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Abstract

In this thesis we investigate the asymptotic behavior of ground states of discrete
ferromagnetic Potts-type energy functionals when the number of interacting particles
diverges. In the static case we assume that the position of the particles is given
by a stationary stochastic lattice. We prove that the discrete energies Γ-converge
to a homogeneous surface integral defined on partitions representing the energy of
magnetic domain walls. Under ergodicity assumptions the limit energy turns out to
be deterministic. We also include the case of Dirichlet boundary conditions and phase
constraints. In the second part we prove an analogue result for models of magnetic
thin films, where the particles are located close to a lower dimensional subspace. For
the sake of simplicity we just consider two phases as in the classical Ising model. In an
example we further investigate how the distribution of the particles - and consequently
the thickness of the magnetic film - influences the limit energy. In the dynamic case we
prove some results concerning the curvature-driven motion of discrete ferromagnetic
interfaces under small random interactions.

Zusammenfassung

In dieser Arbeit betrachten wir Energiefunktionale, deren Struktur einer ferromag-
netischen Potts-Energie ähnelt. Uns interessiert das asymptotische Verhalten von
Grundzuständen, wenn die Anzahl interagierender Teilchen divergiert. Im statischen
Fall nehmen wir an, dass die Position der Teilchen durch ein stationäres stochastisches
Gitter gegeben ist. Via Γ-Konvergenz erhalten wir im Grenzwert ein homogenes Ober-
flächenintegral über Partitionen, welches die Energie der magnetischen Grenzflächen
darstellt. Für ergodische Gitter ist diese Energie deterministisch. Ferner demon-
strieren wir die Konvergenz von Dirichlet-Randwertproblemen und Phasennebenbe-
dingungen. Im zweiten Teil beweisen wir analoge Ergebnisse für Modelle dünner
magnetischer Filme, in denen die Teilchen nahe einem niederdimensionalen Unter-
raum liegen. Einfachheitshalber untersuchen wir hierbei nur Zwei-Phasen-Modelle
wie etwa das Ising-Modell. In einem Beispiel diskutieren wir, wie die Verteilung
der Teilchen - und damit die Dicke des magnetischen Films - den Grenzwert bee-
influsst. Im dynamischen Fall zeigen wir einige Resultate über die krümmungsab-
hängige Evolution diskreter, ferromagnetischer Oberflächen mit schwachen zufälligen
Wechselwirkungen.
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Chapter 1

Introduction

Many mathematical models in materials science use a continuum description of mat-

ter. Since Cauchy’s time scientists try to understand how these continuum models

can be derived from microscopic atomistic models in the limit the number of particles

diverges. The motivation behind this effort is at least two-fold. On the one hand it

gives a justification of the continuum theory as a coarse-grained version of the more

natural atomistic model. On the other hand, finding mathematically rigorous con-

nections between atomistic and continuum theories can also yield efficient methods

to discretize the continuum models and thus simplifies their numerical analysis. A

lot of discrete models use variables defined on a periodic lattice, mostly Z𝑑 or more

general Bravais lattices. This corresponds to the modeling assumption that particles

self-assemble into a crystalline order, a fact that indeed is expected to happen for lots

of materials and low temperatures. A rigorous mathematical proof of such a result

seems to be very difficult. We refer to [36, 52] for a possible formulation of the problem

and for partial results in two and three dimensions. Besides mathematical difficulties,

for some materials crystallization is not expected to occur, even at low temperature.

Such phenomena are the starting point for the main part of this thesis, where we

investigate particle systems entailing a certain degree of disorder. In particular our

studies are motivated by the structure of so called magnetic polymer composites.

During the last decades these materials, synthesized by embedding magnetic parti-

cles into a polymer matrix, have gained popularity mostly due to their biomedical

applications (we refer to [53] for an elementary introduction to the subject). Here we

just collect the basic facts we use to build up our models. It is common to assume

that the magnetic particles are distributed randomly in the polymer matrix. Hence

there is no periodic structure but only stochastic homogeneity. We will model the

position of these particles as the realization of a stationary point process. However

when producing these materials chemists are interested in gaining more structural

11



properties. For several reasons the particles are sometimes coated with one or even

two surrounding layers. First of all coating prevents the particles from dissolving in

the polymer matrix. In addition one may suppress physical effects like for instance

dipole-dipole interactions and moreover one can endow the same material with differ-

ent properties like magnetism and luminescence. For our modeling it is important to

observe that such a coating leads to a minimal distance between the magnetic parti-

cles. Further assuming the particles to be distributed in such a way that there are no

arbitrarily large empty regions in the matrix, we come to the definition of admissible
sets of points that we use in this thesis as a reference configuration on which we define

our variables. Admissible sets of points are (possibly random) countable sets ℒ ⊂ R𝑑

such that

(i) there exists 𝑅 > 0 with dist(𝑥,ℒ) < 𝑅 for all 𝑥 ∈ R𝑑;

(ii) there exists 𝑟 > 0 with |𝑥− 𝑦| ≥ 𝑟 for all 𝑥, 𝑦 ∈ ℒ, 𝑥 ̸= 𝑦.

We remark that these kinds of sets, sometimes also called Delone-sets, are quite

standard in statistical mechanics (see [47]) and have been used for the first time in

the context of discrete-to-continuum limits in [15] and later in [4] to derive continuum

models of nonlinear elasticity from polymer physics.

In this thesis we focus on magnetic models. We restrict the analysis to the

simplest kind of magnetization taking only finitely many values, that means to every

particle we assign a precise magnetization out of a discrete set ℳ = {𝑚1, . . . ,𝑚𝑞}
with 𝑞 ≥ 2. The choice of the set ℳ can already be seen as a result of a coarse-

graining of a finer microscopic model. Within this picture our magnetization in fact

corresponds to a quantity averaged on some mesoscale. To be more precise, the

size of the magnetic particles sitting on the points of an admissible set is in the

range of nanometers. Under the hypothesis that each particle itself is made out of

a ferromagnetic material with crystalline structure (this time on the atomic scale),

we assume that the periodic ordering of atoms favors finitely many easy axes for the

magnetization. This phenomenon, called magnetocrystalline anisotropy is known as

one source of magnetic anisotropy. We further assume that this anisotropy effect is

dominant so that the average magnetization of one (nano)particle takes only finitely

many values. These values are the elements of the set ℳ. Our models aim at

describing the interaction between the nanoparticles and not the atoms. For simplicity

we take into account only ferromagnetic pairwise exchange interactions between the

nanoparticles as in the classical Potts model with no external magnetic field. We

remark that this is compatible with coatings that suppress dipole-dipole interactions

as these are weak when the particles are not too close. Up to renormalization the
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energy of a magnetization 𝑢 : ℒ → ℳ then reads as

𝐸̃(𝑢) =
∑︁
𝑥,𝑦∈ℒ

𝑐(𝑥, 𝑦)|𝑢(𝑥) − 𝑢(𝑦)|2,

where the interaction coefficients are nonnegative and depend on the position of the

interacting particles (later on we will prove our results for slightly more general en-

ergies). Precise assumptions on 𝑐(𝑥, 𝑦) will be given in the next chapters. Note that

such an energy favors constant magnetizations. In order to make the discrete energy

finite for all configurations we introduce a scale, which can be seen as the average

distance between particles. First we fix a regular reference domain 𝐷. Physically this

set corresponds to the union of the polymer matrix and the embedded particles. In

order to investigate the limit when the number of magnetic particles in the polymer

matrix diverges, we scale the point set by a small parameter 𝜀 > 0 and define the set

ℒ𝜀(𝐷) = 𝜀ℒ ∩ 𝐷. For magnetizations 𝑢 : ℒ𝜀(𝐷) → ℳ we then consider the energy

restricted to the finitely many particles in ℒ𝜀(𝐷) by setting

𝐸𝜀(𝑢,𝐷) =
∑︁

𝑥,𝑦∈ℒ𝜀(𝐷)

𝜀𝑑−1𝑐(𝑥/𝜀, 𝑦/𝜀)|𝑢(𝑥) − 𝑢(𝑦)|2.

Note that the scaling factor 𝜀𝑑−1 corresponds to a surface scaling and is chosen here

as we aim at investigating interfacial type energies as a way to prove the formation

of Weiss domains (regions of constant magnetization) via constrained minimization

as discussed below.

We intend to pass rigorously from the microscopic many-particle model above to

a continuum version. This will be achieved in a limit procedure when 𝜀 → 0 which is,

under some regularity assumptions on 𝜕𝐷, equivalent to taking the thermodynamic

limit as it is usually done in statistical physics (see [44]). At this point we should

mention that we neglect all entropic effects and just focus on energy minimization.

Physically this corresponds to the zero temperature regime which we tacitly assume

for our model. We will devote one short section to discuss how asymptotic energy

minimization can be related to a zero-temperature limit in the sense of large deviation

principles for Gibbs-measures. Now how can we pass to a limit continuum energy?

Note that the domain of the functionals 𝐸𝜀(·, 𝐷) varies with 𝜀. Hence it makes no

sense to investigate any pointwise limit. In order to bypass this issue, we use the

notion of Γ-convergence which is appropriate to study the convergence of global min-

imization problems. In order to keep this thesis almost self-contained, we will give a

very short introduction to this notion of variational convergence in Section 2.1. If the

reader is not familiar with this kind of convergence, for this introduction it suffices to
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view the limit continuum energy as an effective energy. Roughly speaking, when the

lattice spacing gets finer and finer (𝜀 → 0), we can replace the discrete environment

by a continuum, the magnetization by a new variable defined on the continuum and

the energy 𝐸𝜀 by this effective limit energy in a way such that the error we commit

when we compute global minima in the discrete and continuum setting tends to zero

when 𝜀 → 0.

In order to model the stochastic homogeneity of the particle positions we further

let the admissible point set be generated a random variable 𝜔 ↦→ ℒ(𝜔) which we as-

sume to be stationary. This means that the probability distribution does not change

if we shift the random variable in space or, in formulas, ℒ and ℒ + 𝑧 have the same

statistics for every 𝑧 ∈ Z𝑑.

We now give an overview of the main content of the thesis. To keep the in-

troduction easy to read we will slightly oversimplify the setting. A more detailed

introduction at the beginning of each chapter will restore the mathematical rigor.

Chapter 2 will contain some preliminary results on Γ-convergence, functions of

bounded variation and probability theory. Those build the basis for the main part of

the thesis. Here we want to highlight a new continuity result for functionals defined

on Caccioppoli partitions.

The discrete-to-continuum analysis of the random energies 𝐸𝜀(𝜔) will be con-

tained in Chapter 3 and it is the main part of this thesis. Let us very briefly describe

the result and the strategy of the proof. Using purely deterministic arguments, we

first show that under some decay and coercivity conditions on the interaction coeffi-

cients every possible Γ-limit of 𝐸𝜀(𝜔) (that is to say up to subsequences) is finite only

for functions 𝑢 ∈ 𝐵𝑉 (𝐷,ℳ), where it takes the form

𝐸(𝜔)(𝑢,𝐷) =

∫︁
𝑆𝑢∩𝐷

𝜑(𝜔;𝑥, 𝑢+, 𝑢−, 𝜈𝑢) dℋ𝑑−1.

Here 𝑆𝑢 denotes the discontinuity set of 𝑢 and 𝜈𝑢 = 𝜈𝑢(𝑥) is the corresponding normal

vector at 𝑥 ∈ 𝑆𝑢. The functions 𝑢
+ and 𝑢− stand for the traces of 𝑢 at 𝑆𝑢 (see Section

2.2 for details). From a physical point of view this means that asymptotically the

particles form Weiss domains of finite perimeter and the energy needed to form these

domains is given by integration of a surface tension 𝜑 over the magnetic domain

walls, that are the interfaces where the magnetization jumps. As we see from the

above formula, in general the (random) surface tension depends on the position and

orientation of the domain wall as well as the value of the magnetization on both sides
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of the interface. While the proof of this structure result is quite standard and relies

only on the geometric assumptions on the point set ℒ(𝜔), integral representation

theorems and the abstract methods of Γ-convergence, the delicate issue is to prove

that if the point process is also stationary, then the Γ-limit indeed exists. The reason

is that, assuming that the coefficients are of the form 𝑐(𝑥, 𝑦) = 𝑐(𝑥−𝑦), the well-known

blow-up formulas for surface integrands yield a stochastic process parameterized by

cubes that is stationary, but fails to be subadditive so that the usual arguments for

stochastic homogenization used for instance in the pioneering paper [33] or in [4] fail

in our setting. However we can define a subadditive process parameterized on lower-

dimensional cubes contained in certain hyperplanes. A rather delicate probabilistic

argument shows that this is enough to conclude existence of the limit energy. Our

analysis further reveals that for stationary admissible point sets the integrand 𝜑 is

independent of the spatial variable, so that the energy may be written as

𝐸hom(𝜔)(𝑢,𝐷) =

∫︁
𝑆𝑢∩𝐷

𝜑hom(𝜔;𝑢+, 𝑢−, 𝜈) dℋ𝑑−1.

We also provide an asymptotic homogenization formula for the integrand. By stan-

dard arguments, assuming also ergodicity the energy becomes deterministic. In the

stationary case we further obtain results about the convergence of solutions of mini-

mization problems with boundary conditions or with restrictions on the average mag-

netizations (phase constraints). The latter means that we prescribe the cardinality

of the set {𝑢 = 𝑚𝑖} for all 𝑖. Observe that physically such a prescription makes sense

either when the particles can flip their magnetization but the overall distribution is

conserved or when the particles are allowed to move in the polymer matrix. In this

(actually time-dependent) setting our results should be interpreted as a long-time be-

havior after the system has reached equilibrium. Both suitable boundary conditions

and phase constraints lead to the formation of Weiss domains. Having in mind the ap-

plications to magnetic polymer composites, as an interesting example we investigate

the case of stationary, ergodic and isotropic point sets. Making the further restriction

that the coefficients depend only on |𝑥 − 𝑦|, in this case the limit energy turns out

to be isotropic, too. We close Chapter 3 with an interpretation of the limit energy

as a rate functional for the large deviation principle for associated Gibbs-measures

when the temperature vanishes at a certain rate simultaneously when the number of

particles diverges.

We stress that our strategy to prove homogenization differs from the one used for

continuum functionals with linear growth treated in [1] (which cannot be used in our

setting). We think it yields deeper insight into stochastic homogenization problems
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in non-smooth function classes. In this sense the main contribution of this thesis con-

sists of developing a technique to deal with stochastic homogenization of functionals

defined on (discrete) sets of finite perimeter. We believe that our approach can be

extended to treat stochastic homogenization in multi-scale problems where both bulk

and surface contributions appear.

In the second major part of this thesis, contained in Chapter 4, we treat a so-

called dimension reduction problem in random environments. Coming back to the

model of magnetic composite materials, here we assume that the polymer matrix is

almost a lower dimensional object with a thickness proportional to the average parti-

cle distance 𝜀. Such a cluster of points should be understood as a model for magnetic

thin films. We have in mind polymeric magnets manufactured to create thin films

made of few layers. Under external magnetic fields they form Weiss domains whose

wall energy is influenced by the roughness of the film which in turn is a result of the

physical and chemical properties of the specific material at use. Despite a fairly large

amount of experimental results has been done in order to relate the roughness of the

surface to the interfacial wall energy of the domains (see for instance [41]), no rigorous

mathematical result has appeared so far in this direction. We aim at beginning such

an investigation in this thesis.

We work in the same framework as before, but we restrict the analysis to fer-

romagnetic Ising-type models. Mathematically this means that for this chapter we

restrict the analysis to the case ℳ = {±1} and, given 𝑢 : ℒ → {±1}, the unscaled
energy takes the form

𝐹 (𝑢) =
∑︁
𝑥,𝑦∈ℒ

𝑐(𝑥, 𝑦)|𝑢(𝑥) − 𝑢(𝑦)|2 = 2
∑︁
𝑥,𝑦∈ℒ

𝑐(𝑥, 𝑦)|𝑢(𝑥) − 𝑢(𝑦)|.

We remark that the restriction to two phases is made mainly to avoid too many

parameters. Indeed, it can be shown that similar results hold for a general finite set

ℳ. The main difference to Chapter 3 is contained in the geometry of the point set

ℒ described below.

The system is supposed to be thin in the sense that the nodes of the matrix

are within a small distance, of the order of the average distance between the nodes

themselves, from a lower-dimensional subspace. For applications the most relevant

case consists of a plane in a three dimensional environment. In presence of an external

magnetic field or of proper boundary conditions, the ferromagnetic coupling induces

the system to form mesoscopic Weiss domains. Again we aim at performing the limit

of the energy as the average distance between the magnetic cells, say 𝜀, goes to zero

16



with respect to the macroscopic size of the system. This time such a limit will have

two main effects: as in the first part it will allow us to describe the original discrete

system as a continuum while at the same time it will reduce its dimension from 3 to

2 (or more in general from 𝑑 to 𝑘 with 2 ≤ 𝑘 < 𝑑). We describe the polymeric matrix

as a random network whose nodes ℒ ⊂ R𝑑 form a thin admissible lattice, meaning

that there exists 𝑘 ∈ N with 2 ≤ 𝑘 < 𝑑 and 𝑀 > 0 such that

dist(𝑥,R𝑘) ≤ 𝑀 ∀𝑥 ∈ ℒ

and that it is admissible according to our standard definition adapted to the lower-

dimensional space:

(i) There exists 𝑅 > 0 such that dist(𝑥,ℒ) < 𝑅 for all 𝑥 ∈ R𝑘;

(ii) there exists 𝑟 > 0 such that |𝑥− 𝑦| ≥ 𝑟 for all 𝑥 ̸= 𝑦, 𝑥, 𝑦 ∈ ℒ.

Also for these point sets we assume that they are generated by a random variable

𝜔 ↦→ ℒ(𝜔). However, in the case of a thin stochastic lattice we restrict the stationarity

assumption to the lower-dimensional subspace meaning that ℒ and ℒ + 𝑧 have the

same statistics only for 𝑧 ∈ Z𝑘. This implies that the point set can fluctuate in the

orthogonal complement. For instance one may think of a magnetic thin film whose

particle density decreases in the third direction.

Similar to the first major part of the thesis we perform the asymptotic analysis

when we scale the thin lattice by a small parameter 𝜀 > 0. However, for taking into

account the energetic contribution for the creation of magnetic interfaces, the correct

scaling is now 𝜀𝑘−1. Hence, up to a factor of 2, the scaled (random) discrete energies

for a magnetization 𝑢 : 𝜀ℒ → {±1} can be written as

𝐹𝜀(𝜔)(𝑢,𝐷) =
∑︁

𝑥,𝑦∈𝜀ℒ(𝜔)
𝑥,𝑦∈𝑃−1

𝑘 (𝐷)

𝜀𝑘−1𝑐(𝑥/𝜀, 𝑦/𝜀)|𝑢(𝑥) − 𝑢(𝑦)|,

where now 𝐷 ⊂ 𝒜𝑅(R𝑘) is a flat reference domain and 𝑃𝑘 denotes the projection onto

R𝑘. The strategy for analyzing the asymptotic behavior of the energies 𝐹𝜀 is quite

similar to the full-dimensional problem. First we show that under suitable growth

assumptions on the interaction coefficients every possible Γ-limit is finite exactly on

𝐵𝑉 (𝐷, {±1}) and for such magnetizations it can be written as a surface integral

𝐹 (𝜔)(𝑢,𝐷) =

∫︁
𝑆𝑢∩𝐷

𝜑(𝜔;𝑥, 𝜈) dℋ𝑘−1.
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In a second step we turn our attention to the homogenization problem for stationary

thin lattices and prove that in this case the Γ-limit indeed exists and is given by a

spatially homogeneous functional

𝐹hom(𝜔)(𝑢,𝐷) =

∫︁
𝑆𝑢∩𝐷

𝜑hom(𝜔; 𝜈) dℋ𝑘−1

which is deterministic under ergodicity assumptions. We just sketch some of the argu-

ments especially when the proof consists of projecting on the flat space and adapting

the techniques from Chapter 3. Beside the general analysis we again obtain results

about the presence of Dirichlet-type boundary conditions or sharp phase constraints.

While all of these results essentially extend what we already obtained for the full-

dimensional problem, we close Chapter 4 with the analysis of a model for random

deposition of magnetic particles onto a flat substrate which departs from the content

of Chapter 3. Roughly speaking, we build a thin stochastic lattice as follows: for each

time step and each position 𝑧 ∈ Z2, independently with probability 𝑝 ∈ (0, 1) we let

a magnetic particle fall onto 𝑧 and stack them over each other if there was already

a particle at 𝑧 from previous time steps. This model entails fine dependencies of the

surface tension 𝜑hom(𝜈) on the geometry of the thin lattice. While a complete analysis

of this model seems out of reach, we investigate how the surface tension of the limit

continuum model behaves when we let the particles deposit infinitely many times. To

this end we need to prove a weak version of existence of plane-like minimizers as in

[29] for periodic dimension reduction problems which may be of independent interest.

In the third part of the thesis, contained in Chapter 5, we try to leave aside the

static picture and include dynamical effects in order to describe the curvature-driven

motion of magnetic domain walls. In contrast to existing random dynamical schemes

for spin models as for instance Glauber dynamics, we aim at a purely variational

scheme. As in our setting the space of configurations is discrete, we cannot define

a gradient flow. Therefore we use the notation of so-called minimizing movement

schemes, which makes sense even for highly non-smooth energies. We remark that we

prefer to not call this model dynamic as it is build by time-dependent minimization.

In the sense of geometric motions of interfaces, minimizing movements were first in-

troduced by Almgren, Taylor and Wang in 1993 to study curvature-driven flows (see

[8]). In a nutshell it can be described as follows: Given a fixed time step 𝜏 > 0 and

an initial set 𝐴0, one constructs recursively a sequence of sets (𝐴𝜏
𝑘)𝑘 minimizing an
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energy functional of the form

𝐸𝜏 (𝐴,𝐴𝜏
𝑘−1) =

∫︁
ℱ𝐴

𝜙(𝜈(𝑥)) dℋ𝑑−1 +
1

2𝜏

∫︁
𝐴Δ𝐴𝜏

𝑘−1

dist(𝑥, 𝜕𝐴𝜏
𝑘−1) d𝑥, (1.1)

where 𝜈(𝑥) is the normal vector at the point 𝑥 in the reduced boundary ℱ𝐴 (see

Chapter 2 for a precise definition) and 𝜙 is a suitable surface density. The basic

idea behind this approach is the following: While minimizing the perimeter-type

functional shrinks the set, the bulk term forces the boundary of the minimizer to

be close to the boundary of the previous set. Passing to the limit as 𝜏 → 0 for the

piecewise constant interpolations one obtains a time dependent family 𝐴(𝑡) of sets

that evolves by a weighted curvature (depending on 𝜙), provided the initial set 𝐴0

is regular enough and 𝜙 is elliptic and smooth. In the isotropic case one obtains the

well-known motion by mean curvature.

In the recent paper [24] Braides, Gelli and Novaga applied the above minimizing

movement scheme within a deterministic, discrete environment. In this setting the

environment is the scaled two-dimensional lattice 𝜀Z2. The surface term in (1.1) is

replaced by a discrete interfacial energy which, in its simplest form, is derived from

the classical nearest neighbor Ising model and can be written formally as

𝑃𝜀(𝑢) =
1

4

∑︁
𝜀𝑖,𝜀𝑗∈𝜀Z2

|𝑖−𝑗|=1

𝜀|𝑢(𝜀𝑖) − 𝑢(𝜀𝑗)|. (1.2)

Note that the energy in (1.2) takes into account only nearest neighbor interactions.

Therefore it can be interpreted as the perimeter of the set {𝑢 = +1} (hence the

notation 𝑃𝜀). The distance-function in the bulk term in (1.1) is replaced by a discrete

version of the 𝑙∞-distance to the boundary. From a physical point of view this setup

can be seen as a simplified model to describe the motion of the boundaries of level sets

given by spin variables 𝑢 : 𝜀Z2 → {±1}. Those are precisely the magnetic domain

walls at the discrete level. The identification of spin variables and +-level sets can

be used to compare the discrete version with its continuum analogue. Since the

discrete perimeter inherits the anisotropy of the lattice, this minimizing movement

scheme is related to crystalline motions, where 𝜙 is not smooth (see [7, 13, 30] in

the continuum case). We stress that already in [24] the authors observed that the

asymptotic behavior of the discrete flows depends heavily on the scaling between 𝜀, 𝜏

when 𝜀, 𝜏 → 0 simultaneously. The critical scaling is 𝜀 ∼ 𝜏 , where pinning effects due

do discreteness as well as a quantized crystalline motion can occur.

In this thesis we start studying the effect of a random discrete environment on the
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continuum limit flow. Of course the natural approach in the spirit of Chapters 3 and

4 would be to replace the periodic lattice in the definition of 𝑃𝜀 by the random lattice

𝜀ℒ(𝜔) with suitable short-range interactions. This seems to be a very challenging

problem. Thus we start with a much simpler problem and associate very small random

perturbations directly to the periodic lattice model, that means we will study the

minimizing movement of a random discrete perimeter of the form

𝑃 𝜔
𝜀 (𝑢) =

1

4

∑︁
𝜀𝑖,𝜀𝑗∈𝜀Z2

|𝑖−𝑗|=1

𝜀(1 + 𝜀𝑐𝑖𝑗(𝜔))|𝑢(𝜀𝑖) − 𝑢(𝜀𝑗)|.

For the precise assumptions on the random field 𝑐𝑖𝑗 and further discussion we refer

to Chapter 5. Note that in this scaling the random perturbations are very small as

they are scaled by 𝜀. Nevertheless it turns out that they may influence at least the

velocity of the limit motion. The reason why we don’t let the bulk term be affected

by the randomness as well, comes from the physical interpretation we give to this

model as motion of aligned spins and differs from lattice particle models: While the

interaction between particles may be affected by some random noise deriving from

microscopic fluctuations, the energy to flip a spin should be constant, depending only

on how many boundary layers are flipped in one time step. The interpretation of the

bulk term in the energy in this setting is the following: Flipping the first layer of spins

costs the least energy while the following layers are energetically more expensive. Of

course this interpretation makes sense only if one can prove that in presence of ran-

domness sets shrink by flipping spins close to the boundary by a certain number of

layers. This is the case in the deterministic setting considered in [24].

For the sake of simplicity we investigate the evolution when the initial set is a

coordinate rectangle. We prove that under stationarity and quantified mixing assump-

tions as well as a suitable uniform bound on the random field 𝑐𝑖𝑗, the limit motion

law is deterministic and coincides with the quantized crystalline flow obtained in [24].

This however depends strongly on the fact that the random field is stationary with

respect to the translation group on Z2. Later on we show that the velocity changes

if we restrict stationarity to a subgroup of the form 𝑚Z2 with 𝑚 ≥ 2. Anyhow, we

stress that our results should be seen as a stability result of the deterministic prob-

lem rather than an exhaustive description of the possible effects of randomness on the

limit flow. Indeed, randomness can influence the motion drastically. For example, by

the results of Section 3.5, when we replace the square lattice Z2 by a suitable isotropic

stochastic lattice ℒ(𝜔), then, up to a multiplicative constant, the discrete perimeters

Γ-converge to the one-dimensional Hausdorff measure. Thus, with an appropriate
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choice of discrete distance, one should not expect a crystalline motion anymore in

the limit but rather motion by mean curvature, at least if 𝜀 << 𝜏 and the initial

sets 𝐴𝜀,𝜏
0 converge to a smooth set. To highlight possible difficulties even in this very

weak random setting, we provide an example of stationary, ergodic perturbations that

indicate strong non-uniqueness effects dropping the mixing hypothesis. Moreover we

briefly discuss what might happen when we consider random fields 𝑐𝑖𝑗 with a generic

𝐿∞-bound, where partial results are available.
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Chapter 2

Mathematical preliminaries

In this chapter we collect several results from the calculus of variations and probability

theory that we will use in the sequel. Let us start to fix some notation that we will

use throughout this thesis.

For a real number 𝑦 ∈ R, we let ⌊𝑦⌋ be its integer part and ⌈𝑦⌉ := ⌊𝑦⌋ + 1. We

fix the dimension 𝑑 ≥ 2. By | · | we denote the Euclidean norm on R𝑑. If 𝐵 ⊂ R𝑑 is

a Borel set we denote by |𝐵| its Lebesgue measure and by ℋ𝑚(𝐵) its 𝑚-dimensional

Hausdorff measure. We write 𝐵𝛿(𝑥) for the open, euclidean ball around 𝑥 with radius

𝛿. Given an open set 𝐷 ⊂ R𝑑 we denote by 𝒜(𝐷) the family of all bounded open

subsets of 𝐷 and by 𝒜𝑅(𝐷) the family of those sets in 𝒜(𝐷) which have a Lipschitz

boundary. Moreover, we set dimℋ(·) as the Hausdorff dimension and dℋ(𝐴,𝐵) as the

Hausdorff metric between two sets 𝐴,𝐵. The symmetric difference of two sets 𝐴,𝐵

is denoted by 𝐴∆𝐵. Let 𝜈1, . . . , 𝜈𝑑 be a orthonormal basis of R𝑑. We define the cube

𝑄𝜈 = {𝑥 ∈ R𝑑 : |⟨𝑥, 𝜈𝑖⟩| <
1

2
∀𝑖}

and, for 𝑥 ∈ R𝑑, 𝜌 > 0, we set 𝑄𝜈(𝑥, 𝜌) := 𝑥 + 𝜌𝑄𝜈 . As usual, for 1 ≤ 𝑝 < +∞ we

denote by 𝐿𝑝(𝐷) the Lebesgue-spaces of integrable functions while 𝐿∞ denotes the

measurable and essentially bounded functions. Whenever necessary we specify the

co-domain. In the context of probability theory we denote by E[𝑋] the first moment

of a random variable 𝑋. In the proofs 𝐶 > 0 denotes a generic constant that can

change every time it appears.

2.1 Γ-convergence in a nutshell

This section contains a brief overview of the results that are used in this thesis. We

refer to the monographs [18, 32] for an exhaustive treatment of the subject including
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the proofs which we omit. Although Γ-convergence can be defined for functions on

general topological spaces (see [32]), for the sake of simplicity here we define it on a

metric space 𝑋. We consider a sequence of functions 𝐹𝑛 : 𝑋 → R, where R denotes

the extended real line.

Definition 2.1 (Γ-convergence). The sequence 𝐹𝑛 : 𝑋 → R is said to Γ-converge to
𝐹 : 𝑋 → R, if for every 𝑥 ∈ 𝑋 the following two conditions hold:

(i) (lim inf-inequality) For every sequence 𝑥𝑛 → 𝑥 we have

𝐹 (𝑥) ≤ lim inf
𝑛

𝐹𝑛(𝑥𝑛).

(ii) (recovery sequence) There exists a sequence 𝑥𝑛 → 𝑥 with

𝐹 (𝑥) ≥ lim sup
𝑛

𝐹𝑛(𝑥𝑛).

The function 𝐹 is called the Γ-limit of the sequence {𝐹𝑛}𝑛 and we write 𝐹 =

Γ- lim𝑛 𝐹𝑛. Among the many other characterizations of the Γ-limit there is one which

we will use later on.

Lemma 2.2. The following two statements are equivalent:

(i) 𝐹 = Γ-lim𝑛𝐹𝑛,

(ii) 𝐹 (𝑥) = inf{lim inf𝑛 𝐹𝑛(𝑥𝑛) : 𝑥𝑛 → 𝑥} = inf{lim sup𝑛 𝐹𝑛(𝑥𝑛) : 𝑥𝑛 → 𝑥}.

This characterization leads to the definition of the Γ- lim inf and Γ- lim sup. We set

(Γ- lim inf
𝑛

𝐹𝑛)(𝑥) = inf{lim inf
𝑛

𝐹𝑛(𝑥𝑛) : 𝑥𝑛 → 𝑥},

(Γ- lim sup
𝑛

𝐹𝑛)(𝑥) = inf{lim sup
𝑛

𝐹𝑛(𝑥𝑛) : 𝑥𝑛 → 𝑥}.

Note that these two quantities are always well-defined. Moreover we have the following

Urysohn-property (see Proposition 1.44 in [18]).

Lemma 2.3. The sequence 𝐹𝑛 Γ-converges to 𝐹 if and only if every subsequence of
𝐹𝑛 contains a further subsequence that Γ-converges to 𝐹 .

In general, Γ-convergence can’t be used to define a topology. For example, every

constant sequence of functionals Γ-converges to its lower semicontinuous envelope.

Indeed, any Γ-limit is lower semicontinuous as shown by [18, Proposition 1.28]:
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Proposition 2.4. Both the Γ- lim inf𝑛 𝐹𝑛 and the Γ- lim sup𝑛 𝐹𝑛 are lower semicon-
tinuous functions with respect to the convergence in 𝑋.

Another important property of Γ-convergence is its compactness, provided the space

𝑋 is enough regular. The following result can be found in Proposition 1.42 in [18].

Proposition 2.5. Let 𝑋 be a separable metric space and 𝐹𝑛 : 𝑋 → R. Then, up to
subsequences, there exists Γ-lim𝑛𝐹𝑛.

The next theorem is often called the fundamental theorem of Γ-convergence (see also

Theorem 1.21 in [18] for a slightly stronger version). It shows why Γ-convergence is

very useful for studying minimum problems in the calculus of variations. Let us first

introduce the notion of equicoercivity. We remark that the definition slightly varies

in the literature.

Definition 2.6. A sequence 𝐹𝑛 : 𝑋 → R is called equicoercive, if every sequence
{𝑥𝑛} ⊂ 𝑋 with sup𝑛 𝐹𝑛(𝑥𝑛) < +∞ is precompact in 𝑋.

Theorem 2.7. Let 𝐹𝑛 : 𝑋 → R be equicoercive and assume that there exists 𝐹 =

Γ- lim𝑛 𝐹𝑛. Then 𝐹 attains its minimum on 𝑋 and

min
𝑋

𝐹 = lim
𝑛

inf
𝑋

𝐹𝑛.

Moreover, if {𝑥𝑛}𝑛 is a converging sequence such that lim𝑛 𝐹𝑛(𝑥𝑛) = lim𝑛 inf𝑋 𝐹𝑛,
then its limit is a minimizer of 𝐹 .

2.2 Functions of bounded variation

We will embed discrete energy functionals into Lebesgue spaces. However, due to the

surface scaling we will obtain higher regularity for the domain of the limit energy,

namely 𝑢 ∈ 𝐵𝑉 . In this section we give the definition and recall basic facts about

functions of bounded variation. Except when stated otherwise, the following results

can be found in [11]. We assume throughout this section that 𝑂 ⊂ R𝑑 is an open set.

Definition 2.8. A function 𝑢 ∈ 𝐿1(𝑂) is a function of bounded variation, if there
exists a finite vector-valued Radon measure 𝜇 on 𝑂 such that for any 𝜙 ∈ 𝐶∞

𝑐 (𝑂,R𝑑)

it holds ∫︁
𝑂

𝑢 div𝜙 d𝑥 = −
∫︁
𝑂

⟨𝜙, 𝜇⟩.

In this case we write 𝑢 ∈ 𝐵𝑉 (𝑂) and 𝐷𝑢 = 𝜇 is the distributional derivative of
𝑢. A function 𝑢 ∈ 𝐿1(𝑂,R𝑁) belongs to 𝐵𝑉 (𝑂,R𝑁) if every component belongs to
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𝐵𝑉 (𝑂). In this case 𝐷𝑢 denotes the matrix-valued Radon measure consisting of the
distributional derivatives of each component.

The spaces 𝐵𝑉loc(𝑂) and 𝐵𝑉loc(𝑂,R𝑁) are defined as usual. The space 𝐵𝑉 (𝑂,R𝑁)

becomes a Banach space endowed with the norm ‖𝑢‖𝐵𝑉 (𝑂,R𝑁 ) = ‖𝑢‖𝐿1(𝑂,R𝑁 )+|𝐷𝑢|(𝑂),

where |𝐷𝑢| denotes the total variation measure of𝐷𝑢. When 𝑂 is a bounded Lipschitz

domain, then 𝐵𝑉 (𝑂,R𝑁) is compactly embedded in 𝐿1(𝑂,R𝑁). In order to deal with

convergence, we say that a sequence 𝑢𝑛 converges weakly
* to 𝑢 if 𝑢𝑛 → 𝑢 in 𝐿1(𝑂,R𝑁)

and 𝐷𝑢𝑛
*
⇀ 𝐷𝑢 in the sense of measures. We say that 𝑢𝑛 converges strictly to 𝑢 if

𝑢𝑛 → 𝑢 in 𝐿1(𝑂,R𝑁) and |𝐷𝑢𝑛|(𝑂) → |𝐷𝑢|(𝑂). Note that strict convergence implies

weak*-convergence and that for Ω with Lipschitz boundary norm-bounded sequences

in 𝐵𝑉 (𝑂,R𝑁) are compact with respect to weak*-convergence, but not necessarily

with respect to strict convergence.

We say that a Lebesgue-measurable set 𝐸 ⊂ R𝑑 has finite perimeter in 𝑂 if

its characteristic function 1𝐸 belongs to 𝐵𝑉 (𝑂). We say that it has locally finite

perimeter in 𝑂 if 1𝐸 ∈ 𝐵𝑉loc(𝑂). Let 𝑂′ be the largest open set such that 𝐸 has

locally finite perimeter in 𝑂′. The reduced boundary ℱ𝐸 of 𝐸 is defined as

ℱ𝐸 :=

{︂
𝑥 ∈ 𝑂′ ∩ supp|𝐷1𝐸| : 𝜈𝐸(𝑥) = lim

𝜌→0

𝐷1𝐸(𝐵𝜌(𝑥))

|𝐷1𝐸|(𝐵𝜌(𝑥))
exists and |𝜈𝐸(𝑥)| = 1

}︂
.

Then it holds that |𝐷1𝐸| = ℋ𝑑−1 ℱ𝐸 and 𝜈𝐸 can be interpreted as a measure

theoretic inner normal vector (see also Theorem 3.59 in [11]).

Now we state some fine properties of 𝐵𝑉 -functions. To this end, we need some

definitions. A function 𝑢 ∈ 𝐿1(𝑂,R𝑁) is said to have an approximate limit at 𝑥 ∈ 𝑂

whenever there exists 𝑧 ∈ R𝑁 such that

lim
𝜌→0

1

𝜌𝑑

∫︁
𝐵𝜌(𝑥)

|𝑢(𝑦) − 𝑧| d𝑦 = 0.

We remark that the definition of approximate limits varies in the literature. We let

𝑆𝑢 ⊂ 𝑂 be the set, where 𝑢 has no approximate limit. Now we introduce so called

approximate jump points. Given 𝑥 ∈ 𝑂 and 𝜈 ∈ 𝑆𝑑−1 we set⎧⎨⎩𝐵+
𝜌 (𝑥, 𝜈) = {𝑦 ∈ 𝐵𝜌(𝑥) : ⟨𝑦 − 𝑥, 𝜈⟩ > 0},

𝐵−
𝜌 (𝑥, 𝜈) = {𝑦 ∈ 𝐵𝜌(𝑥) : ⟨𝑦 − 𝑥, 𝜈⟩ < 0}.

We say that 𝑥 ∈ 𝑂 is an approximate jump point of 𝑢 if there exist 𝑎 ̸= 𝑏 ∈ R𝑁 and
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𝜈 ∈ 𝑆𝑑−1 such that

lim
𝜌→0

1

𝜌𝑑

∫︁
𝐵+

𝜌 (𝑥,𝜈)

|𝑢(𝑦) − 𝑎| d𝑦 = lim
𝜌→0

1

𝜌𝑑

∫︁
𝐵−

𝜌 (𝑥,𝜈)

|𝑢(𝑦) − 𝑏| d𝑦 = 0.

Note that the triplet (𝑎, 𝑏, 𝜈) is determined uniquely up to the change to (𝑏, 𝑎,−𝜈).

We denote it by (𝑢+(𝑥), 𝑢−(𝑥), 𝜈𝑢(𝑥)). We let 𝐽𝑢 be the set of approximate jump

points of 𝑢. Then the triplet (𝑢+, 𝑢−, 𝜈𝑢) can be chosen as a Borel function on the

Borel set 𝐽𝑢. If 𝑢 ∈ 𝐵𝑉 (𝑂,R𝑁) it can be shown that ℋ𝑑−1(𝑆𝑢∖𝐽𝑢) = 0. Denoting the

density of the absolutely continuous part of 𝐷𝑢 with respect to the Lebesgue measure

by ∇𝑢, we can decompose 𝐷𝑢 as

𝐷𝑢(𝐵) =

∫︁
𝐵

∇𝑢 d𝑥 +

∫︁
𝐽𝑢∩𝐵

(𝑢+(𝑥) − 𝑢−(𝑥)) ⊗ 𝜈𝑢(𝑥) dℋ𝑑−1 + 𝐷𝑐𝑢(𝐵),

where 𝐷𝑐𝑢 is the so-called Cantor part of 𝐷𝑢.

Now we are in a position to give a meaning to traces which we need for proving

Lemma 2.17 below. Given any set 𝐸 of finite perimeter in 𝑂 and 𝑢 ∈ 𝐵𝑉 (𝑂,R𝑁),

then for ℋ𝑑−1-almost every 𝑥 ∈ ℱ𝐸 ∩𝑂 there exist two values 𝑢+
|ℱ𝐸(𝑥) and 𝑢−

|ℱ𝐸(𝑥),

called the inner and outer traces at 𝑥, such that

lim
𝜌→0

1

𝜌𝑑

∫︁
𝐵+

𝜌 (𝑥,𝜈𝐸(𝑥))

|𝑢+
|ℱ𝐸(𝑥) − 𝑢(𝑦)| d𝑦 = lim

𝜌→0

1

𝜌𝑑

∫︁
𝐵−

𝜌 (𝑥,𝜈𝐸(𝑥))

|𝑢−
ℱ𝐸(𝑥) − 𝑢(𝑦)| d𝑦 = 0.

One can show that 𝑢+
|ℱ𝐸(𝑥) = 𝑢−

|ℱ𝐸(𝑥) agree with the approximate limit of 𝑢 at 𝑥 if

𝑥 ∈ (ℱ𝐸 ∩ 𝑂)∖𝑆𝑢 and that (𝑢+
|ℱ𝐸(𝑥), 𝑢−

|ℱ𝐸(𝑥)) ∈ {(𝑢+(𝑥), 𝑢−(𝑥)), (𝑢−(𝑥), 𝑢+(𝑥))} for

ℋ𝑑−1-almost every 𝑥 ∈ ℱ𝐸 ∩ 𝐽𝑢. While the first fact is easy to verify, the second one

uses that 𝜈𝐸(𝑥) = ±𝜈𝑢(𝑥) for ℋ𝑑−1-almost every 𝑥 ∈ ℱ𝐸 ∩ 𝐽𝑢.

From now on we assume that 𝑂 is a bounded open set. Given a finite set

ℳ = {𝑚1, . . . ,𝑚𝑞} ⊂ R𝑁 we define 𝐵𝑉 (𝑂,ℳ) as the space of those functions

𝑢 ∈ 𝐵𝑉 (𝑂,R𝑁) such that 𝑢(𝑥) ∈ ℳ almost everywhere. As an immediate conse-

quence of the coarea formula applied to each component of 𝑢, it follows that all level

sets 𝐸𝑖 := {𝑢 = 𝑚𝑖} have finite perimeter in 𝑂. Moreover, the total variation and

the surface measure of 𝑆𝑢 are given by

|𝐷𝑢| =
1

2

𝑞∑︁
𝑖=1

∑︁
𝑗 ̸=𝑖

|𝑚𝑖 −𝑚𝑗|ℋ𝑑−1(ℱ𝐸𝑖 ∩ ℱ𝐸𝑗 ∩𝑂),

ℋ𝑑−1(𝑆𝑢) =
1

2

𝑞∑︁
𝑖=1

ℋ𝑑−1(ℱ𝐸𝑖 ∩𝑂) =
1

2

𝑞∑︁
𝑖=1

|𝐷1𝐸𝑖
|.
.
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Remark 2.9. As the total variation is lower semicontinuous with respect to 𝐿1(𝑂)-

convergence, we deduce that the functional 𝐵𝑉 (𝑂,ℳ) ∋ 𝑢 ↦→ ℋ𝑑−1(𝑆𝑢) is lower

semicontinuous with respect to convergence in 𝐿1(𝑂), too.

In the main part of the thesis we will use a compactness result for BV-functions

taking values in a finite set. Theorem 4.25 in [11] states a more general version valid

only for Lipschitz domains, but in our setting it holds for any open set by interior

approximation with Lipschitz domains.

Theorem 2.10. Let 𝑂 ⊂ R𝑑 be open and let 𝑢𝑘 ∈ 𝐵𝑉 (𝑂,ℳ) be such that

sup
𝑘

ℋ𝑑−1(𝑆𝑢𝑘
) < +∞.

Then there exists a subsequence 𝑢𝑘 (not relabeled) and 𝑢 ∈ 𝐵𝑉 (𝑂,ℳ) such that
𝑢𝑘 → 𝑢 strongly in 𝐿1(𝑂).

On the other hand we need some density results for more regular functions in order to

use approximation arguments. We found that strict convergence is often not enough

to ensure the continuity properties we look for. For example, when 𝑢𝑛 → 𝑢 strictly

in 𝐵𝑉 (𝑂,ℳ) then in general we cannot conclude that ℋ𝑑−1(𝑆𝑢𝑛) → ℋ𝑑−1(𝑆𝑢). In

contrast the last property will be enough for our approximation purposes. The class

defined below will be our prototypical class for approximations.

Definition 2.11. A 𝑑-dimensional polyhedral set in R𝑑 is a bounded open set 𝐸 ⊂ R𝑑

with Lipschitz boundary such that its boundary is contained in the union of finitely
many affine hyperplanes. A function 𝑢 ∈ 𝐵𝑉 (𝑂,ℳ) is called a polyhedral function
if 𝑢 =

∑︀𝑞
𝑖=1𝑚𝑖1𝐸𝑖

with pairwise disjoint sets 𝐸𝑖 and each of them is a 𝑑-dimensional
polyhedral set in R𝑑.

The following density result (more precisely a slightly different version, but the proof

contains it) is proven in [12, Lemma 3.1].

Theorem 2.12. Let 𝑢 ∈ 𝐵𝑉 (𝑂,ℳ). Then there exists a sequence 𝑢𝑛 ∈ 𝐵𝑉 (𝑂,ℳ)

of polyhedral functions such that 𝑢𝑛 → 𝑢 in 𝐿1(𝑂) and ℋ𝑑−1(𝑆𝑢𝑛) → ℋ𝑑−1(𝑆𝑢).
Moreover one can assume that ℋ𝑑−1(𝑆𝑢𝑛 ∩ 𝜕𝑂) = 0.

A more general approximation result can be found in the recent paper [22]. As a

consequence of Lemma 2.14 the above convergence implies strict convergence.

Another important tool for the proofs contained in this thesis will be the following

integral representation theorem proven in [16].
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Theorem 2.13. Let ℱ : 𝐵𝑉 (𝑂,ℳ) × 𝒜(𝑂) → [0,+∞) satisfy for every (𝑢,𝐴) ∈
𝐵𝑉 (𝑂,ℳ) ×𝒜(𝑂) the following hypotheses:

(i) ℱ(𝑢, ·) is the restriction to 𝒜(𝑂) of a Radon measure;

(ii) ℱ(𝑢,𝐴) = ℱ(𝑣, 𝐴) whenever 𝑢 = 𝑣 almost everywhere on 𝐴 ∈ 𝒜(𝑂);

(iii) ℱ(·, 𝐴) is 𝐿1(𝑂)-lower semicontinuous;

(iv) there exists 𝑐 > 0 such that

1

𝑐
ℋ𝑑−1(𝑆𝑢 ∩ 𝐴) ≤ ℱ(𝑢,𝐴) ≤ 𝑐ℋ𝑑−1(𝑆𝑢 ∩ 𝐴).

Then for every 𝑢 ∈ 𝐵𝑉 (𝑂,ℳ) and 𝐴 ∈ 𝒜(𝑂)

ℱ(𝑢,𝐴) =

∫︁
𝑆𝑢∩𝐴

𝑔(𝑥, 𝑢+, 𝑢−, 𝜈𝑢) dℋ𝑑−1,

with
𝑔(𝑥0, 𝑎, 𝑏, 𝜈) = lim sup

𝜌→0

𝑚(𝑢𝑥0,𝑎,𝑏,𝜈 , 𝑄𝜈(𝑥0, 𝜌))

𝜌𝑑−1
,

where

𝑢𝑥0,𝑎,𝑏,𝜈(𝑥) :=

⎧⎨⎩𝑎 if ⟨𝑥− 𝑥0, 𝜈⟩ > 0,

𝑏 otherwise,

and for any (𝑣, 𝐴) ∈ 𝐵𝑉 (𝑂,ℳ) ×𝒜(𝑂) we set

𝑚(𝑣,𝐴) = inf{ℱ(𝑤,𝐴) : 𝑤 ∈ 𝐵𝑉 (𝐴,ℳ), 𝑤 = 𝑣 in a neighborhood of 𝜕𝐴}.

We close this section with several approximation theorems for sets and a new continu-

ity result for functionals defined on partitions. For the proof we use minimal liftings

in 𝐵𝑉 as in [46] (see also [39]).

Lemma 2.14. Let 𝑢𝑛, 𝑢 ∈ 𝐵𝑉 (𝑂,ℳ) be such that 𝑢𝑛 → 𝑢 in 𝐿1(𝑂) and such that
ℋ𝑑−1(𝑆𝑢𝑛) → ℋ𝑑−1(𝑆𝑢) and let 𝑔 be bounded and continuous on 𝑂 × ℳ2 × 𝑆𝑑−1.
Then

lim
𝑛

∫︁
𝑆𝑢𝑛∩𝑂

𝑔(𝑥, 𝑢+
𝑛 , 𝑢

−
𝑛 , 𝜈𝑢𝑛) dℋ𝑑−1 =

∫︁
𝑆𝑢∩𝑂

𝑔(𝑥, 𝑢+, 𝑢−, 𝜈𝑢) dℋ𝑑−1.

Proof. To reduce notation, we set 𝐹 (𝑢) =
∫︀
𝑆𝑢∩𝑂 𝑔(𝑥, 𝑢+, 𝑢−, 𝜈𝑢). We will just prove

upper semicontinuity. The general result then follows applying upper semicontinuity
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to the functional −𝐹 . Moreover, by adding a constant which is compatible due to

our assumptions we can assume that 𝑔 ≥ 0. For an arbitrary 𝑣 ∈ 𝐵𝑉 (𝑂,ℳ) we

define for |𝐷𝑣|-almost every 𝑥 ∈ 𝑂 the vector measure 𝜆𝑥 via its action on functions

𝜙 ∈ 𝐶0(R𝑁) by∫︁
R𝑁

𝜙(𝑦) d𝜆𝑥(𝑦) =
d𝐷𝑣

d|𝐷𝑣|
(𝑥)

∫︁ 1

0

𝜙(𝜃𝑣+(𝑥) + (1 − 𝜃)𝑣−(𝑥)) d𝜃.

This is well-defined although 𝑣+ and 𝑣− are unique only up to permutation. To reduce

notation, we write 𝑣𝜃 = 𝜃𝑣+ + (1 − 𝜃)𝑣−. Since 𝑣+, 𝑣− are |𝐷𝑣|-measurable, using

Fubini’s theorem one can show that for any 𝜙 ∈ 𝐶0(𝑂 × R𝑁) the mapping

𝑥 ↦→
∫︁
R𝑁

𝜙(𝑥, 𝑦) d𝜆𝑥(𝑦)

is |𝐷𝑣|-measurable and essentially bounded. Hence we can define the generalized

product 𝜇[𝑣] = |𝐷𝑣| ⊗ 𝜆𝑥 again by its action on 𝐶0(𝑂 × R𝑁) setting∫︁
𝑂×R𝑁

𝜙(𝑥, 𝑦) d𝜇[𝑣](𝑥, 𝑦) =

∫︁
𝑂

∫︁
R𝑁

𝜙(𝑥, 𝑦) d𝜆𝑥(𝑦) d|𝐷𝑣|(𝑥);

see also Definition 2.27 in [11]. We next claim that up to a negligible set it holds that

d𝜇[𝑣]

d|𝜇[𝑣]|
(𝑥, 𝑦) =

d𝐷𝑣

d|𝐷𝑣|
(𝑥). (2.1)

Indeed, Corollary 2.29 in [11] yields |𝜇[𝑣]| = |𝐷𝑣| ⊗ |𝜆𝑥|. As the defining formula for

the generalized product extends to integrable functions, we infer that∫︁
𝑂×R𝑁

𝜙(𝑥, 𝑦)
d𝐷𝑣

d|𝐷𝑣|
(𝑥) d|𝜇[𝑣]|(𝑥, 𝑦) =

∫︁
𝑂

∫︁
R𝑁

𝜙(𝑥, 𝑦)
d𝐷𝑣

d|𝐷𝑣|
(𝑥) d|𝜆𝑥|(𝑦) d|𝐷𝑣|(𝑥)

=

∫︁
𝑂

∫︁
R𝑁

𝜙(𝑥, 𝑦) d𝜆𝑥(𝑦) d|𝐷𝑣|(𝑥) =

∫︁
𝑂×R𝑁

𝜙(𝑥, 𝑦) d𝜇[𝑣](𝑥, 𝑦),

where we have used that 𝜆𝑥 = d𝐷𝑣
d|𝐷𝑣|(𝑥)|𝜆𝑥|. Hence (2.1) follows by uniqueness of

the polar decomposition of measures. Because of (2.1) and the generalized product
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structure of |𝜇[𝑣]|, by an approximation argument it holds that∫︁
𝑂×R𝑁

𝑓(𝑥, 𝑦,
d𝜇[𝑣]

d|𝜇[𝑣]|
(𝑥, 𝑦)) d|𝜇[𝑣]|(𝑥, 𝑦) =

∫︁
𝑂

∫︁
RN

𝑓(𝑥, 𝑦,
d𝐷𝑣

d|𝐷𝑣|
(𝑥) d|𝜆𝑥|(𝑦) d|𝐷𝑣|(𝑥)

=

∫︁
𝑂

∫︁ 1

0

𝑓(𝑥, 𝑣𝜃,
d𝐷𝑣

d|𝐷𝑣|
(𝑥)) d𝜃 d|𝐷𝑣|(𝑥)

(2.2)

for every nonnegative function 𝑓 ∈ 𝐶(𝑂 × R𝑁 × 𝑆𝑁×𝑑−1). In [46] it was proven

that if 𝑣𝑛 → 𝑣 strictly in 𝐵𝑉 (𝑂,R𝑁), then 𝜇[𝑣𝑛] → 𝜇[𝑣] weakly* as measures and

|𝜇[𝑣𝑛](𝑂×R𝑁)| → |𝜇[𝑣](𝑂×R𝑁)|. The idea now is to apply the classical Reshetnyak

continuity theorem (see for instance [45, 50]) with an appropriate 𝑓 and a strictly

converging sequence. To this end we transform the set ℳ so that averages of the

jump functions 𝑢± encode the values of the traces and such that the convergence

assumptions yield strict convergence. Recall that 𝑞 = #ℳ. We define the mapping

𝑇 : ℳ → R𝑞 via 𝑇 (𝑚𝑖) = 𝑒𝑖. Next we construct the function 𝑓 . Given 𝑖 < 𝑗 we

consider the set

𝐿𝑖𝑗 = {𝜆𝑇 (𝑚𝑖) + (1 − 𝜆)𝑇 (𝑚𝑗) : 𝜆 ∈ (1/4, 3/4)}.

Observe that by construction of the set 𝑇 (ℳ) it holds 𝐿𝑖𝑗∩𝐿𝑘𝑙 = ∅ whenever {𝑖, 𝑗} ≠

{𝑘, 𝑙}. Given 𝛿 > 0 we next choose a cut-off function 𝜃𝛿𝑖𝑗 : [𝑇 (𝑚𝑖), 𝑇 (𝑚𝑗)] → [0, 1] such

that 𝜃𝛿𝑖𝑗 = 1 on 𝐿𝑖𝑗 and 𝜃𝛿𝑖𝑗(𝑥) = 0 if dist(𝑥, 𝐿𝑖𝑗) ≥ 𝛿. Set 𝑓𝛿 ∈ 𝐶(𝑂×R𝑞 × 𝑆𝑞×𝑑−1) as

any continuous nonnegative extension of the function

𝑓𝛿(𝑥, 𝑢, 𝜉) =
𝜃𝛿𝑖𝑗(𝑢)

√
2ℋ1(𝐿𝑖𝑗)

𝑔(𝑥,𝑚𝑖,𝑚𝑗,
𝜉𝑇 𝑒1
|𝜉𝑇 𝑒1|

)|𝜉𝑇 𝑒1| if 𝑢 ∈ [𝑇 (𝑚𝑖), 𝑇 (𝑚𝑗)].

First observe that this is well-defined due to the ordering 𝑖 < 𝑗 (also in the case

𝜉𝑇 𝑒1 = 0 as 𝑔 is bounded). Moreover, for 𝛿 small enough such an extension exists

by the properties of the cut-off function. Now for any 𝑇 (𝑢) ∈ 𝐵𝑉 (𝑂, 𝑇 (ℳ)), with

a suitable orientation of the normal vector, for |𝐷𝑇 (𝑢)|-almost every 𝑥 ∈ 𝑂 it holds

that

d𝐷𝑇 (𝑢)

d|𝐷𝑇 (𝑢)|
(𝑥) =

1√
2

∑︁
𝑖<𝑗

(𝑇 (𝑚𝑖) − 𝑇 (𝑚𝑗)) ⊗ 𝜈𝑢(𝑥)1ℱ𝐸𝑖∩ℱ𝐸𝑗
(𝑥),

|𝐷𝑇 (𝑢)| =
√

2
∑︁
𝑖<𝑗

ℋ𝑑−1 (ℱ𝐸𝑖 ∩ ℱ𝐸𝑗),
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where 𝐸𝑖 = {𝑢 = 𝑚𝑖}. Therefore we can rewrite with a nonnegative error 𝒪(𝛿)∫︁
𝑂

∫︁ 1

0

𝑓𝛿(𝑥, 𝑇 (𝑢)𝜃,
d𝐷𝑇 (𝑢)

d|𝐷𝑇 (𝑢)|
(𝑥)) d𝜃 d|𝐷𝑇 (𝑢)|(𝑥)

=

∫︁
𝑂

∑︁
𝑖<𝑗

𝑔(𝑥,𝑚𝑖,𝑚𝑗, 𝜈𝑢) dℋ𝑑−1 (ℱ𝐸𝑖 ∩ ℱ𝐸𝑗) + 𝒪(𝛿)ℋ𝑑−1(𝑆𝑢 ∩𝑂)

= 𝐹 (𝑢) + 𝒪(𝛿)ℋ𝑑−1(𝑆𝑢 ∩𝑂).

If 𝑢𝑛, 𝑢 are as in the claim, then 𝑇 (𝑢𝑛) → 𝑇 (𝑢) in 𝐿1(𝑂) and moreover |𝐷𝑇 (𝑢𝑛)| =√
2ℋ𝑑−1(𝑆𝑢𝑛 ∩𝑂) →

√
2ℋ𝑑−1(𝑆𝑢 ∩𝑂) = |𝐷𝑇 (𝑢)|, so that 𝑇 (𝑢𝑛) converges strictly to

𝑇 (𝑢). Hence we conclude from (2.2) and the classical Reshetnyak continuity theorem

applied to the measures 𝜇[𝑇 (𝑢𝑛)], 𝜇[𝑇 (𝑢)] that

lim sup
𝑛

𝐹 (𝑢𝑛) ≤ lim
𝑛

∫︁
𝑂

∫︁ 1

0

𝑓𝛿(𝑥, 𝑇 (𝑢𝑛)𝜃,
d𝐷𝑇 (𝑢𝑛)

d|𝐷𝑇 (𝑢𝑛)|
(𝑥)) d𝜃 d|𝐷𝑇 (𝑢𝑛)|(𝑥)

=

∫︁
𝑂

∫︁ 1

0

𝑓𝛿(𝑥, 𝑇 (𝑢)𝜃,
d𝐷𝑇 (𝑢)

d|𝐷𝑇 (𝑢)|
(𝑥)) d𝜃 d|𝐷𝑇 (𝑢)|(𝑥)

≤ 𝐹 (𝑢) + 𝒪(𝛿)ℋ𝑑−1(𝑆𝑢 ∩𝑂).

The claim follows by the arbitrariness of 𝛿.

The following result on Lipschitz domains can be found in [35].

Theorem 2.15. Let 𝐴 ⊂ R𝑑 be a bounded open set with Lipschitz boundary. Given
𝜂 > 0 let 𝐴𝜂 := {𝑥 ∈ R𝑑 : dist(𝑥,𝐴) < 𝜂}. Then, for 𝜂 small enough, 𝐴𝜂 is again a
Lipschitz domain.

Remark 2.16. Applying Theorem 2.15 to 𝐵𝑅(0)∖𝐴 with 𝑅 large enough, we obtain

the same result for the set 𝐴𝜂 := {𝑥 ∈ 𝐴 : dist(𝑥, 𝜕𝐴) > 𝜂}.

The last approximation result will be useful to treat the convergence of boundary

value problems.

Lemma 2.17. Let 𝐴 ⊂⊂ 𝐵 be both bounded open sets with Lipschitz boundary.
Given 𝑣, 𝑤 ∈ 𝐵𝑉 (𝐴,ℳ) such that ℋ𝑑−1(𝑆𝑤 ∩ 𝜕𝐴) = 0 we set 𝑢 = 1𝐴𝑣 + (1 − 1𝐴)𝑤.
Then there exists a sequence 𝐴𝑛 ⊂⊂ 𝐴 of sets of finite perimeter (not depending on
𝐵) such that 𝑢𝑛 := 1𝐴𝑛𝑣 + (1 − 1𝐴𝑛)𝑤 converges to 𝑢 in 𝐿1(𝐵) and additionally
ℋ𝑑−1(𝑆𝑢𝑛 ∩𝐵) → ℋ𝑑−1(𝑆𝑢 ∩𝐵).

Proof. As in the proof of Lemma 2.14 we make use of the mapping 𝑇 : ℳ → R𝑞

defined by 𝑇 (𝑚𝑖) = 𝑒𝑖. As a special case of Proposition 4.1 in [48], applied to the
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bounded 𝐵𝑉 -function 𝛼 := 𝑇 (𝑤) − 𝑇 (𝑣), for every 𝜀 > 0 we find an open set 𝐴𝜀 of

finite perimeter such that 𝐴𝜀 ⊂⊂ 𝐴, |𝐴∖𝐴𝜀| ≤ 𝜀 and∫︁
ℱ𝐴𝜀

|𝛼+
|ℱ𝐴𝜀

| dℋ𝑑−1 ≤
∫︁
𝜕𝐴

|𝛼+
|ℱ𝐴| dℋ

𝑑−1 + 𝜀. (2.3)

By refining in a trivial way the argument in [48], the sets 𝐴𝜀 can be constructed in a

way that for all 𝛿 > 0 there exists 𝜀0 > 0 such that for all 𝜀 < 𝜀0

{𝑥 ∈ 𝐴 : dist(𝑥, 𝜕𝐴) > 𝛿} ⊂ 𝐴𝜀. (2.4)

We show that the sets 𝐴𝜀 fulfill the required properties. As a first step we claim that

𝑇 (𝑢𝜀) converges strictly to 𝑇 (𝑢). It is easy to see that 𝑇 (𝑢𝜀) converges to 𝑇 (𝑢) in

𝐿1(𝐵). By lower semicontinuity of the total variation it is enough to show that

lim sup
𝜀→0

|𝐷𝑇 (𝑢𝜀)|(𝐵) ≤ |𝐷𝑇 (𝑢)|(𝐵). (2.5)

By definition we have |𝐷𝑇 (𝑢𝜀)|(𝐵∖𝐴) = |𝐷𝑇 (𝑢)|(𝐵∖𝐴), so that we can reduce the

analysis to 𝐴. By Theorem 3.84 in [11] it holds that

𝐷𝑇 (𝑢𝜀) = 𝐷𝑇 (𝑣) 𝐴(1)
𝜀 + 𝐷𝑇 (𝑤) 𝐴(0)

𝜀 + (𝑇 (𝑣)+|ℱ𝐴𝜀
− 𝑇 (𝑤)−|ℱ𝐴𝜀

) ⊗ 𝜈ℋ𝑑−1 ℱ𝐴𝜀,

where in general 𝐴
(𝑡)
𝜀 is defined for 𝑡 ∈ [0, 1] via

𝐴(𝑡)
𝜀 =

{︂
𝑥 ∈ R𝑑 : lim

𝜌→0

|𝐴𝜀 ∩𝐵𝜌(𝑥)|
|𝐵𝜌(𝑥)|

= 𝑡

}︂
.

Since 𝐴𝜀 ⊂⊂ 𝐴 and 𝐴𝜀 is open we infer 𝐴
(1)
𝜀 ⊂ 𝐴 and 𝐴

(0)
𝜀 ⊂ R𝑑∖𝐴𝜀, so that

|𝐷𝑇 (𝑢𝜀)|(𝐴) ≤|𝐷𝑇 (𝑣)|(𝐴) + |𝐷𝑇 (𝑤)|(𝐴∖𝐴𝜀) +

∫︁
ℱ𝐴𝜀

|𝑇 (𝑣)+|ℱ𝐴𝜀
− 𝑇 (𝑤)−|ℱ𝐴𝜀

| dℋ𝑑−1

≤|𝐷𝑇 (𝑣)|(𝐴) + |𝐷𝑇 (𝑤)|(𝐴∖𝐴𝜀) +

∫︁
ℱ𝐴𝜀

|𝑇 (𝑤)+|ℱ𝐴𝜀
− 𝑇 (𝑤)−|ℱ𝐴𝜀

| dℋ𝑑−1

+

∫︁
ℱ𝐴𝜀

|𝑇 (𝑣)+|ℱ𝐴𝜀
− 𝑇 (𝑤)+|ℱ𝐴𝜀

| dℋ𝑑−1.

By assumption on 𝑤 we have ℋ𝑑−1(𝑆𝑤 ∩ 𝜕𝐴) = 0, so that by (2.4) the second and
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the third term vanish when 𝜀 → 0. For the fourth one we use (2.3) and infer

lim sup
𝜀→0

|𝐷𝑇 (𝑢𝜀)|(𝐴) ≤ |𝐷𝑇 (𝑣)|(𝐴) +

∫︁
𝜕𝐴

|𝑇 (𝑣)+|ℱ𝐴 − 𝑇 (𝑤)+|ℱ𝐴| dℋ
𝑑−1

= |𝐷𝑇 (𝑣)|(𝐴) +

∫︁
𝜕𝐴

|𝑇 (𝑣)+|ℱ𝐴 − 𝑇 (𝑤)−|ℱ𝐴| dℋ
𝑑−1

= |𝐷𝑇 (𝑢)|(𝐴),

where we used that inner and outer trace of 𝑇 (𝑤) agree forℋ𝑑−1-almost every 𝑥 ∈ 𝜕𝐴.

By the structure of 𝑇 (ℳ) strict convergence implies that

ℋ𝑑−1(𝑆𝑇 (𝑢𝜀) ∩𝐵) =
1√
2
|𝐷𝑇 (𝑢𝜀)| →

1√
2
|𝐷𝑇 (𝑢)| = ℋ𝑑−1(𝑆𝑇 (𝑢) ∩𝐵).

As for every 𝑢 ∈ 𝐵𝑉 (𝑂,ℳ) it holds that ℋ𝑑−1(𝑆𝑢 ∩ 𝑂) = ℋ𝑑−1(𝑆𝑇 (𝑢) ∩ 𝑂) and

𝐿1-convergence is trivial, we conclude the proof.

2.3 Probabilistic ergodic theory

In this section we provide a short introduction to the probabilistic framework we will

use in this thesis. We denote by the triplet (Ω,ℱ ,P) an arbitrary probability space Ω

with 𝜎-algebra ℱ and probability measure P. We always assume that ℱ is complete.

Definition 2.18. Let 𝑚 ∈ N. We say that a family {𝜏𝑧}𝑧∈Z𝑚 , 𝜏𝑧 : Ω → Ω, is an
additive group action on Ω if

𝜏𝑧1+𝑧2 = 𝜏𝑧2 ∘ 𝜏𝑧1 ∀ 𝑧1, 𝑧2 ∈ Z𝑚.

Such an additive group action is called measure preserving if

P(𝜏𝑧𝐵) = P(𝐵) ∀𝐵 ∈ ℱ , 𝑧 ∈ Z𝑚.

Moreover (𝜏𝑧)𝑧∈Z𝑚 is called ergodic if, in addition, for all 𝐵 ∈ ℱ we have

(𝜏𝑧(𝐵) = 𝐵 ∀ 𝑧 ∈ Z𝑚) ⇒ P(𝐵) ∈ {0, 1}.

For 𝑚 ∈ N we further set ℐ𝑚 = {[𝑎, 𝑏) : 𝑎, 𝑏 ∈ Z𝑚, 𝑎 ̸= 𝑏}, where [𝑎, 𝑏) := {𝑥 ∈ R𝑚 :

𝑎𝑖 ≤ 𝑥𝑖 < 𝑏𝑖 ∀ 𝑖} denotes a 𝑚-dimensional half-open interval. Next we introduce the

notion of regular families and discrete subadditive stochastic processes:
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Definition 2.19. Let {𝐼𝑛}𝑛 ⊂ ℐ𝑚 be a family of sets. Then {𝐼𝑛}𝑛 is called regular if
there exists another family {𝐼 ′

𝑛}𝑛 ⊂ ℐ𝑚 and a constant 𝐶 > 0 such that

(i) 𝐼𝑛 ⊂ 𝐼
′
𝑛 ∀𝑛,

(ii) 𝐼
′
𝑛 ⊂ 𝐼

′
𝑚 whenever 𝑛 < 𝑚,

(iii) 0 < ℋ𝑚(𝐼
′
𝑛) ≤ 𝐶ℋ𝑚(𝐼𝑛) ∀𝑛.

Moreover, if {𝐼 ′
𝑛} can be chosen such that R𝑚 =

⋃︀
𝑛 𝐼

′
𝑛, then we write lim𝑛→∞ 𝐼𝑛 =

R𝑚.

Definition 2.20. A function 𝜇 : ℐ𝑚 → 𝐿1(Ω) is said to be a discrete subadditive
stochastic process if the following properties hold P-almost surely:

(i) for every 𝐼 ∈ ℐ𝑚 and for every finite partition (𝐼𝑗)𝑗∈𝐽 ⊂ ℐ𝑚 of 𝐼 we have

𝜇(𝐼, 𝜔) ≤
∑︁
𝑗∈𝐽

𝜇(𝐼𝑗, 𝜔).

(ii) inf
{︁

1
ℋ𝑚(𝐼)

∫︀
Ω
𝜇(𝐼, 𝑤) dP(𝜔) : 𝐼 ∈ ℐ𝑚

}︁
> −∞.

One of the key ingredients to prove the stochastic homogenization results contained

in this thesis will be the following pointwise ergodic theorem (see Theorem 2.7 in [2]).

Theorem 2.21. Let 𝜇 : ℐ𝑚 → 𝐿1(Ω) be a discrete subadditive stochastic process and
let {𝐼𝑛}𝑛 be a regular family in ℐ𝑚 such that lim𝑛 𝐼𝑛 = R𝑚. If 𝜇 is stationary with
respect to a measure preserving group action (𝜏𝑧)𝑧∈Z𝑚, that means

∀ 𝐼 ∈ ℐ𝑚, ∀ 𝑧 ∈ Z𝑚 : 𝜇(𝐼 + 𝑧, 𝜔) = 𝜇(𝐼, 𝜏𝑧𝜔) almost surely,

then there exists Φ : Ω → R such that, for P-almost every 𝜔,

lim
𝑛→+∞

𝜇(𝐼𝑛, 𝜔)

ℋ𝑚(𝐼𝑛)
= Φ(𝜔).

Another important tool will be the Birkhoff ergodic theorem which is a special

case of Theorem 2.21 for which we can say more about the structure of the limit.

First let us recall the definition of the conditional expectation of a random variable

𝑋 : Ω → R. Let ℱ0 ⊂ ℱ be another 𝜎-algebra. Then (a version of) the conditional

expectation E[𝑋|ℱ0] : Ω → R is any ℱ0-measurable function such that, for all 𝐵 ∈ ℱ0,

it holds ∫︁
𝐵

𝑋 dP =

∫︁
𝐵

E[𝑋|ℱ0] dP.
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Due to the Radon-Nikodym theorem the conditional expectation always exists for

𝑋 ∈ 𝐿1(Ω) and it is unique up to null sets. For further properties we refer to

Theorem 8.14 in [42]. Using the conditional expectation, Birkhoff’s ergodic theorem

(see for instance Theorem 2.3 in [43]) reads as follows:

Theorem 2.22. Let 𝑋 ∈ 𝐿1(Ω) and 𝜏 : Ω → Ω be a measure preserving map.
Denoting by ℱ𝜏 the 𝜎-algebra of 𝜏 -invariant sets, then, P-almost surely, it holds that

lim
𝑛

1

𝑛

𝑛−1∑︁
𝑘=0

𝑋(𝜏 𝑘𝜔) = E[𝑋|ℱ𝜏 ](𝜔).

In Chapter 5 we will need a quantitative version of Birkhoff’s ergodic theorem.

Therefore we need the notion of 𝛼-mixing sequences.

Definition 2.23. Given a sequence of random variables 𝑋𝑗 : Ω → R and a set of
indices 𝐼 ⊂ N we define ℱ𝐼 = 𝜎(𝑋𝑗 : 𝑗 ∈ 𝐼) as the 𝜎-algebra generated by the random
variables (𝑋𝑗)𝑗∈𝐼 . The sequence 𝑋𝑗 is said to be 𝛼-mixing if there exists a sequence
𝛼(𝑛) → 0 such that for all sets 𝐼1, 𝐼2 ⊂ N with dist(𝐼1, 𝐼2) ≥ 𝑛 it holds that

sup{|P(𝐴 ∩𝐵) − P(𝐴)P(𝐵)| : 𝐴 ∈ ℱ𝐼1 , 𝐵 ∈ ℱ𝐼2} ≤ 𝛼(𝑛).

Similar to independent random variables (which are 𝛼-mixing with 𝛼(𝑛) = 0), 𝛼-

mixing allows for quantitative estimates for the error probabilities in the law of large

numbers. We will need the following polynomial decay theorem for bounded 𝛼-mixing

sequences, proved by Berbee in [14].

Theorem 2.24. Let 𝑝 > 1 and 𝑋𝑗 be an 𝛼-mixing sequence of random variables
bounded by 1 such that E[𝑋𝑗] = 0 for all 𝑗. If∑︁

𝑛≥1

𝑛𝑝−2𝛼(𝑛) < +∞,

then, for all 𝛿 > 0, ∑︁
𝑛≥1

𝑛𝑝−2P
(︂

sup
𝑘≥𝑛

|𝑆𝑘/𝑘| > 𝛿

)︂
< +∞,

where 𝑆𝑘 =
∑︀𝑘

𝑗=1𝑋𝑗.
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Chapter 3

Domain formation in magnetic

polymer composites

This chapter slightly differs from the results we published in [5]. To be more precise,

we extend them to spin systems taking finitely many values instead of just ±1. More-

over we include the analysis of phase constraints and finally provide an interpretation

in the spirit of statistical mechanics. What follows can be seen as the starting point

of a rigorous mathematical study of the discrete-to-continuum variational description

of magnetic polymer composites (see Chapter 1), focusing on their magnetic proper-

ties. Our aim is to prove that, modeling the interaction of the magnetic particles via

a classical Potts model (see [54]) on a disordered lattice, their (surface scaled) mi-

croscopic interaction energy leads to the formation of Weiss domains as the average

distance between the particles vanishes. As explained below in this introduction, in

order to tackle this problem we regard it as a stochastic homogenization problem in

the space of functions of bounded variation in R𝑑 where we are able to extend some

of the results obtained in the Sobolev setting in the pioneering paper [33].

The modeling of magnetic polymer composite materials at a small (micro or nano)

scales requires the modeling of two main objects: a polymer matrix containing the

magnetic particles and an interaction energy between those particles (see [53] and

reference therein for a beginner’s guide to this topics).

The polymer matrix The particles embedded in the polymer matrix can be modeled

as a random network having the cross-linked molecules as nodes. As motivated in

the introduction, we will suppose the nodes of the network to satisfy some minimal

geometric assumption uniformly in the randomness. More precisely we will suppose

the set of the nodes of the network to form what we call an admissible stochastic

lattice according to the definition below.
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Definition 3.1. Let ℒ ⊂ R𝑑 be a countable set of points. ℒ is called admissible if

(i) there exists 𝑅 > 0 such that dist(𝑥,ℒ) < 𝑅 for all 𝑥 ∈ R𝑑;

(ii) there exists 𝑟 > 0 such that |𝑥− 𝑦| ≥ 𝑟 for all 𝑥, 𝑦 ∈ ℒ, 𝑥 ̸= 𝑦.

Roughly speaking the assumptions rule out cluster points as well as arbitrary big

holes in the network. Then, given a probability space (Ω,ℱ ,P), a random variable

ℒ : Ω → (R𝑑)N is called an admissible stochastic lattice if ℒ(𝜔) is admissible with

constants 𝑟, 𝑅 uniformly with respect to a set of full probability. Note that our as-

sumptions on the admissibility of a stochastic lattice rule out many point processes

well known in probability theory and are instead motivated by the structural assump-

tions explained in the introduction.

The magnetic energy To every stochastic lattice ℒ(𝜔) we associate a Voronoi

tessellation 𝒱(ℒ(𝜔)). Given this tessellation, we define the set of nearest neighboring

points, namely 𝒩𝒩 (𝜔), as the set of those pairs of points of the stochastic lattice

ℒ(𝜔) which share a (𝑑 − 1)-dimensional edge of the associated Voronoi tessellation.

Let 𝐷 ⊂ R𝑑 be a bounded open set with Lipschitz boundary and 𝜀 > 0 be a small

parameter (the limit 𝜀 → 0 will be referred to as the continuum limit). We assume

that the magnetic state of the particles in 𝐷 is described by a classical spin variable

𝑢 : 𝜀ℒ(𝜔) ∩ 𝐷 → ℳ, where ℳ = {𝑚1, . . . ,𝑚𝑞} ⊂ R𝑁 with 𝑞 ≥ 2. We model the

interactions between the spins via an pairwise interaction energy. The energy model

we consider allows all the particles to interact and may distinguish between short-

range interactions, which are the interactions between the nearest-neighbor particles,

and long-range interactions. The total energy of the system for a given configuration

𝑢 has the form

𝐸𝜀(𝜔)(𝑢,𝐷) =
∑︁

𝜀𝑥,𝜀𝑦∈𝜀ℒ(𝜔)∩𝐷

𝜀𝑑−1𝑔𝜔𝜀 (𝑥, 𝑦, 𝑢(𝜀𝑥), 𝑢(𝜀𝑦)).

The randomness in the interactions 𝑔𝜔𝜀 : R2𝑑 × ℳ2 → [0,+∞) consists in the dis-

tinction between neighboring particles and long-range interactions, that means the

functions are of the type

𝑔𝜔𝜀 (𝑥, 𝑦,𝑚𝑖,𝑚𝑗) =

⎧⎨⎩𝑔𝜀,𝑛𝑛(𝑥, 𝑦,𝑚𝑖,𝑚𝑗) if (𝑥, 𝑦) ∈ 𝒩𝒩 (𝜔),

𝑔𝜀,𝑙𝑟(𝑥, 𝑦,𝑚𝑖,𝑚𝑗) otherwise.

For our analysis we assume that there exist 𝑐 > 0 and a decreasing function 𝐽𝑙𝑟 :
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[0,+∞) → [0,+∞) with ∫︁
R𝑑

𝐽𝑙𝑟(|𝑥|)|𝑥| d𝑥 = 𝐽 < +∞

such that, for all 𝜀 > 0, all 𝑥, 𝑦 ∈ R𝑑 and all 𝑚𝑖,𝑚𝑗 ∈ ℳ

𝑐|𝑚𝑖 −𝑚𝑗| ≤𝑔𝜀,𝑛𝑛(𝑥, 𝑦,𝑚𝑖,𝑚𝑗) ≤ 𝐽𝑙𝑟(|𝑥− 𝑦|)|𝑚𝑖 −𝑚𝑗|,
0 ≤𝑔𝜀,𝑙𝑟(𝑥, 𝑦,𝑚𝑖,𝑚𝑗) ≤ 𝐽𝑙𝑟(|𝑥− 𝑦|)|𝑚𝑖 −𝑚𝑗|.

As the average distance between the nodes of the network 𝜀ℒ(𝜔) is of order 𝜀, the

prefactor 𝜀𝑑−1 in the energy has the meaning of a surface scaling, so that 𝐸𝜀(𝜔)(𝑢) is

the magnetic energy per unit surface of the network 𝜀ℒ(𝜔) ∩ 𝐷 when the magneti-

zation field is 𝑢. Taking into account the assumptions above, the atomic system we

consider is the surface scaling of a ferromagnetic type system with bounded short-

range and summable long-range interactions.

The continuum energy In the limit as 𝜀 tends to 0 the ferromagnetic behavior of

the system will favor the formation of a partition of 𝐷 into random (𝜔-dependent)

Weiss domains described, in the continuum limit, as sets of finite perimeter with

fixed magnetization. The interaction energy between the Weiss domains will depend

on the randomness via the stochasticity of the polymer matrix in which the magnetic

particles are embedded. The issue of the dependence of the macroscopic continuum

energy of the domains on the randomness of the matrix is tackled in the framework

of stochastic homogenization as explained below. In this context, as a byproduct of

our analysis, one could see our main result as a generalization of a recent theorem by

Braides and Piatnitski in [25] (see also Remark 3.20).

We work in the variational framework of Γ-convergence (see Section 2.1). To this end

we identify the field 𝑢 with its piecewise-constant interpolation taking the value 𝑢(𝑥)

on the Voronoi cell centered at 𝑥 and we regard the energies as defined on 𝐿1(𝐷,ℳ).

The Γ-limit is performed in this space. In Theorem 3.10, we prove that, for fixed

𝜔 ∈ Ω, up to subsequences, the family 𝐸𝜀(𝜔) Γ-converges with respect to the 𝐿1(𝐷)-

topology to a continuum energy 𝐸(𝜔) : 𝐿1(𝐷) → [0,+∞] which is finite only on

𝐵𝑉 (𝐷,ℳ) where it takes the form

𝐸(𝜔)(𝑢) =

∫︁
𝑆𝑢∩𝐷

𝜑(𝜔;𝑥, 𝑢+, 𝑢−, 𝜈𝑢) dℋ𝑑−1. (3.1)

For the notation used in (3.1) we refer to Section 2.2. The result is proved via the

39



abstract methods of Gamma-convergence and makes use of the integral representation

results contained in Theorem 2.13. We explore the dependence of the continuum

energy on the randomness induced by the stochastic lattice in Theorem 3.19. Here

we assume that the stochastic lattice is stationary, that is, for all 𝑧 ∈ Z𝑑, ℒ(𝜔) and

ℒ(𝜔) + 𝑧 have the same statistics and that the interactions have a special structure

in the sense that there exist two functions 𝑔𝑛𝑛, 𝑔𝑙𝑟 : R𝑑 ×ℳ2 → [0,+∞) such that

𝑔𝜀,𝑛𝑛(𝑥, 𝑦,𝑚𝑖,𝑚𝑗) = 𝑔𝑛𝑛(𝑦 − 𝑥,𝑚𝑖,𝑚𝑗),

𝑔𝜀,𝑙𝑟(𝑥, 𝑦,𝑚𝑖,𝑚𝑗) = 𝑔𝑙𝑟(𝑦 − 𝑥,𝑚𝑖,𝑚𝑗).
(3.2)

These assumptions, which play the same role as periodicity in the case of a deter-

ministic periodic lattice treated in [6], turn the problem of the characterization of the

continuum limit energy into a stochastic homogenization problem.

In Theorem 3.19 we prove that the functionals 𝐸𝜀(𝜔) Γ-converge with respect to

the 𝐿1(𝐷)-topology to the functional 𝐸hom(𝜔) : 𝐿1(𝐷) → [0,+∞] which is finite on

𝐵𝑉 (𝐷,ℳ) where it takes the form

𝐸hom(𝜔)(𝑢) =

∫︁
𝑆𝑢∩𝐷

𝜑hom(𝜔;𝑢+, 𝑢−, 𝜈𝑢) dℋ𝑑−1.

Here, for P-almost every 𝜔 and for all𝑚𝑖,𝑚𝑗 ∈ ℳ, 𝜈 ∈ 𝑆𝑑−1, the value of the function

𝜑hom(𝜔;𝑚𝑖,𝑚𝑗, 𝜈) is given by an asymptotic homogenization formula. If ℒ is ergodic

the limit energy is deterministic and its energy density 𝜑hom(𝑚𝑖,𝑚𝑗, 𝜈) is obtained by

averaging the previous homogenization formula over the probability space:

𝜑hom(𝑚𝑖,𝑚𝑗, 𝜈) =

∫︁
Ω

𝜑hom(𝜔;𝑚𝑖,𝑚𝑗, 𝜈𝑢) dP(𝜔).

The proof of this result is quite delicate and makes use of two main ingredients: the

abstract methods of Γ-convergence and the subadditive ergodic theorem by Akcoglu

and Krengel in [2]. The combination of these two results in the framework of discrete-

to-continuum limits was one of the key ideas in the proof of the main result in [4]

drawing some ideas from the pioneering paper [33]. It consists in proving that the

sequence of minimum problems characterizing the energy density of the Γ-limit at a

certain point and in a given direction agrees (up to lower order terms) with a sequence

of subadditive stochastic processes for which the main result in [2] applies. It is at

this point that one strongly uses the assumptions on the stationarity of the lattice

together with (3.2). This step of the proof is the most delicate one and cannot be

solved by the same arguments as in the Sobolev case considered in [4]. Instead it re-

quires new arguments and the generalization to higher dimensions of the translation
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invariance of the first passage percolation formula obtained in [25, Proposition 2.10].

A further important issue in the theory of magnetic polymer composite materials

is the dependence of the macroscopic energy on the random geometry of the network.

We consider this problem in Section 3.5 where we remark that if the stochastic lattice,

besides satisfying the previous assumptions, is also isotropic in law, that is to say that

ℒ(𝜔) and 𝑅ℒ(𝜔) have the same statistics for all 𝑅 ∈ 𝑆𝑂(𝑑), and the functions 𝑔𝑛𝑛

and 𝑔𝑙𝑟 are functions of the distances between points, then the limit energy density is

isotropic, which means that 𝜑hom(𝑚𝑖,𝑚𝑗, 𝜈) = 𝜑hom(𝑚𝑖,𝑚𝑗). An example of stochas-

tic lattice sharing this isotropy in law is the random parking process studied from the

point of view of homogenization theory in [38].

This chapter is organized as follows: Section 3.1 is devoted to basic notation, the

definition of the class of energies we consider and to preliminary results regarding our

functional setting. In Section 3.2 we prove a compactness and integral representation

result for our functionals for a fixed realization of the random lattice. In Section 3.3

we prove the main result of this chapter that is the Γ-convergence of random discrete

energies. Section 3.4 deals with the Γ-convergence of the discrete energies in presence

of boundary conditions. Section 3.5 is devoted to applications and generalizations of

the previous results to phase constraints. In the final section we show how the contin-

uum limit energy can be connected to large deviation principles for Gibbs measures

when the temperature vanishes at a certain rate.

3.1 The model and preliminary results

In this section we give a precise definition of the energies we consider and collect some

preliminary results.

To start with, let us introduce the functional-analytic and probabilistic framework.

Definition 3.2. A random variable ℒ : Ω → (R𝑑)N, 𝜔 ↦→ ℒ(𝜔) = {ℒ(𝜔)(𝑖)}𝑖∈N
is called a stochastic lattice. We say that ℒ is admissible if ℒ(𝜔) is admissible in
the sense of Definition 3.1 and the constants 𝑟, 𝑅 can be chosen independent of 𝜔
P-almost surely. The stochastic lattice ℒ is said to be stationary if there exists a
measure preserving group action (𝜏𝑧)𝑧∈Z𝑑 on Ω such that, for P-almost every 𝜔 ∈ Ω,

ℒ(𝜏𝑧𝜔) = ℒ(𝜔) + 𝑧.

If in addition (𝜏𝑧)𝑧∈Z𝑑 is ergodic, then ℒ is called ergodic, too.

Definition 3.3. Let ℒ be a stochastic lattice. We denote by 𝒱(𝜔) the Voronoi tessel-
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lation of R𝑑 associated with ℒ(𝜔), that is 𝒱(𝜔) := {𝒞(𝑥)}𝑥∈ℒ(𝜔), where

𝒞(𝑥) := {𝑧 ∈ R𝑑 : |𝑧 − 𝑥| ≤ |𝑧 − 𝑦| ∀𝑦 ∈ ℒ(𝜔)}.

The next lemma contains all the information on the Voronoi cells that we will need

throughout this thesis. We outline its simple proof for readers’ convenience.

Lemma 3.4. Let ℒ(𝜔) be an admissible set of points with constants 𝑟, 𝑅 as in Def-
inition 3.1. Then there exist constants 𝐶 > 0 depending only on 𝑟, 𝑅 such that, for
all 𝑥 ∈ ℒ,

(i) 𝐵 𝑟
2
(𝑥) ⊂ 𝒞(𝑥) ⊂ 𝐵𝑅(𝑥),

(ii) #{𝑦 ∈ ℒ(𝜔) : 𝒞(𝑥) ∩ 𝒞(𝑦) ̸= ∅} ≤ 𝐶,

(iii) ℋ𝑑−1(𝒞(𝑥) ∩ 𝒞(𝑦)) ≤ 𝐶 ∀𝑦 ∈ ℒ(𝜔)∖{𝑥}.

Proof. (i) For 𝑦 ∈ ℒ(𝜔)∖{𝑥} we have |𝑥 − 𝑦| ≥ 𝑟, which implies |𝑧 − 𝑥| ≤ |𝑧 − 𝑦|
for all 𝑧 ∈ 𝐵 𝑟

2
(𝑥). By definition the first inclusion in (i) holds. Now suppose that

there exists 𝑧 ∈ 𝒞(𝑥) such that |𝑧 − 𝑥| ≥ 𝑅. Since ℒ(𝜔) is admissible, there exists

𝑦 ∈ ℒ(𝜔) such that |𝑧 − 𝑦| < 𝑅. It follows that 𝑅 ≤ |𝑧 − 𝑥| ≤ |𝑧 − 𝑦| < 𝑅, leading to

a contradiction.

(ii) Note that (i) implies that if 𝒞(𝑥) ∩ 𝒞(𝑦) ̸= ∅, then |𝑥 − 𝑦| ≤ 2𝑅. Using an

elementary covering argument it is now easy to see that it suffices to take 𝐶 =(︀
1 + 4𝑅

𝑟

)︀𝑑
.

(iii) By (i) the diameter of the set 𝒞(𝑥)∩𝒞(𝑦) is bounded by 2𝑅 and the set is contained

in a (𝑑− 1)-dimensional affine subspace so that we can take 𝐶 = (2𝑅)𝑑−1𝜔𝑑−1, where

𝜔𝑑−1 is the volume of the unit ball in R𝑑−1.

Let𝐷 ⊂ R𝑑 be a bounded open set with Lipschitz boundary and let ℒ be an admissible

set of points according to Definition 3.1. Making use of the Voronoi tessellation we

introduce the notion of nearest neighbors.

Definition 3.5. The set of nearest neighbors of ℒ(𝜔) is defined by

𝒩𝒩 (𝜔) := {(𝑥, 𝑦) ∈ ℒ(𝜔)2 : dimℋ (𝒞(𝑥) ∩ 𝒞(𝑦)) = 𝑑− 1}.

For technical reasons we will need the following measurability property of the nearest

neighbors relationship.
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Lemma 3.6. Let ℒ be an admissible stochastic lattice. Then for any 𝑖, 𝑗 ∈ N, 𝑖 ̸= 𝑗,
the function

𝜔 ↦→ 𝒩𝑖𝑗(𝜔) :=

⎧⎨⎩1 if (ℒ(𝜔)𝑖,ℒ(𝜔)𝑗) ∈ 𝒩𝒩 (𝜔),

0 otherwise

is ℱ-measurable.

Proof. For 0 < 𝑟 < 𝑅, we denote by Σ𝑟,𝑅 the space of all admissible sets of points

with corresponding constants 𝑟, 𝑅. Since ℱ is a complete 𝜎-algebra, we can assume

that ℒ(𝜔) ∈ Σ𝑟,𝑅 for all 𝜔 ∈ Ω. Given 𝑖, 𝑗 ∈ N, we prove that the set of all ℒ =

(ℒ𝑖)𝑖∈N ∈ Σ𝑟,𝑅 such that ℒ𝑖 and ℒ𝑗 are nearest neighbors is measurable. Note that ℒ𝑖

and ℒ𝑗 are nearest neighbors if and only if

∃𝑥 ∈ R𝑑 : |𝑥− ℒ𝑖| = |𝑥− ℒ𝑗| < |𝑥− ℒ𝑘| ∀𝑘 ̸= 𝑖, 𝑗.

Let us take a countable collection {𝐵𝑛}𝑛 of connected sets that form a basis of the

norm topology in R𝑑. Using the fact that ℒ ∈ Σ𝑟,𝑅 on the one hand and the interme-

diate value theorem on the other hand one can check that the above characterization

is equivalent to

ℒ ∈
⋃︁
𝑛∈N

(︁
{𝑌 ∈ Σ𝑟,𝑅 : sup

𝑣∈𝐵𝑛

|𝑌𝑖 − 𝑣| − |𝑌𝑗 − 𝑣| ≥ 0, inf
𝑣∈𝐵𝑛

|𝑌𝑖 − 𝑣| − |𝑌𝑗 − 𝑣| ≤ 0}

∩
⋂︁

𝑘∈N∖{𝑖,𝑗}

{𝑌 ∈ Σ𝑟,𝑅 : sup
𝑣∈𝐵𝑛

|𝑌𝑖 − 𝑣| − |𝑌𝑘 − 𝑣| < 0}
)︁

The last set is a countable union of product-measurable sets, whence measurable.

The claim follows by measurability of the stochastic lattice.

We are now ready to introduce the most general class of discrete energies we are

going to consider in this chapter. For fixed 𝜀 > 0 and 𝑢 : 𝜀ℒ(𝜔) → ℳ, we set

𝐸𝜀(𝜔)(𝑢) := 𝐸𝜀(𝜔)(𝑢,𝐷),

where for every 𝐴 ∈ 𝒜(R𝑑) we define the localized energy

𝐸𝜀(𝜔)(𝑢,𝐴) =
∑︁

𝜀𝑥,𝜀𝑦∈𝜀ℒ(𝜔)∩𝐴

𝜀𝑑−1𝑔𝜔𝜀 (𝑥, 𝑦, 𝑢(𝜀𝑥), 𝑢(𝜀𝑦)).
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We assume that the functions 𝑔𝜔𝜀 : R2𝑑 ×ℳ2 → [0,+∞) are of the type

𝑔𝜔𝜀 (𝑥, 𝑦,𝑚𝑖,𝑚𝑗) =

⎧⎨⎩𝑔𝜀,𝑛𝑛(𝑥, 𝑦,𝑚𝑖,𝑚𝑗) if (𝑥, 𝑦) ∈ 𝒩𝒩 (𝜔),

𝑔𝜀,𝑙𝑟(𝑥, 𝑦,𝑚𝑖,𝑚𝑗) otherwise

with functions 𝑔𝜀𝑛𝑛, 𝑔
𝜀
𝑙𝑟 : R2𝑑 ×ℳ2 → [0,+∞) fulfilling the following conditions:

Hypothesis 1 There exist 𝑐 > 0 and a decreasing function 𝐽𝑙𝑟 : [0,+∞) → [0,+∞)

with ∫︁
R𝑑

𝐽𝑙𝑟(|𝑥|)|𝑥| d𝑥 = 𝐽 < +∞

such that, for all 𝜀 > 0, all 𝑥, 𝑦 ∈ R𝑑 and all 𝑚𝑖,𝑚𝑗 ∈ ℳ

𝑐|𝑚𝑖 −𝑚𝑗| ≤𝑔𝜀𝑛𝑛(𝑥, 𝑦,𝑚𝑖,𝑚𝑗) ≤ 𝐽𝑙𝑟(|𝑥− 𝑦|)|𝑚𝑖 −𝑚𝑗|,
0 ≤𝑔𝜀𝑙𝑟(𝑥, 𝑦,𝑚𝑖,𝑚𝑗) ≤ 𝐽𝑙𝑟(|𝑥− 𝑦|)|𝑚𝑖 −𝑚𝑗|.

As it is customary in the context of the discrete-to-continuum variational limit,

with the aim of exploiting Γ-convergence, we identify each function 𝑢 : 𝜀ℒ(𝜔) → ℳ
with its constant interpolation on each scaled Voronoi cell. Setting

𝒫𝒞𝜀(𝜔) := {𝑢 : R𝑑 → ℳ : ∀𝒞 ∈ 𝒱(𝜔), 𝑢|𝜀𝒞 is constant} ⊂ 𝐿1(𝐷), (3.3)

we can consider the functionals 𝐸𝜀(𝜔) : 𝐿1(𝐷) → [0,+∞] defined as

𝐸𝜀(𝜔)(𝑢) :=

⎧⎨⎩𝐸𝜀(𝜔)(𝑢,𝐷) if 𝑢 ∈ 𝒫𝒞𝜀(𝜔),

+∞ otherwise.
(3.4)

Since we want to apply the abstract methods of Γ-convergence we also need to define

local versions of the energies 𝐸𝜀(𝜔) and of its Γ- lim inf and Γ- lim sup as 𝜀 → 0.

Definition 3.7. For 𝐴 ∈ 𝒜𝑅(R𝑑), let 𝐸𝜀(𝜔)(·, 𝐴) : 𝐿1(𝐷) → [0,+∞] be defined by

𝐸𝜀(𝜔)(𝑢,𝐴) =

⎧⎨⎩
∑︀

𝜀𝑥,𝜀𝑦∈𝜀ℒ(𝜔)∩𝐴 𝜀𝑑−1𝑔𝜔𝜀 (𝑥, 𝑦, 𝑢(𝜀𝑥), 𝑢(𝜀𝑦)) if 𝑢 ∈ 𝒫𝒞𝜀(𝜔),

+∞ otherwise.
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Furthermore we set

𝐸 ′(𝜔)(𝑢,𝐴) := Γ(𝐿1(𝐷)) − lim inf
𝜀→0

𝐸𝜀(𝜔)(𝑢,𝐴),

𝐸 ′′(𝜔)(𝑢,𝐴) := Γ(𝐿1(𝐷)) − lim sup
𝜀→0

𝐸𝜀(𝜔)(𝑢,𝐴).

Remark 3.8. One can show that if ℒ(𝜔) is admissible, then for 𝐴 ∈ 𝒜𝑅(𝐷) it holds

𝐸 ′(𝜔)(𝑢,𝐴) = Γ(𝐿1(𝐴)) − lim inf
𝜀→0

𝐸𝜀(𝜔)(𝑢,𝐴),

𝐸 ′′(𝜔)(𝑢,𝐴) = Γ(𝐿1(𝐴)) − lim sup
𝜀→0

𝐸𝜀(𝜔)(𝑢,𝐴)

for every 𝑢 ∈ 𝐿1(𝐷). Thus both functionals are also 𝐿1(𝐴)-lower semicontinuous

which implies that they are local in the sense of Theorem 2.13 (ii).

Following some ideas in [4] we introduce an auxiliary deterministic square lattice on

which we will conveniently rewrite the energies 𝐸𝜀. This lattice will turn out to be a

convenient way in order to provide uniform (with respect to the stochastic variable)

estimates on the discrete energies.

Setting 𝑟′ = 𝑟√
𝑑
it follows that for all 𝛼 ∈ 𝑟′Z𝑑 it holds #{ℒ(𝜔)∩{𝛼+[0, 𝑟′)𝑑}} ≤ 1.

We now set

𝒵𝑟′(𝜔) :={𝛼 ∈ 𝑟′Z𝑑 : #
(︀
ℒ(𝜔) ∩ {𝛼 + [0, 𝑟′)𝑑}

)︀
= 1},

𝑥𝛼 :=ℒ(𝜔) ∩ {𝛼 + [0, 𝑟′)𝑑}, 𝛼 ∈ 𝒵𝑟′(𝜔)
(3.5)

and, for 𝜉 ∈ 𝑟′Z𝑑, 𝑈 ⊂ R𝑑 and 𝜀 > 0,

𝑅𝜉
𝜀(𝑈) := {𝛼 : 𝛼, 𝛼 + 𝜉 ∈ 𝒵𝑟′(𝜔), 𝜀𝑥𝛼, 𝜀𝑥𝛼+𝜉 ∈ 𝑈}.

We can then rewrite the localized energy as

𝐸𝜀(𝜔)(𝑢,𝐴) =
∑︁

𝜉∈𝑟′Z𝑑

∑︁
𝛼∈𝑅𝜉

𝜀(𝐴)

𝜀𝑑−1𝑔𝜔𝜀 (𝑥𝛼, 𝑥𝛼+𝜉, 𝑢(𝜀𝑥𝛼), 𝑢(𝜀𝑥𝛼+𝜉)).

Remark 3.9. The monotonicity of the function 𝐽𝑙𝑟 in Hypothesis 1 allows to transfer

the decay properties to the discrete environment as follows: For every 𝛿 > 0 there

exists 𝐿𝛿 such that ∑︁
|𝜉|>𝐿𝛿

𝐽𝑙𝑟(|𝜉|)|𝜉| ≤ 𝛿,

where 𝜉 ∈ 𝜉 + [−𝑟′, 𝑟′]𝑑 is such that |𝜉| = dist([0, 𝑟′)𝑑, [0, 𝑟′)𝑑 + 𝜉). Note that with this

definition it holds that 𝐽𝑙𝑟(|𝑥𝛼 − 𝑥𝛼+𝜉|) ≤ 𝐽𝑙𝑟(|𝜉|).
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3.2 Integral representation

We want to make use of Theorem 2.13 to identify the structure of possible Γ-limits.

The following theorem is the main result of this section.

Theorem 3.10. Let ℒ(𝜔) be admissible and assume Hypothesis 1. For every sequence
𝜀 → 0+ there exists a subsequence 𝜀𝑛 such that the functionals 𝐸𝜀𝑛(𝜔) defined in (3.4)

Γ-converge with respect to the strong 𝐿1(𝐷)-topology to a functional 𝐸(𝜔) : 𝐿1(𝐷) →
[0,+∞] of the form

𝐸(𝜔)(𝑢) =

⎧⎨⎩
∫︀
𝑆𝑢

𝜑(𝜔;𝑥, 𝑢+, 𝑢−, 𝜈𝑢) dℋ𝑑−1 if 𝑢 ∈ 𝐵𝑉 (𝐷,ℳ),

+∞ otherwise.

Moreover a local version of the statement above holds: For all 𝑢 ∈ 𝐵𝑉 (𝐷,ℳ) and
all 𝐴 ∈ 𝒜𝑅(𝐷)

Γ- lim
𝑛

𝐸𝜀𝑛(𝜔)(𝑢,𝐴) =

∫︁
𝑆𝑢∩𝐴

𝜑(𝜔;𝑥, 𝑢+, 𝑢−, 𝜈𝑢) dℋ𝑑−1.

Note that no stationarity is needed for the above result. The proof of Theorem

3.10 will be given later. At first we prove several propositions that allow us to apply

Theorem 2.13. The next two propositions ensure that the limit energy is finite only

for 𝑢 ∈ 𝐵𝑉 (𝐷,ℳ).

Proposition 3.11. Let ℒ(𝜔) be admissible and assume Hypothesis 1. If 𝐴 ∈ 𝒜(𝐷)

and 𝑢 ∈ 𝐿1(𝐷) are such that 𝐸 ′(𝜔)(𝑢,𝐴) < +∞, then 𝑢 ∈ 𝐵𝑉 (𝐴,ℳ) and

𝐸 ′(𝜔)(𝑢,𝐴) ≥ 𝑐ℋ𝑑−1(𝑆𝑢 ∩ 𝐴)

for some positive deterministic constant 𝑐 independent of 𝐴 and 𝑢.

Proof. Let 𝒫𝒞𝜀(𝜔) ∋ 𝑢𝜀 → 𝑢 in 𝐿1(𝐷) be such that lim inf𝜀→0𝐸𝜀(𝜔)(𝑢𝜀, 𝐴) < +∞.

Given 𝜂 > 0, we set 𝐴𝜂 = {𝑥 ∈ 𝐴 : dist(𝑥, 𝜕𝐴) > 𝜂}. Note that, for 𝜀 small enough,

𝑆𝑢𝜀 ∩ 𝐴𝜂 ⊂
⋃︁

(𝑥,𝑦)∈𝒩𝒩 (𝜔)
𝜀𝑥,𝜀𝑦∈𝐴

𝑢𝜀(𝜀𝑥) ̸=𝑢𝜀(𝜀𝑦)

𝜀 (𝒞(𝑥) ∩ 𝒞(𝑦)) ,

so that, by Lemma 3.4 and Hypothesis 1, we have the estimate

ℋ𝑑−1(𝑆𝑢𝜀 ∩ 𝐴𝜂) ≤ 𝐶
∑︁

(𝑥,𝑦)∈𝒩𝒩 (𝜔)
𝜀𝑥,𝜀𝑦∈𝐴

𝜀𝑑−1𝑔𝜀,𝑛𝑛(𝑥, 𝑦, 𝑢(𝜀𝑥), 𝑢(𝜀𝑦)) ≤ 𝐶𝐸𝜀(𝜔)(𝑢𝜀, 𝐴).
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Theorem 2.10 now implies that 𝑢 ∈ 𝐵𝑉 (𝐴𝜂,ℳ) and, since the bound on the measure

of the jump set is uniform in 𝜂, we conclude that 𝑢 ∈ 𝐵𝑉 (𝐴,ℳ). For 𝜀 → 0 we get

𝐸 ′(𝜔)(𝑢,𝐴) ≥ 𝑐ℋ𝑑−1(𝑆𝑢 ∩ 𝐴𝜂) by lower semicontinuity (see Remark 2.9). Letting

𝜂 → 0 yields the claim.

Before we derive the necessary upper bound for Theorem 2.13, we prove an auxiliary

lemma that asserts that on convex domains we can essentially control the long-range

interactions by considering only neighboring particles.

Lemma 3.12. Let ℒ(𝜔) be admissible and let 𝐾 ⊂ 𝒜(R𝑑) be convex. Set 𝐾3𝑅𝜀 =

{𝑥 ∈ R𝑑 : dist(𝑥,𝐾) < 3𝑅𝜀}. Then there exists a constant 𝐶 depending only on 𝑟, 𝑅

in Definition 3.1 such that for every 𝜉 ∈ 𝑟′Z𝑑 and every 𝑢 ∈ 𝒫𝒞𝜀(𝜔) it holds∑︁
𝛼∈𝑅𝜉

𝜀(𝐾)

𝑔𝜔𝜀 (𝑥𝛼, 𝑥𝛼+𝜉, 𝑢(𝜀𝑥𝛼), 𝑢(𝜀𝑥𝛼+𝜉)) ≤ 𝐶𝐽𝑙𝑟(|𝜉|)|𝜉|
∑︁

(𝑥,𝑦)∈𝒩𝒩 (𝜔)

𝜀𝑥,𝜀𝑦∈𝐾3𝑅𝜀

𝑔𝜔𝜀 (𝑥, 𝑦, 𝑢(𝜀𝑥), 𝑢(𝜀𝑦)),

where 𝜉 is defined in Remark 3.9.

Proof. Let 𝛼 ∈ 𝑅𝜉
𝜀(𝐾). Given 𝛿 > 0, let us consider the collection of rays

𝒢𝛿(𝑥𝛼, 𝑥𝛼+𝜉) = {𝑥′ + 𝜆(𝑥𝛼+𝜉 − 𝑥𝛼) : 𝜆 ∈ [0, 1], 𝑥′ ∈ 𝐵𝛿(𝑥𝛼)}. (3.6)

By dimensional arguments there exists at least one ray 𝑔𝛼,𝜉 ⊂ 𝒢𝛿(𝑥𝛼, 𝑥𝛼+𝜉) that passes

only through neighboring Voronoi cells. Consider then the set 𝑃𝛼,𝜉 = {𝑥 ∈ ℒ(𝜔) :

𝑔𝛼,𝜉 ∩ 𝒞(𝑥) ̸= ∅}. By construction, choosing 𝛿 small enough we can number it as

𝑃𝛼,𝜉 = {𝑥𝛼 = 𝑥0, . . . , 𝑥𝑁 = 𝑥𝛼+𝜉} such that (𝑥𝑖, 𝑥𝑖+1) ∈ 𝒩𝒩 (𝜔). Moreover, from

convexity of 𝐾 and Lemma 3.4 it follows that 𝑃𝛼,𝜉 ⊂ 1
𝜀
𝐾3𝑅𝜀 again for 𝛿 small enough.

As ℳ is finite, by the bounds of Hypothesis 1 and the triangle inequality it holds

𝑔𝜔𝜀 (𝑥𝛼, 𝑥𝛼+𝜉, 𝑢(𝜀𝑥𝛼), 𝑢(𝜀𝑥𝛼+𝜉)) ≤ 𝐽𝑙𝑟(|𝜉|)|𝑢(𝜀𝑥𝛼) − 𝑢(𝜀𝑥𝛼+𝜉)|

≤ 𝐽𝑙𝑟(|𝜉|)
∑︁

(𝑥,𝑦)∈𝒩𝒩 (𝜔)

𝑥,𝑦∈ 1
𝜀
𝐾3𝑅𝜀∩𝑃𝛼,𝜉

|𝑢(𝜀𝑥) − 𝑢(𝜀𝑦)|

≤ 𝐽𝑙𝑟(|𝜉|)
∑︁

(𝑥,𝑦)∈𝒩𝒩 (𝜔)

𝑥,𝑦∈ 1
𝜀
𝐾3𝑅𝜀∩𝑃𝛼,𝜉

𝑔𝜔𝜀 (𝑥, 𝑦, 𝑢(𝜀𝑥), 𝑢(𝜀𝑦)). (3.7)

Now given (𝑥, 𝑦) ∈ 𝒩𝒩 (𝜔) ∩ 1
𝜀
𝐾3𝑅𝜀 we set

𝐺𝜉
𝜀(𝑥, 𝑦) = {𝛼 ∈ 𝑅𝜉

𝜀(𝐾) : {𝑥, 𝑦} ∩ 𝑃𝛼,𝜉 ̸= ∅}.
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Note that if 𝛼 ∈ 𝐺𝜉
𝜀(𝑥, 𝑦), by the construction of 𝑃𝛼,𝜉 and Lemma 3.4 there exists

𝐶 > 0 such that

𝑥𝛼 ∈ {𝑧 + 𝑡𝜉 : |𝑧 − 𝑥| ≤ 𝐶, |𝑡| ≤ 𝐶}

and therefore #𝐺𝜉
𝜀(𝑥, 𝑦) ≤ 𝐶|𝜉| again by Lemma 3.4. The claim now follows by

summing (3.7) over all 𝛼 ∈ 𝑅𝜉
𝜀(𝐾).

Remark 3.13. Lemma 3.12 remains valid on non-convex domains if one replaces

𝐾2𝑅𝜀 by 𝐾(|𝜉|+7𝑅)𝜀 as the constructed path is contained in this set.

Proposition 3.14. Let ℒ(𝜔) be admissible and assume Hypothesis 1. Then there
exists a deterministic constant 𝐶 > 0 such that for all 𝑢 ∈ 𝐵𝑉 (𝐷,ℳ) and 𝐴 ∈
𝒜𝑅(𝐷),

𝐸 ′′(𝜔)(𝑢,𝐴) ≤ 𝐶ℋ𝑑−1(𝑆𝑢 ∩ 𝐴).

Proof. For the time being we assume that 𝑢|𝐴 ∈ 𝐵𝑉 (𝐴,ℳ) is a polyhedral function in

the sense of Definition 2.11 and such that ℋ𝑑−1(𝑆𝑢∩𝜕𝐴) = 0. We define 𝑢𝜀 ∈ 𝒫𝒞𝜀(𝜔)

by its values on 𝜀ℒ(𝜔) via 𝑢𝜀(𝜀𝑥) = 𝑢(𝜀𝑥). Then, due to Lemma 3.4 we have 𝑢𝜀 → 𝑢|𝐴

in 𝐿1(𝐴). Given 𝛿 > 0, we choose 𝐿𝛿 > 0 as in Remark 3.9. For fixed 𝜂 > 0 we set

again 𝐴𝜂 = 𝐴+𝐵𝜂(0). Now for all 𝜉 ∈ 𝑟′Z𝑑 such that |𝜉| ≤ 𝐿𝛿 we apply Lemma 3.12

and Remark 3.13 and deduce that for 𝜀 small enough we have∑︁
𝛼∈𝑅𝜉

𝜀(𝐴)

𝑔𝜔𝜀 (𝑥𝛼, 𝑥𝛼+𝜉, 𝑢𝜀(𝑥𝛼), 𝑢(𝜀𝑥𝛼+𝜉)) ≤ 𝐶𝐽𝑙𝑟(|𝜉|)|𝜉|
∑︁

(𝑥,𝑦)∈𝒩𝒩 (𝜔)
𝜀𝑥,𝜀𝑦∈𝐴𝜂

𝑔𝜔𝜀 (𝑥, 𝑦, 𝑢𝜀(𝑥), 𝑢𝜀(𝑦)).

Let us observe that Hypothesis 1 and Lemma 3.4 further imply that if (𝑥, 𝑦) ∈
𝒩𝒩 (𝜔), then 𝑔𝜔𝜀 (𝑥, 𝑦,𝑚𝑖,𝑚𝑗) ≤ 𝐶|𝑚𝑖 − 𝑚𝑗|. Hence for 𝜀 small enough the regu-

larity of 𝑆𝑢 and the integrability assumption from Hypothesis 1 yield∑︁
|𝜉|≤𝐿𝛿

∑︁
𝛼∈𝑅𝜉

𝜀(𝐴)

𝜀𝑑−1𝑔𝜔𝜀 (𝑥𝛼, 𝑥𝛼+𝜉, 𝑢𝜀(𝑥𝛼), 𝑢(𝜀𝑥𝛼+𝜉)) ≤ 𝐶
∑︁

(𝑥,𝑦)∈𝒩𝒩 (𝜔)
𝜀𝑥,𝜀𝑦∈𝐴𝜂

𝜀𝑑−1|𝑢(𝜀𝑥) − 𝑢(𝜀𝑦)|

≤ 𝐶ℋ𝑑−1(𝑆𝑢 ∩ 𝐴𝜂). (3.8)

For interactions where |𝜉| > 𝐿𝛿 we use again Lemma 3.12 on a large cube containing

𝐴 and that 𝑢 is a polyhedral function so that we obtain the weaker bound∑︁
|𝜉|>𝐿𝛿

∑︁
𝛼∈𝑅𝜉

𝜀(𝐴)

𝜀𝑑−1𝑔𝜔𝜀 (𝑥𝛼, 𝑥𝛼+𝜉, 𝑢(𝜀𝑥𝛼), 𝑢(𝜀𝑥𝛼+𝜉)) ≤ 𝐶
∑︁
|𝜉|>𝐿𝛿

𝐽𝑙𝑟(|𝜉|)|𝜉| ℋ𝑑−1(𝑆𝑢).
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Using (3.8) and the previous inequality, Remark 3.8 and the definition of 𝐿𝛿 imply

𝐸 ′′(𝜔)(𝑢,𝐴) ≤ 𝐶ℋ𝑑−1(𝑆𝑢 ∩ 𝐴𝜂) + 𝐶ℋ𝑑−1(𝑆𝑢) 𝛿.

Now the arbitrariness of 𝛿 and 𝜂 yield

𝐸 ′′(𝜔)(𝑢,𝐴) ≤ 𝐶ℋ𝑑−1(𝑆𝑢 ∩ 𝐴). (3.9)

where we have used that ℋ𝑑−1(𝑆𝑢 ∩ 𝜕𝐴) = 0 by assumption.

For a general function 𝑢 ∈ 𝐵𝑉 (𝐷,ℳ) let us consider 𝑢|𝐴 ∈ 𝐵𝑉 (𝐴,ℳ). By

Theorem 2.12 there exists a sequence of polyhedral functions 𝑢𝑛 ∈ 𝐵𝑉 (𝐴,ℳ) such

that 𝑢𝑛 → 𝑢|𝐴 in 𝐿1(𝐴), ℋ𝑑−1(𝑆𝑢𝑛 ∩ 𝐴) → ℋ𝑑−1(𝑆𝑢 ∩ 𝐴) and ℋ𝑑−1(𝑆𝑢𝑛 ∩ 𝜕𝐴) = 0.

Then 𝑢𝑛 satisfies the assumptions of the first part of the proof. By the 𝐿1(𝐴)-lower

semicontinuity of the Γ-lim sup and (3.9) it follows that

𝐸 ′′(𝜔)(𝑢,𝐴) ≤ 𝐶 lim inf
𝑛

ℋ𝑑−1(𝑆𝑢𝑛 ∩ 𝐴) = 𝐶ℋ𝑑−1(𝑆𝑢 ∩ 𝐴).

Now we prove a weak subadditivity property for 𝐸 ′′(𝜔)(𝑢, ·).

Proposition 3.15. Let ℒ(𝜔) be admissible and assume Hypothesis 1. Then, for every
𝐴,𝐵 ∈ 𝒜𝑅(𝐷), every 𝐴′ ⊂ 𝒜𝑅(𝐷) such that 𝐴′ ⊂⊂ 𝐴 and every 𝑢 ∈ 𝐵𝑉 (𝐷,ℳ),

𝐸 ′′(𝜔)(𝑢,𝐴′ ∪𝐵) ≤ 𝐸 ′′(𝜔)(𝑢,𝐴) + 𝐸 ′′(𝜔)(𝑢,𝐵).

Proof. Without loss of generality let 𝐸 ′′(𝜔)(𝑢,𝐴) and 𝐸 ′′(𝜔)(𝑢,𝐵) be finite. Let

𝑢𝜀, 𝑣𝜀 ∈ 𝒫𝒞𝜀(𝜔) both converge to 𝑢 in 𝐿1(𝐷) such that

lim sup
𝜀→0

𝐸𝜀(𝜔)(𝑢𝜀, 𝐴) = 𝐸 ′′(𝜔)(𝑢,𝐴), lim sup
𝜀→0

𝐸𝜀(𝜔)(𝑣𝜀, 𝐵) = 𝐸 ′′(𝜔)(𝑢,𝐵).

Step 1 Extensions to convex domains

Let 𝑄𝐷 be a large cube containing 𝐷. As 𝐷 ∈ 𝒜𝑅(𝐷), by extension we may assume

that 𝑢 ∈ 𝐵𝑉loc(R𝑑,ℳ). We first show that we can modify 𝑢𝜀 and 𝑣𝜀 on 𝜀ℒ(𝜔)∖𝐴 and

𝜀ℒ(𝜔)∖𝐵 respectively, such that they converge to 𝑢 on 𝐿1(𝑄𝐷) and such that they have

equibounded energy on 𝑄𝐷. We will demonstrate the argument for 𝑢𝜀. Take another

cube 𝑄′ such that 𝑄𝐷 ⊂⊂ 𝑄′. Arguing as in the proof of Proposition 3.14 we find

a sequence 𝑢̃𝜀 ∈ 𝒫𝒞𝜀(𝜔) such that 𝑢̃𝜀 → 𝑢 in 𝐿1(𝑄′) and lim sup𝜀→0𝐸𝜀(𝜔)(𝑢̃𝜀, 𝑄
′) ≤
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𝐶ℋ𝑑−1(𝑆𝑢 ∩𝑄′). We then set 𝑢̄ ∈ 𝒫𝒞𝜀(𝜔) as

𝑢̄(𝜀𝑥) = 1𝐴(𝜀𝑥)𝑢𝜀(𝜀𝑥) + (1 − 1𝐴(𝜀𝑥))𝑢̃𝜀(𝜀𝑥).

Then 𝑢̄𝜀 → 𝑢 in 𝐿1(𝑄𝐷) and applying Lemmas 3.4 and 3.12 combined with Hypothesis

1 yields

𝐸𝜀(𝜔)(𝑢̄𝜀, 𝑄𝐷) ≤𝐶
∑︁

𝜉∈𝑟′Z𝑑

𝐽𝑙𝑟(|𝜉|)|𝜉|
∑︁

(𝑥,𝑦)∈𝒩𝒩 (𝜔)
𝜀𝑥,𝜀𝑦∈𝑄′

𝑔𝜔𝜀 (𝑥, 𝑦, 𝑢̄𝜀(𝜀𝑥), 𝑢̄𝜀(𝜀𝑦))

≤𝐶

(︂
𝐸𝜀(𝜔)(𝑢𝜀, 𝐴) + 𝐸𝜀(𝜔)(𝑢̃𝜀, 𝑄

′∖𝐴) +
1

𝜀
|𝜕𝐴 + 𝐵4𝑅𝜀(0)|

)︂
.

The first and second term remain bounded by construction, while the third term

converges to a multiple of the Minkowski content of 𝜕𝐴 which agrees with ℋ𝑑−1(𝜕𝐴)

as 𝐴 ∈ 𝒜𝑅(𝐷).

Step 2 Energy estimates

Given 𝛿 > 0 we choose 𝐿𝛿 as in Remark 3.9. Fix 𝑑′ ≤ 1
2
dist(𝐴′, 𝜕𝐴) and let 𝑁𝜀 :=

⌊ 𝑑′

2𝜀𝐿𝛿
⌋. For 𝑘 ∈ N we define

𝐴𝜀,𝑘 := {𝑥 ∈ 𝐴 : dist(𝑥,𝐴′) < 2𝑘𝜀𝐿𝛿}.

We let 𝑤𝑘
𝜀 ∈ 𝒫𝒞𝜀(𝜔) be the interpolation defined by

𝑤𝑘
𝜀 (𝜀𝑥) = 1𝐴𝜀,𝑘

(𝜀𝑥)𝑢𝜀(𝜀𝑥) + (1 − 1𝐴𝜀,𝑘
(𝜀𝑥))𝑣𝜀(𝜀𝑥).

Note that for each fixed 𝑘 ∈ N, 𝑤𝑘
𝜀 → 𝑢 in 𝐿1(𝐷). Now we set

𝑆𝜉,𝜀
𝑘 := {𝑥 = 𝑦 + 𝑡 𝜉′ : 𝑦 ∈ 𝜕𝐴𝜀,𝑘, |𝑡| ≤ 𝜀, 𝜉′ ∈ 𝜉 + [−𝑟′, 𝑟′]𝑑} ∩ (𝐴 ∪𝐵).

For 𝑘 ≤ 𝑁𝜀 it can easily be verified that

𝐸𝜀(𝜔)(𝑤𝑘
𝜀 , 𝐴

′ ∪𝐵) ≤𝐸𝜀(𝜔)(𝑢𝜀, 𝐴𝜀,𝑘) + 𝐸𝜀(𝜔)(𝑣𝜀, 𝐵∖𝐴𝜀,𝑘)

+
∑︁

𝜉∈𝑟′Z𝑑

∑︁
𝛼∈𝑅𝜉

𝜀(𝑆
𝜉,𝜀
𝑘 )

𝜀𝑑−1𝑔𝜔𝜀 (𝑥𝛼, 𝑥𝛼+𝜉, 𝑤
𝑘
𝜀 (𝜀𝑥𝛼), 𝑤𝑘

𝜀 (𝜀𝑥𝛼+𝜉))⏟  ⏞  
=:𝜌𝜉,𝜀𝑘 (𝛼,𝜔)

≤𝐸𝜀(𝜔)(𝑢𝜀, 𝐴) + 𝐸𝜀(𝜔)(𝑣𝜀, 𝐵) +
∑︁

𝜉∈𝑟′Z𝑑

∑︁
𝛼∈𝑅𝜉

𝜀(𝑆
𝜉,𝜀
𝑘 )

𝜌𝜉,𝜀𝑘 (𝛼, 𝜔). (3.10)

We now split the interactions depending on 𝐿𝛿. If |𝜉| > 𝐿𝛿, we use Lemma 3.12.
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Since 𝐴 ∪𝐵 ⊂⊂ 𝑄𝐷, we deduce that,∑︁
|𝜉|>𝐿𝛿

∑︁
𝛼∈𝑅𝜉

𝜀(𝑆
𝜉,𝜀
𝑘 )

𝜌𝜉,𝜀𝑘 (𝛼, 𝜔) ≤ 𝐶
∑︁
|𝜉|>𝐿𝛿

𝐽𝑙𝑟(|𝜉|)|𝜉|
∑︁

(𝑥,𝑦)∈𝒩𝒩 (𝜔)
𝜀𝑥,𝜀𝑦∈𝑄𝐷

𝜀𝑑−1𝑔𝜔𝜀 (𝑥, 𝑦, 𝑤𝑘
𝜀 (𝜀𝑥), 𝑤𝑘

𝜀 (𝜀𝑦)).

Obviously we have 𝑄𝐷 ⊂ 𝐴𝜀,𝑘 ∪ 𝑄𝐷∖𝐴𝜀,𝑘. Nearest neighbor interactions between

those two sets are contained in 𝑆𝜉,𝜀
𝑘 for |𝜉| ≤ 4𝑅. Therefore we can further estimate

the last inequality via∑︁
|𝜉|>𝐿𝛿

∑︁
𝛼∈𝑅𝜉

𝜀(𝑆
𝜉,𝜀
𝑘 )

𝜌𝜉,𝜀𝑘 (𝛼, 𝜔) ≤ 𝐶𝛿
(︁
𝐸𝜀(𝜔)(𝑢𝜀, 𝐴) + 𝐸𝜀(𝜔)(𝑣𝜀, 𝑄𝐷)

+
∑︁
|𝜉|≤𝐿𝛿

∑︁
𝛼∈𝑅𝜉

𝜀(𝑆
𝜉,𝜀
𝑘 )

𝜌𝜉,𝜀𝑘 (𝛼, 𝜔)
)︁
. (3.11)

Now we treat the interactions when |𝜉| ≤ 𝐿𝛿. Consider any points 𝜀𝑥, 𝜀𝑦 ∈ 𝜀ℒ(𝜔). If

𝑤𝑘
𝜀 (𝜀𝑥) ̸= 𝑤𝑘

𝜀 (𝜀𝑦) then either 𝜀𝑥, 𝜀𝑦 ∈ 𝐴𝜀,𝑘, 𝜀𝑥, 𝜀𝑦 /∈ 𝐴𝜀,𝑘 or 𝜀𝑥 ∈ 𝐴𝜀,𝑘 but 𝜀𝑦 /∈ 𝐴𝜀,𝑘

(the other case can be treated similar). In the last case we have a contribution

only if 𝑢𝜀(𝜀𝑥) ̸= 𝑣𝜀(𝜀𝑦). Then either 𝑢𝜀(𝜀𝑦) = 𝑣𝜀(𝜀𝑦) or 𝑔𝜔𝜀 (𝑥, 𝑦, 𝑢𝜀(𝜀𝑥), 𝑣𝜀(𝜀𝑦)) ≤
𝐶|𝑢𝜀(𝜀𝑦) − 𝑣𝜀(𝜀𝑦)|. Summarizing all cases we obtain the inequality

𝜌𝜉,𝜀𝑘 (𝛼, 𝜔) ≤𝜀𝑑−1𝑔𝜔𝜀 (𝑥, 𝑦, 𝑢𝜀(𝜀𝑥), 𝑢𝜀(𝜀𝑦)) + 𝜀𝑑−1𝑔𝜔𝜀 (𝑥, 𝑦, 𝑣𝜀(𝜀𝑥), 𝑣𝜀(𝜀𝑦))

+ 𝐶𝜀𝑑−1|𝑢𝜀(𝜀𝑦) − 𝑣𝜀(𝜀𝑦)|.

By our construction we have 𝑆𝜀,𝜉
𝑘 ⊂ (𝐴𝜀,𝑘+1∖𝐴𝜀,𝑘−1) =: 𝑆𝜀

𝑘. We deduce that∑︁
|𝜉|≤𝐿𝛿

∑︁
𝛼∈𝑅𝜉

𝜀(𝑆
𝜉,𝜀
𝑘 )

𝜌𝜉,𝜀𝑘 (𝛼, 𝜔) ≤𝐸𝜀(𝜔)(𝑢𝜀, 𝑆
𝜀
𝑘) + 𝐸𝜀(𝜔)(𝑣𝜀, 𝑆

𝜀
𝑘)

+ 𝐶𝛿

∑︁
𝑦∈ℒ(𝜔)
𝜀𝑦∈𝑆𝜀

𝑘

𝜀𝑑−1|𝑢𝜀(𝜀𝑦) − 𝑣𝜀(𝜀𝑦)|,

where 𝐶𝛿 depends only on 𝐿𝛿. Observe that every point can only lie in at most two

sets 𝑆𝜀
𝑘1
, 𝑆𝜀

𝑘2
. Thus averaging combined with (3.11), Step 1 and the last inequality

51



yields

𝐼𝜀 : =
1

𝑁𝜀

𝑁𝜀∑︁
𝑘=1

∑︁
𝜉∈𝑟′Z𝑑

∑︁
𝛼∈𝑅𝜉

𝜀(𝑆
𝜉,𝜀
𝑘 )

𝜌𝜉,𝜀𝑘 (𝛼, 𝜔) ≤ 2

𝑁𝜀

𝑁𝜀∑︁
𝑘=1

∑︁
|𝜉|≤𝐿𝛿

∑︁
𝛼∈𝑅𝜉

𝜀(𝑆
𝜉,𝜀
𝑘 )

𝜌𝜉,𝜀𝑘 (𝛼, 𝜔) + 𝐶𝛿

≤ 4

𝑁𝜀

(𝐸𝜀(𝜔)(𝑢𝜀, 𝑄𝐷) + 𝐸𝜀(𝜔)(𝑣𝜀, 𝑄𝐷)) + 𝐶𝛿

∑︁
𝑦∈ℒ(𝜔)
𝜀𝑦∈𝐷

𝜀𝑑|𝑢𝜀(𝜀𝑦) − 𝑣𝜀(𝜀𝑦)| + 𝐶𝛿

≤ 𝐶

𝑁𝜀

+ 𝐶𝛿‖𝑢𝜀 − 𝑣𝜀‖𝐿1(𝑄𝐷) + 𝐶𝛿.

For every 𝜀 > 0 let 𝑘𝜀 ∈ {1, . . . , 𝑁𝜀} be such that∑︁
𝜉∈𝑟′Z𝑑

∑︁
𝛼∈𝑅𝜉

𝜀(𝑆
𝜉,𝜀
𝑘𝜀

)

𝜌𝜉,𝜀𝑘𝜀
(𝛼, 𝜔) ≤ 𝐼𝜀 (3.12)

and set 𝑤𝜀 := 𝑤𝑘𝜀
𝜀 . Note that 𝑤𝜀 still converges to 𝑢 strongly in 𝐿1(𝐷). Hence, using

(3.10), (3.12) and again the first step, we conclude that

𝐸 ′′(𝜔)(𝑢,𝐴′ ∪𝐵) ≤ lim sup
𝜀→0

𝐸𝜀(𝜔)(𝑤𝜀, 𝐴
′ ∪𝐵) ≤ 𝐸 ′′(𝜔)(𝑢,𝐴) + 𝐸 ′′(𝜔)(𝑢,𝐵) + 𝐶 𝛿.

The arbitrariness of 𝛿 proves the claim.

Proof of Theorem 3.10. From Propositions 3.14 and 3.15 it follows by standard argu-

ments that 𝐸 ′′(𝜔)(𝑢, ·) is inner regular on 𝒜𝑅(𝐷) (see, for example, Proposition 11.6

in [23]). Therefore, given a sequence 𝜀𝑛 → 0+ we can use the compactness property

of Γ-convergence (Proposition 2.5) to construct a subsequence 𝜀𝑛 (not relabeled) such

that

Γ- lim
𝑛

𝐸𝜀𝑛(𝜔)(𝑢,𝐴) =: 𝐸̃(𝜔)(𝑢,𝐴)

exists for every (𝑢,𝐴) ∈ 𝐿1(𝐷) ×𝒜𝑅(𝐷). By Proposition 3.11 we further know that

𝐸̃(𝜔)(𝑢,𝐴) is finite only if 𝑢 ∈ 𝐵𝑉 (𝐴,ℳ). We extend 𝐸̃(𝑢, ·) to 𝒜(𝐷) setting

𝐸(𝜔)(𝑢,𝐴) := sup {𝐸̃(𝜔)(𝑢,𝐴′) : 𝐴′ ⊂⊂ 𝐴, 𝐴′ ∈ 𝒜𝑅(𝐷)}.

In order to complete the proof it is enough to show that 𝐸(𝜔) satisfies the assumptions

of Theorem 2.13. Again by standard arguments 𝐸(𝜔)(𝑢, ·) fulfills the assumptions of

the De Giorgi-Letta criterion (see Theorem 1.62 in [37]), so that 𝐸(𝜔)(𝑢, ·) is the

trace of a Borel measure. Since this Borel measure is finite on 𝐷 by Proposition 3.14,

it is indeed a Radon measure (Proposition 1.60 in [37]). The locality property follows

from Remark 3.8. By the properties of Γ-limits we know that 𝐸̃(𝜔)(·, 𝐴) is 𝐿1(𝐷)-
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lower semicontinuous and so is 𝐸(𝜔)(·, 𝐴) as the supremum. The growth conditions

(iv) in Theorem 2.13 follow from the Propositions 3.11 and 3.14 which still hold for

𝐸(𝜔) in place of 𝐸̃(𝜔). The local version of the theorem is a direct consequence of

our construction.

3.3 Homogenization for stationary lattices

So far we considered energies defined on a fixed realization of a possibly non-periodic

network. In this section we exploit the stationarity assumption to prove that in this

case the Γ-limit exists along any sequence and that the integrand 𝜑 in Theorem 3.10

does not depend on 𝑥. In order to prove existence of the limit functional, we make use

of stochastic homogenization. To this end, we need to introduce discrete boundary

conditions. At this stage we are not concerned about the physically most relevant

ones. Rather we try to keep the arguments as short as possible. In particular we will

introduce another scale 𝜂 that describes the (macroscopic) thickness of the discrete

boundary and consider first the limit 𝜀 → 0 and then 𝜂 → 0. We refer to Section 3.4

for a finer analysis when the thickness depends also on 𝜀.

We now set the precise framework. Given 𝜂 > 0 and 𝐴 ∈ 𝒜𝑅(𝐷), we define

𝜕𝜂𝐴 = {𝑥 ∈ 𝐴 : dist(𝑥, 𝜕𝐴) ≤ 𝜂}.

We restrict the class of admissible boundary data to functions 𝑢0 ∈ 𝐵𝑉loc(R𝑑,ℳ)

that are well-prepared in the sense that, setting 𝑢𝜀,0 ∈ 𝒫𝒞𝜀(𝜔) as 𝑢𝜀,0(𝜀𝑥) = 𝑢0(𝜀𝑥) it

holds

lim sup
𝜀→0

𝐸𝜀(𝜔)(𝑢𝜀,0, 𝐵) ≤ 𝐶ℋ𝑑−1(𝑆𝑢0 ∩𝐵),

𝑢𝜀,0 → 𝑢0 in 𝐿1(𝐷), ℋ𝑑−1(𝑆𝑢0 ∩ 𝜕𝐴) = 0
(3.13)

with 𝐶 uniformly for 𝐵 ∈ 𝒜𝑅(R𝑑). Observe that by the proof of Proposition 3.14 we

allow for any polyhedral function such that ℋ𝑘−1(𝑆𝑢0 ∩ 𝜕𝐴) = 0, but more generally

it suffices that the level sets are Lipschitz sets. The discrete boundary conditions are

defined via the class

𝒫𝒞𝜂
𝜀,𝑢0

(𝜔,𝐴) := {𝑢 ∈ 𝒫𝒞𝜀(𝜔) : 𝑢(𝜀𝑥) = 𝑢0(𝜀𝑥) if 𝜀𝑥 ∈ 𝜀ℒ(𝜔) ∩ 𝜕𝜂𝐴}.
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Using a similar notation as in Theorem 2.13 we define the quantities

𝑚𝜂
𝜀(𝜔)(𝑢0, 𝐴) = inf{𝐸𝜀(𝜔)(𝑣,𝐴) : 𝑣 ∈ 𝒫𝒞𝜂

𝜀,𝑢0
(𝜔,𝐴)},

𝑚(𝜔)(𝑢0, 𝐴) = inf{𝐸(𝜔)(𝑣,𝐴) : 𝑣 = 𝑢0 in a neighbourhood of 𝜕𝐴},

where the limit functional 𝐸(𝜔) is given (up to subsequences) by Theorem 3.10.

Note that the mapping 𝜂 ↦→ 𝑚𝜂
𝜀(𝜔)(𝑢0, 𝐴) is non-decreasing. We have the following

auxiliary result.

Lemma 3.16. Let 𝜀𝑛 and 𝐸(𝜔) be as in Theorem 3.10. Then it holds that

lim
𝜂→0

lim inf
𝑛

𝑚𝜂
𝜀𝑛(𝜔)(𝑢0, 𝐴) = lim

𝜂→0
lim sup

𝑛
𝑚𝜂

𝜀𝑛(𝜔)(𝑢0, 𝐴) = 𝑚(𝜔)(𝑢0, 𝐴).

Proof. First note that by monotonicity the limits for 𝜂 → 0 are well-defined. More-

over, by the first assumption in (3.13) we have that 𝑚𝜂
𝜀(𝜔)(𝑢0, 𝐴) is equibounded.

For any 𝑛 ∈ N let 𝑢𝑛 ∈ 𝒫𝒞𝜂
𝜀𝑛,𝑢0

(𝜔,𝐴) be such that 𝑚𝜂
𝜀𝑛(𝜔)(𝑢0, 𝐴) = 𝐸𝜀𝑛(𝜔)(𝑢𝑛, 𝐴).

By Proposition 2.5 we know that, up to a subsequence (not relabeled), 𝑢𝑛 → 𝑢 in

𝐿1(𝐴) and, using Lemma 3.4 (i) and again (3.13) it follows easily that 𝑢 = 𝑢0 on 𝜕𝜂𝐴.

Extending 𝑢 we can assume that 𝑢 is admissible in the infimum problem defining

𝑚(𝜔)(𝑢0, 𝐴) and using Theorem 3.10 we obtain

𝑚(𝜔)(𝑢0, 𝐴) ≤ 𝐸(𝜔)(𝑢,𝐴) ≤ lim inf
𝑛

𝐸𝜀𝑛(𝜔)(𝑢𝑛, 𝐴) ≤ lim inf
𝑛

𝑚𝜂
𝜀𝑛(𝜔)(𝑢0, 𝐴).

As 𝜂 was arbitrary, we conclude that 𝑚(𝜔)(𝑢0, 𝐴) ≤ lim𝜂→0 lim inf𝑛𝑚
𝜂
𝜀𝑛(𝜔)(𝑢0, 𝐴).

In order to prove the remaining inequality, given 𝛾 > 0 we let 𝑢 ∈ 𝐵𝑉 (𝐴,ℳ) be

such that 𝑢 = 𝑢0 in a neighborhood of 𝜕𝐴 and 𝐸(𝜔)(𝑢,𝐴) ≤ 𝑚(𝜔)(𝑢0, 𝐴) + 𝛾. Let

𝑢𝑛 ∈ 𝒫𝒞𝜀𝑛(𝜔) be a recovery sequence for 𝑢. In particular it satisfies

lim sup
𝑛

𝐸𝜀𝑛(𝜔)(𝑢𝑛, 𝐴) = 𝐸(𝜔)(𝑢,𝐴). (3.14)

We will modify 𝑢𝑛 such that it fulfills the discrete boundary conditions. The argument

will be similar to the one used in the proof of Proposition 3.15. Therefore we just

sketch the argument. First we can avoid the abstract extension argument and instead

redefine 𝑢𝑛(𝜀𝑛𝑥) = 𝑢0(𝜀𝑛𝑥) for all 𝜀𝑛𝑥 /∈ 𝐴. Due to the boundary conditions of

𝑢, Theorem 2.15 and Remark 2.16 there exist sets 𝐴1 ⊂⊂ 𝐴2 ⊂⊂ 𝐴 such that

𝐴1, 𝐴2 ∈ 𝒜𝑅(𝐷) and

𝑢 = 𝑢0 on 𝐴∖𝐴1,

ℋ𝑑−1(𝑆𝑢0 ∩ 𝜕𝐴1) = 0.
(3.15)
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First we choose 𝐿𝛿 as in Remark 3.9 and fix 𝑑′ ≤ 1
2
dist(𝐴1, 𝜕𝐴2). Setting 𝑁𝑛 = [ 𝑑′

2𝜀𝑛𝐿𝛿
],

for 𝑘 ∈ N we introduce the sets

𝐴𝑛,𝑘 := {𝑥 ∈ 𝐴 : dist(𝑥,𝐴1) < 2𝑘𝜀𝑛𝐿𝛿}.

We further define 𝑢𝑘
𝑛 ∈ 𝒫𝒞𝜀𝑛(𝜔) via interpolation as

𝑢𝑘
𝑛(𝜀𝑛𝑥) = 1𝐴𝑛,𝑡𝑘

(𝜀𝑛𝑥)𝑢𝑛(𝜀𝑛𝑥) + (1 − 1𝐴𝑛,𝑡𝑘
(𝜀𝑛𝑥))𝑢0(𝜀𝑛𝑥).

Note that 𝑢𝑘
𝑛 ∈ 𝒫𝒞𝜂

𝜀𝑛,𝑢0
(𝜔,𝐴) for some 𝜂 > 0 independent of 𝑛 and 𝑘 ≤ 𝑁𝑛. Repeating

the arguments from the proof of Proposition 3.15 we find 𝑘𝑛 ∈ {1, . . . , 𝑁𝑛} and the

corresponding sequence 𝑢𝑘𝑛
𝑛 ∈ 𝒫𝒞𝜂

𝜀𝑛,𝑢0
(𝜔,𝐴) with

lim sup
𝑛

𝐸𝜀𝑛(𝜔)(𝑢𝑘𝑛
𝑛 , 𝐴) ≤ 𝐸(𝜔)(𝑢,𝐴) + 𝐶ℋ𝑑−1(𝑆𝑢0 ∩ (𝐴∖𝐴1)) + 𝐶 𝛿,

where we have also used that, by (3.13) and (3.15),

lim sup
𝑛

𝐸𝜀𝑛(𝜔)(𝑢𝜀𝑛,0, 𝐴∖𝐴1) ≤ 𝐶ℋ𝑑−1(𝑆𝑢0 ∩ (𝐴∖𝐴1)).

As 𝛿 was arbitrary, by the choice of 𝑢 we obtain

lim
𝜂→0

lim sup
𝑛

𝑚𝜂
𝜀𝑛(𝜔)(𝑢0, 𝐴) ≤ lim sup

𝑛
𝐸𝜀𝑛(𝜔)(𝑢𝑘𝑛

𝑛 , 𝐴)

≤ 𝑚(𝜔)(𝑢0, 𝐴) + 𝛾 + 𝐶ℋ𝑑−1(𝑆𝑢0 ∩ 𝐴∖𝐴1).

The claim now follows letting first 𝐴1 ↑ 𝐴 and then 𝛾 → 0.

In view of Theorem 2.13 and the previous lemma we can further characterize the

Γ-limits of the family 𝐸𝜀(𝜔) by investigating the quantities 𝑚𝜂
𝜀(𝑢0, 𝑄) for suitably

oriented cubes and 𝑢0 = 𝑢𝑥,𝑚𝑖,𝑚𝑗 ,𝜈 . Due to the decay assumptions of Hypothesis 1

it will be enough to consider truncated interactions. To this end we define for fixed

𝐿 ∈ N the quantity

𝑚𝜂,𝐿
1 (𝜔)(𝑢0, 𝐴) = inf{𝐸𝐿

1 (𝜔)(𝑢,𝐴) : 𝑢 ∈ 𝒫𝒞𝜂
1,𝑢0

(𝜔,𝐴)}, (3.16)

where 𝐸𝐿
1 (𝜔) denotes the energy with interaction range 𝐿, that is we replace the

functions 𝑔𝜔𝜀 (𝑥, 𝑦,𝑚𝑖,𝑚𝑗) by 𝑔𝜔𝜀 (𝑥, 𝑦,𝑚𝑖,𝑚𝑗)1|𝑥−𝑦|≤𝐿. Moreover, to shorten notation

we set 𝑢𝑖𝑗
𝑥,𝜈 = 𝑢𝑥,𝑚𝑖,𝑚𝑗 ,𝜈 . The following estimate will be used several times.

Lemma 3.17. Let 𝑄 = 𝑄𝜈(𝑧, 𝜌) ⊂ R𝑑 be a cube and let {𝑄𝑘 = 𝑄𝜈(𝑧𝑘, 𝜌𝑘)}𝑘 be a
finite family of disjoint cubes with the following properties:
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(i) min𝑘 𝜌𝑘 ≥ 4𝐿,

(ii) 𝑧𝑘 − 𝑧1 ∈ 𝜈⊥,

(iii) dist(𝑧1, 𝜈
⊥ + 𝑧) ≤ 1

4
min𝑘 𝜌𝑘,

(iv)
⋃︀

𝑘 𝑄𝑘 ⊂ 𝑄,

(v) dist(𝜕
⋃︀

𝑘 𝑄𝑘, 𝜕𝑄) > 𝜂 or 𝑧𝑘 − 𝑧 ∈ 𝜈⊥.

Then there exists 𝐶 = 𝐶𝐿 > 0 such that, for all 𝑖 ̸= 𝑗 and 𝜂 ≥ 𝐿

𝑚𝜂,𝐿
1 (𝜔)(𝑢𝑖𝑗

𝑧,𝜈 , 𝑄) ≤
∑︁
𝑘

𝑚𝜂,𝐿
1 (𝜔)(𝑢𝑖𝑗

𝑧𝑘,𝜈
, 𝑄𝑘) + 𝐶ℋ𝑑−1

(︁(︁
𝑄∖

⋃︁
𝑘

𝑄𝑘

)︁
∩ (𝜈⊥ + 𝑧)

)︁
+ 𝐶

∑︁
𝑘

(︀
ℋ𝑑−2

(︀
(𝜕𝑄𝑘∖𝜕𝑄) ∩ (𝜈⊥ + 𝑧1)

)︀
+ ℋ𝑑−1(𝜕𝑄𝑘 ∩ 𝑆𝜈(𝑧, 𝑧1))

)︀
,

where 𝑆𝜈(𝑧, 𝑧1) is the infinite (maybe flat) stripe enclosed by the two hyperplanes 𝜈⊥+𝑧

and 𝜈⊥ + 𝑧1.

Proof. During this proof, given 𝑦 ∈ R𝑑, we denote by 𝑃𝜈,𝑦 the projection onto the

affine space 𝜈⊥+𝑦. Moreover, for any 𝑘 we let 𝑢𝑘 be an admissible minimizer defining

𝑚𝜂,𝐿
1 (𝜔)(𝑢𝑖𝑗

𝑧𝑘,𝜈
, 𝑄𝑘). By assumptions (ii) and (v), the function 𝑣 : ℒ(𝜔) → ℳ defined

as

𝑣(𝑥) =

⎧⎨⎩𝑢𝑘(𝑥) if 𝑥 ∈ 𝑄𝑘 for some 𝑘,

𝑢𝑧,𝜈(𝑥) otherwise

is well-defined and belongs to 𝒫𝒞𝜂

1,𝑢𝑖𝑗
𝑧,𝜈

(𝜔,𝑄). For 𝑥, 𝑦 ∈ ℒ(𝜔) ∩ 𝑄 with |𝑥 − 𝑦| ≤ 𝐿,

we abbreviate two scenarios:

(I) 𝑥 ∈ 𝑄𝑘 and 𝑦 ∈ 𝑄𝑙 for 𝑘 ̸= 𝑙 or 𝑥, 𝑦 ∈ 𝜕𝑄𝑘,

(II) 𝑥 ∈ 𝑄∖
⋃︀

𝑘 𝑄𝑘 and 𝑦 ∈ 𝑄𝑘 for some 𝑘.

By (iv) and Hypothesis 1 we can estimate

𝑚𝜂,𝐿
1 (𝜔)(𝑢𝑖𝑗

𝑧,𝜈 , 𝑄) ≤ 𝐸𝐿
1 (𝜔)(𝑣,𝑄) ≤

∑︁
𝑘

𝑚𝜂,𝐿
1 (𝜔)(𝑢𝑖𝑗

𝑧𝑘,𝜈
, 𝑄𝑗) + 𝐸𝐿

1 (𝜔)
(︁
𝑣,𝑄∖

⋃︁
𝑘

𝑄𝑘

)︁
+ 𝐶

∑︁
|𝑥−𝑦|≤𝐿

(I) or (II) hold

|𝑣(𝑥) − 𝑣(𝑦)|. (3.17)

We start with estimating the contribution of 𝑥, 𝑦 ∈ 𝑄∖
⋃︀

𝑘 𝑄𝑘. Suppose that 𝑣(𝑥) ̸=
𝑣(𝑦). In this case 𝑥 and 𝑦 lie on different sides of the hyperplane 𝜈⊥ + 𝑧. Then it
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holds true that 𝑃𝜈,𝑧(𝑥) ∈ 𝑄∖
⋃︀

𝑘 𝑄𝑘, otherwise assumptions (i) and (iii) would imply

𝐿 ≥ |𝑥− 𝑦| ≥ |𝑥− 𝑃𝜈,𝑧(𝑥)| ≥ 𝜌𝑘
2

− 𝜌𝑘
4

≥ 2𝐿.

Thus dist(𝑥, (𝑄∖
⋃︀

𝑘 𝑄𝑘) ∩ (𝜈⊥ + 𝑧)) ≤ 𝐿 and, using Lemma 3.4, it follows that

𝐸𝐿
1 (𝜔)

(︁
𝑣,𝑄∖

⋃︁
𝑘

𝑄𝑘

)︁
≤ 𝐶ℋ𝑘−1

(︁(︁
𝑄∖

⋃︁
𝑘

𝑄𝑘

)︁
∩ (𝜈⊥ + 𝑧)

)︁
. (3.18)

Next we have to control the interactions in Case (I). Given such 𝑥, 𝑦 with |𝑥−𝑦| ≤ 𝐿,

we know that by the definition of 𝑣, the boundary conditions on the smaller cubes

and (ii) that 𝑣(𝑥) = 𝑢𝑖𝑗
𝑧1,𝜈

(𝑥) and 𝑣(𝑦) = 𝑢𝑖𝑗
𝑧1,𝜈

(𝑦), so that if they contribute to the

energy we conclude that 𝑥 and 𝑦 must lie on different sides of the hyperplane 𝜈⊥ +𝑧1.

We deduce that |𝑃𝜈,𝑧1(𝑥) − 𝑥| ≤ 𝐿. Since by (iv) the ray [𝑃𝜈,𝑧1(𝑥), 𝑃𝜈,𝑧1(𝑦)] intersects

the (𝑑− 2)-dimensional set (𝜕𝑄𝑘∖𝜕𝑄) ∩ (𝜈⊥ + 𝑧1), it follows that

dist
(︀
𝑥, (𝜕𝑄𝑘∖𝜕𝑄) ∩ (𝜈⊥ + 𝑧1)

)︀
≤ 2𝐿.

Again, by Lemma 3.4 and the above inequality we easily can derive the estimate∑︁
|𝑥−𝑦|≤𝐿
(I) holds

|𝑣(𝑥) − 𝑣(𝑦)| ≤ 𝐶
∑︁
𝑘

ℋ𝑑−2
(︀
(𝜕𝑄𝑘∖𝜕𝑄) ∩ (𝜈⊥ + 𝑧1)

)︀
. (3.19)

It remains to estimate the contributions coming from Case (II). For such 𝑥, 𝑦 with

|𝑥− 𝑦| ≤ 𝐿, due to the boundary conditions on the smaller cubes, a positive energy

contribution implies 𝑢𝑧,𝜈(𝑥) ̸= 𝑢𝑧1,𝜈(𝑦). Thus the ray [𝑥, 𝑦] intersects 𝜕𝑄𝑘 in (at least)

one point 𝑥𝑘 and also 𝑆𝜈(𝑧, 𝑧1) in (at least) one point 𝑥𝑆. Let us denote by 𝑥𝑘,𝑆 the

projection of 𝑥𝑆 onto the facet of the cube 𝑄𝑘 containing 𝑥𝑘. As this facet cannot be

parallel to 𝜈⊥ by (i) and (iii), it holds 𝑥𝑘,𝑆 ∈ 𝜕𝑄𝑘 ∩ 𝑆𝜈(𝑧, 𝑧1) and

|𝑥− 𝑥𝑘,𝑆| ≤ |𝑥− 𝑥𝑆| + |𝑥𝑆 − 𝑥𝑘,𝑆| ≤ 𝐿 + |𝑥𝑆 − 𝑥𝑘| ≤ 2𝐿,

which yields the estimate

dist(𝑥, 𝜕𝑄𝑘 ∩ 𝑆𝜈(𝑧, 𝑧1)) ≤ 2𝐿. (3.20)

This set may be not (𝑑− 1)-dimensional in the second possibility of (v). In this case

one can bound the interactions by the right hand side of (3.18). Otherwise, using
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(3.20) we obtain the estimate∑︁
|𝑥−𝑦|≤𝐿
(IV holds)

|𝑣(𝑥) − 𝑣(𝑦)| ≤ 𝐶
∑︁
𝑘

ℋ𝑑−1(𝜕𝑄𝑘 ∩ 𝑆𝜈(𝑧, 𝑧1)). (3.21)

In any case the claim now follows from (3.17), (3.18), (3.19) and (3.21).

Remark 3.18. Lemma 3.17 still holds if we replace cubes by boxes of the type

𝐼𝜈(𝑧, {𝜌𝑖}𝑖) = 𝑧 + {𝑥 ∈ R𝑑 : |⟨𝑥, 𝜈𝑖⟩| < 𝜌𝑖
2
}. Then the cubes 𝑄𝑗 are replaced by the

collection 𝐼𝑗 = 𝐼𝜈(𝑧𝑗, {𝜌𝑗𝑖}𝑖) and in the assumptions (i) and (iii) we have to replace 𝜌𝑗

by min𝑖 𝜌
𝑗
𝑖 .

As we are interested in proving a stochastic homogenization result, we suppose from

now on that there exist functions 𝑔𝑛𝑛, 𝑔𝑙𝑟 : R𝑑 ×ℳ2 → [0,+∞) such that

𝑔𝜀𝜀,𝑛𝑛(𝑥, 𝑦,𝑚𝑖,𝑚𝑗) = 𝑔𝑛𝑛(𝑦 − 𝑥,𝑚𝑖,𝑚𝑗),

𝑔𝜀,𝑙𝑟(𝑥, 𝑦,𝑚𝑖,𝑚𝑗) = 𝑔𝑙𝑟(𝑦 − 𝑥,𝑚𝑖,𝑚𝑗).
(3.22)

The next theorem is the main result of this section.

Theorem 3.19. Let ℒ be a stationary stochastic lattice and let 𝑔𝑛𝑛 and 𝑔𝑙𝑟 satisfy
Hypothesis 1 with the additional structure property (3.22). For P-almost every 𝜔 and
for all 𝑚𝑖,𝑚𝑗 ∈ ℳ and 𝜈 ∈ 𝑆𝑑−1 there exists

𝜑hom(𝜔;𝑚𝑖,𝑚𝑗, 𝜈) = inf
𝜂>0

lim sup
𝑡→+∞

1

𝑡𝑑−1
inf

{︁
𝐸1(𝜔)(𝑢, 𝑡𝑄𝜈) : 𝑢 ∈ 𝒫𝒞𝜂𝑡

1,𝑢0,𝑚𝑖,𝑚𝑗,𝜈
(𝜔, 𝑡𝑄𝜈)

}︁
.

The functionals 𝐸𝜀(𝜔) Γ-converge with respect to the 𝐿1(𝐷)-topology to the functional
𝐸hom(𝜔) : 𝐿1(𝐷) → [0,+∞] defined by

𝐸hom(𝜔)(𝑢) =

⎧⎨⎩
∫︀
𝑆𝑢

𝜑hom(𝜔;𝑢+, 𝑢−, 𝜈𝑢) dℋ𝑑−1 if 𝑢 ∈ 𝐵𝑉 (𝐷,ℳ),

+∞ otherwise.

If ℒ is ergodic, then 𝜑hom(·,𝑚𝑖,𝑚𝑗, 𝜈) is constant almost surely.

Remark 3.20. The result above holds with the same proof if instead of consider-

ing stochastic lattices one takes the deterministic lattice Z𝑑 and random stationary

interactions 𝑔𝜔𝑖,𝑗 for all 𝑖, 𝑗 ∈ Z𝑑 such that P-almost surely, it holds that

𝑐|𝑚−𝑚′| ≤ 𝑔𝜔𝑖,𝑗(𝑚,𝑚′) ≤ 𝐽𝑙𝑟(|𝑖− 𝑗|)|𝑚−𝑚′| if |𝑖− 𝑗| = 1,

0 ≤ 𝑔𝜔𝑖,𝑗 ≤ 𝐽𝑙𝑟(|𝑖− 𝑗|)|𝑚−𝑚′|
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with 𝑐 and 𝐽𝑙𝑟 as in Hypothesis 1. In this setting the assumption on the long range

interactions could be weakened a little bit as in [6]. Here the stochastic group action

acts on the coefficients via

𝑔𝜔𝑖+𝑧,𝑗+𝑧 = 𝑔𝜏𝑧𝜔𝑖,𝑗 .

In this setting an analogous result has been obtained in [25] in the case ℳ = {±1}
and a two-dimensional system with nearest-neighbors ergodic interactions.

Proof of Theorem 3.19. Fix any sequence 𝜀𝑛 → 0. According to Theorem 3.10, for

all 𝜔 ∈ Ω such that ℒ(𝜔) is admissible, there exists a (𝜔-dependent) subsequence 𝜀𝑛𝑘

such that

Γ- lim
𝑘

𝐸𝜀𝑛𝑘
(𝜔)(𝑢,𝐴) =

∫︁
𝑆𝑢∩𝐴

𝜑(𝜔;𝑥, 𝑢+, 𝑢−, 𝜈) dℋ𝑑−1

for all 𝑢 ∈ 𝐵𝑉 (𝐷,ℳ) and every 𝐴 ∈ 𝒜𝑅(𝐷). According to Theorem 2.13 and Lemma

3.16, for any 𝑥 ∈ 𝐷,𝑚𝑖,𝑚𝑗 ∈ ℳ and 𝜈 ∈ 𝑆𝑑−1 it holds that

𝜑(𝜔;𝑥,𝑚𝑖,𝑚𝑗, 𝜈) = lim sup
𝜌→0

1

𝜌𝑑−1
𝑚(𝜔)(𝑢𝑖𝑗

𝑥,𝜈 , 𝑄𝜈(𝑥, 𝜌))

= lim sup
𝜌→0

1

𝜌𝑑−1
lim
𝜂→0

lim sup
𝑘

𝑚𝜂
𝜀𝑛𝑘

(𝜔)(𝑢𝑖𝑗
𝑥,𝜈 , 𝑄𝜈(𝑥, 𝜌)).

If we change the variables via 𝑡𝑘 = 𝜀−1
𝑛𝑘

and 𝑣(𝑥) = 𝑢(𝑡−1
𝑘 𝑥), the above characterization

reads

𝜑(𝜔;𝑥,𝑚𝑖,𝑚𝑗, 𝜈) = lim sup
𝜌→0

lim
𝜂→0

lim sup
𝑘

1

(𝜌𝑡𝑘)𝑑−1
𝑚𝜂𝑡𝑘

1 (𝜔)(𝑢𝑖𝑗
𝑡𝑘𝑥,𝜈

, 𝑡𝑘𝑄𝜈(𝑥, 𝜌)).

Except for the claim on ergodicity, due to the Urysohn property of Γ-convergence

(Lemma 2.3) it is enough to show that for a set of full probability the limit in 𝜌 can

be neglected and the remaining limits do not depend on 𝑥 or the subsequence 𝑡𝑘. We

divide the proof into several steps.

Step 1 Truncating the range of interactions

First we show that it suffices to consider the case of finite range interactions. We

argue that it is enough to prove that there exists 𝜑𝐿
hom(𝜔;𝑚𝑖,𝑚𝑗, 𝜈) and a set Ω𝐿

of full probability such that for all 𝜔 ∈ Ω𝐿, 𝑥 ∈ 𝐷, every cube 𝑄𝜈(𝑥, 𝜌) and every

sequence 𝑡𝑘 → +∞ it holds

𝜑𝐿
hom(𝜔;𝑚𝑖,𝑚𝑗, 𝜈) = lim

𝜂→0
lim sup

𝑘

1

(𝜌𝑡𝑘)𝑑−1
𝑚𝜂𝑡𝑘,𝐿

1 (𝜔)(𝑢𝑖𝑗
𝑡𝑘𝑥,𝜈

, 𝑡𝑘𝑄𝜈(𝑥, 𝜌)), (3.23)

where𝑚𝜂𝑡𝑘,𝐿
1 (𝜔) is defined in (3.16). Indeed, if (3.23) is proven, then for all 𝜔 ∈

⋂︀
𝐿 Ω𝐿

we find a configuration 𝑣𝐿𝑘 ∈ 𝒫𝒞1(𝜔) with the correct boundary conditions (extended
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to the whole space) that minimizes 𝐸1(𝜔)(·, 𝑡𝑘𝑄𝜈(𝑥, 𝜌)). Using Lemma 3.12 we obtain

the estimate

0 ≤
𝑚𝜂𝑡𝑘

1 (𝜔)(𝑢𝑖𝑗
𝑡𝑘𝑥,𝜈

, 𝑡𝑘𝑄𝜈(𝑥, 𝜌)) −𝑚𝜂𝑡𝑘,𝐿
1 (𝜔)(𝑢𝑖𝑗

𝑡𝑘𝑥,𝜈
, 𝑡𝑘𝑄𝜈(𝑥, 𝜌))

(𝜌𝑡𝑘)𝑑−1

≤ 𝐸1(𝜔)(𝑣𝐿𝑘 , 𝑡𝑘𝑄𝜈(𝑥, 𝜌)) − 𝐸𝐿
1 (𝜔)(𝑣𝐿𝑘 , 𝑡𝑘𝑄𝜈(𝑥, 𝜌))

(𝜌𝑡𝑘)𝑑−1

≤ 𝐶

(𝜌𝑡𝑘)𝑑−1

∑︁
|𝜉|>𝐿

𝐽𝑙𝑟(|𝜉|)|𝜉|
∑︁

(𝑥,𝑦)∈𝒩𝒩 (𝜔)

𝑥,𝑦∈(𝑡𝑘𝑄𝜈(𝑥,𝜌))3𝑅

𝑔𝜔1 (𝑥− 𝑦, 𝑣𝐿𝑘 (𝑥), 𝑣𝐿𝑘 (𝑦)).

The inner sum can be bounded by the energy plus interactions close to 𝜕𝑡𝑘𝑄𝜈(𝑥, 𝜌).

Due to the boundary conditions these are of order (𝜌𝑡𝑘)𝑑−2. Using the trivial bound

𝑚𝜂
1(𝜔)(𝑢𝑖𝑗

𝑡𝑘𝑥,𝜈
, 𝑡𝑘𝑄𝜈(𝑥, 𝜌)) ≤ 𝐶(𝜌𝑡𝑘)𝑑−1 obtained by testing 𝑢𝑖𝑗

𝑡𝑘𝑥,𝜈
, we deduce that

0 ≤
𝑚𝜂𝑡𝑘

1 (𝜔)(𝑢𝑖𝑗
𝑡𝑘𝑥,𝜈

, 𝑡𝑘𝑄𝜈(𝑥, 𝜌)) −𝑚𝜂𝑡𝑘,𝐿
1 (𝜔)(𝑢𝑖𝑗

𝑡𝑘𝑥,𝜈
, 𝑡𝑘𝑄𝜈(𝑥, 𝜌))

(𝜌𝑡𝑘)𝑑−1
≤ 𝐶

∑︁
|𝜉|>𝐿

𝐽𝑙𝑟(|𝜉|)|𝜉|.

Due to the integrability assumption of Hypothesis 1, we infer that 𝜑𝐿
hom(𝜔;𝑚𝑖,𝑚𝑗, 𝜈)

is a Cauchy-sequence with respect to 𝐿 and moreover, in combination with (3.23), we

deduce that

lim
𝐿

𝜑𝐿
hom(𝜔;𝑚𝑖,𝑚𝑗, 𝜈) = lim

𝜂→0
lim sup

𝑘

1

(𝜌𝑡𝑘)𝑑−1
𝑚𝜂𝑡𝑘

1 (𝜔)(𝑢𝑖𝑗
𝑡𝑘𝑥,𝜈

, 𝑡𝑘𝑄𝜈(𝑥, 𝜌))

exists, is independent of 𝑥, 𝜌 and the sequence 𝑡𝑘. Therefore it remains to show (3.23).

For clarity of the argument we first consider an auxiliary problem where we replace

the varying boundary width 𝜂𝑡𝑘 by 𝐿. As an intermediate result we show that there

exists

𝜑𝐿
𝑖𝑗(𝜔; 𝜈) = lim

𝑘

1

(𝜌𝑡𝑘)𝑑−1
𝑚𝐿,𝐿

1 (𝜔)(𝑢𝑖𝑗
𝑡𝑘𝑥,𝜈

, 𝑡𝑘𝑄𝜈(𝑥, 𝜌)) (3.24)

and this limit does not depend on 𝑥, 𝜌 and the sequence 𝑡𝑘.

Step 2 Existence of 𝜑𝐿
𝑖𝑗 for 𝑥 = 0 and rational directions

Fix 𝐿 ∈ N. We have to show that, for P-almost every 𝜔 ∈ Ω and every 𝜈 ∈ 𝑆𝑑−1,

there exists the limit in (3.24). We start with the case 𝑥 = 0 and 𝜈 ∈ 𝑆𝑑−1 ∩Q𝑑. For

this choice we can use the subadditive ergodic theorem in (𝑑− 1)-dimensions.

Substep 2.1 Defining a stochastic process

We need a few preliminaries: Given 𝜈 ∈ 𝑆𝑑−1 there exists an orthogonal matrix

𝐴𝜈 ∈ R𝑑×𝑑 such that 𝐴𝜈𝑒𝑑 = 𝜈, the mapping 𝜈 ↦→ 𝐴𝜈𝑒𝑖 is continuous on 𝑆𝑑−1∖{−𝑒𝑑}
and if 𝜈 ∈ Q𝑑 then 𝐴𝜈 ∈ Q𝑑×𝑑 (see for instance the construction in [56]). We now fix
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a rational direction 𝜈 ∈ 𝑆𝑑−1 ∩ Q𝑑. Then there exists an integer 𝑀 = 𝑀(𝜈) > 4𝐿

such that 𝑀𝐴𝜈(𝑧, 0) ∈ Z𝑑 for all 𝑧 ∈ Z𝑑−1. We define a discrete stochastic process

(see Definition 2.20). To 𝐼 = [𝑎1, 𝑏1) × · · · × [𝑎𝑑−1, 𝑏𝑑−1) ∈ ℐ𝑑−1 we associate the set

𝑄𝐼 ⊂ R𝑑 defined by

𝑄𝐼 := 𝑀𝐴𝜈

(︁
int 𝐼 × (−𝑠max

2
,
𝑠max

2
)
)︁
,

where 𝑠max = max𝑖 |𝑏𝑖 − 𝑎𝑖|. Then we define the process 𝜇 : ℐ𝑑−1 → 𝐿1(Ω) as

𝜇(𝐼, 𝜔) := inf
{︁
𝐸𝐿

1 (𝜔)(𝑣,𝑄𝐼) : 𝑣 ∈ 𝒫𝒞𝐿
1,𝑢𝑖𝑗

0,𝜈
(𝜔,𝑄𝐼)

}︁
+ 𝐶𝜇ℋ𝑑−2(𝜕𝐼), (3.25)

where 𝐶𝜇 is a constant to be chosen later. We first have to show that 𝜇(𝐼, ·) is a

𝐿1(Ω)-function. Testing the 𝒫𝒞1(𝜔)-interpolation of 𝑢𝑖𝑗
0,𝜈 as candidate in the infimum

problem, one can use the growth assumptions from Hypothesis 1 and Lemma 3.4 to

show that there exists a constant 𝐶 > 0 such that

𝜇(𝐼, 𝜔) ≤ 𝐶𝑀𝑑−1ℋ𝑑−1(𝐼) (3.26)

for all 𝐼 ∈ ℐ𝑑−1 and almost every 𝜔 ∈ Ω. Hence 𝜇(𝐼, ·) is essentially bounded.

Measurability is a consequence of Lemma 3.6. Indeed, using that lemma, up to

standard arguments it remains to show that the infimum in the definition of 𝜇(𝐼, 𝜔)

preserves measurability. Note that the discrete constraints near the boundary can be

replaced by a measurable penalty term of the form∑︁
𝑖≥1

𝐶|𝑣(ℒ(𝜔)𝑖) − 𝑢0,𝜈(ℒ(𝜔)𝑖)|1{𝑦∈R𝑑: dist(𝑦,𝜕𝐼)≤𝐿}(ℒ(𝜔)𝑖),

where 𝐶 is large enough to dominate the right-hand side of (3.26). Finally we mini-

mize over the first 𝑘 coordinates of vectors in ℳN (the others being constantly 𝑚1)

and then let 𝑘 → +∞ to see that 𝜇(𝐼, 𝜔) can be written as the pointwise limit of

measurable functions. Note that the limit exists since only finitely many points of

the stochastic lattice are contained in 𝑄𝐼 .

We continue with proving lower-dimensional stationarity of the process. Let

𝑧 ∈ Z𝑑−1. Note that 𝑄𝐼−𝑧 = 𝑄𝐼 − 𝑧𝑀𝜈 , where 𝑧𝑀𝜈 := 𝑀𝐴𝜈(𝑧, 0) ∈ 𝜈⊥ ∩ Z𝑑.

Moreover, by the stationarity of ℒ it holds that 𝑣 ∈ 𝒫𝒞𝐿
1,𝑢𝑖𝑗

0,𝜈
(𝜔,𝑄𝐼−𝑧) if and only if

𝑢(·) = 𝑣(· − 𝑧𝑀𝜈 ) ∈ 𝒫𝒞𝐿
1,𝑢𝑖𝑗

0,𝜈
(𝜏𝑧𝑀𝜈 𝜔,𝑄𝐼). Now if the couple (𝑥, 𝑦) is taken into account

for 𝜇(𝐼 − 𝑧, 𝜔), then the points 𝑥′ := 𝑥+ 𝑧𝑀𝜈 and 𝑦′ = 𝑦 + 𝑧𝑀𝜈 are points of the lattice

ℒ(𝜏𝑧𝑀𝜈 𝜔) and are taken into account for 𝜇(𝐼, 𝜏𝑧𝑀𝜈 𝜔). Furthermore (𝑥, 𝑦) ∈ 𝒩𝒩 (𝜔)

if and only if (𝑥′, 𝑦′) ∈ 𝒩𝒩 (𝜏𝑧𝑀𝜈 𝜔). By (3.22) and shift invariance of the Hausdorff
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measure we conclude that 𝜇(𝐼 − 𝑧, 𝜔) = 𝜇(𝐼, 𝜏𝑧𝑀𝜈 𝜔). Setting 𝜏𝑧 = 𝜏−𝑧𝑀𝜈
we obtain a

measure preserving group action on Z𝑑−1 such that 𝜇(𝐼, 𝜏𝑧𝜔) = 𝜇(𝐼 + 𝑧)(𝜔), that is

stationarity.

To show subadditivity, let 𝐼 ∈ ℐ𝑑−1 and let {𝐼𝑗}𝑗∈𝐽 ⊂ ℐ𝑑−1 be a finite disjoint

family such that 𝐼 =
⋃︀

𝑗∈𝐽 𝐼𝑗. Note that 𝑄𝐼 and the family {𝑄𝐼𝑗}𝑗∈𝐽 fulfill the as-

sumptions of Lemma 3.17 (in the sense of Remark 3.18). We conclude

𝑚𝐿,𝐿
1 (𝜔)(𝑢𝑖𝑗

0,𝜈 , 𝑄𝐼) ≤
∑︁
𝑗∈𝐽

𝑚𝐿,𝐿
1 (𝜔)(𝑢𝑖𝑗

0,𝜈 , 𝑄𝐼𝑗) + 𝐶
∑︁
𝑗∈𝐽

ℋ𝑑−2((𝜕𝑄𝐼𝑗∖𝜕𝑄𝐼) ∩ 𝜈⊥).

Applying the definition of 𝜇(𝐼, 𝜔) yields

𝜇(𝐼, 𝜔) = 𝑚𝐿,𝐿
1 (𝜔)(𝑢𝑖𝑗

0,𝜈 , 𝑄𝐼) + 𝐶𝜇ℋ𝑑−2(𝜕𝑄𝐼 ∩ 𝜈⊥)

≤
∑︁
𝑗∈𝐽

𝜇(𝐼𝑗, 𝜔) + (𝐶 − 𝐶𝜇)
∑︁
𝑗∈𝐽

ℋ𝑑−2((𝜕𝑄𝐼𝑗∖𝑄𝐼) ∩ 𝜈⊥),

which yields subadditivity provided we choose 𝐶𝜇 ≥ 𝐶. Property (ii) in Definition

2.20 is trivial since 𝜇(𝐼, 𝜔) is always nonnegative. By Theorem 2.21 there exists

𝜑𝐿
𝑖𝑗(𝜔; 𝜈) such that almost surely, for rational directions 𝜈 ∈ 𝑆𝑑−1, it holds

𝜑𝐿
𝑖𝑗(𝜔; 𝜈) = lim

𝑘→+∞

1

(2𝑀𝑘)𝑑−1
𝑚𝐿,𝐿

1 (𝜔)(𝑢𝑖𝑗
0,𝜈 , 𝑄𝜈(0, 2𝑀𝑘)),

where we used that the term 𝐶𝜇ℋ𝑑−2(𝜕𝐼) is negligible for the limit in 𝑘.

Substep 2.2 From integer sequences to all sequences

Next we consider an arbitrary sequence 𝑡𝑘 → +∞. From the previous step we know

that

𝜑𝐿
𝑖𝑗(𝜔; 𝜈) = lim

𝑘→+∞

1

(2𝑀⌊𝑡𝑘⌋)𝑑−1
𝑚𝐿,𝐿

1 (𝜔)(𝑢𝑖𝑗
0,𝜈 , 𝑄𝜈(0, 2𝑀⌊𝑡𝑘⌋))

exists almost surely. To shorten notation we set Λ𝑘 = 2𝑀𝑡𝑘 and 𝜆𝑘 = 2𝑀⌊𝑡𝑘⌋. For 𝑘
large enough, we can apply Lemma 3.17 to the cube 𝑄𝜈(0,Λ𝑘) and singleton family

{𝑄𝜈(0, 𝜆𝑘)} and obtain

𝑚𝐿,𝐿
1 (𝜔)(𝑢𝑖𝑗

0,𝜈 , 𝑄𝜈(0,Λ𝑘)) ≤𝑚𝐿,𝐿
1 (𝜔)(𝑢𝑖𝑗

0,𝜈 , 𝑄𝜈(0, 𝜆𝑘)) + ℋ𝑑−2(𝜕(𝑄𝜈(0, 𝜆𝑘)) ∩ 𝜈⊥)

+ 𝐶ℋ𝑑−1((𝑄𝜈(0,Λ𝑘)∖𝑄𝜈(0, 𝜆𝑘)) ∩ 𝜈⊥)

≤𝑚𝐿,𝐿
1 (𝜔)(𝑢𝑖𝑗

0,𝜈 , 𝑄𝜈(0, 𝜆𝑘)) + 𝐶Λ𝑑−2
𝑘 ,

which yields

lim sup
𝑘→+∞

1

Λ𝑑−1
𝑘

𝑚𝐿,𝐿
1 (𝜔)(𝑢𝑖𝑗

0,𝜈 , 𝑄𝜈(0,Λ𝑘)) ≤ 𝜑𝐿
𝑖𝑗(𝜔; 𝜈). (3.27)

62



Similar one can prove that

𝜑𝐿
𝑖𝑗(𝜔; 𝜈) ≤ lim inf

𝑘→+∞

1

Λ𝑑−1
𝑘

𝑚𝐿,𝐿
1 (𝜔)(𝑢𝑖𝑗

0,𝜈 , 𝑄𝜈(0,Λ𝑘)). (3.28)

Combining (3.27) and (3.28) yields almost surely the existence of the limit for arbi-

trary sequences.

Substep 2.3 Shift invariance in the probability space

Up to extracting a countable union of null sets we may assume that the limit defin-

ing 𝜑𝐿
𝑖𝑗(𝜔; 𝜈) exists for all rational directions 𝜈. We next prove that the function

𝜔 ↦→ 𝜑𝐿
𝑖𝑗(𝜔; 𝜈) is invariant under the entire group action {𝜏𝑧}𝑧∈Z𝑑 . This will be impor-

tant to treat the ergodic case but also for the shift invariance in the physical space.

Given 𝑧 ∈ Z𝑑 there exists 𝑅 = 𝑅(𝐿, 𝑧) > 0 such that for all 𝑡 > 0

𝑄𝜈(0, 𝑡) ⊂ 𝑄𝜈(−𝑧,𝑅 + 𝑡), 4𝐿 ≤ dist(𝜕𝑄𝜈(0, 𝑡), 𝜕𝑄𝜈(−𝑧,𝑅 + 𝑡)). (3.29)

Similar to the stationarity of the stochastic process we have

𝜑𝐿
𝑖𝑗(𝜏𝑧𝜔; 𝜈) ≤ lim sup

𝑡→+∞

1

(𝑅 + 𝑡)𝑑−1
𝑚𝐿,𝐿

1 (𝜔)(𝑢𝑖𝑗
−𝑧,𝜈 , 𝑄𝜈(−𝑧,𝑅 + 𝑡))

= lim sup
𝑡→+∞

1

𝑡𝑑−1
𝑚𝐿,𝐿

1 (𝜔)(𝑢𝑖𝑗
−𝑧,𝜈 , 𝑄𝜈(−𝑧,𝑅 + 𝑡)).

Due to (3.29) we can apply Lemma 3.17 to the cube 𝑄𝜈(−𝑧, 𝑅+ 𝑡) and the singleton

family {𝑄𝜈(0, 𝑡)} and deduce that there exists a constant 𝐶 = 𝐶(𝑅, 𝑧) such that

𝑚𝐿,𝐿
1 𝐿(𝜔)(𝑢𝑖𝑗

−𝑧,𝜈 , 𝑄𝜈(−𝑧,𝑅 + 𝑡)) ≤ 𝑚𝐿,𝐿
1 (𝜔)(𝑢𝑖𝑗

0,𝜈 , 𝑄𝜈(0, 𝑡)) + 𝐶𝑡𝑑−2.

Hence we get 𝜑𝐿
𝑖𝑗(𝜏𝑧𝜔; 𝜈) ≤ 𝜑𝐿

𝑖𝑗(𝜔; 𝜈). The other inequality can be proven similar so

that the limit indeed exists (which we implicitly assumed with our notation) and, for

P-almost every 𝜔 ∈ Ω,

𝜑𝐿
𝑖𝑗(𝜏𝑧𝜔; 𝜈) = 𝜑𝐿

𝑖𝑗(𝜔; 𝜈). (3.30)

In particular the function 𝜔 ↦→ 𝜑𝐿
𝑖𝑗(𝜔; 𝜈) is measurable with respect to the 𝜎-algebra

𝒥 of invariant sets, that is

𝒥 := {𝐴 ∈ ℱ : P(𝐴∆𝜏𝑧𝐴) = 0 ∀𝑧 ∈ Z𝑑}.

Step 3 Shift invariance in the physical space

In this step we prove the existence of the limit defining 𝜑𝐿
𝑖𝑗(𝜔; 𝜈) when we blow up a

cube not centered in the origin. We further show that it agrees with the one already
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considered. We first take a cube 𝑄𝜈(𝑥, 𝜌) with rational direction 𝜈, 𝑥 ∈ Z𝑑∖{0} and

𝜌 ∈ Q. Given 𝜀 > 0 we define the events

𝒬𝐾 :=

{︃
𝜔 ∈ Ω : sup

𝑡≥𝐾
2

⃒⃒⃒
(𝑡𝜌)1−𝑑𝑚𝐿,𝐿

1 (𝜔)(𝑢𝑖𝑗
0,𝜈 , 𝑄𝜈(0, 𝑡𝜌)) − 𝜑𝐿

𝑖𝑗(𝜔; 𝜈)
⃒⃒⃒
≤ 𝜀

}︃
.

By Step 2 we know that the function 1𝒬𝐾
converges almost surely to 1Ω when 𝐾 →

+∞. Let us denote by 𝒥𝑥 the 𝜎-algebra of invariant sets for the measure preserving

map 𝜏𝑥. Fatou’s lemma for the conditional expectation yields

1Ω = E[1Ω|𝒥𝑥] ≤ lim inf
𝐾→+∞

E[1𝒬𝐾
|𝒥𝑥]. (3.31)

By (3.31), given 𝛿 > 0, almost surely we find 𝐾0 = 𝐾0(𝜔, 𝛿) such that

1 ≥ E[1𝒬𝐾0
|𝒥𝑥](𝜔) ≥ 1 − 𝛿.

Due to Theorem 2.22, almost surely, there exists 𝑘0 = 𝑘0(𝜔, 𝛿) such that, for any

𝑘 ≥ 𝑘0
2
, ⃒⃒⃒⃒

⃒1𝑘
𝑘∑︁

𝑖=1

1𝒬𝐾0
(𝜏𝑖𝑥𝜔) − E[1𝒬𝐾0

|𝒥𝑥](𝜔)

⃒⃒⃒⃒
⃒ ≤ 𝛿.

Note that the set we exclude will be a countable union of null sets provided 𝜀 is

rational.

For fixed 𝑘 ≥ max{𝑘0, 𝐾0} we denote by 𝑅 the maximal integer such that for all

𝑖 = 𝑘 + 1, . . . , 𝑘 +𝑅 we have 𝜏𝑖𝑥(𝜔) /∈ 𝒬𝐾0 . In order to bound 𝑅 let 𝑘 be the number

of unities in the sequence {1𝒬𝐾0
(𝜏𝑖𝑥(𝜔))}𝑘𝑖=1. By definition of 𝑅 we have

𝛿 ≥

⃒⃒⃒⃒
⃒ 𝑘

𝑘 + 𝑅
− E[1𝒬𝐾0

|𝒥𝑥](𝜔)

⃒⃒⃒⃒
⃒ =

⃒⃒⃒⃒
⃒1 − E[1𝒬𝐾0

|𝒥𝑥](𝜔) +
𝑘 − 𝑘 −𝑅

𝑘 + 𝑅

⃒⃒⃒⃒
⃒ ≥ 𝑅 + 𝑘 − 𝑘

𝑘 + 𝑅
− 𝛿.

Since 𝑘 − 𝑘 ≥ 0 and without loss of generality 𝛿 ≤ 1
4
, this provides an upper bound

by 𝑅 ≤ 4𝑘𝛿.

So for any 𝑘 ≥ max{𝑘0, 𝐾0} and 𝑅̃ = 6𝑘𝛿 we find 𝑙𝑘 ∈ [𝑘 + 1, 𝑘 + 𝑅̃] such that

𝜏𝑙𝑘𝑥(𝜔) ∈ 𝒬𝐾0 . Then by stationarity and (3.30) we have for all 𝑡 ≥ 𝐾0

2
that⃒⃒⃒

(𝑡𝜌)1−𝑑𝑚𝐿,𝐿
1 (𝜔)(𝑢𝑖𝑗

−𝑙𝑘𝑥,𝜈
, 𝑄𝜈(−𝑙𝑘𝑥, 𝑡𝜌)) − 𝜑𝐿

𝑖𝑗(𝜔; 𝜈)
⃒⃒⃒
≤ 𝜀. (3.32)

We define 𝛽𝑘 = 𝑘+ 𝑐𝐿𝜌
−1|𝑥|(𝑙𝑘−𝑘), where 𝑐𝐿 ∈ N is chosen such that 𝑄𝜈(−𝑘𝑥, 𝑘𝜌) ⊂

𝑄𝜈(−𝑙𝑘𝑥, 𝛽𝑘𝜌) and dist(𝜕𝑄𝜈(−𝑘𝑥, 𝑘𝜌), 𝜕𝑄𝜈(−𝑙𝑘𝑥, 𝛽𝑘𝜌)) > 𝐿. Observe that such 𝑐𝐿
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exists as 𝑙𝑘−𝑘 ≥ 1. Then each face of the cube 𝑄𝜈(−𝑘𝑥, 𝑘𝜌) has at most the distance

(𝛽𝑘−𝑘)𝜌 = 𝑐𝐿|𝑥|(𝑙𝑘−𝑘) to the corresponding face in 𝑄𝜈(−𝑙𝑘𝑥, 𝛽𝑘𝜌). Now, for 𝑘 large

enough, we can apply Lemma 3.17 to the cube 𝑄(−𝑙𝑘𝑥, 𝛽𝑘𝜌) and the singleton family

{𝑄𝜈(−𝑘𝑥, 𝑘𝜌)} to obtain

𝑚𝐿,𝐿
1 (𝜔)(𝑢𝑖𝑗

−𝑙𝑘𝑥,𝜈
, 𝑄𝜈(−𝑙𝑘𝑥, 𝛽𝑘𝜌))

(𝛽𝑘𝜌)𝑑−1
≤

𝑚𝐿,𝐿
1 (𝜔)(𝑢𝑖𝑗

−𝑘𝑥,𝜈 , 𝑄𝜈(−𝑘𝑥, 𝑘𝜌))

(𝛽𝑘𝜌)𝑑−1
+ 𝐶𝑅̃(𝛽𝑘𝜌)−1

≤
𝑚𝐿,𝐿

1 (𝜔)(𝑢𝑖𝑗
−𝑘𝑥,𝜈 , 𝑄𝜈(−𝑘𝑥, 𝑘𝜌))

(𝑘𝜌)𝑑−1
+ 6𝐶𝛿. (3.33)

On the other hand we can define 𝜃𝑘 = 𝑘 − 𝑐′𝐿𝜌
−1|𝑥|(𝑙𝑘 − 𝑘) for a suitable 𝑐′𝐿 ∈ N and

deduce from a similar reasoning that

𝑚𝐿,𝐿
1 (𝜔)(𝑢𝑖𝑗

−𝑘𝑥,𝜈 , 𝑄𝜈(−𝑘𝑥, 𝑘𝜌))

(𝑘𝜌)𝑑−1
≤

𝑚𝐿,𝐿
1 (𝜔)(𝑢𝑖𝑗

−𝑙𝑘𝑥,𝜈
, 𝑄𝜈(−𝑙𝑘𝑥, 𝜃𝑘𝜌))

(𝜃𝑘𝜌)𝑑−1
+ 6𝐶𝛿. (3.34)

Now if 𝛿 is small enough (depending only on 𝑥, 𝐿 and 𝜌) we have 𝛽𝑘 ≥ 𝜃𝑘 ≥ 𝑘
2
≥ 𝐾0

2
.

Combining (3.33), (3.34) and (3.32) we infer

lim sup
𝑘→+∞

⃒⃒⃒⃒
⃒𝑚

𝐿,𝐿
1 (𝜔)(𝑢𝑖𝑗

−𝑘𝑥,𝜈 , 𝑄𝜈(−𝑘𝑥, 𝑘))

𝑘𝑑−1
− 𝜑𝐿

𝑖𝑗(𝜔; 𝜈)

⃒⃒⃒⃒
⃒ ≤ 6𝐶𝛿 + 𝜀,

which yields the claim in (3.24) for 𝑄𝜈(𝑥, 𝜌) with 𝑥 ∈ Z𝑑 and rational 𝜈 and 𝜌. The

extension to arbitrary sequences 𝑡𝑘 → +∞ (and thus to rational centers 𝑥) can be

achieved again by Lemma 3.17 comparing first the minimal energy on the two cubes

𝑄𝜈(⌊𝑡𝑘⌋𝑥, ⌊𝑡𝑘⌋𝜌) and 𝑄𝜈(⌊𝑡𝑘⌋𝑥, 𝑡𝑘𝜌) similar to Substep 2.2 and then the energy on the

latter cube with the one on 𝑄𝜈(𝑡𝑘𝑥, 𝑡𝑘𝜌) as in Substep 2.3. Eventually the convergence

of irrational 𝜌 follows from the estimate

𝑚𝐿,𝐿
1 (𝜔)(𝑢𝑖𝑗

𝑡𝑘𝑥,𝜈
, 𝑄𝜈(𝑡𝑘𝑥, 𝑡𝑘𝜌)) ≤ 𝑚𝐿,𝐿

1 (𝜔)(𝑢𝑖𝑗
𝑡𝑘𝑥,𝜈

, 𝑄𝜈(𝑡𝑘𝑥, 𝑡𝑘(𝜌− 𝛿)) + 𝐶𝑡𝑘𝛿(𝑡𝑘𝜌)𝑑−2,

which is a consequence of Lemma 3.17 applied to the cube 𝑄𝜈(𝑡𝑘𝑥, 𝑡𝑘𝜌) and the

singleton family {𝑄𝜈(𝑡𝑘𝑥, 𝑡𝑘(𝜌− 𝛿))}, when one neglects lower order terms. Choosing

0 < 𝛿𝑛 → 0 such that 𝜌− 𝛿𝑛 ∈ Q then yields

lim sup
𝑘

𝑚𝐿,𝐿
1 (𝜔)(𝑢𝑖𝑗

𝑡𝑘𝑥,𝜈
, 𝑄𝜈(𝑡𝑘𝑥, 𝑡𝑘𝜌))

(𝑡𝑘𝜌)𝑑−1
≤ 𝜑𝐿

𝑖𝑗(𝜔; 𝜈).

Using the same argument for the cube 𝑄𝜈(𝑡𝑘𝑥, 𝑡𝑘(𝜌+𝛿)) and the family {𝑄𝜈(𝑡𝑘𝑥, 𝑡𝑘𝜌)}
we find that the limit exists and agrees with 𝜑𝐿

𝑖𝑗(𝜔; 𝜈). Finally, for irrational centers
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we can use again a perturbation argument based on Lemma 3.17 as we did for proving

(3.33) and (3.34). We omit the details.

Step 4 From rational to irrational directions

Now we extend the convergence from rational directions to all 𝜈 ∈ 𝑆𝑑−1. As the

argument is purely geometric, we assume without loss of generality that 𝑥 = 0.

First note that the set of rational directions is dense in 𝑆𝑑−1 (as the inverse of the

stereographic projection maps rational points to rational directions). Given 𝜈 ∈ 𝑆𝑑−1

and a sequence 𝑡𝑘 → +∞ we define

𝜑
𝐿

𝑖𝑗(𝜔; 𝜈) = lim sup
𝑘→+∞

1

𝑡𝑑−1
𝑘

𝑚𝐿,𝐿
1 (𝜔)(𝑢𝑖𝑗

0,𝜈 , 𝑄𝜈(0, 𝑡𝑘)),

𝜑𝐿

𝑖𝑗
(𝜔; 𝜈) = lim inf

𝑘→+∞

1

𝑡𝑑−1
𝑘

𝑚𝐿,𝐿
1 (𝜔)(𝑢𝑖𝑗

0,𝜈 , 𝑄𝜈(0, 𝑡𝑘)).

Let 𝜈 ∈ 𝑆𝑑−1∖Q𝑑. By the construction of the matrix 𝐴𝜈 in Substep 2.1 we can assume

that there exists a sequence of rational directions 𝜈𝑛 such that 𝐴𝜈𝑛 → 𝐴𝜈 . Therefore,

given 𝛿 > 0 we find 𝑛0 ∈ N such that for all 𝑛 ≥ 𝑛0 the following properties hold:

(i) 𝑄𝜈(0, (1 − 2𝛿)) ⊂⊂ 𝑄𝜈𝑛(0, 1 − 𝛿) ⊂⊂ 𝑄𝜈(0, 1),

(ii) 0 < dℋ(𝜈⊥ ∩𝐵2(0), 𝜈⊥
𝑛 ∩𝐵2(0)) ≤ 𝛿.

Now we argue similar as in the proof of Lemma 3.17. For fixed 𝑛 ≥ 𝑛0 and 𝑘 ∈ N let

𝑢𝑛,𝑘 ∈ 𝒫𝒞1(𝜔) be an admissible minimizer for 𝑚𝐿,𝐿
1 (𝜔)(𝑢𝑖𝑗

0,𝜈𝑛 , 𝑄𝜈𝑛(0, (1 − 𝛿)𝑡𝑘)). We

define a test function 𝑣𝑘 ∈ 𝒫𝒞1(𝜔) setting

𝑣𝑘(𝑥) :=

⎧⎨⎩𝑢𝑛,𝑘(𝑥) if 𝑥 ∈ 𝑄𝜈𝑛(0, (1 − 𝛿)𝑡𝑘),

𝑢𝑖𝑗
0,𝜈(𝑥) otherwise.

Note that if 𝑥, 𝑦 ∈ 𝑄𝜈(0, 𝑡𝑘)∖𝑄𝜈𝑛(0, (1 − 𝛿)𝑡𝑘) are such that |𝑥− 𝑦| ≤ 𝐿 and 𝑣𝑘(𝑥) ̸=
𝑣𝑘(𝑦), then by the choice of 𝑛0 and (i), for 𝑛 large enough we have

dist
(︀
𝑥, (𝑄𝜈(0, 𝑡𝑘)∖𝑄𝜈(0, (1 − 2𝛿)𝑡𝑘)) ∩ 𝜈⊥)︀ ≤ 𝐿. (3.35)

If 𝑥 ∈ 𝑄𝜈(0, 𝑡𝑘)∖𝑄𝜈𝑛(0, (1 − 𝛿)𝑡𝑘) and 𝑦 ∈ 𝑄𝜈𝑛(0, (1 − 𝛿)𝑡𝑘) with |𝑥 − 𝑦| ≤ 𝐿 and

𝑣𝑘(𝑥) ̸= 𝑣𝑘(𝑦), then, for 𝑛 large enough one can show that by (ii) either 𝑥 or 𝑦 must

lie in the cone

𝒦(𝜈, 𝜈𝑛) = {𝑥 ∈ R𝑑 : ⟨𝑥, 𝜈⟩ · ⟨𝑥, 𝜈𝑛⟩ ≤ 0}.
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As the ray [𝑥, 𝑦] intersects 𝜕𝑄𝜈𝑛(0, (1 − 𝛿)𝑡𝑘), we conclude that

dist(𝑥, (𝒦(𝜈, 𝜈𝑛) + 𝐵𝐿(0)) ∩ 𝜕𝑄𝜈𝑛(0, (1 − 𝛿)𝑡𝑘)) ≤ 𝐿. (3.36)

By (i) it holds that 𝑣𝑘 ∈ 𝒫𝒞𝐿
1,𝑢𝑖𝑗

0,𝜈
(𝜔,𝑄𝜈(0, 𝑡𝑘)) for 𝑘 large enough. From (3.35), (3.36)

and the choice of 𝑛0 we deduce that for 𝑛 large enough

𝑚𝐿,𝐿
1 (𝜔)(𝑢𝑖𝑗

0,𝜈 , 𝑄𝜈(0, 𝑡𝑘) ≤ 𝑚𝐿,𝐿
1 (𝜔)(𝑢𝑖𝑗

0,𝜈𝑛 , 𝑄𝜈𝑛(0, (1 − 𝛿)𝑡𝑘)) + 𝐶𝛿𝑡𝑑−1
𝑘 .

Dividing the last inequality by 𝑡𝑑−1
𝑘 and passing to the right subsequence of 𝑡𝑘 we

deduce

𝜑
𝐿

𝑖𝑗(𝜔; 𝜈) ≤ 𝜑𝐿
𝑖𝑗(𝜔; 𝜈𝑛) + 𝐶𝛿.

Letting first 𝑛 → +∞ and then 𝛿 → 0 yields 𝜑
𝐿

𝑖𝑗(𝜔; 𝜈) ≤ lim inf𝑛 𝜑
𝐿
𝑖𝑗(𝜔; 𝜈𝑛). By a

similar argument we can also prove that lim sup𝑛 𝜑
𝐿
𝑖𝑗(𝜔; 𝜈𝑛) ≤ 𝜑𝐿

𝑖𝑗
(𝜔; 𝜈). Hence we get

almost surely the existence of the limit in (3.24) for all directions 𝜈 and the limit does

not depend on 𝑥, 𝜌 and the sequence 𝑡𝑘.

Step 5 Proof of (3.23)

We claim that 𝜑𝐿
𝑖𝑗(𝜔; 𝜈) = 𝜑𝐿

hom(𝜔;𝑚𝑖,𝑚𝑗, 𝜈). By the preceding steps this would

conclude the proof. First observe that by monotonicity it is enough to show that

𝜑𝐿
hom(𝜔;𝑚𝑖,𝑚𝑗, 𝜈) ≤ 𝜑𝐿

𝑖𝑗(𝜔; 𝜈). Let 𝑡𝑘 → +∞ and fix a cube 𝑄𝜈(𝑥, 𝜌). By a trivial

extension argument, for 𝜂 small enough (depending on 𝜌) it holds that

𝑚𝜂𝑡𝑘,𝐿
1 (𝜔)(𝑢𝑖𝑗

𝑡𝑘𝑥,𝜈
, 𝑄(𝑡𝑘𝑥, 𝑡𝑘𝜌)) ≤ 𝑚𝐿,𝐿

1 (𝜔)(𝑢𝑖𝑗
𝑡𝑘𝑥,𝜈

, 𝑄(𝑡𝑘𝑥, 𝑡𝑘𝜌− 𝜂𝑡𝑘)) + 𝐶𝜂𝑡𝑑−1
𝑘 .

Dividing by (𝑡𝑘𝜌)𝑑−1 and letting first 𝑘 → +∞ and then 𝜂 → 0 we obtain the claim.

When the group action is ergodic, the additional statement in Theorem 3.19 follows

easily from (3.30) since in this case all the functions 𝜔 ↦→ 𝜑𝐿
𝑖𝑗(𝜔; 𝜈) are constant and

so is the pointwise limit when 𝐿 → +∞.

Remark 3.21. As the integrand of the Γ-limit is independent of 𝑥, we deduce in

particular that for any fixed 𝑚𝑖,𝑚𝑗 and P-almost every 𝜔 ∈ Ω the function R𝑑 ∋ 𝜈 ↦→
𝜑hom(𝜔;𝑚𝑖,𝑚𝑗,

𝜈
|𝜈|)|𝜈| is convex (this follows for instance from Theorem 3.1 in [9]). In

particular we obtain local Lipschitz continuity with respect to 𝜈. In the ergodic case

this implies that the whole limit energy is deterministic.

Finally we give a simpler expression for the limit integrand, where only one limit

procedure is necessary. Moreover, in the next section we prove a result that shows

that the formulas for the limit integrand are independent of the choice of basis vectors

for the cube 𝑄𝜈 (see Remark 3.25).
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Corollary 3.22. Let 𝑙𝜀 be sequence satisfying (3.37). Under the assumptions from
Theorem 3.19, almost surely it holds that

𝜑hom(𝜔;𝑚𝑖,𝑚𝑗, 𝜈) = lim
𝑡→+∞

1

𝑡𝑑−1
inf

{︁
𝐸1(𝜔)(𝑢, 𝑡𝑄𝜈) : 𝑢 ∈ 𝒫𝒞𝑙1/𝑡

1,𝑢0,𝑚𝑖,𝑚𝑗,𝜈
(𝜔, 𝑡𝑄𝜈)

}︁
.

Proof. As 𝑙1/𝑡 ≤ 𝜂𝑡 for fixed 𝜂 > 0 and 𝑡 large enough, 𝜑hom(𝜔;𝑚𝑖,𝑚𝑗, 𝜈) dominates

the limes superior of the right hand side. On the other hand, again by monotonicity

we have

lim inf
𝑡→+∞

{︁
𝐸1(𝜔)(𝑢, 𝑡𝑄𝜈) : 𝑢 ∈ 𝒫𝒞𝑙1/𝑡

1,𝑢0,𝑚𝑖,𝑚𝑗,𝜈
(𝜔, 𝑡𝑄𝜈)

}︁
≥ 𝜑𝐿

𝑖𝑗(𝜔; 𝜈).

Letting 𝐿 → +∞, by Steps 1 and 5 of the proof of Theorem 3.19 we obtain that the

limit exists and agrees with 𝜑hom(𝜔;𝑚𝑖,𝑚𝑗, 𝜈).

3.4 Convergence of boundary value problems

In this section we consider the convergence of minimum problems under Dirichlet-type

boundary conditions. In contrast to the rather artificial boundary conditions used in

Section 3.3 we now consider boundary conditions depending only on the microscopic

𝜀-scale. Due to possible long range interactions the boundary still needs to blow up

in some weak sense.

Let us fix 𝐴 ∈ 𝒜𝑅(𝐷). Still we restrict the analysis to the case when the boundary

data 𝑢0 is well-prepared in the sense of (3.13).

We define a discrete trace constraint as follows: Let 𝑙𝜀 > 0 be such that

lim
𝜀→0

𝑙𝜀 = +∞, lim
𝜀→0

𝑙𝜀𝜀 = 0. (3.37)

As in Section 3.3 we set 𝒫𝒞𝑙𝜀𝜀
𝜀,𝑢0

(𝜔,𝐴) as the space of those 𝑢 that agree with 𝑢0 at

the discrete boundary of 𝐴, namely

𝒫𝒞𝑙𝜀𝜀
𝜀,𝑢0

(𝜔,𝐴) := {𝑢 ∈ 𝒫𝒞𝜀(𝜔) : 𝑢(𝜀𝑥) = 𝑢0(𝜀𝑥) if dist(𝜀𝑥, 𝜕𝐴) ≤ 𝑙𝜀𝜀}.

In contrast to Lemma 3.16 we now prove a full Γ-convergence result. For 𝜀 > 0 and

𝑙𝜀 > 0 we consider the restricted functional 𝐸𝑙𝜀
𝜀,𝑢0

(𝜔)(·, 𝐴) : 𝐿1(𝐷) → [0,+∞] defined

as

𝐸𝑙𝜀
𝜀,𝑢0

(𝜔)(𝑢,𝐴) :=

⎧⎨⎩𝐸𝜀(𝜔)(𝑢,𝐴) if 𝑢 ∈ 𝒫𝒞𝑙𝜀𝜀
𝜀,𝑢0

(𝜔,𝐴),

+∞ otherwise.
(3.38)
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The following convergence result holds true:

Theorem 3.23. Under the assumptions from Theorem 3.19, for every set 𝐴 ∈ 𝒜𝑅(𝐷)

such that 𝐴 ⊂⊂ 𝐷 the functionals 𝐸,𝑙𝜀
𝜀,𝑢0

(𝜔)(·, 𝐴) defined in (3.38) Γ-converge with
respect to the strong 𝐿1(𝐴)-topology to the functional 𝐸𝑢0(𝜔)(·, 𝐴) : 𝐿1(𝐷) → [0,+∞]

that is finite only for 𝑢 ∈ 𝐵𝑉 (𝐴,ℳ) where it takes the form

𝐸𝑢0(𝜔)(𝑢,𝐴) =

∫︁
𝑆𝑢∩𝐴

𝜑hom(𝜔;𝑢+, 𝑢−, 𝜈𝑢) dℋ𝑑−1 +

∫︁
𝜕𝐴

𝜑hom(𝜔;𝑢+, 𝑢−
0 , 𝜈𝑥) dℋ𝑑−1,

where 𝜈𝑥 denotes a suitably orientated normal vector to 𝜕𝐴.

Proof. By Proposition 3.11 we know that any Γ-limit can be finite only for 𝑢 ∈
𝐵𝑉 (𝐴,ℳ). We now split the argument in two steps:

Step 1 Proof of the lim inf-inequality.

Without loss of generality let 𝑢𝜀 → 𝑢 in 𝐿1(𝐴) be such that

lim inf
𝜀

𝐸𝑙𝜀
𝜀,𝑢0

(𝜔)(𝑢𝜀, 𝐴) < 𝐶.

Passing to a subsequence we can assume that 𝑢𝜀 ∈ 𝒫𝒞𝑙𝜀𝜀
𝜀,𝑢0

(𝜔,𝐴). Given 𝛿 > 0,

by (3.13) and choosing appropriate level sets of the signed distance function of 𝜕𝐴,

Theorem 2.15 and Remark 2.16 yield Lipschitz sets 𝐴1 ⊂⊂ 𝐴 ⊂⊂ 𝐴2 such that

ℋ𝑑−1(𝑆𝑢0 ∩ 𝜕𝐴1) = ℋ𝑑−1(𝑆𝑢0 ∩ 𝜕𝐴2) = 0,

ℋ𝑑−1(𝑆𝑢0 ∩ (𝐴2∖𝐴1)) ≤ 𝛿.

Recall that 𝑢𝜀,0 ∈ 𝒫𝒞𝑙𝜀𝜀
𝜀,𝑢0

(𝜔,𝐴) denotes the function defined by 𝑢𝜀,0(𝜀𝑥) = 𝑢0(𝜀𝑥). By

(3.13) we have 𝑢𝜀,0 → 𝑢0 in 𝐿1(𝐷) and, by the choice of 𝐴1 and 𝐴2,

lim sup
𝜀

𝐸𝜀(𝜔)(𝑢𝜀,0, 𝐴2∖𝐴1) ≤ 𝐶 𝛿. (3.39)

Next we define 𝑢̃𝜀 ∈ 𝒫𝒞𝜀(𝜔) by

𝑢̃𝜀(𝜀𝑥) = 1𝐴(𝜀𝑥)𝑢𝜀(𝜀𝑥) + (1 − 1𝐴(𝜀𝑥))𝑢𝜀,0(𝜀𝑥).

Let us observe that 𝑢̃𝜀 → 1𝐴𝑢 + (1 − 1𝐴)𝑢0 in 𝐿1(𝐷). Setting

𝑅𝜉
𝜀 := {𝛼 ∈ 𝑅𝜉

𝜀(𝐴2) : 𝜀𝑥𝛼 ∈ 𝐴, 𝜀𝑥𝛼+𝜉 /∈ 𝐴 or 𝜀𝑥𝛼 /∈ 𝐴, 𝜀𝑥𝛼+𝜉 ∈ 𝐴},
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for all 𝐿 ∈ N the truncated energies satisfy

𝐸𝐿
𝜀 (𝜔)(𝑢̃𝜀, 𝐴2) ≤𝐸𝑙𝜀

𝜀,𝑢0
(𝜔)(𝑢𝜀, 𝐴) + 𝐸𝜀(𝜔)(𝑢𝜀,0, 𝐴2∖𝐴1)

+
∑︁
|𝜉|≤𝐿

∑︁
𝛼∈𝑅𝜉

𝜀

𝜀𝑑−1𝑔𝜔𝜀 (𝑥𝛼, 𝑥𝛼+𝜉, 𝑢̃𝜀(𝜀𝑥𝛼), 𝑢̃𝜀(𝜀𝑥𝛼+𝜉)). (3.40)

For interactions where |𝜉| ≤ 𝐿 and 𝜀 small enough, we have that 𝑅𝜉
𝜀 ⊂ 𝐴2∖𝐴1.

Moreover, if 𝑙𝜀 > 𝐿 + 2𝑟, we can use the boundary conditions on 𝑢𝜀 to infer∑︁
|𝜉|≤𝐿

∑︁
𝛼∈𝑅𝜉

𝜀

𝜀𝑑−1𝑔𝜔𝜀 (𝑥𝛼, 𝑥𝛼+𝜉, 𝑢̃𝜀(𝜀𝑥𝛼), 𝑢̃𝜀(𝜀𝑥𝛼+𝜉)) ≤ 𝐸𝜀(𝜔)(𝑢𝜀,0, 𝐴2∖𝐴1).

From Theorem 3.19 applied to the truncated energies 𝐸𝐿
𝜀 (𝜔) and the estimates (3.39)

and (3.40) we conclude

𝐸𝐿
hom(𝜔)(1𝐴𝑢 + (1 − 1𝐴)𝑢0, 𝐴2) ≤ lim inf

𝜀
𝐸𝑙𝜀

𝜀,𝑢0
(𝜔)(𝑢𝜀, 𝐴) + 𝐶 𝛿.

Now letting 𝐴2 ↓ 𝐴, then 𝛿 → 0 and finally 𝐿 → +∞ the lim inf-inequality follows

by Step 1 of the proof of Theorem 3.19 and monotone convergence.

Step 2 Proof of the lim sup-inequality.

We start assuming that 𝑢 = 𝑢0 in a neighborhood of 𝜕𝐴. In this case exactly the

same construction as in the proof of Lemma 3.16 yields

Γ- lim sup
𝜀

𝐸𝑙𝜀
𝜀,𝑢0

(𝜔)(𝑢,𝐴) ≤ 𝐸hom(𝜔)(𝑢,𝐴).

Note that (3.37) guarantees that the constructed sequence fulfills the correct boundary

conditions for 𝜀 small enough.

Now given any 𝑢 ∈ 𝐵𝑉 (𝐴,ℳ) let 𝑢𝑛 be the sequence given by Lemma 2.17 with

𝑣 = 𝑢 and 𝑤 = 𝑢0 and let 𝐴′ ∈ 𝒜𝑅(𝐷), 𝐴 ⊂⊂ 𝐴′. By lower semicontinuity, the

previous reasoning and Lemma 2.14 combined with Remark 3.21 we have

Γ- lim sup
𝜀

𝐸𝑙𝜀
𝜀,𝑢0

(𝜔)(𝑢,𝐴) ≤ lim inf
𝑛

(︂
Γ- lim sup

𝜀
𝐸𝑙𝜀

𝜀,𝑢0
(𝜔)(𝑢𝑛, 𝐴)

)︂
≤ lim inf

𝑛
𝐸hom(𝜔)(𝑢𝑛, 𝐴

′) = 𝐸hom(𝜔)(1𝐴𝑢 + (1 − 1𝐴)𝑢0, 𝐴
′).

Letting 𝐴′ ↓ 𝐴 yields the upper bound.

Corollary 3.24. Let 𝐴 ∈ 𝒜𝑅(𝐷), 𝐴 ⊂⊂ 𝐷. Under the assumptions of Theorem
3.19, the following holds almost surely:
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(i)

lim
𝜀

(︂
inf

𝑢∈𝐵𝑉 (𝐴,ℳ)
𝐸𝑙𝜀

𝜀,𝑢0
(𝑢,𝐴)

)︂
= min

𝑢∈𝐵𝑉 (𝐴,ℳ)
𝐸𝑢0(𝜔)(𝑢,𝐴).

(ii) Moreover, if (𝑢𝜀)𝜀 is a converging sequence with respect to 𝐿1(𝐴) such that

𝐸𝑙𝜀
𝜀,𝑢0

(𝑢𝜀, 𝐴) = inf
𝑢∈𝐵𝑉 (𝐴,ℳ)

𝐸𝑙𝜀
𝜀,𝑢0

(𝑢,𝐴) + 𝒪(1),

then its limit is a minimizer of 𝐸𝑢0(𝜔)(·, 𝐴).

Proof. The statement follows from the general theory of Γ-convergence (in particular

Theorem 2.7) and Theorem 3.23 since the functionals are equicoercive in 𝐿1(𝐴).

Remark 3.25. (i) If we have only a finite range of interactions, which means that

𝑔𝜔(𝑥, 𝑦,𝑚𝑖,𝑚𝑗) = 0 for |𝑥− 𝑦| ≥ 𝐿 then (3.37) can be weakened to 𝑙𝜀 ≥ 𝐿.

(ii) Note that if 𝑢0 = 𝑢0,𝑚𝑖,𝑚𝑗 ,𝜈 and 𝐴 = 𝑄𝜈 , then it holds that

min
𝑢∈𝐵𝑉 (𝑄𝜈 ,ℳ)

𝐸𝑢0(𝜔)(𝑢,𝑄𝜈) = 𝐸𝑢0(𝜔)(𝑢0, 𝑄𝜈) = 𝜑hom(𝜔;𝑚𝑖,𝑚𝑗, 𝜈).

The first equality is a consequence of so-called 𝐵𝑉 -ellipticity and the fact

that 𝐸𝑢0(𝜔) coincides with the 𝐿1-relaxation of 𝐸(𝜔) when we put Dirichlet-

boundary conditions. We refer to [10] for more details as this is not the main

subject of this thesis. The above identity and Corollaries 3.22 and 3.24 imply

that the limit integrand does not depend on the orientation of the basis for 𝜈⊥.

3.5 Examples and generalizations

In this section, motivated by the applications, we provide a nontrivial example of a

stochastic lattices that is admissible in our setting. Then we generalize the results

obtained hitherto to the presence of phase constraints.

Random parking and isotropy

It is a very challenging problem to relate the symmetries of the stochastic lattice

to those of the limit energy density. It has already been observed in the periodic

setting in [3] that for Ising spin systems the discrete symmetries of the periodic lattice

induce anisotropies in the limit. In the stochastic setting, on the other hand, one can

imagine that the anisotropy of a single realization of the stochastic lattice may be

averaged out by ergodicity. This is indeed the case of another interesting and more
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involved probabilistic setup: the so-called random parking model investigated in [38].

This model provides an admissible stochastic lattice that is stationary, ergodic and in

addition stationary with respect to rotations in the following sense: for all 𝑅 ∈ 𝑆𝑂(𝑑)

there exists a measure preserving group action 𝜏𝑅 : Ω → Ω such that

ℒ(𝜏𝑅𝜔) = 𝑅ℒ(𝜔). (3.41)

If the discrete energy densities are isotropic in the spatial variable, that means (with

a slight abuse of notation)

𝑔𝑛𝑛(𝑧,𝑚𝑖,𝑚𝑗) = 𝑔𝑛𝑛(|𝑧|,𝑚𝑖,𝑚𝑗), 𝑔𝑙𝑟(𝑧,𝑚𝑖,𝑚𝑗) = 𝑔𝑙𝑟(|𝑧|,𝑚𝑖,𝑚𝑗), (3.42)

then one expects the limit energy to be isotropic, too. Indeed, the following theorem

holds.

Theorem 3.26. Let ℒ be a stationary (with respect to both translations and rota-
tions), ergodic stochastic lattice and let 𝑔𝑛𝑛, 𝑔𝑙𝑟 satisfy Hypothesis 1 and (3.42). Then
𝜈 ↦→ 𝜑hom(𝑚𝑖,𝑚𝑗, 𝜈) is constant and the Γ-limit of the functionals 𝐸𝜀(𝜔) is given by

𝐸(𝑢) =

⎧⎨⎩
∫︀
𝑆𝑢

𝜑hom(𝑢+, 𝑢−) dℋ𝑑−1 if 𝑢 ∈ 𝐵𝑉 (𝐷,ℳ),

+∞ otherwise.

Proof. By Theorem 3.19 and Remark 3.21 it suffices to prove that 𝜑hom(𝑚𝑖,𝑚𝑗, 𝑅𝜈) =

𝜑hom(𝑚𝑖,𝑚𝑗, 𝜈) for all 𝑅 ∈ 𝑆𝑂(𝑑). Since 𝜏𝑅 is measure preserving, by dominated

convergence, Corollary 3.22 and a change of variables it holds

𝜑hom(𝑚𝑖,𝑚𝑗, 𝑅𝜈) = lim
𝑡

1

𝑡𝑑−1
E
[︁
inf{𝐸1(·)(𝑢, 𝑡𝑄𝑅𝜈) : 𝑢 ∈ 𝒫𝒞𝑙1/𝑡

1,𝑢0,𝑚𝑖,𝑚𝑗,𝑅𝜈
(·, 𝑡𝑄𝑅𝜈)}

]︁
= lim

𝑡

1

𝑡𝑑−1
E
[︁
inf{𝐸1(𝜏𝑅𝑇 ·)(𝑢, 𝑡𝑄𝜈) : 𝑢 ∈ 𝒫𝒞𝑙1/𝑡

1,𝑢0,𝑚𝑖,𝑚𝑗,𝜈
(𝜏𝑅𝑇 ·, 𝑡𝑄𝜈)}

]︁
= lim

𝑡

1

𝑡𝑑−1
E
[︁
inf{𝐸1(·)(𝑢, 𝑡𝑄𝜈) : 𝑢 ∈ 𝒫𝒞𝑙1/𝑡

1,𝑢0,𝑚𝑖,𝑚𝑗,𝜈
(·, 𝑡𝑄𝜈)}

]︁
= 𝜑hom(𝑚𝑖,𝑚𝑗, 𝜈),

where we used (3.42) from the first to the second line as well as Remark 3.25 (ii).

Results for phase constraints

We finally consider the effect on the asymptotic behavior of the energy when we fix

the number of particles taking the magnetization 𝑚𝑖 for all 𝑖. More precisely, given a
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family of natural numbers 𝑉𝜀 = {𝑉𝑖,𝜀}𝑞𝑖=1, we set

𝒫𝒞𝑉𝜀
𝜀 (𝜔) := {𝑢 ∈ 𝒫𝒞𝜀(𝜔) : #{𝜀𝑥 ∈ 𝜀ℒ(𝜔) ∩𝐷 : 𝑢(𝜀𝑥) = 𝑚𝑖} = 𝑉𝑖,𝜀} .

Beside the natural compatibility condition
∑︀

𝑖 𝑉𝑖,𝜀 = #(𝜀ℒ(𝜔) ∩𝐷), we assume that,

for all 𝑖 = 1, . . . , 𝑞, there exists

lim
𝜀→0

𝑉𝑖,𝜀

#(𝜀ℒ(𝜔) ∩𝐷)
= 𝑉𝑖 > 0. (3.43)

Note that we exclude that case that 𝑉𝑖 = 0 for some 𝑖. This case contains some non-

trivial aspects which are related to the concept of (𝐵)-convexity studied in [10]. Such

conditions are not necessarily fulfilled for our discrete energies. Of course the extreme

case 𝑉𝑖,𝜀 = 0 for all 𝜀 can be treated by changing the set ℳ (and then probably also

the continuum limit). Moreover we stress that, in contrast to the previous results, in

this section it is crucial that 𝑑 ≥ 2. In one dimension there are easy counterexamples

that show that volume constraint may change the limit energy of the constant states.

In order to include the phase constraints in the energy, we define the functional

𝐸𝑉𝜀
𝜀 (𝜔) : 𝐿1(𝐷) → [0,+∞] as

𝐸𝑉𝜀
𝜀 (𝜔)(𝑢) =

⎧⎨⎩𝐸𝜀(𝜔)(𝑢) if 𝑢 ∈ 𝒫𝒞𝑉𝜀
𝜀 (𝜔),

+∞ otherwise.
(3.44)

The next lemma characterizes the limits of 𝐿1-converging sequences in 𝒫𝒞𝑉𝜀
𝜀 (𝜔).

Lemma 3.27. For P-almost every 𝜔 ∈ Ω the following statement holds true: If
𝑢𝜀 ∈ 𝒫𝒞𝑉𝜀

𝜀 (𝜔) is a sequence such that 𝑢𝜀 → 𝑢 in 𝐿1(𝐷) for some 𝑢 ∈ 𝐵𝑉 (𝐷,ℳ),
then for all 𝑖 = 1, . . . , 𝑞

|{𝑢 = 𝑚𝑖}| = 𝑉𝑖|𝐷|.

Proof. We define a random family of nonnegative functions 𝜇𝜀(𝜔) ∈ 𝐿∞(𝐷) via

𝜇𝜀(𝜔) =
∑︁

𝑥∈ℒ(𝜔)∩𝐷
𝜀

1

|𝒞(𝑥)|
1𝜀𝒞(𝑥).

Due to Lemma 3.4, for a set of full probability the family 𝜇𝜀(𝜔) is equibounded with

respect to 𝜀. Hence we may assume that, up to subsequences, 𝜇𝜀(𝜔)
*
⇀ 𝜇(𝜔) in

𝐿∞(𝐷). In order to identify the limit, we use the ergodic theorem. To this end, we

note that 𝜇 : ℐ𝑑 → 𝐿1(Ω) defined as 𝜇(𝐼, 𝜔) := #(ℒ(𝜔) ∩ 𝐼) is a stationary, additive

stochastic process. Applying Theorem 2.21, we know that there exists a set of full
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probability Ω′ such that for each fixed set 𝐼 ∈ ℐ𝑑 and all 𝑤 ∈ Ω′ there exists the limit

𝜇∞(𝜔) =
1

𝑛𝑑|𝐼|
#(ℒ(𝜔) ∩ 𝑛𝐼).

By standard arguments one can extend this convergence to all sequences and then to

half-open cubes with rational vertices. Finally by an approximation the convergence

holds for arbitrary sequences and any half-open cube 𝑄 ⊂ 𝐷. By additivity this result

then can be extended to every set 𝐴 ∈ 𝒜𝑅(𝐷) by interior and exterior approximation

with finite unions of half-open cubes. Moreover, by Lemma 3.4 it follows that⃒⃒⃒⃒∫︁
𝑄

𝜇𝜀(𝜔)(𝑥) d𝑥− 𝜀𝑑𝜇(𝑄/𝜀, 𝜔)

⃒⃒⃒⃒
≤ 𝐶ℋ𝑑−1(𝑄)𝜀.

Hence 𝜇𝜀(𝜔)
*
⇀ 𝜇∞(𝜔). In particular the limit is a constant function on 𝐷. Note that

by Lemma 3.4⃒⃒⃒⃒
𝑉𝑖,𝜀

#(𝜀ℒ(𝜔) ∩𝐷)
−

∫︁
𝐷

1{𝑢𝜀=𝑚𝑖}(𝑥)𝜇𝜀(𝜔)(𝑥)

𝜀𝑑#(𝜀ℒ(𝜔) ∩𝐷)
d𝑥

⃒⃒⃒⃒
≤ 𝐶

ℋ𝑑−1(𝜕𝐷)

|𝐷|
𝜀.

As the function 1{𝑢𝜀=𝑚𝑖} converges to 1{𝑢=𝑚𝑖} in 𝐿1(𝐷), combining weak*/strong

convergence, we obtain in the limit that

𝑉𝑖 =
1

𝜇∞(𝜔)|𝐷|

∫︁
𝐷

1{𝑢=𝑚𝑖}(𝑥)𝜇∞(𝜔) d𝑥 =
|{𝑢 = 𝑚𝑖}|

|𝐷|
.

Now we can prove a full Γ-convergence result for the constrained energies.

Theorem 3.28. Under the assumptions of Theorem 3.19 and (3.43), for P-almost
every 𝜔 ∈ Ω the functionals 𝐸𝑉𝜀

𝜀 (𝜔) Γ-converge with respect to the 𝐿1(𝐷)-topology to
the functional 𝐸𝑉

hom(𝜔) : 𝐿1(𝐷) → [0,+∞] defined by

𝐸𝑉
hom(𝜔)(𝑢) =

⎧⎨⎩𝐸hom(𝜔)(𝑢) if 𝑢 ∈ 𝐵𝑉 (𝐷,ℳ) and |{𝑢 = 𝑚𝑖}| = 𝑉𝑖|𝐷| for all 𝑖,

+∞ otherwise.

Proof. The lim inf-inequality is an immediate consequence of Lemma 3.27 and the

Γ-convergence result of Theorem 3.19 as 𝐸𝑉𝜀
𝜀 (𝜔)(𝑢) ≥ 𝐸𝜀(𝜔)(𝑢) for all 𝑢 ∈ 𝒫𝒞𝜀(𝜔).

In order to proof the upper bound, we first have to find a suitable dense class. For

the moment let us assume that 𝑢 ∈ 𝐵𝑉 (𝐷,ℳ) satisfies the volume constraint and

that each level set {𝑢 = 𝑚𝑖} contains an interior point. In particular, in each level
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set we find 𝑞 disjoint open balls 𝐵𝜂(𝑥
𝑗
𝑖 ) ⊂⊂ {𝑢 = 𝑚𝑖}. By Theorem 3.19 there exists

a sequence 𝑢𝜀 ∈ 𝒫𝒞𝜀(𝜔) such that 𝑢𝜀 → 𝑢 in 𝐿1(𝐷) and

lim
𝜀→0

𝐸𝜀(𝜔)(𝑢𝜀) = 𝐸hom(𝜔)(𝑢). (3.45)

Arguing similar to the proof of Proposition 3.15, up to reducing 𝜂 we may assume

that 𝑢𝜀(𝜀𝑥) = 𝑚𝑖 for all 𝜀𝑥 ∈ 𝜀ℒ(𝜔) ∩ 𝐵𝜂(𝑥
𝑗
𝑖 ) and that 𝑢𝜀 has equibounded energy

on a larger cube 𝑄𝐷 containing 𝐷. For each 𝑖 let us set 𝑉 ′
𝑖,𝜀 = #{𝜀𝑥 ∈ 𝜀ℒ(𝜔) ∩𝐷 :

𝑢𝜀(𝜀𝑥) = 𝑚𝑖}. As 𝑢𝜀 → 𝑢 in 𝐿1(𝐷), we can repeat the arguments from the proof of

Lemma 3.27 and obtain that

lim
𝜀→0

𝑉 ′
𝑖,𝜀 − 𝑉𝑖,𝜀

#(𝜀ℒ(𝜔) ∩𝐷)
= 0. (3.46)

We now adjust the sequence 𝑢𝜀 so that it belongs to 𝒫𝒞𝑉𝜀
𝜀 (𝜔). This will be done locally

on the balls 𝐵𝜂(𝑥
𝑗
𝑖 ). First we change the values on 𝐵𝜂(𝑥

1
1) and 𝐵𝜂(𝑥

1
2) so that the

sequence satisfies the constraint for 𝑖 = 1. In general, for 𝑖 < 𝑞 we change the sequence

on 𝐵𝜂(𝑥
𝑖
𝑖) and 𝐵𝜂(𝑥

𝑖
𝑖+1) so that it satisfies the constraints for all 𝑗 ≤ 𝑖. At the end

the constraint for 𝑖 = 𝑞 follows by the compatibility assumption. Each modification

will be such that 𝐿1-convergence and convergence of the energies is conserved. We

will provide the construction only for the first step. In what follows we consider the

case 𝑉 ′
1,𝜀 > 𝑉1,𝜀. We set ℎ𝜀 = (𝑉 ′

1,𝜀−𝑉1,𝜀)
1
𝑑 . Without loss of generality we may assume

that ℎ𝜀 → +∞, otherwise we change 𝑢𝜀 on a set of lattice points with diverging

cardinality much less than 𝜀1−𝑑 that is contained in the complement of the union of

balls 𝐵𝜂(𝑥
𝑗
𝑖 ). Using the integrability assumption from Hypothesis 1 it can be verified

that this operation still yields a recovery sequence with the same properties.

Observe that (3.46) and Lemma 3.4 imply that

lim
𝜀→0

ℎ𝜀𝜀 = 0. (3.47)

From the proof of Lemma 3.27 we already know that, almost surely, we can write

𝑞𝜔1 (ℎ𝜀) := #{𝑥 ∈ ℒ(𝜔) ∩𝑄𝑒1(𝑥
1
1, 𝜇

∞(𝜔)−1ℎ𝜀)} = ℎ𝑑
𝜀 + ℎ𝑑−1

𝜀 𝛾𝜀,

for some sequence 𝛾𝜀 = 𝛾𝜀(𝜔, 𝑥
1
1) such that lim𝜀→0

𝛾𝜀
ℎ𝜀

= 0. In the following we assume

that 𝛾𝜀 ≤ 0, but with a similar argument we can also treat the case 𝛾𝜀 > 0. As ℒ(𝜔)

is admissible in the sense of Definition 3.1, using Lemma 3.4 one can show that for
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some appropriate 𝑐 = 𝑐(𝑅) > 0 it holds true that

1

𝐶
ℎ𝑑−1
𝜀 ≤ 𝑞𝜔1 (ℎ𝜀 + 𝑛 + 𝑐) − 𝑞𝜔1 (ℎ𝜀 + 𝑛) ≤ 𝐶ℎ𝑑−1

𝜀

for any 0 ≤ 𝑛 ≤ ℎ𝜀. In particular, there exists 𝑛𝜀 = 𝒪(𝛾𝜀) and a nonnegative

equibounded 𝑐𝜀 such that

𝑞𝜔1 (ℎ𝜀 + 𝑛𝜀) = ℎ𝑑
𝜀 + 𝑐𝜀ℎ

𝑑−1
𝜀 . (3.48)

Using (3.47) we can find a set 𝐺𝜀 ⊂ 𝐵𝜂(𝑥
1
2) such that # (𝐺𝜀 ∩ 𝜀ℒ(𝜔)) = 𝑐𝜀ℎ

𝑑−1
𝜀 . To

reduce notation let us write 𝑄𝜀 := 𝑄𝑒1(𝑥
1
1, 𝜇

∞(𝜔)−1𝜀(ℎ𝜀 + 𝑛𝜀)). We define

𝑢̄𝜀(𝜀𝑥) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑚2 if 𝜀𝑥 ∈ 𝑄𝜀,

𝑚1 if 𝜀𝑥 ∈ 𝐺𝜀,

𝑢𝜀(𝜀𝑥) otherwise.

By (3.47) it holds 𝑄𝜀 ⊂⊂ 𝐵𝜂(𝑥
1
1) for 𝜀 small enough and therefore #{𝜀𝑥 ∈ 𝜀ℒ(𝜔)∩𝐷 :

𝑢̄𝜀(𝜀𝑥) = 𝑚1} = 𝑉1,𝜀 as well as 𝑢̄𝜀 → 𝑢 in 𝐿1(𝐷). We now estimate the energy. From

Hypothesis 1 we deduce

𝐸𝜀(𝜔)(𝑢̄𝜀) ≤𝐸𝜀(𝜔)(𝑢𝜀) + 𝐶
∑︁

𝜉∈𝑟′Z𝑑

𝐽𝑙𝑟(|𝜉|)#(𝐺𝜀 ∩ 𝜀ℒ(𝜔))𝜀𝑑−1

+
∑︁

𝜉∈𝑟′Z𝑑

∑︁
𝛼∈𝑅𝜉

𝜀(𝐷)
𝜀[𝑥𝛼,𝑥𝛼+𝜉]∩𝜕𝑄𝜀 ̸=∅

𝜀𝑑−1𝑔𝜔𝜀 (𝑥𝛼, 𝑥𝛼+𝜉, 𝑢̄𝜀(𝜀𝑥𝛼), 𝑢̄𝜀(𝜀𝑥𝛼+𝜉)). (3.49)

It remains to bound the last term as the second one vanishes by (3.47) and integra-

bility of 𝐽𝑙𝑟. We split the interactions according to Remark 3.9. By Lemma 3.12 and

Hypothesis 1, for 𝜀 small enough we have by construction∑︁
|𝜉|≤𝐿𝛿

∑︁
𝛼∈𝑅𝜉

𝜀(𝐷)
𝜀[𝑥𝛼,𝑥𝛼+𝜉]∩𝜕𝑄𝜀 ̸=∅

𝜀𝑑−1𝑔𝜔𝜀 (𝑥𝛼, 𝑥𝛼+𝜉, 𝑢̄𝜀(𝜀𝑥𝛼), 𝑢̄𝜀(𝜀𝑥𝛼+𝜉))

≤ 𝐶
∑︁
|𝜉|≤𝐿𝛿

𝐽𝑙𝑟(|𝜉|)|𝜉|
∑︁

(𝑥,𝑦)∈𝒩𝒩 (𝜔)
𝜀𝑥,𝜀𝑦∈𝐵𝜂(𝑥1

1)

𝜀𝑑−1|𝑢̄𝜀(𝜀𝑥) − 𝑢̄𝜀(𝜀𝑦)| ≤ 𝐶ℋ𝑑−1(𝜕𝑄𝜀) ≤ 𝐶(𝜀ℎ𝜀)
𝑑−1,

(3.50)

so that the left hand side vanishes when 𝜀 → 0. To control the remaining interactions,

recall that 𝑢𝜀 has finite energy on the larger cube 𝑄𝐷. Hence Lemma 3.12 and
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Hypothesis 1 yield∑︁
|𝜉|>𝐿𝛿

∑︁
𝛼∈𝑅𝜉

𝜀(𝐷)
𝜀[𝑥𝛼,𝑥𝛼+𝜉]∩𝜕𝑄𝜀 ̸=∅

𝜀𝑑−1𝑔𝜔𝜀 (𝑥𝛼, 𝑥𝛼+𝜉, 𝑢̄𝜀(𝜀𝑥𝛼), 𝑢̄𝜀(𝜀𝑥𝛼+𝜉))

≤ 𝐶𝛿
∑︁

(𝑥,𝑦)∈𝒩𝒩 (𝜔)
𝜀𝑥,𝜀𝑦∈𝑄𝐷

𝜀𝑑−1|𝑢̄𝜀(𝜀𝑥) − 𝑢̄𝜀(𝜀𝑦)|

≤ 𝐶𝛿
(︀
𝐸𝜀(𝜔)(𝑢𝜀, 𝑄𝐷) + ℋ𝑑−1(𝜕𝑄𝜀) + #(𝐺𝜀 ∩ 𝜀ℒ(𝜔))𝜀𝑑−1

)︀
≤ 𝐶𝛿.

As 𝛿 > 0 was arbitrary, we infer from (3.45), (3.49) and (3.50) that

lim sup
𝜀→0

𝐸𝜀(𝜔)(𝑢̄𝜀) = lim sup
𝜀→0

𝐸𝜀(𝜔)(𝑢𝜀) = 𝐸hom(𝜔)(𝑢).

The case when 𝑉 ′
𝜀 ≤ 𝑉𝜀 can be treated by an almost symmetric argument. Repeating

this construction for the remaining phases as described at the beginning of this proof,

we obtain

Γ- lim sup
𝜀→0

𝐸𝑉𝜀
𝜀 (𝜔)(𝑢) = 𝐸hom(𝜔)(𝑢).

Now for a general 𝑢 ∈ 𝐵𝑉 (𝐷,ℳ) such that |{𝑢 = 𝑚𝑖}| = 𝑉𝑖|𝐷|, the statement

follows by density. This procedure is classical (see [9, 12]), but we display it for the

reader’s convenience. As all level sets have positive measure, for each 𝑖 we find a

point 𝑥𝑖 ∈ 𝑆𝑢 and a second index 𝑗 ̸= 𝑖 such that the density of the two level sets

{𝑢 = 𝑚𝑖} and {𝑢 = 𝑚𝑗} equals 1
2
. Then one takes a small ball 𝐵𝜌(𝑥𝑖) and divides it

into concentric (possibly degenerate) annuli 𝐴𝑖
𝑙 such that |𝐴𝑖

𝑙| = |𝐵𝜌(𝑥𝑖) ∩ {𝑢 = 𝑚𝑙}|.
We define

𝑢𝜌(𝑥) =

⎧⎨⎩𝑚𝑙 if 𝑥 ∈ 𝐴𝑖
𝑙 for some 𝑖 and 𝑙,

𝑢(𝑥) otherwise.

Observe that 𝑢𝜌 satisfies the assumptions from the first part as 𝐴𝑖
𝑖 has non-empty

interior for 𝜌 small enough. Moreover 𝑢𝜌 converges to 𝑢 in 𝐿1(𝐷) and ℋ𝑑−1(𝑆𝑢𝜌) ≤
ℋ𝑑−1(𝑆𝑢) + 𝐶𝑞2𝜌𝑑−1. By the first part of the proof, Lemma 2.14 and lower semicon-

tinuity of the Γ- lim sup we infer

Γ- lim sup
𝜀→0

𝐸𝑉𝜀
𝜀 (𝜔)(𝑢) ≤ lim inf

𝜌→0
𝐸hom(𝜔)(𝑢𝜌) = 𝐸hom(𝜔)(𝑢).
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3.6 The Γ-limit as rate functional for vanishing tem-

perature

In this section we prove in a very special setting the folklore statement about Γ-

convergence and physical models at zero temperature. More precisely, we show that

when the temperature depends also on the parameter 𝜀, then in a certain scaling

regime the Γ-limits derived in this chapter are exactly the rate functionals for large

deviation principles of the Gibbs measures associated to the discrete energies 𝐸𝑙𝜀
𝜀,𝑢0

.

We restrict the analysis to the case of Dirichlet-type boundary conditions as it is

the most interesting one. Similar results can be proved when there are no boundary

conditions. We stress that our result is just an example and that the techniques can

be used only for one special scaling regime between temperature and lattice spacing.

Moreover, since this section is not a building block for this thesis, we refer the reader

to the monograph [44] for a more detailed introduction to statistical mechanics.

Fix 𝐴 ∈ 𝒜𝑅(𝐷) and let 𝐸𝑙𝜀
𝜀,𝑢0

(𝜔)(𝑢,𝐴) be defined as in (3.38) with the boundary

data 𝑢0 satisfying (3.13). As usual in the context of statistical physics, using the

unscaled Hamiltonian we define a (random) probability measure on 𝐿1(𝐴,ℳ), called

Gibbs-measure, via

𝜇𝜀 = 𝜇𝜀(𝜔,𝐴, 𝛽) =
1

𝑍𝜀,𝑢0(𝜔,𝐴, 𝛽)

∑︁
𝜙:𝜀ℒ(𝜔)∩𝐴→ℳ

exp
(︀
−𝛽𝜀1−𝑑𝐸𝑙𝜀

𝜀 (𝜔)(𝜙,𝐴)
)︀
𝛿𝜙, (3.51)

where 𝑍𝜀,𝑢0(𝜔,𝐴, 𝛽) is a normalization factor, sometimes called partition function and

𝛽 = 1
𝑘𝐵𝑇

denotes the inverse temperature. .

To investigate the asymptotic behavior of the Gibbs measures, we need a dis-

cretized version of the 𝐿1(𝐴)-topology. Given 𝑢 ∈ 𝐿1
loc(R𝑑,ℳ) we consider the fol-

lowing interpolation: recall that for 𝑥 ∈ ℒ(𝜔) we denote by 𝒞(𝑥) its Voronoi cell. We

let

𝑢𝜀(𝜀𝑥) = Projℳ

(︂
1

|𝜀𝒞(𝑥)|

∫︁
𝜀𝒞(𝑥)

𝑢(𝑦) d𝑦

)︂
, (3.52)

where Projℳ means the projection on the nearest element of ℳ (if this is not unique

we chose any). We may embed 𝑢𝜀 in 𝒫𝒞𝜀(𝜔) and by Lebesgue’s differentiation theorem

we have that 𝑢𝜀 → 𝑢 pointwise almost everywhere and hence in 𝐿1
loc(R𝑑,ℳ). Then,

given 𝜀, 𝜅 > 0 and 𝑢 ∈ 𝐿1
loc(R𝑑,ℳ), we define a discrete 𝐿1(𝐴)-neighborhood of 𝑢

setting

𝒩 (𝑢,𝐴, 𝜀, 𝜅) :=

{︂
𝜙 : 𝜀ℒ(𝜔) ∩ 𝐴 → ℳ :

∑︁
𝜀𝑥∈𝐴

𝜀𝑑|𝑢𝜀(𝜀𝑥) − 𝜙(𝜀𝑥)| ≤ 𝜅

}︂
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with 𝑢𝜀 defined in (3.52). Note that by Lemma 3.4 this term controls the 𝐿1-norm

except for a negligible contribution near 𝜕𝐴 so that, given 𝜅 > 0 and a sequence

𝜙𝜀 → 𝑢 in 𝐿1(𝐷), for 𝜀 small enough we have 𝜙𝜀 ∈ 𝒩 (𝑢,𝐴, 𝜀, 𝜅). Vice versa, given a

ball 𝐵𝜂(𝑢) ⊂ 𝐿1(𝐷,ℳ), for 𝜀, 𝜅 small enough we have 𝒩 (𝑢,𝐴, 𝜀, 𝜅) ⊂ 𝐵𝜂(𝑢).

In order to measure the local distribution of the configurations with respect to

their energy we consider the functional

𝐹 𝛽
𝜀,𝜅(𝜔)(𝑢,𝐴) := −𝜀𝑑 log

(︂ ∑︁
𝜙∈𝒩 (𝑢,𝐴,𝜀,𝜅)

exp
(︀
−𝛽𝜀1−𝑑𝐸𝑙𝜀

𝜀,𝑢0
(𝜔)(𝜙,𝐴)

)︀)︂
. (3.53)

In what follows we consider the case 𝛽 = 𝛽𝜀 = 𝛽
𝜀
. In particular, this yields a zero

temperature limit since lim𝜀→0 𝛽𝜀 = +∞. For our analysis we introduce the function-

als

𝐹 ′
𝜅(𝜔)(𝑢,𝐴) := lim inf

𝜀→0
𝐹 𝛽𝜀
𝜀,𝜅(𝜔)(𝑢,𝐴), 𝐹 ′′

𝜅 (𝜔)(𝑢,𝐴) := lim sup
𝜀→0

𝐹 𝛽𝜀
𝜀,𝜅(𝜔)(𝑢,𝐴).

Remark 3.29. As both 𝐹 ′
𝜅(𝑢), 𝐹 ′′

𝜅 (𝑢) are increasing when 𝜅 → 0, we can consider

the pointwise limit when 𝜅 → 0.

The following proposition will be the main ingredient to prove the large deviation

principle for the Gibbs-measures.

Proposition 3.30. Let ℒ(𝜔) be admissible. Then there exists a constant 𝐶 > 0 such
that, for all 𝜅, 𝜀 small enough

0 ≤ 𝜀𝑑 log (#𝒩 (𝑢,𝐴, 𝜀, 𝜅)) ≤ 𝜀𝑑 log(𝐶𝜅𝜀−𝑑) + 𝐶𝜅 log(𝐶𝜅−1).

In particular lim𝜅→0 lim𝜀→0 𝜀
𝑑 log(#𝒩 (𝑢,𝐴, 𝜀, 𝜅)) = 0.

Proof. Note that by definition one can change the value of 𝑢𝜀 at most on
⌈︀
𝐶ℳ𝜅𝜀−𝑑

⌉︀
lattice points to obtain a function 𝜙 ∈ 𝒩 (𝑢,𝐴, 𝜀, 𝜅), where 𝐶−1

ℳ = min𝑚𝑖 ̸=𝑚𝑗
|𝑚𝑖−𝑚𝑗|.

Moreover, by Lemma 3.4 the number of lattice points in 𝐴 can be bounded by

1

𝐶
|𝐴|𝜀−𝑑 ≤ 𝑎𝜀 := #(𝜀ℒ(𝜔) ∩ 𝐴) ≤ 𝐶|𝐴|𝜀−𝑑.

Thus we can estimate

#𝒩 (𝑢,𝐴, 𝜀, 𝜅) ≤
(︂ ⌈𝐶ℳ𝜅𝜀−𝑑⌉∑︁

𝑘=0

(︂
𝑎𝜀
𝑘

)︂
𝑞𝑘
)︂
.
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For small 𝜅 (independent of 𝜀) the binomial coefficients are monotone increasing, so

that we can bound the last expression by

(︂ ⌈𝐶ℳ𝜅𝜀−𝑑⌉∑︁
𝑘=0

(︂
𝑎𝜀
𝑘

)︂
𝑞𝑘
)︂

≤ ⌈𝐶ℳ𝜅𝜀−𝑑⌉
(︂

𝑎𝜀
⌈𝐶ℳ𝜅𝜀−𝑑⌉

)︂
𝑞⌈𝐶ℳ𝜅𝜀−𝑑⌉

≤ ⌈𝐶ℳ𝜅𝜀−𝑑⌉
(︂
𝑎𝜀 exp(1)𝑞

⌈𝐶ℳ𝜅𝜀−𝑑⌉

)︂⌈𝐶ℳ𝜅𝜀−𝑑⌉
≤ 𝐶𝜅𝜀−𝑑

(︂
𝐶

𝜅

)︂𝐶𝜅𝜀−𝑑

,

where we used the estimate
(︀
𝑛
𝑘

)︀
≤

(︀
𝑛·𝑒
𝑘

)︀𝑘
. Taking logarithms and multiplying both

sides by 𝜀𝑑 we deduce

𝜀𝑑 log(#𝒩 (𝑢,𝐴, 𝜀, 𝜅)) ≤ 𝜀𝑑 log(𝐶𝜅𝜀−𝑑) + 𝐶𝜅 log(
𝐶

𝜅
).

On the other hand, as #𝒩 (𝑢,𝐴, 𝜀, 𝜅) ≥ 1, the logarithm is nonnegative and we get

the claim.

The previous proposition essentially rules out entropic contributions as can be seen

in the following corollary.

Corollary 3.31. Let 𝛽𝜀 = 𝛽
𝜀
for some 𝛽 > 0. Under the assumptions of Theorem

3.23, for every 𝑢 ∈ 𝐿1(𝐴,ℳ) it holds

lim
𝜅→0

𝐹 ′
𝜅(𝜔)(𝑢,𝐴) = lim

𝜅→0
𝐹 ′′
𝜅 (𝜔)(𝑢,𝐴) = 𝛽𝐸𝑢0(𝜔)(𝑢,𝐴).

Proof. Note that by an easy estimate and the structure of 𝛽𝜀 we have

min
𝜙∈𝒩 (𝑢,𝐴,𝜀,𝜅)

𝛽𝐸𝑙𝜀
𝜀,𝑢0

(𝜔)(𝜙,𝐴) ≥ 𝐹 𝛽𝜀
𝜀,𝜅(𝜔)(𝑢,𝐴) ≥ min

𝜙∈𝒩 (𝑢,𝐴,𝜀,𝜅)
𝛽𝐸𝑙𝜀

𝜀,𝑢0
(𝜔)(𝜙,𝐴)

− 𝜀𝑑 log(#𝒩 (𝑢,𝐴, 𝜀, 𝜅)).

By the definition of Γ-convergence and the neighborhood-type properties of the sets

𝒩 (𝑢,𝐴, 𝜀, 𝜅) it holds that

lim
𝜅→0

lim inf
𝜀→0

min
𝜙∈𝒩 (𝑢,𝐴,𝜀,𝜅)

𝐸𝑙𝜀
𝜀,𝑢0

(𝜔)(𝜙,𝐴) = Γ- lim inf
𝜀→0

𝐸𝑙𝜀
𝜀,𝑢0

(𝜔)(𝑢,𝐴),

lim
𝜅→0

lim sup
𝜀→0

min
𝜙∈𝒩 (𝑢,𝐴,𝜀,𝜅)

𝐸𝑙𝜀
𝜀,𝑢0

(𝜔)(𝜙,𝐴) = Γ- lim sup
𝜀→0

𝐸𝑙𝜀
𝜀,𝑢0

(𝜔)(𝑢,𝐴).

Therefore the claim follows by Theorem 3.23 and Proposition 3.30.

Now we are in a position to prove a large deviation principle for the Gibbs measures.

We just recall the definition and refer to [34] for a detailed introduction to the subject.
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Definition 3.32. Let 𝑋 be a topological space and ℬ𝑋 the Borel sets. A family
of probability measure 𝜇𝜀 on (𝑋,ℬ𝑋) satisfies a large deviation principle with rate
function ℐ : 𝑋 → [0,+∞] and speed 𝛼𝜀 ↓ 0 if the following conditions hold: ℐ is
lower semicontinuous and, for all open sets 𝑈 ⊂ 𝑋 and all closed sets 𝐴 ⊂ 𝑋,

(i) lim inf𝜀→0 𝛼𝜀 log(𝜇𝜀(𝑈)) ≥ − inf𝑥∈𝑈 ℐ(𝑥),

(ii) lim sup𝜀→0 𝛼𝜀 log(𝜇𝜀(𝐴)) ≤ − inf𝑥∈𝐴 ℐ(𝑥).

Remark 3.33. (i) When the measures 𝜇𝜀 are exponentially tight as in Lemma

3.34, then it is enough to establish the second inequality in the large deviation

principle only for compact instead of closed sets (Lemma 1.2.18 in [34]).

(ii) If the rate functional is coercive, then it is also called a good rate functional.

We have the following preliminary tightness result:

Lemma 3.34. Let 𝛽𝜀 = 𝛽
𝜀
and let ℒ(𝜔) be admissible. If Hypothesis 1 holds, then the

measures 𝜇𝜀 defined in (3.51) are exponentially tight, that is for every 𝑁 > 0 there
exists a compact set 𝐾𝑁 ⊂ 𝐿1(𝐴,ℳ) such that

lim sup
𝜀→0

𝜀𝑑 log(𝜇𝜀(𝐿
1(𝐴,ℳ)∖𝐾𝑁)) ≤ −𝑁.

Proof. Fix 𝑁 > 0. Using Hypothesis 1 and Lemma 3.4, for all 𝜙 ∈ 𝒫𝒞𝜀(𝜔), we have

𝐸𝑙𝜀
𝜀,𝑢0

(𝜔)(𝜙,𝐴) ≥ 1

𝐶
ℋ𝑑−1(𝑆𝜙 ∩ 𝐴) − 𝐶𝜀𝑑−1#{𝜀𝑥 : 𝜀𝒞(𝑥) ∩ 𝜕𝐴 ̸= ∅}.

Since 𝐴 has a Lipschitz boundary it follows by the existence of the outer Minkowski

content that

#{𝜀𝑥 : 𝜀𝒞(𝑥) ∩ 𝜕𝐴 ̸= ∅} ≤ 𝐶𝜀1−𝑑ℋ𝑑−1(𝜕𝐴).

We infer that for 𝜀 small enough it holds

1

𝐶
ℋ𝑑−1(𝑆𝜙 ∩ 𝐴) − 𝐶ℋ𝑑−1(𝜕𝐴) ≤ 𝐸𝑙𝜀

𝜀,𝑢0
(𝜔)(𝜙,𝐴). (3.54)

Therefore we define the compact set 𝐾𝑁 as

𝐾𝑁 := {𝜙 ∈ 𝐵𝑉 (𝐴,ℳ) :
1

𝐶
ℋ𝑑−1(𝑆𝜙 ∩ 𝐴) ≤ 𝑁

𝛽
+ 𝐶ℋ𝑑−1(𝜕𝐴)}.

Then for all 𝜙 /∈ 𝐾𝑁 we have 𝛽𝐸𝑙𝜀
𝜀,𝑢0

(𝜔)(𝜙,𝐴) > 𝑁 (possibly +∞). On the other

hand, we can control the logarithm of the partition function by

𝐹 𝛽𝜀

𝜀,1(𝜔)(𝑢,𝐴) ≥ −𝜀𝑑 log(𝑍𝜀,𝑢0(𝜔,𝐴, 𝛽𝜀)). (3.55)
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In particular the left hand side term in (3.55) is bounded from above when 𝜀 → 0.

We deduce

lim sup
𝜀→0

𝜀𝑑 log(𝜇𝜀(𝐿
1(𝐴,ℳ)∖𝐾𝑁)) ≤ lim sup

𝜀→0
𝜀𝑑 log(𝑞)𝑎𝜀 −𝑁 − 𝜀𝑑 log(𝑍𝜀,𝑢0(𝜔,𝐴, 𝛽𝜀))

≤ −𝑁 + 𝐶,

proving the claim of exponential tightness.

Now we can prove the large deviation principle for the measures 𝜇𝜀 defined in (3.51).

Theorem 3.35. Let the inverse temperature be given by 𝛽𝜀 = 𝛽
𝜀
. Under the assump-

tions from Theorem 3.23, almost surely the random probability measures 𝜇𝜀(𝜔,𝐴, 𝛽𝜀)

satisfy a large deviation principle with speed 𝜀𝑑 and the good rate functional ℐ(𝜔) :

𝐿1(𝐴,ℳ) → [0,+∞] that is finite only on 𝐵𝑉 (𝐴,ℳ), where it is defined as

ℐ(𝜔)(𝑢) = 𝛽𝐸𝑢0(𝜔)(𝑢,𝐴) − inf
𝑣∈𝐵𝑉 (𝐴,ℳ)

𝛽𝐸𝑢0(𝜔)(𝑣, 𝐴).

Proof. For the moment let us pass to a subsequence (not relabeled) such that

lim
𝜀→0

𝜀𝑑 log(𝑍𝜀,𝑢0(𝜔,𝐴, 𝛽𝜀)) = 𝑐.

Such a subsequence exists due to (3.55) and the lower bound−𝜀𝑑 log(𝑍𝜀,𝑢0(𝜔,𝐴, 𝛽𝜀)) ≥
−𝜀𝑑 log(𝑞)𝑎𝜀, which holds by nonnegativity of the discrete energy. Now we follow the

general idea of [34, Theorem 4.1.11]. Let 𝑈 ⊂ 𝐿1(𝐴,ℳ) be open. For every 𝑢 ∈ 𝑈

let 𝜅0 > 0 be such that 𝐵𝜅(𝑢) ⊂ 𝑈 for all 𝜅 < 𝜅0. Then there exists 𝜀0 such that for

all 𝜀 < 𝜀0 it holds 𝒩 (𝑢,𝐴, 𝜀, 𝜅) ⊂ 𝑈 for all 𝜅 < 𝜅0. By Corollary 3.31 we have

lim inf
𝜀→0

𝜀𝑑 log(𝜇𝜀(𝑈)) ≥ lim inf
𝜀→0

𝜀𝑑 log(𝜇𝜀(𝒩 (𝑢,𝐴, 𝜀, 𝜅)))

= −𝐹 ′′
𝜅 (𝜔)(𝑢,𝐴) − 𝑐 ≥ −𝛽𝐸𝑢0(𝜔)(𝑢,𝐴) − 𝑐.

Since 𝑢 ∈ 𝑈 was arbitrary, we infer

lim inf
𝜀→0

𝜀𝑑 log(𝜇𝜀(𝑈)) ≥ − inf
𝑢∈𝑈

𝛽𝐸𝑢0(𝜔)(𝑢,𝐴) − 𝑐 (3.56)

By Lemma 3.34 and Remark 3.33 we can restrict the analysis of the upper bound

on compact sets. Let 𝐶 ⊂ 𝐿1(𝐴,ℳ) be compact. We define the 𝛿-truncation of the

limit energy. Given 𝛿 > 0, we set

𝐸𝛿(𝑢) := min{𝛽𝐸𝑢0,𝛿(𝜔)(𝑢,𝐴) − 𝛿,
1

𝛿
}.
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By Proposition 3.31, for fixed 𝛿 and 𝑢 ∈ 𝐶, there exists 𝜅 > 0 such that

− lim sup
𝜀

𝜀𝑑 log(𝜇𝜀(𝒩 (𝑢,𝐴, 𝜀, 𝜅))) ≥ 𝐸𝛿(𝑢) + 𝑐.

We now chose 𝜅′ small enough (depending on 𝑢 and 𝛿) such that 𝐵𝜅′(𝑢) ∩ 𝒫𝒞𝜀(𝜔) ⊂
𝒩 (𝑢,𝐴, 𝜀, 𝜅). By compactness we find a finitely many 𝑢1, . . . , 𝑢𝑚 ∈ 𝐶 such that

𝐶 ⊂
⋃︀𝑚

𝑖=1𝐵𝜅′(𝑢𝑖). By the construction we deduce that

lim sup
𝜀→0

𝜀𝑑 log(𝜇𝜀(𝐶)) = lim sup
𝜀→0

𝜀𝑑 log(𝜇𝜀𝑗(𝐶 ∩ 𝒫𝒞𝜀(𝜔)))

≤ lim sup
𝜀→0

𝜀𝑑 log

(︂ 𝑚∑︁
𝑖=1

𝜇𝜀(𝒩 (𝑢𝑖, 𝐴, 𝜀, 𝜅))

)︂
= max

𝑖
lim sup

𝜀→0
𝜀𝑑 log(𝜇𝜀(𝒩 (𝑢𝑖, 𝐴, 𝜀, 𝜅)))

≤ −min
𝑖

𝐸𝛿(𝑢𝑖) − 𝑐 ≤ − inf
𝑢∈𝐶

𝐸𝛿(𝑢) − 𝑐.

Letting 𝛿 → 0 we get

lim sup
𝜀→0

𝜀𝑑 log(𝜇𝜀(𝐶)) ≤ − inf
𝑢∈𝐶

𝛽𝐸𝑢0(𝜔)(𝑢,𝐴) − 𝑐. (3.57)

Since 𝑢 ↦→ 𝐸𝑢0(𝜔)(𝑢,𝐴) is lower semicontinuous, this proves the large deviation

principle for the rate functional 𝛽𝐸𝑢0(𝜔)(𝑢,𝐴) + 𝑐. But necessarily we have 𝑐 =

− inf𝑣∈𝐵𝑉 (𝐴,ℳ) 𝛽𝐸𝑢0(𝜔)(𝑣, 𝐴) by testing the open and closed set 𝐿1(𝐴,ℳ). Thus

passing to another subsequence was not needed. By Proposition 3.11 the rate func-

tional is coercive, whence a good rate functional.

Remark 3.36. The reader might notice that during this analysis we did not use the

boundary conditions except for identifying the correct Γ-limit. Hence similar results

can be proved for phase constraints with the help of Theorem 3.28.
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Chapter 4

Dimension reduction for non-periodic

spin systems

In this chapter we study dimension reduction problems in random environments. As

mentioned in the introduction, our motivation comes from so-called polymeric mag-

netic thin films made of few layers. Under external magnetic fields they form Weiss

domains whose domain wall energy in general depends on the thickness and the rough-

ness of the film, which in turn is a result of the physical and chemical properties of

the specific material at use. There has been already some experimental effort to find

the relation between film thickness and interfacial domain wall energy for different

ferromagnetic materials (see [41] and references therein), but no rigorous explanation

has appeared so far in this direction. Among the reasons for such an unsatisfactory

analysis we single out one which has a geometric flavor: depositing magnetic particles

on a substrate to obtain a thin film leads to disordered arrangements of particles and

rough film surfaces which makes it very difficult to formulate a right ansatz leading

to the correct (and simpler) continuum model. In this chapter we look at this prob-

lem from a different perspective: we choose a simple Ising-type model for a thin film

obtained by random deposition of magnetic particles on a flat substrate, for which

the geometric part of the problem is still non trivial, and propose an ansatz-free

variational analysis of such a film. Combining Γ-convergence and percolation theory

we finally obtain a rigorous explanation of the relation between film thickness and

domain-wall energy in some asymptotic regime.

As in Chapter 3 we start with defining a polymeric matrix made of magnetic cells

and then we introduce an interaction energy between those cells (see [53] and refer-

ence therein for further details). The polymeric matrix of such a system can be seen

as a random network whose nodes are the cross-linked molecules of the 3-d polymeric

magnet. The molecules are supposed to entail the local magnetic properties of the
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system and to interact as magnetic elementary cells via a ferromagnetic Ising-type

coupling. The system is supposed to be thin in the sense that the nodes of the matrix

are within a small distance, of the order of the average distance between the nodes

themselves, from a 2-d plane. In presence of an external magnetic field or of proper

boundary conditions, the ferromagnetic coupling induces the system to form meso-

scopic Weiss domains.

We aim at upscaling the system above from its microscopic description to a meso-

scopic one in a variational setting. As in Chapter 3 this consists in performing the

limit of its energy as the average distance between the magnetic cells, say 𝜀, goes to

zero with respect to the macroscopic size of the system. This will lead to two main

effects: we can pass from the original discrete system to a continuum model while at

the same time it will reduce its dimension from 3 to 2 (more general from 𝑑 to 𝑘 with

2 ≤ 𝑘 < 𝑑).

Using the same model as in the previous chapter we describe the polymeric matrix

as a random network whose nodes ℒ ⊂ R𝑑 form a thin admissible stochastic lattice,

meaning that the matrix is thin, so that there exists 𝑘 ∈ N with 2 ≤ 𝑘 < 𝑑 and

𝑀 > 0 such that

dist(𝑥,R𝑘) ≤ 𝑀 ∀𝑥 ∈ ℒ

and that it is admissible according to the following definition: We say that ℒ is an

admissible set of points if the following two requirements are satisfied:

(i) There exists 𝑅 > 0 such that dist(𝑥,ℒ) < 𝑅 for all 𝑥 ∈ R𝑘;

(ii) there exists 𝑟 > 0 such that |𝑥− 𝑦| ≥ 𝑟 for all 𝑥, 𝑦 ∈ ℒ, 𝑥 ̸= 𝑦.

Given a probability space (Ω,ℱ ,P), a random variable ℒ : Ω → (R𝑑)N is called an

admissible stochastic lattice if, uniformly with respect to 𝜔 ∈ Ω, ℒ(𝜔) is an admissible

set of points.

Associating to such a lattice a Voronoi tessellation 𝒱(𝜔), one introduces the set of

nearest neighbors 𝒩𝒩 (𝜔) as the set of those pairs of points in ℒ(𝜔) whose Voronoi

cells share a (𝑑 − 1)-dimensional facet. This allows us to distinguish between long-

and short-range interactions introducing the following (𝜔-dependent) interaction co-

efficients

𝑐𝜀(𝑥, 𝑦) =

⎧⎨⎩𝑐𝜀𝑛𝑛(𝑥, 𝑦) if (𝑥, 𝑦) ∈ 𝒩𝒩 (𝜔),

𝑐𝜀𝑙𝑟(𝑥, 𝑦) otherwise,

that we assume to be nonnegative and to satisfy the following coerciveness and growth

assumptions.
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There exist 𝑐 > 0 and a decreasing function 𝐽𝑙𝑟 : [0,+∞) → [0,+∞) with∫︁
R𝑘

𝐽𝑙𝑟(|𝑥|)|𝑥| d𝑥 = 𝐽 < +∞

such that, for all 𝜀 > 0 and all 𝑥, 𝑦 ∈ R𝑑,

𝑐 ≤ 𝑐𝜀𝑛𝑛(𝑥, 𝑦) ≤ 𝐽𝑙𝑟(|𝑥− 𝑦|), 𝑐𝜀𝑙𝑟(𝑥, 𝑦) ≤ 𝐽𝑙𝑟(|𝑥− 𝑦|).

Given 𝐷 ⊂ R𝑘 and denoted by 𝑃𝑘 : R𝑑 → R𝑘 the projection onto R𝑘, for a given

configuration 𝑢 : 𝜀ℒ(𝜔) → {±1} we consider the energy per unit ((𝑘−1)-dimensional)

surface of 𝐷 to have the ferromagnetic Ising form (see also [3, 5]) given by

𝐸𝜀(𝜔)(𝑢) =
∑︁

𝑥,𝑦∈ℒ(𝜔)
𝜀𝑥,𝜀𝑦∈𝑃−1

𝑘 𝐷

𝜀𝑘−1𝑐𝜀(𝑥, 𝑦)|𝑢(𝜀𝑥) − 𝑢(𝜀𝑦)|.

As the sets 𝜀ℒ(𝜔) will eventually shrink to a 𝑘-dimensional set, we conveniently

describe the system in terms of an average spin order parameter 𝑃𝑢 : 𝜀𝑃𝑘ℒ(𝜔) →
[−1, 1] defined on the 𝑘-dimensional set 𝜀𝑃𝑘ℒ(𝜔) by

𝑃𝑢(𝑧) :=
1

#
(︀
𝑃−1
𝑘 (𝑧) ∩ 𝜀ℒ(𝜔)

)︀ ∑︁
𝜀𝑥∈𝑃−1

𝑘 (𝑧)∩𝜀ℒ(𝜔)

𝑢(𝜀𝑥).

We then embed the energies 𝐸𝜀(𝜔) in 𝐿1(𝐷) by identifying 𝑃𝑢 with a function piece-

wise constant on the cells of the Voronoi tessellation of 𝜀𝑃𝑘ℒ(𝜔), define the conver-

gence 𝑢𝜀 → 𝑢 in 𝐷 in the sense that the piecewise constant functions 𝑃𝑢𝜀 converge

to 𝑢 strongly in 𝐿1(𝐷) and perform the Γ-convergence analysis with respect to this

notion of convergence (see Section 4.1 for further details).

In Theorem 4.10 we prove a compactness and integral representation result for the

Γ-limit 𝐸(𝜔) of 𝐸𝜀(𝜔), stating that, up to subsequences, the limit is finite only on

𝐵𝑉 (𝐷, {±1}), where it takes the integral form

𝐸(𝜔)(𝑢) =

∫︁
𝑆𝑢

𝜑(𝜔;𝑥, 𝜈𝑢) dℋ𝑘−1.

Here again 𝑆𝑢 is the jump set of 𝑢 and 𝜈𝑢 ∈ 𝑆𝑘−1 its measure theoretic inner normal.

In this formula one interprets 𝜑(𝜔; ·) as the domain-wall interaction energy (per unit

(𝑘 − 1)-dimensional area) between Weiss domains.
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The dependence of such an energy on the randomness of the lattice is studied in

Section 4.3 in the context of stochastic homogenization assuming the thin random

lattice to be stationary (or ergodic) in the directions of the flat subspace to which it

is close to and the interaction coefficients to be invariant under translation in these

directions. More precisely we assume that there exists a measure preserving group

action (𝜏𝑧)𝑧∈Z𝑘 on Ω such that, almost surely in Ω, ℒ(𝜏𝑧𝜔) = ℒ(𝜔) + 𝑧 (if in addition

(𝜏𝑧)𝑧∈Z𝑘 is ergodic, then ℒ is said to be ergodic, too) and that there exist functions

𝑐𝑛𝑛, 𝑐𝑙𝑟 : R𝑘 × R2(𝑑−𝑘) → [0,+∞) such that, setting ∆𝑘(𝑥, 𝑦) = (𝑦1 − 𝑥1, . . . , 𝑦𝑘 −
𝑥𝑘, 𝑥𝑘+1, 𝑦𝑘+1, . . . , 𝑥𝑑, 𝑦𝑑), it holds

𝑐𝜀𝑛𝑛(𝑥, 𝑦) = 𝑐𝑛𝑛(∆𝑘(𝑥, 𝑦)), 𝑐𝜀𝑙𝑟(𝑥, 𝑦) = 𝑐𝑙𝑟(∆𝑘(𝑥, 𝑦))

In Theorem 4.17 we prove that under this additional assumption combined with

stationarity (or ergodicity) in the sense specified above, the Γ-limit of 𝐸𝜀(𝜔) as 𝜀 → 0

exists and is finite only on 𝐵𝑉 (𝐷, {±1}), where it takes the spatially homogeneous

form

𝐸hom(𝜔)(𝑢) =

∫︁
𝑆𝑢

𝜑hom(𝜔; 𝜈𝑢) dℋ𝑘−1.

The energy density is given by an asymptotic homogenization formula which is av-

eraged in the probability space under ergodicity assumptions on ℒ, thus turning the

stochastic domain wall energy into a deterministic one.

Similar to Chapter 3 the result is proved by the abstract methods of Gamma-

convergence. The proof makes use of two main ingredients: the integral representa-

tion results in Theorem 2.13 and the subadditive ergodic theorem by Akcoglu and

Krengel. Section 4.4 is devoted to boundary value problems while Section 4.5 extends

the result above to the case of a volume constraint on the phase.

An interesting issue in the theory of thin magnetic polymer composite materials

is the dependence of the domain wall energy on the random geometry of the polymer

matrix. We devote the second part of this chapter to this problem. We consider

a specific model of a discrete system in which the stochastic lattice is generated by

the random deposition of magnetic particles on a two-dimensional flat substrate. For

simplicity we limit ourselves to a simple deposition model with vertical order (more

general deposition model are left for future investigations) and limit the magnetic

interactions to have finite range. We are interested in the dependence of the domain

wall energy on the average thickness of the thin film. Even if a complete picture

seems to be out of reach we are able to attack the problem in the asymptotic cases

when the thickness of the film is either small or very large.
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More specifically we model the substrate (where the particles are deposited) by taking

a two-dimensional deterministic lattice, which we choose for simplicity as ℒ0 = Z2 ×
{0}. We then consider an independent random field {𝑋𝑝

𝑖 }𝑖∈Z3 , where the 𝑋𝑝
𝑖 are

Bernoulli random variables with P(𝑋𝑝
𝑖 = 1) = 𝑝 ∈ (0, 1). For fixed 𝑀 ∈ N we

construct a random point set as follows:

ℒ𝑀
𝑝 (𝜔) :=

{︃
(𝑖1, 𝑖2, 𝑖3) ∈ Z3 : 0 ≤ 𝑖3 ≤

𝑀∑︁
𝑘=1

𝑋𝑝
(𝑖1,𝑖2,𝑘)

(𝜔)

}︃
,

which means that we successively deposit particles 𝑀 times independently onto the

flat lattice ℒ0 and stack them over each other (the point set constructed is stationary

with respect to translations in Z2 and ergodic). Moreover, given 𝑢 : 𝜀ℒ𝑀
𝑝 (𝜔) → {±1},

we consider an energy of the form

𝐸𝑝
𝜀,𝑀(𝜔)(𝑢,𝐴) =

∑︁
𝑥,𝑦∈ℒ𝑀

𝑝 (𝜔)

𝜀𝑃2(𝑥),𝜀𝑃2(𝑦)∈𝐴

𝜀𝑐(𝑥− 𝑦)|𝑢(𝜀𝑥) − 𝑢(𝜀𝑦)|,

where the interactions 𝑐 : R3 → [0,+∞) are of finite range, bounded above and coer-

cive on nearest-neighbors. Then we are essentially in the regime of our hypotheses. As

a result Theorem 3.19 guarantees the existence of a surface tension, say 𝜑𝑝
hom(𝑀 ; 𝜈)

given by an asymptotic cell formula.

The main issue now is the dependence of 𝜑𝑝
hom(𝑀 ; 𝜈) on 𝑝 and 𝑀 .

A first result in this direction is proved in Proposition 4.25 where we show that, for

every direction 𝜈 ∈ 𝑆1, the wall energy density is linear in the average thickness 𝑝𝑀

as 𝑀 → +∞, that is

lim
𝑀→+∞

𝜑𝑝
hom(𝑀 ; 𝜈)

𝑝𝑀
= 𝜑1(𝜈), (4.1)

with 𝜑1(𝜈) given in Lemma 4.24 being the wall energy per unit thickness of the de-

terministic problem obtained for 𝑝 = 1.

A second and more delicate result is contained in Theorem 4.27 and concerns a perco-

lation type phenomenon which can be roughly stated as follows: when the deposition

probability 𝑝 is sufficiently low (below a certain critical percolation threshold) the

domain wall energy is zero for 𝑀 small enough. At this stage it is worth noticing

that our energy accounts for the interactions between the deposited particles and the

substrate. On one hand this assumption might be questionable from a physical point

of view in the case one assumes to grow thin films on neutral media, thus expecting
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the properties of the film to be independent of the substrate. On the other hand

removing such an interaction leads to a dilute model similar the one considered in

[26]. An adaption of this analysis would require a lot of additional work like the

extension of fine percolation results to the (range 1)-dependent case which goes far

beyond the scopes of the present chapter (see also Remark 4.26 (i)). We prove the

percolation result for nearest-neighbor positive interactions. Setting the interaction

with the substrate to be 𝜂 > 0 we can prove that if (1−𝑝)𝑀 > 𝑝𝑠𝑖𝑡𝑒 (here 𝑝𝑠𝑖𝑡𝑒 ≈ 0.593

is the critical site percolation threshold in Z2), the limit energy 𝜑𝑝,𝜂
hom(𝑀 ; 𝜈) is bounded

above (up to a constant) by 𝜂. This result suggests the absence of a positive domain

wall energy in the thin film on a neutral substrate (𝜂 = 0 case). In the limit as 𝑀

diverges (4.1) holds with 𝜑𝑝,𝜂
hom(𝑀 ; 𝜈), which is independent of 𝜂. This shows that

the contribution of the first layer does not affect the asymptotic average domain wall

energy as expected. The proof of these results needs the extension to the dimension

reduction framework of a result by Caffarelli-de la Lave [29] about the existence of

plane-like minimizers for discrete systems subject to periodic Ising-type interactions

at the surface scaling. This is contained in the last section.

As a final remark, we mention that we prove all our results in the case when

the flat object is at least two-dimensional. Most of the results can be extended

to one-dimensional objects (with the proof being much simpler), except the ones

contained in Section 4.5 which fail in dimension one as can be seen by simple examples

and the percolation-type phenomenon in Section 4.6 as no percolation can occur in

(essentially) one-dimensional lattices.

4.1 Modeling discrete disordered flat sets and spin

systems

This section is devoted to the precise description of the model we are going to study.

We start with some notation we are going to use in the sequel. We stress that in this

chapter the notation slightly differs from the previous one.

As we are concerned with dimension reduction, there will be two dimensions 𝑘

and 𝑑 with 2 ≤ 𝑘 < 𝑑. Given a measurable set 𝐴 ⊂ R𝑘, here we denote by |𝐴|
its 𝑘-dimensional Lebesgue measure, while more generally ℋ𝑚(𝐴) means again the

𝑚-dimensional Hausdorff measure. Given 𝑥 ∈ R𝑘 and 𝛿 > 0, we let 𝐵𝛿(𝑥) be the open

ball around 𝑥 with radius 𝑟. By |𝑥| we mean the usual euclidean norm. If it is clear

from the context we will use the same notation as above also in R𝑑 (otherwise we

will indicate the dimension by sub/superscript indices). Given an open set 𝐷 ⊂ R𝑘
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we denote by 𝒜(𝐷) the family of all bounded open subsets of 𝐷 and by 𝒜𝑅(𝐷) the

family of those sets in 𝒜(𝐷) with Lipschitz boundary. Given an orthonormal basis

𝜈1, . . . , 𝜈𝑘 of R𝑘, we define the 𝑘-dimensional open cube

𝑄𝜈 = {𝑥 ∈ R𝑘 : |⟨𝑥, 𝜈𝑖⟩| <
1

2
∀𝑖}

and, for 𝑥 ∈ R𝑘, 𝜌 > 0, we set 𝑄𝜈(𝑥, 𝜌) := 𝑥 + 𝜌𝑄𝜈 . We denote by 𝑃𝑘 : R𝑑 → R𝑘 the

projection onto R𝑘.

We want to describe random particle systems, where the particles themselves are

located very close to a lower dimensional subspace. To this end we make the following

assumptions: Let ℒ ⊂ R𝑑 be a countable set. We assume that there exists 𝑀 > 0

such that, after identifying R𝑘 ∼ R𝑘 × {0}𝑑−𝑘, we have

dist(𝑥,R𝑘) ≤ 𝑀 ∀𝑥 ∈ ℒ. (4.2)

Moreover, adapting ideas from the previous chapter, we assume that the point set is

regular in the following sense:

Definition 4.1. A countable set ℒ ⊂ R𝑑 is a thin admissible lattice if (4.2) holds and

(i) ∃𝑅 > 0 such that dist(𝑥,ℒ) ≤ 𝑅 ∀𝑥 ∈ R𝑘,

(ii) ∃ 𝑟 > 0 such that |𝑥− 𝑦| ≥ 𝑟 ∀𝑥, 𝑦 ∈ ℒ, 𝑥 ̸= 𝑦.

In what follows we introduce the probabilistic framework. As usual we let (Ω,ℱ ,P)

be a probability space with a complete 𝜎-algebra ℱ .

Definition 4.2. A random variable ℒ : Ω → (R𝑑)N, 𝜔 ↦→ ℒ(𝜔) = {ℒ(𝜔)𝑖}𝑖∈N is called
a stochastic lattice. We say that ℒ is a thin admissible stochastic lattice if ℒ(𝜔) is
a thin admissible lattice in the sense of Definition 4.1 and the constants 𝑀, 𝑟,𝑅 can
be chosen independent of 𝜔 P-almost surely. The stochastic lattice ℒ is said to be
stationary if there exists a measure preserving group action (𝜏𝑧)𝑧∈Z𝑘 on Ω such that,
for P-almost every 𝜔 ∈ Ω,

ℒ(𝜏𝑧𝜔) = ℒ(𝜔) + 𝑧.

If in addition (𝜏𝑧)𝑧∈Z𝑘 is ergodic, then ℒ is called ergodic, too.

We associate to a realization of a thin stochastic lattice a truncated Voronoi tes-

sellation 𝒱(𝜔), where the corresponding 𝑑-dimensional cells 𝒞 ∈ 𝒱(𝜔) are defined

by

𝒞(𝑥) := {𝑧 ∈ R𝑘 × [−2𝑀, 2𝑀 ]𝑑−𝑘 : |𝑧 − 𝑥| ≤ |𝑧 − 𝑥′| ∀𝑥′ ∈ ℒ(𝜔)}
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and we introduce the set of nearest neighbors accordingly setting

𝒩𝒩 (𝜔) := {(𝑥, 𝑦) ∈ ℒ2 : dimℋ(𝒞(𝑥) ∩ 𝒞(𝑦)) = 𝑑− 1}.

As usual in the passage from atomistic to continuum theories we scale the point set

ℒ(𝜔) by a small parameter 𝜀 > 0. Let us fix a 𝑘-dimensional reference set 𝐷 ∈
𝒜𝑅(R𝑘). Given 𝐴 ∈ 𝒜𝑅(𝐷) and 𝑢 : 𝜀ℒ → {±1}, we consider a localized (on 𝐴)

Ising-type energy

𝐸𝜀(𝜔)(𝑢,𝐴) =
∑︁

𝑥,𝑦∈ℒ(𝜔)
𝜀𝑥,𝜀𝑦∈𝑃−1

𝑘 𝐴

𝜀𝑘−1𝑐𝜔𝜀 (𝑥, 𝑦)|𝑢(𝜀𝑥) − 𝑢(𝜀𝑦)|,

where the (𝜔-dependent) interaction coefficients distinguish between long and short-

range interactions via

𝑐𝜀(𝑥, 𝑦) =

⎧⎨⎩𝑐𝜀𝑛𝑛(𝑥, 𝑦) if (𝑥, 𝑦) ∈ 𝒩𝒩 (𝜔),

𝑐𝜀𝑙𝑟(𝑥, 𝑦) otherwise.

For our analysis, qualitatively similar to Chapter 3, we make the following assump-

tions on the measurable functions 𝑐𝜀𝑛𝑛, 𝑐
𝜀
𝑙𝑟 : R𝑑 × R𝑑 → [0,+∞):

Hypothesis 2 There exist 𝑐 > 0 and a decreasing function 𝐽𝑙𝑟 : [0,+∞) → [0,+∞)

with ∫︁
R𝑘

𝐽𝑙𝑟(|𝑥|)|𝑥| d𝑥 = 𝐽 < +∞

such that, for all 𝜀 > 0 and all 𝑥, 𝑦 ∈ R𝑑,

𝑐 ≤ 𝑐𝜀𝑛𝑛(𝑥, 𝑦) ≤ 𝐽𝑙𝑟(|𝑥− 𝑦|), 𝑐𝜀𝑙𝑟(𝑥, 𝑦) ≤ 𝐽𝑙𝑟(|𝑥− 𝑦|).

As the sets 𝜀ℒ(𝜔) shrink to a 𝑘-dimensional set when 𝜀 vanishes, we want to define

a convergence of discrete variables on shrinking domains. To this end we define the

averaged and projected spin variable 𝑃𝑢 : 𝜀𝑃𝑘ℒ(𝜔) → [−1, 1] via

𝑃𝑢(𝜀𝑧) :=
1

#
(︀
𝑃−1
𝑘 (𝑧) ∩ ℒ(𝜔)

)︀ ∑︁
𝑥∈𝑃−1

𝑘 (𝑧)∩ℒ(𝜔)

𝑢(𝜀𝑥).

The projected lattice 𝑃𝑘ℒ(𝜔) ⊂ R𝑘 obviously inherits property (i) from Definition 4.1,

but (ii) might fail after projection. Nevertheless, due to (4.2) the projected lattice is

still locally finite with a uniform bound on the number of points in a set. In particular,
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there exists a constant 𝐶 = 𝐶ℒ > 0 such that, given a set 𝐴 ∈ 𝒜(𝐷) with |𝜕𝐴| = 0,

for 𝜀 small enough it holds that

𝜀𝑘#{𝜀𝑧 ∈ 𝜀𝑃𝑘ℒ ∩ 𝐴} ≤ 𝐶|𝐴|. (4.3)

We now associate a usual 𝑘-dimensional Voronoi tessellation 𝒱𝑘(𝜔) = {𝒞𝑘(𝑧)} in R𝑘

to the lattice 𝑃𝑘ℒ(𝜔) and we identify 𝑃𝑢 with a piecewise constant function of the

class

𝒫𝒞𝜀(𝜔) := {𝑣 : R𝑘 → [−1, 1] : 𝑣|𝜀𝒞𝑘(𝑧) is constant ∀𝑧 ∈ 𝑃𝑘ℒ(𝜔)}.

This construction is sketched in Figure 4-1. Note that we can embed 𝒫𝒞𝜀(𝜔) in 𝐿1(𝐷)

since the intersection of two Voronoi cells always has zero 𝑘-dimensional Lebesgue

measure. To deal with convergence of sequences 𝑢𝜀 : 𝜀ℒ → {±1}, we adopt the idea
of [20]. We will see in Section 4.5 that this notion of convergence is indeed meaningful

for variational problems in a random environment.

Figure 4-1: Construction of the averaging interpolation in the simple case 𝑑 = 2,
𝑘 = 1. Above: A portion of the truncated Voronoi diagram subordinated to the
stochastic lattice ℒ(𝜔) represented by the dots. The values of the variable 𝑢 on
this set can be read by the color code of the dots: black for 𝑢 = −1 and white for
𝑢 = +1. At the bottom of the Voronoi diagram the projected points 𝑃1ℒ(𝜔) and the
values of the variable 𝑃𝑢. According to the definition 𝑃𝑢 ∈ [−1, 1] (range reflected
by the scale of gray in the figure). The dashed lines indicate the exceptional set of
projection points where |𝑃 (𝑢)| ̸= 1. Below: the piecewise-constant function on the
Voronoi intervals subordinated to 𝑃1ℒ(𝜔).

-1

0
1/3

1
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Definition 4.3. Let 𝐴 ∈ 𝒜(𝐷). We say that a sequence 𝑢𝜀 : 𝜀ℒ(𝜔) → {±1} converges
in 𝐴 to 𝑢 : 𝐴 → R if the piecewise constant functions 𝑃𝑢𝜀 converge to 𝑢 in 𝐿1(𝐴).

For our variational analysis we also need to introduce the lower and upper Γ-limits

𝐸 ′(𝜔), 𝐸 ′′(𝜔) : 𝐿1(𝐷) ×𝒜𝑅(𝐷) → [0,+∞] setting

𝐸 ′(𝜔)(𝑢,𝐴) := inf{lim inf
𝜀→0

𝐸𝜀(𝜔)(𝑢𝜀, 𝐴) : 𝑢𝜀 → 𝑢 in 𝐷},

𝐸 ′′(𝜔)(𝑢,𝐴) := inf{lim sup
𝜀→0

𝐸𝜀(𝜔)(𝑢𝜀, 𝐴) : 𝑢𝜀 → 𝑢 in 𝐷}.

Remark 4.4. The functionals 𝐸 ′(𝜔), 𝐸 ′′(𝜔) are not Γ-lower/upper limits in the usual

sense since they are not defined on the same space as 𝐸𝜀(𝜔). However, if we define

the functionals 𝐸̃𝜀(𝜔) : 𝐿1(𝐷) ×𝒜𝑅(𝐷) → [0,+∞] as

𝐸̃𝜀(𝜔)(𝑢,𝐴) :=

⎧⎨⎩inf𝑣 𝐸𝜀(𝜔)(𝑣,𝐴) if 𝑢 = 𝑃𝑣 for some 𝑣 : 𝜀ℒ(𝜔) → {±1},

+∞ otherwise,

then it is easy to see that 𝐸 ′(𝜔), 𝐸 ′′(𝜔) agree with the Γ-lower/upper limit of 𝐸𝜀(𝜔)

in the strong 𝐿1(𝐷)-topology. Therefore we will refer to the equality of 𝐸 ′(𝜔) and

𝐸 ′′(𝜔) as Γ-convergence. Moreover, one can show that

𝐸 ′(𝜔)(𝑢,𝐴) = inf{lim inf
𝜀→0

𝐸𝜀(𝜔)(𝑢𝜀, 𝐴) : 𝑢𝜀 → 𝑢 in 𝐴},

𝐸 ′′(𝜔)(𝑢,𝐴) = inf{lim sup
𝜀→0

𝐸𝜀(𝜔)(𝑢𝜀, 𝐴) : 𝑢𝜀 → 𝑢 in 𝐴}.

By the properties of Γ-convergence this implies that both functionals 𝑢 ↦→ 𝐸 ′(𝜔)(𝑢,𝐴)

and 𝑢 ↦→ 𝐸 ′′(𝜔)(𝑢,𝐴) are 𝐿1(𝐴)-lower semicontinuous and therefore local in the sense

of Theorem 2.13 (ii).

We now prove several properties of the convergence introduced in Definition 4.3.

We start with an equicoercivity property.

Lemma 4.5. Assume Hypothesis 2 holds. Let 𝐴 ∈ 𝒜(𝐷) and let 𝑢𝜀 : 𝜀ℒ(𝜔) → {±1}
be such that

sup
𝜀

𝐸𝜀(𝜔)(𝑢𝜀, 𝐴) < +∞.

Then, up to subsequences, the functions 𝑃𝑢𝜀 converge strongly in 𝐿1(𝐴) to some
𝑢 ∈ 𝐵𝑉 (𝐴, {±1}).

Proof. Let us fix 𝐴′ ⊂⊂ 𝐴. We start by estimating the measure of the set {|𝑃𝑢𝜀| ≠

1} ∩ 𝐴′. Note that if |𝑃𝑢𝜀(𝜀𝑧)| ̸= 1 for some 𝑧 ∈ 𝑃𝑘ℒ(𝜔) such that 𝜀𝒞𝑘(𝑧) ∩ 𝐴′ ̸= ∅,
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then there exist 𝑥1, 𝑥2 ∈ 𝑃−1
𝑘 (𝑧)∩ℒ(𝜔) such that 𝑢𝜀(𝜀𝑥1) ̸= 𝑢𝜀(𝜀𝑥2). As a preliminary

step we show that we can find a path of nearest neighbors in ℒ(𝜔) joining 𝑥1 and 𝑥2

which does not vary too much from the straight line between 𝑥1 and 𝑥2. To this end,

fix 0 < 𝛿 << 1 and consider the collection of segments

𝒢𝛿(𝑥1, 𝑥2) = {𝑥 + 𝜆(𝑥2 − 𝑥1) : 𝑥 ∈ 𝐵𝛿(𝑥1), 0 ≤ 𝜆 ≤ 1}. (4.4)

Since the number of 𝑑-dimensional Voronoi cells 𝒞(𝑥) ∈ 𝒱(𝜔) such that 𝒞(𝑥)∩𝒢𝛿 ̸= ∅
is uniformly bounded, by a dimensional argument there must exist a line 𝑔* = {𝑥* +

𝜆(𝑥2 − 𝑥1) : 0 ≤ 𝜆 ≤ 1} ⊂ 𝒢𝛿(𝑥1, 𝑥2) such that whenever it passes from some

𝒞(𝑥) to some 𝒞(𝑥′), then (𝑥, 𝑥′) ∈ 𝒩𝒩 (𝜔). The path connecting 𝑥1 and 𝑥2 is then

given by the set 𝐺(𝑥1, 𝑥2) := {𝑥 ∈ ℒ : 𝑔* ∩ 𝒞(𝑥) ̸= ∅}, provided that 𝛿 is small

enough. Observe that there exist 𝑥, 𝑥′ ∈ 𝐺(𝑥1, 𝑥2) such that (𝑥, 𝑥′) ∈ 𝒩𝒩 (𝜔) and

𝑢𝜀(𝜀𝑥) ̸= 𝑢𝜀(𝜀𝑥
′). From the coercivity assumption in Hypothesis 2, we thus deduce

that each path contributes to the energy and by the local construction of the paths

any couple (𝑥, 𝑥′) ∈ 𝒩𝒩 (𝜔) can be used by only finitely many 𝑧 ∈ 𝑃𝑘ℒ(𝜔) for their

paths. We infer that

𝜀𝑘−1#{𝜀𝑧 : 𝜀𝒞𝑘(𝑧) ∩ 𝐴′ ̸= ∅, |𝑃𝑢𝜀(𝜀𝑧)| ≠ 1, } ≤ 𝐶𝐸𝜀(𝜔)(𝑢𝜀, 𝐴) ≤ 𝐶, (4.5)

where we have used that 𝜀𝐺(𝑥1, 𝑥2) ⊂ (𝑃−1
𝑘 𝐴) ∩ 𝜀ℒ(𝜔) for 𝜀 small enough. Since the

measure of a Voronoi cell in 𝑃𝑘ℒ(𝜔) can be bounded uniformly by a constant, via

rescaling we deduce that

|{|𝑃𝑢𝜀| ≠ 1} ∩ 𝐴′| ≤ 𝐶𝜀. (4.6)

We continue bounding the total variation |𝐷𝑃𝑢𝜀|(𝐴′). Since 𝑃𝑢𝜀 is equibounded

and piecewise constant, it is enough to provide a bound for ℋ𝑘−1(𝑆𝑃𝑢𝜀 ∩ 𝐴′). Note

that the jump set 𝑆𝑃𝑢𝜀 is contained in the facets of the Voronoi cells of the lattice

𝜀𝑃𝑘ℒ(𝜔). Since ℒ(𝜔) is thin admissible in the sense of Definition 4.1 and property (i)

is preserved by projection, for each such facet 𝐹 it holds that

ℋ𝑘−1(𝐹 ) ≤ 𝐶𝜀𝑘−1.

As the number of nearest neighbors in the lattice 𝑃𝑘ℒ(𝜔), denoted by 𝒩𝒩 𝑘(𝜔), is
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equibounded once we fix one node, for 𝜀 small enough we conclude

ℋ𝑘−1(𝑆𝑃𝑢𝜀 ∩ 𝐴′) ≤𝐶𝜀𝑘−1#{𝜀𝑧 ∈ 𝜀𝑃𝑘ℒ(𝜔) : 𝜀𝒞𝑘(𝑧) ∩ 𝐴′ ̸= ∅, |𝑃𝑢𝜀(𝜀𝑧)| ≠ 1}
+ 𝐶𝜀𝑘−1#{(𝑧, 𝑧′) ∈ 𝒩𝒩 𝑘(𝜔) : |𝑃𝑢𝜀(𝜀𝑧) − 𝑃𝑢𝜀(𝜀𝑧

′)| = 2,

𝜀𝑧, 𝜀𝑧′ ∈ 𝐴′ + 𝐵𝑅𝜀(0)}.

Due to (4.5) it suffices to estimate the last term. Again, given 𝜀𝑧, 𝜀𝑧′ ∈ 𝐴′ + 𝐵𝑅𝜀(0)

such that (𝑧, 𝑧′) ∈ 𝒩𝒩 𝑘(𝜔), we find a path 𝑥0 ∈ 𝑃−1
𝑘 (𝑧), 𝑥1, ..., 𝑥𝑁 ∈ 𝑃−1

𝑘 (𝑧′) such

that (𝑥𝑖, 𝑥𝑖+1) ∈ 𝒩𝒩 (𝜔) and the number of couples (𝑧, 𝑧′) ∈ 𝒩𝒩 𝑘(𝜔) that use the

same (𝑥, 𝑦) ∈ 𝒩𝒩 (𝜔) for their path is equibounded. Reasoning as in the first part of

the proof we find that

𝜀𝑘−1#{(𝑧, 𝑧′) ∈ 𝒩𝒩 𝑘(𝜔) : |𝑃𝑢𝜀(𝜀𝑧) − 𝑃𝑢𝜀(𝜀𝑧
′)| = 2, 𝜀𝑧, 𝜀𝑧′ ∈ 𝐴′ + 𝐵𝑅𝜀(0)}

≤ 𝐶𝐸𝜀(𝜔)(𝑢𝜀, 𝐴) ≤ 𝐶.

By Theorem 2.10 and (4.6), there exists a subsequence (not relabeled) such that

𝑃𝑢𝜀 → 𝑢 in 𝐿1(𝐴′) for some 𝑢 ∈ 𝐵𝑉 (𝐴′, {±1}). Since 𝐴′ was arbitrary, the claim

follows by a diagonal argument combined with equi-integrability.

We will also use the following auxiliary result about the convergence introduced in

Definition 4.3.

Lemma 4.6. Let 𝐴 ∈ 𝒜(𝐷) and let 𝑢𝜀, 𝑣𝜀 : 𝜀ℒ(𝜔) → {±1} both converge in 𝐴 to 𝑢

in the sense of Definition 4.3 and assume both have equibounded energy on 𝐴. Then

lim
𝜀→0

∑︁
𝜀𝑥∈𝜀ℒ(𝜔)
𝜀𝑃𝑘(𝑥)∈𝐴

𝜀𝑘|𝑢𝜀(𝜀𝑥) − 𝑣𝜀(𝜀𝑥)| = 0.

Proof. Fix a set 𝐴′ ⊂⊂ 𝐴 such that 𝐴′ ∈ 𝒜𝑅(𝐷). Applying (4.3) and equibounded-

ness it is enough to show that

lim
𝜀→0

∑︁
𝜀𝑥∈𝜀ℒ(𝜔)
𝜀𝑃𝑘(𝑥)∈𝐴′

𝜀𝑘|𝑢𝜀(𝜀𝑥) − 𝑣𝜀(𝜀𝑥)| = 0.

Using the fact that 𝑢𝜀, 𝑣𝜀 both have finite energy in 𝐴, we can argue as in the derivation

of (4.5) to show that

#{𝜀𝑥 ∈ 𝑃−1
𝑘 (𝐴′)∩ 𝜀ℒ(𝜔) : 𝑃𝑢𝜀(𝜀𝑃𝑘(𝑥)) ̸= 𝑢𝜀(𝜀𝑥) or 𝑃𝑣𝜀(𝜀𝑃𝑘(𝑥)) ̸= 𝑣𝜀(𝜀𝑥)} ≤ 𝐶𝜀1−𝑘.
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Inserting this estimate and using that ℒ(𝜔) satisfies (4.2) we obtain∑︁
𝜀𝑥∈𝜀ℒ(𝜔)
𝜀𝑃𝑘(𝑥)∈𝐴′

𝜀𝑘|𝑢𝜀(𝜀𝑥) − 𝑣𝜀(𝜀𝑥)| ≤ 𝐶
∑︁

𝜀𝑧∈𝜀𝑃𝑘ℒ(𝜔)
𝜀𝑧∈𝐴′

𝜀𝑘|𝑃𝑢𝜀(𝜀𝑧) − 𝑃𝑣𝜀(𝜀𝑧)| + 𝐶𝜀.

Thus it is enough to control the last sum. As the Voronoi cells in the projected lattice

may become degenerate, we can use only bounds on the number of cells. To this end

fix 𝐿 > 1 large enough such that, for all 𝑧𝐿 ∈ 𝐿Z𝑘, we have

1 ≤ #
(︀
𝜀𝑃𝑘ℒ(𝜔) ∩ (𝜀𝑧𝐿 + [0, 𝐿𝜀)𝑘)

)︀
≤ 𝐶. (4.7)

Define 𝐼𝜀 := {𝑧𝐿 ∈ 𝐿Z𝑘 : (𝜀𝑧𝐿 + [0, 𝐿𝜀)𝑘) ∩ 𝐴′ ̸= ∅} and subdivide this set again via

𝐼1𝜀 := {𝑧𝐿 ∈ 𝐼𝜀 : 𝑃𝑢𝜀 is not constant on 𝜀𝑧𝐿 + [0, 𝐿𝜀)𝑘},
𝐼2𝜀 := {𝑧𝐿 ∈ 𝐼𝜀 : 𝑃𝑣𝜀 is not constant on 𝜀𝑧𝐿 + [0, 𝐿𝜀)𝑘},
𝐼3𝜀 := 𝐼𝜀∖(𝐼1𝜀 ∪ 𝐼2𝜀 ).

Since every scaled 𝑘-dimensional Voronoi cell 𝜀𝒞𝑘(𝑧) can only intersect finitely many

cubic cells 𝜀𝑧𝐿 + [0, 𝐿𝜀)𝑘 with a uniform bound on the cardinality, we can again use

the energy bound in 𝐴 and argue as for (4.5) to conclude that

#(𝐼1𝜀 ∪ 𝐼2𝜀 ) ≤ 𝐶𝜀1−𝑘. (4.8)

Combining (4.7) and (4.8) we infer from the definition of the set 𝐼3𝜀 that∑︁
𝜀𝑧∈𝜀𝑃𝑘ℒ(𝜔)

𝜀𝑧∈𝐴′

𝜀𝑘|𝑃𝑢𝜀(𝜀𝑧) − 𝑃𝑣𝜀(𝜀𝑧)| ≤ 𝐶𝜀 +
∑︁
𝑧𝐿∈𝐼3𝜀

∑︁
𝜀𝑧∈𝜀𝑃𝑘ℒ(𝜔)

𝜀𝑧∈𝜀𝑧𝐿+[0,𝐿𝜀)𝑘

𝜀𝑘|𝑃𝑢𝜀(𝜀𝑧) − 𝑃𝑣𝜀(𝜀𝑧)|

≤ 𝐶𝜀 + 𝐶
∑︁
𝑧𝐿∈𝐼3𝜀

∫︁
𝜀𝑧𝐿+[0,𝐿𝜀)𝑘

|𝑃𝑢𝜀(𝑠) − 𝑃𝑣𝜀(𝑠)| d𝑠 ≤ 𝐶𝜀 + 𝐶‖𝑃𝑢𝜀 − 𝑃𝑣𝜀‖𝐿1(𝐴).

This concludes the proof, since the last term tends to 0 by assumption.

As in Chapter 3 we introduce an auxiliary deterministic square lattice to control

the long-range interactions. Recall that with 𝑟′ = 𝑟√
𝑑
it follows that #{ℒ(𝜔) ∩ {𝛼 +

[0, 𝑟′)𝑑}} ≤ 1 for all 𝛼 ∈ 𝑟′Z𝑑. Defining 𝒵𝑟′(𝜔) and 𝑥𝛼 as in (3.5), for 𝜉 ∈ 𝑟′Z𝑑, 𝑈 ⊂ R𝑘

and 𝜀 > 0, we set

𝑅𝜉
𝜀(𝑈) := {𝛼 : 𝛼, 𝛼 + 𝜉 ∈ 𝒵𝑟′(𝜔), 𝜀𝑥𝛼, 𝜀𝑥𝛼+𝜉 ∈ 𝑃−1

𝑘 𝑈}.
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Note that by (4.2), enlarging 𝑀 if necessary, it is enough to consider 𝜉 ∈ 𝑟′Z𝑑
𝑀 :=

𝑟′Z𝑑 ∩ (R𝑘 × [−2𝑀, 2𝑀 ]𝑑−𝑘). We can then rewrite the localized energy as

𝐸𝜀(𝜔)(𝑢,𝐴) =
∑︁

𝜉∈𝑟′Z𝑑
𝑀

∑︁
𝛼∈𝑅𝜉

𝜀(𝐴)

𝜀𝑘−1𝑐𝜔𝜀 (𝑥𝛼, 𝑥𝛼+𝜉)|𝑢(𝜀𝑥𝛼) − 𝑢(𝜀𝑥𝛼+𝜉)|.

Remark 4.7. With the help of the auxiliary lattice 𝑟′Z𝑑 we can strengthen the

estimate (4.3) to tubular neighborhoods of flat boundaries in the following sense:

There exists a constant 𝐶 = 𝐶(𝑀,𝑅, 𝑟) > 0 with the following property: Given

𝐴 ∈ 𝒜𝑅(R𝑘), for all 𝜀 small enough it holds that

#{𝜀𝑥 ∈ 𝜀ℒ(𝜔) : dist(𝜀𝑃𝑘(𝑥), 𝜕𝐴) ≤ 2𝑅𝜀} ≤ 𝐶𝜀1−𝑘ℋ𝑘−1(𝜕𝐴). (4.9)

In this estimate we can replace 2𝑅 by any other constant. Then of course 𝐶 changes.

The following lemma is the equivalent version of Lemma 3.12 for thin lattices. We

omit the proof as it is almost identical.

Lemma 4.8. Let 𝐵 ⊂ 𝒜(R𝑘) be convex and 𝐵𝜀 := {𝑥 ∈ R𝑘 : dist(𝑥,𝐵) < 3(𝑅 +

𝑀)𝜀}. Then there exists a constant 𝐶 depending only on 𝑟, 𝑅,𝑀 in Definition 4.1
such that for every 𝜉 ∈ 𝑟′Z𝑑

𝑀 and every 𝑢 : 𝜀ℒ(𝜔) → {±1} it holds∑︁
𝛼∈𝑅𝜉

𝜀(𝐵)

|𝑢(𝜀𝑥𝛼) − 𝑢(𝜀𝑥𝛼+𝜉)| ≤ 𝐶|𝜉|
∑︁

(𝑥,𝑦)∈𝒩𝒩 (𝜔)

𝜀𝑥,𝜀𝑦∈𝑃−1
𝑘 𝐵𝜀

|𝑢(𝜀𝑥) − 𝑢(𝜀𝑦)|.

Remark 4.9. Observe that we can write

{𝜉 ∈ 𝑟′Z𝑑
𝑀} =

⋃︁
𝑧∈𝑟′Z𝑑−𝑘

|𝑧|∞≤2𝑀

{𝜉 = (𝜉𝑘, 𝑧1, . . . , 𝑧𝑑−𝑘) : 𝜉𝑘 ∈ 𝑟′Z𝑘}.

Hence we deduce from Hypothesis 2 that, given 𝛿 > 0, there exists 𝐿𝛿 > 0 such that∑︁
𝜉∈𝑟′Z𝑑

𝑀
|𝜉|>𝐿𝛿

𝐽𝑙𝑟(|𝜉|)|𝜉| ≤ 𝛿, (4.10)

where 𝜉 ∈ 𝜉 + [−𝑟′, 𝑟′]𝑑 is such that |𝜉| = dist([0, 𝑟′)𝑑, [0, 𝑟′)𝑑 + 𝜉). As in Chapter 3

this decay property along with Lemma 4.8 will be crucial to control the long-range

interactions. However note that 𝐿𝛿 in general depends on 𝑀 .
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4.2 Integral representation on the flat set

Our first aim is to characterize all possible variational limits of energies 𝐸𝜀(𝜔) that

satisfy Hypothesis 2. As for the case 𝑘 = 𝑑 treated in Chapter 3, we make use of

the integral representation results of Theorem 2.13, but due to the lower-dimensional

structure of the problem we apply it for 𝑘-dimensional sets.

The following theorem is the main result of this section.

Theorem 4.10. Let ℒ(𝜔) be thin admissible and let 𝑐𝜀𝑛𝑛 and 𝑐𝜀𝑙𝑟 satisfy Hypothesis
2. For every sequence 𝜀 → 0+ there exists a subsequence 𝜀𝑛 such that the functionals
𝐸𝜀𝑛(𝜔) Γ-converge with respect to the convergence of Definition 4.3 to a functional
𝐸(𝜔) : 𝐿1(𝐷) → [0,+∞] of the form

𝐸(𝜔)(𝑢) =

⎧⎨⎩
∫︀
𝑆𝑢

𝜑(𝜔;𝑥, 𝜈𝑢) dℋ𝑘−1 if 𝑢 ∈ 𝐵𝑉 (𝐷, {±1}),

+∞ otherwise.

Moreover a local version of the statement above holds: For all 𝑢 ∈ 𝐵𝑉 (𝐷, {±1}) and
all 𝐴 ∈ 𝒜𝑅(𝐷)

Γ- lim
𝑛

𝐸𝜀𝑛(𝜔)(𝑢,𝐴) =

∫︁
𝑆𝑢∩𝐴

𝜑(𝜔;𝑥, 𝜈𝑢) dℋ𝑘−1.

Again we remark that this result is of deterministic nature. The proof of Theorem

4.10 will be given later. At first we use the standard machinery that allows us to

apply Theorem 2.13.

Throughout this section we tacitly assume that ℒ(𝜔) is a thin admissible point

set. Let us start with the growth condition (iv) of Theorem 2.13. Using the 𝐿1(𝐴)-

lower semicontinuity of the total variation (which reduces to 𝑢 ↦→ 2ℋ𝑘−1(𝑆𝑢 ∩ 𝐴) for

𝑢 ∈ 𝐵𝑉 (𝐴, {±1}), one can use the same argument as for Lemma 4.5 to prove the

following lower bound for 𝐸 ′(𝜔)(𝑢,𝐴):

Proposition 4.11. Assume that Hypothesis 2 holds and let 𝐴 ∈ 𝒜(𝐷). Then
𝐸 ′(𝜔)(𝑢,𝐴) < +∞ only if 𝑢 ∈ 𝐵𝑉 (𝐴, {±1}) and there exists a constant 𝑐 > 0

independent of 𝐴 such that

𝐸 ′(𝜔)(𝑢,𝐴) ≥ 1

𝑐
ℋ𝑘−1(𝑆𝑢 ∩ 𝐴).

As a next step we provide a suitable upper bound for 𝐸 ′′(𝜔)(𝑢,𝐴).

Proposition 4.12. Assume that Hypothesis 2 holds. Then there exists a constant
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𝑐 > 0 such that, for all 𝐴 ∈ 𝒜𝑅(𝐷) and all 𝑢 ∈ 𝐵𝑉 (𝐷, {±1}),

𝐸 ′′(𝜔)(𝑢,𝐴) ≤ 𝑐ℋ𝑘−1(𝑆𝑢 ∩ 𝐴).

Proof. For the moment let us assume that 𝐹 := {𝑢 = +1} is a polyhedral set in R𝑘

such that

ℋ𝑘−1(𝜕𝐹 ∩ 𝜕𝐴) = 0. (4.11)

We define a sequence 𝑢𝜀 : 𝜀ℒ(𝜔) → {±1} setting

𝑢𝜀(𝜀𝑥) :=

⎧⎨⎩+1 if 𝜀𝑃𝑘(𝑥) ∈ 𝐹 ,

−1 otherwise.

Then it is straightforward to check that 𝑢𝜀 → 𝑢 in the sense of Definition 4.3. Given

𝛿 > 0, we set 𝐴𝛿 = 𝐴 + 𝐵𝛿(0) and 𝐿𝛿 be as in (4.10). For |𝜉| ≤ 𝐿𝛿, we can argue as

in the proof of Lemma 3.12 to show that, for 𝜀 small enough, it holds that∑︁
𝛼∈𝑅𝜉

𝜀(𝐴)

𝜀𝑘−1|𝑢𝜀(𝜀𝑥𝛼) − 𝑢𝜀(𝜀𝑥𝛼+𝜉)| ≤ 𝐶|𝜉|
∑︁

(𝑥,𝑦)∈𝒩𝒩 (𝜔)

𝜀𝑥,𝜀𝑦∈𝑃−1
𝑘 𝐴𝛿

𝜀𝑘−1|𝑢𝜀(𝜀𝑥) − 𝑢𝜀(𝜀𝑦)|

≤ 𝐶|𝜉|ℋ𝑘−1(𝜕𝐹 ∩ 𝐴𝛿), (4.12)

where we used Remark 4.7 for the last estimate. On the other hand, when |𝜉| > 𝐿𝛿

we apply Lemma 4.8 on the whole space to deduce for any 𝜀 > 0 the weaker bound∑︁
𝛼∈𝑅𝜉

𝜀(R𝑘)

𝜀𝑘−1|𝑢𝜀(𝜀𝑥𝛼) − 𝑢𝜀(𝜀𝑥𝛼+𝜉)| ≤ 𝐶|𝜉|ℋ𝑘−1(𝜕𝐹 ). (4.13)

Summing (4.12) and (4.13) over all 𝜉 ∈ 𝑟′Z𝑑
𝑀 combined with the bounds of Hypothesis

2 and the definition of 𝐿𝛿 yields for 𝜀 small enough

𝐸𝜀(𝜔)(𝑢𝜀, 𝐴) ≤ 𝐶

(︂ ∑︁
𝜉∈𝑟′Z𝑑

𝑀

𝐽𝑙𝑟(|𝜉|)|𝜉|
)︂
ℋ𝑘−1(𝑆𝑢 ∩ 𝐴𝛿) + 𝐶𝛿ℋ𝑘−1(𝜕𝐹 ).

Using the integrability assumption from Hypothesis 2 we infer that

𝐸 ′′(𝜔)(𝑢,𝐴) ≤ lim sup
𝜀

𝐸𝜀(𝜔)(𝑢𝜀, 𝐴) ≤ 𝑐ℋ𝑘−1(𝑆𝑢 ∩ 𝐴𝛿) + 𝐶𝛿ℋ𝑘−1(𝜕𝐹 ).

Due to (4.11), the claim follows by letting 𝛿 → 0.

The general case can be proven by density. Indeed, for every 𝑢 ∈ 𝐵𝑉 (𝐴, {±1})

100



there exists a sequence 𝑢𝑛 ∈ 𝐵𝑉𝑙𝑜𝑐(R𝑘, {±1}) with {𝑢𝑛 = +1} being a polyhedral

set in R𝑘 satisfying (4.11) and such that 𝑢𝑛 → 𝑢 in 𝐿1(𝐴) as well as ℋ𝑘−1(𝑆𝑢𝑛 ∩
𝐴) → ℋ𝑘−1(𝑆𝑢 ∩ 𝐴) (see Theorem 2.12). The claim then follows by 𝐿1(𝐴)-lower

semicontinuity of 𝑢 ↦→ 𝐸 ′′(𝜔)(𝑢,𝐴), which is a consequence of Remark 4.4.

As usual for applying integral representation theorems we next establish a weak

subadditivity property of 𝐴 ↦→ 𝐸 ′′(𝜔)(𝑢,𝐴). Although the basic idea is quite similar

to the one of Proposition 3.15 we provide all details as this is the most important

step for proving the integral representation.

Proposition 4.13. Let 𝑐𝜀𝑛𝑛 and 𝑐𝜀𝑙𝑟 satisfy Hypothesis 2. Then, for every 𝐴,𝐵 ∈
𝒜𝑅(𝐷), every 𝐴′ ⊂ 𝒜𝑅(𝐷) such that 𝐴′ ⊂⊂ 𝐴 and every 𝑢 ∈ 𝐵𝑉 (𝐷, {±1}),

𝐸 ′′(𝜔)(𝑢,𝐴′ ∪𝐵) ≤ 𝐸 ′′(𝜔)(𝑢,𝐴) + 𝐸 ′′(𝜔)(𝑢,𝐵).

Proof. We already know from Proposition 4.12 that 𝐸 ′′(𝜔)(𝑢,𝐴) and 𝐸 ′′(𝜔)(𝑢,𝐵) are

both finite. Let 𝑢𝜀, 𝑣𝜀 : 𝜀ℒ(𝜔) → {±1} both converge to 𝑢 in the sense of Definition

4.3 such that

lim sup
𝜀→0

𝐸𝜀(𝜔)(𝑢𝜀, 𝐴) = 𝐸 ′′(𝜔)(𝑢,𝐴), lim sup
𝜀→0

𝐸𝜀(𝜔)(𝑣𝜀, 𝐵) = 𝐸 ′′(𝜔)(𝑢,𝐵). (4.14)

Step 1 Extensions to convex domains

Let 𝑄𝐷 be a large cube containing 𝐷. As 𝐷 ∈ 𝒜𝑅(𝐷), by extension we may as-

sume that 𝑢 ∈ 𝐵𝑉loc(R𝑘, {±1}). We aim at modifying 𝑢𝜀 and 𝑣𝜀 on 𝜀ℒ∖𝑃−1
𝑘 (𝐴)

and 𝜀ℒ∖𝑃−1
𝑘 (𝐵) respectively, such that they converge to 𝑢 in 𝐷 and such that they

have equibounded energy on the larger set 𝑄𝐷. We will demonstrate the argument

for 𝑢𝜀. Take another cube 𝑄′ such that 𝑄𝐷 ⊂⊂ 𝑄′. Arguing as in the proof of

Proposition 4.12 we find a sequence 𝑢̃𝜀 ∈ 𝒫𝒞𝜀(𝜔) such that 𝑢̃𝜀 → 𝑢 in 𝑄′ and

lim sup𝜀→0𝐸𝜀(𝜔)(𝑢̃𝜀, 𝑄
′) ≤ 𝐶ℋ𝑘−1(𝑆𝑢 ∩𝑄′). We then set 𝑢̄𝜀 ∈ 𝒫𝒞𝜀(𝜔) as

𝑢̄(𝜀𝑥) = 1𝐴(𝑃𝑘(𝜀𝑥))𝑢𝜀(𝜀𝑥) + (1 − 1𝐴(𝑃𝑘(𝜀𝑥)))𝑢̃𝜀(𝜀𝑥).

Then 𝑢̄𝜀 → 𝑢 in 𝑄𝐷 and applying Lemma 4.8 combined with Hypothesis 2 and (4.7)

yields that, for 𝜀 small enough,

𝐸𝜀(𝜔)(𝑢̄𝜀, 𝑄𝐷) ≤𝐶
∑︁

𝜉∈𝑟′Z𝑑
𝑀

𝐽𝑙𝑟(|𝜉|)|𝜉|
∑︁

(𝑥,𝑦)∈𝒩𝒩 (𝜔)

𝜀𝑥,𝜀𝑦∈𝑃−1
𝑘 (𝑄′)

𝜀𝑘−1|𝑢̄𝜀(𝜀𝑥) − 𝑢̄𝜀(𝜀𝑦)|

≤𝐶
(︀
𝐸𝜀(𝜔)(𝑢𝜀, 𝐴) + 𝐸𝜀(𝜔)(𝑢̃𝜀, 𝑄

′∖𝐴) + ℋ𝑘−1(𝜕𝐴)
)︀
.
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The first and second term remain bounded by construction.

Step 2 Energy estimates

Given 𝛿 > 0 we choose 𝐿𝛿 such that (4.10) holds. Fix 𝑑′ ≤ 1
2
dist(𝐴′, 𝜕𝐴) and let

𝑁𝜀 := ⌊ 𝑑′

2𝜀𝐿𝛿
⌋. For 𝑗 ∈ N we define

𝐴𝜀,𝑗 := {𝑥 ∈ 𝐴 : dist(𝑥,𝐴′) < 2𝑗𝜀𝐿𝛿}.

We let 𝑤𝑗
𝜀 ∈ 𝒫𝒞𝜀(𝜔) be the interpolation defined by

𝑤𝑗
𝜀(𝜀𝑥) = 1𝐴𝜀,𝑗

(𝑃𝑘(𝜀𝑥))𝑢𝜀(𝜀𝑥) + (1 − 1𝐴𝜀,𝑗
(𝑃𝑘(𝜀𝑥)))𝑣𝜀(𝜀𝑥).

Note that 𝑤𝑗
𝜀 → 𝑢 in 𝐷 in the sense of Definition 4.3. Let us set

𝑆𝜉,𝜀
𝑗 := {𝑥 = 𝑦 + 𝑡 𝑃𝑘(𝜉′) : 𝑦 ∈ 𝜕𝐴𝜀,𝑗, |𝑡| ≤ 𝜀, 𝜉′ ∈ 𝜉 + [−𝑟′, 𝑟′]𝑑} ∩ (𝐴 ∪𝐵).

For 𝑗 ≤ 𝑁𝜀 it follows from the definition that

𝐸𝜀(𝜔)(𝑤𝑗
𝜀, 𝐴

′ ∪𝐵) ≤𝐸𝜀(𝜔)(𝑢𝜀, 𝐴𝜀,𝑗) + 𝐸𝜀(𝜔)(𝑣𝜀, 𝐵∖𝐴𝜀,𝑗)

+
∑︁

𝜉∈𝑟′Z𝑑
𝑀

∑︁
𝛼∈𝑅𝜉

𝜀(𝑆
𝜉,𝜀
𝑗 )

𝜀𝑘−1𝑐𝜔𝜀 (𝑥𝛼, 𝑥𝛼+𝜉)|𝑤𝑗
𝜀(𝜀𝑥𝛼) − 𝑤𝑗

𝜀(𝜀𝑥𝛼+𝜉)|⏟  ⏞  
=:𝜌𝜉,𝜀𝑗 (𝛼,𝜔)

≤𝐸𝜀(𝜔)(𝑢𝜀, 𝐴) + 𝐸𝜀(𝜔)(𝑣𝜀, 𝐵) +
∑︁

𝜉∈𝑟′Z𝑑
𝑀

∑︁
𝛼∈𝑅𝜉

𝜀(𝑆
𝜉,𝜀
𝑗 )

𝜌𝜉,𝜀𝑗 (𝛼, 𝜔). (4.15)

We now split the interactions depending on 𝐿𝛿. If |𝜉| > 𝐿𝛿, we use Lemma 4.8. Since

𝐴 ∪𝐵 ⊂⊂ 𝑄𝐷, we deduce that∑︁
|𝜉|>𝐿𝛿

∑︁
𝛼∈𝑅𝜉

𝜀(𝑆
𝜉,𝜀
𝑗 )

𝜌𝜉,𝜀𝑗 (𝛼, 𝜔) ≤ 𝐶
∑︁
|𝜉|>𝐿𝛿

𝐽𝑙𝑟(|𝜉|)|𝜉|
∑︁

(𝑥,𝑦)∈𝒩𝒩 (𝜔)

𝜀𝑥,𝜀𝑦∈𝑃−1
𝑘 𝑄𝐷

𝜀𝑘−1|𝑤𝑗
𝜀(𝜀𝑥) − 𝑤𝑗

𝜀(𝜀𝑦)|.

Obviously we have 𝑃−1
𝑘 𝑄𝐷 ⊂ 𝑃−1

𝑘 𝐴𝜀,𝑗 ∪𝑃−1
𝑘 (𝑄𝐷∖𝐴𝜀,𝑗). Nearest neighbor interactions

between those two sets are contained in 𝑃−1
𝑘 (𝑆𝜉,𝜀

𝑘 ) for some 𝜉 ∈ 𝑟′Z𝑑
𝑀 with |𝜉| ≤

4(𝑅 + 𝑀). By coercivity we can therefore further estimate the last inequality via∑︁
|𝜉|>𝐿𝛿

∑︁
𝛼∈𝑅𝜉

𝜀(𝑆
𝜉,𝜀
𝑗 )

𝜌𝜉,𝜀𝑗 (𝛼, 𝜔) ≤ 𝐶𝛿
(︁
𝐸𝜀(𝜔)(𝑢𝜀, 𝐴) + 𝐸𝜀(𝜔)(𝑣𝜀, 𝑄𝐷)

+
∑︁
|𝜉|≤𝐿𝛿

∑︁
𝛼∈𝑅𝜉

𝜀(𝑆
𝜉,𝜀
𝑗 )

𝜌𝜉,𝜀𝑗 (𝛼, 𝜔)
)︁
. (4.16)
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Now we treat the interactions when |𝜉| ≤ 𝐿𝛿. Consider any points 𝜀𝑥, 𝜀𝑦 ∈ 𝜀ℒ(𝜔). A

straightforward computation yields

|𝑤𝑗
𝜀(𝜀𝑥) − 𝑤𝑗

𝜀(𝜀𝑦)| ≤ |𝑢𝜀(𝜀𝑥) − 𝑢𝜀(𝜀𝑦)| + |𝑣𝜀(𝜀𝑥) − 𝑣𝜀(𝜀𝑦)| + 2|𝑢𝜀(𝜀𝑦) − 𝑣𝜀(𝜀𝑦)|.

By our construction we have 𝑆𝜀,𝜉
𝑗 ⊂ (𝐴𝜀,𝑗+1∖𝐴𝜀,𝑗−1) =: 𝑆𝜀

𝑗 . We deduce that∑︁
|𝜉|≤𝐿𝛿

∑︁
𝛼∈𝑅𝜉

𝜀(𝑆
𝜉,𝜀
𝑗 )

𝜌𝜉,𝜀𝑗 (𝛼, 𝜔) ≤𝐸𝜀(𝜔)(𝑢𝜀, 𝑆
𝜀
𝑗 ) + 𝐸𝜀(𝜔)(𝑣𝜀, 𝑆

𝜀
𝑗 )

+ 𝐶𝛿

∑︁
𝑦∈ℒ(𝜔)

𝜀𝑃𝑘(𝑦)∈𝑆𝜀
𝑗

𝜀𝑘−1|𝑢𝜀(𝜀𝑦) − 𝑣𝜀(𝜀𝑦)|,

where 𝐶𝛿 depends only on 𝐿𝛿. Observe that by definition every point can be in at

most two sets 𝑆𝜀
𝑗1
, 𝑆𝜀

𝑗2
. Thus averaging combined with (4.16), Step 1 and the last

inequality yields

𝐼𝜀 :=
1

𝑁𝜀

𝑁𝜀∑︁
𝑗=1

∑︁
𝜉∈𝑟′Z𝑑

𝑀

∑︁
𝛼∈𝑅𝜉

𝜀(𝑆
𝜉,𝜀
𝑗 )

𝜌𝜉,𝜀𝑗 (𝛼, 𝜔) ≤ 2

𝑁𝜀

𝑁𝜀∑︁
𝑗=1

∑︁
|𝜉|≤𝐿𝛿

∑︁
𝛼∈𝑅𝜉

𝜀(𝑆
𝜉,𝜀
𝑗 )

𝜌𝜉,𝜀𝑗 (𝛼, 𝜔) + 𝐶𝛿

≤ 4

𝑁𝜀

(𝐸𝜀(𝜔)(𝑢𝜀, 𝑄𝐷) + 𝐸𝜀(𝜔)(𝑣𝜀, 𝑄𝐷)) + 𝐶𝛿

∑︁
𝑦∈ℒ(𝜔)
𝜀𝑦∈𝐷

𝜀𝑑|𝑢𝜀(𝜀𝑦) − 𝑣𝜀(𝜀𝑦)| + 𝐶𝛿

≤ 𝐶

𝑁𝜀

+ 𝐶𝛿

∑︁
𝑦∈ℒ(𝜔)
𝜀𝑦∈𝐷

𝜀𝑘|𝑢𝜀(𝜀𝑦) − 𝑣𝜀(𝜀𝑦)| + 𝐶𝛿.

Due to Step 1 we can apply Lemma 4.6 to deduce that lim sup𝜀→0 𝐼𝜀 ≤ 𝐶𝛿. For every

𝜀 > 0 let 𝑗𝜀 ∈ {1, . . . , 𝑁𝜀} be such that∑︁
𝜉∈𝑟′Z𝑑

𝑀

∑︁
𝛼∈𝑅𝜉

𝜀(𝑆
𝜉,𝜀
𝑗𝜀

)

𝜌𝜉,𝜀𝑗𝜀
(𝛼, 𝜔) ≤ 𝐼𝜀 (4.17)

and set 𝑤𝜀 := 𝑤𝑗𝜀
𝜀 . Note that as a convex combination 𝑤𝜀 still converges to 𝑢 in 𝐷.

Hence, using (4.14), (4.15) and (4.17), we conclude that

𝐸 ′′(𝜔)(𝑢,𝐴′ ∪𝐵) ≤ lim sup
𝜀→0

𝐸𝜀(𝜔)(𝑤𝜀, 𝐴
′ ∪𝐵) ≤ 𝐸 ′′(𝜔)(𝑢,𝐴) + 𝐸 ′′(𝜔)(𝑢,𝐵) + 𝐶𝛿.

The arbitrariness of 𝛿 proves the claim.

Proof of Theorem 4.10. Having in mind Remark 4.4 the argument is identical to the

full-dimensional case treated in Section 3.2. The only difference is that due to the
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additional symmetry property 𝐸𝜀(𝜔)(𝑢,𝐴) = 𝐸𝜀(𝜔)(−𝑢,𝐴) and the fact that 𝑢 takes

only values in {±1} we infer that the limit energy obtained by Theorem 2.13 is

independent of the traces 𝑢+, 𝑢−.

4.3 Homogenization for stationary thin lattices

In this section we improve the results from Theorem 4.10 using the randomness, in

particular the stationarity assumption, of the stochastic lattice. To this end we need

again a convergence result about discrete boundary condition that holds without

any knowledge of homogenization. To this end we consider the flat analogue of the

artificial boundary conditions used in Section 3.3. Fix a macroscopic value 𝜂. For

𝐴 ∈ 𝒜𝑅(𝐷) we set

𝜕𝜂𝐴 = {𝑥 ∈ 𝐴 : dist(𝑥, 𝜕𝐴) ≤ 𝜂}.

We let 𝑢0 be a well-prepared boundary data, that means 𝑢0 ∈ 𝐵𝑉𝑙𝑜𝑐(R𝑘, {±1}) and

setting 𝑢𝜀,0 ∈ 𝒫𝒞𝜀(𝜔) as 𝑢𝜀,0(𝜀𝑥) = 𝑢0(𝑃𝑘(𝜀𝑥)), we have 𝑢𝜀,0 → 𝑢0 in 𝐷 and

lim sup
𝜀→0

𝐸𝜀(𝜔)(𝑢𝜀,0, 𝐵) ≤ 𝐶ℋ𝑘−1(𝑆𝑢0 ∩𝐵), ℋ𝑘−1(𝑆𝑢0 ∩ 𝜕𝐴) = 0. (4.18)

with 𝐶 uniformly for 𝐵 ∈ 𝒜𝑅(R𝑘). Let us introduce the set of configurations with

discrete boundary value 𝑢0 as

𝒫𝒞𝜂
𝜀,𝑢0

(𝜔,𝐴) := {𝑢 : 𝜀ℒ(𝜔) → {±1} : 𝑢(𝜀𝑥) = 𝑢0(𝑃𝑘(𝜀𝑥)) if 𝑃𝑘(𝜀𝑥) ∈ 𝜕𝜂𝐴}.

In order to characterize the integrand of the limit functional in Theorem 4.10, we first

analyze the connection between the minimum values

𝑚𝜂
𝜀(𝜔)(𝑢0, 𝐴) = inf{𝐸𝜀(𝜔)(𝑣,𝐴) : 𝑣 ∈ 𝒫𝒞𝜂

𝜀,𝑢0
(𝜔,𝐴)},

𝑚(𝜔)(𝑢0, 𝐴) = inf{𝐸(𝜔)(𝑣,𝐴) : 𝑣 = 𝑢0 in a neighbourhood of 𝜕𝐴},

where the limit functional 𝐸(𝜔) is given (up to subsequences) by Theorem 4.10.

Arguing similar to Lemma 3.16 (see also the proof of Theorem 4.19), we obtain the

following characterization.

Lemma 4.14. Let 𝜀𝑛 and 𝐸(𝜔) be as in Theorem 4.10. Then it holds that

lim
𝜂→0

lim inf
𝑛

𝑚𝜂
𝜀𝑛(𝜔)(𝑢0, 𝐴) = lim

𝜂→0
lim sup

𝑛
𝑚𝜂

𝜀𝑛(𝜔)(𝑢0, 𝐴) = 𝑚(𝜔)(𝑢0, 𝐴).

In order to prove a homogenization result we suppose from now on that there
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exist functions 𝑐𝑛𝑛, 𝑐𝑙𝑟 : R𝑘 × R2(𝑑−𝑘) → [0,+∞) such that, setting ∆𝑘(𝑥, 𝑦) = (𝑦1 −
𝑥1, . . . , 𝑦𝑘 − 𝑥𝑘, 𝑥𝑘+1, 𝑦𝑘+1, . . . , 𝑥𝑑, 𝑦𝑑), it holds

𝑐𝜀𝑛𝑛(𝑥, 𝑦) = 𝑐𝑛𝑛(∆𝑘(𝑥, 𝑦)), 𝑐𝜀𝑙𝑟(𝑥, 𝑦) = 𝑐𝑙𝑟(∆𝑘(𝑥, 𝑦)). (4.19)

Note that the coefficients are homogeneous only along shifts in R𝑘 but may depend

on the position in the orthogonal complement.

In view of Theorem 2.13 and Lemma 4.14 we can further characterize the Γ-limits

of the family 𝐸𝜀(𝜔) by investigating the quantities 𝑚𝜂
𝜀(𝑢0, 𝑄) for suitable oriented

cubes and 𝑢0 = 𝑢1,−1
𝑥,𝜈 . Due to the decay assumptions of Hypothesis 2 it suffices to

consider truncated interactions. To this end, for fixed 𝐿 ∈ N we replace the long-range

coefficients by

𝑐𝐿𝑙𝑟(𝑥, 𝑦) := 𝑐𝑙𝑟(∆𝑘(𝑥, 𝑦))1|𝑥−𝑦|≤𝐿.

We denote the corresponding energy by 𝐸𝐿
𝜀 (𝜔)(𝑢,𝐴). We already know from Chapter

3 that the limit energy is essentially characterized by the following quantity: For

𝜈 ∈ 𝑆𝑘−1 and a cube 𝑄𝜈(𝑥, 𝜌) we let 𝑢𝑥,𝜈 := 𝑢1,−1
𝑥,𝜈 and we set

𝑚𝜂,𝐿
1 (𝜔)(𝑢𝑥,𝜈 , 𝑄𝜈(𝑥, 𝜌)) := inf

{︁
𝐸𝐿

1 (𝜔)(𝑢,𝑄𝜈(𝑥, 𝜌)) : 𝑢 ∈ 𝒫𝒞𝜂
1,𝑢𝑥,𝜈

(𝜔,𝑄𝜈(𝑥, 𝜌))
}︁
.

(4.20)

The following technical auxiliary result is the analogue of Lemma 3.17. We omit its

proof as it is based on exactly the same estimates combined with projection and the

rescaled version of (4.7).

Lemma 4.15. Let 𝑄 = 𝑄𝜈(𝑧, 𝜌) ⊂ R𝑘 be a cube and let {𝑄𝑗 = 𝑄𝜈(𝑧𝑗, 𝜌𝑗)}𝑗 be a finite
family of disjoint cubes with the following properties:

(i) min𝑗 𝜌𝑗 ≥ 4𝐿,

(ii) 𝑧𝑗 − 𝑧1 ∈ 𝜈⊥,

(iii) dist(𝑧1, 𝜈
⊥ + 𝑧) ≤ 1

4
min𝑗 𝜌𝑗,

(iv)
⋃︀

𝑗 𝑄𝑗 ⊂ 𝑄,

(v) dist(𝜕
⋃︀

𝑗 𝑄𝑗, 𝜕𝑄) > 𝜂 or 𝑧𝑗 − 𝑧 ∈ 𝜈⊥.

Then there exists 𝐶 = 𝐶(𝐿,𝑀) > 0 such that for all 𝜂 ≥ 𝐿

𝑚𝜂,𝐿
1 (𝜔)(𝑢𝑧,𝜈 , 𝑄) ≤

∑︁
𝑗

𝑚𝜂,𝐿
1 (𝜔)(𝑢𝑧𝑗 ,𝜈 , 𝑄𝑗) + 𝐶ℋ𝑘−1

(︁(︁
𝑄∖

⋃︁
𝑗

𝑄𝑗

)︁
∩ (𝜈⊥ + 𝑧)

)︁
+ 𝐶

∑︁
𝑗

(︀
ℋ𝑘−2

(︀
(𝜕𝑄𝑗∖𝜕𝑄) ∩ (𝜈⊥ + 𝑧1)

)︀
+ ℋ𝑘−1(𝜕𝑄𝑗 ∩ 𝑆𝜈(𝑧, 𝑧1))

)︀
,
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where 𝑆𝜈(𝑧, 𝑧1) is the infinite (maybe flat) stripe enclosed by the two hyperplanes 𝜈⊥+𝑧

and 𝜈⊥ + 𝑧1.

Remark 4.16. Also in the flat environment Lemma 4.15 still holds if we replace

cubes by boxes of the type 𝐼𝜈(𝑧, {𝜌𝑖}𝑖) = 𝑧 + {𝑥 ∈ R𝑘 : |⟨𝑥, 𝜈𝑖⟩| < 𝜌𝑖
2
}. Then the

cubes 𝑄𝑗 are replaced by the collection 𝐼𝑗 = 𝐼𝜈(𝑧𝑗, {𝜌𝑗𝑖}𝑖) and in the assumptions (i)

and (iii) we have to replace 𝜌𝑗 by min𝑖 𝜌
𝑗
𝑖 .

The next theorem is the main result of this section.

Theorem 4.17. Let ℒ be a stationary, thin admissible stochastic lattice and let 𝑐𝑛𝑛
and 𝑐𝑙𝑟 satisfy Hypothesis 2 with the additional structure property (4.19). For P-almost
every 𝜔 and for all 𝜈 ∈ 𝑆𝑘−1 there exists

𝜑hom(𝜔; 𝜈) := inf
𝜂>0

lim sup
𝑡→+∞

1

𝑡𝑘−1
inf

{︁
𝐸1(𝜔)(𝑢,𝑄𝜈(0, 𝑡)) : 𝑢 ∈ 𝒫𝒞𝜂𝑡

1,𝑢0,𝜈
(𝜔,𝑄𝜈(0, 𝑡))

}︁
.

The functionals 𝐸𝜀(𝜔) Γ-converge with respect to the convergence of Definition 4.3 to
the functional 𝐸hom(𝜔) : 𝐿1(𝐷) → [0,+∞] defined by

𝐸hom(𝜔)(𝑢) =

⎧⎨⎩
∫︀
𝑆𝑢

𝜑hom(𝜔; 𝜈𝑢) dℋ𝑘−1 if 𝑢 ∈ 𝐵𝑉 (𝐷, {±1}),

+∞ otherwise.

If ℒ is ergodic, then 𝜔 ↦→ 𝜑hom(𝜔, 𝜈) is constant almost surely.

Proof. Fix any sequence 𝜀 → 0. According to Theorem 4.10, for all 𝜔 ∈ Ω such that

ℒ(𝜔) is admissible, there exists a (𝜔-dependent) subsequence 𝜀𝑛 such that

Γ- lim
𝑛

𝐸𝜀𝑛(𝜔)(𝑢,𝐴) =

∫︁
𝑆𝑢∩𝐴

𝜑(𝜔;𝑥, 𝜈) dℋ𝑘−1

for all 𝑢 ∈ 𝐵𝑉 (𝐷, {±1}) and every 𝐴 ∈ 𝒜𝑅(𝐷). According to Theorem 2.13 and

Lemma 4.14, for any 𝑥 ∈ 𝐷 and 𝜈 ∈ 𝑆𝑘−1 it holds that

𝜑(𝜔;𝑥, 𝜈) = lim sup
𝜌→0

1

𝜌𝑘−1
𝑚(𝜔)(𝑢𝑥,𝜈 , 𝑄𝜈(𝑥, 𝜌))

= lim sup
𝜌→0

1

𝜌𝑘−1
lim
𝜂→0

lim sup
𝑛

𝑚𝜂
𝜀𝑛(𝜔)(𝑢𝑥,𝜈 , 𝑄𝜈(𝑥, 𝜌)).

Changing the variables via 𝑡𝑛 = 𝜀−1
𝑛 and 𝑣(𝑥) = 𝑢(𝑡−1

𝑛 𝑥), this formula turns into

𝜑(𝜔;𝑥, 𝜈) = lim sup
𝜌→0

lim
𝜂→0

lim sup
𝑛

1

(𝜌𝑡𝑛)𝑘−1
𝑚𝜂𝑡𝑛

1 (𝜔)(𝑢𝑡𝑛𝑥,𝜈 , 𝑡𝑛𝑄𝜈(𝑥, 𝜌)).
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Except for the claim on ergodicity, due to the Urysohn property of Γ-convergence

(recall Remark 4.4) we conclude the proof as soon as we show that for a set of full

probability the limit in 𝜌 is negligible and the other limits do not depend on 𝑥 or the

subsequence 𝑡𝑛. The argument follows the same steps as the proof of Theorem 3.19.

Step 1 Truncating the range of interactions

Using the decay assumptions from Hypothesis 2 in the form of Remark 4.9 combined

with Lemma 4.8 one can show that it is enough to prove that there exists 𝜑𝐿
hom(𝜔; 𝜈)

and a set Ω𝐿 of full probability such that for all 𝜔 ∈ Ω𝐿, 𝑥 ∈ 𝐷, every cube 𝑄𝜈(𝑥, 𝜌)

and every sequence 𝑡𝑛 → +∞ it holds

𝜑𝐿
hom(𝜔; 𝜈) = lim

𝜂→0
lim sup

𝑛

1

(𝜌𝑡𝑛)𝑘−1
𝑚𝜂𝑡𝑛,𝐿

1 (𝜔)(𝑢𝑡𝑛𝑥,𝜈 , 𝑡𝑛𝑄𝜈(𝑥, 𝜌)), (4.21)

where 𝑚𝜂𝑡𝑛,𝐿
1 (𝜔) is defined in (4.20). Indeed, by the same reasoning as in Step 1 of

the proof of Theorem 3.19 we deduce that

0 ≤ 𝑚𝜂𝑡𝑛
1 (𝜔)(𝑢𝑡𝑛𝑥,𝜈 , 𝑡𝑛𝑄𝜈(𝑥, 𝜌)) −𝑚𝜂𝑡𝑛,𝐿

1 (𝜔)(𝑢𝑡𝑛𝑥,𝜈 , 𝑡𝑛𝑄𝜈(𝑥, 𝜌))

(𝜌𝑡𝑛)𝑘−1
≤ 𝐶

∑︁
2|𝜉|>𝐿

𝐽𝑙𝑟(|𝜉|)|𝜉|.

From this estimate and Remark 4.9 we infer that 𝜑𝐿
hom(𝜔; 𝜈) is a Cauchy-sequence

with respect to 𝐿 and moreover, in combination with (4.21), we deduce that

lim
𝐿

𝜑𝐿
hom(𝜔; 𝜈) = lim

𝜂→0
lim sup

𝑗

1

(𝜌𝑡𝑛)𝑘−1
𝑚𝜂𝑡𝑛

1 (𝜔)(𝑢𝑡𝑛𝑥,𝜈 , 𝑡𝑛𝑄𝜈(𝑥, 𝜌))

exists, is independent of 𝑥, 𝜌 and the sequence 𝑡𝑛. Therefore it remains to show (4.21).

We first consider an auxiliary problem with fixed boundary width 𝐿. We show that

there exists

𝜑𝐿(𝜔; 𝜈) = lim
𝑗

1

(𝜌𝑡𝑛)𝑘−1
𝑚𝐿,𝐿

1 (𝜔)(𝑢𝑡𝑛𝑥,𝜈 , 𝑡𝑛𝑄𝜈(𝑥, 𝜌)) (4.22)

and this limit does not depend on 𝑥, 𝜌 and the sequence 𝑡𝑛.

Step 2 Existence of 𝜑𝐿 for 𝑥 = 0 and rational directions

Fix 𝐿 ∈ N. We have to show that, for P-almost every 𝜔 ∈ Ω and every 𝜈 ∈ 𝑆𝑘−1,

there exists the limit in (4.22). We start with the case 𝑥 = 0 and 𝜈 ∈ 𝑆𝑘−1 ∩Q𝑘. For

this choice we can use the subadditive ergodic theorem in (𝑘 − 1)-dimensions.

Substep 2.1 Defining a stochastic process

We recall the construction used for proving Theorem 3.19: Given 𝜈 ∈ 𝑆𝑘−1 there

exists an orthogonal matrix 𝐴𝜈 ∈ R𝑘×𝑘 such that 𝐴𝜈𝑒𝑘 = 𝜈, the mapping 𝜈 ↦→ 𝐴𝜈𝑒𝑖

is continuous on 𝑆𝑘−1∖{−𝑒𝑘} and if 𝜈 ∈ Q𝑘 then 𝐴𝜈 ∈ Q𝑘×𝑘. Let us fix a rational

direction 𝜈 ∈ 𝑆𝑘−1∩Q𝑘 and an integer 𝑁 = 𝑁(𝜈) > 4𝐿 such that 𝑁𝐴𝜈(𝑧, 0) ∈ Z𝑘 for
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all 𝑧 ∈ Z𝑘−1. We now define a discrete stochastic process (see Definition 2.20). To

𝐼 = [𝑎1, 𝑏1) × · · · × [𝑎𝑘−1, 𝑏𝑘−1) ∈ ℐ𝑘−1 we associate the set 𝑄𝐼 ⊂ R𝑘 defined by

𝑄𝐼 := 𝑁𝐴𝜈

(︁
int 𝐼 × (−𝑠max

2
,
𝑠max

2
)
)︁
,

where 𝑠max = max𝑖 |𝑏𝑖 − 𝑎𝑖| is the maximal side length. Then we define the process

𝜇 : ℐ𝑘−1 → 𝐿1(Ω) as

𝜇(𝐼, 𝜔) := inf
{︁
𝐸𝐿

1 (𝜔)(𝑣,𝑄𝐼) : 𝑣 ∈ 𝒫𝒞𝐿
1,𝑢0,𝜈

(𝜔,𝑄𝐼)
}︁

+ 𝐶𝜇ℋ𝑘−2(𝜕𝐼),

where 𝐶𝜇 is a constant to be chosen later for subadditivity. We first have to show

that 𝜇(𝐼, ·) is a 𝐿1(Ω)-function. Testing the 𝒫𝒞1(𝜔)-interpolation of 𝑢0,𝜈 as candidate

in the infimum problem we easily get

𝜇(𝐼, 𝜔) ≤ 𝐶𝑁𝑘−1ℋ𝑘−1(𝐼)

for all 𝐼 ∈ ℐ𝑘−1 and almost every 𝜔 ∈ Ω. Therefore 𝜇(𝐼, ·) is essentially bounded.

ℱ -measurability can be proven with similar arguments as for Substep 2.1 in the proof

of Theorem 3.19.

Next we show lower-dimensional stationarity of the process. Let 𝑧 ∈ Z𝑘−1. Note

that 𝑄𝐼−𝑧 = 𝑄𝐼 − 𝑧𝑁𝜈 , where 𝑧𝑁𝜈 := 𝑁𝐴𝜈(𝑧, 0) ∈ 𝜈⊥ ∩ Z𝑘. Arguing as in the proof of

Theorem 3.19, by the stationarity of ℒ and the structure assumption (4.19) we infer

𝑚𝐿,𝐿
1 (𝜔)(𝑢0,𝜈 , 𝑄𝐼−𝑧) = 𝑚𝐿,𝐿

1 (𝜏𝑧𝑁𝜈 𝜔)(𝑢0,𝜈 , 𝑄𝐼). Since the Hausdorff measure is invariant

under translations we conclude that 𝜇(𝐼 − 𝑧, 𝜔) = 𝜇(𝐼, 𝜏𝑧𝑁𝜈 𝜔). Setting 𝜏𝑧 = 𝜏−𝑧𝑁𝜈
we

obtain a measure preserving group action on Z𝑘−1 such that 𝜇(𝐼, 𝜏𝑧𝜔) = 𝜇(𝐼 + 𝑧)(𝜔).

To show subadditivity, let 𝐼 ∈ ℐ𝑘−1 and let {𝐼𝑗}𝑗∈𝐽 ⊂ ℐ𝑘−1 be a finite disjoint

family such that 𝐼 =
⋃︀

𝑗∈𝐽 𝐼𝑗. Note that 𝑄𝐼 and the family {𝑄𝐼𝑗}𝑗∈𝐽 fulfill the

assumptions of Lemma 4.15 (in the sense of Remark 4.16). We conclude

𝑚𝐿,𝐿
1 (𝜔)(𝑢0,𝜈 , 𝑄𝐼) ≤

∑︁
𝑗∈𝐽

𝑚𝐿,𝐿
1 (𝜔)(𝑢0,𝜈 , 𝑄𝐼𝑗) + 𝐶

∑︁
𝑗∈𝐽

ℋ𝑘−2((𝜕𝑄𝐼𝑗∖𝜕𝑄𝐼) ∩ 𝜈⊥).

Inserting the definition of 𝜇(𝐼, 𝜔) then yields

𝜇(𝐼, 𝜔) = 𝑚𝐿,𝐿
1 (𝜔)(𝑢0,𝜈 , 𝑄𝐼) + 𝐶𝜇ℋ𝑘−2(𝜕𝑄𝐼 ∩ 𝜈⊥)

≤
∑︁
𝑗∈𝐽

𝜇(𝐼𝑗, 𝜔) + (𝐶 − 𝐶𝜇)
∑︁
𝑗∈𝐽

ℋ𝑘−2((𝜕𝑄𝐼𝑗∖𝑄𝐼) ∩ 𝜈⊥),

which yields subadditivity if we choose 𝐶𝜇 > 𝐶. Property (ii) in Definition 2.20 is

trivial since 𝜇(𝐼, 𝜔) is clearly nonnegative. By Theorem 2.21 there exists 𝜑𝐿(𝜔; 𝜈)
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such that almost surely, for rational directions 𝜈 ∈ 𝑆𝑘−1, it holds

𝜑𝐿(𝜔; 𝜈) = lim
𝑛→+∞

1

(2𝑁𝑛)𝑘−1
𝑚𝐿,𝐿

1 (𝜔)(𝑢0,𝜈 , 𝑄𝜈(0, 2𝑁𝑛)),

where we used that 𝐶𝜇ℋ𝑘−2(𝜕𝐼) is negligible for the limit in 𝑛.

Substep 2.2 From integer sequences to all sequences

The extension of the convergence in Substep 2.1 to arbitrary sequence is identical to

the corresponding step for proving Theorem 3.19 and uses only Lemma 4.8. Hence

we skip the details and just keep in mind that for set of full probability it holds

𝜑𝐿(𝜔; 𝜈) = lim
𝑛→+∞

1

𝑡𝑘−1
𝑛

𝑚𝐿,𝐿
1 (𝜔)(𝑢0,𝜈 , 𝑄𝜈(0, 𝑡𝑛))

Substep 2.3 Shift invariance in the probability space

Up to extracting a countable union of null sets we know that the limit defining 𝜑𝐿(𝜔; 𝜈)

exists for all rational directions 𝜈. We next prove that the function 𝜔 ↦→ 𝜑𝐿(𝜔; 𝜈) is

invariant under the entire group action {𝜏𝑧}𝑧∈Z𝑘 . This is essential to deal with the

ergodic case but also to prove shift invariance in the physical space. Given 𝑧 ∈ Z𝑘

there exists 𝑅 = 𝑅(𝐿, 𝑧) > 0 such that for all 𝑡 > 0

𝑄𝜈(0, 𝑡) ⊂ 𝑄𝜈(−𝑧,𝑅 + 𝑡), 2𝐿 ≤ dist(𝜕𝑄𝜈(0, 𝑡), 𝜕𝑄𝜈(−𝑧,𝑅 + 𝑡)). (4.23)

As for stationarity of the stochastic process we know that

𝜑𝐿(𝜏𝑧𝜔; 𝜈) ≤ lim sup
𝑡→+∞

1

(𝑅 + 𝑡)𝑘−1
𝑚𝐿,𝐿

1 (𝜔)(𝑢−𝑧,𝜈 , 𝑄𝜈(−𝑧,𝑅 + 𝑡))

= lim sup
𝑡→+∞

1

𝑡𝑘−1
𝑚𝐿,𝐿

1 (𝜔)(𝑢−𝑧,𝜈 , 𝑄𝜈(−𝑧,𝑅 + 𝑡)).

Due to (4.23) we can apply Lemma 3.17 to the cube 𝑄𝜈(−𝑧, 𝑅+ 𝑡) and the singleton

family {𝑄𝜈(0, 𝑡)} and deduce that there exists a constant 𝐶 = 𝐶(𝑅, 𝑧) such that

𝑚𝐿,𝐿
1 𝐿(𝜔)(𝑢−𝑧,𝜈 , 𝑄𝜈(−𝑧,𝑅 + 𝑡)) ≤ 𝑚𝐿,𝐿

1 (𝜔)(𝑢0,𝜈 , 𝑄𝜈(0, 𝑡)) + 𝐶𝑡𝑘−2.

Hence we get 𝜑𝐿(𝜏𝑧𝜔; 𝜈) ≤ 𝜑𝐿(𝜔; 𝜈). The other inequality can be proven with the same

argument so that the limit indeed exists (which was already hinted in our notation)

and, for P-almost every 𝜔 ∈ Ω,

𝜑𝐿(𝜏𝑧𝜔; 𝜈) = 𝜑𝐿(𝜔; 𝜈). (4.24)
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Step 3 Shift invariance in the physical space

We establish the existence of the limit defining 𝜑𝐿(𝜔; 𝜈) when the cubes are not

centered in the origin. We further argue that it agrees with the one already considered.

The argument is very similar to the full-dimensional case so we leave out some details.

We start with a cube 𝑄𝜈(𝑥, 𝜌) with rational direction 𝜈, 𝑥 ∈ Z𝑘∖{0} and 𝜌 ∈ Q. Given
𝜀 > 0 and 𝑁 ∈ N (different from the one of Substep 2.1) we define the events

𝒬𝑁 :=

{︃
𝜔 ∈ Ω : sup

𝑡≥𝑁
2

⃒⃒⃒
(𝑡𝜌)1−𝑘𝑚𝐿,𝐿

1 (𝜔)(𝑢0,𝜈 , 𝑄𝜈(0, 𝑡𝜌)) − 𝜑𝐿(𝜔; 𝜈)
⃒⃒⃒
≤ 𝜀

}︃
.

By Step 2 we know that the function 1𝒬𝑁
converges almost surely to 1Ω when 𝑁 →

+∞. Let us denote by 𝒥𝑥 the 𝜎-algebra of invariant sets for the measure preserving

map 𝜏𝑥. Fix 𝛿 > 0. By exactly the same probabilistic argument used in Step 3 of

the proof of Theorem 3.19, almost surely we find 𝑛0, 𝑁0 (depending on 𝜔 and 𝛿) such

that for any 𝑛 ≥ max{𝑛0, 𝑁0} and 𝑅̃ = 6𝑛𝛿 there exists 𝑙𝑛 ∈ [𝑛 + 1, 𝑛 + 𝑅̃] with

𝜏𝑙𝑛𝑥(𝜔) ∈ 𝒬𝑁0 . Then, by (4.24) and stationarity, for all 𝑡 ≥ 𝑁0

2
it holds that⃒⃒⃒

(𝑡𝜌)1−𝑘𝑚𝐿,𝐿
1 (𝜔)(𝑢−𝑙𝑛𝑥,𝜈 , 𝑄𝜈(−𝑙𝑛𝑥, 𝑡𝜌)) − 𝜑𝐿(𝜔; 𝜈)

⃒⃒⃒
≤ 𝜀. (4.25)

Let us define 𝛽𝑛 = 𝑛+ 𝑐𝐿𝜌
−1|𝑥|(𝑙𝑛 − 𝑛) with 𝑐𝐿 ∈ N chosen such that 𝑄𝜈(−𝑛𝑥, 𝑛𝜌) ⊂

𝑄𝜈(−𝑙𝑛𝑥, 𝛽𝑛𝜌) and dist(𝜕𝑄𝜈(−𝑛𝑥, 𝑛𝜌), 𝜕𝑄𝜈(−𝑙𝑛𝑥, 𝛽𝑛𝜌)) > 𝐿. Such 𝑐𝐿 exists since

𝑙𝑛 − 𝑛 ≥ 1. Then each face of the cube 𝑄𝜈(−𝑛𝑥, 𝑛𝜌) has at most the distance

(𝛽𝑛 − 𝑛)𝜌 = 𝑐𝐿|𝑥|(𝑙𝑛 − 𝑛) to the corresponding face in 𝑄𝜈(−𝑙𝑛𝑥, 𝛽𝑛𝜌). Then, for 𝑛

large enough, we can apply Lemma 4.15 to the cube 𝑄(−𝑙𝑛𝑥, 𝛽𝑛𝜌) and the singleton

family {𝑄𝜈(−𝑛𝑥, 𝑛𝜌)} to obtain

𝑚𝐿,𝐿
1 (𝜔)(𝑢−𝑙𝑛𝑥,𝜈 , 𝑄𝜈(−𝑙𝑛𝑥, 𝛽𝑛𝜌))

(𝛽𝑛𝜌)𝑘−1
≤ 𝑚𝐿,𝐿

1 (𝜔)(𝑢−𝑛𝑥,𝜈 , 𝑄𝜈(−𝑛𝑥, 𝑛𝜌))

(𝛽𝑛𝜌)𝑘−1
+ 𝐶𝑅̃(𝛽𝑛𝜌)−1

≤ 𝑚𝐿,𝐿
1 (𝜔)(𝑢−𝑛𝑥,𝜈 , 𝑄𝜈(−𝑛𝑥, 𝑛𝜌))

(𝑛𝜌)𝑘−1
+ 6𝐶𝛿. (4.26)

Conversely we can define 𝜃𝑛 = 𝑛− 𝑐′𝐿𝜌
−1|𝑥|(𝑙𝑛 − 𝑛) for a suitable 𝑐′𝐿 ∈ N and deduce

by a similar argument that

𝑚𝐿,𝐿
1 (𝜔)(𝑢−𝑛𝑥,𝜈 , 𝑄𝜈(−𝑛𝑥, 𝑛𝜌))

(𝑛𝜌)𝑘−1
≤ 𝑚𝐿,𝐿

1 (𝜔)(𝑢−𝑙𝑛𝑥,𝜈 , 𝑄𝜈(−𝑙𝑛𝑥, 𝜃𝑛𝜌))

(𝜃𝑛𝜌)𝑘−1
+ 6𝐶𝛿. (4.27)

Note that if 𝛿 is small enough (depending only on 𝑥, 𝐿 and 𝜌) we have 𝛽𝑛 ≥ 𝜃𝑛 ≥
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𝑛
2
≥ 𝑁0

2
. Combining (4.26), (4.27) and (4.25) we infer

lim sup
𝑛→+∞

⃒⃒⃒⃒
⃒𝑚𝐿,𝐿

1 (𝜔)(𝑢−𝑛𝑥,𝜈 , 𝑄𝜈(−𝑛𝑥, 𝑛))

𝑛𝑘−1
− 𝜑𝐿(𝜔; 𝜈)

⃒⃒⃒⃒
⃒ ≤ 6𝐶𝛿 + 𝜀,

which yields the claim in (4.22) for 𝑄𝜈(𝑥, 𝜌) with 𝑥 ∈ Z𝑘 and rational 𝜈 and 𝜌. The

extension to arbitrary sequences 𝑡𝑛 → +∞ and arbitrary 𝑥, 𝜌 is identical to Step 3 of

the proof of Theorem 3.19. Hence we omit the details.

Step 4 From rational to irrational directions

Next we extend the convergence from rational direction to all 𝜈 ∈ 𝑆𝑘−1. As the

argument is purely geometric, we can assume without loss of generality that 𝑥 = 0.

Given 𝜈 ∈ 𝑆𝑘−1 and a sequence 𝑡𝑛 → +∞ we define

𝜑
𝐿
(𝜔; 𝜈) = lim sup

𝑛→+∞

1

𝑡𝑘−1
𝑛

𝑚𝐿,𝐿
1 (𝜔)(𝑢0,𝜈 , 𝑄𝜈(0, 𝑡𝑛)),

𝜑𝐿(𝜔; 𝜈) = lim inf
𝑛→+∞

1

𝑡𝑘−1
𝑛

𝑚𝐿,𝐿
1 (𝜔)(𝑢0,𝜈 , 𝑄𝜈(0, 𝑡𝑛)).

Let 𝜈 ∈ 𝑆𝑘−1∖Q𝑘. By the construction of the matrix 𝐴𝜈 in Substep 2.1 we know that

there exists a sequence of rational directions 𝜈𝑗 such that 𝐴𝜈𝑗 → 𝐴𝜈 . Therefore, given

𝛿 > 0 we find 𝑗0 ∈ N such that for all 𝑗 ≥ 𝑗0 the following two properties hold:

(i) 𝑄𝜈(0, (1 − 2𝛿)) ⊂⊂ 𝑄𝜈𝑗(0, 1 − 𝛿) ⊂⊂ 𝑄𝜈(0, 1),

(ii) 0 < dℋ(𝜈⊥ ∩𝐵2(0), 𝜈⊥
𝑗 ∩𝐵2(0)) ≤ 𝛿.

For fixed 𝑗 ≥ 𝑗0 and 𝑛 ∈ N let 𝑢𝑛,𝑗 ∈ 𝒫𝒞1(𝜔) be an admissible minimizer for

𝑚𝐿,𝐿
1 (𝜔)(𝑢0,𝜈𝑗 , 𝑄𝜈𝑗(0, (1 − 𝛿)𝑡𝑛)). We define a trial function 𝑣𝑛 ∈ 𝒫𝒞1(𝜔) setting

𝑣𝑛(𝑥) :=

⎧⎨⎩𝑢𝑛,𝑗(𝑥) if 𝑥 ∈ 𝑄𝜈𝑗(0, (1 − 𝛿)𝑡𝑛),

𝑢0,𝜈(𝑥) otherwise.

Note that if 𝑃𝑘(𝑥), 𝑃𝑘(𝑦) ∈ 𝑄𝜈(0, 𝑡𝑛)∖𝑄𝜈𝑗(0, (1 − 𝛿)𝑡𝑛) are such that |𝑥− 𝑦| ≤ 𝐿 and

𝑣𝑛(𝑥) ̸= 𝑣𝑛(𝑦), then by the choice of 𝑗0 and (i), for 𝑗 large enough we have

dist
(︀
𝑃𝑘(𝑥), (𝑄𝜈(0, 𝑡𝑛)∖𝑄𝜈(0, (1 − 2𝛿)𝑡𝑛)) ∩ 𝜈⊥)︀ ≤ 𝐿. (4.28)

If 𝑃𝑘(𝑥) ∈ 𝑄𝜈(0, 𝑡𝑛)∖𝑄𝜈𝑗(0, (1 − 𝛿)𝑡𝑛) and 𝑃𝑘(𝑦) ∈ 𝑄𝜈𝑗(0, (1 − 𝛿)𝑡𝑛) with |𝑥− 𝑦| ≤ 𝐿

and 𝑣𝑛(𝑥) ̸= 𝑣𝑛(𝑦), then, for 𝑗 large enough one can show that by (ii) either 𝑃𝑘(𝑥) or
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𝑃𝑘(𝑦) must lie in the cone

𝒦(𝜈, 𝜈𝑗) = {𝑥 ∈ R𝑘 : ⟨𝑥, 𝜈⟩ · ⟨𝑥, 𝜈𝑗⟩ ≤ 0}.

As the ray [𝑃𝑘(𝑥), 𝑃𝑘(𝑦)] intersects 𝜕𝑄𝜈𝑗(0, (1 − 𝛿)𝑡𝑛), we conclude that

dist(𝑃𝑘(𝑥), (𝒦(𝜈, 𝜈𝑗) + 𝐵𝐿(0)) ∩ 𝜕𝑄𝜈𝑗(0, (1 − 𝛿)𝑡𝑛)) ≤ 𝐿. (4.29)

By (i) it holds that 𝑣𝑛 ∈ 𝒫𝒞𝐿
1,𝑢0,𝜈

(𝜔,𝑄𝜈(0, 𝑡𝑛)) for 𝑛 large enough. Having in mind

(4.7), from (4.28), (4.29) and the choice of 𝑗0 we deduce that for 𝑗 large enough

𝑚𝐿,𝐿
1 (𝜔)(𝑢0,𝜈 , 𝑄𝜈(0, 𝑡𝑛) ≤ 𝑚𝐿,𝐿

1 (𝜔)(𝑢0,𝜈𝑗 , 𝑄𝜈𝑗(0, (1 − 𝛿)𝑡𝑛)) + 𝐶𝛿𝑡𝑘−1
𝑛 .

Dividing the last inequality by 𝑡𝑘−1
𝑛 and passing to the right subsequence of 𝑡𝑛 we

deduce

𝜑
𝐿
(𝜔; 𝜈) ≤ 𝜑𝐿(𝜔; 𝜈𝑗) + 𝐶𝛿.

Letting first 𝑗 → +∞ and then 𝛿 → 0 yields 𝜑
𝐿
(𝜔; 𝜈) ≤ lim inf𝑗 𝜑

𝐿(𝜔; 𝜈𝑗). By a

similar argument we can also prove that lim sup𝑗 𝜑
𝐿(𝜔; 𝜈𝑗) ≤ 𝜑𝐿(𝜔; 𝜈). Hence the

limit in (4.22) exists almost surely for all directions 𝜈 and it does not depend on 𝑥, 𝜌

and the sequence 𝑡𝑛.

Step 5 Proof of (4.21)

Finally one can prove that 𝜑𝐿(𝜔; 𝜈) = 𝜑𝐿
hom(𝜔; 𝜈) as in Step 5 of the proof of Theorem

3.19.

When the group action is ergodic, the additional statement in Theorem 4.17 again

follows easily from (4.24).

Remark 4.18. As in Chapter 3 one can show that the surface tension can be obtained

by one single limit procedure. Indeed, referring to (4.30) and repeating Step 1 and 5

of the proof of Theorem 4.17 it follows that

𝜑hom(𝜔; 𝜈) = lim
𝑡→+∞

1

𝑡𝑘−1
inf{𝐸1(𝜔)(𝑢,𝑄𝜈(0, 𝑡)) : 𝑢 ∈ 𝒫𝒞𝑙1/𝑡

1,𝑢0,𝜈
(𝜔,𝑄𝜈(0, 𝑡))}.

Moreover lower semicontinuity implies again the convexity of the one-homogeneous

extension of 𝜈 ↦→ 𝜑hom(𝜔; 𝜈) and thus Lipschitz continuity on 𝑆𝑘−1.

4.4 Convergence of boundary value problems

In this section we consider a refined version of the convergence of minimum problems

under Dirichlet-type boundary data when the width of the discrete boundary depends
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also on 𝜀.

Let 𝐴 ∈ 𝒜𝑅(𝐷) and fix 𝑢0 ∈ 𝐵𝑉 (R𝑘
loc, {±1}). As at the beginning of Section 4.3

we assume that the boundary data is well-prepared in the sense of (4.18). Similar to

Section 3.2 we define a discrete trace constraint as follows: Let 𝑙𝜀 > 0 be such that

lim
𝜀→0

𝑙𝜀 = +∞, lim
𝜀→0

𝑙𝜀𝜀 = 0. (4.30)

We set 𝒫𝒞𝑙𝜀𝜀
𝜀,𝑢0

(𝜔,𝐴) as the space of those 𝑢 that agree with 𝑢0 at the discrete boundary

of 𝐴, namely

𝒫𝒞𝑙𝜀
𝜀,𝑢0

(𝜔,𝐴) := {𝑢 : 𝜀ℒ(𝜔) → {±1} : 𝑢(𝜀𝑥) = 𝑢0(𝑃𝑘(𝜀𝑥)) if dist(𝑃𝑘(𝜀𝑥), 𝜕𝐴) ≤ 𝑙𝜀𝜀}.

For given 𝜀 > 0 and 𝑙𝜀 > 0 let us consider the restricted functional 𝐸𝑙𝜀
𝜀,𝑢0

(𝜔)(·, 𝐴) :

𝒫𝒞𝑙𝜀𝜀
𝜀,𝑢0

(𝜔,𝐴) → [0,+∞] defined as

𝐸𝑙𝜀
𝜀,𝑢0

(𝜔)(𝑢,𝐴) := 𝐸𝜀(𝜔)(𝑢,𝐴). (4.31)

Given 𝑢 ∈ 𝐵𝑉 (𝐷, {±1}), we further define the extension 𝑢𝐴,0 : R𝑘 → {±1} as

𝑢𝐴,0(𝑥) :=

⎧⎨⎩𝑢(𝑥) if 𝑥 ∈ 𝐴,

𝑢0(𝑥) otherwise.

Since 𝐴 is regular we have 𝑢𝐴,0 ∈ 𝐵𝑉𝑙𝑜𝑐(R𝑘, {±1}). The following convergence result

holds true:

Theorem 4.19. Under the assumptions of Theorem 4.17, for every set 𝐴 ∈ 𝒜𝑅(𝐷),
𝐴 ⊂⊂ 𝐷, the functionals 𝐸𝑙𝜀

𝜀,𝑢0
(𝜔)(·, 𝐴) defined in (4.31) Γ-converge with respect to

the convergence in 𝐴 to the functional 𝐸𝑢0(𝜔)(·, 𝐴) : 𝐿1(𝐷) → [0,+∞] that is finite
only for 𝑢 ∈ 𝐵𝑉 (𝐴, {±1}), where it takes the form

𝐸𝑢0(𝜔)(𝑢,𝐴) =

∫︁
𝑆𝑢𝐴,0

∩𝐴
𝜑hom(𝜔; 𝜈𝑢𝐴,0

) dℋ𝑘−1.

Proof. We already know that the limit energy is finite only for 𝑢 ∈ 𝐵𝑉 (𝐴, {±1}).

Lower bound: Without loss of generality let 𝑢𝜀 → 𝑢 in 𝐴 in the sense of Definition

4.3 be such that

lim inf
𝜀

𝐸𝑙𝜀
𝜀,𝑢0

(𝜔)(𝑢𝜀, 𝐴) ≤ 𝐶.

Passing to a subsequence, we may assume that 𝑢𝜀 ∈ 𝒫𝒞𝑙𝜀𝜀
𝜀,𝑢0

(𝜔,𝐴). We define a new
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sequence 𝑣𝜀 : 𝜀ℒ(𝜔) → {±1} by

𝑣𝜀(𝜀𝑥) = 1𝐴(𝑃𝑘(𝜀𝑥))𝑢𝜀(𝜀𝑥) + (1 − 1𝐴(𝑃𝑘(𝜀𝑥)))𝑢0(𝜀𝑥).

Note that by our assumptions on 𝑢0 we have 𝑣𝜀 → 𝑢𝐴,0 in 𝐷 in the sense of Definition

4.3. Now fix 𝐴1 ⊂⊂ 𝐴 ⊂⊂ 𝐴2 such that 𝐴1, 𝐴2 ∈ 𝒜𝑅(𝐷). Setting

𝑅𝜉
𝜀 := {𝛼 ∈ 𝑅𝜉

𝜀(𝐴2) : 𝜀𝑥𝛼 ∈ 𝑃−1
𝑘 𝐴, 𝜀𝑥𝛼+𝜉 /∈ 𝑃−1

𝑘 𝐴 or vice versa},

for 𝐿 ∈ N large enough the truncated energies can be estimated via

𝐸𝐿
𝜀 (𝜔)(𝑣𝜀, 𝐴2) ≤𝐸𝑙𝜀

𝜀,𝑢0
(𝜔)(𝑢𝜀, 𝐴) + 𝐸𝜀(𝜔)(𝑢𝜀,0, 𝐴2∖𝐴1)

+
∑︁

|𝜉|≤2𝐿

∑︁
𝛼∈𝑅𝜉

𝜀

𝜀𝑘−1𝑐𝜔𝜀 (𝑥𝛼, 𝑥𝛼+𝜉)|𝑣𝜀(𝜀𝑥𝛼) − 𝑣𝜀(𝜀𝑥𝛼+𝜉)|, (4.32)

For interactions with |𝜉| ≤ 2𝐿 and 𝜀 small enough, we have that 𝑅𝜉
𝜀 ⊂ 𝐴2∖𝐴1.

Moreover, as soon as 𝑙𝜀 > 3𝐿 (actually 𝑙𝜀 ≥ 𝐿 would be enough but requires additional

notation), by the boundary conditions on 𝑢𝜀 we get∑︁
|𝜉|≤2𝐿

∑︁
𝛼∈𝑅𝜉

𝜀

𝜀𝑘−1𝑐𝜔𝜀 (𝑥𝛼, 𝑥𝛼+𝜉)|𝑣𝜀(𝜀𝑥𝛼) − 𝑣𝜀(𝜀𝑥𝛼+𝜉)| ≤ 𝐸𝜀(𝜔)(𝑢𝜀,0, 𝐴2∖𝐴1).

From a local version (see Theorem 4.10) of Theorem 4.17 applied to the truncated

energies and from (4.18) and (4.32) we infer

𝐸𝐿
hom(𝜔)(𝑢𝐴,0, 𝐴2) ≤ lim inf

𝜀
𝐸𝑙𝜀

𝜀,𝑢0
(𝑢𝜀, 𝐴) + 𝐶ℋ𝑑−1(𝑆𝑢0 ∩ 𝐴2∖𝐴1).

The lower bound follows by letting 𝐴2 ↓ 𝐴 and 𝐴1 ↑ 𝐴 combined with (4.18) and

then letting 𝐿 → +∞. For the last limit recall Step 1 of the proof of Theorem 4.17.

Upper bound: We first provide a recovery sequence in the case when 𝑢 = 𝑢0 in

a neighborhood of 𝜕𝐴. Let 𝑢𝜀 : 𝜀ℒ(𝜔) → {±1} converge to 𝑢 in 𝐷 in the sense of

Definition 4.3 such that

lim
𝜀→0

𝐸𝜀(𝜔)(𝑢𝜀, 𝐴) = 𝐸hom(𝜔)(𝑢,𝐴). (4.33)

Given 𝛿 > 0 we let 𝐿𝛿 > 0 be such that (4.10) holds. Now choose regular sets

𝐴1 ⊂⊂ 𝐴2 ⊂⊂ 𝐴 such that

𝑢 = 𝑢0 on 𝐴∖𝐴1. (4.34)
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The remaining argument is similar to the proof of Proposition 4.13 and therefore we

only sketch it. Fix 𝑑′ ≤ 1
2
dist(𝐴1, 𝜕𝐴2) and set 𝑁𝜀 = ⌊ 𝑑′

2𝜀𝐿𝛿
⌋. For 𝑗 ∈ N we introduce

the sets

𝐴𝜀,𝑗 := {𝑥 ∈ 𝐴 : dist(𝑥,𝐴1) < 2𝑗𝜀𝐿𝛿}.

We further define 𝑢𝑗
𝜀 : 𝜀ℒ(𝜔) → {±1} setting

𝑢𝑗
𝜀(𝜀𝑥) =

⎧⎨⎩𝑢0(𝑃𝑘(𝜀𝑥)) if 𝑃𝑘(𝜀𝑥) /∈ 𝐴𝜀,𝑗,

𝑢𝜀(𝜀𝑥) otherwise.

Splitting the interactions as usual we deduce that

𝐸𝜀(𝜔)(𝑢𝑗
𝜀, 𝐴) ≤𝐸𝜀(𝜔)(𝑢𝜀, 𝐴) + 𝐸𝜀(𝜔)(𝑢𝜀,0, 𝐴∖𝐴1)

+
∑︁

𝜉∈𝑟′Z𝑑
𝑀

𝜀𝑘−1
∑︁

𝛼∈𝑅𝜉
𝜀(𝑆

𝜉,𝜀
𝑗 )

𝑐𝜔𝜀 (𝑥𝛼, 𝑥𝛼+𝜉)|𝑢𝑗
𝜀(𝜀𝑥𝛼) − 𝑢𝑗

𝜀(𝜀𝑥𝛼+𝜉)|,

where we have set

𝑆𝜉,𝜀
𝑗 := {𝑥 = 𝑦 + 𝑡 𝑃𝑘(𝜉′) : 𝑦 ∈ 𝜕𝐴𝜀,𝑗, |𝑡| ≤ 𝜀, 𝜉′ ∈ 𝜉 + [−𝑟′, 𝑟′]𝑑} ∩ 𝐴.

As in the proof of Proposition 4.13, using an extension argument combined with (4.18)

and (4.33) one can show that∑︁
𝜉∈𝑟′Z𝑑

𝑀

𝜀𝑘−1
∑︁

𝛼∈𝑅𝜉
𝜀(𝑆

𝜉,𝜀
𝑗 )

𝑐𝜔𝜀 (𝑥𝛼, 𝑥𝛼+𝜉)|𝑢𝑗
𝜀(𝜀𝑥𝛼) − 𝑢𝑗

𝜀(𝜀𝑥𝛼+𝜉)|

≤ 𝐶𝛿 + 𝐶
∑︁
|𝜉|≤𝐿𝛿

∑︁
𝛼∈𝑅𝜉

𝜀(𝑆
𝜉,𝜀
𝑗 )

𝜀𝑘−1𝑐𝜔𝜀 (𝑥𝛼, 𝑥𝛼+𝜉)|𝑢𝑗
𝜀(𝜀𝑥𝛼) − 𝑢𝑗

𝜀(𝜀𝑥𝛼+𝜉)|
)︂
.

To estimate the interactions with |𝜉| ≤ 𝐿𝛿, note that due to (4.34) we can use the

averaging technique again to obtain 𝑗𝜀 ∈ {1, . . . , 𝑁𝜀} and the corresponding sequence

𝑢𝑗𝜀
𝜀 satisfying the boundary conditions (at least for small 𝜀 because of (4.30)) such

that

lim sup
𝜀→0

𝐸𝑙𝜀
𝜀,𝑢0

(𝜔)(𝑢𝑗𝜀
𝜀 , 𝐴) ≤ 𝐸hom(𝜔)(𝑢,𝐴) + 𝐶ℋ𝑘−1(𝑆𝑢0 ∩ (𝐴∖𝐴1)) + 𝐶𝛿,

where we used again (4.18). Due to the assumptions on 𝑢0 and (4.34), we know that

𝑢𝑗𝜀
𝜀 → 𝑢 on 𝐴. Letting first 𝛿 → 0 and then 𝐴1 ↑ 𝐴 we finally get

Γ- lim sup
𝜀

𝐸𝑙𝜀
𝜀,𝑢0

(𝜔)(𝑢,𝐴) ≤ 𝐸hom(𝜔)(𝑢,𝐴) = 𝐸𝑢0(𝜔)(𝑢,𝐴).
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The general case can be deduced by density using Lemmata 2.17 and 2.14. The

details are already contained in the proof of Theorem 3.23.

Remark 4.20. (i) In the case of finite range of interactions, that is 𝑐𝑙𝑟(𝑥, 𝑦) = 0

for |𝑥− 𝑦| ≥ 𝐿, it is enough to take 𝑙𝜀 ≥ 𝐿.

(ii) By Remark 4.4 the above Theorem 4.19 implies the usual convergence of mini-

mizers in the spirit of Γ-convergence.

4.5 Phase constraints in the stationary case

In this section we will discuss the variational limit of the energies 𝐸𝜀(𝜔) when we fix

the number of lattice points where the configuration takes the value +1. In order to

formulate the result, given 𝑉𝜀 ∈ N0, let us introduce the class

𝒫𝒞𝑉𝜀
𝜀 (𝜔) := {𝑢 : 𝜀ℒ(𝜔) → {±1} : #{𝜀𝑥 ∈ 𝜀ℒ(𝜔) ∩ 𝑃−1

𝑘 𝐷 : 𝑢(𝜀𝑥) = 1} = 𝑉𝜀}.

In the sequel we will assume that there exists 𝑉 ∈ [0, 1] such that

lim
𝜀→0

𝑉𝜀

#{𝜀𝑥 ∈ 𝜀ℒ(𝜔) ∩ 𝑃−1
𝑘 𝐷}

= 𝑉.

The lemma below describes how phase constraints behave for finite energy sequences.

Lemma 4.21. For P-almost all 𝜔 ∈ Ω the following statement holds true: For all
𝑢 ∈ 𝐵𝑉 (𝐷, {±1}) such that there exists a sequence 𝑢𝜀 : 𝜀ℒ(𝜔) → {±1} with 𝑢𝜀 → 𝑢

in the sense of Definition 4.3 and

sup
𝜀>0

𝐸𝜀(𝜔)(𝑢𝜀) ≤ 𝐶, lim
𝜀→0

#{𝜀𝑥 ∈ 𝜀ℒ(𝜔) ∩ 𝑃−1
𝑘 𝐷 : 𝑢𝜀(𝜀𝑥) = 1}

#{𝜀𝑥 ∈ 𝜀ℒ(𝜔) ∩ 𝑃−1
𝑘 𝐷}

= 𝑉 ′,

we have
1

|𝐷|

∫︁
𝐷

𝑢 d𝑥 = 2𝑉 ′ − 1.

Proof. For 𝜔 ∈ Ω we consider the sequence of nonnegative Borel measures 𝛾𝜀(𝜔) on

𝐷 defined as the weighted sum of point masses

𝛾𝜀(𝜔) =
∑︁

𝑧∈𝑃𝑘(ℒ(𝜔))∩𝐷
𝜀

𝜀𝑘#
(︀
𝑃−1
𝑘 (𝑧) ∩ ℒ(𝜔)

)︀
𝛿𝜀𝑧.

As 𝛾𝜀(𝜔)(𝐷) ≤ 𝐶|𝐷|, up to subsequences we know that 𝛾𝜀(𝜔)
*
⇀ 𝛾(𝜔) in the sense

of measures. Let us identify the limit measure. To this end we define a discrete
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stochastic process 𝛾 : ℐ𝑘 → 𝐿1(Ω) as

𝛾(𝐼)(𝜔) :=
∑︁

𝑦∈𝑃𝑘(ℒ(𝜔))∩𝐼

#
(︀
𝑃−1
𝑘 (𝑦) ∩ ℒ(𝜔)

)︀
= # (𝑥 ∈ ℒ(𝜔) : 𝑃𝑘(𝑥) ∈ 𝐼) . (4.35)

It follows from (4.3) that 𝛾(𝐼) is essentially bounded for every 𝐼 ∈ ℐ𝑘. In addition it

can be checked that 𝛾(𝐼) is ℱ -measurable, thus we infer that 𝛾(𝐼) ∈ 𝐿∞(Ω). Upon

redefining the group action as 𝜏𝑧 = 𝜏−𝑧, the process 𝛾 is stationary and (sub)additive.

By Theorem 2.21 there exists 𝛾0(𝜔) such that for P-almost every 𝜔 ∈ Ω and all 𝐼 ∈ ℐ𝑘

we have

lim
𝑛→+∞

𝛾(𝑛𝐼)(𝜔)

𝑛𝑘|𝐼|
= 𝛾0(𝜔).

It is straightforward to extend this result to all sequences 𝑡𝑛 → +∞ and then to all

half open cubes in R𝑘 by a continuity argument. Now let 𝑄 ⊂ 𝐷 be any half open

cube. Then by definition

lim
𝜀→0

𝛾𝜀(𝜔)(𝑄) = lim
𝜀→0

∑︁
𝑧∈𝑃𝑘(ℒ(𝜔))∩ 1

𝜀
𝑄

𝜀𝑘#
(︀
𝑃−1
𝑘 (𝑧) ∩ ℒ(𝜔)

)︀
= 𝛾0(𝜔)|𝑄|. (4.36)

Given any open set 𝐴 ∈ 𝒜(𝐷), for 𝛿 > 0 we consider the following interior approxi-

mation:

𝐴int(𝛿) =
⋃︁

𝑧∈𝛿Z𝑘: 𝑧+[0,𝛿)𝑘⊂𝐴

𝑧 + [0, 𝛿)𝑘.

It can be checked by monotone convergence that lim𝛿→0 |𝐴(𝛿)| = |𝐴|. By (4.36) and

additivity we obtain

lim inf
𝜀→0

𝛾𝜀(𝜔)(𝐴) ≥ lim inf
𝜀→0

𝛾𝜀(𝜔)(𝐴(𝛿)) = 𝛾0(𝜔)|𝐴(𝛿)|.

Letting 𝛿 → 0 we obtain lim inf𝜀 𝛾𝜀(𝜔)(𝐴) ≥ 𝛾0(𝜔)|𝐴|. The Portmanteau-Theorem

implies that 𝛾(𝜔)(𝐵) = 𝛾0(𝜔)|𝐵| for all Borel sets 𝐵 ⊂ 𝐷, in particular the whole

sequence converges in the sense of measures. On the other hand, if 𝐴 ∈ 𝒜(𝐷) is such

that |𝜕𝐴| = 0, then the outer approximation

𝐴out(𝛿) =
⋃︁

𝑧∈𝛿Z𝑘: 𝑧+[0,𝛿)𝑘∩𝐴 ̸=∅

𝑧 + [0, 𝛿)𝑘

also fulfills lim𝛿→0 |𝐴(𝛿)| = |𝐴|. Hence we conclude again by additivity and (4.36)

that

lim
𝜀→0

𝛾𝜀(𝜔)(𝐴) = 𝛾0(𝜔)|𝐴| (4.37)
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for all 𝐴 ∈ 𝒜(𝐷) such that |𝜕𝐴| = 0. Given again 𝛿 > 0, we take any polyhedral

function 𝑢𝛿 ∈ 𝐵𝑉𝑙𝑜𝑐(R𝑘, {±1}) such that ‖𝑢−𝑢𝛿‖𝐿1(𝐷) ≤ 𝛿. As 𝑢𝛿 is Borel-measurable,

we have ∫︁
𝐷

𝑃𝑢𝜀 d𝛾𝜀(𝜔) =

∫︁
𝐷

(𝑃𝑢𝜀 − 𝑢𝛿) d𝛾𝜀(𝜔) +

∫︁
𝐷

𝑢𝛿 d𝛾𝜀(𝜔).

Since 𝑢𝛿 is a polyhedral function, we can use (4.37) for the second term to obtain

lim
𝜀→0

∫︁
𝐷

𝑢𝛿 d𝛾𝜀(𝜔) = 𝛾0(𝜔)

∫︁
𝐷

𝑢𝛿 d𝑥. (4.38)

What concerns the first term, by (4.2) we have⃒⃒⃒⃒∫︁
𝐷

(𝑃𝑢𝜀 − 𝑢𝛿) d𝛾𝜀(𝜔)

⃒⃒⃒⃒
≤ 𝐶

∑︁
𝑧∈𝑃𝑘(ℒ(𝜔))∩𝐷

𝜀

𝜀𝑘|𝑃𝑢𝜀(𝜀𝑧) − 𝑢𝛿(𝜀𝑧)| (4.39)

Now using the fact that 𝑢𝜀 has equibounded energy and that 𝑢𝛿 is a polyhedral

function, one can reason as in the proof of Lemma 4.6 to show that

lim sup
𝜀→0

∑︁
𝑧∈𝑃𝑘(ℒ(𝜔))∩𝐷

𝜀

𝜀𝑘|𝑃𝑢𝜀(𝜀𝑧) − 𝑢𝛿(𝜀𝑧)| ≤ 𝐶‖𝑢− 𝑢𝛿‖𝐿1(𝐷) ≤ 𝐶𝛿.

Combining the above inequality with (4.38) and (4.39) we finally obtain by the arbi-

trariness of 𝛿 that

lim
𝜀→0

∫︁
𝐷

𝑃𝑢𝜀 d𝛾𝜀(𝜔) = 𝛾0(𝜔)

∫︁
𝐷

𝑢 d𝑥

The claim now follows on observing that, by plugging in the definition and using

again (4.37), it holds

lim
𝜀→0

∫︁
𝐷

𝑃𝑢𝜀 d𝛾𝜀(𝜔) = lim
𝜀→0

𝜀𝑘2#{𝜀𝑥 ∈ 𝜀ℒ(𝜔) ∩ 𝑃−1
𝑘 (𝐷) : 𝑢𝜀(𝜀𝑥) = 1}

− lim
𝜀→0

𝜀𝑘#{𝜀ℒ(𝜔) ∩ 𝑃−1
𝑘 (𝐷)} = (2𝑉 ′ − 1)|𝐷|𝛾0(𝜔).

In order to incorporate the phase constraint into the functional, for P-almost every

𝜔 ∈ Ω we introduce 𝐸𝑉𝜀
𝜀 (𝜔) : 𝒫𝒞𝜀(𝜔) → [0,+∞] defined by

𝐸𝑉𝜀
𝜀 (𝜔)(𝑢) =

⎧⎨⎩𝐸𝜀(𝜔)(𝑢) if 𝑢 ∈ 𝒫𝒞𝑉𝜀
𝜀 (𝜔),

+∞ otherwise.

With the help of Lemma 4.21 we now prove the thin film analogue of Theorem 3.28.
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Theorem 4.22. Let ℒ be a stationary thin admissible stochastic lattice and let 𝑐𝑛𝑛
and 𝑐𝑙𝑟 satisfy Hypothesis 2 with the additional structure property (4.19). For P-
almost every 𝜔 the functionals 𝐸𝑉𝜀

𝜀 (𝜔) Γ-converge with respect to the convergence of
Definition 4.3 to the functional 𝐸𝑉

hom(𝜔) : 𝐿1(𝐷) → [0,+∞] defined by

𝐸𝑉
hom(𝜔)(𝑢) =

⎧⎨⎩
∫︀
𝑆𝑢

𝜑hom(𝜔; 𝜈𝑢) dℋ𝑘−1 if 𝑢 ∈ 𝐵𝑉 (𝐷, {±1}), 1
|𝐷|

∫︀
𝐷
𝑢 d𝑥 = 2𝑉 − 1,

+∞ otherwise.

Proof. The lower bound is an immediate consequence of Theorem 4.17 and Lemma

4.21. In order to prove the upper bound, note that due to the density result proved

in [6, Lemma 7.1] and Lemma 2.14 we can reduce the analysis to the case where

𝑢 ∈ 𝐵𝑉 (𝐷, {±1}) is a polyhedral function such that

1

|𝐷|

∫︁
𝐷

𝑢 d𝑥 = 2𝑉 − 1.

By Theorem 4.17 we can find a sequence 𝑢𝜀 : 𝜀ℒ(𝜔) → {±1} such that 𝑢𝜀 converges

to 𝑢 in the sense of Definition 4.3 and

lim
𝜀→0

𝐸𝜀(𝜔)(𝑢𝜀) = 𝐸hom(𝜔)(𝑢). (4.40)

Repeating the argument used for proving Proposition 4.13 one can show that without

loss of generality we may assume that 𝑢𝜀 = 𝑢 on 𝑆𝜂 := {𝑥 ∈ 𝐷 : dist(𝑥, 𝑆𝑢) > 𝜂}
for some 0 < 𝜂 << 1. We extend 𝑢𝜀(𝜀𝑥) := 𝑢(𝜀𝑥) for 𝜀𝑥 ∈ 𝜀ℒ(𝜔)∖𝐷. Let us set

𝑉𝜀 = #{𝜀𝑥 ∈ 𝜀ℒ(𝜔) ∩ 𝑃−1
𝑘 𝐷 : 𝑢𝜀(𝜀𝑥) = 1}. Applying Lemma 4.21 we deduce that

lim
𝜀→0

𝑉𝜀 − 𝑉𝜀

#{𝜀𝑥 ∈ 𝜀ℒ(𝜔) ∩ 𝑃−1
𝑘 𝐷}

= 0. (4.41)

In the following we modify the function 𝑢𝜀 in the case 𝑉𝜀 > 𝑉𝜀. We set ℎ𝜀 = (𝑉𝜀−𝑉𝜀)
1
𝑘 .

Without loss of generality we may assume that ℎ𝜀 → +∞ (otherwise flip the value of

a very slowly diverging number of particles).

Upon reducing 𝜂, we find 𝑥0 such that 𝑄𝑒1(𝑥0, 𝜂) ⊂ 𝑆𝜂 ∩ {𝑢 = 1}. We already

know from the proof of Lemma 4.21 that, almost surely, we can write

𝑞𝜔(𝑥0, ℎ𝜀) := #{𝑥 ∈ ℒ(𝜔) : 𝑃𝑘(𝑥) ∈ 𝑄𝑒1(𝑥0, 𝛾0(𝜔)−1ℎ𝜀)} = ℎ𝑘
𝜀 + ℎ𝑘−1

𝜀 𝛾𝜀,

for some sequence 𝛾𝜀 = 𝛾𝜀(𝜔, 𝑥0) such that lim𝜀→0
𝛾𝜀
ℎ𝜀

= 0. In the following we assume

that 𝛾𝜀 ≤ 0, but with a similar argument we can also treat the case 𝛾𝜀 > 0. As ℒ(𝜔)

is thin admissible in the sense of Definition 4.1, for some appropriate 𝑐 = 𝑐(𝑅) > 0 it
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holds true that

1

𝐶
ℎ𝑘−1
𝜀 ≤ 𝑞𝜔(𝑥0, ℎ𝜀 + 𝑛 + 𝑐) − 𝑞𝜔(𝑥0, ℎ𝜀 + 𝑛) ≤ 𝐶ℎ𝑘−1

𝜀

for any 0 ≤ 𝑛 ≤ ℎ𝜀. In particular, there exists 𝑛𝜀 = 𝒪(𝛾𝜀) and a nonnegative and

equibounded 𝑐𝜀 such that

𝑞𝜔(𝑥0, ℎ𝜀 + 𝑛𝜀) = ℎ𝑘
𝜀 + 𝑐𝜀ℎ

𝑘−1
𝜀 .

Now choose any set 𝐺𝜀 ⊂ R𝑑 such that 𝑃𝑘𝐺𝜀 ⊂ 𝑆𝜂 ∩ {𝑢 = −1} and # (𝐺𝜀 ∩ ℒ(𝜔)) =

𝑐𝜀ℎ
𝑘−1
𝜀 . To reduce notation let us set 𝑄𝜀 := 𝑄𝑒1(𝑥0, 𝛾0(𝜔)−1𝜀(ℎ𝜀 + 𝑛𝜀)). We define

𝑢̄𝜀(𝜀𝑥) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−1 if 𝑃𝑘(𝜀𝑥) ∈ 𝑄𝜀,

+1 if 𝜀𝑥 ∈ 𝐺𝜀,

𝑢𝜀(𝜀𝑥) otherwise.

By construction we have 𝑢̄𝜀 ∈ 𝒫𝒞𝑉𝜀
𝜀 (𝜔) and, since ℎ𝜀𝜀 → 0 by (4.41), we still have

that 𝑢̄𝜀 → 𝑢 in the sense of Definition 4.3. Repeating the energy estimates from the

proof of the upper bound in Theorem 3.28 one can show that

lim sup
𝜀→0

𝐸𝑉𝜀
𝜀 (𝜔)(𝑢̄𝜀) = lim sup

𝜀→0
𝐸𝜀(𝜔)(𝑢𝜀) = 𝐸hom(𝜔)(𝑢).

The case when 𝑉𝜀 ≤ 𝑉𝜀 can be treated by an almost symmetric argument. Hence,

by the Urysohn property of Γ-convergence and Remark 4.4, we get the claim.

4.6 A model for random deposition

The general homogenization result proved in Section 4.3 describes only the qualitative

phenomenon that interfaces may form on the flat subspace. In this final section we

investigate the asymptotic behavior of the limit energy as a function of the average

thickness. To simplify matter, we consider a 3d to 2d dimension reduction problem in

which the magnetic particles are deposited with vertical order on a two-dimensional

flat substrate and interact via finite-range ferromagnetic interactions (see Remark

4.26 (ii) for a short discussion on problems for infinite range interactions). We obtain

information on the dependence of the limit energy on the average thickness when the

latter is very small or very large.

In order to model the substrate where the particles are deposited, we take a two-
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dimensional deterministic lattice, which we choose for simplicity to be ℒ0 = Z2×{0}.
We then consider an independent random field {𝑋𝑝

𝑖 }𝑖∈Z3 , where the 𝑋𝑝
𝑖 are Bernoulli

random variables with P(𝑋𝑝
𝑖 = 1) = 𝑝 ∈ (0, 1) and, for fixed 𝑀 ∈ N, we define a

random point set as follows:

ℒ𝑀
𝑝 (𝜔) :=

{︃
(𝑖1, 𝑖2, 𝑖3) ∈ Z3 : 0 ≤ 𝑖3 ≤

𝑀∑︁
𝑘=1

𝑋𝑝
(𝑖1,𝑖2,𝑘)

(𝜔)

}︃
, (4.42)

Figure 4-2: Three successive deposition steps (black, gray and white) in the construc-
tion of ℒ𝑀

𝑝 (𝜔). The dashed bonds connect nearest neighboring particles.

which means that we successively deposit particles 𝑀 times independently onto the

flat lattice ℒ0 and stack them over each other (see Figure 4-2). Note that the point

set constructed in (4.42) is stationary with respect to integer translations in Z2 and

ergodic by the independence assumption (for a suitable group action on a product

space). Given 𝑢 : 𝜀ℒ𝑀
𝑝 (𝜔) → {±1}, we consider an energy of the form

𝐸𝑝
𝜀,𝑀(𝜔)(𝑢,𝐴) =

∑︁
𝑥,𝑦∈ℒ𝑀

𝑝 (𝜔)

𝑃2(𝑥),𝑃2(𝑦)∈𝐴
𝜀

𝜀𝑐(𝑥− 𝑦)|𝑢(𝜀𝑥) − 𝑢(𝜀𝑦)|, (4.43)

where the interaction 𝑐 : R3 → [0,+∞) fulfills

(i) 𝑐(𝑧) ≤ 𝐶 for all 𝑧 ∈ R3,

(ii) 𝑐(𝑧) = 0 if |𝑧| ≥ 𝐿,
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(iii) 𝑐(𝑧) ≥ 𝑐0 > 0 if |𝑧| = 1.

Remark 4.23. Coefficients satisfying the above conditions (i)-(iii) are of the form

(4.19), but in general do not satisfy the coercivity condition of Hypothesis 2. However

the results obtained in the first part of this chapter still hold true. This is due to

the vertical order of the deposition model which makes the proof of coercivity much

simpler. However note that for instance the constant in Lemma 3.12 now depends

strongly on 𝑀 .

Due to Remark 4.23 we can apply Theorem 3.19 and deduce that there exists the

effective (deterministic) surface tension

𝜑𝑝
hom(𝑀 ; 𝜈) := lim

𝑡→+∞

1

𝑡
inf{𝐸𝑝

1,𝑀(𝜔)(𝑣,𝑄𝜈(0, 𝑡)) : 𝑣 ∈ 𝒫𝒞2𝐿
1,𝑢0,𝜈

(𝜔,𝑄𝜈(0, 𝑡))},

where we used the alternative formula in Remark 4.18 and Remark 4.20.

We are interested in the asymptotic behavior of 𝜑𝑝
hom(𝑀 ; 𝜈) when 𝑀 → +∞.

First let us define some auxiliary quantities. Given 𝑝 ∈ (0, 1], 0 ≤ 𝑁 < 𝑀 and

𝑢 : Z3 → {±1} we set

𝐸𝑝
[𝑁,𝑀 ](𝜔)(𝑢,𝐴) :=

∑︁
𝑥,𝑦∈ℒ𝑀

𝑝 (𝜔)

𝑥,𝑦∈𝐴×[𝑁,𝑀 ]

𝑐(𝑥− 𝑦)|𝑢(𝑥) − 𝑢(𝑦)|

and omit the dependence on 𝜔 of 𝐸𝑝
[𝑁,𝑀 ] when 𝑝 = 1. In that case, given 𝜈 ∈ 𝑆1 we

further introduce the corresponding surface tension

𝜑1,𝑀(𝜈) = lim
𝑡→+∞

1

𝑡
inf{𝐸1

[0,𝑀 ](𝑢,𝑄𝜈(0, 𝑡)) : 𝑣 ∈ 𝒫𝒞2𝐿
1,𝑢0,𝜈

(𝜔,𝑄𝜈(0, 𝑡))}.

Note that the existence of this limit follows by standard subadditivity arguments.

The next lemma shows that the auxiliary surface tensions converge when 𝑀 → +∞.

Lemma 4.24. For any 𝜈 ∈ 𝑆1 there exists the limit

𝜑1(𝜈) := lim
𝑀→+∞

1

𝑀
𝜑1,𝑀(𝜈).

Proof. We define a sequence 𝑎𝑘 = 𝜑1,𝑘−1(𝜈). It is enough to show that 𝑎𝑘 is superad-

ditive. To reduce notation, similar to (4.20) let us introduce

𝑚[𝑁,𝑀 ](𝑢0,𝜈 , 𝑄𝜈(𝑥, 𝜌)) := inf{𝐸1
[𝑁,𝑀 ](𝑣,𝑄𝜈(𝑥, 𝜌)) : 𝑣 ∈ 𝒫𝒞2𝐿

1,𝑢0,𝜈
(𝑄𝜈(𝑥, 𝜌))}.

Note that by periodicity 𝑚[𝑁,𝑀 ](𝑢0,𝜈 , 𝑄𝜈(𝑥, 𝜌)) = 𝑚[𝑁+𝑘,𝑀+𝑘](𝑢0,𝜈 , 𝑄𝜈(𝑥, 𝜌)) for every
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𝑘 ∈ N. For fixed 𝑡 >> 1 one can take any admissible minimization candidate for

𝑚[0,𝑀+𝑀 ′−1](𝑢0,𝜈 , 𝑄𝜈(0, 𝑡)) and restrict it to the sets 𝑄𝜈(0, 𝑡)×[0,𝑀−1] and 𝑄𝜈(0, 𝑡)×
[𝑀,𝑀 + 𝑀 ′ − 1] to obtain the inequality

𝑚[0,𝑀+𝑀 ′−1](𝑢0,𝜈 , 𝑄𝜈(0, 𝑡)) ≥ 𝑚[0,𝑀−1](𝑢0,𝜈 , 𝑄𝜈(0, 𝑡)) + 𝑚[𝑀,𝑀+𝑀 ′−1](𝑢0,𝜈 , 𝑄𝜈(0, 𝑡))

= 𝑚[0,𝑀−1](𝑢0,𝜈 , 𝑄𝜈(0, 𝑡)) + 𝑚[0,𝑀 ′−1](𝑢0,𝜈 , 𝑄𝜈(0, 𝑡)),

where we neglected the interactions between the two cubes and used periodicity in

the last equality. Dividing the inequality by 𝑡 and letting 𝑡 → +∞, we obtain

superadditivity of the sequence 𝑎𝑘.

The next result shows the asymptotic behavior of the surface tension when the average

number of layers 𝑝𝑀 diverges.

Proposition 4.25. Let 𝜑1 be defined as in Lemma 4.24. For 𝜈 ∈ 𝑆1 it holds that

lim
𝑀→+∞

𝜑𝑝
hom(𝑀 ; 𝜈)

𝑝𝑀
= 𝜑1(𝜈).

Proof. Throughout this proof we assume without loss of generality that 𝐿 ∈ N and we

set Z2
𝑀 := Z2 × {0, . . . ,𝑀}. Let us fix 𝜈 ∈ 𝑆1. We separately show two inequalities.

For the moment we also fix 𝑀 . Let us consider a sequence of minimizing configura-

tions 𝑢𝑁 such that lim𝑁
1
𝑁
𝐸1

[0,𝑀 ](𝑢𝑁 , 𝑄𝜈(0, 𝑁)) = 𝜑1,𝑀(𝜈). As we show now, we can

assume that 𝑢𝑁 is a plane-like configuration as provided by Theorem 4.30. Indeed,

applying this theorem we find a plane-like ground state 𝑢𝜈 for the energy

𝐸𝑀(𝑢,𝑄𝜈(0, 𝑁)) :=
∑︁
𝑥∈Z2

𝑀
𝑃2(𝑥)∈𝑄𝜈(0,𝑁)

∑︁
𝑦∈Z2

𝑀

𝑐(𝑥− 𝑦)|𝑢(𝑥) − 𝑢(𝑦)|.

To reduce notation, we introduce the stripe

𝑆𝜈(𝑁, 𝛾) = {𝑥 ∈ R2 : 𝑥 ∈ 𝑄𝜈(0, 𝑁), dist(𝑥, 𝜈⊥) ≤ 4(𝛾 + 𝐿)}

so that the energy of 𝑢𝜈 is concentrated on 𝑆𝜈(𝑁, 𝛾) × [0,𝑀 ] with 𝛾 ≤ 𝐶𝑀 (see

Theorem 4.30). For 𝑁 ∈ N we define two configurations 𝑢𝑁 , 𝑢̃𝑁 : Z2
𝑀 → {±1} via

𝑢𝑁(𝑥) =

⎧⎨⎩𝑢0,𝜈(𝑃2(𝑥)) if dist(𝑃2(𝑥),R2∖𝑄𝜈(0, 𝑁) ≤ 2𝐿,

𝑢𝜈(𝑥) otherwise
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and

𝑢̃𝑁(𝑥) =

⎧⎨⎩𝑢𝜈(𝑥) if dist(𝑃2(𝑥),R2∖ (𝑄𝜈(0, 𝑁)) ≤ 𝐿,

𝑢𝑁(𝑥) otherwise.

Then 𝑢𝑁 is a plane-like configuration whose energy is still concentrated on 𝑆𝜈(𝑁, 𝛾)×
[0,𝑀 ]. Using the boundary conditions and the finite range assumptions one can easily

prove that

𝐸1
[0,𝑀 ](𝑢𝑁 , 𝑄𝜈(0, 𝑁)) ≤ 𝐸1

[0,𝑀 ](𝑢𝑁 , 𝑄𝜈(0, 𝑁)) ≤ 𝐸𝑀(𝑢𝜈 , 𝑄𝜈(0, 𝑁)) + 𝐶𝑀2

≤ 𝐸𝑀(𝑢̃𝑁 , 𝑄𝜈(0, 𝑁)) + 𝐶𝑀2 ≤ 𝐸1
[0,𝑀 ](𝑢𝑁 , 𝑄𝜈(0, 𝑁)) + 2𝐶𝑀2.

Dividing by 𝑁 and letting 𝑁 → +∞ we see that asymptotically we can replace 𝑢𝑁

by the plane-like configuration 𝑢𝑁 . From now on we denote by 𝑢𝑁,𝑀 a plane-like

minimizer whose energy is concentrated on 𝑆𝜈(𝑁, 𝛾) × [0,𝑀 ] with 𝛾 ≤ 𝐶𝑀 and

such that 𝜑1,𝑀(𝜈) = lim𝑁
1
𝑁
𝐸1

[0,𝑀 ](𝑢𝑁,𝑀 , 𝑄𝜈(0, 𝑁)). We extend 𝑢𝑁,𝑀 to Z3 setting

𝑢𝑁,𝑀(𝑥) = 𝑢0,𝜈(𝑃2(𝑥)) for 𝑥3 /∈ {0, . . . ,𝑀}.
For 𝛿 > 0 small enough, we separate the contribution of the substrate and the

first 𝑀𝑝
𝛿 := ⌈(𝑝+𝛿)𝑀⌉ random layers and estimate the remaining interactions. Using

dominated convergence this leads to

1

𝑀
𝜑𝑝
hom(𝑀 ; 𝜈) ≤ 1

𝑀
lim inf
𝑁→+∞

1

𝑁
E[𝐸𝑝

1,𝑀(𝜔)(𝑢𝑁,𝑀𝑝
𝛿
, 𝑄𝜈(0, 𝑁))]

≤ 1

𝑀
lim inf
𝑁→+∞

1

𝑁
E[𝐸1

[0,𝑀𝑝
𝛿 ]

(𝑢𝑁,𝑀𝑝
𝛿
, 𝑄𝜈(0, 𝑁))]

+
𝐶

𝑀
lim sup
𝑁→+∞

1

𝑁
E
[︀
#{𝑥 ∈ ℒ𝑀

𝑝 (𝜔) : 𝑥 ∈ 𝑆𝜈(𝑁, 𝛾) × (𝑀𝑝
𝛿 − 𝐿,𝑀 ]}

]︀
≤ 1

𝑀
𝜑1,𝑀𝑝

𝛿 (𝜈) + 𝐶E[#
{︀
𝑥 ∈ ℒ𝑝

𝑀(𝜔) : 𝑥 ∈ {(0, 0)} × (𝑀𝑝
𝛿 − 𝐿,𝑀 ]}

≤ 1

𝑀
𝜑1,𝑀𝑝

𝛿 (𝜈) + 𝐶

𝑀∑︁
𝑘=𝑀𝑝

𝛿 −𝐿

(𝑘 −𝑀𝑝
𝛿 + 𝐿)

(︂
𝑀

𝑘

)︂
𝑝𝑘(1 − 𝑝)𝑀−𝑘,

where in the last step we have used that the probability of having 𝑘 points in {(0, 0)}×
(𝑀𝑝

𝛿 −𝐿,𝑀 ] is the same as having 𝑘+𝑀𝑝
𝛿 −𝐿 successes out of 𝑀 trials in a Bernoulli

experiment. In order to bound the last sum, we use Hoeffding’s inequality which

yields, for 𝑀 large enough depending on 𝐿 and 𝛿,

P(
𝑀∑︁
𝑖=1

𝑋𝑝
(0,0,𝑖) ≥ 𝑘+𝑀𝑝

𝛿 −𝐿) ≤ P(
𝑀∑︁
𝑖=1

𝑋𝑝
(0,0,𝑖) ≥ 𝑘+ (𝑝+

𝛿

2
)𝑀) ≤ exp(−2𝑀(

𝛿

2
+

𝑘

𝑀
)2).
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From this bound we infer the estimate

𝑀∑︁
𝑘=𝑀𝑝

𝛿 −𝐿

(𝑘 −𝑀𝑝
𝛿 + 𝐿)

(︂
𝑀

𝑘

)︂
𝑝𝑘(1 − 𝑝)𝑀−𝑘 ≤

𝑀∑︁
𝑘=1

𝑘 exp(−1

2
𝑀𝛿2) exp(−2𝛿𝑘).

As the right hand side vanishes when 𝑀 → +∞, by Lemma 4.24 we deduce

lim sup
𝑀

1

𝑀
𝜑𝑝
hom(𝑀 ; 𝜈) ≤ (𝑝 + 𝛿)𝜑1(𝜈).

As 𝛿 was arbitrary the first inequality is proven.

It remains to show the reverse inequality. Given any admissible function 𝑣𝑁 :

ℒ𝑀
𝑝 (𝜔) → {±1} we can neglect the interactions coming from 𝑄𝜈(0, 𝑁)× [𝑀𝑝

−𝛿 +1,𝑀 ]

which yields the estimate

𝐸𝑝
1,𝑀(𝜔)(𝑣𝑁 , 𝑄𝜈(0, 𝑁)) ≥ 𝐸𝑝

[0,𝑀𝑝
−𝛿]

(𝜔)(𝑣𝑁 , 𝑄𝜈(0, 𝑁)).

Minimizing on both sides and dividing by 𝑁 , we obtain in the limit that

1

𝑀
𝜑𝑝
hom(𝑀 ; 𝜈) ≥ 1

𝑀
𝜑𝑝,𝑀𝑝

−𝛿(𝜈). (4.44)

Now the idea is to estimate the error when we replace 𝜑𝑝,𝑀𝑝
−𝛿(𝜈) by 𝜑1,𝑀𝑝

−𝛿(𝜈). Let

𝑢𝑁,𝑀𝑝
−𝛿

be a plane-like sequence of configurations as in the first part of the proof. We

also consider an optimal sequence 𝑢𝑝,𝛿
𝑁 = 𝑢𝑝,𝛿

𝑁 (𝜔) such that

𝜑𝑝,𝑀𝑝
−𝛿(𝜈) = lim

𝑁→+∞

1

𝑁
E[𝐸𝑝

[0,𝑀𝑝
−𝛿]

(𝜔)(𝑢𝑝,𝛿
𝑁 , 𝑄𝜈(0, 𝑁))].

As the deterministic surface tension certainly dominates the random one, we have

0 ≤ 𝜑1,𝑀𝑝
−𝛿(𝜈) − 𝜑𝑝,𝑀𝑝

−𝛿(𝜈)

= lim
𝑁

1

𝑁
E
[︁
𝐸1

[0,𝑀𝑝
−𝛿]

(𝑢𝑁,𝑀𝑝
−𝛿
, 𝑆𝜈(𝑁, 𝛾)) − 𝐸𝑝

[0,𝑀𝑝
−𝛿]

(𝜔)(𝑢𝑝,𝛿
𝑁 (𝜔), 𝑄𝜈(0, 𝑁))

]︁
≤ lim sup

𝑁

1

𝑁
E
[︁
𝐸1

[0,𝑀𝑝
−𝛿]

(𝑢𝑝,𝛿
𝑁 , 𝑆𝜈(𝑁, 𝛾)) − 𝐸𝑝

[0,𝑀𝑝
−𝛿]

(𝜔)(𝑢𝑝,𝛿
𝑁 (𝜔), 𝑆𝜈(𝑁, 𝛾))

]︁
≤ 𝐶 lim sup

𝑁

1

𝑁
E[#{𝑥 ∈

(︀
𝑆𝜈(𝑁, 𝛾) × [1,𝑀𝑝

−𝛿]
)︀
∩ Z3 : 𝑥 /∈ ℒ𝑀

𝑝 (𝜔)}]

≤ 𝐶𝑀E
[︁

max{𝑀𝑝
−𝛿 −

𝑀∑︁
𝑖=1

𝑋𝑝
(0,0,𝑖), 0}

]︁
≤ 𝐶𝑀

𝑀𝑝
−𝛿∑︁

𝑘=1

𝑘 P(𝑀𝑝
−𝛿 −

𝑀∑︁
𝑖=1

𝑋𝑝
(0,0,𝑖) ≥ 𝑘).

Here we used that the number of missing interactions can be estimated by the number
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of missing lattice points since each point can only interact with finitely many others.

Now we apply again Hoeffding’s inequality which yields

P(𝑀𝑝
−𝛿 −

𝑀∑︁
𝑖=1

𝑋𝑝
(0,0,𝑖) ≥ 𝑘) ≤ P(𝑀(𝑝− 𝛿

2
) − 𝑘 ≥

𝑀∑︁
𝑖=1

𝑋𝑝
(0,0,𝑖)) ≤ exp(−2𝑀(

𝛿

2
+

𝑘

𝑀
)2).

We conclude the bound

𝑀𝑝
−𝛿∑︁

𝑘=1

𝑘P(𝑀𝑝
−𝛿 −

𝑀∑︁
𝑖=1

𝑋𝑝
(0,0,𝑖) ≥ 𝑘) ≤

𝑀𝑝
−𝛿∑︁

𝑘=1

𝑘 exp(−1

2
𝑀𝛿2) exp(−2𝛿𝑘).

Again the right hand side vanishes when 𝑀 → +∞ and thus

lim
𝑀

1

𝑀
|𝜑1,𝑀𝑝

−𝛿(𝜈) − 𝜑𝑝,𝑀𝑝
−𝛿(𝜈)| = 0,

so that Lemma 4.24 and (4.44) imply the estimate

lim inf
𝑀→+∞

1

𝑀
𝜑𝑝
hom(𝑀 ; 𝜈) ≥ lim

𝑀→+∞

1

𝑀
𝜑1,𝑀𝑝

−𝛿(𝜈) = (𝑝− 𝛿)𝜑1(𝜈).

Again the desired inequality follows by the arbitrariness of 𝛿 > 0.

Remark 4.26. (i) If we would not include the initial layer ℒ0, then Proposition

4.25 would still hold. However then the surface tension may not be related to an

appropriate Γ- limit as compactness of sequences with bounded energy becomes

a nontrivial issue. We refer to [26] for a possible approach to this problem in

the case of nearest neighbor interactions and bond percolation models.

(ii) When one tries to extend Proposition 4.25 to the case of infinite range of interac-

tions, there occur several problems. In order to use the result for the truncated

energies we would have to get an estimate between the surface tension and its

truncated version. In the previous sections this was achieved using Lemma 4.8

which now depends on 𝑀 as we do not have coercive interactions along Voronoi

neighbors. On the other hand the argument used in the proof of Proposition

4.25 is not available for infinite range interactions.

A percolation-type phenomenon

We close this section with a result on the growth of the averaged surface tension

comparing the two extreme cases where the average number of layers is very low or

diverges. We let ℒ𝑀
𝑝 (𝜔) be defined as in (4.42) but restrict the analysis to nearest
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neighbor interactions and make them slightly non-periodic in the sense that their

magnitude is very small when one of the particles belongs to the substrate ℒ0. More

precisely, given 0 < 𝜂 << 1 we consider functions of the form

𝑐𝜂(𝑥− 𝑦) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if |𝑥− 𝑦| > 1,

𝜂 if |𝑥− 𝑦| = 1 and 𝑥3 · 𝑦3 = 0,

𝑐(𝑥− 𝑦) otherwise,

where 𝑥 ↦→ 𝑐(𝑥) is strictly positive on the unit circle. Then the coefficients are of the

type (4.19). We define 𝐸𝑝,𝜂
𝜀,𝑀(𝜔) as in (4.43) with 𝑐 replaced by 𝑐𝜂. By Remark 4.23

we may again apply Theorem 4.17 and deduce that there exists the limit

𝜑𝑝,𝜂
hom(𝑀 ; 𝜈) := lim

𝑡→+∞

1

𝑡
inf{𝐸𝑝,𝜂

1,𝑀(𝜔)(𝑣,𝑄𝜈(0, 𝑡)) : 𝑣 ∈ 𝒫𝒞2
1,𝑢0,𝜈

(𝜔,𝑄𝜈(0, 𝑡))}.

In contrast to Proposition 4.25, for this model we also consider the case of small 𝑀 .

We will show that if 𝑝 < 1−𝑝site, where 𝑝site is the critical site percolation probability

on Z2, then it holds that

𝜑𝑝,𝜂
hom(1; 𝜈) ≤ 𝐶𝑝𝜂,

where 𝐶𝑝 may blow up only for 𝑝 → 1 − 𝑝site. Note that we do not claim here that

𝑝site is optimal. We can actually improve the result in the sense that for all 𝑀 ∈ N
such that (1 − 𝑝)𝑀 > 𝑝site, we have

𝜑𝑝,𝜂
hom(𝑀 ; 𝜈) ≤ 𝐶𝑝,𝑀𝜂.

This shows that when the probability is very small but finite, the surface tension can

be arbitrary small depending on the strength of the interaction in the substrate layer;

on the other hand we will establish an analogue of Proposition 4.25 asserting that if

the average number of layers increases further, even the normalized surface tension

approaches a value independent of 𝜂. This result can be interpreted as a weak version

of the experimentally observed phenomenon in [41]. Before we prove the result, let

us introduce the typical energy of one slice. Given 𝑞 ∈ (0, 1] and 𝑢 : Z2 → {±1} we

set

𝐸𝑞
𝑠𝑙(𝜔)(𝑢,𝐴) :=

∑︁
𝑥,𝑦∈ℒ1

𝑞(𝜔)∖ℒ0

𝑃2(𝑥),𝑃2(𝑦)∈𝐴

𝑐(𝑥− 𝑦)|𝑢(𝑥) − 𝑢(𝑦)|
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and omit the dependence on 𝜔 if 𝑞 = 1. We further introduce the corresponding

surface tension

𝜑𝑞
𝑠𝑙(𝜈) = lim

𝑡→+∞

1

𝑡
inf{𝐸𝑞

𝑠𝑙(𝜔)(𝑢,𝑄𝜈(0, 𝑡)) : 𝑣(𝑥) = 𝑢0,𝜈(𝑥) if dist(𝑥, 𝜕𝑄𝜈(0, 𝑡)) ≤ 2}.

Note that the existence of this deterministic limit follows again from the subadditive

ergodic theorem as in the proof of Theorem 4.17, since we used condition (i) of

Definition 4.1 only for passing from finite range to decaying interactions in Step

1. In general the random variables 𝜔 ↦→ 𝐸𝑞
𝑠𝑙(𝜔)(𝑢,𝐴) are not defined on the same

probability space but we will use them only for slices of the large set ℒ𝑀
𝑝 (𝜔).

Theorem 4.27. Let 𝑝 ∈ (0, 1) and 𝑀 ∈ N be such that (1−𝑝)𝑀 > 𝑝site. There exists
a constant 𝐶𝑝,𝑀 locally bounded for (1 − 𝑝)𝑀 ∈ (𝑝site, 1) such that

𝜑𝑝,𝜂
hom(𝑀 ; 𝜈) ≤ 𝐶𝑝,𝑀𝜂.

On the other hand, for any 𝑝 ∈ (0, 1) it holds that

lim
𝑀→+∞

𝜑𝑝,𝜂
hom(𝑀 ; 𝜈)

𝑝𝑀
= 2

(︁(︀
𝑐(𝑒1) + 𝑐(−𝑒1)

)︀
|𝜈1| +

(︀
𝑐(𝑒2) + 𝑐(−𝑒2)

)︀
|𝜈2|

)︁
.

Proof. In order to prove the first statement, we start with the case 𝜈 = 𝑒2 and use

results from percolation theory which show that the contribution from the random

layers is negligible: For 𝑞 := (1 − 𝑝)𝑀 > 𝑝site, we consider the so-called Bernoulli site

percolation on Z2, that is we assign independently a weight 𝑋𝑖(𝜔) ∈ {±1} to all the

nodes 𝑖 ∈ Z2 such that P(𝑋𝑖 = 1) = 𝑞. We say that 𝑖0, . . . , 𝑖𝑘 ∈ Z2 is an occupied

path if |𝑖𝑛− 𝑖𝑛+1| = 1 and 𝑋𝑖𝑛(𝜔) = 1 for all 𝑛 = 0, . . . , 𝑘. Theorem 11.1 in [40] yields

that there exist universal constants 𝑐𝑗, 𝑑𝑗 such that

P
(︁
∃ at least 𝑐1(𝑞 − 𝑝site)

𝑑1𝑛 disjoint occupied paths from {0} × [0, 𝑛] to {𝑚} × [0, 𝑛]

and contained in [0,𝑚] × [0, 𝑛]
)︁
≥ 1 − 𝑐2(𝑚 + 1) exp(−𝑐3(𝑞 − 𝑝site)

𝑑2𝑛).

Given 𝑁 ∈ N, we first combine this estimate with the Borel-Cantelli lemma and,

using stationarity, we obtain that for almost every 𝜔 ∈ Ω there exists 𝑁0 = 𝑁0(𝜔)

such that for all 𝑁 ≥ 𝑁0 we find at least 𝑐1(𝑞 − 𝑝site)
𝑑12

√
𝑁 disjoint occupied paths

connecting the vertical boundary segments of the rectangle 𝑅𝑁 := [−⌊𝑁
2
⌋ + 2, ⌊𝑁

2
⌋ −

2]× [−⌈
√
𝑁⌉, ⌈

√
𝑁⌉]. As the paths are disjoint and are contained in 𝑅𝑁 , at least one

of them uses at most 2
𝑐1

(𝑞 − 𝑝site)
−𝑑1𝑁 vertices.

Now we come back to the actual proof. By definition of the random lattice in
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(4.42), using the above considerations in the layer Z2 × {1}, for 𝑁 ≥ 𝑁0 we can find

a path connecting the vertical boundary segments of the rectangle 𝑅𝑁 × {1} that is

contained in 𝑅𝑁 ×{1} and uses at most 𝑐𝑝,𝑀𝑁 vertices with none of them belonging

to ℒ𝑀
𝑝 (𝜔). This path separates 𝑅𝑁 ×{1} into two subregions 𝑅−

𝑁 ×{1} and 𝑅+
𝑁 ×{1}.

For 𝑁 ≥ 𝑁0 we define a (random) configuration 𝑢𝑁 : ℒ𝑀
𝑝 (𝜔) → {±1} by

𝑢𝑁(𝑥) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑢0,𝑒2(𝑃2(𝑥)) if 𝑃2(𝑥) /∈ 𝑅𝑁 ,

+1 if 𝑃2(𝑥) ∈ 𝑅+
𝑁 ,

−1 otherwise.

Up to possibly exchanging the roles of 𝑅±
𝑁 we have that 𝑢𝑁 ∈ 𝒫𝒞2

1,𝑢0,𝑒2
(𝜔,𝑄𝑒2(0, 𝑁)).

Hence by definition of 𝜑𝑝,𝜂
hom(𝑀, 𝑒2) and the fact that 𝑢𝑁 depends not on the 𝑥3-

direction, it holds that

𝜑𝑝,𝜂
hom(𝑀, 𝑒2) ≤ lim inf

𝑁→+∞

1

𝑁
𝐸𝑝,𝜂

1,𝑀(𝜔)(𝑢𝑁 , 𝑄𝑒2(0, 𝑁))

≤ lim sup
𝑁→+∞

1

𝑁

∑︁
𝑥,𝑦∈𝑄𝑒2 (0,𝑁)∩Z2

|𝑥−𝑦|=1

𝜂|𝑢𝑁(𝑥) − 𝑢𝑁(𝑦)|

+ lim sup
𝑁→+∞

1

𝑁

𝑀∑︁
𝑘=1

∑︁
𝑥,𝑦∈ℒ𝑀

𝑝 (𝜔)

𝑥,𝑦∈𝑄𝑒2 (0,𝑁)×{𝑘}

𝑐(𝑥− 𝑦)|𝑢𝑁(𝑥) − 𝑢𝑁(𝑦)|. (4.45)

We now estimate each of the two terms on the right hand side. Concerning the second

one, we observe that if 𝑥, 𝑦 ∈ (𝑄𝑒2(0, 𝑁) × {𝑘}) ∩ ℒ𝑀
𝑝 (𝜔) are such that |𝑥 − 𝑦| = 1

and 𝑢𝑁(𝑥) ̸= 𝑢𝑁(𝑦), then either 𝑃2(𝑥), 𝑃2(𝑦) ∈ ±𝑁
2
𝑒1 +

(︀
[−4, 4]× [−2

√
𝑁, 2

√
𝑁 ]

)︀
or,

without loss of generality, 𝑃2(𝑥) ∈ 𝑅−
𝑁 and 𝑃2(𝑦) ∈ 𝑅+

𝑁 . In the second case, we note

that either (𝑃2(𝑥), 1) or (𝑃2(𝑦), 1) has to be a vertex of the path constructed above.

Hence either 𝑥 /∈ ℒ𝑀
𝑝 (𝜔) or 𝑦 /∈ ℒ𝑀

𝑝 (𝜔). We conclude that these interactions don’t

exist and we may bound the second term via

lim sup
𝑁→+∞

1

𝑁

𝑀∑︁
𝑘=1

∑︁
𝑥,𝑦∈ℒ𝑀

𝑝 (𝜔)

𝑥,𝑦∈𝑄𝑒2 (0,𝑁)×{𝑘}

𝑐(𝑥− 𝑦)|𝑢𝑁(𝑥) − 𝑢𝑁(𝑦)| ≤ lim sup
𝑁→+∞

𝐶𝑀√
𝑁

= 0. (4.46)

Applying the same arguments for the first term, we can use the fact that the separating
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path uses at most 𝑐𝑝,𝑀𝑁 vertices and we deduce that

lim sup
𝑁→+∞

1

𝑁

∑︁
𝑥,𝑦∈𝑄𝑒2 (0,𝑁)∩Z2

|𝑥−𝑦|=1

𝜂|𝑢𝑁(𝑥) − 𝑢𝑁(𝑦)| ≤ 4𝑐𝑝,𝑀𝜂.

From this estimate, the first claim in the case 𝜈 = 𝑒2 follows by (4.45) and (4.46). The

above argument can be adapted easily to the cases 𝜈 = −𝑒2 and 𝜈 = ±𝑒1. By 𝐿1-lower

semicontinuity, the one-homogeneous extension of 𝜑𝑝,𝜂
hom must be convex (see Remark

4.18). For general 𝜈 ∈ 𝑆1 the claim then follows upon multiplying the constant by a

factor
√

2.

In order to prove the second claim, again we show two inequalities. Given a

sequence of admissible configurations 𝑢𝑁 such that lim𝑁
1
𝑁
𝐸1

𝑠𝑙(𝑢𝑁 , 𝑄𝜈(0, 𝑁)) = 𝜑1
sl(𝜈),

we define an admissible configuration 𝑢𝑁 : ℒ𝑀
𝑝 (𝜔) → {±1} via

𝑢𝑁(𝑥) = 𝑢𝑁(𝑃2(𝑥)).

Arguing as in the proof of Proposition 4.25, we may assume that 𝑢𝑁 is a plane-like

configuration and its energy is concentrated in a stripe

𝑆𝜈(𝑁, 𝛾) = {𝑥 ∈ R2 : 𝑥 ∈ 𝑄𝜈(0, 𝑁), dist(𝑥, 𝜈⊥) ≤ 4(𝛾 + 1)},

where now 𝛾 is independent of 𝑁,𝑀 . We let 𝑝𝑘 =
∑︀𝑀

𝑙=𝑘

(︀
𝑀
𝑙

)︀
𝑝𝑙(1 − 𝑝)𝑀−𝑙 be the

probability of having at least 𝑘 successes out of 𝑀 trials in a Bernoulli experiment.

By definition and the fact that 𝑢𝑁 is independent of 𝑥3-coordinate, we obtain that

for any 𝛿 > 0 small enough

𝜑𝑝,𝜂
hom(𝑀 ; 𝜈)

𝑀
≤ 1

𝑀
lim inf
𝑁→+∞

1

𝑁
E[𝐸𝑝,𝜂

1,𝑀(𝜔)(𝑢𝑁 , 𝑄𝜈(0, 𝑁))]

≤ lim inf
𝑁→+∞

1

𝑀

(︂ 𝑀∑︁
𝑘=1

1

𝑁
E[𝐸𝑝𝑘

𝑠𝑙 (𝜔)(𝑢𝑁 , 𝑄𝜈(0, 𝑁))] +
𝐶

𝑁
#(Z2 ∩ 𝑆𝜈(𝑁, 𝛾))

)︂
≤ lim

𝑁→+∞

1

𝑁
(𝑝 + 𝛿)𝐸1

𝑠𝑙(𝑢𝑁 , 𝑄𝜈(0, 𝑁))

+ lim inf
𝑁→+∞

1

𝑀

𝑀∑︁
𝑘>⌊(𝑝+𝛿)𝑀⌋

E[𝐸𝑝𝑘
𝑠𝑙 (𝜔)(𝑢𝑁 , 𝑄𝜈(0, 𝑁))] +

𝐶𝛾

𝑀

≤(𝑝 + 𝛿)𝜑1
sl(𝜈) + sup

𝑘>⌊(𝑝+𝛿)𝑀⌋
lim inf
𝑁→+∞

1

𝑁
E[𝐸𝑝𝑘

sl (𝜔)(𝑢𝑁 , 𝑄𝜈(0, 𝑁))] +
𝐶𝛾

𝑀
.

Note that here the new random variables are indeed defined on the same probability
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space and are coupled to the variables generating the stochastic lattice ℒ𝑀
𝑝 (𝜔). As 𝛾

is independent of 𝑀 , the third term vanishes when 𝑀 → +∞, so that we are left to

show that also the second one tends to zero. In order to estimate the second term we

use the fact that 𝑢𝑁 is a plane-like configuration which in particular implies

1

𝑁
E[𝐸𝑝𝑘

sl (𝜔)(𝑢𝑁 , 𝑄𝜈(0, 𝑁))] =
1

𝑁
E[𝐸𝑝𝑘

sl (𝜔)(𝑢𝑁 , 𝑆𝜈(𝑁, 𝛾))] ≤ 𝑝𝑘𝐶𝛾.

For any 𝑘 > ⌊(𝑝 + 𝛿)𝑀⌋, by the law of large numbers it holds that 𝑝𝑘 → 0 when

𝑀 → +∞. Hence we deduce lim sup𝑀
1
𝑀
𝜑𝑝,𝜂
hom(𝑀 ; 𝜈) ≤ (𝑝 + 𝛿)𝜑1

sl(𝜈). As 𝛿 > 0 was

arbitrary, we finally obtain

lim sup
𝑀

1

𝑀
𝜑𝑝,𝜂
hom(𝑀 ; 𝜈) ≤ 𝑝 𝜑1

sl(𝜈).

We next show the reverse inequality. Given any admissible function 𝑢𝑁 : ℒ𝑀
𝑝 (𝜔) →

{±1} we can neglect the interactions between different layers and the whole lowest

layer ℒ0 to obtain for 𝛿 > 0 small enough the estimate

𝐸𝑝,𝜂
1,𝑀(𝜔)(𝑢𝑁 , 𝑄𝜈(0, 𝑁)) ≥

𝑀∑︁
𝑘=1

𝐸𝑝𝑘
sl (𝜔)(𝑢𝑁(·, 𝑘), 𝑄𝜈(0, 𝑁))

≥
⌈(𝑝−𝛿)𝑀⌉∑︁

𝑘=1

𝐸𝑝𝑘
sl (𝜔)(𝑢𝑁(·, 𝑘), 𝑄𝜈(0, 𝑁)).

Since 𝑢𝑁(·, 𝑘) fulfills the correct boundary condition in the 𝑘-th layer, we deduce that

1

𝑀
𝜑𝑝,𝜂
hom(𝑀 ; 𝜈) ≥ (𝑝− 𝛿) inf

𝑘≤⌈(𝑝−𝛿)𝑀⌉
𝜑𝑝𝑘
sl (𝜈).

Again by the law of large numbers for an independent Bernoulli experiment it remains

to show that the function 𝑞 ↦→ 𝜑𝑞
𝑠𝑙(𝜈) is continuous in 𝑞 = 1, that means we can pass

from a random to a deterministic lattice.

In order to prove the continuity let 𝑢𝑁 be an optimal plane-like sequence of

configurations such that 𝜑1
sl(𝜈) = lim𝑁

1
𝑁
𝐸1

sl(𝑢𝑁 , 𝑆𝜈(𝑁, 𝛾)) and consider an optimal

(possibly random) sequence 𝑢𝑞
𝑁(𝜔) such that

𝜑𝑞
sl(𝜈) = lim

𝑁→+∞

1

𝑁
E[𝐸𝑞

sl(𝜔)(𝑢𝑞
𝑁(𝜔), 𝑄𝜈(0, 𝑁))].
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Similar to the proof of Proposition 4.25 we obtain

0 ≤ 𝜑1
sl(𝜈) − 𝜑𝑞

sl(𝜈) = lim
𝑁

1

𝑁
E[𝐸1

sl(𝑢𝑁 , 𝑆𝜈(𝑁, 𝛾)) − 𝐸𝑞
sl(𝜔)(𝑢𝑞

𝑁(𝜔), 𝑄𝜈(0, 𝑁))]

≤ lim sup
𝑁

1

𝑁
E[𝐸1

sl(𝑢
𝑞
𝑁(𝜔), 𝑆𝜈(𝑁, 𝛾)) − 𝐸𝑞

𝑠𝑙(𝜔)(𝑣𝑞𝑁(𝜔), 𝑆𝜈(𝑁, 𝛾))]

≤ 𝐶 lim
𝑁

1

𝑁
E[#{𝑧 ∈ (𝑆𝜈(𝑁, 𝛾) ∩ Z2) × {1} : 𝑧 /∈ ℒ1

𝑞(𝜔)}] = 𝐶(1 − 𝑞)𝛾.

The estimate above clearly implies convergence of the surface tensions when 𝑞 → 1

which shows that lim sup𝑀
1
𝑀
𝜑𝑝,𝜂
hom(𝑀 ; 𝜈) ≥ 𝑝 𝜑1

sl(𝜈).

It remains to identify 𝜑1
sl(𝜈). We just sketch the argument (compare with the re-

sults of [3]). Any admissible configuration asymptotically has an interface containing

at least |𝜈1| interactions along the two directions ±𝑒1 and |𝜈2| interactions along the

directions ±𝑒2. As any couple of interacting points is counted twice with reversing

direction and |𝑢(𝑥) − 𝑢(𝑦)| ∈ {0, 2} we find that 𝜑1
sl(𝜈) ≥ 2(𝑐(𝑒1) + 𝑐(−𝑒1))|𝜈1| +

2(𝑐(𝑒2) + 𝑐(−𝑒2))|𝜈2|. On the other hand a suitable discretization of a plane attains

this value, hence we finished the proof as

𝜑1
sl(𝜈) = 2(𝑐(𝑒1) + 𝑐(−𝑒1))|𝜈1| + 2(𝑐(𝑒2) + 𝑐(−𝑒2))|𝜈2|.

4.7 Plane-like minimizers for one-periodic dimension

reduction problems

In this final section we prove that the results about plane-like minimizers for periodic

interactions in [29] can be extended to dimension reduction problems. We restrict the

analysis to one-periodic interactions which is the case when the coefficients depend

only on the difference as in (4.19). Moreover, we focus on the case of 3-d to 2-d since

it is the most interesting one. We remark that the content of this section should be

seen as an appendix to Section 4.6, although we think that the result is interesting

on its own.

To fix notation, for any set Γ ⊂ Z2, we write Γ𝑀 = Γ× (Z∩ [0,𝑀 ]). In contrast to

the main part of this chapter, here we consider an interaction energy that takes into

account also interactions outside the domain. More precisely, given 𝑢 : Z2
𝑀 → {±1}
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we investigate finite range energies of the form

𝐸𝑀(𝑢,Γ) =
∑︁
𝑥∈Γ𝑀

∑︁
𝑦∈Z2

𝑀

𝑐(𝑥− 𝑦)|𝑢(𝑥) − 𝑢(𝑦)|,

where the coefficients fulfill the following assumptions:

(i) 0 ≤ 𝑐(𝑧) ≤ 𝐶 for all 𝑧 ∈ R3 and min𝑖 𝑐(±𝑒𝑖) ≥ 𝑐0 > 0,

(ii) there exists 𝐿 > 0 such that 𝑐(𝑧) = 0 for all |𝑧| ≥ 𝐿.

Before we state and prove the main theorem we recall some standard definitions.

Definition 4.28. We say that 𝑢 : Z2
𝑀 → {±1} is a ground state for the energy 𝐸𝑀

whenever 𝐸𝑀(𝑢,Γ) ≤ 𝐸𝑀(𝑣,Γ) for all finite sets Γ ⊂ Z2 and all 𝑣 : Z2
𝑀 → {±1} such

that 𝑢 = 𝑣 on {𝑧 ∈ Z2
𝑀 : ∃𝑧′ ∈ (Z2∖Γ)𝑀 with |𝑧 − 𝑧′| ≤ 𝐿}.

Remark 4.29. When 𝑢 and Γ are such that 𝐸𝑀(𝑢,Γ) ≤ 𝐸𝑀(𝑣,Γ) for all 𝑣 such

that 𝑢 = 𝑣 on {𝑧 ∈ Z2
𝑀 : ∃𝑧′ ∈ (Z2∖Γ)𝑀 with |𝑧 − 𝑧′| ≤ 𝐿}, then the same

conclusion holds for every subset Γ′ ⊂ Γ. Indeed, take any 𝑣 such that 𝑢 = 𝑣 on

{𝑧 ∈ Z2
𝑀 : ∃𝑧′ ∈ (Z2∖Γ′)𝑀 with |𝑧 − 𝑧′| ≤ 𝐿}. Then for any couple 𝑥, 𝑦 such that

𝑥 ∈ (Γ∖Γ′)𝑀 and 𝑦 ∈ Z2
𝑀 with |𝑥−𝑦| ≤ 𝐿, it holds that 𝑢(𝑥) = 𝑣(𝑥) and 𝑢(𝑦) = 𝑣(𝑦).

Hence it follows easily that

𝐸𝑀(𝑢,Γ′) − 𝐸𝑀(𝑣,Γ′) = 𝐸𝑀(𝑢,Γ) − 𝐸𝑀(𝑣,Γ) ≤ 0.

Using the same notation as for the stochastic group action, for 𝑘 ∈ Z2 we denote

by 𝜏𝑘 the shift operator acting on sets Γ and configurations 𝑢 : Z2
𝑀 → {±1} via

𝜏𝑘Γ = Γ + 𝑘, 𝜏𝑘𝑢(𝑥) = 𝑢(𝑥− (𝑘, 0)).

Then one can easily check that the following formula holds true:

𝐸𝑀(𝜏𝑘𝑢, 𝜏𝑘Γ) = 𝐸𝑀(𝑢,Γ). (4.47)

The remaining part of this section will be devoted to the proof of the next theorem.

Theorem 4.30. There exists 𝛾 > 0 such that for all 𝜈 ∈ 𝑆1 there exists a ground
state 𝑢𝜈 of 𝐸𝑀 such that 𝑢(𝑥) ̸= 𝑢(𝑦) implies dist(𝑥, 𝜈⊥) ≤ 𝛾. Such a ground state is
called plane-like. Moreover we can choose 𝛾 ≤ 𝐶𝑀 for some constant 𝐶 independent
of 𝜈,𝑀 .
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We prove this theorem similar to [29, 31]. We first construct a particular minimizer

amongst periodic configurations that enjoys several geometric properties. To this end,

we need further notation.

Let us fix a rational direction 𝜈 ∈ 𝑆1∩Q2. We define the Z-module Z𝜈 = {𝑧 ∈ Z2 :

⟨𝑧, 𝜈⟩ = 0} and, given 𝑚 ∈ N, we let ℱ𝑚,𝜈 be any fundamental domain of the quotient

Z2
/𝑚Z𝜈

. Recall that this means that for every 𝑧 ∈ Z2 there exist unique 𝑧1 ∈ 𝑚Z𝜈 and

𝑧2 ∈ ℱ𝑚,𝜈 such that 𝑧 = 𝑧1 + 𝑧2. Given real numbers 𝛽 < 𝛾, we further introduce

ℱ𝛽,𝛾
𝑚,𝜈 = {𝑧 ∈ ℱ𝑚,𝜈 : ⟨𝜈, 𝑧⟩ ∈ [𝛽, 𝛾]}.

Now we define an admissible class of periodic configurations: A function 𝑢 : Z2
𝑀 →

{±1} is called (𝑚, 𝜈)-periodic, if 𝑢(𝑥) = 𝑢(𝑥 + 𝑚(𝑧, 0)) for every 𝑥 ∈ Z2
𝑀 and every

𝑧 ∈ Z𝜈 . We set

𝒜𝛽,𝛾
𝑚,𝜈 = {𝑢 is (𝑚, 𝜈)-periodic, 𝑢 = 1 if ⟨𝑃2(𝑧), 𝜈⟩ < 𝛽, 𝑢(𝑧) = −1 if ⟨𝑃2(𝑧), 𝜈⟩ > 𝛾}.

We start with an elementary lemma which shows that for periodic functions any

translation yields the same energy.

Lemma 4.31. Let 𝑢 be (𝑚, 𝜈)-periodic and 𝑘 ∈ Z2. Then it holds that

𝐸𝑀(𝜏𝑘𝑢,ℱ𝑚,𝜈) = 𝐸𝑀(𝑢,ℱ𝑚,𝜈).

Proof. Given 𝑥 ∈ (𝜏−𝑘ℱ𝑚,𝜈)𝑀 , we find 𝑧1(𝑥) ∈ 𝑚Z𝜈 and 𝑧2(𝑥) ∈ ℱ𝑚,𝜈 such that

𝑃2(𝑥) = 𝑧1(𝑥) + 𝑧2(𝑥). By (𝑚, 𝜈)-periodicity, for any 𝑦 ∈ Z2
𝑀 it holds that

|𝑢(𝑥) − 𝑢(𝑦)| = |𝑢(𝑥− (𝑧1(𝑥), 0)) − 𝑢(𝑦 − (𝑧1(𝑥), 0))|,
𝑐(𝑥− 𝑦) = 𝑐(𝑥− (𝑧1(𝑥), 0) − 𝑦 + (𝑧1(𝑥), 0)).

Now assume that there exists another 𝑥′ ∈ (𝜏−𝑘ℱ𝑚,𝜈)𝑀∖{𝑥} with ⟨𝑥 − 𝑥′, 𝑒3⟩ = 0

and 𝑧2(𝑥) = 𝑧2(𝑥
′). Then 𝜏𝑘𝑃2(𝑥) − 𝜏𝑘𝑃2(𝑥

′) = 𝑧1(𝑥) − 𝑧1(𝑥
′) ∈ 𝑚Z𝜈∖{(0, 0)}. As

𝜏𝑘𝑃2(𝑥), 𝜏𝑘𝑃2(𝑥
′) ∈ ℱ𝑚,𝜈 this contradicts the fact that ℱ𝑚,𝜈 is a fundamental domain.

Using (4.47) we conclude by comparison that

𝐸𝑀(𝜏𝑘𝑢,ℱ𝑚,𝜈) = 𝐸𝑀(𝑢, 𝜏−𝑘ℱ𝑚,𝜈) ≤ 𝐸𝑀(𝑢,ℱ𝑚,𝜈).

Applying the above inequality to 𝜏−𝑘 and 𝑢̃ := 𝜏𝑘𝑢, which is also (𝑚, 𝜈)-periodic, we

obtain the claim.
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We define the class of minimizers for the energy 𝐸𝑀(·,ℱ𝑚,𝜈) on 𝒜𝛽,𝛾
𝑚,𝜈 via

ℳ𝛽,𝛾
𝑚,𝜈 = {𝑢 ∈ 𝒜𝛽,𝛾

𝑚,𝜈 : 𝐸𝑀(𝑢,ℱ𝑚,𝜈) ≤ 𝐸𝑀(𝑣,ℱ𝑚,𝜈) ∀𝑣 ∈ 𝒜𝛽,𝛾
𝑚,𝜈}.

As the set 𝒜𝛽,𝛾
𝑚,𝜈 is finite, the class of minimizers is non-empty. Next we define the

so-called infimal minimizer which has several useful properties.

𝑢𝛽,𝛾
𝑚,𝜈 := min{𝑢 ∈ ℳ𝛽,𝛾

𝑚,𝜈} ∈ 𝒜𝛽,𝛾
𝑚,𝜈 .

We first show that the infimal minimizer also belongs to the class of minimizers. This

follows easily from the following elementary observation (see Lemma 2.1 and also

Lemma 2.3 in [31]).

Lemma 4.32. Given any 𝑢 : Z2
𝑀 → {±1} and Γ ∈ Z2 finite, it holds that

𝐸𝑀(min{𝑢, 𝑣},Γ) + 𝐸𝑀(max{𝑢, 𝑣},Γ) ≤ 𝐸𝑀(𝑢,Γ) + 𝐸𝑀(𝑣,Γ).

Iterating the above lemma finitely many times we find that 𝑢𝛽,𝛾
𝑚,𝜈 ∈ ℳ𝛽,𝛾

𝑚,𝜈 .

We now turn to the first property of the infimal minimizer. This is the so-called

absence of symmetry breaking, which says that the infimal minimizer does not depend

on the length 𝑚 of the period.

Lemma 4.33. For any 𝑚 ∈ N it holds that 𝑢𝛽,𝛾
𝑚,𝜈 = 𝑢𝛽,𝛾

1,𝜈 .

Proof. We define an auxiliary configuration via 𝑢 = min{𝜏𝑘𝑢𝛽,𝛾
𝑚,𝜈 : 𝑘 ∈ Z𝜈}. By

elementary arguments it follows that 𝑢 ∈ 𝒜𝛽,𝛾
1,𝜈 , while Lemma 4.31 implies that

𝜏𝑘𝑢
𝛽,𝛾
𝑚,𝜈 ∈ ℳ𝛽,𝛾

𝑚,𝜈 and by iterating Lemma 4.32 we obtain that 𝑢 ∈ ℳ𝛽,𝛾
𝑚,𝜈 . Since

obviously 𝑢 ≤ 𝑢𝛽,𝛾
𝑚,𝜈 , by definition of the infimal minimizer we obtain that 𝑢 = 𝑢𝛽,𝛾

𝑚,𝜈 .

Moreover, as 𝑢 and 𝑢𝛽,𝛾
1,𝜈 are both (1, 𝜈)-periodic it follows that

𝐸𝑀(𝑢,ℱ1,𝜈) =
1

𝑚
𝐸𝑀(𝑢,ℱ𝑚,𝜈) ≤ 1

𝑚
𝐸𝑀(𝑢𝛽,𝛾

1,𝜈 ,ℱ𝑚,𝜈) = 𝐸𝑀(𝑢𝛽,𝛾
1,𝜈 ,ℱ1,𝜈). (4.48)

In particular we deduce that 𝑢 ∈ ℳ𝛽,𝛾
1,𝜈 and thus 𝑢 ≥ 𝑢𝛽,𝛾

1,𝜈 . On the other hand (4.48)

must be an equality, so that 𝑢𝛽,𝛾
1,𝜈 ∈ ℳ𝛽,𝛾

𝑚,𝜈 and therefore 𝑢𝛽,𝛾
1,𝜈 ≥ 𝑢. This proves the

claim.

We next establish the so-called Birkhoff property of the infimal minimizer which will

be the main ingredient for the proof of Theorem 4.30.
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Lemma 4.34. Let 𝑘 ∈ Z2. Then it holds that

𝜏𝑘𝑢
𝛽,𝛾
1,𝜈

⎧⎨⎩≤ 𝑢𝛽,𝛾
1,𝜈 if ⟨𝑘, 𝜈⟩ ≤ 0,

≥ 𝑢𝛽,𝛾
1,𝜈 if ⟨𝑘, 𝜈⟩ ≥ 0.

Proof. We start with the case ⟨𝑘, 𝜈⟩ ≤ 0 and define the two configurations 𝑚* =

min{𝑢𝛽,𝛾
1,𝜈 , 𝜏𝑘𝑢

𝛽,𝛾
1,𝜈 } and 𝑚* = max{𝑢𝛽,𝛾

1,𝜈 , 𝜏𝑘𝑢
𝛽,𝛾
1,𝜈 }. By elementary considerations one can

prove that 𝑚* ∈ 𝒜𝛽+⟨𝑘,𝜈⟩,𝛾+⟨𝑘,𝜈⟩
1,𝜈 and 𝑚* ∈ 𝒜𝛽,𝛾

1,𝜈 . Using Lemma 4.32 we obtain

𝐸𝑀(𝑚*,ℱ1,𝜈) + 𝐸𝑀(𝑢𝛽,𝛾
1,𝜈 ,ℱ1,𝜈) ≤ 𝐸𝑀(𝑚*,ℱ1,𝜈) + 𝐸𝑀(𝑚*,ℱ1,𝜈)

≤ 𝐸𝑀(𝜏𝑘𝑢
𝛽,𝛾
1,𝜈 ,ℱ1,𝜈) + 𝐸𝑀(𝑢𝛽,𝛾

1,𝜈 ,ℱ1,𝜈),

which yields 𝐸𝑀(𝑚*,ℱ1,𝜈) ≤ 𝐸𝑀(𝜏𝑘𝑢
𝛽,𝛾
1,𝜈 ,ℱ1,𝜈). As a next step we claim that 𝜏𝑘𝑢

𝛽,𝛾
1,𝜈 =

𝑢
𝛽+⟨𝑘,𝜈⟩,𝛾+⟨𝑘,𝜈⟩
1,𝜈 . Indeed, as 𝜏𝑘𝑢

𝛽,𝛾
1,𝜈 ∈ 𝒜𝛽+⟨𝑘,𝜈⟩,𝛾+⟨𝑘,𝜈⟩

1,𝜈 this configuration is admissible

and minimality follows from Lemma 4.31. Now assume it would not be the infimal

minimizer, then also 𝑢𝛽,𝛾
1,𝜈 cannot be the infimal minimizer as we could construct a

smaller one by translation of the other infimal minimizer.

By definition of the infimal minimizer we infer that 𝑚* ≥ 𝜏𝑘𝑢
𝛽,𝛾
1,𝜈 , which proves the

claim by definition of 𝑚*. The case ⟨𝑘, 𝜈⟩ ≥ 0 follows upon applying the translation

𝜏𝑘 to the inequality 𝜏−𝑘𝑢
𝛽,𝛾
1,𝜈 ≤ 𝑢𝛽,𝛾

1,𝜈 which holds by the first part of the proof.

In the next lemma we deduce a powerful property of configurations satisfying the

Birkhoff property.

Lemma 4.35. Let 𝑢 : Z2
𝑀 → {±1} satisfy the Birkhoff property with respect to

𝜈 ∈ 𝑆1 ∩Q2, that means

𝜏𝑘𝑢

⎧⎨⎩≤ 𝑢 if ⟨𝑘, 𝜈⟩ ≤ 0,

≥ 𝑢 if ⟨𝑘, 𝜈⟩ ≥ 0.

Assume further that 𝑢(𝑥0) = −1 for some 𝑥0 ∈ Z2
𝑀 . Then 𝑢(𝑥) = −1 for all 𝑥 ∈ Z2

𝑀

such that ⟨𝑥− 𝑥0, 𝑒3⟩ = 0 and ⟨𝑃2(𝑥− 𝑥0), 𝜈⟩ ≥ 0.

Proof. Every such 𝑥 can be written as 𝑥 = 𝑥0−(𝑘, 0) with 𝑘 ∈ Z2 such that ⟨𝑘, 𝜈⟩ ≤ 0.

Hence Lemma 4.34 implies that 𝑢(𝑥) = 𝜏𝑘𝑢(𝑥0) ≤ 𝑢(𝑥0) = −1, so that 𝑢(𝑥) = −1.

We are now in a position to prove that the infimal minimizer becomes unconstrained

when we take 𝛽 = 0 and 𝛾 large enough. From now on we set 𝑢𝛾
𝜈 := 𝑢0,𝛾

1,𝜈 .

Lemma 4.36. There exists 0 < 𝛾0 ≤ 𝐶𝑀 such that for all 𝛾 ≥ 𝛾0 it holds 𝑢𝛾
𝜈(𝑥) = −1

for all 𝑥 ∈ Z2
𝑀 such that ⟨𝑃2(𝑥), 𝜈⟩ ≥ 𝛾 −

√
2.
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Proof. By Lemma 4.35 it is enough to show that in every layer Z2 × {𝑙} with 𝑙 ∈
{0, . . . ,𝑀} there exists some 𝑥𝑙 such that ⟨𝑃2(𝑥𝑙), 𝜈⟩ ≤ 𝛾−

√
2 and 𝑢𝛾

𝜈(𝑥𝑙) = −1. We

will show that this is always the case provided 𝛾 is large enough.

Assume that there exists a layer Z2 ×{𝑙} such that 𝑢𝛾
𝜈(𝑥) = 1 for all 𝑥 ∈ Z2 ×{𝑙}

with ⟨𝑃2(𝑥), 𝜈⟩ ≤ 𝛾−
√

2. We argue that in this case there must exists a second layer

Z2×{𝑙′} and a point 𝑥𝑙′ ∈ Z2×{𝑙′} with ⟨𝑃2(𝑥𝑙′), 𝜈⟩ ≤
√

2 and 𝑢𝛾
𝜈(𝑥𝑙′) = −1. Indeed,

if this is false, then the function 𝜏𝑘𝑢
𝛾
𝜈 with any 𝑘 ∈ {0,±1}2 such that ⟨𝑘, 𝜈⟩ < 0

fulfills 𝜏𝑘𝑢
𝛾
𝜈 ∈ 𝒜0,𝛾

1,𝜈 . From Lemma 4.34 we further know that 𝜏𝑘𝑢
𝛾
𝜈 ≤ 𝑢𝛾

𝜈 . On the

other hand, by Lemma 4.31 we have that 𝜏𝑘𝑢
𝛾
𝜈 ∈ ℳ0,𝛾

1,𝜈 . Hence by definition of the

infimal minimizer we obtain 𝜏𝑘𝑢
𝛾
𝜈 = 𝑢𝛾

𝜈 . By the choice of 𝑘 this contradicts the

boundary conditions. Now applying Lemma 4.35 in the layer Z2×{𝑙′} we obtain that

𝑢𝛾
𝜈(𝑥) = −1 for all 𝑥 ∈ Z2 × {𝑙′} such that ⟨𝑃2(𝑥), 𝜈⟩ ≥

√
2. As we will see, for fixed

𝑀 this will cost too much energy.

Without loss of generality we assume that 𝑙 > 𝑙′, the other case can be treated

almost the same way. For every 𝑟 ∈ {1, . . . ,𝑀} there exists 𝑥 ∈ Z2 × {𝑟} such that

𝑢𝛾
𝜈(𝑥𝑟) = −1. Let 𝑥𝑟 be one of such points that minimizes ⟨𝑃2(𝑥), 𝜈⟩ among all such

points. According to Lemma 4.35 we obtain 𝑢𝛾
𝜈(𝑥) = −1 for all 𝑥 ∈ Z2 × {𝑟} with

⟨𝑃2(𝑥), 𝜈⟩ ≥ ⟨𝑃2(𝑥𝑟), 𝜈⟩ =: 𝑝𝑟. Note that⃒⃒⃒⃒
⃒
𝑙−1∑︁
𝑟=𝑙′

(𝑝𝑟+1 − 𝑝𝑟)

⃒⃒⃒⃒
⃒ ≥ 𝛾 − 2

√
2. (4.49)

On the other hand, just counting the interactions between neighboring layers, we

obtain by the nearest neighbor coercivity of the interactions and (4.49) that

𝐸𝑀(𝑢𝛾
𝜈 ,ℱ1,𝜈) ≥ 𝑐

𝑀∑︁
𝑟=1

|𝑝𝑟 − 𝑝𝑟−1| ≥ 𝑐(𝛾 − 2
√

2).

Testing a discretized plane as a possible minimizer, by the finite range assumption

we know an a priori bound of the form 𝐸𝑀(𝑢𝛾
𝜈 ,ℱ1,𝜈) ≤ 𝐶𝑀 . Hence our assumption

can only hold as long as 𝛾 ≤ 𝐶𝑀 for some constant 𝐶 not depending on 𝜈 nor on 𝑀

and the claim follows upon setting 𝛾0 = 2𝐶𝑀 .

Finally we bound the oscillation of the jump set of the infimal minimizer 𝑢𝛾0
𝜈 .

Lemma 4.37. Let 𝛾0 be as in Lemma 4.36. Then 𝑢𝛾0
𝜈 ∈ ℳ−𝑛,𝛾0+𝑛

𝑚,𝜈 for any 𝑛,𝑚 ∈ N.

Proof. We first claim that 𝑢𝛾0
𝜈 = 𝑢𝛾0+𝑙

𝜈 for any 𝑙 ∈ N. This will be done iteratively.

First note that for any 𝛾 ≥ 𝛾0 it holds that 𝑢𝛾
𝜈 ∈ 𝒜0,𝛾+1

1,𝜈 and by Lemma 4.36 it also
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holds that 𝑢𝛾+1
𝜈 ∈ 𝒜0,𝛾

1,𝜈 . Then

𝐸𝑀(𝑢𝛾+1
𝜈 ,ℱ1,𝜈) = 𝐸𝑀(𝑢𝛾

𝜈 ,ℱ1,𝜈)

and both are infimal minimizers. Hence they must agree. This proves the first claim.

Given an arbitrary configuration 𝑣 ∈ 𝒜−𝑛,𝛾0+𝑛
𝑚,𝜈 we choose a vector 𝑘 ∈ Z2 such

that ⟨𝑘, 𝜈⟩ ≥ 𝑛 and ⟨𝑘, 𝜈⟩ ∈ N. Then

𝜏𝑘𝑣 ∈ 𝒜−𝑛+⟨𝑘,𝜈⟩,𝛾0+𝑛+⟨𝑘,𝜈⟩
𝑚,𝜈 ⊂ 𝒜0,𝛾0+𝑛′

𝑚,𝜈

with 𝑛′ ∈ N. Using the first claim and the Lemmata 4.31 and 4.33 we obtain that

𝐸𝑀(𝑢𝛾0
𝜈 ,ℱ𝑚,𝜈) ≤ 𝐸𝑀(𝜏𝑘𝑣,ℱ𝑚,𝜈) = 𝐸𝑀(𝑣,ℱ𝑚,𝜈). As 𝑢𝛾0

𝜈 ∈ 𝒜−𝑛,𝛾0+𝑛
𝑚,𝜈 we conclude.

Proof of Theorem 4.30. First assume that 𝜈 ∈ 𝑆1∩Q2. We show that 𝑢𝛾0
𝜈 is a ground

state. To this end let Γ ⊂ Z2 be finite and let 𝑣 : Z2
𝑀 → {±1} be such that 𝑣 = 𝑢𝛾0

𝜈

on {𝑧 ∈ Z2
𝑀 : ∃𝑧′ ∈ (Z2∖Γ)𝑀 with |𝑧 − 𝑧′| ≤ 𝐿}. Then we find 𝑚 ∈ N such

that, for a suitable fundamental domain, Γ ⊂ ℱ𝑚,𝜈 . By Lemma 4.37 we have that

𝐸𝑀(𝑢𝛾0
𝜈 ,ℱ𝑚,𝜈) ≤ 𝐸𝑀(𝑣,ℱ𝑚,𝜈) and the claim then follows by Remark 4.29.

For general directions 𝜈 ∈ 𝑆1 we argue by approximation. Take a sequence 𝜈𝑗 → 𝜈

of rational directions and consider the sequence 𝑢𝑗 := 𝑢
𝛾𝑗
𝜈𝑗 , where 𝛾𝑗 is uniformly

bounded in 𝑗. By Tychonoff’s theorem we can assume that 𝑢𝑗 → 𝑢 for some 𝑢 :

Z2
𝑀 → {±1}. Obviously 𝑢 is a plane-like configuration. By definition of the topology,

given any finite set Γ ⊂ Z2 we find an index 𝑗0 such that 𝑢𝑗(𝑥) = 𝑢(𝑥) for all 𝑥 ∈ Γ𝑀

and all 𝑗 ≥ 𝑗0. Since we assume a finite range of interactions, the previous convergence

property easily implies that 𝑢 is also a ground state and we conclude.
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Chapter 5

Motion of interfaces in random

environments: the low-contrast case

5.1 Geometric minimizing movements

In 1993, Almgren, Taylor and Wang introduced the following variational scheme to

study curvature-driven flows [8]. Given a fixed time step 𝜏 > 0 and an initial set 𝐴0

one constructs recursively a sequence of sets (𝐴𝜏
𝑘)𝑘 minimizing an energy functional

of the form

𝐸𝜏 (𝐴,𝐴𝜏
𝑘−1) =

∫︁
ℱ𝐴

𝜙(𝜈(𝑥)) dℋ𝑑−1 +
1

2𝜏

∫︁
𝐴Δ𝐴𝜏

𝑘−1

dist(𝑥, 𝜕𝐴𝜏
𝑘−1) d𝑥, (5.1)

where 𝜈(𝑥) is the (generalized) normal vector at the point 𝑥 in the reduced boundary

ℱ𝐴 (see Section 2.2 for the definitions) and 𝜙 is a suitable surface density. The

basic idea is the following: While minimizing the surface energy shrinks the set, the

bulk term forces the boundary of the minimizer to be close to the boundary of the

previous set. Passing to the limit as 𝜏 → 0 for the piecewise constant interpolations

one obtains a time dependent family 𝐴(𝑡) of sets that evolves by a weighted curvature

(depending on 𝜙), provided the initial set 𝐴0 is regular enough and 𝜙 is elliptic and

smooth. In the case of 𝜙(𝜈) = |𝜈|2, so that
∫︀
ℱ𝐴

𝜙(𝜈(𝑥)) dℋ𝑑−1 = ℋ𝑑−1(ℱ𝐴), one

obtains motion by mean curvature. This minimizing movement procedure was later

on exported to random environments by Yip in [55] as follows: at each discrete time

step, a minimizer of the energy in (5.1) is computed and then this set is perturbed

by a random diffeomorphism.

In the recent paper [24] Braides, Gelli and Novaga applied the above minimizing

movement scheme within a deterministic, discrete environment. In this setting the

environment is the scaled two-dimensional lattice 𝜀Z2. The surface term in (5.1)
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is replaced by an interfacial energy, which, in its simplest form is derived from the

classical nearest neighbor Ising model and can be written as

𝑃𝜀(𝑢) =
1

4

∑︁
𝜀𝑖,𝜀𝑗∈𝜀Z2

|𝑖−𝑗|=1

𝜀|𝑢(𝜀𝑖) − 𝑢(𝜀𝑗)|. (5.2)

The scaling factor 𝜀 accounts for surface-type contributions. Of course this energy

is not finite in general, but within the minimizing movement scheme the sum will

be restricted to bounded sets. Note that the energy in (5.2) takes into account only

nearest neighbor interactions. Therefore it coincides with the perimeter of the set

{𝑢 = +1} and the relationship to the continuum model is given by identifying the

spin variable with this level set. The distance-function in the bulk term in (5.1) is

replaced by a discrete version of the 𝑙∞-distance to the boundary defined precisely in

(5.4). From a physical point of view this setup can be seen as a simplified model to

describe the motion of level sets of spin variables 𝑢 : 𝜀Z2 → {±1}. Since the discrete
perimeter inherits the anisotropy of the lattice, this minimizing movement scheme is

related to crystalline motions, where 𝜙 is not smooth (see [7, 13, 30] for results in the

continuum case). Note that the continuum limit of the energies in (5.2) is given by

the crystalline perimeter, that is

𝑃 (𝑢) =

∫︁
𝑆𝑢

|𝜈(𝑥)|1 dℋ1 =

∫︁
ℱ{𝑢=1}

|𝜈(𝑥)|1ℋ1,

where |𝜈|1 denotes the 𝑙1-norm of 𝜈 (see [3]). The ratio between the space and

timescale 𝜀/𝜏 plays an important role when studying the geometric flows generated

by the minimizing movement scheme as 𝜀, 𝜏 → 0 simultaneously. We refer the reader

to Chapter 8 in [19] for a parade of examples. Concerning the discrete perimeters,

when 𝜀/𝜏 → 0 fast enough we have in particular that the motion is governed by the

Γ-limit, that means one obtains the continuum motion by crystalline curvature. If,

on the other hand, 𝜀/𝜏 → +∞ fast enough, the motions are pinned by the presence

of many local minimizers in the discrete environment. This phenomenon is similar to

any gradient flow that starts in a local minimum. We remark these a priori results

are abstract and that without any further analysis they are of limited use as the

necessary speed of convergence/divergence might be unknown. In [24] it is shown

that the critical scaling regime is 𝜀/𝜏 ∼ 1, where both pinning phenomena and

a degenerate crystalline motion can occur, depending on the initial data (see also

Theorem 5.3 below). If 𝜀/𝜏 → +∞ then pinning occurs for all bounded regular

initial sets, while in the case 𝜀/𝜏 → 0 all bounded sets shrink to a point in finite time
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and for (poly)rectangles the motion law is given by crystalline curvature.

In this chapter we start studying the effect of a random discrete environment on

the continuum limit flow. We take a different approach compared to [55] and associate

the random effects directly to the lattice points. In the spirit of Chapters 3 and 4

we would like to replace the periodic lattice in the definition of 𝑃𝜀 by the random

lattice 𝜀ℒ(𝜔) with suitable short-range interactions. However results for this problem

seem out of reach at the moment. That is why we treat a much simpler problem and

associate very small random effects directly to the periodic lattice model, that means

we will study the minimizing movement of a random discrete perimeter of the form

𝑃 𝜔
𝜀 (𝑢) =

1

4

∑︁
𝜀𝑖,𝜀𝑗∈𝜀Z2

|𝑖−𝑗|=1

𝜀(1 + 𝜀𝑐𝑖𝑗(𝜔))|𝑢(𝜀𝑖) − 𝑢(𝜀𝑗)|.

The precise assumptions on the random field 𝑐𝑖𝑗 will be stated in the next section.

Note that in this scaling the random perturbations are very small, however it turns

out that they can influence at least the velocity of the limit motion. At this point we

refer the reader to Chapter 1 for our motivation to keep the bulk term deterministic.

We investigate the evolution of level sets that are coordinate rectangles, that are

rectangles with all sides parallel to one of the coordinate axis. In Theorem 5.9 we

prove that if the random field 𝑐𝑖𝑗 satisfies a suitable 𝐿∞-bound and is stationary

and 𝛼-mixing with a certain decay rate of the mixing coefficients, the limit motion

law is deterministic and coincides with the quantized crystalline flow obtained in

[24]. However this already depends strongly on the fact that the random field is

stationary with respect to the translation group on Z2. In Theorem 5.20 we show

that the velocity changes if we restrict stationarity to a subgroup of the form 𝑚Z2

with 𝑚 ≥ 2.

We stress that our results should be seen as a stability result of the deterministic

problem rather than an exhaustive description of the possible effects of randomness

on the limit flow. Indeed, randomness can influence the motion drastically. For

example, in Theorem 3.26 we showed that if we replace the square lattice Z2 by the

random parking process, then, up to a multiplicative constant, we can obtain discrete

perimeters that Γ-converge to the one-dimensional Hausdorff measure. Thus, with

an appropriate choice of discrete distance, one should not expect a crystalline motion

anymore in the limit but rather motion by mean curvature, at least if 𝜀 << 𝜏 and

the initial sets 𝐴𝜀,𝜏
0 converge to a smooth set.

To highlight some difficulties already present in this simple setting we provide

an example of stationary, ergodic perturbations that indicates strong non-uniqueness
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effects dropping the mixing hypothesis (see Section 5.3). Moreover in this case the

functional describing the pointwise movement may not converge (Example 5.6) so that

the discrete velocity remains random, but still averaging over an increasing number of

time steps one may obtain a homogenized limit velocity making further assumptions.

The random model

Let us introduce some notation. In this chapter we set 𝑄𝛿(𝑥) = 𝑥 + [− 𝛿
2
, 𝛿
2
)2 as the

half-open coordinate square centered at 𝑥 with side length 𝛿.

We now specify the framework for our model. As usual let (Ω,ℱ ,P) be a complete

probability space. As pointed out in the introduction, we consider the easiest type of

normalized ferromagnetic energies accounting only for nearest neighbor interactions.

Given 𝜔 ∈ Ω and a function 𝑢 : 𝜀Z2 → {±1} we set

𝑃 𝜔
𝜀 (𝑢) =

1

4

∑︁
𝑖,𝑗∈Z2

|𝑖−𝑗|=1

𝜀 (1 + 𝜀𝑐𝑖𝑗(𝜔)) |𝑢(𝜀𝑖) − 𝑢(𝜀𝑗)|,

where the 𝑐𝑖𝑗 : Ω → R are uniformly bounded random variables satisfying a suitable

𝛼-mixing assumption specified later. Note that without loss of generality we may

assume that 𝑐𝑖𝑗 = 𝑐𝑗𝑖 for all |𝑖− 𝑗| = 1. For notational convenience we define

𝒜𝜀 := {𝐴 ⊂ R2 : 𝐴 =
⋃︁
𝑖∈ℐ

𝑄𝜀(𝑖) for some ℐ ⊂ 𝜀Z2}.

Note that 𝒜𝜀 is closed under unions and intersections. Identifying a function 𝑢 :

𝜀Z2 → {±1} with the set 𝐴 given by

𝐴 :=
⋃︁

𝑖∈Z2:𝑢(𝜀𝑖)=+1

𝑄𝜀(𝑖) ∈ 𝐴𝜀,

we can interpret 𝑃 𝜔
𝜀 as a random perimeter defined on 𝒜𝜀 via

𝑃 𝜔
𝜀 (𝐴) := 𝑃 𝜔

𝜀 (𝑢).

If 𝒵2 := {𝜉 = 𝑖+𝑗
2

: 𝑖, 𝑗 ∈ Z2, |𝑖 − 𝑗| = 1} denotes the dual lattice of Z2, we can

rewrite the random perimeter as a sum over points on the boundary 𝜕𝐴 as

𝑃 𝜔
𝜀 (𝐴) =

∑︁
𝜉∈𝒵2

𝜀𝜉∈𝜕𝐴

𝜀(1 + 𝜀𝑐𝜉(𝜔)), (5.3)
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where with a slight abuse of notation we set 𝑐𝜉(𝜔) := 𝑐𝑖𝑗(𝜔). From now on we define

the random variables indexed by the dual lattice. Given 𝐴 ∈ 𝒜𝜀 it will be useful to

define the properly scaled random perimeter also on portions of the boundary Γ ⊂ 𝜕𝐴

setting

𝑝𝜔𝜀 (Γ) =
∑︁

𝜉∈𝒵2: 𝜀𝜉∈Γ

𝜀𝑐𝜉(𝜔).

With this notion, it holds that 𝑃 𝜔
𝜀 (𝐴) = ℋ1(𝜕𝐴) + 𝜀𝑝𝜔𝜀 (𝜕𝐴).

In order to adapt the idea of Almgren, Taylor and Wang for studying motions, we

have to define a suitable discrete distance to measure how far the moved sets differ

from the previous one. Since we intend to derive limit motions for sets 𝐴 ∈ 𝒜𝜀, we

restrict ourselves to define the distance with respect to sets rather than points. In

order to obtain a crystalline motion we take a discrete version of the 𝑙∞-distance (see

[24]). To this end, first note that for every 𝑥 ∈ R2 there exists a unique point 𝑖 ∈ 𝜀Z2

such that 𝑥 ∈ 𝑄𝜀(𝑖). Given a set 𝐴 ⊂ 𝒜𝜀 we define the value of the measurable

function 𝑑𝜀∞(·, 𝜕𝐴) : R2 → [0,+∞) at 𝑥 ∈ 𝑄𝜀(𝑖) by

𝑑𝜀∞(𝑥, 𝜕𝐴) :=

⎧⎨⎩inf{‖𝑖− 𝑗‖∞ : 𝑗 ∈ 𝜀Z2∖𝐴} if 𝑖 ∈ 𝐴,

inf{‖𝑖− 𝑗‖∞ : 𝑗 ∈ 𝜀Z2 ∩ 𝐴} if 𝑖 /∈ 𝐴.
(5.4)

Observe that by definition 𝑑𝜀∞(𝑥, 𝜕𝐴) ∈ 𝜀N.
Now we can define the total energy to be considered in the minimizing movement

scheme. Given a mesh size 𝜀 > 0, a time step 𝜏 > 0, sets 𝐴,𝐹 ∈ 𝒜𝜀 and 𝜔 ∈ Ω we

set

𝐸𝜔
𝜀,𝜏 (𝐴,𝐹 ) := 𝑃 𝜔

𝜀 (𝐴) +
1

𝜏

∫︁
𝐴Δ𝐹

𝑑𝜀∞(𝑥, 𝜕𝐹 ) d𝑥.

For a fixed (possibly random) initial set 𝐴0
𝜀(𝜔), we introduce the following discrete-

in-time minimization scheme:

(i) 𝐴0
𝜀,𝜏 (𝜔) := 𝐴0

𝜀(𝜔),

(ii) 𝐴𝑘+1
𝜀,𝜏 (𝜔) minimizes 𝐴 ↦→ 𝐸𝜔

𝜀,𝜏 (𝐴,𝐴𝑘
𝜀,𝜏 (𝜔)).

Note that this procedure might not be unique. The discrete flat flow is defined as the

piecewise constant interpolation

𝐴𝜀,𝜏 (𝑡)(𝜔) := 𝐴⌊𝑡/𝜏⌋
𝜀,𝜏 (𝜔).
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As a by-product of the analysis performed in [24], the most interesting regime is

𝜏 ∼ 𝜀. Hence we assume for simplicity that

𝜏 = 𝛾 𝜀 for some 𝛾 > 0 (5.5)

and omit the dependence on 𝜏 in the notation introduced above. For a complete

analysis we have to require that the coefficient field satisfies the bound

sup
𝜉

|𝑐𝜉(𝜔)| < 1

4𝛾
P-almost surely. (5.6)

We remark that some of the results in this chapter are valid for a generic 𝐿∞-bound

but unfortunately these are not enough to characterize the motion.

Remark 5.1. Using (5.6) it is easy to see that 𝑃 𝜔
𝜀 (𝐴) has the same Γ-limit in the

𝐿1-topology as 𝑃𝜀 defined in (5.2), so that it converges to the crystalline perimeter.

Now we introduce several stochastic properties of the random field {𝑐𝜉}𝜉∈𝒵2 . Given

a set 𝐼 ⊂ 𝒵2 we set ℱ𝐼 = 𝜎 (𝑐𝜉 : 𝜉 ∈ 𝐼) as the 𝜎-algebra generated by the random

variables {𝑐𝜉}𝜉∈𝐼 . We recall the following definitions from ergodic theory:

Definition 5.2. Let {𝜏𝑧}𝑧∈Z2 : Ω → Ω be a measurable, measure preserving group
action. We say that the random field (𝑐𝜉) is

(i) stationary, if 𝑐𝜉(𝜏𝑧𝜔) = 𝑐𝜉+𝑧(𝜔) ∀𝑧 ∈ Z2, 𝜉 ∈ 𝒵2;

(ii) ergodic, if it is stationary and {𝜏𝑧}𝑧 is ergodic.

(iii) strongly mixing (in the ergodic sense), if it is stationary and

lim
|𝑧|→+∞

P(𝐴 ∩ (𝜏𝑧𝐵)) = P(𝐴)P(𝐵) ∀𝐴,𝐵 ∈ ℱ ;

(iv) 𝛼-mixing, if there exists a sequence 𝛼(𝑛) → 0 such that for all sets 𝐼1, 𝐼2 ∈ 𝒵2

with dist(𝐼1, 𝐼2) ≥ 𝑛 we have

sup{|P(𝐴 ∩𝐵) − P(𝐴)P(𝐵)| : 𝐴 ∈ ℱ𝐼1 , 𝐵 ∈ ℱ𝐼2} ≤ 𝛼(𝑛).

While for static problems the above notions (i) and (ii) are often enough to prove

stochastic homogenization results for variational models (see for example [4] or the

results obtained in the previous chapters), in this minimizing movement setting we
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make use of mixing properties. More precisely, we require that the random field is

𝛼-mixing with ∑︁
𝑛≥1

𝛼(𝑛) < +∞. (5.7)

There are stronger notions of mixing in the literature, however we prefer to choose

𝛼-mixing with a certain decay rate of 𝛼(𝑛) rather than some 𝜑-mixing condition since

the generalization of 𝜑-mixing conditions to two dimensional random fields is not

trivial and many of them already imply a finite range dependence assumption (see

[17]). Moreover, in general 𝛼-mixing is much weaker than any kind of 𝜑-mixing.

Results for deterministic models

At first let us collect some results obtained in the deterministic setting. Within a

discrete, deterministic environment, the problem we are interested in has first been

studied by Braides, Gelli and Novaga in [24] in the case 𝑐𝜉(𝜔) = 0. For coordinate

rectangles as initial sets they prove the following:

Theorem 5.3 (Braides, Gelli, Novaga). Let 𝐴0
𝜀 ∈ 𝒜𝜀 be a coordinate rectangle with

sides 𝑆1,𝜀, ..., 𝑆4,𝜀. Assume that 𝐴0
𝜀 converges in the Hausdorff metric to a coordinate

rectangle 𝐴. Then, up to subsequences, 𝐴𝜀(𝑡) converges locally in time to 𝐴(𝑡), where
𝐴(𝑡) is a coordinate rectangle with sides 𝑆𝑖(𝑡) such that 𝐴(0) = 𝐴 and any side 𝑆𝑖

moves inward with velocity 𝑣𝑖(𝑡) given by

𝑣𝑖(𝑡)

⎧⎨⎩= 1
𝛾

⌊︁
2𝛾

𝐿𝑖(𝑡)

⌋︁
if 2𝛾

𝐿𝑖(𝑡)
/∈ N,

∈ 1
𝛾

[︁(︁
2𝛾

𝐿𝑖(𝑡)
− 1

)︁
, 2𝛾
𝐿𝑖(𝑡)

]︁
if 2𝛾

𝐿𝑖(𝑡)
∈ N,

where 𝐿𝑖(𝑡) := ℋ1(𝑆𝑖(𝑡)) denotes the length of the side 𝑆𝑖(𝑡), until the extinction time
when 𝐿𝑖(𝑡) = 0.
Assume in addition that the lengths 𝐿0

1, 𝐿
0
2 of 𝐴 satisfy one of the three following

conditions (we assume that 𝐿0
1 ≤ 𝐿0

2):

(i) 𝐿0
1, 𝐿

0
2 > 2𝛾 (total pinning),

(ii) 𝐿0
1 < 2𝛾 and 𝐿0

2 ≤ 2𝛾 (vanishing in finite time with shrinking velocity larger
than 1/𝛾),

(iii) 𝐿0
1 < 2𝛾 such that 2𝛾/𝐿0

1 /∈ N and 𝐿0
2 > 2𝛾 (partial pinning),

then 𝐴𝜀(𝑡) converges locally in time to 𝐴(𝑡) as 𝜀 → 0, where 𝐴(𝑡) is the unique
rectangle with side lengths 𝐿1(𝑡) and 𝐿2(𝑡) solving the following system of ordinary
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differential equations ⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑑
𝑑𝑡
𝐿1(𝑡) = − 2

𝛾

⌊︁
2𝛾

𝐿2(𝑡)

⌋︁
,

𝑑
𝑑𝑡
𝐿2(𝑡) = − 2

𝛾

⌊︁
2𝛾

𝐿1(𝑡)

⌋︁
for almost every 𝑡 with initial conditions 𝐿1(0) = 𝐿0

1 and 𝐿2(0) = 𝐿0
2.

It is the aim of this chapter to extend these results to small random perturbations

of the perimeter. While in [24] more general classes of sets are studied, we restrict

ourselves to rectangles as the analysis of these sets already contains the main features

deriving from randomness. We mention that some effects of periodic perturbations

have already been studied in [27, 49]. In [27] the authors treat the following type of

high-contrast periodicity: Let 𝑁𝑎, 𝑁𝑏 ∈ N and 𝑁𝑎𝑏 = 𝑁𝑎 +𝑁𝑏. The coefficients 𝑐𝜉 are

𝑁𝑎𝑏 periodic and on the periodicity cell 0 ≤ 𝜉1, 𝜉2 < 𝑁𝑎𝑏 they satisfy

𝑐𝜉 =

⎧⎨⎩𝑏 if 0 ≤ 𝜉1, 𝜉2 ≤ 𝑁𝑏,

𝑎 otherwise,

with weights 𝑎 < 𝑏. It is shown that minimizers avoid the 𝑏-interactions and thus the

limit velocity does not depend on 𝑏 but only on the geometric proportions 𝑁𝑎, 𝑁𝑏 of

the periodicity cell. It would be interesting to see how random interactions acting

on this scale influence the minimizing sets, since without periodicity it might be

impossible to take only 𝑎-interactions. However, in this thesis we take the same

scaling as the periodic perturbations considered in [49]. These are so called low-

contrast perturbations as they vanish when 𝜀 → 0. It is shown in [49] that the right

scaling to obtain also 𝑏-interactions is 𝑏− 𝑎 ∼ 𝜀. With 𝑎 = 1 this model corresponds

to a deterministic version of (5.3). We leave the high-contrast case open for future

studies. For the interested reader we mention the recent papers [21, 28], where the

minimizing movements have been studied for other discrete models.

5.2 Homogenized limit motion of a rectangle

In the sequel we study the case, when the initial data 𝐴0
𝜀 is a coordinate rectangle.

We further assume for the rest of this chapter that

sup
𝜀

ℋ1(𝜕𝐴0
𝜀(𝜔)) = 𝐶 < +∞. (5.8)
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This bound implies that, for 𝜀 small enough, the sequence chosen by the minimizing

movement has equibounded perimeter. Indeed, by minimality we have

𝑃 𝜔
𝜀 (𝐴𝑘+1

𝜀 (𝜔)) ≤ 𝐸𝜔
𝜀 (𝐴𝑘+1

𝜀 (𝜔), 𝐴𝑘
𝜀(𝜔)) ≤ 𝐸𝜔

𝜀 (𝐴𝑘
𝜀(𝜔), 𝐴𝑘

𝜀(𝜔)) = 𝑃 𝜔
𝜀 (𝐴𝑘

𝜀(𝜔)),

so that by induction and (5.6) we infer for 𝜀 small enough that

ℋ1(𝜕𝐴𝑘
𝜀(𝜔)) ≤ 2𝑃 𝜔

𝜀 (𝐴𝑘
𝜀(𝜔)) ≤ 2𝑃 𝜔

𝜀 (𝐴0
𝜀(𝜔)) ≤ 4ℋ1(𝜕𝐴0

𝜀(𝜔)). (5.9)

Qualitative behavior

The main result of this section ensures that coordinate rectangles remain sets of the

same type as long as its sides don’t degenerate to a point. As we will see later, this

is enough to derive the equation of motion at a fixed time 𝑡. The argument splits

into two steps. First we prove that any minimizer must be connected and second,

using (5.6), we conclude that this component has to be a coordinate rectangle. The

idea to prove connectedness is as follows: First we compare the energy with a fast

flow of a deterministic functional to conclude that the minimizer must contain a very

large rectangle. Then the remaining components are ruled out using the isoperimetric

inequality.

Proposition 5.4. Assume that {𝑐𝜉}𝜉 fulfills (5.6). Let 𝜂 > 0 and suppose 𝐴𝑘
𝜀(𝜔) is

a coordinate rectangle which has all sides greater than 𝜂. Then, for 𝜀 small enough,
𝐴𝑘+1

𝜀 (𝜔) is again a coordinate rectangle contained in 𝐴𝑘
𝜀(𝜔).

Proof. As explained above we divide the proof into two steps. As the arguments are

purely deterministic we drop the 𝜔-dependence of the sets.

Step 1 Connectedness of minimizers

Let consider the minimizing movement for an auxiliary deterministic functional that

turns out to evolve faster. Given 0 < 𝛿 << 1, we define

𝐺𝛿
𝜀(𝐴,𝐹 ) := ℋ1(𝜕𝐴) +

𝛿

𝛾𝜀

∫︁
𝐴Δ𝐹

𝑑𝜀∞(𝑥, 𝜕𝐹 ) d𝑥. (5.10)

Let us observe that for any sets 𝐴,𝐵, 𝐹 ∈ 𝒜𝜀 we have the (in)equalities

𝑃 𝜔
𝜀 (𝐴 ∪𝐵) + 𝑃 𝜔

𝜀 (𝐴 ∩𝐵) ≤ 𝑃 𝜔
𝜀 (𝐴) + 𝑃 𝜔

𝜀 (𝐵),∫︁
𝐹Δ(𝐴∩𝐵)

𝑑𝜀∞(𝑥, 𝜕𝐹 ) d𝑥 +

∫︁
𝐹Δ(𝐴∪𝐵)

𝑑𝜀∞(𝑥, 𝜕𝐹 ) d𝑥 =

∫︁
𝐹Δ𝐴

𝑑𝜀∞(𝑥, 𝜕𝐹 ) d𝑥

+

∫︁
𝐹Δ𝐵

𝑑𝜀∞(𝑥, 𝜕𝐹 ) d𝑥.
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The inequality also holds for the standard perimeter, which implies the two general

estimates

𝐸𝜔
𝜀 (𝐴 ∩𝐵,𝐹 ) + 𝐸𝜔

𝜀 (𝐴 ∪𝐵,𝐹 ) ≤ 𝐸𝜔
𝜀 (𝐴,𝐹 ) + 𝐸𝜔

𝜀 (𝐵,𝐹 ),

𝐺𝛿
𝜀(𝐴 ∩𝐵,𝐹 ) + 𝐺𝛿

𝜀(𝐴 ∪𝐵,𝐹 ) ≤ 𝐺𝛿
𝜀(𝐴,𝐹 ) + 𝐺𝛿

𝜀(𝐵,𝐹 ).
(5.11)

Now let 𝑅𝛿
𝜀 ∈ 𝒜𝜀 be the smallest minimizer of 𝐺𝛿

𝜀(·, 𝐴𝑘
𝜀) with respect to set inclusion.

This is well-defined due to (5.11). From the analysis in [24] we know that 𝑅𝛿
𝜀 ⊂ 𝐴𝑘

𝜀

is a coordinate rectangle and, denoting by 𝑁𝑖,𝜀 the distance between corresponding

sides of 𝑅𝛿
𝜀 and 𝐴𝑘

𝜀 , for 𝜀 small enough it holds that(︂
2𝛾

𝛿𝐿𝑖,𝜀

− 1

)︂
𝜀 ≤ 𝑁𝑖,𝜀 ≤

(︂
2𝛾

𝛿𝐿𝑖,𝜀

+ 1

)︂
𝜀,

where 𝐿𝑖,𝜀 denotes the length of the side 𝑆𝑖,𝜀 of 𝐴
𝑘
𝜀 . In particular, using (5.8), (5.9)

and the assumptions on the sides of 𝐴𝑘
𝜀 , we infer the two-sided bound

(︁ 𝛾

𝐶𝛿
− 1

)︁
𝜀 ≤ 𝑁𝑖,𝜀 ≤

(︂
2𝛾

𝛿𝜂
+ 1

)︂
𝜀. (5.12)

We argue that 𝑅𝛿
𝜀 ⊂ 𝐴𝑘+1

𝜀 . Assume by contradiction that 𝑅𝛿
𝜀∖𝐴𝑘+1

𝜀 ̸= ∅. Since (5.12)
implies that

𝑑𝜀∞(𝑥, 𝜕𝐴𝑘
𝜀) ≥

(︁ 𝛾

𝐶𝛿
− 1

)︁
𝜀 ∀𝑥 ∈ 𝑅𝛿

𝜀, (5.13)

using (5.11) combined with the fact that both 𝐴𝑘+1
𝜀 and 𝑅𝛿

𝜀 are minimizers of the

corresponding functionals, we obtain

0 ≥𝐸𝜔
𝜀 (𝐴𝑘+1

𝜀 , 𝐴𝑘
𝜀) − 𝐸𝜔

𝜀 (𝑅𝛿
𝜀 ∪ 𝐴𝑘+1

𝜀 , 𝐴𝑘
𝜀) ≥ 𝐸𝜔

𝜀 (𝑅𝛿
𝜀 ∩ 𝐴𝑘+1

𝜀 , 𝐴𝑘
𝜀) − 𝐸𝜔

𝜀 (𝑅𝛿
𝜀, 𝐴

𝑘
𝜀)

=𝜀
(︀
𝑝𝜔𝜀 (𝜕(𝑅𝛿

𝜀 ∩ 𝐴𝑘+1
𝜀 )) − 𝑝𝜔𝜀 (𝜕𝑅𝛿

𝜀)
)︀

+
1 − 𝛿

𝛾𝜀

∫︁
𝑅𝛿

𝜀∖𝐴
𝑘+1
𝜀

𝑑𝜀∞(𝑥, 𝜕𝐴𝑘
𝜀) d𝑥

+ ℋ1(𝜕(𝑅𝛿
𝜀 ∩ 𝐴𝑘+1

𝜀 )) −ℋ1(𝜕𝑅𝛿
𝜀) +

𝛿

𝛾𝜀

∫︁
𝑅𝛿

𝜀∖𝐴
𝑘+1
𝜀

𝑑𝜀∞(𝑥, 𝜕𝐴𝑘
𝜀) d𝑥

=𝜀
(︀
𝑝𝜔𝜀 (𝜕(𝑅𝛿

𝜀 ∩ 𝐴𝑘+1
𝜀 )) − 𝑝𝜔𝜀 (𝜕𝑅𝛿

𝜀)
)︀

+
1 − 𝛿

𝛾𝜀

∫︁
𝑅𝛿

𝜀∖𝐴
𝑘+1
𝜀

𝑑𝜀∞(𝑥, 𝜕𝐴𝑘
𝜀) d𝑥

+ 𝐺𝛿
𝜀(𝑅

𝛿
𝜀 ∩ 𝐴𝑘+1

𝜀 , 𝐴𝑘
𝜀) −𝐺𝛿

𝜀(𝑅
𝛿
𝜀, 𝐴

𝑘
𝜀)

≥𝜀
(︀
𝑝𝜔𝜀 (𝜕(𝑅𝛿

𝜀 ∩ 𝐴𝑘+1
𝜀 )) − 𝑝𝜔𝜀 (𝜕𝑅𝛿

𝜀)
)︀

+
1 − 𝛿

𝛾𝜀

∫︁
𝑅𝛿

𝜀∖𝐴
𝑘+1
𝜀

𝑑𝜀∞(𝑥, 𝜕𝐴𝑘
𝜀) d𝑥,

where we used several times that 𝑅𝛿
𝜀 ⊂ 𝐴𝑘

𝜀 to simplify the symmetric differences. In
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combination with (5.13), for 𝛿 ≤ 1
2
the last estimate yields(︂

1

2𝐶𝛿
− 1

2𝛾

)︂
|𝑅𝛿

𝜀∖𝐴𝑘+1
𝜀 | ≤ 𝜀

(︀
𝑝𝜔𝜀 (𝜕𝑅𝛿

𝜀) − 𝑝𝜔𝜀 (𝜕(𝑅𝛿
𝜀 ∩ 𝐴𝑘+1

𝜀 ))
)︀
. (5.14)

In order to use this inequality, we need to analyze which boundary contributions can-

cel in the last difference. Given 𝜉 = 𝑖+𝑗
2

∈ 𝒵2 we distinguish two exhaustive cases:

(I) 𝑖 ∈ 𝑅𝛿
𝜀, 𝑗 /∈ 𝑅𝛿

𝜀: If 𝑖 ∈ 𝐴𝑘+1
𝜀 we have 𝑖 ∈ 𝑅𝛿

𝜀 ∩ 𝐴𝑘+1
𝜀 and 𝑗 /∈ 𝑅𝛿

𝜀 ∩ 𝐴𝑘+1
𝜀 which

implies 𝜉 ∈ 𝜕(𝑅𝛿
𝜀 ∩𝐴𝑘+1

𝜀 ) and thus this contribution cancels. Otherwise 𝑖 /∈ 𝐴𝑘+1
𝜀 and

consequently 𝜉 ∈ 𝜕(𝑅𝛿
𝜀∖𝐴𝑘+1

𝜀 );

(II) 𝑖 ∈ 𝑅𝛿
𝜀 ∩ 𝐴𝑘+1

𝜀 , 𝑗 /∈ 𝑅𝛿
𝜀 ∩ 𝐴𝑘+1

𝜀 : If 𝑗 /∈ 𝑅𝛿
𝜀, then 𝜉 ∈ 𝜕𝑅𝛿

𝜀 and the contribu-

tion cancels, while 𝑗 ∈ 𝑅𝛿
𝜀 yields 𝑗 /∈ 𝐴𝑘+1

𝜀 and therefore 𝜉 ∈ 𝜕(𝑅𝛿
𝜀∖𝐴𝑘+1

𝜀 ).

From those two cases and (5.6) we infer that

𝜀𝑝𝜔𝜀 (𝜕𝑅𝛿
𝜀) − 𝜀𝑝𝜔𝜀 (𝜕(𝑅𝛿

𝜀 ∩ 𝐴𝑘+1
𝜀 )) ≤ 1

4𝛾
𝜀ℋ1(𝜕(𝑅𝛿

𝜀∖𝐴𝑘+1
𝜀 )).

As for all sets 𝐴 ∈ 𝒜𝜀 we have the reverse isoperimetric inequality 𝜀ℋ1(𝜕𝐴) ≤ 4|𝐴|,
we can put together the last inequality and (5.14) to deduce(︂

1

2𝐶𝛿
− 1

2𝛾

)︂
|𝑅𝛿

𝜀∖𝐴𝑘+1
𝜀 | ≤ 1

𝛾
|𝑅𝛿

𝜀∖𝐴𝑘+1
𝜀 |.

Choosing 𝛿 small enough this yields a contradiction. Hence we proved that 𝑅𝛿
𝜀 ⊂ 𝐴𝑘+1

𝜀

for 𝛿 small enough.

Next we rule out any other connected component except the one containing 𝑅𝛿
𝜀.

Note that estimate (5.12) implies

𝑑𝜀∞(𝑥, 𝜕𝐴𝑘
𝜀) ≤ (

2𝛾

𝛿𝜂
+ 1)𝜀 ∀𝑥 ∈ 𝐴𝑘

𝜀∖𝑅𝛿
𝜀. (5.15)

Consider a connected component 𝐴 of 𝐴𝑘+1
𝜀 not containing 𝑅𝛿

𝜀. We set 𝐴′ = 𝐴𝑘+1
𝜀 ∖𝐴.

Due to (5.8) and (5.15) it holds that |𝐴𝑘
𝜀 ∩ 𝐴| ≤ |𝐴𝑘

𝜀∖𝑅𝛿
𝜀| ≤ 𝐶𝛿,𝜂𝜀. Hence, for 𝜀 small
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enough, we obtain from (5.6) that

𝐸𝜔
𝜀 (𝐴𝑘+1

𝜀 , 𝐴𝑘
𝜀) − 𝐸𝜔

𝜀 (𝐴′, 𝐴𝑘
𝜀) ≥(1 − 1

4𝛾
𝜀)ℋ1(𝜕𝐴) − 1

𝛾𝜀

∫︁
𝐴𝑘

𝜀∩𝐴
𝑑𝜀∞(𝑥, 𝜕𝐴𝑘

𝜀) d𝑥

≥ℋ1(𝜕𝐴)

2
−
(︁ 2

𝛿𝜂
+

1

𝛾

)︁
|𝐴𝑘

𝜀 ∩ 𝐴| ≥ ℋ1(𝜕𝐴)

2
− |𝐴𝑘

𝜀 ∩ 𝐴|
1
2

≥ℋ1(𝜕𝐴)

2
− |𝐴|

1
2 ≥ 1

2
(1 − 1√

𝜋
)ℋ1(𝜕𝐴) > 0,

where we used the two-dimensional isoperimetric inequality. This contradicts the

minimality of 𝐴𝑘+1
𝜀 and we conclude that 𝐴𝑘+1

𝜀 has exactly one connected component.

Step 2 Reduction to coordinate rectangles

First note that if we replace an arbitrary set 𝐴 ∈ 𝒜𝜀 by the set 𝐴 ∩ 𝐴𝑘
𝜀 we strictly

reduce the energy if the sets are not equal. To see this, we observe that

𝐸𝜔
𝜀 (𝐴,𝐴𝑘

𝜀) − 𝐸𝜔
𝜀 (𝐴 ∩ 𝐴𝑘

𝜀 , 𝐴
𝑘
𝜀) ≥ 1

𝛾 𝜀

∫︁
𝐴∖𝐴𝑘

𝜀

𝑑𝜀∞(𝑥, 𝜕𝐴𝑘
𝜀) d𝑥 + 𝑃 𝜔

𝜀 (𝐴) − 𝑃 𝜔
𝜀 (𝐴 ∩ 𝐴𝑘

𝜀)

≥|𝐴∖𝐴𝑘
𝜀 |

𝛾
+ 𝑃 𝜔

𝜀 (𝐴) − 𝑃 𝜔
𝜀 (𝐴 ∩ 𝐴𝑘

𝜀). (5.16)

Again we need to analyze which interactions cancel due to the random perimeter

difference. As 𝐴𝑘
𝜀 is a coordinate rectangle, by elementary geometric considerations

one can prove that ℋ1(𝜕𝐴) ≥ ℋ1(𝜕(𝐴∩𝐴𝑘
𝜀)). On the other hand, reasoning similar to

the lines succeeding (5.14) one can prove that all random interactions cancel except

those coming from 𝜕(𝐴∖𝐴𝑘
𝜀). In case this set is non-empty, by (5.6) we conclude that

(5.16) can be further estimated via the strict inequality

𝐸𝜔
𝜀 (𝐴,𝐴𝑘

𝜀) − 𝐸𝜔
𝜀 (𝐴 ∩ 𝐴𝑘

𝜀 , 𝐴
𝑘
𝜀) >

|𝐴∖𝐴𝑘
𝜀 |

𝛾
− 1

4𝛾
𝜀ℋ𝑑−1(𝜕(𝐴∖𝐴𝑘

𝜀)) ≥ 0,

where we used again the reverse isoperimetric inequality in 𝒜𝜀. Whenever 𝐴 is a min-

imizer we obtain a contradiction which shows that 𝜕(𝐴𝑘+1
𝜀 ∖𝐴𝑘

𝜀) = ∅, or equivalently
𝐴𝑘+1

𝜀 ⊂ 𝐴𝑘
𝜀 .

To conclude we assume by contradiction that 𝐴𝑘+1
𝜀 is not a coordinate rectan-

gle. Consider then the minimal coordinate rectangle 𝑅 containing 𝐴𝑘+1
𝜀 (see Figure

5-1). Then again by elementary geometric arguments it holds that ℋ1(𝜕𝐴𝑘+1
𝜀 ∖𝜕𝑅) ≥

ℋ1(𝜕𝑅∖𝜕𝐴𝑘+1
𝜀 ). Moreover, since 𝐴𝑘+1

𝜀 ⊂ 𝑅 one can check that(︁
𝜕𝐴𝑘+1

𝜀 ∖𝜕𝑅
)︁
∪
(︁
𝜕𝑅∖𝜕𝐴𝑘+1

𝜀

)︁
= 𝜕(𝑅∖𝐴𝑘+1

𝜀 ). (5.17)

Since 𝑅 ⊂ 𝐴𝑘
𝜀 by the previous argument, using (5.6) the difference of the energies can
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be estimated by

0 ≥𝐸𝜔
𝜀 (𝐴𝑘+1

𝜀 , 𝐴𝑘
𝜀) − 𝐸𝜔

𝜀 (𝑅,𝐴𝑘
𝜀) ≥ 1

𝛾
|𝑅∖𝐴𝑘+1

𝜀 | + 𝑃 𝜔
𝜀 (𝐴𝑘+1

𝜀 ) − 𝑃 𝜔
𝜀 (𝑅)

>
1

𝛾
|𝑅∖𝐴𝑘+1

𝜀 | + (1 − 𝜀

4𝛾
)ℋ1(𝜕𝐴𝑘+1

𝜀 ∖𝜕𝑅) − (1 +
𝜀

4𝛾
)ℋ1(𝜕𝑅∖𝜕𝐴𝑘+1

𝜀 )

≥1

𝛾
|𝑅∖𝐴𝑘+1

𝜀 | − 𝜀

4𝛾

(︁
ℋ1(𝜕𝐴𝑘+1

𝜀 ∖𝜕𝑅) + ℋ1(𝜕𝑅∖𝜕𝐴𝑘+1
𝜀 )

)︁
≥1

𝛾
|𝑅∖𝐴𝑘+1

𝜀 | − 𝜀

4𝛾
ℋ1(𝜕(𝑅∖𝐴𝑘+1

𝜀 )),

where in the last inequality we used (5.17). The last term is nonnegative by the

reverse isoperimetric. Thus we reach a contradiction and conclude the proof.

Figure 5-1: The minimal coordinate rectangle 𝑅 containing a connected set 𝐴𝜀 ∈ 𝒜𝜀.

𝐴𝜀

R

Remark 5.5. We want to comment on the 𝐿∞-bound (5.6): First note that is optimal

in the sense that if it is violated, with positive probability there could be defects at the

corners of the rectangle. On the other hand, our argument for proving connectedness

can be extended to a generic 𝐿∞-bound on the random field. In order to determine

the shape one then would need to use probabilistic arguments. We strongly believe

(even though we did not check the argument in detail), that the law of large numbers

implies that the minimizer must have the same deterministic perimeter as the minimal

coordinate rectangle containing it. Moreover, the bulk term yields a control on the

deviation from this minimal rectangle. However deviations can exist and that causes

difficulties. In order to apply an inductive argument (which is necessary also for

connectedness), one needs to control the deviation from a rectangle. However we are

not able to rule out that deviations grow with the number of time steps.
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Computation of the velocity

As a next step we derive a precise formula for the velocity of the discrete motion.

We follow [24] and express the functional to be minimized by the distance from each

side of the optimal rectangle to the corresponding side of the previous set 𝐴𝑘
𝜀(𝜔).

Let 𝐴𝑘+1
𝜀 (𝜔) be a minimizer. To reduce notation, we let 𝑠𝑖,𝜀 and 𝑠′𝑖,𝜀 (𝑖 = 1, . . . , 4)

be the sides of 𝐴𝑘
𝜀(𝜔) and 𝐴𝑘+1

𝜀 (𝜔) respectively and set 𝑙𝑖,𝜀 = ℋ1(𝑠𝑘𝑖,𝜀). We define

𝑁𝑘+1
𝑖,𝜀 𝜀 as the distance from the side 𝑠𝑖,𝜀 to the side 𝑠′𝑖,𝜀. It can be easily shown that

𝐴𝑘+1
𝜀 (𝜔) must contain the center of the previous rectangle 𝐴𝑘

𝜀(𝜔). Rewriting the

functional 𝐸𝜔
𝜀 (𝐴,𝐴𝑘

𝜀) in terms of the four integer numbers 𝑁𝑘+1
𝑖,𝜀 , we obtain that these

are minimizers of the function 𝑓𝜔
𝜀 : N4

0 → R defined by

𝑓𝜔
𝜀 (𝑁) :=

4∑︁
𝑖=1

(𝑙𝑖,𝜀 − 2𝑁𝑖𝜀) +
4∑︁

𝑖=1

𝑝𝜔𝜀 (𝑠𝑖,𝜀 + 𝑁𝑖𝜀𝑣𝑖)𝜀− 𝜀2𝑒𝑝𝑒𝑟𝜀 +
𝜀

𝛾

4∑︁
𝑖=1

𝑁𝑖∑︁
𝑛=1

𝑙𝑖,𝜀𝑛− 𝜀2𝑒𝑏𝑢𝑙𝑘𝜀

=𝜀
4∑︁

𝑖=1

(︂
(
𝑙𝑖,𝜀
𝜀

− 2𝑁𝑖) + 𝑝𝜔𝜀 (𝑠𝑖,𝜀 + 𝑁𝑖𝜀𝑣𝑖) +
(𝑁𝑖 + 1)𝑁𝑖 𝑙𝑖,𝜀

2𝛾

)︂
− 𝜀2(𝑒𝑝𝑒𝑟𝜀 + 𝑒𝑏𝑢𝑙𝑘𝜀 ),

where 𝑣𝑖 ∈ {±𝑒1,±𝑒2} denotes the vector representing the inward motion of each side

and the error terms 𝑒𝑝𝑒𝑟𝜀 , 𝑒𝑏𝑢𝑙𝑘𝜀 account for the fact that we neglect the shrinking effect

on the random part of the energy and that we count twice the bulk part in the corners

(one time with the wrong distance). For these errors we have the following bounds:

|𝑒𝑝𝑒𝑟𝜀 | ≤ 2

𝛾
max

𝑖
𝑁𝑖,

|𝑒𝑏𝑢𝑙𝑘𝜀 | ≤ 4

𝛾
(max

𝑖
𝑁𝑖)

3.
(5.18)

We argue that the error terms are negligible as 𝜀 → 0. To this end we show that

max𝑖 𝑁𝑖,𝜀 is equibounded with respect to 𝜀 as long as 𝑙𝑖,𝜀 ≥ 𝜂 > 0 for some 𝜂 > 0.

Indeed, suppose without loss of generality that 𝑁* := max𝑖 𝑁𝑖 corresponds to the

right vertical side 𝑠𝑖,𝜀. Let us denote by 𝑃 the center of 𝐴𝑘
𝜀(𝜔). Then, for 𝜀 small

enough, one can easily prove that

{𝑥 ∈ 𝐴𝑘
𝜀 :

𝑁

2
𝜀 ≤ dist(𝑥, 𝑠𝑖,𝜀) ≤ 𝑁𝜀, |⟨𝑥− 𝑃, 𝑒2⟩| ≤

𝜂

4
} ⊂ 𝐴𝑘

𝜀(𝜔)∖𝐴𝑘+1
𝜀 (𝜔).

Thus for the bulk term we obtain the lower bound

1

𝛾𝜀

∫︁
𝐴𝑘

𝜀 (𝜔)∖𝐴
𝑘+1
𝜀 (𝜔)

𝑑𝜀∞(𝑥, 𝜕𝐴𝑘
𝜀) d𝑥 ≥

min{𝜂
4
, 𝑁

2
𝜀}

𝛾

𝑁𝜂

4
.
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Using (5.6) and (5.8), for 𝜀 small enough, we deduce a lower bound for the random

perimeter via

𝑃 𝜔
𝜀 (𝐴𝑘+1

𝜀 (𝜔)) ≥ 𝑃 𝜔
𝜀 (𝐴𝑘

𝜀(𝜔)) − 8𝑁𝜀− 1

2𝛾
𝜀ℋ1(𝜕𝐴𝑘

𝜀(𝜔)) − 2

𝛾
𝜀2𝑁

≥ 𝐸𝜔
𝜀 (𝐴𝑘

𝜀(𝜔), 𝐴𝑘
𝜀(𝜔)) − 𝜀

(︂
9𝑁 +

𝐶

2𝛾

)︂
.

Assuming that 𝑁 ≥ 𝐶
2𝛾
, we infer that such 𝑁 can’t yield a minimizer as soon as

−10𝑁𝜀 +
min{𝜂

4
, 𝑁

2
𝜀}

𝛾

𝑁𝜂

4
> 0. (5.19)

From (5.19) one can easily deduce that 𝑁 has to be bounded when 𝜀 → 0.

It follows from (5.18) that, asymptotically, we can instead minimize the functional

𝑓𝜔
𝜀 (𝑁) =

4∑︁
𝑖=1

(︂
−2𝑁𝑖 + 𝑝𝜔𝜀 (𝑠𝑖,𝜀 + 𝑁𝑖𝜀𝑣𝑖) +

1

2𝛾
(𝑁𝑖 + 1)𝑁𝑖 𝑙𝑖,𝜀

)︂
, (5.20)

provided that the minimizer of the limit is unique. In particular, as in [24] each side

moves independently from the remaining ones. More precisely, we have to study the

minimizers of the one-dimensional random function

𝑣𝜔𝑖,𝜀(𝑁) := −2𝑁 + 𝑝𝜔𝜀 (𝑠𝑖,𝜀 + 𝑁𝜀𝑣𝑖) +
1

2𝛾
(𝑁 + 1)𝑁 𝑙𝑖,𝜀. (5.21)

The asymptotic behavior of the stochastic term in (5.21) is more involved since the

segment 𝑠𝑖,𝜀 can vary along infinitely many different lattice positions as 𝜀 → 0. Thus

a direct application of Birkhoff’s ergodic theorem to prove the existence of a limit

is not possible. Indeed, in what follows we will show the existence of a stationary,

ergodic system of perturbations where for at least one side 𝑠𝑖,𝜀 the term 𝑝𝜔𝜀 (𝑠𝑖,𝜀+𝑁𝜀𝑣𝑖)

does not converge with probability 1. We will come back to this example in Section

5.3, where we show how to treat this case making some further assumptions.

Example 5.6. Let 𝛾 = 1 and let 𝑋𝑖, 𝑖 ∈ Z be a sequence of non-constant independent
and identically distributed random variables on a probability space (Ω,ℱ ,P) equipped
with a measure-preserving ergodic map 𝜏 : Ω → Ω such that 𝑋𝑘(𝜔) = 𝑋0(𝜏

𝑘𝜔), where
𝜏 𝑘 denotes the 𝑘-times iterated composition of the map 𝜏 (this setup can be realized on
a suitable product space with the shift operator). Moreover assume that ‖𝑋𝑖‖∞ < 1

4

and set 𝑐𝜉(𝜔) = 𝑋⌊𝜉1⌋(𝜔). Then 𝑐𝜉 is a stationary, ergodic random field. If the initial
coordinate rectangles 𝐴0

𝜀 converge in the Hausdorff metric to a coordinate rectangle
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𝐴0, then for at least one of the vertical sides we have that, for all 𝑁 ∈ N0,

P
(︁
{𝜔 : lim

𝜀→0
𝑣𝜔𝑖,𝜀(𝑁) exists}

)︁
= 0.

Proof. Let 𝜀𝑛 → 0. Note that for at least one vertical side the 𝑥-component of
𝑠𝑖,𝜀𝑛
𝜀𝑛

diverges to ±∞. Then so does the 𝑥-component of
𝑠𝑖,𝜀𝑛
𝜀𝑛

+ 𝑁𝑣𝑖. Without loss of

generality we assume that these 𝑥-components form a sequence of positive numbers

{𝑘𝑛 + 1
2
}𝑛 → +∞ with 𝑘𝑛 ∈ N. Passing to a subsequence (not relabeled) we can

assume that this sequence is monotone increasing. Since 𝑙𝑖,𝜀𝑛 converges to the vertical

side length 𝑙𝑖 of 𝐴0, we only have to take into account the random term. Since

𝐴0
𝜀𝑛 ∈ 𝒜𝜀𝑛 , we have

𝑝𝜔𝜀𝑛(𝑠𝑖,𝜀𝑛 + 𝑁𝜀𝑛𝑣𝑖) = 𝑋𝑘𝑛(𝜔)𝑙𝑖,𝜀𝑛 .

Since 𝑙𝑖,𝜀𝑛 converges to 𝑙𝑖 ̸= 0, the asymptotic behavior of 𝑝𝜔𝜀𝑛(𝑠𝑖,𝜀𝑛 +𝑁𝜀𝑛𝑣𝑖) is charac-

terized by 𝑋𝑘𝑛(𝜔). Since these variables are non-constant and independent, it follows

from Kolmogorov’s 0-1 law that

P({𝜔 : lim
𝑛

𝑋𝑘𝑛(𝜔) exists}) = 0.

Moreover we can define the measure preserving group action 𝜏𝑧 : Ω → Ω as

𝜏𝑧𝜔 := 𝜏 𝑧1𝜔.

From the construction of the random field, it follows immediately that {𝑐𝜉}𝜉 is sta-
tionary. By assumption the group action is ergodic, too.

Despite the negative result of the previous example, we now show that even in the

worst case the term 𝑝𝜔𝜀 (𝑠𝑖,𝜀 +𝑁𝜀𝑣𝑖) doesn’t influence the range of possible minimizers

too much. Indeed, by (5.6) we have

sup
𝑁,𝑁 ′

|𝑝𝜔𝜀 (𝑠𝑖,𝜀 + 𝑁𝜀𝑣𝑖) − 𝑝𝜔𝜀 (𝑠𝑖,𝜀 + 𝑁 ′𝜀𝑣𝑖)| ≤
1

2𝛾
𝑙𝑖,𝜀,

while (one of) the integer minimizers for the polynomial 𝑃 (𝑥) = −2𝑥+
𝑙𝑖,𝜀
2𝛾

(𝑥+ 1)𝑥 is

given by 𝑥* = ⌊ 2𝛾
𝑙𝑖,𝜀

⌋. We deduce the estimate

|𝑃 (𝑥* ± 2) − 𝑃 (𝑥*)| =

⎧⎨⎩
3𝑙𝑖,𝜀
𝛾

− 4 +
2𝑙𝑖,𝜀
𝛾
𝑥* ≥ 𝑙𝑖,𝜀

𝛾
,

𝑙𝑖,𝜀
𝛾

+ 4 − 2𝑙𝑖,𝜀
𝛾
𝑥* ≥ 𝑙𝑖,𝜀

𝛾
.
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We infer that for minimizing 𝑣𝜔𝑖,𝜀 we need only to consider three values, that means

min
𝑁

𝑣𝜔𝑖,𝜀(𝑁) = min{𝑣𝜔𝑖,𝜀(𝑥*), 𝑣𝜔𝑖,𝜀(𝑥
* + 1), 𝑣𝜔𝑖,𝜀(𝑥

* − 1)}. (5.22)

Thus the randomness can only cause one additional jump forwards or backwards.

In order to obtain the convergence we need a stronger form of independence than

ergodicity that is preserved on one-dimensional sections of Z2. It turns out that the

𝛼-mixing condition introduced in Section 5.1 is enough. Indeed, we have the following

crucial result:

Proposition 5.7. Assume that the random field {𝑐𝜉}𝜉 is stationary and 𝛼-mixing
such that (5.7) holds and set 𝜇 := E[𝑐𝜉]. Let 𝜀𝑗 ↓ 0. There exists a set Ω′ ⊂ Ω of full
probability (independent of the particular sequence 𝜀𝑗) such that for every 𝜔 ∈ Ω′ and
every sequence of sides {𝑆𝑗}𝑗∈N such that 𝑆𝑗 converges in the Hausdorff metric to a
segment 𝑆, we have

lim
𝑗

𝑝𝜔𝜀𝑗(𝑆𝑗) = ℋ1(𝑆)𝜇.

Proof. We assume that the side is a vertical side, the case of horizontal sides works the

same way with another set of full measure. Moreover it is not restrictive to consider

the case 𝜇 = 0. To reduce notation we let [𝑥]* := ⌊𝑥⌋+ 1
2
. Given 𝑞 ∈ Q∩ (0,+∞) we

define the following sequences of random variables:

𝑋𝑞,±
𝑛 (𝜔) := sup

𝑘≥𝑞𝑛

⃒⃒⃒⃒
⃒ 1

2𝑘 + 1

𝑘∑︁
𝑙=−𝑘

𝑐([±𝑛]*,𝑙)(𝜔)

⃒⃒⃒⃒
⃒ .

Given 𝛿 > 0, by stationarity and an elementary fact about average sums we have

P
(︀
|𝑋𝑞,±

𝑛 | > 𝛿
)︀

= P
(︂

sup
𝑘≥𝑞𝑛

⃒⃒⃒⃒
1

2𝑘 + 1

𝑘∑︁
𝑙=−𝑘

𝑐([0]*,𝑙)

⃒⃒⃒⃒
> 𝛿

)︂

≤ P
(︂

sup
𝑘≥𝑞𝑛

⃒⃒⃒⃒
1

𝑘 + 1

𝑘∑︁
𝑙=0

𝑐([0]*,𝑙)

⃒⃒⃒⃒
> 𝛿

)︂
+ P

(︂
sup
𝑘≥𝑞𝑛

⃒⃒⃒⃒
1

𝑘

𝑘∑︁
𝑙=1

𝑐([0]*,−𝑙)

⃒⃒⃒⃒
> 𝛿

)︂
.

(5.23)

Upon rescaling 𝑐𝜉 we can apply Theorem 2.24 with 𝑝 = 2 to the two bounded and
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𝛼-mixing sequences {𝑐([0]*,𝑙)}𝑙∈N0 and {𝑐([0]*,−𝑙)}𝑙∈N and deduce from (5.23) that∑︁
𝑛≥1

P(|𝑋𝑞,±
𝑛 | > 𝛿)

≤
∑︁
𝑛≥1

P
(︂

sup
𝑘≥𝑞𝑛

⃒⃒⃒⃒
1

𝑘 + 1

𝑘∑︁
𝑙=0

𝑐([0]*,𝑙)

⃒⃒⃒⃒
> 𝛿

)︂
+ P

(︂
sup
𝑘≥𝑞𝑛

⃒⃒⃒⃒
1

𝑘

𝑘∑︁
𝑙=1

𝑐([0]*,−𝑙)

⃒⃒⃒⃒
> 𝛿

)︂

≤ ⌈𝑞−1⌉
∑︁
𝑖≥1

P
(︂

sup
𝑘≥𝑖

⃒⃒⃒⃒
1

𝑘 + 1

𝑘∑︁
𝑙=0

𝑐([0]*,𝑙)

⃒⃒⃒⃒
> 𝛿

)︂
+ P

(︂
sup
𝑘≥𝑖

⃒⃒⃒⃒
1

𝑘

𝑘∑︁
𝑙=1

𝑐([0]*,−𝑙)

⃒⃒⃒⃒
> 𝛿

)︂
< +∞.

Hence by the Borel-Cantelli Lemma there exists a set of full probability Ω𝑞 such that

both 𝑋𝑞,+
𝑛 and 𝑋𝑞,−

𝑛 converge to 0 pointwise on Ω𝑞. We set Ω′′ :=
⋂︀

𝑞 Ω𝑞.

Next we check that we can relate the random length of the side 𝑆𝑗 to one of the

random variables 𝑋𝑞,±
𝑛 . Let 𝑆𝑗 converge to a segment 𝑆 in the Hausdorff metric and

denote by 𝑥 ∈ R the 𝑥-coordinate of 𝑆. We start with the case 𝑥 > 0. Fix 𝛽 > 0 and

let 𝑥𝑗 ∈ Z + 1
2
be the 𝑥-component of 𝑆𝑗/𝜀𝑗. Then there exists 𝑗0 = 𝑗0(𝛽) such that

for all 𝑗 ≥ 𝑗0 we have 𝑥 + 𝛽 ≥ 𝜀𝑗𝑥𝑗 and 𝜀𝑗#{𝜉 ∈ 𝑆𝑗/𝜀𝑗 ∩ 𝒵2} ≥ ℋ1(𝑆) − 𝛽. For such

𝑗 we infer that

#{𝜉 ∈ 𝑆𝑗

𝜀𝑗
∩ 𝒵2} ≥ ℋ1(𝑆) − 𝛽

𝑥 + 𝛽
𝑥𝑗.

For 𝛽 small enough, there exists 𝑞 ∈ Q such that ℋ1(𝑆)−𝛽
𝑥+𝛽

> 3𝑞 > 0. Now for every 𝑗

we choose 𝑛𝑗 ∈ N satisfying [𝑛𝑗]
* = 𝑥𝑗 (we may assume that 𝑥𝑗 > 0 for all 𝑗). Then

#{𝜉 ∈ 𝑆𝑗

𝜀𝑗
∩ 𝒵2} > 3𝑞𝑛𝑗. (5.24)

Let us first assume that 𝑆 = {𝑥} × 1
2
[−ℋ1(𝑆),ℋ1(𝑆)]. For 𝑗 large enough it holds

#
(︁{︁

𝜉 ∈ 𝑆𝑗

𝜀𝑗
∩ 𝒵2

}︁
∆
{︁
𝜉 = (𝑥𝑗, 𝑙) : |𝑙| ≤ ℋ1(𝑆𝑗)

2𝜀𝑗

}︁)︁
≤ 𝛽

𝜀𝑗
, (5.25)

so that by (5.6) we have⃒⃒⃒⃒ ∑︁
𝜀𝑗𝜉∈𝑆𝑗

𝜀𝑗𝑐𝜉(𝜔)

⃒⃒⃒⃒
= ℋ1(𝑆𝑗)

⃒⃒⃒⃒
1

#{𝜀𝑗𝜉 ∈ 𝑆𝑗}
∑︁

𝜀𝑗𝜉∈𝑆𝑗

𝑐𝜉(𝜔)

⃒⃒⃒⃒

≤ 𝐶𝛽 + 𝐶

⃒⃒⃒⃒
1

#{𝜀𝑗𝜉 ∈ 𝑆𝑗}
∑︁

2𝜀𝑗 |𝑙|≤ℋ1(𝑆𝑗)

𝑐(𝑥𝑗 ,𝑙)(𝜔)

⃒⃒⃒⃒
≤ 𝐶𝛽 + 𝐶𝑋𝑞,+

𝑛𝑗
(𝜔),

(5.26)

where we used that ⌊ℋ1(𝑆𝑗)/(2𝜀𝑗)⌋ ≥ 𝑞𝑛𝑗 for all but finitely many 𝑗 by (5.24). Since
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𝛽 > 0 is arbitrary and 𝑋𝑞,+
𝑛𝑗

(𝜔) → 0 for all 𝜔 ∈ Ω′′ we conclude in this special case.

Now assume that 𝑆 = {𝑥} × [𝑦 −ℋ1(𝑆), 𝑦 + ℋ1(𝑆)] with 𝑦 > 0 (the other case is

similar). As in Chapters 3 and 4 we need to transfer the variables pointwise with the

help of the group action. For 𝛽 > 0 and 𝑞 as above, we define the events

𝒬𝑁 :=

{︂
𝜔 ∈ Ω : ∀𝑛 ≥ 𝑁

2
it holds |𝑋𝑞,+

𝑛 (𝜔)| ≤ 𝛽

}︂
.

By the arguments hitherto we know that the function 1𝒬𝑁
converges to 1Ω on Ω′′. Let

us denote by 𝒥𝑒2 the (maybe non-trivial) 𝜎-algebra of invariant sets for the measure

preserving map 𝜏𝑒2 . Fatou’s lemma for the conditional expectation yields

1Ω = E[1Ω|𝒥𝑒2 ] ≤ lim inf
𝑁→+∞

E[1𝒬𝑁
|𝒥𝑒2 ].

Hence we know that, given 𝛿 > 0, almost surely we find 𝑁0 = 𝑁0(𝜔, 𝛿) such that

1 ≥ E[1𝒬𝑁0
|𝒥𝑒2 ](𝜔) ≥ 1 − 𝛿.

Due to Birkhoff’s ergodic theorem (see Theorem 2.22 in Chapter 2), almost surely,

there exists 𝑛0 = 𝑛0(𝜔, 𝛿) such that, for any 𝑚 ≥ 1
2
𝑛0,⃒⃒⃒⃒

⃒ 1

𝑚

𝑚∑︁
𝑖=1

1𝒬𝑁0
(𝜏𝑖𝑒2𝜔) − E[1𝒬𝑁0

|𝒥𝑒2 ](𝜔)

⃒⃒⃒⃒
⃒ ≤ 𝛿.

Note that the set we exclude will be a countable union of null sets (depending only

on the sequences 𝑋𝑞,±
𝑛 and rational 𝛽). With a slight abuse of notation we still call

the smaller set Ω′′.

We now fix 𝜔 ∈ Ω′′. For𝑚 ≥ max{𝑛0(𝜔, 𝛿), 𝑁0(𝜔, 𝛿)} we denote by 𝑅 the maximal

integer such that for all 𝑖 = 𝑚+ 1, . . . ,𝑚+𝑅 we have 𝜏𝑖𝑒2(𝜔) /∈ 𝒬𝑁0 . By exactly the

same estimates used in Step 3 of the proof of Theorem 3.19 we deduce that 𝑅 ≤ 4𝑚𝛿

provided that 𝛿 ≤ 1
4
. So if we choose an arbitrary 𝑚 ≥ max{𝑛0(𝜔, 𝜃), 𝑁0(𝜔, 𝛿)} and

𝑅̃ = 6𝑚𝛿 we find 𝑙𝑚 ∈ [𝑚+ 1,𝑚+ 𝑅̃] such that 𝜏𝑙𝑚𝑒2(𝜔) ∈ 𝒬𝑁0 . Then we have for all

𝑛 ≥ 𝑁0

2
that

|𝑋𝑞,+
𝑛 (𝜏𝑙𝑚𝑒2𝜔)| ≤ 𝛽. (5.27)

For 𝑗 large enough we have ⌊𝑦/𝜀𝑗⌋ ≥ max{𝑛0(𝜔, 𝛿), 𝑁0(𝜔, 𝛿)} so that there exists

𝑙𝑗 ∈ N satisfying (5.27) and moreover

|⌊𝑦/𝜀𝑗⌋ − 𝑙𝑗| ≤ 6𝛿⌊𝑦/𝜀𝑗⌋. (5.28)
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In addition we can assume that |ℋ1(𝑆)−ℋ1(𝑆𝑗)| ≤ 𝛽. Note that (5.28) is the analogue

of (5.25). Thus from (5.27), stationarity and the definition of 𝑋𝑞,+
𝑛 we deduce that

|𝑝𝜔𝜀𝑗(𝑆𝑗)| ≤ 𝐶𝑦(𝛽 + 𝛿) (5.29)

for all 𝑗 large enough. By the arbitrariness of 𝛽 and 𝛿 we proved the claim.

The case 𝑥 < 0 can be proved the same way using the random variables 𝑋𝑞,−
𝑛

instead. It remains the case when 𝑥 = 0. For fixed 𝑧 ∈ Z we consider the following

sequences of random variables:

𝑌 𝑧
𝑛 (𝜔) := sup

𝑘≥𝑛

⃒⃒⃒⃒
⃒ 1

2𝑘 + 1

𝑘∑︁
𝑙=−𝑘

𝑐([𝑧]*,𝑙)(𝜔)

⃒⃒⃒⃒
⃒ .

With essentially the same arguments as above one can show that there exists a set

Ω𝑧 of full probability such that for every sequence of sides 𝑆𝑗 contained in [𝑧]* × R
and all 𝜔 ∈ Ω𝑧 we have

𝑝𝜔𝜀𝑗(𝑆𝑗) → 0,

where Ω𝑧 does not depend on the sequence 𝜀𝑗. We finally set Ω′ := Ω′′ ∩
⋂︀

𝑧 Ω𝑧. Let

us fix 𝜔 ∈ Ω′. Note that if 𝑥 = 0, then for every subsequence of 𝜀𝑗 there exists a

further subsequence 𝜀𝑗𝑘 , such that either

(i) 𝑥𝑗𝑘 → ±∞,

(ii) 𝑥𝑗𝑘 = [𝑧]* for all 𝑘 and for some 𝑧 ∈ Z

In the first case we can use the construction for 𝑥 ̸= 0 with arbitrary 𝑞 ∈ Q∩ (0,+∞)

since 𝜔 ∈ Ω′′ and in the second case we use that 𝜔 ∈ Ω𝑧 to conclude.

Remark 5.8. It is straightforward to check that the limit relation of Proposition 5.7

holds for convergence in probability even under the weaker assumption that both the

𝜎-algebras invariant with respect to the two group actions 𝜏𝑒1 , 𝜏𝑒2 are trivial.

With Proposition 5.7 at hand we are now in a position to prove our main result.

Theorem 5.9. Assume that the random field {𝑐𝜉}𝜉 is stationary and 𝛼-mixing such
that (5.7) holds. Then with probability 1 the following holds: Let 𝜀𝑗 ↓ 0 and let
𝐴0

𝑗(𝜔) ∈ 𝒜𝜀𝑗 be a coordinate rectangle with sides 𝑆1,𝑗(𝜔), ..., 𝑆4,𝑗(𝜔). Assume that
𝐴0

𝑗(𝜔) converges in the Hausdorff metric to a coordinate rectangle 𝐴(𝜔). Then we
can choose a subsequence (not relabeled), such that 𝐴𝜀𝑗(𝑡)(𝜔) converges locally in
time to 𝐴(𝑡)(𝜔), where 𝐴(𝑡)(𝜔) is a coordinate rectangle with sides 𝑆𝑖(𝑡)(𝜔) such that
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𝐴(0)(𝜔) = 𝐴(𝜔) and any side 𝑆𝑖(𝑡)(𝜔) moves inward with velocity 𝑣𝑖(𝑡)(𝜔) solving the
following differential inclusions:

𝑣𝑖(𝑡)(𝜔)

⎧⎨⎩= 1
𝛾

⌊︁
2𝛾

𝐿𝑖(𝑡)(𝜔)

⌋︁
if 2𝛾

𝐿𝑖(𝑡)(𝜔)
/∈ N,

∈
[︁
1
𝛾

(︁
2𝛾

𝐿𝑖(𝑡)(𝜔)
− 1

)︁
, 1
𝛾

2𝛾
𝐿𝑖(𝑡)(𝜔)

]︁
if 2𝛾

𝐿𝑖(𝑡)(𝜔)
∈ N,

where 𝐿𝑖(𝑡)(𝜔) := ℋ1(𝑆𝑖(𝑡)(𝜔)) denotes the length of the side 𝑆𝑖(𝑡)(𝜔). The differen-
tial inclusions are valid until the extinction time when 𝐿𝑖(𝑡)(𝜔) = 0.

Proof. Let Ω′ be the set of full probability given by Proposition 5.7. We fix 𝜔 ∈ Ω′.

Since 𝐴0
𝑗(𝜔) converges to a coordinate rectangle we can assume that the sides of

𝐴0
𝑗(𝜔) are larger than 𝜂 > 0 for some 𝜂 independent of 𝑗. Therefore we can apply

Proposition 5.4 for all 𝑗 large enough. For fixed 𝑗 and 𝑖 = 1, ..., 4, the minimizing

movement procedure yields two random sequences 𝐿𝑘
𝑖,𝜀𝑗

(𝜔), 𝑁𝑘
𝑖,𝜀𝑗

(𝜔). Let us denote by

𝐿𝑗
𝑖 (𝑡)(𝜔) = 𝐿

⌊𝜏𝑗/𝑡⌋
𝑖,𝜀𝑗

(𝜔) and𝑁 𝑗
𝑖 (𝑡)(𝜔) = 𝑁

⌊𝜏𝑗/𝑡⌋
𝑖,𝜀𝑗

(𝜔) the piecewise constant interpolations.

Note that the function 𝐿𝑗
𝑖 (𝑡)(𝜔) is decreasing in 𝑡. Set

𝑡* := min
𝑖

{︂
inf{𝑡 > 0 : lim inf

𝑗
𝐿𝑗
𝑖 (𝑡)(𝜔) = 0}

}︂
∈ [0,+∞].

We already deduced from (5.19) that the discrete velocity, that is the distance between

two corresponding sides between two time steps is equibounded by 𝐶𝜂𝜀 for some

constant 𝐶𝜂. Thus it follows that

min
𝑖

lim inf
𝑗

𝐿𝑗
𝑖 (𝑡

*)(𝜔) = 0

and consequently 𝑡* > 0. Without changing notation we consider the subsequence

realizing the lim inf. Then, by monotonicity, one can verify that for all 𝑡 < 𝑡* we have

min
𝑖

lim inf
𝑗

𝐿𝑗
𝑖 (𝑡)(𝜔) > 0.

Now fix 𝑡1 < 𝑡*. Taking 𝑖 into account modulo 4, by construction it holds

𝐿𝑘+1
𝑖,𝜀𝑗

(𝜔) − 𝐿𝑘
𝑖,𝜀𝑗(𝜔)

𝜏
= −1

𝛾
(𝑁𝑘

𝑖−1,𝜀𝑗
(𝜔) + 𝑁𝑘

𝑖+1,𝜀𝑗
(𝜔)). (5.30)

Hence on [0, 𝑡1] the piecewise affine interpolations 𝑡 ↦→ 𝐿𝑗,𝑎
𝑖 (𝑡)(𝜔) are uniformly

Lipschitz-continuous and decreasing while 𝑁 𝑗
𝑖 (𝑡)(𝜔) is locally bounded in 𝐿∞. Thus,

by a diagonal argument, we can find a further subsequence such that 𝐿𝑗
𝑖 (𝑡) → 𝐿𝑖(𝑡)

pointwise and locally uniformly on [0, 𝑡*) for some locally Lipschitz-continuous, de-
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creasing function 𝐿𝑖(𝑡)(𝜔) and 𝑁 𝑗
𝑖 (𝑡)(𝜔) weakly*-converges in 𝐿∞

𝑙𝑜𝑐(0, 𝑡
*) to some func-

tion 𝑣𝑖(𝑡)(𝜔). It follows that, up to a subsequence, 𝐴𝜀𝑗(𝑡)(𝜔) converges in the Haus-

dorff metric to a coordinate rectangle 𝐴(𝑡)(𝜔) for all 0 ≤ 𝑡 < 𝑡*.

We conclude the proof by computing the velocity of each side 𝐿𝑖(𝑡)(𝜔). Again we

fix 0 < 𝑡 < 𝑡*. Then lim inf𝑗 𝐿
𝑗
𝑖 (𝑡)(𝜔) > 0 for all 𝑖. Therefore we have that the mini-

mizers 𝑁𝑘
𝑖,𝜀𝑗

(𝜔) of the functional 𝑓𝜔
𝜀𝑗

(𝑁) introduced in (5.20) are uniformly bounded

if |𝑘𝜏𝑗 − 𝑡| is small enough. Hence they converge, up to subsequences, to minimizers

of the pointwise limit of 𝑓𝜔
𝜀𝑗

(this can be seen as a special case of Γ-convergence on

discrete spaces). By Proposition 5.7 and the precedent discussion we know that

𝑓𝜔
𝜀𝑗

(𝑁) →
4∑︁

𝑖=1

−2𝑁𝑖 + 𝐿𝑖(𝑡)(𝜔)𝜇 +
1

2𝛾
(𝑁𝑖 + 1)𝑁𝑖𝐿𝑖(𝑡)(𝜔).

A straightforward calculation shows that the minimizers are given by

𝑁𝑖

⎧⎪⎨⎪⎩
=

⌊︁
2𝛾

𝐿𝑖(𝑡)(𝜔)

⌋︁
if 2𝛾

𝐿𝑖(𝑡)(𝜔)
/∈ N,

∈
{︁

2𝛾
𝐿𝑖(𝑡)(𝜔)

− 1, 2𝛾
𝐿𝑖(𝑡)(𝜔)

}︁
otherwise.

Summing the equality (5.30) we further infer that

𝐿𝑗
𝑖 (𝑡)(𝜔) = 𝐿𝑗

𝑖 (0)(𝜔) − 1

𝛾

⌊𝑡/𝜏𝑗⌋∑︁
𝑘=0

𝜏𝑗(𝑁
𝑗
𝑖−1(𝑘𝜏𝑗)(𝜔) + 𝑁 𝑗

𝑖+1(𝑘𝜏𝑗)(𝜔))

= 𝐿𝑗
𝑖 (0)(𝜔) − 1

𝛾

∫︁ 𝑡

0

(︀
𝑁 𝑗

𝑖−1(𝑠)(𝜔) + 𝑁 𝑗
𝑖+1(𝑠)(𝜔)

)︀
d𝑠 + 𝒪(𝜏𝑗). (5.31)

Passing to the limit as 𝑗 → +∞ in (5.31), we deduce from weak convergence that

𝐿𝑖(𝑡)(𝜔) = 𝐿𝑖(0)(𝜔) − 1

𝛾

∫︁ 𝑡

0

(𝑣𝑖−1(𝑠)(𝜔) + 𝑣𝑖+1(𝑠)(𝜔)) d𝑠. (5.32)

To conclude, we note that if 𝑡 is such that 2𝛾/𝐿𝑖(𝑡)(𝜔) /∈ N, then by continuity we

have that 2𝛾/𝐿𝑖(𝑡
′)(𝜔) /∈ N for |𝑡− 𝑡′| ≤ 𝛿 for some 𝛿 > 0. It follows from comparing

pointwise convergence with weak*-convergence that

𝑣𝑖(𝑡
′)(𝜔) = 𝑣𝑖(𝑡

′)(𝜔) for almost all |𝑡− 𝑡′| ≤ 𝛿.

In particular 𝑣𝑖(·)(𝜔) has a constant representative on (𝑡−𝛿, 𝑡+𝛿) so that the velocity
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of the side 𝑆𝑖(𝑡)(𝜔) given by

lim
ℎ→0

1

2

𝐿𝑖−1(𝑡 + ℎ)(𝜔) − 𝐿𝑖−1(𝑡)(𝜔)

ℎ
= −1

𝛾
𝑣𝑖(𝑡)(𝜔)

exists by (5.32) whenever 2𝛾/𝐿𝑖(𝑡)(𝜔) /∈ N. Note that the formula for the velocity is

true because if 2𝛾/𝐿𝑖(𝑡)(𝜔) /∈ N, then at least in every short time interval opposite

sides move with the same velocities. The claim for 2𝛾/𝐿𝑖(𝑡)(𝜔) ∈ N follows from well

known properties of weak*-convergence (note that for these values of 𝑡 the velocity

may not be a classical derivative).

Following word by word the proof of [24, Theorem 2] we obtain unique limit motions

in many cases:

Corollary 5.10. Let 𝐴0
𝜀(𝜔) and {𝑐𝜉}𝜉 be as in Theorem 5.9. Assume in addition

that the lengths 𝐿0
1(𝜔), 𝐿0

2(𝜔) of 𝐴(𝜔) satisfy one of the three following conditions (we
assume that 𝐿0

1(𝜔) ≤ 𝐿0
2(𝜔)):

(i) 𝐿0
1(𝜔), 𝐿0

2(𝜔) > 2𝛾 (total pinning),

(ii) 𝐿0
1(𝜔) < 2𝛾 and 𝐿0

2(𝜔) ≤ 2𝛾 (vanishing in finite time with shrinking velocity
larger than 1/𝛾),

(iii) 𝐿0
1(𝜔) < 2𝛾 and 2𝛾/𝐿0

1(𝜔) /∈ N, and 𝐿0
2(𝜔) > 2𝛾 (partial pinning).

Let 𝜀𝑗 → 0. The sequence 𝐴𝜀𝑗(𝑡)(𝜔) converges locally in time to 𝐴(𝑡)(𝜔), where
𝐴(𝑡)(𝜔) is the unique coordinate rectangle with sides 𝑆1(𝑡)(𝜔) and 𝑆2(𝑡)(𝜔) such that
𝐴(0)(𝜔) = 𝐴(𝜔) and the side lengths 𝐿1(𝑡)(𝜔) and 𝐿2(𝑡)(𝜔) solve the following dif-
ferential equations for all but countably many times:⎧⎪⎨⎪⎩

𝑑
𝑑𝑡
𝐿1(𝑡)(𝜔) = − 2

𝛾

⌊︁
2𝛾

𝐿2(𝑡)(𝜔)

⌋︁
,

𝑑
𝑑𝑡
𝐿2(𝑡)(𝜔) = − 2

𝛾

⌊︁
2𝛾

𝐿1(𝑡)(𝜔)

⌋︁
with initial condition 𝐿1(0)(𝜔) = 𝐿0

1(𝜔) and 𝐿2(0)(𝜔) = 𝐿0
2(𝜔).

Remark 5.11. Without any assumptions on the distribution of the random field, up

to subsequences we can still obtain a rectangular limit motion. Due to (5.22) we can

also give an estimate of the velocity via

𝑣𝑖(𝑡)(𝜔) ∈ 1

𝛾

[︂⌊︂
2𝛾

𝐿𝑖(𝑡)(𝜔)

⌋︂
− 1,

⌊︂
2𝛾

𝐿𝑖(𝑡)(𝜔)

⌋︂
+ 1

]︂
.

Note that the subsequence may depend on 𝜔.
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Remark 5.12. For the continuum flow it is known that rectangles always shrink to

a point; see for example the more general result contained in [51, Proposition 3.1].

The same occurs for any possible limit motion in our discrete model provided the

sets vanish in finite time. Indeed, assume by contradiction that 𝐿𝑖(𝑡
*)(𝜔) = 0 and

𝐿𝑖+1(𝑡
*)(𝜔) = 𝑎 > 0. Then, for any 𝑡 < 𝑡*, by monotonicity of the side-lengths and

the velocity estimate in Remark 5.11 there exists a constant 𝑐 > 0 such that

𝐿𝑖(𝑡
*)(𝜔) − 𝐿𝑖(𝑡)(𝜔) ≥ −𝑐(𝑡* − 𝑡).

By definition of 𝑡* we obtain the bound 𝐿𝑖(𝑡) ≤ 𝑐(𝑡* − 𝑡). Inserting this bound in the

estimate of Remark 5.11 we conclude that, again for any 0 < 𝑡 < 𝑡* and a slightly

larger constant 𝑐 > 0,

𝐿𝑖+1(𝑡)(𝜔) − 𝐿𝑖+1(0)(𝜔) ≤ −
∫︁ 𝑡

0

𝑐

𝑡* − 𝑠
d𝑠 = 𝑐 log(1 − 𝑡/𝑡*).

Letting 𝑡 ↑ 𝑡* we obtain a contradiction.

5.3 Dependence on the range of stationarity

In the previous section we proved that the velocity is the same as in the unper-

turbed deterministic case. This fact however changes if we replace the stationarity

assumption on all integer shifts 𝜏𝑧 to a smaller subgroup since the distributions on two

neighboring points in the dual lattice can be different. In particular this highlights

that the results obtained hitherto are not only due to the additional scaling of the

random terms but due to homogenization.

Definition 5.13. Let 𝑚 ∈ N. We say that the random field {𝑐𝜉}𝜉 is 𝑚-stationary if

𝑐𝜉(𝜏𝑚𝑧𝜔) = 𝑐𝜉+𝑚𝑧(𝜔) ∀𝑧 ∈ Z2.

There are 2𝑚 quantities that can affect the velocity. For 𝑖 = 0, ...,𝑚 − 1 set

[𝑖] = 𝑖 + 1
2
and consider the following random variables:

𝑐eff𝑖,| (𝜔) :=
1

𝑚

𝑚−1∑︁
𝑗=0

𝑐([𝑖]*,𝑗)(𝜔), 𝑐eff𝑖,−(𝜔) :=
1

𝑚

𝑚−1∑︁
𝑗=0

𝑐(𝑗,[𝑖]*)(𝜔).

To obtain the velocity of the sides we need a generalization of Proposition 5.7.

Proposition 5.14. Assume that the random field {𝑐𝜉}𝜉 is 𝑚-stationary and 𝛼-mixing
such that (5.7) holds. Then there exists a set Ω′ ⊂ Ω of full probability such that for all
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𝜔 ∈ Ω′ the following holds: Suppose that a vertical side 𝑆𝑗 converges in the Hausdorff
sense to a limit side 𝑆 and that for all 𝑗 we have that the 𝑥-component 𝑥𝑗 of 𝑆𝑗/𝜀𝑗

fulfills

𝑥𝑗 = 𝑖 +
1

2
mod 𝑚 ∀𝑗. (5.33)

Then it holds that
lim
𝑗

𝑝𝜔𝜀𝑗(𝑆𝑗) = ℋ1(𝑆)E[𝑐eff𝑖,| ].

Moreover the convergence is locally uniform in the following weak sense: there exists
𝑗0 = 𝑗0(𝜔) such that for all 𝑗 ≥ 𝑗0 and all sequences of vertical sides 𝑆 ′

𝑗 such that
(5.33) holds and d𝐻(𝑆𝑗, 𝑆

′
𝑗) ≤ 𝛿 we have⃒⃒⃒

𝑝𝜔𝜀𝑗(𝑆
′
𝑗) −ℋ1(𝑆 ′

𝑗)E[𝑐eff𝑖,| ]
⃒⃒⃒
≤ 𝐶𝛿 (5.34)

for some positive constant 𝐶 > 0 independent of 𝑆 ′
𝑗.

The same statement holds for horizontal sides with the condition on the 𝑦-component
and the first moment of 𝑐eff𝑖,−.

Proof. The argument to show convergence is very similar to the one used in Propo-

sition 5.7 restricted to a thinned dual lattice. We therefore only provide the main

steps. We fix 𝑖 as in (5.33), set 𝜇𝑖 = E[𝑐eff𝑖,| ] and define the two-sided sequence of

random variables {𝑧𝑘}𝑘∈Z via

𝑧𝑘(𝜔) := 𝑐eff𝑖,| (𝜏𝑘𝑚𝑒2𝜔).

Note that this sequence is stationary and 𝛼-mixing such that (5.7) holds. For 𝑞 ∈
Q ∩ (0,+∞) we define the following average sequences:

𝑍𝑞,±
𝑛 (𝜔) := sup

𝑘≥𝑞𝑛

⃒⃒⃒⃒
⃒ 1

2𝑘 + 1

𝑘∑︁
𝑙=−𝑘

𝑧𝑘(𝜏±𝑛𝑚𝑒1𝜔) − 𝜇𝑖

⃒⃒⃒⃒
⃒

Using𝑚-stationarity and the mixing property we can argue as in the proof of Proposi-

tion 5.7 to show that there exists a set Ω′′ of full probability such that all the sequences

𝑍𝑞,±
𝑛 converge to 0 pointwise on Ω′′. Up to minor changes the proof of convergence

now is the same as for Proposition 5.7. We omit the details.

In order to prove (5.34) we have to distinguish two cases: First assume that the

𝑥-coordinate (also denoted by 𝑥) of 𝑆 is positive (the case of negative 𝑥-coordinate

works the same way). Then, for 𝛿 small enough (otherwise (5.34) is trivial), we have

𝑥′
𝑗 > 0 for 𝑗 large enough depending only on 𝑆𝑗. The key is to show that we can

compare 𝑆 ′
𝑗 to one of the sequences of random variables 𝑍𝑞,+

𝑛 as in the proof of Propo-
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sition 5.7, where 𝑞 can be chosen only depending on the sequence 𝑆𝑗. Then the speed

of convergence is determined by the one of 𝑍𝑞,+
𝑛 for one particular 𝑞.

We start with the case of a vertically centered side 𝑆, that means 𝑆 = {𝑥} ×
[−ℋ1(𝑆)/2,ℋ1(𝑆)/2]: Given 0 < 𝛽 << 𝛿 there exists 𝑗0 such that for all 𝑗 ≥ 𝑗0 we

have 𝑥 + 𝛽 ≥ 𝜀𝑗𝑥𝑗 and 𝜀𝑗#{𝜉 ∈ 𝑆𝑗/𝜀𝑗 ∩ 𝒵2} ≥ ℋ1(𝑆) − 𝛽. Using the assumption

d𝐻(𝑆𝑗, 𝑆
′
𝑗) ≤ 𝛿, a straightforward computation yields

#{𝜉 ∈
𝑆 ′
𝑗

𝜀𝑗
∩ 𝒵2} ≥ ℋ1(𝑆) − 2𝛿 − 𝛽

𝑥 + 𝛿 + 𝛽
𝑥′
𝑗

for all 𝑗 ≥ 𝑗0. Therefore we have to chose ℋ1(𝑆)−2𝛿−𝛽
𝑥+𝛿+𝛽

> 3𝑞 which can be done

uniformly for small 𝛿. Moreover, from our assumptions we deduce

#

(︂{︂
𝜉 ∈

𝑆 ′
𝑗

𝜀𝑗
∩ 𝒵2

}︂
∆

{︂
𝜉 = (𝑥𝑗, 𝑙) : |𝑙| ≤

ℋ1(𝑆 ′
𝑗)

2𝜀𝑗

}︂)︂
≤ 4𝛿

𝜀𝑗
.

Assuming (5.8) we deduce that sup𝑗 ℋ1(𝑆 ′
𝑗) ≤ 𝐶. Hence we can argue as in (5.26) to

prove that ⃒⃒⃒
𝑝𝜔𝜀𝑗(𝑆

′
𝑗) −ℋ1(𝑆 ′

𝑗)𝜇𝑖

⃒⃒⃒
≤ 𝐶𝛿 + 𝑍𝑞,+

𝑛𝑗
(𝜔), (5.35)

where [𝑛𝑗]
* = 𝑥′

𝑗. Since |𝑥𝑗 − 𝑥′
𝑗| ≤ 𝛿/𝜀𝑗 and 𝜀𝑗𝑥𝑗 → 𝑥, for every 𝑛 ∈ N we can find

𝑗0 (depending only on 𝑆𝑗) such that for all 𝑗 ≥ 𝑗0 we have

𝑥′
𝑗 ≥

𝑥/2 − 𝛿

𝜀𝑗
≥ 𝑛.

Hence 𝑛𝑗 → +∞ and since 𝑍𝑞,+
𝑛 converges to 0 on Ω′′, (5.34) holds in this particular

case.

The case of a general side 𝑆 = {𝑥} × [𝑦 − ℋ1(𝑆)/2, 𝑦 + ℋ1(𝑆)/2] with 𝑥, 𝑦 > 0

can be treated with the same arguments as in the derivation of (5.29) since this

construction is uniformly with respect to small displacements of the limit side. We

leave out the details here.

We are left with the case when 𝑥 = 0. Again it is enough to consider a centered

side 𝑆 since the other cases can be deduced from this one. Let us take 𝑞 small enough

such that
ℋ1(𝑆) − 4𝛿

2𝛿
> 3𝑞.

By construction there exists 𝑗0 such that for every sequence 𝑆 ′
𝑗 fulfilling the assump-

tions we have ℋ1(𝑆 ′
𝑗)/2𝜀𝑗 > 𝑞|𝑥′

𝑗| for all 𝑗 ≥ 𝑗0. Thus, if 𝑥′
𝑗 is not bounded we can

control the speed of convergence with the random variables 𝑍𝑞,±
𝑛 as in (5.35). Perhaps
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after enlarging 𝑗0, we obtain that

|𝑍𝑞,±
𝑗 (𝜔)| ≤ 𝛿 ∀𝑗 ≥ 𝑗0.

The estimate (5.34) now follows from distinguishing the case where |𝑥′
𝑗| > 𝑗0 for which

we can use the above bound and (5.35) or |𝑥′
𝑗| ≤ 𝑗0 where we have to control finitely

many sequences of random variables that converge to 0 as 𝑆𝑗 → 𝑆.

Before we state our next theorem, let us derive a suitable expression for the

velocity. We remark that due to Proposition 5.14 the argument is similar to the

deterministic case treated in [27]. To reduce notation, we set 𝜇𝑘 = E[𝑐eff𝑘,|] and 𝜆𝑘 =

E[𝑐eff𝑘,−] and identify the indices modulo 𝑚 whenever necessary.

We have to minimize the function 𝑣𝜔𝑖,𝜀(𝑁) given by (5.21) which is the correct one

describing the velocity if the limit function as 𝜀𝑗 → 0 has a unique minimizer. For

the moment we restrict the analysis to the left vertical side. Up to a subsequence,

we have that the 𝑥-component of 𝑠𝑖,𝜀𝑗/𝜀𝑗 is constant modulo 𝑚, that is there exists

𝑛 ∈ 0, ...,𝑚− 1 such that

𝑥𝑖
𝑗 = 𝑛 +

1

2
mod 𝑚 ∀𝑗.

If 𝑠𝑖,𝜀𝑗 converges to a limit side of length 𝐿, then by Proposition 5.14 we have that

along this particular subsequence, it holds that

𝑣𝜔𝑖,𝜀𝑗(𝑁) → 𝑣𝑛,𝐿𝑖 (𝑁) := −2𝑁 + 𝐿𝜇𝑘 +
𝐿

2𝛾
(𝑁 + 1)𝑁 if 𝑁 + 𝑛 = 𝑘 mod 𝑚. (5.36)

As we will show in the following, we can define an effective velocity which does not

depend on the particular subsequence. Setting 𝑁* = ⌊2𝛾/𝐿⌋, as an analogue of (5.22)

we have

min
𝑁

𝑣𝑛,𝐿𝑖 (𝑁) = min{𝑣𝑛,𝐿𝑖 (𝑁*), 𝑣𝑛,𝐿𝑖 (𝑁* + 1), 𝑣𝑛,𝐿𝑖 (𝑁* − 1)}. (5.37)

Since a precise analysis of the minimization process is only possible provided the limit

functional has a unique minimizer, let us check when this is the case. There are three

equivalences that turn out to be useful to characterize the lack of uniqueness. Write

𝑁* = 2𝛾/𝐿− 𝜉 with 𝜉 ∈ [0, 1) and suppose that 𝑁* + 𝑛 = 𝑘* mod 𝑚. Then it holds

𝑣𝑛,𝐿𝑖 (𝑁*) ≤ 𝑣𝑛,𝐿𝑖 (𝑁* + 1) ⇐⇒ 𝜉 ≤ 1 + 𝛾(𝜇𝑘*+1 − 𝜇𝑘*),

𝑣𝑛,𝐿𝑖 (𝑁*) ≤ 𝑣𝑛,𝐿𝑖 (𝑁* − 1) ⇐⇒ 𝜉 ≥ 𝛾(𝜇𝑘* − 𝜇𝑘*−1), (5.38)

𝑣𝑛,𝐿𝑖 (𝑁* + 1) ≤ 𝑣𝑛,𝐿𝑖 (𝑁* − 1) ⇐⇒ 𝜉 ≥ 1

2
+

𝛾

2
(𝜇𝑘*+1 − 𝜇𝑘*−1).
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Thus minimizers are not unique if and only if

(i) 𝛾(𝜇𝑘*+1 − 𝜇𝑘*) + 1 = 𝜉 ≥ 𝛾
2
(𝜇𝑘*+1 − 𝜇𝑘*−1) + 1

2
,

(ii) 𝛾(𝜇𝑘* − 𝜇𝑘*−1) = 𝜉 ≤ 𝛾
2
(𝜇𝑘*+1 − 𝜇𝑘*−1) + 1

2
,

(iii) 𝜉 = 1
2

= 𝛾(𝜇𝑘* − 𝜇𝑘*−1) = 𝛾(𝜇𝑘* − 𝜇𝑘*+1),

where we left out those inequalities with no information. Due to (5.6) the third

possibility cannot occur and also the inequalities in (i) and (ii) are always fulfilled

since 𝜇𝑘+1 − 𝜇𝑘−1 = (𝜇𝑘+1 − 𝜇𝑘) + (𝜇𝑘 − 𝜇𝑘−1). In particular the set of side lengths

where the minimization problem (5.37) has not a unique solution is discrete. The

same analysis for the remaining sides yields the following singular side lengths:

𝒮 𝑙
| := {𝐿 ∈ (0,+∞) : 2𝛾/𝐿 ∈ N0 + 𝛾(𝜇𝑘 − 𝜇𝑘−1) for some 𝑘} ,

𝒮𝑟
| := {𝐿 ∈ (0,+∞) : 2𝛾/𝐿 ∈ N0 − 𝛾(𝜇𝑘 − 𝜇𝑘−1) for some 𝑘} ,

𝒮𝑑
− := {𝐿 ∈ (0,+∞) : 2𝛾/𝐿 ∈ N0 + 𝛾(𝜆𝑘 − 𝜆𝑘−1) for some 𝑘} ,

𝒮𝑢
− := {𝐿 ∈ (0,+∞) : 2𝛾/𝐿 ∈ N0 − 𝛾(𝜆𝑘 − 𝜆𝑘−1) for some 𝑘} .

Whenever it is clear from the context, we associate to a side 𝑆𝑖 the corresponding set

𝒮𝑖 ∈ {𝒮 𝑙
| ,𝒮𝑟

| ,𝒮𝑑
−,𝒮𝑢

−}.
Now let us analyze the minimization scheme. Again we illustrate the procedure

only for the left vertical side. To this end we fix 𝐿 /∈ 𝒮 𝑙
| . Setting 𝑋0 = 𝑥𝑖

𝑗, we will

see that the motion of the corresponding left vertical side will be given locally by the

following algorithm:

For 𝑙 = 0, 1, ... set

𝑛𝑙 := 𝑋𝑙 − 1
2

mod 𝑚,

𝑁𝑙+1 = argmin
𝑁

𝑣𝑛𝑙,𝐿
𝑖 (𝑁),

𝑋𝑙+1 := 𝑋𝑙 + 𝑁𝑙+1,

where 𝑣𝑛,𝐿𝑖 is defined in (5.36). This algorithm is well-defined as 𝐿 /∈ 𝒮 𝑙
| and gives rise

to an effective velocity as shown in the lemma below:

Lemma 5.15. There exist nonnegative integer numbers 𝑙̃, 𝑇, 𝑀 such that 𝑙̃+𝑇 ≤ 𝑚

and
𝑋𝑙+𝑇 −𝑋𝑙 = 𝑀𝑚 ∀𝑙 ≥ 𝑙̃.

Moreover, the quotient 𝑀/𝑇 does not depend on 𝑋0.
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Proof. Observe that the quotient space Z/𝑚Z has only 𝑚 distinct elements so that

the first statement holds. For the second statement we first establish a monotonicity

property of the orbits with respect to the initial data 𝑋0. To this end let 𝑋0 ≤ 𝑋 ′
0.

We argue inductively. Due to (5.37) it is clear that 𝑋1 ≤ 𝑋 ′
1 in case that 𝑋0 = 𝑋 ′

0 or

𝑋 ′
0 −𝑋0 ≥ 2. It remains the case where 𝑋 ′

0 −𝑋0 = 1. We assume by contradiction

that 𝑋1 > 𝑋 ′
1. Writing 𝑁* = 2𝛾/𝐿 − 𝜉, the minimizer to determine 𝑋1 would be

given by 𝑁* + 1 while for 𝑋 ′
1 minimizing yields 𝑁* − 1. Using minimality one easily

derives that in this case we have

𝛾(𝜇𝑘*+1 − 𝜇𝑘*) ≥ 𝜉 ≥ 𝛾(𝜇𝑘*+1 − 𝜇𝑘*) + 1,

where 𝑘* = 𝑋0 − 1
2

+𝑁* mod 𝑚. This gives a contradiction. By iteration we obtain

that 𝑋𝑘 ≤ 𝑋 ′
𝑘 for all 𝑘. Now we argue as in Proposition 3.6 in [27] by comparing the

long-time behavior of the orbits with starting points 𝑋0, 𝑋
′
0 and 𝑋0+𝑚. For 𝐿, 𝑙0 ∈ N

we set 𝑘 = 𝑙0 + 𝐿𝑇 (𝑥0)𝑇 (𝑥′
0). By the first part of the proof and orbit monotonicity,

for 𝑙0 large enough it holds that

𝑋𝑙0 + 𝐿𝑇 (𝑥′
0)𝑀(𝑥0)𝑚 ≤ 𝑋 ′

𝑙0
+ 𝐿𝑇 (𝑥0)𝑀(𝑥′

0)𝑚 ≤ 𝑋𝑙0 + 𝐿𝑇 (𝑥′
0)𝑀(𝑥0)𝑚 + 𝑚.

Dividing this inequality by 𝐿 and letting 𝐿 → +∞ yields the claim.

Definition 5.16. For a given type of side with length 𝐿 /∈ 𝒮𝑖, let 𝑀𝑖, 𝑇𝑖 be as in
Lemma 5.15, where 𝑇𝑖 is chosen to be minimal. The effective velocity for a side 𝑆𝑖 is
defined as a function 𝑣eff𝑖 : (0,+∞)∖𝒮𝑖 → [0,+∞) by

𝑣eff𝑖 (𝐿) =
𝑀𝑖𝑚

𝑇𝑖

.

In view of Lemma 5.15, this function is well-defined.

Remark 5.17. In contrast to the deterministic environments considered in [27, 49] in

our setting the effective velocity of two opposite sides can be different. However this

is not due to random effects but can already be caused by a slightly more complex

periodic structure as shown in the following example.

Example 5.18. Let 𝑚 = 6 and let 𝑐𝜉 be a (maybe deterministic) field such that

𝜇0 = − 1

8𝛾
, 𝜇1 = 𝜇2 = 𝜇5 =

1

8𝛾
𝜇3 = 𝜇4 = 0.

If 2𝛾/𝐿 ∈ (3− 1
8
, 3), then the left side of a rectangle moves faster than the right side,
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namely
𝑣eff𝑖 (𝐿) = 3 > 2 = 𝑣eff𝑖+2(𝐿).

Proof. This follows from a straightforward computation based on the minimality cri-

teria (5.38). Indeed, if the left side starts at 𝑛0 = 0, then we have 𝑁1 = 𝑁2 = 3. If

the right side starts also at 𝑛0 = 0 we deduce that 𝑁1 = 𝑁2 = 𝑁3 = 2. We leave the

details of the computation to the interested reader.

Let us now compute the pinning threshold, that is the critical side length above which

a side does not move after a finite number of time steps (or equivalently 𝑣eff𝑖 (𝐿) = 0).

Due to (5.37) a necessary condition is given by 𝐿 > 𝛾. We then have to compare the

values of 𝑁 ∈ {0, 1, 2}. For an arbitrary starting position of a left vertical side we

obtain the conditions

𝐿 >
2𝛾

1 + 𝛾(𝜇𝑘+1 − 𝜇𝑘)
, 𝐿 >

4𝛾

3 + 𝛾(𝜇𝑘+2 − 𝜇𝑘)
.

As we can chose the index 𝑘, the pinning threshold for a left vertical side is given by

𝐿𝑖 = min
𝑘

{︂
max

{︂
2𝛾

1 + 𝛾(𝜇𝑘+1 − 𝜇𝑘)
,

4𝛾

3 + 𝛾(𝜇𝑘+2 − 𝜇𝑘)

}︂}︂
> 𝛾.

The pinning thresholds for the other sides are given by

𝐿𝑖+1 = min
𝑘

{︂
max

{︂
2𝛾

1 + 𝛾(𝜆𝑘−1 − 𝜆𝑘)
,

4𝛾

3 + 𝛾(𝜆𝑘−2 − 𝜆𝑘)

}︂}︂
,

𝐿𝑖+2 = min
𝑘

{︂
max

{︂
2𝛾

1 + 𝛾(𝜇𝑘−1 − 𝜇𝑘)
,

4𝛾

3 + 𝛾(𝜇𝑘−2 − 𝜇𝑘)

}︂}︂
,

𝐿𝑖+3 = min
𝑘

{︂
max

{︂
2𝛾

1 + 𝛾(𝜆𝑘+1 − 𝜆𝑘)
,

4𝛾

3 + 𝛾(𝜆𝑘+2 − 𝜆𝑘)

}︂}︂
,

where the indices rotate clockwise. The next lemma contains some properties of the

effective velocities. We remark that the same results have been obtain in [27] but

we find it difficult to reproduce the argument in our slightly more complex setting.

Therefore we provide a different proof.

Lemma 5.19. The velocity functions 𝑣eff𝑖 satisfy the following properties:

(a) 𝑣eff𝑖 is constant on each interval contained in (0,+∞)∖𝒮𝑖.

(b) 𝑣eff𝑖 (𝐿) = 0 if 𝐿 > 𝐿𝑖.

(c) 𝑣eff𝑖 (·) is non-increasing in 𝐿.
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Proof. To prove the first assertion, fix an interval 𝐼 ⊂ (0,+∞)∖𝒮𝑖 and let 𝐿 ∈ 𝐼. We

claim that there exists an open interval 𝐼𝐿 around 𝐿 such that for all 𝑛 = 0, . . . ,𝑚−1

and all 𝐿′ ∈ 𝐼𝐿 the unique minimizers of 𝑣𝑛,𝐿
′

𝑖 agree with the unique minimizer of

𝑣𝑛,𝐿𝑖 . As 𝐼 is connected, it then follows that the minimizers are the same for all

𝐿′ ∈ 𝐼 and we conclude by iteration. To prove the claim, it is enough to observe

that whenever 𝐿𝑗 → 𝐿, it follows that 𝑣
𝑛,𝐿𝑗

𝑖 (𝑁) → 𝑣𝑛,𝐿𝑖 (𝑁) pointwise. Due to (5.37)

also the minimizers are bounded. By uniqueness they converge to the minimizer of

the limit function. Hence the claim follows for any fixed 𝑛 and then we take a finite

intersection of open intervals to conclude.

The second assertion is an immediate consequence of the definition of the pinning

threshold.

To prove the monotonicity, take 𝐿 > 𝐿′. The claim follows from the fact that, for

every 𝑛, in a multi-valued sense it holds that

argmin
𝑁

𝑣𝑛,𝐿𝑖 (𝑁) ≤ argmin
𝑁

𝑣𝑛,𝐿
′

𝑖 (𝑁). (5.39)

Indeed, observe that 𝑁(𝐿) := ⌊2𝛾/𝐿⌋ ≤ ⌊2𝛾/𝐿′⌋ =: 𝑁(𝐿′). Then by (5.37) it suffices

to treat the two cases 𝑁(𝐿) = 𝑁(𝐿′) and 𝑁(𝐿) + 1 = 𝑁(𝐿′). In any case, again

applying (5.37) there are only finitely many options for violating (5.39) that can be

ruled out by a direct calculation based on a characterization as in (5.38). We omit

the details.

Due to the monotonicity proven in Lemma 5.19 (c) we can define the two following

extensions of the effective velocity: Given 𝐿0 ∈ 𝒮𝑖 we set

(𝑣eff𝑖 )(−)(𝐿0) = lim
𝐿↓𝐿0

𝑣eff𝑖 (𝐿), (𝑣eff𝑖 )(+)(𝐿0) = lim
𝐿↑𝐿0

𝑣eff𝑖 (𝐿).

Now we are in a position to state the main theorem for 𝑚-stationary fields under the

same 𝛼-mixing hypothesis as in Theorem 5.9.

Theorem 5.20. Assume that the random field {𝑐𝜉}𝜉 satisfies (5.6), is 𝑚-stationary
and 𝛼-mixing such that (5.7) holds. Then with probability 1 the following holds: Let
𝜀𝑗 ↓ 0 and let 𝐴0

𝑗(𝜔) ∈ 𝒜𝜀𝑗 be a coordinate rectangle with sides 𝑆1,𝑗(𝜔), ..., 𝑆4,𝑗(𝜔).
Assume that 𝐴0

𝑗(𝜔) converges in the Hausdorff metric to a coordinate rectangle 𝐴(𝜔).
Then we can choose a subsequence (not relabeled), such that 𝐴𝜀𝑗(𝑡)(𝜔) converges lo-
cally in time to 𝐴(𝑡)(𝜔), where 𝐴(𝑡)(𝜔) is a coordinate rectangle with sides 𝑆𝑖(𝑡)(𝜔)

such that 𝐴(0)(𝜔) = 𝐴(𝜔). Each side 𝑆𝑖(𝑡)(𝜔) moves inward with velocity 𝑣𝑖(𝑡)(𝜔)
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solving the following inclusions:

𝑣𝑖(𝑡)(𝜔)

⎧⎨⎩= 1
𝛾
𝑣eff𝑖 (𝐿𝑖(𝑡)(𝜔)) if 𝐿𝑖(𝑡)(𝜔) /∈ 𝒮𝑖,

∈ 1
𝛾

[︁
(𝑣eff𝑖 )(−)(𝐿𝑖(𝑡)(𝜔)), (𝑣eff𝑖 )(+)(𝐿𝑖(𝑡)(𝜔))

]︁
otherwise,

where 𝐿𝑖(𝑡)(𝜔) := ℋ1(𝑆𝑖(𝑡)(𝜔)) denotes the length of the side 𝑆𝑖(𝑡)(𝜔). The inclusions
are valid until the extinction time when 𝐿𝑖(𝑡)(𝜔) = 0.

Proof. Due to Remark 5.11 we only have to derive the formula for the velocities. We

fix 𝜔 ∈ Ω′ given by Proposition 5.14. Using the same notation as in the proof of

Theorem 5.9, we have to identify the weak*-limit 𝑣𝑖 of 𝑁
𝑗
𝑖 (·) on the interval (0, 𝑡*).

Therefore we fix 𝑡1 ∈ (0, 𝑡*) such that 𝐿𝑖(𝑡1)(𝜔) /∈ 𝒮𝑖. Given 𝛿 > 0 there exists an

open interval 𝐼𝛿 ∋ 𝑡1 and 𝑗0 such that for all 𝑗 ≥ 𝑗0

(i) 𝐿𝑗
𝑖 (𝑡)(𝜔) /∈ 𝒮𝑖 ∀𝑡 ∈ 𝐼𝛿,

(ii) d𝐻(𝑆𝑖,𝑗(𝑡)(𝜔), 𝑆𝑖,𝑗(𝑡1)(𝜔)) ≤ 𝛿 ∀𝑡 ∈ 𝐼𝛿.

Hence, by Proposition 5.14 we may assume that for 𝑗 ≥ 𝑗0 and 𝑡 ∈ 𝐼𝛿 there exists

𝑛 = 𝑛(𝑗, 𝑡) such that for 𝐿 = 𝐿𝑗
𝑖 (𝑡)(𝜔)

𝑁 𝑗
𝑖 (𝑡)(𝜔) = argmin

𝑁
𝑣𝑛,𝐿𝑖 (𝑁),

where 𝑣𝑛,𝐿𝑖 is defined in (5.36). Since without loss of generality 𝐿𝑗
𝑖 (𝑡)(𝜔) is in the same

interval contained in (0,+∞)∖𝒮𝑖 as 𝐿
𝑗
𝑖 (𝑡1)(𝜔), we infer from the Lemmata 5.15 and

5.19 (a) that∫︁
𝐼𝛿

𝑣𝑖(𝑠)(𝜔) d𝑠 = lim
𝑗

∫︁
𝐼𝛿

𝑁 𝑗
𝑖 (𝑠)(𝜔) d𝑠 = lim

𝑗

∑︁
𝑘𝜏𝑗∈𝐼𝛿

𝜏𝑗𝑁
𝑗
𝑖 (𝑘𝜏𝑗)(𝜔) + 𝒪(𝜏𝑗)

= lim
𝑗

|𝐼𝛿|𝑣eff𝑖 (𝐿𝑖(𝑡1)(𝜔)) + 𝒪(𝜏𝑗) = |𝐼𝛿|𝑣eff𝑖 (𝐿𝑖(𝑡1)). (5.40)

Dividing by |𝐼𝛿| and letting 𝛿 → 0 we obtain the claim using Lebesgue’s differentiation

theorem. Note that similar to the proof of Theorem 5.9 the formula for the velocity

holds for every such 𝑡1 since 𝑣𝑖 has a constant representative locally near 𝑡1 so that

the side positions are differentiable in the classical sense. However here we have to

take the side positions and cannot deduce the velocity from the side lengths since the

center might move (see Example 5.18).

It remains the case where 𝐿𝑖(𝑡1)(𝜔) ∈ 𝒮𝑖. Note that by (5.39) we still have the

monotonicity of orbits, that means if 𝐿−, 𝐿+ ∈ (0,+∞)∖𝒮𝑖 are in the two intervals

enclosing 𝐿𝑖(𝑡1)(𝜔) such that 𝐿− < 𝐿𝑖(𝑡1)(𝜔) < 𝐿+ and we start the algorithm for
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computing the effective velocity with the same initial datum choosing the minimizer

arbitrarily in the case of non-uniqueness, we have

𝑋+
𝑘 ≤ 𝑋𝑘 ≤ 𝑋−

𝑘 .

This yields

|𝐼𝛿|𝑣eff𝑖 (𝐿+) ≤
∫︁
𝐼𝛿

𝑣𝑖(𝑠)(𝜔) d𝑠 ≤ |𝐼𝛿|𝑣eff𝑖 (𝐿−).

The claim follows after dividing by |𝐼𝛿|, sending 𝛿 → 0 and then taking both the

limits as 𝐿− ↑ 𝐿𝑖(𝑡1)(𝜔) and 𝐿+ ↓ 𝐿𝑖(𝑡1)(𝜔) for which we use monotonicity.

Again we have several cases where a unique limit motion exists. However the equations

differ since the velocity of two opposite sides may be not equal. We don’t list all

possible cases where there is a unique motion.

Corollary 5.21. Let 𝐴0
𝜀(𝜔) and {𝑐𝜉}𝜉 be as in Theorem 5.20. Assume in addition

that the lengths 𝐿0
1(𝜔), 𝐿0

2(𝜔) of 𝐴(𝜔) satisfy one of the three following conditions (we
assume that 𝐿0

1(𝜔) ≤ 𝐿0
2(𝜔) and 𝐿1 ≤ 𝐿3 as well as 𝐿2 ≤ 𝐿4):

(i) 𝐿0
𝑖 (𝜔) > 𝐿𝑖 (total pinning),

(ii) 𝐿0
1(𝜔) < 𝐿1 and 𝐿0

2(𝜔) ≤ 𝐿2 (vanishing in finite time),

(iii) 𝐿1 < 𝐿0
1(𝜔) < 𝐿3 and 𝐿0

1(𝜔) /∈ 𝒮3, and 𝐿0
2(𝜔) > 𝐿4 (partial pinning).

Then with probability 1 the following holds: Let 𝜀𝑗 → 0. The sequence 𝐴𝜀𝑗(𝑡)(𝜔)

converges locally in time to 𝐴(𝑡)(𝜔), where 𝐴(𝑡)(𝜔) is the unique coordinate rectangle
with sides 𝑆𝑖(𝑡)(𝜔) such that 𝐴(0)(𝜔) = 𝐴(𝜔) and the side lengths 𝐿𝑖(𝑡)(𝜔) solve the
following differential equations for all but countably many times:

𝑑

𝑑𝑡
𝐿𝑖(𝑡)(𝜔) = −1

𝛾

(︁
𝑣eff𝑖−1(𝐿𝑖−1(𝑡)(𝜔)) + 𝑣eff𝑖+1(𝐿𝑖+1(𝑡)(𝜔)

)︁
with initial condition 𝐿1(0)(𝜔) = 𝐿0

1(𝜔) and 𝐿2(0) = 𝐿0
2.

Proof. (i) and (ii) can be proven as in Theorem 3.2 in [24]. In Case (iii) note that the

side 𝑆3 moves inward with a strictly positive velocity bounded away from 0. Hence

𝐿2(𝑡)(𝜔) is strictly decreasing until it vanishes. Consequently 𝐿2(𝑡)(𝜔) ∈ 𝒮2 ∪ 𝒮4

only for countably many times. Moreover, as soon as 𝐿2(𝑡)(𝜔) < 𝐿4 also the side

length 𝐿1(𝑡)(𝜔) shrinks strictly since from that time on the side 𝑆4 moves inward

with positive velocity. Hence the times when 𝐿1(𝑡)(𝜔) ∈ 𝒮1 ∪ 𝒮3 are discrete, too.

Note that by continuity, the values at the critical times are uniquely defined. In
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between these critical times, one can use general results from ODE-theory to obtain

that the rectangular motion is unique. The particular form of the ODE describing

the motion is a straightforward consequence of Theorem 5.20.

An outlook for possible homogenization in time

In this last section we show that under certain assumptions the random field consid-

ered in Example 5.6 exhibits an averaged velocity as well. We don’t aim at giving

results in full detail since Example 5.6 only serves as a toy model and the case of only

stationary perturbations seems much more involved and we are not sure if homoge-

nization can be proved.

To be precise we generalize Lemma 5.15 in a probabilistic setting. Note that by

construction of the perturbations in Example 5.6 there is nothing left to prove for

horizontal sides since we may apply Proposition 5.7. For vertical sides we first hint at

some possible uniqueness issues. For the moment let us neglect the terms in (5.18).

Denoting by 𝑥𝑗 = 𝑥𝑗(𝜔) the 𝑥-component of 𝑠𝑖,𝜀𝑗(𝜔)/𝜀𝑗, for left vertical sides we have

to minimize

𝑣𝜔𝑖,𝜀𝑗(𝑁) = −2𝑁 +
𝑙𝑖,𝜀𝑗
2𝛾

(𝑁 + 1)𝑁 + 𝑙𝑖,𝜀𝑗𝑋⌊𝑥𝑗+𝑁⌋(𝜔).

Let us take a closer look at the non-uniqueness of minimizers. Again we set 𝑁*
𝑗 =

⌊2𝛾/𝑙𝑖,𝜀𝑗⌋ and 𝑘𝑗 := ⌊𝑥𝑗 + 𝑁*
𝑗 ⌋. Writing 𝑁*

𝑗 = 2𝛾/𝑙𝑖,𝜀𝑗 − 𝜉𝑗, as in (5.38) we deduce

that minimizers are not unique if

𝜉𝑗 ∈
{︀
𝛾(𝑋𝑘𝑗(𝜔) −𝑋𝑘𝑗−1(𝜔)), 1 + 𝛾(𝑋𝑘𝑗+1(𝜔) −𝑋𝑘𝑗(𝜔))

}︀
.

Without any further assumptions, as 𝑗 varies this set can be dense in a whole interval

as the following example shows.

Example 5.22. Let 𝑋𝑘 be uniformly distributed on the interval (0, 1). Then, by
independence, for every 𝑘 the random variable 𝑌𝑘 = 𝑋𝑘 − 𝑋𝑘−1 has a triangular
distribution on (−1, 1). Hence the sequence (𝑌2𝑘)𝑘 is an independent and identically
distributed sequence of random variables. Then

P (𝜔 : (𝑌2𝑘(𝜔))𝑘 is not dense in (−1, 1)) = 0.

Indeed, given 𝑞 ∈ Q ∩ (−1, 1) and 𝑛 ∈ N, from independence we infer

P
(︂
𝜔 : 𝑌2𝑘(𝜔) /∈ 𝑞 + (− 1

𝑛
,

1

𝑛
) ∀𝑘

)︂
= 0.
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This example indicates that a precise analysis for the limit velocity is quite dif-

ficult (of course one has to take into account also the error terms (5.18)). Instead,

if we assume that 𝑋𝑘 takes only finitely many values, then the set of side lengths 𝒮
where the minimization problem has not a unique solution is again discrete. We now

give a formal argument how one can treat this case. For side lengths with unique

corresponding minimizers, we can indeed neglect (5.18). Moreover, by the same topo-

logical argument used in the proof of Lemma 5.19, the minimization does not depend

on the particular side length in one interval contained in (0,+∞)∖𝒮. However, in

contrast to the mixing case, the choice of minimizers is still random. Given 𝐿 /∈ 𝒮
we have to consider the following (now random) algorithm: Given a starting point

𝑃0 = 𝑥𝑗,

for 𝑙 = 0, 1, ... set

𝑛𝑙(𝜔) := 𝑃𝑙(𝜔) − 1
2
,

𝑁𝑙+1(𝜔) = argmin
𝑁

{︁
−2𝑁 + 𝐿

2𝛾
(𝑁 + 1)𝑁 + 𝐿𝑋𝑛𝑙(𝜔)+𝑁(𝜔)

}︁
,

𝑃𝑙+1(𝜔) := 𝑃𝑙(𝜔) + 𝑁𝑙+1(𝜔).

Note that if 𝐿 is below the corresponding pinning threshold (which can easily be esti-

mated since the random variables take only finitely many values), then the sequence

(𝑁𝑙)𝑙 is identically distributed and has a finite range dependence. Therefore, by the

strong law of large numbers, almost surely we have

lim
𝑙1→+∞

1

𝑙1

𝑙1∑︁
𝑙=1

𝑁𝑙(𝜔) = E[𝑁0].

Note that the limit does not depend on 𝑥𝑗. Moreover, as a trivial remark we can

make the exceptional set independent of the starting position 𝑥𝑗. In order to prove

that E[𝑁0] is, up to a multiplicative constant, the velocity of the left vertical side, we

need to control the speed of convergence independently of 𝑥𝑗. This can be achieved

by defining finitely many stochastic processes (for a fixed limit side) similar to the

proof of Proposition 5.14 using the fast decay of error probabilities due to finite range

dependence. Since we only want to give a possible outlook we don’t go into details

here. Finally one can argue as in the proof of Theorem 5.20 and pass to the limit in

the integral in (5.40). We leave the computation to the interested reader.
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