, the reinsurer uses its previous claim
experience with a particular contract. Typically, extreme value theory comes into play
and the estimation is based on only a few observations. In exposure rating, the calculation
of the reinsurer is based on the direct insurer's portfolio. Assuming a collective approach
as before, the risk for the reinsurer in case of a per risk excess-of-loss contract is then:
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d∑
i=1

Lit∑
j=1

(Zij − r)+,

where (Zij − r)+ := max{Zij − r, 0} and r > 0 is the retention level. Compared to the
previous discussion regarding the portfolio of the direct insurer, only the claim sizes have
changed (or maybe an independent thinning of Lit has to be considered in addition).
Hence, the considerations regarding the premium calculations apply. For a stop-loss
contract with retention r > 0, the risk for the reinsurer is:

( d∑
i=1

Lit∑
j=1

Zij − r
)+
.

The expectation or actuarial premium of this quantity is called the stop-loss premium
of the aggregate portfolio outcome. In general, the expected exceedance of a random
variable X over a variable threshold r ∈ R is called the stop-loss transform ΠX(r) of
X:

ΠX(r) := E[(X − r)+], r ∈ R.

Stop-loss transforms can also be used to order risks. For instance, Kaas (1993) argues
that comparing risks in actuarial applications using stop-loss premiums is preferable to
directly comparing the distribution functions, since changes in the premiums allow for
an immediate interpretation whereas the e�ects of changes in the distributions are not
so obvious. A random variable Y is said to exceed X in stop-loss order if the following
condition holds:

X ≤sl Y :⇔ ΠX(r) ≤ ΠY (r), ∀r ∈ R.

In this case the upper tail of X is uniformly smaller than the upper tail of Y and, hence,
X is more attractive than Y . For risks X,Y ≥ 0, considering a positive retention r ≥ 0
is su�cient. Furthermore, Y is said to exceed X in convex order if, in addition, the
expectations of both random variables exist and are identical:

X ≤cx Y :⇔ X ≤sl Y and E[X] = E[Y ].
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In this case, the actuarial premiums are identical but the stop-loss premiums of X are
always less than or equal to the stop-loss premiums of Y with the same retention.

The e�ect of dependence on stop-loss premiums has, for instance, been investigated in
Wang and Dhaene (1998) and Dhaene et al. (2000); the e�ect on general risk measures
was examined in Dhaene et al. (2006). An introduction to dependence ordering in general
and the stop-loss order in particular is provided in (Kaas et al., 2008, Chapter 7, pp.149),
and detailed discussions can be found in Denuit et al. (2005), Shaked and Shanthiku-
mar (2007), and Müller and Stoyan (2002). Some interesting properties of the stop-loss
transform and stop-loss order are summarized in the following remark.

Remark 6.2 (Properties of the stop-loss transform and stop-loss order)
The stop-loss transform of a random variable X can be understood as the weight of the
upper tail of the distribution, since it holds following integration by parts:

ΠX(r) =

∫ ∞
r

(1− FX(s)) ds.

If E[|X|] < ∞, the transform is decreasing and convex in r and converges to 0 for
r →∞, see (Denuit et al., 2005, Chapter 1.7, Property 1.7.2, p.29). The stop-loss order
can equally be de�ned based on non-decreasing, convex functions, see (Denuit et al.,
2005, Chapter 3.4, Proposition 3.4.6, p.152):

X ≤sl Y ⇔ E[f(X)] ≤ E[f(Y )] ∀f : R→ R non-decreasing and convex such

that the expectations exist.

Due to this characterization the order is also called increasing convex order. Comparing
two risks X,Y ≥ 0 using expected utility, X is preferred to Y (considering X,Y describe
losses) if

−E[u(−X)] ≤ −E[u(−Y )],

where for a risk-averse decision-maker u is a non-decreasing and concave function. Setting
v(x) := −u(−x), v is non-decreasing and convex. It follows that X is smaller than Y
in stop-loss order i� any risk-averse decision-maker would prefer X to Y . Furthermore,
if X ≤sl Y then for any zero-utility premium like the exponential premium the same
ordering applies. According to (Denuit et al., 2005, Chapter 1.7, Property 1.7.2, p.29) it
also holds:
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X ≤sl Y ⇔ f(X) ≤sl f(Y ) ∀f : R→ R non-decreasing and convex,

and for independent sequences X1, . . . , Xd and Y1, . . . , Yd with Xi ≤sl Yi, i = 1, . . . , d,
and a non-decreasing and component-wise convex function f : Rd → R it can be shown
that f(X1, . . . , Xd) ≤sl f(Y1, . . . , Yd). In particular, the stop-loss order is closed under
convolution.

The convex order also has a characterization in terms of convex functions, see (Denuit
et al., 2005, Chapter 3.4, Proposition 3.4.3, p.150):

X ≤cx Y ⇔ E[f(X)] ≤ E[f(Y )] ∀f : R→ R convex such that the

expectations exist.

Since E[(X−r)+]−E[(r−X)+] = E[X]−r, it follows from X ≤cx Y that E[(r−X)+] ≤
E[(r − Y )+] for all r ∈ R. Thus, in addition to uniformly heavier upper tails, convex
order also indicates uniformly heavier lower tails of the risks. N

While the stop-loss and convex order compare univariate distributions, for the compar-
ison of multivariate distributions the supermodular stochastic order is used. In Dhaene
and Goovaerts (1995), the e�ect of the dependence of two individual risks on the port-
folio outcome is investigated and the correlation order for bivariate random vectors is
introduced. In Müller (1997) the results are extended to the multivariate case based on
supermodular ordering, see also Bäuerle and Müller (1998). The de�nition as well as
some interesting properties are summarized in the following remark.

Remark 6.3 (Supermodular order)
A function f : Rd → R is said to be supermodular if it ful�ls:

f(x) + f(y) ≤ f(x ∧ y) + f(x ∨ y), ∀x,y ∈ Rd,

where ∧ and ∨ denote the component-wise minimum and maximum operator, respect-
ively. The de�nition says that the increase in the function due to an increase of the
function arguments is higher the larger the function arguments are. If f is twice di�er-
entiable, the de�nition is equivalent to the mixed second order partial derivatives being
non-negative, see (Denuit et al., 2005, Chapter 3.4, Property 3.4.61, p.179).
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If X,Y are d-dimensional random vectors, than X is said to be smaller than Y in
supermodular order if the following condition holds:

X ≤sm Y :⇔ E[f(X)] ≤ E[f(Y )] ∀f : Rd → R supermodular such that

the expectations exist.

From supermodular order follows that the marginals have the same distribution, see
(Denuit et al., 2005, Chapter 6.3.3, p.296), and the ordering is therefore a way of com-
paring the dependence structure. If X ≤sm Y , then the same ordering applies to the
pairwise correlation, Kendall's tau, and Spearman's rho (see (Denuit et al., 2005, Chapter
6.3.6, p.297)). Furthermore, it holds according to (Denuit et al., 2005, Chapter 6.3, Pro-
position 6.3.9 and Corollary 6.3.10, p.299) for non-decreasing and supermodular functions
f : Rd → R:

X ≤sm Y ⇒ f(X) ≤sl f(Y ),

and for non-decreasing functions fi : R→ R≥0, i = 1 . . . , d:

X ≤sm Y ⇒
d∑
i=1

fi(Xi) ≤sl
d∑
i=1

fi(Yi).

In particular, if two random vectors are ordered w.r.t. the supermodular order, then the
sums of the components are ordered w.r.t. the stop-loss order. N

We start with the stop-loss transforms and related orderings of the claim number pro-
cesses L,M , andN . Even though the stop-loss transforms of the claim numbers without
compounding not directly correspond to certain (re-)insurance contracts, they aid the un-
derstanding of the impact of cluster arrivals and dependence in the models. Furthermore,
the ordering can be employed to compare di�erent subordinator choices and therefore
helps to overcome the restrictions on the use of copulas and copula-based dependence
measures discussed in Section 4.1. The ordering in the compound models will later be
derived from the results found for the claim number processes.

Proposition 6.4 (Stop-loss transform of the claim number process)
Let L be the claim number process proposed in Model (M). Then it holds for the stop-loss
transform of each marginal Lit at any point in time t > 0:
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E[
(
Lit − n

)+
] = E[Lit]− n+

n−1∑
k=0

(n− k)P(Lit = k)

= λiR
n−1ϕ

(1)
Λt

(0;λi)− nRnϕΛt(0;λi), n ∈ N.

Proof. The �rst equality follows using straightforward calculations from

E[
(
Lit − n

)+
] =

∞∑
k=0

(k − n)P(Lit = k)−
n−1∑
k=0

(n− k)P(Lit = k).

For the second equality, consider the summation terms separately:

E[
(
Lit − n

)+
] =

∞∑
k=n+1

kP(Lit = k)− n
∞∑

k=n+1

P(Lit = k).

The second term equals RnϕΛt(0;λi) according to Theorem 4.9 and for the �rst summa-
tion term it follows in a similar fashion:

∞∑
k=n+1

kP(Lit = k) =
∞∑

k=n+1

k
(−λi)k

k!
ϕ

(k)
Λt

(λi) = −λi
∞∑
k=n

(−λi)k

k!
(ϕ

(1)
Λt

)(k)(λi)

= −λiRn−1ϕ
(1)
Λt

(0;λi).

Of course, the above proposition can equally be applied to the aggregate process L̄ and
the �rst equality, since it holds for any process on N, also applies to the marginal and
aggregate processes of N and M . In addition to the representation given in the pro-
position, the stop-loss transforms can be computed using Panjer's recursion, see (Rolski
et al., 1999, Chapter 4.4, p.120). From Remark 6.2 it follows:

E[
(
Lit − n

)+
] =

∞∑
k=n

(1− P(Lit ≤ k)) = E[
(
Lit − (n− 1)

)+
]− 1 + P(Lit ≤ n− 1).
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Hence, the initial value is E[
(
Lit − 0

)+
] = E[Lit] and the update requires an increasing

number of probabilities which follow from Panjer's recursion.

The following theorem summarizes the results on the ordering of the claim number pro-
cesses N ,M , and L.

Theorem 6.5 (Ordering of the claim number processes)
Let L be the claim number process speci�ed in Model (M), N the corresponding Poisson
process with independent components, and M the processes with the same marginals as
L but independence in between. Furthermore, assume Assumption (TN) to hold. Then
for each component i = 1, . . . , d, the Poisson process is smaller in convex order than the
respective components of L and M :

N i
t ≤cx M i

t
d
= Lit, t ≥ 0.

Furthermore, the d-dimensional process M is smaller than L in supermodular order:

Mt ≤sm Lt, t ≥ 0,

and the aggregate processes N̄ , M̄ , and L̄ are increasing in convex order:

N̄t ≤cx M̄t ≤cx L̄t, t ≥ 0.

Proof. In Section 4.1 Shaked's two crossing theorem for mixed Poisson distributions was
discussed. The theorem states that the probability mass functions of a Poisson distri-
bution and a mixed Poisson distribution with the same mean cross two times and the
mixed distribution has the heavier lower and upper tails while the Poisson distribution
has more mass at intermediate values. It follows, then, that the corresponding cumulat-
ive distribution functions cross only once, see (Kaas et al., 2008, Chapter 7.3, Theorem
7.3.3, p.155). More precisely, a c ∈ N0 exists such that FN i

t
(k) ≤ FM i

t
(k) = FLit(k) for

k < c and FN i
t
(k) ≥ FM i

t
(k) = FLit(k) for k > c. Due to the one-cut criterion, see (Rolski

et al., 1999, Chapter 3.2.3, Theorem 3.2.4, p.89), one-time crossing of the cumulative dis-
tribution functions is a su�cient condition for stop-loss ordering of the random variables
involved. Given that the expectations are the same in all cases, this proves the �rst claim
in the theorem. The supermodular ordering between Mt and Lt follows from (Bäuerle
and Müller, 1998, Corollary 3.5), which states that if a random vector has conditionally
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independent components and the conditional distribution of the components stochastic-
ally increases in the mixing variable, then the vector exceeds in supermodular order the
one with the same marginal distributions but independence in between. In the given case,
the distribution of Lit given Λt = Λ̂t is Poi(λiΛ̂t) and the Poisson distribution with higher
intensity stochastically dominates the one with lower intensity, thus proving the second
claim of the theorem. The ordering of the aggregate processes N̄t and M̄t follows due to
the independence of the increments from the univariate result according to Remark 6.2
which says that the stop-loss order � and then the convex order as well � is closed under
convolution. Finally, the ordering of M̄t and L̄t follows from the supermodular order of
Mt and Lt, see Remark 6.3.

All relationships betweenM and L hold regardless of the time-normalization assumption.
The results for the ordering w.r.t. N remain valid under the softer condition E[Λ1] ≥ 1
if considering stop-loss instead of convex order. It is also interesting to note that from
supermodular order follows positive quadrant dependence order, that is (see (Shaked and
Shanthikumar, 2007, Chapter 9.A.4, pp.395)):

P(Mt ≤ k) ≤ P(Lt ≤ k) and P(Mt > k) ≤ P(Lt > k) ∀k ∈ Nd0.

Considering the di�erence of the stop-loss transforms, for instance, of N̄t and L̄t, it holds
given time-normalization for retention zero:

ΠL̄t(0)−ΠN̄t(0) = E[L̄t]− E[N̄t] = 0.

As discussed in Remark 6.2, each stop-loss transform converges to zero for increasing
retention level, hence, the di�erence converges to zero as well. In between it holds:

0 ≤ ΠL̄t(r)−ΠN̄t(r) =

∫ ∞
r

(1− FL̄t(s)) ds−
∫ ∞
r

(1− FN̄t(s)) ds

=

∫ ∞
r

(FN̄t(s)− FL̄t(s)) ds.

From the proof of Theorem 6.5 we know that the distribution functions FN̄t and FL̄t
cross only once and FL̄t exceeds FN̄t in the lower range. Consequently, the di�erence
in the stop-loss premium starts at zero, then increases until the retention reaches the
level where the distribution functions cross, and then decreases again back to zero. Kaas
(1993) provides a formula for the integrated di�erence in stop-loss transforms of convex
ordered random variables X ≤cx Y :
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∫ ∞
0

ΠY (r)−ΠX(r) dr =
1

2
(Var[Y ]− Var[X]).

In addition, a rule of thumb for the ratio of the stop-loss transforms is given for retentions
exceeding the mean, i.e. r > E[X]:

ΠY (r)

ΠX(r)
≈ Var[Y ]

Var[X]
.

In the particular case of L̄t, M̄t, and N̄t it follows:

∞∑
k=0

(ΠL̄t(k)−ΠN̄t(k)) =
|λ|2t

2
Var[Λ1],

∞∑
k=0

(ΠM̄t
(k)−ΠN̄t(k)) =

|λ2|t
2

Var[Λ1],

and for k > |λ|t:

ΠL̄t(k)

ΠN̄t(k)
≈ 1 + |λ|Var[Λ1],

ΠM̄t
(k)

ΠN̄t(k)
≈ 1 +

|λ2|
|λ|

Var[Λ1].

Figure 6.1 illustrates the di�erences between the stop-loss transforms of the aggregate
processes N̄ , M̄ , and L̄ for increasing retention using a two-dimensional example with
inverse Gaussian subordinator. On the left-hand side, a parameter setting was chosen
where the claim number distribution has variance 4 in both components and correlation
25%; on the right-hand side the variance is 12 and the correlation is 75%. The charts in
the top row show the stop-loss transforms in all three cases. As stated in Theorem 6.5,
the values for N̄ are lower than for M̄ , and L̄ has the highest values. Naturally, the de-
viations in the high variance and correlation case are much more pronounced: due to the
higher variance in the components, M̄ deviates more from N̄ , and the higher correlation
increases the distance between L̄ and M̄ . The total deviation between ΠL̄t and ΠN̄t is
18 and 2 in the high and low variance/correlation case, respectively, and the absolute
distance to ΠM̄t

is split in half between ΠL̄t and ΠN̄t . The charts in the middle row show
the pairwise di�erences between the three processes. As discussed before, the di�erence
starts in zero, converges to zero, and is non-negative in between. In accordance with the
ordering, ΠL̄t(k)−ΠN̄t(k) ≥ ΠM̄t

(k)−ΠN̄t(k) holds. The di�erence between ΠL̄t(k) and
ΠM̄t

(k) is smaller than the di�erence between ΠM̄t
(k) and ΠN̄t(k) at �rst, but higher
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Figure 6.1 Di�erence of stop-loss transforms of L̄, M̄ , and N̄ : For dimension
d = 2, time T = 1, intensity λ = (3, 3), and an inverse Gaussian sub-
ordinator, the �gure shows the stop-loss transforms of L̄, M̄ , and N̄ (top
row), the absolute deviations (middle row), and the relative deviations (bot-
tom row). For the charts on the left-hand-side the subordinator parameters
are b = 0, β = η = 3, which corresponds to Var[L1

1] = Var[L2
1] = 4 and

Cor[L1
1, L

2
1] = 25%. For the charts on the right-hand-side, the subordin-

ator parameters are b = 0, β = η = 1, and Var[L1
1] = Var[L2

1] = 12,
Cor[L1

1, L
2
1] = 75%. The discrete evaluation points marked with a cross; the

connecting lines are provided only to aid visualization.
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in the tail. Hence, in the lower range the increase in the variance of the components
has a stronger impact, while in the long run the in�uence of the dependence dominates.
The charts in the bottom row show the relative deviation of ΠL̄t to both other cases.
Whereas the absolute deviation decreases to zero for increasing retention, the relative
deviation considering N̄ moves quickly to one; if using M̄ , the increase is slower but
heading towards one as well.
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Figure 6.2 Cdf of claim numbers for di�erent subordinator choices: For dimen-
sion d = 1, intensity λ1 = 10, and time horizon T = 1, the �gure shows the
cumulative distribution function of the underlying Poisson process as well
as the time-changed process for di�erent choices of the directing Lévy sub-
ordinator: inverse Gaussian (b = 0, β = η = 1), gamma (b = 0, β = η = 1),
and Poisson (b = 0, ξ = 1). The parameters have been chosen such that
mean and variance of the three subordinators are one.

Figure 6.2 shows the cumulative distribution functions of the claim numbers in the ex-
amples (with time-normalization) given in Figure 4.1 � except for the distribution result-
ing from a stable subordinator since here time-normalization is not possible. As stated in
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the proof of Theorem 6.5, the distribution functions cross only once with the one of the
underlying Poisson distribution; they also cross with each other only once. It follows that
in the given parameter settings with identical subordinator mean and variance, the claim
number distribution resulting from a time-change with the inverse Gaussian subordinator
exceeds in convex order the distribution resulting from the gamma subordinator, which
exceeds the one from the Poisson subordinator (which exceeds the one without time-
change, i.e. the Poisson distribution). The general result of ordering L � component-wise
and aggregate � for di�erent subordinator choices is given in the following proposition.

Proposition 6.6 (Ordering for di�erent subordinator choices)
Let Lt := NΛt be the process proposed in Model (M). Furthermore, let N∗ be an inde-
pendent copy of N , Λ∗ another Lévy subordinator independent of all other processes, and
de�ne L∗t := N∗Λ∗t

. Then it holds:

Λt ≤sl Λ∗t ⇒ L̄t ≤sl L̄∗t and Lit ≤sl L∗it , i = 1, . . . , d.

If E[Λ1] = E[Λ∗1], then the statement holds in convex order.

Proof. Following (Kaas et al., 2008, Chapter 7.4.6, pp.169), stop-loss ordering of the
mixing variable leads to stop-loss ordering of the respective mixed Poisson distributions.

Finally, the ordering of the claim number processes are inherited by the respective com-
pound processes. The results are summarized in the following corollary.

Corollary 6.7 (Ordering of the compound processes)
Let N ,M , and L be as in Theorem 6.5 and let Assumption (TN) hold. Furthermore, let
Z be a d-dimensional random vector with independent, non-negative components. Then
it holds for the i-th components of the compound processes, i = 1, . . . , d:

N i
t∑

j=1

Zij ≤cx
M i
t∑

j=1

Zij
d
=

Lit∑
j=1

Zij , t ≥ 0.

The vector of compounds w.r.t. Mt and Lt ful�ls in supermodular order:
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( M1
t∑

j=1

Z1j , . . . ,

Md
t∑

j=1

Zdj

)′
≤sm

( L1
t∑

j=1

Z1j , . . . ,

Ldt∑
j=1

Zdj

)′
, t ≥ 0.

Finally, it holds for the aggregate compound processes:

d∑
i=1

N i
t∑

j=1

Zij ≤cx
d∑
i=1

M i
t∑

j=1

Zij ≤cx
d∑
i=1

Lit∑
j=1

Zij , t ≥ 0.

Proof. Stop-loss order is closed under compounding according to (Denuit et al., 2005,
Chapter 3.4, Property 3.4.39, p.169), which proves the result for the marginal processes.
Following (Denuit et al., 2002, Proposition 2), supermodular order is closed under com-
pounding as well, thus the second statement holds. The results for the aggregate processes
follow as in the proof of Theorem 6.5.

The results regarding the integrated di�erence of stop-loss transforms presented after
Theorem 6.5 can be applied to the compound processes as well. It follows from the
above corollary that the actuarial premium for a stop-loss contract in the model with
claim number process L featuring simultaneous claim arrivals within and between indi-
vidual components exceeds the premium in the other cases. If such claim arrival patterns
are present in the data but neglected in the modelling approach, the premium charged or
solvency capital reserved will not adequately cover the risk involved in the contract. To-
gether with Remark 6.2 on the properties of the stop-loss and convex order, it also follows
that the same ordering applies to any risk which is a convex function of the aggregate
portfolio outcome. In particular, any risk-averse decision-maker will deem the risk, given
the simultaneous claim arrivals, more severe and any premium principle stemming from
a zero-utility approach, e.g. the expected utility principle, will re�ect this ordering �
for the direct insurer considering the total portfolio outcome as a risk or for a reinsurer
considering any convex function of it as in case of a stop-loss contract.

One more premium principle (or risk measure) was mentioned in the beginning and has
not yet been covered in the results: the quantile principle for 0 < ε < 1 (or VaR for
p := 1 − ε). Here the ordering does not apply regardless of the level p. It was pointed
out previously that for N̄ and L̄ the distribution functions cross once. Hence, neither
distribution stochastically dominates the other - in the lower tail the distribution function
of N̄ exceeds the distribution function of L̄, whereas in the upper tail the positions switch.
Accordingly, the generalized inverse functions cross once as well and for low levels p the
VaR of N̄ exceeds the VaR of L̄. For high levels, however, the VaR of L̄ dominates again.

198



6 Applications and extensions

Stop-loss order is, however, consistent with the tail value at risk which is de�ned for a
random variable X as:

TV aRX(p) :=
1

1− p

∫ ∞
p

V aRX(r) dr, 0 < p < 1.

More precisely, it holds for two random variables X,Y according to (Dhaene et al., 2006,
Theorem 3.2):

X ≤sl Y ⇔ TV aRX(p) ≤ TV aRY (p) ∀0 < p < 1.

The consistency of risk measures with stop-loss order is studied in more detail in Bäuerle
and Müller (2006). They show that under certain regularity conditions on the probability
space (Ω,F ,P) stop-loss order of random variables leads to the corresponding order in
any monotone and law-invariant risk measure.

This section concludes with another example from reinsurance modelling. In a per event
excess-of-loss contract the reinsurer covers the aggregate claim amount due to a single
event exceeding a retention r > 0. If the contract coverage is extended the aggregate
claim amount in di�erent branches due to a single event exceeding a retention, it is called
an umbrella cover contract. Considering the Poisson process N for the claim arrivals,
which claims stem from the same event is unclear. Given the Poisson cluster process
representation of Lt =

∑Mt
j=1 Yj , however, a natural assumption is that claims originate

from the same event if they arrive in the same cluster Yj . Then the risk of a per event
excess-of-loss or umbrella cover contract in the compound model is given as:

Mt∑
j=1

( d∑
i=1

Yij∑
k=1

Zijk − r
)+
,

where Zijk are iid copies of Zi. ConsideringM as the claim number process, simultaneous
claim arrivals are possible for each individual risk but not for di�erent individual risks.
Hence, the modelling approach is unrealistic in the face of an umbrella cover contract.
Even for a per event excess-of-loss contract its applicability is limited; after all, if no
simultaneous claim arrivals for di�erent individual risks are expected, then the per event
excess-of-loss coverage of the portfolio is reduced to a per event excess-of-loss coverage
of each individual risk.

Ignoring claim amounts, the following proposition provides the expectation of the number
of claims exceeding a certain retention due to a single event for the time-changed model.
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Proposition 6.8 (Per event excess claim number)
Let Lt =

∑Mt
j=1 Yj be the claim number process de�ned in Model (M) in the Poisson

cluster process representation of Corollary 4.19. Then it holds for any retention n ∈ N:

E
[ Mt∑
j=1

(|Yj | − n)+
]

= E[Mt]E[(|Y | − n)+] = E[L̄t]− tnΨΛ(|λ|) + t
n−1∑
k=1

(n− k)νL̄(k)

= t(|λ|Rn−1Ψ
(1)
Λ (0; |λ|) + nRnΨΛ(0; |λ|)).

Proof. The proof follows similarly to Proposition 6.4 and Corollary 4.26.
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6.2 Model extensions

As discussed in Chapter 4 and encountered in the real-world data example in Section 5.3,
the model presented in this thesis, though it already incorporates many interesting prop-
erties of claim arrivals, may prove too restrictive to provide a good �t for some actuarial
applications. Three extensions of the model are outlined in this section. While in all
cases the price for the greater �exibility is a loss of tractability, a numerical treatment
remains possible.

Compound model

For actuarial applications including claim sizes in addition to claim arrivals in the mod-
elling approach is essential. In Section 6.1, compounding of the claim number process L
of Model (M) was discussed, but some more thought is given to this important extension
in this paragraph. The focus lies again on independent claim sizes that are identically
distributed for each component and represented through a non-negative random vector
Z. Let S := {St}t≥0 denote the process consisting of the component-wise aggregate
claim amounts w.r.t. the claim arrivals generated from the basic Poisson process N with
independent components, that is:

St :=
( N1

t∑
j=1

Z1j , . . . ,

Nd
t∑

j=1

Zdj

)′
, t ≥ 0.

The components of S are independent, but deriving the distribution of the compound
process in closed form is rarely possible, even in the univariate case. The law of total
probability tells us that

FSit(x) =
∞∑
n=0

P(N i
t = n)F ∗nZi (x), t ≥ 0, (6.2)

where F ∗nZi (x) denotes the distribution function of the n-fold convolution of Zi. The
convolution as well as the aggregate distribution have to be mostly dealt with using nu-
merical methods like transform inversion or Panjer's recursion. If a multivariate version
with dependence between claim number processes is considered, the complexity of the
problem increases accordingly.

With Lt = NΛt as claim number process, the aggregate process corresponds to the
process S if time-changed with the subordinator Λ:
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SΛt =
(N1

Λt∑
j=1

Z1j , . . . ,

Nd
Λt∑

j=1

Zdj

)′
=
( L1

t∑
j=1

Z1j , . . . ,

Ldt∑
j=1

Zdj

)′
, t ≥ 0.

Equation (6.2) holds for the distribution of SiΛt if N
i
t is replaced with L

i
t. The process SΛt

is again a compound Poisson process and, using the Poisson cluster process representation
Lt =

∑Mt
j=0 Yj , it can be written:

SΛt =

Mt∑
j=0

(

Y1j∑
k=1

Z1jk, . . . ,

Ydj∑
k=1

Zdjk)
′, t ≥ 0,

where Zijk
iid∼ Zi are independent copies of the claim sizes. Hence, the component-wise

secondary distributions are random convolutions of the claim size distributions, e.g. for
the i-th marginal:

F∑Yi
k=1 Zik

(x) =
∞∑
n=0

P(Yi = n)F ∗nZi (x), x ≥ 0.

In most cases neither representation � as compound process with L or as compound
Poisson process with the jump size distribution speci�ed as random convolution � leads
to an analytically tractable formula for the distribution of SΛt . Extending Algorithm 3.3
for the independent claim sizes, however, the process SΛt can be studied using Monte
Carlo simulation. In Theorem 6.1 mean and variance of the multivariate and aggregate
compound process have been given. Furthermore, the Laplace exponent of the process
is known, cf. Proposition 4.1:

ΨSΛ
(x) = ΨΛ(ΨS(x)), x ∈ Rd≥0.

The exponent of S follows from the univariate result in Example 2.14 and the independ-
ence of the components:

ΨSΛ
(x) =

d∑
i=1

λi(1− ϕZi(xi)), x ∈ Rd≥0,
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where ϕZi is the Laplace transform of the claim size Zi. For the aggregate process
S̄Λt :=

∑d
i=1 S

i
Λt

it holds following Theorem 2.1:

ΨS̄Λ
(x) = ΨSΛ

(x1′) =
d∑
i=1

λi(1− ϕZi(x)), x ≥ 0.

Thus, the process can be managed using Laplace inversion techniques or recursions.
For instance, Sundt and Vernic (2004) consider recursions for multivariate compound
distributions with mixed Poisson primary distributions. Furthermore, Rudolph (2014)
examines Panjer's recursion in the static version of the setting studied here and even
considers multiple mixing variables (an extension which will be discussed later) and
dependence in the claim sizes.

Deterministic time-change

For many applications, assuming stationarity of the claim arrivals may be too restrictive.
Adding a deterministic time-change to the model is an easy way to account for predict-
able �uctuations in claim arrivals, for instance, due to seasonality. Let µ : R≥0 → R≥0 be
a non-decreasing and continuous function and consider the process L∗t := Lµ(t). While L
results from a time-change of the homogeneous Poisson processN with Λ, the process L∗

corresponds to a time-change of the inhomogeneous Poisson processNµ(t). Hence, for all
but a linear transformation µ the process L∗t is no longer a Lévy process. More precisely,
the increments are no longer stationary, whereas independence is preserved. According
to Remark 4.5, L∗ is an additive process and the �nite dimensional distributions of the
process as well as the Laplace transforms can still be calculated.

Often the mean-value function µ is assumed to have an intensity function λ : R≥0 → R>0,
that is g(t) =

∫ t
0 λ(s) ds, and a model for the intensity rather than the mean-value

function is proposed. For instance, for a cyclic Poisson process in Lewis, P. A. W. (1970)
and Vere-Jones (1982) intensities of the form

λ(t) = A exp{ρ cos(ω0t+ Φ)}

for A > 0, ρ > 0, ω0 > 0, and 0 < θ < 2π are proposed and the estimation of the
parameters is studied. Of course, additional sine and cosine waves may be added, if
necessary. The exponential is chosen to ensure function positivity. Given (equidistant)
grid data L̂∗tj , j = 1, . . . , n, the intensity can be estimated from the �uctuations in the

increments ∆L̂∗tj . Afterwards, as the inverse µ−1 exists in this setting, the sample can

be transformed to a (no longer equidistant) sample of the process L via L̂sj := L̂∗µ−1(sj)
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on the grid sj := µ(tj), j = 1, . . . , n. Then a maximum likelihood estimation for the
remaining parameters can be carried out as discussed in Chapter 5.

Allowing for a component-speci�c deterministic time-change µi : R≥0 → R≥0 to consider
(L1

µ1(t), . . . , L
d
µd(t))

′ complicates matters. At a �xed point in time, the distribution can
still be derived as in Remark 4.3. Over time, however, the new process is only component-
wise an additive process; the full vector process is no longer additive: the increments of
the transformed process may correspond to increments of the process L that overlap in
time for the d components and are, hence, not independent. Consequently, the �nite
dimensional distributions can no longer be easily derived and the maximum likelihood
procedure cannot be applied in the way previously discussed.

Multivariate subordination

As explored in Section 4.1, the dependence of the time-changed process L is governed by
the subordinator Λ. In particular, the dependence between any two components is of the
same kind. Given a huge cluster arrival in one component (relative to its intensity λi) at
some point in time, the subordinator most likely has a jump of high magnitude as well.
The other components � being a�ected by the very same subordinator jump � are then
very likely to have cluster arrivals of large sizes (relative to their respective intensities)
as well. To o�er a more �exible dependence structure, multivariate subordination can be
considered.

Let Λ := {Λt}t≥0 be a d-dimensional Lévy subordinator with possibly dependent com-
ponents and consider the component-wise time-change

NΛt := (N1
Λ1
t
, . . . , Nd

Λdt
)′, t ≥ 0.

The process NΛ := {NΛt}t≥0 is again a Lévy subordinator and, in particular, a Pois-
son cluster process (note that due to the independence of the components of N , no
problems arise for overlapping time periods in contrast to the component-wise determin-
istic time-change of L investigated previously). Multivariate subordination was studied
in Barndor�-Nielsen et al. (2001), and in Semeraro (2008) and Luciano and Semeraro
(2007) multivariate subordination was examined in the context of Lévy driven asset
models. Mai and Scherer (2012a) introduced a hierarchical extension of the Lévy-frailty
model (see Section 3.3) based on multivariate subordination.

The Laplace transform of the process NΛ can be derived using the tower rule for condi-
tional expectations:
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ϕNΛt
(x) = E

[
E
[

exp{−
d∑
i=1

xiN
i
Λit
}|σ(Λ)

]]
= E

[ d∏
i=1

E[exp{−xiN i
Λit
}|σ(Λi)]

]
= E

[ d∏
i=1

exp{−ΛitΨN i(xi)}
]

= exp{−tΨΛ((ΨN1(x1), . . . ,ΨNd(xd))
′)}.

Hence, the Laplace exponent is ΨNΛ
(x) = ΨΛ((ΨN1(x1), . . . ,ΨNd(xd))

′). The expression
for the distribution of the process at a �xed point in time can also be recovered considering
partial derivatives of the multivariate Laplace transform ϕΛt of Λt, see Corollary 4.12:

P(NΛt = k) =
(−λ)k

k!
ϕ

(k)
Λt

(λ), k ∈ Nd0.

As the process is a Lévy process, the �nite dimensional distributions follow similarly
to Corollary 4.4. The transformation of the Lévy characteristics in case of multivariate
subordination was established in Barndor�-Nielsen et al. (2001). Using their results, the
drift of NΛ is zero and the Lévy measure νNΛ

has � as to be expected � a representation
in terms of partial derivatives of the Laplace exponent ΨΛ of Λ:

νNΛ
(k) = −(−λ)k

k!
Ψ

(k)
Λ (λ), k ∈ Ṅd0.

Given these results, the Poisson cluster process representation of NΛ can be derived as
in Corollary 4.19.

In general, multivariate Lévy subordinators can be constructed from independent uni-
variate subordinators using Lévy copulas, but a factor approach is more common due to
its tractability and comprehensibility. For this purpose, let Λ̃ = (Λ̃1, . . . , Λ̃r)′ be a Lévy
subordinator with independent marginal processes representing r ∈ N risk factors. The
degree to which each component of the portfolio is a�ected by the factors is speci�ed
through some non-negative weight matrixW ∈ Rd×r≥0 . Using this approach, the number of
parameters in the model can increase signi�cantly, so a careful selection of the number of
risk factors and the structure of the weight matrix is necessary. For example, Luciano and
Semeraro (2007) consider d+1 risk factors where d factors are idiosyncratic for each com-
ponent and one common factor a�ects all components. To obtain time-normalization for
the factor approach, it is su�cient to assume that all risk factors ful�l Assumption (TN),
i.e. E[Λ̃k1] = 1 for k = 1, . . . , r, and the sum of the component-wise weights is one, i.e.∑r

k=1Wik = 1 for i = 1, . . . d. The multivariate subordinator for the time-change is then
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de�ned as the linear transformation Λ := W Λ̃. The so-de�ned process Λ is indeed a
Lévy subordinator and its Laplace transform follows from Theorem 2.1:

ϕΛt(x) = ϕΛ̃t
(W ′x) = exp

{
− t

r∑
k=1

ΨΛ̃k

( d∑
i=1

Wikxi

)}
, x ∈ Rd≥0.

Hence, the Laplace exponent is ΨΛ(x) =
∑r

k=1 ΨΛ̃k

(∑d
i=1Wikxi

)
and he Lévy char-

acteristics can be concluded from (Cont and Tankov, 2003, Chapter 4.2, Theorem 4.1,
p.105):

bΛ = W (bΛ̃1 , . . . , bΛ̃r)
′, νΛ(B) = νΛ̃({x ∈ Ṙr≥0 : Wx ∈ B}), B ∈ B(Ṙd≥0).

The extension of the presented model using multivariate subordination allows to formu-
late a time-dynamic extension of the widely used CreditRisk+ model, as discussed in the
following remark.

Remark 6.9 (Dynamic extension of the CreditRisk+ framework)
In Suisse (1997), Credit Swiss Financial Products introduced the CreditRisk+ model for
credit-risky portfolios. It is a static Poisson mixture model and, hence, techniques from
actuarial mathematics can be employed to calculate the portfolio loss distribution. A
brief overview of the model is provided in the following to point out the resemblance
with the process studied in this thesis. For details about the original set-up and many
extensions that have been studied since, see Gundlach and Lehrbass (2004).

Considering a credit-risky portfolio with d counterparties or assets, let Ji, i = 1, . . . , d,
be default indicators following a Bernoulli distribution with default probability

λi := P(Ji = 1) ≥ 0.

For simplicity, the loss given default of each asset is, as in Section 3.3, assumed to be
a deterministic constant equal for all assets. Hence, it is again su�cient to consider as
portfolio loss the sum

L̄ :=
d∑
i=1

Ji.
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The CreditRisk+ approach utilizes the Poisson approximation of the Bernoulli variables,
i.e. the default indicators are replaced with Poisson variables Ni ∼ Poi(λi), hence, allow-
ing the asset to default `more than once'. For the Poisson approximation to be justi�ed,
the expected default probabilities λi need to be small making successive defaults unlikely.
Then the default probability ful�ls

P(Ni > 0) = 1− exp{−λi} ≈ λi, i = 1, . . . , d.

Note that the expected loss is una�ected by the switch from Bernoulli to Poisson vari-
ables with the same mean.

Dependence in this setting is introduced using Poisson mixtures with a factor approach
for the mixing variables. The r ∈ N independent risk factors are assumed to follow a
gamma distribution:

Λk ∼ Gamma(βk, βk), k = 1, . . . , r,

where βk > 0. Hence, E[Λk] = 1 and Var[Λk] = 1/βk. The in�uence of the risk factors on
each component is speci�ed using a weight matrix W ∈ Rd×r such that

∑r
k=1Wik = 1.

The variables Ni are then supposed to be conditionally independent and Poisson distrib-
uted with intensity λi

∑r
k=1WikΛk, i = 1, . . . , d. Due to the chosen parameter setting,

the approximation of the expected default intensities from the independent Poisson case
remains valid for the mixtures.

For r = 1 the portfolio loss L̄ has a negative binomial distribution. For arbitrary r, the
distribution can be computed using Panjer's recursion after observing that L̄ is equal
in distribution to a sum of r independent negative binomial random variables. This ap-
proach is studied in a more general setting in Rudolph (2014).

Obviously, the CreditRisk+ approach corresponds to a static version of the model studied
in this thesis if multivariate subordination is considered. More precisely, if the processes
Λ̃k = {Λ̃kt }t≥0 are independent gamma subordinators with no drift and βk = ηk, k =
1, . . . , r, and the directing process is W Λ̃, then the time-changed process NΛ is in t = 1
equivalent to the CreditRisk+ model. Following this observation it is convenient to switch
from the gamma distribution to other in�nitely divisible distributions for the risk factors.
Moreover, this time-dynamic extension of the CreditRisk+ model enables a consistent and
arbitrage-free valuation of credit derivatives, such as collateralized debt obligations, with
arbitrary maturities, and for the calibration of the model the full term structure of prices
can be used. In addition, dynamic hedging of derivative positions is possible in this
setting. N
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In this thesis, a multivariate model for dependent claim arrivals was presented and in-
vestigated in detail. The appeal of the model lies in its ability to balance the need for a
plausible, yet tractable set-up with dynamics that are well understood and easy to verify.
Starting point of the construction was the classical modelling approach consisting of in-
dependent Poisson processes; by introducing a Lévy subordinator as common stochastic
time, dependence between the components and the possibility of claim cluster arrivals
were generated. The marginals of the time-changed process can be categorized as Cox
as well as Poisson cluster processes, and for the claim number distribution at one point
in time classical distributions such as the negative binomial and Sichel distribution were
recovered. Through the possibility of large cluster arrivals as well as the increasing degree
of dependence in case of extreme scenarios, the model is able to account for catastrophic
events. Since the source of the dependence and claim clusters is explicitly known and
governed by the subordinator parameters, which are only few, the dynamics of the model
are very transparent and the applicability of the model to actuarial applications can be
readily assessed.

Due to the speci�c choice of a Lévy subordinator as joint operational time, the model
remains highly tractable. Many distribution-related quantities of both, the Lévy as well
as the compound Poisson representation, were found in closed form and approximations
for tails and large portfolio distributions were presented as well. In addition, an e�cient
sampling algorithm was discussed, which o�ers the possibility to numerically evaluate
expressions that cannot be analytically solved. Four estimation methods for the model
parameters were introduced and the quality was examined in an extensive simulation
study. These methods were also used to evaluate the applicability of the model to the
Danish �re insurance data set. Furthermore, the impact of the model on premium cal-
culations for insurance and reinsurance products as well as other actuarial risk measures
was examined and it was shown that ignoring positive dependence and cluster arrivals
in the modelling approach, though present in the data, will lead to underestimation of
the risks and the adequate compensation for the insurer.

The basic time-changed model was thoroughly analysed to provide an in-depth under-
standing of the model properties and limitations. Naturally, for some actuarial applica-
tions the model �exibility is not yet rich enough to account for all the relevant properties
of the claim count data. In particular, since the subordinator directs the dependence
between all components as well as the variability in each component and the Lévy nature
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Figure 7.1 Overview of model features.

of the model calls for independent and stationary increments of the claim numbers, the
model may prove too restrictive for some applications, as could be seen in the Danish �re
insurance data. However, the constructive set-up of the model provides the opportunity
to easily formulate extensions for more advanced applications. As an example, the in-
corporation of iid claim sizes, a deterministic time-change, as well as the introduction of
multiple subordinators were outlined in this thesis. Though these extensions lose some of
the analytical tractability, a numerical treatment using the sampling algorithm remains
possible.

For further research, the proposed extensions could be examined in more detail and the
problem of estimating the parameters needs to be addressed. In general, it may be worth
exploring further actuarial questions such as how the model a�ects the optimal retention
levels in reinsurance contracts. The important topic of ruin theory has also not been
covered in this thesis. The process normalized by time converges, as every subordinator,
to the expected value after one unit of time (see (Sato, 1999, Chapter 36, pp.245)), i.e.

1

t
Lt

a.s.−→ E[Λ1]λ, t→∞.
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However, this result needs to be supplemented by the asymptotic distribution in order to
calculate ruin probabilities and solvency capital requirements. The asymptotic distribu-
tion of general Cox processes is, for instance, discussed in Bening and Korolev (2002). The
model may also prove useful for pricing and managing alternative risk transfer products
such as insurance-linked bonds and derivatives. For this purpose, arbitrage-free pricing
rather than premium calculation becomes necessary and calibration to market prices re-
places historical estimation for determining the model parameters.

In this thesis, the focus was primarily on using the model for actuarial problems. One
application in the area of credit risk modelling, however, was given as well, namely the
dynamic extension of the CreditRisk+ framework. This application should be studied
more thoroughly, thereby treating similar questions as for the alternative risk transfer
products. Furthermore, it may be worth examining the usefulness of the model in other
areas like electronic order book modelling, operational risk management, and inventory
control problems, to name only a few.
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A Additional output from the estimation

study

Setting: inverse Gaussian subordinator (no drift)

λ1 = 50 λ2 = 75 λ3 = 100 β = 14.5/4.5
T 1 10 1 10 1 10 1 10

1-2 low 7.3 2.1 12 3.3 18 4.7 2.1 0.57
high 4.7 1.8 7.2 2.5 9.3 3 0.89 0.34

1-3 low 7.3 2.1 12 3.3 18 4.7 2.4 0.71
high 4.7 1.8 7.2 2.5 9.3 3 0.92 0.35

1-4 low 11 3.3 15 4.5 22 5.9 2.7 0.82
high 21 5.4 30 7 36 8.3 1.5 0.48

2-3 low 0.0008 0.0021 0.0012 0.0026 0.0016 0.0031 1.2 0.38
high 0.003 0.0048 0.0048 0.0071 0.0059 0.0093 0.22 0.064

2-4 low 6.1 1.8 6.8 2.1 7.5 2.3 1.5 0.47
high 19 4.5 27 5.9 33 7.1 0.78 0.19

3-4 low 6.1 1.8 6.8 2.1 7.5 2.3 0.73 0.21
high 19 4.5 27 5.9 33 7.1 0.71 0.17

Table A.1 Di�erences between estimators from all methods for inverse Gaus-

sian subordinator (no drift): The table summarizes the root-mean-
squared di�erences between the estimators from two Methods (Mi) and (Mj)
(noted i− j) in case of an inverse Gaussian subordinator without drift in the
setting with low and high variance as well as for short and long time horizon
(2 signi�cant digits).
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λ1 = 50 λ2 = 75 λ3 = 100 β = 14.5/4.5
T 1 10 1 10 1 10 1 10

1-2 low 0.40 0.36 0.33 0.37 0.33 0.33 0.39 0.36
high 0.45 0.41 0.40 0.45 0.50 0.42 0.31 0.29

1-3 low 0.40 0.36 0.33 0.37 0.33 0.33 0.32 0.29
high 0.45 0.41 0.40 0.45 0.50 0.42 0.30 0.29

1-4 low 0.50 0.45 0.43 0.47 0.38 0.40 0.40 0.35
high 0.66 0.60 0.61 0.56 0.64 0.64 0.39 0.37

2-3 low 0.47 0.52 0.46 0.46 0.51 0.52 0.39 0.37
high 0.47 0.50 0.49 0.54 0.46 0.55 0.41 0.47

2-4 low 0.59 0.61 0.66 0.59 0.58 0.62 0.45 0.43
high 0.69 0.66 0.65 0.62 0.69 0.67 0.57 0.60

3-4 low 0.59 0.61 0.66 0.59 0.58 0.62 0.61 0.59
high 0.69 0.66 0.65 0.62 0.69 0.67 0.60 0.62

Table A.2 Pitman closeness criterion for estimators from di�erent methods

for inverse Gaussian subordinator (no drift): The table summarizes
the empirical probabilities that the absolute deviations of estimators from
Method (Mi) are less then for another Method (Mj) (noted i − j) in the
setting of an inverse Gaussian subordinator without drift, for low and high
variance as well as for short and long time horizon (2 signi�cant digits).
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Figure A.1 Boxplots of intensity estimators for low variance inverse Gaus-

sian subordinator (no drift): The �gure shows boxplots of the intensity
estimators from all estimation methods in the setting with a low variance
Inverse Gaussian subordinator (no drift) for short and long time horizon.
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Figure A.2 Boxplots of subordinator parameter estimators for low variance

inverse Gaussian subordinator (no drift): The �gure shows boxplots
of the subordinator parameter estimators from all estimation methods in
the setting with a low variance Inverse Gaussian subordinator (no drift) for
short and long time horizon.
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Figure A.3 Boxplots of intensity estimators for high variance inverse Gaus-

sian subordinator (no drift): The �gure shows boxplots of the intensity
estimators from all estimation methods in the setting with a high variance
Inverse Gaussian subordinator (no drift) for short and long time horizon.
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Figure A.4 Boxplots of subordinator parameter estimators for high variance

inverse Gaussian subordinator (no drift): The �gure shows boxplots
of the subordinator parameter estimators from all estimation methods in
the setting with a high variance Inverse Gaussian subordinator (no drift)
for short and long time horizon.
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Setting: inverse Gaussian subordinator with drift

λ1 = 50 λ2 = 75 λ3 = 100 d = 0.4 β = 6.9/2.1
T 1 10 1 10 1 10 1 10 1 10

1-2 low 8.9 2.5 16 3.8 20 5.4 0.34 0.098 6.2 2
high 6.6 2.3 9.8 3.1 13 4.3 0.3 0.16 2.2 1.2

1-3 low 8.9 2.5 16 3.8 20 5.4 0.31 0.11 5.5 2.2
high 6.6 2.3 9.8 3.1 13 4.3 0.29 0.17 2.3 1.2

1-4 low 13 3.5 21 4.9 26 6.5 0.33 0.12 6.5 2.5
high 65 6.9 98 9.9 130 13 0.32 0.16 2.7 1.4

2-3 low 0.00069 0.0035 0.00094 0.0047 0.0014 0.0055 0.18 0.05 4.1 0.94
high 0.011 0.0057 0.015 0.0084 0.022 0.011 0.066 0.016 0.8 0.15

2-4 low 7.2 1.6 11 1.8 15 2.1 0.21 0.059 5.7 1.3
high 65 6.1 98 9 130 12 0.13 0.033 1.6 0.4

3-4 low 7.2 1.6 11 1.8 15 2.1 0.082 0.02 2.8 0.58
high 65 6.1 98 9 130 12 0.13 0.033 1 0.29

Table A.3 Di�erences between estimators from all methods for inverse Gaussian subordinator with drift: The
table summarizes the root-mean-squared Di�erences between the estimators from two Methods (Mi) and (Mj)
(noted i − j) in case of an inverse Gaussian subordinator with drift in the setting with low and high variance as
well as for short and long time horizon (2 signi�cant digits).
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λ1 = 50 λ2 = 75 λ3 = 100 d = 0.4 β = 6.9/2.1
T 1 10 1 10 1 10 1 10 1 10

1-2 low 0.36 0.35 0.34 0.31 0.31 0.28 0.42 0.25 0.46 0.27
high 0.43 0.43 0.40 0.41 0.43 0.41 0.18 0.12 0.20 0.12

1-3 low 0.36 0.35 0.34 0.31 0.31 0.28 0.23 0.15 0.31 0.22
high 0.43 0.44 0.40 0.41 0.43 0.41 0.17 0.11 0.17 0.11

1-4 low 0.45 0.40 0.42 0.35 0.38 0.35 0.26 0.20 0.37 0.26
high 0.65 0.60 0.64 0.63 0.66 0.62 0.24 0.15 0.25 0.19

2-3 low 0.44 0.51 0.48 0.52 0.52 0.56 0.28 0.31 0.35 0.36
high 0.50 0.46 0.49 0.47 0.49 0.49 0.41 0.42 0.41 0.39

2-4 low 0.57 0.56 0.60 0.57 0.57 0.60 0.36 0.36 0.46 0.45
high 0.71 0.70 0.71 0.69 0.67 0.66 0.61 0.60 0.57 0.61

3-4 low 0.57 0.56 0.60 0.57 0.57 0.60 0.60 0.58 0.63 0.60
high 0.71 0.70 0.71 0.69 0.67 0.66 0.67 0.65 0.65 0.73

Table A.4 Pitman closeness criterion for estimators from di�erent methods for inverse Gaussian subordinator

with drift: The table summarizes the empirical probabilities that the absolute deviations of estimators from
Method (Mi) are less then for another Method (Mj) (noted i−j) in the setting of an inverse Gaussian subordinator
with with drift, for low and high variance as well as for short and long time horizon (2 signi�cant digits).
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Figure A.5 Boxplots of intensity estimators for low variance inverse Gaussian

subordinator with drift: The �gure shows boxplots of the intensity es-
timators from all estimation methods in the setting with a low variance
Inverse Gaussian subordinator with drift for short and long time horizon.
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Figure A.6 Boxplots of subordinator parameter estimators for low variance

inverse Gaussian subordinator with drift: The �gure shows boxplots
of the estimators for the subordinator parameters from all estimation meth-
ods in the setting with a low variance Inverse Gaussian subordinator with
drift for short and long time horizon.
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Figure A.7 Boxplots of intensity estimators for high variance inverse Gaus-

sian subordinator with drift: The �gure shows boxplots of the intensity
estimators from all estimation methods in the setting with a high variance
Inverse Gaussian subordinator with drift for short and long time horizon.
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Figure A.8 Boxplots of subordinator parameter estimators for high variance

inverse Gaussian subordinator with drift: The �gure shows boxplots
of the estimators for the subordinator parameters from all estimation meth-
ods in the setting with a high variance Inverse Gaussian subordinator with
drift for short and long time horizon.
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Setting: gamma subordinator (no drift)

(M1) (M2) (M3) (M4)
T 1 10 1 10 1 10 1 10

runtime low 0.544 0.514 37.9 426 6.64 100 94.8 71
high 0.451 0.425 14.9 148 1.18 9.66 171 169

ofv low 0.233 0.0195 -568 -5700 276 2770 2.33 0.233
high 0.0401 0.00433 -353 -3550 -65.8 -674 0.163 0.0133

Table A.5 Runtime and ofv for gamma subordinator (no drift): The table sum-
marizes runtimes and objective function values (ofv) for the estimation Meth-
ods (M1)-(M4) in the setting with a gamma subordinator (without drift) with
low and high variance and for short and long time horizon. The runtime is
expressed in minutes and all quantities are given with 3 signi�cant digits.
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λ1 = 50 λ2 = 75 λ3 = 100 β = 210
T 1 10 1 10 1 10 1 10

Ê (M1) 51.385 50.015 77.891 75.229 104.077 100.591 240.595 215.117
(M2) 49.716 49.898 75.774 75.108 99.258 99.887 216.553 211.438
(M3) 49.716 49.898 75.774 75.108 99.258 99.887 211.954 210.098
(M4) 49.057 49.882 74.920 74.945 97.986 99.565 214.655 210.372

ˆstd (M1) 10.488 2.993 14.940 4.171 20.356 5.791 80.358 20.679
(M2) 7.891 2.395 9.677 2.952 11.859 3.774 47.700 13.590
(M3) 7.891 2.395 9.677 2.952 11.859 3.774 32.878 9.903
(M4) 10.108 3.125 12.022 3.885 13.993 4.425 38.327 10.525

ˆrbias (%) (M1) 2.770 0.030 3.855 0.306 4.077 0.591 14.569 2.437
(M2) −0.568 −0.204 1.032 0.144 −0.742 −0.113 3.121 0.685
(M3) −0.568 −0.204 1.032 0.144 −0.742 −0.113 0.931 0.047
(M4) −1.885 −0.236 −0.106 −0.073 −2.014 −0.435 2.216 0.177

ˆrmse (M1) 10.579 2.993 15.217 4.178 20.760 5.821 85.985 21.303
(M2) 7.896 2.398 9.708 2.954 11.883 3.776 48.148 13.666
(M3) 7.896 2.398 9.708 2.954 11.883 3.776 32.936 9.904
(M4) 10.152 3.127 12.022 3.885 14.137 4.446 38.609 10.531

Table A.6 Estimation results for low variance gamma subordinator (no drift): The table presents the Monte Carlo
estimates for mean, standard deviation, relative bias, and root-mean-square error of all parameter estimators in
case of the low variance gamma subordinator without drift for short and long time horizon.
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λ1 = 50 λ2 = 75 λ3 = 100 β = 21
T 1 10 1 10 1 10 1 10

Ê (M1) 50.225 49.999 75.482 74.936 100.451 100.226 24.466 21.501
(M2) 49.882 49.977 74.824 74.905 100.214 100.108 21.594 21.067
(M3) 49.882 49.977 74.824 74.905 100.214 100.108 21.522 21.042
(M4) 52.040 50.142 76.896 75.164 103.201 100.671 21.249 20.959

ˆstd (M1) 13.714 4.150 19.488 6.098 25.027 7.943 6.396 2.293
(M2) 12.957 3.966 18.679 5.703 24.378 7.599 3.833 1.208
(M3) 12.957 3.966 18.679 5.703 24.378 7.599 3.563 1.137
(M4) 21.826 6.465 30.042 8.885 34.736 10.907 4.822 1.450

ˆrbias (%) (M1) 0.449 −0.002 0.643 −0.085 0.451 0.226 16.504 2.384
(M2) −0.236 −0.046 −0.235 −0.127 0.214 0.108 2.827 0.317
(M3) −0.236 −0.046 −0.235 −0.127 0.214 0.108 2.486 0.198
(M4) 4.080 0.285 2.528 0.219 3.201 0.671 1.184 −0.196

ˆrmse (M1) 13.716 4.150 19.494 6.099 25.031 7.946 7.274 2.347
(M2) 12.958 3.966 18.679 5.704 24.379 7.600 3.879 1.210
(M3) 12.958 3.966 18.679 5.704 24.379 7.600 3.601 1.138
(M4) 21.921 6.466 30.102 8.887 34.884 10.928 4.829 1.450

Table A.7 Estimation results for high variance gamma subordinator (no drift): The table presents the Monte Carlo
estimates for mean, standard deviation, relative bias, and root-mean-square error of all parameter estimators in
case of the high variance gamma subordinator without drift for short and long time horizon.
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Figure A.9 Boxplots of intensity estimators for low variance gamma subor-

dinator (no drift): The �gure shows boxplots of the intensity estimators
from all estimation methods in the setting with a low variance gamma sub-
ordinator (no drift) for short and long time horizon.
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Figure A.10 Boxplots of subordinator parameter estimators for low variance

gamma subordinator (no drift): The �gure shows boxplots of the
subordinator parameter estimators from all estimation methods in the
setting with a low variance gamma subordinator (no drift) for short and
long time horizon.
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Figure A.11 Boxplots of intensity estimators for high variance gamma subor-

dinator (no drift): The �gure shows boxplots of the intensity estimators
from all estimation methods in the setting with a high variance gamma
subordinator (no drift) for short and long time horizon.
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Figure A.12 Boxplots of subordinator parameter estimators for high variance

gamma subordinator (no drift): The �gure shows boxplots of the
subordinator parameter estimators from all estimation methods in the
setting with a high variance gamma subordinator (no drift) for short and
long time horizon.
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λ1 = 50 λ2 = 75 λ3 = 100 β = 210/21
T 1 10 1 10 1 10 1 10

1-2 low 6.7 1.7 11 2.9 16 4.1 67 15
high 3.8 1.3 5.1 1.8 6.5 2.5 5.8 1.9

1-3 low 6.7 1.7 11 2.9 16 4.1 78 19
high 3.8 1.3 5.1 1.8 6.5 2.5 6 2

1-4 low 11 3.1 16 4.4 20 5.5 83 20
high 19 5.7 25 7.6 28 8.8 8 2.5

2-3 low 0.00088 0.002 0.0013 0.0026 0.0014 0.0039 33 9
high 5.4e-05 0.00061 3.7e-05 0.00057 2.9e-05 0.00051 1.3 0.39

2-4 low 6.5 1.9 7.4 2.4 7.9 2.4 39 10
high 17 5.1 23 6.9 25 7.9 3.5 1

3-4 low 6.5 1.9 7.4 2.4 7.9 2.4 18 3.9
high 17 5.1 23 6.9 25 7.9 3 0.87

Table A.8 Di�erences between estimators from all methods for gamma subordinator (no drift): The table
summarizes the root-mean-squared Di�erences between the estimators from two Methods (Mi) and (Mj) (noted
i− j) in case of a gamma subordinator without drift in the setting with low and high variance as well as for short
and long time horizon (2 signi�cant digits).
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λ1 = 50 λ2 = 75 λ3 = 100 β = 210/21
T 1 10 1 10 1 10 1 10

1-2 low 0.41 0.35 0.34 0.36 0.31 0.31 0.35 0.34
high 0.45 0.46 0.42 0.44 0.46 0.43 0.28 0.24

1-3 low 0.41 0.35 0.34 0.36 0.31 0.31 0.31 0.25
high 0.45 0.46 0.42 0.44 0.46 0.43 0.29 0.24

1-4 low 0.51 0.50 0.47 0.49 0.39 0.42 0.32 0.29
high 0.68 0.64 0.66 0.67 0.62 0.63 0.39 0.35

2-3 low 0.51 0.51 0.51 0.48 0.47 0.50 0.39 0.36
high 0.45 0.47 0.49 0.49 0.48 0.48 0.45 0.45

2-4 low 0.62 0.65 0.61 0.63 0.60 0.58 0.43 0.37
high 0.72 0.68 0.68 0.68 0.66 0.65 0.61 0.61

3-4 low 0.62 0.65 0.61 0.63 0.60 0.58 0.57 0.55
high 0.72 0.68 0.68 0.68 0.66 0.65 0.65 0.66

Table A.9 Pitman closeness criterion for estimators from di�erent methods

for gamma subordinator (no drift): The table summarizes the empirical
probabilities that the absolute deviations of estimators from Method (Mi)
are less then for another Method (Mj) (noted i−j) in the setting of a gamma
subordinator without drift, for low and high variance as well as for short and
long time horizon (2 signi�cant digits).

λ1 = 50 λ2 = 75 λ3 = 100 β = 210/21
T 1 10 1 10 1 10 1 10

(M1) low 0.01 0.74 0.00 0.21 0.00 0.94 0.00 0.33
high 0.04 0.01 0.00 0.26 0.00 0.24 0.02 0.04

(M2) low 0.00 0.79 0.33 0.88 0.14 0.67 0.00 0.68
high 0.36 0.12 0.00 0.86 0.00 0.71 0.00 0.10

(M3) low 0.00 0.79 0.35 0.86 0.14 0.43 0.00 0.38
high 0.36 0.12 0.00 0.86 0.00 0.71 0.02 0.03

(M4) low 0.01 0.47 0.58 0.87 0.52 0.06 0.00 0.01
high 0.00 0.35 0.00 0.00 0.00 0.11 0.31 0.35

Table A.10 Chi-squared test for gamma subordinator (no drift): The table
presents the p-values of a chi-squared goodness-of-�t test for normality of
the estimators in case of the gamma subordinator without drift in the set-
ting with low and high variance as well as for short and long time horizon.
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Figure A.13 qq-plots of intensity estimators for low variance gamma subor-

dinator (no drift): The �gure illustrates qq-plots of the intensity es-
timators in case of the low variance gamma subordinator without drift for
short and long time horizon.
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Figure A.14 qq-plots of subordinator estimators for low variance gamma sub-

ordinator (no drift): The �gure illustrates qq-plots of the estimators
for the subordinator parameter β in case of the low variance gamma sub-
ordinator without drift for short and long time horizon.
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Figure A.15 qq-plots of intensity estimators for high variance gamma sub-

ordinator (no drift): The �gure illustrates qq-plots of the intensity
estimators in case of the high variance gamma subordinator without drift
for short and long time horizon.
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Figure A.16 qq-plots of subordinator estimators for high variance gamma

subordinator (no drift): The �gure illustrates qq-plots of the estimat-
ors for the subordinator parameter β in case of the high variance gamma
subordinator without drift for short and long time horizon.
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Setting: gamma subordinator with drift

(M1) (M2) (M3) (M4)
T 1 10 1 10 1 10 1 10

runtime low 0.559 0.532 76.3 566 22.2 183 156 150
high 0.56 0.527 78.2 536 14.7 114 221 180

ofv low 0.305 0.025 -574 -5750 375 3730 1.07 0.106
high 0.077 0.00713 -454 -4570 188 1860 0.124 0.0102

Table A.11 Runtime and ofv for gamma subordinator with drift: The table
summarizes runtimes and objective function values (ofv) for the estima-
tion Methods (M1)-(M4) in the setting with a gamma subordinator with
drift, low as well as high variance and for short and long time horizon.
The runtime is expressed in minutes and all quantities are given with 3
signi�cant digits.
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λ1 = 50 λ2 = 75 λ3 = 100 d = 0.4 β = 78
T 1 10 1 10 1 10 1 10 1 10

Ê (M1) 52.256 50.255 79.220 75.618 105.430 100.027 0.306 0.373 133.164 89.214
(M2) 50.388 50.052 75.138 75.060 99.942 99.862 0.366 0.396 103.058 80.456
(M3) 50.388 50.051 75.138 75.060 99.942 99.862 0.383 0.398 91.056 79.354
(M4) 50.259 49.986 75.027 75.002 100.224 99.837 0.390 0.398 89.634 79.647

ˆstd (M1) 11.620 3.162 16.881 4.711 21.798 5.971 0.166 0.088 75.523 28.874
(M2) 7.889 2.345 9.889 3.131 11.203 3.599 0.155 0.048 74.015 16.814
(M3) 7.889 2.345 9.888 3.131 11.203 3.599 0.092 0.027 42.962 10.643
(M4) 9.446 2.871 11.413 3.549 13.358 4.168 0.107 0.031 52.949 12.835

ˆrbias (%) (M1) 4.512 0.510 5.626 0.824 5.430 0.027 −23.406 −6.772 70.723 14.377
(M2) 0.776 0.103 0.184 0.081 −0.058 −0.138 −8.591 −1.037 32.125 3.149
(M3) 0.776 0.103 0.184 0.080 −0.058 −0.138 −4.219 −0.588 16.738 1.735
(M4) 0.518 −0.027 0.035 0.003 0.224 −0.163 −2.393 −0.550 14.916 2.111

ˆrmse (M1) 11.837 3.173 17.400 4.751 22.464 5.971 0.190 0.092 93.524 30.975
(M2) 7.898 2.346 9.890 3.132 11.203 3.601 0.158 0.048 78.141 16.993
(M3) 7.898 2.345 9.889 3.132 11.203 3.601 0.093 0.027 44.902 10.728
(M4) 9.450 2.871 11.413 3.549 13.360 4.172 0.108 0.031 54.212 12.940

Table A.12 Estimation results for low variance gamma subordinator with drift: The table presents the Monte Carlo
estimates for mean, standard deviation, relative bias, and root-mean-square error of all parameter estimators in
case of the low variance gamma subordinator with drift for short and long time horizon.
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λ1 = 50 λ2 = 75 λ3 = 100 d = 0.4 β = 7.5
T 1 10 1 10 1 10 1 10 1 10

Ê (M1) 51.542 50.097 76.760 75.338 100.413 100.185 0.260 0.354 17.801 9.506
(M2) 50.354 50.042 75.298 75.073 99.392 99.966 0.412 0.402 8.525 7.613
(M3) 50.354 50.042 75.298 75.073 99.392 99.966 0.415 0.402 8.197 7.600
(M4) 59.824 50.556 90.702 75.825 121.597 100.787 0.377 0.399 7.988 7.628

ˆstd (M1) 13.753 4.298 19.765 6.538 26.766 8.530 0.161 0.093 11.523 3.461
(M2) 12.717 3.973 18.125 5.896 24.240 7.690 0.096 0.032 3.940 0.985
(M3) 12.717 3.973 18.125 5.897 24.240 7.690 0.092 0.030 2.945 0.805
(M4) 29.743 5.802 43.808 8.276 60.389 10.716 0.122 0.038 4.467 1.236

ˆrbias (%) (M1) 3.084 0.194 2.346 0.450 0.413 0.185 −34.880 −11.620 137.344 26.747
(M2) 0.708 0.084 0.397 0.097 −0.608 −0.034 2.969 0.409 13.669 1.509
(M3) 0.708 0.084 0.397 0.098 −0.608 −0.034 3.763 0.418 9.292 1.336
(M4) 19.648 1.112 20.936 1.100 21.597 0.787 −5.799 −0.145 6.513 1.712

ˆrmse (M1) 13.839 4.299 19.843 6.547 26.770 8.532 0.213 0.104 15.456 4.001
(M2) 12.722 3.973 18.128 5.896 24.248 7.690 0.097 0.032 4.072 0.991
(M3) 12.722 3.973 18.127 5.897 24.248 7.690 0.093 0.031 3.027 0.811
(M4) 31.323 5.829 46.537 8.317 64.135 10.744 0.124 0.038 4.494 1.242

Table A.13 Estimation results for high variance gamma subordinator with drift: The table presents the Monte Carlo
estimates for mean, standard deviation, relative bias, and root-mean-square error of all parameter estimators in
case of the high variance gamma subordinator with drift for short and long time horizon.
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Figure A.17 Boxplots of intensity estimators for low variance gamma subor-

dinator with drift: The �gure shows boxplots of the intensity estimators
from all estimation methods in the setting with a low variance gamma sub-
ordinator with drift for short and long time horizon.
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Figure A.18 Boxplots of subordinator parameter estimators for low variance

gamma subordinator with drift: The �gure shows boxplots of the
estimators for the subordinator parameters from all estimation methods
in the setting with a low variance gamma subordinator with drift for short
and long time horizon.
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Figure A.19 Boxplots of intensity estimators for high variance gamma subor-

dinator with drift: The �gure shows boxplots of the intensity estimat-
ors from all estimation methods in the setting with a high variancegamma
subordinator with drift for short and long time horizon.
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Figure A.20 Boxplots of subordinator parameter estimators for high variance

gamma subordinator with drift: The �gure shows boxplots of the
estimators for the subordinator parameters from all estimation methods
in the setting with a high variance gamma subordinator with drift for short
and long time horizon.
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λ1 = 50 λ2 = 75 λ3 = 100 d = 0.4 β = 78/7.5
T 1 10 1 10 1 10 1 10 1 10

1-2 low 7.9 2.2 14 3.3 20 5.1 0.17 0.077 65 24
high 5.8 2 8.2 2.8 12 3.4 0.21 0.099 13 3.7

1-3 low 7.9 2.2 14 3.3 20 5.1 0.18 0.088 79 28
high 5.8 2 8.2 2.8 12 3.4 0.22 0.099 14 3.8

1-4 low 12 3.4 17 4.5 23 6.2 0.2 0.093 92 32
high 29 4.9 42 7.3 59 8.5 0.2 0.096 15 4.1

2-3 low 0.00082 0.0032 0.0013 0.0044 0.0017 0.0058 0.13 0.041 60 13
high 0.0021 0.0065 0.0032 0.0097 0.0042 0.013 0.034 0.0093 2.4 0.56

2-4 low 5.4 1.7 5.9 1.9 6.8 2.1 0.16 0.048 73 17
high 27 3.9 41 5.8 57 7.1 0.092 0.022 5.2 1.4

3-4 low 5.4 1.7 5.9 1.9 6.8 2.1 0.053 0.015 29 7.1
high 27 3.9 41 5.8 57 7.1 0.096 0.023 3.5 0.94

Table A.14 Di�erences between estimators from all methods for gamma subordinator with drift: The table
summarizes the root-mean-squared Di�erences between the estimators from two Methods (Mi) and (Mj) (noted
i− j) in case of a gamma subordinator with drift in the setting with low and high variance as well as for short
and long time horizon (2 signi�cant digits).
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λ1 = 50 λ2 = 75 λ3 = 100 d = 0.4 β = 78/7.5
T 1 10 1 10 1 10 1 10 1 10

1-2 low 0.33 0.38 0.34 0.33 0.33 0.35 0.42 0.30 0.36 0.31
high 0.43 0.46 0.41 0.43 0.40 0.42 0.23 0.17 0.16 0.13

1-3 low 0.33 0.38 0.34 0.33 0.33 0.35 0.26 0.18 0.25 0.23
high 0.43 0.46 0.41 0.43 0.40 0.42 0.23 0.17 0.13 0.10

1-4 low 0.43 0.49 0.42 0.41 0.37 0.40 0.31 0.21 0.32 0.27
high 0.58 0.61 0.60 0.58 0.65 0.60 0.28 0.17 0.22 0.17

2-3 low 0.51 0.48 0.47 0.50 0.50 0.50 0.32 0.33 0.39 0.35
high 0.48 0.55 0.47 0.56 0.46 0.51 0.47 0.43 0.39 0.39

2-4 low 0.57 0.59 0.61 0.59 0.59 0.59 0.39 0.37 0.45 0.46
high 0.61 0.66 0.67 0.62 0.69 0.64 0.63 0.60 0.57 0.56

3-4 low 0.57 0.59 0.61 0.59 0.59 0.59 0.59 0.61 0.62 0.62
high 0.61 0.66 0.67 0.62 0.69 0.64 0.62 0.63 0.67 0.66

Table A.15 Pitman closeness criterion for estimators from di�erent methods for gamma subordinator with

drift: The table summarizes the empirical probabilities that the absolute deviations of estimators from
Method (Mi) are less then for another Method (Mj) (noted i − j) in the setting of a gamma subordinator
with with drift, for low and high variance as well as for short and long time horizon (2 signi�cant digits).
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λ1 = 50 λ2 = 75 λ3 = 100 β = 78/7.5
T 1 10 1 10 1 10 1 10

(M1) low 0.04 0.01 0.00 0.59 0.00 0.19 0.00 0.00
high 0.01 0.01 0.00 0.14 0.00 0.89 0.00 0.73

(M2) low 0.88 0.92 0.00 0.16 0.11 0.31 0.00 0.00
high 0.00 0.16 0.00 0.01 0.00 0.11 0.00 0.19

(M3) low 0.88 0.92 0.00 0.12 0.16 0.31 0.00 0.02
high 0.00 0.17 0.00 0.01 0.00 0.09 0.00 0.32

(M4) low 0.68 0.30 0.44 0.18 0.10 0.19 0.00 0.12
high 0.00 0.15 0.00 0.03 0.00 0.00 0.00 0.17

Table A.16 Chi-squared test for gamma subordinator with drift: The table
presents the p-values of a chi-squared goodness-of-�t test for normality of
the estimators in case of the gamma subordinator with drift in the setting
with low and high variance as well as for short and long time horizon.
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Figure A.21 qq-plots of intensity estimators for low variance gamma subor-

dinator with drift: The �gure illustrates qq-plots of the intensity estim-
ators in case of the low variance gamma subordinator with drift for short
and long time horizon.
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Figure A.22 qq-plots of subordinator drift estimators for low variance gamma

subordinator with drift: The �gure illustrates qq-plots of the estimat-
ors for the subordinator drift b in case of the low variance gamma subor-
dinator with drift for short and long time horizon.
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Figure A.23 qq-plots of subordinator β estimators for low variance gamma

subordinator with drift: The �gure illustrates qq-plots of the estimat-
ors for the subordinator parameter β in case of the low variance gamma
subordinator with drift for short and long time horizon.
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Figure A.24 qq-plots of intensity estimators for high variance gamma sub-

ordinator with drift: The �gure illustrates qq-plots of the intensity
estimators in case of the high variance gamma subordinator with drift for
short and long time horizon.
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Figure A.25 qq-plots of subordinator drift estimators for high variance

gamma subordinator with drift: The �gure illustrates qq-plots of the
estimators for the subordinator drift b in case of the high variance gamma
subordinator with drift for short and long time horizon.
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Figure A.26 qq-plots of subordinator β estimators for high variance gamma

subordinator with drift: The �gure illustrates qq-plots of the estimat-
ors for the subordinator parameter β in case of the high variance gamma
subordinator with drift for short and long time horizon.
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Figure A.27 Cluster sizes of building Danish �re insurance data and �tted

models: The top chart shows the observed cluster sizes of the build-
ing claim number processes from the Danish �re insurance data. The
charts in the bottom three rows present corresponding sampled cluster
sizes of the �tted models based on an inverse Gaussian (left) and gamma
(right) subordinator using the estimated parameters from Methods (M1)�
(M3). (Method (M4) is excluded due to the in parts unreliable estimation
results.)
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Figure A.28 Cluster sizes of content Danish �re insurance data and �tted

models: The top chart shows the observed cluster sizes of the con-
tent claim number processes from the Danish �re insurance data. The
charts in the bottom three rows present corresponding sampled cluster
sizes of the �tted models based on an inverse Gaussian (left) and gamma
(right) subordinator using the estimated parameters from Methods (M1)�
(M3). (Method (M4) is excluded due to the in parts unreliable estimation
results.)
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Figure A.29 Cluster sizes of pro�t Danish �re insurance data and �tted

models: The top chart shows the observed cluster sizes of the pro�t
claim number processes from the Danish �re insurance data. The charts
in the bottom three rows present corresponding sampled cluster sizes
of the �tted models based on an inverse Gaussian (left) and gamma
(right) subordinator using the estimated parameters from Methods (M1)�
(M3). (Method (M4) is excluded due to the in parts unreliable estimation
results.)
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