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Abstract

Global and stochastic problems in optimal control usually require the computation of the
value function on the entire state space, respectively to ensure that the global optimum is
found and because Brownian motion is unbounded. In high dimensions, this is impractical
as the computational e�ort grows exponentially. In this thesis, local methods which
approximately solve global resp. stochastic problems and only require the solution of
ordinary di�erential equations are developed.

Zusammenfassung

Globale und stochastische Probleme in der Optimalsteuerung erfordern in der Regel die
Berechnung der Wertefunktion auf dem gesamten Zustandsraum, um sicherzustellen, dass
das globale Optimum gefunden wird, bzw. da die brownsche Bewegung unbeschränkt ist.
In hohen Dimensionen ist dies auf Grund des exponentiell wachsenden Rechenaufwands
nicht durchführbar. In dieser Arbeit werden zur näherungsweisen Lösung von globalen
und stochastischen Problemen lokale Methoden entwickelt, die lediglich die Lösung von
gewöhnlichen Di�erentialgleichungen erfordern.
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Notation

We will frequently suppress arguments of functions. This includes in particular the time
t in ODEs. Linearizing an ODE around a point z or a trajectory z(t) usually involves
evaluating a lot of derivatives at z resp. z(t) and in such situations we often omit z as
an argument of those derivatives.
We also follow the conventions of probability theory in omitting the dependence of

random variables X = X(ω) on the outcome ω ∈ Ω and abbreviating the notation of
sets of outcomes, e.g. {X > 0} := {ω ∈ Ω : X(ω) > 0}.
To avoid ambiguities we introduce some further conventions:
When a function might be confused with its evaluations, we use bold letters for the

function itself. E.g. c(x, u, t) := c (x(t), u(t), t), but L(x,u) =
´ T

0 c(x, u, t) is a functional
which takes the whole functions x = x(·) and u = u(·) as its arguments.
When factors in a multiplication are lengthy or might be confused with arguments, we

separate them with · (\cdot). E.g. Df(x, u) is the derivative of f taken at the point (x, u)
but Df · (x, u) is the derivative taken at a point given by the context and multiplied by
(x, u).
The derivative of functions between Banach spaces alway means the Fréchet derivative,

i.e. we say that g : U → W , with V , W Banach spaces and an open set U ⊆ V , has the
(Fréchet) derivative Dg(x) : V →W at x ∈ U if Dg(x) is bounded and

lim
h→0

‖g(x+ h)− g(x)−Dg(x) · h‖W
‖h‖V

= 0.

Finally, the di�erence between a derivative and a gradient is merely typographical in
this thesis: for a function g with several arguments, we understand by ∇g the derivative
Dg written as a column instead of a row vector in order to save horizontal space.
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Introduction

The optimal control problem

By a control system we understand a continuous1 dynamical system on a state space
X = Rn, which can be in�uenced by a control chosen from a space U = Rm such that
the dynamics of the state x ∈ X are given by the ODE

ẋ = f(x, u, t). (0.1)

A pair of functions (x,u) ful�lling (0.1) is called a trajectory of the control system.
In optimal control, the objective is to choose the control function u such that a given

cost functional L(x,u) of the trajectory is minimized.2

In this thesis, we will consider two types of optimal control problems (OCPs): One
with �nite and the other with in�nite time horizon. In this introduction, we consider only
the �rst type, which is set on a �nite time interval [t0, T ], has a given initial condition
x(t0) = x0 and a cost functional

L(x,u) :=

ˆ T

t0

c(x, u, t) dt+ ϕ(x(T )).

As x is governed by (0.1), it is completely determined by u and the initial condition
and hence one can formulate the OCP as

min
u
L(u) := L(x(u),u). (0.2)

Global and local methods

Solution methods for optimal control problems can be divided into global and local
approaches.

Global methods

Bellman introduced the solution of optimal control problems via dynamic programming,
in which one solves (0.2) for all possible initial conditions and times. Hence, one aims
to �nd the value function

V (x0, t0) := inf
u

{ˆ T

t0

c(x(t), u(t), t) dt+ ϕ(x(T )) : ẋ = f(x, u, t), x(t0) = x0

}
.

1Discrete systems can be treated in a very similar way but are not a subject of this thesis.
2Maximization can be achieved analogously or by simply changing the sign.
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The crucial insight is that the OCP can be split into two minimization problems as, for
τ > 0,

V (x0, t0) = inf
u

{ˆ t0+τ

t0

c(x, u, t) dt+ V (x0(t0 + τ), t0 + τ)

}
.

In the limit τ → 0, one obtains the Hamilton-Jacobi-Bellman (HJB) equation ([Bel54])

Vt(x, t) + inf
u

(f(x, u, t) · Vx(x, t) + c(x, u, t)) = 0,

which can be solved backwards in time from the terminal condition

V (·, T ) = ϕ.

The HJB approach can also be extended to cover stochastic optimal control problems,
e.g. with

dx = f(x, u, t) dt+ ΣΣ> dW,

where W is an n-dimensional Brownian motion and ΣΣ> ∈ Rn×n a symmetric positive
(but not necessarily de�nite) matrix. The goal is to minimizes the expected value E[L].

The HJB equation for this stochastic problem contains an additional di�usion term
and reads

Vt(x, t) + inf
u

(f(x, u, t) · Vxx(x, t) + c(x, u, t)) +
1

2
tr(ΣΣ>Vxx) = 0.

Methods which directly solve the HJB equation are global methods as one considers
all initial conditions and (implicitly) all possible controls, and is guaranteed to �nd the
globally optimal solution.

For low-dimensional state spaces, e�cient solution methods exist ([FF94], [GJ05],
[Grü97], [JO04], [JS15]). In high-dimensional problems however, these methods su�er
from the curse of dimension, the exponential growth of computational complexity with
the dimension of the state space. This issue is exacerbated by the fact that value func-
tions are often non-smooth. Consequently, specialized approaches for high dimensions,
e.g. sparse grids ([BG04]), fail to be fully e�ective.

Local methods

An alternative to the HJB equation is the use of local methods in which one computes
only a trajectory in the state space instead of the value function on the state space.
Thereby one avoids the exponential scaling in the dimension.

Examples are gradient descent methods or approaches based on Pontryagin's minimum
principle ([Pon87]) where one seeks solutions to a system of ODEs (cf. Theorem 2.1) which
are a necessary condition for a minimum.

The downsides of local methods include that they �nd only local minima without a
guarantee of global optimality and that they are not applicable to stochastic problems.

12
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Contribution and structure of the thesis

In this thesis, we develop two methods which are local, i.e. which only solve ODEs
instead of computing the entire value function or any other object of comparable com-
plexity. Nevertheless, they still manage to approximately solve, respectively, a global
and stochastic optimal control problem.
The main body of this thesis can be divided into three parts:
In the �rst part (chapters 1 and 2) we present known results about optimal control

from a functional analytic point of view. We consider the OCP as an abstract constrained
optimization problem and provide some general results for constrained problems in Chap-
ter 1. These results are used in Chapter 2 to derive the necessary conditions known as
Pontryagin's minimum principle. In addition, we show the existence of minimizers by
treating the OCP as a problem in the calculus of variations with a cost function taking
values in R ∪ {+∞}.
In the second part (chapters 3 to 5) we develop a method for �nding global optima.

In Chapter 3, we provide a brief review of bifurcation theory, which is used in Chapter 4
to determine the global structure of the set of all local extrema for all initial conditions.
We also show that bifurcations in this set are responsible for the loss of smoothness
in the value function. In Chapter 5, we �nally present an algorithm for systematically
�nding local minima and establish conditions under which this algorithm �nds the global
minimum.
In the third part (chapters 6 and 7), we treat the stochastic optimal control problem.

Here we face the inherent di�culty that Brownian motion is unbounded and hence the
expected value necessarily depends on the entire domain. To circumvent this, we do not
minimize the expected value but a quantile, i.e. the value under which the cost stays
with a given probability, say 95%.
Our approach to this problem is an extension of the First Order Reliability Method

(FORM). It was originally used in structural engineering ([HL74, Rac76]) to approxi-
mately compute (but not optimize) the probability whether some function will exceed
a given value. In Chapter 6, we review the FORM and show how its extension to op-
timization can be interpreted as a game with the antagonist representing the random
in�uence. In Chapter 7, we apply the underlying idea to the dynamic setting of the
stochastic optimal control problem. We obtain a linear approximation for the quantile
optimization problem and provide error bounds.
The methods developed in this thesis are primarily conceptual: they merely require

that certain equations be solved without specifying how to actually do this. We have
deliberately omitted implementational details from the main body of the thesis. In fact,
the best numerical method may depend on the concrete optimal control problem.
For convenience, we give in Appendix A a description of our prototype implementation.

Newton's method for solving nonlinear equations is an important component of this
implementation. We present in Appendix B results which show that certain step size
strategies are particularly good at detecting singularities which indicate that the equation
to be solved may actually not have any solutions.
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1. Constrained optimization

Consider a control system

ẋ = f(x, u, t), x ∈ X , u ∈ U

on some (possibly in�nite) interval [0, T ) where w.l.o.g. we have set t0 := 0 the state space
X and the control space U are for now arbitrary Banach spaces. As in the introduction,
we assume that we can freely choose the control function u : [0, T )→ U and wish to do
so in a manner that minimizes some cost functional

L(x,u),

which depends on the trajectory consisting of x = x(·) and u = u(·). The initial condition
x(0) = x0 is given. x and u are elements of suitable Banach spaces X and U of functions
[0, T )→ X resp. [0, T )→ U .
As mentioned in the introduction, x is determined by u and x0, and so one could

attempt the minimization
min
u
L(u) := L(x(u),u) (0.2)

However, for t2 > t1, x(t2) depends on u(t1) in a rather complicated way and it is
easier to consider instead the equivalent constrained optimization problem

min
(x,u)

L(x,u)

s.t. ẋ− f(x,u) ≡ 0,
(1.1)

in which the constraint relates x and u only locally in time.

This can also be written as

min
(x,u)

L(x,u)

s.t. (x,u) ∈ A := {(x,u) : g(x,u) = 0} ,
(1.2)

or, with Z := X×U and z = (x,u), as

min
z∈Z

L(z)

s.t. z ∈ A = {z : g(z) = 0} ,
(1.3)

where Y is a Banach space and g : Z → Y a suitable function that will be given explicitly
in the next chapter.
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Chapter 1. Constrained optimization

In this chapter, we will develop some results for the more general problems (1.2) resp.
(1.3) before applying them to optimal control problems in Chapter 2.
The tangent space TA(z∗) ⊆ Z of A at z∗ ∈ A is de�ned as

TA(z∗) := {z ∈ Z : ∃φ ∈ C1([−1, 1],A) : φ(0) = z∗, φ′(0) = z}

For a constrained optimization problem of the form (1.3), we have the geometric ex-
tremality condition DL(z∗) ⊥ TA(z∗). , i.e. 1

DL(z∗) ∈ TA(z∗)⊥.

At generic points, the tangent space TA is equal to the linearized tangent space2

{z ∈ Z : Dg(z∗) · z = 0} . (1.4)

For an operator A : Z → Y and its adjoint A∗ : Y∗ → Z∗, de�ned by 〈Az, y〉 = 〈z,A∗y〉
for all z ∈ Z and y ∈ Y∗, we have the Fredholm alternative N (A)⊥ = R(A∗).
Assuming (1.4) we conclude that an extremum z∗ necessarily ful�lls

∃λ ∈ Y∗ : Dg∗(z∗) · λ+DL(z∗) = 0. (1.5)

The arguments sketched above can be made rigorous to give the following theorem:

Theorem 1.1 ([Zei95, Chapter 4.14]). Let L : Z → R and g : Z → Y be continuously
(with respect to the operator norm) Fréchet-di�erentiable on an open neighborhood of
z ∈ Z, where Y is a real Banach space.
If z is a solution of (1.3) and Dg(z) : Z → Y is surjective, then there exists a functional

λ ∈ Y∗ such that (1.5) holds true.

Consequently, returning to x and u, we say that

De�nition 1.2. (x∗,u∗) is a critical point of (1.2) if and only if there exists a λ such
that

F (x∗,u∗, λ) :=

∇xL(x∗,u∗) +Dxg
∗(x∗,u∗) · λ

∇uL(x∗,u∗) +Dug
∗(x∗,u∗) · λ

g(x∗,u∗)

 = 0. (1.6)

Introducing
H(x,u, λ) := L(x,u) + 〈λ, g(x,u)〉

allows us to write F more compactly as

F (x∗,u∗, λ) :=

Hx(x∗,u∗, λ)
Hu(x∗,u∗, λ)
g(x∗,u∗)

 .

1Note that we do not in general deal with Hilbert spaces, so for Ω ⊆ Z, Ω⊥ ⊆ Z∗ is not the orthogonal
complement but the annihilator Ω⊥ := {v ∈ Z∗ : Ω ⊆ N (v)}.

2In optimization, a condition ensuring this is called a constraint quali�cation. In Theorem 1.1, the
constraint quali�cation is that Dg is surjective.
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1.1. Interpretation of H

Remark 1.3. As the Lagrange multiplier λ ful�lls (1.5), which involves the adjoint
operator Dg∗, it is also called the adjoint variable of the optimization problem.

1.1. Interpretation of H

The results in this section will allow us to relate H to the original problem (0.2) from a
di�erent viewpoint.

For suitable λ, H(·, λ) can, at least locally, be understood as an extension of L to
inadmissible points. Let P : Z → A be a (possibly nonlinear) projection onto the
admissible set A which is di�erentiable on A. We can turn the constrained problem

min
z∈Z

L(z)

s.t. z ∈ A = {z : g(z) = 0}
(1.3)

into an unconstrained one by applying P before evaluating L. To this end, we de�ne

Ĥ(z, P ) := L(P (z)) = L(z + (P (z)− z)),

where P (z) − z is the correction required to move z into A. With this de�nition,
Ĥ(Z, P ) = L(A) and so

min
z∈Z

Ĥ(z, P ) = min
z∈A

L(z).

The following holds for any problem of the type (1.3), which is slightly more general
than (1.2) because no decomposition of Z is given a priori. Hence we will consider general
decompositions of Z before returning to Z = X×U as a special case.

Now we linearize the problem at a point z0. DP = DP (z0) is a linear projection with
R(DP )=N (Id−DP )=TA=N (Dg) and is uniquely determined by Z1:=N (DP )=R(Id−
DP ), where Z1 ⊆ Z is a subspace complementing N (Dg) (in the usual sense that
Z = Z1 ⊕N (Dg)).

There is a unique pseudoinverse Dg+ : R(Dg) → Z1 such that Dg+Dg = Id − DP
and hence

DĤ = DL+DL(DP − Id) = DL−DL ·Dg+Dg.

With λ := −DL ·Dg+ we �nd that locally Ĥ coincides with H to �rst order, i.e.

Ĥ
.
= L+ 〈λ, g〉 = H.

Let Z = Z1 ⊕ Z2 be another decomposition and accordingly z = z1 + z2. Z2 and TA
are both complements of Z1 = N (DP ) and so the projection DP : Z2 → TA of Z2 onto
TA along Z1 is a bijection: It can be seen that z2 parametrizes TA as DP · (z1 + z2) =
DPz2 = −Dg+Dg · z2 + z2 =: z̃1(z2) + z2 depends only on z2. In this situation, the total

17



Chapter 1. Constrained optimization

derivative of L with respect to z2 is given by the partial derivative of H:

d

dz2
L :=

d

dz2
L (z̃1(z2) + z2)

∣∣∣∣
z1+z2=z0

= DL · DP |Z2

=
d

dz2
Ĥ(z1 + z2)

∣∣∣∣
z1+z2=z0

=:
∂

∂z2
Ĥ =

∂

∂z2
H

(1.7)

Remark 1.4. If z0 is a critical point of (1.2), then λ is independent of P .

Proof. Let P1 and P2 be two projections onto A leading to pseudoinverses Dg+ resp.
Dg† and λ1 resp. λ2 as described above. We have R(Dg+ −Dg†) ⊆ N (Dg) ⊆ N (DL),
as z0 is a critical point, and so λ1 − λ2 = −DL(Dg+ −Dg†) = 0.

In optimal control problems, we can use (1.7) to return to the original viewpoint of
regarding x as a function of u and L(u) := L(x(u),u) as a function of u only, and obtain
the total derivative d

duL = d
duL(x(u),u).

We always assume that gx is invertible and that there is a unique solution x(u) of
g(x(u),u) = 0 for any u ∈ U (which we will verify for optimal control problems in the
next chapter).

With the decomposition of Z = X×U into Z1 = X×{0} and Z2 = {0}×U, we have

Dg+ =

(
g−1
x

0

)
and so

λ = − ∂

∂x
L

(
∂

∂x
g

)−1

and (1.8)

d

du
L =

∂

∂u
H. (1.9)

For this decomposition, Ĥ can be understood as ignoring whatever value for x it is
given and replacing it with x(u), obtained from the projection onto A, before passing it
on to L.

Relation to original de�nition

Summarizing some results from above, we have the following Theorem:

Theorem 1.5. Consider a point z0 ∈ Z at which all functions are evaluated. Let H =
L + 〈λ, g〉 with λ ∈ R(Dg∗), Z = Z1 ⊕ N (Dg) and DP a projection onto N (Dg) with
N (DP ) = Z1. Then the following are equivalent:

(i) DH = DL ·DP ,

(ii) ∂
∂z1

H = DH|Z1
= 0,

(iii) λ = −DL ·Dg+, where Dg+ : R(Dg)→ Z1 is a pseudoinverse of Dg.
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1.2. Second derivative

Proof. (i) =⇒ (ii): Let dz1 ∈ Z1. Then DHdz1 = DL ·DPdz1 = DL · 0 = 0.
(ii) =⇒ (iii): Let dz1 ∈ Z1. Then 0 = DHdz1 = DLdz1 + 〈λ,Dg · dz1〉 and Dg+Dg ·
dz1 = dz1. Hence 0 = (DL ·Dg+ + λ ·DgDg+)Dg · dz1 = (DL ·Dg+ + λ)Dg · dz1. Since
this holds for any dz1 ∈ Z1 and DgZ1 = R(Dg), it follows that λ = −DL ·Dg+.
(iii) =⇒ (i): DH = DL+ λ ·Dg = DL(Id−Dg+Dg) = DL ·DP

This can be used to relate critical points of (1.2) and (0.2).

Lemma 1.6. Let u be a critical point of (0.2). Set x := x(u) and λ := −Lx(x,u)(gx(x,u))−1.
Then F (x,u, λ) = 0, i.e. (x,u) is a critical point of (1.2).

Proof. We use again Z1 = X × {0} and Z2 = {0} ×U. (iii) of Theorem 1.5 is ful�lled
by de�nition, so we have (ii), i.e. Hx = 0. Hu = 0 follows from (1.9) and g = 0 by the
de�nition of x.

Lemma 1.7. Let (x,u) be a critical point of (1.2). Then u is a critical point of (0.2).

Proof. There is a λ such that F (x,u, λ) = 0, i.e. Hx = 0, Hu = 0 and x = x(u) as
g = 0. We have d

dug(x(u),u) = 0 and so

d

du
L =

d

du
H(x(u,u, λ)) = Hx

d

du
x(u) +Hu = 0.

1.2. Second derivative

The second total derivative d2

du2
L determines whether critical points of (0.2) are isolated

and also which types of extrema they are. The projection onto A that is implicitly
included in H can be used to compute d2

du2
L without having to compute an admissible

point to second order.
Consider z0 = (x0,u0) ∈ A, z = (x0 + dx,u0 + du) =: z0 + dz where dx is chosen

such that g(z) = 0, i.e. x0 + dx = x(u0 + du), and λ0 such that Hx(z0, λ0) = 0, i.e. (ii)
of Theorem 1.5 is ful�lled. Instead of L we can consider H as g(z) = g(z0) = 0 and so
H(z, λ) = L(z), H(z0, λ) = L(z0) for any λ. Then, with the argument λ omitted,

H(z)−H(z0) =

(
Hx

Hu

)
·
(
dx
du

)
+

1

2

(
Hxx Hxu

Hux Huu

)
·
((

dx
du

)
,

(
dx
du

))
+O

(
‖dz‖2

)
and, from g(x0 + dx,u0 + du) = 0,

dx = −g−1
x gudu +O

(
‖du‖2

)
.

As we have arranged for Hx = 0, the second order term in dx does not contribute and
we have

d2

du2
L = Huu −Hux(·, g−1

x gu·)−Hxu(g−1
x gu·, ·) +Hxx(g−1

x gu·, g−1
x gu·). (1.10)
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Chapter 1. Constrained optimization

Note that for this result, H mainly serves to simplify calculations, as for comparison, one
can directly compute

d

du
L =Lu − Lxg−1

x gu

d2

du2
L =Luu + Lux(·,−g−1

x gu·)

− Lxu(g−1
x gu·, ·)− Lxx(g−1

x gu·,−g−1
x gu·)

− Lx
(
−g−1

x gxu(g−1
x gu·, ·)

)
− Lx

(
−g−1

x gxx(g−1
x gu·,−g−1

x gu·)
)

− Lxg−1
x guu − Lxg−1

x gux(·,−g−1
x gu·),

which with λ = −Lxg−1
x (from (1.8)) gives the same result after gathering terms.

1.3. Shadow prices

It is interesting to know how the optimal value L∗ changes when we vary the constraint,
e.g. by introducing an additional force to the dynamics of a control system or changing
the initial condition. The latter is of particular interest for us, as it will yield the deriva-
tive ∂

∂x0
V = d

dx0
L∗ of value functions of optimal control problems in later chapters. The

sensitivities with respect to variations in the constraints are known as shadow prices and
we will show that they are given by the adjoint λ.

Theorem 1.8 (Shadow Price Theorem). Let g(z) = g(z, µ) = g0(z)+µ with g0 : Z → Y
contain an additional parameter µ ∈ Y. Then the value L∗ = L(z∗) of a critical point
z∗ = z∗(µ) of (1.2) has the derivative

dL∗

dµ
= λ∗,

where λ∗ is the Lagrange multiplier corresponding to z∗.

Proof. Let Dg0 := Dg0(z∗) and DL := DL(z∗). We consider the variation dz∗ of the
critical point z∗. Let Z = Z1 ⊕ N (Dg0) and Dg+

0 : R(Dg0) → Z1 as in Theorem 1.5,
and decompose accordingly dz∗ := dz∗|Z1

+ dz∗|N (Dg).

As z∗ always ful�lls g(z∗) = 0, we haveDg0 dz∗+dµ = 0 and soDg0 dz∗ = Dg0 dz∗|Z1
=

−dµ, i.e. −Dg+
0 dµ = dz∗|Z1

. Since z∗ is a critical point, we have DL dz∗|N (Dg0) = 0

and �nally dL∗ = DLdz∗ = DL dz∗|Z1
+DL dz∗|N (Dg0) = −DLDg+

0 dµ = λ · dµ.
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1.4. Derivative of F

1.4. Derivative of F

To consider variations of critical points we need to invert the derivative of the function
F de�ned in (1.6). We have

DF

dxdu
dλ

 =

Hxx Hxu g∗x
Hux Huu g∗u
gx gu 0

dxdu
dλ

 !
=

dHx

dHu

dg

 . (1.11)

Successively solving the third, �rst and second equation yields

dx = g−1
x (dg − gudu)

dλ = (g∗x)−1(dHx −Hxxdx−Hxudu)

= (g∗x)−1
(
dHx +Hxxg

−1
x (gudu− dg)−Hxudu

)
dHu = Huxg

−1
x (dg − gudu) +Huudu

+ g∗u(g∗x)−1
(
dHx +Hxxg

−1
x (gudu− dg)−Hxudu

)
(1.10)
=⇒ −d2L

du2
du =

(
Huxg

−1
x gu −Huu − g∗u(g∗x)−1Hxxg

−1
x gu + g∗u(g∗x)−1Hxu

)
du

= −dHu +Huxg
−1
x dg + g∗u(g∗x)−1(dHx −Hxxg

−1
x dg).

(1.12)

Lemma 1.9. Assume that the second derivatives appearing in (1.11) exist and are

bounded linear operators. Then DF is invertible if and only if gx and d2L
du2 are invertible.

Proof. � ⇐= �: If gx is invertible, then so is g∗x and the calculation in (1.12) gives the
inverse of DF .
� =⇒ �: If DF is invertible, de�ne (dx, du, dλ) as the solution of (1.11). One obtains

g−1
x dg = dx from (1.12) by setting du := 0 and then d2L

du2 dHu = du by setting dg = 0.

For optimal control problems, gx will always be invertible, but d2L
du2 will, in many

problems, be singular for some solutions. We will discuss this in Chapter 4.
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2. Optimal control

In this chapter, we will formulate optimal control problems on �nite-dimensional state
and control spaces X = Rn and U = Rm for both �nite and in�nite time horizons.
W.l.o.g. we assume t0 = 0.

We will use X ∗ in places where the dual space would appear in a more general setting,
although X ∗ = X for X = Rn.

2.1. Finite horizon

Let [0, T ] be a �nite interval and f : X × U × [0, T ]→ X .
To ful�ll the assumptions of Theorem 1.1, the spaces X, U and Y need to be chosen

so that Dg becomes a bounded operator. g involves the di�erentiation x 7→ ẋ, which is
bounded as a mapping W1,p → Lp. To make the pointwise operation (x, u)→ f(x, u, t)
well-behaved, we need control over the maxima of ‖x‖ and ‖u‖, and so we choose p =∞.
The relation ẋ = f(x, u, t) also suggests that u should have the same regularity as ẋ and
hence we use the spaces

X :=W1,∞([0, T ];X ), U := L∞([0, T ];U).

We consider a problem with a running cost c and a cost ϕ on the terminal state x(T ),
but no terminal constraint. The total cost is

L(x,u) =

ˆ T

0
c(x(t), u(t), t) dt+ ϕ(x(T )) (2.1)

with c : X × U × [0, T ]→ R and ϕ : X → R.
The regularity conditions on f , c and ϕ in x and u will vary for di�erent propositions.

We always assume that f and c are measurable in t.

We enforce the dynamics
ẋ = f(x, u, t)

and the boundary condition
x(0) = x0 ∈ X

with a single constraint. To this end we de�ne1

Y := (L∞([0, T ];X ) + X δ0) ⊂ W−1,∞([0, T ];X )

1Note that the precise choice of Y is important because we need Dg to be surjective for Theorem 1.1.
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Chapter 2. Optimal control

and g : X×U→ Y by

g(x,u) := f(x, u, ·)− d

dt
x + (x0 − x(0))δ0, (2.2)

i.e. 〈g(x,u), ψ〉 =
´ T

0 (f(x, u, t)− ẋ(t))ψ(t) dt+(x0−x(0))ψ(0) for ψ ∈ W1,∞([0, T ];X ∗).
We will write the operator x 7→ x(0)δ0 as δ0δ

∗
0 , resembling the projection operator vv>

onto a normalized vector v in a Hilbert space.

The operator ( d
dt + δ0δ

∗
0) can be interpreted as taking the derivative of a function

which starts at 0 and has an impulse-valued derivative at t = 0. This rather uncommon
approach is useful when computing the adjoint operator as we have〈(

d

dt
+ δ0δ

∗
0

)
x, ψ

〉
=

ˆ T

0
ẋ(t)ψ(t) dt+ x(0)ψ(0)

= −
ˆ T

0
x(t)ψ̇(t) dt+ x(T )ψ(T )

=

〈
x,

(
− d

dt
+ δT δ

∗
T

)
ψ

〉
.

(2.3)

2.1.1. Necessary conditions

The derivative of L is given by

DL(x,u)

(
dx
du

)
=

ˆ T

0
cx(x, u, t) · dx(t) + cu(x, u, t) · du(t) dt+ ϕ′(x(T )) · dx(T ),

for which we write

∇L =

(
cx + ϕ′ · δT

cu

)
∈ (L∞([0, T ];X ∗) + X ∗δT )×U∗ ⊂ X∗ ×U∗.

Similiarly,

∇g =

(
gx
gu

)
=

(
− d
dt + fx − δ0δ

∗
0

fu

)
: X×U→W−1,∞([0, T ];X )

and with (2.3) we obtain

Dg∗ =

(
g∗x
g∗u

)
=

(
d
dt + f>x − δT δ∗T

f>u

)
:W1,∞([0, T ];X ∗)→ X∗ ×U∗.

To show that gx is invertible, we consider the equation −gxx = y + y0δ0 ∈ Y with
y ∈ L∞([0, T ];X ), y0 ∈ X . It encodes the di�erential equation

ẋ = fx · x+ y on [0, T ]

x(0) = y0,
(2.4)
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2.1. Finite horizon

which is just the linearization of the dynamics and, if fx is Lipschitz-continuous in t,
has a unique solution x ∈ W1,∞([0, T ];X ). It follows that gx is invertible on Y =
L∞([0, T ];X ) + X δ0.

Similarly, −g∗xλ = y + yT δT , y ∈ L∞([0, T ];X ∗), yT ∈ X ∗ corresponds to

−λ̇ = f>x λ+ y on [0, T ]

λ(T ) = yT ,
(2.5)

which is again a linear di�erential equation.

We now have the necessary conditions for a minimum:

Theorem 2.1. Let f(·, ·, t), c(·, ·, t), and ϕ be continuously di�erentiable for all t ∈ [0, T ]
and let fx, fu, cx and cu be uniformly in t continuous in (x, u) on compact sets in X ×U .
If (x,u) ∈ X×U is a minimum of

min
x∈X
u∈U

L(x,u)

s.t. ẋ = f weakly

x(0) = x0,

(2.6)

then there exits λ ∈ W1,∞([0, T ],X ∗) such that

−λ̇ = f>x λ+ cx, (2.7a)

cu = −f>u λ , (2.7b)

ẋ = f (2.7c)

weakly on [0, T ] and

λ(T ) = ϕ′(x(T )), (2.7d)

x(0) = x0. (2.7e)

Proof. As x and u are in L∞, (x(t), u(t), t) is in some compact set for almost all t. It
follows that e.g. for the operator norm of fx : L∞([0, T ];X )→ L∞([0, T ];X ), de�ned as
the pointwise in t multiplication with fx(x(t), u(t), t), we have

‖fx‖L∞→L∞ ≤ ess sup
t
‖fx(x(t), u(t), t)‖X <∞.

From this and similar bounds we see that L and g have continuous Fréchet-derivatives.
Dg(x,u) : X × U → Y is surjective, as gx is invertible and Dg(x,u) · (g−1

x y, 0) = y
for all y ∈ Y. Hence we can apply Theorem 1.1 and obtain a λ ∈ Y∗ ful�lling (1.6).
Rewriting the operators as ODEs yields (2.7) and as λ solves the ODE (2.7a), we also
have λ ∈ W1,∞.

Remark 2.2. If c is strongly convex in u and fu is independent of u, then (2.7b) uniquely
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Chapter 2. Optimal control

determines u given x and λ. In that case we can eliminate u from (2.7a) and (2.7c) to
obtain an ODE for (x, λ). We will rely on this ODE to study variations of extremals in
Chapter 4.

Remark 2.3. Equations (2.7a), (2.7d) and (2.7b) are a slightly weakened form of Pon-
tryagin's minimum principle ([Pon87]). The classical form requires that c+ f>λ is min-
imal in u, which implies (2.7b), whereas conversely (2.7b) only implies that u is critical.
If c is convex in u, both statements become equivalent.

Theorem 2.4. Let f(·, ·, t), c(·, ·, t), and ϕ be twice di�erentiable for all t ∈ [0, T ] such
that the second derivatives are uniformly bounded on compact sets in X ×U × [0, T ]. Let
x ∈ X, u ∈ U and λ ∈ L∞([0, T ];X ∗).
Then DF (x,u, λ) is invertible if and only if d2L/du2(x,u, λ) is invertible.

Proof. The boundedness of the second derivatives of H follows as in the proof of Theorem
2.1. Then the claim is a direct consequence of Lemma 1.9.

2.1.2. Existence of minimizers

We will prove the existence of minimizers (under certain assumptions to be stated later)
not directly for the optimal control problem, but �rst for the calculus of variations,
which deals with cost functions c(x, ẋ, t) involving the derivative ẋ instead of the control
u. Optimal control theory includes the calculus of variations as a special case with
f(x, u, t) = u and we will show how conversely OCPs can be translated to the CoV.

Minimizers in the calculus of variations

Let 1 < p <∞ and consider the problem

L(x) :=

ˆ T

0
c(x, ẋ, t) dt+ ϕ(x(T )) = min

A
!,

A :=
{
x ∈ W1,p([0, T ],X ) : x(0) = x0

}
.

(2.8)

In classical analysis, a function f : Ω ⊂ Rn → R is guaranteed to have a minimizer if
Ω is compact and f is continuous, as any minimizing sequence will have an accumulation
point, which is a minimizer. The following analysis of (2.8) is quite analogous: (weak)
compactness can be achieved by demanding that L is coercive so that the search for a
minimizer can be restricted to a bounded set. Continuity can be replaced by the weaker
notion of lower semicontinuity, which requires c to be convex in ẋ. We will discuss both
requirements and sketch the underlying ideas before proceeding to the detailed proof.

Coercivity and compactness

De�nition 2.5. A functional L : Ω ⊆ W1,p → R is called coercive on Ω, if L(x) → ∞
as ‖x‖W1,p →∞.

26



2.1. Finite horizon

It is easily seen that the functional L in (2.8) is coercive on the a�ne subspace A if
there are constants γ1 > 0, γ2 ∈ R, such that

c(x, ẋ, t) ≥ γ1 ‖ẋ‖p + γ2 ∀x, ẋ, t,
ϕ(x) ≥ γ2 ∀x.

(Recall that A includes the boundary condition for x.)
Unfortunately the supremum ‖ẋ‖L∞ cannot be controlled by the integral of c and so

we typically get coercivity only for some p <∞. Consequently we will prove at �rst only
the existence of a minimizer in W1,p and show later that it is also in W1,∞.
We also need to exclude p = 1 because in W1,1 closed and bounded does not imply

weakly compact. The following is an example of a problem without a minimizer.

Example 2.6. Let x : [0, 1] → R, x0 := 1, c(x, ẋ, t) := 2 |x| + |ẋ|, ϕ(t) := 0. We have
L(x) ≥ 2 inft |x(t)| + (x0 − inft x(t)) ≥ inft |x(t)| + x0 ≥ 1 with equality if and only if
inft x(t) = 0. L(x) = 1 is not achievable for any x ∈ W1,1 as inft x(t) = 0 would imply´ 1

0 |ẋ| ≥ 1 and hence x = 0 a.e., a contradiction to x(0) = 1. On the other hand, the
sequence

xi(t) :=

{
1− it , t ∈ [0, 1/i)

0 , t ∈ (1/i, 1]

achieves L(xi) = 1 + 1
i −−−→i→∞

1, so 1 is the in�mum but not the minimum of L.

Convexity

Now let 1 < p <∞. We are still faced with the problem that the unit ball of the in�nite
dimensional space W1,p is only weakly compact. For an argument completely analogous
to the �nite dimensional case to succeed, we would need L to be weakly continuous,
which in general it is not.
Let us sketch what we can deduce so far: by assuming coercivity any minimizing

sequence is bounded. Because bounded sets of W1,p are weakly compact, every such
sequence has a weak accumulation point x̄, so we can pass to a weakly convergent subse-
quence xi ⇀ x̄. In detail this means xi → x̄ almost uniformly (see the proof of Theorem
2.8), but ẋi ⇀ ˙̄x only weakly in Lp, i.e. the derivatives ẋi converge to ˙̄x in average (w.r.t.
to integration against functions in the dual space).
That ˙̄x is an average in this sense suggests a way to ensure that x̄ is a minimizer: for

convex functions f we have Jensen's inequality f
(ffl
g(t) dt

)
≤
ffl
f(g(t)) dt, i.e. �value

of average ≤ average value�). We will show that if c is convex in ẋ, then L is lower
semicontinuous, i.e.

L(x̄) ≤ lim inf
i→∞

L(xi) = inf L,

which is in fact enough, as the other inequality L(x̄) ≥ inf L holds by de�nition.
The need for convexity is illustrated by an example due to Bolza [Bol02].

Example 2.7. Let x : [0, 1] → R, x0 := 0, c(x, ẋ, t) := x2 + (ẋ2 − 1)2, ϕ(t) := 0.
Obviously L(x) ≥ 0 and equality is not possible as it would require both x(t) = 0 and
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Figure 2.1.: Functions xi in the Bolza example.

ẋ(t) = ±1 to hold almost everywhere. Let φ : R→ R be the periodic sawtooth function

φ(t) :=

{
s , t = s+ 2k, s ∈ [0, 1), k ∈ Z
1− s , t = s+ 2k + 1, s ∈ [0, 1), k ∈ Z

and xi(t) := 2−iφ(2it). Then L(xi) −−−→
i→∞

0 and so L has 0 as an in�mum but not as a

minimum.

More generally one can show, by applying L to functions similar to the xi in Example
2.7, that the convexity of c in ẋ is a necessary condition for L to be lower semicontinuous,
cf. [Dac07, Theorem 3.15].

We will now prove the above claim that convexity of c in ẋ implies the weak lower
semicontinuity of L.

Theorem 2.8. Let ϕ be lower semicontinuous. Let c : Rn×Rn× [0, T ]→ R∪ {+∞} be
lower semicontinuous in (x, ẋ) and bounded from below, and let ẋ 7→ c(x, ẋ, t) be convex
for all x ∈ Rn, t ∈ [0, T ]. Then L :W1,p([0, T ],Rn)→ R is weakly lower semicontinuous
for any 1 < p <∞.

Proof. Let {xi}∞i=1 ⊂ W1,p be a sequence with xi ⇀ x̄ weakly as i → ∞. We have to
show L(x̄) ≤ lim infi→∞ L(xi) =: l.

As [0, T ] is one-dimensional, the point evaluations x 7→ x(t) are elements of the dual
space of W1,p and so xi → x pointwise. By Egoro�'s Theorem there exists, for any
ε > 0, a set Eε ⊂ [0, T ] with µ([0, T ]\Eε) ≤ ε, where µ is the Lebesgue measure, such
that xi → x̄ uniformly on Eε. Set δi,ε := supt∈Eε,j≥i ‖xj(t)− x̄(t)‖ and note that δi,ε ↘ 0
as i→∞.
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By assumption we have c ≥ γ for some γ ∈ R. Hence

L(xi) =

ˆ T

0
c(xi, ẋi, t) dt+ ϕ(xi(T ))

≥
ˆ
Eε

c(xi, ẋi, t) dt+ ϕ(xi(T )) + γµ([0, T ]\Eε). (2.9)

We are now faced with the technical di�culty that, although c(xi, ẋi, t) is �nite for
almost all t if i is large enough (because L(xi) will be �nite), other expressions such as
c(x, ẋi, t) may be in�nite (cf. Remark 2.11). We therefore de�ne the relaxation c(i)(ẋ, t)
as2

c(i)(·, t) := conv inf{c(y, ·, t) : y ∈ Bδi,ε(x̄(t))}

and note that c(xi(t), ẋi(t), t) ≥ c(i)(ẋi(t), t) for t ∈ Eε as xi(t) ∈ Bδi,ε(x̄(t)). Similarly,

c(i) is monotonously increasing in i by virtue of Bδj,ε(x̄(t)) ⊆ Bδi,ε(x̄(t)) for j ≥ i. Since
c is lower semicontinuous in x, the in�mum in the de�nition of c(i) is attained and we
have the convex combination

c(i)(ẋ, t) =
n+1∑
k=1

α
(i)
k (ẋ, t)c

(
y

(i)
k (ẋ, t), ẋ, t

)
with α

(i)
k (ẋ, t) ∈ [0, 1],

∑n+1
k=1 α

(i)
k (ẋ, t) = 1 and y

(i)
k (ẋ, t) ∈ Bδi,ε(x̄(t)), in particular

y
(i)
k (ẋ, t) −−−→

i→∞
x̄(t) for all k, ẋ, t. Using again the lower semicontinuity of c, we see that

lim inf
i→∞

c(i)(ẋ, t) ≥
n+1∑
k=1

(
α

(i)
k (ẋ, t) lim inf

i→∞
c
(
y

(i)
k (ẋ, t), ẋ, t

))
≥ c(x̄, ẋ, t).

Together with c(x̄, ẋ, t) ≥ c(i)(ẋ, t) (since x̄(t) ∈ Bδi,ε(x̄(t))) and the monotonicity of c(i)

in i this gives
lim
i→∞

c(i)(ẋ, t) = lim inf
i→∞

c(i)(ẋ, t) = c(x̄, ẋ, t). (2.10)

We need to establish that c(i)( ˙̄x, t) is �nite for almost all t. Clearly, c(i)(·, t) is �nite
on Ci(t) := conv{ẋj(t) : j ≥ i} for almost all t, so assume by way of contradiction, that
˙̄x(t) /∈ Ci(t) for t in some set G of non-vanishing measure. As Ci(t) is convex, there exists
v(t) ∈ Rn and α(t) ∈ R for all t ∈ G such that v(t) · ˙̄x(t) > α(t) and v(t) · ˙̄xj(t) ≤ α(t)
for all j ≥ i. We set v(t) := 0 and α(t) = 0 for t /∈ G and obtain the contradiction´ T

0 v · ˙̄x >
´ T

0 α ≥
´ T

0 v · ẋj −−−→
j→∞

´ T
0 v · ˙̄x.

We let i be �xed for now. The convex function c(i)(·, t) has a non-empty set of sub-
gradients at ˙̄x(t) whenever c(i)( ˙̄x, t) < ∞. As we have just demonstrated, this holds for

almost all t. On these t, we de�ne c
(i)
ẋ ( ˙̄x, t) to be any of those subgradients. For ε̃ > 0,

2conv means the lower semicontinuous envelope w.r.t. the argument ẋ.
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Chapter 2. Optimal control

let F i,ε̃ε := Eε ∩
{
t ∈ [0, T ] :

∥∥∥c(i)
ẋ ( ˙̄x, t)

∥∥∥ ≤ 1
ε̃

}
. Then µ(Eε\F i,ε̃ε ) → 0 as ε̃ → 0. Due to

convexity we can estimate

ˆ
F i,ε̃ε

c(i)(ẋj , t) dt ≥
ˆ
F i,ε̃ε

c(i)( ˙̄x, t) dt+

ˆ
F i,ε̃ε

c
(i)
ẋ ( ˙̄x, t) · (ẋj − ˙̄x) dt.

χ
F i,ε̃ε

c
(i)
ẋ ( ˙̄x, t) is in the dual space ofW1,p and so the weak convergence xj ⇀ x̄ as j →∞

implies

lim
j→∞

ˆ
F i,ε̃ε

c
(i)
ẋ ( ˙̄x, t)(ẋj − ˙̄x) dt = 0.

Recall that c(xj , ẋj , t) ≥ c(j)(ẋj , t) ≥ c(i)(ẋj , t) for j ≥ i. Now we have

lim inf
j→∞

ˆ
F i,ε̃ε

c(xj , ẋj , t) dt ≥ lim inf
j→∞

ˆ
F i,ε̃ε

c(i)(ẋj , t) dt ≥
ˆ
F i,ε̃ε

c(i)( ˙̄x, t) dt

and with ε̃→ 0

lim inf
j→∞

ˆ
Eε

c(xj , ẋj , t) dt ≥
ˆ
Eε

c(i)( ˙̄x, t) dt.

Taking the limit i→∞, the monotone convergence (2.10) yields

lim inf
j→∞

ˆ
Eε

c(xj , ẋj , t) dt ≥
ˆ
Eε

c(x̄, ˙̄x, t) dt.

Returning to (2.9), the above equation and the lower semicontinuity of ϕ imply that

l = lim inf
i→∞

L(xi) ≥
ˆ
Eε

c(x̄, ˙̄x, t) dt+ ϕ(x̄(T )) + γµ([0, T ]\Eε)

for any ε > 0. With ε → 0 and the Monotone Convergence Theorem we obtain that
l ≥ L(x̄) as claimed.

We can now show the existence of a minimizer.

Theorem 2.9. Let L : W1,p → R, 1 < p < ∞, be coercive on A and let ϕ be lower
semicontinuous. Let c be continuous and bounded from below, and let ẋ 7→ c(x, ẋ, t) be
convex for all x ∈ Rn, t ∈ [0, T ].

Then there exists at least one minimizer of

L(x) = min
x∈A

!

Proof. Set l := infx∈A L(x). If l =∞, every x is a minimizer, so we only need to consider
l <∞. Let {xi}∞i=1 be a minimizing sequence, i.e. L(xi)→ l as i→∞.

As L is coercive, we have supi ‖xi‖W1,p <∞ and consequently {xi} has a weak accu-
mulation point, i.e. there is x̄ ∈ W1,p and a subsequence {xij} such that xij ⇀ x̄ weakly
in W1,p.
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2.1. Finite horizon

Since the functional x 7→ x(0) is in the dual space ofW1,p, we have x̄(0) = limj→∞ xij (0) =
x0 and so x̄ ∈ A. Finally, it follows with Theorem 2.8 that l ≥ L(x̄) ≥ infx∈A L(x) = l
and we see that x̄ is a minimizer.

Minimizers in optimal control

In order to apply Theorem 2.9 to the optimal control problem, we de�ne

c̃(x, ẋ, t) := inf
u
{c(x, u, t) : f(x, u, t) = ẋ} , (2.11)

with inf ∅ :=∞ and

L̃(x) :=

ˆ T

0
c̃(x(t), ẋ(t), t) dt+ ϕ(x(T )), x ∈ A.

Under the assumption that the in�mum in (2.11) is attained, the corresponding mini-
mization problem is equivalent to the optimal control problem

min
x∈W1,p

u∈L1,p

L(x,u)

s.t. ẋ = f(x, u, t) weakly

x(0) = x0

(2.12)

Lemma 2.10. Assume that the in�mum in (2.11) is attained whenever c̃ < ∞. Let L∗

be the minimal values of the OCP (2.12) and

L̃∗ := inf
x∈A

L̃(x). (2.13)

Then L∗ = L̃∗ and further, if (2.13) has a minimizer x̃∗, then
(
x̃∗, ũ

(
˙̃x
∗))

, with ũ a

minimizer in (2.11), is a minimizer of (2.12).

Proof. Let (x,u) be admissible for (2.12). Then f(x, u, t) = ẋ weakly and consequently
c̃(x, ẋ, t) ≤ c(x, u, t) for almost all t. It follows that L̃(x) ≤ L(x,u) and hence L̃∗ ≤ L∗.
For the reverse implication let L̃(x) < ∞. (If L̃∗ = ∞, the remaining claims hold

trivially.) This implies that, for almost all t, c̃(x, ẋ, t) < ∞ holds, ũ = ũ(x, ẋ, t) de�ned
as above exists and ẋ = f(x, ũ, t). Consequently, (x, ũ) is admissible and L(x, ũ) = L̃(x).
This proves L̃∗ ≥ L∗ and, with x = x̃∗, the �nal claim.

Remark 2.11. If dimU < dimX , then c̃ = inf ∅ =∞ almost everywhere. This necessi-
tates the relaxation to the c(i) in the proof of Theorem 2.9.

It remains to give some conditions when Theorem 2.9 is applicable to (2.13). Note
�rst that convexity of c̃ in ẋ requires that the set V(x, t) := {f(x, u, t) : u ∈ U} of
possible velocities is convex. V(x, t) is parametrized by the linear space U . Unless
some degeneracy occurs, V(x, t) is a manifold, which has to be �at to be convex. It is
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Chapter 2. Optimal control

therefore not excessively restrictive to assume that V(x, t) is a linear space with a simple
parametrization, leading us to the following de�niniton:

De�nition 2.12 ([Cla13, 23.8]). A control system f : Rn × Rm × [0, T ] → R is �nitely
generated if f has the form

f(x, u, t) = v0(x, t) +

m∑
j=1

vj(x, t)uj ,

where vj : Rn × [0, T ]→ Rn, j = 0, . . . ,m.

Lemma 2.13. Let f : Rn×Rm× [0, T ]→ Rn be �nitely generated with vj continuous in
x and let c : Rn × Rm × [0, T ] → R be convex in u, continuous in (x, u), and ful�ll the
coercivity condition

c(x, u, t) ≥ γ1 ‖u‖p + γ2 ∀x, t

for some p > 1, γ1 > 0, γ2 ∈ R.
Then c̃ is convex in ẋ, lower semicontinuous in (x, ẋ), and on any bounded set Ω ⊂ Rn

ful�lls
c̃(x, ẋ, t) ≥ γ̃1 ‖ẋ‖p + γ̃2 ∀x ∈ Ω, t

for some γ̃1 > 0, γ̃2 ∈ R depending on Ω. Further, the in�mum in (2.11) is attained
whenever c̃ <∞.

Proof. To show convexity in ẋ, �x x and t and set A := (v1(x, t), . . . , vm(x, t)) ∈ Rn×m.
We can assume v0 = 0 by replacing ẋ with ẋ−v0 without a�ecting convexity. Obviously,
c̃(x, ẋ, t) = ∞ for ẋ /∈ R(A), so we need to show convexity on R(A). Let A+ be a
pseudoinverse of A. Then, for ẋ ∈ R(A),

c̃(x, ẋ, t) = inf
w∈N (A)

c(x,A+ẋ+ w, t)

and the in�mum is attained because c(x,A+ẋ + ·, t) is a convex function. Now let
λ ∈ [0, 1]; ẋ1, ẋ2 ∈ R(A) and let w1, w2 be corresponding minimizers. We have

c̃(x, λẋ1 + (1− λ)ẋ2, t)

≤ c
(
x, λ(A+ẋ1 + w1) + (1− λ)(A+ẋ2 + w2), t

)
≤ λc

(
x,A+ẋ1 + w1, t

)
+ (1− λ)c

(
x,A+ẋ2 + w2, t

)
= λc̃(x, ẋ1, t) + (1− λ)c̃(x, ẋ2, t),

proving the convexity in ẋ.
A(x, t)and v0(x, t) are continuous and so on the bounded set Ω × [0, T ] we have
‖A(x, t)‖ ≤ α and ‖v0(x, t)‖ ≤ α for some α ∈ R. Consequently we have, for some
γ̃1 > 0, γ̃2 ∈ R,

c̃(x, ẋ, t) ≥ γ1 ‖u‖p + γ2 ≥ γ1

(
‖ẋ− v0(x, t)‖
‖A(x, t)‖

)p
+ γ2 ≥ γ̃1 ‖ẋ‖p + γ̃2,
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2.1. Finite horizon

where u is again the minimizer in (2.11). (If ‖A(x, t)‖ = 0, then either ẋ = v0(x, t) or
c̃(x, ẋ, t) =∞, so in any case the claim remains true.)

It remains to show the lower semicontinuity in (x, ẋ). Let t be �xed and (xi, ẋi) −−−→
i→∞

(x, ẋ). We need to show c̃(x, ẋ, t) ≤ lim infi→∞ c̃(xi, ẋi, t) =: l. If l = ∞, we are done.
Otherwise, we can assume w.l.o.g. that c̃(xi, ẋi, t) < ∞ for all i and, by passing to a
subsequence, that limi→∞ c̃(xi, ẋi, t) = l. Let ui be the corresponding minimizers. Due
to the coercivity of c, there is an accumulation point u of {ui}∞i=1. By continuity, we have
A(x, t)u+ v0(x, t) = ẋ and c(x, u, t) = l. It follows that c̃(x, ẋ, t) ≤ l as claimed.

Theorem 2.14. Let ϕ be lower semicontinuous and bounded from below. Let f and c
ful�ll the conditions of Lemma 2.13. If vj, j = 0, . . . ,m grows at most linearly, i.e. if
there is a ν ∈ R such that

‖vj(x, t)‖ ≤ ν(1 + ‖x‖) ∀j, x, t,

then (2.12) has a minimizer.

Proof. We need to rectify that Lemma 2.13 gives the coercivity of c̃ in ẋ only for x in
bounded sets. We will use that the minimizer remains in a bounded set and that we can
consequently increase ĉ outside this set without changing the minimum or the minimizer.

As before, we can assume that the optimal value L∗ of (2.12) is �nite. The coercivity
of c and the lower bound on ϕ imply (using L1([0, T ]) ⊂ Lp([0, T ]) and the equivalence
of the �nite dimensional norms) that there is some constant κ ∈ R such that, for all
admissible (x,u),

L(x,u) ≤ L∗ + 1 =⇒
ˆ T

0
‖u(t)‖1 dt ≤ κ. (2.14)

By the assumptions on the vj , we have ẋ(t) ≤ ν(1+‖x‖)(1+‖u‖1) and so it follows from
Gronwall's inequality that

‖x(t)‖ ≤ (‖x0‖+ νT + νκ) exp(ν(T + κ)) =: M ∀t ∈ [0, T ]

for all admissible (x,u) with L(x,u) ≤ L∗ + 1.

De�ne ĉ(x, ẋ, t) := c̃(x, ẋ, t) + (1 − χ[−M,M ](‖x‖)) ‖ẋ‖p and the corresponding value

functional L̂ as L̃ with ĉ in the place of c̃. Obviously L̃ ≤ L̂. For any 1 > ε > 0 there
exists an admissible pair (xε,uε) with L(x,u) ≤ L∗ + ε and ‖x(t)‖ ≤ M for all t. From
the de�nition of ĉ and the proof of Lemma 2.10 we see that L̂(xε) = L̃(xε) ≤ L(xε,uε) ≤
L∗ + ε. With Lemma 2.10 and ε→ 0 it follows that L̂∗ = L̃∗ = L∗.

ĉ ful�lls the conditions of Lemma 2.13 and so, by Theorem 2.9, L̂ has a minimizer x̂,
which is also a minimizer of L̃ since

L̃∗ ≤ L̃(x̂) ≤ L̂(x̂) = L̂∗ = L̃∗.

With Lemma 2.10 we �nally conclude that (2.12) has a minimzer.
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Chapter 2. Optimal control

We cannot conclude that this minimizer ful�lls the necessary conditions unless we show
that it is also in W1,∞ ×L∞. This is not generally true as the following example shows:

Example 2.15. Let x,u : [0, 1]→ R, f(x, u, t) := u, c(x, u, t) := 1
2(u−1)2−1

3

(
x− 3

2 t
2
3

)
u4,

x0 := 0. Then x∗(t) = 3
2 t

2
3 , u∗(t) = t−

1
3 , λ∗ = 1 − t−

1
3 is an extremal trajectory with

u∗ →∞ as t→ 0.

In the following Theorem, we therefore require assumptions on f and c which prevent
the adjoint equation (2.7a) from blowing up. Note that the assumption on f is ful�lled
if f is �nitely generated.

Theorem 2.16. If, in addition to the assumptions of Theorem 2.14,

• ϕ is continuously di�erentiable,

• f is di�erentiable with ‖fx(x, u, t)‖ ≤ ν(1 + ‖u‖) ∀x, u, t for some ν ∈ R, and

• ‖cx(x, u, t)‖ ≤ γ(x)(1 + ‖u‖p) ∀x, u, t for some continuous function γ,

then x∗ ∈ W1,∞([0, T ];X ) and u∗ ∈ L∞([0, T ];U).

Proof. Note �rst that x∗ ∈ W1,p([0, T ]) implies x∗ ∈ L∞([0, T ]). Therefore ẋ∗ =
f(x∗, u∗) → ∞ can only occur for u∗ → ∞ and we only need to verify that u∗ ∈
L∞([0, T ]).

Assume, by way of contradiction, that u∗ /∈ L∞([0, T ]). We will show that such a
(x∗,u∗) is not a minimizer since L can be reduced by removing the peaks of u∗.

For 0 < ε ≤ 1 set Eε := {t ∈ [0, T ] : ‖ẋ‖ > 1
ε}. We have µ(Eε) =: δε > 0. Now de�ne

(x̂, û) by setting û(t) := χ[0,1/ε](‖u∗(t)‖)u∗(t), the cut-o� control, and ˙̂x(t) = f(x̂, û, t),
x̂(0) = x0, the resulting trajectory according to the dynamics. Set κ :=

´
Eε
‖ẋ∗(t)‖ dt.

Note that κ <∞ as ẋ ∈ Lp([0, T ]). We have δε = ε
´
Eε

1
ε dt ≤ εκ and

ˆ
Eε

‖f(x∗, u∗, t)− f(x̂, û, t)‖ dt ≤
ˆ
Eε

‖ẋ∗(t)‖dt+ δε sup
t
‖f(x̂, 0, t)‖ ≤ (1 + εα1)κ

with α1 := supt ‖f(x̂, 0, t)‖.
Set β := T +

´ T
0 ‖u

∗(t)‖dt < ∞. By Gronwall's inequality and the bound on ‖fx‖ it
follows that

sup
t∈[0,T ]

‖x̂(t)− x∗(t)‖ ≤ (1 + εα1)κeνβ .

Let LEε(x,u) :=
´
Eε
c(x, u, t) dt and LEcε := L − LEε . As κ ≤

´ T
0 ‖ẋ

∗(t)‖ dt < ∞
is bounded independently of ε, there are also bounds α2 := supε,t ‖x̂(t)‖ < ∞, α3 :=
sup‖x‖<α2

γ(x) and α4 := sup‖x‖<α2
‖ϕ′(x)‖. Together with the bound on cx we have

LEcε (x̂, û) ≤ LEcε (x
∗,u∗) + (1 + εα1)κeνβ (α3(T + ‖u∗‖Lp) + α4) . (2.15)
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2.2. In�nite horizon

We also have constants m and M(ε) such that

c(x̂(t), 0, t) ≤ m ∀t, c̃(x∗, ẋ∗, t) ≥M(ε) ‖ẋ∗‖+ γ̃2 ∀t ∈ Eε,

withM(ε)→∞ as ε→ 0, which follows from the bounds on x̂ and cx, resp. the coercivity
of c̃. We estimate

LEε(x̂, û) ≤ LEε(x∗,u∗) + (m+ γ̃2)εκ−M(ε)κ. (2.16)

Adding (2.15) and (2.16) we see that

L(x̂, û) ≤ L(x∗,u∗) + κ (α5 + α6ε−M(ε)))

with α5 := eνβ (α3(T + ‖u∗‖Lp) + α4), α6 := α1α5 + m − γ̃2. For ε > 0 small enough,
we obtain L(x̂, û) < L(x∗,u∗) in contradiction to (x∗,u∗) being a minimizer.

Bibliographical notes

Using lower semicontinuity and compactness in a suitable topology is a standard ap-
proach to proving existence of minimizers. Our Theorems 2.8 and 2.9 are adapted from
[Eva10, Chapter 8.2], which however requires the cost function c to be smooth. It is pos-
sible to approach the optimal control problem directly without the detour through the
calculus of variations. For example, [Cla13, Theorem 23.11] shows directly the existence
of minimizers for �nitely generated control systems. Our approach, on the other hand,
has the advantage of yielding reusable intermediate results. Theorem 2.8, for example,
can also be used for systems with bounded control sets as long as the set of possible
velocities is convex.

2.2. In�nite horizon

In this section, we consider problems on the in�nite time horizon [0,∞). The spaces are
now

X =W1,∞([0,∞);X ), U = L∞([0,∞);U).

We impose some restrictions by allowing only autonomous dynamics and limiting the
dependence of c on the time t to exponential discounting with a factor µ ≥ 0. Without a
terminal time, we also do not have a cost of the terminal state. Hence, the problem we
consider is

min
x,u

L(x,u) :=

ˆ ∞
0

e−µtc(x(t), u(t)) dt

s.t. ẋ = f(x, u) weakly

x(0) = x0.

(2.17)

Note that the total cost L may easily become in�nite. Even in problems where the
optimal trajectory has �nite cost (e.g. one often wants to compute the optimal way to
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reach a stable equilibrium f(x∗, u∗) = 0 and then chooses c such that c(x∗, u∗) = 0),
trajectories arising as intermediate iterates during its computation may have L =∞ and
gradients ∇L which are not bounded functionals.

To deal with this complication, we introduce the partial costs up to time T,

LT (x,u) :=

ˆ T

0
e−µtc(x(t), u(t)) dt,

and use a notion of optimality which loosely speaking requires that trajectory is not
dominated:

De�nition 2.17. An admissible pair (x∗,u∗) is weakly (locally) overtaking minimal, if
(there exists δ > 0 such that) for any admissible pair (x,u) (with ‖u∗ − u‖ < δ), any
ε > 0 and any T > 0 one can �nd T ′ ≥ T such that

LT
′
(x,u) ≥ LT ′(x∗,u∗)− ε.

The non-local version of this concept (without the restriction ‖u∗ − u‖ < δ) was
de�ned by Carlson and Haurie in [CH87].

Concerning the dynamics, we now also need to state explicitly that we allow only
compactly supported test functions for the weak derivative and de�ne g : L∞([0, T ];X )×
U→ (L∞([0, T ];X ) + X δ0) ⊂

(
W1,∞
c ([0,∞);X )

)∗
by

g(x,u) := f(x, u, ·)− d

dt
x + (x0 − x(0))δ0,

As a further assumption we will require that the linearization around the (w.l.o.)
optimal trajectory ful�lls the asymptotic stability condition

ˆ ∞
t

∥∥Ψs←t∥∥
X→X ds ≤ β <∞ ∀t ≥ 0, (2.18)

where Ψs←t is the fundamental solution of ẋ = fxx. W.l.o.g. it also su�ces if the
trajectory is asymptotically stabilizable, i.e. if there is a matrix-valued function B(t)
such that (2.18) is ful�lled for ẋ = (fx + fuB)x. In that case, one can change to new
coordinates u′ = u+Bx.

It is convenient to introduce the notation

ĉ(x, u, t) := e−µtc(x, u)

for the discounted cost.

We will now show that the naive extrapolation(
ĉx
ĉu

)
+Dg∗ · λ !

= 0
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2.2. In�nite horizon

of (1.5) is a necessary condition for a w.l.o. minimal trajectory.

Note that

(
ĉx
ĉu

)
+ Dg∗ · λ ∈ L∞([0,∞),X ∗ × U∗) but due to the in�nite horizon

L∞([0,∞),X ∗×U∗) * (L∞([0,∞),X ×U))∗ and so a gradient ∇L with respect to arbi-
trary variations does generally not exist. However, L∞([0,∞),X ∗×U∗) ⊆ (L∞c ([0,∞),X×
U))∗, i.e. there is a gradient w.r.t. compactly supported variations. Its relation to the
gradients of the �nite horizon problems for the LT will be used in the following proof.

Theorem 2.18. Let (x∗,u∗) be a w.l.o. minimal trajectory. Then there exists λ ∈
L∞([0,∞),X ∗) such that (

ĉx
ĉu

)
+Dg∗λ = 0.

Proof. The proof proceeds in three steps. We begin by proving that the �rst component
of the equation, ĉx+ g∗xλ = 0, already determines a unique candidate for λ. We will then
show that on subintervals we have d

duL
T ≈ ĉu + g∗uλ for this λ. Finally we conclude that

if d
duL

T ≈ ĉu + g∗uλ 6= 0, then an improvement on intervals [0, T ] would be possible and
violate the w.l.o. minimality of (x∗,u∗).

Consider �rst g∗x. Proceeding as for �nite horizons, we �nd that −g∗xλ = y,y ∈
L∞([0,∞),X ∗) corresponds to the di�erential equation

−λ̇ = f>x λ+ y on [0,∞)

and that we lack a boundary condition. However, the requirement that λ be bounded
makes λ(t) :=

´∞
t Φt←sy(s) ds, where Φs←t is the fundamental solution of −λ̇ = f>x λ, the

unique solution (cf. e.g. [Cop78]). To see this note �rst that λ(t) =
´∞
t

(
Ψs←t)∗ y(s) ds

and hence by (2.18), the λ so de�ned is bounded. It is easily veri�ed that it is indeed
a solution. Furthermore, if λ̃ 6= λ is an additional solution, then ∆λ := λ̃ − λ ful�lls
∆λ̇ = −f>x ∆λ and ∆λ(0) 6= 0. (2.18) implies

∥∥Ψs←0
∥∥
X→X =

∥∥Φ0←s∥∥
X ∗→X ∗ −−−→s→∞

0

and hence
∥∥Φs←0

∥∥
X ∗→X ∗ −−−→s→∞

∞, which means that λ̃ cannot be bounded.

Having established the existence of (g∗x)−1, it follows that the X-component of the
claimed equality can only be ful�lled by λ = −(g∗x)−1ĉx and we will show by contradiction
that this λ also ful�lls the U-component. To this end, assume for the rest of the proof
that ĉu + g∗u · λ = ĉu + g∗u · (−g∗x)−1ĉx 6= 0 with ‖ĉu + g∗u · λ‖U∗ = α > 0. Then there is
τ > 0 such that

∥∥χ[0,τ ] (ĉu + g∗u · λ)
∥∥
U∗

> α/2.

We will now show that χ[0,τ ]
d
duL

T −−−−→
T→∞

χ[0,τ ] (ĉu + g∗uλ) (in the U∗-norm). For the

�nite horizon subproblem, d
duL

T = ĉTu + (gTu )∗ · λ with λT = −(gT∗x )−1ĉTx . Obviously
χ[0,τ ]ĉ

T
u = χ[0,τ ]ĉu for T ≥ τ . The multiplication operator g∗u = f>u is bounded and

χ[0,τ ]g
T∗
u z = χ[0,τ ]g

∗
uz ∀z ∈ X∗, T ≥ τ . Hence it su�ces to show χ[0,τ ]λ

T −−−−→
T→∞

χ[0,τ ]λ.

We have that

λ(t) = Φt←0

ˆ ∞
t

(
Ψs←0

)∗
ĉx(s) ds
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Chapter 2. Optimal control

and similarly one obtains

λT (t) = Φt←0

ˆ T

t

(
Ψs←0

)∗
ĉx(s) ds

(t ≤ τ ≤ T ). With (2.18),

∥∥χ[0,τ ](λ− λT )
∥∥
L∞ ≤

ˆ τ

0

∥∥Φt←0
∥∥
X ∗→X ∗ dt ·

ˆ ∞
T

∥∥∥(Ψs←0
)∗∥∥∥
X ∗→X ∗

ds · ‖ĉx‖L∞ −−−−→
T→∞

0

gives the desired convergence.

We will now construct a u with lower cost on intervals [0, T ]. One can �nd a T ′ ≥ τ ,

such that
∥∥χ[0,τ ]

(
d
duL

T − ĉu − g∗uλ
)∥∥

U∗
≤ α

8 for all T ≥ T ′. Next, consider d2

du2L
T (χ[0,τ ]·, χ[0,τ ]·)

and refer to (1.10). It can be seen that d2

du2L
T (χ[0,τ ]·, χ[0,τ ]·) depends on T only through

λT because all other terms are just restrictions of their in�nite horizon counterparts and
we already restrict to [0, τ ]. With the convergence result for λT this yields∥∥∥∥ d2

du2
LT (χ[0,τ ]·, χ[0,τ ]·)

∥∥∥∥
U→U∗

< const

independent of T in some neighborhood of (x∗,u∗).

Now choose ∆u, supp(∆u) ⊆ [0, τ ], ‖∆u‖U = 1 such that 〈ĉu + g∗u · λ,∆u〉 > α
4 and

hence3
〈
d
duL

T ,∆u
〉
> α

8 ∀T ≥ T ′. Together with the bound on the second derivative
this implies that for any δ > 0 there are su�ciently small ε > 0, δ > h > 0 such that
LT (x(u∗+h∆u),u∗+h∆u) < LT (x∗,u∗)−ε for all T ≥ T ′, contradicting the assumption
that (x∗,u∗) is w.l.o. minimal and completing the proof.

Remark 2.19. From the above proof we also see that λ(t) =
´∞
t Φt←sĉx(s) ds. If (x,u)

converges to a minimum (x∗, u∗) of c, then ĉx → 0 and

lim
t→∞

λ(t) = 0.

Combining the above Theorem with the admissibility condition, we �nd that the slight
modi�cation

F (x∗,u∗, λ) :=

ĉx +Dxg
∗(x∗,u∗) · λ

ĉu +Dug
∗(x∗,u∗) · λ

g(x∗,u∗)

 = 0. (2.19)

of (1.6) also characterizes candidates for w.l.o. minimal trajectories although (ĉx, ĉu) can
no longer be understood as the derivative of L in the same sense. The calculations of
section 1.4 still hold, if Lx is replaced with ĉx and so on.

3Restriction to the proper interval is understood to be implicitly done where necessary.
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2.2. In�nite horizon

Existence of minimizers

We show the existence of minimizers for c ≥ 0 and L∗ < ∞. In this situation, weak
overtaking minimality is equivalent to minimality in the normal sense:

Lemma 2.20. Let c ≥ 0 and assume L∗ < ∞. Then (x∗,u∗) is weakly overtaking
minimal if and only if it is a minimizer.

Proof. Note �rst that for S ≤ T we have LS(x,u) ≤ LT (x,u) ≤ L(x,u) and that
LT (x,u) −−−−→

T→∞
L(x,u) for all (x,u).

Assume that (x∗,u∗) is w.o. minimal and, by way of contradiction, that there exists
(x,u) with L(x,u) < L(x∗,u∗) − ε for some ε > 0. Choose T such that LT (x∗,u∗) >
L(x∗,u∗) − ε/2. As (x∗,u∗) is w.o. minimal, there exists T ′ ≥ T such that LT

′
(x,u) >

LT
′
(x∗,u∗)− ε/2. It follows that

L(x∗,u∗)− ε > L(x,u) ≥ LT ′(x,u) > LT
′
(x∗,u∗)− ε/2 > L(x∗,u∗)− ε,

a contradiction.
For the reverse implication, assume that (x∗,u∗) is a minimizer. Given any (x,u),

ε > 0 and T > 0, there is a T ′ ≥ T such that

LT
′
(x,u) > L(x,u)− ε ≥ L(x∗,u∗)− ε.

By also requiring the assumptions of Theorem 2.14, we can now show the existence of
a minimizer in W1,p

loc × L
1,p
loc .

Theorem 2.21. Let f : Rn × Rm → Rn be �nitely generated with vj continuous and of
linear growth

‖vj(x)‖ ≤ ν(1 + ‖x‖) ∀j, x,

in x for some ν > 0 and let c : Rn×Rm → R, c ≥ 0 be convex in u, continuous in (x, u)
and ful�ll the coercivity condition

c(x, u) ≥ γ1 ‖u‖p + γ2 ∀x, u

for some p > 1, γ1 > 0 and γ2 ∈ R.
Then (2.17) has a minimizer (x∗,u∗) ∈ W1,p

loc ([0,∞))× Lploc([0,∞)) if L∗ <∞.

Proof. From LS ≤ LT ≤ L for S ≤ T it follows for the respective minima that LS,∗ ≤
LT,∗ ≤ L∗ and LT,∗ ↗ lim

T→∞
LT,∗ =: L∞,∗ ≤ L∗ as T →∞. (In fact, L∞,∗ = L∗, but this

is not proven yet.)
For i ∈ N, let (xi,ui) be the minimizer of Li, which exists according to Theorem 2.14.

We will consider a chain of iteratively de�ned subsequences of (xi,ui). Let the sequence
itself be the 0th subsequence. For k ∈ N, select the kth subsequence from the (k − 1)th
subsequence such that its restrictions to [0, k] converge weakly in W1,p × Lp and de�ne

39



Chapter 2. Optimal control

(x∗,u∗)|[0,k] to be this limit. This is possible because Lk(xi,ui) ≤ Li(xi,ui) < L∗ for

i ≥ k and Lk is coercive. The limit agrees with the previous de�nition of (x∗,u∗) on
[0, k − 1] because the subsequences are nested.
For i ≥ j, we have Lj(xi,ui) ≤ Li(xi,ui) ≤ Li,∗ ≤ L∞,∗ and hence, by lower semicon-

tinuity of Lj , that Lj(x∗,u∗) ≤ L∞,∗ ≤ L∗ for all j. As Lj(x∗,u∗) −−−→
j→∞

L(x∗,u∗), we

have L(x∗,u∗) ≤ L∗.

The result for p =∞ similarly carries over from the �nite horizon case.

Theorem 2.22. If, in addition to the assumptions of Theorem 2.21,

• f is di�erentiable with ‖fx(x, u, t)‖ ≤ ν(1 + ‖u‖) ∀x, u, t for some ν ∈ R, and

• ‖cx(x, u, t)‖ ≤ γ(x)(1 + ‖u‖p) ∀x, u, t for some continuous function γ,

then x∗ ∈ W1,∞
loc ([0,∞);X ) and u∗ ∈ L∞loc([0,∞);U).

Proof. Theorem 2.21 yields minimizers of LT in W1,∞ × L∞. We can then proceed as
in the proof of Theorem 2.21 with weak convergence replaced by weak-* convergence as
L∞ is not re�exive.

Getting a globally bounded minimizer, however, is more di�cult.
In the in�nite horizon case, trajectories with �nite cost may still be unbounded if the

discount factor decreases faster than c increases, e.g. for the system x0 = 1, f(x, u) =
f(x) = x, c(x, u) = x2 + u2 with any µ > 1. Even without discounting, we require
coercivity in x to prevent unbounded solutions, as the following counterexample shows:

Example 2.23. For x, u ∈ R let c(x, u) = e−x + u2, f(x, u) = ux, x0 = 1 and µ = 0.
x(t) := t+ 1, u(t) := 1

t+1 is admissible and has a �nite cost, so L∗ <∞. It follows that
any minimizer would have c→ 0 and consequently |x| → ∞ as t→∞.

With coercivity in x and no discount, we can obtain global bounds:

Theorem 2.24. Assume that, in addition to the assumptions of Theorem 2.22,

c(x, u) ≥ γ3 ‖x‖+ γ4 ∀x, u

for some γ3 > 0, γ4 ∈ R.
Then the undiscounted problem (2.17) with µ = 0 has a minimizer (x∗,u∗) ∈ W1,p

loc ([0,∞))×
Lploc([0,∞)) if L∗ <∞.

Proof. We �rst bound ‖x∗(t)‖.
Fix d > 1 and assume ‖x∗(t1)‖ ≥ d for some t1. Set t2 := t1+ ln d

8ν
√
d
. If
´ t2
t1
‖u∗(t)‖1 dt ≤

ln d
8ν , we set y(t) = ‖x∗(t)‖ and observe that y(t1) = d and ẏ ≥ −2νy − 2ν ‖u∗(t)‖1 y as
long as y(t) ≥ 1. With Gronwall's lemma, it follows that

y(t2) ≥ y(t1) exp(−2ν(t2 − t1)− 2ν

ˆ t2

t1

‖u∗(t)‖1 dt) ≥
√
d
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2.2. In�nite horizon

and hence, in this case, L(x,u) ≥ ln d
8ν

(
γ3 + γ4√

d

)
by coercivity in x and using only

contributions from [t1, t2].
Due to p > 1 and the equivalence of �nite-dimensional norms, we also have

c(x, u) ≥ γ5 ‖u‖1 + γ6 ∀x, u

for some constants γ5 > 0, γ6 ∈ R. If
´ t2
t1
‖u∗(t)‖1 dt > ln d

8ν , we use this coercivity to

obtain L(x,u) ≥ ln d
8ν

(
γ5 + γ6√

d

)
.

It follows that L(x∗,u∗) ≥ min
{

ln d
8ν

(
γ3 + γ4√

d

)
, ln d

8ν

(
γ5 + γ6√

d

)}
−−−→
d→∞

∞ and so x∗(t)

has to be bounded if L∗ <∞.
The bound on ‖u∗(t)‖ (and thereby ‖ẋ∗(t)‖) is analogous to Theorem 2.16. The only

di�erence is that ‖x̂(t)− x∗(t)‖ can no longer be bounded by Gronwall's inequality, so
instead we use (2.18) to obtain

ˆ ∞
0
‖x̂(t)− x∗(t)‖ dt

.
ˆ ∞

0

ˆ t

0
χEε(s) ‖f(x̂, 0)− f(x∗, u∗)‖

∥∥Ψt←s∥∥
X→X dsdt

=

ˆ ∞
0

χEε(s) (‖f(x̂, 0)‖+ ‖f(x∗, u∗)‖)
ˆ ∞
s

∥∥Ψt←s∥∥
X→X dtds

≤
(
εκ sup

s
‖f(x̂(s), 0)‖+ κ

)
β.

with the constant β from (2.18) and �.� as ε→ 0.
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3. Singularities and bifurcations

In this chapter, we introduce some types of singularities and bifurcations that are relevant
for our study of the optimal control problem. All results in this chapter are standard. A
more detailed exposition of bifurcation theory can e.g. be found in [Kie06] or [GG73].

The optimal control problem does not appear in this chapter and we will reuse some
variables otherwise associated with it.

Let X and Y be real Banach spaces.

De�nition 3.1. A bounded linear operator A : X → Y is a Fredholm operator of index
m ∈ Z if dimN (A) <∞, codimR(A) <∞ and m = dimN (A)− codimR(A).

Lemma 3.2 ([Kat58, Lemma 332]). The range of a Fredholm operator A : X → Y is a
closed subspace of Y .

Lemma 3.3 ([Kat58, Remark 1]). The index of a Fredholm operator is invariant under
bounded perturbations (with respect to the operator norm).

Let G : X → Y be continuously (again w.r.t. the operator norm) Fréchet-di�erentiable
with DG(x) a Fredholm operator of index n for all x ∈ X. Because of Lemma 3.3, the
latter condition is ful�lled if it holds for any x ∈ X.

Let S be the set of solutions to G = 0, i.e.

S := {x ∈ X : G(x) = 0}.

At a generic point x, DG(x) has full rank in the sense that

dimN (DG(x)) = n,

codimR(DG(x)) = 0
(3.1)

and S is locally an n-dimensional manifold. In the following, we will describe some
non-generic situations.

3.1. Fold singularity

First, we study points where S is still locally a manifold, but where a speci�c parametriza-
tion is not possible.

Let X have a decomposition x = (λ, z) ∈ Rn × Z such that DzG is �square�, i.e. has
Fredholm index 0. In this situation, λ is often interpreted as a parameter and one wants
to �nd a solution z(λ) of G(λ, z) = 0. Locally z must ful�ll DzGdz = −DλGdλ and we

43



Chapter 3. Singularities and bifurcations

call points where solutions to this equation may not exist (because R(DλG) 6⊆ R(DzG))
fold singularities.

De�nition 3.4. Let G as above. A point (λ∗, z∗) with G(λ∗, z∗) = 0 is a fold singularity
if there exists w ∈ Y , w 6= 0, such that w /∈ R(DzG(λ∗, z∗)) and w ∈ R(DλG(λ∗, z∗)).
It is a simple fold singularity if codimR(DzG(λ∗, z∗)) = 1.

Note that if DzG is singular but R(DλG) ⊆ R(DzG), we have a more complicated
singularity where multiple solutions may exist. One possible type in this case is the
pitchfork bifurcation described in the next section.
At a fold singularity, there exists at least one direction in the parameter space for

which locally no solution exists:

Lemma 3.5. Let Πλ : (λ, z) 7→ λ be the projection onto the λ-coordinate. If (λ∗, z∗) is
a fold singularity, then ΠλTS(λ∗, z∗) 6= Rn.

Proof. Let w as in De�nition 3.4. Then there exists a λ ∈ Rn with DλG(λ∗, z∗)λ = w
and a functional v ∈ Y ∗ with v ⊥ R(DzG

∗(λ∗, z∗)) and v(w) = 1. If λ ∈ ΠλTS(λ∗, z∗),
then there would be (λ, z) ∈ TS(λ∗, z∗) and we would have

0 = DλG(λ∗, z∗)λ+DzG(λ∗, z∗)z

= v(DλG(λ∗, z∗)λ) + v(DzG(λ∗, z∗)z)

= v(DλG(λ∗, z∗)λ) = v(w) = 1.

It follows that λ /∈ ΠλTS(λ∗, z∗).

Example 3.6. G : R × R → R, (λ, x) 7→ λ + x2 has a fold singularity at (0, 0) with
DG(0, 0) = (0, 0) and indeed there are no solutions x ∈ R of G(λ, x) = 0 for λ > 0, cf.
Figure 3.1.

3.2. Pitchfork singularity

Next, we consider the situation where DG(x∗) is rank-de�cient by one. To simplify the
presentation, we require that the Fredholm index is one, which is the only case that will
occur in the subsequent chapters.
S would then generically be a curve, but at x∗ will be the intersection of two curves

forming a pitchfork bifurcation as shown in Figure 3.2.
Unlike a fold singularity, a pitchfork bifurcation is not a matter of parameterization but

a change in the topological structure of S. Consequently, we will not introduce a special
parameter subspace of X. As the precise requirements are not immediately apparent,
we will postpone the de�nition of a pitchfork singularity to the end of this section and
begin now the analysis of points with rank-de�ciencies.
Let x∗ ∈ S with

dimN (DG(x∗)) = 2

codimR(DG(x∗)) = 1.
(3.2)
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Figure 3.1.: Fold singularity of G(λ, x) =
λ+ x2.

−8 −6 −4 −2 0 2

−2

0

2

λ

x
Figure 3.2.: Pitchfork singularity of

G(x) = x1x2 + x3
2.

and normalized bases

N (DG(x∗)) = span{Φ1,Φ2} ⊂ X
R(DG(x∗))⊥ = span{Ψ} ⊂ Y ∗.

There exists a complement X̂ of N (DG(x∗)) in X, so that we have the decomposition

X = X̂ ⊕ span{Φ1,Φ2}.

3.2.1. Lyapunov-Schmidt reduction

Note that the restriction of DG(x∗) to X̂ → R(DG(x∗)) is (boundedly) invertible by the
Open Mapping Theorem. Using the above decompositions we can split DG(x∗) into an
invertible part and a �nite-dimensional part, which controls the bifurcation. We write
x = x∗ + x̂+ α1Φ1 + α2Φ2 with x̂ ∈ X̂ and have

G(x) = 0⇔

{
PR(DG(x∗))G(x∗ + x̂+ α1Φ1 + α2Φ2) = 0

and Ψ (G(x∗ + x̂+ α1Φ1 + α2Φ2)) = 0
, (3.3)

with PR(DG(x∗)) an arbitrary projection onto R(DG(x∗)).

By the Inverse Function Theorem, the �rst equation can be solved locally around x∗

for x̂ = x̂(α1, α2).

Note that x̂(α1, α2)= −
(
DG(x∗)|X̂→R(DG(x∗))

)−1
DG(x∗)(α1Φ1 +α2Φ2)+O(‖α‖2)=

0 +O(‖α‖2) (for α→ 0) since Φi ∈ N (DG(x∗)).
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Chapter 3. Singularities and bifurcations

Inserting into the second equation on the right in (3.3) and Taylor expansion yields

2∑
i,j=1

αiαjΨ((D2G)(x∗)(Φi,Φj)) + r(α) = 0 (3.4)

with r(α) = O(‖α‖3).

The following homotopy argument shows that the quadratic form

2∑
i,j=1

αiαjΨ((D2G)(x∗)(Φi,Φj)) =: α>Aα

determines the local structure of the solution set if A =
(
Ψ((D2G)(x∗)(Φi,Φj))

)2
i,j=1

is

non-singular: (The result is a variation of the Morse Lemma, cf. [Mor25])

Lemma 3.7. Let f : Rn → R, f(x) := x>Ax + r(x) with A ∈ Rn×n non-singular,
r ∈ C1(Rn), r(0) = 0 and ‖Dr(x)‖ = o(‖x‖) as x→ 0.

Let S0 := {x ∈ Rn : x>Ax = 0} and S1 := {x ∈ Rn : f(x) = 0}.
Then there exist open neighborhoods U, V ⊂ Rn of 0 and a di�eomorphism ϕ : U → V

such that
x>Ax = f(ϕ(x)) ∀x ∈ U , in particular ϕ(U ∩ S0) = V ∩ S1

and
‖x− ϕ(x)‖ = o(‖x‖) (x→ 0).

Proof: We use the homotopy fλ(x) := x>Ax + λr(x), λ ∈ [0, 1] and construct a �ow
F (x, λ) that leaves fλ invariant. Overloading notation, x(λ) shall now denote trajectories

of dxdλ = F (x, λ). From the requirement fλ(x(λ))
!≡ const., we obtain

0 =
d

dλ
fλ(x) =

∂

∂λ
fλ +

∂

∂x
fλ ·

dx

dλ
= r(x) + (2Ax+ λDr(x)) · dx

dλ

⇒
〈

2Ax+ λDr(x),
dx

dλ

〉
= −r(x)

Choosing
∥∥dx
dλ

∥∥ to be minimal yields

F (x, λ) :=
−r(x)

‖2Ax+ λDr(x)‖2
(2Ax+ λDr(x)).

As A is non-singular, we have ‖2Ax+ λDr(x)‖ = Ω(‖x‖) and hence, for some neighbor-
hood U of 0 and x ∈ U\{0}, F (x, λ) is well-de�ned and, as x→ 0,

‖F (x, λ)‖ =
o(‖x‖2)

Ω(‖x‖)
= o(‖x‖).
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3.2. Pitchfork singularity

It follows that F can be continuously extended to F (0, ·) := 0 and, by Gronwall's Lemma,

‖x(1)− x(0)‖ =

∥∥∥∥∥∥
1ˆ

0

dx

dλ
dλ

∥∥∥∥∥∥ = o(‖x(0)‖).

The evolution ϕ : x(0) 7→ x(1), U → ϕ(U) =: V of dx
dλ = F (x, λ) is the claimed

di�eomorphism. �

3.2.2. Analysis of the quadratic form

We distinguish three cases for the quadratic form A =
(
Ψ((D2G)(x∗)(Φi,Φj))

)2
i,j=1

:

1) A is de�nite (detA > 0, �x2
1 + x2

2 = 0�) x0 is an isolated solution, contradicting
the assumption that it is part of a solution curve.

2) A is singular (detA = 0, �x2
1 + x3

2 = 0�) The assumption of Lemma 3.7 is
not satis�ed. We have a degenerate bifurcation point where the structure of the
solution set is determined by higher order terms.

3) A is inde�nite and non-singular (detA < 0, �x2
1 − x2

2 = 0�) The solution set
consists of two curves intersecting at x0.

Only in case 3 do we have a pitchfork bifurcation. Diagonalization of the symmetric
matrix A gives

A = T

(
µ1 0
0 −µ2

)
T>,

with µ1, µ2 > 0, T orthonormal and α>Aα = 0 has the solutions α = T
( √

µ2
±√µ1

)
.

Recalling x = x∗ + x̂+ α1Φ1 + α2Φ2 (and x̂ = O(‖α‖2)) we obtain that the tangents
of the solution curves at x∗ are (

Φ1 Φ2

)
T

( √
µ2

±√µ1

)
. (3.5)

The above discussion �nally leads to the following de�nition:

De�nition 3.8. A point x∗ with G(x∗) = 0 is a pitchfork singularity if it ful�lls (3.2)

and det
(
Ψ((D2G)(x∗)(Φi,Φj))i,j=1

)2
< 0.

Example 3.9. Let G : R2 → R, x 7→ x1x2 + x3
2 (cf. Figure 3.2). At x∗ = (0, 0) we

have DG = (x2, x1 + 3x2
2) = (0, 0) and D2G =

(
0 1
1 6x2

)
=

(
0 1
1 0

)
. We can use

Φ1 = (1, 0)>, Φ2 = (0, 1)> and Ψ = 1. Then A = D2G and detA = −1, i.e. x∗ is a
pitchfork singularity.

47



Chapter 3. Singularities and bifurcations

3.3. Cusp singularity

The most complicated singularity we need to consider is a combination of the previous
two: A cusp singularity is a pitchfork bifurcation where a branch of fold singularities with
respect to an additional parameter λ ∈ Rn appears simultaneously with and tangentially
to the second solution branch.

De�nition 3.10. Let (λ∗, µ∗, z∗) ∈ X = Rn × R × Z such that D(µ,Z)G(λ∗, µ∗, z∗) has
Fredholm index 1, (µ∗, z∗) is a pitchfork singularity of G(λ∗, ·, ·) and one solution branch
has the tangent (0, v), 0 6= v ∈ Z. Let

S := {(λ, µ, z) ∈ X : (λ, z) is a fold singularity of G(·, µ, ·)}.

Then (λ∗, µ∗, z∗) is a cusp singularity if (0, 0, v) is a tangent of S at (λ∗, µ∗, z∗).

Example 3.11. Let G : R × R × R → R, (λ, µ, z) 7→ 4z3 + 2µz + λ (cf. Figure 3.3).
At (λ∗, µ∗, z∗) = (0, 0, 0) we have D(µ,z)G = (2z, 2µ + 12z2) = (0, 0) and D2

(µ,z)G =(
0 2
2 24z

)
=

(
0 2
2 0

)
, so it is a pitchfork singularity w.r.t. (µ, z) with tangents (1, 0) and

(0, 1), or (0, 1, 0) resp. (0, 0, 1) if embedded in the full space.
Furthermore, (8z3,−6z2, z), z ∈ R is a curve of fold singularities as it ful�lls G = 0

and DzG = 0. At (0, 0, 0), its tangent is (0, 0, 1), equaling the second tangent of the
pitchfork bifurcation. Hence (0, 0, 0) is a cusp singularity.
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Figure 3.3.: Two views of the cusp singularity of G(λ, µ, z) = 4z3 + 2µz + λ. The inter-
section of S with the (µ, z)-plane, which contains the pitchfork bifurcation,
is red. The curve of fold singularities is black.
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4. Geometry of optimal control

Having discussed the criteria for identifying a local optimum, we now want to look at
the structure of all local optima with the eventual goal of �nding the global one among
them.

The existence of multiple local optima is closely related to the appearance of nonsmooth
regions in the value function. We will explore this connection, at �rst for �nite time
horizon problems as in Section 2.1. Recall in particular that the cost functional

L(x,u) =

ˆ T

0
c(x(t), u(t), t) dt+ ϕ(x(T ))

includes a terminal cost ϕ.

We are interested in the number of extremal trajectories that are associated with (i.e.
start at) an initial condition x(t0) = x0, but will begin by considering the set of all
extremals for all initial conditions before returning to the question whether there is a
(locally) unique one for a given t0 ∈ [0, T ] and x0 ∈ X .
Restating (2.7), we know that (x,u, λ) are an extremal trajectory and its adjoint if

and only if they ful�ll
ẋ = f,

−λ̇ = cx + f>x λ,

0 = cu + f>u λ

 (4.1)

and the terminal condition

λ(T ) =
d

dx
ϕ(x(T )). (4.2)

We will assume from now on that cu = −f>u λ uniquely determines u = u∗(x, λ),
which e.g. is the case if c is strictly convex in u and f is �nitely generated. With this
assumption, (4.1) is an ODE in (x, λ).

In this chapter, we will study its solutions and their variations. We assume throughout
that a minimizer exists in W1,∞ × L∞ and that f, c, ϕ have a second derivative with
uniform bounds on compact sets as in Theorem 2.4, so that the variations exist.

4.1. Non-uniqueness of extremals trajectories

The study of extremals is greatly simpli�ed by the following observation:

Lemma 4.1. The mapping Ψ : xT 7→ (x, λ), where (x, λ) is the solution of (4.1) with
terminal condition x(T ) = xT and (4.2), is a continuous bijection between X and the set
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Chapter 4. Geometry of optimal control

of extremal trajectories (with the W1,∞-norm).

Proof. It follows from the above that Ψ produces extremal trajectories and its injectivity
is obvious. Under the assumptions of this chapter, solutions to (4.1) vary continuously
with the initial conditions and are unique. Hence Ψ is continuous and surjective, as
Ψ(x(T )) = (x, λ) for any extremal pair (x, λ).

In light of this observation, we will study bifurcations in the (possibly multi-valued)
mapping x(t) 7→ x(T ). This involves looking at its derivative, so we further introduce

Q(t) via the variation dx(t) := Q(t)dx(T ), i.e. Q(t) = dx(t)
dx(T ) .

We have the following relationship between λ and the derivative of the value function
V :

Lemma 4.2. If (x∗,u∗, λ∗) are an extremal starting at x(t0) = x0 and its adjoint, and
there exists a neighborhood Ω ⊆ X of x0 such that (x∗,u∗) and its variations with initial
conditions x(t0) = x ∈ Ω are global minima then

Vx(x0, t0) = λ∗(t0).

Proof. Let the extremal (x,u) be a variation of (x∗,u∗). By the Shadow Price Theorem
1.8 we have for L(x,u) at (x,u) = (x∗,u∗)

dL

dx0
= λ∗ · dg

dx0
= λ∗ · δt0 = λ∗(t0).

By de�nition of the value function, L(x,u) = V (x(t0), t0) for x(t0) ∈ Ω and so Vx(x0, t0) =
dL
dx0

(x∗,u∗) = λ∗(t0).

Under the same assumption, S(t) de�ned by dλ(t) = S(t)dx(t) is the second derivative:

S(t) = d2

dx2
V (x(t), t).

We will show that there is a relation between S and bifurcation of optima.

Let us consider an in�nitesimal variation (dx, du, dλ) of an extremal trajectory (x,u, λ).1

Such a trajectory is a solution of (1.6), and so its variation solves (1.11). Note that the
operators appearing in (1.11) act locally in t. As only the boundary condition is varied,
the right hand side of (1.11) is 0 on the interval (0, T ]. Hence, by solving the third resp.
second row, we �nd that the following holds point-wise for almost all t ∈ (0, T ):

0 = gxdx+ gudu = fxdx− dẋ+ fudu

⇒ dẋ = fxdx+ fudu

0 = Huxdx+Huudu+ g∗udλ ⇒ du = −H−1
uu (Huxdx+ f>u dλ).

Hence
dẋ = (fx − fuH−1

uuHux)dx− fuH−1
uu f

>
u dλ.

1The following calculations are standard in optimal control theory, cf. e.g. [BH69, Chapter 6]
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4.1. Non-uniqueness of extremals trajectories

Furthermore, from the �rst row,

0 = Hxxdx+Hxudu+ g∗xdλ = Hxxdx+Hxudu+ dλ̇+ f>x dλ

⇒ dλ̇ = −Hxxdx−Hxudu− f>x dλ
= (−Hxx −HxuH

−1
uuHux)dx+ (−f>x +HxuH

−1
uu f

>
u )dλ.

So dx and dλ ful�ll the linear ODE

dẋ = A(t)dx−B(t)dλ

dλ̇ = −C(t)dx−A(t)>dλ

}
(4.3)

with A(t) := fx − fuH−1
uuHux, B(t) := fuH

−1
uu f

>
u and C(t) := Hxx +HxuH

−1
uuHux.

From (4.3) we derive di�erential equations for Q and S:

dλ̇ = Ṡdx+ Sdẋ

dẋ = Adx−Bdλ = Adx−BSdx
Q̇(t)dx(T ) = dẋ(t) = (A−BS)dx(t)

= (A−BS)Q(t)dx(T ) ∀dx(T )

⇒ Q̇ = (A−BS)Q

dλ̇ = −Cdx−A>dλ = −(C +A>S)dx = Ṡdx+ Sdẋ

= (Ṡ + S(A−BS))dx

Ṡdx = (−C −A>S − SA+ SBS)dx

The last line holds for all dx(t) = Q(t)dx(T ) and so S ful�lls

Ṡ = SBS − C −A>S − SA, (4.4)

provided Q(t) is invertible. The equations for Q and S can be integrated backwards form
T with the terminal conditions being

Q(T ) = Id,

S(T ) =
d2

dx2
V (x(T ), T ) =

d2

dx2
ϕ(x(T )). (4.5)

However, the solution can cease to exist at some point, either because Q becomes
singular or because the quadratic equation for S undergoes a blow-up. Let us recall
what these events mean for the optimal control problem:

• Q is related to the existence of multiple extrema.

Q(t) is the derivative of the mapping x(T ) 7→ x(t). If Q(TQ) is singular, the Implicit
Function Theorem no longer guarantees the existence of a mapping x(t) 7→ x(T )
and, due to Lemma 4.1, there can then be multiple extremal trajectories starting
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Chapter 4. Geometry of optimal control

at x(TQ).

• S is related to the smoothness of the value function.

We have S(t) = d2

dx2
V (x(t), t), so ‖S‖ → ∞ as t↗ TS implies that V has no second

derivative at (x(TS), TS) (if the corresponding extremal is globally optimal).

According to the following Theorem, these events can only occur simultaneously.

Theorem 4.3. Let (TS , T ], TS ∈ [−∞, T ) resp. (TQ, T ], TQ ∈ [−∞, T ) be the maximal
intervals on which a solution to (4.4) exists, resp. on which Q(t) de�ned by x(t) =
Q(t)x(T ) is nonsingular. Then TS = TQ and Q(t) exists for all t.

Proof. De�ne the solution operator of (4.3) via(
x(t)
λ(t)

)
=

(
D(t) E(t)
F (t) G(t)

)(
x(T )
λ(T )

)
.

As (4.3) is a linear ODE with Lipschitz coe�cients, this solution always exists and in
particular D, E, F and G cannot blow up. We have

λ(T ) = S(T )x(T ),

x(t) = D(t)x(T ) + E(t)λ(T ) = (D(t) + E(t)S(T ))︸ ︷︷ ︸
=Q(t)

x(T ),

λ(t) = F (t)x(T ) +G(t)λ(T ) = (F (t) +G(t)S(T ))Q(t)−1︸ ︷︷ ︸
=S(t)

x(t).

(4.6)

The equation for x(t) provides Q(t) for all t.
We have lim supt→TS ‖S(t)‖ = ∞ because otherwise S would remain in a compact

set and so (4.4) would have a Lipschitz-continuous r.h.s. and hence a solution extending
beyond TS . The equation for λ(t) shows that S blowing up is equivalent to Q becoming
singular and therefore TS = TQ.

Hence we have the following Theorem for the existence of Vxx:

Theorem 4.4. If Q(t) is non-singular for all extremals and for all t ∈ [t∗, T ] for some
t∗ ∈ [0, T ], then V (x, t) is twice di�erentiable in x for all x ∈ X and all t ∈ [t∗, T ].

Proof. We begin by showing that the local invertibility of the mapping xT 7→ x(t) (which
follows from Q non-singular) implies its global invertibility. By way of contradiction,
assume that for some τ ∈ [t∗, T ] there exist x0 ∈ X and xT (τ), x̂T (τ) ∈ X with xT (τ) 6=
x̂T (τ) such that (x0, t) is on both the extremals starting at xT (t) resp. x̂T (t) for t = τ .
We can extend xT and x̂T to [τ, T ] such that this also holds for t ∈ (τ, T ] by setting

ẋT (t) := −Q(t)−1ẋ(t),

where Q and ẋ refer to the extremal starting at xT (t), and similarly for x̂T . As xT 7→ x(t)
is locally invertible, we always have a neighborhood of xT (t) which x̂T (t) cannot enter
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4.2. Global structure of singularities

and so xT (t) 6= x̂T (t) for all t ∈ [τ, T ]. However, x0 = xT (T ) = x̂T (T ), completing the
contradiction.
By Theorem 4.3, S(t) exists for all extremals and all t ∈ [t∗, T ]. Since xT 7→ x(t) is

globally invertible, there is a unique extremal for each x(t), which must be the global
minimum. Hence, by Lemma 4.2, Vxx exists and is given by Vxx = S.

Remark 4.5. Times t at which Q(t) is singular are historically known as conjugate
points and play a role in determining whether an extremal is a local minimum. One
can show that d2

du2L is positive de�nite for t0 = T − τ with τ small enough as cuu > 0

dominates the other terms. d2

du2L remains positive de�nite unless one of its eigenvalues

reaches 0, i.e. d2

du2L and therefore Q become singular.

4.2. Global structure of singularities

Let us de�ne a solution operator Υt,T for (4.1) by Υt,TxT := x(t), where (x(t), λ(t))
solves (4.1) with the terminal conditions x(T ) = xT and λ(T ) = d

dxT
ϕ(xT ). We further

de�ne
G(xt, t, xT ) := Υt,TxT − xt.

With this de�nition, G(xt, t, xT ) is zero if and only if (t, xt) lies on the extremal emanating
from xT , and hence our goal is to characterize the singularities of the solution set {G = 0}
Note that in the optimal control problem we are given an initial condition x(t) = xt

and so we regard xt and t as parameters, whereas xT is the variable to be solved for.
The matrices Q(t) introduced above depend on the terminal condition xT , which we

will now make explicit by referring to them as Q(t, xT ). In this section, we will consider
the set of singularities of Q,

S := {(t, xT ) ∈ [0, T ]×X : Q(t, xT ) is singular},

and also de�ne the set of simple singularities

S1 := {(t, xT ) ∈ S : dimN (Q(t, xT )) = 1}.

There is a correspondence between the singularities of Q and G, which is given by the
following Lemma:

Lemma 4.6. (xt, t, xT ) is a fold singularity (with respect to (xt, xT )) of the solution set
{G = 0} if and only if Υt,TxT = xt and Q(t, xT ) is singular.

Proof. As mentioned above, (xt, t, xT ) is in the solution set exactly if Υt,TxT = xt. As
∂
∂xt

G = −Id, we always have R
(

∂
∂xt

G
)

= Rn and so (xt, t, xT ) is a fold singularity

exactly if ∂
∂xT

G(xt, t, xT ) is singular. We have ∂
∂xT

G(xt, t, xT ) = Q(t, xT ) and so the
claim holds.

Furthermore, generic singularities are also pitchfork singularities with respect to (t, xT ):
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Theorem 4.7. Let (t∗, x∗T ) ∈ S1, N (Q(t∗, x∗T )) = span{v}, R(Q(t∗, x∗T ))⊥ = span{w}
and de�ne

G̃(t, xT ) := G(Υt,Tx∗T , t, xT ).

If w>Q̇(t∗, x∗T )v 6= 0, then (t∗, x∗T ) is a pitchfork singularity (with respect to (t, xT )) of

the solution set {G̃ = 0}.

Proof. We have

DG̃(t, xT ) =

(
d

dt
(Υt,TxT −Υt,Tx∗T ), Q(t, xT )

)
,

DG̃(t∗, x∗T ) = (0, Q(t∗, x∗T ))

and so

N (DG̃(t∗, x∗T )) = span {Φ1,Φ2} ,

R(DG̃(t∗, x∗T ))⊥ = span {Ψ} ,

with Φ1 =

(
1
0

)
, Φ2 =

(
0
v

)
and Ψ =

(
0
w

)
. Further, we compute

A :=
(
Ψ((D2G)(t∗, x∗T )(Φi,Φj))

)2
i,j=1

=

(
0 w>Q̇(t∗, x∗T )v

w>Q̇(t∗, x∗T )v w> d
dxT

(Q(t∗, x∗T )v)v

)
.

By assumption, detA = −(w>Q̇(t∗, x∗T )v)2 < 0 and so (t∗, x∗T ) is a pitchfork singularity.

The quantity w>Q̇(t∗, x∗T )v in the assumptions of Theorem 4.7 is the time derivative
of the singular value σn of Q at t∗ (cf. Section B.8), which is zero at the singularity. We
have therefore assumed that the singularity is an isolated point on its extremal.

The tangents of the solution branches at the pitchfork singularity are determined by
the solutions of z>Az = 0 (with A from the proof of Theorem 4.7). G̃(t, xT ) = 0 always
has the solution branch (t, x∗T ), t ∈ R, which corresponds to the tangent z1 = (1, 0)>.

A second branch of solutions exists only at singularities. If w> d
dxT

(Q(t∗, x∗T )v)v = 0

we have z2 = (0, 1)> and the corresponding second tangent 0 · Φ1 + 1 · Φ2 = (0, v>)> is
orthogonal to the t-axis. In this case, the singularity is a cusp:

Theorem 4.8. Let (t∗, x∗T ) ∈ S1, N (Q(t∗, x∗T )) = span{v}, R(Q(t∗, x∗T ))⊥ = span{w}.
If w>Q̇(t∗, x∗T )v 6= 0 and w> ∂

∂xT
(Q(t∗, x∗T )v)v = 0, then (Υt,Tx∗T , t

∗, x∗T ) is a cusp singu-
larity of the solution set {G = 0}.

Proof. According to Theorem 4.7, (Υt,Tx∗T , t
∗, x∗T ) is a pitchfork bifurcation with respect

to (t, xT ). As calculated above, the second solution branch has the tangent (0, v>)>.
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4.2. Global structure of singularities

The singular set S can also be expressed as S = {(t, xT ) : σn(t, xT ) = 0}, where
σn(t, xT ) is the smallest singular value of Q(t, xT ). Using (B.16) and the assumption, we

have Dσn(t∗, x∗t )

(
0
v

)
= w> d

dxT
(Q(t∗, x∗T )v)v = 0. It follows that (0, v>)> is a tangent

of S at (t∗, x∗T ) and so (t∗, x∗T ) is a cusp singularity.

Next, we will show that a singularity which is not a cusp is connected to a cusp by a
curve in S:

We write z = (t, xT ) and, for z ∈ S, let v(z) and w(z) be non-zero vectors in N (Q(z))
resp. R(Q(z))⊥.2 Now, for any (t∗, x∗T ) ∈ S, de�ne a curve z : [t∗, τ∗]→ R×X by

d

dτ
z(τ) =

(
1
0

)
−

∂
∂tσn(z(τ))

∂
∂xT

σn(z(τ))v(z(τ))

(
0

v(z(τ))

)
(4.7)

and z(t∗) = (t∗, x∗T ), with τ∗ the maximal time for which the solution exists.

We will now show that z is indeed the connecting curve. Note that the denominator
in (4.7) is 0 at the cusp itself, so the main technical di�culty is to show that it goes to
0 slowly enough for the solution to exist.

We have d
dτ t(τ) = 1 and d

dτ σn(t(τ), xT (τ)) = 0. The former implies t(τ) = τ and the
latter that z(·) remains in S, and so v and w are well-de�ned.

Further, it holds that τ∗ < T because otherwise there would exist z(T ) = (T, xT (T )) ∈
S, i.e. Q(T, xT (T )) would be singular, but Q(T, xT ) = Id for all xT .

We abbreviate g(z) := ∂
∂tσn(z(τ)) and h(z) := ∂

∂xT
σn(z(τ))v(z(τ)) so that

d

dτ
xT = −g(z)

h(z)
v(z).

The solution of (4.7) can only cease to exist if h → 0, so z will eventually enter some
neighborhood of {h = 0} as τ → τ∗ and clearly h(z) cannot change sign before reaching
{h = 0}. We make the assumptions that g, h and v are generic in the sense that, for a
small enough neighborhood, g and ∂

∂xT
h ·v are bounded away from zero. W.l.o.g. we can

now assume g(z) ≥ 0 and h(z) ≥ 0 (by possibly replacing g, h and v by −g, −h and −v
as necessary).

Treating g and ∂
∂xT

h · v as approximately constant we have

dh

dτ
≈ −g

h

∂

∂xT
h · v

hdh ≈ −g ∂

∂xT
h · v dτ

h ≈
√

2g
∂

∂xT
h · v · (τ∗ − τ).

2If z ∈ S\S1, those spaces have a dimension greater than one, and so de�ning v and w as their bases
as in Theorem 4.7 is not valid.
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It follows that d
dτ xT behaves as (τ∗ − τ)−1/2 and hence z does not go to in�nity, z(τ∗)

exists and ∂
∂xT

σn · v = w> ∂
∂xT

(Q(t∗, x∗T )v)v = 0 at z(τ∗), i.e. the curve z leads to a cusp.

Summary

We have now resolved the structure of the singularities in the non-degenerate situation,
where the co-dimensions of the sets of folds and cusps in the (t, xT )-space are the number
of scalar conditions, i.e. 1 resp. 2 (cf. Lemma 4.6 resp. Theorem 4.8):

In the (n + 1)-dimensional (t, xT )-space3 there is a (n − 1)-dimensional set of cusp
singularities, of which each generates a curve of fold singularities, which together form
the n-dimensional set S.

The consequences for the value function can be illustrated by a simple one-dimensional
example:

Example 4.9. Let X = U = R, f(x, u) := u, c(x, u) := u2 = ẋ2 and ϕ(x) := e−x
2
. As

the problem is autonomous, we can �x t0 := 0 and use T as a parameter instead of t0,
which simpli�es some expressions.

Using (4.1) we �nd that for all extremal trajectories it holds that λ̇ = 0 and ẋ = u =

−λ
2 = −ϕ′(xT )

2 = xT e−x
2
T . It follows that all extremal trajectories are linear, i.e.

x(t) = xT − (T − t)xT e−x
2
T (4.8)

and
G(x0, T, xT ) := Υ0,TxT − x0 = xT (1− T e−x

2
T )− x0.

For x0 = 0 we see that there is always the solution xT = 0 and that the additional
solutions xT = ±

√
log T appear for T > 1 (cf. Figure 4.1).

Taking the derivative of (4.8), we see that

Q(t, xT ) = 1− (T − t)e−x2T + 2(T − t)x2
T e−x

2
T .

We further compute

Q̇(t,XT ) = (1− 2x2
T )e−x

2
T ,

∂

∂xT
Q(t, xT ) = 2xT (T − t)e−x2T + 4(T − t)xT e−x

2
T − 4(T − t)X3

T e−x
2
T ,

DG(x0, T, xT ) = (−1,−xT e−x
2
T , Q(t, xT )).

As Q ∈ R, we can always use v = 1 and w = 1. At (x0, T, xT ) = (0, 1, 0) we have G = 0,
DG = (−1, 0, 0) and w> ∂

∂xT
(Qv)v = 0, so according to Theorem 4.8 the point (0, 1, 0) is

a cusp singularity. Consequently there are two fold singularities in the (x0, xT )-plane for
T > 1, as shown in Figure 4.2 for T = 1.5.

We can de�ne a multivalued generalization V̂ of the value function V which assigns to

3If we consider instead (xt, t, xT ), we have n additional dimensions cancelled out by the n additional
conditions Υt,TxT − xt = 0 ∈ Rn.
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4.2. Global structure of singularities

Figure 4.1.: Endpoints xT of extremal
trajectories for varying T and
x0 = 0

Figure 4.2.: Endpoints xT of extremal
trajectories for varying x0

and T = 1.5

(Minimal trajectories in blue, maximal trajectories in red)
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Figure 4.3.: V̂ for T = 1.5. The actual value function is solid and values of additional,
not globally optimal, extrema are dotted for minima and dashed for maxima.
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an initial condition x the values of all associated extremal trajectories, i.e.

V̂ (x0) := {L(x,u) : (x,u) is extremal and x(0) = x0},

and from which we recover the value function as

V (x) = min V̂ (x).

In Figure 4.3 we see that the cost for a speci�c branch of local minima is a smooth
function of x0(until they turn into maxima at a fold), but the overall value function has
a discontinuity in the derivative when the global solution switches to a di�erent branch.

In higher dimensions, this structure is extended along the additional dimensions:

Example 4.10. Let X = U = R2, f(x, u, t) := u, c(x, u, t) := sin(x1)+sin(x2)+0.02(t+
0.95) ‖u‖2, ϕ(x) := exp(−x2

1 − x2
2).

The cost for all extremals at T = 0.05 is shown in Figure 4.4. Note the line along the
x1 axis where the branches cross.
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0
1

2

−2

−1
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2
−0.5
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1

1.5

x1x2

V̂
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)

Figure 4.4.: The multi-valued function V̂ giving the cost for extremal trajectories
in Example 4.10 for T = 0.05. Its graph is a self-intersecting surface.
The grid lines show a parametrization by the terminal states x(T ) of
the associated trajectories. See Figure 5.1 on p. 65 for a wireframe
view.
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4.3. In�nite horizon

We consider now the in�nite horizon problem (2.17) introduced in Section 2.2. We assume
that there is a cost-minimal �xed point (x∗, u∗) with c(x∗, u∗) = min c = 0 that can be
reached from any initial state and allow only trajectories that converge to x∗.

For this problem, (2.7) still holds (Theorem 2.18) and the terminal condition becomes
limt→∞ λ(t) = 0 (Remark 2.19).

Following Osinga and Hauser [OH06] we lift the problem to coordinates (x, λ) involving
both the state and the adjoint. Recall that (4.1) de�nes a dynamical system. Among
its solutions, exactly those with limt→∞(x(t), λ(t)) = (x∗, 0) are extremal trajectories
of the optimal control problem. In the language of dynamical systems, such extremal
trajectories form W s(x∗, 0), the stable manifold of (x∗, 0) in (x, λ)-space.

One can de�ne L(x0, λ0) := L(x,u), where x and u are from the solution of (4.1) with
x(0) = x0, λ(0) = λ0 and recovers the multi-valued value function V̂ (x) as the projection
of V (W s(0, 0)) along the λ-coordinate, i.e.

V̂ (x) = {L(x, λ) : (x, λ) ∈W s(0, 0)} .

To apply the results of the previous section, we will decompose the in�nite time interval
into a �nite part, where bifurcations occur, and a well-behaved terminal part.

W.l.o.g. we assume x∗ = 0. We expect simpler behaviour in a small neighborhood of
(x∗, λ∗) = (0, 0). The linearization of (4.1) around this point, according to (4.3), is4(

ẋ

λ̇

)
=

(
A −B
−C −A>

)
︸ ︷︷ ︸

=:M

(
x
λ

)
. (4.9)

Without a �nite endpoint we do not have a direct replacement for the terminal condition
S(T ) = d

dxϕ, so instead we merely guess that

λ = Sx

for some S ∈ Rn×n independent of t. With this assumption and (4.9),

0 =
d

dt
(Sx− λ) = S(Ax−Bλ) + Cx+A>λ = SAx− SBSx+ Cx+A>Sx

holds for all x, and so S would be a solution of the Riccati equation

SA+A>S − SBS + C = 0. (4.10)

Being a quadratic equation, (4.10) might have spurious solutions. x∗ should be a mini-

mum of V , so it is justi�ed to require that S = d2

dx2
V > 0, i.e. that S is positive de�nite.

4The matrices A, B and C do not depend on t as we are now linearizing around a �xed point instead
of along a trajectory.
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Chapter 4. Geometry of optimal control

Kucera has shown in [Kuc72, Theorem 3] that (4.10) has a unique solution S > 0

exactly if the system is stabilizable at x∗, and that limt→∞ etM
(
x
Sx

)
= 0 for this S

and all x. It follows that the linear span of the columns of

(
Id
S

)
is part of the stable

eigenspace Es(x∗, 0) and Proposition 7.2.1 of [vdS96] states that they are in fact equal,
i.e.

Es(x∗, 0) = span

(
Id
S

)
,

and that (x∗, 0) is a hyperbolic �xed point.
The following Lemma shows that for (x, λ) in a small neighborhood of (x∗, 0), x

uniquely determines (x, λ) and therefore the extremal trajectory.

Lemma 4.11. There exists an open neighborhood Ω ⊂ Rn × Rn of (x∗, 0) such that if
(x, λ(i)) ∈ Ω ∩W s(x∗, 0) for i = 1, 2, then λ(1) = λ(2).

Proof. By the Stable Manifold Theorem (cf. [Tes12, Theorem 9.4 and 9.5]), there is an
open neighborhood 0 ∈ Ω ⊂ Rn × Rn and a function h ∈ C1(Es(x∗, 0);Rn × Rn) such
that

W s(x∗, 0) ∩ ((x∗, 0) + Ω) = {h(a) : a ∈ Es(x∗, 0) ∩ Ω}

with h(x∗, 0) = (x∗, 0) and Dh(x∗, 0) = Id2n. As a point in E
s(x∗, 0) = span

(
Id
S

)
is de-

termined by its x-coordinate we can replace h(x, λ) by h(x) := h(x, Sx). Let Πx(x, λ) :=
x be the projection onto the x-coordinate. Then D(Πxh) = Idn and, for a su�ciently
small Ω, Πxh is invertible. It follows that (x, λ1) = h((Πxh)−1(x)) = (x, λ2).

Lemma 4.11 shows that, for any �xed point (x∗, 0), there are no singularities on ex-
tremals that lie within Ω = Ω(x∗). Recall from the beginning of this section that every
locally weakly overtaking minimal trajectory (x,u) converges to a point (x∗, u∗) with
Dc(x∗, u∗) = 0 and its adjoint λ to 0. Hence, (x(t), λ(t)) ∈ Ω(x∗) for all t ≥ T and some
�nite time T .
From this we can �nally conclude that all locally minimal extremals can be obtained by

extending an extremal in some Ω(x∗) backwards for a �nite time, and so the singularities
have the same structure as in the �nite time problem.
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5. Finding global optima

In this chapter, we will use insights of Chapter 4 to �nd globally optimal solutions for
the optimal control problem (2.17) with in�nite horizon, that converge to a �xed point
(x∗, u∗). We retain the assumptions of Chapter 4 and in particular Section 4.3.

We begin by discussing two approaches that we will ultimately not pursue, as they
appear to be impractical.

• Osinga and Hauser ([OH06]) partially computedW s(x∗, 0) numerically with a con-
tinuation algorithm. Once a su�ciently large part ofW s(x∗, 0) is known, one could
�nd extremals (recall that (x, λ) ∈W s(x∗, 0) includes λ, which determines u∗), the
multi-valued function V̂ and �nally the value function V . However, W s(x∗, 0) has
the same dimension as the state space and although it is smooth, it is not a function
but a manifold and �[its computation] is a serious challenge� ([OH06, p. 15]). For
this reasons, the full computation ofW s(x∗, 0) does not seem to be an e�cient way
to �nd the value function or optimal control.

• We have seen in Chapter 4 that singularities in Q and nonsmoothness of the value
function are connected. However, the points (x, t) where the value function is
smooth are almost disjoint from the points where Q is singular: both kinds of sin-
gularity coincide at cusps, but in general, the nonsmoothness in the value function
arises from the minimization over di�erent branches and the Q matrices belonging
to the corresponding extremals are invertible.

Essentially, the connection between non-smooth branch switches of the value func-
tion and Q-singularities is causal but not local. This is an obstacle to an attempt
to �nd smooth regions of the value function by looking for singularities in Q.

5.1. Homotopies

In fact, the two main lessons we draw from the previous discussion is that multiple
solutions of (4.1) (i.e. extremals) exist, and that trying to directly catalogue all of them
is di�cult. Let us now begin to describe what we intend to do.

As multiple solutions exist, the solution found by a numerical solver depends � often
rather unpredictably � on the initial guess. To control which solution we obtain, we will
use a homotopy:

We start with a solution (x∗,u∗, λ∗) for x(0) = x and smoothly change the initial
condition to x(0) = y, i.e. we use a weakly di�erentiable function x0 : [0, 1] → X with
x0(0) = x and x0(1) = y.
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Chapter 5. Finding global optima

Recall that extremals are the solutions of F = 0 as de�ned in (1.6) and let us assume
that DF is invertible (cf. Section 1.4), otherwise we consider the homotopy failed. Then
there exists a parametrized family of extremals (x(η),u(η), λ(η)), η ∈ [0, 1] for the initial
condition x(η)(0) = x0(η) with (x(0),u(0), λ(0)) = (x∗,u∗, λ∗), which one obtains as the
solution of

d

dη
(x(η),u(η), λ(η)) = −DF−1

(
0, 0,

d

dη
x0(η)δ0

)
. (5.1)

(Recall that d
dx0

g = δ0 and that g is the third component of F .)
Note that a homotopy requires a solution (x0,u0, λ0) to start with. Fortunately we

can freely choose x0(0) and if we start at the target state, i.e. if x(0) = x∗, we have the
obvious solution x ≡ x∗, u ≡ u∗, λ ≡ 0.

Path dependence

De�nition 5.1. A parametrized homoptopy path between x ∈ X and y ∈ X is a function
p ∈ W1,∞([0, 1];X ) that ful�lls p(0) = x ∧ p(1) = y or p(0) = y ∧ p(1) = x.

This de�nition is symmetric in x and y, and w.l.o.g. we will always assume that p(0) = x
and p(1) = y.
The solution obtained at η = 1 depends not only on the starting solution at η = 0,

but also on the homotopy path:

Example 5.2. We continue from example 4.10. If we start with the globally optimal
solution at x0 = (0,−1) and perform a homotopy along a straight line (shown in red in
Figure 5.1) to (0, 0.5), we cross a singularity in Vxx, where this branch of extremals loses
global optimality, and end up with a non-minimal extremal. A di�erent homotopy path
(black) with a piecewise linear detour to (1, 0) goes around this singularity and arrives at
the globally optimal solution.

To �nd globally optimal branches of V̂ , we will have to try and compare di�erent
paths.

5.2. Description of the Algorithm

To this end, we choose a graph (V, E) where the vertices are initial states and the edges
are homotopy paths connecting them, i.e. we have:

V ⊆ X ,
E ⊆ {({v, w} , p) : v, w ∈ V, v 6= w, p a homotopy path between v and w} .

Some ways of choosing such a graph are given in the examples in Section 5.7.

Remark 5.3. The above de�nition states that an edge is de�ned by the pair of vertices it
connects and the path between them. Between two vertices v and w there may in principle
be several edges with di�erent homotopy paths p. In the examples below, there will only
be one edge between two vertices, which is the straight line.
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Figure 5.1.: Two homotopy paths resulting in di�erent solutions in Example 5.2.

By a path in the graph (V, E) between v and w we understand a sequence ({vi, vi+1} , pi) ∈
E , i = 1, . . . , n − 1 of edges such that v = v1, w = vn. A path in the graph de�nes an
associated homotopy path through the (re-parametrized) concatenation of the pi.

Ideally we would like to try all of the paths in the graph. Unfortunately, the number
of paths can grow superpolynomially with the number of vertices1 even if no loops are
allowed.

So instead we propose an algorithm which keeps track of only the best known solution
for each vertex and iteratively tries to spread good solutions to neighboring vertices.

We associate with each vertex v ∈ V the following variables, which may change as the
algorithm proceeds:

• The best currently known trajectory (xv,uv) with xv(0) = v. This variable may
be null if no trajectory is known.

• The cost Lv := L(xv,uv) achieved by the above trajectory (with the convention
L(null) =∞).

1E.g. in an n× n-grid there are already 2n paths of length n that start in a the lower left corner and
only go up or right.
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Chapter 5. Finding global optima

The algorithm then proceeds as follows:

Algorithm 5.1:

Input: A graph (V, E) with x∗ ∈ V.
Set (xx∗ ,ux∗) ≡ (x∗, u∗) and (xv,uv)← null for all v ∈ V\ {x∗}
Create a set todo := {x∗}
while todo is not empty do

Pick any v ∈ todo

Remove v from todo

forall ({v, w} , p) ∈ E do
Starting from (xv,uv), compute an extremal trajectory (x,u) with x(0) = w
by performing the homotopy from v to w along p. (x,u) := null if this
homotopy fails.
if L(x,u) < Lw then

(xw,uw)← (x,u)
Set w ∈ todo

end

end

end

Output: The best found solution (xv,uv) for each vertex v ∈ V
Note that Algorithm 5.1 only computes solutions for initial conditions v ∈ V. If the

objective is to �nd the solution only for a single x0, one can of course include x0 in
V. Alternatively, for x0 /∈ V, one can choose some nodes v ∈ V close to x0, perform
homotopies from these nodes to x0 and pick the best solution.

5.3. Conditions for �nding the global optimum

If the graph contains a homotopy path that leads to the globally optimal solution for
some v ∈ V and we would actually try all paths, then we would �nd this solution. The
following Theorem shows that Algorithm 5.1 achieves almost the same despite not trying
all paths.

Theorem 5.4. If the graph (V, E) contains any path from x∗ to x0 = v ∈ V along
which all intermediate homotopy solutions are globally optimal (and exist) and Algorithm
5.1 terminates, then the output (xv,uv) is the globally optimal solution for the initial
condition x(0) = x0.

Proof. Let x∗ = v1, v2, . . . , x0 = vn be the vertices in the path. Assume, for the sake of
contradiction, that the solution at vn is not globally optimal. As the solution (x,u) ≡
(x∗,u∗) at v1 is globally optimal by assumption, there exists a minimal k, 1 < k ≤ n
at which the solution is not globally optimal. Let v := vk−1, w := vk and (x∗v,u

∗
v) resp.

(x∗w,u
∗
w) the associated g. opt. solutions. The assignment (xv,uv)← (x∗v,u

∗
v) must have

taken place at some point during the execution of the algorithm, followed immediately
by the insertion v ∈ todo. Note that (xv,uv) stays constant after (xv,uv) ← (x∗v,u

∗
v)

as it could only have been overwritten by a better solution. If the algorithm terminates,
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5.3. Conditions for �nding the global optimum

v must have been removed from todo in a subsequent step of the iteration. In that
step the homotopy from v = vk−1 to w = vk would, by assumption of the theorem,
have yielded (x∗w,u

∗
w) and consequently we would have (xw,uw) = (x∗w,u

∗
w) after the

algorithm terminates. This contradiction completes the proof.

The following theorems provide su�cient conditions to meet the assumptions of The-
orem 5.4.

Theorem 5.5. If the assumptions of Theorem 2.21 are ful�lled and there is no extremal
with x(0) ∈ V for which Q(0) is singular, then the algorithm terminates.

Proof. By way of contradiction, assume that the algorithm does not terminate, i.e. todo
never becomes empty. In each step of the algorithm, one vertex is removed from todo

and vertices are only added, when their current trajectory is replaced by one with lower
cost. Hence there must exist at least one vertex v with an in�nite sequence of extremals
(xi,ui), i ∈ N of decreasing cost L(xi+1,ui+1) < L(xi,ui).

Using coercivity as in Theorem 2.21, we have a limit trajectory xi → x∗ as i → ∞.
Given x∗, we de�ne u∗ and λ∗ as the solution of (2.7) and lim

t→∞
λ(t) = 0 (cf. Remark

2.19). As (xi,ui, λi) ful�lls the same ODE, we have (xi,ui, λi)→ (x∗,u∗, λ∗) as i→∞,
which contradicts the local uniqueness implied by a non-singular Q(0).

The existence of at least one suitable homotopy path is guaranteed, as the optimal
trajectory itself is such a path.

Theorem 5.6 (Dynamic Programming Principle). If (x∗,u∗) is the optimal solution
of (2.17) with x0 = x∗(0), then for any T ∈ [0,∞), the shifted trajectory (xT ,uT ) :=
(x∗(·+ T ),u∗(·+ T )) is the optimal solution of (2.17) with x0 = x∗(T ).

Proof. (x∗,u∗) ful�lls ẋ = f(x, u) and as the dynamics are autonomous, so does (xT ,uT ).
It remains to show optimality. Assume that (x,u) is admissible for x0 = x∗(T ) and
L(x,u) < L(xT ,uT ). De�ne the spliced trajectory (x̂, û) as

x̂(t) :=

{
x∗(t) , t < T

x(t− T ) , t ≥ T
, û(t) :=

{
u∗(t) , t < T

u(t− T ) , t ≥ T
.
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Chapter 5. Finding global optima

As above, (x̂, û) is admissible for x0 = x∗(0) and we have

L(x̂, û) =

ˆ T

0
e−µtc(x∗(t), u∗(t) dt+

ˆ ∞
T

e−µtc(x(t− T ), u(t− T )) dt

=

ˆ T

0
e−µtc(x∗(t), u∗(t) dt+ e−µTL(x,u)

<

ˆ T

0
e−µtc(x∗(t), u∗(t) dt+ e−µTL(xT ,uT )

=

ˆ T

0
e−µtc(x∗(t), u∗(t) dt+

ˆ ∞
T

e−µtx∗(x∗(t), u∗(t)) dt

= L(x∗,u∗),

contradicting the optimality of (x∗,u∗).

Corollary 5.7. Any globally optimal solution (x,u) is a path from x∗ to x(0) ful�lling
the condition of Theorem 5.4.

Remark 5.8. As global optimality of a branch of V̂ changes only at singularities of Vxx,
any variation of a path ful�lling the condition is still suitable, as long as no crossing of
a singularity is introduced (cf. Figure 5.2).

x∗

x0

Figure 5.2.: Illustration of Remark 5.8. The bold green trajectory is the optimal solu-
tion, the red lines are singularities of Vxx. The solid black path ful�lls the
assumption of Theorem 5.4, the dotted one does not.
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5.4. Algorithms for subproblems

For our purposes, we are not interested in the entire family (x(η),u(η), λ(η)), but only in
(x(1),u(1), λ(1)), and so it is unnecessary to actually solve (5.1).

To solve (1.6), we will use Newton's method, which is locally convergent, i.e. if the
initial guess is su�ciently close to a solution, then Newton's method will return that
solution. In particular, if a solution for x(0) = x0 + v, ‖v‖ � 1 is used as an initial guess
for the problem with x(0) = x0, the solution found will be similar.

Hence we can employ a discrete homotopy where we have 0 = η0 < η1 < . . . < ηk = 1
and, for j = 1, . . . , k, successively compute (x(ηj),u(ηj), λ(ηj)) as the solution for x(0) =
x0(ηj) with (x(ηj−1),u(ηj−1), λ(ηj−1)) as the initial guess.

The discretization of F and DF (as de�ned in (1.6) and (1.11)) used in our implemen-
tation and further details are described in Appendix A.

5.5. Algorithmic variations

Closed-loop control

So far, we have only computed control trajectories in advance and the question remains
what to do if, through some perturbation, the controlled system deviates from the tra-
jectory.

The most straightforward method is to compute a new solution with the current state
as the initial state (see above).

A more e�cient way for small deviations is to compute S from (4.6) in advance, use
the linearization dλ = Sdx and solve (2.7b) (or its linearization) for u∗. This approach
is known as perturbation feedback control ([BH69, Section 6.4]). If it is a�ordable, a
new trajectory can periodically be computed from the current state to get an updated
linearization.

Graph re�nement

After Algorithm 5.1 �nishes, it is possible to re�ne the graph by adding or removing
vertices and edges. In this case, the initialization on the re�ned graph proceeds as
follows:

Algorithm 5.2: Initialization on re�ned graph

Old vertices v keep (xv,uv)
forall newly added vertices v do

(xv,uv)← null

end

todo← {v : (xv,uv) 6= null and v appears in a new edge}
Continue with while loop as in Algorithm 5.1
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Chapter 5. Finding global optima

5.6. Discussion

Although the results of Section 5.3 (cf. in particular Theorem 5.4 and Remark 5.8) imply
that the global optimum can be found with a su�ciently �ne graph, there is no perfectly
reliable way to ascertain whether a given graph is �ne enough not to have missed a better
solution.
Heuristically, one might try to re�ne the graph until stagnation is reached (i.e. all nodes

shared by the �nest and second-�nest graph have the same solution in both graphs). A
too coarse gird can also sometimes be detected as it may lead to no solution at all being
found for some nodes.
We remark that �nding global optima can generally not be guaranteed without an ex-

haustive search (�no free lunch�) and limitations like the above are therefore unavoidable.

Computational cost

The proposed algorithm is much more expensive per node than the solution of the HJB
equation, as for each node one needs to compute an entire trajectory instead of merely
the value V .
On the other hand, the required resolution is also much lower than for the HJB equa-

tion. The spatial resolution of the grid is completely independent from the accuracy
of the extremals, and matters only for the qualitative question of whether all relevant
branches will be found.
In fact, the minimal grid that su�ces to �nd global optima for all initial conditions

would have only one node on each branch that contains a globally optimal solution. Of
course, such a grid is not known in advance and in practice signi�cantly more than one
node will be needed per branch, but nevertheless the computational e�ort should be
roughly proportional to the number of branches. This number can be understood as
the inherent complexity of the problem and may scale less than exponentially with the
dimension.

5.7. Numerical examples

The relation between neighboring solutions can be deduced from the outcome of the
homotopy and the subsequent comparison during Algorithm 5.1. There are three cases,
shown in Figure 5.3:

1. The homotopy succeeds and the solution obtained by homotopy is identical to the
solution at the target node. In this case, both solutions are on the same branch.

2. The homotopy succeeds and the solution obtained by homotopy is worse than the
solution at the target node: The solutions on the nodes are on di�erent branches
and along the homotopy path there is a singularity of Vxx.

3. The homotopy fails: The solutions on the nodes are on di�erent branches and along
the homotopy path there is a singularity of Q.
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5.7. Numerical examples

Figure 5.3.: Possible types of homotopy outcomes in Algorithm 5.1, demonstrated on
V̂ (0, x2) from Example 4.10.

Note that if the solutions belonging to two nodes v and w are on di�erent branches, it
can occur that the branch v is on extends to w, but not vice versa. In this situation we
would have case 2 going from v to w and case 3 in the other direction.

−0.5 0 0.5 1 1.5

−1

−0.5

0

0.5

x1

x
2

Figure 5.4.: Graph for Example 5.2.

In the following examples, we will draw edges black and solid for case 1, blue and
dotted, if case 2 occurs in at least one direction, and red and dash-dotted if case 3 occurs
in both directions. For example, the paths from Example 5.2 would be displayed as in
Figure 5.4.

71



Chapter 5. Finding global optima

The inverted pendulum

We consider a planar inverted pendulum mounted on a cart to which a horizontal force
u can be applied (cf. Fig. 5.5). This is a simple example that is frequently studied, e.g.
in [OH06].

M
u

m

Φ

l

Figure 5.5.: The inverted pendulum (modi�ed from [Kri12]).

We do not keep track of the position of the cart and so the state consists only of the
o�set angle Φ from the upright position and the corresponding angular velocity Φt. The
equations of motion are given by

Φ̇ = Φt,

Φ̇t =
g
l sin(Φ)− 1

2mrΦ
2
t sin(2Φ)− mr

ml cos(Φ)u
4
3 −mr cos2(Φ)

,

where g is the gravitational constant, l is the distance between the center of mass and
the pivot (half the length of the pendulum for an ideal weightless rod), M is the mass of
the cart, m is the mass of the pendulum and mr is the mass ratio m

m+M .
We de�ne the quadratic cost function

c(x, u) = c ((Φ,Φt), u) = q1Φ2 + q2Φ2
t + ru2

and use the dimensionless parameters g = 9.8, l = 0.5, m = 2,M = 8, q1 = 0.1, q2 = 0.05
and r = 0.01.
As a state space, we use R2, which means that we allow the pendulum to be in a

downward position (i.e. the cart is e.g. moving on an elevated rail) and keep track of

72



5.7. Numerical examples

the number of full rotations the pendulum has performed. The cost-minimal �xed point
(x∗, u∗) = (0, 0) represents the pendulum being upright and at rest.
When the pendulum is in a downward position (Φ ≈ ±π), there are di�erent strategies

for moving it to the upright state (Φ = 0), which we expect to be re�ected in the results
of the Algorithm: one can either attempt to directly swing the pendulum up in one go or
�rst build up momentum by swinging the pendulum back and forth. In the state space
(Φ,Φt), the latter is represented by a spiral moving around (±π, 0) and outward.

Step-by-step demonstration of the algorithm

We begin with a very simple graph. This is not intended to be a serious application of
Algorithm 5.1, but a step-by-step demonstration of how it works.
Figure 5.6 shows some intermediate snapshots during its execution. In addition to the

graph, we draw the extremal trajectories xv starting at the vertices as solid blue lines.
Edges along which no homotopy has been performed yet are not drawn.
In the top left �gure, the �rst iteration of the while-loop has been completed. Extremals

are known for the neighbors A, B and C of x∗ = (0, 0) and since a new (here: the �rst)
extremal has just been found for these vertices, they have been added to todo. We decide
not to pick A or B for now and perform further iterations until, in the bottom left �gure,
we reach the vertex E.
The following iteration is the �rst in which we move to vertices (A and B) for which an

extremal is already known. In this case, the extremals obtained by the homotopy from
E are di�erent from the old ones obtained by homotopies from x∗. Computation shows
that the new extremals achieve a lower cost than the old ones and so they replace them
(bottom right). Also, A and B are added to the set todo, which has no e�ect since they
are already in it.
In the next iteration, we pick A from todo and so have to perform the homotopies

to E and x∗. The homotopy back to E gives the solution we already have there. The
homotopy from A to x∗ yields a trajectory which leaves (0, 0) and goes around in a loop
before returning. This is more costly than the old solution, which simply stays at the
origin, so the old solution is not replaced. The vertex A gets removed from todo and no
new vertices are added.
In one further iteration, we pick the only element B from todo. The homotopies from

B to E resp. x∗ are attempted with the same outcome as before from A and the algorithm
then terminates with the set todo empty. The trajectories shown on the bottom right
are the �nal output.

Random graph with refinement

We will now consider a more elaborate approach which starts with a random graph and
subsequently re�nes it. We want the edges to be short paths that can be combined into
larger homotopy paths, so we choose only the vertices randomly and connect vertices
which are close together. To be precise, we use the Delaunay triangulation (computed
using the Bowyer-Watson algorithm [Bow81, Wat81]) of the vertices as a graph. (The
Delaunay triangulation is the dual of the Voronoi diagram: two vertices are connected if
their Voronoi cells touch.)
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Figure 5.6.: Snapshots (left to right, top to bottom) during the execution of Algorithm
5.1 for the inverted pendulum on a very small graph. 5.1
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Chapter 5. Finding global optima

We start with 32 vertices: the �xed point (x∗, u∗) = (0, 0), the downward position
(−π, 0) for which we want to compute a solution and 30 random points in [−6, 6] ×
[−10, 10]. We have stated before that the connection between singularities in Q (or
equivalently DF ) and branch switches is rather loose, but it still proves useful as a guide
for re�nement: We �rst run Algorithm 5.1 on the initial 32-vertex-graph. After it �nishes,
we add new vertices on the midpoints of all edges ({v, w}, p) with ‖v − w‖ > lmin := 0.05
if the homotopy along p has failed.2 We then update the Delaunay triangulation, run
Algorithm 5.2 and repeat until there are no edges ful�lling the condition for re�nement.

The results are shown in Figure 5.7. The �nal graph has 162 vertices and 468 edges, 7
re�nement iterations have been done and 2335 homotopies have been performed (i.e. on
average about 5 per edge of the �nal graph). We see that the re�nement occurs primarily
in two areas: near the downward positions (±π, 0), where extremals with varying numbers
of rotations compete for optimality and in the narrow channel (extending diagonally from
the origin) where the direct approach is the globally optimal solution. Note that the
re�nement strategy has produced paths through that channel, which per Remark 5.8 (cf.
also the accompanying Figure 5.2) the graph needs to contain to ful�ll the conditions of
Theorem 5.4.

A PDE example

In this example we consider a high-dimensional problem arising from the discretization
of a PDE.

Consider an ensemble of particles on the one-dimensional torus Ω = [0, 2π), where the
trajectory t 7→ z(t) of an individual particle is controlled by a potential v(z, t) and given
by the stochastic di�erential equation

dz = − ∂

∂z
v dt+ σ dW,

with σ > 0 and W a standard Wiener process (with an independent copy for each
particle).

The density y(z, t) of the ensemble evolves according to the Fokker-Planck equation
(cf. [LM98])

yt = −div (−vz · y) +
σ2

2
∆y.

As an example of a control problem, we want to move the particles towards z = π with
a small potential v and choose the cost function3

c(y(·, t), v(·, t)) =
〈
π−1/2 cos, y(·, t)

〉
L2

+ α ‖v‖2L2 .

To avoid any di�culties regarding the existence and regularity of an optimal v, we restrict
v(·, t) to be a trigonometric polynomial of at most degree M , thereby turning it into a

2p is still always the straight line between v and w.
3The choice of the cosine is mostly arbitrary. We only want a minimum at z = π.

76



5.7. Numerical examples

�nite-dimensional object.

Using a Fourier-Galerkin discretization, the problem turns into

y(z, t) =
2N∑
i=0

xi(t)ϕi(z),

v(z, t) =
2M∑
i=0

ui(t)ϕi(z),

with ϕ0 ≡ 1/
√

2π, ϕ2k(z) = cos(kz)/
√
π and ϕ2k+1 = sin(kz)/

√
π, as well as

ẋi =

〈
div (vz · y) +

σ2

2
∆y, ϕi

〉
.

By isometry of the Fourier Transform, the cost function becomes

c(x, u) = x2 + α ‖u‖2 .

The Fokker-Planck equation conserves the total mass of the particles. Hence x0 is
constant in t and we normalize by setting x0 ≡ 1/

√
2π (so that

´ 2π
0 y(z, t) dz = 1). The

constant part of u does not in�uence the dynamics, which depend only on ∂
∂zv. In order

to minimize c, we �x u0 ≡ 0. With the 0-th coe�cients �xed, the state then consists of
(x1, . . . , x2N ) and the control of (u1, . . . , u2M ).
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Figure 5.8.: The cost-minimal steady state (y∗, v∗).
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Chapter 5. Finding global optima

The steady state (x∗, u∗) minimizing c can be computed numerically. The correspond-
ing density y∗ is concentrated in a peak at π and the potential v∗ has a well at π (Figure
5.8).

Now consider an initial state where the density is partially concentrated in a peak
but in the wrong place, i.e. not at π. As the domain is a torus, this peak could be
moved either left or right and in both cases reach π, and we expect the two directions to
correspond to di�erent branches of local optima.

Guided by this, we consider initial states where y∗ is shifted and blended with the
uniform distribution, i.e.

y(φ,r) := ry∗(·+ (φ− π)) + (1− r)ϕ0, φ ∈ [0, 2π), r ∈ [0, 1],

where φ determines the position of the peak and r the amount of mass in it, and use a
grid φk = 2πk/K, k = 0, . . . ,K − 1, rl = l/L, l = 0, . . . , L.

Figure 5.9.: Graph with some initial densities shown on the left.

Figure 5.9 shows the result on this graph for K = 19, L = 9, σ = 2 and α = 0.02, as
well as the initial densities at some nodes.

The graph was designed to capture the switch between going left and right, which is
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5.7. Numerical examples

clearly visible at φ = 0. In addition, there are edges with singularities (implied by failed
homotopies), marked A-B, A'-B' and C-D, one might not have predicted a priori.
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Figure 5.10.: Solutions for node A (left) and B (right) at t = 0.125.

Inspection of the solutions at A and B reveals that there is a di�erence in the strategy
for gathering up mass outside the main peak. In both cases, a secondary peak is formed
and later merged into the main peak, but the secondary peak is on di�erent sides of the
main peak in the globally optimal solutions for A and B (Figure 5.10). The same occurs
at A' and B', which are mirror images of A and B.
The density C is the steady state and hence the solution stays constant. At D, there

is more mass outside the peak, and the optimal strategy is to gather mass from both
sides by moving the potential well back and forth. There are two symmetrical copies of
this strategy, distinguished by the direction in which the well moves �rst, with identical
cost. The algorithm will return whichever version is encountered �rst. The homotopy in
a straight line from C to D fails, because the symmetry cannot be broken.
This example shows, that even in a high-dimensional setting, solution branches can be

found with a very sparse grid, in this case one of only 172 nodes, and we re-emphasize
that the graph (V, E) matters only for �nding di�erent local solutions: Despite the two-
dimensional grid, the extremals are computed with a spatial resolution of 40 basis func-
tions (which could be increased further without changing (V,E)) and an adaptive grid
in time (which can also become arbitrarily �ne if desired, and is chosen indpendently
for each solution). For problems without a priori insight, relevant dimensions could be
found using methods for model reduction (see e.g. [ASG01] for an overview).
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6. The First Order Reliability Method

Stochastic optimization usually targets the expected value of the cost function. However,
we want to develop local methods and the unbounded support of Gaussian random
variables causes a global dependence of expected values on the entire domain. For this
reason, we propose to optimize quantiles instead.

The p-quantile QX(p) of a random variable X is de�ned by

QX(p) := inf {x ∈ R : P(X ≤ x) ≥ p} .

If the cumulative distribution function of X is continuous, this is equivalent to

QX(1− p) := sup {x ∈ R : P(X ≥ x) ≥ p} .

We want to optimize (1− p)-quantiles for control problems with stochastic in�uences,
i.e. we consider the problem

min
u
QL(u)(1− p) = min

u
sup {l ∈ R : P(L(u) ≥ l) ≥ p}

and will eventually use the min-sup structure to turn it into a di�erential game with the
randomness as an antagonist.

6.1. Static case without optimization

The method we will develop in the next chapter is based on the First Order Reliability
Method (FORM), which was originally used in structural engineering ([HL74], [Rac76])
to determine the probability whether some function (e.g the stress on a structure) will
exceed a given value.

In this section, we will review the basic idea of the FORM. For a more extensive
treatment see e.g. the textbook [CGC06, chapter 4]. Consider the system

L(x) = c(x) (6.1)

x = x0 + ΣW (6.2)

W ∼ N (0, In) (6.3)

with x, x0 ∈ Rd, Σ ∈ Rd×n a matrix of full rank, L, c : Rd → R and a probability space
(Ω,F ,P). Note that x0 is a given state unperturbed by noise, but x(ω) is a random
variable.
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Chapter 6. The First Order Reliability Method

We de�ne F = Fl := {w ∈ Rn : L(x0 + Σw) ≥ l}, the set of outcomes above the quan-
tile threshold. The task is to compute

p := P(W ∈ Fl)

for a given value l ∈ R.
Generically there is a unique minimum w∗ = argminw∈∂F ‖w‖ on the boundary of F .

As the density ofW decays rapidly with increasing ‖W‖, one expects p =
´
{L(x)≥l} e

−‖w‖2/2 dw
to be dominated by contributions close to w∗ and linearly approximates F by its tangent
cone Tw∗(F ) at the design point w∗.

Figure 6.1.: F and its linear approximation at the design point. + is the origin.

Using that F is a superlevel set of L and assuming Σ>∇L not to vanish at x∗ :=
x0 + Σw∗, we have

Tw∗(F ) =
{
w ∈ Rn :

〈
w,Σ>∇L(x∗)

〉
≥
〈
w∗,Σ>∇L(x∗)

〉}
and so p is approximated by

p = P(W ∈ F ) ≈ P
(〈

W,
Σ>∇L(x∗)

‖Σ>∇L(x∗)‖

〉
≥
〈
w∗,

Σ>∇L(x∗)

‖Σ>∇L(x∗)‖

〉)
= 1− Φ

(〈
w∗,

Σ>∇L(x∗)

‖Σ>∇L(x∗)‖

〉)
,

(6.4)
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6.1. Static case without optimization

where Φ(q) = 1√
2π

´ q
−∞ e

−t2/2 dt is the cumulative distribution function of the standard

normal distribution.

6.1.1. Finding the quantile

Determining a quantile changes the problem slightly, as instead of l we are given p and
solve for the corresponding l = QL(x)(1− p).
For w∗ = argminw∈F ‖w‖, we have the optimality condition w∗ ⊥ Tw∗(F ). As F

is a superlevel set of L(x0 + Σ·), we conclude that w∗ is a multiple of Σ>∇L(x∗), i.e.
Σ>∇L(x∗) = µΣ>cx(x∗), and �nally with (6.4) that

w∗ = Φ−1(1− p) Σ>cx(x∗)

‖Σ>cx(x∗)‖
= Φ−1(1− p) Σ>cx(x0 + Σw∗)

‖Σ>cx(x0 + Σw∗)‖
.

Solving this equation (which is usually done numerically, e.g. by Newton's method) yields
w∗. The quantile is then obtained as QL(x)(1− p) = c(x0 + Σw∗).

6.1.2. Error estimate

Breitung gives an asymptotic backward error estimate for small p:

Theorem 6.1. De�ne p̃ such that the approximate quantile l̃ computed by the FORM is
the exact quantile for p̃, i.e. l̃ = QL(x)(1− p̃), and let Σ vary with p such that Φ−1(1−p)Σ
is constant.1 Then

lim
p→0

p

p̃
=

n−1∏
j=1

(
1− κj
‖Σw∗‖

)−1/2

,

where κj,j = 1, . . . , n−1 are the main curvatures of the surface ∂F = {w : c(x0 +Σw) =

l̃} at w∗.

Proof. [Bre84, Eqs. 13a and 29]

6.1.3. Numerical example

As a simple test of the approximation quality we consider the problem L ((x1, x2)) =
x1x

2
2, x0 = (1, 1), Σ = I2, p = 0.05. The method predicts a value of QL(1 − p) ≈ 6.38.

A Monte Carlo simulation with 106 samples shows that this value is exceeded with
probability P(L > 6.38) ≈ 0.040. At x0 = (10, 10) the function L becomes more linear
in the sense that

∥∥D2L
∥∥ / ‖DL‖ decreases and the approximation quality increases with

QL(1− p) ≈ 1.28 · 103 and P(L > 1.28 · 103) ≈ 0.048 signi�cantly closer to the target of
p = 0.05.

1Note that this implies that Σw∗ is independent of p.
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Figure 6.2.: F (in green) and Tw∗ (hatched) for x0 = (1, 1) and x0 = (10, 10). Note that
w = x− x0.

6.2. Static case, interpreted as a game

We now introduce a control to optimize and provide an interpretation of the FORM as
a game. The problem is now

L(x, u) = c(x, u)

x = x0 + f(x0, u) + ΣW

W ∼ N (0, In)

QL(1− p) = min
u

!

with x, x0 ∈ Rd, u ∈ Rm, Σ ∈ Rd×n, L, c : Rd × Rm → R.
The appearance of the quantile can be turned into a game in which the minimizing

player �rst chooses the control u as well as a forbidden set F under the constraint
P(W ∈ F ) ≤ p and then the maximizing player chooses the realization w of W under
the constraint w /∈ int(F ), i.e. the game reads

min
(u,F )

max
(x,w)

L(x, u)

s.t. x = x0 + f(x0, u) + Σw,

P(W ∈ F ) ≤ p, w /∈ int(F ).

Given a certain u, the obvious choice is for the minimizing player to exclude the values
of W with the highest L, i.e. F = {w : L ≥ QL(1− p)} and for the maximizing player
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6.2. Static case, interpreted as a game

to choose a w realizing L = QL(1− p).2 After this consideration, only the minimization
with respect to u is left and as claimed we recover QL(1− p) = minu!.
Proceeding as before, we linearize F at the solution (x∗, u∗) and obtain again that

F ≈
{
w :

〈
w,

Σ>∇xL(x∗, u∗)

‖Σ>∇xL(x∗, u∗)‖

〉
≥ α

}
, α = Φ−1(1− p).

To recover the FORM we also need to approximate the behavior of the maximizing
player by assuming

1. that he chooses a w maximizing the linearization of L instead of L itself, i.e. a w

with Σ>∇xL(x∗,u∗)

‖Σ>∇xL(x∗,u∗)‖ · w = α, and

2. that among the choices allowed by the �rst condition he selects the one with mini-
mum norm and hence the most likely one, i.e. w∗ = α Σ>∇xL

‖Σ>∇xL‖ .

The justi�cation for this approximation is again that w /∈ int(F ) with signi�cantly
higher L(w) may exist in regions where the linearization is no longer valid, but have very
low probability and so cause only a small error.
Setting w∗ = w we �nally obtain the optimization problem

min
(x,u)

c(x, u)

s.t. x = x0 + f(x, u) + α
ΣΣ>cx(x, u)

‖Σ>cx(x, u)‖
.

2Note that such a w is on the boundary of F and that the alternative condition w /∈ F was deliberately
avoided as it would have introduced the technical complication of giving us a maximizing sequence
converging to F instead of an actual maximizer.
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7. Quantile optimization for dynamic

systems

The dynamic problem is given by

L(x,u) =

ˆ T

0
c(x(t), u(t), t) dt,

dx = f(x, u, t) dt+ Σ dWt,

x(0) = x0

QL(1− p) = min
u

!

with x, x0 ∈ Rd =: X , u ∈ Rm =: U , Σ ∈ Rd×n, c : Rd × Rm → R, x ∈ X :=
W1,∞([0, T ];X ), u ∈ U := L∞([0, T ];U), and W an n-dimensional Wiener process with
unit covariance.

We will use results from Section 2.1.2 to prove the existence of solutions, so throughout
this chapter, we assume that the conditions of Lemma 2.13 and Theorems 2.14 and 2.16
are ful�lled for some 1 < p <∞ (the most prominent of those conditions are that f needs
to be �nitely generated and c coercive in u). We will also need variations of extremals
to exist, and so we assume additionally that f , c and ϕ have second derivatives with
uniform bounds on compact sets as in Theorem 2.4, and that c is strictly convex in u.

7.1. Solution with HJB

Let us �rst note for comparison how one would proceed using a HJB equation.

The problem can be restated as minimizing the probability to exceed a certain cost
target instead of minimizing a quantile (cf. [Kan01]). Let L∗ := QL(1− p). The control
minimizing QL(1− p) is also the control minimizing the probability p = P(L > L∗).1

Introducing an additional state variable J with J(0) = 0 and J̇ = c(x, u) one has
J(T ) = L(x,u). Now one can set

ϕ (x(T ), J(T )) :=

{
0 , J(T ) ≤ q
1 , J(T ) > q

with q ∈ R and has E[ϕ(x(T ), J(T ))] = P(L > q).

1If a di�erent control could achieve a lower probability P(L > L∗), it would also achieve a lower value
QL(1− p), contradicting optimality, and similarly for the reverse.
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Chapter 7. Quantile optimization for dynamic systems

This expected value can be minimized using a HJB equation, but apart from the
usual di�culties in high dimensions, one also has to deal with a discontinuous terminal
condition. One does not know L∗ in advance, so if a speci�c p is targeted, one has to
solve for q, which will require solving the HJB equation several times for di�erent values
of q.

7.2. Solution with FORM

Avoiding the use of a global method, we instead want to turn the problem into a game
and obtain a method similar to the FORM.

Again, we make the problem tractable through linearization and thereby will eventually
obtain a �rst order method.

We assume that
W is weakly di�erentiable. (A1)

Note that this assumption is ful�lled with probability zero as it is a crucial feature of
Brownian motion that its paths almost surely have unbounded variation and are nowhere
di�erentiable. By assuming (A1) we are treating dx = f(x, u, t) dt+Σ dWt as an ordinary
di�erential equation instead of a stochastic one and neglecting the second order term in
Itô's forumla. In this sense, the assumption is a linearization. Its consequences will be
studied in the error analysis below.

To keep notation similar to the deterministic setting, we would like to write dx =
f dt+ Σ dWt in standard ODE form, but we will eventually return to non-di�erentiable
W and hence choose the notation

d

dt
(x− ΣW ) = f.

As only the derivative dW enters into the dynamics, we will from now on frequently refer
to the noise as w ∈ L∞([0, T ]), de�ned by w(t) := dWt almost everywhere, instead of
W .

The di�erence between the two viewpoints discussed in the previous sections is more
pronounced for this problem. Using the approach of Section 6.1, one could �rst �nd the
quantile for any control u and then optimize over u. However, by choosing u �rst one
would end up with an open-loop control, which does not react to the noise.

Of course, the notion of an optimal control is more complicated in the dynamic stochas-
tic case, as instead of a single control u : t 7→ u(t), we are actually looking for a non-
anticipating control strategy U : w|[0,t) 7→ u(t), i.e. a strategy that determines the control

u(t) based on everything that has happened up to time t.2 This is easier to accomplish
by viewing the problem as a di�erential game.

Note that the noise does not react to the control and so w is only a (random) function
of t instead of an adaptive strategy.

2Note that knowledge of itself and the dynamics can be built into the control strategy, so that w is
indeed the only input needed to reconstruct the system's behavior.
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Hence, the task is to �nd the solution U∗, F ∗,w∗ of the game

min
U,F

(
max
(x,w)

L(x, U(w))

)
(7.1)

s.t. g(x− ΣW,U(w))

:= f(x, U(w), ·) + Σw − d

dt
x + (x0 − x(0))δ0 ≡ 0,

P(w ∈ F ) ≤ p, w /∈ int(F ),

where g : X×U→ Y := (L∞([0, T ];X ) + X δ0) ⊂ W−1,∞([0, T ];X )

We again restrict F to a linearization (thereby changing the game to the control player's
disadvantage), in this case to

F = {〈w,M(w)〉L2 ≤ α}, α = Φ−1(1− p),

where M is a non-anticipating strategy.

Instead of looking for the full control strategy (U∗,M∗), we start by �nding the optimal
answer u∗ := U∗(w∗), µ∗ := M∗(w∗) to w∗ := dW ∗, where U∗,M∗,W ∗ are the solution
of the above game. How to �nd the optimal answer to an arbitrary noise w will be
considered later.

(u∗, µ∗,w∗) are a Nash equilibrium, i.e. a saddle point of

min
u,µ

max
x,w

L(x,u) (7.2)

s.t. g(x− ΣW,u) ≡ 0,

g2(w, µ) := α− 〈w, µ〉L2 ≥ 0,

g3(µ) := γ2 − ‖µ‖2L2 = 0,

with α = Φ−1(1− p) and γ2 = 1.

In order to proceed, we need g2 to be active3 (i.e. g2 = 0), which we ensure (see
Remark 7.1 below) by assuming from now on that

if
∥∥∥Σ>λ(n)

∥∥∥
L2
→ 0 (n→∞) for a sequence

(
x(n),u(n), µ(n),w(n)

)
which is

admissible and a local minimum w.r.t.
(
x(n),u(n), µ(n)

)
for all n, then this

sequence has an accumulation point (x,u, µ,w) which is a local minimum
w.r.t. w.

(A2)

This assumption excludes not only the existence of maxima w.r.t. w but also stagnation
that could lead to a �maximum at ∞�, which will be useful later.

3Otherwise we would have the KKT conditions λ2 ≥ 0, λ2g2(w, µ) = 0. With g2 6= 0, λ2 = 0 would
imply λ3 = 0 and hence no information on w or µ.
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The extremality condition then reads

−∇(x,u,w,µ)L = −


cx
cu
0
0

 =


g∗x
g∗u
Σ>

0

λ+ λ2


0
0
−µ
−w

+ λ3


0
0
0
−2µ

 ,

with λ ∈ Y∗, λ2, λ3 ∈ R

It follows that µ, w and Σ>λ are multiples of each other. From ‖µ‖L2 = γ = 1 we see
that

µ = γ
Σ>λ

‖Σ>λ‖L2
=

Σ>λ

‖Σ>λ‖L2
and from g2 = 0 that

w = α
Σ>λ

‖Σ>λ‖L2
.

The Lagrange multipliers for g2 and g3 are

λ2 =

∥∥Σ>λ
∥∥
L2

γ
,

λ3 = −
α
∥∥Σ>λ

∥∥
L2

2γ3
.

Remark 7.1. To understand (A2), note that by the Shadow Price Theorem 1.8

d

dα
L = λ2

d

dα
g2 = λ2 =

∥∥∥Σ>λ
∥∥∥
L2
,

i.e. if Σ>λ 6= 0 then increasing α increases L∗ and hence a w with g2 > 0 that does not
fully use the allowed α cannot be optimal. (A2) rules out that Σ>λ = 0 for a maximal
w. Hence g2 = 0 and the division by

∥∥Σ>λ
∥∥
L2 is allowed.

Note that there is a second solution in which µ, w, and λ2 all change their sign. In
particular, λ2 < 0 for this solution. Arguing as in Remark 7.1, we see that there are w
with g2 > 0 which achieve higher values L. It follows that the second solution is not a
maximum with respect to w.

Again, w can now be eliminated as an independent variable and we obtain an optimal
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7.2. Solution with FORM

control problem involving its own adjoint:

min
u

(
max
(x,λ)

L(x,u)

)
(7.3)

s.t. g(x,u) := f(x, u, ·) + α
ΣΣ>λ

‖Σ>λ‖L2
− d

dt
x ≡ 0,

x(0) = x0,

− d

dt
λ = cx + f>x λ,

λ(T ) = 0.

Note that the equations for λ are an extensive form of cx = −g∗xλ.
For a (not necessarily extremal) trajectory in a deterministic optimal control problem,

one can start with a given u, integrate forward to obtain x and �nally backward to get λ.
In (7.3), λ appears in ẋ and so one has to solve for x and λ simultaneously, and we need
to show that a solution exists. The following proofs assume that the reader is familiar
with the arguments in Section 2.1.2.

Lemma 7.2. The maximum over (x, λ) in (7.3) exists for all u ∈ U.

Proof. Consider for u �xed

max
(x,w)

L(x,u) (7.4)

s.t. g(x,u) := f(x, u, ·) + αΣw − d

dt
x ≡ 0,

x(0) = x0,

1− ‖w‖2L2 = 0.

Note that the dynamics are �nitely generated w.r.t. to w. We do not get a bound on
‖w‖L2 from coercivity but have one directly in the constraint. So we have a minimizing
subsequence xi → x∗, wi ⇀ w∗ in L2 as i→∞. As L does not directly depend on w, we
can immediately conclude from continuity w.r.t. x that L(xi,u)→ L(x∗,u). All wi ful�ll〈
wi,w∗

〉
L2 ≤

∥∥wi
∥∥
L2 ‖w

∗‖L2 = ‖w∗‖L2 and due to the weak convergence, 〈w∗,w∗〉L2 ≤
‖w∗‖L2 , i.e. ‖w∗‖L2 ≤ 1. By assumption (A2), ‖w∗‖L2 < 1 would contradict optimality,
so ‖w∗‖L2 = 1.
Finally, let λ∗ = λ(x∗) be de�ned by − d

dtλ = cx(x∗, u, t) + fx(x∗, u, t)>λ, λ(T ) = 0.
The extremality condition

−∇(x,w)L = −
(
cx
0

)
=

(
g∗x
Σ>

)
λ+ λ2

(
0
−2w

)
shows that Σ>λ∗ is a multiple of w∗ and with ‖w∗‖L2 = 1 we have Σw∗ = ΣΣ>λ∗

‖Σ>λ∗‖L2
. It

follows that λ∗ is admissible in (7.3).
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Chapter 7. Quantile optimization for dynamic systems

Remark 7.3. For α = 0, λ does not appear in g and (7.3) coincides with the determin-
istic problem, for which λ is unique. This remains so unless a bifurcation occurs as |α|
grows. In the typical case for |α| small, we expect (7.3) to �maximize� over only a single
admissible λ.

Theorem 7.4. Problem (7.3) has a solution.

Proof. Let xi → x∗, ui ⇀ u∗ be a minimizing sequence of (7.3) and λi the corresponding
λ. By the same arguments as in Section 2.1.2, we see that (x∗,u∗) ∈ W1,∞ × L∞ and
that L(x∗,u∗) attains the in�mum, but we need to show that the corresponding λ solves
the maximization.

We de�ne λi := λ(xi) with the mapping x 7→ λ,Lp → W1,p as in Lemma 7.2. This
mapping is continuous as it is the solution operator of an ODE with Lipschitz coe�cients
and hence we have λ∗ := λ(x∗) = lim

i→∞
λi.

To show that λ∗ solves the maximization, we return to the underlying w∗ as in the
proof of Lemma 7.2. Assume the maximization (7.4) with u = u∗ is solved by (x̂, ŵ) 6=
(x∗,w∗). Then L(x̂,u∗) = L(x∗,u∗) + ε for some ε > 0.

As f is �nitely generated (i.e. linear in u), ui ⇀ u∗ weakly su�ces for x(ui, ŵ) →
x(u∗, ŵ) strongly in Lp. Hence L(x(ui, ŵ),ui) → L(x∗,u∗) + ε but L(x(ui,wi),ui) =
L(xi,ui)→ L(x∗,u∗), which for i large enough contradicts the optimality of wi in (7.4)
at u = ui.

7.3. Time consistency

W , being a random variable, is almost certain to deviate from its realization in the
reference solution above, which raises the question how the control should respond to
such a deviation. One might, at any time t, use the control solving the (1− p)-quantile
problem on [t, T ] but we need to ask ourselves whether the combination of these controls
can in any sense be considered to be a solution for the original problem on [0, T ].

The Dynamic Programming Principle (Theorem 5.6) for deterministic problems states
that any subtrajectory (x∗,u∗)|[t,T ] is an optimal solution for the subproblem restricted
to the time interval [t, T ] with initial condition x∗(t). We will study whether an equivalent
statement holds for quantile optimization.

In general, we have
∥∥∥µ|[t,T ]

∥∥∥
L2
< ‖µ‖L2 and an analogous decrease in 〈w, µ〉L2 , so we

cannot expect g2 = 0 and g3 = 0 to be ful�lled without modi�cations. Instead, we need
to retain more information about that past trajectory than just the current state x(t)
and demand that the entire trajectory � past and future � ful�lls the constraints. Hence
we get for the trajectory on [t, T ] the conditions〈

w|[t,T ] , µ|[t,T ]

〉
L2
≤ α−

〈
w|[0,t] , µ|[0,t]

〉
L2

=: α̃,∥∥∥µ|[t,T ]

∥∥∥2

L2
= γ2 −

∥∥∥µ|[0,t]∥∥∥2

L2
=: γ̃2,
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7.3. Time consistency

Subtrajectories of an admissible trajectory (x,u, µ,w) ful�ll these conditions for values
α̃ and γ̃ varying according to

d

dt
α̃(t) = −〈w(t), µ(t)〉 ,

d

dt
(γ̃(t))2 = −‖µ(t)‖2 .

To maintain the normalization ‖µ‖ = 1 (which is required for α = Φ−1(1− p) to hold),
we perform the rescaling α := α̃

γ̃ , γ := 1, which does not change the solution (apart from
rescaling µ).(

x|[t,T ] , u|[t,T ] , w|[t,T ] , µ|[t,T ] /
∥∥∥µ|[t,T ]

∥∥∥
L2

)
then ful�ll the optimality condition and

the constraint g and it remains to determine the values α̃ and γ̃ for which g2 and g3 are
ful�lled.

The question of admissibility is also interesting for random outcomes w 6= w∗, so for
µ = µ∗ = Σ>λ

‖Σ>λ‖ but w arbitrary, we compute

d

dt
α̃(t) = −〈w(t), µ(t)〉 = −w(t)>Σ>λ(t)

‖Σ>λ‖L2
d

dt
(γ̃(t))2 = −

∥∥Σ>λ(t)
∥∥2

‖Σ>λ‖2L2
d

dt
γ̃(t) = −

∥∥Σ>λ(t)
∥∥2

2γ̃(t) ‖Σ>λ‖2L2
d

dt
α(t) =

(
d
dt α̃(t)

α̃(t)
−

d
dt γ̃(t)

γ̃(t)

)
α̃(t)

γ̃(t)

= − w(t)>Σ>λ(t)∥∥∥Σ>λ|[t,T ]

∥∥∥
L2

+

∥∥Σ>λ(t)
∥∥2

2
∥∥∥Σ>λ|[t,T ]

∥∥∥2

L2

α(t). (7.5)

To obtain the last line we have used γ̃(t) =
∥∥∥µ|[t,T ]

∥∥∥
L2

=

∥∥∥Σ>λ|
[t,T ]

∥∥∥
‖Σ>λ‖L2

.

For the reference trajectory, the computation is simpler. With w = w∗ = α(0) Σ>λ

‖Σ>λ‖
we directly have

α̃(t) = α(0)γ̃(t)2

and
d

dt
α(t) = −

∥∥Σ>λ(0)
∥∥2

2 ‖Σ>λ‖2L2
α(0). (7.6)

In particular we see that α is decreasing for the reference trajectory w∗, i.e. even if the
realization of w coincides with w∗, the subtrajectories are no longer optimal solutions if
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Chapter 7. Quantile optimization for dynamic systems

we keep α constant.

Value function

α̃(t) de�ned above keeps track of how much of the allowed value for 〈w, µ〉L2 has been
used up at time t and in that sense can be understood to be a part of the state.

In fact, if we include its rescaled version α(t), as de�ned by (7.5), in the state and
de�ne V (xt, α, t) to be the value L

∗ of (7.3) restricted to [t, T ] with the initial condition
x(t) = xt, then V is an upper bound on the value function:

Theorem 7.5. Let w ∈ L∞([0, T ];Rn), x(0) ∈ Rd, α(0) ∈ R. Let x(t), α(t), t ∈ [0, T ∗)
be de�ned by

ẋ(t) = f (x(t), u∗(t)) + Σw(t),

α̇(t) = −〈w(t), µ(t)〉+

∥∥Σ>λ(t)(t)
∥∥2

2
∥∥Σ>λ(t)

∥∥2

L2
α(t),

µ(t) :=

{
Σ>λ(t)(t)

‖Σ>λ(t)‖L2
, for

∥∥Σ>λ(t)
∥∥ > 0

0 for
∥∥Σ>λ(t)

∥∥ = 0
,

where u∗(t) and λ(t) are from the solution of (7.3) on [t, T ] and [0, T ∗) is the maximal
interval on which a solution of the ODE exists. Then

d

dt

(ˆ t

0
c(x(s), u∗(s), s) ds+ V (x(t), α(t), t)

)
≤ 0

for t ∈ [0, T ∗) with equality when V (·, α(t), t) is di�erentiable.

Proof. If also w = w∗, then subtrajectories on [t+ τ, T ], τ ≥ 0 are solutions of (7.2) on

that interval, hence V (x(t+ τ), α(t+ τ), t+ τ) =
´ T
t+τ c(x(s), u∗(s), s) ds and taking the

derivative at τ = 0 gives

V̇ :=
d

dτ
V

(
x(t) + τ

(
f (x(t), u∗(t)) + α(t)

ΣΣ>λ(t)

‖Σ>λ‖L2

)
, α(t) + τ

∥∥Σ>λ(t)
∥∥2

2 ‖Σ>λ‖2L2
α(t), t+ τ

)∣∣∣∣∣
τ=0

+ c(x(t), u∗(t), t) = 0,

where we have used w∗(t) =
‖Σ>λ(t)‖2

‖Σ>λ‖2L2
α(t).

By de�nition, V equals the value L of the associated solution of (7.2). For arbitrary
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7.3. Time consistency

w, the Shadow Price Theorem4 1.8 tells us that varying w gives

dL̇ =
d

dxt
Ldẋ(t) +

d

dα
Ldα̇(t)

= λ(t) · Σ dw(t) + λ2 〈−dw(t), µ(t)〉

= λ(t) · Σ dw(t) +
∥∥∥Σ>λ

∥∥∥
L2
−Σ>λ(t)

‖Σ>λ‖L2
· dw(t)

= 0.

In particular this holds for dw = w − w∗ and so, if the varied minimum remains the
global minimum, then the claim holds with equality. If the global minimum varies dis-
continuously, then V (·, α(t), t) is not di�erentiable and V̇ ≤ L̇.

Note that
∥∥∥Σ>λ

∣∣
[t,T ]

∥∥∥
L2
→ 0 in the denominator of (7.5) as t → T , making a blow-

up a common occurrence for arbitrary w. For 〈w, µ〉 = α it can be compensated by
the numerator also going to zero (cf. (7.6), the behavior of the reference trajectory),
otherwise the sign of the blow-up tells us whether w is admissible:

Lemma 7.6. Under the assumptions and de�nitions of Theorem 7.5, if 〈w, µ〉L2 6= α(0),
then

α(t) −−−→
t→T ∗

+∞⇔ 〈w, µ〉L2 < α(0),

α(t) −−−→
t→T ∗

−∞⇔ 〈w, µ〉L2 > α(0).

Proof. We have α(t) = α̃(t)
γ̃(t) , so α(t) stops being di�erentiable at T ∗ only if γ̃(T ∗) = 0.

Hence γ̃(t) = 0 and µ(t) = 0 for all t ≥ T ∗ giving us

α̃(T ∗) = α̃(0)−
ˆ T ∗

0
w(t) · µ(t) dt = α(0)− 〈w, µ〉L2 .

The claim follows from α(t) = α̃(t)
γ̃(t) and γ̃ being non-negative.

Furthermore, if a blow-up occurs at T ∗ < T , then it has become impossible to stay
below the target cost regardless of w:

Lemma 7.7. If α(t) −−−→
t→T ∗

−∞ for some w|[0,T ∗] with x, α as in Theorem 7.5 on [0, T ∗],

then ˆ T

T ∗
c(x(t), u(t), t) dt ≥ lim

t→T ∗
V (x(t), α(t), t)

for all (u,w)|(T ∗,T ] and ẋ(t) = f(x(t), u(t), t) + Σw(t) on (T ∗, T ].

4Note that the Shadow Price Theorem merely requires z∗ to be a critical point, so it does not matter
that we have a saddle point instead of a minimum.
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Proof. Let L̃(w) :=
´ T
T ∗ c(x(t), u∗(t), t) dt (note that x and u∗ depend on w), Ṽ :=

lim
t→T ∗

V (x(t), α(t), t), L̃∗ := infw L̃(w) and assume by way of contradiction that L̃∗ < Ṽ .

Then there exists w̃ such that L̃(w̃) ≤ (L̃∗ + Ṽ )/2 < Ṽ . We consider now

L̃η := L̃

(
(1− η)w̃ + α̃(η)

Σ>λ

‖Σ>λ‖L2

)
, η ∈ [0, 1]

and want to �nd α̃ : [0, 1]→ R, α̃(0) = 0 such that L̃η is constant w.r.t. η. This implies
d
dη L̃µ = −〈Σw̃, λ〉+ dα̃

dη

∥∥Σ>λ
∥∥
L2 = 0, which is ful�lled, e.g., if

dα̃

dη
=

{ 〈
w̃,Σ>λ

〉
L2 /

∥∥Σ>λ
∥∥
L2 , for

∥∥Σ>λ
∥∥
L2 > 0

0, for
∥∥Σ>λ

∥∥
L2 = 0

.

The solution of this ODE exists because
∣∣∣dα̃dη ∣∣∣ ≤ ‖w̃‖L2 . By de�nition of V it follows that

V (x(T ∗), α̃(1), T ∗) ≤ L̃(w̃) < Ṽ = lim
t→T ∗

V (x(t), α(t), t).

As α(t) −−−→
t→T ∗

−∞ and d
dαV =

∥∥Σ>λ
∥∥
L2 ≥ 0, we have lim

t→T ∗
V (x(t), α(t), t) ≤ V (x(T ∗), ᾱ, T ∗)

for any �nite ᾱ, so this is a contradiction.

This unachievability is re�ected in the fact that the FORM approach does not provide
a control strategy after T ∗.

Remark 7.8. Note that α→ +∞ at a T ∗ < T would violate (A2). Of course, this could
still occur if the method is applied to a problem not ful�lling (A2). Even then one could
not get a statement analogous to lemma 7.7 with �≤� because the proof used the in�mum
in the de�nition of V .

Finally, we need to relate the cost actually incurred to the value function and consider
V at T ∗ = T . For α = 0, the value function V (·, α, t) =

´ T
t c ds goes to 0 for t → T

as the corresponding trajectory (x,u) remains bounded. Combining Theorem 7.5 with
d

dαV =
∥∥Σ>λ

∥∥
L2 ≥ 0 and Lemma 7.6, we �nd (with u∗ as in Theorem 7.5)

Theorem 7.9. L(x,u∗(w),w) =
´ T

0 c(x, u∗, t) dt ≤ V (x(0), α(0), 0) for all w ∈ L∞([0, T ])
with α(t) −−−→

t→T ∗
+∞, i.e. for all admissible outcomes w up to a zero set.

7.4. Alternative choices for α

Restatement as probability minimization

Let Q
[a,b]
L be the quantile function of the problem restricted to the time interval [a, b]

with the cost function L[a,b] =
´ b
a c(x, u) dt.

96



7.5. Behavior near a target state

After L∗ has been determined, the minimization of P(L > L∗) is a goal that can be
pursued consistently in time (cf. Section 7.1) and can be translated back to a quantile
optimization by �nding a p(t) such that

Q
[t,T ]
L (1− p(t)) = L∗ −

ˆ t

0
c(x, u) dt. (7.7)

Remark 7.10. If (A1) holds, then V = L∗−
´ t

0 c(x, u) dt for all t, unless the �<� case of
Theorem 7.5 occurs on a set of nonzero measure, and we obtain that p(t) is the probability
corresponding to α(t) as determined by (7.5). IfW is a Browninan motion, this no longer
holds (cf. section 7.6).

For practical applications this restatement has the advantage that one only needs to
measure the cost c.

α locked to reference trajectory

A pure focus on minimizing only a certain quantile might not be desirable in practice. In
particular, we have seen that this would result in giving up completely if the target value
has become unattainable. As an alternative, we suggest to act as if w were to follow the
reference trajectory and vary α according to (7.6). This would still give approximately
the same control if w is close to the most critical outcome (i.e the reference trajectory),
but a generally more well-behaved behavior because |α(t)| is non-increasing.

7.5. Behavior near a target state

Cost functionals are often designed with a target state (x∗, u∗) with f(x∗, u∗) = 0 such
that c(x∗, u∗) is minimal, in which case the optimal trajectory will typically converge to
the target state on larger time intervals. (This was assumed in Chapter 5.)

This situation requires some attention, as our approach relies on the problem being
essentially linear and treats only the component of the noise pointing in the direction of
the gradient (i.e. the adjoint λ) as increasing the cost (see also the error analysis in the
next section). At the target state x∗, this assumption breaks down as the quadratic term
begins to dominate in c and any noise will increase the cost, regardless of direction.

It follows that the control derived by our quantile optimization procedure should be
used to guide the state towards its target but not to keep it there. We thus require a
method for the later task and a criterion when to switch.

Close to the target x∗ the problem is approximately linear-quadratic. As the opti-
mal control for the deterministic LQ problem also optimizes the expected value for the
stochastic version, we use the optimal control for the problem without noise.

The switching strategy could be based on the distance to x∗ with the LQ approximation
around x∗ being used to compute how far the state is expected to stray from the target
due to noise (the controlled dynamics in the LQ case is an Ornstein-Uhlenbeck process).

97



Chapter 7. Quantile optimization for dynamic systems

7.6. Error analysis in V

We can estimate the error in V by using an Itô version of Theorem 7.5 that does not
require W to be weakly di�erentiable (Assumption (A1)):

Writing x and α as random variables, we have the SDEs

dxt = f(x, u∗, t) + Σ dWt,

dαt =

∥∥Σ>λ(t)(t)
∥∥2

2
∥∥Σ>λ(t)

∥∥
L2
αt dt− Σ>λ(t)(t)∥∥Σ>λ(t)

∥∥
L2
· dWt.

By Itô's lemma,

V ((x, α)t, t) := V (xt, αt, t)

=V ((x, α)0, 0) +

ˆ t

0

d

ds
V ds+

ˆ t

0

d

d(x, α)
V d(x, α)s

+
1

2

ˆ t

0

d2

d(x, α)2
V : d 〈(x, α)〉s

=V ((x, α)0, 0)−
ˆ t

0
c(x, u, s) ds+

1

2

ˆ t

0

d2

d(x, α)2
V : d 〈(x, α)〉s .

Similarly to Theorem 7.9, we hence have

Theorem 7.11.

ˆ T

0
c(x, u∗, t) dt ≤ V (x(0), α(0), 0) +

1

2

ˆ t

0

d2

d(x, α)2
V : d 〈(x, α)〉s

for all realizations of W with α(t) −−−→
t→T ∗

+∞, i.e. for all admissible outcomes up to a

zero set.

This estimate shows that, as in the static case, the error (i.e. the last integral in
Theorem 7.11) depends on the magnitude of the quadratic part, but unfortunately we
cannot give any further bounds.

Note that the last term is still de�ned and �nite even when the second derivative of V
is measure valued, cf. [Eis01]. This means that the Theorem holds even if V consists of
multiple branches (cf. Chapter 4).

For reference we note that for the quadratic variations in the error term we have

d 〈x〉t = ΣΣ>,

d 〈x, α〉t = −ΣΣ>λ(t)(t)∥∥Σ>λ(t)
∥∥
L2
,

d 〈α〉t =
λ(t)>(t)ΣΣ>λ(t)(t)∥∥Σ>λ(t)

∥∥
L2

.
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7.7. Error analysis in p

In this section, we will show that our method can be interpreted as using the �wrong�
type of stochastic integral for 〈w, µ〉L2 =

´ T
0 wµdt. Since p = P (〈w, µ〉L2 > α), we can

regard the computed quantile as the correct value for a di�erent probability.

This result is based on a Theorem in [IW89] which states that there are smooth ap-
proximations of Brownian motions such that integrals of the approximations converge to
their Stratonovich counterparts for the approximated Brownian motion.

Recall that the Itô integral is de�ned as a limit of random variables by

ˆ T

0
f(t) dWt := lim

N→∞

T

N

N−1∑
i=0

f

(
i

N

)(
W(i+1)/N −Wi/N

)
,

and the Stratonovich integral by

ˆ T

0
f(t) ◦ dWt := lim

N→∞

T

N

N−1∑
i=0

1

2

(
f

(
i

N

)
+ f

(
i+ 1

N

))(
W(i+1)/N −Wi/N

)
.

Note also that we have seen above that the extended state (x(t), α(t)) contains su�cient
information to determine the value of the game and consequently we restrict control
strategies to be functions of (x, α, t). The game (7.8) de�ned below di�ers from (7.1) in
that it uses this notion of control strategies, allows W to be in a larger set and uses the
Stratonovich integral in gS2 as g2 is unde�ned for non-di�erentiable W .

Theorem 7.12. Let V be the value of the di�erential game (7.1). There exists a set W
of Brownian paths such that P(W ∈ W = 1) and that the value Ṽ of the di�erential game

min
U,M

(
max

W∈W,x
L(x,u)

)
(7.8)

s.t. g(x− ΣW,u)

:=
d

dt
(x− ΣW )− f(x, u, ·) + (x0 − x(0))δ0 ≡ 0,

gS2 (W,µ) := α(0)−
ˆ T

0
µ(t) ◦ dWt ≥ 0,

g3(µ) := 1− ‖µ‖2L2 = 0

u(t) = U(x(t), α(t), t), µ = M(x(t), α(t), t) ∀t ∈ [0, T ],

where the minimum is over functions U ∈ C1(X × R × [0, T ];U) and M ∈ C2(X × R ×
[0, T ];Rn), and α is de�ned on (0, T ] (analogously to α̃/γ̃) by

α(t) :=
α(0)−

´ T
0 µ(t) ◦ dWt√

1−
´ T

0 ‖µ(t)‖2 dt
,
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ful�lls V = Ṽ .

Proof. Let U∗, M∗ be the solution of (7.1). By the Corollary to Theorem 7.3 in chap-
ter VI of [IW89], there exist almost surely W i,ui,xi, µi, i ∈ N with g(xi,ui,W i) ≡ 0,
W i, µi ∈ C1([0, T ],Rn) and W i → W , xi → x, ui → U∗(W ), µi → M∗(W ) uniformly,

as well as
´ T

0 µi · Ẇ i dt→
´ T

0 M∗(W ) ◦ dWt, L(xi,ui)→ L(x(W ), U(W )) (i→∞). Let
W, P(W ∈ W = 1) be a set for which the above holds and which includes all weakly
di�erentiable W . The latter is possible because for these W the regular integral exists
and coincides with the Stratonovich integral.
Clearly Ṽ ≥ V as in (7.8) the maximum is over a larger and the minimum over a

smaller set than in (7.1)
For the converse inequality, note that u∗ and µ∗ computed in Section 7.2 vary smoothly

with (x, α, t) and so (U∗,M∗) is admissible for (7.8). If V̂ > V , there is an W ∈ W such
that L(x(U∗(W ),W ), U∗(W )) > V and W is admissible in (7.8). Its approximations W i

from above would be admissible in (7.1), leading to a contradiction.

The game does not provide a p-quantile because generally

P
(ˆ T

0
µ(t) ◦ dWt ≥ α

)
6= p

and the desired equality

P
(ˆ T

0
µ(t) dWt ≥ α

)
= p

holds only for the Itô integral.
So V is actually a (1− p̃)-quantile, where we can estimate

p̃ ≤ P
(ˆ

µ(t) dWt ≥ α
)

︸ ︷︷ ︸
=p

+P
(ˆ

µ(t) dWt < α ∧
ˆ
µ(t) ◦ dWt ≥ α ∧ L > V

)

and see that the di�erence is caused by outcomes which are admissible for the Itô, but
not the Stratonovich version of the constraint.
For the di�erence between the Stratonovich and Itô integral we have

ˆ T

0
µ(t) dWt =

ˆ T

0
µ(t) ◦ dWt −

1

2

ˆ T

0

d

dWt
µ(t) : d 〈Wt〉 .

Further statements are hard to make in general, but the di�erence can be estimated
e.g. by using the values of d

dWt
µ along the reference path.

7.8. Implementation

The term
∥∥Σ>λ

∥∥
L2 appearing as a denominator in g causes some inconvenience when

solving (7.3). Firstly, it depends on the entire adjoint λ and therefore prevents the
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7.8. Implementation

derivative of the constraint g, that would otherwise be local in time, from being sparse.
Secondly, it happens to be zero for the stationary solution (x,u) ≡ (x∗, u∗), which we
often like to use as a starting point for homotopies. To overcome these problems, we
introduce the additional variable β :≈

∥∥Σ>λ
∥∥ and a regularization parameter βreg and

solve a discretization (cf. Section A.1.6) of

F (x,u, λ, β) :=


cx(x,u)− λ · gx(x,u, λ, β)
cu(x,u)− λ · gu(x,u, λ, β)

g(x,u, λ, β)

β2 −
∥∥Σ>λ

∥∥2

L2 − βreg

 !≡ 0 (7.9)

with

g(x,u, λ, β) := f(x, u, ·) + α
ΣΣ>λ

β
− d

dt
x + (x0 − x(0))δ0.

In general, λ does not vanish and we can set βreg = 0 to recover β =
∥∥Σ>λ

∥∥
L2 .

The algorithm

At an abstract level, we have the following algorithm:

1. Determine the reference solution for a given initial condition x(0) = x0 and with
initial α(0) = Φ−1(1− p)

2. for each ti

2.1. Compute the solution on [ti, T ] starting at current position x(ti)

2.2. Use u|[ti,ti+1) as control

2.3. Update α

Note that in step 2.1. one can reduce the computational e�ort by computing the
solution approximately by using a linearization around a previous solution and computing
a full solution only every couple of time steps.

Step 2.3. varies according to which of the approaches for time consistency is used. Note
that using the noiseless control near the target is equivalent to setting α = 0 and so the
switching strategy is included in this step. The possible choices are:

(i) Probability maximization for a cost target : The derivative dL
dα = λ2 is available as

a Lagrange multiplier and so an α ful�lling (7.7) can be computed by Newton's
method. We set α = 0 if the target has become unachievable.

(ii) α from reference trajectory : α is varied according to (7.6). As α goes to zero with
this approach, no further switching strategy is needed.

(iii) Constant α: α remains unchanged until a neighborhood of the target is reached. α
is then set to zero.
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Chapter 7. Quantile optimization for dynamic systems

7.9. Numerical example

Discretization of a viscous Burgers equation with boundary control

As an example, we use a boundary control problem for the viscous Burgers equation
taken from [KVX04] to which we add a noise term which also acts on the boundary:

yt − νyzz + yyz = 0 in [0, 1]× (0, T )

νyz(·, 0) = u+ σdW in (0, T )

νyz(·, 1) = 0 in (0, T )

y(0, ·) = y0 in [0, 1]

L(y,u) =
1

2

ˆ T

0

ˆ
[0,1]
|y(t, z)|2 dz + η |u(t)|2 dt

We approximate y(·, t) ≈
∑d

j=1 xj(t)Φj(·) with Φj the normalized Legendre polyno-
mials. Galerkin projection gives the weak equation

d

dt
xj =

〈
d

dt
y,Φj

〉
= −

(ˆ 1

0
ν

d

dz
y(z)

d

dz
Φj(z) + y(z)

d

dz
y(z)

d

dz
Φj(z) dz + (u(t) + σdWt) Φj(0)

)
.

In particular Σ ∈ Rd×1, Σj,1 = σΦj(0).

As the Φj are orthonormal, we obtain the cost function

L(x,u) =
1

2

ˆ T

0
‖x(t)‖2 + η |u(t)|2 dt.

For the experiment we always use ν = 0.05, µ = 0.1, T = 1, y0(x) = (1−x) sin(3π(x−
1/2)) and d = 20, whereas the noise intensity σ will vary.

The quantile functions are approximated by a Monte Carlo method. We draw a number
of samples wi from the distribution of W and compute L(u(wi),wi) for di�erent control
strategies. (Note that the same wi are used for all control strategies to improve compa-
rability.) When studying the following �gures one should keep in mind that QL(p)→∞
as p → 1 and hence the rightmost part of the quantile functions is subject to a large
sampling error.

Figure 7.1 shows the di�erence in outcomes compared to the deterministic control for
σ = .05. The time-consistent strategies perform best, in accordance with theoretical
predictions. Note also that for α = 1 we optimize the quantile for p ≈ 0.84 and that the
naive strategy with constant α performs worse than the deterministic control for this p.

However, we obtain a di�erent picture if we increase the noise to σ = .1 (Figure 7.2).
The time-consistent strategies are still an improvement over the deterministic control
but they are clearly not optimal at p ≈ .84, which suggests that the linearity assumption
underlying the model no longer valid. Remarkably, the naive strategy is more robust and
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performs well in the high-noise case.
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Figure 7.1.: Di�erence of quantile functions for σ = .05 compared to deterministic control
for di�erent control strategies (Monte Carlo simulation with 1216 samples)
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Figure 7.2.: Di�erence of quantile functions for σ = .1 compared to deterministic control
(Monte Carlo simulation with 1024 samples)
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Figure 7.3.: Quantile functions for di�erent control strategies with σ = .1 (Monte Carlo
simulation with 1024 samples)
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A. Solution of local subproblems

The subproblems (1.6) arising during the discrete homotopies in Algorithm 5.1 need to
be discretized in order to be solved numerically.

As we are dealing with extremals which converge to (x∗, u∗) we can reduce the problem
from an in�nite to a �nite time horizon [0, T ] through a cut-o�. Due to the exponential
decay of the solution near (x∗, u∗) (recall that extremals are in the stable manifold), an
adaptive grid allows a high enough T for the solution to become essentially constant at
low computational cost.

A.1. Discretization of the optimality conditions

We will describe the structure of the discrete optimality condition and then determine
the coe�cients appearing in it. W.l.o.g. we assume again t0 = 0.

A.1.1. Structure of the discrete equations

We choose to always represent functions by nodal values instead of coe�cients in some
basis and hence choose a time grid ti ∈ [0, T ], i = 1, . . . , N and have as unknowns the
values xi, ui and λi associated to each ti. Note that x0 is not an unknown but the initial
state.

The integral in the cost function L is approximated by some quadrature rule

L ≈
N∑
i=1

Lc
ic(xi, ui)

speci�ed by the coe�cients Lc
i ∈ R, i = 1, . . . , N .

For this chapter, we de�ne g ≡ f(x,u) − ẋ ∈ W−1,∞([0, T ];X ) and treat the initial
condition x(0) = x0 separately. Those constraints are translated into a set of X -valued
constraints gj , j = 1, . . . N of the form

gj(x0, . . . , xN , u1, . . . , uN ) =

N∑
i=1

Gx
jixi +

N∑
i=1

Gf
jif(xi, ui) +Gic

j x0,

where Gx ∈ RN×N , Gf ∈ RN×N and Gic ∈ RN depend on the choice of integrator used
for ẋ = f(x, u).
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Appendix A. Solution of local subproblems

A.1.2. Discretization by the Discontinuous Galerkin method

We now derive values for the coe�cients Lc, Gx, Gf and Gic using a Discontinuous
Galerkin (DG) method for the dynamical constraint.
The interval [0, T ] is divided in N̂ subintervals [t̂i−1, t̂i], i = 1, . . . , N̂ , 0 = t̂0 < t̂1 <

. . . < t̂
N̂

= T . The approximation is sought in the space of discontinuous piecewise
polynomials of degree k,

Π := Pk((t̂0, t̂1))× . . .× Pk((t̂N̂−1
, t̂
N̂

)).

Hence the DG method allows u to be discontinuous, which can occur if c is discontin-
uous on t. This will not happen in the in�nite horizon problem (2.17), but is possible for
the quantile optimization problem.

Treatment of discontinuities

The discontinuities leaves unde�ned the values at subinterval boundaries t̂i, which are
critical for the evaluation of the integrals that will appear in the weak form of the ODE.
We now de�ne those to be some combination of the left and right limits, i.e.

p(t̂i) := αp(t̂−i ) + (1− α)p(t̂+i ). (A.1)

This de�nition is equivalent to de�ning the function values as the limit of suitable
molli�cations of the function. Let η ∈ C∞0 (R) with η ≥ 0,

´∞
−∞ η(t) dt = 1 and � in

addition to the usual requirements �
´ 0
−∞ η(t) dt = α ∈ [0, 1] be a molli�er and de�ne

ηε(t) = 1
εη
(

1
ε t
)
. For p ∈ Π we have limε→0(p ∗ ηε)(t) = αp(t−) + (1− α)p(t+),1 i.e. the

value of p(t) as de�ned in (A.1). Furthermore, for any ϕ ∈ Π,2 at any t where p ∈ Π is
discontinuous:

lim
h→0

lim
ε→0

ˆ t+h

t
(p ∗ ηε)′(s)ϕ(s) ds

= lim
h→0

(
ϕ(t+) lim

ε→0

ˆ t+h

t
(p ∗ ηε)′(s) ds

)
= lim

h→0

(
ϕ(t+) lim

ε→0
(p ∗ ηε)(t+ h)− (p ∗ ηε)(t)

)
= ϕ(t+)

(
p(t+)−

(
αp(t−) + (1− α)p(t+)

))
= α(p(t+)− p(t−))ϕ(t+) (A.2a)

and similarly

lim
h→0

lim
ε→0

ˆ t

t−h
(p ∗ ηε)′(s)ϕ(s) ds = (1− α)(p(t+)− p(t−))ϕ(t−). (A.2b)

1For the purpose of convolutions, we assume functions to be zero outside their domains.
2More generally, for any ϕ which is continuous on (t, t+ δ] resp. [t− δ, t) for some δ > 0 and has a limit
for s↘ t resp. s↗ t.
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A.1. Discretization of the optimality conditions

Essentially we are assigning a fraction α of the jump p(t+) − p(t−) at t to t+ and the
remaining fraction 1− α to t−.

Weak formulation

With (A.2) we can now derive a weak formulation of the ODE. It is convenient to choose
�rst a basis

{
φ(0), . . . , φ(k)

}
of Pk((0, 1)) and then use (ϕ(i,j))

i=1,...,N̂ ,j=0,...,k
,

ϕ(i,j)(t) =

{
φ(j)

(
t−t̂i−1

t̂i−t̂i−1

)
t ∈ (t̂i−1, t̂i)

0 else

as a basis for Π.

Projection of the dynamical constraint f(x,u) ≡ 0 − ẋ then yields conditions of the
form

0
!

= 〈fl(x,u)− ẋl, ϕ〉 =

ˆ b

a
(f(x(t), u(t))− ẋ(t))ϕ(t) dt

with a = t̂i−1, b = t̂i, ϕ = ϕ(i,j).

The critical term is
´ b
a ẋ(t)ϕ(t) dt, which does not exist in the classical sense due to

the possible discontinuities of x at a and b, so we de�ne instead the new dual product

〈p, ϕ〉Π := lim
ε→0

ˆ b

a

d

dt
(ηε ∗ p)(t)ϕ(t) dt

and using (A.2) obtain

〈ẋ, ϕ〉Π = lim
h→0

ˆ a+h

a
ẋ(t)ϕ(t) dt+

ˆ b−h

a+h
ẋ(t)ϕ(t) dt+

ˆ b

b−h
ẋ(t)ϕ(t) dt

= α(x(a+)− x(a−))ϕ(a+)−
ˆ b

a
x(t)ϕ̇(t) dt+ xϕ|b

−

a+ + (1− α)(x(b+)− x(b−))ϕ(b−)

= −
(
αx(a−) + (1− α)x(a+)

)
ϕ(a+) +

(
αx(b−) + (1− α)x(b+)

)
ϕ(b−)−

ˆ b

a
x(t)ϕ̇(t) dt

= −x(a)ϕ(a+) + x(b)ϕ(b−)−
ˆ b

a
x(t)ϕ̇(t) dt, (A.3)

where we have used (A.1) to arrive at the last line. Note that if ϕ is continuous in a and
b, this is equal to the result one would get by formally applying partial integration.

Finally , we remark that the dual product 〈·, ·〉Π depends on α but not otherwise on η.
For the forward integration of an ODE it is advantageous to choose p(t̂i) := p(t̂−i ), i.e.
α = 1 so that values in [t̂i, t̂i+1] depend only on the previous subinterval through p(t̂i)

−

but not on the next one, i.e. the future. This allows one to solve the ODE advancing
from one subinterval to the next instead of simultaneously on the entire interval.
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Error estimates

A priori The DG method has been shown to be of order k in Theorem 3.1 of [Est95].
Restated for our setting this theorem becomes the following

Theorem A.1. Let u be given, x̃ be the true solution of ẋ(t) = f(x(t), u(t)), t ∈ [0, T ]
and x its DG approximant. Let Ω ⊆ X be a compact set such that x̃ and x stay in Ω
and (x, t) 7→ f(x, u(t)) has continuous partial derivatives of order k on Ω. Then there is
a constant C such that for all i = 1, . . . , N̂ ,

sup
t∈[0,t̂i]

‖x̂(t)− x(t)‖ ≤ C max
j≤i

(t̂i − t̂i−1)k+1 sup
t∈[t̂i−1,t̂i]

∥∥∥x̂(k+1)(t)
∥∥∥ .

A posteriori The approximation space Π always includes the step functions χ(t̂i−1,t̂i)
,

i = 1, . . . , N̂ , so the discrete solution x ful�lls

0 =
〈
f(x,u)− ẋ, χ(t̂i−1,t̂i)

〉
Π

⇒
ˆ t̂i

t̂i−1

f(x(t), u(t))− ẋ(t) dt︸ ︷︷ ︸
:=Resi

= α
(
x(t̂+i−1)− x(t̂−i−1)

)
− (1− α)

(
x(t̂+i )− x(t̂−i )

)
.

The local residual Resi on the ith subinterval can therefore be directly computed from
the jumps at t̂i−1 and t̂i. (Note that when fully discretizing the problem, one also needs
to account for the quadrature error.)

A.1.3. Nodes, quadrature and computation of coe�cients

Nodes

To obtain the nodes ti we choose nodes θl, l = 0, . . . , k on the reference interval [0, 1],
which are then transformed to each subinterval:

tj := t̂i + θl for j = i(k + 1) + l + 1, j = 1, . . . , N, N := (k + 1)N̂ .

In our implementation we choose Chebyshev nodes

θl :=

(
1 + cos

(
(k − l) π

k + 1

))
/2.

Note that for those nodes θ0 = 0, θk = 1 and so we have duplications ti(k+1)+k+1 =

t(i+1)(k+1)+1 = t̂i+1. As ti(k+1)+l+1 is supposed to belong to the ith subinterval, this is

to be interpreted as ti(k+1)+k+1 = t̂−i+1, t(i+1)(k+1)+1 = t̂+i+1.
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A.1. Discretization of the optimality conditions

Quadrature

In order to discretize the integral in the cost functional a quadrature rule

ˆ 1

0
f(t) dt ≈

k∑
l=0

wlf(θl) (A.4)

on [0, 1] is required. The composite quadrature rule on [0, T ] then reads

ˆ T

0
e−µtc(x(t), u(t)) dt ≈

N∑
j=0

Lc
je
−µtjc(xj , uj)

with
Lc
j := wj(t̂i+1 − t̂i) for j = i(k + 1) + l + 1, j = 1, . . . , N.

On Chebyshev nodes the optimal order of k+ 1 is achieved by Clenshaw-Curtis quadra-
ture. Although this is lower than the order 2k + 2 that could be achieved with Gauss
quadrature on a di�erent set of nodes, Clenshaw-Curtis quadrature often performs almost
equally well ([Tre08]). The weights are given by

wl =
cl
2k

1−
bk/2c∑
j=1

bj
4j2 − 1

cos

(
2j(k − l) π

k + 1

) , l = 0, . . . , k

with

bj =

{
1, j = k/2

2, j < k/2
, cl =

{
1, l = 0 or l = k

2, otherwise
.

An e�cient computation of the weights is possible by using the DFT, see e.g. [Wal06].

Polynomial basis

While the DG method works for any basis, our choice to use the values xj = x(tj),
uj = u(tj) as the unknown variables implies the use of the Lagrange basis

φ(j)(θ) =

k∏
i=0
i 6=j

θ − θi
θj − θi

and we have

x =
N∑
i=1

xiϕi, u =

N∑
i=1

uiϕi.
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Computation of coe�cients

We consider only the case α = 1, i.e. x(t) = x(t−). Before quadrature, the jth constraint
(j = i(k + 1) + l + 1 as above) reads

gj = 〈f(x,u)− ẋ, ϕj〉

(A.3)
=

ˆ t̂i+1

t̂i

f(x(t), u(t))ϕ(t) dt+

ˆ t̂i+1

t̂i

x(t)ϕ̇(t) dt+ x(t̂i)ϕ(t̂+i )− x(t̂i+1)ϕ(t̂−i+1)

!
= 0.

Note that the second integral already is a linear function
∑

iG
x
jixi of the xi, whereas our

choice to approximate the �rst integral using only the values fi = f(xi, ui) by
∑

iG
f
jifi

is a signi�cant restriction.

From the above equation it is obvious that gj depends only on values for t ∈ [t̂−i , t̂
−
i+1],

corresponding to indices i(k + 1), . . . , (i+ 1)(k + 1), which leads to sparse matrices Gx,
Gf. Furthermore, we apply the quadrature rule (A.4) to the integral

´
fϕ and, due to

the Lagrange basis, �nd that Gf becomes diagonal, because

ˆ t̂i+1

t̂i

f(x(t), u(t))ϕj(t) dt ≈ wl(t̂i+1 − t̂i)fj

involves only fj .

To summarize, we have, for all j = 1, . . . , N

Gf
j,j = wl(t̂i+1 − t̂i)

Gx
j,i(k+1)+r+1 =

´ 1
0 φr(t)φ̇l(t) dt r = 0, . . . , k

Gx
j,(i−1)(k+1)+k+1 = φl(1) = δlk if i > 1,

with all other entries being 0. If i = 1, then the index (i− 1)(k + 1) + k + 1 = 0 in the
last line corresponds to the initial condition and hence

Gic
j = δlk.

A.1.4. Optimization

Discretize-then-optimize

A discrete version of the optimality conditions can now be obtained by solving the discrete
problem L̃ = max! s.t. gj = 0 ∀j, an approach known as �discretize-then-optimize�.

Using Lagrange multipliers and
∂gj
xi

= Gx
ji + Gf

ji
∂f
∂x (xi, ui),

∂gj
ui

= Gf
ji
∂f
∂u(xi, ui), the

optimality conditions then turn out to be

Lc
i

∂c

∂x
(xi, ui) +

N∑
j=1

λj ·
(
Gx
ji +Gf

ji

∂f

∂x
(xi, ui)

)
= 0, (A.5a)
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Lc
i

∂c

∂u
(xi, ui) +

N∑
j=1

λj ·Gf
ji

∂f

∂u
(xi, ui) = 0 ∀i (A.5b)

Optimize-then-discretize

Alternatively, one could obtain discrete optimality conditions by discretizing the opti-
mality conditions of the original, continuous problem (�optimize-then-discretize�).

We will show that this approach yields the same conditions, if the ODE −λ̇ = e−µtcx+
f>x λ is integrated with the DG method with α = 0. This corresponds to the fact that
λ is a function in the dual space and hence is treated by the dual product 〈·, ·〉Π as if it
is left-continuous. It also re�ects that the adjoint equation is an ODE that is integrated
backwards from a terminal condition.

The dependence of the dual product on α will now be made explicit by writing 〈·, ·〉Π,α.
From α =

´ 0
−∞ η(t) dt one sees that replacing α by (1−α) corresponds to replacing η by

η(−·), which in turn corresponds to transposing the convolution operator. Hence

〈ψ,ϕ〉Π,α = lim
ε→0

ˆ
(ηε ∗ ψ)ϕ = lim

ε→0

ˆ
ψ(ηε ∗ ϕ(−·)) = 〈ϕ,ψ〉Π,1−α .〈

e−µ·cx + f>x λ+ λ̇, ϕi

〉
Π,0

= 0 ∀i〈
e−µ·cx, ϕi

〉
Π,0

+ 〈λ, fxϕi〉Π,0 − 〈λ, ϕ̇i〉Π,0 = 0 ∀i〈
ϕi, e

−µ·cx
〉

Π,1
+ 〈fxϕi, λ〉Π,1 − 〈ϕ̇i, λ〉Π,1 = 0 ∀i

With λ =
∑

j λjϕj this becomes〈
ϕi, e

−µ·cx
〉

Π,1
+
∑
j

λj 〈fxϕi, ϕj〉Π,1 + λj
∑
j

〈ϕi, ϕ̇j〉Π,1 = 0 ∀i

and turns out to be (A.5a), if the same quadrature rules are used.

The second discrete optimality condition, (A.5b), is just the pointwise condition e−µtcu(tj)+
fu(tj)

>λ(tj) = 0 for all j = 1, . . . , N (recall that Gf is diagonal).

A.1.5. Assembly of F and DF

The derivatives of the discrete cost and constraint are

∇xL := ∇x1,...,xNL =

 Lce−µt1c>x (x1, u1)
...

Lce−µtN c>x (xN , uN )


= Lc ◦ e−µ~t ◦ (c>x (xi, ui))i=1,...,N

=: Lc ◦ e−µ~t ◦ c>x ,
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where ~t = (t1, . . . , tN )> and ◦ denotes, depending on context, both the regular elemen-
twise (Hadamard) product and the "elementwise" product in which the elements of the
second factor are the blocks of a block matrix.

Similarly, with g := (g>1 , . . . , g
>
N )>,

∇uL = Lc ◦ e−µ~t ◦ c>u ,
∇xg = Gx ⊗ Id +Gf ◦ f>x ,
∇ug = Gf ◦ f>u ,

where ⊗ denotes the Kronecker product.

The discrete version of (1.6) is

F :=

∇xL+∇xgλ
∇uL+∇ugλ

g

 !
= 0

and for its derivative we have

D(x,u,λ)F =

Axx +Bxx Axu ∇xg
Aux +Bux Auu ∇ug

Dxg Dug 0

 , (A.6)

with the block matrices (i, j = 1, . . . , N)

Axx :=


. . .

Lc
je
−µti

(
∂2

∂x2
c(xj , uj)

)>
. . .

 ,

Bxx :=


...

· · · Gf
i,j

(
∂2

∂x2
λ>j f(xj , uj)

)>
· · ·

...


and Aux, Bux etc. similarly.

A.1.6. Changes for quantile optimization

With some modi�cations, this discretization can also be used for the Quantile Optimiza-
tion problem. We describe here the necessary changes for the formulation

F (x,u, λ, β) :=


cx(x,u)− λ · gx(x,u, λ, β)
cu(x,u)− λ · gu(x,u, λ, β)

g(x,u, λ, β)

β2 −
∥∥Σ>λ

∥∥2 − βreg

 !≡ 0 (7.9)

112



A.2. Discrete homotopy

with

g(x,u, λ, β) := f(x, u, ·) + α
ΣΣ>λ

β
− d

dt
x

from section 7.8.

The discretizations for the �rst two components carry over unchanged. In the third
component, the new term αΣΣ>λ

β can be treated as an addition to f , giving

gj =

N∑
i=1

Gx
jixi +

N∑
i=1

Gf
ji

(
f(xi, ui) + α

ΣΣ>λi
β

)
+Gic

j x0.

Applying the quadrature rule to the fourth component, we obtain

β2 −
N∑
j=1

wl(t̂i+1 − t̂i)
∥∥∥Σ>λj

∥∥∥2
− βreg (A.7)

with j = i(k + 1) + l + 1.

For the derivative, we now have

D(x,u,λ,β)F =


Axx +Bxx Axu ∇xg 0
Aux +Bux Auu ∇ug 0

Dxg Dug Dλg Dβg

0 0 Dλ

(
−
∥∥Σ>λ

∥∥2
)

2β

 .

Terms already appearing in (A.6) remain unchanged. From (A.7) we see that

∂

∂λi
gj = Gf

jiα
ΣΣ>

β
,

∂

∂β
gj = −αΣΣ>

β2

N∑
i=1

Gf
jiλi,

and �nally compute

∂

∂λj

(
−
∥∥∥Σ>λ

∥∥∥2
)

= −2wl(t̂i+1 − t̂i)
∥∥∥Σ>λj

∥∥∥Σλ>j .

A.2. Discrete homotopy

We perform discrete homotopies using Newton's method as described in Section 5.4 and
have attempted two di�erent strategies to choose the step size, i.e. the sequence ηj .

The �rst strategy is to attempt the homotopy in a single step (i.e. η1 = 0, η2 = 1)
and thereby push any di�culties (in particular, this includes determining whether the
homotopy can succeed at all) to the solver, which means that we use the globalized
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version

x(k+1) := x(k) − ν(k)DF
(
x(k)

)−1
F
(
x(k)

)
.

of Newton's method, which includes a step size 0 < ν(k) ≤ 1, whereas the standard local
version always uses ν(k) = 1. Appendix B describes how to choose the ν(k) such that it
can be easily determined whether a solution exists.
The second strategy is cruder but proved to be more e�cient in practice. We attempt a

step for some initial step size ∆ηj = ηj+1−ηj and try to �nd the associated extremal using
the local version of Newton's method. If the Newton iterations fail the convergence test∥∥∆x(k+1)

∥∥ < ρ
∥∥∆x(k)

∥∥, with ρ ∈ (0, 1) a parameter and ∆x(k) := DF
(
x(k)

)−1
F
(
x(k)

)
,

we abort the Newton iteration and retry with a smaller δηj . This is repeated until we
succeed with ηj = 1 or fail with ∆ηj below a given threshold.
In both strategies, we need to solve the linear equation

∆x(k) := DF
(
x(k)

)−1
F
(
x(k)

)
(where F and DF refer to the discrete versions). There are specialized algorithms, e.g.
[BP84] to exploit the structure of DF . However, multi-purpose solvers, like MATLAB's
backslash-operator, already perform su�ciently well that the time required to solve the
linear system is negligible next to the time required to assemble the matrix.
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B. Step size control for Newton's method

in the presence of singularities

Nonlinear equations of the form F (x) = 0, F : Rd → Rd are often solved numerically
using Newton's method

x(k+1) := x(k) −DF
(
x(k)

)−1
F
(
x(k)

)
.

Although Newton's method converges locally to roots of F , it may fail to do so � and
even show chaotic behavior � globally. This may be overcome by the use of the so-called
globalized or damped Newton method, which uses a step size1 0 < λ(k) ≤ 1 and reads

x(k+1) := x(k) − λ(k)DF
(
x(k)

)−1
F
(
x(k)

)
.

It can be understood as an integrator tracing the Newton path

ẋ = −DF−1F (B.1)

with a suitable step size being necessary to ensure stability. As (B.1) implies Ḟ =
DF · ẋ = −F , the globalized Newton method can be expected to converge to a root of
F for small enough step sizes. The choice of suitable and e�cient step sizes has been
studied extensively, see e.g. [Deu04] for an overview.

However, the above reasoning breaks down and even the globalized Newton method
may fail to �nd a root of F , if the Jacobian matrix DF becomes singular. The simplest
example for this situation is F : R,R, x 7→ x2 + 1, where at x = 0, F (x) = 1 the function
�turns around� with DF (x) = 0 and hence it is impossible to get any closer to F = 0.

In practice, this may result in a Newton algorithm becoming stuck or eventually abort-
ing due to the step size becoming too small. We are therefore interested in methods which
can e�ciently determine whether the Newton path terminates at a singular Jacobian.

This paper shows that the a�ne covariant stepsize control introduced by Deu�hard
([Deu74]) and a modi�cation based on Projected Natural Level Functions proposed by
Steinho� ([Ste11]) both possess this ability. To this end we will present a singularity
indicator based on [GR84] (cf. Appendix B.7 for the connection) and derive from it
stepsize controls that turn out to coincide with those mentioned above. These schemes
are then analyzed and we conclude with some numerical experiments.

1The letter λ is reused here. The step size has no relation to the adjoint.
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singularities

B.1. The singularity indicator

B.1.1. De�nition

Let F : Rd → Rd be su�ciently smooth. We de�ne for v 6= 0

g(x, v) :=


∥∥∥DF (x)−1 F (x)

‖F (x)‖

∥∥∥−1
if DF (x) is invertible and F (x) 6= 0,

0 if F (x) /∈ R(DF (x)),

lim
ε↘0

g(x+ ε v
‖v‖) otherwise.

(B.2)

Note that g is not properly de�ned everywhere as the limit may fail to exist. We will see
that this does not matter for our purposes. In most cases g will not depend on v and we
will speak only of g(x).

The motivation of this de�nition is that, informally, by division by zero,
∥∥∥DF (x)−1 F (x)

‖F (x)‖

∥∥∥
should be in�nite and g zero if DF (x) is singular.

Note. The indicator g is a special case of the indicator proposed by Griewank and Reddien
in [GR84]. However, their indicator is only de�ned if the rank-de�ciency is at most one.
Details can be found in Section B.7.

B.2. Exact stepsize control

We begin by deriving a stepsize control from the �rst case of (B.2) and deal with the
other cases later.

For the following calculations it is convenient to introduce some abbreviations. Let

J(x) := DF (x), H(x) := D2F (x), R(x) := F (x)
‖F (x)‖ and T (x) := DF (x)−1F (x)

‖DF (x)−1F (x)‖ .

Using g = f ◦ h with f(x) := ‖x‖−1 and h(x) := J(x)−1R(x) we then compute

Df(x)(v) = −‖x‖−2

〈
x

‖x‖
, v

〉
= −‖x‖−3 〈x, v〉

D2f(x)(v, u) = 3 ‖x‖−5 〈x, v〉 〈x, u〉 − ‖x‖−3 〈u, v〉

and, suppressing x,

Dh(v) = −J−1H(v, ·)J−1R+ J−1DR(v)

D2h(v, u) = J−1H(u, ·)J−1H(v, ·)J−1R− J−1DH(v, u, ·)J−1R

+ J−1H(v, ·)J−1H(u, ·)J−1R− J−1H(u, ·)J−1DR(v)

− J−1H(v, ·)J−1DR(u) + J−1D2R(v, u) (B.3)

Dg(v) =
∥∥J−1R

∥∥−2 〈
T, J−1H(v, ·)J−1R− J−1DR(v)

〉
(B.4)

Along the Newton direction ∆x := −J−1F we have J(∆x) = −F and henceDR(∆x) =
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0. (B.4) then yields

Dg(∆x) =

∥∥∥∥ ∆x

‖F‖

∥∥∥∥−2〈
− ∆x

‖∆x‖
, J−1H(∆x, ·) ∆x

‖F‖

〉
=
‖F‖
‖∆x‖

〈
− ∆x

‖∆x‖
, J−1H

(
∆x,

∆x

‖∆x‖

)〉
.

As we do not want to go past points with singular DF , this leads to the stepsize
restriction

λ(k)
!
≤ g(x(k))

Dg(x(k))(∆x(k))

=

〈
∆x(k)∥∥∆x(k)

∥∥ , DF (x(k))−1D2F (x(k))

(
∆x(k),

∆x(k)∥∥∆x(k)
∥∥
)〉−1

,

(ES)

whenever

〈
∆x(k)

‖∆x(k)‖ , DF (x(k))−1D2F (x(k))

(
∆x(k), ∆x(k)

‖∆x(k)‖

)〉
> 0, for the damped New-

ton step
x(k+1) := x(k) + λ(k)∆x(k).

Note. In his thesis [Ste11], Steinho� proposed the stepsize control

λ(k) = max


∣∣∣∣∣
〈

∆x(k)∥∥∆x(k)
∥∥ , DF (x(k))−1D2F (x(k))

(
∆x(k),

∆x(k)∥∥∆x(k)
∥∥
)〉∣∣∣∣∣

−1

, 1

 ,

which obviously ful�lls (ES).

For the purposes of stepsize control it is su�cient to consider the behavior of g along
lines, i.e. of g(x + εv, v) as ε varies. As mentioned in Section B.1.1, g is unde�ned in
the interior of a line segment on which points with F = 0 or singular DF are dense.
However, the Newton method should terminate upon encountering such a segment and
hence there is no need to move along it. Double roots, i.e. x where F (x) = 0 and DF (x)
is singular, are beyond the scope of this paper.

B.3. Case-by-case analysis

The remaining cases will be considered after introducing some necessary perturbation
results.

Perturbation Lemmas

Lemma B.1. Let L,M ∈ L(X,Y ) be bounded linear operators, such that L is invertible
and ‖M − L‖ < 1

‖L−1‖ .
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Then M is invertible and ∥∥M−1
∥∥ ≤ ∥∥L−1

∥∥
1− ‖L−1‖ ‖L−M‖

.

Furthermore, ∥∥L−1 −M−1
∥∥ ≤ ∥∥L−1

∥∥2 ‖L−M‖
1− ‖L−1‖ ‖L−M‖

.

Proof. [AH09]

Lemma B.2. Let X, Y be Banach spaces and A, B: X → Y bounded linear operators.
Assume that

i) dimN (A) <∞

ii) N (A) ∩N (B) = {0},

iii) Y = BN (A)⊕R(A) with corresponding projectors P , Id− P .

Let X̂ ⊆ X be a complement of N (A) with projectors Id − Q, Q and A∗ : R(A) → X̂,
B∗ : BN (A)→ N (A) the inverses of the respective restrictions of A and B. Then

• (A+ εB) is invertible for su�ciently small ε > 0

• ∀b ∈ Y : ∃u,w ∈ X : (A+ εB)(u+ 1
εw)→ b as ε→ 0

•
∥∥(A∗(Id− P ) + 1

εB
∗P )− (A+ εB)−1

∥∥ = O(1) (ε→ 0)

Proof. All limits are with respect to ε→ 0. For the case of in�nite dimensions, note that
BN (A) has �nite dimension. Hence B∗ is bounded, the complement R(A) is closed and
so A∗ is also bounded.
Let u := A∗(Id−P )b and w := B∗Pb ∈ N (A). Then (A+ εB)(u+ 1

εw) = (Id−P )b+
εBA∗(Id− P )b+ Pb = b+O(ε) → b.
A norm on X is given by ‖x‖ε := ‖(Id−Q)x+ εQx‖ for x ∈ X. We also use ‖·‖ε to

denote operator norms which are induced by (X, ‖·‖ε). We have(
A∗(Id− P ) +

1

ε
B∗P

)−1

= A(Id−Q) + εBQ = A+ εB − ε(Id−Q)B

and
∥∥A∗(Id− P ) + 1

εB
∗P
∥∥
ε

= O(1) (recall thatR(B∗P ) = N (A)), ‖A(Id−Q) + εBQ‖ε =
O(1) and ‖ε(Id−Q)B‖ε = O(ε). With Lemma B.1 it follows that A + εB is invertible

for su�ciently small ε > 0 and that
∥∥∥(A+ εB)−1 −

(
A∗(Id− P ) + 1

εB
∗P
)∥∥∥
ε

= O(ε). As

the ordinary and ε−norms are equivalent with constants of order ε resp. 1
ε , the �nal

claim follows.

Remark B.3. The assumptions of Lemma B.2 imply that A is a Fredholm operator of
index 0.
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Remark B.4. If N (A) ∩ N (B) 6= {0}, A + εB is not invertible for any ε. In this case
one can �rst restrict A and B to a complement of N (A)∩N (B) and then apply Lemma
B.2.

Remark B.5. If BN (A) ⊕ R(A) 6= Y , then A + εB has a singular value O(ε2) (cf.
Appendix B.8) and hence its inverse (if it exists) grows at least with order ε−2.

Remark B.6. The term A∗(Id−P ) in the approximate inverse of A+ εB matters only
in the ε-norm and we also have∥∥∥∥1

ε
B∗P − (A+ εB)−1

∥∥∥∥ = O(1) (ε→ 0).

Lemma B.7. If X̂ = B−1R(A) := {x ∈ X : Bx ∈ R(A)} in the setting of Lemma B.2,
then, for all y ∈ R(A), ∥∥(A∗ − (A+ εB)−1

)
y
∥∥ = O(ε) (ε→ 0).

Proof. Note that R ((A+ εB)A∗) ⊆ R(A). Hence for the iteration x0 := A∗y, ri :=
(A + εB)xi − y, xi+1 := xi + A∗ri (i = 0, 1, . . .) it holds that ri ∈ R(A), ri = O(εi+1)
and, for su�ciently small ε, xi −−−→

i→∞
x∗ =: (A+ εB)−1y with ‖x0 − x∗‖ = O(ε).

We consider now separately the three cases in the de�nition of g.

DF singular, F /∈ R(DF )

First, we brie�y note that g is continuous:

Lemma B.8. Let DF (x0) be singular and F (x0) /∈ R (DF (x0)). Then g is continuous
at x0.

Proof. As F (x0) /∈ R (DF (x0)), there exists u ∈ R(DF (x0))⊥ such that 〈u,R(x)〉 > c >
0 in a neighborhood of x0. If v(x) := DF (x)−1R(x) exists, then

c < 〈u,DF (x)v(x)〉 = 〈u, (DF (x)−DF (x0))v(x)〉 = v(x) ·O(‖x− x0‖).

Otherwise g(x) = 0 and so in either case g(x) = O(‖x− x0‖) and hence g(x)→ 0 = g(x0)
as x→ x0.

The interesting result for convergence is the following:

Theorem B.9. Let J(x0) be singular, N (J(x0)) ∩ N (H(x0)(v, ·)) = {0} and F (x0) /∈
R (J(x0)). Then for any v 6= 0, ε 7→ g(x0 + εv, v) has a directional derivative at ε = 0
which is locally Lipschitz-continuous.

Proof. During this proof, evaluations of any function at x0 are denoted by the subscript
0, otherwise functions are evaluated at x0 + εv, which is suppressed, and we rede�ne
H := H(v, ·). All limits are with respect to ε↘ 0.
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N (J0) ∩ N (H0) = {0} implies that J is nonsingular for small ε 6= 0 (cf. Section B.8)
and hence d

dεg is given by (B.4). It remains to show that the limit exists as ε ↘ 0 and

that d
dε2
g is bounded.

Note that R→ R0 with DR bounded in a neighborhood of x0 since F0 6= 0. Applying
Lemma B.1 and Remark B.6 with A = J0, B = H0 we have

J−1R = (J0 + εH0 +O(ε2))−1R = (J0 + εH0)−1R+O(1)

=
1

ε
H∗0PR+O(1) =

1

ε
H∗0PR0 +O(1).

Similarly J−1HJ−1R = 1
ε2
H∗0PH0H

∗
0PR + O

(
1
ε

)
= 1

ε2
H∗0PR + O

(
1
ε

)
and J−1DR =

O
(

1
ε

)
.

H∗0PR0 6= 0 because F0 /∈ R(J0) and hence T → H∗0PR0

‖H∗0PR0‖ =: T0. Inserting into (B.4)

we obtain

d

dε
g =

∥∥J−1R
∥∥−2 〈

T, J−1H(v, ·)J−1R− J−1DR(v)
〉

= ε2
(
‖H∗0PR0‖−2 +O (ε)

)〈
T,

1

ε2
H∗0PR0 +O

(
1

ε

)〉
→ 〈T0, H

∗
0PR0〉

‖H∗0PR0‖2
.

For h = J−1R we have, using (B.3),

d

dε2
h = 2J−1HJ−1HJ−1R+O

(
1

ε2

)
=

2

ε3
H∗0PH0H

∗
0PH0H

∗
0PR+O

(
1

ε2

)
=

2

ε3
H∗0PR+O

(
1

ε2

)
and

d

dε2
g = 3

∥∥J−1R
∥∥−5

〈
J−1R, J−1HJ−1R+O

(
1

ε

)〉2

−
∥∥J−1R

∥∥−3
∥∥∥∥J−1HJ−1R+

(
1

ε

)∥∥∥∥2

−
∥∥J−1R

∥∥−3
〈
J−1R, 2J−1HJ−1HJ−1R+O

(
1

ε2

)〉
= 3

∥∥∥∥1

ε
H∗0PR+O(1)

∥∥∥∥−5〈1

ε
H∗0PR+O(1),

1

ε2
H∗0PR+O

(
1

ε

)〉2

−
∥∥∥∥1

ε
H∗0PR+O(1)

∥∥∥∥−3 ∥∥∥∥ 1

ε2
H∗0PR+O

(
1

ε

)∥∥∥∥2

− 2

∥∥∥∥1

ε
H∗0PR+O(1)

∥∥∥∥−3〈1

ε
H∗0PR+O(1),

1

ε3
H∗0PR+O

(
2

ε2

)〉
= O(1)
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In general, full di�erentiability is not possible unless the gradient at a singularity of J
is 0.

Example Let F (x) :=

(
x1 0
0 x2

)
x. Then g = 0 on both {x : x1 = 0} and {x : x2 = 0}.

If rank-de�ciency of J is 1, g only fails to be di�erentiable because the sign does not
change when crossing the singular manifold. This could be remedied by using det(J) · g
instead of g and di�erentiability could then be deduced from [GR84], cf. also Section
B.7.

DF singular, 0 6= F ∈ R(DF )

Again the subscript 0 denotes values at the singular point x0. We have F = F0 +
εJ0v + O(ε2) and R = R0 + O(ε). With Lemma B.7,

∥∥J−1R
∥∥ = ‖J∗0R0 +O(ε)‖ <

C and
∥∥D(J−1R)

∥∥ = ‖−J∗0H0J
∗
0R0 +O(1)‖ = O(1), as H0J

∗
0R0 ∈ R(J0). Hence

|g/(Dg · v)|=1/C/O(1), which means that the stepsize control does not detect such sin-
gularities. Since, in this particular case, they are no obstruction to solving F = 0, one
can justify not regarding this as a defect.

Note that J∗0 and hence g(x, v) depend on v through the decomposition

X = H0(v, ·)−1R(J0)⊕N (J0).

DF regular, F = 0

Near a regular solution x0, i.e. for F (x0) = 0, J(x0) invertible, we have F = εJ0v +
O(ε2), R = J0v

‖J0v‖ + O(ε), J−1R = v
‖J0v‖ + O(ε), C >

∥∥J−1R
∥∥ and

∥∥D(J−1R)
∥∥=∥∥−J−1HJ−1R+DR

∥∥=O(1) as x → x∗, uniformly for all v and in some neighborhood
of x∗. This implies g > C−1, Dg = O(‖x− x∗‖) and so the indicator will not erroneously
predict a nearby singularity although g is in general not continuous at x0 and g(x0, v)
depends on v.

B.4. Convergence to singularity

By the preceding remarks, the constraint is only active in the neighborhood of points with
F /∈ R(DF ). If the direction ∆x/ ‖∆x‖ is assumed to be �xed, Theorem B.9 ensures
local quadratic convergence of g to 0.2 In well-behaved cases, in particular if N (DF )
is one-dimensional and ∆x is therefore always approximately aligned to the direction
uniquely given by N (DF ), there is a common region of quadratic convergence for all
∆x(k) which arise during the iteration.

2Assuming, of course, that equality is chosen in (ES) and g/(Dg ·∆x) < 0, i.e. the Newton direction
actually points towards the singular manifold.
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Figure B.1.: g at the crossing of two singular manifolds

In general this is hard to guarantee and problems arise when singular manifolds inter-
sect. Figure B.1 shows g for the function

F : R2 → R2, x 7→ −
(
x1

(
5 10
2 4

)
+ x2

(
4 2
6 3

))
x− 106

(
1.1
1

)
,

which has a singular Jacobian along both axes and a rank-de�ciency of two at the origin.
E.g. at (x1, 0), |x1| � 1, x1 6= 0, the Jacobian has a singular value which is small but
not zero. Consequently the pseudoinverse J∗ has a large norm and dominates 1

εH
∗ even

for quite small ε, which limits the neighborhood where the approximation of Theorem
B.9 is applicable.

In contrast, the Jacobian of,

F : R2 → R2, x 7→ −x1

(
1 7
8 3

)
x− 106

(
1.1
1

)
has rank-de�ciency two along the whole x2-axis, but no actual crossing of singular man-
ifolds (Figure B.2).
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Figure B.2.: g near coinciding singular manifolds

B.5. Approximate stepsize control

We observe that (ES) is similar to the stepsize control in Deu�hard's a�ne covariant
globalization, which is

λ(k)
!
≤

∥∥∥∥∥DF (x(k)
)−1

D2F
(
x(k)

)(
∆x(k),

∆x(k)∥∥∆x(k)
∥∥
)∥∥∥∥∥
−1

. (AS)

Near singular DF we �nd for any v that DF−1v, and hence both sides of the scalar
product in (ES), will approximately be multiples of the left singular vector belonging to
the smallest singular vector of DF , which suggests that (ES) and (AS) coincide in the
limit.

Indeed, we can show that this choice of stepsize works well if the smallest singular
value of DF is isolated and some genericity conditions hold:

Let DF (x) = U(x)Σ(x)V (x)T be a smooth SVD of DF (x) as de�ned in Section B.8,
with U = (u1, . . . , un), V = (v1, . . . , vn), Σ = diag(σ1, . . . , σn). Then
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DF−1F =
n∑
k=1

1

σk
〈uk, F 〉 vk

=
1

σn

[
〈un, F 〉 vn +O

(
σn
σn−1

‖F‖
)]

.

Similarly,

−∆x = DF−1D2F (·,−∆x)

=
1

σn

[〈
un, D

2F (·,−∆x)
〉
vn +O

(
σn
σn−1

∥∥D2F (·,−∆x)
∥∥)] ,

DF−1D2F (−∆x,−∆x) =

= 1
σn

[
vnu

T
nD

2F
(

1
σn

[
〈un, F 〉 vn +O

(
σn
σn−1

‖F‖
)]
,−∆x

)
+O

(
σn
σn−1

∥∥D2F (−∆x,−∆x)
∥∥)]

= 1
σ2
n

[
〈un, F 〉 vnuTnD2F (vn,−∆x) +O

(
σn
σn−1

‖F‖
∥∥D2F (·,−∆x)

∥∥)]
+ 1
σn
O
(

σn
σn−1

∥∥D2F (−∆x,−∆x)
∥∥)

= 1
σ2
n

[
〈un, F 〉 〈∇σn,−∆x〉 vn +O

(
σn
σn−1

‖F‖
∥∥D2F (·,−∆x)

∥∥)]
+ 1
σn
O
(

σn
σn−1

∥∥D2F (−∆x,−∆x)
∥∥)

and

‖∆x‖
‖DF−1D2F (−∆x,−∆x)‖ =

=

∣∣∣∣∣ 1
σn

[
〈un,F 〉+O

(
σn
σn−1

‖F‖
)]

1

σ2n

[
〈un,F 〉〈∇σn,−∆x〉+O

(
σn
σn−1

‖F‖‖D2F (·,−∆x)‖
)]

+ 1
σn
O
(

σn
σn−1

‖D2F (−∆x,−∆x)‖
)
∣∣∣∣∣

=

∣∣∣∣∣ 1+O
(

σn
σn−1

‖F‖
〈un,F 〉

)
1
σn

[
〈∇σn,−∆x〉+O

(
σn
σn−1

‖F‖
〈un,F 〉

‖D2F (·,−∆x)‖
)]

+O
(

σn
σn−1

‖D2F (−∆x,−∆x)‖
)
∣∣∣∣∣ .

As ∥∥D2F (−∆x,−∆x)
∥∥ = O

(
1

σn
‖F‖

∥∥D2F (·,−∆x)
∥∥)

and
〈∇σn,−∆x〉 =

〈
un, D

2F (vn,−∆x)
〉
,

it follows that

‖∆x‖
‖DF−1D2F (−∆x,−∆x)‖

=∣∣∣∣ σn
〈∇σn,−∆x〉

∣∣∣∣
(

1 +O

(
σn
σn−1

‖F‖
〈un, F 〉

∥∥D2F (·,−∆x)
∥∥

〈un, D2F (vn,−∆x)〉

))
,

(B.5)
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and hence for the stepsize

λ(k)
!
≤
∣∣∣∣ σn
〈∇σn,−∆x〉

∣∣∣∣ ≈
∥∥∥∥∥DF (x(k)

)−1
D2F

(
x(k)

)(
∆x(k),

∆x(k)∥∥∆x(k)
∥∥
)∥∥∥∥∥
−1

.

If 1
σn−1

‖F‖
〈un,F 〉

‖D2F (·,−∆x)‖
〈un,D2F (vn,−∆x)〉 is bounded in some suitable neighborhood, the error term

in (B.5) reduces to O(σn) and σn converges quadratically to 0 for the iteration with
stepsize (AS).3

B.6. Numerical experiments

We apply both stepsize controls to the test problem Expsin from [NW92], which also
appears as Example 3.2 in [Deu04]. The task is to �nd solutions of

exp(x2 + y2)− 3 = 0,

x+ y − sin (3(x+ y)) = 0.
(B.6)

The Jacobian is singular along the lines y = x and

y = −x± 1

3
arccos

(
1

3

)
± 2

3
π.

Figure B.3 shows the path of Newton iterates with stepsize control (ES) started at
points in the square [−1.5, 1.5]2. Note that (B.6) has solutions only in the six middle
regions and observe that iterates to initial points in regions without a solution eventually
converge to a singular manifold while oscillating around it. Some of the paths do, how-
ever, cross several singular manifolds and end up at a "wrong" one. The approximate
stepsize control appears more robust as the norm in (AS) does not ignore the components
perpendicular to T . Indeed, all iterations converged to the correct solution or singular
manifold when applying the approximate stepsize control to the same example, but the
convergence to singular manifolds was slightly slower as exempli�ed in Figure B.4.
As mentioned in Section B.5, (ES) and (AS) are in general approximately equal close

to singular manifolds, which suggests to compute both and use (ES) only when they di�er
by less than some small factor. Due to shared terms this involves almost no additional
e�ort. In our experiments this heuristic combined the faster convergence of (ES) with
the robustness of (AS).

B.7. Connection to Griewank and Reddien

The indicator g is inspired by the following Lemma of Griewank and Reddien, which
gives an indicator for the rank-de�ciency of rectangular matrices.

3As before assuming equality in (AS) and σn/ 〈∇σn,−∆x〉 < 0.
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Figure B.3.: Iterates with stepsize control (ES) for several initial values at two zoom
levels. Blue paths converge to solutions, red paths converge to singular
manifolds, black lines are singular manifolds
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Figure B.4.: Convergence of g for (x0, y0) = (−0.5,−1.5)

Lemma B.10. ([GR84], Lemma 2.1) Let D ⊂ Rd, m ≤ n and de�ne p := n+1−m. Let
A : D → Rm×n, T : D → Rn×p and R : D → Rm be continuously di�erentiable functions
so that (

A −R
−T T 0

)
is nonsingular for all x ∈ D. Then there are unique functions u : D → Rm, V : D →
Rn×p and g : D → Rp such that

AV = RgT , T TV = I,
uTA = gTT T , uTR = 1,
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and
rank(A(x)) = m− 1 if and only if g(x) = 0.

Lemma B.11. For square matrices the indicator g of Lemma B.10 coincides with (B.2).

Proof. As n = m, we have p = 1, g is a scalar and T , R and V are vectors. From
T TV = I we obtain the decomposition V = T + V (⊥), where V (⊥) ∈ T⊥ := span {T}⊥.
Projection of gR = AV = AV (⊥) + AT onto (AT⊥)⊥ yields gP(AT⊥)⊥R = P(AT⊥)⊥AT .

As (AT⊥)⊥ = span
{
A−TT

}
, it follows that

g =

〈
A−TT,AT

〉
〈A−TT,R〉

=

〈
T,A−1AT

〉
〈T,A−1R〉

=
‖T‖2

〈T,A−1R〉
.

B.8. Smooth singular value decomposition

The singular value decomposition (SVD) of a smooth (i.e. su�ciently di�erentiable)
family of matrices is only smooth if the singular values do not cross each other or 0.
However, a smooth SVD can sometimes be obtained if the requirements σk ≥ 0, σk >
σk+1 are given up. Such decompositions have already been studied extensively, see e.g.
[BGBMN91], [Wri92]. We will give here a concise proof for the existence of a di�erentiable
SVD of a square matrix with isolated singular values, where one singular value crosses
0, which is su�cient for our purposes.
Let A = UΣV be the SVD of A ∈ Rn×n and B := ATA. For an eigenpair (λ, v) of B,

consider the variation of its de�ning equations

Bv = λv, (B.7)

‖v‖ = 1. (B.8)

We have from (B.7)

(B + dB)(v + dv) = (λ+ dλ)(v + dv)

⇒ dB · v = −(B − λ)dv + dλ · v. (B.9)

From (B.8) it follows that v ⊥ dv. As the eigenspace is one-dimensional, this implies
v ⊥ Bdv and hence (B.9) can be decomposed into

dλ = 〈v, dB · v〉 (B.10)

P⊥v dB · v = (λ−B)dv, (B.11)

where P⊥v is the orthogonal projector onto span {v}⊥. If λ is an isolated eigenvalue of B,
then N (B − λ)=span {v} and the unique solution of (B.11) under the constraint v ⊥ dv
is given by

dv = (λ−B)+dB · v, (B.12)

where + denotes the Moore-Penrose pseudoinverse.

127



Appendix B. Step size control for Newton's method in the presence of

singularities

If λ 6= 0, we obtain smooth functions for the corresponding singular value σ of A and
a left singular vector u with ‖u‖ = 1 by taking

σ =
√
λ, (B.13)

u =
Av

σ
. (B.14)

From dλ=〈v, dB · v〉=
〈
v, (ATdA+ dATA)v

〉
=2 〈Av, dA · v〉= 2

σ 〈u, dA · v〉 and σ =
√
λ

we obtain
dσ = 〈u, dA · v〉 . (B.15)

If λ = 0, we have (using Av = 0)

(A+ dA)(v + dv) = Av +Adv + dA · v
= A(0−B)+dB · v + dA · v
= −AB+(dATA+ATdA)v + dA · v
= (Id−A(ATA)+AT )dA · v
= PR(A)⊥dA · v
!

= (σ + dσ)(u+ du)

= dσ · u.

In this case, u is given (up to a sign change) by R(A)⊥ = span {u} and we obtain again

dσ = 〈u, dA · v〉 . (B.16)

As u is an eigenvector of AAT = BT , a calculation similar to (B.9) yields (for all σ)

du = (λ−BT )+dBT · u. (B.17)
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