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Abstract

This thesis is concerned with methods for option pricing that we investigate both the-
oretically and numerically. The first main part interprets option prices as solutions to
partial integro differential equations (PIDEs). Focusing on exponential Lévy models, we
implement a numerical tool for solving PIDEs using a Galerkin finite element approach
that is flexible in the driving asset process. Many numerical examples provide evidence
for the numerical feasibility of the method. Furthermore we establish a stability and con-
vergence analysis for PIDEs with time-inhomogeneous operators of Garding type. The
second part of the thesis applies Chebyshev polynomial interpolation to option pricing
by interpreting option prices as functions of option and model parameters. A numer-
ical implementation of the pricing interpolation technique illustrates the method and
emphasizes the gain in efficiency. The third part combines the empirical interpolation
algorithm of Barrault et al.| (2004) with Fourier based option pricing by interpolating
associated Fourier integrands. Theoretical findings are numerically validated. Further
numerical studies highlight the appealing features of the method, especially in higher
dimensional parameter spaces. Additionally, the recursive nature of the interpolation
operator is resolved which renders the method numerically accessible for the interpola-
tion of multivariate Fourier integrands, as well.

Zusammenfassung

Die vorliegende Arbeit beschéaftigt sich mit Methoden zur Optionspreisbewertung in the-
oretischer und numerischer Hinsicht. Der erste Teil der Arbeit betrachtet Optionspreise
als Losungen von partiellen Integro-Differentialgleichungen (PIDEs). Mit besonderer
Beriicksichtigung von exponentiellen Lévy-Modellen wird ein numerisches Tool zur Lo6-
sung solcher PIDEs implementiert, das sich durch eine grofte Flexibilitdt beziiglich des
treibenden Lévy-Prozesses auszeichnet. Viele numerische Beispiele unterstreichen die
numerische Umsetzbarkeit der Herangehensweise. Zudem wird eine Stabilitéts- und Kon-
vergenzanalyse flir PIDEs mit zeitinhomogenem Operator, der eine Garding-Ungleichung
erfiillt, hergeleitet. Der zweite Teil der Arbeit verwendet die Chebyshev’sche Interpo-
lationsmethode zur Optionspreisbewertung. Optionspreise werden dazu als Funktio-
nen von Options- und Modellparametern behandelt. Eine numerische Implementierung
der Methode unterstreicht den resultierenden Effizienzgewinn. Der dritte Teil kom-
biniert schliefslich die Empirische Interpolation von Barrault et al.| (2004) mit Fourier-
Techniken zur Optionspreisbestimmung durch die Interpolation der zugehérigen Fourier-
Integranden. Theoretische Ergebnisse der Untersuchung werden numerisch validiert.
Weitere numerische Studien heben die attraktiven Eigenschaften der Methode hervor,
insbesondere im Hinblick auf Parameterrdume hoéherer Dimension. Zudem wird der
rekursive Aufbau des Interpolationsoperators aufgelost und die Interpolation so auch
der Anwendung auf multivariate Fourier-Integranden numerisch zugénglich gemacht.
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1 Introduction

Option pricing is a key task in mathematical finance. The statement itself seems clear
and unambiguous at first, yet it offers a variety of interpretations with equally manifold
consequences to mathematical finance.

Speculation and risk appetite interpret options as means to benefit from market behav-
ior. Anticipated developments of the economy like ups and downs of exchange rates or
cyclically recurring events with economic impact like central bank chair meetings provide
an opportunity for financial profit from occasions that might otherwise be insignificant
to individual interest. In this interpretation, options suddenly give financial value to
originally unrelated events and option pricing becomes a sophisticated gambling instru-
ment.

A different interpretation emphasizes the contribution of options in enabling other trad-
ing activities. Market participants engaging in mutual trading activities cherish the
ability of options to seal sources of risk that threaten their primary commercial transac-
tions. Here, option pricing enables trade and supports a running economy.

Capturing the market in terms of model assumptions and an associated parametrization
fosters a third interpretation. Equipped with option pricing tools, a parametrized mar-
ket model not only yields prices of financial instruments but also allows a description
of the current state of the real world economy that it portrays. Risks that prevail in
the markets are thus mirrored by the parameter values of the simulating model. In this
perspective, option pricing methods not only map parameter values to option prices but
implicitly provide a link between observed option prices and the current state of the
economy. Option pricing routines then drive the calibration of market models and carry
out the first step for risk measurement and risk assessment purposes.

Each interpretation provokes its own reaction by financial mathematics. Speculation
identifies market behavior that it intends to benefit from and stimulates the development
of mathematical valuation methods for respective sophisticated financial instruments.
Hedging purposes require the capacity to provide options that exhaustively capture all
relevant sources of risk and obtain prices for them. Finally, risk management purposes
demand reliable quantification of risk, a requirement which translates into option pricing
methods that yield precise results and and maintain trustworthy numerical routines.

The actual interpretation thus matters indeed and guides research in different directions.
In this thesis we follow the third interpretation. We adopt the view that a market and the
structure of its movements can be described by model assumptions and associated param-
eters, a view that is emphasized by the expression parametric option pricing or POP in
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1 Introduction

short. The literature on parametric option pricing has largely followed the seminal work
of |Carr and Madan (1999)) and [Raible| (2000). It has thus almost exclusively been de-
voted to the development of algorithms based on fast Fourier transforms, see [Lee| (2004)),
Lord, Fang, Bervoets and Oosterlee (2008), Feng and Linetsky| (2008), Kudryavtsev and
Levendorskii (2009), [Boyarchenko and Levendorskii (2014). Furthermore, we refer to
Sachs and Schul (2010), Cont, Lantos and Pironneau (2011) and Haasdonk, Salomon and
Wohlmuth (2012) that apply the so-called reduced basis method to parametric option
pricing in finance. Prices of financial products are thus functions which link parameters
describing both the current condition of the market and the characteristics of the product
to the prices of the instrument. As sketched above, this link applies in both directions.
On the basis of a parametrized model, the pricing method of choice yields option prices
which match the observed market valuation whenever the model parametrization matches
the current state of the market. In return, observed option prices in the market serve as
reference points for calibrating the parametric model to market reality. A model aligned
to observed market reality then facilitates risk assessment. Reliable risk quantification,
however, requires reliable pricing tools.

Mathematical finance faces several challenges of theoretical and numerical nature in es-
tablishing that reliable link between market reality and its model equivalent. First,
the theoretical frameworks need to comprise the capabilities for thorough error control.
Proper risk assessment relies on theoretical error bounds and convergence results to
justify its claims. The requirements to option pricing approaches thus go beyond the
deployment of pure concepts but rather additionally expect estimates on the errors in-
evitably occurring when those concepts are applied practically. Second, the approaches
that prevail in theory must maintain numerical feasibility. Risk measurement techniques
operate on actual data retrieved from the market and are implemented numerically. To-
day’s numerical limitations thus restrict the set of solution approaches to the option
pricing problem even though it might be unlimited in theory.

Theoretical concepts and numerical implementations in mathematical finance have come
under additional distress in recent years. With the crisis of 2007-2009 hitting the global
economy, neglected sources of risk in the markets had become visible. As a consequence,
models have grown considerably in complexity in order to better reflect the observed
market reality. Considering a few examples we mention stochastic volatility and Lévy
models as well as models based on further classes of stochastic processes. See for instance
Heston| (1993)), Eberlein, Keller and Prause (1998), Duffie, Filipovi¢ and Schachermayer
(2003), Cuchiero, Keller-Ressel and Teichmann (2015) for asset models and see |[Eberlein
and Ozkan| (2005), Keller-Ressel, Papapantoleon and Teichmann (2013), Filipovi¢, Lars-
son and Trolle (2014) for fixed income models. Given these developments, the model
of Black and Scholes (1973) and Merton| (1973)) that had originally initiated mathemat-
ical finance today comes across like an anecdotal special case in that expanded model
universe.

Increases in model complexity naturally resonate in the respective numerical implementa-
tions. While the Black&Scholes model allowed for (semi-)explicit formulas for European

12



1 Introduction

plain vanilla options, a whole new generation of pricing tools has been developed to
numerically process the advancements on the theoretical side. These pricing tools fall
into three distinct main families. A first family contains Monte-Carlo techniques. Here,
market movements are simulated path-wise and option prices are derived by taking av-
erages over the simulated option payoffs for each path. The idea of this approach is
very appealing given the wide applicability of the method concerning both models and
options. At the same time, the method suffers from comparably low accuracy and slow
runtimes. A second family consists in the collection of Fourier techniques. Option pric-
ing based on the Fourier transform has been intensively studied and applied in recent
years. The approach that had been pioneered by |Stein and Stein (1991)) and Heston|
for Brownian models unveiled a great flexibility in terms of capturing a large
class of models and option types. Fourier pricing of European options in Lévy and the
large class of affine jump models has first been developed by |Carr and Madan/ (1999),
Raible (2000) and Duffie et al| (2000). There is a large and further growing literature
on Fourier methods to price path dependent options and we refer to |Boyarchenko and|
Levendorskii| (2002b), [Feng and Linetsky| (2008), Kudryavtsev and Levendorskii| (2009),
Zhylyevskyy| (2010), [Fang and Oosterlee| (2011), Levendorskii and Xie| (2012), Feng and|
(2013)) and [Zeng and Kwok| (2014) in this regard. Additionally consider Eberlein,
Glau and Papapantoleon (2010) for a general framework and analysis. For plain vanilla
options, Fourier integration combines the advantages of theoretically and numerically
proven efficiency with implementational ease. Yet the restriction to plain vanilla options
excludes many products of American type that are in general more liquidly traded in
the market and would thus be the preferred choice for example for the purpose of model
calibration. Finally, a third family comprehends the partial integro differential equations
(PIDE) approach. Here, option prices are interpreted as solutions to partial differential
equations additionally containing an integral term, see [Hilber et al. (2013), Hilber et al.|
(2009), Dang et al. (2016)), |[Eberlein and Glau (2014) and others for an overview over
PIDE theory as such. Numerical solutions to PIDEs based on finite difference schemes
are proposed for example in |Cont and Voltchkova (2005)), Fakharany et al.| (2016)), |Co-|
clite et al.| (2016)), |Chen and Wang| (2015) and |Company et al| (2013). For solution
schemes relying on the finite element method we refer to Matache et al.| (2004)), Matache]
et al] (2005b), Matache et al| (2005a) and Winter| (2009). [Lin and Yang| (2012) and
[Florescu et al] (2014) describe numerical solutions to PIDEs based on other schemes.
While the PIDE method provides a great flexibility in terms of both models and options,
the implementation of numerical PIDE solvers is rather sophisticated, indeed.

In summary we observe, that each of the three methods conveys a certain appeal which
in return comes at a certain cost. Fast runtimes are paid by limited flexibility while an
extensive scope of applicability corresponds to numerical expenses. In this thesis we try
to resolve that seeming contradiction. We aim at

e exploiting the flexibility that option pricing techniques offer
e cnsuring numerical feasibility of pricing methods especially in terms of runtimes

e developing error control measures wherever possible

13



1 Introduction

We will pursue these goals in a two-step approach. In a first step, we focus on the
flexibility that a special class of partial differential equations offers and study its potential
for option pricing in detail. That class is the family of PIDEs, where the differential
operator is allowed to contain an additional integral term that accounts for the modeling
of jumps in the trajectories of market asset. Jumps are the characteristic feature of
Lévy model theory which can indeed be cast in PIDE terms and which will provide
examples that make the abstract model framework concrete. As we have indicated
earlier, however, the flexibility that PIDE theory offers to option pricing carries a burden
in numerical terms in turn. Numerical runtimes of PIDE solvers often fall short of the
high expectations and practical needs of the industry. Therefore, in a second step, we
focus on the expectation of fast numerical runtimes and the desire for efficient numerical
schemes expressed by the industry. A first approach to improving numerical runtimes
easily connects to arbitrary pricing methods thus including PIDE solvers, as well. A
second approach that we investigate for fast and efficient option pricing will be taylored to
Fourier pricing in particular. In both steps we balance thorough theoretical investigations
with extensive numerical case studies. Neither theory nor implementation shall seem
neglected throughout this thesis.

Before we are able to present our main results, Chapter 2] briefly surveys basic elements of
the theories that this thesis relies on. Furthermore, it presents a variety of asset models
that will serve as examples throughout the numerical studies done in this manuscript.

In Chapter [3| we consider prices u as solutions to partial integro differential equations

atu + Au = f,
u(0) = g,

with a model specific operator A and an initial condition g that depends on the payoff
profile of the option. We address the issue of finding solutions to PIDEs both theoret-
ically and numerically. Introducing the Galerkin method serves both ends. Interpreted
as a theoretical concept it provides a solution framework that is compatible with the
functional analysis behind PIDE theory. Interpreted as an algorithmic guideline it de-
scribes a numerical implementation for a PIDE solver. In the chapter we illustrate this
duality. After a theoretical description of the method we take the Merton model as an
example and implement a pricing tool based on the finite elements method (FEM). In a
third step, we exploit Fourier techniques to resolve the model dependence of that FEM
solver rendering it accessible to a variety of asset models simultaneously. Many numer-
ical studies enrich the topics of the chapter. It closes with a major proof on stability
and convergence for approximate solutions of time dependent PIDEs. The contents of
this chapter appear in (Gaf and Glau (2016) and parts of the implementation support
the studies in Burkovska et al.| (2016).

In the subsequent Chapter [d we shift our focus to improving numerical runtimes of
option pricing methods in general. To this end we introduce the Chebyshev polynomial
interpolation method for option pricing, a technique using the well understood Cheby-
shev polynomials, see Platte and Trefethen (2008) and Trefethen| (2013). The method

14



1 Introduction

interprets an option price as a function of model and option parameters. It demands
option prices at prespecified nodes in the parameter space P and interpolates prices for
arbitrary parameters p € P inbetween,

M Np
Price? ~ I (Price"))(p) = Z . Z Cljtrnrin) L riin) (D) peP,
Jj1=0  jp=0

wherein c(;, . ;) are parameter independent, precomputed coefficients and T;, . ;.)
are model independent Chebyshev polynomials. The Chebyshev method thus builds on
arbitrary option pricing tools but reduces their application to providing prices at the
prespecified nodes that the interpolation is built on. Pricing then consists in assembling
a weighted sum with known coefficients and polynomials that are easy to evaluate thus
improving pricing runtimes tremendously. Under certain smoothness conditions on the
underlying price we state an exponential convergence result for the algorithm. The
contents of the chapter are also presented in (Gafs et al. (2016).

Chapter [5] pursues a similar objective. Tayloring the capacity of the empirical magic point
interpolation method by |Barrault et al.| (2004)) and the results of Maday et al. (2009))
to Fourier pricing, we achieve a significant gain in efficiency and numerical runtimes
in option pricing. The resulting magic point integration method interpolates Fourier
integrands by achieving their separation into parts that depend on the parameter p € P
and parts that depend on the integration variable alone,

M
Price? = Iy (h)(p) := Z hp(z;)AH%(z) dz, peP.

The sum in the interpolator Z,; thus consists of parameter independent integrals that are
computed beforehand and parameter dependent coefficients that are cheap to evaluate.
Pricing has again turned into the evaluation of a sum. By exploiting the structure of
the model specific Fourier integrands, the algorithm detects those local nodes in the
parameter space P that explain the structure of all parametrized Fourier integrands at
a given precision, globally. Enjoying this flexibility renders the algorithm less affected
by the curse of dimensionality that other methods suffer from. We state theoretical
conditions for exponential convergence of the algorithm. Numerous case studies and
pricing examples validate and illustrate our theoretical claims empirically. In the context
of pricing, the method is presented in|Gak et al. (2015), as well. The general applicability
for parametric integration is furthermore demonstrated in |Gaf and Glaul (2015]).

In the appendix we gather supplementary material for the main chapters sketched above.
An integration technique for oscillating integrands that we encounter in Chapter [3] is
presented in Appendix [A] Properties of the empirical interpolation method being the
key ingredient for the pricing algorithm of Chapter [5| are stated in Appendix [B] Finally,
a proof of Gronwall’s lemma in a version crucial to our convergence result at the end of

Chapter [3]is provided in Appendix [C]
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1 Introduction

Research aims at pushing boundaries of knowledge further into the unknown. Yet any
research must acknowledge its own limitations. The discipline it is located in, the topics
within this discipline that it devotes itself to and the process in itself eventually determine
that special spot that individual research occupies. As naturally as that spot emerges
and as inevitable as the process leading to it seems, research should be prepared to
answer the question of which purpose it serves. Research questions arise from various
observations and occasions and hence the answers to that question might be as diverse
as individual research is.

In this thesis we investigate aspects of parametric option pricing. We pursue thorough
theoretical investigations, propose numerical implementations that meet practical needs
and embed our results into thorough error control regimes. In this regard the diffuse
noise from a collapsing global economy in 2007 that echoes until today was the question
we encountered and we offer our results as parts of an answer.
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1 Introduction

We briefly summarize the main contributions of this thesis.

Chapter 3

Chapter 4

Chapter 5

First, we introduce a method for solving pricing PIDEs using a finite ele-
ment approach that is highly flexible in the model choice and numerically
feasible. We implement the method using mollified hat functions and
splines as basis functions and empirically confirm theoretically prescribed
convergence rates. In the second part of the chapter we generalize sta-
bility and convergence results for approximate solutions to PIDEs of [von
Petersdortf and Schwab) (2003)) to time-dependent bilinear forms of Gérd-

ing type.

These contributions are separately presented in |Gal and Glau (2016]) and
support the studies in Burkovska, Gaf, Glau, Mahlstedt, Mair, Schoutens
and Wohlmuth (2016). Parts of this chapter also appear in |Gafs and Glau
(2014).

We apply the Chebyshev interpolation method of Trefethen| (2013) to
option pricing. Interpreting the characteristic function of a Lévy model as
a function of the model parameters, we derive areas in the parameter space
that these functions are analytic on thus providing examples that fulfill
theoretical requirements for exponential convergence of the method. We
perform thorough numerical studies that validate the theoretical claims
of exponential convergence and emphasize the gain in efficiency.

These contributions are separately presented in Gaf, Glau, Mahlstedt
and Mair (2016).

We apply the empirical interpolation method of |[Barrault et al.| (2004) to
option pricing. For a variety of Lévy models we derive conditions on the
parameter space that guarantee the existence of a strip of analyticity of
the associated characteristic function. We present a variety of numerical
studies that validate theoretical claims of exponential convergence of the
method and emphasize its suitability for the approximation of option
prices in several free parameters in the one-asset case. In the second part
of the chapter we resolve the recursive nature of the interpolation operator
and thus provide the possibility to apply the method numerically feasibly
for pricing options on several assets, as well.

These contributions are separately presented in Gaf, Glau and Mair (2015)
and |Gaf and Glau/ (2015)).
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2 Preliminaries

In this chapter we gather some elementary concepts and results that the main parts of
this thesis rely on. The following sections of this chapter are by no means exhaustive
regarding the topics they present. Yet, they aim at providing a theoretic overview
containing the most important cornerstones necessary for a full understandings of the
main concepts that the following chapters investigate.

2.1 Fourier theory

The first section in this preliminary chapter is devoted to Fourier theory. The Fourier
transform has been extensively studied, see Bracewell| (1999) for an introduction. Today,
the transform lies at the heart of many applications in statistics and beyond. Appendix 1
of Kammler (2007) provides an idea of the rich scope of Fourier analysis.

The following definitions set up the Fourier transform framework that we shall use in
this thesis. Since there are different various of Fourier transforms we emphasize that all
Fourier related content of this work traces back to the concept of the Fourier transform
as outlined by the following Definition

Definition 2.1 (Fourier transform)
Let f :RY — R be an integrable real valued function, f € L'(R%). We define denote by

f or F(f) the Fourier transform of f, defined by

fo =Fn© = [ ¢ f@de, veer? (2.1)

In (2.1), the bilinear form (-,-) denotes the Euclidian scalar product.

Under certain conditions, an integrable function f can be reconstructed by inverting
the associated Fourier transform. The following lemma provides an inversion theorem
for smooth functions in one dimension, d = 1, that we cite from [Stein and Shakarchi
(2003)).

Lemma 2.2 (Fourier inversion)
Let f : R — R be the Fourier transform of a function f € S(R), where

SR)={f € C®R)| sup z|" | fD(z)] < 00, for every k,1 > 0},
zeR
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2 Preliminaries

the so called Schwartz space. Then the relation

1 ey~
f@) = g [ e OF©d veer (22
(2m)? Jpa
holds.
Proof
We refer to the proof of Theorem 1.9 in |Stein and Shakarchi| (2003]). O

When the function f in expression is taken to be a probability density function,
the respective integral can be cast as an expected value. In this sense, Fourier analysis
is easily linked to probability theory. Thus, unsurprisingly, Fourier transforms for many
probability density functions have been derived and analyzed. The following lemma gives
the Fourier transform of the normal distribution as an example.

Lemma 2.3 (Fourier transform of the Normal density)
Let f*7 be the density of the univariate Normal distribution N (u, o) with expected value
u € R and standard deviation o > 0,

7 () = \/21? /R exp (-W) de. (2.3)

The Fourier transform f/l‘\(’ = F(f™°) of f* exists and is given by

Fro () = et 3 (2.4)
for all £ € R.
Proof
See Theorem 15.12 in Klenke (2008). O

The Fourier transform possesses many convenient properties that we exploit heavily
throughout this theses. The following lemma collects some of these properties.

Lemma 2.4 (Properties of the Fourier transform)
Let y € R? and a € R\{0} be given and let f,g € L*(R?). Define f, = f(- —y) and
f*= f(a"). Then, the following equalities hold.

i) The Fourier transform of f shifted by y computes to

~ ~

f,&) = fE),  veeR™

ii) The Fourier transform of f with its argument scaled by a computes to

Fi(e) = Qf(s/a% vE € RY
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iit) The Fourier transform of a convolution is given by the product of the two individual
Fourier transforms,

— ~

(f*9)(&) = f(&)g(&),  VEeR™

Proof
i)-ii) Elementary calculations.

iii) With f,g € LYR?), also f *x g € L'(R?). The Fourier transform of the convo-
lution thus exists. Inserting the definition of both the Fourier transform and the
convolution we derive for ¢ € R?

F© = [ € (f19) @) s
= /Rd &) [ S 09w) dy} dz.

By applying Fubini’s theorem twice and with the substitution z = x — y we have
L | [ sa-namas|a= [ ] €50 o) day
R4 R4 Rd JR4
= [ [ e g dzay
R4 JR4
= / &2 f(z)dz / Y g(y) dy
Rd

R4

~

= f(€)9(5),

which proves the claim. O

Remark 2.5 (Dampening)
When a function f : R — R is not integrable, f ¢ L'(RY), its Fourier transform doesn’t
exist. Yet, if there exists n € R such that

fo(z) = ) f(2), Vz € RY, (2.5)

is in LY(RY), we can derive the Fourier transform of fn and thus introduce the concept
of a generalized Fourier transform.

Definition 2.6 (Generalized Fourier transform)
Let f : RT — R and n € R? such that f, = e f e LY(RY). We call

Fa€) = eI f(6),  VEER! (2.6)
the generalized Fourier transform of f. We sometimes write
Jo = F(-— ). (2.7)

We call n € R? such that fn € L'(R%) a dampening constant and the term elm) g
dampening factor of f.
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The following theorem introducing Parseval’s identity will be a crucial cornerstone of
this thesis. It allows computing the integral of a product of functions by integrating
the product of the two respective Fourier transforms, instead. The value of this identity
for practical applications becomes evident, when numerical integration of functions is
concerned which are difficult to evaluate but posses a Fourier transform in closed form
at the same time.

Theorem 2.7 (Parseval’s identity)
Let f,g € L*(R?). Then we have the identity

b = [ gt de = g | Flerae)ac

which is called Parseval’s identity.

Proof
See Equation (10) on page 187 in |[Rudin| (1987). O

Parseval’s identity of Theorem draws our attention to integrability properties of
Fourier transformed functions. While a function f might be difficult to evaluate, its
Fourier transform f might be easy to evaluate, but difficult to integrate. The next
remark expands on this issue.

Remark 2.8 (On the relation between smoothness of f and decay of f)

There is an interesting relation between the smoothness of a function and the rate of
decay of its Fourier transform. Let f € C™(R) and () = %f € LY(R). Then, the
Fourier transform of f exists. By repeated integration by parts it can be expressed in
terms of f by

Fe) = [ e ) da
— (_j i€x p(n—1)
“@/Re £V (@) da
Sy /R €% f(x) da

= (=i&)"F(€)
for all ¢ € R. The Fourier transform of a function in L'(R) is also in L'(R). Conse-

quently, f(n) = (—z)”]? € L'(R). We conclude that f decays faster to zero than |&|™
diverges to infinity for |{| — too. In the same manner, decay properties of the Fourier
transform of a function translate into smoothness properties of the function itself.

(2.8)

Relation ([2.8) of Remark will have a material impact with regards to numerical
implications in Chapter
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2.2 Lévy process theory

We have already briefly touched upon the relation between Fourier analysis and proba-
bility theory in the remarks preceding Lemma [2.3 above. In this section we introduce a
class of distributions, or rather a class of stochastic processes, that can even be charac-
terized in Fourier terms, that is the class of Lévy processes. The majority of asset models
that we consider in this thesis falls into this class. Models contained therein share the
property that the log-asset process is modeled by a Lévy process. We therefore introduce
the fundamental definitions and results of Lévy process theory in the following. We begin
by citing |Sato| (2007)) for the definition of a probability space and a Lévy process.

Definition 2.9 (Lévy process)
We call a d variate stochastic process (L¢)i>0 on a probability space (2, F,P) a Lévy
process if the following conditions are satisfied.

i) For any choice of n > 1 and0 <ty <ty < --- < tp, random variables Ly,, Ly, — Ly,
Lyy — Ly, ..., Ly, — Ly are independent (independent increments property)

n—1

ii) Lo =0 a.s.

ii1) The distribution of Lsyy — Ls does not depend on s (temporal homogeneity or sta-
tionary increments property)

iv) It is stochastically continuous

v) There is Qo € F with P(Q) = 1 such that for every w € Qo, Li(w) is right-
continuous in t > 0 and has left limits in t > 0.

With (L)¢>0 being a Lévy process, the random variable Ly for ¢ > 0 belongs to the large
class of infinitely divisible distributions. Such distributions and thus also Lévy processes
can be beautifully characterized via their Fourier transform.

Lemma 2.10 (Fourier transform of a Lévy process)
Let (Lt)t>0 be a Lévy process on R?. Let t > 0 arbitrary but fiz. The characteristic

function E of the random variable Ly is defined as
Li(&) =E[¢'M)],  vEeR, (2.9)

and there exists a cumulant generating function 6 such that the characteristic function
of Ly can be represented by

Li(§) =€, veeR? (2.10)

with 6 given by

0(i€) =i(e.b) — 56 o€ + [ 6 1-ie RGP, VEeRY  (211)

R4
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with ¢ € R¥™4 o symmetric, positive semi-definite matriz, a drift term b € R? and a
Borel Lévy measure F' satisfying

F({0}) =0, /Rd min{1, |y|*} F(dy) < oo, (2.12)

and for some cut-off function h : R* — R that is a bounded measurable function with
compact support and

h(z) == (2.13)
in an environment of the origin.
Proof
Confer the proof of Theorem 8.1 in |[Sato (2007)). O

Due to its significance to Lévy theory, the triplet (b, o, F') characterizing a Lévy process
through its cumulant generating function in (2.11]) is given a name by the following
definition.

Definition 2.11 (Characteristic triplet)
Let (Lt)t>0 be a Lévy process. We call the triplet (b,o, F') of Lemma |2.10} the character-
istic triplet of the Lévy process (Lit)i>o-

Note that the characteristic triplet of a Lévy process depends on the cut-off function h
in . Given an additional property that not all Lévy processes share, the cut-off
function can be replaced and the cumulant generating function can be rewritten in the
sense of the following remark.

Remark 2.12 (Disregarding the cut-off function)

Let (Lt)t>0 be a Lévy process with characteristic triplet (b,o,F'). Identity of
Lemma [2.10 states the general form of the cumulant generating function of a Lévy pro-
cess. If the Lévy measure F' additionally satisfies

/ |z|F(dz) < 0o (2.14)
lz[<1
we may use the zero function as cut-off function, h = 0, leaving us with
~ 1 4
0ie) =i(e.B) - 5(6o€) + [ (0 D@y, veeR,  (215)
R4
with an appropriately adjustedg e R? given by

b=b— /R [ h()F(dy) (2.16)

and thus an equivalent characteristic triplet (b,o, F') with the zero function as cut-off
function, compare Remark 8.4 in|Sato, (2007).
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We will need to extend the domain of the characteristic function of a Lévy process to
parts of the complex plane. This extension is well-defined under the assumptions of the
following theorem taken from Sato (2007)).

Theorem 2.13 (Exponential Moments)
Let (Ly)¢>0 be a Lévy process on R with characteristic triplet (b, o, F). Let

C= {c eR? | el P(dx) < oo} . (2.17)

lz|>1
i) The set C is convex and contains the origin.

i) ¢ € C if and only if E[e!*1)] < oo for some t > 0 or, equivalently, for everyt > 0.

i) If w € C? is such that R(w) € C, then

1
Y(w) = (b,w) + 5 (w, ow) +/ (e =1 — (w, h(y))) F(dy) (2.18)
Ra
is definable, E[|e{""L*)|] < oo, and

Efje!t]] = e, (2.19)

Proof
For a proof confer the proof of Theorem 25.17 in Sato, (2007). U

We are now equipped with the quantities needed to introduce the notion of the symbol
of a Lévy process. It will become clear later in the thesis that this concept builds a
bridge from Fourier representations of Lévy processes to the theory of partial (integro-)
differential equations.

Definition 2.14 (Symbol of a Lévy process)
Let (Ly)i>0 be a Lévy process on R with characteristic triplet (b,o, F). The symbol
AR — C of the Lévy process (Li)¢>0 is defined by

AQ) = ile0) + 5606 — [ (exp(-ile) ~ L+ilE M) F(dy)  (220)

n

for all € € R,
The symbol A of a Lévy process is a crucial quantity in this thesis. As pointed out in
Glaul (2015) one may show that there exists a constant C' > 0 such that

A <O+ €l)?,  vEeR? (2.21)

The notion of a symbol, however, is not exclusively reserved for Lévy processes. Indeed,
other measurable functions satisfying inequalities in the fashion of (2.21]) are called sym-
bols as well and establish a link between the roots of these quantities in Fourier theory to
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the topic of partial (integro-)differential equations. To properly generalize the concept
of symbols, we first need to cite the definitions of the Schwartz space S(R?) from [Eskin
(1981), that we have already encountered in the special case of d = 1 in Lemma
above.

Definition 2.15 (The Schwartz space S(R%))

The space S = S(R?) is defined as the totality of all infinitely differentiable functions
@ in the d-dimensional space R such that o(z) and all derivatives %gp(x) with multi-
index p = (p1,...,pa) of nonnegative integers decrease more rapidly than any negative

power of ||z as ||z|| = y/2? + - + 22 — 0.

Eberlein and Glau| (2011)) extend the notion of a Schwartz space to the weighted Schwartz
space.

Definition 2.16 (The exponentially weighted Schwartz space S,(R?))
Forn € RY [et

Sy(RY) = {u € C*R?,C) [[|ull,y,,, < 00, ¥m € No} (2.22)
with
el = He<’7">s0Hm, (2.23)
wherein for every m € Ng the norms ||-||,, are defined by
]l = sup sup (1 + |2[*)™[DPp(z)]. (2.24)
|p|<m zeRd

We denote the dual space of Sy(R?) by S;(R?).

Following |[Eskin| (1981)) and |Glau (2015]), we define the general notion of a symbol A :
R? — C and connect it with the concept of pseudo-differential operators.

Definition 2.17 (The class Sg and related pseudodifferential operators)

Let (Asejo,r)) be a family of measurable functions A : [0,T] x R? — C satisfying with
a€ (0,2 and 0 < B <«

|A(€)] < C1(1 +[|€]1%)*/2, vVt € [0,T),€ € RY,

2.25
R(A(€)) = Coll€]|* — C5(1 + ||E1P)P72, vt e [0,T],6 e RY, (2:25)

for some C1,Co € RT and C3 > 0 independent of t € [0,T]. Each function A; is called
a symbol. We denote the set of functions satisfying ([2.25) by S°. With t € [0,T], the
operator A; defined on S(RY) by

A= 55 /R (AQuE)eT e g, vu e S(RY), (2.26)

is called pseudodifferential operator with symbol A;.
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Definition 2.18 (Sobolev index )
Let A be a symbol. Following Glay, (2015) we call the parameter o € (0,2] of (2.25|) the
Sobolev index of symbol A or the order of the associated operator A, respectively.

Remark 2.19 (On the symbol and the Fourier transform of a Lévy procegs)
Let (Lt)t>0 be a Lévy process with characteristic triplet (b, o, F'). Considering Lemma|2.1()
and Definition [2.1], we note that the associated symbol A satisfies the relation

AQ) = ile.) + 5(606) = [ (exp(-il6n) ~ L+ iGN Fldy)  (220)

= —0(-i¢)
= —0i(=¢)).

Thus, we realize an interesting connection between the Fourier transform of a Lévy pro-
cess, its cumulant generating function and the symbol in the sense that

Ly(€) = exp(th(i€)) = exp(—tA(—¢)),

for all £ € RY.

2.3 Some Lévy asset price models

We present a selection of asset models of Lévy type that will accompany us throughout
the whole thesis. Some of these model introductions are taken from Gaf et al.| (2015). In
what follows we denote by Q the parameter space that the model as such is defined on.
In later chapters, we will consider these models on possibly restricted parameter spaces
Q C Q only, which is the reason for this minor notational inconvenience. Throughout
all model introductions, the constant » > 0 denotes the risk-free interest rate. Each
model is driven by an appropriately chosen Lévy process (L{)i>0, ¢ € Q. The asset price
process is then given by

Sy = Spelt, Sy >0, VteRT, (2.28)

where (2.28) is understood componentwise when a d-variate model is concerned. For
each model we state the characteristic function of L1, T € T, for some chosen time

horizon 7 and ¢ € Q that is
orq(z) = @(z) = E[e<iz’LqT>], z e R (2.29)

In finance, the characteristic function of a Lévy process is a useful quantity in
pricing, as we will see in the next section. To this end, however, the drift b of the process
must be adjusted for the discounted asset process (Soe_”*Lg)tzo to become a martingale.
This is ensured by the so called drift condition. Let r > 0 denote the risk-less interest
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rate and (b, o, F) the triplet of (L{);>¢ in (2.29)), then the requirement for the discounted
asset process of (2.28)) to be a martingale is equivalent to

/ eF(dy) < oo (2.30)
ly[>1

with the drift b being set to

0.2

b=r— 5 /R(ey —1—h(y))F(dy), (2.31)

compare for example |Achdou and Pironneau (2005). We present some typical examples
for such exponential Lévy models below.

2.3.1 Multivariate Black&Scholes model

The famous model of Black and Scholes| (1973)) marks the big bang of mathematical
finance and earned its two inventors the Nobel price. The model allows the modeling
of asset-price movement, albeit on an elementary level from today’s point of view. A
volatility parameter of the log-asset price process — and additional covariance parameters
in the multivariate case — suffice to set up the mathematical model. More precisely, the
d-variate Black-Scholes model is driven by a d-variate Brownian motion. The parameter
space of the model solely consists of values determining the underlying covariance matrix
o € R™? which is symmetric and positive definite. For a concise representation of the
parameter space, we define Q as

Q = {q € RUD/2| det(o(q)) > 0} c RUHD/2 (2.32)
with the function o : R4@+1)/2 _, Rdxd defined by

J(Q)ij = q(max{i,j}—1) max{i,j}/2+min{s,j}» i,J € {1? B d} (233)

By construction, o(g) is symmetric. The characteristic function of the process L%, T € T,
q € Q, driving log-returns in the model is then given by

or4(z) = exp (T(i(b. 2) - %(z, 02))). (2.34)

for all z € R? with drift b = b(q) € R? adhering to the no-arbitrage condition ([2.31))

1
b;=r— 5011, 1€ {1,...,d}. (2.35)
Note that for each ¢ € 8) given by (2.32), the characteristic function of the d-variate
Black&Scholes model is analytic in z on the whole of C¢. Figure displays some asset
price trajectories (St);e(o,1) in the univariate Black&Scholes model for various values of

o€ Q.
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2.3.2 Univariate Merton jump diffusion model

Black&Scholes Model Trajectories

1.3 F
o =0.05
o=0.2
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Figure 2.1 Three asset price trajectories in the univariate Black&Scholes model for
different parameter sets with Sp = 1 and r = 0.03.

2.3.2 Univariate Merton jump diffusion model

In the univariate case, the Merton Jump Diffusion model by naturally
extends the Black&Scholes model to a jump diffusion setting. The logarithm of the asset
price process is composed of a Brownian part with variance ¢2 > 0 and a compound
Poisson jump part consisting of normally N (a, 3?) distributed jumps arriving at a rate
A > 0. The model parameter space is thus given by

0 ={(c,0,B,)) € R* xR x R} x R*} c R (2.36)

and the characteristic function of Lf, with T € T, ¢ € ) computes to

0-2 2 ; 52 2
o1,4(2) = exp <T <z’bz -5 + A <e”°‘2z - 1>>> , (2.37)

for all z € R, with no-arbitrage condition ([2.31)) demanding

2 2
8

b:r—UQ—/\<ea+2—1>. (2.38)

As in the univariate Black&Scholes model, for each ¢ € Q and T > 0, the characteristic
function @7, of the Merton model is holomorphic. In Figure we simulate three
trajectories of the Merton jump diffusion model. Both the structural proximity to the

Black&Scholes model and the distinguishing jump feature are clearly visible.
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2.3.3 Univariate CGMY model

Merton Model Trajectories
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Figure 2.2 Three asset price trajectories in the Merton model for different parameter
sets with Sy = 1 and r = 0.03.

2.3.3 Univariate CGMY model

Another well known Lévy model that we consider is the univariate CGMY model by
(Carr et al.| (2002). This class is also known as Koponen and KoBoL in the literature, see
also [Boyarchenko and Levendorskii| (2002a) and as tempered stable processes. With the
model parameter space given by

0 ={(C,G,M,Y) e Rt xR} xR x (1,2)|(M —1)" e R} C R%, (2.39)

the associated characteristic function of L1, with T € T, g € Q computes to
¢1,4(2) = exp (T'(ibz + CT(-Y)
(M —iz)Y — MY +(G+i2)" —GY])),

for all z € R, where I'(+) denotes the Gamma function. For no-arbitrage pricing we set
the drift b € R to

b=r—CI(-Y)[(M-1)" - MY +(G+1)¥ -G"]. (2.41)

(2.40)

2.3.4 Univariate Normal Inverse Gaussian model

Another Lévy model we present is the univariate Normal Inverse Gaussian (NIG) model.
The parameterization consists of 6, > 0, 3 € R, with a? > 42. The model parameter
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NIG Model Trajectories

135 L 0 =00-01La=15 =1

6=0286=02 a=2 8=—05
13k 0=015,5=001,a=2, =05
1.25 F >

Figure 2.3 Three asset price trajectories in the NIG model for different parameter sets
with Sop = 1 and r = 0.03.

set Q is thus given by
Q={(0,0,8) eRT xRT xR| a® > % a® > (3 +1)*} C R%. (2.42)

The characteristic function of L%, for this model is given by

or14(2) = exp (T (ibz +90 (\/&2 — Va2 — (B +iz ))) (2.43)

forT €T, qc¢€ @, wherein the no-arbitrage condition requires
b=r—§ <\/a2 —Var—(B+1) ) (2.44)
The second condition in , a? > (B + 1)%, guarantees b € R. Figure displays

three sample paths of the NIG model. Graphically, the pure jump characteristic result
in paths consisting of dots rather than connected lines.

2.3.5 Multivariate Normal Inverse Gaussian model

The NIG Lévy model exists in a multivariate version. Then, the parameterization con-
sists of §,a > 0, B € RY A € R¥™9 symmetric with det(A) = 1 and o? > (8,AB). The
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2.3.5 Multivariate Normal Inverse Gaussian model

model parameter set Q is thus given by

Q={(5,a,8,)) € Rt x Rt x R? x RU¢+D/2
|a? > (8, A(N)B), det(A(N)) =1, (2.45)
o > {((B+e), AN(B+e)), Vie{l,...,d}} C R2Hd+d

where ¢; = (0,...,0,1,0,...,0) for all i € {1,...,d} and wherein we define the function
A : RU@+1)/2 _, Rdxd by

A(N)ij = Nmax{ij}—1) max{i,j}/24min{ig}>  &J € {1,...,d}. (2.46)

The characteristic function in the d variate NIG model is given by

01.4(2) = exp <T <¢<b, 2) + (5<\/a2 —(B,AB) — /a2 — (B +iz, A(B + iz))))) (2.47)

with T € T, q € Q. In a multivariate model, the no-arbitrage condition (2.31) must
hold componentwise and thus requires

bi=r—6(Va? = (B,A8) — Vo> —{(B+e). AB + <)) (248)

foralli € {1,...,d}. Equivalently to its univariate version, the third condition in ,
a® > ((B+e), A(B+e)) for all i € {1,...,d}, guarantees b € R Note that for d = 1,
we have A = 1 and the expression for the d variate characteristic function for the NIG
model collapses to its unvariate counterpart. For notational convenience when dealing
with the univariate model in numerical experiments, later, however, we decided to split
the introduction of the model in the two cases d =1 and d > 1.

2.4 Parametric option pricing with Fourier transform

Combining Fourier theory of Section 2.1 with Lévy theory of Section [2:2]in general and
invoking the Lévy models we presented in the preceding Section [2.3| in particular now
allows us to introduce the main concepts and prerequisites for option pricing based on
the Fourier transform. The approach of pricing options using Fourier concepts has been
initiated by [Stein and Stein| (1991)) and Heston (1993) and has gained tremendous success
in both academia and industry alike. A special emphasis on Lévy models and related
models in Fourier pricing has been taken by Carr and Madan! (1999), Raible (2000) and
Duffie et al.| (2000)) to which we refer for an in-depth analysis of the matter.

We have given the following introduction into option pricing with Fourier transform
methods in |Gak et al.| (2015) already where we compute option prices of the form

Price” T4 .= E[fx (L1)] (2.49)
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with parametrized payoff function fx : R? — R and a parametric Fp-measurable R?-
valued random variable X7 for payoff and model parameters K € K C RPY T €T C
RP2 g € Q c RP3 denoting D = Dy + Dy + Ds. Furthermore, let

p=(K,T,q) € P where P=KxT x Q.

In order to pass to the pricing formula in terms of Fourier transforms, we impose the
following exponential moment condition for n € R?,

E[e_<”’X%>] <oo forall (T,q)eT xQ, (Exp)

which allows us to define for every (T,q) € T x Q the extension of the characteristic
function of X4 to the complex domain R? + 47,

o1q(2) = E[e*XD)], forall » = € +in, € € RY (2.50)
We further introduce the following integrability condition
x> e (x), € = org(€ +in) € LYRY) for all (K, T,q) € P. (Int)

As indicated above, the Fourier representation of option prices traces back to the pio-
neering works of (Carr and Madan| (1999) and Raible| (2000). The following version is an
immediate consequence of Theorem 3.2 in [Eberlein et al.| (2010).

Proposition 2.20 (Fourier pricing)
Let n € R? such that (Exp) and (Int) are satisfied. Then for every (K,T,q) € P,

‘ 1 —~
Price®T1 = (2n)d /]Rd-&-' fr(=2)pr,4(2) d2. (2.51)
in

Typically, that is for the most common option types, the generalized Fourier transform
of fx is of the form . ‘
frx(2) = K*T°F(2) (2.52)

for every z € R? + in with some constant ¢ € R and a function F : R? 4 in — C. Then
the option prices (2.51)) are indeed parametric Fourier integrals of the form

1 .
Price®T1 = o) /Rd ‘ e_z<z’1°g(K)>KCF(Z)SOT,q(Z) dz. (2.53)
+in

As a first step in the numerical evaluation of (2.53)) we employ an elementary symmetry
and obtain

/Rd+z'n ]/CI\((_Z)SOT,q(Z) dz =2 /R+><Rd1+in ?R(f;((—z)sgﬂq(z)) dz, (2.54)

which reduces the numerical effort by half.
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Lemma 2.21 (Generalized Fourier transform of European vanilla options)
Let g : R — R(J)r be the payoff profile of a Furopean option, that is

g(z) = (" — K)T, Vr € R, (2.55)
for the European call option and
g(z) = (K —e")*, Vo € R, (2.56)

for the European put option, respectively. In both payoff profile functions, K € RT
denotes the strike price. Then, the generalized Fourier transform computes to

Kié+n+1
F =g (&) = — . 2.57

wherein we choose

n< —1, for the call option, and (2.58)

n >0, for the put option, '
for the generalized Fourier transform to exist.
Proof
The lemma is proved by a straight-forward calculation. (]

The structure of the Fourier transform of the payoff profiles of univariate plain vanilla
European options extends to the multivariate case as well, as the following lemma demon-
strates.

Lemma 2.22 (Generalized Fourier transform of European call on d assets)
The payoff profile of a call option on the minimum of d assets with strike K € RT is
defined as

fr(x) = (e Ne™2 A---Ne" — K)7T (2.59)

for x = (z1,...24)" € RL With weight value n € R, n; < —1, for all j € {1,...d}, the
generalized Fourier transform of the multivariate fx is

_K1+Z‘f:1(izj+nj)

(2 +in) = (-1)¢ :
" [15=; (izj +my) (1 + 30 (i + nj))

(2.60)

Proof
The result is taken from Example 5.7 in [Eberlein et al.| (2010). O
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2.3.5 Multivariate Normal Inverse Gaussian model
2.5 Sobolev spaces

Fourier theory has presented itself as an established theoretical framework for option
pricing. By Proposition [2:20, option prices based on the stochastic nature of stock
movements are expressed in terms of expected values and transformed to Fourier inte-
grals. Recalling the seminal paper of |Black and Scholes (1973), however, we understand
that the pricing problem has initially been embedded in the theory of partial differential
equations, a field that seems totally unrelated at first sight.

Yet, these two theories are just two different perspectives on the same problem. The first
main chapter of this thesis will consider option pricing through the lens that it has been
originally discovered with, that is the theory of partial differential equations. As we shall
see in the following chapter, for solutions to partial differential equations in finance to
exist, the notion of differentiability needs to be weakened. For a univariate, real-valued
function f, the classic or strong derivative at x € supp(f) C R is given by the limit
Flz) = ai ()= lm 1G&F hf)b —J@) (2.61)

h—0
z+h € supp(f)

so it exists. By this definition, however, the function ¢g : R — R, defined by

wo(z) = (1= [z]) - Ty
is not differentiable at x € {—1,0, 1} because the limit does not exist for these values.
The choice of ¢ as an example for a function not differentiable everywhere might appear
random right now. Yet, precisely functions of this kind will play a key role in the theory
of solving partial differentiable equations in the next chapter, both theoretically and
numerically. The concept of differentiability must thus be widened until it contains
functions like g, as well.

We thus introduce the new concept of so called weakly differentiable functions which in a
second step will constitute function spaces that solutions to partial differential equations
in finance live in. We follow Seydel (2012) in defining the concept that generalizes the
classic understanding of a derivative.

Definition 2.23 (Weak derivative)
Let Q C R™ and let

C3P(Q2) = {v € C(Q) | supp(v) is a compact subset of QA}.

For a multi-index o = (a1, ..., o) with a; € Ng for all i € {1,...,n} define

o] = a;. (2.62)
i=1
With o a multi-index we call

N olel
(_D U)(.’L‘l,...,xn) = mv($l7...,xn) (263)
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the partial derivative of v of order |a|. Let u: Q — R be a real-valued function. If there
exists w € L*(Q) with

/ uD% dz = (—1)l / wov dz, for all v e CF°(Q), (2.64)
Q Q

we define D*u = w the weak derivative of u with multi-index a. Sometimes we also call
D%y the derivative of u in distributional sense.

From Definition 2:23] we understand that weak differentiability is not a pointwise property
like strong differentiability is but rather a global property that acts on integration against
test functions. Having Definition 2:23]at hand, we can now build up new function spaces
and introduce the notion of Sobolev spaces.

Definition 2.24 (Sobolev spaces HF)
Let Q C R™ and k € Nyg. We define the Sobolev space

H5(Q) = {v e L*(Q)| D*v € L*(Q) for |a| < k}, (2.65)

with D% being the weak derivative of Definition |2.23. For a < b € Q we define the
subspace HE(a,b) C H¥(Q) by

HE(a,b) = {v e H*(Q)|v(a) = v(b) = o} . (2.66)

For the upcoming definition of fractional Sobolev spaces H®, s € RT, we follow |Glau
(2010).

Definition 2.25 (Fractional Sobolev spaces H*(R%))
Let s € RY. We define

H3(RY) = {v € §'(R?) | F(v) € Lipo(RY), such that 0] g gga) < oo} , (2.67)

wherein F(v) denotes the Fourier transform of v, see Deﬁm’tion and the norm ||-|| zs
s given by

[l g (may = \//Rd IF)(©P (1+[¢)*de, Vo e S'(RY). (2.68)

We call the space H*(RY) a fractional Sobolev space of order s.

Definition 2.26 (Fractional Sobolev spaces ﬁs(a, b))
For s € RT and a < b € R we define by

H*(a,b) = {v € H*(R) | v|g\(ap = 0} (2.69)

a subspace ﬁ[s(R) C H*(R) of the fractional Sobolev space of Definition .
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Definition 2.27 (Sobolev space H'(2))
The space H'(Q) denotes the space of functions u € L?(Q) that possess a weak derivative
(of first order) in L?(). The scalar product of H(S)) is defined by

(u, V) () := (Ou, Ov) 12(0) + (U, V) [2(Q) = /Qau(x)av(x) dz + /Qu(x)v(x) dz. (2.70)

Consequently, the norm of the space, ||| g1 (q) s given by

ull 1) = /(W) 10, (2.71)

for all w € HY ().

Even though Sobolev spaces contain functions that are not even differentiable in the
strong sense, they maintain a close relationship to infinitely smooth functions in the
strong sense, as the following theorem emphasizes.

Theorem 2.28 (C*°(Q2) N H(Q) dense in H(R))

The intersection of C*(Q) with H'()), C°°(Q) N HY(Q) is dense in H().

Proof
The claim follows from Theorem 3.5 in [Wloka (2002)) where a proof is provided. g

Definition 2.29 (H}(2))
The completion of the space CG°(Q) in the norm ||-[| g1 (q), is denoted by HE(Q),

HL(Q) = Oy e, (2.72)

In the Fourier section above, we have already encountered the idea of exponentially
weighting non-integrable functions with an appropriately chosen value 1 € R? to achieve
integrability of the transformed result. There, the weighting approach aimed at making
Fourier pricing accessible to plain vanilla European call and put options, the payoff func-
tions of which lack integrability and can thus not be Fourier transformed. The following
definition extends the weighting approach to Sobolev spaces that we have just intro-
duced. In the context of pricing plain vanilla European call and put options, weighted
Sobolev spaces will be as important to PDE theory as the generalized Fourier transform
has been to Fourier pricing. We give the respective definition following |Eberlein and
Glau/ (2011)).

Definition 2.30 (Weighted Sobolev-Slobodeckii space H, (R9))
Let s € R and n € R, The weighted Sobolev-Slobodeckii space H;(Rd) is defined by

Hi(RY) = {u € SH(RY) | H.F(e<’7">u)

< oo} (2.73)
with the scalar product
(u,v) g = (F(el™ ), F(e™)v)) ., (2.74)
with
() = [ ORI +1€D* de. (275
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2.6 Other concepts

This final section of the preliminary chapter summarizes some other concepts that we will
encounter within the thesis. We begin by stating some definitions concerning Banach,
Hilbert and related spaces. The section closes with a repetition of other elementary
definitions. Stating them now in the preliminary section will later allow us to present
our main results without unnecessary distractions.

We state the definition of a Banach and a Hilbert space that we took from |Grossmann
et al.| (2007).

Definition 2.31 (Banach space)
Let U be a linear space endowed with a norm ||-||; : U — R that is a mapping with the
following properties

i) |lull; >0, for allu e U, |lully =0 u=0,
@) || Aully = |Allully, forallueU, X\ eR,
i) Ju -+ vlly < lully + lolly,  for all w,v € U.

The space U endowed with the norm ||-||;; is called a normed space. A normed space is
called complete if every Cauchy sequence (ug)g>1 C U converges in U. Complete normed
spaces are called Banach spaces.

Definition 2.32 (Hilbert space)
Let H be a Banach space. If the norm |-||,, in the space is induced by the scalar product

(9n:HXH—=R,
lully = V{uw,wyn,  VueH, (2.76)

we call the space H o Hilbert space.

Definition and Theorem 2.33 (Separability of Hilbert spaces)

Let H be a Hilbert space. If H is finite dimensional, then it is separable, that is it contains
a countable dense subset. If H is infinite dimensional, it s separable if and only if it has
an orthonormal basis.

Proof
Consider the proof of Theorem 3.52 in Rynne and Youngson| (2000)). U

The next few definitions and results build on the Hilbert space theory and prepare it for
the notion of solution spaces to partial differential equations in finance.

Definition 2.34 (The space L?(0,T;%H))
For each Hilbert space H we define the function space L*(0,T;H) by

T
L*0,T;H) = {u:[0,T] = H| /0 Ju(t)]7,dt < oo} (2.77)
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2.3.5 Multivariate Normal Inverse Gaussian model

We take the definition of a Riesz basis from |Christensen| (2013).

Definition 2.35 (Riesz basis)
Let H be a Hilbert space. A Riesz basis for H is a family of the form (U ey)r>1, where
(ex)k>1 1s an orthonormal basis for H and U : H — H is a bounded bijective operator.

We follow page 15 from Arendt et al|(2011) and give the following definition.

Definition 2.36 (The space C"([0,T];H))

Let H be a Banach space and T > 0. We denote by C([0,T];H) the vector space of all
continuous functions f: [0,T] — H. Withn € N we denote by C™([0,T];H) the vector
space of all n times differentiable functions with continuous n-th derivative, that is the
space of all functions f such that for all k € {0,...,n — 1} the limits

Frm = ling At
t+Ate[0,T]

exist for all t € [0,T] with f©, ..., f) being continuous and the convention f© = f.

We cite the following Definition from page 15 of |Arendt et al| (2011).

Definition 2.37 (Absolute continuity of a function)
Let a < b € R and let X be a Banach space. Let f : [a,b] — X. We say that f is
absolutely continuous on [a,b] if for every e > 0 there exists 6 > 0 such that

Dol = flallx <e (2.78)
i€l
for every finite set {(ai,bi)}icr, I C N, |I| < oo, of disjoint intervals in [a,b] with
Ziel(bi — ai) < 9.

Consider also Chapter VII in Elstrodt| (2011]) on the notion of absolute continuity. It is
well known that absolute continuity is a weaker concept than continuous differentiability
as far as functions on compacts are concerned. In other words, continuous differentiability
of a function defined on a compact interval implies absolute continuity as the following
lemma demonstrates. We give a short proof for the reader’s convenience.

Lemma 2.38 (Absolute continuity of continuously differentiable functions)
Let f : [a,b] = X with |a|,|b] < co and X a normed vector space and assume f to be
continuously differentiable. Then f is absolutely continuous on |[a, b].

Proof
Let € > 0. With f being continuously differentiable, f’ is continuous and as a function
defined on a compact set it is thus bounded. Let

M = xlél[i?i] Hf'(m)HX (2.79)
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Choose § < ¢/M. Now choose an arbitrary finite set {(a;, b;)}icr of disjoint intervals in
la,b] with ), ;(b; — a;) < 6. Without loss of generality we may assume a; < b; for all
t € I. Then

STUF®) = Flaly =

el el

f(bi) — f(ai)

bi—ai

’ (bi—a;) <MY (bi—a;) <e (2.80)
X iel

which proves that f is absolutely continuous on [a, b]. O

We introduce the notion of the Bochner integral strictly following Definitions and The-
orem 24.6 in Wloka/ (2002)).

Definitions and Theorem 2.39 (Bochner integral)
Let H be a separable Hilbert space.

i) Let E denote the set of finitely valued functions x : S — H. E is a linear set and
E CLY(S,H). If v € E we define

/S:U(s) dm(s) = > a;m(B;), (2.81)
=1

where im(z) = {x1,...,2,,0} and B; = 2~ (z;) fori € {1,...,n}. The integral is

linear and
‘/m s)dm(s
S

—71 .
ii) We write BY(S,H) = EY SN and call BY(S,H) the set of Bochner integrable
functions. If x € BY(S,H) there exists a sequence (Tn)n>1, Tn € E for alln > 1,
with ©, — x in LY(S;H) as n — co. We put

/ x(s)dm(s) = nh_}r{)lo Zn(s)dm(s). (2.83)
S S

S/SH:U(S)Hdm(s) (2.82)

In the theory of real-valued functions that are differentiable, Taylor’s theorem links
the evaluation of a differentiable function to a weighted sum of its derivatives and a
remainder term that can be expressed in a (Riemann) integral form. Using the Bochner
integral of Definitions and Theorem [2:39] the theorem extends to functions mapping real
values to Hilbert spaces. The Taylor theorem for these Hilbert space valued functions
will be central to the error and convergence analysis of approximate solutions to partial
differential equations in finance, later.

Theorem 2.40 (Taylor’s theorem)
With n € N, T > 0 and H a separable Hilbert space, assume f € C™([0,T];H). Let
to € [0,T] and At > 0 such that to + At <T. Then

L, OFA (g + At — )" !
A iy (n)
f(to + At) kzzj o ) (to) AtF + /to T ™ (s)ds (2.84)

holds.
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Proof

Assume first that n = 1. With f being continuously differentiable on a compact interval,
Lemma yields that f is absolutely continuous. We may thus apply Proposition 1.2.3
in (Arendt et al., [2011) which gives

to+At
fto+ 80— ft) = [ 1) ds (285)
to
and thus confirms formula (2.84)) for n = 1. For general n € N, taking ([2.85)) as induction
assumption, the claim now follows from induction using integration by parts. O

We will derive approximate solutions to partial differential equations numerically by a
so-called finite element approach. The method consists of an iterative scheme that is
driven by two key matrices. When we investigate the method more closely, the two core
matrices will usually have be of a so-called Toeplitz structure in the sense of the following
definition.

Definition 2.41 (Toeplitz matrix)
Let M € RV*N be q real valued matriz. We call M a Toeplitz matrix if there exists a

set {U_(N—1)s-++»V-1,0,01,--.UN-1} C R such that
Vo V1 V2 c+r UN-1
v_q vy U1
M= oy R
V-1 Vo V1
U (N-1) - V-2 V-1 Vo

We sometimes also say M has a Toeplitz structure.

We state Holder’s well known inequality which will contribute significantly in Chapter [3]
during the derivation of stability and convergence results of approximate solutions to
partial (integro) differential equations.

Theorem 2.42 (Holder’s inequality)
Let f,g € LY(R) be real valued integrable functions. Let p,q € (1,00) with % + % =1.
Then the inequality

[ir@nan< ([ If(w)lpdx>1/p (/ |g<x>|qu>1/q.

holds.

Finally, recall the definition of a Bernstein ellipse as introduced by |Bernstein! (1912).
It describes an ellipse in the complex plane with foci at £1, as the following definition
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Figure 2.4 A Bernstein Ellipse B([—1, 1], ¢) with foci —1, 1 and ellipse parameter ¢ > 1.
The semimajor a, is part of the real line, the semiminor b, is part of the complex line.
Here, A denotes the distance from either of the two foci to the center of the ellipse. For
the ellipse parameter p, the identity o = a, + b, holds.

states. In Chapter [4], the ellipse will characterize areas of analyticity of functions that
we approximate with an interpolation approach. Therein, we reserve the flexibility of
reshaping the classic Bernstein ellipse to a more general one in order to capture more
individual areas of analyticity that the functions we approximate possess.

Definition 2.43 ((Generalized) Bernstein ellipse)

We define the Bernstein ellipse B([—1, 1], 0) C C with parameter o > 1 as the open region
in the complex plane bounded by the ellipse with foci &1 and semiminor and semimajor
axis lengths summing up to o. We set the origin as the center and set the semimajor
azxis to lie on the real axis. Based on the concept of the Bernstein ellipse we define for
b < b € R the generalized Bernstein ellipse by

B([ba b]v@) = T[Q’E] OB([_171]79)7 (286)

where the transform UK C — C is defined for every z € C as

b—b b—-1b

um (z) =b+ ;(1 — ?R(z)) +1

3(2). (2.87)

Additionally, for an arbitrary set Z C R, we define the generalized Bernstein ellipse by
B(Z, ) := B([inf Z,sup Z], o). (2.88)

We call o > 1 the ellipse parameter of the (generalized) Bernstein ellipse.

A Bernstein ellipse is depicted in Figure 2.4 The figure also depicts the relation between

the ellipse semimajor a, and the semiminor b, in comparison to the location of the ellipse

foci. The sum of the two ellipse axis lengths determines the ellipse parameter o. The
following remark states the relations between these quantities for later reference.
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Remark 2.44 (Ellipse semiminor and semimajor)
Let B([—1,1], 0) with 0 > 1 be a Bernstein ellipse with semimagjor a, and semiminor b,
satisfying ap +b, = 0. Let A be the difference from either of the two foci of an ellipse to

the center of the ellipse, then
A= ,/af, — bg (2.89)

holds. In a Bernstein ellipse, A = 1. From this, the well known relations

ety o, _e-
[ 9 ’ o 2

1
0

(2.90)

immediately follow.
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3 PIDEs and option pricing

This chapter addresses some aspects of the theory of partial integro-differential equations
in the context of finance and beyond. In abstract terms, we are considering problems of
form

atu + Au = f,
u(0) = g,

for so-called partial integro-differential operators A. Confronted with such a problem
many questions naturally arise. Is there a function u that solves the problem? Is it
unique? Is this v numerically accessible, or can we only dispose of it in theory? Are
there methods to approximate u and how accurately are they? Do they converge?

Some of these questions address purely theoretical aspects of the problem. Others con-
cern rather numerical issues and are answered in algorithmic terms. Still others cannot
be assigned to either of these two categories but lie in the intersection where PIDE theory
and numerical concepts blend.

This ambiguity draws through the whole chapter. On the one hand, it challenges the
reader by confronting him with separate fields neither of which can be omitted in the
derivation of numerical solutions that rest on solid theoretical grounds. On the other
hand, it provides two perspectives onto the same problem that complement each other
and foster extensive understanding.

Similarly, the contents of the following sections do not fall into strictly separated cat-
egories. Some have a strong theoretical focus, some emphasize numerical implications
and some address the intersection of both realms.

We therefore highlight the four main sections in this chapter and briefly comment on
their main emphasis. In Section [3.1I]we present the theoretical framework of PIDE theory.
The sections answers the question of existence and uniqueness of solutions u to problems
as above and introduces the function spaces that a solution w lies in. The consecutive
Section [3.2] illustrates the bridge from the theoretical problem to a numerical solution
approach. It provides the theoretical foundation that approximate numerical solution
schemes rely on. Section [3.3]is devoted to the development of a numerical solver for the
PIDE of the well known asset model by Merton| (1976). It implements the theoretical
steps taken in the sections before and makes the theory explicitly comprehensible. Then,
Section abstracts from the Merton model and presents a very general framework for a
FEM solver that easily adapts to many different models. After that, Section [3.5|compares
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3 PIDEs and option pricing

all implementations empirically by presenting empirical order of convergence studies for
several FEM implementations and a variety of models. Finally, Section [3.6| reconciles
the numerical approximation with the solution provided by theory by deriving stability
and convergence results in very general terms.

3.1 Existence and uniqueness of (weak) solutions to PDEs

Let us state the main interest of this chapter more concisely. We are interested in finding
solutions u : [0, 7] x R? — R to problems of the form

Oyu + Agu = f, for almost all ¢ € (0,T)

u(0) = g (31)

with A = (-At)te[QT] a time-inhomogeneous Kolmogorov operator, a source term or right
hand side f :[0,T] x R? — R and an initial condition g : RY — R.

Existence and uniqueness of such solutions u and the properties of the spaces that they
live in depend heavily on the properties of the operator A as well as of properties like
smoothness of the two functions f and g.

A well known example for a PDE in the form of (3.1) is the so-called heat equation,

2

0
Oyu — CQ@u =0, for almost all t € (0,7)

u(0) = g,

(3.2)

with ¢ € R+, g € C°(R). By a Fourier approach one derives the solution u €
CH2(R*,R) given by

1

/ e e UG dE,  V(ta) R xR (3:3)
R

with g the Fourier transform of g, see Cannon and Browder| (2008)).

The function u defined by solves the heat equation of problem pointwise. It
is also called a strong solution, since it interprets the differential operator in the PDE in
the strong sense of as stated in the preliminary chapter above. Differentiability
of this kind is indeed a strong property. In finance, we can not expect such strongly
differentiable solutions to PDEs to exist, let alone smooth ones like v above. Think
for example of the nondifferentiable payoff profiles of call and put options that lead to
initial conditions g ¢ C§°(R) which affects the regularity of u accordingly. Consider in
this context |[Eberlein and Glau| (2014)) for an approach deriving solutions in the form
of to PDEs in finance.

Consequently, the notion specifying the solution to a PDE must adapt to this issue of
regularity.
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One way of adjusting the concept of a solution to a PDE is pursued by the theory of
viscosity solutions. Let us briefly touch upon this first possibility in the following before
moving on. In [Bardi et al. (1997)), an analysis of viscosity solutions to PDEs of second
order is provided. The authors analyze scalar-valued functions u : 2 — R that solve
partial differential equations in the general form of

F(x,u, Du, D*u) = 0 (3.4)
on the open set €2 in the sense of the following definitions taken from Bardi et al.| (1997)).

Definition 3.1 (Upper and lower semicontinuous envelope)
Let u : 2 — R. The notions of the upper semicontinuous envelope u* and the lower
semicontinuous envelope u, of u are given by

u(z) = 1im¢80up{U(y) ry € ly—zf <r}

ux(z) = 1ilj}¢i0nf{U(y) ry e ly—z[<r}

and u is upper semicontinuous if u = u* and u is lower semicontinuous if u = us.

Definition 3.2 (Viscosity solution)

Let S(N) be the set of real symmetric N x N matrices and F of be a function
F:QxRxRV xSN) = R with F(x,r,p,X) < F(z,r,p,Y) for Y < X with the
ordering X <Y, if (X&,&) <(YE,€) for all € € RN, and let further F be nondecreasing
in the second argument. Then wu is a viscosity subsolution (supersolution) to PDE
in S if it is upper (lower) semicontinuous and for every ¢ € C%(Q) and local mazimum
(minimum) point T €  of u — ¢ we have

F(Z,u(T), Dp(T), D*p()) <0
(F(@, u(@), Dp(z), D*p(T)) 20).

And finally, u is called a viscosity solution to (3.4)) if it is a viscosity subsolution and a
viscosity supersolution.

We have encountered two different concepts in interpreting the notion of a solution to
PDEs or PIDEs, respectively, the first one being the strong solution, the second one
being the viscosity solution and further concepts exist as well. The fact that we actually
have a choice in selecting a solution scheme to solve PIDEs fuels the suspicion that the
eventual decision critically depends on the features that we expect from that solution
scheme and the subsequent solution itself. Let us highlight the main goals that we pursue
in deriving solutions to PIDEs. These are

i) possibility for thorough error control
ii) algorithmic accessibility

iii) numerical feasibility
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A scheme that provides all these features is the Galerkin method which is based on the
notion of weak differentiability. It powerfully combines a theoretical concept with an
algorithmic translation that opens the method to numerically feasible implementations.
At the same time it offers error control methods that manage to monitor inaccuracies
inevitably arising from those numerical schemes. In order to be able to apply the Galerkin
method we need to weaken the idea of differentiability of a function by replacing the
strong derivative by a more general concept. The new notion of a derivative does no
longer take effect in a pointwise fashion. Instead, weak differentiability acts on integration
against test functions. Preparing our introduction of the associated idea of a weak
solution, we cite Definition 17.1 of a Gelfand triplet from Wloka, (2002).

Definition 3.3 (Gelfand triplet)
Let V' be an (anti)reflexive Banach space and H a Hilbert space. Suppose V. — H and
1

that the embedding i is continuous, injective and that imi is dense in H. Leti : H — V*
be continuous and injective and imi' dense in V*. Altogether we have

Ve Ho VY (3.5)

where both embeddings i, 1" are continuous, injective and have dense images in H and
V*. A scheme of this kind is called a Gelfand triplet. For notational convenience we
omit the symbols i and ' from here on.

Based on Definition and Definition we define the solution space W'(0,T;V, H)
for special choices of separable Hilbert spaces V and H.

Definition 3.4 (The solution space W(0,T;V, H))
Assume separable Hilbert spaces V. and H which together with V*, the dual space of V,
form a Gelfand triplet,

Ve H=H" —V" (3.6)

We define the solution space W1(0,T;V, H) by
W0, T;V,H) = {u € L*(0,T;V) | du € L*(0,T; V*)}, (3.7)

wherein the time derivative Oyu is meant in the distributional or weak sense of Defini-
tion [2.23.

Before we can state the notion of a weak solution, we introduce a notion of associating
an operator A with a bilinear form.

Definition 3.5 (Bilinear forms with associated operators)
Let (at)iefo,1) be a family of bilinear forms a : [0, T]xV xV — R that are measurable in t.
We say that this family of bilinear forms, is associated with linear operators A; : V. — V*
if for almost all t € [0, T

(Agu, v)y=xy = a(u,v) (3.8)

holds Yu,v € V.
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With these tools we are now able to introduce the notion of a weak solution to prob-
lem (3.1). Analogously to Definition 1 in|Glau (2016) we give the following definition.

Definition 3.6 (Weak solution)
Let V., H be separable Hilbert spaces which together with V*, the dual of V', form a
Gelfand triplet,

Ve HEYH V",

Let f € L?(0,T;V*) and g € H. Then we call u € W(0,T;V, H) a weak solution to
problem (3.1)), if for almost every t € (0,7T)

(Gru(t), v)m + ar(u(t),v) = (f(t), v)v=xv (3.9)

holds for all v € V, where for each t € [0,T] a; is the bilinear form associated with
operator Ay and if additionally

li —u(t = 1
i lg = u(®)] =0 (3.10)

for t converging to zero from above holds as well. Then for every v € V and x €

C5e([0,T) we have

T T T
- / (u(t), ) (t) dt + / ae(u, 0) (1) dt = / @), vhvoax®dt, (3.11)
0 0 0

which we state here for later reference.

Under certain conditions, unique weak solutions v € W*(0,T; V, H) to partial differential
equations exist. We cite the classic result from Wlokal (2002).

Theorem 3.7 (Existence and uniqueness of weak solutions)

Let 0 <T < oo. Let Ve H < V* be a Gelfand triplet with separable Hilbert spaces V
and H over R. Let a : [0,T] x V xV = R, (¢,¢,9) — at(p, ) be a bilinear form that
satisfies the following three conditions.

i) The mapping (t, p, V) — ai(p, 1) is a measurable mapping on [0, T] for fized v, €
V.

ii) There exists a constant o > 0 independent of t, such that

(o, )| < allellyllvlly,  VE€[0,T] and Vo, € V. (3.12)

ii1) There exist constants B > 0 and A > 0 independent of t such that

ar(p,0) > Blelly = Al%, Ve [0,T) and Yo, € V. (3.13)
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3 PIDEs and option pricing

Further, let (At)te[o,T] be defined via the relation (3.8)). Then there exists a unique weak

solution uw € W(0,T;V,H) to the linear parabolic problem (3.1]).

Additionally, the operator L relating the pair (f,g) € L*(0,T;V*) x H to that unique
weak solution w € W'(0,T;V,H) of the linear parabolic problem 1 a linear and
continuous mapping,

L:L*0,T;V*)x H— WY0,T;V, H).

Proof
For a proof of the theorem we refer the reader to the proof of Theorem 26.1 in Wloka
(2002). O

Remark 3.8 (On the existence and uniqueness regult)

Actually, the existence and uniqueness result of Theorem (3.7 also holds under more gen-
eral assumptions. In conditionfor example, the bilinear form may map to C instead
of R. Then, the left side of the inequality is replaced by R(a¢(p,)). We decided to focus
on the real-valued case, however, since it lays out the scope for option pricing purposes.
In the error and convergence analysis section later, Conditions and will play a
most prominent role.

Remark 3.9 (Existen¢e and uniqueness result for Lévy models)

The claim of Theorem |3.7 comprises partial differential equations from many model
classes. In |Eberlein and Glau (2011)), the authors translate the result to the class of
Lévy models. To that extent they transform the assumptions of the theorem into require-
ments onto the characteristic triplet (b,o, F') of the underlying process and even allow
for time-dependence of that triplet. Theorem 5.3 in|Eberlein and Glau (2011) then yields
the claim of existence and uniqueness of weak solutions to problems of form in the
Lévy model case.

Theorem 3.10 (Feynman-Kac)

Let (Lt)¢>0 be a (time-homogeneous) Lévy process. Consider the PIDE where A, =
A is assumed to be the operator associated with the symbol of (Lt)i>0 and f = 0. Assume
further the assumptions (A1)-(A3) of Eberlein and Glau (2011) to hold. Then (3.1))

possesses a unique weak solution
1 ) 2mdy 712 (md
we WHO,T; HYA(R?), L2(RY)) (3.14)

where o > 0 is the Sobolev index of the symbol of (Li)>0 and n € RY is chosen according
to Theorem 6.1 in |Eberlein and Glau (2011). If additionally g, € L' (R%), then the
relation

w(T —t,z) =E[g(Lr—t + x)] (3.15)
holds for all t € [0,T], z € R%.

Proof

The result is proved in [Eberlein and Glau| (2011) and follows from Theorem 6.1 therein.
Their claim applies beyond the scope of time-homogeneous Lévy processes and includes
so-called time-inhomogeneous PITAC processes, as well. U

50



3 PIDEs and option pricing

The analysis of Feynmac-Kac theorems in the fashion of Theorem [3.10, which link
stochastic quantities via their expected value to the solution of PIDEs, is a topic of
its own. In the context of finance, where u is the price of an option with payoff profile ¢
in an asset model driven by a stochastic process (L¢):>0, this link opens a second access
to the classic pricing problem. Either one solves the associated PIDE or one computes
the expected value. Depending on the given model and option, the one or the other way
might be better suited to determine the option price. For a thorough investigation of
the Feynman-Kac formula we refer the reader to the recent publication of |Glau (2016),
where the result is derived for Lévy processes with discontinuous killing rate.

3.2 The Galerkin method

By now, we have introduced the core definitions and theorems of the classic theory of
partial differential equations in an abstract framework. We now know that solutions to
PDEs exist under certain conditions and we have introduced the spaces that they live
in. For practical use of these solutions, however, for example for pricing or calibration
purposes, we also need numerical representations of these solutions. In general, the
solution spaces we have considered so far are infinite dimensional. Clearly, a numerical
solution can not provide such richness. Instead, its numerical means are limited to finite
dimensionality. We thus have to transform the original, infinite dimensional problem to
a finite dimensional, approximative setting. We consider the pricing PDE

dwu(t, z) + (Au) (t,x) + ru(t,z) = 0, V(t,z) € (0,T) xR

u(0,z) = g(x), Vx € R. (3.16)

The time-homogeneous operator A carries the model information. We state the operators
A in for some well known time-homogeneous univariate asset models from the
Lévy class. Since a Lévy model is identified by its characteristic triplet (b, o, F'), so is
the operator A of the associated PIDE, which is in general given by

(AF) (2) = ~b0, () — 50°0unf (2)
- /R (F(x+ 2) — f(2) — Ouf(@)h(z)) F(d2),

for all f € C§°(R) and = € R, see for example Eberlein and Glau (2011). Here, we
are only interested in the operator representation of each model. For a more detailed
overview we refer the reader to|[Papapantoleon| (2008). In the general Lévy model frame-
work, the operator A as stated in contains an integral term. The respective PDE
is more precisely a partial integro differential equation, PIDE. The following examples
offer an overview over the operators of some well known Lévy models.

Example 3.11 (Black&Scholes (BS) model)
In the BlackéScholes model of |Black and Scholes (1973), the log-asset price process is
modeled without jumps. The Brownian part drives the model exclusively. Therefore, we

(3.17)
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3 PIDEs and option pricing

have F = 0. The operator of the BlackéScholes PDE thus reduces to setting

o >0, F=0 (3.18)
in (3.17). The drift term b is set to
(3.19)

for martingale pricing.

Example 3.12 (Merton model)

The model of Merton| (1976) enriches the Brownian part from the BlackéScholes model
by a jump part. The log-asset prices process thus consists of a Brownian motion together
with a compound Poisson process with independent normally N'(«, %) distributed jumps
arriving at a rate A > 0. From this, the characteristic triplet (b, o, F) is derived as

A z— a)?
Jan? exp <—(2B2)> dz, (3.20)

o >0, F(dz) =

with drift set to

1, 82
b=r— 50~ A <e°‘+2 - 1> , (3.21)

as required by the no-arbitrage condition.

Example 3.13 (CGMY model)
The CGMY model by |Carr et al| (2002) is a so-called pure jump model. In contrast to
the Merton model, jumps do not arrive discretely in time. Instead, in each finite time
wnterval, infinitely many jumps occur. The model inherits its name from the parameter-
1zation

C>0, G>0, M>0, Ye(,2). (3.22)

The characteristic triplet determining the operator A is given by

exp(—Mz) exp(Gz)
o > 0, F(dZ) = CTI}-Z>O dz + CW1Z<O dZ, (323)
with drift term b
1
b=r— 502 —CT(=Y) [(M - 1) = MY +(G+1)Y - GY] (3.24)

by the no-arbitrage condition.

Example 3.14 (Univariate Normal Inverse Gaussian (NIG) model)
Finally, we present the NIG model by Barndorff-Nielsen (1997). With

0 >0, a >0, B eER (3.25)
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3 PIDEs and option pricing

and the parameter condition o > (B2, the characteristic triplet is given by

o >0, F(dz) = exp(ﬁz)é—aKl(a\z\) dz, (3.26)

7|z|

wherein K1 denotes the Bessel function which for = € RT0 allows the representation

Ki(z) :/ e~#osh(®) cogh(t) dt, (3.27)
0

see Chapter VI in|Watson (1995). The drift term b is set to

b=r— %02 —9 (\/a2 — B2 —+a2—(B+ 1)2) (3.28)

to satisfy the no-arbitrage condition.

This reduction is achieved by the so-called Galerkin method that we introduce now. It
consists of several steps that we discuss one by one. The identification of these steps that
we present below is in major parts taken from Section VI.1 in |Glau| (2010)) and inspired
by |Zeidler| (1990)). They lead from the general PIDE to a numerically tractable
approximative scheme that we consider in the next section with the Merton model as a
specific example. The transition steps are the following.

i) Modification to a problem with fast decaying solution.

We will not solve problem directly. One of the main obstacles that pre-
vents an immediate numerical solution is the unbounded spacial domain of prob-
lem (3.16)). This unbounded domain needs to be reduced to a bounded on. As
a preparation for this localization, we modify problem to a new problem
which we know to possess a solution that rapidly decays to zero as x — too.
This adjustment prepares step where the motivation of this modification will
be clarified. In order for the modification to result in a new the solution to which
quickly decays to zero, we subtract a function v that we know to approximately
mimic the behavior of u for large absolute values of x € R. The modification of this
step [i)| thus consists in subtracting ¢ from w and considering the resulting problem
for ¢ = u — v given by

Op(t,x) + (AP) (t,x) + ro(t,x) = f(t,x), V(t,z) € (0,T) xR

6(0,2) = gu(x),  VrER, (3.29)

where gy (x) = g(x) — (0, z) for all z € R and the right hand side f is given by

ft,2) = = (0 (t, @) + (AP) (L, ) + (L, ).

The solution u to the original problem (3.16|) can easily be restored by u = ¢ + 1.
We establish the properties that 1 needs to provide, later, where we will present
some examples, as well.

93



3 PIDEs and option pricing

ii) Localization to a boundary value problem.
At first glance, the modification of the original problem to the modified
problem complicated the derivation of numerical solution. Yet, now that
we know ¢ to decay to zero for |x| — oo, we may cut the domain R to a finite
interval (a,b) and assume the solution to the cut domain problem to be equal to
zero outside of that interval. We denote the solution to the cut domain problem
by ¢. Instead of we thus now and consider

xo(t,z) + (A9) St,ac) + rgi(t,:n) f(t, z), V(t,z) € (0,T) x (a,b)

B(t,a) = B(t,b) = 0, vt € (0,7), (3.30)

(0, 2) = gy(z), Vx € (a,b),

wherein g4 = gy and where the right hand side remains unchanged.

iii) Weak formulation of the resulting problem.
Solution ¢ to problem still lives in the same function space as solution u
to the original problem We thus now cast problem in an appropriate
functions space setting which reflects our restriction of the infinite domain R to the
finite domain of interest (a, ). Choosing an appropriate Gelfand triplet guarantees
a weak solution v € W(0,T;V, H) to the localized problem (3.30))

o+ Av+rv=f,

o(0) = g, (3.31)

where V' and H build on the finite domain (a, b) and are assumed to be separable
Hilbert spaces. The actual choices of V and H depend on the properties of the
operator A and thus on the regularity that is required for a weak solution v to
exist.

iv) Variational formulation.
We make the meaning of the weak formulation of problem explicit. This
step serves again as a preparatory step for the discretizations soon to follow. A
function v € W(0,T;V, H) solves the weak problem of step if v satisfies
the initial condition as a limit in H and if

T T T
- / (0(t, ), @) du(t) dt + / a(v(t, ), @)u(t) dt + 7 / (o(t, ), Q) (t) dt
0 0 0
T
=—<—/O (W(t,-), ) nO(t) dt (3.32)
T T
+ [ et [ e dt)

for all v € C§°(0,T) that serve as test functions with respect to the time domain
and for all p € V' that serve as test functions with respect to the spacial domain.
In (3.32)), the weak derivatives with respect to time have been transfered to the
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3 PIDEs and option pricing

test function v, the expression for the right hand side f has been resolved and
a(-,-) denotes the bilinear form associated with the operator A in the sense of

Definition 3.5

Space discretization.

In general, the solution v € W1(0,T;V, H) to problem lives in a Hilbert space
of infinite dimension. Clearly, we will not be able to capture its infinite dimen-
sionality numerically. Instead, we choose a sequence of finite dimensional Hilbert
spaces Vp, n € N, with V,, C V for all n € N and reformulate problem
on these subspaces. A finite set of n € N basis functions suffices to span each
subspace V,, which thus renders numerical solutions schemes applicable. By as-
sumption in step the space V is separable.We choose a countable Riesz basis
{¢1, 92, p3, ...} of V. Since by virtue of the Gelfand triplet V' is dense in H, there
exists a sequence (hy,)pen With

P — gl/)’(a,b)
in H and h, € V,, = span{gogn),goén),...,@%n)} for each n € N where <p§j) €

{p1,02,¢3,...} for all i < j € N. The approximation v, € W(0,T;V,, H N V,)
of v and h,, are thus given by

v (t) := Z Vk(n) (t)gpl(:), hy = Z oz]gn)gol(cn). (3.33)
k=1 k=1

By its definition in (3.33)), for each n € N, v, is given as a linear combination of
basis functions go,(cn), k€ {1,...,n}, of V;,. These basis functions are weighted by
time dependent weights. Consequently we have for each ¢ € (0,7 that v,(t) €

V. Considering the consequences of this reduction in dimensionality we now face

instead of finding v in (3.32)) the new problem of finding v,, € W(0, T; Vy,, H N V;,)
such that

T T T
_/ <'Un(t> ')a(P>H8tV(t) dt + / a(vn(ta')aso)y(t) dt+7“/ (’Un(t, ')a(p>HV(t) dt
0 0 0
T
(- [ wepnamoa (3.34)
0
T T
# [ oo [ our )
0 0
for all v € C§°(0,T) and for all test functions ¢ € V,. By assumption, the
bilinear form a(-,-) satisfies conditions fi1)| and with respect to the space V. As
a consequence, so does the bilinearform aly; xy;, with respect to V,,. The classic
Theorem thus guarantees the existence and uniqueness of a weak solution v, to

the variational problem (3.34) for each n € N. Additionally, the sequence (vy,)n>1
converges to the solution v of the infinite dimensional original problem ({3.32)) in
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the sense that

. 2 . .
v, — v in L*(0,T;V), (nax lon(t) —v(t)]lz — O, (3.35)

see Theorem 23.A and Remark 23.25 in Zeidler| (1990).

Matrix formulation.
For ¢t € (0,T") we can represent each v, (¢, ) using the basis functions of V,,,

n
vt ) =S Vi)™, (3.36)

k=1
with ¢ dependent coefficients Vi(t), k& € {1,...,n}. A matrix representation
of (3.34) arises. Let n € N arbitrary but fix. All operators in (3.34]) are linear.
Therefore, using only the basis function (pg.n), j€{l,...,n}, of V, as test functions

does not result in a loss of generality. It allows, however, transforming (3.34]) into
a matrix form. We get

Zath (o) 790§n) VH + ka (e )790§n))

k=1
- n (3.37)
+r Y Vi o) = Ei(0),
k=1
Vi(0) = oy, kEe{l,...,n},
with appropriately chosen ay, k € {1,...,n}, to approximate the initial condition
and wherein for j € {1,...,n}
Fi(t) = = ((@b(t, ), 05" + a(t, ), o) + (), o)) (3.38)
7 t ’ a ’ 80] r s ) 90] . .
We rewrite (3.37)) in matrix notation by
MV(t)+AV(t) = F(t), for almost all t € [0, 77,
(3.39)
V(0) = a,

wherein F(t) = (Fi(t),...,F,(t)) and equivalently o = (aq,...,a;,)" and the
central matrices M € R™"™ and A € R"*™ are given by

Ajp, = a(go,i ma; >> +rie, " a, V1< jk<n. (3.41)

We call M the mass matriz and A the stiffness matriz. To solve problem (|3.39))

we thus now need to determine the time dependent vector
V(t) = (Vi(t),..., Va(t)) (3.42)

that satisfies the ODE therein.
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3 PIDEs and option pricing

vii) Time discretization.
We have reduced the dimensionality in space. Equally, we now discretize
with respect to time to receive a so-called fully discretized problem. To this end
we choose M € N and set up a time grid

O=tog<ti1 <---<ty="1T. (3.43)

We introduce the notation V¥ := V(t¥), k € {0,..., M}, and AtF = tF+1 — ¢k
ke {0,...,M —1}. We choose a 6§ € |0, 1], approximate the time derivative by a
finite difference approach and get from (3.39) the fully discrete scheme

k+1 _ yk
Mu+Avk+9:Fk+9, ke{0,...,M—1}

Aty (3.44)

VY= q,
with

VAR — gVl L (1 — o) vk ke{o,...,M -1},
FFHO = g (1 -0)FF,  ke{0,...,M—1}.

Different values of 6 € [0, 1] result in variations in stability of the numerical pro-
cedures as we shall see later. Typically, we set § = 1/2, yielding the so-called
Crank-Nicolson scheme.

The matrix-vector formulation in the fully discretized scheme links the solution
V¥ at time grid point t* to the solution V**1 at time grid point t*+1 The initial
condition provides the values for V° € R™. Thus, rewriting and sorting by
exponent we get the relation

(M + AtFgA) R+ = (M ~ A1 - 0)A> VE 4 FRHO
for k € {0,..., M — 1}, which is equivalent to
VAL = (M + AthA) ! <<M N e)A) vE F’f+9) , (3.45)

for k € {0,..., M — 1}. By iteratively applying (3.45)), the solution to (3.44]) on
the whole space-time grid is derived.

Remgrk| 3.15 (On the fully discrete solution)

Steps I impose several layers of approximation on the original problem .
Loosely speaking they first introduce a discretization in space, and a discretization in
time, thereafter. When the PIDE is discretized in space, at the end of step|v)| we cite the
convergence result of |Zeidler| (1990) for the semi-discrete approzimate solution
that is still continuous in time. Convergence results for the fully discrete approximate

solution V¥, k € {0,..., N}, in (3.45) are provided in Section .
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3.3.1 The model

Steps to provide us with the theoretical background to set up a numerical Galerkin
solver to solve pricing PIDEs of type (3.16)). For an actual implementation of the method

we need to decide on basis functions wkn), k€ {1,...,n}, spanning the solution spaces,
a European payoff profile g and a pricing model represented by the PIDE operator A.
The core challenge then lies in calculating the key numerical ingredients, those being
the mass matrix M € R™"™ as defined in , the stiffness matrix A € R™" as
defined in , and the right hand side F' € R™ of . We consider the numerical
difficulties arising from these quantities in the next section, taking the pricing problem
of a European plain vanilla option in the Merton model as an example.

3.3 A FEM solver for the Merton model using hat functions

In this section, we build an actual Galerkin solver for pricing plain vanilla options in an
elementary yet well known Lévy jump diffusion model. The computational steps that
follow reflect the theoretical steps of the abstract framework of Section [3.:2l We consider
the Merton model as an example.

3.3.1 The model

We briefly stated the Merton jump-diffusion asset model of Merton| (1976]) in Fourier
terms in Section [2.3.2] Throughout the rest of this chapter, it will serve as the ex-
ample that the numerical PIDE solver being developed in this chapter will be based
on. Let us therefore highlight its features in more detail. Consider a stochastic basis
(Q, F, (Ft)t>0, Q). In the Merton model, the price process (St)¢>0 of the underlying asset
is modeled by

S, = Spel, (3.46)

with Sp = €™ > 0 being today’s value of the underlying, and wherein (Lt)¢>o is a
Lévy jump diffusion process composed of a drift b € R, a Brownian part ¢ > 0 and
a compound Poisson distributed jump part with jump intensity A > 0 and Normally
N (a, B?) distributed jump sizes,

Nt
Li=0bt+ oW+ ) X, (3.47)

=1

wherein (W;)¢>0 is a standard Brownian motion and X; ~ N («, 5%), for all i € N. The
Brownian motion (W3);>0, the Poisson process (N¢)i>p and the normally distributed
random variables are independent from another. From we read off the the triplet
(b, 0, F) that characterizes the model. The Lévy measure is given by

exp <—W> dz. (3.48)

F(dz) =\ 25

1
\/ 27132
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3.3.2 Pricing P(I)DE

In order to determine the drift value we consider the no-arbitrage condition. The process
(St)t>0 defined in ([3.46|) discounted by the constant risk-free interest rate » > 0 must be
a martingale under Q, such that

et = Eglelt] = (=) vt >0, (3.49)
holds. By the definition of the cumulant generating function 6 in (2.11)) of Lemma
the identity (3.49) holds if

r=0(i(—i)) =b+ %a2 + /R(ey — 1)F(dy), (3.50)

where we set the cut-off function to zero, h = 0, by Remark 2.12] Note that we may
choose the ¢ argument of the cumulant generating function to be complex by Theo-
rem [2.13] In accordance with the no-arbitrage condition stated in generality by iden-
tity , the drift b is thus set to

0.2

ber/R(eyl)F(dy)

TP <exp (W) - 1) (3.51)

:r—a;—)\<exp<a+ﬁ;>—1>,

which completes the triplet (b, o, F'). Figure displays a typical asset price trajectory
(Soexp(Lt))i>0 in the Merton model for ¢ € [0, 1].

3.3.2 Pricing P(I)DE

The Merton model introduces the forward pricing PIDE

ou+Au+ru=0 in (0,7) xR

u(0) =g inR, (3.52)
where by the operator takes the form
(AN(@) = <80, (@) = 50°0.01(2) = [ (@ +3) = Fla) P(d) (3.53)

for all f € C5°(R), with (b, o, F) the characteristic triplet from above. In Section [3.1] we
underlined, that the existence and uniqueness of (weak) solutions to PIDEs of form
depend on the choice of the solution space W1(0,T;V, H) yielded by the Hilbert spaces
V and H that generate a Gelfand triplet together with V*, the dual of V. In Section (3.2
we have taken several theoretical steps that demonstrated how to simplify a PIDE of
form to an approximate problem that is numerically tractable. Now we want to
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3.3.2 Pricing P(I)DE

Merton Model Trajectory

1.14 m“
L2k o =0.15 A= 2.5, a=0.02, 5:0.03|
L1F

1.08

0 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 1
t

Figure 3.1 A single asset price trajectory in the Merton model. The Brownian compo-
nent is parameterized by ¢ = 0.15. Jumps arrive at a rate of A = 2.5 with expected value
a = 0.02 and standard deviation § = 0.03. The asset price process starts at Sp = 1. The
constant riskless interest rate is set to r = 0.03.
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3.3.2 Pricing P(I)DE

focus on the actual numerical implementation of the rather theoretical perspective of
the previous two sections. We thus do not explicitly state the various solution spaces as
we put those abstract simplification steps into concrete terms. As usual, however, we

chose
H = L*(R), or respectively H = L*(a,b). (3.54)

The pricing of classic European options requires the notion of weighted Sobolev spaces
to determine V and V*, consider Definition 2:30] Weighted Sobolev spaces have also
played a role in Theorem where they were needed to link the solution to a PIDE of
type to an expected value via a Feynman-Kac approach. We thus emphasize, that
weighted Sobolev spaces are crucial for the theoretical framework required for a unique
weak solution to to exist. Nevertheless, from here on we focus on implementational
issues and thus try to avoid direct contact with the functional analysis in the background
wherever possible. We recommend [Eberlein and Glau (2011)) for the proper treatment
of the underlying spaces.

The numerical objects that we need in order to numerically approximate the weak solu-
tion to the Merton pricing PIDE ([3.52)) almost all depend on the bilinear form associated
with the operator. The operator A of (3.53) yields a time-homogeneous bilinear form

:—b/ Orip(z x)dx

-5 /R (Orai(2) () da

- /R (/R(SD(”U +y) — so(w))F(dy)> Y(z) dx
+r [ et as

(3.55)

defined for all ¢,7 € C§°(R). The bilinear form a(-,-) of ( is continuous as a
mapping from Hg(R) x H}(R) — R. As such, it has a umque extensmn to an associated
bilinear form a : H}(R) x H}(R) — R given by

a(p,) = —b / (Beip(2)) ¥(x) da
+57° [ @rpl@) (0,0(a)) da
-/ ( [+ - @(x))F(dy)> b(x) da
R R

+r /R (@) de,

(3.56)

for all o, € H}(R), where the transition from (3.55) to (3.56) is achieved by applying
integration by parts in the first summand. We proceed with the bilinear form a(-,-)

of (5.
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1_
; \
oLt

a Xl X2 X3 X4 X5 XG X7 X8 X9 X10 Xll X12 X13 X14 X15 b

Figure 3.2 A plot of N = 15 hat functions ¢;, i € {1,..., N}, spanning the bounded
domain (a,b) as given by Definition on an equidistant grid. For them to better
distinguish, g is highlighted.

3.3.3 Basis functions: The hat functions

In accordance with step [ii)|of the abstract scheme in Section , we limit the unbounded
spacial domain R of the Merton pricing PIDE problem to a bounded domain (a,b) C R.
On this bounded domain we establish a finite set of basis functions that span the finite
dimensional space with respect to the spacial variable z. Key ingredients of a numerical
PIDE solver depend heavily on the choice of basis functions. In this implementation we
choose the well known hat functions as basis functions.

Definition 3.16 (FEM hat functions)
Let N € N and a < b € R. Assume an equidistant grid Q = {zo,z1,...,TN,TN4+1} ON
(a,b) with mesh fineness h > 0,

a:x0<x1<~--<xN<a;N+1:b, (3.57)

with x; = a+ih for alli € {1,...,N 4+ 1}, then the N hat functions p;, i € {1,..., N},
are given by

x — X .
oo = (1-E2 2 1 0 M, (3.58)
with derivative in the distributional or weak sense of Definition [2.23 given by
) L, x € (x; — h, x,
9 (2 = 3.59
63380 ( ) { —h_l, x € (ZL‘i, T; + h), ( )

forallie{1,...,N}.

Clearly, the hat functions of Definition |[3.16| are piecewise linear as Figure illustrates.
Later, we will also need the Fourier transform of the hat functions on an equidistant
grid. This is provided by the following lemma.
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Lemma 3.17 (Fourier transform of hat functions)

Assume N € N and let ¢;, i € {1,...,N}, be the hat functions on an equidistant grid
{z1,...,xn} with grid fineness h > 0 as introduced in Definition . Denote by g the
hat function associated with the origin,

po(z) = <1 - |Z|> Ljs/<h; (3.60)

with appropriately scaled support, supp g C [—h,h]. Then, the characteristic function
of hat function yj, j € {1,...,N}, is given by

Bi6) = <G e), (3.61)
for all € € R, where
Bl = g3 (1 = cos(éh), (3.62)
for all € € R.
Proof

The derivation of the characteristic function of g is a straightforward calculation,

vo(¢) /Re wo(z) dz
0 h
:% —h(h + x)e’f”” dz + % /0 (h— ac)e’fx dz
h h
:% (/0 he ™% + he® dz + /0 —ze BT _ gt dm)
h h
:% <2h/0 cos(§x)dx — 2/0 x cos(éx) d:c>
_2 h [1 Sin(ﬁx)] ' _1 [€xsin(Ex) + cos(Ex))!
h £ o & 0
:% (Z(sm(gh) —0) - ;(éhsin(gh) + cos(¢h) — (0 + 1)))
2 2
= Sin(eh) — g7 (€hsin(Eh) + cos(ch) — 1)
:;h(l — cos(&h)).

From this we deduce with ¢; = ¢o(- — ;) and by property [i)| of Lemma that the
characteristic function of ¢; is given by

5 (6) = %955 8),

for all £ € R and for all j € {1,..., N}, which proves the lemma. O
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3.3.4 Mass and stiffness matrix - an explicit derivation

3.3.4 Mass and stiffness matrix - an explicit derivation

As we have seen in Section [3.2] the key ingredients of a numerical solver are the mass
matrix M and the stiffness matrix A. They drive the so-called time stepping scheme
of or , respectively, that iteratively derives the fully discrete solution on the
space-time grid. Both matrices depend on the choice of basis functions ¢;, i € {1,..., N},
spanning the finite dimensional solution spaces built on Vi.

Lemma 3.18 (Mass matrix for hat functions)

Let N € N, and assume N hat functions ¢;, i € {1,..., N}, spanning a bounded domain
given by an equidistantly spaced grid with mesh fineness h > 0. Then the mass matriz
M € RN*N given by

M;j = / pj(@)pi(z)dz,  i,j€{l,...,N}, (3.63)
R
computes to
4 1 0 0
1 4 1
h
M=<1o 0l (3.64)
1 4 1
0 1 4
with M € RN*N,
Proof
The entries of the mass matrix M are derived by elementary calculations. U

Mass matrix entries M;; for i, h € {1,..., N}, as defined by are only nonzero when
the domains of the associated basis functions ¢; and ¢; overlap. Therefore, the mass
matrix M of is a sparse matrix when the underlying grid is populated by finitely
supported hat functions and the degree of sparsity grows in N, as M; ; # 0 if and only
of i —j| <1

The derivation of the stiffness matrix is a lot more involved. We recall the definition of
the stiffness matrix in Equation (3.41) as

Aij = alej, i) + g, 0idm, 4,5 €{l,...,N}h

We split up the stiffness matrix A € RV*Y into several parts that we compute individ-

ually,
A=AW 4 AC) 4 AB) 4 4™ (3.65)
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3.3.4 Mass and stiffness matrix - an explicit derivation

where

AP = <o [ (ws@) el (3.66)

Ag) = %02 / ;U%(w)gccpi(x) dz (3.67)
4% = / [ erla+9) = @) Fan)eta) da (3.68)
Ay = (3.69)

for 4,57 € {1,..., N}, where we implicitly use H = L?(a,b) as set in . The stiff-
ness matrix carries the information describing the behavior of the underlying asset price
process as represented by the characteristic triplet (b, o, F'). Especially the existence of
a Lévy measure F' carrying jump information, F'(dy) # 0, in general complicates the
derivation of (semi-)explicit formulas of the stiffness matrix considerably. Section
where we stated the Lévy measures F' of some well known models, underlines the chal-
lenge of numerical integration with respect to Lévy measures.

Yet, for the Merton model we will derive (semi-)explicit formulas for the stiffness matrix
entries, including the jump part A ) in - We will analytically solve the integrals in

Al(]), k € {1,2,3,4}, until explicit formulas are derived or until the expressions depend

on integrals with respect to the Lévy measure F' that the following Lemma can solve.

Lemma 3.19 (Important integrals with respect to F(dy) in the Merton model)
Let F(dy) be the Lévy measure of the Merton model,

1 (y — a)2>
exp | — d 3.70
V2 P ( 22 Y ( )
with « € R, B € RT and A € RT. Then we have the following identities,

iF(dy) )\erf<\[§> (3.71)

— 00

F(dy) = A

Let c € R, then

Jom o= (3 () - e (552)). 57
and

T

[ w-erpan) = S (Var (la— o+ 8 et

)

—00

(a—y)?

—2B(a—2c+x)e 262 >, (3.73)
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3.3.4 Mass and stiffness matrix - an explicit derivation

05

erf(x)
o

05}

Figure 3.3 The erf function as given by (3.76)) in Lemma , evaluated over z € [—3, 3].

further

xT

/ (y = o)*F(dy) = 2\;\% (\/ﬂ(c —a)((a —¢)* + 3% erf (i/;;‘)

—0o0

(a—=x)?

+2B8e” 282 (a? 4 3c? — 3c(a+x) +28% + 2 + ax)), (3.74)

and finally

/ ! F(dy) = —%eoﬁ% erf (W) . (3.75)

In all identities (3.71)—(3.75)), erf denotes the so called error function,

erf : R — (—1,1),

defined by
2 T
erf(z) = / e 1 dt, Vz € R. (3.76)
VT Jo
Proof
All integrals have been solved using http://www.wolframalpha.com and performing
elementary transformations on the results. O

A plot of the erf function is depicted in Figure [3.3]
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Remark 3.20 (erf and normal distribution)
The relation between the erf function and the cumulative distribution function of the
standard normal distribution is obvious,

erf(z) = \/27? /Ow e dt = \/% /0\/51" e_é dt
— 9 {@0,1 (v2z) - @0,1(0)}

= 2(1)0’1 (\@[B) — 1,

where ®,, ;> denotes the cumulative distribution function of the normal distribution with
expected value ;1 € R and standard deviation o € RT.

We begin the derivation of the individual parts A%, k e {1,2,3,4}, of the stiffness
matrix A of (3.65)).

(AS.)) Elementary calculations result in

yielding the matrix

0 -1 0 0
10 -1
A(l):%b 0 e
10 -1
0 1 0

with b as in (3.51)).

(Al(?)) Elementary calculations result in

yielding the matrix

2 1 0 0
-1 2 -1 . :
A<2>:%02 o - ol (3.77)
-1 2 -1
0 0 -1 2
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3.3.4 Mass and stiffness matrix - an explicit derivation

Figure 3.4 Two types of overlap have to be distinguished during the derivation of AS’)

in (3.78)). On the left, y is such that h < |z; — (z; — y)| < 2h, while on the right, y is
such that |z; — (x; —y)| < h. Whenever |z; — (x; —y)| > 2h, there is no overlap and the

respective integral (3.80)) is equal to zero.

(AS.’)) We compute A®) of (3-68).
AD =~ [ [ oite+0) = i) Playyea) s

— _//(goj(ery)—cpj(a?))%(l’)dQTF(dy)
R JR

-~ [| [ o+ natorac| ran+ [ | [ estoretarac]| pan
_ /]R [ /R i@ + y)ei() dx} F(dy) + M. (3.78)
Let now y € R and 7,5 € {1,..., N} fix such that
y<w—m & m<z—y (3.79)

and consider [ ¢;j(x+y)pi(x)dz. Then, by the definition of the hat functions ¢;,
i€ {1,...,N}, in Definition we have

[ osta+veita)da
R

[z — (2; — )| |z — xi]
_/]R<1_h] Ho—(@—yl<n (1= =77 ) Lo—aif<n 42

The integral (3.80)) is nonzero only if the two functions in the integrand overlap,
which is the case if |z; — (x; — y)| < 2h. Then, two different kinds of overlapping
have to be distinguished, see Figure [3.4]

Define d = x; — ;. Then, by some tedious but elementary calculations, (3.80))

(3.80)

68



3.3.4 Mass and stiffness matrix - an explicit derivation

computes to

2h — |y —d|)?
/ ej(x +y)pi(z) dr = Lpojy_aj<on [(6"}12”}
R
X X , (3.81)
3 2
+ Ljy—q<n {%ﬂy —d|” - E'y —d|* + 3h] .

Concerning the indicator functions in (3.81)) we find that

Lhcjy—ai<on = 1 =y € (d+h, d+2h]U[d = 2h, d—h), (3.82)

ﬂ|y—d|§h =1 <:>y € [d—h, d"—h]

We use the intervals of , where the indicator functions in are Nonzero,
to integrate [ ¢;j(x+y)pi(x)dx with respect to the Lévy measure v of the Merton
model. Until now, all derivations have been conducted independently of the model
represented by the Lévy measure. At this point, the derivations depend on the
model. We derive

/R/R@j(:wr y)pi(x)de F(dy) = /Rﬂh<ly—d|§2h [W] F(dy)

1 1 2
1 — |y —d|? — |y —d|* + h|F(dy).
%/g y_dgh[thly "=y —dl”+ 5 ] (dy)

We integrate both summands in (3.83)) separately. For the first we find
(2h — |y —d|)®
/R Lh<|y—dj<2n [6h2 F(dy)

1 d—h d+2h
= G2 ( /d 72h(2h +y—d)’F(dy) + /d . (2h — (y — d))3F(dy)> (3.84)

(3.83)

deh d+2h
— gz ([ o= @=2mpran - [0 - @ mpran)

—2h d+h

For the integration of the second summand in (3.81]) we have

1 1 2
1 — |y —d? - ~ly—d*+Zh| F(d
/R|yd|<h {%Qly "= ly !+3] (dy)

1 d+h 5 1 d+h ) ) d+h
L I / ly— dPF(dy) + 2h / F(dy)
2h% Jy_ h Jan 3 Ja—n

— 2%2 (/dd+h(y — d)*F(dy) — /ddh(y - d)3F(dy)>

1 d+h ) B 2 d+h
S AU CI R T )
d—h d—h
All the individual integral values in ([3.84]) and (3.85]) are now provided by Lemma(3.19|

This finishes the derivation of [ [¢ ;(z +¥y)@i(x) dz F(dy) in (3.78) and thereby
also the computation of the third part of the stiffness matrix A as given by (3.68)).

(3.85)
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3.3.5 The right hand side F' - a Fourier approach

(AZ(;L)) For the final part of the stiffness matrix, A® there is nothing left to do. By
definition,
4
Az(]) = TMZ‘J‘,

so the forth part of the stiffness matrix A is given by the definition of the mass

matrix in (3.63)).

3.3.5 The right hand side F' - a Fourier approach

As the goal of this implementation is to derive prices of plain vanilla European call
and put options, the solution to pricing PIDE will not possess zero boundaries.
Linear combinations of classic hat functions, however, can only represent functions with
zero boundaries (where we will not pursue the concept of special hat functions that
are basically half hats associated with node x¢ or 41, respectively, that circumvent
this restriction. We direct the reader to Chapter 5.2 in [Seydel (2012)) for these special
basis functions, instead). Consequently, the original Merton pricing PIDE needs to be
transformed to a new problem which we assume to be equal to zero at the boundaries of
the bounded domain (a,b). We have seen the theoretical concept of the enforcement of
Dirichlet zero-boundaries in Section and in Steps|i) and [ii)[therein. For the numerical
implementation, we need to decide on a specific function v to subtract from the solution
to the original problem. The choice of this function depends first and foremost on the
payoff profile of the option that we derive prices for.

For plain vanilla European call and put options, there are standard boundary conditions
in the literature see Example 15.5 in Hull| (2015). These are inherited from the price
value V¢ of a call option and the price value V¥ of a put option that behave for |z| — oo
and |z| — 0 as

VY (x,t) =0, xr — —o0, t€[0,T] (3.86)
VO (r,t) = e® — Ke ™, xr — +o0, t € [0,7] '
for call options and
VP(x,t) » Ke ™ —¢”, r — —o0, t €[0,T]
(3.87)

VP (x,t) =0, x — 400, t €[0,T]

for put options. In Figure (3.5 we assess the accuracy of these boundary conditions in

the Black&Scholes model. For the localization of the pricing PIDE (3.52)) to a bounded
space-time region (0,7") X (a,b) with a < log(K) < b€ R and T > 0, a function ),

¥ [0,T] x [a,b] — oo, (3.88)
to subtract would need to fulfill

on(tv a) =0, Vt € [07 T]a

3.89
VO(t,b) = e — Ke™™, vt € 10,7, (3.89)
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s European call boundary precision 5 European put boundary precision
1077 1077

abs. err. at a=-2.5
rel. err. at b=2.5

-10 |
10 /

abs. err. at b=2.5
rel. err. at a=-2.5

- —
2 2
3 g
10—15 L
102 ’ ’ ’ ’ ' 10%°
1 12 14 16 18 2 1 12 14 1.6 18 2
time to maturity ¢ time to maturity ¢

Figure 3.5 Precision study of the classic boundary conditions for European call (left)
and put options (right). We compare v defined according to or , respectively,
to prices of the Black&Scholes model generated by Matlab’s blsprice routine. We set
r =0.05, K =1, 0 = 0.3 and evaluate European call and put prices for S§'** = e with
b =25 and SP" = ¢ with a = —2.5 for time to maturity values of ¢ € [1,2]. With
values for r and o being rather large and |b| and |a| being rather small, both model as
well as grid parameters have been chosen rather conservatively. Results in more realistic
settings are even better than the depicted ones.

for call options and
VP (t,a) = Ke ™ —e?, vt € (0,71,

3.90
WP (t,b) =0, vt € [0, 7], (390
for put options. Naive choices for both European options are
el T —rt\+t
t,x) = (e — Ke ,

WP (t, ) = (Ke ™ — ex)+.

Both candidates in ((3.91)) fulfill the boundary conditions (3.89)) and (3.90)), respectively.

However, we do not want to repeat tedious calculations of the kind we encountered in
the derivation of semi-explicit expressions for entries of the stiffness matrix. Instead,
we intend to apply a Fourier approach and compute the entries of the right hand side
F € RY numerically. As we shall see below, for the application of this approach we
need not only a closed expression of the function v which we subtract frorAn the original
problem, but additionally a closed expression of its Fourier transform ¢. For better
numerical tractability, we require a fast decay of [1)(§)| for [§| — oo. The smoother 9, the
faster [| decays, compare Remark Consequently, due to the kink at z = log(Ke™"")
for all t € [0,T], both 1% (-,t) and " (-,) are only continuous, but not continuously
differentiable and thus already lack elementary smoothness. We thus need different
functions v to subtract that not only fulfill the appropriate boundary conditions (|3.89)
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3.3.5 The right hand side F' - a Fourier approach

or (3.90) but that are also as smooth as possible. This additional requirement rules out

naive candidates like (3.91). As we have seen in ({3.38]), the right hand side in vector
notation is given by F(tF) = (Fy(t¥), ..., Fx(t*)) € RY for each t* on the time grid with
F;(-),je{l,...,N}, given by

F= - /R (@rp(t, ) + (A)(t, 2) + 1ib(t,2)) () de (3.92)

for all j € {1,...,N}.

In contrast to the integrals in the stiffness matrix, we intend to avoid solving the integral

in (3.92)) analogously to derive the right hand side F. Instead, we follow Eberlein and
Glaul (2011) by invoking Parseval’s identity of Theorem in a way that we call the
symbol method.

Lemma 3.21 (The symbol method)
Let A be the symbol of a Lévy process given by the characteristic triplet (b, o, F'). Denote

by A : C°(RY,C) — C=(RY, C) the pseudodifferential operator associated with symbol A.
Furthermore, denote by a : C5° x C5° — C the bilinear form associated with the operator
A. Letn € R, If

i) the exponential moment condition
/ =) p(da) < oo (3.93)
lz|>1

holds for all ' € sgn(n")[0, |n'(] x --- x sgn(nd)[(), |77d|] and

ii) there exists a constant C; > 0 with

[A(2)] < Co(1+ [|z[))* (3.94)
for all z € U_,, where
Up=U_p % xU_pa (3.95)
with U_; = R — isgn(n?)[0, [n’]),
then a(-,-) possesses a unique linear extension a : Hy /2 Ha/2 — C which can be written
as
1 , —_—
o) = oy [, A€ = in)(e —in)i(E —in) de (3.96)
for all p, 9 € H,?/2(]Rd).
Proof
The proof can be found in [Eberlein and Glau| (2011) using Theorem 4.1 therein and
Parseval’s identity [2.7] O
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Lemma [3:2I] enables us to avoid considering the operator A for evaluating the associated
bilinear form and use the belonging symbol A, instead. Let us observe the effect of
Lemma on the derivation of the right hand side Fj, j € {1,..., N} for our numerical
FEM solver for the Merton model.

With this identity, we are able to derive the right hand side (F});e,.. vy in terms of
Fourier transforms. Consider a smooth function ¢ : [0,7] x R — R such that ¥(t) €

HS*(R) for all t € [0,T] for some n € R. With ¢ € [0, T,
Fi(t) = — / (@it 2) + (AD)(t, 2) + rp(t, 2) 9 () da
R (3.97)
- ( /R Bui(t, )3 () da + /R (AG)(t, 2)p;(x) da + 1 /R b(t,2)p;(x) dx).

We consider the three parts in (3.97)) individually. In the last summand we use appro-
priate dampening to apply Parseval’s identity of Theorem and get

/w(t,x)goj(m) dz = /e"xw(t,x)e"xgpj(x) dx

R R
- )/ Fle (- 0)OF (e o (D)@ dE (398)
= 5 [ Il 0©F 5@ d

By the same means we get for the first summand in (3.97)) that

[ ouitt.aye@ e = 5 [ o 0©F e (3.99)

Finally, for the second summand we have by applying the symbol method of Lemma[3.2]]

to (3.92)) that
1

[ antae ) de = 5o [ A€—indloE -z, O (@100

where A denotes the symbol of the Merton model.

Example 3.22 (Symbol in the Merton model)
In the Merton model where 0 >0, A >0, a € R and 8 > 0, the symbol computes to

A(€) = Amerton(g) = 30252 +igh— A (e*mf*%/ﬁiz - 1) (3.101)
for all £ € R.

We see from Example that the symbol of the Merton model appears to be numer-
ically accessible. Consequently, the symbol A for the Merton model is very suitable for
numerical integration, as is 1 given that the function v itself is smooth enough. In this
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3.3.5 The right hand side F' - a Fourier approach

case, solving the integral in (3.100]) is numerically accessible — in stark contrast to the
respective integral in (3.97)).

The following remark summarizes the numerical requirements on .

Remark 3.23 (Empirical criteria for 1)

Consider a pricing PIDE for a European plain vanilla option with payoff profile
g with weak solution u € W(0,T; H,?/Q(R), L2(R)) for some weight n € R that shall be
numerically approzimated on a space time grid in [a,b] x [0,T]. Assume @) € Hf;/Z(R)
that (approximately) matches the boundary conditions on the boundaries of the space-time

grid i.e. for the call option (3.89)) and for the put option (3.90). Then 1 is numerically
suitable for the purpose of localizing the pricing PIDE (3.52)) if

i) 1 is quickly evaluable on the region [a,b] x [0,T] and
i) the integral

By = 5= [ (B0~ in.0) + A€~ m)C(E — in) + (e — in.0) Ty (O d€

can be numerically evaluated for all j € {1,...,N}.

Criterium allows retransforming the solution of the localized problem into the solution
of the original pricing PIDE, while criterium grants the numerical derivation of the
right hand side F € RY.

In the following two subsections we will analyze two candidates for ¢ that match the
criteria of Remark [3.23

A first suggestion for ¢ consists in using Black&Scholes prices as functions in x =
log(So) € [a,b] and time to maturity ¢ € [0, T for localization of the pricing PIDE (3.52)).
We express the price of a Furopean option with payoff profile fx in the Black&Scholes
model in terms of (generalized) Fourier transforms using Proposition and define v
accordingly, as the following lemma explains.

Lemma 3.24 (Subtracting Black &Sch prices)

Let n € R such that Conditions (Fxp|) and (Ind) of Proposition|2.2() are satisfied. Choose
a BlackéScholes volatility o> > 0 and for European options set ry = r with v > 0 the
prevailing risk-free interest rate. Define 1 to be the associated BlackéScholes price,

wuﬁvzw“W@aﬂ=éﬂ%*“;Lééaﬁa—@+wmwﬁ”@+wmd& (3.102)

™

wherein fix = g, the initial condition and A the symbol of the associated operator A

in (3.16). Then, the right hand side F : [0,T] — RN takes the form

E@z%AOw—wﬂﬂw—M@—W>

Fr (€ —in)exp (=t (ry + AP0 (€ —in))) §5(€ + in) €. (3.103)
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12 . .
13X 1012 Call boundary precision 00 Put boundary precision
1257
5 abs. err. at a=-3.5 5 1 abs. err. at b=3.5
5 12t rel. err. at b=3.5 g 10 rel. err. at a=-3.5
115}
L L L " " 10-12
1 12 14 16 18 2 1 12 14 1.6 18 2
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Figure 3.6 Precision study of the boundary conditions for European call (left) and put
options (right) now given by . We compare 9 X ®g 5p—05 or ¥ X (1 — Py 50=0.5),
respectively, to prices of the Black&Scholes model. Equivalently to Figure [3.5] we set
r =0.05, K =1, 0 = 0.3 and evaluate European call and put prices for Sj'#* = e®max
and Sgli“ = e®min_ [n contrast to Figure the absolute values of zpin, and Tpmax have
to be increased to xpin = —3.5 and xymax = 3.5 to achieve comparable accuracy.

forallje{l,...,N}.

Proof

In order to derive the right hand side, we need to represent ¢ in Fourier terms. Since
for call and put options, ¥ ¢ L'(R), we compute the (generalized) Fourier transform of
1 or the Fourier transform of 1, respectively. We get

Uyt @) = PP (8, )

_ et L /R 7 Fre(— (€ + im))prs (€ + i) A& (3.104)

2T

= e”""tzi /R e i (€ — in)eyy ™ (—(€ — im)) €.

s

The integral in (3.104)) is a Fourier (inversion) integral. Hence,

—

Un(E,t) = e Fre (€ — i)y (—(€ — i)
= e_wtf;((f —in) exp (ftAbS’W (& —in)) (3.105)
— Fr(& —in)exp (=t (ry + AP0 (€ —in))),

where we used the relation between the characteristic function and the symbol of a
process, confer Remark [2.19] Next, we prove that

CIR H —~
() = 2 0n(t,€) (3.106)
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for almost all ¢ € [0, T]. For notational convenience we assume r = 0 and K =1 for the
proof of (3.106]). Let 0 < ¢ < T" and define I. = [e, T]. Thus, the claim (3.106|) holds, if

0 ® [ s |
[ [ Rt~ inebs(~( — in) dzdo
R R

5 (3.107)
= [ [ e = in) b (~(e — in) dzda,
R R
which holds if
0 —izx T . bs .
5 | ¢ fi(z —in)eis(—(2 —in)) dz
R (3.108)

i B .0 .
= [ R = i) b (e - i)z, Ve eR
R

Fix x € R. The integrand on the left of (3.108]) is integrable for all ¢ € I. and it
is differentiable for all z € R. Furthermore, the integrand on the right of (3.108) is
bounded by a function A independent of ¢ € I, since

—izz 7 N S .
e iz = im) oty (= (2 m))‘

=t = iy (- = ) = e = ?) s e - )|

~

| in) (10— i)+ 502~ )

1 .

IN

2

~ 1
fi(z —in) <z’b<z —in) + =0 (z — in)2>
_ _1 2,2 _ 1 2.2
tér[lgz?)}]exp( t(bn 501 ) exp( €502 )
= h(z)

wherein b € R is the risk neutral drift chosen according to from Section in
the preliminary chapter. The upper bound derived in is integrable, h € L'(R).
We may therefore apply Lemma 16.2 from Bauer| (1992) which validates identity
and thus proves identity for all ¢ € I.. Since € can be chosen arbitrarily small,
identity holds almost everywhere on [0,7]. We may thus exchange integration
and differentiation and get

—

0 0 —~

awn(@?: aTﬂn(t’f)
= (€ —in) (= (ry + AP7% (€ —in))) exp (—t (ry + AP0 (€ —in)))
= — (ry + AP7 (€ — i) dy(t,£).

(3.110)
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3.3.5 The right hand side F' - a Fourier approach
Finally, since /"™ € Hy / 2(]R), we have analogously to identity , that
J R O o (e R S e GECCRIR)
So, collecting our results, for ¢ = ¥P>"¢ we arrive at

B0 = = [ (G0 e+ A=) (ea) 4 o)) (o) da

1 s
T o )y <_ (ry + AP (€ — i) Y7 (1, €)
+ A€ — i)y (1,€)
+rgy T <£,t)>so/j\n<£>d§
= or [ (=) (A0 =i - A - i) o (T @) a
R

— % i <(T¢ —r) 4 (AT — A) (¢ - in))

Fre(€ = in)exp (=t (ry + A™70 (€ — in)) ZE +im) dg, (3.112)

which proves the claim. O

For the choice of 7 in Lemma/[3.24] consider Proposition[2.20[or Lemma[2.21] respectively,
for plain vanilla European options. The candidate 1) = ¥P>"¥ matches the criteria of
Remark It is quickly evaluable, since functions for yielding Black&Scholes prices
are implemented in many code libraries. Also, the integral in is numerically
accessible, since the integrand decays fast.

Remark 3.25 (rg¢ = 0 for American options)

Choosing 1 to be BlackéScholes prices does not only suit the case of Furopean plain
vanilla options but American ones, as well. Only the value of ry needs to be adjusted.
When no dividends are paid, the price of an American call options is equal to the price
of a European call option. In this case, the Lemma applies identically. For put options,
however, the boundary conditions change when an American put instead of a Furopean
put is considered. Then, the boundary conditions coincide with those of a Furopean put
when interest rates are assumed to be equal to zero,

VE (2,t) = K — €°, T — —00,
‘;’”( ) (3.113)
Vim(z,t) — 0, T — +00,

confer also Chapter 11 in |Hull (2015). Consequently, for American options, choose

ro =0 in (3.102).
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3.3.5 The right hand side F' - a Fourier approach

A major disadvantage of choosing ¥ = 1”>"¥ however, lies in the fact that neither j €
{1,...,N} nor t € [0,T] can be separated from the integrand in (3.103]). Consequently,
Fi(t*),j€{1,...,N}, k€ {1,..., M}, must be numerically evaluated on each grid node
individually. This results in significant numerical cost. We therefore present a second
candidate for 1 that avoids this issue.

Lemma 3.26 (Subtracting Quasi-Hockey stick multiplied by Normal)
Let oy, > 0. In the European option case set vy = r, with r > 0 the prevailing risk-free
interest rate. Define ¥ in the call option and Y in the put option case by

V(L x) = (e" — Ke ™) &(z), (t,x) €10, T] x [a,b],

p . (3.114)

w (t,$) = (Ke_rw - eac) (1 - q)(.ilf)), (t,.ﬁ[)) € [OaT] x [a7 b]a
where ® denotes the cumulative distribution function of the normal N (0, 03}) distribution.
Furthermore, in the call option case choose n < —1 and n > 0 in the put option case.
Then, the right hand side F : [0,T] — RY is given by

V(e —i -
= % </R (Ate—in)+1)* ié§+ (77(747:;)1))@(5 im) ¢

V(€ —in)

_e—r¢tK/IR(r—r¢+A(f—i77)) e

@i (€ +in) d€)7 (3.115)

forallj €{1,...,N} witht € [0,T], where A is the symbol of the associated operator A
in PIDE ([3.52)) and with

- 1

() = exp (- 503¢ ).
the Fourier transform of the normal N (0, ai) density derived in Lemma .

Proof

We consider the call option case, first. To derive the expression for F; in (3.115) we
need to compute the Fourier transform of (the appropriately weighted) 1. We choose
1 < —1 arbitrary but fix and ¢ € [0, T] arbitrary but fix and compute for K =1,

—

P& (t,)(€) = /Reiéxe”x (e" —e ") &(z) da

(3.116)
= / eiéze(nﬂ)xfb(x) dz — e_“ﬁt/ e’fl’e”wfb(x) dz.
R R
We take the first integral in (3.116]) and get by applying integration by parts
/ M VTH (1) dx = / eI )Z P (1) da
R R
(3.117)

i(€—i(n+1))z +oo i(€—i(n+1))z

e (&
—®(x — / e Em— N x)dz,
iE+m+1) ] R+ + D)’ )
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3.3.5 The right hand side F' - a Fourier approach

where

@) = 5-a) e

denotes the density of the normal A(0, aw) Since 7 < —1, the non-integral part
in m ) tends to zero as x — +oo. Furthermore, by I’'Hopital’s rule we have

Jm TP (z) = Lam exp ( _(I) E:;)_f_ 1)z)
= lim fN(x)
a=—00 —(n+ 1) exp (— (7 +1)x) (3.119)
1 1

Hence, the non-integral part in (3.117)) is equal to zero and we have
A 1 o
i€ )T () dp = — L / i(€=in+1)e N (1) 3190
e“%e x)dx : e x)dz, .
/R (@) i€+ (n+1) Jr (@) ( )

which can be expressed in terms of the Fourier transform of the normal distribution
yielding

N .
/ eifze("""l)x@(x) de = — f (§ i(n + 1)) (3.121)
R i€+ (n+1)
Equivalently, we obtain for the second integral in (3.116))
N .
/eifzenzq)(m) do— _ & —m) (3.122)
R i€+
Assembling these results we find
- Nt it _
iE+m+1) i+
As in the proof of Lemma we exchange differentiation and integration and get
0 o0 0 = Y (i)
S5 (46 = G (D) = —rye S (3124)

We thus have
RO = -5 | (@’(s,w+A<s—in>@<g,t>+r@<s,t>) NG
_ 1 (_W Y ()

21 Jp i€ +n
: (€~ i(n+1) —rtf (E—in) | \=
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3.3.5 The right hand side F' - a Fourier approach

from which we deduce by splitting the integral

V(g —i -
ij:;( [ =m0 ES T D ac

V(€ —in)—

—e‘”’t/R(r—m—i-A(f—in)) g soj(£+z‘n)d£> (3.125)

with )
() = oxp (-502¢°).

For the put option case we choose as defined in ([3.114)),

wp(m,t) = (Ke*’"‘/’t — ex) (1—®(x))

— (ex _ Ke—rwt) (q)(x) _ 1) ) (3126)
Since P 9
o (2@) —1) = o-0(z), VzeR (3.127)

—

the computations for 71)? follow along the same lines as they do for the call and we get
the relation

Uy (t,)() =9F(t)(€), V(€ €[0,T] xR, (3.128)
for n set to some n > 0, which proves the claim. O

Remark 3.27 (Computational features of ¢ and )

While ¢ serves as localizing function for the call option case, ' can be used in the
put option case. Both candidates are based on their "naive” counterparts in but
avoid the lack of differentiability with respect to x in x = log(Ke™™) fort € [0,T]. As a
consequence, both Y and Y are very smooth functions and thus fulfill the requirements
collected in Remark when oy, is chosen small enough. Additionally, the two integrals
m do not depend on the time variable t € [0,T] and thus need to be computed only
once for each basis function pj. This results in a significant acceleration in computational
time compared to the suggestion 1 = 1*7% of Lemma .

We implemented the FEM solver as sketched above in MATLAB and conducted a study
of the empirical order of convergence. The results of this study can be found in Section [3.5]
below.

We have also tested the implementation in a project analyzing a method commonly
used by practitioners for model calibration purposes. Clearly, our implementation as
outlined above is designed with European options in mind. As such, it is a valuable
tool for calibrating the Merton model to European option prices in the market. Yet,
practice argues that American options are traded more liquidly and thus would offer a

80



3.3.5 The right hand side F' - a Fourier approach

more favorable source for reference prices in model calibration. Calibrating a model to
American prices, however, depends on the ability to derive American model prices for
a vast amount of model parameter constellations within a reasonable amount of time
which is typically numerically unfeasible. Therefore, some practitioners take American
option prices that they observe in the market, strip off the component that represents
the price for the American feature and calibrate their models in a European fashion
to quasi-European prices that result from that transformation. This method is known
as De-Americanization. Its effect on pricing and calibration is studied extensively in
Burkovska et al.| (2016 to which our implementation contributed the results with regards
to pricing call and put options in the Merton model.

3.4 A general FEM solver based on the symbol method

Section [3-3] has provided us with a FEM solver capable of deriving European call and
put option prices in the Merton model. The key ingredients of the solver have been
analytically derived. Let us emphasize our two main findings from that exercise. First,
the analytic treatment of the Lévy measure presented a serious challenge during the
computations. Especially the double integral term and the Lévy density required lengthy
and tedious consideration. Second, the actual computations we performed are closely tied
to the Merton model. Naively setting up a FEM solver for different models in the same
way would put us in the position of having to adapt all of our Merton-specific calculations
with respect to the Lévy measure of the new model. These two findings underline that
our first approach above can hardly be generalized to other models without serious
computational efforts for each new model individually.

Consequently, in this section we approach the calculation of FEM solver components
differently. In Section Parseval’s identity of Theorem[2.7 has enabled us to compute
the right hand side by numerical integration of the Fourier transforms of the involved
quantities. We have seen that in the course of this transformation, dealing with the
operator of the underlying model has vanished while the associated symbol appeared
in the calculations, instead. In stark contrast to the operator, the symbol of a Lévy
model is numerically accessible in many cases and we will present several examples in the
following. This feature nourishes the hope of being able to renounce the treatment of the
operator alltogether by shifting the focus to its Fourier counterpart, the symbol, instead.
Investigating this shift in perspective, this section aims at establishing a numerical FEM
solver framework that

i) provides flexibility in the choice of the asset model and thus
ii) avoids tedious individual consideration of different models but still

iii) maintains numerical feasibility.
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3.3.5 The right hand side F' - a Fourier approach

As we will see, achieving these core aims comes at a certain cost. While considering the
FEM solver components in Fourier space will be highly advantageous regarding some
aspects, it will also pose new challenges regarding others. More precisely, while shifting
our perspective to Fourier spaces solves the problem of having to consider the operator,
at the same time it leaves us with new numerical challenges concerning the choice of
basis functions. The contents of this section that focuses on the symbol method also
appear in (Gaf and Glau| (2016)).

Before we consider these new challenges, let us state the core lemma of this section.

Lemma 3.28 (Symbol method for bilinear forms)
Let A € S% be a univariate symbol as introduced in Definition [2.17 and let A be the
associated operator in a PIDE of form . Further, let a(-,-) be the associated bilinear
form. If there exists a constant ¢ > 0 such that

a(,0) < cllull oz [0l orzyy Vv € CR(R), (3.129)
then the bilinear form possesses a unique linear extension
a: HYA(R) x H*(R) - C. (3.130)

Assume further for N € N a set of functions ¢g, p1,...,oN € H§/2(R) and constants
x1,...,oN € R, such that for alli e {1,...,N}

vi(z) = oz — ), Vr € R,
holds. Then we have

a(gr, 1) = ;r/ﬂ%A(ﬁ)e"g(xl‘“) 20(6)[? de. (3.131)

forall k,l € {1,...,N}. If additionally

RIA©) = RA(-E)  and  S(A(©) = ~S(A(-0), (3132)
then | oo
ateron) == [ R (@) (o) ag (3.133)

forallk,le{1,...,N}.

Proof
Due to property [i)|in Lemma [2.4

0i(6) = (6. (3.134)
Since @; € HS/Z(R), for all i € {1,..., N}, the identity (3.131]) follows from Theorem 4.1

and Remark 5.2 and the lines thereafter in |Eberlein and Glau| (2011]), see also page 68
in |Glau/ (2010). The second claim (3.133)) is then elementary. O
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Remark 3.29 (On the symbol method for bilinear forms)

Lemma|3.28 provides an appealing formula to derive the values of all entries in the stiff-
ness matriz (Aij); jequ,.. Ny 1t offers an alternative to explicitly considering the effect of
the operator A on the basis functions that we presented in Section[3.5.4) Instead, it ex-
ploits the availability of the associated symbol A that often contains the model information
wm an explicit and numerically pleasing way, as the following examples show.

Corollary 3.30 (Symbol method for stiffness matrices)

Let A € S° be a univariate symbol associated with the operator A of a PIDE of form .
Denote by p; € LY(R), i € {1,..., N} the basis functions of a Galerkin solving scheme
associated with an equidistantly spaced grid Q = {x1,...,xN} possessing the property

vi(z) = oz — ), Vo € R, (3.135)

for some pg : R — R. Then, the stiffness matric A € RN*N of the scheme can be
computed by

1 ; —
Ay =5 [ A G dg (3.136)
2T R
forallk,le{1,...,N}.
Proof
The proof is an immediate consequence of Lemma, |3.28] O

Earlier, we introduced operators A and the characteristic triplets (b, o, F) of some well
known asset models. In Example [3:22] we have already seen the symbol of the Merton
model. The following examples present the symbols of the remaining models introduced
before.

Example 3.31 (Symbol in the Black&Scholes (BS) model)
In the univariate BlackéScholes model, determined by the Brownian volatility o > 0, the
symbol is given by

1
A(g) = A™(9) = igb+ 5o°¢, (3.137)
with drift set b to
b=r——o (3.138)
as seen in Example[3.11]

Example 3.32 (Symbal in the OGMY| model)
In the CGMY model of |Carr et al| (2002) with ¢ > 0, C > 0, G > 0, M > 0 and
Y € (1,2), the symbol computes to

A() = ATH(E) = igh + 0%
—CT(-Y) [(M +i&)Y — MY +(G-i&)" —G¥], (3.139)
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for all € € R, with drift b set to
1
b=r— 502 —CI(-Y) [(M - 1) = MY +(G+1)" - GY] (3.140)

for martingale pricing.

Example 3.33 (Symbol in the NIG model)
With o0 >0, « >0, B €R and § > 0 such that o > B2, the symbol of the NIG model is
given by

A(6) = A™I(¢) = %0252 +igh— 6 (\/a2 — Va2 = (B —if) ) (3.141)

for all £ € R with drift given by

b—rffa <\/a2 —Va2—(B+1) > (3.142)

Corollary 3.34 (Deriving the BS stiffness matrix using the symbol)

Denote by r > 0 the prevailing constant risk-free interest rate. Consider the pricing
PDE of the univariate BlackéScholes model, that is with operator A given by
Ezample [3.11]  Consider the numerical implementation of a FEM solver assuming the
hat functions @;, i € {1,...,N}, of Deﬁm’tionfor some N > 0 as basis functions on
an equidistant grid with fineness h > 0. Then the respective stiffness matriz A € RN*N
s given by

Ajj = 7rh2 / & cos(Eh(j —4))(1 — cos(&h))* d€

- % A gs sin(€h(j —0))(1 — cos(€h))* d€ + rMy;  (3.143)

for alli,j € {1,...,N}, where M € RN*N s the model-independent mass matriz given

by Lemma[5.18

Proof
The stiffness matrix A is given by the bilinear form a(-,-) : H§/2(R) X HS/Q(]R) - R
with a = 2, associated with the operator A by

Ayj = alpj, pi) + rM;;.

Let ¢p be the hat function centered over the origin with supp gy C (—h,h), as de-
fined in (3.60). Since the Black&Scholes symbol A = AP fulfills condition ([3.132) of

Lemma [3.28, we have
1 [ VO
alpr) = [ R (AP [FO de.

Inserting the formula of @y from Lemma and AP from (3.137) of Example
yields the claim. O
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Remark 3.35 (Toeplitz structure of stiffness matrix)

The mass matriz M is a Toeplitz matrix given that the basis functions are defined on
an equidistant grid and possess property (3.135)). We observe that the values of the
integrals in Equation i Corollary only depend on the value of j — i €
{—=(N—=1),...,—1,0,1,...,N — 1}. This means, that each individual diagonal of A is
determined by only one single value in the sense of Definition 2.1 Consequently, the
stiffness matriz is a Toeplitz matriz, as well. Thus, for its numerical derivation only
2N — 1 instead of N? integrals have to be computed. This feature is lost, if the grid that
the basis functions populate is not equidistantly spaced.

Algorithm 1 A symbol method based FEM solver
Choose equidistant space grid z;, ¢ € {1,..., N}
Choose basis functions ¢;, i € {1,..., N}, with ¢;(z) = po(x — x;) for some ¢
Choose equidistant time grid Tj, j € {0,..., M}
procedure COMPUTE MASS MATRIX M
Derive the mass matrix M € RV*N by
My = [ o1(x)er(z) de, Vk,le{l,...,N}
procedure COMPUTE STIFFNESS MATRIX A
Derive the stiffness matrix A € RV*Y by plugging the symbol A of the chosen
model into the following formula and computing
9: Ay = & [o A(E) @20 |5(9) 1 d¢,  Vk, 1€ {1,...,N}

10: using numerical integration

11: procedure RUN THETA SCHEME

12:  Following the suggestions by Lemma [3.24] or Lemma [3.26] for plain vanilla Euro-
pean options choose a function v to subtract from the original pricing problem
to obtain a zero boundary problem and retrieve the respective basis function
coefficient vectors ak eRN kecdo0,...,M}

13: Choose an appropriate basis function coefficient vector V! € R matching the
initial condition of the transformed problem

14: Derive the right hand side vectors F¥ ¢ RN, k € {0,..., M}, as defined in

Lemma or Lemma matching the choice of v

15: Choose 6 € [0,1] and run the iterative scheme

16: for k=0:(M —1)

17: VEHL = (M + At A) =L (M — At (1 — 0) A) VF 4 FFH6)
18: end

19: procedure RECONSTRUCT SOLUTION TO ORIGINAL PROBLEM

20: Add previously subtracted right hand side 1 to the solution of the transformed
problem by computing

21; VE=vE4+g" kelo,..., M}

22: to retrieve the basis function coefficient vectors 17’“, k€ {0,..., M}, to the orig-
inal pricing problem
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Algorithm [I] summarizes the abstract structure of a general FEM solver based on the
symbol method. By plugging the symbol associated to the model of choice into the
computation of line [J of the algorithm, the solver instantly adapts to that model. In
other words, only one line needs to be specified to obtain a model specific solver for
option pricing. As Examples[3.31] [3.32] [3.33] and others emphasize, the symbol exists in
analytically (semi-)closed form for many models, indeed. Algorithm [1] thus provides a
very appealing tool for FEM pricing in practice. Model specific computations that we
had encountered earlier for the Merton model have become unnecessary.

3.4.1 Numerical aspects

By now we have seen two alternative ways to compute the stiffness matrix A. The
derivation in Section required the consideration of the Lévy measure F'. Taking the
Merton model as an example we understood that long and tedious calculations may come
with this approach. Section offered a different solution. By expressing its entries in
terms of Fourier transforms, Corollary [3.30] displayed a formula for the stiffness matrix
values that accesses model information not via the operator but via the related symbol,
instead. Many examples have shown, that explicit formulas for the symbol exist for
many interesting models.

From a numerical perspective, however, new challenges arise. Basis functions with
bounded support alleviate numerical integration as they limit the area within the in-
tegration range that supporting nodes are distributed over. This is the case for classic
hat functions ; since supp ¢; C [z; — h, x; + h]. Transitioning into Fourier space, how-
ever, comes at the cost of numerical integration on an unbounded domain, since the
support of ¢; is not bounded in R, supp p; = R, see Figure [3.7

As an example, Figure[3.8|displays some stiffness matrix integrands for the Black&Scholes
model in Fourier terms. More precisely, we show several integrands of A € R¥* in the
representation provided by of Corollary Each integrand is evaluated for a
different value of j — i over three different subintervals taken from the unbounded inte-
gration range. In the Fourier approach of calculating the stiffness matrix 4 € RV via
the respective symbol, the integrands of A;; would have to be numerically integrated for
all j —i e {—(NV-1),...,-1,0,1,..., N — 1}. The larger |j — i|, however, the more
severe the numerical challenges for evaluating the integrand, as Figure [3.8| demonstrates.
All integrands illustrated therein decay rather slowly. Additionally, oscillations increase
in [j —i|. In combination, these two observations seriously threaten a numerically re-
liable evaluation of the integral. With increasing values of |j — i|, the oscillations of
the integrand accelerate and the number of necessary supporting points for accurate
integration soars. In this toy example of the Black&Scholes model, pointing out the
challenging integration of the stiffness matrix integrand for large values of |j — ¢| might
not be very convincing, since we know the stiffness matrix entries to be equal to zero
for |j —i| > 1. For Lévy jump models, however, the stiffness matrix is in general fully
populated and these oscillations have to be dealt with, indeed. In the following section
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Figure 3.7 Graph of g, the Fourier transform of the hat function ¢ centered over the
origin, evaluated over three subintervals of R™. The mesh is chosen with h = 1. The
oscillations and the rather slow decay to zero complicate numerical integration with high
accuracy requirements considerably when @q is involved.

we investigate the influence of inaccurately calculated stiffness matrix entries onto the
accuracy of option prices.

3.4.2 An accuracy study of the stiffness matrix

Using the classic hat functions as basis functions we thus have to accept that severe
numerically challenges are attached to the computation of the 2N — 1 entries of the
stiffness matrix A € RY*Y via the Fourier approach of Corollary due to heavily
oscillating integrands. Investigating how material these challenges are, we conduct an
empirical study of the propagation of integration errors in the stiffness matrix and their
influence on the accuracy of the derived option prices. We have already performed a
similar study of this kind in |Gak and Glau| (2014)) wherein the results are presented in
more detail. We choose the Black&Scholes model parametrized by ¢ = 0.2 modeling
price movements of a stock in a market with interest rate r = 0.01, where we price a
put option with strike K = 1 and maturities T € [0, 3] for current values of the stock
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Figure 3.8 The first integrand of A;; in for several values of j — ¢. The grid
of the hat functions spans the interval [—5,5] with 150 equidistantly spaced inner nodes
and grid fineness h = 0.0662. A Black&Scholes solution on this grid would thus be
represented by the weighted sum of 150 hat functions. We observe that oscillations of
the integrand increase in the value of |j — 1|.
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3.4.2 An accuracy study of the stiffness matrix

So € [Smin, Smax] With Spin = 0.01 and Spax = 10. We set the number of involved
FEM hat functions to NV = 150, resulting in a mesh with 150 inner grid nodes and mesh
fineness h = 0.0464. We know the mass matrix of the Black&Scholes model to be

4 1 0 --- 0
L 1 4 1
MZE 0 0 GRNXN,
: .1 4 1
o --- 0 1 4
and the stiffness matrix to be given by
A=A» =AW 4 A@) 4 0 e RV, (3.144)
where
0 -1 0 0 2 -1 0 0
1 0 -1 -1 2 -1
1 o? 0?1
A(1>:2<r—2> 0 0o |, A®==1o 0
: 1 0 -1 . -1 2 —1
o --- 0 1 0 o -+ 0 -1 2

With these matrices we set up a theta scheme, § = 0.5, and derive Black&Scholes put
option prices. The resulting pricing surface is depicted in Figure [3.9] Since we can
solve the integrals determining the entries of the stiffness matrix A € RV*Y explicitly
in the case of the Black&Scholes model, we know their true value and can simulate how
the resulting pricing surface is affected by inaccuracies that might occur when these
integrals are solved numerically, instead. To this extent we take the correct stiffness
matrix given by and distort each of its entries randomly at different positions
D € N after the decimal point by adding EZ-D = 10~P—Yg; with random ¢; € (=1,1) for
ie{-(N-1),...,—-1,0,1,..., (N — 1)} onto the (side) diagonal i of Matrix A. Each
individual (side) diagonal of the original stiffness matrix is thus affected evenly, keeping
the Toeplitz structure of the matrix intact. Since the value of A;; is only determined
by the value of j — ¢, this distortion mimics the influence that integration inaccuracies
would have.

So, for D € N we define the distorted stiffness matrix by

A(ﬂs‘cort =A =+ ‘€D € RNXN? (3145)
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Option price surface

option price

Figure 3.9 Pricing surface of a put option with strike K = 1 in the Black&Scholes
model with parameter ¢ = 0.2 and interest rate » = 0.01. The space grid consists of
N = 150 equidistant inner nodes with mesh fineness h = 0.0464. Only a part from the
whole surface spanning from Sy, = 0.01 to Spax = 10 that prices were computed for is
shown. The considered maturities range from T, = 0 to Tax = 3.

with
€0 €1 g9 - cee EN-1
E_1 €0 €1
E_9 g1
€1 €2
g1 €0 €1
8—(N—1) .. .. ... 6_2 6_1 EO
with uniformly distributed ¢; € (—1,1),7 € {—(N—-1),...,—1,0,1,...,(N—1)}, that are

drawn independently from each other. Using these distorted stiffness matrices Aéjistort

for different values D € N, we derive again price surfaces of the put option in the
Black&Scholes model and compare the difference between the prices coming from the
distorted stiffness matrix Agswrt € RVXN to the prices from the intact stiffness matrix
A € RNXN_ The results are shown in Figure We observe that the absolute price
differences decrease almost linearly in D. An accuracy of D = 3 corresponds to integra-
tion results that are exact up to the third digit after the decimal point. Pricing resulting
from stiffness matrices computed with such a low integration accuracy are unacceptable.
The respective pricing errors observable in the top left corner of Figure indicate
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abs. price diff.

abs. price diff.

abs. price diff.

Figure 3.10 Absolute price differences resulting from a distortion of the stiffness ma-
trix A. True and distorted prices describe the market value of a put option in the
Black&Scholes model parametrized equivalently to the setting of Figure We com-
pare the price surfaces coming from a theta scheme using the stiffness matrix A given
by to the respective pricing surface when A is replaced by Agstort’ the distorted

version of A as defined in (3.145)), for different values of D € N. The influence of the
distortion decreases in D.
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relative errors of several hundred percent points. With more precise integration results,
the error decreases in D until highly appealing pricing results are achieved for D = 7 and
beyond. The magnitude of the pricing error resulting from a distorted stiffness matrix
emphasizes the necessity of being able to derive the stiffness matrix entries as accurately
as possible. This poses a serious challenge to the numerical integration routines that
have to handle strongly oscillating and slowly decaying integrands which we have seen
in Figure [3.8 Yet, this problem of numerical integration of oscillating integrands has
drawn attention by research for a long time. One example for an integration routine of
approximating the integral

b
Wi = / f(z) cos(cz)de, a<beR, ceR (3.146)

is so called Filon’s formula, see Abramowitz and Stegun| (2014) for details. Unfortu-
nately, Filon’s approach focuses on the oscillation alone while lacking an emphasis on
the integration of decaying functions. Consequently, b < oo is required which thus rules
out an immediate application of the approach for our purposes, where coming back to
our Black&Scholes model example expressions of the form

o0
V2:/ ggj)dx, 2<keN (3.147)
0

for oscillating functions g in the sense that Jp > 0 such that g(x) = g(z+p) for all z € RT
are considered. In Appendix [A] and Lemma therein, we present an integration
algorithm for expressions of the form tailor-made for the integration of that
special class of decaying functions exhibiting the oscillatory behavior we observed above.
Numerical experiments study the approximation power of the algorithm in detail.

Yet, stiffness matrix integrals in general can not be cast in terms of expression . In
some cases, a periodic behavior of the nominator is missing, in others the order of decay
is not equal to an integer value. In these cases, again individual integration algorithms
would be required which is exactly what the symbol method tries to avoid. Therefore, in
the following section we take a different approach to arrive at stiffness matrix integrals
that allow a feasible numerical evaluation.

3.4.3 New choices for the basis functions

Previously we had presented a Finite Element implementation for pricing European plain
vanilla options in the Merton model using the well known classic hat functions as basis
functions. As we have seen, the existence of a jump part with Lévy measure F' in the
operator A renders the derivation of the stiffness matrix numerically challenging. While
the Merton model still allows quasi-explicit formulas for the stiffness matrix entries, this
is in general no longer the case when more involved Lévy jump models are considered.
Therefore we analyized the possibility of accessing the jump information in the Fourier
space, instead. Then, the model information is represented by the symbol instead of
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the operator, a quantity that is available in closed form in many cases. As a negative
consequence of this shift into the Fourier space, however, we now have to integrate terms
involving the Fourier transform of the considered FEM basis functions. In the case of
classic hat functions, this translates into the necessity of integrating slowly decaying,
heavily oscillating integrands. Classic hat functions therefore appear hardly compatible
to the symbol method approach. Let us therefore investigate two alternative choices for
FEM basis functions.

3.4.3.1 Mollified hat functions

Hat functions are piecewise linear functions. While being continuous they are not con-
tinuously differentiable everywhere and thus lack smoothness on an elementary level
already. This lack of smoothness translates into a slow decay of their Fourier transform,
compare Remark [2.8] A fast decay of the Fourier transform, however, is one of the cru-
cial features that basis functions need to possess in order to become eligible in a symbol
method based FEM implementation.

Due to its lack of smoothness, the classic hat function is thus ruled out as a FEM basis
function candidate in such an implementation and needs to be replaced by an alternative.
It is well known, however, that convolution with a smooth function has a smoothing effect
on the function that the convolution is applied to. Our first basis function alternative
will therefore be a classic hat function smoothed by convolution.

Definition 3.36 (Mollifier)
A smooth function m € C®(RY), m : RY — R is called mollifier, if it fulfills

i) Jgam(z)dr =1,

i) il_l)l(l) me(x) = il_]% Eidm (%) = 6(x), where § is the Dirac delta function and

ii) m has compact support, m € C3°(R?).

Convoluting certain functions f with a mollifier m results in very smooth functions fxm
in the sense of the following lemma.

Lemma 3.37 (Mollifying a function)
Let m € C®(R) be a univariate mollifier and f € CJ(R) a continuous function with

compact support. Then the mollfied f, denoted by f * m, is infinitely smooth, f*xm €
C>(R).

Proof
The claim is a direct consequence from Theorem E.25 in Schilling] (2005). i
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Example 3.38 (Standard mollifier)
A standard example of a mollifier m : R — R(J{ is given by

1 1

= ——r ), <1,

m(z) = CeXp< 1—\$I2> =1 (3.148)
0, otherwise,

with the normalization constant defined by C' = [p m(x) dz.

Let us investigate, how the standard mollifier of Example [3.38| operates on both smooth
and non-smooth functions. We define

fl 1T = :H-|x‘<27

1
A 3)1

f3 T = 908:1('%)7
fa:x = m(x),

so f1 is a piecewise constant function, fs is a piecewise linear function, f3 is the clas-
sic hat function centered over the origin as defined in and fy is the mollifier of
Example m itself. We apply the standard mollifier m defined in of Exam-
ple to each of these functions by convolution. Figure [3.11| shows the graph of each
fi, 1 € {1,2,3,4}, together with f;*m, the convolution of that function with the standard
mollifier. The smoothing effect is clear to see.

Mollifying functions has a smoothing effect on them. By Remark [2.8] smoothness of a
function translates into decay rates of its Fourier transform. Lemma [3.30| presented a
method to derive stiffness matrix entries in Fourier space. In the respective formula,
the Fourier transform of the basis functions was needed. When hat functions are used
as basis functions, however, we face numerical challenges since the Fourier transforms
of hat functions oscillate heavily and decay rather slowly. Hat functions smoothed by
mollifiers thus appear as interesting candidates to replace the classic hat functions as
basis functions in a Finite Element implementation.

Before we can test the suitability of mollified hat functions as basis functions, however,
we want to control the influence of the mollifier on functions it is applied to. Simply
applying m to the hat function might distort it too strongly. After all, in Figure 3.17]
the mollified hat function is hardly distinguishable from the mollified mollifier.

Remark 3.39 (The mollication parameter ¢ > 0)
Let m : R — R be a mollifier in the sense of Definition|3.36. Define for e > 0

me(z) = —m (—) , Vo € RY.

We call € the mollification parameter of m. The function m® is still a mollifier. The
parameter € > 0 requlates the smoothing influence on the function that the mollifier is
applied to. For decreasing values of € the smoothing influence decreases, for increasing
values of €, the smoothing influence increases.
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Figure 3.11 The effect of the classic mollifier defined in Example on four exemplary
functions f;, i € {1,2,3,4}, defined in (3.149)). The first two functions are not even
continuous, the third one is not differentiable. After mollification, however, they all
appear smoothed. Note two interesting observations. The mollifier leaves piecewise
linear function parts unchanged when they are long enough (f1, f2). At the same time,
it might further mollify functions that are already smooth (fy).

Introducing the mollification parameter € of Remark we gain control over the molli-
fication influence. In choosing € > 0 smaller, the mollified function gravitates towards its

untreated counterpart. Both are identical in the limit, as the following lemma shows.

Lemma 3.40 (Convergence of mollified functions)
Let f : R? — R be continuous. Let m be a mollifier in the strict sense of Definition |3.36

with support in the unit ball, supp m C B|1|’H (0) with respect to some norm. Then fxm® —
f uniformly as € — 0 on any compact subset K C R?.

Proof

The proof is taken from |Loftin

2010

, see also

Showalter

i

2010

, Chapter II, Lemma

1.2). By assumption, K C R is compact. Therefore, there exists r > 0 such that

K C BJ«H‘(O). The continuous function f is uniformly continuous on the compact set

BMI(O). Choose € > 0. There exists § > 0 such that for z,w €

BMl(O) we have with

|z —wl|| < §also |f(z) — f(w)| < & Now choose ¢ € (0, min{1,d}).
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Let z € K c BI'(0). Then,

|(f +m®)(2) = [(2)| =

flz —y)m®(y)dy — f(=)
Rd

-y dy - [ famw) dy'
Rd Rd

< / @ — 1) — F@)|me(y) dy. (3.150)
Rd

Since suppm = Bi(0) and m® = lm(-/e), suppm® = BQ'H(O). Thus, continuing
in (3.150]) we get

T y) — f(y)lm(y) dy (3.151)
LU

/ fla-
BIM(0)
/3"H 5 gm*(y) dy

[ Ve =) = rwlm )y =
<

g,
which proves the claim. O

The mollification parameter ¢ and the claim of Lemma[3.40]are powerful tools in smooth-
ing the nondifferentiable hat functions. Before the smoothed functions can be deployed,
however, we need to derive their Fourier transform.

The Fourier transform of the convolution of two integrable functions is given by the
product of the two individual Fourier transforms as Property in Lemma shows.
In theory, this provides the link from using smoothed hat functions as basis functions
to the numerical derivation of the stiffness matrix entries. The Fourier transform of
the classic mollifier, however, is not known in closed form. Its numerical evaluation
is thus challenging, especially when integration of the mollifier is concerned. Recently,
Johnson| (2015)) has expanded on the issue of evaluating m approximately, emphasizing
the numerical difficulties involved.

Classic mollifiers or the standard mollifier of Example [3.38] at least thus don’t suit our
needs. We therefore mollify with a different class of functions that display very similar
mollification effects. Following Proposition and Definition 2.14 in|Alt|(2011)) we introduce
the definition of a Dirac sequence.

Definition 3.41 (Dirac sequence)
We call a sequence (My)ren, mi € L*(R?) for all k € N, a Dirac sequence, if

i) mp >0, Vk e N,
i) [gamp(z)de =1, and
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ii1) if for all o > 0 we have the convergence

/ my(x)dz — 0,
R\ B,(0)

for k — oo.

Again by Proposition and Definition 2.14 in |Alt| (2011) we have the following remark.

Remark 3.42 (Dirac ¢)
Let m € LY (RY) with

m >0 and / m(z)dr = 1. (3.152)
Rd

Analogously to Remark[3.39 define

1 .
.1/
e = g (E) (3.153)
Then for each o > 0 we have
mf(x)dzr =1 and / m(z)dz — 0, (3.154)
R4 RH\ B, (0)

for e — 0. Consequently, for each null sequence (ex)ren the sequence (M )ken S a
Dirac sequence in the sense of Definition [3.41]

Definition generalizes the notion of a (positive) mollifier as defined in Definition [3.36]
Each sequence of (m®*)gen, mer = a;dm(-/sk), with m a positive mollifier, m : R — R,
is a Dirac sequence.

Example 3.43 (A Dirac sequence based on the Normal distribution)
We present an example for a Dirac sequence. Define

[N

1 P

M Gaussian(T) = e 2. 3.155
Gaussmn( ) \/% ( )
Define further
~ 1_ .
maGaussian = gmGaussian (g) . (3156)

With (eg)ken a null sequence we call (M, ... Yren a Gaussian Dirac sequence.

A Gaussian Dirac sequence as given by Example can be used for mollification of
(non-smooth) functions, as well. For that matter, we take

~ 1_ .
mSGaussian = gmGaussian <g> (3157)
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of Example and apply Mg, sian t0 the classic hat function by convolution for dif-
ferent values of £ > 0. As in the case of mollifiers, the value of € governs the degree of
the smoothing effect on the function that mg, ., 15 applied to. Figure shows the
results of mollifying classic hat functions using the Dirac sequence of Example[3.43] Due
to the smoothing effect of a Dirac sequence, we use the term mollifier in this context, as
well, even though a Dirac sequence does not necessarily fulfill the requirement of compact

support of Definition [3.36]

Corollary 3.44 (Fourier transform of Gaussian mollifier)
The characteristic function of the Gaussian mollifier is known in closed form,

— 1
m%’aussian(g) = exp <_2€2§2) ) (3158)

and exhibits exponential decay, which is the reason why this mollifier is especially inter-
esting for our purposes.

Proof
Since Mg, ., 15 identical to the density of a normally N (0,£2) distributed random
variable, the claim is a direct consequence of Lemma [2.3] O

Analogously to Lemma [3.40] we also have a convergence result for functions f mollified
by a Dirac sequence.

Lemma 3.45 (Convergence of mollification with a Dirac sequence)
Let 1 < p<oo. Let f € LP(R?) and (ms)ren be a Dirac sequence. Then

Frimg— f (3.159)
in LP(R?) for k — oo.
Proof
See the proof of Satz 2.15 in Alt (2011)). O

We state an analogous result to Corollary [3.34] with mollified hat functions as basis
functions.

Corollary 3.46 (Black&Scholes stiffness matrix with mollified hat functions)
Consider the pricing PDE of the univariate BlackéScholes model, that is a PDE of
form (3.52)) wherein the operator A is parametrized following Example with r > 0

and o > 0. Consider a numerical FEM solver and assume N > 0 mollified hat functions
O = Qi * MG gussians Vie{l,...,N} (3.160)

on an equidistant grid with grid fineness h > 0 as basis functions, wherein My ,,csian
denotes the Gaussian mollifier of Example [3-]3 with mollification parameter € > 0.
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Figure 3.12 A comparison between the classic hat function g with h = 1 as defined
in (3.60) and the mollified hat function ¢f = @o * MG, eian fOF Several values of € €
{0.05,0.15,0.3} using the Gaussian mollifier of Example

Then the respective stiffness matriz A € RN*N s given by

202

i =

/0 écos(ih(j —1)(1 - COS({h))Qe—EQEQ d

_ %(T — %(72) ; ;Sin(fh(j —i))(1 - COS(§h))26—82§2 de (3.161)
dr (=1 o »

T 7rhr2/0 g cos(Eh(j —1))(1 — COS(éh))26 13 de,

foralli,je{l,...,N}.

Proof
The result is proved analogously to Corollary [3.34} using

/E o~ ~g
¥o = $0 MGaussian

by property of Lemma . The Fourier transform mg, ., is given by Corol-
lary [3.44) O

Figure displays the integrand in (3.161)). The integrand is evaluated on three subin-
tervals of the semi-infinite integration region. The grid setting is identical to the one
of Figure Instead of classic hat functions their mollified counterparts have been
employed as basis functions using the Gaussian mollifier of Example [3:43] as smoothing
influence. Even with just a slight mollification influence, ¢ = 0.05h, the decay of the
integrand accelerates. For moderate values of ¢ = 0.3h the integrand decays to zero
rapidly.
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Figure 3.13 The integrand of A;; in (3.161)), the stiffness matrix of the Black&Scholes
model with mollified hat functions as basis functions for the main diagonal entry, j—i = 0.

We have implemented the symbol method using mollified hat functions as basis functions
for several models and have conducted an empirical order of convergence study that
we present at the end of the chapter. The results confirm that mollification is not
only theoretically interesting but empirically solves the problem of lacking numerical
integrability, as well. Mollifying the hat functions has thus proved to be numerically
advantageous.

But let us consider the theoretical consequences, as well. The Fourier transform of a
smoothed function decays faster than the Fourier transform of the original function itself.
The integrals in the stiffness matrix thus become feasible. In our FEM implementation,
the non-smooth hat functions span a finite dimensional subspace of the solution space
of the underlying PDE. But smoothing a function changes it. Therefore, smoothing the
hat basis functions changes the spaces they span.
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Figure 3.14 Graph of 3/0%, the Fourier transform of the mollified hat function (g centered
over the origin, evaluated over three subintervals of R*. The mesh is chosen with h = 1
and the mollification parameter is set to € = 0.3h. The oscillations and the rather slow
decay to zero that we observe in Figure [3.7] where the Fourier transform of the classic
hat function is displayed, have vanished completely.

In other words, the discretization in space by mollified hat functions might not fall into
the scope of step of Section . Principally, there are two ways to deal with this
modification theoretically.

i) Investigate the function spaces that are spanned by mollified hat functions

ii) Treat mollified hat functions as classic hat functions and interpret the contribution
of mollification to the algorithm’s quantities as a numerical inaccuracy that is
addressed by error control methods separately

The appeal of possibility[i)|lies in the straightforwardness with which the situation would
be assessed. The mollification takes effect on the level of the basis functions and modifies
them immediately. Investigating the basis properties of the resulting functions from a
theoretical point of view would address mollification directly instead of avoiding that
confrontation. At the same this, the approach could be cumbersome as the theoretical
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effect of mollification is rather severe, for example regarding the support of the mollified
hat functions which is infinite in theory.

Possibility avoids the issue by viewing the effect of mollification not as a theoreti-
cal adaptation but rather as a purely numerical influence, instead. The theoretically
expected values of the algorithm’s output, for example the stiffness matrix, would thus
still be based on the classic hat functions. Independently from the accuracy of the ap-
plied numerical integration routine, however, the actual result of the derivations would
deviate due to the effect of the mollifier. That difference in the respective quantity would
be interpreted as a kind of commonly observed numerical noise that one tries to measure
and control. In this regard, the mollification parameter € becomes the trigger of the
numerical disturbance the influence of which can be limited and reduced by shifting &
closer to zero. The actually chosen value of the parameter would then result from a com-
promise between feasible integrability and desired accuracy of the output. The challenge
of this approach would consist in investigating whether this compromise can be reached
in all cases of interest. In jvon Petersdorff and Schwab (2003]), the authors provide a
framework with which that kind of noise control could be achieved.

Both of these possibilities might stimulate further research to reconcile (mollified) hat
functions with the challenges arising from the Fourier aspect of the symbol method. On
the other hand, the problem could be avoided in the first place, if we abandoned the hat
functions alltogether and turned to already smooth basis functions, instead. This will
be the motivation for the next section on splines.

3.4.3.2 Splines

After our analysis of the hat functions we now investigate a second, well-established class
of finite element basis function candidates by considering cubic splines. Spline theory
is a well-investigated field that applies to a much broader context than we consider
here. We refer the reader to [Schumaker| (2007) for thorough introduction and overview.
In this section, we focus on the following facts. Splines are smooth basis functions.
Their Fourier transform is accessible and the theory of function spaces they span is well-
established. As such, they offer a very interesting alternative to non-differentiable hat
functions by avoiding theoretical challenges regarding their deployment in the algorithm
while maintaining the promise of numerical feasibility at the same time.

We give the definition of the Irwin-Hall cubic spline that inherits its name from the
related probability distribution.
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Figure 3.15 A plot of N = 15 spline functions ¢;, i € {1,..., N}, as given by Defini-
tion [3.48| on an equidistant grid. For convenience, yg is depicted in orange. Note that in
contrast to hat functions, the support of an inner spline function does not only overlap
with the supports of two but six neighboring splines.

Definition 3.47 (Irwin-Hall cubic spline)
We define the univariate Irwin-Hall spline ¢ : R — RT by

(z +2)3 , 2<z< -1
13z —622+4 , -1<z<1
T)=— - 3.162
OREE P L (3.162)
0 , elsewhere

for all x € R. The spline ¢ has compact support on [—2,2] and is a cubic spline.

Definition 3.48 (Spline basis functions on an equidistant grid)

Choose N € N. Assume an equidistant grid Q = {z1,...,xn}, x; € R for all i €
{1,..., N}, with mesh fineness h > 0. Let ¢ be the Irwin-Hall spline of Definition .
Forie{l,...,N} define

vi(z) = p((x — ) /h), Vz € R.

We call p; the spline basis function associated to node 1.

Figure[3.15]displays a set of Irwin-Hall spline basis functions as defined by Definition [3.48]
The functions cover a real domain [a,b] C R equidistantly.

For a given equidistant grid consisting of N € N grid nodes, the set of associated splines
©1,---,pnN given by Definition and illustrated by Figure [3.15] constitutes the com-
plete basis which our approximate solution relies on. We are well aware that in the
literature often the set of Irwin-Hall basis function splines contains additional functions
associated with the fringes of the domain, that the discrete grid spans, for the pur-
pose of providing more flexibility concerning boundary conditions. Yet, this flexibility
comes with the numerical cost that those additional basis function again lack elemen-
tary smoothness in terms of differentiability and even continuity which disqualifies their
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deployment for our purposes. Furthermore, this additional flexibility could not even
be appreciated in our setup, as we will again transform the PDEs we consider to zero
boundary problems, anyway. The issue of omitting spline basis functions that do not
belong to the set described by Definition has also been investigated theoretically
and numerically in |Zimmermann (2016). The numerical studies therein confirm that
flexibility regarding boundary conditions of Dirichlet or Neumann type or with respect
to higher derivatives can be neglected for the options we consider here and thus validate
our approach. Thirdly, constraining the set of basis functions in such a way that each
function can be transformed into another one by a mere horizontal shift preserves ad-
vantageous properties regarding the derivation of the associated Fourier transforms as
the following two results demonstrate.

Lemma 3.49 (Fourier transform of the Irwin-Hhll spline)
Let ¢ be the Irwin-Hall cubic spline of Definition|3.41. Then its Fourier transform @ is
given by

o(&) = 534 (cos(28) —4cos(§) + 3) (3.163)

for all £ € R.

Proof
Elementary calculations yield

15(6) = 4 /R €7 () d

—1 2
= / (x4 2)3e%% dx + / 3|z — 622 4 4)e® dz + / (2 — z)%e " dx

1
—2 1 1

—1 1
= 2/ (z + 2)3 cos(éx) dx + 2/ (323 — 62 4 4) cos(Ex) da.
—92 0

Standard integration rules lead to

43(¢) = ; [€(2 +2) (2(x +2)? — 6) sin(€x) + 3 (2(z + 2)% — 2) cos(Ex)] "~
+ ;4 [€ (€2 (32 — 622 + 4) — 18z + 12) sin(€x) + 3 (%2 (3z — 4) — 6) cos(€x)]T—,

= ;4 (3(£% —2) cos(€) + 6 cos(2€) — 3(£2 + 6) cos(€) + 18)

= 524 (—6cos(&) + 6 cos(28) — 18 cos(&) + 18)

= ? (cos(28) —4cos(€) + 3).
Consequently, 5

o(&) = ¢l (cos(2€) —4cos(§) +3),

which finishes the proof. O
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Corollary 3.50 (Fourier transform of spline basis functions)

Choose N € N. Assume an equidistant grid Q = {z1,...,zn}, x; € R for all i €
{1,..., N}, with mesh fineness h > 0 and let p; be the spline basis function associated
with node i as defined in Definition [3.48 Its Fourier transform is given by

5i(6) = eifxi};g(cos@ﬁh) — dcos(¢h) +3)
for all € € R.

Proof

Denote by (g the scaled spline function centered over the origin,

wo(x) = p(z/h), (3.164)

where ¢ is the Irwin-Hall spline of Definition With property [ii)| of Lemma we

compute

Po(&) =h@(&h)

:(;]5)4((303(25]1) — 4 cos(&h) + 3)
:hggl(cos(%h) —4cos(&h) + 3).

Exploiting property [i)| of Lemma shows the claim. O

Figure [3.16] illustrates the decay of the Fourier transform derived by Lemma [3.49] or
Corollary [3.50] respectively. Recalling the respective Figure [3.7] where the analogous
situation for Fourier transform of the classic hat function had been shown together with
Figure[3.14] that display the oscillatory decay of the Fourier transform of the hat function
after mollification we observe that the Fourier transform of the Irwin-Hall spline falls in
between those two.

Finally, Figure [3.17] provides a visual overview over the Fourier transforms of all three
basis function candidates that are the classic hat functions, the mollified hat functions
and the cubic splines of [rwin-Hall type. When all three Fourier transforms are displayed
together, those of the mollified hat function and the Irwin-Hall splines can hardly be
distinguished and appear to attain zero value very quickly, while the oscillations of the
Fourier transform of the classic hat function endure over the whole displayed domain. In
Remark we established a connection between smoothness of a function and the speed
of decay of its Fourier transform. Figure[3.17indeed serves as an impressive reminder.

In the previous section, Corollary presented the formula for the stiffness matrix
entries in the Black&Scholes model with mollified hat functions as basis functions. The
following corollary translates that result to the situation when splines are used as basis
functions, instead.
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Figure 3.16 Graph of ¢g, the Fourier transform of the Irwin-Hall spline function ¢
centered over the origin, evaluated over three subintervals of RT. The mesh is chosen
with A = 1. Oscillations and decay rate of the function lie inbetween those displayed in

Figure 3.7 and Figure [3.14]

Corollary 3.51 (Black&Scholes mass and stiffness matrix with splines)
Consider the pricing PDE of the univariate Black&Scholes model, that is a PDE of

form wherein the operator A is parametrized following Fxample with r > 0
and o > 0. Consider a numerical FEM solver and assume N > 0 Irwin-Hall spline
functions on an equidistant grid with grid fineness h > 0 as defined in Definition[3.48 as
basis functions. Then the respective mass matrizc M € RV*N s given by

[e.9]

My, = % ; cos(&(xy — xl)); (cos(2¢h) — 4 cos(€h) + 3)2 de¢ (3.165)

and the stiffness matriz A € RV*N computes to

Ay, = 5 h6/ & cos(&h(k — 1)) (cos(2¢h) — 4 cos(ER) + 3)2 dé

9 1 2) & 517 sin(éh(k — 1))(cos(2¢h) — 4 cos(Eh) + 3)* d¢ (3.166)
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Figure 3.17 Graphs of the Fourier transforms of all basis function candidates presented
in this section, evaluated over three subintervals of RT. The mesh is chosen with h = 1,
the mollification parameter is again set to ¢ = 0.3h.

foralli,je{l,...,N}.

Proof
The mass matrix is derived by applying Parseval’s identity of Theorem [2.7|and then using
the characteristic function of the Irwin-Hall spline derived in Lemma/|3.49] The expression
for the stiffness matrix entries is derived analogously to the proof of Corollary [3.34 O

We have implemented a symbol method based FEM solver using Irwin-Hall spline func-
tions as basis functions and conducted an empirical order of convergence study. The
results are presented in the next section.

3.5 Implementation and numerical results

The previous sections have outlined the necessary consecutive phases in setting up a
Finite Element solver for option pricing. In a first step, using the Merton model as an
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example, the key ingredients of such a solver have been analytically calculated. During
the derivation we faced serious limitations regarding the generalizability of that ap-
proach. Therefore, in a second step, we introduced the symbol method which considers
all components of the FEM solver in Fourier space, instead. There, components are
based on the symbol instead of the Lévy measure and become numerically accessible.
Many examples of asset models for which the associated symbols exist in analytically
closed form have deemed this alternative approach being worthwhile to pursue. At the
same time, however, smoothness of the FEM basis functions became a critical issue which
ruled out further working with the classic hat functions that we had considered, before.
In a third step, we therefore investigated two examples of basis functions that manage
to combine smoothness and numerical accessibility. Mollified hat functions and splines
were introduced as promising examples to construct a symbol method based FEM solver
with.

This section will put that promise to the test. In addition to the hat function based
FEM solver for the Merton model we implemented the symbol method for both mollified
hats and splines. The FEM solver with hat functions is tailored to the Merton model
and can not easily be generalized to other asset models. In stark contrast, the symbol
method enjoys the flexibility of being able to easily plug in the symbol of any Lévy
model for which it is available in analytically closed form. The model restriction of
that first implementation thus disappears. Instead of having to restrict ourselves to the
Merton model, we could therefore enhance the model scope of our symbol method based
implementation to additionally comprise the NIG and the CGMY model with virtually
no additional implementation effort. In this regard, the method impressively underlines
its appeal for applications in practice where the suitability of a model might depend on
the asset class it is employed for. An institution that needs to maintain pricing routines
for several asset classes will thus cherish the flexibility that the symbol method offers,
recall Algorithm [I]in this regard which sketches the implementation of a general, symbol
method based FEM solver that easily adapts to various models.

Finally, we conduct an empirical order of convergence study. We consider the univariate
Merton, CGMY and NIG model and investigate the empirical rates of convergence for
the different implementations as Table [3.1] summarizes.

For each model and each implemented basis function type enlisted in Table we con-
duct an empirical order of convergence study using the pricing problem of a call option
with strike K = 1 as an example, thus considering the payoff function

g(x) = max(e” —1,0). (3.167)
In each study we compute FEM prices for Ny basis functions, with
Ny=1+2F  ke{4,...,9} (3.168)

resulting in N4 = 17 basis functions in the most coarse and Ng = 513 basis functions in
the most granular case. On each grid, the nodes that basis functions are associated with
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Implemented basis functions

Model Symbol Parameter choices
Hats Mollified hats Splines
o = 0.15, a = —0.04,
Merton Example B=02. \ =3 v v v

C=0.5, G = 23.78,

CGMY Example M=2724, Y =1.1 g ‘
a=12.26, f=-5.77,
NIG Example 5 =052 v ’

Table 3.1 An overview of the models considered in the empirical order of convergence
analysis and their parametrization. For these models, the symbol method is implemented
and tested for both mollified hat functions and splines. In addition, we investigate the
empirical convergence rate for the Merton model using classic hat functions as basis
functions in a classic implementation disregarding the symbol method. In all models,
the constant risk-less interest rate has been set to r = 0.03.

are equidistantly spaced from another and the basis functions always span the space
interval Q@ = [—5,5]. The time discretization is kept constant with Niime erid = 2000
equidistantly spaced time nodes spanning a grid range of two years up until maturity,
thus covering a time to maturity interval of

[Tl, TNtime]? with T1 =0 and TNtime = 2. (3169)

For each k € {4,...,9}, the resulting price surface constructed by N} basis functions
in space and Ngjme = 2000 grid points in time is computed. A comparison of these
surfaces is drawn to a price surface of most granular structure based on the same type
of basis function. We call this most granular surface true price surface. It rests on
Niwe = Nip = 1+ 21 = 2049 basis functions in space and Nijme grid points in time
spanning the same grid intervals as above, that is Q@ = [—5,5] in space and [0,2] in
time, respectively. The underlying FEM implementation is thus based on distances hyye
between grid nodes that basis function are associated with of
h(molliﬁed) hat _ ( . (_5))/(2 + 211) ~ 00049’

true

hsplines _ (5 - (_5))/(4 + 211) ~ 0.0049, (3170)

true

Atirge = 2/(2000 — 1) & 0.001

in space and time, respectively. Note that all space grids are designed in such a way that
the log-strike log(K) = 0 is one of the space nodes. For each model and method and
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Figure 3.18 Results of the empirical order of convergence study for the Merton model
with classic hat functions. Refer to Table for the chosen parametrization of the
model. Additionally, part of a straight line with (absolute) slope of 2 is depicted and
serves as a comparison.

each k € {4,...,9}, the (discrete) L? error ;2 is calculated as

Ntime Ntrue 2
er2(k) = | Attrue - Ptrue - Z Z (Pm'cetme(i,j) - Pricek(z',j)) ,
i=1 j=1
wherein Pricege(?, j) is the value of the true pricing surface at space node j € {1,...,1+

211} and time node i € {1,...,2000} and Price(i, ) is the respective, linearly interpo-
lated value of the coarser pricing surface with only N basis function nodes. Figure [3.1§|
illustrates the results for the first implementation, the taylormade approach for the
Merton model using the classic hat functions as basis functions. Similarly, Figure [3.19]
summarizes the results of the six studies of empirical order of convergence in the Merton,
the NIG and the CGMY model in a symbol based implementation once using mollified
hats and once using splines as basis functions.

In each implementation and for all considered models, the (discrete) L? error decays
exponentially with rate 2. We thus precisely achieve an empirical rate of convergence
that we would theoretically expect, as the upcoming Section [3.6] will explain in detail.
This is especially remarkable for the mollified hat functions that are not FEM basis
functions in a strict theoretical sense. Our numerical results may thus motivate further
research on these functions and their appealing numerical features in Fourier space.
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Figure 3.19 Results of the empirical order of convergence study for the Merton, the NIG
and the CGMY model using mollified hats (left pictures) and splines (right pictures) as
basis functions. All models are parametrized as stated in Table[3.1] Additionally, part of
a straight line with (absolute) slope of 2 is depicted in each figure serving as a comparison.
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3.6 Stability and convergence analysis

When an approximate finite dimensional solution to a PDE shall be obtained, two ques-
tions naturally arise.

i) Is the numerical scheme deriving the solution stable?
A numerical scheme is said to be stable, if its solution normed in a certain way is
bounded by the equivalently normed right hand side of the scheme and its initial
condition up to multiplication with a constant that is independent of the discretiza-
tion itself. In other words, the solution to a numerically stable scheme is bounded
by the input data.

ii) Does the finite dimensional solution converge to the true solution?

The precision of a solution to the numerical scheme should increase when the un-
derlying mesh grids in space and time become finer. Only then can we expect
error control. In fact, the larger topic of convergence separates into several indi-
vidual questions. Does the solution converge polynomially or even exponentially?
Which rate of convergence does it exhibit? How can the normed difference be-
tween the true solution and its approximation be expressed as a function of the
mesh parameters?

In this final section of the chapter we want to assess these two questions. The frame-
work that we consider for this task is kept very general. Not only do we consider PDEs
with operators independent of time like the Black&Scholes PDE. Instead, our analysis
comprises the time-inhomogeneous case, as well, and thus allows the stability and con-
vergence analysis of approximate solutions to time-dependent problems. In this regard,
the analysis below extends the work done by von Petersdorft and Schwab (2003)) to the
time-inhomogeneous case.

The group of PDE problems, however, can not only be separated along their dependence
on time. Additionally, all PDE problems can be segregated along a different characteristic
of the operator. In the classic existence and uniqueness result on weak solutions to PDEs
that Theorem presented, the bilinear form a(-,-) associated with the operator A;
needed to satisfy, among other requirements, that there exist constants 5 > 0 and A > 0
independent of ¢ such that

ar(p,0) > BllollE = N[wl3, YVt e[0,T) and Y, ¢ € V. (3.171)

Concerning the sophistication of stability and convergence analysis it will mean a sig-
nificant difference, whether the constant A > 0 in is actually zero or not. For
vanishing A, the associated PDE is called coercive. For this case, the results in|von Peters-
dorft and Schwab| (2003) provide stability and convergence results for time-homogeneous
problems. For nonnegative A values, the PDE problem is called of Géarding type. When
PDEs with A > 0 are concerned, however, standard approaches to stability and conver-
gence analysis fail and the proofs of these claims become a lot more involved. In finance,
this is especially unsatisfactory, since PDE problems in the realm of option pricing are
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usually of Garding type and thus require the consideration of the general case of A > 0.
A popular shortcut to avoid this issue is to transform the original PDE problem of Gard-
ing type into a PDE problem that is coercive and then apply the discretization steps on
the basis of the transformed problem. By this approach, however, the link between the
original problem and the discrete scheme is lost. Claims regarding stability and conver-
gence only apply to the transformed problem and do not extend to the original pricing
PDE, as such. We will illustrate this issue in more detail, later.

In this section, we derive stability and convergence results that apply to PDEs with
time-inhomogeneous operator of Garding type. We begin by extending the results of [von
Petersdorff and Schwab| (2003)) to time-inhomogeneous problems focusing on coercive
PDEs exlusively. On the basis of these results, we extend the scope of our findings in a
second major step to fully general time-inhomogeneous problems of Garding type.

Consider again the problem of finding solutions u : [0, 7] x R? — R to a problem of the
form
ou + A = f, for almost all ¢ € (0,7

w(0) = ¢ (3.172)

with A = (A¢)iepo,r) @ time-inhomogeneous operator of order a4 € (0,2] as introduced
in Definition a source term or right hand side f : [0,T] x R — R and an initial
condition g : R* — R.

The next few definitions introduce the notation that we use throughout the rest of the
section.

Definition 3.52 (Semi-discrete weak solution)
Let V', H be separable Hilbert spaces and the dual V* of V' be given that form a Gelfand
triplet,

Ve H=H"-V"

and let Vi, C V be a finite dimensional subspace of V.. Let f € L?>(0,T;V*). Then we
call up, € W0, T; Vi, H) a semi-discrete weak solution to problem (3.172)), if for almost
every t € (0,T)

(Opun(t), vn) + ar(un(t), vn) = (f(t),vn)vexv (3.173)

holds for all vy, € Vi, where the time derivative is understood in the weak sense and a is
the bilinear form associated with operator A and

up(0) = gn (3.174)

wherein gy, € H is an approzimation of g of problem (3.172).

Note that in the literature, the notion of g, € H approximating the initial data g
is sometimes interpreted in a stricter and more precise sense thus affecting the initial
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condition of the semi-discrete weak solution of . Clearly, when convergence is
concerned the interpretation of g, approximating g becomes more crucial. For our notion
of a semi-discrete weak solution as outlined by Definition [3.52] however, we do not yet
focus on this issue.

To arrive at a fully discrete problem formulation that is numerically accessible we need
to discretize the time horizon [0, 7], as well. Instead of accessing time via a continuous
variable ¢ € [0,T], we replace the continuum by M + 1 discrete points for some M € N.
The following definition establishes the notion of an equidistant discretization of the time
domain [0, T7.

Definition 3.53 (Equidistant time grid)

LetT > 0. Choose M € N and define At =T /M and t™ = Atm for allm € {0,..., M}.
We call (T, M, At) an equidistant time discretization, the set {t°,¢',... tM} the asso-
ciated equidistant time grid and we call At the time stepping size. Throughout the
following, the number of time steps will always be denoted by M and At will always be
defined as above.

Definition 3.54 (Fully discrete weak solution)
Let V', H be separable Hilbert spaces and the dual V* of V' be given that form a Gelfand
triplet,

Ve HXH" V"

and let Vi, C V be a finite dimensional subspace of V. Let f € L*(0,T;V*). Further
choose M € N and let {t°, ..., t™} be an equidistant time grid with time stepping size

At. Finally choose 6 € [0,1]. Then we call (u})meqo,...m}, uj' € Vi, the fully discrete
weak solution to problem (3.172), if

uy T — 0 0 p
hTth’vh +a™ 0 (up (1), on) = (f™ vmhvexy (3.175)
H

holds for all v, € V3, and for all m € {0,...,M — 1} and if
u) = gp (3.176)
wherein g, € H is an approzimation of g of problem (3.172) and where we set

w = gu T (1 — O)ul, (3.177)
frrl =g fm (1 - 0)fm, (3.178)

wherein f™ = f(t™). With a being the bilinear form associated with operator A we have
set

a™ () = aggmi gy (- °)- (3.179)

An iterative relation between uj' and uZLH for allm € {0,...,M — 1} as arising from

(13.175) and (3.176|) is also called 6 scheme.
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Remark 3.55 (On the notation in € schemes)

In 3177), (3.178) and (3.179) of the previous definition we introduced a convention
that we will repeatedly apply in the following. Beyond the scope of Definition we
therefore fix the following notation. Let (T, M, At) be an equidistant time discretization,
let H be a Hilbert space and choose 0 € [0,1]. With ™ € H for all m € {0,..., M} we
set

u™ = gyt L (1 - 0™, Yme{0,...,M —1}. (3.180)
With f € L?(0,T;H) we set
= f(Em), Vm € {0,..., M}, (3.181)
0 — gt L (1—60) ™, Vme{o,...,M—1}. (3.182)
And with a : [0,T] x H x H — R a time dependent bilinear form we set
a™ (03, W) = agmrr gy (U, W), Vo, wy € H, (3.183)

for allm € {0,...,M — 1}.

In contrast to the actual weak solution u to problem (3.172)), its fully discretized coun-
terpart (up')mefo,...,p} 18 numerically accessible.

With the notion of the fully discrete weak solution of Definition [3.54 we are able to restate
the two initial questions from the beginning of this section more precisely. Considering
the approximation (u}")meqo,....ary of u, we ask

L. under which conditions is the approximation (u}')meqo,..,a} numerically stable?
And,

2. under which conditions does the approximation (Uhm)me{o,‘.., My converge to u and
if so in which sense and how fast?

3.6.1 Assumptions

The answers to these questions depend on the spaces that the weak solution u and its
finite-dimensional approximation live in. The necessary conditions for stability and con-
vergence are given below. In the way they are stated, they generalize the set of assump-
tions required by [von Petersdorff and Schwab (2003]) for their stability and convergence
analysis.

Remark 3.56 (Adding a superscript s to V)

For the error analysis and the derivation of convergence results we assume that the space
V that the solution space of the weak solution u € W(0,T;V, H) is built on provides a
certain smoothness, denoted by a positive real value s € RT. More precisely, the space
V' will always be a Sobolev space with index s € RT, see Definitions or[2.26 for
two exemplary definitions of such spaces. From here on, we therefore add the superscript
s to V, thus writing V* instead of V', and its finite dimensional subspaces, by writing
analogously V¥ instead of Vj,, to represent the smoothness of the respective space.
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Remark 3.57 (Space discretization by polynomials)

We discretize the space V* to receive a finite dimensional subspace Vi' C V*® using for
example piecewise polynomials of degree p > 0. Using spaces spanned by the classic hat
functions as in our implementation in Section we have p = 1, while the Irwin-Hall
splines implemented thereafter result in p = 3. The higher p > 0, the more smoothness
the spanned space V;® prouvides.

Assumption 3.A (General approximation property)
Let Vi C V? be a finite dimensional subspace. Let s <t with 0 < 5 < as/2 <t We
assume that for all uw € V' there exists uy, € V¥ such that

llu — upllys < Cr Y(h,t,s,u) (3.184)

for some positive constant Cy > 0 and some function Y both independent of s and t with
Y(h,t,s,u) = 0 in h — 0 when t > s.

Assumption 3.B (Inverse property)
We assume that there is a constant Cip > 0 independent of h > 0 such that with 0 < s <
a/2 we have

[unllys < Crph™||unllg (3.185)

for all up, € V7.

Assumption 3.C (Approximation property of the projector)
We assume that there exists a bounded linear projector

Py VS5 VP (3.186)

for which the approximation property (3.184) of Assumption holds when uy, is re-
placed by Pp(u) for all u € V*.

Example 3.58 (The setting of von Petersdorff and Schwab (2003))
We present a first example of a specific instance for Assumption|3.A| Inlvon Petersdorfj
and Schwab| (2005), the authors consider the space

HS(Q)_ V:f{aA/Q(Q)v SZO(A/Q
vV NnHSQ), s> au/2,

for Q C R? a bounded domain with Lipschitz boundary T' = 09 and aq € [0,2] the order
of the possibly nonlocal operator A in problem (3.172) with the space H*(2) defined as

H3(Q) = {u|q ‘ u € H*(RY), u|ga\o = 0}.

The discrete approzimation (uy')meqo,..my lives in Vi € {Vitnso C V, a finite dimen-
sional subspace based on piecewise polynomials of degree p > 0, see Section 3.4.1 in |von
Petersdorff and Schwab, (2005) for details.
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In this setting, Assumption assumes that for all u € HY(Q) with t > aa/2 there
exists a up, € Vi, such that for 0 < s < aa/2 and a4/2 <t <p+1

lu = unll oy < b lullageq) (3.187)
for some ¢ > 0. The general function Y of Assumption[3.4] is thus defined as
T(hyt,s,u) = B |lullye gy (3.188)

for all u € HY(Q) and Cy = c.

Example 3.59 (The setting of |Hilber et al. (2008))

In|Hilber et al| (2008), the authors conduct a convergence analysis for the time-homogeneous
case for coercie operators. They implicitly assume Assumption[3.4] by taking V' to be a
Sobolev-type space with smoothness index r, in the sense that

V=H", H°=H-=IL> (3.189)

As they state, r depends on the order of the operator. They assume the solution u to
problem (3.172)) to possess higher regularity in space, u(t) € H® C H" for t € (0,T],
where they assume H® again to be a Sobolev-type space with smoothness index s.

We present a final example for Sobolev spaces with integer index that originates from
the results of da Veiga et al. (2014) as presented in Zimmermann| (2016)).

Example 3.60 (Results from da Veiga et al.| (2014]))
Let Q) C R be a bounded domain. Let further s,t € Ng with 0 < s <t <p+1 withp € N.

Consider the space of B-splines with degree p spanned over a partition ﬁ, confer
2014) for details. Then there exists a projector

5« H"M(Q) = S,(A) (3.190)

from the Sobolev space HPT1(Q) onto Sp(A), the space spanned by B-splines with degree
p such that with
V =H*(Q) (3.191)

there exists a constant C(p) > 0 such that for all u € H'(Q)
Hu 1 ~uH < CR=*|lu ey (3.192)

p,A HS(Q) -

holds.

The results of Example [3.60] also extend to non-integer Sobolev spaces. Consider for
example Theorem 2.3.2 in or similarly Theorem 7.2 in [Ervin and Roop|
for a verification of the approximation property in a fractional Sobolev space
setting. Moreover we refer to Takacs and Takacs| (2015)), Karkulik and Melenk (2015)
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and [Du et al.| (2013) for further results and examples on the abstract approximation
property of Assumption [3.A]

Additionally, consider Definition 1.9 of the Ph.D. thesis of [Schotzau (1999), where a
projector II7 is defined. In Theorem 1.19 and Corollary 1.20, the author then derives
approximation results for that projector. These results present themselves in the spirit
of Assumption and hold for integer and non-integer Sobolev spaces, respectively.

Attached to the spaces H, V* and V;’ that the (approximate) solutions live in we consider
the norms

[ull == llull g, for u € H,
| fllysx := sup (. Uh), for f € V5%, (3.193)
" onevye [1vnllys
vp, #0

Remark 3.61 (An estimate for ||||Vhs*)
From the definition of HHV;* in (3.193), we immediately get for f € V5* the estimate

(f,vn) (f, )/ (vn, vn) [0l
[fllys« = sup < sup : — = |[flly sup < || Fll s
n ey lvnllys T vev [vnlly wneVy 1onllys
vy, #0 vy, #0 vp, #0
(3.194)
which we state here for later use.
We will also need the constant A, defined by
2
A= sup w (3.195)
vneVye ||vnlys-
vp, #0 h

Remark 3.62 (On A)

Given h > 0 and the respective finite dimensional space V;' C V*, the constant A defined
m 18 finite due to the fact that all norms involved are norms restricted to finite
dimensional spaces and in finite dimensional spaces all norms are equivalent. From this,
A being finite follows immediately. As a consequence, however, A depends on h and thus
on the dimension of the spaces involved,

A = A(h).

Yet, A is not necessarily bounded in h and thus in the limit, h — 0, not necessarily finite,
anymore.

In Definition 3.54] we introduced the notion of a Theta scheme as an iterative relation
between approximate solutions to the original problem [3.172|that live on an (equidistant)
time grid in finite dimensional space. We restate this structure here for later reference.
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Theta Scheme 3.63 (Fully discretized 6 scheme)
Let (u}')meqo,...,my be the fully discretized solution to problem (3.172), upt € V;¥ C V*.
The up* € V¥, m € {0,..., M}, solve the § scheme

up - up' 0 0 0
h77’vh + am+ (UZH_ ,’Uh) = (fm+ ,'Uh),

At (3.196)

0 _
uh_gh7

for all vy, € V7.

In general, § € [0,1] and M € N or rather At = At(M) of the time discretization
(T, M, At) that the solution of Theta Scheme rests on can not be chosen inde-
pendently from another. The variable M serves as a measure of the fineness of the
discretization (T, M, At) in time. The value of # controls the degree of implicitness of
the scheme . With 6§ = 1, the element u;”H appears twice in the scheme (|3.196)
which is then called fully implicit. With 6 = 0 the element u}ff“ appears only once and
thus the scheme is called fully explicit. So called semi-explicit schemes are those with
0 € (0,1) with the Crank-Nicolson scheme as the most prominent example (0 = 1). As
we will see later, in case that 6 < %, convergence and stability lemmas and theorems
only grant their claims if At is small enough. Conditions of that sort are always called
time stepping conditions.

For the accuracy of an approximate solution (U?)me{o,...,M} to problem (3.172)), the
approximation quality of g, the approximate of the initial value g plays a vital role.

Assumption 3.D (Quasi-optimality of the initial ¢ondition)

The initial condition u% = gp in Theta Scheme |3.65 initiates the iterative relation
of . This initial value g, € H is in general only an approrimation of the ini-
tial value g € H of the original problem . We assume quasi optimality in H of
the initial condition of the scheme in the sense that ACT > 0 such that

lg —gnllg < Cr inf |lg—vally (3.197)
’UhGVh

holds.

The framework that we have presented in the previous section has prepared us for proving
the theorems and lemmas that follow. Therein, properties of the original problem
will be specified and consequent features of the approximate fully discretized solution
will be rigorously derived.

In this section, we prove stability and convergence results for 6 schemes that yield so-
lutions to fully discretized PIDEs in subspaces V;, C V. In the analysis of stability and
convergence, we distinguish between two major classes. First, we consider PIDEs where
the operator A induces a bilinear form that is both continuous and coercive.

Secondly, we consider the more general class of PIDEs where the operator A induces a
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3.6.2 Results for continuous and coercive bilinear forms

bilinear form that is still continuous but only of Garding type. A bilinear form of Gard-
ing type generalizes the notion of coercivity and complicates the derivation of stability
and convergence results considerably.

3.6.2 Results for continuous and coercive bilinear forms

In this subsection we consider PIDEs with time dependent operator A that induces a
family of bilinear forms a:(-,-) : V¥ x V* — R for each ¢ € [0,7] that is continuous
and coercive uniformly in time. We will generalize the second restriction in the next
subsection. Our results on PIDEs with operators of this first kind thus generalize the
results of von Petersdorff and Schwab| (2003) in that they allow for time-dependence
of the operator and thus admit more flexibility in the model choice. Furthermore we
keep track of the involved constants in all estimates and make them explicit wherever
possible.

Definition 3.64 (Continuity)
A bilinear form a.(-,-) : [0,T] x V¥ x V*® — R is called continuous uniformly in time with
respect to V'*, if there exists o € R™ independent of t such that

|a: (u, )| < elully[lv]lys (3.198)

holds for all uw,v € V* and for allt € [0,T]. We call such an o a continuity constant of
the bilinear form a.

Definition 3.65 (Coercivity)
A bilinear form a.(-,-) : [0,T] x V® x V¥ — R is called coercive uniformly in time with
respect to V', if there exists 3 € RT independent of t such that

ar(u,u) > Bllul}- (3.199)

holds for all w € V* and for all t € [0,T]. We call such a B a coercivity constant of the
bilinear form a.

Remark 3.66 (Energy norm)

A bilinear form a that is both continuous uniformly in time in the sense of Definition
and coercive uniformly in time in the sense of Definition iduces a norm
Ila, = Vai(-;) on V? for each t € [0,T] that is equivalent to the norm of V*, since

VBllully: < llully, < Vallully-,

for all uw € V° wherein a and B are the time independent constants from Definition 3.6
and Deﬁm’tz’on respectively. The norm ||-||,, is called enery norm of a(-, ).

Remark 3.67 (On the continuity and coercivity definition)
Note that the definition of continuity by inequality (3.198]) and the definition of coercivity

by inequality (3.199) comply precisely with the requirements and of Theorem
for the existence and uniqueness of weak solutions to problems of form (3.172)).
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3.6.2 Results for continuous and coercive bilinear forms

3.6.2.1 Stability of coercive schemes

We derive a stability result regarding a solution to Theta Scheme [3.63| under the assump-
tion of continuity and coercivity of the associated time dependent bilinear form.

Lemma 3.68 (Stability estimate for 8 scheme)

Let a.(-,-) be a time dependent bilinear form that is both continuous and coercive uni-
formly in time with respect to V° and H. Let 6 € [0,1] and let (u}')meqo,...m} be a
solution of the associated 6 scheme on an equidistant time grid (T, M, At). For
RS [%, 1] let

0<Cr <2,

1
“=5e-cy

with B the coercivity constant of bilinear form a. For 6 € [0, %) assume the time stepping
size At to satisfy the time stepping condition

0<At< (1—3?)1\042’ (3.200)
with A defined in , define the constant
w=(1-20)AAt >0 (3.201)
and let
Cy € <0,2 — qu) , (3.202)
Oy > max { b _(104;)’;0‘_)1042 + u} . (3.203)

Then the stability estimate

M2 = m+-6 2
[[un [ + At Cy Z H“h
m=0

2 012 ey m+6
P TTROVES I

)
Sk
Vh

15 satisfied.

Before we prove Lemma the following remark argues that the intervals for the
constants C'1, (5 introduced therein are indeed well-defined.

Remark 3.69 (On the constants of Lemma [3.68))
For 0 € [0, %) the constant p is well defined and indeed larger than zero and the set of
possible values for Cy, Cy is non-empty. With At chosen according to (3.200) we have

Z eV G DL il
B 3 5
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3.6.2 Results for continuous and coercive bilinear forms

which admits a non-empty interval of choices for Cy. Since p is finite and bounded, we
have Cy < oo if
(2—C1)B > pa?

which is the case if (2 — C1) > pa?/B which is true by the interval that Cy is chosen
from.

Proof (of Lemma

The proof follows the structure of the proof of Proposition 4.1 by [von Petersdorff and
Schwab| (2003)) replacing their norm |||, by norm ”HV; as defined in equation (3.193).
At the core of the proof lies verifying that

2
X HWAH_Hh+WH_A“hHmwmmﬁ+A“4VWﬂ >0, (3.204)

s *
Vh

for all m € {0,..., M — 1}, since summing up the X™ m € {0,..., M — 1}, then yields

M +0 +6
z X7 = (a5 = [l [, - Aty Z ||, + AtCo Z e, =
from which by simple rearrangement of terms if follows that
+6 +0
b |5 + Aty Z [e?|[ o < I8 + At 2 ...
which shows the claim.
Fix m € {0,..., M — 1} and define
W = uf Tt — (3.205)
With this definition of w the 6 scheme yields
(@, u’,;””) At (_am+6’ <uzl+6 u}f*e) n (fm+9,u21+6>>
+0 0, m+o (3206)
_||,,m m-+ m
<ot (o (i)
The definition of the norm ||ths* in (3.193) directly gives the estimate
<fm+0 um+0) Hfmw‘ 2n+9‘ . (3.207)
v Vs
Combining ((3.206]) and (3.207) gives the estimate
m+0 m-+6 m+6 m+6
(@, " +?) < At ( H e Hf ‘ e ‘ w) . (3.208)
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3.6.2 Results for continuous and coercive bilinear forms

Using the definition of w in (3.205)) we get
1
U;Ln'f‘g — (’u,h +um+1) /2 —+ <0 — 2) w

which is equivalent to the relation

ul gt = 20— (20 — 1)w. (3.209)
With the definition of w and m we see that
o = Uy = = a4 ) = (2049 — (20 = 1))

such that by changing signs we arrive at
9 _
g 1% = g5, = —2(w, u*0) + (26 — 1) (w, w). (3.210)
Continuing in (3.210]), we get by invoking the upper boundary of (3.208) in the first

summand that

—2(w, u" ) + (20 — 1)(w, *)

©oar <H it (3.211)

_ Hfmw’

e[, ) + @0 - Dlaif

m+60 s *
a vy

Thus the final estimate for the difference between ||u}" Ik 7 and Huh HH 5 is given by
combining (3.210) and (3.211)) as

o g = [l 7

3.212
> 20 ([uge -

U

m+o 20 — 1)||w]|%,.
o)+ 2o =l

Now we have collected all prerequisites for analyzing X™ of (3.204)). Taking its definition
and the estimate (3.212)) we deduce

X = (2 — ||u h“HH arciip ]+ arcal|
> o Hfm+9\ ) o niery @)
_AtGy H meo|° ALy Hf””"\ -
qm+o V”

Collecting terms gives

XM > AH(2 — H m+9H + (20 - 1)||w||%,
_2AtH m+0H m+9H AL Cy H m+0‘
! Vi* th Vs * / 17
= (20 — 1)!\@5\!%1
LAt H m+6 o+ s Hfmw‘ QHfere‘ uerH‘ '
am v+ Vi* Vs

(3.214)
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3.6.2 Results for continuous and coercive bilinear forms

By assumption, the bilinear form a;(+,-) is uniformly coercive with coercivity constant

B, so

2 2

m-+6 __m-+0 m—+60  m-+0 m+6
e ) 2 o,

Using the assumption C < 2 and inserting (3.215)) into (3.214)) gives

X" > (20— 1)l

(3.215)

a'm+0

2 2

-2

um—i—@‘

+ At [(2 =0+ ol |

ol

(3.216)

|4 Ve vigr

To proceed we distinguish two cases for 6 € [0, 1].

0 e [%, 1] So, assume first that 0 € [%, 1]. Then, proceeding from ([3.216|) gives by the second
binomial formula
2
)

X™ > (20 —1)||w||% + At

(vE=emsu],. - e

eo(vmam ) |, e, |
(3.217)
Now,
(2= C1ACs > 14 Cy > 5(2101)’ (3.218)

which is true by assumption. By the choice of 6, (20 —1)||@||3; > 0, and by (3.218)
all other summands in (3.217]) are nonnegative as well, so

X" >0, (3.219)

which proves the claim of the lemma for 6 € [%, 1].

0 € [0, %) Here, (20 — 1) < 0, which prohibits arguing like above. By 6 scheme we have

(w,vp) = At (7am+9 (uZHe,vh) + <fm+9,vh>> , (3.220)

for all v, € V;’. Consequently,

il = sup {20
s*x —
Oy A Ty

At <—am+9 (u’}?w,vh) + (fm+9,vh))
= sup

vREVY ||vhHVS

(3.221)

)
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3.6.2 Results for continuous and coercive bilinear forms

which gives

_,m+0 m+6
[@][ys« < At | sup ’ <Uh wh) + sup (%, on)
3 vREV) [vnllys onevi nllys (3.222)
= At HaerO ( m+6 >‘ + Hfere‘ .
Uy Ve yar

Clearly, by taking the uniform continuity of a;(-,-) with respect to ||-||;,s into
account we deduce

0 m—+6
a™t (uh , vh)

am+9 um—i—@ . = sup
CA NS [[onll
h vp€Vp hllvs (3.223)

IN

H mw’ Alonllys H m+9‘

Ve unev, HU}IHVS

which we insert into (3.222)) to get

Bller < At H m+9H H m+9‘ ) 3.994
- < at (] + 7], (3:221)

By the definition of A in (3.195)) we have the ,inverse estimate®
@] < \/KHIDHV}LS*- (3.225)

Assembling our results by combining (3.224]) with (3.225|) gives

ol < VRl < VRS (alu e, ). @

Finally, we can continue in (3.216)) under our assumption that 6 € [0, %) by applying

result ([3.226)) to compute
Vi VJ

X™ > (20— 1)|wl
volref
Vs*)>2 (3.227)

-2

um+0 ’

Vs

e e a2

> (20— 1) (fAt( [ | Pt

At|(2—Cy) H m+0H s H m+0‘ 2” m+9‘ m+9‘ .
vae|e-conglael el -]l
Expanding the squared brackets in (3.227)) gives
s At[(20_1 AtA( e e T e P >
Ve ° Vi Vi
m—+6 C H m—l—@” 2” m+9H m+€” )
’BH HV +C2|f v ! veell“h v
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3.6.2 Results for continuous and coercive bilinear forms

Collecting terms we derive

2
X™ > At| [(2—C1)B — (1 — 20)Atha?] Hu;ﬁe‘ y
—2[1+(1-20)At AH m+9’ m+9‘
[1+( )JAtaA] | f [ (3.228)
2
+[Ch — (1 — 20)AtA] Hfm“" ] .
v
Recall the definition of p in (3.201)) as
p=(1—20)AAt (3.229)
which turns (3.228)) into
2
X" 2 At [(2= )8 - pa?] |
[1+ pal || f [ (3.230)
2
Co — mto :
+[Co — ] Hf ‘ V;f*]
Define constants
v =1+ pa, (3.231)
§=0Cy—p, (3.232)
k= (2-C1)B — pa’. (3.233)

Trivially, v > 0. We also have § > 0, since Cy > p by the first condition for Cs in
(3.203)). Furthermore, we have k > 0, since
2
o
C1<2——
g
by the upper bound for the open interval of possible values for C; according to
(13.202). Inserting the definitions of the nonnegative § and the positive v and &
into (3.230) and applying the second binomial formula then gives

X" > At

2
(v~ valm.) -

o

#2 (Ve =) )

um—f—@’

Ss*
Vh
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3.6.2 Results for continuous and coercive bilinear forms

The lower bound for X" stated in is thus nonnegative, if
VES > 7,
which by the nonnegativity of the constants involved is equivalent to
Ko > 42, (3.235)
Using the definitions of k, § and ~, holds, if
(2= C1)B = pa®) (Co — p) > (1 + pa)?,

which is the case, since

(14 pa)?
Coy >
by the second condition for Cs in (3.203)). Therefore, X™ > 0 which finishes the
proof. O

Remark 3.70 (On the time stepping condition and the inverse property)

Let us have a closer look at the time stepping condition (3.200) for 68 € [0,%) m

Lemma[3.68 Under the inverse property Assumption 3.5 we have for all wy, € V}?,

”whHV’f*: sup (wh,vn) 7h$ (ZUh,Uh) haA/Z

l|wp, || 3.236
o Tonllye = Crp el Tonly = Cim mo (3:236)

and hence

2
A= sup ””’”LH < C2,p0a, (3.237)
VhEVy ”Uh”V;*

with A = A(h) defined in (3.195) at the beginning of Section|3.0.1. Consequently, under
Assumptz’on for 0 € [O, %) the time stepping condition on At as required by ((3.200))

in Lemma is satisfied if

2/8 « (63

with Cp = 2B/[(1 — 20)C%, a?].
Corollary 3.71 (Stability esti\Tate for 0 scheme)
8

Under the assumptions of Lemma |3.68 the stability estimate

, (3.239)

|, + At CyB Z | m+9HV < ||ud||3 + Aty Z Hf’"”\ v

holds with positive constants C1, Co and the same time stepping condition for 6 € [0, %)
as required by Lemma |3.608.
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3.6.2 Results for continuous and coercive bilinear forms

Proof
The claim is a direct consequence of Lemma [3.68 and the uniform coercivity of the
bilinear form with coercivity constant 3. U

Note that the result (3.239) of Corollary in a way describes that the solution of the
discrete scheme is bounded by its initial data in a discrete L(0,7,V?) or L?(0, T, V;**)
norm fashion, respectively.

3.6.2.2 Convergence of coercive schemes

Under the assumptions of Lemma [3.68] the solution to Theta Scheme [3.63]is stable. In
this subsection we show that it also converges in the dimensionality N(h) of the space
and the fineness At of the time grid. For that matter we consider the residuals between
each member of (Um)me{o,...,M}, the weak solution of evaluated at time points ¢,
m = 0,..., M, and the respective members of the sequence (u}'),,eqo,..,1}, the solution
of Theta Scheme [3.63]

In order to ultimately prove convergence, we will show that (parts of) these residuals
satisfy their own 6 scheme with a new right hand side. Applying Lemmal[3.68|to these very
residuals will yield an upper bound for the sum of their norms from which convergence
can be deduced.

We define for all m € {0,..., M} the difference e} between the weak solution evaluated
at time point ™ and its finite dimensional approximation affiliated with time point ¢
as

ey =u" —up
= (u™ — Ppu™) + (Ppu™ — up’) (3.240)
="+ &
with
™ =u" — Ppu™, vm € {0,...,M}, (3.241)
& = Ppou™ — uy, vm € {0,..., M}, (3.242)

with a projector Pj, adhering to Assumption . The quantity e} thus consists of two
parts. The first part, n™, carries the discretization error, the second part, £, denotes
the inaccuracy of the approximate solution with respect to the projection of the weak
solution into the finite dimensional subspace.

In the end, convergence itself then depends on the specification of the function Y of
Assumption [3.A] and its behavior when h tends to zero. This behavior of T in turn orig-
inates from the smoothness that the weak solution v admits. The more smoothness it
provides, the faster the achieved rate of convergence will be. We will keep this issue de-
termining the rate of convergence separate from the derivation of the convergence results
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3.6.2 Results for continuous and coercive bilinear forms

as such wherever possible. After the formal convergence analysis has been completed,
the assumptions on the space that the solution lives in will determine the actual rate of
convergence that the 6 scheme achieves.

To derive the convergence result we focus on the term &;* in (3.240)), first. Being the
part of the residual e} that denotes the deviation of the solution of the 6 scheme from
the projection of the weak solution, it is of central interest for the whole analysis.

Lemma 3.72 (6 scheme for the &)

Let u € WY(0,T;V?, H) be the weak solution to problem with continuous and co-

ercive bilinear form a and (uzn)me{07wM} the solution to the associated Theta Scheme|3. 65,
Further, let ', m € {1,..., M}, be defined by . If additionally v € C*([0,T]; H)

and the bilinear form is continuous in t then we have

£m+1 _ é—m
(hAth’vh> +a™ O + (1= 0)&7 o) = (r™, va),

(3.243)
) = Pug —ul,

forallm =1,...,M — 1 and for all v, € V7, where the weak residuals r™ : V7 — R

have the form
r" ="+ ry +ry (3.244)

with

um+l —um

o = (g ).
" B Phum+1 _ Phum B um+1 —um
(7’2 avh) - At At yUh | »

(rgn’ Uh) _ am+9 (Phum-i-O _ um+6’ Uh) )

for allm € {0,...,M — 1}.

Proof

By admitting time dependence of the bilinear form, this lemma generalizes Lemma
5.1 in jvon Petersdorfl and Schwab| (2003). The proof therein provides very reliable
guidelines along which we now derive our result, as well.
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Choose vj, € V7 C V¢ arbitrary but fix and m € {0,..., M — 1} and compute

m-+1 _em
(flm‘gh, vh> +a™ (O + (1 - 0)&, v)

(Phum+1 - uzw-i—l) . (Phum o uhm)
At 7Uh

+ gm o (9 (Phum+1 — uhmH) +(1—0) (Ppu™ —uyp") ,vh)

- At ’ At ’

+ am-ﬁ-@(Phum—i-G’ Uh) _ am+9 (UZH—G’ 'Uh)
Phum‘|r1 — Ppu™
B ( At

wmtl —m
- hTth’”h + a0 (Ut ) (3.245)

We invoke the relation provided by the fully discretized 6 scheme to bring fm+?
into the equation, then add a zero and thus continue from (|3.245)) with

Pyou™t — poym umtl —ym
< h Az h ,Uh> + a™ T (Pu™ T up,) — ((H,Uh +a™ P (ut uy)

7Uh> + aerG(Phum+97 Uh)

At

B <Phum+1 _ Phum

A7 ,vh> + a™ (P o) — (£ o)

P, m+1 _ Pru™
_ ( hU N AU iLm+0, Uh) + am+9(Phum+9’ 'Uh)
+ (um+97 ’Uh) - (fm+97 'Uh)- (3246)

By Equation (3.11]) and the assumption that u € C1([0, T], H) together with the bilinear
form a being continuous in ¢, the fundamental theorem of variational calculus implies
that

(™0 v) 4 o™ Fo (um+9,v> = (fmt0 v), Yo e V°. (3.247)
Recalling that v, € V7 C V* we combine (3.247)) and (3.246) to get
(Phum+1 — Phum

At
_ Phu”H'1 — Ppu™
B At

— ™t Uh> + @™ (Ppu™ 0 vp) + (W vy) — (F71, op)

- um+9,vh> + am+9(Phum+9’ Uh) _ aeré?(uerG7 Uh) (3.248)
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Adding an artificial zero to (3.248) we arrive at
(Phum‘*'1 — Pou™

- um+9’ Uh) + am+9(Phum+9, 'Uh) _ am+9(um+0, Uh)

At
Phum—i-l _ Phum um-l—l —um um+l —um ]
+ am+0(Phum+9 _ um+9 Uh)
= (r",vn),
with
(r'"™,on) = (r{" + 13" + 75", 08),
wherein
um—i—l —um 0
o= ( -
At
(Tm ) _ (Phum+1 _ Phum uerl —um >
25°) — - P )
At At
(Tén, ) — am+9(Phum+0 _ um+0’ .)’
which validates the decomposition of r claimed by the lemma. O

We have therefore derived a 6 scheme for £ which we state for later reference.

Theta Scheme 3.73 (6 scheme|for the &™)

Under the assumptions of Lemma |3.79 with § € [0,1], the & defined by (3.242) satisfy
the 6 scheme

§m+1 . fm
(Wﬂ)h) + a0 (O (1 0)E vp) = (™, vn),

(3.249)
62 = Phg - U%a

forallm =1,...,M — 1 and for all vy, € V}7, where the right hand side given by r™ is
defined as in (3.244) of the Lemma.

For the solution (f/T)me{O,..., ary of Scheme the following stability estimate holds.

Corollary 3.74 (Stability estimate for &}")
Let (& )mefo,....m} be the solution of the 6 scheme |3.75 with 6 € [0,1] and let the as-
sumptions of Lemma be satisfied. Then there exist positive constants C1, Cy such
that the stability estimate

M-1 9 M-1
M5, + ater Y HfZ”@H < [R5 + AtCy D [l (3.250)
m=0 m=0

am+6 -

holds.
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Proof

By assumption, the bilinear form a(-,-) is continuous and coercive uniformly in time.
The & thus take the role of the u}" in the 6 scheme and the 7™ take the role of the
f™+9 therein. Consequently, we can directly apply Lemma The constants C7, Cy
of the corollary are thus identical to the two constants of the lemma. O

Convergence of the (approximate) solution (Uzn)me{o,..., ay will depend on convergence
of the right hand side in . In that respect, Corollary is the key ingredient to
our convergence results for bilinear forms that are both continuous as well as coercive
uniformly in time. In preparation of these results we shall now derive upper bounds for
the individual residual parts r{*, r5"* and r3".

The following lemma provides upper bounds for the residuals individually. Each of those
bounds depends on the grid parameters h and At. Both serve as determinants for the
rate of convergence of the 6 scheme, later.

Lemma 3.75 (Upper bounds for normed residuals)

Let the assumptions of Lemma|3.79 be satisfied and let (r]*,-)g with r* : VP = R, i €
{1,2,3}, be the weak residuals derived by the lemma. We require additional smoothness
of the weak solution v by assuming further that

i) Assumption holds for some function Y and some constant Cvy
ii) Assumption on the projector Py holds
iii) w € WH0,T; Vi, H) for some t > a4/2
w) ue C*[0,T),H)
In case 0 = % assume optionally
v) u € C3([0,T)], H)
Then there exist positive constants Cy,, Cyr, and Cy, such that

1
VAL(f5 () ds)® L 60,1

tm+l

HTTHV):* <y 5 1
At2 < im Hu(s)”%/hs* ds) , 0 =1 and given[v) holds

(3.251)

N

tm+1

1 )
HT?HVi* < Cp, \/Tit (/tm T2 (h,t,aA/2,u(7'))d7') , (3.252)

HrénHV}f* S CT3 T(h,t,OCA/2,um+9), (3253)
forallm=0,..., M —1.

Proof
Choose vy, € V}7 arbitrary but fix. We derive each upper bound individually.
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Upper bound for Hr{”HV;
Clearly,
um-‘,—l —um

At

(7", vn)| < —

lonllys, (3.254)
Ve

by the definition of the norm ||- ths*. Recall that our time grid is equidistantly spaced
so ™t = ™ 4+ At for all m € {0,...,M — 1}. Under the assumption that u €
C?([0,T), H) we represent u™! = u(t™*1) by the Taylor expansion of u around

t™, evaluated at t™*!. Thus, by applying Theorem the Taylor theorem for
Banach-valued functions, we have

tm+1

umt = ™ AL + / (™ — 1Yii(r) dr. (3.255)

tm

Proceeding with elementary calculations we get

um+1 —um 40
At "

(um + ™At + ft;nﬂ (™t — 7)ii(7) dT) —u™ »

- At v
1 tm+l
=a™+ At/ ™ — r)ii(r) dr — (0™ + (1 - 0)i™)
tm

1 tm+1

= / (™ — 7)ii(r) dr — (0a™T — 00™) . (3.256)
tm

Since u € C?([0,T], H), Lemma together with Proposition 1.2.3 in |Arendt et al.
(2011)) grant that i is Bochner integrable and

tm+1

g™t — g™ =6 / i(r) dr. (3.257)
tm
Inserting (3.257)) into (3.256|) yields
m+1 _ . m 1 pmtl
u = u ?lm+9 — At/ (tm—‘rl - 7_) u(T) dr — (9um+1 _ Hum)
tm
1 tm+1
- & / (" — 7 OAR)i(r) dr (3.258)
tm

1 tm+1

= — At/t (7' — (1 -t — Htm) () dr.

m
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3.6.2 Results for continuous and coercive bilinear forms

Since i is Bochner integrable, we can apply Theorem 24.7 in [Wloka| (2002)) to get

um—l—l —um B um+9
At ver
I
=157 /tm (r— (1 =)™ —ot™)ii(r) dr
VhS*
I
<5 /tm |(r =@ — o)™t — o) ii(r)| yr A7 (3.259)

taking the norm into the integral. Considering the function
go(t) =7—(1— 9)tm+1 —0t™, gy [tm, th] —R
we find due to its strict monotonicity in 7 that for 7 € [t™, ™+1]

|90(7)| < max {[t™F! — (1 — )™ — o™, [t — (1 — 0)e™ T — o™ |}
= max{|f(t" T — ™[, |(1 - )" —¢™)[} (3.260)
= Atmax{0, (1 —0)} = At Cy,

with Cp = max{6, (1 — 6)}. Using the estimate (3.260|) we develop (3.259)) into

1 tm+1
Ao H (T — (11—t - th) u(T)} Vi dr
tmHl
<G [ i)l dr
gmt1 3
< CopV/At (/tm () I3+ dT> : (3.261)

with the Holder inequality of Theorem [2.42] being applied in the last step.
Special case 6 = 1/2:

For §# = 1/2 and under the assumption of additional smoothness of u in the sense of

being satisfied, further computations are possible. So let us assume that 8 = %
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3.6.2 Results for continuous and coercive bilinear forms

Continuing in (3.258]), we get by integration by parts and elementary calculations

m+1

u —Uu

At

1o 1 1
tm

B

- /tm (7% = (™ ™) 7) i(7) dT>

_ ( _ tmtm—i-lu-m-l—l + tmtm-l—lum

— U

(3.262)

tm+1
— / (7'2 — (th + tm)T) U (T) dT)
tm
tm+1

= — %At (_tmtm—i-l (ﬂm—H o um) . /tm (T2 o (tm—i-l + tm)T) U(T) dT)

tm+1

1
= 2At/ (72 — (™ ™ 4 tmtmﬂ) w(r)dr
tm
1 tm+l
_ 2At/ (7 — ™) (r — ™) () dr.
tm

The absolute value of 7+ (7 — t™ 1) (7 — t™) with 7 € [¢™, t™ ] is bounded,
1
[(r =™ (7 —t™)| < ZAtQ, e [t . (3.263)

We take the norm ”HV,f of the result of (3.262), use the Bochner integrability of u
guaranteed by Proposition 1.2.3 in |Arendt et al.| (2011)), apply again Theorem 24.7 of
Wiloka (2002)) and then get by invoking estimate (3.263|) that

tm+1

/t (tm+1 — 7') ("™ —T)u(r)dr

m

1

E
v 24t

A (= wm) =it

Vhs*
m—+1
|

1
- 7A2 cee o
st [ APy dr

tm+1

1
=gt [ ly-ar

IN

t'm+1
< LA (/
8 tm

with the Holder inequality yielding the last step. Setting

1 1
Crl = max{09,8} = 0.9 € |:2,1:|

2
1 ()| dT) , (3.264)

135



3.6.2 Results for continuous and coercive bilinear forms

defines the constant in (3.251]) and finishes the treatment of r{".

Upper bound for ||r5||sx:
With assumption [iv)| we have again by combining Lemma with Proposition 1.2.3
in |Arendt et al. (2011)) that % is Bochner integrable and

tm+1

™t " = / a(7) dr. (3.265)
t

m

We begin the derivation of an upper bound for the norm of r§* by using ([3.265)) and
compute

1
|(r3", on)| < KtH(umH - um) — Py (“m+1 - “m)} Vi vplys
1 m m
= EH(I - P) (u 1 _ )} Ve vp ||y (3.266)
1 gt
= la-n) ( Je df> ol
tm yee

where I denotes the identity mapping. By Proposition 1.1.6 in |Arendt et al.| (2011])
we may interchange integration with the (I — Pj,) operator to get

tm+1

(I - Py) ( /t a(r) d7> - /t (I - Py) (u(r)) dr. (3.267)

m m

Proposition 1.1.6 in |Arendt et al. (2011) also grants that with @ being Bochner in-
tegrable, (I — Py) (%) is Bochner integrable, as well. Consequently, we may combine

expressions (3.266|) and (3.267) and conclude again by Theorem 24.7 in Wloka, (2002])

that
1 t'm+1
5wl < 5 (T Pa) ( / u(ﬂdf) Jonlly-
tm V]f*
1 tm+l
-5l a-roG@ar| oy (3.268)
Vver

tm+1

1 .
<3 L M= POl drlusly.

At this point we want to apply the approximation property of the projector Py out-
lined in Assumption[3.C] Before we can do that we need to establish a relation between
||Hth that we recognize in the last line of (3.268) and [|-||..
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3.6.2 Results for continuous and coercive bilinear forms

Keep 7 € [t™,t™ 1] arbitrary but fix. Using the definition of norm H-HV;* we derive

(I = Pn)a(r), vn)

I = Pa)i(r) e = sup

vhEV [onllys
< sup (L = Pp)ia(r) I g llvnll o
oh €V [[vnlly s (3.269)

, [[on]
= (I = Po)a(r)| g sup i
vneVi [[0nllys

< (T = Br)i(r)lys,

since ||[v| g < |[v]lys for all v € V¥, Inserting (3.269) into (3.268)) and applying the
approximation property of P, pointwise in time we derive

1 tm+1 '
5l < 57 [ 10 = P - drlonll-

tm+1

1 .
<qi [ M@= Py drlonly.
tm
1 tm+1 (3270)
<Cry; [ XOutaa/2am)dr oy
tm

NI

1 tm+1
<, —— Y2 (h,t,a4/2,70(7T))d o
<a, m(/tm (b, t,04/2, (7)) ) oy

where the Holder inequality grants the last step and where we used the additional
smoothness in the sense of assumption and where C,, = Cy.

Upper bound for HrgnHV;
The bound for the norm of 75" is a direct consequence of the uniform continuity of
at(+,-). We compute for vj, € V;? that

(g on)| = [a O (B = )|

IN

aHPhum+9 _ um+9HVS ”UhHVs

< Cry T(hyt,an/2, 4™ ) |unlys.

wherein C,, = aCy, with « the continuity constant of a;(-,-) and Cy the constant
stemming from the approximation property (3.184]) of Assumption

This finishes the derivation of upper bounds for the norms of the individual residuals
ri*, rytand r5', m=0,...,M — 1. U

We are now able to state the core theorem, granting convergence of the 6 scheme [3.63
where the involved bilinear form is continuous and coercive uniformly in time.
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3.6.2 Results for continuous and coercive bilinear forms

Theorem 3.76 (Convergence of the coercive 6 scheme)

Let u € WH0,T;VE H) , t > ay/2, be the weak solution to problem where the
operator is associated with a bilinear form a that is continuous and coercive uniformly
i time. Further, assume

i) u to be smooth enough in the sense that u € C2([0,T], H)

ii) and for 6 € [0,1/2) let the time stepping condition (3.200) of Lemma be
satisfied.

In case 0 = % assume optionally
i) u € C3([0,T], H)

Let (u}')meqo,...m) be the solution to the associated Theta Scheme with 6 € [0,1]
and assume further

iv) The approximation property Assumption holds for some function Y and some
constant Cv

v) The inverse property Assumption is satisfied
vi) Assumption on the projector Py, holds
vii) Assumption on the initial condition is satisfied

Then there exists a constant C > 0 such that

™ — | +AtZH gt

am+o

< C max Y*(h,t,a4/2,u(r))

0<r<T
_ (3.271)
+C / Y2(h,t, aq/2,u(r))dr
(A2 [T (s Hvs* ds, V0 €0,1]
(At) fo ||t (s ||Vs* ds, 0=1 and ifliii)
holds.
Proof
For m € {0,..., M} recall the definition
e ="~ =" €
with
™ =u" — Ppu™, Ym € {0,..., M}, (3.272)
&' = Ppu™ —uyp', Ym € {0,...,M}, (3.273)
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3.6.2 Results for continuous and coercive bilinear forms

as introduced in (3.240)). Additionally, we denote

= gt 4 (1= 0™ = — Pt Yme{0,...,M -1}, (3.274)
mHl — et 4 (1 - 0)er = Ppu™? — ™ Yme{0,...,M —1}.  (3.275)

By the third binomial formula we get

H HH+ At Z H m+6 m+0

am+0

= et |13, + At Z e,

_ H77M+5h HH+At Z Hnmw_l_gmw

am+9

<2 (HuM PhuMHH + At Z H mt0 _ ppymto

M) (3.276)

el + o X fervl ) 2

Considering the first main summand, that is (3.276)), we simply exploit the continuity of
ai(-,-) to get

H M Ph“MHH“‘ At Z H m+0 _ p, um+9

am+6

(3.278)

< HuM — Pyu

T 2
Lo Z Hum+9 _ Phum+9H .
M Vs
m=0

Considering the term Z%:_& |um Tt — Phum+0| . in (3.278) we see by the linearity of
the projector P, and elementary calculations that

M-1 N
Z Hum+9 _ Phum”‘

m=0 ve
M-1
_ 16 (w1 = Pyu™ ) + (1= 0) (u™ — Pyu™)|[5,
m=0
-1
<2 (eQHumﬂ ~ P (1= )™ — Phum||%/s) . (3.279)

m=0
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3.6.2 Results for continuous and coercive bilinear forms

We split the sum in (3.279) and replace the individual summands by the maximum
summand yielding the estimate

M-1 9
Z Hum+9 _ Phum+9H

VS
m=0

<2 <M02 OrSnTanT <||u(7') - PhU(T)H%/S)

(3.280)

0<r<T

+ M(1 — 6)? max (Hu(r) — Phu(T)H%/s) )

— 2M (62 + (1 — 0)%) max (Hu(T) — Phu(T)H?VS)

0<r<T

<M ( — 2 ) .
< M max lu() — Pru(T)lly,

Inserting (3.280)) into (3.278|) yields

M _ p ., Mi? - m+o _ p o mto||?
Hu Pru HH+ At Z Hu Pyu
m=0

am+9

IA

HuM —PhuM‘

2 2 3.281
oo max () - Prur)l.) 3280
< (1+aT) Jmax, (HU(T) - PhU(T)”%/S) :

Finally, the approximation property of the projector of Assumption [3.Clapplied pointwise
in time yields

M-1
HuM — PhuMHZ + At Z Humw — Pyu™t? ?
m=0

am+o (3.282)
< ral 2
= Cl OIgnTa<_XTT (hata OéA/2,U(’T)),

with C1 = C%(1 + aT).
Considering now the main summand in (3.277) we find applying Corollary using
the positive constants C'y and C therein that

N M-1 9
&b+ a3 [l
m=0

am+9
1 M2 M—1 P 2
< max{l,cl} (th HH+AtClg_:O Hg;ﬁ Ham+9> (3.283)
1 0]]2 = mi2
< max{l,cl} 1602, + acy S gl )
m=0
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We investigate Hngz, first. By definition of £ for m = 0 we get

€01l = [[Pnu® — will - (3.284)
Recall that

u® = u(t®) = u(0) = g, (3.285)

the initial condition of the original problem (3.172)) and further
uj = g, (3.286)

by the initial condition of the fully discretized 6 scheme With inserting both
and ((3.2806)) into (3.284]) and exploiting approximation property of the projector
Py, of Assumption [3.C] as well as the quasi-optimality of the initial condition as stated
in Assumption we find

€21l s < [1Ph” = gl + lo — il
= [[u(0) = Pou(0)]| 5 + lg — gnll
< [u(0) = Pru(0)||y + Cr_inf [lg —onll g4
vhthS

= [lu(0) — Phu(O)HH +Cr inf [lu(0) - UhHH
UhEV}f
(3.287)

< — P Cr inf —
< g, (Ilu(r) = Py +Cr inf u(r) = wnly

< og-a<XT Cr(1+Cr)Y(h,t,aa/2,u(T))

= max \/aT(h, t, ()éA/2, U(T))

0<r<T

with Cy = C%(l +C7)?%, having applied the approximation property of the projector
P, at the end of the derivation. Secondly, considering the sum of normed residuals in

(13.283) we observe that
2 2
I e = Mt 472" + 73 [

(3.288)
2 2 2
<4 (HTTHV,LS* + 3 s~ + ||T?”V;*)

where we insert the individual upper bounds for the normed residuals ||r§”||Vi*, Hrglﬂv}f*
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and Hr?”vﬁ* that we have derived in Lemma to find

—

M= M= m@nnum@ms Vo € [0,1]

LS . <2 3 o

m=0 m=0 I (s)[[3p- ds, 6=3

e Zm/’”“ (h,t, aa/2 (7)) dr

M-1
+C’2 Z Y2(h,t, aq/2,u™"?)
m=0
_ Atfo (s Hvs* ds, Vo € [0,1]
- (At [Tl (s ||vs*ds 0=1

(3.289)

+%L/T%mmMWWM

+ CEsMongaé(T Y2(h,t,aq/2,u(T)),

with positive constants C., Cy,, Cy, defined in the Lemma. We return to (3.277)) and
invoke ((3.282)) and (3.283) to derive

M-—1
o =l 2t 32 s — e

am+9

<2 <HuM PhuMHH + At Z H mA0 _ p, gm0

am+9>

19 <H5f]zWHH+At Z HgmMH m+9> (3.290)

<204 Jmax T2(h,t, aa/2, U( )

. M—1
+2max{1 } <H§hHH + At Cy Z I3’ HW*) :

m=0

Invoking our considerations for 52 and the sum of normed residuals r}* in (3.287)) and
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(13.289) to deduce

H HH+At Z H m+6 m+9

<20, OIETEE(TT (h,t, aA/Q,u(T))

am+9

0<r<T

A2 [T |i(r) |2 dr, VO € 0,1
sz [V IO dr, w0
(At) fo ||U(T)||Vhs* dr, 025

—i—2rnax{1 é } <C2 max Y2 (hyt,aq/2,u(T))
1
(3.201)
T
‘e / T2(h,t, 04/2.0(r)) dr
0
- CE?’TongagXT T?(h,t,a4/2, U(T))> ) :

For a notationally more satisfying result we define the constant

C—2max{3C’1, max{l Cl,}max{SCg, 4Cgmax{ s ,,2, 302 T}}} (3.292)
1

Clearly, [|g|lys = [Ju(0)]|,s < Jnax |w(7)|y/s. Thus, using (3.292)) in (3.291)) we get the

estimate

H — H At ZH m+6 m+9

am+6

<C OngaégT'I‘ (h,t, a/2,u(T))

Ty 3.293
@02 [ ()T dr, 8 € [0,1] (3:293)
At [T () [}e- d7, 0 =4 and with [
T
+0 [0t /2. i) o
0
which finishes the proof. 0
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Corollary 3.77 (Convergence of the 6 scheme)
Under the assumptions of Theorem |3.76] there exists C > 0 such that the estimate

o —uhumtzu o |

<C Jmax TQ(h,t, aa/2,u(T))

02 T ()30 dr, w0 € [0,1] (3:254)
fo % (T ths* dr, 0 =1 and with[iii)]
T
+ C'/ Y2(h,t,o4/2,u(7)) dr
0

holds.
Proof
The result is an immediate consequence from Theorem [3.76| and the fact that a.(-,-) is
coercive uniformly in time with coercivity constant 3. (|

In Theorem and Corollary respectively, we have derived abstract convergence
results. The particular convergence now follows immediately, when the form of T of As-
sumption the general approximation property, is specified. The following corollary
combines the result of

Corollary 3.78 (Convergence with|Y of von Petersdorff and Schwab (2003))
Under the assumptions of Theorem|3.76{ and in the setting of \von Petersdorff and Schwab
(2003) outlined in Examplel&?l there exists a constant C > 0 such that the convergence
estimate

H — H N Z H md _ o mto

am+9

< ChQ(p+1 @a/2) ax |u(r )H?-LP“(Q)

0<r<T
T
+ C h2ptl-aa/2) /0 ||’[L(7')||§_[p+1(ﬂ) dr (3.295)
. £)2 fy lii(s)|? voarz s, VO €[0,1]
_|_
fo (s || aA/z* ds, 6= % and if u € C3([0,T], H)

holds.
Proof

The result is a direct consequence from Theorem [3.76| with

T(ha t? S, u) = ht_SHu”’Ht(Q)

taking ¢ < p+1 equal to its maximal admissible value with p the polynomial degree that
the basis functions of Vha A2 achieve piecewisely. O
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The result of Corollary [3.78| confirms the order of convergence derived in Theorem 5.4 of
von Petersdorff and Schwab| (2003)). In contrast to that former result which our analysis
is based on, we allow for time-dependent bilinear forms and thus generalize their result
to the time-inhomogeneous case.

3.6.3 Results for continuous bilinear forms of Garding type

The stability estimate of Lemma[3.68 and the convergence result of Theorem [3.76/hold for
continuous and coercive bilinear forms, only. In this subsection, we will derive equivalent
results for continuous bilinear forms that only fulfill the weaker Garding inequality in
the sense of the following Definition [3.79]

Definition 3.79 (Garding)

A bilinear form a.(-,-) : [0,T] x V¥ x V5 = R, (t,u,v) — ai(u,v), is said to fulfill a
Garding inequality uniformly in time with respect to V*, if there exist constants 8 > 0,
A > 0 independent of t such that

as(u,u) > Bllullfs = Alully (3.296)
holdsYu € V3, ¥t € [0,T]. We call B the coercivity constant and A the Garding constant.

Clearly, every uniformly coercive bilinear form in the sense of Definition [3.65]is of Garding
type in the sense of Definition [3.79| as well with Garding constant A\ = 0.

Before we dive into the stability and convergence analysis of solutions of fully discretized
PIDEs with bilinear forms of Garding type, let us shed some light on the relation between
coercive bilinear forms and their more general siblings.

3.6.3.1 On the relation between Coercivity and the Garding property

A simple time transformation can transform a PIDE with operator of Garding type into
a PIDE with coercive operator. Consider the PIDE

dpu + A7y = f,

“0) = o, (3.297)

with weak solution v € W1(0,7;V?® H), an operator .AtGérding that is assumed to be
both continuous and of Géarding type uniformly in time and that is associated with a
bilinear form

agérding . [O,T] < VEX VS = R, (t,u,v) — at(uvv), (3298)
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3.6.3 Results for continuous bilinear forms of Garding type

that fulfills the Garding inequality (3.296)) of Definition with 5 > 0 as well as A > 0.
Furthermore, let ¢&2"4i"8 bhe continuous with continuity constant denoted by «. Then,
defining

up(t,z) = e Mu(t, x), V(t,z) € [0,T] xR

N (3.299)
Htz)=e"ft,z), V(tz)€0,T] xR
and inserting ([3.299) into (|3.297) yields
Oy (e)‘tuA(t,w)) + AtGérding (e’\tuA(t,x)> = M fy(t, x)
(3.300)
e%uy(0) = g.
Using the product rule on the time derivative gives
Oy (e)"u)\> = eMuy + Moy,
turning (|3.300]) into
Moy (t, z) + M ATy (1 2) + AeMuy (8, x) = M fo(t, ) (3.301)
U)\(O) =4g.
Multiplying both sides in the first line of (3.301)) by e~ gives
Orur(t,@) + (ATYE 4 \) un(t @) = fa(tx)
ux(0) = g.
which turns into
Opun(t, ) + Axpun(t, x) = folt, z)
B (3.302)
ux(0) = g.
when we define the operator A,. by
Ay = (ASsrding 4 3 (3.303)
In contrast to aC¥dine (+,-) of (3.298)), the associated bilinear form
ax.(+,+) [0, T x VEx V¥ = R, (t,u,v) — axi(u,v), (3.304)

is now coercive uniformly in time which we indicate by the subscript A. The coercivity
constant of ay is 3, its continuity constant is given by a) = «a + A. The stability
Lemma [3.68] and the convergence Theorem [3.76] apply when their other assumptions are

fulfilled.

Given these considerations on the relation of bilinear forms between these two classes,
the need for stability and convergence analysis for a Garding type setting might seem
questionable.
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Yet, for the stability and convergence analysis there is no generic path from the Garding
to the coercive case. More precisely, while a solution to the "coercified problem" ([3.302])
allows for a transformation to the solution of the original PIDE (3.297)) by

uy = e M, (3.305)

on the whole space time domain, this is no longer possible once the PIDEs have been

discretized,
uy, # e M, (3.306)

in general. Stability and convergence results may still apply to solutions to the discrete
version of the modified PIDE in . Due to Inequality , however, these results
forbid an immediate conclusion with respect to stability and convergence of solutions to
the related Garding counterpart.

Despite the proximity between the two PIDEs, the respective stability and convergence
analysis vary significantly in complexity. This increase in complexity is due to the fact
that while a coercive (and continuous) bilinear form induces a norm that is equivalent to
||-lys, & bilinear form of Garding type loses this property. For that reason, stability and
convergence analysis in the literature often focuses on coercive problems and disregards
the more general yet more complex Garding case.

In the following, we want to generalize our earlier stability and convergence analysis to
the more general Garding case. For the remaining part of this section we thus focus on
the following problem. Let A be an operator of order a4 € [0, 2] that induces a bilinear
form a : [0,7] x V* x V* that is continuous uniformly in time with continuity constant
« and fulfills a Garding inequality uniformly in time with Garding constants g, A > 0.
Let the other requirements of Theorem be satisfied such that there exists a unique
weak solution v € W(0,T;V*, H) to the problem

U+ Au =
f (3.307)
u(0) =g
where f € V¥ g€ H.
Let w € W1(0,7;V?®, H) be the unique weak solution to problem ([3.307). Now define
uy = e Mu and equivalently define fy = e~ f. We have seen above that uy solves
Uy + Ayuy = [

() = g (3.308)

Based on problems (3.307) and (3.308) and their discretizations, several 6 schemes

arise.
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Theta Scheme 3.80 (Discretized Garding scheme)
Let 0 € [0,1]. We call (u}')meqo,...,my with upt € Vi for allm € {1,..., M}, u) € H,
the solution to the fully discretized version of problem (3.307) if

wmtl —m
h h +6 _ +0
At ; Uh + Am+0 (UZ’L ) Uh) - <fm ) Uh) )

0
U’h = Gh,

(3.309)

for all vy, € V¥, for all m € {0,...,M — 1}, with g, € H an approzimation of g of

problem (3.307)) of problem (3.307]).

Theta Scheme 3.81 (Discretized coercified scheme)
Let 0 € [0,1]. We denote by (Ug\rfh)me{o,...,M}: uly, € V' for allm € {1,...,M} and
u9\7h € H, the solution to the fully discretized version of problem (3.308]). Then,

uTH —m
\h Ah m+o m+6
( At 7’Uh) + Axmio (UM 7Uh> = ( A Un),

u())\7h = Gh,
for all vy, € V2, for all m € {0,...,M — 1}, with g5, € H an approzimation of g of

problem (3.307]).

Let up*, m = 0,..., M, be the solution to Scheme that we just introduced. Define
up' = e_)‘tmu}?, and insert the result back into Scheme m Then we get

eA(tm—&-At)am—i-l _ M gm
h h
» Uh

At
+ am+0 (eeA(tm+At)ﬂZ’l+l + (1 o 6)6)\157”171]:17 ’Uh) — (fm—i-ﬁ’ Uh)

for all m € {0,..., M} for all v, € V}’. Multiplying both sides by e~ ™" shows that the
up fulfill the following (degenerate) scheme.

Theta Scheme 3.82 (Degenerate Garding scheme)
Choose 8§ € [0,1] and let up', m =0,..., M, be the solution to Scheme|3.8(. Define

= e My (3.310)
Then,
ex\Atﬂm+1 —_gm m
b o | 4 o (02T 4 (1= 0)i? on ) = (7770 )
Uy = gh,

for allm € {0,...,M — 1}.
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Recall inequality (13.306]) that stated
uT,h 7é ﬁzn,

in general. In other words, discretization and "coercification" do not permute. Never-
theless both quantities in inequality are related after all. The strategy in the
following derivations lies in showing that their difference vanishes when the dimension-
ality in space and the fineness in time increase. Yet that difference between uy'), and up
will cause significant complexity within the derivation of our analysis. For that reason,
we simplify the involved theta schemes in return by assuming

6 =1 (3.311)

throughout the whole derivation. While we do not expect assumption to limit
the generality of our results, it surely allows focusing on the key difficulties and serves
the convenience of the reader. In order to quantify the difference between 3", and uj"
we furthermore introduce the new quantities w™, m =0,..., M, defined as 7

w™ =y’ —uy'y (3.312)

and analyze their role in the validation of stability and convergence of the solutions
to Garding schemes. More precisely, we will realize that stability and convergence of
solutions to Garding schemes actually rely heavily on stability and convergence of the
scheme that the w™ of satisfy. We thus start our derivation by verifying those
schemes and validating stability for these auxiliary quantities, themselves.

Lemma 3.83 (A scheme for w™)
Set @ =1. Letuy', m=0,...,M, be given by Scheme|3.82 and let uly, m=0,..., M,
be the solution to Scheme[3.81. Define

w™ = up —uy'y, (3.313)
for allm € {0,...,M}. Then we have

wm+1 —w™
(£ ) (0 ) = 50

At (3.314)
w? = 0,
for allm € {0,...,M — 1} and all v, € V¥ with
(riy,vn) = A <wm+1 + uT’;LH, vh> — MAL) (w™ +uXy, vn) (3.315)
wherein the function X : RT — R is defined by
Nag = Lo (3.316)
A '

for all At > 0.
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3.6.3 Results for continuous bilinear forms of Garding type

Proof
First, considering the initial condition we find

0_~0 _ .0
w” =up —uyp =9gh—gh = 0.

Second, by the definition of w™ we have for v, € V;} arbitrary but fix that

wm+1 —w™
<Atvvh> + Aam+1 (wm+1»vh)
antt — ~
= (Wa”h) + aamp (@ o) (3.317)

m+1 m
Unn — Uxh mal
- At ,Vh | + A\m+1 u)\,h » Uh .

We artificially expand the first two summands in (3.317)) to get

amtt g
h h ~m+1
AL ;Uh | + Game (Uh 7Uh)

( AL m+1_|_um+1_|_e)\Atahm+l _a";ln )
- y Un

A7 (3.318)

+am+1< AAE m+1+um+1+€mt Zn+1’ h) +)\(77hm+1>vh)
= (7).

From this we continue by isolating the left side of Scheme [3.82]

e)\At,l"lZH-l o ﬁzn A L

-m _ t~m-+

(rﬁhavh) = Al ;U | + Gm+1 ( Uy, 'Uh)
1

amt 3.319
+ (1 — 6/\At) <UhAt7’Uh) + (1 - €>\At> Am+1 (ﬂhm“, Uh) ( )

+ A ( amtt vh) .
Next, we insert the right side of Scheme for 6 = 1 into and get
(72, vn) = <e—W FmtL uh) (3.320)
+ (1 - eAAt> (ﬂ?H Uh) + (1 — eMt) a1 (TP, 0p)
AL m+1 (Uy, 5 Vh
+ A ( am vh) .

We artificially expand the part that just entered the equation and then use t™*! =

t™ + At to get

<6_)\tm fm+17 /Uh) = (e_Atmfm—i_l - e_Atm+1fm+la Uh) + (G_Atm-H fm+17 Uh)
3.321
_ (1 gAY N (et m+1 ( )
= e e (f ,vh)—i-(A ,vh).

150



3.6.3 Results for continuous bilinear forms of Garding type

We insert (| into ( and then use the equation from Scheme [3.81] m to get

( uh’vh)
_ <1 _ e—AAt) oA (F™ o) + (£ )

~m+1
11— et “ZHF on | 4+ (1= Mt ( ~m+1 )
At h € Am+1 \Up, 5 Vh

+ A (@ o)

. (3.322)

m
_ _\m \h LW
= (1) ) (m’“") Fare (15 )

~m+1
11— et “ZHF on | 4+ (1= Mt ( ~m+1 )
At h € m+1 \Up, 5 Vh

+>\( il vh).

Combining (3.322)) with (3.320]) we have thus rewritten the first part of (3.317)). We take
the resulting expression and insert it back into (3.317)), to derive a right hand side for

the w™ by

wm-‘,—l — ™
(N7vh> + A1 (wm+1,vh)
amtt g -
= <hAthv Uh) + Armt1 (uhm+17 Uh)
“i\n;{l —uyy,
(M’Uh t aam41 (UTJ—F’UO
ui\nitl —uXy
) <Ayf”vh + axm41 (Ut\rf;tlavh>
“T}Tl —uyy,
- [(At =, 0h | F A (Uﬁrl,vh) (3.323)
(1 _ e—AAt) oM (fm+1,vh)
aerl
(1 — e/\At) hAt ,Up | + <1 — e)‘At> Gm+1 (uh mtl h) + A (ﬂZ’H,vh)
_ (1 _ €—>\At> oA (f™ o)

~m+1

u ~ ~
(1) () (1 ) s ) 06

= (rirvnv /Uh) :
Next we will further simplify this expression for (77", vy). We begin by eliminating the
term containing f™*! by invoking the relation provided by Scheme for up'. Using

+
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relation (3.310]) between uy' and u}* we proceed from (3.323) by
(TZL,'Uh)

_ (1 _ e—/\At) oA (F™ o)

am—i—l _ B
+ (1 — e)‘At> ( hAt ,vh> + (1 — e)‘At> A1 (uZnH,vh) + A (uZ”l, vh)

_ <1 _ 6—AAt> oA (fm+1,vh) A (ﬁ’;Ln-"-l’Uh)

(3.324)

1
ALY At “ZLJF m+1
+(1—e e vk + amr (u " on) |

As a next step, we artificially expand the brackets of (3.324]) and use the equation given
by Scheme [3.80] by

um+1
umtt gy ul
= (h At L 7vh> + amat (u ™ o) + (Aht,vh) (3.325)

= (fm+171)h) + <’uAht,’Uh> .

Now we exploit the equidistant spacing of our time grid, t™*+! = t™ + At, leading to
(1 - e’\At> e M (1 - e*W> e (3.326)
Inserting (3.325)) and (3.326)) into (3.324) yields

(rw>vn) = (1 - fmzf) e M (o) + A (aptt on)

_ (1 _ e*AAt> oM™ |:(fm+1’vh) 4 <£7vh>]

m
— A (@ o) — (1 _ e—AAt) o™ Uhtavh) (3.327)
_ 1— YAV _
=A@ ) — (zt) @, vy)

= A (@ o) — XA (@, vn)

wherein the function A : RT — R is defined as in (3.316). Consider the upcoming
Lemma for some properties of the function \.

We rewrite the expression of 7)) in , the residuals of the w™, by invoking the
definition of w™ in (3.313)) and get

(ri op) = A (ﬂzﬁl, vh) — XA (@), vp)

_ 3.328
=\ (me + ugf;[l, vh> — MAL) (W™ +uy, vp) - ( )
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We have thus derived an expression for the right hand side in (3.317). Note that the w™
reappear on the right side of their 8 scheme that is a scheme with coercive bilinear form
a )\,(-, ) O

Collecting our results, for later reference we cast the claim of Lemma [3.83|in the following
theta scheme framework that has been validated by the lemma.

Theta Scheme 3.84 (The special residuals w™)
Set 0 =1. Letuy', m=0,..., M, be given by Scheme (3.8 and let uly, m=0,..., M,
be the solution to Scheme[3.81. Let

w™ = up —uy'y, (3.329)

forallm € {0,...,M}. The w™ fulfill the scheme

wm+1 —w™
<7 Uh) + A m+1 (wm+17 /Uh) = (T:un7 /Uh) )

At (3.330)
w' =0
with
(riy,op) = A (wm‘H + uTJfl, Uh) — AAL) (w™ + u}\’fh,vh) , (3.331)
where the function X is defined by
N 1— 67)‘At
ANAL) = A7 (3.332)

for all At > 0.

The function \ that was defined in (3.316) of Lemma will play a decisive role in
the upcoming analysis. The following lemma derives some convergence results for this
auxiliary function A that we will need, later.

Lemma 3.85 (On the function )
Let X > 0 and let the function X : RT™ — R be defined as in (3.316]) of Lemma|3.85 by

1— e—)\At

NiAty — .
XAt (3.333)

Then, for At approaching zero from above, X satisfies

i) iitIﬁ)X(At) =\ from below, in the sense that A(At) < \, VAt >0,

i) gﬁlo%(?t) = )‘72 from below, in the sense that ’\_’\A(tAt) < )‘72, VAL > 0.
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Class Quantity Solution to Scheme reference
coercive U Weak problem —

up, Weak problem discretized in space 3.63
Garding U Weak problem —

up’ Weak problem, fully discretized 3.80

U Related "coercified" problem —

ul'y, Related "coercified" problem, fully discretized 3.81

uy’ up' = e_’\tmuz" and degenerate Garding scheme 3.82

w™ w™ =y — uy', and auxiliary scheme 3.84

Table 3.2 An overview of all Schemes that have been derived so far. In the previous
section where we considered coercive PIDEs exclusively, only the solutions to the weak
formulation of the problem and its fully discretized counterpart were involved. For the
analysis of problems with an operator A of Garding type many auxiliary quantities and
associated schemes will contribute.

Proof

i) The limit of the first claim follows from I'Hépital’s rule. A well known lower bound
for the exponential function is given by

exp(z) > 1+, Vz € R,

from which we deduce

exp(—AAt) > 1 — AAt, VAt > 0. (3.334)

This is equivalent to

1— e—)\At

< A
A7 <A, VAt > 0,

from which convergence of A to its limit from below follows immediately. This
proves i).

ii) Similarly, the limit of the second claim follows from applying I'Hopital’s rule twice.
Convergence of At — (A — A(At))/At to its limit from below is derived from

A—A(At) A2
— < —, VAt>0 3.335
At — 2 Y > 9y ( )

which we prove in the following. Invoking the definition of A, ([3.335)) holds if

2 (1 _ o—MAE
AT NAE—(1—e )>O

5 (AD)? >0, VAL > 0,

which is the case if

(AADZ —20At +2(1 —e 2 >0, VAL >0. (3.336)
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Inequality ([3.336) holds for At = 0. The function f : At — (AAt)? — 2\At +
2(1 — e~ ) is continuously differentiable. It is thus non-negative for all At > 0 if
% f >0 for all At > 0. Consequently, we consider the derivative of f and find

0 — At
_ > \v >
: f(At) 2) ()\At 1+e ) 0, At >0

if and only if
AAt—14e >0, VAE>0,

which is equivalent to
e ME>1_AAL, VAL >0,

which is again validated by (3.334) and thus proves claim ii).
This finishes the proof of the lemma. O

3.6.3.2 Stability of Garding schemes

We derive a stability estimate for the discrete solution to the Garding problem. To
this end, the Garding scheme is split up into a coercive scheme for which the results
of Section [3.6.2] can be applied and a scheme for the auxiliary quantities w™, m €
{1,...,M}. For the latter, a stability estimate is derived, as well. From stability of
these two parts, stability of the whole Garding scheme follows.

Corollary 3.86 (A stability estimate for w™)
Let the w™, m =0,..., M — 1, be solutions to Scheme|3.84. Choose constants

1
0<Cr <2, Cy> ———
' 2= B-0)

with B being the coercivity constant from (3.296). Then, the w™ fulfill the stability
estimate

(3.337)

M—-1 M-1
2 2 2
[w™ ||} + C1BAL Y [[w™ ], < AtCy > [Ee [ (3.338)
m=0 m=0
Proof
These estimates are a direct application of Corollary [3.71| with # = 1 based on the
uniform coercivity of bilinear form a) with coercivity constant 5. O

Theorem 3.87 (Stability estimate for the Garding scheme)
Letuy*, m =0,..., M—1, be the solution to Scheme|3.80 with 0 = 1, where the associated
bilinear form a is uniformly continuous with continuity constant o and of Géarding type
with coercivity constant B > 0 and Garding constant A > 0. Choose constants

1

0<Ci <2,  Cp>— 3.339
1 22 55— ( )
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and let At be small enough,

C C18 + 1622 C
At < min {1, 1P , b+ 16X e Ch (3.340)
SN (X 4 (a+2)2) SN
Then there exist positive constants Cs, Cy such that the stability estimate
) M-1 ) ) M-1 )
e I + CrBAL Y Iy, < Csllublly + Catre 3 7™ e (3:341)
m=0 m=0
holds.
Proof
We expand the left hand side of (3.341)) by elementary calculations,
M—1
a3 + CaBAE Y 5.
m=0
< 2T (H —AtM MH NN Z H gl Zﬁl’ VS)
AT M | ~M M |12 m+1 | ~m+l m+||?
= ¢ [[un + @' — “A,hHH +C1pAt Z H“A poTUR T T Uy, HV (3.342)
< 22| Mumwz s

M-1
M + Coae Y ).
m=0
Consider the w™ terms in , first. By Corollary and w® = 0 we have the

estimate
M2 - m+1][2 = mi2
[ || + CrBae Y (W™ < ACy Y (7T (3.343)

By Theta Scheme [3.84 we have for any vy, € V}7 that

(rit,op) = A (me + uTZl,vh) — A(At) (wm + uﬁfhmh)

_ _ (3.344)

= (Aw™ = NAHw™, vp) + ()xu;rf;{l — MA)u}y, Uh> ,

with X as defined in (3.332)). We continue by considering the first bracket in (3.344]),
()\wm'H —AADw™, vp)

>

_ ( ) ( m+1 )—i—X(At)( m—i—l_wmjvh)
- _ S (3.345)
= (A= R8N () + FADAL (T )
(r~Xan) )
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where we used the relation provided by Scheme [3:84] for w™ in the last step. By definition
of A, A — A(At) # 0 for all At > 0. Thus, combining (3.344) and (3.345) we conclude

(TZ}, vh) = 1—)\(1At)At [()\ — MAD)) (wm+1, vh)

(3.346)
— MAOAt @y, (W 0p) + (/\uzf;fl - X(At)u&’fh,vh> ]

Consequently,

1 A —A(At))
T e < — At |lw™H

+ MAL) (At) oy [[w™

Vs
(3.347)

et AHqu;{lHH +A(At>|\ug§hHH],

with ay = o+ A the continuity constant of bilinear form a). Invoking the definition of
A and the first assumption on At in ([3.340)),

1
=M (3.348)
1 — AAt)At

Thus, with (3.348]) the convergence results of Lemma imply the estimates

| H%,hs* < 4e [ <<2> + )\20@\) (At)QHw H‘

2
S L 3349

_ 4)\26)\|: <)\2 +a2> (At)2me+l‘
= 1 A

Combining (3.349) and (3.343) we get

2
Vs

2
v o [+ gl

2
o5+ (€18 - canser (% .

M—-1
+ a§> (At)2> At flwm
m=0
2 ) - 1] 2
< 4% CzAth:o <Hu§1,j |+ ||u§thH> (3.350)
) M—-1 9
< ANACAM[u] 4 7, + 38X Caae S [l
m=0

By the second assumption on At in (3.340f), we have

2
C18 — CpaNZet <Z + ai) (At)? > Gip
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and thus, we deduce from ,
M—1
[ |+ CrBae 3 (o5
m=0 (3.351)
< 8N CoA[ul |17, + 16X2A Ca At Z Hu;",le .

Returning to (3.342) and assembling our findings we get

M-1
Il + Capare Z [ o

M-—1
< 287 |} + Croa S [+ e+ cosar S 1))
m=0

m=0
M-—1
<27 (b, + e 3 o],

M—1
+ 82 oA |u 4|5, + 1632eX CaAt Z Hu’fglu ) (3.352)

< 26T (&\%ACQAtHuQ’hHiI + (1 + 16)\016502> (H AhHH + C1BAL Z Hu;";l‘ )

We apply Corollary [3.71] which gives

< 2P T (8)\26’\02AtHug7hH2 + (bl + (C18+ 16322Cy ) At Z HuT}fl‘

N——

M-1 M-1
[l + Croae 3 [ < lofalll + Cone ST B (3.353)
m=0 m=0
Inserting (3.353)) into (3.352)) thus gives
2 = 2
([ + CrBae 3 flup . (3.354)
m=0
16)2eXC =
<2 (s caatly + (141955 (Il + coae X 12007 ) )
m=0

By the third assumption on At in (3.340)),
2. A
BN Np<q

20X —
1 + 16)\06502
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so ([3.354) leads to

M-1
a5+ Copae 3 5
m=0
16)\2erCy 2 N 2
<o (14 128000) (o, + caae 3 gl ).
Finally, since fi* = e~ " f™ and u&h = uY, we arrive at
2 = 2
e [+ CuBae 3 el
m=0
16X2e*Cy 2 = 2
< 2627 <1 T Clﬁ) (zuuguH + 0ot 3 )
Defining the constants
2 A 2 A
Cy = 4T <1 + 16A016B02) . Oy =2ePT <1 + WCfBCQ> Cy (3.355)
yields the claim. O

Note that analogously to the coercive case of the previous section, the result (3.341f) of
Theorem [3.87]in a way describes that the solution of the discrete scheme is bounded by
its initial data in a discrete L2(0,T,V*®) or L*(0, T, V;?*) norm fashion, respectively.

3.6.3.3 Convergence of Garding schemes

We prove convergence for time-inhomogeneous Garding schemes. We begin by split-
ting the Garding scheme into two parts. One is its "coercified" version for which the
convergence result of Theorem [3.76] applies. The other is the scheme for the artificial
quantities w™, m € {1,..., M}, as outlined by Theta Scheme with residuals 7],
m € {1,..., M}, defined therein. In Lemma we derive an estimate for the sum over
these normed residuals which depends on the sum of ||[w™|, m € {0,..., M}, and the
sum over new quantities ||[U™]|, m € {0,...,M}. In a second step we resolve this quasi-
recurrence and reduce the estimate in Lemma to the occurrence of terms ||[U™||,
m € {0,..., M}, alone. In a third step, Lemma derives an estimate for the sum
over all [[U™|, m € {0,..., M}, that splits into three parts. One is again the "coerci-
fied" scheme for which we already have a convergence result. The second is a sum of
differences of the solution 1Y’ to the non-discretized "coercified" problem, to which Tay-
lor’s theorem is applied. The third part consists of a quantity depending on A — A(At),
which converges by Lemma [3.85 Finally, Theorem [3.94] gathers all results and shows
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Uy — U} Up — UN R
with rhs f) with rhs 7,
T T
| |
|
|
: Lemma 3.8E]
l
|
: Theorem 3.9:'
|
I } Lemma 3.8[]
|
| 7/
| 7/
| e
| -
1
|
|
_ Lemma SQE
Ux — u;n'H B uf\” N emma ]
Convergence by Convergence by Convergence by
Theorem BE:' Taylor’s Theorem 2.40| | Lemma SEJ

Figure 3.20 A schematic overview over the convergence proof for Garding schemes and
the involved lemmas and quantities.

convergence of the Garding scheme.

Figure [3.20] offers a schematic overview over the different lemmas and quantities that
are involved in the proof of convergence. The right branch of the figure highlights the
additional effort required to treat the Géarding case A > 0.

Lemma 3.88 (Upper bounds for Hrﬂ}HH)
Let u}'),, m € {0,..., M}, be the solution of Scheme|3.81 and w™, m € {0,..., M}, be
the solution to Scheme and let X : Rt — R be defined as in Lemma , Define

U™ = dufytt = XAuyy,  Vme{0,...,M -1}, (3.356)
and let r]]' be the right hand side of Scheme for the w™. Then,
m m 2 m m
Iz < 4x2 ([l + o™ I3) + 200 1% (3.357)

< 42 <me+1’

ot ||wm||2vs) +2|U™|% (3.358)

holds for allm € {0,..., M — 1}.
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Proof
The proof is a straightforward calculation. We have

B _ 2
Irizliz = At = XA + gt = Xanug|
— [t = X AW + U™,
m 2 m m
< 407 ([l 3+ ™13 + 2002,

since gtrﬁ) A(At) = X from below by Lemma, [3.85, Consequently, also

Irizilyy < a2 (Jlom|

2 2 2
Vet ™) + 200 (3.359)

which proves the claim. O

Lemma [3.88| provides us with an upper bound for the residuals of the artificial quantities
w™, m € {0,...,M}. Within that upper bound, however, those artificial quantities
reappear. Using Gronwall’s Lemma [C.1] the following result resolves that recurrence
and reduces the upper bound to an exclusive dependence on the new quantities U™,

m € {0,...,M — 1}, as defined by (3.356)).

Lemma 3.89 (Non-recursive bounds for ||r7| )
Letri, m € 0,...,M — 1, be the right hand side of Scheme |3.84 wherein the bilinear

w
form ay is coercive uniformly in time with coercivity constant B > 0. Let U™ be defined

as in (3.356) of Lemma and A > 0 as given therein. Assume

A>—0. (3.360)
Choose positive constants
0<Cr <2, Cy >
and assume further At to be small enough,

0<At< (3.361)

1
SCHLN2 — C18°

Then 3C5 > 0 such that
M

STl < s S U (3.362)

—1 M-1
m=0 m=0

holds.

Before we give a proof for the claim of Lemma [3.89] the following remark comments on
the time stepping condition (3.361]) of the Lemma.
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Remark 3.90 |(On the time stepping condition in Lemma [3.89))
In Lemma|3.89, the prescribed interval for At. In condition (3.361))

8CHA2 > C18 < A > g&f (3.363)

|C18 1
8702 > ﬁﬁ Cl(2 - Cl) (3'364)

by the interval that the value of Co > 0 is chosen from. Given the set of possible values

for Ci, the expression /C1(2 — Cy) is bounded by 1. Consequently, Inequality (3.364))
and thus the inequalities in (3.363|) hold if condition (3.360) is satisfied. In other words,

by condition (3.360|) the condition on At in (3.361) is well-posed. When
8C2A* — 018 > 0

which holds if

then trivially also

which we state here for later use.

Proof (of Lemma [3/89)
We have by Corollary |3.86| and Remark [3.61| that

M-1 M-1
w2+ Cipae 3 (w2, < Atcy S I (3.365)
m=0 m=0
By Lemma [3.88 we have
I3y < 402 (o™ + ™3, ) + 20T (3.366)

for all m € {0,..., M —1}.

The two inequalities (3.365|) and (|3.366|) are intertwined in the sense that combining them
leaves us with w™ terms occurring on both sides of the resulting inequality. In order
to confirm the claim (|3.362)), this entanglement has to be resolved. We take inequality

(3.365)) as a starting point.

By the fact that [|v]|; < ||v]ly. for all v € V* and since ||w®||,, = 0 by Scheme and
further by (3.366|) we thus have

M—-1

1
| + CaB5ae > ([l + o™ 3)
"o (3.367)
M—-1 ) ) ,
< AtCy >0 { N (Jlwm G + e ) + 200
m=0
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from which we deduce

oy < v S { [0~ S (et + i) + 210
H — 2 — 205 H H H

m=0 (3.368)
= 8103 37 {Cr ([l 7y + ™) + 2001 }
m=0
wherein we defined 18
2 1
Ch —-{4A 26&] (3.369)

By assumption (3.360)), 51 > () as outlined by Remark m

Inequality m ) does not only hold for w™, as the result of the final step of our

scheme, but for all wM 1< M < M. The function wM can be interpreted as the solution
associated with the final time step of Scheme with M < M time steps instead of M
and with time horizon T = AtM instead of T = AtM with time discretization parameter

=T/ M=T /M vyielding a solution on the equidistant time grid (T, M, At) as defined
in Deﬁmtlon [3:53 It is important to realize that this At is thus the very same for both

the solution of the original scheme, {w® w!, ..., w™} as well as the solution of the

second, shortened scheme, {w®, w!,. .. ,wM}.

Relabeling the summation indices in gives
™|, < AtC’sz_l {61 <Hwk+1H2 + Hw’fHQ > + 2”U’“H2 } . (3.370)
Py H H H
Continuing with elementary calculations in and recalling that HwOH g = 0 we get
ml 2 2 ~
lw™||2, < 2AtC; kz_o {C’lekHH + HU’“HH} + AtCLCy[w™ 1%, (3.371)

which is equivalent to

ey < e S ool <} e

since _
1 - AtCyCy >0
by the condition on At in (3.361)). Now, defining ¢ by

At0251

_ (3.373)
1 — AtCyCy

q=q(At) =
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gives

lw™ (1% < 29 Z Hw H Z HUkH (3.374)
By Gronwall’s Lemma setting for m >0
e

m—1 9 9
=S e,

gm =g = 24,
we deduce
2 & 2 2
w3 < HU’fH SO et ) o TT a+20
k=0 Cl 0< G " j<i
<j<m k=0 j<i<m
m—1
2
- Z HU’“H tos 2 > <ZHU’“H ) 1+ 2¢)™ 97! (3.375)
7=0
2(] m—17—1
S5 [ REIRRYED 3p ol L
Cr j=0 k=0
An elementary induction shows that the equality in
m—1j—-1 9 m—2 9
’“ ety G PECEEDM Y
3 HU H 1 k)HU HH <m-nY|or| (3.376)
7=0 k=0 k=0
holds for all 0 <m < M. Using (3.376]) in (3.375)) yields
m—2
™2, < = (Z HU’“H +2(1 + 2¢)™(m — 1) Z HU"‘H ) (3.377)
1 =0
Consequently,
M M m—1
m 29 2
> emi < 2 (X X v
m=0 C1\ 20 k=0 a (3.378)
M m—2 9 ’
+2¢ > (1+2¢)"(m — 1) HU’“H >
m=0 k=0 "
Furthermore, the same induction as above shows that
M m—1 5 M-1 5 -
3 HUkH - (M—k;)HUkH . VI<M<M. (3.379)
m=0 k=0 R a
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Using (3.379) we thus have
M m-—2 M-1
>3 v, Z Z Jo*[, = X ar - mfo], <o Z o[, @50
m=0 k=0 k=0

With
(1429)"(m—-1) < (1+29)"'M,  forme{0,..., M} (3.381)

and by applying ((3.380f) to both of its sums we develop (3.378) into

M - 2(] M m-—1 . 9 M . m—2 . 9
> [ HHs@(ZZHU RSN SURETRTER S W
m= =0

< zq (M Z HU’“H +2¢(1+29)" M M Z HU’“H ) (3.382)
1 k=
M—1
2qM
& <1+2qM 1+ 29) ) o™ | -
Cl m=0
Define
C =80\ — (4. (3.383)
By the time stepping condition (3.361]) we have
1
At < =

C

and can write »
~ c

Ci=—.
D ToN
Recalling the definition of ¢ in (3.373)), the relation At = T/M and above calculations,
we deduce

- T = .
AtCy,C 702356 5
gM = 2V g < M12202~ M= 2T =2 (3.384)
1 — AtCyCh 1— 2056 1-35
Also, by the very same ingredients,
M o2cT\ M
142 < {1+ — . 3.385
(1+29)" < < +57 ) (3.385)
It is well known that
. M
lim <1 + N> = exp (z), VreR (3.386)
M—o0 M

and that this convergence occurs from below. Consequently, incorporating (3.386]) in
(13.385) gives

(1+2¢)™ < exp (22T). (3.387)
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Taking (3.384)) and (3.387) and returning to (3.382)) gives

M 2qM M M—1
> el < 7% ((1+2ww +2q)") \Mﬂﬂ%)
m=0

1 m=0
M-1
20T
< = (1+ 2T exp (2¢T7)) > U™l (3.388)
Cl m=0
» M—-1
= U™ I
m=0
with o
Co = = (1 + 26T exp (2¢T)) > 0. (3.389)
1
We know by Lemma that
m m 2 m m
I3y < 402 (o™ + ™ 3, ) + 20U (3.390)

for all m € {0,..., M — 1}. Thus,
M-1 M-1 ) M-1 M-1
> < 0 (X [+ 3 el ) 42 3 107,
m=0 m=0 m=0 m=0
M M—1 M—1
2 2 2
= 4 (Z ™7 + > \meH> +2) U™ (3.391)
m=1 m=0 m=0
M M—1
<8N w2 ) U
m=0 m=0
Now inserting (|3.388]) gives
M-1 M- M-1
Dol < 8N Y U™ E +2 ) IV
m=0 m=0 m=0

Mot (3.392)
— 9 (1 + 4A262> S U
m=0
Defining
Cs = 2 (1 n 4>\252> (3.393)
yields the claim. O

Remark 3.91 (Interpretation of restriction (3.360))
Condition ([3.360)) is only a mild restriction. Recall that a coercive bilinear form a®™™e(-,.) :
Ve x V3% = R satisfies

a®rN(y v) > Bllllr., Vo€V, (3.394)
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for some B > 0 whereas a bilinear form a®¥@m9(. ) . V5 x V¥ — R of Garding type
satisfies the weaker inequality

a“rI (v, 0) > Blloflfs = Aol Yo eV, (3.395)

for some B > 0, A\ > 0. We know that ||v||; < ||v||ys for all v € V?, so if assump-

tion (3.360) in Lemma is violated by a®¥¥ "9 in the sense that A < ﬁ/\/g < B, we

have
a0, 0) > Bllvllf. — Allol
2 2 2
= Bllollvs = Allvllys = (B =Mlvllys,  YoeV”
Consequently, a©4rdng js not a genuine Garding bilinear form_but a coercive bilinear form

with coercivity constant 8 = B — X > 0 and thus Theorem directly applies for the
confirmation of convergence of the associated scheme.

Remark 3.92 (Disregarding condition (3.360)))

Condition (3.360)) can be disregarded, if we define Cy in (3.369)) in the proof of Lemmal3.89
differently via

Cl=4X? > C). (3.396)

This basically means disregarding the large sum on the left hand side in (3.367)) in the

proof of Lemma making the upper estimate for ||wMH§{ mn weaker. As a
consequence, constant Cy defined in at the end of the proof becomes larger and the
time stepping condition for At in stricter. Note, however, that constants C1 and
Cy must be chosen differently, such that the time stepping condition is still well-posed.

Lemma 3.93 (Upper bound for ||Um||§{)
Let U™ be given by

Um = Auﬁ?f{l — MAD R, Vme{0,...,.M — 1},

as introduced in (3.356) of Lemma . Then there is an upper bound |U™|3 in the
form of

2
lom 1% < 4A2(Hu&”,:1 — |+ st — 1
(3.397)
2 ~ 2
ot =) +4 0= RA0) 1

for allm € {0,...,M — 1}.

Proof
The proof is a straightforward calculation. By definition of U™ in (3.356|) of Lemma|3.88
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we have with m € {0,..., M — 1} and by using Lemma [3.85]
_ 2
Jom = |t = Xanug|

— _ 2
=[x (et = ) = N2 (gt — ) + M = XAnay |

_ _ 2
= |3 (o = ) = X (gt = ) 3 =) + (- Nan) e

(02 (g = o1+ s =,

= (= XAD)” g ).

IN

which proves the claim. O

Theorem 3.94 (Convergence of the Garding scheme)

Let w € WY0,T;Vt, H) , t > a4/2, be the weak solution to problem , where the
operator is associated with a bilinear form a that is continuous and satisfies a Garding
inequality with respect to V*® uniformly in time. Let u be smooth enough in the sense that
ue C*([0,T],H). Let (u}")mego,...m} be the solution to the associated Theta Scheme

with 6 = 1 and assume further

i) The approzimation property Assumption holds for some function Y and some
constant Cy

ii) The inverse property Assumption is satisfied
ii1) Assumption on the projector Py, holds
i) Assumption on the initial condition is satisfied
Then there exists a constant Cg > 0 such that the convergence estimate

M-—1
™ = [+ A Y -t
m=0

< Cs(3+ At) max Y2(h,t, /2, ux(T))

2
Vs

§ . (3.398)
+ a0t ([ in e ar [ il dr+ mas i)
0 0 7€[0,T

T
LG / Y2(h,t, 04/2, 11z(7)) dr
0

holds.
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Proof
We derive
M-1
[ — [+ At > fJumtt -
m=0

M-1
_ ezMMHuf\f _"‘724“?{ At Z 62/\tm+1 [} m+1 ;Jzn-i-l

VS

B (3.399)

2eM(nu¥—u%hui,+m H -t
=0

IN

VS

~m+1 _  m+l
H |

[l — ullhly + A

vs)’

wherein uy solves scheme (3.308)), uY', its fully discretized counterpart in Scheme
and the u}" solve the degenerate Scheme

Inequality (3.399)) contains two separate groups of quantities that need to converge.

i) First, for m € {0,..., M}, we recognize the weak solution u}" of problem (3.308)
and its approximation in a finite dimensional subspace, uY';, that satisfies Theta

Scheme B.81]

ii) Second, for m € {0,..., M}, we identify the differences between " and uf’,
that define the auxﬂiary terms w™ introduced in (3.313) of Lemma or Theta
Scheme [3:84] respectively.

We know from the previous Section [3.6.2.2] and Theorem [3.70] therein, that the norm of
the difference between the quantities of group [i)| converges to zero, indeed. For conver-
gence of the right hand side of inequality (3.399)) it thus remains to show, that also the
norm of the difference between the quantities of group [ii)| converges to zero, equivalently.
The convergence of the normed w™, m € {0,..., M}, thus lies in the focus of this proof.

By Corollary we have

9 M—-1
lbrs —u)\hHH + C1BAL Z H~m+1 UT’TIHVS < AtCy ZO Hrm?v’f* (3.400)

from which
)
M—
2
Z o Hv;*
m=0

min{1, C18} (| p u/\hHH+AtZH |

(3.401)
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immediately follows. Applying Lemma to inequality (3.401)) gives

CaCs Z U2, (3.402)

Huh U hHH + At Z H 't uTﬁl‘ Vs = mln{l Clﬂ}

with C5 and U™ as defined in Lemma [3.89] We define

~ (G5
' min{1,C1 8}

for later use. Lemma@provides bounds for ||Um||?{, m € {0,..., M —1}, and develops
the sum over the normed U™ into

Z ||Um||H <4 Z |:)\2<‘ uT}‘l‘l m+1H2 + Huf\rfh — UTH?{

et =) + (= Ra) g

(3.403)

(3.404)

M—1

2

< 0 ([ =l +2 3 [t -
m=0

)\2 M—-1
+ Z ot =+ (80P% S IRy )
m=0
where we used in the last step that
A — MA?)
At

for all At > 0 as shown in Lemma Considering the last two sums in (3.404)), we find
for the first one using the Bochner integrability of  resulting from v € C%([0,7,], H)
and Lemma with Proposition 1.2.3 of Arendt et al.| (2011) and the Holder inequality
that

)\2
<
-2

M—1 M—1 gm+1 2

Sl agln = Y | [ i) as

m=0 m=0 tm H
M-—1 tm+1

2
/. st)HHds>

tTVLJrl

IA
iivg

1 2
2

< (Af)3 / st)ﬁfds] (3-405)
m=0 L2
M-1 t’m+1
—ary [l s
m=0

T
— At / li(s)I% ds,
0

170



3.6.3 Results for continuous bilinear forms of Garding type

wherein we use Theorem 24.7 of [Wloka) (2002) in the second step. For the second sum
we get

< 2. .
At Z a7 < ToglagTIIUA( Il (3.406)

Now we take (|3.405) and (|3.406)) and insert them back into (3.404)) to get

M-1

S 10 < 2 ([ 81 +2 Z ot = w1,

T 2
A
w0 [ fan(o)lf ds + AT o fan(r)l ).

Now combining (|3.402) and (3.407) and inserting the result in (3.399)) gives

M-1
e = el |l + A 3 [~

m=0

M-1
< 2 | —uAhHHMtZH G- ) s S o)
m=0

< 2AT(|\uA—uM\\H+AtZ\\ |

+ 048 ([ - ) +2 > [t -
m=0

T )\2
w o [ as+ AT s o)1 ) )

<9 2AT<HU —ulh |2, + AL+ 8C1A2) ZH 1 ugl,jl‘is

T 2
~ 2 0 0 |2 . 2 A 2
+ 80100 ([ =l + At [ in(o)ly ds + AT ma fun(r)I ) )
(3.408)

with C~'1 as defined in (3.403). The upper estimate in (3.408) now depends only on
terms u)\ h and u'. These solve the related "coercified" scheme. While the uY" solve

problem ([3.308] thelr discrete counterparts uy'), solve Scheme [3.81] We can thus apply
the convergence results that we have derived in Section [3.6.2.2} earlier.

2
Considering the term Hug h u(/)\HH in (3.408]) we recognize

ug =uy(0) =g,

(3.409)
Ug,h = uxn(0) = gn,
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the initial conditions. We use the quasi-optimality of the initial condition of Assump-
tion in (3.409) and then the approximation property of Assumption yielding

o~ 8l = llg = anlly < Cr inf g — anl

| ~ (3.410)
< C] 1161{/5 Hg - thVs < CZT(h)ta aA/2a ’LL)\(O)),
Vp, h

where 6’2 = CyC7 > 0 with Ct being the constant from Assumption and Cy the
constant from Assumption . For the remaining normed residual terms in (3.408]) we
have trivially

M-1
i U/\hHH-F At(1+8C1\?) Z H m+1 “T}Tll
m=0

VS
(3.411)

(Hw P + A Z [t —aeg

Vs) ’

Cs =1+ 8C1\2%. (3.412)
Now we assemble our findings. Applying Corollary for 8 = 1 to (3.411f) and inserting

with

172



3.6.3 Results for continuous bilinear forms of Garding type

the result together with (3.410f) into (3.408|) gives

M-1
o =+ A 37 [ =g

m=0

M-1
<2 (0 (- il + o0 3 [ -
m=0

2
Vs

2
VS
T 2
~ 2 . 2 A 2
+At4C) N? (Hug - ug’hHH + At/o llux(s)||7 ds + AtZT Jnax Hu,\(T)HH>)

AT [ ~ Val 2
<2 (@(0§2§T<maqqu@»

+6T2(h,t,04.,4/2,U)\(0))
T
L T(AD? / Jitr(s) 2, ds (3.413)
0
. T
+0/ Y2(h,t,04/2, x(5)) ds
0
al 2
+C max T (h,t,om/%w(t)))
+ AtACIN? (ég'r?(h, t,0n/2, ux(0))
T
[ i) ds
0
+ AT max Ju(l?
4 oy ATl
Defining

L ~ 2
Cs = 2¢**T max {C’gC, 4C1\% max {022, 1, ZT}} (3.414)
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gives
M M2 = m+1 _  m+1]|2
[|u up' || + At Z | u [V
m=0
< Cg max Y2(h,t,a4/2,u\(T))

0<r<T

+ CeY2(h, t, a4/2,ux(0))

T
+ CG(At)Q/O lii(5)I[7- ds

T 3.415
+C6/ Y2(h,t, aq/2,ux(s))ds ( )
0
2
+ Gy max. T2(h,t,c4/2,ux(r))
+ C6AtT2(h7 t OZ_A/2, U)\(O))
T
+ G802 [ (o) ds
0
2
+ ColA0? max un(r)]:
Collecting terms gives
2 = 2
M M m+1 m—+1
[l =i+ A Y [ —
m=0
< Co(3+ At) max T(h,t, aa/2,ux(7))
T T (3.416)
2 . 2 . 2 2
+0o(@? ([l art [ laalfsdr + max ool )
T
+ 06/ T2(h, 1, a)2,i1x(7)) dr.
0
which proves the claim. O

Corollary 3.95 (Convergence|with Y of von Petersdorff and Schwab| (2003))
Let the assumptions of Theorem |3.94 be satisfied and assume further the setting of |lvon
Petersdorff and Schwal| (2005) as outlined in Example . Then there exists a constant
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C > 0 such that the convergence estimate
2 iy 2
M M 1 +1
[l =i+ ALY [ = [ s
m=0
< O h2ptl-aa/2) 2 _
< Th (3 + At) max [[u(7) 310 (3.417)
T 2 2
# 1By + 1) s oy )

T
ORI+ 1 + Tl o

T
I + Nty dr + o ) 1)

holds.

Proof
The result follows from Theorem [3.94| with

T(h7 l,s, U) = ht_s”uHHt(Q)v

as outlined by Example [3.5§ taking ¢t < p + 1 equal to its maximal admissible value
with p the polynomial degree that the basis functions of Vha A/% achieve piecewisely.
Additionally, one uses the relations

uy = e Mu, iy = e (i — \u), iy = e (i — 2X - u + A2u)

to derive the result. O

Theorem [3.94] that served as the foundation for the above Corollary [3.95 has generalized
the claim of Theorem 5.4 of von Petersdorff and Schwab (2003)) in several ways. First,
we allow for a time-inhomogeneous PIDE and consequentially a time-dependent bilinear
form. Second, the convergence result now applies to bilinear forms of Garding type
instead of being restricted to the special case of coercive bilinear forms. Additionally,
we framed the approximation property of Assumption in very general terms.
Within this generalized theoretical framework Corollary expresses the fact that the
order of convergence derived in the initial result of von Petersdorff and Schwab| (2003)) has
remained unchanged. We thus achieve the same order of convergence in the generalized
framework that we observed in the special case, before.

We close by noting that the rate of convergence critically depends on the regularity of the
initial condition. Some numerical schemes have been designed with that requirement in
mind. In this regard we refer to the literature on hp discontinuous Galerkin schemes, for
example [Schotzau and Schwab) (2001) wherein a time stepping scheme is proposed that
manages to resolve non-smooth initial data at exponential rates of convergence. Confer
also more generally Schotzaul (1999)) in this regard.
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4 Chebyshev polynomial interpolation

The numerical PIDE solver that we implemented in the previous chapter enables us to
derive prices for European options in Lévy models. The symbol method equips this tools
with a rich flexibility regarding the model choice and the numerical results at the end of
the previous chapter verify the numerical feasibility of its implementation. At the same
time, a theoretical framework for error control proved convergence and stability of the
approach under even more general theoretical assumptions. With a working numerical
environment for option pricing at our disposal, we now focus on improving computational
runtimes of option pricing routines.

The complexity of today’s model universe reflects in the sophistication of numerical
implementations. Stochastic volatilities, time dependent Lévy jump models or pricing
in higher dimensions place challenging demands to numerics. While complexity in the
models is justified by the desire to reproduce the observed complex behavior of financial
markets, the industry insists on feasible runtimes that match practical needs. Buyers and
sellers of financial products alike expect quotations that reflect the market situation while
still being issued live. Risk managers rely on a model capable of capturing all relevant
sources of risk but depend on risk assessment before that risk materializes. Similarly, a
bank aims at maintaining a rich model environment but needs to be able to recalibrate
it steadily to markets that keep on moving constantly.

Industry thus faces a seeming contradiction. While numerical complexity continuously
grows, fast runtimes are expected to be maintained. In this chapter, we introduce a
method that aims at resolving this contradiction. It is based on an interpolation tech-
nique that has been known in other contexts before but has not been applied in fi-
nance, yet. This is truly surprising as the theory behind the method connects to finance
smoothly and its numerical implementation yields highly appealing results. The method
is called Chebyshev polynomial interpolation. It is an interpolation technique that uses
prices at prespecified points in the parameter space to interpolate prices for parameters
inbetween with Chebyshev polynomials.

The first section of this chapter introduces the method mathematically. Building on
its original one-dimensional form, a multivariate extension by tensorization is presented
and investigated. In Section[4.2] the so called online/offline decomposition being the key
element of the algorithm and responsible for its fast runtimes is explored more thoroughly.
The subsequent Section derives conditions that prices interpreted as functions of the
model and option parameters need to fulfill for exponential convergence of the algorithm
and verifies these conditions for several Lévy models and option types. Section
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4.1.1 The univariate interpolation method

describes an implementation of the Chebyshev algorithm and presents empirical accuracy
and convergence studies for several models and options. The numerical results indicate
that the approximative power of the algorithm even exceeds the scope of applicability
that the theoretical findings suggest.

The results of this chapter are taken from the article |Gak et al| (2016 where they
have been jointly developed, first. The proofs of those theoretical results that were
developed by coauthors will only be referenced in this thesis. We refer the interested
reader to the article in these cases. Explanatory descriptions of the method and the
accompanying results have been rewritten in parts but clearly cannot deny their close
relation to the paper source. The numerical experiments have been repeated based on
a different parametrization, thereby validating the theoretical results from a different
perspective, again.

4.1 An algorithmic introduction of the method

In introducing Chebyshev interpolation we distinguish between the univariate case and
its multivariate extension. In both cases we present the method in an algorithmic fashion
already adapted to option pricing.

4.1.1 The univariate interpolation method

We present the Chebyshev interpolation method. We begin by introducing the method
in its one-dimensional form that was originally outlined in [Trefethen (2013). In a second
step, we extend the uni-variate framework to the multivariate case and present results
of error convergence analysis both theoretically as well as empirically.

Assume a one-dimensional parameter space P given by P = [—1, 1] and an option price
depending on a single varying parameter taking values in that space,

Price?, pEP. (4.1)

We define the Chebyshev interpolator Iy which will be the driving quantity in the
interpolation of PriceP based on Chebyshev polynomials of degree V. It is given by

N

In(Price)(p) = ) ¢;T;(p). (4.2)
5=0

wherein the coefficients ¢;, j € {0,..., N}, are defined by

2lo<j<nN
N
=0

l
" Price?! cos (jﬂ'ﬁ), j€{0,...,N}, (4.3)

Cj =
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Chebyshev nodes for D=1

0.8

0.6

04 r

|
|
|
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l

-1 -0.5 0 0.5 1

Figure 4.1 A set of Chebyshev points p; € [—1,1] (blue) for degree N = 15 con-
structed by equidistantly spaced auxiliary construction points (red) on the semi-circle.
The MATLAB code for this construction of the Chebyshev nodes is taken from the book
Trefethen| (2013).

where the notation of the doubly primed sum indicates that its first and last summand
are multiplied by 1/2. The basis functions 7T} in (4.2)) are given by

T;(p) = cos (j arccos(p)), j€{0,...,N}, defined on [—1,1]. (4.4)

The Chebyshev polynomial interpolation method inherits its name from the fact that
the basis functions 7} in (4.4)) allow for a polynomial representation, as well. Chebyshev
nodes

l
Py = cos (Wﬁ), 1€{0,...,N}, (4.5)

mark locations in the parameter space where the method interpolates perfectly. Their
construction admits a beautiful geometric interpretation as illustrated by Figure
There, N = 15 Chebyshev nodes in one dimension are depicted and their geometric
construction is emphasized. Self-evidently, univariate Chebyshev interpolation is not
restricted to the generic parameter space [—1, 1]. Instead, invoking an appropriate linear
transformation opens the method to any parameter space that can be cast in the form of
a real parameter interval [p,p]. The interpolation operator is then easily adjusted
accordingly. ;

4.1.2 A multivariate extension

The scope of Chebyshev polynomial interpolation is not limited to univariate appli-
cations. Instead, a tensor based extension captures the multivariate case. Assume a
parameter space

P=KxTxQ=[-1,1]P" x [-1,1]P2 x [-1,1]P® = [-1,1)" (4.6)
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for the interpolation of prices
Price T (K,T,q) € P, (4.7)

where Dy = dim(K) € N, Dy =dim(7) € N, D3 = dim(Q) € Nand D = Dy + Dy + Ds.
As above, more general hyperrectangular parameter spaces are not excluded. Parameter
spaces given by

P = [Klafl] XKoo X [KDNXDJ
X [Ille] X X [ID27TD2] (4'8)
X [Q, Q1] X -+ [QDg,@DS],

become admissible by appropriate linear transformations. With N = (Nl, ..., Np) and
N; € Ny for i € {1,..., D}, the univariate 1nterpolator as defined in then extends
rather naturally to the multivariate case. With Hl (Vi +1) summands 1t is given by

Iy (Price)(p) =) ¢Tj(p),  peP, (4.9)
JjeJ
where the summation index j is a multiindex with values in

J={(j1,...,jp) € NP, where j; € {0,...,N;} fori € {1,...,D}}. (4.10)

Thus, being fully explicit, equation (4.9)) indeed turns into

I~ (Przce Z Z o) Lo, in) (D), peP. (4.11)

71=0 Jjp=0

In the multivariate case, the basis functions Tj for j = (j1,...,jp) € J are defined by

Tj(p1,--..pp) = [[T5:(p1),  pEP, (4.12)
and the associated coefficients ¢; with j = (ji,...,jp) € J are given by
D oliocj<n;} (15l p)
cj = (H ) Z " Z " Price? Hcos (jm) . (4.13)
i=1 11=0 Ip=0

Similarly, the Chebyshev nodes p' are now defined for a multiindex I = (I1,...,lp) € J
and distributed accordingly,

pl = (pll""vplp)’ (414)

inheriting their actual values from their univariate counterparts,

%

l;
pi, = Cos <7TN> , for [; € {0,...,N;} and i € {1,...,D}. (4.15)
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4.1.2 A multivariate extension

Chebyshev nodes for D=2
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Figure 4.2 A set of D-variate Chebyshev points p' € [~1,1]P for D = 2 and Ny =
Ny = 15. Their arrangement adheres to the rule (4.15]).

Figure displays a set of D-variate Chebyshev nodes p(t=I0) for D = 2 and N; =
Ny = 15.

In the univariate case, convergence of interpolation by the Chebyshev method is well
known. We cite the according remark on convergence of the Chebyshev method from
Gals et al.| (2016).

Remark 4.1 (Convergence of multivariate Chebyshev interpolation)

It is well known that the error of approximation with Chebyshev polynomials decays poly-
nomially for differentiable functions and exponentially for analytic functions. More pre-
cisely, going back to Mastroianni and Szabados| (1995), it is shown by Theorem 7.2 in|Tre-
fethen (2013) that the error ||f — IN(f)|zeo(—1,1]) decays at rate O(NV) if x — f(x) is
v times differentiable with vth derivative of finite variation and fO, f@ . f#=1 gre
absolutely continuous. Let additionally f be analytic in [—1,1] then it is analytic in some
Bernstein ellipse B([—1,1], o) with parameter o > 1, as defined in Definition . The-
orem 8.2 in|Trefethen| (2015), that traces back to the seminal work of Bernstein (1912),
shows that if f has an analytic extension to some Bernstein ellipse B([—1,1],0) with
parameter o > 1 then the error decay is of exponential rate O(p™ V).

The rest of this chapter extends the result presented in Remark for the univariate
case to its multivariate extension having the application of parametric option pricing in
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Figure 4.3 Left: Generalized Bernstein ellipse £y with foci p, p and semimajor %.
Right: Bernstein ellipse F9 with foci &1 and semimajor (.
mind. We consider these parametric option prices to be given by

Price T for (K,T,q) e P=KxT x Q, (4.16)

wherein £ ¢ RP1, 7 c RP2, @ ¢ RP# and therefore P ¢ RP with dimensionality D =
D1 + Dy + D3. The underlying parameter space P is assumed to be of hyperrectangular
structure, in the sense that

7): [Bl7ﬁ1] X X [B[ﬁﬁD] (417)
with real p. <p, for all i € {1,..., D}.

As Remark [4.1]indicates for the univariate case, exponential convergence of interpolation
by the Chebyshev method relies on regularity assumptions to be met by the interpolated
function. More precisely, for exponential convergence in the univariate case the inter-
polated function is required to be analytic on a Bernstein ellipse B([—1,1],0) with a
certain ellipse parameter ¢ > 1. This ellipse parameter directly determines the rate of
convergence. Before we can generalize the univarate convergence results to the multi-
variate case, the concept of a Bernstein ellipse must be extended accordingly. To this
end we define the D-variate and transformed analogon of a Bernstein ellipse around the

hyperrectangle P with parameter vector o € (1,00)" as

B(Pa Q) = B([Blaﬁl]agl) XX B([BDJ?D]’QD) (418)

based on D generalized univariate Bernstein ellipses

B([p,pl, 0) = mpp © B([-1,1], 0), (4.19)

as given by Definition in the preliminary chapter. Analogously to the univariate
case, the ellipse parameter vector ¢ € (1,00)” will determine the rate of convergence.
Its value corresponds with the extension of the parameter space P and is determined by
the following remark.
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4.1.2 A multivariate extension

Remark 4.2 (How to derive p)
We comment on the derivation of the ellipse parameter o > 1 of the generalized Bernstein
ellipse. Assume a Chebyshev approximation of a function in the parameter p € [p,D].
We denote the generalized Bernstein ellipse with p, p as foci and with the origin at its
boundary by E1, a

By = B(lp.3), 0). (4.20)

Furthermore, we denote by Eo the Bernstein ellipse that originates from linearly mapping
the foci of En to the Bernstein ellipse with foci £1 using the transformation 1,5 from

identity (4.19), that is

Ey = B([-1,1],0) = T[;}m o Ej. (4.21)

A schematic illustration of Ey and Ej is provided by Figure [{.3 In our notation, the
ellipse parameter of the generalized Bernstein ellipse Ey is defined as the ellipse parameter
p of the Bernstein ellipse Eo. We determine the ellipse parameter o > 1 of Eo using
the mapping T(, 5], or rather its inverse. To this extent recall that for a Bernstein ellipse
with semimagor a, and semiminor b, the relations

Q= —5, bg:T, 0=a,+0b,>1 (4.22)

hold. Ewvidently, E1 has a semimajor value off% and thus Eo has a semimajor value of

_ B _ -1 (PTP 1y _ PP
¢=afr =4 (= )—T[Bﬂ(O)—p—p. (4.23)

Using the relations (4.22)), we derive

o=(¢+v¢Z -1 (4.24)

The value in (4.24]) determines the ellipse parameter of Eo and will provide the exponen-
tial decay rate in our theoretical results, later.

We are thus prepared to cite the core theorem granting exponential error decay of the
Chebyshev interpolation in the multivariate case.

Theorem 4.3 (Asymptotic error decay with tensorized Chebyshev interpolation)
Let P 5 p — Price? be a real valued function that has an analytic extension to some
generalized Bernstein ellipse B(P, o) for some parameter vector o € (1,00)" and assume
max,cp(p,) | Price?| < V. Then

N

D D

max ‘Pm’cep — IN(PTice('))(p)’ < 2%"‘1 V. Qi—zNi H
peP i=1 =1 Y

1

(4.25)

The proof of the theorem is provided in|Gafls et al.| (2016). As an immediate consequence
of Theorem [4.3] we obtain the following corollary.

183



4.1.2 A multivariate extension

Corollary 4.4 (Asymptotic error decay with tensorized Chebyshev interpolation)
Under the assumptions of Theorem |4.3 there exists a constant C > 0 such that

max ‘Pm’cep - Iﬁ(Price('))(p)‘ <Co N, (4.26)
e -

where o = min g; and N = min_ N;.
= 1<i<D 1<i<D

Citing the following remark from |Gafs et al.| (2016) we obtain exponential error conver-
gence when the same number of Chebyshev nodes N is chosen in each dimension of the
parameter space.

Remark 4.5 (Exponential error decay in V)
In particular, for the same number of nodes N in each dimension of the parameter space

Comllary shows that the error decay is of exponential order O(Q*N) = O(Q* W) for
some o > 1 with M denoting the number of degrees of freedom of the interpolation method
and D the dimension of the parameter space under the assumptions of Theorem [{.5

4.2 The online/offline decomposition feature

In the introduction of the chapter we highlighted our goal of accelerating numerical
runtimes while at the same time maintaining flexibility regarding the choice of the model
and its complexity. Let us emphasize how the Chebyshev interpolation approach achieves
this goal. To this extent recall the interpolation operator in D dimensions as presented

by ({.11) as

N1 ND
PriceP ~ IN(Price('))(p) = Z Z C(j1,,dD) Tij1,....ip) (P) , (427)
Jj1=0 ip=0 oinne phase online phase

for a parameter p € P from the parameter space. The computation of Price? based on
an arbitrarily complex model and possibly suffering from a lengthy numerical derivation
has thus turned into the evaluation of a finite sum with known coefficients. This devel-
opment is by no means trivial since it allowed for a separation of the complex model and
the attached model pricing routine from the actual parameter p € P that the price is
evaluated or rather approximated for. The overall pricing procedure has thus split into
two separate stages, which are called offline phase and online phase. Both labels have
their origin in the more general theory of model reduction techniques, yet their meaning
applies to the Chebyshev method equally.

i) Offline phase
In the first phase, the algorithm is set up and prepared for pricing or related ap-
plications. The model is chosen and model prices are computed for all Chebyshev

points in the parameter space in order to determine the coefficients c(;, ;) using
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4.1.2 A multivariate extension

a pricing method of choice. Depending on the complexity of the model and the
runtime of the pricing method which can be Monte Carlo, Fourier pricing, PIDE
techniques or other algorithms, this offline phase possibly consumes a considerable
amount of time. Yet it is crucial for an understanding of the performance of the
Chebyshev algorithm to keep in mind, that this offline phase is only conducted
once.

ii) Online phase
Now that the algorithm is prepared, the pricing for model parameters of interest
takes place. The pricing routine used for the derivation of prices at the Chebyshev
points during the first phase has become unnecessary. Instead, pricing now con-
sists in the evaluation of the Chebyshev polynomials 7(;, ;) at the parameter
p € P of interest and an assembling of the weighted sum in with known

coeflicients c(;, ;) that are independent of the parameter p € P.

The splitting of the original pricing routine into those two phases results in a tremendous
increase in pricing runtime. With the computationally intense derivations being shifted
into the offline phase, only numerically cheap evaluations of polynomials remain for
online pricing. The questions remain whether the resulting approximate price is accurate
and how far it converges to its true value. The next section discovers conditions under
which exponential convergence is obtained before the numerical sections investigate both
accuracy and convergence empirically.

4.3 Exponential convergence of Chebyshev interpolation for
parametric option pricing

In this section we embed the multivariate Chebyshev interpolation into the option pricing
framework. First, as in |Gals et al.| (2016), we provide sufficient conditions under which
option prices analytically depend on the parameters. Second, these are verified for payoff
profiles and asset models individually. As an example, we investigate the interpolation
of call option prices in Lévy models in more detail.

Analytic properties of option prices can be conveniently studied in terms of Fourier
transforms. First, Fourier representations of option prices are explicitly available for
a large class of both option types and asset models. Second, Fourier transformation
unveils the analytic properties of both the payoff structure and the distribution of the
underlying stochastic quantity in a beautiful way. By contrast, if option prices are
represented as expectations, their analyticity in the parameters is hidden. For example
the function K — (St — K)T is not even differentiable, whereas the Fourier transform of
the dampened call payoff function evidently is analytic in the strike, compare Table[4.1]
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4.3.1 Conditions for exponential convergence

In Gals et al| (2016]), we introduce a general option pricing framework. We consider
option prices of the form

Price?=ET9) = B[ frr (X1)], peP, (4.28)

where f is a parametrized family of measurable payoff functions fx : RY — R, with
payoff parameters K € K and X7 is a family of R?-valued random variables with model
parameters (T',q) € T x Q. The parameter set

p=(K,T,q) eP=KxTxQcR" (4.29)
is again of hyperrectangular structure, that is

K= @17ﬁ1] X ... X ['BD17ﬁD1]

_ _ (4.30)
T x Q = [ng_;’_l?le—‘rl] XX [BD7pD]

for some 1 < Dy < D and real p, < p; for alli € {1,...,D}.

Option price representations of form capture a large variety of option types in-
cluding plain vanilla European as well as American and other path dependent options.
In|Gals et al.| (2016), all of these options types are considered. Here, we focus on the case
that the price (4.28) can be represented in Fourier terms. Focusing on these representa-
tions, the following paragraphs derive sufficient conditions under which the parametrized
prices possess an analytic extension to an appropriate Bernstein ellipsoid such that the
Chebyshev approximation method applies.

For most relevant options, the payoff profile fx is not integrable and its Fourier transform
is not well-defined. The European call and put options are prominent examples. In these
cases, however, the notion of the generalized Fourier transform of Definition applies.
The following set of conditions establishes the foundation for employing the Chebyshev
method for Fourier pricing.

Conditions 4.6 (Chebyshev method on Fourier prices)
Let the parameter set P = K x 7 x Q C RP possess a hyperrectangular structure as

in (#£.30). Let o € (1,00)” and denote ¢ = (¢1,...,0p,) and 0”9 = (¢p,+1,---,0D)
and let weight n € R%.
(4.A) For every K € K the mapping z — % fi(z) is in L'(R%).

(4.B) For every z € R? the mapping K — ﬁ((z — in) is analytic in the generalized
Bernstein ellipse B(K, ¢°) and there are constants ¢;, co > 0 such that

sup  |Fi(—z — in)| < creV (4.31)
KeB(K,o")

for all z € R%.
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4.3.2 Selected option prices

(4.C) For every (T,q) € T x Q the exponential moment condition E[e*@’X%)] < 00
holds.

. or every z € the mapping (1, q¢) — ¢r14(2 + 1) 1s analytic in the generalize
4.D) F R? th ing (T PT,q(2 + i) 1 lytic in th lized
Bernstein ellipse B(T x Q, 07 ¢) and there are constants o € (1,2] and ¢;, ¢z > 0
such that
sup  lprg(s +in)| < crem? (4.32)
(T,q)€B(T*Q)

for all z € R%.

Conditions [] (4.D)|are satisfied for a large class of payoff functions and asset models,
see Sections and |2 . More precisely, there are examples of (time-inhomogeneous)
Lévy processes that fall in the scope of Conditions [4.6]indeed and we refer the interested
reader to|Glau (2016) for an overview and the artlcle Galk et al.| (2016) that this chapter
is based on for more details.

Theorem 4.7 (Convergence of prices)
Let o € (1,00)P and weight n € RY. Under conditions |(4.A)(4.D)| we have

max | Price? — Iﬁ(Price('))(pﬂ

peEP
[—1)+ 2611 (4.33)
<Z4V Ql +Z4V = DA L
= 9 [[=i(1—0;)
Proof
This is Theorem 3.2 in |Gak et al.|(2016) where a proof is provided. O

4.3.2 Selected option prices

In the previous Section, Conditions [£.6] introduced a framework in which the Chebyshev
approximation achieves (sub)exponential error decay. This abstract framework can be
related to two concrete option pricing settings in connection with Fourier pricing as
introduced by Proposition from the preliminary chapter.

First, we assess European options in univariate Lévy models. Let r be the deterministic
and constant interest rate. We consider the parametrized family of asset prices,

Sq Soe (4.34)

with ¢ > 0. For fixed ¢ = (Sp,7,0) € Q = [So, So] x [r,7] x [g,7] we denote ¢ = (r,0)
and assume LY to be a Lévy process and special semimartingale with characteristics
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(b,o, F) and parametric Lévy measure F. As we have seen in Section of the intro-
ductory Chapter [2] the characteristic function of the parametrized Lévy process can be
represented by

pr(2) = B[ ] = 72,
2

W9 (2) = ibz + % + /R (e — 1 —izh(z)) F(dx).

(4.35)

Additionally, we separately denote the jump part of the cumulant generating function

by
D(z) = /R (¢ — 1 — iza) F(da) (4.36)

for later reference. We assume L is defined under a risk neutral measure. Therefore, for

every ¢ € Q we assume E[eLg | < oo for some and equivalently all ¢ > 0 and the drift
condition

b=>b(r,o)=r— — — /R (e* =1 — h(z))F(dz), (4.37)

to ensure that the discounted asset price process is a martingale, as already outlined
by identity (2.31) in Section In asset model S? the fair value at time ¢ = 0 of a

European option with payoff written as function fx for K € K = [K, K| C R with

maturity 7' € T = [T, T] C (0,00) is given by

!

PriceST9 = ¢TR [fx(So elr )] (4.38)

In order to guarantee (sub)exponential convergence of the Chebyshev interpolation, we
translate condition on exponential moments and condition on analyticity
and the upper bound into conditions on the cumulant function 4. Then the following
corollary applies.

Corollary 4.8|(Exponential convergence of Fourier prices in N)

Let Conditions |(4.A)| and |(4.B)| be satisfied for weight n € R and o > 1 and set P* =
[K, K]. Moreover, let P72 = [T, T] x [Sp, So] x [r,7] x [¢,7] C R* with T, Sy > 0 and
o> 0. Assume

/|r>1(e_’7z Ver)F(dr) < oo. (4.39)

If additionally one of the following conditions is satisfied,
i) a >0,

ii) there exist o € (1,2] and constants C1,Cy > 0 such that

R(¢)(z +1in) < C1 — Colz|*  for all z € R,
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then there exist constants C > 0 and o>1 such that

el — [— o) < -N
pelglx%}’(xg ‘Pmce I (Price )(p)’ <Co -, (4.40)
where N = min N;.
1<i<5
Proof
This is Corollary 3.4 in |Gaf et al|(2016) where a proof is provided. O

For an application of the Chebyshev method to the pricing of basket options in affine
models both in theoretical and numerical terms, we refer the interested reader to |Gals
et al.| (2016).

4.3.3 Examples of payoff profiles

We enlist in Table[4.1]a selection of payoff profiles fx for option parameter K as function
of the logarithm of the underlying. By Proposition we can represent option prices
under certain conditions in Fourier terms. Therefore, the table provides the generalized
Fourier transform fx of the respective option payoff, as well.

Type Payoff Weight Fourier transform f;} holomor-
f(x) U fr(z —in) phic in log(K)
Kiz+l+7]
Call (ez — K)+ < —1 m v
Kiz+1+n
Put (K -yt >0 (e v
.. Kiz+7]
Digital 1y log(K) <0 — ST v
down&out
1z+14
Asset-or- €1, 10g(K) < —1 _1124-71-&-777] v
nothing
downé&out

Table 4.1 Examples of payout profiles of a single underlying and the respective (gener-
alized) Fourier transforms.

189



4.3.4 Chebyshev conditions and asset models

4.3.4 Chebyshev conditions and asset models

In this section, we shortly introduce some analyticity properties of the Fourier transforms
of the Lévy models introduced in Section [2.3] For some models and some parameters,
the domain of analyticity is immediately observable. For some non-trivial cases, we state
the domain briefly. Throughout the section, T' > 0 denotes the time to maturity of the
option while r > 0 refers to the constant risk-free interest rate.

We define

Ct = {2z e C|R(z) >0},

Cf = {z € C|R(z) > 0}, (4.41)

for later reference.

In the multivariate Black&Scholes model of Section [2.3.1] analyticity in the parameters
is immediately confirmed, that is (T,¢’) — ¢r4(2) is holomorphic for every z € R%.
The admissible parameter domain, however, is restricted to parameter constellations
that encode a covariance matrix.

Remark 4.9 (Analyticity in the Black&S¢hdles model)
Let n € R? be the chosen weight in Conditions |4.6 and let the open set U be given by

UCCtxCd x {6’ e CUd+1)/2 | o(R(&)) positive deﬁnite}, (4.42)
where o : Rd(d+1)/2 — RdXd 18 deﬁned by O'(E)z] = U(max{i,j}—l) max{i,j}/2+min{i,j} Z,] &

{1,...,d}, for & € RUHD/2 By construction, o (&) is symmetric for any & € RUHTD/2,

Then for every z € RY, (T,r, &) — o1, (r,0(5)) (2 1) is analytic on U. Note that U does
not depend on n.

The Merton model of [Merton| (1976]) has been introduced in Section m

Remark 4.10 (Analyticity in the univariate Merton model)

In the Merton model, we find ourselves in the same situation, since the characteristic
function for the Merton jump diffusion model is itself composed of analytic functions. Let
n € R be the chosen weight in Conditions|[4.60 and choose the complex parameter space U
open according to

UCCrxC{ x{(0,0,8,)) e Ct xCxC§ xC"}. (4.43)

Then for every z € R%, the mapping (T,r, 0, o, B,\) OT (r,o,0,80) (2 +01) is analytic
on U. Again, the domain of analyticity in the parameters does not depend on the weight
7.

Recall the Normal Inverse Gaussian (NIG) model of Section [2.3.4]
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Remark 4.11 (Analyticity in the univariate NIG model)
For weight n € R from Conditions|4.6, choose an open set U(n) with

U(n) CCYx CT x Cf x {(a, B) € CT x C | R(a)® = R(B)* > I(a)® — I(B)?, (4.44)
2

Then for every z € R, (T,r,0,, ) = @1,(r.5.0,8) (2 + 1) is analytic on U(n).

In Section we introduced the CGMY model of |Carr et al.| (2002]).

Remark 4.12 (Analyticity in the univariate CGMY model)

The gamma function I' that is part of the characteristic function in the CGMY model
has an analytic extension to the complex semispace CT. Consequently, with weight n € R
from Conditions we can choose an open set U(n) with

U CCt xC§ xCr x {(G,M) eCt xC* | R(G) —n >0, R(M)+n>0}
x{Y eCT | R(Y) e (1,2)}. (4.45)

Then for every z € RY, (T,r,C,G, M,Y) o1, (e My) (2 +in) for the characteristic
function @1 4 of the CGMY model is analytic on U(n).

Table taken from Gafs et al| (2016) displays for selected Lévy models conditions on
the weight 7 € R? and the index a € (1,2] that guarantee |(4.C)| and |(4.D)|

Class Conditions for to hold

on 7 on «
Brownian Motion a=2
with drift
Merton Jump Diffusion a=2
Lévy jump diffusion with fIZ\>1 el p(dz) < oo a=2

characteristics (b, o, F)

univariate CGMY with 7 € (—min{G, M}, max{G,M}) a=Y
parameters (C, G, M,Y)
with Y > 1

Table 4.2 Conditions on 1 and « for|(4.C)|and [(4.D)[to hold for a fixed model parameter
constellation. The selected Lévy models are described in more detail in Section .
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4.3.4.1 Heston model for two assets

Here we state the two asset version of the multivariate Heston model in the special
case of having a single, univariate driving volatility process (v¢);>0. The two asset price
processes are modeled as

Sl =Sleft  and 82 =82 fort >0, (4.46)

where H = (H', H?) solves the following system of SDEs,
1
dH} = (7« — QUf) dt + o1/ AW},

2
dvy = k(0 — vy) At 4 o3/v; AW,

1
dH? = <7~ — a§> dt + o9\/v; AW,

where the Brownian motions W;, i € {1,2,3}, are correlated according to (W', W?) =
p12, (WL W3) = p13, (W2, W3) = pa3. Following [Eberlein et al. (2010), the characteris-
tic function of H7 in this framework is

(pT,(T7U07H,9701702,03,/)12,/)13,p23)(z>

_ s vo (a —c)(1 — exp(=cT))

- <T2 <<7“> Z>> P <a§ 1 — gexp(—cT) (4.47)
+ ig [(a —c)T —2log (1 —gexp(—cT))} >,

o3 1—g

with auxiliary functions

=== (= (s )2+ () )

2.2 2.2 . 2 . 2
— (crl 2] + 0525 + 2p1201022129 + 10721 + 20222) ,

a=a(z) = Kk — ip1301032] — 1p23020322, (4.48)
¢ = c(z) = Ja(2)? - 3C(2),

_ (s = B —clz)
I=ID = G ey

and positive parameters vy, k, 6 and o3 fulfilling the Feller condition
02 < 2k (4.49)

ensuring an almost surely non-negative volatility process (v¢):>0. Obviously, for each
z € R?, the characteristic function DT, (r00,,0,01,02,03,p12,p13,p23) (Z) OF is analytic in
vo and 6. For further analysis of the domain of analyticity in the Heston model confer
Levendorskii| (2012).
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4.3.5 Example: Call options in Lévy models
The fair price at ¢ = 0 of a call option with strike K and maturity 7" in a geometric Lévy

model with deterministic interest rate r > 0 is given by
Callf"™ = e TE[SpelT — KT (4.50)

under a risk-neutral probability measure. Noticing that
Cally>" = e " TKE[(Sy/K)el —1]7, (4.51)

it suffices to interpolate the function

(T, S) — Call3" (4.52)

n [T,T] x [&@ , FO/KLin order to approximate the prices Call?O’K on the range
(T, S0, K) € [T, T) x [So, So] x [K, K] C (0,00)*.

Let us fix some n < —1. From Table [£.I] we see that for every z € R the mapping
K — fK(z —in) is analytic on (0, 00).

Let (b, o0, F') be the characteristics of L and recall

P(z) = /]R (eim —1—izx)F(dz) (4.53)

from (4.36]). Now Corollary yields the following

Corollary 4.13 (Convergence for call options in Lévy models)
Assume one of the following conditions.

i) L is a jump diffusion Lévy process, that is it possesses a non-zero Brownian com-
ponent o > 0.

i) There exist a € (1,2] and constants C1,Cy > 0 such that

9‘3(1!1)(2 +in) < Cp — Calz|* for all z € R.

o > o SoK+S0K
Let P = [I,T] x [S0/K.So/K], (' = Fgier ¢ =

every o0 € (1,7 4+ /(92 — 1) for j = 1,2, there exists a constant V > 0 such that

‘H\
SIS

and%_w th
0j = g1 en for

4
Call3>! — 1 Call" VY (T, So)| < 4V (61 + G2 + 0 .
(Tﬂgél)?ép‘ a NN (Call 37)( 0)] < (Q1+92+Q21_Q1_1)

In particular, under the assumptions of Corollary there exists a constant C' > 0
such that

(THSl(%)éP ‘C’allso’ — Iy, NZ(C’allE% NT, Sp)| < Co ™ (4.54)

where ¢ = min{g1, 02} and N = min{ Ny, No}.
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Remark 4.14 _
Under the assumptions of Corollaryl|4.15, when fixing the maturity T, letting ( = %,
we obtain the exponential error decay -
—-N
Cmax_ | Call¥ — Iy(Call))(S)| < 4avZ—, (4.55)
So/K<So<So/K o—1
for some o € (1, ++/C?—1) and V = max ‘C’all%f’,

SoeB([So/K,S0/K],0)

Examples of Lévy jump diffusion models that satisfy condition i) of Corollary are
for example the Black&Scholes and Merton model. Examples of pure jump Lévy mod-
els satisfying condition ii) of Corollary are provided in |Glau (2016) also compare

Table .2

4.4 Numerical experiments

We apply the Chebyshev interpolation method to parametric option pricing considering
a variety of option types in different well known option pricing models. Moreover, we
conduct an error analysis, a convergence study as well as a demonstration of the gain in
efficiency realized by the method. The first focuses on the accuracy that can be achieved
with a reasonable number of Chebyshev interpolation points. The second confirms the
theoretical order of convergence derived in Section [£.3] when the number of Chebyshev
points increases. The latter visualizes the gain in efficiency in terms of improved runtimes
for pricing procedures. We measure the numerical accuracy of the Chebyshev method
by comparing derived prices with prices coming from a reference method. We employ
the reference method not only for computing reference prices but also for computing
prices at Chebyshev nodes Price?™ """ with (l1i,...,Ilp) € J in the precomputing
phase of the Chebyshev coefficients ¢;, j € J, in . Thereby, a comparability
between Chebyshev prices and reference prices is maintained. In this section we price
plain vanilla European products and use Fourier pricing by numerical integration as
reference method. In |Gafs et al. (2016]) we also consider exotic and higher dimensional
derivatives and apply the Monte Carlo method for measuring the accuracy of prices from
the Chebyshev approximation.

We implemented the Chebyshev method for applications with two parameters. To that
extent we pick two free parameters p;,, p;, out of (4.30), 1 <i; < iy < D, in each model
setup and fix all other parameters at reasonable constant values. We then evaluate option

prices for different products on a discrete parameter grid P C [ E Pi,) X [pig,@é] defined
by
P {<pi§1,pﬁ;2), L i, € {o,...,100}},
L _ L, [ ' (4.56)
2 100 (pij _Bz‘j) , li; €40,...,100}, j € {1,2}.
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4.4.1 European options

Once the prices have been derived on P, we compute the discrete L>(P) and L*(P)
error measures,

ere(N) = max ‘Price” - Iﬁ(Price('))(p)) ,
peEP

; (4.57)

)

ci2(N) = | A 3 |Price? — Iy(Price))()
pEP

®i,—p;.) Pi,—P,.) . . .
where Az = 1106” 210612 , to interpret the accuracy of our implementation and of

the Chebyshev method as such.

4.4.1 European options

We consider a plain vanilla European call option on one asset. The payoff profile of
the derivative and its generalized Fourier transform are enlisted in Table For these
products we investigate the performance of the Chebyshev interpolation method for the
Heston model and the Lévy models of Black and Scholes| (1973)), Merton| (1976) and (Carr
et al.| (2002)). We keep the strike parameter constant at K = 1, and disregard interest
rates, setting » = 0. For the three Lévy models we vary the maturity 7' (in years) as
well as the option moneyness Sy/K whereas for the Heston model we let vy as one of the
model parameters float. A detailed overview of the chosen parametrization is given by
Table For numerical integration in Fourier pricing we use Matlab’s quadgk routine
over the interval [0, c0) with absolute precision bound of ¢ < 10714,

The first question we address concerns the achievable accuracy with a fixed number of
Chebyshev polynomials. We set N1 = Ny = 7 and precompute the Chebyshev coefficients
as defined in (4.13) with D = 2 using the parametrization of Table for the models
therein. We evaluate the resulting polynomial over a parameter grid of dimension D = 2
and compute the approximate European option prices in each node. As a comparison,
we also compute the respective Fourier price via numerical integration of the accordingly
parametrized integrand, see Proposition (2.20). Figure shows the results for the
European call option. The Chebyshev method achieves rather homogeneous accuracy
results over the four different models for N = N; = Ny = 7 and reaches a very satisfying
error level of order 1075, Increasing the number of Chebyshev points further improves
the accuracy. Since at its core the implementation of the Chebyshev method consists of
summing up matrices, this refinement comes at virtually no additional cost.

In |Gak et al. (2016)), we perform the same analysis for a European digital down&out
option. While a call payoff profile is not differentiable but at least continuous, the digital
payoff function is not even continuous, compare Table This reduction in smoothness
of the payoff function reduces the accuracy of the interpolation p — Price(p), as well.
The analysis performed in |Gal et al.| (2016) empirically demonstrates, however, that the
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4.4.1 European options

Model fixed parameters free parameters
K T q q T
BS K=1 o =0.25 So/K €1[0.8, 1.2] T €[0.5,2]
Merton K=1 oc=0.2, So/K €08, 1.2] T €[0.5,2]
a = —0.02,
8 =0.1,
A=25
CGMY K=1 C =0.6, So/K €08, 1.2] T €[0.5,2]
G =14,
M = 25,
Y =12
Heston K=1 T=2 k=13, So/K €10.8, 1.2]
6 =0.22, vo € [0.12, 0.57]
o=0.2,
p=0.6

Table 4.3 Parametrization of models and the European call option for the accuracy and
convergence study of the Chebyshev interpolation method.

reduced smoothness of the payoff profile effects the accuracy of the Chebyshev method
only marginally.

Coming back to the European call option, we conduct an empirical convergence study
for this very same setting of option and model parametrization. For an increasing degree
N = Nj = N, the Chebyshev polynomial is set up and prices over a parameter grid
of structure are computed. Again, Fourier pricing serves as a comparison. For
each N € {1,...,35}, the error measures e~ and €2, defined by on the discrete
parameter grid P defined in , are evaluated. We observe exponential convergence
for all four models in both error measures. Figure [£.5] shows the L decay for the
European call option while Figure displays the L? error of the same option prices.
Following Remark we define ( = % and set ¢ = ( + /(2 — 1. The theoretical
convergence analysis predicts a slope of the error decays in Figure [£.5 of at least

S =logyg (o) = —0.47

or steeper. Empirically, we observe a slope for the Black&Scholes model of about Sgg =
—0.64, for the Merton model of Syjerton = —0.64 and for the CGMY model of Scamy =
—0.62. Thus, the error in each Lévy model empirically confirms our theoretical claims.

This analysis has also been performed for a European digital down&out option. We refer
the interested reader to Gafs et al. (2016) where the results of this additional study are
discussed.
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4.4.2 Basket and path-dependent options

Chebyshev price error, BS . Chebyshev price error, Merton
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Figure 4.4 Absolute pricing error for a European call option with strike K = 1 in various
models. We compare the Chebyshev interpolation with Ny = Ny = 7 to classic Fourier
pricing by numerical integration. The parametrization of the models and the option
has been chosen according to Table [I.3] We observe homogeneous accuracy results over
all considered models. The structure of each surface reveals the location of Chebyshev
nodes in the bounded tensorized parameter space.

4.4.2 Basket and path-dependent options

In the paper, we also consider basket and path-dependent options, see Section 3.2.2
in |Gals et al.| (2016)) for theoretical background on basket options in affine models and
Section 4.2 in |Gah et al (2016) for numerical results on the Chebyshev method applied
to these options.

4.4.3 Study of the gain of efficiency

Finally, we investigate the gain in efficiency achieved by the method in comparison to
Fourier pricing. We choose the pricing problem of a call option on the minimum of
two assets as an example. The generalized Fourier transform of this option is given by
Lemma [2:22] in the preliminaries. Today’s values of the underlying two assets are fixed
at

sV=1sP=12 (4.58)

Modeling the future development of the underlyings, (St(j ))tz(h j € {1,2}, we con-
sider two bivariate models, separately. First, the two assets will be driven by the bi-
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Chebyshev pricing error decay
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Figure 4.5 Convergence study for the Black&Scholes model, Merton, CGMY and the
Heston model for prices of a European call option parametrized as stated in Table
The reference price is derived by Fourier pricing and numerical integration with an
absolute accuracy of 1074, which is reached by all models for N = N; = Ny ~ 25
the latest. The L™ error is depicted. The error decays in all considered very precisely
coincide and thereby extend the findings illustrated by Figure @

variate Black&Scholes model of Section 2331 The bivariate Black&Scholes model is
parametrized by a covariance matrix o € R?*? that we choose to be given by

o11 =022, 012 =001, 09 = 0.25% (4.59)

In a second efficiency study, asset movements follow the more involved bivariate Heston
model in the version of Section [£.3.4.1] above for which we choose the parametrization

vp = 0.05, o1 = 0.15, pi3 = 0.01,
r = 0.4963, o9 = 0.2, p12 =0, (4.60)
0= 02286, 03 = 0.1, P23 = 0.02.

In both cases we neglect interest rates, thus setting r = 0. The benchmark method,
that is Fourier pricing, is evaluated using Matlab’s quad2d routine. We prescribe an
absolute and relative accuracy of at least 10 from the integration result and integrate
the Fourier integrand over the domain Q = [-50, 50] x [0, 50], prescribing a maximum
number of 4000 function evaluations. The Chebyshev method is set up for pricing based
on strike K and maturity 7" as the two free parameters taking values in the intervals

K e [Kmin’ Kmax]a Kmin = 087 Kmax = 1-27

(4.61)
T e [Tmin, Tmax]a Tmin = 057 Tmax =2
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Figure 4.6 Convergence study for the Black&Scholes model, Merton, CGMY and the
Heston model for prices of a European call option parametrized as stated in Table
Contrary to Figure now the L? error is displayed. Here, the error decay appears
slightly more nuanced. While the decays of the three Lévy models still coincide, the
Heston model achieves a marginally faster convergence rate. In all considered models,
the Chebyshev approximation reaches the accuracy of the reference method at N =~ 25.

For a fair comparison, the number of Chebyshev polynomials is chosen such that Cheby-
shev interpolation prices yield an accuracy that matches the accuracy of the benchmark

method resulting in
N&hpy =11 and  NESior = 23, (4.62)

for the bivariate Black&Scholes model and the bivariate Heston model, respectively.
Figure [£.7] illustrates the absolute errors over the whole K x T' domain of interest be-
tween Fourier pricing and the Chebyshev method for both models, with the Chebyshev

interpolator being based on N(I?Eeby + 1 polynomials in the Black&Scholes model case

and gﬁ:{)‘;n + 1 polynomials in the Heston model case.

When the offline phase of the Chebyshev method has been completed we compute 98
pricing surfaces, that is for each M € {3,...,100} we compute prices for all parameter
tuples from ©); defined by

1

On = {(Kz]v[aT]M) } Klj\/[ Kuin + M_ 1(Kmax - Kmin)a
P (4.63)
JBM = Timin + m(Tmax - mln) for 1 <1 ] < M}

The computation time consumed by the Chebyshev offline phase is measured and stored.
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Chebyshev accuracy, Heston

Chebyshev accuracy, BS

08 05

Figure 4.7 Left: Difference between prices from the Fourier method and Chebyshev
interpolation in the bivariate Black&Scholes model over the whole parameter domain of
interest. The model is parametrized as indicated by . Chebyshev interpolation
is based on Nggeby 4+ 1 = 12 Chebyshev polynomials. Right: The respective plot for
the Heston model parametrized as in . Here, Chebyshev interpolation is based on
Ng}?g%?,n +1 = 24 Chebyshev polynomials. We achieve an absolute accuracy of order 10~%
in both cases, thus matching the accuracy that the benchmark method Fourier pricing
provides.

Also, for each M € {3,...,100}, runtimes for deriving all |© ;| = M? prices are measured
and stored for both routines, the Fourier pricing method and the Chebyshev interpola-
tion algorithm. Figure [£.8] depicts these runtime measurements visually while Table [£.4]
provides a second perspective in numbers.

BS

In the Black&Scholes model case, the offline phase required 7.z, . = 8 seconds for

deriving option prices at all (Ngfeby + 1)2 = 144 Chebyshev nodes. The more involved

Heston model required 7T, g{ﬂﬁfggn = 101 seconds for the (Ngﬁgtb‘;n + 1)2 = 576 supporting
prices. Taking this initial investment into account deems pricing with the Chebyshev
method rather costly when only few option prices are derived after the offline phase
has been completed. Yet, as Figure shows and Table [4.4] quantifies, the increase in
pricing speed that is achieved once the Chebyshev algorithm has been set up eventually
outpaces Fourier pricing as far as (combined) pricing runtimes are concerned. From our
experiments we conclude that the Chebyshev method outruns Fourier pricing in terms

of total runtimes when the number of prices to be computed exceeds (NN, g}?eby +1)2 or
(N gﬁ:f)(;n + 1), respectively.
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4.4.3 Study of the gain of efficiency
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Figure 4.8 Comparison of pricing times between Fourier pricing and the Chebyshev
method for a call option on the minimum of two assets in the Black&Scholes model
(left) and the Heston model (right). For each M € {3,...,100}, runtimes for deriving
option prices for all M? parameter tupels from ©;; defined by are depicted. In
both model cases, computation times for the Chebyshev method contain the duration of
the offline phase that has to be conducted once in the beginning. The Fourier and the
Chebyshev curves roughly intersect when M = Ngseby + 1 for the Black&Scholes model

and when M = Ngﬁgg’,n + 1 for the Heston model, respectively.

BS Heston
M 10 50 75 100 10 50 75 100
TN (in s) 0.18 454 1020 18.11 0.70 17.58  39.66  69.82
TEY e (ins) 806 1242 18.07  25.98 101.96  118.85 140.92  171.08
TFourier (i ) 534  131.96 301.82 528.74 17.60 442,62 991.33  1788.08
Ch.eby ]
o 151% 9.41% 5.99% 4.91% 579.27% 26.85% 14.22%  9.57%

Table 4.4 Selected results of the Chebyshev efficiency study for the bivariate
Black&Scholes model and the bivariate Heston model. With increasing number of de-
rived prices, the Chebyshev algorithm increasingly benefits from the initial investment
of the offline phase. The complete record of the study is illustrated by Figure
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5 Empirical interpolation with magic points

The Chebyshev interpolation method that we considered in the previous chapter has
succeeded in tremendously accelerating computational runtimes in option pricing and
related tasks by separating parameter dependence from model complexity. Interestingly,
during both the offline and online phase, the Chebyshev interpolation method was blind
to the underlying pricing algorithm. It prescribed fixed nodes in the parameter space
called Chebyshev nodes and demanded option prices at these parameter nodes disre-
garding the method they were computed with. On the basis of these given prices, the
method interpolated inbetween with Chebyshev polynomials, thus taking a black box
stance with respect to the approximated pricing routine.

Cleary, the Chebyshev algorithm conveys a very elegant appeal. Numerically, it seam-
lessly connects to arbitrary pricing methods and is thus not restricted in this regard.
At the same time, Chebyshev approximation comes at a significant cost. Due to its
tensorized extension for multivariate applications, the Chebyshev approach suffers from
the curse of dimensionality, rendering it inapt for models with a large number of free
parameters. There, the number of Chebyshev nodes grows exponentially in the dimen-
sionality of the pricing problem and thus increases the number of Chebyshev nodes that
need to be computed during the offline phase rather unpleasantly. The online phase is
affected similarly as the number of evaluated polynomials that need to be summed up
grows at the same unfavourable rate.

In this chapter we address the issue of dimensionality by introducing a different approx-
imation method for option pricing and related tasks and we call this method empirical
interpolation for parametric option pricing. Its name is inherited from [Barrault et al.
(2004) where the method has been originally developed in the context of parametric
nonlinear partial differential equations. Here, we apply the concept to option pricing or
rather Fourier pricing, more concisely.

Contrary to the Chebyshev method, we do not approximate prices directly but rather
represent them in terms of Fourier integrals and then approximate the associated para-
metric integrands, instead. Tayloring the algorithm to Fourier pricing enables us to
exploit the structure of the model specific Fourier integrands. We thus open the black
box that the Chebyshev method left sealed and use this additional knowledge to our
advantage.

Similarly to the Chebyshev method, the empirical interpolation approach separates into
an offline phase and an online phase. Yet, instead of forcing the algorithm to consider
prescribed locations in the parameter space, the empirical interpolation routine may
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5 Empirical interpolation with magic points

decide for itself which regions in the parameter space it needs to explore more deeply
and which ones it may disregard to achieve optimal global approximation results. The
empirical interpolation algorithm can thus afford to spare parts of the parameter space
that the Chebyshev method is obliged to examine. Precisely due to this feature, empirical
interpolation is not affected by the curse of dimensionality in the same way as the
Chebyshev method is.

In Section [5.I we present the algorithm in detail. Then, Section [5.2] explores the
online/offline decomposition which is more involved than the respective phases of the
Chebyshev method. In Section [5.3] we derive conditions that grant exponential conver-
gence of the algorithm before we investigate examples of asset models and payoff profiles
in Section for which these conditions are satisfied. We numerically implemented the
algorithm and present the results of a thorough numerical survey in Section [5.5] contain-
ing an empirical convergence study both in and out of sample and indepth studies for
several models individually. We investigate the interpolation operator of the algorithm
in Section more closely and describe a structural inconvenience of it, that we finally
resolve in Section

The results of this chapter are taken from the articles |Gal et al| (2015) and Gals and
Glaul (2015) where they have been jointly developed, first. The proofs of those theoretical
results that were developed by coauthors will only be referenced in this thesis. We refer
the interested reader to the articles in these cases. Explanatory descriptions of the
method and the accompanying results have been rewritten in parts but clearly cannot
deny their close relation to the paper sources. The numerical experiments have been
repeated based on a different parametrization, thereby validating the theoretical results
from a different perspective, again.

5.1 Magic point interpolation for integration

We introduce the Empirical Magic Point Interpolation method for parametric integration
presented in (Gafs et al. (2015) to approximate parametric integrals of the form

Z(hy) = /th(z) dz, p € P, (5.1)
with the parametric integrands
hy(2) = i) () 1= R(Fic (= 2)emg(2)) (5.2)
for every p = (K, T, q) in a given parameter set P. With P we associate
U:={h,: Q> R|pe P}, (5.3)

the set of all parametric integrands.
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5 Empirical interpolation with magic points

Within this chapter, the integrands h,, p € P, will be Fourier pricing integrands. The
method, however, not only applies to integrals with integrands of this kind. Instead,
integrands of more general type can be considered and their integral value can be ap-
proximately derived. We investigate this more general integration approximation routine

in |Gak and Glau| (2015)).

The approximation of functions using the Empirical Interpolation method that our in-
tegration approximation rests on has been originally introduced by Maday et al.| (2009)).
Before we present their algorithm, let us cite some basic assumptions from (Gals et al.
(2015)) that ensure the well-definedness of the iterative procedure.

Assumptions 5.1 (Approximation framework)

Let (2, ].||cc) and (P,|.]|sc) be compact, P x Q > (p,z) — hy(z) bounded and p — hy,
be sequentially continuous, i.e. for every sequence p; — p we have ||hy, — hpllc — 0.
Moreover, U is nontrivial in the sense that the set contains elements other than the
function that is constantly zero.

For M € N we define a mapping I); from U to a tensor specified by

M
L (h)(p,2) =) hp(z)0n (2) (5-4)

and the Magic Point Integration with M points by

M
= zr Mydz )
TWip) = 3 ) [ ot (5.5)
with
M
O (2) =Y (BM)hai(2), Bt = am(2)), (5.6)

where we denote by (BM )]_WIL the entry in the jth line and mth column of the inverse of
matrix BM. By definition, BM is a lower triangular matrix with unity diagonal and is
thus invertible. We could call I; the interpolator of integrands and Zy; the interpolator
of integrals. The magic points z7,...,z}, € Q and the basis functions qi,...,qn are
recursively defined in the following way:

In the first step, let

up := argmax||ul|s, 2] :=argmax|ui(z)|, q(-):= :
uel 2eQ U1(21)

(5.7)

Note that thanks to Assumptions these operations are well-defined. Then, recur-
sively, as long as there are at least M linearly independent functions in U, uas is chosen
according to a greedy procedure: The algorithm chooses ujps as the function in the set
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5 Empirical interpolation with magic points

U which is worst represented by the approximation with the previously identified M — 1
magic points and basis functions,

ups = argmax|ju — Inf—1(u)]|co- (5.8)
uelU
Since every u € U is a parametric function, u = h, for some p € P, it can be identified
by the associated parameter p. We call p}, € P identifying ups in (5.8) the Mth magic
parameter. In the same spirit, let

2y —argergax!uM z) — Inp—1(uar)(2)], (5.9)

and we call 23, the Mth magic point. The Mth basis function is the residual, normed
to 1, when evaluated at the new magic point 2},

unr(+) — Inr—1(uar)(+)
unr(23) — Inr—1(uar)(23,)

am () == (5.10)
The functionality of the empirical integration operator Zj; is thus based on magic points
and taylored to Fourier integrands and integrals. To emphasize those building blocks,
we also call the whole algorithm MagicFT method sometimes. Some general features
and properties of the algorithm outlined above are summarized by Appendix

Note the well-definedness of the operations in the iterative step thanks to Assump-
tions and the fact that the denominator in is only zero, if all functions in U
are perfectly represented by the interpolation Ip;_1. In that case, however, they span a
linear space of dimension M —1 or less and the procedure would have stopped already.

5.2 The online/offline decomposition of the algorithm

The magic point integration operator Zp; of the empirical interpolation algorithm ap-
proximates prices for a given parameter p € P from the parameter space. The operator
consists of components some of which depend on this parameter p and others that do not.
Naturally, the whole algorithm thus splits into an offline and an online phase. During the
offline phase, numerically intense computations are conducted and the respective results
are stored from which the online phase later benefits. Recall the integration operator

Iy as given in (5.5) by

M
Price? = Ty (h)(p) = Z hp( / oM, : (5.11)

m:1 online phase

I )| offline phase

The two phases the algorithm relies on can be summarized as follows.

206



5 Empirical interpolation with magic points

i) Offline phase

In the offline phase, the algorithm explores the parameter space P iteratively and
identifies in each iteration associated integrands that are approximated worst by
solving the optimization problems and . The solutions to these prob-
lems consist of integrands u,, that are worst approximated and locations 2, on
the integration domain of the respective Fourier integral where this poor approxi-
mation shows. The algorithm iteratively solves these optimization problems until
it reaches a prescribed global approximation precision. Then, basis functions g,,
are assembled from all these identified integrands resulting in functions 2/ which
are integrated and stored. The offline phase is only conducted once.

ii) Online phase
For a given parameter p € P of interest, the online phase serves the only purpose of
determining the coefficients for the integrated 8}/ functions such that the weighted
sum approximates Price’. To this end, the respective Fourier integrand h,, is
evaluated at the magic points 27, and thus those coefficients are found.

The following section provides the theoretical requirements for exponential convergence
of the algorithm.

5.3 Convergence analysis of magic point integration

A general convergence result for Magic Point Interpolation has been originally derived
in Maday et al|(2009). In|Gafs et al.| (2015)), we link their convergence result to the best
linear n-term approximation that is formally expressed by the Kolmogorov n-width. For
a real or complex normed linear space (X, || - |) and & C X, the Kolmogorov n-width is
defined as

dy(U,X) = inf inf |lg — fl, 5.12
u,x) unelf?(x,n)f,ggflélun”g il (5.12)

where £(X, n) is the set of all n dimensional subspaces of X. Denoting by (L>(£,C),||-
Hoo) the Banach space of functions mapping from Q C C? to C that are bounded in the
supremum norm we cite the following proposition from |Gafs et al.| (2015)).

Proposition 5.2 (Convergence of the empirical interpolation method)
For the set U from (5.3) and M € N

(5.4) assume Q C C¢ and Assumptions

(5.B) assume there exist constants a > log(4) and ¢ > 0 such that

dy (U, L (2,C)) < ce™ M,

Then for arbitrary € > 0 and C := {e® + ¢ we have for all uw € U that

| — I (u)||, < CMem(eloalM, (5.13)
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5.3.1 Exponential convergence of magic point integration

Proof
The proposition directly follows from Theorem 2.4 in|Maday et al.|(2009), where a slightly
different version that does not explicitly use the Kolmogorov n-width is provided. We

therefore presented a detailed version of the proof of the proposition in Appendix A
of |(Gak et al.| (2015). O

5.3.1 Exponential convergence of magic point integration

As in the previous Chapter [d] we formulate our analyticity assumptions in terms of
(generalized) Bernstein ellipses. Recall the definition of a (generalized) Bernstein ellipse
B([b,b], 0) for b < b € R and ellipse parameter ¢ > 1 from Definition . Using this
concept, we formulate two analyticity conditions in order to estimate the error resulting
from the Magic Point Interpolation method.

Conditions 5.3 (Analyticity conditions)
(5.4) The function (p,z) — hy(z) is continuous on P x Q and there exist functions
Hy:P xQ— C and Hy: P — C such that for all (p,z) € P x Q,

hp(2) = Hi(p, 2) Ha(p)

and Hy(p, z) has an extension Hy : P x B(£2, 0) — C such that, for all fized p € P
the mapping z — Hi(p,z) is analytic in the interior of the generalized Bernstein
ellipse B(Q, 0).

(6.B) The function (p,z) — hy(z) is continuous on P x 0 and there exist functions
Hy:P xQ— C and Hy : Q — C such that for all (p,z) € P X €,

hp(2) = Hi(p, 2) Hz(2)

and Hy(p, z) has an extension Hy : B(P, 0) x Q — C such that, for all fixed z € Q
the mapping p — Hy(p, z) is analytic in the interior of the generalized Bernstein
ellipse B(P, o).

Condition |(5.A)| is tailored to the case of univariate integration domains and |(5.8)| to

the case of univariate parameter spaces.

5.3.1.1 Parametric European options, generalized moments and other
univariate integrals

In the generic situation where option prices have to be evaluated for a large set of differ-
ent parameter constellations, a parametric integral of form for a high dimensional
parameter space and a univariate integration domain needs to be computed. This com-
prises many well known examples such as prices of European and exotic options and
sensitivities of these prices as expressed by the Greeks for different option and model
parameters. Also risk measures like VaR and ES and other generalized moments or
parametric univariate integrals fall into the scope of this paragraph.
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5.4.1 Examples of univariate payoff profiles

Theorem 5.4

Let Q € R and P C RP be compact. Fix some n € R, some 0 > 4 and assume
that integrability conditions (Exp) and (Int) as well as analyticity condition are
satisfied. Then for allp € P and M € N,

|hp = Tt ()|, < CM(0/4)™™
’I(hp> *IM(hp)| < C|Q|M(9/4)

where

C=—— Hy( H . 5.14
PR \ 1(p, = |I;l€a7;<| 2(p)] (5.14)

The proof is provided in|Gaf and Glaul (2015]) and in the appendix of (Gafs et al.| (2016)).

5.3.1.2 Basket options, multivariate generalized moments and other
multivariate integrals

A similar result applies to the error analysis of Magic Point Integration for basket options
for a single free parameter. Hence, real-time pricing of basket options with either varying
strikes or varying maturities in a fixed calibrated asset model could benefit. Additionally,
the computation of generalized moments such as covariances, and general multivariate
integrals with a single varying parameter in the integrand can be approximated with the
method. The result is stated in Section 4.1.2 of |Gak et al.| (2015).

5.4 Examples of payoff profiles and asset models

We apply the MagicF'T method to the pricing problem using univariate payoff profiles
and some well known Lévy asset models.

5.4.1 Examples of univariate payoff profiles

In Table we summarize a selection of payoff profiles fx for option parameter K
as function of the logarithm of the underlying asset. We state the range of possible
weight values 7 such that z +— € fx(x) € L'(R) and the respective generalized Fourier
transform exists.

Examining the generalized Fourier transforms of the payoff profiles fx in Table we
realize that all of them admit a factorization in the spirit of condition |(5.A)| as

Fr(z +in) = K¢ Hy(2) (5.15)

for some ¢ € R. While all of the payoff profiles fx of Table[5.1]either are not differentiable
or even discontinuous, the mapping z — K**7¢ is a holomorphic function and thus
perfectly fits the requirements of Theorem
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5.4.2 Examples of asset models

Type Payoff Weight Fourier transform
fk (@) n fr(z —in)
+ Kiz+1+n
Call (e — K) <-1 Gt Gatiin
Ktz+1+4n
Put (K —e®)*t >0 Gzt Giz+11n)
o . Kiz+n
Digital Loslog(K) <0 T iz
downé&out
1z+1+
Asset-or- " 1,5105(K) < -1 - Iz‘i+1+77
nothing
downé&out

Table 5.1 Typical payoff profiles for single stock options and the respective generalized
Fourier transform.

5.4.2 Examples of asset models

We present a selection of asset models that we use for pricing options in the numerical
experiments in section below. The MagicFT algorithm, as we apply it, operates
on Fourier integrands that consist of the generalized Fourier transform of the option
profile, fx, as well as the Fourier transform of the process that drives the underlying
asset at maturity, ¢7 4. Theoretically, Theorem @ requires the analytic property from
the characteristic function ¢7, of the model in the sense of condition Yet, for
some models fulfilling this requirement means strongly restricting the parameter space.
This would leave us with parameter spaces that are too limited for practical purposes.
Empirically, however, we observe that condition may be replaced by a much weaker
condition while still maintaining exponential convergence. The existence of a shared strip
of analyticity Sg(n) of width R € (0, 00)? given by

Sgr(n) =RY+i(n— R,n+ R) C C%, (5.16)

where all £ — p74(§), T € T, ¢ € Q, are analytic on, grants exponential convergence
of the algorithm, already. Enforcing such a shared strip means imposing conditions on
the model parameter space Q, too. Yet these restrictions turn out to be rather mild
compared to the stronger condition of Theorem

In the following model presentations we denote by O the parameter space that the
model as such is defined on. From this we derive admissible parameter sets Q such that
condition |(5.A)| is satisfied. If this is not possible, they are chosen to guarantee the
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5.4.2 Examples of asset models

existence of a shared strip of analyticity according to (5.16]). Throughout the following
model introductions, constant r > 0 denotes the risk-free interest rate.

5.4.2.1 Multivariate Black&Scholes model

Recall the d-variate Black&Scholes model introduced in Section 2.3.1] The parameter
space determines the underlying covariance matrix o € R¥? exclusively. Thus, Q is
defined as

Q = {q € RU*D/2| det(o(q)) > 0} ¢ RUHD/2 (5.17)

with the function o : RU4H1/2 5 RIXd defined by
0(q)ij = Qumax{i,j}—1) max{i,j}/2+min{i,j}> i,j €{1,...,d}. (5.18)

For each q € Q given by ([5.17)), the characteristic function of the d-variate Black&Scholes
model is analytic in z on the whole of C¢. We thus may choose the parameter set Q for
the MagicF'T algorithm according to the following remark.

Remark 5.5 (Q for the multivariate Black&Scholes model)
Let o; <o; € RY foralli e {1,...,d(d+1)/2}. Define

Q= {q e RUHD/2| 5. < ¢ <7y such that det(c(q)) > 0} (5.19)

with the function o given by (5.18). With the parameter set Q defined as above and
compact T C RT, the characteristic function of the Blacké9Scholes model satisfies con-

dition [(5.A)| of Theorem[5.4)

5.4.2.2 Univariate Merton jump diffusion model

We introduced the univariate Merton jump diffusion model by Merton (1976)) in Sec-
tion [2.3.2] As we have seen there, the model parameter space is given by

O={(0,a,8,)) e Rt xR xR x Rt} c R* (5.20)

and the characteristic function of X% with T € T, q € 8] computes to

o1,4(2) = exp (T (z’bz - 0222:2 + A <eizo‘622z2 - 1>>> , (5.21)

for all z € R, with no-arbitrage condition
b:r—a—)\<ea+622—1>. (5.22)
As in the univariate Black&Scholes model, for each ¢ € Q@ and T > 0, the characteristic

function ¢ 4 of the Merton model is holomorphic and the set Q for an application of the
MagicF'T algorithm to the univariate Merton model is defined by the following remark.
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5.4.2 Examples of asset models

Remark 5.6 (Q for the Merton model) B
LetggﬁeRtggaeR,ggﬁeRg and A < X € R*. Define

Q={(0,0,8,A\) R g <0 <7,
B<B<B,

IN
IN
ol

1.

With the parameter set Q defined as above and compact T C RT, the characteristic
function of the Merton model satisfies condition [(5.A)| of Theorem [5.4]

i (5.23)

>~ |9
IA
IA
>

5.4.2.3 Univariate CGMY model

Details on the CGMY model can be found in Section [2.3:3] With the model parameter
space given by

Q={(C,G,M,Y) e RT x Rf xR x (1,2)|(M —1)¥ e R} C R*, (5.24)
the associated characteristic function of X% withT €T, q¢€ Q computes to

©o1,4(2) = exp (T(z’bz + CT(-Y)

(M —iz)Y — MY +(G+iz) —G])), (5.25)

for all z € R, where I'(-) denotes the Gamma function. For no-arbitrage pricing we set
the drift b € R to

b=r—CI(-Y)[(M-1)" - MY +(G+1)¥ -G"]. (5.26)

The condition (M —1)Y € R in guarantees b € R. Contrary to the models of |Black
and Scholes (1973) and |Merton| (1976)), the domain in C that the characteristic function
of the CGMY model is analytic on does not exist independently of its parametrization.
Consequently, Theorem [5.4] does not apply to pricing in the CGMY model unless the
parameter set that the algorithm may choose from is unreasonably restricted. Yet,
empirically we maintain exponential convergence in the CGMY model case when Q and
n are chosen such that all £ — p74(£), T € T, ¢ € Q, share a common strip of analyticity
Sr(n) as introduced in depending on n € R and R > 0, the desired strip width.
In the following, we derive conditions which guarantee the existence of such a strip. The
result of our analysis will consist in a combined suggestion for the weight value n that
complies with the restriction posed by the option choice as outlined by Table and a
set of restrictions on the parameter space. These restrictions guarantee a shared strip of
analyticity as described above achieving a certain prescribed width R > 0.

Strip of analyticity for CGMY Before we are able to derive conditions on the
parameter space that originate a shared strip of analyticity, let us first determine the
strip of maximal width R > 0 that an individually parameterized characteristic function
of the CGMY model o714, T €T, q € é, is analytic on.
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5.4.2 Examples of asset models

This strip in C is derived by analyzing the characteristic function ¢4, T'€ T, q € é,
of the CGMY process on the domain of integration in of Proposition for
different weight values. Let 1 € R and consider the characteristic function ¢, on the
line

&) =&+, feR (5.27)
The values of 7 for which 7, is analytic on the associated line determine the
width of the strip of analyticity of ¢1 4. For these values of 77 € R, both mappings

€ (M —izg(€))",
€ (G +izg(€)Y
need to be analytic on R. By , we have
€ (M —izg(€))" = (M +7—i€)"

and
E (G+izg(€) = (G—n—if)".

For analyticity of these two quantities on R we need to ensure that both

M 47> 0, (5.28)
G-n>0, (5.29)
hold. Inequalities (5.28) and (5.29) yield bounds n~, n* given by
+ G
T (5.30)
n = — M.

These two bounds span the strip of analyticity Sr(n) for an individually parametrized
characteristic function of the CGMY model, wherein n = (n™ +n7)/2 = (G — M)/2 and
diameter 2R = G + M, as shown in Figure [5.1]

Now we can translate these findings to conditions on the model parameter set to derive
a compact set Q C O and a value for 1 € R that ensure a common strip of analyticity
Sr(n) for all mappings £ — ¢14(§), T € T, g € Q. From our considerations during the
derivation above and in particular by we conclude that such a Q and 7 need to
satisfy

max —M<n< min  G. (5.31)
(C,G,M,Y)eQ (C,G,MY)eQ

We limit the rest of this analysis to the case of a call option where we necessarily have
n<-1 (5.32)

by Table With G > 0 due to the model parametrization (5.24)), the second in-
equality in ((5.31]) trivially holds automatically. Combining (5.31)) and (5.32)) thus yields

condition

max —M <n< -1 (5.33)
(C,G,M,Y)eQ
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(5.34)
(5.35)
(5.36)
(5.37)

n) with

(

dY <Y €(1,2). Let R >0 and

Figure 5.1 For fixed parametrization q¢ € @, the hatched area visualizes the strip of
analyticity of the characteristic function of the CGMY process at T' € T, X7.. Its bounds
M >1+2R
(M+1)/2
€ Rg an
M) +1
Y)eQ

)

M

is satisfied. In other words, choosing Q C Q satisfying condition (5.34)) and setting
min
(C,G,M,Y)eQ
min
C,G,M
214

(

min
(C,G,M,Y)eQ

G<GeR{,1<M<

>0and M > 0.

Q={(C,G,MY)eR?

C <C eRT,

yields a strip of analyticity Sr(n) with diameter 2R that all of the mappings & — @7 4(),
define

T eT,qe 9, share. We collect and summarize these results in the following remark.

A strip width of R > 0 consequently follows if the final strip condition
Remark 5.7 (Q for the CGMY model)

All 14, T €T, q € Q, share a common strip of analyticity Sr

are determined by G

Let C <



5.4.2 Examples of asset models

While the characteristic function of the CGMY model parametrized by Q of (5.36) in
general does not satisfy condition |(5.A)| of Theorem empirically we still observe
exponential convergence of the MagicF'T algorithm.

Additionally, to avoid forcing the algorithm to support unrealistic parameter constella-
tions, impose the following additional plausibility restriction.

Remark 5.8 (Plausibility constraint on Q in the CGMY model) N
The implied variance 0%y of a CGMY process (X})i>0, ¢ = (C,G,M,Y) € Q, at
t =1 is given by

1 1

see |Carr et al| (2002). For appropriate constants 0 < o_ < o4 consider imposing the
additional condition

1 1
2 2
o2 <CT(2-Y) (MQ—Y + G2_Y> <of

for all (C,G,M,Y) € Q of Remark thus keeping supported variance levels within

reasonable bounds.

5.4.2.4 Univariate Normal Inverse Gaussian model

The Normal Inverse Gaussian (NIG) model has been introduced in Section . The
parameterization of the univariate version consists of §,a > 0, 8 € R, w1th a? > B2
The model parameter set Q is thus given by

Q= {(4,a,8) eR" xRt xR| a?> 2,a® > (8 +1)?} C R®. (5.38)

The characteristic function of X7 for this model is given by

erg(2) = exp (T (ibz +6 (Va2 = B2 — /o = (B+i2)?) )) (5.39)

forTeT,qe é, wherein the no-arbitrage condition requires
b:r—é(\/ozz —Va2—(B+1) ) (5.40)

The second condition in (5.38)), a® > (8 + 1)?, guarantees b € R.

As in the CGMY model, the analyticity condition posed by Theorem is not
satisfied by all realistic parameter choices ¢ € Q. We therefore, analogously to the
CGMY case, derive a common strip of analyticity. Yet again, empirically, exponential
convergence is still observed when a strip of analyticity is shared among all parametrized
characteristic functions p74, T € T, ¢ € Q, of interest.
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5.4.2 Examples of asset models

Strip of analyticity for univariate NIG We derive additional conditions that the
MagicF'T parameter set Q C Q for the NIG model needs to satisfy for the existence of
a shared strip of analyticity Sr(n) of a certain width R > 0.

We begin by deriving the domain in C which a characteristic function @74, T' € T,
q € Q, of the Normal Inverse Gaussian model in the one-dimensional case, is analytic
on. From ([5.39)) we observe that the characteristic function is analytic, if and only if the

mapping
z v a? — (B +iz)? (5.41)
is analytic. Let € R and let us denote the complex line z € C by
s=ap(€) =E+il,  EER (5.42)
and determine the set of possible values for 77 € R such that
€ a2 — (B+ix(¢))? (5.43)

is analytic on R. The function of (5.43)) is analytic, if the radicand of the square root
liesin C™ = {z € C|R(z) > 0} for all { € R,

R (a® — (B+iz7(€)%) >0, VEER. (5.44)
Since
of = (B+i(§+im)’ =a’— (B-0)"+€ -2 (B-7),
the function in is analytic on R whenever
?—(B—1)?2>0. (5.45)
Since by definition « > 0, the expression on the left hand side of equals zero if
n=p=*a. (5.46)
Equation thus yields bounds ™, ™ given by

+
Z _ ﬁfz (5.47)

that determine the strip Sr(n), n = (n* +77)/2 = B, R = « that an individually
parametrized characteristic function 7, of the Normal Inverse Gaussian model is ana-
lytic on as shown in Figure

Understood as a function on R, & — ¢r14(& + in), the characteristic function of the
one-dimensional NIG model, parameterized by T' € T, ¢ € Q is thus analytic on R, if

B—a=n <n<nt=B+a. (5.48)
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iR
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>
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27277 ////////// 27
27

Figure 5.2 The strip of analyticity, Sr(n), for a fix parametrization ¢ € Q in the
one-dimensional NIG model.

We can now in turn derive additional restrictions on the parametrization of the model
that guarantee the existence of a shared strip of analyticity Sr(n) with strip width R > 0
for all functions o714, T € T, ¢ € Q for some Q C é incorporating these restrictions.
Due to , the weight parameter 1 and the parameter set Q C Q that the strip Sr(n)
rests on need to satisfy

max —a<n< min + a. 5.49
(5,0475,A)€QB 1 (5704,57A)€QB ( )

We focus on the case of a call option again. There, we already know that n < —1, so
condition ((5.49)) transforms into

max —a< —1 5.50

and
—-1< min + . 5.51
(5,a,/37A)€Q6 ( )

The distance between the maximum value on the left hand side of (5.50) and —1 deter-
mines the width of the strip of analyticity. Condition (5.51]) prevents parameter choices

that narrow the common strip of analyticity or even prohibit its appearance altogether,
as Figure [5.3] shows.

We enforce a certain width R of the resulting strip. Choose R > 0. Based on condi-
tion ([5.50)), we require Q to be chosen such that

B—a<—-1-2R and B+a>—1, V(0,a, B,A) € Q (5.52)
which is equivalent to

min a—f>2R+1 and min a4+ 3> -1 (5.53)
(67a?IB7A)€Q (67a7187A)€Q
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1= 1 Il
2{ 2 I

/3 —
3= 3 13

Figure 5.3 Illustration of the necessity of condition for the existence of a common
strip of analyticity for the NIG model. The hatched area indicates the common strip
of analyticity for three parameter sets ¢; = (d;, a4, B, 1) € é, i € {1,2,3}, in the call
option case, n < —1. Since g3 violates condition , ILiNI;N1I3 = ( and a common
strip of analyticity does not exist.

Using the derived condition (5.53|), we define Q for pricing call options in the the one-
dimensional NIG model along the following remark.

Remark 5.9 (Q for the univariate NIG model)
Let §<deRt, a<@eRT and@SBER. Let R > 0 and define

Q={(0,a,8) eR*|§<6<5, a<ac<a,
<B<p
%‘ ’ N ’ ) ) (5.54)
a®>p% o> (f+1)7,
a—p>2R+1, a+p>-1}.
All o1 q, T €T, q € Q, share a common strip of analyticity Sr(n) with
( max [ — a) -1
0= (5’6"’5)692 <-1. (5.55)

While Q of (5.54)) in general does not satisfy|(5.4)| of Theorem[5.4}, empirically we still

observe exponential convergence of the MagicF'T algorithm.

Remark 5.10 (Plausibility constraint on Q in the univariate NIG model)
Let q € Q of . The tmplied variance J?WG of a univariate NIG process at t = 1,
X1, is given by

%

L — 5.56
(a2 - p2)} .

U?\/]G(év «, 5) =
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5.4.2 Examples of asset models

confer |Prause (1999). To keep volatilities supported by the MagicF'T algorithm within
reasonable bounds 0 < o_ < o4 add the final restriction

o> < oxielq) < oF, (5.57)

for all g € Q of (5:59).

5.4.2.5 Multivariate Normal Inverse Gaussian model

For the parameter space é of the d variate Normal Inverse Gaussian model consider

Section Again as in the univariate case, Condition |(5.A)| of Theorem is not
fullfilled for all ¢ € Q.

Strip of analyticity for d variate NIG We extend our analyticity analysis to the
d-variate case. Similarly to the derivation in one dimension we identify the strip in Cc?
that a d-variate characteristic function 14, T'€ T, ¢ € Q, of the d-variate NIG model
is analytic on.

In a second step, we will derive conditions from our observations that the MagicFT
algorithm parameter set Q C Q must satisfy such that all 74, ¢ € Q, share a common
strip of analyticity. Empirically this suffices for exponential error decay during the offline
phase of the MagicFT algorithm.

The analyticity of the characteristic function as given by hinges on the second
radicand therein. More precisely, analogously to the computations from in one
dimension, the analyticity of the characteristic function of the NIG model in d dimensions
depends on the analyticity of

2 a2 — (B4 iz, A(B +iz)). (5.58)

Let 77 € R? and define
p=2:(6) =&+,  £eRL (5.59)

The existence of a strip of analyticity then requires the existence of bounds n~ < 17 <
nt € R? where this inequality is to be understood component-wise such that

€ fa? = (B + izl€), A(B+ iz(€))
= Va2 — (B +i(& +in), (B +i(€ +im))

(5.60)

is analytic on R? whenever n~ < 7 < ™. Analogously to the one dimensional case,
analyticity of (b.60|) translates into positivity of the real part of the radicand for all
¢ € R The subsequent condition

R (o — (B+i(€+in), A(B+i(E+147))) >0, VEeR? (5.61)
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is equivalent to

o — (B -7, A(B—1)) >0. (5.62)
Due to the symmetry of A € R?*?  condition (5.62) is equivalent to
o — (B, AB) — 2(8, A7) + (i1, Aip)) > 0. (5.63)

Identifying for a given ¢ € Q all 77 € R? that satisfy (5.63) is a highly complex problem.
We reduce that complexity by assuming 77 to be given by
1
7=7-14 with 1= | : | e RY, 7R, (5.64)
1

thus reducing the degrees of freedom in choosing 1 to one. This restricts the generality
of possible choices for 77 € R%. In return, however, it simplifies the matter considerably.

Using ((5.64)), condition (5.63)) turns into identifying all 7 € R such that
o? = ((8,A8) — 27(8, A1) + 72(17, A1%)) > 0. (5.65)
The values of 77 € R setting the left hand side in (5.65) to zero are

(B, A1 £ /(B A19)2 + (19, A17) (o — (B,AB))
/2= (14, A19) '

Note that for d = 1 and thus A =1, (5.66)) reduces to (5.46). From ({5.66|) we infer that
the strip of analyticity of the d variate o714, T'€ T and ¢ € Q, is spanned by the two

extreme values n~, T € R? where

(5.66)

n~ =1 nt=7,1¢ (5.67)
with coefficients 777, 775 € R given by
(8, A1) — V/(B,A1%)? + (19, A1) (a® — (8, AB))

m = (17 A19) : (5.68)
d d d A1D (a2 —
o= B3+ VERTP T O A= A3 (5.69)

Let us now determine the conditions that Q has to satisfy and derive the value of n € R4
such that all d-variate NIG characteristic functions ¢74, T' € T, ¢ € Q, share a common
strip of analyticity Sgr(n), with width R > 0.

We focus on pricing call-type options for instance a call option on the minimum of d
assets, such that 7 < —1 component-wise. We thus pose onto Q the conditions that

(8,A1%) — \/(B,A19)2 + (19, A1%) (a2 — (B, AB))

-1-2
GopNeQ (14, A1) ) ’ (5.70)
e BALY) + V(B ATD? + ALY (02 - (B AB)) |
(6.0,8,0)€Q (1, A1) '
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Again, this pair of conditions comprises its one dimensional equivalent of
as a special case. Consequently, fixing R > 0, d variate characteristic functions of the
NIG model parametrized by ¢ € Q with Q C Q satisfying strip conditions share
a common strip of analyticity Sg(n) of width R > 0 with n € R? given by

max  BALITVEMDPHIIAD @2 (BAB) ) _
(@,8,6,0)€Q (19,A1%) d - od
n= 5 14 e R% (5.71)

This derivation is summarized by the following remark.

Remark 5.11 (Q for the d-dimensional NIG model)
C’hoose§<(56R+,a<a€R+B<526R26{1 Ld}, and A <),

je{l,...,d(d+1)/2}. Let R >0 and deﬁne
Q={(0,a,8,) e RFHIID21 5 < 5<5 a<ac<a,
B<pB< B componentwise, A< X<\ componentwise
det(A(N)) =1,
o’ > (B,A(N)B),
o® 2 ((B+e), AN(B+ ), Vie (1,....d}, (5.72)
(8,A19) — /(B,A19)2 + (14, A1) (a® — (B, AB))
(17 A1) < —1-2R,
(B, A1) + /{8, A19)2 + (19, A1%) (o — (B, AB)) > 1)
(19, A1%) |

All org, T €T, q € Q, share a common strip of analyticity Sr(n) with

(@BdNeQ T A0

2

< (BAN1LY)—/(BANL?+ (17 AN 1) (0~ (5, A(A)m)) ]

19eRrRY. (5.73)

and thus fulfill the empirically required condition for pricing d variate call type options
i the NIG model using the MagicF'T algorithm.

Remark 5,12 (Plausibility constraint on Q in the d-variate NIG model)
In |Prause (1999), the covariance matriz of a d dimensional NIG process at t = 1, X7,

S é, is computed to

_1 _
ZNIC = § (a? ~ (8,A8)) 72 (A+ (a? — (8,A8) " ABETA) . (5.74)
So additionally to the condition satisfied by (5.72)) of Remark one might use (5.74))

to impose additional restrictions regarding 2NC to keep supported implicit (co- Jvariances
within realistic bounds.
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5.4.2.6 The univariate Heston model

The models considered so far are all Lévy models. We now introduce the model by
Heston (1993)) that does not fall into this class but is an affine stochastic volatility
model, instead. In the univariate Heston model, the asset price process (S{)¢>o follows
the stochastic differential equation

dSE=omtR) = 5, At 4 \/vlS, AW,

(5.75)
dvf:(vo’n’e’a’p) = k(0 — v;) dt + oy /o] AWE,

with the two Brownian motions W, W2 correlated by p € [—1,1] and with ¢ € Q defined
by

Q = {(vo, k,0,0,p) € RF x Rt x RT x R* x [~1,1],02 < 2x6}. (5.76)
The Feller condition
0% < 2k0

in Q of (5.76) ensures an almost surely non-negative volatility process (vt)e>0. With T €
T, q € Q, the characteristic function @7 4 of the log-asset price process (log(S¢/So))i>0
at T is given by

prae) e 1o (G2 gy

+';—§ [(a—c)T—2log (1_geXp(_CT)>] )

I—g

(5.77)

for all z € R, with supporting functions defined by
a=a(z) =kKk—ipoz,

¢ =c(z) = Va2l — o2~z — 22),
alz) — c(z)
a(z) + ef2)

g=9(z) =

confer [Schoutens et al.| (2004). We simply choose Q C é to be a bounded subset of the
parameter space.

Remark 5.13 (Q for the univariate Heston model)
Choose bounds for the initial value of the volatility process, 0 < vy < g, for its speed of

mean reversion, 0 < k < R, the long-term volatility mean, 0 < @ < 0, and the volatility
of the wvolatility process itself, 0 < ¢ < @, and a domain for the correlation parameter,
-1 <p<p <1 Define

K< K<K
,0<0<5G,p<p<h, (5.78)
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Despite the fact that Q defined above in general might not satisfy condition |(5.A)| of
Theorem we still observe exponential convergence of the MagicF'T algorithm.

For an analysis of the strip of analyticity in the Heston model, see Levendorskii| (2012).

5.5 Numerical experiments

In the previous sections of this chapter we introduced the MagicFT algorithm for option
pricing and presented several asset models and option types. We also proved theoretical
claims for option pricing with the MagicFT algorithm. In this section we numerically
validate these theoretical claims and provide empirical indication that the scope of the
algorithm extends to a much wider class of pricing applications than suggested by the
theorems earlier.

5.5.1 Implementation

The following description is partially taken from Gafs et al| (2015 where an equivalent
implementation was used for the numerical experiments. This implementation of the
algorithm in Matlab introduces some simplifications. The continuous parameter space
‘P is replaced by a discrete parameter cloud randomly sampled. Each magic parameter
that the algorithm selects is a member of this discrete set. Consequently, the set U
that the algorithm is trained on is replaced by a discrete set, as well. Additionally, we
take € to be a discrete set with a finite number of points in each spacial dimension
distributed along a logarithmic allocation. Each function u € U is then represented
by its evaluation on this discrete €2 and is thus replaced by a finite-dimensional vector,
numerically. The optimization steps from f thus reduce to a search on finite
sets. When all hy: € U for m = 1,..., M are identified, they are integrated using
Matlab’s quadgk routine (with an absolute tolerance requirement of 10714, a relative
tolerance requirement of 107'2, a maximum number of intervals of 200000) and linearly
assembled to derive the quantities [, 027 (z)dz for m =1,..., M.

5.5.2 Empirical convergence

We study the empirical convergence of our implementation of the MagicFT pricing al-
gorithm. A plain vanilla European call option on one asset serves as an example. We
investigate the convergence in several models. For each model we set up a pool U of
parametrized Fourier integrands that the algorithm picks from. For each model, the
discrete parameter pool is chosen as a uniform sample of magnitude |P| = 6000 from the
free parameter ranges enlisted in Table [5.2]
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5.5.2 Empirical convergence

Model Fixed parameters Free parameters

BS K=1 So/K € [0.5, 2], T €10.1, 1.5],
o€ (0.1, 0.9]

Merton K=1 So/K € 0.5, 2], T €[0.1, 1.5],
o € (0.1, 0.7], a€[-0.2, 0.2],
B € [0.01, 0.3], A€ [1075, 3]

NIG K=1 So/K € [0.5, 2], T e€[0.1, 1.5],
a € [1075, 3], B e [-3, 3],
§€[0.2, 1]

CGMY K =1, Y=11 So/K € [0.5, 2], T € (0.1, 1.5],
C €[107°, 1], G € [0, 25],
M € [0, 30]

Heston K=1, k=2, So/K € [0.5, 2], T €[0.1, 1.5],

o =0.15 v € [0.22, 0.3%], 6 €[0.152, 0.35?],

pe [_17 1]

Table 5.2 In the numerical experiments, we price European call options as an example.
Various models have been selected. In the implementation, the Fourier integrands that
the algorithm constructs the basis functions ¢, with are parametrized according to the
intervals above. For each model investigated, U consists of a pool of |[U/| = 6000 Fourier
integrands.

Additionally, for the NIG and CGMY model, a shared strip of analyticity of width
R = 1/2 is enforced such that for all investigated models, the dampening factor 7 could
be set to n = —1.5. Furthermore, all model restrictions stated in Section are
respected. Also, implied variances are kept in the interval [0.012,0.8%]. Each Fourier
integrand is evaluated on a discrete 2 C [0, 75] with |2| = 1750. The individual w; € €,
i€{1,...,1750}, are distributed on a log scale.

Figure [5.4] shows the empirically observed error decay during the offline phase of the

algorithm for all five considered models in the number of basis functions M. For each

model, the quantity maé<|uM (2) —Iar—1(uar)(z)| is shown for increasing values of M. The
ze

algorithm has been instructed to construct basis functions g, until an error threshold of
10~ '% has been reached in step or until M has reached the value 50. We observe
exponential error decay in all considered models. Recall that Theorem predicts this
behavior only for the Black&Scholes and the Merton model where analyticity of the
associated Fourier integrands is parameter independent. For the other two Lévy models,
however, the existence of a shared strip of analyticity results in exponential error decay,
as well. In case of the Heston model, the issue of analyticity of the Fourier integrands
in U has not been investigated here. Still, we observe exponential error decay too. The
empirical results depicted in Figure thus indicate that it might be promising to
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MagicFT offline error decay on U
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Figure 5.4 A study of the empirical order of convergence of the error in step
during the offline phase of the MagicF'T algorithm. Five different models and European
call options are considered. Both the models and the option are parametrized according
to Table 5.2l The convergence result is theoretically backed by Theorem [5.4] for the
Black&Scholes and the Merton model. A shared strip of analyticity of the respective
Fourier integrands of width R = 1/2 has been enforced for the NIG and CGMY model.
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MagicF'T pricing error decay
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Figure 5.5 Pricing error decay study on 1000 out of sample parameter constellations
for different models. In each model, for increasing values of M, the L*° error over the
randomly drawn parameter sets is evaluated. The parameter sets have been drawn from
the intervals given by Table

investigate a theoretical result providing exponential error decay beyond the scope of
Theorem [5.4

5.5.3 Out of sample pricing study

In the previous paragraph we studied empirical convergence during the offline phase of the
algorithm. More precisely, we investigated for several models how accurately all Fourier
integrands in the given pool U could be approximated on their integration interval {2 by
the M selected integrands or rather by the basis functions ¢,,, m = 1,..., M, constructed
thereof. Now we analyze, how the observed accuracy on the level of in sample integrands
translates to the accuracy in an out of sample call option pricing exercise.

To this extent we randomly draw 1000 parameter constellations for each model according
to the same rules as in the offline phase. For each such sample we compute the respective
Fourier price by numerical integration on [0, 75] thus containing the discrete € that the
MagicF'T algorithm has been trained on. We integrate using Matlab’s quadgk with
absolute tolerance of 1072 and 200,000 integration intervals. Additionally, in each
model we approximate all prices associated with the randomly drawn parameters for
increasing values of M, evaluate the L error and study its decay in M as depicted in
Figure
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5.5.4 Individual case studies

We observe exponential rates for all considered models. Curiously, the error decay attains
plateau-like shapes, especially for higher values of M. We explain this decay structure
by assuming that each plateau is associated with a certain single parameter realization
from the random sample that dominates the L error until a magic parameter close to it
or rather the respective basis function contributes to the approximation of the belonging
price. Due to such outliers, the order in which the offline phase errors were decaying in
Figure [5.4] has changed.

In Figure[5.6| we depict evaluations of the absolute as well as the relative pricing errors for
all out of sample parameter sets, individually. Here, relative errors have been computed
only for prices larger than 102 to exclude numerical noise. In each model, M is set to
its final value assigned during the respective model’s offline phase and can be read off

from Figure [5.4

Pricing accuracy in this out of sample pricing exercise reaches very satisfactory levels al-
beit the achieved accuracies vary between the considered models. For all models, average
absolute pricing accuracy reaches levels between avg,, =~ 107!? in the Black&Scholes
model and avg, .. ~ 10710 for the CGMY model. Average relative pricing accuracy
ranges between 10! and 10~°. We observe individual outliers for all models. The ten
worst (largest) absolute errors together with the ten best (smallest) absolute errors in
each model are further addressed in the next section.

5.5.4 Individual case studies

We take a closer look into the numerical results for each model individually. We are
interested in the distribution of the magic points as well as the distribution of the magic
parameters that the algorithm picked. Figure[5.7shows some basis functions g, from the
Black&Scholes model and the Merton model that the algorithm constructed evaluated
over the domain (2.

Figure [5.8] displays basis functions for the approximation of prices in the NIG and the
CGMY model and finally Figure depicts basis functions for approximation of prices
in the Heston model.

Intersections of basis functions ¢, with the Q axis correspond to the location of magic
points. An accumulation of such magic points at the origin reveals that the Fourier in-
tegrands of the respective model possess the largest variation there. Differences between
the five models for example with respect to the distribution of magic points reflect the
different structure of the underlying Fourier integrands that all seem to possess a certain
model specific nature.

After this assessment of the magic points let us now analyze the distribution of magic
parameters in each model.
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Figure 5.6 Results of the out of sample pricing exercise. For each of the five considered
models, 1000 parameter sets have been drawn from the intervals given by Table[5.2] For
each set, the Fourier price as well as the MagicF'T price have been calculated. On the
left column, all absolute errors are depicted. On the right, the relative errors are shown.
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Figure 5.7 Some exemplary ¢, basis functions in the Black&Scholes model and the

Merton model. Intersections with the Q2-axis mark the location of magic points. In both
cases, magic points accumulate close to the origin.

two other parameters Syp/K and maturity 7" were allowed to vary within the bounds
assigned by Table In the Black&Scholes case, the individual parameter intervals
tensorize meaning that any combination of parameter values respecting the individual
bounds can be picked by the algorithm. As Figure demonstrates for the magic
parameter choices for Sp/K and T, however, rather extreme constellations have been
selected. Figure [5.11]| provides a complete overview over all parameter combinations
selected in the offline phase of the algorithm for the Black&Scholes model. With the
exception of T" and ¢ combinations, rather extreme parameter pairs have been selected.
This special behavior is not surprising, since 1" and ¢ always appear together as a product
in the Fourier integrands of the Black&Scholes model, compare the definition of the
characteristic function in the Black&Scholes model in . The even distribution of the
(T, o) parameter pairs thus reflects the even distribution of all individual parameters over
their domain, observable on the elements on the main diagonal of the figure. Additionally,
the paper illustrates parameter areas that are particularly challenging for the MagicF'T
algorithm to approximate together with those that the algorithm is well prepared for.
Counterintuitively at first, orange parameter sets that resulted in the largest absolute
errors are often to be found in close proximity to selected magic parameters. And
green parameter sets the associated prices of which could be best approximated by the
algorithm lie in fallow fields. On second thought, however, this result corresponds to the
rule according to which magic parameters have been selected during the offline phase.
Parameter areas densely populated by magic parameters are precisely those that the
algorithm is facing the largest challenges in. Empty areas by contrast can already be
sufficiently approximated be the previously selected magic parameters.
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Figure 5.8 Some exemplary g,, basis functions in the NIG and CGMY model. Inter-
sections with the {2-axis mark the location of magic points.

Merton We perform the same analysis for the Merton model. Apart from the Eu-
ropean call option strike parameter K = 1, all other parameters were allowed to vary
within the intervals of Table Figure displays the distribution of the magic
parameters together with the randomly drawn parameter constellations of the out of
sample pricing accuracy study that resulted in the ten largest absolute pricing errors.
Again, orange parameter constellations in Figure which indicate large pricing in-
accuracies, seem to particularly occur in areas densely populated by magic parameters
— areas which we would thus expect a rather high accuracy in pricing from. Yet, again
we see from the definition of ujs in , during the offline phase, magic parameters are
chosen precisely where the approximation of the algorithm is worst. An accumulation
of magic parameters at one location indicates rather diverse shapes of the Fourier inte-
grands parametrized in this very location. In other words, in subsets of the parameter
space where magic parameters accumulate, pricing is especially challenging for the Mag-
icFT algorithm. This interpretation is confirmed by the location of the green parameter
sets marking those constellations that the algorithm approximated best.

NIG, CGMY & Heston Figure depicts the parameter clouds for the free pa-
rameters in our parametrization of the NIG model. Note in the («, $) combinations the
effect of model restriction a? > 32. Figure illustrates the magic parameter distribu-
tion for the CGMY model and Figure [5.15] finally visualizes the magic parameter choices
for the Heston model together with those out of sample draws that lead to the ten worst
and the ten best pricing results.
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Some exemplary ¢,,, Heston
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Figure 5.9 Some exemplary g, basis functions in the Heston model. In contrast to the
four Lévy models displayed in Figure and Figure the magic points are rather
equally spread over the whole domain €.
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Figure 5.10 Parameter pairs (Sp/ K, T') selected by the MagicFT algorithm in the offline
phase of the Black&Scholes model.
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Figure 5.11 All magic parameters selected during the offline phase of the algorithm for
the Black&Scholes model (empty blue circles). The filled orange circles denote the ten
parameter constellations that resulted in the maximal absolute pricing errors during the
out of sample pricing exercise. In contrast, the filled green circles mark the location of
the ten parameter constellations that yielded the best approximate pricing results.
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Figure 5.12 The distribution of magic parameters in the Merton model (blue empty
circles) together with those randomly drawn parameter samples that resulted in the ten
largest absolute pricing errors in the out of sample pricing exercise (filled orange circles).
The filled green circles, by comparison, mark the location of parameter constellations
that the algorithm could handle best.
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Figure 5.13 Distribution of NIG magic parameters (blue empty circles) and randomly
drawn parameter constellations resulting in the ten largest (orange) and the ten smallest
(green) absolute pricing errors during the out of sample pricing study.
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Figure 5.14 Magic parameters (blue empty circles) and randomly drawn parameter
constellations resulting in the ten largest absolute pricing errors marked in orange and
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study in the CGMY model case.
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Figure 5.15 An overview over the distribution of magic parameters (blue empty circles)
and the randomly drawn parameter combinations resulting in the ten largest absolute
pricing errors (orange) in the Heston model. Equivalently, those random parameter
constellations the prices of which could be best approximated are depicted (colored in
green). Note the especially extreme combinations of selected T and p values.
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5.5.5 Comparison with Chebyshev interpolation

Finally, we compare the numerical performance of the MagicFT method to a different
pricing method using another interpolation. In Chapter[d we presented a pricing method
based on the Chebyshev polynomials. There, prices are interpreted as functions of a set p
of model and option parameters and approximated by a linear combination of Chebyshev
coefficients ¢;, j € J, independent of p and associated Chebyshev polynomials T}, j € J,
depending on p,

Price? ~ Z ¢;T(p) (5.79)
jeJ
for a certain index set J. In the univariate case where J = {0,..., N} for some N € N,

the Chebyshev polynomials T}, j € J, are given by
Tj(x) = cos(j arccos(z)), x e [—1,1]. (5.80)

Consequently, they are not adapted to the problem that the approximation method is
applied to. The coefficients c;, j € J, are defined by a sum of precomputed prices PriceP*
for certain parameter sets pg, k € {0,..., N}, in the parameter space.

Both algorithms thus resemble each other in the sense that they consist of an offline
phase where prices for certain parameter constellations are precomputed and stored,
and an online phase during which these precomputed quantities are added with weights
depending on the parameter set of interest. Yet, while the MagicFT algorithm decides
for itself which parameters to pick, the Chebyshev method fixes them in advance. Ad-
ditionally, while the MagicF'T algorithm iteratively constructs its basis functions, the
Chebyshev method relies on the given Chebyshev polynomials of . And finally,
while the MagicFT algorithm approximates Fourier integrands, the Chebyshev method
approximates prices directly.

With these given similarities and differences in mind we compare the Chebyshev approx-
imation method to the MagicFT algorithm in three aspects:

i) How are the parameters that are selected during the offline phase distributed in
the parameter space in both methods?

ii) How do the basis functions of both algorithms compare?

iii) How accurately are prices approximated by both approaches in a comparable
setting?

We study these questions in an elementary setting by applying both algorithms to the
pricing of FKuropean call options on one asset in the Black&Scholes model with the
Blacké&Scholes volatility o > 0 being the only free parameter. More precisely, we fix a
maturity T' > 0, a strike value K > 0 and the current value of the underlying stock Sy >
0, disregard interest rates, » = 0, and interpret call option prices in the Black&Scholes
model as a function of 0 € [Omin, Omax)s 0 < Omin < Tmax < 1. Since the (univariate)
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Chebyshev method is defined for normed parameter intervals, p € [—1, 1], we introduce
the transformation 7 : [—1,1] = [0min, Omax],

1 1
7(0) = Omin + (Omax — Umin) (2 + 20'> , (5.81)
and approximate the Black&Scholes price [omin, Omax] 2 0 +— Price®To by the Cheby-
shev method using
[—1,1] 3 p = I (Price’To=70)) (p) (5.82)

wherein Iﬁheby is the Chebyshev interpolator of (2.2) in |Gak et al.| (2016), respec-
tively (4.2)) in Chapter 4} and by the MagicFT algorithm using

M
1 _
(ains O] 375 5= 3 Frlesioramalei) [ M@ (89

m=1

To keep the two approximations roughly comparable, we provide both methods with a
similar number of Chebyshev polynomials or magic points by choosing N = M through-
out this study.

In defining the parameter space we choose o, = 0.1 and opax = 0.7 and fix today’s
value of the underlying at Sy = 2.2. The call option strike K = 2 and the time to
maturity T = 1 are kept constant.

We run the offline phase of the MagicFT algorithm until M = 10 basis functions ¢, out
of a pool U with |[U| = 6000 are identified. The pool U is parameterized by a randomly
drawn sample of uniformly distributed o values, omin < 0 < omax. Associated with these
basis functions are 10 pairs of magic points and magic parameters (2}, p;), 1 < k < 10.

Equivalently, we prepare the Chebyshev method setting N = M = 10 and run the
precomputational offline phase deriving the coefficients ¢;, 0 < j < 10, by computing
European Black&Scholes call option prices at prespecified and application independent
Chebyshev nodes pi € [T (0min), 7~} (0max)], 0 < k < N. In both offline phases, all pre-
computed prices are derived using numerical integration of the respective Black&Scholes
Fourier integrand. Consequently, the influence of numerical integration is the same for
both methods. Figure depicts the set of magic parameters chosen by the MagicFT
algorithm and the set of Chebyshev nodes. Associated with these parameter sets are the
two sets of basis functions. Again, the set of interpolands ¢,,, 1 < m < M, constructed
by the MagicFT algorithm is model adapted. Fach ¢, consists of a linear combina-
tion of Fourier integrands parametrized by the associated magic parameter. The set of
Chebyshev polynomials on the other hand is application independently defined by .

Figure shows the first five MagicF'T basis functions ¢, . . ., g5 as well as the first five
Chebyshev polynomials 77, ..., 5. The explanatory power of this comparison is of course
limited. While linear combinations of the MagicF'T basis functions approximate Fourier
integrands on their integration domain €2, linear combinations of the Chebyshev polyno-
mials approximate prices on the (normed) parameter domain [7!(omin), 771 (0max)]-
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L o  MagicFT Parameters|
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Figure 5.16 Comparison between the distribution of the M = 10 magic parameters
0.1 = opin < Pi, < Omax = 0.7, 1 <k < M, and the N+1 Chebyshev nodes —1 < p;, <1,
0 <k <N, where N = M. While the magic parameters have been selected by the
MagicF'T algorithm, the Chebyshev nodes are given by a model independent construction
using a set of construction points equidistantly spaced on the semicircle as indicated in
the figure. Interestingly, both sets are similarly distributed over the (normed) parameter
space.
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Figure 5.17 Left: The first five basis functions ¢, . . ., g5 as constructed by the MagicFT
algorithm in the Black&Scholes call option setting of this study. Each ¢; consist of a
linear combination of Fourier integrands evaluated over © = [0,75]. The intersections
with the ) axis mark the location of magic points z,. The magic points accumulate
close to the origin indicating the strongest variations among all Fourier integrands in the
set U there. Right: The first five Chebyshev polynomials 71, ..., Ts evaluated over their
domain [—1,1].

Finally, we apply both methods to compute prices for a large discrete set of volatility
values oy, k € {0,...,1500}, on an equidistant grid,

(Omax — Omin), k€ {0,...,1500}, (5.84)

Ok = Omin t+ 1500
spanning the whole parameter space. Figure depicts the results of the pricing ac-
curacy study. Prices of both the MagicFT algorithm and the Chebyshev method are
compared to Matlab’s blsprice routine. The accuracy of both methods is similar. In-
tersections of both error curves with the o axis or, put differently, points of perfect pricing
results identify the position of magic parameters or Chebyshev nodes, respectively.
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%106 Pricing Accuracy (N=M=10)

MagicFT
— - — - Chebyshev

Figure 5.18 Pricing errors in both methods for 1501 volatility values. The magnitude
of the error is the same for both methods and of order 107%. Intersections of the solid
curve with the o axis mark the location of a magic parameter. Similarly, o values at the
intersection of the dashed curve with the ¢ axis are associated with the location of the
respective Chebyshev node in the normed parameter space. Both magic parameters and
(appropriately scaled) Chebyshev nodes have been additionally highlighted.

5.6 A review of the interpolation operator

We take a closer look at the interpolation operator I; that we used for the interpolation
of Fourier integrands above. During the offline phase it iteratively interpolates basis
function candidates to identify the one which is worst represented by the basis functions
that have already been constructed. During the online phase it allows the approximate
evaluation of functions on the domain €2.

To meet both expectations satisfactorily, the interpolation operator must be evaluable
quickly for each admissible function and for arbitrary points on the domain. At first
sight, the linear dependence of the operator on the individual basis functions grants this
feature immediately. On second thought, however, we recognize that each basis function
itself depends recursively on the basis functions previously generated. The interpolation
operator Iy, inherits this structure which in general prevents fast evaluation calls espe-
cially for large values of M. In this section we illustrate the problem sketched above
in more detail and comment on the fact why this topic was not an issue in our imple-
mentation above. We explain why nevertheless it becomes an issue when dim(€2) > 1.
Therefore we resolve the recursive dependence of the operator Ip; on the basis functions
in the final section of this chapter.

For convenience, Algorithm [2] restates the Empirical Interpolation method of Maday]
et al. (2009) that we already described in detail in Section above.
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Algorithm 2 Empirical Interpolation (EI)

1: Let © C R? be a bounded domain
2: Let P be some parameter space
3: Let further U be a set of parametric functions

4: U={ulp): Q= R, peP}
5: function INTERPOLATION OPERATOR Ijr(u)(€)
6:  return Iy (u)(€) = 177, u(€)0) (¢)
7 with )
8 oM (&) =M, (BM) ' a(9),  BYM =q(&),
9: where the set of magic points Thy = {&1,...,6m} C Q and the set of basis
functions {q1,...,qum} are recursively defined by

10: up = argmax ||ul| ;

uelU
11: &1 = arg max |uq (§)]

£eq
12: () = ul

¢ u1(&1)

13: and for M > 1 by
14: upr = argmax ||u — Inr—1(w)]| oo

uel
15: §n = argmax |upg (§) — Ing—1(uar)(€)]

£eq

) N — ()= (uar) ()

16: qm () = un (En)—Inr—1(une)(€mr)

Algorithm [2]is stated continuously. In numerical applications, however, it is implemented
discretely, instead. For that matter, several simplifications are introduced. We state
these simplifications in the univariate case, d = 1. Then, instead of a continuous domain
) we consider a discrete subset Qqiscr. = {w1,...,wn} C Q and instead of the continuous
parameter set P we introduce a discrete subset Pgiser = {p1,...,Px} C P. As a conse-
quence of these changes, U is replaced by Udiser = {; = (u(p;i)(w1), ..., u(pi)(wn)) | pi €
Paisers 1 € {1,..., K}} € RY with [Ugiser| = |Paiser] = K. Consequently, all resources of
the algorithm become discrete and finite, as Algorithm [3| shows.

The optimization steps in line [T4] and line [T5] of Algorithm [3] fully consist of finding
maxima on discrete sets and thus do not rely on special optimization routines. For
N, K € N, the set of basis functions ¢;, i € {1,..., M}, can be constructed by iteratively
considering all K basis function candidate vectors @i; € UV, i € {1,... K}, and all N
magic point candidates w; € QU j € {1,..., N}, or all N components of the involved
vectors, respectively.

Remark 5.14 (Advantages of the discrete implementation)

For d =1 using the discrete Algorithm |5 to approzimate its continuous analogon, yields
satisfying results for N and K large enough such that the parameter domain £ and
the parameter set P are represented reasonably well by their discrete counterparts, see
the numerical results in Section above where we present the results of applying the
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Algorithm 3 Discrete EI algorithm, d =1
1: Let Qgiser. be a finite, discrete set in R, [Qgiser.] = N €N, Q = {w1,...,wn}
2: Let Pgiser. be some finite parameter set in R, |Pgiser.| = K € N
3: Let further Ugiser. be a finite set of parametrized vectors on Qgiser., |[Udiser.| = K € N
4: function DISCRETE INTERPOLATION OPERATOR Ip/*“%(u)

5: return {5 (@) = Zf\il a; (1) q;
6: with a; € R, i € {1,..., M}, depending on @ and given by
T Qa=(@w,....aw), QeRMM Q;=g"
8 where the set of magic indices {t1,...,cp} C {1,..., N} and the set of basis
vectors {qi,...,qwm} are recursively defined by
9: Uy = arg max _max ﬁl(j)‘
U EUgiscr i:17~~'1Kj:1""’N
10: L] =argmax;_; Ugj)‘
11: 51 = Wy
o 1 -
12: = U
a1 ﬁgq 1 .
13:  and for M > 1 with 7 = @; — I$8 (@;), i € {1,..., N}, by
14: Uy = arg max ~ max ng))
i EUgiscr i:L“'vK]G{l’""N}
-
: M = argmax |7,
i=1,..,N
16: EM = Wiy, _
17: dm = leMT (@ — T3PS (@)
M

(discrete) EI algorithm to Fourier pricing. In the application we considered, the main
advantages of implementing the EI algorithm discretely consisted in a fast offline phase,
low storage costs and in avoiding the numerical misidentification of global maxima in
lme and lme by considering the whole (discrete) domain in l’me instead. In our
experiments for the one-dimensional case, d = 1, we thus observe good results regarding
both approzimation accuracy and numerical cost.

The advantages sketched in Remark [5.14] are empirically validated by our numerical
pricing experiments in Section [5.5] above. Unfortunately, these advantages vanish, when
the dimensionality of the problem increases to d > 1.

Remark 5.15 (Disadvantages of the discrete implementation for d > 1)

The discrete Algom‘thm‘/@.can be naturally extended for the multivariate case, d > 1,
by replacing vectors with matrices. For d > 1, however, the tradeoff between N and
K large enough to provide giser and Ugiser with enough richness and N and K small
enough such that the numerical cost remains bearable can in general hardly be maintained.
The antagonism between approrimation precision and acceptable numerical complexity
arises. This antagonism consists of two aspects, storage and computational speed. The
requirements to the physical storage in the discrete setting outlined above are of order N®-
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K, when the pool of basis function candidates Ugser 1s explicitly constructed and stored to
select the basis function candidates @;, i € {1,..., M}, from. Assuming reasonable values
for N and K, this threshold is exceeded in our experiments for d = 2, by far. One can
avoid these demands to physical storage by evaluating in step M each of the K — (M —1)
remaining basis function candidates in U and their interpolation iteratively over Q®ser
and storing the respective mazimum absolute value max;e 1, . N} |f.(j)| of all components
for each residual .. This approach results in a number of function evaluations of order
N9 . K in each step of identifying the next basis function {y;. As a consequence, the
offline phase is prolonged considerably with respect to computational time.

We conclude that the discrete implementation provided by Algorithm [3] for approximat-
ing the continuous Empirical Interpolation method described in Algorithm [2] reaches its
limits of feasibility when d > 1. To avoid both, the indicated storage requirements and
the alternative of processing a large amount of function evaluations during the offline
phase one needs to implement the Empirical Interpolation method not discretely but
continuously, instead.

5.7 Non-recursive empirical interpolation

From the description of the Empirical Interpolation in Algorithm [2] we understand, that
the definition of the interpolation operator I; introduces a recursive pattern into the
definition of the interpolating basis functions ¢;, 1 < ¢ < M, as defined in line

In a discrete implementation of the algorithm, this recursion is seamlessly adopted. As
we see in line[17] each basis function vector ¢y depends on @y and all previously selected
basis function vectors ¢;, i € {1,..., M —1}. Thus, recursively, each basis function vector
gy depends on all previously selected basis function candidates u;, ¢ € {1,..., M},
but the precise design of that recursive dependence is hidden and of no relevance to a
proper functioning of the discrete implementation. Once the basis function vectors ¢,
i€ {l,..., M}, have been computed, they can be stored and each of their components
can be accessed, directly. In other words, each basis function vector ¢, i € {1,..., M},
can be evaluated over QU5 immediately. An application of the discrete Interpolation
Operator I]‘e}scr of Algorithm [3| thus consists of solving an equation system and adding a
(weighted) sum of vectors.

In a continuous implementation, this feature is lost. A numerical evaluation of a (weighted)
sumof u; €U, i € {1,...,N}, for some N € N at some £ € €2 on a continuous 2 relies on
the evaluation of each individual w;, i € {1,..., N}, at £ € Q and the subsequent com-
position of the (weighted) sum. The interpolation operator I; of Algorithm [2| consists
of such a weighted sum of u;, i € {1,..., M}. By its definition in line |§|, the evaluation
of Ins(u) at & € § relies on the evaluation of HJM at  for all j € {1,...,M}. By their
definition in line |8} each of these 0?/[ relies on the evaluation of ¢;, i € {1,..., M}. While
by line @, q1 only depends on uy1, each of the other basis functions ¢; with 2 <7 < M is
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defined via an evaluation of both u; and an additional call to the interpolation operator
Iifl-

This recursion therefore numerically complicates the process of identifying uj; during
the offline phase, especially for large values of M. Then, a naive call of Iy triggers a
recursion that comes at an immense numerical cost.

Remark 5.16 (Complexity of the recursive interpolation operatox Ins(+))

Let M € N and consider the recursive interpolation operator of Algorithm |4 Let u € U
and £ € Q. For an evaluation of Ipr(u)(§), the interpolation operator calls the chosen
basis functions ¢;, i € {1,...,M}. By its definition in line q1 depends on uy only,
while each of the other q;, i € {2,..., M}, depends on w; and I;—1(u;), letting the inter-
polation operator reappear. Thus, each q;, i € {2,..., M}, depends multiply on all g;,

j€{l,...,i—1}. The scheme of this recursive dependence of In; on the basis functions
gi, © € {1,..., M}, is visualized in Figure for the case of M = 4. Ultimately, an
evaluation of Ins(u)(§) translates into evaluations w;(§), i € {1,..., M}, where due to

the recursive definition of the operator, each u; will be evaluated several times at & and
the results will be weighted and summed up. In total, a naive, recursive call of Ips(u)(&)
results in

M M
Z #{elementary function evaluations triggered by qr} = Z ok=l — oM _q
k=1 k=1
elementary function evaluations of the u;, i € {1,..., M}, which were chosen during the

offline phase of the algorithm.

As Remark underlines, the fully recursive Empirical Interpolation operator Ips(-) is
numerically unfeasible. Due to its recursive structure, naive evaluations of the operator
result in computation times that increase exponentially in M. Especially in a non-
discrete implementation of the algorithm in combination with optimization routines for
lines [14] and [I5] this runtime behavior diminishes the practical value of the algorithm in
its current form.

A closer look at the definition of the interpolation operator Ips(-) reveals, that for given
u € U and £ € Q we do not have to expand each qx, k € {1,..., M}, multiple times until
the level of the elementary function evaluations u;, ¢ € {1,...,k}, in order to evaluate
Inr(u)(§). Instead, once gi(§), k € {1,..., M}, is computed, we store this function value.
For the evaluation of gj1(&) we then only need to compute ug11(€), access all previously
stored values q1(&), ..., qrx(§) and add them in the correct way,

Gk1(8) = ¢ (uppa(§) — Ik(wm)( )

k
=c uk+1(f) - ZZ uk 5] %(5)

i=1 j=1 (5.85)

k
i=1
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Figure 5.19 Visualization of the complexity of the (fully recursive) Empirical Interpo-
lation operator Ips(-) of Algorithm [2| for M = 4. Evaluating Ip(u)(&) for some u € U
and some & € Q results in function calls ¢;(€), i € {1,..., M}, which ultimately trans-
late into elementary function evaluations w;(§), i € {1,...,M}. A rectangularly boxed
ui, © € {1,..., M}, denotes such a function call of u; at £&. Due to the special kind of
recursive dependence of each basis function ¢, k¥ € {2,..., M}, on all previous basis
functions ¢;, | € {1,...,k — 1}, the number of elementary function calls generated by g,
increases exponentially in k.

with ¢ = 1/ (ur 1 (Sht1) = Te(urgr) (€r41)) and o = 5 (BF)un(§), i € {1, k).
By this approach, the recursive structure of is reduced to a linear relation shown in
0. 20)

Remark 5.17 (Complexity of the semi-recursive interpolation operator Ips(-))
Let M € N, u e U and & € Q. For the computation of Ins(u)(€) we need only

M M
Z #{elementary operations to derive qi(§)} = k=
k=1 k=1

M(M +1)
2

elementary operations when intermediary results qi (&) are saved, once they are computed.
This reduced the complexity of evaluating the Empirical Interpolation operator signifi-
cantly, as[5.20 demonstrates. Note, however, that these intermediary results all depend
on a & € Q that needs to be fized beforehand. For a repeated evaluation of Ip(u)(§) for
different values € € 2, the semi-recursion depicted in[5.20 needs to be resolved, repeatedly,
for each such & € Q individually.

Saving intermediary results in the evaluation of Ips(u)(§) for given u € U and § € Q
reduces the complexity of recursion of the interpolation operator significantly, as Re-
mark and Figure demonstrate. This already allows continuous implementa-
tions of the algorithm with optimization routines looking for optimal u € U and £ € Q2
that maximize the quantities in lines [I4] and [I5] in iteration M of the offline phase. By
such a continuous implementation, storage limitations as mentioned in Remark are
avoided. Yet, for given u € U, the quantities in this semi-recursive conception of the
interpolation operator Ips(-), depend on £ € Q, see Equation . Thus, a repeated
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b db o w@ D

Figure 5.20 Visualization of the complexity of the (semi-recursive) Empirical Interpo-
lation operator Ips(-) when intermediate results are saved. Again we chose M = 4. The
recursive definition of each gi(€) is resolved only once and the result is stored. As a
consequence, the exponentially recursive scheme of reduces dramatically. Each wu;,
1€ {1,..., M}, is evaluated only once.

evaluation of Ips(u)(§), the interpolated version of some u € U at different £ € Q can
become numerically costly, as well. This is the case for example, when the numerical
evaluation of an integral of a function containing Ips(u) is concerned.

Therefore, we are interested in a non-recursive representation of the basis functions gy,
1 < k < M. By this we mean a representation of each ¢z, 1 < k < M, in terms of
a weighted sum of u;, 1 < i < k, with explicitly given coefficients. If we were able to
evaluate the interpolation operator Ij; without relying on a recursive evaluation of all
qr, 1 <k < M, in a numerically stable way, we could further speed up the offline phase
considerably.

We introduce some quantities that will play the key roles in deriving a non-recursive
expression for the interpolation operator Ij; and discuss some of their properties. Let
M € N and define

™ = ul(gl)a (5 86)
v = up(En) — Iu-1(unr) (€)M > 1,
and )
W
P =" 1<ij<M, (5.87)
T
with ' .
wf = ((BY) (@) . 1<ij<M (5.58)

the i-th component of the vector generated by multiplying the inverse of BM with the
J-th function u; to be selected from the pool U in line [14] evaluated at all magic points.
Note that wl(] )is in a sense independent of M. This property is inherited from BM being
a lower triangular matrix (and thus (B™)~! being a lower triangular matrix, as well).
Additionally, with M’ > M, by definition, Bi]}/[ = B%/ for i,7 < M and B{‘;ﬂ = 0 for
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i<M,M<j<M,

BM

= O O O

0

0

0

q(€rv1) - qm(§m) 0
. . 0

1

além) o am@wr) - awr—1(&ar)
and since BM is a lower triangular matrix we equivalently have (BM); ! y = (BM /) ! for
1,5 < M and (BM/)Z-;1 =0fori< M, M < j< M, as well.

Consequently, for 7,7 < M < M’ we have
1 —1 N 1 ’
wl) = ((BM) (€)= ((BM) (@ >> . (5.59)

The wz(j ), 1,7 < M, play a key role in the non-recursive representation of the basis

functions ¢;, i < M. Due to property (5.89)) each ng ), 1,7 < M, needs to be computed
only once during the offline phase and can then be stored and reused as BM grows during
the iterative process of finding the basis functions g, k > 1.

Lemma 5.18 (Representing qj, using the 'w(J))

Using the definition of the wz( ), 1,§ < M, that we just introduced and defined in (5.88]), we
can rewrite the definition of the Empirical Interpolation basis functions qr, 1 < k < M,
to

k—1
Gl(6) = — (uk(o - sz"“)q@(s)) , (5.90)

for all £ € (.

Proof

Let £ € Q. For k = 1, the sum in (5.90)) equals zero and the claim obviously holds by
definition of ¢; in line Let now 2 < k < M and qi(§) = rrqx(§) with ry as given in
the algorithm. By the relation in line [16| we have

qk(&) = ug(§) — Ig—1(uk)(§)

k—1
= w(g)051(9)
j=1

k—1 k-1
)= S () S (B e (5.91)
j=1 i=1
k-1 (k-1
= u(§) — (BN uw(&) | ail©),
i=1 \ j=1
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where we simply inserted the quantities defined in Algorithm [2l The expression given
by the sum Zk LBk 1)” ug(§;) for some 1 <i <k —11in (5.91) can be interpreted as
component % of the result of a matrix-vector multiplication,

k—1
> (B () = (B unl(€s - &) (5.92)
j=1
By , the result of is independent of k,
((Bk*)—luk((a, &) = (BY) @) =wl®, (5.9)

by the definition of w in (5.87). Inserting (5.93) into (5.92) and the result into (5.91))
proves the claim. O

Lemma [5.18| provides us with the starting point for resolving the recursive definition of
the Empirical Interpolation basis functions g, 1 < k < M, of line Before we are
able to state and prove a non-recursive representation of the basis functions we prove
the following auxiliary Lemma [5.19

Lemma 5.19 (Auxiliary lemma)
Let M € N. Let 151(]), 1 <4,j < M be given by (5.87)). Define further for all 1 < j <
k<M

j—1
(k) _ ~(k) ~(k—1) (k)
¢ =Wl = Y Wy (5.94)
=1
recursively. Then for k < M the relation
o )N (ki) (D)
k+1—itj) ~(k+1 ~(k+1—7) (k+1
2.6 i g = 2B (5.95)
j=1 7j=1

holds for alli € {1,... ,k}.

Proof
We prove ((5.95) by induction over i € {1,...,k}.

For ¢ = 1 there is nothing to show since both sides of ([5.95) turn into empty sums with
value 0. To provide an intuition about the structural relation between the two sums in
(5.95), we additionally validate the equation for ¢ = 2. Then, ([5.95) holds if

(k+1—241) ~(k+1)  _ ~(k+1—1) (k+1)
“ Wit1-241 = Wey1-2 G
which is equivalent to
PGt = G®) D), (5.96)

By the definition of cg.k) in ([5.94) we have cgk) = @,g’i)l and cgkﬂ) = @,gkﬂ) which proves

the induction assumption.
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For the induction step we assume the claim (5.95) to hold for all 1 < ¢/ < ¢ for some
1 <4 < k and prove it for ¢ + 1, that is we show

i i
(k—i+j) ~(k+1) ~(k4+1—j) (k+1)
Z % Wiy = Zwk—i G (5.97)
j=1 j=1
By invoking on both sides the definition of cg-k_iﬂ ) or c§-k+1)7 respectively, as given by
(5.94)), we conclude that (5.97)) is equivalent to
7 7j—1
S [as e g )
=1 =
7 ' . (5.98)
i _
k:+1 ) | ~(k+1) _(k+1-1)_(k+1)
Z - [ W15 Zwk—i-l—j G ] .
]:1 =1

We expand the multiplication in the outer sums of (5.98]) and separate them, transform-
ing the equality to
(i) ()N () R o ), (ki)
~(k—i+j) ~(k+1 ~(k+1 ~(k—itj—l) (k—i+j
Zwk—i Wiy — Z Wi—ivj 2 Wi G
j=1 j=1 =1

j—1
Z k—i—l —7) ~(k+1) Z k+1 —J) Z ~(k+1-1) (k+1)
= k+1 2 Wer1-5°G :
=1

(5.99)

Let us consider the first, single sums on both sides of (5.99). Inverting the order of
summation in the sum on the left reveals that the two leading individual sums on boths
sides of ([5.99) are identical,

i

_(k—i+j) ~(k+1 e it it 1—4]) ~(k+1 L k+1—j) ~(k+1
Zwl(efi j)wl(cfH)j - Zwl(c i [ ]le(c z+)[1+1 —j] 7Zw§cfi ])wl(c+12j' (5.100)

=1 j=1 j=1
Therefore, (5.99) holds if
(b+1) T ) e (k1) & (k1D (k1)
~ k+1 k—i+ l k 1+ ~(k+1—j ~(k+1—1 k+1
Z SV D= mn Y me e (5.101)
7=1 =1 7=1 =1

We apply the induction assumption to each summand of the inner sum on the right hand
side of (5.101)). We can do so, since by our induction assumption the claim

i'—1 =1

Vet 1=i4) - (k+1) - ~(k+1—j) (k+1)

€ k+1—i+j — E :wkH,i/ ¢ (5.102)
Jj=1 j=1
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is validated for all ' € {1,...,i}. The summation variable j on the right hand side of
(5.101)) assumes values j € {1, ...} and thus takes the role of ¢’ in ((5.102)). Consequently,
we invoke the induction assumption and conclude, that the claim holds if

7 7j—1 i

~ k—itj5—1) k =+ k+1 (k4+1—j+1 k+1
St S e — Z ])Z gk o (5.103)
j=1 =1 =1 -

In order to finally prove equality (5.103]), we rearrange the order of summation on the
right hand side of ([5.103)). To that extent we introduce for ¢ € N the set

L={(,)eN’|j<i 1<j-1} (5.104)
and the mapping m on Z; by
m: ()= (i+1-j+1L1), V(1) €L, (5.105)

and denote by my,((j,!)) the projection of m((4,1)) onto the n-th component, n € {1,2},
for all (j,1) € Z;. We have m(Z;) = Z;, since with (j,1) € Z; we have i + 1 —j +1 <
if and only if [ < 7 — 1 which is true by definition of Z;. Thus, the mapping m maps Z;
onto itself, m(Z;) = Z;, and it does so bijectively with m~! = m. The effect that the
mapping m has to the order of summands is visualized in Table and Table

l i 1 2 3 i—1
2| ! |
3| 2 | 3]
4| 4 | [5] [L6]
i [ G-1(E—-2)/2+1] i(i—1)/2

Table 5.3 Visualization of the queue of non-zero summands on the right hand side of
(5.103)). The number in each of the boxes denotes the position of the summand belonging
to the respective (j,1)-tuple in the sum.

We prove equality (5.103]) by continuing on the right hand side of ([5.103)) and applying
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5.5.5 Comparison with Chebyshev interpolation

z i 1 2 3 i1
2 [ (—1)(E—-2)/2+1|
i—2 | 4 |
i—1 2 | [5]
i y 1 | [3] [6] ... [ii—-1)/2

Table 5.4 Visualization of the queue of non-zero summands on the right hand side of
after the order of summation has been changed by applying mapping m. The
numbers in the boxes denote the previous position of the respective summand in the
sum, compare Table

mapping m to change the order of summation,

i

k+1 —7) (k4+1—j+1) ~(k+1)
Z Z Whp1—j41

_ Z k+1 ]) k+1 —jH+) (k1)

k4+1—j+

(.77“611
_ Z k+1 m1 (7)) (k+1=ma ((G5,1))+m2((5:0)) & (k+1)
- Cma((4.0)) W1 —ma ((3,)+ma((,1))

J,HezZ;

i J—

(k+1 [i+1—j+1]) (k1= [i+1—j+0]-+[1]) ~(k+1)

= ZZ ! y ! w

k-t 1—[it1—j+1+[1)

X (ki —0) s i) ~(k+1)
ZZ Wy Pl

B Z'w(k Z (k— z+] 1) k i+7)
= % ,
=1

which coincides with the left hand side of ([5.103)) and thereby finishes the proof of the
lemma. Il

With Lemmal5.19) we are able to derive the non-recursive representation for the Empirical
Interpolation basis functions g, 1 < k < M.

252



5.5.5 Comparison with Chebyshev interpolation

Lemma 5.20 (Non-recursive representatipn of gx)

Let M € N. Let u;, i < M, be given by lz’ne @l(.j), 1,7 < M, as defined in and
e, 1 <k < M as given by the algorithm. Then, each of the basis functions qi, k < M,
defined by line and selected during the offline phase of the Empirical Interpolation
method as described in Algorithm [ depends non-recursively on w;, 1 < i < k, and
follows the formula

k—1
1 k
(€ = — | w(@ =3 du©) ), e 1<k (5.106)
j=1
with recursively given coefficients
j—1
k ~(k ~(k—i) (k .
cg.):w,(c_)j—z:w,g_j)cg), jed{l,...,k—1} (5.107)
i=1
Proof
Let £ € 2. We prove the claim by induction over k. For k = 1 we have
u
@ (&) = 17,(15) (5.108)

which is true by definition of ¢; in line [T2]

For the induction step, we assume the claim (5.106)) to hold for all ¥’ with 1 < &’ < k
for some k < M. For the sake of notational convenience we omit the ¢ in the following.
We use the recursive formula for g1 provided by Lemma and state

1 k+1-1

k+1

Q1 = u— Y wi Vg ). (5.109)
"+l i=1

In the sum of (5.109)), the ¢;, i < k, are summed up. For each ¢;, i« < k, however, the
induction assumption holds. We thus replace the g; terms in (5.109)) by the appropriate

term given by (5.106])) and proceed with

1 k1
qk+1 = <Uk+1 - Zwl( * )Qi>

Tk+1 i1
k i—1
_ 1 k) | L @,
= Uk+1 — w; — | Ui — Cj Ui—j (5.110)
Tk+1 ° i -
+ =1 7j=1
k i—1
1 S gty (@)
= Uk+1 — w; T Cj Ui—j >
Tk+1 i—1 =1
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5.5.5 Comparison with Chebyshev interpolation

where we used the definition of ﬂ?gk) = wgk) /7i, V1 < i,k < M in the last step. Comparing
the result of (5.110) to the claim in (5.106|) we conclude that we have to show that

k i—1 k
(k+1) ] k+1
Z + U; — ch-l)ui_j = Zc§ + )ukﬂ,j (5.111)
=1 7j=1 7=1

to finish the proof. In the following we rewrite the left hand side of (5.111f) such that each
ui, 1 <1 <k, appears only once in the sum and then prove the claim by a comparison
of the respective coefficients. For the left hand side in ((5.111f) we trivially have

k i—1 k k i—1
ST =3 i | =S @ e S @S Wy (5.112)
i=1 j=1 i=1 i=1 j=1

Inverting the order of summation in the first sum of ((5.112)) gives

k k

~(k+1 ~(k+1
E wg oy = E wgkilg—z’u(kﬂ)—i' (5.113)
i=1

=1

The second sum in (5.112)) can trivially be written as

Z (k+1) Zc“ wij = Z G Dy (5.114)

with
To={(i,j) eN’ [ 1<i<k, 1<j<i-—1}, (5.115)

as already defined in ([5.104]) earlier with only slight labeling differences. Therefore, we
may change the order of summation in ([5.114)) by applying the mapping m of (5.105) to
get,

i k+1 chz i= Z @(kﬂ)cgi)uH

(ivj)ezk
_ ~(k+1)  (m1(i,5))
= Z wml(i,j)cmzl(i,j) Uy (i,5)—ma2(3,5) (5.116)
k i—1 * _(b41)
+1—7+ +1
- ZZCJ 7 k+1 iy et 1=
i=1 j=1

254



5.5.5 Comparison with Chebyshev interpolation

Inserting (5.116)) together with (5.113]) into (5.112]) we have

k i—1
~(k+1 i
> (- 5
i—1 j=1
k ) k ( i—1 )
_ ~(k+1) ~(k+1) @
= D@ =Y w0y e iy
i=1 i=1 j=1
(5.117)
k i—1
Z~(k +1) Z (k+1—i+j) (k+1)
W1 Uk+1—i C; W1 Uk+1—i
=1 j=1
k i—1
_ (k1) (k1) (k+1) A
= Z k+1 i ZC Wg1—iyj | Yk+1—i-
i=1 j=1

Thus, recalling (5.111]), in order to finish the proof of claim ([5.106)), we need to show
that

k k

~(k+1 (k+1=i+j) ~(k+1 k+1
Z k+1 )z Z D /(c—i—l )H—j Uk4+1— = ZCE )uk—H—z’ (5.118)
i=1 '

which holds if the coefficients of each u;, 1 <[ < k coincide on both sides of (5.118]). We
thus prove equality (5.118]) by validating

R S I SO

By the definition of cgkﬂ) in (5.94), (5.119) is equivalent to

i— i—1
~(k+1 (k+1—i+j ~(k;+1) _ ~(k+1) ~(k+1—7) (k+1) .
Wt1—4 C] Y Wep1—irj = Wep1—i — Zwarl z] G s Vie{l,..., k},
j=1
which trivially is equivalent to
i—1 i—1
(k+1—i+j) ~(k+1 k+1 k+1 .
SO =N TG e (1,0 k) (5.120)
J=1 Jj=1
Equation (5.120]) holds by Lemma which finishes the proof of the claim. O

Remark 5.21 (On the non-recursive representation of gy)

Lemmal5.20) resolves the recursive dependence of each qi, 1 <k < M, onuj, 1 <j <k,
and provides us with a weighted sum of u;, 1 < j < k, with explicitly known coefficients,
instead. These coefficients are defined recursively. The lemma thus shifts the recursive
pattern in the definition of the basis functions qr, 1 < k < M, from the functions u;,
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5.5.5 Comparison with Chebyshev interpolation

1<j5< k onto coefficients consisting Ofc ) 1 <5<k Theoretzcally, the formula
for q in (5.90) provided by Lemma comczdes with the expression (5.106|) provided
by Lemma @ Numerically, however the latter is far more appealmg FEach basis
function q, 1 < k < M, may now be evaluated continuously with each u;, 1 < j <
M, appearing only once thus avoiding the necessity of exponentially many elementary
function evaluations as outlined by Remark[5.16. The points on the domain Q for which
the basis function qi shall be evaluated must not be known beforehand, rendering the result
of Lemma[5.20 superior over the semi-non-recursive solution described by Remark [5.17

Corollary 5.22 (Non-recursive interpolation operator Ipr)
Letueld and M € N. Then

&)= ciun1—;(§), VEeQ, (5.121)
with
cj—wM+1 —J Zw]\g{:iljcia j€{17aM}
where
(Bt
w; = l, 1 <1< M,
T

the analogon to the w( ) 1 <i,j5 <M, as defined in (5.87) with r;, 1 <i < M, given

by (E50).

Remark 5.23 (New Challenges for the optimization routine)

During the offline phase of the Empirical Interpolation algorithm, at iteration M in
line [16, a basis function qnr is defined via the solution to the optimization problem of
line[I4 Since the algorithm represents functions uw € U at the magic points &, 1 <1i <
M — 1, perfectly, the domain {u(§) — Ins—1(u)(&) | € € Q} becomes increasingly uneven
for each uw € U for increasing values of M. Consequently, the identification of both u € U
and & € Q that mazimize |u(§) — Ing—1(u)(§)| becomes more and more challenging. For
wncreasing values of M, the risk of running into local minima during the optimization

Jmax  [u() = L1 (w)(©) (5.122)

thus rises.
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A Integration of special periodic functions

Integrals of univariate integrable functions f : RT™ — R over the semi-infinite integration
range [0,00) are usually numerically approximated by cutting of the integration range
at a value N € R beyond which the absolute value of the integrand becomes sufficiently
small and the value of

/Noof(:c)dmwo

becomes negligible. In some cases, however, the value of N is very large. Then, cutting
off the integral at N means either having to deal with a large numerical effort to compute
fON f(z)dz or accepting a significant error in the integral value by choosing N < N as
cut-off point, alternatively. In this appendix, we introduce an approximate integration
procedure for functions f of a special kind that avoids disregarding the function beyond
the cutoff point N. Instead, the approach takes knowledge of the structure of the function
f into account in order to improve the approximation of the whole integral value as
such.

A.1 An introduction of the integration method

The integration method we are about to present is taylormade for a special kind of
functions. After a brief definition, this section states the main result and gives a proof
of the lemma.

Definition A.1 (Periodic function)
Let g : Ry — R such that there exists a constant p € RT such that g(z) = g(x + p) for
all x € Rg. Then we call g a periodic function and we call p the period of g.

Lemma A.2 (Approximate integration of special periodic functions)
Let f :RT = R, f € LY(RY), be given by

f(x):ga(;]f), Vz € RT,

for some periodic function g with period p € R* and some 1 < k € N. Assume further
that 3C' € R™ such that
lg(z)| = C,  Vxe0,p]. (A.1)
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A Integration of special periodic functions

Then, for any j € N,

vie [ i@an=v, Vol + Vil 4 B)

cut serzes’

where N(j) =pj for j €N, V. NG denotes the integral of f up to N(j),

cut
= [ s,
0
and Vser(wl s given by
=6 (- 5 8.
i

wherein (i), i € N, is the integral of f over period i,

N(i+1)

(A.2)

(A4)

defined for s € {z € C|R(2) > 1}, confer Laurincikas (’1996). Furthermore, the error
term E(j) in (A.2)) decays as fast to zero as j Y7 _ k approaches its limit (k).

Proof
Fix 1 < 5 € N. Define

jk:
Ty =1G)2;,  men
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A Integration of special periodic functions

We compute

_ /Oo f(x)dx:/ON(j) f(a:)dx—k/No:j) ) dz

o0 N(erl

Vit +Z/

m—s ” N(m

o0

le\lft(] +ZI

m=

=V + ZI +fj( I(m) — I(m))

with error term

Im) = Fom)| = |1m) - 21 >\

B / (m+1) ]k /N(j+1) g(x) d
= - = dz
m= JN(j) v

= / e ) dxr — i /N(j+1) L(:E) dz

—j)p)k mk

- /N(j)ﬁl) 9:(;5) <(w + (ﬂfk— )k i;) &

k -k / j—l—l)
N()

z)

IL‘k

z J
(@ + (m—j)p)b  mk

IN

max dz, (A.9)
z€[N ()N (j+1)]
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A Integration of special periodic functions

where we used in (A.8]) that g is a periodic function. We find

- z* A m ((7 + 6)p)* A
2e[NG)NGHD] | (x4 (m —)p)* mF| sep|((J+0)p+ (m—j)p))k mk
G+or *
— MTY L A.10
s€01] [ (m+ )k mk ( )

[y U2 S

seloa] (m—+8)k | mk’

Since m > j and k > 1, [0,1] 3 § — (j + J)/(m + 0) is monotonically increasing and
thus assumes its maximum value in § = 1. Continuing in (A.10) we thus get

Consequently, taking (A.9) — (A.11) into account,

~ 1 N@G+1) g(x)
~T ’<47 1)k — gk / I da. A2
1m) = Tom)| < e (G 0" =0%) [ 0 [ (A12)
Analyzing the integral in ({A.12)) we have by assumption (A.1]) that
N(j+1) G+Lp 1
/ &‘Z) dz < max |g(z)] — dz
N(j) x €[0.p] ip x
G+bp q
; x
J (A.13)

1 1 (G+Dp
:_Ck—l[hd
v Jp

o ! 1 1
B (k=1)pF=t LG+ DA Rt ]
where we again used the periodicity of g in the first step. We combine the results from

(A12) and (K13) to find

[1m) — T(m)| < O T G+ DF = 5] [(j +11),H - jkll} . (Aad)
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A Integration of special periodic functions
Elementary calculations yield

, . 1 1
o [(j DR jk—l]

. <J+1> k—1 B 1] (A.15)

where we used that (1+1/7) converges to e from below for j — oo. By I’'Hopital’s rule,

k—1
J (exp <]> — 1> G+1) —=(k-1) (A.16)
for j — oo from above. Therefore, there exists j € N such that
k— .
exp| — | —1)(+1) <(k—1)max{2,1/C}. (A.17)
J
Let j € N be large enough such that (A.17)) holds. Then
EG) < Y [10m) — T(m)|
m=j

1 1
< I
< C'max{2, 1/C}pk—1 mE:j -

j—1
_ max{1,2C} <C(k> B Z Ti}f) 7

k—1
p —1

which proves the lemma. U
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A Integration of special periodic functions
A.2 Numerical experiments

In this section, we apply the approximation method presented in Lemma onto the
integration of an example function. We will investigate the approximation of the as-
sociated integral in depth to provide an intuitive understanding of the approximation
technique as well as demonstrate its approximation power. Let f be given by

COS(T — COS(T 2
f(z) == (@) 5 (=) (A.18)

X

and thus consider the integral
V= / f(z)dz. (A.19)
0

Note the resemblance of function f in with the integrands we considered in Sec-
tion of Chapter , for example the first integrand in expression in Corol-
lary [3:34] Therein, we were confronted with the challenge of computing the entries of
a stiffness matrix expressed as integrals of highly oscillating functions. The integration
method of Lemma has been originally developed with that application in mind and
shows the relevance of the result in the context of finance and beyond.

Recall that functions of form can be approximately integrated over a finite domain
using Filon’s formula, see for example |Abramowitz and Stegun (2014). Our integration
range, however, is (semi-)infinite which is why Filon’s formula does not apply, here.
The graph of f is shown in Figure With the definition of the integrand f in
expression and the setting of Lemma in mind we set

g(x) = cos(z)(1 — cos(z))?, (A.20)
k=2 (A.21)

and ¢ is a periodic function in the sense of Definition [A7]] with period p = 2m. The
periodic influence of g on f is clearly visible in Figure The oscillations that endure
infinitely and the relatively slow decay lead to unsatisfactory results when the integration
range is simply cut off while a high accuracy of the resulting integral value shall be
reached. The integration approximation method introduced by Lemma circumvents
this issue. It integrates f up to a chosen cut off point N = jp, 7 € N, exactly and
approximates the integral value beyond that point. To that extent it approximates f for
x € Ip, :=[mp, (m+1)p],  <m €N, by
Y Y
: 3t g(x) j (A.22)

L P e

which leads to the approximation of the associated integral of f over I, I(m) =
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A Integration of special periodic functions

Graph of f

0 50 100 150 200 250

x10°®

1000 1050 1100 1150 1200 1250

-7
5 x 10

2000 2050 2100 2150 2200 2250

Figure A.1 Graph of example integrand f of Equation evaluated over three
different subintervals of the semi-infinite integration range. One observes the repeat-
ing structure that is exploited by the method of Lemma for the (approximative)
integration of f over R™. The exact value of the integral is fooo flz)dz = —7F.
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«10°® f and approx. (j=10) w107  Abs. error (j=10)

1r 47

1} L |
f 2t ) -
Approx. of f on Ii5 ﬁ?s elir on ;11,0

27 Approx. of f on I15 Atjh' e1>r on Il?l
Approx. of f on Ii5 1 S err on fis2

) \r

4t V \/ 0

-5 * * ! -1 : * !

p-150 p-151 p-152 p-153 p-150 p-151 p-152 p-153

Figure A.2 Left: f evaluated over the interval I = [p-150,p - 153] = I150 U 151 U I152
and its piecewise approximation by fis, fi5; and fis,, respectively, as defined in (A.22)),
with a small value of j = 10. Right: The respective absolute error.

[; f(z)dz, by I(m) = I fi,(z) dz. Using the periodicity of g we get

=~

m) = J () dz

m (A.23)
/g(w)d J*
- k k
Ij x m
-k
N J

compare the definition at the beginning of the proof of Lemma The approx-
imation outlined in together with the involvement of the periodicity of g thus
builds the cornerstone of the whole method. The relation between f and its approx-
imation on I, by fﬂ}b for some j < m € N is illustrated in Figures and for
both a small value of j and a large value of j. As expected, given j; < jo < m, the
approximation of f on I,,, by fi? is more precise than the one provided by fﬂr}

Let us now turn back to the approximation of the integral V' = V(f) of (A.19). The
exact value of this integral is V' = —m/4. We choose increasing values of j € N and
compare the new approximation method to an integration with integration range cut off
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«10°¢ f and approx. (j=100) «10°  Abs. error (j=100)
1¢ 27
0 /\ 15}
-1 /\
f 10t . ;
I Approx. of f on 15 ﬁ:? 2: Zz ?L—’O
-2 Approx. of f on Ii5 Ab‘s' él‘r on Ilil
Approx. of f on Ii5 5t - B
| \/
4t 0
5 : : : -5 : y '
p-150 p-151 p-152 p-153 p-150 p-151 p-152 p-153

Figure A.3 Left: f evaluated over the interval I = [p-150,p - 153] = I150 U 151 U I152
and its piecewise approximation by fis, fi5; and fis,, respectively, as defined in (A.22)),
with a large value of j = 100. Right: The respective absolute error.

at the value N(j) = pj,

Vond?) = /0 " ) an, (A.24)
Vinetoa = Ve + Vil (A.25)
with ngfgg defined by
j—1
Ve = 1()5* (q(zc) -3 n;) , (A.26)
m=1

as in (A.4) of Lemma

We approximate the integral of f as given by (A.18)) over Rt and compare the error decay
of the new approximation method for increasing values of j € N as described to the re-
sult yielded by simply cutting off the integration range. Figure[A.4illustrates the results.

The slow decay of f in x which we observed in Figure results in a slow decay of

V;]:t(j ) to the true value of V = —m/4. In contrast, exploiting the knowledge of the
special structure of f containing a periodic function g allows faster convergence of the

approximated integral value anl(tjh)od in j.
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Error decay

S
[=}
1

V;ut -V
‘/method -V

=
S
N

absolute error
H
o
B

200 400 600 800 1000 1200 1400

Figure A.4 Empirical study of the error decay for the approximative integration of f
given by over R*. We compare the results for two methods. First, we simply cut
off the integration range as in at N(j) = pj for different values of j. Secondly, we
approximate the function f or rather its integral beyond the cut off point N(j) by the
new approximation method as described by Lemma [A72] The results for both methods
indicate a convergence to the true integral value that is V = —7 /4.
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B General features of magic point
interpolation

We add some aspects of the magic point interpolation method from Chapter [5} The
Magic Point Interpolation algorithm satisfies some immediate properties, which are iden-
tified by Barrault et al.| (2004) and Maday et al. (2009) and summarised in the sequel.
The content of this appendix has been presented in |Gaf et al. (2015), already.

Exact interpolation at magic points For all functions u € U, the interpolation is exact
at the magic points, in the sense that for every m=1,..., M

Ln(u)(z7) = u(z5) for all j < m. (B.1)

This property holds by construction of ¢,,. Note that qm(z;‘) =0 for j <m.
Magic points as maxima The basis function g, is maximal at the magic point 27, i.e.

4m(z,) =1 = sup [gm(2)]- (B-2)
z€Q

The matrix BM is invertible By construction, the quadratic matrix BM ¢ RM*M ' jp_
troduced in (5.6]) as
M
Bjm = qm(z;>
forall j,m =1,..., M is a lower triangular matrix with unity diagonal. Its inverse

thus exists.
Coefficients of I,,, equal to those of I,,,;1 The coefficients ajt = oz;”(u) of the inter-
polation I, (u) = Y, af'qj of u do not depend on m, i.e. for alli <m and j <i

J
it holds that

ajt = 04;. (B.3)
This can be seen from the triangular structure of the defining linear system for
am = (a;’n)j:17’m’
B™"a™ =0b" (B.4)
with b]" = u(z}). By this representation we also get the linearity of I, for all
u,v €U,
I (u+4v) = In(u) + In(v). (B.5)
Idempotence Let 1 < m < M. Since I,,,(v) = v for all v € span{qi,...,qm} we have
forall u e U,
LT3 (1)) = L1 (u). (B.6)
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C Gronwall’s Lemma

We provide a proof of a version of Gronwall’s lemma. The lemma exists in surprisingly
many shapes and forms. They all share the key idea of resolving an implicitly entan-
gled estimate where the quantity that shall be estimated appears on both sides of the
inequality. The first proof for resolving such inequalities is attributed to Thomas Hakon
Gronwall who published his result in (Gronwall (1919). The version of the lemma that
we are interested in plays a key role in the convergence estimate at the end of Chapter
and guarantees the final step in the proof of the statement therein. In this appendix, we
state and prove Gronwall’s result in the version of Lemma

Lemma C.1 (Gronwall’s Lemma)
Let y = (Ym)m>0, f = (fm)m>0 and g = (gm)m>0 be nonnegative sequences in R satisfy-
mg

0<j<m
Then
ym < fm+ > | figi T 1 +9) (C.2)
0<j<m j<i<m

holds for all m > 0.

We need the following auxiliary lemma for the proof of the lemma.

Lemma C.2 (Auxiliary lemma)
Let (gn)n>0 be a nonnegative sequence in RJ. Let j € Ny arbitrary but fix. Then

L+ > o [T A+o)= I] 0+ (C.3)

j<k<m  j<i<k j<i<m

holds for all m > j.

Proof
We prove the Lemma |C.2| by induction over m. The claim trivially holds for m = j 4+ 1
due to an empty sum on the left and an empty product on the right. For the inductive
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step we compute

1+ Y g [ O+a)

j<k<m+1l  j<i<k

(C.4)
= 1+ > o [] Q+g)| + om J] (0 +90)
j<k<m  j<i<k j<i<m
We insert the induction hypothesis into the left bracket of (C.4) to get
1+ Y e [] Q+g) |+ |om J] Q+a)
j<k<m  j<i<k j<i<m
= | I a+g)|+ |om J] O+a)
j<i<m j<i<m
=(+gm) [[ O+a)= J[ Q+a)
j<i<m j<i<m41
which finishes the induction and proves the claim for all m > j. (|

Proof (of Gronwalls Lemma Ej_ll)
We follow the proof of [Holte, J.M.| (2009)) and derive the claim of Lemma|C.1|by induction
over m. For m = 0 the claim trivially holds. Conducting the inductive step we get by
assumption (C.1)) and then by inserting the induction hypothesis that

Ym+1 < fmt1 + Z 95Y;

0<j<m+1
< fgr + Z gi | fit Z fi*g5 H (1+9:) (C.5)
0<j<m+1 0<j*<j ¥ <i<y

=fmrr+ > g+ D> g >, | firge I Q+a)

0<j<m+1 0<j<m+1  0<j*<j jr<i<j

The summands of the double sum in the last line of (C.5)) are shown in Table We
reorder summation in (C.5|) to

g > g T A +a)

0<j<m+l  0<j*<j jE<i<j (C.6)

= Y g D o J] A+g)

0<j<m+1 j<k<m+1l  j<i<k

The new summation order is illustrated by Table Consequently, combining ((C.5))
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C Gronwall’s Lemma

J  Summand

0o -

1 g1{(fog0)]

2 g2[(fogo)(1 + g1) + (f191)]
3

93[(fog0)(1 + g1)(1 + g2) + (f191)(1 + g2) + (f292)]

m gml(fog0)(L+ 1) (14 groo) + (Frg0)(L 4 92) e (L Gmu1) + - + (Frr1Gm1)]

Table C.1 The summands of the double sum in (C.5|) before reordering.

j Summand

0 (fogo)lgr +92(1 +g1) + g3(1+g1) (L +g2) + -+ gm(L +91) .- . (1 + gim—1)]
L (fig)lg2 +93(1+92) + -+ gm(1+92) ... (1 + gm-1)]

m—1 (fm—lgm—l)gm
m _

Table C.2 The summands of the double sum in (C.6|) after reordering,.

and (C.6)) leads to

S g+ D, g >, | frae J] A+

0<j<m+1 0<j<m+1l  0<j*<j JE<i<y

= > g {1+ D e J] 0+

0<j<m-+1 j<k<m+l  j<i<k

Invoking the auxiliary Lemma finishes the induction and yields the claim. O
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