
Technische Universität München

Lehrstuhl für Angewandte Geometrie und Diskrete Mathematik
(M9)

Deterministic, Stochastic, and Robust
Cost-Aware Scheduling

Roman Rischke

Vollständiger Abdruck der von der Fakultät für Mathematik der
Technischen Universität München zur Erlangung des akademischen
Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Prof. Dr. Christian Liedtke

Prüfer der Dissertation: 1. Prof. Dr. Nicole Megow
2. Prof. Dr. Marc Uetz

Universität Twente / Niederlande

Die Dissertation wurde am 17.05.2016 bei der Technischen
Universität München eingereicht und durch die Fakultät für
Mathematik am 01.07.2016 angenommen.





Acknowledgments

I am extremely grateful to many people who made this thesis possible through
their invaluable advise and support. First and foremost, I thank my advisor
Nicole Megow for sharing her passion for optimization under uncertainty and for
introducing me to the research community. Her office door was literally always
open for research and non-research matters and I enjoyed the numerous inspira-
tional discussions with her. Nicole’s great support and her trust were the basis
for this thesis. Special thanks also go to Leen Stougie, whom I always saw as
my second advisor. I especially thank him for the joyful weeks of intense joint
research in Amsterdam and Berlin, for his unshakable optimism, and for all the
proofreading. I would also like to express my gratitude to Marc Uetz for taking
the second assessment of this thesis.

Most of the results in this thesis originate from the collaboration with
Lin Chen, whom I always considered as a mentor. His goal-oriented and rig-
orous way of doing research together with his broad knowledge and his clear
mind shaped my view of research a lot.

I also thank my other coauthors Fidaa Abed, Yann Disser, Martin Groß, Julie
Meißner, Alexander Richter, and José Verschae for the great collaboration and for
proofreading drafts of different parts of this thesis. Their detailed comments and
suggestions helped to improve the presentation of this thesis and clarified many
arguments. I am also grateful to Kevin Schewior for reading and commenting on
parts of this thesis and for all the fun we had together.

I started my PhD project in the combinatorial optimization and graph al-
gorithms group at TU Berlin and I very much enjoyed being a member of this
family. I thank all members of COGA for the great time we spent together. I will
never forget the numerous table soccer tournaments and the lively coffee and tea
breaks. Special thanks go to Rolf H. Möhring and Martin Skutella, who formed
this outstanding research environment.

I finished my PhD project in the applied geometry and discrete mathematics
group at TU München. I thank all M9 members for the wonderful time we had.

This work was financially supported by the German Research Foundation
(DFG) under contract ME 3825/1. Furthermore, I thank the research train-



ing group “Methods for Discrete Structures” in Berlin, the Berlin Mathematical
School and the International School of Applied Mathematics in München for all
the valuable soft skill seminars and workshops.

Without the constant support and encouragement of my family and friends
this thesis would not have been possible. I owe special thanks to Daniela Luft
for all her love and unconditional support. Special thanks also go to my parents,
Evelyn and Steffen Rischke, my brother, Tobias Rischke, and the family of Daniela
for all the encouraging words and support over the years.

I am extremely grateful to all of you.

München, May 2016 Roman Rischke



Abstract

Scheduling concerns the temporal allocation of tasks to scarce resources with the
objective of optimizing some performance measure subject to certain side con-
straints. It is involved for example when the execution of a computer program is
assigned to the central processing unit (CPU) or when the take-offs and landings
of airplanes are allocated to the runways of an airport. Classical scheduling prob-
lems do not address the fact that in practice we usually need to pay a certain cost
when using scarce resources. Moreover, this cost may also vary over time, as for
example electricity cost fluctuating over day time, or reservation cost for compu-
tational power in the cloud that may vary depending on the law of supply and
demand. It is a challenging task to optimize the tradeoff between the resource
provisioning cost and the scheduling quality. Furthermore, the allocation of the
tasks to the scarce resources is usually carried out in the future. As the future
is unpredictable, scheduling problems have an intrinsic data uncertainty in prac-
tice. Machines might unexpectedly break down or a job might have a much longer
processing time than expected. Our scheduling models should take also this issue
into account. We consider a natural generalization of classical machine schedul-
ing problems in which occupying a time slot incurs certain cost that may vary
over time and which must be paid in addition to the actual scheduling cost. We
also propose a general two-stage model for cost-aware scheduling with uncertain
input data. Furthermore, we investigate the problem of scheduling the mainte-
nance of edges in a network with the objective of preserving connectivity between
two distinguished vertices of the network. This is motivated by the servicing and
replacement in transportation and telecommunication networks which requires a
well-planned schedule to minimize the performance loss through temporary out-
ages. This problem can be seen as a deterministic cost-aware scheduling problem
in which we pay a certain penalty cost whenever the two distinguished vertices in
our network are disconnected. Our contributions are optimal algorithms, results
on the computational complexity and approximation algorithm for these general
scheduling problems.





Zusammenfassung

Scheduling beschäftigt sich mit der zeitlichen Zuordnung von Aufgaben zu knap-
pen Ressourcen mit dem Ziel der Optimierung einer gegebenen Zielfunktion unter
Einhaltung gegebener Restriktionen. Scheduling kommt zum Beispiel zur Anwen-
dung wenn die Ausführung eines Computerprogramms dem Prozessor zugewiesen
wird oder wenn Starts und Landungen von Flugzeugen den Landebahnen eines
Flughafens zugeteilt werden. Klassische Scheduling-Probleme berücksichtigen je-
doch nicht, dass in der Praxis für die Nutzung von knappen Ressourcen üblicher-
weise Kosten anfallen. Zusätzlich weisen diese Kosten oftmals eine zeitliche Vari-
abilität auf, wie zum Beispiel über den Tag hinweg schwankende Stromkosten
oder dem Gesetz von Angebot und Nachfrage folgende Reservierungskosten für
Kapazitäten in der Cloud. Das Finden eines optimalen Kompromisses zwis-
chen den Kosten für die Ressourcenbeschaffung und der Qualität des Schedules
stellt eine herausfordernde Aufgabenstellung dar. Hinzu kommt, dass die Zuord-
nung der Aufgaben zu den knappen Ressourcen üblicherweise in der Zukunft
ausgeführt wird. Da die Zukunft jedoch unvorhersehbar ist, weisen Scheduling-
Probleme eine innewohnende Datenunsicherheit in der Praxis auf. Maschinen
können unvorhersehbar zusammenbrechen oder eine Aufgabe kann länger in
der Abarbeitung dauern als erwartet. Scheduling-Modelle sollten auch dieses
Problem berücksichtigen. Wir betrachten eine natürliche Verallgemeinerung von
klassischen Maschinen-Scheduling-Problemen, in der die Belegung eines Zeitslots
zeitabhängige Kosten verursacht, die zusätzlich zu den eigentlichen Scheduling-
Kosten anfallen. Wir schlagen auch ein allgemeines zwei-stufiges Modell für
kostenbewusstes Maschinen-Scheduling mit Datenunsicherheit vor. Zudem un-
tersuchen wir das Problem der Koordination von Wartungsaufgaben auf Kan-
ten in einem Netzwerk mit dem Ziel der Aufrechterhaltung der Konnektivität
zwischen zwei ausgewiesenen Netzwerkknoten. Dies lässt sich durch Wartungsar-
beiten in Infrastruktur- und Telekommunikationsnetzwerken motivieren, die eine
sorgfältige Planung erfordern, um Leistungseinbußen durch temporären Aus-
fall zu minimieren. Dieses Problem kann als deterministisches kostenbewusstes
Scheduling-Problem aufgefasst werden, in welchem Strafkosten immer dann an-
fallen, wenn die zwei ausgewiesenen Netzwerkknoten nicht verbunden sind. Unser
Beitrag sind optimale Algorithmen, Resultate hinsichtlich der Komplexität und
Approximationsalgorithmen für diese allgemeinen Scheduling-Probleme.





Contents

1 Introduction 11
1.1 Deterministic Cost-Aware Machine Scheduling . . . . . . . . . . . 13
1.2 Cost-Aware Machine Scheduling under Data Uncertainty . . . . . 14
1.3 Scheduling Maintenance Jobs in Networks . . . . . . . . . . . . . 15
1.4 Outline of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2 Preliminaries 19

3 Deterministic Cost-Aware Machine Scheduling 25
3.1 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2 Related Work and Contributions . . . . . . . . . . . . . . . . . . 26
3.3 Minimizing the Makespan on Unrelated Machines . . . . . . . . . 29
3.4 Minimizing Total Weighted Completion Time on a Single Machine 30
3.5 A PTAS for Minimizing Total Weighted Completion Time . . . . 36

3.5.1 Preliminaries and Scheduling in the Weight-Dimension . . 36
3.5.2 A Dynamic Programming Algorithm . . . . . . . . . . . . 37
3.5.3 Trimming the State Space . . . . . . . . . . . . . . . . . . 42

3.6 Consequences of Having Release Dates . . . . . . . . . . . . . . . 44
3.6.1 Minimizing the Makespan on a Single Machine . . . . . . 44
3.6.2 Minimizing the Makespan on Unrelated Machines with

Fractional Reservation . . . . . . . . . . . . . . . . . . . . 46
3.6.3 Minimizing the Total Completion Time on a Single Machine 47

3.7 Conclusion and Open Problems . . . . . . . . . . . . . . . . . . . 54

4 Cost-Aware Machine Scheduling under Data Uncertainty 55
4.1 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.2 Related Work and Contributions . . . . . . . . . . . . . . . . . . 56
4.3 Polynomial-Scenario Model for Min-Sum Objective . . . . . . . . 58

4.3.1 Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.3.2 An Algorithm for First-Stage Reservation Only . . . . . . 61
4.3.3 A Generic Algorithm for Two-Stage Scheduling . . . . . . 66
4.3.4 A Refined Two-Stage Algorithm . . . . . . . . . . . . . . . 68
4.3.5 Improvements for Special Cases . . . . . . . . . . . . . . . 69

4.4 Polynomial-Scenario Model for Makespan Objective . . . . . . . . 74



4.5 The Black-Box Model . . . . . . . . . . . . . . . . . . . . . . . . 78
4.6 Two-Stage Robust Scheduling . . . . . . . . . . . . . . . . . . . . 80
4.7 Interval-Indexed LP-Relaxation . . . . . . . . . . . . . . . . . . . 82
4.8 Conclusion and Open Problems . . . . . . . . . . . . . . . . . . . 86

5 Scheduling Maintenance Jobs in Networks 87
5.1 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.2 Related Work and Contributions . . . . . . . . . . . . . . . . . . 88
5.3 Preemptive Scheduling . . . . . . . . . . . . . . . . . . . . . . . . 90
5.4 Non-Preemptive Scheduling . . . . . . . . . . . . . . . . . . . . . 93

5.4.1 Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.4.2 An Approximation Algorithm . . . . . . . . . . . . . . . . 100

5.5 Power of Preemption . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.6 Mixed Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
5.7 Conclusion and Open Problems . . . . . . . . . . . . . . . . . . . 108

Bibliography 109



1
Introduction

Scheduling addresses the temporal allocation of tasks to scarce resources with
the objective of optimizing some performance measure subject to certain side
constraints. It is involved for example when the execution of a computer pro-
gram is assigned to the central processing unit (CPU) or when the take-offs and
landings of airplanes are allocated to the runways of an airport. Objectives may
be, among many others, the minimization of the time point when the last task
is completed, also known as makespan minimization, or the minimization of the
average weighted completion time. The former objective is often used in project
scheduling and the latter one serves as a measure for the quality of service. Ex-
amples for possible side constraints are precedence relations between the tasks,
restrictions on the time window where a task can be processed, or the requirement
that the processing of a task must not be interrupted. An explicit description of
the temporal allocation of the given tasks to the given resources is referred to as
a schedule.

Scheduling has its roots in management science, operations research, theoreti-
cal computer science, and combinatorial optimization. In the early 20th century,
Frederick W. Taylor [82] described ‘principles of scientific management’ to im-
prove the efficiency of labor, in particular, by replacing rule-of-thumb methods
by scientific methods for the management. With his work, Taylor established the
basis for the research field that we call today management science which contains
scheduling as a sub-discipline. Later, in World War II, many planning and logis-
tical problems required scientific approaches from which the field of operations
research evolved. Today, the boundaries between management science and oper-
ations research are fluent. Johnson [50], Jackson [48, 49] and Smith [78] started
the rigorous study of scheduling problems in the 1950s. Already in these early
publications, tasks are also called jobs, which is a generally accepted convention
in the scheduling community. In the middle of the 20th century, the development
of operating systems for computers promoted the scientific study of scheduling
problems as a sub-discipline of theoretical computer science. In this context, the
notion of machine scheduling has been established, because the scarce resources
correspond to machines and computers, respectively. The focus of this thesis is

11



12 1 Introduction

on machine scheduling problems.
Combinatorial optimization as a sub-discipline of discrete mathematics is also

concerned with scheduling problems. In combinatorial optimization, we aim at
finding an optimal object among a discrete set of feasible objects. Such an object
could be a schedule, as considered in this thesis, but it could for example also be
a path or a tour in a given network. Assigning every object a certain value gives
rise to the question of finding an optimal object with respect to this value. For
finding an optimal object, algorithms are designed. An algorithm for a certain
problem takes as input an instance of the problem and returns after finitely many
operations a solution for the given problem instance. The performance of an
algorithm can be assessed in terms of the running time and the solution quality.
Based on this assessment, which is usually with respect to the worst-case behavior
of the algorithm, we ideally want to classify problems into ones that admit an
efficient algorithm and those that are computationally hard. The word ’efficient’
means here that the running time can be bounded by a polynomial in the input
size. Cook [27] and Karp [52] laid the basis for this problem classification with
the development of the complexity theory at the beginning of the 1970s. Since
then, many scheduling problems were shown to be NP-hard [38,60]. This, in turn,
rules out the existence of an optimal deterministic polynomial-time algorithm for
such scheduling problems under widely believed assumptions.

As we probably cannot hope for an NP-hard problem to have an algorithm
that returns for any instance of the problem an optimal solution in polynomial
time, we need to relax at least one of the requirements. In this thesis, we shall
relax the optimality requirement, that is, we focus on approximation algorithms.
An approximation algorithm for a certain optimization problem returns in polyno-
mial time for any problem instance a feasible solution that is within a guaranteed
factor of the optimal value. Proving such a performance guarantee for an ap-
proximation algorithm requires a rigorous worst-case analysis. We remark that
this approach differs from the study of heuristics, where the performance is usu-
ally assessed based on empirical observations. It is interesting to note that the
first approximation algorithm in literature was given for a machine scheduling
problem by Graham [40].

In practical applications of scheduling, our overall objective is usually not
only affected by the traditional scheduling cost, but also governed by some other
cost function such as cost for operating or renting machines. Moreover, these
two cost functions may be in conflict. For example, the additional cost function
may suggest delaying jobs in favor of cheaper cost, whereas the scheduling cost
usually increases with the delay of jobs. Finding an optimal tradeoff between
these two costs is then a challenging task. This motivates the topic of this thesis,
namely cost-aware scheduling problems, which take this aspect into account. We
now introduce the cost-aware scheduling problems that we study in this thesis.



1.1 Deterministic Cost-Aware Machine Scheduling 13

1.1 Deterministic Cost-Aware
Machine Scheduling

Classical scheduling problems do not address the fact that in practice we usually
need to pay a certain cost when using scarce resources. Moreover, this cost may
also vary over time, as for example labor cost that may vary depending on the
day of the week, or the hour of the day [83], or electricity cost fluctuating over
day time [57]. On the one hand, the latter have economically a huge impact
on facilities with enormous power consumption such as large data centers. On
the other hand, these fluctuations reflect the imbalance between generation and
consumption of electricity on a daily or weekly basis. In fact, peak demand
periods in an energy network are usually inefficient, because either energy is stored
or additional power plants are kept ready for these rather short peak demand
periods [14]. Both options require additional resource consumption, which we
aim to minimize. Hence, cost-aware scheduling is economically profitable and
supports an eco-aware usage and generation of energy.

Another motivation for cost-aware machine scheduling stems from cloud com-
puting. Users of such services, for example, of Amazon EC2, are offered time-
varying pricing schemes for processing jobs on a remote cloud server [1]. It is a
challenging task for them to optimize the tradeoff between the resource provi-
sioning cost and the scheduling quality.

With these motivations in mind, we consider a natural generalization of clas-
sical machine scheduling problems in which occupying a time slot incurs certain
cost that may vary over time and which must be paid in addition to the actual
scheduling cost. This framework has been proposed recently by Wan and Qi [83]
and Kulkarni and Munagala [57]. Wan and Qi [83] consider cost-aware single
machine scheduling problems with the constraint that the processing of a job
must not be preempted. They show for some classical polynomial-time solvable
scheduling problems that they become strongly NP-hard in the cost-aware setting.
Kulkarni and Munagala [57] focused on more general preemptive single machine
scheduling problems, in which the job set and the time-varying cost for using
the machine are revealed over time, known as online model. Compared to that,
deterministic models in which the input is clearly specified and not uncertain, are
often also called offline models.

Note that cost-awareness in scheduling allows to model scheduling problems
in which the machines are unreliable, that is, the machines might break down for
some time and in such periods the machines are not available for processing the
jobs. We can set the cost in the periods of break-downs to a sufficiently large
value such that there is no incentive to use these time slots.

We study the scheduling objectives of minimizing the makespan and the total
sum of (weighted) completion times. For the makespan objective, we show that
preemptive scheduling on unrelated parallel machines, which is one of the most



14 1 Introduction

general scheduling models, admits a polynomial-time algorithm in the cost-aware
setting. The word ’unrelated’ means that each job’s processing time is machine-
dependent. However, the problem of minimizing the total (weighted) completion
time is considerably harder, even on a single machine. We present a polynomial-
time algorithm that computes for any given sequence of jobs an optimal schedule,
that is, the optimal set of time slots to be used for scheduling the jobs according
to the given sequence. This result is based on dynamic programming using struc-
tural properties of optimal solutions and a potential function argument. With
this algorithm we can solve the unweighted problem optimally in polynomial
time, since an optimal job sequence is efficiently computable for this problem.
Furthermore, we argue that for any ε > 0 there is an approximation algorithm
with performance guarantee 4 + ε for the strongly NP-hard problem with indi-
vidual job weights. For the weighted version, we also give a polynomial-time
approximation scheme (PTAS), which is the best possible approximation result
one can hope for, given the complexity of this problem. The idea for this PTAS
is based on a re-interpretation of the scheduling problem within the Gantt chart
representation [36] introduced for scheduling on a machine of varying speed by
Megow and Verschae [64].

All mentioned results hold for the scheduling model, where all jobs are avail-
able for processing at the same time point. We also analyze the influence of
having job-individual release dates. The processing of a job must not start before
the release date of a job. We show that there is again a polynomial-time algo-
rithm for makespan minimization on a single machine in the presence of release
dates. However, the problem with the total completion time objective, that is,
all jobs have the same weight, turns out to be NP-hard. Hence, having release
dates increase the problem complexity for the min-sum objective.

1.2 Cost-Aware Machine Scheduling
under Data Uncertainty

Scheduling aims at finding good temporal allocations of given tasks to given re-
sources, where this allocation is usually carried out in the future. As the future is
unpredictable, scheduling problems have an intrinsic data uncertainty in practice.
Moreover, measurement or estimation errors within the input data add to this
data uncertainty. Machines might unexpectedly break down or a job might have
a much longer processing time than expected. Our scheduling models should take
this issue into account.

Let us reconsider the concrete application of cloud computing. Cloud com-
puting providers offer their customers rapid access to computing resources via
the Internet and use different pricing options such as on-demand and reserved
instances [1]. In the reservation option, a user pays a priori a fixed amount
to reserve resources in advance, whereas on-demand instances are charged on a



1.3 Scheduling Maintenance Jobs in Networks 15

(for example hourly) pay-as-used basis. Users of cloud computing services face
the challenging task of choosing the best combination of pricing options when
provisioning resources [17], in particular, if instances of computing jobs underlie
uncertainty.

We propose the following general model for two-stage scheduling with reser-
vation cost under uncertainty that captures such a resource provisioning and
scheduling problem in the cloud. The model relies on a scenario-based approach,
where a scenario is a particular realization of the uncertain input parameters. In
the first stage, we are given distributional information about scheduling scenarios,
and in the second stage the actual scenario is revealed. The task is to construct a
schedule for the realized scenario. Using a time unit of processing in the schedule
incurs some fixed cost, independent of the used capacity (number of machines),
but dependent on when the time unit is reserved: low if it is reserved in the first
stage, not knowing the actual scenario, and high in the second stage, given full
information. Such a cost structure applies, for example, when reserving a time
unit on a server gives access to all processors on this server. In the stochastic
setting, the overall goal is to minimize total expected payment (in both stages)
plus scheduling cost. In the robust setting, the overall goal is to minimize the
maximum, over all scenarios, of payment (in both stages) plus scheduling cost.
That is, we do not make use of the given distributional information in the first
stage, because we aim at finding a solution that minimizes the total cost in the
worst-case.

Two-stage stochastic and two-stage robust optimization with recourse are two
established methodologies for optimization under data uncertainty. Many combi-
natorial optimization problems such as Set Cover, Network Design, Max-
imum Weight Matching, Shortest Path, etc. have been studied in this
framework in terms of approximation algorithms [29, 34, 53, 80]. For scheduling
problems in this two-stage framework, however, there are only a few approxima-
tion results known [73].

We consider both stochastic and robust versions of scheduling preemptive jobs
with release dates on unrelated parallel machines and study the two objectives of
minimizing the total sum of weighted completion times and the makespan. The
corresponding single-stage single-scenario versions of these problems are funda-
mental classical scheduling problems. We give approximation algorithms with
constant performance guarantees for both objectives in the stochastic and the
robust model. Our results for the stochastic setting hold in the most general ran-
dom model, the so-called black-box model, in which we have efficient access to an
oracle that provides samples according to the unknown probability distribution.

1.3 Scheduling Maintenance Jobs in Networks
Transportation and telecommunication networks are important backbones of
modern infrastructure and have been a major focus of research in combinatorial



16 1 Introduction

optimization and other areas. Research on such networks usually concentrates
on optimizing their usage, for example by maximizing throughput or minimizing
costs. In the majority of the studied optimization models it is assumed that the
network is permanently available, and our choices only consist in deciding which
parts of the network to use at each point in time.

Practical transportation and telecommunication networks, however, can gen-
erally not be used non-stop. Be it due to wear-and-tear, repairs, servicing, or
modernizations of the network, there are times when parts of the network are un-
available. We study how to schedule and coordinate such maintenance in different
parts of the network with the objective of preserving network connectivity.

While network problems and classical scheduling problems individually are
fairly well understood, the combination of both areas that results from scheduling
network maintenance has only recently received some attention [9, 10, 12, 35, 67]
and is theoretically hardly understood. We study the Connectivity problem,
which is a fundamental problem in this context. In this problem, we aim to
schedule the maintenance of edges in a network so as to preserve connectivity be-
tween two designated vertices. Given a network and the maintenance jobs with
processing times and feasible time windows, we need to decide on the temporal
allocation of the maintenance jobs. While maintenance on an edge is performed,
the edge is not available. We distinguish between MinConnectivity, where the
time in which the network is disconnected has to be minimized, and MaxCon-
nectivity, where the time in which it is connected has to be maximized.

The Connectivity problem can be seen as a cost-aware scheduling problem.
If we need to pay a certain penalty cost whenever the two distinguished vertices
in our network are disconnected, we aim at coordinating the maintenance so
that the total penalty cost is minimized. The scheduling cost is neglected here.
Similarly, if we get a certain reward for all time points where our maintenance
schedule allows connectivity, we want to coordinate the maintenance so that the
total reward is maximized.

Our contributions are optimal algorithms, results on the computational com-
plexity and approximability for different variants of the problem and different
network structures. We show that the problem with preemptive maintenance
jobs can be solved optimally in polynomial time in arbitrary networks. However,
any restriction on the job preemption makes the problem considerably harder.
Limiting the preemption to integral points in time makes the problem NP-hard
and even inapproximable in the minimization version. Fully disallowing preemp-
tion only increases the complexity further; here we give strong lower bounds on
the approximability. Furthermore, we give tight bounds on the power of preemp-
tion, that is, the maximum ratio of the values of non-preemptive and preemptive
optimal solutions. We show that it is non-constant, even on simple paths. Inter-
estingly, in such a network setting the preemptive as well as the non-preemptive
problem are known to be efficiently solvable, whereas we show that mixing both
leads to an NP-hard problem.



1.4 Outline of Thesis 17

1.4 Outline of Thesis
In Chapter 2, we introduce basic concepts of classical scheduling theory, com-
plexity theory, and approximation algorithms. In Chapter 3, we consider deter-
ministic cost-aware machine scheduling problems. Chapter 4 studies stochastic
and robust cost-aware machine scheduling problems and Chapter 5 focuses on
maintenance scheduling in networks. Each of the Chapters 3 to 5 starts with
a brief outline, followed by a formal problem definition and an overview of re-
lated work and our contributions, and ends with concluding words and a list of
open problems for future research. In all three chapters, we study computational
complexity of the corresponding problems and devise and analyze optimal algo-
rithms or approximation algorithms depending on the problem complexity. As
the Chapters 3 to 5 are more or less self-contained, they can be read in any order.

Bibliographic Remark. Parts of this thesis are already published in peer-
reviewed conference proceedings and and their submission to peer-reviewed jour-
nals is in preparation. Some parts of this thesis will therefore correspond to or
be identical with the following publications:

[24] L. Chen, N. Megow, R. Rischke, L. Stougie, and J. Verschae. Optimal
algorithms and a PTAS for cost-aware scheduling. In Proceedings of the
40th International Symposium on Mathematical Foundations of Computer
Science (MFCS), volume 9235 of LNCS, pages 211–222. Springer, 2015.

[23] L. Chen, N. Megow, R. Rischke, L. Stougie, and J. Verschae. Optimal
algorithms and a PTAS for cost-aware scheduling. Journal version of [24],
in preparation.

[22] L. Chen, N. Megow, R. Rischke, and L. Stougie. Stochastic and robust
scheduling in the cloud. In Proceedings of the 18th International Work-
shop on Approximation Algorithms for Combinatorial Optimization Prob-
lems (APPROX) and 19th International Workshop on Randomization and
Computation (RANDOM), volume 40 of LIPIcs, pages 175–186. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, 2015.

[21] L. Chen, N. Megow, R. Rischke, and L. Stougie. Stochastic and robust
scheduling in the cloud. Journal version of [22], in preparation.

[2] F. Abed, L. Chen, Y. Disser, M. Groß, N. Megow, J. Meißner, A. Richter,
and R. Rischke. Scheduling maintenance jobs in networks. Submitted.

Chapter 3 is based on and in part identical with [23, 24], Chapter 4 is based on
and in part identical with [21,22], and Chapter 5 is based on and in part identical
with [2]. Parts of Chapter 5 may also appear in the PhD thesis of A. Richter.



18 1 Introduction



2
Preliminaries

In this chapter, we introduce basic concepts used in scheduling, complexity, and
approximation theory. In addition to that, the reader should be familiar with
the fundamentals of combinatorial optimization such as graph theory; see for
example [56] for an introduction into it.

Scheduling Theory. We already know from Chapter 1 that scheduling con-
cerns the temporal allocation of tasks to scarce resources with the objective
of optimizing some performance measure subject to certain side constraints.
Graham et al. [42] introduced 1979 a three-field-notation to formally classify ma-
chine scheduling problems. Since then machine scheduling problems are usually
represented by a triple α | β | γ, where the α specifies the machine environment,
the β describes job characteristics resp. side constraints, and the γ defines the ob-
jective function. We will consider the following typical scheduling environments
in this thesis.

α-field

1 There is a single machine for processing the jobs.
P There are m identical parallel machines. A job j has processing

time pj on any of them.
Q There are m related parallel machines with different speeds. Ma-

chine i has speed si. The processing time of job j on machine i
is pj/si.

R There are m unrelated parallel machines, that is, machine i can pro-
cess job j at speed sij. The processing time of job j on machine i is
then pij = pj/sij.

If α ∈ {P,Q,R} is followed by an m, it means that the number of machines is
fixed and not part of the input. Even if we have parallel machines, we usually
assume that a job cannot be processed in parallel to itself, that is, parallelization
is not allowed.

19



20 2 Preliminaries

β-field

pmtn The processing of a job may be preempted and resumed later on
any of the given machines at no extra cost. When pmtn is included
in the β-field preemption is allowed, otherwise forbidden.

rj Each job j has a release date rj, which defines the earliest moment
in time where the processing of jobs j can be started. If not included
in the β-field, all jobs are released at the same time point.

If there are multiple entries in the β-field, they are comma separated.

γ-field

Cmax The objective is to minimize Cmax := maxj Cj, where Cj is the
completion time of job j.∑

(wj)Cj The objective is to minimize the total sum of the (weighted)
completion times.

We refer the interested reader to the textbooks [59,69] for a more detailed intro-
duction into scheduling theory.

Complexity Theory. Cook [27] and Karp [52] laid the basis for the com-
plexity theory in the 1970s, which aims at classifying problems in terms of their
computational complexity. The basic concepts were developed for decision prob-
lems, that is, for problems where the output is either ‘yes’ or ‘no’. For instance,
given the scheduling problem P | pmtn |Cmax and a positive bound B, the task
could be to decide whether there exists a feasible schedule with makespan B or
not. This example also serves to illustrate the relation between decision and op-
timization problems. If we are able to efficiently solve the optimization problem
P | pmtn |Cmax, we can verify whether the optimal makespan C∗

max ≤ B, and thus
we can also efficiently solve the corresponding decision problem. On the other
hand, if the decision problem is efficiently solvable, then we can use binary search
to solve the corresponding optimization problem in an efficient way, given that
there is one.

To present an instance I of a certain decision problem π to an algorithm
for π, we need to encode the instance I using a reasonable encoding scheme. The
number of bits required to encode the instance I is called the size of the input
instance I or short input size. Numerical values are usually encoded in a binary
fashion.

Definition 2.1 (Polynomial-Time Algorithm) An algorithm for a problem
is called a polynomial-time algorithm if the running time is bounded by a poly-
nomial in the size of the input.



21

Note that this definition abstracts from the actual model of computer and the
actual encoding scheme; see [38, Section 2.1] for a detailed discussion on that.
Based on this definition, we can classify decision problems as follows.

The class P (polynomial-time) contains all decision problems that admit a
deterministic polynomial-time algorithm, that is, problems in P are efficiently
decidable. For example, the decision problem of P | pmtn |Cmax belongs to that
class [63]. A decision problem π belongs to the class NP (non-deterministic
polynomial-time), if there is a deterministic polynomial-time algorithm A such
that for any instance I of π the following holds: there exists a certificate c(I) of
polynomial size such that A(I, c(I)) outputs yes if and only if I is a Yes-instance.
The decision problem of P | pmtn |Cmax obviously also belongs to the class NP.
In fact, we observe that P ⊆ NP. However, the question whether P ⊂ NP or
P = NP is the most important open question in complexity theory.

There are good reasons to believe that P ⊂ NP. These reasons are based on
the concept of NP-completeness.

Definition 2.2 (Polynomial-Time Reduction) A decision problem π1 is
polynomial-time reducible to another decision problem π2, denoted by π1 ⪯ π2, if
there exists a polynomial-time algorithm A that takes as input an instance of π1

and outputs an instance of π2 such that A(I) ∈ π2 is a Yes-instance if and only
if I ∈ π1 is a Yes-instance.

It is rather easy to show that the binary relation ’⪯’ is transitive, that is, if
π1 ⪯ π2 and π2 ⪯ π3 then π1 ⪯ π3.

Definition 2.3 (NP-Completeness) A decision problem π is said to be
NP-complete if π ∈ NP and π′ ⪯ π for every π′ ∈ NP.

In this thesis, we will consider several NP-complete decision problems. If there is a
deterministic polynomial-time algorithm for an NP-complete decision problem π,
then P = NP. Despite intensive research over the past decades, no such algorithm
has beed found, which gives reason to believe that P ̸= NP.

Furthermore, we distinguish problems within the class of NP-complete prob-
lems as follows.

Definition 2.4 (Pseudo-Polynomial-Time Algorithm) An algorithm for a
problem π is called pseudo-polynomial-time algorithm if the running time is
bounded by a polynomial in the size of the input when unary encoding is used.

This leads us to the following definition.

Definition 2.5 (Strong and Weak NP-Completeness) A decision prob-
lem π is called strongly NP-complete if it is NP-complete even when a unary
encoding scheme is used. However, a decision problem π is said to be weakly
NP-complete if it admits a pseudo-polynomial-time algorithm.



22 2 Preliminaries

For example, the decision problem for P | |Cmax is known to be strongly NP-hard,
whereas the decision problem for Pm | |Cmax is known to be weakly NP-
hard [37, 38].

As a last concept, we introduce NP-hardness to also classify optimization
problems.

Definition 2.6 (NP-Hardness) An optimization problem π is called NP-hard
if the corresponding decision problem is NP-complete.

The notions of strong and weak NP-hardness follow according to the above notions
of strong and weak NP-completeness in Definition 2.5.

We refer the interested reader to [38,56] for a more detailed introduction into
complexity theory.

Approximation Theory. As we probably cannot hope for an NP-hard prob-
lem to have an algorithm that returns for any instance of the problem an optimal
solution in polynomial time, we need to relax at least one of the requirements.
In this thesis, we shall relax the optimality requirement, that is, we focus on
approximation algorithms.

Definition 2.7 (Approximation Algorithm) An α-approximation algorithm
for an optimization problem π is a polynomial-time algorithm that returns for
any instance of π a feasible solution whose objective function value is within a
factor of α of the optimal value.

The factor α is called performance guarantee of the approximation algorithm,
where we follow the convention that α ≥ 1. That is, an α-approximation algo-
rithm A returns for any instance I of a minimization problem a feasible solu-
tion of value A(I) ≤ α ·OPT (I), whereas for a maximization problem we have
A(I) ≥ 1/α ·OPT (I), where OPT (I) is the optimal value for instance I.

We are interested in best possible approximation algorithms and for this we
introduce the notion of polynomial-time approximation schemes.

Definition 2.8 (PTAS) A polynomial-time approximation scheme (PTAS) is
a family of algorithms {Aε} such that for any ε > 0 the algorithm Aε is a
(1 + ε)-approximation algorithm.

Note that according to this definition the running time may depend arbitrarily
on 1/ε. This is taken care of in the next definition.

Definition 2.9 (FPTAS) A fully polynomial-time approximation scheme
(FPTAS) is a PTAS such that the running time of Aε is bounded by a poly-
nomial in the input size and 1/ε for any ε > 0.



23

It is a well-known fact that a strongly NP-hard problem does not admit an
FPTAS, unless P = NP [38]. For example, the strongly NP-hard scheduling
problem P | |Cmax admits a PTAS, whereas for the weakly NP-hard version
Pm | |Cmax an FPTAS is known [41, 45].

We refer the interested reader to the textbook [75] for a comprehensive dis-
cussion of techniques for designing and analyzing approximation algorithms.



24 2 Preliminaries



3
Deterministic Cost-Aware
Machine Scheduling

In this chapter, we address a natural generalization of classical scheduling prob-
lems in which occupying a time slot incurs certain cost that may vary over time
and which must be paid in addition to the actual scheduling cost. This framework
has been proposed recently by Wan and Qi [83] and Kulkarni and Munagala [57].
Based on the problem definition in Section 3.1, we give an overview of related
work and our contribution in Section 3.2. Then, in Section 3.3, we show that
unrelated machine scheduling so as to minimize the makespan is polynomial-time
solvable when taking the cost-awareness into account. In Section 3.4, we present
a polynomial-time algorithm that computes for any given sequence of jobs an
optimal set of time slots to be used for scheduling the jobs according to the given
sequence. Based on this, we obtain approximation results for minimizing the total
(weighted) completion time on a single machine. The weighted problem variant
is again focus of Section 3.5, for which we give a best possible approximation
result. Thereafter, in Section 3.6, we analyze the influence of release dates on the
problem complexity. At the end of this chapter, we discuss open problems.

3.1 Problem Definition
We first describe the underlying classical scheduling problems. We are given a
set of jobs J := {1, . . . , n} where every job j ∈ J has given a processing time
pj ∈ N and possibly a weight wj ∈ Q≥0. The task is to find a preemptive
schedule on a single machine such that the total (weighted) completion time,∑

j∈J wjCj, is minimized. Here Cj denotes the completion time of job j. In the
standard scheduling notation, this problem is denoted as 1 | pmtn |

∑
(wj)Cj. We

also consider makespan minimization on unrelated machines, typically denoted
as R | pmtn |Cmax. Here we are given a set of machines M , and each job j ∈ J
has an individual processing time pij ∈ N for running on machine i ∈ M . The
task is to find a preemptive schedule that minimizes the makespan, that is, the
completion time of the latest job.

25



26 3 Deterministic Cost-Aware Machine Scheduling

In this chapter, we consider a generalization of these scheduling problems
within a time-varying reservation cost model. We are given a cost function
e : R≥0 → Q≥0, where e(t) denotes the reservation cost for processing job(s) at
time t. We assume that e is piecewise constant with given breakpoints at integral
time points. More formally, we assume that time is discretized into unit-size time
slots, and the time horizon is partitioned into given intervals Ik = [sk, dk) with
sk, dk ∈ N, k = 1, . . . , K, within which unit-size time slots have the same unit
reservation cost ek ∈ Q≥0. To ensure feasibility, let dK ≥

∑
j∈J mini∈M pij.

Given a schedule S, let y(t) be a binary variable indicating if any processing
is assigned to time slot [t, t+ 1). The reservation cost in S is E(S) =

∑
t e(t)y(t).

That means, for any time unit that is used in S we pay the full unit reservation
cost, even if the unit is only partially used. We also emphasize that in case
of multiple machines, a reserved time slot can be used by all machines. This
models applications in which reserving a time unit on a server gives access to all
processors on this server.

The overall objective now is to find a schedule that minimizes the scheduling
objective, Cmax resp.

∑
j∈J wjCj, plus the reservation cost E. We refer to the

resulting problems as R | pmtn |Cmax +E and 1 | pmtn |
∑

wjCj +E. We remark
that the results in this chapter also hold if we minimize a convex combination of
the scheduling and reservation cost.

3.2 Related Work and Contributions
Related Work. Scheduling with time-varying reservation cost (aka variable
time slot cost) has been studied explicitly by Wan and Qi [83], Kulkarni and
Munagala [57] and Zhao, Qi, and Li [85]. In the seminal paper, Wan and Qi [83]
consider several non-preemptive single machine problems, which are polynomial-
time solvable in the classical setting, such as minimizing the total completion
time, lateness, and total tardiness, or maximizing the weighted number of on-time
jobs. These problems are shown to be strongly NP-hard when taking reservation
cost into account, while efficient algorithms exist for restricted reservation cost
functions. In particular, the problem 1 | |

∑
Cj + E is strongly NP-hard, and

it is efficiently solvable when the reservation cost is increasing or convex non-
increasing [83].

Zhao, Qi, and Li [85] address an open question in [83], namely the complexity
of non-preemptive single machine scheduling so as to minimize the total weighted
completion time plus the reservation cost, where the reservation cost function
is non-increasing over time. They show that for an arbitrary non-increasing
reservation cost functions the problem is strongly NP-hard, whereas special non-
increasing functions for the reservation cost admit efficient algorithms.

Kulkarni and Munagala [57] focus on online flow-time minimization using re-
source augmentation. Their main result is a scalable algorithm that obtains a



3.2 Related Work and Contributions 27

constant performance guarantee when the machine speed is increased by a con-
stant factor and there are only two distinct unit reservation costs. They also show
that, in this online setting, for arbitrary many distinct unit reservation costs there
is no constant speedup-factor that allows for a constant approximate solution.

In this chapter, we study the simpler, but not yet well understood, offline
problem without release dates. For this problem, Kulkarni and Munagala [57]
announce the following results: a pseudo-polynomial (4 + ε)-approximation for
1 | pmtn |

∑
wjCj + E, which gives an optimal solution in case that all weights

are equal, and a constant approximation in quasi-polynomial time for a constant
number of distinct reservation costs or when using a machine that is processing
jobs faster by a constant factor.

The general concept of taking into consideration additional (time-dependent)
cost for resource utilization when scheduling has been implemented differently in
other models. We mention the area of energy-aware scheduling, where the energy
consumption is taken into account (see [4] for an overview), or scheduling with
generalized non-decreasing (completion-) time dependent cost functions, such as
minimizing

∑
j wjf(Cj), e.g. [33,46,64], or even more general job-individual cost

functions
∑

j fj(Cj), e.g. [7, 25, 47, 66]. Our model differs fundamentally since
our cost function may decrease with time. In fact, delaying the processing in
favor of cheaper time slots may decrease the overall cost. This is not the case
in the above-mentioned models. Thus, in our framework we have the additional
dimension in decision-making of selecting the time slots that shall be reserved.

Nevertheless, there is some similarity between our model and scheduling on
a machine of varying speed. Notice that the latter problem (with

∑
j wjCj as

objective function) can be reformulated as minimizing
∑

j wjf(Cj) on a single
machine with constant speed. Interestingly, the independently studied problem
of scheduling with non-availability periods, see e.g. the survey [59], is a special
case of both, the time-varying speed and the time-varying reservation cost model.
Indeed, machine non/availability can be expressed either by 0/1-speed or equiv-
alently by ∞/0 unit reservation cost. Results shown in this context imply that
our problem 1 | pmtn |

∑
wjCj + E is strongly NP-hard, even if there are only

two distinct unit reservation costs [84].

Our contribution. We present new optimal algorithms and best-possible ap-
proximation results for a generalization of standard scheduling problems to a
framework with time-varying reservation cost.

Firstly, we give an optimal polynomial-time algorithm for the problem
R | pmtn |Cmax + E (Section 3.3). We design a procedure that selects the op-
timal time slots to be reserved, given that we knew the optimal number of time
slots. This optimal number can be determined by solving the scheduling prob-
lem without reservation cost, which can be done optimally in polynomial time by
solving a linear program [58].

Our main results concern single-machine scheduling to minimize the to-



28 3 Deterministic Cost-Aware Machine Scheduling

tal (weighted) completion time (Section 3.4). We present an algorithm that com-
putes for a given ordered set of jobs an optimal choice of time slots to be used for
scheduling (Section 3.4). We derive this by first showing structural properties of
an optimal schedule, which we then exploit together with a properly chosen po-
tential function in a dynamic program yielding polynomial running time. Based
on this algorithm, we show that the unweighted problem 1 | pmtn |

∑
Cj +E can

be solved in polynomial time and that there is a (4+ ε)-approximation algorithm
for the weighted version 1 | pmtn |

∑
wjCj + E. A pseudo-polynomial (4 + ε)-

approximation was given in [57]. While pseudo-polynomial time algorithms are
rather easy to derive, it is remarkable that our DP’s running time is polynomial
in the input size, in particular, independent of dK .

Finally, we design for the strongly NP-hard weighted problem variant (Sec-
tion 3.5) a polynomial-time algorithm that computes for any fixed ε a (1 + ε)-
approximate schedule for 1 | pmtn |

∑
wjCj + E, i.e., a PTAS. Unless P = NP,

our algorithm is best possible, since the problem is strongly NP-hard even if there
are only two different reservation costs [84].

Our approach is inspired by a recent PTAS for scheduling on a machine of
varying speed [64] and it uses some of its properties. As discussed above, there is
no formal mathematical relation known between these two seemingly related prob-
lems which allows to directly apply the result from [64]. The key is a dual view
on scheduling: instead of directly constructing a schedule in the time-dimension,
we first construct a dual scheduling solution in the weight-dimension which has
a one-to-one correspondence to a true schedule. We design an exponential-time
dynamic programming algorithm which can be trimmed to polynomial time using
techniques known for scheduling with varying speed [64].

For both the makespan and the min-sum problem, job preemption is crucial for
obtaining worst-case bounds. For non-preemptive scheduling, a straightforward
reduction from 2-Partition shows that no approximation is possible, unless
P = NP, even if there are only two different reservation costs, 0 and ∞.

We remark that in general it is not clear that a schedule can be encoded
polynomially in the input. However, for our completion-time based minimization
objective, it is easy to observe that if an algorithm reserves p unit-size time slots
in an interval of equal cost, then it reserves the first p slots within this interval,
which simplifies the structure and the output of an optimal solution.

We also analyze the influence of having job-individual release dates on the
problem complexity in Section 3.6. The processing of a job must not start before
the release date of a job. We show that there is again a polynomial-time algo-
rithm for makespan minimization on a single machine in the presence of release
dates (Section 3.6.1) and on unrelated parallel machines with a slightly relaxed
cost model (Section 3.6.2). However, the problem with the total completion time
objective, that is, all jobs have the same weight, turns out to be NP-hard (Sec-
tion 3.6.3). Hence, having release dates increases the complexity for the min-sum
objective.



3.3 Minimizing the Makespan on Unrelated Machines 29

3.3 Minimizing the Makespan
on Unrelated Machines

The standard scheduling problem without reservation R | pmtn |Cmax can be
solved optimally in polynomial time by solving a linear program as was shown
by Lawler and Labetoulle [58]. We show that the problem complexity does not
increase significantly when taking into account time-varying reservation cost.

Consider the preemptive makespan minimization problem with reservation
cost. Recall that we can use every machine in a reserved time slot and pay only
once. Thus, it is sufficient to find an optimal reservation decision for solving this
problem, because we can use the polynomial-time algorithm in [58] to find the
optimal schedule within these slots.
Observation 3.1 Given the set of time slots reserved in an optimal solution, we
can compute an optimal schedule in polynomial time.

Given an instance of our problem, let Z be the optimal makespan of the
relaxed problem without reservation cost. Notice that Z is not necessarily integral.
To determine an optimal reservation decision, we use the following observation.
Observation 3.2 Given an optimal makespan C∗

max for R | pmtn |Cmax + E, an
optimal schedule reserves the ⌈Z⌉ cheapest slots before ⌈C∗

max⌉.
Note that we must pay full reservation cost for a used time slot, no matter

how much it is utilized, and so does an optimal solution. In particular, this
holds for the last reserved slot. Hence, it remains to compute an optimal value
C∗ := ⌈C∗

max⌉ which we do by the following procedure.
We compute for every interval Ik = [sk, dk), k = 1, . . . , K, an optimal point

in time for C∗ assuming that C∗ ∈ Ik. Hereby we restrict to relevant intervals Ik
which allow for a feasible schedule, i.e., sk ≥ ⌈Z⌉. For a relevant interval Ik,
we let C∗ = sk and reserve the ⌈Z⌉ cheapest time slots before C∗, which is
optimal by Observation 3.2. Notice that any reserved time slot of cost e such
that e > ek + 1 can be replaced by a time slot from Ik leading to a solution of
less total cost. Thus, if there is no such time slot, then sk is the best choice
for C∗ in Ik. Suppose there is such a time slot that could be replaced. Let
R ⊆ {1, . . . , k − 1} be the index set of intervals that contain at least one reserved
slot. We define Iℓ to be the interval with eℓ = maxh∈R eh and denote by rh the
number of reserved time slots in Ih. Replace min{rℓ, dk − sk − rk} reserved slots
from Iℓ by slots from Ik and update R, Iℓ and rk. This continues until eℓ ≤ ek+1
or the interval Ik is completely reserved, i.e., rk = dk − sk. This operation takes
at most O(K) computer operations per interval to compute the best C∗-value in
that interval. It yields the following theorem.
Theorem 3.3 The scheduling problem R | pmtn |Cmax + E can be solved in
polynomial time in the order of O(K2) plus the running time for solving
R | pmtn |Cmax without reservation cost [58].



30 3 Deterministic Cost-Aware Machine Scheduling

3.4 Minimizing Total Weighted Completion
Time on a Single Machine

In this section, we consider the problem 1 | pmtn |
∑

(wj)Cj + E. We design
an algorithm that computes, for a given (not necessarily optimal) scheduling
sequence σ, an optimal reservation decision for σ. We firstly identify struc-
tural properties of an optimal schedule, which we then exploit in a dynamic
program. Based on this algorithm, we show that the unweighted problem
1 | pmtn |

∑
Cj+E can be solved optimally in polynomial time and that there is a

(4+ε)-approximation algorithm for the weighted problem 1 | pmtn |
∑

wjCj+E.
In principle, an optimal schedule may preempt jobs at fractional time points.

However, since time slots can only be reserved entirely, any reasonable schedule
uses the reserved slots entirely as long as there are unprocessed jobs. The follow-
ing lemma shows that this is also true if we omit the requirement that time slots
must be reserved entirely. (For the makespan problem considered in Section 3.3
this is not true.)
Lemma 3.4 There is an optimal schedule S∗ in which all reserved time slots are
entirely reserved and jobs are preempted only at integral points in time.

Proof. Consider an optimal schedule S and let C be its total cost (scheduling
and reservation cost). W.l.o.g. we may assume that S processes jobs one by
one in a fixed priority order. That means, a job may be preempted but only for
keeping the machine idle and not for processing another job. Suppose that there
is a time slot [t0, t0 + 1) that is only partially reserved, say from t0 to t0 + λ with
λ < 1. We consider the first such slot in S. The integrality of the processing times
pj implies that there must exist another slot [t1, t1 + 1) that is also fractionally
reserved, say from t1 to t1 + µ with µ < 1. We consider the first such slot
[t1, t1 + 1) after [t0, t0 + 1). Let e(t) be the reservation cost for slot [t, t+ 1) if
we completely reserved it. We first observe that e(t1) < e(t0), otherwise S is
not optimal. We will show that the number of fractionally reserved slots can
be reduced without increasing the total cost. Iteratively applying this argument
until all slots are completely reserved shows the statement.

We introduce the notion of δ-right-shift and δ-left-shift. Performing a δ-right-
shift on the partial schedule between t0 and t1 + 1 means that we decrease the
current amount of reservation for [t0, t0 + 1) by δ while we increase the current
amount of reservation for [t1, t1 + 1) by δ and move the partial schedule as a whole
to the right, that is, we reschedule workload without changing the processing order
of jobs and by using only reserved slots. Similarly, a δ-left-shift on the partial
schedule between t0 and t1 + 1 means that we increase the current amount of
reservation for [t0, t0 + 1) by δ while we decrease the current amount of reservation
for [t1, t1 + 1) by δ and move the partial schedule as a whole to the left.

Let Jc := {j ∈ J : Cj(S) ∈ (t0, t1 + 1)} . Consider any job j ∈ J c. Observe
that Cj(S) = t + 1 − λ for some integral time point t ∈ (t0, t1 + 1), because S



3.4 Minimizing Total Weighted Completion Time on a Single Machine 31

processes jobs in a fixed priority order, the processing times are integral, and
[t0, t0 + 1) is the first fractionally reserved slot. Therefore, a δ-right-shift with
0 < δ ≤ min{λ, 1 − µ} of the partial schedule between t0 and t1 + 1 increases
the completion time of every job j ∈ J c by δ and reduces the reservation cost by
δ (e(t1)− e(t0)). In total, the cost of S after performing a δ-right-shift is

C + δ ·

(∑
j∈Jc

wj − e(t0) + e(t1)

)
.

On the other hand, a δ-left-shift with 0 < δ ≤ min{µ, 1 − λ} of the partial
schedule between t0 and t1 + 1 increases the reservation cost by δ (e(t0)− e(t1))
and decreases the completion time of every job j ∈ J c by δ if δ < 1 − λ. If,
however, δ = (1−λ), then the completion time of a job j ∈ Jc might decrease by
more than 1−λ, as the reserved slots in [t0, t1 + 1) are not necessarily consecutive.
In total, the cost of S after performing a δ-left-shift is at most

C − δ ·

(∑
j∈Jc

wj − e(t0) + e(t1)

)
.

Hence, if
∑

j∈Jc wj − e(t0) + e(t1) > 0, we perform a (1 − λ)-left-shift.
Otherwise, we check whether a (1 − λ)-left-shift leads to less total cost than a
min{λ, 1−µ}-right-shift. If yes, then we perform the left-shift, otherwise the right-
shift. This reduces the number of fractionally reserved slots by not increasing the
total cost of S. □

In the following, we assume that we are given a (not necessarily optimal)
sequence of jobs, σ = (1, . . . , n), in which the jobs must be processed. We want
to characterize an optimal schedule S∗ for σ, that is, in particular the optimal
choice of time slots for scheduling σ. We first split S∗ into smaller sub-schedules,
for which we introduce the concept of a split point.

Definition 3.5 (Split Point) Consider an optimal schedule S∗ and the set of
potential split points P :=

∪K
k=1 {sk, sk + 1} ∪ {dK}. Let Sj and Cj denote the

start time and completion time of job j, respectively. We call a time point t ∈ P
a split point for S∗ if all jobs that start before t also finish their processing not
later than t, i.e., if {j ∈ J : Sj < t} = {j ∈ J : Cj ≤ t}.

Given an optimal schedule S∗, let 0 = τ1 < τ2 < · · · < τℓ = dK be the maximal
sequence of split points of S∗, i.e. the sequence containing all split points of S∗.
We denote the interval between two consecutive split points τx and τx+1 as region
RS∗

x := [τx, τx+1), for x = 1, . . . , ℓ− 1.
Consider now any region RS∗

x for an optimal schedule S∗ with x ∈
{1, . . . , ℓ− 1} and let JS∗

x :=
{
j ∈ J : Sj ∈ RS∗

x

}
. Note that JS∗

x might be empty.



32 3 Deterministic Cost-Aware Machine Scheduling

Among all optimal schedules we shall consider an optimal solution S∗ that min-
imizes the value

∑dK−1
t=0 t · y(t), where y(t) is a binary variable that indicates if

time slot [t, t+ 1) is reserved or not.
We observe that any job j completing at the beginning of a cost interval,

Cj = sk ∈ RS∗
x or Cj = sk + 1 ∈ RS∗

x , would make sk resp. sk + 1 a split point.
Thus, no such job can exist.

Observation 3.6 There is no job j ∈ JS∗
x with Cj ∈ RS∗

x ∩ P .

We say that an interval Ik is partially reserved if at least one slot in Ik is
reserved, but not all.

Lemma 3.7 There exists an optimal schedule S∗ in which at most one interval
is partially reserved in RS∗

x .

Proof. By contradiction, suppose that there is more than one partially reserved
interval in RS∗

x . Consider any two such intervals Ih and Ih′ with h < h′,
and all intermediate intervals reserved entirely or not at all. Let [th, th + 1)
and [th′ , th′ + 1) be the last reserved time slot in Ih and Ih′ , respectively. If
we reserve [th′ + 1, th′ + 2) instead of [th, th + 1), then the difference in cost is
δ1 := eh′ − eh +

∑
j∈J ′ wj with J ′ :=

{
j ∈ J : Cj ∈

∪h′

k=h+1 Ik

}
, because all jobs

in J ′ are delayed by exactly one time unit. This is true since by Observation 3.6
no job finishes at dk = sk+1 for any k. If we reserve [th + 1, th + 2) instead of
[th′ , th′ + 1), then the difference in cost is δ2 := eh − eh′ −

∑
j∈J ′ wj, again using

Observation 3.6 to assert that no job finishes at sk+1 for any h+1 ≤ k ≤ h′. Since
δ1 = −δ2 and S∗ is an optimal schedule, it must hold that δ1 = δ2 = 0. This, how-
ever, implies that there is another optimal schedule with earlier used time slots
which contradicts our assumption that S∗ minimizes the value

∑dK−1
t=0 t · y(t). □

We are now ready to bound the unit reservation cost spent for jobs in JS∗
x .

Let ejmax be the maximum unit reservation cost spent for job j in S∗. Furthermore,
let ∆x := maxj∈JS∗

x
(ejmax +

∑
j′<j wj′) and let jx be the last job (according to

sequence σ) that achieves ∆x. Suppose, there are b ≥ 0 jobs before and a ≥ 0
jobs after job jx in JS∗

x . The following lemma gives for every job j ∈ JS∗
x \ {jx}

an upper bound on the unit reservation cost spent in the interval [Sj, Cj).

Lemma 3.8 Consider an optimal schedule S∗. For any job j ∈ JS∗
x \ {jx} a slot

[t, t+ 1) ∈ [Sj, Cj) is reserved if and only if the cost of [t, t+ 1) satisfies the upper
bound given in the table below.

jx − b . . . jx − 1 jx + 1 . . . jx + a

≤ ejxmax +
∑jx−1

j′=jx−b wj′ . . . ≤ ejxmax + wjx−1 < ejxmax − wjx . . . < ejxmax −
∑jx+a−1

j′=jx
wj′



3.4 Minimizing Total Weighted Completion Time on a Single Machine 33

Proof. Consider any job j := jx − ℓ with 0 < ℓ ≤ b. Suppose there is a
job j for which a slot is reserved with cost ejmax > ejxmax +

∑jx−1
j′=j wj′ . Then

ejmax +
∑

j′<j wj′ > ejxmax +
∑

j′<jx
wj′ , which is a contradiction to the definition of

job jx. Thus, ejmax ≤ ejxmax +
∑jx−1

j′=j wj′ .
Now suppose that there is a slot [t, t+ 1) ∈ [Sj, Cj) with cost e(t) ≤

ejxmax +
∑jx−1

j′=j wj′ that is not reserved. There must be a slot [t′, t′ + 1) ∈ [Sjx , Cjx)

with cost exactly ejxmax. If we reserve slot [t, t+ 1) instead of [t′, t′ + 1), then the
difference in cost is non-positive, because the completion times of at least ℓ jobs
(j = jx−ℓ, . . . , jx−1 and maybe also jx) decrease by one. This contradicts either
the optimality of S∗ or our assumption that S∗ minimizes

∑dK−1
t=0 t · y(t).

The proof of the statement for any job jx + ℓ with 0 < ℓ ≤ a follows a
similar argument, but now using the fact that for every job j := jx + ℓ we have
ejmax < ejxmax−

∑j−1
j′=jx

wj′ , because jx was the last job with ejmax+
∑

j′<j wj′ = ∆x.□

To construct an optimal sub-schedule, we need the following two lemmata.

Lemma 3.9 Let [t′, t′ + 1) ∈ [Sjx , Cjx) be the last time slot with cost ejxmax that
is used by job jx. If there is a partially reserved interval Ik in RS∗

x , then either
(i) Ik is not the last interval of RS∗

x and Ik contains [t′, t′ + 1) as its last reserved
time slot or (ii) Ik is the last interval of RS∗

x .

Proof. There cannot be a partially reserved interval in RS∗
x before Sjx , as other-

wise this would contradict Lemma 3.8 or the maximality of our sequence of split
points. If there exists a partially reserved interval Ik entirely after Cjx in RS∗

x ,
then it can only be the last interval in RS∗

x . Otherwise, the last job processed in
Ik creates a contradiction to Lemma 3.8 or to the maximality of our sequence of
split points.

Now suppose there is a partially reserved interval Ik that intersects with
[Sjx , Cjx). Clearly (i) may occur, in which case, by Lemma 3.7, (ii) will not
occur. Thus, suppose (i) does not occur. Then Ik is the last interval of RS∗

x

or Ik does not contain [t′, t′ + 1) as its last reserved time slot. If Ik is the last
interval of RS∗

x , we are done. Thus, suppose Ik does not contain [t′, t′ + 1) as its
last reserved time slot. Then Ik clearly has ek ≤ ejxmax. Therefore, Ik has to be
after the interval that contains [t′, t′ + 1), otherwise S∗ cannot be optimal. By
definition of [t′, t′ + 1), it must be that ek < ejxmax. Hence, Cjx ∈ Ik since otherwise
reserving an additional slot in Ik instead of [t′, t′ + 1) decreases the reservation
cost without affecting the completion time of jx, which contradicts the optimality
of S∗. Since [t′, t′ + 1) is, by assumption, not the last reserved slot in Ik, there
must be some other job than jx starting in Ik after Cjx , otherwise Ik must be the
last interval of RS∗

x . Consider any such job. By Lemma 3.8, all remaining time
slots of Ik need to be reserved until completion. Thus, either all slots of Ik will
be reserved, contradicting that Ik was only partially reserved, or all jobs starting
in Ik complete in Ik, whence Ik is the last interval of RS∗

x . □



34 3 Deterministic Cost-Aware Machine Scheduling

Lemma 3.10 Let [t′, t′ + 1) ∈ [Sjx , Cjx) be the last time slot with cost ejxmax that
is used by job jx. There exists an optimal solution S∗ such that if there is a
partially reserved interval Ik in RS∗

x and it is the last one in RS∗
x , then there is no

slot [t, t+ 1) ∈ [Sjx , Cjx) with cost at most ejxmax that is not reserved.

Proof. Let jx + ℓ with ℓ ∈ {0, . . . , a} be the last job processed in the partially
reserved interval Ik. Suppose there is a time slot [t, t+ 1) ∈ [Sjx , Cjx) with cost
at most ejxmax that is not reserved. If we reserve [t, t+ 1) instead of the last
reserved slot in Ik, then the difference in cost is δ1 := e(t)− ek −

∑jx+ℓ
j=jx

wj. If we
reserve one additional slot in Ik instead of [t′, t′ + 1), then the difference in cost
is δ2 := ek − ejxmax +

∑jx+ℓ
j=jx

wj. We consider an optimal schedule S∗, thus δ1 ≥ 0

and δ2 ≥ 0 which implies that δ1 + δ2 = e(t)− ejxmax ≥ 0. This is a contradiction
if e(t) < ejxmax. If e(t) = ejxmax, then δ1 = −δ2 = 0, because we consider an optimal
schedule S∗. This, however, contradicts our assumption that S∗ minimizes the
value

∑dK−1
t=0 t · y(t). □

We now show how to construct an optimal partial schedule for a given ordered
job set in a given region in polynomial time.

Lemma 3.11 Given a region Rx and an ordered job set Jx, we can construct in
polynomial time an optimal schedule for Jx within the region Rx, which does not
contain any other split point than τx and τx+1, the boundaries of Rx.

Proof. Given Rx and Jx, we guess the optimal combination (jx, e
jx
max), i.e., we

enumerate over all nK combinations and choose eventually the best solution.
We firstly assume that a partially reserved interval exists and it is the last one

in Rx (case (ii) in Lemma 3.9). Based on the characterization in Lemma 3.8 we
find in polynomial time the slots to be reserved for the jobs jx−b, . . . , jx−1. This
defines Cjx−b, . . . , Cjx−1. Then starting job jx at time Cjx−1, we check intervals in
the order given and reserve as much as needed of each next interval Ih if and only
if eh ≤ ejxmax, until a total of pjx time slots have been reserved for processing jx.
Lemma 3.10 justifies to do that. This yields a completion time Cjx . Starting at
Cjx , we use again Lemma 3.8 to find in polynomial time the slots to be reserved
for processing the jobs jx + 1, . . . , jx + a. This gives Cjx+1, . . . , Cjx+a.

Now we assume that there is no partially reserved interval or we are in case (i)
of Lemma 3.9. Similar to the case above, we find in polynomial time the slots
that S∗ reserves for the jobs jx − b, . . . , jx − 1 based on Lemma 3.8. This defines
Cjx−b, . . . , Cjx−1. To find the slots to be reserved for the jobs jx + 1, . . . , jx + a,
in this case, we start at the end of Rx and go backwards in time. We can start
at the end of Rx because in this case the last interval of Rx is fully reserved.
This gives Cjx+1, . . . , Cjx+a. Job jx is thus to be scheduled in [Cjx−1, Sjx+1). In
order to find the right slots for jx we solve a makespan problem in the interval
[Cjx−1, Sjx+1), which can be done in polynomial time (Theorem 3.3) and gives a
solution that cannot be worse than what an optimal schedule S∗ does.



3.4 Minimizing Total Weighted Completion Time on a Single Machine 35

If anywhere in both cases the reserved intervals cannot be made sufficient for
processing the job(s) for which they are intended, or if scheduling the jobs in
the reserved intervals creates any intermediate split point, then this (jx, e

jx
max)-

combination is rejected. Hence, we have computed the optimal schedules over all
nK combinations of (jx, ejxmax) and over both cases of Lemma 3.9 concerning the
position of the partially reserved interval. We choose the schedule with minimum
total cost and return it with its value. This completes the proof. □

Now we are ready to prove our main theorem.

Theorem 3.12 Given an instance of 1 | pmtn |
∑

wjCj + E and an arbitrary
processing sequence of jobs σ, we can compute an optimal reservation decision
for σ in polynomial time.

Proof. We give a dynamic program. We define a state for every possible po-
tential split point t ∈ P . By definition, there are 2K + 1 of them. A state also
includes the set of jobs processed until time t. Given the sequence σ, this job
set can be uniquely identified by the index of the last job, say j, that finished by
time t. By relabeling the job set J , we can assume w.l.o.g. that σ = (1, . . . , n).

For each state (j, t) we compute and store recursively the optimal scheduling
cost plus reservation cost Z(j, t) by

Z(j, t) = min
{
Z(j′, t′) + z

({
j′+ 1, . . . , j

}
, [t′, t)

)
: t′, t ∈ P , t′< t,j′, j ∈ J, j′< j

}
,

where z
({

j′ + 1, . . . , j
}
, [t′, t)

)
denotes the value of an optimal partial schedule

for job set {j′ + 1, j′ + 2, . . . , j
}

in the region [t′, t), or ∞ if no such schedule ex-
ists. This value can be computed in polynomial time, by Lemma 3.11. Hence,
we compute Z(j, t) for all O(nK) states in polynomial time, which concludes
the proof. □

The following observation follows from a standard interchange argument.

Observation 3.13 An optimal schedule S∗ for the problem 1 | pmtn |
∑

Cj +E
processes jobs according to the Shortest Processing Time First (SPT) policy.

Combining this observation with Theorem 3.12 gives the following corollary.

Corollary 3.14 There is a polynomial-time algorithm for 1 | pmtn |
∑

Cj + E.

For the weighted problem 1 | pmtn |
∑

wjCj + E, there is no sequence that
is universally optimal for all reservation decisions [33]. However, in the context
of scheduling on an unreliable machine there has been shown a polynomial-time
algorithm that computes a universal (4 + ε)-approximation [33]. More precisely,
the algorithm constructs a sequence of jobs which approximates the scheduling
cost for any reservation decision with a factor at most 4 + ε.



36 3 Deterministic Cost-Aware Machine Scheduling

Consider an instance of problem 1 | pmtn |
∑

wjCj + E and compute such
a universally (4 + ε)-approximate sequence. Applying Theorem 3.12 to σ, we
obtain a schedule S with an optimal reservation decision for σ. Let S ′ denote
the schedule which we obtain by changing the reservation decision of S to the
reservation in an optimal schedule S∗ (but keeping the scheduling sequence σ).
The schedule S ′ has cost no less than the original cost of S. Furthermore, given
the reservation decision in the optimal solution S∗, the sequence σ approximates
the scheduling cost of S∗ within a factor of 4+ ε. This gives the following result.

Corollary 3.15 There exists a (4+ ε)-approximation algorithm for the problem
1 | pmtn |

∑
wjCj + E.

3.5 A PTAS for Minimizing Total Weighted
Completion Time

The main result of this section is an approximation scheme for minimizing the
total weighted completion time with time-varying reservation cost.

Theorem 3.16 There exists a polynomial-time approximation scheme (PTAS)
for 1 | pmtn |

∑
j wjCj + E.

In the remainder of this section we describe some preliminaries, present a
dynamic programming (DP) algorithm with exponential running time, and then
we argue that the running time can be reduced to polynomial time. As noted in
the introduction, our approach is inspired by a PTAS for scheduling on a machine
of varying speed [64], but a direct application does not seem possible.

3.5.1 Preliminaries and Scheduling in the
Weight-Dimension

We describe a schedule S not in terms of completion times Cj(S), but in terms
of the remaining weight function W S(t) which, for a given schedule S, is defined
as the total weight of all jobs not completed by time t. Based on the remaining
weight function we can express the cost for any schedule S as∫ ∞

0

W S(t) dt =
∑
j∈J

wjCj(S) .

This has a natural interpretation in the standard 2D-Gantt chart, which was
originally introduced in [32].

For a given reservation decision, we follow the idea of [64] and implicitly
describe the completion time of a job j by the value of the function W at the
time that j completes. This value is referred to as the starting weight Sw

j of job j.



3.5 A PTAS for Minimizing Total Weighted Completion Time 37

In analogy to the time-dimension, the value Cw
j := Sw

j + wj is called completion
weight of job j. When we specify a schedule in terms of the remaining weight
function, then we call it a weight-schedule, otherwise a time-schedule. Other
terminologies, such as feasibility and idle time, also translate from the time-
dimension to the weight-dimension. A weight-schedule is called feasible if no two
jobs overlap and the machine is called idle in weight-dimension if there exists a
point w in the weight-dimension with w /∈

[
Sw
j , C

w
j

]
for all jobs j ∈ J .

A weight-schedule together with a reservation decision can be translated into a
time-schedule by ordering the jobs in decreasing order of completion weights and
scheduling them in this order in the time-dimension in the reserved time slots.
For a given reservation decision, consider a weight-schedule S with completion
weights Cw

1 > · · · > Cw
n > Cw

n+1 := 0 and the corresponding completion times
0 =: C0 < C1 < · · · < Cn for the jobs j = 1, . . . , n. We define the (scheduling) cost
of a weight schedule S as

∑n
j=1

(
Cw

j+1 − Cw
j

)
Cj. This value equals

∑n
j=1 π

S
j C

w
j ,

where πS
j := Cj −Sj, if and only if there is no idle weight. If there is idle weight,

then the cost of a weight-schedule can only be greater, and we can safely remove
idle weight without increasing the scheduling cost [64].

3.5.2 A Dynamic Programming Algorithm
Let ε > 0. Firstly, we scale the input parameters so that all job weights wj,
j = 1, . . . , n, and all unit reservation costs ek, k = 1, . . . , K, are non-negative
integers. Then, we apply standard geometric rounding to the weights to gain
more structure on the input, i.e, we round the weights of all jobs up to the
next integer power of (1 + ε), by losing at most a factor (1 + ε) in the objective
value. Furthermore, we discretize the weight-space into intervals of exponentially
increasing size: we define intervals WIu := [(1 + ε)u−1 , (1 + ε)u) for u = 1, . . . , ν
with ν := ⌈log1+ε

∑
j∈J wj⌉.

Consider a subset of jobs J ′ ⊆ J and a partial weight-schedule of J ′. In
the dynamic program, the set J ′ represents the set of jobs at the beginning of
a corresponding weight-schedule, i.e., if j ∈ J ′ and k ∈ J \ J ′, then Cw

j < Cw
k .

However, the jobs in J ′ are scheduled at the end in a corresponding time-schedule.
As discussed at the beginning of this section, a partial weight-schedule S for the
jobs in J \J ′ together with a reservation decision for these jobs can be translated
into a time-schedule.

Let Fu := {Ju ⊆ J :
∑

j∈Ju wj ≤ (1 + ε)u} for u = 1, . . . , ν. The set Fu

contains all the possible job sets Ju that can be scheduled in WIu or before.
Additionally, we define F0 to be the set that contains only the set of all zero-
weight jobs J0 := {j ∈ J : wj = 0}. The following observation allow to restrict
to simplified completion weights.

Observation 3.17 Consider an optimal weight-schedule in which the set of jobs
with completion weight in WIu, u ∈ {1, . . . , ν}, is exactly Ju \ Ju−1 for some
Ju ∈ Fu and Ju−1 ∈ Fu−1. By losing at most a factor (1 + ε) in the objective



38 3 Deterministic Cost-Aware Machine Scheduling

value, we can assume that for all u ∈ {1, . . . , ν} the completion weight of the jobs
in Ju \ Ju−1 is exactly (1 + ε)u.

The following observation follows from a simple interchange argument.

Observation 3.18 There is an optimal time-schedule in which J0 is scheduled
completely after all jobs in J \ J0.

The dynamic program recursively constructs states Z = [Ju, b, avg] and com-
putes for every state a time point t(Z) with the following meaning. A state
Z = [Ju, b, avg] with time point t(Z) expresses that that there is a feasible partial
schedule S for the jobs in J \Ju with Ju ∈ Fu up to the time point t(Z) for which
the total reservation cost is at most b and for which the average scheduling cost,
i.e.,

1

t(Z)
·
∫ t(Z)

0

W S(t) dt,

is at most avg. Note that avg · t(Z) is an upper bound on the total scheduling
cost of S and that the average scheduling cost is non-increasing in time, because
the remaining weight function W S(t) is non-increasing in time. In the iteration
for u, we only consider states [Ju, b, avg] with Ju ∈ Fu. The states in the iteration
for u are created based on the states from the iteration for u + 1. Initially,
we only have the state Zν = [J, 0, 0] with t(Zν) := 0, we start the dynamic
program with u = ν − 1, iteratively reduce u by one, and stop the process
after the iteration for u = 0. In the iteration for u, the states together with
their time points are constructed in the following way. Consider candidate sets
Ju+1 ∈ Fu+1 and Ju ∈ Fu, a partial weight-schedule S of J \ Ju, in which the
set of jobs with completion weight in WIu+1 is exactly Ju+1 \ Ju, two budgets
b1, b2 with b1 ≤ b2, and two bounds on the average scheduling cost avg1, avg2.
Let Z1 = [Ju+1, b1, avg1] and Z2 = [Ju, b2, avg2] be the corresponding states. We
know that there is a feasible partial schedule for the job set J \ Ju+1 up to
time t(Z1) having average scheduling cost at most avg1 and reservation cost at
most b1. By augmenting this schedule, we want to compute a minimum time
point t(Z1, Z2) that we associate with the link between Z1 and Z2 so that there
is a feasible partial schedule for J \ Ju that processes the jobs from Ju+1 \ Ju
in the interval [t(Z1), t(Z1, Z2)), has average scheduling cost at most avg2, and
reservation cost at most b2. That is, t(Z1, Z2) is the minimum makespan if we
start with Z1 and want to arrive at Z2. For the computation of t(Z1, Z2), we use
the following subroutine.

Using Observation 3.17, we approximate the area under the remaining weight
function W S(t) for the jobs in Ju+1 \ Ju by (1 + ε)u+1 · (t(Z1, Z2)− t(Z1)), where
t(Z1, Z2) is the time point that we want to compute. Approximating this area
gives us the flexibility to schedule the jobs in Ju+1 \ Ju in any order. However,
we need that avg2 · t(Z1, Z2) is an upper bound on the integral of the remaining



3.5 A PTAS for Minimizing Total Weighted Completion Time 39

weight function by time t(Z1, Z2). That is, we want that

avg2 · t(Z1, Z2) ≥ (1 + ε)u+1 · t(Z1, Z2) + t(Z1) · (avg1 − (1 + ε)u+1).

Both the left-hand side and the right-hand side of this inequality are linear func-
tions in t(Z1, Z2). So, we can compute a smallest time point tLB such that the
right-hand side is greater or equal to the left-hand side for all t(Z1, Z2) ≥ tLB.
If there is no such tLB, then we set t(Z1, Z2) to infinity and stop the subroutine.
Otherwise, we know that our average scheduling cost at tLB or later is at most
avg2. Let E(p, [t1, t2)) denote the total cost of the p cheapest slots in the inter-
val [t1, t2). We compute the smallest time point t(Z1, Z2) ≥ tLB so that the set
of jobs Ju+1 \ Ju can be feasibly scheduled in [t(Z1), t(Z1, Z2)) having reservation
cost not more than b2 − b1. That is, we set

t(Z1, Z2) = min
{
t ≥ max{t(Z1), t

LB} : E(p(Ju+1 \ Ju), [t(Z1), t)) ≤ b2 − b1
}
.

The time point t(Z1, Z2) can be computed in polynomial time by applying binary
search to the interval [max{t(Z1), t

LB}, dK), since E(p, [t1, t2)) is a monotone
function in t2.

Given all possible states [Ju+1, b1, avg1] from the iteration for u + 1, the
dynamic program enumerates for all these states all possible links to states
[Ju, b2, avg2] from the iteration for u fulfilling the above requirement on the can-
didate sets Ju+1 and Ju, on the budgets b1 and b2, and on the average scheduling
costs avg1 and avg2. For any such possible link (Z1, Z2) between states from
the iteration for u + 1 and u, we apply the above subroutine and associate the
time point t(Z1, Z2) with this link. Thus, the dynamic program associates sev-
eral possible time points with a state Z2 = [Ju, b2, avg2] from the iteration for u.
However, we only keep the link with the smallest associated time point t(Z1, Z2)
(ties are broken arbitrarily) and this defines the time point t(Z2) that we asso-
ciate with the state Z2. That is, for a state Z2 from the iteration for u we define
t(Z2) := min{t(Z1, Z2) |Z1 is a state from the iteration for u+ 1}.

Let Emax be an upper bound on the total reservation cost in an optimal
solution, e.g., the total cost of the first p(J) finite-cost time slots. The dynamic
program does not enumerate all possible budgets but only a polynomial number
of them, namely budgets with integer powers of (1 + η1) with η1 > 0 determined
later (see proof of Lemma 3.19). That is, for the budget on the reservation cost,
the dynamic program enumerates all values in

B := {0, 1, (1 + η1), (1 + η1)
2, . . . , (1 + η1)

ω1} with ω1 = ⌈log1+η1
Emax⌉.

Similarly, we observe that (1+ε)ν is an upper bound on the average scheduling
cost. The dynamic program does also only enumerate a polynomial number of
possible average scheduling costs, namely integer powers of (1 + η2) with η2 > 0
also determined later (see proof of Lemma 3.19). This means, for the average
scheduling cost, the dynamic program enumerates all values in

AV G := {0, 1, (1 + η2), (1 + η2)
2, . . . , (1 + η2)

ω2} with ω2 = ⌈ν log1+η2
(1 + ε)⌉.



40 3 Deterministic Cost-Aware Machine Scheduling

The dynamic program stops after the iteration for u = 0. Now, only the set of
zero-weight jobs is not scheduled yet. For any state Z = [J0, b, avg] constructed in
the iteration for u = 0, we append the zero-weight jobs starting at time t(Z) and
reserving the cheapest slots, which is justified by Observation 3.18. We add the
additional reservation cost to b. After this, we return the state Z = [J0, b, avg]
and its corresponding schedule, which can be computed by backtracking and
following the established links, with minimum total cost b+avg · t(Z). With this,
we obtain the following result.

Lemma 3.19 The dynamic program computes a (1 + O(ε))-approximate solu-
tion.

Proof. Consider an arbitrary iteration i of the dynamic program and suppose,
we consider states Z = [Ju, b, avg] with Ju ∈ Fu, b ∈ B, and avg ∈ AV G for
which we construct the time points t(Z). Let Z∗

1 = [J∗
u+1, b

∗
1, avg

∗
1] and Z∗

2 =
[J∗

u, b
∗
2, avg

∗
2] with J∗

u+1 ∈ Fu+1 and J∗
u ∈ Fu be the states that represent an

optimal solution S∗ for which the set of jobs with completion weight in WIu+1 is
exactly J∗

u+1 \J∗
u. By Observation 3.17, we assume that also in S∗ the area under

the remaining weight function W S∗
(t) for the jobs in J∗

u+1 \ J∗
u is approximated

by (1+ε)u+1 ·(t(Z∗
2)− t(Z∗

1)). We now show the following. The dynamic program
constructs in iteration i a state Z = [Ju, b, avg] with Ju ∈ Fu, b ∈ B, and
avg ∈ AV G such that

(i) Ju = J∗
u,

(ii) b ≤ (1 + η1)
i · b∗2,

(iii) avg ≤ (1 + η2)
i · avg∗2, and

(iv) t(Z) ≤ t(Z∗
2).

We prove this statement by induction on i. Consider the first iteration of the
dynamic program, in which we consider states with job sets from Fν−1. Let
Z∗ = [J∗

ν−1, b
∗, avg∗] be the state that corresponds to the optimal solution S∗.

The dynamic program also considers the job set J∗
ν−1. Suppose, we reserve the

same slots that S∗ reserves for the jobs in J \J∗
ν−1 in the interval [0, t(Z∗)). Let b

be the resulting reservation cost after rounding b∗ up to the next value in B. With
this, we know that b ≤ (1+η1)·b∗. Furthermore, by our assumption, we know that
the average scheduling cost of S∗ up to time t(Z∗) is (1+ ε)ν . Let avg be (1+ ε)ν

rounded up to the next value in AV G. Then we know that avg ≤ (1 + η2) · avg∗.
The dynamic program also considers the state Z = [J∗

ν−1, b, avg]. However, the
dynamic program computes the minimum time point t(Zν , Z) ≥ tLB so that the
set of jobs J \ J∗

ν−1 can be feasibly scheduled in [0, t(Zν , Z)) having reservation
cost not more than b. This implies that t(Zν , Z) ≤ t(Z∗), which implies that
t(Z) ≤ t(Z∗). Note that tLB = 0 for the specified values in Z.



3.5 A PTAS for Minimizing Total Weighted Completion Time 41

Suppose, the statement is true for the iterations 1, 2, . . . , i. We prove that it
is also true for iteration i+ 1, in which we consider job sets from Fu. Again, let
Z∗

1 = [J∗
u+1, b

∗
1, avg

∗
1] and Z∗

2 = [J∗
u, b

∗
2, avg

∗
2] with J∗

u+1 ∈ Fu+1 and J∗
u ∈ Fu be the

states that represent S∗. By our hypothesis, we know that the dynamic program
constructs a state Z1 = [Ju+1, b1, avg1] with

(i) Ju+1 = J∗
u+1,

(ii) b1 ≤ (1 + η1)
i · b∗1,

(iii) avg1 ≤ (1 + η2)
i · avg∗1, and

(iv) t(Z1) ≤ t(Z∗
1).

We augment this schedule in the following way. Suppose, we reserve the same
slots that S∗ reserves for the jobs in J∗

u+1 \J∗
u in the interval [t(Z∗

1), t(Z
∗
2)). Let b2

be the resulting total reservation cost after rounding up to the next value in B.
Thus, there is a feasible schedule for J \ J∗

u having reservation cost of at most

b2 ≤ (1 + η1) · (b1 + b∗2 − b∗1)

≤ (1 + η1)
i+1 · (b∗1 + b∗2 − b∗1)

= (1 + η1)
i+1 · b∗2.

The new average scheduling cost after rounding to the next value in AV G is

avg2 ≤ (1 + η2) ·
avg1 · t(Z1) + (1 + ε)u+1 · (t(Z∗

2)− t(Z1))

t(Z∗
2)

≤ (1 + η2)
i+1 · avg

∗
1 · t(Z1) + (1 + ε)u+1 · (t(Z∗

2)− t(Z1))

t(Z∗
2)

≤ (1 + η2)
i+1 · avg

∗
1 · t(Z∗

1) + (1 + ε)u+1 · (t(Z∗
2)− t(Z∗

1))

t(Z∗
2)

= (1 + η2)
i+1 · avg∗2.

The third inequality follows from the fact that avg∗1 ≥ (1 + ε)u+1. The dynamic
program also considers the link between the state Z1 and Z2 := [J∗

u, b2, avg2]. We
first observe that tLB ≤ t(Z∗

2), since

avg2 · t(Z∗
2) ≥ avg1 · t(Z1) + (1 + ε)u+1 · (t(Z∗

2)− t(Z1))

by construction of avg2. Furthermore, we observe that b2 − b1 ≥ b∗2 − b∗1 by
construction of b2. These two facts together with t(Z1) ≤ t(Z∗

1) imply that
t(Z1, Z2) ≤ t(Z∗

2), which implies that t(Z2) ≤ t(Z∗
2).

To complete the proof, we need to specify the parameters η1 and η2. We
want that (1 + ηi)

ν ≤ (1 + ε) for i = 1, 2. We claim that for a given ν ≥ 1
there exists an η̄ > 0 such that for all η ∈ (0, η̄] we have (1 + η)ν ≤ 1 + 2νη.



42 3 Deterministic Cost-Aware Machine Scheduling

Consider the function f(η) := (1 + η)ν − 1 − 2νη. We have that f(0) = 0 and
f ′(η) < 0 for η ∈ [0, 21/(ν−1) − 1). This shows the claim. Hence, we choose
ηi = min{ ε

2ν
, 21/(ν−1) − 1} for i = 1, 2. This shows the statement of the lemma

and that the size of B as well as the size of AV G are bounded by a polynomial
in the size of the input. □

We remark that the given DP works for more general reservation cost func-
tions e : N → Q≥0 than considered here in this thesis. As argued in the proof,
it is sufficient for the DP that there is a function E(p, [t1, t2)) that outputs in
polynomial time for a given time interval [t1, t2) and a given p ∈ Z≥0 the total
cost of the p cheapest slots in [t1, t2).

We also remark that the running time of the presented DP is exponential,
because the size of the sets Fu are exponential in the size of the input. However, in
the next section we show that we can trim the sets Fu down to ones of polynomial
size at an arbitrarily small loss in the performance guarantee.

3.5.3 Trimming the State Space
The set Fu, containing all possible job sets Ju, is of exponential size, and so is the
DP state space. In the context of scheduling with variable machine speed, it has
been shown in [64] how to reduce the set Fu for a similar DP (without reservation
decision, though) to a set F̃u of polynomial size at only a small loss in the objective
value. In general, such a procedure is not necessarily applicable to our setting
because of the different objective involving additional reservation cost and the
different decision space. However, the compactification in [64] holds independently
of the speed of the machine and, thus, independently of the reservation decision
of the DP (interpret non/reservation as speed 0/1). Hence, we can apply it to
our cost-aware scheduling framework and obtain a PTAS. We now describe the
building blocks for this trimming procedure and argue why we can apply it in
order to obtain the set F̃u for our problem.

Light Jobs. The first building block for the trimming procedure is a classifica-
tion of the jobs based on their weights.

Definition 3.20 Given a weight schedule and a job j ∈ J with starting weight
Sw
j ∈ WIu, we call job j light if wj ≤ ε2|WIu|, otherwise j is called heavy.

This classification enables us to structure near-optimal solutions.

Lemma 3.21 ([64]) At a loss of a factor of 1 +O (ε) in the scheduling cost, we
can assume the following. For a given interval WIu, consider any pair of light
jobs j, k. If both jobs start in WIu or later and pk/wk ≤ pj/wj, then Cw

j ≤ Cw
k .

We remark, that Lemma 3.21 holds independently of the speed of the machine,
as pointed out in [64]. Translated to our problem, this means that at a loss



3.5 A PTAS for Minimizing Total Weighted Completion Time 43

of a factor of 1 + O (ε) in the scheduling cost we can assume that light jobs
are scheduled according to reverse Smith’s rule in the weight-dimension. Most
importantly, this statement holds regardless of our actual reservation decision.

Localization. We now localize jobs in the weight-dimension to gain more struc-
ture. That is, we determine for every job j ∈ J two values rwj and dwj such that,
independently of our actual reservation decision, j is scheduled completely within[
rwj , d

w
j

)
in some (1+O (ε))-approximate weight-schedule (in terms of the schedul-

ing cost). We call rwj and dwj the release-weight and the deadline-weight of job j,
respectively.

Lemma 3.22 ([64]) We can compute in polynomial time values rwj and dwj for
each j ∈ J such that: (i) there exists a (1 +O (ε))-approximate weight-schedule
(in terms of the scheduling cost) that processes each job j within [rwj , d

w
j ), (ii)

there exists a constant s ∈ O (log (1/ε) /ε) such that dwj ≤ rwj · (1 + ε)s, (iii) rwj
and dwj are integer powers of (1+ε), and (iv) the values rwj an dwj are independent
of the speed of the machine.

This lemma enables us to localize all jobs in J in polynomial time and inde-
pendent of our actual reservation decision, as guaranteed by property (iv).

Compact Search Space. Based on the localization of jobs in weight space,
we can cut the number of different possibilities for a candidate set Ju in iteration
for u of our DP down to a polynomial number. That is, we replace the set Fu by
a polynomially sized set F̃u. Instead of describing all sets S ∈ F̃u explicitly, we
give all possible complements R = J \ S and collect them in a set Du, where a
set R ∈ Du represents a possible set of jobs having completion weights in WIu+1

or later. Obviously, a set R ∈ Du must contain all jobs j ∈ J having a release
weight rwj ≥ (1 + ε)u. Furthermore, we know that dwj ≥ (1 + ε)u+1 is necessary
for job j to be in a set R ∈ Du. Following property (ii) in Lemma 3.22, we thus
only need to decide about the jobs having a release weight rwj = (1 + ε)i with
i ∈ {u+ 1− s, . . . , u− 1}. An enumeration over basically all possible job sets for
each i ∈ {u+ 1− s, . . . , u− 1} gives the following desired result.

Lemma 3.23 ([64]) For each u, we can construct in polynomial time a set F̃u

that satisfies the following: (i) there exists a (1 + O (ε))-approximate weight-
schedule (in terms of the scheduling cost) in which the set of jobs with completion
weight at most (1 + ε)u belongs to F̃u, (ii) the set F̃u has cardinality at most
2O(log3(1/ε)/ε2), and (iii) the set F̃u is completely independent of the speed of the
machine.

Again, Property (iii) implies that we can construct the set F̃u independently
of our reservation decision.



44 3 Deterministic Cost-Aware Machine Scheduling

To complete the proof of Theorem 3.16 it remains to argue on the running
time of the DP. The DP has ν iterations, where in each iteration for at most
2O(log3(1/ε)/ε2) · |B| · |AV G| previous states at most 2O(log3(1/ε)/ε2) · |B| · |AV G|
many links to new states are considered. Therefore, the running time complexity
of our DP is ν · (2O(log3(1/ε)/ε2) · |B| · |AV G|)2, which is bounded by a polynomial
in the size of the input.

3.6 Consequences of Having Release Dates
In this section, we analyze the influence of release dates on the problem com-
plexity. First, we consider the makespan objective on a single machine in Sec-
tion 3.6.1 and on unrelated parallel machines with a slightly relaxed cost model
in Section 3.6.2. Second, we focus on the total completion time objective in
Section 3.6.3.

We remark that it is a priori not clear how to encode a feasible schedule
using polynomial space when having release dates. However, we can do the
following. First, we want that there is no interval Ik := [sk, dk) and no job j with
rj ∈ (sk, dk). If, however, there is such an interval-job combination (k, j), we
repartition Ik into I1k := [sk, rj) and I2k := [rj, dk) until the desired condition is
fulfilled. This gives a new partitioning of the time horizon into intervals Ik with
k = 1, . . . , K ′, where K ′ is polynomial in the size of the input. Then it is not
hard to see that if an optimal schedule reserves p units in any interval Ik, then
it reserves the first p slots in Ik. This observation allows us to encode a schedule
using polynomial space.

3.6.1 Minimizing the Makespan on a Single Machine
The scheduling problem 1 | pmtn, rj |Cmax without reservation can be solved op-
timally in polynomial time by scheduling the jobs as early as possible in order of
non-decreasing release dates [6]. We show that the more general problem with
time-varying reservation cost is also polynomial-time solvable. In the following,
we first give a combinatorial algorithm and then an LP-based algorithm.

Consider an arbitrary instance of the scheduling problem
1 | pmtn, rj |Cmax + E.

Observation 3.24 There is an optimal solution that schedules the jobs in order
of non-decreasing release dates.

This observation can be shown by a standard interchange argument and is the
basis for our combinatorial algorithm. Let us assume for the moment that we
know an optimal makespan C∗

max. We now show that, given the makespan C∗
max,

we can compute an optimal schedule S∗. In a first step, we sort the jobs in
order of non-decreasing release dates and schedule them in this order as early as



3.6 Consequences of Having Release Dates 45

possible. We assume that jobs are numbered so that r1 ≤ r2 ≤ . . . ≤ rn. This
gives a schedule S with an earliest possible starting time Sj (w.r.t. the given
ordering in S) for each j ∈ J and we note that Cj = Sj + pj for all j ∈ J . In
a second step, we find the cheapest slots so as to realize the scheduling order of
S in [0, C∗

max). For j = n, . . . , 1 we do the following: in addition to the
∑n

j+1 pj
already reserved slots, we reserve in [Sj, C

∗
max) the pj cheapest free slots. After

computing the cheapest slots, we reassign the jobs to the reserved slots by keeping
the scheduling order of S.

Lemma 3.25 Given an optimal makespan for an instance of the problem
1 | pmtn, rj |Cmax + E, we can compute an optimal schedule in polynomial time.

Proof. We show that the above-described algorithm computes an optimal sched-
ule. By Observation 3.24, it is sufficient to show that we reserve the p(J) cheapest
slots so as to feasibly schedule the jobs. We show this by induction on the number
of jobs. If there is only one job, this is trivially fulfilled. Suppose it is true for
n − 1 jobs. When having n jobs, we use the induction hypothesis for the jobs
2, . . . , n and the fact that in addition to the already reserved slots we reserve the
p1 cheapest free slots in a feasible way. □

Note that we partitioned the time horizon into polynomially many intervals
Ik = [sk, dk) with sk, dk ∈ N, k = 1, . . . , K, within which unit-size time slots have
the same unit reservation cost ek. Additionally, we can assume that there is no
interval Ik such that rj ∈ (sk, dk) for some job j ∈ J ; see beginning of this section
for a discussion on that.

In order to find C∗
max in polynomial time we compute for every interval Ik,

k = 1, . . . , K, an optimal makespan Ck
max assuming that C∗

max ∈ Ik and then
we return a makespan that leads to a solution with minimum total cost. For
this we use the same procedure as given in Section 3.3 for the problem without
release dates, which is as follows. Assuming that we guessed the right interval Ik,
we start with Ck

max = sk and apply the above procedure to compute an optimal
schedule for this makespan. Then we replace the currently most expensive slots
with slots from Ik as long as the most expensive slots have unit cost more than
ek + 1. With this, it takes at most K computer operations to find Ck

max. This
shows the following statement.

Theorem 3.26 The scheduling problem 1 | pmtn, rj |Cmax + E can be solved in
polynomial time.

We now give an alternative algorithm for computing an optimal schedule S∗,
given an optimal makespan C∗

max (see Lemma 3.25), by showing that this problem
can be formulated as a flow problem that can be solved in polynomial time. Let
Iℓ be the interval with C∗

max ∈ Iℓ. We create four types of nodes, a super-source s
with supply p(J), a super-sink t with demand p(J), a node j for every job j ∈ J



46 3 Deterministic Cost-Aware Machine Scheduling

and a node k for every interval Ik, k = 1, . . . , K. We connect every interval-
node k to s by an arc (s, k) with capacity |Ik| and cost ek for k = 1, . . . , ℓ − 1,
capacity C∗

max − sℓ and cost eℓ for k = ℓ, and zero capacity and cost ek for
k > ℓ. Additionally, we connect interval-node k to job-node j by an arc (k, j)
with infinite capacity and zero cost if rj ≤ sk. At last, we connect every job-
node j to the super-sink t by an arc (j, t) having capacity pj and zero cost. It is
easy to show that a solution to the constructed flow problem can be translated
into a feasible schedule having the same reservation cost and vice versa.

3.6.2 Minimizing the Makespan on Unrelated Machines
with Fractional Reservation

In this section, we consider the scheduling problem R | pmtn, rj |Cmax with reser-
vation cost and show that it can be solved in polynomial time if we relax the
requirement that we have to pay the full unit reservation cost for a time slot once
we use it, no matter how much we utilize its unit capacity. That is, utilzing a time
slot [t, t+ 1) to an extend of p ∈ [0, 1] incurs now a reservation cost of p ·e(t). We
show that a standard LP-formulation for R | pmtn, rj |Cmax [58] can be adapted to
solve the problem variant with fractional reservation cost R | pmtn, rj |Cmax+Ef .

As in previous sections, we compute for every interval Ik, k = 1, . . . , K, an
optimal makespan Ck

max assuming that an optimal makespan C∗
max lies in Ik and

then we return a makespan that leads to a solution with minimum total cost.
Note that w.l.o.g. we have no interval-job combination (k, j) with rj ∈ (sk, dk).
Let yijk ∈ [0, 1] be the total amount of time that machine i works on job j in
interval Ik. We obtain the following LP-formulation for the κth interval:

min
κ∑

k=1

ek · xk + Cκ
max (3.1a)

s.t.
∑
i∈M

κ∑
k=1

yijk
pij

= 1 ∀j ∈ J, (3.1b)∑
i∈M

yijk ≤ xk ∀j ∈ J, k = 1, . . . , κ, (3.1c)∑
j∈J

yijk ≤ xk ∀i ∈M,k = 1, . . . , κ, (3.1d)

0 ≤ xk ≤ dk − sk ∀k = 1, . . . , κ, (3.1e)
Cκ

max = sκ + xκ (3.1f)
yijk ≥ 0 ∀i ∈M, j ∈ J, k = 1, . . . , κ, (3.1g)
yijk = 0 ∀i ∈M, j ∈ J, k : rj > sk. (3.1h)

In an optimal solution for this LP, variable xk equals the total amount of
time that we need to reserve in interval Ik, i.e., we reserve from sk to sk + xk.



3.6 Consequences of Having Release Dates 47

Assuming that some jobs are processed in interval Iκ, we can show that for any
feasible solution to this LP, there is a feasible schedule with the same total cost
by using [58]. If there are no jobs processed in Iκ, then accepting Cκ

max = sκ is
fine, given our assumption that an optimal makespan C∗

max lies in Ik.
The above LP can easily be adapted if we have machine-individual fractional

reservation cost. That is, we are given intervals Iik = [sik, dik), k = 1, . . . , K,
for all i ∈ M , within which unit-size time slots have the same unit reservation
cost eik. Note that we can assume w.l.o.g. that sik = si′k and dik = di′k for all
i, i′ ∈ M and k = 1, . . . , K. We obtain the following LP-formulation for the κth
interval:

min
κ∑

k=1

eik · xik + Cκ
max (3.2a)

s.t.
∑
i∈M

κ∑
k=1

yijk
pij

= 1 ∀j ∈ J, (3.2b)∑
i∈M

yijk ≤ xk ∀j ∈ J, k = 1, . . . , κ, (3.2c)∑
j∈J

yijk ≤ xik ∀i ∈M,k = 1, . . . , κ, (3.2d)

xik ≤ xk ∀i ∈M,k = 1, . . . , κ, (3.2e)
0 ≤ xk ≤ dk − sk ∀k = 1, . . . , κ, (3.2f)
0 ≤ xik ≤ dk − sk ∀i ∈M,k = 1, . . . , κ, (3.2g)
Cκ

max = sκ + xκ (3.2h)
yijk ≥ 0 ∀i ∈M, j ∈ J, k = 1, . . . , κ, (3.2i)
yijk = 0 ∀i ∈M, j ∈ J, k : rj > sk. (3.2j)

Hence, we obtain the following result.

Theorem 3.27 The problem R | pmtn, rj |Cmax+Ef can be solved in polynomial
time, even if we have machine-individual fractional reservation cost.

3.6.3 Minimizing the Total Completion Time
on a Single Machine

The scheduling problem 1 | pmtn |
∑

Cj +E is solvable in polynomial time as we
saw in Section 3.4. In this section, we show that the problem becomes NP-hard
once release dates are considered. That is, we show the following statement.

Theorem 3.28 The scheduling problem 1 | pmtn, rj |
∑

Cj+E is NP-hard, even
for K = 2 with only one interval having positive unit reservation cost.



48 3 Deterministic Cost-Aware Machine Scheduling

The proof is inspired by the NP-hardness proof for 1 | pmtn, rj, dj |
∑

Cj by [30].
The reduction is from the NP-complete Odd-Even Partition problem to the
decision version of 1 | pmtn, rj |

∑
Cj + E.

Odd-Even Partition

Given: We are given 2n positive integers a1, . . . , a2n with
∑2n

j=1 aj = 2B,
where aj > aj+1 for j = 1, . . . , 2n− 1.

Task: Decide whether there is a partition of the integers into two sets,
A1 and A2, such that ∑

j∈A1

aj =
∑
j∈A2

aj,

where A1 and A2 each contain exactly one element of each odd-
even pair {a2i−1, a2i}, i = 1, . . . , n.

Without loss of generality, we can assume that

(
i−1∑
k=1

a2k) + a2i−1 + a2i > B ∀i = 1, . . . , n. (3.3)

If a given instance of the Odd-Even Partition problem does not satisfy this
assumption, then we manipulate the instance so that it does. With bi := 4n+1−iB
we set a′2i−1 := a2i−1 + bi and a′2i := a2i + bi for all i = 1, . . . , n so that now∑2n

j=1 a
′
j = 2B + 2

∑n
i=1 bi = 2B′ with B′ = (4n + 4n−1 + · · ·+ 42 + 4+ 1)B. This

transformation can be done in polynomial time and does not change the answer
to the problem instance. We observe that now

(
i−1∑
k=1

a′2k) + a′2i−1 + a′2i > (
i−1∑
k=1

bk) + 2bi

= (4n + 4n−1 + · · ·+ 4n+3−i + 4n+2−i)B + 2 · 4n+1−iB

> B′ ∀i = 1, . . . , n,

because 2 · 4n+1−i > 4n+1−i + 4n−i + · · ·+ 42 + 4 + 1 for all i = 1, . . . , n.
We construct the following instance of the decision version of

1 | pmtn, rj |
∑

Cj + E: We create 2n jobs j = 1, . . . , 2n with processing
time pj = aj. We set r1 = 0 and job 2i − 1 with i ∈ {2, . . . , n} is released at
r2i−1 =

∑i−1
k=1(n− k + 2)(a2k−1 − a2k) + a2k + ℓk, where ℓk = ρ(1− ρ)k−1 · L with

ρ = 2n/(2n+1) and L = (1/(1−ρ)n)(B+
∑n

i=1(n−i+2)(a2i−1−a2i)+a2i). Job 2i
with i ∈ {1, . . . , n} is released at r2i = r2i−1+(n−i+2)(a2i−1−a2i). We have only
two intervals I1 = [s1, d1) = [0, r2n + a2n + ℓn) and I2 = [s2, d2) = [d1, d1 +B)
with unit reservation cost e1 = 2nd2 + 1 and e2 = 0. See also Fig. 3.1 for a
schematic representation of this instance.



3.6 Consequences of Having Release Dates 49

r1 = 0 r2 r3 L

(n+ 1)(a1 − a2)

ℓ1a2

v1

r2i−1 r2i r2i+1

(n− i+ 2)(a2i−1 − a2i)

ℓia2i

vi

r2n−1 r2n

2(a2n−1 − a2n)

ℓna2n

vn

B

Figure 3.1: Schematic representation of the constructed instance of
1 | pmtn, rj |

∑
Cj + E.

Let vi := r2i − r2i−1 + a2i for i = 1, . . . , n. Note that d2 = L, since
d2 =

∑n
i=1 vi +

∑n
i=1 ℓi +B =

∑n
i=1 vi +B + (1− (1− ρ)n)L = L.

In the following, we show that the instance of the Odd-Even Parti-
tion problem is a Yes-instance if and only if there exists a feasible solution
for the constructed instance of 1 | pmtn, rj |

∑
Cj + E with total cost at most

B(e1 − 1) +D +
∑n

i=1 a2i with D := (
∑n

i=1 r2i + a2i) + nd2 −
∑n

i=1(n− i)a2i−1.

Lemma 3.29 In an optimal solution for the constructed instance we reserve
exactly B time slots in interval I1.

Proof. We know that every feasible solution has to reserve at least B time slots
in I1, since d2 − s2 = B and

∑2n
j=1 pj = 2B.

Note that in any feasible solution
∑2n

j=1Cj < 2nd2. Therefore, if we reserve
exactly B time slots in I1, the total cost is at most Be1 + 2nd2 < (B + 1)e1.
However, if we reserve more than B time slots in I1, then the total cost is greater
than (B + 1)e1. □

Lemma 3.30 In an optimal solution for the constructed instance exactly one job
of each odd-even pair {2i− 1, 2i}, i = 1, . . . , n, is finished at or before r2i + a2i.

Proof. The proof is by strong induction on i. Consider the base case i = 1:
Because of (3.3) and Lemma 3.29 we cannot finish both job 1 and job 2 before
r2+a2. If we finish none of them at or before r2+a2, then

∑2n
j=1Cj > 2nℓ1 =: z1.

If we finish at least one of them not later than r2 + a2, then we have that∑2n
j=1Cj ≤ v1 + (2n− 1)L =: z2. We have

z1 − z2 = 2nρL− v1 − (2n− 1)L

= (2n(ρ− 1) + 1)L− v1

= (1− ρ)L− v1

> 0.

Suppose the statement is true for i = 1, . . . , k − 1. Again, because of (3.3)
and Lemma 3.29 we cannot finish both job 2k− 1 and job 2k before r2k + a2k. If



50 3 Deterministic Cost-Aware Machine Scheduling

none of them is finished at or before r2k + a2k, then

2n∑
j=1

Cj > (k − 1)(L−B)

+(v1 + ℓ1)

+(v1 + ℓ1 + v2 + ℓ2)

+ · · ·
+(v1 + ℓ1 + · · ·+ vk−2 + ℓk−2)

+(2n− 2(k − 1))(v1 + ℓ1 + · · ·+ vk + ℓk)

= (k − 1)(L−B)

+(v1 + ℓ1)(2n− 2(k − 1) + (k − 2))

+(v2 + ℓ2)(2n− 2(k − 1) + (k − 3))

+ · · ·
+(vk−2 + ℓk−2)(2n− 2(k − 1) + 1)

+(vk−1 + ℓk−1)(2n− 2(k − 1))

+(vk + ℓk)(2n− 2(k − 1))

=: z1.

If we finish at least one of job 2k − 1 and job 2k not later than r2k + a2k, then

2n∑
j=1

Cj ≤ (k − 1)L+ v1 + (v1 + ℓ1 + v2)

+ · · ·
+(v1 + ℓ1 + v2 + ℓ2 + · · ·+ vk−1 + ℓk−1 + vk) + (2n− 2k + 1)L

= (2n− k)L+
k∑

i=1

vi

+(v1 + ℓ1)(k − 1)

+(v2 + ℓ2)(k − 2)

+ · · ·
+vk−1 + ℓk−1

=: z2.



3.6 Consequences of Having Release Dates 51

We have

z1 − z2 = (k − 1)(L−B)− (2n− k)L+ (2n− 2k + 1)
k∑

i=1

vi −
k−1∑
i=1

vi

+(2n− 2k + 2)
k∑

i=1

ℓi −
k−1∑
i=1

ℓi

≥ L
(
(1− ρ)k−1 − (2n− 2k + 2)(1− ρ)k

)
− (k − 1)B

= L(1− ρ)k−1 (1− (2n− 2k + 2)(1− ρ))− (k − 1)B

=

(
n∑

i=1

vi +B

)
2k − 1

(1− ρ)n−k
− (k − 1)B

≥ kB

> 0.

This completes the proof. □

We now know that we finish exactly one job of every odd-even pair {2i− 1, 2i}
not later than r2i + a2i. Let J ini := {j ∈ J : Cj ≤ d1} be the set of initial jobs
and Jfin := J \ J ini be the set of final jobs.
Lemma 3.31 In an optimal solution for the constructed instance at most one
job is preempted, namely the final job of the odd-even pair {2n− 1, 2n}.

Proof. Consider an arbitrary set of initial jobs J ini with p(J ini) ≤ B. It is
easy to see that after s2 the final jobs are scheduled according to the Shortest
Remaining Processing Time (SRPT) policy. Let δ := B − p(J ini) be the budget
for shortening the processing time of the final jobs after s2.

We first show that in an optimal solution the budget δ is invested in only one
final job j ∈ Jfin, i.e., job j is processed δ time units in interval I1. By (3.3) and
Lemma 3.29, we have δ < minj∈Jfin pj. Suppose the budget δ is invested in two
final jobs j1 and j2, where j1 is scheduled earlier than j2. Then we can take the
budget from j2 and invest it in j1, which results in a schedule with less scheduling
cost, since the completion time of j2 remains the same, but the jobs between j1
and j2 and also j1 finish earlier. An iterative application of this argument shows
the statement.

It remains to show that we invest the budget δ in one job of the odd-even pair
{2n− 1, 2n}, whichever is not in J ini. Let

yi :=

{
p2i , if 2i− 1 ∈ J ini

p2i−1 , o.w.

If we invest the budget δ to shorten yn, we get∑
j∈Jfin

Cj = s2+n · (yn−δ)+(n−1) ·yn−1+ · · ·+2y2+y1 = s2−nδ+
n∑

i=1

iyi =: z1.



52 3 Deterministic Cost-Aware Machine Scheduling

Suppose we use the budget δ to shorten yk with k < n and with respect to Jfin

job k moves to position n− (k′ − 1) with k ≤ k′ ≤ n. Then we have

∑
j∈Jfin

Cj = s2 +
k−1∑
i=1

iyi +
n∑

i=k′+1

iyi +
k′∑

i=k+1

(i− 1)yi + k′(yk − δ) =: z2.

We have

z1 − z2 = (k′ − n)δ −
k′∑

k+1

yi − (k′ − k)yk

≤ (k′ − k)yk − (k′ − k)yk

= 0.

This completes the proof. □

Based on the previous lemmata, we can compute the total cost of an optimal
solution just knowing the corresponding set of initial jobs.

Lemma 3.32 Consider an arbitrary set of initial jobs J ini with p(J ini) ≤ B.
The release dates of every odd-even pair {2i − 1, 2i} are set in such a way that
choosing 2i− 1 instead of 2i as initial job results in a reduction of the scheduling
cost of a2i−1 − a2i. Here we assume that p(J ini) ≤ B no matter which of the two
jobs 2i− 1 and 2i is a initial job, i.e., the swap is feasible.

Proof. Let again

yi :=

{
p2i , if 2i− 1 ∈ J ini

p2i−1 , o.w.

If yi = a2i, then the contribution of the ith pair to the scheduling cost is

C2i−1 + C2i = r2i−1 + a2i−1 + s2 +B −
i−1∑
k=1

yk.

If yi = a2i−1, then

C2i−1 + C2i = s2 +B −
i−1∑
k=1

yk + r2i + a2i.

Therefore, we have that

2n∑
j=1

Cj = n · (s2 +B)−
n∑

k=1

(n− k)yk +
∑

j∈Jini

rj + aj.



3.6 Consequences of Having Release Dates 53

Let z2i and z2i−1, respectively, be the total scheduling cost when job 2i and 2i−1
is an initial job. By construction of the release dates, we get

δi := z2i − z2i−1

= (n− i+ 1)(a2i − a2i−1) + (r2i − r2i−1)

= (n− i+ 1)(a2i − a2i−1) + (n− i+ 2)(a2i−1 − a2i)

= a2i−1 − a2i. □

We are now ready to prove the following statement.

Lemma 3.33 The given Odd-Even Partition instance is a Yes-instance
if and only if there exists a feasible solution for the constructed instance of
1 | pmtn, rj |

∑
Cj + E with total cost at most B(e1 − 1) + D +

∑n
i=1 a2i with

D := (
∑n

i=1 r2i + a2i) + nd2 −
∑n

i=1(n− i)a2i−1.

Proof. Consider the feasible solution in which we choose the small job 2i of
every odd-even pair {2i − 1, 2i} as initial job. The total cost of this solution is
exactly Be1 + D. Based on this solution, we construct an optimal solution by
feasibly swapping job pairs, i.e., we exchange job 2i by 2i − 1 in J ini, so that
the net change in scheduling cost is as large as possible. Using Lemma 3.32, this
gives the following optimization problem, where xi is 1 if we swap the job pair i
and 0 otherwise:

min D − (a1 − a2)x1 − (a3 − a4)x2 − · · · − (a2n−1 − a2n)xn

s.t. (a1 − a2)x1 − (a3 − a4)x2 − · · · − (a2n−1 − a2n)xn ≤ B −
n∑

i=1

a2i

xi ∈ {0, 1}.

The constraint makes sure that we feasibly swap the jobs.
If the given Odd-Even Partition instance is a Yes-instance, then we find

a solution x̄ with

a1x̄1 + a2(1− x̄1) + · · ·+ a2n−1x̄n + a2n(1− x̄n) = B (3.4)

⇐⇒ (a1 − a2)x̄1 − · · · − (a2n−1 − a2n)x̄n = B −
n∑

i=1

a2i.

This means, there is a feasible solution for the constructed instance of
1 | pmtn, rj |

∑
Cj + E with total cost at most B(e1 − 1) +D +

∑n
i=1 a2i.

If the given Odd-Even Partition instance is a No-instance, then there
is no solution x̄ satisfying (3.4). Therefore, there is no feasible solution for
the constructed instance of 1 | pmtn, rj |

∑
Cj + E with total cost at most

B(e1 − 1) +D +
∑n

i=1 a2i. □



54 3 Deterministic Cost-Aware Machine Scheduling

3.7 Conclusion and Open Problems
We considered a generalized scheduling model in which the processing of jobs
causes some time-dependent cost in addition to the usual QoS measure. We
devised optimal algorithms and best possible approximation algorithms for the
scheduling objectives of minimizing the makespan and the sum of (weighted)
completion times. Furthermore, we analyzed the influence of release dates on the
problem complexity.

Cost-awareness in scheduling is highly relevant but hardly studied in schedul-
ing theory. Taking the makespan objective as an example, we saw that incorpo-
rating the idea of cost-awareness into classical scheduling models does not neces-
sarily result into an increase in the problem complexity. However, the resulting
problems required new algorithmic ideas. For different objective functions and
different problem types, such new cost considerations lead to new algorithmic
challenges which are interesting and demanding and could be a rich source for
new algorithmic techniques.

Our work with best possible algorithms for the makespan and the min-sum
objective leaves open the approximability of the NP-hard scheduling problem
1 | pmtn, rj |

∑
(wj)Cj + E. Furthermore, it would be interesting to also under-

stand P | pmtn, rj |Cmax + E from a complexity point of view, for which it is
a priori not clear how many slots are reserved in an optimal schedule.

A different line of research shall assume machine-individual time-slot reserva-
tion cost, where a reservation decision is made for a time slot on each machine
individually. We saw that it is not difficult to adapt a standard LP for opti-
mally solving R | pmtn, rj |Cmax with fractional reservation cost. However, in our
model where time slots can be reserved only integrally the resulting problems
seems much harder.



4
Cost-Aware Machine Scheduling
under Data Uncertainty

Users of cloud computing services are offered rapid access to computing resources
via the Internet. Cloud providers use different pricing options such as (i) time slot
reservation in advance at a fixed price and (ii) on-demand service at a (hourly)
pay-as-used basis. Choosing the best combination of pricing options is a chal-
lenging task for users, in particular, when the instantiation of computing jobs
underlies uncertainty.

In this chapter, we propose and study a natural model for two-stage scheduling
with reservation cost under uncertainty that captures such a resource provisioning
and scheduling problem in the cloud. Reserving a time unit for processing jobs in-
curs some cost, which depends on when the reservation is made: a priori decisions,
based only on distributional information, are much cheaper than on-demand deci-
sions when the actual scenario is known. We consider both stochastic and robust
versions of scheduling preemptive jobs with release dates on unrelated parallel
machines and study the two objectives of minimizing the total sum of weighted
completion times and the makespan.

After giving a problem definition in Section 4.1, we discuss related work and
summarize our contributions in Section 4.2. In Section 4.3, we focus on the total
weighted completion time objective in the stochastic setting. We analyze the com-
plexity of the resulting two-stage problem in Section 4.3.1, devise LP-rounding
based approximation algorithms in the Sections 4.3.2 to 4.3.4, and complement
the investigation by improved approximation algorithms for special cases in Sec-
tion 4.3.5. In Section 4.4, we give an approximation algorithm for the makespan
objective in the stochastic setting. Then, we argue in Section 4.5 that at an ar-
bitrarily small loss in the performance guarantee our approximation results hold
for any arbitrary scenario distribution given by means of a black-box. Thereafter,
in Section 4.6, we show that our techniques also yield approximation algorithms
for two-stage robust scheduling. At the end of this chapter, we discuss technical
aspects of our LP-rounding based technique in Section 4.7 and open problems in
Section 4.8.

55



56 4 Cost-Aware Machine Scheduling under Data Uncertainty

4.1 Problem Definition
In the underlying deterministic problem we are given a set of jobs J = {1, . . . , n}
and a set of machines M = {1, . . . ,m}. Each job j ∈ J is specified by a release
date rj ≥ 0, before which j cannot be processed, a machine-dependent processing
time pij ∈ N, the processing time when executing j completely on machine i ∈M ,
and a weight wj ≥ 1. In a feasible schedule each machine runs at most one job
at the time and no job runs at more than one machine at the same time. A job
may be preempted at any time and may resume processing on the same or any
other machine. We assume that time is discretized into unit-size time slots. For
ease of exposition let the completion time Cj of a job j ∈ J be the end of the
unit-size time slot in which it actually completes. For every time slot, in which at
least one machine is processing, a fixed reservation cost c is paid. The objective
is to minimize the sum of weighted completion times

∑
j∈J wjCj or the makespan

Cmax := maxj Cj plus total reservation cost.
In the two-stage version of this problem, the actual job set to be processed

is one of a set S of possible scenarios. Any time slot can be reserved either in
the first stage at cost c, and can then be used in every scenario, or in the second
stage, for a specific scenario, at cost λc, where λ ≥ 1 is an inflation factor. We
assume λ to be defined by the scenario as well. The inflation factor together with
the job set, (λk ≥ 1, Jk ⊆ J), make up a scenario k ∈ S.

In the stochastic setting, we consider two models with respect to randomness.
In the polynomial-scenario model, the distribution of S is given explicitly, i.e.,
each scenario k ∈ S is associated with a probability πk ∈ [0, 1] with

∑
k∈S πk = 1.

In the black-box model, we have efficient access to an oracle that provides samples
according to the unknown probability distribution with possibly exponentially
many and dependent scenarios. In the robust setting, we restrict to the model
with an explicit description of S, called discrete-scenario model.

The overall goal in the stochastic setting is to minimize total expected reser-
vation cost (in both stages) plus scheduling cost. In the robust setting, the overall
goal is to minimize the maximum, over all scenarios, of reservation cost (in both
stages) plus scheduling cost. That is, we do not make use of the given distribu-
tional information in the first stage, because we aim at finding a solution that
minimizes the total cost in the worst-case.

4.2 Related Work and Contributions
Related Work. Preemptively scheduling unrelated machines to mini-
mize the sum of (weighted) completion times, R | pmtn, (rj) |

∑
(wj)Cj, is

APX-hard [76] and admits a (2 + ε)-approximation [70]. The makespan prob-
lem R | pmtn, rj |Cmax can be solved in polynomial time [58].

Related to our scheduling problem with reservation cost is the problem of



4.2 Related Work and Contributions 57

cost-aware scheduling studied in the previous chapter. Our second-stage problem
involves a special case with time slots having cost either 0 or some fixed amount.

With respect to the stochastic problem, our work is closer to two- or multi-
stage stochastic versions of scheduling problems, see e.g. [3, 15], than to tradi-
tional dynamic stochastic scheduling [69], in which the algorithm’s decision on
processing a job or not crucially influences the information release. However, the
former involve different scheduling problems than ours, and more importantly
performance quality is assessed by computational experiments instead of rigorous
worst-case analysis. The only work on approximation algorithms for a two-stage
scheduling problem we are aware of is by Shmoys and Sozio [73]. They present
a (2 + ε)-approximation for two-stage stochastic throughput maximization on a
single machine in which jobs can be deferred in the first stage gaining some profit.

The study of approximation algorithms for two-stage stochastic optimization
problems was initiated in [31] with a polynomial-scenario model for a service-
provision problem. Subsequently, next to [73] above, various two-stage stochas-
tic versions of combinatorial optimization problems such as Set Cover, Net-
work Design, Maximum Weight Matching, etc. were studied, see [80] for
a nice overview on the earlier work. General frameworks for solving several two-
stage stochastic combinatorial optimization problems approximately have been
proposed in [43] and [74]. The cost-sharing based approach in [43] yields a 2-
approximation for a two-stage stochastic scheduling problem without release dates
on identical parallel machines [61]. It is not clear how to apply it when there are
release dates.

In the black-box model, we adopt the Sample Average Approximation (SAA)
method proposed in [55]. It replaces the distribution on the random parameters
by its empirical distribution defined by samples from it. Under certain conditions,
good approximate solutions are obtained by drawing only a polynomial number
of samples and solving the resulting SAA problem instead [8, 20, 81].

In a two-stage setting, robust versions of multiple-scenario combinatorial op-
timization problems have been studied for covering and network design problems
in [29, 34, 53]. We are not aware of any relevant scheduling work.

Our Contribution. We develop approximation algorithms for the stochastic
and robust two-stage variants of classical scheduling problems. Our results rely
on a new scheduling-tailored time slot and job-set separation procedure, which
separates jobs into those processing exclusively on either first-stage reserved slots
or second-stage reserved slots. It is inspired by [74] in which the idea of separating
clients was introduced in the context of covering and network design problems.
The separation in our setting is achieved through solving a generalization of the
time-indexed unrelated machine scheduling LP [72] followed by an application of
the slow-motion technique, proposed in [71] for min-sum single machine schedul-
ing and extended later, among others, to unrelated machines scheduling in [70].
After separating, our rounding is applied independently to both separated in-



58 4 Cost-Aware Machine Scheduling under Data Uncertainty

stances. The two (possibly overlapping) solutions are merged to a feasible joint
solution. Carefully balancing the change in reservation and scheduling cost by ex-
ploiting properties of slow-motion and α-points, the resulting procedure is proven
to be an (8 + ε)-approximation algorithm for the two-stage polynomial-scenario
stochastic version of R | pmtn, rj |

∑
wjCj (Section 4.3.4).

Our time slot and job-set separation procedure is based on a general re-
sult, which is interesting on its own in the polynomial-scenario model: Given
a ρ-approximation algorithm for the special case in which slots are reserved only
in the first stage, there is an 8ρ-approximation algorithm for the two-stage model
(Section 4.3.3). For this special case, we give a ρ = (3 + ε)-approximation algo-
rithm (Section 4.3.2).

Our techniques also yield a (6+ ε)-approximation algorithm for the two-stage
stochastic version of the makespan problem R | pmtn, rj |Cmax (Section 4.4).

Adopting the SAA framework, mentioned before, we apply our algorithms
to arrive at a sampling-based (8 + ε)-approximation algorithm for the min-sum
problem and a (6+ ε)-approximation for minimizing the makespan (Section 4.5).
We notice that the work of [20,81] leads to a first-stage reservation decision. It is
not obvious in our model how to construct a good second-stage solution given a
set of slots for free from the first-stage solution. In fact, considering this problem
independently from the first-stage, it is unclear if a constant approximation exists.
But even when considering the two stages jointly, the difficult part is to show how
a second-stage solution for some scenario (not necessarily in the sample set) can
be found and bounded by the SAA solution for the sample set.

Finally, we argue that our algorithms can be adopted for the min-max robust
optimization model with a discrete set of scenarios (Section 4.6). For the min-∑

wjCj problem, certain randomized steps of our algorithm must be replaced
by deterministic ones losing a factor 2 in the approximation guarantee. For the
robust makespan problem we derive a 2-approximation.

4.3 Polynomial-Scenario Model
for Min-Sum Objective

Consider the two-stage stochastic version of R | pmtn, rj |
∑

wjCj in the
polynomial-scenario model, in which the set of scenarios S and its distribution
are fully specified. For each scenario k ∈ S := {1, . . . , N} the triple (πk, λk, Jk)
describes its probability of occurring πk, the inflation factor λk, and the set of
jobs Jk.

We use a natural LP that generalizes and further relaxes the time-indexed
LP for unrelated-machine scheduling [72]. To facilitate the exposition, we will
present an LP with exponentially many variables and constraints and derive our
algorithms based on its solution, even though we cannot expect to solve it in
polynomial time. However, using the standard technique of time-intervals of



4.3 Polynomial-Scenario Model for Min-Sum Objective 59

geometrically increasing size [72] we obtain polynomial-time algorithms loosing
only a small factor in the performance. We discuss the technical aspects of this
technique in Section 4.7.

To keep notation amenable, we re-index jobs, such that each job j refers to
a unique job-scenario combination, and we let J := J1 ∪ . . . ∪ JN . We choose
the time horizon T = maxk∈S,j∈Jk{rj}+maxk∈S{

∑
j∈Jk maxi∈M pij}, an obvious

upper bound on any completion time in a reasonable schedule. Variables xt and
xkt represent the first and second stage reservation decisions for time slot [t, t+1).
Let yijt be the amount of time job j is processed in interval [t, t+1) on machine i.
We refer to the following linear program and also its value as LP .

min
T−1∑
t=0

cxt +
∑
k∈S

πk

∑
j∈Jk

wjC
LP
j + λkc

T−1∑
t=0

xkt

 (4.1a)

s.t.
∑
j∈Jk

yijt ≤ xt + xkt ∀i ∈M,k ∈ S, 0 ≤ t ≤ T − 1 (4.1b)

∑
i∈M

yijt ≤ xt + xkt ∀j ∈ J, k ∈ S, 0 ≤ t ≤ T − 1 (4.1c)

xt + xkt ≤ 1 ∀k ∈ S, 0 ≤ t ≤ T − 1 (4.1d)
T−1∑
t=rj

∑
i∈M

yijt
pij

= 1 ∀j ∈ J (4.1e)

T−1∑
t=rj

∑
i∈M

(t+ 1) · yijt
pij

= CLP
j ∀j ∈ J (4.1f)

xt, xkt, yijt ∈ [0, 1] ∀i ∈M, j ∈ J, k ∈ S, 0 ≤ t ≤ T − 1 (4.1g)

Constraints (4.1b),(4.1d),(4.1e),(4.1g) are self-explaining. With (4.1c) we en-
sure that no job is processed for more than the total amount reserved in [t, t+1)
guaranteeing non-parallelism. For (4.1f), consider an arbitrary schedule with
tj = maxt{t|yijt > 0, i ∈M}, then the true completion time of job j in this sched-
ule is tj+1, while CLP

j offers a lower bound. Thus, even if we enforce all variables
to be integral, the corresponding ILP still gives a relaxation of our problem.

Given an LP solution (xt, xkt, yijt), we let LP r =
∑

t cxt + c
∑

k,t πkλkxkt de-
note the reservation cost and we let LP s =

∑
k,j∈Jk πkwjC

LP
j denote the schedul-

ing cost.

4.3.1 Complexity
The two-stage stochastic variant of R | pmtn, rj |

∑
wjCj is NP-hard, since the

underlying deterministic scheduling problem is already NP-hard. However, we
show that taking the stochastic aspect into account increases the problem com-
plexity by showing the following theorem. Note that the deterministic scheduling



60 4 Cost-Aware Machine Scheduling under Data Uncertainty

problem 1 | pmtn, rj |
∑

Cj is solvable in polynomial time by the Shortest Re-
maining Processing Time (SRPT) policy [5].

Theorem 4.1 The two-stage stochastic variant of 1 | pmtn, rj |
∑

Cj is NP-hard.

Proof. The proof is by a reduction from the NP-complete Partition problem
and is inspired by [62].

Partition

Given: We are given positive integers a1, . . . , an, B with
∑n

i=1 ai = 2B.
Task: Decide whether there exists a subset A ⊂ {1, . . . , n} with∑

i∈A ai = B.

We construct the following instance of the two-stage stochastic variant of
1 | pmtn, rj |

∑
Cj. For every element ai we create two scenarios ki and k′

i, which
both have exactly one job. The job of scenario ki is released at ri =

∑
k<i(3ak+d)

with d = 2B+1 and has processing time pi = ai. The job of scenario k′
i is released

at r′i = ri + 2ai and has also processing time p′i = ai. In addition to these 2n
scenarios we have one scenario kn+1 with also only one job that is released at
rn+1 = 0 and has processing time pn+1 = 3B. All 2n+1 scenarios have the same
probability of occurrence π = 1/(2n + 1) and the same inflation factor λ = ∞.
We set the unit reservation cost to c = d(n − 1) + 5B and scale the objective
function with 2n+ 1 so that we obtain

∑T−1
t=0 c(2n+ 1)xt +

∑
k∈S C

k
max where xt

represents the decision whether we reserve time slot [t, t+1) or not and Ck
max is the

completion time of the single job in scenario k. In fact, now the unit reservation
cost is c(2n+ 1). We can set T = r′n + an = 6B + (n− 1)d, because any optimal
solution does not reserve later slots. Observe that

LBs := 8B +
n−1∑
i=1

2(3ai + d)(n− i)

is a lower bound on the scheduling cost for the jobs in scenarios ki, k′
i, i = 1, . . . , n

in any optimal schedule and LBs + 3B is a lower bound on the optimal total
scheduling cost. We now show that the Partition instance is a Yes-instance if
and only if there is a schedule for the constructed scheduling instance with total
cost at most

C := 3Bc(2n+ 1) + 16B + d(n− 1) +
n−1∑
i=1

2(3ai + d)(n− i).

Suppose the Partition instance is a Yes-instance, which means that we
find a set A ⊂ {1, . . . , n} with

∑
i∈A ai = B. We reserve 3B slots to enable

the following schedule. The jobs of the scenarios ki with i ∈ A are processed in
[ri, ri + ai), whereas the jobs of the scenarios ki with i /∈ A and the jobs of the



4.3 Polynomial-Scenario Model for Min-Sum Objective 61

scenarios k′
i are processed in [r′i, r

′
i+ai). Note that this schedule requires 3B slots

to which we can assign the processing of the job of scenario kn+1. The total cost
of this schedule is exactly LBs +

∑
i/∈A 2ai + T = C.

Suppose there is a schedule with total cost at most C. We first characterize
the structure of an optimal schedule. The parameter c is chosen in such a way
that in any optimal schedule not more than 3B slots are reserved. A schedule
that reserves more than 3B slots has total cost at least

(3B + 1)c(2n+ 1) +LBs + 3B > 3Bc(2n+ 1) + d(n− 1) + 5B +LBs + 3B = C,

which implies that such a schedule cannot be optimal. This observation has a
crucial implication, namely that the job of scenario kn+1 finishes at T .

The next observation is that the two jobs of the scenarios ki and k′
i are com-

pleted before r′i + ai + d. Suppose not, then the total cost of this schedule is at
least

3Bc(2n+ 1) + LBS + d(n− 1) + 6B + d > C,

which again implies that such a schedule is not optimal. This observation together
with a standard interchange argument imply that the two jobs of scenario ki and
k′
i are completed at or before r′i + ai.

Consider the schedule in which for every scenario ki, i = 1, . . . , n, the corre-
sponding job is processed in [r′i, r

′
i+ai). The total cost of this schedule is C+2B

and it is obviously not optimal, because some jobs of the scenarios ki, i = 1, . . . , n,
can be processed earlier to make use of all 3B reserved slots. In fact, if we pro-
cess the job of scenario ki instead in [ri, ri+ ai), then we save 2ai in the objective
function, and thus by postponing all jobs of the scenarios ki, i = 1, . . . , n, we lose
in total 4B in the objective function. Hence, if there is a schedule with total cost
at most C, then there must be a set A := {i : Cki

max = ri + ai} ⊂ {1, . . . , n}
such that 4B −

∑
i∈A 2ai − (B −

∑
i∈A ai) ≤ 2B and

∑
i∈A ai ≤ B, which implies

that
∑

i∈A ai = B. We subtract B −
∑

i∈A ai on the left-hand side of the first
inequality, because we have B slots available and if

∑
i∈A ai < B, we can reduce

the completion time in the scenarios ki with i /∈ A by B −
∑

i∈A ai. Hence, the
given Partition instance is a Yes-instance. □

In the proof, we introduce for every scenario only one job and thus the two-
stage stochastic variant of 1 | pmtn, rj |Cmax is also NP-hard.

4.3.2 An Algorithm for First-Stage Reservation Only
Consider the special case of the two-stage stochastic version of
R | pmtn, rj |

∑
wjCj in which all reservation must be done in the first

stage; as if all inflation factors λk are excessive. We refer to it as problem
with first-stage reservation only. A lower bound is given by LP1 obtained
from the above LP by setting xkt = 0, for all k, t. W.l.o.g. we omit the πk



62 4 Cost-Aware Machine Scheduling under Data Uncertainty

pre-multiplication in the objective function by assuming it to be incorporated
into the weights wj, j ∈ Jk.

We describe a procedure for rounding a fractional solution (xt, yijt) of LP1 to a
feasible integer-value solution. We first round the first-stage decision on reserving
slots xt by maintaining a feasible LP solution, and then we determine the actual
schedule. In the first step, it is important to maintain a fractional scheduling solu-
tion in which the true completion time of a job j, i.e., max{t+ 1 | yijt > 0, i ∈M},
does not diverge too much from CLP

j . To that end, we utilize the idea of slow-
motion, proposed in [71] for single machine scheduling, and extended to unrelated
machines scheduling in [70].

For α ∈ [0, 1], let Cj(α) denote the earliest point in time in the LP solution in
which job j has completed an α-fraction of its total processing requirement. We
use the following link between Cj(α) an CLP

j adopted from [39], which is used for
the analysis of randomized algorithms.

Lemma 4.2 ([39])
∫ 1

0
Cj(α)dα =

∑
t

∑
i yijt/pij · (t+ 1/2) = CLP

j − 1/2.

For deterministic algorithms, however, we use the following relation.

Lemma 4.3 ([77]) CLP
j ≥ α+ (1− α) · Cj(α).

Slow-Motion. Given a fractional solution (xt, yijt) for LP1 and β ≥ 1, we con-
struct a new β-expanded solution (xβ

t , y
β
ijt) that we obtain by mapping every time

point t to βt. Then βxt is the amount of reservation for the interval [βt, β(t+ 1)),
and βyijt the amount of job j scheduled during [βt, β(t+ 1)).

Obviously (xβ
t , y

β
ijt) is a new feasible solution to LP1, which over-schedules

each job by a fraction of β − 1. We simply delete the over-scheduled part and
apply a lemma given in [71] that upper bounds the completion times of jobs in
the expanded solution. We directly adopt their result to our requirement of job
completion times being rounded up to integer values.

Lemma 4.4 ([71]) The completion time of job j in the expanded solution is at
most ⌈βCj(1/β)⌉.

Rounding time slot reservation. Given any fractional solution (xt, yijt), e.g.
the expanded LP1 solution, we show how to round the fractional reservation xt

to 0 or 1 so that the number of slots reserved will not be much higher than
∑

t xt

but sufficiently large to accommodate all workload. We reassign the workload to
reserved slots ensuring that the completion times remain relatively small.

We first apply a standard rounding technique, which we call accumulated
reservation: Let Xt =

∑t
h=0 xh, for t ∈ {0, 1, . . . , T − 1} and X−1 = 0. We set

x̄t = 1, i.e., we reserve time slot [t, t + 1), if ⌊Xt−1⌋ ≤ ⌊Xt⌋ − 1, and set x̄t = 0
otherwise. In total, we reserve ⌊

∑
t xt⌋ slots this way. To ensure sufficiently

reserved time capacity we do an extra reservation: if x̄t = 1 and x̄t+1 = 0 for



4.3 Polynomial-Scenario Model for Min-Sum Objective 63

some t, we reserve additionally the slot [t+1, t+2). The number of extra reserved
time slots is no more than the number of accumulatively reserved slots.

Proposition 4.5 Given a fractional solution xt, the total cost for rounding it to
an integral time slot reservation x̄t is c

∑T−1
t=0 x̄t ≤ 2c⌊

∑T−1
t=0 xt⌋ ≤ 2LP r.

Our reservation policy creates intervals I1, I2, . . . of consecutive reserved time
slots, each of them starting with a set of accumulatively reserved time slots and
ending with a single extra reserved time slot.

Lemma 4.6 Every interval Ih = [th, th+2) has enough capacity to accommodate
all workload yijt assigned to time units [th−1 + 1, th−1 + 2), . . . , [th+1 − 1, th+1).

Proof. Consider interval Ih. Its last time slot [th + 1, th + 2) is the extra
reserved time slot. The total number (capacity) of the time slots in Ih is
⌊Xth⌋− ⌊Xth−1

⌋+1. By definition of our accumulative reservation and according
to constraints (4.1b) and (4.1c), the total workload in terms of yijt in the interval
[th−1 + 1, th+1) is bounded by

th+1−1∑
t=th−1+1

xt =

th+1−1∑
t=0

xt −
th−1∑
t=0

xt ≤ Xth+1−1 − ⌊Xth−1
⌋ ≤ ⌊Xth

⌋ − ⌊Xth−1
⌋+ 1. □

The lemma implies that none of the workload yijt, fractionally assigned to time
slots up to time slot [th, th+1), needs to be done later than th+2 if appropriately
reassigned. In particular, this holds for the last reserved interval, i.e., all jobs
in all scenarios will have been processed. Even stronger, workload assigned to
the time slots [th + 1, th + 2), . . . , [th+1 − 1, th+1) can be done within interval Ih,
unless the release date of some job j is larger than th + 1, preventing it to be
scheduled in Ih.

Reassigning workload. Given a (not necessarily feasible) solution with frac-
tional scheduling variables yijt and integer-valued reserved time slots x̄t, we de-
scribe a reassignment procedure to arrive at a feasible solution in which all work-
load ȳijt is assigned to reserved slots.

In increasing order of t we claim a total fraction xt from time slot [th, th + 1)
if th−1 + 1 ≤ t < th for some h. All of the yijt is moved into this claimed space
and added to ȳijth . Otherwise if [t, t + 1) ∈ Ih, and t ̸= th + 1, then we claim
⌊Xt⌋−Xt−1

Xt−Xt−1
xt from [t, t + 1) and Xt−⌊Xt⌋

Xt−Xt−1
xt from [t + 1, t + 2). All of the yijt is

moved in equal proportions ⌊Xt⌋−Xt−1

Xt−Xt−1
yijt and Xt−⌊Xt⌋

Xt−Xt−1
yijt into the claimed space

and added, respectively, to ȳijt and ȳij(t+1).
This assignment leaves (unclaimed) capacity ⌈Xth

⌉−Xth
of the extra reserved

time slot [th +1, th +2), for each h. As a second reassignment step we remove all
yijt with th−1 + 1 ≤ t < th and j with rj ≤ th−1 + 1 from ȳijth and add it to ȳijτ
where τ = th−1 + 1. This is feasible by Lemma 4.6.



64 4 Cost-Aware Machine Scheduling under Data Uncertainty

Lemma 4.7 Applying the reservation and reassignment procedures to a feasible
solution (xt, yijt) of LP1 increases the completion time of any job j by at most 1.

Proof. For every t for which yijt > 0, there are two cases:
Case 1: [t, t + 1) ∈ Ih, and t ̸= th + 1 for some h. Then by the assignment
procedure yijt is moved into [t, t+ 1) and [t+ 1, t+ 2), whence that part of job j
finishes at most 1 time unit later than in the unrounded solution. In particular,
this holds for the last t such that yijt > 0.

Case 2: th−1 + 1 ≤ t < th for some h. If rj ≤ th−1 + 1, then yijt is moved
into [th−1 + 1, th−1 + 2) and finishes earlier, or if rj > th−1 + 1, then yijt is moved
into [th, th + 1). However, since pij ≥ 1 (viz. integer), by the shifted-reservation
policy job j cannot have been completed before th, i.e., there must be a t ≥ th
and/or another i such that yijt > 0. □

The one-stage reservation algorithm. Given an optimal solution to LP1, we
apply slow-motion to expand the solution and the time slot reservation to obtain
integral reservations to which we reassign the workload. It remains to specify the
actual schedule for workload ȳijt within a time slot [t, t+1) by ensuring that a job
is not scheduled in parallel on multiple machines. This is essentially R|pmtn|Cmax

in each time slot, which is polynomial-time solvable [58].

Theorem 4.8 The one-stage reservation algorithm is a 3.5-approximation algo-
rithm for two-stage stochastic scheduling on unrelated machines with first-stage
reservation only.

Proof. Consider an optimal solution to LP1. By slow-motion we derive a
β-expanded solution with a reservation cost of βLP r, and job j completes at
time ⌈βCj(1/β)⌉ by Lemmata 4.2 and 4.4. Applying the rounding of time slot
reservation and then reassigning workload, Proposition 4.5 shows that the reser-
vation cost becomes 2βLP r, while Lemma 4.7 ensures that job j completes not
later than ⌈βCj(1/β)⌉+1. Thus, by choosing the expansion parameter β at ran-
dom according to the density function f(α) = 3α2 where α = 1/β ∈ [0, 1], the
total cost for reservation and scheduling can be bounded by:

2LP r

∫ 1

0

1

α
f(α)dα +

∑
j

wj

∫ 1

0

(⌈Cj(α)/α⌉+ 1)f(α)dα

≤ 3(LP r + LP s) + 1/2
∑
j

wj.

Obviously,
∑

j wj ≤
∑

j wjC
LP
j , since CLP

j ≥ 1, which implies that the algorithm
produces a solution with objective value bounded by 3LP r + 3.5LP s. □

A refinement of the algorithm and its analysis give an improved bound.



4.3 Polynomial-Scenario Model for Min-Sum Objective 65

Theorem 4.9 There exists a (3 + ε)-approximation algorithm for two-stage
stochastic scheduling on unrelated machines with first-stage reservation only.

Proof. Recall that we have an algorithm which outputs a feasible schedule of
cost 3(LP r + LP s) + 1/2

∑
j wj, where the additive term 1/2

∑
j wj comes from

the fact that after rounding, the completion time of job j becomes ⌈βCj(1/β)⌉+1.
The reader will have no difficulty in verifying that if we can get rid of the +1
term in the completion time, then the cost can be reduced to 3(LP r + LP s).

Consider the term ⌈βCj(1/β)⌉ + 1. For any small constant ε > 0 such that
1/ε is an integer, if βCj(1/β) ≥ 2/ε, then ⌈βCj(1/β)⌉ + 1 ≤ (1 + ε)βCj(1/β).
Hence, we only need to consider those completion times where βCj(1/β) < 2/ε.

In our 3.5-approximation algorithm, we first apply the slow-motion algorithm
with parameter β so as to derive an expanded solution (xβ

t , y
β
ijt). Then we apply

the reservation and reassignment procedures to this expanded solution. Now,
however, we perform it in a slightly different way: After the slow-motion proce-
dure, we apply the rounding time slot reservation procedure with accumulated
reservation and extra reservation from this section as before and obtain a rounded
reservation solution x̄ ∈ {0, 1}T . In addition to that we reserve the first 2/ε slots,
regardless of the x̄t values, i.e., we set x̄t = 1 for t < 2/ε. This is similar to the
previous rounding time slot reservation procedure except that we now reserve all
slots [t, t+ 1) with t < 2/ε. Then we reassign the workload yijt(β) in the follow-
ing way. We do not reassign the workload from the interval [0, 2/ε− 1). We start
the reassigning workload procedure at slot [2/ε− 1, 2/ε). It can be easily seen
that the reservation cost of this modified procedure is at most 2βLP r + 2/ε · c.

Let OPT denote the optimal cost. If OPT ≥ 2/ε2 · c, then the reservation
cost is bounded by 2βLP r + εOPT . When reassigning the workload yijt(β), the
completion time of job j is at most ⌈βCj(1/β)⌉ if βCj(1/β) < 2/ε, which follows
from Lemma 4.4 and the fact that if βCj(1/β) < 2/ε holds, then the workload
of job j is not reassigned. If βCj(1/β) ≥ 2/ε, the completion time of job j is at
most ⌈βCj(1/β)⌉ + 1 ≤ (1 + ε)βCj(1/β), which follows from Lemma 4.7. Thus
the total cost is at most (3+ ε)LP s +3LP r +2/ε · c ≤ (3+ 2ε)OPT . This shows
that there is a (3 + ε)-approximation algorithm if the optimal cost is sufficiently
large.

The proof of the theorem is completed by the following lemma. □

Lemma 4.10 There is a ρ-approximation algorithm with ρ = 6/(12− π2) + ε ≈
2.816 + ε for the two-stage stochastic scheduling problem on unrelated machines
with only first-stage reservation if there exists a constant γ such that the optimal
cost is less than γ · c.

Proof. If OPT < γ · c, then every optimal solution reserves not more than
a constant number γ of slots. With enumeration we can ’guess’ which slot is
reserved by an optimal solution. We geometrically cut the time horizon [0, T )
into O(logT ) sub-intervals Iu so that Iu := [u, u + 1) for small u = O(1/ε), and



66 4 Cost-Aware Machine Scheduling under Data Uncertainty

|Iu+1|/|Iu| = 1 + O(ε) for large u. Then we guess for each interval Iu how many
of the slots reserved in an optimal solution belong to that interval, and this gives
rise to O(logγ T ) different possibilities. With O(ε) loss we can assume that the
slots are always reserved at the end of Iu, which gives rise to a fixed first stage
reservation x̄t ∈ {0, 1}.

We establish an LP in which the yijt’s are still variable, while xt = x̄t is fixed.
Again let LP r and LP s be the reservation and scheduling costs, respectively. We
have LP r +LP s ≤ (1+ ε)OPT if we ’guessed’ the correct slots that are reserved.

Now we apply the slow-motion algorithm to the optimal solution (x̄t, yhjt)
(notice again that here x̄t is determined through enumeration) of LP in a slightly
different way: We arbitrarily specify α ∈ (0, 1) (i.e., β = 1/α) and expand the
solution by ⌈β⌉ times. This suggests that we reserve the interval [⌈β⌉t, ⌈β⌉t+⌈β⌉))
by the amount of ⌈β⌉x̄t, i.e., if x̄t = 0 then any slot of this interval is not reserved,
while if x̄t = 1 each slot is reserved. In other words, slow-motion with parameter
⌈β⌉ provides us with a new solution (xβ

t , y
β
ijt) where xβ

t ∈ {0, 1}. By deleting the
over-scheduled part of each job we ensure that the completion time of job j is at
most ⌈⌈β⌉Cj(1/β)⌉, and the reservation cost is bounded by ⌈β⌉LP r.

Given some density function f(α), the expected total cost is∫ 1

0

⌈1/α⌉ · LP rf(α)dα +

∫ 1

0

∑
wj⌈⌈1/α⌉Cj(α)⌉f(α)dα

≤
∫ 1

0

⌈1/α⌉ · LP rf(α)dα +

∫ 1

0

∑
wj(⌈1/α⌉Cj(α) + 1)f(α)dα.

Taking f(α) = ρ/⌈1/α⌉ with ρ = 6/(12 − π2) ≈ 2.816, we obtain a
(2.816 + ε)-approximation algorithm. □

4.3.3 A Generic Algorithm for Two-Stage Scheduling
We first give a simple algorithm that allows a black-box application of the one-
stage reservation algorithm from the previous section to obtain the following
general result.

Theorem 4.11 Given a ρ-approximation algorithm for the two-stage stochas-
tic problem with only first-stage reservation, there exists an 8ρ-approximation
algorithm for the two-stage stochastic problem with reservation in both stages.

The crucial ingredient is to separate the time slots and jobs to be considered for
only first-stage or only second-stage reservation.

Lemma 4.12 Given an optimal solution (xt, xkt, yijt) to the LP with objective
value LP r + LP s, there exists a feasible solution (x′

t, x
′
it, y

′
hjt) satisfying the fol-

lowing separation property:
• Any time unit is reserved either in the first stage or in the second stage, or

not at all; i.e., for all t, x′
t > 0⇒ x′

kt = 0 ∀k.



4.3 Polynomial-Scenario Model for Min-Sum Objective 67

• A job is scheduled either completely in slots reserved in the
first stage, or completely in slots reserved in the second stage,
i.e., J = JI ∪ JII , s.t. JI = {j | x′

t = 0⇒ y′ijt = 0 ∀ijt} and
JII = {j |

∑
k x

′
kt = 0⇒ y′ijt = 0 ∀ijt}.

• The objective value is at most 2LP r + 4LP s.

Proof. We first double the number of time units: for every time unit [t, t + 1)
we obtain two time units [2t, 2t+1) and [2t+1, 2t+2). We reserve xt of the even
slot [2t, 2t+ 1), and xkt of the odd slot [2t+ 1, 2t+ 2). We split yijt accordingly,
such that for each of the slots [2t, 2t+1) and [2t+1, 2t+2) constraints (1b) and
(1c) are satisfied. Notice that in this way we have blown up the scheduling cost
by a factor of 2, while the reservation cost remains the same. Furthermore, notice
that every job is processed at least half either in odd slots or in even slots. Thus
by doubling again each slot and reserving in each of the two the same fraction,
we can enforce a job to be either entirely scheduled in slots that are reserved in
the first stage, or in slots reserved in the second stage. □

Proof (Theorem 4.11). Let (x′
t, x

′
it, y

′
ijt) be a feasible LP solution that satisfies

the separation property and has objective value Z ′ ≤ 2LP r + 4LP s. We show
that the existence of a ρ-approximation algorithm for the problem with first-stage
reservation only implies the existence of an algorithm that produces a feasible
schedule for the two-stage problem with total cost at most 2ρZ ′.

Since jobs are divided into JI and JII in the solution (x′
t, x

′
it, y

′
ijt), we denote

by Z ′
I and Z ′

II their contributions in Z ′ respectively: Z ′ = Z ′
I + Z ′

II . Con-
sider scheduling JI with only first-stage reservation and let ZI be the optimal
value of the corresponding LP. Similarly, let ZII be the optimal value of the
LP for scheduling JII with only second-stage reservation. Clearly, ZI ≤ Z ′

I and
ZII ≤ Z ′

II . The ρ-approximation algorithm for the problem with only first-stage
reservation for JI returns a feasible schedule of cost at most ρZI . The problem of
reserving and scheduling jobs only in the second stage can be separated into N
single scenario problems, each of which is like a first-stage reservation problem,
we thus also get a feasible schedule of cost at most ρZII for JII .

Now we need to merge the two schedules for JI and JII . Notice that the two
schedules may overlap in the sense that some slot is reserved in both schedules.
To handle this we further double the two schedules. For the schedule of JI , we
double the time units and put whatever is scheduled in [t, t+1) into the even slot
[2t, 2t+1), while for the schedule of JII , we put whatever is scheduled in [t, t+1)
into the odd slot [2t + 1, 2t + 2). Now the total cost of the merged solution is
bounded by 2ρ(ZI + ZII) ≤ 2ρZ ′. □

Directly applying Theorem 4.11 gives us a (24 + ε)-approximation algorithm.



68 4 Cost-Aware Machine Scheduling under Data Uncertainty

4.3.4 A Refined Two-Stage Algorithm
Theorem 4.13 There is an (8 + ε)-approximation algorithm for the two-stage
stochastic variant of R | pmtn, rj |

∑
wjCj in the polynomial-scenario model.

Proof. Given an optimal LP solution (xt, xkt, yijt), we first apply slow-motion
to get a β-expanded solution (xβ

t , x
β
kt, y

β
ijt). Then we apply time slot and job-

set separation (Lemma 4.12) and obtain jobs and slots to be covered by either
first-stage or second-stage reservation only. Then, we apply the technique of
accumulative and extra reservation and reassign the workload separately on the
slots reserved in the first and second stage. Here the last procedure must be
carried out with caution so that after we separately round first and second stage
reservation, they do not overlap. The following analysis gives the result.

Again, let LP r and LP s be the reservation and scheduling cost of (xt, xkt, yijt),
respectively. Applying slow-motion with some parameter β yields an expanded
fractional solution (xβ

t , x
β
kt, y

β
ijt) with reservation cost at most βLP r and in which

any job j completes not later than the (fractional) time βCj(1/β) [71].
Next we apply slot-partition, i.e., we double the time horizon, reserve xβ

t

amount of the even slot [2t, 2t+1] and xβ
kt amount of the odd slot [2t+1, 2t+2)

for each scenario k. We then split yijt accordingly (i.e., proportional to xβ
t and xβ

kt)
and schedule the split parts onto the two intervals [2t, 2t+1] and [2t+1, 2t+2),
so that the constraints in LP are still satisfied. By doing so we obtain a new
fractional solution in which the reservation cost is still bounded by βLP r, and
every job j completes not later than the (fractional) time 2βCj(1/β).

Next we perform job-partition, i.e., we double every time slot [t, t+ 1) again,
reserve in each of the two the same fraction and schedule the same amount. By
doing so we know that the slots [4t, 4t+1) and [4t+1, 4t+2) can only be reserved
in the first stage, and [4t+2, 4t+3) and [4t+3, 4t+4) can only be reserved in the
second stage. We call them first stage slots and second stage slots, respectively.
Notice that now every job is actually scheduled twice in the doubled solution,
and we can remove the over-scheduled part so that every job is either entirely
scheduled in first stage slots, or entirely scheduled in second stage slots. It is easy
to see that, in this fractional solution, the total reservation cost is 2βLP r, and
every job j completes not later than the (fractional) time 4βCj(1/β).

We now apply the procedures rounding time slot reservation and reassigning
workload. We apply the rounding procedure separately on the first stage slots and
second stage slots. Let (x̂t, x̂kt, ŷijt) be the current solution, we may simply take
it as a combination of two solutions, one for scheduling a subset of jobs on first
stage slots, and the other for scheduling the remaining jobs on second stage slots.
Consider the first stage slots with its fractional reservation, we perform accumu-
lated reservation and extra reservation on it. More precisely, let Xt =

∑t
h=0 x̂h

and X−1 = 0. We set x̄t = 1 if ⌊Xt−1⌋ ≤ ⌊Xt⌋− 1 and reserve this slot, otherwise
x̄t = 0. Since xh = 0 for h = 4t + 2, 4t + 3, we know that in this way only first
stage slots can be reserved. For the extra reservation, if x̄4t = 1 and x̄4t+1 = 0,



4.3 Polynomial-Scenario Model for Min-Sum Objective 69

we reserve additionally [4t + 1, 4t + 2); or if x̄4t+1 = 1 and x̄4t+4 = 0, we reserve
additionally [4t+ 4, 4t+ 5).

Following the same proof of Lemma 4.6 and Lemma 4.7, we are able to derive
an integral reservation for first stage slots in which the first stage reservation
doubles, and j completes not later than the (fractional) time 4βCj(1/β) + 3 if it
is scheduled entirely in the first stage slots. Here we have the additive term +3
instead of +1, since in the extra reservation, the slot [4t+4, 4t+5) has a distance
of 3 slots from [4t+ 1, 4t+ 2).

Similarly, we perform accumulated reservation and extra reservation for the
second stage slots and we know that the second stage reservation cost doubles,
and that any job j scheduled entirely in second stage slots now also completes not
later than the (fractional) time 4βCj(1/β)+3. Thus, the overall reservation cost
is bounded by 4βLP r. If we choose β = 1/α randomly according to f(α) = 2α,
then the total cost is bounded by∫ 1

0

4/α · LP rf(α)dα +

∫ 1

0

∑
j

wj(⌈4/αCj(α)⌉+ 3)f(α)dα

≤ 8(LP r + LP s). □

4.3.5 Improvements for Special Cases
We now consider the special case of two-stage stochastic single machine schedul-
ing. First, we provide an optimal algorithm for the two-stage stochastic
variant of 1 | |

∑
wjCj. Then, we consider the two-stage stochastic vari-

ant of 1 | pmtn, rj |
∑

wjCj, which is NP-hard by Theorem 4.1, and give a
(2 + ε)-approximation algorithm for the setting in which all reservation must
be done in the first stage and we present a (3 + ε)-approximation algorithm for
the general setting with two-stage reservation. Again, we perform LP-rounding
similar to the rounding described in the previous sections. The LP given on
p. 59 is again the basis for that, but now we ignore the index i for the machines.
We shall simplify some rounding steps and reassign the workload by using a list
scheduling policy.

Without Release Dates. We show the following statement.

Theorem 4.14 The two-stage stochastic version of 1 | |
∑

wjCj can be solved
in polynomial time.

Proof. Let p(Jk) :=
∑

j∈Jk pj be the total processing volume in scenario k. In
the absence of release dates, any reasonable algorithm reserves an interval [0, x),
x ∈ N, in the first stage, augments this in scenario k by reserving additional
max{p(Jk) − x, 0} slots after the time point x, and schedules the jobs j ∈ Jk



70 4 Cost-Aware Machine Scheduling under Data Uncertainty

according to Smith’s rule [78]. Note that now the scheduling cost is a scenario-
dependent constant, which can be computed beforehand and can be ignored in
the minimization problem, which looks as follows:

min c · x+
N∑
k=1

πk · c · λk ·max {p(Jk)− x; 0}

s.t. x ∈ N.

Observe that the objective function is convex in x and thus we can use binary
search to find an optimal x in polynomial time. □

With Release Dates and First-Stage Reservation Only. We now give
a (2 + ε)-approximation algorithm for the two-stage stochastic variant of
1 | pmtn, rj |

∑
wjCj with first-stage reservation only. We solve the LP (with

fixed xkt = 0) and obtain an optimal solution (xt, yjt) which we round as follows.
First, we apply the slow motion technique with parameter β > 1, which is

chosen later, to obtain a solution (xβ
t , y

β
jt). By Lemma 4.4, every job j ∈ J

completes in (xβ
t , y

β
jt) not later than ⌈βCj(1/β)⌉. Second, we round the time slot

reservation by only applying the accumulated reservation procedure without the
extra reservation to obtain a rounded x̄β. Third, we reassign the workload for
every scenario k ∈ S by using list scheduling in order of non-decreasing Cj(1/β)
in the original LP solution. That is, we order the jobs j ∈ Jk in non-decreasing
order of Cj(1/β) and for simplicity, we assume that the jobs j ∈ Jk are labeled
according to this ordering by 1, . . . , |Jk|. List scheduling for scenario k based
on non-decreasing Cj(1/β), j ∈ Jk, reassigns the workload as follows. Consider
any time slot [t, t + 1). If x̄β

t = 0, then we leave this slot empty, since it is not
reserved. Otherwise x̄β

t = 1, and we process in [t, t + 1) one unit of the first job
in our list that is not finished yet and is released at or before t and move on to
the next time slot. If there is no such job, we leave the time slot [t, t+ 1) empty
in scenario k. To prove that this is a (2 + ε)-approximation algorithm we need
the following lemma.

Lemma 4.15 Given a feasible LP solution (xβ
t , y

β
jt), let x̄β be the rounded time

slot reservation after applying the accumulated reservation procedure without the
extra reservation. For any a, b ∈ N and any positive integer z ∈ N it holds that
if
∑b

t=a x
β
t ≥ z, then

∑b
t=a x̄

β
t ≥ z.

Proof. Notice that for any non-negative x ∈ R and z ∈ N, we have ⌊x + z⌋ =
⌊x⌋+ z. This implies for Xβ

t =
∑t

h=0 x
β
h that

⌊Xβ
b ⌋ = ⌊X

β
a−1 +

b∑
t=a

xβ
t ⌋ ≥ ⌊X

β
a−1⌋+ z.



4.3 Polynomial-Scenario Model for Min-Sum Objective 71

Therefore, the accumulated reservation procedure reserves at least z slots in the
interval [a, b+ 1), which implies that

∑b
t=a x̄

β
t ≥ z. □

We now prove the following theorem.

Theorem 4.16 There is a (2 + ε)-approximation algorithm for the two-stage
stochastic variant of 1 | pmtn, rj |

∑
wjCj with first-stage reservation only.

Proof. Consider any scenario k ∈ S. We first show that after list scheduling
in order of non-decreasing Cj(1/β) in the original LP solution, every job j ∈ Jk
completes at or before τj := ⌈βCj(1/β)⌉. Note that we assume for simplicity that
the jobs j ∈ Jk are labeled according to non-decreasing Cj(1/β) by 1, . . . , |Jk|.
Suppose the statement holds for all jobs j ≤ ℓ− 1 where 1 ≤ ℓ ≤ |Jk|. Consider
job ℓ ∈ Jk.

By Lemma 4.4, every job j ∈ Jk completes in (xβ
t , y

β
jt) not later than τj. Hence,

we have
∑τℓ−1

t=0 xβ
t ≥

∑ℓ
j=1 pj. Using Lemma 4.15, we get

∑τℓ−1
t=0 x̄β

t ≥
∑ℓ

j=1 pj.
Consider all reserved time slots before τℓ, i.e., all slots [t, t + 1) before τℓ with
x̄β
t = 1. We now consider two cases.

Case 1. No time slot reserved before τℓ is empty in scenario k or occupied
by a job j ∈ Jk \ {1, . . . , ℓ}. This implies that every slot reserved before τℓ is also
used in scenario k to process the jobs 1, . . . , ℓ. Since we reserve at least

∑ℓ
j=1 pj

slots before τℓ, which is necessary to process all jobs 1, . . . , ℓ, we conclude that
also job ℓ ∈ Jk completes at or before τℓ.

Case 2. There exists a time slot reserved before τℓ that is empty in scenario k
or occupied by a job j ∈ Jk \ {1, . . . , ℓ}. Consider the last such time slot and
denote it by [t′, t′ + 1). If job ℓ is released at or before t′, then this job must be
finished before t′ ≤ τℓ, by the construction of our list scheduling policy. Otherwise,
job ℓ is released at or after t′ + 1. Let J ′ ⊆ {1, . . . , ℓ} be the subset of jobs that
are released at or after t′ + 1. It follows directly that

∑τℓ−1
t=t′+1 x

β
t ≥

∑
j∈J ′ pj.

Hence, we have
∑τℓ−1

t=t′+1 x̄
β
t ≥

∑
j∈J ′ pj by Lemma 4.15. Now we apply the same

argument as in the first case and it follows that also job ℓ is finished not later
than τℓ.

This implies that our algorithm returns a solution with objective function
value at most

βLP r +
N∑
k=1

πk

∑
j∈Jk

wjτj.

Thus, by choosing the expansion parameter β at random according to the density
function f(α) = 2α where α = 1/β ∈ [0, 1] and using Lemma 4.2, we observe
that the expected total cost is at most 2LP r + 2LP s = 2LP . □

With Release Dates and Two-Stage Reservation. We now augment
the algorithm for the special case with only first-stage reservation to a



72 4 Cost-Aware Machine Scheduling under Data Uncertainty

(3 + ε)-approximation algorithm for the general setting with two-stage reserva-
tion. As before, we solve the LP and obtain an optimal solution (xt, xkt, yjt) and
apply the slow motion technique with parameter β > 1, which is again chosen
later, to obtain a solution (xβ

t , x
β
kt, y

β
jt). By Lemma 4.4, every job j ∈ J completes

in (xβ
t , x

β
kt, y

β
jt) not later than τj := ⌈βCj(1/β)⌉. Then we round the time slot

reservation to obtain rounded x̄β and x̄β
k , k ∈ S, as follows. Let Xβ

t := 2
∑t

h=0 x
β
h

and Xβ
kt := 2

∑t
h=0 x

β
kh with Xβ

−1 = Xβ
k,−1 = 0. We round the first-stage reserva-

tion as follows for t = 0, . . . , ⌈β(T − 1)⌉:

• If ⌊Xβ
t ⌋ = ⌊X

β
t−1⌋, we temporarily set x̄β

t = 0.

• If ⌊Xβ
t ⌋ = ⌊X

β
t−1⌋+ 1, we permanently set x̄β

t = 1.

• If ⌊Xβ
t ⌋ = ⌊X

β
t−1⌋ + 2, we permanently set x̄β

t = 1 and find the largest h

with 0 ≤ h < t such that [h, h+1) is not reserved yet (x̄β
h = 0 temporarily)

and permanently set x̄β
h = 1.

Similarly, we round the second-stage reservation as follows for
t = 0, . . . , ⌈β(T − 1)⌉:

• If ⌊Xβ
kt⌋ = ⌊X

β
k,t−1⌋, we temporarily set x̄β

kt = 0.

• If ⌊Xβ
kt⌋ = ⌊X

β
k,t−1⌋+ 1 and x̄β

t = 0, we permanently set x̄β
kt = 1.

• If ⌊Xβ
kt⌋ = ⌊X

β
k,t−1⌋ + 1 and x̄β

t = 1, we find the largest h with 0 ≤ h < t

such that [h, h + 1) is not reserved yet (x̄β
h = x̄β

kh = 0 temporarily) and
permanently set x̄β

kh = 1.

• If ⌊Xβ
kt⌋ = ⌊X

β
k,t−1⌋ + 2, we find the largest h1 < h2 ≤ t such that x̄β

h1
=

x̄β
kh1

= x̄β
h2

= x̄β
kh2

= 0 and permanently set x̄β
kh1

= x̄β
kh2

= 1.

After rounding first- and second-stage reservation, we reassign the workload
for every scenario k ∈ S again by using list scheduling in order of non-decreasing
Cj(1/β) in the original LP solution. For simplicity, we assume that the jobs
j ∈ Jk are labeled according to this ordering by 1, . . . , |Jk|.

To prove that this is a (3+ ε)-approximation algorithm we need the following
lemmata.

Lemma 4.17 For any non-negative u, v, c, d ∈ R with c+ d ≥ 1, we have

⌊u+ 2c⌋+ ⌊v + 2d⌋ − ⌊u⌋ − ⌊v⌋ ≥ ⌊c+ d⌋.

Proof. If ⌊c+ d⌋ = 1, we can assume w.l.o.g. that c ≥ 1/2. Therefore, we have

⌊u+ 2c⌋+ ⌊v + 2d⌋ − ⌊u⌋ − ⌊v⌋ ≥ ⌊u⌋+ 1 + ⌊v⌋ − ⌊u⌋ − ⌊v⌋ = 1 = ⌊c+ d⌋.



4.3 Polynomial-Scenario Model for Min-Sum Objective 73

If ⌊c+ d⌋ ≥ 2, we have

⌊u+ 2c⌋+ ⌊v + 2d⌋ − ⌊u⌋ − ⌊v⌋ ≥ u+ 2c+ v + 2d− 2− ⌊u⌋ − ⌊v⌋
≥ 2(c+ d)− 2 ≥ ⌊c+ d⌋. □

Lemma 4.18 Given a feasible LP solution (xβ
t , x

β
kt, y

β
jt), let x̄β and x̄β

k , k ∈ S, be
the rounded time slot reservations after applying the described rounding pro-
cedure. For any a, b ∈ N and any positive integer z ∈ N it holds that if∑b

t=a(x
β
t + xβ

kt) ≥ z, then
∑b

t=a(x̄
β
t + x̄β

kt) ≥ z.

Proof. We prove this statement by induction. Consider any scenario k ∈ S.
Suppose b− a = 0, then

b∑
t=a

(xβ
t + xβ

kt) = xβ
a + xβ

ka ≤ 1.

It follows that z = 1 and xβ
a + xβ

ka = 1. We show that either x̄β
a = 1 or x̄β

ka = 1.
Notice that either xβ

a ≥ 1/2 or xβ
ka ≥ 1/2. If xβ

a ≥ 1/2, then ⌊Xβ
a ⌋ − ⌊X

β
a−1⌋ ≥ 1

and thus x̄β
a = 1, by our rounding procedure. If, however, xβ

ka ≥ 1/2, then
⌊Xβ

ka⌋ − ⌊X
β
k,a−1⌋ ≥ 1 and thus either x̄β

a = 1 or x̄β
ka = 1.

Suppose the statement holds for any a, b with b−a ≤ ℓ−1 and ℓ ≥ 1. Consider
the case that b− a = ℓ. We now consider two cases.

Case 1. Suppose, x̄β
a = 1 or x̄β

ka = 1. Then
∑b

t=a+1(x
β
t + xβ

kt) ≥ z − 1, since
xβ
t + xβ

kt ≤ 1 for any t ∈ {0, . . . , ⌈β(T − 1)⌉}. By the induction hypothesis, we
have

∑b
t=a+1(x̄

β
t + x̄β

kt) ≥ z − 1, which implies that
∑b

t=a(x̄
β
t + x̄β

kt) ≥ z.
Case 2. Suppose, x̄β

a = 0 and x̄β
ka = 0. Notice that according to our rounding

procedure we try to reserve ⌊Xβ
b ⌋ − ⌊X

β
a−1⌋ many slots in the first stage in the

interval [a, b+ 1). That is, according to our rounding scheme we reserve at least
⌊Xβ

b ⌋−⌊X
β
a−1⌋ many slots in the first stage in the interval [a, b+1), since x̄β

a = 0.
Similarly, we know that we reserve at least ⌊Xβ

kb⌋ − ⌊X
β
k,a−1⌋ many slots in the

second stage in the interval [a, b+ 1), since also x̄β
ka = 0. Therefore, we have

b∑
t=a

(x̄β
t + x̄β

kt) ≥ ⌊X
β
b ⌋+ ⌊X

β
kb⌋ − ⌊X

β
a−1⌋ − ⌊X

β
k,a−1⌋.

Applying now Lemma 4.17 with u = Xβ
a−1, v = Xβ

k,a−1, c =
∑b

t=a x
β
t , and

d =
∑b

t=a x
β
kt, we get the result. □

We now prove the following theorem.

Theorem 4.19 There is a (3 + ε)-approximation algorithm for the two-stage
stochastic variant of 1 | pmtn, rj |

∑
wjCj.



74 4 Cost-Aware Machine Scheduling under Data Uncertainty

Proof. Using Lemma 4.18, the proof that every job j ∈ J finishes not later
than τj follows the same line of argumentation as given in the proof for The-
orem 4.16. This implies that our algorithm returns a solution with objective
function value at most

2βLP r +
N∑
k=1

πk

∑
j∈Jk

wjτj.

Thus, by choosing the expansion parameter β at random according to the density
function f(α) = 3α2 where α = 1/β ∈ [0, 1] and using Lemma 4.2, we observe
that the expected total cost is at most 3LP r + 3LP s = 3LP . □

4.4 Polynomial-Scenario Model
for Makespan Objective

In this section, we argue that our techniques from the previous section lead to
the following result for the makespan objective.

Theorem 4.20 There is a (6 + ε)-approximation algorithm for the two-stage
stochastic variant of R | pmtn, rj |Cmax in the polynomial-scenario model.

We prove this statement in the following. For the two-stage stochastic ver-
sion of R | pmtn, rj |Cmax we obtain an LP relaxation by replacing the objec-
tive function by

∑T−1
t=0 cxt +

∑
k∈S πk

(
Ck,LP

max + λkc
∑T−1

t=0 xkt

)
and adding the

constraint Ck,LP
max ≥ CLP

j for all j ∈ Jk and for all k ∈ S in our LP on
p. 59. We solve this LP and apply slow-motion with parameter β to be deter-
mined later. Denote by (xt, xkt, yijt) the fractional solution obtained and adapt
T := max{t : xt > 0 or xkt > 0 for some k ∈ S} + 1. We adopt our rounding
procedure to derive an integral reservation as follows.

Rounding first stage reservation. We apply the accumulated reservation
procedure (see Section 4.3.2) with some slight modification. Let γ ≥ 1
be a parameter to be determined later. We round xt in such a way that
for any time t, we reserve in total min{⌊γ

∑T−1
h=t xh⌋, T − t} slots during

[t, T ). This can be achieved with the following iterative procedure starting
at time T − 1 and going backwards in time. Suppose we already reserve
τt+1 = min{⌊γ

∑T−1
h=t+1 xh⌋, T − t− 1} slots during [t + 1, T ), we then consider

the interval [t, T ) with τt = min{⌊γ
∑T−1

h=t xh⌋, T − t}. If τt+1 = τt, we do not
reserve the slot [t, t+ 1). Otherwise τt − τt+1 ≥ 1, we reserve [t, t+ 1) and addi-
tionally the τt− τt+1− 1 latest slots in [t+1, T ) that are not yet reserved. Let x̄t

be the rounded first stage reservation.



4.4 Polynomial-Scenario Model for Makespan Objective 75

Rounding second stage reservation. We now round the second stage reser-
vation for each specific scenario k. Let 1 > ρ ≥ 1/β be a parameter to be
determined later. Obviously, at time Tk = maxj∈Jk⌈βCj(ρ)⌉ every job j ∈ Jk is
finished. In fact, every job is over-scheduled by a factor of ρ · β in the fractional
solution (xt, xkt, yijt). We round the second stage reservation as follows. During
[0, Tk) and among all the slots that are not reserved in the first stage, we reserve
in the second stage the latest slots such that in total we reserve

min{
Tk−1∑
h=0

x̄h + ⌊γ
Tk−1∑
h=0

xkh⌋, Tk}

and we denote by x̄kt the rounded second stage reservation.
It is easy to verify that the total reservation cost is bounded by γβLP r,

where LP r is the reservation cost of the fractional solution before slow motion.
Furthermore, the makespan for scenario k is bounded by

Tk = max
j∈Jk
⌈βCj(ρ)⌉ ≤ ⌈β · (Ck,LP

max − ρ)/(1− ρ)⌉.

Here we use the relation given in Lemma 4.3.

Reassigning workload. We now argue that it is possible to reassign the work-
load. We have the following lemma.

Lemma 4.21 Let (xt, xkt) be the LP solution after slow-motion and let (x̄t, x̄kt)
be the rounded solution. We can feasibly reassign all the workload of scenario k
if
∑Tk−1

t=t0
x̄t + x̄kt ≥

∑Tk−1
t=t0

xt + xkt for all t0 ∈ [0, Tk − 1).

Proof. Let τ :=
∑Tk−1

t=0 x̄t+ x̄kt. We prove the statement by induction on τ . The
base case τ = 1 is obviously fulfilled, as we can feasibly reassign the workload
of all the slots with xt + xkt > 0 to the only integrally reserved slot. Consider
the induction step from τ − 1 to τ . Let T ′

k be the earliest time point where∑Tk−1
t=T ′

k
x̄t + x̄kt = 1 and let t′ with T ′

k ≤ t′ ≤ Tk − 1 be the time point where
x̄t′ + x̄kt′ = 1. Starting with the time slot [t′ − 1, t′) and going backwards in time,
we iteratively move (a portion of) the workload of the considered slot to [t′, t′ + 1)
until the total capacity of [t′, t′ + 1), which is 1, is met. After this, we reduce
the values of the variables xt and xkt according to the reassignment, i.e., if we
move a δ fraction of the workload of slot [t, t+ 1) to [t′, t′ + 1), then we decrease
xt by δxt and xkt by δxkt. Let (x̂t, x̂kt) be the updated fractional reservation
with x̂t′ + x̂kt′ = 1 after reassignment. The condition that

∑T ′
k−1

t=t0 x̄t + x̄kt ≥∑T ′
k−1

t=t0 x̂t + x̂kt for all 0 ≤ t0 < T ′
k − 1 is again fulfilled, because of the following

fact. Let a :=
∑T ′

k−1
t=t0 x̄t + x̄kt, b :=

∑Tk−1
t=T ′

k
x̄t + x̄kt = 1, c :=

∑T ′
k−1

t=t0 xt + xkt,
d :=

∑Tk−1
t=T ′

k
xt + xkt and ĉ :=

∑T ′
k−1

t=t0 x̂t + x̂kt. We know that a + b ≥ c + d and



76 4 Cost-Aware Machine Scheduling under Data Uncertainty

b ≥ d, which implies that a ≥ c + d − 1 and 1 ≥ d. Moreover, we know that
ĉ = max{0, c − (1 − d)}. If ĉ = 0, then a ≥ ĉ and if ĉ = c − (1 − d) > 0, then
a ≥ ĉ + 1 − d + d − 1 = ĉ. We use our induction hypothesis with the updated
Tk = T ′

k. □

In the following, we argue that our rounding procedure satisfies the condition
of Lemma 4.21.

Lemma 4.22 For any t ∈ [0, Tk − 1), either

Tk−1∑
h=t

x̄h ≥
Tk−1∑
h=t

xh −
γ
∑Tk−1

h=t xh − ⌊γ
∑Tk−1

h=t xh⌋
γ

≥
Tk−1∑
h=t

xh − 1/γ

or all slots in [t, Tk) are reserved in the first stage.

Proof. Notice that

Tk−1∑
h=t

x̄h = min{⌊γ
T−1∑
h=t

xh⌋, T − t} −min{⌊γ
T−1∑
h=Tk

xh⌋, T − Tk}

≥ min{⌊γ
T−1∑
h=t

xh⌋, T − t} − ⌊γ
T−1∑
h=Tk

xh⌋.

If min{⌊γ
∑T−1

h=t xh⌋, T − t} = T − t, then we reserve all slots in [t, T ) in the first
stage and thus also in [t, Tk). Otherwise

Tk−1∑
h=t

x̄h ≥ ⌊γ
T−1∑
h=t

xh⌋ − ⌊γ
T−1∑
h=Tk

xh⌋ ≥ ⌊γ
Tk−1∑
h=t

xh⌋.

It suffices to show that

⌊γ
Tk−1∑
h=t

xh⌋ ≥
Tk−1∑
h=t

xh −
γ
∑Tk−1

h=t xh − ⌊γ
∑Tk−1

h=t xh⌋
γ

=
⌊γ
∑Tk−1

h=t xh⌋
γ

,

which is obvious, knowing that γ ≥ 1. □

Let b :=
∑Tk−1

h=0 xkh. In the following, we consider two cases, namely b ≥ 1/γ
and b < 1/γ, and argue that the condition of Lemma 4.21 is satisfied in both
cases. We show the following lemma for the first case.

Lemma 4.23 If γ ≥ 3 and b ≥ 1/γ, then
∑Tk−1

h=t (x̄h + x̄kh) ≥
∑Tk−1

h=t (xh + xkh)
holds for any t ∈ [0, Tk − 1) and any scenario k ∈ S.

To prove Lemma 4.24, we need the following lemma.



4.4 Polynomial-Scenario Model for Makespan Objective 77

Lemma 4.24 If γ ≥ 3 and b ≥ 1/γ, then ⌊γb⌋ ≥ b+ 1/γ.

Proof. We distinguish two cases. If b ≥ γ+1
γ(γ−1)

, then ⌊γb⌋ ≥ γb − 1 ≥ b + 1/γ.
Otherwise b < γ+1

γ(γ−1)
, notice that for γ ≥ 3 we have γ+1 ≤ (γ−1)2, b < γ+1

γ(γ−1)
≤

γ−1
γ

. Moreover, γb ≥ 1 and hence ⌊γb⌋ − 1/γ ≥ 1− 1/γ ≥ b. □

Proof (Lemma 4.23). Let µ ≤ Tk − 1 be the largest index such that
x̄µ + x̄kµ = 0. Then for h ≥ µ + 1, it holds that x̄h + x̄kh = 1 and hence∑Tk−1

h=t (x̄h + x̄kh) ≥
∑Tk−1

h=t (xh + xkh) for any t ≥ µ+ 1.
Now consider time points t ≤ µ. According to our second stage rounding,

we reserve ⌊γb⌋ slots right before Tk skipping the slots that are already reserved
in the first stage. Therefore, we know that

∑Tk−1
h=t x̄kh = ⌊γb⌋ for all t ≤ µ.

According to Lemma 4.24, for γ ≥ 3 and b ≥ 1/γ, we have

Tk−1∑
h=t

x̄kh ≥ b+ 1/γ ≥
Tk−1∑
h=t

xkh + 1/γ.

According to Lemma 4.22, we have

Tk−1∑
h=t

x̄h ≥
Tk−1∑
h=t

xh − 1/γ.

By adding the two inequalities, we get
∑Tk−1

h=t (x̄h + x̄kh) ≥
∑Tk−1

h=t (xh + xkh). □

Now we consider the case that b < 1/γ. Notice that in our solution after slow
motion every job is over-scheduled until Tk by a factor of ρ ·β. We set parameters
so that ρ · β = 1+ 1/γ. Note that at most b < 1/γ fraction of every job could be
scheduled in the second stage in the fractional solution (we artificially split the
workload into first stage workload yijt · xt/(xt + xkt) and second stage workload
yijt · xkt/(xt + xkt)). Hence, if we just discard the second stage reservation in the
fractional solution (xt, xkt, yijt), i.e., we set x′

kt = 0 and y′ijt = yijt · xt/(xt + xkt),
then every job could still be finished before Tk. Let (xt, x

′
kt, y

′
ijt) denote the

modified solution. We show that the workload could be reassigned to x̄t.
Let µ ≤ Tk − 1 be the largest index such that x̄µ = 1. We first observe

that according to our rounding procedure
∑Tk−1

h=µ xh < 2/γ, otherwise we reserve
⌊γ
∑T−1

h=µ xh⌋ − ⌊γ
∑T−1

h=Tk
xh⌋ ≥ 2 slots within [µ, Tk), which is a contradiction.

We modify the fractional solution (xt, x
′
kt, y

′
ijt) by setting

x′
µ =

∑Tk−1
h=µ xh < 2/γ ≤ 1, and move all the workload within [µ, Tk) into

the slot [µ, µ + 1). This is possible, because the processing time of each job is
at least 1 on any machine, hence in the original solution (xt, x

′
kt, y

′
ijt) no job

is completely scheduled within [µ, Tk), implying that there is no release date
after µ. We are now ready to show the following lemma for the second case.



78 4 Cost-Aware Machine Scheduling under Data Uncertainty

Lemma 4.25 If γ ≥ 3 and b < 1/γ, then
∑Tk−1

h=t x̄h ≥
∑Tk−1

h=t x′
h holds for any

t ∈ [0, Tk − 1) and any scenario k ∈ S.

Proof. For t > µ the inequality is obviously true, since both sides are 0. For
t ≤ µ the left hand side is at least 1. If the right hand side is at most 1, then
the inequality is also fulfilled. Therefore, it remains to consider the case that∑Tk−1

h=t x′
h > 1. Since

Tk−1∑
h=t

x̄h ≥ ⌊γ
T−1∑
h=t

x′
h⌋ − ⌊γ

T−1∑
h=Tk

x′
h⌋ ≥ ⌊γ

Tk−1∑
h=t

x′
h⌋ ≥

Tk−1∑
h=t

x′
h

for
∑Tk−1

h=t x′
h > 1 and γ ≥ 2, the inequality is also fulfilled. □

Overall, we need to minimize max{β/(1− ρ), γ ·β} subject to ρ ·β = 1+1/γ.
We take γ = 3, β = 2, ρ = 2/3 and obtain Theorem 4.20.

Remark. Similar to the proof of Theorem 4.14, we can show that if all jobs are
released at time 0 and the underlying deterministic makespan problem is solvable
in polynomial time, then we can also solve the two-stage stochastic variant of
it in polynomial time. This is done by a combination of known algorithms for
the single-stage single-scenario problem and binary search for finding an optimal
x ∈ N such that the time slots in [0, x) are reserved in the first stage. This holds
for example for the scheduling problem R | pmtn |Cmax.

4.5 The Black-Box Model
We now show that at the expense of another ε our results for the two-stage
stochastic min-sum and makespan problem hold for any arbitrary scenario dis-
tribution given by means of a black-box. Besides that, the problem is as before.

Given a first-stage reservation x̄ ∈ {0, 1}T , a lower bound on the second-stage
cost for a scenario k is as follows:

q(x̄, k) = min
{∑

j∈Jk

wjC
LP
j + λkc

T−1∑
t=0

xkt | (4.1b) - (4.1g) ∧ xt = x̄t ∀t

}
.

Let c(x) denote the cost of a (possibly fractional) reservation x ∈ [0, 1]T . Then
the following gives a lower bound on our two-stage stochastic scheduling problem.

min
x∈[0,1]T

f(x) = c(x) + Ek∈S [q(x, k)] . (4.2)

For an unknown distribution in the black-box model we cannot solve this problem
efficiently. However, using the SAA method [55] we can approximate it. We draw



4.5 The Black-Box Model 79

a number N of independent sample scenarios 1, . . . , N from the black-box and
solve the following sample average problem:

min
x∈[0,1]T

f̂(x) = c(x) +
1

N
·

N∑
k=1

q(x, k) . (4.3)

Notice that (4.3) is exactly the LP of Section 4.3 with all N scenarios having
probability 1/N , and can thus be solved efficiently. It remains to determine the
number of samples N that is needed to guarantee a certain approximation. We
can show that our LP in (4.2) can be cast as a stochastic LP of type required
in [81] for obtaining such a result. To that end, we must be given λ := maxk∈S λk.

Lemma 4.26 ([81]) There is a polynomially bounded number N such that any
optimal solution xLP to the sample average problem (4.3) with N samples satisfies
f(xLP ) ≤ (1 + ε)minx f(x) with high probability.

Proof (Applicability of Lemma 4.26). We show that the LP in (4.2) can
be cast as a stochastic LP of type required in [81]. In particular, we show that
we can apply Theorem 5.2 in [81] that says that for any ε, γ > 0, (γ ≤ 1), with
probability at least 1− δ, any optimal solution x̂ to the sample average problem
(for us (4.3)) constructed with poly(I, λ, 1/γ, ln(1/ε), ln(1/δ)) samples satisfies
f(x̂) ≤ (1 + γ) ·minx f(x) + 6ε. Here, I denotes the input size and f represents
the objective function of the following stochastic LP

min
x∈P⊆Rm

≥0

f(x) = c · x+ Ek∈S [q(x, k)] (4.4)

where q(x, k) = min
{
ck · rk + qk · sk | rk ∈ Rm

≥0, sk ∈ Rn
≥0,

Dksk + T krk ≥ jk − T kx
}
.

We now argue that we can cast (4.2) as such an LP. For this, we replace the
constraints in (4.1d) by the following two constraints∑

j∈Jk

yijt ≤ 1 ∀i ∈M,k ∈ S, 0 ≤ t ≤ T − 1 (4.5)∑
i∈M

yijt ≤ 1 ∀j ∈ Jk, k ∈ S, 0 ≤ t ≤ T − 1, (4.6)

and furthermore, we remove the upper bound on the variables xkt. We call the
resulting program LPmod. It is easy to see that LPmod is a relaxation of our LP,
but that they have the same set of optimal solutions, since LPmod has no incentive
to choose xt + xkt > 1 or xkt > 1 for some t ∈ {0, . . . , T − 1} and k ∈ S. In this
sense, they are equivalent. We let x be the vector of our first-stage reservation
decisions, rk be the vector of our second-stage reservation decisions in scenario k,
and sk be the vector of workload assignment variables in scenariok. Therefore,



80 4 Cost-Aware Machine Scheduling under Data Uncertainty

m = T , n = |J | · |M | · T , and P = [0, 1]T . We set the coefficients in the objective
function c, ck, and qk, the constraint matrices Dk and T k and the right-hand
side jk accordingly.

As required in [81], we also need to show, that (a) T k ≥ 0 for every k ∈ S,
and (b) Ek∈S [q(x, k)] ≥ 0 for every x ∈ P , and the primal and dual problems
corresponding to q(x, k) are feasible for every scenario k ∈ S. Requirement (a) is
obviously fulfilled and requirement (b) is also fulfilled, if we assume that λ < +∞.

In order to turn the performance guarantee into a purely multiplicative one,
we need a sufficient lower bound on minx f(x). In [81], it is shown that under
certain assumptions, one can obtain such a lower bound. We need to show that
(c) x = 0 ∈ P , and (d) for every scenario k ∈ S, either q(x, k) is minimized
by setting x = 0 or the total cost c · x + ck · rk + qk · sk ≥ 1 for any feasible
solution (x, rk, sk). Assumption (c) is fulfilled, as we can reserve nothing in the
first stage, and assumption (d) is also fulfilled, because every non-empty scenario
k ∈ S contains at least one job j with weight wj ≥ 1. □

Based on this lemma we can obtain a good integral first-stage solution. We
draw N samples and solve problem (4.3). Let (xLP

t , xLP
kt , y

LP
ijt ) be an optimal

(fractional) solution. Applying our rounding technique (Section 4.3) we derive a
solution (x̄t, x̄kt, ȳijt) with (x̄t, x̄kt) ∈ {0, 1}. We fix x̄t as first-stage reservation.

The difficult part is to find a second-stage solution for some scenario (that is
not necessarily in the sample set) and bound it by the LP solution for the sample
set. The key is that our rounding procedure for the first stage reservation x only
depends on x itself and is independent of the scheduling solution. Given x̄t and
a scenario k, we solve the resulting second-stage problem as follows: we solve
the problem minx∈[0,1]T c(xLP ) + q(xLP , k), which is again exactly the LP of Sec-
tion 4.3 with a single scenario k, after fixing first-stage reservation at xt = xLP

t .
Let (x′

kt, y
′
ijt) be the optimal solution. Plugging in xLP

t and applying our round-
ing procedure on (xLP

t , x′
kt, y

′
ijt), we get a feasible schedule of total cost at most

(ρ+ ε)(c(xLP ) + q(xLP , k)), with ρ = 8 for the min-sum objective and ρ = 6 for
the makespan. And, most importantly, the first stage reservation x̄t is consistent
with our first-stage reservation. Using Lemma 4.26 we have in expectation a total
cost of at most (ρ+ ε)f(xLP ) ≤ (ρ+O(ε))minx f(x) ≤ (ρ+ ε′)Z∗.
Theorem 4.27 In the black-box model, there is a (ρ + ε)-approximation al-
gorithm for two-stage stochastic variant of R | pmtn, rj |

∑
wjCj (ρ = 8) and

R | pmtn, rj |Cmax (ρ = 6), respectively.

4.6 Two-Stage Robust Scheduling
In the robust setting, we restrict to the model with an explicit description of the
scenario set S. The objective is now to minimize the worst-case total cost instead
of the expected total cost. Notice that the LP relaxations, that our algorithms
in Section 4.3 rely on, can be easily adopted.



4.6 Two-Stage Robust Scheduling 81

Our approximation algorithms for the stochastic model are risk-averse, i.e., the
performance guarantee holds for every scenario. Therefore, the techniques used
for the stochastic model also apply to the discrete-scenario robust model. For the
min-

∑
wjCj problem, certain randomized steps of our algorithm must be replaced

by deterministic ones losing a factor 2 in the approximation guarantee. Such an
adaptation is not needed for the robust makespan problem and we directly obtain
again a (6+ε)-approximation algorithm. However, the makespan problem is much
easier and we provide a simple 2-approximation algorithm.
Theorem 4.28 For two-stage discrete-scenario robust scheduling with reser-
vation cost, there is a ρ-approximation algorithm for the scheduling problems
R | pmtn, rj |

∑
wjCj (ρ = 16 + ε) and R | pmtn, rj |Cmax (ρ = 2), respectively.

We first prove that there is a (16 + ε)-approximation algorithm for the two-
stage robust version of R | pmtn, rj |

∑
wjCj.

Proof (Part 1 of Theorem 4.28). The proof is similar to the one for Theo-
rem 4.13. The difference is that we apply the slow-motion technique determinis-
tically with β = 2 and we have a different objective function.

We solve the modified LP and obtain an optimal solution (xt, xkt, yijt). Let
LP r,I :=

∑T−1
t=0 xt and LP r,k := λkc

∑T−1
t=0 xkt for all k ∈ S. We apply the

slow-motion technique with β = 2 and derive an expanded fractional solution
(xβ

t , x
β
kt, y

β
ijt). We know that the reservation cost is increased by a factor of β,

while job j completes not later than the (fractional) time βCj(1/β). Then we
apply the slot-partition procedure (see proof of Theorem 4.13), which does not
increases the reservation cost, but might increase the completion time of a job
by a factor of 2. Then we also apply the job-partition procedure (see proof of
Theorem 4.13), which increases both the reservation cost and the completion
time of a job by a factor of 2. In the end, we round the time slot reservation and
reassign the workload, which at most doubles the reservation cost and increases
the completion time of every job by at most 3 time units. Using Lemma 4.3, we
can bound the total cost of the constructed solution by

8 · LP r,I + max
k∈S

(
8 · LP r,k +

∑
j∈Jk

wj (⌈8 · Cj(1/2)⌉+ 3)

)

≤ 8 · LP r,I + max
k∈S

(
8 · LP r,k +

∑
j∈Jk

wj (8 · Cj(1/2) + 4)

)

≤ 8 · LP r,I + max
k∈S

(
8 · LP r,k +

∑
j∈Jk

16 · wjC
LP
j

)
≤ 16 · LP. □

Before we prove that there is a 2-approximation algorithm for the two-stage
robust version of R | pmtn, rj |Cmax, we show the following.



82 4 Cost-Aware Machine Scheduling under Data Uncertainty

Theorem 4.29 The two-stage discrete-scenario robust variant of R | pmtn |Cmax
is solvable in polynomial time.

Proof. For every scenario k ∈ S, we solve the deterministic problem and obtain
a makespan Ck

max. Let C∗
max := maxk∈S C

k
max. A lower bound on the optimal total

cost is c⌈C∗
max⌉ + C∗

max. Our algorithm reserves in the first stage all slots in the
interval [0, ⌈C∗

max⌉) and nothing in the second stage, since all scenarios can be
scheduled using only first-stage reserved slots. The total cost of this algorithm
matches the given lower bound. □

Proof (Part 2 of Theorem 4.28). We reserve in the first stage a consecutive
time interval starting at the maximum single-stage single-scenario makespan over
all scenarios and apply in the second stage the non-release date relaxation.

Consider an optimal solution for the two-stage robust version of
R | pmtn, rj |Cmax and let Ck

max be the makespan in this solution for scenario k.
Furthermore, let R∗

0 be the optimal number of slots reserved in the first stage and
R∗

k be the optimal number of slots reserved in the second stage in scenario k.
First, we solve for every scenario individually the single-stage single-scenario

problem R | pmtn, rj |Cmax, which gives a makespan Ck,ind
max for every k ∈ S. Let

C∗
max := maxk∈S C

k,ind
max . It is easy to see that ⌊C∗

max⌋ is a lower bound on the
optimal total cost and that no job is released later than ⌊C∗

max⌋. By Theorem 4.29,
we know that the two-stage robust version without release dates can be solved
in polynomial time and we also know that solving the problem without release
dates gives a solution with total cost at most

c ·R∗
0 + max

k∈S

(
λkc ·R∗

k + Ck
max
)
.

Then we increase the makespan of every scenario by ⌊C∗
max⌋ and obtain a solution

that has total cost of at most

c ·R∗
0 + max

k∈S

(
λkc ·R∗

k + Ck
max + ⌊C∗

max⌋
)

= c ·R∗
0 + max

k∈S

(
λkc ·R∗

k + Ck
max
)
+ ⌊C∗

max⌋

≤ 2 ·OPT. □

4.7 Interval-Indexed LP-Relaxation
The LP from Section 4.3 is a time-indexed formulation and thus has an
exponential number of decision variables and constraints. However, a
(1 +O(ε))-approximate solution for fixed ε > 0 can be derived in polynomial time
by using the standard technique of solving an interval-indexed LP instead [72].
In the following, we argue that this technique can be applied to the LP that is
the basis for our algorithms.



4.7 Interval-Indexed LP-Relaxation 83

We partition the time horizon [0, T ) into intervals of exponentially increasing
size and introduce decision variables xu, xku and yiju for each interval Iu instead
of for each time slot [t, t+1). Here xu and xku represent the amount of time slots
reserved in Iu, and yiju the amount of time job j is processed on machine i in
interval Iu. To ensure that all intervals contain at least one unit-size time slot,
i.e., the length |Iu| ≥ 1 for all u, we set the first O(1/ε) intervals to be unit-size.
More precisely, we set Iu := [u, u+ 1) for u ∈ {0, . . . , t0 − 1} with t0 := ⌈(1+ε)u0⌉
and Iu :=

[
⌈(1 + ε)u−(t0−u0)⌉, ⌈(1 + ε)u+1−(t0−u0)⌉

)
for u ∈ {t0, . . . , U}, where u0

and U are chosen to be the smallest integers so that |Iu| ≥ 1 for all u ≥ t0 and
⌈(1+ε)U−(t0−u0)⌉ ≥ T . Note that t0 ∈ O(1/ε) and that U is polynomially bounded
in the input size, hence we have a polynomial number of decision variables. Let
su and eu, respectively, be the starting and ending time of interval Iu.

As before, we want to set up an LP relaxation. To do so, the following lemma
is helpful.
Lemma 4.30 With (1 + ε)4 loss, we can assume that each job’s release date
coincides with an su for some u ∈ {0, . . . , U}.
Proof. Note that we do not touch the first constant unit-size time slots, since
for them the statement is trivially fulfilled, as we assume integer release dates.

Consider any feasible solution for the problem and any interval Iu for
u ∈ {t0, . . . , U}. Postponing all the workload in Iu to Iu+1 increases the objective
by at most (1 + ε)4, because ⌈(1 + ε)u+1−(t0−u0)⌉/⌈(1 + ε)u−(t0−u0)⌉ ≤ (1 + ε)2 for
u ≥ t0 with our choice of u0. By this, it is feasible to round any release date
rj ∈ Iu to su+1. Applying this workload reassignment to all intervals Iu with
u ∈ {t0, . . . , U − 1} shows the statement. □

Using this observation, we obtain the following interval-indexed LP relaxation
to which we refer as LPε.

min c ·
U∑

u=0

xu +

N∑
k=1

πk

∑
j∈Jk

wjC
LPε
j + λkc ·

U∑
u=0

xku

 (4.7a)

s.t.
∑
j∈Jk

yiju ≤ xu + xku ∀i ∈M,k ∈ S, 0 ≤ u ≤ U (4.7b)

∑
i∈M

yiju ≤ xu + xku ∀j ∈ J, k ∈ S, 0 ≤ u ≤ U (4.7c)

xu + xku ≤ eu − su ∀k ∈ S, 0 ≤ u ≤ U (4.7d)
U∑

u=0
su≥rj

∑
i∈M

yiju
pij

= 1 ∀j ∈ J (4.7e)

U∑
u=0
su≥rj

∑
i∈M

eu ·
yiju
pij

= CLPε
j ∀j ∈ J (4.7f)

xu, xku, yiju ∈ [0, eu − su] ∀i ∈M, j ∈ J, k ∈ S, 0 ≤ u ≤ U (4.7g)



84 4 Cost-Aware Machine Scheduling under Data Uncertainty

Lemma 4.31 LPε ≤ (1 + ε)6LP.

Proof. Consider any feasible solution of the time-indexed LP and use
Lemma 4.30 to create a feasible solution for the time-indexed linear program
LP′ with rounded release dates. We know that LP′ ≤ (1 + ε)4LP. Any fea-
sible solution (x′

t, x
′
kt, y

′
ijt) of LP′ can be translated into a feasible solution

(xu, xku, yiju) of LPε by aggregating the reservation and workload in the cor-
responding intervals. It is easy to see that the two solutions have the same
reservation cost. Furthermore, we know that CLPε

j ≤ (1 + ε)2CLP ′
j for all j, be-

cause ⌈(1 + ε)u+1−(t0−u0)⌉/⌈(1 + ε)u−(t0−u0)⌉ ≤ (1 + ε)2 for u ≥ t0 with our choice
of u0. □

Given that we are able to obtain an approximate solution for LP in polynomial
time, directly applying our rounding procedure to the approximate solution again
yields a pseudo-polynomial running time. We argue that every step of our round-
ing procedure, with some slight modification, can be carried out in polynomial
time.

We start with an optimal solution of LPε, say (xu, xku, yiju), with an objective
value of at most (1 + ε)6LP. We can interpret it as a feasible solution of LP
such that for every interval Iu, the first ⌊xu⌋ slots are reserved in the first stage,
followed by a possibly ’mixed’ slot with xu−⌊xu⌋ fraction first stage reservation.
The remaining fraction of such a mixed slot is then reserved in the second stage,
followed by the remaining second stage reservation. In this way, the sequence of
xt consists of O(U) subsequences of consecutive 1’s each possibly followed by a
mixed slot and so does xkt for every k. We equally distribute the workload yiju
of a job j on machine i within interval Iu over the reserved slots in Iu, i.e., we
set yijt = yiju/(xu + xku) for entirely reserved slots in Iu, and a γ fraction of this
for any slot that is reserved for only a γ fraction. The key observation is that the
consecutive 1’s (in Iu) of the sequence xt or xkt represent identical slots with jobs
scheduled in the same way. In this way, we can split the sequences xt, xkt and yijt
into polynomially many subsequences and for every subsequence we only need to
store the reservation and scheduling pattern of one slot and in addition the start
and end time of this subsequence. We call such a representation of the sequences
xt, xkt and yijt regular. Obviously, such a representation has a polynomial-size
encoding. We now argue why our rounding steps can be carried out in polynomial
time and why we retain regularity of the schedule representation.

Consider the slow-motion technique with parameter β and consider any of the
polynomially many subsequences of the regular representation of xt, xkt and yijt.
Say, the subsequence starts at time t = a and ends with t = b, i.e, we consider
the interval [a, b+1). Expanding by β yields a stretched subsequence that starts
at t = βa and ends with t = β(b + 1) − 1 and in which the reservation and
scheduling pattern is stretched accordingly. That is, we have xβ

t = xa, xβ
kt = xka



4.7 Interval-Indexed LP-Relaxation 85

and yβijt = yija for βa ≤ t ≤ β(b + 1) − 1 if β is integer, while if β is fractional,
then xβ

t , xβ
kt and yβijt may become fractional for t = ⌊βa⌋ and t = ⌊β(b + 1)⌋

and may interfere with an earlier or later stretched subsequence. Hence, when
applying slow-motion to the sequence xt, xkt and yijt, we only need to consider
the starting and ending points of each subsequence and in total there are at most
O(U) such points. Applying slow-motion increases the number of subsequences
with the same reservation and scheduling pattern in the regular representation
of xt, xkt and yijt by at most O(U). Note that also cutting the over-scheduled
part of every job does not destroy regularity of the schedule, since we have a
polynomial number of jobs.

Consider the rounding step of slot-partition, in which we double the time
horizon such as to obtain that even slots, i.e., [t, t + 1) with t even, are first
stage reserved and odd slots are second stage reserved. Again, consider any of
the polynomially many subsequences of the regular representation of xt, xkt and
yijt which starts at time t = a and ends with t = b. After doubling the time
horizon, a new subsequence (x′

t, x
′
kt, y

′
ijt) is derived from (xt, xkt, yijt) such that

x′
2t = xa, x′

2t+1 = 0, x′
k,2t = 0 and x′

k,2t+1 = xka for t ∈ [a, b]. The workload
yijt is split accordingly, as described in Section 4.3.4. That is, we only need to
update the starting and ending time of every subsequence and we store the first
two slots of every subsequence and this pattern is then repeated till the end of
the subsequence.

Consider the job-partition procedure, in which we further double the whole
solution so as to obtain a solution in which a job is either entirely scheduled in
first stage reserved slots or entirely scheduled in second stage reserved slots. The
argumentation that this technique can be carried out in polynomial time and
why we retain regularity of the schedule representation is similar to the one given
for slow-motion, but now we store the first four slots of every subsequence which
define the whole reservation and scheduling pattern for the subsequence.

Finally we consider the procedure of accumulated and extra reservation to-
gether with the reassignment of the workload. For simplicity, we still denote
the regular sequences derived after all the above procedures as xt, xkt and yijt.
We only argue on xt and the corresponding workload. The argumentation for
xkt follows the same line, because we have split the schedule into first and sec-
ond stage. To get a contiguous schedule we omit the second-stage slots. First,
we simplify the schedule representation. Consider a subsequence with fractional
reservation, i.e., 0 < xt < 1 for some t in the subsequence. We aggregate all the
reservation of this subsequence and shift it to the beginning of the subsequence
so that we now have two subsequences, one with only fully reserved slots and
potentially one single slot with fractional reservation. The total workload of this
subsequence is reassigned accordingly, which is feasible, because no job is released
within a subsequence. Otherwise, we cut a subsequence into polynomially many
subsequences so that no job is released within a subsequence. Now, we only
have subsequences in which all the first-stage slots are fully reserved and we have



86 4 Cost-Aware Machine Scheduling under Data Uncertainty

single slots with fractional reservation. In the accumulative reservation step, we
define Xt =

∑t
h=0 xh and reserve a slot if the integral part, ⌊Xt⌋, increases by

1. Clearly, for every xt = 1 the time slot [t, t + 1) is reserved. Hence, for each
subsequence where xt = 1 for all first-stage slots all of the slots are reserved and
thus they form intervals of consecutively reserved time slots. Thus, applying the
accumulative reservation step to the polynomially many slots that are fraction-
ally reserved is sufficient. The placement of the extra reserved slots can also be
done in polynomial time, since the rounding step gives a polynomial number of
intervals with consecutively reserved slots.

Note that every slot in an interval of consecutively reserved time slots, i.e.,
Ih \ [th + 1, th + 2), is assigned the same workload. Therefore, when reassigning
the workload we only need to compute the claimed space from the first slot of
every interval Ih and the resulting workload profile for the second slot. The other
slots within the interval follow the profile of the second slot. This computation
can be done in polynomial time, because we have a regular solution. Note that
the extra reserved time slots also need to be handled separately, because we push
workload back if the release dates allow.

4.8 Conclusion and Open Problems
Inspired by the resource provisioning problem of cloud users, we proposed an op-
timization model that reflects two-stage decision processes in which computing re-
sources must be reserved under uncertainty about the set of computational tasks.
It leads to a new class of scheduling problems. We presented first results that
suggest higher approximation complexity than their single-stage single-scenario
versions. The quest for better approximations and/or lower bounds on the ap-
proximability is left for future research. We also leave open the approximability
of the equivalent non-preemptive scheduling problems with release dates. Notice
that the second-stage problem would not admit a constant approximation (see
Chapter 3), unless P = NP, when considering it independently of the first stage
problem. However, a two-stage algorithm may yield a constant-factor approxi-
mation. Our investigation also leaves open the computational complexity of the
two-stage robust version of 1 | pmtn, rj |Cmax.

Another interesting variation of the problem arises if a user may reserve ma-
chines individually, possibly at machine-dependent rates. We note that, even if
reservation costs are uniform over the machines, our proposed LP relaxation has
a non-constant integrality gap in this case.

Furthermore, it would be interesting to incorporate the idea of time-varying
reservation cost from Chapter 3 also into the two-stage model from this chapter
and see whether and how algorithmic techniques can be translated.



5
Scheduling Maintenance Jobs
in Networks

In this chapter, we investigate the problem of scheduling the maintenance of
edges in a network with the objective of preserving connectivity between two
distinguished vertices of the network. This problem is motivated by the servic-
ing and replacement in transportation and telecommunication networks which
requires a well-planned schedule to minimize the performance loss through tem-
porary outages. We distinguish the objectives of minimizing the total network
disruption time and maximizing the total time that the network is connected.

Our contributions are optimal algorithms, results on the computational com-
plexity and approximability for different variants of the problem and different
network structures. In Section 5.1, we give a formal problem definition, fol-
lowed by an overview of related work and our contributions in Section 5.2. In
Section 5.3, we show that the preemptive problem can be solved optimally in
polynomial time in arbitrary networks. However, any restriction on the job pre-
emption makes the problem considerably harder. Limiting the preemption to in-
tegral points in time makes the problem NP-hard and even inapproximable in the
minimization version. Fully disallowing preemption only increases the complexity
further; in Section 5.4, we give strong lower bounds on the approximability. Fur-
thermore, we give tight bounds on the power of preemption in Section 5.5, that
is, the maximum ratio of the values of non-preemptive and preemptive optimal
solutions. We show that it is non-constant, even on simple paths. Interestingly,
in such a network setting the preemptive as well as the non-preemptive problem
are known to be efficiently solvable, whereas we show in Section 5.6 that mixing
both leads to an NP-hard problem. Section 5.7 concludes this chapter and gives
an overview of open problems for future research.

5.1 Problem Definition
In the Connectivity problem, we are given a planning horizon T and an undi-
rected graph G = (V,E) with two distinguished vertices s+, s− ∈ V . We as-

87



88 5 Scheduling Maintenance Jobs in Networks

sume w. l. o. g that the graph is simple; we can replace a parallel edge {u,w}
by a new node v and two edges {u, v}, {v, w}. Every edge e ∈ E needs to un-
dergo pe ∈ Z≥0 time units of maintenance within the time window [re, de] with
re, de ∈ Z≥0, where re is called the release date and de is called the deadline of
the maintenance job for edge e. An edge e = {u, v} ∈ E that is maintained at
time t, is not available at t in the graph G. We consider preemptive and non-
preemptive maintenance jobs. If a job must be scheduled non-preemptively then,
once it is started, it must run until completion without any interruption. If a job
is allowed to be preempted, then its processing can be interrupted at any time
and may resume at any later time without incurring extra cost.

A schedule S for G assigns the maintenance job of every edge e ∈ E to
a single time interval (if non-preemptive) or a set of disjoint time intervals (if
preemptive) S(e) := {[a1, b1], . . . , [ak, bk]} with re ≤ ai ≤ bi ≤ de for i ∈ [k] and∑

[a,b]∈S(e)(b− a) = pe. If not specified differently, we let T = maxe∈E de. We do
not limit the number of simultaneously maintained edges.

For a given maintenance schedule, we say that the network G is disconnected
at time t if there is no path from s+ to s− in G at time t, otherwise we call
the network G connected at time t. The goal is to find a maintenance schedule
for the network G so that the total time where G is disconnected is minimized
(MinConnectivity). When designing approximation algorithms, it is also in-
teresting to consider the maximization variant of the problem. In this case, we
want to find a schedule that maximizes the total time where G is connected
(MaxConnectivity). To express that a statement in this chapter holds for
both objectives, we simply refer to Connectivity.

5.2 Related Work and Contributions
Related Work. To the best of our knowledge, the Connectivity problem
has not been studied yet. However, the concept of combining scheduling with
network problems has been considered by different communities lately. Boland
et al. [10–12] study the combination of non-preemptive arc maintenance in a
transport network, motivated by annual maintenance planning for the Hunter
Valley Coal Chain [13]. Their goal is to schedule maintenance such that the flow
over time through the network is maximized. They show strong NP-hardness for
their problem and describe various heuristics and IP-based methods to address
it. Also, they show in [11] that in their non-preemptive setting, if the input is
integer, there is always an optimal solution that starts all jobs at integer time
points. Their model is slightly more general than ours in the sense that they have
capacities on their network – thus, positive results carry over to our setting, but
hardness does not if it relies on the capacities. In [10], they consider a variant
of their problem, where the number of concurrently performable maintenances is
bounded by a constant.



5.2 Related Work and Contributions 89

Bley, Karch and D’Andreagiovanni [9] study how to upgrade a telecommuni-
cation network to a new technology employing a bounded number of technicians.
Their goal is to minimize the total service disruption caused by downtimes. A
major difference to our problem is that there is a set of given paths that shall
be upgraded and a path can only be used if it is completely upgraded or not
upgraded. They give ILP-based approaches for solving this problem and show
strong NP-hardness for a non-constant number of paths by reduction from the
linear arrangement problem.

Nurre et al. [67] consider the problem of restoring arcs in a network after a
major disruption, with restoration per time step being bounded by the available
work force. Such network design problems over time have also been considered
by Kalinowski, Matsypura and Savelsbergh [51].

In scheduling, minimizing the busy time refers to minimizing the amount of
time for which a machine is used. Such problems have applications for instance
in the context of energy management [65] or fiber management in optical net-
works [35]. They have been studied from the complexity and approximation point
of view in [18,35,54,65]. The problem of minimizing the busy time is equivalent
to our problem in the case of a path, because there we have connectivity at a time
point when no edge in the path is maintained, i. e., no machine is busy. Thus,
the results of Khandekar et al. [54] and Chang, Khuller and Mukherjee [18] have
direct implications for us. They show that minimizing busy time can be done effi-
ciently for purely non-preemptive and purely preemptive instances, respectively.

The power of preemption is a commonly used measure for the impact of pre-
emption in scheduling [16, 28, 72, 79]. Other terms used in this context include
price of non-preemption [26], benefit of preemption [68] and gain of preemp-
tion [44].

Our Contribution. Our contributions are optimal algorithms, results on the
computational complexity and approximability for different variants of the prob-
lem. We show that the preemptive problem variants can be solved optimally
in polynomial time, whereas any restriction on the job preemption makes the
problem considerably harder. For preemptive maintenance jobs, we show that
Connectivity can be solved optimally in polynomial time in arbitrary net-
works (Theorem 5.1). This result crucially requires that we are free to preempt
jobs at arbitrary points in time. As soon as this is limited in any way, the problem
complexity increases.

Under the restriction that we can preempt jobs only at integral points in time,
the problem becomes NP-hard. More specifically, unless P = NP, MaxCon-
nectivity does not admit a (2 − ε)-approximation algorithm for any ε > 0 in
this case, and MinConnectivity is inapproximable (Theorem 5.4). This is true
even for unit-size jobs. This complexity result is interesting and may be surpris-
ing, as it is in contrast to results for standard scheduling problems, without an
underlying network. Here, the restriction to integral preemption typically does



90 5 Scheduling Maintenance Jobs in Networks

not increase the problem complexity when all other input parameters are integral.
However, the same question remains open in a related problem concerning the
busy-time in scheduling, studied in [18, 19].

For non-preemptive instances, we establish that there is no
(c 3
√
|E|)-approximation algorithm for MaxConnectivity for some con-

stant c > 0 and that MinConnectivity is inapproximable even for parallel
paths, unless P = NP (Theorems 5.5 and 5.6). On the positive side, we
provide an (ℓ + 1)-approximation algorithm for MaxConnectivity in general
graphs (Theorem 5.9), where ℓ is the number of distinct latest start times
(deadline minus processing time) for jobs.

We use the notion power of preemption to capture the benefit of allowing arbi-
trary job preemption. It is defined as the maximum ratio of the objective values
of an optimal non-preemptive and an optimal preemptive solution. We show that
the power of preemption is Θ(log |E|) for MinConnectivity on a path (The-
orem 5.10) and unbounded for MaxConnectivity on a path (Theorem 5.13).
This is in contrast to other scheduling problems, where the power of preemption
is constant, e. g. [28, 72].

On paths, we show an interesting result concerning mixed instances of Con-
nectivity. We prove that these instances are weakly NP-hard (Theorem 5.14)
and give a simple 2-approximation algorithm for mixed instances of MinCon-
nectivity (Theorem 5.15). The hardness result is of particular interest, as both
purely non-preemptive and purely preemptive instances can be solved efficiently
on a path (see Theorem 5.1 and [54]).

5.3 Preemptive Scheduling
In this section, we consider Connectivity instances in which we allow jobs to
be preempted.

Theorem 5.1 Preemptive Connectivity on general graphs can be solved op-
timally in polynomial time.

We prove this result by establishing a linear program (LP) for MaxConnec-
tivity, showing that it is a relaxation of preemptive Connectivity, and that
any optimal solution to it can be turned into a feasible schedule with the same
objective function value.

Let {0} ∪ {re, de : e ∈ E} be the set of all relevant time points and let
I =: I1 ∪̇ . . . ∪̇ Ik be the partition of all unit-size time slots into consecutive
intervals such that two consecutive relevant time points form the boundary of
one interval in I. Note that k ≤ 2|E|. Define wi := |Ii| to be the length of
interval Ii. In our linear program, we model connectivity during interval Ii by
an (s+, s−)-flow x(i), i ∈ {1, . . . , k}. To do so, we add for every undirected edge
e = {u, v} two directed arcs (u, v) and (v, u). Let A be the resulting arc set. With



5.3 Preemptive Scheduling 91

each edge/arc we associate a capacity variable y
(i)
e , which represents the fraction

of availability of edge e in interval Ii. Hence, 1 − y
(i)
e gives the relative amount

of time spent on the maintenance of edge e in Ii. Additionally, the variable fi
expresses the fraction of availability for interval Ii. We consider the following
linear program.

max
k∑

i=1

wi · fi (5.1)

s.t.
∑

u:(v,u)∈A

x
(i)
(v,u) −

∑
u:(u,v)∈A

x
(i)
(u,v) =


fi ∀ i ∈ [k], v = s+,

0 ∀ i ∈ [k], v ∈ V \ {s+, s−},
−fi ∀ i ∈ [k], v = s−,

(5.2)

∑
i:Ii⊆[re,de]

(1− y(i)e )wi ≥ pe ∀ e ∈ E, (5.3)

x
(i)
(u,v), x

(i)
(v,u) ≤ y

(i)
{u,v} ∀ i ∈ [k], {u, v} ∈ E, (5.4)

fi ≤ 1 ∀ i ∈ [k], (5.5)
x
(i)
(u,v), x

(i)
(v,u), y

(i)
{u,v} ∈ [0, 1] ∀ i ∈ [k], {u, v} ∈ E. (5.6)

Lemma 5.2 The given LP is a relaxation of the preemptive Connectivity
problem on general graphs.

Proof. Given a feasible maintenance schedule, consider an arbitrary interval Ii,
i ∈ {1, . . . , k}, and let [ai1, b

i
1] ∪̇ . . . ∪̇ [aimi

, bimi
] ⊆ Ii be all intervals where s+ and

s− are connected in interval Ii. We set fi =
∑mi

ℓ=1(b
i
ℓ − aiℓ)/wi and set y

(i)
e to the

fraction of time where edge e is not maintained in interval Ii. Note that (5.3) is
automatically fulfilled, since we consider a feasible schedule. It is left to construct
a feasible flow x(i) for the fixed variables fi and y(i) for all i = 1, . . . , k.

Whenever the given schedule admits connectivity we can send one unit of flow
from s+ to s− along some directed path in G. Moreover, in intervals where the
set of processed edges does not change we can use the same path for sending the
flow. Let [a, b] ⊆ Ii be an interval where the set of processed edges does not
change and in which we have connectivity. Let Ci be the collection of all such
intervals in Ii. Then, we send a flow x

(i)
[a,b] from s+ to s− along any path of total

value (b−a)/wi using only arcs for which the corresponding edge is not processed
in [a, b]. The flow x(i) =

∑
[a,b]∈Ci x

(i)
[a,b], which is a sum of vectors, gives the desired

flow. The constructed flow x(i) respects the flow conservation (5.2) and uses no
arc more than the corresponding y

(i)
e , since flow x(i) is driven by the schedule. □

Lemma 5.3 Any feasible LP solution can be turned into a feasible maintenance
schedule at no loss in the objective function value.



92 5 Scheduling Maintenance Jobs in Networks

Proof. Let (x, y, f) be a feasible solution of the given LP and let
P i := (P i

1, . . . , P
i
λi
) be a path decomposition of the (s+, s−)-flow x(i) for an arbi-

trary interval Ii := [ai, bi], i ∈ {1, . . . , k}, after deleting all flow from possible cir-
culations. Furthermore, let x(P i

ℓ ) be the value of the (s+, s−)-flow x(i) sent along
the directed path P i

ℓ . For each arc a ∈ A we have that
∑

ℓ∈[λi]:a∈P i
ℓ
x(P i

ℓ ) = x
(i)
a

by the definition of P i. Hence, we get
∑

ℓ∈[λi]
x(P i

ℓ ) = fi ≤ 1 by using (5.5). We
now divide the interval Ii into disjoint subintervals to allocate connectivity time
for each path in our path decomposition. More precisely, we do not maintain any
arc (u, v) (resp. edge {u, v}) contained in P i

ℓ , ℓ = 1, . . . , λi, in the time interval

[ai +
ℓ−1∑
m=1

wi · x(P i
m), ai +

ℓ∑
m=1

wi · x(P i
m)] of length wi · x(P i

ℓ ).

Inequality (5.4) and
∑

ℓ∈[λi]:a∈P i
ℓ
x(P i

ℓ ) = x
(i)
a thereby ensure that by now the total

time where edge e does not undergo maintenance in interval Ii equals at most
wi ·y(i)e time units. By Inequality (5.3), we can thus distribute the processing time
of the job for edge e among the remaining slots of all intervals Ii, i = 1, . . . , k.
For instance, we could greedily process the job for edge e as early as possible in
available intervals. Note that arbitrary preemption of the processing is allowed.
By construction, we have connectivity on path P i

ℓ , ℓ = 1, . . . , λi, for at least
wi · x(P i

ℓ ) time units in interval Ii. Thus, the constructed schedule has total
connectivity time of at least

∑k
i=1wi

∑λi

ℓ=1 x(P
i
ℓ ) =

∑k
i=1wi · fi. □

The statement of Theorem 5.1 crucially relies on the fact that we may pre-
empt jobs arbitrarily. However, if we allow jobs to be preempted only at in-
tegral points in time, that is, we allow only schedules S such that all intervals
in S(e) := {[a1, b1], . . . , [ak, bk]}, e ∈ E, have integral boundaries, then the com-
plexity of the problem changes. We prove the following theorem later in more
generality. In fact, it is a corollary of Theorem 5.5. Interestingly, it holds already
for instances with unit-size jobs only.

Theorem 5.4 MaxConnectivity with preemption only at integral time
points is NP-hard and does not admit a (2 − ε)-approximation algorithm for
any ε > 0, unless P = NP. Furthermore, MinConnectivity with preemption
only at integral time points is inapproximable.

Proof. See the proof of Theorem 5.5 below and set t1 = 0, t2 = 1, and T = 2.□

For unit-size jobs we can simplify the given LP by restricting to the first |E|
slots within every interval Ii. This, in turn, allows to consider intervals of unit-
size, i.e., we have wi = 1 for all intervals Ii, which affects constraint (5.3). How-
ever, one can show that the constraint matrix of this LP is generally not totally
unimodular. We illustrate the behaviour of the LP with the help of the following



5.4 Non-Preemptive Scheduling 93

exemplary instance in Figure 5.1, in which all edges have unit-size jobs associated
and the label of an edge e represents (re, de). It is easy to verify that a schedule
that preempts jobs only at integral time points, has maximum connectivity time
of one. However, the following schedule with arbitrary preemption has connectiv-
ity time of two. We process {s+, v2} in [0, 0.5]∪[1, 1.5], {s+, v3} in [0.5, 1]∪[1.5, 2],
{v4, s−} in [0, 0.5] ∪ [1.5, 2], {v5, s−} in [0.5, 1.5], and the other edges are fixed
by their time window. Moreover, one can verify that the constraint matrix of
the corresponding LP for this instance is not totally unimodular. This instance
shows that the integrality gap of the LP is at least two.

s+

v2

v3

v4

v5

s−
(0,

2)

(0, 2)

(1, 2)
(0, 1)

(0
, 1
)

(1, 2)

(0, 2)

(0,
2)

Figure 5.1: Example for the difference between arbitrary preemption and pre-
emption only at integral time points.

5.4 Non-Preemptive Scheduling

In this section, we show that there is no (c 3
√
|E|)-approximation algorithm

for non-preemptive MaxConnectivity for some c > 0 and that Min-
Connectivity is inapproximable, unless P = NP. Furthermore, we give an
(ℓ+ 1)-approximation algorithm, where ℓ := |{de − pe | e ∈ E}| is the number
of distinct latest start times for jobs. We begin with the hardness results for
MaxConnectivity. Before we can show no (c 3

√
|E|)-approximation algorithm

exists, unless P = NP, we show a weaker result which provides us with a crucial
gadget for the stronger result.

5.4.1 Complexity
Theorem 5.5 Non-preemptive MaxConnectivity does not admit a
(2− ε)-approximation algorithm for any ε > 0 and MinConnectivity is
inapproximable, unless P = NP. This holds even for unit-size jobs.

Proof. We show that the existence of a (2−ε)-approximation algorithm for non-
preemptive MaxConnectivity allows to distinguish between Yes- and No-
instances of 3SAT in polynomial time.



94 5 Scheduling Maintenance Jobs in Networks

3SAT

Given: Clauses C1, C2, . . . , Cm of exactly three variables in
X = {x1, x2, . . . , xn}.

Task: Decide if there is a truth assignment to the variables in X that
satisfies all clauses.

Given an instance of the strongly NP-complete 3SAT problem, we construct
the following instance of non-preemptive MaxConnectivity. We pick two ar-
bitrary but distinct time points t1 + 1 ≤ t2 and a polynomially bounded time
horizon T . We construct our instance such that connectivity is impossible out-
side [t1, t1 + 1] and [t2, t2 + 1]. For this, s+ is followed by a path P from s+ to a
vertex s′ composed of three edges that disconnect s+ from s− in the time intervals
[0, t1], [t1+1, t2], and [t2+1, T ]. These edges e have pe = de−re. Furthermore, we
construct the network such that the total connectivity time is greater than one if
and only if the 3SAT-instance is a Yes-instance. And we show that if the total
connectivity time is greater than one, then there is a schedule with maximum
total connectivity time of two.

Let Y (xi) be the set of clauses containing the literal xi and Z(xi) be the set
containing ¬xi. Also set ki = 2|Y (xi)| and ℓi = 2|Z(xi)|. We define the following
node sets

• V1 := {y1i , . . . , y
ki
i | i = 1, . . . , n},

• V2 := {z1i , . . . , z
ℓi
i | i = 1, . . . , n},

• V3 := {cr | r = 1, . . . ,m+ 1},

• V4 := {vi | i = 1, . . . , n+ 1}

and set V =
∪4

j=1 Vj ∪ {v : v ∈ P} ∪ {s−}. We introduce three edge types

• E1 := {e ∈ E : re = t1, de = t2 + 1, pe = t2 − t1},

• E2 := {e ∈ E : re = t1, de = t1 + 1, pe = 1}, and

• E3 := {e ∈ E : re = t2, de = t2 + 1, pe = 1}.

The graph G = (V,E) consists of variable gadgets, shown in Figure 5.2, to which
we connect the clause nodes cr, r = 1, . . . ,m + 1. We define the following edge
sets for the variable gadgets, namely,

• E1 := {{s′, v1}, {vn+1, s
−}} of type E2,

• E2 := {{vi, y1i }, {vi, z1i }, {y
ki
i , vi+1}, {zℓii , vi+1} : i = 1, . . . , n} of type E2,

• E3 := {{yqi , y
q+1
i } : i = 1, . . . , n; q = 1, 3, . . . , ki − 3, ki − 1} of type E1,

• E4 := {{zqi , z
q+1
i } : i = 1, . . . , n; q = 1, 3, . . . , ℓi − 3, ℓi − 1} of type E1,



5.4 Non-Preemptive Scheduling 95

• E5 := {{yqi , y
q+1
i } : i = 1, . . . , n; q = 2, 4, . . . , ki − 4, ki − 2} of type E2, and

• E6 := {{zqi , z
q+1
i } : i = 1, . . . , n; q = 2, 4, . . . , ℓi − 4, ℓi − 2} of type E2.

Note that a variable xi may only appear positive (ℓi = 0) or only negative (ki = 0)
in our set of clauses. In this case, we also have an edge of type E2 connecting vi and
vi+1 besides the construction for the negative (z nodes) or positive part (y nodes).
Finally, we add edges to connect the clause nodes to the graph. If some positive
literal xi appears in clause Cr and Cr is the q-th clause with positive xi, we add the
edges {cr, y2q−1

i } and {y2qi , cr+1} both of type E3. Conversely, if some xi appears
negated in Cr and Cr is the q-th clause with ¬xi, we add the edges {cr, z2q−1

i } and
{z2qi , cr+1} both of type E3. We also connect c1 and cm+1 to the graph by adding
{s′, c1} and {cm+1, s

−} of type E3. We define E to be the union of all introduced
edges. Observe that the network G has O(n+m) nodes and edges.

vi

y1i

z1i

y2i

z2i

y3i

z3i

ykii

zℓii

vi+1

cr cr+1 cr+2 cr+3. . . . . .

E1 E2

E3

Figure 5.2: Schematic representation of the gadget for variable xi, which appears
negated in clause Cr and positive in clause Cr+2 among others.

We call an (s+, s−)-path that contains no node from V3 a variable path and
an (s+, s−)-path with no node from V4 a clause path. An (s+, s−)-path contain-
ing edges of type E2 and E3 does not connect s+ with s− in [t1, t1 + 1] or in
[t2, t2 + 1]. Therefore, all paths other than variable paths and relevant clause
paths are irrelevant for the connectivity of s+ with s−.

When maintaining all edges of type E1 in [t1, t2], we have connectivity in
[t2, t2 + 1] exactly on all variable paths. Conversely, maintaining all edges of
type E1 in [t1 + 1, t2 + 1] yields connectivity in [t1, t1 + 1] exactly on all relevant
clause paths. On the other hand, any clause path can connect s+ with s− only
in [t1, t1 + 1] and any variable path only in [t2, t2 + 1]. We now claim that there
is a schedule with total connectivity time greater than one if and only if the
3SAT-instance is a Yes-instance.

Let S be a schedule with total connectivity time greater than one. Then there
is a variable path P v with positive connectivity time in [t2, t2 + 1] and a clause



96 5 Scheduling Maintenance Jobs in Networks

path P c with positive connectivity time in [t1, t1 + 1]. As the total connectivity
time is greater than one, P c cannot walk through both the positive part (y nodes)
and the negative part (z nodes) of the gadget for any variable xi. This allows
to assume w.l.o.g. that P v and P c are disjoint between s′ and s−. Say P v and
P c share an edge on the negative part (z nodes) of the gadget for variable xi.
Then we can redirect the variable path P v to the positive part (y nodes) without
decreasing the total connectivity time. The same works if they share an edge on
the positive part.

Now set xi to False if P v uses the nodes y1i , . . . , y
ki
i , that is the upper part

of the variable gadget, and to True otherwise. With this setting, whenever
P c uses edges of a variable gadget, e.g. the sequence cr, z

2q−1
i , z2qi , cr+1 for some

r, q, disjointness of P v and P c implies that clause Cr is satisfied with the truth
assignment of variable xi. Since every node pair cr, cr+1 is only connected with
paths passing through variable gadgets, and at least one of them belongs to P c

we conclude that every clause Cr is satisfied.
Consider a satisfying truth assignment. We define a schedule that admits a

variable path P v with connectivity in [t2, t2 + 1]. This path P v uses the upper
part (yi-part) if xi is set to False and the lower part (zi-part) if xi is set to
True. That is, we maintain all edges of type E1 on the upper path (yi-path) of
the variable gadget for xi in [t1, t2] if xi is False and in [t1 + 1, t2 + 1] if xi is
True. Conversely, edges of type E1 on the lower path (zi-path) of the variable
gadget for xi are maintained in [t1, t2] if xi is True and in [t1 + 1, t2 + 1] if xi is
False. This implies for the part of the gadget for xi that is not used by P v that
the corresponding edges of type E1 are scheduled to allow connectivity during
[t1, t1 + 1]. These edges can be used in a clause path to connect node cr with
cr+1 for some clauses Cr that is satisfied by the truth assignment of xi. Since all
clauses are satisfied by some variable xi there exists a clause path P c admitting
connectivity in [t1, t1+1]. Therefore, the constructed schedule allows connectivity
during both intervals [t1, t1 + 1] and [t2, t2 + 1].

For t1 = 0, t2 = 1, and T = 2, this construction uses only unit-size jobs, and
in the MinConnectivity case Yes-instances have an objective value of 0 and
No-instances a value of 1. □

We reuse the construction in the proof of Theorem 5.5 repeatedly to obtain
the following improved lower bound.
Theorem 5.6 There is a constant c > 0 such that there does not exist a
(c 3
√
|E|)-approximation algorithm for non-preemptive MaxConnectivity, un-

less P = NP.

Proof. We reuse the construction in the proof of Theorem 5.5 to construct a
network that has maximum connectivity time n if the given 3SAT instance is
a Yes-instance and maximum connectivity time 1 otherwise. This implies that
there cannot be an (n − ε)-approximation algorithm for non-preemptive Max-
Connectivity, unless P = NP. Here, n is again the number of variables in the



5.4 Non-Preemptive Scheduling 97

given 3SAT instance. Note that the construction in the proof of Theorem 5.5
has Θ(n) maintenance jobs and thus there exists a constant c1 > 0 such that
|E| ≤ c1 ·n. In this proof, we will introduce Θ(n2) copies of the construction and
thus |E| ≤ c2 · n3 for some c2 > 0, which gives that n ≥ c3

3
√
|E| for some c3 > 0.

This gives the statement.
For the construction, we use n2 − n copies of the 3SAT-network from the

proof of Theorem 5.5, where each one uses different (t1, t2)-combinations with
t1, t2 ∈ {0, . . . , n − 1} and t1 ̸= t2. We use these copies as 3SAT-gates and
mutually connect them as depicted in Figure 5.3. Recall that for one such 3SAT-
network we have the freedom of choosing the intervals [t1, t1 + 1] and [t2, t2 + 1],
which are relevant for connectivity. This choice now differs for every 3SAT-gate.

3-SAT
0

0

0

0

3-SAT
0

1

0

1

3-SAT
0

2

0

2

3-SAT
0

3

0

3

3-SAT
0

n-1

0

n-1

3-SAT
1

0

1

0

3-SAT
1

1

1

1

3-SAT
1

2

1

2

3-SAT
1

3

1

3

3-SAT
1

n-1

1

n-1

3-SAT
2

0

2

0

3-SAT
2

1

2

1

3-SAT
2

2

2

2

3-SAT
2

3

2

3

3-SAT
2

n-1

2

n-1

3-SAT
3

0

3

0

3-SAT
3

1

3

1

3-SAT
3

2

3

2

3-SAT
3

3

3

3

3-SAT
3

n-1

3

n-1

3-SAT
n-1

0

n-1

0

3-SAT
n-1

1

n-1

1

3-SAT
n-1

2

n-1

2

3-SAT
n-1

3

n-1

3

3-SAT
n-1

n-1

n-1

n-1

. . .

s+ s−

...

. . .

...

. . .

...

. . .

...

. . .

. . .

Figure 5.3: Schematic representation of the network of 3SAT-gates.

Think of the construction as an (n × n)-matrix M with an empty diagonal.
Entry (i, j), i, j ∈ {0, . . . , n − 1}, in M corresponds to a 3SAT-gate in that
variable paths only exist in time slot [i, i+1] and relevant clause paths exist only
in [j, j + 1]. This is enforced by the edges of type E2, which prevent variable
paths in [j, j + 1], and edges of type E3, which prevent relevant clause paths in
[i, i+ 1]. Edges between the s+-copy and s′-copy of the 3SAT-gate(i, j) prevent
connectivity outside of [i, i+ 1] and [j, j + 1]. Note that now

• E1 := {e ∈ E : re = i, de = j + 1, pe = j − i} if i < j, and

• E1 := {e ∈ E : re = j, de = i+ 1, pe = i− j} if i > j.



98 5 Scheduling Maintenance Jobs in Networks

The s+-copy of the 3SAT-gate(i, j) is connected to two paths, where one
of them allows connectivity only during [i, i + 1] and the other one only during
[j, j+1]. The same is done for the s−-copy of the 3SAT-gate(i, j). In Figure 5.3,
this is illustrated by labels on the paths. A label i ∈ {0, . . . , n− 1} means, that
this path allows connectivity only during [i, i + 1]. The upper path connected
to a 3SAT-gate specifies the time slot, where variable paths may exist, and
the lower path specifies the time slot, where relevant clause paths may exist.
When following the path with label k ∈ {0, . . . , n − 1}, we pass the gadgets
in column j = 0, . . . , k − 1 on the lower path having j on the upper path. In
column k, we walk through all gadgets on the upper path and then we proceed
with column j = k + 1, . . . , n− 1 on the lower path having j again on the upper
path. Eventually, we connect the 3SAT-gate(n− 1, k) to the vertex s−.

Note that within 3SAT-gate(i, j) we have connectivity during [i, i + 1] and
[j, j + 1] if and only if the corresponding 3SAT-instance is a Yes-instance. Also
notice that we can assume due to [11] that all jobs start at integral times, which
allows us to ignore schedules with fractional job starting times and therefore
fractional connectivity within a time interval [i, i+1]. Now, if the 3SAT-instance
is a Yes-instance, there is a global schedule such that its restriction to every gate
3SAT-gate(i, j) allows connectivity during both intervals. Thus for each label
k ∈ {0, . . . , n−1} there exists a path with this label that has connectivity during
[k, k + 1]. This implies that the maximum connectivity time is n.

Conversely, suppose there exists a global schedule with connectivity during
[i, i + 1] and [j, j + 1] for some i ̸= j. Then there must exist two paths P1, P2

from s+ to s− with two distinct labels i and j, each realizing connectivity during
one of both intervals. By construction they walk through the 3SAT-gate(i, j).
This implies by the proof of Theorem 5.5, that the global schedule restricted to
this gate corresponds to a satisfying truth assignment for the 3SAT-instance.
That is, the 3SAT-instance is a Yes-instance. With the previous observation, it
follows that an optimal schedule has maximum connectivity time of n. □

The results above were for general graphs, but even for graphs as simple as
parallel paths, the problem does not become easy, as the following theorem shows.

Theorem 5.7 Non-preemptive Connectivity is strongly NP-hard even on par-
allel paths, and non-preemptive MinConnectivity is inapproximable even on
parallel paths.

Proof. We reduce from the strongly NP-complete 3SAT problem consisting of m
clauses C1, C2, . . . , Cm each of exactly three variables in X = {x1, x2, . . . , xn}. We
construct a network with 2n paths from s+ to s−, two for each variable of the
3SAT instance. Let Pi and P̄i denote the two paths for variable xi. We will
introduce several maintenance jobs for each path, understanding that each new
job is associated with a different edge of the path. Since the ordering of these edges
does not matter, we will directly associate each job with a path without explicitly



5.4 Non-Preemptive Scheduling 99

specifying the respective edge of the job. The network will allow a schedule that
maintains connectivity if and only if the 3SAT instance is satisfiable.

For convenience, assume that n ≥ m, otherwise we introduce additional
dummy variables. We define a time horizon T = 8n that we subdivide into
five intervals A = [0, 2n), B = [2n, 3n), C = [3n, 5n), D = [5n, 6n), E = [6n, 8n].
For each variable xi, we define a job each on paths Pi and P̄i with the time win-
dow [0, T ] and processing time 3n. We will ensure that neither job is scheduled
to cover the time interval C entirely in any feasible schedule for the Connec-
tivity problem. This implies that a variable job either covers B or D without
intersecting the other. The job on Pi (resp. P̄i) covering B will correspond to the
literal xi (resp. x̄i) being set to True. We will of course ensure that not both
literals can be set to True simultaneously, but we will allow both to be False,
which simply means that the truth assignment remains satisfying, no matter how
the variable is set.

In the following, we introduce blocking jobs that all have a time window of unit
length and unit processing time. In this way, introducing a blocking job at time t
simply renders the corresponding path unusable during the time interval [t, t+1).
To ensure that the variable jobs for variable xi do not cover C completely, we add
a blocking job at time ti = 3n+2(i− 1) to all paths except Pi and a blocking job
at time t′i = 3n+2(i−1)+1 to all paths except P̄i. The first job forces the variable
job for the literal xi not to cover C completely, since otherwise connectedness is
interrupted during the time interval [ti, t′i). The second blocking job accomplishes
the same for the literal x̄i. Note that the blocking jobs for each literal occupy a
unique part of the time window C.

In order to force at most one literal of each variable xi to be set to True,
we introduce a blocking job at time t′′i = 2n+ (i− 1) on all paths except Pi and
P̄i. These blocking jobs ensure that either path Pi or P̄i must be free during
time [t′′i , t

′′
i +1), which means not both variable jobs may be scheduled to cover B

(recall each variable job either covers B or D without intersecting the other).
Again, the blocking jobs for each variable occupy a unique part of the time
window B.

For each clause Cj we introduce a blocking job at time 5n + j on each path
except the three paths that correspond to literals in Cj. These blocking jobs
force that at least one of the literals of the clause has to be set to True, i.e., be
scheduled to overlap B instead of D, otherwise connectivity is interrupted during
time [5n+ j, 5n+ j+1). Note again that the blocking jobs for each clause occupy
a unique part of the time window D.

It is now easy to verify that each satisfying truth assignment leads to a feasi-
ble schedule without disconnectedness for the Connectivity problem and vice
versa. □



100 5 Scheduling Maintenance Jobs in Networks

5.4.2 An Approximation Algorithm
We now give an algorithm that computes an (ℓ + 1)-approximation for non-
preemptive MaxConnectivity, where ℓ ≤ |E| is the number of different time
points de−pe, e ∈ E. The basic idea is that we consider a set of ℓ+1 feasible main-
tenance schedules, whose total time of connectivity upper bounds the maximum
total connectivity time of a single schedule. Then the schedule with maximum
connectivity time among our set of ℓ+ 1 schedules is an (ℓ+ 1)-approximation.

The schedules we consider start every job either immediately at its release
date, or at the latest possible time. In the latter case it finishes exactly at the
deadline. More precisely, for a fixed time point t, we start the maintenance of all
edges e ∈ E with de − pe ≥ t at their latest possible start time de − pe. All other
edges start maintenance at their release date re. This yields at most ℓ+1 ≤ |E|+1
different schedules St, as for increasing t, each time point where de− pe is passed
for some edge e defines a new schedule. Algorithm 1 formally describes this
procedure, where E(t) := {e ∈ E : e is not maintained at t}.

Input: MaxConnectivity instance.
Output: (ℓ+ 1)-approximate schedule S.

1: Let t1 < · · · < tℓ be all different time points de − pe, e ∈ E.
2: Let t0 = 0 and tℓ+1 = T .
3: Let Si be the schedule, where all edges e with de − pe < ti start main-

tenance at re and all other edges at de − pe, i = 1, . . . , ℓ+ 1.
4: For each Si, initialize total connectivity time c(ti)← 0, i = 1, . . . , ℓ+ 1.
5: for i = 1 to ℓ+ 1 do
6: Partition the interval [ti−1, ti] into subintervals such that each time

point re, re + pe, de, e ∈ E, in this interval defines a subinterval bound.
7: for all subintervals [a, b] ⊆ [ti−1, ti] do
8: if (V,E(1/2 · (a+ b))) contains an (s+, s−)-path for Si then
9: Increase c(ti) by b− a.

10: return Schedule Si for which c(ti), i = 1, . . . , ℓ+ 1, is maximized.

Algorithm 1: Approximation Algorithm for Non-preemptive MaxCon-
nectivity

Algorithm 1 considers finitely many intervals in total, as all (sub-)interval
bounds are defined by a time point re, re + pe, de − pe or de of some e ∈ E. As
we can check the network for (s+, s−)-connectivity in polynomial time, and the
algorithm does this for each (sub-)interval, Algorithm 1 runs in polynomial time.
For the proof of the approximation factor, the following lemma is crucial.

Lemma 5.8 Consider a given MaxConnectivity instance and a time inter-
val [a, b] that does not contain any of the time points re, re + pe, de − pe, de
for any e ∈ E in its interior. Consider the schedule S, where every edge
e ∈ E with de − pe < b starts maintenance at its release date re and all other



5.5 Power of Preemption 101

edges at de − pe. If there is a schedule that allows an (s+, s−)-path at a time
point t ∈ (a, b), then we have connectivity for the whole time interval [a, b] in the
schedule S.

Proof. Observe first, as no time point re, re + pe, de − pe or de of an edge e ∈ E
lies in the interior of [a, b], any edge maintained within [a, b] in the schedule S
is actually maintained for the complete interval. Now consider an edge e that is
maintained within [a, b] in S. The maintenance for e cannot start at time de−pe,
as we choose this start time only if de − pe ≥ b. From de − pe < b it follows that
de−pe ≤ a. This, however, means that the job for e starts in any feasible schedule
before or at time point a. The job is scheduled in S at time re and finishes at
time re + pe. As edge e is maintained during the complete time interval [a, b], we
have b ≤ re + pe. This means the job for e finishes in any feasible schedule after
time point b and thus edge e is maintained in any feasible schedule during the
complete interval [a, b]. Therefore, if there is no connectivity in [a, b] for S, then
there is also no connectivity during this interval for any other feasible schedule.□

Using this lemma, we can prove the approximation guarantee for our algorithm.

Theorem 5.9 When ℓ ≤ |E| is the number of different time points de−pe, e ∈ E,
Algorithm 1 is an (ℓ+1)-approximation algorithm for non-preemptive MaxCon-
nectivity on general graphs.

Proof. Observe first, that all schedules Si, i = 1, . . . , ℓ+1, as we defined them, are
feasible. Let c(ti) be the connectivity time of schedule Si. Then, by Lemma 5.8,
the optimal schedule has total connectivity time no greater than

∑ℓ+1
i=1 c(ti). This

is because at any time point t, where the network is connected in the optimal
schedule, the schedule Si where t ∈ [ti−1, ti] is also connected. The algorithm
returns a schedule Si that maximizes c(ti), which completes the proof. □

5.5 Power of Preemption
In this section, we investigate the power of preemption the for Connectivity.
We first focus on MinConnectivity on a path and analyze how much we can
gain by allowing preemption.

First, we show that there is an algorithm that computes a non-preemptive
schedule whose value is bounded by O(log |E|) times the value of an optimal
preemptive schedule. Second, we argue that one cannot gain more than a factor
of Ω(log |E|) by allowing preemption.

Theorem 5.10 The power of preemption is Θ(log |E|) for MinConnectivity
on a path.



102 5 Scheduling Maintenance Jobs in Networks

Observe that if at least one edge of a path is maintained at time t, then the
whole path is disconnected at t. We first give an algorithm for MinConnec-
tivity on a path that constructs a non-preemptive schedule with cost at most
O(log |E|) times the cost of an optimal preemptive schedule.

We first compute an optimal preemptive schedule. This can be done in poly-
nomial time by Theorem 5.1. Let xt be a variable that is 1 if there exists a job j
that is processed at time t and 0 otherwise. We shall refer to x also as the main-
tenance profile. Furthermore, let a :=

∫ T

0
xt dt be the active time, i.e., the total

time of maintenance. Then we apply the following splitting procedure. We com-
pute the time point t̄ where half of the maintenance is done, i.e.,

∫ t̄

0
xt dt = a/2.

Let E(t) := {e ∈ E | re ≤ t ∧ de ≥ t} and pmax := maxe∈E(t) pe. We reserve the
interval [t̄− pmax, t̄+ pmax] for the maintenance of the jobs in E(t̄), although we
might not need the whole interval. We schedule each job in E(t̄) around t̄ so that
the processing time before and after t̄ is the same. If the release date (deadline)
of a jobs does not allow this, then we start (complete) the job at its release date
(deadline). Then we mark the jobs in E(t̄) as scheduled and delete them from
the preemptive schedule.

Initial
Recursion 1
Recursion 2

t̄

Figure 5.4: A sketch of the splitting procedure and the reserved intervals.

This splitting procedure splits the whole problem into two separate instances
E1 := {e ∈ E | de < t̄} and E2 := {e ∈ E | re > t̄}. Note that in each of these
sub-instances the total active time in the preemptive schedule is at most a/2.
We apply the splitting procedure to both sub-instances and follow the recursive
structure of the splitting procedure until all jobs are scheduled.

Lemma 5.11 For MinConnectivity on a path, the given algorithm constructs
a non-preemptive schedule with cost O(log |E|) times the cost of an optimal
preemptive schedule.

Proof. The progression of the algorithm can be described by a binary tree in
which a node corresponds to a partial schedule generated by the splitting proce-
dure for a subset of the job and edge set E. The root node corresponds to the
partial schedule for E(t̄) and the (possibly) two children of the root correspond
to the partial schedules generated by the splitting procedure for the two subprob-
lems with initial job sets E1 and E2. We can cut a branch if the initial set of
jobs is empty in the corresponding subproblem. We associate with every node v
of this tree B two values (sv, av) where sv is the number of scheduled jobs in the
subproblem corresponding to v and av is the amount of maintenance time spent
for the scheduled jobs.



5.5 Power of Preemption 103

The binary tree B has the following properties. First, sv ≥ 1 holds for all
v ∈ B, because the preemptive schedule processes some job at the midpoint t̄v
which means that there must be a job e ∈ E with re ≤ t̄v ∧ de ≥ t̄v. This
observation implies that the tree B can have at most |E| nodes and since we
want to bound the worst total cost we can assume w.l.o.g. that B has exactly
|E| nodes. Second,

∑
v∈B av =

∫ T

0
yt dt where yt is the maintenance profile of the

non-preemptive solution.
The cost av of the root node (level-0 node) is bounded by 2pmax ≤ 2a. The

cost of each level-1 node is bounded by 2 · a/2 = a, so the total cost on level 1 is
also at most 2a. It is easy to verify that this is invariant, i.e., the total cost at
level i is at most 2a for all i ≥ 0, since the worst node cost av halves from level
i to level i + 1, but the number of nodes doubles in the worst case. We obtain
the worst total cost when B is a complete balanced binary tree. This tree has
at most O(log |E|) levels and therefore the worst total cost is a ·O(log |E|). The
total cost of the preemptive schedule is a. □

We now provide a matching lower bound for the power of preemption for Min-
Connectivity on a path.

Lemma 5.12 The power of non-preemption is Ω(log |E|) for MinConnectiv-
ity on a path.

Proof. We construct a path with |E| edges and divide the |E| jobs into ℓ levels
such that level i contains exactly i jobs for 1 ≤ i ≤ ℓ. Hence, we have |E| =
ℓ(ℓ+1)/2 jobs. Let P be a sufficiently large integer such that all of the following
numbers are integers. Let the jth job of level i have release date (j − 1)P/i,
deadline (j/i)P , and processing time P/i, where 1 ≤ j ≤ i. Note that now no
job has flexibility within its time window, and thus the value of the resulting
schedule is P .

Level 1
Level 2
Level 3

Figure 5.5: A rough sketch of the instance for 3 levels.

We now modify the instance as follows. At every time point t where at least
one job has a release date and another job has a deadline, we stretch the time
horizon by inserting a gap of size P. This stretching at time t can be done by
adding a value of P to all time points after the time point t, and also adding
a value of P to all release dates at time t. The deadlines up to time t remain
the same. Observe that the value of the optimal preemptive schedule is still P ,
because when introducing the gaps we can move the initial schedule accordingly
such that we do not maintain any job within the gaps of size P . Figure 5.5 shows
a rough sketch of this construction.



104 5 Scheduling Maintenance Jobs in Networks

We now consider the optimal non-preemptive schedule. The cost of scheduling
the only job at level 1 is P . In parallel to this job we can schedule at most one
job from each other level, without having additional cost. This is guaranteed by
the introduced gaps. At level 2 we can fix the remaining job with additional cost
P/2. As before, in parallel to this fixed job, we can schedule at most one job from
each level i where 3 ≤ i ≤ ℓ. Applying the same argument to the next levels, we
notice that for each level i we introduce an additional cost of value P/i. Thus
the total cost is at least

∑ℓ
i=1 P/i ∈ Ω(P log ℓ) with ℓ ∈ Θ(

√
|E|). □

For MaxConnectivity, preemption is even more crucial, as the power of
preemption can be unbounded, as the next example shows.

Theorem 5.13 For non-preemptive MaxConnectivity on a path the power
of preemption is unbounded.

Proof. Consider a path of four consecutive edges e1 = {s+, u}, e2 = {u,w},
e3 = {w, v}, e4 = {v, s−}, each associated with a maintenance job as depicted
in Figure 5.6. That is, r1 = r2 = 0, d1 = r3 = p1 = p4 = 1, p2 = p3 = 2,
r4 = d2 = 3, d3 = d4 = 4.

t
1 2 3 4

e1
e2
e3
e4

Figure 5.6: Example for an unbounded power of preemption.

There is no non-preemptive schedule that allows connectivity at any point in
time, as the maintenance job of edge ei blocks edge ei in time slot [i − 1, i]. On
the other hand, when allowing preemptive schedules, we can process the job of
edge e2 in [0, 2] and the job of edge e3 in [1, 2] and [3, 4]. Then no maintenance
job is scheduled in the time interval [2, 3] and therefore we have connectivity for
one unit of time. □

5.6 Mixed Scheduling
We know that both the non-preemptive and preemptive Connectivity on a
path are solvable in polynomial time by Theorem 5.1 and [54], respectively. In-
terestingly, the complexity changes when mixing the two job types – even on a
simple path.

Theorem 5.14 Connectivity with preemptive and non-preemptive mainte-
nance jobs is NP-hard, even on a path.



5.6 Mixed Scheduling 105

Proof. We reduce the NP-hard Partition problem to our problem. See the
proof of Theorem 4.1 for a definition of the Partition problem.

Given an instance of Partition, we create an instance for Connectivity
on a path consisting of 3n+2 edges between s+ and s− with preemptive and non-
preemptive maintenance jobs. We create three types of job sets denoted as J1, J2
and J3, where the first two job sets model the binary decision involved in choosing
a subset of numbers to form a partition, whereas the third job set performs the
summation over the numbers picked for a partition. The construction is visualized
in Figure 5.7.

n n+ 1

xn xnxn + an xn + an

jn

xn + an

n− 1 n+ 2

xn−1 xn−1xn−1 + an−1 xn−1 + an−1

jn−1

xn−1 + an−1

...
3n+ 1

B +
∑n

i=1 xi

3n+ 2

B +
∑n

i=1 xi

τ

J1 (tight)
J2 (non-preemptive)
J3 (preemptive)

Figure 5.7: Schematic representation of the constructed instance for Connec-
tivity.

The job set J1 := {1, 2, . . . , 2n−1, 2n} contains 2n tight jobs, i.e., rj + pj = dj
for all j ∈ J1. For every element ai we have two tight jobs i and 2n− (i− 1) both
having processing time 4n−iB =: xi. The release date of a job j ∈ {2, . . . , n} ⊂ J1
is rj =

∑j−1
k=1 2xk + ak and r1 = 0. Let τ :=

∑n
k=1 2xk + ak. For

j ∈ {n+ 1, . . . , 2n} ⊂ J1 we have dj = τ +
∑j

k=n+1 2x2n−k+1+a2n−k+1. Note that
the tight jobs in J1 are constructed in such a way that everything is symmetric
with respect to the time point τ .

The job set J2 := {2n + 1, . . . , 3n} contains n non-preemptive jobs. Let
ji := 2n + i. For every element ai we introduce job ji with processing time
pji = xi+ai, release date rji = ri, and deadline dji = d2n−(i−1). Again, everything
is symmetric with respect to time point τ .

Finally, the set J3 := {3n + 1, 3n + 2} contains two preemptive jobs, where
each of them has processing time W := B +

∑n
i=1 xi. Furthermore, we have

r3n+1 = 0, d3n+1 = τ , r3n+2 = τ , d3n+2 = 2τ .
We now show that there is a feasible schedule for the constructed instance



106 5 Scheduling Maintenance Jobs in Networks

that disconnects the path for at most 2W time units if and only if the given
Partition instance is a Yes-instance.

Suppose there is a subset A ⊂ {1, . . . , n} with
∑

i∈A ai = B. For each i ∈ A,
we start the corresponding job ji ∈ J2 at its release date and the remaining jobs
in J2 corresponding to the elements ai with i ∈ {1, . . . , n} \A are scheduled such
that they complete at their deadline. This creates B+

∑n
i=1 xi time slots in both

intervals [0, τ ] and [τ, 2τ ] with no connection between s+ and s−. The jobs 3n+1
and 3n + 2 can be preempted in [0, τ ] and [τ, 2τ ], respectively, and thus if we
align their processing with the chosen maintenance slots, we get a schedule that
disconnects s+ and s− for 2W = 2(B +

∑n
i=1 xi) time units.

Conversely, suppose that there is a feasible schedule for the constructed in-
stance that disconnects the path for at most 2W time units. By induction on i,
we show that every job ji = 2n+ i either starts at its release date or it completes
at its deadline in such a schedule.

Consider the base case of i = 1. We first observe that w.l.o.g. job j1 either
starts at its release date or completes at its deadline or is scheduled somewhere
in [x1, 2τ −x1]. Suppose it starts somewhere in (0, x1) or completes somewhere in
(τ−x1, τ). Then we do not increase the total time where the path is disconnected
if we push job j1 completely to the left or completely to the right. If we schedule
job j1 in [x1, 2τ − x1], then the total time where the path is disconnected is at
least 3x1+a1 > 2x1+x1. We will now show that x1 ≥ 2(B+

∑n
k=2 xk) for n ≥ 2,

which shows that the path is then disconnected for more than 2W time units,
and thus job j1 cannot be processed in [x1, 2τ − x1]. The inequality is true for
n ≥ 2, since

2B + 2
n∑

k=2

xk = 2B(1 +
n∑

k=2

4n−k)

= 2B(1 +
n−2∑
k=0

4k)

= 2B(1 + 1/3(4n−1 − 1))

≤ 4n−1B = x1.

This finishes the proof for i = 1.
Suppose, the statement is true for i = 1, . . . , ℓ − 1 with ℓ ∈ {2, . . . , n − 1}.

As in the base case, we can show that job jℓ either starts at its release date
or completes at its deadline or is scheduled somewhere in [rjℓ + xℓ, djℓ − xℓ]. If
job jℓ is processed in [rjℓ + xℓ, djℓ − xℓ], then the total time where the path is
disconnected is at least

ℓ−1∑
k=1

(2xk + ak) + 3xℓ + aℓ >

ℓ∑
k=1

2xk + xℓ.

Again, we will show that xℓ ≥ 2(B +
∑n

k=ℓ+1 xk) for ℓ ∈ {2, . . . , n − 1}, which
shows that the path is then disconnected for more than 2W time units, and



5.6 Mixed Scheduling 107

thus job jℓ cannot be processed in [rjℓ + xℓ, djℓ − xℓ]. The inequality is true for
ℓ ∈ {2, . . . , n− 1}, since

2B + 2
n∑

k=ℓ+1

xk = 2B(1 +
n∑

k=ℓ+1

4n−k)

= 2B(1 +
n−ℓ−1∑
k=0

4k)

= 2B(1 + 1/3(4n−ℓ − 1))

≤ 4n−ℓB = xℓ.

For i = n, we again use the fact that jn either starts at its release date or
completes at its deadline or is scheduled somewhere in [rjn + xn, djn − xn]. If the
latter case is true, then the total time where the path is disconnected is at least

n−1∑
k=1

(2xk + ak) + 3xn + an =
n∑

k=1

(2xk + ak) + xn

> 2(B +
n∑

k=1

xk) = 2W.

There is a feasible schedule for the constructed instance that disconnects the
path for at most 2(B +

∑n
k=1 xk) time units. This means that in both [0, τ ] and

[τ, 2τ ] the path is disconnected for exactly B+
∑n

k=1 xk time units. Consider the
set A := {i : ji starts at its release date}. We conclude that

n∑
k=1

xk +
∑
k∈A

ak =
n∑

k=1

xk +
∑
k/∈A

ak =
n∑

k=1

xk +B.
□

We complement this hardness result with a simple 2-approximation algorithm.
For MinConnectivity it is easy to see that running the optimal preemptive and
the optimal non-preemptive algorithms on the preemptive and non-preemptive
job sets individually gives a 2-approximation.

Theorem 5.15 There is a 2-approximation algorithm for MinConnectivity
on a path with preemptive and non-preemptive maintenance jobs.

Proof. Consider an optimal schedule S∗ for the mixed instance and let |S∗| be
the total time of disconnectivity in S∗. Furthermore, let S∗

np (resp. S∗
p) be the

restriction of S∗ to only non-preemptive (resp. preemptive) jobs. Note that the
schedule S∗

np (resp. S∗
p) is feasible for the corresponding non-preemptive (resp.

preemptive) instance. We separate the preemptive from the non-preemptive jobs
and obtain two separate instances. Solving them individually in polynomial time
and combining the resulting two solutions Snp and Sp to a schedule S gives the
claimed result, because |S| ≤ |Snp|+ |Sp| ≤ |S∗

np|+ |S∗
p | ≤ 2|S∗|. □



108 5 Scheduling Maintenance Jobs in Networks

5.7 Conclusion and Open Problems
The concept of scheduling maintenance work and thus combining network flows
with scheduling aspects is a very recent field of research. While there are solutions
using-IP based methods and heuristics, exact and approximation algorithms have
not been considered extensively. We provide a theoretical understanding of Con-
nectivity, which is inherent to all forms of maintenance scheduling. This yields
the basis for analyzing more involved settings for maintenance scheduling, such
as maximizing the network throughput or limiting the number of concurrently
performed maintenance jobs.

In particular, maximizing the network throughput on a path is already covered
by our results and all our hardness results carry over to maximizing the network
throughput between two designated nodes s+ and s−. On general graphs, the ab-
sence of c

√
|E|-approximation algorithms indicates that heuristics and IP-based

methods [10–12] might be a good way of approaching this problem. However, an
interesting open question is whether the inapproximability results carry over to
restricted families of graphs such as series-parallel graphs, as the network moti-
vating the works by [10–12] is indeed series-parallel.

Our results on the power of preemption as well as the efficient algorithm for
preemptive instances show that allowing preemption is very desirable. Thus, it
could be interesting to study models where preemption is allowed, but comes at
a cost to make it more realistic.

On a path, our results have implications for minimizing busy time, as we want
to minimize the number of times where some edge on the path is maintained.
Here, an interesting open question is to improve on our 2-approximation for the
mixed case, or to show an inapproximability result for it.



Bibliography

[1] Amazon EC2 Pricing Options: https://aws.amazon.com/ec2/pricing/.

[2] F. Abed, L. Chen, Y. Disser, M. Groß, N. Megow, J. Meißner, A. Richter,
and R. Rischke. Scheduling maintenance jobs in networks. Submitted.

[3] T. Al-Khamis and R. M’Hallah. A two-stage stochastic programming model
for the parallel machine scheduling problem with machine capacity. Comput.
Oper. Res., 38(12):1747–1759, 2011.

[4] S. Albers. Energy-efficient algorithms. Commun. ACM, 53(5):86–96, 2010.

[5] K. Baker. Introduction to Sequencing and Scheduling. John Wiley & Sons,
New York, 1974.

[6] K. R. Baker, E. L. Lawler, J. K. Lenstra, and A. H. G. Rinnooy Kan. Pre-
emptive scheduling of a single machine to minimize maximum cost subject to
release dates and precedence constraints. Oper. Res., 31(2):381–386, 1983.

[7] N. Bansal and K. Pruhs. The geometry of scheduling. SIAM J. Comput.,
43(5):1684–1698, 2014.

[8] A. Baveja, A. Chavan, A. Nikiforov, A. Srinivasan, and P. Xu. Improved
bounds in stochastic matching and optimization. In Proceedings of the 18th
International Workshop on Approximation Algorithms for Combinatorial Op-
timization Problems (APPROX) and 19th International Workshop on Ran-
domization and Computation (RANDOM), volume 40 of LIPIcs, pages 124–
134. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2015.

[9] A. Bley, D. Karch, and F. D’Andreagiovanni. WDM fiber replacement
scheduling. Electronic Notes in Discrete Mathematics, 41:189–196, 2013.

[10] N. Boland, T. Kalinowski, and S. Kaur. Scheduling arc shut downs in a
network to maximize flow over time with a bounded number of jobs per time
period. J. Comb. Optim., pages 1–21, 2015.

109



110 Bibliography

[11] N. Boland, T. Kalinowski, and S. Kaur. Scheduling network maintenance
jobs with release dates and deadlines to maximize total flow over time:
Bounds and solution strategies. Comput. Oper. Res., 64:113–129, 2015.

[12] N. Boland, T. Kalinowski, H. Waterer, and L. Zheng. Scheduling arc main-
tenance jobs in a network to maximize total flow over time. Discrete Appl.
Math., 163:34–52, 2014.

[13] N. L. Boland and M. W. P. Savelsbergh. Optimizing the hunter valley coal
chain. In H. Gurnani, A. Mehrotra, and S. Ray, editors, Supply Chain Dis-
ruptions: Theory and Practice of Managing Risk, pages 275–302. Springer,
2012.

[14] M. Burcea, W. Hon, H. H. Liu, P. W. H. Wong, and D. K. Y. Yau. Scheduling
for electricity cost in smart grid. In Proceedings of the 7th International Con-
ference on Combinatorial Optimization and Applications (COCOA), volume
8287 of LNCS, pages 306–317. Springer, 2013.

[15] G. M. Campbell. A two-stage stochastic program for scheduling and allo-
cating cross-trained workers. J. Oper. Res. Soc., 62(6):1038–1047, 2011.

[16] R. Canetti and S. Irani. Bounding the power of preemption in randomized
scheduling. SIAM J. Comput., 27(4):993–1015, 1998.

[17] S. Chaisiri, B.-S. Lee, and D. Niyato. Optimization of resource provisioning
cost in cloud computing. IEEE Trans. Serv. Comput., 5(2):164–177, 2012.

[18] J. Chang, S. Khuller, and K. Mukherjee. LP rounding and combinatorial
algorithms for minimizing active and busy time. In Proceedings of the 26th
ACM Symposium on Parallelism in Algorithms and Architectures (SPAA),
pages 118–127. ACM, 2014.

[19] J. Chang, S. Khuller, and K. Mukherjee. Active and busy time minimization.
In Proceedings of the 12th Workshop on Models and Algorithms for Planning
and Scheduling Problems (MAPSP), pages 247–249, 2015.

[20] M. Charikar, C. Chekuri, and M. Pál. Sampling bounds for stochastic op-
timization. In Proceedings of the 8th International Workshop on Approx-
imation Algorithms for Combinatorial Optimization Problems (APPROX)
and 9th International Workshop on Randomization and Computation (RAN-
DOM), volume 3624 of LNCS, pages 257–269. Springer, 2005.

[21] L. Chen, N. Megow, R. Rischke, and L. Stougie. Stochastic and robust
scheduling in the cloud. Journal version of [22], in preparation.



Bibliography 111

[22] L. Chen, N. Megow, R. Rischke, and L. Stougie. Stochastic and robust
scheduling in the cloud. In Proceedings of the 18th International Work-
shop on Approximation Algorithms for Combinatorial Optimization Problems
(APPROX) and 19th International Workshop on Randomization and Com-
putation (RANDOM), volume 40 of LIPIcs, pages 175–186. Schloss Dagstuhl
- Leibniz-Zentrum fuer Informatik, 2015.

[23] L. Chen, N. Megow, R. Rischke, L. Stougie, and J. Verschae. Optimal
algorithms and a PTAS for cost-aware scheduling. Journal version of [24],
in preparation.

[24] L. Chen, N. Megow, R. Rischke, L. Stougie, and J. Verschae. Optimal
algorithms and a PTAS for cost-aware scheduling. In Proceedings of the
40th International Symposium on Mathematical Foundations of Computer
Science (MFCS), volume 9235 of LNCS, pages 211–222. Springer, 2015.

[25] M. Cheung and D. B. Shmoys. A primal-dual approximation algorithm for
min-sum single-machine scheduling problems. In Proceedings of the 14th In-
ternational Workshop on Approximation, Randomization, and Combinatorial
Optimization (APPROX), volume 6845 of LNCS, pages 135–146. Springer,
2011.

[26] V. Cohen-Addad, Z. Li, C. Mathieu, and I. Milis. Energy-efficient algorithms
for non-preemptive speed-scaling. In 12th International Workshop on Ap-
proximation and Online Algorithms (WAOA), volume 8952 of LNCS, pages
107–118. Springer, 2015.

[27] S. A. Cook. The complexity of theorem-proving procedures. In Proceedings
of the 3rd Annual ACM Symposium on Theory of Computing (STOC), pages
151–158. ACM, 1971.

[28] J. R. Correa, M. Skutella, and J. Verschae. The power of preemption on
unrelated machines and applications to scheduling orders. Math. Oper. Res.,
37(2):379–398, 2012.

[29] K. Dhamdhere, V. Goyal, R. Ravi, and M. Singh. How to pay, come what
may: Approximation algorithms for demand-robust covering problems. In
Proceedings of the 46th Annual IEEE Symposium on Foundations of Com-
puter Science (FOCS), pages 367–378. IEEE Computer Society, 2005.

[30] J. Z. Du and J. Y. T. Leung. Minimizing mean flow time with release time
and deadline constraints. J. Algorithms, 14(1):45–68, 1993.

[31] S. Dye, L. Stougie, and A. Tomasgard. The stochastic single resource service-
provision problem. Naval Res. Logist., 50(8):869–887, 2003.



112 Bibliography

[32] W. L. Eastman, S. Even, and M. Isaac. Bounds for the optimal scheduling
of n jobs on m processors. Management Sci., 11(2):268–279, 1964.

[33] L. Epstein, A. Levin, A. Marchetti-Spaccamela, N. Megow, J. Mestre,
M. Skutella, and L. Stougie. Universal sequencing on an unreliable machine.
SIAM J. Comput., 41(3):565–586, 2012.

[34] U. Feige, K. Jain, M. Mahdian, and V. S. Mirrokni. Robust combinatorial
optimization with exponential scenarios. In Proceedings of the 12th Interna-
tional Conference on Integer Programming and Combinatorial Optimization
(IPCO), volume 4513 of LNCS, pages 439–453. Springer, 2007.

[35] M. Flammini, G. Monaco, L. Moscardelli, H. Shachnai, M. Shalom, T. Tamir,
and S. Zaks. Minimizing total busy time in parallel scheduling with applica-
tion to optical networks. Theor. Comput. Sci., 411(40–42):3553–3562, 2010.

[36] H. L. Gantt. Organizing for work. New York: Harcourt, Brace and Howe,
1919.

[37] M. R. Garey and D. S. Johnson. “Strong” NP-completeness results: Moti-
vation, examples, and implications. J. ACM, 25(3):499–508, 1978.

[38] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to
the Theory of NP-Completeness. Freeman, New York, 1 edition, 1979.

[39] M. X. Goemans. Improved approximation algorthims for scheduling with
release dates. In Proceedings of the 8th Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 591–598. ACM/SIAM, 1997.

[40] R. L. Graham. Bounds for certain multiprocessing anomalies. Bell System
Tech. J., 45(9):1563–1581, 1966.

[41] R. L. Graham. Bounds on multiprocessing timing anomalies. SIAM J. Appl.
Math., 17(2):416–429, 1969.

[42] R. L. Graham, E. L. Lawler, J. K. Lenstra, and A. H. G. Rinnooy Kan.
Optimization and approximation in deterministic sequencing and scheduling:
A survey. Ann. of Discrete Math., 5:287–326, 1979.

[43] A. Gupta, M. Pál, R. Ravi, and A. Sinha. Sampling and cost-sharing: Ap-
proximation algorithms for stochastic optimization problems. SIAM J. Com-
put., 40(5):1361–1401, 2011.

[44] S. Ha. Compile-time scheduling of dataflow program graphs with dynamic
constructs. PhD thesis, University of California, Berkeley, 1992.



Bibliography 113

[45] D. S. Hochbaum and D. B. Shmoys. Using dual approximation algorithms for
scheduling problems: Theoretical and practical results. J. ACM, 34(1):144–
162, 1987.

[46] W. Höhn and T. Jacobs. On the performance of Smith’s rule in single-
machine scheduling with nonlinear cost. ACM Trans. Algorithms, 11(4):25,
2015.

[47] W. Höhn, J. Mestre, and A. Wiese. How unsplittable-flow-covering helps
scheduling with job-dependent cost functions. In Proceedings of the
41st International Colloquium on Automata, Languages, and Programming
(ICALP), volume 8572 of LNCS, pages 625–636. Springer, 2014.

[48] J. R. Jackson. Scheduling a production line to minimize maximum tardiness.
Technical Report 43, Managment Science Research Project, University of
California, 1955.

[49] J. R. Jackson. An extension of Johnson’s results on job lot scheduling. Naval
Res. Logist. Quart., 3:201–203, 1956.

[50] S. M. Johnson. Optimal two and three-stage production schedules with setup
times included. Naval Res. Logist. Quart., 1:61–67, 1954.

[51] T. Kalinowski, D. Matsypura, and M. W. Savelsbergh. Incremental network
design with maximum flows. European J. Oper. Res., 242(1):51–62, 2015.

[52] R. M. Karp. Reducibility among combinatorial problems. In R. E. Miller,
J. W. Thatcher, and J. D. Bohlinger, editors, Complexity of Computer Com-
putations, pages 85–103, Boston, MA, 1972. Springer.

[53] R. Khandekar, G. Kortsarz, V. S. Mirrokni, and M. R. Salavatipour. Two-
stage robust network design with exponential scenarios. Algorithmica,
65(2):391–408, 2013.

[54] R. Khandekar, B. Schieber, H. Shachnai, and T. Tamir. Real-time scheduling
to minimize machine busy times. J. Sched., 18(6):561–573, 2015.

[55] A. J. Kleywegt, A. Shapiro, and T. Homem-de Mello. The sample average
approximation method for stochastic discrete optimization. SIAM J. Optim.,
12(2):479–502, 2001.

[56] B. H. Korte and J. Vygen. Combinatorial Optimization: Theory and Algo-
rithms. Springer, Berlin und Heidelberg, 4 edition, 2008.

[57] J. Kulkarni and K. Munagala. Algorithms for cost-aware scheduling. In
Proceedings of the 10th International Workshop on Approximation and Online
Algorithms (WAOA), volume 7846 of LNCS, pages 201–214. Springer, 2013.



114 Bibliography

[58] E. L. Lawler and J. Labetoulle. On preemptive scheduling of unrelated
parallel processors by linear programming. J. ACM, 25(4):612–619, 1978.

[59] C.-Y. Lee. Machine scheduling with availability constraints. In J. Y.-T.
Leung, editor, Handbook of Scheduling. CRC Press, 2004.

[60] J. Lenstra, A. R. Kan, and P. Brucker. Complexity of machine scheduling
problems. Ann. of Discrete Math., 1:343–362, 1977.

[61] S. Leonardi, N. Megow, R. Rischke, L. Stougie, C. Swamy, and J. Verschae.
Scheduling with time-varying cost: Deterministic and stochastic models.
Presentation at the 11th Workshop on Models and Algorithms for Planning
and Scheduling Problems (MAPSP 2013), 2013.

[62] A. Marchetti-Spaccamela and L. Stougie. Personal communication, May 2,
2013.

[63] R. McNaughton. Scheduling with deadlines and loss functions. Management
Sci., 6:1–12, 1959.

[64] N. Megow and J. Verschae. Dual techniques for scheduling on a machine
with varying speed. In Proceedings of the 40th International Colloquium on
Automata, Languages, and Programming (ICALP), volume 7965 of LNCS,
pages 745–756. Springer, 2013.

[65] G. B. Mertzios, M. Shalom, A. Voloshin, P. W. H. Wong, and S. Zaks.
Optimizing busy time on parallel machines. Theor. Comput. Sci., 562:524–
541, 2015.

[66] J. Mestre and J. Verschae. A 4-approximation for scheduling on a single
machine with general cost function. CoRR, abs/1403.0298, 2014.

[67] S. G. Nurre, B. Cavdaroglu, J. E. Mitchell, T. C. Sharkey, and W. A. Wal-
lace. Restoring infrastructure systems: An integrated network design and
scheduling (INDS) problem. European J. Oper. Res., 223(3):794 – 806, 2012.

[68] E. W. Parsons and K. C. Sevcik. Multiprocessor scheduling for high-
variability service time distributions. In Proceedings of the Workshop on
Job Scheduling Strategies for Parallel Processing (JSSPP), volume 949 of
LNCS, pages 127–145. Springer, 1995.

[69] M. L. Pinedo. Scheduling: Theory, Algorithms, and Systems. Springer, 2008.

[70] M. Queyranne and M. Sviridenko. A (2+ε)-approximation algorithm for
the generalized preemptive open shop problem with minsum objective. J.
Algorithms, 45(2):202–212, 2002.



Bibliography 115

[71] A. S. Schulz and M. Skutella. Random-based scheduling: New approxima-
tions and LP lower bounds. In Proceedings of the International Workshop
on Randomization and Approximation Techniques in Computer Science (AP-
PROX/RANDOM), volume 1269 of LNCS, pages 119–133. Springer, 1997.

[72] A. S. Schulz and M. Skutella. Scheduling unrelated machines by randomized
rounding. SIAM J. Discrete Math., 15(4):450–469, 2002.

[73] D. B. Shmoys and M. Sozio. Approximation algorithms for 2-stage stochastic
scheduling problems. In Proceedings of the 12th International Conference on
Integer Programming and Combinatorial Optimization (IPCO), volume 4513
of LNCS, pages 145–157. Springer, 2007.

[74] D. B. Shmoys and C. Swamy. An approximation scheme for stochastic linear
programming and its application to stochastic integer programs. J. ACM,
53(6):978–1012, 2006.

[75] D. B. Shmoys and D. P. Williamson. The Design of Approximation Algo-
rithms. Cambridge University Press, New York, 2011.

[76] R. A. Sitters. Approximability of average completion time scheduling on
unrelated machines. In Proceedings of the 16th Annual European Symposium
on Algorithms (ESA), volume 5193 of LNCS, pages 768–779. Springer, 2008.

[77] M. Skutella. List scheduling in order of α-points on a single machine. In
E. Bampis, K. Jansen, and C. Kenyon, editors, Efficient Approximation and
Online Algorithms, volume 3484 of LNCS, pages 250–291. Springer, 2006.

[78] W. E. Smith. Various optimizers for single-stage production. Naval Res.
Logist. Quart., 3:59–66, 1956.

[79] A. J. Soper and V. A. Strusevich. Power of preemption on uniform parallel
machines. In Proceedings of the 17th International Workshop on Approx-
imation Algorithms for Combinatorial Optimization Problems (APPROX),
volume 28 of LIPIcs, pages 392–402, 2014.

[80] C. Swamy and D. B. Shmoys. Approximation algorithms for 2-stage stochas-
tic optimization problems. SIGACT News, 37(1):33–46, 2006.

[81] C. Swamy and D. B. Shmoys. Sampling-based approximation algorithms
for multistage stochastic optimization. SIAM J. Comput., 41(4):975–1004,
2012.

[82] F. W. Taylor. The Principles of Scientific Management. Harper & Brothers
Publishers, New York, London, 1911.

[83] G. Wan and X. Qi. Scheduling with variable time slot costs. Naval Res.
Logist., 57:159–171, 2010.



116 Bibliography

[84] G. Wang, H. Sun, and C. Chu. Preemptive scheduling with availability
constraints to minimize total weighted completion times. Ann. Oper. Res.,
133:183–192, 2005.

[85] Y. Zhao, X. Qi, and M. Li. On scheduling with non-increasing time slot cost
to minimize total weighted completion time. J. Sched., pages 1–9, 2015.


	Introduction
	Deterministic Cost-Aware Machine Scheduling
	Cost-Aware Machine Scheduling under Data Uncertainty
	Scheduling Maintenance Jobs in Networks
	Outline of Thesis

	Preliminaries
	Deterministic Cost-Aware Machine Scheduling
	Problem Definition
	Related Work and Contributions
	Minimizing the Makespan on Unrelated Machines
	Minimizing Total Weighted Completion Time on a Single Machine
	A PTAS for Minimizing Total Weighted Completion Time
	Preliminaries and Scheduling in the Weight-Dimension
	A Dynamic Programming Algorithm
	Trimming the State Space

	Consequences of Having Release Dates
	Minimizing the Makespan on a Single Machine
	Minimizing the Makespan on Unrelated Machines with Fractional Reservation
	Minimizing the Total Completion Time on a Single Machine

	Conclusion and Open Problems

	Cost-Aware Machine Scheduling under Data Uncertainty
	Problem Definition
	Related Work and Contributions
	Polynomial-Scenario Model for Min-Sum Objective
	Complexity
	An Algorithm for First-Stage Reservation Only
	A Generic Algorithm for Two-Stage Scheduling
	A Refined Two-Stage Algorithm
	Improvements for Special Cases

	Polynomial-Scenario Model for Makespan Objective
	The Black-Box Model
	Two-Stage Robust Scheduling
	Interval-Indexed LP-Relaxation
	Conclusion and Open Problems

	Scheduling Maintenance Jobs in Networks
	Problem Definition
	Related Work and Contributions
	Preemptive Scheduling
	Non-Preemptive Scheduling
	Complexity
	An Approximation Algorithm

	Power of Preemption
	Mixed Scheduling
	Conclusion and Open Problems

	Bibliography

