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Abstract

For various applications in aeroelasticity and hemodynamics optimization problems con-
strained by fluid-structure interaction models have to be solved. In this thesis, we consider
two settings — a linear and a nonlinear fluid-structure interaction model. We analyze well-
posedness for optimal control of a linear fluid-structure interaction problem. Then we derive
necessary optimality conditions and prove regularity results for the optimal control variable.
Hereafter, we formally establish necessary optimality conditions for the optimization with a
nonlinear fluid-structure interaction model. The resulting optimality system is discretized
with a Petrov-Galerkin discretization method in time. For spatial discretization, we use a
stabilized conforming finite element method. This enables the use of a dual-weighted resid-
ual error estimator to approximate the space, time, and control discretization error with
respect to the cost functional. Furthermore, we can compute exact sensitivity information
due to the Galerkin discretization approach. This is necessary to obtain efficient optimiza-
tion algorithms. The resulting adaptive algorithm is tested numerically for several exemplary
optimization problems.

Zusammenfassung

Für verschiedenste Anwendungen in den Bereichen Aeroelastizität und Hämodynamik muss
ein durch ein Fluid-Struktur-Model beschränktes Optimierungsproblem gelöst werden. In
dieser Arbeit betrachten wir zwei Konfigurationen, ein lineares und ein nichtlineares Fluid-
Struktur Model. Wir analysieren die Wohlgestelltheit des Optimalsteuerungsproblems für
ein lineares Fluid-Struktur Wechselwirkungsmodel. Danach leiten wir notwendige Opti-
maliätsbedingungen her und beweisen weiterführende Regularitätsergebnisse für die opti-
male Kontrolle. Des Weiteren entwickeln wir formal notwendige Optimalitätsbedingungen
für die Optimierung mit einem nichtlinearen Fluid-Struktur-Model. Das dabei entstehende
Optimalitätssystem wird mithilfe eines Petrow-Galerkin-Verfahrens in der Zeit diskretisiert.
Für die Ortsdiskretisierung verwenden wir eine stabilisierte Finite-Elemente-Methode. Dies
ermöglicht die Anwendung von residuenbasierten Fehlerschätzern zur Approximation des
Zeit-, Orts- und Kontrolldiskretisierungsfehlers bezüglich des Kostenfunktionals. Dies ist eine
notwendige Voraussetzung für effiziente Optimierungsalgorithmen. Der adaptive Algorithmus
wird für verschieden Optimierungsprobleme numerisch getestet.
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1. Introduction

Fluid-structure interaction is still the most prominent example of a multiphysics PDE system.
Possible applications range from aeroelasticity, over mechanical engineering, to computational
medicine and medical engineering. For references about these applications, we exemplary
refer to the books [41, 66, 70, 40, 14]. In these books the isothermal, incompressible Navier-
Stokes equations are coupled with nonlinear elasticity. The former system is of parabolic type
and describes fluid flow, whereas the latter equation serves as a solid description and is of
hyperbolic character.

More and more applications leading to optimal control, shape-optimization, and parameter
estimation of fluid-structure interaction (FSI) are regarded recently. Especially in hemody-
namic applications — in order to get a deeper understanding of the development of vascular
diseases — patient specific properties have to be incorporated into the models. Hereby, advice
for an appropriate treatment can be given. For example, in [25, 26, 27, 51, 103, 122, 117] pa-
tient specific boundary conditions and vessel material parameters are determined to simulate
arterial blood flow. Similar approaches using gradient information have been proposed in
[51, 24, 123] to estimate Young’s modulus of an arteria. In [108], the authors apply reduced
basis methods for a shape-optimization problem in this context.

Parameter estimation in the context of hemodynamics gain more and more importance as
computer tomography (CT) and magnetic resonance imaging (MRI) evolve rapidly. Nowa-
days, already very accurate measurements of the movement of the vessel wall are possible and
even averaged flow profiles in blood vessels can be provided, see [2, 25, 98]. To incorporate the
data in the vascular models, it is necessary to improve the available parameter estimation and
optimal control algorithms for fluid-structure interaction applications. Especially since only
few approaches take the sensitivity information of the full time-dependent nonlinear system
into account. For example in [49, 109], adjoint equations are derived for one-dimensional FSI
configurations and in [130] for a stationary FSI problem. This motivates one of the main topics
of this thesis, the systematic derivation of sensitivity information for the unsteady nonlinear
FSI model. It allows to incorporate a large variety of measurements into the models. In ad-
dition, gradient-based approaches can handle high-dimensional control spaces, which enables
the handling of time-dependent and distributed parameters.

Fluid-structure interaction problems have been extensively studied from theoretical and nu-
merical point of view in the last decade. Various results on existence and regularity have
been published for linear fluid-structure interaction. For example, in [53, 54, 3, 5, 8, 9] a
detailed analysis of the regularity of the needed initial data and right-hand side has been
realized. For the full nonlinear fluid-structure interaction problem only few results are avail-
able. For a smooth geometry and a damped solid model, existence results can be found in
[47, 76, 86, 87, 77]. At the same time, efficient gradient-based algorithms for solving op-
timization problems governed by elliptic, parabolic, or hyperbolic equations are developed
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1. Introduction

and deeply analyzed in the literature. All these algorithms are based on optimality systems
containing appropriate adjoint equations, and building necessary optimality conditions for
considered problems. However, especially in the context of optimal control problems for un-
steady FSI problems, optimality systems based on rigorous analysis cannot be found in the
literature. In [119], the authors formally derive necessary optimality conditions for an optimal
control problem of a nonlinear time-dependent FSI configuration by using shape derivatives.
In [151] Gateaux-differentiability of the control to state mapping can be proven for a sta-
tionary FSI configuration. Further results on optimal feedback control of FSI can be found
in [39, 101, 102, 104], where corresponding Riccati equations are derived.

We try to fill this gap by analyzing a model optimal control problem governed by an unsteady
linear fluid-structure interaction problem. The Stokes equations are coupled with a linear
wave equation on a domain with fixed interface. We establish necessary optimality conditions
and analyze the regularity of the optimal solution. Although such a linear system neglects
several problem-relevant phenomena we believe that our results provide an important step
towards tackling optimal control problems for nonlinear FSI models. Based on the results on
optimal control of the linear FSI model, we can at least formally derive necessary optimality
conditions for optimal control of the nonlinear FSI configuration.

One of the main issues in this analysis, as well as in the numerical solution of FSI problems,
is the incorporation of coupling conditions between the equations describing the behavior of
the fluid and of the structure, respectively. A correct treatment of such conditions for the
adjoint system is indispensable for a precise description of the information transport across
the interface between the fluid and the structure, and as a consequence, for an accurate eval-
uation of the derivatives required in gradient-based optimization algorithms. A prominent
FSI-coupling technique is based on an interface-tracking method; namely the nowadays stan-
dard Arbitrary Lagrangian-Eulerian (ALE) technique [52, 83, 85, 120, 64, 138, 139]. Here,
the flow equations are re-written in such a way that their coordinate system matches the La-
grangian framework used to describe the structure mechanics. The resulting formulation using
variational-monolithic coupling in the reference configuration is outlined in [84, 132, 56, 23].

The fact that the coupling conditions are directly incorporated in the variational formulation
enables a straightforward derivation of sensitivity information. If we apply the Lagrange
formalism, we will not have to take the coupling conditions into account. In addition, as the
moving domain is hidden in the ALE-transformation, it is possible to linearize the problem
directly, without having to compute shape derivatives. Meanwhile, the derivation of sensitivity
information for partitioned approaches, whereby the fluid and solid equations are solved one
after the other, is still an open question.

Furthermore such a monolithic formulation enables the natural usage of Galerkin finite ele-
ment discretizations in space and time. This is particularly advantageous for optimal control
problems, since the two approaches optimize-then-discretize, i.e., the discretization of the op-
timality system from continuous level, and discretize-then-optimize, i.e., discretization of the
state equation and subsequent construction of the optimality system on the discrete level,
lead to the same discretization scheme; see, e.g., [18, 32]. The recent results of Meidner and
Richter in [111, 112] provide a Galerkin formulation in time of second-order equivalent to the
strongly A-stable fractional-step theta time-stepping scheme. We extend these results to the
nonlinear fluid-structure interaction problem and to its adjoint equation as for the coupled
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hyperbolic-parabolic system, the fractional-step theta time-stepping scheme, see [37], turned
out to provide excellent properties.

In addition the Galerkin discretization enables the use of a posteriori error estimators. In
recent years, much effort has been spent on spatial discretization of fluid-structure interaction
and in particular on adaptivity in space for higher accuracy of the overall solution or more
importantly the accuracy of certain quantities of interest. Several studies on a posteriori
error estimators using the dual-weighted residual method [19, 20] can be found in [55, 62,
144, 128, 150]. In [112, 111], time step control of parabolic problems and the Navier-Stokes
equations have been developed for a Galerkin interpretation of fractional-step theta scheme. In
addition, we refer, e.g., to [113, 114, 115, 116] for a posteriori error estimation and adaptivity
for parabolic optimal control problems discretized by a Galerkin approach.

To solve optimization problems subject to a FSI model, we have to compute the solution of the
fluid-structure interaction problem several times. To reduce the computational cost, we extend
the dual-weighted residual method in [19, 20] to control the spatial and time-discretization
error as well as the control discretization error for optimal control of a monolithic fluid-
structure interaction problem. Thereby, we are able to implement an adaptive algorithm,
which enables to solve the optimal control problems in several numerical examples very fast
and accurately.

The rest of the thesis is organized as follows:

Definitions

We state the used notation, the Sobolev spaces and inner products needed throughout the
thesis.

Optimal Control of Linear Fluid-Structure Interaction

In this chapter, we derive existence and regularity results for optimal control of a linear fluid-
structure interaction model. We shortly motivate the underlying equations in Section 3.1. In
Section 3.2, we summarize the existing regularity results for linear FSI published in the last
decade and extend the results to a symmetric monolithic formulation. This formulation leads
to an adjoint equation with the same structure as the considered linear FSI problem, which
allows for a unified analytic treatment of state and adjoint equation. Section 3.3 is devoted to
the analysis of the optimal control problem. We discuss the existence of the optimal solution
for two model configurations. Finally, we derive regularity results for the adjoint system,
which is indispensable to ultimately prove the optimality system.

Optimal Control of Nonlinear Fluid-Structure Interaction

In Chapter 4, we consider optimal control of the nonlinear fluid-structure interaction problem.
In Section 4.1, we systematically derive the equations for solid and fluid mechanics from
continuum mechanics. The moving fluid domain is transformed via an ALE-mapping on a
reference domain. Thereafter, we can incorporate the coupling conditions in a variational way

3



1. Introduction

and obtain the fully-coupled monolithic formulation. In Section 4.2 we shortly summarize
existing regularity results for nonlinear fluid-structure interaction. Finally, in Section 4.3 we
apply the Lagrange formalism to derive the formal optimality system.

Discretization

In Section 5.1, we discretize the nonlinear fluid-structure interaction problem in time using a
Galerkin approach, as suggested in [111, 112], resulting in a fractional-step theta time-stepping
scheme. The same technique is used, in Section 5.2, to derive a suitable time-stepping scheme
for the adjoint equation. In Section 5.3, we introduce a finite element space to discretize the
state and adjoint equation in space. As we are using equal order elements for velocity and
pressure, we have to stabilize the system with a local projection stabilization (LPS). Finally,
we state different possibilities for the control discretization, in Section 5.4, and present the
discretized optimality system, in Section 5.5.

Solution Algorithms

In Chapter 6, we describe the structure of the applied optimization algorithm. We state the
Newton algorithm used to solve the nonlinear fluid-structure interaction problem in every time
step, in Section 6.1, and comment on possible linear solvers in Section 6.2. The sensitivity
information derived from solving an adjoint equation backward in time is used to compute a
control update with a limited memory BFGS algorithm presented in Section 6.3.

Dual-Weighted Residual Error Estimator

The use of a Galerkin discretization, presented in Chapter 5, makes the the use of a dual-
weighted residual error estimator possible. The main theorem is stated in Section 7.1, whereby
the theta time-stepping scheme and the LPS stabilization have to be taken into account. For
optimal control of the linear fluid-structure interaction problem with tracking type functional,
we are able to prove, in Section 7.2, that the remainder terms in the a posteriori error estimator
can be neglected. To evaluate the a posteriori error estimators, in Section 7.3, we present a
higher order reconstruction, which can be easily localized if a patch structure is available. The
localized error indicators enable the use of an adaptive algorithm given in Section 7.4.

Numerical Examples

In the final Chapter 8, we present various numerical examples. In Section 8.1, we apply the
a posteriori error estimator to optimal control of a linear fluid-structure interaction problem.
We test the effectivity of the spatial, time, and control discretization error estimators. In
Section 8.2, we apply the a posteriori estimator to the nonlinear fluid-structure interaction
problem without control. We compute a slightly modified variant of the FSI-2 and FSI-3
benchmarks proposed in [142, 41, 40] and compare the convergence in a functional of interest
using global and adaptive refinement in time. Then, we consider a flapping example and
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equilibrate the spatial and time-discretization error. Motivated by hemodynamical applica-
tions, in Section 8.3.1, we control a Neumann boundary condition to enforce the energy of the
pulsatile inflow to leave the channel again. By controlling the mean pressure at the boundary
of the FSI-2 benchmark, we are able to reduce the amplitude of the oscillating flag, in Sec-
tion 8.3.2. The ALE approach has significant difficulties if the transformation gets too large.
For such cases we control the mesh motion equation in Section 8.3.3, to smoothen the ALE
transformation. Here, the control variable is a distributed material parameter in the mesh
motion equation.
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2. Definitions

We consider a domain Ω ⊂ Rd with d = 2, 3, which is separated into two disjoint Lipschitz
sub-domains Ωs and Ωf with Ω = Ωs ∪ Ωf , as presented in Figure 2.1. Furthermore Γ := ∂Ω
denotes the outer boundary, which is split into two parts, the solid outer boundary Γs := Γ∩Ωs

and the fluid outer boundary Γf := Γ ∩ Ωf , where we assume that Γs has positive measure in
Γ. The common interface between the fluid domain Ωf and the solid domain Ωs is denoted
by Γi := Ωf ∩ Ωs. Moreover, ns is the unit outward normal vector on Γi with respect to the
region Ωs and nf = −ns is the unit outward normal vector with respect to the region Ωs. We
introduce, in addition, the time interval I := (0, T ) with end time point T .

Γi

Ωf

Γf

Γf

Γf

Ωs

Γs

Figure 2.1.: An exemplary reference domain Ω

For several of the presented models, in this thesis, neither existence nor regularity results are
available. We will nevertheless state very precise test and solution spaces in such a way that
the weak formulations of the models are well defined. To be on the safe side, we assume rather
more regularity then necessary. The presented models are going to be defined either in 2D or
3D. Thus, we introduce the vector valued Lebesgue spaces

H := L2(Ω)d, Hf := L2(Ωf)
d, and Hs := L2(Ωs)

d.

On the domain Ωf we either use the Stokes equations or the Navier-Stokes equations to model
fluid flow. The solution of such equations of parabolic type will be an element of the W [0, T ]
space defined by

Vf :=
{
ϕ ∈ H1(Ωf)

d
∣∣∣ ϕ = 0 on Γf

}
and W v

f :=
{
ϕ
∣∣ ϕ ∈ L2(I;Vf) and ∂tϕ ∈ L2(I;V ∗f )

}
with trace zero on parts of the boundary and V ∗f the dual space of Vf .

For the pressure variable we introduce the following Lebesgue spaces

Lf :=
{
p ∈ L2(Ωf)

∣∣ (p, 1)f = 0
}
.
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2. Definitions

The elastic structure on the domain Ωs can either be modeled by a linear Lamé system or by
a nonlinear elastodynamics model. As these models are of hyperbolic type the solution will
be an element of the Sobolev spaces:

Vs :=
{
ϕ ∈ H1(Ωs)

d
∣∣∣ ϕ = 0 on Γs

}
, W u

s :=
{
ϕ
∣∣ ϕ ∈ L2(I;Vs) and ∂tϕ ∈ L2(I;Hs)

}
,

and W v
s :=

{
ϕ
∣∣ ϕ ∈ L2(I;Hs) and ∂tϕ ∈ L2(I;V ∗s )

}
.

The fluid domain is going to move with the elastic structure. Therefore we have to solve an
auxiliary problem to define an extension operator. The solution of the so called mesh motion
equation is an element of the Sobolev space

Vf,0 :=
{
ϕ ∈ H1(Ωf)

d
∣∣∣ ϕ = 0 on Γf ∪ Γi

}
with trace zero on all boundaries of Ωf .

As we follow a monolithic approach we embed the coupling conditions between the fluid model
on Ωf and the solid model on Ωs in the Sobolev spaces. Thus we have to introduce on the
whole domain Ω the spaces

V :=
{
ϕ ∈ H1(Ω)d

∣∣∣ ϕ = 0 on Γf ∪ Γs

}
, W v :=

{
ϕ
∣∣ ϕ ∈ L2(I;V ) and ∂tϕ ∈ L2(I;V ∗)

}
,

and W u :=
{
ϕ
∣∣ ϕ ∈ L2(I;V ) and ∂tϕ ∈ L2(I;H)

}
.

To keep the notation as compact as possible here and in what follows, let

(u, v) := (u, v)Ω, 〈u, v〉i := 〈u, v〉Γi ,

(u, v)f := (u, v)Ωf
, (u, v)s := (u, v)Ωs ,

be the L2 inner product on Ω, its sub-domains Ωf and Ωs, and on Γi. Furthermore, we use
the following notation for inner products on the space-time cylinder:

((u, v)) =

∫ T

0
(u, v)Ω dt, 〈〈u, v〉〉i =

∫ T

0
〈u, v〉i dt,

((u, v))f =

∫ T

0
(u, v)Ωf

dt, ((u, v))s =

∫ T

0
(u, v)Ωs dt.
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3. Optimal Control of Linear Fluid-Structure
Interaction

In this section, we will analyze optimal control of a tracking type functional subject to a linear
fluid-structure interaction problem. On Ωf , the fluid is described via the Stokes equations and
the structure on Ωs behaves according to the linear wave equation. We note that all the results
presented in this chapter can be extended to the model problem, where the wave equation is
replaced by the linear Lamé system. The control q is going to be either time-dependent or
distributed in space and controlling the volume force.

Later, in Chapter 4 we are going to present a nonlinear FSI model, in which we couple the
Navier-Stokes equations with a nonlinear hyperbolic equation. As the solid motion involves
large stress-induced displacements, the fluid domain is not stationary. However, the energy
between the fluid and structure system is mainly transported by forces and not due to the
motion of the fluid domain. Therefore, the same difficulties occurring due to the coupling
already appear in a linear FSI problem, where we couple a linear wave equation with a Stokes
equation on a domain with fixed interface.

In Section 3.1, we first derive a monolithic formulation of the linear fluid-structure interaction
problem. In Section 3.2, we take a closer look at existence and regularity results for the
presented problem provided by literature and extend the results to a symmetric monolithic
formulation. This formulation leads to an adjoint equation with the same structure as the
considered linear FSI problem, which allows for a unified analytical and numerical treatment
of the state and the adjoint systems. Then, in Section 3.3, we formulate a model optimal
control problem governed by an unsteady linear FSI problem, establish necessary optimality
conditions, and analyze the regularity of the optimal solutions.

Most of the results in this chapter have already appeared in similar form in [58].

3.1. A Linear Fluid-Structure Interaction Problem

In this chapter, the domain Ω is separated in two disjoint domains Ωs and Ωf as for example
in Figure 2.1. The mechanics on the solid domain Ωs are described by a wave equation and
the fluid mechanics on Ωf by the Stokes equations. We first state the two problems, define the
coupling conditions between those two models, and then derive a monolithic formulation.

9



3. Optimal Control of Linear Fluid-Structure Interaction

3.1.1. Linear Wave Equation

In Section 4.1.1, we will derive the nonlinear elastodynamics equations to model elastic ma-
terials. For small displacements us with ‖∇us‖ � 1, the linearized elastodynamics equations
simplify to the linear Lamé system. To make the following sections easier to read, we restrict
to the special case of a linear wave equation. However, all results presented in this chapter
can be extended to the model problem, where the wave equation is replaced by the linear
Lamé system.

We have already rewritten the linear wave equation on Ωs in a system of first order in time.
The variables us denotes the structure displacement in Ωs and vs the velocity. If we define
the bi-linear forms

aS(us, vs)(ϕ) := ((ρs∂tvs, ϕ))s + ((µs∇us,∇ϕ))s, (3.1)

aV (us, vs)(ψ) := ((∂tus, ψ))s − ((vs, ψ))s, (3.2)

then the linear wave equation with the material parameters ρs and µs is given by

Problem 3.1 (Linear wave equation). For us,0 ∈ Vs, vs,0 ∈ Hs, gs ∈ L2(I;H
1
2 (Γi)

d) and the
volume force fs ∈ L2(I;Hs) find a solution (us, vs) ∈W u

s ×W v
s satisfying the initial conditions

(us(0), vs(0)) = (us,0, vs,0) and

aS(us, vs)(ϕ) = ((fs, ϕ))s + 〈〈gs, ϕ〉〉i ∀ϕ ∈ L2(I;Vs),

aV (us, vs)(ψ) = 0 ∀ψ ∈ L2(I;Hs).
(3.3)

Existence and uniqueness of such a linear wave are given in [106] and [100]. Further results
on the wave equation with non homogenous boundary values can be found in [99].

3.1.2. Stokes Equations

A large class of fluids can be described by the Navier-Stokes equations, which we are going
to derive later in Section 4.1.2. In some configurations, especially for low Reynolds numbers,
it is possible to neglect the transport term in order to acquire the Stokes equations. In this
section, we describe the fluid on Ωf via such a linear model. The variables vf and pf denote
the velocity and pressure of the fluid in Ωf . We define the bi-linear forms

aF (vf , p)(ϕ) := ((ρf∂tvf , ϕ))f + ((νf∇vf ,∇ϕ))f − ((pf ,divϕ))f ,

aD(vf)(ξ) := ((div vf , ξ))f .
(3.4)

Then, we obtain for the Stokes problem with material parameters ρf and νf :

Problem 3.2 (Stokes equations). For vf,0 ∈ Hf , gf ∈ L2(I;L2(Γi)
d) and ff ∈ L2(I;Hf) find

a solution (vf , pf) ∈W v
f × L2(I;Lf) satisfying the initial conditions vf(0) = vf,0 and

aF (vf , pf)(ϕ) = ((ff , ϕ))f + 〈〈gf , ϕ〉〉i ∀ϕ ∈ L2(I;Vf),

aD(vf)(ξ) = 0 ∀ξ ∈ L2(I;Lf).
(3.5)

A very detailed analysis of the Stokes equations can be found in [137] and [69]. Therein, the
authors proof existence of the Stokes equations for Dirichlet conditions. The results can be
directly extended to inhomogeneous Neumann boundary conditions.
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3.1. A Linear Fluid-Structure Interaction Problem

3.1.3. Coupling and Boundary Conditions

At the interface Γi, the momentum has to be conserved. Therefore, we demand the directional
derivatives to coincide on Γi × I (dynamic coupling condition):

νf∇vf nf − pfnf + µs∇us ns = 0 on Γi × I. (3.6)

Additionally, the fluid is not allowed to enter the structure domain (kinematic coupling con-
dition). For slow fluid flow, we can assume a no slip condition, which implies that structure
and fluid velocity have to be equal. Therefore, we demand

vf = vs on Γi × I (3.7)

on the interface. At the outer boundaries Γf and Γs, we prescribe homogeneous Dirichlet
boundary conditions.

vf = 0 on Γf × I,
us = 0 on Γs × I.

(3.8)

3.1.4. Monolithic Formulation of Fluid-Structure Interaction

Monolithic formulations are usually obtained by transforming a weak formulation of the FSI
equations into a system of first order in time by introducing a structure velocity variable. Then,
the kinematic coupling condition is enforced by choosing a smooth trial space for the common
velocity variable defined on the whole domain. Furthermore, due to a test function defined
in the same space, the dynamic coupling condition is automatically fulfilled. Thereby the
coupling conditions are directly incorporated in the variational formulation. This simplifies
the computation of sensitivities and allows for a natural usage of Galerkin finite element
discretizations in space and time. Then the two approaches optimize-then-discretize and
discretize-then-optimize lead to the same discretization scheme; see, e.g., [18]. As the velocity
variable v now live on the whole domain, and as it is obvious that we mean with p the fluid
pressure and with u the solid displacement, we neglect the indices f and s in the following.

For optimal control, the semi-linear form aV (·)(·) in (3.2) will result in an asymmetric formu-
lation, see Section 3.3.2 for details. Because of this, we favor a slightly different formulation,
which is motivated by an approach used by Johnson in [90] in the context of the wave equation.
He suggests to introduce a velocity variable v, which fulfills

aV(u, v)(ψ) := µs((∇v,∇ψ))s − µs((∇∂tu,∇ψ))s = 0 ∀ψ ∈ L2(I;Vs) (3.9)

instead of (3.2). In the case of the here considered linear FSI problem, this leads to the
self-adjoint symmetric monolithic formulation

Problem 3.3 (Monolithic linear fluid-structure interaction). Find a velocity v ∈ W v, a
pressure p ∈ L2(I;Lf), and a structure displacement u ∈W u

s fulfilling the initial conditions

u(0) = u0, v(0)
∣∣
Ωs

= u1, and v(0)
∣∣
Ωf

= v0 (3.10)

11
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and the weak formulation

aF (v, p)(ϕ) + aS(u, v)(ϕ) = ((ff , ϕ))f + ((fs, ϕ))s ∀ϕ ∈ L2(I;V ), (3.11)

aV(u, v)(ψ) = 0 ∀ψ ∈ L2(I;Hs), (3.12)

aD(v)(ξ) = 0 ∀ξ ∈ L2(I;Lf). (3.13)

The velocity v now describes the fluid velocity on Ωf and the velocity of the structure on Ωs.
The wave equation would be well defined for a velocity v ∈ L2(I;Hs). However, to have the
kinematic coupling condition fulfilled in a trace sense, we demand v ∈ L2(I;V ). For smooth
initial data and smooth right-hand side we prove existence and uniqueness of a solution for
Problem 3.3 in Theorem 3.3.

We can write the symmetric weak form of the linear fluid-structure interaction problem in a
very compact way by introducing the common solution variable u := (v, u, p) the test function
ϕ := (ϕ,ψ, ξ) and the bi-linear form

a(u)(ϕ) := aF (v, p)(ϕ) + aS(u, v)(ϕ) + aV(u, v)(ψ) + aD(v)(ξ). (3.14)

If we define in addition the trial space X := W v ×W u
s × L2(I;Lf) as well as the test space

Y := L2(I;V )×L2(I;Vs)×L2(I;Lf), then the monolithic formulation in Problem 3.3 reduces
to :

Find u ∈ X such that u(0) = u0 and

a(u)(ϕ) = ((ff , ϕ))f + ((fs, ϕ))s ∀ϕ ∈ Y (3.15)

Later, in Section 4 we will use the same notation for the semi-linear forms, test variables and
test and trial spaces to state the nonlinear fluid-structure interaction problem. In doing so
the similarity of the structure of linear and nonlinear problems immediately gets obvious. In
addition we can describe the discretization of the nonlinear problem in Section 5. The abuse
of notation makes it possible for the reader to immediately extend the results to the linear
problem.

3.2. Existence Theory for Linear Fluid-Structure Interaction

Linear FSI configurations have been already analyzed in [53, 54, 3, 5, 8, 9], wherein the authors
prove existence and regularity results. By introducing a damping term in the wave equation
or in the coupling condition, uniform stability results are shown in [3, 9, 6, 7, 4, 87, 153]
independently of the geometry. Therefore, we can build up on a vast number of already
established results. That is not going to be the case for the nonlinear FSI problem as we
see in Section 4.2. In the following we are going to briefly summarize the existing results in
literature and then extend them to the symmetric monolithic formulation. Finally, we are
going to analyze in which sense the coupling conditions are fulfilled.

Throughout this chapter, we assume the following properties of the initial data:

12
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Assumption 1. The initial data u0, u1, and v0 satisfy

u0 ∈ Vs, ∆u0 ∈ Hs, u1 ∈ Vs, v0 ∈ Vf , div v0 = 0, ∆v0 ∈ Hf and v0

∣∣
Γi

= u1

∣∣
Γi
.

Furthermore, there exists a p0 ∈ H1(Ωf) such that

(p0nf − νf∇vT0 nf)
∣∣
Γi

= (µs∇uT0 ns)
∣∣
Γi
.

For brevity, we introduce

A2
0 := ‖u0‖2H1(Ωs)

+ ‖∆u0‖2L2(Ωs)
+ ‖u1‖2H1(Ωs)

+ ‖v0‖2H1(Ωf)

+ ‖∆v0‖2L2(Ωf)
+ ‖p0‖2H1(Ωf)

.
(3.16)

The previously defined assumption on the initial data is not needed to guarantee existence of
solutions for the linear fluid-structure interaction problem. Existence and regularity results
for less regular initial data can be found, e.g., in [3, 5, 8, 9]. However, we assume more regular
initial data, and the thereby implied higher regularity of solutions, to derive in Section 3.3.3
an optimality system for the considered optimal control problem.

3.2.1. Known Results from the Literature

The linear fluid-structure interaction problem was intensively studied in [53] and [54] by Du,
Gunzburger, and coworkers. The following proposition, taken from there, ensures existence
and uniqueness of a solution admitting optimal regularity with respect to the assumptions on
the right-hand sides:

Proposition 3.1 (Theorems 3.2 and 3.4 in [53] and Theorem 2.3 in [54]). Let u0, u1, and v0

satisfy Assumption 1 and let ff ∈ H1(I;V ∗f ) and fs ∈ H1(I;Hs). Then, there exists a unique
triplet (v, u, p) with

v ∈ H1(I;Vf) ∩W 1,∞(I;Hf), u ∈W 1,∞(I;Vs) ∩W 2,∞(I;Hs), p ∈ L2(I;Lf)

satisfying the initial conditions v(0) = v0 in Hf , u(0) = u0 in Vs, and ∂tu(0) = u1 in Hs, as
well the coupling condition

v
∣∣
Γi

= ∂tu
∣∣
Γi

in L2(I;H
1
2 (Γi)

d),

and almost everywhere in I

ρf(∂tv, ϕ)f + νf(∇v,∇ϕ)f − (p,divϕ)f

+ρs(∂ttu, ϕ)s + µs(∇u,∇ϕ)s = (ff , ϕ)f + (fs, ϕ)s ∀ϕ ∈ V,
(ξ,div v)f = 0 ∀ξ ∈ Lf .

Furthermore, the solution fulfills the a priori estimates

a) ‖v‖2L2(I;H1(Ωf))
+ ‖v‖2L∞(I;L2(Ωf))

+ ‖u‖2L∞(I;H1(Ωs))
+ ‖∂tu‖2L∞(I;L2(Ωs))

≤ C
[
‖ff‖2L2(I;V ∗f ) + ‖fs‖2L2(I;L2(Ωs))

+A2
0

]
,

13
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b) ‖∂tv‖2L2(I;H1(Ωf))
+ ‖∂tv‖2L∞(I;L2(Ωf))

+ ‖∂tu‖2L∞(I;H1(Ωs))
+ ‖∂ttu‖2L∞(I;L2(Ωs))

≤ C
[
‖ff‖2H1(I;V ∗f ) + ‖fs‖2H1(I;L2(Ωs))

+A2
0

]
,

c) ‖p‖2L2(I;L2(Ωf))
≤ C

[
‖ff‖2H1(I;V ∗f ) + ‖fs‖2H1(I;L2(Ωs))

+A2
0

]
,

where A2
0 is defined in (3.16).

Remark 3.1. Under similar assumptions on the initial data, the stated result on existence,
uniqueness, and regularity of solutions has also been proven in [3, 5, 8, 9] by Avalos and
Triggiani for an elastic solid completely surrounded by a fluid.

Remark 3.2. Clearly, the solution given by Proposition 3.1 also fulfills the weak space-time
formulation

ρf((∂tv, ϕ))f + νf((∇v,∇ϕ))f − ((p,divϕ))f

+ρs((∂ttu, ϕ))s + µs((∇u,∇ϕ))s = ((ff , ϕ))f + ((fs, ϕ))s ∀ϕ ∈ L2(I;V ),

((ξ,div v))f = 0 ∀ξ ∈ L2(I;Lf).

(3.17)

Later, we are going to control the system by right-hand sides, which are just in L2 with
respect to time. To do so, we will need the existence of solutions even if the right-hand side
has less regularity than assumed in Proposition 3.1. The existence of such a solution operator
is guaranteed by the results presented in [53, 54, 3, 5, 8, 9]. Therein the existence of a pressure
variable can not be guaranteed. Thus, the fluid velocity variable is going to be an element of
the divergence-free space

Vf,div := { v ∈ Vf : div v = 0 on Ωf },

and we denote with
Vdiv := { v ∈ V : div v = 0 on Ωf }

the solution space on the whole domain Ω with divergence-free elements on the sub-domain
Ωf . Here, we will make use of the following result given in [53, 54]:

Proposition 3.2 (Theorem 2.5 in [53] and Theorem 2.2 in [54]). Let u0, u1, and v0 satisfy
Assumption 1 and let ff ∈ L2(I;V ∗f ) and fs ∈ L2(I;Hs). Then, there exists a unique solution
ṽ ∈ H1(I;V ∗div) with

v = ṽ
∣∣
Ωf
∈ L2(I;Vf,div) ∩ L∞(I;Hf)

and u =

∫ t

0
ṽ(s)

∣∣
Ωs

ds+ u0 ∈ L∞(I;Vs) ∩W 1,∞(I;Hs)

satisfying the initial conditions v(0) = v0 in Hf , u(0) = u0 in Vs, and ∂tu(0) = u1 in Hs, as
well as the coupling condition∫ t

0
v(s)

∣∣
Γi

ds = u(t)
∣∣
Γi
− u0

∣∣
Γi

in L2(I;H
1
2 (Γi)

d)

and almost everywhere in I

ρf(∂tṽ, ϕ)f + νf(∇v,∇ϕ)f + ρs(∂tṽ, ϕ)s + µs(∇u,∇ϕ)s = (ff , ϕ)f + (fs, ϕ)s ∀ϕ ∈ Vdiv.

Furthermore, the solution (u, v) fulfills the a priori estimate a) in Proposition 3.1.
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Remark 3.3. Clearly, the solution given by Proposition 3.2 fulfills also the space-time weak
formulation

ρf((∂tṽ, ϕ))f + νf((∇v,∇ϕ))f + ρs((∂tṽ, ϕ))s + µs((∇u,∇ϕ))s

= ((ff , ϕ))f + ((fs, ϕ))s ∀ϕ ∈ L2(I;Vdiv), (3.18)

and for right-hand sides fulfilling the assumptions of Proposition 3.1, it coincides with the
solution given there.

In [53, 54], the authors proved Proposition 3.2 under weaker assumptions on the initial data
than in Assumption 1 at hand. For even weaker assumptions on the initial data, the results
in [3, 5, 8, 9] show existence of a unique solution for linear FSI problems. The authors
use semigroup theory and a new technique to derive a pressure-free formulation. Thereby,
they were able to prove existence of a mild solution and optimal regularity results. As the
goal of this thesis is to present an optimality system, which can be discretized by using a
Galerkin finite element discretization in space and time, we require the solution to fulfill a
weak formulation with explicit pressure and including the coupling conditions. Hence, we will
from now on make use of initial data fulfilling Assumption 1, which ensures a regular solution
as far as the right-hand sides fulfill the assumptions in Proposition 3.1.

Remark 3.4. In [53, 54], the authors demand ff ∈ L2(I;Hf) in Proposition 3.2 and further-
more ff ∈ H1(I;Hf), u0 ∈ H2(Ωs)

d, v0 ∈ H2(Ωf)
d in Proposition 3.1. However, the proofs

can directly be extended to ff ∈ L2(I;V ∗f ) and ff ∈ H1(I;V ∗f ) with initial data fulfilling
Assumption 1 as stated above.

The results in [53, 54] and [8] are more general and also apply to Stokes flow coupled with linear
elasticity equations. Therefore, all the results presented in the following are also extendable
to formulations with stress tensors.

3.2.2. Novel Symmetric Weak Formulation

Now, we take a closer look to the symmetric weak formulation in Problem 3.3. The weak form
consists of the bi-linear forms aS(·)(·) defined in (3.1), aV(·)(·) defined in (3.9), as well as the
bi-linear forms aF (·)(·) and aD(·)(·) defined in (3.4). The results in Section 3.2.1 enable us
to prove existence and uniqueness of a solution of Problem 3.3. Note that the volume force
g, appearing on the right-hand side of the equation introducing the structure velocity, has no
physical interpretation but will occur later in the adjoint equation, see Section 3.3.

Theorem 3.3. Let u0, u1, and v0 satisfy Assumption 1 and let the right-hand sides fulfill
ff ∈ H1(I;V ∗f ), fs ∈ H1(I;Hs), and g ∈ L2(I;Hs). Then, there exists a unique triplet (v, u, p)
with

v ∈ L2(I;V ) ∩W 1,∞(I;H), v
∣∣
Ωf
∈ H1(I;Vf), v

∣∣
Ωs
∈ L∞(I;Vs),

u ∈ L∞(I;Vs) ∩H1(I;Vs), p ∈ L2(I;Lf),

which satisfies the initial conditions

u(0) = u0, v(0)
∣∣
Ωs

= u1, and v(0)
∣∣
Ωf

= v0 (3.19)
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and the weak formulation

aF (v, p)(ϕ) + aS(u, v)(ϕ) = ((ff , ϕ))f + ((fs, ϕ))s ∀ϕ ∈ L2(I;V ),

aV(u, v)(ψ) = ((gs, ψ))s ∀ψ ∈ L2(I;Hs),

aD(v)(ξ) = 0 ∀ξ ∈ L2(I;Lf).

(3.20)

Furthermore, the solution fulfills the a priori estimates

a) ‖v‖2L∞(I;L2(Ω)) + ‖v‖2L2(I;H1(Ωf))
+ ‖u‖2L∞(I;H1(Ωs))

≤ C
[
‖ff‖2L2(I;V ∗f ) + ‖fs‖2L2(I;L2(Ωs))

+ ‖g‖2L2(I;L2(Ωs))
+A2

0

]
,

b) ‖∂tv‖2L∞(I;L2(Ω)) + ‖∂tv‖2L2(I;H1(Ωf))
+ ‖v‖2L∞(I;H1(Ωs))

+ ‖∂tu‖2L2(I;H1(Ωs))

≤ C
[
‖ff‖2H1(I;V ∗f ) + ‖fs‖H1(I;L2(Ωs)) + ‖g‖2L2(I;L2(Ωs))

+A2
0

]
,

c) ‖p‖2L2(I;L2(Ωf))
≤ C

[
‖ff‖2H1(I;V ∗f ) + ‖fs‖2H1(I;L2(Ωs))

+ ‖g‖2L2(I;L2(Ωs))
+A2

0

]
,

where A2
0 is defined in (3.16).

Proof. Let f̂f := ff and f̂s := fs +
∫ t

0 g(s) ds. Due to the assumptions on the data, we have

f̂f ∈ H1(I;V ∗f ) and f̂s ∈ H1(I;Hs). Therefore, Proposition 3.1 ensures for these right-hand
sides and the given initial data existence of a unique triplet (v̂f , û, p̂) solving (3.17). Next, we
introduce a structure velocity v̂s by the setting v̂s = ∂tû ∈ L∞(I;Vs). Thus, v̂s fulfills

µs((∇v̂s,∇ψ))s = µs((∇∂tû,∇ψ))s ∀ψ ∈ L2(I;Vs). (3.21)

Now, we are prepared to introduce the global velocity v̂ by setting v̂
∣∣
Ωf

:= v̂f and v̂
∣∣
Ωs

:= v̂s.

As v̂f ∈ L2(I;Vf) and v̂s ∈ L2(I;Vs), we get immediately v̂ ∈ L2(I;H). However, to obtain
v̂ ∈ L2(I;V ), we have to check that the weak partial derivatives ŵi with ŵi

∣∣
Ωf

:= ∂xi v̂f and

ŵi
∣∣
Ωs

:= ∂xi v̂s constitute the weak partial derivatives ∂xi v̂ of v̂ for i = 1, 2, . . . , d. To this end,

let ϕ ∈ L2(I;C∞0 (Ω)d). We obtain by the definition of the weak derivatives

((v̂, ∂xiϕ)) = ((v̂f , ∂xiϕ))f + ((v̂s, ∂xiϕ))s

= −((∂xi v̂f , ϕ))f − ((∂xi v̂s, ϕ))s + 〈〈v̂f , ϕn
T
f ei〉〉i + 〈〈v̂s, ϕn

T
s ei〉〉i

= −((ŵi, ϕ)) + 〈〈∂tû− v̂f , ϕn
T
s ei〉〉i = −((ŵi, ϕ)),

where the last step holds, since the kinematic coupling condition is valid due to Proposition 3.1.
Therefore, it holds v̂ ∈ L2(I;V ).

It remains to prove that (v̂, û, p̂) solves the weak formulation (3.20). Due to the construction
of v̂s by (3.21), we directly get

ρs((∂ttû, ϕ))s = ρs((∂tv̂, ϕ))s ∀ϕ ∈ L2(I;Vs). (3.22)

If we enter (3.22) in the weak formulation (3.17), we immediately obtain with (3.21) that the
triplet (v̂, û, p̂) solves the weak formulation (3.20) with the right-hand sides f̂f , f̂s, and g = 0.

16



3.2. Existence Theory for Linear Fluid-Structure Interaction

In what follows, we construct a solution to (3.20) with the original right-hand sides ff , fs, and
g. We define ũ : I → Vs for almost all t ∈ I by

µs(∇ũ(t),∇ψ)s := (−g(t), ψ)s ∀ψ ∈ Vs. (3.23)

Standard elliptic theory guarantees the existence and uniqueness of ũ(t) together with the
estimate

‖ũ(t)‖H1(Ωs) ≤ C‖g(t)‖L2(Ωs) for almost all t ∈ I. (3.24)

As g ∈ L2(I;Hs), the integration in time of the above inequality leads to ũ ∈ L2(I;Vs).
Furthermore, integrating (3.23) in time twice implies

µs

((
∇
∫ t

0
ũ(s) ds,∇ψ

))
s

= −
((∫ t

0
g(s) ds, ψ

))
s

∀ψ ∈ L2(I;Vs).

Defining u := û +
∫ t

0 ũ ds, we directly obtain u ∈ L2(I;Vs). Since for ϕ ∈ L2(I;V ) it holds
ψ = ϕ

∣∣
Ωs
∈ L2(I;Vs), we get for all ϕ ∈ L2(I;V ) the identity

µs((∇û,∇ϕ))s = µs((∇û,∇ϕ))s + µs

((
∇
∫ t

0
ũ(s) ds,∇ϕ

))
s

+

((∫ t

0
g(s) ds, ϕ

))
s

= µs((∇u,∇ϕ))s +

((∫ t

0
g(s) ds, ϕ

))
s

.

Together with the definition of f̂s, this implies that u, v := v̂, and p := p̂ solves the first
equation of (3.20). Furthermore, since û and v̂ solve the second equation of (3.20) with g = 0,
we obtain for all ψ ∈ L2(I;Vs)

µs((∇v,∇ψ))s − µs((∇∂tu,∇ψ))s = µs((∇v̂,∇ψ))s − µs((∇∂tû,∇ψ))s − µs((∇ũ,∇ψ))s

= −µs((∇ũ,∇ψ))s = ((g, ψ))s.

Therefore (v, u, p) solves the weak formulation (3.20) for the right-hand sides ff , fs, and g.

Proving the uniqueness remains. Let (v1, u1, p1) and (v2, u2, p2) be two solutions fulfilling the
weak formulation (3.20) and the regularities assumed in Theorem 3.3. Define v̄ := v1 − v2,
ū := u1 − u2 and p̄ := p1 − p2. It holds

v̄
∣∣
Ωf

(0) = 0, v̄
∣∣
Ωs

(0) = 0, ū(0) = 0,

and for almost all t ∈ I

ρf(∂tv̄(t), ϕ)f − (p̄(t), divϕ)f + νf(∇v̄(t),∇ϕ)f

+ρs(∂tv̄(t), ϕ)s + µs(∇ū(t),∇ϕ)s = 0 ∀ϕ ∈ V,
µs(∇v̄(t),∇ψ)s − µs(∇∂tū(t),∇ψ)s = 0 ∀ψ ∈ Vs,

(ξ,div v̄(t))f = 0 ∀ξ ∈ Lf .

Choosing the test functions ϕ = v̄(t), ψ = ū(t), and ξ = p̄(t), we get

ρf(∂tv̄(t), v̄(t))f − (p̄(t),div v̄(t))f + νf(∇v̄(t),∇v̄(t))f

+ρs(∂tv̄(t), v̄(t))s + µs(∇ū(t),∇v̄(t))s = 0,

µs(∇v̄(t),∇ū(t))s − µs(∇∂tū(t),∇ū(t))s = 0,

(p̄(t), div v̄(t))f = 0.
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3. Optimal Control of Linear Fluid-Structure Interaction

Because of the symmetry of the bilinear forms we obtain, for almost all t ∈ I,

1

2

d

dt
ρf‖v̄(t)‖2L2(Ωf)

+ νf‖∇v̄(t)‖2L2(Ωf)
+

1

2

d

dt
ρs‖v̄(t)‖2L2(Ωs)

+
1

2

d

dt
µs‖∇ū(t)‖2L2(Ωs)

= 0.

Integrating this identity in time and noting the initial conditions, we are led to

1

2
ρf‖v̄(t)‖2L2(Ωf)

+ νf

∫ t

0
‖∇v̄(s)‖2L2(Ωf)

ds+
1

2
ρs‖v̄(t)‖2L2(Ωs)

+
1

2
µs‖∇ū(t)‖2L2(Ωs)

= 0

for almost all t ∈ I. This implies v̄ = 0 and, as ū vanishes on Γs ⊂ Γ with |Γs| > 0, also ū = 0.
Thus we get, in particular for almost all t ∈ I

(p̄, divϕ)f = 0 ∀ϕ ∈ V,
and thus p̄ = 0 since p̄ ∈ Lf . Therefore, the solution is unique.

According to Proposition 3.1, the solution (v̂f , û, p̂) of (3.17) fulfills the estimates a)-c) given
in Proposition 3.1 with right-hand side f̂f := ff and f̂s := fs +

∫ t
0 g(s) ds. As v̂s of the

formulation (3.20) coincides to ∂tû, the estimates for ∂tû from the Propositions 3.2 and 3.1
are valid for v̂

∣∣
Ωs

= v̂s, too. Hence, we have

‖v̂‖2L∞(I;L2(Ω)) + ‖v̂‖2L2(I;H1(Ωf))
+ ‖û‖2L∞(I;H1(Ωs))

≤ C
[
‖ff‖2L2(I;V ∗f ) + ‖fs‖2L2(I;L2(Ωs))

+ ‖g‖2L2(I;L2(Ωs))
+A2

0

]
,

‖∂tv̂‖2L∞(I;L2(Ω)) + ‖∂tv̂‖2L2(I;H1(Ωf))
+ ‖v̂‖2L∞(I;H1(Ωs))

≤ C
[
‖ff‖2H1(I;V ∗f ) + ‖fs‖2H1(I;L2(Ωs))

+ ‖g‖2L2(I;L2(Ωs))
+A2

0

]
,

‖p̂‖2L2(I;L2(Ωf))
≤ C

[
‖ff‖2H1(I;V ∗f ) + ‖fs‖2H1(I;L2(Ωs))

+ ‖g‖2L2(I;L2(Ωs))
+A2

0

]
.

Due to the setting v = v̂ and p = p̂, these estimates directly transfer to v and p. To estimate
u := û +

∫ t
0 ũ(s) ds, ũ ∈ Vs given by (3.23) has to be bounded. By (3.24), we get for almost

all t ∈ I that

‖u(t)‖2H1(Ωs)
=

∥∥∥∥û(t) +

∫ t

0
ũ(s) ds

∥∥∥∥2

H1(Ωs)

≤ C
[
‖û(t)‖2H1(Ωs)

+ T

∫
I
‖ũ(s)‖2H1(Ωs)

ds

]
≤ C

[
‖û(t)‖2H1(Ωs)

+ ‖g‖2L2(I;L2(Ωs))

]
,

which implies
‖u‖2L∞(I;H1(Ωs))

≤ C
[
‖û‖2L∞(I;H1(Ωs))

+ ‖g‖2L2(I;L2(Ωs))

]
.

Furthermore, we get with ∂tû = v̂
∣∣
Ωs

for almost all t ∈ I that

‖∂tu(t)‖2H1(Ωs)
= ‖∂tû(t) + ũ(t)‖2H1(Ωs)

≤ C
[
‖v̂(t)‖2H1(Ωs)

+ ‖g(t)‖2L2(Ωs)

]
,

and consequently (limited through g ∈ L2(I;Hs))

‖∂tu‖2L2(I;H1(Ωs))
≤ C

[
‖v̂‖2L2(I;H1(Ωs))

+ ‖g‖2L2(I;L2(Ωs))

]
.

Together with the above estimates for (v̂, û, p̂), we obtain the stated estimates for (v, p, u).

Remark 3.5. If the right-hand side g lies in L∞(I;Hs), then we also get an estimate for
‖∂tu‖L∞(I;H1(Ωs)), as in Proposition 3.1.
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3.2. Existence Theory for Linear Fluid-Structure Interaction

3.2.3. How are the Coupling Conditions Fulfilled?

In the following, we analyze in which sense the weak solution of (3.20) fulfills the original
fluid-structure interaction problem, and especially in which sense the coupling conditions are
fulfilled. To this end, we introduce the space H̃

1
2 (Γi) in the spirit of [78, Definition 1.3.2.5]

by

H̃
1
2 (Γi) = { v ∈ H 1

2 (Γi) : ṽ ∈ H 1
2 (Γ) },

where ṽ denotes the continuation of v on Γ by zero.

Theorem 3.4. Let the assumptions of Theorem 3.3 be fulfilled, and let (v, u, p) be the solution
of (3.20) and in addition ff ∈ L2(I;Hf). Then, the kinematic coupling condition

v
∣∣
Ωf

= v
∣∣
Ωs

is valid in the sense of L2(I;H
1
2 (Γi)

d) ∩H 1
2 (I;L2(Γi)

d). Furthermore, the dynamic coupling
condition

νf∇v nf − pnf + µs∇uns = 0

holds in L2(I; (H̃
1
2 (Γi)

d)∗).

Proof. By Theorem 3.3, we have that v ∈ L2(I;V ) and v ∈ W 1,∞(I;H) ⊂ H1(I;H). Hence,
the trace results in [105, Theorem 2.1] imply that the kinematic coupling condition v

∣∣
Ωf

= v
∣∣
Ωs

holds on Γi in the space L2(I;H
1
2 (Γi)

d) ∩H 1
2 (I;L2(Γi)

d).

In the remaining part of this proof, we derive validity of the stated dynamic coupling condition.
In (3.20), we choose test functions ϕ with ϕ

∣∣
Ωf
∈ L2(I;C∞0 (Ωf)

d) and ϕ
∣∣
Ωs

= 0 to get

((ρf∂tv, ϕ))f − ((div(νf∇v + p Id), ϕ))f = ((ff , ϕ))f ∀ϕ ∈ L2(I;C∞0 (Ωf)
d),

where div(νf∇v + p Id) is defined in the distributional sense. This is equivalent to

div(νf∇v + p Id) = ρf∂tv − ff in L2(I;C∞0 (Ωf)
d)∗.

As Theorem 3.3 yields v
∣∣
Ωf
∈ W 1,∞(I;Hf), we get by the assumption on ff ∈ L2(I;Hf) that

ρf∂tv + ff ∈ L2(I;Hf). We immediately obtain, that

div(νf∇v + p Id) = ρf∂tv − ff in L2(I;Hf) (3.25)

and

‖div(νf∇v + p Id)‖L2(I;L2(Ωf)) ≤ ‖ff‖L2(I;L2(Ωf)) + C‖∂tv‖L2(I;L2(Ωf)),

where the right-hand side is bounded according to Theorem 3.3. The same approach, but
instead choosing ϕ

∣∣
Ωf

= 0 and ϕ
∣∣
Ωs
∈ L2(I;C∞0 (Ωs)

d), leads to

div(µs∇u) = ρs∂tv − fs in L2(I;Hs) (3.26)

and

‖div(µs∇u)‖L2(I;L2(Ωs)) ≤ ‖fs‖L2(I;L2(Ωs)) + C‖∂tv‖L2(I;L2(Ωs)),
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3. Optimal Control of Linear Fluid-Structure Interaction

where the right-hand side is again bounded according to Theorem 3.3. Thus, we obtain that

νf∇v + p Id ∈ E(Ωf) := {ϕ ∈ L2(I;Hf) : ‖divϕ‖L2(I;L2(Ωf)) <∞},
µs∇u ∈ E(Ωs) := {ϕ ∈ L2(I;Hs) : ‖divϕ‖L2(I;L2(Ωs)) <∞}.

According to [137, Ch. I §1 Theorem 1.1], the space L2(I;C∞0 (Ωf)
d) is dense in E(Ωf) and

L2(I;C∞0 (Ωs)
d) is dense in E(Ωs). Therefore, following [69, p. 114] or [78, Theorems 1.5.3.10

and 1.5.3.11], we get

‖(νf∇v + p Id)Tnf‖
L2(I;(H̃

1
2 (Γi)d)∗)

≤ ‖νf∇v + p Id‖L2(I;L2(Ωf))

+ ‖ff‖L2(I;L2(Ωf)) + C‖∂tv‖L2(I;L2(Ωf))

‖(µs∇u)Tns‖
L2(I;(H̃

1
2 (Γi)d)∗)

≤ ‖µs∇u‖L2(I;L2(Ωs))

+ ‖fs‖L2(I;L2(Ωs)) + C‖∂tv‖L2(I;L2(Ωs)).

According to [69, 78], this enables us to apply Gauss’ theorem in (3.20) to obtain

〈〈νf∇v nf − pnf , ϕ〉〉i + 〈〈µs∇uns, ϕ〉〉i = ((div(νf∇v + p Id)− ρf∂tv + ff , ϕ))f ,

+ ((div(µs∇u)− ρs∂tv + fs, ϕ))s ∀ϕ ∈ L2(I;V ).

This immediately implies by (3.26) and (3.25) that

〈〈νf∇v nf − pnf + µs∇uns, ϕ〉〉i = 0 ∀ϕ ∈ L2(I;V )

and thus the dynamic coupling condition is fulfilled in L2(I; (H̃
1
2 (Γi)

d)∗).

3.3. Optimal Control Problem

In the following, we consider the optimal control problem of a linearized FSI configuration
given by

Problem 3.4 (Optimal Control Problem).

min
q∈Q
J (q, u, v) :=

γf

2

∫
I
‖v − vd‖2L2(Ωf)

dt+
γs

2

∫
I
‖u− ud‖2L2(Ωs)

dt+
α

2
‖q‖2Q, (3.27)

subject to

ṽ ∈ H1(I;V ∗div) with v = ṽ
∣∣
Ωf
∈ L2(I;Vf,div) and u =

∫ t

0
ṽ(s)

∣∣
Ωs

ds+ u0 ∈ L2(I;Vs)

satisfying the initial conditions v(0) = v0, u(0) = u0, and ∂tu(0) = u1 and

ρf((∂tṽ, ϕ))f + νf((∇v,∇ϕ))f

+ρs((∂tṽ, ϕ))s + µs((∇u,∇ϕ))s = ((Bfq, ϕ))f + ((Bsq, ϕ))s ∀ϕ ∈ L2(I;Vdiv),∫ t

0
v(s)

∣∣
Γi

ds = u(t)
∣∣
Γi
− u0

∣∣
Γi

in L2(I;H
1
2 (Γi)

d),

qa ≤ q ≤ qb.
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3.3. Optimal Control Problem

The control q is going to be either time-dependent or distributed in space and controlling the
volume force through the linear operators Bf and Bs; see the two configurations in Section 3.3.1
for details. In addition, the control variable is subject to control constrains with the bounds
qa, qb ∈ R∪ {±∞} and qa < qb. The variables vd and ud are given desired states and α > 0 is
a given regularization parameter. To enable observation on both or just on one sub-domain,
the parameters γf , γs ≥ 0 can be chosen appropriately. The initial data are assumed to
satisfy Assumption 1, and for the desired states we require vd ∈ H1(I;V ∗f ) ∩ L2(I;Hf) and
ud ∈ L2(I;Hs). The fluid velocity v and solid displacement u only have to fulfill the pressure
free weak formulation (3.18). This enables control variables in the space L2(I) as we will see
in the next Section. For the optimal control we can prove higher regularity such that the
optimal velocity and displacement variable are solutions of the symmetric weak formulation
(3.20), as we see later.

3.3.1. Existence and Uniqueness of Optimal Solutions

We analyze two concrete configurations for the considered control problem:

Configuration C1 Let the control space given by Q := (L2(Ω)d)N with N ∈ N and let
Bf : Q→ H1(I;Hf), as well as Bs : Q→ H1(I;Hs) be linear and continuous operators, given
for q = (q1, q2, . . . , qN ) ∈ Q by

Bfq =

N∑
i=1

gifq
i
∣∣
Ωf

and Bsq =

N∑
i=1

gisq
i
∣∣
Ωs
.

Thereby, gis, g
i
f ∈ H1(I), i = 1, 2, . . . , N , are given functions. The admissible set Qad is defined

as
Qad := { q ∈ Q : qa ≤ qi(x) ≤ qb, for almost all x ∈ Ω and i = 1, 2, . . . , N }.

Note that the inequality in the definition of Qad has to be understood componentwise for
qi ∈ L2(Ω)d.

Configuration C2 Let the control space given by Q := L2(I)N with N ∈ N and let
Bf : Q → L2(I;Hf), as well as Bs : Q → L2(I;Hs) be linear continuous operators given for
q = (q1, q2, . . . , qN ) ∈ Q by

Bfq =
N∑
i=1

qihi
∣∣
Ωf

and Bsq =
N∑
i=1

qihi
∣∣
Ωs
.

Thereby, hi ∈ Vdiv, i = 1, 2, . . . , N , are given functions. The admissible set Qad is defined
as

Qad := { q ∈ Q : qa ≤ qi(t) ≤ qb, for almost all t ∈ I and i = 1, 2, . . . , N }.
The assumption that hi has to be divergence-free in Ωf is taken for simplicity of the presen-
tation. All results can be extended to hi ∈ V using a Helmholtz decomposition.

Since for both configurations, Bfq ∈ L2(I;Hf) and Bsq ∈ L2(I;Hs), Proposition 3.2 en-
sures the well-posedness of the so-defined control to state mapping G : q 7→ (v(q), u(q)), with
(v(q), u(q)) the solution of (3.18) for ff := Bsq and fs := Bsq. The linearity of (3.18) and the
estimate given in Proposition 3.2 imply the continuity of G.
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3. Optimal Control of Linear Fluid-Structure Interaction

Lemma 3.5. The control to state mapping G : Q→ L2(I;Hf)× L2(I;Hs) is an affine linear
and continuous operator for both configurations C1 and C2.

Proof. Let (v̂, û) be the solution of (3.18) for ff = fs = 0. Furthermore, we denote by
G0 : Q → L2(I;Hf) × L2(I;Hs) the linear part of G, defined by (3.18) with zero initial data
for ff := Bsq and fs := Bsq. Hence, the mapping G : Q → L2(I;Hf) × L2(I;Hs) can be
expressed as

(v(q), u(q)) := Gq = (v̂, û) +G0q.

Proposition 3.2 yields that (v̂, û) is bounded in L∞(I;Hf) × L∞(I;Vs) and G0 is a bounded
linear operator. Thus, the control to state mapping G is continuous in both considered
configurations.

By means of applying the control to state mapping G, the reduced functional j : Q→ R can
be defined as

j(q) := J (q, u(q), v(q)), (3.28)

and the optimal control problem 3.4 can for both configurations be written in the compact
form

min
q∈Qad

j(q). (3.29)

Theorem 3.6. The considered optimal control problem (3.29) admits a unique solution for
both configurations C1 and C2.

Proof. Standard arguments, see, e.g. [141, Theorem 2.14], guarantee the existence of a unique
optimal control q̄ ∈ Qad.

We emphasize that this existence result is also valid if the control is acting only on the domain
Ωs or Ωf and if reference solutions are only given on sub-domains.

3.3.2. Adjoint Equations

The necessary optimality conditions to be derived in Section 3.3.3 will make use of an adjoint
equation. However, we will not derive the adjoint equation for the optimal control problem 3.4
with the weak formulation (3.18). Instead we replace equation (3.18) by the symmetric weak
formulation (3.20). For the resulting optimal control problem we derive formally the adjoint
equation, then we prove existence and uniqueness of adjoint solutions for the symmetric adjoint
equation. Later in Section 3.3.3 we are going to prove that the resulting optimal solution will
fulfill the derived symmetric formulation.

22



3.3. Optimal Control Problem

Formal Lagrange Formalism

We replace equation (3.18) by the symmetric weak formulation (3.20) in the optimal control
problem 3.4. As Theorem 3.3 does not guarantee existence of solutions for a right-hand side
as in the two configurations presented in Section 3.3, we only derive formally the Lagrangian.
As suggested in [141], we derive the adjoint equation without taking into account if the control
to state mapping is well defined or differentiable.

Similar to the derivation of a Karush-Kuhn-Tucker system for discrete constraint optimiza-
tion problems, we define Lagrange multipliers. Multiplying the strong linear fluid-structure
interaction equation with a Lagrange multiplier z = (zv, zu, zp) and integrating by parts im-
mediately gets us the weak linear FSI formulation. The scalar products in equation (3.20) are
well defined, if we choose the Lagrange multiplier z ∈ Y := L2(I;V ) × L2(I;Vs) × L2(I;Lf)
and the primal variable u = (v, u, p) ∈ X := W v ×W u

s × L2(I;Lf). Then, we can define for
the symmetric linear fluid-structure interaction problem the Lagrangian L : Q×X × Y → R

by

L(q,u, z) :=J (q, u, v)− a(u)(z) + ((Bfq, z
v))f + ((Bsq, z

v))s

+ (u0 − u(0), zu(0))s + (v0 − v(0), zv(0))

and a(u)(z) is the symmetric bilinearform defined in (3.14).

If the triple u = (v, u, p) is the solution of the weak formulation (3.20) with the right hand
side fs = Bfq and fs = Bsq and initial conditions (u0, v0), the useful identity

j(q) := J (q,u(q)) = L(q,u(q), z)

is true for arbitrary values z = (zv, zu, zp) ∈ Y . If we denote with δu = u′q(q)(δq) the deriva-
tive of the state variable with respect to the control, we obtain via the Lagrange functional
the representation

j′(q)(δq) = L′q(q,u(q), z)(δq) + L′u(q,u(q), z)(δu)

of the derivative of the reduced functional. If we choose z ∈ Y such that z solves the adjoint
equation

L′u(q,u, z)(ϕ) = 0 ∀ϕ ∈ X, (3.30)

the derivative of the Lagrange functional with respect to u is zero in arbitrary directions
ϕ = (ϕ,ψ, ξ) ∈ X. Then we can evaluate the derivative of the reduced functional in an
arbitrary direction δq ∈ Q by evaluating

j′(q)(δq) = L′q(q,u, z)(δq).

It is not necessary anymore to calculate the derivative of the solution u(q) with respect to the
control.

In case of the linear fluid-structure interaction problem the adjoint variable z ∈ Y has to
solve

a(ϕ)(z)− (ψ(0), zu(0))s − (ϕ(0), zv(0)) = J ′u(q, u, v)(ϕ) ∀ϕ ∈ X.
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3. Optimal Control of Linear Fluid-Structure Interaction

Without taking the regularity of the adjoint variable into account, we formally integrate by
parts in time. Then we get, with J (q, u, v) the tracking type functional in (3.27), the adjoint
equation

−ρf((ϕ, ∂tz
v))f + νf((∇ϕ,∇zv))f + ((zp, divϕ))f

−ρs((ϕ, ∂tz
v))s + µs((∇ϕ,∇zu))s = γf((v − vd, ϕ))f ∀ϕ ∈ L2(I;V ),

µs((∇ψ,∇zv))s + µs((∇ψ,∇∂tzu))s = γs((u− ud, ψ))s ∀ψ ∈ L2(I;Vs),

−((ξ,div zv))f = 0 ∀ξ ∈ L2(I;Lf)

(3.31)

and the terminal conditions zv(T ) = 0 and zu(T ) = 0. Thus the derivative of the Lagrangian
with respect to test variable results in a linear fluid-structure interaction problem only running
back in time. We will prove existence and regularity results for the adjoint equation (3.31) in
the following. Later, we will see that (3.31) is indeed the correct adjoint equation appearing
in the optimality system.

Discussion of the Adjoint Equations for a Non-symmetric Formulation

Before analyzing the adjoint equations of the weak formulation (3.14), we investigate for a
moment the optimal control problem subject to linear fluid-structure interaction, whereby we
replace the bi-linear form aV(·)(·) in the monolithic formulation (3.14) with aV (·)(·) given
in 3.2. For this formulation, the formal Lagrange approach leads to the following adjoint
equation:

−((ϕ, zvt ))f + νf((∇ϕ,∇zv))f + ((zp, divϕ))f

−((ϕ, zvt ))s − ((ϕ, zu))s = γf((v − vd, ϕ))f ∀ϕ ∈ L2(I;V ),

−((ψ, zut ))s + µs((∇ψ,∇zv))s = γs((u− ud, ψ))s ∀ψ ∈ L2(I;Vs),

−((ξ,div zv))f = 0 ∀ξ ∈ L2(I;Lf).

Here, zv
∣∣
Ωf

describes the solution of an adjoint Stokes equation, and zv
∣∣
Ωs

the solution of an

adjoint linear wave equation. However, as the bi-linear form formulation (3.14) with aV (·)(·)
is not symmetric, the adjoint equation is a Stokes-wave system with new coupling conditions
on Γi:

zv
∣∣
Ωf

= zv
∣∣
Ωs
, νf∇zv nf − zpnf = 0, and µs∇zv ns = 0.

In contrast to this, the advantage of the following optimality system lies in the fact that
the adjoint equation is again a linear FSI problem and all numerical methods developed to
solve the primal FSI problem can be utilized. Therefore, no additional difficulty occurs in the
implementation and analysis.

Existence and Regularity for the Adjoint Equation

Due to the symmetry in (3.20), the adjoint equation is again a linear FSI problem. Therefore,
we can use the already proved results, to get the following result on existence of a unique
adjoint solution:
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3.3. Optimal Control Problem

Theorem 3.7. Let vd ∈ H1(I;V ∗f ) ∩ L2(I;Hf), ud ∈ L2(I;Hs), and let the initial data u0,
u1, and v0 satisfy Assumption 1. Furthermore, let q ∈ Q be given as in configuration C1 or
q ∈ Q∩H1(I)N be given for configuration C2, and let the triple (v, u, p) be the corresponding
solution of (3.20) with ff = Bfq, fs = Bsq, and g = 0. Then, there exists a unique triple
(zv, zu, zp) with

zv ∈ L2(I;V ) ∩W 1,∞(I;H), zv
∣∣
Ωf
∈ H1(I;Vf), zv

∣∣
Ωs
∈ L∞(I;Vs),

zu ∈ L∞(I;Vs) ∩H1(I;Vs), zp ∈ L2(I;Lf)

satisfying the terminal condition zv(T ) = 0, zu(T ) = 0 and the adjoint equation (3.31).
Furthermore, the adjoint solution triple (zv, zu, zp) fulfills the a priori estimates

a) ‖zv‖2L∞(I;L2(Ω)) + ‖zv‖2L2(I;H1(Ωf))
+ ‖zu‖2L∞(I;H1(Ωs))

≤ C
[
‖vd‖2L2(I;V ∗f ) + ‖ud‖2L2(I;L2(Ωs))

]
+ C

[
‖Bfq‖2L2(I;V ∗f ) + ‖Bsq‖2L2(I;L2(Ωs))

+A2
0

]
,

b) ‖∂tzv‖2L∞(I;L2(Ω)) + ‖∂tzv‖2L2(I;H1(Ωf))
+ ‖zv‖2L∞(I;H1(Ωs))

+ ‖∂tzu‖2L2(I;H1(Ωs))

≤ C
[
‖vd‖2H1(I;V ∗f ) + ‖ud‖L2(I;L2(Ωs))

]
+ C

[
‖Bfq‖2H1(I;V ∗f ) + ‖Bsq‖H1(I;L2(Ωs)) +A2

0

]
,

c) ‖zp‖2L2(I;L2(Ωf))
≤ C

[
‖vd‖2H1(I;V ∗f ) + ‖ud‖2L2(I;L2(Ωs))

)
]

+ C
[
‖Bfq‖2H1(I;V ∗f ) + ‖Bsq‖2H1(I;L2(Ωs))

+A2
0

]
,

where A2
0 is defined in (3.16).

Proof. Based on the assumptions on the control q, with ff = Bfq, fs = Bsq, and g = 0
Theorem 3.3 ensures a solution v ∈ H1(I;H), u ∈ L2(I;Vs) of (3.20). Hence, the right-hand
sides of the adjoint equation ff := γf(v−vd) and g := γs(u−ud) fulfill the required regularities
ff ∈ H1(I;V ∗f ) and g ∈ L2(I;Hs) of Theorem 3.3. Furthermore, the initial conditions for the
adjoint equation backwards in time zvT = 0 and zuT = 0 fulfill with zpT = 0 the assumptions
on u0, v0, p0, and u1 of Theorem 3.3. As the considered adjoint equation (3.31) coincides
with the state equation (3.20) after the transformation t 7→ −t, there exists a unique adjoint
solution (zv, zu, zp) due to Theorem 3.3. The estimates follow immediately from Theorem 3.3,
too.

3.3.3. Necessary Optimality Conditions

Since the reduced functional j is convex due to the (affine) linear-quadratic structure of the
considered control problem, the necessary and sufficient optimality condition for the optimal
solution q̄ ∈ Qad of (3.29) reads as

j′(q̄)(δq − q̄) ≥ 0 ∀δq ∈ Qad. (3.32)

Based on this, we derive in the sequel an optimality system separately for the configurations
C1 and C2. Thereby, we make use of the self-adjoint formulation (3.20). Due to this symmetry,
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3. Optimal Control of Linear Fluid-Structure Interaction

the derivation of an optimality system for configuration C1 is straightforward. For configu-
ration C2 however, this is not directly possible since for q ∈ Q = L2(I)N , the right-hand
sides Bfq and Bsq do not fulfill the prerequisites of Theorem 3.3. Therefore, an additional
approximation step will be necessary.

Control Distributed in Space (Configuration C1)

Here, the control q ∈ Q = (L2(Ω)d)N acts as volume force through the linear operators Bf

and Bs, as described in configuration C1. Since in this case it holds Bfq ∈ H1(I;Hf) and
Bsq ∈ H1(I;Hs), the weak formulation (3.20) is applicable for ff = Bfq and fs = Bsq by
Theorem 3.3. For the derivative of the reduced functional given by (3.28), we directly obtain
the following representation:

Lemma 3.8. Let the initial data u0, u1, and v0 satisfy Assumption 1 and let the desired states
fulfill vd ∈ H1(I;V ∗f ) ∩ L2(I;Hf) and ud ∈ L2(I;Hs). Let for given q ∈ Q the triple (v, u, p)
be the solution of (3.20) with ff = Bfq, fs = Bsq, and g = 0 guaranteed by Theorem 3.3.
Furthermore, let (zv, zu, zp) be the solution of the adjoint equation (3.31) guaranteed by Theo-
rem 3.7. Then, the directional derivative of the reduced cost functional at q in direction δq ∈ Q
is given by

j′(q)(δq) =
N∑
i=1

[
((gifδq

i, zv))f + ((gisδq
i, zv))s + α(qi, δqi)

]
.

Proof. By Theorem 3.3, the control to state map G can be understood as mapping from Q to
L2(I;V )×L2(I;Vs)×L2(I;Lf). Similar to the proof of Lemma 3.5, let (v̂, û, p̂) be the solution
of (3.20) for ff = fs = g = 0. Furthermore, we denote by G0 : Q → L2(I;Hf) × L2(I;Hs) ×
L2(I;Lf) the linear part G given by (3.20) for zero initial data and ff = Bfq, fs = Bsq, g = 0.
Then, G can be written for q ∈ Q as

(v(q), u(q), p(q)) = Gq = (v̂, û, p̂) +G0q.

Hence, we get directly

j′(q)(δq) = γf((v − vd, δv))f + γs((u− ud, δu))s + α
N∑
i=1

(qi, δqi) (3.33)

for all δq ∈ Q, where (δv, δu, δp) = G0δq.

By construction, (δv, δu, δp) solves for the right-hand sides ff = Bfδq, fs = Bsδq, g = 0,
and for zero initial data the equation (3.20). Thus, we obtain by testing this equation with
(ϕ,ψ, ξ) = (zv, zu, zp) ∈ L2(I;V )× L2(I;Vs)× L2(I;Lf) the identity

ρf((δvt, z
v))f − ((δp,div zv))f + νf((∇δv,∇zv))f

+ρs((δvt, z
v))s + µs((∇δu,∇zv))s =

N∑
i=1

[
((gifδq

i, zv))f + ((gisδq
i, zv))s

]
,

µs((∇δv,∇zu))s − µs((∇δut,∇zu))s = 0,

((zp, div δv))f = 0.
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3.3. Optimal Control Problem

Testing with (ϕ,ψ, ξ) = (δv, δu, δp) ∈ L2(I;V ) × L2(I;Vs) × L2(I;Lf) in the adjoint equa-
tion (3.31) yields

−ρf((δv, ∂tz
v))f + νf((∇δv,∇zv))f + ((zp, div δv))f

−ρs((δv, ∂tz
v))s + µs((∇δv,∇zu))s = γf((v − vd, δv))f ,

−((δp,div zv))f = 0,

µs((∇δu,∇zv))s + µs((∇δu,∇∂tzu))s = γs((u− ud, δu))s.

As the adjoint solution (zv, zu, zp) has zero initial conditions at t = T , and as (δv, δu, δp) has
zero initial conditions at t = 0, the boundary terms vanish when using integration by parts in
time. If we insert the equations into each other, then we obtain for any δq ∈ Q

γf((v − vd, δv))f + γs((u− ud, δu))s =

N∑
i=1

[
((gifδq

i, zv))f + ((gisδq
i, zv))s

]
.

Together with (3.33), this implies the assertion.

Combining the condition (3.32) and Lemma 3.8 implies the following representation and reg-
ularity for the optimal control q̄ in terms of the pointwise projection PQad

on the admissible
set Qad, given by

PQad
: L2(Ω)d → L2(Ω)d, PQad

(r)(x) := max(qa,min(qb, r(x)))

for almost all x ∈ Ω, where the projection has to be applied componentwise for r ∈ L2(Ω)d.

Lemma 3.9. Let the assumptions of Lemma 3.8 be fulfilled. Then, for configuration C1
the optimal solution q̄ ∈ Qad of the considered optimal control problem (3.29) fulfills for
i = 1, 2, . . . , N :

q̄i
∣∣
Ωf

= PQad

(
− 1

α

∫
I
gif(t)z

v(t, ·) dt

)
, q̄i

∣∣
Ωs

= PQad

(
− 1

α

∫
I
gis(t)z

v(t, ·) dt

)
.

Thus, for the optimal control holds q̄
∣∣
Ωf
∈ (H1(Ωf)

d)N and q̄
∣∣
Ωs
∈ (H1(Ωs)

d)N .

Proof. The necessary optimality condition (3.32) can be written as(∫
I
gifz

v dt, δqi − q̄i
)

f

+

(∫
I
gisz

v dt, δqi − q̄i
)

s

+ α(q̄i, δqi − q̄i) ≥ 0 ∀δqi ∈ Qad.

Using the projection PQad
, this can be expressed for i = 1, 2, . . . , N as

q̄i
∣∣
Ωf

= PQad

(
− 1

α

∫
I
gif(t)z

v(t, ·) dt

)
, q̄i

∣∣
Ωs

= PQad

(
− 1

α

∫
I
gis(t)z

v(t, ·) dt

)
.

Theorem 3.7 ensures zv ∈ L2(I;V ), and together with

‖PQad
(r)‖H1(Ω) ≤ ‖r‖H1(Ω)

we conclude that q̄i
∣∣
Ωf
∈ H1(Ωf)

d and q̄i
∣∣
Ωs
∈ H1(Ωs)

d.
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3. Optimal Control of Linear Fluid-Structure Interaction

The optimal solution q̄ ∈ Qad solves the optimality system presented in the following theo-
rem:

Theorem 3.10. Let the initial data u0, u1, and v0 satisfy Assumption 1. Furthermore, let
vd ∈ H1(I;V ∗f )∩L2(I;Hf) and ud ∈ L2(I;Hs). Then, the optimal solution q̄ ∈ Qad of optimal
control problem (3.29) for configuration C1 fulfills q̄

∣∣
Ωf
∈ (H1(Ωf)

d)N and q̄
∣∣
Ωs
∈ (H1(Ωs)

d)N

as well as the following necessary optimality condition:

1. The optimal state (v̄, ū, p̄) = (v(q̄), u(q̄), p(q̄)) solves

ρf((∂tv̄, ϕ))f − ((p̄,divϕ))f + νf((∇v̄,∇ϕ))f

+ρs((∂tv̄, ϕ))s + µs((∇ū,∇ϕ))f = ((Bf q̄, ϕ))f + ((Bsq̄, ϕ))s ∀ϕ ∈ L2(I;V ),

µs((∇v̄,∇ψ))s − µs((∇∂tū,∇ψ))s = 0 ∀ψ ∈ L2(I;Vs),

((ξ,div v̄))f = 0 ∀ξ ∈ L2(I;Lf).

2. The optimal adjoint (z̄v, z̄u, z̄p) = (zv(q̄), zu(q̄), zp(q̄)) solves

−ρf((ϕ, ∂tz̄
v))f + νf((∇ϕ,∇z̄v))f + ((z̄p, divϕ))f

−ρs((ϕ, ∂tz̄
v))s + µs((∇ϕ,∇z̄u))s = γf((v̄ − vd, ϕ))f ∀ϕ ∈ L2(I;V ),

µs((∇ψ,∇z̄v))s + µs((∇ψ,∇∂tz̄u))s = γs((ū− ud, ψ))s ∀ψ ∈ L2(I;Vs),

−((ξ, div z̄v))f = 0 ∀ξ ∈ L2(I;Lf).

3. It holds for i = 1, 2, . . . , N that

q̄i
∣∣
Ωf

= PQad

(
− 1

α

∫
I
gif(t)z̄

v(t, ·) dt

)
, q̄i

∣∣
Ωs

= PQad

(
− 1

α

∫
I
gis(t)z̄

v(t, ·) dt

)
.

Remark 3.6. Thereby, the optimal state variable (v̄, ū, p̄) = (v(q̄), u(q̄), p(q̄)) and adjoint
variable (z̄v, z̄u, z̄p) = (zv(q̄), zu(q̄), zp(q̄)) fulfill the a priori estimates in Theorem 3.3 and
Theorem 3.7.

Time-dependent Control (Configuration C2)

In the following, the control q ∈ Q = (L2(I))N is controlling the volume force through the
linear operators Bf and Bs described in configuration C2. As Theorem 3.3 does not guarantee
existence of a unique solution of (3.20) for a right-hand side ff = Bfq ∈ L2(I;Hf) and
fs = Bsq ∈ L2(I;Hs), we cannot directly proceed as for Configuration 1. Therefore, we will
make use of a smooth sequence in Q∩ (H1(I))N converging against the optimal solution. For
smooth controls, the symmetric formulation (3.20) can be utilized, and a priori estimates for
the adjoint then lead to higher regularity also for the limit. Then, we are able to derive the
optimality system similar to the configuration C1.

Lemma 3.11. Let the initial data u0, u1, and v0 satisfy Assumption 1. Furthermore, let vd ∈
H1(I;V ∗f )∩L2(I;Hf) and ud ∈ L2(I;Hs). Additionally, for a given control q ∈ Q∩ (H1(I))N ,
let the triple (v, u, p) be the solution of (3.20) with ff = Bfq, fs = Bsq, and g = 0 guaranteed
by Theorem 3.3. Furthermore, let (zv, zu, zp) be the solution of the adjoint equation (3.31)
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3.3. Optimal Control Problem

guaranteed by Theorem 3.7. Then, the directional derivative of the reduced cost functional j
at q in direction δq ∈ Q is given by

j′(q)(δq) =

N∑
i=1

[
((hiδqi, zv)) + α

∫
I
qiδqi dt

]
.

Proof. Since for q ∈ Q∩ (H1(I))N it holds Bfq ∈ H1(I;Hf) and Bsq ∈ H1(I;Hs), we proceed
as in Lemma 3.8 to obtain

j′(q)(δq) =

N∑
i=1

[
((hiδqi, zv)) + α

∫
I
qiδqi dt

]

for all δq ∈ Q ∩ (H1(I))N . By the density of (H1(I))N in (L2(I))N with respect to the
(L2(I))N topology, we obtain the assertion.

In the next lemma, we prove that the optimal control q̄ lies in Q ∩ (H1(I))N such that the
representation derived in Lemma 3.11 is also valid for q̄. Therefore, we will introduce also for
configuration C2 the pointwise projection PQad

on the admissible set Qad given here by

PQad
: L2(I)→ L2(I), PQad

(r)(t) := max(qa,min(qb, r(t))) for almost all t ∈ I.

Lemma 3.12. Let the assumptions of Lemma 3.11 be fulfilled. Then, the optimal solution
q̄ ∈ Qad of the considered optimal control problem (3.29) for configuration C2 lies in (H1(I))N .

Proof. Let q̄ ∈ Qad be the optimal solution. We consider a smooth sequence (qn) with
qn ∈ Q∩(H1(I))N and qn → q̄ in Q. As in the proof of Lemma 3.8, according to Theorem 3.3,
we have that (vn, un, pn) = Gqn solves (3.20) with right-hand sides ff = Bfqn, fs = Bsqn, and
g = 0. The velocity and displacement have at least the regularities vn ∈ H1(I;Hf) and
un ∈ L2(I;Vs). Therefore, Theorem 3.7 guarantees the existence of a unique adjoint solution
(zvn, z

u
n, z

p
n) of (3.31) with vn − vd and un − ud in the right-hand side. By Lemma 3.11, we

have

j′(qn)(δq) =

N∑
i=1

[
((hifδq

i, zvn)) + α

∫
I
qinδq

i dt

]

for all δq ∈ Q. Due to estimate a) in Theorem 3.3, the linearity of (3.20), and the boundedness
of hi in Vdiv, we get for m,n ∈ N the estimate

‖vn − vm‖2L2(I;H1(Ωf))
+ ‖un − um‖2L2(I;H1(Ωs))

≤ C
[
N∑
i=1

‖hif(qin − qim)‖2L2(I;V ∗f ) +
N∑
i=1

‖his(qin − qim)‖2L2(I;L2(Ωs))

]

≤ C
N∑
i=1

‖qin − qim‖2L2(I).
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Furthermore, due to estimate a) in Theorem 3.7, the adjoint variables fulfill the estimate

‖zvn − zvm‖2L∞(I;L2(Ω)) + ‖zvn − zvm‖2L2(I;H1(Ωf))
+ ‖zun − zum‖2L2(I;H1(Ωs))

≤ C
[
N∑
i=1

‖hif(qin − qim)‖2L2(I;V ∗f ) +
N∑
i=1

‖his(qin − qim)‖2L2(I;L2(Ωs))

]

≤ C
N∑
i=1

‖qin − qim‖2L2(I).

If we consider in (3.31) test functions ϕ ∈ L2(I;Vdiv) that are divergence-free in the fluid
domain Ωf , we get the estimate

‖∂tzvn − ∂tzvm‖2L2(I;V ∗div) ≤ C
[
‖zvn − zvm‖2L2(I;H1(Ωf))

+ ‖zun − zum‖2L2(I;H1(Ωs))

+ ‖vn − vm‖L2(I;L2(Ωf))

]
.

By combining the above estimates, we derive for the adjoint zvn − zvm the bound

‖∂tzvn − ∂tzvm‖2L2(I;V ∗div) + ‖zvn − zvm‖2L∞(I;L2(Ω)) ≤ C
N∑
i=1

‖qin − qim‖2L2(I).

As qn → q̄ in (L2(I))N , it holds ‖qin − qim‖2L2(I) → 0 for m,n → ∞. Thus, zvn is a Cauchy

sequence in H1(I;V ∗div) ∩ L∞(I;H), and therefore there exists the limit z̃v ∈ H1(I;V ∗div) ∩
L∞(I;H) such that

zvn → z̃v in H1(I;V ∗div) ∩ L∞(I;H).

Since we assumed hi ∈ Vdiv and δqi ∈ L2(I), the product fulfills hiδqi ∈ L2(I;Vdiv). This
implies, due to L2(I;Vdiv) ↪→ L2(I;H) and due to the convergence of zvn in L∞(I;H), that

j′(qn)(δq) =

N∑
i=1

[
((hiδqi, zvn)) + α

∫
I
qinδq

i dt

]
→

N∑
i=1

[
((hiδqi, z̃v)) + α

∫
I
q̄iδqi dt

]
.

In addition, the directional derivative of the reduced cost functional j′(·)(δq) is continuous
as the control to state mapping G : Q→ L2(I;Hf)× L2(I;Hs) is affine-linear and continuous
accordingly to Lemma 3.5. Therefore, the convergence qn → q̄ in Q implies in addition
j′(qn)(δq)→ j′(q̄)(δq) and we obtain the identity

j′(q̄)(δq) =
N∑
i=1

[
((hiδqi, z̃v)) + α

∫
I
q̄iδqi dt

]
.

As the optimal solution q̄ fulfills the necessary optimality condition (3.32), we get the opti-
mality condition

N∑
i=1

[
((hi(δqi − q̄i), z̃v)) + α

∫
I
q̄i(δqi − q̄i) dt

]
≥ 0 ∀δq ∈ Qad.

Using the projection PQad
on the admissible set Qad, this can be expressed as

q̄i = PQad
(ri) with ri = − 1

α

∫
Ω
hi(x)z̃v(·, x) dx, i = 1, 2, . . . , N.
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The time regularity of the limit z̃v ∈ H1(I;V ∗div) and the assumed regularity of h ∈ Vdiv imply

∂tr
i(t) = − 1

α
〈hi, ∂tz̃v(t, ·)〉Vdiv×V ∗div , i = 1, 2, . . . , N

for almost all t ∈ I, and consequently that ri ∈ H1(I). Using the stability of the projection

‖PQad
(r)‖H1(I) ≤ ‖r‖H1(I),

we obtain the asserted regularity q̄ ∈ (H1(I))N .

Then, the optimal solution q̄ ∈ Qad of the considered optimal control problem in configuration
C2 fulfills the following theorem:

Theorem 3.13. Let the initial data u0, u1, and v0 satisfy Assumption 1. Furthermore, let
the desired states fulfill vd ∈ H1(I;V ∗f ) ∩ L2(I;Hf) and ud ∈ L2(I;Hs). Then, the optimal
solution q̄ ∈ Qad of the considered optimal control problem (3.29) for configuration C2 fulfills
q̄ ∈ (H1(I))N and the following necessary optimality condition:

1. The optimal state (v̄, ū, p̄) = (v(q̄), u(q̄), p(q̄)) solves

ρf((∂tv̄, ϕ))f − ((p̄,divϕ))f + νf((∇v̄,∇ϕ))f

+ρs((∂tv̄, ϕ))s + µs((∇ū,∇ϕ))f = ((Bf q̄, ϕ))f + ((Bsq̄, ϕ))s ∀ϕ ∈ L2(I;V ),

µs((∇v̄,∇ψ))s − µs((∇∂tū,∇ψ))s = 0 ∀ψ ∈ L2(I;Vs),

((ξ,div v̄))f = 0 ∀ξ ∈ L2(I;Lf).

2. The optimal adjoint (z̄v, z̄u, z̄p) = (zv(q̄), zu(q̄), zp(q̄)) solves

−ρf((ϕ, ∂tz̄
v))f + νf((∇ϕ,∇z̄v))f + ((z̄p, divϕ))f

−ρs((ϕ, ∂tz̄
v))s + µs((∇ϕ,∇z̄u))s = γf((v̄ − vd, ϕ))f ∀ϕ ∈ L2(I;V ),

µs((∇ψ,∇z̄v))s + µs((∇ψ,∇∂tz̄u))s = γs((ū− ud, ψ))s ∀ψ ∈ L2(I;Vs),

−((ξ,div z̄v))f = 0 ∀ξ ∈ L2(I;Lf).

3. It holds for i = 1, 2, . . . , N that

q̄i = PQad

(
− 1

α

∫
Ω
hi(x)z̄v(·, x) dx

)
.

Proof. As q̄ ∈ Q∩ (H1(I))N , one can choose in the proof of Lemma 3.12 the sequence qn = q̄.
This immediately implies that z̃v = z̄v.

Remark 3.7. Thereby, the optimal state variable (v̄, ū, p̄) = (v(q̄), u(q̄), p(q̄)) and adjoint
variable (z̄v, z̄u, z̄p) = (zv(q̄), zu(q̄), zp(q̄)) fulfill the a priori estimates in Theorem 3.3 and
Theorem 3.7.
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4. Optimal Control of Nonlinear
Fluid-Structure Interaction

For several applications in hemodynamics and aerodynamics, the fluid flows in or around an
elastic object. Due to the interaction between solid and fluid, the models cannot be regarded
separately. In addition, due to the large forces, solid deformations can get quite large. Then,
the solid mechanics can not be modeled by a linear Lamé system anymore and we have to
take the movement of the fluid domain into account. As the system is highly dynamical, it is
very difficult to predict how the system will react on changes in the boundary conditions and
of material parameters. This motivates to consider an optimal control problem to steer the
solution against a desired state or to choose such a parameter that the simulation correlates
with measurements.

In this chapter, we are going to derive a monolithic formulation of the nonlinear fluid-structure
interaction problem, in Section 4.1, using a nonlinear elastodynamics model for the solid and
the Arbitrary Lagrangian-Eulerian formulation to transform the Navier-Stokes equations on
a reference domain. After a short discussion about theoretical results for the nonlinear FSI
model, in Section 4.2, we state the considered optimal control problem, in Section 4.3, and
derive formally an optimality system.

4.1. A Nonlinear Fluid-Structure Interaction Problem

Γi

Ωf

Γf

Γf

Γf

Ωs

Γs

Γ̌i

Ω̌f

Γ̌f

Γ̌f

Γ̌f

Ω̌s

Γ̌s

Figure 4.1.: An exemplary reference domain Ω and the transformed current domain Ω̌

The domain Ω ⊂ Rd with d = 2, 3 is separated as in Chapter 3 in two disjoint Lipschitz
sub-domains Ωs and Ωf . For the boundaries we use again the same notation (see Section 2).
However, in comparison to the linear fluid-structure interaction problem, the interface between
fluid and solid is not fixed in this chapter. Therefore, we have to introduce the transformed
current domain Ω̌(t). In this section, we follow mainly the notation and ideas presented
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in [126, 40, 70, 149]. Therein, all variables defined in the reference domain in Lagrangian
coordinates are denoted with a “hat” sign. As we are going to follow the ALE-approach,
which transforms all variables on a reference domain, we mark all variables on the current
domain instead to make the following chapters easier to read. We denote with the “inverse
hat” symbol all variables defined on the current domain and all other variables are now defined
on the reference domain.

In structure mechanics, it is natural to define all variables on the reference domain. This is
called Lagrangian point of view. In fluid mechanics we are not interested in the movement
of a single fluid particle but in the behavior of the fluid at a certain fixed point in the
current domain. This is called Eulerian point of view. To overcome this mismatch we are
going to use an Arbitrary Lagrangian-Eulerian technique, see, e.g., [52, 83, 85, 120, 64, 138,
139], to transform the Navier-Stokes equations to a reference domain. For optimal control
this formulation is of advantage. As all variables are defined on the reference domain the
linearization of the semi-linear form, needed to derive sensitivity information, can be computed
straightforward. However, the ALE method can only tackle minor movements of the elastic
structure. To model for example a ball falling in a liquid, alternative approaches such as
Eulerian formulations presented in [68, 67, 126] have to be used. Therein, the solid equations
are transformed on the moving physical domain.

Remark 4.1. We use the same notation and names for the semi-linear forms as in the Chap-
ter 3.2 for linear fluid-structure interaction. However, due to the nonlinear models and the
moving fluid domain the semi-linear forms differ. We nevertheless decided for this abuse of
notation such that we only have to regard the nonlinear problem in the following chapters,
but immediately it gets clear what we would have to do for the linear problem.

4.1.1. Nonlinear Elastodynamics

Basic principles in continuum mechanics enable to describe the large deformations of the
elastic structure in Ωs. We are going to introduce the Green-Lagrange strain tensor first, then
state the equation resulting from conservation of momentum and the Saint-Venant Kirchhof
material law as exemplary example for the stress strain relation.

Kinematic

To describe the relation between the solid at initial time and the current deformed solid, we
introduce the transformation

Ts : Ωs × I → Ω̌s(t) with Ts : (x, t) 7−→ x̌(x, t)

mapping every particle x ∈ Ωs to its location in the current domain Ω̌s(t) at time t. In
general, we choose the initial configuration as reference domain Ωs, but it is also possible to
take an arbitrary domain as reference domain. For every particle, we define the displacement
us(x, t) := x̌(x, t) − x and the material velocity vs(x, t) := ∂tus(x, t). The description of the
movement of every particle is called Lagrangian point of view. Deformations of an arbitrary
volume in Ωs can be characterized via the deformation gradient

Fs(x, t) = Id +∇us(x, t).

34



4.1. A Nonlinear Fluid-Structure Interaction Problem

The determinant of the deformation gradient Js = det(Fs) describes the local change of volume
and the local length change of a line segment is given by the Green-Lagrange strain tensor

Es =
1

2
(F Ts Fs − Id).

Conservation Principle

The momentum has to be conserved over time if no forces are active. Only if boundary
forces gs or volume forces fs are active, the momentum changes. Via Cauchy’s stress theorem
we postulate the existence of a stress tensor Σs. The second Piola Kirchhoff stress tensor
Σs(x, t)ns denotes the surface tensions on the surface of an imaginary infinitesimally small
cube around the point x ∈ Ωs in the reference configuration. The equation of conservation of
momentum then results in

ρs∂ttus − div(FsΣs) = ρsfs in Ωs × I,
FsΣsns = gs on Γi × I.

(4.1)

As most elastic materials are compressible, the density in the material can change over time.
Thus, we define with ρs the density at initial time t = 0. Conservation of angular momentum
demands the stress tensor to be symmetric.

Material Law

Strain of a material usually results in stress. The exact correlation cannot be derived from
physical laws but has to be measured in experiments. A large variety of homogenous and
isotropic materials behaves according to the Saint-Venant Kirchhof material law

Σs = λs tr(Es) Id +2µsEs.

Due to the linear strain stress relation, the material law is very simple and we are going to
use it as an exemplary material law in this thesis. The Lamé parameters λs and µs are given
by

λs :=
Es

2(1 + νs)
, µs :=

Esνs
(1 + νs)(1− νs)

,

whereby the Young‘s modulus Es describes the stiffness and νs the compressibility of a material.
For more sophisticated material laws to model blood vessels we refer to the book [66].

Nonlinear Elastodynamics Equation

The nonlinear elastodynamics equation (4.1) is of second order in time. By introducing a
material velocity, we can rewrite the equations as system of first order. This will make the
coupling of fluid and structure equations easier. In Section 3.1.4, we mainly introduced the
velocity variable in an unconventional way to be able to prove existence and uniqueness of
the adjoint equation. For the optimal control problem of a nonlinear FSI problem, we are
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4. Optimal Control of Nonlinear Fluid-Structure Interaction

only going to derive the optimal control problem in a formal way. Therefore, we demand as
commonly done in literature:

((∂tus − vs, ψ))s = 0 ∀ψ ∈ L2(I;Hs).

A further discussion can be found in Section 4.3.2.

By integrating by parts, we obtain the weak nonlinear elastodynamics equation, whereby we
have again written the problem on the space-time cylinder as in Chapter 3.

Problem 4.1 (Nonlinear elastodynamics equation). Given the volume force fs ∈ L2(I;Hs)

and the boundary stress gs ∈ L2(I;H
1
2 (Γi)

d) at the interface Γi, find the displacement field
us ∈W u

s and solid velocity vs ∈W v
s such that us(0) = us,0, vs(0) = vs,0 and

aS(us, vs)(ϕ) = ((ρsf, ϕ))s + 〈〈gs, ϕ〉〉i ∀ϕ ∈ L2(I;Vs),

aV (us, vs)(ψ) = 0 ∀ψ ∈ L2(I;Hs),

whereby
aS(us, vs)(ϕ) := ((ρs∂tvs, ϕ))s + ((FsΣs,∇ϕ))s,

aV (us, vs)(ψ) := ((∂tus − vs, ψ))s.
(4.2)

Its analysis is difficult and most results only exist for small deformations. We would like to
refer to [45] for existence of the stationary solution. For small deformations us and very small
changes in deformation ‖∇us‖ � 1, a linear strain tensor can be used. This results in the
well analyzed Navier-Lamé system.

4.1.2. Navier-Stokes Equations on a Moving Domain

In fluid mechanics, we are interested in the velocity and pressure of the fluid at a certain
points and not in the movement of a single fluid particle. Thereby, we are able to calculate,
lift and drag values at the boundary. Therefore, the Eulerian point of view is the method of
choice.

Navier-Stokes Equations in Eulerian Framework

In comparison to solid mechanics, not the strain but the temporal variation of strain will be
the key quantity to model the internal forces. Therefore we introduce the strain rate

ε̇f :=
1

2
(∇̌v̌f + ∇̌v̌Tf ) (4.3)

defining the rate of length change. Just like in solid mechanics, we postulate the existence
of a stress tensor. The Cauchy stress tensor σ̌f ň denotes the internal force on an imaginary
surface of an infinitesimally small cube around the point x̌ ∈ Ω̌f(t). However, in comparison
to the definition of the Green-Lagrange strain tensor, the Cauchy stress tensor is defined in
the current configuration. Let f̌f be a volume force on the current domain and ǧf a boundary
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4.1. A Nonlinear Fluid-Structure Interaction Problem

force on parts of the boundary of the current domain Ω̌f(t), then the equations of conservation
of momentum result in

ρ̌f∂tv̌f + ρ̌f(v̌f · ∇̌)v̌f − |div(σ̌f) = ρ̌f f̌f in Ω̌f(t)× I
σ̌f ň = ǧf on Γ̌i(t)× I.

(4.4)

As already for solid mechanics, conservation of angular moment needs the stress tensor σ̌ to
be symmetric. In this thesis, we are going to consider only incompressible fluids, which are
homogeneous at initial time. Therefore, the equation of mass conservation simplifies to

|div(v̌f) = 0 in Ω̌f(t)× I. (4.5)

If the velocity field v̌ is divergence free, mass is going to be conserved.

Material Law

In this thesis, we consider only Navier-Stokes fluids. For these fluids, the stress tensor depends
linearly on the strain rate. Due to the incompressibility assumption we have tr(ε̇f) = 0 and
the stress tensor simplifies to

σ̌f = −p̌f Id +ρ̌f ν̌f(∇̌v̌f + ∇̌v̌Tf ).

Thereby, p̌ denotes the undetermined pressure and ν̌f the kinematic viscosity of the fluid.

Arbitrary Lagrangian-Eulerian (ALE) Transformation

We consider configurations where either a fluid flows around an elastic object or flows in
an elastic tube. Due to the elastic behavior of the solid, the fluid domain changes over
time. In this thesis, we introduce the Arbitrary Lagrangian-Eulerian (ALE) transformation
Tf : Ωf × I → Ω̌f(t) mapping a reference domain Ωf on the Eulerian domain Ω̌f(t). The ALE-
mapping can be expressed by Tf(x, t) := x+ uf(x, t), using an artificial displacement field uf ,
similar as already for the mapping Ts to describe the kinematics of the elastic domain Ωs. If
Tf is a diffeomorphism on the space-time cylinder in the space C(I;C1(Ωf))∩C1(I;C(Ωf)), we
can transform the domain integrals in the weak Navier-Stokes equation to the fixed reference
domain Ωf . Thereby, the deformation gradient of the ALE -mapping with Ff := Id +∇uf and
its determinant Jf := det(Ff) are going to occur. We refer to [126, 40, 70, 149] for more details
of the transformation of the space and time derivatives. On the reference domain we define a
velocity vf(x, t) := v̌f(Tf(x, t), t) and a pressure variable pf(x, t) := p̌f(Tf(x, t), t) for all x ∈ Ωf .
Then, we get for example the transformed Cauchy stress tensor

σf = ρfνf(∇vfF
−1
f + F−Tf ∇vTf )− pf Id .

As for homogenous fluids, the density ρ̌f and the kinematic viscosity ν̌f are constant, the
values ρf = ρ̌f and νf = ν̌f are equivalent in the current and reference domain.
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4. Optimal Control of Nonlinear Fluid-Structure Interaction

Problem 4.2 (Navier-Stokes equations in ALE coordinates). Let ff ∈ L2(I;Hf) be a volume
force and gf ∈ L2(I;L2(Γi)

d). We assume the transformation uf ∈ C(I;C1(Ωf))∩C1(I;C(Ωf))
to be given. Then find the velocity vf ∈W v

f and pressure pf ∈ L2(I;Lf) such that vf(0) = vf,0

and

aF (vf , uf , pf)(ϕ) + aΓ(uf , vf)(ϕ) = ((ρfff , ϕ))f + 〈〈gf , ϕ〉〉i ∀ϕ ∈ L2(I;Vf)

aD(vf , uf)(ξ) = 0 ∀ξ ∈ L2(I;Lf)

where the transformed momentum equation aF (·)(·) and the incompressibility constraint aD(·)(·)
are defined by:

aF (vf , uf , pf)(ϕ) :=((Jfρf∂tvf , ϕ))f + ((Jfρf(F
−1
f (vf − ∂tuf) · ∇)vf , ϕ))f

+ ((JfσfF
−T
f ,∇ϕ))f ,

aD(vf , uf)(ξ) :=((div(JfF
−1
f vf), ξ))f .

(4.6)

Remark 4.2. The volume force ff is defined on the reference domain here. If we only have
the data on the moving domain Ω̌f , we have to transform the values on the reference domain.
Then the right-hand side depends on the transformation uf .

Only if the transformation Tf ∈ C(I;C1(Ωf)) ∩ C1(I;C(Ωf)) is a diffeomorphism, then the
Navier-Stokes equations in ALE coordinates is equivalent to the Navier-Stokes equation on
the moving domain. We only prove this result assuming existence of a smooth solution. We
define on the moving domain Ω̌f(t) the Sobolev spaces

V̌f(t) :=
{
ϕ̌ ∈ H1(Ω̌f(t))

d
∣∣∣ ϕ̌ = 0 on Γ̌f

}
, Ȟf(t) := L2(Ω̌f(t))

d

and Ľf :=

{
ξ ∈ L2(Ω̌f(t))

∣∣∣∣∣
∫

Ω̌f(t)
ξ dx = 0

}

Lemma 4.1. Let Ωf ⊂ Rd with d = 2, 3 be a smooth domain and Tf : Ωf × I → Ω̌f(t) be a
C(I;C1(Ωf)) ∩ C1(I;C(Ωf))-diffeomorphism. Then for every solution

v ∈
{
ϕ
∣∣ ϕ ∈ L2(I;Vf) and ∂tϕ ∈ L2(I;Hf)

}
, p ∈ L2(I;Lf)

of Problem 4.2, there exist a solution

v̌ ∈
{
ϕ̌
∣∣ ϕ̌ ∈ L2(I; V̌f(t)) and ∂tϕ̌ ∈ L2(I; Ȟf(t))

}
, p̌ ∈ L2(I; Ľf)

of the Navier-Stokes equations 4.4 and 4.5 on the moving domain in weak form with v(x, t) =
v̌(Tf(x, t), t)) and p(x, t) = p̌(Tf(x, t), t)) almost everywhere.

Proof. This result directly follows by mapping the two different formulations of the Navier-
Stokes equations and by using the equivalence of the solution spaces in Appendix A.
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4.1. A Nonlinear Fluid-Structure Interaction Problem

4.1.3. Mesh Motion Equation

Let the movement of the interface Γ̌i be given by the displacement uΓ, then we can derive the
ALE transformation uf on the fluid domain Ωf by computation of an extension of the interface
movement uΓ. As we have seen in Lemma 4.1, the ALE mapping of the reference domain Ωf

on the moving fluid domain Ω̌f has to be very smooth. Several strategies have been suggested
in literature to calculate the ALE transformation from boundary information. The methods
differ with respect to computational cost and regularity of the transformation. In general, the
more regularity we would like to achieve the higher the computational cost. We just state four
standard methods given for example in [23, 126]. All methods have in common that we have
to solve a partial differential equation, but lack the C1 regularity needed in Lemma 4.1.

Laplace Equation

For a given deformation of the interface uΓ ∈ L2(I;H
1
2 (Γi)) we calculate the ALE transfor-

mation Tf(x, t) = x + uf(x, t) by solving a Laplace problem on the space-time cylinder with
uf ∈

{
ϕ ∈ L2(I;Vf)

∣∣ ϕ = uΓ on Γi × I
}

and

((∇uf ,∇ϕ))f = 0 ∀ϕ ∈ L2(I;Vf,0).

It is well known that even for convex domains we only have uf ∈ L2(I;H2(Ωf)
d). If we have

reentering corners, we must even expect corner singularities.

Elasticity Equation

Instead of the Laplace problem, the authors in [140] suggest to solve an artificial linear elas-
ticity equation with linear strain tensor εm := 1

2(∇uf + ∇uTf ) and Saint-Venant Kirchhoff
material law. Then, the Cauchy stress tensor σm is defined by

σm := λm tr(εm) Id +2µmεm. (4.7)

The ALE transformation Tf(x, t) = x+ uf(x, t) then is given by

Problem 4.3 (Mesh motion equation). Find uf ∈
{
ϕ ∈ L2(I;Vf)

∣∣ ϕ = uΓ on Γi × I
}

such
that

aM (uf)(ψ) := ((σm,∇ψ))f = 0 ∀ψ ∈ L2(I;Vf,0). (4.8)

The distributed artificial Lamé parameters λm ∈ L∞(Ωf) and µm ∈ L∞(Ωf) are given by the

λm :=
Em

2(1 + νm)
, µm :=

Emνm

(1 + νm)(1− νm)
.

As the equation has a physical interpretation, we know how the modification of the artificial
Lamé parameters can improve the mesh motion. For example, in areas of reentering corners
it can be reasonable to choose the Young’s modulus Em higher so that these areas are only
translated but not sheared or compressed due to the transformation. In addition, numerical
experiments have shown that it can be beneficial to choose a negative poisson ratio νm.
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4. Optimal Control of Nonlinear Fluid-Structure Interaction

Nonlinear Elasticity Equation

If the determinant of the ALE transformation Jf = det(Ff) converges to zero, the finite element
solution algorithm will break down. For a detailed discussion see Section 8.3.3. The authors
in [136] suggest to multiply Young’s modulus in the stress tensor σm in (4.7) with J−1

f , which
results in the Lame parameters

λm(uf) :=
Em

2Jf(1 + νm)
, µm(uf) :=

Emνm

Jf(1 + νm)(1− νm)
.

If we use this method, the stiffness automatically will increase in the areas with extreme
volume changes and the determinant of the ALE transformation can be bounded away from
zero. In comparison to the previous approach, the equation is not linear any more. However,
for small deformations, the problem behaves very similar to the linear elasticity equation as
extension operator.

Bi-Laplace Equation

Nevertheless, for large displacements the presented extension methods will fail. If we solve
instead a bi-Laplace problem, we have more freedom in the choice of boundary conditions.
Numerical experiments in [23] have shown that thereby much larger displacements can be
tackled, even with constant material parameters. In this approach, we calculate the ALE
mapping uf ∈

{
ϕ ∈ L2(I;H1

0 (Ωf)
d)
∣∣ ϕ = uΓ on Γi × I

}
and wf ∈ L2(I;H1(Ωf)

d) such that

((µm∇uf ,∇ϕ))f = ((wf , ϕ))f ∀ϕ ∈ L2(I;H1
0 (Ωf)

d),

((µm∇wf ,∇ψ))f = 〈〈gm, ψ〉〉i ∀ψ ∈ L2(I;H1(Ωf)
d).

Thereby, we are able to enforce the slope of the extension gm at the boundary in addition. In
comparison to the previous methods no pre-knowledge to choose the optimal Lamé parameters
is necessary. However, the computational cost rises immensely, as we have to introduce the
additional variable wf .

4.1.4. Coupling and Boundary Conditions

Coupling Conditions

At the interface Γi, we expect that no gaps are able to evolve between solid and fluid. There-
fore, the movement of the fluid and solid boundary has to coincide at the interface Γi. The
displacement of the solid domain us has to match the ALE mapping uf :

uf = us on Γi × I (geometric coupling condition).

In addition, we assume a no-slip condition such that the viscid fluid follows the motion of its
neighboring solid. Thus the solid and fluid velocities have to coincide at the interface Γi, such
that

vf = vs on Γi × I (kinematic coupling condition).
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4.1. A Nonlinear Fluid-Structure Interaction Problem

Furthermore, the surface tensions on the fluid boundary and solid boundary have to be equal
at the interface. As we have transformed the fluid equation on the reference domain, fluid
and solid stresses are given in the same coordinate system and we demand

FsΣsn = JfσfF
−T
f n on Γi × I (dynamic coupling condition).

Inflow and Do-Nothing Outflow Condition

If we describe the flow through a channel, we have to enforce boundary conditions at the
outflow boundary Γout ⊂ Γf . A common practice is to describe no condition at all. For such
a “natural” boundary condition, the velocity vectors get deflected and sheer out of line at the
outflow boundary. To allow at least Poiseuille flow to leave the domain without deflection, we
enforce the do-nothing condition

ρ̌f ν̌f∇̌v̌ − p̌ Id = 0 on Γ̌out.

The do-nothing outflow condition works excellent in several configurations. For example,
vorticities can leave the domain. In addition, on every straight outflow boundary-line segment
Γout, that is enclosed by no-slip Dirichlet boundaries, it holds

∫
Γout

p dΓ = 0. Thereby the
do-nothing outflow condition normalizes the pressure. In the ALE configuration this results
in the additional boundary term

aΓ(uf , vf)(ϕ) := −〈〈ρfνfF
−T
f ∇vTf , ϕ〉〉Γout .

Zero mean pressure at the outflow condition is not physiologically accurate in bio-medical
applications. For the simulation of an arteria the whole remaining arterial network has to be
taken into account. We refer to [65] for an overview on alternative boundary conditions used
in hemodynamics to model the pulsating pressure at the outflow boundary.

For the flow through a channel as regarded later in Chapter 8 we have to define inflow condi-
tions. We are going to use a parabolic inflow profile enforced by Dirichlet conditions vD on
the inflow boundary Γin ⊂ Γf .

If we apply a Dirichlet inflow condition as well as a do-nothing outflow condition, the velocity
variable vf will be an element of the space

Ṽf :=
{
ϕ ∈ H1(Ωf)

d
∣∣∣ ϕ = 0 on Γf \ (Γin ∪ Γout) and ϕ = vD on Γin

}
and W̃ v

f :=
{
ϕ
∣∣∣ ϕ ∈ L2(I; Ṽf) and ∂tϕ ∈ L2(I; Ṽf

∗
)
}
.

For brevity we are going to enforce zero Dirichlet conditions on Γf in the following Sections and
Chapters. Everything can be extended to configurations with inflow and outflow condition.
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4.1.5. Monolithic ALE-Formulation for Fluid-Structure Interaction

Monolithic formulations are well known for nonlinear FSI problems and they are used for
example in [84, 132, 56, 23, 149] to obtain robust numerical algorithms keeping errors occurring
from the coupling conditions small.

Usually the solid velocity has only limited regularity vs ∈W v
s , however to enforce the kinematic

coupling condition in a H
1
2 trace sense we will need vs

∣∣
Γi
∈ L2(I;H

1
2 (Γi)). We will not be able

to close this gap, but assume that every solution of the solid problem will fulfill the additional
smoothness vs ∈ L2(I;Vs). At least for the linear fluid-structure interaction problem, we were
able to prove in Theorem 3.3 this additional regularity for smooth initial data and right-hand
side. This enables to enforce the kinematic coupling condition by choosing a smooth trial space
for the common velocity variable v ∈W v defined on the whole domain. The same approach is
used to enforce the geometric coupling condition. We demand for the displacement u ∈ W u,
whereby u on Ωs is the physical solid displacement and on Ωf the variable u is the artificial
ALE mapping. Furthermore, due to a test function defined in the same velocity space V , the
dynamic coupling condition is automatically fulfilled. As the variable u and v now live on the
whole domain, we neglect the indices s and f as already in the linear case. In the case of the
here considered nonlinear FSI problem this leads to

Problem 4.4 (Fluid-structure interaction problem). Find a velocity v ∈W v, a displacement
u ∈W u and a pressure p ∈ L2(I;Lf) fulfilling the weak formulation:

aF (v, u, p)(ϕ) + aS(u, v)(ϕ) = ((ρfff , ϕ))f + ((ρsfs, ϕ))s ∀ϕ ∈ L2(I;V ),

aM (u)(ψ) + aV (u, v)(ψ) = 0 ∀ψ ∈ L2(I;Vf,0 ⊕Hs),

aD(v, u)(ξ) = 0 ∀ξ ∈ L2(I;Lf)

with initial conditions v(0) = v0 and u(0) = u0.

We denote by Vf,0⊕Hs the sum of the space Vf,0 defined on the fluid domain Ωf and the space
Hs defined on the solid domain Ωs. Thereby, we have

Vf,0 ⊕Hs :=
{
ϕ ∈ H

∣∣∣ ϕ∣∣Ωf
∈ Vf,0 and ϕ

∣∣
Ωs
∈ Hs

}
.

Remark 4.3. For Problem 4.4 we cannot prove existence of a unique solution. The spaces are
chosen in such a way that the semi-linear forms are well defined. The coupling conditions
are embedded in the same way into the variational formulation as for linear fluid-structure
interaction configuration in Problem 3.3. If the solution holds more regularity in time, we
can adapt the proof of Theorem 3.4 and show that the coupling conditions are fulfilled in the
trace sense.

To write the FSI problem more compact, we introduce for the volume force the linear opera-
tor

f(ϕ) := ((ρfff , ϕ))f + ((ρsfs, ϕ))s.

Remark 4.4. Here the volume force ff is defined on the reference domain Ωf . If the volume force
is given on the physical domain Ω̌f , we have to transform the data on the reference domain Ωf .
Then the right-hand side will depend on the solution of the ALE transformation u.
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If we define in addition the solution space

X := W v ×W u × L2(I;Lf),

and the combined test space

Y := L2(I;V )× L2(I;Vf,0 ⊕Hs)× L2(I;Lf),

we can write the continuous fluid-structure interaction problem in a very compressed form
as

Problem 4.5 (Fluid-structure interaction problem). Find u = (v, u, p) ∈ X with initial
conditions v(0) = v0 and u(0) = u0 such that

a(u)(ϕ) = f(ϕ) ∀ϕ ∈ Y (4.9)

with ϕ = (ϕ,ψ, ξ) and

a(u)(ϕ) := aF (u)(ϕ) + aS(u)(ϕ) + aV (u)(ϕ) + aM (u)(ψ) + aD(u)(ξ). (4.10)

We apply here the same notation as already used for the linear fluid-structure interaction
formulation in Section 3.1.4, not only for the semi-linear form, but in addition the label X
for the solution space and Y for the test space. In the next chapters, we will only tackle the
nonlinear fluid-structure interaction problem. Thereby, we will denote with X and Y always
the here defined spaces. Nevertheless, the presented techniques can be applied to the linear
model, too. The abuse of notations enables the reader to extend the results on his own.

4.2. Existence Theory for Nonlinear Fluid-Structure Interaction

We will assume in the following that there exists a unique smooth solution for Problem 4.5.
Nevertheless the existence and regularity results in literature do not provide such a result.
Nonlinear fluid-structure interaction problems have been analyzed in great detail in the last
decade. The first results have been published by Coutand and Shkoller in [47, 48]. We state
here their main theorem taken from [48], wherein the authors consider a similar nonlinear fluid-
structure interaction configuration in ALE coordinates with Saint-Venant Kirchhof material
law as in Problem 4.4.

Theorem 4.2 (Therorem 1 in [48]). Let Ω ⊂ R3 be a bounded domain of class H4, and let
Ωs be an open set of class H4 such that Ωs ⊂ Ω and Ω = Ωs ∪ Ωf . Let f ∈ Hn(I;H3−n(Ω))
for n = 0, ..., 3, f(0) ∈ H4(Ω) and ∂tf(0) ∈ H4(Ω). Assume the initial data satisfies

u0 = 0, v0 ∈ H1(Ω), v0

∣∣
Ωf
∈ H6(Ωf), v0

∣∣
Ωs
∈ H6(Ωs)

with div(v0) = 0 on Ωf and a set of compatibility conditions for the initial data on the interface
(see [48] for details).
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Then there exists T̄ ∈ I depending on v0, f , and Ωf such that there exists a unique velocity
v ∈ L2(Ī;H1

0 (Ω)) and pressure p ∈ Hn(Ī;H3−n(Ωf) with n = 0, ..., 2 solving the nonlinear
fluid structure interaction problem in ALE coordinates on Ī = (0, T̄ ). Furthermore

v
∣∣
Ωf
∈ Hn(Ī;Hk−n(Ωf)) with n = 0, .., 4,∫ t

0
v
∣∣
Ωs

dt ∈ Hn(Ī;Hk−n(Ωs)) with n = 0, .., 4,

u ∈ C0(Ī;H1(Ω)), u
∣∣
Ωf
∈ C0(Ī;H4(Ωf)), u

∣∣
Ωs
∈ C0(Ī;H4(Ωs)).

The existence result has been extended in [86, 93] by Kukavica, Tuffaha and coworkers for
lesser regularity assumptions on the initial data. By introducing a damping parameter in solid
and coupling condition, the authors in [87] where able to prove global existence of a solution
for fluid-structure interaction. We would like to emphasize that existence results for more
general domains, as considered in the numerical calculations later, only have been proven for
the linear FSI problem as for example in [53, 54, 3, 5], yet. The authors in [48] need the outer
boundary as well as the initial solid boundary to be extreme smooth to prove Theorem 4.2.
Furthermore, the solid has to be fully immersed by the fluid. Hence, configurations as given
in Figure 2.1 are not included in this result.

Further results can be found in [76, 77] by Grandmont and Hillairet, who use a plate model
to describe the solid motion. A further class of nonlinear FSI models with fixed interface for
fluid flow around a smooth elastic object is analyzed in [12, 13, 95], where in [13, 95] the
authors even prove the existence of strong solutions for smooth initial conditions. A similar
result can be found in [3, 94].

4.3. Optimal Control Problem

Several motivations for optimal control of fluid-structure interaction come from hemodynam-
ics. The arterial system of every patient varies widely. The geometry of the aorta can be
visualized using MRI images. However, not only the geometry but also the surrounding
system and the material parameters of the vascular system are patient-specific. To use the
simulation as a diagnostic tool, we have to take all these unknown variables into account.
As in vivo measurements are usually not at hand, we have to solve a parameter estimation
problem.

To simulate diseased arteries, it is important to reproduce the correct pressure values. This is
only possible if we have appropriate patient specific boundary conditions at hand modeling the
whole arterial network. For example in [63] and [65] Formaggia and coworkers couple 3D fluid-
structure interaction models with 1D/0D models for the remaining network. As a reduced
model, very often a windkessel model is used as presented in [148]. In [135] Spilker and Taylor
first suggest an optimal control problem to calibrate the windkessel parameters. Therein,
the whole arterial system is modeled by a reduced model. Gradient information is obtained
by finite difference approximations. In [122], a sequential unscented Kalman filter is used to
determine the windkessel parameters. Wall and coworkers suggest in [88] an adjoint based
approach having only the systolic and diastolic pressure available for the calibration. However,
the sensitivity information is only determined for the windkessel model. The windkessel model
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is very simple to implement, but fails to capture wave traveling phenomena. To be able
to resolve additional physical aspects in the models, it could be reasonable to allow time-
dependent parameters. Alternatively, a 3D fluid-structure interaction model can be coupled
with a reduced 1D fluid-structure interaction model. In [110] and [50], parameter estimation
approaches to calibrate the parameters in such 1D models are presented. In both articles
the authors use a quasi Newton algorithm and adjoint sensitivity information. An extension
taking sensitivity information into account of the full 3D model coupled with a 1D/0D model
has not been applied yet.

Furthermore, the effects of the surrounding tissue and organs has to be taken into account. In
[118], Moireau, Bertoglio, and coworkers divide the vessel wall in regions with distinct tissue
support and adjust the boundary condition in each region. In [117], they apply a Kalman
filter to automatically adapt the boundary condition such that the simulation matches the
time-resolved wall motion determined by a computed tomography (CT) angiographic scan.
A natural extension of their approach would be to allow the parameters in the boundary
condition to be distributed along the boundary.

The deformability of soft tissue can be an important index for the detection of anomalies or
diseases. In [27], Bertoglio, Moirea, and Gerbeau use a sequential reduced Kalman filter to
determine the Young’s modulus in the region of an aneurism. They divide the aneurism in
5 to 10 regions and assume the Young’s modulus to be constant in every region. In [25],
they extend the model applying a more realistic material law and use an image registration
algorithm to determine the vessel displacement at arbitrary time points as reference data.
Peregio, Veneziani, and Vergara compute in [123] sensitivity information to estimate the
wall stiffness. To reduce the computational time, they solve in every time-point an optimal
control problem. As the mesh motion is discretized via an explicit time-stepping scheme,
no sensitivity information of the mesh motion equation has to be computed. Similar to the
articles [27, 25, 117], the estimated parameters are updated in every time-step and the forward
simulation only runs once. To be able to incorporate better measurements, which are only
available at specific time-points, it would be reasonable to compute the sensitivities on the
space-time cylinder. In addition, as a homogenous distribution of the stiffness can only be
assumed for healthy patients, it is necessary to extend these results to distributed stiffness
parameters.

Naturally, the arterial system is never at rest. Hence, as initial condition we have to choose the
fluid flow and the displacement at one time point in the cardiac cycle. However, measurements
usually do not provide us with these distributed information. One possibility is to start the
system at rest and run several cardiac cycles until a periodic solution appears. An alternative
would be to control the initial conditions such that the simulation matches given measurements
at certain time points.

However, not only in hemodynamics are a large variety of applications for optimization prob-
lems constrained by fluid-structure interaction models available. Shape optimization has a
long tradition in aerodynamics. To take the elastic reaction of the controlled structure into
account more and more aeroelasticity models are beeing used during the optimization pro-
cess.

We are going to take the following chapters as general as possible such that the methods
developed in the following can be applied to most of these applications. Nevertheless, to keep
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4. Optimal Control of Nonlinear Fluid-Structure Interaction

everything readable, we will restrict us to the case with a control variable q ∈ L2(I;L2(Ωf))
or q ∈ L2(I;L2(Ωs)) acting as volume force in the right-hand side. We are going to comment,
if we have to proceed differently in the case of a Neumann boundary in the following chapters.
The extension to a control variable only distributed in space or to time-dependent parameters
is straightforward throughout the next chapters. In Section 8.3.3, we will control the artificial
material parameters in the mesh motion equation to obtain a smoother ALE transformation.
Therein, we are going to highlight shortly the additional difficulties appearing if we want to
control a distributed material parameter.

In fluid-structure interaction applications, we are often interested in the stresses in the solid
domain or in the forces acting on the coupling interface. For example hemodynamic forces,
including wall stresses, play a critical role in the development of stenosis according to [92].
In the case of an aneurism, high stresses will result in a rupture. Hence, the authors in [142]
suggest to compute the drag value

J (u) =

∫
I

∫
Γi

−Σ(u)ne1 dx dt (4.11)

for the benchmark examples along a moving flag. To reduce the boundary forces, the goal
would be to minimize such a time averaged drag functional. Furthermore, over the last years
great effort has been taken to use the simulation as a diagnostic tool. To obtain patient
specific simulations, measurements have to correlate with the simulation. For example in
[88], the systolic and diastolic pressure at certain points is used to determine patient specific
boundary conditions. In the last decade computed tomography (CT) and magnetic resonance
imaging (MRI) have advanced to the state, where detailed state and motion of the vessel
wall can be provided as in [25, 2]. In [98], even a data assimilation approach using flow field
data provided by a 4D phase contrast MRI has been presented. If we want the simulation to
coincide with measurements, we have to minimize a tracking type functional as for example

J (u, v) :=
γf

2

∫
Ĩ
‖v − vd‖2L2(Ω̃f)

dt+
γs

2

∫
Ĩ
‖u− ud‖2L2(Ω̃s)

dt. (4.12)

Therein, vd is a given desired fluid velocity field and ud a given desired displacement field
of the elastic structure. These measurements can be given on certain time intervals Ĩ ⊂ I
and on parts of the domain Ω̃s ⊂ Ωs or Ω̃f ⊂ Ωf . If measurements are only available at the
end-timepoint, we have the tracking type functional

J (u, v) :=
γf

2
‖v(T )− vd‖2L2(Ω̃f)

+
γs

2
‖u(T )− ud‖2L2(Ω̃s)

. (4.13)

Very often, only measurements at certain points xobs ∈ Ω are available, then we have a point
functional, as for example

J (u, v) :=
γf

2

∫
Ĩ
(v(xobs)− vd(xobs))

2 dt+
γs

2

∫
Ĩ
(u(xobs)− ud(xobs))

2 dt. (4.14)

We will present further examples for the cost functional in Section 8.

All the presented examples have in common that they are solved via minimization of the cost
functional constrained by a fluid-structure interaction problem. In a very abstract form, we
obtain the optimal control problem:
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Problem 4.6 (Optimal Control Problem).

min
q∈Q
J (q,u) = J (u) +

α

2
‖q‖2Q

subject to u ∈ X with v(0) = v0, u(0) = u0 and

a(u)(ϕ) = f(q)(ϕ) ∀ϕ ∈ Y,
qa ≤q ≤ qb.

Thereby, a(u)(ϕ) is the semi-linear form defined in (4.10) of the monolithic nonlinear fluid-
structure interaction problem. The semi-linear form consist of the fluid problem aF (·)(·) and
aD(·)(·) defined in (4.6), the solid problem aS(·)(·) and aV (·)(·) defined in (4.2) and the mesh
motion equation aM (·)(·) defined in (4.8). The control q ∈ Q enters the right-hand side as
volume force. For a control q ∈ L2(I;L2(Ωf)) on the fluid domain we have f(q)(ϕ) := ((q, ϕ))f

and for a control q ∈ L2(I;L2(Ωs)) on the solid domain we have f(q)(ϕ) := ((q, ϕ))f . In addition
the control variable is subject to control constraints with the bounds qa, qb ∈ R ∪ {±∞}
and qa < qb. We will denote with J (u, q) the regularized cost functional with Tikhonov
regularization and regularization parameter α > 0 in the following.

4.3.1. Discussion of Optimal Solutions

Prooving existence of an optimal solution of the nonlinear optimal control problem 4.6 is not as
straightforward as in the linear case. Due to the nonlinearity of the control-to-state mapping,
we cannot guarantee lower semicontinuity of the reduced functional j(q) = J (q,u(q)), even if
the functional J (q,u) is convex and continuous. We want to refer to [141] for existence results
for optimal control of semilinear parabolic problems and to [79] as well as [1] for existence
results for optimal control of the Navier-Stokes equations. Therein, the authors need, in
addition to the existence of the control-to-state mapping, its boundedness. Then, they can
prove weak convergence of a mimimization sequence (qi,ui) ⇀ (q̄, ū) in appropriate spaces.
To prove that the limit ū solves the state equation with control q̄, the authors have to take
the limit of the resulting sequence of weak formulations. Thereby, the limit in the nonlinear
terms has to be analyzed.

Hence, even if existence and uniqueness results were available for the nonlinear time dependent
fluid-structure interaction problem, existence results for the here considered optimal control
problem are far from trivial.

We want to highlight at this point uniqueness of the optimal solution cannot be guaranteed
as we have a nonlinear optimal control problem.

4.3.2. Adjoint Equations

For optimal control of a stationary fluid-structure interaction problem in [130], the necessary
optimality system is derived from using the Lagrange formalism. We follow the same approach,
as already in Section 3.3.2 for the linear optimal control problem, now for the nonlinear optimal
control problem presented in Problem 4.6.
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4. Optimal Control of Nonlinear Fluid-Structure Interaction

Formal Lagrange Formalism

For all the cited configurations at the beginning of this section, we can use the Lagrange
formalism to compute formally the gradient of the reduced cost functional. As in Section 3.3.2,
we define the Lagrangian L : Q×X × Y → R by

L(q,u, z) :=J (q,u)− a(u)(z) + f(q)(ϕ)

+ (u0 − u(0), zu(0)) + (v0 − v(0), zv(0)),

with u = (v, u, p) the solution of the fluid-structure interaction problem and the Lagrange
multipliers z = (zv, zu, zp). Here, a(u)(z) is the semi-linear form defined in (4.10) with the
control q acting as volume force in the right-hand side f(q)(ϕ). If the triple u = (v, u, p) is
the solution of the nonlinear fluid-structure interaction configuration in Problem 4.5, we can
express again the reduced functional j(q) := J (q,u(q)) via the Lagrangian j(q) = L(q,u(q), z)
for arbitrary values z = (zv, zu, zp) ∈ Y . Hence, we get, as for the linear FSI problem, the
representation of the derivative of the reduced functional

j′(q)(δq) = L′q(q,u(q), z)(δq) + L′u(q,u(q), z)(δu),

whereby δu = u′q(q)(δq) is the derivative of the state solution with respect to the control
variable. If we choose z ∈ Y such that z solves the adjoint equation

L′u(q,u, z)(ϕ) = 0 ∀ϕ ∈ X, (4.15)

the derivative of the Lagrange functional with respect to u is zero independent of δu. Then,
we can evaluate the derivative of the reduced functional in an arbitrary direction δq ∈ Q by
evaluating

j′(q)(δq) = L′q(q,u, z)(δq).

In the case of the nonlinear fluid-structure interaction problem, we obtain the adjoint equa-
tion

Problem 4.7 (Adjoint FSI Problem). Find z ∈ Y solving the adjoint equation

a′u(u)(ϕ, z)− (ψ(0), zu(0))− (ϕ(0), zv(0)) = J ′u(u)(ϕ) ∀ϕ ∈ X.

Hereby, we denote with a′u(u)(ϕ, z) the linearization of a(u)(z) with respect to u in direc-
tion ϕ. As we only consider the case of control acting as volume force in the right-hand side
in this section, the adjoint equation does not depend on the control variable. If the control
variable enters for example as parameter into the equations, then the adjoint equation will
also depend on the control variable.

Remark 4.5. In comparison to Section 3.3.2, we are not able to prove strictly an optimality
system. Hence, we cannot be sure if the optimal state and adjoint solution will be an element
of the chosen spaces in the Lagrange functional. Nevertheless, for a large class of examples
the formally derived adjoint equation is indeed the correct adjoint equation, as for example
in Section 3.3 for optimal control of linear fluid-structure interaction.

Remark 4.6. If we have nonhomogenous Dirichlet conditions on parts of the outer boundary,
we can embed the Dirichlet conditions into the space X. For example to enforce an inflow
profile we can proceed as suggested in Section 4.1.4. However, the test functions in the weak
state equation still have trace zero on the Dirichlet boundary. Hence the adjoint solution has
zero Dirichlet conditions on the outer boundary.
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Discussion of the Adjoint Equations

To derive the adjoint equation, we have to compute the derivative of the semi-linear form
a(u)(z) with respect to the velocity variable v, the displacement u, and the pressure p. In the
monolithic formulation (4.10) the fluid equations are mapped on a fixed reference domain by
the ALE transformation. All differentiations can now be carried out on the reference domain.
If the fluid problem is formulated in Eulerian-coordinates, the moving fluid domain must be
carefully included. Then the theory of shape calculus has to be used to compute sensitivity
information as in [119, 31, 30]. In the following these shape derivatives are hidden in the
derivatives with respect to the ALE transformation.

We have summarized in Appendix B how to compute the linearization of the individual terms,
whereby we follow [126, 149]. Then the adjoint equation can be written in more detail as

Problem 4.8. Find (zv, zu, zp) ∈ L2(I;V )× L2(I;Vf,0 ⊕Hs)× L2(I;Lf) solving

a′Fv (u)(ϕ, zv) + a′Dv (u)(ϕ, zp)− (ϕ(0), zv(0))

+a′Sv (u)(ϕ, zv) + a′Vv (u)(ϕ, zu) = J ′v(u)(ϕ) ∀ϕ ∈W v,

a′Fu (u)(ψ, zv) + a′Du (u)(ψ, zp) + a′Mu (u)(ψ, zu)

+a′Su (u)(ψ, zv) + a′Vu (u)(ψ, zu)− (ψ(0), zu(0)) = J ′u(u)(ψ) ∀ψ ∈W u,

a′Fp (u)(ξ, zv) = J ′p(u)(ξ) ∀ξ ∈ L2(I;Lf).

If we take a closer look, we see, that the derivative of the fluid semi-linear form aF (·)(·) and
aD(·)(·), defined in (4.6), with respect to velocity and pressure results in a linearized adjoint
Navier-Stokes problem on the moving domain given by the displacement u. The differentiation
of the nonlinear elastodynamics equations, consisting of the semi-linear form aS(·)(·) and
aV (·)(·), defined in (4.2), results in an adjoint wave equation. Together the derivative of the
fluid equation aF (·)(·) and the derivative of the mesh motion equation aM (·)(·) with respect
to the displacement u, describe the sensitivity information of the moving fluid domain.

In the state equation (4.10), the fluid and solid models are coupled due to the dynamic
and kinematic coupling condition. The mesh motion equation is coupled by the geometric
coupling condition. We enforce the coupling condition in a variational way in the monolithic
formulation in Problem 4.5. Thereby, we choose the velocity v ∈W v and displacement u ∈W u

in an adequate trial spaces to enforce the kinematic and geometric coupling conditions. In
addition, the test variable ϕ ∈ L2(I;V ) guarantees the dynamic coupling condition. Hence,
for the state equation, we have two Dirichlet coupling conditions and one Neumann coupling
condition. Now, we only have the variable zv ∈ L2(I;V ) defined on the whole domain in
the adjoint equation and instead two test functions ϕ ∈ W v and ψ ∈ W u defined on the
whole domain. Therefore, we now have enforced in a variational manner one Dirichlet and
two Neumann coupling conditions in the adjoint equation.

For a tracking type functional (4.12), the sensitivity information of the functional enters the
adjoint equation as volume force. In the case of a boundary functional as (4.11), we get a
Neumann boundary condition. If we only have end observation, the functional (4.13) changes
the terminal conditions of the adjoint equation. In the case of a point functional, we have a
dirac function in the right-hand side in the adjoint equation.
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Symmetric Formulation for the Nonlinear FSI Problem

In Section 3.1.4 and Section 3.3.2, we highlight that we introduce in the linear fluid-structure
interaction model the velocity variable in the wave equation in an unconventional way. This
enables us to use the same existence and uniqueness results for the linear state and linear
adjoint equations.

In the last section, we derived the adjoint equation by calculating the linearization of the
FSI Problem around the time dependent solution (u, v) and then taking the adjoint of the
linearized operator. We could see that the resulting linear adjoint equation is not just a
linearized fluid-structure interaction problem running back in time. If we would just adapt
the approach in Section 3.1.4 by introducing the velocity variable in a new way this would
not change. We still would have a change in the coupling conditions as the sensitivity of the
mesh motion enters the adjoint structure equations via Neumann coupling conditions.

Furthermore, numerical experiments in Section 8.1 have not shown a faster or more stable
convergence of the optimal solution, despite using the modified symmetric formulation. As
we are neither going to prove existence nor regularity results for the adjoint equation and as
we could not see any numerical benefit, we decided to use the standard formulation to get a
first order system in the elastodynamics equation.

4.3.3. Necessary Optimality conditions

The optimal control q̄ of the considered control problem has to be an element of the admissible
set

Qad = { q ∈ Q | qa ≤ q ≤ qb }
and has to fulfill the necessary optimality condition

j′(q̄)(δq − q̄) ≥ 0 ∀δq ∈ Qad.

The derivatives of the reduced functional j(q) := J(q,u(q)) in direction of the admissible set
have to vanish. Using the Lagrange formalism, we were able to derive a representation of
the derivative of the reduced functional. Using this approach, we see that the optimal state,
adjoint, and control variable have to constitute a stationary point of the Lagrangian L.

1. The optimal state ū = (v, u, p) ∈ X fulfills the initial conditions u(0) = u0 and v(0) = v0

and solves the fluid structure interaction Problem 4.5. Therefore the state variable ū =
u(q̄) ∈ X has to solve

L′z(q̄, ū, z̄)(ϕ) = 0 ∀ϕ ∈ Y.

2. The optimal adjoint z̄ = z(q̄) ∈ Y has to solve

L′u(q̄, ū, z̄)(ϕ) = 0 ∀ϕ ∈ X.

Thus z ∈ Y solves the solution of the adjoint fluid-structure interaction Problem 4.8.

3. It holds in addition the necessary optimality condition

j′(q̄)(δq − q̄) = L′q(q̄, ū, z̄)(δq − q̄) ≥ 0 ∀δq ∈ Qad.
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In the case of a control q in the control space Q = L2(I;L2(Ω)) acting as volume force in the
right-hand side this results in

α

2
(q, δq − q̄)Q + ((δq − q̄, z̄)) ≥ 0 ∀δq ∈ Qad.

If we define the pointwise projection PQad
on the admissible set Qad by

PQad
: L2(I;L2(Ω))→ L2(I;L2(Ω)), PQad

(r)(t, x) := max(qa,min(qb, r(t, x))),

we can rewrite the necessary optimality condition to

q̄ = − 1

α
PQad

(z̄v) .
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Usually, the finite element method is used to discretize a time-dependent PDE in space and a
finite difference approach is applied to discretize in time. The mixture of variational discretiza-
tion and finite differences has several drawbacks. For example “optimize” and “discretize”
do not have to commute. If we first discretize the state equation and derive the optimality
system, using the discrete Lagrangian, the system can differ to the system we get if we dis-
cretize the continuous optimality system. If we use a Petrov-Galerkin discretization on the
space-time cylinder instead, we can guarantee that “optimize” and “discretize” commute up
to quadrature errors. This is important, as we need the exact discrete gradient to get fast
convergence of the optimization algorithm presented in Section 6.3. In addition, the varia-
tional discretization in time enables a posteriori error estimation, as we are going to see in
Section 7.

We restrict ourselves in this chapter to a control q in the control space Q = L2(I;H) acting
as volume force f(q)(ϕ) := ((q, ϕ))f + ((q, ϕ))s on the solid and fluid domain. All the results
derived in this chapter can be directly extended to the case with a control only time dependent
or only acting on parts of the domain. For a Neumann boundary control we could proceed
similarly.

We first introduce a temporal discretization of the nonlinear fluid-structure interaction prob-
lem in detail in Section 5.1. We apply the Petrov-Galerkin discretization suggested by Meidner
and Richter in [111] and [112] to systematically derive a fractional-step theta time-stepping
scheme for the fluid-structure interaction model in Problem 4.5. Then, we derive an adjoint
time-stepping scheme in Section 5.2. In Section 5.3, we briefly comment on the difficulties
in spatial discretization and state the finite element spaces used. Finally, we discretize the
control variable and state the resulting fully discrete necessary optimality condition in Section
5.5. We could use the same methods to obtain a fully discrete optimality system for the linear
fluid-structure interaction problem.

5.1. Time Discretization of the State Equation

The nonlinear elastodynamics equations are of hyperbolic type and energy-conserving over
time. Therefore, either explicit time-stepping schemes with small time steps or implicit time-
stepping schemes with small damping should be used. The fractional-step theta time-stepping
scheme presented in [37] has shown to have excellent properties to discretize the Navier-Stokes
equations. As the second order time-stepping scheme is A-stable and has only little numerical
dissipation, numerical experiments in [131] have shown that it works excellent for monolithic
fluid-structure interaction, too.
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5.1.1. Theta Time-Stepping Scheme

The Galerkin discretization approach in [111, 112] enables to derive arbitrary theta time-
stepping schemes. For θ = 0.5 the method coincides with a Crank-Nicolson time-stepping
scheme and for θ = 1 with a backward Euler method. In addition, we can combine three steps
to the fractional-step theta time-stepping scheme. In the following, we partition the time
Interval I = (0, T ) in M subintervals Im = (tm, tm−1) with t0 < t1 < ... < tM = T . On every
time interval Im, we define a parameter θm ∈ [0, 1] and the interval length km := tm− tm−1.

A very detailed introduction and motivation for continuous Galerkin discretization in time can
be found in the textbook [57] by Eriksson, Estep, Hansbo, and Johnson. Those authors show
that the Crank-Nicolson time-stepping scheme is closely connected to piecewise linear trial and
piecewise constant test functions. Motivated by these results, we are going to discretize the
velocity and displacement field using a piecewise linear trial space W v

k ⊂ W v and W u
k ⊂ W u

with

W u
k = W v

k :=
{
v ∈ C(Ī;V )

∣∣∣ v∣∣Im ∈ P1(Im, V ),m = 1, 2, ...,M
}
.

To take the pressure fully implicit we use the piecewise constant and discontinuous test space
Lpk ⊂ L2(I;Lf) with

Lpk =
{
p ∈ L2(I;Lf)

∣∣∣ p∣∣Im ∈ P0(Im, Lf),m = 1, 2, ...,M
}
.

For the incompressibility constraint the test space L2(I;Lf) is replaced by the piecewise con-
stant space Lpk, too. Thereby the semidiscrete pressure can later be interpreted as Lagrange
multiplier of the divergence condition in each time interval Im. To obtain an arbitrary theta
time-stepping scheme, we choose for the momentum equation and the extension a discontin-
uous test space Lvk,θ ⊂ L2(I;V ) and Luk,θ ⊂ L2(I;Vf,0 ⊕Hs) with

Lvk,θ =
{
ϕ ∈ L2(I;V )

∣∣∣ ϕ∣∣Im ∈ P θ0 (Im, V ),m = 1, 2, ...,M, ϕ(0) ∈ V
}
,

Luk,θ =
{
ϕ ∈ L2(I;Vf,0 ⊕Hs)

∣∣∣ ϕ∣∣Im ∈ P θ0 (Im, Vf,0 ⊕Hs),m = 1, 2, ...,M, ϕ(0) ∈ Vf,0 ⊕Hs

}
.

Thereby the slope, as suggested in [111], depends on the parameter θm on each time interval
Im, as we choose

P θ0 (Im, V ) := {ωθ,mϕ | ϕ ∈ V } and P θ0 (Im, Vf,0 ⊕Hs) := {ωθ,mψ | ψ ∈ Vf,0 ⊕Hs }

with

ωθ,m(t) = 1 + 6
(
θm −

1

2

)2t− tm−1 − tm
∆tm

. (5.1)

Therefore, if we look for the semidiscrete solution uk := (vk, uk, pk) ∈ Xk := W v
k ×W u

k × L
p
k

and if we replace the test space Y in Problem 4.5 with the just defined semidiscrete space
Yk,θ := Lvk,θ × Luk,θ × L

p
k, we automatically obtain the Petrov Galerkin semidiscretization of

the state equation:
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Problem 5.1. Find for q ∈ Q a solution uk ∈ Xk with initial conditions vk(0) = v0 and
uk(0) = u0 such that

aF (uk)(ϕ) + aS(uk)(ϕ) = f(q)(ϕ) ∀ϕ ∈ Lvk,θ,
aM (uk)(ψ) + aV (uk)(ψ) = 0 ∀ψ ∈ Luk,θ,

aD(uk)(ξ) = 0 ∀ξ ∈ Lpk.

t

ωθ,1(t)

ωθ,m(t) ωθ,M (t)

+1

+ + + + + + + +

t0 t1 tm−1 tm tm+1 tM−1 tM

Figure 5.1.: Plot of the basis functions ωθ,m

Now we exploit the fact, that every function (ϕ,ψ, ξ) ∈ Lvk,θ×Luk,θ×L
p
k can be represented as

linear combination of the basis functions ωθ,m given in Figure 5.1 and characteristic function
XIm such that

ϕ =

M∑
m=0

ϕmωθ,m(t), ψ =

M∑
m=0

ψmωθ,m(t) and ξ =

M∑
m=1

ξmXIm(t)

with (ϕm, ψm, ξm) ∈ V × Vf,0 ⊕Hs × Lf .

t

ω0(t)
ωm(t) ωM (t)

+1

+ + + + + + + +

t0 t1 tm−1 tm tm+1 tM−1 tM

Figure 5.2.: Plot of the basisfunctions ωm

As (vk, uk) ∈W v
k ×W u

k are piecewise linear functions in time, we can use the representation

vk =

M∑
m=0

vk,mωm(t) and uk =

M∑
m=0

uk,mωm(t)

with vk,m := vk(tm) and uk,m := uk(tm), whereby ωm(t) is a standard hat function as in
Figure 5.2 on the time grid. In addition, we can use for the semidiscretized pressure the
representation

pk =
M∑
m=1

pk,mXIm(t) with pk,m :=
1

km

∫
Im

pkdt.
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For nonlinear problems, as the considered fluid-structure interaction problem at hand, we
have to evaluate the time-integrals with an appropriate quadrature rule. Instead of using a
quadrature rule of high order, we are going to evaluate the inner product in time using the
following theta-dependent trapezoidal rule∫

Im

h(t)ωθ,m(t) dx ≈ km{θmh(t−m) + (1− θm)h(t+m−1)} (5.2)

suggested in [111] with

h(t+m) := lim
δt→0+

h(tm + δt) and h(t−m) := lim
δt→0−

h(tm + δt).

Thereby, the resulting time-stepping scheme coincides with a standard theta time-stepping
scheme and inherits its well known properties. For smooth functions multiplied with the
theta-dependent function ωθ,m, the quadrature rule is of second order convergence.

Lemma 5.1. Let h ∈W 2,1(Im,R) and ωθ,m defined by (5.1) for m = 1, ...,M . Then it holds∫
Im

h(t)ωθ,m dt = km{θmh(t−m) + (1− θm)h(t+m−1)}+Rm(h).

The remainder Rm(h) satisfies

|Rm(h)| ≤ k2
m‖∂2

t v‖L1(Im,R).

The proof of Lemma 5.1 can be found in [111]. As we have chosen for the incompressibility
condition the test function ξ ∈ Lpk the θ-quadrature rule would only be of first order here. So
we use a standard trapezoidal rule instead to evaluate aD(·)(·).
Remark 5.1. For the linear fluid-structure interaction model the theta-dependent quadrature
rule evaluates exactly the time integrals in the bi-linear a(·)(·), with exception of the divergence
condition.

If we apply the stated quadrature rule and take into account that we have for the derivative
in time of (vk, uk) ∈W v

k ×W u
k on every time interval

∂tvk
∣∣
Im

=
1

km
(vk,m − vk,m−1) and ∂tuk

∣∣
Im

=
1

km
(uk,m − uk,m−1),

then we obtain

Problem 5.2. Find for q ∈ Q a solution uk ∈ Xk with initial conditions vk(0) = v0 and
uk(0) = u0 such that

ak(uk)(ϕ) = fk(q)(ϕ) ∀ϕ ∈ Yk,θ (5.3)

with

ak(uk)(ϕ) =
M∑
m=1

[
aFk,m(uk,m,uk,m−1)(ϕm) + aSk,m(uk,m,uk,m−1)(ϕm) + aMk,m(uk,m,uk,m−1)(ψm)

+ aVk,m(uk,m,uk,m−1)(ψm) + aDk,m(uk,m,uk,m−1)(ξm)
]
,

fk(q)(ϕ) =

M∑
m=1

fk,m(q)(ϕm).
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5.1. Time Discretization of the State Equation

The particular semi-linear forms aFk,m(·, ·)(·), aSk,m(·, ·)(·), aMk,m(·, ·)(·), aVk,m(·, ·)(·), as well as

aDk,m(·, ·)(·) and the expression fk,m(·)(·) are explained in detail in the following.

In detail, we get for m = 1, ...,M with the test functions (ϕm, ψm, ξm) ∈ V × Vf,0 ⊕Hs × Lf

on every time-interval Im the following time discretized: semi-linear forms.

aFk,m(uk,m,uk,m−1)(ϕm) :=
(
ρf

[
θmJk,m + (1− θm)Jk,m−1

]
(vk,m − vk,m−1), ϕm

)
f

−
[
θm

(
ρfJk,mF

−1
k,m(uk,m − uk,m−1) · ∇vk,m, ϕm

)
f

+ (1− θm)
(
ρfJk,m−1F

−1
k,m−1(uk,m − uk,m−1) · ∇vk,m−1, ϕm

)
f

]
+ km

[
θm

(
ρfJk,m(F−1

k,mvk,m · ∇)vk,m), ϕm

)
f

+ (1− θm)
(
ρfJk,m−1(F−1

k,m−1vk,m−1 · ∇)vk,m−1), ϕm

)
f

]
+ km

[
θm

(
Jk,m(σf)k,mF

−T
k,m,∇ϕm

)
f

+ (1− θm)
(
Jk,m−1(σf)k,mF

−T
k,m−1,∇ϕm

)
f

]
,

aSk,m(uk,m,uk,m−1)(ϕm) := (ρs(vk,m − vk,m−1), ϕm)s

+ km

[
θm (Fm(Σs)k,m,∇ϕm)s + (1− θm) (Fk,m−1(Σs)k,m,∇ϕm)s

]
,

aMk,m(uk,m,uk,m−1)(ψ) :=km
[
θm ((σm)k,m,∇ψm)f + (1− θm) ((σm)k,m,∇ψm)f

]
,

aVk,m(uk,m,uk,m−1)(ψ) := (uk,m − uk,m−1, ψm)s − km
[

(θmvk,m + (1− θm)vk,m−1, ψm)s

]
,

aDk,m(uk,m,uk,m−1)(ξ) :=
km
2

(
div(Jk,mF

−1
k,mvk,m) + div(Jk,m−1F

−1
k,m−1vk,m−1), ξm

)
f
,

and after applying the theta quadrature rule (5.2) on the right-hand side we obtain on the
time interval Im

fk,m(q)(ϕm) :=km

[
θm
(
q(t−m), ϕm

)
s

+ (1− θm)
(
q(t+m−1), ϕm

)
s

]
.

Thereby, we denote with Jk,m, Fk,m, (σf)k,m, (σm)k,m and (Σs)k,m the evaluation of the
respective terms at the time point t−m and for the values with index m − 1 the evaluation at
t+m−1.

Due to the linearity of the semilinear form ak(uk)(ϕ) with respect to the test function ϕ, we
can rewrite the semidiscretized nonlinear fluid-structure interaction as time-stepping scheme.

Problem 5.3. Let (θm)Mm=1 ∈ [0, 1]M and (vk,0, uk,0) = (v0, u0). Find for q ∈ Q a solution
(uk,m)Mm=1 ∈ VM × VM × LMf by iterating for m = 1, ...,M :

aFk,m(uk,m,uk,m−1)(ϕ) + aSk,m(uk,m,uk,m−1)(ϕ) = fk,m(q)(ϕ) ∀ϕ ∈ V,
aMk,m(uk,m,uk,m−1)(ψ) + aVk,m(uk,m,uk,m−1)(ψ) = 0 ∀ψ ∈ Vf,0 ⊕Hs,

aDk,m(uk,m,uk,m−1)(ξ) = 0 ∀ξ ∈ Lf .
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5. Discretization

5.1.2. Divergence Condition

The divergence condition in Problem 5.3 is only fulfilled in an average sense in every time
interval Im as we demand in the time-stepping scheme in every step m = 1, ...,M

km
2

(
div(Jk,mF

−1
k,mvk,m) + div(Jk,m−1F

−1
k,m−1vk,m−1), ξ

)
f

= 0 ∀ξ ∈ Lf .

Thereby, errors in the divergence condition are conserved and can accumulate over time. Thus,
we are going to enforce the divergence condition to be fulfilled in every time point, by using
instead

aDk,m(uk,m,uk,m−1)(ξ) = km

(
div(Jk,mF

−1
k,mvk,m), ξ

)
f
.

If the initial condition is divergence-free, both formulations are equivalent. A detailed discus-
sion of the divergence condition for the Navier-Stokes equations can be found in [112].

5.1.3. Fractional-Step Theta Time-Stepping Scheme

For θm = 1 the resulting time-stepping scheme corresponds to an implicit backward Euler
time-stepping scheme. This is known to be A-stable and of first order. The severe damping
prevents oscillations in the elastic structure. Hence, the Euler scheme is inapplicable for fluid-
structure interaction. For θ = 0.5 we obtain the second order Crank-Nicolson time-stepping
scheme. The Crank-Nicolson method conserves energy and thereby errors can accumulate
during the simulation of diffusion equations. Thus, very small time steps are necessary to
have a stable algorithm for the fluid-structure interaction model. To derive a fractional-step
theta scheme, we will combine three steps to one macro time step with step size kn and
n = 1, . . . ,M/3 and for m = 3 · n

(km, km+1, km+2) := (αkn, (1− 2α)kn, αkn),

(θm, θm+1, θm+2) := (θ, (1− θ), θ).
If we choose

θ =
1− 2α

1− α and α := 1−
√

1

2
the resulting fractional-step theta time-stepping scheme is known to be A-stable and of second
order accuracy [37]. Due to its little numerical dissipation it is especially well suited for the
coupled problem of wave equation and Navier-Stokes equations considered in this thesis. In
addition, the resulting fractional-step theta time-stepping scheme in Problem 5.3 coincides
with the time discrete Petrov-Galerkin formulation of Problem 5.1 up to numerical quadrature
for the given choice of parameters.

5.2. Time Discretization of the Adjoint Equation

5.2.1. Theta Time-Stepping Scheme

As already in the previous Section 5.1, we replace the continuous spaces by the suggested semi-
discrete spaces Xk and Yk,θ. Therefore, the Petrov-Galerkin semidiscretized adjoint problem
writes as
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5.2. Time Discretization of the Adjoint Equation

Problem 5.4. Find (zvk , z
u
k , z

p
k) ∈ Yk,θ = Lvk,θ × Luk,θ × L

p
k such that

a′u(uk)(ϕ, zk)− (ψ(0), zuk (0))− (ϕ(0), zvk(0)) = J ′u(uk)(ϕ) ∀ϕ ∈ Xk. (5.4)

As test and trial spaces have been switched in the adjoint equation, the adjoint solutions
zvk and zuk are now elements of the θ dependent space Lvk,θ and Luk,θ. Every test function

(ϕ,ψ, ξ) ∈ Lvk × Luk × L
p
k can be presented as

ϕ =
M∑
m=0

ϕmωm(t), ψ =
M∑
m=0

ψmωm(t), ξ =
M∑
m=1

ξmXIm(t)

with (ϕm, ψm, ξm) ∈ V × V × Lf , too. Thereby, ωm is again a hat function on the given
time grid as in Figure 5.2. To evaluate the time integrals in the adjoint equation, we use the
possibility to write functions in Xv

k,θ ×Xu
k,θ ×X

p
k as linear combination of ωθ,m and XIm . We

get

zvk =
M∑
m=0

zvk,mωθ,m(t), zuk =
M∑
m=0

zuk,mωθ,m(t), and zpk =
M∑
m=1

zpk,mXIm(t)

with zvk,m :=
1

km

∫
Im

zvkdt, zuk,m :=
1

km

∫
Im

zukdt, and zpk,m :=
1

km

∫
Im

zpkdt.

Applying again the suggested quadrature rule (5.2) and exploiting the linearity of the equation
(5.4) with respect to the test functions results again in a time-stepping scheme. Thereby, the
derivative of the cost functional is either evaluated exactly or with a quadrature rule of higher
order such that the discretization error can be neglected. It is only important to use the same
quadrature rule as used for the evaluation of the functional to compute the exact discrete
gradient.

To illustrate how to derive the time-stepping scheme, we evaluate exemplary the integral terms
occurring if we test the adjoint transport term with ϕ = ϕmωm. We apply the quadrature
rule (5.2) on the time interval Im and get∫

Im

(ρfJk(F
−1
k (vk − ∂tuk) · ∇)ωm(t)ϕm), zvk,mωθ,m)f dt =

kmθm((ρfJk(t
−
m)(F−1

k (t−m)(vk(t
−
m)− ∂tuk(t−m)) · ∇)ωm(t−m)ϕm, z

v
k,m)f

+km(1− θm)((ρfJk(t
+
m−1)(F−1

k (t+m−1)(vk(t
+
m−1)− ∂tuk(t+m−1)) · ∇)ωm(t+m−1)ϕm, z

v
k,m)f

= kmθm((ρfJk,m(F−1
k,m(vk,m −

uk,m − uk,m−1

km
) · ∇)ϕm, z

v
k,m)f .

Similarly we obtain on the time interval Im+1∫
Im+1

(ρfJk(F
−1
k (vk − ∂tuk) · ∇)ωm(t)ϕm), zvk,m+1ωθ,m+1)f dt =

km+1θm+1((ρfJk(t
−
m+1)(F−1

k (t−m+1)(vk(t
−
m+1)− ∂tuk(t−m+1)) · ∇)ωm+1(t−m+1)ϕm, z

v
k,m+1)f

+km+1(1− θm+1)((ρfJk(t
+
m)(F−1

k (t+m)(vk(t
+
m)− ∂tuk(t+m)) · ∇)ωm(t+m)ϕm, z

v
k,m+1)f

= km+1(1− θm+1)((ρfJk,m(F−1
k,m(vk,m −

uk,m+1 − uk,m
km+1

) · ∇)ϕm, z
v
k,m+1)f .
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5. Discretization

As ϕ = ϕmωm has compact support only on the time intervals Im and Im+1 we get∫
I
(ρfJk(F

−1
k (vk − ∂tuk) · ∇)ωm(t)ϕm), zvk)Ωf

dt =

kmθm((ρfJk,m(F−1
k,m(vk,m −

uk,m − uk,m−1

km
) · ∇)ϕm, z

v
k,m)f

+km+1(1− θm+1)((ρfJk,m(F−1
k,m(vk,m −

uk,m+1 − uk,m
km+1

) · ∇)ϕm, z
v
k,m+1)f .

Due to the implicit structure of the adjoint equation, we do not integrate the adjoint equation
first in time before replacing the continuous spaces with its discrete equivalent. Thus, we have
to evaluate terms with the time derivative of the test function ∂t(ϕmωm). We just exploit the
fact that ∂tωm

∣∣
Im

= 1
km

, ∂tωm
∣∣
Im+1

= 1
km+1

and zero elsewhere. Using the same techniques as

before, we get for example ∫
I
−(ρfJk(F

−1
k ∂tωm(t)ψm · ∇)vk), z

v
k)Ωf

dx =

−((1− θm)ρfJk,m−1(F−1
k,m−1ψm · ∇)vk,m−1 + θmρfJk,m(F−1

k,mψm · ∇)vk,m, z
v
k,m)f

+((1− θm+1)ρfJk,m(F−1
k,mψm · ∇)vk,m + θm+1ρfJk,m+1(F−1

k,m+1ψm · ∇)vk,m+1, z
v
k,m+1)f .

Remark 5.2. Note that the first and last step of the adjoint time-stepping scheme will look
slightly differently. The basis function ωM (t) and ω0(t) only have support on the time interval
IM and I1. To make clear the structure of the resulting time-stepping scheme we sketch the
structure in the following. The semi-linear forms in the adjoint equation can be defined in the
same spirit as the state equation after systematically applying the theta quadrature rule (5.2).

1. For m = M , find zk,M ∈ V × Vf,0 ⊕Hs × Lf such that ∀ϕ ∈ V × V × Lf :

(a′u)k,M (uk,M ,uk,M−1)(ϕ, zk,M ) = J ′u,M (uk,M ,uk,M−1)(ϕ).

2. For m = M − 1, ..., 1 find zk,m ∈ V × Vf,0 ⊕Hs × Lf such that ∀ϕ ∈ V × V × Lf :

(a′u)k,m(uk,m+1,uk,m,uk,m−1)(ϕ, zk,m, zk,m+1) = J ′u,m(uk,m+1,uk,m,uk,m−1)(ϕ).

3. For m = 0 find zk,0 ∈ V × Vf,0 ⊕Hs × Lf such that ∀ϕ ∈ V × V × Lf :

(a′u)k,0(uk,1,uk,0)(ϕ, zk,1)− (ψ, zuk,0)− (ϕ, zvk,0) = J ′u,0(uk,0,uk,1)(ϕ).

As we can see, to compute the adjoint solution zm, we need the adjoint solution zm+1 from
the previous time step. Hence, the adjoint equation runs backward in time. In contrast to
the forward problem the adjoint time-stepping scheme depends on θm and θm+1 and on the
solution um−1, um, and um+1. Therefore, the adjoint time-stepping scheme has not the same
structure as a fractional-step theta scheme. The adjoint value zk,0 gets important if we control
the initial condition.
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5.3. Space Discretization

5.2.2. Adjoint Divergence Condition

The averaged divergence condition causes an “average adjoint pressure term”. As we changed
the divergence condition in Section 5.1.2, we have to adapt the adjoint time-stepping scheme
to get a consistent formulation. Therefore, we replace in every time step m = M, .., 1 the
adjoint pressure dependent terms

(a′Dv )k,m(uk,m)(ϕ, zpk,m) =km(div(Jk,mF
−1
k,mϕ), zpk,m))Ωf

+ km+1(div(Jk,mF
−1
k,mϕ), zpk,m+1))Ωf

,

(a′Du )k,m(uk,m)(ψ, zpk,m) =km(div(Jk,m tr(F−1
k,m∇ψ)F−1

k,mvk,m), zpk,m))Ωf

+ km+1(div(Jk,m tr(F−1
k,m∇ψ)F−1

k,mvk,m), zpk,m+1))Ωf

− (div(Jk,mF
−1
k,m∇ψF−1

k,mvk,m), zpk,m)Ωf

− km+1(div(Jk,mF
−1
k,m∇ψF−1

k,mvk,m), zpm+1)Ωf
,

by the terms

(a′Dv )k,m(uk,m)(ϕ, zpk,m) =km(div(Jk,mF
−1
k,mϕ), zpk,m))Ωf

,

(a′Du )k,m(uk,m)(ψ, zpk,m) =km(div(Jk,m tr(F−1
k,m∇ψ)F−1

k,mvk,m), zpk,m))Ωf

− (div(Jk,mF
−1
k,m∇ψF−1

k,mvk,m), zpk,m)Ωf
.

Thereby the adjoint pressure is taken fully implicitly again. Now the semi-discretized adjoint
and semidiscretized-state equation match again.

5.3. Space Discretization

The time discretized formulation in Problem 5.3 is the starting point for a conforming Galerkin
discretization in space. To this end, to find an approximate solution to the continuous problem,

we construct finite dimensional subspaces V
(s)
h × V (s)

h × L(s)
f,h ⊂ V × V × Lf of order s .

5.3.1. Finite Element Spaces

For simplicity, we assume the boundary to be polygonal. We use two dimensional shape-
regular meshes (see [35, 36, 44]) relaxed by introducing hanging nodes to allow for local mesh
refinement. Cells are allowed to have nodes, which lie on midpoints of faces of neighboring
cells. A mesh consists of quadrilateral or hexahedral cells K. They perform a non-overlapping
cover of the computation domain Ω. As the fluid reference domain is fixed we can assume in
addition, that the interface Γi does not cross any cell. Thereby the mesh always resolves the
interface. The resulting triangulations is denoted by Th = {K}. Every sequence of meshes
is supposed to have a patch structure: every element K ∈ Th is part of 2d elements arising
from the same element by uniform refinement. The patch structure is needed to construct a
local projection stabilization filter and later to evaluate the a posteriori error estimators in
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5. Discretization

Section 7.3. The discretization parameter in the reference configuration is denoted by h and
is the maximal cell-wise constant that is given by the diameter hK of the cell K.

On the mesh Th we define as in [36, 44] the usual space of isoparametric finite element functions

V(s)
h ⊂ H1(Ω) with degree s and on the subset Tf,h ⊂ Th on the fluid domain the space

L
(s)
f,h :=

{
ϕ
∣∣
Ωf

∣∣∣ ϕ ∈ V(s)
h and (ϕ, 1)f = 0

}
.

For the velocity and displacement variable we use the vector valued space

V
(s)
h =

{
ϕ ∈ (V(s)

h )d
∣∣∣ ϕ = 0 on Γs ∪ Γf

}
and for the pressure the space L

(s)
f,h. Thus we choose for fluid velocity and pressure the same

space of equal order. In the numerical examples in Chapter 8, we always apply a do-nothing
outflow condition. Thereby, the pressure is automatically normalized.

Concerning the test functions, it is unclear how to discretize the test space Vf,0 ⊕ Hs. The
first possibility is to split the space again and define finite element spaces on the fluid and
solid subdomain. Unfortunately, the definition of finite element spaces on subdomains or the
use of different spaces for test- and trial functions is in many software packages not possible.

An alternative is the use of the finite element space V
(s)
h ⊂ Vf ⊕ Hs as test space. Now the

test function does not vanish anymore on the interface Γi. Then, we have to subtract the
natural boundary term 〈〈σm(u)Tn, ψ〉〉i in the weak mesh motion equation. We define the
space discretized mesh motion equation

aMkh,m(ukh,m,ukh,m−1)(ψ) :=aMk,m(ukh,m,ukh,m−1)(ψ)

− 〈θm(σm)kh,mn+ (1− θm)(σm)kh,m−1n, ψ〉i.

If we evaluate the additional boundary term via a residual method, it becomes clear that
we obtain the same stiffness matrix as with separate finite element spaces on fluid and solid
domain. Consequently, if we evaluate the boundary integral accurately enough the finite
element functions on the interface will only contribute to the solid. Thus, there is no direct
back coupling of the mesh motion into the solid. As the software package RoDoBo [133] used
for numerical experiments later supports neither finite element spaces on subdomains, nor the
evaluation of integrals along the interface, we use the test space Vh and neglect the additional
boundary integral. Instead we apply a small elasticity parameter in the mesh motion such
that the back coupling is small.

5.3.2. Local Projection Stabilization

As equal order elements are not inf-sup stable we have to stabilize the pressure. For instance,
the streamline upwind Petrov-Galerkin (SUPG) method, introduced by Brooks and Hughes
[38], can be used for fluid-structure interaction problems as in [146]. However, conventional
residual-based stabilized finite elements for flow problems have the disadvantage, that “dis-
cretize” and “optimize” does not necessarily commute. If we first stabilize the state equation
and then calculate the adjoint equation for the SUPG stabilization method, then the adjoint
equation differs from the adjoint equation we get if we first calculate the adjoint equation
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5.3. Space Discretization

and then stabilize state and adjoint equation. This is not the case for the symmetric local
projection stabilization (LPS) suggested by Becker and Braak in [16, 17]. A very detailed
discussion on optimal control of the Navier-Stokes equations with stabilized finite elements
can be found in [32].

For the considered examples, we are not in a convection dominant regime. Therefore, we focus
on the pressure stabilization. We introduce the spatial interpolation operator

i
(1)
2h/s : V(s)

h →
{
V(1)

2h , s = 1

V(1)
h , s = 2.

For bi/tri-linear finite elements, the interpolation in the space V(1)
2h on the coarse grid can be

easily reconstructed, by making use of the assumed patch structure. Now we can define the

filtering operator π : V(s)
h → V

(s)
h by π = Id−i(1)

2h/s. Due to the moving fluid domain we obtain
the stabilization term ∫

Im

∑
K∈Th

αK
(
JkhF

−1
kh ∇π(pkh), F−1

kh ∇π(ξ)
)
K
.

Thereby, the stabilization parameter αK defined on each cell K in the mth time step is given
by

αK = α0
ȟ2
K

6ν + ȟK‖vkh‖K
.

Due to the transformation we receive an additional stabilization term in the adjoint equation.
As a result, “discretize” and “optimize” do not commute anymore. In addition the stabiliza-
tion term now is highly nonlinear. Therefore, we decide to neglect the transformation and to
use instead

aLPS
kh,m(pkh,m)(ξ) := km

∑
K∈Th

αK
(
∇π(pkh,m),∇π(ξ)

)
K

with the approximate ȟK ≈ hK . We still got very accurate solutions for this stabilization
technique at least for the considered benchmark examples calculated within this thesis.

5.3.3. Space-Discretized State and Adjoint Equations

Altogether, we obtain the temporally and spatially discretized formulation :

Problem 5.5. Let (θm)Mm=1 ∈ [0, 1]M and (vkh,0, ukh,0) = (v0,h, u0,h). Find (ukh,m)Mm=1 ∈
(V

(s)
h )M × (V

(s)
h )M × (L

(s)
f,h)M by iterating for m = 1, ...,M :

aFk,m(ukh,m,ukh,m−1)(ϕ) + aSk,m(ukh,m,ukh,m−1)(ϕ) = fk,m(q)(ϕ) ∀ϕ ∈ V (s)
h ,

aMkh,m(ukh,m,ukh,m−1)(ψ) + aVk,m(ukh,m,ukh,m−1)(ψ) = 0 ∀ψ ∈ V (s)
h ,

aDk,m(ukh,m,ukh,m−1)(ξ) + aLPSkh,m(pkh,m)(ξ) = 0 ∀ξ ∈ L(s)
f,h.

Remark 5.3. On every cell the inner products now consist of sums and products of polynomial
functions. We can either evaluate the integrals over the domains Ωs and Ωf exactly or at least
use a Gauß quadrature rule of high order, such that the quadrature error can be neglected.
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5. Discretization

Taken all together the discrete solution ukh defined on the space-time cylinder is an element
of the space-time discretized space Xkh ⊂ X with Xkh := W u

kh ×W v
kh × L

p
kh and

W u
kh := W v

kh :=
{
v ∈ C(Ī;V

(s)
h )

∣∣∣ v∣∣Im ∈ P1(Im, V
(s)
h ),m = 1, 2, ...,M

}
,

Lpkh :=
{
p ∈ L2(I;L

(s)
f,h)

∣∣∣ p∣∣Im ∈ P0(Im, L
(s)
f,h),m = 1, 2, ...,M

}
.

If we define in addition the space and time discretized test space Ykh,θ := Lvkh,θ ×Lukh,θ ×L
p
kh

with

Lvkh,θ = Lukh,θ :=
{
ϕ ∈ L2(I;V

(s)
h )

∣∣∣ ϕ∣∣Im ∈ P θ0 (Im, V
(s)
h ),m = 1, 2, ...,M, ϕ(0) ∈ V (s)

h

}
,

we can now write the discretized fluid-structure interaction equation in Problem 5.5 in a more
compact form. The discrete solution of the fluid-structure interaction problem has to fulfill

Problem 5.6. Find for q ∈ Q a solution ukh ∈ Xkh with initial conditions vkh(0) = v0 and
ukh(0) = u0 such that

akh(ukh)(ϕ) = fk(q)(ϕ) ∀ϕ ∈ Ykh,θ (5.5)

with

akh(ukh)(ϕ) :=

M∑
m=1

[
aFk,m(ukh,m,ukh,m−1)(ϕm) + aSk,m(ukh,m,ukh,m−1)(ϕm)

+ aMkh,m(ukh,m,ukh,m−1)(ψm) + aVk,m(ukh,m,ukh,m−1)(ψm)

+ aDk,m(ukh,m,ukh,m−1)(ξm) + aLPSkh,m(pkh,m)(ξm)
]
,

fk(q)(ϕ) :=
M∑
m=1

fk,m(q)(ϕm).

For the adjoint equation this method then results in

Problem 5.7. Find zkh ∈ Ykh,θ

a′kh,u(ukh)(zkh,ϕ)− (ψ(0), zukh(0))− (ϕ(0), zvkh(0)) = J ′u(ukh)(ϕ) ∀ϕ ∈ Xkh. (5.6)

Thereby the semi-linear form a′kh,u(·)(·, ·) is defined in the same spirit as the semi-linear forms
in the state equation. We would like to highlight that the adjoint mesh motion equation in
every adjoint time step is given by

(a′Mu )kh,m(ukh,m)(ψ, zukh,m, z
u
kh,m+1) = (a′Mu )k,m(ukh,m)(ψ, zukh,m, z

u
kh,m+1)

− [kmθm〈σ′m,u(ψ)n, zukh,m〉i + km+1θm+1〈σ′m,u(ψ)n, zukh,m+1〉i].

In the adjoint equation the directional derivative is applied on the test variable now in the
additional boundary term. Therefore, the boundary integral on the interface Γi enforces the
original zero Dirichlet boundary condition in some very weak sense. As the chosen modified
LPS stabilization term is symmetric, we would have gotten the same formulation if we had
applied the Lagrange formalism on the stabilized Lagrangian.
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5.4. Discretization of the Control Variable

5.4. Discretization of the Control Variable

Up to this point the control space has not been discretized. It is possible to solve optimal
control problems without explicitly discretizing the control space, see [81]. For a control
q ∈ L2(I;H) acting as volume force in the right-hand side, this would result in qkh ∈ Lvkh,θ.
Every time step in the theta time-stepping scheme consist of three substeps. Therefore, we are
going to refine the time-grid by bisection of every macro time interval and then introducing
the intermediate steps again later in the adaptive algorithm (Algorithm 7.1). The resulting
time-grid is not going to be a subgrid of the previous time-grid. To start the optimization
algorithm with the control calculated on the coarse grid then is not straightforward. The
approach presented in [81] exhibits the difficulty that if the control enters in a nonlinear fashion
the implementation of the derived “natural” discretization is usually not straightforward. In
addition, it is quite often not necessary to use a high dimensional control space. Hence, we
discretize the control space independent of the state and dual variable. Similar to the primal
variable, we discretize first in time and later in space.

We partition the time interval I = (0, T ) in N subintervals In = (tn, tn−1) with t0 < t1 < ... <
tn = T . We demand the control time grid to be a subgrid of the macro time grid introduced
in Section 5.1.3. The set of time points used for the control then has to be a subset of the time
points used for the discretization of the state equation. For instance, we can either discretize
the control using a piecewise linear trial space Qd ⊂ Q with

Qd = {qk ∈ C(Ī;H)|qk
∣∣
In
∈ P1(In, H), n = 1, 2, ..., N}

or we can use the piecewise constant and discontinuous test space

Qd = {qk ∈ L2(I;H)|qk
∣∣
In
∈ P0(Im, H), n = 1, 2, ..., N}.

Both spaces are easy to handle and due to the Galerkin structure, we are able to estimate the
discretization error of the control variable as for state and dual variable in Chapter 7.

If the control variable is not only time-dependent, but distributed in space, we have to choose
an appropriate Galerkin space here, too. For example, it can be natural to have jumps in
the desired parameter. In that case we should use the space of cellwise constant functions.
Alternatively, we can use the finite element space Qd = Vh ⊂ H, which already has to be
available in the used software package to discretize the state and adjoint variables.

For a Neumann boundary control, the space discretization is done by traces of functions
vh ∈ Vh.

5.5. Discrete Control Problem

We denote in the following with Qd ⊂ Q the fully discretized control space and let (qσ,uσ) ∈
Qd ×Xkh be the solution of the fully discrete optimal control problem:

Problem 5.8 (Fully discrete optimal control problem).

min
qσ∈Qd

J (qσ,uσ) = J (uσ) + ‖qσ‖2Q
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5. Discretization

subject to uσ ∈ Xkh with vσ(0) = v0, uσ(0) = u0 and

akh(uσ)(ϕ) = fk(qσ)(ϕ) ∀ϕ ∈ Ykh,θ,
qa ≤ qσ ≤ qb.

If we define the fully discrete Lagragian Lkh : Xkh × Ykh,θ ×Qd → R with

Lkh(qσ,uσ, zσ) :=J (qσ,uσ)− akh(uσ)(zσ) + fk(qσ)(zvσ)

+ (u0 − uσ(0), zuσ(0)) + (v0 − vσ(0), zvσ(0))

and apply the Lagrange formalism on the discrete Lagrangian Lkh, the optimal solution
(qσ,uσ) of the discrete optimal control problem has to solve the Karush-Kuhn-Tucker condi-
tion:

1. The optimal state ūσ = uσ(q̄σ) ∈ Xkh has to solve

L′kh,z(q̄σ, ūσ, z̄σ)(ϕ) = 0 ∀ϕ ∈ Ykh,θ.

If we compare the resulting equations with (5.5), we can observe that ūσ = (v̄σ, ūσ, p̄σ) ∈
Xkh fulfills the initial conditions uσ(0) = u0 and vσ(0) = v0 and solves the space-time
discretized fluid structure interaction formulation in Problem 5.6 with control qσ ∈ Qd ⊂ Q.

2. The optimal adjoint variable z̄σ = zσ(q̄) ∈ Ykh,θ has to solve

L′kh,u(q̄σ, ūσ, z̄σ)(ϕ) = 0 ∀ϕ ∈ Xkh.

If we compare the resulting fully discrete adjoint equation with the adjoint equation (5.6),
we notice that z̄σ ∈ Ykh,θ is a solution of the adjoint fluid-structure interaction equation in
Problem 5.7.

3. For the optimal control q̄σ ∈ Qad,d := { q ∈ Qd | qa ≤ q ≤ qb } it has to hold the necessary
optimality condition

L′kh,q(q̄σ, ūσ, z̄σ)(δq − q̄σ) ≥ 0 ∀δq ∈ Qad,d.

We can observe that the same conditions occur if we discretize the necessary optimality
condition in Section 4.3.3 systematically. Therefore, “optimize” and “discretize” commute
here.
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6. Solution Algorithms

To compute the optimal solution (qσ,uσ) ∈ Qd×Xkh of the considered fully discrete optimiza-
tion configuration in Problem 5.8, we can use standard optimization algorithms as gradient
as well as Newton algorithm. Because of the Galerkin discretization approach “optimize” and
“discretize” commute. We can define the optimization algorithm either for the fully discrete
optimization problem or on the continuous level and discretize afterward. We are going to
follow the second approach, as we thereby obtain convergence of the optimization algorithm
in the natural norms.

To compute the gradient in an arbitrary direction, we use the Lagrange formalism presented in
Section 3.3.2 and 4.3.2. If the variable u ∈ X is the solution of the fluid-structure interaction
problem and z ∈ Y solves the adjoint equation, then we have shown that we get

j′(q)(δq) = L′q(q,u, z)(δq).

For one gradient evaluation, we have to solve two PDEs. First we have to solve the nonlinear
state equation over the whole time frame. Second, we have to compute the adjoint equation
back in time. As the fluid-structure interaction problem is still a nonlinear problem after
discretization in space and time, we apply a Newton algorithm presented in Section 6.1 in
every time step. In Section 6.2, we comment on the linear solvers which can be used to solve
the linear systems occurring in every Newton step. Then, using the sensitivity information
of the adjoint solution we can apply a Quasi-Newton algorithm. Here we use the Limited
Memory BFGS algorithm (LBFGS) presented in Section 6.3. The reduced storage consump-
tion of the LBFGS algorithm enables to solve optimal control problems with high dimensional
control spaces. An overview how the different algorithms interact is given in the abstract
Algorithm 6.1.

We want to highlight that the structure of the presented optimization algorithm differs from
the approaches used in literature for optimal control of fluid-structure interaction. At least
in the literature cited in the introduction to Section 4.3, the control variable is updated in
every time step during the solution process. In Algorithm 6.1 the state and adjoint equation
is solved over the whole time-interval and the control is not updated during the forward
and backward simulation. Such an approach is most commonly used in the optimal control
community to have a consistent optimization algorithm. With refinement of the control space
as well as refinement of state and adjoint variable we can expect convergence of the discrete
optimal solution against the solution of the continuous optimal control problem. We refer
to [114, 116] for a detailed proof for optimal control of a parabolic PDE. Furthermore, the
additional sensitivity information with respect to time enables the use of cost functionals with
observation only at certain time-points, as for example the end-time point.
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6. Solution Algorithms

Algorithm 6.1: Abstract optimization algorithm

Set qσ ∈ Qd, uσ(0) = u0

while ‖∇j(qσ)‖ > tol do
Compute the solution uσ of the fluid-structure interaction equation with control qσ
for m = 1 : M do

In every time step apply the Newton algorithm
while ρm > tol do

Construct Jacobian Am
Solve Newton system Amw = bm
Evaluate residual of the state equation ρm and update uσ,m = uσ,m + w

end while
end for
Compute the solution zσ of the adjoint fluid-structure interaction problem
for m = M : 1 do

Construct adjoint Jacobian ATm
Solve linear system ATmzσ,m = bm

end for
Evaluate gradient ∇j(qσ) and compute BFGS update Hdσ = −∇j(qσ)
Update BFGS Matrix H
Set qσ = qσ + dσ

end while

6.1. Newton Algorithm

In every LBFGS step we have to solve the fully discrete state (see Problem 5.5) and the adjoint
fluid-structure interaction problem (see Problem 5.7). The adjoint equation is known to be a
linear problem. On the contrary the fluid-structure interaction problem is highly nonlinear.
To compute a solution numerically, we apply a Newton algorithm in every time step on the
fully monolithic formulation. The resulting algorithm is very robust and fast converging.

To write the system of equations in Problem 5.5 in a compact way we introduce the LPS
stabilized fully-discrete semi-linear form akh,m(uσ,m,uσ,m−1)(ϕ):

akh,m(uσ,m,uσ,m−1)(ϕ) :=aFk,m(uσ,m,uσ,m−1)(ϕ) + aSk,m(uσ,m,uσ,m−1)(ϕ)

+ aMkh,m(uσ,m,uσ,m−1)(ψ) + aVk,m(uσ,m,uσ,m−1)(ψ)

+ aDk,m(uσ,m,uσ,m−1)(ξ) + aLPS
kh,m(pk,m)(ξ).

For detailed definition of those particular semi-linear forms we refer to Problem 5.5 and
Problem 5.2. To compute a solution of the nonlinear fluid-structure interaction equation we

have to determine the solution uσ,m ∈ V (s)
h × V (s)

h × L(s)
f,h in every time step such that

akh,m(uσ,m,uσ,m−1)(ϕ) = fk,m(qσ)(ϕ) ∀ϕ ∈ V (s)
h × V (s)

h × L(s)
f,h (6.1)

having the solution of the previous time step uσ,m−1 ∈ V (s)
h × V (s)

h × L(s)
f,h available.
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6.2. Linear Solver

To compute the solution uσ,m ∈ V (s)
h × V (s)

h × L(s)
f,h we apply a Newton algorithm on (6.1).

We start the Newton algorithm with the solution of the previous time step uσ,m−1. If the
initial guess uσ,m−1 is not close enough, a simple damping strategy can often help to provide
convergence. For such complex systems as the fluid-structure interaction problem often times
finite difference approaches are used to approximate the Jacobian. The difficulty thereby lies
in the choice of parameters such that the accuracy of the Jacobian is high. Hence, we build
up the exact Jacobian:

a′kh,m(uσ,m,uσ,m−1)(wσ,ϕ) = lim
s→0

d

ds
akh,m(uσ,m + swσ,uσ,m−1)(ϕ)

∣∣∣
s=0

.

To compute the linearization we can apply the same technique as we used in Section 4.3.2
for deriving the adjoint equation. With the slight difference of now applying the linearization
on the time space discretized semi-linear form. In Appendix B, we summarize in more detail
how to compute the linearization of the fluid-structure interaction problem. The linearization
of the space-time discretized formulation works in the same way. The main difficulty lies
again in the domain motion hidden in the ALE mapping. The applied Newton algorithm is
summarized in Algorithm 6.2.

Algorithm 6.2: Newton algorithm to solve nonlinear equations

Set uσ,m = uσ,m−1

while ρm > tol do
Compute Newton update wσ such that

a′kh,m(uσ,m,uσ,m−1)(wσ,ϕ) = fk,m(qσ)(ϕ)− akh,m(uσ,m,uσ,m−1)(ϕ)

Set ũσ,m := uσ,m + wσ

Compute residual ρm := ‖fk,m(qσ)(·)− akh,m(ũσ,m,uσ,m−1)(·)‖
while ρm > ρm−1 do

i = i+ 1
ũσ,m := uσ,m + γiwσ

Compute residual ρm = ‖fk,m(qσ)(·)− akh,m(ũσ,m,uσ,m−1)(·)‖
end while
Set uσ,m := ũσ,m

end while

6.2. Linear Solver

By applying the Newton algorithm on the space-time discretized formulation (6.1), we can
rewrite the resulting linear system to solve for a Newton step in compact form as

Amwσ = bm.

The Jacobian matrix Am and the vector bm depend on the control qσ, on the solution uσ,m
and uσ,m−1. Hence, we actually have to build up the Jacobian in every Newton step. We
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6. Solution Algorithms

would like to refer to [126] for an analysis of the structure of the system matrix Am and a
convergence test of the Newton algorithm if the Jacobian is not updated in every Newton step.
For the adjoint equation the discretization in space and time results in the adjoint system

ATmzσ,m = bm.

Although the adjoint problem is linear, we have to build up the matrix ATm in every time step
as the matrix depends on the solution of the state equation uσ,m+1,uσ,m and uσ,m−1.

For the presented numerical examples in Chapter 8, we use the direct solver UMFPACK,
which uses an incomplete LU decomposition to compute a solution of the linear system. For
more complex configurations, it is necessary to use iterative solvers as the computational
time and memory use of a direct solver gets too large. As the derived linear system is huge,
very ill conditioned and without structures like symmetry or positivity, the construction of
preconditioners is not straightforward.

To circumvent this difficulty, fluid-structure interaction problems are often solved by using
partitioned approaches. The problem is split into the Navier-Stokes system, the mesh motion
equation and the elastic structure system. Then, one after the other the problems are solved
separately and coupled by boundary conditions. A good overview of partitioned approaches
and semi-implicit approaches is given in [60, 97, 61] and in the books [40, 41]. Now, well tuned
preconditioners for the subproblems can be used to solve the resulting linear systems, which
is why these algorithms are widely used at the moment. Such weakly coupled partitioned
approaches show instabilities if the coupling is stiff (“added mass effect”) as in most hemody-
namic applications, see [43]. Motivated by partitioned algorithms several preconditioners for
the monolithic fluid-structure interaction formulation have been developed in the last decade
as for instance [11, 71, 10, 129].

6.3. Limited memory BFGS Algorithm

As the evaluation of the gradient j′(q)(δq) includes the solution of the fluid-structure inter-
action problem, it is computationally quite costly. So fast converging algorithms needing few
gradient evaluations should be preferred. Gradient methods converge slowly and need a step
size control, which involves additional evaluations of the functional. Therefore we follow the
suggestion in [82] and use an optimization algorithm of second order.

If we apply Newton’s method on the necessary optimality condition

j′(q̄)(δq) = 0 ∀δq ∈ Q,

we have to solve
(∇2j(q)δq, δτ)Q = −(∇j(q), δτ)Q ∀δq, δτ ∈ Q,

whereby the gradient ∇j(q) ∈ Q and the Hessian ∇2j(q) : Q → Q are defined by Riesz’s
representation

(∇j(q), δq)Q := j′(q)(δq) ∀δq ∈ Q,
(∇2j(q)δq, δτ)Q := j′′(q)(δq, δτ) ∀δq, δτ ∈ Q.
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6.3. Limited memory BFGS Algorithm

For a wide range of optimal control problems with tracking type functional the Newton al-
gorithm is known to be convergent with second order (see for example [82]). To evaluate the
action of the Hessian on a vector, we have to solve two additional PDEs, the so called tangen-
tial and additional adjoint equation. To avoid having to evaluate these PDEs, we are going to
use a quasi-Newton method, which uses an approximation of the Hessian. As quasi-Newton
methods still have locally superlinear convergence properties they provide a good alternative
to Newton algorithms. In the following, we describe a BFGS algorithm. We will denote with
Hk : Q→ Q the approximation of the Hessian which is defined via an updating formula.

Algorithm 6.3: BFGS algorithm for continuous optimization problem

Set q0 ∈ Q, H0 : Q→ Q, ε > 0 and l = 0
while ‖∇j(ql)‖Q > ε do

Solve
(Hldl, δq)Q = −(∇j(ql), δq)Q ∀δq ∈ Q

Set ql+1 = ql + dl and yl = ∇j(ql+1)−∇j(ql)
Set

Hl+1 := Hl +
(yl, ·)Q
(dl, yl)Q

yl −
(Hldl, ·)Q
(dl, Hldl)Q

Hldl

Set l = l + 1
end while

In every step the algorithm only needs one forward solution of the fluid-structure interaction
problem and one backward solve of its adjoint problem. A detailed convergence analysis of
Algorithm 6.3 in the context of PDE-constrained optimization can be found in [82] and [91].

After discretization of the control space, the control qσ ∈ Qd can be expressed by its basis
functions ϕi ∈ Qd such that qσ =

∑n
i=1 q

iϕi with q = (q1, ..., qn) ∈ Rn and n = dim(Qd).
Then Riesz’s representation of the gradient and the approximation of the Hessian H can be
written with respect to the basis functions, too. We get as representation of the gradient

∇j(qσ) =
n∑
i=1

giϕi

and if we apply H on δq =
∑n

i=1 δq
i
ϕi with δq ∈ Rd we obtain the representation

Hδq =
n∑
j=1

δq
j
Hϕj =

n∑
i=1

( n∑
j=1

H
i,j
δq
i
)
ϕi

with the vector g ∈ Rn and the symmetric matrix H ∈ Rn×n. In the following by writing
g we will always denote the vector representation of ∇j(qσ), which we obtain by solving the
state and adjoint equation. The inner products in Q then simplify for δq, δτ ∈ Qd to

(δq, δτ)Q = δq
T
Mδτ

with the control mass Matrix M ∈ Rn×n fulfilling M
i,j

= (ϕi, ϕj)Q for i, j = 1, ...n. Then,
Algorithm 6.3 reduces to Algorithm 6.4.
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Algorithm 6.4: BFGS algorithm for discrete optimization problem

Set q0 ∈ Rn, H0 : Rn×n symmetric, positive definite , ε > 0 and l = 0
while gTl Mgl > ε do

Solve MH ldl = −Mgl
Set ql+1 = ql + dl and yl = gl+1 − gl
Set

MH l+1 := MH l +
Myl(Myl)

T

yTl Mdl
− MH ldld

T
l MH l

d
T
l MH ldl

Set l = l + 1
end while

In order to have not only local convergence, the authors in [72] suggest to use a Powell-
Wolfe step size control instead of an Armijo rule, which is usually used for Newton-type
algorithms, to guarantee that the update H l+1 is still symmetric and positive definite. This
is essential to guarantee well posedeness of Algorithm 6.4. The convergence results in [82, 91]
can immediately be extended to Algorithm 6.4, if we use a Galerkin discretization approach.
Thus we can expect at least linear convergence for a sequence of controls ql ∈ Rd. For locally
superlinear convergence, the authors have to demand as starting matrix H0 = Jqq(q̄), which
corresponds for standard L2-Tikhonov regularization to H0 = α Id. An additional advantage
of the BFGS algorithm is that we do not have to compute the inverse of H l, but can instead
use the inverse updating formula

Bl+1 := Bl +
(dl −BlMyl)d

T
l + dl(dl −BlMyl)

T

(Myl)
Tdl

− (dl −BlMyl)
TMyldld

T
l

((Myl)
Tdl)2

.

Using elementary transformations, one can show that Bl+1MH l+1 = Id. For more details, we
refer the reader to [72].

If we store the update dl and yl in every step, the Matrix Bl+1 can be constructed in every
step alternatively via the formula

Bl+1 =V
T
l V

T
l−1 · · ·V

T
0 B0V 0 · · ·V l−1V l

+ ρ0V
T
l V

T
l−1 · · ·V

T
1 d0d

T
0 V 0 · · ·V l−1V l

...

+ ρldld
T
l ,

whereby the variables ρl and V l are defined as ρl = 1
(Myl)

T dl
and V l = Id−ρlMyld

T
l . Es-

pecially for highly nonlinear problems, the gradient steps at the beginning are probably not
of interest for the BFGS algorithm after some time. One possibility would be to restart the
algorithm. Alternatively the construction formula for Bl+1 enables to use only the gradient
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6.3. Limited memory BFGS Algorithm

information yl and update dl of the last m steps. We get

Bl+1 =V
T
l V

T
l−1 · · ·V

T
l−ml+1B0V l−ml+1 · · ·V l−1Vl

+ ρl−ml+1V
T
l V

T
l−1 · · ·V

T
l−ml+2dl−ml+1d

T
l−ml+1V l−ml+2 · · ·V l−1V l

...

+ ρldld
T
l .

The advantage of using only the last m steps is especially interesting if the dimension of the
control space gets large and storing of the full matrix Bl+1 gets costly. As we only have to
store the vectors dl and yl the storage place needed reduces from O(n2) to O(mn). Typically
m ∈ 3, 4..., 9 can be chosen very small such that the reduction of storage place is large. In
addition, as we are going to see in Algorithm 6.5, the action of the matrix Bl+1 on a vector
can be computed with O(mn) evaluations without constructing the matrices V l. However, we
do not have locally superlinear convergence for the LBFGS algorithm anymore. Nevertheless
still very fast convergence can be seen in several numerically examples.

Algorithm 6.5: Limited Memory BFGS algorithm

Set q0 ∈ Rn, B0 : Rn×n symmetric, positive definite, ε > 0 and l = 0
Solve d0 = −B0g0

Set q1 = q0 + d0 and l = 0
while gTl+1Mgl+1 > ε do

Set yl = gl+1 − gl and ml = min{l,m}
for j = l −ml + 1, ..., l do

ρj = 1

d
T
j Myj

end for
Set al+1 = Mgl+1

for i = l, l − 1, ..., l −ml + 1 do

αi = ρid
T
i ai+1

ai = ai+1 − αiMyi
end for
bl−ml+1 = B0al−ml+1

for i = l −ml + 1, l −ml + 2, ..., l do
βi = ρi(Myi)

T bi
bi+1 = bi + (αi − βi)di

end for
Set dl+1 = bl+1, ql+2 = ql+1 + dl+1 and l = l + 1

end while

A very detailed proof of the presented Limited Memory BFGS Algorithm 6.5 can be found in
[72]. For the first m steps, the algorithm coincides with the standard BFGS Algorithm 6.4.
Numerical experiments have shown that it is advantageous to start the LBFGS algorithm in

every step with the matrix B0 = γlα
−1M−1 with γl =

dTl Myl
‖yl‖2 . For more detail we refer to [74],

[107] or [154].
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7. Dual-Weighted Residual Error Estimator

In this chapter, we are going to derive a dual-weighted residual error estimator for optimal
control of a fluid-structure interaction problem. The error estimator is based on the Dual-
Weighted Residual method (DWR) developed by Becker and Rannacher [19, 20]. Such DWR
estimators have already been applied successfully for estimating the discretization error of
partial differential equations for example in [20, 80, 125, 33, 34, 28] and have also been extended
to optimal control problems in [21, 22, 18, 113]. Especially for the latter, it is particularly
advantageous to use the DWR estimator. The error in the cost functional can be estimated
and the computational cost is quite small as we do not need to calculate the solution of an
additional auxiliary problem.

For simplicity, we assume that we have an optimal control problem with no control constraints.
We estimate the error between the solution (q,u) ∈ Q×X of the continuous optimal control
problem (Problem 4.6) and the solution (qσ, uσ) ∈ Qd × Xkh of the discretized problem
(Problem 5.8) with respect to the cost functional J :

J (q,u)− J (qσ,uσ) ≈ ηk + ηh + ηd.

Thereby the errors caused due to discretization of the state variable in time and space are
approximated by ηk and ηh. The error due to discretization of the control variable is given
by ηd. Splitting up into ηk, ηh and ηd allows for balancing the different error contributions
within an adaptive refinement algorithm. The optimal control computed on a coarse grid is
usually an excellent initial guess to start the optimization algorithm on the fine grid. Thus
we can profit additionally from the solution process on different grids.

Concerning the error due to time discretization we follow the approach suggested by Meidner
and Richter in [111] and [112], which can be used to compute the error with respect to the
functional of interest for arbitrary theta time-stepping schemes. In [75] a similar approach for
the damped Crank-Nicolson time-stepping scheme can be found. A DWR-error estimator to
estimate the spatial discretization error for the Navier-Stokes equations has been successfully
applied in [28]. In [55, 128, 62, 144] and [150] a posteriori error estimation for a stationary
fluid-structure interaction problem has been analyzed. We are going to extend these results
to error estimation for the time-dependent fluid-structure interaction problem.

We first state in Section 7.1 the residuals needed to evaluate the DWR estimator, then we prove
in Section 7.2 that the remainder terms are of higher-order for an optimal control problem
constrained by the linear fluid-structure interaction problem. In Section 7.3, we derive a
higher-order reconstruction to evaluate the weights. The evaluation of the error via a residual
functional enables a localization of the error estimator and thereby adaptive refinement. In
Section 7.3, we present one localization strategy to refine the space, time, and control grid.
The local error indicators enable adaptive refinement as introduced in Section 7.4.
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7. Dual-Weighted Residual Error Estimator

7.1. A Posteriori Error Estimation for Optimal Control

In order to separate the influences of the different discretization steps on the error in the cost
functional we split the error into

J (q,u)− J (qσ,uσ) =
(
J (q,u)− J (qk,uk)

)
+
(
J (qk,uk)− J (qkh,ukh)

)
+
(
J (qkh,ukh)− J (qσ,uσ)

)
,

whereby we denote by (qk,uk) ∈ Q×Xk the time-discretized solution and by (qkh,ukh) ∈ Q×
Xkh the optimal solution after space and time discretization with a control in the continuous
space. As already stated in the introduction of this Chapter the solution of the continuous
optimal control problem (Problem 4.6) is given by (q,u) ∈ Q×X and the solution of the fully
discretized problem (Problem 5.8) is constituted by (qσ, uσ) ∈ Qd × Xkh. We respectively
apply the error estimator derived in [19, 20] on those three pairs.

To solve the nonlinear FSI problem numerically as suggested in Section 6.1 and 6.2, we
have to choose on the one side appropriate discrete Galerkin spaces and apply on the other
side a quadrature rule to evaluate the integrals in time and space. To obtain an energy
conserving, stable time-stepping scheme, which transports information only in one direction,
we evaluate the time-integrals using the theta-trapezoidal rule (5.2). Therefore, the semi-
discretized optimal solution (qk,uk) ∈ Q × Xk is a stationary point of the time discretized
Lagrange functional

Lk(qk,uk, zk) =J (qk,uk)− ak(uk)(zk) + fk(qk)(z
v
k)

+ (u0 − uk(0), zuk (0)) + (v0 − vk(0), zvk(0)).

The detailed structure of the time-discretized semi-linear form ak(·)(·) is laid out in Prob-
lem 5.2.

By using equal order elements to discretize in space, which are not inf-sub stable, we make
use of a local projection stabilization. Thus the space-time discretized optimal solution
(qkh,ukh) ∈ Q×Xkh is a stationary point of the stabilized Lagrangian

Lkh(qkh,ukh, zkh) =J (qkh,ukh)− akh(ukh)(zkh) + fk(qkh)(zvkh)

+ (u0 − ukh(0), zukh(0)) + (v0 − vkh(0), zvkh(0)).

We refer to Problem 5.6 for the exact definition of the space-time discretized semi-linear form
akh(·)(·). In this section, we assume that we use a quadrature rule of higher-order for the
evaluation of the cost functional such that the cost functional is either evaluated exactly or
the quadrature error is of such high-order that it can be neglected. Then, following the ideas
in [111, 112] and [28] we obtain:

Theorem 7.1. Let (q,u, z), (qk,uk, zk), (qkh,ukh, zkh), be stationary points of L, Lk and
Lkh on different levels of discretization and let (qσ,uσ, zσ) be a stationary point of Lkh on the
fully discrete space Qd ×Xkh × Ykh,θ that is

L′(q,u, z)(δq, δu, δz) = 0 ∀(δq, δu, δz) ∈ Q×X × Y, (7.1)

L′k(qk,uk, zk)(δqk, δuk, δzk) = 0 ∀(δqk, δuk, δzk) ∈ Q×Xk × Yk,θ, (7.2)

L′kh(qkh,ukh, zkh)(δqkh, δukh, δzkh) = 0 ∀(δqkh, δukh, δzkh) ∈ Q×Xkh × Ykh,θ, (7.3)

L′kh(qσ,uσ, zσ)(δqσ, δuσ, δzσ) = 0 ∀(δqσ, δuσ, δzσ) ∈ Qd ×Xkh × Ykh,θ. (7.4)
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7.1. A Posteriori Error Estimation for Optimal Control

Then, there holds for the error with respect to the cost functional J due to discretization in
space and time and of the control

J (q,u)− J (qk,uk) =
1

2

[
L′u(qk,uk, zk)(u− ûk) + L′z(qk,uk, zk)(z− ẑk)

]
+ [f(qk)(z

v
k)− a(uk)(zk)] +Rk,1 +Rk,2,

J (qk,uk)− J (qkh,ukh) =
1

2

[
L′k,u(qkh,ukh, zkh)(uk − ûkh) + L′k,z(qkh,ukh, zkh)(zk − ẑkh)

]
,

+ aLPSkh (ukh)(zkh) +Rkh,1 +Rkh,2

J (qkh,ukh)− J (qσ,uσ) =
1

2
L′kh,q(qσ,uσ, zσ)(qkh − q̂σ) +Rσ.

Here (ûk, ẑk) ∈ Xk × Yk,θ (ûkh, ẑkh) ∈ Xkh × Ykh,θ and q̂σ ∈ Qd can be chosen arbitrarily.

Proof. For the error due to discretization in time and the application of the theta-quadrature
rule (5.2) we obtain

J (q,u)− J (qk,uk) = L(q,u, z)− Lk(qk,uk, zk)
=
[
L(q,u, z)− L(qk,uk, zk)

]︸ ︷︷ ︸
I1

+
[
L(qk,uk, zk)− Lk(qk,uk, zk)

]︸ ︷︷ ︸
I2

as (q,u) and (qk,uk) fulfill due to (7.1) and (7.2) the continuous and time-discretized state
equation. For the first term I1 we follow the idea in [19, 20] and receive with e = (q− qk,u−
uk, z− zk) by using the main theorem of calculus

I1 =

∫ 1

0
L′((qk,uk, zk) + se)(e) ds.

If we evaluate this integral with the trapezoidal rule and take (7.1) into account, then we
obtain

I1 =
1

2
L′(qk,uk, zk)(e) +

1

2
L′(q,u, z)(e) +Rk,1

=
1

2
L′(qk,uk, zk)(e) +Rk,1

with the remainder term

Rk,1 =
1

2

∫ 1

0
L′′′((qk,uk, zk) + se)(e, e, e) · s · (s− 1) ds.

We split the the weight e = (q − qk,u− uk, z− zk) into two parts

e =
(
q − q̂k,u− ûk, z− ẑk

)
+
(
q̂k − qk, ûk − uk, ẑk − zk

)
with arbitrary values (q̂k, ẑk, ûk) ∈ Q×Xk × Yk,θ and get

I1 =
1

2
L′(qk,uk, zk)(q − q̂k,u− ûk, z− ẑk) +

1

2
L′(qk,uk, zk)(q̂k − qk, ûk − uk, ẑk − zk)︸ ︷︷ ︸

Rk,2

+Rk,1.
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7. Dual-Weighted Residual Error Estimator

The last term I2 estimates the error between the Lagrangian L and the semi-discrete La-
grangian Lk and reduces to

I2 = f(qk)(z
v
k)− a(uk, zk)

as (qk,uk) fulfills (7.2).

We can apply exactly the same approach for the spatial error estimator and get

J (qk,uk)− J (qkh,ukh) = Lk(qk,uk, zk)− Lkh(qkh,ukh, zkh) =

=
[
Lk(qk,uk, zk)− Lk(qkh,ukh, zkh)

]︸ ︷︷ ︸
I3

+
[
Lk(qkh,ukh, zkh)− Lkh(qkh,ukh, zkh)

]︸ ︷︷ ︸
I4

.

As the time discretized Lagrangian Lk and the space discretized Lagrangian Lkh only differ
in the stabilization term we get

I4 = aLPS
kh (ukh)(zkh).

For the first term I3 we follow the same approach as before and get for e = (qk − qkh,uk −
ukh, zk − zkh) using again the theorem of calculus

I3 =
1

2
L′k(qkh,ukh, zkh)(qk − q̂kh,uk − ûkh, zk − ẑkh) +Rkh,1 +Rkh,2.

The remainder term Rkh,2 occurs by enforcing the weight to be an interpolation error and the
remainder term Rkh,1 has again the structure

Rkh,1 =
1

2

∫ 1

0
L′′′k ((qkh,ukh, zkh) + se)(e, e, e) · s · (s− 1) ds.

Finally, we have to take a closer look at the control discretization error. We apply again the
main theorem of calculus and evaluate the integral with the trapezoidal rule. Then we obtain

J (qkh,ukh)− J (qσ,uσ) = Lkh(qkh,ukh, zkh)− Lkh(qσ,uσ, zσ) =

=
1

2
L′kh(qσ,uσ, zσ)(qkh − q̂σ,ukh − ûσ, zkh − ẑσ) +Rσ,1

With e = (qkh − qσ,ukh − uσ, zkh − zσ) the remainder Rσ,1 has again the structure

Rσ,1 =
1

2

∫ 1

0
L′′′k ((qσ,uσ, zσ) + se)(e, e, e) · s · (s− 1) ds.

As we have Galerkin-orthogonality here, we do not receive an additional remainder term as
in the previous cases. The values q̂k ∈ Q, q̂kh ∈ Q, ûσ ∈ Xkh, and ẑσ ∈ Ykh,θ can be
chosen arbitrarily. We can choose, for example, q̂k = q ∈ Q and q̂kh = qk ∈ Q such that the
derivatives with respect to the control L′q(·)(·) and L′k,q(·)(·) vanish in the error estimators of
time and space discretization. If we choose in addition ûσ = ukh ∈ Xkh and ẑσ = zkh ∈ Ykh,θ
the derivatives of the Lagrange functional Lkh with respect to primal and state variable will
vanish in the error estimator of the control.
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7.1. A Posteriori Error Estimation for Optimal Control

Due to the discrepancy between the time discretized semi-linear form ak(·)(·) in Problem 5.2
and the semi-linear form a(·)(·) in the Petrov-Galerkin formulation in Problem 5.1, the time
discretization error consists of both the Galerkin discretization error and the numerical quadra-
ture error. The quadrature error cannot be neglected as the applied quadrature rule is only
of second order accuracy and therefore of the same order as the approximation error. The
spatial error estimator consists of the Galerkin discretization error and an estimator measur-
ing the mismatch between discrete and continuous semi-linear form due to the additional LPS
stabilization.

Remark 7.1. If we choose for the arbitrary values ûk, ẑk, ûkh, ẑkh and q̂σ the interpolation of
u, z,uk, zk and qkh in the semi-discrete and discrete spaces, the weights will mainly represent
an interpolation error. Therefore, for evaluating the residuals later, we have to find a good
approximation of the interpolation error.

Bear in mind that it is possible to extend the a posteriori error estimator to estimate the
discretization error with respect to an arbitrary functional of interest not coinciding with the
cost functional. For more information on this topic, we would like to refer to [113].

The presented DWR error estimator cannot only be used for optimal control problems, but
also to estimate the error in a functional of interest for simulations of arbitrary PDEs. In
order to compute characteristic values of our fluid-structure interaction simulation as accurate
as possible we can define the Lagrangian

L(u, z) =J (u)− a(u)(z) + f(z)

+ (u0 − u(0), zu(0)) + (v0 − v(0), zv(0)).

Thereby, J (u) can be an arbitrary functional of interest and a(·)(·) is the semi-linear form
given in (4.10). As state and adjoint solutions are again stationary points of the Lagrangian
we can directly adapt the approach of Theorem 7.1. The derivative of the Lagrange functional
vanishes with respect to the control variable and we get here

Theorem 7.2. Let (u, z), (uk, zk), (ukh, zkh) be stationary points of L, Lk and Lkh on
different levels of discretization, that is

L′(u, z)(δu, δz) = 0 ∀(δu, δz) ∈ X × Y,
L′k(uk, zk)(δuk, δzk) = 0 ∀(δuk, δzk) ∈ Xk × Yk,θ,

L′kh(ukh, zkh)(δukh, δzkh) = 0 ∀(δukh, δzkh) ∈ Xkh × Ykh,θ.

Then, there holds for the error with respect to the functional of interest J due to discretization
in space and time

J (u)− J (uk) =
1

2

[
L′u(ukh, zkh)(u− ûk) + L′z(ukh, zkh)(z− ẑk)

]
+ [f(zk)− a(uk)(zk)] +Rk,1 +Rk,2,

J (uk)− J (ukh) =
1

2

[
L′k,u(ukh, zkh)(uk − ûkh) + L′k,z(ukh, zkh)(zk − ẑkh)

]
,

+ aLPSkh (ukh)(zkh) +Rkh,1 +Rkh,2.

Here (ûk, ẑk) ∈ Xk×Yk,θ (ûkh, ẑkh) ∈ Xkh×Ykh,θ can be chosen arbitrarily and the remainder
terms Rk,1, Rk,2, Rkh,1 and Rkh,2 have the same structure as in Theorem 7.1.

79



7. Dual-Weighted Residual Error Estimator

To calculate the discretization error in terms of the functional of interest J (u) we have to solve
in addition an adjoint equation to obtain sensitivity information. As the adjoint equation is
linear, this additional cost does not carry weight for highly nonlinear problems.

Remark 7.2. For the fractional-step theta time-stepping scheme, second order convergence
only occurs in the macro time-steps. The intermediate steps of the fractional-step theta
method are not necessarily precise approximations to the solution. Hence, these steps should
be omitted in the functional evaluation. Therefore we introduce the piecewise linear interpo-

lation i
(1)
3k : Xk → Xmacro

k , such that i
(1)
3k uk and uk coincide on the macro time points t3n and

Xmacro
k is defined in on the macro time grid t0 < t3 < ... < t3n < ... < tM just like Xk. By

splitting the error in the cost functional in

J (u)− J (i3kuk) = [J (u)− J (uk)] + [J (uk)− J (i3kuk)]

we then can apply again the derived a posteriori error estimator for the first term, and the
last term can be evaluated exactly.

7.2. A Posteriori Error Estimation for Optimal Control of the
Linear FSI Problem

In this Section, we are going to take a closer look at the time-discretization error estimator
in Theorem 7.1 for optimal control of a linear fluid-structure interaction problem. We mini-
mize the tracking type functional (3.27) constrained by the symmetric linear fluid-structure
interaction model. The time dependent control q ∈ L2(I) enters the equation as volume force
as in Configuration 2. In Section 3.3.3, we have proven the existence of a unique solution for
this configuration. The focus in this section will be on proving that the remainder terms in
Theorem 7.1 are of higher-order and therefore can be neglected in the evaluation of the error es-
timators. As defined in Section 3.3.2, we have the Lagrange functional L : Q×X×Y× → R

L(q,u, z) :=J (q,u)− a(u)(z) + ((Bfq, z
v))f + ((Bsq, z

v))s

+ (u0 − uk(0), zuk (0)) + (v0 − vk(0), zvk(0))

and a(·)(·) the bi-linear form given in (3.14) modeling the linear FSI configuration. We denote
with Bf : Q→ L2(I;Hf) and Bs : Q→ L2(I;Hs) the linear operators mapping the control in
the right-hand side, defined in Configuration 2 in Section 3.3.1.

According to Theorem 7.1, we can estimate the error due to time-discretization by

J (q,u)− J (qk,uk) =
1

2

[
L′u(qk,uk, zk)(u− ûk) + L′z(qk,uk, zk)(z− ẑk)

]
+ [((Bfqk, z

v
k))f + ((Bsqk, z

v
k))s − a(qk,uk)(zk)] +Rk,1 +Rk,2.

To be able to evaluate the estimator we would like to neglect for arbitrary values q̂k, ûk, ẑk ∈
Xk the remainder terms

Rk,1 =
1

2

∫ 1

0
L′′′((qk,uk, zk) + se)(e, e, e) · s · (s− 1) ds
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with e = (q − qk,u− uk, z− zk) and the remainder

Rk,2 =
1

2
L′(qk,uk, zk)(q̂k − qk, ûk − uk, ẑk − zk).

At least for the linear-fluid-structure interaction problem, we can prove in the following Lemma
that the remainder terms Rk,1 and Rk,2 will even vanish.

Lemma 7.3. For optimal control of the linear FSI problem with tracking-type functional and
control q ∈ L2(I) as in Configuration 2 (see Section 3.3.1) the remainder terms Rk,1 and Rk,2
in Theorem 7.1 vanish.

Proof. For the quadratic tracking type functional J (q,u) in (3.27) the remainder Rk,1 vanishes
as the third derivative of the Lagrange functional is zero in all directions due to the linearity
of the fluid-structure interaction problem. Therefore, we only have to take a closer look at
the remainder Rk,2:

Rk,2 =
1

2
L′(qk,uk, zk)(q̂k − qk, ûk − uk, ẑk − zk)

=
1

2
L′z(qk,uk, zk)(ẑk − zk) +

1

2
L′u(qk,uk, zk)(ûk − uk) +

1

2
L′q(qk,uk, zk)(q̂k − qk)

=:
1

2
R2,1 +

1

2
R2,2 +

1

2
R2,3.

As zk ∈ Yk,θ, we can rewrite the adjoint variables zvk and zuk on every time interval as zvk |Im =
zvk,mωθ,m and zuk |Im = zuk,mωθ,m, like we did in Section 5.1. As the semi-linear form a(·)(·) is
bi-linear and uk is linear on every time interval Im, all time integrals in the bi-linear form,
with the exception of the divergence condition, have the structure

M∑
m=1

∫
Im

hmωθ,m

with hm linear in time. According to Lemma 5.1, the theta-quadrature rule (5.2) evaluates
the time integral exactly. For the divergence condition we applied the trapezoidal rule which,
in this case, is exact, too. Therefore, we obtain

a(uk)(ẑk − zk) = ak(uk)(ẑk − zk).

According to Theorem 3.13 the optimal solution q fulfills

q = − 1

α

∫
Ω
h(x)zvk(·, x) dx.

We remind the reader that the control is mapped in the right-hand side through the linear
operators Bf and Bs. Thereby we multiply the time dependent control with the function
h ∈ Vdiv as defined in Configuration 2. Hence, the optimal control variable qk inherits the
time discretization of the adjoint velocity variable zk, which is an element of the time-discrete
theta dependent space zk ∈ Lvk,θ. Thus we can assume without loss of generality

qk ∈ Qk,θ := {ϕk ∈ L2(I)|ϕk|Im ∈ P θ0 (Im),m = 1, 2, ...,M and ϕk(0) ∈ R}.
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Therefore the quadrature rule (5.2) evaluates the control dependent terms exactly and we get

R2,1 =
1

2
[a(uk)(ẑk − zk) + ((Bfqk, ẑk − zk))f + ((Bsqk, ẑk − zk))s]

=
1

2
L′k,z(qk,uk, zk)(ẑk − zk) = 0.

As state and adjoint equation have the same structure, we can apply the same argumentation
for the adjoint. Here, we only have to take a closer look at the discretization of the right-hand
side. For the given quadratic tracking type functional we would choose a two-point Gauß
quadrature rule to evaluate the cost functional exactly. Then we get

R2,2 = a(u)(ûk − uk)− J ′u(ûk − uk) = ak(u)(ûk − uk)− J ′u(ûk − uk)

=
1

2
L′k,u(qk,uk, zk)(ûk − uk) = 0.

Finally we consider the derivative with respect to the control

R2,3 = ((Bf(q̂k − qk), zk))f + ((Bs(q̂k − qk), zk))s − α((qk, q̂k − qk)).

As already mentioned, without restricting the control space we have qk ∈ Qk,θ , therefore
we follow the same argumentation as above. As the operators Bf and Bs are linear and not
time-dependent, the values Bf(q̂k − qk) and Bs(q̂k − qk) are piecewise linear on every time
interval. Therefore, we can exactly evaluate with the quadrature rule (5.2) all integrals in
time and we get

R2,3 =
1

2
L′k,q(qk,uk, zk)(q̂k − qk) = 0.

As (qk,uk, zk) are stationary points and fulfill (7.2), the remainder term Rk,2 vanishes.

In [111] the authors apply the DWR error estimator to nonlinear parabolic equations and
in [112] to the Navier-Stokes equations. Thereby, they prove for both examples that the
remainder terms Rk,1 and Rk,2 are of third order and can be neglected. These results imme-
diately enable extending of Lemma 7.3 to optimal control problems constrained by nonlinear
parabolic equations or the Navier-Stokes equations. Even in these cases the remainder terms
Rk,1 and Rk,2 are of higher-order. In [128], the author claims that for dual-weighted residual
error estimators in space for stationary fluid-structure interaction the remainder terms can be
assumed to be of third order, as long as the ALE transformation is smooth enough. Hence
when Theorem 7.1 is applied later to optimal control of the nonlinear fluid-structure problem,
it is reasonable to assume that the remainder terms are small and can be neglected.
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7.3. Evaluation of the Error Estimators

7.3.1. Higher-Order Reconstruction

One possibility to deal with the arbitrary values ûk, ẑk, ûkh, ẑkh and q̂σ is to choose the inter-
polation of the exact solution in the discretized and semi-discretized spaces. Then the so called
weights, as for example the term u − ûk, are mainly interpolation errors. Nevertheless, the
weights in the residual error estimator in Theorem 7.1 still contain either the exact solution
(u, z, p) or the semi discretized solutions. However, only the fully discrete solution (uσ, zσ, qσ)
can be computed. Motivated by super convergence results, as in [134, 19], we use as approxi-
mation of (u, z, q), a higher-order reconstruction. This approach relies on “super closeness” of
the higher-order interpolants to the exact solution, see [19]. Such results can be found for the
finite element discretization of the Poisson equation and the Stokes equations in [29]. Such
super convergence results, have not been proven for the considered fluid-structure interaction
problem, yet. An alternative would be to solve the fluid-structure interaction problem on a
finer grid. This would result in a very high computational effort. More information about
alternative methods to higher-order interpolation can be found in [19]. We are going to apply
a higher-order reconstruction in the following, which performs well for the numerical examples
in Chapter 8.

We construct linear operators which enable to approximate the interpolation errors in the time,
spatial and control discretized spaces. The applied interpolation operator thereby only builds
on the computed solution. We first derive an approximation of the weights for estimating the
time-discretization error. Thereby we follow [28] and [111]. Then we extend the method to
the weights in the spatial and control discretization error estimator.

Higher-Order Reconstruction in Time

The discretized velocity variable vσ ∈ W v
kh and the displacement uσ ∈ W v

kh are piecewise

linear in time on every time-interval. We define the higher order approximation i
(2)
2k (uσ) and

i
(2)
2k (vσ), which map in the space of piecewise quadratic polynomials defined on unions of two

adjacent subintervals. The action of the operator i
(2)
2k is depicted in Figure 7.1.

t+ + + + + + +
tm−1 tm tm+1

Im

uk

i
(2)
2k (uk)

Figure 7.1.: Continous piecewise quadratic interpolation i
(2)
2k of a continuous piecewise linear

function uk.

As the intermediate steps of the fractional-step theta time-stepping scheme are not necessarily
precise approximations, we should use the piecewise quadratic reconstruction of the solution
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on the macro steps suggested in [111, 112]. Therefore we use for the fraction step theta scheme

the interpolation i
(2)
2k depicted in Figure 7.2, whereby we keep the notation for the interpolation

operator. In the following chapters if we use the fractional-step theta time-stepping scheme
the reconstruction will always be defined on the macro time grid.

t+ + + + + + +
tm−1 tm tm+1

Im

uk

i
(2)
2k (uk)

Figure 7.2.: Continous piecewise quadratic interpolation i
(2)
2k of a continuous piecewise linear

function uk on macro time steps.

The semi-discretized pressure pσ ∈ L2(I;Lf)kh is piecewise constant, on every time interval.
Here several possibilities are reasonable for reconstructing an approximation in the piecewise
linear finite element space. We decided to interpolate the pressure values at the nodes in the

time grid with a linear function. The action of the operator i
(1)
k is depicted in Figure 7.3.

For the fractional-step theta method we use the reconstruction of the pressure on the macro
time-grid.

t+ + + + + + +
tm−1 tm tm+1

Im

uk

i
(1)
k (uk)

Figure 7.3.: Continous piecewise linear interpolation i
(1)
k of a discontinuous piecewise constant

function uk.

It is unclear how the reconstruction for the adjoint variable has to look like. We do not have
any super-convergence results available. However, numerical experiments have shown that as
long as the interpolation operator is well defined, a lot of different approaches work well. As
the slope of the test function is needed to artificially introduce the theta value, we should use
for the interpolation the values at the middle of each time-interval. Then, we get the operator

i
(2)
2k,θ as in Figure 7.4. Such a piecewise quadratic reconstruction has kinks in the middle

of the time intervals. By shifting the interpolation to the time points of the time-grid the
implementation is much easier. As numerical experiments have not shown any disadvantages,
we are going to use the shifted version in our numerical calculations later.

For the adjoint pressure, we use again the interpolation operator i
(1)
k . Therefore we approxi-

mate the weights u− ûk and z− ẑk using the interpolation of the discrete solution uσ and zσ
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t+ + + + + + + +
tm−1 tm tm+1

Im

zk

i
(2)
2k,θ(zk)

Figure 7.4.: Continous piecewise quadratic interpolation i
(2)
2k,θ of a discontinuous piecewise lin-

ear function zk.

in a higher finite element space and we get

u− ûk ≈ (i
(2)
2k (vσ)− vσ, i(2)

2k (uσ)− uσ, i(1)
2k (pσ)− pσ)

=: ik(uσ)− uσ,

z− ẑk ≈ (i
(2)
3k,θ(z

v
σ)− zvσ, i(2)

3k,θ(z
u
σ)− zuσ , i(1)

3k (zpσ)− zpσ)

=: ik,θ(zσ)− zσ.

In the case of the fractional-step theta time stepping scheme, we denote with ik and ik,θ the
reconstruction on the macro time grid.

Higher-Order Reconstruction in Space

The same techniques can be used to define a spacial interpolation operator i
(2s)
2h interpolating

in the space of finite elements with order 2s on macrocells. We combine in 2D four adjacent
cells to a macro cell. The interpolation operator thereby can be implemented very easily if
we have a patch structure.

uk − ûkh ≈ (i
(2s)
2h (vσ)− vσ, i(2s)2h (uσ)− uσ, i(2s)2h (pσ)− pσ)

=: ih(uσ)− uσ,

zk − ẑkh ≈ (i
(2s)
2h (zvσ)− zvσ, i(2s)2h (zuσ)− zuσ , i(2s)2h (zvσ)− zvσ)

=: ih(zσ)− zσ.

Higher-Order Reconstruction of the Control Variable

For the control variable we can use the same approaches and we get

qkh − qσ ≈ id(qσ)− qσ.

If the control variable is chosen piecewise constant in time, we have id(qσ) = i
(1)
k (qσ) and in the

case of a piecewise linear control space we can use id(qσ) = i
(2)
2k (qσ). For a control distributed

in space, we have id(qσ) = i
(2)
2h (qσ).
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7. Dual-Weighted Residual Error Estimator

Approximation of the Weights

Thus, by replacing all unknowns in the residuals and weights by fully discrete solutions or its
interpolation in a higher finite element space we get using fractional-step theta time-stepping

ηk ≈
1

2

[
L′u(qσ,uσ, zσ)(ik(uσ)− uσ) + L′z(qσ,uσ, zσ)(ik,θ(zσ)− zk)

]
+ [f(qk)(z

v
k)− a(uk)(zk)],

ηh ≈
1

2

[
L′k,u(qσ,uσ, zσ)(ih(uσ)− uσ) + L′k,z(qσ,uσ, zσ)(ih(zσ)− zσ)

]
+ aLPS

kh (ukh)(zkh),

ηd ≈
1

2
L′kh,q(qσ,uσ, zσ)(id(qσ)− qσ).

It would be possible to use the higher reconstruction also for the terms in the residual, although
several examples in literature show that this does not seem to be necessary. We refer for
instance to the sources cited at the beginning of this chapter.

7.3.2. Localization of the Error Estimator

A posteriori error estimators can be used to quantify the discretization error. This enables
to define a stopping criteria such that the solution is calculated up to a certain accuracy. In
addition, by evaluating the error estimator of space, time, and control discretization, we can
compare the estimators. Then we can refine either the control, space, or time grid respec-
tively to their contribution to the overall error. After having localized the a posteriori error
estimators we can refine in addition locally the space, time, and control grid.

For the time-discretization error, we can calculate the absolute value of the error estimator
on every time interval Im. When splitting the space discretization error estimator in cell-
wise contributions, large overestimation of the actual error due to oscillatory behavior of the
residuals can be observed (we would like to refer to [42]). One commonly used way to overcome
this effect is to cell-wise integrate by parts. Then, the local error indicators consist of the
strong residual of the equations, as well as of jump terms over the faces of cells. However, in
the context of fluid-structure interaction this is too costly. Instead, we follow Braak and Ern
[33], who suggested an alternative filtering method without having to integrate by parts.

In addition to the interpolation operator i
(2s)
2h in the space of finite elements with order 2s

on a coarse grid, we define the projection i
(s)
2h mapping in the space of finite elements with

order s, this time on the coarse grid. Furthermore, we define the projection i
(s)
h in the space

of finite elements with order s on the fine grid. We can observe that for arbitrary functions
u ∈ X:

i
(s)
2h (u− i(s)h (u)) = 0.

Therefore, we can add this additional term and get as an approximation for the weight with
û = ih(u)

u− û = u− i(s)h (u) + i
(s)
2h (u− i(s)h (u)) = u− i(s)2h (u)− i(s)h (u− i(s)2h (u)).
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If we now replace the continuous solution u with its approximation i
(2)
2h (uσ), we get the

weight

uk − ûkh ≈ i(2s)2h (uσ)− i(s)2h (uσ)− i(s)h (i2s2h(uσ)− i(s)2h (uσ)). (7.5)

Evaluating now the error estimator with the filtered weight (7.5) cell-wise it can be shown
that the local error indicator is effective for several examples and does not overestimate the
error anymore.

Hence, we need the patch structure to first construct an aproximation of the exact solution
in a higher finite-element space and to define then a filtering operator to localize the error
estimator. Alternative localization methods have been discussed in [132] without needing a
patch structure.

7.4. Adaptive Algorithm

We present in this section an adaptive refinement algorithm for optimal control, which uses
the derived localized a posteriori error estimators:

Σk := {ηk,m|m = 1, ...,M}, Σh := {ηh,K |K ∈ Th} and Σq := {ηq,i|i = 1, ..., n}.

To get a consistent optimization algorithm, we solve in every adaption step first the optimiza-
tion problem up to a certain accuracy. Only if the optimization algorithm has converged,
the discrete solution will fulfill the necessary optimality condition plus will be a stationary
point of the discrete Lagrangian. Numerical experiments show, that if the calculated solution
is not close to the optimal solution the DWR estimator is not accurate. After refinement in
space and time, the optimization problem is solved once again. Quasi-Newton and Newton
algorithm are known to have fast convergence close to the optimal solution. Therefore, we
expect that we only need a few steps on the refined grid if we start the LBFGS algorithm with
the optimal control calculated on the coarse grid. We have summarized the different steps
needed for an adaptive algorithm for optimal control in Algorithm 7.1.

There are different possibilities to choose the cells and time intervals to be refined. The easiest
method is to calculate an averaged error per cell, whereby all cells with larger error indicators
have to be refined. We will follow a slightly different strategy which is presented for example
in [127]. If we have a set of localized error estimators Σ = {η1, ..., ηN}, we compute first a
permutation (i1, ...., iN ) of the indices 1, ..., N such that

|ηi1 | ≥ |ηi2 | ≥ ... ≥ |ηiN |.

The subset of indicators ΣR ⊂ Σ to be refined is chosen as coherent queue ΣR = {ηi1 , ..., ηir}
with r being the solution of the minimization problem

r := argmin
1≤r≤N

E(r)N(r)β.

Thereby,

E(r) =

N∑
i=1

|ηi| −
r∑
i=1

(1− 2−α)|ηi|
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7. Dual-Weighted Residual Error Estimator

Algorithm 7.1: Abstract adaptive algorithm for optimal control

Choose initial temporal and spatial discretization
while η > tol1 do

while ‖∇j(qσ)‖ > tol2 do
for m = 1, ...,M do

For given control qσ find uσ,m solving the discretized state equation
end for
for m = M, ..., 0 do

Find zσ,m solving the discretized adjoint equation
end for
Calculate LBFGS update ∆qσ and define qσ = ∆qσ + qσ

end while
Evaluate the localized a posteriori estimators ηk,m, ηh,K , ηd,i
Determine time intervals/cells with large error contribution and set η = ηk + ηh + ηd
Refine the selected time intervals/cells

end while

is a prediction of the discretization error after refinement of the cell. The parameter α denotes
the expected order of convergence and N(r) corresponds to the number of degrees of freedom
of the refined discretization. The quotient of the degree of polynomials used for discretization
and the dimension of the domain is given by β . In the case of a fractional-step theta time-
stepping scheme we have β = 1 and α = 2. The optimal value r is determined by successively
testing. Then, we refine all cells with indicators in the set ΣR.

Adaptive algorithms are very efficient to resolve singularities occurring for example around
corners. As we are going to see in Chapter 8, the solution in time is often very smooth and
the time discretization error is uniformly distributed. In that case, there is no advantage
in adaptive refinement of the time-grid compared to global refinement. However, the DWR
estimator enables in addition to compare the spatial, time, and control discretization error.
Thereby, we only refine in space and time, as long as the errors are similar in size. As we
are going to see in Section 8.2, the possibility to equilibrate the errors is one of the main
advantages of the DWR error estimates and can reduce the computational cost enormously.

In [89], a good overview on heuristic error estimators for different time-discretization schemes
for the Navier-Stokes equations can be found. Therein, an error indicator is calculated in every
time step and the time step size for the following step can be immediately adjusted. Such
an approach seems to be efficient, as the PDE only has to be solved once. On the downside,
such error estimators do not allow error estimation with respect to a goal functional and do
not take the discretization error in the adjoint equation into account. Furthermore, to get a
consistent optimization algorithm, we cannot adapt the time-grid each time we solve the state
equation. Therefore, the advantage of only having to solve the PDE once is not given here.
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8. Numerical Examples

In the following section, we test the limited memory BFGS algorithm presented in Section 6
for optimal control of the linear and nonlinear fluid-structure interaction problems in various
numerical examples. Furthermore, we estimate the time, spatial, and control discretization
error using the dual-weighted residual a posteriori estimator presented in Section 7. In all
following examples, we provide computations using the software package RoDoBo [133]. We
use the fractional-step theta time-stepping scheme derived by Galerkin discretization in Sec-
tion 5 and bi-linear or bi-quadratic finite elements in space. We denote with M the number of
time steps and with N the degrees of freedom of the finite element space in one component.
All computations are repeated on different levels of discretization to analyze the behavior of
the discretization error with global or adaptive refinement. In Section 8.1, we first evaluate
the accuracy of the presented a posteriori error estimator for optimal control of a linear fluid-
structure interaction problem. In Section 8.2, we apply the error estimator on the nonlinear
fluid-structure interaction problem. There, we estimate the error with respect to a functional
of interest and solve no optimal control problem. Finally, we solve, in Section 8.3, several
optimal control problems constrained by the nonlinear model.

8.1. Optimal Control of a Linear Fluid-Structure Interaction
Problem

To test the a posteriori error estimator presented in Chapter 7, we consider a simple optimal
control problem governed by a linear fluid-structure interaction problem.

Configuration

The fluid flows through an elastic tube as presented in Figure 8.1. The channel has the length

Γin

ΓD
s

ΓD
s

Ωf Γout

ΓD
s

ΓD
s

Γi

Γi

Ωs

Ωs

ΓN
s

ΓN
s

Figure 8.1.: Geometry for fluid flow through an elastic channel.
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of 5 cm and the height of 1.2 cm. The surrounding elastic layers have a height of 0.1 cm each.
At the inflow boundary Γin, we enforce a parabolic inflow profile

v(0, y) := 4(y + 0.5)(0.5− y)vin(t) (8.1)

with the time varying inflow vin(t) plotted in Figure 8.2.

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

time t

Figure 8.2.: Inflow velocity vin(t) plotted over time t.

At the outflow boundary Γout we use a do-nothing outflow condition as presented in Sec-
tion 4.1.4. The elastic beam is clamped at the left and right boundary ΓDs and free at the
top and bottom boundary ΓNs . Motivated by applications in hemodynamics, we choose the
parameters given in Table 8.1, which have already been used for a similar configuration in
[149]. The beam is assumed to be at rest in the initial configuration and we assume a constant
parabolic flow in the channel. Hence, we have the initial conditions u0 = 0, v0

∣∣
Ωs

= 0 and

v0

∣∣
Ωf

(x, y) = 4(y + 0.5)(0.5− y)vin(0).

Even if the geometry seems simple, the configuration has its difficulties. The varying fluid
inflow excites the beam to oscillate in its eigenmode. As the resulting beam velocity at the
interface can be quite large, the beam movement sincerely influences the fluid flow.

Table 8.1.: Material parameters (flow of a fluid through elastic channel)

νf λs µs ρs ρf T γs

3.5 · 10−2 cm2

s 2.0 · 106 g
cm s2

0.5 · 106 g
cm s2

1.0 g
cm3 0.5 g

cm3 3.6 105

Optimal Control Problem

The goal of this numerical example is to validate the effectivity of the a posteriori error
estimator. The focus thereby will be on evaluating how accurate the estimator is able to
approximate the time discretization error, for a fractional-step theta time-stepping scheme,
and the control discretization error. As cost functional, we use a tracking type functional (3.27)
with observation on the solid domain and Tikhonov regularization

J(q, u) :=
γs

2

∫
I
‖u− ud‖2L2(Ωs)

dt+
α

2
‖q‖2Q.
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8.1. Optimal Control of a Linear Fluid-Structure Interaction Problem

We decided to control a volume force in the solid in x- and y-direction

fs = q on Ωs × I.

Due to the symmetry of the configurations, we control the volume force on the upper and
lower elastic layer at once. There is no control on the fluid domain Ωf . The control q is
assumed to be constant on the solid domain and time-varying. Thus we have the control
space Q = L2(I)× L2(I).

If not stated differently, we use in this section bi-quadratic finite elements (the space V
(2)
h )

to discretize in space and a fractional-step theta time-stepping scheme as presented in Sec-
tion 5.1.3. The time-dependent control variable is either approximated by piecewise linear or
piecewise constant functions. We stop the LBFGS Algorithm 6.1 if the gradient is reduced by
a factor 10−3. For the regularization parameter we chose the value α = 10−1.

We have shown in Section 7.2 for the linear fluid-structure interaction problem that the
remainder terms are zero. Hence, the discrepancy between the a posteriori error estimator and
the actual discretization error only comes from using an approximation of the exact solution
in a higher finite element space. The quotient between error estimator and discretization error
is called effectivity index Ieff . Values close to one indicate that both values are equivalent.
If the effectivity index is close to zero or very large the error estimator either under- or
overestimates the discretization error. As we are not able to acquire the exact discretization
error, we compute a reference solution Jref of the cost functional on a fine grid to evaluate
the effectivity indices.

Separability of Discretization Errors

Table 8.2.: Time and control discretization error estimator on different discretization levels

N M dim(Qd) ηk ηq

1617 288 194 −3.57 · 10−4

1617 576 194 −3.50 · 10−4

1617 1152 194 −3.36 · 10−4

1617 2304 194 −3.31 · 10−4

1617 4608 194 −3.30 · 10−4

1617 2304 98 1.43 · 10−2

1617 2304 194 1.41 · 10−2

1617 2304 386 1.41 · 10−2

1617 2304 770 1.41 · 10−2

1617 2304 1538 1.41 · 10−2

425 576 386 3.22 · 10−1 −1.13 · 10−4

1617 576 386 2.05 · 10−1 −3.48 · 10−5

6305 576 386 1.62 · 10−1 −2.07 · 10−5

24897 576 386 1.49 · 10−1 −1.75 · 10−5

The equilibration of the space, time, and control discretization errors is only possible, if the
errors are independent of each other. To test the separability of the a posteriori estimator,
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we refine in space or time or the control variable and keep the other discretization spaces
constant. In Table 8.2, we present the resulting error estimators. We denote with N the
degrees of freedom of the spatial discretization and with M the number of time steps. As
we can see under refinement of the spatial discretization, the control and time discretization
error estimator stay constant. The same is valid for refining in time or space.

Control Discretization Error Estimator

Now we would like to evaluate how accurate the control estimator approximates the exact
discretization errors. We give, in Table 8.3, the effectivity indices for the control estimator,
when discretizing the control by piecewise linear functions in time. In Table 8.4, we present
the effectivity indices using piecewise constant functions in time as control space. By using
the fractional-step theta time-stepping scheme, we evaluate the functional on the macro time
grid as suggested in Remark 7.2. As we are just interested in the control discretization error,
the reference solution Jref is computed on the same space and time grid as the results in
Table 8.3 and Table 8.4, except for the control, for which we use a piecewise linear control
space with dim(Qd) = 1538.

As we can see in Table 8.4 and Table 8.3 on fine control grids we get excellent effectivity
indices. The underestimation of the error on the coarse grid is a sign that the higher order
reconstruction of the exact solution only works well if the computed control already approx-
imates the exact control very accurately. Comparing Table 8.3 and Table 8.4, we can see a
much faster convergence of the control discretization error for the linear control space than
for the piecewise constant control space. This can be expected as the variationally discretized
solution qkh can be approximated more accurate with control functions in the linear space
than with piecewise constant functions.

Table 8.3.: Effectivitiy indices of the control discretization error estimator ηd using a linear
control space

N M dim(Qd) J (i
(1)
3k (uσ))) ηq Jref − J (i

(1)
3k (uσ))) Ieff

1617 2304 98 6.23 −5.80 · 10−3 −1.03 · 10−2 0.56
1617 2304 194 6.22 −3.31 · 10−4 −3.49 · 10−4 0.94
1617 2304 386 6.22 −1.92 · 10−5 −1.84 · 10−5 1.03
1617 2304 770 6.22 −1.42 · 10−6 −1.03 · 10−6 1.37

Table 8.4.: Effectivitiy indices of the control discretization error estimator ηd using a piecewise
constant control space

N M dim(Qd) J (i
(1)
3k (uσ))) ηq Jref − J (i

(1)
3k (uσ))) Ieff

1617 2304 96 6.28 −2.85 · 10−2 −6.21 · 10−2 0.45
1617 2304 192 6.24 −1.39 · 10−2 −1.67 · 10−2 0.83
1617 2304 384 6.22 −4.06 · 10−3 −4.20 · 10−3 0.96
1617 2304 768 6.23 −1.03 · 10−3 −1.00 · 10−3 1.02
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8.1. Optimal Control of a Linear Fluid-Structure Interaction Problem

Time Discretization Error Estimator

Now we keep the control discretization constant and refine in time. For the fractional-step
theta time-stepping scheme, we get optimal results in Table 8.5. The error in the cost func-
tional reduces constantly with refinement of the timegrid and the error estimator neither
overestimates nor underestimates the error extremely. We computed here again the reference
value Jref on a fine time grid with M = 4608 time steps and kept the spatial and control
discretization as in Table 8.5.

Table 8.5.: Effectivitiy indices of the time discretization error estimator ηk

N M dim(Qd) J (i
(1)
3k (uσ))) ηk Jref − J (i

(1)
3k (uσ))) Ieff

1617 288 194 5.44 5.84 · 10−1 7.93 · 10−1 0.73
1617 576 194 6.01 2.05 · 10−1 2.25 · 10−1 0.91
1617 1152 194 6.18 5.52 · 10−2 5.49 · 10−2 1.01
1617 2304 194 6.22 1.41 · 10−2 1.11 · 10−2 1.27

Error Estimator Spatial Discretization

To test the spatial a posteriori error estimator, we used in comparison to the previous com-
putations bi-linear finite elements. The reference value Jref was computed on a fine grid with
N = 24897 degrees of freedom and second-order finite elements. The effectivity indices in
Table 8.6 for the spatial discretization estimator are surprisingly not perfect. On the coarse
grid the error is underestimated and on finer grids slightly overestimated. A closer look at the
convergence rate of the error in the cost functional, shows, that the grids we computed on are
still too coarse to be in the convergence range. This can be an explanation for the suboptimal
higher order reconstruction in the error estimator.

Table 8.6.: Effectivitiy indices of the spatial discretization error estimator ηh (bi-linear finite
elements)

N M dim(Qd) J (i
(1)
3k (uσ))) ηh Jref − J (i

(1)
3k (uσ))) Ieff

117 576 386 3.50 6.99 · 100 2.06 · 100 3.39
425 576 386 9.44 −1.10 · 101 −3.87 · 100 2.86
1617 576 386 5.10 2.91 · 10−1 4.55 · 10−1 0.63
6305 576 386 7.16 −1.00 · 100 −1.60 · 100 0.62
24897 576 386 5.91 −4.16 · 10−1 −3.54 · 10−1 1.17

If we use bi-quadratic finite elements instead of bi-linear finite elements, we get a fast and
uniform reduction of the error in the cost functional, as we can see in Table 8.7. As the
error estimator for bi-quadratic finite elements is not fully supported by the software library
RoDoBo [133] yet, we cannot present effectivity indices here. One explanation for the reduced
convergence rate of the error in the cost functional for bi-linear finite elements could be the
use of very anisotropic cells as well as locking effects due to the thin beam structure.
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Table 8.7.: Error in the cost functional under spatial discretization (quadratic finite elements)

N M dim(Qd) J (i
(1)
3k (uσ))) Jref − J (i

(1)
3k (uσ)))

117 576 386 5.13 4.30 · 10−1

425 576 386 7.53 −1.97 · 100

1617 576 386 6.01 −4.52 · 10−1

6305 576 386 5.65 −9.88 · 10−2

Test of the LBFGS Algorithm

In Section 6.3, we claimed that only the gradient information of very few steps is necessary to
construct an appropriate approximation of the Hessian. We use in the following the gradient
of the last m = 3, m = 6 and the last m = 12 steps. We compute the solution using
bi-quadratic finite elements on a mesh with N = 1617 degrees of freedom and a time grid
with M = 2304 time nodes. For the control, we use a piecewise linear discretization. The
optimization algorithm terminates in all cases if the gradient is reduced by a factor of 10−3.

If we use the gradient information of the last m = 12 steps, the LBFGS algorithm already
converges after 9 steps independent of the dimension of the control space. As no gradient
information is omitted, the LBFGS algorithm coincides with the BFGS algorithm. This
explains the extreme fast super-linear convergence we could see in the last steps. If we use
the gradient information of the last m = 3 or m = 6 steps, the convergence rate is still fast,
nevertheless, we loose the super-linear convergence. Hence, we have to choose the termination
criteria very reasonably as reducing the gradient by additional 10% can mean a serious number
of extra optimization loops. At least for the optimal control problem at hand, the number of
optimization loops in Table 8.8 is in all cases independent of the control dimension.

Table 8.8.: Number of optimization loops in the LBFGS algorithm

dim(Qd) LBFGS with m = 3 LBFGS with m = 6 LBFGS with m = 12

50 11 9 9
98 9 12 9
194 11 12 9
386 11 12 9
770 9 12 9
1538 11 12 9

Implementation of the Solid Velocity

For proving existence and regularity results for state and adjoint equation at the same time, we
introduced, in Section 3.1.4, the solid velocity in an unconventional way. The question arises
if this formulation has any numerical advantages. Hence, we compute the optimal control
problem demanding

((∇∂tu,∇ψ))s − ((∇v,∇ψ))s = 0 ∀ψ ∈ L2(I;Vs),
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as in (3.9). We denote the resulting cost functional value with J1(u). In addition we solve
the optimal control problem of the linear fluid-structure interaction problem by using the
standard formulation to introduce the solid velocity variable as in (3.3):

((ut, ψ))s − ((v, ψ))s = 0 ∀ψ ∈ L2(I;Hs).

We denote the resulting value of the cost functional with J2(u). The example is computed on
a fixed fine grid with M = 1617 degrees of freedom, N = 2304 time steps and a control space
with dim(Qd) = 386. Similar to previous examples we compute a reference solution for the
cost functional Jref on a fine grid with M = 6305, N = 2304 time steps and a control space
with dim(Qd) = 770.

Comparing the functional values we can see that the choice of implementation rather has
no influence. The difference in the cost functionals given by J1(uσ) − J2(uσ) = 3.49 · 10−7

is much smaller then the actual discretization error J1(uσ) − Jref = 3.943660 · 10−1 and
J2(uσ) − Jref = 3.943656 · 10−1. Moreover, the algorithm terminates in both cases after 11
steps. Hence, we cannot see any numerical benefit in using either the formulation (3.9) or (3.3)
here. Therefore, we do not expect any disadvantages, if we use in the case of the nonlinear
fluid-structure interaction problem the standard formulation (3.3).

8.2. A posteriori Error Estimation for a Nonlinear FSI Problem

In this section, we discuss several numerical examples in order to demonstrate our algorithmic
developments. We apply the a posteriori error estimator in Theorem 7.2 on a nonlinear
fluid-structure interaction configuration. In this section, we only estimate the discretization
error with respect to a functional of interest and do not solve an optimization problem.
The first two examples are the original FSI-2 and FSI-3 benchmark tests proposed in [142,
41, 40]. We compute them with the originally proposed inflow profile as well as with a
modified inflow profile. In the latter, we decrease the inflow (after full oscillations have been
developed) in order to study how the error estimator can deal with time step refinement and
coarsening. In the final example, we consider a flapping test proposed in [73] that is inspired
by hemodynamics applications. The results have not been published yet. A comparison with
heuristic error estimators will be the topic of the article [59] currently in preparation.

8.2.1. FSI-2 and FSI-3 Benchmark Configuration

We define first the configuration and material parameters for both the FSI-2 and FSI-3 bench-
mark. In the FSI-2 and FSI-3 benchmark a beam of length 0.35m and height 0.02m is attached
to a cylinder with radius r = 0.05m and circle-center C = (0.2, 0.2). The cylinder is located in
a channel of length 2.5m and height 0.41m filled by a fluid as in Figure 8.3. On the cylinder
and on the outer boundary Γf as well as on Γs we enforce zero Dirichlet boundary conditions.
At the outflow boundary Γout we apply a do-nothing outflow condition. The parabolic inflow
profile on Γin is given by:

v(0, y) := 1.5y(0.41− y)
4

0.412
vin(t). (8.2)
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Figure 8.3.: Geometry for flow around cylinder with elastic beam.

In the original benchmark the inflow velocity vin(t) is slowly increased and kept constant after
some time. We will use in addition a second inflow profile which decreases again after some
time. We consider the FSI-2 configuration on the time interval I = (0, 25) and analyze the
FSI-3 configuration on the time interval I = (0, 12). The material parameters are chosen as
proposed in [142, 41, 40] and listed in Table 8.9.

Table 8.9.: Material parameters for the FSI-2, FSI-3 and Flapping Test.

FSI-2 FSI-3 Flapping

νf 10−3 m2

s 10−3 m2

s 10−1 cm2

s

λs 0.5 · 106 kg
ms2

2.0 · 106 kg
ms2

2.0 · 107 g
cms2

µs 2.0 · 106 kg
ms2

8.0 · 106 kg
ms2

8.0 · 107 g
cms2

νm −0.1 −0.1 −0.1

ρs 104 kg
m3 103 kg

m3 102 g
cm3

ρf 103 kg
m3 103 kg

m3 102 g
cm3

To compare the computed solutions ukh = (vkh, ukh, pkh) of the time-space discretized FSI
model in Problem 5.5 on different temporal meshes, we evaluate several time-dependent func-
tionals. As in [142, 41, 40], we calculate the displacement u in x- and y-direction at the point
A = (0.6, 0.2) and integrate the values over time to have a functional value:

J1(u) :=

∫
I
u2

1(A, t) dt, J2(u) :=

∫
I
u2

2(A, t) dt. (8.3)

In addition, we calculate the drag at the combined outer boundary of cylinder and solid flag
which depends on the solid displacement u and the fluid velocity v and pressure p:

J3(u) :=

∫
I

∫
Γf ,circle

−σf(v)ne1 dx dt+

∫
I

∫
Γi

−Σ(u)ne1 dx dt. (8.4)

A further characteristic value of the fluid velocity field v is the vorticity value. Due to the
boundary layers, we use the Okubo-Weiss criterion which was first introduced in [121, 147].
The vorticity is given by the positive values of det(∇v). As the vorticity value is defined on
the moving domain we have to transform the criteria to the reference domain. To be able to
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calculate sensitivities of the functional we use the regularized version

J4(u) :=

∫
I

∫
Ωf

Jg(det(∇vF−1) dt dx with g(x) =

{
0 x < 0
t3

1+t2
x > 0.

(8.5)

suggested in [96]. In addition to the functional evaluation on the whole fluid domain, we
calculate the vorticity value in the area Ω̃f := {v ∈ Ωf |x > 0.9} behind the beam:

J5(u) :=

∫
Ω̃f

∫
I
Jg(det(∇vF−1) dt. (8.6)

8.2.2. A Comparison of Various Time-Stepping Schemes

Before we start with detailed analysis of the adaptive algorithm, we briefly want to motivate
our choice to work with the fractional-step theta time-stepping scheme. To do so, we perform
a computational analysis in which we compare the behavior of the 2nd order unconditionally
stable Crank-Nicolson scheme (θm = 0.5), the 2nd order strictly A-stable shifted Crank-
Nicolson scheme (θm = 0.5 + εm), and the fractional-step theta scheme.

As shown in [149], for FSI-2, both the shifted Crank-Nicolson and fractional-step theta scheme
work well. However, one drawback of the shifted Crank-Nicolson scheme is the determination
of the shift value. On the one hand stability can only be observed for the shift value εm ≈ km.
On the other hand for the shift value must hold εm < 0.5, since otherwise θm ∈ [0, 1] is
violated. Especially on an adaptively refined time grid it is unclear how the shift value has to
be chosen.

0 2 4 6 8 10 12

−4

−2

0

2

4

·10−2

time t

FSTheta
shifted CN
CN

Figure 8.4.: Comparison of various time-stepping schemes showing blow-up for the two Crank-
Nicolson schemes in the u2 displacements at A = (0.6, 0.2) with time step km =
10−2 for the FSI-3 benchmark

For FSI-3 such comparison has not yet been made. We use the smooth increasing inflow
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profile

vin(t) =

{
1− 1 cos(πt2 ) t ≤ 2

2 t > 2

and compute the solution on a rather coarse time-grid with the time step size km = 10−2.
We plot the resulting displacement u at the tip of the flag A in y-direction in Figure 8.4.
We observe that both Crank-Nicolson and the shifted version will fail after some time. Since
adaptive algorithms only pay off, if we are able to solve the partial differential equations
already on rather course grids, we conclude that the fractional-step theta time-stepping scheme
seems to be the optimal choice as time-stepping scheme in combination with adaptivity.

8.2.3. FSI-3 Benchmark with new Inflow

To avoid artificial oscillations and large numerical errors, the authors in [142] suggest to
increase the inflow velocity slowly and smoothly. In the following, we choose an inflow profile,
which lacks this regularity to test if the adaptive algorithm is able to tackle the kinks in the
inflow vin(t). The inflow velocity vin(t) is given by

vin(t) =


t t ≤ 2

2 2 < t ≤ 6

8− t 6 < t ≤ 7

1 else,

(8.7)

and decreases again after full oscillations have been developed, to enforce a varying behavior
over time.
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Figure 8.5.: Solution of the FSI-3 benchmark using the new inflow profile (8.7). Drag value at
the flag and cylinder (left) and displacement u in y-direction (right) plotted over
time t.

In Figure 8.5, we plotted the displacement at the tip of the flag A and the drag value on the
cylinder and interface over time (see definition of J3(u) in (8.4)). The solution is computed
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with bi-quadratic finite elements on a mesh withN = 4128 degrees of freedom andM = 144384
time steps for the fractional-step theta time-stepping scheme. As in the standard FSI-3
benchmark the beam starts to oscillate after some time, whereby frequency and amplitude
are equivalent to the standard benchmark for t < 6. The moment the inflow decreases, the
amplitude of the oscillations reduces and the configuration converges to a steady state. This
behavior can also be seen in the drag value.

Functional of Interest: Vorticity

To compare the accuracy of the computed solution on different time grids, we choose the
vorticity functional J5(u) defined on Ω̃f := {v ∈ Ωf |x > 0.9}. The error in the functional of
interest due to time discretization is plotted in Figure 8.6 over the number of time steps. The
space discretization is kept constant with N = 4128. As reference value for the functional Jref

we use the solution on a very fine equidistant time grid with M = 144384 time steps and the
same spatial discretization. The error in the functional of interest thereby converges slightly
faster using the adaptive algorithm with the DWR error estimator as refinement indicator,
instead of global refinement in time. In addition, the estimates ηk of the time discretization
error in Figure 8.6 are very close to the exact values of the discretization error.

103 104 105
10−2

10−1

100

101

number of timesteps M

ηk global
err global
ηk adaptive
err adaptive

Figure 8.6.: Error in the vorticity functional J5(u) and time discretization error estimator ηk
for the FSI-3 benchmark plotted over number of time steps M .

Functional of Interest: Drag

Furthermore, we evaluate the functional J3(u), measuring the drag around the cylinder and
the flag, as well as the time discretization error estimator on different time grids with M
time steps. As already done in Section 8.1, we evaluate the effectivity indices Ieff refining
either globally or adaptively in time. The effectivity indice Ieff is defined as quotient of time
discretization error estimator ηk and exact discretization error Jref − J (ukh). As reference
value for the functional Jref we use again the solution on a very fine equidistant time grid
with M = 144384 time steps.
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Table 8.10.: Effectivity indices Ieff for the time discretization error estimator ηk with respect
to J3(u) on globally refined time grids

M 1128 2256 4512 9024 18048 36096

Ieff 0.86 0.84 0.94 1.35 0.69 1.18

Table 8.11.: Effectivity indices Ieff for the time discretization error estimator ηk with respect
to J3(u) on adaptively refined time grids

M 1128 1458 2310 4122 4890 7440 9420 9420

Ieff 0.86 0.84 0.94 1.98 2.85 0.89 0.86 0.88

The effectivity indices in Tables 8.10 and 8.11 are very close to one. Hence, the error in
the functional of interest is neither over- nor underestimated. Thus, the error estimator can
be used additionally as a reliable stopping criteria for the simulation. Furthermore, if error
estimates for the space discretization are available, we can decide if it is necessary to refine in
space and time or just in one of the two. We refer to the example in Section 8.2.5, where we
equilibrate space and time discretization error.

To get a fast converging adaptive algorithm, having an accurate localization of the error is
also important to know where to refine the time grid. In Figure 8.7, we plotted the time
step size km over time t after 1, 3 and 6 refinement steps. The DWR algorithm refines the
areas where the beam oscillates with faster frequency as we would expect. In addition, the
adaption strategy does not refine the time grid for t > 8, when the solution converges against
a stationary solution. Surprisingly the algorithm refines quite heavily close to the initial
condition. However, taking a closer look at the drag values in Figure 8.5, we can see that the
fast increasing inflow causes oscillations in the drag value.
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Figure 8.7.: Time step size km plotted over time t after 1 (left), 3 (middle) and 6 (right)
adaptive refinements for the FSI-3 benchmark.

8.2.4. FSI-2 Benchmark with new Inflow

The geometry for the FSI-2 benchmark is identical to the FSI-3 benchmark as given in Fig-
ure 8.3. However, as the material parameters and maximum inflow vary, the beam starts to
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oscillate with lower frequency and with higher amplitude. As in the previous simulation, we
choose an inflow profile

vin(t) =


0.5t, t ≤ 2

1, 2 < t ≤ 14

8− 0.5t, 14 < t ≤ 15

0.5, else

(8.8)

rising linearly and after some constant period, the inflow profile decreases again.

In Figure 8.8, we plotted the displacement u in x- and y-direction at the tip of the flag at
the point A = (0.6, 0.2) over time. Here we used again bi-quadratic finite elements with
N = 4128 and M = 149760 times steps in the fractional-step theta time-stepping scheme.
We will use the resulting solution as reference solution in the following. In comparison to the
FSI-3 configuration (see Figure 8.5), the damping of the beam due to the fluid flow is much
slower, especially as the simulation runs here until T = 25 instead of T = 12. In the time
frame t ∈ [10, 14], the frequency and amplitude coincide again with the reference values of the
standard FSI-2 benchmark.
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Figure 8.8.: Solution of the FSI-2 benchmark using the new inflow profile (8.8). Displacement
u in x-direction (left) and y-direction(right) at the tip of the flag A plotted over
time.

To analyze the convergence rate of the fractional-step theta time-stepping scheme, we plotted
in Figure 8.9 the error in the functional J2(u). The functional contains the displacement
values u at the tip of the flag A in y-direction integrated over time. Due to the lower inflow
velocity, the solution is compared to the FSI-3 benchmark smoother in time. In addition,
even at the end time point T the solution has not reached a steady state. That is why global
refinement is reasonable here. The adaptive algorithm does not provide any advantages with
respect to convergence in time.
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Figure 8.9.: Error in the functional J2(u) for the FSI-2 benchmark plotted over number of
time steps M .
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Figure 8.10.: Flow through two elastic beams.

8.2.5. Flapping Test

In [73] an alternative test configuration was suggested. The fluid in a channel of length 8cm
and height 1.61cm flows through the gap between two vertical elastic beams of width 0.0121cm
and height 0.7cm (see Figure 8.10), whereby the fluid flow induces a flapping of the two beams.
At the inflow boundary Γin we enforce a parabolic inflow profile

v(0, y) := y(1.61− y)
4

1.612
vin(t).

Motivated by applications in hemodynamics, we choose for the mean inflow velocity vin(t)
the periodic profile given in Figure 8.11. This configuration was developed in [73] to test
alternative methods to the ALE mapping used in this thesis. For large inflow velocities, the
algorithm fails as the fluid-structure interaction equation cannot be solved anymore due to
the large displacement of the thin beam. Hence, the maximal value of parabolic inflow profile
is chosen in such a way, that the mesh motion can still be handled by the ALE method.

As in the FSI benchmark, we enforce zero Dirichlet boundary conditions at the outer boundary
Γf and Γs and a do-nothing outflow condition at the outflow boundary Γout. The computations
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Figure 8.11.: Inflow velocities vin(t) and 0.5vin(t) plotted over time t

are carried out on the time interval I = (0, 3.6) and the material parameter values are given
in Table 8.9.
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Figure 8.12.: Solution of the flapping test. Displacement u at the point B in x-direction (left)
and displacement u at the point B in y-direction (right) plotted over time t.

To visualize the behavior of the space-time discretized FSI model in Problem 5.5 for the given
configuration, we plotted the displacement of the flag at the point B = (2.0, 0.91), the drag
around the two beams, and the vorticity over time in Figure 8.12 and 8.13. For the simulation,
we use bi-quadratic finite elements with N = 5537 degrees of freedom and the fractional-step
theta time-stepping scheme with M = 184320 time steps. Due to the varying inflow, the
beams are at rest most of the time. The moment the inflow profile increases the gap between
the beams increases as well. In addition the change in the fluid velocity induces large changes
in the drag and vorticity values.

As in the previous configurations, we evaluate a functional of interest to compare the time and
spatial discretization error on different time and spatial grids. Here, we choose the vorticity
value on the domain Ωf given by the functional J4(u) defined in (8.5).
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Figure 8.13.: Solution of the flapping test. Drag value (left) and vorticity value (right) plotted
over time t.

Adaptive Refinement in Time

First, we solve the configuration on different globally refined time grids. Then, we use the
DWR error estimator presented in Theorem 7.2 to refine the time grid adaptively. We plotted
again the error in vorticity functional over the number of time steps M . The discretization
error is computed using as reference value Jref the vorticity functional computed on a fine
grid. The reference solution is solved on the same spatial grid with N = 5537 degrees of
freedom and M = 184320 time steps. Furthermore we use bi-quadratic finite elements. As
we can see in Figure 8.14, the error in the functional of interest reduces much faster if we use
the adaptive algorithm in comparison to the error by global refinement of the time grid.
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Figure 8.14.: Error in the vorticity functional J4(u) for the flapping test plotted over number
of time steps M .

If we take a closer look on the resulting time step size in Figure 8.15 we see that the adaptive
algorithm chooses locally very small time steps. The adaptive algorithm refines especially
in the areas of large inflow velocity, but also sees the kinks in the inflow profile and refines
there.
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Figure 8.15.: Time step size km plotted over time t after 1 (left), 3 (middle) and 6 (right)
adaptive refinements for the flapping test.

Space-Time Adaptive Refinement with Equilibration

One of the major advantages of dual-weighted residual error estimators is the possibility to
equilibrate the spatial and time discretization error. To demonstrate the efficiency of such an
approach, we refine globally in space and time and compare the error in the vorticity functional
with the discretization error we obtain by refining adaptively. The adaptive algorithms only
refines in space and time, if the error indicators ηk and ηh have the same order of magnitude.

In comparison to the previous sections, we use bi-linear finite elements here. The reference
solution is computed on a fine grid with bi-quadratic finite elements with N = 20273 degrees
of freedom and M = 23040 time steps. In addition, we reduced the inflow velocity to 0.5vin(t)
as given in Figure 8.11.

Table 8.12.: Effectivity indices of spatial and time discretization error estimator using constant
Young’s modulus Em (left) and modified distributed Young’s modulus Em in the
mesh motion equation for the flapping test

Em const Em distributed
N ·M Ieff N ·M Ieff

5.05 · 105 4.70 · 10−1 5.05 · 105 4.82 · 10−1

1.06 · 106 7.21 · 10−1 1.06 · 106 6.85 · 10−1

2.35 · 106 −3.09 · 100 2.35 · 106 8.98 · 10−1

5.11 · 106 −9.76 · 100 5.44 · 106 1.09 · 100

1.06 · 107 −4.43 · 101 1.28 · 107 6.73 · 10−1

1.19 · 107 1.56 · 103 3.41 · 107 1.01 · 102

To be able to handle the large deformations we weight the Young’s modulus Em in the mesh
motion equation with the inverse determinant of the deformation gradient J−1. Nevertheless
the regularity of the ALE transformation is disturbing. The volume of the cells in the trans-
formed mesh reach a critical value and the angles in the cells around the tip of the flag are
either extremely small or very large. If we set the mean inflow slightly larger, the Newton
algorithm will not converge anymore.
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The lack of regularity of the mesh motion around the tip causes the dual weighted residual
error estimator to rise on the critical cells. However, as we can see in Table 8.12 the error
estimator overestimates the discretization error heavily. We give in Table 8.12 the effectivity
indices Ieff of the DWR error estimator of the combined error of time and spatial discretization
on the adaptively refined grid. As the mesh deteriorates in the area around the tip of the flag,
the determinant of the deformation gradient J = det(F ) converges to zero. The neglected
remainder terms in the a posteriori error estimator, including the derivatives of F−1, cannot
be assumed small anymore. This effect was already predicted in [128].

Figure 8.16.: Mesh after 6 refinement steps with constant Young’s modulus (left) and after 6
refinement steps with modified distributed Young’s modulus (right). Zoom into
the area of the beam.

As the error estimator is especially located in the area around the tip of the two flags the
adaptive algorithm only refines very locally in this region. The mesh after 6 refinement steps
is given in Figure 8.16. However, the refinement of the mesh around the flag does not increase
the regularity of the ALE transformation. That is why the quality of the a posteriori error
estimator does not improve with local refinement.

In Figure 8.17, we plotted the discretization error in the vorticity functional over the degrees
of freedom of the space-time discretized fluid-structure interaction problem (N · M). The
error in J4(u) converges using the adaptive algorithm much faster then by global refinement
in space and time. However, the overestimation of the error results in local refinement around
the tip of the flag, which does not contribute to a further decrease in the discretization error,
as we can see in Figure 8.17.

To improve the regularity of the ALE transformation, we use now a distributed value for
the Young’s modulus Em in the mesh motion equation. The chosen distribution thereby is
motivated by the results of the optimal control problem in Section 8.3.3, see Figure 8.32.
Thereby, the mesh properties of the cells around the tip can be conserved.

The effectivity indices in Table 8.12 are now very close to the desired value one. Only on
the finest level the cell distortion influences the error estimator. In comparison to the mesh
generated by solving a linear elasticity equation with constant Young’s modulus, the adaptive
algorithm refines now in a much wider region and not only at the tip of the flag as we can see
in Figure 8.16.
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Figure 8.17.: Error in the vorticity functional for the flapping test plotted over the degrees of
freedom on the space-time cylinder (N ·M) using global and adaptive refinement
strategies.

Altogether we can see in Figure 8.17 an extreme fast reduction of the discretization error
using the adaptive algorithm in comparison to global refinement in space and time. For the
identical number of degrees of freedom of spatial and time discretization we can compute the
vorticity functional 103-times more accurate by applying the equilibrated adaptive approach.
As the error estimates of the time discretization error, given in Table 8.13, are much smaller
than the spatial discretization error the algorithm only refines in space. Hence, this example
shows an additional advantage of error estimators in space and time, because they indicate
which errors dominate and we can avoid unnecessary refinement.

Table 8.13.: Error estimators in space ηh and time ηk for the adaptive refinement algorithm
with equilibration

N M ηh ηk η

351 1440 −3.84 · 101 4.43 · 10−2 −3.84 · 101

733 1440 −2.93 · 101 3.10 · 10−2 −2.93 · 101

1633 1440 −1.29 · 101 1.81 · 10−2 −1.29 · 101

3777 1440 −3.70 · 100 9.90 · 10−3 −3.69 · 100

8885 1440 −5.23 · 10−1 9.19 · 10−3 −5.13 · 10−1

Nevertheless, this example also reveals the limits of dual-weighted residual error estimators
in space for FSI. For small solid displacements the method works excellent, but if the ALE
transformation gets too irregular the error estimator tend to overestimate the error and local
mesh refinement does not contribute to a smoothing of the ALE transformation.
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8.3. Optimal Control of a Nonlinear Fluid-Structure Interaction
Problem

We present in the following two numerical examples with Neumann boundary control on
either the fluid (in Section 8.3.2) or the solid boundary (in Section 8.3.1) for a nonlinear
fluid-structure interaction model. Furthermore, we state the results of an optimal control
problem with distributed control parameter in Section 8.3.3. The diversity of the different
numerical examples make clear the large variety of applications for optimal control constrained
by fluid-structure interaction.

8.3.1. Optimal Control of Flow in an Elastic Channel

We consider once again the configuration with fluid flow through a channel with elastic walls.
In comparison to the example in Section 8.1, we now use the nonlinear fluid-structure inter-
action model. The geometry in Figure 8.18 is identical to the geometry in Section 8.1. We
only renamed the right solid boundary to Γq.
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Ωs
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C = (3.75, 0.5)

Figure 8.18.: Geometry for fluid flow through an elastic channel

As already stated in Section 4.3, to model arterial flow it is necessary to incorporate the whole
arterial network. Very often reduced 0D and 1D models are used. We refer to [124] for an
overview on reduced models and the different techniques available to couple 3D models with
the reduced models at the outflow boundary. The coupling of fluid and elasticity equations in
FSI enables the propagation of pressure waves in a channel. Therefore, the outflow condition
has to be chosen carefully to let the pressure wave leave the system, see [145, 63]. As the
outflow boundary is generated by artificially truncation of the arterial system, the outflow
conditions cannot be physically deduced. This motivates to control the forces on the solid
outflow boundary Γq and the mean pressure on Γout, instead of adapting parameters in a
reduced model.

In this section, we only control the time dependent tangential force

(Σsn)T e2 = q on I × Γq

on the solid boundary Γq with q ∈ L2(I) . For the fluid outflow we use again the do-nothing
condition. The elastic wall is fixed in x-direction and free to move in y-direction at the control
boundary Γq. The control should be chosen in such a way, that the energy induced in the
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structure due to the pulsating inflow can leave the domain. Therefore, we minimize the kinetic
and elastic energy in the vessel wall

JE(u) =
1

2

∫
I
(Σs, Es)s dt+

1

2

∫
I
‖ρsv‖2L2(Ωs)

dt.

To have a well-posed optimal control problem we add a Tikhonov regularization and minimize
the functional

J (q,u) = JE(u) +
α

2
‖q‖2L2(I)

subject to the fluid-structure interaction model presented in Section 4.4.

We want to emphasize that the example is only motivated by hemodynamics. The configura-
tion is not at all close to a real arteria. It is mainly thought to demonstrate various possibilities
in this area. In addition, we use the configuration to test the dual-weighted residual error
estimator for optimal control of the nonlinear fluid-structure interaction problem.

The inflow profile is identical to (8.1) in Section 8.1. We have again a parabolic inflow profile
with vin(t) given in Figure 8.2 and use a constant flow as initial condition, as in Section 8.1.
Due to the symmetry of the configuration we assume the control on the upper and lower control
boundary to be identical with opposing sign. Furthermore, we use again similar parameters
as in Section 8.1, see Table 8.1. Only for the fluid and solid density we use now the values
ρs := 1.2 g

cm3 and ρf := 1.0 g
cm3 .

We apply the fractional-step theta time-stepping scheme and use bi-quadratic finite elements
as well as a piecewise linear control space as suggested in Chapter 5.

Discussion of the Optimal Solution

The optimal control problem is solved on different space, time, and control grids by the
LBFGS algorithm 6.1 presented in Chapter 6. As we can see in Table 8.14, the error in the
cost functional reduces uniformly after refinement. As reference value Jref we thereby used
the solution on the finest grid with N = 6305 degrees of freedom, M = 2880 time steps and
dim(Qd) = 2883.

Table 8.14.: Value and error of the optimized cost functional J (qσ, uσ) for different discretiza-
tion levels for flow in an elastic channel

N M dim(Qd) J (uσ) Jref − J (uσ)

117 360 363 1.082 · 10−1 1.125 · 10−2

425 720 723 1.178 · 10−1 1.654 · 10−3

1617 1440 1443 1.190 · 10−1 4.403 · 10−4

6305 2880 2883 1.194 · 10−1 -

Comparing the energy on the finest grid in the solid with and without control, we can see that
we were able to reduce the elastic and kinetic energy from JE(u) = 3.8 · 10−1 to JE(u) =
8.87 · 10−2. If we take a closer look at the energy values plotted over time in Figure 8.19, only
the elastic energy at the beginning could not be reduced.
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Figure 8.19.: Elastic energy (left) and kinematic energy (right) in the solid plotted over time in
the uncontrolled and controlled configuration for flow through an elastic channel.

If we regard the displacement at the point C plotted over time in Figure 8.20, we can see
that the oscillations in the solid could be significantly reduced by the optimization algorithm.
The maximal values stay constant over time and do not increase anymore after every inflow
pulse.

0 1 2 3 4

−1

0

1

2

·10−3

time t

uncontrolled
opt solution

0 1 2 3 4

0

2

4

6

8

·10−2

time t

uncontrolled
opt solution

Figure 8.20.: Displacement at the point C in x-direction (left) and y-direction (right) plotted
over time in the uncontrolled and controlled configuration for flow through an
elastic channel.

The resulting optimal control on the finest grid level plotted in Figure 8.21 is highly distributed
in time. This justifies the use of the high-dimensional control space here. If we take a closer
look at the computed control, we see a significant decent in the control variable a few seconds
before the inflow profile rises. This decent causes the detour in the displacement profile of the
point C in Figure 8.20. The control induces a movement of the elastic layer, which counteracts
the deformation due to the inflow.

To get a more realistic model, unphysical high values of the boundary forces can be avoided by
the enforcement of control constraints. For vascular models it would be necessary to control
the fluid outflow condition, too. The do-nothing outflow condition sets the outflow pressure
to be zero. Thereby, the pressure wave is always reflected.
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Figure 8.21.: Optimal control q plotted over time for optimal control of flow through an elastic
channel.

Adaptive Refinement Using A Posteriori Estimator

Now we would like to test if the dual-weighted residual error estimator works well for optimal
control of the nonlinear fluid-structure interaction problem. We only consider the time and
control discretization error estimator and compute in the following on a spatial grid with
N = 1617 degrees of freedom. We refine either globally in time or use the a posteriori error
estimator to refine locally the time and control time grid. The errors are plotted over the
degrees of freedom of time and control discretization in Figure 8.22. Thereby, the discretization
error of the cost functional reduces much faster using the adaptive algorithm.

105 106 107 108
10−6
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10−3

10−2
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est global
err global
est adaptive
err adaptive

Figure 8.22.: Error in cost functional for optimal control of flow through an elastic channel
plotted over degrees of freedom of the time and control discretization spaces
(M · dim(Qd))

We would like to emphasize that the number of degrees of freedom is here not directly con-
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nected to the computational cost. As we have seen in Section 8.1, the number of optimization
loops needed in the LBFGS algorithm is at least for the presented linear example independent
of the control dimension.

8.3.2. Optimal Control of the FSI-2 Benchmark Example

Γin

Γf

Γf

Γf

Ωf Γout
Γi

+ +

+ +
Γq

Γq

Γs
A

Ωs

Figure 8.23.: Geometry for flow around cylinder with elastic beam and additional control
boundary Γq.

We consider again the FSI-2 benchmark configuration presented in Section 8.2.1. We adapt a
Neumann boundary control problem suggested by Becker in [15] for the Navier-Stokes bench-
mark, on the FSI-2 benchmark. We add an additional boundary Γq on the upper and lower
channel wall and control the mean pressure in the outflow condition on Γq, see Figure 8.23.
Thereby, we are able to control indirectly the in- and outflow at the boundary Γq. We use
again the parameters from the FSI-benchmark given in Table 8.9 and the smoothly increasing
parabolic inflow profile (8.2) with

vin(t) =

{
0.5− 0.5 cos(πt2 ) t ≤ 2

1 t > 2.

The simulation is computed on the time interval I = (0; 15).

Optimal Control Configuration

We describe on the boundary Γq the outflow condition

(∇v + p Id)n = qn on Γq × I,

whereby we control the mean pressure q here. For q = 0, the standard do-nothing outflow
condition is enforced at Γq. The FSI-2 system is known to be highly dynamical. The beam
starts to oscillate and sincerely influences the flow behavior. To be able to influence the
system, we choose a time depend control variable

q ∈ Q := L2((5;T ))× L2((5;T )).

We only control the system after the time-point t > 5 as the system is very sensitive to
numerical errors in the beginning. Thereby, we can increase the inflow profile smoothly and
after a stable flow developed, we start to control the system.
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The control is chosen in such a way that the oscillations of the beam are reduced after the
time point t > 8. Hence we minimize the tracking type functional

min
q∈Q
J (q,u) :=

1

2

∫ T

8
‖u‖2L2(Ωs)

dt+
α

2
‖q‖2Q (8.9)

with L2-Tikhonov regularization of the control variable.

Numerical Example

The FSI-2 benchmark example is highly dynamical, therefore we need to compute with very
small time steps even for the fractional-step theta time-stepping scheme. In addition to resolve
the forces at the interface Γi, a very fine mesh has to be used. To improve the accuracy of
the simulation, we apply the DWR estimator presented in Theorem 7.1 on the cost functional
J (q,u). In addition, we equilibrate the control error estimator ηq, the time discretization
error estimator ηk and the spatial discretization error ηh. We have seen in Section 8.2.5
that thereby, we can avoid ridiculous refinement and we can reduce the computational cost
severely.

The control space is discretized by the space of continuous and piecewise linear functions. We
use the fractional-step theta time-stepping scheme to discretize the optimal control problem
in time and bi-linear finite elements in space. For the Tikhonov regularization the parameter
α = 2 · 10−11 is chosen. The LBFGS algorithm terminates if the gradient could be reduced
by a factor 10−3.
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Figure 8.24.: Time step size km plotted over time t after 2 adaptive refinement cycles for
optimal control of the FSI-2 benchmark.

After two refinement cycles the control space is discretized with dim(Qd) = 258 degrees
of freedom. Furthermore we have M = 8500 time steps and a spatial discretization with
N = 3895 degrees of freedom. We plotted in Figure 8.24 the resulting time step size and in
Figure 8.25 the refined mesh. As we only have observation of the cost functional in the time
interval (8, 15), the adaptive algorithm mainly refines in this interval of interest. Furthermore
the moment the algorithm starts to choose smaller time step sizes, correlates with the moment
the oscillations in the flag set in.

Moreover the algorithm refines very locally around the flag and the circle. Only thereby
the pressure field at the circle boundary and interface can be computed accurately. As the
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Figure 8.25.: Adaptively refined mesh for optimal control of the FSI-2 benchmark.

boundary forces at the interface Γi severely influences the behavior of the solid motion, it is
reasonable that the adaptive algorithm refines here. In addition, the algorithm refines very
locally around the control boundary Γq. As we enforce a Neumann boundary condition on
Γq and zero Dirichlet boundary conditions at Γf , we have a “corner” of angle 180◦, between
a Neumann and Dirichlet boundary condition. Standard elliptic PDE theory predicts already
for angles larger then 90◦ corner singularities. These singularities in the fluid velocity field and
pressure can only can be resolved by local refinement, hence the adaptive algorithm refines
very locally here.
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Figure 8.26.: Flux at Γq (left) and displacement in y-direction at the tip of the flag A(right)
plotted over time for optimal control of the FSI-2 benchmark. Plotted is the
controlled vs uncontrolled solution.

We start the optimization algorithm with control q(t) = 0. Thereby, we have in the uncon-
trolled configurations a do-nothing outflow. The fluid can leave and enter the domain through
the control boundary Γq. Despite the slight modification of the additional outflow boundary
condition the flag starts to oscillate as for the standard FSI-2 benchmark. We plotted the
displacement u at the tip of the flag A in y-direction in Figure 8.26 for the uncontrolled
configuration on the two times refined mesh. If we compare the solution with the displace-
ment in Figure 8.8, we can see that the amplitude and frequency correlate with the standard
benchmark.

We plotted in Figure 8.26 in addition the flux
∫

Γq
vkhn dx leaving the lower boundary Γq.

While the inflow velocity vin rises, the outflow is very strong, but after some time the flux
reduces and the fluid flows across the boundary Γq. The displacements of the flag are very
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large in the FSI-2 benchmark configuration. The moment the tip of the flag reaches its
minimal value, the gap between wall and elastic beam gets very thin. This enforces the fluid
to leave the domain through the lower control boundary Γq and explains the oscillations in
the flux profile.
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Figure 8.27.: Optimal control q at the upper (left) and lower (right) control boundary Γq

plotted over time for optimal control of the FSI-2 benchmark.

In Figure 8.27 the optimal control is plotted over time at the upper and lower control boundary.
The control variable is still ragged as the control error estimator is much smaller, then the
time and spatial discretization error. Hence, the adaptive algorithm only refines in space and
time. Due to the almost symmetrical configuration the control on upper and lower control
boundary Γq have the same values with opponent sign.

The optimal control sincerely influences the flow behavior at the boundary Γq, as we can
see in Figure 8.26. The amplitude in the flux oscillations increases and the flux reduces at
certain time-points so heavily such that we almost have inflow. In addition, we are able to
reduce the amplitude of the oscillating flag slightly. The value of the cost functional can be
reduced from J (qσ, uσ) = 2.63 · 10−5 to J (q̄σ, ūσ) = 2.48 · 10−5. To get an impression of the
flow behavior we plotted in Figure 8.28 the velocity field in x-direction at the time points
t = 14.74, t = 14.90 and t = 15.00. Here we can see again the large deformation of the solid
beam, which influences the flow behavior sincerely. The outflow on the control boundary Γq

is relatively small with respect to the outflow at the outflow boundary Γout. Hence the flow
behavior is very similar to the solution of the FSI-2 benchmark.

8.3.3. Optimal Control of the Mesh Motion Equation

In the FSI model in Problem 4.5 the solution of the velocity and pressure variable computed
on a reference domain, coincides according to Lemma 4.1 with the solution on the moving
fluid domain Ω̌f , if the ALE mapping is smooth enough. The moment where the solid defor-
mation becomes too large all mesh motion equations suggested in literature lack the necessary
regularity. In numerical experiments the loss of regularity leads to a reduced convergence of
the Newton solver until the solution algorithm finally breaks down. In these cases re-meshing
is necessary or the Eulerian approach as in [68, 67, 126] has to be used. But already for
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Figure 8.28.: Fluid velocity field v in x direction on moving domain for optimal control of the
FSI-2 benchmark at the time points t = 14.74, t = 14.90 and t = 15.00.

moderate solid deformations, a non regular transformation can reduce the convergence rate
of the discretization error.

Instead of solving the Navier-Stokes equations on the moving domain Ω̌f , we transform the
fluid equations via ALE mapping Tf : I × Ωf → Ω̌f on a reference domain Ωf . There we
choose in Section 5.3 a triangulation and define the finite element spaces, whereby the ALE
transformation is chosen in the same space as the solution variable. This approach is very
similar to isoparametric elements, where we would like to approximate curved boundaries more
accurately. To do so the basic finite element space Vh is defined on the base polyhedral domain
Ω. In addition we define a one-to-one continuous mapping Th : Ω → Rn with Th ∈ Vh and
Ω̌ := Th(Ω). Now the discrete solution approximating the physical quantity we are interested
in, is an element of the isoparametric equivalent finite element space

V̌h :=
{
w(T−1

h (x))
∣∣ x ∈ Th(Ω), w ∈ Vh

}
. (8.10)

In the following, we want to examine more closely what condition on the transformation Th are
necessary such that the space V̌h enables good approximations of functions w̌ ∈W 2,p(Ω̌). If the
discretized ALE mapping fulfills similar assumptions, then we can expect the velocity v̌ and
pressure p̌ living on the moving domain Ω̌f to be approximated accurately, too. In addition,
we motivate, why these assumptions are connected to the regularity of the transformed mesh.
Then we define an optimal control problem to automatically improve the smoothness of the
discrete ALE transformation.
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Approximation Theory for Isoparametric-Equivalent Spaces

A necessary step to prove approximation results for a function w̌ ∈ W 2,p(Ω̌) in the isopara-
metric equivalent finite element space V̌h is the availability of interpolation results. We state
in the following such an interpolation result taken from [36] (Theorem 4.4.20) for standard
finite elements. Then we extend the result to the interpolation operator in the isoparametric
space, whereby we follow the proof of Theorem 1 in [46].

Theorem 8.1 (Theorem 4.4.20 in [36] ). Let {Th}, 0 < h < 1 be a non-degenerate family of
subdivisions of a polyhedral domain Ω ⊂ Rd with BK the circumradius and

diam(BK) ≥ ρdiam(K) ∀K ∈ Th.

Let Vh be a finite element space on Th with degree 1. Then there exists a positive constant C
depending on ρ and on the reference element such that for 0 ≤ l ≤ 1( ∑

K∈Th
‖w − Ihw‖W l,p(K)

)1/p
≤ Ch2−l|w|W 2,p(Ω). (8.11)

for all w ∈W 2,p(Ω) and Ih the interpolation operator into Vh.

For a regular family of meshes Theorem 8.1 guarantees, that with refinement of the mesh
the interpolation error reduces by the factor h2−l, 0 ≤ l ≤ 1. In the following we define
assumptions on the transformation Th ∈ Vh, which guarantee the same order of convergence
for the interpolation operator in the isoparametric finite element space V̌h.

Let Ω be a polyhedral reference domain, where we define the finite element space Vh. Further-
more let Th : Ω → Rd be a piecewise polynomial mapping in Vh and we define the physical
domain Ω̌ := Th(Ω). If the transformation fulfills the following bounds independent of h

max
K∈Th

‖Jh‖L∞(K) ≤ C and max
K∈Th

‖(∇Th)−1‖L∞(K) ≤ C, (8.12)

max
K∈Th

‖J−1
h ‖L∞(K) ≤ C and max

K∈Th
‖∇2Th‖L∞(K) ≤ C, (8.13)

then the interpolation Ǐh of a function w̌ ∈ W 2,p(Ω̌) in the isoparametric equivalent finite
element space V̌h satisfies:

Theorem 8.2. Let {Th}, 0 < h < 1 be a non-degenerate family of subdivisions of a polyhedral
domain Ω ⊂ Rd with

diam(BK) ≥ ρ diam(K) ∀K ∈ Th.
Let Vh be a finite element space on Th with degree 1. Suppose the piecewise polynomial mapping
Th ∈ Vh exists which satisfies properties (8.13) and (8.12) above. Then there exists a positive
constant C depending on ρ and on the reference element such that for 0 ≤ l ≤ 1( ∑

K∈Th
‖w̌ − Ǐhw̌‖W l,p(Th(K))

)1/p
≤ Ch2−l|w|W 2,p(Ω̌) (8.14)

for all w̌ ∈W 2,p(Ω̌). Here Ǐhw̌ denotes the isoparametric interpolant defined by Ǐhw̌(Th(x)) =
Ihw(x) for all x ∈ Ω, where w(x) := w̌(Th(x)) for all x ∈ Ω and Ih is the global interpolant
for the base finite element space Vh.
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Proof. We follow the proof of Theorem 1 in [46]. Any function w̌ ∈ W 2,p(Th(K)) can be
written as w̌ = w ◦ Th with w ∈ W 2,p(K). Thus by Lemma 3 in [46] there exists a constant
C such that:

‖w̌ − Ǐhw̌‖pLp(Th(K)) ≤ C‖Jh‖L∞(K)‖w − Ihw‖pLp(K),

|w̌ − Ǐhw̌|p
W 1,p(Th(K))

≤ C‖Jh‖L∞(K)|w − Ihw|pW 1,p(K)
‖(∇Th)−1‖pL∞(K).

If we apply the given bounds in (8.12) for the transformation Th and sum over all cells K ∈ Th
we obtain ( ∑

K∈Th
‖w̌ − Ǐhw̌‖Lp(Th(K))

)1/p
≤ C

( ∑
K∈Th

‖w − Ihw‖Lp(K)

)1/p
, (8.15)

( ∑
K∈Th

|w̌ − Ǐhw̌|W 1,p(Th(K))

)1/p
≤ C

( ∑
K∈Th

|w − Ihw|W 1,p(K)

)1/p
. (8.16)

The estimates given for the interpolation operator I in Theorem 8.1 lead to( ∑
K∈Th

‖w − Ihw‖Lp(Th(K))

)1/p
≤ Ch2|w|W 2,p(Ω),

( ∑
K∈Th

‖w − Ihw‖W 1,p(Th(K))

)1/p
≤ Ch|w|W 2,p(Ω).

We apply now Lemma 3 in [46] once again on |w|W 2,p(K) and take the bounds in (8.13) on the
transformation Th into account, then we obtain

|w|p
W 2,p(K)

≤ C‖J−1
h ‖L∞(K)

(
|w̌|p

W 1,p(Th(K))
|∇2Th|pL∞(K) +|w̌|p

W 2,p(Th(K))
‖∇Th‖2pL∞(K)

)
≤ C|w̌|p

W 2,p(Th(K))
.

If we combine the estimate on |w|W 2,p(K) with (8.15) and (8.16) , we obtain the estimate (8.14)
in Theorem 8.2.

Optimal Control Problem

These approximation results in Theorem 8.2 are valid in the same way for our fluid sub-problem
in the space-time discretized fluid-structue interaction model in Problem 5.5. As we define the
finite element spaces for the fluid and pressure variable on the reference domain, the physically
relevant discrete pressure and velocity on the moving domain are now elements of such an
isoparametric equivalent finite element space. Hence, we can expect optimal convergence
results for the velocity v̌kh := vkh(T−1

f,kh(x̌, t)) and the pressure p̌kh := pkh(T−1
f,kh(x̌, t)) with

x̌ ∈ Ω̌f(t), if the discrete ALE transformation Tf,kh fulfills in every time step the estimates
(8.13) and (8.12). This implies especially that the determinant of the deformation gradient
‖Jkh‖L∞(Ωf) < C and ‖J−1

kh ‖L∞(Ωf) < C is bounded independent of h. Furthermore for every
family of triangulations {Th} we need for piecewise bi-linear finite elements for all K ∈ Th

‖∇2Tf,kh‖W∞(K) ≤ C and ‖∇T−1
f,kh‖L∞(K) ≤ C.
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If we compute, as suggested in Section 4.1.3, the ALE transformation by solving a Laplace
or elasticy problem on a nonconvex domain, the ALE mapping will in general not fulfill this
regularity for a sequence of globally refined meshes. Hence, the constant C is going to rise
after refinement. This motivates to choose the elasticity module in the mesh motion equation
problem-dependent, such that the constant C keeps small even on fine grids. To choose the
parameter automatically, we can solve on every mesh an optimal control problem.

We are going to construct a functional measuring the smoothness of the ALE transformation,
which can be easily computed and used for an optimal control approach. The functional will
consist of geometric mesh properties as the volume change of the cells due to the transfor-
mation and the change of the angle of the elements. Both values are elementary properties
of the Jacobian matrix ∇Tf,kh we would like to bound. Moreover, the improvement of the
mesh regularity of the transformed mesh is quite natural. The convergence rate of velocity
vkh(T−1

f,kh(x̌, t)) and the pressure pkh(T−1
f,kh(x̌, t)) in the isoparametric equivalent finite element

spaces will be connected to the convergence rate, which we would obtain, if we defined fi-
nite elements on the transformed grid on Ω̌. Standard convergence results demand a regular
mesh with angles 0◦ � β � 180◦. To avoid the cells to deteriorate, the determinant of the
deformation gradient Jkh = det(∇Tf,kh) has in addition to be bounded.

Functional Measuring Change of Angle The transformation gradient ∇Tf,kh transforms the
unit vectors in x- and y-direction e1 and e2 to ẽ1 = ∇Tf,khe1 and ẽ2 = ∇Tf,khe2. Therefore, the
angle in the transformed cells change by a value of β = arccos( ẽ1·ẽ2

‖ẽx‖‖ẽ2‖)− 90◦. Assuming the
reference grid to be regular with angles around 90◦, the change of the angle β should be close
to zero. This motivates to enforce −1� ẽ1·ẽ2

‖ẽ1‖‖ẽ2‖ � 1 by minimization of the functional

Jβ(ukh) =

∫
I

∫
Ωf

(
1− ẽ1 · ẽ2

‖ẽ1‖‖ẽ2‖
)−1

+
( ẽ1 · ẽ2

‖ẽ1‖‖ẽ2‖
+ 1
)−1

dt dx. (8.17)

Functional Measuring Change of Volume To avoid cells to degenerate, the volume change
of the cells should be kept as small as possible. The local change of volume is given by
the determinant Jkh = det(∇Tf,kh). The approximation theory for isoparametric elements
demands in addition ‖Jkh‖L∞(Ωf) ≤ C and ‖J−1

kh ‖L∞(Ωf) ≤ C. Hence, a good idea would be
to minimize

JV (ukh) =

∫
I

∫
Ωf

1

Jpkh
+ Jpkh dt dx. (8.18)

The functional JV (ukh) rises if cells get too large which corresponds to large values of Jkh. In
addition, if cells get too small J−1

kh increases. The parameter p can control how severe extreme
values of Jkh are penalized. In the following, we will choose p = 2.

Both functionals depend on the derivative of the ALE transformation ∇Tf,kh and will rise,
if the regularity of the transformation diminishes. In the following we minimize a combined
functional by choosing a distributed Young’s modulus in the mesh motion equation (4.8). Min-
imization of the chosen functionals will not enforce the very strict state constraints demanded
by the approximation theory. Hence the constant C in Theorem 8.2 will rise with refinement.
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Nevertheless the approach will help to keep the h-dependent constant in the estimates small.
We consider the optimal control problem:

min
qσ∈Qd

JALE(qσ,uσ) := γ1JV (uσ) + γ2Jβ(uσ) +
α

2
‖qσ‖Q (8.19)

subject to uσ ∈ Xkh with vσ(0) = v0, uσ(0) = u0 and

akh(qσ,uσ)(ϕ) = 0 ∀ϕ ∈ Ykh,θ, (8.20)

qa ≤ qσ ≤ qb. (8.21)

We denote with akh(qσ,uσ)(ϕ) the space-time discretized semi-linear form of the fluid-structure
interaction problem given in (5.5), whereby the control parameter qσ enters the mesh motion
equation 4.8 via the first and second Lamé parameter. We have now:

λm(qσ, uσ) :=
qσ

2Jσ(1 + νm)
and µm(qσ, uσ) :=

qσνm

Jσ(1 + νm)(1− νm)
.

Standard regularity results demand Young’s Modulus Em ∈ L∞(Ωf). As we now control
Young’s Modulus, the control bound’s have to be finite. To receive a positive definite extension
operator, we demand qa to be a positive value. The parameters γ1 and γ2 weight the two
functionals.

The control constraints can for example be enforced due to logarithmic penalization terms
and a Tikhonov regularization ‖qσ‖L2(Ωf) as in [143]. During the optimization process the
penalization parameter can be decreased such that the control constraints get sharper and
sharper. As we are only interested in finding a distribution of Young’s modulus which signifi-
cantly improves the mesh regularity, we keep the penalization parameter constant during the
following computations.

This approach taken for itself is very costly, but if we are already solving an optimal control
problem with cost functional J̃ (q̃,u) and control q̃ ∈ Q̃, the optimization of the mesh motion
can be done simultaneously. We minimize on the discrete level the combined functional
αJ̃ (q̃d,ukh)+βJALE(qd,ukh) over the combined control space Q̃d×Qd. Then, we can compute
sensitivity information of both optimization problems at once.

Numerical Example

We have seen previously that the ALE mapping reaches its limits in the flapping example in
Section 8.2.5. This example is very challenging as the displacement of the beams is quite large
and generating a mesh on the underlying geometry is not simple. We have reentering corners
at the tip of the beam and, in addition, the beam is very thin. However, we have to demand a
very fine grid to resolve the structure displacement. Hence, the generated grid already consist
of very anisotropic cells in the region between the beam.

We optimize in the following the mesh regularity of the transformed mesh by minimizing
JALE(ukh). Numerical experiments have shown that only the minimization of the functional
Jβ(ukh) can cause some cells to collapse and the algorithm breaks down. In contrast if we
only minimize the functional JV (ukh), the angles in the transformed mesh barely improve.
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The algorithm is initiated on a coarse grid. Then the cells around the tip of the flag are
relatively large and even for large deformations the algorithm does not break down. After
refinement, we project the optimal control computed on the coarse grid to the finer grid
and can restart the optimization algorithm having a smoothed ALE-transformation at hand.
Thereby, we can compute the solution on fine grids, whereas the standard algorithm already
would break down.

The configuration is identical to Section 8.2.5. We use again the parabolic pulsating inflow
profile with the slower mean inflow profile 0.5vin(t) given in Figure 8.11. The configuration
is given in Figure 8.10 and the used material parameters can be found in Table 8.9. For
the optimization algorithm we use a regularization parameter α = 10−4. The control is
chosen in the space of piecewise constant functions, whereby we use the same mesh for the
control variable as for the state and adjoint variable. We discretize the FSI problem with a
fractional-step theta time-stepping scheme in time and use bi-linear finite elements in space.
The presented solutions are computed on a mesh with N = 5145 degrees of freedom, M = 5761
time steps and dim(Qd) = 4992. Furthermore the weights γ1 = 1.0 and γ2 = 0.1 have shown
to work well for the considered configuration.

Figure 8.29.: Transformed mesh at time t = 1 for the flapping test with constant Young’s
modulus (left) and distributed modified Young’s modulus (right). Zoom into
the region around the two flapping beams.

The resulting transformed mesh is plotted in Figure 8.29 in the region of the flapping beam.
On the left side, we can see the transformed grid using a constant Young‘s modulus. Especially
the cells at the tip of the flag are extremely sheared. In comparison, on the right side, the
grid generated using the optimal distributed Young’s modulus is very smooth and regular.

In Figure 8.30 the minimal angles of cells on the transformed grid are given. To have a better
visualization we plotted the values on the reference domain. As we can see in Figure 8.30,
the number of cells with an extreme minimal angle in the transformed grid could be reduced.
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There are no cells around the tip of the flag anymore with values in the dark area of angles
between 0◦ and 20◦. The minimum angle in the mesh rises from 7.67◦ to 35.7◦.

Figure 8.30.: Minimal angle in the cells of the transformed mesh for the flapping test at time
t = 1 with constant Young’s modulus (left) and distributed modified Young’s
modulus (right) plotted on the reference domain. Zoom into the region around
the two flapping beams.

In Figure 8.31 we plotted the ratio between the area of each cell on the transformed and on
the initial mesh defined on the reference domain. After optimization the volume change is not
localized anymore to the areas around the tip of the flag. As we can see in Figure 8.31, the
number of cells with extreme volume change are reduced whereas the number of cells with
medium volume change rises. As the overall area has to be conserved the large transformation
of the beams has to result in a transformation of the cells. Hence, the optimization algorithm
just distributes the deformation to more cells.

The algorithm achieves this optimal mesh motion due to an increase of the stiffness of the
cells around the flag (red and green area) as we can see in Figure 8.32. At the same time the
algorithm also decreases the stiffness in large areas of the fluid domain (dark blue area).

In Section 8.2.5, we used a dual-weighted residual error estimator to refine locally. Thereby,
we could observe that the effectivity indices Ieff are not good if the mesh motion is not smooth.
With an approximation of the optimal distributed Young’s modulus plotted in Figure 8.32,
we were able to improve the effectivity indices sincerly. Hence, it could be reasonable to
combine the dual-weighted residual error estimator with the mesh smoothing optimization
algorithm. But estimation of the discretization error with respect to the mesh regularity
functional JALE(qσ, uσ), which is only defined on the discrete level, is not reasonable. Hence
we have to solve an additional adjoint equation to estimate the error with respect to a new
functional of interest. We refer to [113] for a detailed description of such a posteriori error
estimators, where one estimates the discretization error with respect to a functional of interest
not coinciding with the cost functional.
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Figure 8.31.: Change of area of the transformed cells for the flapping test at time t = 1
with constant Young’s modulus (left) and distributed modified Young’s modu-
lus(right) plotted on the reference domain. Zoom into the region around the two
flapping beams.

Figure 8.32.: Optimal distributed Young’s Modulus for the flapping test at time t = 1 plotted
on the reference domain. Zoom into the region around the two flapping beams.
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We were able to prove well-posedness for a set of optimal control problems subject to linear
fluid-structure interaction. The additional regularity of the optimal solutions enables the use
of the symmetric weak state and adjoint formulation. Hence, we can use a Galerkin approach
to discretize the optimality system in space as well as in time. First numerical experiments
have shown convergence of the error in the cost functional with refinement of the spatial, time,
and control grid. To have convergence result for a more general set of configurations a priori
error bounds should be proven for the Galerkin discretization error in the future.

The DWR error estimator presented in Section 7 shows excellent effectivity indices even for
complex configurations as the FSI benchmark and the Flapping test. The time discretization
error especially pays off, if we equilibrate the spatial and time discretization error. For the
chosen geometries with thin beams, bi-quadratic finite element have shown to converge much
more stable. Hence, the computations should be repeated with adaptive refinement in space
and the use of bi-quadratic finite elements for the presented examples.

The presented optimal control problem of the Young‘s modulus helps to smooth the mesh
motion. However, the LBFGS algorithm needs several optimization loops to compute the
optimal solution in the high dimensional control space. In combination with dual-weighted
residual error estimation or in combination with a second optimization problem the additional
computational cost would rather be negligible. Beyond that, the combination enables optimal
control with the ALE technique for a wider class of problems.

For optimal control of the mean pressure in the FSI-2 configuration the transition between
Neumann and Dirichlet boundary conditions makes the solution difficult. Therefore, Dirichlet
control of the velocity at the control boundary Γq could perhaps help to enable a further
reduction of the oscillations.

In this thesis, we applied the optimization algorithm on test configurations as the FSI-2 and
FSI-3 benchmark. As a next step more sophisticated examples from hemodynamics should
be considered. Especially the choice of the outflow conditions in vascular models and the
calibration of the usually used reduced models is still not fully understood. The presented
results should be transferable to such configurations. Thereby, sensitivity information of the
whole time dependent model are available and can help to determine the parameters in the
reduced models more accurately. Furthermore, the use of time dependent and distributed
parameters leaves the door open for the extension of the vascular models.

To sum up, optimal control works well for a large class of test examples. A posteriori esti-
mation helps to reduce the computational cost and enables fast solution of the optimization
problem. Nevertheless, already for the rather simple test configuration very robust algorithms
are needed. The complexity of the systems requires a very fine mesh resolution and a small
time step size. Therefore, the computational cost is still high for optimal control despite
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the adaptive approach. Hence, further investigations are necessary until the algorithms can
provide reliable results, enabling patient specific diagnosis in hemodynamics.
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A. Transformation of Sobolev Spaces

Lemma A.1. Let Ω and Ω̌ be two domains in Rd and let T : Ω× I → Ω̌(t) with T (Ω) = Ω̌(t)
be a C(I;C1(Ω)) ∩ C1(I;C(Ω))-diffeomorphism. Then the composition operators

ϕ̌ = ϕ ◦ T−1 ∀ϕ ∈
{
ϕ
∣∣ ϕ ∈ L2(I;H1(Ω)) and ∂tϕ̌ ∈ L2(I;L2(Ω))

}
ϕ = ϕ̌ ◦ T ∀ϕ̌ ∈

{
ϕ̌
∣∣ ϕ̌ ∈ L2(I;H1(Ω̌(t))) and ∂tϕ̌ ∈ L2(I;L2(Ω̌(t)))

}
are continuous. Hence the stated Sobolev spaces are equivalent.

Proof. We follow here the proof by Wloka of Lemma 4.2 in [152]. Let

ϕ ∈
{
ϕ
∣∣ ϕ ∈ L2(I;H1(Ω)) and ∂tϕ ∈ L2(I;L2(Ω))

}
.

We first consider the norm of the space H1(Ω̌) and show with F = ∇T and J = det(F )

‖ϕ̌‖2
L2(I;H1(Ω̌(t)))

=

∫
I

∫
Ω̌(t)
|ϕ̌(x̌, t)|2 dx̌ dt+

∫
I

∫
Ω̌(t)
|∇̌ϕ̌(x̌, t)|2 dx̌ dt

=

∫
I

∫
Ω
J |ϕ(x, t)|2 dx dt+

∫
I

∫
Ω
J |∇ϕ(x, t)F−1|2 dx dt

≤ C‖ϕ‖2L2(I;H1(Ω)).

Now we try to find an estimate for the time derivative ∂tϕ̌

‖∂tϕ̌‖L2(I;L2(Ω̌(t))) =

∫
I

∫
Ω̌(t)
|∂tϕ̌(x̌, t)|2 dx̌ dt

=

∫
I

∫
Ω
|J∂tϕ(x, t)− JF−1∂tT (x, t) ◦ ∇ϕ|2 dx dt

≤ C‖∂tϕ‖2L2(I;L2(Ω)) + C‖ϕ‖2L2(I;H1(Ω)).

If we combine the two estimates we get

‖ϕ̌‖L2(I;H1(Ω̌(t))) + ‖∂tϕ̌‖L2(I;L2(Ω̌(t))) ≤ C
[
‖ϕ‖L2(I;H1(Ω)) + ‖∂tϕ‖L2(I;L2(Ω))

]
.

The estimate for ϕ = ϕ̌ ◦ T with given ϕ̌ is equivalent.
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In order to compute sensitivities of the functional of interest we need to calculate in Section
4.3.2 the derivative of the Lagrange functional

L(q,u, z) :=J (q,u)− a(u)(z) + f(q)(ϕ)

+ (u0 − u(0), zu(0)) + (v0 − v(0), zv(0))

with respect to the state solution u. This includes the linearization of the semi-linear form
a(u)(z) defined in (4.10) with respect to the veloctiy variable v, the displacement u and the
pressure p. This has already be done in [56, 126, 149]. We summarize once more the resulting
derivatives of the single sub-problems in the following. To take the derivative of the ALE-
transformation we need to compute the derivative of the deformation gradient F and of its
inverses F−1. Therefore, we have to apply the following Lemma, which is taken from [126],
several times.

Lemma B.1. Let F := Id +∇u and J = detF its determinant. It holds :

(i)
dF

du
(ψ) =∇ψ

(ii)
dF T

du
(ψ) =∇ψT

(iii)
dF−1

du
(ψ) =− F−1∇ψF−1

(iv)
dJ

du
(ψ) =J tr(F−1∇ψ)

Proof. The relations (i) and (ii) are directly available. If we take the derivative on the relation
Id = F−1F and apply the chain rule we get

0 =
d

du
F−1F =

dF−1

du
F + F−1dF

du
⇒ dF−1

du
= −F−1dF

du
F−1

The relation (iv) can be shown by component wise calculations.

If we apply Lemma B.1 systematically on the semilinear a(u)(z) form in the Lagrange func-
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B. Linearization of the Nonlinear FSI Problem

tional, we get as linearization for the semi-linear aF (u)(z) form, modeling the fluid:

a′Fp (u)(ξ, zv) =((J
dσf

dp
(ξ)F−T ,∇zv))f

a′Fv (u)(ϕ, zv) =((ρfJ∂tϕ, z
v))f + ((J

dσf

dv
(ϕ)F−T ,∇zv))f

+ ((ρfJ(F−1ϕ · ∇)v), zv))f + ((ρfJ(F−1(v − ∂tu) · ∇)ϕ), zv))f

a′Fu (u)(ψ, zv) =((ρfJ tr(F−1∇ψ)∂tv, z
v))f − ((ρfJ(F−1∂tψ · ∇)v), zv))f

+ ((ρfJ tr(F−1∇ψ)(F−1(v − ∂tu) · ∇)v), zv))f

− ((ρfJ(F−1∇ψF−1(v − ∂tu) · ∇)v), zv))f

+ ((J tr(F−1∇ψ)σfF
−T ,∇zv))f − ((JσfF

−T∇ψTF−T ,∇zv))f

+ ((J
dσf

du
(ψ)F−T ,∇zv))f .

Thereby the derivative of the fluid stress tensor is given by

dσf

dp
(ξ) = −ξ Id

dσf

dv
(ϕ) = ρfνf(∇ϕF−1 + F−T∇ϕT )

dσf

du
(ψ) = ρfνf(−∇vfF

−1∇ψF−1 − F−T∇ψF−T∇vTf ).

The linearization of the divergence condition aD(u)(z) results in

a′Dv (u)(ϕ, zp) =((div(JF−1ϕ), zp))f

a′Du (u)(ψ, zp) =((div(J tr(F−1∇ψ)F−1v), zp))f − ((div(JF−1∇ψF−1v), zp))f .

Now we have to take in addition semi-linear form aS(u)(z) and aV (u)(z) modeling the solid
into account. If we calculate the derivates of the nonlinear elastodynamic equations we ob-
tain:

a′Sv (u)(ϕ, zv) =((ρs∂tϕ, z
v))s

a′Su (u)(ψ, zv) =((∇ψΣs,∇zv))s + ((F
dΣs

du
(ψ),∇zv))s

a′Vv (u)(ϕ, zu) =((−ϕ, zu))s

a′Vu (u)(ψ, zu) =((ψt, z
u))s.

Thereby the derivative of the solid stress tensor are given by

dΣs

du
(ψ) = λs tr(

dEs

du
(ψ)) Id +2µs

dEs

du
(ψ)

dEs

du
(ψ) =

1

2
(∇ψTF + F T∇ψ).

130



Finally we have to compute the derivative of the mesh motion aM (u)(zu). This leads for the
harmonic extension to

a′Mu (u)(ψ, zu) = ((
dσm
du

(ψ),∇zu))f

= ((λm tr(
1

2
(∇ψ +∇ψT )) Id +2µm

1

2
(∇ψ +∇ψT ),∇zu))f .

At first sight, we would have to demand, that velocity and deformations are two times-
differentiable to calculate the semi-linearform aD(u)(z) and its derivatives. But according to
[149, 126] the divergence terms can be restated into:

((div(JF−1ϕ), zp))f = ((J tr(∇ϕF−1), zp))f

((div(J tr(F−1∇ψ)F−1v), zp))f = ((J tr(F−1∇ψ) tr(∇vF−1), zp))f

((div(JF−1∇ψF−1v), zp))f = ((J tr(∇vF−1∇ψF−1), zp))f .

Therefore, it is sufficient to use in our numerical calculations subspaces of H1 Sobolev-
spaces.
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