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Lehrstuhl M12 (Mathematische Modellierung biologischer Systeme)

Parameter estimation and uncertainty
quantification for image based systems biology

Sabrina Hroß
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Abstract

In image based systems biology imaging techniques are combined with quantitative
models. These are able to capture biological processes presenting multiple scales of
complexity ranging from single cells to entire populations. Of special interest is the
estimation of the underlying process parameters from the given imaging data and
the quantification of the uncertainty in the obtained parameter values. Due to the
spatial and temporal dimension of images or videos the models considered in this
context are often semi-linear partial differential equations (PDE). While parameter
estimation and uncertainty quantification for inverse problems with PDEs has been
extensively studied in the last decades, e.g. in the context of physics or engineering,
it fails to meet the requirements for image based systems biology. Especially partial
observations, high noise levels and parameter indeterminacy are not yet discussed.
We have developed a general set up for parameter estimation, uncertainty quan-
tification and model selection in this context as well as a new efficient method to
facilitate uncertainty analysis for inverse problems with semi-linear PDEs based on
profile likelihoods.

We introduce a non-standard, statistically motivated objective function for the para-
meter estimation problem with semi-linear PDE constraints and partial observations
from images. In contrast to the standard least-squares objective function the intro-
duced likelihood function naturally incorporates both a statistical treatment of the
image preprocessing as well as the parameter estimation. Subsequently, we propose
a new approach to calculate profile likelihoods, which circumvents the time con-
suming repeated solution of the inverse problem and trivially allows for an adaptive
profile calculation. We consider two applications: gradient formation during cell size
control of fission yeast Schizosaccharomyces pombe and gradient formation for den-
dritic cell guidance in mammalians. For both applications we develop the complete
scope of model based hypothesis testing for image data including the formulation of
models based on competing biological hypothesis, tailored parameter estimation and
uncertainty quantification, repeated model adjustments and finally model selection.

For both applications our analysis yielded new insights into open biological ques-
tions and motivated new experiments to validate the computational results. From a
methodological point of view, however, the key result is the speed up of the profile
likelihood calculation achieved with the introduced method. Without this gain on
computation speed the uncertainty analysis for both applications would have been
very time consuming or infeasible. Furthermore it is robust in the presence of partial
observations, non-identifiabilties and high noise levels. This enables the application
of the approach to the computationally demanding parameter estimation problems
arising in spatio-temporal biological processes, e.g. blood-flow or tumour growth
models.
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Deutsche Zusammenfassung

Die bildbasierte System Biologie kombiniert bildgebende Verfahren mit quantita-
tiven Modellen. Dies ermöglicht die Untersuchung biologischer Prozesse von der
einzelnen Zelle bis hin zu ganzen Populationen. Von besonderem Interesse ist in
diesem Fall die Schätzung der Parameter des zugrundeliegenden Prozesses auf Basis
der Bilddaten und die Quantifizierung der Unsicherheiten in den ermittelten Param-
eterwerten. Auf Grund der räumlichen und zeitlichen Auflösung von Bildern oder
Filmen sind die in diesem Zusammenhang betrachteten Modelle häufig semi-lineare
partielle Differentialgleichungen (PDE). Obwohl in den letzten Jahrzehnten Param-
eterschätzung und Unsicherheitsanalyse für inverse Probleme mit PDEs ausführlich
untersucht wurden, z.B. im Zusammenhang mit physikalischen oder technischen
Fragestellungen, so sind sie doch nicht in der Lage die Voraussetzungen, die die bild-
basierte System Biologie fordert, zu erfüllen. Insbesondere unvollständige Beobach-
tungen, hohe Messfehler und Parameterunbestimmtheit sind bisher nicht untersucht
worden. Wir entwickelten ein allgemeines Set-up für die Parameterschätzung, Un-
sicherheitsanalyse und Modellselektion für diese Anforderungen, sowie eine neue
effiziente Methode, welche die Unsicherheitsanalyse mit Hilfe von Likelihoodprofilen
für inverse Probleme mit semi-linearen PDEs ermöglicht.

Wir führen eine spezielle, statistisch motivierte Kostenfunktion für die Parameter-
schätzung mit semi-linearen PDE Nebenbedingungen und teilweisen Beobachtun-
gen ein. Im Gegensatz zur Standardmethode der kleinsten Fehlerquadrate bein-
haltet die neu eingeführte Likelihoodfunktion auf natürliche Weise eine statistische
Behandlung der Bildbearbeitung sowie der Parameterschätzung. In Folge dessen
schlagen wir eine neue Vorgehensweise zur Berechnung von Likelihoodprofilen vor,
welche die wiederholte Lösung des inversen Problems umgeht und eine adaptive
Profilberechnung ermöglicht. Wir betrachten zwei Anwendungsbeispiele: Konzen-
trationsverläufe in der Zellgrößenkontrolle der Spalthefe Schizosaccharomyces pombe
und Konzentrationsverläufe für die Zellwanderung dendritischer Zellen in Säugetieren.
Für beide Anwendungen durchlaufen wir den gesamten Umfang des modellbasierten
Hypothesentestes für Bilddaten, d.h. die mathematische Modellierung basierend auf
den konkurrierenden biologischen Hypothesen, Parameterschätzung und Unsicher-
heitsanalyse sowie Modellanpassung und abschließende Modellselektion.

Unsere Analyse ergab für beide Anwendungen neue Erkenntnisse zu offenen biolo-
gischen Fragen und motivierte neue Experimente um die theoretischen Resultate zu
validieren. Vom methodischen Standpunkt aus ist das Hauptresultat die Beschleu-
nigung der Likelihoodprofilberechnung durch eine neu entwickelte Methode. Ohne
diesen Zugewinn an Rechengeschwindigkeit wäre die Unsicherheitsanalyse für beide
Anwendungen sehr zeitaufwändig oder gar unmöglich gewesen. Des weiteren, ist die
Berechnung auch im Falle von unvollständiger Beobachtungen zuverlässig, Nicht-

xv



Deutsche Zusammenfassung

Identifizierbarkeiten und hohen Messfehlern. Dies ermöglicht die Anwendung der
Methode auf viele rechenaufwendige Parameterschätzungsprobleme für biologische
Prozess, z.B. Blutfluß- oder Tumorwachstumsmodelle.

xvi



1. Introduction

1.1. Research motivation

Imaging is excellent to capture biological systems, which present multiple scales of
complexity ranging from single molecules to entire cell populations. Image based
systems biology combines imaging with quantitative models to gain new insights
into the big picture of the underlying biological processes beyond molecular anal-
ysis (Sbalzarini, 2013; Verveer & Bastiaens, 2008; Megason & Fraser, 2007). The
three essential steps of a systematic model based analysis of biological image data
are acquisition and preprocessing of image data, deduction of mechanistic models
and the computational simulation and calibration of the models to a given data set,
including the parameter optimization and uncertainty quantification for the kinetic
parameters of the model (Medyukhina et al., 2015). To balance model detail and
overfitting, models are developed in an iterative circle of model deduction, model
calibration and model refinement and maybe the realization of additional validation
experiments. This iterative process is referred to as the “Systems Biology Loop”
(Kitano, 2002).

While a quantitative analysis of imaging data, e.g. cell sizes or shapes, is already
widely used in biological research the key difference in image based systems biology
is the model based analysis of the images. The quantitative information serves as
the basis for the mathematical models and thus can yield insights and predictions
on parameters and components, which are not directly measurable (see Medyukhina
et al. (2015) for a detailed review). The key to successful predictions, however, is
the estimation of the kinetic parameters of the mathematical model from the image
data, which is composed of optimization and uncertainty quantification. Parameter
optimization solves the inverse problem of finding the parameters which describe the
given experimental data best by maximization of an objective function, which gives
a measure for the discrepancy between model and data, e.g. the likelihood function.
Uncertainty quantification for inverse problems is concerned with two key problems:
the uncertainty in the obtained parameter values and the propagation of parameter
uncertainty through the model. To address the first problem, information about
the distribution of the obtained parameters around the optimal point is needed, as
a wide distribution represents a high uncertainty in the optimal parameter values
and and a narrow distribution indicates a well defined set of parameters. Common
methods to obtain the parameter distribution are asymptotic approximations, pro-
file likelihoods, bootstrapping or sampling methods. In the biological context it is
known that the asymptotic and profiling methods perform as good as sampling with
less computational effort this holds in the context of ordinary differential equations
(ODE) (Hug & Raue, 2013) and for pressure wave propagation models, which are
PDEs (Kenz et al., 2013). Besides the general challenges for parameter estimation

1



1. Introduction

from biological data optimization and uncertainty quantification both face problems
specific to imaging data.

A major challenge for parameter optimization from images is the presence of other
biological processes, which can not be disabled experimentally but are of no in-
terest for the biological question at hand. These processes are called structured
noise in the following as they are treated as noise during the estimation process
but they posses structure in contrast to the unstructured measurement noise due to
the underlying biological process, which generates them. Such processes have to be
considered either in the model or during the parameter optimization process as they
can bias or completely change the estimated kinetic parameters (Medyukhina et al.,
2015). The inclusion of structured noise as biological processes in the model leads to
overly complicated models, which are not tailored to the hypothesis that should be
addressed. In contrast preprocessing of the data in terms of filtering or extraction
of features to remove the structured noise yields a reduction in number or even the
dimension of the measurement data, which can lead to unintuitive uncertainties in
the parameter estimates or a big amount of unused data (Sbalzarini, 2013).

Besides problems with the interpretation of parameter uncertainties also the quan-
tification of parameter uncertainties itself poses a major challenge as the models
considered in image based systems biology are prominently reaction-diffusion equa-
tions, i.e. semi-linear parabolic PDEs, and the state of the art methods for parameter
optimization include regularization techniques (Hinze et al., 2009). Regularization
techniques are employed to resolve the ill-posedness of the inverse problems, due to
non-identifiable parameters, partial observations and high noise levels, which occur
in the biological context. For the regularized inverse problem existence and unique-
ness of optimizers can be shown and efficient numerical schemes to solve the inverse
problem exist (Engl et al., 2009). However, the regularization enforces an artificial
identifiability of the parameters, which is often a bad assumption in the biological
context (Gutenkunst et al., 2007).

1.2. Research topic

After the general introduction of parameter optimization and uncertainty quantifi-
cation in the context of image based systems biology this section reviews the topic
of imaging in biology and spatio-temporal models in more detail to motivate the
research questions posed in this thesis.

1.2.1. Imaging in biology

A central aspect of biological research is the observation of biological systems rang-
ing for example from the observation of mammalian populations to single cells of
the same species. While the first is easy to study with the unaided eye the sec-
ond can not be observed without a microscope. Since the microscope has been
developed in the 1590s, it has opened the way to visually study small entities like
bacteria or blood cells. And it has become one of the most essential tools for cel-
lular biology. In the last decades, the development of high resolution microscopy in

2



1. Introduction

combination with biochemical staining methods has transformed microscopy from a
qualitative to a highly quantitative method (Antony et al., 2013; Megason & Fraser,
2007; Yuste, 2005). At the heart of this development is the confocal fluorescence
microscopy. It is able to detect small concentrations of single molecules with a good
signal-to-background ratio in fixed or alive specimen (Yuste, 2005). In this work we
concentrate on two confocal imaging techniques: live single cell imaging and stained
tissue imaging.

Live single cell imaging. The key development, which facilitated the successful
imaging of living cells in systems biology was the discovery of the green fluorescent
protein (GFP). The GFP was discovered during the studies of bio luminescence in
the jellyfish Aequorea victoria (Chalfie et al., 1994). It can be introduced in all
species which can be genetical engineered, e.g. yeast, C.elegans or mice. Once ex-
pressed it can be stimulated by UV or blue light. Nowadays there is a wide range of
variants of GFP and newly developed fluorophores that allow to work with a rain-
bow of colors from green to red (Wiedenmann et al., 2009; Kremers et al., 2011).
Together with confocal or two photon laser microscopy fluorescent, labelling allows
the study of concentrations of proteins, mRNA or small molecules in single cells
(Sung & McNally, 2011).

A very useful technique in combination with fluorescent labels and confocal mi-
croscopy is fluorescence recovery after photobleaching (FRAP). It can be used to
measure diffusion rates of labelled proteins in living cells on time scales from seconds
to minutes. For FRAP a region of interest in the cell is bleached by a high intensity
light pulse. The region is then imaged over time and it becomes visible that the
region, which lacked fluorescence in the beginning, starts to become brighter as flu-
orescent molecules diffuse from outside into the region. Thus the rate of brightness
recovery after the bleaching is a direct measure of how fast molecules diffuse in this
region of the cell (Reits & Neefjes, 2001; Sprague & McNally, 2005). For complex
diffusion processes like the Pom1p gradient formation discussed in Chapter 5, which
includes immobilization, degradation or clustering the rate of recovery is no-longer
a direct measure for the diffusion rate.

How can diffusion parameters be determined from FRAP measurements in the pres-
ence of immobilization, degradation or clustering? (see Problem 5.1)

Immunostainings. The second imaging technique is also based on fluorescent pro-
teins but no genetical engineering is needed. Immunostainings were introduced in
the 1940s and this method is based on the combination of fluorescent molecules with
antibodies applicable to fixated tissue slices (Coons et al., 1941). While today there
is a wide range of procedures how to stain tissue, the general idea remains the same:
Tissue slices are fixated and the cell membranes are permeabilized in such a way that
the antibodies labelled with a fluorescent molecule which are added in the next step
can diffuse into the tissue and bind the proteins of interest. Finally the fluorescence
is stimulated and imaged with fluorescence microscopy methods. The obtained im-
ages are analyzed with basic image processing techniques to obtain biological insight
and model based analysis is rare. This is due to the fact that immunostainings are

3



1. Introduction

experiment/
image 

acquisition

image
processing/

feature 
extraction

parameter 
estimation

mathematical 
modelling

biological
question

Figure 1.1: Image based systems
biology loop. The schematic shows
the image based systems biology loop
consisting of four steps: the experi-
ment with the image acquisition, the
image preprocessing combined with an
extraction of features, the model build-
ing and the parameter estimation.
Each step feed into the next one and
the parameter estimation feed back to
experiment via prediction and experi-
mental design based on the calibrated
model.

often of poor quality and give only semi-quantitative information or the structured
noise originating from biological process which can not be disabled experimentally
poses major problems for parameter estimation. For complex biological hypothesis
testing as discussed for the CCL21 gradient formation in Chapter 6 basic image
processing techniques are insufficient and a model based analysis is needed.

How can parameter optimization and uncertainty quantification be performed on
tissue scale immunostainings, which are corrupted by structured noise, to facilitated
biological hypothesis testing? (see Problem 6.1 and 6.2)

1.2.2. Spatio-temporal models in systems biology

The first ground breaking spatio-temporal models in biology were the pattern forma-
tion models by Turing (1952) and Gierer & Meinhardt (1972). The models implicitly
use an image based model calibration as their behaviour and hence the model pa-
rameters are chosen such that the model output is comparable to patterns observed
in nature, e.g. sea shell patterns. These models are based on the combination of
basic chemical reactions with diffusion and more than half a century later the basic
idea remains the same but models consider for example complex regions or growing
domains (Menshykau & Iber, 2013; Uzkudun et al., 2015). First introduced in the
context of morphogenesis, spatio-temporal models are present in nearly all biolog-
ical fields ranging from physical models of cardiovascular flow over tumor growth
to the simulation of single cells (Klann & Koeppl, 2012). The image based model-
ing process consist of four steps: the experiment and image acquisition, the image
preprocesing and feature extraction, the model building and the parameter estima-
tion (Medyukhina et al., 2015; Sbalzarini, 2013) (see Figure 1.1). We concentrated
on the questions and challenges arising from the fourth point. We considered the
parameter optimization and the uncertainty analysis for spatio-temporal models in
systems biology.

Parameter optimization. As mentioned before there is a considerable number of
spatio-temporal deterministic models in the context of computational biology al-
ready available and the development progresses. Those models become especially

4



1. Introduction

useful for biological applications if they can give insights beyond directly observ-
able aspects of a biological process or make predictions for future experiments. For
such questions models have to give qualitative or quantitative information about the
process, therefore the knowledge of the parameter values used is crucial. In many
cases these parameters can not be measured directly but have to be determined from
measurement data by parameter estimation procedures (Lillacci & Khammash, 2010;
Engl et al., 2009). In computational biology two parameter estimation paradigms are
prevalent: Frequentist and Bayesian approaches (Villaverde & Banga, 2014). The
key difference of both approaches lies in the interpretation of a parameter (Stark,
2012). For a Bayesian a fixed parameter value does not exist, but all information
about the parameters is given as a distribution and all probabilities quantify a de-
gree of belief including prior knowledge of the statistician. For a frequentist a fixed,
unknown parameter value exists and its probability is the frequency of its occur-
rence in infinitely many samples. This difference leads to the major difference in
the parameter estimation as Bayesian methods often approximate the parameter
distribution by sampling methods, e.g. MCMC, while frequentist methods consider
one point estimated obtained by optimization methods, e.g. maximum likelihood
estimation. There have been promising developments of Bayesian approaches to
facilitate parameter estimation for spatio-temporal models in the last years (Bui-
Thanh et al., 2011; Sternfels & Earls, 2013) but we will focus on the Frequentist
approach. The theory and algorithms recently developed in the field of PDE con-
strained optimization (Hinze et al., 2009; Tröltzsch, 2009; Garvie & Trenchea, 2014)
can be applied/adapted to many image based parameter estimation problems with
the Frequentist approach, which results in fast, efficient and reliable optimization
results (see Chapter 2). Those methods, however, have been developed for inverse
problems in the context of physics or engineering applications and rely on regular-
ization techniques to resolve the ill-posedness of the inverse problem due to measure-
ment noise or parameter non-identifiabilities. Furthermore, only for the regularized
inverse problem existence and uniqueness of optimizers can be proven mathemati-
cally (Engl et al., 2009). Unfortunately the assumptions made for the regularization
are unsuitable for the high amount of measurement noise and the indeterminacy of
parameters in the context of biological applications (Gutenkunst et al., 2007).)

How to define parameter optimization for semi-linear models from imaging data?
(see Problem 3.1)

Uncertainty analysis. A great challenge in biological applications is the diffi-
culty or impossibility to determine unique parameter values from measurement data
(Jacquez & Perry, 1990; Gutenkunst et al., 2007; Fernández Slezak et al., 2010; Er-
guler & Stumpf, 2011). Furthermore, based on those parameters sensible decisions
like drug dosages or medical treatments are made. These demand for a precise quan-
tification of the uncertainty in the obtained parameters and the resulting predictions
of the model. Regarding the lack of identifiability we can distinguish between two
types: structural and practical identifiability (see Chapter 2 for a detailed com-
parison). Structural identifiability is a property of the dynamic model and the
observations, which is independent of the measurements. It has to be verified by an-
alytical methods. Hence, assessing structural identifiability for non-linear dynamical
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systems is very hard and the methods are computationally expensive (Chis et al.,
2011). In contrast to the theoretical property of structural identifiability, practical
identifiability takes into account the finite number of measurements, the noise level
and the model errors. Practical identifiability analysis is an a posteriori analysis,
which addresses the question if the parameters can uniquely be estimated with the
the available experimental data (Raue et al., 2009). This closely relates to the ques-
tion of parameter uncertainty and both can be addressed in terms of confidence
intervals. For spatio-temporal models the sensitivities or the Hessian matrix are
used to study identifiability and uncertainty in the parameters (Ashyraliyev et al.,
2008; Banks et al., 2010). For ordinary differential equations, however, it has been
shown that those approaches fail to describe the uncertainty and obtain valid confi-
dence intervals. For ordinary differential equations the profile likelihood was proven
to be a good choice for uncertainty quantification and practical identifiability anal-
ysis (Murphy et al., 2000; Raue et al., 2009; Kreutz et al., 2013). For discretized
PDEs those methods can be applied, however, they can become infeasible for com-
putationally demanding models as expected in most PDE applications.

How to can parameter uncertainties efficiently quantified for semi-linear models in
image based systems biology? (see Problem 3.2 as well as Problem 4.1 and 4.2)

1.3. Contribution of this thesis

To address the aforementioned open problems, I developed:

• parameter optimization methods with semi-linear PDE constraints, partial
observations and problem tailored likelihood functions to enable the parameter
optimization for image based systems biology.

• an efficient profile likelihood calculation for optimization problems with semi-
linear PDE constraints to address the problem of infeasible profile calculation
for computationally demanding PDE models.

• tailored parameter estimation and model selection methods for single cell im-
ages and FRAP measurements to determine kinetic parameters for signaling
gradients in fission yeast.

• tailored parameter estimation and model selection methods for immunostain-
ings to determine the kinetic parameters for signaling gradients; a special focus
is on the treatment of structured noise.

Apart from the methodological contributions the following biological insights were
gained:

• there is strong evidence in the CCL21 immunostaining image data for a lym-
phoide vessel specificity of the heparan sulfate concentration and therefore the
CCL21 gradient stabilization mechanism, this suggest a distinct functionality
of different lymphoid vessel branches for dendritic cell guidance.
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• in the existing single cell data for Pom1p there is empirically no evidence
for clustering over auto phosphorylation or trans phosphorylation for gradient
stabilization against input fluctuations.

This is no cumulative thesis but some of these contributions were in part already
published in peer-reviewed journals or are currently submitted to peer-reviewed
journals. Some parts and results will thus correspond or are identical with the
following publications:

• S. Hock1, J. Hasenauer, and F.J. Theis. Modeling of 2D diffusion processes
based on microscopy data: parameter estimation and practical identifiability
analysis. BMC Bioinformatics, 14 Suppl 1:S7, January 2013.

• R. Boiger, J. Hasenauer, S. Hross, and B. Kaltenbacher. Integration based
profile likelihood calculation for PDE constrained parameter estimation prob-
lems. Inverse Problems (accepted)

• S. Hross2, A. Fiedler2 F.J. Theis and J. Hasenauer. Quantitative comparison
of competing PDE models for Pom1p dynamics in fission yeast. FOSBE, 2016.

In addition to the publications, which directly contributed to this thesis, the author
also participated in other research projects in the context of image based systems
biology and spatio-temporal modelling. The results of those papers are related to the
topic of this work but focus on complementary aspects. The following publications
have been published:

• S. Hock1,2, Y.K. Ng2, J. Hasenauer, D. Wittmann, D. Lutter, D. Trümbach,
W. Wurst, N. Prakash, and F.J. Theis. Sharpening of expression domains
induced by transcription and microRNA regulation within a spatio-temporal
model of mid-hindbrain boundary formation. BMC Systems Biology, 7:48,
2013.

• D.M. Wittmann, S. Hock1 and F.J. Theis, Truth-content and phase tran-
sitions of random boolean networks with generic logics. SIAM Journal on
Applied Dynamical Systems, 12, 315351, 2013.

• F. Fröhlich, S. Hross, F.J. Theis and J. Hasenauer. Radial basis function
approximations of Bayesian parameter posterior densities for uncertainty anal-
ysis. Lecture Notes Computer Science. 8859, 73-85, 2014.

• J. Hasenauer, N. Jagiella, S. Hross and F.J. Theis. Data-driven modelling
of biological multi-scale processes. Journal Coupled Systems and Multiscale
Dynamics, 2015.

• S. Hross and J. Hasenauer. Analysis of CFSE time-series data using division-,
age- and label-structure population models. Bioinformatics, 2321-9, 2016.

1This paper was published under the authors maiden name
2These authors contributed equally to this paper
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1.4. Outline of this thesis

This thesis starts by a short introduction to semi-linear PDEs in Chapter 2. The
general form of the models, as well as weak solutions and existence results are
summarized. In addition, this chapter contains a general overview of parameter op-
timization, uncertainty quantification methods and a summary of PDE constrained
optimization results needed in this work.

In Chapter 3, the PDE constrained optimization problem for parameter optimiza-
tion for semi-linear PDEs with partial observations from image data is introduced.
We consider a special pixel based observation operator as well as the likelihood func-
tions for the integrated noise model approach. Following the definitions, we derive
sufficient and necessary optimality conditions for the problem and compare them to
the Hessian of the optimization problem without PDE constraints. In the remainder
of the chapter optimization based profile likelihood calculation for semi-linear PDEs
is introduced to facilitate uncertainty quantification.

In Chapter 4 we address the inefficiency of the optimization based profile likeli-
hood calculation with a simulation based profile likelihood calculation. We extend
the existing methodology to problems with semi-linear PDE constraints and show
the equivalence of full and reduced formulation. For both approaches the Hessian
matrix of the objective function is needed, which is often unknown. Hence, we pro-
ceed by considering different approximation schemes for the Hessian matrix of the
optimization problem. The approximations are subsequently analysed with respect
to an application example.

In Chapter 5, we apply the introduced methods to study the Pom1 gradient for-
mation, which is the key regulator of cell size control in fission yeast Schizosaccha-
romyces pombe. We discuss models for the competing hypothesis regarding gradi-
ent stabilization against noise, namely cluster formation, auto phosphorylation and
trans phosphorylation of Pom1. The considered measurements are single cell live
images and FRAP experiments and we perform a parameter optimization and un-
certainty analysis, which in turn enables the model selection.

In Chapter 6, CCL21 gradient formation for dendritic cell guidance, the main appli-
cation of this thesis, is discussed. We introduce models for three existing biological
hypothesis regarding the formation of the CCL21 gradient. We perform a tailored
parameter estimation utilizing the previously developed methods to compare esti-
mation based on features to estimation on full images. Furthermore, we introduce
and apply an integrated noise model and compare it to the existing filtering methods
on simulated and real data. The chapter is concluded by a model selection, which
suggests that lymphoid vessel branches have different functionality with regard to
the dendritic cell guidance.

Chapter 7 concludes this work by giving a summary of the key results and a
discussion in the context of existing methods. It is followed by an outline of potential
extensions, applications and open problems.
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2. Background

In this chapter, we state the model problems to be considered and discuss some of
their theoretical aspects as well as the resulting parameter estimation problems and
the basic theory of uncertainty quantification.

In Section 2.1 we state the general formulation of the models and give the application
example considered in this work. Subsequently, we discuss parameter optimization
and uncertainty quantification based on the reduced form of the optimization prob-
lem. We proceed by giving a short introduction to the parameter estimation problem
in terms of a PDE constrained optimization and briefly discuss some theoretical as-
pects.

2.1. Semi-linear PDE models

We consider models, which combine diffusion processes with biochemical reaction
kinetics. The reactions are formulated in terms of mass-action kinetics (MA)(Horn
& Jackson, 1972) and give rise to semi-linear PDEs. In the following we distinguish
between stationary models, i.e. the derivative with respect to time is zero, and dy-
namical models, which respectively results in either semi-linear elliptic or parabolic
PDEs.

Throughout this work, Ω denotes a bounded domain in Rn, with a C0,1- boundary
∂Ω (for the definition see Tröltzsch (2009, page 21)). Additionally, we denote by
I := (0, T ) a bounded time interval with 0 < T <∞. The state of the model is given
by u, as we often have systems of PDEs we denote by u(1), . . . , u(d) the individual
components of u, where d is the dimension of the system.

We consider models with the general form

ut + C(u;ϕ) = f(ϕ) in Ω× I
∂u

∂νC
= 0 in ∂Ω× I

u = u0(ϕ) in Ω× {t = 0}.

(2.1)

Here and in the following, ϕ ∈ Rnϕ
+ is a vector of kinetic parameters, the right hand

side is given by a parameter dependent function f(ϕ) ∈ L2(Ω). Furthermore, ut
denotes the partial derivative of u with respect to time and u0 is the initial condition.
We always assume that C is a semi-linear, elliptic, second order differential operator
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2. Background

with the form

C(u;ϕ) := −
n∑

i,j=1

aij(x;ϕ)
∂2

∂xi∂xj
u+

n∑
i=1

bi(x;ϕ)
∂

∂xi
u+ c(x;ϕ)u︸ ︷︷ ︸

:=C0(ϕ)u

+d(u;ϕ) (2.2)

where aij(x;ϕ), bi(x;ϕ), c(x;ϕ) are scalar, linear functions of ϕ and d(u;ϕ) is
linear in ϕ. And ∂u/∂νC denotes the conormal derivative with respect to C, i.e.
νTC∇u = 0. If ϕ is fixed we write aij(x), bi(x), c(x) and d(u) for the sake of
brevity. Furthermore, A = aij i,j is a symmetric, positive definite matrix with small-
est eigenvalue greater or equal ξ > 0 (see Evans (1996)). C is a semi-linear operator.
So we denote the linear part by C0(ϕ), which includes all derivatives, and the non-
linear part by d(u;ϕ). A classical physical example for C0 is a diffusion process with
substance degradation, i.e. aij = δij, bi = 0, c = γ and d = 0 (δi,j is the Dirac delta
function, and γ is the degradation rate). Even though other boundary condition of
Dirichlet or Robin type could be handled by the developed methods we will focus
on homogeneous von Neumann conditions for the sake of brevity.

Often biological systems are in a steady state or quasi steady state. In these cases
we assume that the derivative of u with respect to time is equal to zero. The
resulting model is an elliptic equation with the same semi-linear, elliptic, second
order differential operator as introduced above and the same boundary conditions.
Of course no initial condition has to be given in this case. We consider stationary
models of the form

C(u;ϕ) = f(ϕ) in Ω

∂u

∂νC
= 0 on ∂Ω.

(2.3)

Stationary models

In the following we want to give a suitable framework for the description of stationary
semi-linear PDEs. In this work we consider for stationary models u ∈ H1(Ω),
f(ϕ) ∈ (H1(Ω))∗ and it follows that C : H1(Ω)→ (H1(Ω))∗ for fixed ϕ.
Before we can define the weak solution of (2.3), we have to consider the non-linearity
d(u;ϕ). As mentioned before, the non-linearity in the equations is given by mass-
action kinetics of second or higher order or Michaelis-Menten kinetics. We can
conclude that for any meaningful kinetic parameter ϕ the mass in the reaction is
conserved, i.e. if u is bounded almost everywhere for x ∈ Ω, then

d(u;ϕ) ≤M and d(0;ϕ) = 0 (2.4)

a.e. in x ∈ Ω with upper bound M > 0 (Horn & Jackson, 1972). Furthermore, we
demand that d(u;ϕ) is continuous and monotonically increasing or decreasing in u.
For some test function v ∈ H1(Ω) we denote the bilinear form corresponding to the
differential operator with

B(u, v) :=

∫
Ω

−
n∑

i,j=1

aij(x;ϕ)
∂2

∂xi∂xj
uvdx+

∫
Ω

n∑
i=1

bi(x;ϕ)
∂

∂xk
uvdx+

∫
Ω

c(x;ϕ)uvdx

10



2. Background

and define the right-hand side

F (u, v) :=

∫
Ω

f(ϕ)v dx.

Definition 2.1.1. For the differential operator given in (2.2), which satisfies (2.4),
the function u ∈ H1(Ω) is called a weak solution of (2.3), if it satisfies the variational
formulation:

B(u, v) +

∫
Ω

d(u;ϕ)vdx = F (u, v)

for all test functions v ∈ (H1(Ω))∗.

The existence and uniqueness strongly depend on the non-linearity d(u;ϕ). With
the previously made assumptions we can state the following existence theorem.

Theorem 2.1.1. Given (2.4) and that d(u;ϕ) is continuous and monotonically
increasing or decreasing and c(x, ϕ) ≥ δ > 0 then (2.3) exhibits for all f ∈ L2(Ω)
exactly one weak solution u ∈ H1(Ω).

The existence and uniqueness of a weak solution u can be shown using the properties
of monotone operators (the detailed proof can be found in Evans (1996) or Tröltzsch
(2009)).

Dynamical models

For the parabolic case we need to account for the time-dependence of the state
variable u and therefore introduce the space

W (I) = {u|u ∈ L2(I;H1(Ω)) and ut ∈ L2(I; (H1(Ω))∗)}.

Throughout this work we always assume that u ∈ W (I) and f ∈ (H1(Ω))∗ for
dynamical models of the form (2.1). It follows that C : W (I) → H−1 with the
same properties given above for (2.2) and fixed ϕ. Again we have to consider the
non-linearity in more detail before we address the weak solution of the problem. Of
course (2.4) also holds for the time dependent case and all higher order MA kinetics
are locally Lipschitz continuous in the state u hence we find that

|d(0;ϕ)| ≤ K

|d(û;ϕ)− d(ũ;ϕ)| ≤ D(M) |û− ũ| .
(2.5)

for û, ũ ∈ H1(Ω), |û| < M , |ũ| < M , K,M > 0, D(M) > 0 and x ∈ Ω.

Definition 2.1.2. For the differential operator given in (2.2), which satisfies (2.4)
and (2.5), the function u ∈ W (I) ∩ L∞(I × Ω) is called a weak solution of (2.1) if
it satisfies the variational formulation:

−
∫
I

∫
Ω

uvtdxdt+

∫
I

∫
Ω

e(u, v) + d(u;ϕ)vdxdt =

∫
I

∫
Ω

f(ϕ)vdxdt+

∫
Ω

u0v(·, 0)dx

for all test functions v ∈ W (I), which satisfy v(x, T ) = 0.
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The existence and uniqueness of a weak solution u can be shown analogously to the
ideas for the elliptic case.

Theorem 2.1.2. Given (2.4), (2.5) and that d(u;ϕ) is continuous and mono-
tonically increasing or decreasing in u then there exists one weak solution u ∈
W (I) ∩ L∞(I × Ω) of 2.1 for all f ∈ (H1(Ω))∗, u0 ∈ L2(Ω).

For a detailed proof we refer to the literature, e.g. (Tröltzsch, 2009, page 212). The
strong assumptions on d(u;ϕ) have to be made to show existence and uniqueness of
solutions as well as existence of optimizers for the optimization problems considered
later on. For models with non-linearities, which do not satisfy the requirements,
existence and uniqueness have to be proven application dependent. This has been
done for example for a Gierer-Meinhardt model in Garvie & Trenchea (2014). In
this work, however, we only consider non-linearities, which satisfy (2.4) and (2.5).

Application example

We consider the basic process of production and degradation of a diffusive, biological
substance in one dimension. Molecules of the substance, denoted by u, are produced
in a region centred around the middle of the considered interval with a rate J . It
is assumed that the production is highest in the middle of the region and decreases
smoothly to the boundary, which is modelled by a Gaussian. Subsequently, the
molecules diffuse with a rate D. The molecules can exist as monomers or dimers
and the transition is described by the term αu2 and u is the sum of both (the detailed
deduction of the model equations is given in Section 5.2 or in Hersch et al. (2015)).

Example 2.1. For the kinetic parameter vector ϕ = (D,α, J), Ω = [−7µm, 7µm]
and I = (0s, 100s), we consider the system

ut −D4u+ αu2 =
J

2πρ
exp

(
−x

2

ρ2

)
in Ω× I

∂u

∂νC
= 0 on ∂Ω× I

u(0) = u0(ϕ) in Ω× {t = 0}.

In this example the components of the linear, elliptic differential operator C0 are
a11 = Dδ11, b1 = 0, c = 0 and the non-linearity is d(u;ϕ) = αu2. The right side of
the equation is given by f . This example is motivated by the application in Chapter
5 and will be used to evaluate the introduced uncertainty quantification methods in
Chapter 4.

2.2. Parameter estimation

In this section we introduce the concepts of parameter optimization, uncertainty
quantification and model selection for a given set of measured data. The key as-
sumption is that the model is known as a function depending on the kinetic param-
eters either given analytically or numerically, i.e. we consider the reduced problem.
To distinguish the reduced formulation from the formulation with PDE constraints,

12
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we denote objective function, likelihood and profile likelihood for the reduced prob-
lem with a small letter and for the PDE constrained problem with a capital letter.
Of special interest is the notion of parameter uncertainty and identifiability based
on the calculation of confidence intervals.

2.2.1. Observation, measurement noise and likelihood function

As biological systems are complex and can react strongly to disturbances, the exist-
ing measurement techniques are limited and can often only capture scaled, partial
observations of the system. Therefore we introduce the observation operator G as
an operator which maps the solution of the model u onto the observation y ∈ R.

G(s)u(t, x;ϕ) = y (2.6)

with ϕ ∈ Rnϕ
+ unknown parameter vector and s ∈ Rns

+ is the vector of (possibly un-
known) parameters of the observation operator. For example the scaled observation
of the j-th model component for the measurement k would be given as

G(s)u(t, x;ϕ) = suj(tk, xk;ϕ)

with xk ∈ Ω and tk ∈ I.

As a general setup we assume that we have a number of different observables denoted
by the index l = 1, . . . , N and for each observation a number of measurements at
given time points and spatial locations (tk, xk) with k = 1, . . . ,M ,

Gl,k(s)u = yl,k.

In this work we are concerned with the derivation of optimality conditions and
uncertainty quantification methods which employ the Hessian of the objective func-
tion. To ensure the existence of the Hessian we always assume that the observation
operators fulfill the following assumptions

Assumption 2.2.1 (Observation Operator). The operator Gl,k : Rns × W (I) ∩
L∞(I × Ω) → R for l = 1, . . . , N and k = 1, . . . ,M is twice differentiable with
respect to u and s.

For sake of brevity we only consider the parabolic case as the elliptic problem is
automatically included.

We assume that measurements considered during the parameter estimation process
are a combination of the observation with a measurement noise term and we denote
them by yl,k. In this work we consider two types of noise, namely additive, normally
distributed noise and multiplicative, log-normally distributed noise. For the first
case we obtain

yl,k = yl,k + εl,k with εl,k ∼ N (0, σ2
l,k)

and hence yl,k ∼ N (yl,k, σ2
l,k). This is the noise type most often considered in the

literature. Furthermore, for known variances σ2
j,k it yields the well known weighted
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least-squares objective function. In the case of log-normally distributed measure-
ment noise we have the form

yl,k = yl,k · εl,k with εl,k ∼ LN (0, σ2
l,k)

and hence yl,k ∼ LN (yl,k, σ2
l,k). The methodology developed in Chapter 3 for un-

certainty quantification for PDE constraint inverse problems can also be applied to
other noise types as long as a likelihood function exists.
For the case of additive, normally distributed measurement noise we obtain the
corresponding likelihood function for θ = (σ, s, ϕ) as

l(θ) =
N∏
l=1

M∏
k=1

1√
2πσl,k

exp

(
−(yl,k − yl,k)2

2σ2
l,k

)
. (2.7)

And for the case of multiplicative, log-normally distributed noise and for measure-
ments strictly greater zero we obtain

l(θ) =
N∏
l=1

M∏
k=1

1√
2πσl,ky

l,k
exp

(
−

(log(yl,k)− log(yl,k))2

2σ2
l,k

)
. (2.8)

Based on the likelihood function the maximum likelihood estimator (MLE) of the
unknown parameter θınΘ ⊂ Rnσ+ns+nϕ is defined as the parameter value θ̂, which
maximizes the likelihood function, i.e.

θ̂ = argmax
θ∈Θ

l(θ). (2.9)

Due to better numerical accuracy the maximum likelihood estimation is considered
in terms of the negative logarithm of the likelihood

j(θ) = − log(l(θ))

and the MLE is given as
θ̂ = argmin

θ∈Θ
j(θ).

For the above discussed additive, normally distributed noise for known σl,k we obtain

j(θ) =
1

2

N∑
l=1

M∑
k=1

log(2πσ2
l,k) +

(yl,k − yl,k)2

σ2
l,k

= const+
N∑
l=1

M∑
k=1

(yl,k − yl,k)2

σ2
l,k

.

This is the weighted least squares objective function plus an additive constant. In
most applications σl,k is unknown and has to be estimated based on equation (2.7)
or (2.8).
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2.2.2. Identifiability analysis

A great challenge in biological applications is the difficulty or impossibility to de-
termine unique parameter values from measurement data (Gutenkunst et al., 2007).
We can distinguish between two types: structural and practical identifiability. Struc-
tural identifiability is a property of dynamic model and observation, which is inde-
pendent of the measurements. It has to be analyzed by analytical methods and
assessing structural identifiability for non-linear dynamical systems is hard and the
methods are computationally expansive (Chis et al., 2011). In contrast to the the-
oretical property of structural identifiability, practical identifiability takes into ac-
count the finite number of measurements, the noise level and model errors. Practical
identifiability analysis is an a posteriori analysis, which addresses the question when
the parameters can be uniquely estimated with the available experimental data. This
closely relates to the question of parameter uncertainty and both can be addressed
in terms of confidence intervals.

Definition 2.2.1. We call a parameter θi practically non-identifiable if the likelihood
based confidence interval extends infinitely or beyond the considered parameter region
in at least one direction.

2.2.3. Confidence intervals

To quantify parameter identifiability in terms of confidence intervals we are going
to introduce confidence intervals or confidence regions. In this work we introduce
and consider likelihood based confidence intervals, which are good approximations
for parameter uncertainty in the case of a small number of data points (Venzon &
Moolgavkar, 1988; Meeker & Escobar, 1995; Raue et al., 2009).

Definition 2.2.2 (Confidence region and interval).
For θ̂ ∈ Θ which maximizes (2.9) we define the likelihood based confidence region
for the confidence level α as

CIα(θ) =

{
θ ∈ Θ

∣∣∣∣∣ l(θ)l(θ̂)
≥ exp

(
−δα

2

)}

with δα = χ2(α, nθ). The confidence interval for a single parameter component θi is
the projection of CI onto the parameter direction eθi

CIα(θi) = PeθiCIα(θ).

The critical part in determining the bounds of confidence regions is the calculation
of the root of l(θ)/l(θ̂)−exp

(
− δα

2

)
. Furthermore, the confidence region is not always

connected and there might exist multiple roots of the equation. In the following we
describe variants to approximate the root and discuss their strengths.

The most commonly used method to calculate the quotient is based on the second
order approximation of the negative, logarithm of the likelihood function around the
optimum, i.e.

j(θ̂ −4θ) = j(θ̂) +
∂j

∂θ
(θ̂)(4θ) +

∂2j

∂2θ
(θ̂)(4θ)2.
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In the definition of the CI we consider log(l(θ)/l(θ̂)) = j(θ̂)− j(θ) hence the confi-
dence region for θi are approximated by

CIα(θi) =

{
θ̂ +4θ ∈ Θ

∣∣∣∣−∂2j

∂2θ
(θ̂)(4θ)2 ≤ δα

2

}
. (2.10)

with 4θj = 0 for j 6= i and 4θj 6= 0 for i = j. If the noise level is given, the Hessian
of the likelihood function is the Fisher Information matrix. This method is often
used in applications. However, these confidence intervals tend to underestimate the
uncertainty in the parameters (Banks et al., 2010). Furthermore, the method is
sufficient to hint at structurally non-identifiable parameters (zero eigenvalues of the
Hessian) but is not sufficient to determine practically non-identifiable parameters.
A better suited method to determine exact confidence regions and practically non-
identifiability are likelihood profiles (Murphy et al., 2000; Raue et al., 2009).

The likelihood profile for a parameter θi, i = 1, . . . , nθ of θ is defined as

plc(θi) = max
θ∈Θ

l(θ) subject to θi = c. (2.11)

Based on the likelihood profile (the upper and lower bounds of) the confidence region
can be calculated as

CIα(θi) =

{
c

∣∣∣∣∣plc(θi)l(θ̂)
≥ exp

(
−δα

2

)}
.

Another important property of plc(θi) is that it gives the precise shape of the likeli-
hood function in direction θi, if we calculate it for a continuous curve c.

2.2.4. Model selection

A key question in biological modeling and parameter estimation is the decision for
or against a biological hypothesis based on the given experimental data. To this end
models are introduced based on the hypothesis that the parameters are estimated
and the best model is selected. Following Burnham & Anderson (2002) we focus on
the Akaike information criterion and the Bayesian information criterion for model
selection as they are superior to standard hypothesis testing.

Akaike information criterion (AIC) The AIC relies on the maximum likelihood
estimate θ̂ of each model:

AIC = −2 log(l(θ̂)) + 2nθ

with nθ number of parameters in the model. As the AIC is only based on the MLE
and the number of parameters, it is applicable to a wide range of models. It can
be used if the true model is not in the set of tested models and also non-nested
models can be considered. During the model selection it has to be kept in mind
that the AIC tends to choose larger models in comparison to other selection criteria
(Burnham & Anderson, 2002).
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Bayesian information criterion (BIC) The BIC as well as the AIC are calculated
with the maximum likelihood estimate θ̂ of each model:

BIC = −2 log(l(θ̂)) + nθ log(M)

with nθ number of parameters in the model and M is the number of data points.
Like the AIC, the BIC can be used to compare a wide range of models, which do
not have to be nested.

Based on AIC and BIC the best model to select is the model with the smallest BIC
or AIC value. If the difference between AIC/BIC values for two competing models
is below 10, there is essentially no empirical support for one model over the other.

2.3. PDE constrained optimization

In this section we introduce the notation used for the PDE constrained optimizations
considered in this work. In contrast to the previous section we consider the model
as a constraint and not as a given function. The optimization is then performed
with regard to the parameter vector θ = (σ, s, ϕ) and the function u, which satisfies
the model constraints. To distinguish the objective and likelihood function for the
constrained case from the reduced formulation, we denote them by capital letters.
Furthermore, we review some basic principles of optimization with semi-linear PDE
constraints like the Lagrangian formulation as well as reduced problems, sensitivities
and adjoints. We sketch the general ideas here and refer the interested reader to the
books of Tröltzsch (2009) and Hinze et al. (2009) for the detailed theory and proofs.

For the existence of an optimal solution of the optimization problem with for non-
linear PDE constraint we follow Hinze et al. (2009, page 55) and consider the opti-
mization problem in a general form

min
θ∈Θ,u∈U

J(θ, u)

subject to e(θ, u) = 0
(2.12)

where J : Θ×H1(Ω)→ R is the negative logarithm of the likelihood function, e.g.
(2.7) or (2.8) and e : Rnθ × V → V ∗ in the elliptic and e : Rnθ ×W (I)→ L2(I, V ∗)
in the parabolic case. The model is given as the constraint and for a more general
consideration the right hand side, the boundary conditions and the initial conditions
are subsumed in one equality constraint. With the models introduced in the previous
sections we can write e(θ, u) as

e(θ, u) = C(u;ϕ)− f(ϕ)− ∂u

∂νC
or

e(θ, u) = ut + C(u;ϕ)− f(ϕ)− ∂u

∂νC
+ (u− u0).

Here C(u;ϕ) is the semi-linear elliptic operator encoding for example the diffusion
and all mass action kinetics higher then zeroth order and f(ϕ) encodes all zeroth
order mass action kinetics or model independent inputs of the model. Three key
assumptions have to be made to guarantee the existence of optimal solutions:
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2. Background

• e(θ, u) = 0 has a bounded solution, i.e. there exists a solution u, which satisfies
the PDE as well as boundary conditions and initial conditions of the model
for a parameter θ and this solution has an upper bound almost everywhere.

• (θ, u) 7→ e(θ, u) is continuous under weak convergence.

• J(θ, u) is sequentially weakly lower semi-continuous, i.e. every sequence (θn, un)n
of parameter and solution pairs, which converges weakly against an optimal
pair (θ, u) we have J(θ, u) ≤ limint

n→∞
J(θn, un).

Then we can state the following theorem as in Hinze et al. (2009, page 55)

Theorem 2.3.1. If the assumptions above hold Problem (2.12) has an optimal so-
lution (θ̂, û).

Hence at least one optimum exists, however, its uniqueness is not guaranteed by the
assumptions. Also local optima are possible.

2.3.1. Lagrangian formulation

To find the optimality conditions for optimization problems with possibly complex
semi-linear PDE constraints, the Karush-Kuhn-Tucker (KKT) theory for optimal-
ity conditions has to be applied. This becomes difficult for semi-linear PDEs as
operators, functionals and matching spaces have to be chosen in a way that differen-
tiability is guaranteed. In this work we do not focus on the deduction of optimality
conditions therefore we introduce the formal Lagrange principle. We considered the
differential operators formally and assume that the state and all derivatives are L2

functions with L2 inner products. We will sketch the main results for the considered
systems here and all proofs, detailed derivations and the discussion of more general
function spaces can be found in Tröltzsch (2009) and Hinze et al. (2009). For the
sake of brevity we subsumed noise, observation and kinetic parameters and write
only θ.

We define the Lagrangian function of (2.12) with constraints given by (2.3), as

L(θ, u, p) = J(θ, u) +

∫
Ω

(C0(θ)u+ d(u; θ)− f(θ))pdx+

∫
∂Ω

∂u

∂νC
pds.

Following Theorem 2.3.1 an optimal point (θ̂, û) exists and for this point the deriva-
tive of L with respect to θ and u has to vanish. It follows that a function p ∈
H1(Ω) ∩ C(Ω) exists that fulfills

∇θL(θ̂, û, p)(θ − θ̂) = 0 ∀θ ∈ Θ (2.13)

∇uL(θ̂, û, p)u = 0 ∀u ∈ H1(Ω). (2.14)

If we consider (2.14) we obtain

∇uL(θ̂, û, p)u = Ju(θ̂, û)u+

∫
Ω

(C0(θ̂)p+ du(û; θ̂)p)udx+

∫
∂Ω

∂p

∂νC∗
uds = 0
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2. Background

for all u ∈ H1(Ω). This is the variational formulation of the weak solution p of

C∗0(θ̂)p+ du(û; θ̂)p = −Ju(θ̂, û) in Ω

∂p

∂νC∗
= 0 on ∂Ω,

(2.15)

which we will call adjoint equation of the elliptic problem in the following.
Following the same steps as for the elliptic case we can write the Lagrangian function
of (2.12) with constraint (2.1), as

L(θ, u, p) =J(θ, u) +

∫
I

∫
Ω

(ut + C0(θ)u+ d(u; θ)− f(θ))pdxdt

+

∫
I

∫
∂Ω

∂u

∂νC
pdsdt+

∫
Ω

(u0(θ)− u0(θ))p(0, x)dx.

And we obtain the adjoint equation for the parabolic problem as

−pt + C∗0(θ̂)p+ du(û; θ̂)p = −Ju(θ̂, û) in Ω× I
∂p

∂νC∗
= 0 on ∂Ω× I

p = 0 on Ω× {t = T}.

(2.16)

Due to the non-linearity it is not possible to show existence of unique optimal para-
meter sets θ̂ in general. For the uncertainty quantification and identifiability analysis
developed in this work, however, we require only existence of local optimizers, which
can be shown for the considered models and strong requirements for d(u;ϕ) (Hinze
et al., 2009; Tröltzsch, 2009). Furthermore, we often expect that for the model and
data considered no unique optimizer can be found, i.e. we have non-identifiable
problems.

2.3.2. Reduced problem

Often the reduced form of the problem (2.12) is considered as it is given for example
by analytical or numerical solutions of the PDE. To constructed the reduced problem
we assume that for each θ ∈ Θ there exists a corresponding unique solution u(θ).
By inserting u(θ) in J(θ, u) we obtain the reduced objective function, denoted by a
small letter in contrast to the non-reduced objective function,

j(θ) := J(θ, u(θ)). (2.17)

For the solution of the optimization the derivative of j(θ) has to be computed. There
are two methods to do this: the forward and the adjoint sensitivity approach. We
introduce both in the following.

The forward sensitivity approach is based on the directional derivatives of u with
respect to θ. For a given direction θi the chain rule of differentiation yields

d

dθi
j(θ) = Ju(θ, u(θ))

du

dθi
+ Jθi(θ, u(θ)).
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In this equation the forward sensitivities occur as du
dθi

:= uθi and for the considered
model types the forward sensitivities can be calculated by solving the linearized
state equations corresponding to (2.3)

Cu(u, θ)uθi + Cθi(u, θ) = fθi(θ) in Ω

∂uθi
∂νC

= 0 on ∂Ω.

And for model (2.1) we obtain

uθi,t + Cu(u, θ)uθi + Cθi(u, θ) = fθi(θi) in Ω× I
∂uθi
∂νC

= 0 on ∂Ω× I

uθi =
du0

dθi
in Ω× {t = 0}.

So to obtain the derivative of j(θ) we have to solve as many linear PDEs as we have
parameters in the system. For models with many parameters as they often occur in
biological applications the computational effort grows linearly with the number of
parameters.

The adjoint sensitivity approach is based on the solution p of adjoint equation (2.15)
or (2.16) introduced previously. Furthermore, the adjoint operator of the PDE (2.3)
or (2.1) has to be calculated, which we denote by e(θ, u)∗. Then we can derive that

j′(θ) = eθ(θ, u(θ))∗p(θ) + Jθ(θ, u(θ)).

So if the adjoint equation can be differentiated with respect to the parameters for
the given model, the calculation of the derivative by the adjoint sensitivity approach
only involves the solution of one additional PDE.

To summarize this chapter, we began by introducing the two model types we con-
sider in this work: elliptic, steady state models and parabolic, dynamical models.
Both models are semi-linear and the differential operator can be decomposed in a
linear differential operator and a non-linear part, which is given by biologically mo-
tivated reaction terms for example mass-action or Michaelis-Menten kinetics. The
non-linearity satisfies strict assumptions regarding boundedness and monotonicity
and therefore the models have unique weak solutions. Furthermore, these charac-
teristics enable the existence of optimizers if the models are the constraint of an
optimization problem as discussed above. Such optimization problems arise if we
consider parameter estimation problems, which we also discussed in this chapter. A
special focus was on the general introduction of likelihood functions and likelihood
based uncertainty analysis, which will be extended to the special case of semi-linear
PDE models and image measurements in the following.
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3. Image based parameter estimation
and uncertainty quantification

Todays experimental methods yield quantitative measurements of molecules in-vivo
can be obtained by a combination of antibody stainings and high resolution mi-
croscopy. This yields two or three dimensional spatially resolved images of the
underlying biological process (Huang et al., 2010; Schumann et al., 2010; Weber
et al., 2013). Despite this high resolution data, the usage of quantitative spatio-
temporal models is limited. In recent years the field of PDE-constrained optimiza-
tion emerged, providing the theory and methods to estimate parameters of PDEs
(Hinze et al., 2009). Nevertheless, specific problems occurring in biological prob-
lems, like partial observations, sparse measurements and high noise levels, have yet
to be addressed as it has been done for ODE parameter estimation problems. In
particular, appropriate uncertainty quantification methods for the efficient and re-
liable analysis of practical identifiability are not available (Raue et al., 2009). In
this chapter we want to introduce the general setting of image based parameter op-
timization and uncertainty quantification for semi-linear PDEs.

After introducing the general setup for images based parameter estimation and the
problem formulation in Section 3.1, we proceed by formulating the second order
approximation of the parameter uncertainty in Section 3.2. A special focus lies on
the deduction of the Hessian matrix for the full PDE constrained problem and the
comparison to the Hessian matrix of the reduced problem this is also part of the
paper by Boiger et al. (2016). This Section is followed by the introduction of a profile
likelihood analysis based on the reduced formulation of the problem in Section 3.3.
This part of the chapter is already published in the paper of Hock et al. (2013).

3.1. Introduction and problem statement

The key question we want to address in this chapter is the parameter estimation for
reaction-diffusion models based on microscopy images with a special focus on the
development of uncertainty quantification methods for such estimation processes.
Each parameter estimation process starts with the biological measurements. The
application examples in this thesis consider measurements of signaling molecules,
which consist of microscopy images or stacks of microscopy images obtained by flu-
orescent stainings or labels for the certain protein of interest. These can either be
images of single cells as in the Pom1P application example in Chapter 5 or tissue
scale images as discussed in the CCL21 application example in Chapter 6.

For both types of images the standard procedure to estimate parameters is an se-
quential process consisting of an image preprocessing phase to remove e.g. struc-
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Figure 3.1: Model calibration
from microscopy images. The
schematic shows the modeling process
with imaging data, model calibra-
tion, prediction and experimental
verification. In the following we will
distinguish between two types of model
calibration processes: The standard,
which reduces the data by image pro-
cessing and feature selection is shown
on the left side. The new method,
which gradually passes through the
steps by incorporating the whole data
in the estimation process is shown on
the right side.

tured or unstructured noise, an extraction of features like size or intensity and the
following parameter estimation for a mathematical model (Sbalzarini, 2013). A ma-
jor challenge for parameter estimation from tissue scale microscopy images is the
presence of structured noise, which can strongly bias the estimation process. In
the sequential approach the noise is removed by filtering methods. We propose a
new integrated approach which treats it as an additional noise term. The difference
between both processes in schematically depicted in Figure 3.1.

As introduced in Section 2.1 we consider semi-linear partial differential equations of
the general form:

ut + C0(ϕ)u+ d(u;ϕ) = f(ϕ) in Ω× I
∂u

∂νC
= 0 in ∂Ω× I

u = u0(ϕ) in Ω× {t = 0}.

(3.1)

C0(ϕ) is the linear, elliptic partial differential operator, d(u;ϕ) is the non-linearity
and f(ϕ) is the right side as defined in Section 2.1. In the following we will always
assume that the state of the model only depends on the model parameters ϕ, the
observation only depends on the observation parameters s and the likelihood param-
eters are subsumed under the identifier σ. All three can be part of the estimation
process with θ = (σ, s, ϕ) ∈ Θ = Rnθ , nθ = nσ + ns + nϕ.

3.1.1. Observation operator for microscopy images

In Section 2.2 we introduced observation operators for parameter estimation in gen-
eral. Here we want to introduce an observation operator tailored to the use with
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3. Image based parameter estimation and uncertainty quantification

two dimensional microscopy images as they arise for example from tissue slice im-
munostainings. The operator can either be used for the full images in combination
with the integrated estimation approach or it can be applied to the images after
filtering for the sequential approach.
The observation operator and the corresponding likelihood function were introduced
in the context of 2D microscopy images and are used in the application in Chapter 6
(Hock et al., 2013). A time-series of images was taken at time points tk ∈ I for k =
1, . . . ,M , which are not necessarily equally spaced. For each time point the number
of pixels is denoted with nk and the pixel area withApl for l = 1, . . . , nk. We consider
a partial observation of the full state u(t, x;ϕ), given by the possibly parameter
dependent function h. The l-th observation operator Gl,k maps the function u for a
given time point to the observation yl,k ∈ R.

Definition 3.1.1 (pixel based observation operator). The l-th component of the
pixel based observation operator for the time point tk with Gl,k : Rns × W (I) ∩
L∞(I × Ω)→ R, is defined as

Gl,k(s, u) = b+

∫
Apl

h(s, u(tk, x;ϕ))dx, (3.2)

with k = 1, . . . ,M , tk ∈ I, l = 1, . . . , nk and b ∈ R+. h is a continuous function of
ns + d variables, which is linear with respect to both arguments.

Here b denotes a constant off-set due to background luminescence.

3.1.2. Integrated noise model

For both approaches (sequential and integrated) we always consider a likelihood
functions to estimate the kinetic parameters of the underlying biological process
based on reaction-diffusion models (see Section 2.2). The actual form of the likeli-
hood depends on the type of measurement noise.

The sequential parameter estimation approach often considers additive normal noise
or multiplicative log-normal noise, which yields the likelihood functions described
in Section 2.2:

L1(θ, y) =

N,M∏
l,k=1

1√
2πσl,k

exp

(
−

(yl,k − yl,k)2

2σ2
l,k

)
and

L2(θ, y) =

N,M∏
l,k=1

1√
2πσl,ky

l,k
exp

(
−(log(yl,k)− log(yl,k)2

2σ2
l,k

)
.

Parameter estimation with those functions assumes that the measured quantity at
every pixel of an image is generated by the underlying model and the assumed
measurement noise. Therefore, it requires a pre-processing of the images by filtering
or the extraction of a specific feature to remove all information from the images,
which is assumed to be not considered by the model or is Gaussian white noise.
Otherwise the estimated parameters can be biased. On the other hand, the removal
of data, i.e. filtering, or the restriction to certain elements of the data, i.e. feature
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3. Image based parameter estimation and uncertainty quantification

extraction, can change the perceived uncertainty in the estimates. To circumvent
both, bias and changes in the uncertainty, we introduce the integrated approach in
the following.
In the case of the integrated noise model, we assume that the data is generated by
a mixture of at least two components: a model dependent one and an independent
one. Both processes are combined as a weighted sum in the likelihood function with
weight w1 for the model dependent part and weight w2 for the structured noise.
Both weights add up to one and we require that in the case of no noise w2 = 0
and the likelihood becomes the standard likelihood L1 or L2. This leaves room for
a lot of model dependent combinations. However, we only want to show the two
likelihoods considered in Chapter 6.3. First we assume that the structured noise is
normally distributed. We obtain

L3(θ, y) =

N,M∏
l,k=1

w1
1√

2πσl,ky
l,k

exp

(
−(log(yl,k)− log(yl,k)2

2σ2
l,k

)

+w2
1√

2πσ2,l,k

exp

(
−(yl,k − µ2)2

2σ2
2,l,k

)
.

(3.3)

Second, the structured noise is log-normally distributed

L4(θ, y) =

N,M∏
l,k=1

w1
1√

2πσl,ky
l,k

exp

(
−(log(yl,k)− log(yl,k)2

2σ2
l,k

)

+w2
1√

2πσ2,l,ky
l,k

exp

(
−(log(yl,k)− µ2)2

2σ2
2,l,k

)
,

(3.4)

in this case we obtain the parameter vector σ = ({σl,k}l,k, {σ2,l,k}l,k, w1, w2).

These are very specialized likelihood functions for parameter estimation with 2D
microscopy images and the theory we develop in the following holds for this type of
likelihood as well as for all likelihood functions, which fulfill the following assump-
tions:

• the parameter dependencies are as given above for θ = (σ, s, ϕ).

• the observation operator Gl,k is twice differentiable with respect to u and s for
l = 1, . . . , N , k = 1, . . . ,M .

• the likelihood function is twice differentiable with respect to yl,k and σ.

• the negative logarithm of the likelihood function denoted by J can be written
component wise such that

J(σ, y) =

N,M∑
l,k=1

J l,k(σ, yl,k).
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3.1.3. Problem statement

The general parameter estimation problem considered is given by the following con-
strained optimization problem

min
s∈Rns ,σ∈Rnσ ,ϕ∈Rnϕ ,u∈W (I)∩L∞

J(σ, y)

s.t.



G(s)u = y

ut + C(u;ϕ) = f(ϕ) in Ω× I
∂u

∂νC
= 0 in ∂Ω× I

u = u0(ϕ) in Ω× {t = 0}

(3.5)

The equality constraint is to be understood in the weak sense and J is the negative
logarithm of the likelihood functions as described in Section 2.2. For optimization
problems of the above form with ODE instead of PDE constraints the parameter
estimation and identifiability analysis has been thoroughly discussed before, e.g.
Raue et al. (2009). A special focus of this work is on the observation operator,
which has not yet been considered in the context of optimization with semi-linear
PDE constraints, and the problem specific likelihood functions for the integrated
noise model.

Problem 3.1 (Uncertainty analysis for semi-linear PDE models). Given the semi-
linear, spatio-temporal model, the observation operator and the problem dependent
likelihood function derive the corresponding Hessian matrix for second order para-
meter uncertainty approximation.

In Section 2.2 the profile likelihood calculation was introduced as a uncertainty
quantification method superior to the second order approximation by the Hessian
matrix. This was done for the reduced problem and the ODE case but a discussion
in the PDE context is still missing.

Problem 3.2 (Profile likelihood for semi-linear PDE models). Given the parameter
estimation problem (3.5) for imaging data develop a profile likelihood base uncer-
tainty and practical identifiability analysis.

3.2. Parameter estimation

Before we address uncertainty quantification for the parameter estimation problem
we deduce the sufficient and necessary optimality conditions for the optimization
problem with observation (3.5). We consider only the parabolic case in detail based
on the formal Lagrange principle as the elliptic case can be considered to be a
special case of the parabolic one. Based on the necessary optimality conditions we
conclude in which cases the observation operator might induce non-identifiability in
our models.
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3.2.1. Optimality conditions

For simplicity of calculation we assume that we can directly calculate the equality
constraint with the observation operator and consider the objective function

J(σ,G(s)u) =

N,M∑
l,k=1

J l,k(σ,Gl,k(s)u)

and θ = (σ, s, ϕ). The Lagrange function corresponding to the constrained mini-
mization problem (3.5) reads then

L(θ, u, p) =

N,M∑
l,k=1

J l,k(σ,Gl,k(s)u)

+

∫
I

∫
Ω

(ut + C0(ϕ)u+ d(u, ϕ)− f(ϕ))pdxdt

+

∫
I

∫
∂Ω

∂νCupdsdt+

∫
Ω

(u0 − u0(ϕ))p(0)dx.

(3.6)

If we compare the obtained Lagrangian to the Lagrangian without observation op-
erator introduced in Section 2.3.1 only the first term is different.

Sufficient optimality condition Let (θ̂, û) be a minimizer and also a KKT point
of (3.5), i.e. the MLE. We have the corresponding Lagrange multiplier p and θ̂ =
(σ̂, ŝ, ϕ̂). This implies that the gradient of the objective function and the Lagrangian
function vanishes at this point and we have

∇σ,s,ϕ,u,pL(σ̂, ŝ, ϕ̂, û, p) = 0 (3.7)

where (skipping the arguments (σ, s, ϕ, u, p) of L for the moment)

∂L
∂σi

=

M,N∑
l,k=1

J l,kσi (σ,Gl,k(s)u)) for i = 1, . . . , nσ

∂L
∂si

=

M,N∑
l,k=1

J l,ky (σ,Gl,k(s)u))Gl,k
si

(s)u for i = 1, . . . , ns (3.8)

∂L
∂ϕi

=

∫
I

∫
Ω

(C0,ϕi(ϕ)u+ dϕi(u, ϕ)− fϕi(ϕ))pdxdt for i = 1, . . . , nϕ

∂L
∂u

[du] =

M,N∑
l,k=1

J l,ky (σ,Gl,k(s)u))Gl,k(s)[du]

+

∫
I,Ω

(−pt + C∗0,u(ϕ)p+ du(u;ϕ)p)[du]dxdt+

∫
Ω

p(T )[du]dx

∂L
∂p

[dp] =

∫
I,Ω

(ut + C0,u(ϕ)u+ d(u;ϕ))[dp]dxdt+

∫
Ω

(u(0)− u0(ϕ))[dp](0)dx.

Here [du] denotes the direction of the derivative. We see that the observation op-
erator becomes part of the derivatives with respect to the observation parameter s
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and also with respect to the state. But this does not happen in the equations for
the kinetic parameters and the model equation. We can especially observe that the
observation operator becomes part of the adjoint state equation at the MLE (see
Section 2.3 for the deduction):

−pt + C0(ϕ̂)∗p+ du(û, ϕ̂)p = −
N,M∑
l,k=1

Jy(σ̂, G
l,k(ŝ)û)Gl,k(ŝ) in Ω× I

∂p

∂νC∗
= 0 on ∂Ω× I

p = 0 on Ω× {t = T}.

(3.9)

For the pixel based observation operator (3.2) the term Gl,k(ŝ) equals the scaled
image size or zero if the component is not considered. Hence it can be considered
to be a weighting of the components of Jy.

Hessian matrix For the deduction of the Hessian matrix we consider a Taylor ex-
pansion around the MLE. We take any other (σ̃, s̃, ϕ̃, ũ) that satisfies the constraint
(3.5). For the difference of the cost function values we have:

J(s̃, σ̃, ϕ̃, ũ)− J(σ̂, ŝ, ϕ̂, û) = L(s̃, σ̃, ϕ̃, ũ, p)− L(σ̂, ŝ, ϕ̂, û, p)

Due to equation (3.7) the first order Taylor term vanishes if we expand the difference
in the Lagrangian functions. The second order term of the Taylor expansion contains
the Hessian matrix we are interested in. We use the notation sµ := ŝ + µ(s̃ − ŝ),
σµ := σ̂ + µ(σ̃− σ̂), uµ := û+ µ(ũ− û), ϕµ := ϕ̂+ µ(ϕ̃− ϕ̂) for the direction in the
Taylor expansion and can write formally:

L(̃·, p)− L(̂·, p) =

∫ 1

0


s̃− ŝ
σ̃ − σ̂
ϕ̃− ϕ̂
ũ− û


T

∇2Ls,σ,ϕ,u(sµ, σµ, ϕµ, uµ, p)


s̃− ŝ
σ̃ − σ̂
ϕ̃− ϕ̂
ũ− û

 dµ

To obtain the Hessian matrix we calculate the second order derivative of L and
obtain the following integral∫ 1

0

∇2Ls,σ,ϕ,u(sµ, σµ, ϕµ, uµ, p)[(s̃− ŝ, σ̃ − σ̂, ϕ̃− ϕ̂, ũ− û)2]dµ

=

∫ 1

0

( ns∑
i,j=1

(s̃i − ŝi)(s̃j − ŝj)
N,M∑
l,k=1

J l,kyy (σµ, Gl,k(sµ)uµ)Gl,k
si

(sµ)uµGl,k
sj

(sµ)uµ

+
ns∑
i,j=1

(s̃i − ŝi)(s̃j − ŝj)
N,M∑
l,k=1

J l,ky (σµ, Gl,k(sµ)uµ)Gl,k
sisj

(sµ)uµ
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+ 2
ns∑
i=1

nσ∑
j=1

(s̃i − ŝi)(σ̃j − σ̂j)
N,M∑
l,k=1

J l,kσjy(σ
µ, Gl,k(sµ)uµ)Gl,k

si
(sµ)uµ

+ 2
ns∑
i=1

(s̃i − ŝi)
N,M∑
l,k=1

J l,kyy (σµ, Gl,k(sµ)uµ)(Gl,k
si

(sµ)uµ)Gl,k(sµ)(ũ− û) (3.10)

+ 2
ns∑
i=1

(s̃i − ŝi)
N,M∑
l,k=1

J l,ky (σµ, Gl,k(sµ)uµ)Gl,k
si

(sµ)(ũ− û)

+
nσ∑
i,j=1

(σ̃i − σ̂i)(σ̃j − σ̂j)
N,M∑
l,k=1

J l,kσiσj(σ
µ, Gl,k(sµ)uµ)

+ 2
nσ∑
i=1

(σ̃i − σ̂i)
N,M∑
l,k=1

J l,kσiy(σ
µ, Gl,k(sµ)uµ)Gl,k(sµ)(ũ− û)

+

nϕ∑
i,j=1

(ϕ̃i − ϕ̂i)(ϕ̃j − ϕ̂j)
∫ T

0

∫
Ω

(C0,ϕiϕj(ϕ
µ)uµ + dϕiϕj(u

µ;ϕµ)− fϕiϕj(ϕµ))pdxdt

+ 2

nφ∑
i=1

(ϕ̃i − ϕ̂i)
∫ T

0

∫
Ω

(C0,ϕi(ϕ
µ)(ũ− û) + dϕiu(u

µ;ϕµ)(ũ− û))pdxdt

+

N,M∑
l,k=1

J l,kyy (σ,Gl,k(sµ)(uµ))(Gl,k(sµ)(ũ− û))2

+

∫ T

0

∫
Ω

duu(u
µ;ϕµ)(ũ− û)2pdxdt

)
dµ

under the assumption that the differentiation order of d with respect to u and ϕ is
interchangeable. This representation is based on the Hessian matrix for the problem
with semi-linear PDE constraints, which also contains elements that consider the
direction of the PDE constraint, i.e. ũ− û. For the uncertainty approximation with
respect to θ as introduced in Section 2.2 the Hessian matrix representation is needed
only with respect to the parameter direction, i.e.

J(s̃, σ̃, ϕ̃, ũ)− J(ŝ, σ̂, ϕ̂, û) =

 s̃− ŝ
σ̃ − σ̂
ϕ̃− ϕ̂

T

H

 s̃− ŝ
σ̃ − σ̂
ϕ̃− ϕ̂

 .

After reordering the terms in (3.10) with respect to the directions and formulation

of the summation as an vector-matrix product we obtain H =
∫ 1

0
H(µ) dµ of the

form

H(µ) =

 Hss(µ) Hsσ(µ) Hsϕ(µ)
Hsσ(µ) Hσσ(µ) Hσϕ(µ)
Hsϕ(µ) Hσϕ(µ) Hϕϕ

1 (µ) +Hϕϕ
2 (µ) +Hϕϕ

3 (µ) +Hϕϕ
4 (µ)

 . (3.11)
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3. Image based parameter estimation and uncertainty quantification

We can directly give the parts that are independent of ũ− û as

Hss(µ) =

{
N,M∑
l,k=1

J l,kyy (σµ, Gl,k(sµ)uµ)(Gl,k
si

(sµ)uµ, Gl,k
sj

(sµ)uµ) + J l,ky (σµ, Gl,k(sµ)uµ)Gl,k
sisj

(sµ)uµ

}
i,j

Hsσ(µ) =

{
N,M∑
l,k=1

J l,kσjy(σ
µ, Gl,k(sµ)uµ)Gl,k

si
(sµ)uµ

}
i,j

Hσσ(µ) =

{
N,M∑
l,k=1

J l,kσiσj(σ
µ, Gl,k(sµ)uµ)

}
i,j

(3.12)

Hϕϕ
1 (µ) =

{∫ T

0

∫
Ω

(C0,ϕiϕj(ϕ
µ)uµ + dϕiϕj(u

µ;ϕµ)− fϕiϕj(ϕµ))pdxdt

}
i,j

To obtain the other parts of H we replace the difference uτ = ũ− û. As a first step
we consider the PDEs satisfied by (ϕ̃, ũ) and (ϕ̂, û) to find the PDE for uτ . They
are admissible and full fill the PDE constraint, i.e.

ũt + C0(ϕ̃)ũ+ d(ũ; ϕ̃)− f(ϕ̃) = 0, ũ(0) = u0(ϕ̃)

ût + C0(ϕ̂)û+ d(û; ϕ̂)− f(ϕ̂)︸ ︷︷ ︸
=C(ϕ̂,û)

= 0, û(0) = u0(ϕ̂).

By subtraction we have

uτt + C(ϕ̃, ũ)− C(ϕ̂, û) = 0, uτ (0) = u0(ϕ̃)− u0(û).

Hence for the difference (ϕi,τ , uτ ) = (ϕ̃i − ϕ̂i, ũ − û) with the first order Taylor ex-

pansion of the differential operator C(ϕ̃, ũ)−C(ϕ̂, û) =
∫ 1

0
∇ϕi,uC(ϕµ, uµ)(ϕτ , uτ )dµ

we have

uτt +

∫ 1

0

C0(ϕµ) + du(ϕ
µ, uµ)dµ uτ = −

∫ 1

0

C0,ϕi(ϕ
µ)uµ + dϕi(ϕ

µ, uµ)− fϕi(ϕµ)dµϕi,τ

uτ (0) = u0(ϕ̃)− u0(ϕ̂).

Note that this is a linear PDE in uτ and we define the corresponding solution
operator as

Sϕ,u,ψ,v : L2(0, T ; (H1(Ω))∗(Ω))→ W (0, T ), (3.13)

w = Sϕ,u,ψ,vg solves


wt +

∫ 1

0
C0(ϕ+ µψ) + du(ϕ+ µψ, u+ µv)dµw = g

w(0) = 0
∂w
∂νC

= 0

so that we can write

uτ = −Sϕ̂,û,ϕτ ,uτ
∫ 1

0

C0,ϕi(ϕ
µ)uµ+dϕi(ϕ

µ, uµ)−fϕi(ϕµ)dµ︸ ︷︷ ︸
:=vi

ϕτ .

29



3. Image based parameter estimation and uncertainty quantification

This gives us the means to replace uτ in (3.10) by the solution operator, which
linearly depends on ϕτ = ϕ̃− ϕ̂. So for the mixed terms in H we obtain

Hsϕ(µ) = −

{
N,M∑
l,k=1

J l,kyy (σµ, Gl,k(sµ)uµ)(Gl,k
si

(sµ)uµ)Gl,k(sµ)Sϕ̂,û,ϕ
τ ,uτvj

+

N,M∑
l,k=1

J l,ky (σµ, Gl,k(sµ)uµ)Gl,k
si

(sµ)Sϕ̂,û,ϕ
τ ,uτvj

}
i,j

(3.14)

Hσϕ(µ) = −

{
N,M∑
l,k=1

J l,kσiy(σ
µ, Gl,k(sµ)uµ)Gl,k(sµ)Sϕ̂,û,ϕ

τ ,uτvj

}
i,j

.

Finally for the parts with the second order derivatives with respect to the kinetic
parameters ϕ we have

Hϕϕ
2 (µ) =

{
N,M∑
l,k=1

J l,kyy (σ,Gl,k(sµ)(uµ))(Gl,k(sµ)Sϕ̂,û,ϕ
τ ,uτvi)(G

l,k(sµ)Sϕ̂,û,ϕ
τ ,uτvj)

}
i,j

Hϕϕ
3 (µ) =

{∫ T

0

∫
Ω

(C0,ϕi(ϕ
µ) + dϕiu(u

µ;ϕµ))Sϕ̂,û,ϕ
τ ,uτvjpdxdt

}
i,j

Hϕϕ
4 (µ) =

{∫ T

0

∫
Ω

duu(u
µ;ϕµ)(Sϕ̂,û,ϕ

τ ,uτvi)(S
ϕ̂,û,ϕτ ,uτvj)pdxdt

}
i,j

.

Necessary optimality condition For the deduced Hessian matrix H we investigate
the necessary optimality condition (see Tröltzsch (2009, page 220)). If the objective
function components are strictly convex J l,kyy ≥ γl,k > 0 then H2(µ) is positive semi-
definite

xTH2(µ)x ≥
M,N∑
l,k=1

γl,k
(
Gl,k

nϕ∑
i=1

uixi

)2

with null space

N(H2) =

M,N⋂
l,k=1

N
({
Gl,kui

}
i=1,...,nϕ

)
where

ui =

∫ 1

0

Sϕ̂,û,ϕ
τ ,uτ (C0,ϕi(ϕ

µ)uµ+dϕi(ϕ
µ, uµ)−fϕi(ϕµ))dµ .

It follows that the identifiability of our problem, i.e. the existence of unique solu-
tions, directly depends on the observation operator. The terms involving H1, H3, H4

will be small if the residuals J l,ky (Gl,ku)Gl,k are small, since they contain the adjoint
state p, which solves a PDE with the sum of these residuals as right hand side

pt − Cu(ϕ̂, û)∗p =

N,M∑
l,k=1

J l,ky (Gl,k(ŝ)û)Gl,k(ŝ) , p(T ) = 0 (3.15)
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3. Image based parameter estimation and uncertainty quantification

cf. the next to last component in (3.8). If the exact data are attainable for an
optimal choice of the parameters (in the sense that the residuals vanish for exact
data), then these terms will be of the order of the measurements noise. In case of
first order mass action kinetics, C is linear with respect to ϕ and hence H1 vanishes.

3.2.2. Integrated noise model method

We considered the objective function given by the integrated noise model method
(3.3) and (3.4). For this Likelihood functions the objective function is given as

J(σ, s, ϕ, u) =

M,N∑
l,k=1

J l,k1 (σ,Gl,k(s)u) + J l,k2 (σ)

where J1 = − log(L1) and J2 = − log(L2). It is clear that for both components
of the objective function of the integrated noise model method denoted by Hint.(µ)
changes only with respect to σ compared to the Hessian (3.11). Hence we have

Hmn
int.(µ) = Hm,n(µ)

for m,n ∈ {s, ϕ} and Hm,n(µ) are the submatrices calculated above with J = w1J1.
Furthermore as J2 is independent of s and ϕ this holds also for n = σ and m ∈ {s, ϕ}.
Hence we have to consider only the second derivative of J with respect to σ. We
have

Hσσ
int. =

{
M,N∑
l,k=1

w1J
l,k
1σiσj

+ w2J
l,k
2σiσj

}
i,j

and all the considerations made in the previous sections also hold for the integrated
noise model approach. Up to this point we derived the Hessian matrix for the given
spatio-temporal model, the observation operator and the imaging specific integrated
noise model likelihood function as stated in Problem 3.1. The last point left to
address is the comparison between reduced and full formulation of the optimization
problem.

3.2.3. Full versus reduced formulation

In the following we compare the formulation (3.11) of the Hessian with the formu-
lation we obtained when we considered the reduced optimization problem as it is
commonly done for ODEs (see Section 2.3.2). By eliminating the state constraint
we obtain the reduced formulation of (3.5) as

min
θ=(σ,s,ϕ)∈Θ

j(θ) with j(θ) = J(σ,G(s)ξ(ϕ)) (3.16)

using the parameter-to-state map

ξ : Rnϕ → W (I),

u = ξ(ϕ) solves


ut + C0(ϕ)u+ d(u;ϕ) = f(ϕ)

u(0) = u0(ϕ)
∂u
∂νC

= 0.
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3. Image based parameter estimation and uncertainty quantification

With stationarity at the MLE ∇θj(σ̂, ŝ, ϕ̂) = 0 we obtain, for any θ̃ = (σ̃, s̃, ϕ̃) ∈ Θ,

j(σ̃, s̃, ϕ̃)− j(σ̂, ŝ, ϕ̂) =

 s̃− ŝ
σ̃ − σ̂
ϕ̃− ϕ̂

T ∫ 1

0

∇2
θj(s

µ, σµ, ϕµ) dµ

 s̃− ŝ
σ̃ − σ̂
ϕ̃− ϕ̂

 (3.17)

where obviously
∇2
θj
m,n(sµ, σµ, ϕµ) = Hm,n(µ)

for m,n ∈ {s, σ} and Hm,n(µ) as in (3.12) if we set uµ = ξ(ϕµ). For linear ξ this is
exact for non-linear ξ there is an arbitrary approximation error due to the fact that
uµ = ξ(ϕ̂) + µ(ξ(ϕ̃)− ξ(ϕ̂)) in (3.12).

Next we consider the derivatives of j which contain mixed terms with ϕ as in (3.14).
In both cases the derivative of uµ with respect to ϕ is needed. We use the fact that
the parameter-to-state map satisfies the PDE constraint{

ξ(ϕ)t + C0(ϕ)ξ(ϕ) + d(ξ(ϕ);ϕ) = f(ϕ)

ξ(ϕ)(0) = u0(ϕ).

Hence the first derivative with respect to ϕi can be given in terms of an solution
operator for this PDE. We obtain

Sϕ,u,0,0 : L2(0, T ; (H1(Ω))∗)→ W (0, T ),

v = Sϕ,u,0,0g solves

{
vt + (C0(ϕ) + du(u;ϕ)) v = g

v(0) = u0(ϕ)

so we can write

ξϕi(ϕ) = −Sϕ,u,0,0 (C0ϕi(ϕ)ξ(ϕ) + dϕi(ξ(ϕ);ϕ)− fϕi(ϕ)︸ ︷︷ ︸
:=wi

.

This gives us the means to derive

Hsϕ
int. =

{
N,M∑
l,k=1

J l,kyy (σµ, Gl,k(sµ)ξ(ϕµ))(Gl,k
si

(sµ)ξ(ϕµ))Gl,k(sµ)Sϕ̂,û,0,0wj

}
i,j

Hσϕ
int. =

{
N,M∑
l,k=1

J l,kσiy(σ
µ, Gl,k(sµ)ξ(ϕµ))Gl,k(sµ)Sϕ̂,û,0,0wj

}
i,j

.

These terms are equal to (3.14) except for the definition of uµ as mentioned before.
For the derivative with respect to ϕ we also need the second order derivative of ξ(ϕ)
with respect to ϕ. With the same reasoning as for the first derivative we can write

ξϕiϕj(ϕ) = −Sϕ,u,0,0
(
C0ϕiϕj(ϕ)ξ(ϕ) + dϕiϕj(ξ(ϕ);ϕ)− fϕiϕj
+ (C0ϕi(ϕ) + dϕiu(ϕ, ξ(ϕ)))ξϕj(ϕ)

+ (C0ϕj(ϕ) + dϕiu(ϕ, ξ(ϕ)))ξϕi(ϕ)

+ duu(ϕ, ξ(ϕ))ξ(ϕ)ϕiξ(ϕ)ϕj

)
=: −Sϕ,u,0,0wi,j(ϕ).

32



3. Image based parameter estimation and uncertainty quantification

This yields

jϕiϕj(s
µ, σµ, ϕµ) =

N,M∑
l,k=1

J l,kyy (σµ, Gl,k(sµ)ξ(ϕµ))(Gl,k(sµ)Sϕ
µ,uµ,0,0wi)(G

l,k(sµ)Sϕ
µ,uµ,0,0wj)

+

M,N∑
l,k=1

J l,ky (σµ, Gl,k(sµ)ξ(ϕµ))Gl,k(sµ)ξϕiϕj(ϕ
µ)

=

N,M∑
l,k=1

J l,kyy (σµ, Gl,k(sµ)ξ(ϕµ))(Gl,k(sµ)Sϕ
µ,uµ,0,0wi)(G

l,k(sµ)Sϕ
µ,uµ,0,0wj)

−
∫ T

0

wi,j(ϕ
µ)pµdt .

where, similarly to the next to last equation in (3.8), we have defined pµ as the weak
solution to the dual problem{

pµt − Cu(ϕµ, uµ)∗pµ =
∑N,M

l,k=1 J
l,k
y (σ,Gl,k(sµ)ξ(ϕµ))Gl,k(sµ)

pµ(T ) = 0.

So up to the distinction in the definition of uµ as discussed above, the two difference
representations coincide. In other words, the Hessian at the solution (corresponding
to formally setting µ, ϕτ , uτ = 0 instead of integration over the interval (0, 1)) of
course has to be the same if reduction is done after derivation from the PDE con-
strained problem and if the reduced formulation is differentiated.

We derived the Hessian matrix based difference representation for the semi-linear
model including the observation operator and the imaging specific likelihood function
to address Problem 3.1. Subsequently we compared the obtained matrix to the
representation obtained by the reduced problem formulation and found that in case
of non-linearity in the parameter-to-state map they do not coincide. They differ
with respect to the definition of uµ. In case of the constrained optimization uµ =
ξ(ϕ̂) + µ(ξ(ϕ̃) − ξ(ϕ̂)), i.e it is given as a direction in the function space. For the
reduced formulation uµ = ξ(ϕ̂ + µ(ϕ̃ − ϕ̂)), i.e. it is given as a direction in the
parameter space.

3.3. Profile Likelihood

The previously derived Hessian matrix can be used for confidence interval calcula-
tion as in (2.10). This local approximation, however, is not reliable for non-linear
problems or global uncertainty bounds. The PL as introduced in Section 2.2.3 is
a tool to quantify the uncertainty of the MLE and to determine global uncertainty
bounds. We give the formulation in terms of the reduced problem (3.16) here (Hock
et al., 2013; Lockley et al., 2015). The MLE is calculated for a one-dimensional sub-
space of the parameter space. In our case we calculate the profile likelihood for the
unknown parameters of interest, i.e. θi. For parameter θi, pl(θi) is computed by the
re-optimization of all parameters θj 6= θi along the profile of parameter θi (Murphy
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3. Image based parameter estimation and uncertainty quantification

et al., 2000):

pl(θi) = max
θj 6=i

l(θ) = exp

(
−min

θj 6=i
j(θ)

)
. (3.18)

The minimization must full fill the same constraints as in (3.16). This can be re-
peated for all parameters θi, i = 1, . . . , nθ, and allows the evaluation of the likelihood
ratio R(θi) = plc(θi)/l(θ̂) for the individual parameters. Based on the likelihood ra-
tio R(θi) we determine globally valid confidence intervals for the parameter θi,

CIα(θ̂i) =

{
θi

∣∣∣∣R(θi)≥ exp

(
−δα

2

)}
,

with confidence level α and the corresponding likelihood ratio threshold δα = χ2(α, 1)
(Murphy et al., 2000). In the following we want to analyse the confidence intervals
obtained with the Hessian approximation and the PL for the previously introduced
Example 2.1 with simulated data.

3.3.1. Mathematical model

We considered the Example 2.1 for ϕ = (D,α, J)T , Ω = [−7, 7][µm] and I =
(0, 100)[s] with the model equation

ut −D4u+ αu2 = J
2πρ

exp
(
−x2

ρ2

)
in Ω× I

∂u
∂νC

= 0 on ∂Ω× I
u(0) = u0 in Ω× {t = 0}.

(3.19)

The steady state of the model

u∞(x) = A
x2

0

(x+ x0)2

with

A =
3

√
3

2αD

(
J

2πρ
exp

(
−x

2

ρ2

))2/3

and x0 =

√
6D

αA
.

Artificial data To obtain data close to the real application situation for which the
model was developed, we produced simulated data similar to the data given in Sec-
tion 5.1.2. We considered three data sets: a steady state profile, absolute molecule
numbers and a FRAP measurement. Therefore, we calculated the steady state for
the parameter values given in Figure 3.2A), added additive normal distributed noise
with ε1 ∼ N (0, 0.1) and scaled the profile to one. Additionally, we obtained the
absolute molecule number by integration of the profile. For the FRAP measurement
we used the steady state value as initial condition but set all values in the region
Q = [−2.7µm, 2.7µm] to zero. Consequently, we simulated the model until T = 30
and calculated at t = {1, 3, 5, 8, 10, 12, 18, 20, 30}[s] the overall intensity of the pro-
file scaled by the same constant as the steady state profile. The artificial data is
depicted in Figure 3.2B)-C).
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J 3:02 [mol:7m=s]
; 1:83 [7m]
s 1.44 [u.i.]

Figure 3.2.: artificial data for example 2.1 A) Parameters used to perform
the data simulation. B) Mean intensity profile. The steady state of the model
was calculated and additive normal noise ε ∼ N (0, 0.1) was added and the profile
scaled to one. From those measurements the mean and standard deviation was
calculated. Furthermore the mean protein abundance and standard deviation
was calculated based on those replica. C) FRAP measurements after full tip
bleaching. Again the model was simulated and to each replica additive normal
noise ε ∼ N (0, 0.1) was added and the profile scaled. The red line is the output
of the model after parameter estimation.

Before we performed profile likelihood calculation on this data we had to establish
the parameter estimation process. Therefore we introduced three different observa-
tion operators g, one for each measurement. First we considered the mean intensity
profiles. The profiles are the steady state concentrations scaled to one. Hence the
first observation operator is given as

G1(u∞) =
u∞(x;ϕ)

max
x

u∞(x;ϕ)

here u∞ denotes the stationary limit of the model. Measurements were taken at 60
equally spaced spatial points xk ∈ [−7, 7][µm] and k = 1, . . . , 60. We assumed that
the measurement error is normally distributed with standard deviation obtained
from the measurements. Hence the objective function is given as

J1(θ) =
1

2

60∑
k=1

log(2πσ2
1,k) +

(y1,k −G1,k)
2

σ2
1,k

.

For the total protein abundance in steady state we consider the integral over the tip
region and obtain the observation operator.

G2(u∞) =

∫ 7

−7

u∞(x;ϕ)dx.

Again we assumed that the measurement error is normally distributed with standard
deviation obtained from the measurements. Hence the objective function is given as

J2(θ) =
1

2
log(2πσ2

2) +
(y2 −G2)2

σ2
2

.
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Finally for the FRAP measurements we had to consider a scaled version of the
dynamic time dependent models. Hence we obtained

G3(p, p∞; s) =

∫
Q

su(x, t;ϕ)dx.

Measurements with tk ∈ [0, 30][s] with k = 1, . . . , 9 were taken. Again we assumed
that the measurement error is normally distributed with standard deviation obtained
from the measurements. Hence for the data points tk the objective function is given
as

J3(θ) =
1

2

10∑
k=1

log(2πσ2
3,k) +

(y3,k −G3,k)
2

σ2
3,k

.

For the estimation process we consider different combinations of the three measure-
ments with the objective function

J(θ, y) =
M∑
i=1

Ji(θ).

The results of the parameter estimation performed with this objective function are
shown in Figure 3.2.

Implementation The model was implemented in MATLAB with a finite difference
scheme using a step length of h = 0.01µm in the spatial variable and then the re-
sulting ODE was solved with the Sundials Toolbox. 100 multi-starts with a latin
hypercube sampling of the parameter space were performed with the PESTO Tool-
box, developed in the group of data-driven dynamical modelling, to obtain the MLE
and the corresponding parameter θ̂. The first and second order sensitivity equa-
tions were also implemented in MATLAB using the toolbox AMICI (http://amici-
developer.github.io/AMICI/ ). Based on the second order sensitivity equations the
Hessian matrix was calculated. The optimization based profile calculation was per-
formed with the PESTO Toolbox.

3.3.2. Uncertainty analysis

For the uncertainty analysis of all five parameters we used three different data sets:
the full data set (M=3), the steady state data set (M=2) and the steady state profile
(M=1). This combination yielded identifiable parameters, practical non-identifiable
parameters and structural non-identifiable parameters (see Table 3.1).

We found that for the identifiable parameters the Hessian Matrix approximated the
confidence intervals well and yielded a similar interval as the PL. For the practical
non-identifiable parameters the Hessian was a good approximation close to the opti-
mum, however, it overestimated the size of the confidence interval. For the structural
non-identifiable parameters the Hessian approximation gave the same result as the
profile likelihood in the set parameter bounds. As a representative illustration we
considered the PL and the resulting confidence intervals for the parameter α shown
in Figure 3.3.
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Table 3.1.: Parameter identifiability for Example 2.1 Comparison of the
identifiability of the five parameters for the different data sets. The identifiability
of a parameter was analyzed based on the PLs calculated with the optimization
based approach..

Parameter M=3 M=2 M=1

D identifiable prac. non-identifiable prac. non-identifiable

α identifiable prac. non-identifiable struc. non-identifiable

J identifiable prac. non-identifiable struc. non-identifiable

ρ identifiable identifiable identifiable

s identifiable struc. non-identifiable struc. non-identifiable

,
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Figure 3.3.: Parameter identifiability analysis for Example 2.1 for
parameter α PL obtained by the optimization based approach for parameter α

The introduced optimization based profile likelihood calculation addresses Problem
3.2 as it facilitates the rigorous definition of uncertainty bounds compared to local
approximative methods like the approximation with the Hessian matrix. Unfortu-
nately the calculation procedure includes a full solution of the optimization problem
for a fixed number of grid points in each parameter direction. For computationally
demanding problems with PDEs this method is rather insufficient. In the next chap-
ter we introduce a more efficient profile calculation procedure based on the previously
deduced Hessian formulation (3.11) and compare the uncertainty quantification for
the parameters based on the Hessian approximation, the profile likelihood for the
reduced system and the newly introduced efficient profile calculation methods.
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4. Efficient profile likelihood
calculation

In the last chapter we introduced the existing methods to calculate PLs based on
the completely reduced form of the likelihood for semi-linear PDEs. It needs the re-
peated solutions of the optimization problem, which is very time consuming or even
infeasible for large PDE systems. To circumvent this repeated optimization Chen
& Jennrich (2002) introduced simulation based PL calculation. The method proved
to be efficient and accurate in the case of known model solution and corresponding
Hessian. In this chapter we want to extend the method to the PDE constraint case
to develop a more efficient method to calculate PLs for parameter estimation prob-
lems with semi-linear PDE constraints.

First we give the key idea behind simulation based PL calculation and the problems
we address in this chapter. We introduce the formulation of the method for PDE
constraints in the full and reduced form. Following the theoretical considerations we
discuss approximations for the PL calculation in case of unknown Hessian matrix.
We conclude this chapter by an evaluation of the PL calculation performance an
application examples.

Preliminary results of the evaluation were discussed in the master thesis by Frank
2013, which was co-supervised by the author of this thesis. The results of this
chapter have been published recently in the paper of Boiger et al. (2016), which was
co-authored by the author of this thesis.

4.1. Introduction and problem statement

The PL has been introduced as a constrained maximization of the likelihood function
with an scalar equality constraint on the parameter of interest. In Chen & Jennrich
(1996, 2002) the PL calculation is considered to be a constrained maximization of
the logarithm of the likelihood. For comparison with the previously introduced
method we consider it in terms of a minimization of the negative logarithm of the
likelihood. The model solution is assumed to be given, i.e. the reduced parameter
estimation formulation is considered. For j = − log(l(θ)) we obtain

θc = argmin
θ∈Θ

j(θ)

s.t. g(θ) = c,
(4.1)

in which g is the profile function. To obtain plc(θi) as introduced in Section 2.2 with
θi the i-th component of θ then g(θ) = θi. In comparison to the standard formu-
lation the consideration of g also allows the consideration of non-linear parameter
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combinations. For example identifiability of products of parameter components can
be considered, which is often useful for scaled observations.

The major drawback of the optimization based approach is that it only implicitly
uses the knowledge about parameter dependencies given by the model and therefore
in each step an optimization is needed to reach the PL parameter value. Chen &
Jennrich (2002) introduced a method which approximates the curve in the parameter
spaces needed for the profile calculation based on the local structure of the objective
function given by the Hessian of the reduced objective function (see Figure 4.1). In
the following the parameter curve for any c is denoted by θc and we introduce the
Lagrangian multiplier λc such that, we obtain the optimal points of (4.1) as solutions
of

∇θj(θc) + λc∇θg(θc) = 0

g(θc) = c.
(4.2)

Figure 4.1.: Comparison of optimization and simulation based profile
calculation A) Optimization based PL calculation procedure. In one parameter
direction a fixed step is taken and the the other parameters are optimized to
obtain the point on the profile. B) Simulation based PL calculation method. The
curve in parameter space is given by the direction of (θ̇, λ̇)T .

If we differentiate (4.2) with respect to c it has to satisfy the ordinary differential
equation (

∇2
θj(θc) + λc∇2

θg(θc) ∇θg(θc)
∇θg

T (θ) 0

)(
θ̇c
λ̇c

)
=

(
0
1

)
(4.3)

where θ̇c and λ̇c are the derivatives with respect to c. The solution of this ODE
yields the parameter curve θc and in turn plc(g(θ)) for any c.
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4.1.1. Problem statement

The simulation based PL calculation by Chen & Jennrich (2002) considers an opti-
mization problem without model constraints. In the context of uncertainty quantifi-
cation for parameter optimization problems as discussed in this work the model is
always given as constraint. Hence the first problem to be addressed is the following

Problem 4.1 (Formulation of simulation based PL calculation). Formulate the
simulation based PL calculation method for semi-linear PDE constraint problems.

The simulation based PL calculation relies on the local structure of the objective
function given by the Hessian matrix. In most applications the calculation of the
exact Hessian matrix is infeasible and Chen & Jennrich (2002) introduced an ap-
proximative scheme. The second problem addressed approximation methods for the
PDE constraint case.

Problem 4.2 (Hessian approximation for PL calculation). Introduce and evaluate
efficient methods to approximate the Hessian for the approximative, simulation based
PL calculation.

These problems will be discussed and solved through the chapter and evaluated on
the previously introduced application example.

4.2. Differential equation based profile calculation

Alternatively to applying the approach (4.3) directly to the reduced form of the
maximization problem we want to consider the PDE constrained setting of Section
3.1.3 and derive a system of ODEs for the profiles as functions of c. Therefore we
consider (4.1) for the PDE constrained problem and obtain θc as optimal point of

min
s∈Rns ,σ∈Rnσ ,ϕ∈Rnϕ ,u∈W (I)∩L∞

J(σ,G(s)u)

s.t.


ut + C(u;ϕ) = f(ϕ) in Ω× I
∂u
∂ν

= 0 on ∂Ω× I
u(0) = u0(ϕ) on Ω× {t = 0}
g(θ) = c.

(4.4)

with θ = (σ, s, ϕ). We will see in the following that the distinction between model
parameters ϕ, observable parameters s and noise parameters σ leads to a simplified
notation for the introduced Hessian matrix. The Lagrange function L̃ for the result-
ing constrained minimization problem can be written in terms of the Lagrangian L
of the parameter optimization problem introduced in Section 3.2, i.e.

L̃(θ, u, p, λc) = L(θ, u, p) + λc(g(θ)− c) (4.5)

Hence the first order optimality conditions read as

∇θL(θc, u, p) + λc∇θg(θc) = 0

∇uL(θc, u, p) = 0

∇pL(θc, u, p) = 0

g(θc) = c.
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Differentiating with respect to c we obtain the following system for the evolution of
(θc, u, p, λc)

B


θ̇c
u̇
ṗ

λ̇c

 =


0
0
0
1


with

B =


∇2
θL(θc, u,p) + λc∇2

θg(θc) ∇θ∇uL(θc, u, p) ∇θ∇pL(θc, u, p) ∇θg(θc)
∇u∇θL(θc, u, p) ∇2

uL(θc, u, p) ∇u∇pL(θc, u, p) 0
∇p∇θL(θc, u, p) ∇p∇uL(θc, u, p) 0 0
∇θg

T (θc) 0 0 0

 .

For singular B this is a differential algebraic equation of order one or higher. If B
is regular we obtain an ordinary differential equation by inversion of B. Note that
for linear parameter functions g the Hessian of g equals to zero and the upper three
times three part of the matrix correspond to the Hessian deduced in Section 3.2.1.
This formulation includes the derivative of the PDE solution u and the adjoint state
p with respect to c. Both are not needed for the calculation of PL with respect to
the parameter and we proceeded to consider B only in terms of θ. This can be done
by consideration of H as defined in (3.11), i.e.(

H + λc∇2
θg(θc) ∇θg(θc)

∇θg(θ)T 0

)(
θ̇c
λ̇c

)
=

(
0
1

)
(4.6)

The solution of the differential equation yields the parameter curve θc and therefore
the profile likelihood PLc(g(θ)).
Following the results from Section 3.2.3 we found that the formulation in terms of
the reduced and the full problem coincide up to the definition of uµ. In case of
non-linearity we saw a difference between both approaches. Hence we conclude that
the PL calculation based on the reduced formulation (4.3) is in the non-linear case
only an approximation to the method. Therefore, the approximation formulation
for simulation based PL calculation has to be considered.

4.3. Approximation properties

For the Hessian matrix, which considers the PDE constraints, the solution of the
differential equation (4.6) yields an exact likelihood profile. If the Hessian is con-
sidered for the reduced problem formulation, we find that this no longer holds for
non-linear parameter-to-state maps. Furthermore, the calculation of the exact Hes-
sian matrix is often computationally very demanding or infeasible. For the cases
without Hessian matrix an approximation with a positive semi-definite matrix W
can be used (Chen & Jennrich, 2002). The approximative differential equation is
given as (

−W (θc) + λc∇2
θg(θc) ∇θg(θc)

∇θg(θ)T 0

)(
θ̇c
λ̇c

)
=

(
−γ∇θl(θ)

1

)
. (4.7)

Here γ∇θl(θ) with γ > 0 is a correction term, which for increasing γ, directs the
solution back to the true solution if a derivation occurs. For positive, semi-definite
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W it can be shown that the approximation converges to the PL, if γ is chosen big
enough (Chen & Jennrich, 2002).

4.3.1. Hessian approximation schemes

Then we address the question how to proceed when the Hessian is approximated.
The approximation is needed if the calculation of the Hessian is infeasible as it
needs the second order sensitivity equations of the model. Chen & Jennrich (2002)
proposed the identity matrix as a good choice for regression models. In the context
of PDEs, however, we found that this approximation is not suitable. Our studies
showed that it completely fails in the presence of non-identifiable parameters (see
Table 4.1). For the identity matrix the correction term has to be chosen very large,
which results in a computationally demanding, stiff ODE system. In the following
we consider four approximation schemes:

• the identity matrix

• the exact Hessian for s and σ and the Identity matrix for ϕ

• the exact Hessian for s and σ and Hϕϕ
2 for ϕ

• the Hessian H and Hϕϕ
2 for ϕ.

In the following we discuss the corresponding matrices W in detail.

For the approximation with the identity matrix we obtained

W1(θ) =

1
. . .

1

 .

For the other approximations we recalled H =
∫ 1

0
H(µ) dµ,

H(µ) =

 Hss(µ) Hsσ(µ) Hsϕ(µ)
Hsσ(µ) Hσσ(µ) Hσϕ(µ)
Hsϕ(µ) Hσϕ(µ) Hϕϕ

1 (µ) +Hϕϕ
2 (µ) +Hϕϕ

3 (µ) +Hϕϕ
4 (µ)


with sub-matrices given as in Section 3.2.1. It becomes clear that Hss, Hsσ, Hσσ can
be calculated independently of the PDE. Especially, if the objective function and the
observation operator full fill the assumptions made in the beginning of Section 3.1.
Hence, the second approximation we propose is

W2(θ) =


Hss(µ) Hsσ(µ)
Hσs(µ) Hσσ(µ)

1
. . .

1

 . (4.8)

We expect this approximation to perform well for non-identifiable noise or scaling
parameters. For strongly non-linear kinetic parameters it has the same problems as
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the identity matrix.

To improve the approximation results for the kinetic parameters we considered the
submatrix Hϕϕ

2 as introduced in Section 3.2.1. This matrix contains the second
derivative of the objective function multiplied by the product of the first-order
derivatives with respect to ϕ. This matrix is often called Fisher information ma-
trix (see Section 2.2.3). To calculate Hϕϕ

2 we calculated vi by forward sensitivity
equations and set Sϕ,u,0,0(C0,ϕ(ϕ)u− dϕ(ϕ, u) + fϕ(ϕ)) as done in Section 3.2.3. We
obtained the two approximations

W3(θ) =


Hss(µ) Hsσ(µ) 0 . . . 0
Hσs(µ) Hσσ(µ) 0 . . . 0

0 0
...

... Hϕϕ
1 (µ)

0 0

 (4.9)

and

W4(θ) =

 Hss(µ) Hsσ(µ) Hsϕ(µ)
Hσs(µ) Hσσ(µ) Hσϕ(µ)
Hsϕ(µ) Hσϕ(µ) Hϕϕ

1 (µ)

 . (4.10)

Following the considerations in Section 3.2.1 all matrices proposed are positive semi
definite and can be used as approximations according to Chen & Jennrich (2002).

4.4. Performance evaluation

In the following we evaluated the performance of the introduced simulation based
PL calculation. We considered three evaluation criteria:

• efficiency with respect to the number of PDE solutions

• accuracy compared to the optimization based profile calculation

• correctness of decision regarding identifiability.

All three points were evaluated for the exemplary parameter estimation problem
introduced in Section 2.1 for simulated data introduced in Section 3.3. The perfor-
mance is evaluated on all possibly occurring identifiability problems. The application
on real data is discussed in Chapter 5 and Chapter 6.

4.4.1. Correctness of identifiability analysis

As the first evaluation criteria we considered the precision of the decision regarding
the identifiability. This is the minimal requirement every PL calculation should fulfill
as it is the key tool for practical identifiability analysis (Raue et al., 2009). We used
the standard optimization based process to calculate PLs for all five parameters on
the full data set (M=3), the steady state data set (M=2) and only the steady state
profile (M=1). This combination yielded identifiable parameters, practical non-
identifiable parameters and structural non-identifiable parameters (see Table 4.1).

43



4. Efficient profile likelihood calculation

We subsequently performed the profile calculation with the approximation W1-W4

on the same data sets and compared the obtained results regarding the identifiability
of the parameters.
We found that for the identifiable case (M = 3) all methods gave the right results,
even though the profiles obtained by W1 and W2 were considerably narrower than
those obtained by the benchmark calculation. In case of practical and structural
non-identifiability, W3 and W4 still came to the right decisions while W1 and W2

completely failed. This also explains why Chen & Jennrich (2002) proposed the
identity matrix as a good approximation as they only considered identifiable pa-
rameters. In the presence of possible non-identifiability, however, it is a bad choice.
Also the variation of the adaption parameter γ between values of 1e − 3 up to 1e5
did not yield other results for W1 and W2.

4.4.2. Accuracy of the method

As the next point we analyzed the accuracy of the obtained profile. A key aspect
of uncertainty quantification is the calculation of the confidence interval bounds,
which can be obtained from the profile likelihood as explained in the Background
Section 2.2. Therefore, a good approximation of the profile likelihood should yield
the same confidence bounds like the optimization based approach. To compare the
accuracy of the calculated profiles we defined 20 points within the confidence region
of each parameter. We obtained the confidence interval by the optimization based
approach. For 20 points we calculated the square distance of the calculated PL
to the benchmark PL. In case that the points where not inside the approximated
profiles, the value was set to zero at this point (maximal distance possible). The
results are displayed in Figure 4.2.

We found that for W3 and W4 the method performed well and always yielded errors
below 1 for all measurement situations. In contrast W1 and W2 completely failed
the test. The profiles did not resemble the shape of the Benchmark. This could be
slightly tuned by choosing high values of γ but even then the profiles were much to
narrow.

4.4.3. Efficiency of the method

The last aspect we analyzed was the performance with respect to the calculation
efficiency. As we will apply the method to problems with computationally demand-
ing objective function, we assumed that the objective function evaluation was the
bottle neck in this setup. Therefore, we evaluated the method with respect to the
number of objective function evaluations, which is proportional to the CPU time.
The results are shown in Figure 4.3.
We found that for almost all parameters the number of objective function values
needed lay several orders of magnitudes below the number of function evaluations
needed for the optimization based method. For W1 and W2, however, this result is
meaningless as the obtained profiles do not resemble the profiles used as benchmark.
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Table 4.1.: Parameter identifiability for Example 2.1 Comparison of
the results regarding identifiability of the model parameters for the different data
set with respect to the approximation schemes. For identifiable parameters all
approximations give the right decision for non-identifiability, however, W1 and
W2 failed.

M=3

Benchmark W1 W2 W3 W4

D identifiable X X X X

α identifiable X X X X

J identifiable X X X X

ρ identifiable X X X X

s identifiable X X X X

M=2

Benchmark W1 W2 W3 W4

D practical non-identifiable × × X X

α practical non-identifiable × × X X

J practical non-identifiable × × X X

ρ identifiable X X X X

s structural non-identifiable × × X X

M=1

Benchmark W1 W2 W3 W4

D practical non-identifiable × × X X

α structural non-identifiable × × X X

J structural non-identifiable × × X X

ρ identifiable X X X X

s structural non-identifiable × × X X
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Figure 4.2.: Accuracy evaluation for the new method A) Error with
respect to the standard optimization based approach for measurement situation
M=3, M=2 and M=1. B) Profiles for the parameter α obtained for the three
measurement combinations. For M = 3 the parameter is identifiable and with
the reduction of measurements the parameter becomes practical non-identifiable
and the structural non-identifiable. Approximation W3 and W4 nicely reproduced
the profiles.

4.5. Conclusion

In the frequentist setting of parameter estimation profile likelihoods are the most
reliable method for practical identifiability analysis and uncertainty quantification.
Unfortunately the computation time for the standard optimization based profile
calculation renders the application to semi-linear, computation heavy PDE models
infeasible. We addressed this problem by a combination of the Hessian deduced
in Chapter 3 with the ODE formulation of the profile calculation problem, which
yielded an simulation based PL calculation method which can be widely applied
to inverse problems with semi-linear PDEs. To reduce computation time we de-
veloped and evaluated approximations of the original method, which do not need
the calculation of the exact Hessian. This enabled the profile likelihood analysis
of estimation problems with computational expensive models. For the considered
application example with a relatively low computation time the optimization based
profile calculation took several hours in contrast to minutes used by the new method.

For the simulation based PL calculation we considered three key aspects: the ODE
formulation of the constrained optimization problem, the approximation schemes
and the evaluation on an application example. We found that with the Hessian
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Figure 4.3.: Efficiency evaluation for the new method A) Number of
function evaluations for the standard approach, the new method and the consid-
ered approximations with data set M= 3, data set M = 2 and data set M = 1.
We observed that in nearly all situations the approximations need less objective
function evaluations than the standard approach. B) Table with percentage of
function evaluations used by the approximation W4 compared to the optimiza-
tion based method. We observed that in nearly all cases less than 20% of the
evaluation needed for the optimization based approach are required.

matrix introduced in Chapter 3 the constrained optimization problem considered
during the profile calculation could be formulated as an ODE, especially in the case
of identifiable parameters. For most applications, however, to calculate Hessian is
computationally demanding and not all parameters might be identifiable. In this
case an approximation has to be considered and we introduced several possible ap-
proximations of the Hessian matrix based on the Fisher Information matrix. Finally
the evaluation of the method on an application motivated 1D semi-linear PDE pa-
rameter estimation problem showed its impressive improvement of calculation speed
in comparison to the standard optimization based approach. Furthermore, it be-
came apparent that the best approximation choice is the Fisher Information matrix
regarding profile accuracy and correctness of decisions regarding the identifiability
of parameters.

Based on the numerical results of this chapter we can conclude that the newly de-
veloped efficient profile calculation method outperforms the standard optimization
based approach by regarding the number of function evaluations. Despite this in-
crease in calculation speed the accuracy and the correctness of decisions regarding
parameter identifiability is comparable to that of the standard approach. From an
application point of view we can conclude that the full Hessian is not needed to
obtain reliable results but can be approximated with the often easy to obtain Fisher
Information matrix. The Fisher information matrix showed as good a performance
as an approximation to the Hessian.
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Recapitulating the research questions posed in Section 4.1.1 the results obtained
in this chapter answer the questions. Based on the efficient profile calculation for
ODEs we introduced the method for semi-linear PDEs. Furthermore, we proposed
Hessian matrix approximations and evaluated them on an application motivated
example, which showed an impressive improvement of calculation speed compared
to the standard approach.

From a numerical point of view the efficient implementation of the Hessian matrix
remains open. Especially, for more complex models this might be computationally
very demanding and hamper the profile calculation. Another open question is the
formulation of the problem as ODE is the matrix B is not invertible, i.e. in case
of non-identifiable parameters. In this case the formulation (4.6) becomes an DAE
instead of an ODE and the DAE has to be solved numerically. In this study we
used the approximation formulation (4.7) and the pseudo inverse in case of non-
identifiable parameters, which worked acceptable well.

In addition to the improvements of computation time and the consideration of the
DAE equations future studies should be addressed to find an optimal γ value. Up to
this point γ is chosen by hand but a more structural choice should be possible. For
large values the ODE becomes increasingly stiff resulting in increased computation
time but small values result in inaccurate profiles. The optimal choice should be a
trade off between speed and accuracy. Furthermore, an adaptive update scheme for
γ could be possible depending on the accuracy of the Hessian matrix approximation.
Parameter estimation and uncertainty quantification for semi-linear PDE models,
e.g in the field of image based systems biology, strongly relies on efficient methods
for semi-linear, computational demanding PDE problems. The introduced efficient
profile calculation can address this demand. In the following chapters we will apply
the method during parameter estimation and model selection for two biological
problems.
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5. Single cell images: growth length
regulation in fission yeast

In the previous sections we developed novel methods for image based parameter
optimization and uncertainty analysis. In this chapter we apply these methods to
a series of models for the formation of chemical gradients, which occur in a number
of biological processes. A convenient method to measure these gradients is the at-
tachment of a fluorescent label to the gradient forming protein. This protein is then
expressed in each cell with the attached label and the cells can be imaged. From
those single cell images information about the gradient can be extracted and it can
be used to estimate parameters of the gradient formation process. We considered
the Pom1p gradient formation as an example of such an image based estimation
process. We especially considered different models describing competing biological
hypothesis regarding the Pom1 gradient formation. We estimated the model param-
eters based on the experimental data, assess the parameter uncertainties and finally
perform model selection to gain insight in the gradient formation process.

We begin by introducing the biological background and the measurements obtained
by (Saunders et al., 2012). In Section 5.2 we introduce four Pom1 gradient formation
models considered in this work. In Section 5.3 we perform the parameter estimation
for the models and the given data. And in Section 5.4 we finally selected the best
model based on the given data set. All results in this chapter were published in the
paper of Hross et al. (2016).

5.1. Introduction

In the following we will give the biological background for the Pom1 gradient for-
mation, the data considered and then state the research problem of this chapter.

5.1.1. Biological Background

From bacteria to mammalian cells we observe a remarkably constant characteristic
cell size, which is attuned to the tissue structure and function and strongly influences
organs and organ sizes. To achieve such tight control of the size, the process of
cell growth and division has to be controlled in a precise manner. For the model
organism fission yeast Schizosaccharomyces pombe this is realized by Pom1 (Almeida
& Tyers, 2009; Moseley et al., 2009; Martin & Berthelot-Grosjean, 2009). Fission
yeast is a rod shaped eucaryotic cell, which divides along the middle axis to form two
symmetrical daughter cells. It has been discovered that the polarity factor Pom1
forms a gradient in the cell membranes. Its concentration is strongest at the tips
and then dilutes towards the cell middle. As long as the cell is still small Pom1
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inhibits the cell division mechanism positioned at the cell middle. When the cell
grows, however, the concentration of Pom1 at the cell middle decreases and the
cell division mechanism becomes activated. See Figure 5.2B) for a schematic of the
process.

5.1.2. Measurement data

For parameter estimation and model selection purposes we use the single cell image
data published by Saunders et al. (2012). Four types of measurement data are
considered here and discussed in the following.

Mean intensity curves For the mean intensity curves 98 cells were imaged and for
each cell a cortical mask, i.e. a line along the cell membrane, was defined. Along
this mask the Pom1 intensities were measured and as each cell has two independent
tips, 196 intensity profiles were collected. Based on the 196 samples the membrane
was divided into 60 equally sized regions and for each the mean intensity profile
was calculated as well as the standard deviation in the intensity. The mean profile
normalized by the mean maximal intensity and the corresponding standard deviation
are shown in Figure 5.3B).

FRAP measurements The second set of measurements is based on Fluorescence
Recovery after Photobleaching (FRAP). One cell tip was photobleach in a region
corresponding to nearly the full tip, while the other tip was used as control. 13 cells
were photobleached in this manner and imaged over 600s. Based on those images
the mean recovery curve of the intensity and the corresponding standard deviation
in the bleaching region was calculated (see Figure 5.3D).

In addition only the half of the tip of a cell was bleached to measure diffusion from
one side of the tip into the bleached region. Therefore, 14 cells were bleached and im-
aged over 60s. From those images the half tip recovery curve and the corresponding
standard deviation in the bleaching region scaled by the maximum Pom1 intensity
of the tip was calculated (see Figure 5.3D). Both FRAP measurements are used to
estimate the parameters of all Pom1 gradient formation models.

Total protein abundance The last set of measurements is the total Pom1 protein
abundance in each cell. Therefore the fluorescence intensities of rlc1 and spn4, two
other proteins of fission yeast with well known protein abundances, were imaged
with the same exposure. Based on the intensities of those reference proteins the
total amount of 5000± 1900 Pom1 molecules in the cells was estimated (see supple-
ment of (Saunders et al., 2012) for details). For the estimation process we assume
that the amount of protein is split equally between the tips.

For the detailed experimental methods and measurement techniques we refer the
reader to the original work of Saunders et al. (2012).
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Figure 5.1.: Pom1 measurement data. A) Mean intensity curve obtained
from 196 steady state measurements. B) Total protein abundance in one cell.
The integration over one tip equals to half the amount of total proteins. C),D)
Full tip and Half Tip FRAP measurements The errorbars indicate the measured
standard deviation.
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5.1.3. Problem statement

While the general idea of the gradient formation could be confirmed by knock-
out experiments the detailed formation, especially the stabilization of the gradient
against noise and fluctuations remains unclear. Two mechanisms were proposed for
the formation of the Pom1 gradient and its stabilization against fluctuations: cluster
formation (Saunders et al., 2012; Saunders, 2015) and autophosphorylation Hachet
et al. (2011, 2012); Hersch et al. (2015) (all models are schematically depicted in
Figure 5.2). While both models roughly describe the available experimental data, a
quantitative comparison is missing.

Problem 5.1 (Modeling of CCL21 gradient formation). Given the two biological
hypothesis and the measurement data estimate the kinetic parameters and perform
model selection to choose the most plausible hypothesis based on the given data for
Pom1 gradient formation.

5.2. Modeling of Pom1 gradient formation

In this section we introduce four different models for Pom1 gradient formation:

• the minimal description by a source-diffusion degradation model

• the non-linear cluster formation model (Saunders et al., 2012)

• the auto phosphorylation model (Hachet et al., 2012)

• the multiple site phosphorylation model (Hersch et al., 2015)

The basic gradient formation process and all models are schematically depicted in
Figure 5.2.
Before we discuss each of the Pom1 gradient formation models in detail, we want
to address the general cell geometry used. The cells have a rod shape, hence we
considered a cylindrical body with half spheres as tips. Those cells are symmetrical
with respect to the horizontal and vertical axis and we modeled the process only
along one line on the surface with d ∈ Ω = [−L,L] and L = 7µm (see Figure 5.2A)).
It has to be kept in mind that this simplification completely neglects delusion effects
due to the curvature of the cell tips. In contrast to Saunders et al. (2012); Hersch
et al. (2015) we did not project the process onto a line but we discretized the system
on the surface of the cell and assumed that there is a constant diffusion rate on the
cell surface. This enables us to simulate the whole tip region in one step, in contrast
to previous work where the singularity due to the projection had to be treated by
artificial boundary conditions. We consider for all models only the boundary at the
division axis of the cells, where we assume no-flux conditions, i.e. for the Pom1
concentration given and denoted by u we obtain

∂

∂ν
u = 0 for d = {−L;L} (5.1)
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Figure 5.2.: Schematic of the Pom1 model. A) Schematic of the fission
yeast geometry. Along the blue line the models are considered. B) Cell size con-
trol in fission yeast. The gradient from the tips is constant and if the cell grows
the concentration at the cell middle reduce until a region with low concentration
arises. This is where division will take place. C) Schematic of the four Pom1
gradient formation models considered. All share the same process of association
and disassociation but they differ regarding cluster formation or phosphorylation
processes.
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and regarding the initial conditions we assume u(0, d) = 0 for d ∈ Ω and for the
FRAP experiments we assume that{

u(0, d) = 0 for d ∈ Q
u(0, d) = u∞(d) otherwise.

(5.2)

With Q ⊂ Ω we denoted the photo bleached region and u∞ is the steady state of
the model.

5.2.1. Source-diffusion-degradation model (SDD)

The first model is introduced in Saunders et al. (2012) and considered a simple
source-diffusion-degradation model. Pom1 associates to the cell membrane in a
circular region at the tip of the cell (see Figure 5.2). The molecules bound per µm per
second are given by the rate constant J and the association region is considered as a
Gaussian shape with width ρ. Once associated to the membrane Pom1, denoted by
u, it diffuses along the membrane with a diffusion constant D and disassociates with
a rate µ. The resulting PDE model for t ∈ I = [0, T ] and parameter θ = (D,µ, J, ρ)T

with units ([µm/s2], [µm/s], [molµm/s], [µm]) is given by

∂

∂t
u = D

∂2

∂d2
u− µu+

J√
2πρ

e−d
2/2ρ2for d ∈ Ω. (5.3)

For the boundaries we assumed that there is no Pom1 flow at the division axis of
the cells and we obtained (5.1).

5.2.2. Non-linear interacting cluster formation model (NLIC)

We considered the cluster formation model proposed in Saunders et al. (2012), which
includes a non-linear interaction between slow and fast moving Pom1 components.
This model assumes that the Pom1 gradient is stabilized against fluctuations in the
input rate by cluster formation. Two Pom1 states are possible: fast moving single
molecules denoted by u and slow moving clusters denoted by uc. Slow clusters are
assumed to form mainly at the tips and therefore generate a kind of traffic jam
which buffers the variance in the Pom1 input at the tips and guarantees a more
or less stable gradient away from the tips. In this model a fraction of the Pom1
molecules, denoted by ε, associated to the membrane at the tips are single molecules
and the other fraction are clusters, denoted by 1 − ε. Only single molecules can
disassociate from the membrane as in the SDD model. The cluster formation process
considered is a simple complex formation process: when a single molecule meets a
cluster it can become part of the cluster with rate β and a cluster can fragment
into the single molecule state with rate α. Hence for t ∈ [0, T ] and parameter
θ = (D,Dc, µ, α, β, J, ρ, ε)

T the model equations are given as{
∂
∂t
u = D ∂2

∂d2
u+ αuc − βuuc − µu+ ε J√

2πρ
e−d

2/2ρ2 for d ∈ Ω
∂
∂t
uc = Dc

∂2

∂d2
uc − αuc + βuuc + (1− ε) J√

2πρ
e−d

2/2ρ2 for d ∈ Ω.
(5.4)

For both species we assume that there is no Pom1 flow at the division axis of the
cells and we obtain for both the boundary condition (5.1). To ensure that the dif-
fusion constant of the clusters is truly slower than the single molecule, the diffusion
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5. Single cell images: growth length regulation in fission yeast

coefficient of the Pom1 clusters is parametrized as fraction ξc ≤ 1 of the diffusion
coefficient of free Pom1, Dc = ξcD.

A key weakness of this model is that there is no mass conservation of Pom1 molecules
in the membrane. Clusters of molecule size n > 2 are transformed to a single
molecule upon fragmentation and all other molecules are simply lost. Furthermore,
all cluster sizes are subsumed in uc.

5.2.3. Autophosphorylation model with one phosphorylation site
(PIC)

The model, which considers autophosphorylation of Pom1 as buffering mechanism
against fluctuations in the membrane association of Pom1, was introduced by Ha-
chet et al. (2011). Like the NLIC model a fastdiffusing component with diffusion
rate D and a slow diffusing component with diffusion rate Dp are considered. How-
ever, they represent not clusters and single molecules but phosphorylated (up) and
unphosphorylated (u) forms of Pom1. In this model Pom1 is associated to the
membrane in an unphosphorylated form. Once on the surface it can phosphorylate
with rate α and then it can disassociate from the membrane. It is assumed that
the phosphorylated and unphosphorylated form have different diffusion rates. For
t ∈ [0, T ] and parameter θ = (D,Dp, µ, α, J, ρ)T the model equations are given as{

∂
∂t
u = D ∂2

∂d2
u− αu+ J√

2πρ
e−d

2/2ρ2 for d ∈ Ω
∂
∂t
up = Dp

∂2

∂d2
up + αup − µup for d ∈ Ω.

(5.5)

For the boundaries we assume that there is no Pom1 flow at the division axis of
the cells for both species and we obtain (5.1) for each. As for the NLIC model, the
diffusion coefficient of the phosphorylated Pom1 is parametrized as fraction ξp ≤ 1
of the diffusion coefficient of unphosphorylated Pom1, Dp = ξpD.

5.2.4. Phosphorylation model with multiple phosphorylation site
(MPIC)

The second Pom1 model, which considers phosphorylation of Pom1 as buffering
mechanism against fluctuations in the membrane association of Pom1 was intro-
duced by Hersch et al. (2015). Here, phosphorylation is also considered, but not
with only one but with multiple phosphorylation sites (up to 6 possible sites have
been found in Pom1). Furthermore, the phosphorylation is no auto-phosphorylation
process but happens by trans-phosphorylation, i.e. two Pom1 molecules meet and
phosphorylate each other with rate α. The full model would consider eight Pom1
species. Hersch et al. (2015) reduced the model and showed that a one dimensional
model with concentration depended disassociation is a good approximation of the
full model. For t ∈ [0, T ] and parameter θ = (D,α, J, ρ)T the model equations are
given as

∂

∂t
u = D

∂2

∂d2
u− αuγ +

J√
2πρ

e−d
2/2ρ2for d ∈ Ω (5.6)
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with γ chosen set to 2. For the boundaries we assume that there is no Pom1 flow at
the division axis of the cells and we obtain again (5.1). For this model the steady
state can be analytically calculated as

u∞(d) = A
d2

0

(d+ d0)2

with

A =
3

√
3

2αD

(
J

2πρ
exp

(
− d2

2ρ2

))2/3

and d0 =

√
6D

αA
.

5.3. Parameter estimation for the Pom1 single cell
image data

In the following section we performed the parameter estimation on the data obtained
by Saunders et al. (2012) using the models described in the previous sections. The
measurements are a combination of steady state data and dynamic FRAP mea-
surements as described in 5.1.2 and for each measurement we considered a different
observation operator g. In the following we describe the observation operator for
each measurement in detail. The models consider different components and we
always calculated with respect to the total amount of Pom1 utot with

utot =


u+ scuc for models (5.4)

u+ up for models (5.5)

u for models (5.3), (5.6).

(5.7)

The fluorescence intensity of a Pom1 cluster is a multiple of the single molecule
intensity. Determined from the data the range of the intensity is between one and
the maximal cluster size of 200 (Saunders, 2015), i.e. 1 < sc < 200.

Mean intensity curves First we consider the mean intensity profiles. The profiles
are a combination of all Pom1 species scaled to one. The first observation operator
is given as

g1(u∞tot; s) =
u∞tot(d;ϕ)

max
d

u∞tot(d;ϕ)

here u∞tot denotes the stationary limit of the model and s = sc denotes the scal-
ing. Measurements are taken at 60 equally spaced spatial points with dk ∈ Ω and
k = 1, . . . , 60 and for each point the mean of the 196 profiles and the standard
deviation are given. Following the law of large numbers, we assumed that the error
of the measured mean y1,k is normally distributed. The standard deviation of the
distribution is set to the empirically determined standard error of mean, σ1,k. Hence,
the objective function is given as

J1(θ, g1) =
1

2

60∑
k=1

log(2πσ2
1,k) +

(y1,k − y1,k)
2

σ2
1,k

.
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FRAP measurements For both FRAP measurements we have to consider the
dynamic models. At each time point the overall intensity in the predefined bleaching
region d ∈ Q is calculated and normalized by the overall intensity in that region
before bleaching.

g2/3(utot, u
∞
tot; s) =

∫
Q
utot(d, t;ϕ)dd∫
Q
u∞tot(d;ϕ)dd

as before u∞tot denotes the stationary limit of the model. Preliminary estimation
results showed that scaling by the total abundance gives bad fitting results for
the measurement data. The scaling for those relative measurements seems to be
unknown and we introduced an additional unknown scaling factor and adapted the
observation operator to

g2/3(utot, u
∞
tot; s) = s2/3

∫
Q

utot(d, t;ϕ)dd.

For the full tip FRAP 10 measurements at time points tk ∈ [0, 300][s] with k =
1, . . . , 10 were taken. Again we assumed that the measurement error is additive, nor-
mally distributed with standard deviation obtained from the measurements. Hence,
for the data points tk the objective function is given as

J2(θ, g2) =
1

2

10∑
k=1

log(2πσ2
2,k) +

(y2,k − y2,k)
2

σ2
2,k

.

For the half tip FRAP 20 measurements at time points tk ∈ [0, 60][s] with k =
1, . . . , 20 were taken. Again we assumed that the measurement error is additive nor-
mally distributed with standard deviation obtained from the measurements. Hence,
for the data points tk the last objective function is given as

J3(θ, y3) =
1

2

20∑
k=1

log(2πσ2
3,k) +

(y3,k − y3,k)
2

σ2
3,k

.

Total protein abundance For the total protein abundance in steady state we
consider the integral over the tip region and obtain the observation operator.

g4(u∞tot; s) =

∫ L

−L
u∞tot(d;ϕ)dd.

We assume that the measurement error is additive, normally distributed with stan-
dard deviation obtained from the measurements. Hence, the objective function is
given as

J4(θ, y4) =
1

2
log(2πσ2

4) +
(y4 − y4)2

σ2
4

.

For the estimation we combined all four measurements. Therefore the i-th com-
ponent of the overall observation operator G(utot, u

∞
tot; s) is given by gi(utot, u

∞
tot; s)

and
yi,k = gi(utot(dk, tk;ϕ), u∞tot(dk, tk;ϕ); s)
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and

J(θ, y) =
4∑
i=1

Ji(θ, yi).

The general estimation problem is then given as

min
s∈Rns ,ϕ∈Rnϕ ,utot∈W (I)∩L∞

J(θ, y)

s.t.


G(utot, u

∞
tot; s) = y

utot as in (5.7)

u, uc/p solution of (5.3), (5.4), (5.5) or (5.6)

u∞, u∞c/p stationary limit of u, uc/p.

(5.8)

Implementation All models were discretized with a finite-differences scheme and
implemented in MATLAB and compiled and simulated with the AMICI toolbox
(amici-developer.github.io/ ), which uses the SUNDIALS solver suite (Hindmarsh
et al., 2005). As the numerical simulation using AMICI was computationally efficient
and robust, we also used it to compute the steady state of the models. If (1) the
numerical simulation failed or (2) the numerical simulation did not yield a steady
state for the unperturbed system (steady state condition: ∂u∂t < 10−6 for t = 2.5 ·
105), we set Ji(θ) to infinity. We performed multi-start local optimization using the
Parameter EStimation TOolbox (PESTO) (Hross & Hasenauer, 2016). The starting
points for the local optimizations are drawn from a latin hypercube spanning seven
orders of magnitude for most parameters. For each of the models we performed the
estimation by multi-start local optimization with PESTO, which uses the MATLAB
optimization function fmincon. To speed up the estimation process and improve
accuracy exact gradients were calculated based on the sensitivity equations of each
model. Finally 100 local optimizations were performed with starting points chosen
by a latin hyper cube sampling. For models (5.3) and (5.6) based on the good
convergence of the multi-start global optimization we could conclude that we had
found the global optimum for both models (see Figure 5.3 A). For model (5.5)
and (5.4) the optimization did not converge as well due to indeterminacy of the
parameters. We increased the number of multi-starts to 400 as more then 15% of
the multi-starts converged to the same optimal value we assumed that this was also
a global optimum.

Regarding the absolute molecule number models (5.3), (5.5) and (5.6) fitted it rea-
sonably well. Unfortunately, the model (5.4) does not ensure mass conservation
which might be considered as problematic. Recently, a new cluster formation model
was introduced by Saunders (2015), which should be analyzed in future work. Re-
garding the other measurements we observed that all models produced a good fit for
the mean intensity profiles. Also for full and half tip FRAP, the model fit is mostly
within the uncertainty of the measurement. For the full tip FRAP it appears how-
ever that the model dynamics are slower than suggested by the data.
Following the estimation process we performed a short identifiability analysis with
the previously introduced simulation based PL calculation method. This step is
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Figure 5.3.: Estimation results Pom1 models A) Comparison of the max-
imal log-likelihood results from 100 optimization starts. We observe that the
estimation of all models converged to the same optimum in more than 70% of
the runs and the value obtained by model MPIC is maximal. B) Mean intensity
profile measurement overlay with simulation results from all four models. We
observe that all models are able to give a reasonable description of the mean in-
tensity profile. C) Total protein abundance measurements and data. All models
replicated the total number of proteins except the NLIC model, which can not
give a molecule number due to problems with the molecule preservation in the
model. D) Half and full tip FRAP measurements. The half tip measurements
are nicely fitted by all models but the dynamics of all models seem to be slower
than suggested by the full tip measurements.

59



5. Single cell images: growth length regulation in fission yeast

Table 5.1.: Model selection for the Pom1 measurement data. AIC
and BIC values calculated for each model. The model with the lowest AIC/BIC
value is selected. A difference between two BIC/AIC values smaller than 10 is
considered to be indecisive.

AIC ∆AIC decision BIC ∆BIC decision

SDD 1206.3 1529.7 rejected 1223.9 1517.2 rejected

NLIC -323.4 0 optimal -293.2 0 optimal

PIC 1142.7 1466.1 rejected 1165.3 1458.6 rejected

MPIC -131.6 191.7 rejected -114.1 179.2 rejected

often emitted between estimation and model selection. The model selection crite-
ria (AIC/BIC) introduced in Section 2.2.4 only yield reliable results for identifiable
parameters otherwise the assumptions for the criteria are not full filled. We found
that for models (5.3) and (5.6) all parameters are practical identifiable given the
measurements. For models (5.5) and (5.4) the optimization already hinted at in-
determinacies. We found that for model (5.5) both diffusion rates D, Dp and the
disassociation rate µ are practical non-identifiable. The parameter D is practical
non-identifiable in decreasing direction and the parameters Dp and µ are practical
non-identifiable in increasing direction.

5.4. Model selection

In this section we determined, which model explains the measurement data best
based on the parameter estimation results from the previous section. The results
of the multi-starts depicted in Figure 5.3 A already showed that the SDD model
is outperformed by the others. The likelihood values obtained by the three other
models are so close that the selection is not trivial and we used the AIC and BIC
model selection criteria as introduced in Section 2.2. The results are shown in
Table 5.1.

We found that with AIC and BIC the SDD model is clearly rejected in favour of the
more complex models, which include a buffering effect against noisy inputs. With
regard to the AIC/BIC the NLIC model is selected.

To summarize the model selection results we found that all models with a buffering
effect against noise in the Pom1 influx perform better than the basic model and the
NLIC model performs best.
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5.5. Conclusion

Single cell images combined with fluorescent protein fusions and photobleaching are
a commonly used tool for many gradient formation processes. For the Pom1 gradient
formation process there is a wealth of single cell data already published. For four
existing models with competing hypothesis for the gradient formation we performed
a rigorous model fitting, uncertainty analysis and model selection. While all models
were able to explain the data we found that all models considering a buffering of
the Pom1 gradient against noise in the influx of Pom1 outperformed the basic model.

The model based hypothesis testing for the Pom1 gradient formation process from
single cell images considered three key aspects: parameter estimation, uncertainty
quantification and hypothesis based model selection. We found that all four mod-
els could explain the data within the measurement errors. Despite this we found
that the dynamics of all models seems to be slower than the full-tip data suggested.
While all models were able to explain the data qualitatively, we found that the
NLIC model, incorporating clustering as buffering mechanism, outperformed the
other models. Unfortunately, the NLIC model does not ensure mass conservation
which might be considered as problematic. Recently, a new cluster formation model
was introduced by Saunders (2015), which should be analysed in future work.

Recapitulating the the research questions posed in Section 5.1.3 we could answer the
question which hypothesis for Pom1 gradient stabilization explains the data best.
For the three chosen models representing the two different hypothesis of Pom1 gra-
dient formation the model selection showed that a buffering by cluster formation
explains the data best.

The performed parameter optimization and the uncertainty quantification gave ad-
ditional insights beyond the BIC/AIC base model selection. During the parameter
optimization we found that none of the models could explain both FRAP mea-
surements simultaneously. The discrepancy between full and half tip measurements
points to either a measurement error or the need for new hypothesis and models for
the gradient formation process, which can describe the two-scale characteristic of
the data.

On the other hand, the identifiability analysis showed not all parameters for the
models NLIC and PIC are identifiably. This yielded convergence problems for the
optimization as well as the PL calculation. Furthermore the non-identifiability vio-
lates the assumptions of the AIC/BIC model selection criteria and might influence
the model selection. To dissolve this either new measurements, for example Tea4
measurements (responsible for Pom1 membrane association) or single measured pro-
files in contrast to the considered mean profiles could be considered.

Apart from Problem 5.1 the Pom1 gradient formation process was a good real life
application example for the efficient profile likelihood calculation method introduced
in Chapter 4. The method showed an impressive improvement of profile calculation
efficiency for the models SDD and MPIC. This increase in calculation speed enabled
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the PL calculation for the computationally more demanding models PIC and NLIC.

Single cell imaging in combination with fluorescent proteins is a convenient tool to
study not only temporal but also spatial organization of proteins in cells. This addi-
tional spatial dimension allows for more insight into the organization and structural
functioning of cells. The related models, however, can be computationally demand-
ing and need efficient analytical tools to extract and test biological hypothesis. We
used the Pom1 gradient formation process as an application example for the devel-
oped efficient uncertainty quantification methods and we hope that the method will
be applied to many gradient formation processes in the future.
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6. Tissue scale images: dendritic cell
guidance in adaptive immune
response

In the previous section, we consider a one-dimensional gradient formation model in
a single cell. In the following we consider a tissue scale gradient formation process to
underline the scalability of the image based parameter estimation approach we in-
troduced. The measurements considered are immunostainings of tissue slices, which
show the formation of a gradient in the whole tissue. For this type of data a special
treatment of structured noise, for example given by inhomogeneity of the tissue,
has to be addressed during the estimation process and we successfully applied the
integrated noise model developed in Section 3.1. Based on the previously introduced
methods and a step by step modeling process we addressed the biological question
if heperan sulfate concentrations differ between tissue and lymphoid vessels (LV).

We start by introducing the model for the basic source-diffusion process of gradient
formation similar to the Pom1p problem in one-dimensional and two-dimensional
with an homogeneous heperan sulfate concentration in Section 6.2.1. In Section 6.2.2
we introduce the model with different heparan sulfate concentrations in tissue and
LV and in Section 6.2.3 we concentrate on the model with different heparan sulfate
concentrations in each LV. The models introduced in these sections are the basis for
the parameter estimation in Section 6.3 and the model selection in Section 6.4.

6.1. Introduction and problem statement

In the following we will introduce the biological background for the gradient for-
mation of the signaling molecule CCL21, the data considered and then state the
research problem of this chapter.

6.1.1. Biological background

In contrast to the previous chapter, which considered gradient formation for cell size
control, this chapter concentrates on haptic movement of cells. Based on the greek
word “haptesthai” meaning “to touch”, haptic movement describes a cell crawling
along a surface based on adhesion forces. In general two types of cell movement
can be considered: random motion or a directed movement. We considered haptic
movement of cells along a signal gradient in tissue, referred to as haptotaxis, where
“taxis” is the greek word for “order”. In contrast to chemotaxis, where the signal
molecules diffuse freely, the gradient of signal molecules for haptotaxis is bound to
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the tissue surface that the cell crawls along. So while a chemotactic signal can be
compared to a smell in the air, haptotactic signals are like emergency lights on the
floor of an airplane.
To stay with this analogy, this chapter focuses on the question how the emergency
lights are installed. A suitable model system to study haptotaxis in-vivo is dendritic
cell guidance towards LV. Dendritic cells (DC) are key players in the adaptive im-
mune response of mammalians. They collect antigen material throughout the body
and transport it to the lymph nodes where they present it to T-cells to trigger an
adaptive immune response. It has recently been shown that DCs perform haptic
movement in an ordered fashion in and outside the LV based on a chemoattractant,
a small signal molecule, called CCL21 (Schumann et al., 2010). The interesting
ability of CCL21 is that it can exist in two states: as a freely diffusing signal or
bound to the tissue surface by heperan sulfate (later only called sugar). The exist-
ing theory is that CCL21 is produced and secreted by the LV. The diffusing CCL21
is consequently bound to the surrounding tissue surface and forms a steep gradient.
This gradient in turn can be sensed by the DC moving in the tissue and guides
them towards the nearest LV. This guidance can be impressively shown by visual
tracking of DCs added onto a tissue slice. In a short time all cells have moved inside
of the LV in this tissue (see Weber et al. (2013) for the movies). While all the key
ideas of the gradient formation could be verified by experiments, it remains an open
question how the gradient is formed in-vivo detail.

di
ffu

sio
n

diffusive CCL21

heparan sulfate

immobilized CCL21tissue

dendritic cell

lymphoid vessel

Figure 6.1.: Schematic of the haptotaxis model. The soluble chemokine
CCL21 (denoted by blue balls) is secreted at the lymphatic vessels (LV). It dif-
fuses freely in the tissue. The heparan sulfate, later referred to as sugar, is
equally distributed in the tissue (denoted by the green cups). The CCL21 is im-
mobilized by complex formation with the heparan sulfate. The mature dendritic
cells (DC) follow the immobilized CCL21 gradient towards the LV.

6.1.2. Measurement data

To study the formation of CCL21 gradients, we used confocal microscopy images of
immunostainings of mouse ear sheets (Weber et al., 2013). To obtain this data a
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thin sheet of a mouse ear was treated with a fluorescent antibody, which binds itself
to CCL21 and can be detected under the microscope. After treatment with the an-
tibody the sheet was washed to ensure that all soluble CCL21 and left over antibody
had been removed and only the immobilized CCL21 was measured. Microscopy im-
ages were taken for 9 different ear sheets (labeled with k = 1, 2, 3, 4, 12, 13, 14, 15, 16
later on). For each slice an additional staining with a different fluorescent color
was applied to detect the surface of the LV. From those images the LV masks were
obtained by manual image segmentation. For the detailed description of the experi-
mental methods, the laboratory animals and the data collection we refer the reader
to the original work (Weber et al., 2013). A representative combination of image
and mask data is shown in Figure 6.2 and the full data set is shown in the Appedix
A.
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Figure 6.2.: CCL21 immunostainings and LV masks. A) representative
image of CCL21 immunostaining, later on called measurement CCL21-1, with
green color coding for better visibility of the signal. The white box markes a region
with especially many bright spots discussed in the image processing section. B)
Corresponding LV masks obtain by an additional staining with an LV surface
marker and manual segmentation of the lymphoid region (Weber et al., 2013).

Data analysis

For this analysis we defined a region of interest Ω equal to 400x400 pixels to exclude
boundary effects. And we denoted with Q the mapping, which represents the LV
mask (see Figure 6.2). To quantify the CCL21 intensities according to their distance
from the LV we introduced a distance map as in Weber et al. (2013).

Definition 6.1.1 (Distance map). Let Ω ⊂ R2 be the image and Q : Ω → R,
x 7→ {0, 1} the LV mapping such that

Υ = {x ∈ Ω|Q(x) ≡ 1}

is the LV region. The distance map is given as

dm(x) = min
y∈Υ
|x− y| , ∀x ∈ Ω. (6.1)
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In the following sections we will use this mapping for image analysis and parameter
estimation. Based on the distance map a mean intensity for each individual CCL21
staining image is calculated depending on the distance from the LV. For a given set
of distances r0, . . . , rn the mean intensity for all pixels with ri−1 < dm(x) < ri is
calculated. In Figure 6.3 the mean intensity for each image and the mean overall
measurements are shown. Based on this extracted mean intensity, the parameters
of the models introduced in Section 6.2 will be estimated in Section 6.3.2.

A) B)

distance from LV, x [7m]
0 25 50 75 100

sc
al

ed
 m

ea
n 

in
te

ns
ity

 [
u.

i.]

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
individual images

CCL21-1
CCL21-2
CCL21-3
CCL21-4
CCL21-12
CCL21-13
CCL21-14
CCL21-15
CCL21-16

distance from LV, x [7m]
0 25 50 75 100

sc
al

ed
 m

ea
n 

in
te

ns
ity

 [
u.

i.]

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
all images

Figure 6.3.: Distance measure. A) Distance measure scaled by the maximal
value was calculated for each image individually. The used grid was rj = 1+2∗j
for j = 0, . . . , 20. It is easily visible that the gradient steepness of the distance
measure strongly varies between the images. B) Average CCL21 intensity across
images for different distances from the lymphoid vessels.

6.1.3. Image processing

The distance dependent fluorescent intensity provides a first quantification of the
data. To analyze the data in detail, we performed a visual inspection. We found
high intensity spots in regions away from the lymphoid vessels. We assumed they
originate from other cell types migrating towards the lymphoid vessels or inhomo-
geneities in the tissue, which react differently to the staining than the other tissue.
These spots, however, are not of interest for the process considered later on and
can be seen as structured noise produced by the measurement procedure. In the
following we discuss how to filter these bright spots to obtain an adjusted image.

Maximally stable extremal regions filtering

For the detection of the bright spots in the staining images we applied a maximally
stable extremal region (MSER) filtering introduced by Matas et al. (2004) and the
implementation introduced by Nistér & Stewénius (2008). It is based on a water
shedding mechanism, where the image is considered as a landscape with heights
given by the image gray scale value. This landscape is flooded by gradually raising
the water level until the whole image is immersed. The algorithm keeps track of
the connected water regions for each water level. MSER is a method to detect high
intensity regions for example in fluorescence and brightfield images and has already
been successfully applied to detect cells (Buggenthin et al., 2013). We used the
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fast C implementation of the algorithm used in Buggenthin et al. (2013). To find
the bright spots in our microscopy images we adjusted the water level to a value
needed to find the regions corresponding to the structured noise. We also tuned the
maximal and minimal size of a region assumed to be part of the structured noise.

After identifying high fluorescent cells we adapted the obtained regions to prevent
effects at the boundary of the cells. This was facilitated by dilation the obtained
region by 1px using the MATLAB routine imdilate of the image processing toolbox.
Additionally, we neglected all regions inside the LV regions, as we assumed that the
structured noise is not found inside the LVs. Figure 6.4A) shows a representative
filtering mask as well as the adjusted image for the measurement CCL21-1.
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Figure 6.4.: Filtered images. A) Immunostaining image CCL21-1 with the
outline of the region obtained by the MSER filter. For the filtering process all
points inside the LV region were neglected. We used a minimal region size of 50
pixels, a maximal region size of 200 pixels, a threshold level of 1 for the MSER
algorithm and a dilation of 1 pixel for the obtained mask. B) Adjusted image with
all points indicated by the filter removed. The application of the filter resulted
in the removal of 16% of the pixels.

Distance measure

Analogously to the distance map for the raw images a mean intensity for each indi-
vidual filtered CCL21 image is calculated depending on the distance from the LV.
For the same region of interest and set of distances r0, . . . , rn as in Figure 6.3. The
mean intensity for all pixels in the filtered images with ri−1 < dm(x) < ri is calcu-
lated. The results are shown in Figure 6.5.

We can observe that the distance measure no longer varies as strongly as for the
raw data shown in Figure 6.3. The obtained curves are smooth as the spikes which
were introduced by the bright spots are removed from the data. Furthermore, the
steepness of the distance measure of all images is now comparable between the nine
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individual measurements. Finally, we see that the mean distance measure of the
combined images shows a smooth gradient, which has a considerably larger range
than the gradient obtained by the raw images. It is important to note how strongly
the distance measure in influenced by the outliers (bright spots) in the data, which
indicates that it is no stable measure to obtain an estimate for the diffusion length
of the chemokine CCL21.
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Figure 6.5.: Distance measure for the filtered regions. Distance measure
scaled by the maximal value was calculated for each filtered image individually.
The used grid was rj = 1 + 2 ∗ j for j = 0, . . . , 20. It is visible that the gra-
dient steepness is similar between the images except for CCL21-4, which has
high background values. B) Average CCL21 intensity across images for different
distances from the lymphoid vessels for the raw images and the filtered images.

Filtered region analysis

In the following sections we will introduce models for the CCL21 gradient formation
process and estimate the model parameters from the image data. To asses the
efficiency of the proposed estimation procedure we used simulated data based on the
true LV structure and some realistic kinetic parameters. However, the treatment of
the structured noise in the data is of special interest and we introduced such artifacts
in the simulated data. To obtain simulated data as close as possible to the real data
we analyzed the size and shape distribution of the bright spots in the filtered real
images. For the size of the bright spots we fitted a normal distribution to the area size
of the convex hulls for each segmented region. To exclude clumped cells we restricted
the region size to maximally 250px2. We obtained a nearly normally distributed spot
size with mean µ = 149px2 and variance σ = 47px2. Furthermore we consider the
elliptic shape of the bright spots in terms of the length of the major and minor axis
and fitted a two-dimensional normal distribution with mean minor axis µa = 9.5px

and major axis µb = 19.3px and covariance matrix Σa,b =

(
19.2 −4.2
−4.2 7.5

)
. The

fitting was done with the MATLAB routines normfit and gmdistribution. The
distributions of the data and our assumed distributions are displayed in Figure 6.6.

6.1.4. Problem statement
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Figure 6.6.: Region properties. A) Zoom in of region with many spots for
measurement CCL21-1. The lower panel displays the filtering masked obtained
for this image. B) Bar plot for the area size distribution obtained from each
segmented region and line plot of the normal distribution fitted to the data. C)
Scatter plot of minor versus major axis of the surrounding ellipsoid calculated
for each segmented region and contour of the normal distribution fitted to the
data.

By in-vitro and in-vivo experiments the key features of CCL21 gradient formation
could be confirmed and with immunostainings it is possible to quantitatively mea-
sure the gradient in tissue. The exact gradient formation process, however, remains
unclear. Especially the influence and importance of the spatial organization of hep-
aran sulfate for the gradient formation remains uncertain. While the measurement
data is available a quantitative, model based analysis of the CCL21 gradient forma-
tion process is missing.

Problem 6.1 (Modeling of CCL21 gradient formation). Given the biological know-
ledge about the CCL21 gradient formation process and the measurement data develop
models for the different heparan sulfate conditions, estimate the kinetic parameters
and perform model selection to choose the most plausible description of CCL21 gra-
dient formation for the given data.

The tissue scale images considered for this model based hypothesis testing need a
tailored parameter estimation method. In particular the structured noise found by
the preliminary data analysis in Section 6.1.2 has to be considered in detail.

Problem 6.2 (Parameter estimation of tissue scale images). Given the immunos-
taining images develop noise models and corresponding likelihood functions to choose
the best parameter estimation method for this particular tissue scale data.

Both problems considered are closely related and will be solved through the chapter
to arrive at a decision to improve the description of the process of CCL21 gradient
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formation.

6.2. Modeling of CCL21 gradient formation

The deduction of the CCL21 gradient formation models was an iterative process to
step by step define the spatial sugar distribution. We started with a basic description
of the process and refined the models with regard to the spatial structure of the
sugar with respect to the parameter estimation results from the model. The model
development process is schematically depicted in Figure 6.7.

unknown
biological CCL21 
gradient formation 
process

1D model for 
source, diffusion
and complex formation

2D model 
including
LV structure 

modeling fitting modeling fitting

modeling fitting2D model 
including
tissue specifique sugar 

modeling fitting2D model 
including
LV specific sugar 

Figure 6.7.: Modeling process for the CCL21 gradient formation. We
started with a simplistic one-dimensional discription of the gradient formation
process and iteratively increased the model complexity homing in on the true un-
derlying process. Each step in the modeling process included a model calibration
to the data and an analysis of the models capacity to explain the data (depicted
by the gray boxes).

6.2.1. Model of basic source-diffusion-complex formation
process

The initial model for CCL21 gradient formation considers the signaling protein
CCL21, denoted by u which is produced constantly at a spatially distributed source
Q, the lymphatic vessels in the tissue, with a rate α. As CCL21 is a small, soluble
protein it is assumed to diffuse freely in the tissue, with a diffusion constant D,
furthermore it is degraded with a degradation rate γ. The CCL21 gradient is immo-
bilized through a reversible complex formation with the tissue bound sugar, denoted
by s. The immobilized CCL21 protein is denoted by c, which is the gradient sensed
by the dendritic cells. Hence the chemical reactions considered in the model are:

∅ α·Q→ u, u
γ→ ∅ and s+ u

k1


k−1

c. (6.2)
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One-dimensional model

In one dimension there is no spatially distributed source but the source is positioned
at distance zero and can be interpreted as an influx. We studied the problem for
three state variables u,s and c. Each variable is a function of the distance from
the lymphoid vessel position x ∈ Ω = [0, 110][µm], time t ∈ [0, T ][s] and a set of
unknown parameters θ = (D,α, k1, k−1, γ). For a detailed description and deduction
of such models see Wartlick et al. (2009). The model is given by

∂
∂t
u−D ∂2

∂x2
u = −k1usu+ k−1c− γu for x ∈ Ω, t ∈ [0, T ]

∂
∂t
s = −k1us+ k−1c for x ∈ Ω, t ∈ [0, T ]

∂
∂t
c = k1us− k−1c for x ∈ Ω, t ∈ [0, T ]

with initial conditions

u(0, x) = c(0, x) = 0 and s(0, x) = S0 ∀x ∈ Ω

and boundary conditions

∂

∂νC
u(t, x)

∣∣∣∣
x=110µm

= 0 and
∂

∂νC
u(t, x)

∣∣∣∣
x=0µm

= α ∀t ∈ [0, T ].

Steady state All measurements given in Section 6.1.2 are assumed to be steady
state measurements and hence we have to consider the steady state for the model
for further analysis, which is given as

0 = D
γ
∂2

∂x2
u(x)− u(x) for x ∈ Ω

∂
∂νC

u(x) = 0 for x = 110µm
∂
∂νC

u(x) = α for x = 0µm.

(6.3)

and for s and c we obtain

s(x) =
S0

1
KD
u(x) + 1

and c(x) =
S0p(x)

u(x) +KD

for x ∈ Ω. (6.4)

Here KD = k−1/k1 is the disassociation constant. For the stationary limit we can
solve the equation analytically (Wartlick et al., 2009) and obtain for

√
D/γ �

110µm, which is a reasonable assumption given the data shown in Figure 6.3,

u(x) =
α√
D/γ

e−x/
√
D/γ.

If we consider the model in terms of the rescaled variable û = u/KD it becomes
clear that the maximal possible parameter set which can be identified, indepen-
dent of measurement noise and observations, based on steady state data is θ =
(D/γ, α/γKD, S0).
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Two-dimensional model

The two-dimensional model also includes three state variables: u, s and c. And
again each variable is a function of the spatial location x ∈ Ω = [0, 604]2[µm2] ,
time t ∈ [0, T ][s] and a set of unknown parameters θ = (D,α, k1, k−1, γ). The model
considered is:

∂
∂t
u−D4u = αQ(x)− k1us+ k−1c− γu for x ∈ Ω, t ∈ [0, T ]

∂
∂t
s = −k1us+ k−1c for x ∈ Ω, t ∈ [0, T ]

∂
∂t
c = k1us− k−1c for x ∈ Ω, t ∈ [0, T ]

4 denotes the Laplace operator in two dimensions. The initial conditions considered
are

∀x ∈ Ω : u(0, x) = c(0, x) = 0 and s(0, x) = S0 ∀x ∈ Ω.

Regarding the boundary conditions no-flux boundary conditions were chosen. In
case of a “cut-out” region of tissue, this means there is no flux out of the tissue.
The boundary conditions are given as

∂

∂νC
u(t, x)

∣∣∣∣
x∈∂Ω

= 0 ∀t ∈ [0, T ].

Steady state The resulting model is:0 = D4u+ αQ(x)− γu for x ∈ Ω
∂
∂νC

u(t, x)
∣∣∣
x∈∂Ω

= 0 for x ∈ ∂Ω.
(6.5)

and for s and c we obtain

s(x) =
S0

1
KD
u(x) + 1

and c(x) =
S0p(x)

u(x) +KD

for x ∈ Ω (6.6)

here KD = k−1/k1 is the disassociation constant like in the one-dimensional case.
Again we consider the model in terms of the rescaled variable û = u/KD and
see that the the maximal possible parameter set which can be identified does not
vary compared to the one-dimensional case. Independent of measurement noise and
observations, based on steady state data we can identify θ = (D/γ, α/γKD, S0).

6.2.2. Model for tissue specific sugar concentrations

We extended the basic model by considering two different sugar concentrations for
the lymphoid vessel region, denoted by SL, and the surrounding tissue, denoted by
S0. Hence we have the same reaction equations (6.2) as for the basic model but a
varying initial value for s. As this adaptation is only visible in the two-dimensional
set-up we do not consider the one-dimensional model here. Furthermore we only
consider the steady state model: For the three state variables u, s and c, each
a function of the spatial location x ∈ Ω = [0, 604]2[µm2] and a set of unknown
parameters θ = (D,α, k1, k−1, γ, S0, SL), the considered model is given as0 = D4u+ αQ(x)− γu for x ∈ Ω

∂
∂νC

u
∣∣∣
x∈∂Ω

= 0 for x ∈ ∂Ω.
(6.7)
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and for s and c we obtain the changed equations

s(x) =
SLQ(x) + S0(1−Q(x))

1
KD
u(x) + 1

and c(x) =
(SLQ(x) + S0(1−Q(x)))u(x)

u(x) +KD

(6.8)

for x ∈ Ω. Here we also consider the rescaled variable û = u/KD and see that the
set of structural identifiable parameters is θ = (D/γ, α/γKD, S0, SL).

6.2.3. Model with lymphoid vessel specific sugar concentration

Based on new experimental evidence which suggests that a variation in the individ-
ual lymphoid vessel branches might influence the dendritic cell migration (Kilarski
et al., 2013), we adapted the model considering different sugar concentration for
each lymphoid vessel branch and the surrounding tissue. As before we only consider
the two-dimensional case and the steady state model. Before we can write down the
model here we define

Q(x) =

nk∑
k

qk(x) with qk(x) : Ω→ {0, 1}

where nk is the number of LV branches and qk denotes the individual LV branches
which do not overlap. Then we could write the model for x ∈ Ω = [0, 604]2[µm2]
and a set of unknown parameters θ = (D,α, k1, k−1, γ, S0, SL,1, . . . , SL,nk) and the
three state variables u, s and c as,0 = D4u+ αQ(x)− γu for x ∈ Ω

∂
∂νC

u
∣∣∣
x∈∂Ω

= 0 for x ∈ ∂Ω.
(6.9)

and for s and c we obtain the changed equations

s(x) =

∑
k SL,kqk(x) + S0(1−Q(x))

1
KD
u(x) + 1

and c(x) =
(
∑

k SL,kqk(x) + S0(1−Q(x)))u(x)

u(x) +KD

(6.10)
for x ∈ Ω. If we consider the rescaled variable û = u/KD for the model above
we see that the maximal possible parameter set which can be identified is θ =
(D/γ, α/(γKD), S0, SL,1, . . . , SL,nk). Hence the sugar concentration can always be
identified for steady state data. In the following chapters we will perform parameter
estimation for those three model and in Section 6.4 we will determine the best fit
model for the considered data.

6.3. Parameter estimation for CCL21 tissue-scale
microscopy images

In the following we perform the parameter estimation for the basic source-diffusion-
complex-formation process described in the previous section. As mentioned in the
beginning of this chapter the measurements are microscopy images of the immunos-
tainings for immobilized CCL21 (Weber et al., 2013) and we modeled the observation
as

y = b+ c(x), (6.11)
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where b is a background intensity produced by autofluorescence of the tissue. All
parameter estimation problems considered in the following are for the steady state of
each model, as we assumed that the measurements are taken close to an equilibrium
state of the system.
As mentioned in the previous parts of this work a major challenge in image based
parameter estimation is the presence of biological processes, which are of no interest
for the biological question at hand but can not be disabled experimentally. They
introduce a structured noise in the images, which has to be considered in the para-
meter estimation process as it might bias the obtained estimates. For the CCL21
data this is a prominent problem as we observe bright spots in the data (see Fig-
ure 6.2). Possible origins of the spots could be migrating cells or inhomogeneities,
which react differently to the immunostaining but are not considered crucial for the
process. In this chapter we compared the parameter estimation on an extracted
features of the microscopy data to an integrated approach which treats the struc-
tured noise as an additional noise term in the likelihood function as introduced in
Section 3.1. We considered two features: the one-dimensional distance measure in-
troduced in Section 6.1.2 and the two-dimensional images obtained by filtering the
data as explained in Section 6.1.3. Based on this comparison we choose the best
performing method to proceed with the model selection in Section 6.4.
In the following we always verified the validity of the estimation on simulated data
and then applied the method to the real data to obtain trustworthy parameter es-
timates. In Section 6.3.1 we introduce the simulated data we considered for the
estimation process. To obtain data as close as possible to the real data we used the
image properties deduced in Section 6.1.3. Section 6.3.2 concentrates on the estima-
tion of the kinetic parameters for the extracted distance measure and in Section 6.3.3
we used the two-dimensional images for the parameter estimation.

6.3.1. Simulated data

To assess the ability of the proposed procedure to recover the true parameter value
we applied the method to simulated data, generated in a way that it is as close as
possible to the real data as introduced in Section 6.1.3 (see also Figure 6.3).

A crucial aspect to obtain data close to the real data is to find a set of reasonable
parameter values. To asses the similarity between the generated data and the real
data we used the distance measure introduce before. By hand we chose a set of
parameters, which gave a distance measure for the simulated image, which is close
to the distance measure of the filtered CCL21-1 image with the filtering parameters
as used in Figure 6.5. The resulting parameters are shown in Figure 6.8 A) and the
distance measures are compared in Figure 6.8 B).
Next we added structured noise by introducing bright spots. We generated those
bright spots in the simulated data by randomly choosing uniformly distributed spa-
tial points outside the LV region and added an ellipsoid. The ellipsoid size was
chosen by drawing random samples from the minor and major axis distribution ob-
tained from the images. As the surrounding ellipsoid overestimates the size of the
extracted regions we scaled the axis lengths such that we obtained a size distribution
close to the one obtained from the data (see Figure 6.6). As we assessed the per-
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formance of the estimation for different strength of structured noise, we generated
data with varying numbers of bright spots. We simulated images with 20, 40, 80,
160, 320 and 640 ellipsoids and for each spot number we created 30 independent
samples.
Finally we added multiplicative log-normally distributed noise ε to each image with
ε ∼ LN (1, σ2). A reasonable parameter value for the variance σ2 was also chosen
together with the other parameters as σ = 0.38. One exemplary image with 320
bright spots is shown in Figure 6.8 C). In the following we are going to study the bias
of the estimated parameters due to the side process of firoblast migration towards
the LV visible in the images based on this simulated data and choose the best
performing method for bias correction to apply it to the real data.
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Figure 6.8.: Simulated data for the basic source-diffusion-complex
formation process. A) Parameter values assumed for the generation of the
simulated data. B) Comparison of distance measure obtained from the filtered
CCL21-1 image and the one given by the simulated model and the corresponding
observable y(x). C) Representative image of the simulated data for 320 added
ellipsoids and multiplicative log-normally distributed noise generated with the
parameters given in A) and the model for the basic source-diffusion-complex-
formation process.

6.3.2. Distance measure

For the parameter estimation we first considered the distance measure extracted
from each image as data. For the estimation of the kinetic parameters based on the
distance measure we applied two approaches: first we estimated the parameters using
the one-dimensional model introduced in Section 6.2.1 and second we calculated the
distance measure based on the simulation of the corresponding two-dimensional
model introduced in the same section. For both methods we used the simulated
data to verify the validity and then applied it to the distance measures obtained
from the real data.

One-dimensional model

For the parameter estimation of the one-dimensional model from the distance mea-
sure we considered the system state u,s and c in the domain Ω = [0, 110]µm. As the
scaling of the images and the corresponding distance measures varies strongly we
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introduced an observation operator for each measurement, which includes a scaling
parameter s = (s1, . . . , sN) where N is the number of images and an additive offset
b, which is assumed to be due to autofluorescence of the tissue. The l-th observation
operator maps the state u onto the spatial points given by the distance measure grid
rk = 1 + 2k for k = 0, . . . , 20. The observation operator is given by

yl,k = Gl,k(s, b)

us
c

 = sl · (b+ c(xrk)) for l = 1, . . . , N.

From the previous analysis of the one-dimensional CCL21 model we knew that
the parameter combinations D/γ, α/(γKD) and S0 are structural identifiable if we
have full observations. We considered the parameter estimation the parameter set
θ = (D/γ, α/(γKD), S0, b, s1, . . . , sN). For the partial, scaled observation introduced
above only the product slS0 occurs in the equation as well as the product slb hence
only those are structural identifiable.
For the distance measure we can not deduce the noise model from the measurement
technique. However, within each bin we know the mean and standard deviation of
the data shown by the errorbars in Figure 6.8. We assume that this error is additive
and normally distributed with known variance, i.e

yl,k = yl,k + εl,k with ε ∼ N (0, σl,k).

Following Section 2.2 we consider as objective function for the parameter estimation
the reduced negative log-likelihood function

j(θ) =
1

2

N∑
l=1

20∑
k=1

log(2πσ2
l,k) +

(
yl,k − yl,k
σl,k

)2

. (6.12)

As the parameters are positive, the parameter estimation was performed in terms
of the logarithm of the parameter θ. To further increase the performance of the
optimization and the profile likelihood calculation we implemented the sensitivity
equations for the one-dimensional model and used them to calculate the gradient
and the Fisher information matrix of the objective function.

Simulated data As the simulated data is on the same scale for each image we can
fix the scaling variable in the observation function to sl = 1 for l = 1, . . . , N and
we then should be able to estimate the underlying parameters at least for the spot
and noise free data set. We performed the estimation on a single data set as scaling
plays no role for the simulated data. We performed 100 local optimizations with
varying starting points and between 80-95% of the starts converged to the same
optimal likelihood value. During the analysis of the estimation we found three key
results:

1. the distance measure is sensitive to the introduced bright spots in the data
(see Figure 6.3 A)

2. the parameters α/(γKD) and S0 are practically non-identifiable independent
of the spot number and their product S0α/(γKD) is only identifiable for a con-
fidence level bigger then 7%. The true value is not included in the confidence
interval.
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3. the estimated parameter values for D/γ and b are well identifiable for low
numbers of spots in the data.

To address the first problem it is sufficient to consider the distance map calculated
from the filtered images. However, it showed that the distance measure without pre-
processing of the image data is no reliable measure to estimate kinetic parameters or
to justify a biological hypothesis. Following this observation we performed the para-
meter estimation task on the distance map obtained from the filtered CCL21 images.

The second result was obtained by calculation of the PL for the estimated parame-
ters. The parameter α/(γKD) showed PLs, which did not decrease below the con-
fidence level threshold for decreasing values of α/(γKD) and the likelihood profiles
did not cross the threshold for s0 increasing values. This hinted at the identifiability
of the combination of both and we found that S0 · α/(γKD) showed a well defined
optimum. The PL, however, never falls below the 5% confidence level threshold (see
Figure 6.9) leading to infinitely extending confidence intervals. Furthermore, we see
that the MLE varies by nearly an order of magnitude from the true value, which is
not included in the obtained confidence intervals. As expected, the one-dimensional
model is not able to explain the underlying two-dimensional process with respect to
these parameters.
The third result becomes obvious if we consider the obtained parameter values shown
in Table 1. For both D/γ and b the MLE is close to the true value for all numbers
of introduced spots. Furthermore, both parameters show identifiable PLs, however,
with increasing amount of introduced spots the filtering is no longer as efficient
and also the amount of data left for the estimation decreases. This increases the
variance at each spot number and finally leads to practical non-identifiability of
the background fluorescence b. So the ability to estimate parameters from the dis-
tance measure strongly depends on the noise level of the measurements and the
performance of the filtering.

CCL21 data For the real CCL21 data we performed the parameter estimation for
the one-dimensional model on all 9 measurements simultaneously (see Figure 6.10).
Following the results of the estimation process with the simulated data we filtered
each image before calculating the distance measure. As the estimated parameter
value for S0α/(γKD) was expected to differ from the true underlying parameter we
concentrated on the estimation results for D/γ and b. Furthermore, all images were
on a strongly varying intensity level and we also estimated the scaling parameters
sj for j = 1, 2, 3, 4, 12, 13, 14, 15, 16 (see Section 6.1.2 for a discussion of the data
properties). For the simulated data we found that the parameters S0α/(γKD) and b
become practically non-identifiable if the noise level increases and the key question
we wanted to answer was if the noise level in the true images allows for identifiability
of the parameters based on the distance measure.
We found that the combination of the nine filtered CCL21 images is sufficient for
practical identifiability of D/γ with respect to a 5% confidence level. The confidence
interval, however, spans several orders of magnitude. Hence we obtained a good
guess for further estimation processes but we had no confidence that the value
represents the true physical diffusion constant.
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Table 6.1.: Simulated data: estimated parameters for the one-
dimensional source-diffusion-complex formation model Parameter es-
timation performed on the filtered simulated data. Each table displays the esti-
mated parameters for the best fit out of 100 for the number of introduced spots.
Note the difference between the true and estimated value of S0α/γKD.

no spots # spots: 20

log10(θi) log10(θ̂i) CI0.05(θi) log10(θi) log10(θ̂i) CI0.05(θi)

D/γ 1.93 1.93 [−0.15; 3.08] 1.93 1.94 [−0.16; 3.17]

S0α/γKD −1.30 −0.66 [−1.02;∞] −1.30 −0.66 [−1.02;∞]

b −1.89 −1.88 [−2.01;−1.83] −1.89 −1.88 [−2.03;−1.82]

# spots: 40 # spots: 80

log10(θi) log10(θ̂i) CI0.05(θi) log10(θi) log10(θ̂i) CI0.05(θi)

D/γ 1.93 1.92 [−0.19; 3.13] 1.93 1.94 [−0.17; 3.14]

S0α/γKD −1.30 −0.65 [−1.03;∞] −1.30 −0.66 [−1.02;∞]

b −1.89 −1.88 [−2.03;−1.83] −1.89 −1.88 [−2.03;−1.83]

# spots: 160 # spots: 320

log10(θi) log10(θ̂i) CI0.05(θi) log10(θi) log10(θ̂i) CI0.05(θi)

D/γ 1.93 1.94 [−0.25; 3.27] 1.93 1.92 [−0.46; 3.40]

S0α/γKD −1.30 −0.63 [−1.04;∞] −1.30 −0.59 [−1.06;∞]

b −1.89 −1.88 [−2.07;−1.83] −1.89 −1.88 [−2.12;−1.82]

# spots: 640

log10(θi) log10(θ̂i) CI0.05(θi)

D/γ 1.93 1.85 [−2.14; 4.34]

S0α/γKD −1.30 −0.57 [−1.32;∞]

b −1.89 −1.85 [−∞;−1.76]
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Figure 6.9.: Estimation results for the one-dimensional source-
diffusion-complex formation model on simulated data. A) Distance
measure estimated from raw simulated images, from filtered images and the esti-
mated distance measure. It becomes clearly visible how the increasing number of
artifacts changes the slope of the curve for the unfiltered data while the filtered
curves are nearly identical. Furthermore we see that the estimated curves match
the data nicely and are similar for all spot numbers. B) Likelihood ration of
the parameters D/γ and b. For both parameters the true value is nicely esti-
mated, however, D/γ is practical non-identifiable for a 5% confidence level for
all spot numbers. C) Likelihood ratio of the parameters α/(γKD) and S0. We
observed that both are practical non-identifiable but show a correlation. The third
panel shows the likelihood ratio calculated for the product S0α/(γKD), which is
practical identifiable.
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Figure 6.10.: Simultaneous estimation of the one-dimensional
source-diffusion-complex formation model for the full CCL21 data
set. A) Out of 16 performed optimization starts 15 converged to the same log-
likelihood value. Hence we assumed that the likelihood for the simultaneous con-
sideration of the nine CCL21 images has a global optimum, which is reach by
more than 90% of the optimization runs. B) The distance measure for each
image as well as the distance measures obtained by the simulation with the max-
imum likelihood parameters. C) Scaled values for S0α/(γKD) and b obtained
from experiments 1-4 and experiments 12-16 cluster. Furthermore, they are ei-
ther lower or higher than the mean value obtained from all experiments. This
dependency is lost without the scaling factors and the mean parameter value
yields a bad fit for all images. D) Likelihood profiles for the parameters D/γ,
smeanS0α/(γKD), sMb and the sclaing factors sl/sM . sM is the geometric mean
of the scaling factors.
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Based on the nine images b is structural non-identifiable, however, the scaled back-
ground value slb is structural identifiable and yields a background value for each
individual image. As this scaling is a measurement specific constant we introduced
the mean scaling for all images to obtain a mean background value. For the mean
calculation we used the geometric mean as it is the intuitive choice if we consider the
logarithm of the parameters. We observed that scaled value of S0α/(γKD) is well
defined for all images and all scaling factors in relation to smean are practical identifi-
able. In contrast, the scaled value for the background is practically non-identifiable.
The estimated parameter gives us an initial guess for the parameter value but are
not well determined and we have to proceed to a more complicated model to obtain
reliable estimates of the true underlying parameter. The obtained values, however,
are used in the following to obtain a good range for parameter guesses.

Two-dimensional model

To address the problem that the one-dimensional model is not sufficient to estimate
all the kinetic parameters from the distance measure we calculated the distance
measure for the two-dimensional source-diffusion-complex formation model intro-
duced in Section 6.2.1. We considered the square domain Ω = [0, 604]2[µm] and the
observation operator for this case not only includes the background and the scaling
but also the distance measure calculation applied to the state component c, which
we denoted by DM(c). We considered the observation

yl,k = Gl,k(s, b)

us
c

 = sl · (b+ DM(c(x))).

From the previous analysis we know that the structural identifiable parameters
for full observations are D/γ, α/(γKD) and S0. It is not directly clear how the
observation operator including the distance measure influences the identifiability of
the parameters. But again we can conclude that we can only estimate scaled values
for S0 and b. We consider the estimation process in terms of four kinetic parameters
and the scaling parameters, i.e. θ = (D/γ, α/(γKD), S0, b, s1, . . . , sN).
Regarding the noise model we make the same assumptions as for the one-dimensional
model and again use the objective function given by (6.12).

Simulated data First we considered the simulated data to asses the quality of the
estimated parameters. As the simulated data includes no scaling of the individual
images, we fixed the scaling parameter sl = 1 for l = 1, . . . , N to one. Learning from
the previous analysis we considered the distance measure obtained from the filtered
images for the estimation. We performed 25 multi-start local optimization runs and
again obtained a good convergence of the optimization and assumed that we found
a global optimal likelihood value.
Considering the estimation results we found that comparable with the one-dimensional
model only the product of S0 and α/(γKD) is identifiable with a broad PL. In con-
trast to the one-dimensional case the true value is contained in the confidence interval
and the obtained MLE is close to it (see Figure 6.11). Furthermore, we observed
that with a growing number of introduced spots the PL becomes broad so that the
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Table 6.2.: Simulated data: estimated parameters for the two-
dimensional source-diffusion-complex formation model Parameter es-
timation performed on the filtered simulated data. Each table displays the esti-
mated parameters for the best fit out of 25 for the number of introduced spots.

no spots # spots: 20

log10(θi) log10(θ̂i) CI0.05(θi) log10(θi) log10(θ̂i) CI0.05(θi)

D/γ −3.26 −3.34 [−4.34;−1.77] −3.26 −3.34 [−4.34;−1.77]

S0α/γKD −2.88 −1.24 [−1.68; 2.15] −2.88 −1.24 [−1.68; 2.15]

b −1.87 −1.86 [−4.34;−1.78] −1.87 −1.86 [−4.34;−1.78]

# spots: 40 # spots: 80

log10(θi) log10(θ̂i) CI0.05(θi) log10(θi) log10(θ̂i) CI0.05(θi)

D/γ −3.26 −3.51 [−4.34;−2.51] −3.26 −3.49 [−4.34;−2.50]

S0α/γKD −2.88 −1.16 [−1.63; 1.23] −2.88 −1.18 [−1.63; 1.19]

b −1.87 −1.86 [−2.01;−1.81] −1.87 −1.86 [−2.01;−1.81]

# spots: 160 # spots: 320

log10(θi) log10(θ̂i) CI0.05(θi) log10(θi) log10(θ̂i) CI0.05(θi)

D/γ −3.26 −3.51 [−4.34;−2.43] −3.26 −3.48 [−4.34;−2.38]

S0α/γKD −2.88 −1.15 [−1.65; 1.35] −2.88 −1.14 [−1.64; 1.50]

b −1.87 −1.86 [−2.04;−1.81] −1.87 −1.86 [−∞;−1.81]

# spots: 640

log10(θi) log10(θ̂i) CV0.05

D/γ −3.26 −3.34 [−4.34;−1.77]

S0α/γKD −2.88 −1.24 [−1.68; 2.15]

b −1.87 −1.86 [−∞;−1.78]
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PL no longer decreases below the confidence level threshold in the parameter re-
gion considered. For increasing spot numbers the parameter b became practically
non-identifiable as in the one-dimensional case.
Considering the estimated parameter values shown in Table 6.2 we saw that the
MLE is always close to the true value for each parameter. This is promising as
it shows that a simplistic feature as the considered distance measure is sufficient
to obtain an estimate of the parameters if the structure of the LV is known and
considered in the model. So the analysis of the distance measure is a good initial
analysis for the process. If we consider the confidence intervals for D/γ we see that
they vary over a range of several orders of magnitude, showing that even though
the parameter value can be estimated it is not a precise estimate and needs further
considerations. The obtained values can be used as rough initial guesses to perform
a more sophisticated method as introduced in the following sections.

CCL21 data For the real CCL21 data we again performed the parameter estima-
tion for the two-dimensional model on all nine measurements simultaneously and we
considered the distance measure obtained from the filtered images. The results are
shown in Figure 6.12. Following the results from the simulated data we expected
to be able to estimate D/γ and b as well as S0α/(γKD). As all images are on a
strongly varying intensity level and we also estimated the scaling parameters sl for
l = 1, 2, 3, 4, 12, 13, 14, 15, 16.
We found that the combination of the nine filtered CCL21 images is sufficient to
estimate the parameter D/γ. Furthermore, its confidence interval corresponding to
the 5% confidence level is one order of magnitude smaller than in the one-dimensional
case. Thus we obtained a better guess for further estimation processes but we still
have no confidence that the MLE represents the true physical diffusion constant.
Based on the nine images we could only identify scaled values for b and S0α/KD

and again we used the geometric mean denoted by smean as mean scaling. Based on
the mean scaling we obtained for b the schematically same practical non-identifiable
profile as in the one-dimensional case. For S0α/(γKD), however, we obtained a
defined profile, which shows that it is identifiable with a reasonably tight confidence
interval.
Finally if we compared the one-dimensional and the two-dimensional model for the
estimation from all nine measurements. We found that the two-dimensional model
yields a slightly higher likelihood value. If we quantified the evidence for the two-
dimensional model in contrast to the one-dimensional model in terms of the BIC we
observed that the difference between both models is barely mentionable. Thus we
concluded that a model selection on both models with the nine measurement im-
ages would not suggest the use of the more complicated and computationally expen-
sive two-dimensional model. Our additional analysis with simulated data, however,
showed that the parameter values for S0α/(γKD) can only be estimated with the
two-dimensional model. The combined analysis showed that the two-dimensional
model is the right choice even if the measurements are only a one-dimensional fea-
ture.
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Figure 6.11.: Estimation results for the two-dimensional source-
diffusion-complex formation model and the distance measure for
simulated data. A) Distance measure calculated from filtered images was used
as data and the estimated distance measure obtained from the two-dimensional
model simulation. We observed that the estimated curves match the data nicely
and are similar for all spot numbers. The third panel shows one representative
two-dimensional model simulation for the estimated parameters in case of 640
spots. B) Likelihood ration of the parameters D/γ and b. For both parameters
the true value is nicely estimated. In comparison to the one-dimensional model
the confidence intervals become smaller and both parameters are practical iden-
tifiable for all spot numbers. C) Likelihood ratio of the parameters α/(γKD) and
S0. We observed that both are practical non-identifiable but show a correlation.
The third panel shows the likelihood ratio calculated for the product S0α/(γKD),
which is practical identifiable.
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Figure 6.12.: Simultaneous estimation of the two-dimensional
source-diffusion-complex formation model for the full CCL21 data
set. A) Comparison of the maximal log-likelihood results from 15 optimization
starts. We observe that the two-dimensional model yields a slightly better like-
lihood value than the one-dimensional model. If we consider the difference in
the BIC, however, the evidence for the two-dimensional model is ”not worth
more than a bare mention” B) The distance measure for each image as well
as the distance measures obtained by the simulation with the maximum likeli-
hood parameters. C) Scaled values for S0α/(γKD) and b. We observed that
experiments 1-4 and experiments 12-16 cluster. D) Likelihood profiles for the
parameters D/γ, sMS0α/(γKD), sMb and the scaling factors sl/sM . sM is the
geometric mean of the scaling factors. sMb shows the same behavior as in the
one-dimensional case.
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6.3.3. Full image

In the previous sections we estimated the kinetic parameters of the source-diffusion-
complex formation model introduced in Section 6.2.1 from the distance measure
calculated based on the data. This distance measure is a strong abstraction of the
original two-dimensional image data, which is suitable to visualize the existence of
a gradient. To overcome the deficiencies of the estimation results, namely the prob-
lems to recover the true underlying parameters, the wide confidence intervals and
the missing spatial sugar distribution we addressed the question how to estimate
the kinetic parameters considering the full image data. A special focus was on the
treatment of the bright spots during the estimation process. We considered two
approaches: first we estimated the parameters from a filtered image and second we
considered a noise model, which includes the bright spots as additional noise term
and considers the whole image as introduced in Section 3.1.2.

As we considered the two-dimensional image data we only concentrated on the
two-dimensional model. Hence the state of the system is u,s and c in the square
domain Ω = [0, 604]2[µm2]. For the full images we consider an offset b and a scaling
parameter s = (s1, . . . , sN) with N number of measurements. The l-th observation
operator for the full image maps the state onto the integral over each of the pixels
Ak, k = 1, . . . ,M , of the image as introduced in Section 3.1.1.

yl,k = Gl,k(s, b)

us
c

 = slb+

∫
Ak
slc(x)dx for l = 1, . . . , N, k = 1, . . . ,M.

For high image resolutions in comparison to the discretization grid size the inte-
gral can be neglected and only the interpolation of the state onto the pixel grid is
considered. Following the analysis in Section 6.2.1 we knew that the parameters
D/γ, α/(γKD), S0 and b can be identified for full noise free observations. With the
introduced scaling we can only identify slS0 and slb for each experiment.

Concerning the measurement technique and the resulting errors on the images we
deduced a noise model. We assumed that taking a microscopy picture is a counting
process and the noise on the final image is multiplicative and log-normally dis-
tributed, i.e.

yl,k = yl,k · εl,k with εl,k ∼ LN (0, σ2
l ) for l = 1, . . . , N, k = 1, . . . ,M.

It follows that yl,k ∼ LN (yl,k, σ
2) and the reduced, negative log-likelihood function

is given by

j(θ) =
1

2

N∑
l=1

M∑
k=1

log(2πσ2
l,kyl,k) +

(
log(yl,k)− log(yl,k)

σl,k

)2

. (6.13)

As before, we performed the parameter estimation in terms of the logarithm of
the parameters log(θ) = log((D/γ, α/(γKD), S0, b, s1, . . . , sN , σ1, . . . , σM)). Addi-
tionally we considered the sensitivity system of (6.5) to calculate the gradient and
Fisher information matrix of the objective function.
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Filtered data First we considered the parameter estimation on filtered data, which
removed the bright spots. The filtering procedure introduced in Section 6.1.3 re-
turned a mask of pixels, which are to be removed from the data. Consequently we
considered a reduced image with k = 1, . . . ,Mf pixels. For the estimation process we
could directly use the objective function (6.13) without consideration of a different
observation operator only a reduced number of pixels.

Integrated noise model Second we considered an adaptive noise model considering
a structured noise given by the bright spots observed in the data. We assumed that
our data is distributed as the mixture of two processes: a model dependent one
and an independent one. As we had no knowledge about the structured noise or
its distribution we could not directly deduce a noise model for the two processes,
however, we required that in the case of no side processes the noise model for the
standard process applied. Therefore we considered the distribution of the ration
yl,k/yl,k to be the weighted sum of a log-normal distribution and an additional noise
term, i.e.

yl,k
yl,k
∼ w1LN (1, σ2) + w2P2.

We assumed that the noise term is also log-normally distributed with unknown mean
and variance, P2 = N (µ2, σ

2
2), i.e.

j(θ) = − log

N,M∏
l,k=1

w1 exp
{
− (log(yl,k)−log(yl,k))2

2σ2
1

}
√

2πσ1yl,k
+
w2 exp

{
− (log(yl,k)−µ2)2

2σ2
2

}
√

2πσ2yl,k

 .

Performance evaluation on simulated data

First, we considered the performance of the methods for the simulated data. We
assumed that sl = 1 and σl = σ for l = 1, . . . , N . To define a set of matching
parameter bounds and a good initial mesh for discretization we used the estimated
parameters obtained from the fit to the distance measure of the two-dimensional
model. We performed 25 local multi-start optimizations with the raw data, the
filtered data and the adaptive noise model applied to the raw data for each of 30
replicates individually. For all methods we obtained a good convergence of the op-
timization to a single optimal objective function value. In the following we will
compare the performance of all three approaches in terms of the parameter identifi-
ability, the obtained distance measure and the bias of the estimated parameters due
to the introduced bright spots.

Before we could draw conclusions concerning the bias of the estimates we had to
analyze if the considered parameter is identifiable. To study the identifiability of the
parameters we used two methods: the bootstrap method and the profile likelihood
method. As we have generated the simulated data in a way such that each replicate
is based on the same simulation with a different realization of the noise model, the
estimates obtained for each of the 30 replicates correspond to the estimates needed
to obtain the bootstrap distribution of the parameters. For one of the estimates
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we calculated the profile likelihood for each parameter. We found that indeed all
the considered parameters are identifiable for all three approaches even though the
width of the profiles strongly varies depending on the number of introduced spots.

Next we compared the approaches with respect to the ability to describe the process.
Therefore, we first considered the difference between the images and the simulation.
We observed that by eye there is no clearly visible difference between the result
obtained by the three approaches (see Figure 6.13A). Next we analyzed the residual
error distribution and compared it to the noise model used in the estimation process.
We found that for the unfiltered, raw images the obtained residual distribution is
not in good accordance with the residuum distribution calculated from the images.
Hence, the assumption of normal distributed noise is indeed not well suited for this
problem. Furthermore we observed that the filtering as well as the integrated noise
model approach yield residual distribution, which are well in accordance with the
residuum obtained from the data. Last we calculated the distance measure for un-
corrupted data as well as for the data with bright spots. We found that the distance
measure obtained from the raw images describes the corrupted data quite well but
is far away from the real underlying process. In comparison both filtering and in-
tegrated noise model approach perfectly reconstructed the distance measure for the
uncorrupted data from the images with spots. Figure 6.13 shows this results for the
images with 320 added spots.

Finally we considered the bias in the estimated parameters due to the spots in the
images. It is clear that the parameters obtained from the raw images start to deviate
from the true value with increasing spot number. We observed that the background
parameter b and the noise parameter σ are strongly overestimated in the raw images
and for more than 40 introduced spots the true value can no longer be found in the
95% CI. For the three other parameters the CIs become wide but the true parameter
can still be found in the 95% CI. For all parameters the CI obtained for the filtered
images are much smaller than for the raw images. As expected the deviation from
the true values is much smaller than for the raw images. However, it still shows the
same trend. For the parameters α/(γKD), S0 and σ2 the true value is no longer
included in the 95% CI for spot numbers bigger than 160. Of course this could be
addressed with a filtering tailored especially to those images with more than 160
spots, however, here we wanted to compared the methods without prior knowledge
of the spot numbers in the images. With the adaptive noise model approach we
obtain even tighter CI and we see that up to the maximal number of 640 spots we
can recover the parameters D/γ, b and σ2. Especially interesting is that the under-
estimation of the diffusion length D/γ observable for the raw and filtered images
can not be found for the adaptive noise model. For α/(γKD) and S0 we observe a
deviation from the true value and for spot numbers larger than 320 spots the true
value is no longer included in the 95% CI.

Performance evaluation on CCL21 data

Next we investigated the performance of the three methods on the real images.
This was done in two steps: first, we considered a single measurement (CCL21-1)

88



6. Tissue scale images: dendritic cell guidance in adaptive immune response

A)

B)

C)

image vs. estimation

unit of intensity
NaN -0.005 0 0.005

0

0.5

1

1.5

2

2.5

residuum distribution

0

0.5

1

1.5

2

2.5

residuum
residuum filtered pixels
estimated distribution

-1 0 1 2
0

0.5

1

1.5

2

2.5
sc

al
ed

 m
ea

n 
in

te
ns

ity
 [

u.
i.]

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
distancemeasure

sc
al

ed
 m

ea
n 

in
te

ns
ity

 [
u.

i.]

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

distance from LV, x [7m]
0 20 40 60

sc
al

ed
 m

ea
n 

in
te

ns
ity

 [
u.

i.]

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

no spots
320 spots
raw image
filtered image
integrated noise

Figure 6.13.: Comparison of estimation results based on the simu-
lated data with 320 spots. A-C) First panel: difference between the raw
image and the image obtained by the estimation. Second panel: residuum dis-
tribution and the estimated noise distribution. Third panel: distance measure
obtained for the data with spots, the true value without spots as well as the one
obtained from the estimation. A) Estimation performed on the raw, untreated
images. We observe that the background is overestimated due to the introduced
spots as visible in the first panel and confirmed by the distance measures shown
in the last panel. Furthermore, panel two shows that the assumption of normal
distributed noise is not valid for this estimation. B) Estimation performed on
the filtered images. Dark spots in the first panels are filtered regions, which are
not considered in the parameter estimation. The second panel shows that the
assumed normal distribution and the residuum match well and the third panel
shows that the obtained distance measure is a near perfect reconstruction of the
true value. C) Estimation performed using the integrated model based method.
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Figure 6.14.: Deviation of estimates from true value for simulated
data. Based on 30 samples for each spot number of the simulated data we esti-
mated the parameters and calculated the deviation from the true value. Circles
mark the mean deviation of the estimated values and the bands are the corre-
sponding 95% confidence intervals calculated from the 30 samples. The integrated
noise model outperforms the filtering with respect to all parameters if the number
of spots is high.

and compared the performance of the three methods visually and with respect to
the distance measure. Second, we performed the parameter estimation on all nine
images simultaneously and compared the methods regarding the likelihood values,
parameter value and identifiability of the parameters.
Our analysis of the estimation based on the image CCL21-1 showed similar results
as we obtained for the simulated data (see Figure 6.13 and Figure 6.15). For the real
data filtering and adaptive noise model both cannot completely detect the spots.
It is however sufficient to reduce the estimation bias for the background value (see
Figure 6.15A). Naturally, a residuum distribution for the real images is not as smooth
as for the simulated ones and the noise distribution is not as close a fit. However, we
still see an improvement for filtering and adaptive noise model. As we have no noise
free data to compare the distance measures, we calculated the distance measure for
the filtered images as reference for the filtering approach. For the adaptive noise
model we defined a weighted distance measure based on weighted data. For the
distance map defined by (6.1) for a given set of distances r0, . . . , rn the pixels in the

90



6. Tissue scale images: dendritic cell guidance in adaptive immune response

i-th bin are denoted by Mri = {x ∈ Ω|ri−1 < dm(x) < ri} and the weighted mean
intensity is ∑

x∈Mri
ωkyl,k∑

x∈Mri
ωk

with

ωk =
exp

(
− log(yl,k)−log yl,k)2

2σl,k

)
√

2πσl,kyl,k
.

We observed that both distance measures are well captured by the respective meth-
ods.

Next, we considered the performance of the parameter estimation based on the si-
multaneous consideration of all nine images. In this case we had 4 kinetic parameters
and nine scaling parameters in all approaches. For raw images and filtered images
we had additional nine noise parameters (in summary 22 parameters); in contrast,
the integrated noise model considered on top of the kinetic and scaling parameters
32 noise parameters (in summary 45 parameters). In a pre-study this difference in
the number of parameters resulted in convergence problems for the integrated noise
approach. We addressed this problem by parameter optimization for the individual
images to obtain an initial guess for the noise parameters. Subsequently we set
bounds such that the noise parameters can vary within two magnitudes around the
initial guess. This resulted in a good convergence and for all methods more than
75% of the optimization converged to the same optimal value with parameter values
insight the bounds. We assumed that all methods found a global optimal value.
Based on the AIC/BIC introduced in Section 2.2 there is a strong evidence that the
integrated noise model is better suited for the CCL21 data then the estimation from
raw images. The filtering approach and the integrated noise model, however, can-
not be compared by AIC/BIC as they use different data sets. With respect to the
obtained parameter values we found that they are similar and vary within less then
one order of magnitude between the models. Additionally, the kinetic parameters
are identifiable with all approaches considered.
Summarizing the findings we can say that parameter estimation based on the raw
images in the presence of measurement artefacts like the introduced spots is not
recommended as it yields unreliable parameter estimates. Both proposed methods,
the filtering and the integrated noise model, performed considerably better in recon-
structing the true parameter values. Especially, for the simulated data we showed
that the integrated noise model also outperformed the filtering approach as the true
parameters could be recovered for all numbers of introduced spots. However, it has
to be kept in mind that the integrated noise model was designed especially for data
with the spot type introduced in the simulated data. In general we found that with-
out a filtering especially tailored to each image, the integrated noise model always
outperformed the filtering for all spot numbers as well as on the real data. So choos-
ing one method over the other is a trade-off between the know-how and time needed
for the manual adaptation of the filtering method and the computational complexity
of the noise parameter estimation. For the considered model the integrated noise
model is the method of choice and we will apply it for the model selection in the
following section. We saw, however, that the increased number of noise parameters
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Figure 6.15.: Comparison of estimation results based on the mea-
surement data CCL21-1. A-C) First panel: difference between the data and
the estimation. Second panel: residuum distribution and the estimated noise
distribution. Third panel: distance measure obtained for data CCL21-1 and
from the estimation. A) Estimation performed on the raw, untreated images.
B) Estimation performed on the filtered images. Dark spots in the first panels
are filtered regions, which are not considered in the parameter estimation. C)
Estimation performed using the integrated noise model based method. In this
case the background is not over estimated and we obtain the best match between
estimated distance measure and the distance measure obtained by weighting the
pixels of the image according to the estimated noise model.
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Figure 6.16.: Comparison of estimation results based on the simul-
taneous consideration of the nine CCL21 images A) Comparison of
the maximal log-likelihood results from 15 optimization starts. We observe that
the estimation on raw and filtered images as well as the integrated noise model
converged to a global optimum in all runs. B) Shows the estimated parameters
D/γ and α/γKD and scaled values for S0 and b. D) Likelihood profiles for the
parameters D/γ, α/γKD,sMS0, sMb. sM is the geometric mean of the scaling
factors.
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of this approach scales with the number of considered measurements and can yield
convergence problems for the optimization process. Possible adjustments to increase
the convergence rate of the optimization for the integrated noise model are discussed
in the Conclusion and Outlook section of this chapter.

6.4. Model selection

As mentioned in Section 6.2 we found that during the estimation process the es-
timated CCL21 concentration and the measured concentration considerably varied
especially at the LV. This is a biologically interesting point as it might suggest a
special marking of different LV regions with the chemokine signal (Kilarski et al.,
2013). Such differences in the bound CCL21 could be influenced by the concentra-
tion of sugar in those regions, which controls the amount of bound CCL21. In this
section we want to methodically address this biological question by model selection
considering three models:

• Model 1: no difference of sugar between LV and surrounding tissue (see Sec-
tion 6.2.1).

• Model 2: different sugar concentration at the LV regions (see Section 6.2.2).

• Model 3: varying sugar concentration in each LV segment in the images (see
Section 6.2.3).

We want to select the best model based on the Bayesian information criterion

BIC = −2J(θ̂) + log(n)k

with n number of data points, k number of parameters and θ̂ is the MLE. For the
model selection we proceeded in three steps: comparison of one single image by eye,
comparison of all images by BIC and comparison of the simultaneous estimation
of the nine images by BIC. For the estimation process we considered the filtering
method as we saw in the previous section that the integrated noise model has conver-
gence problems for high numbers of parameters. For the model selection we consider
models with up to 33 kinetic parameters.

First, we considered the single image CCL21-3. In this image we observed a back-
ground region with low signal as well as LV regions with a high or a low intensity (see
Figure 6.17A). We expected that Model 2 would be able to account for the change
in the background and Model 3 would be able to account for all three phenomena.
To compare models we also considered the distance measure of the estimates. This
feature, however, is such a crude simplification of the data, that no difference be-
tween the models is visible by eye (see Figure 6.17B).

Second, we performed a parameter estimation for all three models on each of the
nine images individually. Thus we could determine if the choice of the best model
strongly would strongly vary between the images. Such a variance could be a biolog-
ical dependence due to different regions in the mouse ear. For this comparison the
difference of the parameter number between the models is maximally 5 and thus the
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Figure 6.17.: Comparison of model performance with respect to im-
age CCL21-3 A) Image CCL21-3 with overlay of LV mask. The LV regions
with high and low intensity levels, as well as the low intensity background region
we can observe in this image are marked with arrows. B) Distance measure cal-
culated for the best fit parameters for the three models. By eye there is no visible
difference in the distance measure. Hence it is inadequate to perform the model
selection on this feature.

penalization of the parameter number in the BIC is relatively small. We saw that
except for image CCL21-16 there is always a strong evidence to choose Model 3 and
not Model 1 and Model 2. For the image CCL21-16 the evidence is considerably
lower but the choice remains the same (see Figure 6.18B). In image CCL21-16 we
only observed one big LV and a small segment of another LV (see Figure 3), hence
the increase in parameters of Model 3 is penalized strongly by the BIC in favor of
Model 2.

Third, we performed the parameter estimation for all three models simultaneously
on all nine images. The multi-start optimization of all three models nicely converged
to a single optimal value and with respect to the reached maximum likelihood value
Model 3 outperforms the other models (see Figure 6.18A). Here, the parameter
number for Model 2 is only one higher than in Model 1. For Model 3, however, we
considered 29 additional parameters in comparison to Model 1. Thus, the parameter
penalization term of the BIC has a strong impact in this model selection process.
The huge difference in the obtained likelihood value, however, counterweighted the
parameter number and we see that there is a strong evidence for Model 3. Hence
the selection for the single images also holds true in case of the simultaneous consid-
eration of all nine images (see Figure 6.18B). Furthermore we found that the Models
have a huge impact on the common kinetic parameters. For Model 2 and Model
3 the diffusion range D/γ and the secretion α/(γKD) are significantly increased,
which suggests a stronger dynamic in the gradient formation. The sugar concen-
tration in the tissue S0, however, is significantly smaller in Model 2 and Model 3.
The Background b value is nearly unchanged and also the spread of the estimated
parameters over the different experiments is not influenced by the models. Finally
we considered the additional parameters of Model 2 and Model 3 and we observed
that for experiment 1-4, which have multiple LVs with strongly varying size, the
individual sugar concentrations strongly spread. In contrast, experiments 12-16,
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which showed LVs of nearly the same size also have similar values for the individual
sugar concentrations.

In summary we found that the model for tissue specific sugar concentrations (Model
2) and the model for lymphoid vessel specific sugar concentration (Model 3) both
describe the process of CCL21 gradient formation at the LV better than the basic
model (Model 1). The difference in LV intensity strongly biased the estimated kinetic
parameters obtained by Model 1 and this problem is addressed by Model 2 as well
as by Model 3. Furthermore, we found that the best model choice is Model 3. This
hints strongly at a functional marking of different LV regions with the chemokine
signal. This prediction is supported by the findings of Kilarski et al. (2013).

6.5. Conclusion

Tissue scale images are a data source for studying spatial aspects of biological pro-
cesses. Unfortunately, analysis by eye often only yields small quantities of the insight
that can possibly be gained by a rigorous model based analysis. For example the
CCL21 gradient is only visible to the expert eye in the original images and while a
selective marking of LV regions with high CCL21 intensities can also be seen, the
importance of those phenomena can not be assessed. In a step by step process we
built up a model based analysis of the CCL21 images concluding in the answer that
there is indeed a significant difference in the sugar concentrations, and therefore in
the CCL21 signal, in the different LV vessels.

The model based analysis of the CCL21 images considered three key aspects: data
representation, parameter estimation methodology and hypothesis based model se-
lection. We found that the distance measure considered in Weber et al. (2013) is a
too crude simplification of the CCL21 data, especially without filtering of the im-
ages. For the reliable estimation of the kinetic parameters the full two-dimensional
images have to be considered. The parameter estimation process with the raw un-
treated images, however, is not accurate enough and either a filtering or the newly
developed integrated noise model approach have to be applied. Both methods yield
reliable estimation results. The assessment of the three proposed models represent-
ing the biological hypothesis of no difference in sugar concentration between LV and
surrounding tissue, different sugar concentration in the LV region and different sugar
concentration in each LV with the BIC was the third aspect. This yielded strong evi-
dence for the hypothesis that there exists a different sugar concentration in each LV.

To address Problem 6.2, a parameter estimation process was designed to estimate
the parameters from the two-dimensional images. Furthermore it was tested for its
reliability, efficiency and applicability for the CCL21 images. We found that the
integrated noise model introduced in Chapter 3 is an adequate choice for image
based parameter estimation. For the CCL21 application example it outperformed
the filtering approach without any necessary adaption to the images.
From a biological point of view we addressed the question of gradient formation
raised in Problem 6.1 by model development, parameter estimation and model se-
lection for the CCL21 data. We found that the CCL21 gradient formation can
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6. Tissue scale images: dendritic cell guidance in adaptive immune response

A) B)

C)

D)

# starts
20 40 60 80 100

lo
g-

lik
el

ih
oo

d

#106

0

0.5

1

1.5

2

2.5

3

3.5
all estimates

2 4 6 8 10

#106

3.41

3.42

3.43

3.44

1256.50
 776.53
 463.99
  -3.46

1099.80
 344.57
1006.16
 339.11
3656.58
4331.78

EXP 1
 EXP 2
 EXP 3
EXP 4

EXP 12
EXP 13
EXP 14
EXP 15
EXP 16

all

select
 model 1  model 2

 2741.07
14911.97
 2124.50
10593.81
 1179.67
 1798.52
 2370.13
  556.01
 3741.26
52383.67

select
 model 1  model 3

 1484.57
14135.43
 1660.51
10597.27
   79.87

 1453.95
 1363.97
  216.90
   84.68

48051.89

select
 model 2  model 3

 m
od

el 
1

 m
od

el 
2

 m
od

el 
3

2.02

2.04

2.06

2.08

2.1

2.12

2.14
log

10
(D/.)

 m
od

el 
1

 m
od

el 
2

 m
od

el 
3

-0.8

-0.6

-0.4

-0.2

0

0.2
log

10
(,/. K

D
)

maximum likelihood estimate

mean parameter value

model 1

model 2

model 3

log10(s iSL) (model 2)

log10(s iSL,k) (model 3)

 m
od

el 
1

 m
od

el 
2

 m
od

el 
3

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2
log

10
(s

i
S

0
)

image CCL21-1

image CCL21-2

image CCL21-3

image CCL21-4

image CCL21-12

image CCL21-13

image CCL21-14

image CCL21-15

image CCL21-16

 m
od

el 
1

 m
od

el 
2

 m
od

el 
3

-2

-1.9

-1.8

-1.7

-1.6

-1.5

-1.4
log

10
(s

i
b)

EXP 1

EXP 2

EXP 3

EXP 4

EXP 1
2

EXP 1
3

EXP 1
4

EXP 1
5

EXP 1
6

-2

-1.5

-1

-0.5
log

10
(s

i
S

L
) and log

10
(s

i
S

L,k
)

Figure 6.18.: Model selection on all nine CCL21 images A)Comparison
of the maximal log-likelihood results from 15 optimization starts. We observe
that the estimation on Model 1, 2 and 3 converged to a global optimum in all
runs and the value obtained by Model 3 is maximal. B) BIC of the estimates
for each individual image and for the simultaneous consideration of all nine
images. The color coding indicates which model is favored. C) Comparison
of the shared optimal parameters of the three models. D) Comparison of the
additional parameters in Model 2 and Model 3.
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6. Tissue scale images: dendritic cell guidance in adaptive immune response

indeed be described by source-diffusion-complex formation process, however, there
is a strong evidence that the complex formation has a distinctive local patterning
due to different concentrations of the sugar (heparan sulfates).

In a subsequent step, the simultaneous inference using multiple imaging data with
the integrated noise model could be addressed. The computational bottleneck is
the repeated choice of kinetic parameters, which yield numerical, instable simula-
tions during the update steps for the noise parameters. We propose the design of
an optimization procedure, which treats kinetic parameters and noise parameters
separately. Thus the repeated, time consuming simulation of the CCL21 model can
be done with a high accuracy, while the fast but slow converging optimization of
the noise parameters can be performed more often.

In addition to the possible numerical improvements for the integrated noise model
approach there are a number of possible biological studies, which could be proposed
based on the findings of this chapter. First, of course a experimental verification of
the importance of the lymphoid vessel sugar concentration for the CCL21 gradient
formation is of great interest. From a theoretical point of view the reduction or the
complete deletion of haparan sulfate production in the LV should strongly affect the
gradient formation. A systematic reduction of the sugar production could yield a
dilution series based on which the estimation of the absolute sugar concentration
might become possible. Furthermore, the behavior of dendritic cells applied to a
mouse slice with such a reduced sugar concentration in the LV vessels could prove the
functionality of the different concentrations in different LV regions. While a study
suggesting this functionality has already been done by Kilarski et al. (2013), the
data obtained proved insufficient to perform a model based analysis to quantitatively
analyze the validity of this hypothesis.
With the development of new imaging technologies biological measurements move
away from single data point observations towards more spatially organized data.
This additional spatial dimension yields significantly more insight into the biolog-
ical processes but comes with a high demand for accurate, adaptive and efficient
analytical tools to extract and test biological hypothesis. We demonstrated with
the CCL21 gradient formation that the methods proposed in this thesis can con-
tribute to the understanding of complicated spatio-temporal processes.
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The key elements to exploit imaging techniques with biological models to gain in-
sights beyond visual analysis are parameter estimation and model based hypothesis
testing, unfortunately both fields are still in the fledgling stages when it comes to
spatio-temporal models as encountered in image based systems biology. Despite the
developments for inverse problems with semi-linear PDEs, key elements like partial
observations, parameter identifiability, non-standard noise models or uncertainty
quantification are still open questions. In this thesis we novel tools to address image
based parameter estimation and uncertainty quantification for semi-linear PDEs as
they are encountered in biological applications, culminating in the development of
an efficient profile likelihood calculation for semi-linear PDE models. This enabled
the rigorous model based analysis of different hypothesis of Pom1p and CCL21 gra-
dient formation yielding new biological insights and motivating new experiments to
further elucidate those biological processes.

Summarizing our results we began by introducing imaging specific structures like
partial or pixel based observation operators. The newly introduced non-standard
parameter estimation approach, which considers an integrated noise model instead
of the step wise process of feature extraction and parameter estimation considered
in the field was of special interest. Based on this consideration the parameter esti-
mation problem in a very generic set-up was established as an optimization problem
with semi-linear PDE constraints for which optimality conditions and the Hessian
matrix were deduced. The Hessian matrix is only a second order approximation to
parameter uncertainty and often fails in the presence of parameter indeterminacies.
Therefore, the profile likelihood was introduced. However, standard approaches to
calculate the profile likelihood have been shown to be infeasible for computationally
demanding problems like semi-linear PDEs (Hock et al., 2013). To tackle the prob-
lem of profile likelihood calculation for semi-linear PDE models, an efficient ODE
based formulation of the profile likelihood calculation was developed following the
method for ODEs by Chen & Jennrich (2002). The combination of the the ODE
formulation with the previously deduced Hessian matrix or efficient approximations
based on the Fisher Information matrix, in case of missing or computationally infea-
sible Hessian information, gave an enhanced profile likelihood calculation. For the
application example on which we evaluated the method a decrease of up to 90% in
the number of function evaluations yielded a tremendous reduction in computation
time while the accuracy of the profiles was still close to the standard optimization
based calculation. This impressive speed up enabled the profile likelihood based
uncertainty analysis to be used for the real life applications of the Pom1p and the
CCL21 gradient formation. For both applications we also observed a strong reduc-
tion in the number of function evaluations up to 70%. Besides the efficiency of the
newly introduced profile calculation method we also used the CCL21 application
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example as proof of concept for the introduced integrated noise model approach.
We compared the standard filtering approach and the integrated noise model ap-
proach on simulated and real data and found a good performance of the new method.

Regarding the discussed parameter estimation and uncertainty quantification meth-
ods for image based systems biology we can give two key conclusions. First, based
on the numerical results for the application example, the Pom1p gradient formation
models and the CCL21 model based analysis, we demonstrated that the newly de-
veloped efficient profile calculation method outperforms the standard optimization
based approach by several orders of magnitude regarding the number of function
evaluations. This increase in calculation speed does not reduce the accuracy as
the obtained profiles and the decisions regarding parameter identifiability are com-
parable to that of the standard approach thus enabling the profile calculation for
computationally demanding models. From an application point of view we can con-
clude that as well as for the application example and the real life applications the full
Hessian is not needed to obtain reliable results but can be approximated with the
often easier to obtain Fisher Information matrix. Furthermore, the use of the Fisher
information matrix stabilized the method against approximation errors or near zero
eigenvalues in the Hessian matrix, especially for non-identifiable parameters. Sec-
ond, the application of the integrated noise model approach to the simulated and
the real data of the tissue scale application example outperformed the standard fil-
tering approach. Hence we can conclude that without loss of estimation precision
the new method enables a comprehensive analysis of uncertainties for which no data
is discarded and no specialists knowledge is needed to tune it (compared to filtering
methods).

Recapitulating the research questions posed in Section 1.1 the results obtained in
this thesis answer the posed questions. We introduced the general parameter estima-
tion problem and based on the efficient profile calculation for ODEs we introduced
a method for semi-linear PDEs. Furthermore, we proposed Hessian matrix approxi-
mations and evaluated them on an application motivated example, which showed an
impressive improvement of calculation speed compared to the standard approach.
To reinforce the theoretical findings we used the developed methods to perform a
rigorous model based analysis for single cell image data and tissue scale image data
to elucidate the underlying biological processes.

In the application chapters we proposed new biological experiments and further
studies to verify the predictions made by the models. Beyond that the key point for
improvements and further studies is the optimal choice for the adaption parameter
γ in (4.6). In this work we chose γ by hand, i.e. the visual comparison of benchmark
and approximated profile and to our knowledge there is no work yet proposing how
to chose that parameter efficiently. Especially, the accuracy of the profiles strongly
depends on this parameter and a more structural choice should be possible. For
large values the ODE becomes increasingly stiff resulting in increased computation
time. Furthermore, too narrow profiles occur if γ is very large but small values
result in inaccurate profiles so the optimal choice should be a trade off between
speed and accuracy. We propose the development of an adaptive update scheme
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for γ depending on the accuracy of the Hessian matrix approximation. Another
point, which should be addressed in further studies are the convergence problems of
the developed integrated noise model. Here, the estimation of the noise parameters
and the kinetic parameters should be separated as the noise model has a rather big
overhead of parameters. These scale up the optimization process, however, they do
not need repeated simulation of the model in each step.

Beyond the calculation of profile likelihoods, the proposed scheme can be employed
to calculate profile posteriors. This enables a Bayesian uncertainty analysis which
might be more efficient than parameter sampling (Hug & Raue, 2013). In the last
years, however, there has been a rapid development of Bayesian techniques intended
for PDE models (Bui-Thanh et al., 2011; Bui-Thanh & Girolami, 2014). A compari-
son of the obtained uncertainty measures, i.e. marginals, with the profile likelihoods
described has already been done for ODEs (Raue et al., 2013) and would be inter-
esting for PDEs as well. Another recent development is the use of model reduction
methods to perform Bayesian uncertainty analysis for large scale models (Sternfels
& Earls, 2013). Model reduction could also be applied to the optimization process
for the maximum likelihood calculation and an especially nice aspect of model re-
duction is the possibility to give exact error bounds, which are missing for the here
introduced method.

Parameter estimation and uncertainty quantification for image based systems biol-
ogy is still in its fledgling state especially as it strongly relies on efficient methods
for semi-linear, computational demanding PDE problems, which are currently not
available. This hampers the development of quantitative spatio-temporal models
from image data compared to the very often considered ordinary differential equa-
tion models. The spatial scale, however, offers a wealth of information far beyond
what time series data can supply as spatial structures, gradients and tissue spec-
ifications have great influence on the biological processes. In this work we took
the first steps towards introducing efficient methods, which will allow the uncer-
tainty analysis of semi-linear PDE problems with similar to the state of the art
for ODE problems. Furthermore, we introduced a comprehensive integrated noise
model approach, which is especially useful for analysis of tissue scale image data.
The combination of both should enable the application of a rigorous uncertainty
quantification to a large number of existing biological spatio-temporal models and
facilitate the analysis of existing data to gain new insights.
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A. Additional Data and Estimation results
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Table 1.: CCL21 data: estimated parameters for the 1D source-
diffusion-complex formation model Parameter estimation performed si-
multaneously on the nine filtered CCL21 staining images. The estimated param-
eters are obtained by the best fit out of 100 initial points sampled with a pace
filling design.

log10(θi) log10(θ̂i) CI0.05(θi)

D/γ −1.39 2.50 [0.82; 5.10]

sM(S0αγKD) 11.21 10.99 [−1.12; 2.70]

sMb 10.95 9.68 [−8.83;−1.60]

s1/sM −12.81 −11.60 [−0.37;−0.09]

s2/sM −12.81 −11.59 [−0.38;−0.06]

s3/sM −12.81 −11.57 [−0.35;−0.05]

s4/sM −12.81 −11.56 [−0.29;−0.07]

s12/sM −12.81 −11.33 [−0.15; 0.21]

s13/sM −12.81 −11.23 [−0.06; 0.32]

s14/sM −12.81 −11.23 [−0.09; 0.33]

s15/sM −12.81 −11.12 [0.04; 0.43]

s16/sM −12.81 −11.29 [−0.28; 0.31]
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Figure 1.: CCL21 immonostainings and LV masks experiments 1-4

104



Appendix

A) B)
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Figure 2.: CCL21 immonostainings and LV masks experiments 12-14
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A) B)
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Figure 3.: CCL21 immonostainings and LV masks experiments 16

Table 2.: CCL21 data: estimated parameters of 2D model based on
distance measure Parameter estimation performed simultaneously on the nine
filtered CCL21 staining images. The estimated parameters are obtained by the
best fit out of 25 initial points sampled with a space filling design. As we saw
that only the scaled parameters are identifiable for this estimation we displayed
only the scaled value for each image. θi is the initial guess and θ̂i is the MLE.

log10(θi) log10(θ̂i) CI0.05(θi)

D/γ −1.39 2.46 [1.10; 4.29]

sM(S0αγKD) −1.08 −0.80 [−2.78;−1.13]

sMb −1.34 −1.24 [−11.71;−1.71]

s1/sM −0.53 −0.69 [−0.21; 0.18]

s2/sM −0.53 −0.67 [−0.20; 0.09]

s3/sM −0.53 −0.65 [−0.34; 0.15]

s4/sM −0.53 −0.63 [−0.20; 0.11]

s12/sM −0.53 −0.42 [0.02; 0.46]

s13/sM −0.53 −0.31 [0.13; 0.54]

s14/sM −0.53 −0.31 [0.16; 0.56]

s15/sM −0.53 −0.21 [0.15; 0.70]

s16/sM −0.53 −0.37 [0.00; 0.59]
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Table 3.: Simulated data: estimated parameters for the 2D source-
diffusion-complex formation model based on raw images Parameter
estimation performed on the raw simulated data. Each table displays the esti-
mated parameters for the best fit out of 25 for the number of introduced spots.

no spots # spots: 20

log10(θi) log10(θ̂i) CI0.05(θi) log10(θi) log10(θ̂i) CI0.05(θi)

D/γ 1.93 1.92 [1.91; 1.93] 1.93 1.90 [1.89; 1.91]

α/γKD −0.62 −0.65 [−0.69;−0.62] −0.62 −0.64 [−0.68;−0.60]

S0 −0.68 −0.65 [−0.68;−0.62] −0.68 −0.67 [−0.70;−0.63]

b −1.89 −1.88 [−1.89;−1.88] −1.89 −1.88 [−1.88;−1.88]

# spots: 40 # spots: 80

log10(θi) log10(θ̂i) CI0.05(θi) log10(θi) log10(θ̂i) CI0.05(θi)

D/γ 1.93 1.96 [1.95; 1.97] 1.93 1.95 [1.93; 1.96]

α/γKD −0.62 −0.70 [−0.76;−0.66] −0.62 −0.68 [−0.74;−0.62]

S0 −0.68 −0.60 [−0.65;−0.56] −0.68 −0.63 [−0.68;−0.58]

b −1.89 −1.88 [−1.88;−1.88] −1.89 −1.86 [−1.87;−1.86]

# spots: 160 # spots: 320

log10(θi) log10(θ̂i) CI0.05(θi) log10(θi) log10(θ̂i) CI0.05(θi)

D/γ 1.93 1.99 [1.98; 2.00] 1.93 1.91 [1.89; 1.93]

α/γKD −0.62 −0.84 [−0.95;−0.75] −0.62 −0.41 [−0.48;−0.34]

S0 −0.68 −0.49 [−0.57;−0.39] −0.68 −0.88 [−0.93;−0.82]

b −1.89 −1.85 [−1.85;−1.85] −1.89 −1.80 [−1.80;−1.80]

# spots: 640

log10(θi) log10(θ̂i) CI0.05(θi)

D/γ 1.93 1.95 [1.93; 1.98]

α/γKD −0.62 −0.32 [−0.41;−0.24]

S0 −0.68 −0.97 [−1.03;−0.91]

b −1.89 −1.75 [−1.75;−1.74]
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Table 4.: Simulated data: estimated parameters for the 2D source-
diffusion-complex formation model based on filtered images Parame-
ter estimation performed on the filter simulated data. Each table displays the
estimated parameters for the best fit out of 25 for the number of introduced spots.

no spots # spots: 20

log10(θi) log10(θ̂i) CI0.05(θi) log10(θi) log10(θ̂i) CI0.05(θi)

D/γ 1.93 1.92 [1.91; 1.93] 1.93 1.92 [1.91; 1.93]

α/γKD −0.62 −0.65 [−0.70;−0.62] −0.62 −0.64 [−0.68;−0.60]

S0 −0.68 −0.65 [−0.68;−0.61] −0.68 −0.66 [−0.69;−0.63]

b −1.89 −1.88 [−1.89;−1.88] −1.89 −1.88 [−1.89;−1.88]

# spots: 40 # spots: 80

log10(θi) log10(θ̂i) CI0.05(θi) log10(θi) log10(θ̂i) CI0.05(θi)

D/γ 1.93 1.92 [1.91; 1.93] 1.93 1.92 [1.91; 1.93]

α/γKD −0.62 −0.64 [−0.68;−0.60] −0.62 −0.61 [−0.65;−0.57]

S0 −0.68 −0.66 [−0.69;−0.63] −0.68 −0.69 [−0.72;−0.66]

b −1.89 −1.89 [−1.89;−1.88] −1.89 −1.88 [−1.89;−1.88]

# spots: 160 # spots: 320

log10(θi) log10(θ̂i) CI0.05(θi) log10(θi) log10(θ̂i) CI0.05(θi)

D/γ 1.93 1.93 [1.93; 1.94] 1.93 1.92 [1.91; 1.93]

α/γKD −0.62 −0.58 [−0.63;−0.55] −0.62 −0.48 [−0.51;−0.44]

S0 −0.68 −0.71 [−0.74;−0.68] −0.68 −0.79 [−0.82;−0.76]

b −1.89 −1.89 [−1.89;−1.88] −1.89 −1.88 [−1.88;−1.88]

# spots: 640

log10(θi) log10(θ̂i) CI0.05(θi)

D/γ 1.93 1.91 [1.90; 1.92]

α/γKD −0.62 −0.47 [−0.51;−0.43]

S0 −0.68 −0.81 [−0.84;−0.77]

b −1.89 −1.86 [−1.87;−1.86]
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