
Technische Universität München

Fakultät für Mathematik
Lehrstuhl für Angewandte Numerische Analysis

Algorithms for Robust and Fast Sparse Recovery
New Approaches Towards the Noise Folding Problem and the Big Data Challenge

Steffen Peter

Vollständiger Abdruck der von der Fakultät für Mathematik der Technischen Universität
München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr. Michael Ulbrich

Prüfer der Dissertation: 1. Univ.-Prof. Dr. Massimo Fornasier

2. Univ.-Prof. Dr. Holger Rauhut
Rheinisch-Westfälische Technische Hochschule Aachen

3. Univ.-Prof. Dr. Xiaoxiang Zhu (schriftliche Beurteilung)

Die Dissertation wurde am 19.05.2016 bei der Technischen Universität München ein-
gereicht und durch die Fakultät für Mathematik am 21.09.2016 angenommen.

Abstract
We analyze and numerically validate novel algorithms for sparse recovery in mathemat-
ical signal processing. Our focus is on enhancing both robustness and efficiency with
respect to state-of-the-art. Regarding robustness, we propose non-convex formulations
of sparse recovery problems, featuring enhanced signal identification properties if the
original signal is affected by noise prior to measurements. We address improving
efficiency by introducing and analyzing an iteratively re-weighted least squares method,
exploiting fast matrix-vector multiplications within a conjugate gradient inner iteration.
For large-scale problems we study an enhanced subspace correction method towards
parallelization.

Zusammenfassung
Wir analysieren und validieren numerisch neue Algorithmen für Sparse Recovery in
mathematischer Signalverarbeitung. Unser Fokus liegt auf der Verbesserung von Ro-
bustheit und Effizienz bezüglich des State of the Art. Hinsichtlich der Robustheit
schlagen wir nicht-konvexe Formulierungen von Sparse Recovery Problemen vor, wel-
che verbesserte Signalidentifizierungseigenschaften aufweisen, wenn das ursprüngliche
Signal durch Rauschen vor der Messung gestört ist. Wir behandeln die verbesserte
Effizienz durch das Einführen und die Analyse einer iterativ-neugewichtete kleinste
Quadrate Methode, indem wir schnelle Matrix-Vektor Multiplikationen in einer internen
Konjugierte Gradienten Iteration ausnutzen. Für großskalierte Probleme untersuchen
wir eine verbesserte Unterraum-Korrektur Methode auf Parallelisierungsmöglichkeiten.

Contents

1 Introduction 1
1.1 Applications of Sparse Recovery—A Tour from Underwater to Far Galaxies 8

1.1.1 Underwater Acoustics . 8
1.1.2 Sparse Fusion of Hyperspectral and Multispectral Imagery . . . 9
1.1.3 Pulsating Stars . 11

1.2 Notation . 12

2 Fundamentals of Sparse Recovery 15
2.1 A Linear Acquisition Model for Sparse Recovery 15

2.1.1 Sparse and Compressible Signals 15
2.1.2 A Simple Decoder . 17
2.1.3 Encoder Properties . 18
2.1.4 Instance Optimality of Decoders 20
2.1.5 Non-Standard Bases . 21

2.2 Noise Models . 21
2.2.1 Measurement Noise and Model Error 21
2.2.2 First Order Optimality Conditions of the `1-regularized Least

Squares Functional . 24
2.2.3 Signal Noise and Noise Folding 26

2.3 Joint Sparsity . 29
2.4 Algorithms for Sparse Recovery . 30

2.4.1 Iteratively Re-weighted Least Squares (IRLS) 31
2.4.1.1 IRLS Method for `p-minimization 32
2.4.1.2 A Practical Comment on the Convergence of IRLS . . 34
2.4.1.3 IRLS Method for `p-norm Regularized Least Squares 40

2.4.2 Iteratively Re-weighted `1-minimization (IRL1) 42
2.4.3 Thresholding Algorithms . 43

2.4.3.1 Iterative Soft Thresholding (ISTA) 43
2.4.3.2 Iterative Hard Thresholding (IHT) 45

3 Robust Sparse Recovery in the Presence of Strong Signal Noise 49
3.1 Approach 1: Damping Noise-Folding by Non-Convex Methods 52

3.1.1 Support Identification Stability Results in Standard Sparse Re-
covery . 53

v

3.1.2 Support Identification Stability in the Class of Sparse Vectors
Affected by Bounded Noise . 56

3.1.3 Non-convex Methods for Enhanced Support Identification Prop-
erties . 58
3.1.3.1 Properties of the Regularized Selective p-potential Func-

tional (SLP) . 58
3.1.3.2 Properties of Iterative Hard Thresholding (IHT-λ) . . 65
3.1.3.3 Summary: The Selectivity Principle 67

3.2 Approach 2: Multi-Penalty Regularization 68
3.2.1 Geometrical Intuition from a 2D Example 71
3.2.2 An Iterative Algorithm for Multi-Penalty Minimization and its

Convergence Properties . 79
3.2.2.1 New Thresholding Operators for an Iterative Algorithm 81
3.2.2.2 Auxiliary Results: On Fixed Points and Fixed Index Sets 85
3.2.2.3 Convergence of the Iterative Algorithm 89

3.2.3 Empirical Investigation on the Clustering of Solutions 98
3.2.3.1 Problem Formulation and Experiment Data Set . . . 98
3.2.3.2 Clustering of Solutions 99

3.3 Comparative Numerics . 101
3.3.1 Test Setting . 102
3.3.2 Parameter Identification . 104
3.3.3 Massive Computations . 107
3.3.4 Phase Transition Diagrams . 113

4 Acceleration Techniques for Sparse Recovery Algorithms 117
4.1 A CG Based Acceleration of Iteratively Re-weighted Least Squares

Algorithms . 118
4.1.1 Conjugate Gradient Methods Revisited 120

4.1.1.1 Conjugate Gradient Method (CG) 121
4.1.1.2 Modified Conjugate Gradient Method (MCG) 122

4.1.2 Conjugate Gradient Accelerated IRLS Method for `p-norm Min-
imization . 124
4.1.2.1 Convergence Results 126
4.1.2.2 Preliminary Results Concerning the Functional Jp(x,w, ε)129
4.1.2.3 The Functional fε,p(z) 135
4.1.2.4 Proof of Convergence 136
4.1.2.5 Proof of Rate of Convergence 137

4.1.3 Conjugate Gradient Accelerated IRLS Method for `p-norm Reg-
ularized Least Squares . 139
4.1.3.1 Properties of the Functional Jp,λ 144
4.1.3.2 Proof of Convergence 147

4.1.4 Simulations . 153
4.1.4.1 Test Settings . 154
4.1.4.2 Algorithm CG-IRLS 155
4.1.4.3 Algorithm CG-IRLS-λ 160

4.2 Parallel Domain Decomposition Based Solutions for ISTA 166
4.2.1 Parallel Algorithms for the `1-regularized Least Squares Problem 170
4.2.2 An Accelerated Domain Decomposition ISTA 177

4.2.2.1 Domain Decomposition ISTA with Backtracking, Adap-
tive Stepsize, and Prediction Step 178

4.2.2.2 Backtracking with a Finite Number of Steps 180
4.2.2.3 Surrogate Function and Thresholding Operator 180

4.2.3 Convergence Results . 181
4.2.4 Implementation Details . 187

4.2.4.1 A Fair Stopping Criterion 187
4.2.4.2 An Adaptive Choice of the Number of Inner Iterations

L(n) . 188
4.2.4.3 Update Strategies for the Stepsize t(n) 189
4.2.4.4 Choice of the Prediction Stepsize w(n+1) 190

4.2.5 Simulations . 191
4.2.5.1 Test Setting . 192
4.2.5.2 Comparison for Different Values of Lmax 193
4.2.5.3 Comparison to State-of-the-Art Solvers 194

4.2.6 A Solver for Large-Scale Hyper- and Multispectral Image Sharp-
ening . 197
4.2.6.1 The SparseFI Project and High Performance Computing198
4.2.6.2 Determining a Suitable Solver 201
4.2.6.3 Parallel Work Scheduling and Idling 201

5 Conclusion and Outlook 207

A Proofs 209

List of Figures 211

List of Tables 215

Bibliography 217

Chapter 1

Introduction

What do the image acquisition techniques used by the German optical Earth remote
sensing satellite EnMAP, the rating and marketing system of the film streaming com-
pany Netflix, and a composition of Mozart have in common? At first sight, it is
not much, but a deep look into the matter reveals that all of them are describable
mathematically by means of a concise, or more precisely sparse, digital/numerical
representation, which allows eventually for a relatively simple elaboration. Let us
clarify what we mean with a concise description for each of these mentioned examples.
When we listen to the music of Mozart, we perceive it as being “pervasive”, filling
our ears, continuously for several minutes. Despite the beauty and the involvement
Mozart’s music can raise, it can relatively simply be represented by its score, as
an—admittedly well-thought and marvelous—sequence of a finite number of notes,
only partially simultaneously played. The video streaming company Netflix got rather
well-known at its early development within the scientific community because of its
by now famous contest, the so-called Netflix prize [146], for the best algorithm able
to accurately predict client’s ratings of movies from ones previously watched. As a
matter of fact movies are categorized by genre (Drama, Comedy, Sci-Fi etc.) also
because large groups of people may identify their taste with one or few more of them.
There are people who may mostly like Sci-Fi, but less other genres, and they would
pick first a film to watch from this genre than from others. And tastes of people can
often be very similar, so much that they can be additionally grouped according to
certain inter-genre selections of films. Hence, the preferences of people can be simplified
according to their belonging to certain groups, whose number is actually way smaller
than the number of films or the entire cohort of the clients. Once an algorithm is able
to establish semi-automatically on the basis of previous preferences the partitioning of
the clients into certain preference groups, then the prediction of whether one would
like a certain movie gets immediately simplified. This succinct representation of the
entire cohort of clients into preference groups is another instance of the mathematical
concept of sparsity. Eventually the satellite EnMap, which is supposed to be launched
in the year 2018, will acquire high quality hyperspectral measurements from the Earth’s
surface. The image data, which is produced during this mission, will be of extremely
high spectral resolution, but, due to technical restrictions, this is at the expense of

1

Chapter 1 Introduction

the spatial resolution of the image, which is bound to be lower. However, analyzing a
typical image of the surface of the Earth (for instance in urban or landscape areas),
one can quickly realize that it can be succinctly described as a sparse collection of
particular objects, like roofs, trees, river tracks, etc. Hence, more than identifying high
spatial resolution pixels, one could enhance the low spatial resolution of the image, by
simply identifying its few composing structures, as we describe in details in Section 1.1.2.

Although by now we recognize that lots of different kind of phenomena can be
succinctly represented in terms of few descriptors (as we just exemplified with the
cases above) the conceptual development of the abstract notion of sparsity followed
certain relevant milestones, which we describe concisely with the following aphorism:
the scientific community said, “Let there be compression [for images]”; and there was
JPEG [132, 60]. The scientific community saw that the compression was good, and
used the sparsity as a prior for solving inverse problems.
The economization to sustain the same results with the minimal investment of

resources (such as room, energy, effort or cost) is part of the common experience.
In the early days of telecommunication, where message transmission was still expen-
sive, people compressed their messages in a few words on telegrams, or restricted
themselves to the important information when utilizing callboxes. Still the messages
were received and understood. However, only in the middle of the previous century,
Claude E. Shannon introduced a formalization of lossless and lossy compression [165,
166]. Among others it led to the image compression standard JPEG (1980’s) and
JPEG-2000, where fundamental tools from harmonic analysis, such as the cosine and
wavelet transformation respectively, were cleverly exploited.

After the success of the JPEG compression standard, as well as other compression
techniques which were applied to other signals such as sounds or specialized technical
data, we became aware that most of the acquired data is actually of less importance.
Thus, it is reasonable to ask, whether we actually have to acquire all the data, whose
large parts can eventually be thrown away, and whether devices can be designed, which
directly measure and sketch only the relevant information of the signal without the
need of acquiring it all.
In the classical sampling theory, signals are modeled as band-limited functions

(i.e., with compactly supported Fourier transform) and can be reconstructed from
equidistant samples acquired at the Shannon-Nyquist sampling rate [166]. This is
actually equivalent to the unique solvability of a linear operator equation, which, in
finite dimensions can be simply described as the recovery of a vector x ∈ RN from
measurements y = Φx ∈ Rm acquired by means of a linear sensing process Φ ∈ Rm×N ,
modeling the sampling operator. As we know, if m ≥ N and the matrix Φ is of full
rank, then the problem is in fact uniquely solvable. However, a directly compressed
acquisition of the signal would demand m� N instead, violating somehow the classical

2

understanding of signal acquisition as established by Shannon or the fundamental
theorem of linear algebra in our finite dimensional model. In this case, the number
of competitor solutions of the problem is infinite. However, the assumption that the
signal to be reconstructed is compressible may actually help to nail the right one. In
this finite dimensional model compressibility means that x can be well-approximated
by a sparse vector, i.e., a vector with few nonzero coordinates.
The groundbreaking results of the seminal papers [26, 29, 28, 30, 57, 11] showed

that this is actually possible, provided suitable linear measurements Φ and enough
compressibility of x, which can be recovered by a relatively simple convex optimization,
i.e., the minimization of the vector `1-norm over the set of feasible competitors. The
fundamental principle is that Φ needs to be injective on sparse vectors or, a bit more
precisely, that its kernel is “well-separated” from the set of sparse vectors (see Figure 1.1
for an illustration). This gap is often implied by certain properties of the matrix,
for instance its quasi-isometrical embedding of sparse vectors in lower dimension, the
so-called Restricted Isometry Property (RIP), implying also the Null Space Property
(NSP), i.e., the kernel of the matrix does not contain compressible vectors. One of
the fundamental challenges of the theory of compressed sensing is then the design of
measurements Φ, whose kernel is well-separated from sparse vectors with maximal
number k of nonzero entries, which is known to be of order m/(log(N/m) + 1). The
best “constructions” currently available rely on a certain level of randomness in the
definition of Φ, and no fully deterministic construction is yet known to allow the same
optimal sparsity level.
Compressed sensing problems can be considered as inverse problems since one

wishes to infer (usually uniquely and stably) the original signal from an undersampled
collection of (indirect) measurements. However, the applications of compressed sensing
are usually addressing the engineering design of a sensing process which mimics the
random measurements Φ. For instance, it is by now understood that one can modify
MRI machines in a way of randomizing their sensing process and producing high-
resolution images with less samples [130, 131], or in multiple-input-multiple-output
(MIMO) radar one works with random measurements by means of the emission of
random probes by several transmitters over some time-period (see, e.g., [61]).

In more general inverse problems and differently from compressed sensing, the design
of the measurement is often not completely freely chosen and it is constrained by
the physical realization of certain sensors and the physical processes involved in the
measurements. Also the measurements are usually nonlinear, but a linearization
is often used as a simplification, which works well in many concrete situations. A
typical example of an inverse problem is the inversion of the Radon transform used in
Computerized Tomography (CT). Although the measurements in these cases may not
fulfill the separation of the kernel from sparse vectors, the sparsity prior nevertheless
induces implicitly a restriction of the infinite dimensional inverse problem to a rather
low dimensional space. As a matter of fact many inverse problems turn out of be

3

Chapter 1 Introduction

Figure 1.1: For a low-dimensional example with a matrix Φ ∈ R1×3, we illustrate in the plot
the separation of sparse vectors and the kernel of Φ, which can be represented
geometrically as a plane. The black lines represent the set of sparse vectors with
maximum one non-zero entry. The matrix Φ whose kernel is represented by the
red plane is not suitable for compressed sensing since the set of sparse vectors
intersects with the kernel. A kernel which is well-separated from the set of sparse
vectors is represented by the green plane since both sets only intersect in zero.
The respective matrix then is suitable for compressed sensing techniques.

well-posed as soon as one considers their restrictions on finite dimensional subspaces.
A relevant well-known example of such a recovered well-posedness in finite dimensions
is the Electrical Impedence Tomography (EIT), also known in the mathematical
community as Calderón’s inverse conductivity problem. Here one wants to determine
the conductivity of an object, provided measurements in form of Neumann boundary
samples. This inverse problem is in general not well-posed. If we however assume that
the conductivity is representable as a linear combination of finitely many known profiles,
suddenly we obtain a Lipschitz-continuous dependence between the measurements
and the conductivity solution, and thus a well-posed problem, see, e.g., [3, Theorem
A]. Hence, using sparsity priors for stabilizing an inverse problem is a very powerful
method also in very sophisticated (highly nonlinear) situations as in EIT. The scientific
community has been aware of the power of the sparsity prior in inverse problems
since the 1960’s, where `1-norm minimization was used in the context of sparse
frequency estimation [126] (followed by [58]), and in the 1970’s for seismic tomography
in geophysical exploration [176, 161]. However, only in the 1990’s it has been fully
understood that the sparsity prior had the potential of significantly outperforming
traditional regularizations such as, e.g., `2-norm minimization of Tychonov type [56,
177]. For instance, J.-L. Starck was one of the first, who used the sparsity prior for
significantly improving astronomy imaging [170, 171].

4

Hence it became very intriguing, as especially it appears in the recent electrical
engineering literature on signal processing (see e.g., [203, 202]), to explore the power of
the sparsity prior to enhance the recovery of undersampled signals in various contexts,
beyond the compressed sensing framework. This development has been additionally
boosted by the successful realization of effective algorithms for dictionary learning,
e.g., [163, 162]. The principle is that classes of statistically related signals may even-
tually share common features which can be synthesized in a collection of signals, the
dictionary, by which all the others can be described by a sparse linear combination. As
an example, we already mentioned above that hyperspectral images of Earth surfaces
are actually combinable by few fundamental feature images such as roofs, meadows,
etc. Hence, we can without concern define this research direction as sparse recovery,
where one has no control on the measurement process, but has to recover anyway a
sparse signal.

In order to successfully establish this field within the applied sciences and industrial
research, a robust and efficient computation of sparse signals is of utmost interest. We
want to clarify this statement by means of the following detailed reasoning:

• Robustness: We already mentioned above that guarantees for the exact and
unique recovery of sparse vectors exist as soon as the kernel of the involved
matrix Φ and the set of sparse vectors is well-separated (compare Figure 1.1).
However, even in such a well-posed setting, real-life-applications from natural
sciences and engineering usually are affected by disturbances/perturbations,
which concern either the modeling, i.e., signals are not always exactly sparse
but most likely compressible, the linearity of the measurement acquisition is
only an approximation of the actual likely nonlinear process, or the acquired
measurements are corrupted by noise by the design of the involved sensors and
environment. Depending on their severity, such perturbations may provoke the
failure of the sparse recovery, for instance the wrong identification of the location
of the largest components of the signals in absolute value (the essential support of
the signal). But robustness is an inevitable premise for the responsible application
of sparse recovery since some of the already above mentioned examples are critical
in the sense that, e.g., human lives may depend on the quality of its solution. For
example the reliable identification of small tumors in the brain via MRI allows
an early scheduling of a precise surgery and can prevent metastases.

• Efficiency: There is by now a large number of algorithms and software for
the effective computation of the unknown sparse vector.1 General purpose
optimization methods, such as interior point methods, can be used. However,

1Although surely not complete, in [34, 62] one can find a well-kept collection of software and
algorithms related to sparse recovery.

5

Chapter 1 Introduction

fast and robust most specialized methods, taking into account the expected
sparsity/compressibility of the solution, have been developed. A popular and
simple method is for instance iterative hard thresholding [20], which iteratively
performs a gradient step, and a projection of the new iterate onto the set of
sparse vectors. However, for most of these algorithms their effective scalability
with respect to the dimensionality of the problem has not been fully explored
as well as their efficiency for Φ not fulfilling the RIP or the NSP is still an open
issue. In particular in big data and real-time applications, the computational
time is a crucial feature of an algorithm and decisive for its practicalness.

Naturally it would be ideal to produce methods whose robustness and efficiency are
guaranteed at the same time, but also providing solutions to enhance one or the other
property already is a challenging task.

This thesis is a self-contained compendium of our research work, collected in the
research papers [155, 7, 140, 82, 97], the book chapter [81] and the so far unpublished
research work of Sections 2.4.1.2, 3.3, and 4.2. In this work, we contribute to the field
of sparse recovery by proposing novel methods for enhancing both robustness and
efficiency with respect to the state-of-the-art.
Our results can be conceptually summarized into these following two directions:

• Robust recovery techniques when strong noise on the signal is present
[Chapter 3]: We noted above, that perturbations in applications can have differ-
ent reasons. We want to focus on the case where the original signal is affected by
noise prior to the measurements, essentially destroying its compressibility. This
situation, although expected to happen often in real-life applications, was so far
only rarely addressed in the literature, in contrast to noise affecting the measure-
ments. The reason of seriously considering the signal noise has been highlighted
in [6, 51] where the so called noise folding phenomenon was demonstrated: the
variance of the noise on the signal prior to measurement gets amplified by the
measurements by a factor of O(N/m), i.e., inversely proportionally with respect
to the number of measurements, but also scaling linearly with the dimension of the
signal. We provide some theoretical indications that standard methods in sparse
recovery are failing even just to detect the relevant entries of the original signal.
The reason is their lack of selectivity, i.e., they do not distinguish between signal
and noise, which have often instead different statistical properties. For instance,
a signal is sparse/compressible, while Gaussian noise is uniformly distributed over
the entries of the vector. In view of this observation, we propose two approaches
for a more robust recovery:
1. We design non-convex and non-smooth objective functions, which allows

to select large signal components and damp those components which are

6

attributed to noise. We consider first the optimization of a selective least
p-powers functional subject to affine constraints. This method is designed
to apply a selective choice, and outperforms standard methods in terms
of robustness. Unfortunately, our implementation of it does not scale well
with the dimensionality of the problem. Secondly, also to enhance the scala-
bility with respect to the dimension, we revisited the well-known iterative
hard thresholding (compare Section 2.4.3.2), by additionally considering a
postprocessing correction, performed by a suitable convex program.

2. We minimize multi-penalty functionals, i.e., the summation of a fidelity
term, which ensures that the measurement data is met, and at least one
possibly non-convex penalty term for the signal and the noise component
respectively. By such an approach we are able to take the particular statistics
of signal and noise into account, which helps to separate both parts through
differently designed penalties. A feature of this approach is its universality,
which means that it is not only applicable to the case where the signal is
sparse and the noise is Gaussian, but can also potentially be applied to
signal-noise combinations with different statistical properties.

Eventually, we present extensive numerical tests, where we compare both ap-
proaches with respect to the state-of-the-art methods, regarding their ability of
correctly identifying the support of a signal.

• Accelerated sparse recovery methods based on either efficient matrix-
vector multiplications, or distribution techniques (parallelization)
[Chapter 4]: The need for accelerated sparse recovery methods is intrinsically
motivated by one of the field’s main drivers—the challenge of big data, i.e., the
fact that one would like to solve real-world problems with huge dimensions, which
are owed to the constantly growing acquisition of data in our quotidian life. We
propose two conceptually different methods:
1. We combine an iteratively re-weighted least squares algorithm, as introduced

in Section 2.4.1, with a conjugate gradient acceleration for the approximate
solution of the incorporated linear systems (instead of using exact methods
such as Gaussian elimination). It is particularly suited to compute solutions
of sparse recovery problems, in which the measurement process can be
represented by a matrix Φ which allows efficient matrix-vector multiplica-
tions (e.g., the fast Fourier transform (FFT)). Although, already used in
practice, we thoroughly analyze this algorithm and propose several speed-up
techniques in order to make this second-order method competitive with
first-order methods—in particular for problems of large size—as we show in
the respective numerical results.

2. In the case that we are not able to use efficient matrix-vector multiplications,

7

Chapter 1 Introduction

but have to deal with extremely large matrices, without a particular structure,
we are likely forced to split the problem. Besides reviewing some recent
approaches for the parallel treatment of sparse recovery problems, we resume
a domain decomposition method, which was conceptually proposed in an
early phase of the sparse recovery “hype”. It basically splits the large
problem into many smaller ones (domain/subspace decomposition), which
can be solved more efficiently. Surprisingly enough, this relatively simple and
natural approach has not been fully explored so far, and it was limited to a
relatively conceptual level. We reconsider it and tune it to scale for realistic
dimensionality of real-life applications and we show the improvement over
the state-of-the-art in respective high-performance computing tests.

Additionally, we provide in Chapter 2 a synthetic overview on the fundamentals and
most important aspects of sparse recovery. We focus on the theoretical foundations
which are required within the thesis. In particular, we recall the most common and
intuitive algorithms for sparse recovery. We conclude the thesis in Chapter 5 with the
main conclusions of our research and the identification of possible starting points for
further investigations and open research questions.

In the remainder of this introduction, we want to present more in detail some
applications of sparse recovery and compressed sensing in Section 1.1, in order to
underline the relevance and diversity of the topic. Then, we clarify the basic notations,
which are used all over the document, in Section 1.2.

1.1 Applications of Sparse Recovery—A Tour from
Underwater to Far Galaxies

In order to highlight the importance and influence of the concept of sparsity, we want
to take a tour from underwater to far galaxies and briefly present three examples for
sparse recovery applications.

1.1.1 Underwater Acoustics
After the tsunami of 2004 in the Indian Ocean, which caused over 230,000 deaths2,
the need was raised for early warning systems for possible causes like underwater
earthquakes, volcanic eruptions, etc. Those systems incorporate sensor networks in the
ocean which constantly sense possible irregularities in the ocean’s underwater acoustics.
Underwater acoustic channels can be sparsely represented by a number of distinct

2Source: http://www.spiegel.de/panorama/gesellschaft/tsunami-2004-in-suedost-asien-d
ie-grosse-flut-a-1006392.html

8

http://www.spiegel.de/panorama/gesellschaft/tsunami-2004-in-suedost-asien-die-grosse-flut-a-1006392.html
http://www.spiegel.de/panorama/gesellschaft/tsunami-2004-in-suedost-asien-die-grosse-flut-a-1006392.html

1.1 Applications of Sparse Recovery—A Tour from Underwater to Far Galaxies

paths, each characterized by a triplet of delay, Doppler rate, and path attenuation.
In [14], the authors reduce the discretized measurement process of those paths towards
an dependency of only a delay vector x, from a Fourier-type sensing matrix Φ, i.e.,
y = Φx+ e, with an additional noise vector e. Since only a few delays are non-zero, x
is expected to be sparse and by compressed sensing techniques, one is able to reduce
the size of the measurements y, i.e., in practice, less sensors or a lower sampling rate.

1.1.2 Sparse Fusion of Hyperspectral and Multispectral Imagery
We leave the ocean and proceed towards the mainland, which is observed from the
space by a diversity of artificial satellites, which have very different purposes. The Envi-
ronmental Mapping and Analysis Program (EnMAP) is a future German hyperspectral
satellite mission. It aims at monitoring and characterising the Earth’s environment on
a global scale [52, 175]. Among others, the satellite is equipped with a hyperspectral
sensor, which produces hyperspectral data, i.e., a bunch of images (channels) of the same
spatial scene in different spectral ranges. It is the opposite of a greyscale image, which
has only one single channel, and is also called panchromatic image. In between, one is
talking about the so-called multispectral image if the number of spectral channels is low
(2–10), e.g., the standard RBG image, which has three channels: red, blue, and green.
Hyperspectral data is used for instance for the identification of the particular composi-
tion (water, vegetation, sand, etc.) of the Earth’s surface. The term “hyperspectral”
implicitly means, that the resolution of the spectrum is high, since each channel only
presents a small portion of the spectrum. Due to physical restrictions in the sensor
design, a high spectral resolution comes at the expense of a degradation in spatial
resolution. Thus, by deteriorating the spectral resolution, one is able to obtain a better
spatial resolution, e.g., in multispectral data that has less spectral channels. Thus, from
hyperspectral data one is able to distinguish the different materials of a particular
region, but one can only roughly say something about the spatial distribution of those
materials, while in multispectral data it is the other way round. An example of a
hyperspectral low resolution image and multispectral high resolution image is given in
Figure 1.2. It was proposed in [101, 98], to fuse both data in order to have the best of
both worlds—high spatial and high spectral resolution. The methodology is based on
a sparse representation of the data and was already proposed for the pansharpening
problem in [202], where multispectral data was sharpened through a panchromatic
image. We want to describe the idea behind the pansharpening problem, i.e., the
fusion of a multispectral and a panchromatic image, for the sake of the conceptual
understanding. Then the sharpening of a hyperspectral image by a multispectral image
is only a generalization of this approach, but containing more technical details. We
refer to [100, 101, 98, 96, 95, 97, 99] for further reading.
The essential assumption is that the scene of interest can be composed of several

basic elements like roofs, meadows, lanes, etc. Thus, technically, we obtain such

9

Chapter 1 Introduction

Figure 1.2: Left: Hyperspectral image of low spatial resolution. Right: Multispectral image
of high spatial resolution.

elements (or atoms) from a set of equally sized patches (subimages) of the original
scene, which we call dictionary. A high (spatial) resolution dictionary Dhigh is obtained
by choosing patches from the panchromatic image. In practice this means that we
choose N different patches of the panchromatic image and store those atoms vectorized
as d1, . . . , dN ∈ Rmh , where mh is the number of pixels of such a subimage. Then, the
dictionary matrix Dhigh ∈ Rmh×N is composed of the column vectors d1, . . . , dN . The
atoms can be low-pass filtered and downsampled in order to obtain a low (spatial)
resolution dictionary Dlow ∈ Rml×N , where ml < mh. By our assumption that the
scene is composed of those atoms, any (vectorized) patch Ylow ∈ Rml of any channel
of the multispectral image can be represented sparsely by atoms of Dlow. Thus, we
determine a sparse solution X ∈ RN of the system Ylow = DlowX. The hope is that
one obtains from Yhigh = DhighX a patch with enhanced spatial resolution. Repeating
this procedure for each patch of the low spatial resolution multispectral image, we
obtain a high spatial resolution multispectral image.

One can further extend this approach by a joint-sparse representation [205, 206]: A
patch of the multispectral image is represented by the same part of the image in different
channels. If one would perform the sparse recovery in each channel independently, one
may get very different sparsity patterns. However, since in all channels the same object
is pictured (indeed in different spectra), one may assume that the sparse representation
in each channel is approximately the same. Thus, one has to impose joint-sparse
penalties on the problem formulation (compare Section 2.3). In Section 4.2.6, we get

10

1.1 Applications of Sparse Recovery—A Tour from Underwater to Far Galaxies

back to this application in more detail and provide solutions for an efficient computation.

1.1.3 Pulsating Stars
Eventually, we travel from the low Earth orbit of EnMAP further to the far away stars.
Asteroseismologists, who study the oscillations of variable pulsating stars as seismic
waves, are particularly interested in the characteristic pattern of the pulsations of a
star since it allows the researchers to gain information about its internal layers. We
want to follow the presentation in [168, 64] in order to show how sparse recovery can
be used for the identification of the star’s pulsation.
On the surface of a star there are regions that are expanding and contracting. The

expanding part is cooling down, and the contracting part heating up. It is a constant
conversion of kinetic into thermal energy and vice versa, and leads to radial and
non-radial oscillations, which condense to variabilities in light intensity, observable by
human made devices such as the KEPLER space telescope.
Let us consider the wavelength distribution u(ν, t) on the star’s surface (the part

that is observable from the Earth), depending on the polar angle ν ∈ [−π/2, π/2], and
the time t. From m sensors, we measure this distribution in different spectra (multi-
or hyperspectral sensor), where each sensor has a proper sensibility function wi(u(ν, t))
which is only non-zero in the sensible wavelength range. Stars are too far away in
order to resolve the measurements on the level of the polar angle ν, so that only the
measurement of the integral

yi(t) =

π
2∫

−π2

wi(u(ν, t))u(ν, t)∂ν

is possible.
Within a simple model, asteroseismologists assume that yi(t) can be well approx-

imated from 2π-periodic functions. As an element of the space of passband filtered
trigonometric functions (the N -dimensional approximation of the infinite dimensional
space L2(−π, π), with N being even), it can be represented by the orthonormal basis
of the trigonometric polynomials of maximal degree N/2, thus

yi(t) =
N
2 −1∑

j=−N2

xje
2πijt.

In the community it is accepted that we can assume only some of the frequencies
j ∈ [−N/2, N/2] being active. Like this, we found a sparse representation of the star’s
oscillations, and we obtain the measurement process y(t) = Φ(t)x, with (Φ(t))i,j = e2πijt

for each instance of time t.

11

Chapter 1 Introduction

It turns out that the above model can be crucially enhanced since in general one is
not able to measure yi(t) in such a pure linear form which is due to the fact that the
rotation axis of the star is inclined and the additional effect of limb darkening3 exists.
Instead of a linear model, a quasi-linear model y(t) = Φ(t, x)x can be established,
where Φ(t, x) is a small perturbation of Φ(t) depending on x. This modeling leads to a
new research field called quasi-linear compressed sensing, but will not be addressed in
this thesis. For further reading, we refer to the references, mentioned above.

1.2 Notation
Define by N the set of positive natural numbers, and N0 = {0} ∪ N. The real and
integer numbers are denoted by R and Z respectively. We denote by

‖z‖`q :=

 d∑
j=1
‖zj‖q

 1
q

, 0 < q <∞, ‖z‖`∞ := max
j=1,...,d

|zj |,

the standard vector q-(quasi)-norm in Rd, d ∈ N.
The most general spaces that are used in this thesis are defined as follows: For some

countable index set Λ, we denote by `p(Λ), 1 ≤ p ≤ ∞, the Banach space of real4
p-summable (vector) sequences, i.e., u = (ui)i∈Λ, ui ∈ Rd, ∞ > d ∈ N, and we define
the (quasi)-norms

‖u‖`p,q(Λ) :=

∑
i∈Λ
‖ui‖p`q

 1
p

, 0 < p <∞, 0 < q ≤ ∞

and ‖u‖`∞,q(Λ) := supi∈Λ ‖ui‖`q . For simplicity of notation, we define

‖u‖`p(Λ) := ‖u‖`p,2(Λ), 0 < p ≤ ∞. (1.1)

For the particular case of p = q = 2, we equip `2(Λ) with a scalar product, which is
given for u, v ∈ `2(Λ) by

〈u, v〉 :=
∑
i∈Λ
〈ui, vi〉`2 ,

where 〈·, ·〉`2 is the standard scalar product of vectors. We indicate the support of an
element u ∈ `2(Λ) by

supp(u) := {i ∈ Λ | ‖ui‖`2 6= 0}.
3The effect of limb darkening describes the weaker radiation power at the limb regions of the star,

where less mass is contributing to the light intensity which is observable from the Earth.
4For simplicity, we restrict ourselves to real-valued vector spaces, although most of the theory

is also valid for complex-valued vector spaces, as one can verify by cross-reading in the respective
literature.

12

1.2 Notation

Note that this definition means in particular, i ∈ supp(u) if at least one entry of
the vector ui is non-zero. We will need the general spaces, as defined above for
arbitrary d, only in the Section 4.2. In the remainder of the thesis, we set d = 1,
which also motivated the simplification (1.1). Furthermore, a finite dimensional setting
is considered in Section 3.1 and 4.1. In this case, Λ = {1, . . . , N}, for N ∈ N, and
`p(Λ) = RN , and we use the short notation ‖ · ‖`p instead of ‖ · ‖`p(Λ).
The operator # specifies the cardinality of a finite set. In particular we define the

`0-“norm” for u ∈ `2(Λ) by

‖u‖`0 := ‖u‖`0(Λ) := # supp(u).

Notice that this is actually not a norm, since it is not homogeneous. However, this
term was coined in the field of sparse recovery and compressed sensing.

We will usually consider linear operators T : `2(Λ)→ H, where H is a Hilbert space.
In particular, we consider in most cases the particular space H = Rm×d (and thus
H = Rm in large parts of the document). Let T ∗ denote its adjoint operator. In finite
dimensions these operators can be represented as matrices Φ. Since we work with real
values, the adjoint Φ∗ is equal to the transpose of the matrix Φ. For simplicity of
notation, we denote ‖T‖ := ‖T‖`2(Λ)→H the operator norm, which coincides with the
spectral norm in the finite dimensional setting. Furthermore, the definitions

FT (y) := {u ∈ `2(Λ) |Tu = y},
NT := {u ∈ `2(Λ) |Tu = 0},

(1.2)

are abbreviations for the solution set of the operator equation Tu = y (or respectively
defined for a matrix Φ and u ∈ RN) for the measurement vector y ∈ H, and the null
space (kernel) of T respectively.

For the index set Λ̃ ⊂ Λ, we denote the complement by Λ̃c := Λ\Λ̃, where in general
it should be clear from the context which is the index set of reference Λ. We define the
restriction of u ∈ `2(Λ) to the index set Λ̃ component-wise by

(
uΛ̃
)
i

:=
{
ui, i ∈ supp(Λ̃)
0, i /∈ supp(Λ̃)

.

For r ∈ R, we denote the (Gaussian) floor and ceiling function by brc and dre
respectively. For integers a, b ∈ Z the remainder of the Euclidean division is denoted
by “a mod b”.

13

Chapter 2

Fundamentals of Sparse Recovery
We want to translate the concept of sparse recovery, which we colloquially described in
the introduction of this thesis, into a proper mathematical language. In the following,
we present a selected collection of fundamental results in the field, which are essential
for the comprehension of the research that is presented in Chapters 3 and 4. More
extended tutorials on the matter are given, e.g., in [11, 32, 77, 75, 84, 81, 68].

To the greatest extent, we focus on the setting of finite dimensional spaces. Where it
is necessary, we further extend the explanations towards an infinite dimensional setting,
for the sake of a self-contained presentation of the thesis.

2.1 A Linear Acquisition Model for Sparse Recovery
The unknown vector x ∈ RN , which is referred to as the signal, is sampled by a linear
encoder or encoding matrix Φ ∈ Rm×N . The simplest possible model is

y = Φx, (2.1)

where the measurement y ∈ Rm is obtained by a simple linear acquisition not affected
by any disturbance. We also refer to it as the noiseless model. In the entire thesis,
we assume that Φ has full rank, i.e., rank(Φ) = min{m,N}. From standard linear
algebra, it is known that m = N is required to obtain a unique solution to the linear
system (2.1). A sparse recovery problem is characterized by the particular requirement
m� N . In this case, there are infinitely many solutions to (2.1). The key idea is to
identify among them the sparse solutions, which are mathematically modeled in the
following section.

2.1.1 Sparse and Compressible Signals
Let us describe the mathematical concept of sparse signals by the following definition.
Definition 2.1 (k-sparse vector)
Let k ∈ N, k ≤ N . We call the vector x ∈ RN k-sparse if

x ∈ Σk :=
{
z ∈ RN |# supp(z) = ‖z‖`0 ≤ k

}
.

15

Chapter 2 Fundamentals of Sparse Recovery

Sparse signals are a rather ideal construct. In applications, signals are often not
exactly sparse but at least compressible. We refer to [132] for more details. We define
compressibility in terms of the best k-term approximation error with respect to the
`p-norm.

Definition 2.2 (Best k-term approximation)
Let x be an arbitrary vector in RN . We denote the best k-term approximation of x by

x[k] := arg min
z∈Σk

‖x− z‖`p , p ∈ R, 1 ≤ p <∞,

and the respective best k-term approximation error of x by

σk(x)`p := min
z∈Σk

‖x− z‖`p =
∥∥∥x− x[k]

∥∥∥
`p
.

Remark 2.3
The best k-term approximation error is the minimal distance of x to a k-sparse vector.
Informally, vectors having a relatively small best k-term approximation error are
considered to be compressible.

Remark 2.4
If we define the nonincreasing rearrangement of x by

r(x) = (|xi1 |, . . . , |xiN |)T , and |xij | ≥ |xij+1 |, j = 1, . . . , N − 1,

then

σk(x)`p =

 N∑
j=k+1

rj(x)p
 1

p

, 1 ≤ p <∞.

Thus, we can alternatively describe the best k-term approximation error by

σk(x)`p =

∑
j∈Λc
|xj |p

 1
p

,

where Λ := supp(x[k]), and Λc is its complement in {1, . . . , N}.

The quotient k/N describes the level of sparsity. If it is small, we talk of a high/strong
sparsity (level), and if it is big, we talk of a low sparsity (level). However, there is
no particular ratio as, e.g., k/N < 1/2, which would restrict the usage of the term
“sparsity”. As soon as a vector contains at least one single vanishing element, i.e.,
k ≤ N − 1, one may call it “sparse”. Nevertheless the goal in applications is in general
the identification of problems with a high sparsity level, i.e., k/N � 1, since it turns
out to be theoretically advantageous, as we mention at the end of Section 2.1.4.

16

2.1 A Linear Acquisition Model for Sparse Recovery

2.1.2 A Simple Decoder
After clarifying the definition of sparse signals, we ask whether one can (uniquely)
robustly identify sparse solutions of (2.1), by means of an efficient nonlinear decoder
∆: Rm → RN . Colloquially, solving a sparse recovery problem is the identification of
the “simplest” description of the data y by a linear combination of the columns of
Φ with a minimum of non-zero coefficients. As a matter of fact, the most intuitive
decoder is the optimization problem

∆0(y) := arg min
z∈FΦ(y)

‖z‖`0 , (2.2)

where we recall the definition of FΦ(y) in (1.2). This decoder is called the `0-norm
minimization or `0-minimization, although ‖ · ‖`0 is actually not a norm (compare
Section 1.2). This problem is known to be NP-hard1 [133, 138]. As long as the solution
is expected to be very sparse, a brute-force combinatorial approach may be efficient.
However, the field of sparse recovery is motivated by big data problems, and the
solution of (2.2) becomes very quickly computationally intractable when the dimension
of the problem gets large. Therefore, we search for a proper relaxation of the problem
which can lead to tractable algorithms.

In order to see a relaxation of ‖x‖`0 , we define

|t|0 :=
{

1 t 6= 0
0 t = 0

,

so that we obtain the representation ‖x‖`0 =
N∑
i=1
|xi|0. In Figure 2.1, we plot | · |0

together with | · |p for p ∈ {1/3, 1/2, 1} in the interval [−1, 1]. Obviously, for 0 < p ≤ 1,
the function | · |p is a continuous relaxation of | · |0, and it is even convex for p = 1.
Thus, the `p-norm can be considered as an approximation of the `0-norm, and instead
of solving the discontinuous and non-convex problem (2.2), we relax the problem by
the `p-norm minimization problem

∆p(y) := arg min
z∈FΦ(y)

‖z‖p`p , (2.3)

0 < p ≤ 1. By solving the relaxed problem, we hope that ∆p(y) ≈ ∆0(y). The
non-convex problem for p < 1 is still hard to solve, and one has to pay attention to

1“NP” is the abbreviation for non-deterministic polynomial-time and indicates a class of problems
for which the verification of their solution has a computational cost which is polynomial in the size of
the input. However presently it is not known whether such problems can be solved with a polynomial
complexity algorithm. This issue is the first in the list of the Millennium Prize Problems of the Clay
Mathematics Institute.

17

Chapter 2 Fundamentals of Sparse Recovery

−1 −0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

Approximation of the ℓ0-norm

|x|0
|x|1/3

|x|1/2

|x|

Figure 2.1: Plot of | · |0 in comparison to | · |p for p ∈ {1/3, 1/2, 1} in the interval [−1, 1].

local minimizers, which makes this approach relatively unpopular. In contrast, for the
particular case of p = 1, this problem becomes the well-known `1-norm minimization
(`1-minimization) problem

∆1(y) := arg min
z∈FΦ(y)

‖z‖`1 . (2.4)

It is probably the most studied case, due to its convexity, which allows to derive that
indeed ∆1(y) = ∆0(y) if the solutions are sparse enough, and the encoder Φ is fulfilling
some spectral conditions (compare Lemma 2.12). In the following, we specify those
spectral conditions of the encoder Φ, before commenting in detail on properties of the
decoder ∆p.

2.1.3 Encoder Properties
The following property of the encoder Φ turns out to be crucial.

Definition 2.5 (Null Space Property (NSP))
A matrix Φ ∈ Rm×N has the Null Space Property (NSP) of order k for positive constant
0 < γk < 1, and fixed 0 < p ≤ 1, if

‖z|Λ‖p`p ≤ γk ‖z|Λc‖
p
`p
,

for all z ∈ NΦ (see (1.2)), and all Λ ⊂ {1, . . . , N} such that #Λ ≤ k. We abbreviate this
property with the writing (k, γk)-NSP. If we refer to it without explicitly mentioning
the parameter p, we mean that we use it with p = 1.

The Null Space Property states that the kernel of the encoding matrix Φ contains
no vectors where some entries have a significantly larger magnitude with respect to
the others. In particular, no compressible vector is contained in the kernel. This is a

18

2.1 A Linear Acquisition Model for Sparse Recovery

natural requirement since otherwise no decoder would be able to robustly distinguish a
sparse vector from zero.
The NSP has the following stability result as consequence.

Lemma 2.6 ([48, Lemma 7.6], [84, Theorem 4.14])
Assume that Φ ∈ Rm×N satisfies the (k, γk)-NSP for 0 < p ≤ 1. Then for any vectors
z, z′ ∈ FΦ(y) it holds

‖z′ − z‖p`p ≤
1 + γk
1− γk

(
‖z′‖p`p − ‖z‖

p
`p

+ 2σk(z)`p
)
.

Unfortunately, the NSP is hard to verify in practice. Therefore one can introduce
another property which is called the Restricted Isometry Property.

Definition 2.7 (Restricted Isometry Property (RIP))
A matrix Φ ∈ Rm×N has the Restricted Isometry Property (RIP) of order k with
constant 0 < δk < 1 if

(1− δk) ‖z‖`2 ≤ ‖Φz‖`2 ≤ (1 + δk) ‖z‖`2 ,

for all z ∈ Σk.2 We refer to this property by the short writing (k, δk)-RIP.

According to [84, Theorem 6.8], the RIP constant of order k, δk, is bounded below by
c
√
k/m, with constant c. The RIP implies the NSP, and is connected to it as follows.

Lemma 2.8
Let k, h ∈ N and K = k + h. Assume that Φ ∈ Rm×N has (K, δK)-RIP. Then Φ has
(k, γk)-NSP, where

γk :=

√
k

h

1 + δK
1− δK

.

The proof of this lemma can be found, for instance, in [77]. The following result, which
is also connecting the RIP and NSP, is used further below in Section 3.1.2. It originates
from [50], where also a proof is given.

Lemma 2.9
Let k ∈ N, and assume that Φ ∈ Rm×N has (2k, δ2k)-RIP. Then Φ has (2k, γ2k)-NSP,
where

γ2k :=
√

2δ2k

1− (1 +
√

2)δ2k
.

2Very often, one can also find the definition (1 − δk) ‖z‖2`2
≤ ‖Φz‖2`2

≤ (1 + δk) ‖z‖2`2
in the

literature. Thus one, has to be careful with constants during cross-reading.

19

Chapter 2 Fundamentals of Sparse Recovery

Being a spectral concentration property, the Restricted Isometry Property is particu-
larly suited to be verified with high probability by certain random matrices; we mention
some instances of such classes in the next section.

The RIP implies that, for a any subset Λ̃ ⊂ {1, . . . , N} with #Λ̃ ≤ k, the matrix Φ
is injective on the subspace span{ei, i ∈ Λ̃}. This property can be generalized towards
an infinite dimensional setting.

Definition 2.10 (Finite Basis Injectivity Property (FBI) [23, Definition 2.2])
Let T : `2(Λ)→ H be an operator, mapping into a Hilbert space H. Then T has the
Finite Basis Injectivity (FBI) property if for all finite subsets Λ̃ ⊂ Λ, the operator,
restricted to span{ei| i ∈ Λ̃}, is injective, i.e., for all u, v ∈ `2(Λ) with Tu = Tv and
ui = vi = 0, i ∈ Λ̃c, it follows that u = v.

This property was defined and used in order to show the linear convergence of iterative
soft thresholding (see Section 2.4.3.1) [22]. It turns out to be useful for our convergence
analysis in Section 3.2. Note that in contrast to the RIP, the FBI property does not
make an assumption on involved constants.

2.1.4 Instance Optimality of Decoders
Being aware of the fundamental encoder properties that we explained above, we return
to the `p-minimization decoder (2.3), and state a property of the decoder ∆p, which is
called instance optimality and is a direct consequence of Lemma 2.6.

Lemma 2.11 ([84, Theorem 4.12], [173])
Let Φ ∈ Rm×N have the (k, γk)-NSP for 0 < p ≤ 1. Then the decoder ∆p performs

‖z −∆p(y)‖p`p ≤ Cσk(z)`p , (2.5)

for all z ∈ FΦ(y) and the constant C := 2(1+γk)
1−γk .

The instance optimality implies in particular that by the decoder ∆p, we are able to
recover a k-sparse signal x exactly since in this case σk(x)`p = 0.
Another consequence of Lemma 2.6 is the following result.

Lemma 2.12 ([48, Lemma 4.3])
Assume that Φ has the (k, γk)-NSP for 0 < p ≤ 1. Suppose that FΦ(y) contains a
k-sparse vector x∗. Then this vector is the unique `p-minimizer in FΦ(y). Moreover
we have for all z ∈ FΦ(y) that

‖z − x∗‖p`p ≤ 21 + γk
1− γk

σk(z)`p .

20

2.2 Noise Models

So far we showed instance optimality for the ∆p decoder and an encoder which
fulfills the NSP for some k, but we did not clarify whether there exists such an encoder.
Gaussian random matrices satisfy the RIP of order k with high probability if

m ≥ Ck log(N/k). (2.6)

Also structured random matrices, i.a., random partial Fourier and discrete cosine
matrices, and partial random circulant matrices satisfy the RIP with high probability
provided that m ≥ Ck log4(N) [30, 84, 118, 159, 160]. Since the RIP implies the NSP
(see, e.g., Lemma 2.8 and 2.9), we have the existence of encoder/decoder pairs that
satisfy the instance optimality. Within this thesis we use as prototypical cases mainly
such stochastic encoders. By the concept of Gelfand-widths (see also [88, 90, 116]),
it was shown in [12, 41, 57] that the bound on the number of measurements (2.6)
is optimal, in the sense that an encoder/decoder pair (Φ,∆) satisfying the instance
optimality cannot exist for m below this bound.

2.1.5 Non-Standard Bases
Up to this point, we assumed x to be sparse with respect to the canonical basis of RN ,
and being directly measured by means of the linear encoder Φ. However, in practice
very often, a basis transformation Ψ ∈ RN×N might be necessary to find a proper
sparse representation x̃ of the vector x, i.e., x = Ψx̃. By defining Φ̃ := ΦΨ, we obtain
the linear measurement process

y = Φ̃x̃,
which is again of the type (2.1) with Φ̃ having full rank and x̃ being sparse. Such
aspects are important for applications of sparse recovery, and they are in particular a
modeling issue, but not relevant in this thesis. Since we focus on algorithmic solutions
for sparse recovery problems, we assume without loss of generality that the solutions
of interest are sparse in the canonical basis.

2.2 Noise Models
So far, we were only considering the noiseless acquisition model (2.1). Unfortunately, it
only serves as a rough description of real physical processes, which are usually corrupted
by disturbances on the measurement data and the signal. In the following, we introduce
more sophisticated models and sparse recovery decoders that take into account such
perturbations.

2.2.1 Measurement Noise and Model Error
In applications of the industry or scientific experiments the measurement data is in
general affected by disturbances that originate from the environment or the device

21

Chapter 2 Fundamentals of Sparse Recovery

itself. Also a simplified description of a measurement process, for instance from a
linearization, can lead to a model error. Both effects are typically modeled by

y = Φx+ e, (2.7)

where an additional deterministic or random noise vector e ∈ Rm corrupts the linear
measurements. Regarding this modification of the noiseless model (2.1), an enhanced
stability property of the `1-minimization decoder ∆1 is for instance established in [28].
In the following we state this result, preceded by an auxiliary lemma.

Lemma 2.13
For any x, e we denote x[k] := x−x[k], and ẽ := Φx[k] + e, where x[k] is the best k-term
approximation to x. Let

y = Φx+ e = Φx[k] + Φx[k] + e = Φx[k] + ẽ.

If Φ has the (k, δk)-RIP, then the norm of the error ẽ can be bounded by

‖ẽ‖`2 ≤ (1 + δk)
(
σk(x)`2 + σk(x)`1

k1/2

)
+ ‖e‖`2 .

Proof. By definition we have ẽ = Φx[k] + e. To compute the norm of the error term,
we simply apply the triangle inequality and use [142, Proposition 3.5], which states
that

‖Φz‖`2 ≤ (1 + δk)
(
‖z‖`2 + ‖z‖`1

k1/2

)
,

for an arbitrary vector z ∈ Rm, and in particular for z = x[k]. 2

Theorem 2.14
Let Φ ∈ Rm×N satisfy the (2k, δ2k)-RIP with constant δ2k > 0 sufficiently small.
Assume further that y = Φx+ e where e is a measurement error, and that x∗ = ∆1(y)
is k-sparse. Then the decoder ∆1 has the further enhanced stability property

‖x−∆1(y)‖`2 ≤ C
(
σk(x)`2 + σk(x)`1

k1/2 + ‖e‖`2
)
. (2.8)

Proof. Let us consider the following estimate, which follows by an application of the
lower bound of the RIP and Lemma 2.13:

‖x−∆1(y)‖`2 ≤ ‖x[k]‖`2 + ‖x[k] − x∗‖`2 ≤ σk(x)`2 + 1
1− δ2k

‖Φx[k] − Φx∗‖`2

= σk(x)`2 + 1
1− δ2k

‖Φx[k] − y‖`2 = σk(x)`2 + 1
1− δ2k

‖ẽ‖`2

≤ C
(
σk(x)`2 + σk(x)`1

k1/2 + ‖e‖`2
)
. 2

22

2.2 Noise Models

There is a vast literature where problem (2.7) is considered, and alternative decoders
to `1-minimization were proposed. The most intuitive approach to cover noisy mea-
surements is the quadratically constrained `1-minimization or Basis Pursuit Denoising
(BPDN) problem

∆DN(y) := arg min
‖Φz−y‖`2≤δ

‖z‖`1 , (2.9)

where one has to tune the parameter δ ∈ R, such that 0 < δ ≈ ‖Φx − y‖`2 = ‖e‖`2 .
Notice that the notation δ without any subindex denotes an inequality bound parameter,
while δk, δ2k, etc. represent RIP constants. Let us mention that in the literature the
standard `1-minimization decoding process ∆1 is also referred to as Basis Pursuit (BP),
and it is the special case of (2.9) for δ = 0. Another approach is the so called Least
Absolute Shrinkage and Selection Operator (LASSO) [177],

∆LA(y) := arg min
‖z‖`1≤ε

‖Φz − y‖`2 , (2.10)

for a positive parameter ε ∈ R. It can be seen as a convexification of the more intuitive
problem formulation

arg min
‖z‖`0≤k

‖Φz − y‖`2 , (2.11)

where the sparsity of the signal to be recovered is restricted by the positive parameter
k ∈ N. It is also common to include the constraint by a regularization term in the
objective function. A popular formulation is the `1-regularized least squares problem

∆λ(y) := arg min
z∈RN

(
Jλ(z) := λ‖z‖`1 + ‖Φz − y‖2`2

)
, (2.12)

which again can be considered as a convexification of the `0-regularized least squares
problem

∆0,λ(y) := arg min
z∈RN

(
J0(z) := λ‖z‖`0 + ‖Φz − y‖2`2

)
, (2.13)

where the regularization parameter λ > 0 controls the balance of the fidelity and
penalty term. In the literature one can also find problem (2.12) referred to as LASSO
or BPDN. The reason is that problems (2.9), (2.10), and (2.12) are equivalent in the
sense that, for a given parameter δ, a solution to (2.9) is either zero or a minimizer
of (2.12) for some λ > 0, and a solution of (2.10) for any ε ≥ 0 is also a minimizer
for (2.12) for some λ ≥ 0 [72].
Those three decoders are used with preference since they are convex problems and

therefore relatively easy to solve. But also non-convex approaches are considered, as,
e.g., the `p-minimization (2.3) or the `p-regularized least squares problem

∆p,λ(y) := arg min
z∈RN

(
Jp(z) := λ‖z‖p`p + ‖Φz − y‖2`2

)
, (2.14)

23

Chapter 2 Fundamentals of Sparse Recovery

0 < p < 1. In non-convex approaches, one has to deal with local minimizers, which may
lower the reliability of those methods. However, as we also show in Chapter 3, in prac-
tice the use of non-convex decoders may result in a better reconstruction of the original
vector x, when strong noise is present (in particular strong signal noise as explained
in the next section). Furthermore, a performance increase with respect to the rate of
convergence was reported in algorithmic schemes based on non-convex optimization
problems, e.g., in iteratively re-weighted least squares algorithms for `p-minimization
(p < 1); compare Section 2.4.1. The reason behind this enhanced robustness and
performance improvement is roughly that such non-convex methods can be a much bet-
ter approximation of the `0-penalty with respect to the `1-penalty (compare Figure 2.1).

In this thesis we also consider the generalization of (2.12) towards an infinite
dimensional setting. Suppose that we dispose of measurement data y, given as an
element of a Hilbert space H, and let T : `1(Λ) → H be a bounded linear operator.
Then we want to reconstruct a potentially sparse signal u ∈ `1(Λ) from y by the decoder

∆λ(y) := arg min
u∈`1(Λ)

(
Jλ(u) := ‖Tu− y‖2H + λ‖u‖`1(Λ)

)
. (2.15)

Note that we refer by the notation Jλ and ∆λ to the problem and functional in
both (2.12) and (2.15). It will be clear from the context whether we mean the specific
finite dimensional version or the infinite dimensional one.

For any of the above presented decoders, the recovery result depends in general on
the choice of the parameter ε, δ, k, or λ respectively. A concrete example for the choice
of δ is given in [33, 28]. In this paper the authors propose to set δ = σ

√
m+ 2

√
2m,

where σ is the standard deviation of a white noise vector e ∈ Rm. A parameter can take
different “optimal” values for different purposes, e.g., in our numerical investigation
in Section 3.3, we observed that for BPDN there is a difference between targeting an
exact recovery of the support of a signal and targeting a good `2-approximation error
of the amplitudes of the original and recovered signal. When data is available where
the ground truth is known, it is also common practice to determine optimal parameters
by the training of the algorithm (e.g., [205]).

2.2.2 First Order Optimality Conditions of the `1-regularized Least
Squares Functional

In the following, we derive the first order optimality conditions for the functional Jλ,
which turns out to be a helpful tool in some of the analysis parts of this thesis. We
directly present it for its infinite dimensional formulation (2.15), since we will also
utilize it later on. The minimizer of Jλ can be characterized using the subdifferential

24

2.2 Noise Models

[66], which is defined for a general convex function F : K → R at a point u in the
Banach space K by

∂F (u) = {v ∈ K∗, F (z)− F (u) ≥ 〈v, z − u〉 for all z ∈ K}, (2.16)

with K∗ being the dual space of K. Clearly, u is a minimizer of F if and only if
0 ∈ ∂F (u). For K = `1(Λ), the subdifferential of Jλ is given by

∂Jλ(u) = 2T ∗(Tu− y) + λ∂‖ · ‖`1(Λ)(u).

We remind that the notation “‖ · ‖`1(Λ)” is actually a simplified notation for the `1,2(Λ)-
norm, which is defined by ‖u‖`1,2(Λ) :=

∑
i∈Λ
‖ui‖`2 with ‖ · ‖`2 being the standard vector

norm in Rd (see Section 1.2). Thus, the subdifferential of the `1(Λ)-norm is given by

∂‖ · ‖`1(Λ)(u) = {v ∈ K∗| vi ∈ ∂‖ · ‖`2(ui), i ∈ Λ},

with the subdifferential of the `2-norm in z ∈ Rd being

∂‖ · ‖`2(z) =


{

z
‖z‖`2

}
if z 6= 0,

{v|‖v‖`2 ≤ 1} if z = 0.

Then the inclusion 0 ∈ ∂Jλ(u) is equivalent to

−2(T ∗(Tu− y))i = λ
ui
‖ui‖`2

if ui 6= 0,

2‖(T ∗(Tu− y))i‖`2 ≤ λ if ui = 0,
(2.17)

for all i ∈ Λ. The conditions (2.17) are referred to as the first order optimality condtions
for the `1-regularized least squares functional.

If we only consider the finite dimensional problem with the decoder (2.12), and
additionally set d = 1, the conditions (2.17) reduce to

−2(Φ∗(Φx− y))i = λ sign(xi) if xi 6= 0,
2|(Φ∗(Φx− y))i| ≤ λ if xi = 0,

i = 1, . . . , N, (2.18)

for x ∈ RN .

The following properties, which are standard results in regularization theory (see,
e.g., [69]), can be derived from (2.17).

25

Chapter 2 Fundamentals of Sparse Recovery

Lemma 2.15
Denote uλ a solution to problem (2.15) for λ > 0, then u0 := lim

λ→0
uλ is a solution of

the `1-minimization problem (see (2.4) in finite dimension)

arg min
u∈FT (y)

‖u‖`1(Λ). (2.19)

Lemma 2.16
If λ > 2‖T ∗y‖`∞(Λ), then 0 is the only solution to problem (2.15) (with H = `2(Λ)).

A proof of Lemma 2.15 and 2.16 can be found in Appendix A. Lemma 2.15 means that
the solutions to problem (2.15) converge to a limit that is characterized by the sparsest
representation which exactly fits the data. Lemma 2.16 states that the solution to the
optimization problem (2.15) is constant for all λ ∈

]
2‖T ∗y‖`∞(Λ),∞

]
. It implicates an

upper bound for the choice of λ.

2.2.3 Signal Noise and Noise Folding
In Section 2.2.1, we recalled a model which takes corrupted measurements into account,
and recalled several methods to solve it. However, in practice it is very uncommon to
have the signal x detected by a certain device, totally free from some external noise.
In this case it is reasonable to consider the more realistic model

y = Φ(x+ n) + e, (2.20)

instead of (2.7), where x ∈ RN is the noiseless signal, and n ∈ RN is the noise on the
original signal. Obviously, by defining ẽ := Φn+ e, this model is reduced to y = Φx+ ẽ,
and we could again consider the situation in Section 2.2.1. However, assume that
n is white noise, i.e., n ∼ (N (0, σn))N with standard deviation σn

3. Then, in the
recent work [6, 178, 51] it was shown how the measurement process actually causes
the noise-folding phenomenon. It implies that the variance of the noise on the original
signal is amplified by a factor of N/m, additionally contributing to the measurement
noise, playing to our disadvantage in the recovery phase. Thus, the signal noise n is a
worse enemy towards accurate reconstructions than the measurement noise e. In the
following we want to describe those results in more detail. In order to focus on the
influence of the signal noise n, we will from now on consider the model

y = Φ(x+ n). (2.21)

If n is white noise, it means that Φn is in general not white and has covariance
CΦn = σ2

nΦΦ∗. Multiplying the linear system (2.21) from the left by the matrix
3The notation σn for the standard deviation shall not be confused with the notation σk(x)`p for

the best k-term approximation error.

26

2.2 Noise Models

M :=
(
m
NCΦn

)− 1
2 transforms it into the system

ȳ = Φ̄x+ ē,

where ȳ := My, Φ̄ = MΦ, and ē := MΦn. We actually performed a whitening of Φn,
so that ē ∼

(
N (0,

√
N
mσn)

)m
. If one disposes of σn, it is a common procedure (see,

e.g., [204]) to enforce such a prewhitening of the data, before applying a decoder, such
as BP(DN), LASSO, or the `1-regularized least squares. The resulting methods are
called the prewhitened basis pursuit (denoising) (PWBP(DN)),

arg min
‖M(Φz−y)‖`2≤δ

‖z‖`1 , (2.22)

the prewhitened LASSO (PWLASSO),

arg min
‖z‖`1≤ε

‖M(Φz − y)‖`2 ,

or the prewhitened `1-regularized least squares minimization,

arg min
z∈RN

λ‖z‖`1 + ‖M(Φz − y)‖2`2 ,

withM as defined above. We take into account PWBPDN in the numerical comparisons
of Section 3.3.
In the following lemma, which we recall from [6], it is shown that the transformed

measurement matrix Φ̄ is of equal statistics as Φ.

Lemma 2.17 ([6, Proposition 1])
Assume that κ :=

∥∥I − m
NΦΦ∗

∥∥ < 1
2 and that Φ satisfies the (k, δk)-RIP. Then Φ̄ satisfies

the (k, δ̄k)-RIP with constant δ̄k := max{1 − (1 − δk)
√

1− κ1, (1 + δk)
√

1 + κ1 − 1},
and κ1 := κ/(1− κ).

Remark 2.18
Note that the assumption

∥∥I − m
NΦΦ∗

∥∥ < 1
2 can be fulfilled with high probability in

the standard setting of compressed sensing, e.g., if the entries of Φ are i.i.d. Gaussian
(compare [185, Corollary 35, Theorem 39]).

Thus, we conclude that the linear measurement process (2.21), which is corrupted by
white signal noise with entries of standard deviation σn, can be considered equivalent to
a linear measurement process of the form (2.7). This equivalent measurement process
involves a matrix whose RIP constant is close to the one of the original process, and a
measurement noise vector with entries of standard deviation

√
N
mσn. In this sense, we

talk about the amplification of the variance of the signal noise by a factor of N/m.

27

Chapter 2 Fundamentals of Sparse Recovery

In the same stochastic context, the so-called Dantzig selector has been analyzed
in [31] showing that the recovered signal x∗ from the measurement y = Φx + e,
e ∼ (N (0, σe))m, fulfills with high probability the following nearly-optimal distortion
guarantees, under the assumption that Φ satisfies the RIP:

‖x− x∗‖2`2 ≤ C
2 · 2 logN ·

(
σ2
e +

N∑
i=1

min{x2
i , σ

2
e}
)
,

which, for a sparse vector x with at most k-nonzero entries and the substitution
σ2
e = N

mσ
2
n, reduces to the following estimate

‖x− x∗‖2`2 ≤ C
2 · 2 logN ·

(
(1 + k)σ2

e

)
= C2 · 2 logN ·

(
(1 + k)N

m
σ2
n

)
. (2.23)

Thus, we observe that the squared error between the decoded signal x∗ and the original
signal x is influenced by the factor N/m.

In [178, 51] the authors describe the noise folding phenomenon, i.e., the exaltation
of the signal noise after measurements, following a different reasoning: Assume that
there is an oracle4 that provides us with the support of the sparse signal Λ = supp(x).
Then a natural recovery strategy is

arg min
supp(z)=Λ

‖Φz − y‖`2 . (2.24)

Theorem 2.19 ([51, Theorem 4.3])
Let x∗ be the solution to problem (2.24) (assume Φ to have full rank). Suppose n to
be white noise, and Φ to satisfy the (k, δk)-RIP, and to have orthogonal rows, each of
norm

√
N
m . Then the expected value of an error estimate for x∗ is given by

N

m
(1 + δk)−2E(‖nΛ‖2`2) ≤ E(‖x− x∗‖2`2) ≤ N

m
(1− δk)−2E(‖nΛ‖2`2). (2.25)

Remark 2.20
The condition that Φ consists of orthogonal rows of equal norm is not restrictive in the
setting of compressed sensing since for any arbitrary matrix Φ̃ which satisfies the RIP,
it is always possible to construct a matrix Φ that has the same row space as Φ̃ and
does satisfy this property (compare [51, Lemma 4.1]).

4The word “oracle” is used in the respective paper for a predictive method from which we do not
know if it exists.

28

2.3 Joint Sparsity

The estimate (2.25) and (2.23) are both leading to the same result that the squared
`2-norm error of the recovered signal with respect to the original signal is proportional
to N/m times the variance of the noise. In a noise-free setting the decoder (2.24)
exactly recovers x if ΦΛ is full rank. The actual challenge in the noise-folding regime is
to identify a decoder which “simulates” the oracle, i.e., which robustly and reliably
determines the support Λ.

In Chapter 3, we pursue the latter observation, and focus on the design and analysis
of proper decoders, whose strength is the correct detection of the index support of the
original vector x. Once we obtain the support, we implement (2.24) on the identified
entries.

2.3 Joint Sparsity
So far, we did not properly motivate the use of d > 1 in Section 1.2. Assume that we
have given an encoder Φ ∈ Rm and d measurements y1, . . . , yd ∈ Rm. We ask for the d
(sparse) solution vectors x1, . . . , xd ∈ RN , which can be computed independently by
one of the decoders, presented in the previous two sections. Following this procedure,
we may obtain very different sparsity patterns in the d solution vectors. However, in
some applications (and we present one in Section 4.2.6) additional a priori knowledge
on the support of x1, . . . , xd is given. For instance, joint sparsity may be required,
i.e., the sparsity pattern of the d solution vectors is supposed to be similar, which
means that supp(x1) ≈ supp(x2) ≈ . . . ≈ supp(xd). If we combine the measurement
(column) vectors in the variable y := (y1, . . . , yd) ∈ Rm×d, and search for solutions
x := (x1, . . . , xd) ∈ RN×d, joint sparsity can be enforced by the penalty norms ‖ · ‖`p,2 ,
for 0 ≤ p ≤ 1. Therefore, all decoders that we presented in Section 2.1 and 2.2 can
be extended to solve the joint-sparsity problem, by replacing the `p- and `2-penalties
by `p,2- and `2,2-penalties respectively. However, we do not have to redefine those
problems since this generalization complies with the notation (1.1), which incorporates
standard models with d = 1, and joint sparsity models with d > 1. For instance the
formulation λ‖z‖`1 + 1

2‖Φz − y‖
2
`2

is defined for vectors z ∈ RN (standard sparsity) or
z ∈ RN×d for d > 1 (joint-sparsity).

The concept of joint sparsity can be generalized further, e.g., with different measure-
ment processes, i.e., we consider d measurements y1, . . . , yd ∈ Rm, D solution vectors
x1, . . . , xD ∈ RN , and encoders Φi,j ∈ Rm×N , i = 1, . . . , D, j = 1, . . . , d, where the
measurement acquisition process is defined by yj =

∑D
i=1 Φi,jxi, j = 1, . . . , d (see, e.g.,

[78]). Since we do not use such a generalization, we do not go into further detail. In
the literature the joint-sparsity concept is also described by the terms group sparsity
(e.g., [85]) and block sparsity (e.g., [67]). In particular for d > 1, the generalized prob-
lems (2.12) and (2.15) are referred to as the group LASSO. The optimality conditions
in (2.17) are also valid for the group LASSO since we already derived them for d ≥ 1.

29

Chapter 2 Fundamentals of Sparse Recovery

2.4 Algorithms for Sparse Recovery
We recalled in Section 2.1 and 2.2 that sparse recovery problems can be approached
by convex (involving the `1-norm) and non-convex (involving the `p-norm for 0 ≤
p < 1) optimization problems. In order to apply sparse recovery in practice, efficient
algorithms are required that either solve those optimization problems exactly, or
compute an approximation which fulfills similar recovery guarantees such as instance
optimality (2.5).
A first precise approach in order to solve the `1-minimization problem (2.4) is its

transformation into the equivalent linear program

arg min
x̃∈R2N

2N∑
j=1

x̃j subject to x̃ ≥ 0,
(
Φ −Φ

)
x̃ = y, (2.26)

assuming a real decoding matrix Φ ∈ Rm×N and data y ∈ Rm. The solution x∗ to
(2.4) is obtained from the solution x̃∗ of (2.26) via x∗ =

(
I −I

)
x̃∗, for I the identity

matrix. Thus, in principle any linear programming method may be used for solving
(2.4), in particular the simplex method and interior point methods [145].

However, instead of optimizing a vector of length N , we have to solve a larger
optimization problem for a vector of the length 2N since a transformation of the
non-smooth `1-norm into a smooth objective function was necessary. Indeed most
intuitive optimization methods such as gradient descent or Newton methods are tailored
to objective functions which are at least differentiable, and cannot be applied directly to
problem formulations that involve non-smooth terms such as the `1-norm. Furthermore,
standard software very rarely provides the possibility of a quick and easy tuning, in
the sense that only full matrices are accepted instead of fast routines for matrix-vector
multiplications as for instance in the case of partial Fourier matrices. Based on those
observations, relatively simple alternative methods could be found that are tailored
to problem formulations involving non-smooth (and maybe non-convex) objective
functions and possible prior information on the sparsity of the solution (e.g., the
number of non-zero support entries). In particular the scientific community from
mathematics and engineering contributed various specialized algorithms for sparse
recovery that are expected to outperform standard methods. Most of those tailored
methods are based on different assumptions, which makes it difficult to compare them
or to identify “the best” one. At the internet sources [34, 62] one can find a relatively
updated and complete collection of relevant algorithms for the field.
In this section, we focus on a detailed explanation of the basic concepts of some of

the most popular algorithms. The explanations serve in particular as a fundament
for the presented work in Chapter 3 and 4. Specifically, we recall the efficient and
easy-to-implement algorithms iteratively re-weighted least squares (IRLS), iteratively
re-weighted `1 (IRL1), and iterative thresholding for the approximate or exact solution

30

2.4 Algorithms for Sparse Recovery

of the convex problems (2.4) (IRLS), (2.12) (IRLS, iterative thresholding) and the
non-convex problems (2.13), (2.14) (iterative thresholding, IRL1), (2.2), (2.3) (IRLS).

Without going further, we mention some other quite popular methods. In particular
for high sparsity (very few non-zero entries), greedy methods like orthogonal matching
pursuit (OMP) [179], and compressive sampling matching pursuit (CoSaMP) [142], as
well as the homotopy method or modified LARS [59, 63, 150, 151], are suitable. The
Chambolle-Pock primal dual algorithm [35] can be applied to `1-minimization, and its
performance is not depending on the sparsity of the solution. Another method for
solving (2.12) is the alternating direction method of multipliers (ADMM) [87, 89, 1, 42,
70]. For further reading, we propose the detailed and widespread overview literature
in [84, 75, 81].

2.4.1 Iteratively Re-weighted Least Squares (IRLS)
Iteratively re-weighted least squares (IRLS) is a method for solving minimization
problems by transforming them into a sequence of quadratic problems which can be
solved by efficient tools of numerical linear algebra. Thus, contrary to classical Newton
methods smoothness of the objective function is not required in general. We refer to
the recent paper [148] for an updated and rather general view about these methods.

An IRLS algorithm appeared for the first time in the doctoral thesis of Lawson
in 1961 [123] in the form of an algorithm for solving uniform approximation prob-
lems. It computes a sequence of polynomials that minimize a sequence of weighted
Lp-norms. This iterative algorithm is now well-known in classical approximation theory
as Lawson’s algorithm. In [39] it is proved that this algorithm essentially obeys a
linear convergence rate. In the 1970s extensions of Lawson’s algorithm for `p-norm
minimization, and in particular `1-norm minimization, were proposed. Since then
IRLS has become a rather popular method also in mathematical statistics for robust
linear regression [110]. Perhaps the most comprehensive mathematical analysis of the
performance of IRLS for `p-norm minimization was given in the work of Osborne [149].
After the starting of the development of compressed sensing, several works [36, 38,
37, 48] addressed systematically the analysis of IRLS for `p-norm minimization (2.3),
with 0 < p ≤ 1 (including the `1-minimization problem (2.4)). In these papers, the
asymptotic super-linear convergence of IRLS towards `p-norm minimization for p < 1
has been shown. As an extension of the analysis of the aforementioned papers, IRLS
also has been generalized towards low-rank matrix recovery from minimal linear mea-
surements [83].

In the following we recall the fundamental IRLS concept and how it is used to solve
sparse recovery problems. In Section 2.4.1.1, we present an IRLS algorithm for the

31

Chapter 2 Fundamentals of Sparse Recovery

solution of (2.3), originating from the work [48]. In addition to it, we comment in
Section 2.4.1.2 on a numerical issue which appears in this algorithm in an advanced
state of propagation and we propose a practical stopping criterion. We further explain
in Section 2.4.1.3 how the IRLS scheme is applied to the class of problems of the
regularized `p-minimization (2.14), for 0 < p ≤ 1, which was first proposed in [120, 189,
190].

2.4.1.1 IRLS Method for `p-minimization

The most important advantage of the IRLS scheme may be its simplicity and intuitive
derivation, which shall be outlined here. Regarding the `p-norm (0 < p ≤ 1), one can
rewrite

‖z‖p`p =
N∑
i=1
|zi|p =

N∑
i=1
|zi|p−2z2

i ,

and thus, intending to solve the problem (2.3), one would hope that

arg min
z∈FΦ(y)

‖z‖p`p = arg min
z∈FΦ(y)

N∑
i=1
|x∗i |p−2z2

i ,

if x∗ is the `p-minimizer, and x∗i 6= 0, i = 1, . . . , N . At least for p = 1 this was shown
to be true in [48, Equation (1.4) and footnote 1], and [75, Lemma 3.3]. This well-
known linearly constrained quadratic problem can be solved by standard linear algebra,
in contrast to the more complicated non-smooth (and maybe non-convex) `p-norm
minimization problem. However, the above observation is obviously unpractical since
one does not dispose of the minimizer x∗ (which is actually the goal of the computations).
Another drawback is that x∗ is assumed to have no vanishing coordinates, which stands
in contrast with the fact that we are interested in computing a sparse minimizer.
Despite those objections, in view of the above observation we motivate the IRLS
algorithm for `p-norm minimization as follows: We assume, that we have a good
approximation xn of the sparse minimizer and define a weight vector wn, with entries
wni := [|xni |2 + (εn)2]−

2−p
2 , with a small εn in order to regularize vanishing entries in

xn. Then, we can solve the problem

arg min
z∈FΦ(y)

N∑
i=1

wni z
2
i ,

in order to obtain a new iterate xn+1. Eventually we update εn+1 depending on
xn+1 and repeat the iteration as presented above. Letting εn → 0, one hopes for the
convergence of the algorithm to a solution of (2.3).

We can alternatively formulate this so concisely described algorithm as an alternating
minimization of the following multivariate functional.

32

2.4 Algorithms for Sparse Recovery

Definition 2.21
Given a real number ε > 0, x ∈ RN , and a weight vector w ∈ RN with positive entries
wj > 0, j = 1, . . . , N , we define

Jp (x,w, ε) := p

2

 N∑
j=1
|xj |2wj +

N∑
j=1

(
ε2wj + 2− p

p
w
− p

2−p
j

) .
Furthermore, we denote the weighted `2-norm and the weighted scalar product by

‖x‖`2(w) :=
N∑
j=1
|xj |2wj , 〈x, z〉w :=

N∑
j=1

xjzjwj .

The notation ‖ · ‖`2(w), which is defined for a positive weight5 w ∈ RN should not be
confused with the definition ‖ · ‖`2(Λ) for a countable set Λ, as given in Section 1.2.

We formulate IRLS in Algorithm 1 as defined in [48, Section 7.2], or [84, Chapter
15.3].

Algorithm 1 Iteratively Re-weighted Least Squares (IRLS)
Set w0 := (1, . . . , 1), ε0 := 1
1: while εn 6= 0 do
2: xn+1 := arg min

x∈FΦ(y)
Jp(x,wn, εn) = arg min

x∈FΦ(y)
‖x‖`2(wn)

3: εn+1 := min
(
εn,

r(xn+1)K+1
N

)
4: wn+1 := arg min

w>0
Jp(xn+1, w, εn+1),

i.e., wn+1
j = (|xn+1

j |2 + (εn+1)2)−
2−p

2 , j = 1, . . . , N
5: end while

The parameter K ∈ N has to be set bigger than k = # supp(x∗). Its role is clarified
in more detail in [48] or in Section 4.1.2 (in particular Theorem 4.4). In order to
solve the least squares problems appearing in Step 2 of Algorithm 1, the following
characterization of their solution turns out to be very useful. Note that the weighted
`2-norm is strictly convex, therefore its minimizer subject to an affine constraint is
unique.

Lemma 2.22 ([48, Equation (2.6)], [84, Proposition A.23])
We have x̂ = arg min

x∈FΦ(y)
‖x‖`2(w) if and only if x̂ ∈ FΦ(y) and

〈x̂, η〉w = 0, for all η ∈ NΦ. (2.27)
5With “positive”, we mean that all entries of the vector are positive, i.e., wi > 0, i = 1, . . . , N .

33

Chapter 2 Fundamentals of Sparse Recovery

By Lemma 2.22, we are able to derive an explicit representation of the weighted
`2-minimizer x̂ := arg min

x∈FΦ(y)
‖x‖`2(w). Define D := diag

[
(wj)−1]N

j=1, and denote with

R(·) the range of a linear map. Then we have from (2.27) the equivalent formulation

D−1x̂ ∈ R(Φ∗),

by the fact that NΦ ⊥ R(Φ∗). Therefore, there is a ξ ∈ Rm such that x̂ = DΦ∗ξ. To
compute ξ, we observe that

y = Φx̂ = (ΦDΦ∗)ξ,

and thus, since Φ has full rank and ΦDΦ∗ is invertible, we conclude

x̂ = DΦ∗ξ = DΦ∗(ΦDΦ∗)−1y.

This result is useful in order to provide an explicit representation of Step 2 in Algorithm 1.
The minimizer of the least squares problem is explicitly given by the equation

xn+1 = DnΦ∗(ΦDnΦ∗)−1y, (2.28)

where we introduced the N ×N diagonal matrix

Dn := diag
[
(wnj)−1

]N
j=1

. (2.29)

Furthermore, the new weight vector in Step 4 of Algorithm 1 is explicitly given by

wn+1
j = (|xn+1

j |2 + (εn+1)2)−
2−p

2 , j = 1, . . . , N. (2.30)

Taking into consideration that wj > 0, this formula can be derived from the first order
optimality condition ∂Jp(xn+1, w, εn+1)/∂w = 0.

Indeed, in [48, Section 5 and 7], the authors show the convergence of Algorithm 1
by the monotonicity of Jp along its iterations. This allows for showing that the limit
vector x∗ := limn→∞ x

n is a minimizer of problem (2.4) if p = 1 and limn→∞ ε
n = 0.

Moreover, a linear rate of convergence can be established in a ball around the sparse
solution; In the case of p < 1 the rate is even super-linear. For a detailed statement and
proof of those results, the interested reader is referred to the respective literature [48,
84, 75]. We omit it here since we present a modified version of IRLS in Section 4.1.2,
which actually generalizes the results in the literature.

2.4.1.2 A Practical Comment on the Convergence of IRLS

In this section, we want to comment on the evolution of the difference of successive
iterates ‖xn − xn+1‖`2 of IRLS, which is not converging to zero for n→∞ in practice,

34

2.4 Algorithms for Sparse Recovery

although it is proven in theory [48]. This has consequences for the definition of a
stopping criterion that is defined by this difference. For simplicity we only consider
here the case of p = 1.

As mentioned in the previous section, it is possible that the εn converge to zero, i.e.,
limn→∞ ε

n = 0. Since at the same time some components xni may vanish for n→∞,
in practice we will likely get to the point, where we have to divide by a numerical zero
in Step 4. In order to avoid this situation happening in practice, one replaces Step 3 by

εn+1 := max
(

min
(
εn,

r(xn+1)K+1
N

)
, εmin

)
, (2.31)

for a parameter εmin > 0, so that εn ≥ ε∗ := limn→∞ ε
n ≥ εmin, for all n ∈ N. Using

this update rule, we run Algorithm 1 for a typical problem with N = 1500, m = 250,
and K = 45 for a K-sparse (normalized) signal x and its noiseless measurements
y = Φx with (normalized) Gaussian measurement matrix Φ, and set εmin = 1e-10. In
Figure 2.2(a), we plot the history of the `1-error of the iterates with respect to the
`1-minimizer x∗, i.e., ‖xn−x∗‖`1 , the history of the εn, and the history of the difference
of successive iterates, i.e., ‖xn+1 − xn‖`2 versus the iteration number n. We clearly
observe, that the decreasing of the εn stops as soon as εmin is reached. A few iterations
after this limit was reached (n ≥ 150), the value of the error and the difference of
the successive iterates start to wiggle around a certain constant value. We conjecture
that this behavior is very likely due to the solution of the linear system in (2.28) since
the small value of εn has as a consequence a bad conditioning of the matrix ΦDnΦ∗.
The most important observation is, that the difference of successive iterates does not
become arbitrarily small, in contrast to the theoretical results in [48], where asymptotic
convergence was shown. In practice this is a drawback since this property is often
used as a stopping criterion. Thus it may be useful to have some prior knowledge
about the general behavior of ‖xn+1 − xn‖`2 (for large n) in order to make sure that
the algorithm can be stopped automatically, e.g., if we could a priori estimate a value
B ∈ R for which we know that ‖xn+1 − xn‖`2 ≈ B, for large n, then it is reasonable to
define the stopping rule B − ε ≤ ‖xn+1 − xn‖`2 ≤ B + ε for a small value ε > 0.
Regarding Figure 2.2(a), also the error with respect to the `1-minimizer reaches an

early saturation in practice. This means that the accuracy of the result of the IRLS
algorithm has numerical limitations depending on εmin (or even the limit ε∗, which is
the same in this example).

In a personal communication with Colas Schretter6, we figured out how the accuracy
of the IRLS result depends on ε∗7 starting by the following observation from Colas

6Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussel
7Those results are not published yet, but were discussed in a personal correspondence.

35

Chapter 2 Fundamentals of Sparse Recovery

Schretter: He proposed the update rule

εn+1 := γ

N∑
i=1
|xni |3

N2
N∑
i=1
|xni |

, (2.32)

which was originally motivated by the weighted variance of xn. It was created with
the intention to dispose of an update-rule which is not depending on K and εmin, and
which scales with ‖x∗‖`2 .8 Notice that the rule (2.32) does not ensure that the εn
are decreasing, which is required as an ingredient in the proof of convergence in [48].
Nevertheless, at least in our experiments the algorithm “converged” in practice9 being
equipped with this rule. For the same test problem, as used above, we present the
numerical results of IRLS with the update rule (2.32) (setting γ = 1) in Figure 2.2(b).
The history of the εn appears smoother than the one in Figure 2.2(a). The “final
value”10 of the approximation error of the IRLS solution with respect to the `1-minimizer
is bigger, and the final value of the difference of successive iterates is smaller than in
Figure 2.2(a). We also observe the wiggling in the history plot of the difference of
successive iterates. Furthermore, it seems that the wiggling in the approximation error
history disappeared. But this is only a display issue; Unfortunately, when zooming in,
still a wiggling is observable, although with smaller amplitude.

In the latter experiment, the algorithm produces the limit value ε∗ ≈ 2.5e-7. Remind
that we do not have any influence on this limit value since the update rule does not
depend on any parameter. In order to summarize the outcome of both experiments, we
observed that for a bigger ε∗ the final value on the approximation error increased, the
final value on the difference of successive iterates decreased, and also the amplitude of
the wiggling slightly decreased.

Although we are not able to eliminate the wiggling by the rule (2.32), the above ob-
servations gave us an impression how the lower bound on ‖xn+1−xn‖`2 and ‖xn−x∗‖`1
is correlated with the value of ε∗ = limn→∞ ε

n. In order to obtain an even clearer view,
we ran a test series of Algorithm 1 with the update rule (2.31), using the parameter
εmin ∈ {10−t| t = 3, . . . , 13}. For each experiment, we plot in Figure 2.3 by a ×-marker
the final value of the approximation error, and the final value of the difference of
successive iterates versus the parameter ε∗. In all experiments, we obtained ε∗ = εmin.
For comparison, we added by a +-marker also the results for a test series of Algorithm 1
with the update rule (2.32) using the parameter γ ∈ {10t| t = −3, . . . , 3}. Starting the
analysis on the right-hand side plot, it seems that the difference of successive iterates

8In a “black box” implementation of IRLS such a rule actually releases the user from the daunting
task of setting and adapting many parameters.

9We mean “convergence” in the sense as we observed it in the experiment before: The difference of
the successive iterates starts to wiggle around a certain constant value.

10With “final value” we denote the mean of the values at iterations 250–300.

36

2.4 Algorithms for Sparse Recovery

0 50 100 150 200 250 300

10
−5

10
0

10
5

‖
x
n
−

x
∗
‖
ℓ
1

n

Approximation Error

0 50 100 150 200 250 300

10
−10

10
0

ε
n

n

ε
n

0 50 100 150 200 250 300
10

−10

10
−5

10
0

‖
x
n
+
1
−

x
n
‖
ℓ
2

n

Difference of Successive Iterates

(a) Results using (2.31).

0 50 100 150 200 250 300

10
−5

10
0

10
5

‖
x
n
−

x
∗
‖
ℓ
1

n

Approximation Error

0 50 100 150 200 250 300

10
−10

10
0

ε
n

n

ε
n

0 50 100 150 200 250 300
10

−10

10
−5

10
0

‖
x
n
+
1
−

x
n
‖
ℓ
2

n

Difference of Successive Iterates

(b) Results using (2.32).

Figure 2.2: History of characteristic quantities (versus the iteration number n) in an IRLS
test run with the ε-update rules (2.31) and (2.32) respectively.

is reciprocally decreasing with the value of ε∗. This means that the iterates wiggle less,
when a big εmin is chosen. However, in the design of the IRLS algorithm the εn were
introduced as a “small” regularization variable with the purpose to avoid a division by
zero. It is intuitive that the approximation error of the result of the algorithm with
respect to the `1-minimizer is getting worse, the more we regularize, i.e., the bigger
is ε∗. Thus, we have two concurrent drivers which influence the approximation error.
This can be seen in the left-hand side plot of Figure 2.3: With decreasing ε∗, the
approximation error is getting smaller until the effect of the difference of successive
iterates kicks in, and again deteriorates the approximation. Thus, there is an optimal
value for ε∗. Regarding the results with the update rule (2.32), we see that they
perfectly get in line with the results of the other test series. Therefore, we conclude
that ε∗ is the essential quantity that trades between accuracy and robustness (in form
of the wiggling) of the IRLS solution.

37

Chapter 2 Fundamentals of Sparse Recovery

Focusing on the difference of successive iterates, we claim the hypothesis that there
is n0 ∈ N such that for all n ≥ n0,

‖xn+1 − xn‖`2
‖xn‖`2

∼ C

ε∗
, (2.33)

with a constant 0 < C � 1. In our experiments, we measured C ∼ 1e-16.

10
−15

10
−10

10
−5

10
0

10
−6

10
−4

10
−2

10
0

10
2

‖
x
n
+
1
−

x
∗
‖
ℓ
1

ε∗

Approximation Error (conv.) versus ε
∗

10
−15

10
−10

10
−5

10
0

10
−15

10
−10

10
−5

10
0

‖
x
n
+
1
−

x
n
‖
ℓ
2

ε∗

Difference of Successive Iterates (conv.) versus ε
∗

Figure 2.3: Dependency of the final approximation error and the difference of successive
iterates (after numerical convergence) on the limit value ε∗.

We leave hypothesis (2.33) as an open problem, and only give a theoretical indication
for an upper bound on ‖xn+1 − xn‖`2/‖xn‖`2 . Therefore, we highlight that xn+1 is
only an approximation of the exact solution x̂n+1 := DnΦ∗(ΦDnΦ∗)−1y. This is due to
the computation in finite precision. We denote the error ∆xn+1 := xn+1 − x̂n+1. Since
‖xn+1−xn‖`2 ≤ ‖x̂n+1−xn‖`2 +‖∆xn+1‖`2 , and it was shown in [48] that ‖x̂n+1−xn‖`2
vanishes for n → ∞ in theory, then we conclude that ‖xn+1 − xn‖`2 ∼ ‖∆xn+1‖`2
for sufficiently large n. Therefore, we focus on giving an upper bound for the error
‖∆xn+1‖`2 . The origin of this error can be explained in detail as follows: When solving
problem (2.28), we first need to find a solution ξ̂n+1 of the (unperturbed) linear system
(ΦDnΦ∗)ξ̂n+1 = y. In finite precision the “=” has to be replaced by a “≈”, and we
rather solve the perturbed linear system (ΦDnΦ∗)(ξ̂n+1 + ∆ξn+1) = y + ∆y, where
‖∆y‖`2 ≤ eps‖y‖`2 , with eps being the relative machine precision.11 The unknown
error vector ∆ξn+1 is then further propagated into ∆xn+1, via x̂n+1 + ∆xn+1 =
DnΦ∗(ξ̂n+1 +∆ξn+1). In the following theorem, we give an upper bound for ‖∆xn+1‖`2 .

11One could also add a perturbation to the matrix ΦDnΦ∗, but for a simplified analysis, we omit it
here. We further see in Theorem 2.23 that the bad conditioning of ΦDnΦ∗ is mainly responsible for
the error amplification, which is much severe than a small perturbation in the matrix itself.

38

2.4 Algorithms for Sparse Recovery

Theorem 2.23
Assume that the IRLS algorithm produces a sequence of iterates xn and that n exceeded
some value n0 such that

max
i

(|xni |) + εn ≤ c1‖xn‖`2 (2.34)

for some constant 1 ≤ c1 ∼ 1, for all n ≥ n0. Let Φ be full rank, and let ξ̂n+1 be the
solution of the (unperturbed) linear system (ΦDnΦ∗)ξ̂n+1 = y. Consider furthermore
the perturbed linear system (ΦDnΦ∗)(ξ̂n+1 + ∆ξn+1) = y + ∆y. Then a bound on the
error in the solution of the weighted least squares system is given by

‖∆xn+1‖`2 ≤ C̄‖xn‖`2
‖∆y‖`2
εn

, (2.35)

where C̄ := c1
‖Φ‖

(σmin(Φ))2 .

Remark 2.24
Condition (2.34) is not restrictive in practice since we want the limit of the εn to be
much smaller than the limit of the xn.

Remark 2.25
The theorem explains, why the constant C in (2.33) is in the order of 1e-16 in our
experiments. We computed C̄ ≈ 1.5 for the used Gaussian matrix, and the value
‖∆y‖`2 is expected in the order of machine precision, i.e., 1e-16 for double precision.

Proof. Since we have (ΦDnΦ∗)ξ̂n+1 = y, and (ΦDnΦ∗)(ξ̂n+1 + ∆ξn+1) = y + ∆y, we
obtain

(ΦDnΦ∗)∆ξn+1 = ∆y,

and thus the `2-norm error of the solution of the linear system can be estimated by

‖∆ξn+1‖`2 ≤ ‖(ΦDnΦ∗)−1‖‖∆y‖`2 .

According to (2.28) the least squares solution is obtained by

xn+1 = DnΦ∗ξ̂n+1,

and thus by error propagation, we obtain

‖∆xn+1‖`2 ≤ ‖DnΦ∗‖‖∆ξn+1‖`2 ≤ ‖DnΦ∗‖‖(ΦDnΦ∗)−1‖‖∆y‖`2
≤ ‖Dn‖‖Φ∗‖‖(ΦDnΦ∗)−1‖‖∆y‖`2 .

(2.36)

From the definition of the singular values, we estimate

‖Dn‖ = σmax(Dn) = max
i

(
(wni)−1

)
= max

i

√
(xni)2 + (εn)2

≤ max
i

(|xni |) + εn ≤ c1‖xn‖`2 ,
(2.37)

39

Chapter 2 Fundamentals of Sparse Recovery

where the last step follows by (2.34). Moreover

‖(ΦDnΦ∗)−1‖ = 1
σmin(ΦDnΦ∗) ≤

1
(σmin(Φ))2 σmin(Dn)

= 1
(σmin(Φ))2 min

i

√
(xni)2 + (εn)2

≤ 1
(σmin(Φ))2 εn

.
(2.38)

Plugging in (2.37), and (2.38) in (2.36) yields (2.35). 2

In view of Theorem 2.23, we conclude this section by a practical hands-on guideline
for a stopping criterion for IRLS: Run the algorithm until the values εn do not change
anymore (or only change within a very small tolerance) for some n.12 Then we have
that ε∗ ≈ εn ≈ εn+1 and we iterate the algorithm until

‖xn+1 − xn‖`2
‖xn‖`2

≤ ¯̄C ‖∆y‖`2
ε∗

,

where ¯̄C has to be chosen slightly bigger than C̄ and ‖∆y‖`2 has to be replaced by a
value in the order of the machine precision.

2.4.1.3 IRLS Method for `p-norm Regularized Least Squares

As we explained in Section 2.2, sometimes it is more appropriate to work with a
functional that balances the residual error in the linear system with an `p-norm penalty,
promoting sparsity. We consider the problem

arg min
x∈RN

(
Fp,λ(x) := ||x||p`p + 1

2λ ||Φx− y||
2
`2

)
, (2.39)

where λ > 0. This problem is actually equivalent to problem (2.14), if we replace “λ”
by “2λ”. We use the formulation (2.39) in order to ease cross-reading. Again, we define
an auxiliary functional for the analysis of the algorithm.

Definition 2.26
Given a real number ε > 0, x ∈ RN , and a weight vector w ∈ RN , w > 0, we define

Jp,λ(x,w, ε) := p

2

N∑
j=1

[
|xj |2wj + ε2wj + 2− p

p
w
− p

2−p
j

]
+ 1

2λ ||Φx− y||
2
`2 . (2.40)

12The update rule (2.31) is designed such that εn+1 = εn if r(xn+1)K+1/N ≥ εn (in order to ensure
that the εn decrease), although one may still be far away from the solution. Thus one may exclude
such special cases by, e.g., checking the value of εn for the previous 10 iterations.

40

2.4 Algorithms for Sparse Recovery

Lai, Xu, and Yin in [120], and Daubechies and Voronin in [189, 190] showed inde-
pendently that computing the optimizer of the problem (2.39) can be approached by
an alternating minimization of the functional Jp,λ with respect to x, w, and ε. The
difference between these two works is the definition of the update rule for ε. Both
authors show that the algorithm converges. Furthermore, in [189, 190], the authors
show that the limit point is a minimizer (p = 1), or a critical point (p < 1) of (2.39).
By the ε-update rule in [120], the authors showed that the algorithm converges, in the
case that limn→∞ ε

n = ε > 0, to a minimizer (p = 1), or critical point (p < 1) of the
smoothed functional

||x||p`p,ε + 1
2λ ||Φx− y||

2
`2 , (2.41)

where ||x||p`p,ε :=
N∑
j=1
|x2
j +ε2|

p
2 . The rule that is used by Daubechies and Voronin allows

a more elegant analysis of the algorithm and will be more useful for the analysis of a
modified IRLS method that we present in Section 4.1.3. Therefore, we define IRLS-λ
in Algorithm 2, using the update rule of Daubechies/Voronin.

Algorithm 2 IRLS-λ
1: Set w0 := (1, . . . , 1), ε0 := 1, α ∈ (0, 1], φ ∈ (0, 1

4−p).
2: while εn > 0 do
3: xn+1 := arg min

x
Jp,λ(x,wn, εn)

4: εn+1 := min
{
εn, |Jp,λ(x̃n−1, wn−1, εn−1)− Jp,λ(x̃n, wn, εn)|φ + αn+1

}
5: wn+1 := arg min

w>0
Jp,λ(xn+1, w, εn+1)

6: end while

We approach the first step of the algorithm by computing a critical point of Jp,λ(·, w, ε)
via the first order optimality condition

p
[
xjw

n
j

]N
j=1

+ 1
λ

Φ∗(Φx− y) = 0, (2.42)

or equivalently (
Φ∗Φ + diag

[
λpwnj

]N
j=1

)
x = Φ∗y. (2.43)

We denote the solution of this linear system by xn+1. The new weight wn+1 is obtained
in Step 5, and can be expressed componentwise by

wn+1
j = ((xn+1

j)2 + (εn+1)2)−
2−p

2 . (2.44)

As in the previous section, we omit a detailed statement of the above mentioned
convergence results since we present one for a modified version of Algorithm 2 in
Section 4.1.3 that greatly extends them.

41

Chapter 2 Fundamentals of Sparse Recovery

2.4.2 Iteratively Re-weighted `1-minimization (IRL1)
The `1-norm has the drawback with respect to the `0-norm, that it is not democratic, i.e.,
while the `0-norm penalizes all non-zero entries by one, in the `1-norm the contribution
of each entry depends on its amplitude. An ansatz to overcome this drawback is
iteratively re-weighted `1-minimization (IRL1). It was proposed in [33], and analyzed
in [141]. It iteratively computes the solution of

xn+1 = arg min
x∈FΦ(y)

N∑
i=1

wni |xi|, n = 0, 1, 2, . . . , (2.45)

or

xn+1 = arg min
‖Φx−y‖`2≤δ

N∑
i=1

wni |xi|, n = 0, 1, 2, . . . , (2.46)

while updating the weights according to wni = (|xni |+ a)−1, i = 1, . . . , N , for a suitably
chosen stability parameter a > 0 (which is considered fixed and prevents the weights
to go to infinity), and a potential noise level δ ≥ 0. The weights wni are used in order
to promote that all non-zero entries equally contribute to the value of the objective
function. Thus, instead of solving the NP-hard `0-minimization problem, one can
solve a series of the convex weighted `1-minimization problems, while preserving the
democratic property of the `0-norm.

We recall an instance optimality property for the result of the iterative proce-
dure (2.45). We use it in Section 3.1.1 in order to perform a robustness analysis
towards the support identification properties of IRL1. We will not further theoretically
analyze (2.46), but for the sake of completeness and a broad investigation, we use it in
the numerical tests in Section 3.3.
Lemma 2.27 ([141, Theorem 3.2])
Let Φ ∈ Rm×N have the (2k, δ2k)-RIP, with δ2k <

√
2 − 1, and assume the smallest

nonzero coordinate of x[k] in absolute value larger than the threshold

r̄ := 9.6
√

1 + δ2k

1− (
√

2 + 1)δ2k

(
σk(x)`2 + σk(x)`1√

k

)
. (2.47)

Denote the decoder given by the iterative procedure (2.45) by ∆1rew, and the limit by
∆1rew(y). Then for x ∈ FΦ(y), the decoder ∆1rew performs

‖x−∆1rew(y)‖`2 ≤ 4.8
√

1 + δ2k

1 + (
√

2− 1)δ2k

(
σk(x)`2 + σk(x)`1√

k

)
. (2.48)

42

2.4 Algorithms for Sparse Recovery

2.4.3 Thresholding Algorithms
Motivated by the `p-norm regularized problem descriptions (2.12), (2.13), and (2.14),
we consider a generalized problem formulation of the type

arg min
x∈RN

λφ(x) + ‖Φx− y‖2`2 , (2.49)

where φ(x) is a separable lower semi-continuous function. Thresholding algorithms can
be considered as a subclass of forward-backward splitting methods. A basic thresholding
algorithm consists of a forward gradient descent (Landweber) step on the function
‖Φx − y‖2`2 , with stepsize t(n), and a backward gradient descent step (also called
proximal step). All in all, this means, that we iterate

x(n+1) = Tα(x(n) + t(n)Φ∗(Φx(n) − y)),

where the proximity operator Tα is defined as

Tα(x) = arg min
z∈RN

αφ(z) + ‖z − x‖2`2 , (2.50)

where α may depend on λ and t(n). In the case of φ(·) = ‖ · ‖p`p , 0 ≤ p ≤ 1, the
proximity operator can be reduced for some values of p to a closed form component-
wise thresholding operator, which gives the name to those methods. We recall an
explicit formulation of those thresholding functions for p ∈ {0, 1} in the following two
subsections. A further promising thresholding algorithm with a closed form operator
for p = 1/2 was proposed and analyzed in [193, 196] (compare also Remark 3.14).

In Section 3.2, we use thresholding iterations in order to solve multi-penalty regular-
ized functionals, such as

arg min
x,z∈RN

λp‖x‖p`p + λq‖z‖q`q + ‖Φ(x+ z)− y‖2`2 ,

with λp, λq > 0 and arbitrary values 0 < p ≤ 1, 1 ≤ q ≤ ∞. The algorithm that we
present, principally fixes alternatingly either x or z, and solves as an intermediate step
again problems of the type (2.49).

2.4.3.1 Iterative Soft Thresholding (ISTA)

In order to solve problem (2.12), which is of the type (2.49), we have to find the
proximal operator for φ(·) = ‖ · ‖`1 . It was shown that it is actually uniquely given by
the soft thresholding operator Sλ(x) (see, e.g., [47]), which is defined component-wise
by

(Sλ(x))i :=


(
1− λ

2‖xi‖`2

)
xi, ‖xi‖`2 > λ

2 ,

0, otherwise,
i = 1, . . . , N. (2.51)

43

Chapter 2 Fundamentals of Sparse Recovery

We obtain the well-known iterative soft thresholding algorithm (ISTA). Furthermore, it
can be equipped by a stepsize t ≤ 1, as presented in Algorithm 3. Several authors have
proposed this algorithm independently in different context [71, 169, 172, 63].

Algorithm 3 Iterative Soft Thresholding Algorithm (ISTA)
Choose x(0), e.g., x(0) = 0, and t ≤ 1.
1: loop
2: x(n+1) = Stλ

(
x(n) + tΦ∗(y − Φx(n))

)
3: end loop

For the sake of the consistency of this section, we chose a finite dimensional for-
mulation, although ISTA can similarly solve the infinite dimensional problem (2.15).
We address this particular situation in Sections 3.2 and 4.2. Strong convergence of
this algorithm (which is in particular interesting in the infinite dimensional setting)
was proved in [47], under the assumption that ‖Φ‖ < 1 (actually, convergence can be
shown also for ‖Φ‖ <

√
2, compare also [43]). This condition is not a restriction, since

it can always be met by a suitable rescaling of Φ, λ, and y without changing the actual
problem. Moreover, the limit point x∗ is a fixed point of the thresholded Landweber
iteration

x∗ = Sλ(x∗ + Φ∗(y − Φx∗)).

ISTA is suitable for a quick implementation, but converges slowly in general. There-
fore it was subject of some acceleration techniques, e.g., by using a decreasing sequence
of positive thresholds λ(n) [45], or using an adaptive stepsize t(n) instead of the static
stepsize t [181]. One of the most popular acceleration techniques is the fast iterative soft
thresholding algorithm (FISTA) [13], which is based on [144]. We state it in Algorithm 4.
It is known for its good worst-case performance and achieves a converge rate of O(n−2)
while ISTA was shown to converge only linearly [22].

Algorithm 4 Fast Iterative Soft Thresholding Algorithm (FISTA)
Choose x(0) = u(0) = 0, t ≤ 1, s(0) = 1.
1: loop
2: u(n+1) = Stλ

(
x(n) + tΦ∗(y − Φx(n))

)
3: s(n+1) = 1+

√
1+4(s(n))2

2
4: w(n) = 1 + s(n)−1

s(n+1)

5: x(n+1) = w(n)u(n+1) +
(
1− w(n)

)
u(n)

6: end loop

Both, ISTA and FISTA, can be further accelerated by backtracking strategies, as

44

2.4 Algorithms for Sparse Recovery

proposed in [13], where the stepsize t = t(n) is again adaptively chosen. We explain
this particular technique more in detail in Section 4.2.1.

2.4.3.2 Iterative Hard Thresholding (IHT)

Let us now consider φ(·) = ‖·‖0, which leads to the iterative hard thresholding algorithm
(IHT). There are two versions, respectively for the problems (2.13) and (2.11), although
a thresholding operator for the solution of problem (2.11) cannot directly be derived
from the proximity operator (2.50), but rather from a simple projection on the set of
sparse vectors. Let us briefly introduce those two thresholding operators, before going
into detail:

• It turns out that in the case of problem (2.11) the thresholding operator Hk(z) :=
z[k], which returns the best k-term approximation to z (see Definition 2.2), is
appropriate. Note that if x∗ is k-sparse, and Φx∗ = y, then x∗ is a fixed point of

x∗ = Hk(x∗ + Φ∗(y − Φx∗)).

Further below, we recall proper analysis results of the algorithm with iteration

xn+1 = Hk(xn + Φ∗(y − Φxn)).

We show that under the RIP for Φ, it converges to a local minimizer of (2.11),
which fulfills the aforementioned fixed point equation, and has stability properties
as in (2.8), which are reached in a finite number of iterations.

• In order to solve problem (2.13), the thresholding operator is given by H√λ(z)
where

(H√λ(z))i :=
{
zi if |zi| >

√
λ,

0 else,
, i = 1 . . . , N.

Again, we present further below a theorem that states the convergence of the
algorithm to a fixed point x∗ fulfilling

x∗ = H√λ (x∗ + Φ∗(y − Φx∗)) , (2.52)

which is a local minimizer of the functional (2.13).

IHT for the `0-constrained Problem We first specify in Algorithm 5 the formulation
of IHT for problem (2.11), so concisely described in the introductory paragraph. It
was shown in [19] that if ‖Φ‖ < 1 then this algorithm converges to a local minimizer of
(2.13). The same authors establish in [20] the following convergence result in the case
that Φ satisfies the RIP.

45

Chapter 2 Fundamentals of Sparse Recovery

Algorithm 5 IHT-k
1: Set x0 := 0.
2: loop
3: xn+1 := Hk(xn + Φ∗(y − Φxn)) = (xn + Φ∗(y − Φxn))[k]
4: end loop

Theorem 2.28 ([20, Theorem 5])
Let us assume that y = Φx + e is a noisy encoding of x via Φ, where x is k-sparse.
If Φ has the (3k, δ3k)-RIP with constant δ3k <

1√
32 , then, at iteration n, Algorithm 5

recovers an approximation xn satisfying

‖x− xn‖`2 ≤ 2−n‖x‖`2 + 5‖e‖`2 .

Furthermore, after at most
n∗ =

⌈
log2

(‖x‖`2
‖e‖`2

)⌉
iterations, the algorithm estimates x with accuracy

‖x− xn∗‖`2 ≤ 6‖e‖`2 .

Moreover a result for arbitrary vectors x is given.

Corollary 2.29 ([20, Theorem 4])
Let us assume that y = Φx+ e is a noisy encoding of x via Φ, where x is an arbitrary
vector. If Φ has the (3k, δ3k)-RIP with constant δ3k < 1√

32 , then, at iteration n,
Algorithm IHT-k will recover an approximation xn satisfying

‖x− xn‖`2 ≤ 2−n‖x‖`2 + 6
(
σk(x)`2 + σk(x)`1√

k
+ ‖e‖`2

)
.

Furthermore, after at most
n∗ =

⌈
log2

(‖x‖`2
‖e‖`2

)⌉
iterations, the algorithm estimates x with accuracy

‖x− xn∗‖`2 ≤ 7
(
σk(x)`2 + σk(x)`1√

k
+ ‖e‖`2

)
.

IHT for the `0-regularized Problem The introductory rough formulation of an algo-
rithm for the solution of problem (2.13) is specified in Algorithm 6. In the following, we
present a respective convergence result of [19], which is used further below in Section 3.1.
We also sketch the proof.

46

2.4 Algorithms for Sparse Recovery

Algorithm 6 IHT-λ
1: Set x0 := 0.
2: loop
3: zn+1 := xn + Φ∗(y − Φxn)
4: for i = 1, . . . , N do
5: if zn+1

i >
√
λ then

6: xn+1
i := zn+1

i

7: else
8: xn+1

i := 0
9: end if

10: end for
11: end loop

Theorem 2.30 ([19, Theorem 3, Lemma 4])
If ‖Φ‖ < 1, then the sequence (xn)n∈N defined by Algorithm 6 converges to a fixed
point x∗ of Algorithm 6, and thus fulfilling (2.52), which is a local minimum of J0(x).
If furthermore the set of columns {Φi}Ni=1 contains a basis for the signal space and
‖Φi‖`2 > 0, i = 1, . . . , N , then a tight bound for the approximation error at the fixed
point x∗ is

‖y − Φx∗‖`2 ≤
√
λ

β(Φ) ,

where β(Φ) > 0 is such that

‖Φ∗z‖`∞ ≥ β(Φ)‖z‖`2 (2.53)

holds for all z ∈ Rm.

Proof. Define the sets Λ0(z) := {i| yi = 0} and Λ1(z) := {i| |yi| >
√
λ}. The proof

of convergence starts by showing that after a finite number of iterations these two
sets are fixed. Thus the algorithm then can be considered as a standard Landweber
algorithm with guaranteed convergence [122]. In the proof of [19, Theorem 3] a detailed
presentation of this argumentation, and the proof that the limit is a fixed point of
the algorithm and therefore also a local minimum of J0(x), is given. To show the
approximation error estimate, we assume that the algorithm converged to a fixed point
x∗ which then has to fulfill (2.52). Since H√λ is defined component-wise, we conclude
that |Φ∗i (y − Φx∗)| ≤

√
λ if i ∈ Λ0(x∗), and Φ∗i (y − Φx∗) = 0 if i ∈ Λ1(x∗). Thus, we

have in particular that ‖Φ∗i (y−Φx∗)‖`∞ ≤
√
λ. By this observation and the application

of condition (2.53) for z = y − Φx∗, we obtain

β(Φ)‖y − Φx∗‖`2 ≤ ‖Φ∗(y − Φx∗)‖`∞ ≤
√
λ.

47

Chapter 2 Fundamentals of Sparse Recovery

Remark 2.31
Although it is the scope of the algorithm to produce a vector with small `0-norm—and
thus a sparse vector—it is important to notice that this algorithm is only computing a
local minimizer of the functional J0(x), which is not necessarily sparse. In contrast to
Algorithm 5 there is no guarantee, that this Algorithm produces a k-sparse vector.

Remark 2.32
In the proof, it is shown that the algorithm can be considered as a standard Landweber
algorithm as soon as the sets Λ0(xn) and Λ1(xn) are fixed after a finite number of
iterations n0. According to [122], then the algorithm converges linearly as

‖xn − x∗‖`2 ≤ ‖I − Φ∗Λ1(xn0)ΦΛ1(xn0)‖n−n0‖xn0 − x∗‖`2 .

A brief comparison of the IHT algorithms At first glance Algorithm 5 should be
preferred to 6 since it offers a more robust error analysis and a guaranteed error
reduction from the very beginning and it is robust to noise, i.e., an estimate of the
type (2.8) holds. However its main drawback is that it requires the (precise) knowledge
of k, which one might not dispose of in some applications. Therefore in this case one
can consider to use Algorithm 6. Nevertheless one has to tune λ. In Section 2.2.3
we present an application of the latter algorithm which turns out to be very robust
when one is interested in the exact support identification of an original signal which is
corrupted by noise. In this particular application we determine a specific range for λ
which is supposed to provide optimal support identification performance.

48

Chapter 3

Robust Sparse Recovery in the Presence of
Strong Signal Noise

The noise folding problem, whose importance for the field of sparse recovery was thor-
oughly discussed in Section 2.2.3, is the main motivation of this chapter. In accordance
with the general setting in Section 2.2, we exclusively consider the problem (2.21), i.e.,

y = Φ(x̄+ n),

here. We use here the notation x̄ for a sparse vector since we will use the notation
x further below for a sparse vector, corrupted by noise, i.e., the sum of x̄ and n. As
we explained in the respective section, the measurement vector y can be considered
equivalently obtained by a measurement procedure of the form (2.7), i.e., y = Φx̄+ e
(possibly with another measurement matrix Φ of equal statistics), where now the vector
e is composed by i.i.d. Gaussian entries with distribution N (0, σe) and σ2

e = N
mσ

2
n.

Therefore, the noise folding phenomenon may significantly reduce in practice the
potential advantages of sparse recovery in terms of the trade-off between robustness
and efficient compression (here represented by the factor N

m), with respect to other
more traditional subsampling encoding methods [51]. An approach to control the noise
folding, is proposed in [6]. In this case, one may tune the linear measurement process
in order to a priori filter the noise. However, this strategy requires to have a precise
knowledge of the noise statistics and to design proper filters. Other related work [104,
105, 106] addresses the problem of designing adaptive measurements, called distilled
sensing, in order to detect and locate the signal within white noise.

In this chapter, we shall follow a blind-to-statistics approach, which does not modify
the non-adaptive measurements, and, differently from the Dantzig selector analysis
in [31] (compare Section 2.2.3), this chapter is restricted to a purely deterministic
setting. In Theorem 2.19 it is stated that even if we would have an oracle at disposal
that tells us the support of the solution vector still the noise folding phenomenon
is present. Thus, in order to not loose even more accuracy due to the wrong detec-
tion of the support, the challenge in the noise folding regime is to identify a decoder
which “simulates” the oracle, i.e., which robustly and reliably determines the support

49

Chapter 3 Robust Sparse Recovery in the Presence of Strong Signal Noise

Λ = supp(x̄) (support identification). In fact, for certain applications, such as radar
[112], the support recovery can be even more relevant than an accurate estimate of the
respective amplitude and sign of the non-zero entries. However, apart from the exact
support, we are also interested in the best possible recovery of those relevant entries.
Provided an exact support identification, a good approximation of the non-zero entries
of x̄ then can always be found by using the optimization process (2.24). As we will see
below, some methods are already defined in such a way that they naturally return a
good approximation of the non-zero entries as a byproduct of the method itself. In
this scope, the better a recovery method copes with the support identification and
estimation of the relevant entries of the vector x̄, the more robust it is. We likewise say
that it has a higher performance.

To get an immediate insight into the problems that arise due to the noise folding,
we start the investigation with a generic and simple example.

Example 3.1
We recover the decoded signal x∗ from a measurement data vector y, which was
obtained from the original signal x̄ through the measurement process (2.21) with the
addition of a noise vector n. As decoder we use the `1-minimization process (2.4),
which is one of the most popular methods for sparse recovery (see Section 2.1). In
Figure 3.1, we plot the original signal x̄, the noise n, and the recovery result x∗ so
that we are able to compare it. The immediate observation is that the original signal

0 5 10 15 20 25 30 35 40 45 50
−1.5

−1

−0.5

0

0.5

1

1.5

ℓ1-minimization

Noisy Signal

Original Signal

Decoded Signal

Figure 3.1: Recovery result x∗ (+) of the `1-minimization starting from the measurement of
a generic sparse signal x̄ (o) in the presence of signal noise n (·).

x̄ can clearly be separated from the noise n since all entries of n have an absolute

50

value below 0.25, and the relevant large signal entries of x̄ exceed 0.5 in absolute value.
It is rather difficult to make a similar distinction within the decoded signal x∗. For
example, the 24-th entry of the decoded vector, which is supposed to belong to the
noisy part of the signal, exceeds in absolute value its 13-th entry, although the latter is
supposed to belong to the relevant part of the signal. Thus, in potential applications
the misinterpretation of results is bound to occur.

The presentation of Example 3.1 gives rise to the need of

1. a proper definition of statistical properties of signal and noise, and

2. new, or modified algorithms which take such statistics into account.

In this chapter, we present two different approaches, in which we draw new decoding
strategies that are based on respective statistics of the original signal and noise. We
furthermore give theoretical indications why those methods overcome the current state-
of-the-art in compressed sensing/sparse recovery in terms of support identification.

In Section 3.1, we define the class of sparse vectors affected by bounded noise. Based
on this class, we show that the classical `1-minimization, but also the iteratively re-
weighted `1-minimization (Section 2.4.2), considered one of the most robust in the
field, easily fails in the task of an exact support identification. The deep reason of this
failure is the lack of selectivity of these algorithms, which are designed to promote
not only the sparsity of the recovered signal x∗ but also of the recovered noise. We
propose a new decoding procedure, combining `1-minimization as a warm-up step and
an additional non-convex method, which enhances the support identification properties
of the procedure. The mentioned non-convex method is either the regularized selective
least p-powers or the well-known iterative hard thresholding (Section 2.4.3.2, IHT-λ).
The regularized selective least p-powers allows the principal academic understanding
of the use of the statistics of signal and noise, but suffers from a high computational
complexity. Instead, using iterative hard thresholding, maintains the computational
complexity of state-of-the-art methods. Moreover it is as robust as using regularized
selective least p-powers since it is based on the same principle. The content of Section 3.1
was published by the author of this dissertation as leading author in [155], except for
the results in Section 3.1.3.1, which are presented in more detail in the dissertation of
Marco Artina [8] who is main contributor to the respective results.

In Section 3.2, we generalize the concept of Section 3.1 in the sense that we assume
that signal and noise, dependent on their statistical properties, are contained in different
(also non-convex) balls. Based on this assumption, we define (non-convex) multi-penalty
functionals, which allow a separation of signal and noise. In order to minimize those
functionals, we propose an alternating algorithm and show its convergence. The
content of Section 3.2 was published by the author of this dissertation in [140], holding
the main authorship of the results presented in Subsections 3.2.1 and 3.2.3. The

51

Chapter 3 Robust Sparse Recovery in the Presence of Strong Signal Noise

co-author Valeriya Naumova is leading author of the results that are presented in
Subsections 3.2.2.1–3.2.2.3.
We provide in Section 3.3 numerical tests of the methods which are presented in

Section 3.1 and 3.2 in a common scope. The section is loosely based on the numerical
results in the two above mentioned publications [155, 140]. However, it contains
essentially new results, in particular a comparison of both approaches to each other
and to the “classical” methods as well as a thoroughly investigated parameter choice
for all involved methods.

3.1 Approach 1: Damping Noise-Folding by Non-Convex
Methods

We want to embed the involved original signal of Example 3.1 into a specific class of
vectors. To this end, let us introduce for r > η > 0 and 1 ≤ k < m the class of sparse
vectors affected by bounded noise,

Spη,k,r :=

x ∈ RN
∣∣#Sr(x) ≤ k and

∑
i∈(Sr(x))c

|xi|p ≤ ηp
 , 1 ≤ p ≤ 2, (3.1)

where Sr(x) := {i ∈ {1, . . . , N}| |xi| > r} is the index support of the relevant entries
exceeding in absolute value the threshold r. This class contains all vectors for which at
most 1 ≤ k < m large entries exceed the threshold r in absolute value, while the p-norm
of the remaining entries stays below a certain noise level η. We do not specify whether
the relevant entries of x are themselves affected by noise. Indeed, as we can at most
approximate them anyway with an accuracy, which is never better than the noise level
η = ‖x(Sr(x))c‖`2 , see (3.9) below, it is clearly redundant to discuss their exactness or
noiseless nature. The definition of the class Spη,k,r makes redundant the notation x̄+ n
from the model (2.21) in the introduction. We consider hereafter only the single vec-
tor x which contains relevant and noise entries in the sense that x̄=̂xSr(x) and n=̂xSr(x)c .

In the remainder of this section, first, we describe the limitations of `1-minimization
when noise on the signal is present, and we perform a very similar analogue analysis for
the iteratively re-weighted `1-minimization (IRL1) based on the results in [141]. Second,
we propose the linearly constrained minimization of the regularized selective p-potential
functional as an alternative, and show that certain sufficient conditions for recovery
indicate significantly better performance than the one provided by `1-minimization and
IRL1. Third, we address the issue of the high computational cost of the regularized
selective p-potential optimization and propose, exploiting a similar selectivity principle,
an alternative method based on iterative hard thresholding.

52

3.1 Approach 1: Damping Noise-Folding by Non-Convex Methods

3.1.1 Support Identification Stability Results in Standard Sparse Recovery
The theory of sparse recovery, as presented in Chapter 2, tells us that we are able
to recover by (iteratively re-weighted) `1-minimization compressible vectors within a
certain accuracy, given by (2.5) or (2.48) respectively. If we re-interpret compressible
vectors as sparse vectors which are corrupted by noise, we immediately see that the
accuracy of the recovered solution is basically driven by the noise level affecting the
vector. Nevertheless, neither inequalities (2.5) and (2.48) tell us immediately if the
recovered support of the k largest entries of the decoded vector in absolute value
is the same as the one of the original signal, nor are we able to identify the large
entries exceeding a given threshold in absolute value. In this section, the limitations
of `1-minimization and iteratively re-weighted `1-minimization are investigated in detail.

Let us informally explain how the class Spη,k,r can be crucially used to analyze the
effects of noise folding in terms of support recovery depending on the parameters
η, r, k. Therefore, assume now that x ∈ S2

η,k,r in expectation (notice that we specified
here p = 2). By the statistical equivalence of the model (2.21) and (2.7), which was
mentioned in the introduction of this chapter and recalled in more detail in Section 2.2.3,
we infer that the recovered vector x∗ by means of the Dantzig selector will fulfill the
following error estimate (compare (2.23)):

‖xSr(x) − x∗‖2`2 ≤ C
2 · 2 logN ·

(
(1 + k)N

m
σ2
n

)
≤ C2 · 2 logN ·

(
(1 + k)N

m

η2

N − k

)
,

(3.2)

where the last inequality follows by the requirement

(N − k)σ2
n = E

 ∑
i∈(Sr(x))c

|ni|2
 ≤ η2,

considering here Sr(x) as previously defined below (3.1). Since we assume that k � N
and k+1

m ≤ 1, the right-hand-side of (3.2) can be further bounded from above by

C2 · 2 logN ·
(

(1 + k)N
m

η2

N − k

)
≤ C2

1 · 2 logN · η2.

It easily follows (and we will use similar arguments below for different decoding
methods) that a sufficient condition for the identification of the relevant entries of x,
i.e., Sr(x) ⊂ supp(x∗), is

C2
1 · 2 logN · η2 < r2,

53

Chapter 3 Robust Sparse Recovery in the Presence of Strong Signal Noise

or, equivalently,
η <

r

C1
√

2 logN
.

Notice that such a sufficient condition on η actually implies a rather large gap between
the significant entries of x and its noise components. Hence, it is of utmost practical
interest to understand how small this gap is actually allowed to be, i.e., how large η
can be relatively to r, for the most used recovery algorithms in sparse recovery (not
only the Dantzig selector) to be able to have both support identification and a good
approximation of the relevant entries of x.

For later use, let us denote, for 1 ≤ p ≤ 2 and q such that 1
p + 1

q = 1,

κp := κp(N, k) :=
{

1, p = 1,
q
√
N − k, 1 < p ≤ 2.

The following simple theorem shows how one can estimate the support of the relevant
entries of the original signal if we know the support of the `1-minimizer.

Theorem 3.2
Let x ∈ RN be a noisy signal with k relevant entries and the noise level η ∈ R, η ≥ 0,
i.e., for Λ = supp(x[k]), ∑

j∈Λc
|xj |p ≤ ηp, (3.3)

for a fixed 1 ≤ p ≤ 2. Consider further an encoder Φ ∈ Rm×N which has the
(k, γk)-NSP, with γk < 1, the respective measurement vector y = Φx ∈ Rm, and the
`1-minimizer x∗ := ∆1(y) (see (2.4)). If the i-th component of the original signal x is
such that

|xi| >
2(1 + γk)

1− γk
κp η, (3.4)

then i ∈ supp(x∗).

Proof. Hölder’s inequality applied on the instance optimality property (2.5), and the
assumption (3.3) yield the estimate

‖x∗ − x‖`1 ≤
2(1 + γk)

1− γk
σk(x)`1 ≤

2(1 + γk)
1− γk

κp η.

We now choose a component i ∈ {1, . . . , N} such that |xi| > 2(1+γk)
1−γk κp η, and assume

i /∈ supp(x∗). This leads to the contradiction:

|xi| = |xi − x∗i | ≤ ‖x− x∗‖`1 ≤
2(1 + γk)

1− γk
κp η < |xi|.

Hence, necessarily i ∈ supp(x∗). 2

54

3.1 Approach 1: Damping Noise-Folding by Non-Convex Methods

The noise level substantially influences the ability of support identification. Here,
the noisy signal should have (as a sufficient condition) the k largest entries in absolute
value above

r1 := 2(1 + γk)
1− γk

κp η,

in order to guarantee support identification.

We are able to show a similar support identification result also in the case of the
iteratively re-weighted `1-minimization (see Section 2.4.2, IRL1), as a consequence of
the respective instance optimality result in Lemma 2.27.

Theorem 3.3
Let x ∈ RN be a noisy signal with k relevant entries and the noise level η ∈ R, η ≥ 0,
i.e., for Λ = supp(x[k]), ∑

j∈Λc
|xj |p ≤ ηp,

for a fixed 1 ≤ p ≤ 2. Consider further an encoder Φ ∈ Rm×N which has the (2k, δ2k)-
RIP, with δ2k <

√
2 − 1, the respective measurement vector y = Φx ∈ Rm, and the

iteratively re-weighted `1-minimizer x∗ := ∆1rew(y). If for all i ∈ supp(x[k])

|xi| > 9.6
√

1 + δ2k

1− (
√

2 + 1)δ2k

(
1 + κp√

k

)
η =: r1rew, (3.5)

then supp(x[k]) ⊂ supp(x∗).

Proof. First, notice that

η ≥

∑
j∈Λc
|xj |p

 1
p

= σk(x)`p ≥ σk(x)`2 ,

and κpσk(x)`p ≥ σk(x)`1 by Hölder’s inequality. Thus, we have for all i ∈ supp(x[k])
that

|xi| > 9.6
√

1 + δ2k

1− (
√

2 + 1)δ2k

(
1 + κp√

k

)
η ≥ 9.6

√
1 + δ2k

1− (
√

2 + 1)δ2k

(
σk(x)`p + κp√

k
σk(x)`p

)
≥ 9.6

√
1 + δ2k

1− (
√

2 + 1)δ2k

(
σk(x)`2 + σk(x)`1√

k

)
.

Consequently, we fulfill the conditions of Lemma 2.27 for which, for all i ∈ supp(x[k]),
|xi| > r̄, as defined in (2.47). Assume now that there is i ∈ supp(x[k]) and i /∈ supp(x∗).

55

Chapter 3 Robust Sparse Recovery in the Presence of Strong Signal Noise

By Lemma 2.27 we obtain the contradiction

|xi| = |xi − x∗i | ≤ ‖x− x∗‖`2 ≤ 4.8
√

1 + δ2k

1 + (
√

2− 1)δ2k

(
σk(x)`2 + σk(x)`1√

k

)
≤ 9.6

√
1 + δ2k

1− (
√

2 + 1)δ2k

(
σk(x)`2 + σk(x)`1√

k

)
= r̄ < |xi|.

Hence, i ∈ supp(x∗). 2

Here, the noisy signal should have the k largest entries in absolute value above r1rew
in order to guarantee support identification.

3.1.2 Support Identification Stability in the Class of Sparse Vectors
Affected by Bounded Noise

In this section, we present results in terms of support discrepancy once we consider
two elements of the class Spη,k,r (defined in (3.1)), having the same measurements. This
condition is a basic requirement for the design of a decoder that is supposed to have
enhanced support identification properties.

Theorem 3.4
Let Φ ∈ Rm×N have the (2k, γ2k)-NSP, for γ2k < 1, 1 ≤ p ≤ 2, and x, x′ ∈ Spη,k,r such
that Φx = Φx′, and 0 ≤ η < r. Then

#(Sr(x)∆Sr(x′)) ≤
(2γ2kκpη)p

(r − η)p . (3.6)

(Here we denote by “∆” the set symmetric difference, not to be confused with the
previously introduced symbol of a generic decoder as used in Section 2.1.4. See (3.50)
for a detailed definition of the symmetric difference.) If additionally

r > η(1 + 2γ2kκp) =: rS , (3.7)

then Sr(x) = Sr(x′).

Proof. As Φx = Φx′, then (x− x′) ∈ NΦ. By the (2k, γ2k)-NSP, Hölder’s inequality,
and the triangle inequality we have∥∥∥(x− x′)Sr(x)∪Sr(x′)

∥∥∥
`p
≤
∥∥∥(x− x′)Sr(x)∪Sr(x′)

∥∥∥
`1
≤ γ2k

∥∥∥(x− x′)(Sr(x)∪Sr(x′))c
∥∥∥
`1

≤ γ2kκp
∥∥∥(x− x′)(Sr(x)∪Sr(x′))c

∥∥∥
`p
≤ 2γ2kκpη. (3.8)

Now we estimate the symmetric difference of the supports of the large entries of x
and x′ in absolute value as follows: if i ∈ Sr(x)∆Sr(x′), then either |xi| > r and

56

3.1 Approach 1: Damping Noise-Folding by Non-Convex Methods

|x′i| ≤ η or |xi| ≤ η and |x′i| > r. This implies that |x′i − xi| > (r − η). Thus we have∥∥∥(x− x′)Sr(x)∆Sr(x′)

∥∥∥p
`p
≥ (#(Sr(x)∆Sr(x′))) (r−η)p. Together with the non-negativity

of
∥∥∥(x− x′)Sr(x)∩Sr(x′)

∥∥∥
`p
, we obtain the chain of inequalities

(2γ2kκpη)p ≥
∥∥∥(x− x′)Sr(x)∪Sr(x′)

∥∥∥p
`p
≥
∥∥∥(x− x′)Sr(x)∩Sr(x′)

∥∥∥p
`p

+
∥∥∥(x− x′)Sr(x)∆Sr(x′)

∥∥∥p
`p

≥
(
#(Sr(x)∆Sr(x′))

)
(r − η)p,

and therefore we obtain (3.6). Notice now that (3.6) and (3.7) imply
N 3 #(Sr(x)∆Sr(x′)) < 1 and Sr(x)∆Sr(x′) = ∅. 2

Remark 3.5
One additional implication of this latter theorem is that we can give a bound on the
difference of x and x′ restricted to the relevant entries. Indeed, in case of unique
identification of the relevant entries, i.e., Λ := Sr(x) = Sr(x′) we obtain, by the
inequality (3.8), that ∥∥(x− x′)Λ

∥∥
`1
≤ 2γkκpη. (3.9)

Notice that we replaced γ2k by γk ≤ γ2k, because now #Λ ≤ k.

Unfortunately, we are not able to provide the necessity of the gap conditions (3.4), (3.5),
(3.7) for successful support recovery, simply because we lack optimal deterministic error
bounds in general: one way of producing a lower bound would be to construct for each
algorithm a counterexample, for which a certain gap condition is violated and recovery
of support fails. Since most of the algorithms we shall illustrate below are iterative, it
is likely extremely difficult to provide such explicit counterexamples. Therefore, we
limit ourselves here to discuss the discrepancies of r1 and rS and of r1rew and rS . We
shall see in the numerical experiments that the sufficient gap conditions (3.4), (3.5),
(3.7) nevertheless provide actual indications of performance of the algorithms.

The gap between the two thresholds r1, rS is given by

r1 − rS =
(

2
(1 + γk

1− γk
− γ2k

)
κp(N, k)− 1

)
η.

As γ2k < 1 < 1+γk
1−γk and κp(N, k) is very large for N � k and p > 1, this positive gap is

actually very large, for N � 1.
The gap between the two thresholds r1rew, rS is given by

r1rew − rS =
(

9.6
√

1 + δ2k

1− (
√

2 + 1)δ2k

(
1 + κp√

k

)
− (1 + 2γ2kκp)

)
η.

57

Chapter 3 Robust Sparse Recovery in the Presence of Strong Signal Noise

By Lemma 2.9, a matrix Φ having the (2k, δ2k)-RIP has also the (2k, γ2k)-NSP with
γ2k =

√
2δ2k

1−(
√

2+1)δ2k
, which, substituted into the above equation, yields

r1rew − rS =

(
9.6
√

1+δ2k√
k

− 2
√

2δ2k
)
κp +

[
9.6
√

1 + δ2k − (1− (
√

2 + 1)δ2k)
]

1− (
√

2 + 1)δ2k
η.

Since 0 < δ2k <
√

2 − 1, we have 0 < 1 − (
√

2 + 1)δ2k < 1, and therefore the
denominator and the right summand in the numerator are positive. The left summand
of the numerator is positive and very large as soon as k <

(
9.6
√

1+δ2k
2
√

2δ2k

)2
. Thus, even in

the limiting scenario where δ2k ≈
√

2−1, we still have k ≤ 94, which may be considered
sufficient for a wide range of applications. A more sophisticated estimate of the above
term can actually reveal even less restrictive bounds on k. Thus, in general, since k
and δ2k are small, also the left summand is positive. We conclude again that the gap
is large for N � k and p > 1.

Unfortunately, the discrepancies r1− rS � 0 and r1rew− rS � 0 cannot be amended
because in general the `1-minimization decoder ∆1 and the iteratively re-weighted
`1-minimization decoder ∆1rew do not have the property of decoding a vector in the
class Spη,k,r, even if the original vector x belongs to it, i.e., in general the implication

x ∈ Spη,k,r ⇒ {∆1(Φx),∆1rew(Ax)} 3 x∗ ∈ Spη,k,r (3.10)

does not hold for these decoders. These ineliminable limitations of ∆1 and ∆1rew can
be verified, e.g., in Example 3.1, where (3.10) does not hold for the `1-minimizer.

3.1.3 Non-convex Methods for Enhanced Support Identification
Properties

To overcome the shortcomings of methods based exclusively on `1-minimizations in

1. damping the noise-folding, and consequently in

2. having a stable support recovery,

in this section, we present the design and the properties of two decoding procedures,
with output in Spη,k,r, which consequently allow us to have both these very desirable
properties.

3.1.3.1 Properties of the Regularized Selective p-potential Functional (SLP)

Let us first introduce the following functional.

58

3.1 Approach 1: Damping Noise-Folding by Non-Convex Methods

Definition 3.6 (Regularized selective p-potential)
We define the regularized truncated p-power function W p,ε

r : R→ R+
0 by

W p,ε
r (t) =


tp 0 ≤ t < r − ε,
πp(t) r − ε ≤ t ≤ r + ε,
rp t > r + ε,

t ≥ 0,

where 0 < ε < r, and πp(t) is the third degree interpolating polynomial

πp(t) := A(t− s2)3 +B(t− s2)2 + C,

and C = µ3, B = µ1
s2−s1 −

3(µ3−µ2)
(s2−s1)2 , A = µ1

3(s2−s1)2 + 2B
3(s2−s1) , where s1 = (r − ε),

s2 = (r + ε), µ1 = p(r − ε)p−1, µ2 = (r − ε)p, and µ3 = rp. Moreover, we set
W p,ε
r (t) = W p,ε

r (−t) for t < 0. We call the functional SPp,ε
r : RN → R+

0 ,

SPp,ε
r (x) =

N∑
j=1

W p,ε
r (xj), r > 0, 1 ≤ p ≤ 2,

the regularized selective p-potential (SP) functional.

The graphs of W p,0
r and W p,ε

r are shown in Figure 3.2 for p = 2, r = 1, and ε = 0.4, see
[9, 79] for related literature and further details in statistical signal processing.

−2 −1.4 −1 −0.6 0 0.6 1 1.4 2

Truncated Quadratic Potential

W
2,0
1 (t)

W
2,0.4
1 (t)

Figure 3.2: Truncated quadratic potential W 2,0
1 and its regularization W 2,0.4

1 (dashed).

The deep reason, why we defined the potential SPp,ε
r is, that it is “selective”. If a

component is large, it is simply counted, if instead a component is relatively small it is
damped and encoded as noise to be filtered. The reasonable hope is that a solution x∗
of the problem

x∗ := arg min
z∈FΦ(y)

SPp,ε
r (z) (3.11)

is a member of the class Spη,k,r and has therefore enhanced support identification
properties (compare Theorem 3.4). Indeed, we show this statement in the following

59

Chapter 3 Robust Sparse Recovery in the Presence of Strong Signal Noise

Theorem 3.7, by the even weaker condition (3.13), which only requires a vector x∗
whose functional value is less or equal to the functional value of the original signal x.
However, (3.11) will make (3.13) automatically true, whichever x is, but at the same
time (3.11) is a highly nonconvex problem whose solution is in general NP-hard [4].
The way we will circumvent this drawback is to employ an iterative algorithm, which
we call selective least p-powers (SLP), that we present in the remainder of this section.
Theorem 3.7
Let Φ ∈ Rm×N have the (2k, γ2k)-NSP, with γ2k < 1, and 1 ≤ p ≤ 2. Furthermore, we
assume x ∈ Spη,k,r+ε, for ε > 0, 0 < η < r + ε, with the property of having the minimal
#Sr+ε(x) within FΦ(y), where y = Φx is its associated measurement vector, i.e.,

#Sr+ε(x) ≤ #Sr+ε(z) for all z ∈ FΦ(y). (3.12)

If x∗ is such that
SPp,ε

r (x∗) ≤ SPp,ε
r (x), (3.13)

and
|x∗i | < r − ε, (3.14)

for all i ∈ (Sr+ε(x∗))c, then also x∗ ∈ Spη,k,r+ε, implying noise-folding damping. More-
over, we have the support stability property

#(Sr+ε(x)∆Sr+ε(x∗)) ≤
(2γ2kκpη)p

(r + ε− η)p . (3.15)

Proof. Notice that we can equally rewrite the SPp,ε
r functional as SPp,ε

r (z) = rp#Sr+ε(z)+∑
i∈(Sr+ε(z))c

|zi|pε , where |t|pε := W p,ε
r (t) for |t| ≤ r + ε. Here, by construction, we have

|t|pε ≤ |t|p. By the assumptions (3.13) and x ∈ Spη,k,r+ε, we obtain the estimates

rp#Sr+ε(x∗) ≤ SPp,ε
r (x∗) ≤ SPp,ε

r (x) = rp#Sr+ε(x) +
∑

i∈(Sr+ε(x))c
|xi|pε

≤ rp#Sr+ε(x) +
∑

i∈(Sr+ε(x))c
|xi|p ≤ rp#Sr+ε(x) + ηp,

and thus #Sr+ε(x∗) ≤
(η
r

)p + #Sr+ε(x). As η
r < 1 by assumption, the minimality

property (3.12) yields immediately

#Sr+ε(x∗) = #Sr+ε(x) ≤ k. (3.16)

Assumption (3.14) and again (3.13) yield

rp#Sr+ε(x∗) +
∑

i∈(Sr+ε(x∗))c
|x∗i |p = rp#Sr+ε(x∗) +

∑
i∈(Sr+ε(x∗))c

|x∗i |pε

≤ rp#Sr+ε(x) +
∑

i∈(Sr+ε(x))c
|xi|pε ≤ rp#Sr+ε(x) +

∑
i∈(Sr+ε(x))c

|xi|p.

60

3.1 Approach 1: Damping Noise-Folding by Non-Convex Methods

By this latter inequality and (3.16) we obtain∑
i∈(Sr+ε(x∗))c

|x∗i |p ≤
∑

i∈(Sr+ε(x))c
|xi|p ≤ ηp,

which implies x∗ ∈ Spη,k,r+ε. We conclude (3.15) by an application of Theorem 3.4. 2

Remark 3.8
Let us comment the assumptions of the latter result.

(i) The assumption that x is actually the vector with minimal essential support
Sr(x) among the feasible vectors in FΦ(y) corresponds to the request of being
the “simplest” explanation to the data;

(ii) As we already mentioned above, the best candidate x∗ to fulfill condition (3.13)
would be actually a solution of (3.11). In the follow-up paragraph, we present
the selective least p-powers (SLP) algorithm to compute x∗, performing a local
minimization of SPp,ε

r in FΦ(y) around a given starting vector x0, see Algorithm 7.
Ideally, the best choice for x0 would be x itself, so that (3.13) may be fulfilled.
As we do not dispose yet of the original vector x, a heuristic rule, which we
will show to be very robust in our numerical simulations, is to choose the `1-
minimizer x0 = ∆1(y) ≈ x. The reasonable hope is that actually SPp,ε

r (x∗) ≤
SPp,ε

r (∆1(y)) ≈ SPr,ε
r (x). We dedicate the last paragraph in this subsection to

such a particular warm-up step;

(iii) The assumption that the outcome x∗ of the algorithm has additionally the
property |x∗i | < r − ε, for all i ∈ (Sr+ε(x∗))c is justified by observing that in
the actual implementation x∗ will be the result of a thresholding operation, i.e.,
x∗i = Sµp (ξi), for i ∈ (Sr+ε(x∗))c, where Sµp is defined as in [9, Formula 3.36].
The particularly steep shape of the thresholding functions Sµp in the interval
[r − ε, r + ε], especially for p = 2, see [9, Figure 3.3 (c)], makes it highly unlikely
for ε sufficiently small that r − ε ≤ |x∗i | for i ∈ (Sr+ε(x∗))c.

The Algorithm SLP It remains to formulate the algorithm (SLP), by which we are
able to solve the nonconvex and nonsmooth optimization problem (3.11). To this
end, we recall a novel and very robust algorithm for linearly constrained nonconvex
and nonsmooth minimization, introduced and analyzed first in [9]. The algorithm is
particularly suited for our purpose, since it only requires a C1-regular functional. This
distinguishes it from other well-known methods such as SQP and Newton methods,
which require a more restrictive C2-regularity. All notions and results written in this
section are collected more in general in [9] and with a higher level of detail in [7].
Nevertheless we report them directly adapted to our specific case in order to have a

61

Chapter 3 Robust Sparse Recovery in the Presence of Strong Signal Noise

simplified and more immediate application.

The starting values x0 = x(0,0) ∈ RN and q(0,0) ∈ Rm are taken arbitrarily. For a
fixed scaling parameter λ > 0 and an adaptively chosen sequence of integers (L`)`∈N,
we formulate Algorithm 7.

Algorithm 7 SLP
1: while ‖x`−1 − x`‖`2 ≤ TOL do
2: x(`,0) = x`−1 := x(`−1,L`−1)
3: q(`,0) = q`−1 := q(`−1,L`−1)
4: for k = 1, . . . , L` do
5: x(`,k) = arg min

x∈RN

(
SPp,ε

ω,x`−1(x)− 〈q(`,k−1),Φx〉+ λ ‖Φx− y‖2`2
)

6: q(`,k) = q(`,k−1) + 2λ(y − Φx(`,k))
7: end for
8: end while

Obviously, the functional SPp,ε
ω,x`−1 , which appears in the algorithm, has not yet been

defined. In order to understand its definition, we need to introduce the concept of
ν-convexity, which plays a key-role in the minimization process. In fact, the Bregman-
like inner loop of Algorithm 7 requires this property to converge with an a priori rate.

Definition 3.9 (ν-convexity)
A function f : RN → R is ν-convex if there exists a constant ν > 0 such that for all
x, x′ ∈ RN and φ ∈ ∂f(x), ψ ∈ ∂f(x′)

〈φ− ψ, x− x′〉 ≥ ν
∥∥x− x′∥∥2

`2
,

where ∂f is the subdifferential of the function f (see (2.16)).

By this definition, we can introduce

SPp,ε
ω,x′(x) := SPp,ε

r (x) + ω
∥∥x− x′∥∥2

`2
,

where ω is chosen such that the new functional is ν-convex, in order to have the
convergence of the algorithm. The finite adaptively chosen number of inner loop
iterates L` is defined by the condition

(1 + ‖q`−1‖`2)
∥∥∥Φx(`,L`) − y

∥∥∥
`2
≤ 1
`α
,

for a given parameter α > 1, which in our numerical experiments will be set to α = 1.1.
We refer to [9, Section 2.2] for details on the finiteness of L` and for the proof of

62

3.1 Approach 1: Damping Noise-Folding by Non-Convex Methods

convergence of Algorithm 7 to critical points of SPp,ε
r in FΦ(y).

In the formulation of Algorithm 7 we do not yet specify how to minimize the convex
functional

SPp,ε
ω,x`−1(x)− 〈q(`,k−1),Φx〉+ λ ‖Φx− y‖2`2 ,

in the inner loop. For that we can use an iterative thresholding algorithm introduced in
[9, Section 3.7], inspired by the previous work [79] for the corresponding unconstrained
optimization of regularized selective p-potentials. This method ensures the convergence
to a minimizer and is extremely agile to be implemented, as it is based on matrix-
vector multiplications and very simple componentwise nonlinear thresholdings. By the
iterative thresholding algorithm, we actually equivalently minimize the functional

SPp,ε
ω,x′(x, q) = SPp,ε

ω,x′(x) + λ ‖Φx− (y + q)‖2`2 ,

where we set λ = 1
2 only for simplicity. The respective thresholding functions Sµp are

defined in [9, Lemma 3.13], and in [9, Figure 3.3] their typical shape for different choices
of p ∈ {1, 3/2, 2} is shown. Through those thresholding functions, the minimizing
algorithm in the inner loop is given by the componentwise fixed point iteration, for
n ≥ 0, i = 1, . . . , N ,

xn+1
i = Sµp

({1
2

[
(I − 1

2Φ∗Φ) + (1− ω)I
]
xn + 1

2Φ∗(y + q) + ωx′
}
i

)
. (3.17)

We refer to [9, Theorem 3.15] for the convergence properties of this algorithm.

In summary it can be stated that Algorithm 7 can be realized in practice by nesting
three loops. One external loop makes slowly vanishing the quadratic convexification,
the second external loop updates the Lagrange multipliers q(`,k) for a fixed quadratic
convexification, and the final inner loop implements (3.17). Although being an effec-
tive method for the minimization of such C1-regular functions, the efficiency of this
algorithm, which is composed of three nested loops is rather low.

Choosing `1-minimization as a warm up In Remark 3.8 (ii), we mentioned that the
Algorithm SLP finds only a critical point of the functional SPp,ε

r , so the condition
SPp,ε

r (x∗) ≤ SPp,ε
r (x) (3.13) used in the proof of Theorem 3.7 may not be always valid.

In order to enhance the chance of validity of this condition, the choice of an appropriate
starting point is crucial. As we know that the `1-minimization converges to its global
minimizer with at least some guarantees given by Theorem 3.2, we use the result of
this minimization process as a warm up to select the starting point of Algorithm 7. In
the following, we distinguish between SLP which starts at x0 = 0 and `1+SLP which
starts at the `1-minimizer.

63

Chapter 3 Robust Sparse Recovery in the Presence of Strong Signal Noise

0 20 40 60 80 100
−2

−1

0

1

2
ℓ1-minimization (BP)

Noisy Signal Original Signal Decoded Signal

0 20 40 60 80 100
−2

−1

0

1

2
ℓ1+SLP

0 20 40 60 80 100
−2

−1

0

1

2
SLP

0 20 40 60 80 100
−2

−1

0

1

2
IRL1

Figure 3.3: The figure reports the results of four different decoding processes (+) of the same
test problem where the circles (o) represent the original signal and the points (·)
represent the original signal corrupted by the noise.

In Figure 3.3, we illustrate by the results of a single experiment the robustness of
`1+SLP (bottom left subfigure) in comparison to the `1-minimization based methods
and SLP (starting at 0). Here, SLP converged to a feasible critical point, but it is
quite evident that the decoding process failed since the large entry at position 83
(signal) was badly recovered and even the entry at position 89 (noise) is larger. If
we look at the `1-minimization result (top left subfigure), the minimization process
brings us close to the solution, but the results still significantly lack accuracy. By
`1+SLP we obtain a good approximation of the relevant entries of the original signal
and we get a significant correction and an improved recovery. Also IRL1 improves
the result of `1-minimization significantly, but still approximates the large entries
worse than `1+SLP. Although the difference is minor, we observe another important
aspect of IRL1: the noise part is sparsely recovered, while `1+SLP distributes the
noise in a more uniform way in a much smaller stripe around zero. This drawback
of IRL1 can be crucial when it comes to the distinction of the relevant entries from noise.

In order to confirm these observations, we will return to the comparison of `1-SLP,
SLP, and `1-based methods in the scope of massive tests on multiple datasets in

64

3.1 Approach 1: Damping Noise-Folding by Non-Convex Methods

Section 3.3.

3.1.3.2 Properties of Iterative Hard Thresholding (IHT-λ)

As already mentioned above, the numerical realization of the algorithm SLP turns out
to be computationally demanding as soon as the dimension N gets large. Since the
computational time is a crucial point when it comes to practical applications, we show
that the method IHT-λ, which is introduced in Section 2.4.3.2, shows similar support
identification properties as SLP while being very efficient. In Theorem 3.10, we discuss
under which sufficient conditions this method is able to exactly identify Sr(x).
Theorem 3.10
Assume Φ ∈ Rm×N to have the (2k, δ2k)-RIP, with δ2k < 1, ‖Φ‖ ≤ 1, and define
β(Φ) > 0 as in (2.53). Let x ∈ Spη,k,r, for a fixed 1 ≤ p ≤ 2, and y = Φx the respective
measurements. Assume further

r > η

(
1 + 1

1− δ2k

(
1 + 1

β(Φ)

))
, (3.18)

and define λ such that

η <
√
λ <

r − η
1−δ2k

1 + 1
(1−δ2k)β(Φ)

. (3.19)

Let x∗ be the limit of the sequence generated by Algorithm 6 (IHT-λ), and we assume

J0(x∗) ≤ J0(xSr(x)). (3.20)

Then Λ := Sr(x) = supp(x∗), and it holds

|xi − x∗i | < r −
√
λ, for all i ∈ Λ. (3.21)

Proof. Assume # supp(x∗) > #Sr(x) = k. By (3.20), we have that

0 < # supp(x∗)−# supp(xSr(x)) = # supp(x∗)−#Sr(x)

≤ 1
λ

(∥∥∥Φ (xSr(x)
)
− y

∥∥∥2

`2
− ‖Φx∗ − y‖2`2

)
≤ 1
λ

∥∥∥Φ (xSr(x)
)
− y

∥∥∥2

`2

= 1
λ

∥∥∥Φ (x(Sr(x))c
)∥∥∥2

`2
≤ 1
λ
‖Φ‖2

∥∥∥x(Sr(x))c
∥∥∥2

`2
≤ η2

λ
< 1,

where the last inequality follows by (3.19). Since (# supp
(
xSr(x)

)
−# supp(x∗)) ∈ N,

the upper inequality yields to a contradiction. Thus # supp(x∗) ≤ #Sr(x) = k and
therefore x∗ and xSr(x) are both k-sparse, and

(
x∗ − xSr(x)

)
is 2k-sparse. Under the

assumptions of this theorem, we can apply Theorem 2.30 to obtain

‖Φx∗ − y‖`2 ≤
√
λ

β(Φ) .

65

Chapter 3 Robust Sparse Recovery in the Presence of Strong Signal Noise

In addition to this latter estimate, we use the RIP, the sparsity of x∗−xSr(x), and (3.19)
to obtain for all i ∈ {1, . . . , N} that

∣∣∣(xSr(x)
)
i
− x∗i

∣∣∣ ≤ ∥∥∥(xSr(x)
)
− x∗

∥∥∥
`2
≤

∥∥∥Φ(xSr(x) − x∗)
∥∥∥
`2

1− δ2k

≤
‖Φ(x− x∗)‖`2 +

∥∥∥Φ (x(Sr(x))c
)∥∥∥

`2

1− δ2k
≤
‖y − Φx∗‖`2 +

∥∥∥Φ (x(Sr(x))c
)∥∥∥

`2

1− δ2k

≤
√
λ

β(Φ) (1− δ2k)
+ η

1− δ2k
< r −

√
λ.

Assume now that there is ĩ ∈ N such that ĩ ∈ Sr(x) and ĩ /∈ supp(x∗). But then
we would also have |xĩ − x∗

ĩ
| = |xĩ| > r, which leads to a contradiction. Thus,

Sr(x) ⊂ supp(x∗), which together with # supp(x∗) ≤ #Sr(x) conclude the proof. 2

Remark 3.11
Let us discuss some of the assumptions and implications of this latter result.

(i) Since iterative hard thresholding only computes a local minimizer of J0, condi-
tion (3.20) may not be always fulfilled for any given initial iteration x0. Similarly
to the argument in Remark 3.8 (ii), using the `1-minimizer as the starting point
x0, or equivalently choosing the vector x0 as composed of the entries of ∆1(Φx)
exceeding

√
λ in absolute value, we may allow us to approach a local minimizer

which fulfills (3.20).

(ii) Condition (3.18) is comparable to the one derived in (3.7). If Φ is “well-
conditioned”, i.e., we have that (1− δ2k) ∼ 1, and β(Φ) ∼ 1, then

1 + 1
1− δ2k

(
1 + 1

β(Φ)

)
∼ 3.

Note, that in contrast to Theorem 3.7, in the latter theorem, we obtain a result
on stable support identification without the use of Theorem 3.4. Thus, we do not
automatically obtain the estimate (3.9) on the relevant entries, which is a direct
consequence of Theorem 3.4, but only the very poor error estimate (3.21), which is
not satisfactory. However, the main goals of this section also involved an accurate
reconstruction of the relevant entries of the original signal x. In order to overcome
this drawback, we have to meet the assumptions of Theorem 3.4, i.e., the conditions
x∗ ∈ Spη,k,r, and Φx = Φx∗, which are, so far, in general not fulfilled. In order to
obtain a modification x∗∗ of x∗ that satisfies these conditions, an additional correction

66

3.1 Approach 1: Damping Noise-Folding by Non-Convex Methods

is necessary. It is a natural approach to determine the vector x∗∗ as the solution of

min
z∈RN

‖Φz − y‖2`2
s.t. ‖zΛc‖`p ≤ η, (3.22)

|zi| ≥ r, for all i ∈ Λ,

being Λ = Sr(x) = supp(x∗) the support already identified.1 Since the original signal
x fulfills Φx− y = 0, and x ∈ Spη,k,r, it is actually a solution of problem (3.22). Thus,
we conclude that for any minimizer x∗∗ of problem (3.22) the objective function equals
zero, thus Φx = Φx∗∗ and, simultaneously, x∗∗ ∈ Spη,k,r. The optimization (3.22) is
in general nonconvex, but we can easily recast it in an equivalent convex one: Since
|xi − x∗i | < r −

√
λ, and |xi| > r, we know that the relevant entries of x and x∗

have the same sign. Since we are searching for solutions which are close to x, the
second inequality constraint becomes sign(x∗i)zi ≥ r, for all i ∈ Λ. Together with the
equivalence of `2- and `p-norm, we rewrite problem (3.22) as

min
z∈RN

1
2z
∗(Φ∗Φ)z − y∗Φz

s.t. z∗P0z − (N − k)1− 2
p η2 ≤ 0, (3.23)

z∗Pjz − (sign(x∗ij)eij)
∗z + r ≤ 0,

for all ij ∈ Λ , j = 1, . . . ,#Λ,

where P0 ∈ RN×N is defined componentwise by

(P0)r,s :=
{

1 if r = s ∈ Λ,
0 else,

and Pj = 0, j = 1, . . .#Λ. Since Φ∗Φ, P0, and Pj , j = 1, . . . ,#Λ, are semi-definite,
problem (3.23) is a convex quadratically constrained quadratic program (QCQP) which
can be efficiently solved by standard methods, e.g., interior point methods [147]. Since
we combine here three very efficient methods (`1-minimization, IHT-λ, and a QCQP),
the resulting procedure is much faster than the computation of SLP while, as we will
show in Section 3.3, keeping similar support identification properties.

3.1.3.3 Summary: The Selectivity Principle

The decoders based on `1-minimization and iteratively re-weighted `1-minimization
prefer sparse solutions and have the undesirable effect of sparsifying also the noise.

1This decoder is slightly different from (2.24) since not only the information of the already identified
support but also the threshold r is taken into account.

67

Chapter 3 Robust Sparse Recovery in the Presence of Strong Signal Noise

Thus all the noise may concentrate on fewer entries which, by a balancing principle,
may eventually exceed in absolute value the smallest entries of the actual original signal
(compare Example 3.1). This makes it impossible to separate the relevant entries of
the signal from the noise by only knowing the threshold r which bounds the relevant
entries from below. On the contrary, the two methods, presented in this section, follow
a selectivity principle, where the recovery process focuses on the extraction of the
relevant entries, while uniformly distributing the noise elsewhere, allowing for a clear
distinction between those two parts.

3.2 Approach 2: Multi-Penalty Regularization
In order to recover from a data vector y a sparse signal u and a non-sparse noise v
which are measured according to the model (2.21), i.e., y = Φ(x̄+ n), we use in this
section the approach

arg min
x,z

‖Φ(x+ z)− y‖`2 + λp‖x‖p`p + λq‖z‖q`q ,

where the p-(quasi-)norm and q-(quasi-)norm, with p, q ∈ R, 0 < p, q ≤ ∞, are used
in order to promote different statistical characteristics of x and z respectively. In
particular, a choice of p ≤ 1 promotes sparsity in x, and q > 1 an equal distribution of
the entries in z. Thus, a minimizing pair (x∗, z∗) of the above problem is considered as
the reconstruction of the pair (x̄, n). This approach is called multi-penalty regulariza-
tion/optimization. At this point we only use the above imprecise formulation for the
sake of a brief conceptual introduction. The reader is referred to the end of this section
for the identification of a proper mathematical setting. There, we will also change from
the “(x, z)” to a “(u, v)” notation since we change to an infinite dimensional setting.
Although the formulation of such optimization problems is not at all new, as we

shall recall below several known results associated to it, based on the findings in [140],
we elaborate in the following two relevant new contributions to the field:

1. We propose an iterative alternating algorithm to perform the minimization of a
multi-penalty functional by means of simple iterative thresholding steps, whose
analysis required a careful adaptation of several previously published techniques
on single-parameter regularization because of the potential non-convexity of the
functional for 0 < p < 1;

2. We systematically investigated in the employment of high-dimensional data
analysis methods to classify parameters (λp, λq, p, q).

To the best of our knowledge, we are the first to provide an explicit direct mechanism
for the minimization of the multi-penalty functional with non-convex and non-smooth
terms. We also highlight its improved accuracy power with respect to more traditional

68

3.2 Approach 2: Multi-Penalty Regularization

one-parameter regularizations, as we can see in the numerical tests, which are presented
in Section 3.3.

Perhaps as one of the earliest examples of multi-penalty optimization in imaging,
we may refer to the one seminal work of Meyer [134], where the combination of the
Sobolev space of distributions with negative exponent −1 and the space of bounded
variation functions has been used in image reconstruction towards a proper recovery
and separation of texture and cartoon image components; we refer also to the follow
up papers by Vese and Osher [187, 186]. Also in the framework of multi-penalty sparse
regularization, one needs to look at the early work on signal separation by means of
`1-`1 norm minimizations in the seminal papers of Donoho et al. on the incoherency
of Fourier basis and the canonical basis [56, 54]. We mention also the recent work
[55], where the authors consider again `1-`1 penalization with respect to curvelets and
wavelets to achieve separation of curves and point-like features in images. Daubechies
and Teschke built on the works [134, 187, 186] providing a sparsity based formulation
of the simultaneous image decomposition, deblurring, and denoising [46], by using
multi-penalty `1- and weighted-`2-norm minimization. The work by Bredies and Holler
[21] analyses the regularization properties of the total generalized variation functional
for general symmetric tensor fields and provides convergence for multiple parameters
for a special form of the regularization term. In more recent work [111], the infimal
convolution of total variation type functionals for image sequence regularization has
been considered, where an image sequence is defined as a function on a three dimensional
space time domain. The motivation for such kind of functionals is to allow suitably
combined spatial and temporal regularity constraints. We emphasize also the two
recent conceptual papers [139, 76], where the potential of multi-penalty regularization
to outperform single-penalty regularization has been discussed and theoretically proven
in the Hilbert space settings.

It is worthwhile mentioning that in recent years both regularization with non-convex
constraints (see [23, 109, 114, 195, 158] and references therein) and multi-penalty
regularization, e.g., [129, 139], have become the focus of interest in several research
communities. While in most of the literature these two directions are considered sepa-
rately, there have also been some efforts to understand regularization and convergence
behavior for multiple parameters and functionals, especially for image analysis [21,
191].

Although the results in this section are inspired by sparse recovery and the results
in Section 3.1, the range of applicability of the presented approach is not limited
to problems in this field. Image reconstruction, adaptive optics, high-dimensional
learning, and several other problems are fields where we can expect that multi-penalty
regularization can be fruitfully used. We hope the results in this section to be a
useful guideline to those scientists in these fields for a proper use of multi-penalty
regularization, whenever their problem requires the separation of sparse and non-sparse

69

Chapter 3 Robust Sparse Recovery in the Presence of Strong Signal Noise

components.

In order to accord to the greatest extent with the notation and setting in the
respective paper [140], we continue with a proper introduction of the infinite dimensional
generalization of the model (2.21): Let K and H be (separable) Hilbert spaces and
T : K → H be a bounded linear operator, which we do not specify further, yet. We
consider a model problem of the type

y = T (u† + v†), (3.24)

where u† and v† respectively correspond to the signal and the noise component of
x† = u†+v†, which we wish to identify and to separate. Since in general, this unmixing
problem has an infinite number of solutions, we furthermore define the operator

S : K ×K→ H, S

(
u
v

)
:= T (u+ v).

Its kernel is given by

kerS =
{(

u
v

)
∈ K ×K : v = −u+ ξ, ξ ∈ kerT

}
.

If T had closed range then S would have closed range and the operator

S/ ∼: (K ×K)/ kerS → H, S

([(
u
v

)]
∼

)
7→ T (u+ v),

would be boundedly invertible on the new restricted quotient space (K ×K)/ kerS of
the equivalence classes given by(

u
v

)
∼
(
u′

v′

)
if and only if (v − v′) + (u− u′) ∈ kerT.

Still, even in this well-posed setting, each of these equivalence classes is huge, and
very different representatives can be picked as solutions. In order to distinguish a
relevant component u† of the solution from a noise component v†, we assume that u†
can be actually represented as a sparse vector considered as coordinates with respect
to a certain orthogonal basis in K, and v† is supposed to have bounded coefficients up
to a certain noise level η > 0 with respect to the same basis. For the sake of simplicity,
we shall identify below vectors in K with their Fourier coefficients in `2 with respect to
the fixed orthonormal basis.

70

3.2 Approach 2: Multi-Penalty Regularization

Eventually, we want to provide the reader with a brief guide towards the remainder
of the present section. In the Section 3.2.1, a geometrical intuition of the just described
situation is given, and based on this vivid presentation the general form of the multi-
penalty minimization, so concisely described in the introduction of this section, is
derived. Afterwards, it follows in Section 3.2.2 the definition and convergence analysis
of an alternating iterative algorithm for solving the multi-penalty minimization problem.
Section 3.2.3 then concerns an empirical investigation of the clustering of solutions
depending on the parameters and is considered as a generalization of the results in
two-dimensions that are presented in the following section.

3.2.1 Geometrical Intuition from a 2D Example
As a very simple and instructive example of the situation described so far, let us assume
K = H = R2 and T = I being the identity operator. Notice, that by the use of the
exemplary identity operator, we will already observe a diversity of phenomena, which
become very likely even more complicated, as soon as the operator is taken from the
even more general set of compressed sensing operators, like, e.g. randomly sampled
cosine transformation matrices, which map from a high-dimensional signal space to a
measurement space of significantly lower dimension. Under the assumptions on the
structure of the interesting solution y = x† = u† + v†, without loss of generality we
write u† = (u†1, 0) for R = u†1 > 0 and max{|v†1|, |v

†
2|} = η = |y2| > 0. We consider now

the following constrained problem: depending on the choice of R > 0, find u, v ∈ R2

such that

P(R) u ∈ B`p(R), v ∈ B`q(|y2|) subject to u+ v = y,

where q =∞ and 0 < p < 1.
Simple geometrical arguments, as illustrated in Figure 3.4, yield to the existence of

a special radius R∗ = R∗(η, p) > 0 for which only three situations can occur:

• If R < R∗ then problem P(R) has no solutions;

• If R > R∗ then there are infinitely many solutions of P(R) and the larger R is,
the larger is the set of solutions (in measure theoretical sense), including many
possible non-sparse solutions in terms of the u component;

• If R = R∗ there is only one solution for the problem P(R), whose u† components
are actually sparse.

Hence, once the noise level η on the solution is fixed, the parameter R > 0 can be
actually seen as a regularization parameter of the problem, which is smoothly going
from the situation where no solution exists, to the situation where there are many
solutions, going through the well-posed situation where there is actually only one

71

Chapter 3 Robust Sparse Recovery in the Presence of Strong Signal Noise

Figure 3.4: Geometrical interpretation of the problem in 2D.

solution. In order to promote uniqueness, one may also reformulate P(R) in terms of
the following optimization problem, depending on R > 0 and an additional parameter
λq > 0:

Popt(R, λq) arg min
u∈B`p (R),
v∈B`q (|y2|)

‖u‖p`p + λq‖v‖q`q subject to u+ v = y.

(Here and later we make an abuse of notation by assuming the convention that
‖ · ‖q`q = ‖ · ‖`q as soon as q =∞.) The finite dimensional constrained problem P(R)
or its constrained optimization version Popt(R, λq) can be also recast in Lagrangian
form as follows:

P(λp, λq) arg min
u,v

‖u+ v − y‖2`2 + λp‖u‖p`p + λq‖v‖q`q .

Due to the equivalence of the problem P(R) with a problem of the type P(λp, λq)
for suitable λp = λp(R) > 0, λq = λq(R) > 0, we infer the existence of a parameter

72

3.2 Approach 2: Multi-Penalty Regularization

choice (λ∗p, λ∗q) for which P(λ∗p, λ∗q) has actually a unique solution (u†, v†) such that
y = u† + v†. For other choices there might be infinitely many solutions (u, v) for which
‖u + v − y‖2`2 ≥ 0. While the solution in R2 of the problem P(R) follows by simple
geometrical arguments, in higher dimension the form P(λp, λq) may allow us to explore
solutions via a rather simple algorithm based on alternating minimizations: We shall
consider the following iteration, starting from u(0) = 0 = v(0),

u(n+1) = arg min
u

‖u+ v(n) − y‖2`2 + λp‖u‖p`p ,

v(n+1) = arg min
v

‖u(n+1) + v − y‖2`2 + λq‖v‖q`q .

As we shall see in details further below, both these two steps are explicitly solved by the
help of simple thresholding operations, making this algorithm extremely fast and easy
to implement. As we will show in Theorem 3.21 of this article, the algorithm above
converges to a solution of P(λp, λq) in the case of p = 1 and at least to a local minimal
solution in the case of 0 < p < 1. To get an impression about the operating principle
of this alternating algorithm, in the following, we present the results of representative
2D experiments. To this end, we fix y = (0.3, 1.35)T , and consider 0 ≤ p < 2 in order
to promote sparsity in u†, q ≥ 2 in order to obtain a non-sparse v†.

First, consider the case p = 1. Due to the strict convexity of P(λp, λq) for p = 1
and q ≥ 2, the computed minimizer is unique. In Figure 3.5 we visually estimate the
regions of solutions for u† and v†, which we define as

Ru
p,q :=

{
u† | (u†, v†) is the solution of P(λp, λq), for λp, λq > 0

}
,

Rv
p,q :=

{
v† | (u†, v†) is the solution of P(λp, λq), for λp, λq > 0

}
,

by ×- and ∗-markers respectively. Notice that this plot does not contain a visualization
of the information of which u† belongs to which v†. In the three plots for q ∈ {2, 4,∞},
the above sets are discretized by showing the solutions for all possible pairs of λp, λq ∈
{0.1 · i|i = 1, . . . , 20}.

We immediately observe that the algorithm is computing solutions u†, v† in a certain
region which is bounded by a parallelogram. In particular, independently of the choice
of q, the solutions u† are distributed only on the upper and left-hand side of this
parallelogram, while the solutions v† may be also distributed in its interior. Depending
on the choice of q, the respective regions seem to cover the lower right-hand “triangular”
part of the parallelogram, having a straight (q = 2), or concave (q > 2) boundary. In
the case of q =∞, all solutions can be found on the right-hand and lower side of the
parallelogram, which represents the limit of the concave case.

73

Chapter 3 Robust Sparse Recovery in the Presence of Strong Signal Noise

0 0.1 0.2 0.3 0.4
0

0.2

0.4

0.6

0.8

1

1.2

p = 1, q = 2
y

0 0.1 0.2 0.3 0.4
0

0.2

0.4

0.6

0.8

1

1.2

p = 1, q = 4
y

0 0.1 0.2 0.3 0.4
0

0.2

0.4

0.6

0.8

1

1.2

p = 1, q = ∞

y

Figure 3.5: Estimated regions of solution for p = 1 and q ∈ {2, 4,∞}.

To explain the above results, we have to give a detailed look at a single iteration of
the algorithm. As mentioned above, the algorithm is guaranteed to converge to the
global minimizer independently on the starting vector. Therefore, for simplicity and
transparency we choose u(0) = v(0) = 0. The case of p = 1 and q =∞ reveals the most
“structured” results in terms of the region of solutions, namely piecewise linear paths.
Thus, we consider this parameter pair as a reference for the following explanations. In
Figure 3.6 we explicitly show the first three iterations of the algorithm, as well as the
totality of 13 iterations, setting λp = 0.4 and λq = 0.5. To get a better understanding
of what the algorithm is doing, we introduce the notion of solution path, which we
define as the set of minimizers, depending on λp and λq respectively,

Un+1
p :=

{
ū | ū = arg min

u
‖u+ v(n) − y‖2`2 + λp‖u‖p`p , λp > 0

}
,

V n+1
q :=

{
v̄ | v̄ = arg min

v
‖v + u(n+1) − y‖2`2 + λq‖v‖q`q , λq > 0

}
.

As we shall show in Section 3.2.2.1, these sets can be described, explicitly in the case
of p = 1 and q = ∞, by simple thresholding operators u(n+1) = S1

λp
(y − v(n)), and

v(n+1) = S∞λq(y − u
(n+1)), as defined in (3.25), and (3.26) on page 75.

In Figure 3.6 the solution paths Un+1
1 and V n+1

∞ are presented as dashed and dotted
lines respectively. We observe the particular shape of a piecewise linear one-dimensional
path. Naturally, u(n+1) ∈ Un+1

1 and v(n+1) ∈ V n+1
∞ . In our particular setting, we can

observe geometrically, and also verify by the above given thresholding functions, that
u(n) ∈ U1

1 for all n ∈ N. The detailed calculation can be found in the box on page 76.
It implies that also the limit has to be in the same set, and, therefore, the set of limit
points is included in U1

1 , which is represented by a piecewise linear path between 0 and y.

While we have a well-shaped convex problem in the case of p = 1, the situation
becomes more complicated for p < 1 since multiple minimizers may appear and the

74

3.2 Approach 2: Multi-Penalty Regularization
(S1 λ p

(y
−
v

(n
))) i

:=
m

ax
{ 1
−

λ
p

2|
y i
−
v

(n
)

i
|,

0} (y
i
−
v

(n
)

i
),

i
=

1,
2

(3
.2
5)

S∞ λ
q
(y
−
u

(n
+

1)
):

=

                                    (0 0) ,
|y

1
−
u

(n
+

1)
1

|+
|y

2
−
u

(n
+

1)
2

|<
λ
q
/2
,

 sig
n(
y 1
−
u

(n
+

1)
1

)(
|y

1
−
u

(n
+

1)
1

|−
λ
q
/2

)
y 2
−
u

(n
+

1)
2

  ,
|y

2
−
u

(n
+

1)
2

|<
|y

1
−
u

(n
+

1)
1

|−
λ
q
/
2,

 
y 1
−
u

(n
+

1)
1

sig
n(
y 2
−
u

(n
+

1)
2

)(
|y

2
−
u

(n
+

1)
2

|−
λ
q
/
2)

  ,
|y

1
−
u

(n
+

1)
1

|<
|y

2
−
u

(n
+

1)
2

|−
λ
q
/
2,

|y
1
−
u

(n
+

1)
1

|+
|y

2
−
u

(n
+

1)
2

|−
λ
q
/
2

2

 sig
n(
y 1
−
u

(n
+

1)
1

),
sig

n(
y 2
−
u

(n
+

1)
2

)  ,
el
se
.

(3
.2
6)

T
ab

le
3.
1:

Su
b-
ca
se
s
re
la
te
d
to
γ̂
an

d
γ̌
.

ca
se

eq
ui
va
le
nt

fo
rm

ul
at
io
n

y
−
v
n
(b
y
(3
.2
7)
)

A
.1

γ̌
>
y 2
−
λ
q
/
2

+
y 1

|y
1
−
u

(n
)

1
|+
|y

2
−
u

(n
)

2
|<

λ
q
/2

(y 1 y 2

)

A
.2

γ̌
<
y 2
−
λ
q
/
2
−
y 1

|y
1
−
u

(n
)

1
|<
|y

2
−
u

(n
)

2
|−

λ
q
/2

(
0

γ̌
+
λ
q
/2

)

A
.3

el
se

el
se

(
y
1
−
y
2
+
λ
q
/
2+
γ̌

2
(y

2
−
y 1

)+
y
1
−
y
2
+
λ
q
/
2+
γ̌

2

)

B
.1

γ̂
>
y 1
−
λ
q
/
4

|y
1
−
u

(n
)

1
|+
|y

2
−
u

(n
)

2
|<

λ
q
/2

(y 1 y 2

)

B
.2

el
se

el
se

(
γ̂

+
λ
q
/4

(y
2
−
y 1

)+
γ̂

+
λ
q
/
4)

75

Chapter 3 Robust Sparse Recovery in the Presence of Strong Signal Noise

Detailed calculation to verify u(n) ∈ U1
1 for all n ∈ N.

For representative purposes, we will show u(n) ∈ U1
1 , for all n ∈ N. Without loss of

generality, we assume y2 > y1 and prove the above statement by induction. By def-
inition u(1) ∈ U1

1 . It remains to show the induction step u(n) ∈ U1
1 ⇒ u(n+1) ∈ U1

1 .
Then, the repeated application of the induction step yields the statement.

If y − v(n) ∈ U1
1 , then there exists an λ′p such that y − v(n) = S1

λ′p
(y) and by a

simple case-by-case analysis, one verifies u(n+1) = S1
λp

(S1
λ′p

(y)) = S1
λp+λ′p(y) ∈ U1

1 .
Thus, it remains to show y − v(n) ∈ U1

1 .
We know that by definition

y − v(n) = y − S∞λq(y − u
(n)). (3.27)

Since, by induction hypothesis, u(n) ∈ U1
1 , there exists a γ such that u(n) = S1

γ(y).
We choose an equivalent but more practical representation for elements in U1

1 by
employing an additional parameterization: There exist two cases:

(A) u(n) =
(

0
γ̌

)
, for γ̌ ∈ [0, y2 − y1];

(B) u(n) =
(

γ̂
y2 − y1 + γ̂

)
, for γ̂ ∈ [0, y1].

Each of these two cases has to be subdivided into sub-cases related to γ̂ and γ̌. In
Table 3.1, we summarize all sub-cases, an equivalent formulation in terms of the
definition of S∞λq(y − u

(n)), and the result of y − v(n).

It remains to check for each case if the result of y − v(n) is an element of U1
1 .

Obviously in the cases A.1 and B.1, it is true. For the other cases, we check if
the result can be expressed in terms of the above given practical representation
of elements in U1

1 . In case A.2, by definition we have 0 ≤ γ̌ + λq/2 < y2 − y1. In
case A.3, it holds y2 − λq/2− y1 ≤ γ̌ ≤ y2 − λq/2 + y1 and thus obtain by adding
−y2 + λq/2 + y1 and division by 2 that 0 ≤ y1−y2+λq/2+γ̌

2 ≤ y1. In case B.2, we
immediately get γ̂ ≤ y1 − λq/4 that 0 ≤ γ̂ + λq/4 ≤ y1. Thus, we have shown the
statement for all cases.

76

3.2 Approach 2: Multi-Penalty Regularization

0 0.1 0.2 0.3 0.4
0

0.2

0.4

0.6

0.8

1

1.2

y

u
(1)

y − u
(1)

v
(1)

first iteration

0 0.1 0.2 0.3 0.4
0

0.2

0.4

0.6

0.8

1

1.2

y

y − v
(1)

u
(2)

y − u
(2)

v
(2)

second iteration

0 0.1 0.2 0.3 0.4
0

0.2

0.4

0.6

0.8

1

1.2

y

y − v
(2)

u
(3)

y − u
(3)

v
(3)

third iteration

0 0.1 0.2 0.3 0.4
0

0.2

0.4

0.6

0.8

1

1.2

y

u
(1)

v
(1)

u
(2)

v
(2)

u
(3)

v
(3)

all iterations

...

· · ·

Figure 3.6: Behavior of the algorithm for p = 1, q = ∞, λp = 0.4, λq = 0.5. The solution
path for u and v is represented by the dashed and dotted line respectively.

global minimizer has to be determined. In Figure 3.7 again we visually estimate the
regions of solutions (u†, v†) with ×- and ∗-markers respectively. In the three plots
for p = 0.5 and q ∈ {2, 4,∞}, the regions of solutions are discretized by showing the
solutions for all possible pairs of λp, λq ∈ {0.1 · i | i = 1, . . . , 40}. Compared to the
results shown in Figure 3.5, on the one hand, the parallelogram is expanded and on the
other hand, two gaps seem to be present in the solution region of u†. Such behavior is
due to the non-convexity of the problem. As an extreme case, in Figure 3.8 we present
the same experiments only putting p = 0. As one can easily see, the obtained results
confirm the above observations. Note that in this limit case setting, the gaps become
so large, that the solution area of u† is restricted to three vectors only.

Owing to these first simple results, we obtain the following three preliminary obser-
vations:

1. The algorithm promotes a variety of solutions, which form a very particular
structure;

2. With decreasing p, and increasing q, the clustering of the solutions is stronger;

77

Chapter 3 Robust Sparse Recovery in the Presence of Strong Signal Noise

0 0.1 0.2 0.3 0.4
0

0.2

0.4

0.6

0.8

1

1.2

p = 0.5, q = 2
y

0 0.1 0.2 0.3 0.4
0

0.2

0.4

0.6

0.8

1

1.2

p = 0.5, q = 4
y

0 0.1 0.2 0.3 0.4
0

0.2

0.4

0.6

0.8

1

1.2

p = 0.5, q = ∞

y

Figure 3.7: Estimated regions of solution for p = 0.5, and q ∈ {2, 4,∞}.

3. The set of possible solutions is bounded by a compact set and, thus, many possible
solutions can never be obtained for any choice of q > 2, λp > 0, and λq > 0.

Inspired by this simple geometrical example of a 2D unmixing problem, we deal
in this section with several aspects of optimizations of the type P(λp, λq), recasting
the unmixing problem (3.24) into the classical inverse problems framework, where T
may have non-closed range and the observed data is additionally corrupted by noise,
obtained by folding additive noise on the signal through the measurement operator T ,
i.e.,

y = Tu† + ξ,

where ξ = Tv† and ‖v†‖`2 ≤ η, η ∈ (0, 1). Due to non-closedness of R(T), the solution
u† does not depend anymore continuously on the data and can be reconstructed in a
stable way from y only by means of a regularization method [69].

On the basis of these considerations, we assume that the components u and v of the
solution are sequences belonging to suitable spaces `p and `2 = `q ∩ `2 respectively, for
0 ≤ p < 2 and 2 ≤ q <∞. We are interested in the numerical minimization in `p × `2
of the general form of the functionals

Jp,q(u, v) := ‖T (u+ v)− y‖2H + λp‖u‖p`p +
(
λq‖v‖q`q + ε‖v‖2`2

)
, (3.28)

where λp, λq, ε ∈ R+, and p, q may all be considered regularization parameters of the
problem. The parameter ε > 0 ensures the `2−coercivity of Jp,q(u, ·) also with respect
to the component v. We shall also take advantage of this additional term in the proof
of Lemma 3.27.
In the remainder of this section, we

1. propose in Section 3.2.2 an iterative alternating algorithm to perform the min-
imization of Jp,q by simple iterative thresholding steps; due to the potential
non-convexity of the functional for 0 < p < 1 the analysis of this iteration
requires a very careful adaptation of several techniques which are collected in

78

3.2 Approach 2: Multi-Penalty Regularization

0 0.1 0.2 0.3 0.4
0

0.2

0.4

0.6

0.8

1

1.2

p = 0, q = 2
y

0 0.1 0.2 0.3 0.4
0

0.2

0.4

0.6

0.8

1

1.2

p = 0, q = 4
y

0 0.1 0.2 0.3 0.4
0

0.2

0.4

0.6

0.8

1

1.2

p = 0, q = ∞

y

Figure 3.8: Estimated regions of solution for p = 0, and q ∈ {2, 4,∞}.

different previous papers of several authors [19, 23, 47, 74] on a single-parameter
regularization with a sparsity-promoting `p-penalty, 0 ≤ p < 2.

2. explore in Section 3.2.3, thanks to this algorithm, and by high-dimensional data
analysis methods such as Principle Component Analysis (PCA), the geometry of
the computed solutions for different parameters λp, λq and p, q.

In Section 3.3, we eventually compare the effect of the multi-penalty method in terms
of quality of support identification to the effect of the methods which we presented in
Section 3.1. Although the theory is presented here for a more general setting, in that
section we restrict the range of numerical tests to finite dimensional problems.

3.2.2 An Iterative Algorithm for Multi-Penalty Minimization and its
Convergence Properties

We want to minimize Jp,q by the suitable instances of the alternating Algorithm 8.

Algorithm 8 Alternating Iterative Thresholding (AIT) - conceptual formulation

1: pick up initial u(0), v(0)

2: loop
3: u(n+1) ≈ arg min

u
Jp,q(u, v(n))

4: v(n+1) ≈ arg min
v

Jp,q(u(n+1), v)
5: end loop

This formulation is of conceptual nature. That is why we also use the approximation
symbol “≈” because in practice we never perform the exact minimization. Instead
of optimising Jp,q directly, let us introduce auxiliary functionals Jsu, Jsv , called the

79

Chapter 3 Robust Sparse Recovery in the Presence of Strong Signal Noise

surrogate functionals of Jp,q: for some additional parameter a let

Jsu(u, v; a) := Jp,q(u, v) + ‖u− a‖22 − ‖Tu− Ta‖2H, (3.29)
Jsv (u, v; a) := Jp,q(u, v) + ‖v − a‖22 − ‖Tv − Ta‖2H. (3.30)

In the following we assume that ‖T‖ < 1. This condition can always be achieved by
suitable rescaling of T and y. Observe that

‖u− a‖22 − ‖Tu− Ta‖2H ≥ C‖u− a‖22, (3.31)
‖v − a‖22 − ‖Tv − Ta‖2H ≥ C‖v − a‖22, (3.32)

for C = (1− ‖T‖)2. Hence,

Jp,q(u, v) = Jsu(u, v;u) ≤ Jsu(u, v; a), (3.33)
Jp,q(u, v) = Jsv (u, v; v) ≤ Jsv (u, v; a). (3.34)

everywhere, with equality if and only if u = a or v = a. Moreover, the functionals
decouple the variables uλ and vλ so that the above minimization procedure reduces to
component-wise minimization (see Section 3.2.2.1 below).
Alternating minimization, as in Algorithm 8, can be performed by minimizing

the corresponding surrogate functionals (3.29)–(3.30). This leads to the sequential
Algorithm 9.

Algorithm 9 Alternating Iterative Thresholding (AIT)

1: pick up initial u(0), v(0)

2: loop
3: u(n) = u(n,L) = u(n+1,0)

4: for l = 0, . . . , L− 1 do
5: u(n+1,l+1) = arg min

u∈`2(Λ)
Jsu(u, v(n);u(n+1,l))

6: end for
7: v(n) = v(n,M) = v(n+1,0)

8: for l = 0, . . . ,M − 1 do
9: v(n+1,l+1) = arg min

v∈`2(Λ)
Jsv (u(n+1,L), v; v(n+1,l))

10: end for
11: end loop

The main virtue/advantage of Algorithm 9 is the given explicit formulas for com-
putation of the successive v(n) and u(n). The following subsection is dedicated to
the efficient computation of the minimizers of Jsu(u, v; a) and Jsv (u, v; a), by the help
of thresholding functions. Eventually, this allows us to formulate an implementable
version of Algorithm 9 in the end of this subsection.

80

3.2 Approach 2: Multi-Penalty Regularization

3.2.2.1 New Thresholding Operators for an Iterative Algorithm

We first observe a useful property of the surrogate functionals. Expanding the squared
terms on the right-hand side of the expression (3.29), we get

Jsu(u, v; a) = ‖u− T ∗(y − Ta− Tv)− a‖22 + λp‖u‖pp + Φ1

=
∑
i∈Λ

[(ui − [(a− T ∗Ta− T ∗Tv + T ∗y)]i)2 + λp|ui|p + Φ1,

and similarly for the expression (3.30) and 2 ≤ q <∞

Jsv (u, v; a) = ‖v − T ∗(y − Ta− Tv)− a‖22 + λq‖v‖qq + ε‖v‖22 + Φ2

=
∑
i∈Λ

[(vi − [(a− T ∗Ta− T ∗Tu+ T ∗y)]i)2 + λq|vi|q + ε|vi|2] + Φ2,

where the terms Φ1 = Φ1(a, y, v) and Φ2 = Φ2(a, y, u) depend only on a, y, v, and a, y, u
respectively. Due to the cancellation of the terms involving ‖Tu‖22 and ‖Tv‖22, the
variables ui, vi in Jsu and Jsv respectively are decoupled. Therefore, the minimizers of
Jsu(u, v; a), Jsv (u, v; a) for a and v or u fixed respectively, can be computed component-
wise according to

u∗i = arg min
t∈R

[(t− [(a− T ∗Ta− T ∗Tv + T ∗y)]i)2 + λp|t|p], i ∈ Λ, (3.35)

v∗i = arg min
t∈R

[(t− [(a− T ∗Ta− T ∗Tu+ T ∗y)]i)2 + λq|t|q + ε|t|2]. (3.36)

In the case p = 0, p = 0.5, p = 1 and q = 2 one can solve (3.35) and (3.36) explicitly;
the treatment of the case q = ∞ is explained in Remark 3.12; for the general case
0 < p < 2, 2 < q <∞ we derive an implementable and efficient method to compute
u(n), v(n) from previous iterations.

Minimizers of Jsv (u, v; a) for a, u fixed We first discuss the minimization of the
functional Jsv (u, v; a) for a generic a, u. For 2 ≤ q <∞ the summand in Jsv (u, v; a) is
differentiable in vi, and the minimization reduces to solving the variational equation

2(1 + ε)vi + λqq sign(vi)|vi|q−1 = 2[a+ T ∗(y − Tu− Ta)]i.

Setting ṽi := (1 + ε)vi and recalling that | · | is 1-homogenous, we may rewrite the
above equality as

ṽi + λqq

2
sign(ṽi)|ṽi|q−1

(1 + ε)q−1 = [a+ T ∗(y − Tu− Ta)]i.

Since for any choice of λq ≥ 0 and any q > 1, the real function

F qλq ,ε(t) = t+ λqq

2(1 + ε)q−1 sign(t)|t|q−1

81

Chapter 3 Robust Sparse Recovery in the Presence of Strong Signal Noise

is a one-to-one map from R to itself, we thus find that the minimizer of Jsv (u, v; a)
satisfies

v∗i = vi = (1 + ε)−1Sqλq ,ε(ai + [T ∗(y − Tu− Ta)]i), (3.37)

where Sqλq ,ε is defined by

Sqλq ,ε = (F qλq ,ε)
−1 for q ≥ 2.

Remark 3.12
In the particular case q = 2 the explicit form of the thresholding function S2

λq ,ε
can be

easily derived as a proper scaling and we refer the interested reader to [47]. For q =∞
the definition of the thresholding function as

S∞λq ,ε(x) = arg min
v

‖v − x‖22 + λq‖v‖`∞ + ε‖v‖22,

for vectors v, x ∈ RM was determined explicitly using the polar projection method [78].
Since in our numerical experiments we consider finite-dimensional sequences and the
case q =∞, we recall here S∞λq ,ε explicitly for the case ε = 0 (in finite-dimensions the
additional `2-term ε‖v‖22 is not necessary to have `2-coercivity).
Let x ∈ RM and λq > 0. Order the entries of x by magnitude such that |xi1 | ≥
|xi2 | ≥ . . . ≥ |xiM |.

1. If ‖x‖1 < λq/2, then S∞λq ,ε(x) = 0.

2. Suppose ‖x‖1 > λq/2. If |xi2 | < |xi1 | − λq/2, then choose n = 1. Otherwise, let
n ∈ {2, . . . ,M} be the largest index satisfying

|xin | ≥
1

n− 1

(
n−1∑
k=1
|xik | −

λq
2

)
.

Then

(S∞λq ,ε(x))ij =
sign(xij)

n

(
n∑
k=1
|xik | −

λq
2

)
, j = 1, . . . , n

(S∞λq ,ε(x))ij = xij , j = n+ 1, . . . ,M.

These results cannot be in practice extended to the infinite-dimensional case because
one would need to perform the reordering of the infinite-dimensional vector in absolute
values. However, in the case of infinite-dimensional sequences, i.e., x ∈ `2(Λ), which is
our main interest in the theoretical part of the current manuscript, one can still use the
results [78] by employing at the first step an adaptive coarsening approach described
in [40]. This approach allows us to obtain an approximation of an infinite-dimensional
sequence by its N -dimensional counterpart with optimal accuracy order.

82

3.2 Approach 2: Multi-Penalty Regularization

Minimizers of Jsu(u, v; a) for a, v fixed In this subsection, we want to derive an
efficient method to compute u(n). In the special case 1 ≤ p < 2 the iteration u(n) is
given by soft-thresholdings [47] (compare also Section 2.4.3.1 for the case p = 1); for
p = 0 the iteration u(n) is defined by hard-thresholding [19] (Section 2.4.3.2). For the
sake of brevity, we limit our analysis below to the range 0 < p < 1, which requires a
more careful adaptation of the techniques already included in [19, 47]. The cases p = 0
and 1 ≤ p < 2 are actually minor modifications of our analysis and the one of [19, 47]
In order to derive the minimizers of the non-smooth and non-convex functional

Jsu(u, v; a) for generic a, v, we follow the similar approach as proposed in [23], where a
general framework for minimization of non-smooth and non-convex functionals based
on a generalized gradient projection method has been considered.
Proposition 3.13
For 0 < p < 1 the minimizer (3.35) for generic a, v can be computed by

u∗i = Hp
λp

(ai + [T ∗(y − Tv − Ta)]i), i ∈ Λ, (3.38)

where the function Hp
λp

: R→ R obeys:

Hp
λp

(t) =
{

0, |t| ≤ τλp ,
(F pλp)

−1(t), |t| ≥ τλp ,

|Hp
λp

(t)| ∈ {0} ∪ {t ≥ γλp}.

Here, (F pλp)
−1(t) is the inverse of the function F pλp(s) = s+ λpp

2 sign(s)|s|p−1, which is
defined on R+, strictly convex and attains a minimum at sλp > 0, and

γλp = (λp(1− p))1/(2−p), τλp = F pλp(γλp) = 2− p
2− 2p(λp(1− p))1/(2−p).

The thresholding function Hp
λp

is continuous except at |t| = τλp , where it has a jump
discontinuity.

The proof of the proposition follows similar arguments as presented in [23, Lemma
3.10, 3.12] and, thus, for the sake of brevity, it can be omitted here. In Figure 3.9, the
thresholding function Hp

λp
is plotted for selected values of p and λp = 0.1.

Remark 3.14
Since we consider the case p = 0.5 in our numerical experiments, we present here an
explicit formulation of the thresholding function H1/2

λp
, which has been derived recently

in [193, 196]. It is given by

H
1/2
λp

(t) =

0, |t| ≤
3√54
4 (λp)2/3,

(F 1/2
λp

)−1(t), |t| ≥
3√54
4 (λp)2/3,

83

Chapter 3 Robust Sparse Recovery in the Presence of Strong Signal Noise

where (
F

1/2
λp

)−1
(t) = 2

3 t
(

1 + cos
(

2π
3 −

2
3 arccos

(
λp
8

(|t|
3

)−3/2)))
.

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5

−0.4

−0.2

0

0.2

0.4

0.6

Thresholding Functions H p
α

Figure 3.9: The thresholding function Hp
λp

for p = 1, p = 0.3 (dotted), p = 0 (dashed) and
the parameter λp = 0.1.

For solving the low-level minimization problems in Algorithm 9, we can use an
iterative thresholding algorithm induced by (3.37) and (3.38), and thus, reformulate it
as Algorithm 10.

Algorithm 10 Alternating Iterative Thresholding (AIT) — implementable formulation

1: pick up initial u(0), v(0)

2: loop
3: u(n) = u(n,L) = u(n+1,0)

4: for l = 0, . . . , L− 1 do
5: u

(n+1,l+1)
i = Hp

λp
(u(n+1,l)
i + [T ∗(y − Tv(n,M) − Tu(n+1,l))]i)

6: end for
7: v(n) = v(n,M) = v(n+1,0)

8: for l = 0, . . . ,M − 1 do
9: v

(n+1,l+1)
i = (1 + ε)−1Sqλq ,ε(v

(n+1,l)
i + [T ∗(y − Tu(n+1) − Tv(n+1,l))]i)

10: end for
11: end loop

84

3.2 Approach 2: Multi-Penalty Regularization

3.2.2.2 Auxiliary Results: On Fixed Points and Fixed Index Sets

In preparation of the proof of weak and strong convergence of Algorithm 10, which
will be the main result of our theoretical investigations, it is necessary to present some
auxiliary lemmas.

Convergence of the difference of successive iterates The following lemma provides a
tool to prove the weak convergence of the algorithm. It is standard when using surrogate
functionals (see [19, 47]), and concerns general real-valued surrogate functionals. It
holds independently of the specific form of the functional Jp,q, but does rely on the
restriction that ‖T‖ < 1. Since it is more convenient for the proof of the lemma, we
use the formulation of Algorithm 9, instead of the one of Algorithm 10. This strategy
is of no further consequence since both Algorithms are equivalent.

Lemma 3.15
If Jsu(u, v; a) and Jsv (u, v; a) are given as in (3.29) and (3.30), and the sequences
(u(n)) and (v(n)) are generated by Algorithm 9, then the sequences Jp,q(u(n), v(n)),
Jsu(u(n+1), v(n);u(n)) and Jsv (u(n+1), v(n+1); v(n)) are non-increasing as long as ‖T‖ < 1.
Moreover,

‖u(n+1) − u(n)‖2 → 0, ‖v(n+1) − v(n)‖2 → 0,

for n→∞.

Proof. Using (3.33) we have

Jp,q(u(n), v(n)) = Jsu(u(n), v(n);u(n)) = Jsu(u(n,L), v(n,M);u(n+1,0)).

Since at this point the proof is similar for both u and v, for the sake of brevity, we
consider the case of Jsu in detail only. By definition of u(n+1,1), and its property of
being a minimizer in step 5 of Algorithm 9, we have

Jsu(u(n,L), v(n,M);u(n+1,0)) ≥ Jsu(u(n+1,1), v(n,M);u(n+1,0)).

An application of (3.33) gives

Jsu(u(n+1,1), v(n,M);u(n+1,0)) ≥ Jsu(u(n+1,1), v(n,M);u(n+1,1)).

Putting in line these inequalities we get

Jp,q(u(n), v(n)) ≥ Jsu(u(n+1,1), v(n,M);u(n+1,1)).

In particular, from (3.31) we obtain

Jp,q(u(n), v(n))− Jsu(u(n+1,1), v(n,M);u(n+1,1)) ≥ C‖u(n+1,1) − u(n+1,0)‖22.

85

Chapter 3 Robust Sparse Recovery in the Presence of Strong Signal Noise

By successive iterations of this argument we get

Jp,q(u(n), v(n)) ≥ Jsu(u(n+1,1), v(n,M);u(n+1,1)) ≥ Jsu(u(n+1,L), v(n,M);u(n+1,L))
= Jp,q(u(n+1,L), v(n,M)),

(3.39)

and

Jp,q(u(n,L), v(n,M))− Jp,q(u(n+1,L), v(n,M)) ≥ C
L−1∑
l=0
‖u(n+1,l+1) − u(n+1,l)‖22. (3.40)

By definition of v(n+1,1) and its minimal properties

Jsv (u(n+1,L), v(n,M); v(n+1,0)) ≥ Jsv (v(n+1,L), v(n,M); v(n+1,1)).

By similar arguments as above we find

Jp,q(u(n+1,L), v(n,M)) ≥ Jsv (u(n+1,L), v(n+1,M); v(n+1,M))
= Jp,q(u(n+1,L), v(n+1,M)), (3.41)

and

Jp,q(u(n+1,L), v(n,M))−Jp,q(u(n+1,L), v(n+1,M)) ≥ C
M−1∑
l=0
‖v(n+1,l+1)−v(n+1,l)‖22. (3.42)

From the above discussion it follows that Jp,q(u(n), v(n)) ≥ 0 is a non-increasing
sequence, therefore it converges. From (3.40) and (3.42) and the latter convergence we
deduce

L−1∑
l=0
‖u(n+1,l+1) − u(n+1,l)‖22 → 0,

M−1∑
l=0
‖v(n+1,l+1) − v(n+1,l)‖22 → 0.

In particular, by the triangle inequality and the standard inequality (a + b)2 ≤
2(a2 + b2) for a, b > 0, we also have

‖u(n+1,L) − u(n+1,0)‖22 =
∥∥∥∥∥
L−1∑
l=0

(u(n+1,l+1) − u(n+1,l))
∥∥∥∥∥

2

2

≤
(
L−1∑
l=0
‖u(n+1,l+1) − u(n+1,l)‖2

)2

≤ CL
L−1∑
l=0
‖u(n+1,l+1) − u(n+1,l)‖22 → 0.

Here CL is some constant depending on L. Analogously we can show that

‖v(n+1,M) − v(n+1,0)‖22 ≤ CM
M−1∑
l=0
‖v(n+1,m+1) − v(n+1,m)‖22 → 0.

86

3.2 Approach 2: Multi-Penalty Regularization

Therefore, we finally obtain

‖u(n+1,L) − u(n+1,0)‖22 = ‖u(n+1) − u(n)‖22 → 0,
‖v(n+1,M) − v(n+1,0)‖22 = ‖v(n+1) − v(n)‖22 → 0.

2

Specifying the fixed points As Algorithm 10 may have multiple fixed points, it is
important to analyze those in more detail. At first, we specify what we understand as
a fixed point.

Definition 3.16 (The set of fixed points Fix)
Let us define the functions

Fu(ū, v̄) = arg min
u

Jsu(u, v̄; ū), (3.43)

Fv(ū, v̄) = arg min
v

Jsv (ū, v; v̄). (3.44)

Then we say that (u∗, v∗) is a fixed point for the equations (3.43) and (3.44) if{
u∗ = Fu(u∗, v∗),
v∗ = Fv(u∗, v∗).

We define Fix to be the set of fixed points for the equations (3.43) and (3.44).

Lemma 3.17
Let (u∗, v∗) ∈ Fix. Define the sets Γ0 := {i ∈ Λ|u∗i = 0} and Γ1 := {i ∈ Λ| |u∗i | ≥ γλp}.
Then

[T ∗(y − Tv∗ − Tu∗)]i = λpp

2 sign(u∗i)|u∗i |p−1, if i ∈ Γ1,

or
|[T ∗(y − Tv∗ − Tu∗)]i| ≤ τλp , if i ∈ Γ0.

Proof. By Proposition 3.13

u∗i = Hp
λp

(u∗i + [T ∗(y − Tv∗ − Tu∗)]i), ∀i ∈ Λ.

If u∗i = 0, this equality holds if and only if |[T ∗(y − Tv∗ − Tu∗)]i| ≤ τλp . Similarly for
i ∈ Γ1 we get

u∗i = (F pλp)
−1(u∗i + [T ∗(y − Tv∗ − Tu∗)]i),

and by definition of F pλp we have (F pλp)
−1(u∗i + λpp

2 sign(u∗i)|u∗i |p−1) = u∗i . Thus, the
statement of the lemma follows. 2

87

Chapter 3 Robust Sparse Recovery in the Presence of Strong Signal Noise

Fixation of the index set Γ1 To ease notation, we define the operators Hp
λp

: `2(Λ)→
`2(Λ) and Sτ : `2(Λ)→ `2(Λ) by their component-wise action

(Hp
λp

(u))i := Hp
λp

(ui),

(Sτ (v))i := Sqλq ,ε(vi),

here τ = λqq
2(1+ε)q−1 .

At the core of the proof of convergence stands the fixation of the “discontinuity set”
during the iteration (3.38), at which point the non-convex and non-smooth minimization
with respect to u in Algorithm 9 is transformed into a simpler problem.
Lemma 3.18
Consider the iterations

u(n+1,l+1) = Hp
λp

(u(n+1,l) + T ∗(y − Tv(n,M) − Tu(n+1,l)))

and the partition of the index set Λ into

Γn,l1 = {i ∈ Λ| |u(n,l)
i | ≥ γλp},

Γn,l0 = {i ∈ Λ|u(n,l)
i = 0},

where (τλp , γλp) is the position of the jump-discontinuity of the thresholding function.
For sufficiently large n0 ∈ N (after a finite number of iterations), this partition fixes
during the iterations, meaning there exists Γ0 such that for all n ≥ n0, for all l ≤
L, Γn,l0 = Γ0 and Γn,l1 = Γ1 := Λ \ Γ0.

Proof. By discontinuity of the thresholding function Hp
λp
, each sequence component

satisfies

• u(n,l)
i = 0 if i ∈ Γn,l0 ;

• |u(n,l)
i | ≥ γλp if i ∈ Γn,l1 .

Thus, |u(n,l+1)
i − u(n,l)

i | ≥ γλp if i ∈ Γn,l+1
0 ∩ Γn,l1 , or i ∈ Γn,l0 ∩ Γn,l+1

1 . At the same
time, Lemma 3.15 implies that

|u(n,l+1)
i − u(n,l)

i | ≤ ‖u(n,l+1) − u(n,l)‖2 ≤ ε,

for sufficiently large n ≥ n0(ε). In particular, the last inequality implies that Γ0 and Γ1
must be fixed once n ≥ n0(ε). 2

Since (u(n,l)) ∈ `2, the set Γ1 is finite. Moreover, fixation of the index set Γ1 implies
that the sequence (u(n)) can be considered constrained to a subset of `2(Λ) on which
the functionals Jp,q(·, v) and Jsu(·, v; a) are differentiable.

88

3.2 Approach 2: Multi-Penalty Regularization

3.2.2.3 Convergence of the Iterative Algorithm

Through the results of the previous subsection, we are now able to formulate the
two main theoretical results of this section, which concern the weak and strong
convergence of the algorithm. While the weak convergence is sufficient to have also
strong convergence in a finite dimensional setting, for the sake of a closed theoretical
investigation, we also report the proof of strong convergence.

Weak convergence Given that Hp
λp

(u(n)
i) = (F pλp)

−1(u(n)
i), i ∈ Γ1, after a finite

number of iterations, we can use the tools from real analysis to prove that the sequence
(u(n)) converges to some stationary point. Notice that the convergence of the iterations
of the type

u(n+1) = Fu(u(n), v̄), v(n+1) = Fv(ū, v(n)),

to a fixed point (ū∗, v̄∗) for any (ū, v̄) and Fu, Fv given as in (3.43)–(3.44) has been
extensively discussed in the literature, e.g., [19, 23, 47, 78].

Theorem 3.19
Assume 0 < p < 1 and 2 ≤ q <∞. Algorithm 9 produces sequences (u(n)) and (v(n)) in
`2(Λ) whose weak accumulation points are fixed points of the equations (3.43)–(3.44).

Proof. By Lemma 3.18 the iteration step

u
(n+1,l+1)
i = Hp

λp
(u(n+1,l)
i + [T ∗(y − Tv(n,M) − Tu(n+1,l))]i)

becomes equivalent to the step of the form

u
(n+1,l+1)
i = (F pλp)

−1(u(n+1,l)
i + [T ∗(y − Tv(n,M) − Tu(n+1,l))]i), i ∈ Γ1,

after a finite number of iterations and u(n+1,l+1)
i′ = 0, for all i′ ∈ Λ \ Γ1 = Γ0.

From (3.39) and (3.41) we have

Jp,q(u(0), v(0)) ≥ Jp,q(u(n), v(n)) ≥ λp‖u(n)‖pp ≥ λp‖u(n)‖p2,

and
Jp,q(u(0), v(0)) ≥ Jp,q(u(n+1), v(n)) ≥ λq‖v(n)‖qq + ε‖v(n)‖22 ≥ ε‖v(n)‖22.

This means that (u(n)) and (v(n)) are uniformly bounded in `2(Λ), hence there exist
weakly convergent subsequences (u(nj)) and (v(nj)). Let us denote by u∞ and v∞ the
weak limits of the corresponding subsequences. For simplicity, we rename the corre-
sponding subsequences (u(n)) and (v(n)). Moreover, since the sequence Jp,q(u(n), v(n))
is monotonically decreasing and bounded from below by 0, it is also convergent.

89

Chapter 3 Robust Sparse Recovery in the Presence of Strong Signal Noise

First of all, let us recall that the weak convergence implies component wise con-
vergence, so that u(n)

i → u∞i , v(n)
i → v∞i , and [T ∗Tu(n)]i → [T ∗Tu(∞)]i, [T ∗Tv(n)]i →

[T ∗Tv(∞)]i.
By definition of u(n+1,L) and v(n+1,M) in Algorithm 10, we have for n large enough

0 = [−2(u(n+1,L−1) + T ∗(y − Tv(n))− T ∗Tu(n+1,L−1))]i + 2u(n+1,L)
i

+ λpp sign(u(n+1,L)
i)|u(n+1,L)

i |p−1, i ∈ Γ1, (3.45)

0 = [−2(v(n+1,M−1) + T ∗(y − Tu(n+1,L))− T ∗Tv(n+1,M−1))]i + (2 + ε)v(n+1,M)
i

+ λqq sign(v(n+1,M)
i)|v(n+1,M)

i |q−1, i ∈ Λ. (3.46)

By taking now the limit for n→∞ in (3.45) and (3.46), and by using Lemma 3.15 we
obtain

0 = [−2(u∞ + T ∗(y − Tv∞)− T ∗Tu∞)]i + 2u∞i + λpp sign(u∞i)|u∞i |p−1, i ∈ Γ1,

0 = [−2(v∞ + T ∗(y − Tu∞)− T ∗Tv∞)]i + (2 + ε)v∞i + λqq sign(v∞i)|v∞i |q−1, i ∈ Λ.

An application of Lemma 3.17 implies (u∗, v∗) = (u∞, v∞), i.e.,

u∞i = Hp
λp

(u∞i + [T ∗(y − Tv∞ − Tu∞)]i), i ∈ Γ1.

v∞i = (1 + ε)−1Sqλq ,ε(v
∞
i + [T ∗(y − Tv∞ − Tu∞)]i), i ∈ Λ.

The argumentation holds true for every subsequence of (u(n)) and (v(n)). 2

Remark 3.20
The case q = ∞ would need a special treatment due to lack of differentiability. For
simplicity we further assume that 2 ≤ q <∞.

Minimizers of Jp,q In this section we explore the relationship between a limit point
(u∗, v∗) of Algorithm 9 and minimizers of the functional (3.28). We shall show that
under the FBI property (compare Definition 2.10) the set of fixed points of the algorithm
is a subset of the set of local minimizers. We note that here again we provide the proof
only for the case 0 < p < 1, and we refer to [19, 47] for the cases p = 0 and 1 ≤ p < 2,
which follow similarly after minor adaptations.

Theorem 3.21
Let T have the FBI property. Let us denote L the set of local minimizers of Jp,q. Then
we have the following inclusion

Fix ⊂ L,

where Fix is the set of fixed points for equations (3.43)–(3.44).

90

3.2 Approach 2: Multi-Penalty Regularization

In order to present a proof of Theorem 3.21, we need to provide two additional
propositions. In the first, show that the choice of a sufficiently small p ∈ (0, 1)
guarantees that an accumulation point (u∗, v∗) is a local minimizer of the functional
with respect to u, where we use the FBI property as a main ingredient. The second
proposition makes the respective statement for the component v, but without any
additional condition.
Proposition 3.22
Let T satisfy the FBI property. Then there exists p∗ ∈ (0, 1) such that for every
0 < p < p∗ every accumulation point (u∗, v∗) is a local minimizer of the functional Jp,q
with respect to u, i.e.,

Jp,q(u∗ + du, v∗) ≥ Jp,q(u∗, v∗)

for any du ∈ `2(Λ), ‖du‖2 ≤ ε1 for ε1 sufficiently small.

Proof. In the following, we denote by JΓ1
p,q the restriction of the functional Jp,q to

`2(Γ1), i.e.,

JΓ1
p,q(u, v) := ‖T (u+ v)− y‖2H + λp

∑
i∈Γ1

|ui|p +
(
λq‖v‖qq + ε‖v‖22

)
,

and by Jsu,Γ1
, Jsv,Γ1

the corresponding surrogate functionals restricted to `2(Γ1).
For the sake of simplicity, let us define

F (u) = Jp,q(u, v), FΓ1(u) = JΓ1
p,q(u, v).

We proceed with the proof of the lemma in two steps:

• We show that an accumulation point (u∗, v∗) is a local minimizer of FΓ1(u);

• We show that (u∗, v∗) is a local minimizer of F (u).

Let us for now consider the u(n)
i for i ∈ Γ1, i.e., |u(n)

i | ≥ γλp . Since u∗ is an
accumulation point for (u(n)), by Theorem 3.19 it is also a fixed point. Taking into
account the restriction to the set Γ1, by Lemma 3.17 we get

[T ∗(Tv∗ + Tu∗ − y)]i + λpp

2 sign(u∗i)|u∗i |p−1 = 0.

As the functional FΓ1(u) is differentiable on `2(Γ1), we compute the Jacobian

∇FΓ1(u) = 2T ∗(Tv + Tu− y) + λppu|u|p−2,

for which holds ∇FΓ1(u∗) = 0, v = v∗. Since the mapping is smooth for all ui 6= 0, one
can check additionally that the Hessian matrix

∇2FΓ1(u∗) = 2T ∗T − λpp(1− p) diag(|u∗|p−2),

91

Chapter 3 Robust Sparse Recovery in the Presence of Strong Signal Noise

is actually positive definite for p < p∗: For z with supp z ⊂ suppu∗ we have the
following estimate

〈z,∇2FΓ1(u∗)z〉 = 2‖Tz‖2H − λpp(1− p)
∑
i∈Γ1

|u∗i |p−2z2
i

≥ (c− λpp(1− p)γp−2
λp

)‖z‖22 = (c− p)‖z‖22,

where c > 0 is the the smallest eigenvalue of T ∗T . Therefore, for all p ∈ (0, p∗),
p∗ = min{1, c}, the Hessian is positive definite and thus u∗ is a local minimizer of FΓ1 .
Next we show that u∗ is a local minimizer of the functional F (u) without the

restriction on the support of u∗. For the sake of transparency, we shall write the
restrictions uΓ1 , u

∗
Γ1

and duΓ1 meaning that uΓ1 , u
∗
Γ1
, duΓ1 ∈ `2(Γ1), and duΓ0 meaning

that duΓ0 ∈ `2(Γ0).
The desired statement of the proposition follows if we can show that FΓ1(u∗Γ1

+duΓ1) ≤
F (u∗ + du). At this point it is convenient to write the functional F (u∗ + du) with
ȳ := y − Tv∗ as

F (u∗ + du) = ‖TΓ1(u∗Γ1 + duΓ1) + TΓ0duΓ0 − ȳ‖2H
+ λp‖uΓ1‖pp + λp‖duΓ1‖pp + λp‖duΓ0‖pp + λq‖v‖qq + ε‖v‖22.

Moreover, the inequality FΓ1(u∗Γ1
+ duΓ1) ≤ F (u∗ + du) can be written as

−λp‖duΓ0‖pp ≤ ‖TΓ1(u∗Γ1 + duΓ1) + TΓ0duΓ0 − ȳ‖2H − ‖TΓ1(u∗Γ1 + duΓ1)− ȳ‖2H.

By developing the squares, we obtain

−λp‖duΓ0‖pp ≤ 2〈TΓ1(u∗Γ1 + duΓ1)− ȳ, TΓ0duΓ0〉+ ‖TΓ0duΓ0‖2H
= 2(〈TΓ1(u∗Γ1 + duΓ1), TΓ0duΓ0〉 − 〈TΓ0duΓ0 , ȳ〉) + ‖TΓ0duΓ0‖2H,

for ‖duΓ0‖2 sufficiently small. One concludes by observing that for p < 1 the term
‖duΓ0‖pp will always dominate the linear terms on the right-hand side of the above
inequality. 2

Proposition 3.23
Every accumulation point (u∗, v∗) is a local minimizer of the functional Jp,q with respect
to v, i.e.,

Jp,q(u∗, v∗ + dv) ≥ Jp,q(u∗, v∗)

for any dv ∈ `2(Λ), ‖dv‖2 ≤ ε2 for ε2 > 0 sufficiently small.

92

3.2 Approach 2: Multi-Penalty Regularization

Proof. First of all, we claim that Jsv (u∗, v∗ + dv; v∗)− Jsv (u∗, v∗; v∗) ≥ ‖dv‖22. Indeed,
a direct calculation shows that

Jsv (u∗, v∗ + dv; v∗)− Jsv (u∗, v∗; v∗)
=‖T (u∗ + v∗ + dv)− y‖2H + λq‖v∗ + dv‖qq + ε‖v∗ + dv‖22

+ ‖dv‖22 − ‖Tdv‖2H − ‖T (u∗ + v∗)− y‖2H − λq‖v∗‖qq − ε‖v∗‖22
=‖dv‖22 + λq

∑
i∈Λ

(|v∗i + dvi|q − |v∗i |q) + ε
∑
i∈Λ

(|v∗i + dvi|2 − |v∗i |2)

+
∑
i∈Λ

dvi[T ∗(T (u∗ + v∗)− y)]i

≥(1 + ε)‖dv‖22 +
∑
i∈Λ

dvi([T ∗(T (u∗ + v∗)− y)]i + λqq sign(v∗i)|v∗i |q−1 + 2εv∗i).

Since by (3.36) the term

〈[T ∗(T (u∗ + v∗)− y)]i + λqq sign(v∗i)|v∗i |q−1 + 2εv∗i , ti − v∗i 〉

vanishes, the above claim follows. By using the above claim, we get that

Jp,q(u∗, v∗ + dv) = Jsv (u∗, v∗ + dv; v∗)− ‖dv‖22 + ‖Tdv‖2H
≥ Jsv (u∗, v∗ + dv; v∗)− ‖dv∗‖22
≥ Jsv (u∗, v∗; v∗) = Jp,q(u∗, v∗). 2

With the obtained results we are now able to prove Theorem 3.21. In particular,
we shall show that Jp,q(u∗, v∗) ≤ Jp,q(u∗, v∗ + dv) ≤ Jp,q(u∗ + du, v∗ + dv). The first
inequality has been proven in Proposition 3.23. We only need to show the second
inequality.

Proof (Proof of Theorem 3.21). Similarly as in Proposition 3.22 we proceed in
two steps. First we prove that JΓ1

p,q(u∗, v∗ + dv) ≤ JΓ1
p,q(u∗ + du, v∗ + dv). Since the

functional JΓ1
p,q is differentiable, a Taylor expansion at (u∗, v∗ + dv) yields

JΓ1
p,q(u∗+du, v∗+dv) = JΓ1

p,q(u∗, v∗+dv)+∇JΓ1
p,q(u∗, v∗+dv)du+1

2du∇
2JΓ1
p,q(u∗, v∗+dv)du.

Due to Proposition 3.22, ∇FΓ1(u∗) = ∇JΓ1
p,q(u∗, v∗) = 0 and the term ∇JΓ1

p,q(u∗, v∗ +
dv) = 2T ∗Tdv ≈ 0. Thus,

−2‖T‖2‖dv‖2‖du‖2 ≤ ∇JΓ1
p,q(u∗, v∗ + dv)du = 2〈Tdv, Tdu〉 ≤ 2‖T‖2‖dv‖2‖du‖2.

Moreover,
∇2JΓ1

p,q(u∗, v∗ + dv) = ∇2JΓ1
p,q(u∗, v∗) + ξ(‖dv‖22),

93

Chapter 3 Robust Sparse Recovery in the Presence of Strong Signal Noise

where ∇2JΓ1
p,q(u∗, v∗) ≥ 0 due to the local convexity of the functional JΓ1

p,q. Choosing
η ≤ c−p

2‖T‖2 and ‖dv‖2 = η‖du‖2, and combining the above estimates together, we get

∇JΓ1
p,q(u∗, v∗ + dv)du+ 1

2du∇
2JΓ1
p,q(u∗, v∗ + dv)du

≥− 2‖T‖2‖dv‖2‖du‖2 + (c− p)‖du‖22 ≥ [(c− p)− 2η‖T‖2]‖du‖22 ≥ 0,

and thus, JΓ1
p,q(u∗ + du, v∗ + dv) ≥ JΓ1

p,q(u∗, v∗ + dv). The second part of the proof is
concerned with the inequality Jp,q(u∗ + du, v∗ + dv) ≥ Jp,q(u∗, v∗ + dv), which works
in a completely analogous way to the second part of the proof of Proposition 3.22 and
is therefore omitted here. 2

Strong convergence In this subsection we show how the previously established weak
convergence can be strengthened into norm convergence, also by a series of lemmas.
Since the distinction between weak and strong convergence makes sense only when
the index set Λ is infinite, we shall prove the strong convergence only for the sequence
v(n) since the iterates u(n) are constrained to the finite set after a finite number of
iterations.
For the sake of convenience, we introduce the following notation.

µn+1 = v(n+1) − v∗, µn+1/2 = v(n+1,M−1) − v∗,
ηn+1 = u(n+1) − u∗, h = v∗ + T ∗(y − Tu∗ − Tv∗),

where v∗ = w-limn→∞ v
(n) and u∗ = limn→∞ u

(n). Here and below, we use w-lim as a
shorthand for weak limit. For the proof of strong convergence we need the following
technical lemmas, which are based on the investigations in [47, 78].
Lemma 3.24
The operator Sτ (v) is non-expansive, i.e., ‖Sτ (u)− Sτ (v)‖2 ≤ ‖u− v‖2.
Lemma 3.25
Assume ‖µn+1/2‖2 > γ for all n and for a fixed γ > 0. Then ‖Tµn+1/2‖2H → 0 as
n→∞.

Proof. Since

µn+1 − µn+1/2 = (1 + ε)−1[Sτ (h+ (I − T ∗T)µn+1/2 − T ∗Tηn+1)− Sτ (h)]− µn+1/2,

and ∥∥∥µn+1 − µn+1/2
∥∥∥

2
=
∥∥∥v(n+1,M) − v(n+1,M−1)

∥∥∥
2
→ 0,

by Lemma 3.15, we get that∥∥∥(1 + ε)−1[Sτ (h+ (I − T ∗T)µn+1/2 − T ∗Tηn+1)− Sτ (h)]− µn+1/2
∥∥∥ (3.47)

≥
∣∣∣(1 + ε)−1

∥∥∥Sτ (h+ (I − T ∗T)µn+1/2 − T ∗Tηn+1)− Sτ (h)
∥∥∥− ∥∥∥µn+1/2

∥∥∥∣∣∣→ 0.

94

3.2 Approach 2: Multi-Penalty Regularization

By non-expansiveness of Sτ , we have the estimate∥∥∥Sτ (h+ (I − T ∗T)µn+1/2 − T ∗Tηn+1)− Sτ (h)
∥∥∥

2
≤
∥∥∥(I − T ∗T)µn+1/2 − T ∗Tηn+1

∥∥∥
2
.

Consider now

‖(I − T ∗T)µn+1/2 − T ∗Tηn+1‖22
≤‖(I − T ∗T)µn+1/2‖22 + ‖T ∗Tηn+1‖22 − 2〈(I − T ∗T)µn+1/2, T ∗Tηn+1〉
≤‖(I − T ∗T)µn+1/2‖22 + ‖T ∗Tηn+1‖2 + 2‖(I − T ∗T)µn+1/2‖2‖T ∗Tηn+1‖2
≤‖(I − T ∗T)µn+1/2‖22 + δ + 2Cδ
≤‖µn+1/2‖22 + ε, (3.48)

for large enough n so that ‖u(n+1,L) − u∗‖2 ≤ δ. The constant C > 0 is due to the
boundedness of ‖µn+1/2‖. Due to estimate (3.48), we have

‖Sτ (h+ (I − T ∗T)µn+1/2 − T ∗Tηn+1)− Sτ (h)‖2

≤‖(I − T ∗T)µn+1/2 − T ∗Tηn+1‖2 ≤
√
‖µ(n+1/2)‖2 + ε ≤ ‖µ(n+1/2)‖2 + ε̄.

By assumption of the lemma there exists a subsequence (µ(nk+1/2)) such that
‖µ(nk+1/2)‖2 ≥ γ for all k. For simplicity, we rename such subsequence as (µ(n+1/2))
again. Then

(1 + ε)−1‖Sτ (h+ (I −T ∗T)µn+1/2−T ∗Tηn+1)−Sτ (h)‖2 ≤
1

1 + ε
‖µ(n+1/2)‖2 + 1

1 + ε
ε̄.

For ε̄ ≤ εγ we obtain

(1 + ε)−1‖Sτ (h+ (I − T ∗T)µn+1/2 − T ∗Tηn+1)− Sτ (h)‖2

≤ 1
1 + ε

‖µ(n+1/2)‖2 + 1
1 + ε

(1 + ε− 1)γ

≤ 1
1 + ε

‖µ(n+1/2)‖2 +
(

1− 1
1 + ε

)
‖µ(n+1/2)‖2

≤‖µ(n+1/2)‖2.

Combining the above inequalities, we get

‖µ(n+1/2)‖22 − ‖(I − T ∗T)µn+1/2 − T ∗Tηn+1‖22
≤‖µ(n+1/2)‖22 − (1 + ε)−1‖Sτ (h+ (I − T ∗T)µn+1/2 − T ∗Tηn+1)− Sτ (h)‖22.

This implies from (3.47) that

lim
n→∞

[‖µ(n+1/2)‖22 − ‖(I − T ∗T)µn+1/2 − T ∗Tηn+1‖22] = 0.

95

Chapter 3 Robust Sparse Recovery in the Presence of Strong Signal Noise

Using (3.48) we get

‖µ(n+1/2)‖22 − ‖(I − T ∗T)µn+1/2 − T ∗Tηn+1‖22
≥‖µ(n+1/2)‖22 − ‖(I − T ∗T)µn+1/2‖22 − ε
=2‖Tµn+1/2‖2H − ‖T ∗Tµn+1/2‖22 − ε ≥ ‖Tµn+1/2‖2H − ε.

This yields ‖Tµn+1/2‖2H → 0 for n→∞. 2

Lemma 3.26
For h = v∗ + T ∗(y − Tu∗ − Tv∗),

‖(1 + ε)−1[Sτ (h+ µn+1/2)− Sτ (h)]− µn+1/2‖2 → 0.

Proof.

‖(1 + ε)−1[Sτ (h+ µn+1/2)− Sτ (h)]− µn+1/2‖2
≤‖(1 + ε)−1Sτ (h+ µn+1/2 − T ∗Tµn+1/2 − T ∗Tηn+1)− (1 + ε)−1Sτ (h)− µn+1/2‖2
+‖(1 + ε)−1[Sτ (h+ µn+1/2)− Sτ (h+ µn+1/2 − T ∗Tµn+1/2 − T ∗Tηn+1)]‖2
≤‖(1 + ε)−1[Sτ (h+ (I − T ∗T)µn+1/2 − T ∗Tηn+1 − Sτ (h)]− µn+1/2‖2
+(1 + ε)−1‖T ∗T (µn+1/2 + ηn+1)‖2,

where we used the non-expansivity of the operator. The result follows since both terms
in the last bound tend to 0 for n→∞ because of the previous lemma and Theorem
3.19. 2

Lemma 3.27
If for some a ∈ `2(Λ) and some sequence (v(n)), w-limn→∞ v

(n) = 0 and limn→∞ ‖(1 +
ε)−1[Sτ (a+ v(n))− Sτ (a)]− v(n)‖2 = 0, then ‖v(n)‖2 = 0 for n→∞.

Proof. In the proof of the lemma we mainly follow the arguments in [47]. Since the
sequence (v(n)) is weakly convergent, it has to be bounded: there is a constant K such
that for all n, ‖v(n)‖2 ≤ K. Reasoning component-wise we can write |v(n)

i | < K for all
i ∈ Λ.
Let us define the set Γ0 = {i ∈ Λ| |ai| ≥ K} and since a ∈ `2(Λ), this is a finite set.

We then have ∀i ∈ Γ1 = Γ \ Γ0, that |ai| and |ai + v
(n)
i | are bounded above by 2K.

Recalling the definition of Sqλq ,ε = (F qλq ,ε)
−1, we observe that for q ≥ 1 and |t| ≤ 2K,

(F qλq ,ε)
′(t) = 1 + λqq(q − 1)

2(1 + ε)q−1 |t|
q−2 ≥ 1,

96

3.2 Approach 2: Multi-Penalty Regularization

and therefore

|(1 + ε)−1[Sqλq ,ε(ai + v
(n)
i)− Sqλq ,ε(ai)]| ≤ (1 + ε)−1(max

t
|(Sqλq ,ε)

′(t)|)|v(n)
i |

≤(1 + ε)−1(min
t
|(F qλq ,ε)

′(t)|)−1|v(n)
i | ≤ (1 + ε)−1|v(n)

i |.

In the first inequality, we have used the mean value theorem and in the second inequality
we have used the lower bound for (F qλq ,ε)

′ to upper bound the derivative (Sqλq ,ε)
′ since

Sqλq ,ε = (F qλq ,ε)
−1. By subtracting |v(n)

i | from the upper inequality and rewriting(
1− (1 + ε)−1) = C ′ ≤ 1, we have for all i ∈ Γ1, that

C ′|v(n)
i | ≤ |v

(n)
i | − (1 + ε)−1|Sqλq ,ε(ai + v

(n)
i)− Sqλq ,ε(ai)|

≤ |v(n)
i − (1 + ε)−1[Sqλq ,ε(ai + v

(n)
i)− Sqλq ,ε(ai)]|,

by the triangle inequality which implies

∑
i∈Γ1

|vni |2 ≤
(1
C ′

)2 ∑
i∈Γ1

|vni − (1 + ε)−1[Sqλq ,ε(ai + v
(n)
i)− Sqλq ,ε(ai)]| → 0, n→∞.

On the other hand, since Γ0 is a finite set, and (v(n)) tends to 0 weakly as n tends
to ∞, we also obtain ∑

i∈Λ
|v(n)
i |

2 → 0 as n→∞.
2

Theorem 3.28
Algorithm 9 produces sequences (u(n)) and (v(n)) in `2(Λ) that converge strongly to the
vectors u∗, v∗ respectively. In particular, the sets of strong accumulation points are
non-empty.

Proof. Let u∗ and v∗ be weak accumulation points and let (u(nj)) and (v(nj)) be
subsequences weakly convergent to u∗ and v∗ respectively. Let us denote the latter
subsequences (u(n)) and (v(n)) again.
If µn+1/2 is such that ‖µn+1/2‖2 → 0, then the statement of the theorem follows

from Lemma 3.15. If, instead, there exists a subsequence, denoted by the same
index, that ‖µn+1/2‖2 ≥ γ, then by Lemma 3.26 we get that ‖Tµn+1/2‖H → 0.
Subsequently applying Lemma 3.26 and Lemma 3.27, we get ‖µn+1/2‖2 = 0, which
yields a contradiction to the assumption. Thus, by Lemma 3.15 we have that (v(n))
converges to v∗ strongly. The strong convergence of (u(n)) is already guaranteed by
Theorem 3.19. 2

97

Chapter 3 Robust Sparse Recovery in the Presence of Strong Signal Noise

3.2.3 Empirical Investigation on the Clustering of Solutions
In this section, we continue the discussion, started in Section 3.2.1 for a 2D example,
on the geometry of the solution sets for fixed p, q and regularization parameters chosen
from the prescribed grids. We extend our preliminary geometrical observations on
the sets of computed solutions to the high-dimensional case by means of Principal
Component Analysis.

We do not present numerical results regarding the quality of the recovered results
here, in particular with respect to support identification properties, but return to such
an investigation within a much broader context in Section 3.3. In that section, we
compare the results for multi-penalty regularization with 0 ≤ p ≤ 1, 2 ≤ q ≤ ∞ and the
corresponding one-penalty regularization scheme. Those results have been motivated
by encouraging outcomes obtained in [76, 139] for the Hilbert space setting, where the
authors have shown the superiority and robustness of the multi-penalty regularization
scheme compared to the “classical” one-parameter regularization methods. In addition
to this we compare the multi-penalty regularization with respect to the methods
(`1+)SLP and (`1+)IHT, which have been introduced in Section 3.1.3.

3.2.3.1 Problem Formulation and Experiment Data Set

We consider the model problem of the type (3.24), where T ∈ Rm×N is an i.i.d. Gaussian
matrix, u† is a sparse vector and v† is a noise vector. The choice of T corresponds to
compressed sensing measurements [84]. In the experiments we consider 20 problems
of this type with u† randomly generated with values on [−3, 3] and # supp(u†) = 7,
and v† is a random vector whose components are uniformly distributed on [−1, 1], and
normalised such that ‖v†‖2 = 0.7, corresponding to a signal to noise ratio of ca. 10 %.
In our numerical experiments, we are keeping such a noise level fixed.
In order to create an experimental data set, we were considering for each of the

problems the minimization of the functional (3.28) for p ∈ {0, 0.3, 0.5, 0.8, 1} and
q ∈ {2, 4, 10,∞}. The regularization parameters λp and λq were chosen from the grid
Qκλp0

×Qκλq0
, where Qκλp0

:= {λp = λpi = λp0κ
i |λp0 = 0.0009, κ = 1.25, i = 0, . . . , 30},

and Qκλq0
:= {λq = λqi = λq0κ

i |λq0 = 0.0005, κ = 1.25, i = 0, . . . , 30}. For all possible
combinations of p and q and (λp, λq) we run Algorithm 10 with number L = M = 20 of
inner loop iterations and starting values u(0) = v(0) = 0. Furthermore, we set ε = 0 since
the additional term ε‖v‖22 is necessary for coercivity only in the infinite-dimensional
setting. Due to the fact that the thresholding functions for p ∈ {0.3, 0.8} are not given
explicitly, we, at first, precomputed them on a grid of points in [0, 5] and interpolated
in between, taking also into consideration the jump discontinuity. Respectively, we did
the same precomputations for q ∈ {4, 10} on a grid of points in [0, 1].

98

3.2 Approach 2: Multi-Penalty Regularization

3.2.3.2 Clustering of Solutions

As we have seen in Section 3.2.1, the 2D experiments revealed certain regions of com-
puted solutions for u† and v† with very particular shapes, depending on the parameters
p and q. We question if similar clustering of the solutions can also be found for problems
in high dimension. To this end, the challenge is the proper geometrical representation of
the computed high dimensional solutions, which can preserve the geometrical structure
in terms of mutual distances. We consider the set of the computed solutions for fixed
p and q in the grid Qkλp0

×Qkλq0
as point clouds which we investigate independently

with respect to the components u† and v† respectively. As the solutions are depending
on the two scalar parameters (λp, λq), it is legitimate to assume that they form a 2-
dimensional manifold embedded in the higher-dimensional space. Therefore, we expect
to be able to visualize the point clouds and analyze their clustering by employing
suitable dimensionality reduction techniques. A broad and nearly complete overview
although not extended in its details on existing dimensionality reduction techniques as
well as a MATLAB toolbox is provided in [125, 183, 182].

For our purposes, we have chosen the Principal Component Analysis (PCA) technique
because we want to verify that calculated minimizers u∗ and v∗ form clusters around
the original solutions. In the rest of the subsection, we only consider one fixed problem
from the previously generated data set. In the following figures, we report the estimated
regions of the solutions u∗ and v∗, as well as the corresponding regularization parameters
chosen from the grids Qkλp0

×Qkλq0
. We only present feasible solutions, i.e., the ones

that satisfy the discrepancy condition

supp(u∗) ≤ # supp(u†), and ‖T (u∗ + v∗)− y‖2 < 0.1. (3.49)

In Figure 3.10 we consider the cases p = 0.5 and q ∈ {2, 4}, and in Figure 3.11 the
corresponding results for p = 0.3 and q ∈ {2, 4} are displayed.

First of all, we observe that the set of solutions u∗ forms certain structures, visible
here as one-dimensional manifolds, as we also observed in the 2D experiments of
the introduction. Likewise, the set of solutions v∗ are more unstructured, but still
clustered. The effect of modifying q from 2 to 4 increases the number of feasible
solutions according to (3.49). Concerning the parameter p, by modifying it from 0.5
to 0.3, the range of λp’s which provide feasible solutions is growing. Since it is still
hard from this geometrical analysis on a single problem to extract any qualitative
information concerning the accuracy of the reconstruction, we defer the discussion on
multiple problems to Section 3.3.

99

Chapter 3 Robust Sparse Recovery in the Presence of Strong Signal Noise

−0.4 −0.2 0 0.2

−0.05

0

0.05

scatterplot u
∗, p = 0.5, q = 2

−1 −0.5 0 0.5 1 1.5

−0.2

0

0.2

0.4

0.6

scatterplot v
∗, p = 0.5, q = 2

0 0.1 0.2 0.3
0

0.1

0.2

0.3

0.4

scatterplot λp and λq, p = 0.5, q = 2

λp

λ
q

−3 −2 −1 0 1 2

x 10
−4

−2

0

2

4
x 10

−4 scatterplot u
∗, p = 0.5, q = 4

−0.2 −0.1 0 0.1

−0.2

−0.1

0

0.1

v̄

scatterplot v
∗, p = 0.5, q = 4

0 0.05 0.1 0.15 0.2
0

0.1

0.2

0.3

0.4

scatterplot λp and λq, p = 0.5, q = 4

λp

λ
q

Figure 3.10: Estimated regions of the regularization parameters (right panel) and the corre-
sponding solution u∗ (left panel) and v∗ (middle panel) for p = 0.5, and q = 2
(top), and q = 4 (bottom) repectively using PCA. The black crosses indicate the
real solutions.

−0.4 −0.2 0 0.2 0.4

−5

0

5

10

15

x 10
−3 scatterplot u

∗, p = 0.3, q = 2

−1 −0.5 0 0.5 1 1.5

−0.03

−0.02

−0.01

0

0.01

0.02

scatterplot v
∗, p = 0.3, q = 2

0 0.05 0.1 0.15 0.2 0.25
0

0.1

0.2

0.3

0.4

scatterplot λp and λq, p = 0.3, q = 2

λp

λ
q

−1 −0.5 0 0.5 1 1.5

x 10
−3

−20

−15

−10

−5

0

5

x 10
−4 scatterplot u

∗, p = 0.3, q = 4

−0.1 −0.05 0 0.05 0.1

−0.1

−0.05

0

0.05

0.1

v̄

scatterplot v
∗, p = 0.3, q = 4

0 0.05 0.1 0.15
0

0.1

0.2

0.3

0.4

scatterplot λp and λq, p = 0.3, q = 4

λp

λ
q

Figure 3.11: Estimated regions of the regularization parameters (right panel) and the corre-
sponding solution u∗ (left panel) and v∗ (middle panel) for p = 0.3, and q = 2
(top), and q = 4 (bottom) repectively using PCA. The black crosses indicate the
real solutions.

100

3.3 Comparative Numerics

3.3 Comparative Numerics
In this section, we empirically support our theoretical results of Section 3.1 and 3.2.
Already in the three respective publications [155, 7, 140], we separately showed results,
which confirm the superiority of the therein presented methods with respect to more
classical ones in terms of robust support identification. However, the methods were
compared individually and by the following different assumptions and parameter
settings:

• For the methods SLP and IHT of Section 3.1, we confirmed in [155] that they
outperform classical `1-minimization and its reweighted variant in terms of
support identification for fixed algorithm parameters. On the one hand, such a
test simulates an application case very well since it is in general difficult to adapt
the parameters according to a each test problem. Thus, one is interested in a
parameter choice which leads to good results of a method for the majority of
the test problems. On the other hand, one does not explore the full potential
of the methods, which is however of theoretical value since one is naturally also
interested in the performance limit of a certain method.

• For the multi-penalty functionals of Section 3.2, we showed in [140] that their
minimizers do feature a better approximation of the support than the minimizers
of the respective mono-penalty minimization (λq = 0), in particular, for the choice
of 0 < p < 1 and q = 2 and the right choice of the regularization parameters λp,
λq. In the respective numerical experiments, we first explored for each pair (p, q)
the best possible parameter pair (λp, λq), and only afterwards we compared those
best results to each other (for different p and q). This is a rather non-practical
investigation since a simulation is missing, where λp and λq are fixed for a larger
set of test problems. However such a test explores the potential performance
limits of those methods.

In this section, we want to close the missing gaps and link both works to the end that
all methods (that were compared in both papers) are compared within the same scope.
In this spirit, we first explore the performance limits of all methods, allowing a flexible
choice of the algorithm parameters (in a certain range depending on the respective
method), and we record the parameters which performed best for the entire set of
test problems. In order to simulate a more realistic situation, we second compare all
methods to each other, but fix the parameters according to their optimal choice from
the previous experiment.

In all of the investigations, we place special emphasis on the question, which methods
provide a significantly enhanced rate of recovery of the support of the unknown sparse
vector as well as a better accuracy in approximating its large entries. In particular, we

101

Chapter 3 Robust Sparse Recovery in the Presence of Strong Signal Noise

compare to the classical convex methods `1-minimization and its iterative re-weighted
version (IRL1) as well as methods which only regularize on a single component (mono-
penalty minimization). It is important, to stress once more, that in all experiments,
we only consider signals of the class (3.1). We furthermore assume that potential users
are in the situation that they do not dispose of the knowledge of the sparsity k, but of
the knowledge of the threshold r, which is the lower bound on the absolute value of
the relevant entries of the original signal.

3.3.1 Test Setting
We consider a model of the type (2.21), i.e., y = Φ(x̄ + n), where Φ ∈ Rm×N is an
i.i.d. Gaussian matrix, x̄ is a k-sparse vector and n is a noise vector. The choice of Φ
corresponds to compressed sensing measurements [84]. In the experiments, we consider
20 test problems of this type and dimensions N = 100 and m = 40, with x̄ randomly
generated with values on [−3,−1] ∪ [1, 3] (consequently r = 1) and k = # supp(x̄) = 7.
The components of the random noise vector n are uniformly distributed on [−1, 1]
and normalized such that η = ‖n‖2 = 0.7, corresponding to a signal to noise ratio
of ca. 10%. In the terms of the class (3.1) in Section 3.1, we therefore have x̄+n ∈ S2

0.7,7,1.

The following methods are supposed to be compared to each other: We consider
• the minimization of the multi-penalty functional (3.28) for each combination of
p ∈ {0, 0.3, 0.5, 0.8, 1} and q ∈ {2, 4,∞} by Algorithm 10. Depending on the
parameter pair, we call the respective method AIT(p, q). The algorithm naturally
returns a sparse and a noise component (u∗ and v∗, compare Theorem 3.28). The
sparse component is the vector of interest and denoted by x∗p,q;

• the minimization of the functional (3.28) with only the first penalty for p ∈
{0, 0.3, 0.5, 0.8, 1}, by Algorithm 10 in only one component (set the other compo-
nent to 0). We call the method the respective mono-penalty minimization and
denote it with AIT(p,0). We extract from the minimizer the sparse component
x∗p,0, which only contains the elements exceeding r in absolute value. Notice that
for p = 1 the problem (3.28) becomes the regularized `1-minimization (2.12), and
the method AIT(1,0) is the same as the iterative soft thresholding algorithm
(ISTA) (compare Section 2.4.3.1). Since the regularized `1-minimization is equiva-
lent to the `1-minimization with inequality constraint (BPDN) (see Section 2.2.1),
we do not need to compute the results of AIT(1,0), but use BPDN instead. Note
that this also covers `1-minimization with equality constraint (BP) as a special
case;

• the prewhitened `1-minimization with inequality constraint (PWBPDN (2.22)).
We extract from its minimizer the sparse component x∗`1 , which only contains
the elements exceeding r in absolute value;

102

3.3 Comparative Numerics

• iterative re-weighted `1-minimization (IRL1) in its general form (2.46) with
denoising parameter δ. We extract from its minimizer the sparse component
x∗IRL1, which only contains the elements exceeding r in absolute value;

• `1+SLP, which performs Algorithm 7 with the `1-minimizer as starting value.
We extract from the SLP-minimizer the sparse component x∗`1+SLP, which only
contains the elements exceeding r in absolute value;

• `1+IHT, which performs Algorithm 6 with the `1-minimizer as starting value
and the final correction step (3.23). That correction step naturally returns the
sparse component x∗`1+IHT with all entries in absolute value above r.

In the following, we denote with x∗(·) a placeholder for the recovery result of any of the
methods that we mentioned above.

In order to properly assess the recovered results x∗(·) with respect to the original
sparse signal x̄, we compare the following quantities:

(SD) As a measure for the support identification property, i.e., how well the support
of the original and recovered vector coincide, the number of elements in the
symmetric difference (SD) is a convenient quantity. It is denoted by

SD(x̄, x∗(·)) := #(supp(x̄)∆ supp(x∗(·))), (3.50)

where the set symmetric difference ∆ is defined as follows: i ∈ supp(x̄)∆ supp(x∗(·))
if and only if either i /∈ supp(x̄) and i ∈ supp(x∗(·)) or i ∈ supp(x̄) and i /∈
supp(x∗(·)). Thus, supp(x̄) and supp(x∗(·)) are identical if and only if the SD is 0;

(DI) The SD is a relatively simple but effective quantity to estimate the support
identification. However, in some applications one might allow a slight tolerance
for the support identification, which implies that one is interested in measuring,
how far an incorrectly detected entry of supp(x∗(·)) is away from supp(x̄). To put
this into a proper measure, we sum up the minimal distances from any entry of
supp(x∗(·)) to any entry of supp(x̄). To penalize also the case that supp(x∗(·)) is
a strict subset of supp(x̄), we also add the sum of the minimal distances from
any entry of supp(x̄) to any entry of supp(x∗(·)). We call the final measure the
support discrepancy (DI):

DI(x̄, x∗(·)) :=
∑

i∈supp(x∗(·))
min

j∈supp(x̄)
|i− j|+

∑
i∈supp(x̄)

min
j∈supp(x∗(·))

|i− j|;

(AE) The approximation error (AE) is the standard `2-norm difference,

AE(x̄, x∗(·)) :=
∥∥∥x̄− x∗(·)∥∥∥2

.

103

Chapter 3 Robust Sparse Recovery in the Presence of Strong Signal Noise

Naturally, a smaller value in any of those quantities implies a more robust recovery.
While the SD and DI make a statement on the robustness of the support identification,
the AE only measures the accuracy of the detected entries.

All subsequently presented tests were implemented and run in Matlab R2014a in
combination with the CVX toolbox [93, 94], which was used to solve the convex
`1-minimization problem and its variants BP, BPDN, PWBPDN and IRL1, as well as
the QCQP problem (3.23).

3.3.2 Parameter Identification
We investigate the performance of the algorithm for parameters of different orders of
magnitude. As a prerequisite, let us define the arbitrary exponential grid

Qa0,κ
ib,if

:= {a0κ
i | i = ib, . . . , if ∈ Z},

with positive real a0, κ, and integer ib < if . For each method we explain which
parameters are required and from which grid we choose them:

• For AIT(p,q), the regularization parameters λp and λq are chosen from the grid
Q9e-4,1.25

0,30 ×Q5e-4,1.25
0,30 . We furthermore set the number of inner loop iterations to

L = M = 20 and the starting values to u(0) = v(0) = 0. Moreover, ε = 0 since
the additional term ε‖v‖22 in (3.28) is only necessary for coercivity in the infinite-
dimensional setting. We recall that the thresholding functions for p ∈ {0.3, 0.8}
are not given explicitly. Thus, we precomputed them on a grid of points in [0, 5]
and interpolated in between, taking also into consideration the jump discontinuity.
Respectively, we did the same precomputations for q ∈ {4, 10} on a grid of points
in [0, 1].

• For AIT(p,0), p < 1, we set the parameters L, ε, u(0) as above and choose λp
from the grid Q9e-4,1.25

0,30 . The parameters M and λq are not needed (and therefore
set to 0).

• To solve the (PW)BPDN, we choose the parameter δ ∈ 0∪Q1,1.5
−30,5. Thus, by δ = 0

we also cover the case of the classical `1-minimization with equality constraint
(BP).

• For IRL1, we set the stability parameter a, which avoids the denominator to be
zero, to 0.1. In [155] it turned out to be extremely hard to tune the parameter δ in
order to obtain the best performances for IRL1 in terms of support identification
and accuracy in approximating the large entries of the original vector. In the
papers [33, 141] the authors indicated δ = δ0 :=

√
σ2(m+ 2

√
2m) as the best

104

3.3 Comparative Numerics

parameter choice for ameliorating the AE with respect to BPDN. However, since
in our experiments we wish to determine a suitable parameter, in particular for
an ameliorated SD, we choose δ from the grid Qδ0,1.5−25,5. We execute 8 iterations of
IRL1.

• For `1+SLP, we set the smoothing parameter ε = 1e-4, and choose the regular-
ization parameter λ ∈ Q4.5,10

−5,5 .

• For `1+IHT, we dispose of the indicating rule (3.19) in order to define the
regularization parameter λ. However, this rule depends on the constants δ2k and
β(Φ), which are hard to compute. Nevertheless, we can at least roughly bound
0.49 = η2 < λ < r2 = 1. Thus, we choose λ ∈ Q0.5,1.25

−15,15 , in order to determine an
empirical range for λ.

In the following, we investigate in a good parameter choice for the methods AIT(p,q),
AIT(p,0), (PW)BPDN, `1+SLP, IRL1, and `1+IHT. Therefore we consider the maps
Q∗∗ : Qa0,κ

ib,if
×Qb0,ρjb,jf

→ N for AIT(p,q), or Q∗ : Qa0,κ
ib,if
→ N for the remaining methods,

which assign to a parameter (pair) the value SD(x̄,x∗(·)) of the output x
∗
(·) of the respective

algorithm. For any method and a fixed problem (fixed matrix Φ, measurement y and
original signal x̄) we are then able to determine the set of best parameters

arg min
φ∈Qa0,κ

ib,if

Q∗(φ), (3.51)

or best parameter pairs
arg min

(φ,ψ)∈Qa0,κ
ib,if
×Qb0,ρjb,jf

Q∗∗(φ, ψ).

Notice that the set of best parameters in general is different for each of the 20 test
problems. In the following, we make those sets visible, and interpret the respective
figures.

We begin with the map Q∗ and therefore the methods AIT(p,0), (PW)BPDN,
`1+SLP, IRL1, and `1+IHT, where only one parameter is altered. Let us exemplify
the visualization of the set (3.51) by the top left plot (AIT(p = 0,0)) in Figure 3.12.
The x-axis represents the different parameter values of λp. The y-axis represents the
number of the respective test problem. Each horizontal row represents the set of best
parameters in the sense that a ×-marker is put at the position of the best parameter
values (the elements of the set (3.51)). In such a pattern, the number of markers in a
vertical column indicates, how often (out of 20 test problems) a parameter was “best”
for the respective algorithm. Below each of those columns, we put another marker
whose fatness indicates the sum of markers in a column. The fattest markers are
colored red. Thus, one is able to quickly identify parameters that lead to the best

105

Chapter 3 Robust Sparse Recovery in the Presence of Strong Signal Noise

performance of an algorithm, independent of the test problem. We draw the following
consequences from Figure 3.12:

• In the subfigure IRL1 it is obvious that for nearly half of the test problems, only
a very small range of parameters produces the best results. For the remainder
of the test problems, nearly all parameters produce the best output, as long as
the threshold 4.9e-1 is not exceeded. In particular, we can observe that none of
the parameters is optimal for all of the 20 test problems. This indicates, that,
in applications, it will be very hard to determine a priori a good parameter for
IRL1 for robust support detection.

• In the subfigure `1+IHT, we observe that each λ ∈ [0.1, 0.62] is the best parameter
for at least 17 out of 20 test problems. Note that this interval overlaps with the
theoretically estimated interval [0.49, 1]. As already mentioned in the previous
paragraph, due to the difficult computation of δ2k and β(Φ), we were not able
to practically compute the upper bound (and we loosely estimated it by 1).
Through this empirical investigation, it is possible to identify this bound by 0.62.
Furthermore, these experiments show that the theoretical lower bound 0.49 can
be even extended to the much smaller value 0.1, where the method still provides
results of similar robustness.

• In the subfigure `1+SLP, we observe that the method produces equally good
results, choosing λ in the comparably huge interval λ ∈ [4.5e-2, 4.5e+3]. We
conclude that the parameter tuning is easy for this method.

• In the subfigures concerning AIT(p,0), p < 1, we observe that for p ∈ {0.5, 0.8}
there is a relatively large interval for the parameter λp, where for a wide range
of test problems the best results are obtained. For the problems with strong
non-convexity p ∈ {0, 0.3}, those intervals are smaller. While the best parameter
for p = 0 is only able to cover half of the test problems, for the remaining
parameters p, the best parameter covers at least 16 out of 20 test problems.

• In the subfigures concerning BPDN and PWBPDN, we observe that both methods
produce best results for a large range of parameters where at least 19 out of
20 test problems are covered. It is noteworthy that the best results are only
obtained for small values of δ.

For the map Q∗∗ and therefore the methods AIT(p,q), the two parameters λp and
λq are altered. To adopt the visualization idea of the previous paragraph, a three-
dimensional visualization is necessary (two axes for the parameters and the third for the
problem number). While such a three-dimensional plot is an appropriate presentation
in a dynamic environment as, e.g., on a computer display, where one can turn the plot,
in our case it is rather counterproductive to put it on the paper and pre-define the

106

3.3 Comparative Numerics

perspective for the reader. That is why we ignore the third dimension (the problem
number), and only extend the concept of the vertical sum, which is indicated in the
previous Figure 3.12 by markers of different fatness, from the one-dimensional to a
two-dimensional visualization. We present the results in Figure 3.13, where we add
blue markers with a fatness from 1 to 20, as a legend, to help the reader to visually
classify the fatness of the black and red markers. The evaluation of Figure 3.13 is as
follows:

• For p = 0 the markers are not particularly fat. It seems that it is nearly impossible
to determine a parameter pair for the method, such that the method performs
well on all test problems.

• For p > 0 the size of the region of good parameter pairs (the ones which are
marked fat) is decreasing when q increases. In particular for q = 2 the algorithm
is not very sensitive with respect to the choice of the parameters.

• Obviously the choice of 0 < p < 1 does provide parameter pairs which are best
for a large percentage of the test problems (markers are particularly fat).

So far, we exclusively considered the problem of a good parameter choice, but we
did not compare the actual outcome (SD, DI, AE) for any of those parameters or
parameter pairs. This means that even a huge interval that provides “best” parameters
is worth nothing if the method produces a bad SD value by these parameters. In the
next section, we present this final evaluation in order to obtain the big picture on the
performance of the entirety of all methods.

3.3.3 Massive Computations
Remind, that the simulations are supposed to answer the two questions, first, which
of the methods presented above has the highest potential, and second, which is the
most useful in applications in terms of a robust support identification. The first
question is answered if we allow an optimal choice of the parameters depending on
the test problem. Thus, according to the parameter identification results presented in
Figures 3.12 and 3.13, we choose for each of the 20 test problems the respective “best”
parameter (pair) and determine the mean value of SD, DI, and AE of the corresponding
output. To answer the second question, we choose the parameter independently of
the test problem, i.e., the parameter for which the algorithm performs best for the
most of the 20 test problems. Those parameters are presented for each method by
red markers. The outcome of the evaluation with variable and fixed parameters is
presented in Figure 3.14(a) and Figure 3.14(b) respectively.

The results of Figure 3.14(a) can be interpreted as follows:

107

Chapter 3 Robust Sparse Recovery in the Presence of Strong Signal Noise

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

AIT(p=0, 0)

λp

9
.0

e
−

0
4

1
.1

e
−

0
3

1
.4

e
−

0
3

1
.8

e
−

0
3

2
.2

e
−

0
3

2
.7

e
−

0
3

3
.4

e
−

0
3

4
.3

e
−

0
3

5
.4

e
−

0
3

6
.7

e
−

0
3

8
.4

e
−

0
3

1
.0

e
−

0
2

1
.3

e
−

0
2

1
.6

e
−

0
2

2
.0

e
−

0
2

2
.6

e
−

0
2

3
.2

e
−

0
2

4
.0

e
−

0
2

5
.0

e
−

0
2

6
.2

e
−

0
2

7
.8

e
−

0
2

9
.8

e
−

0
2

1
.2

e
−

0
1

1
.5

e
−

0
1

1
.9

e
−

0
1

2
.4

e
−

0
1

3
.0

e
−

0
1

3
.7

e
−

0
1

4
.7

e
−

0
1

5
.8

e
−

0
1

7
.3

e
−

0
1

P
ro
b
le
m

N
o
.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

AIT(p=0.3, 0)

λp

9
.0

e
−

0
4

1
.1

e
−

0
3

1
.4

e
−

0
3

1
.8

e
−

0
3

2
.2

e
−

0
3

2
.7

e
−

0
3

3
.4

e
−

0
3

4
.3

e
−

0
3

5
.4

e
−

0
3

6
.7

e
−

0
3

8
.4

e
−

0
3

1
.0

e
−

0
2

1
.3

e
−

0
2

1
.6

e
−

0
2

2
.0

e
−

0
2

2
.6

e
−

0
2

3
.2

e
−

0
2

4
.0

e
−

0
2

5
.0

e
−

0
2

6
.2

e
−

0
2

7
.8

e
−

0
2

9
.8

e
−

0
2

1
.2

e
−

0
1

1
.5

e
−

0
1

1
.9

e
−

0
1

2
.4

e
−

0
1

3
.0

e
−

0
1

3
.7

e
−

0
1

4
.7

e
−

0
1

5
.8

e
−

0
1

7
.3

e
−

0
1

P
ro
b
le
m

N
o
.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

AIT(p=0.5, 0)

λp

9
.0

e
−

0
4

1
.1

e
−

0
3

1
.4

e
−

0
3

1
.8

e
−

0
3

2
.2

e
−

0
3

2
.7

e
−

0
3

3
.4

e
−

0
3

4
.3

e
−

0
3

5
.4

e
−

0
3

6
.7

e
−

0
3

8
.4

e
−

0
3

1
.0

e
−

0
2

1
.3

e
−

0
2

1
.6

e
−

0
2

2
.0

e
−

0
2

2
.6

e
−

0
2

3
.2

e
−

0
2

4
.0

e
−

0
2

5
.0

e
−

0
2

6
.2

e
−

0
2

7
.8

e
−

0
2

9
.8

e
−

0
2

1
.2

e
−

0
1

1
.5

e
−

0
1

1
.9

e
−

0
1

2
.4

e
−

0
1

3
.0

e
−

0
1

3
.7

e
−

0
1

4
.7

e
−

0
1

5
.8

e
−

0
1

7
.3

e
−

0
1

P
ro
b
le
m

N
o
.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

AIT(p=0.8, 0)

λp

9
.0

e
−

0
4

1
.1

e
−

0
3

1
.4

e
−

0
3

1
.8

e
−

0
3

2
.2

e
−

0
3

2
.7

e
−

0
3

3
.4

e
−

0
3

4
.3

e
−

0
3

5
.4

e
−

0
3

6
.7

e
−

0
3

8
.4

e
−

0
3

1
.0

e
−

0
2

1
.3

e
−

0
2

1
.6

e
−

0
2

2
.0

e
−

0
2

2
.6

e
−

0
2

3
.2

e
−

0
2

4
.0

e
−

0
2

5
.0

e
−

0
2

6
.2

e
−

0
2

7
.8

e
−

0
2

9
.8

e
−

0
2

1
.2

e
−

0
1

1
.5

e
−

0
1

1
.9

e
−

0
1

2
.4

e
−

0
1

3
.0

e
−

0
1

3
.7

e
−

0
1

4
.7

e
−

0
1

5
.8

e
−

0
1

7
.3

e
−

0
1

P
ro
b
le
m

N
o
.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

BPDN (equivalent to AIT(p=1, 0))

ε

0
.0

e
+

0
0

5
.2

e
−

0
6

7
.8

e
−

0
6

1
.2

e
−

0
5

1
.8

e
−

0
5

2
.6

e
−

0
5

4
.0

e
−

0
5

5
.9

e
−

0
5

8
.9

e
−

0
5

1
.3

e
−

0
4

2
.0

e
−

0
4

3
.0

e
−

0
4

4
.5

e
−

0
4

6
.8

e
−

0
4

1
.0

e
−

0
3

1
.5

e
−

0
3

2
.3

e
−

0
3

3
.4

e
−

0
3

5
.1

e
−

0
3

7
.7

e
−

0
3

1
.2

e
−

0
2

1
.7

e
−

0
2

2
.6

e
−

0
2

3
.9

e
−

0
2

5
.9

e
−

0
2

8
.8

e
−

0
2

1
.3

e
−

0
1

2
.0

e
−

0
1

3
.0

e
−

0
1

4
.4

e
−

0
1

6
.7

e
−

0
1

1
.0

e
+

0
0

P
ro
b
le
m

N
o
.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

PWBPDN

δ

0
.0

e
+

0
0

5
.2

e
−

0
6

7
.8

e
−

0
6

1
.2

e
−

0
5

1
.8

e
−

0
5

2
.6

e
−

0
5

4
.0

e
−

0
5

5
.9

e
−

0
5

8
.9

e
−

0
5

1
.3

e
−

0
4

2
.0

e
−

0
4

3
.0

e
−

0
4

4
.5

e
−

0
4

6
.8

e
−

0
4

1
.0

e
−

0
3

1
.5

e
−

0
3

2
.3

e
−

0
3

3
.4

e
−

0
3

5
.1

e
−

0
3

7
.7

e
−

0
3

1
.2

e
−

0
2

1
.7

e
−

0
2

2
.6

e
−

0
2

3
.9

e
−

0
2

5
.9

e
−

0
2

8
.8

e
−

0
2

1
.3

e
−

0
1

2
.0

e
−

0
1

3
.0

e
−

0
1

4
.4

e
−

0
1

6
.7

e
−

0
1

1
.0

e
+

0
0

1
.5

e
+

0
0

2
.2

e
+

0
0

3
.4

e
+

0
0

5
.1

e
+

0
0

7
.6

e
+

0
0

P
r
o
b
le
m

N
o
.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

ℓ1+SLP

λ

4
.5

e
+

0
5

4
.5

e
+

0
4

4
.5

e
+

0
3

4
.5

e
+

0
2

4
.5

e
+

0
1

4
.5

e
+

0
0

4
.5

e
−

0
1

4
.5

e
−

0
2

4
.5

e
−

0
3

4
.5

e
−

0
4

4
.5

e
−

0
5

P
r
o
b
le
m

N
o
.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

IRL1

δ

8
.7

e
−

0
6

1
.3

e
−

0
5

2
.0

e
−

0
5

2
.9

e
−

0
5

4
.4

e
−

0
5

6
.6

e
−

0
5

9
.9

e
−

0
5

1
.5

e
−

0
4

2
.2

e
−

0
4

3
.3

e
−

0
4

5
.0

e
−

0
4

7
.5

e
−

0
4

1
.1

e
−

0
3

1
.7

e
−

0
3

2
.5

e
−

0
3

3
.8

e
−

0
3

5
.7

e
−

0
3

8
.6

e
−

0
3

1
.3

e
−

0
2

1
.9

e
−

0
2

2
.9

e
−

0
2

4
.3

e
−

0
2

6
.5

e
−

0
2

9
.8

e
−

0
2

1
.5

e
−

0
1

2
.2

e
−

0
1

3
.3

e
−

0
1

4
.9

e
−

0
1

7
.4

e
−

0
1

1
.1

e
+

0
0

1
.7

e
+

0
0

P
r
o
b
le
m

N
o
.

108

3.3 Comparative Numerics

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

ℓ1+IHT

λ

5
.4

e
−

0
2

6
.7

e
−

0
2

8
.4

e
−

0
2

1
.0

e
−

0
1

1
.3

e
−

0
1

1
.6

e
−

0
1

2
.0

e
−

0
1

2
.6

e
−

0
1

3
.2

e
−

0
1

4
.0

e
−

0
1

5
.0

e
−

0
1

6
.2

e
−

0
1

7
.8

e
−

0
1

9
.8

e
−

0
1

1
.2

e
+

0
0

1
.5

e
+

0
0

1
.9

e
+

0
0

2
.4

e
+

0
0

3
.0

e
+

0
0

3
.7

e
+

0
0

4
.7

e
+

0
0

P
r
o
b
le
m

N
o
.

Figure 3.12: For the parameters λp (AIT(p,0),
p < 1), δ ((PW)BPDN, and IRL1), and λ
(`1+SLP, `1+IHT) respectively, we plot for
each of the 20 trial problems row-wise a
×-marker in the column of the parameter
value, where an optimum in terms of SD
was attained. In the bottom row, the sum
of markers in each column are presented
by markers of different fatness. The fattest
markers are colored red.

• Regarding the output of the algorithms AIT(p,q), i.e., the first five bar groups,
the most surprising result is the fact that the use of a parameter 0 < p < 1 is
for any of the three quantities SD, DI, AE much better than choosing p ∈ {0, 1}.
Furthermore, the choice of q = 2 is most favorable in our particular setting
(simulating compressed sensing problems). In terms of SD and DI, the algorithm
AIT(0.8,2) clearly performs best. In terms of AE, it is AIT(0.3,2).

• Comparing for any p the multi-penalty approach AIT(p,q) and the respective
mono-penalty approach AIT(p,0), the main observation is that for p ∈ {0, 1}, it
is a disadvantage to use multiple penalties, while for 0 < p < 1 the multi-penalty
approach is advantageous. Note, that this result contradicts at first sight the
findings in the paper [140], where we showed that the multi-penalty should be
always preferred over the mono-penalty approach. On a second glance, it is not
a contradiction since we assume two different test settings: The subtle difference
is that we assume in the present section that the threshold r is known. Thus,
the further filtering of the relevant entries with absolute value above r cleans the
result from possibly wrongly detected support entries. Having the threshold r not
at disposal, the evaluation results would agree with the results in the paper [140].

• As already indicated by the results in Section 3.1.2, the classical `1-minimization
(with and without prewhitening and inequality constraint) is greatly outperformed
by `1+SLP, IRL1, and `1+IHT. In particular `1+SLP and `1+IHT outperform
also IRL1. The method `1+IHT even displays an SD mean value of 0, which
means that it is able to correctly recover the exact support of all 20 trials.
Furthermore, the method AIT(0.8,2) shows a very low SD value, which is better
than the one of `1+SLP.

109

Chapter 3 Robust Sparse Recovery in the Presence of Strong Signal Noise

5.0e−04
6.3e−04
7.8e−04
9.8e−04
1.2e−03
1.5e−03
1.9e−03
2.4e−03
3.0e−03
3.7e−03
4.7e−03
5.8e−03
7.3e−03
9.1e−03
1.1e−02
1.4e−02
1.8e−02
2.2e−02
2.8e−02
3.5e−02
4.3e−02
5.4e−02
6.8e−02
8.5e−02
1.1e−01
1.3e−01
1.7e−01
2.1e−01
2.6e−01
3.2e−01
4.0e−01

AIT(p=0, q=2)

λp

9
.0

e
−

0
4

1
.1

e
−

0
3

1
.4

e
−

0
3

1
.8

e
−

0
3

2
.2

e
−

0
3

2
.7

e
−

0
3

3
.4

e
−

0
3

4
.3

e
−

0
3

5
.4

e
−

0
3

6
.7

e
−

0
3

8
.4

e
−

0
3

1
.0

e
−

0
2

1
.3

e
−

0
2

1
.6

e
−

0
2

2
.0

e
−

0
2

2
.6

e
−

0
2

3
.2

e
−

0
2

4
.0

e
−

0
2

5
.0

e
−

0
2

6
.2

e
−

0
2

7
.8

e
−

0
2

9
.8

e
−

0
2

1
.2

e
−

0
1

1
.5

e
−

0
1

1
.9

e
−

0
1

2
.4

e
−

0
1

3
.0

e
−

0
1

3
.7

e
−

0
1

4
.7

e
−

0
1

5
.8

e
−

0
1

7
.3

e
−

0
1

λ
q

5.0e−04
6.3e−04
7.8e−04
9.8e−04
1.2e−03
1.5e−03
1.9e−03
2.4e−03
3.0e−03
3.7e−03
4.7e−03
5.8e−03
7.3e−03
9.1e−03
1.1e−02
1.4e−02
1.8e−02
2.2e−02
2.8e−02
3.5e−02
4.3e−02
5.4e−02
6.8e−02
8.5e−02
1.1e−01
1.3e−01
1.7e−01
2.1e−01
2.6e−01
3.2e−01
4.0e−01

AIT(p=0, q=4)

λp

9
.0

e
−

0
4

1
.1

e
−

0
3

1
.4

e
−

0
3

1
.8

e
−

0
3

2
.2

e
−

0
3

2
.7

e
−

0
3

3
.4

e
−

0
3

4
.3

e
−

0
3

5
.4

e
−

0
3

6
.7

e
−

0
3

8
.4

e
−

0
3

1
.0

e
−

0
2

1
.3

e
−

0
2

1
.6

e
−

0
2

2
.0

e
−

0
2

2
.6

e
−

0
2

3
.2

e
−

0
2

4
.0

e
−

0
2

5
.0

e
−

0
2

6
.2

e
−

0
2

7
.8

e
−

0
2

9
.8

e
−

0
2

1
.2

e
−

0
1

1
.5

e
−

0
1

1
.9

e
−

0
1

2
.4

e
−

0
1

3
.0

e
−

0
1

3
.7

e
−

0
1

4
.7

e
−

0
1

5
.8

e
−

0
1

7
.3

e
−

0
1

λ
q

5.0e−04
6.3e−04
7.8e−04
9.8e−04
1.2e−03
1.5e−03
1.9e−03
2.4e−03
3.0e−03
3.7e−03
4.7e−03
5.8e−03
7.3e−03
9.1e−03
1.1e−02
1.4e−02
1.8e−02
2.2e−02
2.8e−02
3.5e−02
4.3e−02
5.4e−02
6.8e−02
8.5e−02
1.1e−01
1.3e−01
1.7e−01
2.1e−01
2.6e−01
3.2e−01
4.0e−01

AIT(p=0, q=Inf)

λp

9
.0

e
−

0
4

1
.1

e
−

0
3

1
.4

e
−

0
3

1
.8

e
−

0
3

2
.2

e
−

0
3

2
.7

e
−

0
3

3
.4

e
−

0
3

4
.3

e
−

0
3

5
.4

e
−

0
3

6
.7

e
−

0
3

8
.4

e
−

0
3

1
.0

e
−

0
2

1
.3

e
−

0
2

1
.6

e
−

0
2

2
.0

e
−

0
2

2
.6

e
−

0
2

3
.2

e
−

0
2

4
.0

e
−

0
2

5
.0

e
−

0
2

6
.2

e
−

0
2

7
.8

e
−

0
2

9
.8

e
−

0
2

1
.2

e
−

0
1

1
.5

e
−

0
1

1
.9

e
−

0
1

2
.4

e
−

0
1

3
.0

e
−

0
1

3
.7

e
−

0
1

4
.7

e
−

0
1

5
.8

e
−

0
1

7
.3

e
−

0
1

λ
q

5.0e−04
6.3e−04
7.8e−04
9.8e−04
1.2e−03
1.5e−03
1.9e−03
2.4e−03
3.0e−03
3.7e−03
4.7e−03
5.8e−03
7.3e−03
9.1e−03
1.1e−02
1.4e−02
1.8e−02
2.2e−02
2.8e−02
3.5e−02
4.3e−02
5.4e−02
6.8e−02
8.5e−02
1.1e−01
1.3e−01
1.7e−01
2.1e−01
2.6e−01
3.2e−01
4.0e−01

AIT(p=0.3, q=2)

λp

9
.0

e
−

0
4

1
.1

e
−

0
3

1
.4

e
−

0
3

1
.8

e
−

0
3

2
.2

e
−

0
3

2
.7

e
−

0
3

3
.4

e
−

0
3

4
.3

e
−

0
3

5
.4

e
−

0
3

6
.7

e
−

0
3

8
.4

e
−

0
3

1
.0

e
−

0
2

1
.3

e
−

0
2

1
.6

e
−

0
2

2
.0

e
−

0
2

2
.6

e
−

0
2

3
.2

e
−

0
2

4
.0

e
−

0
2

5
.0

e
−

0
2

6
.2

e
−

0
2

7
.8

e
−

0
2

9
.8

e
−

0
2

1
.2

e
−

0
1

1
.5

e
−

0
1

1
.9

e
−

0
1

2
.4

e
−

0
1

3
.0

e
−

0
1

3
.7

e
−

0
1

4
.7

e
−

0
1

5
.8

e
−

0
1

7
.3

e
−

0
1

λ
q

5.0e−04
6.3e−04
7.8e−04
9.8e−04
1.2e−03
1.5e−03
1.9e−03
2.4e−03
3.0e−03
3.7e−03
4.7e−03
5.8e−03
7.3e−03
9.1e−03
1.1e−02
1.4e−02
1.8e−02
2.2e−02
2.8e−02
3.5e−02
4.3e−02
5.4e−02
6.8e−02
8.5e−02
1.1e−01
1.3e−01
1.7e−01
2.1e−01
2.6e−01
3.2e−01
4.0e−01

AIT(p=0.3, q=4)

λp

9
.0

e
−

0
4

1
.1

e
−

0
3

1
.4

e
−

0
3

1
.8

e
−

0
3

2
.2

e
−

0
3

2
.7

e
−

0
3

3
.4

e
−

0
3

4
.3

e
−

0
3

5
.4

e
−

0
3

6
.7

e
−

0
3

8
.4

e
−

0
3

1
.0

e
−

0
2

1
.3

e
−

0
2

1
.6

e
−

0
2

2
.0

e
−

0
2

2
.6

e
−

0
2

3
.2

e
−

0
2

4
.0

e
−

0
2

5
.0

e
−

0
2

6
.2

e
−

0
2

7
.8

e
−

0
2

9
.8

e
−

0
2

1
.2

e
−

0
1

1
.5

e
−

0
1

1
.9

e
−

0
1

2
.4

e
−

0
1

3
.0

e
−

0
1

3
.7

e
−

0
1

4
.7

e
−

0
1

5
.8

e
−

0
1

7
.3

e
−

0
1

λ
q

5.0e−04
6.3e−04
7.8e−04
9.8e−04
1.2e−03
1.5e−03
1.9e−03
2.4e−03
3.0e−03
3.7e−03
4.7e−03
5.8e−03
7.3e−03
9.1e−03
1.1e−02
1.4e−02
1.8e−02
2.2e−02
2.8e−02
3.5e−02
4.3e−02
5.4e−02
6.8e−02
8.5e−02
1.1e−01
1.3e−01
1.7e−01
2.1e−01
2.6e−01
3.2e−01
4.0e−01

AIT(p=0.3, q=Inf)

λp

9
.0

e
−

0
4

1
.1

e
−

0
3

1
.4

e
−

0
3

1
.8

e
−

0
3

2
.2

e
−

0
3

2
.7

e
−

0
3

3
.4

e
−

0
3

4
.3

e
−

0
3

5
.4

e
−

0
3

6
.7

e
−

0
3

8
.4

e
−

0
3

1
.0

e
−

0
2

1
.3

e
−

0
2

1
.6

e
−

0
2

2
.0

e
−

0
2

2
.6

e
−

0
2

3
.2

e
−

0
2

4
.0

e
−

0
2

5
.0

e
−

0
2

6
.2

e
−

0
2

7
.8

e
−

0
2

9
.8

e
−

0
2

1
.2

e
−

0
1

1
.5

e
−

0
1

1
.9

e
−

0
1

2
.4

e
−

0
1

3
.0

e
−

0
1

3
.7

e
−

0
1

4
.7

e
−

0
1

5
.8

e
−

0
1

7
.3

e
−

0
1

λ
q

5.0e−04
6.3e−04
7.8e−04
9.8e−04
1.2e−03
1.5e−03
1.9e−03
2.4e−03
3.0e−03
3.7e−03
4.7e−03
5.8e−03
7.3e−03
9.1e−03
1.1e−02
1.4e−02
1.8e−02
2.2e−02
2.8e−02
3.5e−02
4.3e−02
5.4e−02
6.8e−02
8.5e−02
1.1e−01
1.3e−01
1.7e−01
2.1e−01
2.6e−01
3.2e−01
4.0e−01

AIT(p=0.5, q=2)

λp

9
.0

e
−

0
4

1
.1

e
−

0
3

1
.4

e
−

0
3

1
.8

e
−

0
3

2
.2

e
−

0
3

2
.7

e
−

0
3

3
.4

e
−

0
3

4
.3

e
−

0
3

5
.4

e
−

0
3

6
.7

e
−

0
3

8
.4

e
−

0
3

1
.0

e
−

0
2

1
.3

e
−

0
2

1
.6

e
−

0
2

2
.0

e
−

0
2

2
.6

e
−

0
2

3
.2

e
−

0
2

4
.0

e
−

0
2

5
.0

e
−

0
2

6
.2

e
−

0
2

7
.8

e
−

0
2

9
.8

e
−

0
2

1
.2

e
−

0
1

1
.5

e
−

0
1

1
.9

e
−

0
1

2
.4

e
−

0
1

3
.0

e
−

0
1

3
.7

e
−

0
1

4
.7

e
−

0
1

5
.8

e
−

0
1

7
.3

e
−

0
1

λ
q

5.0e−04
6.3e−04
7.8e−04
9.8e−04
1.2e−03
1.5e−03
1.9e−03
2.4e−03
3.0e−03
3.7e−03
4.7e−03
5.8e−03
7.3e−03
9.1e−03
1.1e−02
1.4e−02
1.8e−02
2.2e−02
2.8e−02
3.5e−02
4.3e−02
5.4e−02
6.8e−02
8.5e−02
1.1e−01
1.3e−01
1.7e−01
2.1e−01
2.6e−01
3.2e−01
4.0e−01

AIT(p=0.5, q=4)

λp

9
.0

e
−

0
4

1
.1

e
−

0
3

1
.4

e
−

0
3

1
.8

e
−

0
3

2
.2

e
−

0
3

2
.7

e
−

0
3

3
.4

e
−

0
3

4
.3

e
−

0
3

5
.4

e
−

0
3

6
.7

e
−

0
3

8
.4

e
−

0
3

1
.0

e
−

0
2

1
.3

e
−

0
2

1
.6

e
−

0
2

2
.0

e
−

0
2

2
.6

e
−

0
2

3
.2

e
−

0
2

4
.0

e
−

0
2

5
.0

e
−

0
2

6
.2

e
−

0
2

7
.8

e
−

0
2

9
.8

e
−

0
2

1
.2

e
−

0
1

1
.5

e
−

0
1

1
.9

e
−

0
1

2
.4

e
−

0
1

3
.0

e
−

0
1

3
.7

e
−

0
1

4
.7

e
−

0
1

5
.8

e
−

0
1

7
.3

e
−

0
1

λ
q

110

3.3 Comparative Numerics

5.0e−04
6.3e−04
7.8e−04
9.8e−04
1.2e−03
1.5e−03
1.9e−03
2.4e−03
3.0e−03
3.7e−03
4.7e−03
5.8e−03
7.3e−03
9.1e−03
1.1e−02
1.4e−02
1.8e−02
2.2e−02
2.8e−02
3.5e−02
4.3e−02
5.4e−02
6.8e−02
8.5e−02
1.1e−01
1.3e−01
1.7e−01
2.1e−01
2.6e−01
3.2e−01
4.0e−01

AIT(p=0.5, q=Inf)

λp

9
.0

e
−

0
4

1
.1

e
−

0
3

1
.4

e
−

0
3

1
.8

e
−

0
3

2
.2

e
−

0
3

2
.7

e
−

0
3

3
.4

e
−

0
3

4
.3

e
−

0
3

5
.4

e
−

0
3

6
.7

e
−

0
3

8
.4

e
−

0
3

1
.0

e
−

0
2

1
.3

e
−

0
2

1
.6

e
−

0
2

2
.0

e
−

0
2

2
.6

e
−

0
2

3
.2

e
−

0
2

4
.0

e
−

0
2

5
.0

e
−

0
2

6
.2

e
−

0
2

7
.8

e
−

0
2

9
.8

e
−

0
2

1
.2

e
−

0
1

1
.5

e
−

0
1

1
.9

e
−

0
1

2
.4

e
−

0
1

3
.0

e
−

0
1

3
.7

e
−

0
1

4
.7

e
−

0
1

5
.8

e
−

0
1

7
.3

e
−

0
1

λ
q

5.0e−04
6.3e−04
7.8e−04
9.8e−04
1.2e−03
1.5e−03
1.9e−03
2.4e−03
3.0e−03
3.7e−03
4.7e−03
5.8e−03
7.3e−03
9.1e−03
1.1e−02
1.4e−02
1.8e−02
2.2e−02
2.8e−02
3.5e−02
4.3e−02
5.4e−02
6.8e−02
8.5e−02
1.1e−01
1.3e−01
1.7e−01
2.1e−01
2.6e−01
3.2e−01
4.0e−01

AIT(p=0.8, q=2)

λp

9
.0

e
−

0
4

1
.1

e
−

0
3

1
.4

e
−

0
3

1
.8

e
−

0
3

2
.2

e
−

0
3

2
.7

e
−

0
3

3
.4

e
−

0
3

4
.3

e
−

0
3

5
.4

e
−

0
3

6
.7

e
−

0
3

8
.4

e
−

0
3

1
.0

e
−

0
2

1
.3

e
−

0
2

1
.6

e
−

0
2

2
.0

e
−

0
2

2
.6

e
−

0
2

3
.2

e
−

0
2

4
.0

e
−

0
2

5
.0

e
−

0
2

6
.2

e
−

0
2

7
.8

e
−

0
2

9
.8

e
−

0
2

1
.2

e
−

0
1

1
.5

e
−

0
1

1
.9

e
−

0
1

2
.4

e
−

0
1

3
.0

e
−

0
1

3
.7

e
−

0
1

4
.7

e
−

0
1

5
.8

e
−

0
1

7
.3

e
−

0
1

λ
q

5.0e−04
6.3e−04
7.8e−04
9.8e−04
1.2e−03
1.5e−03
1.9e−03
2.4e−03
3.0e−03
3.7e−03
4.7e−03
5.8e−03
7.3e−03
9.1e−03
1.1e−02
1.4e−02
1.8e−02
2.2e−02
2.8e−02
3.5e−02
4.3e−02
5.4e−02
6.8e−02
8.5e−02
1.1e−01
1.3e−01
1.7e−01
2.1e−01
2.6e−01
3.2e−01
4.0e−01

AIT(p=0.8, q=4)

λp

9
.0

e
−

0
4

1
.1

e
−

0
3

1
.4

e
−

0
3

1
.8

e
−

0
3

2
.2

e
−

0
3

2
.7

e
−

0
3

3
.4

e
−

0
3

4
.3

e
−

0
3

5
.4

e
−

0
3

6
.7

e
−

0
3

8
.4

e
−

0
3

1
.0

e
−

0
2

1
.3

e
−

0
2

1
.6

e
−

0
2

2
.0

e
−

0
2

2
.6

e
−

0
2

3
.2

e
−

0
2

4
.0

e
−

0
2

5
.0

e
−

0
2

6
.2

e
−

0
2

7
.8

e
−

0
2

9
.8

e
−

0
2

1
.2

e
−

0
1

1
.5

e
−

0
1

1
.9

e
−

0
1

2
.4

e
−

0
1

3
.0

e
−

0
1

3
.7

e
−

0
1

4
.7

e
−

0
1

5
.8

e
−

0
1

7
.3

e
−

0
1

λ
q

5.0e−04
6.3e−04
7.8e−04
9.8e−04
1.2e−03
1.5e−03
1.9e−03
2.4e−03
3.0e−03
3.7e−03
4.7e−03
5.8e−03
7.3e−03
9.1e−03
1.1e−02
1.4e−02
1.8e−02
2.2e−02
2.8e−02
3.5e−02
4.3e−02
5.4e−02
6.8e−02
8.5e−02
1.1e−01
1.3e−01
1.7e−01
2.1e−01
2.6e−01
3.2e−01
4.0e−01

AIT(p=0.8, q=Inf)

λp

9
.0

e
−

0
4

1
.1

e
−

0
3

1
.4

e
−

0
3

1
.8

e
−

0
3

2
.2

e
−

0
3

2
.7

e
−

0
3

3
.4

e
−

0
3

4
.3

e
−

0
3

5
.4

e
−

0
3

6
.7

e
−

0
3

8
.4

e
−

0
3

1
.0

e
−

0
2

1
.3

e
−

0
2

1
.6

e
−

0
2

2
.0

e
−

0
2

2
.6

e
−

0
2

3
.2

e
−

0
2

4
.0

e
−

0
2

5
.0

e
−

0
2

6
.2

e
−

0
2

7
.8

e
−

0
2

9
.8

e
−

0
2

1
.2

e
−

0
1

1
.5

e
−

0
1

1
.9

e
−

0
1

2
.4

e
−

0
1

3
.0

e
−

0
1

3
.7

e
−

0
1

4
.7

e
−

0
1

5
.8

e
−

0
1

7
.3

e
−

0
1

λ
q

5.0e−04
6.3e−04
7.8e−04
9.8e−04
1.2e−03
1.5e−03
1.9e−03
2.4e−03
3.0e−03
3.7e−03
4.7e−03
5.8e−03
7.3e−03
9.1e−03
1.1e−02
1.4e−02
1.8e−02
2.2e−02
2.8e−02
3.5e−02
4.3e−02
5.4e−02
6.8e−02
8.5e−02
1.1e−01
1.3e−01
1.7e−01
2.1e−01
2.6e−01
3.2e−01
4.0e−01

AIT(p=1, q=2)

λp

9
.0

e
−

0
4

1
.1

e
−

0
3

1
.4

e
−

0
3

1
.8

e
−

0
3

2
.2

e
−

0
3

2
.7

e
−

0
3

3
.4

e
−

0
3

4
.3

e
−

0
3

5
.4

e
−

0
3

6
.7

e
−

0
3

8
.4

e
−

0
3

1
.0

e
−

0
2

1
.3

e
−

0
2

1
.6

e
−

0
2

2
.0

e
−

0
2

2
.6

e
−

0
2

3
.2

e
−

0
2

4
.0

e
−

0
2

5
.0

e
−

0
2

6
.2

e
−

0
2

7
.8

e
−

0
2

9
.8

e
−

0
2

1
.2

e
−

0
1

1
.5

e
−

0
1

1
.9

e
−

0
1

2
.4

e
−

0
1

3
.0

e
−

0
1

3
.7

e
−

0
1

4
.7

e
−

0
1

5
.8

e
−

0
1

7
.3

e
−

0
1

λ
q

5.0e−04
6.3e−04
7.8e−04
9.8e−04
1.2e−03
1.5e−03
1.9e−03
2.4e−03
3.0e−03
3.7e−03
4.7e−03
5.8e−03
7.3e−03
9.1e−03
1.1e−02
1.4e−02
1.8e−02
2.2e−02
2.8e−02
3.5e−02
4.3e−02
5.4e−02
6.8e−02
8.5e−02
1.1e−01
1.3e−01
1.7e−01
2.1e−01
2.6e−01
3.2e−01
4.0e−01

AIT(p=1, q=4)

λp

9
.0

e
−

0
4

1
.1

e
−

0
3

1
.4

e
−

0
3

1
.8

e
−

0
3

2
.2

e
−

0
3

2
.7

e
−

0
3

3
.4

e
−

0
3

4
.3

e
−

0
3

5
.4

e
−

0
3

6
.7

e
−

0
3

8
.4

e
−

0
3

1
.0

e
−

0
2

1
.3

e
−

0
2

1
.6

e
−

0
2

2
.0

e
−

0
2

2
.6

e
−

0
2

3
.2

e
−

0
2

4
.0

e
−

0
2

5
.0

e
−

0
2

6
.2

e
−

0
2

7
.8

e
−

0
2

9
.8

e
−

0
2

1
.2

e
−

0
1

1
.5

e
−

0
1

1
.9

e
−

0
1

2
.4

e
−

0
1

3
.0

e
−

0
1

3
.7

e
−

0
1

4
.7

e
−

0
1

5
.8

e
−

0
1

7
.3

e
−

0
1

λ
q

5.0e−04
6.3e−04
7.8e−04
9.8e−04
1.2e−03
1.5e−03
1.9e−03
2.4e−03
3.0e−03
3.7e−03
4.7e−03
5.8e−03
7.3e−03
9.1e−03
1.1e−02
1.4e−02
1.8e−02
2.2e−02
2.8e−02
3.5e−02
4.3e−02
5.4e−02
6.8e−02
8.5e−02
1.1e−01
1.3e−01
1.7e−01
2.1e−01
2.6e−01
3.2e−01
4.0e−01

AIT(p=1, q=Inf)

λp

9
.0

e
−

0
4

1
.1

e
−

0
3

1
.4

e
−

0
3

1
.8

e
−

0
3

2
.2

e
−

0
3

2
.7

e
−

0
3

3
.4

e
−

0
3

4
.3

e
−

0
3

5
.4

e
−

0
3

6
.7

e
−

0
3

8
.4

e
−

0
3

1
.0

e
−

0
2

1
.3

e
−

0
2

1
.6

e
−

0
2

2
.0

e
−

0
2

2
.6

e
−

0
2

3
.2

e
−

0
2

4
.0

e
−

0
2

5
.0

e
−

0
2

6
.2

e
−

0
2

7
.8

e
−

0
2

9
.8

e
−

0
2

1
.2

e
−

0
1

1
.5

e
−

0
1

1
.9

e
−

0
1

2
.4

e
−

0
1

3
.0

e
−

0
1

3
.7

e
−

0
1

4
.7

e
−

0
1

5
.8

e
−

0
1

7
.3

e
−

0
1

λ
q

Figure 3.13: For the parameter pairs (λp, λq)
(AIT(p,q)), we plot markers of different
fatness, indicating for how many of the 20
trial problems the respective parameter
pair was optimal in terms of SD. The
fattest markers are colored red. The blue
dots in the bottom row only serve as a
legend in order to classify the fatness of
the black and red markers in the range of
1 to 20.

111

Chapter 3 Robust Sparse Recovery in the Presence of Strong Signal Noise

p=0 p=0.3p=0.5p=0.8 p=1 other
0

0.5

1

1.5

2

2.5

3

3.5

4
SD mean value

p=0 p=0.3p=0.5p=0.8 p=1 other
0

10

20

30

40

50
DI mean value

AIT(p ,2) AIT(p ,4) AIT(p ,∞) AIT(p ,0) PWBPDN IRL1 ℓ1+SLP ℓ1+IHT

p=0 p=0.3p=0.5p=0.8 p=1 other
0

0.5

1

1.5

2

2.5

3

3.5
AE mean value

(a)

p=0 p=0.3p=0.5p=0.8 p=1 other
0

1

2

3

4

5

6

7

SD mean value (fixed)

p=0 p=0.3p=0.5p=0.8 p=1 other
0

50

100

150

200

250

300

350

400

DI mean value (fixed)

AIT(p ,2) AIT(p ,4) AIT(p ,∞) AIT(p ,0) PWBPDN IRL1 ℓ1+SLP ℓ1+IHT

p=0 p=0.3p=0.5p=0.8 p=1 other
0

1

2

3

4

5

AE mean value (fixed)

(b)

Figure 3.14: The bar plots present the evaluation of the mean value of SD, DI, and AE for the
methods AIT(p,q) (first five bar groups), `1-minimization, `1+SLP, IRL1, and
`1+IHT (last bar group); compare the legend. In Subfigure 3.14(a), we allow a
flexible parameter choice (and choose the best result) and in Subfigure 3.14(b),
we fixed the most promising parameter for each method respectively.

• The situation slightly changes regarding the quantity DI. Naturally `1+IHT has
the mean value 0, but when the support is not exactly recovered, it seems that
the methods AIT(0.8,2) and IRL1 produce at least results whose support entries
are closer to the expected entries than `1+SLP.

• The quantity AE does behave similar to the quantity SD with the difference that,
as already mentioned above, the methods AIT(0.3,2) and AIT(0.5,2) perform

112

3.3 Comparative Numerics

slightly better than AIT(0.8,2), but they are not able to outperform `1+SLP and
`1+IHT.

• An interesting and surprising result is that PWBPDN does not improve the
results of AIT(1,0) (alias BPDN).

In view of the above observations, we conclude that in particular the methods
AIT(0.8,2), `1+SLP, IRL1, and `1+IHT have the potential to provide robust support
identification results with comparably low SD, DI, and AE value. However, choosing
the parameters according to the respective test problem is a difficult task in practice.
One would rather identify and fix globally valid parameters for a class of problems by
simulations or trials where the ground truth is known. The results of such a simulation
is presented in Figure 3.14(b), and can be interpreted as follows:

• Regarding the output of the algorithms AIT(p,q), the results for q = 2 are still
the best, and 0 < p < 1 can be preferred over p ∈ {0, 1}.

• Within the comparison of multi-penalty and mono-penalty approach, it is apparent
that the mono-penalty result produces better SD results than the respective
multi-penalty method, except for AIT(0.8,2). In DI and AE the mono-penalty
approach is still outperformed by the multi-penalty approach for 0 < p < 1.

• The methods `1+SLP and `1+IHT are extremely stable and outperform the
remaining methods in terms of any of the quantities SD, DI, and AE. Acceptable
results in terms of SD and DI are also obtained by the methods AIT(0.8,2) and
IRL1. However, the AE value accounts negatively for AIT(0.8,2).

The presented experiments confirm the superiority of the methods `1+SLP and `1+IHT
over the classical `1-minimization and its reweighted version in terms of a robust
support recovery, although IRL1 has the potential to keep up in terms of DI if one has
the right parameters for the respective problem at disposal. Nevertheless, we showed
in the previous subsection that it is very hard to tune the parameter δ for IRL1, while
it is much easier for the other two methods. The method AIT(0.8,2) does provide
acceptable results without outperforming the previously mentioned methods. However,
one has to mention a crucial advantage of AIT(0.8,2): it provides a separation of the
sparse and noisy part of the result even without the knowledge of the parameter r.
Furthermore, we showed in Figure 3.13, that the choice of the respective parameters
λp and λq is easy since the method provides stable results over a comparably large
interval of both parameters.

3.3.4 Phase Transition Diagrams
In the last subsection, we again investigate into the case where we have the threshold
r at disposal. The essence of the previous section was that the methods `1+IHT and

113

Chapter 3 Robust Sparse Recovery in the Presence of Strong Signal Noise

`1+SLP outperform IRL1 in terms of SD, DI, and AE, if the parameter is fixed. We
eventually want to extend the results, given in Figure 3.14(b) for a wider range of m
and k. In Figure 3.15, we present phase transition diagrams of success rates in support
recovery in presence of nearly maximally allowed noise, i.e., we slightly change the
parameters 0.8 = r > η = 0.75. We further use BP as reference algorithm.

To produce phase transition diagrams, we varied the dimension of the measurement
vector m = 1, . . . , N with N = 100, and solved 20 different problems for all the
admissible k = #Sr(x) = 1, . . . ,m. We colored black all the points (m, k), with k ≤ m,
which reported 100% of correct support identification, and gradually we reduce the
tone up to white for the 0% result. The level bound of 50% and 90% is highlighted by
a magenta and red line respectively. A visual comparison of the corresponding phase
transitions confirms our previous expectations. In particular, `1+SLP and `1+IHT
very significantly outperform BP in terms of correct support recovery. The difference of
both methods towards IRL1 is less significant but still important, which confirms the
ranking of the methods, which we already observed in Figure 3.14(a). In the bottom
two subfigures of Figure 3.15, we compare the level bounds of 50% and 90% among the
four different methods. Observe that the 90% probability bound indicates the largest
positive region for `1+IHT, followed by `1+SLP, and by IRL1, while the bounds are
much closer to each other in the case of the 50% bound. Thus, we confirm that `1+IHT
works in practice better than `1+SLP for some range of m, and offers the most stable
support recovery results.

114

3.3 Comparative Numerics

ℓ1-minimization

m

k

20 40 60 80 100

10

20

30

40

50

60

70

80

90

100

ℓ1+SLP

m
k

20 40 60 80 100

10

20

30

40

50

60

70

80

90

100

IRL1

m

k

20 40 60 80 100

10

20

30

40

50

60

70

80

90

100

ℓ1+IHT

m

k

20 40 60 80 100

10

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100
0

20

40

60

80

100

m

k

level of probability 50%

ℓ1-minimization
ℓ1+SLP
IRL1
ℓ1+IHT

0 20 40 60 80 100
0

20

40

60

80

100

m

k

level of probability 90%

ℓ1-minimization
ℓ1+SLP
IRL1
ℓ1+IHT

Figure 3.15: Top four subfigures (phase transition diagrams): Phase transition
diagrams for BP, `1+SLP, IRL1, and `1+IHT. The black area represents
the couple (m, k) for which we had 100% of support recovery. Note
that the area for k > m is not admissible. The red line shows the
level bound of 90% of support recovery, and the magenta line 50%
respectively.
Bottom two subfigures: Comparison of phase transition diagrams for
BP (dark blue, dotted), `1+SLP (red), IRL1 (green, dash-dotted), and
`1+IHT (magenta, dashed). The level bound of 50% and 90% as it
is displayed in the top four subfigures is compared in the bottom two
subfigures respectively. The methods `1+IHT and `1+SLP provide
highest stability.

115

Chapter 4

Acceleration Techniques for Sparse
Recovery Algorithms

In an environment where more and more data is routinely produced, and the need
for higher precision and more detailed results is constantly growing in scientific and
industrial applications, also sparse recovery problems are gaining in size and quantity.
Since the last decade, where sparse recovery techniques were brought into focus, the
treatment of big data problems was always a companion and one of the main drivers
for new developments in this research field. In particular the accelerated progress of
computer technology, including growing memory sizes and processor speed, did not only
help to solve existing problems, but allowed to create new problems of immense data
size, leading to an spiral of better and faster solutions for larger and larger problems.
While Moore’s Law [137], which ensured growing technology for growing problem sizes,
may reach its limit soon, due to disproportional development and production costs of
new processors, distributed solutions like multi-core processors and cloud computing
obtained more attention in the last couple of years and broke their way in the today’s
quotidian technology.

Based on the fundamental algorithmic concepts that were presented in Section 2.4,
we propose in this section two acceleration techniques, which build upon two very
different fundamental settings.

If an encoder of a sparse recovery problem is very large but has a certain structure, it
is often the case that one can provide an explicit fast matrix-vector multiplication, e.g.,
for sparse matrices or randomly sampled partial Fourier/cosine transform matrices. In
such a case one considers a respective efficient implementation of the matrix-vector
multiplication and one does not need to store the full matrix in the memory. However,
this technique requires algorithms that do not transform the matrix directly but are
able to use the efficient matrix-vector multiplications, e.g., iterative hard and soft
thresholding (IHT, ISTA, FISTA). Contrarily, methods like iteratively reweighted least
squares (IRLS) need to solve a (weighted) least squares problem in each iteration.
This task, which is essentially the solution of a linear system, can be carried out by
using direct methods like Gaussian elimination in order to obtain an exact solution.

117

Chapter 4 Acceleration Techniques for Sparse Recovery Algorithms

However those methods work on the matrix directly, and one cannot apply efficient
matrix-vector multiplications. Thus, it is more appropriate to use iterative solvers
such as the conjugate gradient method (CG), which again have the drawback that
they produce in general only an approximate solution. In Section 4.1, we consider
IRLS, equipped by CG for the solution of the linear systems. Since a proper analysis
of the convergence of this method has not been reported in the literature so far, we
clarify in detail—specifically for problems involving matrices Φ with certain spectral
properties such as the Null Space Property—how accurately one needs to solve the
linear systems by means of CG in order to guarantee convergence and possibly also
asymptotic (super-)linear convergence rates. In addition to the analysis we present
numerical tests on simulated medium to large scale problems, where we show that the
algorithm has the potential of outperforming state-of-the-art methods such as IHT or
FISTA. The content of Section 4.1, was published by the author of this dissertation as
leading author in [82].
The second acceleration technique that we present, is motivated by the above

mentioned recent developments in parallel multi-core architectures and super-computing.
In contrast to the previous setting, we assume that the encoder cannot be stored and
evaluated efficiently. The only option is to represent it as a full matrix. If we want to
store such a full matrix on a computer with entries of the datatype double with, e.g.,
dimensions 50000× 100000, we need about 35 GB of memory, which does not fit in
the RAM of the most machines of today. Such a requirement leads to the necessity of
distributing data and calculations on more than one processor. Also, if the dimensions
of a problem are small, one may have to solve several thousands of that problem. Again,
one would be required to run many problems in parallel in order to get a result in a
reasonable time. While in the second scenario each problem is run on each core, and
“only” an efficient scheduling is needed, in the first scenario the problem is unsolvable as
long as one does not dispose of parallel algorithms. In Section 4.2, we recall respective
parallel solutions for the `1-regularized least squares problems (2.12) and (2.15). In this
scope, we present and analyze a tuned domain-decomposition method, and compare it
in numerical experiments to the state-of-the-art.

4.1 A Conjugate Gradient Based Acceleration of Iteratively
Re-weighted Least Squares Algorithms

Iteratively re-weighted least squares (IRLS) (Section 2.4.1) is one of the most immediate
and intuitive approaches towards non-standard optimizations such as (2.3), i.e.,

arg min
z∈FΦ(y)

‖z‖p`p ,

for the reason that it is based on a relatively simple reformulation of the initial poten-
tially non-convex and non-smooth minimization problem into a more familiar and easily

118

4.1 A CG Based Acceleration of Iteratively Re-weighted Least Squares Algorithms

solvable quadratic optimization. It is perhaps one of the first and popular algorithms be-
ginner practitioners consider for their first experiments. However, despite its simplicity,
versatility, and elegant analysis, IRLS does not outperform in general well-established
first order methods, which have been proposed recently for similar problems, such as
iterative hard thresholding (IHT, Section 2.4.3.2) [20] or fast iterative soft thresholding
algorithm (FISTA, Section 2.4.3.1) [13]; see the numerical experiments further below in
Section 4.1.4, Figure 4.1 and 4.4. In fact, its complexity very strongly depends on the
way the solution of the successive quadratic optimizations is addressed, whether one
uses preconditioned iterative methods and exploits fast matrix-vector multiplications or
just considers simple direct linear solvers. If the dimensions of the problem are not too
large or the involved matrices have no special structure allowing for fast matrix-vector
multiplications, then the use of a direct method such as Gaussian elimination can be
appropriate. When instead the dimension of the problem is large and one can take
advantage of the structure of the matrix to perform fast matrix-vector multiplications
(e.g., for partial Fourier or partial circulant matrices), then it is appropriate to use
iterative solvers such as the conjugate gradient method (CG). The use of CG in the
implementation of IRLS is appearing, for instance, in [188] towards total variation
minimization and in [189] towards `1-norm minimization. However, the price to pay is
that such solvers will return only an approximate solution whose precision depends
on the number of iterations. A proper analysis of the convergence of the perturbed
method in this case has not been reported in the literature so far. Thus, we clarify
in this section how accurately one needs to solve the quadratic problems by means
of CG in order to guarantee convergence and possibly also asymptotic (super-)linear
convergence rates.

Besides analyzing the effect of CG in an IRLS for problems of the type (2.3), we
further extend it in Section 4.1.3 to a class of problems of the type (2.39), i.e.,

arg min
z∈RN

(
Fp,λ(z) := ||z||p`p + 1

2λ ||Φz − y||
2
`2

)
,

for 0 < p ≤ 1, and λ > 0, used for sparse recovery in signal processing. The problem is
equivalent to the `p-regularized least squares problem (2.14), if “2λ” is replaced by “λ”.
In order to ease the cross-reading with [82], we prefer to use the formulation (2.39) in
this section. In the work [120, 189, 190] a convergence analysis of IRLS towards the
solution of (2.39) has been carried out with two limitations:

1. In [120] the authors do not consider the use of an iterative algorithm to solve the
appearing system of linear equations and they do not show the behavior of the
algorithm when the measurements y are given with additional noise;

2. Also in [189, 190] a precise analysis of convergence is missing when iterative

119

Chapter 4 Acceleration Techniques for Sparse Recovery Algorithms

methods are used to solve the intermediate sequence of systems of linear equations.
Furthermore the non-convex case of p < 1 is not specifically addressed.

Regarding these gaps, we contribute in this section by

• giving a proper analysis of the convergence when inaccurate CG solutions are
used;

• extending the results of convergence in [189, 190] to the case of 0 < p < 1 by
combining our analysis with findings in [158, 195];

• performing numerical tests which evaluate possible speedups via the CG method,
also taking problems into consideration where measurements may be affected by
noise.

Our work on CG accelerated IRLS for (2.39) does not analytically address rates of
convergence because this turned out to be a very technical task.

As mentioned above, we illustrate the theoretical results of this section by several
numerical experiments. In order to emphasize the value of those experiments, we
anticipate the main outcome and briefly comment it: We first show that our versions
of IRLS yield significant improvements in terms of computational time and may out-
perform state-of-the-art first order methods such as IHT and FISTA, especially in
high dimensional problems (N ≥ 105). These results are somehow both surprising and
counterintuitive as it is well-known that first order methods should be preferred in
higher dimension. However, they can be easily explained by observing that in certain
regimes preconditioning in the conjugate gradient method (as we show at the end of
Subsection 4.1.4.3) turns out to be extremely efficient. This is perhaps not a completely
new discovery, as benefits of preconditioning in IRLS have been reported already in
minimization problems involving total variation terms [188]. The second significant
outcome of our experiments is that CG-IRLS not only is faster than state-of-the-art first
order methods, but also shows higher recovery rates, i.e., requires less measurements
for successful sparse recovery. This will be demonstrated with corresponding phase
transition diagrams of empirical success rates (Figure 4.3).

In the following, we revisit conjugate gradient methods in Section 4.1.1, before turning
to the description and analysis of a CG accelerated IRLS for (2.3) in Section 4.1.2, and
for (2.39) in Section 4.1.3. We conclude with the numerical simulations in Section 4.1.4.

4.1.1 Conjugate Gradient Methods Revisited
We summarize the fundamental formulation and respective convergence results of
conjugate gradient methods here, in order to facilitate the reading and to provide

120

4.1 A CG Based Acceleration of Iteratively Re-weighted Least Squares Algorithms

a proper notation of the variables that are used in the CG algorithm for the later
analysis.

4.1.1.1 Conjugate Gradient Method (CG)

The CG method was originally proposed by Stiefel and Hestenes in [108]. For a positive
definite matrix A ∈ RN×N the CG method solves the linear equation Ax = y or
equivalently the minimization problem

arg min
x∈RN

(
F (x) := 1

2x
∗Ax− x∗y

)
.

The algorithm is designed to iteratively compute the minimizer xi of F on the affine sub-
space Ṽi := x0+Vi with Vi being the Krylov subspace Vi := span{r0, Ar0, . . . , Ai−1r0} ⊂
RN , x0 ∈ RN a starting vector, and r0 := y −Ax0 (minimality property of CG).

Algorithm 11 Conjugate Gradient (CG) method
Input: initial vector x0 ∈ RN , matrix A ∈ RN×N , given vector y ∈ RN and optionally
a desired accuracy δ.
1: Set r0 = p0 = y −Ax0 and i = 0
2: while ri 6= 0 (or

∥∥ri∥∥`2 > δ) do
3: ai = 〈ri, pi〉`2/〈Api, pi〉`2
4: xi+1 = xi + aip

i

5: ri+1 = y −Axi+1

6: bi+1 = 〈Api, ri+1〉`2/〈Api, pi〉`2
7: pi+1 = ri+1 − bi+1p

i

8: i = i+ 1
9: end while

Roughly speaking, CG iteratively searches for a minimum of the functional F along
conjugate directions pi with respect to A, i.e., (pi)∗Apj = 0, j < i. Thus, in step
i + 1 of CG the new iterate xi+1 is found by minimizing F (xi + aip

i) with respect
to the scalar ai ∈ R along the search direction pi. Since we perform a minimization
in each iteration, this implies monotonicity of the iterates, F (xi+1) ≤ F (xi). If the
algorithm produces at some iteration a residual ri = 0, then a solution of the linear
system is found. Otherwise it produces a new conjugate direction pi. One can show
that the conjugate directions p0, . . . , pi−1 also span Vi. Since the conjugate directions
are linear independent, we have VN = RN (assumed that ri 6= 0, i = 0, . . . , N − 1).
Then, according to the above mentioned minimality property, the iterate xN is the
minimizer of F on RN , which means that CG terminates after at most N iterations.
Nevertheless, the algorithm can be stopped after a significantly smaller number of steps

121

Chapter 4 Acceleration Techniques for Sparse Recovery Algorithms

as soon as the machine precision is very high and theoretically convergence already
occurred. In view of propagation of errors in practice the algorithm may be run longer
than just N iterations though.
The following theorem establishes the convergence and the convergence rate of CG.

Theorem 4.1 ([157, Theorem 4.12])
Let the matrix A be positive definite. The Algorithm CG converges to the solution of
the system Ax = y after at most N steps. Moreover, the error xi − x is such that

∥∥∥A 1
2 (xi − x)

∥∥∥
`2
≤ 2ciA

1 + c2i
A

∥∥∥A 1
2 (x0 − x)

∥∥∥
`2
, with cA =

√
κA − 1
√
κA + 1 < 1,

where κA = σmax(A)
σmin(A) is the condition number of the matrix A and σmax(A) (resp.

σmin(A)) is the largest (resp. smallest) singular value of A.

Remark 4.2
Since κA ≥ 1, it follows that 0 ≤ cA < 1, and also 0 ≤ ciA < 1, for positive iteration
numbers i. From 0 < (1−ciA)2 = 1+c2i

A−2ciA, we immediately see that 2ciA/(1+c2i
A) < 1

for all i ∈ N, and obviously 2ciA/(1 + c2i
A)→ 0 for i→ +∞.

4.1.1.2 Modified Conjugate Gradient Method (MCG)

In the introduction towards the basic IRLS algorithm, in Section 2.4.1.1, we explained
that we have to solve in Step 2 of Algorithm 1 the weighted least-squares problem of
the form

x̂ = arg min
x∈FΦ(y)

‖x‖`2(w),

given Φ ∈ Rm×N with m ≤ N . As we show in the same section, the minimizer x̂ is
given explicitly by the (weighted) Moore-Penrose pseudo-inverse

x̂ = DΦ∗(ΦDΦ∗)−1y,

where D := diag [w−1
i]Ni=1. Hence, in order to determine x̂, we first solve the system

ΦDΦ∗θ = y, (4.1)

and then we compute x̂ = DΦ∗θ. Notice that the system (4.1) has the general form

BB∗θ = y, (4.2)

with B := ΦD
1
2 . We consider the application of CG to this system for the matrix A =

BB∗. This approach leads to the modified conjugate gradient (MCG) method, presented
in Algorithm 12, and proposed by J.T. King in [117]. It provides a sequence (θi)i∈N with

122

4.1 A CG Based Acceleration of Iteratively Re-weighted Least Squares Algorithms

θi ∈ Ui := span{y,BB∗y, . . . , (BB∗)i−1y}, the Krylov subspace associated to (4.2),
with the property that x̄i := B∗θi minimizes

∥∥x̄i − x̄∥∥`2 , where x̄ = arg min
x∈FB(y)

‖x‖`2 .

Finally, we compute x̂ = D
1
2 x̄.

Algorithm 12 Modified Conjugate Gradient (MCG) Method
Input: initial vector θ0 ∈ Rm, B ∈ Rm×N , y ∈ Rm, desired accuracy δ (op-
tional).
1: Set ρ0 = p0 = y and i = 0
2: while ρi 6= 0 (or

∥∥ρi∥∥`2 > δ) do
3: αi = 〈ρi, pi〉`2/‖B∗pi‖2`2
4: θi+1 = θi + αip

i

5: ρi+1 = y −BB∗θi+1

6: βi+1 = 〈B∗pi, B∗ρi+1〉`2/‖B∗pi‖2`2
7: pi+1 = ρi+1 − βi+1p

i

8: i = i+ 1
9: end while

10: Set x̄i+1 = B∗θi+1

The following theorem provides a precise rate of convergence of MCG. Additionally,
we emphasize the monotonic decrease of the error

∥∥x̂i − x̂∥∥`2(w), which we use below in
Lemma 4.19.
Theorem 4.3
Suppose the matrix B to be surjective. Then the sequence (x̄i)i∈N generated by the
Algorithm MCG converges to x̄ = B∗(BB∗)−1y in at most N steps, and

∥∥∥x̄i − x̄∥∥∥
`2
≤ 2ciBB∗

1 + c2i
BB∗

∥∥∥x̄0 − x̄
∥∥∥
`2
, with cBB∗ < 1, (4.3)

for all i ≥ 0, where cBB∗ =
√
κ(BB∗)−1√
κ(BB∗)+1

= σmax(B)−σmin(B)
σmax(B)+σmin(B) is defined as in Theorem 4.1,

and x̄0 = B∗θ0 is the initial vector. Moreover, by setting D := diag [w−1
i]Ni=1, and

x̂i = D
1
2 x̄i as well as x̂ = D

1
2 x̄, we obtain

∥∥∥x̂i − x̂∥∥∥
`2(w)

≤ 2ciBB∗
1 + c2i

BB∗

∥∥∥x̂0 − x̂
∥∥∥
`2(w)

. (4.4)

Proof. By Theorem 4.1, we have

∥∥∥(BB∗) 1
2 (θi − θ)

∥∥∥
`2
≤ 2ciBB∗

1 + c2i
BB∗

∥∥∥(BB∗) 1
2 (θ0 − θ)

∥∥∥
`2
,

123

Chapter 4 Acceleration Techniques for Sparse Recovery Algorithms

for θ as given in (4.2). By the identity∥∥∥(BB∗) 1
2 (θi − θ)

∥∥∥2

`2
= 〈(BB∗)

1
2 (θi − θ), (BB∗)

1
2 (θi − θ)〉`2 = 〈(BB∗)(θi − θ), θi − θ〉`2

= 〈B∗(θi − θ), B∗(θi − θ)〉`2 = 〈x̄i − x̄, x̄i − x̄〉`2 =
∥∥∥x̄i − x̄∥∥∥2

`2
,

we obtain the assertion (4.3). Inequality (4.4) follows then from the definition of
the diagonal matrix D and the weighted norm `2(w). The fact that the coefficient
2ciBB∗/(1 + c2i

BB∗) < 1 for all i ∈ N, and 2ciBB∗/(1 + c2i
BB∗)→ 0 for i→∞ follows as in

Remark 4.2. 2

4.1.2 Conjugate Gradient Accelerated IRLS Method for `p-norm
Minimization

While we thoroughly introduced the basic IRLS algorithm of [48] in Section 2.4.1.1,
we present in the following the modified algorithm that uses CG for the solution of
the successive quadratic optimization problems. Afterwards, we provide the results
concerning the convergence and the rate of convergence of the modified algorithm.
As crucial feature, we give bounds on the accuracies of the (inexact) CG solutions
of the intermediate least squares problems, which ensure convergence of the overall
IRLS method. In particular, these tolerances must depend on the current iteration and
should tend to zero with increasing iteration count. In fact, without this condition,
one may observe divergence of the method. The proofs of the theorems are developed
into several lemmas.
We recall that p is a fixed parameter such that 0 < p ≤ 1. At some points of the

presentation, we explicitly switch to the case of p = 1 to prove additional properties of
the algorithm which are due to the convexity of the `1-norm minimization problem.

Instead of solving exactly the system of linear equations (2.28) occurring in Step 2
of Algorithm 1 (IRLS), we substitute the exact solution by the approximate solution
provided by the iterative algorithm MCG described in Section 4.1.1.2. We shall set a
tolerance toln+1, which provides an upper threshold for the error between the optimal
and the approximate solution in the weighted `2-norm. In the following paragraph, we
give a precise and implementable condition on the sequence (toln)n∈N of the tolerances
that guarantees convergence of the modified IRLS presented as Algorithm 13 below.

In contrast to Algorithm 1, the value β in Step 3 is introduced to obtain flexibility in
tuning the performance of the algorithm. While we prove in Theorem 4.4 convergence
for any positive value of β, Theorem 4.4(iii) guarantees instance optimality only for

β <
(

1−γ
1+γ

K+1−k
N

) 1
p in the case that lim

n→∞
εn 6= 0. Nevertheless in practice, choices of

β which do not necessarily fulfill this condition may work very well. Section 4.1.4
investigates good choices of β numerically. This relation for β also sheds light on the

124

4.1 A CG Based Acceleration of Iteratively Re-weighted Least Squares Algorithms

Algorithm 13 Iteratively Re-weighted Least Squares combined with CG (CG-IRLS)
Set w0 := (1, . . . , 1), ε0 := 1, β ∈ (0, 1]
1: while εn 6= 0 do
2: Compute x̃n+1 by means of MCG s.t. ‖x̂n+1 − x̃n+1‖2`2(wn) ≤ toln+1, where

x̂n+1 := arg min
x∈FΦ(y)

Jp(x,wn, εn) = arg min
z∈FΦ(y)

‖z‖`2(wn). Use the last iterate θn,i

corresponding to x̃n = T ∗θn,i from MCG of the previous IRLS iteration as initial
vector θ0 = θn+1,0 for the present run of MCG.

3: εn+1 := min(εn, βr(x̃n+1)K+1)
4: wn+1 := arg min

w>0
Jp(x̃n+1, w, εn+1), i.e.,

wn+1
j = [|x̃n+1

j |2 + (εn+1)2]−
2−p

2 , j = 1, . . . , N
5: end while

role of the parameter K. Furthermore, we see in Theorem 4.4 that Φ has to satisfy the
(K, γK)-NSP.

From now on, we fix the notation x̂n+1 for the exact solution in Step 2 of Algorithm 13,
and x̃n+1,i for its approximate solution in the i-th iteration of Algorithm MCG. We
have to make sure that ‖x̂n+1− x̃n+1,i‖2`2(wn) is sufficiently small to fall below the given
tolerance. To this end, we could use the bound on the error provided by (4.4), but this
has the following two unpractical drawbacks:

1. The vector x̂ = x̂n+1 is not known a priori;

2. The computation of the condition number cTT ∗ is possible, but it requires the
computation of eigenvalues with additional computational cost, which we prefer
to avoid.

Hence, we propose an alternative estimate of the error in order to guarantee ‖x̂n+1−
x̃n+1‖2`2(wn) ≤ toln+1. We use the notation of Algorithm MCG, but add an additional
upper index for the outer IRLS iteration, e.g., θn+1,i is the θi in the n + 1-th IRLS
iteration. After i steps of MCG, we have by means of (2.28) and the definition of Dn

in (2.29) that

‖x̂n+1 − x̃n+1,i‖2`2(wn) = ‖DnΦ∗(ΦDnΦ∗)−1y −DnΦ∗θn+1,i‖2`2(wn).

125

Chapter 4 Acceleration Techniques for Sparse Recovery Algorithms

We use θn+1,i = (ΦDnΦ∗)−1(y − ρn+1,i) from Step 5 of MCG to obtain

‖x̂n+1 − x̃n+1,i‖2`2(wn) = ‖D
1
2
nΦ∗(ΦDnΦ∗)−1ρn+1,i‖2`2

≤ ‖Dn‖‖Φ‖2‖(ΦDnΦ∗)−1‖2‖ρn+1,i‖2`2

=
max

1≤`≤N

(
|x̃`|2 + (εn)2

) 2−p
2 ‖Φ‖2

λmin (ΦDnΦ∗) ‖ρn+1,i‖2`2

≤
(

1 + max
1≤`≤N

(|x̃n` |
εn

)2) 2−p
2 ‖Φ‖2

σmin (Φ)‖ρ
n+1,i‖2`2 .

The last inequality above results from λmin (ΦDnΦ∗) = σ2
min

(
ΦD

1
2
n

)
and

σmin

(
ΦD

1
2
n

)
≥ σmin (Φ)σmin

(
D

1
2
n

)
≥ (εn)2−pσmin (Φ) .

Since εn and x̃n are known from the previous iteration, and ‖ρn+1,i‖`2 is explicitly
calculated within the MCG algorithm, ‖x̂n+1 − x̃n+1,i‖2`2(wn) ≤ toln+1 can be achieved
by iterating until

‖ρn+1,i‖2`2 ≤
σmin (Φ)(

1 + max
1≤`≤N

(|x̃n
`
|

εn

)2) 2−p
2
‖Φ‖2

toln+1. (4.5)

Consequently, we shall use the minimal i ∈ N such that the above inequality is valid
and set x̃n+1 := x̃n+1,i, which will be the standard notation for the approximate solution.

In inequality (4.5), the computation of σmin (Φ) and ‖Φ‖ is necessary. The computa-
tion of these constants might be demanding, but has to be performed only once before
the algorithm starts. Furthermore, in practice it is sufficient to compute approximations
of these values and therefore these operations are not critical for the computation time
of the algorithm.

4.1.2.1 Convergence Results

After introducing Algorithm 13, we state below the two main results of this section.
Theorem 4.4 shows the convergence of the algorithm to a limit point that obeys certain
error guarantees with respect to the solution of (2.3). Below K denotes the index used
in the ε-update rule, i.e., Step 3 of Algorithm 13.

126

4.1 A CG Based Acceleration of Iteratively Re-weighted Least Squares Algorithms

Theorem 4.4
Let 0 < p ≤ 1. Assume K is such that Φ satisfies the (K, γK)-NSP (see Definition 2.5)
with γK < 1. If toln+1 in Algorithm 13 is chosen such that

√
toln+1 ≤

√√√√(cn
2

)2
+ 2an+1

pW̄ 2
n+1
− cn

2 , (4.6)

where

cn := 2Wn

(
‖x̃n‖`2(wn−1) +

√
toln

)
, with (4.7)

W̄n :=

√√√√max
i
|x̃n−1
i |2−p + (εn−1)2−p

(εn)2−p , and Wn :=
∥∥∥∥D− 1

2
n D

1
2
n−1

∥∥∥∥ , (4.8)

for a sequence (an)n∈N, which fulfills an ≥ 0 for all n ∈ N, and
∞∑
i=0

an <∞, then, for

each y ∈ Rm, Algorithm 13 produces a non-empty set of accumulation points Zp(y).
Define ε := lim

n→∞
εn, then the following holds:

(i) If ε = 0, then Zp(y) consists of a single K-sparse vector x̄, which is the unique
`p-minimizer in FΦ(y). Moreover, we have for any x ∈ FΦ(y):

‖x− x̄‖p`p ≤ c1σK(x)`p , with c1 := 21 + γ

1− γ . (4.9)

(ii) If ε > 0, then for each x̄ ∈ Zp(y) 6= ∅, we have 〈x̄, η〉ŵ(x̄,ε,p) = 0 for all η ∈ NΦ,

where ŵ(x̄, ε, p) =
[∣∣|x̄i|2 + ε2∣∣− 2−p

2

]N
i=1

. Moreover, in the case of p = 1, x̄ is the

single element of Zp(y) and x̄ = xε,1 := arg min
x∈FΦ(y)

N∑
j=1
|x2
j + ε2|

1
2 (compare (4.27)).

(iii) Denote by Xε,p(y) the set of global minimizers of fε,p(x) :=
N∑
j=1
|x2
j + ε2|

p
2 on

FΦ(y). If ε > 0 and x̄ ∈ Zp(y) ∩ Xε,p(y), then for each x ∈ FΦ(y) and any

β <
(

1−γ
1+γ

K+1−k
N

) 1
p , we have

‖x− x̄‖p`p ≤ c2σk(x)`p , with c2 := 1 + γ

1− γ

 2 + Nβp

K+1−k

1− Nβp

K+1−k
1+γ
1−γ

 .
Remark 4.5
Notice that (4.6) is an implicit bound on toln+1 since it depends on εn+1, which means
that in practice this value has to be updated in the MCG loop of the algorithm.

127

Chapter 4 Acceleration Techniques for Sparse Recovery Algorithms

To be precise, after the update of θn+1,i+1 in Step 4 of Algorithm 12 we compute
x̃n+1,i+1 = B∗θn+1,i+1 in each iteration i of the MCG loop. If x̃n+1,i+1 is K-sparse
for some iteration i, then εn+1 = εn+1,i+1 = min

{
εn, βr

(
x̃n+1,i+1)

K+1

}
= 0 and

toln+1 = 0 by (4.7) and (4.8). In this case, MCG and IRLS are stopped by definition.
The usage of this implicit bound is not efficient in practice since the computation of
r(x̃n+1,i+1)K+1 requires a sorting of N elements in each iteration of the MCG loop.
While the implicit rule is required for the convergence analysis of the algorithm, we
demonstrate in Section 4.1.4.2 that an explicit rule is sufficient for convergence in
practice, and more efficient in terms of computational time.

Knowing that the algorithm converges and leads to an adequate solution, one is also
interested in how fast one approaches this solution. Theorem 4.6 states that a linear
rate of convergence can be established in the case of p = 1. In the case of 0 < p < 1
this rate is even asymptotically super-linear.

Theorem 4.6
Assume Φ satisfies the NSP of order K with constant γ such that 0 < γ < 1− 2

K+2 ,
and that FΦ(y) contains a k-sparse vector x∗. Define Λ := supp(x∗). Suppose that
k < K − 2γ

1−γ and 0 < ν < 1 are such that

µ := γ(1 + γ)

(1− ν)p(2−p)
(

min
j∈Λ
|x∗j |

)p(1−p)
(

1 + (N − k)βp

K + 1− k

)2−p
< 1,

R∗ :=
(
νmin
j∈Λ
|x∗j |

)p
,

µ̃(R∗)1−p ≤ 1, (4.10)

for some µ̃ satisfying µ < µ̃ < 1. Define the error

En := ‖x̃n − x∗‖p`p .

Assume there exists n0 such that
En0 ≤ R∗.

If an+1 and toln+1 are chosen as in Theorem 4.4 with the additional bound

toln+1 ≤
(

(µ̃− µ)E2−p
n

(NC)
2−p

2

) 2
p

, (4.11)

then for all n ≥ n0, we have

En+1 ≤ µE2−p
n + (NC)1− p2 (toln+1)

p
2 , (4.12)

128

4.1 A CG Based Acceleration of Iteratively Re-weighted Least Squares Algorithms

and
En+1 ≤ µ̃E2−p

n , (4.13)

where C := 3
∞∑
n=1

an + Jp
(
x̃1, w0, ε0). Consequently, x̃n converges linearly to x∗ in the

case of p = 1. The convergence is super-linear in the case of 0 < p < 1.

Remark 4.7
Note that the second bound in (4.11), which implies (4.13), is only of theoretical
nature. Since the value of En is unknown it cannot be computed in an implementation.
However, heuristic choices of toln+1 may fulfill this bound. Thus, in practice one can
only guarantee the “asymptotic” (super-)linear convergence (4.12).

In the remainder of this section we aim to prove both results by means of some
technical lemmas which are reported in Section 4.1.2.2 and Section 4.1.2.3.

4.1.2.2 Preliminary Results Concerning the Functional Jp(x,w, ε)

One important issue in the investigation of the dynamics of Algorithm 13 is the
relationship between the weighted norm of an iterate and the weighted norm of its
predecessor. In the following lemma, we present some helpful estimates.
Lemma 4.8
Let x̂n, x̂n+1, x̃n, x̃n+1 and the respective tolerances toln and toln+1 as defined in
Algorithm 13. Then the inequalities∣∣∣∣∥∥∥x̂n+1

∥∥∥
`2(wn)

−
∥∥∥x̃n+1

∥∥∥
`2(wn)

∣∣∣∣ ≤ √toln+1, and (4.14)∥∥∥x̂n+1
∥∥∥
`2(wn)

≤Wn

(
‖x̃n‖`2(wn−1) +

√
toln

)
, (4.15)

hold for all n ≥ 1, where Wn :=
∥∥∥∥D− 1

2
n D

1
2
n−1

∥∥∥∥.
Proof. Inequality (4.14) is a direct consequence of the triangle inequality for norms
and the property that

∥∥x̂n+1 − x̃n+1∥∥
`2(wn) ≤

√
toln+1 of Step 2 in Algorithm 13.

In order to prove inequality (4.15), we first notice that x̂n, x̂n+1 ∈ FΦ(y). Using that
x̂n+1 is the minimizer of ‖·‖`2(wn) on FΦ(y), we obtain∥∥∥x̂n+1

∥∥∥
`2(wn)

≤ ‖x̂n‖`2(wn) =
∥∥∥∥D− 1

2
n x̂n

∥∥∥∥
`2

=
∥∥∥∥D− 1

2
n D

1
2
n−1D

− 1
2

n−1x̂
n

∥∥∥∥
`2

≤
∥∥∥∥D− 1

2
n D

1
2
n−1

∥∥∥∥ ∥∥∥∥D− 1
2

n−1x̂
n

∥∥∥∥
`2

= Wn ‖x̂n‖`2(wn−1)

≤Wn

(
‖x̃n‖`2(wn−1) +

√
toln

)
,

where the last inequality is due to (4.14). 2

129

Chapter 4 Acceleration Techniques for Sparse Recovery Algorithms

The functional Jp(x,w, ε) obeys the following monotonicity property.

Lemma 4.9
The inequalities

Jp
(
x̃n+1, wn+1, εn+1

)
≤ Jp

(
x̃n+1, wn, εn+1

)
≤ Jp

(
x̃n+1, wn, εn

)
. (4.16)

hold for all n ≥ 0.

Proof. The first inequality follows from the minimization property of wn+1. The
second inequality follows from εn+1 ≤ εn. 2

The following lemma describes how the difference of the functional, evaluated in the
exact and the approximated solution can be controlled by a positive scalar an+1 and
an appropriately chosen tolerance toln+1.
Lemma 4.10
Let an+1 be a positive scalar, x̃n+1, wn+1, and εn+1 as described in Algorithm 13, and
x̂n+1 = arg min

x∈FΦ(y)
Jp (x,wn, εn) . If we choose toln as in (4.6), then

∣∣∣Jp (x̂n+1, wn+1, εn+1
)
− Jp

(
x̃n+1, wn+1, εn+1

)∣∣∣ ≤ an+1, (4.17)∣∣∣Jp (x̂n+1, wn, εn
)
− Jp

(
x̃n+1, wn, εn

)∣∣∣ ≤ an+1, and (4.18)

Jp
(
x̂n+1, wn+1, εn+1

)
≤ Jp

(
x̂n+1, wn, εn

)
+ 2an+1. (4.19)

Proof. The core of this proof is to find a bound on the quotient of the weights from
one iteration step to the next and then to use the bound of the difference between
x̂n+1 and x̃n+1 in the `2(wn)-norm by toln+1. Starting with the definition of Wn+1 in
Lemma 4.8, the quotient of two successive weights can be estimated by

Wn+1 =
∥∥∥∥D− 1

2
n+1D

1
2
n

∥∥∥∥ =

√√√√ max
`=1,...,N

wn+1
`

wn`
=

√√√√√√ max
`=1,...,N

(
|x̃n` |2 + (εn)2) 2−p

2(
|x̃n+1
` |2 + (εn+1)2

) 2−p
2

≤

√√√√ max
`=1,...,N

|x̃n` |2−p + (εn)2−p

(εn+1)2−p = W̄n+1, (4.20)

where W̄n+1 was defined in (4.8). By choosing toln+1 as in (4.6), we obtain∣∣∣Jp (x̂n+1, wn+1, εn+1
)
− Jp

(
x̃n+1, wn+1, εn+1

)∣∣∣
=

∣∣∣∣∣∣p2
N∑
j=1

(
|x̂n+1
j |2 − |x̃n+1

j |2
)
wn+1
j

∣∣∣∣∣∣

130

4.1 A CG Based Acceleration of Iteratively Re-weighted Least Squares Algorithms

=

∣∣∣∣∣∣p2
N∑
j=1

(
|x̂n+1
j | − |x̃n+1

j |
) (
|x̂n+1
j |+ |x̃n+1

j |
)
wn+1
j

∣∣∣∣∣∣
≤ p

2

 N∑
j=1

∣∣∣x̂n+1
j − x̃n+1

j

∣∣∣2wn+1
j

 1
2
 N∑
j=1

∣∣∣|x̂n+1
j |+ |x̃n+1

j |
∣∣∣2wn+1

j

 1
2

≤ p

2 max
`=1,...,N

wn+1
`

wn`

 N∑
j=1

∣∣∣x̂n+1
j − x̃n+1

j

∣∣∣2wnj
 1

2
 N∑
j=1

∣∣∣|x̂n+1
j |+ |x̃n+1

j |
∣∣∣2wnj

 1
2

≤ p

2W̄
2
n+1

∥∥∥x̂n+1 − x̃n+1
∥∥∥
`2(wn)

∥∥∥|x̂n+1|+ |x̃n+1|
∥∥∥
`2(wn)

≤ p

2W̄
2
n+1

√
toln+1

(∥∥∥x̂n+1
∥∥∥
`2(wn)

+
∥∥∥x̃n+1

∥∥∥
`2(wn)

)
≤ p

2W̄
2
n+1

√
toln+1

[
2Wn

(
‖x̃n‖`2(wn−1) +

√
toln

)
+
√
toln+1

]
≤ p

2W̄
2
n+1

√
toln+1

[
cn +

√
toln+1

]
≤ an+1,

where we have used the Cauchy-Schwarz inequality in the first inequality, (4.14) and
(4.15) in the fifth inequality, (4.20) in the third inequality, the definition of cn in (4.7),
and the Assumption (4.6) on toln+1 in the last inequality.
Since 1 ≤ W̄n+1, we obtain (4.18) by∣∣∣Jp (x̃n+1, wn, εn

)
− Jp

(
x̂n+1, wn, εn

)∣∣∣
=

∣∣∣∣∣∣p2
N∑
j=1

(
|x̂n+1
j |2 − |x̃n+1

j |2
)
wnj

∣∣∣∣∣∣
≤ p

2

 N∑
j=1

∣∣∣x̂n+1
j − x̃n+1

j

∣∣∣2wnj
 1

2
 N∑
j=1

∣∣∣|x̂n+1
j |+ |x̃n+1

j |
∣∣∣2wnj

 1
2

≤ p

2W̄
2
n+1

 N∑
j=1

∣∣∣x̂n+1
j − x̃n+1

j

∣∣∣2wnj
 1

2
 N∑
j=1

∣∣∣|x̂n+1
j |+ |x̃n+1

j |
∣∣∣2wnj

 1
2

≤ p

2W̄
2
n+1

√
toln+1

[
cn +

√
toln+1

]
≤ an+1,

with the same arguments as above. Lemma 4.9 yields

Jp
(
x̂n+1, wn+1, εn+1

)
≤ Jp

(
x̃n+1, wn+1, εn+1

)
+ an+1 ≤ Jp

(
x̃n+1, wn, εn+1

)
+ an+1

≤ Jp
(
x̃n+1, wn, εn

)
+ an+1 ≤ Jp

(
x̂n+1, wn, εn

)
+ 2an+1,

131

Chapter 4 Acceleration Techniques for Sparse Recovery Algorithms

where the first inequality follows from (4.17), the second and third by (4.16), and the
last by (4.18). 2

In the above lemma, we showed that the error of the evaluations of the functional
Jp on the approximate solution x̃n and the weighted `2-minimizer x̂n can be bounded
by choosing an appropriate tolerance in the algorithm. This result will be used to
show that the difference between the iterates x̃n+1 and x̃n becomes arbitrarily small for
n→∞, as long as we choose the sequence (an)n∈N summable. This will be the main
result of this section. Before, we prove some further auxiliary statements concerning
the functional Jp(x,w, ε) and the iterates x̃n and wn.

Lemma 4.11
Let (an)n∈N, an ∈ R+, be a summable sequence with A :=

∞∑
n=1

an < ∞, and define

C := 3A+ Jp
(
x̃1, w0, ε0) as in Theorem 4.6. For each n ≥ 1 we have

Jp
(
x̃n+1, wn+1, εn+1

)
=

N∑
j=1

(
|x̃n+1
j |2 + (εn+1)2

) p
2 , (4.21)

‖x̃n‖p`p ≤ C, (4.22)

wnj ≥ C
− 2−p

p , j = 1, . . . , N, and (4.23)

‖x‖`2 ≤ C
2−p
2p ‖x‖`2(wn) for all x ∈ RN . (4.24)

Proof. Identity (4.21) follows by insertion of the definition of wn+1 in Step 4 of
Algorithm 13.

By the minimizing property of x̂n+1 and the fact that x̂n ∈ FΦ(y), we have

Jp
(
x̂n+1, wn, εn

)
≤ Jp (x̂n, wn, εn) ,

and thus, together with (4.19), it follows that

Jp
(
x̂n+1, wn+1, εn+1

)
≤ Jp

(
x̂n+1, wn, εn

)
+ 2an+1 ≤ Jp (x̂n, wn, εn) + 2an+1.

Hence, the telescoping sum
n∑
k=1

(
Jp
(
x̂k+1, wk+1, εk+1

)
− Jp

(
x̂k, wk, εk

))
≤ 2

n∑
k=1

ak+1

leads to the estimate

Jp
(
x̂n+1, wn+1, εn+1

)
≤ Jp

(
x̂1, w1, ε1

)
+ 2A ≤ Jp

(
x̃1, w0, ε0

)
+ 2A+ a1.

132

4.1 A CG Based Acceleration of Iteratively Re-weighted Least Squares Algorithms

Inequality (4.22) then follows from (4.17) and

∥∥∥x̃n+1
∥∥∥p
`p
≤

N∑
j=1

[
|x̃n+1
j |2 + (εn+1)2

] p
2 = Jp

(
x̃n+1, wn+1, εn+1

)
≤ Jp

(
x̂n+1, wn+1, εn+1

)
+ an+1 ≤ C, for all n ≥ 1.

Consequently, the bound (4.23) follows from

(wnj)−
p

2−p ≤ 2− p
p

(wnj)−
p

2−p ≤ Jp (x̃n, wn, εn) ≤ C.

Inequality (4.24) is a direct consequence of (4.23). 2

Notice that (4.22) states the boundedness of the iterates. The lower bound (4.23)
on the weights wn will become useful in the proof of Lemma 4.12.

By using the estimates collected so far, we can adapt [48, Lemma 5.1] to our situation.
First, we shall prove that the differences between the n-th `2(wn−1)-minimizer and its
successor become arbitrarily small.

Lemma 4.12
Given a summable sequence (an)n∈N, an ∈ R+, the sequence (x̂n)n∈N satisfies

∞∑
n=1

∥∥∥x̂n+1 − x̂n
∥∥∥2

`2
≤ 2
p
C

2
p ,

where C is the constant of Lemma 4.11 and x̂n = arg min
x∈FΦ(y)

Jp
(
x,wn−1, εn−1). As a

consequence we have
lim
n→∞

∥∥∥x̂n − x̂n+1
∥∥∥
`2

= 0. (4.25)

Proof. We have

2
p

[
Jp (x̂n, wn, εn)− Jp

(
x̂n+1, wn+1, εn+1

)
+ 2an+1

]
≥ 2
p

[
Jp (x̂n, wn, εn)− Jp

(
x̂n+1, wn, εn

)]
= 〈x̂n, x̂n〉wn −

〈
x̂n+1, x̂n+1

〉
wn

=
〈
x̂n + x̂n+1, x̂n − x̂n+1

〉
wn

=
〈
x̂n − x̂n+1, x̂n − x̂n+1

〉
wn

=
N∑
i=1

wnj |x̂nj − x̂n+1
j |2

≥ C−
2−p
p

∥∥∥x̂n − x̂n+1
∥∥∥2

`2
.

133

Chapter 4 Acceleration Techniques for Sparse Recovery Algorithms

Here we used the fact that x̂n − x̂n+1 ∈ NΦ and therefore,
〈
x̂n+1, x̂n − x̂n+1〉 = 0 and

in the last step we applied the bound (4.24). Summing these inequalities over n ≥ 1,
we arrive at
N∑
n=1

∥∥∥x̂n − x̂n+1
∥∥∥2

`2
≤ C

2−p
p

N∑
n=1

2
p

[
Jp (x̂n, wn, εn)− Jp

(
x̂n+1, wn+1, εn+1

)
+ 2an+1

]

≤ 2
p
C

2−p
p

[
Jp
(
x̂1, w1, ε1

)
+

N∑
n=1

2an+1

]
≤ 2
p
C

2
p .

Letting N →∞ yields the desired result. 2

The following lemma will play a major role in our proof of convergence since it
shows that not only (4.25) holds but that also the difference between successive iterates
becomes arbitrarily small.

Lemma 4.13
Let x̃n be as described in Algorithm 13 and (an)n∈N be a summable sequence. Then

lim
n→∞

∥∥∥x̃n − x̃n+1
∥∥∥
`2

= 0.

Proof. By (4.24) of Lemma 4.11 and the condition (4.6) on toln, we have

‖x̂n − x̃n‖`2 ≤ C
2−p
2p ‖x̂n − x̃n‖`2(wn−1) ≤ C

2−p
2p
√
toln

≤ C
2−p
2p

−cn2 +

√(
cn
2

)2
+
√

2an
pW̄ 2

n

 ≤ C 2−p
2p

√
2
p

√
an

since W̄n ≥ 1 as defined in Lemma 4.10. Since (an)n∈N is summable, we conclude that

lim
n→∞

‖x̂n − x̃n‖`2 = 0. (4.26)

Together with Lemma 4.12 we can prove our statement:

lim
n→∞

∥∥∥x̃n − x̃n+1
∥∥∥
`2

= lim
n→∞

∥∥∥x̃n − x̂n + x̂n − x̂n+1 + x̂n+1 − x̃n+1
∥∥∥
`2

≤ lim
n→∞

‖x̃n − x̂n‖`2 + lim
n→∞

∥∥∥x̂n − x̂n+1
∥∥∥
`2

+ lim
n→∞

∥∥∥x̂n+1 − x̃n+1
∥∥∥
`2

= 0,

where the first and last term vanish because of (4.26) and the other term due to
(4.25). 2

134

4.1 A CG Based Acceleration of Iteratively Re-weighted Least Squares Algorithms

4.1.2.3 The Functional fε,p(z)

In this section, we introduce an auxiliary functional which is useful for the proof of
convergence. From the monotonicity of εn, we know that ε = lim

n→∞
εn exists and is

nonnegative. We introduce the functional

fε,p(x) :=
N∑
j=1
|x2
j + ε2|

p
2 .

Note that if we would know that x̃n converges to x, then in view of (4.21), fε,p(x)
would be the limit of Jp(x̃n, wn, εn). When ε > 0, the Hessian is given by H(fε,p)(x) =

diag
[
p
x2
j (p−1)+ε2

|x2
j+ε2|

4−p
2

]N
i=1

. Thus, in particular, H(fε,1)(x) is strictly positive definite, so

that fε,1 is strictly convex and therefore has a unique minimizer

xε,1 := arg min
x∈FΦ(y)

fε,1(x). (4.27)

In the case of 0 < p < 1, we denote by Xε,p(y) the set of global minimizers of fε,p on
FΦ(y). For both cases, the minimizers are characterized by the following lemma.

Lemma 4.14
Let ε > 0 and x ∈ FΦ(y). If x = xε,1 or x ∈ Xε,p(y), then 〈x, η〉ŵ(x,ε,p) = 0 for all

η ∈ NΦ, where ŵ(x, ε, p) =
[∣∣|xi|2 + ε2∣∣− 2−p

2

]N
i=1

. In the case of p = 1 also the converse
is true.

Proof. The proof is an adaptation of [48, Lemma 5.2, Section 7], and is presented
here for the sake of completeness.
“⇒”(in the case 0 < p ≤ 1)
Let x = xε,1 or x ∈ Xε,p(y), and η ∈ NΦ arbitrarily. Consider the function

Gε,p(t) := fε,p (x+ tη)− fε,p (x)

with its first derivative

G′ε,p(t) = p
N∑
i=1

xiηi + tη2
i

[|xi + tηi|2 + ε2]
2−p

2
.

Now Gε,p(0) = 0 and from the minimization property of fε,p(x), Gε,p(t) ≥ 0. Therefore,

0 = G′ε,p(0) =
N∑
i=1

xiηi[
x2
i + ε2] 2−p

2
= 〈x, η〉ŵ(x,ε,p) .

135

Chapter 4 Acceleration Techniques for Sparse Recovery Algorithms

“⇐”(only in the case p = 1)
Now let x ∈ FΦ(y) and 〈x, η〉ŵ(x,ε,1) = 0 for all η ∈ NΦ. We want to show that x is the
minimizer of fε,1 in FΦ(y). Consider the convex univariate function g(u) := [u2 + ε2]

1
2 .

For any point u0 we have from convexity that

[u2 + ε2]
1
2 ≥ [u2

0 + ε2]
1
2 + [u2

0 + ε2]−
1
2u0(u− u0)

because the right-hand-side is the linear function which is tangent to g at u0. It follows
that for every point v ∈ FΦ(y) we have

fε,1(v) ≥ fε,1(x) +
N∑
i=1

[x2
i + ε2]−

1
2xi(vi − xi) = fε,1(x) + 〈x, v − x〉ŵ(x,ε,1) = fε,1(x),

where we use the orthogonality condition and the fact that (v − x) ∈ NΦ. Since v was
chosen arbitrarily, x = xε,1 as claimed. 2

4.1.2.4 Proof of Convergence

By the results of the previous section, we are able to prove the convergence of Algo-
rithm 13. The proof is inspired by the ones of [48, Theorem 5.3, Theorem 7.7], see also
[84, Chapter 15.3], which we adapted to our case.

Proof (Proof of Theorem 4.4). Since 0 ≤ εn+1 ≤ εn the sequence (εn)n∈N always
converges to some ε > 0.

Case ε = 0: Following the first part of the proof of [48, Theorems 5.3 and 7.7],
where the boundedness of the sequence x̃n and the definition of εn is used, we can show
that there is a subsequence (x̃mj)j∈N of (x̃n)n∈N such that x̃mj → x̄ ∈ FΦ(y) and x̄ is
the unique `p-minimizer. It remains to show that also x̃n → x̄. To this end, we first
notice that x̃mj → x̄ and εmj → 0 imply Jp (x̃mj , wmj , εmj)→ ‖x̄‖p`p . The convergence
of Jp (x̃n, wn, εn) → ‖x̄‖p`p is established by the following argument: For each n ∈ N
there is exactly one i = i(n) such that mi < n ≤ mi+1. We use (4.19) and (4.17) to
estimate the telescoping sum

|Jp (x̃n, wn, εn)− Jp (x̃mi(n) , wmi(n) , εmi(n))|

≤
n−1∑
k=mi

∣∣∣Jp (x̃k+1, wk+1, εk+1
)
− Jp

(
x̃k, wk, εk

)∣∣∣ ≤ 4
n−1∑

k=mi(n)

ak+1.

Since
∑∞
k=0 ak <∞ this implies that

lim
n→∞

|Jp (x̃n, wn, εn)− Jp (x̃mi(n) , wmi(n) , εmi(n))| = 0

136

4.1 A CG Based Acceleration of Iteratively Re-weighted Least Squares Algorithms

so that
lim
n→∞

Jp (x̃n, wn, εn) = ‖x̄‖p`p .

Moreover (4.21) implies

Jp (x̃n, wn, εn)−N(εn)p ≤ ‖x̃n‖p`p ≤ Jp (x̃n, wn, εn) ,

and thus, ‖x̃n‖p`p → ‖x̄‖
p
`p
. Finally we invoke Lemma 2.6 with z′ = x̃n and z = x̄ to

obtain
lim sup
n→∞

‖x̃n − x̄‖p`p ≤
1 + γ

1− γ
(

lim
n→∞

‖x̃n‖p`p − ‖x̄‖
p
`p

)
= 0,

which completes the proof of x̃n → x̄ in this case. To see (4.9) and establish (i), invoke
Lemma 2.12.

Case ε > 0: By Lemma 4.11, we know that (x̃n)n∈N is a bounded sequence and
hence has accumulation points. Let (x̃mi) be any convergent subsequence of (x̃n)n∈N
and let x̄ ∈ Zp(y) its limit. By (4.26), we know that also x̄ ∈ FΦ(y). Following the
proof of [48, Theorem 5.3 and Theorem 7.7], one shows that 〈x̄, η〉ŵ(x̄,ε,p) = 0 for all
η ∈ NΦ, where ŵ(x̄, ε, p) is defined as in Lemma 4.14. In the case of p = 1, Lemma
4.14 implies x̄ = xε,1. Hence, xε,1 is the unique accumulation point of (x̃n)n∈N. This
establishes (ii).

To prove (iii), assume that x̄ ∈ Zp(y)∩Xε,p(y), and follow the proof of [48, Theorem
5.3, and 7.7] to conclude. 2

4.1.2.5 Proof of Rate of Convergence

The proof follows similar steps as in [48, Section 6]. We define the auxiliary sequences
of error vectors η̃n := x̃n − x∗ and η̂n := x̂n − x∗.

Proof (Proof of Theorem 4.6). We apply the characterization (2.27) with w = wn,
x̂ = x̂n+1 = x∗ + η̂n+1, and η = η̂n+1 = x̂n+1 − x∗, which gives

N∑
j=1

(x∗j + η̂n+1
j)η̂n+1

j wnj = 0.

Rearranging the terms and using the fact that x∗ is supported on Λ, we obtain

N∑
j=1
|η̂n+1
j |2wnj = −

N∑
j=1

x∗j η̂
n+1
j wnj = −

∑
j∈Λ

x∗j

[|x̃nj |2 + (εn)2]
2−p

2
η̂n+1
j . (4.28)

By assumption there exists n0 such that En0 ≤ R∗. We prove (4.12), and En ≤ R∗ ⇒
En+1 ≤ R∗ to obtain the validity for all n ≥ n0. Assuming En ≤ R∗, we have for all
j ∈ Λ,

|η̃nj | ≤ ‖η̃n‖`p = p
√
En ≤ ν|x∗j |,

137

Chapter 4 Acceleration Techniques for Sparse Recovery Algorithms

and thus
|x̃nj | = |x∗j + η̃nj | ≥ |x∗j | − |η̃nj | ≥ |x∗j | − ν|x∗j |,

so that
|x∗j |

[|x̃nj |2 + (εn)2]
2−p

2
≤
|x∗j |
|x̃nj |2−p

≤ 1
(1− ν)2−p|x∗j |1−p

. (4.29)

Hence, (4.28) combined with (4.29) and the NSP leads to N∑
j=1
|η̂n+1
j |2wnj

p ≤ ((1− ν)2−p
(

min
j∈Λ
|x∗j |

)1−p
)−p
‖η̂n+1

Λ ‖p`1

≤
(

(1− ν)(2−p)
(

min
j∈Λ
|x∗j |

)(1−p)
)−p
‖η̂n+1

Λ ‖p`p

≤ γ

(1− ν)p(2−p)
(

min
j∈Λ
|x∗j |

)p(1−p) ‖η̂n+1
Λc ‖

p
`p
.

Combining [48, Proposition 7.4] with the above estimate yields

‖η̂n+1
Λc ‖

2p
`p

=
∥∥∥∥[η̂n+1

i (wni)−
1
p

]
i∈Λc

∥∥∥∥2p

`p(wn)
≤
∥∥∥η̂n+1

Λc
∥∥∥2p

`2(wn)

∥∥∥∥[(wni)−
1
p

]
i∈Λc

∥∥∥∥2p

`[2p
2−p](w

n)

≤

 N∑
j=1
|η̂n+1
j |2wnj

p∑
j∈Λc

[
|η̃nj |+ εn

]p2−p

≤ γ

(1− ν)p(2−p)
(

min
j∈Λ
|x∗j |

)p(1−p) ‖η̂n+1
Λc ‖

p
`p

(
‖η̃n‖p`p + (N − k) (εn)p

)2−p
.

It follows that

‖η̂n+1
Λc ‖

p
`p
≤ γ

(1− ν)p(2−p)
(

min
j∈Λ
|x∗j |

)p(1−p) (‖η̃n‖p`p + (N − k) (εn)p
)2−p

.

Note that this is also valid if η̂n+1
Λc = 0 since then the left-hand side is zero and the

right-hand side non-negative. We furthermore obtain

‖η̂n+1‖p`p = ‖η̂n+1
Λ ‖p`p + ‖η̂n+1

Λc ‖
p
`p
≤ (1 + γ)‖η̂n+1

Λc ‖
p
`p

≤ γ(1 + γ)

(1− ν)p(2−p)
(

min
j∈Λ
|x∗j |

)p(p−1)

(
‖η̃n‖p`p + (N − k) (εn)p

)2−p
. (4.30)

138

4.1 A CG Based Acceleration of Iteratively Re-weighted Least Squares Algorithms

In addition to this, we know by [48, Lemma 4.1, 7.5] that

(J − j)r(x)pJ ≤ ‖x− x
′‖p`p + σj(x′)`p .

for any J > j and x, x′ ∈ RN . Thus, we have by the definition of εn in Step 3 of
Algorithm 13 that

(N − k)(εn)p ≤ (N − k)βp (r(x̃n)K+1)p ≤ (N − k)βp

K + 1− k (‖x̃n − x∗‖p`p + σk(x∗)`p)

= (N − k)βp

K + 1− k ‖η̃
n‖p`p

since by assumption σk(x∗)`p = 0. Together with (4.30) this yields

‖η̂n+1‖p`p ≤
γ(1 + γ)

(1− ν)p(2−p)
(

min
j∈Λ
|x∗j |

)p(1−p)
(

1 + (N − k)βp

K + 1− k

)2−p
‖η̃n‖p(2−p)`p

≤ µE2−p
n .

Finally, we obtain (4.12) by

En+1 =
∥∥∥η̃n+1

∥∥∥p
`p
≤
∥∥∥η̂n+1

∥∥∥p
`p

+
∥∥∥x̃n+1 − x̂n+1

∥∥∥p
`p
≤
∥∥∥η̂n+1

∥∥∥p
`p

+N1− p2
∥∥∥x̃n+1 − x̂n+1

∥∥∥p
`2

≤
∥∥∥η̂n+1

∥∥∥p
`p

+ (NC)1− p2
∥∥∥x̃n+1 − x̂n+1

∥∥∥p
`2(wn)

≤ µE2−p
n + (NC)1− p2 (toln+1)

p
2 ,

where we used the triangle inequality in the first inequality, (4.24) in the third in-
equality, and C is the constant from Lemma 4.11. Equation (4.13) then follows by
condition (4.11). By means of (4.10), we obtain

En+1 ≤ µ̃E2−p
n ≤ µ̃ (R∗)2−p ≤ R∗,

and therefore the linear convergence for p = 1, and the super-linear convergence for
p < 1 as soon as n ≥ n0. 2

4.1.3 Conjugate Gradient Accelerated IRLS Method for `p-norm
Regularized Least Squares

Similarly to the previous section we propose the combination of Algorithm 2 with the
CG method. CG is used to calculate an approximation of the solution of the linear
system (2.43) in Step 3 of Algorithm 2. After including the CG method, the modified
algorithm which we shall consider is Algorithm 14, where we use the definition of Jp,λ
from (2.40).

139

Chapter 4 Acceleration Techniques for Sparse Recovery Algorithms

Algorithm 14 CG-IRLS-λ
1: Set w0 := (1, . . . , 1), ε0 := 1, α ∈ (0, 1], φ ∈ (0, 1

4−p).
2: while εn > 0 do
3: Compute x̃n+1 by means of CG, s.t. ||x̃n+1 − x̂n+1||`2(wn) ≤ toln+1,

where x̂n+1 := arg min
x

Jp,λ(x,wn, εn). Use x̃n as the initial vector for CG.

4: εn+1 := min
{
εn, |Jp,λ(x̃n−1, wn−1, εn−1)− Jp,λ(x̃n, wn, εn)|φ + αn+1

}
5: wn+1 := arg min

w>0
Jp,λ(x̃n+1, w, εn+1)

6: end while

As already mentioned in the introductory Section 2.4.1.3, we use the ε-update rule
proposed by Voronin and Daubechies in [190, 189] because it allows to show that the
algorithm converges to a minimizer of (2.39) for p = 1 and to critical points of (2.39)
for p < 1. However, we were not able to prove similar statements for the rule of Lai,
Xu, and Yin. It only allows to show the convergence of the algorithm to a critical point
of the smoothed functional (2.41).
Notice that x̃ always denotes the approximate solution of the minimization with

respect to x in Step 3 of Algorithm 14 and x̂ the corresponding exact solution. Thus
x̂n+1 fulfills (2.43) but not x̃n+1.

Theorem 4.1 provides a stopping condition for the CG method, but as in the previous
section it is not practical for us since we do not dispose of the minimizer and the
computation of the condition number is computationally expensive. Therefore, we
provide an alternative stopping criterion to make sure that ‖x̃n+1−x̂n+1‖`2(wn) ≤ toln+1
is fulfilled in Step 3 of Algorithm 14.
Let x̃n+1,l be the l-th iterate of the CG method and define

An := Φ∗Φ + diag
[
λpwnj

]N
j=1

.

Notice that the matrix Φ∗Φ is positive semi-definite and λpD−1
n = λp diag

[
wnj

]N
j=1

is
positive definite. Therefore, An is positive definite and invertible, and furthermore

λmin(An) ≥ λmin(diag
[
λpwnj

]N
j=1

). (4.31)

We obtain ∥∥∥x̂n+1 − x̃n+1,l
∥∥∥
`2(wn)

≤
∥∥∥A−1

n

(
Φ∗y −Anx̃n+1,l

)∥∥∥
`2(wn)

≤
∥∥∥∥D− 1

2
n

∥∥∥∥ ∥∥∥A−1
n

∥∥∥ ∥∥∥rn+1,l
∥∥∥
`2
,

(4.32)

where rn+1,l := Φ∗y −Anx̃n+1,l is the residual as it appears in Step 5 of Algorithm 11.

140

4.1 A CG Based Acceleration of Iteratively Re-weighted Least Squares Algorithms

The first factor on the right-hand side of (4.32) can be estimated by

∥∥∥∥D− 1
2

n

∥∥∥∥ = λmax

(
D
− 1

2
n

)
=
√

max
j
wnj =

√√√√max
j

((
x̃nj

)2
+ (εn)2

)− 2−p
2
≤ (εn)−

2−p
2 .

The second factor of (4.32) is estimated by∥∥∥A−1
n

∥∥∥ = (λmin(An))−1 ≤
(
λmin(diag

[
λpwnj

]N
j=1

)
)−1

=

λp((max
j
|x̃nj |

)2
+ (εn)2

)− 2−p
2
−1

,

where we used (4.31) in the inequality. Thus, we obtain

∥∥∥x̃n+1 − x̂n+1,l
∥∥∥
`2(wn)

≤

((
max
j
|x̃nj |

)2
+ (εn)2

) 2−p
2

(εn)
2−p

2 λp

∥∥∥rn+1,l
∥∥∥
`2
,

and the suitable stopping condition

∥∥∥rn+1,l
∥∥∥
`2
≤ (εn)

2−p
2 λp((

max
j
|x̃nj |

)2
+ (εn)2

) 2−p
2

toln+1. (4.33)

In the remainder of this section, we clarify how to choose the tolerance toln+1, and
establish a convergence result of the algorithm. In the case of p = 1, the problem (2.39)
is the minimization of the regularized least squares functional (2.12), and the optimality
conditions can be stated in terms of subdifferential inclusions (compare Section (2.2.2)).
We are able to show that at least a subsequence of the algorithm is converging to a
solution of (2.39). If 0 < p < 1, the problem is non-convex and non-smooth. Necessary
first order optimality conditions for a global minimizer of this functional were derived
in [23, Proposition 3.14], and [114, Theorem 2.2]. In our case, we are able to show that
the non-zero components of the limits of the algorithm fulfill the respective conditions.
However, as soon as the algorithm is producing zeros in some components of the limit,
so far, we were not able to verify the conditions mentioned above. On this account,
we pursue a different strategy, which originates from [195]. We do not directly show
that the algorithm computes a solution of problem (2.39). Instead we show that a
subsequence of the algorithm is at least computing a point x†, whose transformation
x̆† = N−1

υ/p(x
†) is a critical point of the functional

F̆υ,λ(x) := ‖x‖υ`υ + 1
2λ

∥∥∥ΦNυ/p(x)− y
∥∥∥2

`2
, (4.34)

141

Chapter 4 Acceleration Techniques for Sparse Recovery Algorithms

where
Nζ : RN → RN , (Nζ(x))j := sign(xj)|xj |ζ , j = 1, . . . , N, (4.35)

is a continuous bijective mapping and 1 < υ ≤ 2. It was shown in [195, 158] that
assuming x̆† is a global minimizer of F̆υ,λ(x) implies that x† is a global minimizer
of Fp,λ, i.e., a solution of problem (2.39). Furthermore, it was also shown that this
result can be partially extended to local minimizers. We comment on this issue in
Remark 4.18. These considerations allow us to state the main convergence result.
Theorem 4.15
Let 0 < p ≤ 1, λ > 0, Φ ∈ Rm×N , and y ∈ Rm. Define the sequences (x̃n)n∈N, (εn)n∈N
and (wn)n∈N as the ones generated by Algorithm 14. Choose the accuracy toln of the
CG-method, such that

toln ≤ min

an
√2J̄pCwn−1 + 2

√
2J̄
λ

√√√√(2− p
pJ̄

)− 2−p
p

||Φ||


−1

,

√
an

(
p

2 + ||Φ||
2

2λ

(2− p
pJ̄

)− 2−p
p

)− 1
2

 , (4.36)

with Cwn−1 :=

max
j

(x̃n−1
j)2 + (εn−1)2

(εn)2


1− p2

, (4.37)

where (an)n∈N is a positive sequence satisfying
∑∞
n=0 an <∞ and J̄ := Jp,λ(x̃1, w0, ε0).

Then the sequence (x̃n)n∈N has at least one convergent subsequence (x̃nk)nk∈N. In
the case that p = 1 and xλ 6= 0, any convergent subsequence is such that its limit xλ is
a minimizer of F1,λ(x). In the case that 0 < p < 1, the subsequence (x̃nk)nk∈N can be
chosen such that the transformation of its limit x̆λ := N−1

υ/p(x
λ), 1 < υ ≤ 2, as defined

in (4.35), is a critical point of (4.34). If x̆λ is a global minimizer of (4.34), then xλ is
also a global minimizer of Fp,λ(x).
Remark 4.16
Note that the bound (4.36) on toln is—in contrast to the one in Theorem 4.4—not
implicit. Although toln depends on εn, the latter only depends on x̃n−1, εn−1, wn−1,
and x̃n−2, εn−2, wn−2. Since in particular εn does not depend on x̃n, we are able to
exchange the Steps 3 and 4 in Algorithm 14.
As we argued in Remark 4.5, a possible relaxation of the tolerance bound (4.6) is

allowed to further boost the convergence, the same applies to the bound (4.36).

Remark 4.17
In the case 0 < p < 1, the theorem includes the possibility that there may exist
several converging subsequences with different limits. Potentially only one of these

142

4.1 A CG Based Acceleration of Iteratively Re-weighted Least Squares Algorithms

limits may have the nice property that its transformation is a critical point. In the
proof of the theorem, which follows further below, an appropriate subsequence is
constructed. Actually this construction leads to the following hint, how to practically
choose the subsequence: Take a converging subsequence xnl for which the nl satisfy
equation (4.57).

It will be important below that a minimizer x] of F1,λ(x) is characterized by the
conditions

−(Φ∗(y − Φx]))j = λ sign(x]j) if x]j 6= 0, (4.38)

|(Φ∗(y − Φx]))j | ≤ λ if x]j = 0, (4.39)

which have been derived in Section 2.2.2. Note that in the (less important) case xλ = 0,
the theorem does not give a conclusion about xλ being a minimizer of F1,λ(x).

Remark 4.18
The result of Theorem 4.15 for 0 < p < 1 can be partially extended towards local
minimizers. For the sake of completeness we sketch the argument from [158]. Assume
that x̆λ is a local minimizer. Then there is a neighborhood Uε(x̆λ) with ε > 0 such
that for all x′ ∈ Uε(x̆λ):

F̆υ,λ(x′) ≥ F̆υ,λ(x̆λ).

By continuity of Nυ/p there exists an ε̂ > 0 such that the neighborhood Uε̂(xλ) ⊂
Nυ/p(Uε(x̆λ)). Thus, for all x ∈ Uε̂(xλ), we have x′ = N−1

υ/p(x) ∈ Uε(x̆λ), and obtain

Fp,λ(x) = ||x||p`p + 1
2λ ||Φx− y||

2
`2 = ||Nυ/p(x′)||

p
`p

+ 1
2λ ||ΦNυ/p(x′)− y||2`2

= ||x′||υ`υ + 1
2λ ||ΦNυ/p(x′)− y||2`2 = F̆υ,λ(x′)

≥ F̆υ,λ(x̆λ) = ||x̆λ||υ`υ + 1
2λ ||ΦNυ/p(x̆λ)− y||2`2

= ||xλ||p`p + 1
2λ ||Φx

λ − y||2`2 = Fp,λ(xλ).

For the proof of Theorem 4.15, we proceed similarly to Section 4.1.2, by first
presenting a sequence of auxiliary lemmas on properties of the functional Jp,λ and the
dynamics of Algorithm 14.

143

Chapter 4 Acceleration Techniques for Sparse Recovery Algorithms

4.1.3.1 Properties of the Functional Jp,λ
Lemma 4.19
For the functional Jp,λ defined in (2.40), and the iterates x̃n, wn, and εn produced by
Algorithm 14, the following inequalities hold true:

Jp,λ(x̃n+1, wn+1, εn+1) ≤ Jp,λ(x̃n+1, wn, εn+1) (4.40)
≤ Jp,λ(x̃n+1, wn, εn) (4.41)
≤ Jp,λ(x̃n, wn, εn). (4.42)

Proof. The first inequality holds because wn+1 is the minimizer and the second
inequality holds since εn+1 ≤ εn. In the third inequality we use the fact that the
CG-method is a descent method, decreasing the functional in each iteration. Since we
take x̃n as the initial estimate in the first iteration of CG, the output x̃n+1 of CG must
have a value of the functional that is less or equal to the one of the initial estimate.2

The iterative application of Lemma 4.19 leads to the fact that for each n ∈ N+ the
functional Jp,λ is bounded:

0 ≤ Jp,λ(x̃n, wn, εn) ≤ Jp,λ(x̃1, w0, ε0) = J̄ . (4.43)

Since the functional is composed of positive summands, its definition and (4.43) imply

||Φx̃n − y||`2 ≤
√

2λJ̄,

||x̃n||`2(wn) =

√√√√ N∑
j=1

(
x̃nj

)2
wnj ≤

√
2J̄
p
, and (4.44)

wnj ≥
(2− p

pJ̄

) 2−p
p

, j = 1, . . . , N.

The last inequality leads to a general relationship between the `2-norm and `2(wn)-norm
for arbitrary x ∈ RN :

||x||`2(wn) ≥

√√√√(2− p
pJ̄

) 2−p
p

||x||`2 . (4.45)

In order to show convergence to a critical point or minimizer of the functional Fp,λ,
we will use the first order condition (2.42). Since this property is only valid for the
exact solution x̂n+1, we need a connection between x̂n+1 and x̃n+1. Observe that

Jp,λ(x̂n+1, wn, εn) ≤ Jp,λ(x̃n+1, wn, εn) (4.46)

144

4.1 A CG Based Acceleration of Iteratively Re-weighted Least Squares Algorithms

since x̂n+1 is the exact minimizer. From (4.46) we obtain

p

2

N∑
j=1

(
x̂n+1
j

)2
wnj + 1

2λ ||Φx̂
n+1 − y||2`2 ≤

p

2

N∑
j=1

(
x̃n+1
j

)2
wnj + 1

2λ ||Φx̃
n+1 − y||2`2

which leads to
p

2 ||x̂
n+1||2`2(wn) ≤

p

2 ||x̃
n+1||2`2(wn) + 1

2λ
(
||Φx̃n+1 − y||2`2 − ||Φx̂

n+1 − y||2`2
)
. (4.47)

Since (4.46) holds in addition to (4.42) and (4.43), we conclude, also for the exact
solution x̂n+1, the bound

||Φx̂n − y||`2 ≤
√

2λJp,λ(x̂n, wn−1, εn−1) ≤
√

2λJ̄, (4.48)

for all n ∈ N, and

||x̂n+1||`2(wn) ≤
√

2Jp,λ(x̂n+1, wn, εn)
p

≤

√
2J̄
p
. (4.49)

Additionally using (4.48), we are able to estimate the second summand of (4.47) by(
||Φx̃n+1 − y||2`2 − ||Φx̂

n+1 − y||2`2
)

≤
∣∣∣(||Φx̃n+1 − y||2`2 − ||Φx̂

n+1 − y||2`2
)∣∣∣

=
∣∣∣∣||Φx̃n+1 − Φx̂n+1||2`2 + 2

〈
Φx̃n+1 − Φx̂n+1,Φx̂n+1 − y

〉
`2

∣∣∣∣
≤ ||Φx̃n+1 − Φx̂n+1||`2

(
||Φx̃n+1 − Φx̂n+1||`2 + 2||Φx̂n+1 − y||`2

)
≤ ||Φx̃n+1 − Φx̂n+1||`2

(
||Φx̃n+1 − y||`2 + 3||Φx̂n+1 − y||`2

)
≤ 4

√
2λJ̄ ||Φ|| ||x̃n+1 − x̂n+1||`2 ,

(4.50)

where we used the Cauchy-Schwarz inequality in the second inequality, the triangle
inequality in the third inequality, and the bounds in (4.44) and (4.48) in the last
inequality.

The following pivotal result of this section allows us to control the difference between
the exact and approximate solution of the linear system in Step 3 of Algorithm 14.
Lemma 4.20
For a given positive number an+1 and a choice of the accuracy toln+1 satisfying (4.36),
the functional Jp,λ fulfills the two monotonicity properties

Jp,λ(x̂n+1, wn+1, εn+1)− Jp,λ(x̃n+1, wn+1, εn+1) ≤ an+1 (4.51)

and
Jp,λ(x̃n+1, wn, εn)− Jp,λ(x̂n+1, wn, εn) ≤ an+1. (4.52)

145

Chapter 4 Acceleration Techniques for Sparse Recovery Algorithms

Proof. By means of the relation

wn+1
j = wnj

wn+1
j

wnj
≤ wnj

(
(x̃nj)2 + (εn)2

(x̃n+1
j)2 + (εn+1)2

)1− p2

≤ wnj

max
j

(x̃nj)2 + (εn)2

(εn+1)2


1− p2

= wnj Cwn ,

where Cwn was defined in (4.37), we can estimate

Jp,λ(x̂n+1, wn+1, εn+1)− Jp,λ(x̃n+1, wn+1, εn+1)

≤ p

2

N∑
j=1

(
x̂n+1
j − x̃n+1

j

) (
x̂n+1
j + x̃n+1

j

)
wn+1
j +

∣∣∣∣ 1
2λ ||Φx̂

n+1 − y||2`2 − ||Φx̃
n+1 − y||2`2

∣∣∣∣
≤ p

2

∣∣∣∣〈x̂n+1 − x̃n+1, x̂n+1 + x̃n+1
〉
`2(wn+1)

∣∣∣∣+ 4
√

2λJ̄
2λ ||Φ||||x̃n+1 − x̂n+1||`2

≤ p

2

√√√√ N∑
j=1

(x̂n+1
j − x̃n+1

j)2wn+1
j

√√√√ N∑
j=1

(x̂n+1
j + x̃n+1

j)2wn+1
j

+ 4
√

2λJ̄
2λ ||Φ||||x̃n+1 − x̂n+1||`2

≤ p

2Cw
n ||x̂n+1 − x̃n+1||`2(wn)||x̂n+1 + x̃n+1||`2(wn) + 4

√
2λJ̄

2λ ||Φ||||x̃n+1 − x̂n+1||`2

≤ Cwn ||x̂n+1 − x̃n+1||`2(wn)2 max
{
p

2 ||x̂
n+1||`2(wn),

p

2 ||x̃
n+1||`2(wn)

}
+ 4
√

2λJ̄
2λ ||Φ||||x̃n+1 − x̂n+1||`2

≤
√

2J̄pCwn ||x̂n+1 − x̃n+1||`2(wn) + 4
√

2λJ̄
2λ

√√√√(2− p
pJ̄

)− 2−p
p

||Φ||||x̃n+1 − x̂n+1||`2(wn)

≤

√2J̄pCwn + 4
√

2λJ̄
2λ

√√√√(2− p
pJ̄

)− 2−p
p

||Φ||

 ||x̃n+1 − x̂n+1||`2(wn) ≤ an+1,

where we used (4.50) in the second inequality, Cauchy-Schwarz in the third inequality,
and (4.45), (4.44), and (4.49) in the sixth inequality. Thus we obtain (4.51). To
show (4.52), we use (4.45) in the second to last inequality, condition (4.36) in the last
inequality and the fact that x̂n+1 = arg min

x
Jp,λ(x,wn, εn) (and thus fulfilling (2.42))

146

4.1 A CG Based Acceleration of Iteratively Re-weighted Least Squares Algorithms

in the second identity below:

Jp,λ(x̃n+1, wn, εn)− Jp,λ(x̂n+1, wn, εn)

= p

2

N∑
j=1

(
(x̃n+1
j)2 − (x̂n+1

j)2
)
wnj

+ 1
2λ

(
||Φx̃n+1 − Φx̂n+1||2`2 + 2

〈
Φ(x̃n+1 − x̂n+1),Φx̂n+1 − y

〉
`2

)

= p

2

N∑
j=1

(
(x̃n+1
j)2 − (x̂n+1

j)2 − 2x̂n+1
j x̃n+1

j + 2
(
x̂n+1
j

)2
)
wnj

+ 1
2λ ||Φx̃

n+1 − Φx̂n+1||2`2

≤ p

2

N∑
j=1

(
(x̃n+1
j)2 + (x̂n+1

j)2 − 2x̂n+1
j x̃n+1

j

)
wnj + 1

2λ ||Φ||||x̃
n+1 − x̂n+1||2`2

≤
(
p

2 + ||Φ||
2

2λ

(2− p
pJ̄

)− 2−p
p

)
||x̃n+1 − x̂n+1||2`2(wn) ≤ an+1.

(4.53)

2

Besides Lemma 4.20 there are two more helpful properties of the functional. First,
the identity

Jp,λ(x̂n, wn, εn)− Jp,λ(x̂n+1, wn, εn) = p

2 ||x̂
n − x̂n+1||2`2(wn) + 1

2λ ||Φx̂
n − Φx̂n+1||2`2

can be shown by the same calculation as in (4.53), by means of replacing x̃n+1 by x̂n.
Second, it follows in particular that

p

2

√√√√(2− p
pJ̄

) 2−p
p

||x̂n+1 − x̂n||2`2 ≤
p

2 ||x̂
n+1 − x̂n||2`2(wn)

≤ Jp,λ(x̂n, wn, εn)− Jp,λ(x̂n+1, wn, εn).

(4.54)

where the estimate (4.45) is used in the first inequality.

4.1.3.2 Proof of Convergence

We need to show that the difference x̂n+1 − x̂n between two successive exact iterates
and the one between the exact and approximated iterates, x̂n − x̃n, become arbitrarily
small. This result is used in the proof of Theorem 4.15 to show that both (x̂n)n∈N and
(x̃n)n∈N converge to the same limit.

147

Chapter 4 Acceleration Techniques for Sparse Recovery Algorithms

Lemma 4.21
Consider a summable sequence (an)n∈N and choose the accuracy of the CG solution toln
satisfying (4.36) for the n-th iteration step. Then the sequences (x̂n)n∈N and (x̃n)n∈N
have the properties

lim
n→∞

||x̂n − x̂n+1||`2 = 0 (4.55)

and
lim
n→∞

||x̃n+1 − x̂n+1||`2 = 0. (4.56)

Proof. We use the properties of J , which we derived in the previous subsection. First,
we show (4.55):

p

2

√√√√(2− p
pJ̄

) 2−p
p

M∑
n=1
||x̂n+1 − x̂n||2`2

≤
M∑
n=1

Jp,λ(x̂n, wn, εn)− Jp,λ(x̂n+1, wn, εn)

≤
M∑
n=1

Jp,λ(x̂n, wn, εn)− Jp,λ(x̃n+1, wn, εn) + an+1

≤
M∑
n=1

Jp,λ(x̂n, wn, εn)− Jp,λ(x̃n+1, wn+1, εn+1) + an+1

≤
M∑
n=1

Jp,λ(x̂n, wn, εn)− Jp,λ(x̂n+1, wn+1, εn+1) + 2an+1

= Jp,λ(x̂1, w1, ε1)− Jp,λ(x̃M+1, wM+1, εM+1) + 2
M∑
n=1

an+1

≤ J̄ + 2
M∑
n=1

an+1.

We used (4.54) in the first inequality, (4.52) in the second inequality, (4.40) and (4.41)
in the third inequality, (4.51) in the fourth inequality and a telescoping sum in the
identity. Letting M →∞ we obtain

p

2

(2− p
pJ̄

) 2−p
p
∞∑
n=1
||x̂n+1 − x̂n||2`2 ≤ J̄ + 2

∞∑
n=1

an+1 <∞

and thus (4.55).

148

4.1 A CG Based Acceleration of Iteratively Re-weighted Least Squares Algorithms

Second, we show (4.56). From line 1 and 3 of (4.53) we know that

Jp,λ(x̃n+1, wn, εn)− Jp,λ(x̂n+1, wn, εn)

= p

2

N∑
j=1

(
(x̃n+1
j)2 − (x̂n+1

j)2 − 2x̂n+1
j x̃n+1

j + 2
(
x̂n+1
j

)2
)
wnj

+ 1
2λ ||Φx̃

n+1 − Φx̂n+1||2`2

= p

2 ||x̃
n+1
j − x̂n+1

j ||2`2(wn) + 1
2λ ||Φx̃

n+1 − Φx̂n+1||2`2 .

Since the second summand is positive, we conclude

Jp,λ(x̃n+1, wn, εn)− Jp,λ(x̂n+1, wn, εn) ≥ p

2 ||x̃
n+1
j − x̂n+1

j ||2`2(wn).

Together with (4.52) we find that

p

2

(2− p
pJ̄

) 2−p
p

||x̃n+1 − x̂n+1||2`2 ≤
p

2 ||x̃
n+1 − x̂n+1||2`2(wn)

≤ Jp,λ(x̃n+1, wn, εn)− Jp,λ(x̂n+1, wn, εn) ≤ an+1,

and thus taking limits on both sides we get

p

2

(2− p
pJ̄

) 2−p
p

lim sup
n→∞

||x̃n+1 − x̂n+1||2`2 ≤ lim
n→∞

an+1 = 0,

which implies (4.56). 2

Remark 4.22
By means of Lemma 4.21 we obtain

lim
n→∞

||x̃n−x̃n+1||`2 ≤ lim
n→∞

||x̃n−x̂n||`2 + lim
n→∞

||x̂n−x̂n+1||`2 + lim
n→∞

||x̂n+1−x̃n+1||`2 = 0.

The following lemma provides a lower bound for the εn, which is used to show a
contradiction in the proof of Theorem 4.15. Recall that φ ∈

(
0, 1

4−p
)
is the parameter

appearing in the update rule for ε in Step 4 of both the Algorithms 14 and 2.

Lemma 4.23 ([189, Lemma 4.5.4, Lemma 4.5.6])
Let p = 1 and thus wnj = ((x̃nj)2 + (εn)2)−1/2, j ∈ {1, . . . , N}. There exists a strictly
increasing subsequence (nl)l∈N and some constant C > 0 such that

(εnl+1)2 ≥ C((wnlj)−1)2pφ|(wnl−1
j)−1 − (wnlj)−1|4φ.

149

Chapter 4 Acceleration Techniques for Sparse Recovery Algorithms

Proof. Since Jp,λ(x̃n, wn, εn) is decreasing with n due to Lemma 4.19 and bounded
below by 0, the difference |Jp,λ(x̃n−1, wn−1, εn−1)− Jp,λ(x̃n, wn, εn)| is converging to
0 for n → ∞. In addition αn+1 → 0 for n → ∞, and thus by definition also εn → 0.
Consequently there exists a subsequence (nl)l∈N such that

εnl+1 = |Jp,λ(x̃nl−1, wnl−1, εnl−1)− Jp,λ(x̃nl , wnl , εnl)|φ + αnl+1. (4.57)

Following exactly the steps of the proof of [189, Lemma 4.5.6.] yields the assertion.
Observe that all of these steps are also valid for 0 < p < 1, although in [189, Lemma
4.5.6] the author restricted it to the case p ≥ 1. 2

Remark 4.24
The observation in the previous proof that (εn) converges to 0 will be again important
below.

We are now prepared for the proof of Theorem (4.15).

Proof (Proof of Theorem 4.15). Consider the subsequence (x̃nl)l∈N of Lemma 4.23.
Since ‖x̃nl‖`2 is bounded by (4.44), there exists a converging subsequence (x̃nk)k∈N,
which has limit xλ.

Consider the case p = 1 and xλ 6= 0. We first show that

−∞ < lim
n→∞

x̃nk+1
j wnkj = lim

n→∞
x̂nk+1
j wnkj <∞, for all j = 1, . . . , N. (4.58)

It follows from equation (2.42) and the boundedness of the residual (4.48) that the
sequence (x̂nk+1wnkj)nk is bounded, i.e.,∥∥∥∥[x̂nk+1

j wnkj

]
j

∥∥∥∥
2

= 1
λ
‖Φ∗(Φx̂nk+1 − y)‖ ≤ C.

Therefore, there exists a converging subsequence, for simplicity again denoted by
(x̂nk+1wnkj)nk . To show the identity in (4.58), we estimate

|x̂nk+1
j wnkj − x̃

nk+1
j wnkj | ≤

tolnk+1√
(x̃nkj)2 + (εnk)2

≤ ank+1√
2J̄Cwnk

√
(x̃nkj)2 + (εnk)2

= ank+1ε
nk+1

√
2J̄
√

max
`

(x̃nk`)2 + (εnk)2
√

(x̃nkj)2 + (εnk)2

≤ ank+1ε
nk+1

√
2J̄(max

`
|x̃nk` |)(εnk)

≤ ank+1√
2J̄(max

`
|x̃nk` |)

,

for all j = 1, . . . , N , where the second inequality follows by the upper bound of
toln in (4.36), and the last inequality is due to the definition of εn+1, which yields

150

4.1 A CG Based Acceleration of Iteratively Re-weighted Least Squares Algorithms

εn+1

εn ≤ 1. Since we assumed lim
k→∞

x̃nk = xλ 6= 0, there is a k0 such that for all
k ≥ k0, we have that max

j
|x̃nkj | ≥ c > 0. Since (ank) tends to 0, we conclude that

lim
n→∞

|x̂nk+1
j wnkj − x̃

nk+1
j wnkj | = 0, and therefore we have (4.58). Note that we will

use the notation k0 several times in the presentation of this proof, but for different
arguments. We do not mention it explicitly, but we assume a newly defined k0 to be
always larger or equal to the previously defined one.

Next we show that xλ is a minimizer of F1,λ by verifying conditions (4.38) and (4.39).
To this end we notice that by Lemma 4.21 and Remark 4.22 it follows that lim

k→∞
x̂nkj =

lim
k→∞

x̃nkj = lim
k→∞

x̃nk−1
j = xλj . By means of this result, in the case of xλj 6= 0, we have,

due to continuity arguments, (2.42) and Remark 4.24,

−(Φ∗(y − Φxλ))j = lim
k→∞

−(Φ∗(y − Φx̂nk))j = lim
k→∞

λx̂nkj w
nk−1
j

= λ lim
k→∞

x̂nkj ((x̃nk−1
j)2 + (εnk−1)2)−

1
2

= λxλj ((xλj)2 + (0)2)−
1
2 = λ sign(xλj),

and thus (4.38).
In order to show condition (4.39) for j such that xλj = 0, we follow the main idea in

the proof of [189, Lemma 4.5.9]. Assume

lim
k→∞

x̂nkj w
nk−1
j > 1. (4.59)

Then there exists an ε > 0 and a k0 ∈ N, such that for all k ≥ k0 the inequality
(x̂nkj w

nk−1
j)2 > 1 + ε holds. Due to (4.58), we can furthermore choose k0 large enough

such that also (x̃nkj w
nk−1
j)2 > 1 + ε for all k ≥ k0. Recalling the identity for wnj from

Lemma 4.23, we obtain

(x̃nkj)2 > (1 + ε)((wnk−1
j)−1)2 = (1 + ε)((x̃nk−1

j)2 + (εnk−1)2)

≥ (1 + ε)(εnk+1)2 ≥ (1 + ε)C|(wnkj)−1|2φ|(wnk−1
j)−1 − (wnkj)−1|4φ

≥ (1 + ε)C|x̃nkj |
2φ|(wnk−1

j)−1 − (wnkj)−1|4φ,

(4.60)

where the second inequality follows by the definition of the εn, and the third inequality
follows from Lemma 4.23. Furthermore, in the last inequality we used that wnj ≤ |x̃nj |−1,
which follows directly from the definition of wnj . By means of this estimate, we conclude

(wnk−1
j)−1 ≥ (wnkj)−1 − |(wnk−1

j)−1 − (wnkj)−1| > |x̃nkj | − ((1 + ε)C)−
1

4φ |x̃nkj |
2−2φ

4φ .

Since 0 < φ < 1
3 , the exponent

2−2φ
4φ > 1. In combination with the fact that x̃nkj is vanish-

ing for k →∞, we are able to choose k0 large enough to have ((1+ε)C)−
1

4φ |x̃nkj |
2−2φ

4φ −1
<

151

Chapter 4 Acceleration Techniques for Sparse Recovery Algorithms

ε̄ := 1− (1 + ε)−
1
2 for all k ≥ k0 and therefore

(wnk−1
j)−1 ≥ |x̃nkj |(1− ε̄). (4.61)

The combination of (4.60) and (4.61) yields

|x̃nkj |
2 > (1 + ε)

(
wnk−1
j

)−2
≥ (1 + ε)|x̃nkj |

2(1− ε̄)2. (4.62)

Since we have |x̃nkj w
nk−1
j | > 1 + ε for all k ≥ k0, we also have x̃nkj 6= 0, and thus, we

can divide in (4.62) by |x̃nkj | and insert the definition of ε̄ to obtain

1 > (1 + ε)(1− ε̄)2 = 1,

which is a contradiction, and thus the assumption (4.59) is false. By means of this
result and again a continuity argument, we show condition (4.39) by

(ΦT (y − Φxλ))j = lim
k→∞

(ΦT (y − Φx̂nk))j = λ lim
k→∞

x̂nkj w
nk−1
j ≤ λ.

At this point, we have shown that at least the convergent subsequence (x̃nk)nk∈N is
such that its limit xλ is a minimizer of F1,λ(x). To show that this is valid for any
convergent subsequence of (x̃n)n∈N, we remind that the subsequence (x̃nk)nk∈N is the
one of Lemma 4.23, and therefore fulfills (4.57). Thus, we can adapt [189, Lemma
4.6.1] to our case, following the arguments in the proof. These arguments only require
the monotonicity of the functional Jp,λ, which we show in Lemma 4.19. Consequently
the limit xλ of any convergent subsequence of (x̃n)n∈N is a minimizer of F1,λ(x).

Consider the case 0 < p < 1. The transformationNζ(x) defined in (4.35) is continuous
and bijective. Thus, x̆λ := N−1

υ/p(x
λ) is well-defined, and xλj = 0 if and only if x̆λj = 0.

At a critical point of the differentiable functional F̆p,λ its first derivative has to vanish,
which is equivalent to the conditions

υ

p
|xj |

υ−p
p

(
Φ∗y − Φ∗ΦNυ/p(x)

)
j

+ λυ sign(xj)|xj |υ−1 = 0, j = 1, . . . , N. (4.63)

We show now that x̆λ fulfills this first order optimality condition. It is obvious that for
all j such that x̆λj = 0 the condition is trivially fulfilled. Thus, it remains to consider all
j where x̆λj 6= 0. As in the case of p = 1, we conclude by Lemma 4.21 and Remark 4.22
that lim

k→∞
x̂nkj = lim

k→∞
x̃nkj = lim

k→∞
x̃nk−1
j = xλj . Therefore continuity arguments as well

as (2.42) yield

−(Φ∗(y − Φxλ))j = lim
k→∞

−(Φ∗(y − Φx̂nk))j = lim
k→∞

λpx̂nkj w
nk−1
j

= λp lim
k→∞

x̂nkj ((x̃nk−1
j)2 + (εnk−1)2)−

2−p
2

= λpxλj ((xλj)2 + (0)2)−
2−p

2 = λp sign(xλj)|xj |p−1.

152

4.1 A CG Based Acceleration of Iteratively Re-weighted Least Squares Algorithms

We replace xλ = Nυ/p(x̆λ) and obtain

−(Φ∗(y − ΦNυ/p(x̆λ))j = λp sign((Nυ/p(x̆λ))j)|(Nυ/p(x̆λ))j |p−1

= λp sign(x̆λj)|x̆λj |
υ−υ

p .

We multiply this identity by υ
p |xj |

υ−p
p and obtain (4.63).

If x̆λ is also a global minimizer of F̆υ,λ, then xλ is a global minimizer of Fp,λ. This is
due to the equivalence of the two problems, which was shown in [158, Proposition 2.4]
based on the continuity and bijectivity of the mapping Nυ/p [195, Proposition 3.4]. 2

4.1.4 Simulations
We illustrate the theoretical results of the sections 4.1.2, and 4.1.3 by means of
several numerical experiments. We first show that our modified versions of IRLS yield
significant improvements in terms of computational time and often outperform the
state-of-the-art methods iterative hard thresholding (IHT) [20] and fast iterative soft
thresholding algorithm (FISTA) [13].

Before going into the detailed presentation of the numerical tests, we raise two plain
numerical disclaimers concerning the numerical stability of Algorithm 13 (CG-IRLS)
and 14 (CG-IRLS-λ):

• The first issue concerns IRLS methods in general: The case where εn → 0, i.e.,
xnj → 0, for some j ∈ {1, . . . , N} and n → ∞, is very likely since our goal is
the computation of sparse vectors. In this case wnj will for some n become too
large to be properly represented by a computer. Thus, in practice, we have to
provide a lower bound for ε by some εmin > 0. Imposing such a limit has the
theoretical disadvantage that in general the algorithms are only calculating an
approximation of the respective problems (2.3) and (2.39). Therefore, to obtain a
“sufficiently good” approximation, one has to choose εmin sufficiently small. This
raises yet another numerical issue: If we choose, e.g., εmin = 1e-8 and assume
that also xnj � 1, then wnj is of the order 1e+8. Compared to the entries of the
matrix Φ, which are of the order 1, any multiplication or addition by such a value
will cause serious numerical errors. In this context we cannot expect that the
IRLS method reaches high accuracy, and saturation effects of the error are likely
to occur before machine precision. For details, we refer to the Section 2.4.1.2,
which is exclusively dedicated to this issue.

• The second issue concerns the CG method: In Algorithm 11 and Algorithm 12
we have to divide at some point by

∥∥B∗pi∥∥2
`2

or 〈Api, pi〉`2 respectively. As soon
as the residual decreases, also pi decreases with the same order of magnitude.
If the above vector products are at the level of machine precision, e.g. 1e-16,

153

Chapter 4 Acceleration Techniques for Sparse Recovery Algorithms

this would mean that the norm of the residual is of the order of its square-root,
here 1e-8. But this is the measure of the stopping criterion. Thus, if we ask for
a higher precision of the CG method, the algorithm might become numerically
unstable, depending on the machine precision. Such saturation of the error is
an intrinsic property of the CG method, and here we want to mention it just
as a disclaimer. As described further below, we set the lower bound of the CG
tolerance to the value 1e-12, i.e., as soon as this accuracy is reached, we consider
the result as “numerically exact”. For this particular bound the method works
stably on the machine that we used.

In the following, we start with a description of the general test settings, which will
be common for both Algorithms 13 and 14. Afterwards we independently analyze the
speed of both methods and compare them with state-of-the-art algorithms, namely
IHT-k (see Section 2.4.3.2) and FISTA (see Section 2.4.3.1). We respectively start with
a single trial, followed by a speed-test on a variety of problems. We will also compare
the performance of both CG-IRLS and CG-IRLS-λ for the noiseless case, which leads
to surprising results.

4.1.4.1 Test Settings

All tests are performed with MATLAB version R2014a. To exploit the advantage of
fast matrix-vector multiplications and to allow high dimensional tests, we use randomly
sampled partial discrete cosine transformation matrices Φ. We perform tests in three
different dimensional settings (later we will extend them to higher dimension) and
choose different values N of the dimension of the signal, the amountm of measurements,
the respective sparsity k of the synthesized solutions, and the index K in Algorithm
(CG-)IRLS:

Setting A Setting B Setting C
N 2000 4000 8000
m 800 1600 3200
k 30 60 120
K 50 100 200

For each of these settings, we draw at random a set of 100 synthetic problems
on which a speed-test is performed. For each synthetic problem the support Λ is
determined by the first k entries of a random permutation of the numbers 1, . . . , N .
Then we draw the sparse vector x∗ at random with entries x∗i ∼ N (0, 1) for i ∈ Λ and
x∗Λc = 0, and a randomly row sampled normalized discrete cosine matrix Φ, where the
full non-normalized discrete cosine matrix is given by

Φfull
i,j =

1, i = 1, j = 1, . . . , N,
√

2 cos
(
π(2j−1)(i−1)

2N

)
, 2 ≤ i ≤ N, 1 ≤ j ≤ N.

154

4.1 A CG Based Acceleration of Iteratively Re-weighted Least Squares Algorithms

For a given noise vector e of entries ei ∼ N (0, σ2), we eventually obtain the measure-
ments y = Φx∗+e. Later we need to specify the noise level and we will do so by fixing a
signal to noise ratio. By assuming that Φ has the RIP of order k (see Definition 2.7), i.e.,
‖Φz‖`2 ∼ ‖z‖`2 , for all z ∈ RN with # supp(z) ≤ k, we can estimate the measurement
signal to noise ratio by

MSNR :=
E(‖Φx∗‖2`2)
E(‖e‖2`2)

∼ k

mσ2 .

In practice, we set the MSNR first and choose the noise level σ =
√
k√

MSNRm . If
MSNR =∞, the problem is noiseless, i.e., e = 0.

4.1.4.2 Algorithm CG-IRLS

Specific settings. We restrict the maximal number of outer iterations to 15. Further-
more, we modify (4.6), so that the CG-algorithm also stops as soon as

∥∥ρn+1,i∥∥
`2
≤

1e-12. As soon as the residual undergoes this particular threshold, we call the CG
solution (numerically) “exact”. The ε-update rule is extended as in (2.31) by imposing
the lower bound εn = εn∨εmin where εmin = 1e-9/N . The summable sequence (an)n∈N
in Theorem 4.4 is defined by an = 100 · (1/2)n.
As we define the synthetic tests by choosing the solution x∗ of the linear system

Φx∗ = y (here we assume e = 0), we can use it to determine the error of the iterations
‖x̃n − x∗‖`2 .

IRLS vs. CG-IRLS To get an immediate impression about the general behavior of
CG-IRLS, we compare its performance in terms of accuracy and speed to IRLS, where
the intermediate linear systems are solved exactly via Gaussian elimination (i.e., by the
standard MATLAB backslash operator). We choose IHT as a first order state-of-the-art
benchmark, to get a fair comparison with another method which can exploit fast
matrix-vector multiplications.

In this first single trial experiment, we choose an instance of setting B, and set p = 1
for CG-IRLS and compare it to IRLS with different values of p. The result is presented
in the left plot of Figure 4.1. We show the decrease of the relative error in `2-norm as
a function of the computational time. One sees that the computational time of IRLS
is significantly outperformed by CG-IRLS and by the exploitation of fast matrix-vector
multiplications. The standard IRLS is not competitive in terms of computational time,
even if we choose p < 1, which is known to yield super-linear convergence [48]. With
increasing dimension of the problem, in general the advantage of using the CG method
becomes even more significant. However CG-IRLS does not outperform yet IHT in
terms of computational time. We also observe the expected numerical error saturation

155

Chapter 4 Acceleration Techniques for Sparse Recovery Algorithms

0 2 4 6 8 10

10
−10

10
0

computation time [s]

re
l.

e
rr
o
r
‖
x
−

x
∗
‖
ℓ
2
/
‖
x
∗
‖
ℓ
2 decrease of relative error

IHT
IRLS (p = 1)

IRLS (p = 0.9)

IRLS (p = 0.8)

CG-IRLS

0 0.5 1 1.5 2 2.5

10
−10

10
0

computation time [s]

re
l.

e
rr
o
r
‖
x
−

x
∗
‖
ℓ
2
/
‖
x
∗
‖
ℓ
2 decrease of relative error

IHT
CG-IRLS
CG-IRLSm
IHT+CG-IRLSm

Figure 4.1: Single trial of Setting B. Left: Relative error plotted against the computational
time for IRLS[p = 1] (light green, ◦), IRLS[p = 0.9] (green, �), IRLS[p = 0.8]
(dark green, 3), CG-IRLS (blue, ×), and IHT (red, −). Right: Relative error
plotted against computational time for CG-IRLS (blue, ×), CG-IRLSm (dark
blue, +), IHT+CG-IRLSm (black, ∗), and IHT (red, −).

(as mentioned at the beginning of this section), which appears as soon as the accuracy
falls below 1e-13.

For this test, we set the parameter β in the ε-update rule to 2. We comment on the
choice of this particular parameter in a dedicated paragraph below.

Modifications to CG-IRLS As we have shown by a single trial in the previous
paragraph, CG-IRLS as it is presented in Section 4.1.2 is not able to outperform IHT.
Therefore, we introduce the following practical modifications to the algorithm:

(i) We introduce the parameter maxiter_cg, which defines the maximual number
of inner CG iterations. Thus, the inner loop of the algorithm stops as soon as
maxiter_cg iterations were performed, even if the theoretical tolerance toln is
not reached yet.

(ii) CG-IRLS includes a stopping criterion depending on toln+1, which is only im-
plicitly given as a function of εn+1 (compare Section 4.1.2.2, and in particular
formulas (4.6) and (4.7)), which in turn depends on the current x̃n+1 by means of
sorting and a matrix-vector multiplication. To further reduce the computational
cost of each iteration, we avoid the aforementioned operations by only updating
toln+1 outside the MCG loop, i.e., after the computation of x̃n+1 with fixed
toln+1 we update εn+1 as in Step 3 of Algorithm 13 and subsequently update
toln+2 which again is fixed for the computation of x̃n+2.

(iii) The left plot of Figure 4.1 reveals that in the beginning CG-IRLS reduces the

156

4.1 A CG Based Acceleration of Iteratively Re-weighted Least Squares Algorithms

error more slowly than IHT, and it gets faster after it reached a certain ball
around the solution. Therefore, we use IHT as a warm up for CG-IRLS, in the
sense that we apply a number start_iht of IHT iterations to compute a proper
starting vector for CG-IRLS.

We call CG-IRLSm the algorithm with modifications (i) and (ii), and IHT+CG-IRLSm
the algorithm with modifications (i), (ii), and (iii). We set maxiter_cg = bm/12c,
start_iht = 150, and we set β to 0.5. If these algorithms are executed on the same
trial as in the previous paragraph, we obtain the result which is shown on the right
plot in Figure 4.1. For this trial, the modified algorithms show a significantly reduced
computational time with respect to the unmodified version and they now converge
faster than IHT. However, the introduction of the practical modifications (i)–(iii) does
not necessarily comply anymore with the assumptions of Theorem 4.4. Therefore, we
do not have rigorous convergence and recovery guarantees anymore and recovery might
potentially fail more often. In the next paragraph, we empirically investigate the failure
rate and explore the performance of the different methods on a sufficiently large test set.

Another natural modification to CG-IRLS consists in the introduction of a precondi-
tioner to compensate for the deterioriation of the condition number of ΦDnΦ∗ as soon
as εn becomes too small (when wn becomes very large). The matrix ΦΦ∗ is very well
conditioned, while the matrix ΦDnΦ∗ “sandwiching” Dn becomes more ill-conditioned
as n gets larger, and, unfortunately, it is hard to identify additional “sandwiching”
preconditioners Pn such that the matrix PnΦDnΦ∗P ∗n is suitably well-conditioned.
In the numerical experiments standard preconditioners failed to yield any significant
improvement in terms of convergence speed. Hence, we refrained from introducing
further preconditioners. Instead, as we will show at the end of Subsection 4.1.4.3, a
standard (Jacobi) preconditioning of the matrix(

Φ∗Φ + diag
[
λpwnj

]N
j=1

)
,

where the source of singularity is added to the product Φ∗Φ, leads to a dramatic
improvement of computational speed.

Empirical test on computational time and failure rate In the following, we define
a method to be “successful” if it is computing a solution x for which the relative
error ‖x − x∗‖`2/‖x∗‖`2 ≤ 1e-13. The computational time of a method is measured
by the time it needs to produce the first iterate which reaches this accuracy. In the
following, we present the results of a test which runs the methods CG-IRLS, CG-
IRLSm, IHT+CG-IRLSm, and IHT on 100 trials of Setting A, B, and C respectively
and p ∈ {1, 0.9, 0.8}. For values of p < 0.8 the methods become unstable, due to the
severe nonconvexity of the problem and it seems that good performance cannot be

157

Chapter 4 Acceleration Techniques for Sparse Recovery Algorithms

reached below this level. Therefore we do not investigate further these cases. Let us
stress that IHT does not depend on p.

In each setting we check for each trial which methods succeeds or fails. If all methods
succeed, we compare the computational time, determine the fastest method, and count
the computational time of each method for the respective mean computational time.
The results are shown in Figure 4.2. By analyzing the diagrams, we are able to distill
the following observations:

• Especially in Setting A and B, CG-IRLSm and IHT+CG-IRLSm are better or
comparable to IHT in terms of mean computational time and provide in most
cases the fastest method. CG-IRLS performs much worse. The failure rate of all
the methods is negligible here.

• The gap in the computational time between all methods becomes larger when N
is larger.

• With increasing dimension of the problem, the advantage of using the modified
CG-IRLS methods subsides, in particular in Setting C.

• In the literature [36, 38, 37, 48] superlinear convergence is reported for p < 1,
and perhaps one of the most surprising outcomes is that the best results for
all CG-IRLS methods are instead obtained for p = 1. This can probably be
explained by observing that superlinear convergence kicks in only in a rather
small ball around the solution and hence does not necessarily improve the actual
computation time!

• Not only the computational performance, but also the failure rate of the CG-IRLS
based methods increases with decreasing p. However, as expected, CG-IRLS
succeeds in the convex case of p = 1. The failure of CG-IRLS for p < 1 can
probably be attributed to non-convexity.

We conclude that CG-IRLSm and IHT+CG-IRLSm perform well for p = 1 and for
the problem dimension N within the range of 1000 – 10000. They are even able to
outperform IHT. However, by extrapolation of the numerical results IHT is expected
to be faster for N > 10000. (This is in compliance with the general folklore that
first order methods should be preferred for higher dimension. However, as we will
see in Subsection 4.1.4.3, a proper preconditioning of CG-IRLS-λ will win over IHT
for dimensions N ≥ 105!) As soon as N < 1000, direct methods such as Gaussian
elimination are faster than CG, and thus, one should use standard IRLS with p < 1.

Choice of β, maxiter_cg, and start_iht The numerical tests in the previous
paragraph were preceded by a careful and systematic investigation of the tuning of the
parameters β, maxiter_cg, and start_iht. While we fixed start_iht to 100, 150, and

158

4.1 A CG Based Acceleration of Iteratively Re-weighted Least Squares Algorithms

1 0.9 0.8
0

10

20

p

co
m
p
.
ti
m
e
[s
]

Setting A

1 0.9 0.8
0

10

20

p
co

m
p
.
ti
m
e
[s
]

Setting B

1 0.9 0.8
0

10

20

p

co
m
p
.
ti
m
e
[s
]

Setting C

1 0.9 0.8
0

50

100

p

fa
st
es
t
m
et
h
o
d
[%

] Setting A

1 0.9 0.8
0

50

100

p

fa
st
es
t
m
et
h
o
d
[%

] Setting B

1 0.9 0.8
0

50

100

p

fa
st
es
t
m
et
h
o
d
[%

] Setting C

1 0.9 0.8
0

50

100

p

fa
il
u
re

ra
te

[%
]

Setting A

1 0.9 0.8
0

50

100

p

fa
il
u
re

ra
te

[%
]

Setting B

IHT CG-IRLS CG-IRLSm IHT+CG-IRLSm

1 0.9 0.8
0

50

100

p

fa
il
u
re

ra
te

[%
]

Setting C

Figure 4.2: Empirical test on Setting A, B, and C for the methods CG-IRLS (blue), CG-IRLSm
(white), IHT+CG-IRLSm (black), and IHT (red). Upper: Mean computational
time. Center: Fastest method (in %). Lower: Failure rate (in %).

200 for Setting A, B, and C respectively to produce a good starting value, we tried β ∈
{1/N, 0.01, 0.1, 0.5, 0.75, 1, 1.5, 2, 5, 10}, and maxiter_cg ∈ {bm/8c, bm/12c, bm/16c}
for each setting. The results of this parameter sensitivity study can be summarized as
follows:

• The best computational time is obtained for β ∼ 1. In particular the compu-
tational time is not depending substantially on β in this order of magnitude.
More precisely, for CG-IRLS the choice of β = 0.5 and for (IHT+)CG-IRLSm
the choice of β = 2 works best.

• The choice of maxiter_cg very much determines the tradeoff between failure and
speed of the method. The value bm/12c seems to be the best compromise. For a
smaller value the failure rate becomes too high, for a larger value the method is

159

Chapter 4 Acceleration Techniques for Sparse Recovery Algorithms

too slow.

Phase transition diagrams. Besides the empirical analysis of the speed of convergence,
we also investigate the robustness of CG-IRLS with respect to the achievable sparsity
level for exact recovery of x∗. Therefore, we fix N = 2000 and we compute a phase
transition diagram for IHT and CG-IRLS on a regular Cartesian 50× 40 grid, where
one axis represents m/N and the other represents k/m. For each grid point we plot
the empirical success recovery rate, which is numerically realized by running both
algorithms on 20 random trials. CG-IRLS or IHT is successful if it is able to compute
a solution with a relative error of less than 1e-4 within 20 or 500 (outer) iterations
respectively. Since we aim at simulating a setting in which the sparsity k is not known
exactly, we set the parameter K = 1.1 · k for both IHT and CG-IRLS. The interpolated
plot is shown in Figure 4.3. It turns out that CG-IRLS has a significantly higher
success recovery rate than IHT for less sparse solutions.

m/N

k
/
m

IHT

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.125

0.25

0.375

0.5

0.625

0.75

0.875

1

CG-IRLS

CG-IRLS

m/N

k
/
m

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.125

0.25

0.375

0.5

0.625

0.75

0.875

1

Figure 4.3: Phase transition diagrams of IHT and CG-IRLS for N = 2000. The recovery
rate is presented in grayscale values from 0% (white) up to 100% (black). As a
reference, in the right subfigure, the 90% recovery rate level line of the CG-IRLS
phase transition diagram is plotted to show more evidently the improved success
rate of the latter algorithm.

4.1.4.3 Algorithm CG-IRLS-λ

Specific settings We restrict the maximal number of outer iterations to 25. Further-
more, we modify (4.33), so that the CG-algorithm also stops as soon as

∥∥ρn+1,i∥∥
`2
≤

1e-16 · N3/2m. As soon as the residual undergoes this particular threshold, we call
the CG solution (numerically) “exact”. The ε-update rule is extended by imposing
the lower bound εn = εn ∨ εmin where εmin = 1e-9. Additionally we propose to
choose εn+1 ≤ 0.8nεn, which practically turns out to increase dramatically the speed

160

4.1 A CG Based Acceleration of Iteratively Re-weighted Least Squares Algorithms

of convergence. The summable sequence (an)n∈N in Theorem 4.15 is defined by setting
an =

√
Nm · 104 · (1/2)n. We split our investigation into a noisy and a noiseless setting.

For the noisy setting we set MSNR = 100. According to [15, 27], we choose
λ = cσ

√
m logN as a near-optimal regularization parameter, where we empirically

determine c = 0.48. Since we work with relatively large values of λ in the regularized
problem (2.39), we cannot use the synthesized sparse solution x∗ as a reference for
the convergence analysis. Instead, we need another reliable method to compute the
minimizer of the functional. In the convex case of p = 1, this is performed by the
well-known and fast algorithm FISTA [13], which shall also serve as a benchmark for the
speed analysis. In the non-convex case of p < 1, there is no method which guarantees
the computation of the global minimizer, thus, we have to omit a detailed speed-test
in this case. However, we describe the behavior of Algorithm 14 for p changing.
If the problem is noiseless, i.e., e = 0, the solution xλ of (2.39) converges to the

solution of (2.3) for λ→ 0 (compare Lemma 2.15 for the case p = 1). Thus, we choose
λ = m · 1e-8, and assume the synthesized sparse solution x∗ as a good proxy for the
minimizer and a reference for the convergence analysis. (Actually, this can also be seen
the other way around, i.e., we use the minimizer xλ of the regularized functional to
compute a good approximation to x∗.) It turns out that for λ ≈ 0, as we comment
below in more detail, FISTA is basically of no use.

CG-IRLS-λ vs. IRLS-λ As in the previous subsection, we first show that the CG-
method within IRLS-λ leads to significant improvements in terms of the computational
speed. Therefore we choose a noisy trial of Setting B, and compare the computational
time of the methods IRLS-λ, CG-IRLS-λ, and FISTA. The result is presented on the
left plot of Figure 4.4. We observe that CG-IRLS-λ computes the first iterations in
much less time than IRLS-λ, but due to bad conditioning of the inner CG problems it
performs much worse afterwards. Furthermore, as may be expected, the algorithm is
not suitable to compute a highly accurate solution. For the computation of a solution
with a relative error in the order of 1e-3, CG-IRLS-λ outperforms FISTA. FISTA is
able to compute highly accurate solutions, but a solution with a relative error of 1e-3
should be sufficient in most applications because the goal in general is not to compute
the minimizer of the Lagrangian functional but an approximation of the sparse signal.

Modifications to CG-IRLS-λ To further decrease the computational time of CG-
IRLS-λ, we propose the following modifications:

(i) To overcome the bad conditioning in the CG loop, we precondition the matrix
An = Φ∗Φ + diag

[
λpwnj

]N
j=1

by means of the Jacobi preconditioner, i.e., we

pre-multiply the linear system by the inverse of its diagonal, (diagAn)−1, which
is a very efficient operation in practice.

161

Chapter 4 Acceleration Techniques for Sparse Recovery Algorithms

0 2 4 6 8 10

10
−10

10
0

computation time [s]

re
l.

e
rr
o
r
‖
x
−

x
∗
‖
ℓ
2
/
‖
x
∗
‖
ℓ
2 decrease of relative error

IRLS-λ
CG-IRLS-λ
FISTA

0 1 2 3

10
−10

10
0

computation time [s]

re
l.

e
rr
o
r
‖
x
−

x
∗
‖
ℓ
2
/
‖
x
∗
‖
ℓ
2 decrease of relative error

CG-IRLS-λ

PCG-IRLS-λ

PCGm-IRLS-λ

FISTA

Figure 4.4: Single trial of Setting B. Left: Relative error plotted against the computational
time for IRLS-λ (light green, ◦), CG-IRLS-λ (blue, ×), and FISTA (red, −).
Right: Relative error plotted against computational time for CG-IRLS-λ (blue,
×), PCG-IRLS-λ (dark blue, +), PCGm-IRLS-λ (black, ∗), and FISTA (red, −).

(ii) We introduce the parameter maxiter_cg which defines the maximal number of
inner CG iterations and is set to the value maxiter_cg = 4 in the following.

The algorithm with modification (i) is called PCG-IRLS-λ, and the one with mod-
ification (i) and (ii) PCGm-IRLS-λ. We run these algorithms on the same trial of
Setting B as in the previous paragraph. The respective result is shown on the right
plot of Figure 4.4. This time, preconditioning effectively yields a strong decrease of
computational time, especially in the final iterations where An is badly conditioned.
Furthermore, modification (ii) importantly increases the performance of the proposed
algorithm also in the initial iterations. However, again we have to take into consid-
eration that we may violate the assumptions of Theorem 4.15 so that convergence is
not guaranteed anymore and failure rates might potentially increase. In the following
two paragraphs, we present simulations on noisy and noiseless data, which give a more
precise picture of the speed and failure rate of the previously introduced methods in
comparison to FISTA and IHT.

Empirical test on computational time and failure rate with noisy data In the
previous paragraph, we observed that the CG-IRLS-λ methods are only computing
efficiently solutions with a small relative error. Thus we now focus on this setting and
compare the three methods PCG-IRLS-λ, PCGm-IRLS-λ, and FISTA with respect
to their computational time and failure rate in recovering solutions with a relative
error of 1e-1, 1e-2, and 1e-3. We only consider the convex case p = 1. Similarly to
the procedure in Section 4.1.4.2, we run these algorithms on 100 trials for each setting
with the respectively chosen values of λ. In Figure 4.5 the upper bar plot shows the

162

4.1 A CG Based Acceleration of Iteratively Re-weighted Least Squares Algorithms

result for the mean computational time and the lower stacked bar plot shows how
often a method was the fastest one. We do not present a plot of the failure rate since
none of the methods failed at all. By means of the plots, we demonstrate that both
PCG-IRLS-λ, and PCGm-IRLS-λ are faster than FISTA, while PCGm-IRLS-λ always
performs best.

0.1 0.01 0.001
0

0.2

0.4

0.6

rel. error

co
m
p
.
ti
m
e
[s
]

Setting A

0.1 0.01 0.001
0

0.2

0.4

0.6

rel. error

co
m
p
.
ti
m
e
[s
]

Setting B

0.1 0.01 0.001
0

0.2

0.4

0.6

rel. error

co
m
p
.
ti
m
e
[s
]

Setting C

0.1 0.01 0.001
0

50

100

rel. error

fa
st
es
t
m
et
h
o
d
[%

] Setting A

0.1 0.01 0.001
0

50

100

rel. error

fa
st
es
t
m
et
h
o
d
[%

] Setting B

0.1 0.01 0.001
0

50

100

rel. error

fa
st
es
t
m
et
h
o
d
[%

] Setting C

Figure 4.5: Empirical test on Setting A, B, and C for the methods PCG-IRLS-λ (blue),
PCGm-IRLS-λ (black), and FISTA (red). Upper: Mean computational time.
Lower: Fastest method (in %).

Empirical test on computational time and failure rate with noiseless data In the
noiseless case, we compare the computational time of FISTA and PCGm-IRLS-λ to
IHT and IHT+CG-IRLSm. We set maxiter_cg = 40 for PCGm-IRLS-λ. In a first
test, we run these algorithms on one trial of Setting A, and C respectively, and plot
the results in Figure 4.6.
As already mentioned, FISTA is not suitable for small values of λ on the order of
m ·1e-8 and converges then extremely slowly, but PCGm-IRLS-λ can compete with the
remaining methods. IHT+CG-IRLSm is in some settings able to outperform IHT, at
least when a high accuracy is needed. PCGm-IRLS-λ is always at least as fast as IHT
with increasing relative performance gain for increasing dimensions. This observation
suggests the conjecture that PCGm-IRLS-λ provides the fastest method also in rather
high dimensional problems. To validate this hypothesis numerically, we introduce
two new high dimensional settings (to reach higher dimensionalities and retaining low

163

Chapter 4 Acceleration Techniques for Sparse Recovery Algorithms

0 0.5 1 1.5 2 2.5

10
−10

10
0

computation time [s]

re
l.

e
rr
o
r
‖
x
−

x
∗
‖
ℓ
2
/
‖
x
∗
‖
ℓ
2 decrease of relative error

IHT
FISTA

IHT+CG-IRLSm

PCGm-IRLS-λ

0 2 4 6 8

10
−10

10
0

computation time [s]

re
l.

e
rr
o
r
‖
x
−

x
∗
‖
ℓ
2
/
‖
x
∗
‖
ℓ
2 decrease of relative error

IHT
FISTA
IHT+CG-IRLSm

PCGm-IRLS-λ

Figure 4.6: Left: Setting A. Right: Setting C. Comparison of IHT (blue, −), FISTA (green,
−−), IHT+CG-IRLSm (black, ∗), and PCGm-IRLS-λ (red, ×).

computation times for the extensive tests it is again very beneficial to use the real
cosine transform as a model for Φ):

Setting D Setting E
N 100000 1000000
m 40000 400000
k 1500 15000
K 2500 25000

We run the most promising algorithms IHT and PCGm-IRLS-λ on a trial of the large
scale settings D and E. The result which is plotted in Figure 4.7 shows that PCGm-
IRLS-λ is able to outperform IHT in these settings unless one requires an extremely
low relative error (≤ 1e-8), because of the error saturation effect. We confirm this
outcome in a test on 100 trials for Setting D and E and present the result in Figure 4.8.

Dependence on p In the last experiment of this section, we are interested in the
influence of the parameter p. Of course, changing p also means modifying the problem
resulting in a different minimizer. Due to non-convexity also spurious local minimizers
may appear. Therefore, we do not compare the speed of the method to FISTA. In
Figure 4.9, we show the performance of Algorithm PCGm-IRLS-λ for a single trial of
Setting C and the parameters p ∈ {1, 0.9, 0.8, 0.7} for the noisy and noiseless setting.
As reference for the error analysis, we choose the sparse synthetic solution x∗, which is
actually not the minimizer here.
In both the noisy and noiseless setting, using a parameter p < 1 improves the

computational time of the algorithm. In the noiseless case, p = 0.9 seems to be a good

164

4.1 A CG Based Acceleration of Iteratively Re-weighted Least Squares Algorithms

0 5 10
10

−10

10
−5

10
0

computation time [s]

re
l.

e
rr
o
r
‖
x
−

x
∗
‖
ℓ
2
/
‖
x
∗
‖
ℓ
2 decrease of relative error

IHT

PCGm-IRLS-λ

0 50 100 150
10

−10

10
−5

10
0

computation time [s]

re
l.

e
rr
o
r
‖
x
−

x
∗
‖
ℓ
2
/
‖
x
∗
‖
ℓ
2 decrease of relative error

IHT

PCGm-IRLS-λ

Figure 4.7: Left: Setting D. Right: Setting E. Comparison of IHT (blue, −), and PCGm-
IRLS-λ (red, ×).

0.01 0.0001 1e−06
0

2

4

6

rel. error

co
m
p
.
ti
m
e
[s
]

Setting D

0.01 0.0001 1e−06
0

20

40

60

80

rel. error

co
m
p
.
ti
m
e
[s
]

Setting E

Figure 4.8: Empirical test on the mean computational time of Setting D and E for the methods
IHT (blue), and PCGm-IRLS-λ (red).

0 0.2 0.4 0.6
10

−10

10
−5

10
0

computation time [s]

re
l.

e
rr
o
r
‖
x
−

x
∗
‖
ℓ
2
/
‖
x
∗
‖
ℓ
2 decrease of relative error

PCGm-IRLS-λ (p = 1)

PCGm-IRLS-λ (p = 0.9)

PCGm-IRLS-λ (p = 0.8)

PCGm-IRLS-λ (p = 0.7)

0 0.2 0.4 0.6 0.8

10
0

computation time [s]

re
l.

e
rr
o
r
‖
x
−

x
∗
‖
ℓ
2
/
‖
x
∗
‖
ℓ
2 decrease of relative error

PCGm-IRLS-λ (p = 1)

PCGm-IRLS-λ (p = 0.9)

PCGm-IRLS-λ (p = 0.8)

PCGm-IRLS-λ (p = 0.7)

Figure 4.9: Results of Algorithm PCGm-IRLS-λ for a single trial of Setting C for different
values of p with noise (right) and without noise (left).

165

Chapter 4 Acceleration Techniques for Sparse Recovery Algorithms

choice, smaller values do not improve the performance. In contrast, in the noisy setting
the computational time decreases with decreasing p.

4.2 Parallel Domain Decomposition Based Solutions for the
Iterative Soft Thresholding Algorithm

The reason why we are interested in parallel solutions for sparse recovery problems is
that we may dispose of an encoder that is only available as a full matrix and may not
fit in the memory of one single machine. In another situation, we may have to solve a
bunch of similar smaller problems, which fit in the memory, but their parallel treatment
dramatically reduces the computational time for the entire dataset. Moreover, also big
data problems that fit in the memory of a machine may be considered for parallelization
since it decreases in most cases the computation time. In particular for readers, who
are not so familiar with general parallelization concepts, we open this section by a
respective overview.

We distinguish between data parallelism and task parallelism. In the first concept,
each machine is doing the same calculations on different data, in the second concept,
each machine is specialized on a particular task. An example for task parallelism is
pipelining, e.g., if one considers a bunch of images where each has to be transformed
into a black/white-image and sharpened. This task can be accomplished by processing
an image first by a machine that transforms the color into gray level, and afterwards,
sharpen it by another machine, while the first machine processes the next image, and
so on. In our investigation, we will mainly focus on data parallelism since we essentially
have to perform a single task on data of large size.

Parallel implementations are based on either the shared or the distributed memory
paradigm. It is characteristic for the shared memory paradigm that all cores can access
the same storage and one has to take care about concurrent writing operations to the
same range of memory (e.g., multi-threading/OpenMP). In the distributed memory
paradigm, each core can only access its own memory, and one has to synchronize the
cores among each other by means of communication through data and information
transfer, also called message passing (e.g., MPI). Since we talk about solutions for
big data, and since we only have at disposal conventional (parallel) systems with very
restricted RAM per processing unit, we necessarily have to split the data and focus on
the distributed memory paradigm in this section.

In order to design a parallel algorithm, in principle two different approaches can be
followed: Either one takes an existing sequential algorithm1 and tries to distribute

1With the term “sequential” we mean that all operations of the algorithm are sequentially executed.

166

4.2 Parallel Domain Decomposition Based Solutions for ISTA

each calculation step and its respective data requirements to multiple cores without
changing the essential operating principle of the algorithm, or one creates an algorithm
from scratch based on a novel methodology which exploits in particular the data and
computation distribution. If the individual operations of a sequential algorithm can
be parallelized in the first case above, then we call such a parallelization native. The
advantage of a native parallel algorithm is that one does not need to (re)invent the flow
of data processing, and one can concentrate on the efficiency of the parallelization2,
which is defined as follows:
Definition 4.25 (Parallel speedup and efficiency)
Let θ(P) measure the parallel running time of an algorithm which is parallelized on P
cores. In particular θ(1) is the time of the sequential version (on a single core) of an
algorithm. The parallel speedup is defined as

speedup(P) := θ(1)
θ(P) , (4.64)

and the parallel efficiency is defined as

eff(P) := θ(1)
P θ(P) . (4.65)

We distinguish between sub-linear (< P), linear (= P), and super-linear (> P) parallel
speedup.

A parallelization is considered inefficient if and only if eff(P) ≤ 1/P . Then the speedup
is less or equal than 1, and the execution of the parallelized version of the algorithm
takes more time than the sequential one. The efficiency of an algorithm depends on
theoretical (algorithmic concept) and practical (implementation, computer architecture)
aspects.
In order to explain positive efficiency effects on a solely theoretical level for native

parallelizations, we assume a homogeneous system with P similar cores and exclude
any hardware or implementation effects. In a native parallelization of an algorithm,
where we only distribute the constant total amount of work to P cores (and thus split
the computational cost), it is rather obvious that the ideal speedup can only be linear,
and thus the parallel efficiency is bounded by one.
If a non-native algorithm can have a theoretical super-linear speedup—and thus a

parallel efficiency above one—is controversially discussed by scientists, and has been
proved and disproved by different underlying models, see, e.g., [24, 184, 107, 153,

2Let us emphasize that we consider this topic in this section from a theoretical point of view
describing an exact precision data processing. A deterministic natively parallelized algorithm, which
does not contain any randomness, should produce the same (intermediate) results as its sequential
version. However, in practice this is very unlikely to be achieved since truncation errors (and its
propagation) are the reason that both versions are not exactly identical.

167

Chapter 4 Acceleration Techniques for Sparse Recovery Algorithms

102]. However, results with super-linear speedup were reported, e.g., for evolutionary
algorithms [156, 2, 167], and branch-and-bound algorithms [121]. In those examples,
the parallel algorithms use a strategy, in which one core may produce results that affect
the amount of work of other cores [135, p.127–128].
From a practical point of view, one possibility to gain efficiency in native and non-

native parallelization is the distribution of data into very small portions such that they
can be moved from the RAM to the cache of a core. Usually, the cache allows much
faster access times, and one may observe (even for native parallelization) a super-linear
speedup. Such a technique was exploited for instance in the FFTW [86].
We present in the last paragraph of Section 4.2.1 another non-natively parallelized

algorithm for sparse recovery, where super-linear speedup is expected according to the
theoretical investigations, and we indeed observe it in the numerical experiments.
Nonetheless, since numerical tests are often performed on complicated hardware
architectures, perhaps accompanied by background processes and compiler optimization
in the software, it is in general difficult to clearly identify in numerical experiments
whether a super-linear effect is due to theoretical or practical aspects.

Note that in general any non-parallelized step of an algorithm and any communication
(message passing) among the cores are borne by the parallel efficiency. This implies
that parallelization always has limitations. In fact any algorithm always consists of
one part of the computations that can be parallelized, and one part that cannot be
parallelized. The parallel computation time for the non-parallelizable part is constant
and not decreasing with an increasing number of used cores P . Thus, if P is large
enough, the computation time of the non-parallelizable part dominates and prevents a
further speedup.

So far, we implicitly assumed that we have to solve only one single problem. Hereafter
we cover the case where we have to solve Q > 1 problems independently, i.e., the solution
of each problem can be computed without the knowledge of any (intermediate) result
of the other problems. An example for such a situation is the simple downsampling
of an image, where one splits it into subimages, which are processed independently.
Consider the (simplified) setting, where one has Pmax cores available and needs to
solve Q ≥ Pmax problems of the same type. Assume further that each problem has
approximately the same cost, and Pmax being a divisor of Q. If an algorithm that
solves one of those problems cannot be parallelized with a super-linear speedup, it is
reasonable to run the non-parallelized version of the algorithm independently on each
core. If a super-linear speedup is possible, one has to figure out the optimal number
of cores Popt with the best parallel efficiency and solve each of the Q problems by
the parallelized version of the algorithm on a bundle of Popt cores. We illustrate this
abstract description by the following example.

168

4.2 Parallel Domain Decomposition Based Solutions for ISTA

Example 4.26
Set Pmax = 4, Q = 8, and assume that one single problem will have the following
parallel computation times depending on the number of cores P (sub-linear speedup):

P 1 2 4
parallel running time θ(P) in s 1 0.75 0.5

speedup(P) 1 4/3 2
eff(P) 1 2/3 1/2

In order to compute Q = 8 problems, and since we have Pmax = 4 cores available, we
can decide whether we either compute 2 problems on each core, or split the number
of cores into 2×2 cores and give each group 4 problems, or use the entire group of 4
cores for each problem and let them compute all 8 problems. Then, we would need
2s (2 problems times 1s), 3s (4 problems times 0.75s), or 4s (8 problems times 0.5s)
respectively in order to compute the totality of 8 problems. Thus, it is best to prefer
the first variant where one does process each problem non-parallelized.
Let us now assume that one problem can be solved by parallel computation times

that exhibit a super-linear speedup:

P 1 2 4
parallel running time θ(P) in s 1 0.3 0.2

speedup(P) 1 10/3 5
eff(P) 1 5/3 5/4

In this case, the best parallel efficiency is obtained for Popt = 2. For the totality of
8 problems one would need 2s, 1.2s, or 1.6s respectively, and thus, one obtains the
optimal result in terms of parallel computational time, when splitting up the number
of cores into 2 groups of 2 cores, and processes on each group 4 problems.

We draw here a rather rough view on parallelization since the intention is to familiarize
the reader with the mainly used concepts and not with technical details. Naturally, in
practice one has to consider even more effects like, e.g., reading and writing of data, or
more sophisticated strategies, when Q is not divisible by Pmax etc. For further reading
we refer to relevant textbooks, e.g. [192, 119, 124].

In the following sections, we explore parallel solutions for the `1-regularized least
squares problem (2.15). At first, we recall the state-of-the-art in Section 4.2.1, giving a
detailed overview on existing literature and the respective parallel algorithms. Then, we
propose an algorithm that is based on the idea of subspace correction methods for sparse
recovery, which was presented in the early work [74]. The advantage of the subspace
correction technique is that it allows multiple internal iterations on each core without
intermediate message passing in each iteration. The findings of the paper [74] were
only rudimentarily verified by numerical experiments since it was mainly of conceptual

169

Chapter 4 Acceleration Techniques for Sparse Recovery Algorithms

nature. No follow-up research on the subspace correction methods, introduced in [74],
has been reported in the literature, except for [80]. In Section 4.2.2, we thoroughly
analyze and test this parallel algorithm to eventually formulate a more efficient version
that is able to outperform the state-of-the-art algorithms, as we demonstrate in exten-
sive numerical experiments (Section 4.2.5). Furthermore, we prove the convergence of
the newly designed method in Section 4.2.3 and clarify some implementation details in
Section 4.2.4.

The research in Sections 4.2.1–4.2.5 is tailored to the situation of large sparse recovery
problems, i.e., the encoding matrix Φ ∈ Rm×N has very large dimensions N and m.
By contrast, in Section 4.2.6 we consider the scenario of having a large number of
smaller sparse recovery problems of similar size. We address the problem of an efficient
scheduling of the individual sparse recovery problems on a parallel machine, using
the example of a large-scale hyperspectral-multispectral image fusion. Therefore, we
choose the best possible solver for an individual problem among the state-of-the-art
solutions, as presented in 4.2.1–4.2.5. Then we describe advantages and disadvantages
of fixed and work-stealing scheduling techniques, propose a combination of both, and
present empirical tests, applying this strategy.

4.2.1 Parallel Algorithms for the `1-regularized Least Squares Problem
Let us consider a joint sparsity problem (see Section 2.3) with measurement data,
given as a vector in a finite dimensional space, i.e., y ∈ H := Rm×d, d ≥ 1, and let
T : `2(Λ)→ H be a bounded linear operator, based on a countable set Λ modeling the
measurement process. We want to reconstruct a potentially joint sparse signal u ∈ `2(Λ)
from given y by the minimization problem (2.15). We remind that we simplified the
notation ‖ · ‖`p,2(Λ) = ‖ · ‖`p(Λ) (compare Section 1.2), and thus, the problem also reads

arg min
u∈`2(Λ)

(
Jλ(u) := ‖Tu− y‖2H + λ‖u‖`1,2(Λ)

)
,

which is the most common formulation. However, we stick to the first version (2.15)
for the sake of a simple notation.

A Parallelized Iterative Soft-Thresholding Algorithm In order to solve problem (2.15),
a very simple algorithm is the well-known iterative soft thresholding algorithm (ISTA,
Section 2.4.3.1). Choosing a starting vector u(0) ∈ `1(Λ), it iterates

u(n+1) = Stλ(u(n) + tT ∗(y − Tu(n))),

170

4.2 Parallel Domain Decomposition Based Solutions for ISTA

with positive stepsize t ∈ R, where the thresholding operator Stλ is defined as in (2.51),
but for a countable index set, i.e.,

(Stλ(u))i :=


(
1− tλ

2‖ui‖`2

)
ui, ‖ui‖`2 > tλ

2 ,

0, otherwise,
i ∈ Λ.

In order to formulate a parallelized version of this algorithm, let us decompose the
countable index set Λ in P disjoint subsets Λ1, . . . ,ΛP . Furthermore, we define for
each i = 1, . . . , P the operator Ti, which is the restriction of T to vectors supported
on the index set Λi, and respectively ui the restriction of a vector u ∈ `2(Λ) to Λi.
Through this data distribution, a parallelization of ISTA is given by Algorithm 15.

Algorithm 15 Parallel ISTA
Set u(0)

i := 0, [Tu(0)] := 0, t ∈ R, 0 < t < ‖T‖−2.
1: while stopping criterion is not fulfilled do
2: for i = 1, . . . , P do in parallel
3: u

(n+1)
i = Stλ(u(n)

i + tT ∗i (y − [Tu(n)]))
4: end for
5: [Tu(n+1)] =

P∑
i=1

Tiu
(n+1)
i by ALLREDUCE

6: end while

In particular the readers that are not familiar with parallel computing may stumble
over the ALLREDUCE command in the description of the algorithm. Let us explain Step 5
more in detail. Actually, this step determines that each core i is calculating in parallel
the vector fi := Tiu

(n+1)
i , before the sum of all fi is computed. Since each core only has

access to its own memory and therefore to its own fi, it requires the communication of
those results among all cores in order to sum them up. This procedure is called REDUCE.
The prefix ALL- then describes that the result of the sum is communicated back to
all cores. This is necessary since the algorithm is symmetric and each core needs this
result again in the next iteration in Step 3. We use (here and in the remainder of the
text) the notation [·] in order to emphasize that only the result of the embraced term is
stored, communicated, and reused. By the usage of the ALLREDUCE synchronization we
make sure that the parallel version is exactly doing the same as the sequential version
of ISTA, and therefore it is a native parallelization. The particular implementation
and computational cost of the ALLREDUCE operation depends on the used library and
underlying hardware architecture. It requires in general O(logP) communications [44].

If we consider the finite dimensional problem and equally distribute the index
set Λ = {1, . . . , N} to the subsets Λ1, . . . ,ΛP , the parallelization in Algorithm 15
requires in principle the storage of the matrix Ti on each core, thus a matrix of the

171

Chapter 4 Acceleration Techniques for Sparse Recovery Algorithms

size m × N/P . Furthermore the complexity of the computation can be essentially
reduced to the complexity of the two matrix-matrix multiplications (or matrix-vector
multiplications in the case of d = 1) by Ti and T ∗i ; thus it is O(2dmN/P). An
alternative to the parallelization in Algorithm 15 would be to first BROADCAST3 all
u

(n)
i to all cores (such that u(n) is available on each core) and then compute u(n+1)

i =
Stλ(u(n)

i + t([T ∗i y] − [T ∗i T]u(n))) in parallel, where the matrices [T ∗i y] and [T ∗i T] are
precomputed only once before the while-loop. In this case the ALLREDUCE command
could be omitted. This parallelization would essentially require the storage of the
matrix [T ∗i T], which is of the size N/P × N . The complexity of the algorithm is
O(dN2/P). Thus, the alternative parallelization scheme is more efficient with respect
to the one presented in Algorithm 15 in terms of storage and complexity if 2m > N .
However, since we consider compressed sensing problems, we assume m � N and
therefore the alternative parallelization scheme is not of importance for the remainder
of this presentation. More details on complexity are given further below.

Sequential acceleration techniques It is well-known that ISTA is converging slowly
in general and needs a large number of iterations [127, 22]. The parallel Algorithm 15
is one way to speed it up. However, several sequential methods that decrease the
running time of ISTA were proposed. The most important modifications are FISTA (in
combination with backtracking) [13], or the acceleration through an adaptive choice of
the stepsize t = t(n) in Step 3. A thorough overview on those techniques is given in the
recent field guide towards forward-backward splitting methods in [91]. Since, in general,
such methods already tremendously reduce the number of iterations of ISTA, it is very
likely that an accelerated sequential version of ISTA outperforms the parallel version.
In particular the huge amount of iterations reduces the efficiency of the parallelization
since the communication in the ALLREDUCE command is necessary in each iteration.
Thus, in order to further increase the performance of such an accelerated sequential
ISTA, we are facing the question whether the above presented sequential acceleration
techniques (FISTA and adaptive stepsize) can be also efficiently parallelized.

Parallelization of acceleration techniques The method FISTA, which reached a
certain popularity due to its good worst-case performance, is extending ISTA by a
componentwise Nesterov-type prediction step of the iterates u(n)

i . Therefore, its native
parallelization, which we present in Algorithm 16, does not require any additional
communication apart from the unavoidable ALLREDUCE command. In [154] it was first
formulated and shown to be scalable on distributed systems.
If we fix the stepsize t, FISTA is only guaranteed to converge for t ≤ ‖T‖−2. In

the original paper [13], the authors proposed an acceleration of ISTA and FISTA by
3A BROADCAST command distributes the value of a certain variable from one core to all the other

cores.

172

4.2 Parallel Domain Decomposition Based Solutions for ISTA

Algorithm 16 Parallel FISTA (P-FISTA)

Set χ(0)
i := 0, [Tχ(0)] := 0, s(0) := 1, 0 < t < ‖T‖−2.

1: while stopping criterion is not fulfilled do
2: for i = 1, . . . , P do in parallel
3: u

(n+1)
i = Stλ(χ(n)

i + tT ∗i (y − [Tχ(n)]))
4: s(n) = 1+

√
1+4(s(n−1))2

2
5: w(n) = 1 + s(n−1)−1

s(n)

6: χ
(n+1)
i = w(n)u

(n+1)
i +

(
1− w(n)

)
u

(n)
i

7: end for
8: [Tχ(n+1)] =

P∑
i=1

Tiχ
(n+1)
i by ALLREDUCE

9: end while

backtracking, and proved its convergence. The idea of backtracking is to choose t
several orders of magnitude above ‖T‖−2, and to iteratively decrease the value of t and
to evaluate Step 3, until the backtracking condition,

‖Tu(n+1) − y‖2H

≤ ‖Tχ(n) − y‖2H + 2〈u(n+1) − χ(n), T ∗(Tχ(n) − y)〉+ 1
t
‖u(n+1) − χ(n)‖2`2(Λ),

(4.66)

is fulfilled for some t′. Then the variable stepsize t = t(n) is set to t′. While the iterative
evaluation of Step 3, and the decrease of t can be done in parallel, the evaluation
of the backtracking condition (4.66) requires again an ALLREDUCE operation in each
backtracking step since one has to compute and synchronize Tu(n+1). We present this
method in Algorithm 17. Note that the last two summands of the right-hand side
of (4.66) can be parallelized as well since we can rewrite them as

P∑
i=1

2〈u(n+1)
i − u(n)

i , T ∗i ([Tχ(n)]− y)〉+ 1
t
‖u(n+1)

i − χ(n)
i ‖

2
`2(Λi).

Because we have to compute the sum and synchronize the results, there is another
ALLREDUCE command hidden in the evaluation of (4.66). In an implementation, it
can be combined with the ALLREDUCE command in Step 5. An important change in
Algorithm 17 is that the computation of [Tχ(n+1)] is handled without an additional
matrix-vector multiplication and ALLREDUCE command, as it was still necessary in
Step 8 of Algorithm 16. Now, it can be efficiently updated via the already computed
[Tu(n+1)]. Note that the backtracking stops after a finite number of steps in each
iteration. We comment on this issue further below in Section 4.2.2.

173

Chapter 4 Acceleration Techniques for Sparse Recovery Algorithms

Algorithm 17 P-FISTA with backtracking
Set χ(0)

i := 0, [Tχ(0)] := 0, s(0) := 1, t0 = C‖T‖−2, C > 1, 0 < η < 1.
1: while stopping criterion is not fulfilled do
2: for i = 1, . . . , P do in parallel
3: t = t0
4: u

(n+1)
i = Stλ(χ(n)

i + tT ∗i (y − [Tχ(n)]))

5: [Tu(n+1)] =
P∑
i=1

Tiu
(n+1)
i by ALLREDUCE

6: if (4.66) is false then
7: t = ηt, goto 4
8: end if
9: s(n) = 1+

√
1+4(s(n−1))2

2
10: w(n) = 1 + s(n−1)−1

s(n)

11: χ
(n+1)
i = w(n)u

(n+1)
i +

(
1− w(n)

)
χ

(n)
i

12: [Tχ(n+1)] = w(n)[Tu(n+1)] +
(
1− w(n)

)
[Tχ(n)]

13: end for
14: end while

In the recent paper [53], the authors propose Algorithm 18 as an acceleration of the
parallel ISTA. Instead of using backtracking in order to determine a (common) stepsize
t, in this algorithm, a stepsize ti is chosen independently for each node i = 1, . . . , P
by means of a Barzilai-Borwein step (see [53, Section 4.1]). Furthermore, convergence
is obtained by using an Armijo step with stepsize w(n), in the direction u(n+1) − χ(n).
The Armijo backtracking condition is satisfied if

‖w(n)[Tu(n+1)] +
(
1− w(n)

)
[Tχ(n)]− y‖2H

≤ ‖[Tχ(n)]− y‖2H + σw(n)〈u(n+1) − χ(n), T ∗(Tχ(n) − y)〉,
(4.67)

for some parameter 0 < σ < 1. Again, the iterative evaluation of condition (4.67) in
Step 7 can be parallelized but needs additional communication.

Domain decomposition frameworks for ISTA While in Algorithm 15, 16, and 17,
existing sequential algorithms are natively parallelized by a standard distribution of
the work on several cores, in Algorithm 18 a divide and conquer principle is used
since one applies different stepsizes t(n)

i and performs an individual step on every core.
This is an essentially different strategy. It is closely related to a so called subspace
correction approach towards the parallelization of ISTA, which goes back to the idea
of domain decomposition in the paper [74], where Algorithm 19 was proposed as a

174

4.2 Parallel Domain Decomposition Based Solutions for ISTA

Algorithm 18 Parallel ISTA with Armijo line-search
Set χ(0)

i := 0, [Tχ(0)] := 0.
1: while stopping criterion is not fulfilled do
2: for i = 1, . . . , P do in parallel
3: determine Barzilai-Borwein stepsize t(n+1)

i

4: u
(n+1)
i = S

t
(n+1)
i λ

(χ(n)
i + t

(n+1)
i T ∗i (y − [Tχ(n)]))

5: end for
6: [Tu(n+1)] =

P∑
i=1

Tiu
(n+1)
i by ALLREDUCE

7: compute stepsize w(n) > 0, satisfying the Armijo backtracking condition (4.67)
8: for i = 1, . . . , P do in parallel
9: χ

(n+1)
i = w(n)u

(n+1)
i +

(
1− w(n)

)
χ

(n)
i

10: [Tχ(n+1)] = w(n)[Tu(n+1)] +
(
1− w(n)

)
[Tχ(n)]

11: end for
12: end while

parallel acceleration technique of the sequential ISTA. The novelty in this approach is
the execution of multiple independent inner iterations on a subspace. Note that the
constant prediction stepsize w = 1

P+1 is necessary for convergence if L > 1. However,
in the case that L = 1, it can be shown that the algorithm also converges with w = 1,
and thus it is equivalent to the parallel ISTA, as presented in Algorithm 15. From this
point of view, Algorithm 19 can be seen as a more general framework and the origin of
Algorithm 15 and 16, although it is not mentioned in [154], which appeared several
years later.

An accelerated parallel ISTA with multiple independent inner iterations While the
idea of domain decomposition with independent stepsizes was taken into consideration
in [53], the idea of multiple inner iterations without additional synchronization among
the cores was not pursued further. However, from the following rough estimation of
the computational complexity of Algorithm 19 we see that the usage of multiple inner
steps may be advantageous for large P . We can assume that the computation of the
thresholding operator and the Armijo backtracking steps are of low computational cost
compared to application of the operator Ti. Furthermore, we consider an operator T
that is finite dimensional and can be represented as a full real valued matrix of size
m×N . Thus its application is a simple matrix-vector (d = 1) or matrix-matrix (d > 1)
product. In Algorithm 15 to 18 one has to form explicitely the product Tiχ(n+1)

i or
Tiu

(n+1)
i since its result is communicated to all other cores. We assume to have the data

equally distributed to the P cores, and consider the operators Ti as submatrices of the

175

Chapter 4 Acceleration Techniques for Sparse Recovery Algorithms

Algorithm 19 Domain decomposition ISTA
Set χ(0)

i := 0, [Tχ(0)] := 0, 1 ≤ L ∈ N, t ≤ ‖T‖−2, w = 1
P+1 .

1: while stopping criterion is not fulfilled do
2: for i = 1, . . . , P do in parallel
3: u

(n+1,0)
i = χ

(n)
i

4: y
(n+1)
i = y − [Tχ(n)] + Tiχ

(n)
i

5: for ` = 0, . . . , L− 1 do
6: u

(n+1,`+1)
i = Stλ(u(n+1,`)

i + tT ∗i (y(n+1)
i − Tiu(n+1,`)

i))
7: end for
8: end for
9: [Tu(n+1)] =

P∑
i=1

Tiu
(n+1,L)
i by ALLREDUCE

10: for i = 1, . . . , P do in parallel
11: χ

(n+1)
i = wu

(n+1,L)
i + (1− w)χ(n)

i

12: [Tχ(n+1)] = w[Tu(n+1)] + (1− w)[Tχ(n)]
13: end for
14: end while

operator T , then this operation has a complexity of O(mdN/P) on a parallel system.
Moreover, one has to multiply with T ∗i in the gradient step, which has again a cost of
mdN/P multiplications. Thus, the algorithms that do not exploit inner iterations have
a cost of O(IsinglemdN/P), where Isingle is the number of iterations until a stopping
criterion is fulfilled.
In an inner step of Algorithm 19, we have to compute T ∗i (Tiu(n+1,`)

i). At first sight,
this seems to be the same operation as in the description above, but since one is not
required to communicate the result of Tiu(n+1,`)

i , one has the option to precompute
T̄i := T ∗i Ti, and replace the above operation by T̄iu(n+1,`)

i in each inner iteration. This
multiplication has a complexity of O((N/P)2d). The reader recognizes that this is not
necessarily the better choice since (N/P)2d < 2mdN/P if and only if P > N/(2m).
However, in high performance computing we usually have hundreds to thousands of
cores available and thus, this condition is not too restrictive. For instance, if m = N/10,
P has to be greater than 5 if we want the multiplication with T̄i to be more efficient
than multiplying subsequently with Ti and T ∗i . Furthermore, this comparison reveals
that the cost of the inner iterations shrinks quadratically with the number of used
cores. In this respect, the method that we present here is expected to perform better,
the more it is parallelized. Despite of this observation, also in Algorithm 19 one
has to communicate the result of Tiu(n+1,L)

i once at the end of each series of inner
iterations. By means of code optimization, and reuse of results4, one passage of

4Since one already computes [Tiu(n+1,L)
i] = [Tiu(n+1)

i] before the communication step, one can

176

4.2 Parallel Domain Decomposition Based Solutions for ISTA

the inner while loop with L inner iterations requires 2mdN/P + (L − 1)(N/P)2d
multiplications. If the algorithm needs Imultiple iterations, then it has a total cost of
O(Imultiple(2mdN/p+(L−1)(N/P)2d)). The reasonable hope is that the inner iterations
replace outer iterations (with respect to Algorithms 15–18), such that ImultipleL ≈ Isingle,
leading to a performance increase due to the usage of the inner iterations. This hope
turns out to be the crucial point, since the parallelization very likely leads to a “loss
of information” due to the reduced communication. This can be illustrated by the
following thought experiment: Let χ∗ be the minimizer of the functional (2.15) and
let us assume that on cores 2, . . . , P this minimizer is achieved. If core 1 is provided
from the other cores with y(n+1)

1 = y −
∑
τ 6=1

Tτχ
∗
τ (compare Step 4), then of course y1

contains the best information core 1 can get and the approximation error ‖χ(n)
i −χ∗‖`2

is only produced from the iterations on the domain of core 1. But χ∗ is not known
and thus the approximation error on each core is propagated as a prior to each other
core and has larger impact the larger L is chosen. Thus, it would not be a surprise if
eventually ImultipleL > Isingle.
To summarize these two issues, we note that the increase of the parameter L is on

the one hand responsible for a gain in computational time due to efficiently performed
inner iterations, and on the other hand it will imply a larger number of outer iterations
because one needs more corrective communication in order to reach a certain stopping
criterion. One of the main investigations in this section is to answer the question,
whether there is an optimal L > 1 such that one can outperform Algorithms 15–18. In
particular in Section 4.2.5, we will return to this question in the scope of numerical
simulations.

Since in Algorithm 19 we only consider so far fixed stepsizes (as in the plain ISTA),
it is very likely that the number of iterations Imultiple would be relatively high in
comparison to the accelerated Algorithms 16–18, i.e., Imultiple � Isingle. In order
to tremendously decrease Imultiple by several techniques like, e.g., backtracking on
subdomains, we propose a modified framework for an accelerated parallel domain
decomposition ISTA in the following sections. We prove convergence of the algorithm
in Section 4.2.3 and show by numerical results in Section 4.2.5 that the use of this
algorithm is advantageous in terms of the parallel runtime for a large number of cores
P .

4.2.2 An Accelerated Domain Decomposition ISTA
Algorithm 19 was a powerful acceleration of ISTA by the time of its publication.
However, since it needs a large number of iterations, it is definitively outperformed
by the methods that are presented in the previous section. One reason for the huge

update [Tiχ(n+1)
i] = w[Tiu(n+1)

i] + (1− w)[Tiχ(n)
i] without any additional matrix multiplication. This

saves one matrix multiplication in the gradient step of the succeeding first inner iteration.

177

Chapter 4 Acceleration Techniques for Sparse Recovery Algorithms

number of iterations is the fixed stpesize t < ‖T‖−2. The other even more severe
drawback is the fixed prediction stepsize w = 1

P+1 . The more one parallelizes, the
smaller w gets, neutralizing the advantages from the parallelization. Nevertheless, a
thorough analysis of the convergence proof of Algorithm 19 reveals a certain flexibility
towards diverse acceleration strategies, namely

1. a backtracking as in Algorithm 17, but independently performed on each sub-
domain, such that different stepsizes t are possible on different cores and no
communication via ALLREDUCE is necessary;

2. a line-search for an optimal adaptive prediction parameter w(n), such that the
rather conservative value w = 1

P+1 is released and larger prediction steps are
possible in Step 11 and 12;

3. an adaptive update of a newly introduced stepsize t(n) (depending on the current
iterate) which serves as a pre-estimate of the backtracking stepsize t (point 1),
allowing for a reduced number of backtracking steps.

Hereafter, we want to introduce these techniques in detail. Since we use an adaptively
chosen stepsize (point 3), the purpose of the backtracking (point 1) is the correction of
a stepsize which was over-estimated. In the proof of convergence point 1 guarantees the
global convergence of the algorithm. In order to properly formulate the backtracking
on a subdomain (Λi), we generalize the definition of the backtracking condition (4.66):

Definition 4.27
For arbitrary i ∈ {1, . . . , P}, let a, b ∈ `2(Λi), and c ∈ H. The backtracking condition
Bt(a, b, c) is true for t > 0 if and only if

‖Tia− c‖2H ≤ ‖Tib− c‖2H + 2〈a− b, T ∗i (Tib− c)〉+ 1
t
‖a− b‖2`2(Λi).

4.2.2.1 Domain Decomposition ISTA with Backtracking, Adaptive Stepsize, and
Prediction Step

By Definition 4.27 and according to the points 1,2, and 3, we formulate the domain
decomposition ISTA with backtracking, adaptive stepsize, and prediction step in Al-
gorithm 20. It consists of an outer loop (Step 1 to 21) and an inner loop (Step 6
to 12). The outer loop stops if a respective stopping criterion is fulfilled. We comment
on such criteria in Section 4.2.4.1. In the inner loop, the actual work is done, thus,
independently and in parallel we perform on the subdomains a predefined number
L(n) of Bregman steps with possible backtracking (Steps 8 to 10). Note that the
backtracking is a loop with an unknown number of iterations. However this loop stops
after a finite number of steps as we will show in the next paragraph. After the parallel
work, back in the outer loop the P results are synchronized in Step 14. Furthermore

178

4.2 Parallel Domain Decomposition Based Solutions for ISTA

Algorithm 20 Domain decomposition ISTA with backtracking, adaptive stepsize, and
prediction step
Set χ(0)

i := 0, [Tχ(n)] := 0, 0 < η < 1, wmax > wc := 1
P+1 , 1 ≤ Lmax ∈ N, t(0) =

‖T‖−2.
1: while stopping criterion is not fulfilled do
2: choose the number of inner iterations L(n) ∈ N, 1 ≤ L(n) ≤ Lmax
3: for i = 1, . . . , P do in parallel
4: u

(n+1,0)
i = χ

(n)
i

5: y
(n+1)
i = y − [Tχ(n)] + Tiχ

(n)
i

6: for ` = 0, . . . , L(n) − 1 do
7: t

(n,`+1)
i = t(n)

8: u
(n+1,`+1)
i = S

t
(n,`+1)
i λ

(u(n+1,`)
i + t

(n,`+1)
i T ∗i (y(n+1)

i − Tiu(n+1,`)
i))

9: if B
t
(n,`+1)
i

(u(n+1,`+1)
i , u

(n+1,`)
i , y

(n+1)
i) is false then

10: t
(n,`+1)
i = ηt

(n,`+1)
i , goto 8

11: end if
12: end for
13: end for
14: [Tu(n+1)] =

P∑
i=1

Tiu
(n+1,L(n))
i by ALLREDUCE

15: choose prediction stepsize w(n+1) ∈ arg min
0<w≤wmax

Jλ(wu(n+1) + (1− w)χ(n))

16: for i = 1, . . . , P do in parallel
17: χ

(n+1)
i = w(n+1)u

(n+1,L(n))
i + (1− w(n+1))χ(n)

i

18: [Tχ(n+1)] = w(n+1)[Tu(n+1)] + (1− w(n+1))[Tχ(n)]
19: end for
20: update t(n+1)

21: end while

a prediction step is performed (Step 15). The prediction is not only supposed to
accelerate the algorithm by finding along the computed direction an iterate such that
the functional value is decreased, but it also ensures convergence (see the proof of
Theorem 4.30). Eventually the initial backtracking stepsize t(n) is (adaptively) updated.

The convergence of the algorithm can be shown without further specifying in detail,
how t(n) and L(n) are chosen. On the one hand, the fact that Steps 2, 15, and 20 are
flexibly tunable is an advantage of Algorithm 20. On the other hand, such flexibility
can be a curse for a user with low experience. Therefore, we present in Section 4.2.4 a
practical guide on how to implement these steps.

179

Chapter 4 Acceleration Techniques for Sparse Recovery Algorithms

Also the independent backtracking cuts both ways. It allows on the one hand to
determine an optimal stepsize for each subproblem, and thus for larger steps on that
domain, on the other hand one backtracking step needs basically the cost of one inner
iteration. Since the number of backtracking steps can differ from core to core, this
may lead to the idling of some of the cores. Therefore a reduced overall performance is
expected due to the loss of synchronization.

4.2.2.2 Backtracking with a Finite Number of Steps

As already mentioned further above, the backtracking loop (Steps 8 to 10) stops after
a finite number of steps, which implies that the backtracking condition is always
fulfilled at the end of an inner iteration. This assertion is verified by a well known
result in the field of soft thresholding and forward-backward splitting algorithms: The
backtracking condition Bt(a, b, c) is always fulfilled if t ≤ ‖T‖−2. It becomes obvious
by the equivalent transformation

Bt(a, b, c) is true

⇐⇒ 1
t
‖a− b‖2`2(Λi) ≥ ‖Tia− c‖

2
H − ‖Tib− c‖2H − 2〈a− b, T ∗i (Tib− c)〉

⇐⇒ 1
t
‖a− b‖2`2(Λi) ≥ ‖Tia− c‖

2
H − ‖Tib− c+ (Tia− Tib)‖2H + ‖Tia− Tib‖2H

⇐⇒ 1
t
‖a− b‖2`2(Λi) ≥ ‖Tia− Tib‖

2
H,

where the last statement definitely holds for t ≤ ‖T‖−2 since

1
t
‖a− b‖2`2(Λi) ≥ ‖T‖

2‖a− b‖2`2(Λi) ≥ ‖Ti‖
2‖a− b‖2`2(Λi) ≥ ‖Tia− Tib‖

2
H.

4.2.2.3 Surrogate Function and Thresholding Operator

It is a standard result (see, e.g., [47]) that the thresholding operator Stλ is equivalent
to the minimization of a surrogate function. This is in general a helpful tool in order
to prove convergence of such thresholding algorithms. Therefore, we define

J S
t (u, a) := t‖y − Tu‖2H + tλ‖u‖`1(Λ) + ‖u− a‖2`2(Λ) − t‖Tu− Ta‖

2
H.

Transforming the right-hand side, we obtain

J S
t (u, a) = ‖(a+ tT ∗(y − Ta))− u‖2`2(Λ) + tλ‖u‖`1(Λ) + Ξ,

where Ξ is independent of u. Thus, J S
t is strictly convex with respect to the first

component u and it has a unique minimizer, once the second component a is fixed.

180

4.2 Parallel Domain Decomposition Based Solutions for ISTA

The subdifferential (see Section 2.2.2) of J S
t with respect to the first component is

given by

∂uJ S
t (u, a) = −2(a− tT ∗(y − Ta)) + 2u+ tλ∂‖ · ‖`1(Λ)(u)

= {ξ ∈ `∞(Λ)|ξj ∈ (−2(a− tT ∗(y − Ta)) + 2u)j + tλ∂‖ · ‖`2(uj), j ∈ Λ} .

Then, e.g., [47, Proposition 2.1], yields

arg min
u∈`2(Λ)

J S
t (u, a) = Stλ(a+ tT ∗(y − Ta)).

One obtains the same relations and definitions for each subdomain by replacing T → Ti,
y → yi, and Λ→ Λi.

4.2.3 Convergence Results
In order to facilitate the cross-reading, we want to redefine some quantities close
to the notation in [74]. We define for each i = 1, . . . , P the extension operator
Ei : `2(Λi) → `2(Λ), (Eiν)j = νj , if j ∈ Λi, (Eiν)j = 0, otherwise. The restriction
operator, which is the adjoint operator of the extension operator, is denoted by Ri := E∗i .
By these definitions, we have Ti = TEi and T ∗i = RiT

∗.

In the following, we prove the convergence of Algorithm 20. Since it is a generalization
of [74, Algorithm (29)], we refer at some points in the proof to arguments in that
paper. We reuse those results and calculations, in order to focus here on the necessary
modifications that we made. We begin with an auxiliary lemma. It shows an elementary
relation of two successive inner iterates. The result is equivalent to a special case of [13,
Lemma 2.3]. We reformulate it in our particular notation and repeat the necessary
steps from its proof for the sake of completeness and consistency.

Lemma 4.28
Let u(n+1,`+1)

i , u(n+1,`)
i , and y

(n+1)
i be defined as in Algorithm 20, and s

(n+1)
i :=

χ(n) − χ(n)
i =

∑
τ 6=i

EτRτχ
(n) for arbitrary i ∈ {1, . . . , P}. If the backtracking condition

Bt(u(n+1,`+1)
i , u

(n+1,`)
i , y

(n+1)
i) is true for some t > 0, then

Jλ(Eiu(n+1,`)
i + s

(n+1)
i)− Jλ(Eiu(n+1,`+1)

i + s
(n+1)
i)

≥ 1
t
‖u(n+1,`+1)

i − u(n+1,`)
i ‖`2(Λi).

(4.68)

181

Chapter 4 Acceleration Techniques for Sparse Recovery Algorithms

Proof. By definition we have y(n+1)
i = y − Ts(n+1)

i . We use the surrogate functional
of Section 4.2.2.3 to rewrite Step 8 as

u
(n+1,`+1)
i = Stλ(u(n+1,`)

i + tT ∗i (y(n+1)
i − Tiu(n+1,`)

i))

= RiStλ(Eiu(n+1,`)
i + tT ∗(y − T (s(n+1)

i − Eiu(n+1,`)
i)))

= RiStλ(Eiu(n+1,`)
i + s

(n+1)
i + tT ∗(y − T (s(n+1)

i − Eiu(n+1,`)
i)))

= arg min
ui∈`2(Λi)

J S
t (Eiui, Eiu(n+1,`)

i + s
(n+1)
i)

= arg min
ui∈`2(Λi)

J S
t (Eiui + s

(n+1)
i , Eiu

(n+1,`)
i + s

(n+1)
i),

where we added sn+1
i in the second and fifth identity since its components on Λi are

0. Moreover, by the definition of Jλ and y
(n+1)
i , and the observation that ‖Eiu +

s
(n+1)
i ‖`1(Λ) = ‖u‖`1(Λi) + ‖s(n+1)

i ‖`1(Λ) for u ∈ `1(Λi), we obtain

J (Eiu(n+1,`)
i + s

(n+1)
i)− Jλ(Eiu(n+1,`+1)

i + s
(n+1)
i)

=‖TEiu(n+1,`)
i − y(n+1)

i ‖2H − ‖TEiu
(n+1,`+1)
i − y(n+1)

i ‖2H
+λ‖u(n+1,`)

i ‖`1(Λi) − λ‖u
(n+1,`+1)
i ‖`1(Λi).

(4.69)

According to the optimality condition

0 ∈ ∂uJ S
t (Eiu(n+1,`+1)

i + s
(n+1)
i , Eiu

(n+1,`)
i + s

(n+1)
i), (4.70)

there exists ξ ∈ ∂‖ · ‖`1(Λi)(u
(n+1,`+1)
i), such that

2RiT ∗(TEiu(n+1,`)
i − y(n+1)

i) + λξ = 2
t
(u(n+1,`)
i − u(n+1,`+1)

i). (4.71)

Furthermore, the definition of the subdifferential (2.16) yields

‖u(n+1,`)
i ‖`1(Λi) − ‖u

(n+1,`+1)
i ‖`1(Λi) ≥ 〈u

(n+1,`)
i − u(n+1,`+1)

i , ξ〉. (4.72)

We estimate the first two summands of the right-hand side in (4.69) by the backtracking
condition, and the last two summands by (4.72), and use (4.71) in order to replace ξ.

182

4.2 Parallel Domain Decomposition Based Solutions for ISTA

This yields

Jλ(Eiu(n+1,`)
i + s

(n+1)
i)− Jλ(Eiu(n+1,`+1)

i + s
(n+1)
i)

≥− 〈u(n+1,`+1)
i − u(n+1,`)

i , 2RiT ∗(TEiu(n+1,`)
i − y(n+1)

i)〉

− 1
t
‖u(n+1,`+1)

i − u(n+1,`)
i ‖2`2(Λi) + λ〈u(n+1,`)

i − u(n+1,`+1)
i , ξ〉

=− 〈u(n+1,`+1)
i − u(n+1,`)

i , 2RiT ∗(TEiu(n+1,`)
i − y(n+1)

i) + λξ〉

− 1
t
‖u(n+1,`+1)

i − u(n+1,`)
i ‖2`2(Λi)

=− 〈u(n+1,`+1)
i − u(n+1,`)

i ,
2
t
(u(n+1,`)
i − u(n+1,`+1)

i)〉 − 1
t
‖u(n+1,`+1)

i − u(n+1,`)
i ‖2`2(Λi)

=1
t
‖u(n+1,`+1)

i − u(n+1,`)
i ‖2`2(Λi). 2

Remark 4.29
An immediate consequence from Lemma 4.28 is the monotonicity property for the
inner iterations,

Jλ(Eiu(n+1,`)
i + s

(n+1)
i) ≥ Jλ(Eiu(n+1,`+1)

i + s
(n+1)
i), ` = 0, . . . , L(n) − 1.

Theorem 4.30 (Weak Convergence)
Algorithm 20 produces a sequence (χ(n))n∈N in `2(Λ) whose weak accumulation points
are minimizers of the functional Jλ. In particular, the set of weak accumulation points
is non-empty.

Proof. We first observe that in each inner iteration ` = 0, . . . , L(n)−1, the backtracking
condition is fulfilled by construction since t

(n,`+1)
i is decreased until

B
t
(n,`+1)
i

, (u(n+1,`+1)
i u

(n+1,`)
i , y

(n+1)
i) is true, and therefore Lemma 4.28 applies. In the

presentation of this proof, we want to denote by t(n,`+1)
i exclusively the final valid

backtracking stepsize in the `-th inner iteration. In particular, we have t(n,`+1)
i ≤ t(n).

Summing up the inequalities (4.68) for the inner iterations ` = 0, . . . , L(n) − 1, we
obtain a telescopic sum on the left-hand side and a sum on the right-hand side, and
thus, we have

Jλ(Eiu(n+1,0)
i + s

(n+1)
i)− Jλ(Eiu(n+1,L(n))

i + s
(n+1)
i)

≥ 1
t(n)

L(n)−1∑
`=0

‖u(n+1,`+1)
i − u(n+1,`)

i ‖2`2(Λi),
(4.73)

for all i = 1, . . . , P . Note that by definition χ(n) = Eiu
(n+1,0)
i +s(n+1)

i the first summand
on the left-hand side of (4.73) is equal to Jλ(χ(n)). Then, the monotonicity

Jλ(χ(n)) ≥ Jλ(Eiu(n+1,L(n))
i + s

(n+1)
i) (4.74)

183

Chapter 4 Acceleration Techniques for Sparse Recovery Algorithms

follows immediately.
Next, we need to show that the set of minimizers in Step 15 is not empty. By a
convexity argument, which was already used in [74], we show below that

Jλ(wcu(n+1) + (1− wc)χ(n)) ≤ Jλ(χ(n)) (4.75)

is always true for 0 < wc = 1/(P + 1). Since wc < wmax by definition, one concludes
again by the convexity of Jλ that there is at least one strictly positive minimizer in
the interval]0, wmax]. This implies that Step 15 is well-defined.
Let us recall the convexity argument that shows (4.75): Since Jλ is a convex

functional, we have(
Jλ(χ(n)) +

P∑
i=1

Jλ(Eiu(n+1,L(n))
i + s

(n+1)
i)

)
P + 1 ≥ Jλ


χ(n) +

P∑
i=1

(Eiu(n+1,L(n))
i + s

(n+1)
i)

P + 1

 .

By the above relation, the definitions u(n+1) =
P∑
i=1

Eiu
(n+1,L(n))
i and s(n+1)

i = χ(n)−χ(n)
i ,

and the monotonicity property (4.74) we obtain

Jλ(χ(n)) = 1
P + 1

(
Jλ(χ(n)) + PJλ(χ(n))

)
≥ 1
P + 1

(
Jλ(χ(n)) +

P∑
i=1

Jλ(Eiu(n+1,L(n))
i + s

(n+1)
i)

)

≥ Jλ


χ(n) +

P∑
i=1

(Eiu(n+1,L(n))
i + s

(n+1)
i)

P + 1


= Jλ

(1
P + 1

(
Pχ(n) + u(n+1)

))
= Jλ

(
wcu

(n+1) + (1− wc)χ(n)
)
,

(4.76)

where we used in the last equality the definition wc := 1
P+1 . Thus, we showed

inequality (4.75).
Recall that we obtain w(n+1) from Step 15. By its minimum property and χ(n+1) =
w(n+1)u(n+1) + (1− w(n+1))χ(n) (compare Step 17), we have

Jλ
(
wcu

(n+1) + (1− wc)χ(n)
)
≥ Jλ(χ(n+1)) (4.77)

184

4.2 Parallel Domain Decomposition Based Solutions for ISTA

Combining (4.76) and (4.77), and plugging in (4.73), we obtain

Jλ(χ(n+1)) ≤

(
(P + 1)Jλ(χ(n))−

P∑
i=1

1
t(n)

L(n)−1∑̀
=0
‖u(n+1,`+1)

i − u(n+1,`)
i ‖2`2(Λi)

)
P + 1 ,

and thus

Jλ(χ(n))− Jλ(χ(n+1)) ≥ 1
t(n)(P + 1)

P∑
i=1

L(n)−1∑
`=0

‖u(n+1,`+1)
i − u(n+1,`)

i ‖2`2(Λi). (4.78)

The sequence (Jλ(χ(n)))n∈N is convergent, since it is monotonically decreasing and
bounded from below by 0. Moreover, we assume that t(n) is bounded above by a
positive bound tmax <∞. Thus, we have by (4.78) that

P∑
i=1

L(n)−1∑
`=0

‖u(n+1,`+1)
i − u(n+1,`)

i ‖2`2(Λi) → 0, n→∞. (4.79)

Since λ‖χ(n)‖`2(Λ) ≤ λ‖χ(n)‖`1(Λ) ≤ Jλ(χ(n)) ≤ Jλ(χ(0)), the sequence (χ(n))n∈N
is uniformly bounded in `2(Λ), and thus, there exists a weakly convergent subse-
quence (χ(nk))k∈N, whose weak limit is denoted by χ(∞). For simplicity, we rename
this subsequence again (χ(n))n∈N. Moreover, using the well-known root-mean-square

arithmetic-mean inequality
√

1
r

(
r∑

k=1
z2
k

)
≥ 1

r

(
r∑

k=1
zk

)
, z ∈ Rr+, the triangle inequality,

as well as the convexity of ‖ · ‖2`2(Λ), we obtain

P∑
i=1

L(n)−1∑
`=0

‖u(n+1,`+1)
i − u(n+1,`)

i ‖2`2(Λi) ≥
P∑
i=1

1
L(n)

L(n)−1∑
`=0

‖u(n+1,`+1)
i − u(n+1,`)

i ‖`2(Λi)

2

≥
P∑
i=1

1
L(n) ‖Eiu

(n+1,L(n))
i − Eiu(n+1,0)

i ‖2`2(Λ)

= 1
PL(n) ‖

P∑
i=1

Eiu
(n+1,L(n))
i − Eiχ(n)

i ‖
2
`2(Λ)

= 1
PL(n) ‖u

(n+1) − χ(n)‖2`2(Λ)

= 1
PL(n)w(n+1) ‖χ

(n+1) − χ(n)‖2`2(Λ)

≥ 1
PLmaxwmax

‖χ(n+1) − χ(n)‖2`2(Λ),

185

Chapter 4 Acceleration Techniques for Sparse Recovery Algorithms

where the third identity follows from χ(n+1) − χ(n) = w(n+1)(u(n+1) − χ(n)) (Step 17).
Consequently,

‖χ(n+1) − χ(n)‖`2(Λ) → 0, ‖u(n+1) − χ(n)‖`2(Λ) → 0, n→∞, (4.80)

and the sequence (u(n+1))n∈N is also weakly converging with weak limit u(∞) = χ(∞).
Recall that weak convergence implies componentwise convergence, also for T ∗Tu(n)

and T ∗Tχ(n). From the optimality condition (4.70) for ` = L(n) − 1, we obtain the
componentwise relation

0 ∈

−2(u(n+1,L(n)−1)
i + t

(n,L(n))
i RiT

∗((y − T
∑
τ 6=i

Eτχ
(n)
τ)− TEiu(n+1,L(n)−1)

i))


j

+
(

2u(n+1,L(n))
i

)
j

+ t
(n,L(n))
i λ∂‖ · ‖`2((u(n+1,L(n))

i)j), j ∈ Λi, i = 1, . . . , P.

Since the backtracking condition is fulfilled definitely for t(n) ≤ ‖T‖−2 (compare
Section 4.2.2.2), there exists tmin := η‖T‖−2 > 0 such that 0 < tmin ≤ t(n) ≤ tmax <∞.
We conclude that also t

(n,L(n))
i is bounded below and above by positive constants.

Therefore, we can divide by t(n,L
(n))

i and obtain

0 ∈

−2RiT ∗((y − T
∑
τ 6=i

Eτχ
(n)
τ)− TEiu(n+1,L(n)−1)

i)


j

+

(
2u(n+1,L(n))

i − 2u(n+1,L(n)−1)
i

)
j

t
(n,L(n))
i

+ λ∂‖ · ‖`2((u(n+1,L(n))
i)j).

Eventually, we let n→∞, and conclude by the boundedness of t(n,L
(n))

i , (4.80), (4.79),
and the fact that the (component-wise) subdifferential ∂‖·‖`2 is an outer semicontinuous
set-valued function (compare [74, Lemma 3.2 and Definition 1]) that

0 ∈

2RiT ∗((y − T
∑
τ 6=i

EτRτχ
(∞))− TEiRiu(∞)))


j

+ λ∂‖ · ‖`2((EiRiu(∞))j),

j ∈ Λi, i = 1, . . . , P,

and thus
0 ∈ ∂uJ S

1 (χ(∞), χ(∞))
since u(∞) = χ(∞). Note that this result does not depend on the stepsize any more.
From [47, Proposition 2.1] it follows that

χ(∞) = Sλ(χ(∞) + T ∗(y − Tχ(∞))).

186

4.2 Parallel Domain Decomposition Based Solutions for ISTA

The minimality of χ(∞) for the functional Jλ then follows by [47, Proposition 3.10].
The above argumentation is valid for any subsequence and any weak accumulation
point of the original sequence (χ(n))n∈N. 2

In a practical setting, we will always have a finite dimensional problem, since we are
working on a computer with limited memory. In this case, the weak convergence of
the algorithm also implies strong convergence. Nevertheless, it may be of theoretical
interest, to also show strong convergence in the infinite dimensional setting. For the case
that one chooses a fixed stepsize t = t(n) ≤ ‖T‖−2, the proof of the strong convergence
is conducted by the same arguments as in the proof of [74, Theorem 4.2].

Theorem 4.31 (Strong Convergence)
If a fixed stepsize t = t(n) < ‖T‖−2 is chosen, Algorithm 20 produces a sequence
(χ(n))n∈N in `2(Λ) whose strong accumulation points are minimizers of the functional
Jλ. In particular, the set of strong accumulation points is non-empty.

Any additional investigation concerning the strong convergence for arbitrary stepsizes,
which are determined by backtracking, are not considered here, and left as an open
problem. The proof in [74, Theorem 4.2] does not work since one does not have
‖I − tT ∗T‖ ≤ 1 any more. Instead, the use of the backtracking condition is required.
Together with the usage of an arbitrary stepsize, such a proof is supposed to be very
technical.

4.2.4 Implementation Details
In the formulation of Algorithm 20 we left open how t(n), L(n), and w(n) are updated.
Therefore, we catch up on a detailed explanation on how we implement the Steps 2,
15, 20, and we clarify which stopping criterion is used in the algorithm.

4.2.4.1 A Fair Stopping Criterion

Since we want to compare Algorithm 20 towards other state-of-the-art algorithms,
we need a stopping criterion in order to provide a fair comparison. According to our
remarks in the end of Section 4.2.1, this concerns in particular the number of iterations
that an algorithm needs. Furthermore, a stopping criterion should also work in practice.
In [154, 53], the authors use the criterion

‖u(n) − u∗‖`2(Λ)
‖u∗‖`2(Λ)

,

where u∗ is the minimizer of Jλ. While this is a fair criterion for a comparison since
the iterate of any method is compared to the same minimizer, it is impracticable since
one does certainly not dispose of u∗ in practice because its computation is the actual

187

Chapter 4 Acceleration Techniques for Sparse Recovery Algorithms

task of the algorithm. Another frequently used stopping criterion, which was also used
in [74], is the relative difference of the functional in two successive iterations, i.e.,

|Jλ(u(n+1))− Jλ(u(n))|
Jλ(u(n))

.

While it does not need any information about the minimizer, it is not necessarily fair
since it can lead to wrong conclusions about the performance of an algorithm. The
reason is that its value is highly depending on the actual size of the step that the
algorithm takes in the current iteration. Due to the continuity of the functional Jλ, the
smaller the difference ‖u(n+1) − u(n)‖`2(Λ), the smaller is the value of this stopping cri-
terion. In this sense, an algorithm which may be of poor performance and progresses in
very small steps, may stop much earlier than an efficient algorithm with a large stepsize.

In our numerical investigations, we use the penalization of the first order optimality
conditions since it provides a strong statement on the quality of an iterate, and it does
neither depend on the previous iterate, nor on the minimizer χ∗. Thus, we define the
stopping criterion residual as

r̃(n) := ‖ξ(n)‖`2(Λ),

ξ
(n)
j :=


(
2T ∗(Tu(n) − y)

)
j

+ λ
u

(n)
j

‖u(n)
j ‖`2

‖u(n)
j ‖`2 > 0,

max
(

0,
∥∥∥∥(2T ∗(Tu(n) − y)

)
j

∥∥∥∥
`2

− λ
)

otherwise,
j ∈ Λ.

We stop the algorithm as soon as the normalized stopping criterion

r(n) := r̃(n)

‖2T ∗y‖`2(Λ)
< tolr (4.81)

is fulfilled for a predefined tolerance tolr. Note that the above formulation is suited to be
parallelized. In particular, its computational cost is marginal, since the multiplication
[T ∗Tu(n)] has to be computed anyway and can be reused. Only the composition of
‖ξ(n)‖`2(Λ) needs another ALLREDUCE command.

4.2.4.2 An Adaptive Choice of the Number of Inner Iterations L(n)

The number of inner iterations L(n) is the parameter which is mainly responsible
for the tradeoff between the gain of computational time due to efficiently performed
inner iterations, and the loss due to the error propagation. This issue is extensively
described in the paragraph An accelerated parallel ISTA with multiple independent
inner iterations in Section 4.2.1. In our algorithmic scheme, the user is free to play

188

4.2 Parallel Domain Decomposition Based Solutions for ISTA

with this variable. However, it makes sense to start with a small value of L(n), and
increase it with the iteration number n. The simple reason is that one is far away from
the solution in the beginning and the iterates are a very erroneous estimate of the
minimizer. This error is distributed to the other cores and the error is added up in
multiple independent inner iterations. Thus, it is better to synchronize the parallel
steps more often in order to correct the miscomputed components. As soon as the
algorithm computes iterates close to the solution, the error propagation has a lower
impact and synchronization is required less often. Then one can make use of multiple
efficient inner iterations. In our implementation, we set L(1) := 1, and use the following
logarithmic update rule,

L(n+1) :=

1 r(n) > γ tolr,
max

(
L(n),min

(
Lmax, b2 + log10(γ tolr

r(n))Lmax−1
log10(γ)c

))
otherwise,

where tolr is the given tolerance for the stopping criterion, r(n) is the stopping criterion
residual (see (4.81)), and γ > 0 is the parameter which determines how early the
algorithm switches from a single inner iteration to multiple inner iterations. The above
update rule makes sure that the sequence (L(n))n∈N is increasing, and 1 ≤ L(n) ≤ Lmax.

4.2.4.3 Update Strategies for the Stepsize t(n)

An important feature of the algorithm is an estimation of the stepsize t(n+1). Again, it
is left to the user to try different strategies. Whatever strategy one chooses, by the
backtracking in Steps 8–10 it is made sure that the stepsize is small enough in order to
guarantee convergence. A non-adaptive strategy would be to set t(n) := C‖A‖−2, with
C > 1 chosen such that t(n) is several orders of magnitude above the stepsize ‖A‖−2

for which the backtracking condition is guaranteed to hold (compare Section 4.2.2).
Such a static rule has the advantage of no additional computational effort in Step 20.
However, depending on the choice of C, it is very likely that a lot of backtracking steps
(and therefore additional substantial work) are necessary in order to correct such a
non-adaptive stepsize. A good adaptive stepsize depends on the current iterate and
the particular shape of the objective functional in its environment. Therefore, we use
the adaptive Barzilai-Borwein (BB) update rule [201]

t(n+1) :=
{
tm 2tm > ts,

ts − 1
2 tm otherwise,

in our implementation. This rule was shown to be very efficient in the recent investiga-
tion [91]. It uses the steepest descent stepsize

ts :=
‖χ(n+1) − χ(n)‖2`2(Λ)

〈χ(n+1) − χ(n), T ∗T (χ(n+1) − χ(n))〉
,

189

Chapter 4 Acceleration Techniques for Sparse Recovery Algorithms

and the minimum residual stepsize

tm := 〈χ
(n+1) − χ(n), T ∗T (χ(n+1) − χ(n))〉
‖T ∗T (χ(n+1) − χ(n))‖2`2(Λ)

,

which result from a quadratic approximation of ‖Tχ− y‖2`2(Λ) in the current iterate.
A more detailed explanation can be found in [201, 91, 73]. If the updated stepsize is
not positive it is reset to the previous value. Again, the computation of this update
rule does not require any additional multiplications since it reuses already computed
quantities.

4.2.4.4 Choice of the Prediction Stepsize w(n+1)

We remind that the problem

arg min
0<w≤wmax

Jλ(wu(n+1) + (1− w)χ(n)) (4.82)

is well defined (within the scope of Algorithm 20), and the set of minimizers is non-
empty. This was shown in the proof of Theorem 4.30. A solution to problem (4.82)
allows a maximum decrease of the objective functional in the given direction. However,
giving a closer look to the proof of Theorem 4.30, we also notice that it is not necessary
to find the minimizer but to simply replace Step 15 by “choose prediction stepsize
w(n+1) ∈ {0 < w ≤ wmax|Jλ(wu(n+1) +(1−w)χ(n)) ≤ Jλ(1

P+1u
(n+1) +(1− 1

P+1)χ(n))}”.
Thus, this step allows a lot of flexibility in the implementation. In particular, an
approximate solution of (4.82) is sufficient for convergence (as long as it fulfills the
above condition). Together with the fact that the minimization is only done in one
dimension, the effort to perform this step is small compared to the overall complexity of
the algorithm, which is dominated by the complexity of the application of the operator
T (matrix-matrix multiplication, O(mNd)). We suggest two possible means for the
approximate computation of the minimizer. Define

Jλ(w) := θ1w
2 + θ2w + λ

∑
j∈Λ
‖wθ3j + θ4j‖`2 , (4.83)

with θ1 := ‖T (u(n+1)−χ(n))‖2`2(Λ), θ2 := 2〈T (u(n+1)−χ(n)), Tχ(n)〉, θ3 := u(n+1)−χ(n),
and θ4 = χ(n). Note that the calculation of θ1, and θ2 is very cheap since the products
of T and the iterates are a byproduct of the algorithm. A function evaluation of (4.83)
needs O(Nd) multiplications. By omitting constant terms, a simple calculation shows
that (4.82) is equivalent to

arg min
0<w≤wmax

Jλ(w). (4.84)

190

4.2 Parallel Domain Decomposition Based Solutions for ISTA

Since problem (4.84) is continuous but not smooth, it can be solved by means of
the Nelder-Mead Simplex Algorithm [143], which needs one function evaluation per
iteration and therefore O([iterations of Nelder-Mead] ·Nd) multiplications. Since we
are considering large-scale problems, we will have in general

[iterations of Nelder-Mead]� m,

and thus a comparably small amount of computational effort. However, it is well-known
that this algorithm is in general not efficient. To further reduce the computational cost of
this step, we present the following alternative method to compute a minimizer of (4.84):
First, sort the set {wj |θ3j 6= 0 and ∃wj : wjθ3j + θ4j = 0, and wmax ≥ wj > 0} and
obtain wj1, . . . , wjÑ , with Ñ ≤ N and wjτ ≤ wjτ+1. With this, we computed the
relevant positions where the function Jλ(w) is non-smooth. The effort of this operation
is O(N logN). Then, we compute an element τmin of

arg min
τ=1,...,Ñ

Jλ(wjτ)

within O(Nd logN) since we have to evaluate the function logN times for a search
on a sorted array. Then we define jmin = jτmin . Since we know that Jλ(w) is
differentiable on the intervals]wjmin−1, wjmin [, and]wjmin , wjmin+1[, we can determine a
minimizer on this interval from a gradient step method, which is known to converge
in very few iterations. Each iteration of such a gradient step will require again
the evaluation of the function and its derivative. Thus, we have a total cost of
O(Nd(logN + [iterations of Gradient-Descent])). Since in general

logN + [iterations of Gradient-Descent]� [iterations of Nelder-Mead]� m,

this method is further decreasing the computational effort for the determination of
the prediction stepsize. Note that the above description is only a sketch. In the
implementation one has to consider some special cases, e.g., if there are no points in
]0, wmax], where the function is non-smooth.

Since the evaluation of the functional Jλ(w) and its derivative can be parallelized
easily, the cost of both methods shrinks with the number of cores.

4.2.5 Simulations
Recall that the formulation of Algorithm 20 allows a creative implementation of Steps 2,
15, and 20 independent from our suggestions in Section 4.2.4, as long as it stays in
certain bounds as, e.g., w < wmax with wmax > wc. We make use of this flexibility in
order to define the following two instances of the algorithm:

191

Chapter 4 Acceleration Techniques for Sparse Recovery Algorithms

• DDLISTA: Do not choose an adaptive stepsize, but set t(n) := ‖T‖−2. Moreover,
do not perform backtracking. The algorithm nevertheless converges, since t(n)

always fulfills the backtracking condition and thus the inner iterations decrease
the functional. Perform a line search in Step 15.

• DDLBISTA: Choose an adaptive BB stepsize t(n) (compare Section 4.2.4), turn
backtracking on, and perform a line search in Step 15.

The algorithm DDLISTA does not use backtracking steps, and thus, it has the advan-
tage that each core is doing approximately the same work, and the disadvantage that
the stepsize is fixed. The algorithm DDLBISTA uses an adaptive stepsize and thus
does individual steps, however due to the backtracking correction, efficiency may be
lost due to idling.

After defining the test setting in Section 4.2.5.1, we investigate in Section 4.2.5.2 in
the question if the introduction of multiple inner iterations leads to a shorter running
time of DDLISTA and DDLBISTA respectively. In this context we clarify for which
maximum number of inner iterations Lmax, we obtain the best performance. We then
fix this parameter for each algorithm respectively and compare its performance to the
state-of-the-art solvers P-FISTA and PSCL in Section 4.2.5.3.

4.2.5.1 Test Setting

We define a “small”, a medium, and a large test setting:

Setting A Setting B Setting C
N 2048 16384 131072
m 256 2048 16384
k 32 256 2048

Furthermore, we fix the number of channels d = 10. The matrices T ∈ Rm×N are
randomly generated normalized Gaussian-type matrices and we generate the mea-
surement data y ∈ Rm×d from a random sparse multi-channel signal x ∈ RN×d with
entries xi ∼ N (0, 1) and # supp(x) = k, via y = Tx+ e, where the entries of the noise
e ∈ Rm×d are randomly chosen such that ei ∼ N (0, 0.01). The algorithm parameters
are set to η = 0.5, and wmax = 100.

All tests are performed for P = 1, 2, 4, 8, 16, 32, 64, 128 cores and we create a trivial
decomposition of our index sets Λ = {1, . . . , N} into P subsets Λi = {(i − 1)N/P +
1, . . . , iN/P}.

In order to make the problem free of dimension, we choose the regularization pa-
rameter λ = 0.01‖T ∗y‖`∞(Λ). We use the normalized stopping criterion (4.81) with

192

4.2 Parallel Domain Decomposition Based Solutions for ISTA

tolr = 5e-6 for a fair comparison among all methods.

Moreover, we produced optimized code for the special case of P = 1. In particular
one does not need communication via the ALLREDUCE command. This optimized single
core version allows a fair comparison among the parallelized and non-parallelized imple-
mentation. Parallelization in general requires a computational and memory overhead,
which can lead to the practical observation that a parallelization with a very small
number of cores (e.g. P = 2) is less efficient than its non-parallelized counterpart.

All algorithms are implemented by C++ in combination with the linear algebra library
Eigen [65], and compiled with the Intel MPI library 5.0. The tests were executed
on the Haswell Nodes of the SuperMUC Petascale System Phase 2, situated in Garching
(Munich), Germany, with the support of the Leibniz Rechenzentrum (LRZ). The x86-
based SuperMUC was ranking 24th (Phase 2) in the Top500 List as of November
2015 [174]. It is built out of 18432 Intel Xeon E5-2680 8C processors running at up to
2.7 GHz, which sums up to a total of 147,456 cores [128]. One compute node consists
of two sockets, each equipped with eight cores. A single node can access 32 GiB of
main memory, resulting in 2 GiB per core and 288 TiB for the entire machine.

4.2.5.2 Comparison for Different Values of Lmax

The answer to the question, whether it makes sense or not to use more than one
inner iteration, and thus Lmax > 1, is twofold. This is the outcome of the numerical
results that we present in this section. We performed for DDLISTA and DDLBISTA
ten tests with randomly generated datasets of Setting A, and with different levels of
parallelization, according to the description in Section 4.2.5.1. For each value of P
and Lmax, we computed the mean of the number of iterations and the total parallel
computation time, and present the results in Figure 4.10. We comment the four rows
of subfigures from the top to the bottom.

• iterations vs cores: Note that the number of iterations is not the number of the
used outer iterations, but the sum of the used inner iterations until the stopping
of the algorithm, thus

∑
n L

(n). For fixed P , the number of iterations increases
with increasing Lmax for both algorithms, as we predicted it in Section (4.2.1).
Moreover, in DDLISTA for P ≥ 8, the number of iterations stays nearly constant.
In particular the number of iterations is nearly constant for all P , if Lmax ∈ {1, 2}.
In DDLBISTA, the number of iterations jumps when P changes from 1 to 2,
but it stays constant afterwards. Having a constant number of iterations with
increasing P is advantageous since then the effect of the parallelization is not
neutralized by a higher number of iterations.

• time vs cores: In DDLBISTA, additional inner iterations have a negative

193

Chapter 4 Acceleration Techniques for Sparse Recovery Algorithms

impact on the performance. With increasing Lmax the times get worse for fixed
P , whereas in DDLISTA, the algorithm benefits from Lmax > 1, the best results
are obtained for the parameter Lmax = 2. Due to the code optimization and the
fact that no communication is necessary, in general, the results are better in the
case of P = 1 than for P = 2.

• time vs cores (perc.): In order to see, how much one gains with respect to
the parameter setting Lmax = 1, we express on a percentage basis the results of
the previous subfigure in terms of the quotient time/time(Lmax = 1). In both
algorithms, we observe that the larger we choose P the more the algorithms
profit from a parameter Lmax > 1. This confirms our expectation that efficiently
performed multiple inner iterations increase the performance, as formulated at
the end of Section 4.2.1.

• comm. time vs cores (perc.): There is no vital difference in the communica-
tion time for different Lmax. Thus, we can conclude that the performance increase
for Lmax = 2 is mainly caused by the efficient evaluation of the matrix-vector
product in the inner iterations, and not by a more economic use of communication.

Summarizing the above observations, one can speedup DDLISTA by inner iterations,
while the use of additional inner iterations in DDLBISTA only has a negative effect
on the performance. Obviously a different number of backtracking steps on different
cores produces a non equilibrated work load among the cores. We performed the same
experiment on Setting B and C, observing the same behavior. Thus, in the following
tests, we fix Lmax = 2 for DDLISTA and Lmax = 1 for DDLBISTA.

4.2.5.3 Comparison to State-of-the-Art Solvers

We compare our results to the state-of-the-art solvers P-FISTA and PSCL that we
described in Section 4.2.1. Since, we do not consider overlapping subdomains, we use
the non-overlapping version PSCLN (Algorithm 18). In our tests, P-FISTA worked
much better with backtracking (Algorithm 17) than without (Algorithm 16). It was
observed as well in the numerical investigations of [53]. Therefore, we only consider
P-FISTA with backtracking. We do not consider G-Rock [154] since it is in general not
ensured to converge and we are only interested in algorithms that are fully reliable.
According to the results in Section 4.2.5.2, we compare those algorithms to DDLISTA
(with Lmax = 2) and DDLBISTA (with Lmax = 1). Again, we performed ten tests
with randomly generated datasets of Setting A, B, and C, and with different levels of
parallelization, according to the description in Section 4.2.5.1. We present the results
for each setting respectively in the columns of Figure 4.11 and comment hereafter each
row of subfigures from the top to the bottom. For Setting C, we were not able to
compute a result for P ∈ {1, 2} since the data was too large to fit in the memory of
less than P = 4 cores.

194

4.2 Parallel Domain Decomposition Based Solutions for ISTA

10
0

10
1

10
2

10
2.6

10
2.8

ite rat ions vs cores

P

it
e
ra

t
io

n
s

10
0

10
1

10
2

10
0

t ime vs cores

P

ti
m
e
(s

)

10
0

10
1

10
2

0

0.5

1

t ime vs cores (perc .)

P

ti
m
e

ti
m
e
(
L
=
1
)

10
0

10
1

10
2

0

50

100

comm. t ime vs cores

P

c
o
m
m
.
ti
m
e
(%

)

10
0

10
1

10
2

10
2.4

10
2.7

ite rat ions vs cores

P

it
e
ra

t
io

n
s

10
0

10
1

10
2

10
0

t ime vs cores

P

ti
m
e
(s

)

10
0

10
1

10
2

0

1

2

t ime vs cores (perc .)

P

ti
m
e

ti
m
e
(
L
=
1
)

10
0

10
1

10
2

0

50

100

comm. t ime vs cores

P

c
o
m
m
.
t
im

e
(
%
)

Lmax= 1 Lmax= 2 Lmax= 3 Lmax= 4

DDLISTA DDLBISTA

Figure 4.10: Parallelization results for DDLISTA (left column) and DDLBISTA (right column)
in Setting A with parameters Lmax = 1, . . . , 4.

195

Chapter 4 Acceleration Techniques for Sparse Recovery Algorithms

• iterations vs cores: Since P-FISTA is a native parallelization, it has naturally
a constant number of iterations. The number of iterations for PSCLN is slightly
increasing with P . DDLBISTA needs less iterations than DDLISTA.

• time vs cores: Again, we observe that the result for P = 1 is better than for
P = 2 (except for P-FISTA) due to the efficient implementation of all algorithms.
We furthermore observe that all methods outperform P-FISTA in the range of
P > 4. One exception is Setting A, where FISTA overtakes all methods for
P = 128. The simple reason is that the dimensions in this problem are relatively
small such that the computation of the prediction steps in PSCLN, DDLISTA,
and DDLBISTA becomes an important overhead when P gets too large. In
general, although it uses more iterations, DDLISTA is faster than DDLBISTA.
While PSCLN is the fastest method for smaller P , DDLBISTA and DDLISTA
are the fastest methods for larger P .

• time vs cores (perc.): Here, we express on a percentage basis the results of
the previous subfigure in terms of the quotient time/time(P-FISTA). Dependent
on the cores that one has at disposal, one can get to more than 50% decrease of
the computational time.

• parallel efficiency vs cores (perc.): As explained in the introduction of
Section 4.2, the parallel efficiency (4.65) indicates whether or not one should
use a parallelized algorithm in the case that one has to solve many problems of
the same type. Obviously, in Setting A and B, where the matrix still fits in the
memory of a single core, the parallel efficiency stays below 1. This means that
one solves one problem per core, if one has to solve a lot of them. However, at the
level of very large dimensions (Setting C), where we are forced to parallelize due
to memory shortage, we have to redefine the parallel efficiency via the smallest
possible P , in this setting

eff(P) := 4θ(4)
P θ(P) .

Then all methods reach a parallel efficiency greater than one, and it is even
increasing with P . This means a super-linear speedup. If one wants to solve
many of those problems, it is appropriate to solve them on a large number of
cores P .

• comm. time vs cores (perc.): In percentage, the communication time of all
methods is approximately equal, except for the Setting A. The proportion of
communication in P-FISTA and also PSCLN is higher than for DDLISTA and
DDLBISTA for large P .

The main outcome of those experiments is that DDLISTA and DDLBISTA exploit
their full potential for larger values of P . In particular in the very large-scale Setting

196

4.2 Parallel Domain Decomposition Based Solutions for ISTA

10
0

10
1

10
2

10
2.3

10
2.8

iterat ions vs cores

P

it
e
ra

ti
o
n
s

10
0

10
1

10
2

10
0

t ime vs cores

P

ti
m
e
(s
)

10
0

10
1

10
2

0

50

100

150

t ime vs cores (%)

P

ti
m
e

ti
m
e
(F

IS
T
A
)

10
0

10
1

10
2

0

0.5

1

paralle l effic iency vs cores (%)

P

p
a
ra

ll
e
l
e
ff
.

10
0

10
1

10
2

0

50

100

comm. time vs cores (%)

P

c
o
m
m
.
ti
m
e
(%

)

Setting A

10
0

10
1

10
2

10
2.2

10
2.7

iterat ions vs cores

P

it
e
ra

ti
o
n
s

10
0

10
1

10
2

10
2

t ime vs cores

P

ti
m
e
(s
)

10
0

10
1

10
2

0

50

100

150

t ime vs cores (%)

P

ti
m
e

ti
m
e
(F

IS
T
A
)

10
0

10
1

10
2

0

0.5

1

paralle l effic iency vs cores (%)

P

p
a
ra

ll
e
l
e
ff
.

10
0

10
1

10
2

0

50

100

comm. time vs cores (%)

P

c
o
m
m
.
ti
m
e
(%

)

DDLISTA(L=2)

DDLBISTA(L=1)

FISTA

PSCL

Setting B

10
0

10
1

10
2

10
2.3

10
2.7

iterat ions vs cores

P

it
e
ra

ti
o
n
s

10
0

10
1

10
2

10
2

t ime vs cores

P

ti
m
e
(s
)

10
0

10
1

10
2

0

50

100

t ime vs cores (%)

P

ti
m
e

ti
m
e
(F

IS
T
A
)

10
0

10
1

10
2

0

2

4

paralle l effic iency vs cores (%)

P

p
a
ra

ll
e
l
e
ff
.

10
0

10
1

10
2

0

50

100

comm. time vs cores (%)

P

c
o
m
m
.
ti
m
e
(%

)

Setting C

Figure 4.11: Parallelization results for DDLISTA(Lmax = 2), DDLBISTA(Lmax = 1), P-
FISTA, PSCLN for 10 random trials of Setting A (left column), Setting B
(center column), and Setting C (right column).

C the subspace methods DDLISTA, DDLBISTA, and PSCLN outperform the native
parallelization P-FISTA.

4.2.6 A Solver for Large-Scale Hyper- and Multispectral Image
Sharpening

In this section, we present an application of sparse recovery for the fusion of hyper- and
multispectral images, which is the outcome of a joint work with the German Aerospace

197

Chapter 4 Acceleration Techniques for Sparse Recovery Algorithms

Center (DLR) and presented in [97]. We introduce the corresponding SparseFI project
in Section 4.2.6.1, which incorporates the fusion of air- and spaceborne image data
being of extremely large size such that the need for high performance computing (HPC)
is raised. In its core the image fusion algorithm is based on a large amount of sparse
recovery problems for which we determine the best suitable solver in Section 4.2.6.2.
In order to solve this set of sparse recovery problems on multi-core systems, one has to
apply the efficient work scheduling which is explained in Section 4.2.6.3.

4.2.6.1 The SparseFI Project and High Performance Computing

Image fusion aims at combining two or more images into a single image that features
valuable information from all of the input images. Typically, we acquire those input
images in the field of remote sensing by air- and spaceborne sensors. One of the most
prominent problems is the fusion of two optical images of different spatial and spectral
resolution. Many topographic earth observation satellites such as IKONOS, GeoEye,
Pleiades, WorldView-2, and WorldView-3 are equipped with both a panchromatic, i.e.,
single-channel, sensor of very high spatial resolution and a medium to high spatial
resolution multispectral instrument. In the literature, the fusion of such an image pair
is referred to as pan-sharpening. It aims at creating an image which has the spectral
resolution of the multispectral image and the spatial resolution of the panchromatic
image. Solutions to the pan-sharpening problem have been proposed in [180, 164,
200, 152, 136, 5, 25]. An approach, based on sparse representation based methods
was introduced in [202, 209] and resulted in the Sparse Fusion of Images (SparseFI)
method, which we already introduced briefly in Section 1.1.2. Based on this work, a
further development is the use of joint sparse representations in [207, 208, 205], leading
to the modified Joint Sparse Fusion of Images (J-SparseFI) method.

Hyperspectral instruments, such as AVIRIS, Hyperion, HYDICE, HySpex [10],
HISUI [115], and the German next-generation Environmental Mapping and Analysis
Program (EnMAP) sensor [175], or the DLR Earth Sensing Imaging Spectrometer
(DESIS) acquire electromagnetic energy in docents to hundreds of contiguous wavelength
ranges. By this higher spectral resolution we are enabled to identify different materials
within the observed scene, each possessing a characteristic spectral signature. However,
the high number of bands comes at the expense of degradation in spatial resolution
due to the narrowness of each spectral band. In order to allow for applications such
as terrain classification, mineral detection, and exploration, multiple materials inside
single pixels need to be discriminated, i.e., unmixed [18, 113, 16]. The level of detail
and the diversity of materials in hyperspectral data acquired over urban areas is
greater compared to rural scenes. This makes applications with such kind of data
particularly demanding. We can apply data fusion techniques if corresponding high
spatial resolution multispectral data is additionally available. This allows for the

198

4.2 Parallel Domain Decomposition Based Solutions for ISTA

enhancement of the spatial resolution of the hyperspectral image and, thus, for the
identification and localization of contributing sources at the resolution scale of the
high resolution image. While some pan-sharpening methods would be principally
applicable to the fusion of hyperspectral and panchromatic data, the replacement of
the panchromatic image by a multispectral image in the fusion problem introduces
new methodical challenges. Moreover, in order to apply sophisticated signal processing
algorithms to large scale hyperspectral imagery, we require computational resources
that have become available only in recent years thanks to the rapid development in
computer technology. Hyperspectral-multispectral data fusion methods were proposed
in [92, 198, 103, 197, 194, 199, 17].
Based on the precursor algorithm J-SparseFI, we elaborated in the paper [97] a

new method for the fusion of hyperspectral and multispectral imagery called Jointly
Sparse Fusion of Hyperspectral and Multispectral Imagery (J-SparseFI-HM). It creates
a high spatial resolution hyperspectral image patch-wise by exploiting the jointly
sparse representation of hyperspectral image patches in dictionaries that are built
up from the multispectral image. Based on the earlier attempts [100, 101], it jointly
estimates bundles of an adjustable number of high resolution hyperspectral bands by
fusing the corresponding low resolution hyperspectral channels with possibly multiple
multispectral bands. This approach takes into account the spectral response functions
(SRF) of the hyperspectral and multispectral sensor. At the time of the finalization
of this thesis, the paper [97] was still under review. Since the research field is highly
competitive, we kindly ask the reader to understand that we can only give a rather
rough description of the modeling and statement of the J-SparseFI-HM algorithm in
this thesis. For details, we refer to the prospectively published version of the paper
and doctoral thesis of Claas Grohnfeldt. Fortunately this restriction only applies to
the engineering methodology of the project but not to the mathematical and computer
scientific details.

Let us take for granted that there exists the J-SparseFI-HM software, which mainly
solves a stack of joint sparsity problems of the type (2.12). We refer to them as the
group LASSO problems (compare Section 2.3). They are roughly derived as follows:
In each problem, we have given a low spatial resolution hyperspectral image patch
ylow = (y1, . . . , yd) ∈ Rml×d where the yi ∈ Rml , i = 1, . . . , d, represent a subset of d
(vectorized) hyperspectral bands of the image with a size of ml pixels each. Moreover,
we have a low resolution dictionary Dlow ∈ Rml×N , with N atoms of a size of ml

pixels, which is obtained by spatial downsampling and filtering from a high resolution
dictionary Dhigh ∈ Rmh×N , which contains detail patches (roofs, meadows, streets,
etc.) from the high resolution multispectral image. By means of the low resolution
dictionary Dlow, and the low resolution hyperspectral image patch bands yi, i = 1 . . . d,
we want to obtain for each band a sparse representation xi ∈ RN , i = 1, . . . , d, such
that yi ≈ Dlowxi. Since all bands depict the same scene, we assume to have the same
active dictionary elements for all bands, i.e, the xi, i = 1, . . . , d, are supposed to be

199

Chapter 4 Acceleration Techniques for Sparse Recovery Algorithms

jointly sparse. Thus, we compute by the group LASSO,

arg min
z∈RN×d

1
2‖Dlowz − ylow‖`2,2 + λ‖z‖`1,2 , (4.85)

a joint sparse representation x = (x1, . . . , xd) ∈ RN×d, which is composed of the
respective sparse representations xi, i = 1, . . . , d. Then, a high resolution hyperspectral
image patch yhigh is obtained from the sparse representation x and the high resolution
dictionary Dhigh via

yhigh = Dhighx.

Since this procedure has to be performed for a predefined set of patches, which results
from a decomposition of a large image, we potentially have to solve a large number of
those problems. Note that the dimensions N , d, ml, mh may vary from problem to
problem. Nevertheless, those variations are small enough such that we can assume that
all problems roughly fit into the same class of problem sizes. Also the properties of the
dictionaries only vary slightly, in particular its condition number. Thus, we are in the
fortunate situation that the computation of solutions to (4.85) takes approximately
the same time for each problem.

The high potential of sparse representation based data fusion methods with respect
to image quality was demonstrated in the above mentioned work towards SparseFI, and
J-SparseFI. However, the main drawback of such methods is the high computational
cost, which is due to the necessity of solving a large number of optimization problems of
the type (4.85). Moreover, the number of problems linearly increases with the number
of image patches, i.e., with the spatial size of the input images. In Section 4.2.6.2, we
determine the best suitable solver for the group LASSO problems of the respective
problem size of our application. We comment in Section 4.2.6.3 on the scheduling of
such an amount of (to the greatest extent independent) problems on multi-core systems.

In the experiments that are presented in the following sections, we used airborne
VNIR HySpex data acquired over Munich, Germany, in 2012. The HySpex sensor is
characterized by 160 spectral channels spanning from 415 to 992 nm. Synthetic high
resolution multispectral data has been simulated by filtering the reference HySpex
image pixel-wise, using the spectral response functions of the WorldView-2 imager
in the relevant spectral range. We effectively use the first five WorldView-2 channels
ranging from 350 to 700 nm. The high resolution reference image has a ground sampling
distance of 2 m and a size of 480 by 480 pixels.
In order to process large scale Earth observation data, the J-SparseFI-HM image

fusion software is optimized for memory exploitation on the SuperMUC (see Sec-
tion 4.2.5.1 for system specifications). Internode MPI communication is kept low in
order to maximize parallel efficiency. The J-SparseFI-HM application is compiled with
the Intel MPI compiler using the system’s wrapper mpiCC.

200

4.2 Parallel Domain Decomposition Based Solutions for ISTA

4.2.6.2 Determining a Suitable Solver

The J-SparseFI-HM algorithm has been developed in order to sharpen multiple in-
dividual patches in parallel. The parallelization reduces the overall computational
time and allows for a distribution of the data. In order to solve the group LASSO
problem (4.85), we have several relevant solvers at disposal, which we presented in
Section 4.2.1 and 4.2.2. Out of those we choose the one which is best suited for the
hyperspectral-multispectral image fusion. Therefore, we first extracted randomly a set
of 10 test problems, which were created by the J-SparseFI-HM software. All test prob-
lems have the dimensions N = 699, ml = 404, d = 3. We notice that the problem size
is relatively small since it undercuts the one of Setting A, as defined in Section 4.2.5.1.
On this testset, we ran algorithm DDLISTA, DDLBISTA, P-FISTA, and PSCLN for
P = 1, 2, 4, 8, 16, 32, 64, 128 cores and we created a trivial decomposition of our index
sets Λ = {1, . . . , N} into P subsets Λi = {(i − 1)N/P + 1, . . . , iN/P}, similarly as
described in Section 4.2.5. In contrast to our observations in Section 4.2.5.2, we figured
out that DDLISTA and DDLBISTA performed best with the parameter Lmax = 1 for
the given class of problems. The results of the simulations are presented in Figure 4.12.
Without doubt, the analysis of the plots yields that P-FISTA performs best for such
small problems. Furthermore, we observe that the parallel efficiency is always below
one. This means in particular that it is more efficient to assign only one core to
the solution of each problem (compare also the explanations on the interpretation of
parallel efficiency in Example 4.26 and the respective paragraph).

4.2.6.3 Parallel Work Scheduling and Idling

Algorithm 21 J-SparseFI-HM (rough description)
1: for patch i = 1, . . . , Np do
2: create the dictionary Dlow for the patch i
3: for each independent group LASSO problem j = 1, . . . , Nt do
4: solve the j-th problem of the form (4.85)
5: end for
6: merge the Nt results of the group LASSO problems together
7: end for

We sketch the description of J-SparseFI-HM in Algorithm 21 in order to see where
parallelization is possible. According to this description, we need to solve Np · Nt

problems of the type (4.85). However it is not possible to solve them completely
independent from each other, since all problems which belong to the same patch i will
need the same dictionary and their results have to be merged together. Therefore,
synchronization in Step 2 and Step 6 is necessary. In order to explain the parallelization

201

Chapter 4 Acceleration Techniques for Sparse Recovery Algorithms

10
0

10
1

10
2

10
4

ite rat ions vs cores

P

it
e
ra

ti
o
n
s

10
0

10
1

10
2

10
0

t ime vs cores

P

ti
m
e
(s
)

10
0

10
1

10
2

0

100

200

300

t ime vs cores (%)

P

ti
m
e

ti
m
e
(F

IS
T
A
)

10
0

10
1

10
2

0

0.5

1

paralle l effic iency vs cores (%)

P

p
a
ra

ll
e
l
e
ffi
c
ie
n
c
y

10
0

10
1

10
2

0

50

100

comm. time vs cores (%)

P

c
o
m
m
.
ti
m
e
(%

)

DDLISTA(L=1)

DDLBISTA(L=1)

FISTA
PSCL

Figure 4.12: Parallelization results for DDLISTA(Lmax = 1), DDLBISTA(Lmax = 1), P-
FISTA, and PSCLN for 10 random trials of a typical J-SparseFI-HM setting
with N = 699, ml = 404, d = 3.

202

4.2 Parallel Domain Decomposition Based Solutions for ISTA

strategies, we assume that we have Q cores available and that we split them into G
groups of S = Q/G cores, presuming for simplicity that G is a divisor of Q. This allows
to assign to each patch a group of S cores.

Recall from the previous section that each problem of the type (4.85) has to be solved
by only a single core. Thus, it is clear that S ≤ Nt. If S = Nt, then each core has to
solve exactly one problem. However, if S < Nt and S is a divisor of Nt then each cores
solves exactly Nt/S problems. Since we assumed that we need approximately the same
time in order to solve each group LASSO problem, this means that the workload is
well balanced among the S cores. If S is not a divisor of Nt, then the work is unevenly
distributed. The part of the group of S cores which has less work, will have to wait for
the cores with more workload, since in Step 6 all S cores are synchronized in order to
communicate their results within the group. We call this behavior inner idling.
When a group of cores finished the computation of one patch, it proceeds to the

next patch, etc. In general Np � G. If G is not a divisor of Np, the work is unevenly
distributed among the individual groups. Although each group of cores can indepen-
dently process its portion of the total work, some groups will definitely idle in the end
and wait for the other groups. This behavior is called outer idling.

Outer and inner idling is at the expense of the parallel efficiency of the algorithm
J-SparseFI-HM. Therefore, an effort is necessary to optimally use the resources and
reduce the idling. Both, the inner and the outer processing can be modeled as a set of
W work units, which has to be processed by V processing units. In this scenario we
consider the following two approaches for the scheduling of the work units:

• The first option is to pre-assign the work units to the processing units right at the
beginning. Then, processing unit i ∈ {1, . . . , V } processes the set of work units
{i+jV | j = 0, . . . , bW/V c} if i ≤ (W mod V), and {i+jV | j = 0, . . . , bW/V c−1}
otherwise. If V is a divisor of W , there is no case differentiation and the work is
evenly distributed. This concept is called a fixed schedule.

• The second option would be to consider the W work units as a global stack.
Then, as soon as a processing unit is done with its previous work, it gets assigned
at runtime to the top work unit of the global stack. The work unit is removed
from the stack and the next unit is free for treatment. Like this, processing units
are only idling when the stack is empty. This concept is called work stealing
schedule.

The advantage of the work stealing concept is the flexible handling of the work units.
Nevertheless, it requires the maintenance of a global counter variable with exclusive
write access, which stores the index of the next free work unit. In particular if V is
large and the work units are small, i.e., they can be computed in short times, the
counter variable needs to be accessed frequently by many processing units. The effect

203

Chapter 4 Acceleration Techniques for Sparse Recovery Algorithms

is idling in many processing units since only one of them can read from and write to
the counter. In contrast, the fixed schedule does not require synchronization among the
processes at runtime. However, the static distribution of work may lead to unbalanced
work load among the different processing units. Therefore, we propose to take the best
of both worlds, and split the work units into one portion, which is initially done by
the fixed schedule, and the remainder being processed by a work stealing schedule.
Concretely, we define the parameter sws ∈ Z, sws ≥ −1 which splits the total work
into Wfs := max(min(V (bW/V c − sws),W), 0) and Wws := W −Wfs work units that
are handled by the fixed schedule and the work stealing schedule respectively. This
means in particular that no work stealing (Wws = 0) is done for sws = −1, and
Wws = (W mod V) for sws = 0.

By means of those scheduling paradigms, we want to schedule the inner and the
outer for-loop of Algorithm 21. Since in general Nt � Np, the maintenance of a work
stealing counter in the inner loop would be too inefficient. From a practical point
of view it is best to choose S as a divisor of Nt in order to have the best work load
distribution within the inner loop. In the outer loop we apply the hybrid fixed/work
stealing schedule, where we set W = Np and V = G. Thus, assuming that the total
number of cores Q, as well as Np and Nt are given, it remains the question which
choice of the parameters S and sws is best. Since it is very hard to predict the running
time of the individual group LASSO problems, we need to determine those parameters
experimentally.

In a generic experiment we solve a test problem with Np = 4096 patches. For each
patch we need to solve Nt = 32 group LASSO problems. According to our results
in 4.2.6.2, we solve each of the problems with a non-parallelized FISTA. We test each
combination of the parameters sws ∈ {0, 1, 2, 3} and S ∈ {1, 2, 4, 8, 16} for a total
number of Q = 32 cores. We present the outcome of the respective computational
time in Table 4.1. The effect of the inner idling is visible by the increasing values for
increasing S. For S = 1, one can see the effect of outer idling. This effect is partly
absorbed through work stealing (sws = 1). However, too much work stealing leads to
concurrent access to the common global counter variable and reduces the performance
(sws > 1). In particular for S = 1, work stealing only has a negative effect since too
many groups (G = Q/S = 32) block each other. Thus, the algorithm runs fastest for
sws = 1 and S = 2.

We conclude that the hybrid scheduling leads to a slight acceleration of the algorithm
J-SparseFI-HM.

204

4.2 Parallel Domain Decomposition Based Solutions for ISTA

sws

S 1 2 4 8 16

0 509.07 500.10 529.86 595.89 719.33
1 670.51 472.40 507.63 579.12 696.01
2 721.42 510.49 514.80 569.27 691.16
3 793.48 510.89 522.67 556.60 681.64

Table 4.1: Parallel computation time (in s) of J-SparseFI-HM for different combinations of
the work stealing parameter sws and number of processors S dedicated to the inner
loop.

205

Chapter 5

Conclusion and Outlook

In this thesis we improved the robustness and efficiency of selected sparse recovery
methods with the main outcome that the support identification properties of convex
methods can be tremendously enhanced by non-convex techniques, and that properly
tuned second order methods such as iteratively re-weighted least squares can outper-
form first order methods such as fast iterative soft thresholding and iterative hard
thresholding.

In terms of robustness, we proposed and successfully evaluated non-convex methods
for the particular case when a sparse signal is perturbed by strong noise and the
noise folding phenomenon makes it difficult to determine reliable results from linear
measurements of this perturbed signal. In particular, we could undoubtedly reveal that
the popular convex methods, such as `1-minimization, BPDN, LASSO, etc. quickly
reach their limitations, when it comes to the need of an exact, robust, and reliable
support identification. In such a setting, it is advantageous to use selective decoders
such as SLP, IHT, or a multi-penalty optimization. Those methods take into account
the different statistical properties of the relevant part of the signal and the noise. Local
minimizers, which are an intrinsic problem that one has to face sooner or later when
dealing with non-convex methods, can be avoided to the greatest extent when executing
the methods with reasonable starting values, as, e.g., the output of the above mentioned
convex decoders. We conclude that the simple application of standard `1-minimization
based decoders to problems where the measurement process is perturbed by strong
signal noise, is in general not sufficient to obtain a reliable support identification.

Regarding the computational efficiency of sparse recovery methods, we worked on
the one hand on a setting, were fast matrix-vector multiplications can be applied.
We proposed a CG acceleration of IRLS. The surprising conclusion of the respective
results and comparison to state-of-the-art algorithms is that first order methods can
be outperformed by second order methods.
In the case that one is forced to distribute large data on multiple machines and

find parallel solutions for sparse recovery, we proposed a flexible algorithm, which
is based on a domain decomposition and multiple parallel thresholding operations.
We showed that such an algorithm scales in practice very well if a large number of

207

Chapter 5 Conclusion and Outlook

machines is involved. The consideration of multiple independent steps on each core
without intermediate communication turns out to be advantageous in terms of the
parallel efficiency.

By the example of a fusion method for hyperspectral-multispectral data of the Earth’s
surface, we presented eventually an application of sparse recovery techniques on real
data, proposing an efficient treatment of such large data sets by means of the best
solver choice and an optimal work scheduling of the stack of sparse recovery problems,
which is produced by the method. From this example we learned that the proper choice
of an algorithm can depend on the problem size and that a non-trivial scheduling has
a positive effect on the runtime.

The particular results that were presented in this thesis lead to the following additional
research questions by which we intend to stimulate master students and doctoral
students but also advanced researchers for further thinking and activity on the topics
that were addressed:

• First insights in the particular (numerical) dependence of IRLS on the limit of
the sequence (εn)n∈N were given in Section 2.4.1.2. We also showed a theoretical
upper bound for the approximation error of two successive iterates, which confirms
the numerical tests. The challenge of finding a sharp theoretical lower bound is
open. Also numerical tests with different encoding matrices may be interesting in
order to obtain further knowledge on the dependencies of the involved constants.

• The newly introduced methods in Chapter 3 can be tested and analyzed for
different encoding matrices, which may not have such advantageous spectral
properties as the RIP/NSP.

• Although we showed that the method CG-IRLS-λ and its derivatives exhibit a
fast convergence, we did not give theoretical guarantees on the rate of convergence.
Regarding Figure 4.7, this seems to be a complicated task since visually one
cannot identify a constant rate. Furthermore, the role of the parameter p is still
not thoroughly investigated (compare Figure 4.9) and promises—at least in a
setting with low noise—a further gain in the performance of the algorithm.

• It is an open problem to show the strong convergence of Algorithm 20 when the
stepsize t = t(n) is not fixed. Using the backtracking condition as well as an
adaptation of the techniques from [49] may lead to a proper proof.

208

Appendix A

Proofs
Proof (Proof of Lemma 2.15). Since λ → 0, one can choose a null sequence
(λn)n∈N. Furthermore, let u∗ be a solution to problem (2.4). Then the inequality
‖uλn‖`1(Λ) ≤ 1

λn
Jλn(uλn) ≤ 1

λn
Jλn(u∗) = ‖u∗‖`1(Λ) is valid for all n. Thus, there is a

subsequence (λnk)k∈N such that uλnk → u0 and ‖u0‖`1(Λ) ≤ ‖u∗‖`1(Λ). Furthermore,
from the inequality λnk‖u∗‖`1(Λ) ≥ Jλnk (uλnk) = ‖Tuλnk−y‖

2
`2(Λ)+λnk‖uλnk‖`1(Λ) ≥ 0,

the boundedness of ‖uλnk‖`1(Λ), the fact that λnk → 0, and the continuity of the norm
one obtains 0 = limk→∞ ‖Tuλnk −y‖

2
`2(Λ) = ‖Tu0−y‖2`2(Λ). Since ‖u0‖`1(Λ) ≤ ‖u∗‖`1(Λ)

and Tu0 = y, the limit u0 is a solution of problem (2.4). 2

Proof (Proof of Lemma 2.16). The proof is divided into two parts. First, we show
that 0 is a solution of problem (2.15), and in the second part the uniqueness of this
solution is established.

As derived in Section 2.2.2 the optimality conditions for problem (2.15) are given by

−2(T ∗(Tu− y))i = λ
ui
‖ui‖`2

if ui 6= 0,

2‖(T ∗(Tu− y))i‖`2 ≤ λ if ui = 0,
i ∈ Λ.

The substitution of u = 0 in the optimality conditions yields 2‖(T ∗y)i‖`2 ≤ λ, i ∈ Λ.
This holds true since λ > 2‖T ∗y‖`∞(Λ) is given.

To prove the uniqueness of the solution, we show that the assumption of any
second solution ũ 6= 0 leads to a contradiction. Assume there is ũ 6= 0 which solves
problem (2.15). Then

Jλ(ũ)− Jλ(0) ≤ 0. (A.1)
On the other hand we have

Jλ(ũ)− Jλ(0) = λ‖ũ‖`1(Λ) + ‖T ũ‖2`2(Λ) − 2〈T ũ, y〉
≥ λ‖ũ‖`1(Λ) + ‖T ũ‖2`2(Λ) − 2‖ũ‖`1(Λ)‖T ∗y‖`∞(Λ) (A.2)
= ‖T ũ‖2`2(Λ) + (λ− 2‖T ∗y‖`∞(Λ))‖ũ‖`1(Λ) > 0,

where Hölder’s inequality is used in (A.2). This contradicts to (A.1), completing the
proof. 2

209

List of Figures

1.1 For a low-dimensional example with a matrix Φ ∈ R1×3, we illustrate in
the plot the separation of sparse vectors and the kernel of Φ, which can
be represented geometrically as a plane. The black lines represent the set
of sparse vectors with maximum one non-zero entry. The matrix Φ whose
kernel is represented by the red plane is not suitable for compressed
sensing since the set of sparse vectors intersects with the kernel. A kernel
which is well-separated from the set of sparse vectors is represented by
the green plane since both sets only intersect in zero. The respective
matrix then is suitable for compressed sensing techniques. 4

1.2 Left: Hyperspectral image of low spatial resolution. Right: Multispectral
image of high spatial resolution. 10

2.1 Plot of | · |0 in comparison to | · |p for p ∈ {1/3, 1/2, 1} in the interval
[−1, 1]. 18

2.2 History of characteristic quantities (versus the iteration number n) in
an IRLS test run with the ε-update rules (2.31) and (2.32) respectively. 37

2.3 Dependency of the final approximation error and the difference of suc-
cessive iterates (after numerical convergence) on the limit value ε∗. . . 38

3.1 Recovery result x∗ (+) of the `1-minimization starting from the mea-
surement of a generic sparse signal x̄ (o) in the presence of signal noise
n (·). 50

3.2 Truncated quadratic potential W 2,0
1 and its regularization W 2,0.4

1 (dashed). 59
3.3 The figure reports the results of four different decoding processes (+) of

the same test problem where the circles (o) represent the original signal
and the points (·) represent the original signal corrupted by the noise. 64

3.4 Geometrical interpretation of the problem in 2D. 72
3.5 Estimated regions of solution for p = 1 and q ∈ {2, 4,∞}. 74
3.6 Behavior of the algorithm for p = 1, q = ∞, λp = 0.4, λq = 0.5. The

solution path for u and v is represented by the dashed and dotted line
respectively. 77

3.7 Estimated regions of solution for p = 0.5, and q ∈ {2, 4,∞}. 78
3.8 Estimated regions of solution for p = 0, and q ∈ {2, 4,∞}. 79

211

List of Figures

3.9 The thresholding function Hp
λp

for p = 1, p = 0.3 (dotted), p = 0
(dashed) and the parameter λp = 0.1. 84

3.10 Estimated regions of the regularization parameters (right panel) and the
corresponding solution u∗ (left panel) and v∗ (middle panel) for p = 0.5,
and q = 2 (top), and q = 4 (bottom) repectively using PCA. The black
crosses indicate the real solutions. 100

3.11 Estimated regions of the regularization parameters (right panel) and the
corresponding solution u∗ (left panel) and v∗ (middle panel) for p = 0.3,
and q = 2 (top), and q = 4 (bottom) repectively using PCA. The black
crosses indicate the real solutions. 100

3.12 For the parameters λp (AIT(p,0), p < 1), δ ((PW)BPDN, and IRL1),
and λ (`1+SLP, `1+IHT) respectively, we plot for each of the 20 trial
problems row-wise a ×-marker in the column of the parameter value,
where an optimum in terms of SD was attained. In the bottom row, the
sum of markers in each column are presented by markers of different
fatness. The fattest markers are colored red. 109

3.13 For the parameter pairs (λp, λq) (AIT(p,q)), we plot markers of different
fatness, indicating for how many of the 20 trial problems the respective
parameter pair was optimal in terms of SD. The fattest markers are col-
ored red. The blue dots in the bottom row only serve as a legend in order
to classify the fatness of the black and red markers in the range of 1 to 20.

. 111
3.14 The bar plots present the evaluation of the mean value of SD, DI, and

AE for the methods AIT(p,q) (first five bar groups), `1-minimization,
`1+SLP, IRL1, and `1+IHT (last bar group); compare the legend. In
Subfigure 3.14(a), we allow a flexible parameter choice (and choose
the best result) and in Subfigure 3.14(b), we fixed the most promising
parameter for each method respectively. 112

3.15 Top four subfigures (phase transition diagrams): Phase transition dia-
grams for BP, `1+SLP, IRL1, and `1+IHT. The black area represents the
couple (m, k) for which we had 100% of support recovery. Note that the
area for k > m is not admissible. The red line shows the level bound of
90% of support recovery, and the magenta line 50% respectively. Bottom
two subfigures: Comparison of phase transition diagrams for BP (dark
blue, dotted), `1+SLP (red), IRL1 (green, dash-dotted), and `1+IHT
(magenta, dashed). The level bound of 50% and 90% as it is displayed
in the top four subfigures is compared in the bottom two subfigures
respectively. The methods `1+IHT and `1+SLP provide highest stability.115

212

List of Figures

4.1 Single trial of Setting B. Left: Relative error plotted against the compu-
tational time for IRLS[p = 1] (light green, ◦), IRLS[p = 0.9] (green, �),
IRLS[p = 0.8] (dark green, 3), CG-IRLS (blue, ×), and IHT (red, −).
Right: Relative error plotted against computational time for CG-IRLS
(blue, ×), CG-IRLSm (dark blue, +), IHT+CG-IRLSm (black, ∗), and
IHT (red, −). 156

4.2 Empirical test on Setting A, B, and C for the methods CG-IRLS (blue),
CG-IRLSm (white), IHT+CG-IRLSm (black), and IHT (red). Upper:
Mean computational time. Center: Fastest method (in %). Lower:
Failure rate (in %). 159

4.3 Phase transition diagrams of IHT and CG-IRLS for N = 2000. The
recovery rate is presented in grayscale values from 0% (white) up to
100% (black). As a reference, in the right subfigure, the 90% recovery
rate level line of the CG-IRLS phase transition diagram is plotted to
show more evidently the improved success rate of the latter algorithm. 160

4.4 Single trial of Setting B. Left: Relative error plotted against the com-
putational time for IRLS-λ (light green, ◦), CG-IRLS-λ (blue, ×), and
FISTA (red, −). Right: Relative error plotted against computational
time for CG-IRLS-λ (blue, ×), PCG-IRLS-λ (dark blue, +), PCGm-
IRLS-λ (black, ∗), and FISTA (red, −). 162

4.5 Empirical test on Setting A, B, and C for the methods PCG-IRLS-
λ (blue), PCGm-IRLS-λ (black), and FISTA (red). Upper: Mean
computational time. Lower: Fastest method (in %). 163

4.6 Left: Setting A. Right: Setting C. Comparison of IHT (blue, −), FISTA
(green, −−), IHT+CG-IRLSm (black, ∗), and PCGm-IRLS-λ (red, ×). 164

4.7 Left: Setting D. Right: Setting E. Comparison of IHT (blue, −), and
PCGm-IRLS-λ (red, ×). 165

4.8 Empirical test on the mean computational time of Setting D and E for
the methods IHT (blue), and PCGm-IRLS-λ (red). 165

4.9 Results of Algorithm PCGm-IRLS-λ for a single trial of Setting C for
different values of p with noise (right) and without noise (left). 165

4.10 Parallelization results for DDLISTA (left column) and DDLBISTA (right
column) in Setting A with parameters Lmax = 1, . . . , 4. 195

4.11 Parallelization results for DDLISTA(Lmax = 2), DDLBISTA(Lmax = 1),
P-FISTA, PSCLN for 10 random trials of Setting A (left column), Setting
B (center column), and Setting C (right column). 197

4.12 Parallelization results for DDLISTA(Lmax = 1), DDLBISTA(Lmax = 1),
P-FISTA, and PSCLN for 10 random trials of a typical J-SparseFI-HM
setting with N = 699, ml = 404, d = 3. 202

213

List of Tables

3.1 Sub-cases related to γ̂ and γ̌. 75

4.1 Parallel computation time (in s) of J-SparseFI-HM for different combi-
nations of the work stealing parameter sws and number of processors S
dedicated to the inner loop. 205

215

Bibliography

[1] M. V. Afonso, J. M. Bioucas-Dias, and M. A. Figueiredo. “Fast image recovery
using variable splitting and constrained optimization”. In: IEEE Transactions
on Image Processing 19.9 (2010), pp. 2345–2356.

[2] E. Alba. “Parallel evolutionary algorithms can achieve super-linear performance”.
In: Information Processing Letters. Evolutionary Computation 82.1 (2002), pp. 7–
13. issn: 0020-0190.

[3] G. Alessandrini and S. Vessella. “Lipschitz stability for the inverse conductivity
problem”. In: Advances in Applied Mathematics 35.2 (2005), pp. 207–241.

[4] B. Alexeev and R. Ward. “On the complexity of Mumford-Shah-type regulariza-
tion, viewed as a relaxed sparsity constraint”. In: IEEE Transactions on Image
Processing 19.10 (2010), pp. 2787–2789.

[5] K. Amolins, Y. Zhang, and P. Dare. “Wavelet based image fusion techniques—An
introduction, review and comparison”. In: ISPRS Journal of Photogrammetry
and Remote Sensing 62.4 (2007), pp. 249–263.

[6] E. Arias-Castro and Y. C. Eldar. “Noise folding in compressed sensing”. In:
IEEE Signal Processing Letters (2011), pp. 478–481.

[7] M. Artina, M. Fornasier, and S. Peter. Damping Noise-Folding and Enhanced
Support Recovery in Compressed Sensing - Extended Technical Report. Tech. rep.
Nov. 2014.

[8] M. Artina. “Lagrangian Methods for Constrained Non-Convex Minimizations
and Applications in Fracture Mechanics”. Dissertation. Munich: Technical Uni-
versity of Munich, 2015.

[9] M. Artina, M. Fornasier, and F. Solombrino. “Linearly constrained nonsmooth
and nonconvex minimization”. In: SIAM Journal on Optimization 23.3 (2013),
pp. 1904–1937.

[10] R. Baissa, K. Labbassi, P. Launeau, A. Gaudin, and B. Ouajhain. “Using HySpex
SWIR-320m hyperspectral data for the identification and mapping of minerals
in hand specimens of carbonate rocks from the Ankloute Formation (Agadir
Basin, Western Morocco)”. In: Journal of African Earth Sciences 61.1 (Aug.
2011), pp. 1–9. issn: 1464-343X.

217

Bibliography

[11] R. G. Baraniuk. “Compressive sensing”. In: IEEE Signal Processing Magazine
24.4 (2007), pp. 118–121.

[12] R. G. Baraniuk, M. Davenport, R. DeVore, and M. Wakin. “A simple proof
of the restricted isometry property for random matrices”. In: Constructive
Approximation 28.3 (2008), pp. 253–263.

[13] A. Beck and M. Teboulle. “A fast iterative shrinkage-thresholding algorithm
for linear inverse problems”. In: SIAM Journal on Imaging Sciences 2.1 (2009),
pp. 183–202. issn: 1936-4954.

[14] C. R. Berger, S. Zhou, J. C. Preisig, and P. Willett. “Sparse channel estimation
for multicarrier underwater acoustic communication: From subspace methods to
compressed sensing”. In: IEEE Transactions on Signal Processing 58.3 (2010),
pp. 1708–1721.

[15] P. Bickel, Y. Ritov, and A. Tsybakov. “Simultaneous analysis of lasso and
Dantzig selector”. In: Annals of Statistics 37.4 (2009), pp. 1705–1732.

[16] J. Bieniarz, E. Aguilera, X. X. Zhu, R. Müller, and P. Reinartz. “Joint Sparsity
Model for Multilook Hyperspectral Image Unmixing”. In: IEEE Geoscience and
Remote Sensing Letters 12.4 (Apr. 2015), pp. 696–700. issn: 1545-598X.

[17] J. Bieniarz, R. Muller, X. X. Zhu, and P. Reinartz. “Hyperspectral image resolu-
tion enhancement based on joint sparsity spectral unmixing”. In: Proceedings of
the IEEE International Geoscience and Remote Sensing Symposium (IGARSS).
July 2014, pp. 2645–2648.

[18] J. M. Bioucas-Dias, A. Plaza, S. Member, N. Dobigeon, M. Parente, Q. Du,
S. Member, P. Gader, and J. Chanussot. “Hyperspectral unmixing overview:
Geometrical, statistical, and sparse regression-based approaches”. In: IEEE
Journal on Selected Topics in Applied Earth Observations and Remote Sensing
(2012), pp. 354–379.

[19] T. Blumensath and M. E. Davies. “Iterative thresholding for sparse approxi-
mations”. In: The Journal of Fourier Analysis and Applications 14.5 (2008),
pp. 629–654. issn: 1069-5869.

[20] T. Blumensath and M. E. Davies. “Iterative hard thresholding for compressed
sensing.” In: Applied and Computational Harmonic Analysis 27.3 (2009), pp. 265–
274.

[21] K. Bredies and M. Holler. “Regularization of linear inverse problems with total
generalized variation”. In: Journal of Inverse and Ill-posed Problems 22.6 (2014),
pp. 871–913.

[22] K. Bredies and D. A. Lorenz. “Linear convergence of iterative soft-thresholding”.
In: Journal of Fourier Analysis and Applications 14.5 (2008), pp. 813–837.

218

Bibliography

[23] K. Bredies and D. A. Lorenz. “Minimization of non-smooth, non-convex func-
tionals by iterative thresholding”. In: Journal of Optimization Theory and
Applications 165.1 (2015), pp. 78–112.

[24] R. P. Brent. “The parallel evaluation of general arithmetic expressions”. In:
Journal of the ACM (JACM) 21.2 (1974), pp. 201–206.

[25] B. Brower and C. Laben. Process for enhancing the spatial resolution of multi-
spectral imagery using pan-sharpening. US Patent 6,011,875. Google Patents,
Jan. 2000.

[26] E. J. Candès et al. “Compressive sampling”. In: Proceedings of the international
congress of mathematicians. Vol. 3. Madrid, Spain, 2006, pp. 1433–1452.

[27] E. J. Candès and Y. Plan. “Near-ideal model selection by l1 minimization”. In:
The Annals of Statistics 37.5A (2009), pp. 2145–2177.

[28] E. J. Candès, J. Romberg, and T. Tao. “Stable signal recovery from incom-
plete and inaccurate measurements”. In: Communications on pure and applied
mathematics 59.8 (2006), pp. 1207–1223.

[29] E. J. Candès and J. Romberg. “Quantitative robust uncertainty principles and
optimally sparse decompositions”. In: Foundations of Computational Mathemat-
ics 6.2 (2006), pp. 227–254.

[30] E. J. Candès and T. Tao. “Near optimal signal recovery from random projections:
universal encoding strategies?” In: IEEE Transactions on Information Theory
52.12 (2006), pp. 5406–5425.

[31] E. Candès and T. Tao. “The Dantzig selector: Statistical estimation when p is
much larger than n”. In: The Annals of Statistics 35.6 (2007), pp. 2313–2351.

[32] E. Candès and M. Wakin. “An introduction to compressive sampling”. In: IEEE
Signal Processing Magazine 25.2 (2008), pp. 21–30.

[33] E. Candès, M. Wakin, and S. Boyd. “Enhancing Sparsity by Reweighted l1
Minimization”. English. In: Journal of Fourier Analysis and Applications 14.5-6
(2008), pp. 877–905. issn: 1069-5869.

[34] I. Carron. Compressive Sensing: The Big Picture. https://sites.google.
com/site/igorcarron2/cs. 2015.

[35] A. Chambolle and T. Pock. “A first-order primal-dual algorithm for convex
problems with applications to imaging”. In: Journal of Mathematical Imaging
and Vision 40.1 (2011), pp. 120–145.

[36] R. Chartrand. “Exact Reconstruction of Sparse Signals via Nonconvex Mini-
mization”. In: Signal Processing Letters, IEEE 14.10 (Oct. 2007), pp. 707–710.
issn: 1070-9908.

219

https://sites.google.com/site/igorcarron2/cs
https://sites.google.com/site/igorcarron2/cs

Bibliography

[37] R. Chartrand and W. Yin. “Iteratively reweighted algorithms for compressive
sensing”. In: IEEE International Conference on Acoustics, Speech and Signal
Processing. Mar. 2008, pp. 3869–3872.

[38] R. Chartrand and V. Staneva. “Restricted isometry properties and nonconvex
compressive sensing”. In: Inverse Problems 24.3 (2008), p. 035020. issn: 0266-
5611.

[39] A. K. Cline. “Rate of convergence of Lawson’s algorithm”. In: Mathematics of
Computation 26 (1972), pp. 167–176. issn: 0025-5718.

[40] A. Cohen, W. Dahmen, and R. DeVore. “Adaptive wavelet schemes for nonlinear
variational problems”. In: SIAM Journal on Numerical Analysis 41.5 (2003),
pp. 1785–1823. issn: 0036-1429.

[41] A. Cohen, W. Dahmen, and R. DeVore. “Compressed sensing and best k-term
approximation”. In: Journal of the American Mathematical Society 22.1 (2009),
pp. 211–231.

[42] P. L. Combettes and J.-C. Pesquet. “Proximal splitting methods in signal
processing”. In: Fixed-point algorithms for inverse problems in science and
engineering. Springer, 2011, pp. 185–212.

[43] P. L. Combettes and V. R. Wajs. “Signal recovery by proximal forward-backward
splitting”. In: Multiscale Modeling & Simulation 4.4 (2005), pp. 1168–1200.

[44] D. E. Culler, R. M. Karp, D. Patterson, A. Sahay, E. E. Santos, K. E. Schauser,
R. Subramonian, and T. von Eicken. “LogP: A practical model of parallel
computation”. In: Communications of the ACM 39.11 (1996), pp. 78–85.

[45] S. Dahlke, M. Fornasier, and T. Raasch. “Multilevel preconditioning and adaptive
sparse solution of inverse problems”. In: Mathematics of Computation 81.277
(2012), pp. 419–446.

[46] I. Daubechies and G. Teschke. “Variational image restoration by means of
wavelets: simultaneous decomposition, deblurring, and denoising”. In: Applied
and Computational Harmonic Analysis 19.1 (2005), pp. 1–16. issn: 1063-5203.

[47] I. Daubechies, M. Defrise, and C. De Mol. “An iterative thresholding algorithm
for linear inverse problems with a sparsity constraint”. In: Communications on
Pure and Applied Mathematics 57.11 (2004), pp. 1413–1457.

[48] I. Daubechies, R. DeVore, M. Fornasier, and C. Güntürk. “Iteratively re-weighted
least squares minimization for sparse recovery”. In: Communications on Pure
and Applied Mathematics 63.1 (2010), pp. 1–38.

[49] I. Daubechies, M. Fornasier, and I. Loris. “Accelerated projected gradient
methods for linear inverse problems with sparsity constraints”. In: Journal of
Fourier Analysis and Applications 14.5-6 (2008), pp. 764–792.

220

Bibliography

[50] M. A. Davenport. The RIP and the NSP. http : / / cnx . org / contents /
l7a37n1E@5/The-RIP-and-the-NSP. Apr. 14, 2011.

[51] M. A. Davenport, J. N. Laska, J. R. Treichler, and R. G. Baraniuk. “The pros
and cons of compressive sensing for wideband signal acquisition: noise folding
versus dynamic range”. In: IEEE Transactions on Signal Processing 60.9 (2012),
pp. 4628–4642.

[52] DLR (EOC). EnMap. http://www.enmap.org. 2015.
[53] Q. Dong, X. Liu, Z.-W. Wen, and Y.-X. Yuan. “A Parallel Line Search Subspace

Correction Method for Composite Convex Optimization”. en. In: Journal of
the Operations Research Society of China 3.2 (May 2015), pp. 163–187. issn:
2194-668X, 2194-6698.

[54] D. L. Donoho and X. Huo. “Uncertainty principles and ideal atomic decomposi-
tion”. In: IEEE Transactions on Information Theory 47.7 (2001), pp. 2845–2862.
issn: 0018-9448.

[55] D. L. Donoho and G. Kutyniok. “Microlocal analysis of the geometric separation
problem”. In: Communications on Pure and Applied Mathematics 66.1 (2013),
pp. 1–47. issn: 0010-3640.

[56] D. L. Donoho and P. Stark. “Uncertainty principles and signal recovery”. In:
SIAM Journal on Applied Mathematics 49.3 (1989), pp. 906–931. issn: 0036-
1399.

[57] D. L. Donoho. “Compressed sensing”. In: IEEE Transactions on Information
Theory 52.4 (2006), pp. 1289–1306.

[58] D. L. Donoho and B. F. Logan. “Signal recovery and the large sieve”. In: SIAM
Journal on Applied Mathematics 52.2 (1992), pp. 577–591.

[59] D. L. Donoho and Y. Tsaig. “Fast solution of l1-norm minimization problems
when the solution may be sparse”. In: IEEE Transactions on Information Theory
54.11 (2008), pp. 4789–4812.

[60] D. L. Donoho, M. Vetterli, R. A. DeVore, and I. Daubechies. “Data compression
and harmonic analysis”. In: Information Theory, IEEE Transactions on 44.6
(1998), pp. 2435–2476.

[61] D. Dorsch and H. Rauhut. “Sparse recovery in MIMO radar - dependence on the
support structure”. In: 2015 3rd International Workshop on Compressed Sensing
Theory and its Applications to Radar, Sonar and Remote Sensing (CoSeRa).
June 2015, pp. 56–60.

[62] DSP at Rice University. Compressive Sensing Resources. http://dsp.rice.
edu/cs. 2015.

221

http://cnx.org/contents/l7a37n1E@5/The-RIP-and-the-NSP
http://cnx.org/contents/l7a37n1E@5/The-RIP-and-the-NSP
http://www.enmap.org
http://dsp.rice.edu/cs
http://dsp.rice.edu/cs

Bibliography

[63] B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani. “Least angle regression”.
In: Annals of Statistics 32.2 (2004), pp. 407–499.

[64] M. Ehler, M. Fornasier, and J. Sigl. “Quasi-linear compressed sensing”. In:
Multiscale Modeling & Simulation 12.2 (2014), pp. 725–754.

[65] Eigen Library. http://eigen.tuxfamily.org.
[66] I. Ekeland and R. Témam. Convex Analysis and Variational Problems. SIAM,

Dec. 1999. isbn: 978-0-89871-450-0.
[67] Y. C. Eldar, P. Kuppinger, and H. Bölcskei. “Block-sparse signals: Uncertainty

relations and efficient recovery”. In: IEEE Transactions on Signal Processing
58.6 (2010), pp. 3042–3054.

[68] Y. C. Eldar and G. Kutyniok. Compressed sensing: theory and applications.
Cambridge University Press, 2012.

[69] H. Engl, M. Hanke, and A. Neubauer. Regularization of Inverse Problems.
Vol. 375. Mathematics and Its Applications. Dordrecht, Boston, London: Kluwer
Academic Publishers, 1996.

[70] E. Esser. “Applications of Lagrangian-based alternating direction methods and
connections to split Bregman”. In: CAM report 9 (2009), p. 31.

[71] M. A. Figueiredo and R. D. Nowak. “An EM algorithm for wavelet-based image
restoration”. In: IEEE Transactions on Image Processing 12.8 (2003), pp. 906–
916.

[72] M. Figueiredo, R. Nowak, and S. Wright. “Gradient Projection for Sparse Recon-
struction: Application to Compressed Sensing and Other Inverse Problems”. In:
IEEE Journal of Selected Topics in Signal Processing 1.4 (Dec. 2007), pp. 586–
597. issn: 1932-4553.

[73] R. Fletcher. “On the Barzilai-Borwein Method”. In: Optimization and Control
with Applications. Ed. by L. Qi, K. Teo, and X. Yang. Applied Optimization 96.
Springer US, 2005, pp. 235–256. isbn: 978-0-387-24254-5 978-0-387-24255-2.

[74] M. Fornasier. “Domain decomposition methods for linear inverse problems with
sparsity constraints”. In: Inverse Problems 23.6 (2007), pp. 2505–2526. issn:
0266-5611.

[75] M. Fornasier. “Numerical Methods for Sparse Recovery”. In: Theoretical Foun-
dations and Numerical Methods for Sparse Recovery. Radon Series on Com-
putational and Applied Mathematics. De Gruyter, 2010, pp. 93–200. isbn:
978-3-11-022614-0.

[76] M. Fornasier, V. Naumova, and S. Pereverzyev. “Parameter choice strategies
for multi-penalty regularization”. In: SIAM Journal on Numerical Analysis 52.4
(2014), pp. 1770–1794.

222

http://eigen.tuxfamily.org

Bibliography

[77] M. Fornasier and H. Rauhut. “Compressive Sensing”. In: Handbook of Math-
ematical Methods in Imaging. Ed. by O. Scherzer. Springer, 2011, pp. 187–
228.

[78] M. Fornasier and H. Rauhut. “Recovery algorithms for vector-valued data with
joint sparsity constraints”. In: SIAM Journal on Numerical Analysis 46.2 (2008),
pp. 577–613. issn: 0036-1429.

[79] M. Fornasier and R. Ward. “Iterative thresholding meets free-discontinuity
problems”. In: Found. Comput. Math. 10.5 (2010), pp. 527–567.

[80] M. Fornasier, A. Langer, and C.-B. Schönlieb. “A convergent overlapping do-
main decomposition method for total variation minimization”. In: Numerische
Mathematik 116.4 (2010), pp. 645–685.

[81] M. Fornasier and S. Peter. “An Overview on Algorithms for Sparse Recovery”.
In: Sparse Reconstruction and Compressive Sensing in Remote Sensing. Ed. by
R. Bamler and X. X. Zhu. Earth Observation and Image Processing. to appear.
Springer, 2016.

[82] M. Fornasier, S. Peter, H. Rauhut, and S. Worm. “Conjugate gradient accel-
eration of iteratively re-weighted least squares methods”. In: Computational
Optimization and Applications (Mar. 2016). to appear.

[83] M. Fornasier, H. Rauhut, and R. Ward. “Low-rank matrix recovery via iteratively
reweighted least squares minimization”. In: SIAM Journal on Optimization 21.4
(2011), pp. 1614–1640. issn: 1052-6234.

[84] S. Foucart and H. Rauhut. A Mathematical Introduction to Compressive Sensing.
Birkhäuser Basel, 2013. isbn: 978-0-8176-4947-0 978-0-8176-4948-7.

[85] J. Friedman, T. Hastie, and R. Tibshirani. “A note on the group lasso and a
sparse group lasso”. In: arXiv preprint arXiv:1001.0736 (2010).

[86] M. Frigo and S. G. Johnson. “The design and implementation of FFTW3”. In:
Proceedings of the IEEE 93.2 (2005), pp. 216–231.

[87] D. Gabay and B. Mercier. “A dual algorithm for the solution of nonlinear varia-
tional problems via finite element approximation”. In: Computers & Mathematics
with Applications 2.1 (1976), pp. 17–40.

[88] A. Garnaev and E. Gluskin. “On widths of the Euclidean ball”. In: Soviet
Mathematics Doklady 30 (1984), pp. 200–204.

[89] R. Glowinski and P. Le Tallec. Augmented Lagrangian and operator-splitting
methods in nonlinear mechanics. Vol. 9. SIAM, 1989.

[90] E. D. Gluskin. “Norms of random matrices and widths of finite-dimensional
sets”. In: Mathematics of the USSR-Sbornik 48.1 (1984), p. 173.

223

Bibliography

[91] T. Goldstein, C. Studer, and R. G. Baraniuk. “A Field Guide to Forward-
Backward Splitting with a FASTA Implementation”. In: arXiv:1411.3406 (Nov.
2014). arXiv: 1411.3406.

[92] R. B. Gomez, A. Jazaeri, and M. Kafatos. “Wavelet-based hyperspectral and
multispectral image fusion”. In: Proc. SPIE. Vol. 4383. 2001, pp. 36–42.

[93] M. Grant and S. Boyd. CVX: Matlab Software for Disciplined Convex Program-
ming, version 2.1. http://cvxr.com/cvx. Mar. 2014.

[94] M. Grant and S. Boyd. “Graph implementations for nonsmooth convex pro-
grams”. In: Recent Advances in Learning and Control. Ed. by V. Blondel, S.
Boyd, and H. Kimura. Lecture Notes in Control and Information Sciences.
http://stanford.edu/simboyd/graph_dcp.html. Springer-Verlag Limited, 2008,
pp. 95–110.

[95] C. Grohnfeldt, T. M. Burns, and X. X. Zhu. “Dictionary Learning Strate-
gies for Sparse Representation Based Hyperspectral Image Enhancement”. In:
Proceedings of Whispers 2014. Tokyo, Japan: IEEE Xplore, 2015, pp. 1–4.

[96] C. Grohnfeldt, T. M. Burns, and X. X. Zhu. “Dynamic Dictionariy Learning
Methods for Sparse Representation Based Multiresolution Image Fusion”. In:
IEEE Transactions on Image Processing (2015). submitted.

[97] C. Grohnfeldt, S. Peter, and X. X. Zhu. “Jointly Sparse Fusion of Hyperspec-
tral and Multispectral Imagery - The J-SparseFI-HM Algorithm”. In: IEEE
Transactions on Geoscience and Remote Sensing (2015). submitted.

[98] C. Grohnfeldt and X. X. Zhu. “Splitting the Hyperspectral-Multispectral Image
Fusion Problem into Weighted Pan-sharpening Problems - The Spectral Group-
ing Concept”. In: Proceedings of Whispers 2014. Tokyo, Japan: IEEE Xplore,
2015, pp. 1–4.

[99] C. Grohnfeldt and X. X. Zhu. “Towards a Combined Sparse Representation and
Unmixing Based Hyperspectral Resolution Enhancement Method”. In: IEEE
International Geoscience and Remote Sensing Symposium. Milan, Italy, 2015,
pp. 1–4.

[100] C. Grohnfeldt, X. X. Zhu, and R. Bamler. “Jointly Sparse Fusion of Hyper-
spectral and Multispectral Imagery”. In: IEEE International Geoscience and
Remote Sensing Symposium. IEEE, 2013.

[101] C. Grohnfeldt, X. X. Zhu, and R. Bamler. “The J-SparseFI-HM Hyperspectral
Resolution Enhancement Method - Now Fully Automated.” In: Proceedings of
Whispers 2014. Lausanne, Switzerland: IEEE Xplore, 2014, pp. 1–4.

[102] J. L. Gustafson. “Fixed time, tiered memory, and superlinear speedup”. In:
Proceedings of the Fifth Distributed Memory Computing Conference (DMCC5).
1990, pp. 1255–1260.

224

http://arxiv.org/abs/1411.3406
http://cvxr.com/cvx

Bibliography

[103] R. Hardie, M. Eismann, and G. Wilson. “MAP estimation for hyperspectral
image resolution enhancement using an auxiliary sensor”. In: Image Processing,
IEEE Transactions on 13.9 (Aug. 2004), pp. 1174–1184. issn: 1057-7149.

[104] J. Haupt, R. G. Baraniuk, R. Castro, and R. Nowak. “Compressive distilled
sensing: Sparse recovery using adaptivity in compressive measurements”. In:
Proceedings of the 43rd Asilomar conference on Signals, systems and computers.
Asilomar’09. Piscataway, NJ, USA: IEEE Press, 2009.

[105] J. Haupt, R. G. Baraniuk, R. Castro, and R. Nowak. “Sequentially designed com-
pressed sensing”. In: Proc. IEEE/SP Workshop on Statistical Signal Processing.
2012.

[106] J. Haupt, R. Castro, and R. Nowak. “Distilled sensing: Adaptive sampling for
sparse detection and estimation”. In: IEEE Transactions on Information Theory
57.9 (2011), pp. 6222–6235.

[107] D. P. Helmbold and C. E. McDowell. “Modeling speedup (n) greater than n”.
In: IEEE Transactions on Parallel & Distributed Systems 2 (1990), pp. 250–256.

[108] M. R. Hestenes and E. Stiefel. “Methods of Conjugate Gradients for Solving
Linear Systems”. In: Journal of Research of the National Bureau of Standards
49.6 (Dec. 1952), pp. 409–436.

[109] M. Hintermüller and T. Wu. “Nonconvex TVq-Models in Image Restoration:
Analysis and a Trust-Region Regularization–Based Superlinearly Convergent
Solver”. In: SIAM Journal on Imaging Sciences 6.3 (2013), pp. 1385–1415.

[110] P. W. Hollanda and R. E. Welsch. “Robust regression using iteratively reweighted
least-squares”. In: Communications in Statistics - Theory and Methods 6.9 (1977),
pp. 813–827.

[111] M. Holler and K. Kunisch. “On infimal convolution of total variation type
functionals and applications”. In: SIAM Journal on Imaging Sciences 7.4 (2014),
pp. 2258–2300.

[112] M. Hügel, H. Rauhut, and T. Strohmer. “Remote sensing via l1-minimization”.
In: Foundations of Computational Mathematics 14.1 (2014), pp. 115–150.

[113] M. D. Iordache, J. M. Bioucas-Dias, and A. Plaza. “Collaborative Sparse
Regression for Hyperspectral Unmixing”. In: IEEE Transactions on Geoscience
and Remote Sensing 52.1 (Jan. 2014), pp. 341–354. issn: 0196-2892.

[114] K. Ito and K. Kunisch. “A variational approach to sparsity optimization based
on Lagrange multiplier theory”. In: Inverse problems 30.1 (2014), p. 015001.

225

Bibliography

[115] A. Iwasaki, N. Ohgi, J. Tanii, T. Kawashima, and H. Inada. “Hyperspectral
Imager Suite (HISUI) -Japanese hyper-multi spectral radiometer”. In: IEEE
International Geoscience and Remote Sensing Symposium (IGARSS). July 2011,
pp. 1025–1028.

[116] B. S. Kashin. “Diameters of some finite-dimensional sets and classes of smooth
functions”. In: Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya
41.2 (1977), pp. 334–351.

[117] J. T. King. “A minimal error conjugate gradient method for ill-posed problems”.
In: Journal of Optimization Theory and Applications 60.2 (1989), pp. 297–304.
issn: 0022-3239.

[118] F. Krahmer, S. Mendelson, and H. Rauhut. “Suprema of chaos processes and
the restricted isometry property”. In: Comm. Pure Appl. Math. 67.11 (2014),
pp. 1877–1904.

[119] V. Kumar, A. Grama, A. Gupta, and G. Karypis. Introduction to parallel
computing: design and analysis of algorithms. Vol. 400. Benjamin/Cummings
Redwood City, CA, 1994.

[120] M.-J. Lai, Y. Xu, and W. Yin. “Improved Iteratively Reweighted Least Squares
for Unconstrained Smoothed lq Minimization”. In: SIAM Journal on Numerical
Analysis 51.2 (2013), pp. 927–257.

[121] T.-H. Lai and S. Sahni. “Anomalies in parallel branch-and-bound algorithms”.
In: Communications of the ACM 27.6 (1984), pp. 594–602.

[122] L. Landweber. “An iteration formula for Fredholm integral equations of the first
kind”. In: American journal of mathematics (1951), pp. 615–624.

[123] C. L. Lawson. Contributions to the Theory of Linear Least Maximum Approxi-
mation. Ph.D. thesis. University of California, Los Angeles, 1961.

[124] F. T. Leighton. Introduction to parallel algorithms and architectures: Arrays·
trees· hypercubes. Elsevier, 2014.

[125] L.J.P. van der Maaten, E.O. Postma, and H. J. van den Herik. Dimensionality
Reduction: A Comparative Review. Tech. rep. TiCC-TR 2009-005. Tilburg
University Technical Report, 2009.

[126] B. Logan. “Properties of High-Pass Signals”. PhD thesis. New York: Columbia
University, 1965.

[127] I. Loris. “On the performance of algorithms for the minimization of l1-penalized
functionals”. In: Inverse Problems 25.3 (2009), p. 035008.

[128] LRZ. SuperMuc Petascale System. https://www.lrz.de/services/compute/
supermuc/systemdescription/. 2015.

226

https://www.lrz.de/services/compute/supermuc/systemdescription/
https://www.lrz.de/services/compute/supermuc/systemdescription/

Bibliography

[129] S. Lu and S. V. Pereverzev. “Multi-parameter regularization and its numerical
realization”. In: Numerische Mathematik 118.1 (2011), pp. 1–31.

[130] M. Lustig, D. L. Donoho, J. M. Santos, and J. M. Pauly. “Compressed sensing
MRI”. In: Signal Processing Magazine, IEEE 25.2 (2008), pp. 72–82.

[131] M. Lustig, D. Donoho, and J. M. Pauly. “Sparse MRI: The application of
compressed sensing for rapid MR imaging”. In: Magnetic resonance in medicine
58.6 (2007), pp. 1182–1195.

[132] S. G. Mallat. A Wavelet Tour of Signal Processing: The Sparse Way. 3rd.
Academic Press, 2008.

[133] S. G. Mallat and Z. Zhang. “Matching pursuits with time-frequency dictionaries”.
In: IEEE Transactions on Signal Processing 41.12 (1993), pp. 3397–3415.

[134] Y. Meyer. “Oscillating patterns in image processing and nonlinear evolution
equations”. In: AMS University Lecture Series 22 (2002).

[135] R. Miller and L. Boxer. Algorithms Sequential & Parallel: A Unified Approach.
Cengage Learning, Dec. 2012. isbn: 1-133-36680-5.

[136] M. Moeller, T. Wittman, and A. L. Bertozzi. “Variational wavelet pan-sharpening”.
In: CAM Report (2008), pp. 08–81.

[137] G. Moore. “Cramming More Components onto Integrated Circuits”. In: Elec-
tronics 38.8 (Apr. 1965), pp. 114–117. issn: 0018-9219.

[138] B. K. Natarajan. “Sparse approximate solutions to linear systems.” In: SIAM
Journal on Computing 24 (1995), pp. 227–234.

[139] V. Naumova and S. V. Pereverzyev. “Multi-penalty regularization with a
component-wise penalization”. In: Inverse Problems 29.7 (2013), p. 075002.

[140] V. Naumova and S. Peter. “Minimization of multi-penalty functionals by al-
ternating iterative thresholding and optimal parameter choices”. In: Inverse
Problems 30.12 (2014), p. 125003.

[141] D. Needell. “Noisy signal recovery via iterative reweighted L1-minimization”. In:
Proceedings of the 43rd Asilomar conference on Signals, systems and computers.
Asilomar’09. Piscataway, NJ, USA: IEEE Press, 2009, pp. 113–117. isbn: 978-1-
4244-5825-7.

[142] D. Needell and J. A. Tropp. “CoSaMP: iterative signal recovery from incomplete
and inaccurate samples”. In: Communications of the ACM 53.12 (Dec. 2010),
pp. 93–100. issn: 0001-0782.

[143] J. A. Nelder and R. Mead. “A Simplex Method for Function Minimization”.
en. In: The Computer Journal 7.4 (Jan. 1965), pp. 308–313. issn: 0010-4620,
1460-2067.

227

Bibliography

[144] Y. Nesterov. “Smooth minimization of non-smooth functions”. In: Mathematical
programming 103.1 (2005), pp. 127–152.

[145] Y. Nesterov, A. Nemirovskii, and Y. Ye. Interior-point polynomial algorithms in
convex programming. Vol. 13. SIAM, 1994.

[146] Netflix, Inc. Netflix Prize. http://www.netflixprize.com. 2009.
[147] J. Nocedal and S. J. Wright. Numerical optimization. Second. Springer Series in

Operations Research and Financial Engineering. New York: Springer, 2006.
[148] P. Ochs, A. Dosovitskiy, T. Brox, and T. Pock. “On iteratively reweighted

algorithms for nonsmooth nonconvex optimization in computer vision”. In:
SIAM Journal on Imaging Sciences 8.1 (2015), pp. 331–372.

[149] M. R. Osborne. Finite algorithms in optimization and data analysis. Wiley Series
in Probability and Mathematical Statistics: Applied Probability and Statistics.
John Wiley & Sons, Ltd., Chichester, 1985. isbn: 0-471-90539-9.

[150] M. R. Osborne, B. Presnell, and B. A. Turlach. “A new approach to variable
selection in least squares problems”. In: IMA Journal of Numerical Analysis-
Institute of Mathematics and its Applications 20.3 (2000), pp. 389–404.

[151] M. R. Osborne, B. Presnell, and B. A. Turlach. “On the lasso and its dual”. In:
Journal of Computational and Graphical statistics 9.2 (2000), pp. 319–337.

[152] X. Otazu, M. González-Audicana, O. Fors, and J. Núñez. “Introduction of
sensor spectral response into image fusion methods. Application to wavelet-
based methods”. In: IEEE Transactions on Geoscience and Remote Sensing
43.10 (2005), pp. 2376–2385.

[153] D. Parkinson. “Parallel efficiency can be greater than unity”. In: Parallel
Computing 3.3 (1986), pp. 261–262.

[154] Z. Peng, M. Yan, and W. Yin. “Parallel and distributed sparse optimization”.
In: 2013 Asilomar Conference on Signals, Systems and Computers. Nov. 2013,
pp. 659–646.

[155] S. Peter, M. Artina, and M. Fornasier. “Damping noise-folding and enhanced
support recovery in compressed sensing”. In: IEEE Transactions on Signal
Processing 63.22 (Nov. 2015), pp. 5990–6002.

[156] K. Puljic and R. Manger. “A distributed evolutionary algorithm with a super-
linear speedup for solving the vehicle routing problem”. In: Computing and
Informatics 31.3 (2012), p. 675.

[157] A. Quarteroni, R. Sacco, and F. Saleri. Numerical Mathematics. Texts in Applied
Mathematics Series. Springer-Verlag GmbH, 2000. isbn: 978-0-387-98959-4.

228

http://www.netflixprize.com

Bibliography

[158] R. Ramlau and C. A. Zarzer. “On the minimization of a Tikhonov functional
with a non-convex sparsity constraint”. In: Electronic Transactions on Numerical
Analysis 39 (2012), pp. 476–507. issn: 1068-9613.

[159] H. Rauhut. “Compressive sensing and structured random matrices”. In: Theoret-
ical foundations and numerical methods for sparse recovery. Ed. by M. Fornasier.
Vol. 9. Radon Series Comp. Appl. Math. deGruyter, 2010, pp. 1–92.

[160] M. Rudelson and R. Vershynin. “On sparse reconstruction from Fourier and
Gaussian measurements”. In: Comm. Pure Appl. Math. 61 (2008), pp. 1025–
1045.

[161] F. Santosa and W. Symes. “Linear Inversion of Band-Limited Reflection Seis-
mograms”. In: SIAM Journal on Scientific and Statistical Computing 7.4 (Oct.
1986), pp. 1307–1330. issn: 0196-5204.

[162] K. Schnass. “Dictionary Identification-Sparse Matrix-Factorisation via l_1-
Minimisation”. In: IEEE Transactions on Information Theory 56.7 (2010),
pp. 3523–3539.

[163] K. Schnass and P. Vandergheynst. “Dictionary preconditioning for greedy algo-
rithms”. In: Signal Processing, IEEE Transactions on 56.5 (2008), pp. 1994–
2002.

[164] V. Shah, N. Younan, and R. King. “An Efficient Pan-Sharpening Method via a
Combined Adaptive PCA Approach and Contourlets”. In: IEEE Transactions
on Geoscience and Remote Sensing 46.5 (May 2008), pp. 1323–1335. issn:
0196-2892.

[165] C. E. Shannon. “A mathematical theory of communication”. In: Bell System
Technical Journal 27 (1948), pp. 379–423, 623–656.

[166] C. E. Shannon. “Communication in the presence of noise”. In: Proceedings of
the IRE 37.1 (1949), pp. 10–21.

[167] R. Shonkwiler. “Parallel Genetic Algorithms.” In: ICGA. Citeseer, 1993, pp. 199–
205.

[168] J. Sigl. “Quasi-linear compressed sensing”. Masterthesis. Munich: Technical
University of Munich, 2013.

[169] J.-L. Starck, D. L. Donoho, and E. J. Candès. “Astronomical image represen-
tation by the curvelet transform”. In: Astronomy & Astrophysics 398.2 (2003),
pp. 785–800.

[170] J.-L. Starck, M. Elad, and D. Donoho. “Redundant multiscale transforms and
their application for morphological component separation”. In: Advances in
Imaging and Electron Physics 132.82 (2004), pp. 287–348.

229

Bibliography

[171] J.-L. Starck, M. Elad, and D. L. Donoho. “Image decomposition via the combina-
tion of sparse representations and a variational approach”. In: Image Processing,
IEEE Transactions on 14.10 (2005), pp. 1570–1582.

[172] J.-L. Starck, M. K. Nguyen, and F. Murtagh. “Wavelets and curvelets for
image deconvolution: a combined approach”. In: Signal Processing 83.10 (2003),
pp. 2279–2283.

[173] M. Stojnic, W. Xu, A. S. Avestimehr, and B. Hassibi. “Compressed sensing of
approximately sparse signals”. In: ISIT. 2008, pp. 2182–2186.

[174] E. Strohmaier, J. Dongarra, H. Simon, and M. Meurer. Top 500 Supercomputing
Sites. http://www.top500.org. Nov. 2015.

[175] T. Stuffler, K. Förster, S. Hofer, M. Leipold, B. Sang, H. Kaufmann, B. Penné,
A. Mueller, and C. Chlebek. “Hyperspectral imagingtext–An advanced instru-
ment concept for the EnMAP mission (Environmental Mapping and Analysis
Programme)”. In: Acta Astronautica 65.7–8 (Oct. 2009), pp. 1107–1112. issn:
0094-5765.

[176] H. L. Taylor, S. C. Banks, and J. F. McCoy. “Deconvolution with the l1-norm”.
In: Geophysics 44.1 (1979), pp. 39–52. issn: 0016-8033, 1942-2156.

[177] R. Tibshirani. “Regression shrinkage and selection via the lasso”. In: Journal of
the Royal Statistical Society. Series B (Methodological) (1996), pp. 267–288.

[178] J. Treichler, M. A. Davenport, and R. G. Baraniuk. “Application of compressive
sensing to the design of wideband signal acquisition receivers”. In: 6th U.S. /
Australia Joint Workshop on Defense Applications of Signal Processing (DASP).
Lihue, Hawaii, Sept. 2009.

[179] J. A. Tropp. “Greed is good: Algorithmic results for sparse approximation”. In:
IEEE Transactions on Information Theory 50.10 (2004), pp. 2231–2242.

[180] T.-M. Tu, S.-C. Su, H.-C. Shyu, and P. S. Huang. “A new look at IHS-like image
fusion methods”. In: Information Fusion 2.3 (Sept. 2001), pp. 177–186. issn:
1566-2535.

[181] E. Van Den Berg and M. P. Friedlander. “Probing the Pareto frontier for basis
pursuit solutions”. In: SIAM Journal on Scientific Computing 31.2 (2008),
pp. 890–912.

[182] L. J. P. van der Maaten. Matlab Toolbox for Dimensionality Reduction. https:
//lvdmaaten.github.io/drtoolbox/. 2016.

[183] L. J. P. van der Maaten and G. E. Hinton. “Visualizing High-Dimensional Data
Using t-SNE”. In: Journal of Machine Learning Research 9.TiCC-TR 2009-005
(Nov. 2008), pp. 2579–2605.

230

http://www.top500.org
https://lvdmaaten.github.io/drtoolbox/
https://lvdmaaten.github.io/drtoolbox/

Bibliography

[184] O. M. L. Vance Faber. “Superlinear Speedup of an Efficient Algorithm Is Not
Possible”. In: Parallel Computing 3.3 (1986), pp. 259–260. issn: 0167-8191.

[185] R. Vershynin. “Introduction to the non-asymptotic analysis of random matrices”.
In: arXiv preprint arXiv:1011.3027 (2010).

[186] L. Vese and S. Osher. “Image denoising and decomposition with Total Variation
minimization and oscillatory functions”. In: Journal of Mathematical Imaging
and Vision 20 (2004), pp. 7–18.

[187] L. Vese and S. Osher. “Modeling textures with Total Variation minimization and
oscillating patterns in image processing”. In: Journal of Scientific Computing
19 (2003), pp. 553–572.

[188] C. R. Vogel and M. E. Oman. “Fast, robust total variation-based reconstruction
of noisy, blurred images.” English. In: IEEE Transactions on Image Processing
7.6 (1998), pp. 813–824. issn: 1057-7149.

[189] S. Voronin. “Regularization of Linear Systems with Sparsity Constraints with
Applications to Large Scale Inverse Problems”. PhD thesis. Applied and Com-
putational Mathematics Department, Princeton University, 2012.

[190] S. Voronin and I. Daubechies. “An Iteratively Reweighted Least Squares Al-
gorithm for Sparse Regularization”. In: arXiv:1511.08970 [math] (Nov. 2015).
arXiv: 1511.08970 [math].

[191] W. Wang, S. Lu, H. Mao, and J. Cheng. “Multi-parameter Tikhonov regulariza-
tion with L0 sparsity constraint”. In: Inverse Problems 29 (2013), p. 065018.

[192] B. Wilkinson and M. Allen. Parallel programming. Prentice hall Upper Saddle
River, NJ, 1999.

[193] Z. Xu, X. Chang, F. Xu, and H. Zhang. “L1/2 Regularization: A Thresholding
Representation Theory and a Fast Solver”. In: IEEE Transactions on Neural
Networks and Learning Systems 23.7 (2012), pp. 1013–1027.

[194] N. Yokoya, T. Yairi, and A. Iwasaki. “Coupled Nonnegative Matrix Factoriza-
tion Unmixing for Hyperspectral and Multispectral Data Fusion”. In: IEEE
Transactions on Geoscience and Remote Sensing 50.2 (2012), pp. 528–537.

[195] C. A. Zarzer. “On Tikhonov regularization with non-convex sparsity constraints”.
In: Inverse Problems 25.2 (2009), pp. 025006, 13. issn: 0266-5611.

[196] J. Zeng, S. Lin, Y. Wang, and Z. Xu. “Regularization: Convergence of Iterative
Half Thresholding Algorithm”. In: IEEE Transactions on Signal Processing 62.9
(May 2014), pp. 2317–2329. issn: 1053-587X.

[197] Y. Zhang, S. D. Backer, and P. Scheunders. “Noise-Resistant Wavelet-Based
Bayesian Fusion of Multispectral and Hyperspectral Images”. In: IEEE Trans-
actions on Geoscience and Remote Sensing 47.11 (Nov. 2009), pp. 3834–3843.

231

http://arxiv.org/abs/1511.08970

Bibliography

[198] Y. Zhang and M. He. “Multi-Spectral and Hyperspectral Image Fusion Using
3-D Wavelet Transform”. In: Journal of Electronics (China) 24.2 (Mar. 2007),
pp. 218–224.

[199] Y. Zhang, Y. Cui, and B. He. “Gif-Based Least Square Method for Hyperspectral
and Multispectral Data Fusion”. In: IEEE International Geoscience and Remote
Sensing Symposium (IGARSS). IEEE, 2013.

[200] Y. Zhang. “Problems in the Fusion of Commercial High-Resolution Satellites
Images as well as LANDSAT 7 Images and Initial Solutions”. In: Proceedings
of the ISPRS, CIG, and SDH Joint International Symposium on Geospatial
Theory, Processing and Applications. 2002, pp. 9–12.

[201] B. Zhou, L. Gao, and Y.-H. Dai. “Gradient Methods with Adaptive Step-Sizes”.
en. In: Computational Optimization and Applications 35.1 (Mar. 2006), pp. 69–
86. issn: 0926-6003, 1573-2894.

[202] X. X. Zhu and R. Bamler. “A Sparse Image Fusion Algorithm With Application
to Pan-Sharpening”. In: IEEE Transactions on Geoscience and Remote Sensing
51.5 (2013), pp. 2827–2836. issn: 0196-2892.

[203] X. X. Zhu and R. Bamler. “Tomographic SAR inversion by L1-norm regulariza-
tion—The compressive sensing approach”. In: IEEE Transactions on Geoscience
and Remote Sensing 48.10 (2010), pp. 3839–3846.

[204] X. X. Zhu and R. Bamler. “Tomographic SAR inversion from mixed repeat-
and single-Pass data stacks – the TerraSAR-X/TanDEM-X case”. In: Interna-
tional Archives of the Photogrammetry, Remote Sensing and Spatial Information
Sciences. Melbourne, Australia, 2012, pp. 97–102.

[205] X. X. Zhu, Claas Grohnfeldt, and R. Bamler. “Exploiting Joint Sparsity for
Pan-sharpening textendash The J-SparseFI Algorithm”. In: IEEE Transactions
on Geoscience and Remote Sensing (2015). Ed. by A. J. Plaza. issn: 0196-2892.

[206] X. X. Zhu, C. Grohnfeldt, and R. Bamler. “Collaborative sparse image fusion
with application to pan-sharpening”. In: 2013 18th International Conference on
Digital Signal Processing (DSP). July 2013, pp. 1–6.

[207] X. X. Zhu, C. Grohnfeldt, and R. Bamler. “Collaborative sparse reconstruction
for pan-sharpening”. In: IEEE International Geoscience and Remote Sensing
Symposium (IGARSS). July 2013, pp. 868–871.

[208] X. X. Zhu, S. Spiridonova, and R. Bamler. “A pan-sharpening algorithm based
on joint sparsity”. In: Advances in Radar and Remote Sensing (TyWRRS), 2012
Tyrrhenian Workshop on. 2012, pp. 177–184.

[209] X. X. Zhu, X. Wang, and R. Bamler. “Compressive sensing for image fusion -
with application to pan-sharpening”. In: IEEE International Geoscience and
Remote Sensing Symposium (IGARSS). July 2011, pp. 2793–2796.

232

Danksagung/Acknowledgements
Diese Arbeit wäre nicht ohne die großzügige finanzielle und administrative Unterstüt-
zung von Munich Aerospace möglich gewesen. Insbesondere danke ich den Verantwort-
lichen im Allgemeinen für die stete Verbesserung der Situation von uns Stipendiaten
und im Speziellen für die Finanzierung meines Forschungsaufenthaltes in der USA.

I would like to thank my supervisor Prof. Dr. Massimo Fornasier for his great support
in all scientific questions and his guidance through the world of research. His high level
of confidence in my work was essential for my personal development.

Sincerely I would like to express my gratitude to Prof. Dr. Xiao Xiang Zhu and
the SiPEO Team from DLR for the fruitful technical discussions and feedback, the
continuous exchange of ideas, and the provision and preparation of satellite data. I also
thank the Gauss Centre for Supercomputing e.V. for providing computing time on the
GCS Supercomputer SuperMUC at the Leibniz Supercomputing Centre (LRZ).

I would like to thank Dr. Valeriya Naumova, Dr. Marco Artina and Stephan Worm for
the successful scientific collaboration, as well as my M15 team members, in particular
Juliane Sigl, Dr. Giacomo Albi, Mattia Bongini, and Dr. Benjamin Scharf for the nice
time together at TUM and for the numerous conversations far beyond mathematics.
Special thanks goes to Prof. Dr. Holger Rauhut for his invitation to a research stay in
Aachen, and the numerous discussions and hints, which turned out to be very fruitful
for our joint paper.

I am greatly in debt with Prof. Dr. Richard Baraniuk and the DSP group at Rice
University in Houston, who gave me the opportunity to get to know and understand a
different country, society, and academic environment; an experience that enormously
broadened my horizon. In this regard I also thank Prof. Dr. Marc Davenport and
Prof. Dr. Tom Goldstein for their scientific discussions and help.

I thank Dr. Colas Schretter for his cooperation and interesting ideas on iteratively
reweighted least squares methods.

Ein ganz besonderer Dank geht an meinen Freund, Mitbewohner und Projektpartner
Claas, der mich für den Abschnitt „Promotion in München“ geworben hat, diesen mit
mir gemeinsam privat und professionell angegangen ist und mit dem ich in den letzten
vier Jahren viele Höhen und Täler zusammen durchschritten habe. Nicht zuletzt die
vertrauensvolle und verlässliche Zusammenarbeit hat wesentlich zur Erstellung dieser
Dissertation beigetragen.
Ich danke meinen Freunden Mischa und Alexander für ihre Korrekturen und die

Bereitschaft, sich mit der faszinierenden Welt des Sparse Recovery auseinander zu
setzen.

Mein Dank gebührt allen lieben Menschen, die mich in den letzten Jahren auf
verschiedenste Art und Weise unterstützt und immer wieder angetrieben haben.

Ich danke Julia dafür, dass sie mit mir diese aufreibende und aufregende Zeit
gemeinsam durchlebt hat und mir die letzten Monate an allen Ecken und Enden auf
ihre Weise erleichtert hat. Sie weiß besser als ich, wann eine Pause meine Akkus wieder
auflädt.

Zu guter Letzt möchte ich meiner Familie danken, die bereits früh auf mich verzichten
musste, damit ich mich leidenschaftlich der Mathematik widmen konnte und die meinen
Weg immer mit uneingeschränktem Vertrauen unterstützt hat.

	Introduction
	Applications of Sparse Recovery—A Tour from Underwater to Far Galaxies
	Underwater Acoustics
	Sparse Fusion of Hyperspectral and Multispectral Imagery
	Pulsating Stars

	Notation

	Fundamentals of Sparse Recovery
	A Linear Acquisition Model for Sparse Recovery
	Sparse and Compressible Signals
	A Simple Decoder
	Encoder Properties
	Instance Optimality of Decoders
	Non-Standard Bases

	Noise Models
	Measurement Noise and Model Error
	First Order Optimality Conditions of the 1-regularized Least Squares Functional
	Signal Noise and Noise Folding

	Joint Sparsity
	Algorithms for Sparse Recovery
	Iteratively Re-weighted Least Squares (IRLS)
	IRLS Method for p-minimization
	A Practical Comment on the Convergence of IRLS
	IRLS Method for p-norm Regularized Least Squares

	Iteratively Re-weighted 1-minimization (IRL1)
	Thresholding Algorithms
	Iterative Soft Thresholding (ISTA)
	Iterative Hard Thresholding (IHT)

	Robust Sparse Recovery in the Presence of Strong Signal Noise
	Approach 1: Damping Noise-Folding by Non-Convex Methods
	Support Identification Stability Results in Standard Sparse Recovery
	Support Identification Stability in the Class of Sparse Vectors Affected by Bounded Noise
	Non-convex Methods for Enhanced Support Identification Properties
	Properties of the Regularized Selective p-potential Functional (SLP)
	Properties of Iterative Hard Thresholding (IHT-)
	Summary: The Selectivity Principle

	Approach 2: Multi-Penalty Regularization
	Geometrical Intuition from a 2D Example
	An Iterative Algorithm for Multi-Penalty Minimization and its Convergence Properties
	New Thresholding Operators for an Iterative Algorithm
	Auxiliary Results: On Fixed Points and Fixed Index Sets
	Convergence of the Iterative Algorithm

	Empirical Investigation on the Clustering of Solutions
	Problem Formulation and Experiment Data Set
	Clustering of Solutions

	Comparative Numerics
	Test Setting
	Parameter Identification
	Massive Computations
	Phase Transition Diagrams

	Acceleration Techniques for Sparse Recovery Algorithms
	A CG Based Acceleration of Iteratively Re-weighted Least Squares Algorithms
	Conjugate Gradient Methods Revisited
	Conjugate Gradient Method (CG)
	Modified Conjugate Gradient Method (MCG)

	Conjugate Gradient Accelerated IRLS Method for p-norm Minimization
	Convergence Results
	Preliminary Results Concerning the Functional Jp(x,w,)
	The Functional f,p(z)
	Proof of Convergence
	Proof of Rate of Convergence

	Conjugate Gradient Accelerated IRLS Method for p-norm Regularized Least Squares
	Properties of the Functional Jp,
	Proof of Convergence

	Simulations
	Test Settings
	Algorithm CG-IRLS
	Algorithm CG-IRLS-

	Parallel Domain Decomposition Based Solutions for ISTA
	Parallel Algorithms for the 1-regularized Least Squares Problem
	An Accelerated Domain Decomposition ISTA
	Domain Decomposition ISTA with Backtracking, Adaptive Stepsize, and Prediction Step
	Backtracking with a Finite Number of Steps
	Surrogate Function and Thresholding Operator

	Convergence Results
	Implementation Details
	A Fair Stopping Criterion
	An Adaptive Choice of the Number of Inner Iterations L(n)
	Update Strategies for the Stepsize t(n)
	Choice of the Prediction Stepsize w(n+1)

	Simulations
	Test Setting
	Comparison for Different Values of Lmax
	Comparison to State-of-the-Art Solvers

	A Solver for Large-Scale Hyper- and Multispectral Image Sharpening
	The SparseFI Project and High Performance Computing
	Determining a Suitable Solver
	Parallel Work Scheduling and Idling

	Conclusion and Outlook
	Proofs
	List of Figures
	List of Tables
	Bibliography

