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INTRODUCTION

Fluid flow through porous media is a physical processes of considerable importance in science
and engineering. In particular, fluid flow through porous media has attracted much attention
due to its importance in several technological processes like for instance filtration, catalysis, chro-
matography, spread of hazardous wastes, and petroleum exploration.

Based of the one phase flow through a porous medium is the so called dam-problem, whose
mathematical analysis stands in the center of this work. This problem consists of the investigation
of water flow between several reservoirs of different height, which are separated by a porous
medium. A simplified model leads to the following system, which was proposed and analyzed
by Bagagiolo and Visintin in [4, 5]

g‘z — V- k(Vp+pg2) =0, (P1)

§= w[p], k= ]{3(8), (P2)

coupled with appropriate initial and boundary conditions, including a seepage condition of
Signorini-type. The saturation s and the pressure p are unknown. The quantity k represents
the hydraulic conductivity, g the gravity acceleration and 2 the upwards vertical unit vector.

The constitutive relationship - the dependence of the saturation s on the pressure p - plays a
significant role in this context. Experimental results show that this relationship exhibits hysteresis
and it is formally represented by a hysteresis operator 20.

Problem (P1)-(P2) exhibits two interesting features, namely, as we already mentioned, that the s
versus p relation displays hysteresis and that the coefficient £ depends on s, thus also involves
hysteresis. Problems with hysteresis in a coefficient tend to be rather resistant to classical analytic
techniques. We are aware only of existence results for some modifications of problem (P1)-(P2).
A model with no hysteresis relation has been studied by Alt, Luckhaus and Visintin [1] and Otto
[55]. In [4], Bagagiolo and Visintin study the equation (P1) coupled with a constitutive relation-

ship containing a general hysteresis operator and a rate-dependent component, and in [5] the
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authors prove an existence result for problem (P1)-(P2), regularizing the k£ vs. s dependence by
convoluting s in time with a smooth kernel. In [35], Kordulové analyzes the equation (P1) in two
space dimensions coupled with a convexified Preisach operator and Neumann boundary condi-
tions. An existence result is proved in the case when the hydraulic conductivity depends directly
on the pressure and entails no occurrence of hysteresis.

In any of the mentioned cases, it is not clear how the applied techniques might be extended either
to the case without a rate-dependent correction, or to the case of the direct dependence of k£ on
the saturation s.

The aim of this work is the establishment of existence, regularity, and uniqueness of solutions
to system (P1)-(P2) in three space dimensions, accounting for the direct dependence of the
hydraulic conductivity £ on the saturation s, and without convexifying the Preisach hysteresis
operator. We apply techniques, though classical in the context of parabolic PDEs, but which - to

our knowledge - were never used before in the presence of hysteresis.

In particular, this manuscript is structured in the following way.

In CHAPTER 1, we briefly present the physical background, which leads to the central equations
of this work. The system is modeled with the help of a nonlinear diffusion equation, coupled with
Signorini-boundary conditions. Moreover, we explain the reason for the occurrence of hysteresis
in the context of fluid flows through porous media and present an appropriate hysteresis model

to describe these phenomena.

Then, in CHAPTER 2, based on a simple example, we first outline what is hysteresis together
with its main features and immediately after we introduce the concept of a hysteresis operator,
pointing out its basic properties. We then present the play and Preisach hysteresis operators,
together with their properties, and extend these definitions to the space dependent and to the
time discrete case. Moreover, we prove some new inequalities for discretized Preisach operators,
allowing for the application of the so called De Giorgi iteration scheme, and also for overcoming
the lack of the Second Order Energy Inequality for Preisach operators whose loops are not

necessarily convex.

In CHAPTER 3, we first introduce the weak formulation in the framework of Sobolev-spaces
associated to the model problem (P1)-(P2). We then present the main results of this thesis, con-
cerning existence, regularity, and - in a special case - also uniqueness of solutions of our central
problem, together with their proofs. The proof of existence is based on approximation by implicit

time discretization, appropriate a priori estimates of approximate solutions, and passing to the
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limit by a compactness argument. After that, we prove that the partial derivatives of solutions of
our problem are locally bounded. Due to the specific form of the boundary conditions, we are
not able to prove a uniqueness result in the general case. Nevertheless, we will see that when
the boundary conditions reduce to the case of Dirichlet boundary conditions, also uniqueness

of solutions can be established. All the proofs are based on the results established in Chapters 4-7.

We start CHAPTER 4 by the introduction of the approximation of our main problem. Applying
the implicit time discretization scheme, the original parabolic problem is transformed into a
family of elliptic problems. The existence of a unique solution at each time step follows then
by a classical existence result for operator inequalities. Moreover, we also establish the weak

maximum principle for solutions of this family of equations.

In CHAPTER 5, we prove oscillation decay estimates for solutions of the approximate problem
introduced in Chapter 4. These estimates are derived with the help of the De Giorgi iteration
scheme. To our knowledge, this technique was never applied before in the presence of hysteresis.
Our proof is similar to the one found in [34]. We will see how the techniques from [34] could
be applied in presence of hysteresis and Signorini boundary conditions. As it turns out, the
occurrence of the Preisach operator poses itself no obstacles to the derivation of the desired
estimates, but we encounter problems due to the specific form of the boundary conditions. We

refer to Section A.8 where we present how this particular situation can be handled.

The main estimate, that allows us to pass to the limit in the approximate problem as the
approximation parameter tends to zero, is obtained in CHAPTER 6. This is an estimate of the
incremental time ratio of solutions to the discretized problem from Chapter 4. During the
estimation procedure we will encounter difficulties caused by the non-convexity of hysteresis
loops on the one hand and by the dependence of the hydraulic conductivity on the saturation s
on the other hand. We will handle these difficulties with the aid of oscillation decay estimates

obtained in Chapter 5.

In CHAPTER 7, we deal with further regularity of solutions. In particular, we prove that all the
partial derivatives of solutions to our central problem are locally bounded. These results are
established via the Moser iteration scheme. In order to apply this technique we need a , good
initial regularity”of the gradient of solutions, which is obtained by application of a technique
based on the Calderén-Zygmund decomposition and which, to our knowledge, is also applied

for the first time in the presence of hysteresis. The key to the desired regularity is again the
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Holder continuity of solutions which follows from the results in Chapter 5.

Finally, APPENDIX A contains some complementary results, presented almost always without a
proof, which have been used throughout the whole manuscript. We make an exception in sec-
tion A.8, and prove in full detail why functions fulfilling certain integral inequalities also satisfy

Holder’s condition.



LIST OF SYMBOLS

0 Empty set

N Set of natural numbers {1,2, ..}

R Set of real numbers

RS Set of nonnegative real numbers

R”™ Set of n-dimensional vectors over R
€; i-th unit vector in R"™

2:=(0,0,1) € R3

N>

intS Interior of a set S

0S  Boundary of a set §

S Closure of a set S

|S|  Lebesgue measure of a set S

By(zo) Ball centered at zg with radius o

Q(0,7) Local parabolic cylinder of the form Q(o,7) = By(xo) % (to — T, to)

X[o,r] Characteristic function of a set [0, 7], T > 0

%u, @ Derivative of u : (0,7') — R with respect to ¢

%u, @ Partial derivative of u : Q x (0,7") — R with respect to the time variable ¢

g—;u, it Second partial derivative of v : © x (0,7') — R with respect to the time variable ¢



a%iu, J;u Partial derivative of u : Q x (0,7') — R with respect to the spatial variable z;
Vu  Jacobian matrix with respect to the spatial variable of u :  x (0,7) — R”
V -u Divergence with respect to the spatial variable of u : 2 x (0,7") — R"

Vu  Gradient with respect to the spatial variable of v : 2 x (0,7') — R

VVu Hessian matrix with respect to the spatial variable of u : 2 x (0,7) — R

) . . . . n _gn-1 .

Uy,  Incremental time ratio of a sequence {uy, },c(1, 3, m € Ndefined by a7, := Um—tm  with
h=T/m

iy, Second incremental time ratio of a sequence {up,},c(i ) m € N defined by iy, =

on _®n—1
tm—tm _ with h =T /m

Diu Difference quotient with respect to the spatial variable of u : 2x (0,7) — R in the direction

iwith7 >0
Vsu  Veu= (Dlu,...,Dl') foru: Qx (0,T) = R
Z(0,T) Set of all mappings v : [0,7] — R
BV (0,T) Space of real-valued functions with bounded variation
G+(0,T) Space of real-valued right continuous regulated functions
C%(Q2) Space of real-valued continuous functions on 2 C R"
C3(R™) Space of real-valued continuously differentiable functions with compact support
C2(]0,T)) Space of real-valued functions which are continuous on the right in [0, T')
C%(Q) Space of real-valued Holder-continuous functions on Q C R”
C*P(Q) Parabolic space of real-valued Holder-continuous functions on Q = Q x [0, 7], 2 C R®
LP(§2) Lebesgue space of real-valued functions on €2 C R"

LP

10c(§2) Lebesgue space of real-valued local integrable functions on 2 C R"

WHkP(Q) Sobolev space of real-valued functions on Q C R”
H'(Q) Sobolev space H'(Q) = W2(Q)
H?(2) Sobolev space H%(Q) = W2(Q)

B*  Dual of a space B



Xi

LP(§); B) Bochner- Lebesgue space of Banach space-valued functions
WHP(Q; B) Bochner-Sobolev space of Banach space-valued functions on 2 C R”
[ullo,ry Norm on G (0, T)

[ulljp,y Seminorm on G (0, T)

[ull oy Norm on C°(92)

(u)a.o Elliptic Holder constant of a function u € C%%(Q)

(u)g o Parabolic Holder constant w.r.t. the space variable of u € CP(Q)
<u>t’8 o TParabolic Holder constant w.rt. the time variable of u € CP(Q)
1]y Norm on £2(2)

[ullwhp() Normon Whr(Q)

[ul z71(q))» Norm on (H'(2))"

[ull L» ;) Norm on LP(€; B)

HuHWk»P(Q;B) Norm on W*?(Q; B)

el o Norm on (0,5 L2(9)) 1 E2(0, T I2(9)

Y0 trace operator

Kd |r] =max{z€Z: z<r}

ut  positive part of a function v : @ C R* — R






CONTENTS

List of Symbols

1 Mathematical Model of Flow in Porous Media
1.1 Basic Concepts
1.2 Capillarity
1.3 Capillarity in Porous Media and Hysteresis
1.4 Darcy’s Equation
1.5 Governing Equations for Fluid Flow

1.6 Boundary Conditions

2 Hysteresis Operators
2.1 Basic Definitions and Properties
2.2 The Scalar Play Operator
2.3 The Preisach Operator
2.4 Space Dependent Hysteresis Operators

2.5 Time Discrete Hysteresis Operators

3 Model Problem and Main Results
3.1 Weak Formulation of the Problem
3.2 Assumptions on the Data, the Domain (2, and the Preisach Operator
3.3 Main Results

4 Approximation and the Weak Maximum Principle
41 The Approximate Problem
42 The Weak Maximum Principle
43 Estimatesof h Y\ _, HVp”mHQLz(Q)

ix

O G W =

xiii



Xiv

5

CONTENTS

Oscillation Decay Estimates

5.1 FirstEstimate . . . .. . . . . ..
52 Second Estimate . . . . . . .. ...
53 Third Estimate . . . . . . . . .. .. e

54 Oscillation Decay Estimates for Approximate Solutions . . . . ... ... ... ...

Estimates of the Time Derivative

6.1 Some Preliminary Results . . . .. ... ... .. ... .. .. ... .. ... .. ...
6.2 Estimate of Initial Values . . . . . . . . . . . . ... ...
6.3 Estimate of the Incremental TimeRatio. . . . . . . . ... ... ... .........

6.4 Estimate of HVSZLH%Q(Q) ...................................

Further Regularity of Solutions
7.1 Calder6n-Zygmund Type Estimates . . . .. ... ... ... ... ..........
7.2 Local Boundednessof pinthelInterior . . . . .. ... ... ... ... ........

7.3 Local Boundedness of VpintheInterior . . . . . .. .. ... ... ... .......

General Analysis Results
A.1 Domains and their Boundaries . . ... ... ... .. ... ... . ... . .....
A2 FunctionSpaces . . . .. .. ... ... ...
A3 KurzweilIntegral . . . . .. ... ... . . L
A.4 Remarks on Monotone Operators . . . . ... ......................
A5 Cut-Offs, Difference Quotients, and Steklov-Approximates . . . . . ... ... ...
A.6 Interpolation Inequalities . . . . .. .. ... ... .. ... .. . o L L.
A7 Additional Results . . ... ... .. ... ..
A8 DeGiorgi-TypeClasses . . . ... ... ... ... .. ... .............
A8.1 AnkEllipticDeGiorgiClass . .. ... ... ... ... ... .. ......
A.82 AParabolicDeGiorgiClass . . . .. .......................
A.8.3 Time Discrete De GiorgiClasses . . . . ... ..................
A9 TheHeatEquation . . ... ... ... ... .. . ... ... . ... . .. . .. ...
Al0Gronwall’'sLemma . . . . ... .. ..
A.11 Parabolic Subdivision, a Claderén-Zygmund - Type Lemma, and the Hardy-

Littlewood Maximal Function Operator . . . . . . ... ... ... ..........

Bibliography



CHAPTER 1

MATHEMATICAL MODEL OF FLOW IN POROUS MEDIA

In this chapter we present a general model for fluid flow through porous media together with
its simplified form, known as the Richards equation, which is applicable (under specific assump-
tions) to describe water flow in unsaturated media. The governing equations are formulated
using the capillary pressure-saturation relationship and an empirical extension of Darcy’s equa-
tion for multiphase flow. While the validity of these concepts, and the models based on them,
is a subject of ongoing scientific debate, the models described here are used to simulate many
practical cases of fluid flows with sufficient accuracy [26, 31].

First, we present basic concepts of multi-phase flow in porous media. Further, we address the
specific question of capillarity, which is the ability of a liquid to flow in narrow spaces without
the assistance of, or even in opposition to, external forces like gravity. We then show how this
effect affects flows through porous media and outline where the hysteresis comes from. We then
introduce the governing equations for the one-phase flow and finally present a set of boundary
conditions widely applied in the unsaturated zone modeling. We refer to [14], and to [64], and

for the references therein for the presentation of physical and modeling background.

1.1 Basic Concepts

Soil is a porous medium consisting of solid particles and ,,void“spaces called pores. These pores
are typically filled with liquid (water) and gaseous (air) phases. We assume that the pore network
(also known as the PORE SPACE) is connected. This assumption allows the phases to move inside
the porous medium.

For the flow model considered in this work we assume moreover that the gaseous and liquid
phases are single-component fluids, that the solid skeleton is rigid, and that the solid phase is

homogeneous, incompressible, and does not react with the fluids. Moreover, we assume that

1



2 1.1. BASIC CONCEPTS

both fluids are barotropic, i.e. each phase density depends only on the pressure in the respective
phase, and we neglect mass transfers between the fluids, i.e. the dissolution of air in water and

the evaporation of water.

Figure 1.1: A microscopic view of soil. Source: [33].

The microscopic view of soil (c.f. Fig. 1.1) indicates that the pore space exhibits a highly complex,
inhomogeneous geometric structure which we cannot describe in a precise way. Therefore we
say that the relevant physical quantities defined at a point = represent averages taken over a
representative elementary (small) volume element (REV) associated with that point (cf. Fig. 1.2).

water

solid
REV boundary oV

REV domain V

Figure 1.2: Representative Elementary Volume element - REV

In this setting, the same point can be occupied simultaneously by all three phases. This is repre-
sented by the concepts of volume fractions and saturations.
The VOLUME FRACTION 6; of phase i is defined as the ratio of the volume of the part V; of the

REV occupied by phase i to the total volume V' of the REV, i.e.
0; = —. (1.1.1)

POROSITY ¢ is defined as the volume fraction of pores, and it is equal to the sum of the volume

fractions of the two pore fluids

@ = Vut Va :/r Yo _ Ow + ba, (1.1.2)



where the index w stands for the water-phase and the index a stands for the air-phase. Moreover,
it is convenient to define the SATURATION s; of each phase ¢ which is equal to the fraction of the

pore space occupied by a given fluid

8; = —, (1.1.3)

from which we follow, that the sum of the air and water saturations must be equal to one
Sq + sw = 1. (1.1.4)

In general, each saturation can vary from 0 to 1. However, in most practical situations the range
of variability is smaller. For instance, if a fully water-saturated medium is drained, at some point
the domain occupied with mobile water becomes disconnected and the liquid flow is no longer
possible. The corresponding value of saturation is called RESIDUAL and is denoted by s,.,'. Sim-
ilarly, during imbibition in a dry medium in natural conditions it is generally not possible to
achieve full water saturation, as a part of the pores will be occupied by isolated air bubbles. The

corresponding residual air saturation is denoted as s,.,2.

1.2 Capillarity

When two fluids are present in the pore space, one of them is preferentially attracted by the
surface of the solid skeleton. We call this phase the WETTING PHASE, while the other is called
NON-WETTING. In this work, we consider only porous media showing greater affinity to water
than to air which are more widespread in nature [32].

Immiscible fluids are separated by a well defined interface which can be considered infinetly thin.
As a consequence of the different degrees of attraction between molecules of different nature, a
tension exists at the interface, which is called SURFACE TENSION and which is a measure of the
forces that must be overcome to change its shape.

One consequence of the existence of the surface tension is that the pressures of air and water,
which are separated by a curved interface as depicted in Fig. 1.3(a), are not equal due to unbal-
anced tangential forces at the dividing surface. The pressure drop between the pressure of the
fluid at the higher pressure and the fluid at the lower pressure is called CAPILLARY PRESSURE,
is usually denoted by the symbol p., and can be calculated from the Laplace equation as follows
[58]

1 1
Pc = Pa — Pw = Oaw (Rl + R2> ) (121)

"However, the value of water saturation can be further decreased by natural evaporation of oven drying.
2Yet, the water saturation can decrease for instance, if the air is compressed or dissolves in water.
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where the subscripts a and w again denote the air and water phases respectively, o4, stands for
the surface tension of the air-water interface, and R; and R are the main curvature radii of the

interface. (see Fig. 1.3(a)).

5 A Q
A
he
interface air | e Pu = pa =10

a < >
solid Tous Oan

(a) Capillary force equilibrium at (b) Surface tension forces at fluid- (c) Capillary rise in a tube
an interface between two immis- fluid or fluid-solid interfaces

cible fluids

Figure 1.3: Surface tension effects

Just as there exists a surface tension between immiscible fluids, there is a surface tension between
a fluid and a solid. The surface tension between water and air o, differs from that between
water and solid material o,,;. A water droplet on a glass plate tends to spread as shown in Fig.
1.3(b)). The contact angle a between the water-air interface with the solid at equilibrium fulfills

the requirement of zero resultant force at the contact of the three phases and consequently

cosq = Zsa— Tus (1.2.2)
Oaqw

holds, where o, denotes the surface tension between the solid phase and air. This equation is
known as Dupré or Young’s formula. Contact angles a < 7 correspond to the wetting phase and
angles o > 7 correspond to the non-wetting phase.

Surface tension is also the origin of the capillary rise observed in small tubes (cf. Fig. 1.3(c)). The
molecules of the wetting phase are attracted by the tube wall and a curved interface (meniscus)
forms between water and air above the free surface of water. The pressure drop across the in-
terface is denoted in this context as the capillary pressure and can be computed for a cylindrical
tube as

_ 204y cOSQ

Pe= —"—, (1.2.3)

Tec
where r. is the tube radius. If atmospheric pressure is used as the reference pressure, then the
water pressure at the interface is negative, in other words the water is under suction. As a result
of this imbalance, the water rises in the capillary tube up to an equilibrium level h. + zg (c.f. Fig
1.3(c)). As the water pressure is zero at z = zp one must have

h, = 20 g COS _ pe ’ (1.2.4)
YwTe Pwd




where p,, is the specific weight of water, g is the gravity acceleration, and v, := p,g is the specific

weight of water.

1.3 Capillarity in Porous Media and Hysteresis

It is customary to view an unsaturated soil as consisting of capillary ,pores”, in which menisci
separate the two phases. At equilibrium it is assumed that for a given (macroscopically uni-
form) water content the air-water interfaces have the same constant total curvature throughout
the porous medium. Soil scientists traditionally define this state by the CAPILLARY HEAD V¥,
which is defined as the ratio between the negative of the capillary pressure —p. and the specific
weight of water v,,, i.e.

=P (1.3.1)
Yw

One method to measure the capillary head in soil determines directly the pressure difference
between air and water and the corresponding water content in the soil. An illustration of the
experimental setup is shown in Fig.1.4.

regulator

( (X) <« air supply
l[ Ha

air

displacing fluid (air)

[e) [ soil sample

water semipermeamble membrane

Figure 1.4: Experimental setup for measuring the capillary head in soil

A soil sample, completely saturated with water at atmospheric pressure, is placed in contact along

a fraction of its surface with air. The measurement is performed as follows:
@ Pressure in the air phase is increased and then kept constant. A certain volume of air pene-
trates the sample and expels a certain amount of water © which is measured.

The air is retained in the porous medium by a semipermeable membrane that transmits the

displaced water but not the air.
On the other hand, the displacement h. of a ,displacing fluid” for the air phase can be

measured and the capillary head ¥ computed using formulae (1.2.4), and (1.3.1).

@ Pressure in the air is increased again. When equilibrium is reached, a new and lower equi-

librium water saturation prevails in the core. Ultimately, repeating the operation succes-
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sively, a curve of capillary head versus water saturation or water content is obtained (cf.
Fig 1.5(a)-, first drainage”curve). The experiment shows that a point is reached when even
a tremendous increase in capillary pressure no longer induces a saturation change. The

water saturation is said to have reached its residual value.

® The wetting (or imbibition) curve can be obtained by letting the pressure drop stepwise
and water imbibe back. However, a different curve is obtained (cf. Fig. 1.5(a)-, main wet-
ting“curve), which implies that for a given water content several equilibrium states are
possible depending on previous history. The capillary pressure curve is said to display

HYSTERESIS.

@ If the sample is drained again, the main drying curve is described. If the process is reversed
before the capillary head has reached the value V,,, the , primary wetting“curve is de-
scribed. But if the process is reversed only after the value VU ,y;, has been reached, then the

,main wetting”curve is described again.

50- sor

Winin
>
é
= 40 40r
K]
E
- primary wetting
first drainage
a0 0w
£
g £
=
§20 E 2(¢
§ g
. . ] |5
main drying H £
= Z
£
| main wetting 10 10
I
!
L
o i 0
1 4 a 20 40 60 ] 100 0 20 40 60 80 100
[CH O =1 water content © percent saturation percent saturation
(a) Nomenclature of capillary hysteresis (b) Experimental drainage and imbibition curves [47]

Figure 1.5: Capillary head - saturation relationship

In this setting, the phenomenon of hysteresis may be attributed to a number of causes. Probably
the most important one is the GEOMETRY of the porous system. Assuming that the isolated pores
are connected by narrow channels, one observes that this geometry permits different configura-
tions of the interface at equilibrium for the same value of ¥. Fig. 1.6(a) displays a pore with two
different degrees of filling, yet with the same curvature radius for the interface and consequently

the same capillary head.



Figure 1.6(b) displays another type of geometry that causes hysteresis, the so called ,ink-

bottle“effect, as the same curvature can exist with various degrees of filling of the void space.

h\ ( ) (
./ N/ \
[ [
e

(a) Different degrees of saturation for the (b) The ,ink-bottle”effect

water

wetting

same capillary pressure

Figure 1.6: Different geometry effects

A second effect is the HYSTERESIS OF THE CONTACT ANGLE «. As stated in the discussion of the
capillary rise in a tube, the capillary pressure depends on the contact angle o, which in general is
not constant. It reaches its maximum value when the liquid moves toward a dry surface and takes
it’'s minimum value when it recedes. This phenomenon can be observed visually in the process

of filling and emptying a capillary tube (cf. Figl.7(a))

air
capillary
Qmin Qmax \A
\/7/ \<v water < >
‘ ‘
/—\L pressure
water 20 cosa

‘\¥/ ' 1 1

| |

pa+ Ap—H ,—

Paf---r-------- R R EEEEEE e R
Receding meniscus Advancing meniscus distance
(a) Receding and advancing meniscii (b) Equilibrium induced by a series of wetting-angle hysteresis

Figure 1.7: Hysteresis of the wetting angle

As a result of this wetting angle hysteresis, a row consisting alternately of air bubbles and of
liquid drops can resist against a significant pressure drop between the two ends of a tube before
changing its state (cf. Fig. 1.7(b)).

ENTRAPMENT OF AIR during the imbibition process is another important factor. The appreciable
difference between the first drainage curve and the main drying curve displayed in Figure 1.5(a)
is the direct result of this air entrapment. It may be explained in a simple way by the closing of

narrow entrances of pores or groups of pores by the wetting fluid in a slow wetting process. The
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air content in the sample varies with time as air dissolves in water and moves away by diffusion.
It is a known fact, that if ¥ is kept constant for a long time, the water content increases as air
disappears from the soil [8].

The fundamental theory of hysteresis based on the INDEPENDENT DOMAINS CONCEPT was ini-
tiated by Preisach [59] and Néel [53, 54] and thoroughly analyzed by Everett and his coworkers
[25, 24, 21, 22] and Enderby [19].

According to this theory, a porous medium is viewed as a system consisting of independent el-
ementary pore domains. Each domain is characterized by two length scales p and r which can
be interpreted geometrically as the radius of the pore and the radius of its constricted connec-
tion with other pores respectively. Using the capillary law (' o 1/R) the variables p and r can
be uniquely related to the wetting and drying capillary head ¥,, and ¥,. The pore domain has
therefore only two stable states, either empty or full (cf. Fig. 1.8).

A

full

R s
|

empty <

‘l]d \I}’w ‘I;

Figure 1.8: Hysteretical behavior of the isolated pore domain

In a wetting process, the pore is empty until ¥ reaches the value V¥,, at which time it flips over
to a filled state. There is no change in the water content of the pore when W is increased further.
In a drainage process, the pore remains filled with water until ¥ reaches the value of ¥,. At this
instant the pore is totally drained. We will see in the next chapter that this behavior corresponds
to the DELAYED-RELAY hysteresis operator.

It is assumed that for each pore its values ¥,, and ¥, are independent of the state of the neighbor-
ing pores. Hence, denoting by AV the pore volume and taking ¥,,, ¥,; as independent variables,
continuously distributed between ¥,,,;,, and ¥,,,4,, one can define a pore-water density function

AV (T, T
F( W, W) = (ch))
where V is the total volume of the sample. Superposing the behavior of all pores whose param-
eters ¥,, and ¥, are distributed according to this density function then leads to the dynamics
depicted in Fig. 1.5. In the next chapter we will see that this relationship can be represented by

means of the PREISACH hysteresis operator. For further amendments of this model we refer to

the works of Philip [57], Mualem [50, 51], Everett [23] and Topp[65], and the references therein.



1.4 Darcy’s Equation

Inside the REV (c.f. Fig 1.2) the momentum conservation principle for each fluid phase is repre-
sented by the Navier-Stokes equations. In the case of steady, laminar flow of an incompressible
Newtonian fluid ¢ in a horizontal tube having a uniform circular cross-section, the Navier-Stokes
equations reduce to the Poiseuille equation, which gives the following formula for the average
fluid velocity v; [6]:

r? d

——c Ty, 1.4.1
Sy dz” (14.1)

V; =

where r. is the tube radius and y; is the dynamic viscosity coefficient of the fluid i. An important
feature of this relationship is that the average velocity is directly proportional to the pressure
gradient and that the proportionality coefficient depends on the geometric parameters and the
fluid viscosity.

In a more general case of three-dimensional single-phase flow in a medium characterized by ar-
bitrary pore geometry homogenization of the Navier-Stokes equations yields the following result

(ct. [3, 6, 30, 71]):
k(si)

(2

(Vpi + pig2), (14.2)

v; = —

where k is the absolute permeability tensor, g is the gravity acceleration, and 2 is the upward unit
vector 2 = (0,0, 1).
If two fluids flow within the pore space, it is often assumed, that their velocities can be expressed

by the following extended form of the DARCY FORMULA, i.e. [58]:
vi = —K;(5:)(Vpi + pig#?), (1.4.3)

where K; is the conductivity tensor which depends on the saturation of the phase i. In the case of
anisotropic porous media, the relationship between conductivity and saturation will be different
for each component of the conductivity tensor. However, for practical purposes a simplified

relationship in the following form was postulated by van Genuchten [66]
Kz(sz) = Iii(si), (144)

where k; is a scalar function of the saturation s;. According to the van Genuchten model one can
assume that the dependence £;(s;) is of the form depicted in Fig. 1.9.

Hence, the extended Darcy formula can be rewritten in the following form:

vi = —ki(5:)(Vpi + pig2). (1.4.5)
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hydraulic conductivity k

Sy 1 saturation s

residual saturation value

Figure 1.9: Hydraulic conductivity-saturation relationship according to van Genuchten [66]

1.5 Governing Equations for Fluid Flow

The governing equation for two-phase flow in a porous medium are derived from the mass con-
servation principle applied in the REV (cf. Fig. 1.2) associated to the point z.
In the absence of source or sink terms, mass conservation yields that the change in the total mass
of a fluid phase ¢ inside the REV must be equal to the total mass flux of the phase i through the
REV boundary. Assuming that the solid phase is rigid, this can be written as:

0 "

/ pp;iS; dr = / piv; - N do, (1.5.1)
ot Volume of REV boundary of REV

where 1 is the outward normal vector to the boundary of the REV. Using the Gauss-Ostrogradski
theorem this equation can be transformed to the differential form

0
a(SOPiSi) + V- (pivi) = 0. (1.5.2)

The velocity of each fluid phase with respect to the solid phase is given by the Darcy formula
(1.4.5). If the compressibility of the fluids and of the porous medium can be neglected, substitu-
tion of the Darcy equation (1.4.5) into the mass balance equation (1.5.2) for each phase results in

the following system of two coupled PDEs:

%(wsw) = V- [k (50) (VPw + pwg?)] = 0, (1.5.3a)
gt(wsa) — V- [ka(8a)(VPa + pag?)] = 0, (1.5.3b)
Pc = Pa — Pw- (153C)

This two-phase flow model can be considerably simplified under specific conditions. Under nat-
ural conditions, the air viscosity is very small compared to the water viscosity, which means that
the air mobility is much greater than the water mobility if the relative permeabilities of both flu-
ids are similar. Therefore, it can be expected that any pressure difference in the air phase will be

equilibrated much faster than that in the water phase.
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Assuming that the air phase is connected in the pore space and that it is connected to the atmo-
sphere one can consider the pore air to be essentially at a constant atmospheric pressure. Ne-
glecting the variations in the atmospheric pressure allows then to eliminate the equation for the
air flow from the system of governing equations (1.5.3). The capillary pressure is now uniquely
defined by the water pressure. For convenience it is often assumed that the reference atmospheric

pressure pgt, = 0, SO one can write:

%(@Sw) -V [/{w(sw)(va - ng)] =0, (154&)
DPw = _pc(sw)- (154b)

Equation (1.5.4a) is referred to as the RICHARDS EQUATION and relationship (1.5.4b) exhibits hys-

teresis.

1.6 Boundary Conditions

We present now the following specific sets of boundary conditions widely applied in modeling
flows in unsaturated porous media. They include an INFILTRATION condition, a DRAINAGE con-
dition, the SEEPAGE FACE condition, and the SOIL-ATMOSPHERE INTERFACE condition.

The infiltration condition occurs on some part of the boundary and is one possibility to allow for
inflow inside the medium.

The drainage condition represent a vertical flow of water through the bottom of the soil towards
a distant groundwater table. In this work, we assume that there is no flow through the bottom,
so the drainage condition becomes in fact an impermeability condition.

The seepage face is a part of the outer surface of the porous medium which is exposed to the
atmosphere and through which water can flow freely out of the porous domain. It typically
occurs above the water level in wells and at the bottom of the landward slopes of earth dams or
embankments.

To transform these concepts into a mathematical framework we follow [4, 5]. Let Q2 be a bounded
domain, representing the region occupied with soil and let us distinguish three parts of 02 as

depicted in Fig. 1.10. We have:

® A time dependent surface I'|(¢) in contact with time dependent aquifers and time-
dependent reservoirs. Here, the pressure p,, is prescribed by some positive and time-

dependent function P > 0.

@ A time dependent surface I'/ () in contact with the atmosphere. Here, at any instant ¢ the
pressure p,, is not greater than that of the atmosphere. If p,, = pum = 0, then water may

flow out of the medium. If p,, < 0, then no outflow is allowed.
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® A time independent impervious part I'y. Here, the flux through I's is assumed to be 0.

~Sog,
g,
\V4 i dry ~ Pl
ot
F, /N (’7%
1 g "
s \"\,A('% Fl
S ~ Lo,
& wet S \j
L . Ce
F
A .
impermeable T
Iy

Figure 1.10: lllustrative boundary condition for a case of a two-dimensional flow in a dike

Let us denote by 1l the outward normal unit vector to 2, I'; := I’} (¢) UT'{(¢), and for T' > 0 we set
% =Ty x (0,T),i=1,2.

Moreover, let P be a nonnegative function defined on 31, representing the datum of the pressure
pw- P vanishes on those parts of ¥ in contact with air and coincides with the hydrostatic pressure
of the reservoir on those parts of 3 in contact with water. Then, on ¥; U ¥; we prescribe the

following boundary conditions

pt="P on Yy, (1.6.1a)
kY (po + pud) -7 < 0, on $1 N {pw = 0}, (1.6.1b)
kV (pw + pwg) - 1= 0, on X1 N {py <0}, (1.6.1¢c)
kEV (pw + pwg) -1 =0, on Xs. (1.6.1d)

Following [4, 5], we observe that conditions (1.6.1a), (1.6.1b), together with (1.6.1c) are equivalent

to the following variational inequality of SIGNORI TYPE

kV (pw + pwd) - 1i(u — @) <0, Vo : ¥ — R, suchthat ot = P. (1.6.2)



CHAPTER 2

HYSTERESIS OPERATORS

Hysteresis is a phenomenon, that occurs in several and rather different situations: for instance
in physics we find it in plasticity, in ferromagnetism, in phase transition, in filtration through
porous media. Hysteresis is also encountered for in engineering, in chemistry, in biology and in
several other settings. In the context of flows through porous media, as we have seen in Chapter
1, experimental results show a hysteretic behavior in the constitutive relation between pressure

and saturation of the medium.

Even if hysteresis has been known and studied since the end of the eighteen century, it was
only in the 1970ies that a small group of Russian mathematicians introduced the concept of a
HYSTERESIS OPERATOR and started a systematic investigation of its properties. The pioneers in
this new field were Krasnosel’skij and Pokrovskij with their monograph [38]. From that moment
on many scientists coming from different areas have contributed to the mathematical study of
hysteresis. We quote the following monographs devoted to this topic: Brokate and Sprekels [12],
Krejci [40], Mayergoyz [46] and Visintin [67], together with references therein.

In the first section of this chapter we introduce the basic concept of a hysteresis operator. Then,
in Sections 2.2 and 2.3, we present examples of hysteresis operators which become important in

our context. Moreover, we recall some well known results for these hysteresis operators.

In Section 2.4, we extend the concept of a hysteresis operator to space dependent systems and

prove some additional regularity results.

Finally, in Section 2.5, we introduce a time discretized version of hysteresis operators in such
a way that their basic properties remain preserved. We also prove certain properties for this

operators which will become important in Chapters 4, 5, and 6.

13



14 2.1. BASIC DEFINITIONS AND PROPERTIES

2.1 Basic Definitions and Properties

According to [67], we can distinguish two main features of hysteresis phenomena: the MEMORY

EFFECT and RATE INDEPENDENCE. Let us first briefly explain them on a simple example.

wh c

I
I
I
I
1
1
I
I
I
I
Il
b u

N e

Figure 2.1: Continuous hysteresis loop

Fig. 2.1 describes the state of a system which is characterized by two scalar variables u and w
depending continuously on time. We will call them INPUT and OUTPUT of the system. We have

the following:
e If the input increases from a to b, then the couple (u,w) moves along the curve ABC.

e If, on the other hand, the input decreases from b to a, then the couple (u,w) stays on the

curve CDA.

o If moreover at a certain instant ¢, such that a < u(t) = ¢ < b, the input u inverts its move-
ment, then (u, w) moves into the interior of the region bounded by the major loop ABC'D
in a suitable way, described by the specific model used, for example along the curve E'F as

depicted in the picture.

We also require that the path of the couple (u(t), w(t)) is invariant with respect to any increasing
homeomorphism, that is there is no dependence on the derivative of u. This property is named
RATE INDEPENDENCE and allows us to draw the characteristic pictures of hysteresis in the (u, w)-
plane.

In many cases the state of the system is not completely described by the couple (u,w). At any
instant ¢, the output w(t) will depend on the evolution of the input until that time ¢ and also on
the initial state of the system. So the initial value (u(0),w(0)) or some equivalent information
must be specified. As u(0) is already contained in u| 0,47 We say that in these cases the state of the

system can be described by an operator of the following type

H:Dom(H) C .Z#(0,T) x R — .#(0,T), (w, w®) = w(-) := H[u, w’](-), (2.1.1)
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where w" represent the initial value of the output w, and .% (0, T') stands for the set of all mappings
u : [0,T] — R. This is the case, for example, of PLAY OPERATORS introduced in Definition 2.2.2.

However there are also cases in which the state of the system is not completely characterized by
the couple (u, w®) but there is also the presence of a variable ° € X containing all the information
about the initial state, where X is some suitable metric space. In these situations the state of the

system is described by an operator of the following type
H:Dom(H) C #(0,T) x X — Z#(0,T), (u,n°) = w(-) :== Hu,n°]("). (2.1.2)

This is the case for instance for PREISACH OPERATORS, introduced in Section 2.3.
An operator of type (2.1.1) or (2.1.2) is said to be a HYSTERESIS OPERATOR if it fulfills the CAUSAL-

ITY and the RATE INDEPENDENCE properties which respectively read:
< For all (u1,w"), (uz, w’) € Dom(#H) and all t € [0, T,
w1 = ug in [0, ], implies Huy, w?](t) = Hlug, w°)(t), (2.1.3)
$ For all (u,w’) € Dom(#), all t € (0,T] and any increasing homeomorphism ¢ : [0,T] —

[0,T]
Huo ¢, w’|(t) = Hlu, w°](4(t)). (2.1.4)

holds.

2.2 The Scalar Play Operator

The first simple model of hysteresis we consider, is a mechanism known as MECHANICAL PLAY.
More precisely, we have two elements A and B which move along a horizontal line with one

degree of freedom (cf. Figure 2.2(a)).

A
B
A
W
(a) Play between two mechanical elements. (b) Hysteretical behavior of the mechanical play

Figure 2.2: The mechanical play

The motion of such two elements can be described as follows: the position w(t) of the middle

point of element B remains constant as long as the element A, represented by its end-position
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u(t), moves in the interior region of width 2r, which is the diameter of the element B. When «
hits the boundary of the element B, then w moves with the velocity w = 4, which is directed
outwards. The input-output behavior is given by the hysteresis diagram shown in Fig. 2.2(b).

The relation u — w can also be expressed by means of a hysteresis operator in the following way:
For any initial value w’, and any piecewise monotone input function u : [0,7] — R the output

function w(t) := P,[u, w"] can be defined inductively using the following formula
w(0) = max {u(0) — 7, min {u(0) +r, wo}} (2.2.1a)
w(t) = max {u(t) — r,min {u(t) + r,w(t,—1)}} fort,—1 <t<t, 1<n<N, (2.2.1b)

where N is chosen such that t; = T'. The operator P, is called PLAY OPERATOR. The following

result, see [12, Example 2.2.13 and Theorem 2.3.2], holds.

Proposition 2.2.1. For any r > 0 the operator P, can be extended to a unique Lipschitz continuous
operator P, : C°([0,T]) x R — C°([0,T)) (with Lipschitz constant 1). In addition this operator P, is

causal and rate independent in the sense of (2.1.3) and (2.1.4), i.e. it is a hysteresis operator.

The play operator can also be introduced in another way. According to [40, Section 1.3] the fol-

lowing system

lu(t) — & ()] <r vt € (0,71, (2.2.2a)
&) (u(t) —&(t) —2) >0 a.eVz € [—r, 1], (2.2.2b)
£-(0) = u(0) — 22 (2.2.2¢)

admits a unique solution & € W11(0,T) for any given input function v € W11(0,T) and any
given initial condition 20 € [—r, 7]. Then the play operator P, can be introduced in the following

way.

Definition 2.2.2. The play operator P, : [—r,7] x WH(0,T) — WY(0,T) is defined as solution
operator of Problem (2.2.2) by the formula

Prla),u) i= & (2.2.3)

It turns out that Theorem 2.2.1 is still valid also in this case.

The set Z := [—r, 1] is called CHARACTERISTIC of the operator P,. In the scalar case it is a sym-
metric one-dimensional set, but there are also other possibilities in which one considers tensorial
extensions of the play operator, or situations in which one deals with more general closed convex
sets as characteristics. We refer to for instance to [40] for more details on this topic.

Finally, we see (cf. [40, Section II.1, Remark 1.3]) that it is particularly easy to solve Problem (2.2.2)
if the input is monotone in an interval [¢1, t2] C [0,T]. What we get is nothing but formula (2.2.1),

which provides therefore an equivalent definition for the operator P,.
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We observe that for any given input function v € W1!(0,T) and any given initial condition
20 € [-r, 7] we have

r

Pr 27, u](0) := u(0) — 2

and notice that we can associate to any r € R the corresponding value z0. This suggests the
idea of making the initial configuration of the play system independent of the initial conditions
{a?}, cg for the output function by the introduction of some suitable function of . More precisely,
following [40, Section II.2] we introduce the so called CONFIGURATION SPACE and MEMORY CON-

FIGURATIONS.

Definition 2.2.3 (Configuration Space). The space

dA(r)

r

A= {)\EWI’OO(O,oo) : ' ‘ <lae. in [—r,r]}
is called configuration space and the functions X\ are called memory configurations.

We also introduce some useful subspaces of A, i.e.
Ap:={\€A:\(r)=0forr> R} and A= | J Ar. (2.2.4)
If @, : R — [—r, 7] is the projection
Qr(x) := sign(z) min {r, |z|} = min {r, max {—r,z}}, (2.2.5)

then we set
20 := Q,(u(0) — \(r)). (2.2.6)

This implies that the initial configuration of the play system only depends on A and «(0). We

introduce the following more convenient definition of the play operator
Definition 2.2.4. Let r > 0. The play operator o, : A x WL(0,T) — WhL(0,T) is defined by

or[h ] = Pyl ] (2.2.7)
where P[22, u] is as in Definition 2.2.2 and x° is defined by (2.2.6).

We then set for the sake of completeness pg[A, u| = w. It turns out, that the operator o, : A x
C%([0,T]) — C°([0, T)) is Lipschitz continuous in the following sense (cf. [40, Section I1.2, Lemma
2.3)).

Proposition 2.2.5. For every u,v € C°([0,T)), every A, u € A and r > 0 we have

llor (A ul = or[1s vl coo,ry) < max {IA(T), u(r)] fJu— U”cO([o,T])} :
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Moreover, the play operator is locally monotone in the following sense (see [40, I. Proposition

3.9]).

Proposition 2.2.6. For every u € WH1(0,T), every A € A, and r > 0 we have

9 2
0< (jtpr[)\ ul (t )) < %@T[A,U](t)%U(t) < (jtu(t)) foraat € (0,T).

Let us now quote another interesting property of the play operator (see [40, II. Corollary 2.6]).

Proposition 2.2.7. Let R > 0, A € Ag, and u € C([0,T]) satisfying |[ullco,r) < R. Then for every

r > R we have
or A\ u] =0 vt € [0,T].

Following [41, Section 2], we now extend Definition 2.2.4 to the space G, (0,7) of right-

continuous regulated functions.

Definition 2.2.8. For any r > 0and X € A, the play operator p, : A x G (0,T) — G1(0,T) is defined
as o, [\, u] = &, where & € G1(0,T) is the solution of the following system

u(t) — £(8)] < r vt € [0,7], (2.2.82)
/ (D) (ult) — &(t) — 2) de(t) > 0 Wz € [=r 7], Vit € 0,T] (2.2.8b)
) fr( ) Qr( ( ) - (’I”)), (2-2~8C)

and where the integral is understood in the sense of Kurzweil (see Definition A.3.1).

By [41, Theorem 2.1 and Proposition 2.4] this extension is Lipschitz continuous in the following

sense.

Proposition 2.2.9. For every u,v € G(0,T), every A\, u € A and r > 0 we have

[or D0 u(6) = orlps 0)(1)] < max {IAG) = ()] Ju = vl ) (229)

forevery t € [0, T, where for a function u :€ G(0,T) and t € [0, T

lully == sup [u(r)].
T€[0,]

Moreover, as an analogue of Proposition 2.2.7 we have the following result.

Proposition 2.2.10. Let R > 0, A € Ag, and v € G4(0,T) satisfying |[ullo r < R. Then for every

r > R we have

or[Aul =0 vt € [0,T).
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2.3 The Preisach Operator

In 1935 Preisach (see [59]) proposed a model of ferromagnetism based on an idea of Weiss and de
Freudenreich [70]. This construction gained much success and is now known as the PREISACH
MODEL OF FERROMAGNETISM. Mathematical aspects of this model were dealt with by Kras-
nosel’skii and Pokrovskii [36, 37, 38]. The model has been also studied in connection with partial
differential equations by Visintin for example in [67]. We also quote the contributions of Brokate
and Sprekels [11, 12] and Krej¢i [39, 40] and refer to the monograph of Mayergoyz [46] for the
discussion of many generalizations of the Preisach model.We present the construction and the
main properties of the Preisach operator following [40] and [67].

First, we introduce the so called DELAYED RELAY OPERATOR. It is the simplest example of a dis-
continuous hysteresis nonlinearity. It is characterized by two thresholds, p1, p2, and two output

values, which we assume to be equal to —1 and +1.

Definition 2.3.1 (Delayed Relay Operator). For a given couple (p1,p2) € R? with p1 < pa, u €
C([0,T)), and any n° € {1, 1} the delayed relay operator

Rpvps - CO((0,T)) x {=1,1} = BV(0,T) (| CP([0,T)), (23.1)
is defined by R ,, ,, [u,n°] = w, where the function w is given by

1 ifu(0) <
w(0) := ¢ o if p1 <u(0) < pa,
1 ifu(0) = ps

and for any t € (0, T, setting Wy := {7 € (0,t] : u(7) = p1 or p2} by

w(0) W =0,
w(t) =9 -1 ifW; # 0 and u(max W;) = p,
1 if Wy # (0 and u(max W) = pa,

where BV (0,T) denotes the space of functions of bounded variation and C2([0,T)) is the linear space of

functions which are continuous on the right in [0,T).

It turns out, that the operator R, ,, is causal and rate independent in the sense of (2.1.3) and
(2.1.4).

Let us now present an interesting connection between the relay and the system of play operators
{or[A ul}, 5, introduced in (2.2.7).

First of all, we give the following definition, which will be useful in the following.
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Definition 2.3.2 (Preisach Plane). The PREISACH PLANE

P={p=(p1,p2) ER?: p1 < p2} (2.3.2)
is the set of thresholds of the delayed relay operators R, ,,.

In the following we will often use a different system of coordinates in order to describe P.
For example we can consider the half-width o1 = #5* and the mean value oy = ”JFT’“ of (p1, p2).
In this case the conditions on o7 and o5 in order to have admissible thresholds is o1 > 0 and so

the Preisach plane can be written as
PZ{(01,02)€R2201>0}. (233)

We will also set in the following o1 := r and 03 := v in order to establish a connection with the

notations in the previous section. In this way we obtain
P={(r,v) eR*:r > 0}. (2.3.4)
In this setting we recall a result, whose proof can be found in [40, Section I1.3].

Lemma 2.3.3. Let A\ € Ag and u € C°([0, T)) be given. For any given (r,v) € P we set

—1 ifv> Ar),
5/\(7",1}) = Zf B ()
+1 ifv < A(r).

Then for every t € [0,T] and (r,v) € P with v # o[\, u](t) we have

1o < oA (),

—1ifo > g hl(t).

R(r,v) {U, f)x (T’ U)] (t) =

Now, we introduce the PREISACH OPERATOR as follows.

Definition 2.3.4 (Preisach Operator). Let P be the Preisach plane introduced in one of the equivalent
ways (2.3.2), (2.3.3) or (2.3.4), B be the family of Borel measurable functions P — {—1,1}, &, ,, be the
image of (p1, p2) € P by the function & € B, and 1 be any (signed) Borel measure over P.
Then the Preisach Operator W, : C°([0,T]) x B — L>(0,t) (N C2([0,T)) is defined for all t € [0,T] as
follows

W80 1= | Row ol gl (Oi(on. o) (235)

The Preisach model can be interpreted as the superposition of a family of delayed relays dis-
tributed with a certain density.

For the Preisach operator the following result holds (see [67, Section IV.1, Theorem 1.2 and Corol-
lary 1.3]).
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Proposition 2.3.5. For any finite Borel measure yp over P it turns out that the operator W, is causal and

rate independent, so it is a hysteresis operator.

Suppose now that in (2.3.5) the measure 1 is absolutely continuous with respect to the two-

dimensional Lebesgue measure. This means, that there exists ¢ € L}, .(P) such that
Wl i= [ [ Rl e}t o 236)
Let us pose the following technical assumption.
Assumption 2.3.6 (Assumption on the density function ).
® The antisymmetric part 1, of the density function 1) stays in L*(P), i.e.

%(T, U) = (w(ﬁ U) - ¢(7"» _U)) € Ll(P);

N | —

@ the integral in (2.3.6) is considered in the sense of principal value;

® there exist By, 8 € L} (0,00), B(r) > 0 a.e., and

loc

b= /0 B(r)dr < oo, (2.3.7)

such that
Bo(r) < p(r,v) < B(r) fora.e. (r,v) € P.

We also put b(R) := fORB(r)drfor R>0.

As in [40, Section I1.3], we propose the following definition of the Preisach operator which is
equivalent to Definition 2.3.5 in the particular case when Assumption 2.3.6 holds (see [40, Section

I1.3, Definition 3.8]).

Definition 2.3.7. Let ) € L} (P) satisfy Assumption 2.3.6. Then the Preisach operator W : Ag x

loc

C([0,T]) — C°([0,T)) generated by the function g,

g(r,v) == /OU Y(r,z)dz  for (r,v) € P, (2.3.8)

is defined by the formula
Wik = [ gt pr n ul(®)ar 239)

for any given X\ € Ay, u € C°([0,T)) and t € [0, T).

Let us show how the Definition 2.3.7 can be extended to G (0, 7).
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Definition 2.3.8. Let ¢ € L}, (P) satisfying Assumption 2.3.6 be given and let g be as in (2.3.8). Then

loc

the Preisach operator W : Ao x G4(0,T) — G4(0,T) generated by the function g is defined by the

formula
o0 oo r'[AaU](t)
WA u(t) = /0 or s [\ (1)) dr = /0 /0 T ) dz dr

for any given A € Ao, u € G(0,t) and t € [0,T], where Ay is introduced in (2.2.4), and p, [\, u] is
defined according to Definition 2.2.8.

As a counterpart of [40, Section I1.3, Proposition 3.11] we quote the following result (see e.g. [18,
Proposition 2.3].)

Proposition 2.3.9. Let Assumption 2.3.6 be satisfied and let R > 0 be given. Then for every A1, A2 € Ag
and u,v € G4(0,T) such that ||ull;y 77, [[v][jo. 7] < R, we have forall t € [0,T]
R ~
(WAL u](t) = Wk, 0](1)] < /0 [A(r) = Aa(r)[ B(r) dr + b(R) [Ju = vl 4 -

In the sequel we restrict the class of Preisach operators by requiring more regularity. In addition

to Assumption 2.3.6, we assume
Assumption 2.3.10.
o0
i) 92 e L2 (P),
(ii) Y(r,v) >0, a.e.

Then, we recover the following result (see [40, Proposition 11.4.8]).

Proposition 2.3.11. Let Assumptions 2.3.6, and 2.3.10 (i) be satisfied and R > 0 be given. Suppose
moreover that ag > 0, X € Ag, and u € W1(0,T) be given such that lulleqor < R Put w =
aou + WX, u]. Then for a.e. t € (0,T) we have

api? (t) < w(t)u(t) < (ag + b(R))u?(t). (2.3.10)
Before going on, we introduce the PREISACH POTENTIAL ENERGY U as
U, u(#) = /0 T G o] (1)), (23.11)
where
G(r,v) :=vg(r,v) — /Ov g(r,z)dz = /Ov 2(r, z)dz, (2.3.12)

with ¢(r, z) = 0.9(r, 2).

We moreover introduce the PREISACH DISSIPATION OPERATOR as

D[\ u)(t) = /000 rg(r, pr[A, ul(t))dr. (2.3.13)

The following result can be found in [40, Section I1.4, Theorem 4.3].
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Proposition 2.3.12. Let Assumptions 2.3.6 and 2.3.10 be satisfied and let R > 0 be given. For arbitrary
A€ Apandu e WH(0,T) such that ||ul oo 77y < R we put

w:=W[\u] U:=U[N\u] D :=7D[\ul,

where U and D are the Preisach potential energy and the Preisach dissipation operator introduced in

(2.3.11), and (2.3.13). Then we have

i) U(t) > %w%) vt € [0,T]

(mw@mw—mﬂ:p@( a.e.
Finally, let us prove a generalization of [40, Proposition 11.4.13].

Proposition 2.3.13. (Hilpert-Type Inequality) Suppose that ¢ € L}, (P) satisfies Assumptions 2.3.6 and
2.3.10. Let W be the Preisach operator as in Definition 2.3.7. For given uy, ug € WLHL(0,T), A1, A2 € Ao,
and i = 1,2, put E(t) == o[\, wi], wi = W[\, u;] defined according to Definitions 2.2.4, and 2.3.7.

Then for a.e. t € (0,T), and any ¢ > 0 we have

(i (t) — a2 (1)) (ur (1) — uz(t)) [ua (£) — ua(t)|”
> [T 26 €0) - g £NE WD €)1 - £ dr. 2314
0

Proof: As a consequence of (2.2.2) and (2.2.3) it follows that

&y — & — 1) >0,

Y , hold for any z1, zg € [—r,7], a.e. in (0,7").
fr(u2 —& - 22) >0

As by virtue of Assumption 2.3.10, the function v (r, z) = 0.¢(r, z) is non negative, the previous

inequalities imply that

200 €)(un €~ 21) 20,

0

5700 &) (U2 = € = 22) > 0

hold for any z1, 2o € [—r,7], a.e. in (0,T).

Choosing in the previous inequalities z; = uy — £2 and 22 = u; — &} and summing the resulting

inequalities, we obtain

9 [otr.€) — 9(r, 0] [(ur — ws) — (€} ~ €)] > 0.

Moreover, we certainly notice that the previous inequality is equivalent to

& [or. ) — 9(r €] [f(ur — ) f(&} —€))] 20

for any non-decreasing function f. With the choice f(z) = z|z|?, ¢ > 0 the claim follows. O
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24 Space Dependent Hysteresis Operators

The hysteresis operators introduced so far act on functions depending only on the time variable
t. These operators are usually employed in problems, in which time is the only independent
variable, like in the case of ODEs. When also the space variable appears, for example as in the
case of PDEs (and so like the situation we deal through this thesis), then relationships of the form
(2.1.1) or (2.1.2) cannot be directly applied, and it is necessary to extend the concept of hysteresis

in a suitable way. We will address this in the following.

Definition 2.4.1 (Space Dependent Hysteresis Operator). Let Q@ C R™ with n € N, X a suitable
metric space, and H : X x % (0,T) — % (0,T) a hysteresis operator. For a function u : Q — % (0,T),
and an initial condition n° : Q — X, we define the output of the space dependent hysteresis operator

(corresponding to H as follows)
A0, ul(z,t) = Hn’(x), u(z,)](t) ae. inQ, Vt € [0,T). (2.4.1)

This definition implies that # is applied at every point x € 2 independently, in other words

H[n°, u](z,t) depends only on u(z, -) ‘[ and is independent of u(y, -)| 0.7 fory # x.

0,4]
For these operators we have the following result (see [62, Korollar 2.7.5]).

Proposition 2.4.2. Let V' C F(0,T) be a Banachspace, 2 C R™ open, bounded, p € [1,00), X a suitable
metric space, H : X x V' — V a Lipschitz - continuous hysteresis operator, and $) the corresponding space

dependent hysteresis operator. For a fixed n : 2 — X the operator ), defined by
Sy PO, T;V) = LP(0,T; V), $ylu] = Hn, ul,

is continuous.

Let us now introduce the space dependent Preisach operator.

Definition 2.4.3 (Space Dependent Preisach Operator). Let 2 C R" be an open and bounded domain,
Y € L} (P) satisfy Assumption 2.3.6, \(z, -) belong to Ao, and u(z, -) belongs to G (0,T)) for (almost)

loc

every x € ). Then we define

o0 oo ror[Ma,r)u(z,)](t)
WA ul(z.0) = [ glr e ale o) dr = [ b(r,2) dzdr, (242)
0 o Jo
where @, is as in Definition 2.2.8.
For the space dependent Preisach operator we have the following result.

Proposition 2.4.4. Let Q C R", T > 0, R > 0, ¢ € L}OC(P) satisfy Assumptions 2.3.6 and 2.3.10,
A:Q — Ag,u € L?(Q;G4(0,T)) such that sup;eo,1) [[u( D)l oo () < R, and A0 be the space dependent
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Preisach operator (by means of Definition 2.4.3) corresponding to the input w and the initial configuration

. Then
W, u)(, t)| < Rb+ 3 [[u(z, )04 (24.3)

holds for a.a. (x,t) € Q x [0, T] with b as in Assumption 2.3.6.

Proof: Let \ and u be as above. We define the input v € L?(; G1(0,T) by v(-,t) = u(,0) for a.a.
t €[0,7],ae. in Q. Letx € Qand ¢t € [0,T]. Then, making use of formula (2.4.2), Assumptions
2.3.6 and 2.3.10, and Taylor’s Theorem we obtain

’w[/\v u] (x, t) - S’Zﬂ[/\v U] (3?, t)‘
SA 190, e A7), s )](1)) — g, e[ M, ), ulz, ()] dr
/ Br) [or M 1), ulz, )] (E) — pr A7), v, )(8)] dr

Moreover, by virtue of Proposition 2.2.9
OrIA 1), 1w, )(E) = 9rlA 1), oG, )0 < lula, ) = o, Yo < e, g + u(,0)
holds for a.a. z € 2. Bearing in mind that Assumption 2.3.6 yields
l;:/oooﬁ(r)dr<oo,

we find

(WA, uf(x, )| < [N, uf(x, 1) — WA, vl (2, )] + [WA, 0] (z, 1)]

< [\, u](2,0)| + blu(z, 0)[ + b llu(z, ), - (244)

Moreover, since A : © — Ag and [|u(-, 0)|| (o) < R, we clearly have by virtue of (2.4.2), Proposi-

tion 2.2.10, and the pointwise inequality
u(z,0) —r < pp[A(z,7r),u(x,0)] <u(z,0)+r fora.a. z € Q
the following estimate
R ~
[W[A, u] (z, 0)] < /0 [or (A2, 7), ul@, 0)][ B(r) dr < (R + |u(z, 0)[)b(R), (24.5)

where l;(R) is as in Assumption 2.3.6. Thus, assembling (2.4.4) and (2.4.5) the claim follows. [
The following result allows us to estimate the gradient of the space dependent Preisach operator

(see for instance [18, inequality (2.23)]).
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Proposition 2.4.5. Let i € L}OC(P) satisfy Assumptions 2.3.6 and 2.3.10, R > 0, and u €
L2(:;G4(0,T)) N L>(Q x (0,T)). Suppose that ull oo ox o)) < B Vu € L2(;G4(0,T)),
B e L} (0,00),and \:Q — Ag such that

loc

/OR/Qﬁ(r) IVA(x,r)| dzdr < co

holds, where V denotes the gradient with respect to the spatial viable x € Q. Then the function w :=
W[\, u] satisfies

R ~
|Vw(z,t)] < /0 B(r) |V A(z,r)| dr 4+ b(R) Sel[l(]pt] |Vu(z, )] (2.4.6)

all t € [0,T] a.e. in Q, where b(R) is as in Assumption 2.3.6.
Let us now prove a consequence of this result.

Proposition 2.4.6. Let o € L] (P) satisfy Assumptions 2.3.6 and 2.3.10, R > 0, ¢ > 0, and u €
L2(Q;G4(0,T) N L*(2 x (0,7)).
Moreover, suppose that ||ul| oo 0y < B Vu € L?(Q; G (0,T)), Vi € L2(2 x (0,T)), Vu(-,0) €

a+1

LIt Q), B € L, ° (0,00), and that X : Q — Agr, VA € LITY(Q x (0, R)). Then the function w :=

loc

[\, u] satisfies

1 49 ) 1
Sup [Vl Dl ooy < g +1)7 {1 + IVl Za 0 0.0 1V g;gm(om] , (24.7)
where ¢ is defined by

1

~ ~ q+1
eim 2max {18l azs | IV ooy )| (141900 o)
with b(R) as in Assumption 2.3.6.

Proof: The conditions of the Proposition imply that we can apply Proposition 2.4.5 and obtain

R ~
|[Vw(z,t)| < /0 B(r) |VA(z,r)| dr + b(R) Sel[lopt] |Vu(z, )]

forallt € [0,7] a.e. in Q. Let ¢ > 0. Multiplying the preceding inequality by |Vw(x,t)|? and

integrating the result over (2, we find

/\Vw(a:,t)]qJrl dz
Q
R ~
S/Q/O B(r) |V A(z,7)| [Vw(z, t)| drdx+b(R)/ sup |Vu(z, 7)||Vw(z,t)|? d.

Q 7€0,t]

By virtue of Fubini’s Theorem, Holder’s and Young’s inequalities the following estimate holds

R
// B(r) [V Xz, )| |[Vw(z, t)|? drdz
QJO
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/ B IVAC, D)l oy V(@ O

)

<8 M(OR ”V)\HLqul(QX(o,R)) ||Vw(x?t)‘|Lq+l(Q)

q+ g+1 q+1
< qﬁ 18l q+1 O.R ||V)‘||Lq+1 (Qx(0,R)) +— + 12 ”VU’( )||Lq+1

and similarly it follows

I~7(R)/Q sup |Vu(z,7)||Vw(z,t)|? dx

T€[0,¢]
20h(R)It!

<7 su Vux7q+1dx+
<2 [ s (Vu(en)

g+1
s 2 IVula, O

Assembling the preceding estimates we conclude

[V |t g < 2 [\Iﬁlqu+10 IV 0y + R [ sup [Vuirr) dx]
’ TE)

and setting

2o e 2max{llﬁlqu+1

2 0 17 lsmss0x089 ;b<R>} |

the previous inequality transforms into

Ve, )4 g < e

1+/ sup |Vu(z, )7 dz| .
Q 7€[0,t]

Finally, with the help of Holder’s inequality and Fubini’s Theorem we obtain

/ sup |Vu(z, 7)™ da
Q 7€[0,]

<||Vu(-,0 %ﬂl // (Vu|T da dr
< [ Vu( )[4 gy + (g + 1 / / Vul? [Vl da dr

< [Vul 054t g + (@ + D IVull L2000y 1Vl 2xory)  (24:8)

and hence the claim follows. O

2.5 Time Discrete Hysteresis Operators

Let us now present a way how the concept of space dependent Preisach operators from Definition
2.4.3 can be transferred to the time discrete setting. For this aim, we make use of of the Preisach
operator defined on the space G (0,T) (see Definition 2.3.8), and extend this concept to the case

of space dependent hysteresis operators acting on L?(Q; G4(0,7)).
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Definition 2.5.1 (The Time Discrete Play and Preisach Operators). Let ' > 0, m € N fixed and
define the time step h := T'/m. For a sequence{us, },c(o 1 C L%(Q) and a number r > 0 we define the

sequence of the time discrete outputs of the play operator recursively by

§?n(a:,7“) = P[/\(x7'>7u0 (1‘)](7"), and f&(.%’,?‘) = P[ nil(l? _)’un (x)](r) (2.5.1)

m

forn € {1, ..., m}, with the projection operator P : A x R — A

P\, v] :=max{v —r,min{v+ 7, A(r)}}. (2.5.2)
Setting
U (2,) =Y up (@)X (1) b (1) + e (@)X 473 (8),
n=1
and

6;1(1'7 t) = Z 57?1_1 (.%', T)X[(n—l)h,nh] (t) + ‘527,('1‘7 r)X{T} (t)

n=1

we thus have
f:n(l’, t) = ©r [)\7 Um] (557 t)
in the sense of Definition 2.2.8. We set
wy () = / g(r &) (z,7)) dr with g(r,v) = / P(r,z) dz (2.5.3)
0 0

and v as in Assumption 2.3.6, to be the output of the time discrete Preisach operator.

Let us now recall some well knows results for the time discrete play and Preisach operators. First,
we observe, that the discretized play operator defined by (2.5.1) satisfies a discrete counterpart of

(2.2.2), in fact we have the following result. (see e.g.[18, Section A.1]).

Proposition 2.5.2. Let m € N, {up},cq0, .y be a sequence in L2(Q), r > 0, X : Q — A and let
{&n (1) aeso,... my be defined by (2.5.1). Then inequality

(& () = & ) (up (2) = € (2,m) = 2) > 0 (2.54)
holds for alln =1, ..., ma.e. in §).

As a consequence we have the following result.

Proposition 2.5.3. Let m € N, let {ufp,},cro 1y C L?(Q) be given, and {&n (1) e, my De the
output of the discretized play operator, defined according to formula (2.5.1). Then for a.a. x € 2, and all

n € {1,...,m} we have

(& (,m) = €0 (1) < (Gl ) — & M) (i (2) — wi (@) < (ufy —up!)*. (255)

IN
—
<

3
|
<

Moreover, we have the discrete version of Proposition 2.2.7.
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Proposition 2.5.4. Let m € N, R > 0, A : Q — Apg, and let {up},cqo 0 C L(Q), satisfying
MaXpe(o,....m} [Pl ooy < R e given. Moreover, let {&7,(+,7) } .10, my e the output of the discretized
play operator, defined according to formula (2.5.1). Then for a.a. x € Q, all n € {1,...,m}, and every

r>R

Em(x,r) =0
holds.

Let us now quote a result (see [18, inequality (A.13)], which is the discrete analogue of Proposition

2.3.11.

Proposition 2.5.5. Let m € N, R > 0, and v € L}, .(P) satisfy Assumptions 2.3.6 and 2.3.10. Suppose
moreover that ag > 0, A : @ — Ag, and {up},cro oy © L(Q), such that maxo<p<m |[ug, || oo () <
R is satisfied. Put s, = aoug, + wy,, where {wp,},,cqo .y 15 defined according to formula (2.5.3). Then

foralln € {1, ..., m} we have

ap (u’,ﬁl - u"_1)2 < (sp, — sfn_l)(u% — uﬁl_l) < (ap + Z)(R)) (u” — u"_l)Q. (2.5.6)

m m m

Finally, let us now recover the discrete analogue of Proposition 2.3.12. For a detailed proof we

refer e.g. to [18, Section A.1]

Proposition 2.5.6 (1st order Energy Inequality).
Let {up} e qo....my be a sequence in L*(Q), X = @ — A and the sequences {&]1,(-,7)} peqo.. my 4 well as
{win()}neqo,...m) be defined according to (2.5.1) and 2.5.3. Let {Uy},eq0, . m) be the sequence of time

discrete Preisach potential energies defined in the following way
Uy (z) = /000 G(r, &, (z,r)) dr a.e. in €,
where G is given by (2.3.12). Then inequality
—w Hu >y —ynt (2.5.7)
holds foralln = 1,...,ma.e. in Q.

In the following we will prove some very useful results for discretized play and Preisach oper-
ators. These results become important in Chapters 4 and 5, as they allow us to apply the De
Giorgi iteration scheme to problems where Preisach hysteresis occurs under the (discrete) time

derivative. We start with the following easy consequence of (2.2.2).

Lemma 2.5.7. Let m € N, {ug }cq0.my C L), :Q—= A, r>0andletk € R.

Let the sequences {&}eqo,.m} > (Mmtne(o,my> Vimtnego..my C L*(Q) be the outputs to

the discretized play operator (by means of Definition 2.5.1) corresponding to the input sequences
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{u?n}ne{o,‘..,m} , {ull, + k}ne{O,...,m} , {—u%}ne{owm}, and the initial configurations A(-,r), A(-,r)+k
and —\(-, ) resp.
Then the following identities

O] () =& (x, 1) + K a.e. in <) (2.5.8)

@ vy (x,r) ==& (x,r) a.e. in ) (2.5.9)
hold for all n € {0, ...,m}.

Proof: Let A : Q@ — A and r > 0. According to Definition 2.5.1 we have for a.a. x €

€0 (w,7) = max {ud,(z) — r,min {u, () + r, A(z,7)} }, (2.5.10a)
& (z,r) = max {up (z) — r,min {u}}, (z) + r, &5 2, r) }}, Ve {1,....,m}, (2.5.10b)

as well as
n2 (z,r) = max {u x) + k — r, min {u )+ k+r Nz, r)+k} ), (2.5.11a)

nm (@, 7) = max {up,(z) + k — r,min {u]} (z) + k + 7,0}, a:,r)}}, Vn e {l,...m}, (2.5.11b)
and

vo, (2, 7) = max { —ud, () — r,min {—ul, (z) + r, = A(z,7)} }, (2.5.12a)
vl (z,7) = max {—uj (z) — r,min {—ul}, () + r, v 2, r)}}, Ve {1,...,m}. (2.5.12b)

Let & € R be arbitrary. As a consequence of (2.5.10a) and of (2.5.11a) the following identity is

satisfied fora.a. £ €

o (2, 7) = max {u, (z) + k — r,min {u), (z) + k +r,XNz,7) + k}}
= max {um(:p) — r,min {um(aj) + 7, Az, r)}} +k
= &0 (x,0) + k.
Let n > 1 and assume that %! (x,r) = % 1(z,r) + k holds. Hence, in a similar way, we obtain
from (2.5.10b) and from (2.5.11b)
ne(z,7) = max {up (z) + k — r,min {up, (z) + k +r, &) Y, r) )+ k}}
= max {ufn(ac) — 7, min {u”m(:n) + 7, 577;_1(16, r)}} + k
=& (z,7)+ k.

Consequently, (2.5.8) follows by induction. Similarly we obtain from (2.5.10a) and from (2.5.12a)

v (z,7) = max { —up, (z) — r,min { —ud,(z) + r, —A(r) } }



31

= max {—(ul, (z) + ), min {—(u%, (z) — ), —=(A(r)} }
= — min {u®,(z) + r, max {u®, () — r, \(r)} }

= — max {u?,(z) — r, min {u®, () + . A(") }}

= &0 (x,7).

Let n > 1 and suppose that v],_; = —¢,_; holds. With the same arguments as above we see that

from (2.5.10b) and (2.5.12b)

vl (z,7) = max {—ul (z) — r,min {—u, () +r, —&4 (2, 7)}}
= — min {u"m(x) + r, max {u%(w) -, 5?,;1(30, r)}}

= —max {u’,(¥) — r,min {u?, () + 7, &4 (z,7)}}

= _517711 (.%', T)
follows, thus (2.5.9) holds. O
Let us denote for Q2 € R™, n € Nand a functionu € LP(§2), 1 < p < oo the positive part u™ € LP(Q)
by
u" = max {u,0}, a.e.in (,

and proceed with the proof of the following result.

.....

..........

N (x,7) > & (,7) (2.5.13)
holds a.e. in S for all n € {0, ..., m} and the following inequality is satisfied
(&, r) = & ) (up) ™ = (0 (2, 7) — oy (7)) (up )™ (2.5.14)
ae. inQforalln e {1,...,m}.

Proof: Let A : @ — A and r > 0. Recalling Definition 2.5.1 of the time discrete play operator, we

obtain
€0 (x,7) = max {ul, (¥) — v, min {u, (z) +r, A(z,7)} }, (2.5.15a)
& (z,r) = max {up},(z) — r,min {ul},(z) + r, &%z, r)}}, Vn € {1,...,m}, (2.5.15b)
as well as

n (z,7) = max {(ugn(av))Jr —r,min { (ud,(2))" + 7, Az, )}, (2.5.16a)
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i (z,7) = max { (ul (2)) " — r,min { (u (2)) " + 700 Yz, r)} ), Vne {1,..,m}. (2.5.16b)
Thus, from (2.5.15a) and from (2.5.16a) it follows

€0 (z,7) = max {u?n(a:) — 7, min {u%l(x) + 7, Az, 7“)}}
< max { (ud, ()t — 7, min { (ud, (2))" + 7, Az, 7)}}
= ngn(xﬂ 7’)

for a.e. x € 2. Now, Let n > 1 and let us assume that n"!(x,7) > &% 1(z,r) for ae. © € Q.

Hence, (2.5.15b) together with (2.5.16b) imply

& (. 7) = max {up, () — r, min {uy, (x) +r, &7 (2,7)}}
< max { (uy, ()" — rymin { (up, ()" + 05 (2,7)
= N (2, 7)
fora.e. z € Qforalln € {1,...,m} and therefore (2.5.13) follows.
We proceed with the proof of (2.5.14) and fix n € {1,...,m}.
Let z € Q, with u? () < 0. Hence, we have that (u”,(z))" = 0 holds, and (2.5.14) is trivially
satisfied.

Let now z € Q with u} (z) > 0, thus clearly (u? (z))" = ul (z). We distinguish the following

cases.

® Suppose that u”,(z) — (u 1 (x))* > 0 holds. Thus, in particular v (x) > u~!(x) is satisfied

as well and according to (2.5.15b) and to (2.5.16b) the following inequalities hold

(@) Sup @)+ < up (@)

m

e r) < (@) 4 < ul (@) +

Moreover, with the help of (2.5.15b) and of (2.5.15b) we compute &,(x,r) and 7}, (x,r) in

the following way

& (z,r) = max {uﬁl(:v) — r,min {u%(:z:) + 7, 5;‘1_1(% 7‘)}}

= max {u,(z) — 1, &4 (z,7)} .

And since by assumption u]}, (z) > 0,

i (z,r) = max {ul (z) — r,min {ul (z) + r,n% (2, 7)} }

= max {ufn(az) — (=, 7’)}

follows.



33

Bearing (2.5.13) in mind , we see that —¢(%1(z,r) > —n"~1(x,r) holds a.e. in  for all

m

n € {1,...,m} and consequently

Em(a,m) — &7 (@, r) = max {uf, («

is satisfied, which is the desired inequality (2.5.14).

@ Assume now, that u” (x) — (u% 1(z))" < 0. Recalling that u”,(z) > 0 holds, we conclude

0 < (u1(x))* = u () an therefore we obtain from (2.5.15b) and from (2.5.15b)

(@, r) > up (@) = > up(x) — 7

(7)) = (up (@) = > (2) — 7
Consequently, (2.5.15b) together with (2.5.15b) yield

& (z,r) = max {up (z) — r,min {u}},(z) + r, &5 (2, r) }}
= min {uﬁl(ﬂs) + 7, 5%_1(30, r)} ,
as well as
o (@, 7) = mae {ul (&) — r, min {u (@) + 0 o) )
= min {u’,(z) +r, 0% (z,7)} .

Therefore, we have by virtue of (2.5.13)

Em(,r) — & @, r) = min {uy, () + &7 (@,7) ) — &7 (2,7)

m(T)
= min {u?,(z) + 7 — £ (x,),0}
> min {ul,(z) + 7 — (2, 7),0}
= min {up, () + .0 (@,r)} =0 (z,7)

= 7777711(3”7 T’) - 777?;1(‘/1;7 T);
and (2.5.14) holds again.

Let us proceed with the proof of the following consequence of Proposition 2.5.2.

Lemma 2.59. Let m € N, {up},cq0. my C© L*(Q), with u, > O ae in Qforalln € {1,..,m},

AN:Q—=Aandr > 0.
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Let the sequence {&}et0,..my C L?()) be the output to the discretized play operator (by means of
Definition 2.5.1) corresponding to the input sequence {uy, },cco .y and the initial configuration A(-,r).
Then inequality

(&, ) = &M, ) [up, () = (§(z,r) = )] >0 (2.5.17)

holds a.e. in Q, forall n € {1,...,m}.
Proof: Consider the difference &, (z,r) — (£ (x,7) — ). A simple calculation yields
& (z,r) — (€8 (x,r) — )T = min {€ (z,7),r} < 7. a.e. in Q.

On the other hand, since by assumption u;;, > 0 a.e. in 2, we always have by virtue of for-

mula (2.5.1) the pointwise estimate ), (x,r) > wu),(x) —r > —r for a.a. = € § and therefore

|&n (x,r) — (€% (xz,7) —r)T| < rholds foralln € {1,...,m}.
Using the variational representation for the play system stated in Proposition 2.5.2 we find that

z = (& (z,r) —r)T — £ (z,r) is an admissible test-function for (2.5.4), and obtain that

(@, r) = & (@, m) [up(2) = &5 () = (@, r) = )" = & (z,71))] >0

holds a.ein 2 for all n € {1, ..., m}. Consequently,

(&, ) = &7 (1) Jup, (2) — (G (z,r) —=7)F] 2 0

is satisfied a.e. in Q foralln € {1, ..., m}. O
With the help of the previous Lemmata we now prove a modified version of Proposition 2.3.12

stated in the following result.

Proposition 2.5.10. Assume that o € L} (P) satisfies Assumptions 2.3.6 and 2.3.10. Let m € N,
{untneqo...my C L), A Q@ — A, and the sequences {&,(-,7)} (0. my A5 well as {w}y, () }cio. )
be defined according to formulas (2.5.1) and (2.5.3).

For r > 0, let the sequences {ny,(-;7)}neqo..mp {Vm(>7) nego,...my be defined by formula (2.5.1)
corresponding to the the initial configurations \(-,r) — k, and —\(-,r) — k, and the input sequences

{(ug, = )" e, my and {(—ug, — k)" }cpo, . my respectively.
Let the nonnegative sequences {U&"(k)}ne{o’ o and {%ﬁ”(k)}nem’ . be defined in the following

way

(n2 (z,r)—r)
U (o / / 2(r, 2z + k + 1) dz dr,

wU;" k) / / 20(r,—z+ k+r) dz dr,

a.e. in Q). Then

[wi (2,7) — wpy (@, r)] (upy, = k)T > U@ — =10, (2.5.18)
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— [wi (@, r) — wi (@, r)] (—ult, — k)T > w4 ™ — =1 ®) (2.5.19)

m m

hold for all n € {1, ...,m}, a.e. in Q and we have the following bounds

U < 2 (un — k)2, 2 < 2 (—ul — k)T (2.5.20)

DO | S
N | S

foralln € {1,...,m}, a.e. in §2, where bas in (2.3.7).

Proof: For r > 0, let the sequences {7, (-, 7) e g0, m} - {7 () b ego,..mp- @A {00 (1) e g0, m)
be defined as above, and let the function g be as in (2.5.3). Let us fix n € {1,...,m} and distinguish

the following cases:

® Letx € Q such that &% (z,7) = €7 (z,7) holds.
If " (x) < 0, formula (2.5.1) together with Proposition 2.5.3 yield 7% (z,7) < 7% !(x). On
the other hand, if u” (z) > 0, we find with the help of (2.5.14) of Lemma 2.5.8 that ", < n.-L.
Thus, (% — )™ < (g% — r)7 is satisfied. Recalling that according to Assumption 2.3.10 1)
is nonnegative, we infer

(2 (z,r)—r)T
[9(r, €2, 1)) — g(ra € My )] (s — ) = 0> / ! =+ k4 7) d=.
(

T (@r)—r)t

@ Letz € Q such that ¢ (z,7) < €% (x,7), and n? 1(z,r) = n2(x,r). Bearing in mind that

0.9 = v > 0 by virtue of Assumption 2.3.10, we clearly have

(s () =)™
otr: €5t — gt &7 @) (6~ 0 20= [ B0 e k) d
Nm \Z,7)=T

® Suppose now, that z € Q such that &% (z,7) > €2 (z,7), and 0% (2, r) = % (z,7). Then
either (u?, — k)™ = 0 or by virtue of (2.5.14) & (x,r) — &1 (z,r) > 0 must hold,. As the
latter statement is a contradiction, and 0,9 = ¢ > 0 due to Assumption 2.3.10, we find

( %(3},7‘)— )+
[9(r, €0, 7)) — g(r, €M, 7))] (uls — B)* = 0 = / ! B2+ k4 7) de.
(

M (@r)—r) T
@ And finally, let z € Q with &Y (a, r) # €7 (2, 7) and 5%z, 1) # 0 (@, 7).

We denote by {7;,,(,7)},,e50,...m) the output of the time discrete play operator defined by
formula (2.5.1) corresponding to the the initial configuration A\(-,r) — k and the input se-

quence {uy, — k},cq0, . m}- Applying identity (2.5.8) of Lemma 2.5.7 we calculate

Em(x,r)
[g(r, €0 (,7)) — g(r, €77 (. 7)) (ul — k) = / (W — k) (r ) d
3

(@)

T, (z,7)+k i, (,7)
-/ (= Ry de = [ 7 (a0l s ) ds
n )tk

(@ T (a7
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max{f]g;l(fﬁar)ﬂgz(xﬂ")}
_ sign (72 (1) — 7 (7)) / (u?, — k) Tp(r, 2z + k) dz. (2.5.21)
min{7 " (2,r)m5 (@r) }

As Lemma 2.5.8 yields

Sign (ﬁg@(xv T) - f/?nil(*% T)) (unm - k)+ > Sign (7777%(957 T) - n;tnil(xv T)) (unm - k)Jrv

and since 1 > 0, we obtain from (2.5.21)

lo(r, &0 (@, 7)) = g(r, &7 (2, 7))] (upy, — k)
max{ﬁ?n_l(m,r);ﬁ?n(x,r)}
> sign (s (z,7) — i (2,7)) / (ul, — k)T(r, 2z + k) dz.  (2.5.22)
min{ﬁﬁl_l(x,r);ﬁ;h(:p,r)}

Bearing in mind that ¢ > 0 is nonnegative, we find with the help of Lemma 2.5.9

max{ﬁ%71(177‘);ﬁ%($7r)} . .
/ () = o)) = )2 4 )

min{ " (2,r)mp (,r) }

/max{nrezl ()5, (5577")}

>

» (e 7) = sy (e, 7)) (i (2, 7) = ) P (r, 2 + ) dlz.
min{ 7" (z,r);m (2,r) }

Clearly, either (n7 (z,7) — r)* = 0 and the whole integral on the right-hand side of this

inequality turns 0, or n)}, (z,r) > r > 0. In the latter case, the pointwise inequality
M (2,7) < (up (@) = k)" + 7

implies (u”, (z) — k)* > 0.
Therefore, we by virtue of our assumption 1% (z,7) # 7% !(x,r) and the piecewise mono-

tonicity property of the play operator stated in Lemma 2.5.3 we obtain (ul,(z) — k)™ #

m

(u(x) — k)*. As a consequence u (x) # ul !(z) must hold and 7% (z,r) # 7% (z,7)

follows.

Recalling that (ul, (x) — k)* > 0, we infer by virtue of formula (2.5.1)

T (@,7) = (up, (2) = k) £ = (up, (@) — k)" £ =), (2, 7).

If n (z,r) — n% *(z,r) < 0, then again by virtue of (u?,(z) — k)™ > 0 and of Lemma 2.5.3

we have that (u?,(z) — k)T < (u% ! (x) — k)" must hold, and consequently also

T (2,7) = (u, ' (2) = k) + 7 = (up, H(x) = k) Tr = o (2, ).

m

On the other hand, if 0% (x,r) —n% 1 (z,7) > 0, then (u?,(z) —k)* > 0 together wit inequality
(2.5.14) of Lemma 2.5.8 yields

T (,7) — iy (@, 7) 2 1, (2, 7) =y () > 0
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and therefore

_ an—1

sign (’f_];’%(.’l), T‘) m ($a T)) = sign (77%(1‘, T) - 7721_1(5137 T))

follows. Hence, we obtain the succeeding bound

max{ﬁ;‘n—l(%r);ﬁ&(z,r)} . N
/ (% (@, ) — 1 (e ) () — ) e 2+ K) dz

min{7p. " (,r);0p, (z.r) }
= sign (7, (@, 7) — 7, (@,7)) x
/max{n:;ll(mmmw)}

X

. [ 1) = i )| (5 (2 7) = ) b2+ ) 2
min {75 ()5 (2r) }

T (7)
= / [ () = ()| (s () = 1) P, 2+ ) dz

_2L_1($7T)
N (2,7) . - . N
Z /n—l( ) ’T]m(x’,r)_nm (-’E,T)|(77m($,’r‘) _T) ,¢(T,Z+k) dZ.
MNm x,r

This estimate, together with (2.5.22) implies

[g(r, & (. 7)) — g(r, &7 (@, )] (up, — k)*
1
B ‘77%(307 7") - ?721_1(55» T)‘

max{ﬁgfl (2,7)57m, (m,r)}
<,

. (i, (e, 1) =y (e, 7)) (g, — )T (r, 2 + k) dz
min{ a5 (2,r)smp, (@) }
1

() = ()|

N (2,7)
x / I (2, 7) — 1M, )| (s ) — ) e 2+ K) dz
n

@)

X

N (2,7)

_ / 0 (2, r) — ) (2 + k) dz. (2.5.23)
n

(@)

As Y, r) —r < (% 1(z,7) — )7 clearly holds, we infer

N (1)
/ (@, ) — 7P ob(r, 2+ k) dz
n

(@)

Ny (z,r)—r
= / (i (x,r) — ) Y(r,z + k+7) dz
n

(i (@,r)—r)*
:/ 1 (i (z,r) — ) p(r,z + k+7) dz
ﬂ?n_ (:E, )_T
(i () —r)*
> / (i () = P F (2 + b 1) dz
(s (@) —r) T
(i (@,r)—r) T
>/ z2(ryz+ k+r)dz,

R Ea
and consequently (2.5.18) follows. Furthermore, recalling Definition 2.5.1 of the discrete play

operator, we find that the pointwise estimate

(i (@, 7) = 1) < ((upy (@, 7) = B)T 47— 1) = (up(2,7) — k)7,
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holds, and with the help of Assumptions 2.3.6 and 2.3.10

(1 (z,r) =)
Uk — / / zp(r,z+k+r)dzdr

(i (2y7) =)
/ / B(r) dz dr

- /0 (o) — 7)) B(r) dr < 2 (ot (a,7) — k))

l\D\r—l
N | S

follows, where b as in (2.3.7).
Finally,
& =&

~lor &) —gtr &) = | 7 vir7) d= = / o VA2 =5 @)~ 90 73)
is satisfied with the obvious notation of g.
We put {w},},,c(0,...m) to be the output of the discretized Preisach operator according to formula
(2.5.3), corresponding to the input sequence {—uj, },,c(o, .y, the initial configuration — ), and the
density function ¢)(, z) := t(r, —z). Clearly, 1) satisfies Assumptions 2.3.6 and 2.3.10. Moreover,

as

holds a.e. in 2 for all n € {1, ..., m}, application of (2.5.18) to

yields (2.5.19). Arguing as above we find

oo z,r)—r)t
%nﬁ”(k) = / / 2(ry,—z+k+r)dzdr
0 0

(v (z,r)—r)
/ / B(r) dz dr

Remark 2.5.11. The statement of Proposition 2.5.10 holds also in the case when the number k € R is
replaced by a function k € L>(2).
Then, with the same notation of the sequences {ny, (-,7)},e 0. my A4 {V, (1) }rego, .. my 45 in Proposi-

tion 2.5.10 the nonnegative sequences {L{m }nE{O, ) and {02/ }ne{o, - are defined by

%*"(k(“”) 2(r, —z + k(z) + r) dz dr,

(@) / /"’”(”) o (2 + k(z) + ) dz dr,
=L
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fora.a. x € Q, satisfy

[l (0, 7) — W (, )] (uh () — k(@) " > U FO) () — 16 (), (25.4)
— W (e, r) — ()] (—ul (@) — k@)t > 2¢O (@) - 2 E @) (25.25)

foralln € {1,...,m}, and a.a x € Q and we have the following bounds

U D) < = (un (x) — k() t)?, ) <

DO | S
DO | S

(=l (z) = k(z))™)? (2.5.26)
foralln € {1,...,m}, a.e. in Q, where bas in (2.3.7).

LetT > 0,m € Nand h = T'/m. For a sequence {y;. },,c(0, . .} and h as above we set

yr, — oyt

N , VYn € {1,...,m}

=

and prove the following result, which allows us to overcome the lack of the Second Order Energy

Inequality for Preisach operators.

Proposition 2.5.12. Suppose that the density ¢ € L} (P) satisfies Assumptions 2.3.6 and 2.3.10.
Let R > 0, {U?R}HE{O,...,WL} C LOO(Q), maX{07_._7m} ||ugl||L°°(Q) § R, and A Q — AR Let
sponding to the input sequence {uy,},,cro .y and the initial confuguration X, and let the function g be

as in (2.5.3). Then for all r < R the following inequality holds

" (z,7r)) | () |
w(é—mé ) )) f?n($,r)‘2 o ¢(5m 2( ) )) 521_1(5577“)‘2
rén(x,r)) — ;Eb_ln x,r T, ,’fjl z,7)) — g(r, ,?1_2 x,r on
< [g( Em(@,7)) hg( (z,r)  g(r & ( ))hg( ( ))} [ ()]
o sw )] + ¢ sw (0.0 )b )|
Z<2r F<R

foraa. x € Q, foralln € {1,...,m}.

Proof: Let m € N, h = L, 7 > 0, and consider {umtneqi,..my  {Vmtneqr,.my C L),
Moreover, we put {&,(,7)}neqo. my+ U™ bmeto,my C L*(2) to be the outputs of the
discretized play operator (by means of formula (2.5.1)) corresponding to the input sequences
{umtneq,.myp-and {on. }cq1 ) resp., and the initial configuration A.

For simplicity we omit the fixed index m and define
un(z) = up(2),  on(a) i=op(@), @)=l r),  mp(z) = (e, r).
By virtue of Proposition 2.5.2 it follows that

(& — &n—1)(un — &, — 21) >0,
! hold for any z1, zg € [—r,7], foralln € {1,...,m}.

(= Mn—1)(vn — My — 22) 2 0
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a.e. in 2. As the function ¢(r, z) = 9,¢(r, z) is nonnegative by virtue of Assumption 2.3.10, the
previous inequality implies
l9(r, &) — 9(&n-1)] (un — &, — 21) 2 0,

for any 21,29 € [-r,r|, foralln € {1,...,m}
lg(rymy) — g(ny—1)] (vn =15, — 22) > 0

a.e in Q. Choosing z; = v, —n;, and 23 = u,, — £, and summing the resulting inequalities, we find

la(r. &) — 9(&n-1) — g(rymp) + g(n—1)] [(un — vn) — (&, —m3)] > 0. (2.5.27)

By Taylor’s theorem there exist for a.a. z € 2 61(x) € [§),(x),n),(x)] and O2(x) € [§] _1(z),n)_1(2)]
such that

9(7,€3) — 907 = W{r, ) € — ) — S00(r 1) (& — )%

T ‘s T T T 1 T T
9(&n1) —9m_1) = V(& 1) (&1 — 1) — §az¢(7“> 02)(§h—1 — 77n—1)2
a.e. in ). With the notation

977; = g(r, 571;)7 777; = g(r, 772)7 w; = w(T‘, §77;), 1[}:1 = ¢(7“, 7777;)7

we obtain the succeeding identity
(9 = ) = (gn1 = Y-1)] (& — n)

=& =P — v (6 — 1) (& — )

— 500 0)(€ — ) € — i

+ 500 02)(E 1 — W) ). (2529)

We will estimate the terms of the right hand side of (2.5.28). First we observe, that the bounded-

ness of the u,, and v,, and the pointwise inequalities

up —r(x) <& () < up(z)+r, vp —r(x) <np(z) <vp(z)+r

imply, that [£]],|n,] < R+ r. Moreover, bearing in mind that by virtue of Assumption 2.3.10

d:4b(r, z) € LS (R?) holds, we find for all » < R the following estimate

‘1/117; - 271‘ < sup [0.9(r, 2)| ‘é:z — &1
0<r<R;

z|<2R

)

With the help of Young’s inequality we see that

1 2 1 2
(En1 = Mn—1)(&, — 1) < B ‘5:1—1 - 772—1‘ + B &0 — 1l

(2.5.29)
holds, and consequently, making use of (2.5.29) 9] _; > 0, we then obtain for r < R

W16 = mnl* = vn &y — 1) (€ — 1)
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Yn—1

9 1
> |€n — ) — Kkrwkﬂ—fﬁqﬁ—%F

2
:L r r ¢:z— r r r r
_%lfn_nnﬁ_ 2 L ‘fn—l n 1| + wn — )‘gn_nnlz
',’rl T T /(/}77717 T T T T
> Ve g - Pl e m¢|—fsw|@wrmh£|£— P @530

|z\<2R

Again, application of Young’s inequality to the last term of the right hand side of (2.5.28) yields

SO0 00) Gy — (€ — )| <

3
|@¢rz‘ s — [+ 16— i

1
2 O§r<R
z|<2R

and therefore

SO 00)(E — ) 6 — 1 — S0-0(r, 02)(E s — ) € — )

up [9:4(r, z)![g & —mnl® + % \ﬁn |- 772_1}3] (2.5.31)

follows for r < R.

Inserting the estimates (2.5.30) and (2.5.28) into (2.5.27) we obtain the following inequality

e gl — P e o
S[@&éﬂ—g@;D—@&mb—g@LﬁﬂWm—wm

1
+ = sup [0.¢(r, z2)
2 0<r<R;
|2|<2R

1 4 s
. wpr@wwzﬂ[|;l7mr+ e -] @5
2 0<r<r; 3
|z|<2R

[

Setting v, = up—1 forn > 1 and vy = up, we obtainny = {j and i, = ¢, foranyn = 1,...,m.

Therefore (2.5.32) transforms into

A . A &
< [(00€5) ~ 9(651) ~ (90 €51) — 9(Eh-))] (i — )]

7 o2
+6 up ’82¢<T z ‘h gn ‘é.n gnfl}
z\<2R
1
+6 sup |8277[)(T z |h §n l“gn 1 gn 2‘
0<r<R;
2]<2R

Dividing this inequality by h? finishes the proof. O
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CHAPTER 3

MODEL PROBLEM AND MAIN RESULTS

In the sequel we study a nonlinear PDE containing a continuous hysteresis operator 2. The
model equation we consider is the following and corresponds to the flow problem introduced in
Chapter 1

O qulp] ~ V- k(W) (Vp+ 2) = in 0 (0,7),

where p is unknown, ) is an open bounded set of R?, k is a Lipschitz continuous superposition
operator, and Z the upward vertical unit vector.

We first introduce a weak formulation in the framework of Sobolev spaces associated to the above
system in presence of a hysteresis operator of Preisach type (2.4.2), also accounting for boundary
conditions of Signorini type (1.6.2).

Under suitable assumptions on the domain 2, the data of the problem, and on the hysteresis op-
erator 20, we are able to establish existence of a weak solution p and also prove the local bounded-
ness in the interior of all partial derivatives of p. Furthermore, we show that when the boundary
conditions reduce to the case of Dirichlet boundary conditions the above system admits a unique
weak solution.

The existence result is based on approximation by Rothe’s scheme (implicit time discretization),
a priori estimates and passage to the limit by a compactness argument. During the proof we
concentrate ourselves on the limit procedure and exploit the results established in Chapters 4 - 6,
where we present the approximation and sequentially prove in full detail all the necessary esti-
mates for the approximate problem. In particular, we refer to Chapter 4 for the introduction of the
approximate problem and for the establishment of a weak maximum principle for the approxi-
mate solutions, to Chapter 5 for the derivation of oscillation decay estimates for the approximate
solutions and to Chapter 6 for the proof of an appropriate bound for the ,time discrete”derivative

of approximate solutions.
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Furthermore, applying the results obtained in Chapter 7, we prove higher interior regularity of
solutions to our central problem. And finally, a uniqueness result for the case of Dirichlet bound-

ary conditions follows by an argument based on Gronwall’s Lemma.

3.1 Weak Formulation of the Problem

Let us consider an open, bounded and connected domain 2 C R? representing the space occupied
with the porous medium. We denote by 0f) the boundary of 2 and by I'y C 92 a closed two-
dimensional Lipschitz manifold with positive bidimensional measure, representing that part of
0N on which seepage is allowed.

Moreover, let T > 0 be a given time instant and set ) := Q x (0,7), £; :=T'; x (0,7).

We now transfer the Signorini boundary condition (1.6.2) into the functional analytic setting in

the following way: For a given function P € L*(0,T; H'(Q)), with
Wop >0 a.e.on X,

where 7 is the trace operator H'(Q) — H 2 (©2), we introduce the following convex set of func-
tions

K = {ve L*0,T; H'(Q)) : (yov)" =70Pae on¥i}. (3.1.1)
Therefore (1.6.2) turns into
k(Vp+pgz) -n(u—¢) <0, VpeK

where we denote by n the outward normal unit vector to (.

We now present the central problem of this thesis.

Problem 3.1.1 (Central Problem).

Let ag > 0, consider a space dependent Preisach operator 23 introduced in Definition 2.4.3, and let p° €
L2(Q), \: Q — A, and P € L*(0,T; H*(2)) be given.

We search for a function p € K (\ HY(Q), with 20[\, p] € H*(0, T; L?(X2)), such that

p(z,0) = p°(x) for. a.a. Q,
and setting s := agp + W[\, p), the pair of functions (p, s) satisfy the following variational inequality
//Q <gi(p—v) +k[s}(Vp+2)V(p—v)> dx dt <0, Yv e K, (3.1.2)
where k represents the hydraulic conductivity my means of a superposition operator and 2 = (0,0,1).

The variational inequality (3.1.2) is a weak formulation of equation (1.5.4a) (where all the con-

stants are assumed to be equal to 1) coupled with the Signorini condition (1.6.2).
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3.2 Assumptions on the Data, the Domain (2, and the Preisach Opera-

tor

In order to prove existence, regularity and uniqueness results, we pose the following general
assumptions.

We start with hypotheses on the boundary data P.
Assumption 3.2.1 (Assumption on the boundary function). Suppose that

@ the function P possesses the following regularity

Peco (@ H'O. T HYQ), Pel™@Q), P el*(),

with some given o € (0,1), as well as

P(-,0) € WH(Q) () H*(Q)
@ there exist I'y C T'y a closed two- dimensional manifold with positive bidimensional measure such

that P > 0 on intT x [0, 7], and P = 0on (I'y \ T}) x [0, 7).

Hypothesis 3.2.1® means that the set {m € intly : P(z) > 0} does not change in time and is
rather restrictive, for it prevents the basins from either increasing or decreasing. It will appear
in Chapter 6 and will allow us to multiply the approximate equation by the (discretized)
time derivative of the pressure, overcoming restrictions due to the Signorini-type boundary
conditions. Unfortunately the structure of our proof does not allow us to lift this assumption at

the moment.

In Chapter 5 we establish oscillation decay estimates for (approximate) solutions of Problem 3.1.1
deriving certain inequalities characterizing De Giorgi function classes (c.f. definitions in Section
A.8). For these function classes it is well known, that their members are Holder continuous up
to the boundary, provided that they satisfy Neumann or Dirichlet type boundary conditions (and
the boundary data is smooth enough). Unfortunately, we were not aware of any results concern-
ing GLOBAL Holder continuity up to the boundary of functions from De Giorgi classes if mixed
boundary conditions are involved.

However, we found out that under the geometrical assumptions on the domain 2, as stated be-
low, we can still prove Holder continuity for members of the De Giorgi function classes (for the
detailed proof we refer to Section A.8).

In fact, Assumptions 3.2.2® and @ are standard assumptions if one deals with Dirichlet or Neu-

mann boundary conditions respectively (see for instance [43, Chapter 2, §8]). Only assumption
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3.2.2@ is a new one and arises from the appearance of mixed boundary conditions. It concerns the
contact set between the different boundaries and requests that the boundary of € is not smooth

at this contact set.

Assumption 3.2.2 (Assumptions of the Domain §2). Suppose that Q C R3 is an open, bounded, and
convex domain of class C%1, such that for all (z,y,z) € Q z > 0 holds.
Moreover, suppose with I'y and T as in Assumption 3.2.1 that there positive constants gg, 01, 02,03 €

(0,1), such that
@ forall zog C 0 and any ball B,(zo) centered at x¢ with radius 0 < o < g
€20 By(0)| = 62[By(o)]
holds,

@ intIl'y possesses the positive geometrical density property (see Definition A.1.2), i.e. for all zo C

intl'y and any ball B,(xo) centered at xo with radius 0 < o < oo,
20 Bo(20)| < (1 = 61) [ By(x0)]
holds,

® OI'y and O} possess the special positive geometric density property (see Definition A.1.3), i.e.

(a) there exit a CO domain Q with the property that @ C Q and 9Q\ Ty C 0K, and that for any

ball By(zo) centered at xo € OI'y with radius 0 < o < o, Qn By(z0) is convex, and
1201 By(ao)| < |00 Bylao)| - 0 | By(ao)|

is satisfied.

(b) there exit a CO domain SV with the property that Q@ C  and 9Q\ T, C 9, and for any

ball B, (o) centered at xo € T with radius 0 < o < go, ¥ N B,(xg) is convex, and
121 By(wo)| < | 01 By(o)| — ds | By(o)|
is satisfied.
Fig. 3.1 shows an illustrative two-dimensional example of such a domain defined by

Q= {(xjy) cR?: |(z,y)] < 1}ﬂ{(;p’y) eR?:y< ;ﬁ_,_;}ﬂ{(m,y) ER2:y< —;ZU—F;},

with

1 1 11
= R?:y= 2%+ = ~1,0] ¢ | J RP:y=—-a+= 1
1 {(w,y)é y=5 +2,m€[ ,0]} {(w,y)e Yy 2m+2,x6[0, ]}7
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1 1
/1:: {(xay) €R2:y:§$2+§, T € [_170]}7

and

ary = {(=1,0), (1,0)}, ar, = {(—1,0), <;0>}

Clearly, 2 is convex and of class CY%1 thus satisfies Assumptions 3.2.2 ® and @. Moreover, we

Yy
Q
ary or I o\ T
Q/ %
0 Z
—or,
0 Q
OO\, AN
(@) Qand Q (b) Qand
Figure 3.1: 2-dimensional example of an admissible set £
can choose
Q= {(z,y) eR?: |(z,y) < 1}, with 990 = {(z,y) € R*: |(z,y)| = 1},
and

Y = {(z.y) €R?: |(z.y) <1}m{<x,y> eR: y<;x+;}
N {@y) eR%: x>—1}ﬂ{(x,y)eR2: y<;}
with
o0 = (aQ\F’l)U{(—Ly) €ER?: ye {%”U{(&) ERY: z e [—1,0}}.

Then we find that for any 0 < p <1 and z € 0I'y

1

120 By(eo)] < [0 By(ao)| — 55 [Ba(ao)l.
is satisfied and for any 0 < p < 1 and z( € I}
~, 3
20 By(ao)| < | 1 By(ao)| ~ 155 |Bolao)]

holds. Thus 2 fulfills condition 3.2.2 ® with the choice §3 = %.

We proceed with hypotheses on the Preisach operator 20.
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Assumption 3.2.3 (Assumptions on the Preisach operator). Suppose that the Preisach density func-

tion 1) satisfies Assumptions 2.3.6 and 2.3.10. Moreover, with
0Q =00 x (0,T)|_J x {0},

and P as in Assumption 3.2.1, let the nonnegative number R be defined as

R := supl’5 + sup =z.
0Q (x,y,2)€Q

Let 5,5 € (0,1) with s < 5and ag > 0 be given and assume that the Preisach operator 20 defined according
to Definition 2.4.3 and corresponding to the density function 1 satisfies the following:
For A : Q — Ap and an input u € L°°(Q) with |u| < R a.e. in Q there exist numbers 23,207 satisfying

s < —agR+ 20, agR + 920 < 3, and

0 < W\, u] <W a.e. in Q fora.a. t €[0,T).

The number s can be interpreted as the residual water content and 1 — s can be understood as the
residual air content (c.f. Section 1.3) and therefore Assumption 3.2.3 allows us to conclude that
for appropriately bounded pressure the saturation remains inside [s, 5].

The inclusion of the additional term apid to the s vs. p relation is a technical one and appears
in Chapter 4-7 allowing for the derivation of appropriate estimates. The resulting operator is

still rate-independent and thus a hysteresis operator in the sense of the definitions from Chapter 2.

Next, we pose some assumptions on the hydraulic conductivity k.

Assumption 3.2.4 (Structural assumptions on k).

Let k be a superposition operator generated by a nonnegative, nondecreasing, Lipschitz continuous function

E:R—=R

k[s](z,t) = k(s(z,1)). (3.2.1)

Moreover, with the numbers 0 < s < 5 < 1 from Assumption 3.2.3, suppose that there exist numbers

0 < k < k such that k satisfies
0<k<k(s)<k forallsc€]s,3.

And finally we pose the following hypotheses on the initial value p® and the initial configuration

A
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Assumption 3.2.5 (Assumptions on initial data). Let P be as in Assumption 3.2.1, A : Q@ — A with
R as in Assumption 3.2.3, and suppose that the initial value p° satisfies p°(-) = P(-,0) and belongs to the
elliptic De Giorgi Class B2 (S, M, ~) (c.f. Definition A.8.2) and that for a.a. x € Ty p° satisfies

k(aop” + [\, p°))(Vp° + 2) - 7" —v) <0 Vo:T; =R, s.t. vt = P(z,0)

with 20 as in Assumption 3.2.3. Moreover we assume that
R R
sup/ B(r) [VA(z,r)| dr, / (A7) g B(r) dr < 0o
z€QJo 0 ’

where (), o, stands for the Holder seminorm as in (A.2.1) and (r) is as in Assumption 2.3.6.

The assumption on p° indicates that p® satisfies the ,elliptic”version of the Signorini boundary
condition (1.6.2) and will allow us to estimate the initial values of the incremental time ratio of
approximate solutions in Chapter 6. The hypothesis on A will appear in Chapters 5 and 6 and
enables us to conclude that for Holder continuous inputs also the output of the Preisach operator
is Holder continuous on the one hand, and also allows for the derivation of an appropriate esti-
mate of the initial values of the incremental time ratio of approximate solutions in Chapter 6 on

the other hand.

3.3 Main Results

We now present the central results from this thesis together with their proof and start with the

following theorem concerning the existence of solutions to Problem 3.1.1.

Theorem 3.3.1 (Existence). Let Assumptions 3.2.1 - 3.2.5 be satisfied. Let R be as in Assumption 3.2.3,
A:Q = Ap, and p°(-) = P(-,0), with P as in Assumption 3.2.1.

Then Problem 3.1.1 admits at least one solution p with the following reqularity
p € WH(0, T LA(Q)) (Y H' (0, T; H' () (1 ¢4 (@),

with some o € (0, 1), satisfying in addition ||p|| e ) < R with R as in Assumption 3.2.3. Moreover, the
function s defined by s = agp + 2\, p|, where 2V represents the space dependent Preisach operator as in
Definition 2.4.3, satisfies

s e Wh(0,7: L2(Q) (H'(Q) (™5 (@).

Proof: The proof of this theorem is based on Rothe’s scheme. For this aim, let m € Nand h :=

T'/m. Moreover, we assume that with the constants ¢ as in Lemma A.8.9 and R asin Assumption

3.2.3
1 1
h < min —7;92;9_%* )
4R 36
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holds. This assumption is not restrictive, as we intend to pass to the limit as » — 0. Then,
according to Corollary 4.1.3 there exist sequences {py, },,c(1.ny and {wy }cqq ) satisfying for

alln € {1,...,m} the following variational inequality

n _ n—1
/ <Smhsm(p;; — )+ KT (VP + 2) - Vo, — v)> de <0,  WwekKp (331
Q

where we set for all n € {0,..,m}
Sy i= APy, + W, k= k(sp),
and where the sets K7, are defined for n € {0, ...m} in the following way
K" :={ve H(Q):yv" = P(-,nh)a.e.onTy} forn=1,..,m.

For any given sequence {uy, },¢(o,...m} We define its the piecewise constant and piecewise linear
time interpolates according to the following schemes:

ﬂ}j_(:lt,t) = up, (), a" (z,t) == w1 (2),

t—(mn—-1h, , e
L= DR ) — i (@)

foreachz € Qand t € [(n — 1)h,nh), n = 1,...,m, continuously extended to t = T'.

(3.3.2)
tp(x,t) = u Y z)+

m

By construction of the sequences {p};.},c(1, 1 and {wp},cq1, my (cf. Problem 4.1.1), we have
that

wh =WAph], ot =W\, p"

hold, where p% and w”. are defined according to the scheme (3.3.2) and where 20 is the space
dependent Preisach operator from Definition 2.4.3 acting on L?(2; G (0,T)). Thus, from (3.3.1)
we find that the following inequality

J. . _ s o
; Esh(p}jr — o)+ kG (VP +2) -V - o) de <0 (3.3.3)

holds for all o being the constant time interpolate of a sequence v}, € K},,...,v7 € K a.e. in
(h,T).
As a consequence of the estimates obtained in Propositions 4.2.1, 4.3.1, 5.4.1, 6.3.1, and 6.4.1 we

derive the following bounds

Hﬁh H Wleo (0,T5L2(Q)) N H(0,T:HL(Q) N c g @) < C,

I8ullyscori2@)nm@ne=t@ < ©
where the constant C' is independent of h. Moreover, due to Proposition 4.2.1 ||pa| () < R
holds with R as in Assumption 3.2.3. Therefore, by virtue of Theorem A.2.3 and Proposition

A 2.2 there exist functions

p € WH(0,T; L*(Q) (H' (0, T; H'(Q) (| C*5(Q),
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s € Wh(0,T; L2(Q)) (1 H'(Q) [ | C™% (Q),

with [|p| 1o () < R, such that passing to the limit as h — 0 along a subsequence

(P, 8r) — (p, s) uniformly in (C(@))Q, (3.3.4a)
P — P weakly in HY0,T; H'(Q)), (3.3.4b)
Sp — s weakly in H(Q), (3.3.4¢)
3} 0 . J 0 . - o 2
(8tph’ 5% ) — (atp,ats> weakly starin (L*°(0,T; L*(2)))". (3.3.4d)

As a consequence of Theorem A.2.4 and estimates (3.3.4b) and (3.3.4c)
(nPn) = (p.5) strongly in (L%(2: C((0.77)))”
as h — 0 along a further subsequence if necessary. Furthermore, for every m € N and every
(z,t) € Q
)2

< e @) = o @) < XSl -l @)

[Pl t) = i,

n=1
sn( ) - §i<x,t>\2 < max () — st @) < 3 [she) - i @)
neil,....m o
holds and similarly
2 m
(Vin(e,t) = Vol (e, )| < max |V (2) = Vol ' (2)]* < 3 [Vol(@) - Vo @)
n=1

is satisfied. Moreover, Proposition 5.4.1 yields
‘§h(x,t) - Ei(x,t)‘ < max |7 (z) — 577 (@)| < poh%
n

with the constants ;12 and « as in Proposition 5.4.1. Hence,

N

Chx.

o

IN

7| a2 A

L2(©:G1(0,T)) L2 (2,G+(0,1)) L*(Q) L>(Q)
Consequently, p converges to p strongly in L?(Q2;G1(0,T)), VPt converges to Vp weakly in
L%(Q), and 5" converges to s strongly in L?(Q; G (0,7)) () L>=(Q) as h — 0. Making use of the

continuity of the operator 207 on the space L?(%; G4 (0,T)), we find passing to the limit as h — 0
5% — 5 = aogp + W\, p| strongly in L?(€; G4 (0, 7)) ﬂ L>*(Q

As a consequence

.. o >
hzn _)1(r)1f // 5 Sp(p 1) dx dt // ) dx dt
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follows. Moreover, the continuity of k yields, that
k(3") — k(s) strongly in L*>°(Q)
as h — 0. Therefore, with the help of Proposition 4.3.1 we infer

/Q k(52 = k(s))| ‘Vfﬂr da dt < |6 - k(S)HLOO(Q) -0

with p; as in Proposition 4.3.1. For this reason (and extracting a further subsequence if necessary)

o >
ll}ln_)l(l)lf// ’Vp+ dx dt // ) |Vp|? dz dt.

Integrating (3.3.3) in time and passing to the liminf as ~ — 0 along a suitable subsequence, we

we conclude

then get (3.1.2) and the proof is complete. O
Let us now study additional regularity of solutions to Problem 3.1.1 and prove the following

theorem.

Theorem 3.3.2 (Interior Regularity). Suppose that the hypotheses of Theorem 3.3.1 hold and let 3 €
Ll

loc

0,00) be as in Assumption 2.3.6, R be as in Assumption 3.2.3, A : Q — Az, and suppose that in
p p R pp
addition

VAeL¥(@Qx (0,R), and B e L (0,00)

loc

hold. Then every solution p of Problem 3.1.1 possesses the following additional regularity

9 oo
&p € Lloc(Q)'

Proof: Since by assumption the hypotheses of Theorem 3.3.1 hold, there exist a solution p of

Problem 3.1.1 such that
p € Wh(0,T; L*(Q)) (VH' (0, T; H' () [ €5 (Q)

with some o € (0,1). Moreover, the function s defined by s = agp + 20[\, p], where 20 denotes

the space dependent Preisach operator as in Definition 2.4.3, satisfies
s € Wh(0,T; L2(Q) (V1 H'(Q)[ | C*5 (Q)
Therefore, we find by virtue of interpolation (c.f. Proposition A.6.1)

8 0
5P 75 € L7 (Q).
Thus, the Lipschitz-continuity of k and application of Proposition 7.1.4 with the choice ¢ = %
yield
20

Vp € LZOC(Q)
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Observing that the requirements of Proposition 7.2.1 are met, we infer with the help of Proposition

7.2.1

9 -
ap € LlOC(Q)'

This, together with the piecewise Lipschitz-continuity of 20 and the Lipschitz-continuity of k
imply in turn that the conditions of Proposition 7.1.4 hold for any ¢ > 0, and consequently Propo-
sition 7.1.4 yields
Vp e L(Q).
Furthermore, making use of Proposition 2.4.6 we obtain
20

Vs € LEC(Q),

and consegently the continuity of k together with Proposition 7.3.1 implies

Vp e Li;.(Q),

and the proof is complete. O
Finally, as mentioned in the chapter introduction, we now deal with the Richards equation (1.5.4a)
coupled with Dirichlet boundary conditions. In the physical context this corresponds to the case
when the pressure on the whole boundary of the domain (2 is prescribed, i.e. the whole in-
/outflow is known in advance. From the mathematical point of view, this model is less interesting
than the one with mixed boundary conditions, nevertheless we present a (shortened) existence-
and uniqueness proof also for this problem, since the techniques applied are instructive and could
be used for other problems described by a parabolic PDE with hysteresis.

We first present the weak formulation of (1.5.4a), coupled with Dirichlet boundary conditions.

Problem 3.3.3 (Problem with Dirichlet boundary conditions). Let ag > 0. Consider a space de-
pendent Preisach operator 20 introduced in Definition 2.4.3, and let p* € L?(Q), A : Q — A, and
P e L?(0,T; H(Q)) be given.

We search for a function p € H(Q), with 20\, p| € H(0,T; L*(R))), such that

p(z,0) = p°(z) ae. inQ, ~Yop = Yo P a.e. on 9 x (0,7,

where ~yo denotes the Trace-Operator, and setting s := aop + 20[\, p| the pair of functions (p, s) satisfy the

following variational inequality
0
//Q (ai(p —v) +k[s](Vp+2)V(p— v)) dx dt <0, (3.3.5)

forall v € L?(0,T; H(Q)) with yov = ~o P a.e. on dQ x (0,T) and where k is a superposition operator
and z = (0,0, 1).
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For this problem we have the following result.

Theorem 3.3.4 (Existence and Uniquness in the case of Dirichlet boundary). Let Assumptions 3.2.1,

3.2.2(®, @), 3.2.3, 3.2.4, and 3.2.5 be satisfied. Let R be as in Assumption 3.2.3, X : Q — Ay, and

P°()

= P(-,0), with P as in Assumption 3.2.1.

Then Problem 3.3.3 admits a solution p, with the following regularity

p € WH(0,T; L*() (H' (0, T; H'(2) [ | C*5(Q),

satisfying in addition |[p|| gy < R with R as in Assumption 3.2.3. Moreover, if VP € L®(Q), and
YV P € L®(dQ), then

0 .
Vp, 5 €L (Q).

And finally, if

Ap = inf (r,z) >0,
r<R,
|2|<2R

then the solution p of Problem 3.3.3 is unique.

Proof: The existence of solutions to Problem 3.3.3 can be proven in the same way, as it has been

done in Theorem 3.3.1, namely:

@ In fact, the results from Chapter 4 hold, without any modifications of the proofs presented

therein.

Moreover, inequalities (5.1.2), (5.2.1) hold for any levels subject to the conditions

a> sup Um— 2R, a > sup U, and a > sup YoUnn,
Qp,T)NQ Q(p,r)N2x{0} Q(p,7)NOx(0,T)
(3.3.6)
and inequality (5.3.1) holds for any level a subject to

a> sup ul, —2R, and a> sup Eyu,, (3.3.7)
B, (z0)NQ2 B, (x0)No2

where v}, = £p}}, 4y = £pm, and p,, is the constant time interpolate of the sequence
of approximate solutions {pj;,},c(, 1. Then, the statement of Proposition 5.4.1 follows

directly by virtue of Assumption 3.2.1, Assumption 3.2.2 ® and @, and the main result of
[34].

Finally, Propositions 6.2.1 and 6.3.1 can be proven in exactly the same way as it has been

done in Chapter 6.

Repeating the arguments of the proof of Theorem 3.3.1, it follows that Problem 3.3.3 admits

a solution with the desired regularity.
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Let us now briefly outline, how one can show that all partial derivatives of our solution p are globally
bounded.

By a classical flattening argument presented for instance in [7, Sections 5.4 and 5.5], one can
assume, that the cylinder Qy C @ in Section 7.1 can also be chosen such that Qy N Q # ). Then,
making use of the assumption, that Vp° = VP(-,0) € L®(Q) and of VP € L>(Q), we extend the
results obtained in Propositions 7.1.4, 7.2.1 and 7.3.1 to the whole space-time cylinder ). Thus,

following the proof of Theorem 3.3.2 we obtain

0
Vp,

ETid p € L>(Q).

Finally, we show that the solution of Problem 3.3.3 is unique.
For this aim, let p; and ps be two solutions of Problem 3.3.3 and for i = 1,2 we set s; = agp; +

[\, p;|, where 20 is as in Definition 2.4.3. Thus, we obtain from (3.3.5)
681
(p1 —v1) + k[s1](Vp1 + 2)V(p1 — v1) | dx dt <0,
and
// < p2 — v2) + K[s2](Vpa + 2)V(p2 — v2)> dr dt <0,

for all v; with ygv; = P a.e. on 9Q x (0,T). For an arbitrary ¢, € (0,7] we define the sequence

{Xn}nen € L7(R) as

0, ift <o,
nt, ifo<t<i
xn(t) =41, ifl<t<to—1

0, if t > to,

and choose v = p1 — (p1 —p2)xn and v2 = pa+(p1 —p2) Xn. Adding the corresponding inequalities

we infer
881 882
//Q ([& - 84 (P1 — p2)Xn
+k[s1](Vp1 + 2)V(p1 — p2)xn — k[s2](Vp2 + 2)V(p1 — p2)xn) dz dt < 0.

As x,, converges weakly* in L>°(R) to the characteristic function of the interval [0, t], we can pass

to the limit as n — oo and obtain

[ L5

+k[s1](Vp1 + 2)V(p1 — p2) — k[s2](Vp2 + £)V(p1 — p2)) dx dt <O0.
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For r > 0 and all (z,t) € Q we put

f};(l’,t) = KJT[)\(x%pi(x’ )](t)7 1=1,2,

with the play operator g, as in Definition 2.2.8.
Let g be the generating function of our Preisach operator as in (2.3.8) corresponding to the density

function ¢ . As in [18], we obtain a.e. in () the following estimate

2
2 (90 €~ 90 ) — ) > 26l — )l €)) — w(r.€2)
19 1060
20y e - ) - 2% 2 gy e - e

As a consequence of the piecewise Lipschitz-property of the play operator and with the help of

gt pi € L*°(Q) there exists a constant C' > 0 such that

<C

‘aar B
ot

i

holds a.e. in ). Thus, making use of Assumptions 2.3.6 and 2.3.10 on the Preisach density 1, there

exists another constant, still denoted by C, such that for all » < R

0 0
(€D — g ) —p2) > 5 5 (wirED) |e &) ~ Ol - &

is satisfied a.e. in Q. Recalling that |[p[| o) < Rand A : Q — Aj hold, Proposition 2.2.10 yields
1 &€ =0forr > Rae. inQ foraa. t € [0,T], and therefore, by virtue of 1)(r,v) > Ap > 0 we
find

/t“/ {831 852] (p1 — p2)

a Agp 2
> % lpy (-1 10) — (- 10) 2y + / e s?(-,towm)

J— 1.
C/o /0 J€268) = (0| oy drdt. (3:38)

On the other hand,Young’s inequality, the boundedness and Lipschitz continuity of k, and Vp €
L*>(Q) yield, that there exists another constant, again denoted by C, such that

to
/ / [51)(Vp1 + £)V(p1 — p2) — Kls2) (Vs + £)V(p1 — po)da dt
to
Zk/ Vp1(-,t) — Vpa(:, )HLQ(Q dt—/ /Lk\sl—SQHVpg—i-zHVpl Vpo| dx dt
0

ko[ v
>5[ IR = Vil @t =C [ [ 1=l doar 639)

Moreover, similarly to [18, inequality (5.6)], we obtain making use of Taylor’s theorem and of the

assumption 0,1 (r, z) € LS (0, 00) (c.f. Assumption 2.3.10) that there exists again another constant

loc



C > 0, such that for all r < R the following inequality

‘g(r,fﬁ)—g(r,ﬁf){ SC AR+R SuP az¢(7"72) ‘(&7}_57%)‘

r<R,_
|2|<2R

is satisfied a.e. in ). Then, Holder’s inequality yields

2
R
|s1 — s2|* < 2a0 |p1 — po|* + 2 </0 lg(r, &) — g(r, &) dT)
2 R 2
< 2ag |p1 — p2| +C'/ & — &) dr
0

with another nonnegative constant C'. Assembling the estimates it follows

R
2
[p1(; to) —P2(',t0)||%2(9)+/0 167 (-1 t0) = & t0) [ 20
< N ) = ol )2 et ) — 2| dr d
= /o le(vt) p2(>t)”L2(Q)+ 0 Hf?”(?t) gr(at)H[;(Q) rdt,
and hence, application of Gronwall’s inequality (A.10.1) implies
p1(5to) = pa(-; to)

a.e. in €. As ty € (0, 7] was chosen arbitrary p; = py a.e. in @) follows.
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3.3. MAIN RESULTS



cHAPTER 4

APPROXIMATION AND THE WEAK MAXIMUM PRINCIPLE

In this chapter we deal with the approximate problem corresponding to Problem 3.1.1.

First of all, we introduce the time discrete approximation of Problem 3.1.1. Using the implicit
time discretization scheme with the discritization parameter & > 0, we transform the original
(parabolic) problem into a family of elliptic problems, where the solutions p,, at each new time
step n depend on the solutions p,_1 of the previous time step n — 1. Existence and uniqueness
result for these elliptic problems at the time step n then follows by virtue of a generalization of
the Brwoder-Minty Theorem (Theorem A.4.1), provided that the solutions at the previous time

steps are bounded.

Since this boundedness is a priori not clear, we turn our attention to this matter in the second
section and show the global boundedness of p,, for every time step n where the bound is inde-
pendent of i and n. Choosing functions of the form (p, — a)™ as test-functions we derive the
estimate of the supremum norm. This technique was already successfully applied in [4, 5] to ob-
tain global boundedness of solutions to the Richards equation with hysteresis.

At the end of this chapter, we show an easy consequence of the weak maximum principle which

gives us an estimate of Vp,,.

4.1 The Approximate Problem

Let us fix m € N and define the time step h := T'/m. We set for n € {0, ..., m}

P () := P(-,nh) a.e. in (2, as well as (4.1.1a)

K" = {ve H{(Q)|yv" =P a.e. onTy}. (4.1.1b)
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Setting 2 := (0,0, 1), we approximate our central Problem 3.1.1 by an implicit time discretization

scheme and introduce the following problem.

Problem 4.1.1. Forn = 1, ..., m we consider the following recurrent systems with the unknown p}}, € K},

such that for any v € K]},

[ Gt =)+ B VB 2)- 9~ ) de <0 (41.22)
Q

is satisfied, with pd,(-) = P(-,0) and where we set

Sy = agpy, + Wy, ae.inQQ, n=0,..,m, (4.1.2b)
n _ n—1
- % ge.inQ, n=1,..m, (4.1.20)
wie) = [ gtr g ar o) = [ 0lr2) dz (4.12d)
0 0

foraa. x € Qandalln € {0, ...,m}, and where the sequence {7, (x,7)},,cq0.... my 15 defined recursively

fora.a. x € Qandany r > 0 by
Em(z,r) = P\, ), up, (@)](r),  &n(x,r) = Pleg " (2, ), up ()] (r), (4.1.2¢)
with the projection operator P : A x R — A defined as
PA,v] :=max{v—r,min{v+r, A(r)}}. (4.1.2)

We construct the solution to Problem 4.1.1 by induction over n. Denoting by (,-) the duality

n—1

-l ¢ K ! is already known, we

pairing between H'(Q2) and (H'(Q2))* and assuming that p
define the operator

Zn K — (HY(Q)"
by the formula
(27 (u),v) = / apuv dx + / wv dx + h/ kN (Vu + 2)Vo da,
Q Q Q

where
w(z) = /0 g(r, Ple™" Yz, ), u(2)](r)) dr. (4.1.3)
Thus, (4.1.2a) can be rewritten in the following form
(Zon (D) P — ) < {aop, - +wp Lph, —v) Yo € Ko (4.14)
We claim the following properties of the operator Z..

Lemma 4.1.2. Let Assumption 3.2.3 hold, n € {1,..,m}, and assume that p), € K, for j €
{0,...,n — 1}, and that there exist 0 < k < k, such that k < k"' < Kk a.e. in Q holds. Then the
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operator 2, is bounded, strictly monotone, continuous (in the sense of the definitions in Section A.4), and
coercive, in the sense that there exists uy € K, such that

(2 (u),u — uo)
[ull g1 (@)

— 00 as |[ull g1 gy = o

Proof:
@ Let us start with the boundedness of Z;;. By virtue of 0 < k < k:;‘n_l < k, we obviously have

for any u,v € H'(Q2) the following estimate

(2 (), v)] <

m

/ (apu + w)v dz + h/ kN (Vu+ 2)Vo do
Q )

< [ao lull 2y + 10l g2y ) Noll gy + BRI 90 + 2l 2y 902y
Thus, the estimate
120 (Wl 1))« < a0 lull 2y + 1wl 20y + kR IVU + 2]l 2(q)

holds for any u € H'(Q). Moreover, by virtue of Assumption 3.2.3 and Proposition 2.4.4 the
function w defined by (4.1.3) is affinely bounded for any u € L?(Q2), and the following estimate

n—1
w(x)| < Rb+3bY _ |ph, ()] + 3b |u()]
j=0

holds for a.a. z € €2, where b is as in Assumption 2.3.6. Recalling that by assumption p}, exist for
j € {0,...,n — 1} and belong to L?(Q2), the preceding estimate yields the existence of a constant

¢o > 0, such that
n—1 '
lwll 2y < 20+ 0 Y Pl 12 + 20 lull 2oy - (4.1.5)
j=0
Keeping in mind, that |2| = 1, we infer that
|2 ()|l (HL(Q))* < (ao + kh + é) HUHH1 —i—khIQ\? + ¢o, (4.1.6)

is satisfied for any u € H'(2), and therefore 2" is a bounded operator.
@ Let us proceed with the strict monotonicity of 2.
Let ui,upg € K7 and for i = 1,2 we set wi(z) = [;° g(r, P&} (2, ), ui(2)](r)) dr. Recalling

0<k< k:?n_l, we observe that
(Z(ur) — 2 (ug),up — ug) = / ag lup — uz|2 + (w1 — wa)(uy — ug) + hk;}fl |V (u1 — uQ)|2 dx
Q
> ag ||lur — U/2”%2(Q) dx + hk ||V (w1 — uz)Hiz(Q)

holds, where in the last estimate we used the monotonicity of the mapping v — w defined by

(4.1.3). Consequently, for all u; # us

(Zn(w) = Z5(u2),u1 —uz) >0



62 4.1. THE APPROXIMATE PROBLEM

follows and therefore %, is strictly monotone.

® Let us now take a look at the continuity of 2.

Letu € H'(Q) and {u;};y C H'(Q) such that u; — u strongly in H'(Q). Thus, by virtue of
0 < k < k! and Holder’s inequality it follows that

/ ao(uj —u)v dr + h/ kY (uj — w) Vo de
Q Q
< ag [lu; = ullpaq) 1Vl L2() + BRIV (45 = W)l 20y IVV] 20
< maX{GO,Eh} ||U”H1(Q) [Juj — uHHl(Q)

holds for any v € H'(f2). Observing that the projection operator P from (4.1.2f) is nonexpansive,

we infer fora.a. z € Qand allr > 0
| P (), ug(2)] — PER (@), u(@)]| < Juj(z) —u(z)].

Recalling that by virtue of Assumption 2.3.10 0 < ¥(r,z) = 9,¢(r, z) holds, we obtain for a.a.

z e

o0

/ " Jo(r, PR (@), us () — g(r, PIER (2,7, u(z))| dr < / juj () — u(z)| B(r) dr
0 0

< Juj(x) — u(w)|d
with b as in Assumption 2.3.6. Consequently,

sup  [(Z(uy) — Z(u),v)| =0 as luy —ull ) — 0.
||U||H1(Q):1

Hence, 2, is a continuous operator.
@ At last let us prove the coercivity of Z];. By the monotonicity of the mapping u — w defined
in (4.1.3)

(w—wp ) (u—pp ') 20

holds a.e. in Q for all u € L?(Q2). Thus, (4.1.5) together with Holder’s and Young’s inequalities

yields the following estimate

/Q"wu dz > —(Co [[ull f2(n)+Co) HleilHLQ(Q)_Hw?nilHLQ(Q) ”WL?(Q)‘HW?JIHL?(Q) Hp”m”HLz(m ‘
Recalling that by assumption p, ! and w?, ! exist and belong to L?(£2), we obtain setting
ex = 0 I iy + I iy et 2= o Iy + 1y I ey 427

the following estimate

/ wu dx > —¢ ||ull 2 — 2 (4.1.8)
Q
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for any u € L?(Q2) and w defined by (4.1.3).
Let now ug € K}, be arbitrary. Hence, by virtue of (4.1.5), (4.1.8), Holder’s and Young's inequali-

ties, it follows that

AQWu—wwmz—fwmumn—@—nﬂumnwﬂpmp

> =1 |ull o) — €2 — éo llull 2 q) lluoll 20y — éo luoll L2 (o)

> agn 2 CAl2 R 612 2 ~
2~ llullza) = w 2w l[uoll72(q) = Co lluoll L2 (o

is satisfied for any u € L?({2). Assembling the estimates we consequently conclude
(Zy(u),u—ug) = / aou(u — ug) + w(u — ug) da + hk™ N (Vu + 2)(Vu + 2 — (Vug + 2)) dz

Q

2 ao 2
= ag HU||L2(Q) — ao ||U||L2(Q) Hu0||L2(Q) 9 HUHLZ(Q)
2 ~
T a C2 — w0 HUOHL2(Q) — G HUOHL2(Q)

+hE |V + 2] 720y — hE [V + 2l 12y | Vo + 2]l 120

A2 ~2
L, 4

2 2 1 a2
> 2 ulla — |+ 2 ol = L - 2 - o ol

-2
k o2 k 12
+ h§ HVU + ZHLQ(Q) - hﬁ HV’LLO + ZHLQ(Q) ;

and since 2 is bounded

(Zm (), u = uo)

[ull g1 (@)

— 00 as [[ul g1y = o0

follows, which finishes the proof. O

As a consequence of Lemma 4.1.2 and Theorem A.4.1 we obtain the following result.

Corollary 4.1.3. Let Assumption 3.2.3 hold, n € {1,...,m}, and assume that v € Ki, for j €
{0, ...,n — 1}, and that there exist 0 < k < k, such that k < k' < k a.e. in Q holds. Then the

variational inequality (4.1.4) admits one and only one solution p;,, € K.

Proof: As by assumption ph € Ki, c L*(Q) holds for all j € {0,...,n — 1}, we obtain by virtue
of Proposition 2.4.4 that w? ! € L?(Q), and therefore in particular agp?, ' + w? ! belongs to

(H(Q))*. Thus, the claim follows by virtue of Lemma 4.1.2 and Theorem A.4.1. O

In the next section we will see, that for all n = 1, ..., m there exist k. k, independent of m, n, satisfy-
ingk <k, < kae.inQ, provided that Assumptions 3.2.1, 3.2.3, and 3.2.4 hold and consequently

for all m € N Problem 4.1.1 admits one and only one sequence of solutions {py;, },,.c (1. m}-
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4.2 The Weak Maximum Principle

In this section we prove the weak maximum principle for solutions of Problem 4.1.1. We are going

to adopt the proof which can be found in [43, Chapter 2, §7] to the time discrete setting.

Proposition 4.2.1. Let m € N, h = L with h < 1. Suppose that Assumptions 3.2.1 - 3.2.5 hold. Then

forall n € {1, ...,m} variational inequality (4.1.2a) admits one and only solution p}:, € K. Moreover,
~R<ph <R s < st <5, k<K' <k a.e. in§, 4.2.1)
where R, 5,5 are as in Assumption 3.2.3, and k, k are as in Assumption 3.2.4.

Proof: We prove the claim by induction. Clearly, according to Assumptions 3.2.1, 3.2.3, and 3.2.4
the estimate (4.2.1) is satisfied for n = 0. Let now [ € {1, ...,m} and assume that the claim holds

forall n € {0,...,l — 1}. Thus, in particular
k<k!' <k vn € {0,...,1 — 1}

is satisfied. Then Corollary 4.1.3 implies the existence of a unique solution p!, of (4.1.2a) at the

time step [. Setting
0Q = (2 x {0} J @2 x (0,7)),
we introduce
P|, Z = sup =z, and b:=a+ Z.
(,y,2)€Q

a = sup
oQ

Let z be the third component of a point (z,y, z) € Q. Forn € {1, ...,1} we define

(P, + 2) = (i 4 2 — )T, and  (—(p +2)) @ = (—p, — 2z —a)",
and consider the following functions
S =D —h(pr, +2)"and o, = pr, + (=, +2)
® We observe that
(o + 2 = W+ 2= <@h+Z2-Z—a) = @f—a)f
holds and consequently (p?, + z)®) vanishes a.e. on T';.

@ On the other hand, (—(p?, 4+ 2))(® vanishes a.e. on {z € I'; : yp?, > —z — a} and on the
set {z € I'1 : yop}}, < —z — a} we have, keeping in mind that by virtue of Assumption 3.2.2
z > 0, the following estimate a.e.
Yo, = Yopm + hyo(—pl, — 2 —a)t = (1 — h)yopj, — h(z +a) <O0.

As both (p, + z)(b) and (—(pP, + 2))(® belong to H'(2), we have ¢", € K and ¢, € K[,

and consequently ¢, and ¢}, are admissible test-functions for (4.1.2a).
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Testing (4.1.2a) at the time step n € {1, ...,1} with ¢!, yields the following inequality

/ (s? — s O + 2)Y dx + b / (k"N (Vpl + 2)) - V(! + 2)® dz < 0. (4.2.2)
Q Q

We will now estimate the terms of (4.2.2) separately.

By virtue of
2
e b < (it +2)" and (2 -0 05+ 20 = (0h+2)") aein,

Remark 2.5.11, and Proposition 2.5.10, we calculate for the first integral of the left-hand of side of
(4.2.2)

[ s+ 20 o
Q

= /an [p, — ] (o + 2)©® d + /Q [wl, — w1 (p, + 2)®) dx
2 2

> 2|+ )|

| @i+ 20

ot /Q U=z 12 gy (4.2.3)

L2Q) L2

with the nonnegative potential L{;ln(bfz) defined as in Remark 2.5.11.

Let us now take a look at the second integral of the left-hand side of (4.2.2).

Bearing in mind that by assumption k > k” > k for all n € {0, ..., — 1}, we deduce the following
estimate

2

h / k' (pl, +2) - V(P + 2)) do > hk HV(pg + z)@)) (4.2.4)
Q

L2(Q)

Furthermore, recalling that (p2, + z)(b) = 0 a.e. in {2, we obtain with the help of Remark 2.5.11

u;;o(b—z) <

00, + 2z =) = 2|0 +2)B) =0

N | o
DN | S

a.e. in . Thus, inserting (4.2.3) and (4.2.4) into (4.2.2), and summing the resulting inequality over

n(

1 < n < I, we obtain taking into account, that for all n € {0,..,m} the potentials Unm =) are

nonnegative a.e. in (2, the following estimate

2

o+ 37 ()

2o+

<0.
2

L2(Q) ~

Moreover, application of ¢}, as a test-function in (4.1.2a) implies

[ () = (s =+ )
b [ T (@ 2) - =+ 2) ) do <0
Q

As before, by virtue of Remark 2.5.11 and Proposition 2.5.10, the following estimates hold

[ (=66 = () Gt + )
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> % |~ +2))|

|t +2p@

2
- +/3%#@Z>—@ﬁlﬂadda (4.2.5)
L2(Q) @) Jo

n(a—z)

with the nonnegative potential %, defined as in Remark 2.5.11, as well as

b [ 2) V) de i [T @, L a2e
Thus, proceeding as above, we arrive at the following inequality
QQW—(l+@ﬂ”2 +khij%ﬂ—@”+@yw2 <0
2 m e " 2@ ~
and consequently
—a < pfn +2<b
is satisfied a.e. in Q). Thus, setting R := a + Z,
~R<p, <R
follows. With the help of Assumption 3.2.3 we deduce, that
W < w), < W,
is satisfied with 27, 20 as in Assumption 3.2.3. Therefore Assumption 3.2.4 yields
k<k,<k
and the proof is complete. O

4.3 Estimates of by | HVpZ,LHiz(Q)

We now prove an easy consequence of Proposition 4.2.1 which reads as follows.

77777

4.1.1. Suppose that Assumtions 3.2.1 - 3.2.5 hold. Then there exists a constant 1 > 0 independent of

n, m, such that

R VDRI < m 43.1)
n=1
is satisfied.

Proof: Let n € {1, ...,m}. In (4.1.2a) we choose the test-function v, = (1 — h)p?, + hP" € K and

obtain:

/ (50— s )0l — ) + B (V0 4 2) - V03, — )] de < 0 (4.32)
Q



67

With the help of the First Energy Inequality for time discrete Preisach operators stated in Propo-

sition 2.5.6, we find

[ = st e = P sy — o gy + [ U~ U

where the ¢!, is the discrete Preisach potential energy defined in Proposition 2.5.6. Furthermore,
we deduce by discrete partial integration, Holder’s and Young’s inequalities, and Proposition

4.2.1 that

- /Q(s;; — s HP dy = — /Q P U e h/g SR g

5 —1pn—1 ENPNE
>—/QS%P7T,Z.L—SZL P dr — hs|Q|2

L2(Q)
holds, where 5 is as in Assumption 3.2.3. Then, the uniform boundedness of our approximate

solutions established in Proposition 4.2.1 together with Holder’s and Young’s inequalities implies
h [ K T 2) V0~ P do
Q
= h/ En—t [|vpg + 22— (Vpl, + 2)(VP" + 2)] dz
Q

)

-2
> Epiopn 4 202,00 — lithP" +3
= M IVPm L) 9 m 12(Q)

where k, k are as in Assumption 3.2.4. Hence, assembling the estimates and summing the result

overn =1,...,1,1 € {1,...,m} we find the following inequality

!
k
/Qufn do+ 503 V8, + 22
n=1

‘pm‘m(g)
ao 1 0 1|2 0 I pl 0 PO
<3 Hpm|]L2(Q)+/Qum dx+/QSum s0 PO dy
l L EQ l 9
LS 5102 Ly H P (
+;s|| +2k;vm+z

L2(Q)
Observing that this inequality is trivially satisfied also for I = 0, as and empty sum equals to 0 by

convention, it follows with the help of Proposition 4.2.1

a

m
0 k 12
P a9+ max | U o+ 503 199} + 2l

ao 1 o 12 0 = D
< ) HpmHL2(Q) + /Qum dz +25|Q)| HPHLOO(Q)

m L
Sk HP;;
n=1

and consequently, Minkowski’s inequality yields

)

EQ m 9
Ly H JZi
+ ok nz::l VP + 2 @)

L2(Q)

2
L2<Q) '

B4k
N +
12(Q)

il

_ 1
th V25 + 2l < 1612 , +510I

7
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Due to Assumptions 3.2.1 and 3.2.2 the right-hand side of this inequality is bounded indepen-

dently of m, n and therefore claim follows. O



CHAPTER B

OSCILLATION DECAY ESTIMATES

In this chapter we prove oscillation decay estimates for the sequence {pf,},,c(y .y Of approxi-

mate solutions to Problem 4.1.1.

Around 1957, De Giorgi and Nash [28, 52] succeeded in establishing Holder estimates of solutions
to scalar-valued elliptic and parabolic PDEs in divergence form with bounded and measurable
coefficients. Ladyzhenskaya and Ural'tseva expanded their theory for both elliptic and parabolic
equations in [44, 43].

For the derivation of oscillation decay estimates we are going to exploit the results of [34], where
Holder estimates were obtained for so called DIFFERENCE PARTIAL DIFFERENTIAL EQUATIONS OF
ELLIPTIC-PARABOLIC TYPE. The technique is based on De Giorgi iteration and, since by virtue of
Proposition 4.2.1 the leading elliptic coefficient is uniformly bounded, the only difference to the
problem considered in [34] lies in the occurrence of a hysteresis operator under the time derivative
in our equation. Nevertheless, we will see that the presence of hysteresis poses no obstacle to the

application of the mentioned technique, as we can apply Proposition 2.5.10.

Following [34], we derive two different types of estimates, as the time discrete equations represent
the feature of elliptic or parabolic equations depending on whether the time discrete mesh is
relatively large or small compared to the size of the domain under consideration. From this
viewpoint Kukuchi introduced in [34] two function spaces depending on the time discrete mesh,
which are only variations of classical De Giorgi function classes studied in [28, 52, 44, 43]. To
obtain oscillation decay estimates for the functions p};, we make use of Theorem A.8.16. Thus,
we have to verify that our sequence {p;;, },,c(1 ., Of solutions to Problem 4.1.1 satisfy ineqalities

(A.8.2.2a), (A.8.2.2b), and (A.8.1.2). We will do this in the following sections.
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5.1 First Estimate

Let us first verify inequality (A.8.2.2a). The result is stated in the Lemma below.

Lemma 5.1.1. Let m € N, h := % with h < 1, and suppose that Assumptions 3.2.1 - 3.2.5 hold. Let
{Pmtneqo,.. .my e the sequence of solutions to Problem 4.1.1.

Let zo € Q, ng € {1,...,m} be arbitrary, and put t,, := noh. For gy > 0 as in Assumption 3.2.2 and
70 > V'h, we denote by B, = B,(xo) the ball centered at xq with radius 0 < o < o, and by Q(o,7) a

local parabolic cylinder of the form

Q(0,7) == By X (tng — Ty tng)s

where Vb < T < 7). Let py, be the piecewise constant time interpolate of the sequence {p?}, - {©

defined by

s}

pr(x), for (n—1)h <h<nh, n>1,
Pm(x,t) = f fora.a. x € Q, (5.1.1)

p(r)n(x)? f01’ t =0,

Moreover, we set Uy, := Py, and ag‘:) := (U — a)™ forany a € R.

Then there exist a constant v > 0, independent of m,n, o, T, such that for all o1 € (0,1)
2

2
(a) =(a) . _
sup Hu (-t H < Hu (-, max {0; ¢t T )‘
maX{O,tnof‘r}gtStnO " ) L2(B(1—01)90Q) " { "o } L%(B,NQ)

tng 2
-2 a(® A t)] dt 12
! ! <(Ulg) /HlaX{O,tno_T} ‘um LQ(BQHQ) + H aﬂg]m( )’ (5 )
holds, where
[Aay) (t) = {x € B,nQ:al@(t) > a} : (5.1.3)
and where the levels a satisfy
a> sup Upm — 2R, and a> sup T (5.1.4a)
Qem)NQ Q(e,m)N2x{0}
with R, R is as in Assumption 3.2.3, as well as
& iUy =pm a> sup (voPm) ™, (5.1.4b)
Qe,m)N(Ty x(0,7))
< Zfam = —Dm a> sup _(VOﬁm)—‘r? (5~1~4C)
Q(o,7)NZ1
with the classical convention sup, e u(z,t) = —oo.

Proof: The proof follows the arguments of [34]. Thus let g, no, tn,, 00, and 7y as above. Moreover,

let o,7 € R™ and o7 € (0, 1) be arbitrary satisfying o < 0o, Vh <1< 7.
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Let ¢ € C}(R3) be a scalar-valued function satisfying 0 < ¢ < 1, |V({(x)| < =, and

0'19

1 f — 1—-0
((x) = or e maol <t =ee (5.1.5)

0 for |z —xo| > 0.
Letn; € {0, ...,m} be such that t,,, — 7 < n1h < t,,, and consider the local parabolic cylinder
Q(o0,7) = By x (noh — 7,n0h).

Observing that for any n € {n1,...,no} and any level a satisfying

a > max sup  pm — 2R; sup Dm sup (voPm) ™ ¢ 5
Qe,m)NQ Q(e,m)N2x{0} Q(e.)N(Ty x(0,7))

with Q(o,7) as above, the nonnegative function vo(p?, — a)"¢? vanishes particularly on those

parts of I'y where vp;;, > 0. Hence,
o, = pry — h(plh, — a) "¢ =: plt, — hp ¢

is an admissible test-function for (4.1.2a) for alln € {ny, ..., no}.

Applying ¢}, as a test-function in (4.1.2a) yields

[ (6= s 6 b (T4 )V (00¢) ) de <0 (5.1.6)
Q

for all n € {n1,no}. Now we want to estimate the terms of the left-hand side of (5.1.6) separately.
The second term can be estimated in the same way, as it has bee done in [34]. In order to estimate

the first term, we will exploit the results of Proposition 2.5.10.

® As in the proof of Proposition 4.2.1 we obtain by virtue of
pt—a<plV@ and  (pr,—a)pp® = ()’ ae in,
and Proposition 2.5.10 the following estimate

/(s’,‘n — s hprl@) 2y (5.1.7)
Q

>a0[
- 2

where the potentials Z/{;Zn(a)

"

Hp(n 1) (a)C‘

u*n(a) 2 _u*n—l(a) 24 ’
LQ(Q]+/Q )2 _ =10 gy
are defined as in Proposition 2.5.10.

@ Introducing the level sets

[Ag,oly, = 1{z € BN pp, —a >0}, (5.1.8)



72 5.1. FIRST ESTIMATE

we observe that

_ Vpn(a)

and Vo,

[Aa,elm

[Aa,0lm, [Aa,olm, [Aa,olm

hold for all n € {n1,...,n2} a.e. Hence, bearing in mind that Proposition 4.2.1 yields 0 < k <

k% <k for all n € {0,..,m}, we obtain by virtue of Young’s inequality

¢ dx

[ e o> [ kvl ¢ - / Rzl | Vo
Q [Aa,olr, [Aa,olm,
*2
3k k ,
> — - — 1.
=5 do- [ ¢ G19)
[Aa,olim,

a,01lm

as well as
2 [ 1Vl + ¢ Veda
Q

2—2/ %IV |p 4\W|dx—2/ F 1l |p
[Aa, ol [Aa ol

\ el
=" /[Aa,g}:; 2 ‘V

N(a)

¢IV(| d

n(a

2
v de- [ Jean,
[Aa.]?, 2

(5.1.10)

2
dr — 2 (k +k ) / P
k [Aa ol

since |2| = 1. Recalling the construction of the function ¢, we find |V(| < 2(010)

—land

follow assembling the estimates (5.1.9) and (5.1.10)
[ (k429 (067 ) o
Q
-2
2/ : ‘vpﬁf“) dz — (k +k¢2> 8(01Q)_2/
[,y 4 k el

-2
- <; + ]2) / dr. (5.1.11)

[Aa,ely,
Inserting the estimates (5.1.7) and (5.1.11) into (5.1.6), and summing the result over n € {n1, .

..,TLQ}

with ng € {nq,...,no} we obtain

n2
0 || na(a) || / sna(a) 2 g, o K / n(a)
c‘L2(Q)+ U Cd:p+4hn;1 BQ‘me dz
% n1—1)(a) x(n1—1)(a) 2
< 1—
-2 Hp C‘LQ(Q) /Qum ¢Cdw
(o10) cth/ m i@ dx+cth/ " ¢2dz, (5.1.12)
n=ni

where we set ) )
ko 1k
¢1 i= max {8 (k + k2> : <2 + k) } . (5.1.13)
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Moreover, we observe that inequality (5.1.12) is trivially satisfied when ny = n; —1, as by conven-
tion an empty sum is 0. Thus, taking in (5.1.12) the maximum over ny € {n; — 1, ..., ng} it follows

that

max

2
+ max Z/I*” 2 dy
(n1—1)<n<ng

n(a) 2
p C‘ L2(Q) (n1—1)<n<no ao Jq

m

< ‘pgﬁ“_l a (‘ ao u*nl l(a)CQdCL‘
no
+7 ( 710)"*h Z / @ dz+h > \[Aa,g]?n\>
n=mni n=mni

2
holds, where ~ := cL. Consequently,
0

max n(a) < Hp ni1—1)(a)
(n1—1)<n<ng
no
+’Y<‘710 zhz / " s d:c—i—hz HAa,g]%)
n=ni a e n=ni

is satisfied. Since by assumption 7 > v/h and h < 1, we have in particular that 7 > & holds.

Hence, denoting for a number » € Rby |r] :=max{z € Z: z <r},
ng — [ZJ +1<
0~ |3 < no

follows, and setting n; := max {1;n9 — |7 | + 1} we obtain

2

max

n(a) 2 < Hpr(nmax{O;no—L;J})(a)
max{O;nof L%J }§n§n0

L2(B(1,o.1)gﬂﬂ) -

L2(B(1,gl)gm§2)

no 2 10
o [ (1020 3 / @] da > [Aa gl
n:max{(];no— L%J }+1 [Aa,g]m n:max{o;no— I_%J }+1

Based on the definition of p,,, we can rewrite this inequality in the form

2

2
< ||z T ’
— Hpm ( , max {07tn0 T}) LQ(BQHQ)

sw (a0

2
max{O;tnD —T}ﬁtﬁtno L (B(l—f’l)gﬂﬂ)

tng 2
+ v ((019)2 /m ) ‘pgg) ) dx + |[Aal,, (t)}dt) , (5.1.14)
where
[Aaol,, (1) := {2 € By : pm(x,t) > a}. (5.1.15)

Therefore, the function p,, satisfies (5.1.2).
Let us now consider the function —p,,. We observe that for any n € {ni,...,no} and any level a
satisfying

a > max sup  —Pp — 2R sup —Dm;  sup  —(vpm) " ¢,
Q(e,7)NQ Q(e,7)N2x{0} Q(o,7)NE1
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the nonnegative function v (—p?, —a)*¢? vanishes particularly on those parts of I'; where yop?, >
0. On the other hand, if [{z € T'y N B,(xo) : Yopyy, < 0} # 0, then supg, 1as, —(70Pm)™ = 0, and

a is necessary nonnegative. Hence, if yopj, () < 0 we have forall h < 1
Y0P + (=P (@) —a)™ <0,
and consequently the function
rm = Py + B(=ppy, — a)*(* = p, + h(=p}y,) ¢

is an admissible test-function for (4.1.2a), for all n € {ni,...,no}. Thus, applying ¢}, as a test-
function in (4.1.2a) and arguing as above we obtain estimate (5.1.14) for the function —p,, and

conclude, that +p,, satisfies (5.1.2) with - defined as above. O

5.2 Second Estimate

In this section we show, that the functions +p,, satisfy inequality (A.8.2.2b). The result we prove

reads as follows.

Lemma 5.2.1. Let m € N, h := L with h < 1, and suppose that Assumptions 3.2.1 - 3.2.5 hold. Let
{Pmtneqo,...my e the sequence of solutions to Problem 4.1.1.

Let g € Q, ng € {1,...,m} be arbitrary and put t,, := noh. For 0 < gy as in Assumption 3.2.2, and
V'h < 1 we denote again by B, = B, (o) the ball centered at xo with radius 0 < o < oo, and by Q(o, T)

a local parabolic cylinder

Q(o,7) = By X (tng — T: lny),
where Vh < 7 < 7.
Let py, is the piecewise constant time interpolate of {pj,},,cqo. . my §iven by (5.1.1), Uy, = +pm, and for
a € Rwe set \&) = (i — a)*.
Then there exist a constant T > 0, independent of m,n, o and T, such that for any 01,02 € (0,1) the
following inequality is satisfied

va|

dt
" L2(By—sy 0N9)

sup Haﬁ;‘;)
max{();tno — (l—az)T}StStnO

tn
<x/[” [(010) 2 + (02m)"] [0
maX{O;tnO —T}

2 tng
) +
L2(Bo—g10M%2) max{O;tnO—(l—og)T}

2

Agll )| at, (5.2.1

where [Aq,,),, (t) are defined in (5.1.3), and the levels a satisfy restrictions (5.1.4).

Proof: Again, the proof follows the arguments of [34]. Thus, let z¢, ng, tn,, 00, and 7y be as above.

Moreover, let o, 7 € RT and o1, 02 € (0, 1) be arbitrary satisfying o < 0o, Vh < 7 < 70.
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Let the scalar-valued function ¢ € Cj(R?) satisfying 0 < ¢ < 1, |V((z)| < 2% 5 beas in (5.1.5).
For given 7 > 0,0 < 02 < 1 and ng € {1,...,m} we introduce a step functlon Nm(t) defined on

[0, T] as follows:

N (t) ==, for tho1 <t<tp,nel, ..,m, (5.2.2)
where )
1 for ng — [(1722) J <n < ng,
Ny, = Tn no-l-L(I Ja_;r for ng L%J +1<n<ng— L(l_ZQ)TJ -1,
[7]-2- { J
0 forn <mno—|7].

As in [34], we will distinguish the following cases

® o091 > 4h,

®@ o091 < 4h.

® We start with the case oo7 > 4h.

Particularly, in view of oa7 > 4h, we have
n n—1 h
0<n, —ny = < —), ne{l,..m}.
Considering the local parabolic cylinder
Q(Qa T) = BQ X (noh -7, noh‘)a

we see, as in the proof of Lemma 5.1.1, that for any n € {max {0, %]} ,....no} and any level a

satisfying (5.1.4) the function
O = D — W0y, — @) ¢y, =2 ply, — hlp @ ¢

is an admissible test-function for (4.1.2a) for all n € {max {0, | 7|}, ..., no}, where as before for a
number r € R we use the notation |r| :=max{z € Z: z < r}.

Applying ¢}, as a test-function in (4.1.2a) at the time steps

n e {max{(),no— [%J},...,nl}, with ny € {max{(),no— L%J},...,no},

and summing the resulting inequalities over n € {max {0;no — | 7|}, ...,n1}, we obtain

Z / D¢,

n= max{O no—

+h Z / k=L (Vpt + 2)V (p%@g?n;g) dr <0. (5.2.3)

n= max{O nog—
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The second term on the left-hand side of (5.2.3) can be estimated as it has been done in (5.1.11).
Let us now take a closer look at the first term of the left-hand side of (5.2.3).
As by definition N ) _ 0, p%a) =0,and n?, = 1 forn > ng — {%J + 1 hold, we calculate

5 / R, d

n= max{OnO |_
_ - no_ n(a) 2
> /Q (s, — s PPy

n:maX{O;no—L%J}—&-l
max{O;noleiZ?)TJ}
D DR AC A e RIS
n:max{O;nofL%J}+1 @
i 3 / (7, — st p ¢ dx, (5.2.4)

n:max{O;no— {(I_ZQ)TJ }+1 @

Then, Proposition 2.5.10 implies

i /Q(s"m—s” Dp ”(a)( dx

n:max{O;nof {7(17;2)‘1 }+1

2% e

max{O;no— L%J }(a)

Pm

L2Q)

2
¢
L2(Q)

* max N2 (=og)T
+ / U@~y o= 52 ¢ de, (525)
Q

as well as

max{O;no— Li(l_zz)TJ}
S s e, da
n:max{O;no—L%J}—s—l @

(1—o9)T

max{O;no— { }
ao
> Z B [ p@)
n=maxq0;no—| 7 | y+1
max{O;an L@J }

+ 2. [ /Q U ¢ —u:n”—”“)c?] i 2,

n:max{O;nof L%J }+1

2
ol

N

n(a)

where the nonnegative potentials ,,"* are defined as in Proposition 2.5.10. Moreover, we find

max{O;nof L7(17:2)T
ao
> P
n:max{O;nof L%J }+1
max{O;nO— {7(1_22)‘1 }
ag
> > ) [

n:max{(];no— \_%J }+1

o

(n— 1)(“)4‘

I~

2
n—1
N

i o~ Hpﬁ,?*”(a)é‘ L
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max{O;no— {%J

a (a _7777}@_1
oy g, |
n:max{O;nO—L%J}—s—l

nof{(lf;:Q)TJ

Because of 0 < ===t < A, . i) 0, Dm — 1, and po¥ = 0, it follows from the

02T

preceding inequality

max< 0;no— (-oy)r
{ 0 { R }a n(a)c‘ H (n—1)( )42 n
D) L2y IIPm )] ™
TL:maX{O;n()*L%J}‘Fl
2 max{O;no—L(l_ZZ)T
. maX{O;no—L%J}(a) 2a0 H (n—1)(a) ’2
S % __ 4to . 2.
=79 Pm ¢ O'2Th Z Prm ¢ L2(Q) dz. (3.26)
L2() n:max{O;no— L%J }+1

Exploiting the results of Proposition 2.5.10, we find that for all n € {0, ..., m} the potentials U@

satisfy the following estimate a.e. in )

u*n(a) < 9 pn(a) 2
m — 2 m

with b = f;; B(r) dr as in Assumption 2.3.6. Thus, we deduce similarly to (5.2.6) the succeeding

estimate

> [ / U - u:@"““)cﬂ i 2
n:max{O;no— L%J }+1 @
max{ﬂ;nof V1722>TJ}

* max{O;no {MJ }(a) 9 4 / sn—1(a
> [ Un dr — —h u,' d
> /Q ¢“dx Z 0 )2 da

goT
n:max{[);no— L%J }—i—l

- maX{O;nof{m

*max< 0;n a- UQ)T a 2b " J}
> / U, { 0~ { J}( CZ -~ h Z / ‘pgg_l dx. (527)
Q o2T . Q
n:maX{O;nof LEJ }Jrl
Inserting the estimates (5.2.5), (5.2.6), and (5.2.7) into (5.2.4), we arrive at
Z / D¢
n= maX{O no—
2
a0 || ni(a) ’ *n1(a) 2
> 1 d
> % |l <L2(9)+/Qum ¢ da
B max{(];no— L%J }—1
ag +
-2 h 5.2.8
027 > (5.2.8)

nemex{omo~| 7]}

Taking into account that the potential U (@

(5.2.8) into (5.2.3) we find

is nonnegative a.e. in {2, and inserting (5.1.11) and
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C277" dz

p”m“%(;(mw Z /\me

nno—f

ni

dx+h Z [Aaolml |
n:max{U;no— L%J}

n(a)

<71 | [(o10) 2+ (02r) 1] 1 Z /

where [A4, ], is as in (5.1.8),

T —max{ 20 2}(% 2(ap + b)),

and ¢; as in (5.1.13). Consequently, taking the maximum over n; € {max {0;no — ||}, ...,n0} in

the preceding inequality we infer

)2
@ s / v 2, n
max
max{O;no— L%J}Snﬁno C‘ L2 n= max Ozn:o— z ‘ p C !
0o
<Y1 |[(610)2 + (02m) '] B / " pre dx +h Z I[Ag,olmml
Aa,e

n= max{O ng— %

n=mas{0mo-| 7]}

Recalling the construction of the function ¢ and the definition (5.1.1) of p,,,, we conclude that

(a)||?

~(a) ‘ _
VP L2(Bo—0yNQ)

sup dt

max{0;to—(1—o2)7}<t<to

<Y ([(019)_2 + (027) 7] /

max{0;to—7}

2 to
o,
L2(Bo—010M2) max{0;to—(1—o2)7}

2 to
di + / Aagl,, (O] dt | (529
LQ(BQHQ) max{[);to_rr} |[ ,Q]m ( )‘ > ( )

is satisfied, where [A, ], (t) as in (5.1.3). In other words, (5.2.1) holds.

to

’ (a)

Arguing as in the proof of Lemma 5.1.1, we observe that for any n € {max {0;no — |F|},...,n0}

and any level a satisfying conditions (5.1.4) the function

P () = P (@) 4+ h(—pp(x) — a) T ¢

is an admissible test-function for (4.1.2a), for all n € {max {0;no — |%|},...,n0} in Q(o, 7). Re-
peating the arguments above, we obtain inequality (5.2.9) for the function —p,,. This implies that
+p,, satisfies inequality (5.2.1) as long as 7 > v/h and 097 > 4h.

@ Next, we deal with the case o917 < 4h.

Here, we obviously have

1
& < 4(oor) L. (5.2.10)

Starting with (5.1.6) we arrive by virtue of Proposition 2.5.10 and estimate (5.1.11) at the following
inequality (c.f. (5.1.12))

k, 2
*na(a) 2 L n(a) 2
2(Q)+/Qum gd:c+4hn;1/ﬂ(vpm ) Cdw

ao

Z(Q)C‘i
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for any ny,ny € {max {O; ng — L%J } s e no}. Observing that this inequality is trivially satisfied

for ny = ny — 1 we obtain with the constant ¢; as in (5.1.13)

2
)—l— max /L[*”(a)CQdm—l— =h Z/ Vp”(a) Cdx

n1—1<n<ng
n=ni

+/u:n(n1—1 aC2d$

na
(010) Clhz / | dz+eih S (A,

n
n=ni ‘l 9] n=ni

max
n1—1<n<ns

i

and therefore

n2
hZ/ Vpla)2¢2de < (010) cth/ pe dx—i—clhz [Aao™]  (5.2.11)

n
n=ni n=ni GQ] n=ni

holds for any ni,ng € {max{0;no — ||}, ...,n0}.

On the other hand, bearing in mind that oo™ < 4h, we have that

/3901909

n(a)|?

< 4(0’27')_1h/ D (a)
Q

dzx

4(oar) A Z / ’p7(a ¢ dx
Jj=n1
is satisfied for any n € {n1,...,n2} and therefore
2 2 2
max / PP de < 4(oyr) " 'h Z / @ ¢ de (5.2.12)
msnsne Jg, . N0 neny I 9
follows. Adding (5.2.11) and (5.2.12) and choosing
1 —

n1 = max {0; ng — {(}?M—J } and ng = ng,

we infer, recalling the construction of the function ¢ and the definition (5.1.1) of p,, ,
t7l 2
sup H 50| ) +/ ’ ‘V_%) , dt
maX{O;tnO—(l—ag)T}Stgtn L?(Bo-010M%) max{O;tno—(l—ag)T} L2(Bo-010M%Y)

‘ ~(a)

m

< Ty ([(01@)2 + (o27) 7] / .

max{(];tno 77'}

2 tng
S Al O] )
L2(B,NQ) n’laX{O;tnO*T}
where
4
T9 := max {1, k:} (c1+4).
Analogously we obtain this inequality for —p,,. Hence, setting T = max {1, T2} the functions

+py, satisfy (5.2.1) as long as 7 > Vh. O
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5.3 Third Estimate

In this section we show, that the functions +p,, satisfy inequality (A.8.1.2), provided that o < h.

The result is stated in the following lemma

Lemma 5.3.1. Let m € N, h := L h < 1, suppose that Assumptions 3.2.1 - 3.2.5 hold and let the
sequence {pi, }eqo,...m}) be the sequence of solutions to (4.1.2a).

Let zo € Q, oo in Assumption 3.2.2 and denote by B, = B,(x) the ball centered at xo with radius o > 0

satisfying o < min {h; 0o }.

We set w), = =+pr, and W = (ult, — a)t for any a € R. Then there exists a constant = > 0,

independent of m,n, and o such that for any oy € (0,1) and all n € {1, ...,m}

/ [
Bo—oy N

holds, where [Aq )" is as in (5.1.8) and the levels a satisfy

[ a,01lm

2 2 1 2 2
do <2 |o7?0™" sup Jup, —al? + 1| [[Agol|?, (5.3.1)

a> sup ul' —2R, (5.3.2a)
By (20)NS2
with R as in Assumption 3.2.3, as well as
¢ dful=pp  a> sup  (yopm)T, (5.3.2b)

Bg(xo)ﬂr/l

<> ifuy, = —pp, a> sup —(yop)T, (5.3.2¢)

BQ(Io)ﬂpl

with the classical convention sup(, e u(z,t) = —oo.

Proof: Again, the proof follows the arguments of [34]. So let zy and gy be as above and n €
{1,...,m}. Let o1 € (0, 1) be arbitrary, and ¢ > 0 satisfying ¢ < min {h; go}.
For 0 < oy < 1let ¢ € C}(R?) be as in (5.1.5).

Again, as in the proof of Lemma 5.1.1, we see that the function
b = v — [ — ) 7] 2 = ply, = G2 [

is an admissible test-function for (4.1.2a) provided that the levels a satisfy condition (5.3.2).

Application of ¢}, as a test-function (4.1.2a) at the time step n € {1, ..., m} yields

/ (s = a4 WV (0 +2) -V (pp@¢?) ) da < 0. (5.3.3)
Q

Setting M = max {E, R}, where R and 5 are as in Assumption 3.2.3, we obtain by virtue of our

assumption ¢ < h, with | B;(0)| being the volume of the unit sphere in R3

1 _1
= |B1(0)[3 |B,| "5 .
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Moreover, due to (5.3.2a) it follows

<2M.

P — @ <
Bg(x())ﬂﬂ

On the other hand, the set [A, ] defined in (5.1.8) satisfies [A, ,]]", C B,(xo), and therefore we
find

1

; < AMZhH|[Ago)l |

[ (s s 6
Q

~ 1 _1
<AM? |B1(0)|7 [Bo| " |[A

ael|

<40 [Bi(0)]} |[Aagll|* . (5.34)

Keeping in mind, that ¢ < h, we obtain from (5.3.3), with the help of (5.1.11) and (5.3.4)

2 4 2
/ ‘VP:Ln(a) dr < %Cl (((71@)2/ p%a) dx + HAa,g]nm‘)
By—5q N2 A2 [Aaelr,
16 -~ 1 n12
+ I BIO) Al |
2
<= [01_291 sup |pp, — a|2 +1 HA(W]Z@P , (5.3.5)
[Aa,olp,
where ¢y is as in (5.1.13) and
4 -
= = - max {q 1B1(0)]3 5 c1 Q7 + 4012 yBl(o)y%} . (5.3.6)

Consequently, p;, satisfies (5.3.1), provided that o < h.
Applying 7, := p? + h[(—p? — a)*] ¢?, where the levels a are chosen according to (5.3.2), as a
test-function in (4.1.2a) at the time step n and arguing as above, we obtain estimate (5.3.5) for the

function —p!,. Thus, +p}, satisfies (5.3.1) for all n € {1, ...,m} with E as in (5.3.6). O

5.4 Oscillation Decay Estimates for Approximate Solutions

Let us now prove the main result of this chapter which reads as follows

Proposition 5.4.1. Suppose that Assumptions 3.2.1 - 3.2.5 hold, and let m € N, h := %, such that
1
h <min< 62,675, -

mm{ ,073, 36}

with 0 as in Lemma A.8.9. Let oy be as in Assumption 3.2.2, and 19 > 0. Further, let the sequence

{Pm}tneqo,... .m) be the sequence of solutions to Problem 4.1.1, {wy, },,c 1o, .y defined according to (4.1.2d),

and {S?n}ne{o,...,m} = {aop?n + w?n}ne{o,...,m}'

Then there exist numbers 0 < po and o, with 0 < « < 1, independent of n, m, such that

osc {pp; QN By(zo)}, osc{sy: QN By(xo)} < p20®  for0<n<m (5.4.1)
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are satisfied for any ball B,(z¢) C R? centered at zg € Q with radius o < go, and

/

Pin (%) = P (2)

(@) = ()| < pa [(n —nn] ¥ (5.42)

hold for any = € Q and any positive integers n and n’ with0 < n' <n <mand (n —n')h < 1.

Proof: Due to Propositions 4.2.1 and 4.3.1 we know that the piecewise constant time interpolate
Pm of the sequence {p};,},,c o, . my- defined by (5.1.1), satisfies (A.8.2.1) where we can take M = R
with R as in Assumption 3.2.3.

Moreover, Lemmata 5.1.1 and 5.2.1 yield, that £p,, fulfill (A.8.2.2a) and (A.8.2.2b) for any o, 7
with the restriction 0 < o < 09, Vh < 7 < 79, and all 01,09 € (0,1). In addition, by virtue of

Lemma 5.3.1 the functions +pj,, satisfy (A.8.1.2) for all n € {1,...,m} and any 0 < ¢ < g, and

o< h.
Let us now consider the sequence {py, .}, (0...my1) defined by
1 =P d pp=pp' forn=1,2 1
Pm+1 = Pmo> an Pm+1 = Pm orn=1,2,....m+ 1.
Then, clearly the piecewise constant time interpolate p,, 1 of {p,,;} {0, mt1)7 defined accord-

ing to formula (5.1.1), satisfies (A.8.2.1) with the constant M as above, where the time instant 7 is
replaced by T" + h and the space-time cylinder Q is replaced by Q}, := Q x (0,7 + h).

Moreover, £p,,, 11 fulfill (A.8.2.2a) and (A.8.2.2b) in @}, for any p, 7 with the restriction 0 < o < gy,
Vh <1 <71,and all 01,05 € (0,1).

In addition, by virtue of Assumption 3.2.5, the functions +p?, satisfy (A.8.1.2), and consequently
+p; satisfy (A.8.1.2) foralln € {1,...,m+ 1} and any 0 < p < go, and ¢ < h.

Therefore, the sequence {p,},c1o 41} Meets the requirements of Theorem A.8.16. Thus, ac-
cording to Theorem A.8.16, there exist numbers 0 < 1, and a with 0 < o < 1, independent of

n, m, such that

0s¢ {Pp1; 2N Bo(wo) } <Tpo®  forl<n<m+1 (5.4.3)

is satisfied for any ball B,(xg) C R3 centered at zg € Q with radius o < gg, 0o as in Assumption

3.2.2,and

N[}

Pinia(@) = Pina (@) < 702 [(n = )] (5.44)

holds for any x € Q and any positive integers n and n’ with1 <n’ <n <m+1and (n—n')h < 1.

Recalling the construction of the sequence {p” .} we have in particular for any

ne{0,...,m+1}’
T1,T9 € BQ(JZ()) NnQ

|pnm($1) —Pﬁz($2)|
|1 — 2o|®

< [i2, forany 0 <n <m,
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as well as

P () — P (@) _

s f axef
‘(nl_n2)h|1 Oora.a.xr

for any 0 < ng < n; < mwith (n; —ng)h < 1.
Let the sequence {w}},},,c {0,...,m} be defined according to (4.1.2d). Then, due to Proposition 2.3.9
the following inequality holds

)

R . . .
|win (1) — wp, (22)] S/O @1, 7) = Mz, m)] B(r) dr + b(R) max. [Pl (1) = Dl (2)

where R is as in Assumption 3.2.3. Thus, we find

R ~ =
|wi (21) — wp (22)] < [/0 (A7)0 B(r) dr + b(R)jig | |21 — 2|,

where (A(+,7)), o denotes the Holder-seminorm of A(-,r), defined in (A.2.1). As by virtue of

Assumption 3.2.5 the expression

=i

fio = B(R)fia + /0 A B(r) dr,

that for all 0 < n < m the estimate

osc{wy,; XN By(x0)} < figp” (5.4.5)

is satisfied for any ball B,(zo) C R? with radius ¢ < go.

Now let z € 2 be arbitrary, and take 0 < ny < ny < m. Then we clearly have

|w

where {@7,},,co . is the output of the discretized Preisach operator, defined by (4.1.2d), cor-

responding to the initial configuration A(z,-), and the input sequence {vy},},,c (0.}, defined as

follows
0. (z), for0 <n <nj; —ng,
Up(2) =
p%_(m_n?))(w) forn; —ng <n <m.

With the help of Proposition 2.3.9 we then calculate
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Hence,

]

wh(2) = wis (@) < fiz [(n — )] (5.4.6)

holds for any « € Q and any positive integers n and n’ with 0 < n’ < n < m and
y y P g

(n —n')h < 1. Bearing in mind the definition of the sequence {s}} (o . we can set

m}’

p2 = max {fi2; apfiz + fi2} and the proof is complete. O
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Problem 4.1.1 satisfies the following estimate

l
‘ +hz

L2(Q) n=1
where the constant C' is independent of m and .

2 2

ph, — plit

h

n n—1
w <C Vie{l,..m},

L2(Q)

The proof of this result will be quite challenging. Indeed, the natural way to obtain this kind
of estimate, would be based on building the incremental time ratio of the variational inequality
(4.1.2a), by taking in (4.1.2a) at the time step n the test-function ¢;,, = {p%fl + P? — P*=1] and at
time step n — 1 the test-function ¢! = [pﬁn + Pt - 157’]1] and then adding both inequalities. If
we would be able to make use of the Second Order Energy Inequality for the Preisach operator,
we would obtain, after application of Holder’s inequality and summation over n, an inequality

of the following form:

I 1—1 2
pm - pm

h +h

LQ(Q) n=1
pn 7pn—1 2
m m
h

! !
< c+chz +ch2/
n=1 LQ(Q) n=1 Q

Unfortunately, problems with further estimating arise from the lack of an obvious possibility to

L2(Q)
n _ . n—l1 2
Pm — Pm__ hpm IVp + 2|? da.

estimate the last term on the right-hand side in a suitable way. Moreover, the derivation of the
above inequality becomes problematic, since the hysteresis loops are not necessarily convex, and
thus the Second Order Energy Inequality for Preisach operators does not hold.

The solution to the depicted difficulties lies in the application of Proposition 2.5.12 (as a replace-
ment for the Second Order Energy Inequality), and also in the exploitation of Holder continuity

of the approximate solution p! in Q. As the estimates are quite long we will split the proof in

85
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several smaller lemmata. In the following section we will prove some technical results making

use of the C%%(Q2) regularity of the functions p?,.

6.1 Some Preliminary Results

Throughout this chapter, let us denote for m € N, h = T'/m, and a sequence {y;;,},,c(o. . ) the

-----

yn, —yn!

The aim of this section is to find a way, how we could estimate the integral expressions

°om

Q

where (s}, py,) are the pair of solutions to Problem 4.1.1 at the time steps n = 1,...,m and ( is

. 2 N
Pl VPR + 27 ¢ da,

}3;‘1}2{2 dx and /
Q

a nonnegative cut-off function. The first estimate is provided by Lemma 6.1.1 and the second is
provided by Lemma 6.1.3 at the end of this section.
We start with the following result.

Lemma 6.1.1. Suppose that Assumptions 3.2.1- 3.2.5 hold. Let m € N, h := L and {pmtneqr,.. my be

the sequence of solutions to Problem (4.1.1). Moreover, assume that with R as in Assumption 3.2.3

1

h<-—=
~ 4R

holds. For any g > 0 and zo € Q let ¢ € C(R3), 0 < ¢ < 1, be a cut-off function with the property

1 forz € By,,
C(a) = ‘ e 50 (6.1.1)

0 forz € R?\ By,

where B,, (Bay,) denotes the ball centered at xo with radius oy (200 resp.). Then for all € > 0 and all
l € {1, ..., m} the following inequality holds

! ! !
L] [l 1 Ll A~ R Ll
hZ/Q Sl ol ¢ < EhZ/Q Bl (V9 + 22 de 4 3 eh Y ViG]
n=1 n=1 n=1
!
. . . 1+ ¢
+C100) (14 O Y [l + Calen) -, (612)
n=1
where
—2 —2
) PSR 212 N 32K || 512 32k
iy = [ g =2 I o) ] = 25+ 25
1(e0) ‘L?(Q)+ 4 ‘ LOO(Q)+<CLO+ ( )) ‘Loo(Q)+ 0 L?(Q)+ 03

with k as in Assumption 3.2.4, ag and R as in Assumption 3.2.3, E(R) as in Assumption 2.3.6, and ji; as
in Proposition 4.3.1.
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Proof: Let g9 > 0, 29 € Q be arbitrary, ( € C}(R?) be a cut-off function as in (6.1.1), and n €
{1,...,m}.

Making use of Assumption 3.2.3 on the Preisach operator, and of the boundedness of the approx-
imate solutions obtained in Proposition 4.2.1, the monotonicity property of the Preisach operator

(see Proposition 2.5.5) yields the following estimate for alln € {1,...m} a.e. in Q

o |2
Pm| >

0<&npr < (ao + B(R))

where R is as in Assumption 3.2.3 and b(R) is as in Assumption 2.3.6. Therefore, it follows

hi/g

§n

l
AEARSTE oY A A RIS
n=1

l . 1 .
O3 KA AT o) R A AT
n=1 L n=1 Q
l [ ]
<03 [ s a i cas
n=1 Q

l
>
Q) n=1

+ (ao + 5([%)) Héﬁ ﬁzglﬁz(g) ) (6.1.3)

LOO

We claim, that for all n € {1,...m} the functions

o g — 1 [133% - ésa}

B 2.
belong to K7),. Indeed,

® Letz € I'y, such that yop?, (z) > 0. Hence, by virtue of Assumption 3.2.1 also yop?; *(z) > 0,

and we find, that op?, () = P (z). Consequently, vo¢?, (x) = yop, () follows.

@ Let now z € T'y, such that yop?,(z) < 0. Then again Assumption 3.2.1 yields yop, ! (x) <0,
and we follow, that P? (x) = 0. Keeping in mind that yop!~'(2) < 0 holds, we obtain

Yoo () = Yop (x) — B (vopip () — vopp ()70 [P (2)| ()
= Y0P, () [1 = B30 | B, ()| ()] + B*y0pp, (2)y0 [P (2)] ()

< Yopp () [1 = W0 [P (2)] ¢ (2)] -

1
Moreover, our assumptions h < 15 and ¢ < 1yield

2maxocnsm [0}l e R
AR 2R 2’

0 [ ()] () <

and therefore (y0¢")" = 0 = (yop?,)" a.e. on I'; follows.
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Choosing in (4.1.2a) at the time step n € {1, ..., m} the test-function ¢}, and summing the resulting

inequalities over n € {1,..,1} with [ € {1, ..., m} we obtain

l °
3 on |en _ pn
h nz:l/gsm [pm Pm:|

which in turn implies

l L d
h on |en _ pn
S RALAE

l [ J
Pr| (Pl + h32/gkﬁfl(w¢n +2)-V ([ﬁ% - 15;;} ol @) dz <0,
n=1

°n

l [ ]
Gz 1Y [k Ve +2)- ([ﬁz - P;s] P
n=1 Q

C2> dx < 0.

(6.1.4)

To establish inequality (6.1.2), we have to estimate the second term of the left-hand side of (6.1.4).

First, a simple computation yields
v <[ﬁ”m - 15;2]

foralln € {1,...,m} a.e. in Q. Since |V |p}, || < | VP2, | clearly holds for all n € {1,...,m} ae.in Q,

i <2) = [Vﬁ"m -~ vz%z} P ¢

i [zs:; - ﬁzz] V[ 42 [ﬁz - P;z] Bl cve

we obtain:

® With the help of Proposition 4.2.1 we have 0 < k < k7, < k for any n € {0,..,m} a.e. in Q,

and therefore Young’s inequality implies for an arbitrary € > 0

|

l
AR Y RIAIER]
n=1

l

1
326112/9

n=1

+ ‘vﬁg; | ¢ dz

[
W [k v+ [\m
n=1 Q

l 4
< hZ/k VB ¢ da
n=1 Q

P [V, + 2]

PP Vg, + 2 ¢ da

_ ! _ 12
+Feh > VB ) + e VPHLQ(Q) . (6.15)
n=1
@ Similarly, it follows

2 dx

Prm

|v

l
vﬁm&deth/mvpgm\
n=1 Q

l [ ]

Ry [ v+ [\ﬁ;z! n \P:z
n=1 Q
l

<h k

<3,

1 [

< 46h;/Q

¢ dx

Pl Vo + 2|

v ]1%:;

l
2 (Vs + 222 do+ 2Roeh Y IV P

n=1

112 !
Pl b3 198+ Zliey-

8

1
4e
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Now, Proposition 4.3.1 yields

hz VP, + 20172 () < 1,

with 41 as in Proposition 4.3.1, and as a consequence we deduce the following estimate

v

B | ¢* dae

l
hZ/Qkfn_IWpfn—Fé][
n=1

B+ \Pm

!
on 2 n ~12 ~2 —2 on 2 1 "’H
d 2k eh — | P . (6.1.6
| Vo + 27 ¢ do + 2k 7€ ;HmeCHLQ(Q)—i-46 LOO(Q)/M ( )
2
® Moreover, by construction |V(| < Q— holds, and as in @ and in @ we infer
0
! .
03 [kt 19+ 211+ || 7] ¢ 9] do
n=1 Q
! B ) l B .
< [ 2| 9+ 211V dw+h§j/ B 19, + 21 | Pl ¢ [9¢] da
n=1
1
g@h ool 1Vl + 42 ¢ BV G2y + 8F eHPVCH
L, 2 5 32% 1p

(6.1.7)

The regularity of the boundary data P stated in Assumption 3.2.1 together with the statement of

Proposition 4.3.1 yields that the quantity

wteo = [57]., za

+1/7]
@ Al e 2(Q)

is bounded independently of m, n. Therefore, assembling the estimates (6.1.5) - (6.1.7) we find
JR R ([pm - P Il ¢?) o
Q

?|Vpl, + 22 ¢ da + 3K GhZHV CHiQ(Q)

l

hd

n=1

n=1
—92 1
32k 1
T2 HL2 + ¢o(00) [6+ 6] . (6.1.8)
n=1
Inserting (6.1.8) into (6.1.4) and setting

. 39%° )
61(90) =5 + C()(g_)())7

20

we conclude
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l L]

hy /Q 5 [ﬁfn - 15;4 || (P
1 !

< =h

l
Bl VD + 2 P da+ 3K eh > ||V cl[ 7

n=1

l
. . . 1+ €
+én(e0)eh Y || 720y + E1(e0) ——. (61.9)
n=1

€

Finally, as by virtue of Assumption 3.2.5 the quantity HPHL © is bounded independently of
m,n, and g, the claim follows inserting (6.1.9) into (6.1.3). O

Let us prove another auxiliary result which reads as follows.

Lemma 6.1.2. Suppose, that Assumptions 3.2.1- 3.2.5 hold. Moreover, let m € N, h = %, and let
{pmtneqr,.. my be the sequence of solutions to Problem (4.1.1). Moreover, assume that with R as in As-

sumption 3.2.3

holds and let the constants ps and o be as in Proposition 5.4.1.

Let o > 0, such that 20y is as in Assumption 3.2.2 and suppose that in addition 0 < oy < S, . holds.
For x¢ € Q, we define Bay, to be the ball centered at xq with radius 29,, and for n € {0, ..., m} we set

P 3 7
nPO = _1MIN P,
BzgoﬂQ

Then with ¢ € C}(R3) as in (6.1.1) the following inequality is satisfied for all | € {1,...,m}
: 2
B [ RO+ 29 [ — ) [ 2] o
n=1
!
< M2(290)ah2/
n=1"7%

o |5 (|

° 2 N
Pl VP + 27 ¢ da

) 3
)—i—l) + 3k

l
Y NVBclla )
n=1
l

+ éz(@o)hz

n=1

L°°(21

on 2 Al
pmHLQ(Q) + CQ(QO),
where
A ~ _ 212 % 1
Calen) = 2s(e0) + 9% (B[ +1)" |+ 11+ 1]
Loo(3) 0y
with k as in Assumption 3.2.4, j11 as in Proposition 4.3.1, and Cl(gg) as in Lemma 6.1.1.

Proof: Let g9 > 0, z9 € Q and let ( € C}(R?) be a cut-off function defined in (6.1.1). For all

n € {0,...,m} we set

and nPo = min po. 6.1.10
HU"’(Zl) Po Bzgomﬂp ( )
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.....

a.e. in €. (6.1.11)

)

Due to Assumption 3.2.1 and to Proposition 5.4.1 the functions p?, are continuous on € for all

n € {0, ..., m}, therefore we can decompose the domain (2 in the following way

2= PU{ }

forall n € {0,...,m}. Thus, we obtain for all € {1, ..., m} the succeeding identity

l
D3 /Q K (V00 +2) -V [0 — o) [P 7]

kn 1 v v n — on |2 -2 d
/{er R R AR
/ EM=(Vpl 4 2) -V [(p;g —apo) P } de. (6.1.12)
{IEQ ’p” ’ >M+1}
Bearing in mind, that
by, =
{meQ;|;3;;L|22M+1}
foralln € {1,...m} a.e. in ,
/ K (Vg + 2) -V [0, — wpo) ] 2] da
{ves|?] >M+1} " moom
K (VD 4 2) - V[ (P, — apo) [P| " b ¢ d
{{L‘EQ |pm| >M+1}

follows. Furthermore, clearly

{ p=1

holds, and consequently we obtain

13\

B (Vi +2) -V |0 = o) [ b7 e

/{er o | >M+1}

n 1 n on (2 0m 2
/{xeﬂ |pm| >M} va +Z) \ |:(pm —npo) p bmc } dx

k- 1 (Vpr, +2)-V {(pm npo) |D

gﬂ de. (6.1.13)

/{xeﬂ vr<| S| <M+1}
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Let us take a look at the first integral of the right-hand side of this expression. Observing that by
definition (6.1.11) of the sequence {b7.},,c(1,

b
{weas|op|’<ar}

is satisfied for all n € {1,...,m} a.e. in Q, the first term of the right-hand side of (6.1.13) transforms

into

B (VP +2) -V [0 — o) [ 2] da

/{er 2| >M}

) ﬁ"mfbg&] dr. (6.1.14)

l
=03 [ K29 [ -

Inserting (6.1.13) and (6.1.14) into (6.1.12), we thus obtain the following identity

l
hZ/kﬁm_l(Vp%M)-V[(p?n—npo) 5| 2} dx
n=1 Q

K (VP +2) -V |0 -

)7l ¢?] da

2 b;@gﬂ dz

l
>
n—1 {zGQ;|p |<M+1}
l

kLN (V4 2) -V [(p"m — nPo) |D

—h
;/{zeﬂ;Mﬁp | <M+1}
+h2/ K (VR +2) - [,
n=1 Q

We estimate the terms of the right-hand side of (6.1.15) separately.

) 15?,1\21);52] dz. (6.1.15)

® By virtue of Assumption 3.2.4, and Proposition 42.1 0 < k < k7 < k holds for all n €

{0, ..,m}, so consequently
n— 1 n on |2 -2
B (V0 + 2) V|0 — o) []* 2] da

Sk[{ e VP

follows. Moreover, the Holder continuity of pj., obtained in Proposition 5.4.1 yields, that

‘/{xeﬁ [ [F<nr ) "

||V [0 = o) [P ¢2]| do (6.1.16)

there exist constants ji2, and « independent of m, n, and g, such that for alln € {1,...,m}

[P — nPo| < 0sc{pp,; Bagy N2} < pi2(200)”

holds a.e. in Q. Taking this pointwise estimate into account, we find for all n € {1,...,m}

a.e. in Q the following inequality

J

’V [(p% — po) )
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< Vol B " ¢t + 2 |ph, — V5| ¢2 +2|p; — wpol [, ]* ¢ V|
‘ ¢% + 2p2(200)* [P ] |V (200) (6.1.17)
Asforn € {1,...,m}
5 |2 < M +1, (6.1.18)
{:EGQ ’pm| <M+1}

we obtain as a consequence of Cauchy’s and Young’s inequalities and the estimates (6.1.17)

and (6.1.18) for alln € {1, ..., m}

||V [(p% — npo) |P

Vpr, } ‘ dzx

/{xEQ;|}3nm‘2<M+l}
g(zml)/ s IR AP VR + 2|2 P da
{zen|pn| <M+1}

+2(N +1)2 1 (200)° Vo,

P | ¢ dz

/{:ceQ ‘pm‘ <M+1 }

+ 2(M 4 1) p2(200)* |V, + 21 |V(| dx.

/{xGQ |5 |* <ar+1}

Applying Young's inequality to the right-hand side of this estimate, and keeping in mind

that |2| = 1, we follow

||V [(p% — npo) |P

Vpr, } ‘ dzx

/{er;|ﬁfn\2<M+1}
< (M + 1)pi2(200) | V53¢ 72 0
T4 1) 211950+ 20l + €I
+ (M + 1)p2(200) [2 11V + 21 ¢ L2(0) + IVC L2y | -

2 1 -1
Recalling that by construction (| < 1,|V(| < o as well as g9 < FH2 > hold, we deduce
0

from the preceding inequality

) [5|* %) | do

!
< (M + 1)pa(200)*0 Y HVI%CH;(Q)

n=1

IV, + 2

v [ -

l
>
— {zGQ;|5ﬁL|2§M+1}

+ (M +1)

4hZIIme+Z||L2(Q +1Q| + 2|Q|] (6.1.19)

n=1

Due to Propositions 4.3.1
!

Ry NIV + 272 < m

n=1

holds, and therefore (6.1.19) implies the following estimate
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IVy,

V[0 = o) [B]* ¢2]| da

l
hy /
1 {wey|Bn |* <41}

l
< (M +1)pa(200)h Y Vi€l 2y + E2(00), (61.20)

n=1

with the constant ¢, defined by
A ~ 4
¢2(00) == (M +1) {4;“ +1Q| + 2 |Q|} . (6.1.21)
0

Assembling (6.1.20) and (6.1.16) then implies

i (VP + 2) -V |0 — wpo) || 2] da

/{er B [F<ar)

l
< (M + 1)p2(200)°Fh Y Hv;a;gg\\;(m + & (00)k. (6.1.22)

n=1
Let us proceed with the second term of the right-hand side of (6.1.15).

By virtue of the definition (6.1.11) of b}, the estimate |V},
foralln € {1,....,m} a.e. in {Jc €EQ:M<

p| | VPn| clearly holds

ﬁﬁnf < M + 1}. Moreover, again by virtue of
Proposition 5.4.1, there exist constants p9, o, independent of m, n, gy, such that for all n €

{1, ..., m} the pointwise estimate

|Dm, — nPo| < osc{pn,; Bagona} < p2(200)”

is satisfied a.e. in Q. Keeping in mind that |b},| < 1 foralln € {1,...,m} a.e. in , we find

the following estimate for alln € {1,...,m} a.e. in { <M+ 1}

ARSI

| ¢

)l 2] | ol + | [ -
) [ ]? ¢2]| + 2 0se (o

) 5[ ]| + 212(200) B3] [ 95| €2

2o, <[ [ -
< ‘V [(plh -

< ‘V [(p% -

[ = o) [

So consequently, exploiting the uniform boundednes of k), obtained in Proposition 4.2.1,

we have

i (VP +2) -V [0 — o) [ 2] da

2EQ; M+1>\pm| >M}

|Vpr, + 2|

V [0 = wpo) [B]° ¢2]| da

< kh
a Z_: /{er-M+1>|5m2>M}

+ 2#2 2@0 akhZ/{ ’vpnm

2 ) [ Vin | ¢ da. (6.1.23)
zeM+1>|pn,| >M}
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By virtue of the estimate (6.1.20), we immediately follow that

) 5] ¢?]| dx
)7 ¢?]| da

Vp + 21| [ —

l
kh
; /{meﬂ;mlzwmw}

Vv + 21 [V | (o -

!
kh
- nz::l /{zeg;ﬁmggl\kﬂ}

l
< (M + D)kpa(200)"1 Y || ViR gHLz + é9(00)k, (6.1.24)

n=1

is satisfied with ¢é2(gp) as in (6.1.21).

As on the other hand

[NIE

< (M +1)
{zGQ;]\;[+12|;5%|2>M}

Bl

clearly holds, Young’s inequality implies

2| | Vo | ¢ da

2p2(200) k:hZ/{ Vo,

:EEQM+1>|p |> }

< 245(200)°K(M +1)2h Y V(@ +2)| |Viy| ¢ da

/{mGQ M+1>|pm| >M}

3
2

< p12(200) k(M + 1

l
hZ|Hme+zr<HL2 VB VB ey | - (61.25)
n=1

Again, Proposition 4.3.1 yields

!
R VP + 2720 <

n=1

_1
and therefore we deduce, keeping in mind that [{] < 1, gy < %ug «, and inserting (6.1.24)
and (6.1.25) into (6.1.23) the following inequality

K (Vi +2) -V [0 = o) [ b1, o

e N +1>|, | >M}

l
< 2#2(290)ak M + 1 % Z CHiQ(Q) + é2(@0)E+E(]\4 + 1)

3
2

. (6.1.26)

® Finally, we estimate the last term of the right-hand side of (6.1.15), i.e. we estimate

l
WY [ a2 [ -
n=1

Pl v ¢?| da.

First, we claim that the functions ¢;,, := pJ:, — <| ﬁfnf [pr — npo]) b ¢? are admissible test-

functions for (4.1.2a) for any time step n € {1, ...m}. Indeed:
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(i) Letz € T'y, with yop2 (x) > 0. Then, by virtue of Assumption 3.2.4 yop?~1(x) > 0, and
consequently yopr, (z) = PP (x) follows. Thus, by construction (c.f. (6.1.11)) b (z) = 0
holds, and therefore vy}, (x) = vopi, () is satisfied.

(ii) Let now x € I'y, with ypl',(z) < 0. Then, from the definition of ,,py we have
(Y0P (x) — npo) ¢? > 0, and since 0 < b°

" , it follows that ¢l () < ~vopi(z) < 0
holds.

Hence, altogether we find (70¢?,)" = (yopl,) " a.e. on T'1. Applying of ¢7, as a test-function
in (4.1.2a) at the time step n € {1,...m} and summing the resulting inequalities over n €

{1,...,1}, with l € {1, ...m}, we infer

on (27 n n
[pm - npO] meQ) dx

l
—i—hZ/kﬁ;l(fo,L—i-é)-V(
n=1 Q

Now, due to Proposition 5.4.1, there exist u2, «, independent of m,n, and g, such that for

e o — ol b?n@) dr <0. (6.1.27)

any n € {1,...,m} the following estimate holds

_/ngn(

512 [l — ol b%@) dx

<J.

(] [l 2
& 1B o — npo| b ¢? da

o L3 2
< osc{pp,; B2, S, pﬁl‘ b%@daz

< p2(200)" oo | b ¢Pda.

1 _1
And since 0 < b}, < 1 by construction, and gy < 3 iy © by assumption , we calculate with

the help of Lemma 6.1.1 (choosinge = 1)

—hZ/'” 151 [l — o] b Cz> da

l
B2 [V + 27 ¢2 de + 3k p2(200)°h Y [z

n=1

< 12(200)

l
+ 201 Q[)

HLQ +201(Q0)

where (' (go) is as in Lemma 6.1.1. Inserting this estimate into (6.1.27) implies

hZ/k” Lvpl + 2) - (

l

il [ — o] UnC?) da

l
< 12(200)° Bl (VD + 2 2 da + 3K 12(200)°h > [|V5Cl 7200

n=1

n=1
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l

+ 26’1(90%2

n=1

ﬁﬂmHi?(Q) +2C1(00). (6.1.28)

Finally, inserting (6.1.22), (6.1.26), and (6.1.28) into (6.1.15), we find

l
W [ KT+ 2) -V [0~ o)
n=1

l
< p2(200)*h Yy /Q
n=1

Bl ¢?) de

° 2 N
Pl IV 4 27 ¢ dx

l
+ 112(200)° [SR(V + 17 43K b Y [ V870
n=1

l

+2C1(e0)h Y

n=1

on 112
pmHLQ(Q)
+ 2Kéa(00) + R(M + 1)3 g + 24 (00),

and the claim follows. O

Let us finally show, how the results of Lemmata 6.1.1 and 6.1.2 can be used to estimate the ex-

J

Lemma 6.1.3. Suppose, that Assumptions 3.2.2- 3.2.5 are satisfied. Let m € N, h := L and let

pression

P 1Vl + 27 ¢ da.

We prove the following statement.

{Pmtneqr,. my e the sequence of solutions to Problem (4.1.2a). Moreover, assume that with R as in
Assumption 3.2.3
1

h<—.
— 4R

Let the constants ji5 and o be as in Proposition 5.4.1, and oo > 0, be such that 29 is as in Assumption

3.2.2 with the additional restriction

{2k )

—ming —;-——

%0=3 p2 12p0

Then, for a cut-off function ( € C§(R3) as in (6.1.1) the following inequality is satisfied for all | €
{1,...,m}

hnj:;l/g

P2Vl + 22 ¢ da

%7 - l
+ 1> k+4k%| p2(200)°h ) HVf;ZzCHi?(Q)

n=1

Loe(31)

l
+ Cs(00)h > |[Bl[72(q) + Ca(e0), (6.1.29)
n=1
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where , ,
. 2 | A 4k Kk

C = — | C: — + —

3(00) & 5(00) + Q% +E2

with k. k as in Assumption 3.2.4, and C’g(gg) as in Lemma 6.1.2.

Proof: Let oo > 0, 29 € Q and let ¢ € C}(R?) be a cut-off function as in (6.1.1). For n € {0, ...,m},
let ,po, and M be as in (6.1.10), and set M = M2. Due to Proposition 4.2.1 we have 0 < k < k],
for all n € {0, ...,m}, and with the help of Cauchy’s inequality we calculate for any !/ € {1,...,m}

hni:l/ﬂ

° 2 ~
[ i v el

P |? (V4 2) - (Yol + 2)C da

l
1
<—h /k;@l

l
1 o
D) :/ng—l(vpgmy [V (= wpo) [5[* 2] o
- n=1

!
1 n—1 n 2 slen |2 2
+ kh;:lj /Q KP=L(Vpt + 2) [z ¢ ] dz. (6.1.30)
We estimate the terms of the right-hand side of this inequality separately.

® Bearing in mind that |2| = 1, and that by virtue of Proposition 42.1 0 < k < k" < k holds
forall n € {0, ..., m}, we find with the help of Young’s inequality

Prm

l
1 n—1 n 2 2
kh;/ﬂkm (Vo + 2) {z
7 J
< -h 1 z
<1 ;/prwd

l
1
th/ IVp + 2|2
4 n=1 Q

2 42} da

prl? ¢ da

p ¢ de. (6.1.31)

Prm

2

2 2

dx + —h /
o E? ; Q
@ Furthermore, a straightforward computation yields for alln € {1, ..., m} a.e. in

prl? ¢

=V [(p?n — Do)

\Y (p?n - npo)

Bl 2] = 200 — o) B VECE — 2 (s, — o) || CVC

and therefore we clearly have

l
1 o
P [ RO+ 2) - [V = ) [ ¢ da
- n=1

1 .
<< P

l
0y [ R+ [t )
n=1

2 42} de
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1
1 -1 s ° ° 2
_ n 7 .12 7 —n n n
*t hZ_jl/ka (Vpl +2) - [2(0f — npo) P VERC?] da

(6.1.32)

l
1 .
E P [ R a2 [2 0 — o) [ 9] do
- n=1

The first integral of the right-hand side of (6.1.32) can be estimated by means of Lemma

6.1.2. Let us estimate the other two terms.

Once again, by virtue of Proposition 5.4.1, there exist positive numbers 112 and o« indepen-

dent of m, n, g, such that for all n € {1,...,m}

08¢ {py,; B2gy N2} < p2(200)”
holds.

Therefore, with the help of Young’s inequality, we find for the second integral of the right-
hand side of (6.1.32)
!

h)

n=1

/Q KL (VDR + 2) - [2(plhy — npo) B VPP dx

< hZosc{pm,ngo N Q}k/

n=1
< aCan)h Y [
n=1

And for the last term of the right-hand side of (6.1.32) Young’s inequality implies

| Vo, + 2] [V,

noyos? 2 d:c+E2Hv;5g<HiQ(Q) . (6.1.33)

l

hd

n=1

[k o2 20—

) 5] ¢V¢] da

< hZosc{pm,Bzgmn}k/ B IV, + 2 CIVC| da

n=1

l

< p2(200)” Z[Q

° 2 N
Pl VPR + 27 ¢

2 1 o
B IVC gy | - (61.34)

_1
Bearing in mind that |V(| < % and gp < %, * hold, application of Lemma 6.1.2 together with
the estimates (6.1.30), (6.1.31), (6.1.32), (6.1.33), and (6.1.34) provides

. . 32 (2 no o
p:zn‘2|vp:1n+z‘2c2 dr < < [LQ QO > ‘2‘vpm+z|2 CQ dr
1 ~ 3— — l 2
30T+ D3R+ W] uz@@o)“hzl IVERCl 20
2 2 l
1|4 k™ k on 112 14
+2 Cg(go)+gg+k2] 2 Pl 22 ECQ(QO)
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where Cy(go) is as in Lemma 6.1.2. Making use of our assumption that gy satisfies

<1 E i
0=5\1,,)

the claim follows. O

6.2 Estimate of Initial Values

In view of the proof of Proposition 6.3.1 (bound of the incremental time ratio p},) we need to

establish an estimate of p! . We do this in the sequel.

Proposition 6.2.1. Let m € N, h := L and p., be the solution to (4.1.2a) at the time step n = 1. Suppose
that Assumptions 3.2.1 -3.2.5 are satisfied and that h < 1 holds. Then there exist a constant pz > 0,

independent of m, n such that

ﬁm”iﬂ(ﬂ) +h Hv];mHi?(Q) < 3.

Proof: Let p., be the solution to (4.1.2a) at the time step n = 1. We claim that the function
= pha =1 |~ ]

belongs to K. Indeed

® Let z € Ty with yop.,(z) > 0. Then Assumption 3.2.1 yields that also yop2,(z) > 0 and
therefore yopl, (z) = PL as well as v9¢L, () = ~opk, () hold.

@ Now let x € I'; with ypl () < 0. Then again by virtue of Assumption 3.2.1 we have

Y0p%, < 0 and consequently Iéﬁl =0,aswell as
06m (%) = Y0P — h(YoPm — 20Pm) = (1 = B)Y0ps, + hyopy, < (1= h)yops, <0

are satisfied, provided that h < 1. Thus, ¢}, belongs to K\,.

Applying ¢!, as the test-function in (4.1.2a) at the time step n = 1 we find
h2 /Q s [ﬁ,ln _ 15,}1] da + h? /Q KO(Vpl +2) -V [ﬁ}ﬂ - 15,}1} dz < 0. 6.2.1)
Moreover, an easy computation yields the following identity
[T 29 [ - B2 o
= h/ﬂk:?nvﬁ}n -V []3}71 - 15,}1] dx + /Q KOV (D +2) -V []3}71 — 15,}1] dz,

and therefore we obtain dividing (6.2.1) by h?
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/51 [’1 Pl] dx+h/k:?nv15}n-v[]3}n—]5é] da
Q Q
+ / V@ +2)-V [15,171—15,}1] de <0. (6.2.2)
Q

We estimate the terms of this inequality separately.

@ Let us start with the first term on the left-hand side of (6.2.2). Making use of the bounded-
ness of pl, obtained in Proposition 4.2.1, of Assumption 3.2.3 on the Preisach operator, and

of Proposition 2.5.5, we see that the estimates

'mpm > ag and 13),] < (ag + B(R)) oL

are satisfied a.e. in 2, where R is as in Assumption 3.2.3 and b(R) is as in Assumption 2.3.6.
Hence, application of Holder’s and Young’s inequalities yields the following lower bound

for the first term of left-hand side of (6.2.2)

[ sh = 8] o a5y = a0+ BR0) 1 | P
~ _\2
ag <Q0+b(R)) :1 2
2 5 Bmll20) = =50 || Pm gy 62

@ For the second term of the left-hand side of (6.2.2) we obtain with the help of the uniform

boundedness of £, and Holder’s and Young’s inequalities

h / VLY [ﬁ}n_p,;] dz
Q
zkh/\vgz da:—k;h/\v
Q

‘VPl

2 2

2 k

mll 2y — o (6.2.4)

thpl

L2(Q)
@ Finally, let us estimate the last term of the left-hand side of (6.2.2). We observe that the

function
w - pm + h'2 |: Pl :|
belongs to K9,. Indeed, we clearly have
(i) If z € Ty with ypY, (z) = P2 () > 0, then by virtue of Assumption 3.2.1 yopL,(z) > 0
holds as well and consequently o1 (z) = vop2, (z) follows.
(ii) If z € Ty with yop?,(z) = P%(x) < 0, then again ~op., (z) < 0 holds by virtue of
Assumption 3.2.1 and therefore 70]5”11(@ = 0. With the help of h < 1 we conclude

Y01 (x) = Yop, () + B> Y0P (2) = (1 — k) Yopi, (x) + hyopy, () < 0,

and consequently (y01)) " = (yop%,) " a.e. on I’y follows.
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Denoting by 1 the outward normal vector to €2, we infer with the help of Assumption 3.2.5
W2k, (V. + 2) ['#L - 15#1] 1=~k (Y, + 2) <pm <pm +h? ['1 Pl])) >0
a.e. on I'y, and therefore
T80+ ) |- P20,
is satisfied a.e. on I';. Furthermore, applying Green’s formula we find
/ ko (Vo + 2) - V [ﬁ}n - P,}L] da
Q
/ V- (K2 (Vp), + 2)) []5,; — 15,37} dz
+/ kD (Vp2, + 2) [ ﬁ’%}-ﬁda
I't
> — / V- (k5 (VDD +2)) [pm Pl] dx.
Then, Holder’s and Young’s inequalities applied to the right-hand side of the preceding
inequality yield
/ ko (V) +2) - V [;5}71 — P,ln] da
Q

/\v (Ko, (VP2 + 2) | B

‘1

7

Ao = IV - (Vo + D)oy | P,
2

ap = 1
Pm
.2

>

> (6.2.5)

—*HV (K (V8 + ) 120

) 4

Inserting the estimates (6.2.3), (6.2.4), and (6.2.5) into (6.2.2) we then obtain

003
4

ot th

-~ _ 2
-2 . b(R) 2
<a HVP\ o T8+ ) [ + |+ <°20) |2,

(6.2.6)

Observing that by virtue of Assumptions 3.2.1, 3.2.4, 3.2.5, and Proposition 2.4.5 the right-hand

side of (6.2.6) is bounded independently of m and n, the claim follows. ]

6.3 Estimate of the Incremental Time Ratio

In this section we provide an estimate of the incremental time ratio p!, of the sequence
{Pm}tneqr,. my of solutions to the approximate Problem 4.1.1 stated in the Proposition below. In

order to do this, we exploit the statements of Lemmata 6.1.1and 6.1.3, and of Proposition 6.2.1.
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Proposition 6.3.1. Let Assumptions 3.2.1 - 3.2.5 be satisfied, m € N, h := L, and let {pmtneqr,.my be

the sequence of solutions to Problem 4.1.1. Assume moreover with R as in Assumption 3.2.3

h< -
~ 4R
For each n € {0, ...,m} we set s}, = aopy, + wiy,, where wy, are defined according to formula (4.1.2d)

corresponding to the input sequence {py,} and the initial configuration \ : Q — A with R as

ne{l,...,m}s

in Assumption 3.2.3. Then there exist a constant .y > 0, independent of m,n, such that the following

estimates hold

sn H2 max
milL2(Q)” 1<n<m

max
1<n<m

m
Bl ey 1 2 IVl 2y < 1a (6.3.1)
n=1

Proof: Let gy > 0 be such that 29, is as in Assumption 3.2.2, 7o € (), and let ( € CL(R?) be a
cut-off function for the ball B, (x) centered at x( with radius oo, defined in (6.1.1).

We claim that for all n € {2, ..., m} the functions
G = D= D — vt = P+ P 2
ot =ppt—h [pﬁfl —pp — P+ 15;2] ¢2
belong to K7 and K ! respectively. Indeed,

® Let z € I'y, such that yop?,(z) > 0 (yop?, 1 (z) > 0 resp.) holds. Then by virtue of Assump-
tion 3.2.1, we have that also vop?, () > 0 (yopZ,(z) > 0 resp.).
Hence, yop(z) = Pr(z), and ~op? '(z) = P '(z) are satisfied, and consequently
Yool () = Yol () (Yoo L (z) = vop () resp.) follows.

@ Now let z € 'y, such that yop?, () < 0 (vop?, 1 (z) < 0). Then again by virtue of Assumption
3.2.1, we have yop? ' (z) < 0 (yopl,(x) < 0 resp.), and therefore P = P~ = 0 hold.
Thus,

W0 < (1= h¢* (@) )roph, () + hyopy, ()¢ () <0,

and analogously
Yo (@) < (1= h¢)voph, () + hyopy, (2)¢*(z) <0,
are satisfied, provided that h < 1.

As a consequence we obtain (y0¢%)" = (yop%) ", and (106% )T = (op 1) ae. on 'y, and
therefore ¢7, € K" and ¢ ' € K}~! follow.
Choosing in (4.1.2a) at the time step n the test-function ¢;,,, and at time step n — 1 the test-function

"=1 and then adding the resulting inequalities we find
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[ =8 [ - P P
+ h/ (K= (Vpl, + 2) — K 2(Vplh 4 2)) -V ([ no_pn=l_ png 15,?;1} g2) dz < 0.
Q

Dividing both sides of the preceding inequality by h? and summing the result over n € {2, ...,1},

l € {2,...,m} it follows
Z/ 'n _én 1 |:'n Pn:| Cle,

l .
£ [ (Tt ) A 4 2) ([ﬁz - P:,z] <2> dr < 0.
n=2

Let us consider the second term of the left-hand side of this inequality. A straightforward com-

putation yields the following identities
© k(Yo 4 2) — K (Ve 2)
= ki (VD +2) =k (V' + 2) b (Ve + 2) — k2 (V4 2)
= kIR, + Rk (VT 2),
and

® v ([pm . 1%:;} <2> v [ﬁ% - Pm] 42 [ﬁ% - Pm} Ve,

Hence, assembling the preceding results we conclude

Z/ ’”1pmé2dx+h2/k"1\v ‘242
l .
gZ/(é;g gt <2dx+h2/ krolvpn VPR da
—ZhZ/k” lypn [ P"] gVCda:—hZ/k” Lopt 4+ 2). v[ﬁg—éﬁ] ¢ da

—2h Z /Q b (V4 2) [1522 - 15,23} (- V(da (6.3.2)
n=1

Let us now estimate the terms on the left-hand side of (6.3.2). First, for » > 0 we put
{&n( 1) ego,...my to be the output of the discretized play operator defined according to for-

mula (4.1.2e), corresponding to the input sequence {pj;,(-)},,c(o,.. ) and the initial configuration

77777

A(+, 7). For brevity we set for n € {0, ..., m}

En' () =), and YpT(2) == ¢(Ey(2,r),  foraa.x e

Then, the Hilpert type inequality stated in Proposition 2.5.12 together with the uniform bound-

edness of solutions obtained in Proposition 4.2.1 yields for all n € {2,...,m}
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nr 2 n 17

2 gm gn 1)
_ o) — gl &) glnen ™) — glr )] 5
- h h m

7 13
+ 5 sup [0.0(r,2) B¢ sup [0.46(r, )|k [E|

6 o<r<R; 60<r<R

2|<2R |2|<2R

a.e.in .

&
n € {1,..,m} ae. in Q. And since A : @ — Ay by assumption, and [|p7, || () < R by virtue

Moreover, making use of Proposition 2.5.3, we obtain the pointwise estimate

< |pr,| for all

of Proposition 4.2.1, we infer with the help of Proposition 2.5.4 that &}," = 0 is satisfied for all
n € {0,..,m} a.e. in €, provided that r > R. Thus, for any [ € {2, ...,m} the succeeding estimate

follows
! R nr 2 n 17
2 kT
< Z/ [ rén") —g( gl et ;g(r,ﬁﬁ{”)} 52 dr

7
+6 sup |0,9(r, 2) ’hZ/

2
dr + - su 0.0(r, 2)| h E /
0<r<R; ‘ C p ‘ w ‘

z|<2R |z\<2R

Un e[ ¢ ar

oy — 1‘ C2 dr.

Bearing in mind that for 7 > R we have £%," = 0 for all n € {0,..,m} a.e. in 2 and recalling the

definition of the sequence {wy, },,c(o .y, We infer

// (gm\ ¢ - é”‘ & 2 ar da

Zi:/ e (2 da

14 1 .
+ — sup [0,¢(r, 2) ‘ Cdr+ = sup ’3z¢(?” z)| Rh/ m\?’g? dz.
6 o<r<nm 6o<r
|2|<2R |2 |<2R

Moreover, the piecewise Lipschitz property of the play operator (cf. Proposition 2.5.3), Assump-

tions 2.3.6 and 2.3.10 on the density ¢, and Proposition 6.2.1 imply

// ‘gm‘ drd:c<2/

where b(R) is as in Assumption 2.3.6, and where in the last estimate we made use of Proposition

6.2.1.

b(R)
2

S M3,

b(R)
9 pm”L?(Q)

R
ﬁm‘Q/O B(r) dr dx <

On the other hand, Holder’s inequality together with interpolation inequalities (c.f. Lemmata

A.6.2 and A.6.1), and Proposition 6.2.1 yield the following result
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i < w107 ( Buz o
10 7
Plfy ) = win (o).

where §3 is as in Proposition A.6.1 and p3 is as in Proposition 6.2.1. Bearing in mind that h < 1
setting

Pl dr < h10f7

h
Q

~ 9
b(R 1 _ 90 1\ 10
0= "B L ) RIS (m;) ,
2 60<R<R
|z|<2R
14
1= — sup [0:4(r,2)|R,
6 0<r<R;
| |<2R

and taking the nonnegativeness of ¢ (c.f. Assumption 2.3.6) into account, we infer

Z/ o2 da >

As by virtue of Proposition 2.5.5

P’ ¢? da. (6.3.3)

°on
Sm

?<

o°n
m

1
0

1
Si
ao

m

holds for all n € {1,.

hZ/

..,m} a.e. in Q, application of Lemma 6.1.1 provides for any € > 0

Pk C2<hZ/
n=1

-2 l
. 3k o
Pl 1990+ 27 ¢ do + 70@2 1¥35¢lza0)

Cl(go) 1+ €2

Pl + SRS

Cy(
+

where ' (gp) is as in Lemma 6.1.1. Choosing e = ¢; := do2 , the preceding inequality turns
1261k
into

. 122%

. ) k, < (oen
Pl 1995+ 2 o 5 39

C 1462
L Gile)er <) 1+61hZHpmHL2 L Cileer 1+

ag €1

Inserting this estimate into (6.3.3) and taking Lemma 6.1.1 into account, we conclude

koo
PP 1V + 212 ¢ da — th HVanCH;(Q)
n=2
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_abilw)1+q (6.3.4)

aq €1

_ 0161(90)

1
o (1+€1)

Binllz2@)
n=2

Inserting (6.3.4) into the left- hand side of (6.3.2) and using the uniform boundeness of the se-
quence {k,}

nefl,....m} Obtained in Proposition 4.2.1, we find the following estimate

Z/ '”1pmc2dx+h2/k”1\v n|* ¢ do

ag 3E o 112 1201
A !
ao (1 e1 .12 c1C1(00) 1+ € 6101(00)
2 meHm(Q) B ap e /1+e)

n=2
Due to Proposition 6.2.1 || ;5,1,1”%2(9) < 3 holds, and consequently by virtue of Lemma 6.1.1 and

Assumption 3.2.1 the quantity

¢ Ci(o0)1+€
c1(eo) = 6117@0)(1 +e)+ %uza o4 A LG

ao ao €1
is bounded independently of m and n. Thus, finally we obtain the following lower bound for the

left-hand side of (6.3.2)
Z/ PmCQdeth/k” Vvpn | ¢ da
3k on
“+ th V8¢ 20

126%](3

CL(] o/
> ? Pm

PP Vol + 22 ¢ da

l

— ¢1(00) ¢1(00). (6.3.5)
n=2
Now we will deal with the right-hand side of (6.3.2).
® Setting foralln € {1, ...,m} . .
. pn _ pn—1
Pg _tm , m ’

we obtain by discrete partial integration and Young’s inequality the following estimate
Z / C2 dx
= Z/ Pr¢?— gnmtpnmic? gt <P" ézg—1> ¢ dx
—Z/ P~ 8 By e — hZ/ sn1 P c? da
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l o o l o0
S}j/&#ﬁ@—%ﬂRﬁ%%n+th%ﬂﬂpm)mx
n=2 Q n=2 L2(Q)
< [ 8 Ple2 g ple2 daz+hzl: se1¢)|1? +1H15\ i
TJo ™" e P e a5 ez )

With the help of Proposition 2.5.5, we see that the pointwise estimate

35 < (a0 +B(R))

a (6.3.6)

holds foralln € {1, ...,m} a.e. in Q with R as in Assumption 3.2.3 and b(R) as in Assumption
2.3.6 . Therefore, Holder’s and Young’s inequalities yield

5 ey + i HP‘ ;@)

L] L l
/ 8P —8,Pr P dr+ by
Q n=2

I
a’O ° 2 = 2 on 2
= 4 pmHL?(Q) + (ag * b(R)> h; meHLQ(Q)
(ao + E(R)>2 s |2 ao 9 1 =2
* 2a—0 0Snsm ‘Pm 12(9) + 4 pmHLz(Q) + 4 P‘ 2(Q)

Moreover, again, by virtue of Proposition 6.2.1

ﬁm”iz(ﬂ) < p3

holds, and consequently we obtain

l L]
> [ G B ds
n=2 Q

1 T CRTL) RD i XN
-~ _ 2
b(R) . .
+2(ao :0 ) 18] HPHiw(Q)—i—CZ)MngiHPH;(Q). 6.3.7)

@ Let e > 0, then Holder’s and Young’s inequalities and the uniform boundedness of the

-----

hand side of (6.3.2)
l . ! .
hZ/ kI VPR Cdr < khzuvﬁggup(m ‘VPg;g‘
n=2 Q n=2 L2(Q)
! 9 E2 212
< EQhHZQ 198572 + 5o vp . (6.3.8)

OI

® Bearing in mind that |V(| < Ql Holder’s, Young’s and Cauchy’s inequalities, together with

the uniform boundedness of {7, },c(1 . ,,; imply for the third term of the right-hand side
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of (6.3.2)

k&‘lvm [ﬁ% -~ 15,:2} (V¢ dx

< QkhZ/ v, [ ]qvq da
< 2kh S ||V C { 3 |+ 15:,;]
T; H b HL?(Q) D 2@
l 4R s 112
<eh ||[VPrc + —5—h + |P?
S I8l + g2 o
Sk

(6.3.9)

(P

@ Furthermore, making use of the Lipschitz continuity of £ with Lipschitz constant L;, and of

l
on A2
< Egh; Hv mCHL2(Q) L2(Q) '

the pointwise inequality

9

|50] < (ao +5(R)) z

stated in Proposition 2.5.5, we see with the help of Hoélder’s, Young’s, and Cauchy’s in-

equalities
! . .
hy / kp (Vo T+ 2)-V [ﬁ& - P;;} ¢*dz
n=2 Q

l
Shnz_;/g
l
Shr;/ﬂfzk (ao+B<R)) P

| [owi + 4] [\vﬁm + ’vﬁ,’;

] C%dx

nl 2| [|v;3¢ny + 'vﬁ;;

} Cdx

m

l R 2
<2 [Wﬁg + ‘VP;,‘L } ¢
2 L2(Q)
L CLO—|—b
+ ( hZ/ i nl 2P (2 da
¢ °
< b 3 T gy + 2 [V
— L%(Q)
L2 (a0+b
+ no 222 de (6.3.10)

® Finally, for the last term on the right-hand side of (6.3.2) we obtain arguing as before

l

hd

n=2

!
§2h;::2/ﬂ

YR [15% - ézz] ¢ Veds
Q

Py,

l},’;;l‘ [Vprt 4 2

[!ﬁ”m\ 4 ] ¢IV¢lde
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l
th/an (a0+B(R)) P
n=2

m z [ﬁzh ﬁﬂcw da
L2 (ao + b(R
16 . 16 0 .
EQhZ A ol L ( Bl 1V + 21 ¢ da.
L*(Q)
(6.3.11)
Assembling the estimates (6.3.7) -(6.3.11) it follows that
!
2 on 112
12(9) + 3€2hz HVPmCHLZ’(Q)
2 (ao—i—b
+ 2|Vpl + 222 da
+|(a +B(R))2 + —872 1662 il
0 QO L2(Q
- N2
ag @ 4Tl e
i2 —
k < (12 8k < (12 3 16 <12
s |IE, o B, re|vE, |
dep L2Q)  Ojer L*(Q) L*Q) 0 L*(Q)
k
holds. Choosing €3 := T and observing, that due to Assumption 3.2.1 the quantity
- _\2
5 ((I(] + b(R)) Q P 2 ag 1 P 2
c2(e0) = ao it H HLoo(Q) Tty ‘L2(Q)
-2
k 12 L k 2112 4k 11 2112
I S W B 1P+ 5
k L2(Q) 2@ 12 ()R R ()
is bounded independently of m, n, we can rewrite the preceding inequality as
RHS of (6.3.2) < 22 m‘ o + = Z Hvﬁfncup
1212 (ao + b(R
+ ( Z/ | [V, + 27 ¢ da
. on |12 .
+ C2(QO)h Z HpmHL2(Q) + CQ((QO)? (6312)
n=1
where

-2
= —\2 96k 4k
C = b(R -+ =
¢2(00) = ca(00) + <6Lo + b( )) + 2k +3 2
Inserting the estimates (6.3.5) and (6.3.12) into (6.3.2), we find

k< on ~112
2(Q) + Qh; HvaCHm(m
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N2
1212 (ao + b(R)) 120%2
k + a%@

< no+ 222 da

+ [¢1(00) + ¢2(00)]

ﬁ%HiQ(Q) + él(QO) + 62(90).

n=1

Choosing g, such that

<L 1 { 1 k }a
min
©=3 p2’ 1249

holds with p» and « as in Proposition 5.4.1, we can apply Lemma 6.1.3 and obtain

I
a ® 2 E on 2
ZO ‘ plmg‘ L2(Q) + §hz HV mCHL2(Q)
n=2
i L _\2
2 | 12L3 (ao +b(R)> 122% 8 o
: k k a%lk (HWO H Loo(3, )+1) k+ 4k2| 12(200) h;HmeCHLQ(Q)
1222 (a +B(R))2 Lo
+ [ C3(00) ? + ¢1(00) + ¢2(00) p%HLz(Q)

n=1

1212 (ao + E(R))2

+ 03(90) + 61(90) =+ éQ(QO)a

where C‘g(go) is as in Lemma 6.1.3. Moreover, let us take g such that in addition

- 2
1212 (a n b(R)) 072 . 3
2 k|0 1262k 12 k
— P 1 4k2 =,
k k Tk [3 (H% [ ) B AR 2(200)" <
holds. As a consequence, we obtain setting
N
V 1212 (ao + b(R)) ) ] ]
¢3(00) = ? C3(00) + ¢1(00) + ¢2(00)
the following inequality
2 k 2 :
= |IP + h’z IV, CHLQ(Q) < ih HvﬁmCHm(Q) + &3(00) HL2 + &3(00)-

n=1

And since Proposition 6.2.1 yields

we see that

x>

0 .
pmc‘

2 k: : °n AR
P 4h; V52 < G5 + ea(0) hz 151720y + Esl00)  (6:3.13)

n=1
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is satisfied. Fixing g, in the following way

., 1 1k k2
o =1 k.

5 min TL 120 5 3
2 2 2(a0-Lb(R 7 <112 tr 33
g 12Lk(aok+b(R)) N 12c§k:| [3 <H70PHL (Z)Jrl) %+ Ak2
(X1

2
agk

and bearing in mind that  is bounded, we cover (2 by a finite number 0 € N of balls with radius
05- On each of this balls (6.3.13) necessarily holds. Thus, summing (6.3.13) over all these 91 balls,

we obtain the following inequality

I
a k on 112 E
¢o , Q)+4h;HmeHL2( §mu3+63(go)‘ﬁ+03 05) 2 HLQ
Putting
4 k
ca(0p) = min {ag; k} \ 2 ( Npus + C3(Qo)> n,
we conclude, that
l !
o T 2V ol gy < @a(08) + calet)h D 1Pl 20 (6.3.14)
n=2 n=1

holds. Finally, applying the discrete Gronwall inequality (A.10.2) to (6.3.14) we arrive at

l
o +hY |V HL2(Q < ¢4(0p) exp (€4(20)T) -
n=1

Making use of the piecewise Lipshitz-property of our discrete Preisach operator (c.f Proposition

2.5.5) the claim follows. [

6.4 Estimate of HVS%H%Q(Q)

At last we prove a consequence of Proposition 6.3.1 which reads as follows.

Proposition 6.4.1. Let Assumptions 3.2.1 - 3.2.5 hold, m € N, h := %, and {p%}ne{l,__.7m} be the

sequence of solutions to Problem (4.1.1). Moreover, assume with R as in Assumption 3.2.3

h < min 1;# .
4R

For each n € {0,...,m} we set sl', = aopy, + wy,, where w}!, are defined according to formula (4.1.2d)
corresponding to the input sequence {py, },,c 1o,y and the initial configuration X : Q — A with R as
in Assumption 3.2.3. Then there exist a constant ps > 0, independent of m,n, such that the following
inequality is satisfied

hz HVS?nH%Q(Q) < ps. (6.4.1)

n=1
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Proof: Let the sequence {w” be as in the assertions of the Lemma. Then, Proposition
B q mJSne{0,....,m} p

2.4.6 yields the following inequality

l m
1+ (hZ “Vpnm”%?(m) (hz HV%HQQ))] (6:4.2)
n=1

n=0

n |12 A
pax VW [[72q) < 4¢

with ¢ as in Proposition 2.4.6. Thus, by virtue of Propositions 4.3.1 and 6.3.1 and Cauchy’s in-
equality

R IVspl7) < 200 [ + QN + 46T [1 + 2u4 (11 + Q1)) =: ps
n=1

holds, and the claim follows. O
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2

L2(Q)



CHAPTER /

FURTHER REGULARITY OF SOLUTIONS

In this chapter we study regularity properties of solutions p to Problem 3.1.1. To this aim we first
use a method which is based on covering arguments of CALDERON-ZYGMUND type and which
was introduced by Caffarelli and Peral in [13]. In this paper the authors deduce an interior higher
integrability result for the gradient of solutions to elliptic equations. We will see in Section 7.1
that the presence of hysteresis poses no obstacles to the application of the techniques from [13],
provided that the output of the Preisach operator is Holder continuous, and its time derivative

possesses certain integrability properties.

The higher integrability of the gradient of solutions p to Problem 3.1.1 will allow us to apply the
so called MOSER ITERATION TECHNIQUE which was first introduced by Moser in his work [48]
for elliptic PDEs and which was extended by Moser [49], and Aronson and Serrin [2] for parabolic
(nonlinear) PDEs . The method is based on the fact that

el = T [l
The basic idea in establishing the boundedness estimates is to choose suitable pj and g such that
for fixed oo, to > 0, po = 0o, limy_,00 pr. = § and limy_, . gx = 400, and then try to prove that

Ap = HUHqu(Bka(tofpi;to))

satisfies the recursive formula

A1 < C% Ay,

with oy, > 0, such that the series 77, C* is convergent. Relying on the results of Section 7.1 we
use the Moser iteration technique to establish in Section 7.2 the local boundedness of %p, and in

Section 7.3 the same technique provides the local boundedness of Vp.

115
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7.1 Calderén-Zygmund Type Estimates

We now study interior L? estimates for the gradient of solutions p to Problem 3.1.1. Our proof
follows the arguments, which can be found in [56]. The key to the proof of a higher integrability
of the gradient of the function p lies in the decay estimate (7.1.30) of the level sets of the Hardy-
Littlewood maximal function operator (see Definition A.11.3) of the function |Vp + 32
Iteration of (7.1.30) in combination with well known LY estimates for the maximal function di-
rectly provides the desired integrability result. To prove (7.1.30), we make use of Lemma A.11.2
which is a direct consequence of a Calderén-Zygmund type covering argument. To apply this ar-
gument on level sets of the maximal function operator, it turns out that the statement of Lemma
7.1.2 must hold. Our strategy for the proof of Lemma 7.1.2 consist in a comparison of Vp + 2 to
Vv + Z, where v is the unique weak solution of the heat equation

. ko . .

U—G—OV-(Vv—i-z):O a.e. in Q,, v =pondQ,,
where @), is a suitable small rectangle @), C @, 0Q, denotes the parabolic boundary of Q,, ko :=
k[s](zo, to) for some (z0,%p) € Q,, and ay is chosen as in Assumption 3.2.3. This comparison result

is established in the following Lemma.

Lemma 7.1.1. Suppose that the leading elliptic coefficient k, the initial configuration \, and the Preisach
operator 20 involved in (3.1.2) satisfy Assumptions 3.2.3, and 3.2.4. Assume that Assumption 3.2.1 is
satisfied and that there exists a solution p € H'(Q) of Problem 3.1.1, such that setting s := agp + 20[\, p]

with ag from Assumption 3.2.3
peC*i(Q), k[s] € C*5(Q), and  k<Xk[s|<k, inQ,

hold with some o € (0,1), and k, k as in Assumption 3.2.4.
Let v € 2,0 <ty <T,and 0 < o < 1 satisfying

Ry:={z e R®: |z, —xo| <o, i=1,2,3} CQ,

Qo =R, x (to — 0°,0) C Q.
Setting ko := k(s(wo, to — 0%)), and
9Q, = OR, x (to — 0°, o) URQ x {to — 0’} ,
we take v € H(Q,) N C%%(Q), to be the unique weak solution of
apt — koV - (Vo + 2) = 0a.e. in Q,, v =pa.e. on IQ,. (7.1.1)

where 2 = (0,0,1) € R3, and 3 € (0, %) is as in Theorem A.9.1.
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Choosing cg as in Theorem A.9.1, and setting

o 1= max { (K[s])%. 0 (Kls]) g (P) 2.0 (Pl |

where ()3 o and <>t%Q denote the parabolic Holder seminorms (see (A.2.2)), we suppose that ¢ satisfies in

addition .\

B
0 < min {1; <4k> } . (7.1.2)

max {cq, cg}
Then the following estimates hold
8
4 s 4 5
/ IVp — Vol? do dt < max{ck ¢} ot [/ ‘gtznp,p]’ +|Vp + 2% da dt] : (7.1.3a)
Qo & Qe

e

5
8 oy 4 ~
/ Vo + 2 da < (2+ max{ck 05}94) [/ gt?m[)\,p]‘ +|Vp+ 2% da dt] . (7.13b)
Qo
Proof: Our proof follows the arguments of [56]. Thus, taking ¢ > 0, g € €, tg > 0, R,, Q,, 0Q,,
ko, p, and v as in the assumptions of the Lemma, a straightforward computation yields

ko/ \Vp — Vo|* de dt

4

< % Ip(z, to) — v(, to)|* da + / [ko(Vp + 2) = ko(Vo + 2)] (Vp — Vo) du dt
R, o

< / (a0p — aoi) (p — v) + K[s](Vp + 2)V(p — v) — ko(Vv + 5)(Vp — Vo) da dt

4

+ / (ko — k[s])(Vp+ 2)V(p — v) dz dt. (7.1.4)

e
Since v is the unique weak solution of (7.1.1), we clearly have by virtue of Theorem A.9.1 the

following estimate

/ apv(v —p) + ko(Vv + 2)(Vv — Vp) dz dt < 0. (7.1.5)

e

Let us now define the function x,,(t) € L>*(R) for all n > 1 as follows

¢

0, ift <0,
: 1
nt, ifo<t<i
Xn(t) =91, if L <t<to—41,

n(to_t)7 lftO_%StSt()v

0, if t > t,.

\

Observing that for a function ¢ € H'(Q) with the property ¢ = 0 a.e. on 'y x (0,T) (with I'y
as in Assumption 3.2.1), the function p — ¢x,, belongs to the set K (cf. Definition (3.1.1)), we infer
with the help of the variational inequality (3.1.2)

//Q (s&xn + k[s](Vp + 2)V(exn)) dx dt < 0.
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And since x,, — X|o,,,] Weakly* in L>°(0,T'), where x| ;] stands for the characteristic function of

the set [0, ¢p], we can pass to the limit n — oo in the preceding inequality and obtain

/ v / (56 + K[s] (Vp + £)Vo) d dt < 0. (7.1.6)
0 Q

Bearing in mind that v = p on 0Q,, and also p(-, tg) = v(-,tp) on IR, by continuous extension, we

define the function ¢ in the following way

0, in Q x [0,ty — 0?],
p—v, inRQX (tO_Q2at0)a

p(‘,to) — U(',t()) in RQ X [to,T],

0, in (Q\ R,) x (to, T).

Thus, in particular ¢ € H'(Q) and ¢ = 0 on I'; x (0,7) hold, and (7.1.6) implies the following

estimate

/ app(p —v) + k[s](Vp+ 2)V(p — v) dzx dt

Qo

to
= / / appp + k(Vp + 2)Vo dx dt
0o Ja

to o
< —/ / —WI[\, pl¢ dz dx
o JaOt

= —/ QQH[)\,p} (p—v)dedx, (7.1.7)
0, Ot

where 20 is the Preisach operator defined according to formula (2.4.2). Therefore, inserting (7.1.5),

and (7.1.7) into (7.1.4) we obtain

o [
Q

Bearing in mind that by assumption p, k[s] € C*(Q), with some given a € (0, 1), and setting

|Vp — Vo|? da dt < _/Q gtﬁﬂ)\,p](p—v) dx dx—l—/ (ko — k[s])(Vp + 2)V(p — v) dx dt.

e e

(7.1.8)

R {<k[8]>g,Q; <k[s}>t%,Q; <p>g,Q; <p>t%Q}

IN[|)

where ()¢ 5 and ('), stand for the parabolic Holder seminorms as in (A.2.2), we observe that
0sC {k[s]a Qg} , OSC {p7 QQ} < Cozg%
clearly hold. Therefore with ko = k[s](zq,t0 — ¢*) and o < 1

|k[s)(z,t) — ko| < osc{k,Qo} < caol
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follows. On the other hand, by virtue of p < 1 and Theorem A.9.1 there exist constants 3 & (0, %),
and cg > 0, independent of g, such that

osc {v,Q,} < c,ggg

is satisfied. Keeping in mind that v(-, to — ¢*) = p(-, to — 0°) a.e. in R,, we obtain for a.a. (z,t) € Q,

the following estimate

|p($,t) - U(."L‘,t)| = ‘p(:ﬁ,t) _p($0>t0 - 92) —|—p(l‘0,t0 - Q2) - U(l‘,t)}
= |p(x,t) — p(xo, to — 0%) + v(wo, to — 0°) — v(x,1)]
< osc{p, Qp} + 0sc{v, Qp}

< 2max {cq, 5} gg.

Consequently, as by assumption £ < kg holds, the following estimate follows from (7.1.8)

k/ |Vp — Vol* dz dt < 2max {ca,cs} QZ/

e [«

0
(%QU[)\,p]’ dx dt

+ max {cq, c3} Q% / |Vp+ 2| |Vp — Vo| dzx dt. (7.1.9)

Qo

B
1

max {cq;cgt o <

k
8 =2

Thus, by virtue of , Holder’s inequality applied to (7.1.8) yields

k
2/ |Vp — Vol|? da dt§2max{ca;05}g§ [/ pn
Qo Q

82{][)\,])]‘ dz d:v—i—/ Vp + 3% d dt] ,

e o

and (7.1.3a) follows.

For the verification of (7.1.3b) we observe that (7.1.3a) implies

/|Vv—|—73|2dx:/ IVp+ 2+ V(v —p)|* dz

0 Qo
52/ |vp+;:«\2dzdt+2/ \Vp — Vo|* d dt
e QQ
]
8 ) 4 A
< <2+ max {c Cﬁ}g4> [/ aQU[)\,p]' dwdw+/ |Vp+ 2 dxdt],
k Q, |10t Q,
which is the desired estimate (7.1.3b). O

We now consider a parabolic rectangle Qy C R? and denote by D(Qy) the set of all parabolic sub-
rectangles Q of Q, i.e. those rectangles with sides parallel to the sides of Q that can be obtained
from Qo by a positive finite number of parabolic subdivisions (see Definition A.11.1). We call
é the PREDECESSOR of Q, if () was obtained from é by exactly one parabolic subdivision. This

procedure is illustrated in Fig. 7.1 in the case @y C R? (i.e. the spatial side is two-dimensional).
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time A

Qo

space

First parabolic subdivision of Qg Second parabolic subdivision of Qg

Figure 7.1: Parabolic subdivision illustrated on an example with 2-dimesional spatial side

As noted above, the application of the Calderén-Zygmund type Lemma A.11.2 will be the crucial
point in deriving higher integrability estimates. The following Lemma provides a statement con-
cerning the behavior of the level sets of the maximal function of |Vp|* which will be the central

estimate in order to establish condition (ii) of Lemma A.11.2 for suitable sets X and ).

Lemma 7.1.2. Suppose that the leading elliptic coefficient k, the initial configuration A, and the Preisach
operator 20 involved in (3.1.2) satisfy Assumptions 3.2.3 and 3.2.4. Assume that Assumption 3.2.1 holds
and that there exists a solution p € H'(Q) of Problem 3.1.1, such that setting s := aop + [\, p] with ag
from Assumption 3.2.3

peCc®i@, Kb eC™i@, and k<Ks|<h ingQ,

hold with some o € (0,1), and k, k as in Assumption 3.2.4.
Let xg € Q, tg > 0, and po > 0 satisfy

QQ() = {IER:S’:L‘Z_J:O‘ < 00, 7’:1’273} X (t _ngt()) CQ7

7.1.10)
f 17 15 (
Qugo = {z € R® : |z — 20| < 400, i =1,2,3} x <t — % to + 290) cQ,
and
Ak 55 95 \F
400 < min{ 1; () () , (7.1.11)
max {cq, g} 245¢

for some given ¢ € (0, 1), and with § € (0, %) and cg chosen as in Theorem A.9.1, ¢, as in Lemma 7.1.1,
and ¢ the constant from the weak (1,1) estimate of the maximal function operator from Lemma (A.11.4).
Let Mq,,, (IVp + 2|?) be the restricted parabolic maximal function operator relative to Q4,, defined by

MQ4QO(|Vp+2|2)(§J,t~) = sup ’Q‘/|Vp+z| (v,t) dz dt, (7.1.12)
(2,He@

whenever Q) C Qu,, denotes any parabolic rectangle containing (z,t) € R*, not necessarily with the same

center.
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Let > 1 be arbitrary, and suppose there exist a parabolic rectangle Q C Q,, obtained by parabolic

subdivision from Q,, satisfying

>5‘Q

)

5 424’E o
H(a:,t) € Q: Mg, (Vp+2P)(z.t) > 9 <4+ ! ma;‘{c ’Cﬂ}) max{l;éM}u}

with ¢y as in Theorem A.9.1.

Then the predecessor é) of Q satisfies

Q € {(@.1) € Quo : Mo, (IVp + 2P)(a.t) > )}
U {(x,t) € Qg : Mg, (‘gtan[x,p]D (z,t) > u)} .

Proof: Our proof follows the arguments of [56]. We argue by contradiction. Let us fix the numbers

§ > 0, go satisfying (7.1.11) and p > 1. Suppose that Q € D(Q,,) is a rectangle satisfying

427 max {ca,cp}

'{(x,t)EQ:MQ4QO(\Vp+2\2)($,t)>95 (4+ . >max{1;éM}u)}' >5‘Q‘.
(7.1.13)
Let é € D(Q,,) U{Q,, } be the predecessor of Q (as illustrated in Figure 7.1), and assume that the

conclusion for 52 is false, i.e. there exists (¢, 7) € é for which

1 1
sup / IVp + 2 da dt < p, sup / 8%17[/\,19]‘ dr dt < p (7.1.14)
R rectangles ‘R’ R R rectangles ’R‘ R ot
(§&7)ER (&7)ER

hold for all parabolic rectangles R C Qu,, With ({,7) € R.
Since Q € D(Q,,) was obtained from Q,, by parabolic subdivision, there exist r € R?, t > 0, and

o0 > 0, such that Q can be represented as
Q={zeR®: |z, —1| <o, i=1,23} x (t— o).

Let p be a solution to Problem 3.1.1, and s := agp + 2]\, p] with ag as in Assumption 3.2.3 and

20 be the Preisach operator defined by formula (2.4.3) corresponding to the input p and the initial

configuration \. Setting k¢ := k|s] (zc, t— %) and defining

. - - 170 15¢0°
R4Q = {$€R3: ‘xl_ﬂ <4Q) /L.:]-7273}7 Q4Q ::R4QX <t_2gvt+29>a

and

~ - 1702 1502 - 1702
8Q4Q:8R4g><(t—2 ,t—|-72 UR49X t—72 ,

(see the illustrative example in Figure 7.2), we consider the unique weak solution v € H'(Q4,) of

apt — koV - (Vo + 2) =0 a.e. in Q4Q, v = pa.e. on 8@49.
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Qu, N

o)l
’
N

N e avea t-%
[Pou—

uuo
)

RQ

possible predecessor Q of Q

Figure 7.2: lllustrative example of the rectangles Q, 0, and Qup

As Q was obtained by exactly one parabolic subdivision from é, the inclusion é C Qu, holds (see

illustation in Figure 7.2). Thus, we have (¢, 7) € Q4g, so (7.1.14) yields in particular
1

’Q4Q Q4o ’sz‘ Qe

Therefore, checking that by assumption 4p satisfies (7.1.2), we obtain by virtue of Lemma 7.1.1,

Bt

’d:rdt<lu

together with the preceding inequalities the following estimates

B
4 (6%} 4 4 -
® // Vp— Vof? d dt < 2084 s} ( @0)4M\Q4Q‘ (7.1.15)
Q4g E
B
8 FPREANE
® // Vo + 22 de dt < 2 (2+ max{c“’kcﬂ}( Q“)4>M‘Q4g , (7.1.16)
Q4Q —

where c,, cg, and 8 are as in Lemma 7.1.1, and & is as in Assumption 3.2.4.

Bearing in mind that gy < 1, we obtain by virtue of Theorem A.9.1 and estimate (7.1.16) for

- 5 3
Qopi={z €R’: |z —1| <20, i=1,2,3} x (t_g t+§>

the following inequality

sup |Vou(z,t) + // Vo + 2|* da dt
(2,t)€Q2, 49’ Q4o
i
s 400)7 \ .
S2<2+8max{c <o} go>4>cw

424’é
< <4+ : maz{c‘”’cﬂ}> max {1; ¢y} g =t Nop, (7.1.17)
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with the obvious labeling of Ny and the constant ¢); as in Theorem A.9.1.

Let us now consider the restricted maximal function operator relative to 2, defined as follows

412 L 1 9
MQQQ (|vp+ Z| ) ($7t) ‘= Sup @ 5 \Vp+ Z’ dy ds.

RCQQQO’
(z,t)ER
We now claim that for any (z,t) € Q
MQ4Q0 (|Vp + 2|2 (:Z},t) < max {MQQQ (|vp 4 2|2) (:II,t), 95,u} (7.1.18)

holds.
Indeed, let (z,t) € Q and R C Q4,, be a parabolic rectangle satisfying (z,t) € R and R ¢ Qa,.

Taking &, £, and p, such that R can be represented as
Ri={x eR% |o; — & < p, i =1,2,3} x ({ - p,1),

we observe that clearly p > % must hold. Thus, in particular there exists a rectangle R, such that
RCRC Q40, holds, and which has the property that é C R, and ’fi’ < 95 |R|. In Figure 7.3 we

present an illustration of the spatial side of this relation.

_____ [ A
R /E /:/,/ QQQ
| Y | )
I B Q
(x,t) 0
[ ] - —
R__ |2

/* _______

Q4g

Qe

Figure 7.3: lllustrative example of spatial sides of the rectangles Q, Q, Q2,, Qup, R,and R

Hence, by virtue of (7.1.14) we have the following estimate

7

1
/ Vp+ 22 dy ds = / Vp+ 27 dy ds < 9°p,
R R

1 / 12
— [ |Vp+ 2" dyds < —:
IRl Jr |R|

so consequently (7.1.18) is satisfied.

Now, we claim that with Ny defined as in (7.1.17), the following inclusion holds

{@teQ:ng, (19p+2P) @.1) > 9°Nou}
5

c {(:c,t) €Q: My, (|V(p— V)2 ) @) > 2 iV%}. (7.1.19)
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95 No

Indeed, let (7, t) be such that (%,7) € {(:U,t) €eqQ: Mg, <\V(p —v))? ) (z,t) <
of

,u} . By virtue

IVp+ 2% = |Vp— Vo + Vu+ 2> <2|Vp— Vou]? +2|Vo + 22,

and the boundedness of |Vv + 2| in Qs, obtained in (7.1.17) it follows

1 9° N,
sup / |[Vp + 2|2 dyds <2 sup / |V(p— v)|2 dz dt + 2Ngp < a + 2Nop
RCQ2,, 1Bl Jr RCQ2,, /R
(ZHeER (#,0)eR

5
And since clearly 2 < %, we obtain (7.1.19).

As a consequence of (7.1.18) and (7.1.19) we obtain the following bound
H(:U,t) €eqQ: Mq,,, (|Vp + 73|2> (z,t) > 95N0,u}‘
{(m,t) € O : max {M@Q (\vp n 2\2) (z,1); 95} > 95N0M})
< ){(x HeqQ: My, (|vp + 2|2> (z,t) > 95NOMH

< {0 ey, (V0= 0F) ) > 95f0u}\.

<

425 max {ca;cp}
k
maximal function operator stated in Lemma A.11.4 yields

Keeping in mind that by definition < Ny, the (1,1) weak type estimate for the

H(fc,t) eQ: Mg, (IVp-0)) (5,0) > QZVOMH

4¢ég
<
= 9 Nop

/~ \V(p—v)\Q dz dt

QQQ
< A% / V(p—0)|? dudt
_95N0'u Q4g

4¢p 4max {cq;cg} (4oo)
~ 9Ny k

B
4

o

56, B
4COZ

S?Qo Q

)

where the constant ¢ is as in Lemma A.11.4. And finally, since by assumption
(¢
00 =\ 245¢

({(w,t) €Q: Mg, (\Vp+ 2\2> (z,t) > 95N°“H <

Aol

we conclude that

holds, which is a contradiction to (7.1.13) and completes the proof of the Lemma. ]

Let us now prove an important consequence of Lemma 7.1.2.
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Corollary 7.1.3. Under the same hypotheses as in Lemma 7.1.2 the following estimate holds for all k € N

{@t) € Quu t My, (9 + 2@, 1) > (9°No) o }|

< o* H(:E,t) € Qo : MQ4QO(|VP+ é|2)($’t) > UO}’

k
—3 0 %
#3000 {00 € Qu: gy, (|gr00n]) ) > PNy . 2120
i=0
where 5
42+7% »
Ny := <4+ ma;({c ’Cﬂ}> max {1;¢pr},
and

2 &
m = -
6|Q490’ Q4Qo

and where the constant c,, is as in Lemma 7.1.2, cg, ¢y are as in Theorem A.9.1, and ¢y is as in Lemma

A.ll1.4.

\Vp + 2 dedt + 1,

Proof: Let § > 0 be given and fix gy such that g, satisfies (7.1.11). Moreover let Q,,, Q4,, be as
(7.1.10).

To prove (7.1.20), we define for an arbitrary p > 1 the sets

X = {(az,t) € Qg : Mq,,, <|Vp-|— 2|2) (z,t) > 95]\70;4}7

and

Y i={(@,t) € Quo : May,, (Vp +2)(w,8) > i}

U {(w,t) € Qg : Mg, <‘§tﬁﬂ[x\,p]‘> (z,t) > M} .

Bearing in mind the definition of 7y, the weak (1,1) estimate for Mg, o0 stated in Lemma A.11.4

yields

. & . 0
21 < [{(@.1) € Qo : Mau,, (19 +27) (@) > mo}| < n‘;/ Vp+ 2 dwdt < 5 |Qugol.

L)

Let us now consider a parabolic rectangle Q € D(Q,,) satisfying

\me’%\@

)

with § as above. Then according to Lemma 7.1.2 the predecessor é of ( satisfies

Q¢

c .
At this stage Lemma A.11.2 shows that

X <6V (7.1.21)
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With the choice
i = (95 No)* g fork=1,2,..
estimate (7.1.21) translates directly in
{@1) € Quu t My, (9 + 2@, 1) > (9°No) o }|

{(@:0) € Qo+ Mau,, (IVp+ 2P)(, 1) > (°No) Mo |

{0 € Qo (|20 ) 00 > @80}

<5

+9

for all & € N. Iteration of this estimate immediately yields

{@.1) € Qo Moy, (TP + )@ 1) > (9°No) o |

<o H(x,t) € Qoo Mqu,, (|Vp + 21%) (2, ) > 770}‘
+Zk:5i
1=0

Thus, rearranging the order of summation, the claim follows. ]

{0 € Qu o, (|5201)) ) > @80 .

In the next Lemma we will see how the estimate (7.1.20) can be translated into an interior reverse
Holder inequality for the gradient of solutions p to Problem 3.1.1 which in turn yields the higher

interior integrabilitiy of Vp.

Proposition 7.1.4. Suppose that the leading elliptic coefficient k, the initial configuration A\, and the
Preisach operator 20 involved in (3.1.2) satisfy Assumptions 3.2.3, and 3.2.4. Assume that Assumption
3.2.1 is satisfied and that there exists a solution p € H'(Q) of Problem 3.1.1 such that setting s :=
aop + W[\, p] with ag from Assumption 3.2.3

pe i), Ks| € % (Q), SwernQ ad k<M <k inQ

hold with some o € (0,1), some q > 1, and k, k as in Assumption 3.2.4. Then

Vp € L2(Q).

loc

Proof: Let Ny, and gy > 0 be as in Corollary 7.1.3, the rectangles Q,,, Q10, C @ be defined as in

(7.1.10), and q as in the conditions of the Lemma.

1

Since every function f € L; .

(Q) is bounded pointwise a.e. in @, by the maximal function Mg,

(defined in (7.1.12)), the following estimate holds

J

IVp+ 22 dx dt—/ (|vp+2\2)q dz dtg/ (Ma.,, (\vp+212))q dr dt. (7.1.22)

20 ng QQ()
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Applying the elementary identity (see. e.g [61, Theorem 8.16] )
/ g? dx dt = / QAT {(2,1) € Quy t gz, t) > N} d, (7.1.23)
Qoo 0
to the function g = Mgq,,, (|Vp + 2|2>, we find that

/ng (MQ4QO (|vp+ z|2))q dz dt = /OOO ghe~! H(:L‘,t) € Qu : Mgy, (|vp+ 2|2) (z,t) > AH )

is satisfied, and consequently (7.1.22) turns into

/Q Vp+ 2P d dt g/o 7 {(@1) € Quy Moy, (1Vp+22) (@0) > A ax. (71.29)
€0

Let us now define the quantities

m(s) = H(UC t) € Qoo - M@y, (]Vp—i—z[ > ) > s}

P (7.1.25)
na(s) == H(az,t) € Qg : M, <‘atﬁﬁ[)\,p]’> (x,t) > s}’
We observe that both 7; and 7, are monotonically decreasing functions. So, setting
Ny == 95Ny, (7.1.26)

and taking 7 as in Corollary 7.1.3, we can decompose the interval [0, c0) in the following way

[0, 00) = [0, no] U [0, N1mo] U [N170, Nimo) U [N?n0, Nimo] U

Assembling (7.1.25) and (7.1.24), we obtain

/ |Vp + 2| d:cdtg/ QAT (N) dA
0

Q0
Nk+

70
=q/ ALy, d)\+q2/ m(A) dx
0 1770
) NfJfl
<) +qY. ALy, (N{%m) A\, (7.1.27)
k=0 Nino

Exploiting the monotonicity of the function 7, (t), we find

Nyt > N

qZ/ Mm(A) dA < QZ/k Xy (ano) d\

1710 k=0 N1 7o

< (Nimo)® > _m (N{“no) (N7 (7.1.28)
k=0
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Thus, using

m(mo) < m(0) = [{(@:1) € Qu : Moy, (|0 + 2) (@) > 0} < |Qu]

together with (7.1.28), we conclude from (7.1.27) the following estimate

/ Vp+ 227 da < Q| + (Nimo)® > i (ang) (N7)?* . (7.1.29)
k=0

Q0

Hence, we see that ||Vp + Z|| L24(Q,y) 18 finite, if we can prove that the series

i m (ano) (Ny)™

k=0

converges. Setting
1

= T]\f{]
and choosing g satisfying the restriction (7.1.11), we obtain by virtue of Corollary 7.1.3 for any

k =1,2,... the following estimate

k
m (N{“no) < "1 (no) + > 6%y (Nino) (7.1.30)
=0

where we observe that this estimate trivially holds also for £ = 0.

Let J € N arbitrary and recalling the definition of § we calculate

J
> Nitm (N{"’no) < ZNq 8*n1(no) +ZN‘7'“Z5’“ ‘112 (Nirmo)

k=0 k=0 k=0 =0
I 7
= ) " (o +Z k25k1 (Nimo)
k=0 = (
Iy J ok ' '
= Z F™ (m0) + Z 227%71772 (Nino)
k=0 k=0 i=0

with the obvious labeling of .27, where the last step followed by exploiting the convergence of the
geometric series.
Interchanging the order of summation in <7, and exploiting again the convergence of the geomet-

ric series, we find

J ok JoJ
«527:222 ¥y (Nino) ZZ 2756 "y (Nino)
k=0 =0 =0 k=1
J o
= 8 'm (Ning) Yy 27"
=0 k=i
J
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J
<2 (26) "n2 (Nino) -

i=0
Passing to the limit J — oo and bearing in mind the definition of 9, provides
o [oe)
> N (M) < 2m(no) +2 " Nfne (N ) (7.1.31)
k=0 k=0

Inserting (7.1.31) into (7.1.29) yields

/ VP + 2% do < |Qgy| + 2 (N1m0) ! m(m0) + 2 (N1mo)* > N{*ny (ano) : (7.1.32)
Qoo k=0

Let us now estimate the last sum on the right hand side of the preceding inequality.
With the intention to use the L9 estimate (A.11.5) of the maximal function operator, we calculate
decomposing the interval [0, co) again into intervals [0, 7] and [Nfno, NF ] for k = 0,1,2, ...,

making use of (7.1.23), and taking advantage of the monotonicity of 1,

a q [e%¢}
/ MQq,,, <'8tw[)\ p D dr = q/ A () dA
Q 0

Q0
Nlc+1

no
=q/ AT gy dA+qZ/ 12(A) dA
0 1770
NFtL,
261/ m2(n0) A~ 1d>\+QZ/ N’“Jrl )Xl‘ld)\
0 1770
N,
> 12(no)ng + QZUQ (Nf“no) / AL
Nk
k=0 170
> q
= n2(Nno) (NPmo)? + an (N{Hl??o) [(NfH??O) (Nl 770) }
k=0
> q
= 772(N?770) (N{)T]())q + Z (N{C—HT]()) 2 (N{H_ln()) |:1 — :|
k=

1

k=

> q NI -1
=y (ano) T (ano) FTEa
k=0 1

ik ko) V-1
z ZN{] 2 (N1770> TNT
k=0 1

q_
where the last step follows since 1y > 1 by construction, and the term M - Lis nonnegative by

Ny

virtue of N7 > 1.

This inequality together with (A.11.5) provides the following estimate

q
dzx dt

> N o)
2 (Nuo)® > Nif (Nfﬁo) < 2 (Nyno)* N{Il—l/Q ‘MQ@O <|8tw[)\ P]D
k=0 20

]

> n2(NPno) (NPno)* [1 - } Z (ano)qnz (ano) [1 — &7
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Nyge(a) / 9 !
(q - 1) [Nil - 1] Qo ot
where ¢(q) = ¢(3, ¢) is as in Lemma A.11.5. With
mm) < [{(@.0) € Qu : May,, (VP +21) > 0} < Qu|
inequality (7.1.32) turns into
N2 9c(q) b q
K < [1+4 2 (Nyno)® o1 / e :
f,, 7 s < o2 ) Qal + 2 S G e

Then the hypotheses on Vp, and %Qﬁ[)\, p| yield that there exists a constant ¢, independent of o,
such that

/ |Vp + 2% dadt < ¢ < o0 (7.1.33)

Q0
holds. Finally, let Q' be a compact subset of Q). As @ is bounded in R*, we can cover Q' by a finite
number of rectangles @,,, such that Q4,, C @, and gg satisfies (7.1.11). Then from (7.1.33) we

obtain

”Vp + 2||L2q(Q/) < 00.

Hence, we have completed the proof. ]

7.2 Local Boundedness of p in the Interior

In this section we will prove the local interior boundedness for the time derivative p of solutions
p to Problem 3.1.1. Our main tool for the proof is the Moser iteration technique, which was al-
ready successfully applied in [18] to prove global boundedness of the time derivative of solutions
to certain parabolic PDE’s involving hysteresis, although the authors of [18] did not encounter
problems due to the dependence of the leading elliptic coefficient on the hysteresis operator, and
also to the lack of convexity of hysteresis loops. We show, how the Moser iteration technique still
can be applied in our case. Our approach follows the arguments which can be found for instance

in [43, Chapter 3, §8].

Proposition 7.2.1. Suppose that the leading elliptic coefficient k, the initial configuration A\, and the
Preisach operator 20 involved in (3.1.2) satisfy Assumptions 3.2.3, and 3.2.4. Assume that there exists a
solution p € H'(Q) of Problem 3.1.1 such that p € C*%(Q), 1Dl () < R, with R as in Assumption
3.2.3, and

20
3

VpeLA(Q). peLF(Q) (7.2.1)

hold. Then p € Li3.(Q).

loc
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Proof: We start the proof recalling basic facts about Steklov-approximates. For A > 0, and a

function v € L%((—h,T) x Q) satisfying v = 0 for a.a. t > T — h and for a.a. t < 0, we define

[v]7(z,t) == flb/thv(ac,s) ds fora.a. (z,t) € 2 x (0,7).

Moreover, for a function u € L?((0,T) x 2) and h > 0, we define its Steklov-approximate u, by

t+h
up(z,t) = h/ u(z, s) ds a.e.in (0,7 —h) x
t

and recall the easy identity

—ATA¥M%dxﬁ:r—ATA;AQMw_Z@_hLMdt

Tt 4 h) — () T
= /0 /Q — v(t) dz dt = /0 upv dx dt. (7.2.2)

Let now 29 € ©, 0 > 0, and tg € (0,T) be chosen such that B,(xp) C Q and 0 < ty — 0,
where By(zg) denotes the ball of radius ¢ centered at 5. We now introduce the sequences
{Qn}nze{o,1,2,...} CR, {Bn}ne{o,l,z,...} C R? and {Qn}ne{o,l,z..} C R* as follows

Y
on+1 )

On = §+ By, := By, (x0), Qn = Bp X (tO_QiatO)’ n=0,1,2,..

Corresponding to the sequence {Qn},,c(012,..1 1€t {C}t 123 C C}(R*) be a sequence of cut-off

functions satisfying

1, foraa. (z,t) € Qnyi1,
0<(,<laein@Q,, and C(u(z,t) = )

0, foraa. (z,t) € ((R*\ By) x R)U([0,t0 — 0%] x R?),

and |V(,| < 222,

2n+3
=0 < SF

Cn
With the intention to pass to the limit as » — 0 we suppose that h < (%)2 holds, and take p
to be a solution of Problem 3.1.1 satisfying the hypotheses of our Proposition. For ¢ > 0 and
n,k =€ {1,2,...}, we consider the functions 7, » € L?(0,T — h; H*(Q2)) defined as follows

Dk (2, ) == P, ) [P (2, 1) 2 Gz, 1) Xk (1), a.e.in (0,7 — h) x Q,

where the functions () € L>°(R) are defined for all £ > 1 by

(

0, ift <0,
kt, ifo<t<gq,
xk(t) =41, if £ <t <t — 1,

k(ti—t), ifty—F <t <ty

0, ift > 1,

\
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for some t; € (tp — Q%H, to — h]. Thus in particular, 7, ; = 0 holds a.e. in {2 for t = 0 and for a.a.
t € [t1,T — h]. Extending 7y, ;, trivially to (—h,T') x Q, we observe that for all n,k € {1,2,...}, the
functions ¢, € L*(0,T; H*(Q2)) defined by

On(z,t) == p(a,t) + [nrlz(z, t) a.e.in (0,7) x Q

satisfy vo¢(z,t) := yop(x,t) fora.a. (z,t) € 02x (0,T), and thus ¢, , are admissible test-functions

for (3.1.2). Therefore we obtain from (3.1.2) choosing ¢,, ;, as above

T
/0 /Q $limrls + K[s|(Vp + 2)V i sl de dt < 0.

Recalling the definition of x;, we find applying identity (7.2.2) to the first term of the left-hand

side of the preceding inequality
hro 0
[ [ gyt + 5 Kl (V4 2)), Vi dade < 0 7.23)
0o JoOt ot
which is equivalent to
oL 0 . N
L[ gpsn [l &ty + g 1sl(wp+ 20,9 ([l 2] o) de e < 0. 724
0o JoOt ot

As Xk — Xo,r,) Weakly* in L>°(0,T — h), where x[,] denotes the characteristic function of the

interval [0, t1], we can pass to the limit as £ — oo and obtain

t1
[ G [ ton 2]+ 5 sl(V0+ 2 [l ] dmae <0, 725
We estimate the terms in (7.2.5) separately.

@ Bearing in mind that (,(-,0) = 0 a.e. in £, and that ¢; € (tp — Q%H, to — h], we calculate for
the first term of the left-hand side of (7.2.5)

/tl 002 b o 19|20 2 da dtzao/tl/ O 52772 2 de dt
o Jo ot n 2q + 2 ot n

H\ph (t1) |qu Cn (s 1)‘ ;(Q)

Gn

_2 —|—2

to—

W22 ¢ dz dt.

_q+1

Thus, recalling the construction of ¢,, we find the following lower bound

t1 a 2
dx dt
/0 (%phph pn|*? ¢2 da

|q+1‘

2n+3
th - ‘/ /m|p|%+2dmdt (7.2.6)
to—03,

>
2q —|—2 L*(Bny1) q+1

@ Let us proceed with the term of the left-hand side of (7.2.5) containing the time derivative
of the Preisach operator. The estimation procedure is based on the Hilpert type inequality

for the Preisach operators stated in Proposition 2.3.13.
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For any r > 0 we set
§"(z,1) = pr[A(z), p(x, -)](t)
fora.a. t € [0,7], a.e. in £, and consider two inputs u(z, t) and v(z, t) defined by
u(z,t) = p(x,t + h), v(z,t) = p(z,t), fora.a.t € [0,y — h], a.e. in .
Moreover, let A : Q — A satisfy for all 7 > 0
u(z,0) — & (z, h) = min {r; max {—r, u(zx,0) — Xz, r)}} fora.a. z € .

Putting for » > 0

(@, 1) = pr[A(@), ule,)](t), and  vp(z,t) = pr[A(@), v(z,))(1)

fora.a. t € [0,tg — h], a.e. in 2, we observe that

ne(x,t) =& (z,t+ h) and vp(x,t) = & (2, t)

holds for a.a. t € [0, %y — h], a.e. in 2, and consequently Proposition 2.3.13 yields the follow-

ing estimate

[G(r, € (2.t + R)) = g, € (2, 0))] (p(a,t + h) = pla, ) [p(x,t + h) — p(a, )]
= [g(r,me (2, 8)) = g(r, v (2, 1))] (ulz, t) = v(z, 1)) [u(z,t) — v(z, )"
> [g(ry e (2,1) = §(r,vp(a, 0)] (e (2, 1) = ve(, 0)) | (2, 8) = vy (e, )
(,

= [9(r, € (2t + ) = §r, € (2, )] (€ (2.t + h) = € (2,)) € (2, t + h) — € (2, 1)

~— =

fora.a. t € [0,tp — h], a.e. in Q. For simplicity, let us omit the dependence on the spatial

variable in the notation and rewrite the preceding inequality as

[G0r, €7 (t + 1)) = g(r, € ()] (p(t + h) — p(1)) |p(t + ) — p(t)[**
> [9(r, € (t+ h)) = g(r, & ()] (€7 (¢ +h) — € () €7 (¢ + ) — € ().

Moreover, recalling the definition of the function g, an easy computation yields

hQiH [G(r, €7 (¢ +R)) = §(r, & ()] (€7 (¢ +h) = € () [€7 (¢ + k) — ()

= w(r € (e + M+ MED G0 v e @Emém|ém|”

Let us estimate the right-hand side of this identity. First we calculate

.r<t)‘2q

P, 6+ R)EC b+ WER) 0] = 60 €7 + RDEGDER()

= hp(r, €70 4 ) R0 [0
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- 0 |, |2412
= 5 )5 ()
- 0 |, |2a+2 Lo 0 i |22
= 5 gt M GO+ 5 T S € b+ ) [
h 0 r ” 2q+2
ey L AN GIO]
h , . 202
—mazw(ﬁé (t+h))E"(t + h) gh(t)‘ ,
as well as
0 € OO [0 v @+ e g0 [go)]
o (E+h) = (£ (1) L )2at2
= v o e G] 0] I

Since by assumption |[p| () < Rand ) : Q — Aj we find by virtue of Proposition 2.2.7

that ¢"(x,t) = 0 for r > R, a.e in Q, and therefore the pointwise estimate
1€ (x, )] < |p(z,t)] + 7
implies
/ ’ / D o on il €2 i it
0o Jq Ot
1 oo
> . T
> L L g (veeern)
t R 1 . :
_ 8.4(r, t+h t
sw a0 [ [ [ (g e ] + g

2<2R

£r(t) (2q+2> 2 dr da dt

. 2q+2 9
g;;(t)‘ 2 dr da dt,

and consequently

/tl/aw w |pn)?4 da dt
0 Qat h Ph |Ph
1 R i
22q+2/9/0 e(r, &' (tr + D))
1 [h R . .
-5 | [ ] eeewem g

- s @w(m)/otl/Q/OR <2q1+2 ]é(r,t+h)] + \é(r,t)D

2<2R

2q+2 .
Go(t1)? = 0 (r, & (1)) |€,(0)|  Ca(0)* dr da dt

’ 2

‘2q+2

AGH

q+2 .
CnCp dr dx dt

. 2q+2 9
5,’;(t)‘ 2 dr da dt

holds. Thinking of the properties of ¢,, and of the positivity of 1), we arrive at the following

inequality

t1 6
[ [ gy il G o
0 Q
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2g+2
(4 )‘ dr dx di

>f3]1;)821/1rz/t0 Qﬂ/ﬂ/ (2q+2‘§rt+h‘ }ﬁrtD
2<2R
_ 2n+3/t0 Qn/n/¢r€rt+h)

Since by assumption p belongs to C*% (Q) the time derivative gtgr exists fora.a. t € (0,7)

a.e. in 2 and, according to Proposition 2.2.6, satisfies the following pointwise estimate

2q+2
Q‘ dr do dt. (7.2.7)

ér

< |p| a.e. in Q x (0,7). (7.2.8)

Hence, applying Fubini’s Theorem, Holder’s, and Cauchy’s inequalities we find

[ L (tgleeen] ool
/ / /(2 sl ]+ 1500

2q+2
Tt )( dr da dt

. 2q+2
T(t)‘ dz dt dr

9 3 R 2¢+2
<ol [ G0 dr
2q+2 L3(Q) LITO((to g%ﬂfo—h)xBn)
2g+3 2q+2
_ ’ dr. (7.2.9
2q+2‘|p”m(cz/ H’Sh ’ PR oy O (729)

Moreover, by virtue of Assumptions 2.3.6 and 2.3.100 < #(r,v) < (r) holds, and we obtain

again by virtue of Holder’s inequality and Fubini’s theorem

/to 9// € (t+ h)

2q+2
e )) dr da dt

2
/ / / dx dt dr
t n
< o dr. (7.2.10
10
< Q| / Héh‘ 20(g+1) (fo—2 to—R)x ) r. (7.2.10)

Inserting (7.2.9) and (7.2.10) into (7.2.7) finally yields

/ ! / O i P 1Bl de it
o Ja Ot

> 203 / & e
- 2q+2 p L? (Q) h 20(q+)((t0 02 ,to—h)x Bn)
o / n|é e dr. (7.2.11)
((to—g%,to—h)XQ)

Now we estimate the elliptic term of (7.2.5). Direct computation yields for a.a (z,t) € Q x

(07 to — h)

% [k[s](z, t)V(p(x,t) + 2)], = k[s](z,t + h)Vpp(x,t) + k[s] (x,t)V(p(x,t) + 2)

as well as

V [5n 168 G| = (20 + 1)F5n [5n** G2 + 26 19 GV G
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® As by assumption k[s] > k£ > 0 holds a.e. in ), we find the following estimate

t1
(2¢+1) / / (x,t+ h)Vpy - Vpp |ph’2qcn dx dt
t1
> Qo+ Ok [ [ (VPG dear (7212)

@ Then, again, bearing in mind k[s| > k£ > 0, applying Young’s inequality, and recalling the

properties of ¢,,, we deduce that

t1
/ / (x,t + h)Vin - bn [Pr]* GV da dt

(2 + f 4
< CDE [ [ i 1 e+ ot [ [ 96,2 i a

2

(2¢ + 1)k /tl/ 2 4k 22(n+3 / / 2q+2
<7 v 92 d dt + 2 g dt
< IVnl? [pn 7 ¢ dae E \ Bl x

(7.2.13)
holds.

® Moreover, again by virtue of Young’s inequality

t1
2q+1/ / W(Vp+ 2) - Vipn [on] 2 du dt
E f - 12 .- 129 A2
<@aen)g [ [ 1P il G do i
0

2¢+1 [ : 2 9.
2 [ sl 194 2 2 G2
0

2k
is satisfied. At this point we see why we cannot repeat the arguments of Section 6.1. To be

able to do this, one would need, that our Preisach operator satisfies
lw(t +h) —w(t)| < Lip(t+h)—pt), a.e. in )

fora.a. t € (0,7 — h) with some constant L > 0, which must not hold. Thus, making use of
20

our assumption that (Vp + 2), belongs to L;? (Q) we obtain by the Lipschitz continuity of &

with Lipschitz constant L, the definition of ¢,,, and Holder’s inequality

" Ks), | 212 19,129 C2 da d
; [sln| [Vp+ 2|7 [pul™ ¢, dx dt
0

7 / / 62 Vo + 212 [pn 2 da dt
to

gLi]

. . q
) “Sh’ D] ‘ LY (to—02 to—h)xBn)

As in particular Q,, C Qo,

t1
2q+1/ / W(Vp+ 2) - Vi [ €2 da dt
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t1
< (2g+ 1) / [0 ot

2¢g+1
2k

~ .12 12¢
e S\ e (A (72.14)

10
7 ((to—03,to—h)x B)

holds.

® And finally, bearing in mind that Vp + 2 € LZOC(Q), the Lipschitz continuity of k, and a

similar estimation procedure as above implies

t1
/ / w(Vp+ 2) - P [pn]* ¢V Cn daz dt

< 2Lk / / |50 [V + 2] [pu]*7*" da dt
to— Qn
2o 2+1 7.2.15
< ) . . .
S Sk IVP+20 2, H‘S"‘ P ’ﬁ"((to—g%,to—h)xBn) 7219
Introducing the constant

9 L? ‘|Vp+£’“220

3 4k +2a0 s . i L3 (Qo)

o4+ — — = 0+ L

||pHL130 @ + Q| + i Q[0 + Ly | Vp + Z”L%(Qo) + 2k

and inserting estimates (7.2.6), (7.2.11), (7.2.12), (7.2.13), (7.2.14), and (7.2.15) into (7.2.5) it follows

2 2¢+ 1k ("
q+1‘ (q//v'2'2q2ddt
2q +2H|ph ) L2(3n+1)+ 4 0 Q‘ onl1nl G
92(n+3) 2042 2q+2
< (2942 é % / H ’ a
_( q ) 0 ||ph||L7((to 02 to—h)x Br) gh w((to—g%,to—h)xBn)
2q+2 d
+/ Hfh‘ 20<%+1)((t0—g%,t0—h)><3n) r
29
’Sh| Bl HL ((to 02 ,to—h)x Bn)

n H|s‘h\ |p|2q+1H (7.2.16)

Lﬁ( to— Q%,toh)XBn):|

Recalling the definition of ¢,,, we can estimate the left-hand side of (7.2.16) from below and obtain

min {ag; k} [H‘p ’q+1‘

+ (g +1)? / \Vpn|? |pn|?? de dt
4(q + Bn+1

L2(Bpy1) fo—02,

< LHS of (7.2.16),

and since t; € [ty — Q% +1,to — h] was chosen arbitrary, and the right-hand side of (7.2.16) is
independent of ¢,

min {ag; k} [

‘q+1‘
4(g+1)

+ +1/ /v 2 gy dt
. (g+1) . Von|? Bl

< RHS of (7.2.16)

sup ‘Mph
to—02 1 <t<to—h
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follows. As the identity
2
V15l = (g 12 [Vnl [5n

is satisfied a.e in (), we obtain by interpolation (Proposition A.6.1)

. g+l
al ™| e
H L3 ((to—e},1:to—h)xBny1)
2 +1 +1
<p sup Hlph ()4 , / / V [pn? ) dx dt
tO—QiJrlStSto L (Bnt1) to—02 1 Bn+t1

2 +1
<B sup H pn(t)| ‘
to—o0% 1 <t<to—h

+(g+1) / / Vil [pn[*? da dt|
L(Bars) o n+1| 1? [l

with /3 as in Proposition A.6.1. As a consequence

n+1

min {ap; k} H q+1‘

LS < RHS of (7.2.16

46%(g+1) P Llo((tofgi_'_l,tofh)xBn_H) - ( )
holds and setting

o2
"~ min {ag; k}’
we find the following estimate
2
j q+1‘ < 2(q+ 1)7% * RHS of (7.2.16). 7.2.17
12 oy < 20N (72.16) (72.17)

Let us now show how (7.2.17) can be turned into an estimate of ||p|| ; (Qu.)- Choosing the numbers

7 n+1
q= <6> -1, forn=0,1,..,

qas

we claim that

i

n+1 (6) 6
HpHL%Q @, < H ( > 9(3)' 191,22 00, (7.2.18)
holds for all n = 0, 1, ... and where the constant ¥ is defined as
i 1
22 1 _ ~ _ =~ 9 ~ _ 5
0= [14 R4 D(R) + (a0 +B(R)) + (ao + b(R))} , (7.2.19)

We prove the claim by induction: For n = 0, inequality (7.2.17) turns into

7
3
thHLl *6 ((to—03 to—h) x B1)
7 26 5
<247 % S8 +/ dr
6/)/ Q 0 [”ph” TO((tO Qo,to—h)XBO) 0 (to Qo,to h)XBO)
R 3
+ r ‘ T dr
JREC o

((to QO,tQ h) XBQ)

(7.2.20)

((to 0¢,to—h)x Bo)
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Recalling that by assumption p € L% (Q) holds, we obtain as a consequence of Propositions 2.2.5,
and 2.3.11, that for all + > 0 also {™ € L% (Q) and s € Ls (Q) and therefore, a classical estimate

stated in Lemma A.5.6 together with Holder’s inequality yields

1Pnll 1 < Izl L%

L% ((t —@p,to—h)x Bo)) Qo)

Moreover, it follows by virtue of (7.2.8), and Lemma A.5.6

h(t Tt < |Ip(t :
( )HLl??((tU—gg,to—h)ng) < 1€ )) L% Qo) — ¢ )HLL??(Qo)

Further, by virtue of Propositions 2.3.11 we have
15 < (a0+b( )) 5], ace.in (0,T) x

and consequently making use of Holder’s inequality and Lemma A.5.6 we find

s

((to Qo,to h) ><Bo)

< }|5h| 5
L3 ((to—03,to—h)x Bo) Lm((tofg%,tofh)xBo)
= H8h||2 10 thHSm
L3 ((to—0f tO_h)XB) 3 ((to—0f,to—h)xBo)
3

< 1312 g 0,

7
< (ag+b > 3

< (a0 +B(R)) 19l

as well as

a —|—b 3 '
TR CUR AN [ R

Thus, we obtain from (7.2.20) the following estimate

3
HpHLISO B (o o))

< (7>2 2 % 2700 HpHiSD(QO) [1 +R+b(R) + (ao + 5(R))2 + (ao + IB(R))]

3
7\ 2 1
= (=] 92p|>?
(3) B

with the obvious labeling of ¥2. Observing, that the right-hand side of this inequality is bounded

independently of h, Lemma A.5.6 yields

. N 5.1
0.5 0= () P10l g (7221)
0

7
3
L8 (@Qu) 3

and consequently we obtain

6
T™N\7 6
< | = 7 ||p . 2.
19,500 = (3) 0% 190, 7222)
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Let now n > 1 and suppose that (7.2.18) holds for all i € 0, ...,n — 1. Then choosing the numbers

i+1
q= <g> —1, 1=0,1,....,n—,1

q as

We obtain as in the case n = 0:

Ol S I

CI 0] [ 1 Ol I

© Py S @ BRI,
and

O P e ey < @ BRDIPIES,

Inserting these estimates into (7.2.17), and setting

27 . - -
9% —vzg—co 14 R+ b(R) + (ap + b(R))? + (ao + b(R))|,
we obtain
7yn+1 7 2(n+1) ] %% 7 n+1
thH (0 () < <3) 92 15|l 2(0i>(7)n+1 , (7.2.23)
((to—02 11 to—h) X Bnt1) L7\% (Qn)
And since
20 7_10
7 6 3

the preceding inequality turns into

n+1 n+1 7\n+1
l6n H< ‘) < <7> 915 , (7.2.24)

10 n+1 m* 7\*
)" (002 to-m)xBasr)  \3 L (8)"

n

and consequently

)n+1 )n+l

(3

< <
to—02 1,t0—h)XBnt1) 3

n+1 G)i (o
< H< > o2 181,38 (0 (7.2.25)

holds. Let us show that the right-hand side of this inequality is bounded independently of h. We

) 190 .

thHL%*(%)nﬂ(( 148" on)

have
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Exploiting that for any o < 1

Zza (7’L+1) 7’L+1+a< 0]
(a—1)2 ~ (a—1)%
zn:ai_l_(ln+l 1
prd 11—« 1—a’

are satisfied, we deduce that

m(ji(;ycfﬁ@r)<un(;)@52f+1mm11$

holds, and therefore

n+1 i(g) " 42
11 <;> ®) 9(8) < ;) 97 (7.2.26)
=1

follows. Therefore we can pass to the limit as ~ — 0 in (7.2.25) and obtain
n+l (&) o 7\ 42
. 8 . 7
) gy, <H<) I 1ol g < (3) 07190,
Making use of the well known fact that

we finally find

N2
) = n <=z ) . 2.
I e - 20 ) = iy < (5) P00 (7227)
Since @ is bounded, we can cover any compact subset Q of Q by a finite number of cylinders

Qo = (to — 0% to) x By(z0) which satisfy Q2, C Q. Exploiting (7.2.27) finishes the proof. O

7.3 Local Boundedness of Vp in the Interior

In this section we will prove, that also the gradient Vp of solutions p to Problem 3.1.1 are locally
bounded in the interior. As in the previous section, we apply the Moser iteration technique and

follow the arguments which can be found for instance in [43, Chapter 3, §8].

Proposition 7.3.1. Suppose that the leading elliptic coefficient k, the initial configuration A, and the
Preisach operator 20 involved in (3.1.2) satisfy Assumptions 3.2.3, and 3.2.4. Assume that there exists a
solution p € H'(Q) of Problem 3.1.1 such that p € C%1(Q), Dl () < R, with R as in Assumption

3.2.3, and setting s = app + W[\, p| with ag as in Assumption 3.2.3

9 o%inp) € LE(Q) (7.3.1)

VK € L@, VpeLLQ. o

hold. Then Vp € L2(Q).
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Proof: The proof is similar to that of Proposition 7.2.1. Thus, let p be a solution of Problem 3.1.1
satisfying the hypotheses of the Proposition. Moreover, let zyp € ©, o > 0, and ¢y € (0,7 be
chosen such that B,(zp) C Qand 0 < ¢y — 0%, where By(z0) denotes the ball of radius p centered
at xo.

As in the previous section let us consider the sequences

{Qn}n:e{0,1,2,...} ) {Bn}ne{o,1,2,...} ) and {Qn}ne{0,1,2,...} )

defined by

0 4
On = 5 + on+1’ B, = Bgn(xo)a Qn = By X (tO - Q?—ptO)y

and the corresponding sequence of cut-off functions {¢n},,c1 0, 3 C C(R?), satisfying

1, foraa. (z,t) € Qnt1,
0<(<laein@,, and (u(z,t) = )

0, foraa. (z,t) € ((R*\ B,) xR)J(R?x [0, — 02]),

and |V(,| < ?,

Gn

For 7 € R and a function v € L?(Q) we define the difference quotients of v by

2n+3
< TF7

4 v(x + Tej, t) —v(z,t) .
Div(x,t) := J . , j=1,2,3, fora.a. (z,t) € Q, s.t. (z + 7ej,t) € Q,

where e; denotes the j-th unit vector in R>.

Moreover we put

D! _v(x,t)
V_v(z,t) = | D2 _v(x,t) |, foraa. (z,t) € Q, sit. (v —7e;,t) €Q, j=1,2,3,
D3 _v(x,t)
as well as
Dlv(x,t)

Vov(x,t) = | D2v(a,t) |, foraa. (z,t) € Q, st. (z+7ej,t) €Q, j=1,2,3.

With the intention to pass to the limit as 7 — 0 we can suppose that 0 < 7 < dist(By, 9€2) holds,
and consequently V,p(z,t) and V_, - V,p are defined for any (x,t) € Qo.
Let ¢ > 0 and for n, k € {1,2,...} we consider the functions 7, € L*(0,T; H*(By)) defined by

nn,k(xv t) =V;p |V7-p|2q <n2Xk(t)7 a.e. in (0, T) X By,
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where the function x(t) € L*°(R) is defined for all £ > 1 and some ¢; < ¢ as follows

0, ift <0,
kt, if0<t<q,
= il 1
Xk(t) =91, ifl<t<t; -1

k(ty—t), ifty—F <t <t

0, ift>t.

Observing that 7, = 0 holds a.e. in [0,7] x (2 \ Bp), and for a.a. (z,t) € Q x [t1,T] we extend
Nk trivially to Q. Therefore for all n, k € {1,2, ...}, the functions ¢, € L*(0,T; H'(Q2)) defined

by
¢n,k(x7 t) = p(.%', t) +V_r- nn,k(‘ra t) a.e.in Q

satisfy yo¢(x,t) = ~op(x,t) for a.a. (z,t) € 0Q x (0,7) and consequently ¢, ;, are admissible
testfunctions for (3.1.2). Testing (3.1.2) with ¢,, ;, we obtain the following inequality

- /Q aopV_r (vavaqu cﬁx,f) dz dt — / K[s](Vp+2)-V (V_T- (VTuWTqu C?m)) dz dt

Q
0
<_ / SNV (Voul Vol G2 ) dwdt; (732)
Q

As Xy does not depend on = and xx — Xjo,) Weakly* in L°°(0,T), where x[o,] denotes the
characteristic function of the intervall [0,¢;], we can pass to the limit in (7.3.2) as £ — oo and

obtain

t1
- / / @bV s - (Vo0 |Vopl*1 .2 da di
0 Q

t1
[T+ 29 (T (Tp (Tpl ) ) dr
0 Q "
<- /0 /Q SV (Vep VP G2) dodr. (739

In the following we estimate the terms of (7.3.3) separately.

® Applying Lemma A.5.5 to the first term of the left-hand side of (7.3.3) we find

t1
_ / / a0V s - (Vep [Vopl G,2) du dt
0 Q

t1
- / /Q 60V - Vo [Vp[27 ¢, 2 da
0

t1
aop 0 242 - 2
_ G272 (2 dus dt.
2q+2/0 /Qat’ I G de

Moreover, by virtue of
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a0 /tl/ V.p2742 2 dz dt
2q + 2 at VP "

_ao q+2 2 2q+2 2
= 5 [ [t G 10)? = 19, p(0) 242,00 da
t1
2q+2
q + 1 Tp| CnCn dx dt
and recalling that by construction (,(0) = 0 a.e. in £, (,(t1) = 1 a.e. in By41, (, = 0 a.e. in
([0,t1] x )\ ([to — 02, t1] x By), and |¢,| < 22 hold, we obtain

t1
ag 0 242 - 2
— |V, nodx dt
2q+2/0 /Qat’vp’ G dew

n+3
> 2qai ; /Bn+1 |VTp(t1)’2q+2 dx — qu%OleQ /Qn |V7p|2q+2 dx dt,
which in turn yields
t1
- / / appV ;- (VTP\VTP\QQ Cn2> dx dt
0 Q -_—

ao 2q+2 ao
> Vaep(t)[7 da — —
> 5ats [, Ve i

/ IVop|?72 dx dt. (7.3.4)
Q'IL

Let us proceed with the elliptic term of (7.3.3). By virtue of Lemma A.5.5, we calculate

/tl/ [(p+2) -V (Vor - (Ven Vep 2) ) dut
TR
/ /sz Oip +2)D (az' (Dlp!VTp\QqCZ))dxdt

i=1 j=1
= [" [ 3 niimsion + 210 (DN ) drdt. 735)
Moreover, a straightforward computation yields for all 4,5 = 1,2,3
DI [K[s)(0ip + 2)] = K[s] D1dip + Dikls] [(9ip + 2)]

a.e. in Qg, as well as

d; (D1p|VTp|2in) 0;Dip |V .p|** (2 +2¢Dip |V.p|** > <ZD p0; - D )C
=1

+2DIp [Vop* €u0iCn
a.e. in Q. Therefore we obtain the following estimates for the elliptic part of (7.3.3)

@ First, the hypotheses of the Proposition, together with Assumption 3.2.4 on k imply

/ /ZZk |DIoyp|? |V7p|2andmdt>k/ /ZZ‘DJ@])} IV p*? (P dt

=1 j=1 =1 j=1
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t1
k[ [NV Glsar (7.36)
0 Q

® Then again, a straightforward computation yields

zq/tl/ s]|V.p|*7~ QZZaDng <ZD p ;DL )ggdxdt

i=1 j=1

_zq/ / |VTp|2“ZZaD1pD (prap )ggda:dt

=1 j=1

— 2 / / [s] [Vl 22(2%817 ) Gn® da dt,

and therefore by virtue of Assumption 3.2.4

2q/ / [s] [V-p|*9~ 222013 <ZD p 8; DL )ggdxdt.

=1 j=1

t1 3 ) ) 2
> 2qk /0 /Q \vaF‘f‘QZ<ZD4paiDip> Gl ddt (7.3.7)
j=1 \i=1

follows.

@ Moreover, making use of Assumption 3.2.4, we deduce with the help of Young's inequality

/ /| S S K10, DipDip [V, €, VC,da dt

=1 j=1

- 2’“/ / ZZ (0:DIp| [DIp| [V+pl** o [V a| daz lt

=1 j=1
t1
< [ 19l v+ S | 7 96, P
Recalling the construction of ¢,, the preceding inequality turns into

/ / ZZk 10; DipDip|Vpl* GV Gude dt

=1 j=1

31 36]4: 22(n+3)
<= / /|VVTp| IVp|?9 2 dz dt + & Qz/Q \Vp|* 72 dx dt. (7.3.8)

® Then again, bearing in mind the construction of (;, and that |Z| = 1, application of Young’s

inequality provides

/otl /QZZD”'k[ 10+ 2)9; Dip |V 1pl* Cda dt

/ /ZZ}D%\ (|10ip| + 1) |0: Dip| |V-p|* (dx dt

=1 j=1
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k 2 2
< / / ‘VVT;DP |V7.p|2q (gdaj dt + / |V~,—k|2 (\Vp| + 1)2 |va’2q dx dt.
4Jo Ja kJo,

Furthermore, by virtue of Young’s inequality, we find that

Vol [V2p|? + |Vpl|?

q

1
1 IV.p| T+ 4 Vop|iH + ——

g+1 g+1
< |Vp|" 4+ 2|V ptT +1

1
< —— |VpTt 4+
<51Vl

is satisfied for all ¢ > 0 and consequently

t1 3 3 . .
[ [ 325 piisl@ + 20 DipI Vol G
0 Q-

i=1 j=1

E (4 4
< / /\vaprvay?qqude/ IVok|? V272 da dt
4Jo Ja kJQ.,

1 4
L0 IV k] |Vop? 72 da dt + / IV k|? de dt (7.3.9)
kJq., kJq,

follows.

® Moreover, again by virtue of Young’s inequality and the construction of ¢, we obtain the

following estimate

t1 3 3 ' ‘ 3
2q / /Q Z Z DIK[s|(dip + 2)Dip|V,p|*?? <Z Df_paiDlTp> C2dx dt
0 N

i=1 j=1 P
t1 3 3 3

S/ /ZZ\DM(!@MH) |Dip| [V.p|*2 > DLpd; DLp| (2 dt
0 JQim =1 Py

3 2
(Z Df.p@Z-Df_p) C2da dt.

t1 3 3
< / / 02 [V kP (IVp] + 1% [Vp2 2 + kg [Vop* 2 Y
0o Jo k =

=1

Arguing as in the previous step we find

b 3.3 . . 3
24 /0 /S‘] Z Z Dik[s] (6129 + 2)D$p ’VTP‘QQ_Q <Z DlTp&DlTp> QTQde dt

i=1 j=1 =1
h 22
<kq [ [ 19ty
0 Ja i=1

24
+ 6q/ |V, k| [Vp|*T? da dt + q/ IV, K| [V op|?9T2 da dt

3 2
(S ptants) chasa

=1

—|—q2/ IV-k[* dx dt. (7.3.10)

- n

@ And finally, Young’s inequality yields
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t1

ZD% Oip + 2) Dip|Vop|* ¢, Vnda dt
i=1 j=1

<2/ /ZZ’D%\ (10:p| + 1) | Dip| [Vop[* ¢ |V | da dt

i=1 j=1

t1
S/ /Q\VTHQ(IVP!+1)2\V7p|2"42+3VTp\2q+2|V<n|2dxdt,
0

and with a similar computation as before

/ZZD% Aip + 2) Dip|Vop|*? ¢V inda dt

i=1 j=1
22(n+3)

<3

7 / IV.p|22 da dt~|—8/ Vo k[ |Vop|?T2 da dt
Qn Qn

+2/ IV.k[ | Vp*72 da dt+2/ IV.k> dodt (7.3.11)
Qn

n

follows.
Let us now estimate the right-hand side of (7.3.3).

Bearing in mind the construction of (,, Lemma A.5.4 together with Holder’s inequality
implies

t1

SN PV, (vfp Ve G:?) da dt‘

'/ 51 DA PIV (VTP\VTPIQ‘]M) dﬂcdt‘

9w, 2. |9+ (VeplvapPr2),

<
Hat

L1 (Qn)

< Hgtﬂﬂ[/\jp]

o HV (VTp V.p[* an)‘ .

By virtue of the trivial identities

Hgtw[)‘ Pl | HV- (VTPIVTPIZq CnQ)‘ Lo
_ / gtmm 7l - )]v (Vop IV G:2)| o, (7:312)

and

3

V- (Vep [Vop* Ga2) = D7 01 (Dip |V G02)

=1

—ZOD PIVepl* G + 2q|Vp*” QZD Za DipDip (.’

=1

+2ZD p|Vop* Ga8icn
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a.e. in ), we deduce with the help of Holder’s inequality the following estimates

WA, p] Za Dip|V.p|* (>

Lo(Qy) =

0
ot

IV.p|* ¢.2, (7.3.13)

k
<7 VYV [ Vop1 6% + H
Lo (Qn)

0 WA, pl

5 Vapl* 22]) pZaD Dlp G

u|a
Lo(Qn)

V.9 ¢2, (7.3.14)
L>(Qn)

< 2q!VTp!2q 22 (28 DJpDiP) Gt H

=1 \j=1

as well as

2 v

”at ZD PIVep™ G0

Loo Qn)z 1

2
Vopl*Gh. (7.3.15)

0
<[ Vep VG + Hatmx,p]
L**(@n)

Therefore, exploiting the construction of ¢,, we find assembling (7.3.12) - (7.3.15) the suc-
ceeding bound

t1

WA, plV—7 - (va [Vl c,ﬁ) dx dt‘

ko[h
< / / IVVop? [Vopl*9 G2 da dt
4 0 Bni1

2
k t1 3 3 . .
wge [ [ vy (Zai DipMp) ¢ du dt
n+1

i=1 \j=1

2
/ IV,p*? dz dt
Loo(Qn) n

22(n+3)
92

5+kHa

A
% atﬁﬂ[ ;D)

/ IVop|22 dx dt. (7.3.16)

n

And since Young’s inequality yields the pointwise estimate

q

1
1 IVop) 72+ —— < [Vl +1

V.pl* <
|Vop|™ < P

a.e. in @), we finally conclude that

t1

O 0 gV (Vep VepP Go?) de dt‘

Eo[h
<& / / VY0 [V, p[2 ¢,2 dx dit
4 0 Bni1

2
+ q/ / Vopl*?” 22(23 DipDi ) ¢ dz dt
i=1 \j=1
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2 2(n+3)
+<5+kH WA, p] L2 >/ Vo p?*2 de dt
ot L@ @ Qn
5+k| o 2
A Sl el g3
k 1%(Qn)

holds.

Inserting the estimates (7.3.4), (7.3.6), (7.3.7), (7.3.8), (7.3.9), (7.3.10), (7.3.11), (7.3.17) into (7.3.3)

we conclude that

t1
¢ / V. p(t)] 272 d:c+/ / IVl [V do dt
n+l

2q+2
2
t1
- q/ / Z(ZD pd; DI ) V.p[*97? da dt
n+1i 1

7=1
5+ k
§<a0+4++H ’
L“(Q)

12 48
+k(q—|—1)/ VK[ V|22 d:cdt+k(q+1)/ VK| |Vap[272 da dit
— QTL _— Q'VL

-2
92(n+3)
%k]‘“> 92/ IV.p)2 12 da dt
k Q

n

12 5+k| 0 ?
gty [Vl deas 528 | Sap)| e
= Qn L (Qn)
is satisfied. Introducing the constant
5+k 0 ? 36k° 48 12
6 1= ag+4+ = max {1; |QI} || W[, ) FE g+ IR
k ot Lo°(Qn) k k

and observing that

2
3 3 3
Z(ZD%@DZP) §3ZZ|D’M |0:DIp|” = 3|VV.p V]

i=1 \j=1

holds a.e. in @, the succeeding estimate follows

=1

t1
a 2q+2 k? 2¢—2
Vop(t)]" 7 de + —(q+ 1) / / DIpd;Dip | |V.p|°?? dx dt
2q+2/3n+1| (t1)] 13 B E E | !

92(n+3)
< ¢o

@t D) [ TR T2 4 9k O ot + 2]
Qn

Proceeding as in [43, Chapter 3, §11] we find that
2
2
(V(IVTpqu)‘ <2(q+ 1) [Vop*~ QZ (ZD p O;D} )
=1 \j=1

is satisfied a.e. in () and as a consequence

min {ao; k}
24(q +

+ HV !VTp!q“)‘

o (R

L?(Bn+1) L2((to— 9n+17 )XBn+1):|
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92(n+3)
< ¢

7 (a1 [/ <1+|vfk|2>|wrzq“+rkaFWqu“dxdtw] (7.3.18)
Qn

holds. By virtue of Holder’s inequality and of Lemma A.5.4 we find the following estimates

@ / (1 +|Vok|?) |V,p) 2712 dxdts[\czn3

n

7 Qn):| HIV7—pl2q+2HL¥(Qn)

3 2 q+1‘ 2
<
< [IQo\lO + HVkHLQ?p(QO)] (NS

B (7.3.19)

2q+2’

10

LT (Qn)
2
<V o, |12

@ / IV, k2 |V
Qn

. (7.3.20)

n

Inserting (7.3.19) and (7.3.20) into (7.3.18), and taking the supremum over ¢; € [ty — 02 +1,to] in

the resulting inequality, we arrive at

min {ao; k}
24(q +1)

2(n+3)

a+1]?
swp [ 1vepyt |
t079i+1§t§t0 L?(Bn+1)

(¢+1) <[|Qofb + ||V]€'Hizo ] <H|Vp|q+1‘

+ [V (9P

L2(Qn+1)]

< ¢

s a7

20 +2 .
Pa) )

(7.3.21)

Moreover, application of the interpolation inequality sated in Proposition A.6.1 to the left-hand

side of (7.3.21) yields

min {ap; k} H| |q+1‘
244%(q + P % (Qui1)
< 6022(””) a+ 0 (fl@l® + 19682 g | (190 g o+ 1907 ) +2).
Ls L% (Qu) *(Qn)
(7.3.22)
where 3 is as in Proposition A.6.1. Introducing the constant
65> 26
2
=— 1; k
im0 S {L1Ql® + [V b

we can rewrite (7.3.22) as follows

e PR CRR VROt (Hrwq“] ) + 1)2. (7.3.23)

g+1
TN A

Choosing the numbers ¢ such that (¢ + 1) = (%)nﬂ, n > 0 and observing that ?% = % holds,
(7.3.23) turns into

3

n

(&) AN () (&)
HVTPH 10 (3 )n+1 gl 0 HVTPH 10*(7>n "‘HVPH 10*(7)" +1|. (7.3.24)
6 (Qn+1) L3718 ( L3°\6 (QN)



Proceeding as in Section 7.2 we conclude, that

max{l; ||Vp|rL130*<g)n+l(Qm)} <] (;) (@) max {15 [0 (@)}

holds, and consequently

7 42 .
(7 .
IVPN oo (- 22 t0) B g o) <3> (27)7 max {1 va”ﬁ(czw}

is satisfied. The same covering argument as in Section 7.2 finishes the proof.
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APPENDIX A

GENERAL ANALYSIS RESULTS

The appendix contains important Definitions, Theorems etc. used in this thesis. Almost all of
them are presented without a proof, we quote in each case references where the reader may find
further details. We make an exception in Section A.8 and present complete proofs for the EMBED-
DINGS OF DE GIORGI FUNCTION CLASSES INTO HOLDER SPACES extending well known results

to a particular situation, which - to our knowledge - is not covered in the literature.

A.1 Domains and their Boundaries

Let ©2 be an open subset of RN, N € N, N > 1. We denote by 012 the boundary of Q.

We start this section introducing domains of class cmA following [68, Section 2].

Definition A.1.1 (Open Sets of Class C"™). Let us denote by By (z, o) the open ball in R centered at
x with radius o.
Foranym € Nand 0 < \ < 1, we say that Q is of class C™ and write Q. € C™*, if and only if for any

x € 0Q, there exist
(i) two positive constants p = R, and 6,
(ii) a mapping p : By_1(x, 0) — R of class C™?,
(iii) a Cartesian system of coordinates y1, ..., yn,

such that the point x is characterized by y1 = ... = yn = 0 in this Cartesian system and for any y' =

(ylu ceey nyl) S BN*l(J:) Q)

yn = o) = (v, yn) € 09,

oY) <yn < p(y)+6 = (y',yn) € Q,

153
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oy) =06 <yn <oy = (¢, yn) ¢ Q.

We say, that Q is a continuous (Lipschitz, Holder, resp.) open set, whenever it is of class C°0 (C%1, C0*

for some X € (0, 1), resp.)

Let us proceed with the so called property of POSITIVE GEOMETRIC DENSITY. We refer to [16,

Definition 17.2]

Definition A.1.2 (Positive geometric density). Let I' C 0€). We say that I' satisfies the property of
positive geometric density with respect to the Lebesgue measure in RY, if there exist 0 € (0,1) and

00 > 0, such that for all xy € T and every ball B,(x) centered at xo with radius o < g
20 By(ao)| < (1~ 0) | By(xo)| (A1)
is satisfied.

For instance this property is fulfilled by any bounded, convex domain €. In this case § = 1.
Let us proceed with another property of a domain 2, which we will call SPECIAL POSITIVE GEO-

METRIC DENSITY.

Definition A.1.3 (Special positive geometric density). Let I' C 0€Q. We say that OI" satisfies the

property of special positive geometric density, if there exist
(i) a C%' domain M such that Q € M and 9Q\ T C OM,
(ii) two positive constants oy and,0 € (0, 1) such that
for any ball B,y (z) centered at xo € OI" with radius 0 < o < g
21 By(ao)| < [M 1 By(o)| — 0|By(xo)| (A12)
is satisfied.
An example for such a domain (c.f. Fig. A.1.1) is

Q= {(J:,y) cR?: l(z,9)| < 1}ﬂ{(m,y) cR?:y< ;ﬁ—#;},

with
I:= {(m,y) ER?:y= %m2+%, S [—1>1]}7
ar := {(=1,0), (1,0)}

and

M = {(x,y) cR?: |(z,y)] < 1}, oM = {(ac,y) cR?: |(z,y)| = 1}.
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Y

o0\ T

Figure A.1.1: lllustrative example of the special geometric density property

Then forany 0 < p < 1and zg € OI'

1
12N By(z0)| < [M N By(zo)| — 2 | By(o)]

holds.

Let us now introduce the so called CONE PROPERTY of a domain. We refer to [16, Definition 17.4].

Definition A.1.4 (The cone property). Let 4y C RY be a closed, circular, spherical cone of solid angle

v, height ho, and vertex at the origin. Such a cone has the volume
o
Go| = —hd.
|0| o

A domain 2 is said to have the cone property, if there exists some € such that for all z € Q there exists

a circular, spherical cone 6, with vertex at x and congruent to 6y, all contained in Q.
We now quote (see [29, Theorem 1.2.2.2]) the following result.

Proposition A.1.5. Any bounded Lipschitz domain has the cone property.

Let us prove an other property of domains posessing the cone property.

Lemma A.1.6. Let Q C RN, N € N open, bounded. If Q possesses the cone property then there exist

0 € (0,1) and oo > 0, such that for all zg € Q and every ball B,(z¢) centered at xo with radius o < gg
|20 By(zo)| > 6 |By(x0)| (A.1.3)
holds.

Proof: Suppose that (2 has the cone property and let % be the cone of angle o and height kg as in
Definition A.1.4. Let us take gy < hyg.
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For any 29 € Q and 0 < ¢ < gy we denote by B,,(z9) C RY the ball By(x0) centered at x( with

radius p <. In the case B, (z¢) C {2
€20 Bo(z0)| = [Bo(x0)| = 0|B,(o)]

is obviously satisfied for all # € (0,1). Suppose that B,,(xo) ¢ €. Without restriction, we can
assume that 2y € 9. As 2 possesses the cone property, there exists a cone €, C Q with vertex

xo and congruent to 6y. Then we clearly have
[Be N8 = |B, Nint G| = 0(cx) [ Byl

where 0(a) depends only on the angle «. This finishes the proof. O

A.2 Function Spaces

Let @ ¢ RY, N € N. We assume that the definitions of the spaces of scalar functions on
are known, for example the spaces C°(Q2), LP(Q2), L (Q), and WHP(Q) for all k € N, and all

loc

p € [1l,4+00], k <p.

For T' > 0, we define by .#(0,T") THE SET OF ALL MAPPINGS v : [0,7] — R and by BV (0,T') the
SPACE OF FUNCTIONS WITH BOUNDED VARIATION. This is the space of all functions » : [0,7] — R

for which
np—1

2217)3 ZZ:; [u(tivs — u(z;)| < oo,
where the supremum is taken over the set P = {P = {to, ..., tn, } ; P is a partition of [0, T]}.
Furthermore, we denote by C¢(R") the SPACE OF CONTINUOUSLY DIFFERENTIABLE FUNCTIONS
WITH COMPACT SUPPORT, by C?([0,77]) the SPACE OF FUNCTIONS WHICH ARE CONTINUOUS ON
THE RIGHT IN [0, T") and set G (0, T') to be THE SPACE OF RIGHT-CONTINUOUS REGULATED FUNC-
TIONS. This is the space of functions u : [0, 7] — R, which admit the left limit u(¢_) at each point
t € [0,T). Defining the seminorm

[ullf4 == sup |u(7)] foru e G4(0,T)and t € [0,T7,
' r€[0,]

we observe that ||-|| o,r] isanormand G4 (0,T) endowed with this norm is a Banach space.
Let 2 be a Lipschitz - domain in RY. We say that a function v : Q — R satisfies HOLDER’S

CONDITION with the exponent a € (0, 1), and the Holder constant (u), ¢ in the domain €, if

_ /
(W= sup M < 00. (A.2.1)
' z,x’' €N, |.’E - CLJ|

lz—2'|<00
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We denote by C%%(Q2) the space of HOLDER CONTINUOUS FUNCTIONS, i.e. the space of functions

which are continuous in Q with finite (u), . Endowed with the norm

[ullco.a@y = lullcogy + (Wae

C%(Q) is a Banach space.
Let Q := Q x (0,T). We say that a function u : Q — R satisfies the PARABOLIC HOLDER CONDI-

TION with the exponents «, 8 € (0, 1), if for some fixed 0 < g

u(z,t) —u(2’,t)

(u)s o= sup < 00, (A.2.2a)
T eneiee,  le-a”
lz—a'|<e0
t) — "t
<u>fQ = sup uz,t) u(ﬁx, ) < 0. (A.2.2b)
REECHNCE IR A
lt—t'|<eo

Moreover, we denoted by C*#(Q) the PARABOLIC HOLDER SPACE, i.e. the space of functions

which are continuous in @, with finite (u)g o, and (u)f o- Endowed with the norm

lllge gy = Nl oy + (W) + (),

C*B(Q) is a Banach space.

Let us now quote the following well known theorem (see [10, Theorem 4.25]).

Theorem A.2.1 (Arzela-Ascoli). Let K be a compact metric space and let H be a bounded subset of

COK). Assume that H is uniformly equicontinuous, that is
Ve > 036 > 0 such that d(l’l,l'g) <= |f(:L’1) - f($2)| <e VfeH.
Then the closure of H in C'(K) is compact.

We prove an easy consequence of this theorem.

Proposition A.2.2. Let Q C RY, N € N open, bounded and Q := Q2 x (0, 7).

If a sequence {um},,cn C C™% (Q) satisfies

[t (2, 1) — um (y,t)| < C'|lz — y|* forall z,y € Q, and all t € [0,T), and (A.2.3a)

i (2, £1) — U (2, 12)| < C'lt1 — to| T forall t1,ty € [0,T), and all z € Q2 (A.2.3b)

with a constant C' > 0 independent of m, then there exists u € C* (Q), such that (up to a sequence) we

have for m — oo

U — U uniformly in Q.
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Proof: By virtue of the boundedness of @ and (A.2.3), the sequence {u,},,cy is equicontinuous
and uniformly bounded in C%(Q). Thus, the Theorem of Arzela-Ascoli A.2.1 yields the existence

of a function u € C°(Q)) such that for m — oo we have (up to a sequence)
Uy, — U, uniformly in Q.
Moreover, this convergence together with (A.2.3) implies that
ue C¥i(Q).

O
For Q ¢ RN, N > 1 and a Banach space B we denote by S(2; B) the family of SIMPLE functions,
namely functions with finite range such that the inverse image of any element of B is measurable.

We then introduce the space of BOCHNER MEASURABLE FUNCTIONS {2 — B as follows
M(Q; B) :={v: Q@ = B: H{v, € S(; B) }nen, such that v, — v strongly B, a.e. Q}.
The BOCHNER SPACE OF CONTINUOUS FUNCTIONS is defined in the following way
C%(Q; B) := {v € M(Q;B) : vis continuous}.

Together with the norm [|v|| co g, ) = maxzeqlv(| 5, C%(Q; B) is a Banach space.

The BOCHNER-LEBESGUE SPACES

LP(Q; B) := {U € M(Q; B): /||v\|%dx < oo}, p € [1,00), and

Q
L>(Q; B) :={v e M(Q; B): esssup|jv||p < oo}
Q
are Banach spaces equipped with the norms
1/p

el = ( [10) " and oo = essuplol

If B is a Hilbert space, then also L?(2; B) is a Hilbert space endowed with the scalar product
()i = [ (ula), @) s

If B is reflexive, then so are LP(); B) for 1 < p < oo, and if B is separable and 1 < p < oo then the

dual space of L”(2; B) can be identified with L5 1 (©; B*) in the following way
(Lr(:B))* (U, V) Lp(;B) 1= /Q B(u(x),v(r))p dx

for any u € Lppfl(Q; B*) and v € LP(Q; B).

For a multiindex a = (v, ..., ) € N" let |a| := Zfil o; and
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We say that v € L}, (€2; B) is the WEAK DERIVATIVE of a function u € L}, (€; B) of order «, and

write D%u, if

/ vp dx = (=1)l / uD%p dx
Q Q
holds for all ¢ € C§°(£2). We denote by

WEP(Q; B) := {v € LP(; B) : D*v € LP(%; B),Va, o] <k}  Vk e N,Vp € [1, +oc],

the SOBOLEV SPACE of Banach space valued functions, where D*v denotes the weak derivative
of the function v.
Moreover, for k > 1 we set

H*(Q; B) := W*2(Q; B).

If B is a Hilbert space, so is H*(Q; B).
We recall the following result for reflexive and separable Banach spaces (see. e.g [10, Theorem

3.18 and Corollary 3.30]

Theorem A.2.3. Let B be a reflexive Banach space and {x,}, . a bounded sequence in B. Then there
exists a subsequence of {x,}, .y which converges weakly in B.
If B is a separable Banach space and {xy}, .y a bounded sequence in B*, then there exists a subsequence

of {xn },,cry Which converges weakly* in B*.
Moreover, we recover the following result (c.f [45, Chapter 4]).

Theorem A.2.4 (A compact embedding). Let 2 C RN, N > 1, bean open and bounded CO%! domain
and Q := Q x (0,T). Then the embedding H'(Q) — L?(2; C([0,TY))) is continuous and compact.

A.3 Kurzweil Integral

Following [41], we recall the definition of the Kurzweil integral, introduced in [42]. The basic
concept of this theory is that of a J-FINE PARTITION. Consider a closed interval [a,b] C R, and

denote by 7, 5, the set of all divisions of the form
d={to,...,tm}, a=1tg <t <..<ty,=>"
With a division d = {t, ..., tm} € Z,,, we associate partitions D defined as
D ={(r,[tji—1,4;]); j=1,..,m}; 7€, ] Vi=1,...,m, (A.3.1)
and introduce the set

I'(a,b) :={d: [a,b] = R;d(t) > 0 forevery t € [a,b]}.
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Fort € [a,b] and 0 € I'(a, b) we denote
I5(t) == (t = 0(t), t + 6(1)),
and call a partition D of the form (A.3.1) - finite, if for every j = 1, ..., m we have
7j € [tj-1, 4] C Is(7y),
and the following implication holds
Tj=tji_1=>j=1, Tj =t; = j=m.

The set if all §-finite partitions is denoted by .%5(a, b).
For given functions f, g : [a,b] — R and a partition D of the form (A.3.1), we define the KURZWEIL

INTEGRAL SUM Kp(f, g) by the formula

m

Kp(f.9) =Y f(m)(g(tj) — g(tj-1))-

j=1
Definition A.3.1 (Kurzweil Integral). Let f, g : [a,b] — R be given. We say that J € R is the Kurzweil

integral over [a,b] of f w.r.t g, and denote

b
7= [ 1oy dgte),
if for every € > 0 there exists 6 € I'(a, b) such that for every D € Z5(a,b) we have

|/ —Kp(f,g)l <e

A.4 Remarks on Monotone Operators

The results of this section can be found for instance in [60].
Let X be a real and reflexive Banach-space, and A : X — X*. We denote by x-(:,-) x the duality
pairing between X and X*. Then A is said to be

(i) MONOTONE, if and only if for any u,v € X

x+ (Au— Av,u —v)y >0,

(if) STRICTLY MONOTONE, if and only if for any u,v € X

x+ (Au — Av,u — v) y >0,

(iii) CONTINUOUS if and only if for n — oo

Up —u  inX implies Au, — Au in X7,
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(iv) BOUNDED if and only if A maps bounded subsets of X to bounded subsets of X*.

We state the following generalization of the Browder-Minty Theorem (c.f. [60, Lemma 1.4(i),
Lemma 2.6(i), (ii), and Theorem 3.51]).

Theorem A.4.1. Let C' # () be a convex, closed subset of a reflexive and real Banach space X. Set

A : C — X* be a monotone, continuous and bounded operator satisfying for any ug € C

x* (Au,u — up) x

lim = 00.
lull—o0,ueC [ullx
Then
(i) Forall b € X* there exists a solution u of
x+ (b—Au,u —v) y >0, Yo € C. (A41)

(ii) If in addition A : C — X* is strictly monotone, then there exists a unique solution of (A.4.1) for
any b € X*.

A.5 Cut-Offs, Difference Quotients, and Steklov-Approximates

Let @ ¢ RY, N € N. For a function u € L(2), ¢ > 1, we set for any k € R
u®) = max {u(z) — k, 0}, and A ={z € Q:u(x) > k}.
One can find the following Lemma in [43, Chapter 2, Lemma 4.2].

Lemma A.5.1. Let @ C RN, N € N, open and bounded and let v € W1™(Q), m € N. Then for any
k € R the functions u*) belong to W™ (§2). Moreover, if supyou < ko, then for k > ko we have that
u®) e Wy (Q).

It is well known, that for PDEs the weak or classical differentiability of functions may often be

deduced through a consideration of their difference quotients defined as follows.
Definition A.5.2. Let Q C RN, N € N, and let &; be the unit coordinate vector in the x; direction. We
define the difference quotient in the direction €; by

iu(z) = u@ + h‘z) —u@ (A5.1)

The following basic lemmas refer to difference quotients of functions in Sobolev spaces and can

be found in [27, Section 7.11]
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Lemma A.5.3. Let Q ¢ RY, N € N, open and bounded, v € LP(2), 1 < p < oo, and suppose that
there exists a constant K such that for i € {1,..n} the difference quotients D u belong to LP(SY') and
HD%UHLP(Q,) < K hold for all h > 0 and any compact subset Q' of Q) satisfying h < dist(Q',0N2). Then

the weak partial derivative Oyu exists and satisfies [|Oju|| 1p(q) < K.

Lemma A.5.4. Let Q ¢ RY, N € N, open and bounded, u € WiP(Q), 1 < p < oo. Then for all
i € {1,..n} the difference quotients D' u belong to LP(SY') for any compact subset €' of ) satisfying
h < dist(€, 09), and we have

HD;LU’HLT—’(Q’) < HaiuHLP(Q) :
Let us state the well known result for "partial integration" with difference quotients

Lemma A.5.5. Let Q C RN, N €N, open and bounded, v € LP(Q2) and v € L1(Q), and 1 < p,q < 00
satisfying % + % = 1. Then for any compact subset )’ of Q and h < dist(Y’, 0Q) we have

// u(z)Div(z) do = — o Diu(x)v(x) da.

Finally, we state an easy consequence of the previous results.

Lemma A.5.6. Let Q C RN, N € N, T > 0, and u € LP((0,T) x Q) with 1 < p < oo. For h > 0 we
define the function uy, : @ x [0,T — h] — R by
t+h
up(x,t) = h/ u(x, ) dr, fora.a. (z,t) € Q x[0,T — hl.
t

If there exists a constant K, independent of h such that ||in || 1oy jor—py < K, then the weak partial
derivative 1 exists and satisfies ||| oo (0.1)) < K-

If on the other hand w € WP (0,T; LP(9)), 1 < p < oo. Then uy, € LP(2 x (0,T — h)), and we have

lénll Leox ©0r—ny) < @l Lo@x (0, -

A.6 Interpolation Inequalities

In this section we recall basic interpolation inequalities. We refer to [43, Chapter 2, §3]

Proposition A.6.1.
Let T > 0,9 C RN, N € N open and bounded, and let u € L°°(0,T; L*>(Q)) (" L?(0,T; H*(Q2)). Then
forany q, r and N > 2 satisfying

1 N N

?+%_4’ N —2

2N
r€[2,00], q € [2, ]

there exists a constant (3 such that the following inequality is satisfied

lull e 07290y < B | Iwll oo o.7;22(02)) + ”VUHL2(Qx(o,T))] :
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Proposition A.6.2. Let T > 0, 2 C RN, N € N be open and bounded and u € L"(0,T; LI(S2)) with

r,q > 1. Then for any vy € [1,r] and any ¢; € [1,¢]

T—r]

T r Ty
Fll s o751 ) < ( | i dt) P

holds.

A.7 Additional Results

The results presented in this section can be found in [43, Chapter 2, §5] and in [44, Chapter 2, §3].
We start recalling the following algebraic lemma (cf. [43, Chapter 2, Lemma 5.6]).

Lemma A.7.1. Assume that for a sequence {yp},cy € Ry
Y1 < cbhylll+E forh=0,1,...,

with some positive constants c,e and b > 1.
Then
g < L (1
holds. In particular, if
Yo <0:=c VbV and b>1,
then
yn < 06N/
and therefore y, — 0 with h — oo.

Let us present the following lemma (cf. [44, Chapter 2, Lemma 3.9, and Remark 3.3]).

Lemma A.7.2. Let Q C RN, N € Nbean open, bounded domain and B,y(xo) C RY be a ball centered at
zo € Q with radius o and suppose that B, N ) is convex. Then for any function u € WH1(B, N Q) and
k,l € Rwith | > k the following estimate holds

N
I~k {zeB,NQ: ulx) >~ <p 0 / V| dz,
Bl e B iule) = B < 0p oy n 0w < A1 i, ononeuerzn
N
with B := W(ouN + 1), where wy denotes the surface of the unit ball in R

As a consequence we also have the following result (see [43, Chapter 2, inequality (5.5)]).

Corollary A.7.3. Let Q C RN, N € N be an open, bounded domain, and B,(xo) C R be a ball centered
at zo € Q with radius o, and suppose that B, N ) is convex. Then for any function u € Wh1(B, N Q)

and k,l € Rwithl > k

N+1
Q+

l—k){xeB,NQ:u(z) >} <8
(=R € B 02 ule) > B < B g 0 e 0 u() < Y] iy eorsicnior<n

|Vu|dx

holds, where 8, = 3 \Bﬂ% and 3 as in Lemma A.7.2.
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The following Lemma is very useful while proving Holder-continuity of a function u € H!(f),

and can be found in [44, Ch. 2, Lemma 4.8].

Lemma A.7.4. Let Q C RN, N € N, go > 0, 29 € Q, and By, (o) C RY be a ball centered at xo with
radius gg.

Let b > 1 be a fixed number, and consider concentric balls By(xo), and Byy(xo) centered at xo with radius
o, and bo resp..

Let u : Q — R be measurable function, which is bounded in B,,(x) N 2 and suppose that for any radius

o < % the function u satisfies either
osc {u, By(zo) N} < c10”,

or

osc {u, By(zo) N} < nosc{u, By,(xo) N2}

with some positive c1,v < 1 and n < 1. Then for o < g

osc {u, By(zg) N} < ¢ <Q> )
©0

holds, where

a=min{—Inyn,v}, c=0"max{cioq;o0sc{u, By, (xo) NN}}

A similar result holds for the space time dependent case and can be found in [43, Ch. 2, Lemma

5.8].

Lemma A.7.5. Let Q C RV, N e N, and Q := Q x (0,7).
Let g9 > 0, 20 € Q, tg € (0,7] and 6y > 0, and we denote by B,(x¢) C RN a ball centered at xo with

radius o < po and by Q, a local parabolic cylinder of the form
Qo = By(x0) x (to — 600, to)-

for o < po. Assume that a measurable function u(z,t) is bounded in Q) ,, N Q and suppose that for a fixed

b > 1 and for any o < b~ the function u satisfies either

0SC {ua Qg N Q} < CIQV7
or
0SC {U, QQ N Q} < 1 0sC {’LL, ng}
with some positive c1,v < 1 and n < 1. Then for p < gg
osc {u, QN Q} < coy'0”

holds, where

a=min{—Inyn,v}, c=0"max{wo,croh}, wo=o0sc{u,Qy NQ}
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A.8 De Giorgi - Type Classes

In this section we present a unified treatment of embeddings of De Giorgi elliptic and parabolic
classes into Holder spaces. Our result covers in particular the case of a mixed space boundary,
where we deal with functions satisfying a Neumann condition on one part of the space bound-
ary and a Signorini type condition on its complement. To our knowledge there is no literature
handling this particular situation. In general, we follow ideas from [43, 44], where the case of
boundary regularity (for Neumann or Dirichlet boundary) is briefly mentioned, and provide clear
and complete proofs. We restrict ourselves to the case of three space dimensions, although the
presented proofs hold in higher space dimensions as well (with slight modifications of the con-

stants).

A.8.1 An Elliptic De Giorgi Class

At this point we establish analytical results which allow us to conclude Holder continuity of so-
lutions to a various class of elliptic problems. We present a criterion in the form of an integral
inequality and show that H'(Q) functions fulfilling this inequality also satisfy Holder’s condi-
tion. The first result of this kind was established by De Giorgi in [28]. In our proofs we proceed
following the arguments of [44, Chapter 2, §6] and extend the proofs also to the case when our
functions satisfy a Neumann condition on one part of the boundary and a Signorini type condi-
tion on its complement.

In order to do this we need to pose the following assumption on the domain Q C R3.

Assumption A.8.1 (Assumption on Q). Let Q C R3 be an open, bounded, and convex domain of class
C%! and suppose that there exist a closed two-dimensional manifold T C 95, a closed two-dimensional
manifold T" C T (both with positive bidimensional measure), and positive constants g, 61, 2,03 € (0, 1)

such that

(i) forall xg C OS2 and any ball By(zo) centered at xo with radius 0 < o < pg, Q2 N By(xo) is convex
and

12N By(z0)| = 01 |By(z0)]

holds. (In fact the latter inequality is satisfied by virtue of Lemma A.1.6 as  is of class C%! and

thus possesses the cone property).

(ii) intI" possesses the positive geometrical density property, i.e. for all xo C intI" and any ball B,(x)

centered at xo with radius 0 < o < g

120 By(wo)| < (1 = 62) [By(wo)]
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is satisfied.
(iii) OT" and OI" possess the special positive geometric density property, i.e.

(a) there exits a C%' domain Q, such that Q@ C Q and 9 \T C 99, such that for any ball B,(z)

centered at xy € AT with radius 0 < o < 0y, QN By(x0) is convex and
190 By(ao)| < |21 By(ao)| = 83| By(ao)|

holds,
(b) there exits a C°' domain Y, such that @ C VY and OQ\T" C 9, such that for any ball
B,(z0) centered at xo € O with radius 0 < ¢ < 0o, Q N By(w0) is convex and

1201 By(ao)| < | 1 By(ao)| — da | By(wo)

are satisfied.

An illustrative example of such a domain is depicted in Fig. 3.1.

For given positive numbers M, v, and gp > 0 we define the following class of functions.

Definition A.8.2 (Bo(2, M,~)). For Q satisfying Assumption A.8.1, we say that a function u(x) €
H(Q) belongs to the class Bo($2, M, ) (cf. [44, Class By (0, M,~,7,2, %) in Ch. 2, §6]), if u satisfies

the following conditions.
D flullpeory < M (A8.1.1)

@ The functions w = £u satisfy the following inequality

/ \Vw|* da
{IGB(l,U)Q(a:o)ﬁQ:u>k}

<~ylo 2%t sup (w(z) —k)*+ 1| {z € By(xo) NQ:u> kz}\% , (A8.1.2)
{z€By(zo)NQ:u>k}

in which By(z¢) C R is any ball centered at xo € Q with 0 < o < go, o is any positive number from the

interval (0,1), and k is an arbitrary number subject only to the conditions

k> sup w—2M, (A.8.1.3a)
By (z0)NQ
and
S dfw=u: k> sup (you)T, (A.8.1.3b)
BQ(Z‘Q)QF/
$ ifw=-u: k> sup —(yu)', (A.8.1.3c)
By (zo)nI

with the classical convention that supyu = —oo and with T and " as in Assumption A.8.1.
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In the following we prove that B (€2, M, ) is continuously embedded into C%®(Q), provided that
the boundary data is smooth enough and (2 satisfies Assumption A.8.1. Proceeding as in [44,
Chapter2, §6,7] we first establish a sequence of Lemmata, necessary to obtain the result stated in
Theorem A.8.7.

Let us start with the proof of the following result, which is an extension of [44, Chapter 6, Lemma

6.2]

Lemma A.8.3. Suppose that Q C R? satisfies Assumption A.8.1. Let xo € Q and denote by B,(wo) C R3
the ball centered at xo with radius 0 < o < oo and oo > 0 as in Assumption A.8.1. Let w € H'(Q) and

suppose that with some v > 0

/ \Vw|? dz
{#€B1_0)(x0)NQ}:k<w(x)<I

<ylo %! sup (w—k)?+1|[{z € By(xo) NQ:w > k‘}|% (A.8.1.4)
{z€By(z0)NQ}w(z)>k

is satisfied for all o € (0,1),0 < gwith @ < (1 —0)o < 0 < %, and any

H 1
ke {ko,ko—k], H:= sup w — ko, le |k,=|k+ sup w
2 B,(20)NS 2 B, (x0)NQ2

for some given level ky € R.

Then, setting

-6
. . 01 | 1. 4—90 57%
f := min ?‘B}A 5 1B ,

where &y is as in Assumption A.8.1(i) and }Bl‘ denotes the volume of the unit ball in R3, either

1
@ H:= sup w—ky<opf, or (A.8.1.5a)
BQO (z0)NQ2

H
@ sup w < ko+ — (A.8.1.5b)

Bog (xo)ﬂﬂ 2

a4
is satisfied, provided that

Ha: € Bay (10) Qi w > ko}‘ <00} (A.8.1.6)

holds.

Proof: Our proof is almost identical to the proof of [44, Chapter 2, Lemma 6.2].
Let zg € Q, w € HY(Q), 00 > 0, and ky € R satisfying the conditions of the Lemma. Let us

consider the sequence of concentric balls {B},} ¢y 1, .} centered at 2o with radii o5, defined by

: 00 Q0
Bh = BQh(l'O), Wlth Qh = Z—Fw, h:O, 1,...,
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and the sequence {04 }),c(0,. 3 C (0,1),

1
= —— h=0,1,..
Oh 2(2h_’_1)7 s Ly (A817)

Computing that

(1 —on)on = ont1 h=0,1,...

holds for all h = 0,1, ..., and introducing the sequence {kp} ¢, of increasing levels defined

by
H H

khZ:ko‘i‘*

2—W, h:0717

with H = SUDB, (20)n0 W — ko, we find from (A.8.1.4) with the choice ¢ = g5, 0 = oy, k = kp, and

z0)

| = kp4q for all A > 0 the following inequality

/ \Vw|? dx
{z€Br 1Nk <w<kpi1}

<7l %" sup (w(x) —kp)?>+1||{zeByNQ:w> k‘h}|% . (A.8.1.8)
{zeB,NQ:w>kp}

By construction

kpi1 > kp, H> sup w—Fk, and 0;,%< 22(h+3)
BN

hold, and therefore (A.8.1.8) turns into

/{ B Nk cw<k }le|2 dx§7[22(h+3)Q51H2+1 |{xemaQ:w>kh}|%, (A.8.1.9)
TE€Bp 41Nk <w<kp41

Suppose now that (A.8.1.5a) does not hold. Thus,

1
H = sup w— ko> o
BoyNQ

must hold, and consequently

1< o,tH? (A.8.1.10)
follows. Setting for h > 0
Dpy1 = {3: EB 1Nk <w< kh+1}

and observing that

Dhsa] < {z € BunQ:w > k) (A.8.1.11)

holds, we find with the help of Holder’s inequality, (A.8.1.9), (A.8.1.10), and (A.8.1.11)

2 -1 . 5
/ |Vw| dz < (/ \Vw|? dx ]Dh+1|% §7%902H2h+6\{xEBhﬂQ:u>kh}]5.
'Dh+1 h+1
(A.8.1.12)
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Introducing the sequence {zp},¢(g 1 o, } defined by

={zxeB,NQ:w >k},

we find by virtue of Lemma A.7.2 with the choices k = &, | = kp41, and o = g5, and making use

of (A.8.1.12)
1 2 Q
———Hz} <8 b Vw| d
2h+2 et |{SUEBhﬁQ w<k‘h}| 'Dh+1‘ w’ v
Qh 2H2h+ %
SweBna: w<k}ﬂ %o “ho
where the constant (3 is as in Lemma A.7.2. Hence
htdp L % é
< 4htipye zp (A.8.1.13)

Zh+1
02 {z € BN :w <k}

is satisfied. Let us denote by ‘B 1‘ the volume of the unit ball in R?®. Bearing in mind that (A.8.1.6)
< 2, and kj, > ko for all h > 0, we obtain

. 1 1
holds and that by assumption 6 < SPVE ‘B ,
o1
e eByaNQ: w>ky)| < Hm € Ban(10) N0 w > ko}) <0gi< B%(a;o)‘ .
On the other hand, Assumption A.8.1 (i) together with g5, > £ yields that
‘BhﬂQ|>‘BTo:L'0 ﬂQ’>(51‘BTo ‘
is satisfied. Therefore,
3
01 9o ‘Bl}

5
e e BanQ:w<ky)|=|BanQ| - [{z€BynQ: w>kh}\25)3%(xo)’:55

holds, and we obtain from (A.8.1.13)

2 4 47By2 5
Zh+1 < 4"y %5* 1 7 = |2 5 T |4tz
Lo B\ 6B

Recalling that by construction zj, 41 < 2, we infer multiplying the preceding inequality by 2, |

Moreover, as gp1+1 = (1 — on)on < on < 0o and ﬁ < 2, we conclude

7 B a7
_3)6 (1—on) SQZH <2’ (9h3)6 Q%H-

[N}

Thus,
1

Zhil AOByz \ 4 (2

S( r>4 7



170 A.8. DE GIORGI - TYPE CLASSES

follows. Observing that the conditions of the Lemma yield

1 —6
. 2 .
<o <a 3
20 S VQ0y > 51 ‘Bll Q0

application of Lemma A.7.1 implies that Z—% converges to 0 as h — oo. This yields in particular

Zoo

0

43‘{xeB%o(:ro)}ﬂQ:w>ko+%‘ B
o3 o
and (A.8.1.5b) follows. O

Let us proceed with our next result, which is a generalized version of [44, Chapter 2, Lemma 6.3]

Lemma A.8.4. Let Q C R3 satisfy Assumption A.8.1, k' € R, zp € Q, and By(z0) be the ball centered at
xo with radius 0 < o < pg and g as in Assumption A.8.1.

Let w € H'(Q) and assume that there exist v and eq > 0, such that

2

erBQO(:co)ﬁQ:wgk’}

> € ‘B%o(:co)‘ (A.8.1.14)

holds and

/ |Vw|? da
{IGB(l,U)Q(xo)ﬂQ}:k<w($)§l

<ylo20t sup (w—k)?+1|[{z € By(x0)NQ:w > k}|% (A.8.1.15)
B, (z0)NQ

are satisfied for any o € (0,1) and any o > 0 with @ < (1 —0)o < o < 0o, and levels k, 1 subject to

1
k c [k/,k//]7 l (= [k7 i(k + Sup w)] 9
nQ

BQo (o)
where
/ 1" w
w:= sup w-—=~k and k"> sup w— _,
Bug (z0)N92 Bug (z0)N92 2
with
4 2
s:=2+4 il

63e3|Bl[s
B as in Lemma A.7.2, 0 as in Lemma A.8.3 and | By| denotes the volume of the unit ball in R3.

Then, setting k* := supp, (yo)na W — 5:=1 the following estimate holds
Haj € B%o (o) N Q:w(x) > k*}’ <003, (A.8.1.16)

provided that

Sl

w > 2%
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Proof: With the number s as in the conditions of the Lemma and following the proof of [44,

Chapter 2, Lemma 6.3], we consider the sequences

kim0, 51 and {Dit}icor. 51

Y PYPN sdlyeeey

defined by

ki == sup wf%, Dy = {fEEB@($O)ﬂQ:kt<w(JJ)Skt+1}.
By, (z0)NQ2 2

Moreover, for k' and k" as in the assertions of our Lemma,

1
E <k <k’ and ki < kyy1 = sup w—%:f kt+ sup w|,
By NQ2 2 2 By (20)NQ2

clearly holds for all t € [0, s — 1]. Thus, a function w as in the conditions of the Lemma satisfies

inequality (A.8.1.15) with the choice k = ki, | = ki1, 0 = 00, and 0 = %, in other words we have

(Vw|? de <~ [ 405t sup (w—k)>+1]|{x € By (zo)NQ:w>k 3
0 o

Dy BgoNQ2

1 (W2 2
<~ <4g0 : (?) + 1) By l?. (A8.1.17)

1
By virtue of w > 2°0¢ and |By,| = | B!| ¢}, it follows from (A.8.1.17)

/Dt |Vw|? de <~ <4 (%)2

for all ¢ < s. On the other hand, Lemma A.7.2 with the choice k = k;, | = k41, and o = 9—20 implies

w2 2 w2 )
* (?) > [Bil® 00 < 2% (g) [ B1]* eo (A.8.1.18)

2

w
pTEsy HJ; € B%o(a:o)ﬂQ fw(x) > k't+1} ’

3
A
23 ‘{LL‘ € Beg (Io) N : ’UJ(I) < k}t}‘ Dy

2

<p |Vw| dz

3
0
23 Hx € Bog (20) N w(x) < k:t}‘ Dy

2

<8 \Vw| dz. (A.8.1.19)

As by construction k; > k' for all ¢ € {0, ..., s — 1}, inequality (A.8.1.14) yields

&
B%O(SUO)’ =e|B' 53

Hx S B%o(xg)ﬂQ:w(x) < kt}’ > ‘{x € Beo (20) N2 w(x) < k’}‘ > € 53

2

Thus, we find by virtue of inequality (A.8.1.14) for all t + 1 < s — 1 the following estimate

2

Hﬂ: € B%o(a:o) NQ:w(z) > ks,l} :

2t+1
<B—" dz. A.8.1.20
< Bt 190l de (A8.1.20)
Therefore, making use of (A.8.1.18) and of Holder’s inequality we deduce for all ¢ € [0, ..., s — 2]

% ) 92t+2 2
: _ < _
H:rEB%o(xo)ﬁQ w(z) > ks 1} <pB (/J26(2)|Bl|2 </Dt |Vw]| d:n)
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2 22t+2
<8 g t\/ Vol do

25
<" [Dilye0. (A8121)
€ | B3

Summing (A.8.1.21) over ¢ € [0,...,s — 2| and bearing in mind that >, |Dt] < ‘BTO )’ =

o
‘Bly Z—Q, we infer

4 22
(s=1)|{z € Bap(wo) nQ:w(@) > ko }]* < 82— q0f
e | B3
With the choice
4 2
s=2+ 76
03¢t |Bl|3
we obtain
Hx € B%o(xo) NQ:w(x) > ks_l}‘ < 00°,

and since by definition £* = k,_; the claim follows. O

Let us now prove a generalized version of [44, Chapter 2, Lemma 6.1]

Lemma A.8.5. Let 2 C R? satisfy Assumption A.8.1, w € HY(Q), k', k" € R, and x¢ € Q. Denoting
again by B,(xo) the ball centered at xy with radius 0 < o < g with gg as in Assumption A.8.1. We

suppose that there exist v, eg > 0 such that

Hx € Bay () N Q1w < k’} > 9| Ban (A.8.1.22)

holds and for any o € (0,1) and 0 < g satisfying 4> < (1 — 0)o < o < o the function w satisfies

/ |Vw|? da
{zGB(l,U)Q(a:o)ﬂQ}:k<w(ac)§l

<ylo 20t sup (w—k)?+1|[{z € By(r0)NQ:w > k}|% (A.8.1.23)
BQ(xo)ﬁQ

for levels k, | subject to

1
ke [k, K", lelk,=(k+ sup w)]. (A.8.1.24)
2 Boy (20)N92

Then the quantity w := supp, ()0 w(x) — k' satisfies

w < 2° max sup  w(z)— sup w(z); 0] (A.8.1.25)
BQO (Io)ﬁﬂ B%E (xo)ﬂﬂ

with s as in Lemma (A.8.4), provided that k" > sup Bo,ne W(x) — 55 holds.

Proof: The proof is almost identical to that of [44, Chapter 2, Lemma 6.1].
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1

Clearly, if w = supp, ro w(z) — K < 2993, then (A.8.1.25) is satisfied. Hence, we assume that
1

w > 2%0¢. As by assumption k" > sup Bog (z0)n0 W — 5+ is satistied, Lemma A.8.4 yields

Hx € Boo (29) N2 w(x) > ko}’ < 00°

2
: w
with ko = supxeBQO (20)NQ2 w — 551 -
1

Moreover, assumption w > 20§ together with &” > supp, (;y)nq w — 3¢ imply

w 1 H "
H:= sup w—ko= 7> 05 and ko+ — <k
€ By (x0)NN 2 2

and therefore Lemma A.8.3 yields

H w
sup w<ko+—= sup w-— .
By (20)N92 Bay (20)N92 2
a
Consequently, (A.8.1.25) follows. O

In the following result we prove the crucial estimates of this section. We show that, under appro-
priate assumptions on the boundary data, functions from the class B3(Q, M, v) satisfy conditions
of Lemma A.7.4, which in turn provides the Holder-continuity of these functions. The result reads

as follows.

Lemma A.8.6. Let 2 C R3 satisfy Assumption A.8.1and u € Bo(Q, M, ). Furthermore, let ¢ € C%¢(0Q)
with e € (0,1) such that ¢ > 0on T, ¢ > 0 on intl”, and ¢ = 0 on T' \ I, where T and T are as in
Assumption A.8.1 and suppose that (you)™ = ¢ a.e. onT.

Then, for a fixed Ry as in Assumption A.8.1 and concentric balls By, (xo) and B @ (wo) centered at xp € Q)

with radii 0 < o9 < Ro and % resp., one of the following implications hold

@ osc{u; By, (z0) N2} < 20sc{¢; 00N By, } (A.8.1.26a)
1
@ osc {u; By, (z0) N Q} < 25F1 2, (A.8.1.26b)
1
® osc {u; B%(a}()) N Q} < <1 — 23+1> osc{u; By, (z0) NN}, (A.8.1.26¢)

where the number s depends only on v, the domain Q, Ry, 61,02, 63 from Assumption A.8.1, and the
constants 0 and 3 from Lemmata A.8.3 and A.7.2 respectively.

Proof: We proceed similarly as in the proof of [44, Chapter 2, proof of Lemma 6.4]. In our case,
we also account for the mixed boundary conditions. It is clear, that it suffices to distinguish the

following cases illustrated in Fig. A.8.1

® By (wo)NT =0,

® B, (v)NT #0, zpel.
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(a) The case ®: By, (zo) NI =10 (b) The case @: By, (z0) NT' # 0, zo €T

Figure A.8.1: different positions of the balls B, (zo)

® Let us start with the first case. Hence, B,,(z9) N I' = () and the conditions (A.8.1.3b) and
(A.8.1.3c) on admissible levels for (A.8.1.2) are not active. Thus, by assumption the functions +u

satisfy (A.8.1.2) for any level k subject only to the condition k > supp (,)nq w — 2M. Setting
1
w = osc {u; Bgy(x0) N},
we observe that

1
K:= sup w—w= sup w—-osc{u;By(zo)NN}> sup w-2M
By (zo)NQ2 Bog (zo)NQ2 By (zo)N2
holds with w = +u, and therefore inequality (A.8.1.23) is valid for any levels k > k" and [ > k.
Moreover, by virtue of
1 . 1
sup  u— -osc{u; By, (z0) N} = inf w4 - osc{u; By, (z9) NN},
B (x0)NSQ Big (20)NQ 2
we conclude that

1
x € Beog (o) NQ:u(z) < sup  u— = osc{u; By, (zg) N}
2 Bog (20)NQ2 2

. 1
U {x € B%o(:zo) NQ:u(x) > Beol(ﬂf)mu + 5 08¢ {u; Byy (o) N Q}} = B%o(:zo) NnQ

and consequently, either

1
> 5‘3%0(1'0)09

)

x € Beg (ko) NQ:u(zr) < sup u-— 1osc{u; By (o) N}
2 Byy(@o)nQ 2

(A.8.1.27)

or

1
> B )B%o(:lio) ﬂQ’

1
x € Beo (x0) NQ: —u(z) < sup —u— = osc{u; By, (zo) NN}
2 Boy (20)N92 2

(A.8.1.28)

must be satisfied. In other words

> ‘B%o(xo)ﬂQ

)

N

1
x € Beog () NQ:w(z) < sup  w — < osc{w; By, (zg) N}
2 Bug (z0)N92 2

(A.8.1.29)
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with either w = u or w = —u holds. Recalling that &’ > sup Bog (z0)nQ W — $, we obtain

er Beo (20) N w(x) < k"}

2

1
= ‘B%o(:ﬁo)ﬂﬂ .

Hence, due to Lemma A.8.5 either
osc{u; By, (z9) N2} < 2w < 25+1Q§,
or
osc {u; By, (z0) N Q} < 251 (osc {w; By, (z9) N} — osc {w; B%o N Q})
== (osc {u; Byy(x0) N} — osc {u; B%o (xo) N Q}) ,

holds with the number s as in Lemma (A.8.4). This means that either (A.8.1.26b), or (A.8.1.26¢) is
satisfied.

® Let us proceed with the second case, i.e we assume that B, (z9) NI # 0, zg € T.

Clearly, either
@® both
sup  u — osc {u; By (w0) N2} < sup o, (A.8.1.30a)
Boy (10)N92 4 TN By, (x0)
and
C o oo S Be@)n (A.8.1.30b)
By, (z0)NQ2 4 I'NBy, (20)
must hold, or
@ either
sup  u— osc {u; By (0) N 02} >  sup o, (A.8.1.31a)
B (z0)NQ 4 I'NBgg (o)
or
inf ug S Ba@) 0 e (A.8.1.31b)
By (20)NQ 4 T I'NBgy (o)

must be satisfied.

In the first case @ we find adding (A.8.1.30a) and (A.8.1.30a) that
osc{u; By, (z0) N Q} < 20sc{p; ' N By, (x0)} < 20sc{p; 02N By, (z0)}

holds and consequently (A.8.1.26a) is satisfied.
Let us proceed with case @.
Suppose first, that (A.8.1.31a) holds, i.e

sup  u— 22 {u; Bgy (z0) N 2} > sup ¢
Bap (20)79 ! - TNBao(eo)




176 A.8. DE GIORGI - TYPE CLASSES

Recalling that the conditions of the Lemma yield ¢ > 0 on intI", and ¢ = 0 onT"\ I, we calculate
that

Boy (20)N92 4

EF:= sup wu-— osc {u; By (o) N 2} > max | 0;
I"NBgy(z0) By (o)

sup ¢; sup u—2M
nQ

holds, and therefore all k£ > £’ are admissible levels for (A.8.1.2) in the ball B, (zo)).

Clearly, it suffices to consider the following two subcases illustrated in Fig. A.8.2

r\r

(a) The case By, (zo) N (0N \ intI") =0 (b) The case zg € OT'

osc{u;BQO (zo
4

Figure A.8.2: Different positions of the balls By, (o) in the case sup g,  (zq)nq & — ikt SUDF A, (o) ©

(a) Let us first assume that B, (zo) N (0 \ intI') = () holds.

Bearing in mind ¥’ > 0 and v < k" a.e. on I' N B, (x¢), we see that the function @ defined by

max {u(z);k'}, x € By, (x0) N,
() =
K, x € By, (z0) \ ©
satisfies inequality (A.8.1.23) for any k and [ subject to (A.8.1.24) and where (2 is replaced
by the set Q@ = QU B, (x0).

As by construction @ < k" a.e. in B, () \ 2, Assumption A.8.1(ii) yields

)

HxEB%o(xo):ﬂ> ]{:’}

- HxEB%o(xo)ﬂQ:a>k’}

< ‘B%o(l‘()) OQ‘ < (1-42) ‘B%O(fﬂo)

with d2 as in Assumption A.8.1(ii). Then, by virtue of B o (x0) =B o (xo) N K,

erB%oﬂQ:ﬁgk’}

> 0

Be (960)‘
follows and consequently, (A.8.1.22) is satisfied. Hence, due to Lemma A.8.5 applied to the
function @ and the domain Q either
- 1

0S¢ {ﬂ; By, (z0) N Q} < 2tp2,

or
0sc {11; By, (x0) N Q} < 25F1 (osc {ﬂ; By, (x0) N Q} — osc {a; B%o(xo) N Q}) ,

must hold with the number s as in Lemma A.8.4 , in other words either (A.8.1.26b) or

(A.8.1.26¢) is satisfied.
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(b) In the case z¢ € OI', we recall that 2 satisfies Assumption A.8.1(iii) and therefore the func-

tion @ defined by

max {u(z);k'}, x € By, (x0) N,

au(x) =
K z e (Q N B,, (xo)) \ Q,

satisfies inequality (A.8.1.23) for any k,[ subject to (A.8.1.24), and Q as in Assumption
A.8.1(iii). Keeping in mind that o < k" a.e. in (Q N By, (xg)) \ ©, we infer with the help

of Assumption A.8.1(iii) that

:HxEB%o(xo)ﬂQ:a>k:'}
S’B%OQQ‘SIQQB%O

Hx GB%o(xo)ﬁQ:’ll> k’}
— 8 | B (a0)

holds with 43 as in Assumption A.8.1(iii). Hence,

> 03 ‘B%o(w‘o)‘

erB%o(xo)ﬂQ:fLS k:’}
follows, and consequently (A.8.1.22) is satisfied. Thus, application of Lemma A.8.5 yields

either
_ 1
0sc {ﬂ;BQO(a:O) N Q} <2w < 2S+IQ§,

or

0sc {71; By, (o) N Q} < 28tt (osc {ﬂ; By, (o) N Q} — osc {a; B%o (xo) N Q}) ,

i.e. either (A.8.1.26b), or (A.8.1.26¢) must hold.

Let us now proceed with the case in which (A.8.1.31b) holds, i.e.

inf w4 osc {u; By, (zo) N} < uf
By, (z0)NQ2 4 T'NBg, (z0)(z0)

is satisfied. Clearly, is suffices to consider only three subcases depicted in the following figure

(¢) Boo(z0) N =0

(@) By, (wo) n (89 \ F/) =0 (b) zo € O

Figure A.8.3: Different positions of the balls B, (z0) in the case infBQ(J (w00 U+ OSC{u;BQZ(Io)ﬂQ} < inmeQO(zo) 6
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In this case By, (z9) N (02 \ I) = () holds and we have, as before, by virtue of assumptions

¢ > 0 on intl” and (yu)t = ¢ a.e. on T, that you = ¢ a.e. on IV N By, (xg). Moreover,

calculating
osc{—u; By, (x9) N
sup —u= sup —¢=— inf < sup —u-— {=u; By (20) }7
IM\B g (x0) TN\ Byy (20) I'NBg, (z0) Bog (20)N2 4

we see that the level

Koe  sup - osc {—u; By, (xo) N Q}
Bag (20)N92 4

is an admissible level for (A.8.1.2) with —u and B,,(xo). Thus in particular, —u satisfies

A.8.1.23) for any levels k,l with k > k' and [ > k.
( y

As I satisfies Assumption A.8.1 (ii), we find that the function — defined by

) = max {—u(z);k'}, x € By (z9)NQ,

K, x € By, (x0) \ ©

also satisfies inequality (A.8.1.23) for any k, I subject to (A.8.1.24) and Q replaced by Q =
QU By, (7). Bearing in mind that by construction —@ < &’ holds a.e. in B, (zo) \ 2, we find

by virtue of Assumption A.8.1(ii)

HxGB%o(a:o) : —12>l<:’}

N H‘” € Buy () N Qs — > K |

< ’B%o(aco) mQ’ <(1—6) ‘B%o(xo)‘

with 62 as in Assumption A.8.1(ii). Recalling B%o (xo) = B%o (zo) UL,

xGB@ﬂQ:—ﬂgk’
{= <2 j

> 0o ‘B%o (éﬁo)‘
holds, and consequently (A.8.1.22) is satisfied. Application of Lemma A.8.5 yields either
- 1
0sc {—a; By, (x0) N Q} < 2S+1g§ ,
or

osc {—22; By, (o) N Q} < 28t <osc {—11; By, (z0) N Q} — osc {—&; Beo (z9) N Q}) ,

4

with the number s as in Lemma A.8.4, in other words either (A.8.1.26b) or (A.8.1.26¢) is

satisfied.

In this case we have =y € 9I". Thus, by virtue of assumptions ¢ > 0 on intI”, ¢ = 0 on
'\ IV, and (you)™ = ¢ a.e. on T, we find you = ¢ a.e. on I N B,y (z0), (you)™ = 0 a.e. on
(D'\I") N By, (z0), as well as

sup —(yu)=0=— inf ¢< sup —u-— osc { —u; By, (o) }
I'NBygq (x0) IOB g () By (0)NQ 4
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osc{ —u; By, (zo)ﬂﬂ} .
4

Therefore, the level k' := sup Bog (z0)n0 —U— is admissible for (A.8.1.2) with

the choice —u and By, (o).

Since 01" satisfies Assumption A.8.1(iii), we see that the function u, defined by

i(z) = max {—u(z);k'}, x € Byy(z9)NQ,

K, = (Q/ N B,, (xo)) \ 9,
satisfies inequality (A.8.1.23) for any k, I subject to k > k’ and €’ as in Assumption A.8.1(lii).
Moreover, keeping in mind that @ < k" a.e. in (Q’ N By, (:1:0)> \ ©, we find by virtue of
Assumption A.8.1(iii)

Hx € Bog (20)NQ 1 > k’}

2

:‘{mEB%o(xo)ﬂQ:fa>k’}

< ‘B%o(l’o)ﬂg‘ <

Q' N Beo (l’o)‘ — 03 ‘B

2 Q0 (:Eo) .

2 ‘

with J3 as in Assumption A.8.1(iii). Hence,

HJUEB%O(:UO)I’WQ’:QSM}

> 43 ’B%o (xo)‘
holds, and consequently (A.8.1.22) is satisfied. Therefore, Lemma A.8.5 yields either
- 1
0sC {11; Bgy (o) N Q’} < 25+1Q87

or

osc {12; By (z0) N Q'} < 25F1 <osc {ﬂ; By (z0) N Q’} — osc {a; Beo 0 Q'}) ,
with s as in Lemma A.8.4, i.e. either (A.8.1.26b), or (A.8.1.26¢) is satisfied.

(c) In this case we have B,,(z¢) NI" = (). As in case (b) it follows that

0< sup —u_ osc {—u; By, (xo) N Q}

< i (A.8.1.32)

We now proceed as in the case considered in @. Thus, by assumption we have that
the functions w = =u satisfy (A.8.1.2) for any level k subject only to the condition

k = supp,(g)no*w — 2M and k > supp, ( yar (Yow)t = —oo in the case w = wu, or

zo

k > supp (z)nr —(yow)T = 0if w = —u . Setting
1
w = 5 osc {u; By, (o) N2},
we observe that

1
E:= sup w-— v sup  w — —osc{u; By, (x0) NQ} > sup w—2M
Bog (20)N) 2 Byy(zo)n® By (20)N82
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holds with w = +wu, and therefore, taking (A.8.1.32) into account, inequalities (A.8.1.23) are

valid for any levels k > £/, and | > k.

Moreover, by virtue of

1 1
sup  u— —osc{u; By, (o) NN} = inf w4 5 08¢ {u; Byy(x0) N},
By (20)N2 By (w0)N€2

we conclude that
1
x € Beo (x0) NQ:u(x) < sup  w— = osc{u; By (z9) NN}
2 By (20)N2 2

. 1
U {x € B%o(:vg) NQ:u(x) > BQOI(EE)OQU + 5 08¢ {u; By, (z0) N Q}}

:B%o(xo)ﬂ(l

holds, and consequently either

1
> 5‘3%0(3:0)“9

)

1
x € Beg () NQ:u(z) < sup  u— = osc{u; By, (zg) NQ}
2 Bog (20)N9) 2

(A.8.1.33)
or

1
> ) ‘B%(xﬂ) HQ‘

1
x € Beo (x0) NQY: —u(z) < sup —u— = osc{u; By (z9) NN}
2 Byg (@0)NQ2 2

(A.8.1.34)

must be satisfied. In other words

1
> 5)3%0(1‘0)0@

)

1
€ Beg(20) NQ:w(z) < sup  w — = osc{w; By, (zg) NN}
2 Boy(z0)n2 2

(A.8.1.35)

with either w = w or w = —u holds.

Recalling that k¥’ = sup Bog(z0)nQ W — 5 = SUDB, (z9)n0 W — w, We thus infer

1
> ‘B%Q(SUQ)QQ

o e Bao)n0:uw@) <k} > 5

and therefore Lemma A.8.5 yields either
osc {u; By, (z0) N2} < 2w < 2S+1Q§,
or
osc {u; By, (z0) N Q} < 2571 (osc {w; By (z9) N Q} — osc {w; B%o N Q})
= 2st! (osc {u; By, (o) N} — osc {u; Beo N Q}) ,

i.e. either (A.8.1.26b), or (A.8.1.26¢) is satisfied with s as in Lemma A.8.4. This finishes the
proof. O
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As a consequence of Lemmata A.8.6 and A.7.4 we obtain the following result.

Theorem A.8.7. Let Q C R3 satisfy Assumption A.8.1, u € By(Q, M,~), ¢ € CO(Q) with e € (0,1)
such that ¢ > 0onT, ¢ > 0on intl”, and ¢ = 0 on I' \ I/, where T and I are as in Assumption A.8.1.
Suppose that (you)™ = ¢ a.e. onT'. Then

osc{u: By(zg) NQ} <C (Qg>a (A.8.1.36)
0

holds for any ball B,(z¢) centered at xo € Q with radius 0 < o < o with gy as in Assumption A.8.1, and

where the constants C and o are defined by

* = mi 1 1 L ‘min 4 L,
o =min ¢ —1Iny plbresy ;min 576 ,

. l'e
O — 4% max {2max{||¢)||co,e(ﬂ) ;28} leln{zv }; QM} 7

and s is as in Lemma A.8.6.

A.8.2 A Parabolic De Giorgi Class

In this subsection we consider the parabolic analogue of the elliptic De Giorgi function class
introduced in Definition A.8.2 and prove that, under appropriate assumptions on the initial and
boundary data, this function class is continuously embedded into the parabolic Holder space
Co3 (Q).

Let us consider a domain 2 C R3 satisfying Assumption A.8.1, T > 0 and set Q := Q x (0, 7). We
define I’y := Q x {0} and for z¢ € , ty € (0,T], and g, 7 > 0 we put

By := By(xo) = {x ER3: |z — 20| < Q}

and
Q(o0,7) = By(zg) x (to — 7, t0),

and call the latter set a local parabolic cylinder. Moreover, for a function
ue L2(0,T; L*(Q)) [ L0, T; H(Q))

we define
1

||U\|Q(g,r)mc2 = < sup Hu("t)H%Q(BQ(JUo)ﬂQ) + ”V“H%Q(Q(g,r)mQ))

to—1<t<tp

Let M, ~ be positive constants and take positive numbers gg, 79. We introduce the parabolic De

Giorgi function class following [43, Class B> (Q, M,v,2 (1 + %) ,2M, %) in Ch. 2, §7].
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Definition A.8.8 (The class B> (@, M, 7)).

We say, that a function u = u(x,t) belongs to the function class Bo (Q,M,~) (cf. [43, Class
By (Q,M,~,2(1+ %) ,2M, %) in Ch. 2, §71), if u satisfies the following conditions

D ||t oo () < M, Ogngu(-,t)HiQ(m + /OT IVul72q do dt < oo (A.8.2.1)
@ the functions w = dwu satisfy the following inequalities

2 2

(k) < (k) 0:tn — A.82.2
su w w\™ (x, max {0; T .8.2.2a
maX{O;to—O'IQ)T}<t<t0 ) LQ(BQ—Glng) o H ( { 0 })‘ L2(B,NQ) ( )
+ v (alg)—2Hw(k)‘2 +/t0 Hz € B,NQ:u(z,t) > k}| dt
L2(Q(0:1)NQ) max{0;to—7}
and
HwUf)(f <~ ([(alg)‘z + (o7) 7] Hw(k’)‘ ’ (A.8.2.2b)
Qe—010,7—027)NQ — L2(Q(e,)NQ)
to
+/ {z € ByNQ:u(e,t) > k)| dt |,
max{0;to—7}

in which Q(p, ) is any local parabolic cylinder with o, T satisfying o < o and 7 < 1y; o1 and oy are
arbitrary numbers from the interval (0, 1), and k is an arbitrary number subject only to the following
conditions:

k> sup w—2M, k> sup w, (A.8.2.3a)
Q(@,T)HQ Q(ng)mFO

and setting ¥ :=T" x (0,T)), as well as ¥ :=T x (0,T))

Sifw=u: k> sup (you)t, (A.8.2.3b)
Q(e,7)N%’
Sifw=—u: k> sup —(you)", (A.8.2.3c)
Q(o,7)N%
with T and T as in Assumption A.8.1 and the classical convention, that supyu = —oo.

In the following we prove that B, (Q, M, ) is continuously embedded into C*3(Q). We follow
the arguments of [43, Chapter 2, §7].

For this function class we have the following results.

Lemma A.8.9 (Ch. 2, Lemma 7.1 with p = , £ = 2 in [43]).

_ 1
Let 0 = Saroszs1y,
in Q(o,00%) and a level k € R, and that

with v as in (A.8.2.2a), and suppose that a function v satisfies inequality (A.8.2.2a)

|{z € By(z0) NQ : u(x, max {0;to — 992}) >k} < % |Bo(z0)| = ‘le‘gg, (A.8.2.4)

as well as

H:= sup u(z,t) — k> p (A.8.2.5)
2E€B,(x0)NE,
maX{O;t0—092}§t§t0
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hold where | By | denotes the volume of the unit ball in R®. Then for all t € [max {0;to — 60*} , to] we have
1
Hx € By(z0) N Q :u(z,t) < k+ iH}‘ > |By| ¢°. (A.8.2.6)

Proof: The proof is almost identical to the proof of [43, Chapter 2, Lemma 7.1].
Let the conditions of the Lemma be satisfied. For o > 0 and 2o € Q, we set B,(zg) =: B,.
Moreover, suppose that
H = sup u(z,t) — k > po.
z€B,NQ,

max{O;t0—992}§t§t0

Computing that for all ¢ € [max {0;ty — 00?} , to]
t—maX{O;to — 692} <t —to+ 00% < 0p?

clearly holds, we find with the help of (A.8.2.2a) and (A.8.2.4) that the following inequality is
satisfied for all ¢ € [max {0;ty — 00} , to]

1
/{ . e k}(u(:c,t)—k)2 dx < §H2\Bl|g3+fyeg? [(01)2H?0™ 2 + 1] |B1| 0*. (A.8.2.7)
2EB(1_5q) oM hiulz,t)>

On the other hand

()

3
{x € B-oyena  w(@,t) > k + 4HH
2
= / <3H> dx
{z€B1_oy)onaiulat)>k+3H} 4

<

/ (u(z,t) — k)2 dz (A8.2.8)
{xEB(lfal)QmQ:u(x,t)>k}

clearly holds. Thus, combining (A.8.2.7) with (A.8.2.8), we infer

3 16

1 _o _ _
1 9 ~ + 400> (01 20724+ H 2)] |Bl|g3.

2

Keeping im mind, that hat H > p, it follows for all ¢ € [max {O; to — 0@2} s to]

3
Hx € Bi—o))onq 1 u(w,t) > k + HH

4
16 |1 _o _ _ :
<5 [2 +900° (07207 + 0 2)] |B1] ¢”
16 |1 ) 3
gg 54.79 (c1°+1)||Bi|o’. (A829)

By virtue of the assumption o7 € (0, 1) we obtain

20 ((Bo\ Bt—o1)o))| < [Bo\ B—a1)o| < |Bil6*(0f =301 +3)a1 < 301|Bi| 0”.

1

With the choi =
i e choice o 363

= g and 0 = ! g (A.8.2.9) implies

64(1082 + 1)

3 3
Hx € B,NQ:u(z,t) > k:+4HH < Hx € B0 N u(z,t) > k+4HH + By \ Bo—o1 0l
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16 |1
< —
-9

_ 17
3 +90 (072 + 1) | |B1| 0* + 301 |B1| 0® = T |Bol s

and the claim follows. O

Let us proceed with the next result.

Lemma A.8.10 ( Ch. 2, Lemma 7.2 in [43]).

Let xg € Q, 09 > 0, ty > 0, 0 as in Lemma A.8.9 and set

0
QQO = BQO(QZ()) X (to — Ggg,to) s Q%o = B%o (xo) X (to — 4@3,750)

Let ko € R and suppose that a function u satisfies inequality (A.8.2.2b) in Q,, for any level k > k. Let

5
1 T2

=237 (y |24 —
=2 (324 g ])

with (3 as in Proposition A.6.1 and assume that

{(2,1) € Quy N Q< ula,t) > ko}| < b10] (A.8.2.10)
holds. Then either
@ H := sup u(z,t) — ko < 00, or (A.8.2.11a)
QopNQ
H
@ H(x,t)eQ%oﬂQ:u(x,t)>ko+2}‘:0 (A.8.2.11b)

is satisfied.

Proof: We follow the arguments of the proof of [43, Chapter 2, Lemma 7.2].
Let the conditions of the Lemma be satisfied. For gy > 0 and zg € Q we put B,, := B,,(z0) and
TH = GQ(Q). Then, we introduce for z € B,, and t € [ty — 79, to]
- - t—=1
T — Tg 7. 0

T = , = —
2 )
00 4)

and

) - to T—t
Q:={zeR’:igy+z € Q}, Q:ZQX(—ga 20)-
4) 4)

With these definitions we observe that the cylinder Q,, := Q(00,70) = By, x (to — 70,t0) corre-
sponds to the cylinder Q(1,6) = B;(0) x (—0,0).

Now let 0 < p < ggand 0 < 7 < 7. Setting

~._ 0 = .
0 7

==, and Q(o,7) := B3(0) x (—7,0),
Q0

SR

we observe again, that (9, 7) corresponds to the cylinder Q(p, 7) = B,(z¢) x (to — 7, t0)-
Let ko be as in the assertions of the Lemma and using these new coordinates, we can rewrite

(A.8.2.2b) for the cylinder (o, 7) and a level k > kg as follows
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2

Hu(k) H L2(Q(6,7)NQ)

1
. < — +t —= HU ‘
Q(1-o)a(1-02)Q — | (L%QQ 027']

05 /0 (o }Hf € By(0) : u(i,i) > k}| di | . (A82.12)

20

Suppose now, that

H := sup u(x,t) — ko > 00 (A.8.2.13)
QopNQ
is satisfied. Introducing the function v, defined by v(x,t) := u(z ) a.e. in @, and the levels

~ k
k= Vi with k > ko, we obtain, dividing (A.8.2.12) by H? and keeping in mind that H 203 < 1,
the following inequality

H k)HQ( 1—01)8,(1—02)7)NQ =7 <|:O'%1§2 + 027} H " )

+/:ax{ . }H“Bé@):v(f,fbl%}(df . (A82.14)

7t '—7_
3’

L2(Q(8,/)NQ)

Let us now introduce a sequence of cylinders {Q},_,, with decreasing measures defined in

the following way

- - - 1 1 0 0 0
Qn = Q(0n, ) = Béh(o)x(_7h70)7 Oh = 54'%7 h = Z‘FW-FW h=0,1,2,...

nl

With the sequences {01, },_,, and {o2,},_,, defined by

1 3
01, = m, and 02, = m, h = 07 1,2,...
we verify that
R 2 41 1 A S B L B | 1 N
on(l —o1,) = oh+1 1- oht1 19 ) =~ Tohtl ohtl {9 oht2 9 T ot = Ohtl
and similarly, that
_ o 2hpgohtlyag b3 9 9 o
(1l —02,) =050 TEEE R == + ohz T ghes = Th

are satisfied. Consequently,

Qhy1 = Q(0n11,Thi1) = Q(on(1 — 01,), Tn(1 — 02,))

holds. Further let us introduce a sequence of increasing levels {I;:h} B defined by
-k 1 1
= 1—-— =0,1,2,..
kp, 713 ( 2h> h=0,1,2,

Thus we obtain from (A.8.2.14) forall h > 0
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B o= ([ ] I
Q}H»lmQ hﬂQ)
0 ~, ~ ~
+/ x € By, (0) : v(@, %) > th di | . (A82.15)
max ——, —’Th
Let us consider the sequence {z},_,, , _defined by
0 - - -
o -:/ Cyn] {ieBan@iv@ >R | a, =012 .
maxq = 33 —Th
20

Observing that l;hﬂ =k, + 2,1%, we obtain the following estimate

1) 1 \?
Zh1 < / / i () di di
< ) max -9 —Th+1 {xeB 0)Nw(Z, f)>kh+%+2} oh+2

9h+2
Ch +1
(v —kp)? di di. (A.8.2.16)

max -9 7Th+1 {:EEBQh+1 0)N2w( )>I~£h}

Application of Holder’s inequality and Proposition A.6.1 to the right-hand side of this inequality

yields
Hv(fch) 2 i
L2(Qr+1NQ)
2
L (/:{ L Eemma@nd @ ;;h}( df)
0

2
22, (A8217)

Qh+1ﬂQ

where 3 is defined in Proposition A.6.1. Assembling (A.8.2.16), (A.8.2.17) it follows
2
" (A.8.2.18)

ZQ
Qr+1NQ

ht2 a2 || (&
Zpy1 < AP H W’

On the other hand we clearly have by virtue of (A.8.2.13) that 1 > v — ky > v — kp, for all h a.e. in

Q. Thus,

h+3
] H LQ(Q} nQ) *

4h+2
7([( + 55
hto 2h+3
T 1) s (AB219)

Inserting (A.8.2.18) and (A.8.2.19) into (A.8.2.15) yields
1 1+2 1 1+2
< 16h+232 _ 9842 h 145
zhe1 < 16 ,B’y< —1—30) [257(2 30>]16

Thus, by virtue of Lemma A.7.1 we have that z;, = 0 for h — oo, provided that

20 < 2—455—5 <7maX{1 Qo} |:2_|_ 310:|>_2 < 2_45B_5 ( |:2+ 30:|)_ = 91
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holds. Due to the conditions of the Lemma,

20 = /H:X{_m._g} Hx € B1(0)NQ: v(i, ) > 1%0}‘ di

= 965 H{(z,t) € Qoo NQ : u(z,t) > ko}| < 61

is satisfied, and consequently

H(w,t) EQ%O tu(x,t) > ko—i-;{}’

follows. O

Lemma A.8.11 ( Ch. 2, Lemma 7.3 in [43]). Let u € B2(Q, M, ~) and let Q satisfy Assumption A.8.1.
Suppose that there exists a function ¢ € C53(Q), e € (0,1), such that ¢ > 0on T x (0,T), ¢ > 0 on
intI” x (0,7),and ¢ = 0on (P \I) x (0,T) with I and I" as in Assumption A.8.1, and

u(z,0) = ¢(x,0) a.e. in (), as well as (vou)tT =¢ ae onT x (0,7).

Let Ry < 1 be as in Assumption A.8.1 and for xo € Q, 0 < oy < 200 < Ry we denote by B,, (Bay,) the
ball centered at xo with radius g (20¢ resp.).

Then there exists a number s > 0 depending only on ¢, ||¢(-, 0)||CE(§), Ry, 61,02, 03 from Assumption
A.8.1 and the constants (1 and 6y from Lemmata A.7.3 and A.8.10 such that putting

Q290 = B290 X (t(] - 499(%at0)7 QQO = BQO X (tU - 99(2)7t0)7

fortg > 0and 0 as in Lemma A.8.9, one of the following implications holds

®  wi=osc{u, Qo NQ} < 2°pmin{lict (A.8.2.20a)

osc {u, Q2o N Q} < dosc{p; Qap, N Q}, (A.8.2.20b)
® (,t) €EQpNQ:u> sup u— is < 01p°, (A.8.2.20c)

QQQOQQ 2
and the level k := sup u — % satisfies (A.8.2.3),
Q?QOOQ 2
@ (2,t) €QpNQ:—u> sup —u— % < 61p°, (A.8.2.20d)
Q2QOmQ 2

and the level k :== sup —u — % satisfies (A.8.2.3).
Q2001Q 2

Proof: We follow the arguments of the proof of [43, Chapter 2, Lemma 7.3], but as in the elliptic

case, also account for the mixed boundary conditions.
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Let the conditions of the Lemma be satisfied and set

w:= sup u— inf w=osc{u;Qz NQ}. (A.8.2.21)
QQQOQQ QQQOOQ

Suppose thatw > 2°p™*{Lie} where s is a number to be deterined later, and ¢ is as in the assertions
of the Lemma.

We will distinguish the following cases
O QuN((I'x(0,T))UTo) =0,
2] ng N (FO) = ®7 To € F;
(3] Qoo NTo # 0.

O Let us start with the first case, i.e. suppose that Q,, N ((I' x (0,7")) UTy) = 0. So in particular
to — 003 > 0, and By, (x9) N T = 0 hold (see Fig. A.8.4).

/r\r

Figure A.8.4: The case ®: Q,, N ((I' x (0,T))UTo) =0

Computing
sup u inf U
sup u— 2 = %09 + Q097 _ g u+=( sup w— inf wu)= inf ut e 5"
Q200NQ 2 2 2 Q20,NQ 2 Q200NQ Q20,NQ Q20,NQ
it follows that

T € By NQ:u(x,tg— 0p*) < sup u— v
Q?gomQ 2

U{xGBQOOQ:u(x,t0—6p2)Z inf u—&—;}:BQOﬂQ

ngm
is satisfied, so clearly either
2 w 1
@ |qx € By NQ:u(z,tg—0p°) < sup u— — p| > = |By, NQ
Q20yN@ 2 2

or

1
) {xEBQOOQ:u($7t0—9p2)2 inf w+— } §|BQOOQ]

Q?go nQ

v

must hold. In other words

1
5 ’BQO N Q‘

T € By N w(z, tg —0p?) < sup w— 2 >
QQQOOQ 2
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is satisfied with either w = u, or w = —u. Setting p14 = SUPQ,, nQ W, We follow
9 w 1
HJ:GBQOOQ:w(x,tO—Q,O ) S’LLJF_Z}‘ > §|BQOOQ],
as pi4 — 4 > py — 5. This implies

1 1
HxGBQOQQ:w(xvtO*QP% > et = %H < §|BQ0 nal < §|BQO|'

Let us introduce an increasing sequence of levels {k, },_; with s > 5 to be determined later,

Ls—17

defined by
k= u+—§, r=23,..5—1. (A.8.2.22)
Thus, forallr > 2
1
{z € Boy Nz w(x,to — 0p%) > ke | < 5 | By, | (A.8.2.23)

follows. Let us set iy := SUPQ, NQ Wr and observe that

. _ w _ w
either fiy < pq — 3 O A > gy og

hold.

If iy <py — 55 we have

’{(x,t)ngoﬁQ:ﬂ+>u+_%}’:0,

and consequently either (A.8.2.20c) or (A.8.2.20d) follows.
If iy > py — 55 we deduce, bearing in mind that p <1, < 1and w > 2°p° > 2°p, the following
inequality

w w w w _ w
27)25_2?:%(23 1)z >0 (A.8.2.24)

H:=pq — (M+ -
As in our case in particular By, NI = () and Q,, N Ty = 0, we find that any level k satisfying
k> SUPQ, nQ W — 2M is admissible for (A.8.2.2a) and (A.8.2.2b) in the cylinder Q.
Checking that § < M holds, we deduce that for all > 2 the levels k, are admissible for (A.8.2.2a)
and (A.8.2.2b) in the cylinder @,,. Thus, due to (A.8.2.23) and (A.8.2.24), we can apply Lemma

A.8.9 in the cylinder Q,, with the level k, and obtain

w 3 1
{x € By, N Q2 w(x,t) §u+—y+4H}’ > 1—8\39009\
for all t € [ty — 0p?, to]. Moreover, we calculate
w 3H < w o 3w w
P = op T S Bt = o T or T T o
Hence in particular,
w 1
Hx € By, NQ:w(x,t) < pg — W}‘ > 13 | Bg, N € (A.8.2.25)
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is satisfied for all ¢t € [to—0p?, to]. As by virtue of Assumption A.8.1 B,, N2 is convex, application
of Lemma A.7.3 with the choice k = k, and | = k11, r > 4 yields forall ¢ € [t; — 0p?, to]

(krg1 — kr) {z € Boy N w(z,t) > kpyr }]

Bip*
< |[Vw(z,t)| dz,
‘{.’IJ S BQO na: w(x,t) < kr}| {wGBQOHQ:kr<w(ac,t)§kr+1}

where (5 is as in Lemma A.7.3.
Exploiting inequality (A.8.2.25) and Assumption A.8.1(i) we deduce for all » > 4 the following

estimate
1 18 18 18

< < =
|{.1‘ S BQO ne: w(xvt) < kT}’ n |BQO N Q| T ‘BQO| 01 ’Bl‘ 03

where 47 is as in Assumption A.8.1(i), and consequently we arrive for all t € [ty — 0p?, to] at

w

18
{z € Byy NQ:w(x,t) > k1 }| < b

p < p/ Vw(z,t)| dz.
2 +1 51 ‘Bl‘ {IEBQOQQ:kT<w(I,t)§]{;T+1} ‘ ( )‘

(A.8.2.26)

Let us now proceed with the cases ® and @, ie. in particular suppose that Q,, N

(' x (0,7)) UTy) # 0. Defining

¢% = S ¢, ¢ = QQi;gFO ¢, wyi=¢% —¢° = osc{d(x,0); By, N}

and

qbl = sup o, gbl_ = inf o,
- Q2pN(I'x(0,T)) Q2pNI'x(0,T)

wh = ok — ¢! — = ose {(06) "1 Qzg N (T x (0,7))},

we observe, that either

® both
sup u— > < max {¢), ¢} } (A.8.2.27a)
QQQOHQ 4
and
w
— inf u—"2 < —min{¢®, ¢ A.82.27b
Q;gr;ﬁ@u 1S mln{gi)f,(ﬁf} (A8 )
must hold, or
@ either
sup u— — > max {6}, 6}, (A.8.2.28a)
QQQOHQ 4
or
inf u+ o <min {62, ¢!} (A.8.2.28b)
ngoﬁ 4

must be satisfied.



A.8.2. A PARABOLIC DE GIORGI CLASS 191

In the first case we clearly have adding (A.8.2.27a) and (A.8.2.27b)

w w

= sup u— inf wu-—
Q20,NQ Q20)NQ 2

<max {¢}, ¢} } —min{¢°, ¢! } <wj+wj,
and therefore (A.8.2.20b) follows.
Let us proceed with the second case and suppose that

w w
either sup u— — > max{¢", ot or inf w4 — <min{¢", ¢ A.8.2.29
2 {05, 0} ol vt A B )

holds.
We turn our attention to the case ®, i.e. we assume that Q,, NT'o = 0 and zp € T".

Suppose first, that

sup u — hd > max{qﬁo ;¢1+}
QQQQOQ 4

holds. Since by assumption ¢ > 0 on intI” x (0,7"),and ¢ = 0 on (I'\ I") x (0,7"), we find

K= sup u-— “ > max 4 0; sup ¢; sup u—2M
Qoo 4 QaopMT/X(0T)  Q249NQ

> max | 0; sup ¢; sup u —2M
Qoo x(0,T) QrNAQ

and consequently all k£ > k' are admissible levels for (A.8.2.2a) and (A.8.2.2b) in the cylinder Q.

Considering again the increasing sequence of levels {k, },_; . ; defined as in (A.8.2.22) by

k.= sup u—%, r=2,3,,....,8 — 1,
Q@ 2
it follows that for » > 2 the levels k, are admissible for (A.8.2.2a) and (A.8.2.2b) in the cylinder

Qoo-

Clearly, it suffices to consider the following two subcases illustrated in Fig. A.8.5.

(a) The case By, N (ON\T) =0 (b) The case zo € oI

Figure A.8.5: Different posiitons of the balls B,, in the case supg,, nqu— § > max {6%. 0%}
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(a)

(b)
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We start with the case B,, N (92 \ ') = (. In this situation (u — k,)* vanishes on B,, N 99
forall t € [t — 0p?, to]. Hence, extending (u — k,)T for all t € [ty — 0p?, to] trivially to B,,
and applying Lemma A.7.3 to the function (u — k,)* we obtain for any [ > k£ > 0 and all

t € [to — 0p?, to] the following inequality

(I—k)[{z € Byy : (u—kr)" > 1}
Bip*

< V(u— k)| da.
€ B (0= 0" S0 Jppemp oty
Choosing k = 0 and | = 5%+ the preceding inequality yields
w w
or+1 Hl‘ € BQO : (u - kr)+ > or+1 H
4
brp \V(u— k)t da.

: /
[{z € Byo  (u— k)™ < 0} JLaeB, 0<uhn)t <527}
As (u — k)t > 0 only inside B,, N {2, we infer

w
2r+1

Hz € Bpy NQ:u> kyyr}|

< Bip*
~ Hze By, : (u—ky)t <0} {@€ByyNQikr <u<kri1}

|Vu(z,t)| de.
Moreover, by virtue of Assumption A.8.1(ii)
Hx S BQO : (u_ kr)+ < 0}‘ > |BQO| - ’BQO OQ‘ > 52 |BQO|

holds with 4, as in Assumption A.8.1(ii), and consequently

w
W\{gcEBQOHQ:u>kT+1}\<L

< p/ Vu(z,t)| de (A.8.2.30)
d2 | B1 {IGBQOOQ:kT<u§kr+1}‘ (@)

is satisfied for all t € [to — 0p?, to).

We proceed with the case zy € JT', and take Q) to be a convex C%! - domain as in Assumption

A.8.1(iii). So in particular with d3 as in Assumption A.8.1(iii),

QN B,,| < ‘QmBQU

— 43 ‘BQ0|

holds.

As (u — k,)* vanishes on B,, N T for all t € [ty — 0p?, t], we can extend (u — k,)* for all
t € [to — Op?,to] trivially to Q N B,,. As Q is convex by assumption, we obtain applying
Lemma A.7.3 to the function (u — k)™ forany [ > k and all ¢ € [ty — 0p?, t] the following

inequality

(l—k)’{erﬂBQO:(u—kr)+>l}’
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Bip’

< - / i V(u— k)| da.

Ha: € QN By, ¢ (u—k)*+ < k}‘ {2€0NB, h<(u—kr )t <1}
Choosing k = 0 and | = 5747, the preceding inequality turns into
? : +5 v
S Hx €eQNBy : (u—Fk,)" > 2r+1}‘
4
< bip V(u— k)| da,

{ze@nBy: (w—k)* <0} /{ermBQO:0<(ukT>+<2ril}
and since (u — k,)* > 0 only inside B,, N 2 we find

w
2r+1

(o € By NQ:u> kypr )

Bip?

<oes /
Ha: €ENQNBy : (u—k )t < OH {2€Boy MUk, <u<ky i1}

|Vu(z,t)| dx.

Furthermore, Assumption A.8.1(iii) implies

erQmBQO:(u—krﬁgoH > ’QQBQO

- |B.Qo N Q’ > 03 ‘BQO| )

where §3 as in Assumption A.8.1(iii), and therefore

Y {2 € By NQiu> k| < b

< |
or+1 43 | B1 {2z€B oy Nk <u<kyi1}

|Vu(z,t)| de. (A.8.2.31)

follows for all t € [ty — 0p?, to].

Now, let us consider the case

inf u—l—% < min {¢%; ¢! }.

Qngm

We distinguish the following three subcases illustrated in Fig. A.8.6

(@) B2g, N (09 \ intF') =0 (b) xo € or’ (c) B2gy N I'=0

Figure A.8.6: Different positions of the balls B, in the case infq,, nou+ § < min {¢?;¢! }

(a) Suppose that By,, N (0 \ intI”) = . In this case, we have by virtue of assumptions ¢ > 0
onintl” x (0,7), that (you)™ = ¢ a.e. on Q2,, N (I x (0,T)) and consequently

w
sup  —(yu)t=  sup —¢p=-¢. < sup —u——.
T % (0,7)NQ20q % (0,T)NQ24, Q20,MQ 4
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(b)

()
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Thus, for all > 2, the levels k&, defined by
k.= sup —u— h
Q200NQ 2
are admissible for (A.8.2.2b), and in particular (—u — k)T = 0 a.e. on B,, N 99 for all
t € [0, — 0p%, to]. Extending (—u — k)" = 0 for all t € [ty — 0p?,to] trivially to B,,, we
obtain analogously to the case SUPQ,,,nQ U — 1 = max {qﬂ; ¢}+} the following estimate for

the function —u

w
ol

Hx € B,y N —u > E‘,«_HH < b

< p/ |—Vu(z,t)| de.
b2 | B1 {2€BoyNQ:ky<—u<kr i1}

(A.8.2.32)

with 2 as in Assumption A.8.1(ii).

Suppose now zy € JI". As in the case considered in (a), we have by virtue of assumptions
¢»>00onT x (0,T), ¢ > 0onintl” x (0,7), and (you)"™ = ¢ a.e. onT x (0,7), that you = ¢
a.e. on Q2,, N (I x (0,7)). Then since ¢ = 0 on Q2,, N ((I'\ I”) x (0,7")), we infer
0= sup —d):—qﬁl,é—u_—g: sup —u- Y,
I'x(0,T)NQ2g, 4 Q20,NQ 4

Thus, again for all » > 2, the levels k, defined by

ky:= sup —u-— h

Q2001Q 2r

are admissible for (A.8.2.2b), and in particular (—u — k,)* = 0 holds a.e. on B,, NT" for
all t € [tog — 0p% to]. Let us consider the set Q as in Assumption A.8.1 (iii). Extending
(—u — k)t = 0forallt € [ty — 0p?, to] trivially to Q' N B,,, we obtain similarly to the case
SUPQ,,, QU — § = max {¢%; ¢) } the following estimate for the function —u

{2€BynQ:—u> i} <

w
L
b3 | B1 {2€BoyNQiky<—u<kr i1}

2r+1

|-Vu(z,t)| dz.
(A.8.2.33)

with 3 as in Assumption A.8.1(iii).

Finally, we turn our attention to the case Ba,, N I = (. Analogously to the case considered

in (b), we infer
w

0L sup —u— —.
Q?QOOQ 4
and proceed as in the case considered in @. Checking again, that

sup 4 — — = 1n u —.
QQQOHQ 2 Q2gOmQ 2

holds, we obtain again that either

@ HJJ € By, Nz u(z,tg — 0p*) < py — %H > — By, N Q|

N |
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or

1
@ |{ € By Qi ule,to —05%) 2 po+ 2} 2 5 1By 0

must hold. Let us assume that the first inequality is satisfied. Hence, it follows

1 1
H:EEBQOOQ:U(QS,tO—GpZ)> sup u—w} <§|BQOOQ|§§]BQO|.

Q2pon@ 4

As in particular B,, N T" = ), we have

sup —¢p=—00
Qoo x[0,T]

and therefore all the levels &, defined for r > 2 by

w
kr:= sup u—
QQQOQQ 2

are admissible for (A.8.2.2a) and (A.8.2.2b). Furthermore, for all r > 2

1
{2 € Boy N : u(w,tg — 0p°) > ki }| < 5 |Bool (A.8.2.34)
is satisfied. Let us set iy = SUPQ, nQ U and observe as in case @ that either (A.8.2.20¢)
holds, or
Hi=pr—| sup u—o| >0 (A.8.2.35)
Q200N@ 2

is satisfied. Then, application of Lemma A.8.9 in the cylinder Q,, with the level &, yields in

particular, that

1
x € Bpy NQ:u(z,t) < sup u— el > — By, N Q| (A.8.2.36)
Q0,1Q or+2 18

is satisfied for all t € [tg — 0p?, t).
Due to Assumption A.8.1 and to Lemma A.7.3, we obtain for all ¢ € [ty — 0p?, to]

(ke = ko) {2 € Boy N Q: u(@, ) > k)|

ﬁ 4
< 1P
B |{$ € BQO ne: u(x’t) < kT}| {xEBQOOQ:kT<u(as,t)§kr+1}

|Vu(z,t)| dz,

where (1 is defined in Lemma A.7.3.

And consequently, exploiting inequality (A.8.2.36) and Assumption A.8.1(i), we find for all
r>4andallt € [ty — 0p?, tg]

w 18
1 |B1’ {xEBQOﬁQ:kT<u(x,t)§kr+1}

(A.8.2.37)
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Bearing in mind, that 0 = —¢L < —p_ — %, we obtain that for all > 2 the levels k, defined

by
k.:= sup —u— ﬂr
Q2001Q 2
are admissible levels for the function —u in the cylinders @,,. Thus, in the case

|
{2 € BanQiue,to—05) Zu-+g}) > = 1By N2

it follows, that either (A.8.2.20d) holds, or the function —u satisfies for all » > 2 and all
t € [to — 0p?, to] the following inequality

w
2T+1

{z € Boy N1 —u(w,t) > kry1}| < 1851

< p/ |-Vu(z,t)| dx
01 | B {2€BoyNQ:iky <u(m,t)<kri1}

(A.8.2.38)

with ; as in Lemma A.7.3 and §; as in Assumption A.8.1(i).

Finally, let us now consider case ®, i.e. suppose that ty — 0p? < 0,and zg € Q.
By virtue of (A.8.2.29)
w
w(z,0) < sup w— 1 fora.a. z € By, N Q2
Q2g0 nQ
holds with either w = u or w = —u.
Setting ju4. := supg,, ng W, and considering again the increasing sequence of levels{k,},_; 4

defined as in (A.8.2.22) by

w

kr3:M+_27a r=23,,.,8—1,
we observe that either
k. > sup u—EZmaX{gbO,qﬁ_}, or kr > sup —u—meaX{—qb(l,—gbl_},VTZQ
QuenQ 4 Q200MQ 4

holds, and hence we see similarly as in the case @ that the levels k, are admissible for (A.8.2.2a)

and (A.8.2.2b) in the cylinder Q,, for r > 2. Moreover,

H{z € By, N :w(z,0) >k }| < HxGBQOOQ:w(x,O) >,u+—%}’ =0

is satisfied for all » > 2. This implies
1
Hz € Bpy NQ:w(z,0) >k} =0< §|BQO], Vr=2,3,...,s—1 (A.8.2.39)

with w = u, or w = —u.
Let us set again ji4 := SUPQ, nQ W- Thus we have as in case @ that either (A.8.2.20c) or (A.8.2.20d)

is satisfied or

_ w w w W —r w
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holds.
Application of Lemma A.8.9 in the cylinder @Q,, with the level set k,, with r > 2, yields for all

t € [0,tp] as in the case @

w 1
Hx € By NQ:w(a,t) < py — ﬁ}( > =By NQ. (A.8.2.41)

Again, as due to Assumption A.8.1 B,, N () is convex, we obtain by virtue of Lemma A.7.3 for

r>4andallt € [0, )

(kre1 — ko) { € Byy N Q2 w(@, ) > kri )

< Bip*
N HI S BQO na: w(mvt) < kTH {IEBQOOQ:kT<u(a:,t)§kT+1}

|\Vw(z,t)| dz,

so consequently exploiting inequality (A.8.2.41) and Assumption A.8.1(i) we find for all ¢ € [0, to]

w 18ﬁ1
{x € By, N Q:w(z,t) > kpp1}| < p/
2r+l % " o1 |B1| {mGBQOOQ:kr<w(x,t)§kr+1}

|\Vw(z,t)| dz.
(A.8.2.42)
Let Ry be as in the conditions of the Lemma. Then, assembling the estimates obtained in @, ,

and ®, we infer that for » > 4 and a constant ¢y depending only on Q, Ry, and 61, d2, d3

% o € By NQ:w >k} < %;Tp/{ \ Vuw(z,t)| de  (A.8.2.43)
1 € By Nikyr <w<kri1
is satisfied, where either w = u, or w = —u, and
k. := sup w—i, r=4,...,s—1
27‘
QQQOOQ

Integrating inequality (A.8.2.43) over [max {0;ty — 6p?} , o], taking both sides of the result to the

power 2, and using the Cauchy-Schwarz inequality we obtain

w 2
(57) Ho € Qun@Q:w > kysn}”

Bico\? 5 [T 2
< p |Vu(x,t)|” dz dtx
|Bl| max{0;to—6p?} {mEBQOﬂQ:kr<w§kr+1}

to
x/ o€ By N Qi ky < w < kyat}] dt.
max{0;to—0p2}

Keeping in mind that for all » > 4 all the levels k, are admissible for (A.8.2.2b) in the cylinders
Q(p,7) = Qagy and Q((1 — 01)p, (1 — 02)7) = Qp,, we find

to
/ / \Vw(x,t)|* do dt
max{0;to—0p?} {xEBQOﬂQ:kT<w§kT+1}

o112
< Hw(”‘*ff)
QouNQ

1 1 2
§7[<p2+39p2> (%) |Q2@omQ|+|Q290mQ| )
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and consequently, recalling that 2°p < w, we obtain

to

Hr € Qoo NQ:u> kr+1}]2 < Cp5/ H{z € By N ky <w < kypy1}| dt
max{0;to—0p2}

11 [ Bico\?
=27|B 20+ = | (=2 .
¢ | 1|7[ +3](|31|>

with

Summing the preceding inequality over r € [4, s — 1] we obtain

2

(s —4)[{ (@,0) € Qu N Qiw(w,t) > sup w— = 4| < CO|Byp".
Q200NQ 2
Choosing s = max {2 + & + log, ( [[¢°]| .= ) ;5 + | S2 | ¢, the claim follows. O
& Cc=(Q) 9
1

Let us now prove a consequence of Lemmata A.8.9, A.8.10, and A.8.11 which reads as follows.

Lemma A.8.12. Let u € B2(Q,M,~) and let ) satisfy Assumption A.8.1. Suppose that there exists
a function ¢ € C52(Q), ¢ € (0,1), such that ¢ > 0 on T x (0,T), ¢ > 0 on intI”, and ¢ = 0 on
(C\T") x (0,T) with T and I as in Assumption A.8.1, and

u(z,0) = ¢(z,0) aeinQ and  (yu)T=¢ ae onl x(0,7).

Let 01 as in Lemma A.8.10 and s as in Lemma A.8.11.
Let xg € Q, 09 as in Assumption A.8.1, to > 0, 0 as in Lemma A.8.9 and for any 0 < o < g we define
2

Q¢ = Bg(xo) X <to — 02

4 t0> CQa

QQQ = BQQ($0) X (to — 49@2,t0) C Q

Then one of the following implications holds

®  osc {u; Q: 0N Q} < 2%, (A.8.2.44a)
@ osc{u,Q2,NQ} <4 H¢||C€7%@) 0°(1+6°) (A.8.2.44b)
® 0SC {u; Qg} < <1 — 215> osc{u; Q2,} - (A.8.2.44c¢)

Proof: Let 67 as in Lemma A.8.10 and s as in Lemma A.8.11. Furthermore, we assume that
w1 := 0SC {u; Qg} > QSQmin{l’E}

holds. Thus,

w = osc{u; Q,} > 2% gmin{bel,

follows. Then, Lemma A.8.11 yields that either (A.8.2.20b) or (A.8.2.20c) or (A.8.2.20d) hold. If
(A.8.2.20b) holds, we immediately obtain (A.8.2.44b).
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Let us now consider the case in which (A.8.2.20c) is satisfied. (In the other case we can repeat

our arguments, while working with the function —u.) Therefore, in particular kg = %7 is an

admissible level for (A.8.2.2b) in the cylinder @),. Hence, the conditions of Lemma A.8.10 are

satisfied and we obtain for the cylinder @, and the level ko = supg, g u — 547 that either

H= sup u— | sup u—% <o
QoNQ QnQ 2

or

H(x,t)ngﬂQ:u>k0+12{}‘:0

must hold. In the first case we find, keeping in mind that w > 2°p,

SUp 4 < sup u < Sup u— 5.—7 +0< sup u—%.
Qg QNQ QN 2 Q@ 2
In the second case we have
< + H < o
sup v < py — —+ — < sup u— —.
Q4nQ 2702 Tgne P
Consequently,
w 1
osc{u;QgﬂQ}: sup v — inf u < sup uw— inf u——(l—)w
2 Qg QgNR T Qyn  Qn@ 20 2¢
is satisfied and the claim follows. O

As a consequence of Lemmata A.8.12 and A.7.5 the following result holds.

Theorem A.8.13. Let u € Bo(Q, M,~) and let Q) satisfy Assumption A.8.1. Suppose that there exists a
function ¢ € C=3(Q), e € (0,1), such that ¢ > 0on T x (0,T), ¢ > 0 on intT’ x (0,T), and ¢ = 0 on
(T\T) x (0,T) with T and T as in Assumption A.8.1, and

u(z,0) = ¢(z,0) ae.inQ and  (yu)t=¢ ae onl x(0,7).

Let 61 as in Lemma A.8.10 and s as in Lemma A.8.11 and for xo € Q, 0o as in Assumption A.8.1, ty > 0,

6 as in Lemma A.8.9. Then for all 0 < o < go and

Q<Q7902) = Bg(fﬁo) X (tO - 0927t0) )

we have the following estimate

osc {u: Q(o,00%)} < C <Qg)a : (A.8.2.45)
0

where

. 1 o . ER &
o = min {—log4 <1 - 25> ,5} , C=1 maX{QM,max {2 ;2 H¢||C€,%@)(1795)} QO} .

Proof: This is a consequence of Lemmas A.8.12 and A.7.5. O
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A.8.3 Time Discrete De Giorgi Classes

In order to deal with solutions of semidiscrete parabolic equations with the discretization param-
eter h, we follow the ideas of [34] and introduce two function spaces B} (Q, M,~) and B} (Q, M, ~)
according to the time mesh h; one for treating the elliptic case, the other for handling the parabolic

case.

Definition A.8.14 (The class B%(Q, M, 7)).

Let Q CR3, T >0,m €N, and h :=T/m. Let M, > 0 be given and 0y, 79 > 0. We say a function
u = u(z,t) belongs to function class BY(Q, M,~), if u = u(x,t) satisfies (A.8.2.1) and the functions
w = *u satisfy (A.8.2.2a) and (A.8.2.2b) with ty replaced by t,, = nh, n € {1,...,m} for all local
parabolic cylinders Q(p, T) with the restriction 0 < p < gy, Vh <1 <719,andall 01,09 € (0,1).

Definition A.8.15 (The class B (Q, M,~)). Let @ € R3, T > 0, m € N, and h := T/m. Let M,~
be positive constants and gy > 0. We say a function u = u(x) belongs to function class BS(Q, M,~), if
u = u(x) satisfies (A.8.1.1) and the functions w = +u satisfy (A.8.1.2) for all balls B, centered at xo € Q

with radius 0 < p < oo with the additional restriction p < hand all o € (0,1).

Let us now present a result (see [34, Section 4]) which allows us to estimate the oscillation decay

of solutions to Problem 4.1.1.

Theorem A.8.16 (Uniform Holder estimates). Let T > 0, m € N, h := T /m and suppose that
satisfies Assumption A.8.1.

Given a sequence{g;,},c1my € H'()N BE(Q, M, ~), assume, that its piecewise constant time inter-
polate

gh(x), for(n—1)h <t<nh,n>1,
gm(z,t) == J (A.8.3.1)

gm (@), fort=0
belongs to B3 (Q, M, ). Suppose that there exists a sequence {¢}},cqo  my C CV°(9), bounded uni-
formly w.r.t m,n in C%¢(Q) such that for all x € Q

o, — o] < C|(n—n)h|?

holds for all n,n’ € {0, ...,m}, |(n — n')h| < 1 with a nonnegative constant C' independent of h, m,n,n’
and x, and for all n € {0, ...,m} ¢}, satisfies ¢!, > 0on T, ¢I', > 0 on intI”, and ¢!, = 0on T' \ T” with

I and I as in Assumption A.8.1, and
0 _ 40 H n\+ _ n
I = D a.e. in €, and (Yogm,) " = o, ae. onl.

Let the number 6 be as in Lemma A.8.9, then for h satisfying

1
h < min 02;9_§; —
36
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the following oscillation decay estimate
osc{u"; QN B} < Co®  forl<n<m (A.8.3.2)

is satisfied for any ball B, C R3 with radius 0 < o < gg, with gy as in Assumption A.8.1 and

Up, () — up (a:)’ <C [(n —n')h] i (A.8.3.3)

holds for any positive integers n and n’, (n —n’)h < 1,1 < n’ < n < mand any x € Q, with the
constants

o= min{%,ag}, C:= maX{C’,CH_%;C’O_%KLO‘?}
where a1, C are as in Theorem A.8.7, and o is as in Theorem A.8.7.

The proof can be found in [34, Section 4].

A.9 The Heat Equation

In this section we recall some well known results about the regularity of solutions to the Heat-
Equation. For details we refer to [43] and to [49].

Let 29 € R3, ¢ty € R, and ¢ > 0. We define

R, := {xER3:\xi—x0| < p, i:1,2,3}, R% = {x€R3:]:ci—x0] < g, i:1,2,3},
2
- 2 o 4
Qo =Ry x (to — 0" t0) CQ, Qg .—Rgx<t0—4,t0>.

Let a > 0 be a constant and for given data p € L?(ty — 0%, to; H*(R,)) consider the heat equation

v —alAv =0, a.e. in @)y, (A9.1a)
You = Yop a.e. on IR, x (to — 0% to), (A.9.1b)
v(-, to — 0%) = p(-, to — 0%) a.e.in R, (A.9.1¢)

where 7o denotes the trace operator. Let p € C%2 (Q,) N L2(ty — 0%, to; H'(R,)) and set
K, = {(b € LQ(to — 0% to; Hl(RQ)) 1Y0¢ = Yop a.e. on OR, X (to — 02, to)}

It is well known (see e.g. [43, Chapter 3, Theorem 4.1]) that there exists a unique function v €
HY(Q,)NK,, such that v(z, tg—0?) = p(x, to—0?) a.e. in R, and v satisfies the following variational

inequality
// (v — @) +a(Vv+ 2)(Vu—Ve)dr dt <0 Vo € K. (A9.2)

We recall the following regularity results (see [43, Chapter 3, Theorem 4.1, Theorem 7.1] and [49])



A.11. PARABOLIC SUBDIVISION, A CLADERON-ZYGMUND - TYPE LEMMA, AND THE HARDY-LITTLEWOOD MAXIMAL FUNCTION
202 OPERATOR

Theorem A.9.1. Let p € C%2(Q,) N L2(to — 0% to; H'(R,)) and let v € HY(Q,) N K, be the solution
v of (A.9.2). Then there exist constants M > 0, B € (0, ], and C(5) > 0 (independent of v and ) such
that

[0l oo (q,) < M max {1; Pl Lo (g,) T 1@l + a0 + ko} =: M,
osc {v;Q,} < C(B) max {1; Mo+ ||py\oa?%@)} oF = cg0P.

Moreover there exists a constant cyy such that the following inequality holds

IV |22M|/ Vol da dt,
o

where the constant c)r depends on a, and \Qg], and is in particular independent of v, and p.

A.10 Gronwall’s Lemma

For the following result we refer to [69, Section 1.1], see also [20, Section B.2].
Lemma A.10.1. Let 0 < T' < +ooand ¢, a, 5 : [0,T) — R be continuous functions, with o nondecreas-
ing, and > 0. If
t
+ [ Bnpryar, e .,
0
then
¢
o(t) < alt) exp (/ B(1) d7,> ) Vt € [0,T7. (A.10.1)
0
We now state the following discrete version of Gronwall’s lemma, whose proof can be found in

(17, p. 75].

Lemma A10.2. Let T' > 0, m € N, h :=T'/m, {@n}, 1o, my be a nonnegative sequence and oo > 0 a

constant. Suppose that for I € {1, ...,m}

l
2 §a<1+h2<pn>

n=1

holds. Then
@1 < a(l+exp(al))

holds forall | € {1,...,m}.

A.11 Parabolic Subdivision, a Claderén-Zygmund - Type Lemma, and
the Hardy-Littlewood Maximal Function Operator

In this section we present some tools we used in Chapter 7. First we will recall a Calderén-
Zygmund covering result and the properties of the maximal operator which arises in the

parabolic setting and start with the introduction of the so called PARABOLIC SUBDIVISION.
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Definition A.11.1 (Parabolic subdivision). Given a parabolic rectangle Qo C R™" 1 n e N, we divide
(i) each spatial side into 2 equal parts and
(ii) the temporal side into 2% equal parts.

We call this procedure a PARABOLIC SUBDIVISION. With this procedure we obtain 2"+2 new parabolic
subrectangles. By R(Qo) we shall denote the class of all parabolic cylinders, which were obtained from @
by a finite number of parabolic subdivisions. We call R(Qo) a RECTANGLE COLLECTION.

Given a rectangle Q € R(Qo), we call é € R(Qo) U{Qo} the PREDECESSOR of Q, if and only zfQ was

obtained from é by exactly one parabolic subdivision.

The following lemma plays an essential role in the proof of the results in Chapter 7. This result
is a consequence of a Calderén-Zygmund type covering argument and its proof can be found for

instance in [56].

Lemma A.11.2 (cf. [56], Lemma 2.3). Let Qo C R™"! be a parabolic rectangle.

Assume that X C Y C Qo are measurable sets satisfying the following conditions:

(i) There exists 6 > 0 such that
|X| <9 ’Q0| ’

(ii) If @ C R(Qo), then
XY NQ|>0Q| implies QcC,

where Q C R(Qo) U {Qo} denotes the predecessor of Q.

Then it follows that |X| < 6 ||

Let us proceed with the introduction of the RESTRICTED HARDY-LITTLEWOOD MAXIMAL FUNC-

TION OPERATOR.

Definition A.11.3 (Restricted Hardy Littlewood maximal function operator).
Let n € Nand Qo C R"™! be a parabolic rectangle. We define the restricted Hardy-Littlewood maximal

function operator relative to Qo as

1
Moy (f)(x,t) =  sup = / £y, )| dy dr,
Qco,xeq 1@l Jg

whenever f € L*(Qo), where Q denotes any rectangle contained in Qo, not necessarily with the same

center, as long as it contains the point (x,t).

We recall the following two estimates for M, (c.f [63, Chapter 1.3, Theorem 1] or [15, Chapter 2]).
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Lemma A.11.4 (Weak Type (1,1)). Let Qo be a parabolic rectangle, f € L'(Qo), and Mg, (f) as in

Definition A.11.3. Then there exists a constant cyy such that

{(@,t) € Qo Moy (A&, ) =M < 55 [ [f(@.0)] dudt,  WA>0 (A11.1)

Qo

holds.
Moreover, we have the following result.

Lemma A.11.5 (Strong (p,p) estimate). Let Qo be a parabolic rectangle, f € LP(Qo), 1 < p, and
Mg, (f) as in Definition A.11.3. Then there exists a constant c¢(n, p) such that
/ Moy (f) (@, ) da dt < C(”’p)/ F (2, D) da dt (A11.2)
Qo p—1 0
holds.



BIBLIOGRAPHY

[1] HW. Alt, S. Luckhaus, and A. Visintin. On nonstationary flow through porous media. Ann.
Math. Pura Appl., 136:303-316, 1984.

[2] D.G. Aronson and J. Serrin. Local behaviour of solutions of qusi-linear parabolic equations.

Archive for Rational Mechanics and Analysis, 25:81-122, 1967.

[3] J.L. Auriault, C. Boutin, and C. Geindreau. Homogenization of coupled phenomena in heteroge-

neous media. Wiley, 2009.

[4] F. Bagagiolo and A. Visintin. Hysteresis in filtration through porous media. Z. Anal. Anw.,
19:977-998, 2000.

[5] F. Bagagiolo and A. Visintin. Porous media filtration with hysteresis. Adv. Math. Sci. Appl.,
14:379—-403, 2004.

[6] J. Bear. Dynamics of fluids in porous media. Elsevier, 1972.

[7] L. Beck. Boundary regularity results for weak solutions of subquadratic elliptic systems. PhD thesis,
Friedrich-Alexander-Universitdt Erlangen-Niirnberg, 2008.

[8] G.L.Bloomsburg and A.T. Correy. Diffusion of entraped air from porous media. Hydrology
paper 5, Forth Collins: Colorado State University, 1964.

[9] N.D. Botkin, M. Brokate, and E.G. El Behi-Gornostaeva. One-phase flow in porous media
with hysteresis. Physica B: Condensed Matter, 486:183-186, 2016.

[10] Haim Brezis. Functional Analysis, Sobolev Spaces and Partial Differential Equations. Springer,
2011.

[11] M. Brokate and J. Sprekels. Existence and optimal control of mechanical processes with

hysteresis in viscous solid. L. M.A. J. Appl. Math., 43:219-229, 1989.

205



206 BIBLIOGRAPHY

[12] M. Brokate and ]. Sprekels. Hysteresis and Phase Transitions, volume 121 of Applied Mathemat-
ical Sciences. Springer, 1996.

[13] L.A. Caffarelli and L. Peral. On WP estimates for elliptic equations in divergence form.

Comm. Pure App. Math, 51(1):1-21, 1998.
[14] W. Chesworth, editor. Encyclopedia of Soil Science. Springer, 2008.

[15] M. de Guzman. Differentation of Integrals in R", volume 481 of Lecture Notes in Mathematics.

Springer, 1975.
[16] E. DiBenedetto. Real Analysis. Birkhduser, 2002.
[17] M. Eleuteri. On some P.D.E.s with hysteresis. PhD thesis, University of Trento, 2006.

[18] M. Eleuteri, ]. Kopfova, and P. Krejci. Magnetohydrodynamic flow with hysteresis. SIAM
Journal on Mathematical Analysis, 2009.

[19] J.A. Enderby. The domain model of hysteresis 1. Independent domains. Faraday Soc. Trans.,
51:835-848, 1955.

[20] L. C. Evans. Partial Differential Equations, volume 19 of Graduate Studies in Mathematics. AMS,
1998.

[21] D.H. Everett. A general Approach to hysteresis 3. A Formal treatment of the independent
domain model of hysteresis. Faraday Soc. Trans., 51:1077-1096, 1954.

[22] D.H. Everett. A general Approach to hysteresis 4. An alternative formulation of the domain
model. Faraday Soc. Trans., 51:1551-1557, 1955.

[23] D.H. Everett. Adsorption hysteresis. In E.A. Flood, editor, Solid GAs interface, pages 1055
1113. Marcel Dekker, 1967.

[24] D.H. Everett and EW. Smith. A general Approach to hysteresis 2. Development of the do-
main theory. Faraday Soc. Trans., 50:187-197, 1954.

[25] D.H. Everett and W.I. Witton. A general Approach to hysteresis 1. Faraday Soc. Trans., 48:749—
752,1952.

[26] R. Feddes, G. de Rooji, and J. van Dam. Unsaturated-zone Modeling: Progress, Challenges, and
Applications. Kluwer, 2004.

[27] D. Gilbarg and N.S. Trudinger. Elliptic partial differential equations of second order. In A

Series of Comprehensive Studies in Mathematics, volume 224. Springer, 1st. edition edition, 1977.



BIBLIOGRAPHY 207

[28] E. De Giorgi. Sulla differenziabilitd e I’analicitd delle estremaili degli integrali multipli rego-

lari. Mem. Accad. Sci. Torino. Cl. Sci. Fis. Math. Nat., 3:25-43, 1957.
[29] P. Grisvard. Elliptic Problems in Nonsmooth Domains. Pitman, 1985.

[30] M. Hassanizadeh and W. Gray. General conservation equations for multi-phase systems: 3.

constitutive theory for porous media flow. Adv. Water Res., 3(1):25-40, 1980.

[31] R. Helmig. Multiphase Flow and Transport Processes in the subsurface: A Contribution to the
Modeling of Hydrosystems. Springer, 1997.

[32] D. Hillel. Environmental Soil Physics. Academic Press, San Diego, California, 1998.
[33] R. K. Kaufmann and C. Cleveland. Environmental Science. McGraw-Hill, 2007.

[34] N. Kikuchi. Holder estimates of solutions for difference-differential equations of elliptic-
parabolic type. Technical report, Department of Mathematic, Faculty of Science and Tech-
nology, Keio University, 1992.

[35] P. Kordulova. Hysteresis in flow through porous media. J. Phys. Conf. Ser., 268, 2011.

[36] M.A. Krasnosel’skii and A.V. Pokrovskii. Periodic oscillations in systems with relay nonlin-

earities. Sovjet Math. Dokl., 15:873-877, 1974.

[37] M.A. Krasnosel’skii and A.V. Pokrovskii. Modelling transducers with hysteresis by means
of continuous systems of relays. Sovjet Math. Dokl., 17:447-451, 1976.

[38] M.A. Krasnosel’skii and A.V. Pokrovskii. Systems with Hysteresis. Springer, 1989.

[39] P. Krej¢i. On maxwell equations with the preisach hysteresis operator: the one-dimensional

time-periodic case. Appl. Mat., 34:364-374, 1989.

[40] P. Krej¢i. Hysteresis, Convexity and Dissipation in Hyperbolic Equations, volume 8 of GAKUTO

International Series, Mathematical Sciences and Applications. Gakkotosho, Japan, 1996.
[41] P. Krej¢i. The Kurzweil integral and hysteresis. . Phys. Conf. Ser., 55:144-154, 2006.

[42] ]J. Kurzweil. Generalized ordinary differential equations and continuous dependence on a

parameter. Czechoslovak Math. J., 7(82):418-449, 1957.

[43] O.A.Ladyzhenskaya, V.A. Solonnikov, and N.N. Ural’tseva. Linear and Quasilinear Equations
of Parabolic Type, volume 23 of Translations of Mathematical Monographs. American Mathemat-
ical Society, 1968.



208 BIBLIOGRAPHY

[44] O.A. Ladyzhenskaya and N.N. Ural’tseva. Linear and Qusiliner Elliptic Equations. Academic
Press, 1968.

[45] J.L. Lions and E. Magenes. Non-homogeneous boundary value problems and applications, vol-

ume 1. Springer, 1972.
[46] 1.D. Mayergoyz. Mathematical Models of hysteresis. Springer, 1991.

[47] N.R. Morrow and C.C. Harris. Capillary equilibrium in porous materials. Soc. Pet. Eng. J.,
March, 1965.

[48] J. Moser. On Harnack’s theorem for elliptic differential equations. Comm. Pure App. Math,
14:577-591, 1961.

[49] ]. Moser. A Harnack inequality for parabolic differential equations. Comm. Pure App. Math,
17:101-134, 1964.

[50] Y. Mualem. Modified approach to capillary hysteresis based on a similarity hypothesis. Water
resources Res., 9(5):1324-1331, 1973.

[61] Y. Mualem. Conceptual model of hysteresis. Water resources Res., 10(3):514-520, 1974.

[52] J. Nash. Continuity of solutions of parabolic differential equations. Am. J. Math, 80:931-954,
1958.

[53] L. Néel. Théories des lois d’aimantation de Lord Rayleigh, 1. Chachiers Phys., 12:1-120, 1942.
[54] L. Néel. Théories des lois d’aimantation de Lord Rayleigh, 2. Chachiers Phys., 13:19-30, 1943.

[55] E. Otto. L'-contraction and uniqueness for unstationary saturated-unsaturated porous me-

dia flow. Adv. Math. Sci. Appl., 7:537-553, 1997.

[56] 1. Peral and F. Soria. A note on W' estimates for quasilinear parabolic equations. Electronic

Journal of Differential Equations, Conference 08, pages 121-131, 2002.

[57] J.R. Philip. Similarity hypothesis for capillary hysteresis in porous materials. |. Geophys. Res.,
69(8):1553-1562, 1964.

[58] G. Pinder and W. Gray. Essentials of multiphase flow and transport in porous media. Wiley, 2008.
[59] F. Preisach. Uber die magnetische Nachwirkung. Z. Physik, 94:277-302, 1935.
[60] M. Rtizicka. Nichtlineare Funktionalanalysis. Springer, 2004.

[61] W. Rudin. Real And Complex Analysis. McGraw-Hill, 1987.



BIBLIOGRAPHY 209

[62] Monika Siegfanz. Die Eindimensionale Wellengleichung mit Hysterese. PhD thesis, Mathema-
tisch - Naturwissenschaftliche Fakultit II der Humboldt - Universitit zu Berlin, 2000.

[63] E. Stein. Harmonic analysis: Real-variable methods, orthogonality, and oscillatory integrals, vol-

ume 43 of Princeton Mathematical Series. Princeton University Press, 1993.

[64] A.Szymkiewicz. Modeling water flow in unsaturated porous media. In GeoPlanet: Earth and

Planetary Sciences. Springer, 2013.

[65] G.C. Topp. Soil water hysteresis: the domain model theory extended to pore interaction

conditions. Soil. Sci. Soc. Amer. Proc., 35:219-225, 1971.

[66] M.Th. van Genuchten. A closed-form equation for predicting the hydraulic conductivity of
unsaturated soils. Soil. Sci. Soc. Amer. ., 44:892-898, 1980.

[67] A. Visintin. Differential Models of Hysteresis. Springer, 1994.

[68] A. Visintin. Notes on Sobolev Spaces. http://wwuw.science.unitn.it/ visintin/Sobolev2013.pdf,
2013-2014.

[69] W. Walter. Differential and integral inequalities. Springer, 1970.
[70] P. Weiss and ]J. de Freudenreich. Arch. Sci. Phys. Nat. (Geneve), 42:449, 1916.

[71] S. Whitaker. Flow in porous media: A theoretical derivation of darcy’s law. Transport in

Porous Media, 1(1):3-25, 1986.



