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Abstract

Quorum sensing is a mechanism that
guides cooperative group behaviour in
bacteria and as such is vulnerable to ex-
ploitation by non-cooperative individu-
als. We employ the G-function ansatz
to model evolutionary dynamics in or-
der to find evolutionary stable strategies.
We discuss different model differential
equations, with a focus on how spatial
structure can be taken into account and
how it influences the long-term outcome.
For all utilized models the existence and
uniqueness of solutions are proven. Nu-
merical simulations corroborate the an-
alytical results as well as serving to vi-
sualize the arising dynamics. We also
performed and present experiments us-
ing the bacterium P. aeruginosa that
investigate these dynamics.

Als Mechanismus zur Steuerung
von Gruppenverhalten in Bakterien
ist Quorum Sensing anfällig gegenüber
Ausbeutung durch nicht kooperieren-
de Individuen. Wir verwenden den G-
Funktionsansatz zur Modellierung der
evolutionären Kräfte, um evolutionär sta-
bile Strategien zu finden. Mit Fokus auf
den Einfluss räumlicher Strukturen und
ihrer Langzeitwirkung untersuchen wir
unterschiedliche Modellgleichungen und
zeigen auch die Existenz und Eindeutig-
keit von Lösungen für alle verwendeten
Modelle. Numerische Simulationen un-
termauern die analytischen Erkenntnis-
se und zeigen die entstehende Dynamik
auf, welche ebenfalls in Experimenten
mit Bakterien vom Typ P. aeruginosa
untersucht werden.
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Frequently occuring variables

Variable Meaning
α Baseline production rate
b Amount of bacteria in a population, an n-dimensional vector
bi Amount of bacteria in one subpopulation
β Production rate in induced state
γ Degradation rate
D Diffusion rate
e Quorum sensing enzyme concentration
ε Time scaling factor for evolution equation
µ Population-dependent death rate
s Quorum sensing signal concentration
τ Activation threshold
v Strategy vector or matrix of all bacterial subpopulations
vi Strategy of one bacterial subpopulation
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As humans, we have invented lots of useful kinds of lie. As
well as lies-to-children (‘as much as they can understand’)
there are lies-to-bosses (‘as much as they need to know’) lies-to-
patients (‘they won’t worry about what they don’t know’) and,
for all sorts of reasons, lies-to-ourselves. Lies-to-children is
simply a prevalent and necessary kind of lie. Universities are
very familiar with bright, qualified school-leavers who arrive
and then go into shock on finding that biology or physics isn’t
quite what they’ve been taught so far. ‘Yes, but you needed to
understand that,’they are told, ‘so that now we can tell you
why it isn’t exactly true.’Discworld teachers know this, and
use it to demonstrate why universities are truly storehouses
of knowledge: students arrive from school confident that they
know very nearly everything, and they leave years later certain
that they know practically nothing. Where did the knowledge
go in the meantime? Into the university, of course, where it is
carefully dried and stored.

TERRY PRATCHETT, THE SCIENCE OF DISCWORLD



Chapter 1

Introduction

Bacteria are pervasive and influence our daily lives in a myriad of ways, some ben-
eficial, some detrimental. We use them in sewage treatment and for manufacturing
many different chemicals, we carry them in our gut flora and on the skin. At the
same time, there are bacterial pathogens that kill millions of people per year. It is
imperative that we gain more understanding about the underlying mechanisms of
bacterial behaviour, especially with the progressing antibiotics resistance. Mathe-
matical models can help us gain insight into these mechanisms and discern focus
points for future experiments.

1.1 Biological Background
For a long time, bacteria were thought to live relatively independent of each other.
This viewpoint has changed with the discovery of quorum sensing (QS) in 1977
[HN77]. Nowadays we know that cooperation between bacteria seems to be the
rule rather than the exception. One important process to guide such cooperation
is QS, a regulation mechanism for group behaviour. It is, among others, employed
by Pseudomonas aeruginosa (P. aeruginosa), an important pathogen and one of
the model organisms for QS which we introduce in section 1.1.2.

1.1.1 Quorum sensing
The importance of accurate demographic information is reflected in the
United States Constitution, Article 1, which provides for a decennial
census of this country’s human population. Bacteria also conduct a
census of their population and do so more frequently, more efficiently,
and as far we know, with little if any of the political contentiousness
caused by human demographers. [FWG96]

11
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Bacterial QS is a cell-to-cell signalling mechanism that coordinates a range of
behaviours at the population level [Sch+13; RB12]. It occurs in a wide range of
living conditions, from soil and water (where QS-regulated genes influence nutrient
cycling) to animal hosts (where QS-regulated genes determine pathogen virulence).

Figure 1.1 shows the basic mechanism of QS in Gram-negative bacteria by
means of the las cycle of P. aeruginosa. As is the case for most communication
systems, it includes a sender, a message, and a receiver. By way of a signal synthase
(the “sender”, here: LasI), a small signal molecule (the “message”, here: N-3-oxo-do-
decanoyl-l-homoserine lactone (3-oxo-C12-HSL)) is produced and secreted by the
bacterium. For small molecules such as 3-oxo-C12-HSL, this secretion is a passive
diffusion through the cell wall. At the same time, signal from the extracellular space
is (re-)absorbed by the bacterium. A receptor molecule (the “receiver”, here: LasR)
is produced that can bind to the intracellular signal. If this happens, the receptor
molecule can then bind to operators on the bacterial DNA to allow transcription,
thus facilitating the production of proteins on these DNA strands. In this way,
every bacterium can sense its own signal molecule as well as that produced by
others, leading to the term autoinducer. Two of the various proteins under this QS
control in P. aeruginosa are exemplarily shown in figure 1.1: nucleoside hydrolase
(Nuh), a protein which degrades inosine to hypoxanthine plus ribose (this metabolic
pathway is shown in greater detail in figure 5.1 on page 97) and elastase, a protein
that is secreted into the surrounding media to break down cytokines as well as a
number of other substrates. Additionally, a receptor with bound signal molecule
also enhances the production of signal synthase, leading to a positive feedback loop
[SPI95].

Through the signal molecules bacteria can sense the cell density in the surround-
ing media, leading to the term quorum sensing [NPH70; FWG94]. As the signal
molecule underlies diffusion, some have argued that the bacteria employ it mainly
to sense the diffusivity of the media [Red02]. Hense et al. [Hen+07] coined the
term efficiency sensing for the mixed scenario, where both quorum and diffusion
sensing is possible. In both ways, QS helps ensure that bacteria only turn on costly
behaviour such as producing and secreting proteins when the cost to benefit ratio
is reasonable.

In turn, QS, like any other social behaviour, opens up the possibility of cheaters.
It involves two levels of cooperation: at the signalling level as well as on the level of
QS-controlled target genes. Both are prone to cheater mutants. In P. aeruginosa,
lasI mutants are unable to produce signal molecules and are thus called signal
cheaters, while lasR mutants are unable to respond to signal because they lack the
receptor molecule and are often called signal blind.

Once any kind of molecule is secreted, it is available to all bacteria in the
local environment. For this reason, they are often called public goods (PGs).
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Figure 1.1: Schematic depiction of QS in a bacterial cell, by means of the las
system of P. aeruginosa. Block arrows indicate genes, other shapes transcribed or
produced molecules. The two-coloured arrows symbolise the activation through
bound receptor molecule.
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Cheaters can thus reap the benefits of PG production if a producer is nearby,
without paying the associated metabolic costs [BJ01; Dig+07; Rum+09; SMS07].
This serves to destabilise QS in the long term. Once cheaters arise (e.g. through
loss-of-function mutation), they should theoretically outgrow the producers as they
have more resources available to invest in cell division. Cheaters have been shown
to outcompete producers both in vitro and in vivo, but QS seems to be evolutionary
stable in natural systems nevertheless.

Several mechanisms, such as kin selection [BB08] and policing [Wan+15], have
been described that could explain the evolutionary stability of cooperation and QS
despite the advantages cheaters have in such a system [see e.g. KRG14]. We will
take a closer look at two of them: assortment and private goods.

Assortment

Spatial structuring of populations is a fundamental principle allowing for assortment
in bacteria. Such separation could serve to stabilise cooperation in combination with
population bottlenecks [Bro07]. Spatial structuring can be caused by environmental
heterogeneities, but also by self-organisation via bacterial interactions [FR11]. In
biofilms, for example, producers and cheaters tend to grow in clusters [NFX10]. Both
theoretical and experimental studies [CMF12; CRL09; Mel+10; Rum+12] showed
that under certain conditions, cyclic separations of the whole population into small
subpopulations and subsequent re-mixing events can protect cooperative behaviour
from being completely outcompeted. Even if only parts of the population undergo
cyclic separation and growth in colonies, cooperation can remain evolutionary
stable [Mun+16].

All in all, it is important to take spatial relations between bacteria into account
when modelling QS. We will discuss methods to do so using ordinary differential
equations (ODEs) (see chapter 3) as well as modelling spatial coordinates explicitly
with partial differential equations (PDEs) (see chapter 4).

Private goods

In contrast to the afore mentioned public goods, private goods are only accessible
to the producing cell itself. They are hence innately protected from cheaters and
provide their benefit exclusively for cells with a functioning QS system.

Apart from extracellular molecules, QS also controls the production of proteins
which act within the cell. In P. aeruginosa, one such protein is Nuh. As Nuh is
involved in metabolising adenosine, only bacteria with intact signal receptors can
digest this carbon source. In this way cooperation via QS provides a private fitness
benefit to cooperating cells if adenosine is available as carbon source [DCG12].

But even extracellular molecules do not provide benefit indiscriminately, but
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are limited by diffusion and habitat structure. Kümmerli et al. [Küm+14] found a
negative correlation between habitat structure and water solubility of siderophores,
a class of secreted enzymes under QS control in a wide range of bacteria. For highly
structured environments such as animal tissues, water solubility of siderophores is
high, while microstructures in the environment naturally limit the resulting diffusion.
Conversely, water solubility of siderophores is low in unstructured environments
such as water habitats. This leads to siderophores clinging to each other as well
as to lipid membranes. In this way a fraction of the siderophores stay with their
producer (see also figure 2.5) and provide some private benefit. As P. aeruginosa
is found in freshwater and soil as well as hosts, Kümmerli et al. [Küm+14] rank
its habitat structure as average (3.3 on a scale of 1 to 5). Following this line of
thought, one can consider every PG to have both a private and a public benefit.

For the QS signal a similar mechanism has been proposed. Given that signal
synthesis as well as binding to the receptor both happen within the cell, the
binding strength of the receptor and the diffusivity of the membrane (amongst
other factors) regulate the degree of self– versus neighbour sensing [FS13; YL14;
MY15]. A low receptor binding strength paired with high diffusivity will favour
secretion (and subsequent absorption) of signal, while a cell membrane with low
diffusion coefficient will favour intracellular aggregation of signal molecules (see
also figure 2.6). Consequently, we can think of the QS signal as having a private
and a public part. We will come back to this hypothesis in section 2.2.3.

All in all, when we develop a mathematical model of QS in the following, we
need to take both levels of cooperation into account. In order to keep the model at
a manageable size regardless, we will make some modelling simplifications on the
complex process of QS.

We can make a quasi steady state assumption for the concentration of signal
synthase if we assume that its production is on a slower time scale than the
subsequent production of signal molecules themselves. This can be rationalised if one
notes that signal synthase is the product of a lengthy translational and transciptional
process, while signal molecules are relatively small and assembled by one enzymatic
reaction. Indeed, it has been verified experimentally that concentration of signal
synthase and signal itself is approximately proportional (e.g., in the las system of
P. aeruginosa by Duan and Surette [DS07]). Hence we can focus only on signal
quantity when modelling later on, omitting the intermediate step of producing
the signal synthase LasI. In a similar fashion, we will leave out the process of
transcription and translation as well as the synthases for QS controlled proteins.

1.1.2 Pseudomonas aeruginosa
P. aeruginosa is an opportunistic human pathogen that causes serious illnesses
in immunocompromised hosts, especially in individuals with cystic fibrosis or
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traumatic burn wounds. It is Gram-negative, rod-shaped and found in many
different habitats, from soil to animal or plant hosts [Red].

Of particular importance for clinical applications are its intrinsically low antibi-
otic susceptibility [Poo04] as well as its ability to form enduring biofilms [HCB10].
Both make it a bacterium commonly found in hospitals and on medical equipment.
P. aeruginosa infection of immunocompromised hosts often leads to potentially fatal
infections - Horino et al. [Hor+12] give a 30-day mortality rate of 20.9 %. While
exact numbers vary from study to study, it is a problem not to be underestimated.

In addition to its low intrinsic antibiotic susceptibility, P. aeruginosa can also
rapidly develop new resistances to multiple classes of antibacterials, even during
therapy, mostly through plasmid acquisition or mutation [LWH09]. For all of these
reasons one is looking for alternative ways to treat P. aeruginosa infections. One
such way could be through the QS system. Many virulence factors in P. aeruginosa
are under control of QS, including for example the well-studied iron-scavenging
siderophores [WB03]. As such, QS is fundamental for the success of P. aeruginosa
infections. This has been confirmed by studies in mice, with mice infected by
QS-mutant strains having a lower mortality rate [Rum+09].

Brown et al. [Bro+09] make some suggestions on how one could go about using
mutant strains to reduce virulence. Besides using QS-deficient mutants directly,
other methods include quorum quenching to disrupt the QS ability of wild-type
bacteria [Sio+06]. But all of these methods rely on the ability of cheating strains
to outcompete wild-type producers. It is thus of great interest to gain a better
understanding of the relations between producing and non-producing bacteria and
the evolutionary pressures that they underlie in order to better estimate the chances
and risks of these kind of therapies.

Up until now, studies have found four different QS systems in P. aeruginosa,
called the las, rhl, Pseudomonas quorum sensing (pqs) and integrated quorum
sensing (iqs) system [WDS11; Lee+13]. Their respective signal molecules are shown
in figure 1.2.

We will focus on the las system of P. aeruginosa, as it is one of its two main
QS systems, the other being the rhl system. In fact, the rhl and las system have a
hierarchical structure, with the las system dominating [PPI97].

For a more comprehensive review of the QS mechanisms of P. aeruginosa as
well as its response to antibiotics, see Rasamiravaka and El Jaziri [REJ16] and the
references therein.

1.2 Mathematical modelling
Mathematical models are very versatile tools that have been used to analyse data,
understand biological concepts and to predict behaviour. The exact mathematical
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tools involved vary as much as the purpose.

1.2.1 Modelling approaches for population growth
Maybe the most fundamental class of models for population growth is the discrete
population model

Nt+1 = f(Nt),

with a function f : R+ → R+, where Nt signifies the amount of individuals at time
t ∈ N. Discrete population models are well-suited for populations with a common
generation time such as insect life cycles [see e.g. EK04]. In the case of bacteria,
cells will divide continuously. A model with continuous time is therefore better
suited.

Ordinary differential equations (ODEs) are the classical way to include such
a continuous time scale. In general, a first-order ODE model for one population
reads

dN(t)
dt = f

(
t, N(t)

)
,

where N again signifies the amount or density of individuals at time t ∈ R+. One
concrete example is the Verhulst equation

dN(t)
dt = rN(t)

(
1 − N(t)

K

)
.

It was first introduced by Pierre-François Verhulst, but rediscovered by McK-
endrick and Pai [MP12], who used the equation in order to model the population
dynamics of bacteria in test tubes. The two occurring parameters are r, the
intrinsic growth rate, and K, the so-called carrying capacity. The carrying capacity
is the maximal number of individuals that can survive in the population. A higher
number of individuals than K cannot be sustained by the environment. The exact
reasons vary dependent on the biological background of the model, but can include
a limited abundance of food or space as well as accumulation of toxins. By defining
µ := r

K
we can reformulate the Verhulst equation to

dN(t)
dt = N(t) (r − µN(t)) .

In this version, instead of a capacity K, one has a population-dependent death
rate µN(t). Like the capacity, it models the natural limit of the population size,
shifting focus towards the rivalry for resources between individuals.
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If two populations are considered (or the population consists of two subpopula-
tions), this rivalry can be modelled more explicitly. One example that arises from
the Verhulst equation are Lotka-Volterra-type equations:

dN1(t)
dt = r1N1(t)

(
1 − N1(t) + α12N2(t)

K1

)
,

dN2(t)
dt = r2N2(t)

(
1 − N2(t) + α21N1(t)

K2

)
.

In addition to the afore mentioned growth rate and carrying capacity we consider
αij , the interaction coefficient between species i and j. If αij > 0, population j has a
negative impact on population i, e.g. through competition or predation. Conversely,
if αij < 0, population j has a positive impact on population i. Thus if αij and
αji < 0, the populations have a mutually beneficial relationship. Cooperator-cheater
interactions are marked by αij < 0, αji > 0 if j is the cooperator subpopulation.
For n (sub-)populations, the model reads

dNi(t)
dt = riNi(t)

(
1 −

∑n
j=1 αijNj(t)

Ki

)
,

where we define αii = 1. ODEs such as these have been used in modelling QS
cooperator–cheat relationships in the past [Fra10].

When modelling with ODEs, one usually assumes a homogeneous population.
Spatial inhomogeneities in a population are not directly reflected in such a model, as
there is only one independent variable (the time t) and the equation is independent
of spatial variables. If explicit spatial dependence is needed, one can use partial
differential equations (PDEs) to also gain continuous space dimensions. The general
form of a second-order PDE for one population is

∂N(t, x)
∂t

= f

(
t, x,N(t, x), ∂N(t, x)

∂xi
,
∂2N(t, x)
∂x2

ij

)
,

where x denotes the spatial coordinates and ∂xij the derivatives with respect to
the different coordinates of x. Chopp et al. [Cho+02] used such a model for the las
system of P. aeruginosa and its influence on biofilm growth, while Koerber et al.
[Koe+02] employed it in the context of burn wound infection. Jabbari, King, and
Williams [JKW12], on the other hand, modelled interaction between two bacterial
strains via a combination of ODEs and PDEs.

Both ODE and PDE models will be discussed later on, in chapter 3 and chapter 4,
respectively. Apart from them, there are many more viable modelling approaches,
such as partial integro-differential equations [BJ01], graph-based modelling [PK15]
and individual-based modelling [CMF12; GBDM14]. For a more in-depth review of
the history of mathematical models for QS, the reader is referred to Pérez-Velázquez,
Gölgeli, and García-Contreras [PVGGC16].
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1.2.2 Modelling approaches for evolution
As mentioned in section 1.1.2, P. aeruginosa has the ability to gain immunity to
antimicrobials even during an ongoing therapy. This means that we can see evolution
already on short time scales. It is thus imperative that one takes mutations and
evolutionary pressure into consideration when modelling growth of P. aeruginosa.

There are several ways one can model evolution. One important method is the
use of adaptive dynamics, a method developed by Geritz et al. [Ger+97], which
is introduced nicely in Brännström, Johansson, and Festenberg [BJF13]. In its
basic form, it assumes two populations, a resident population Nr and a mutant
population Nm. We can write down the population dynamics as before, using a
formulation with population-dependent death rate instead of explicit capacity:

dNr(t)
dt = Nr(t) (rr − µ (Nr(t) +Nm(t))) ,

dNm(t)
dt = Nm(t) (rm − µ (Nr(t) +Nm(t))) .

The particular idea of adaptive dynamics is to assume that mutants are so rare
initially (Nm � Nr), that we can assume Nr +Nm = Nr and Nr itself to be at its
equilibrium value (Nr = rr/µ). We call the growth of the rare mutant an invasion
of the resident population. The outcome of such an invasion is dependent on the
reproductive success of the mutant, also called its fitness. One can then define
invasion fitness sr(m) of a mutant to be its per capita growth rate:

sr(m) =
dNm(t)/dt

Nm(t) = rm − µNr(t) = rm − rr.

It is imperative that the mutant population size Nm does not appear in this
expression, since we just assumed that it is negligibly small. It must also hold
that sr(r) = 0, signifying that the resident population cannot invade itself. We
can then find the selection gradient as the derivative of sr(m) with respect to m.
In our simple example, it would hold that s′

r(m) = 1, and thus the trait would
evolve to ever increasing values. For (realistic) natural systems, there is always
some kind of trade-off that prevents such explosions and one can find values of r̄ for
which s′

r̄(r̄) = 0. Such values for r̄, or strategies, are called evolutionary singular
strategies and can be divided into fitness minima and fitness maxima (and a third
degenerate case, a saddle point, which is without biological significance). As the
name already suggests, strategies in a fitness maximum maximise the fitness of the
population and as such are evolutionary stable, while evolutionary branching can
occur in fitness minima.

One generalisation of adaptive dynamics is the idea of G-functions, where one
defines a general growth function for all populations that depends directly on the
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trait value of that population. This allows one to consider the evolution of an
arbitrary number of populations as well as their population dynamics simultaneously.
It will be discussed in depth in chapter 2.

The slightly different approach of Cohen and Galiano [CG13] employs methods
of PDEs by considering the trait, or strategy, of a population as another continuous
independent variable next to t. If we denote the strategy value by v, one could for
example write

∂tN(v, t) = r

(
N(v, t) + ε2

2 ∂vvN(v, t)
)

− s (N(v, t), v))N(v, t).

The function s embodies the natural selection in this scenario while ε gives a
measure of the mutation rate. Additionally, the equation must be supplemented
with biologically meaningful boundary conditions.

Again, the models shown here are but a few in a wide range of possibilities.
Depending on the nature of the population model considered, different ways to
depict evolution are appropriate.

1.2.3 Evolutionary stable strategies and equilibria

The terms evolutionary stable strategy (ESS) and evolutionary stable equilibrium
(ESE) are essential to dealing with evolving populations. While we will define them
mathematically later on, the concepts can also be expressed in a biological context.
To that end, we use the definitions coined by Smith [Smi82] and Vincent, Van, and
Goh [VVG96]:

An ESS is a strategy such that, if all members of a population adopt
it, then no mutant strategy could invade the population under the
influence of natural selection.

Individuals in a biological community will be at an ESE if fixing the
strategies used by the individuals results in stable population densities
subject to perturbations in those densities.

Thus, an ESS is stable with respect to changes in strategy values, while an ESE
is stable with respect to (small) perturbations in population densities.

Additionally, there might also be unstable equilibria. Eventually, small stochas-
tic variances will drive the biological systems from these points. In the case of
strategy values, we call such a process divergent evolution, or speciation [Met+95].
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1.3 Overview
This thesis is structured as follows: We will start out by taking a detailed look
at the G-function ansatz in chapter 2 and describing different functional terms
that represent different biological assumptions and theories. Both versions, with
and without abiotic components, are considered with regards to their long-term
behaviour.

Chapters 3 and 4 analyse a number of frameworks that allow us to consider the
role of both time and spatial distribution in QS. While chapter 3 focuses on ODEs
and different ways to introduce spatial dependence therein, chapter 4 introduces
several different PDE systems. Existence and uniqueness of solutions are considered
for all introduced PDE systems, as well as their asymptotic behaviour.

Before comparing all of these frameworks in chapter 6, we show some experi-
mental results for P. aeruginosa in chapter 5. In order to explain the evolutionary
stability of QS, experiments have traditionally focussed on signal-blind cheaters
[WDS11; Pop+12; Pol+14], but Ruparell et al. [Rup+16] and Keller and Surette
[KS06] have shown that there is also a metabolic cost associated with the produc-
tion of QS signals. We provide experimental proof that lasI mutants indeed show
cheating behaviour whose pay-off depends on the diffusivity of the environment.

The data from these experiments is used to set parameters for numerical
simulations in chapter 6. Apart from replicating experimental results, we compare
both different G-functions introduced in chapter 2 as well as different equation
systems from chapters 3 and 4 before summarising the results in chapter 7.



Chapter 2

G-Function

The basic idea of the G-functions as introduced by [CVB99] is to define a growth
function G for a population b, which can then be universally applied to all individuals
or groups bi within this population. In order to do that, one defines a strategy vi
for every group bi. The strategy can describe any behaviour of interest, assigning
a real-valued number to it. It might also be vector-valued if one is looking at
multiple behavioural rules. Examples for strategies include diverse behaviour such
as number of offspring, habitat choice, and time of nesting for birds. How exactly
the mapping of biological observations to scalar representation is done depends on
the context of the particular problem.

In the context of quorum sensing, we will be looking at signalling strength vsi and
response strength vei of a subpopulation of bacteria. This means vi = (vsi , vei )T ∈ R2

is a measure for the cooperativeness of a bacterial subpopulation. In the presented
context, we will assume a normalised value of 0 to indicate no participation and a
value of 1 to be normal wild-type level cooperation.

In order to derive equations from these fundamental principles, we start out with
a very basic population model describing the population growth of a population bi
reproducing with a constant growth rate G:

ḃi(t) = G · bi(t). (2.0.1)

This equation should hold for all subpopulations bi, i ∈ {1, . . . , n} that make
up the total population considered, b. b is thus the vector of all subpopulations,
i.e. b(t) ∈ Rn. Similarly, we define v to be the matrix of all strategy values, such
that if vi(t) ∈ Rm, v(t) ∈ Rn×m. G remains the same for all subpopulations as per
assumption.

It is quite clear that such an equation with a constant G cannot properly model
the population dynamics at hand. We proceed to recognise that the growth rate G
of a subpopulation will be mainly influenced by three factors: its own strategy vi,

23
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bi, vi

b1, v1

b2, v2

bi, vi

bn−1, vn−1

bn, vn
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>

0

G
< 0

bi, vi

bi, vi

Figure 2.1: Schematic representation of influences on the growth rate of a popula-
tion.

the environment defined by the complete strategy set v and the whole population
b (see figure 2.1).

It follows thatG should be a function dependent on vi, v and b, so equation (2.0.1)
can more accurately be written as

ḃi(t) = G(vi(t), v(t), b(t)) · bi(t). (2.0.2)
In this way, G can be interpreted as the per-capita-growth. Following the argu-

ments in [VCB93], we assume that the strategy distribution remains approximately
Gaussian and the variance is small [Bul+80]. Then for scalar strategies the strategy
vi of subpopulation bi changes according to

v̇i(t) = ε
∂

∂u
G(u, v(t), b(t))|u=vi(t). (2.0.3)

We can interpret this as a move in strategy towards higher per-capita-growth.
This move happens on a slower time scale than the population dynamics, ε � 1.
This time scale difference actually depends on the heritability coefficient h and the
genetic variance σ2, such that ε = hσ2.

An equivalent equation holds true for vector-valued strategies vi ∈ Rm:


v̇1
i (t)
...

v̇mi (t)

 = ε


∂
∂u1
G
(
(u1(t), . . . , un(t)), v(t), b(t)

)
|u=vi(t)

...
∂

∂um
G
(
(u1(t), . . . , un(t)), v(t), b(t)

)
|u=vi(t).

 (2.0.4)
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In order to simplify notation, we will use equation (2.0.3) for scalar as well as
vector-valued strategies, as well as write ∂1 to signify derivation with respect to the
first argument of a function. We then get a system of equations describing both
the population and strategy dynamics.

ḃi(t) = G(vi(t), v(t), b(t)) · bi(t) (2.0.5a)
v̇i(t) = ε∂1G(vi(t), v(t), b(t)) (2.0.5b)

With this framework, we can define the following necessary conditions for an
evolutionary stable equilibrium (ESE) (v∗, b∗):

G(v∗
i , v

∗, b∗) = 0
∂1G(v∗

i , v
∗, b∗) = 0

∂2
1G(v∗

i , v
∗, b∗) ≤ 0

 ∀v∗
i ∈ {v∗

i |b∗
i 6= 0} (2.0.6)

Essentially, we require the population to be in equilibrium with respect to
population dynamics. This can be achieved either through G(v∗

i , v
∗, b∗) = 0 or

b∗
i = 0. If b∗

i = 0, the subpopulation has died out, hence the associated strategy
dynamic can be disregarded. If b∗

i 6= 0, there needs to be equilibrium with respect
to strategy dynamics as well, resulting in the second equation of (2.0.6). The third
equation is a necessary condition on the derivative of G for there to be a fitness
maximum at the ESE — a minimum would lead to divergent evolution [CVB99].
As usual, a strict inequality would be a sufficient condition for a (fitness) maximum
and therefore for an ESE.

2.1 Assumptions
From here onwards, we will assume some basic properties of the G-function. All of
these are of biological relevance.

2.1.1 General assumptions on G

We make some regularity assumptions on G and its derivative in order to simplify
mathematical analysis later on. These do not restrict the possibilities for biological
applications, as most model growth functions do not include discontinuous behaviour
and are smooth.

(I) G(vi, v, b) is Lipschitz continuous in all variables.
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(II) ∂1G(vi, v, b) is Lipschitz continuous in (v, b)T .
Additionally, we make some assumptions on G from the biological background.

(III) G(vi, v, b) has a (direct or indirect) negative feedback loop in bi.

(IV) ∃ u : ∂1G(vi, v, b) ≤ 0 ∀vi > u.

(V) ∃ u < u : ∂1G(u, v, b) = 0.
If one of these assumptions is violated, equation (2.0.5) will exhibit divergent

behaviour (v → ∞ and/or b → ∞), which is not biologically plausible. If e.g.
∂1G(vi, v, b) ≥ γ > 0 ∀vi, then c + λt with λ = γ · ε is a lower solution of
equation (2.0.5b), as

ε∂1G(λt+ c, v, b) − λ ≥ 0.
It follows that vi ≥ c + λt and thus vi → ∞. This would mean ever-increasing
strategy values without some kind of trade-off, which we do not find in nature.

In the special case of quorum sensing (QS), we will take u to be 0, requiring
∂1G(0, v, b) = 0. This keeps v from leaving the biologically meaningful parameter-
range R+

0 (production cannot be lower than 0).
In assumption (I) we only require Lipschitz continuity of G(vi, v, b), but the

right-hand side of equation (2.0.5a) consists of G(vi, v, b) · bi. We thus prove a small
lemma that guarantees the Lipschitz continuity of the whole right-hand side.
Lemma 2.1. If G(vi, v, b) is a Lipschitz continuous function in (v, b) and (v, b) ∈
V ×B with B a bounded set, then G(vi, v, b) · bi is a Lipschitz continuous function
in (v, b).
Proof. We set Ki as the Lipschitz constant of G(vi, v, b) and take two vectors (v, b)
and (v, b) ∈ V ×B.

‖G(vi, v, b) · bi −G(vi, v, b) · bi‖
=
∥∥∥G(vi, v, b) · bi −G(vi, v, b) · bi +G(vi, v, b) · bi −G(vi, v, b) · bi

∥∥∥
≤
∥∥∥G(vi, v, b)

∥∥∥ ·
∥∥∥bi − bi

∥∥∥+
∥∥∥G(vi, v, b) −G(vi, v, b)

∥∥∥ · ‖bi‖

≤
∥∥∥G(vi, v, b)

∥∥∥ ·
∥∥∥bi − bi

∥∥∥+Ki

∥∥∥∥∥
(
b
v

)
−
(
b
v

)∥∥∥∥∥ · ‖bi‖

≤
∥∥∥G(vi, v, b)

∥∥∥ ·
∥∥∥∥∥
(
b
v

)
−
(
b
v

)∥∥∥∥∥+Ki

∥∥∥∥∥
(
b
v

)
−
(
b
v

)∥∥∥∥∥ · ‖bi‖

=
(∥∥∥G(vi, v, b)

∥∥∥+Ki · ‖bi‖
)

·
∥∥∥∥∥
(
b
v

)
−
(
b
v

)∥∥∥∥∥
This shows that G(vi, v, b) · bi is Lipschitz continuous with (maximal) Lipschitz

constant Gmax +Ki · sup
b∈B

‖b‖.
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2.1.2 Dividing G into growth and benefit terms
In order to model the G-function for QS, one of the avenues we can take is to
divide the impact of vi, v, and b into two parts: a growth term influenced by vi
and a benefit provided by v, b, and possibly also vi. This reflects the fact that
production of QS molecules is costly to the individual, while the resulting factors
are public goods (PGs) and therefore provide benefit to all bacteria. The additional
dependence on vi can be seen as a form of private benefit and will be discussed in
detail when it occurs.

Growth term

One important thing to note is that the growth term is actually reduced with rising
vi, as increased PG production incurs increased metabolic costs. In this way, less
energy is retained for reproduction. We denote the term by C : R2 → R+, and
make the following assumptions:

1. As PG production is costly, C is strictly monotonically decreasing in vsi and
vei in the positive quadrant.

2. When producing PGs, the growth rate is reduced by a certain factor,

0 < C(vi) < 1 for vi 6= (0, 0), C(0, 0) = 1. (2.1.1)

3. Producing signal is less expensive than responding,

∂1C(vsi , vei ) < ∂2C(vsi , vei ) if vsi = vei . (2.1.2)

While the first item is clear from our assumptions on QS, the other two are not
as immediately clear. We introduce equation (2.1.1) because we will use this factor
multiplicatively for G. Thus a value of 1 would signify unimpeded growth, while
a value between 0 and 1 reduces growth. In this way, we assume that QS costs
alone do not lead to negative growth rates. Inequality (2.1.2) incorporates the
biological assumption that signalling is less expensive than actually producing the
QS-controlled proteins. If both are produced equally, changing signal production
has less impact on the growth rate than changing signal response has. Note that
this need not hold for unequal production values.

One term that has all required properties and will be used whenever a more
detailed view of G is required would be

C(vi) = exp
(
−Ke(vei )2 −Ks(vsi )2

)
, (2.1.3)

with Ke > Ks being the costs for production. We use quadratic terms instead of
linear ones to emphasise the self-enhancing aspect of QS.
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Benefit term

The benefit of QS is provided by secreting extracellular proteins. We denote it by
B : Rm×2 × Rm → R+ and make two main assumptions here:

1. There is a limit to how much benefit can be obtained,

lim
vs,ve→∞

B(v, b) = Bmax. (2.1.4)

2. There is no benefit if no PGs are produced,

B(v, b) = 0, if b = 0,
∑
i

bivis = 0 or
∑
i

bivie = 0. (2.1.5)

Equation (2.1.4) models a saturation behaviour for the benefit — even if the
cells were producing an infinite amount of extracellular protein, the benefit that
can be derived is still capped through saturation of enzymes or similar phenomena.
Equation (2.1.5) ensures that there is no benefit from QS when there are no living
bacteria, or all of them have stopped either signalling or responding to signal, as
PGs are only produced when there is both signalling and responding happening
(though not necessarily by the same subpopulation).

A similar thought spawns the idea that vsi and vei could be coupled in a
multiplicative way, giving the most benefit when both are roughly equal as opposed
to overproduction in one part of QS while neglecting the other. In order to calculate
how much the bacteria benefit through the production, we compare the total amount
produced (∑i bivis or ∑i bivie , respectively) with the total amount of bacteria in the
population (∑i bi). Hill terms of order 2 then ensure that the terms are bounded
from above as well as below and exhibit a sharp increase around the threshold
parameter, which we set to half the total amount of bacteria. As such, a first idea
for a benefit term could be

B(v, b) = Bmax · (∑i biv
s
i )2

(∑i biv
s
i )2 + (1

2
∑
i bi)2 · (∑i biv

e
i )2

(∑i biv
e
i )2 + (1

2
∑
i bi)2 .

Note that this term does not satisfy assumption (2.1.5). In order to see this,
set b = ε~1. The term then simplifies to

B(v, b) = Bmax · (ε∑i v
s
i )2

(ε∑i v
s
i )2 + (1

2εn)2 · (ε∑i v
e
i )2

(ε∑i v
e
i )2 + (1

2εn)2

= Bmax · (∑i v
s
i )2

(∑i v
s
i )2 + (1

2n)2 · (∑i v
e
i )2

(∑i v
e
i )2 + (1

2n)2 ,
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which is unequal to zero even if ε → 0. This is due to the fact that the amount
of enzyme or signal production needed scales with the total amount of bacteria
in the population. Such a scaling makes sense, as a large population needs more
enzymes to derive the same benefit per individual. But a proportional scaling such
as this means that an infinitely small population needs an infinitely small amount
of producers, which does not hold from experiments.

Stepping back to the biological problem, we recognise that there are two main
ways in which a population loses QS-factors, namely decay and diffusion. While
the decay rate stays the same for small and large populations, the loss of molecules
through diffusion is governed by the ratio of surface area to volume. This means
large populations lose proportionally fewer molecules through diffusion, as surface
area increases more slowly than volume. This effect is what keeps small populations
from immediately gaining full QS benefit, even if all of them are cooperating.

We can adjust the proposed term by exchanging (1
2
∑
i bi)2 for a term that grows

on a slower scale. One possibility is to use (1
2)2∑

i bi, or, to be more flexible, τ ∑i bi.
This gives an example term as

B(v, b) =

Bmax · (∑i biv
s
i )2

(∑i biv
s
i )2 + τ

∑
i bi

· (∑i biv
e
i )2

(∑i biv
e
i )2 + τ

∑
i bi

if ∑i bi 6= 0

0 if ∑i bi = 0
(2.1.6)

We take another look at the limit behaviour of this term. We can prove the
following:

Theorem 2.2. The benefit term defined in equation (2.1.6) exhibits the following
properties:

1. 0 ≤ B(v, b) ≤ Bmax.

2. B(v, b) is differentiable in b and v.

3. lim
|v|→0

B(v, b) = 0.

4. lim
|v|→∞

B(v, b) = Bmax, if ∃j, k : bj, bk 6= 0, vsj , vek → ∞.

5. lim
|b|→∞

B(v, b) = c,

where c is any number between 0 and Bmax. Indeed, for every such c there exist v
and a sequence (bk)k∈N with |bk| → ∞ s.t. B(v, bk) → c for k → ∞.
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Proof. Properties 1, 3 and 4 are trivial. For property 2 we first show that B(v, b)
is continuous at b = 0. We take v := max

i=1,...,n
{vsi , vei } for an arbitrary but fixed v. It

holds that

(∑i biv
s
i )2

(∑i biv
s
i )2 + τ

∑
i bi

≤ (∑i biv)2

τ
∑
i bi

= v2(∑i bi)2

τ
∑
i bi

= v2

τ
·
∑
i

bi.

The right-hand side now clearly converges to 0 as |b| → 0. At the same time,
the original term is non-negative as bi ≥ 0 ∀i. It follows that

lim
|b|→0

(∑i biv
s
i )2

(∑i biv
s
i )2 + τ

∑
i bi

= 0. (2.1.7)

The same statement can be derived for vei . That proves the continuity for b
and fulfils our original assumption (2.1.5). B(v, b) is clearly continuous as well as
differentiable in v, so it only remains to prove that B(v, b) is differentiable in b.
We will prove that ∂bj

B(v, b) exists for all j ∈ {1, . . . , n} and that these partial
derivatives are continuous.

∂bj

(
(∑i biv

s
i )2

(∑i biv
s
i )2 + τ

∑
i bi

)
=

(∑i biv
s
i )τ

(
2vsj

∑
i bi −∑

i biv
s
i

)
((∑i biv

s
i )2 + τ

∑
i bi)2

An equivalent statement holds for the vei -term. This leads to

∂bj
B(v, b) = Bmax · (∑i biv

s
i )2

(∑i biv
s
i )2 + τ

∑
i bi

·
(∑i biv

e
i )τ

(
2vej

∑
i bi −∑

i biv
e
i

)
((∑i biv

e
i )2 + τ

∑
i bi)2

+Bmax · (∑i biv
e
i )2

(∑i biv
e
i )2 + τ

∑
i bi

·
(∑i biv

s
i )τ

(
2vsj

∑
i bi −∑

i biv
s
i

)
((∑i biv

s
i )2 + τ

∑
i bi)2

We already know from equation (2.1.7), that part of the summands will tend
to zero. It remains to show that the other fraction does not go to infinity.

(∑i biv
e
i )τ

(
2vej

∑
i bi −∑

i biv
e
i

)
((∑i biv

e
i )2 + τ

∑
i bi)2 ≤

(∑i biv)τ2vej
∑
i bi

(τ ∑i bi)2

=
v(∑i bi)2τ2vej
τ 2 (∑i bi)2

= v

τ
· 2vej ,
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and also
(∑i biv

e
i )τ

(
2vej

∑
i bi −∑

i biv
e
i

)
((∑i biv

e
i )2 + τ

∑
i bi)2 ≥ (∑i biv)τ (−∑

i biv)
(τ ∑i bi)2

= −v2(∑i bi)2τ

τ 2 (∑i bi)2

= −v2

τ
.

This fraction is therefore bounded from above by a constant. As it is also
bounded from below, we can conclude (after a similar calculation for vsi ) that

lim
|b|→0

∂bj
B(v, b) = 0 ∀j ∈ {1, . . . , n},

which in turn shows the continuity of all partial derivatives in 0.
For property 5 we first look at the cases c = 0 or Bmax. We can take b1 → ∞

and bi = 0 for i = 2, . . . , n to make things simpler. If v1 = 0, e.g. vs1 = ve1 = 0 we
get B(v, b) = 0 and thus lim

|b|→∞
B(v, b) = 0. Taking v1 = 1, on the other hand, results

in

B(v, b)(v, b) = Bmax · (b1 · 1)2

(b1 · 1)2 + τb1
· (b1 · 1)2

(b1 · 1)2 + τb1

= Bmax

(
1

1 + τ
b1

)2

→ Bmax.

For a limit of 0 < c < Bmax, set b2 = Cb2
1, bi = 0 ∀i > 2 as well as v1 = 1, v2 = 0.

B(v, b)(v, b) = Bmax · b2
1

b2
1 + τ(b1 + b2)

· b2
1

b2
1 + τ(b1 + b2)

= Bmax ·
(

b2
1

b2
1 + τCb2

1 + τb1)

)2

= Bmax

(
1

1 + C + τ
b1

)2

→ Bmax

( 1
1 + C

)2
.

A short calculation now shows that for a limit of c, we need to set C = 1−
√
c/Bmax

τ
√
c/Bmax

.
This term is positive and well-defined, as 0 < c < Bmax.
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This gives us a good idea of what behaviour we can expect from B(v, b). While
it fulfils all assumptions made so far, it is not monotone in b, and indeed can not be
from our requirements. That makes the QS-model a mixed competition/mutualism
model.

Note that we will add the minimal growth rate Bmin the bacteria experience in
the absence of QS to the benefit for ease of writing later on. Additionally, we will
sometimes write ‖b‖1 instead of ∑i bi.

2.2 Different G-Function versions
Now that we have some preliminary ideas about general behaviour that the G-
function should exhibit for our kind of application, we will look more closely upon
some modelling possibilities.

2.2.1 G-Function without abiotic components
Models without abiotic components infer benefit directly from the exhibited strate-
gies, as opposed to explicitly modelling signal and enzymes involved. As such, they
are more compact than their counterparts, but also more abstract.

Public Benefit only: G(vi, v, b) = B(v, b) · C(vi) − µ‖b‖1

This basic model builds on the assumption that PG production is costly to the
individual, thus modifying growth by a multiplicative factor C(vi) which fulfils the
assumption proposed in section 2.1.2. At the same time, the total amount of PGs
produced depends on the strategies and population densities of all subpopulations,
v and b. Thus, the benefit B depends on these quantities. Additionally, there is a
competition term µ, limiting the total amount of bacteria that can exist at one
place. As such, the term for G is

G(vi, v, b) = B(v, b) · C(vi) − µ‖b‖1. (2.2.1)

For a formulation with carrying capacity instead of population-dependent death
rate, we can transform this equation to

G(vi, v, b) = B(v, b)C(vi)
(

1 − µ‖b‖1
B(v, b)C(vi)

)
, (2.2.2)

which gives us B(v,b)C(vi)
µ

as the capacity for the population. We can now look at
the derivative of G with respect to vi. Here, we will for a moment assume scalar vi
for ease of notation.
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∂1G(vi, v, b) = B(v, b) · C ′(vi). (2.2.3)
We know from section 2.1.2 that C(vi) is strictly monotonically decreasing

for positive vi. Together with the assumptions made in section 2.1 we have
C ′(vi) < 0 ∀vi > 0, C ′(0) = 0 and there exists only vi = 0 as an evolutionary stable
strategy (ESS).

Private Benefit: G(vi, v, b) = (B(v, b) + B(vi)) · C(vi) − µ‖b‖1

This idea is based on the private goods-hypothesis explained in 1.1.1, that there
is a private benefit associated with producing the PGs, e.g. a small percentage of
the produced enzymes may cling to the producing bacteria. We will model this by
adding a term B(vi), that means a benefit term that is solely dependent on the
strategy of the subpopulation itself. This B(vi) should fulfil similar assumptions to
those we made of B(v, b), which is why we choose the same letter to denote it. All
in all, we can write for G:

G(vi, v, b) = (B(v, b) +B(vi)) · C(vi) − µ‖b‖1. (2.2.4)
Again, we can choose to write this equation with a capacity term instead of

a population-dependent death rate, if we so wish. The derivative of G can be
calculated as

∂1G(vi, v, b) = (B(v, b) +B(vi)) · C ′(vi) +B′(vi) · C(vi), (2.2.5)
hence for an ESS it must hold that

−C ′(vi) (B(v, b) +B(vi)) = B′(vi)C(vi). (2.2.6)
The left-hand-side of this equation has a value of 0 for vi = 0, whereas the

right-hand-side has a value ≥ 0 for vi = 0. That means there could be any number
of stable strategies (or none).

In order to get a better idea of the behaviour, we will use the growth function
we proposed at the end of section 2.1.2 in equation (2.1.3). Again, we will assume
scalar vi for ease of notation, simplifying the term to C(vi) = exp(−Kv2

i ). Plugging
this into (2.2.6) leads to the equation

2Kvi exp
(
−Kv2

i

)
(B(v, b) +B(vi)) = B′(vi) exp

(
−Kv2

i

)
2Kvi (B(v, b) +B(vi)) = B′(vi) (2.2.7)

with the second derivative

∂2
1G(vi, v, b) = e−Kv2

i

(
(B(v, b) +B(vi))

(
−2K + 4K2v2

i

)
+ 2B′(vi)(−2K)vi +B′′(vi)

)
. (2.2.8)
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General discussion First we observe that if B′(0) = 0, then v̄i = 0 will be a
stationary solution. Before we discuss the existence of further positive solutions,
we take a look at the stability of the zero solution, keeping in mind that B(0) = 0:

∂2
1G(0, v, b) = −2KB(v, b) +B′′(0).

It follows that v̄i = 0 is an ESS if

B′′(0) < 2KB(v, b). (2.2.9)

In the following, we continue to assume that B′(0) = 0. Then a positive solution
exists if we can solve

(B(v, b) +B(v̄i)) (2K) = B′(v̄i)
v̄i

. (2.2.10)

We know that the left hand side is monotonically increasing and for many
interesting cases (e.g. both concrete examples below as well as all concave functions
satisfying B(0) = 0, B(∞) = B̄ > 0) the right hand side is monotonically decreasing
(a potential B(vi) where this is not the case is discussed in section 2.2.1 later on).
We also know that B(vi) should exhibit a saturation for vi → ∞, forcing

lim
vi→∞

B′(vi)
vi

= 0. (2.2.11)

We take a look at the limiting values at 0:

lim
vi→0

(B(v, b) +B(vi)) (2K) = 2KB(v, b) =: B0,

lim
vi→0

B′(vi)
vi

l′H.= lim
vi→0

B′′(vi) = B′′(0).

So for the cases with monotonically decreasing right hand side, there exists a
positive stationary v̄i if and only if B′′(0) > 2KB(v, b) (see also figure 2.2), which
corresponds nicely with the stability of the zero solution.

If we take B′(0) to be non-zero, there will always exist exactly one equilibrium
solution, which is positive. This results from the same arguments as above, with
the noted difference that

lim
vi→0

B′(vi)
vi

= +∞,

due to B′(0) > 0. If B′(0) were negative, the assumption of B(vi) ≥ 0 for vi > 0
would be violated.
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2K(B(v, b) +B(vi)) B′(vi)/vi

B0

B′′(0)

(a) B′′(0) > 2KB(v, b)

vi

B′′(0)

B0

(b) B′′(0) < 2KB(v, b)

vi

Figure 2.2: Graphical representation of the argument for the existence or non-
existence of positive equilibrium points vi.

Last but not least, we take a look at the stability of this positive equilibrium.
Dividing equation (2.2.8) by e−Kv2

i , we have a stable equilibrium if

0 > (B(v, b) +B(v̄i))
(
−2K + 4K2v̄2

i

)
+ 2B′(v̄i)(−2K)v̄i +B′′(v̄i).

We know that for v̄i equation (2.2.7) must hold, leading to

0 > B′(v̄i)
2Kv̄i

(
−2K + 4K2v̄2

i

)
+ 2B′(v̄i)(−2K)v̄i +B′′(v̄i)

= −B′(v̄i)
v̄i

− 2Kv̄iB′(v̄i) +B′′(v̄i)

= −
( 1
v̄i

+ 2Kv̄i
)
B′(v̄i) +B′′(v̄i). (2.2.12)

We can immediately conclude that equation (2.2.12) holds for all concave B(vi),
as B′(vi) > 0 as discussed before, while B′′(vi) < 0.

B(vi) = v2
i

v2
i +a2 This term is quite close to the proposed term of B(v, b) (equa-

tion (2.1.6)), with the difference that the value at which the strategy has half
its maximum effect is now fixed to a constant a. In contrast to the situation for
PGs, the private good is always just used by one bacteria, so there is no increased
threshold.

In order to take a closer look at the behaviour, we first calculate the derivatives:

B′(vi) = 2via2

(v2
i + a2)2 , B′′(vi) = 2a4 − 6a2v2

i

(v2
i + a2)3 .
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We note that

B′(vi)
vi

= 2a2

(v2
i + a2)2

is a monotonically decreasing function, so we can reuse all observations made before
about existence and stability of stationary solutions. In order to get a better idea
of just where the positive equilibrium will be, we plug B′(vi) into equation (2.2.7)
and simplify:

2Kvi
(
B(v, b) + v2

i

v2
i + a2

)
= 2via2

(v2
i + a2)2

2Kv5
i (B(v, b) + 1) + 2Kv3

i a
2(2B(v, b) + 1) + 2Ka4viB(v, b) = 2via2.

So one possible solution is vi = 0, as expected. Dividing by vi allows us to keep on
looking for non-zero solutions

2Kv4
i (B(v, b) + 1) + 2Kv2

i a
2(2B(v, b) + 1) + 2Ka4B(v, b) − 2a2 = 0. (2.2.13)

The last equation is bi-quadratic, so we take w := v2
i and solve for w:

w1/2 = −2Ka2(2B(v, b) + 1) ±
√
D

4K(1 +B(v, b))

D = 4K2a2
(
a2(2B(v, b) + 1)2 − 2(1 +B(v, b)) · 2(a2B(v, b) − 1

K
)
)

= 4K2a2
(
a2 + 4

K
+ 4B(v, b)

K

)
> 0.

That means there will be real solutions for w; one of them will be negative, the
sign of the other is still to be determined. It would be positive, if

2Ka
√
a2 + 4

K
+ 4B(v, b)

K
> 2Ka2(2B(v, b) + 1)

a2 + 4
K

+ 4B(v, b)
K

> a2(4B(v, b)2 + 4B(v, b) + 1)

1 +B(v, b) > Ka2B(v, b)(B(v, b) + 1)
1 > Ka2B(v, b). (2.2.14)

So only under condition (2.2.14) do we get a positive solution for w, and in turn
two real solutions for vi, one of which will be positive. All in all, if 1 > Ka2B(v, b),
there will be two stationary solutions for vi: 0 and a v̄i > 0. This result corresponds
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nicely to the results in the last paragraph, as B′′(0) = 2/a2. The next step is to
take a look at the stability of these strategies, e.g. ∂2

1G(vi, v, b). We already know
from equation (2.2.9) that v̄i = 0 will be stable if

B′′(0) < 2KB(v, b)

⇒ 2a4

a6 < 2KB(v, b),

which is fulfilled, if 1 < Ka2B(v, b) and violated, if 1 > Ka2B(v, b). So v̄i = 0 is
an ESS only as long as the parameter constellation does not allow for a positive
stationary solution. For the calculation for v̄i > 0 we recall equation (2.2.8).

∂2
1G(vi, v, b) = e−Kv2

i

(
(B(v, b) +B(vi))

(
−2K + 4K2v2

i

)
+ 2B′(vi)(−2K)vi +B′′(vi)

)
.

=
(

v̄2
i

v̄2
i + a2 (−2K + 4K2v̄2

i ) + 2 2v̄ia2

(v̄2
i + a2)2 (−2K)v̄i

+ 2a2(v̄2
i + a2) − 8a2v̄2

i

(v̄2
i + a2)3 +B(v, b)(4K2v̄2

i − 2K)
)

e−Kv̄2
i .

As we want the stability in a stationary point, we can directly use equa-
tion (2.2.12):

0 > − 2a2

(v̄i + a2)2 − 2K 2v̄2
i a

2

(v̄i + a2)2 + 2a4 − 6a2v̄2
i

(v̄i + a2)3 .

We can multiply this equation by (v̄i + a2)3 without change of sign

0 > −2a2(v̄2
i + a2) − 4Kv̄2

i a
2(v̄2

i + a2) + 2a4 − 6a2v̄2
i

= −2a2v̄2
i − 2a4 − 4Kv̄4

i a
2 − 4Kv̄2

i a
4 + 2a4 − 6a2v̄2

i

= −8a2v̄2
i − 4Kv̄4

i a
2 − 4Kv̄2

i a
4

= −4v̄2
i a

2(Kv̄2
i +Ka2 + 2).

So v̄i is stable for all possible parameter values (as long as it exists, i.e. v̄i ∈ R).

B(vi) = −e−ωv2
i + 1 Another way to achieve the desired behaviour with a

completely different function is to use the exponential function. The parameter ω
can be seen as a measure for the benefit of the strategy — the higher ω, the more
benefit is gained from the same strategy. Again, we calculate the derivatives:
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B′(vi) = 2ωvie−ωv2
i , B′′(vi) = 2ωe−ωv2

i − 4ω2v2
i e−ωv2

i .

Like before, we note that

B′(vi)
vi

= 2ωe−ωv2
i

is a monotonically decreasing function. We calculate the stationary solutions by
plugging B′(vi) into equation (2.2.7) and simplifying.

(2Kvi)(B(v, b) − e−ωv2
i + 1) = 2ωvie−ωv2

i

⇒ v̄i = 0 ∨ v̄2
i = ln

(
K(B(v, b) + 1)

K + ω

)
·
(

− 1
ω

)
. (2.2.15)

The second term produces positive solutions if and only if KB(v, b) < ω, which
corresponds to equation (2.2.9) and also gives a condition for the stability of v̄i = 0.
We can use equation (2.2.12) to check the stability of the positive solution.

0 > −
( 1
v̄i

+ 2Kv̄i
)

2ωv̄ie−ωv̄2
i + 2ωe−ωv̄2

i − 4ω2v̄2
i e−ωv̄2

i

0 > −4ωv̄2
i (K + ω)e−ωv̄2

i

Like in the last paragraph we can see that 0 is stable as long as no positive
stationary solution exists (KB(v, b) > ω) and unstable afterwards. The positive
stationary solution v̄i is stable if it exists (i.e. v̄i ∈ R).

B(vi) = vh
i

vh
i +ah We have already discussed two special cases of this general term:

for h = 1, B(vi) is a concave function for which all the results from the general
discussion hold. The case h = 2 was also analysed before. Thus, we want to focus
on h ≥ 3 from here on. We start out by recalling the derivatives of this general
Hill function.

B′(vi) = hahvh−1
i

(vhi + ah)2 , B′′(vi) =
hahvh−2

i

(
−(h+ 1)vhi + (h− 1)ah

)
(vhi + ah)3 .

So now we want to take a look at the long-time behaviour of vi for h ≥ 3. We
can reuse some of our prior observations and state that since B′(0) = 0, vi = 0 is a
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2K(B(v, b) +B(vi)) B′(vi)/vi

B0

v∗
i

(a) R(v∗
i ) > 2K

(
B(v, b) + B(v∗

i )
)

vi

B0

v∗
i

(b) R(v∗
i ) < 2K

(
B(v, b) + B(v∗

i )
)

vi

Figure 2.3: Graphical representation of the argument for the existence or non-
existence of positive equilibria points vi if B0 > 0.

candidate ESS. If we are looking for positive solutions, the important thing to note
is that the right-hand side of equation (2.2.10) is not monotonically decreasing for
h ≥ 3.

R(vi) := B′(vi)
vi

= hahvh−2
i

(vhi + ah)2 (2.2.16)

Instead, R(vi) has the following properties:

1. R(0) = 0.

2. lim
vi→∞

R(vi) = 0.

3. R(vi) ≥ 0 ∀vi ≥ 0, with R(vi) > 0 if vi > 0.

4. R(vi) has exactly one maximum.

5. R(n)(vi) = v
h−(n+2)
i f(vi)
(vh

i +ah)n+2 for n ≤ h−2, with a function f(vi) for which f(0) > 0.

A sample plot of the resulting shape of R(vi) is given in figure 2.3. While the
first items are easy to see from equation (2.2.16), we will prove that R(vi) has
exactly one maximum as well as calculate its maximal value. To that end, we take
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the derivative of R

R′(vi) =
ahhvh−3

i

(
−(h+ 2)vhi + (h− 2)ah

)
(
vhi + ah

)3 (2.2.17)

and search for critical points

0 = ahhvh−3
i

(
−(h+ 2)vhi + (h− 2)ah

)
. (2.2.18)

For h > 3 there exists a critical point at vi = 0. But, since R(0) = 0 and
R(vi) > 0 for vi > 0, this critical point is clearly a minimum on the bounded space
vi ∈ R+

0 . The other critical point satisfies

v∗
i = h

√
h− 2
h+ 2 · a

and is thus unique in R+
0 . It remains to show that v∗

i is indeed a maximum. But
knowing that R(0) = 0 and limvi→∞ R(vi) = 0, we can conclude that it can only
be a maximum.

We assume for a moment that B(v, b) > 0. If we can now show that R(v∗
i ) >

2K(B(v, b) +B(v∗
i )), two positive stationary solutions vi to equation (2.2.6) exist.

We have

R(v∗
i ) =

h ·
(
h−2
h+2

)h−2
h

a2 ·
(

2h
h+2

)2 , B(v∗
i ) = h− 2

2h .

In that way, 2K(B(v, b) +B(v∗
i )) < R(v∗

i ) is equivalent to the condition

(B(v, b)4h+ 2(h− 2)) 2Ka2 < (h− 2)h−2
h (h+ 2) 2

h

⇒ Ka2 <
(h− 2)h−2

h (h+ 2) 2
h

4(B(v, b)2h+ h− 2) , (2.2.19)

which unfortunately cannot be simplified much further, without assumptions on the
parameters K and a. We remind ourselves that K is the cost of cooperation, while
a denotes the amount of signalling necessary to gain half of the maximal (private)
benefits. Equation (2.2.19) thus gives upper limits to these terms, dependent on
the steepness of the activation curve h as well as the public benefit B(v, b). A
larger public benefit is actually detrimental to the existence of positive stationary
strategies vi.
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At the same time, there cannot be more than two intersections in [0,+∞) by
Rolle’s theorem (Theorem A.8), since

(2KB(v, b) +B(vi))′ −R′(vi) = 2KB′(vi) −R′(vi)

= ahhvh−3
i

(vhi + ah)3

(
2Kv2

i (vhi + ah) + (h+ 2)vhi − (h− 2)ah
)

= ahhvh−3
i

(vhi + ah)3

(
2Kvh+2

i + (h+ 2)vhi + 2Kahv2
i − (h− 2)ah

)
, (2.2.20)

where the term in parenthesis is strictly monotonically increasing and the equation
therefore only has one ξ ∈ (0,+∞) for which (2KB(v, b) +B(ξ))′ −R′(ξ) = 0.

It remains to check the stability of these equilibrium solutions. We know from
equation (2.2.9) that vi = 0 is stable if B′′(0) < 2KB(v, b). We also know that for
h ≥ 3 it holds that B′′(0) = 0. Hence vi = 0 is an ESS regardless of parameter
values.

A positive stationary solution v̄i is stable, if equation (2.2.12) holds, that is

0 > −
( 1
v̄i

+ 2Kv̄i
)
B′(v̄i) +B′′(v̄i)

⇒ 0 > −
( 1
v̄i

+ 2Kv̄i
)

hahv̄h−1
i

(v̄hi + ah)2 +
hahv̄h−2

i

(
−(h+ 1)v̄hi + (h− 1)ah

)
(v̄hi + ah)3

⇒ 0 > −
( 1
v̄i

+ 2Kv̄i
)
v̄i(v̄hi + ah) − (h+ 1)v̄hi + (h− 1)ah.

We can rearrange this inequality to( 1
v̄i

+ 2Kv̄i
)
v̄i(v̄hi + ah) + (h+ 1)v̄hi > (h− 1)ah. (2.2.21)

The larger of both positive stationary solutions fulfils v̄i > v∗
i = h

√
h−2
h+2 · a, if it

exists. It follows that( 1
v̄i

+ 2Kv̄i
)
v̄i(v̄hi + ah) + (h+ 1)v̄hi

>
(
1 + 2Kv̄2

i

)(h− 2
h+ 2 · ah + ah

)
+ (h+ 1) · h− 2

h+ 2 · ah

>
2h
h+ 2 · ah + (h+ 1)(h− 2)

h+ 2 · ah

= 2h+ h2 − h− 2
h+ 2 · ah

= (h− 1) · ah.



42 CHAPTER 2. G-FUNCTION

Hence the larger of both positive solutions is always stable, if it exists. It follows
immediately from the stability of the zero solution that the smaller of both positive
solutions must be unstable.

If B(v, b) = 0, which occurs if for example the existing subpopulations do not
engage in QS, the situation is different. As both R(0) = 0 and 2KB(v, b)+B(0) = 0,
there can only be one positive intersection. By using property 5, we show that
R(vi) is increasing faster than 2KB(v, b) +B(vi) for vi small. First of all, we prove
property 5 by induction.

Proof. base case We know from equation (2.2.17), that

R′(vi) =
ahhvh−3

i

(
−(h+ 2)vhi + (h− 2)ah

)
(
vhi + ah

)3

= v
h−(1+2)
i f(vi)(
vhi + ah

)1+2 ,

where f(vi) = ahh
(
−(h+ 2)vhi + (h− 2)ah

)
and thus f(0) = ha2h(h−2) > 0.

inductive step Assuming that the statement holds for R(n)(vi) and that n+ 1 ≤
h− 2, we have

R(n+1)(vi) =
(

(vhi + ah)n+2(h− (2 + n))vh−(n+3)
i f(vi)

+ (vhi + ah)n+2f ′(vi)vh−(n+2)
i

− (n+ 2)h(vhi + ah)n+1f(vi)v2h−(n+3)
i

)
/
(
vhi + ah

)2n+4

= v
h−(n+1+2)
i g(vi)

(vhi + ah)n+1+2 ,

where

g(vi) = (vhi + ah)
(

(h− (2 + n))f(vi) + f ′(vi)vi
)

− (n+ 2)hf(vi)vhi .

and thus g(0) = ah(h− (2 + n))f(0) > 0 since n < h− 2 and f(0) > 0.

It follows that R(n)(0) = 0 for n < h− 2 and R(h−2)(0) > 0. At the same time,
a similar argument shows that

(
2K(B(v, b) +B(vi))

)(n)
= 2KB(n)(vi) = vh−n

i 2Kf(vi)
(vhi + ah)1+n .
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Table 2.1: Existence and stability of stationary solutions for vi for private benefit
with term B(vi) = vh

i /vh
i + ah.

Ka2 > (h−2)
h−2

h (h+2)
2
h

4(B(v,b)2h+h−2) Ka2 < (h−2)
h−2

h (h+2)
2
h

4(B(v,b)2h+h−2)

B(v, b) 6= 0 ∃v̄i = 0
stable

@v̄i > 0 ∃v̄i = 0
stable

∃v̄i > 0
stable

B(v, b) = 0 ∃v̄i = 0
unstable

∃v̄i > 0
stable

As such,
(
2K(B(v, b) + B(vi))

)(n)
= 0 for n < h. Taken together, these findings

show that for vi small, R(vi) > 2K(B(v, b) +B(vi)) and thus a positive intersection
exists. As we know that for B(v, b) = 0 there is an intersection at vi = 0 and from
equation (2.2.20) that there can only be two intersections in [0,+∞), there can be
no other positive intersection.

In order to investigate the stability, we first note that both B′′(0) = 0 and
B(v, b) = 0, which means we cannot gain insight into the stability of the zero
solution through equation (2.2.12). But we know that for ε > 0 small enough
R(ε) > 2KB(ε) and that there exists only one positive ξ for which 2KB′(ξ) = R′(ξ).
Additionally, we know that ξ lies in the open interval between zero and the positive
intersection v̄i and as such is unequal to v̄i. We can thus follow that

R′(v̄i) < 2KB′(v̄i)

R′(v̄i) =
(
B′(v̄i)
v̄i

)′

= B′′(v̄i)
v̄i

− B′(v̄i)
v̄2
i

⇒ B′′(v̄i)
v̄i

− B′(v̄i)
v̄2
i

< 2KB′(v̄i)

−2KB′(v̄i)v̄i − B′(v̄i)
v̄i

+B′′(v̄i) < 0,

which is exactly the condition for stability from equation (2.2.12). For B(v, b) = 0
we have thus an unstable zero solution and a stable positive strategy. The behaviour
is summarised in table 2.1

In biological terms, our results indicate that the surrounding subpopulations
have a profound impact on the evolution of cooperativity. If one of the subpopula-
tions is cooperating (B(v, b) 6= 0), the others will experience bistable behaviour —
they might cooperate themselves or not participate in QS, depending on starting
strategy. If, on the other hand, all of the subpopulations do not cooperate at first
(B(v, b) = 0), then the evolutionary pressure will drive them towards the positive
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ESS, meaning they pick up QS with time.

Reduction in death rate: G(vi, v, b) = B(v, b) · C(vi) − µ(vi)‖b‖1

There have been some proposals that QS is involved in antimicrobial resistance
against antibiotics, limiting the damage to the bacteria by regulating the production
of certain factors [Lih+13]. We propose a model where this means that the strategy
directly influences the death rate of the producing bacteria, while QS also still
provides the public growth benefit.

For this to work, µ(vi) should be a positive, monotonically decreasing function
in vi, with a limit larger than 0. Sadly, not much insight can be gained from this
general form, so we choose one possible function for µ(vi) in order to analyse the
behaviour of this type of G-function.

µ(vi) = (µmax − µmin)e−dv2
i + µmin If we take this µ(vi), which fulfils the

above assumptions, and use our standard cost-function C(vi) = e−Kv2
i , we get the

following condition for an ESS:

∂1G(vi, v, b) = B(v, b)C ′(vi) − µ′(vi)‖b‖1

0 = B(v, b)(−2Kv̄i)e−Kv̄2
i − (µmax − µmin)(−2dv̄i)e−dv̄2

i ‖b‖1

Again, one solution is vi = 0. We divide by vi and carry on, denoting µmax −µmin
as ∆µ.

e−Kv̄2
i +dv̄2

i = ∆µd‖b‖1
B(v, b)K (2.2.22)

v2
i = ln

(
∆µd‖b‖1
B(v, b)K

)
· 1
d−K

. (2.2.23)

There exists one positive, real solution for vi if and only if ∆µd‖b‖1 > B(v, b)K
and d > K or ∆µd‖b‖1 < B(v, b)K and d < K. We take a look at the stability:

∂2
1G(vi, v, b) = B(v, b)C ′′(vi) − µ′′(vi)‖b‖1

= B(v, b)(−2K + 4K2v2
i )e−Kv2

i − ∆µ(−2d+ 4d2v2
i )e−dv2

i ‖b‖1

∂2
1G(0, v, b) = B(v, b)(−2K) − ∆µ(−2d)‖b‖1

= (−2) (KB(v, b) − ∆µd‖b‖1) .
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Table 2.2: Existence and stability of stationary solutions for vi for strategy-
dependent mortality rates.

B(v,b)
‖b‖1

< ∆µd
K

B(v,b)
‖b‖1

> ∆µd
K

K < d ∃v̄i = 0
unstable

∃v̄i > 0
stable

∃v̄i = 0
stable

@v̄i > 0

K > d ∃v̄i = 0
unstable

@v̄i > 0 ∃v̄i = 0
stable

∃v̄i > 0
unstable

As was the case in the last section, the stability of the zero solution is closely linked
to the existence of a positive real solution (see table 2.2). For the positive solution
v̄i, we use equation (2.2.22) and substitute for B(v, b).

∂2
1G(v̄i, v, b) = ∆µd‖b‖1

K
eKv̄2

i −dv̄2
i (−2K + 4K2v̄2

i )e−Kv̄2
i

− ∆µ(−2d+ 4d2v2
i )e−dv2

i ‖b‖1

= ∆µd‖b‖1

(
−2 + 4Kv̄2

i + 2 − 4dv̄2
i

)
e−dv̄2

i

= ∆µd‖b‖1 (K − d) 4v̄2
i e−dv̄2

i .

So if d > K, v̄i is stable, otherwise it is unstable. But such an instability is in
contrast to one of our general assumptions about ∂1G, namely that there exists a
u such that ∂1G(vi, v, b) < 0 ∀vi > u. In particular, we have that

∂1G(vi, v, b) = 2d∆µ‖b‖1vie
−dv2

i − 2KB(v, b)vie−Kv2
i ,

so for KB(v, b) < ∆µd‖b‖1 and d < K

∂1G(vi, v, b) > 2KB(v, b)vi
(
e−dv2

i − e−Kv2
i

)
> 0 ∀vi > 0.

If, on the other hand, KB(v, b) ≥ ∆µd‖b‖1 and d < K it holds that

v2
i > ln

(
∆µd‖b‖1
B(v, b)K

)
· 1
d−K

∀vi > v̄i

⇒ d∆µ‖b‖1
KB(v, b) · e−dv2

i > e−Kv2
i ,

from which we gather that for all vi > v̄i

∂1G(vi, v, b) = 2KB(v, b)vi
(
d∆µ‖b‖1
KB(v, b) · e−dv2

i − e−Kv2
i

)
> 0.
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Altogether, ∂1G does not exhibit a saturation behaviour in the case of K > d.
But as mentioned before, such a saturation behaviour makes sense from a biological
point of view, since there is no biological strategy without its drawbacks and no
such feature can grow to infinity. But for practical purposes, one might still consider
the case K > d, KB(v, b) > ∆µd‖b‖1 as long as the starting value vi(x, 0) < v̄i.

The existence and stability of stationary solutions for vi is summarised in
table 2.2, while figure 2.4 recaps the asymptotic behaviour for the different G-
functions considered until now.

2.2.2 G-Function with abiotic components
The different versions for the G-function discussed in the previous section nicely
display the range of possibilities one has when using this ansatz, but feature quite a
lot of abstraction when modelling the benefit in the different cases. As the benefit
for QS is provided by secreted proteins, we could also turn to a model that takes
the amount of produced proteins directly into account.

In order to achieve this, we will expand upon our model to include some abiotic
component y:

ḃi = G(vi, v,
(
y
b

)
).

This basic form was proposed by Cohen, Pastor, and Vincent [CPV00]. In our
case, after adding in spatial dependence and diffusion in the biotic and abiotic
compartment, such a model will thus read

ẏi = Fi(v,
(
y
b

)
) +Dyi

4yi

ḃi = G(vi, v,
(
y
b

)
) · bi +Db 4bi

v̇i = ε∂1G(vi, v,
(
y
b

)
).

We note that the abiotic compartment influences the biotic compartment and
is in turn influenced by it. The main dividing point between biotic and abiotic
compartment is the existence of strategies only in the biotic case — while y is
influenced by v, it does not have its own strategy, nor does it evolve.

In the context of QS in Pseudomonas aeruginosa (P. aeruginosa), the abiotic
compartment should include protein and signal production. As a large amount
of different proteins are secreted under control of QS, here we will only focus on
enzymes that make nutrients available to the bacteria, e.g. siderophores, in order
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Figure 2.4: Existence and stability of ESS for different G-functions explored in this
section.
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to avoid making the model too complicated. Denoting the QS-signal concentration
by s and the enzyme concentration by e, we get a basic model of

ṡ = Fs(v, (s, e, b)T ) +Ds 4s

ė = Fe(v, (s, e, b)T ) +De 4e

ḃi = G(vi, v, (s, e, b)T ) · bi +Db 4bi

v̇i = ε∂1G(vi, v, (s, e, b)T ),

where Fs, Fe are classically defined with Hill terms as activation coefficients, such
as

Fs(v, (s, e, b)T ) = αs ·
∑
j

bjv
s
j + βs · s2

s2 + τ 2 ·
∑
j

bjv
s
j − γss (2.2.24)

Fe(v, (s, e, b)T ) = βe · s2

s2 + τ 2 ·
∑
j

bjv
e
j − γee, (2.2.25)

where α is a baseline production and β production in induced state, while γ is a
degradation rate. τ denotes the concentration of signal molecules that leads to
half-maximal production. All variables can also be found on page 9.

We rewrite the system to include only variables that really have an influence
in the functions. For the G-function itself we assume a dependence only on vi
(influencing the growth rate through production costs), the amount of bacteria
(competing for nutrients) and on e, as the enzymes themselves provide the benefit
to the bacteria in this scenario. The condensed system can then be written as

ṡ = Fs(v, s, b) +Ds 4s (2.2.26a)
ė = Fe(v, s, e, b) +De 4e (2.2.26b)
ḃi = G(vi, e, b) · bi +Db 4bi (2.2.26c)
v̇i = ε∂1G(vi, e, b). (2.2.26d)

As vi is used to model the costs for participating in QS, while the benefits are
imparted through e, we get the condition that G(vi, e, b) is monotonically decreasing
in vi. It follows that the long-time behaviour of these equations does not differ from
the model without explicit abiotic components described in section 2.2.1. However,
it gives a more realistic impression of the transient behaviour of this biological
system.

2.2.3 G-Function with internal compartments
We have seen that a basic model with abiotic compartments behaves like the basic
model without abiotic compartments. At the same time, we have seen in section 2.2.1
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Free enzyme e

Bacterium

θ+
θ−

Figure 2.5: Schematic representation of attachment and release of enzymes from
cell membrane.

how a model behaves if we consider some private benefit for QS, a scenario which,
as discussed in section 1.1.1, is also biologically relevant. Hence, we want to
combine the idea of private goods with a model including explicit terms for signal
and enzyme concentrations. To that end, we build on equation (2.2.26), adding
biologically motivated internal compartments for signal and enzyme. As these are
on a very small spatial scale, we can assume them to be spatially homogeneous
and that they can therefore be described through ordinary differential equations.

Internal compartment for enzyme

We start out considering the biological situation: if a bacterium produces enzyme
in response to QS signal, the enzyme will actually cling to the outside of this
bacterium before diffusing into inter-cellular space (see also figure 2.5). Given the
right circumstances, this clinging phase might last longer and lead to the positive
effects of the enzyme benefiting only the producing bacteria. We also consider a
small reattachment rate in this model. All in all, if we denote the concentration of
clinging enzyme that is experienced by subpopulation bi by ei, we can write the
dynamics as

ėi = βev
e
i

s2

s2 + τ 2 − θ−ei + θ+e− γeei, (2.2.27)
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where θ+ and θ− are the re-attachment and disassociation rates, βe is a production
rate and γe the degradation rate of the enzyme as before. The freely diffusing
enzyme concentration will then be

ė = λ
∑
i

(
bi
(
θ−ei − θ+e

))
+De 4e− γee. (2.2.28)

In this term, λ is a measure for the relation between internal and intercellular
volume, and in this way responsible for converting internal to external concentration.

In order to see the benefit of the enzyme more clearly, we set up equations
for the nutrients provided. We can split these into three groups: n̄ will denote
the undigested nutrients in the environment, which will replenish with a rate n0.
The produced enzymes will convert those with a rate c1 into usable nutrients, n
and ni, where the former are available to all and the later just to the bacteria
having clinging enzymes ei. The bacteria then digest these nutrients with a rate c2.
Additionally, nutrients are degraded in an abiotic way as well. The equations then
read

˙̄n = −c1

e+
∑
j

(bjej)
 n̄+ n0 − γnn̄ (2.2.29a)

ṅ = c1en̄− c2n‖b‖1 − γnn (2.2.29b)
ṅi = c1ein̄− c2ni − γnni. (2.2.29c)

We can assume that the digestion of nutrients happens on a faster time-scale
than the population dynamics, so equation (2.2.29) can be assumed to be in steady
state. Taking the left-hand-side to zero, we can solve for n and ni:

n = c1e

c2‖b‖1 + γn
· n0

c1

(
e+∑

j
(bjej)

)
+ γn

, (2.2.30a)

ni = c1ei
c2 + γn

· n0

c1

(
e+∑

j
(bjej)

)
+ γn

. (2.2.30b)

We make the same steady-state assumption for equation (2.2.27) and obtain:

ei = βe
θ− + γe︸ ︷︷ ︸

β̄

·vei · s2

s2 + τ 2 + θ+

θ− + γe︸ ︷︷ ︸
θ̄

·e =: E(vei , s, e), (2.2.31)
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⇒ n(vei , s, e, b) =
(

c1e

c2‖b‖1 + γn
+ c1E(vei , s, e)

c2 + γn

)

· n0

c1

(
e+∑

j
(bjE(vej , s, e))

)
+ γn

.
(2.2.32)

At this point we have defined all necessary terms and as such can state the
complete model (as a reminder all variable meanings are listed on page 9).

ṡ = Fs(v, s, b) +Ds 4s (2.2.33a)
ė = λ

∑
i

(
bi
(
θ−ei − θ+e

))
+De 4e− γee (2.2.33b)

ḃi = ((rmin + rnn(vei , s, e, b))C(vi) − µ‖b‖1)︸ ︷︷ ︸
G(vi,s,e,b)

·bi +Db 4bi (2.2.33c)

v̇i = ε∂1G(vi, s, e, b). (2.2.33d)

As this model is quite close to the one described in equation (2.2.26), we
take a closer look at ∂1G(vi, s, e, b) in order to compare these two. In doing
so, we will concentrate on vei (the QS response strength), as this is where the
two models differ from each other. We will also use our usual cost function,
C(vi) = exp(−Ks(vsi )2 −Ke(vei )2). It holds that

v̇ei = ∂

∂u2
G ((u1, u2), s, e, b)) |u=vi

= e−Ks(vs
i )2−Ke(ve

i )2
(

− 2Kev
e
i rmin − 2Kev

e
i rnn(vei , s, e, b) + rn∂1n(vei , s, e, b)

)

= e−Ks(vs
i )2−Ke(ve

i )2

− 2Kev
e
i rmin

− 2Kev
e
i rn

(
c1E(vei , s, e)
c2 + γn

+ c1e

c2‖b‖1 + γn

)
· n0

c1

(
e+∑

j
(bjE(vej , s, e))

)
+ γn

+ rn
c1∂1E(vei , s, e)

c2 + γn
· n0

c1

(
e+∑

j
(bjE(vej , s, e))

)
+ γn


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= e−Ks(vs
i )2−Ke(ve

i )2

− 2Kev
e
i rmin

− 2Kev
e
i rn

c1e

c2‖b‖1 + γn
· n0

c1

(
e+∑

j
(bjE(vej , s, e))

)
+ γn

+ rnc1

c2 + γn
· n0(−2Kev

e
iE(vei , s, e) + ∂1E(vei , s, e))

c1

(
e+∑

j
(bjE(vej , s, e))

)
+ γn

.

In order to look for ESSs, we will take rmin = 0, as this allows us to get rid of
some constant terms that we know to be non-zero

0 = −2Kev
e
i

c1e

c2‖b‖1 + γn
+ c1

c2 + γn
· (−2Kev

e
iE(vei , s, e) + ∂1E(vei , s, e)) .

Using equation (2.2.31) and its derivative

0 = −2Kev
e
i

c1e

c2‖b‖1 + γn
+ c1

c2 + γn
· (−2Kev

e
i (β̄vei · s2

s2 + τ 2 + θ̄e) + β̄
s2

s2 + τ 2 )

0 = −2Ke
(c2 + γn)e
c2‖b‖1 + γn

· vei − 2Keθ̄ev
e
i − 2Kβ̄ · s2

s2 + τ 2 (vei )2 + β̄
s2

s2 + τ 2 .

The resulting equation is a quadratic equation in vei and as such we can determine
the existence of positive solutions by looking at the discriminant:

D =
(

−2Ke
(c2 + γn)e
c2‖b‖1 + γn

− 2Keθ̄e

)2

− 4
(

−2Kβ̄ · s2

s2 + τ 2

)(
β̄

s2

s2 + τ 2

)

= 4K2
e e

2
(

(c2 + γn)e
c2‖b‖1 + γn

+ θ̄

)2

+ 8Keβ̄
2
(

s2

s2 + τ 2

)2

.

We can conclude that there will always be two ESSs as long as s 6= 0, and
exactly one in the biologically meaningful positive parameter range, as

√
D is larger

than the linear coefficient of the equation.

Internal compartment for signal

In order to find equations for an internal signal compartment, we consider the
fact that production as well as binding of QS signal molecules happens within the
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Figure 2.6: Schematic representation of signal diffusion through cell membrane.

cell itself, while transmission and therefore group interaction is achieved trough
secreted signal molecules. For small signalling molecules as used by P. aeruginosa,
this transport through the cell membrane is passive. As such, we use one rate
θ that determines the exchange between inside and outside of the bacterial cell.
Including a baseline production αs, an induced production rate of βs as well as an
abiotic degradation rate γs, we find the equation

ṡi = αsv
s
i + βsv

s
i · s2

i

s2
i + τ 2 + θ(s− si) − γssi, (2.2.34)

which is a variation of the one introduced in Dockery and Keener [DK01]. The
equation for external signal concentration s is then given by

ṡ = λθ ·
∑
j

(bj(sj − s)) +Ds 4s− γss. (2.2.35)

As before, λ signifies the ratio of inter- to intracellular volume. We proceed by
assuming that the internal signal concentration is in a quasi steady state. This
leads to

0 = αsv
s
i + βsv

s
i · s2

i

s2
i + τ 2 + θ(s− si) − γssi

0 = −s3
i (1 + γsθ

−1) +
(

(αs + βs)ω + s
)
s2
i − τ 2(1 + γsθ

−1)si +
(
αsω + s

)
τ 2,

(2.2.36)
a cubic equation in si, where ω := vs

i/θ. While there is a solution formula for
cubic equations, it is too complex to be of help in evaluating the influence of the
parameters. As such, we will leave these equations for now but return back to
them again in chapter 6.
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Chapter 3

Modelling with ordinary
differential equations

Modelling biological processes with ordinary differential equations (ODEs) has a
long history, ranging back to the population model of Benjamin Gompertz from
1825 and further. There are many cases for which they are the appropriate choice
in the biological context and their application covers the full gamut of possibilities.
In the context of QS, they have for example been used successfully to model the
QS systems in P. aeruginosa by Dockery and Keener [DK01] as well as reaction to
QS-dampening drugs [Ang+04].

An ODE is normally used in a biological context where the particles under
scrutiny can be considered well-mixed. But there are a number of ways to simulate
spatial structures even with ODEs, without resorting to explicit spatial coordinates
and therefore partial differential equations (PDEs). In this chapter, we will explicitly
take a closer look at models with an external influx term (section 3.2) and ones
including a mixing term (section 3.3).

3.1 ODE without additions
We first consider an ODE model without any special additions. The general case
we will be looking at is equation (2.0.5). For ease of reference, we repeat it here:

ḃi(t) = G(vi(t), v(t), b(t)) · bi(t) (2.0.5a revisited)
v̇i(t) = ε∂1G(vi(t), v(t), b(t)) (2.0.5b revisited)

The discussion in section 2.2 has shown how different versions of G affect the
long-term behaviour of vi. We can now concern ourselves with the long-term
behaviour of bi. bi is in equilibrium if either

bi = 0 or G(vi(t), v(t), b(t)) = 0.

55
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As we always assumed any kind of benefit function to be equal to zero for zero
strategies, we can immediately conclude that for G-functions having only 0 as ESS,
b = 0 will be the only stationary solution.

If there are multiple ESS candidates, we distinguish between subpopulations
that are present with a strictly positive amount of associated bacteria (bi > 0) and
subpopulations that have a stable strategy, but have died out (bi = 0). Without
loss of generality we can assume the population vector b to be sorted in the way
that the first r subpopulations are the ones with positive population count while
for the other subpopulations bi = 0 ∀i > r. The Jacobian for system (2.0.5a) then
has the form

(∂b1B(v, b)C(v1) − µ)b1 · · · (∂bnB(v, b)C(v1) − µ)b1
... . . . ...

(∂b1B(v, b)C(vr) − µ)br · · · (∂bnB(v, b)C(vr) − µ)br
0 diag (B(v, b)C(vi) − µ‖b‖1)

 ,

where we assume that 0 ∈ R(m−r)×r and

diag (B(v, b)C(vi) − µ‖b‖1) =


B(v, b)C(v1) − µ‖b‖1

. . .
B(v, b)C(vr) − µ‖b‖1

 .
If we then consider the elements in rows r + 1 to m and the respective minors,

we can immediately see that a stable equilibrium needs to fulfil

B(v, b)C(vi) − µ‖b‖1 < 0 ∀i > r. (3.1.1)

Condition (3.1.1) ensures that extinct subpopulations have a negative potential
growth rate and thus remain extinct even under perturbations. It remains to
determine the eigenvalues of

(∂b1B(v, b)C(v1) − µ)b1 · · · (∂brB(v, b)C(v1) − µ)b1
... . . . ...

(∂b1B(v, b)C(vr) − µ)br · · · (∂brB(v, b)C(vr) − µ)br


in order to determine conditions for the stability of surviving subpopulations.
We will take a look at the conditions for a coalition of two, with two surviving
subpopulations b1, b2 > 0.

J =
(

(∂b1B(v, b)C(v1) − µ)b1 (∂b2B(v, b)C(v1) − µ)b1
(∂b1B(v, b)C(v2) − µ)b2 (∂b2B(v, b)C(v2) − µ)b2

)
tr(J) = (∂b1B(v, b)C(v1) − µ)b1 + (∂b2B(v, b)C(v2) − µ)b2

|J | = b1b2µ (∂b1B(v, b) − ∂b2B(v, b)) (C(v2) − C(v1))
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Figure 3.1: Schematic representation of external influences to a population, as
happens for example when the bacteria switch between a planktonic lifestyle and
growth in microcolonies.

For a 2×2 matrix the eigenvalues have negative real part if and only if tr(J) < 0
and |J | > 0. We can assume without loss of generality that v1 > v2 (which implies
C(v1) < C(v2)) and recover the conditions

tr(J) < 0 ⇔ ∂b1B(v, b)C(v1)b1 + ∂b2B(v, b)C(v2)b2 < µ (b1 + b2) , (3.1.2a)
|J | > 0 ⇔ ∂b1B(v, b) − ∂b2B(v, b) > 0. (3.1.2b)

We can interpret condition (3.1.2a) as limiting the overall populations growth:
the accumulated changes in growth rate are less than the additional death rate
through overpopulation. In contrast condition (3.1.2b) states that the subpopula-
tion with higher investment (C(v1) < C(v2)) also has the higher return (∂b1B(v, b) >
∂b2B(v, b)).

In the special case of B as in equation (2.1.6), we can show that this later
condition makes sense biologically, as we have

∂bj
B(v, b) = Bmaxτ

(∑
bivi

)
· 2vj

∑
bi −∑

bivi

((∑ bivi)2 + τ
∑
bi)2

∂b1B(v, b) − ∂b2B(v, b) = Bmaxτ (∑ bivi)
((∑ bivi)2 + τ

∑
bi)2 · 2(

∑
bi)(v1 − v2).

Since we assumed v1 > v2, condition (3.1.2b) is always fulfilled.

3.2 External influx
We take a look at models with external influx terms, such as the one considered in
Mund et al. [Mun+16]. These models assume that a part of the bacteria live in a
well-mixed planktonic state, while others separate themselves in order to live in
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microcolonies. A fraction of the bacteria from these microcolonies re-migrate into
the plankton. A schematic representation of these migrations is given in figure 3.1.
If we focus on the planktonic bacteria, we can describe the population with an
ODE model that contains an external influx term I signifying the re-migrating
bacteria.

ḃi = (B(v, b)C(vi) − µ‖b‖1) bi + I(vi) · bi
‖b‖1

⇒ G(vi, v, b) = B(v, b)C(vi) − µ‖b‖1 + I(vi)
‖b‖1

The influx term is dependent on the strategy vi, as we assume that microcolonies
are founded by exactly one bacterium. The development of such a microcolony,
and thus the influx term, is then only dependent on its age a and the type (i.e.
strategy) of its founding bacterium. As the total influx can be calculated by

I(vi) =
∫ ∞

0
I(vi, a) da,

we recover an influx function only dependent on the strategy of its founding
bacterium. The influx is then scaled by bi

‖b‖1
, which is the fraction of bacteria in

the plankton with strategy vi. This fraction determines how many bacteria with
strategy vi will separate themselves in order to found microcolonies.

For our purpose, it is enough to know that the influx term is a positive,
monotonously increasing function only dependent on vi. The monotony is given by
the fact that a colonies lifespan is normally quite short compared to the mutation
timespan. A colony can therefore be considered to contain only bacteria with the
founding strategy value. As such, colonies founded by a bacterium with a larger
strategy value will grow faster and to higher numbers than colonies with lower
strategy values, leading to higher influx terms. Further details on this influx term
can be found in Mund et al. [Mun+16]. We take a look at ∂1G for this case:

∂1G(vi, v, b) =

∂vs
i
C(vi) ·B(v, b) +

∂vs
i
I(vi)

‖b‖1

∂ve
i
C(vi) ·B(v, b) +

∂ve
i
I(vi)

‖b‖1

 .
In order to determine the existence of ESSs, we need to look for roots of

∂1G. To this end we will again use the cost function proposed in equation (2.1.3),
C(vi) = exp (−Ke(vei )2 −Ks(vsi )2). We find that

2Ksv
s
i exp

(
−Ke(vei )2 −Ks(vsi )2

)
·B(v, b) =

∂vs
i
I(vi)

‖b‖1
, (3.2.1)
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with an equivalent equation for vei . We know that I(vi) is monotonously increasing
in both vsi and vei . As such, the left hand side as well as the right hand side
of equation (3.2.1) are positive. Whether a stationary point exists is therefore
dependent on the exact shape of I(vi). We determine the Hessian matrix ∂2

1G:

∂2
1G(vi, v, b) =

(
H1,1 H1,2
H1,2 H2,2

)
with

H1,1 = 2Ks exp
(
−Ke(vei )2 −Ks(vsi )2

)
·B(v, b)

(
2Ks(vsi )2 − 1

)
+
∂2
vs

i
I(vi)

‖b‖1
,

H1,2 = 4KsKev
s
i v
e
i exp

(
−Ke(vei )2 −Ks(vsi )2

)
·B(v, b) +

∂vs
i
∂ve

i
I(vi)

‖b‖1
,

H2,2 = 2Ke exp
(
−Ke(vei )2 −Ks(vsi )2

)
·B(v, b)

(
2Ke(vei )2 − 1

)
+
∂2
ve

i
I(vi)

‖b‖1
.

We aim to apply the trace-determinant criterion to determine stability of
possible stationary points.

|∂2
1G| = 4KsKeC(vi)2B(v, b)2

(
1 − 2Ke(vei )2 − 2Ks(vsi )2

)
+ 2C(vi)B(v, b)

‖b‖1
·
(
∂2
vs

i
I(vi)Ke(2Ke(vei )2 − 1) + ∂2

ve
i
I(vi)Ks(2Ks(vsi )2 − 1)

− 4KsKev
s
i v
e
i ∂vs

i
∂ve

i
I(vi)

)
+ 1

‖b‖2
1

(
∂2
vs

i
I(vi) · ∂2

ve
i
I(vi) − (∂vs

i
∂ve

i
I(vi))2

)
tr(∂2

1G) = 2C(vi)B(v, b)
(
Ks(2Ks(vsi )2 − 1) +Ke(2Ke(vsi )2 − 1)

)
+
∂2
vs

i
I(vi) + ∂2

ve
i
I(vi)

‖b‖1

Sadly, it is not possible to determine concrete conditions for tr(∂2
1G) < 0 and

|∂2
1G| > 0 without choosing a specific functional term for I(vi).

If one needs to choose a functional term for I(vi), a good starting point is the
equation modelling the growth in microcolonies. We have already reasoned that
we can safely ignore mutation in these microcolonies because of the short lifespan.
As such, based on equation (2.0.5a) we have for b(a, vi), the amount of bacteria in
a colony of age a and strategy vi

∂ab(a, vi) =
(
Bmax · v2

i

v2
i + τ

· C(vi)︸ ︷︷ ︸
=:f(vi)

−µb
)
b. (3.2.2)
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We can solve equation (3.2.2) through separation of variables, getting

b(a, vi) = f(vi) exp (f(vi)a)
(
µ exp (f(vi)a) + f(vi) − µb0

b0

)−1

. (3.2.3a)

Because f(0) = 0, b(a, 0) is undefined. But we can calculate the limit for vi → 0
and define the continuous extension by setting

b(a, 0) = lim
vi→0

b(a, vi) = 1
aµ+ 1

b0

, (3.2.3b)

which is a term declining in a, as we have set Bmin = 0 and thus made growth
without QS impossible.

In addition to the population b(a, vi) in a microcolony, we need to take their
lifespan into account. If we assume that the extinction events underlie a Poisson
process, then the probability of a microcolony surviving until age a is exp(−λa),
where λ = 1/Average colony lifespan. We also include a parameter p, which incorporates
both the amount of microcolonies as well as the percentage of bacteria that
migrate from them, and a parameter ξ that denotes the resettling rate for empty
microcolonies. All in all, the influx term is given as

I(t, vi) = ‖b‖1
1 + ξλ−1‖b‖1

∫ t

0
ξp exp(−λa)b(a, vi) dvi. (3.2.4)

The upper limit of integration is t, as we assume that there are no colonies
at t = 0 and thus no colonies with age a > t. The pre-factor here is inspired
by calculations from Mund et al. [Mun+16]. In order to find the derivative with
respect to vi, we need to derive b(a, vi):

∂vi
b(a, vi) = f ′(vi) exp (f(vi)a)

(
µ exp (f(vi)a) + f(vi) − µb0

b0

)−1

·

−f(vi)
(
µa exp(f(vi)a) + 1

b0

)(
µ exp (f(vi)a) + f(vi) − µb0

b0

)−1

+1+af(vi)
.

(3.2.5a)

Again, we find that ∂vi
b(a, 0) is undefined and define it by

∂vi
b(a, 0) = lim

vi→0
∂vi
b(a, vi) = 0. (3.2.5b)

The zero solution is hence a stationary point regardless of parameter values,
while there might be any number of additional stationary points. We will come
back to these functions in section 6.6.3, where the resulting population dynamics
are considered.
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m = 0 m = 0.5 m = 1

Figure 3.2: Schematic representation how the mixing parameter m influences
relations between producing (green) and non-producing (red) bacteria. Black dots
signify exoproducts.

3.3 Mixing
Another method to include spatial dependencies in ODEs is to introduce a mixing
parameter m. m determines the ratio of external influence on a bacterium versus
the self-sensing of bacteria in a fixed matrix, depicted in figure 3.2. A mixing
parameter of 1 would signify a completely well-mixed system whose behaviour
should resemble section 3.1. In contrast, a mixing parameter of 0 would signify a
completely “unmixed”, that is separated, system, where each bacterium perceives
only its own QS behaviour. In reality, a mixing factor of m ∈ (0, 1) is more likely
than either of the extremes.

We can write the mixed system as

G(vi, v, b) = (m ·B(v, b) + (1 −m)B(vi, 1))C(vi) − µ‖b‖1,

with our standard terms for B,

B(v, b) = Bmax · (∑i biv
s
i )2

(∑i biv
s
i )2 + τ‖b‖1

· (∑i biv
e
i )2

(∑i biv
e
i )2 + τ‖b‖1

,

B(vi, 1) = Bmax · (vsi )2

(vsi )2 + τ
· (vei )2

(vei )2 + τ
.

As before, we take derivatives with respect to vsi in order to find ESSs.

∂vs
i
G(vi, v, b) = (mB(v, b) + (1 −m)B(vi, 1)) (−2Ksv

s
i )C(vi)

+ (1 −m)Bmax · 2vsi ((vsi )2 + τ) − 2vsi (vsi )2

((vsi )2 + τ)2 · (vei )2

(vei )2 + τ
C(vi)

=
(

(1 −m)
(

2vsi τ − 2Ks(vsi )3((vsi )2 + τ)
((vsi )2 + τ)2

)
· (vei )2

(vei )2 + τ

− 2mKsv
s
i · B(v, b)

Bmax

)
·BmaxC(vi),
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with an equivalent term for vei . It is clear that vsi = 0 and vei = 0 are stationary
solutions. For the sake of readability, we continue our search for positive solutions
vsi without the term for vei and set vi = vsi . This leads to

0 = −2Km · B(v, b)
Bmax︸ ︷︷ ︸

=:B(v,b)

·
(
v2
i + τ

)2
+ (1 −m)

(
2τ − 2Kv2

i (v2
i + τ)

)

= −2Km · B(v, b) ·
(
v4
i + 2v2

i τ + τ 2
)

+ (1 −m)
(
2τ − 2Kv4

i − 2Kv2
i τ
)
.

Substituting v2
i =: w and rearranging results in

0 = w2 (−2K(mB(v, b) + 1 −m)) + w (−2Kτ (2mB(v, b) + 1 −m))
+ 2τ (−KmτB(v, b) + 1 −m)

The discriminant of this equation is

D = 4Kτ(1 −m) (4mB(v, b) + (1 −m)(Kτ + 4)) .

We can take a look at the corner cases, m = 0 and m = 1. For m = 0, the
“unmixed” state, solutions w1/2 are given by

w1/2 = 2Kτ ±
√

4K2τ 2 + 16Kτ
−4K = −Kτ ∓

√
K2τ 2 + 4Kτ
2K .

Hence there always exists exactly one positive solution for w, and thus exactly
one positive solution v∗

i , namely √
w2. It holds that

w2 <
−Kτ +

√
K2τ 2 + 4Kτ + 4

2K = −Kτ + (Kτ + 2)
2K = 1

K
,

from which we have 0 < v∗
i <

√
1/K. A similar calculation for m = 1 leads to

w1/2 = 2Kτ(2B(v, b)) ±
√

0
−2KB(v, b) = −τ,

which means that independently from the parameter values, there can never be
a positive stationary point if m = 1. As the mixing model with m = 1 reverts
back to the ODE model without additions, this fits in with our observations from
section 3.1.

For m ∈ (0, 1) whether or not positive stationary points exist depends on the
exact parameter values. Appel [App16] has analysed this problem in greater depth
and shown that there exist stable non-zero strategies for every 0 ≤ m < 1. The
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absolute value of these ESSs is dependent on the mixing factor, as can be expected.
With lower m, the strategies converge to a higher stable value, while a larger m leads
to lower strategy values. m also affects the survival rate of non-producers. In well-
mixed conditions, non-producers can thrive on exoproducts of other subpopulations
and even outgrow these in the process. In contrast, non-producers are driven to
extinction in separated systems.
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Chapter 4

Modelling with partial differential
equations

In this chapter, we will focus on a biological model for G-functions with PDEs. In
contrast to ODEs, PDEs allow us to explicitly model the spatial distribution of
bacteria and their QS products. To this end, we introduce a spatial variable x in
addition to the time t. As this makes notation more complex, we first fix some
notation standards.

From here on, Ω ∈ Rn will denote an open, bounded set, with S = ∂Ω as its
boundary. Ω will be the set from which x is taken, while t ∈ [0, T ]. We will call
Ω × (0, T ) =: QT . Hence QT ∈ Rn+1 is also an open and bounded set. Equivalently,
we denote ST = S × (0, T ). The remaining boundaries of QT are Ω × {0} =: B
as well as Ω × {T} =: BT . S + B is frequently called the normal boundary and
contains the initial values (B) as well as the boundary values (S).

We mostly work with Robin boundary conditions where boundary conditions are
needed. They are a general form of insulating boundary conditions when working
with convection-diffusion equations and can additionally be easily converted to
both Dirichlet and Neumann boundary conditions if the biological application calls
for those.

Throughout this chapter, we will assume that L is an operator defined as

L = ∂

∂t
−

n∑
i,j=1

aij(x, t)
∂2

∂xi∂xj
−

n∑
i=1

bi(x, t)
∂

∂xi
− c(x, t), (4.0.1a)

where we require that
n∑
i,j

aij(x, t)ξiξj > 0 ∀ξ ∈ Rn \ {0},∀(x, t) ∈ QT . (4.0.1b)

Such an operator is called parabolic in QT . Furthermore, we will often assume
that the coefficients of L are continuous functions in QT and that for all (x, t) ∈ QT

65
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|aij(x, t) − aij(x0, t0)| ≤ A
(
|x− x0|δ + |t− t0|

δ
2
)
, (4.0.2a)

|bi(x, t) − bi(x0, t)| ≤ A|x− x0|δ, (4.0.2b)
|c(x, t) − c(x0, t)| ≤ A|x− x0|δ, (4.0.2c)

with δ ∈ (0, 1). This implies that L is uniformly parabolic in QT , i.e. there exist
positive constants µ̂, µ independent of (x, t) such that

µ̂|ξ|2 ≤
n∑
i,j

aij(x, t)ξiξj ≤ µ|ξ|2 ∀ξ ∈ Rn.

The G-function model with explicit spatial variables can then be written as

Lbb(t, x) = G(vi, v, b) · bi, (4.0.3a)
Lvv(t, x) = ε∂1G(vi, v, b), (4.0.3b)

where ε is the time-scaling factor introduced in equation (2.0.3). In order to keep
things simple, we will often consider the concrete cases

Lb = ∂

∂t
−Db 4 (4.0.4)

and

Lv = ∂

∂t
−Dv 4, (4.0.5a)

L′
v = ∂

∂t
, (4.0.5b)

with Db and Dv positive constants.
All of these operators concentrate on growth, evolution and diffusion, omitting

other spatial effects like chemotaxis. We will call a model consisting of operators
(4.0.4) and (4.0.5a) a fully parabolic model, as both equation parts contain parabolic
operators, and discuss it further in section 4.1. If we instead combine (4.0.4) with
(4.0.5b), we call the resulting system a coupled ODE-PDE system. The operator
L′
v is not parabolic and equation (4.0.3b) reverts back to an ODE. This sort of

system is investigated in section 4.2.

4.1 Fully parabolic case
For the fully parabolic model, we assume that both bacteria and strategies underlie
diffusion with positive constants Db and Dv and thus use (4.0.4) and (4.0.5a) for
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the operators Lb and Lv. If we take ε′ := ε ·Dv, we can drop the subscript for Db

in order to simplify notation. The system then reads

∂tbi(x, t) = G
(
vi(x, t), v(x, t), b(x, t)

)
· bi(x, t) +D4bi(x, t), (4.1.1a)

∂tvi(x, t) = ε∂1G
(
vi(x, t), v(x, t), b(x, t)

)
+ ε′ 4vi(x, t). (4.1.1b)

A slightly more complex version has been proposed by Kronik and Cohen
[KC09]:

∂tbi(x, t) = G
(
vi(x, t), v(x, t), b(x, t)

)
· bi(x, t) +D4bi(x, t), (4.1.2a)

∂tvi(x, t) = ε∂1G
(
vi(x, t), v(x, t), b(x, t)

)
+D4vi(x, t) + 2D∇bi(x, t) · ∇vi(x, t)

bi(x, t)
.

(4.1.2b)

It is based on the assumption that it is not the strategies themselves that
undergo changes, but rather the frequency with which they are employed. To that
end Kronik and Cohen fix a set of Ni phenotypes j of subpopulation i and call the
corresponding constant strategy vij , with population density bij . They then recover
the overall strategy of subpopulation i as the weighted average of the phenotypes:

bi(x, t) =
Ni∑
j=1

bij(x, t), vi(x, t) =
Ni∑
j=1

bij(x, t)vij
bi(x, t)

.

Equation (4.1.2) is the result of differentiating these equations.

4.1.1 Coupled upper-lower-solutions
We concern ourselves with existence and uniqueness of solutions to systems (4.1.1)
and (4.1.2), as well as the more general system (4.0.3).

In order to prove existence of smooth solutions to our parabolic systems, we
will employ the method of upper-lower-solutions. But there is the added difficulty
of the G-function not being monotonous, since bacterial subpopulations can have
both a helpful, symbiotic effect on each other through QS as well as a competitive
and therefore negative effect by using up resources.

Abudiab, Ahn, and Li have introduced the concept of coupled upper-lower-
solutions for non-monotonous cases in [AAL11]. We will follow their definition, but
extend it to account for dependencies on the gradients.

In the following, we will often talk about a vector of the form

(v1, . . . , vi−1, ui, vi+1, . . . , vm,∇v1, . . . ,∇vi−1,∇ui,∇vi+1, . . . ,∇vm). (4.1.3)
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In order to shorten notation, we will abbreviate equation (4.1.3) by

(v[ui], Dxv[Dxui]),

while (v,Dxv) denotes the “homogeneous” vector (v1, . . . , vm,∇v1, . . . ,∇vm). A
definition of the norm ‖·‖2+δ,QT

can be found in definition A.2. When it is possible
to do so without confusion, we will omit the QT and write ‖·‖2+δ.

Definition 4.1. Two functions ui, ui ∈ C2+δ,1+δ/2(Ω × [0, T ]), with Ω ⊂ Rn,
δ ∈ (0, 1) and ‖ui‖2+δ, ‖ui‖2+δ ≤ K for a positive constant K, are called coupled
upper-lower-solutions of the parabolic system

Liui := ∂tui − di 4ui = fi(u1, . . . , um,∇u1, . . . ,∇um, x) inQT (4.1.4a)

αiui + βi
∂ui
∂n

= ψi(u1, . . . , ui−1, ui+1, . . . , um, x) in ST (4.1.4b)

ui(x, 0) = u0
i (x) in Ω (4.1.4c)

with αi, βi ∈ C1+δ,(1+δ)/2(ST ), βi > 0, fi ∈ Cδ([inf u, supu] × Bm·n,K(0) × Ω,R),
ψ ∈ C1+δ(B(m−1),K(0) × Ω), u0

i ∈ C2+δ(Ω), if for all i ∈ [m] it holds that:

(i) ui ≥ ui

(ii) Liui ≥ f i =: sup
uj≤ξj≤uj

fi(ξ[ui], Dxξ[Dxui], x) inQT

(iii) αiui + βi
∂ui

∂n
≥ sup

uj≤ξj≤uj

ψi(ξ1, . . . , ξi−1, ξi+1, ξm, x) in ST

(iv) ui(x, 0) ≥ u0
i (x)

(v) Liui ≤ f
i

=: inf
uj≤ξj≤uj

fi(ξ[ui], Dxξ[Dxui], x) inQT

(vi) αiui + βi
∂ui

∂n
≤ inf

uj≤ξj≤uj

ψi(ξ1, . . . , ξi−1, ξi+1, ξm, x) in ST

(vii) ui(x, 0) ≤ u0
i (x).

If the fi fulfil certain additional assumptions, we can make the following
statement about problems which have coupled upper-lower-solutions:

Theorem 4.1. Let fi in system (4.1.4) be uniformly Lipschitzian in all variables,
independent of x, for bounded ξ = (ξ1, . . . , ξm) ∈ Rm. Additionally, assume that
there exists a function L ∈ Cδ(Rm−1 ×Rn(m−1),Rn), such that fi fulfils the following
condition:

fi(ξ[ui], Dxξ[Dxui], x) − fi(ξ[ũi], Dxξ[Dxũi], x)
≤ Pi|ui − ũi| + L(ξ,Dxξ) (Dxũi −Dxui) .

(4.1.5)
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If u and u are coupled upper-lower solutions of the parabolic system (4.1.4), then
there exists a solution u = (u1, . . . , um), where ui(x, t) ∈ C2+δ,1+δ/2(Ω, [0, T ]), to
the system (4.1.4), such that ui ≤ ui ≤ ui.
Proof. We define the set

K := {θ = (θ1, · · · , θm) ∈
m⊕
i=1

C2+δ,1+δ/2(Ω, [0, T ]) :

ui ≤ θi ≤ ui,

αiui + βi
∂ui
∂n

≤ αiθi + βi
∂θi
∂n

≤ αiui + βi
∂ui
∂n

,

ui(x, 0) ≤ θi(x, 0) ≤ ui(x, 0),
‖θi(x, 0)‖2+δ,Ω ≤ C0,

‖θi‖1+δ ≤ C1,

i = 1, · · · ,m}.
We will fix a value for δ later on. Additionally, we define an Operator T with

T (θ) = v such that v is the solution of
(vi)t − di 4vi + Pivi + L(θ,Dxθ)Dxvi = Piθi + L(θ,Dxθ)Dxθi + fi(θ,Dxθ, x)

in QT (4.1.6a)

αivi + βi
∂vi
∂n

= ψi(θ1, · · · , θi−1, θi+1, · · · , θm) in ST (4.1.6b)

vi(x, 0) = θi(x, 0) on Ω. (4.1.6c)
T is well-defined, as equation (4.1.6) has a unique solution for all θ ∈ K (see

e.g. theorem A.11). The set K has the following properties:

K is non-empty As ui, ui ∈ K, K 6= ∅.

K is closed and convex Both properties are easy to see.

T (K) ⊆ K In order to show that the operator T maps K to K, we check if v
has the properties required to be an element of K.

• ui ≤ vi ≤ ui ∀i = 1, . . . ,m
From definitions 4.1.(ii) and 4.1.(iii) we have that

(ui)t − di 4ui + Piui + L(θ,Dxθ)Dxui
≥ Piui + L(θ,Dxθ)Dxui + fi(θ[ui], Dxθ[Dxui], x) in QT

αiui + βi
∂ui
∂n

≥ ψi(θ1, · · · , θi−1, θi+1, · · · , θm) in ST

ui(x, 0) ≥ θi(x, 0) on Ω.
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We subtract (4.1.6a) from these equations and use definition 4.1.(ii), getting

(ui − vi)t − di 4(ui − vi) + Pi(ui − vi) + L(θ,Dxθ)Dx(ui − vi)
≥ Pi(ui − θi) + L(θ,Dxθ)(Dxui −Dxθi)

+ fi(θ[ui], Dxθ[Dxui], x) − fi(θ,Dxθ, x).

We transform equation (4.1.5)

fi(θ,Dxθ, x) − fi(θ[ui], Dxθ[Dxui], x)
≤ Pi|ui − θi| + L(θ,Dxθ) (Dxui −Dxθi)

⇒ fi(θ[ui], Dxθ[Dxui], x) − fi(θ,Dxθ, x)
≥ −Pi|ui − θi| − L(θ,Dxθ) (Dxui −Dxθi) ,

where |ui − θi| = ui − θi, since θi ∈ K. We thus have

(ui − vi)t − di 4(ui − vi) + Pi(ui − vi) + L(θ,Dxθ)Dx(ui − vi)
≥ Pi(ui − θi) − Pi(ui − θi)

+ L(θ,Dxθ)(Dxui −Dxθi) − L(θ,Dxθ)(Dxui −Dxθi)
≥ 0

From the comparison theorem (theorem A.4) it follows that ui ≥ vi. Equiva-
lent calculations give us ui ≤ vi, hence ‖vi‖0 ≤ M0 = max

i
(‖ui‖0, ‖ui‖0).

• Boundary Conditions

αiui + βi
∂ui
∂n

≤ inf
uj≤ξj≤uj

ψi(ξ1, . . . , ξi−1, ξi+1, ξm, x)

≤ ψi(θ1, · · · , θi−1, θi+1, · · · , θm)

αiui + βi
∂ui
∂n

≥ sup
uj≤ξj≤uj

ψi(ξ1, . . . , ξi−1, ξi+1, ξm, x)

≥ ψi(θ1, · · · , θi−1, θi+1, · · · , θm)

(4.1.6)⇒ αiui + βi
∂ui
∂n

≤ αivi + βi
∂vi
∂n

≤ αiui + βi
∂ui
∂n

• Initial Conditions

ui(x, 0) ≤ θi(x, 0) = vi(x, 0) ≤ ui(x, 0)
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• Regularity
From Piθi + L(θ,Dxθ)Dxθi + fi(θ1, · · · , θm, x) ∈ Cδ we immediately get that
vi ∈ C2+δ,1+δ/2(Ω, [0, T ]).

• Boundedness
The first part is simple, as

v0
i (x) = θ0

i (x) ⇒
∥∥∥v0

i (x)
∥∥∥

2+δ,Ω
=
∥∥∥θ0
i (x)

∥∥∥
2+δ,Ω

≤ C0.

For the norm in Q̄T , we use theorem A.9. That means we have ‖vi‖1+δ′ ≤ C,
where δ′, C depend only on M0, c, µ, ‖v0

i (x)‖2 and S. As such, we can find a
common δ and C1 for which the inequality holds. This also determines the
value for δ that we left open until now.

T is continuous We take two solutions, vi = T (θ) and ṽi = T (θ̃) and consider
the difference. It follows that for δvi = vi − ṽi and δθi = θi − θ̃i it holds

(δvi)t − di 4(δvi) + Pi(δvi) + L(θ,Dxθ)Dxvi − L(θ̃, Dxθ̃)Dxṽi

= Piδθi + L(θ,Dxθ)Dxθi − L(θ̃, Dxθ̃)Dxθ̃i + fi(θ,Dxθ, x) − fi(θ̃, Dxθ̃, x)
δvi(x, 0) = δθi(x, 0)

αiδvi + βi
∂δvi
∂n

= ψi(θ1, · · · , θi−1, θi+1, · · · , θm) − ψi(θ̃1, · · · , θ̃i−1, θ̃i+1, · · · , θ̃m).

We aim to apply theorem A.11. To that end we reformulate some parts of the
equation:

L(θ,Dxθ)Dxvi − L(θ̃, Dxθ̃)Dxṽi = L(θ,Dxθ)Dx(vi − ṽi)
+
(
L(θ,Dxθ) − L(θ̃, Dxθ̃)

)
Dxṽi

and thus

(δvi)t − di 4(δvi) + Pi(δvi) + L(θ,Dxθ)Dx(δvi)
= Piδθi + L(θ,Dxθ)Dxθi − L(θ̃, Dxθ̃)Dxθ̃i

−
(
L(θ,Dxθ) − L(θ̃, Dxθ̃)

)
Dxṽi + fi(θ,Dxθ, x) − fi(θ̃, Dxθ̃, x).

We know further that∥∥∥L(θ,Dxθ)Dxθi − L(θ̃, Dxθ̃)Dxθ̃i +
(
L(θ,Dxθ) − L(θ̃, Dxθ̃)

)
Dxṽi

∥∥∥
δ

≤ ‖L(θ,Dxθ)Dxδθ‖δ +
∥∥∥(L(θ,Dxθ) − L(θ̃, Dxθ̃)

) (
Dxθ̃ −Dxṽi

)∥∥∥
δ
,
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using the multiplication inequality, Lipschitz continuity of L as well as the bound-
edness of vi and θ, we get

≤ ‖L(θ,Dxθ)‖δ‖Dxδθ‖δ + (‖δθ‖δ + ‖δDxθ‖δ) 2C1

≤ K1‖δθ‖2+δ.

It also holds that ‖Piδθi‖δ ≤ Pi‖δθ‖2+δ and because of the Lipschitz continuity
of fi ∥∥∥fi(θ,Dxθ, x) − fi(θ̃, Dxθ̃, x)

∥∥∥
δ

≤ K2‖δθ‖δ +K2‖Dxδθ‖δ
≤ K2‖δθ‖2+δ,

with a similar estimate for ψi. We can thus conclude from theorem A.11 that

‖δvi‖2+δ ≤ K3‖δθ‖2+δ.

T has a compact image We use a version of Arzelà-Ascoli, defined in theorem
A.7 to prove that K is compact, taking D = Ω̄ × [0, T ] as compact metric space.
Then T (K) is compact as a continuous mapping of a compact space. As we already
know that K is closed, we only need to show boundedness and equicontinuity. Both
can be derived from the fact that for θ ∈ K it holds that ‖θi‖1+δ ≤ C1. This implies
on the one hand that ‖θi‖0 ≤ C1 as well, which guarantees boundedness of K. On
the other hand, the equicontinuity can be derived from the Holder continuity of all
functions θ ∈ K with a common Holder constant.

Schauders fixed point theorem (see page 167) now guarantees a fixed point
T (v) = v ∈ K ⊂ C2+δ,1+δ/2(Ω, [0, T ]), which is the desired solution.

While this proves existence of classical solutions to equation (4.1.4), there is no
statement about uniqueness as of yet. We will prove such a statement in the next
section. But first we concern ourselves with the application of theorem 4.1 to our
equations. To that end, we identify u = (b, v). We first note the following:

Theorem 4.2. The function

fi(u,Dxu) = ε∂1G(vi, v, b) + 2di∇bi · ∇vi
bi

fulfils the assumption from equation (4.1.5), namely

ε∂1G(vi, v, b) + 2di∇bi · ∇vi
bi

− ε∂1G(ṽi, ṽ, b) + 2di∇bi · ∇ṽi
bi

≤ Pi|vi − ṽi| + L(bi,∇bi) (∇ṽi − ∇vi) ,
(4.1.7)
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with

L(bi,∇bi) = −2di∇bi
bi

Holder continuous with Holder constant δ if bi ≥ γ > 0 and bi ∈ C1+δ.

Proof. We start by proving equation (4.1.7). To that end, we recall that ∂1G is
Lipschitz continuous by assumption. If we denote the Lipschitz factor by Pi, we
have

ε∂1G(vi, v, b) − ε∂1G(ṽi, ṽ, b) ≤ |ε∂1G(vi, v, b) − ε∂1G(ṽi, ṽ, b)|
≤ Pi|vi − ṽi|.

On the other hand,

2di∇bi · ∇vi
bi

− 2di∇bi · ∇ṽi
bi

= 2di∇bi
bi

(∇vi − ∇ṽi)

= −2di∇bi
bi

(∇ṽi − ∇vi) .

In order to show the Holder continuity, we take a look at the j-th component
of L

Lj(bi,∇bi) =
−2di∂xj

bi

bi

⇒ |Lj(bi,∇bi)|(0) ≤
2di
∣∣∣∂xj

bi
∣∣∣(0)

γ
.

The assumption bi ∈ C1+δ implies that
∣∣∣∂xj

bi
∣∣∣(0)

has a finite value. Therefore
|Lj(bi,∇bi)|(0) has a finite value as well. Meanwhile,

Lj(bi(x, t),∇bi(x, t)) − Lj(bi(x′, t),∇bi(x′, t))

=
−2di∂xj

bi(x, t)
bi(x, t)

−
−2di∂xj

bi(x′, t)
bi(x′, t)

=
−2di

(
∂xj

bi(x, t) − ∂xj
bi(x′, t)

)
bi(x, t)

+
−2di∂xj

bi(x′, t)
bi(x, t)

−
−2di∂xj

bi(x′, t)
bi(x′, t)

= −2di
bi(x, t)

(
∂xj

bi(x, t) − ∂xj
bi(x′, t)

)
+

−2di∂xj
bi(x′, t)

bi(x, t)bi(x′, t) (bi(x′, t) − bi(x, t))
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and thus

〈Lj(bi,∇bi)〉(δ)
x ≤ 2di

γ
〈∂xj

bi〉(δ)
x +

2di
∣∣∣∂xj

bi
∣∣∣(0)

γ2 〈bi〉(δ)
x .

Taken together, we have shown that L is in Cδ under the given assumptions.

We construct specific upper and lower solutions for equation (4.1.1). In order
to keep thing simple, we will use homogeneous Robin boundary conditions, that
means

αiui + βi
∂ui
∂n

= 0, (4.1.8)

and starting conditions that fulfil

0 < b0
i (x) < Gmax

µ
, 0 ≤ v0

i (x) ≤ v∗. (4.1.9)

We can then take

bi = inf
x∈Ω

b0
i (x) · exp(−Gmaxmt), if αi ≤ 0

bi = CΦ(x) · exp(−(Gmaxm+ λdi)t), else,
(4.1.10a)

vi = v∗, see assumption (IV) on page 26 (4.1.10b)
vi = 0, (4.1.10c)

where Φ(x) is an eigenfunction to the eigenvalue problem

− 4Φ = λΦ, x ∈ Ω αΦ + β
∂Φ
∂n

= 0, x ∈ ∂Ω

and C ∈ R chosen in a way that CΦ(x) ≤ b0
i (x). If we take λ to be the principal

eigenvalue, it is both real and nonnegative, and we can choose Φ to be positive.
We define bi as the solution of

∂tbi − di 4bi = (Gmax − µbi) · bi in Ω (4.1.10d)

αibi + βi
∂bi
∂n

= 0 in ∂Ω (4.1.10e)

bi(x, 0) = b0
i (x). (4.1.10f)

Theorem 4.3. The functions u = (b, v)T , u = (b, v)T defined in equation (4.1.10)
are coupled upper-lower solutions for the system (4.1.1) with conditions (4.1.8) and
(4.1.9).
Proof. We prove that the chosen functions fulfil definitions 4.1.(i) to 4.1.(vii). As
constants or solutions to a semi-linear problem with smooth enough coefficients,
all functions lie in C2+δ,1+δ/2(Ω × [0, T ]).
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Checking definition 4.1.(ii)

∂tbi − di 4bi = (Gmax − µbi)bi
≥ sup

uj≤ξj≤uj

G(ξm+i, (ξm+1, . . . , ξ2m), (ξ1, . . . , bi, . . . , ξm))bi

= sup
uj≤ξj≤uj

fi(ξ1, . . . , ξi−1, bi, ξi+1, . . . , ξ2m, x)

∂tvi − di 4vi = 0

≥ sup
uj≤ξj≤uj

∂1G(vi, (ξm+1, . . . , ξ2m), (ξ1, . . . , ξm))︸ ︷︷ ︸
≤0

+2∇ξi · 0
ξi

= sup
uj≤ξj≤uj

fm+i(ξ1, . . . , ξm+i−1, vi, ξm+i+1, . . . , ξ2m, x),

where we have taken advantage of assumption (IV).

Checking definition 4.1.(iii)

αbi + β
∂bi
∂n

= 0 = sup
uj≤ξj≤uj

ψi(ξ1, . . . , ξi−1, ξi+1, . . . , ξ2m, x)

αvi + β
∂vi
∂n

= 0 = sup
uj≤ξj≤uj

ψm+i(ξ1, . . . , ξm+i−1, ξm+i+1, . . . , ξ2m, x)

Checking definition 4.1.(iv)

bi(0, x) = b0
i (x), vi ≥ v0

i (x)

Checking definition 4.1.(v) If αi ≤ 0, we have

∂tbi − di 4bi = −Gmaxmb
0
i exp(−Gmaxmt)

= −µ

 m∑
j=1

Gmax

µ

 b0
i exp(−Gmaxmt)

≤ −µ

 m∑
j=1

bi

 bi
≤ inf

uj≤ξj≤uj

G(ξm+i, (ξm+1, . . . , ξ2m), (ξ1, . . . , 0, . . . , ξm)) · ui

≤ inf
uj≤ξj≤uj

fi(ξ1, . . . , ξi−1, bi, ξi+1, . . . , ξ2m, x).
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If on the other hand αi � 0, we have
∂tbi − di 4bi = CΦ(x) exp (−(Gmaxm+ λdi)t) (−Gmaxm− λdi)

+ diC exp (−(Gmaxm+ λdi)t) (− 4Φ(x))
= CΦ(x) exp (−(Gmaxm+ λdi)t) (−Gmaxm− λdi + λdi)
= bi (−Gmaxm)

from which we can continue as before. For vi it holds that
∂tvi − ε′ 4vi = 0 = inf

uj≤ξj≤uj

∂1G(0, (ξm+1, . . . , ξ2m), (ξ1, . . . , ξm))

= inf
uj≤ξj≤uj

fm+i(ξ1, . . . , ξm+i−1, vi, ξm+i+1, . . . , ξ2m, x),

where the second equality is due to assumption (IV).

Checking definition 4.1.(vi) If αi ≤ 0, we can conclude from the positivity
of bi and its independence of x that

αibi + βi
∂bi
∂n

≤ 0 = inf
uj≤ξj≤uj

ψi(ξ1, . . . , ξi−1, ξi+1, . . . , ξ2m, x).

In the case αi � 0

αibi + βi
∂bi
∂n

= C exp (−(Gmaxm+ λdi)t)
(
αiΦ(x) + βi

∂Φ(x)
∂n

)
= 0 = inf

uj≤ξj≤uj

ψi(ξ1, . . . , ξi−1, ξi+1, . . . , ξ2m, x).

αivi + βi
∂vi
∂n

= 0 = inf
uj≤ξj≤uj

ψm+i(ξ1, . . . , ξm+i−1, ξm+i+1, . . . , ξ2m, x)

Checking definition 4.1.(vii)

b0
i = inf

x∈Ω
b0
i (x) ≤ b0

i (x) = u0
i (x) for αi ≤ 0

b0
i = CΦ(x) ≤ b0

i (x) = u0
i (x) for αi � 0

v0
i = 0 ≤ v0

i (x) = u0
m+i(x)

It remains to show definition 4.1.(i), ui ≥ ui, and that |bi| < K for a positive
constant K. But we know that bi solves

∂tbi − di 4bi = (Gmax − µbi) · bi
and thus has an invariant rectangle of the form {bi|li ≤ bi ≤ ri}, with b0

i < li <
Gmax
µ

and ri >
Gmax
µ

[see Smo83, Corollary 14.8]. This proves both remaining points.
Additionally, for arbitrary but fixed T , bi(x, t) ≥ bi(x, T ) = γ > 0, which we
required.
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4.1.2 Uniqueness
As before, we will simplify the boundary conditions (4.1.4b) to homogeneous
Robin boundary conditions (4.1.8) when showing the uniqueness of solutions for
equation (4.1.4).

fi independent of ∇u

If fi is independent of ∇u, as is the case for equation (4.1.1), we can proceed as
follows:

As a first step, we multiply equation (4.1.4a) by a test function ϕi ∈ C∞(D)
and integrate over Ω as well as [0, t]

∫ t

0

∫
Ω
∂tui · ϕi dx dτ =

∫ t

0

∫
Ω
di 4ui · ϕi dx dτ +

∫ t

0

∫
Ω
fi(u, x) · ϕi dx dτ.

We partially integrate ∂tui · ϕi

∫
Ω
ui(x, t)ϕi(x, t) dx−

∫
Ω
u0
i (x)ϕi(x, 0) dx−

∫ t

0

∫
Ω
ui · ∂tϕi dx dτ

=
∫ t

0

∫
Ω
di 4ui · ϕi dx dτ +

∫ t

0

∫
Ω
fi(u, x) · ϕi dx dτ

and apply the first Green identity to transform 4ui · ϕi

∫
Ω
ui(x, t)ϕi(x, t) dx−

∫
Ω
u0
i (x)ϕi(x, 0) dx−

∫ t

0

∫
Ω
ui · ∂tϕi dx dτ

= −
∫ t

0

∫
Ω
di∇uTi · ∇ϕi dx dτ −

∫ t

0

∫
∂Ω
diαϕiui dS +

∫ t

0

∫
Ω
fi(u, x) · ϕi dx dτ,

where we used equation (4.1.8). After employing the first Green identity once again,
we arrive at
∫

Ω
ui(x, t)ϕi(x, t) dx−

∫
Ω
u0
i (x)ϕi(x, 0) dx−

∫ t

0

∫
Ω
ui · ∂tϕi dx dτ

=
∫ t

0

∫
Ω
diui · 4ϕi dx dτ −

∫ t

0

∫
∂Ω
diui · ∂ϕi

∂n
dS

−
∫ t

0

∫
∂Ω
diαϕiui dS +

∫ t

0

∫
Ω
fi(u, x) · ϕi dx dτ. (4.1.11)

We now assume that there exist two solutions, u and w, with u(x, 0) = u0(x) =
w(x, 0). By subtracting equation (4.1.11) for ui and wi (and rearranging some
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terms), we get∫
Ω
(ui(x, t) − wi(x, t))ϕi(x, t) dx =

∫ t

0

∫
Ω
(ui − wi) · (di 4ϕi + ∂tϕi) dx dτ

− di

∫ t

0

∫
∂Ω

(ui − wi) ·
(
∂ϕi
∂n

+ αϕi

)
dS

+
∫ t

0

∫
Ω

(fi(u, x) − fi(w, x)) · ϕi dx dτ.

This form corresponds to the one found in Anderson [And91, p. 118f], with
Φ(x, s, u) = diui, g(x, s, u) = −αidiui, h(x, s, u) = fi(u, x), f(x, s, u) = 0 and
Σ = ∂Ω. One can therefore construct an appropriate test function ϕi as the solution
to a related PDE exactly as shown therein (even easier, given the simplicity of the
functions involved). Combined with the Lipschitz continuity of fi we obtain

∫
Ω

|ui(x, t) − wi(x, t)| dx ≤ C
∫ t

0

∫
Ω

m∑
i=1

|ui − wi| dx dτ

⇒
∫

Ω

m∑
i=1

|ui(x, t) − wi(x, t)| dx ≤ mC
∫ t

0

∫
Ω

m∑
i=1

|ui − wi| dx dτ.

Using Grönwall’s inequality (theorem A.1)
∫

Ω

m∑
i=1

|ui(x, t) − wi(x, t)| dx ≤ 0

⇒
m∑
i=1

|ui(x, t) − wi(x, t)| ≤ 0 ∀x ∈ Ω

⇒ ui(x, t) = wi(x, t) ∀x ∈ Ω,

which proves the uniqueness, since t was chosen arbitrarily.

fi dependent on ∇u

If fi is not independent of ∇u, as is the case for equation (4.1.2), we cannot apply
this method. The additional term ∇(ui − wi) cropping up prohibits the use of
Grönwall’s inequality. Instead, we can apply the mean value theorem

fi(u,Dxu, x) − fi(w,Dxw, x) =
m∑
j=1

∂fi(ξ, ξ̃, x)
∂uj

(uj − wj)

+
m∑
j=1

n∑
k=1

∂fi(ξ, ξ̃, x)
∂(Dxu)jk ∂xk

(uj − wj),
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where (Dxu)jk = ∂xk
uj. This allows us to write

fi(u,Dxu, x) − fi(w,Dxw, x) =
m∑
j=1

cij(t, x)(uj − wj)

+
m∑
j=1

n∑
k=1

bijk(t, x)∂xk
(uj − wj).

The difference between two solutions u and w, v = u − w thus follows the
equation

∂tvi − di 4vi −
m∑
j=1

cij(t, x)vj −
m∑
j=1

n∑
k=1

bijk(t, x)∂xk
vj = 0. (4.1.12)

If we define the components of a matrix operator L as

Lij = −cij(t, x) −
n∑
k=1

bijk(t, x) · ∂xk
, i 6= j (4.1.13a)

Lii = ∂t −
n∑
k=1

di∂
2
xk

− cii(t, x) −
n∑
k=1

biik(t, x) · ∂xk
, (4.1.13b)

then we can write equation (4.1.12) for all i as
L v|QT

= 0, (4.1.14a)
Bv|ST

= 0, (4.1.14b)
C v|t=0 = 0. (4.1.14c)

B = diag(αi + βi
∑n
k=1 nj(x)∂xj

) is the boundary operator, with nj the j-th
component of the outer normal vector at x, while C = Im×m gives the initial
condition at t = 0. It is apparent from the diagonal form that these matrices fulfil
the complementary condition.

We aim to prove that the so-defined operator L is parabolic, and thus v =
0 must hold. To that end, we first cite some definitions concerning when a
matrix operator is called parabolic, which are taken from Petrovskii [Pet38] and
Ladyzenskaja, Solonnikov, and Uralceva [LSU67].
Definition 4.2. The principal part of a polynomial L(x, t, iξλ, pλ2b) with degree
2br, r ∈ N, is the sum of those terms of L for which

L0(x, t, iξλ, pλ2b) = λ2brL0(x, t, iξ, p).
Definition 4.3. An operator L(x, t, ∂x, ∂t) is said to be 2b-parabolic at a point
(x, t) if for any ξ ∈ Rn the roots ps of the polynomial L0(x, t, iξ, p) in the variable
p satisfy the condition

Re(ps) ≤ −δ|ξ|2b (δ > 0).



80 CHAPTER 4. MODELLING WITH PDES

Definition 4.4. A matrix differential operator L (x, t, ∂x, ∂t) with elements
Lkj(x, t, ∂x, ∂t), (k, j = 1, . . . ,m) is said to be parabolic in the sense of Petrovskii
if

(i) the operator

L(x, t, ∂x, ∂t) = det L (x, t, ∂x, ∂t)

is 2b-parabolic in the sense of definition 4.3.

(ii) the degree of the polynomials Lkj(x, t, iξλ, pλ2b) in λ does not exceed 2brj
and

Lkj(x, t, iξ, p) = σjkp
rj + L′

kj(x, t, iξ, p),

where L′
kj is a polynomial not containing prj .

We start out by noticing that for the L defined in equation (4.1.13) rj = 1
independent of j, b = 1 and σjj = 1, σjk = 0 if j 6= k. Definition 4.4.(ii) follows
directly. We can also see immediately from the definition that the principal part of
L = det L will be the product of the diagonal elements, as all entries that do not
lie on the diagonal contain at most λ1. It follows that

L0(x, t, iξλ, pλ2) =
m∏
j=1

(
pλ2 + djλ

2
n∑
k=1

ξ2
k

)
,

from which we gather that r = m and ps = −dj|ξ|2. If we define δ = min1≤j≤m{dj},
definition 4.4.(i) follows. The matrix operator L is therefore parabolic in the
sense of Petrovskii. We can now invoke the following theorem from Ladyzenskaja,
Solonnikov, and Uralceva [LSU67, Theorem VII.10.1]:

Theorem 4.4. Suppose the coefficients of the operators L ,B and C are smooth
enough. Then the problem

L (x, t, ∂x, ∂t)u|QT
= f

B(x, t, ∂x, ∂t)u|ST
= Φ

C (x, t, ∂x, ∂t)u|t=0 = Ψ

has a unique smooth solution in the class of vector functions, which is subject to
the inequality

m∑
j=1

‖uj‖QT
≤ c

 m∑
j=1

‖fj‖QT
+

br∑
q=1

‖Φq‖ST
+

r∑
α=1

‖Ψα‖Ω

 ,
with appropriately chosen norms.
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Theorem 4.5. Equation (4.1.2) equipped with homogeneous Robin boundary con-
ditions and appropriate initial conditions has a unique solution.

Proof. Since f,Φ,Ψ = 0 in equation (4.1.14), we can conclude that
m∑
j=1

‖vj‖QT
≤ c · 0 ⇒ vj = 0 ∀1 ≤ j ≤ m,

which shows the required uniqueness.

4.1.3 Attracting sets
Theorem 4.6. Let the following assumptions hold:

(I) There exists a region D ⊂ Rm, which is compact and positively invariant.

(II) For u0 ∈ H = L2(Ω,D) = {v ∈ L2(Ω)|v(x) ∈ D for a.e. x ∈ Ω}, equa-
tion (4.1.4) possesses a unique solution u for all time, u(t) ∈ H ∀t, u ∈
L2(0, T ;V ), ∀T > 0 with V = H1

0 (Ω) or H1(Ω), depending on boundary
conditions,

(III) The mapping u0 → u(t) is continuous in H. If moreover u0 ∈ V , then
u ∈ L2(0, T ;H2(Ω)m) ∀T > 0.

(IV) f is continuous on Ω̄ × D

Then the semigroup S(t) associated with equation (4.1.4) with Dirichlet or
Neumann boundary conditions is such that

1. There exist absorbing sets in H and H ∩ V .

2. There exists a maximal attractor A which is bounded in V , compact in H.
A attracts the bounded sets of H. If furthermore D is convex, then A is
connected in H.

For a proof of theorem 4.6 see Marion [Mar87]. We know that a solution to
equation (4.1.1) will lie between the upper and lower solutions constructed in
equation (4.1.10). This means we have a positively invariant set for (b, v) given
as D := [0, r]n × [0, v∗]n, with r > Gmax

µ
, for which it holds that S(t)D ( D.

Furthermore, the following theorem holds:

Theorem 4.7. If we have the assumptions of theorem 4.6 and moreover

(I) the positively invariant region D is convex and
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(II) f(x, u) is of class C2 with respect to u on Ω̄ ×Rm and its derivatives of order
less than or equal to two are bounded on Ω̄ × D,

then we set

c = sup
1≤j≤m

sup
1≤i≤m

sup
(x,u)∈Ω̄×D

∣∣∣∣∣∂fj∂ui
(x, u)

∣∣∣∣∣,
d0 = min

1≤i≤m
di.

It follows that the maximal attractor A has finite Hausdorff and fractal dimen-
sions. Moreover, these dimensions are both bounded by

c̄(1 + |Ω|cm/2d
−m/2
0 ),

where c̄ depends on n,m and the shape of Ω.

4.1.4 Stationary solutions
In order to determine the long-term behaviour of our fully parabolic system, it
is of use to take a look at the stationary solutions of equation (4.1.1). These are
themselves solutions of the system

−D4bi = G(vi, v, b) · bi (4.1.15a)
−ε′ 4vi = ε∂1G(vi, v, b) (4.1.15b)

or, depending on the choice of model,

−D4vi = ε∂1G(vi, v, b) + 2D∇bi · ∇vi
bi

(4.1.15b’)

with appropriate boundary conditions.
It is important to note at this point that our observations from chapter 2 remain

true. This is due to the common diffusion coefficient of the equations. Such a
structure makes instabilities of Turing type impossible and therefore the stability
of a spatially homogeneous equilibrium is the same as for the point process, as
Kronik and Cohen note in [KC09, page 71].

Coupled upper-lower solutions

Definition 4.5. Two functions ui, ui ∈ C2+δ are called coupled upper-lower
solutions to the stationary system

−di 4ui = fi(u1, . . . , um, x) in Ω (4.1.16a)

αiui + βi
∂ui
∂n

= ψi(u1, . . . , ui−1, ui+1, . . . , um, x) in ∂Ω (4.1.16b)

if it holds that
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(I) ui ≥ ui

(II) −di 4ui ≥ sup
uj≤ξj≤uj

fi(ξ1, . . . , ξi−1, ui, ξi+1, ξm, x) in Ω

(III) αiui + βi
∂ui

∂n
≥ sup

uj≤ξj≤uj

ψi(ξ1, . . . , ξi−1, ξi+1, ξm, x) in ∂Ω

(IV) −di 4ui ≤ inf
uj≤ξj≤uj

fi(ξ1, . . . , ξi−1, ui, ξi+1, ξm, x) in Ω

(V) αiui + βi
∂ui

∂n
≤ inf

uj≤ξj≤uj

ψi(ξ1, . . . , ξi−1, ξi+1, ξm, x) in ∂Ω

Theorem 4.8. Let fi in system (4.1.16) be uniformly Lipschitzian independent of
x, ψi ∈ C2(Rm−1) as above. If u and u are coupled upper-lower solutions of the
elliptic system (4.1.16), then there exists a solution u = (u1, . . . , um) to the system
(4.1.16), such that ui ≤ ui ≤ ui.

For a proof see Li, Abudiab, and Ahn [LAA08]. This theorem is only given in
the absence of any dependency on the first derivatives of u, but we could generalize
it as in the parabolic case before. Existence and uniqueness theorems, a priori
estimates of solution as well as the comparison theorem remain valid in the elliptic
case [see for example GT01, Lemma 6.30, 6.31].

We state additional lemmas before constructing coupled upper-lower solutions
for our specific system.
Lemma 4.9. The equation

− 4u = up(x, u) x ∈ Ω

α(x)u+ β(x)∂u
∂n

= 0 x ∈ ∂Ω

has a unique strictly positive solution iff the principal eigenvalue λ1(4+p(x, 0)) > 0.

A proof of this lemma can be found in Li and Liu [LL93, Lemma 2]. The next
lemma is taken from Pao [Pao92, theorem 1.2].
Lemma 4.10. Let L be a uniformly elliptic operator on D. We can consider the
eigenvalue problem

(L − c(x)u+ λr(x)) Φ = 0 x ∈ Ω(
α(x) + β(x) ∂

∂n

)
Φ = 0 x ∈ ∂Ω,

where c(x), r(x) ∈ C(Ω), c ≥ 0, r > 0. Then the principal eigenvalue λ1 is real
and nonnegative, and the corresponding principal eigenfunction can be taken to be
positive on Ω. Moreover, λ1 > 0 when c and α are not both identically zero.
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We now construct our upper-lower solutions in the elliptic case similar to the
parabolic case (see equation (4.1.10).

bi = 0, (4.1.17a)
vi = v∗, see assumption (IV) on page 26 (4.1.17b)

vi = 0. (4.1.17c)

We define bi as the solution of

−di 4bi = (Gmax − µbi) · bi in Ω (4.1.17d)

αi(x)bi + βi(x)∂bi
∂n

= 0 in ∂Ω, (4.1.17e)

where we assume homogeneous boundary conditions, that is

ψi(u1, . . . , ui−1, ui+1, . . . , um, x) = 0.

Theorem 4.11. The functions u = (b, v)T , u = (b, v)T defined in equation (4.1.17)
are coupled upper-lower solutions to the system (4.1.15) with the boundary condition

αiui + βi
∂ui
∂n

= 0 in ∂Ω.

Proof. We prove that the chosen functions fulfil assumptions 4.5.(I) to 4.5.(V). As
constants or solutions to a semi-linear problem with smooth enough coefficients,
all functions lie in C2+α(Ω).

Assumption 4.5.(IV)

−di 4bi = 0 = inf
uj≤ξj≤uj

fi(ξ1, . . . , ξi−1, bi, ξi+1, . . . , ξ2m, x)

= inf
uj≤ξj≤uj

G(ξm+i, (ξm+1, . . . , ξ2m), (ξ1, . . . , 0, . . . , ξm)) · 0

−ε′ 4vi = 0 = inf
uj≤ξj≤uj

fm+i(ξ1, . . . , ξm+i−1, vi, ξm+i+1, . . . , ξ2m, x)

= inf
uj≤ξj≤uj

∂1G(0, (ξm+1, . . . , ξ2m), (ξ1, . . . , ξm)),

where the last step is due to assumption (IV).

Assumption 4.5.(V)

αibi + βi
∂bi
∂n

= 0 = inf
uj≤ξj≤uj

ψi(ξ1, . . . , ξi−1, ξi+1, . . . , ξ2m, x)

αm+ivi + βm+i
∂vi
∂n

= 0 = inf
uj≤ξj≤uj

ψm+i(ξ1, . . . , ξm+i−1, ξm+i+1, . . . , ξ2m, x)
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Assumption 4.5.(II)

−di 4bi = (Gmax − µbi)bi
≥ sup

uj≤ξj≤uj

fi(ξ1, . . . , ξi−1, bi, ξi+1, . . . , ξ2m, x)

= sup
uj≤ξj≤uj

G(ξm+i, (ξm+1, . . . , ξ2m), (ξ1, . . . , bi, . . . , ξm))bi

−di 4vi = 0
≥ sup

uj≤ξj≤uj

fm+i(ξ1, . . . , ξm+i−1, vi, ξm+i+1, . . . , ξ2m, x)

= sup
uj≤ξj≤uj

∂1G(vi, (ξm+1, . . . , ξ2m), (ξ1, . . . , ξm))︸ ︷︷ ︸
≤0

see (IV), p. 26

Assumption 4.5.(III)

αibi + βi
∂bi
∂n

= 0 = sup
uj≤ξj≤uj

ψi(ξ1, . . . , ξi−1, ξi+1, . . . , ξ2m, x)

αm+ivi + βm+i
∂vi
∂n

= 0 = sup
uj≤ξj≤uj

ψm+i(ξ1, . . . , ξm+i−1, ξm+i+1, . . . , ξ2m, x)

It remains to show assumption 4.5.(I), ui ≥ ui. We know that bi solves

− 4bi = Gmax − µbi
di︸ ︷︷ ︸

=:pi(x,bi)

·bi in Ω

αi(x)bi + βi(x)∂bi
∂n

= 0 in ∂Ω,

In order to apply lemma 4.9, we need to look at the eigenvalue problem for
4 + pi(x, 0):

4Φ + Gmax

di
Φ = λΦ in Ω

⇒
(

− 4 − Gmax

di
+ λ

)
Φ = 0 in Ω(

αi(x) + βi(x) ∂
∂n

)
Φ = 0 in ∂Ω,

which has the shape discussed in lemma 4.10, with c(x) = Gmax
di

and r(x) = 1. We
thus have fulfilled all assumptions of lemma 4.10 and as c(x) is not identically zero,
we know that λ1(4 + pi(x, 0)) > 0. It follows from lemma 4.9 that bi > 0 = bi and
hence assumption 4.5.(I).
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4.2 Coupled ODE-PDE system
If we assume that strategies do not diffuse on their own, it is more natural to use
equation (4.0.5b) and get a coupled ODE-PDE system. It can be written as

∂tbi(x, t) = G(vi(t), v(t), b(x, t)) · bi(x, t) +D4bi(x, t), (4.2.1a)
∂tvi(x, t) = ε∂1G(vi(x, t), v(x, t), b(x, t)). (4.2.1b)

We will specifically work with a homogeneous Robin boundary condition,

αibi + βi
∂bi
∂n

= 0 in ST . (4.2.1c)

4.2.1 Existence and Uniqueness of solutions
Weak solution

First we take a look at weak solutions of our problem, allowing for solutions that do
not have the smoothness required of classical solutions. For b, we will be using the
Banach space X = C([0, T ];L2(Ω)) with ‖b‖X = max

0≤t≤T
‖b(t)‖L2(Ω) and the standard

weak formulation therein.

Theorem 4.12 (Existence and Uniqueness of weak solutions). The equation (4.2.1)
has a unique local weak solution.

Proof. We will prove this in three steps. First we will show that equation (4.2.1b)
has a unique solution vb for b fixed. In a second step we will show that this vb
induces a unique solution b̂. Thus we have a mapping B(b) = b̂. In a third step we
will show that this mapping B has a unique fixed point (via Banachs contraction
mapping, theorem A.5), thus showing that the original system has a unique local
solution.

1st Step: Unique solution vb for (4.2.1b) with fixed b
This result can be gained directly from the Picard-Lindelöf theorem, because
∂1G is Lipschitz continuous by assumption. It is thus also Lipschitz continuous
in the L2(Ω)-norm, and it follows that there exists a unique solution vb which
lies in X.

2nd Step: Unique solution b̂ for (4.2.1a) with fixed vb

We can apply the arguments from section 4.1 to the case with vb as parameter
and b as the only dependent variable. As G · b is Lipschitz continuous from our
assumption, the same constructions lead to a unique solution b̂ in C2+δ,1+δ/2.
But since Ω is bounded, that implies b̂ ∈ X.
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3rd Step: Fixed point for B : b 7→ b̂
The goal is to show that B is a contraction, meaning that∥∥∥δb̂∥∥∥ :=

∥∥∥B(b) − B(b)
∥∥∥ ≤ C‖δb‖ = C

∥∥∥b− b
∥∥∥,

with C < 1. To this end we first consider δv = vb − vb, where b and b
are two arbitrary but fixed functions from X with b(x, 0) = b(x, 0). Using
equation (4.2.1b) we have

∂tδv = ε ·


∂1G(vb1, vb, b) − ∂1G(vb1, vb, b)

...
∂1G(vbm, vb, b) − ∂1G(vbm, vb, b)

 .
Multiplying with δv and integrating over Ω leads to

∫
Ω
∂tδv · δv dx =

∫
Ω
ε


∂1G(vb1, vb, b) − ∂1G(vb1, vb, b)

...
∂1G(vbm, vb, b) − ∂1G(vbm, vb, b)

 · δv dx

⇒ 1
2

d
dt‖δv‖2

L2 ≤ ε
∫

Ω

∣∣∣∣∣∣∣∣

∂1G(vb1, vb, b) − ∂1G(vb1, vb, b)

...
∂1G(vbm, vb, b) − ∂1G(vbm, vb, b)


∣∣∣∣∣∣∣∣ |δv| dx.

We use the Lipschitz continuity of ∂1G with Lipschitz factor L′:
1
2

d
dt‖δv‖2

L2 ≤ ε
∫

Ω

√
mL′

∣∣∣∣∣
(
vb

b

)
−
(
vb

b

)∣∣∣∣∣ · |δv| dx

≤ ε
√
mL′

∫
Ω

(∣∣∣vb − vb
∣∣∣+ ∣∣∣b− b

∣∣∣) |δv| dx

= ε
√
mL′

(∫
Ω

|δv|2 dx+
∫

Ω
|δb||δv| dx

)
.

At this point, one can apply the Cauchy-Schwartz inequality and divide by
‖δv‖L2 afterwards

d
dt‖δv‖L2 · ‖δv‖L2 ≤ ε

√
mL′

(
‖δv‖2

L2 + ‖δb‖L2‖δv‖L2

)
d
dt‖δv‖L2 ≤ ε

√
mL′︸ ︷︷ ︸

=:C2

(‖δv‖L2 + ‖δb‖L2)

Integration from 0 to t, where it is known that δv(x, 0) = 0, gives us

‖δv‖L2 ≤ C2

∫ t

0
‖δb‖L2 ds+ C2

∫ t

0
‖δv‖L2 ds
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Here we apply Grönwall’s inequality, with α(t) = C2
∫ t

0 ‖δb‖L2 ds non-decreasing
and β(t) = C2.

‖δv‖L2 ≤ C2eC2t
∫ t

0
‖δb‖L2 ds (4.2.2)

Now that we have an estimate of ‖δv‖L2 , we take a look at
∥∥∥δb̂∥∥∥

L2
. Based on

equation (4.2.1a) we can state the following for δb̂ := b̂− b̂:

∂tδb̂ =


G(vb1, vb, b̂)b̂i −G(vb1, vb, b̂)b̂i

...
G(vbm, vb, b̂)b̂i −G(vbm, vb, b̂)b̂i

+ 4δb̂

We integrate over Ω and apply the first Green identity, using equation (4.2.1c)

∫
Ω
∂tδb̂ · δb̂ dx =

∫
Ω


G(vb1, vb, b̂)b̂i −G(vb1, vb, b̂)b̂i

...
G(vbm, vb, b̂)b̂i −G(vbm, vb, b̂)b̂i

 · δb̂ dx

−
∥∥∥∇δb̂∥∥∥2

L2
+
∫
∂Ω

−α
(
δb̂
)2

dS

⇒ 1
2

d
dt
∥∥∥δb̂∥∥∥2

L2
≤
∫

Ω

∣∣∣∣∣∣∣∣

G(vb1, vb, b̂)b̂i −G(vb1, vb, b̂)b̂i

...
G(vbm, vb, b̂)b̂i −G(vbm, vb, b̂)b̂i


∣∣∣∣∣∣∣∣ |δb̂| dx.

At this point we need the Lipschitz constant L of G. As seen in lemma 2.1,
it holds that L = Gmax + L1|b̂i|. but we know that |b̂i| ≤ max{bi(x, 0), Gmax

µ
}.

Therefore we can take bmax := max{bi(x, 0) ∀i, Gmax
µ

} and the Lipschitz constant
is thus Gmax + L1bmax

1
2

d
dt
∥∥∥δb̂∥∥∥2

L2
≤
∫

Ω

√
m (Gmax + L1bmax)︸ ︷︷ ︸

C1

∣∣∣∣∣
(
vb

b

)
−
(
vb

b

)∣∣∣∣∣ · |δb̂| dx

≤ C1

∫
Ω

(
|δb̂| + |δv|

)
|δb̂| dx.

Once again we use the Cauchy-Schwartz inequality, divide by
∥∥∥δb̂∥∥∥

L2
, integrate

over t and subsequently use Grönwall’s inequality. We can also plug in (4.2.2)
for ‖δv‖L2 . ∥∥∥δb̂∥∥∥

L2
≤ C1

∫ t

0

∥∥∥δb̂∥∥∥
L2

ds+ C1

∫ t

0
‖δv‖L2 ds

⇒
∥∥∥δb̂∥∥∥

L2
≤ C1C2eC1t

∫ t

0
eC2s

(∫ s

0
‖δb‖L2 dτ

)
ds
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⇒
∥∥∥δb̂∥∥∥

L2
≤ C1C2eC1t

∫ t

0
eC2s

(∫ s

0
‖δb‖X dτ

)
ds

⇒
∥∥∥δb̂∥∥∥

L2
≤ C1C2eC1t

∫ t

0
eC2ss‖δb‖X ds

⇒
∥∥∥δb̂∥∥∥

L2
≤ C1eC1t · eC2t(Ct− 1) + 1

C2
· ‖δb‖X

If this equation holds for all t, it also holds for max
0≤t≤T

∥∥∥δb̂∥∥∥
X

≤ C1eC1t · eC2t(Ct− 1) + 1
C2

· ‖δb‖X

We can now take t → 0, and see that the right hand side goes to 0. This means
there exists a T0 for which B is a contraction for t ∈ [0, T0].

Classical solution

Theorem 4.13 (Existence and Uniqueness of strong solutions). The equation
(4.2.1) has a unique local classical solution.

Proof. We are now interested in the space C2+δ,1+δ/2(Ω × [0, T ]) of functions whose
second derivative in x is Hölder-continuous with coefficient δ and whose first
derivative in t is Hölder-continuous with coefficient δ/2. As estimates regarding the
norm in this space are quite hard to obtain, we will not use Banachs but Schauders
fixed point theorem (theorem A.6). As we already know the uniqueness of the weak
solution, it follows that the classical solution must be unique as well.

The first and second step of the proof remain the same as in the proof for a weak
solution. Hence we start with the mapping B : b 7→ b̂, with b, b̂ in C2+δ,1+δ/2(D). It
maps b to the solution of

∂tb̂i(x, t) = G(vbi (t), vb(t), b(x, t)) · b̂i(x, t) +D4b̂i(x, t) in Ω (4.2.3a)

αib̂i + βi
∂b̂i
∂n

= 0 in ∂Ω. (4.2.3b)

b̂0
i (x) = b0

i (x) (4.2.3c)

We take a subspace X =
{
f ∈ C2+δ,1+δ/2(D)|‖f‖2+δ ≤ K

}
, with K to be

defined later on. This subspace is clearly non-empty, closed, bounded and convex.
It remains to show that B is continuous and its image is compact.
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• B continuous
We take a convergent series bn,i, with limn→∞ bn,i = bi. We want to show that
b̂i := limn→∞ B(bn,i) = B(bi). Defining b̂n,i = B(bn,i) it solves the equation

∂tb̂n,i = G(vbn
i , v

bn , bn)b̂n,i +D4b̂n,i

We take the limit n → ∞

lim
n→∞

(
∂tb̂n,i

)
= lim

n→∞

(
G(vbn

i , v
bn , bn)b̂n,i +D4b̂n,i

)
As both the derivative operator and G are continuous it follows that

∂t

(
lim
n→∞

b̂n,i

)
=
(
G(vlimn→∞ bn

i , vlimn→∞ bn , lim
n→∞

bn) lim
n→∞

b̂n,i +D4 lim
n→∞

b̂n,i

)
.

We know that v is continuously dependent on bn

∂t

(
lim
n→∞

b̂n,i

)
=
(
G(vbi , vb, b) lim

n→∞
b̂n,i +D4 lim

n→∞
b̂n,i

)

which is what we wanted to show.

• B maps X to X
We use the boundary Schauder estimates (see theorem A.10):∥∥∥b̂i∥∥∥2+δ

≤ K̄
(

‖f‖δ + ‖ψ‖1+δ +
∥∥∥b̂0
i

∥∥∥
2+δ

)
,

where f = 0, ψ = 0 and b̂0
i = b0

i from the definition in equation (4.2.3). Since
b0
i ∈ C2+δ(Ω) with bounded Ω, we know that ‖b0

i ‖2+δ < C for a C ∈ R. If we
choose K = K̄ · C we have B : X → X.

• The functions in X are equicontinuous
As stated above, we know that

∥∥∥b̂i∥∥∥2+δ
≤ K, which gives an upper limit to

the Lipschitz constant for all functions in X.

This shows that all prerequisites of Arzelà-Ascoli (theorem A.7) are fulfilled, so
X is compact. As a continuous mapping of a compact space, ImB is compact as
well. We can thus apply the Schauder fixed-point theorem.

Theorem 4.14. The local solution can be extended in time to any arbitrary T .

Proof. Take the values at time T0 as the new starting values; as v and b are bounded
a priori by v∗ respectively bmax, we can then repeat the arguments above to extend
the existence of the solution to the interval [0, 2T0]. These steps can be repeated
as needed.
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4.2.2 Asymptotic Behaviour
In order to look at the long-time development of the population number, we will
use an orthogonal decomposition of bi. It is well-known that the eigenfunctions
(ψj)j∈N of the eigenvalue problem

− 4ψj(x) = λjψj(x), x ∈ Ω
∂ψj
∂n

= 0, x ∈ ∂Ω

form a complete orthonormal system in L2(Ω), where λ1 = 0 with ψ1(x) ≡ Cψ and
λj > 0 for j > 1. Note that we have again simplified the boundary condition to a
homogeneous Neumann condition. We can then display bi(x, t) as

bi(x, t) =
∞∑
j=1

aij(t)ψij(x) = ai1(t)ψi1(x) + ψi⊥(x, t),

where

aij(t) = 〈bi(x, t), ψij(x)〉 =
∫

Ω
bi(x, t)ψij(x) dx.

We drop the superscript i in the following in order to simplify notation. First,
we are interested in the behaviour of a1(t).

a1(t) = 〈bi(x, t), ψ1(x)〉 = Cψ

∫
Ω
bi(t, x) dx (4.2.4)

⇒ d
dta1(t) = Cψ

∫
Ω
∂tbi(x, t) dx

= Cψ

∫
Ω
D4bi(x, t) dx+ Cψ

∫
Ω
G(vi, v, b)bi(x, t) dx

= Cψ

∫
Ω
G(vi, v, b)bi(x, t) dx, (4.2.5)

where the last step is due to the first Green identity and the homogeneous Neumann
condition on bi. It also follows from equation (4.2.4) and the previously established
a-priori-estimations of bi that

0 ≤ a1(t) ≤ λ(Ω)Cψ
Gmax

µ
. (4.2.6)

We concentrate on the case G(vi, v, b) ≤ 0 first, which for instance arises if
vi = 0 is the only ESS. Equation (4.2.5) then indicates that a1(t) is monotonously
decreasing in t, while equation (4.2.6) guarantees the boundedness. Taken together,
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we have shown that a1(t) converges to a constant for t to infinity. It remains to
investigate the behaviour of ψ⊥(x, t). We know the following:

∂ψ⊥

∂n
= 0 (4.2.7)

〈ψ1, ψ⊥〉 = 0 ⇒
∫

Ω
ψ⊥ dx = 0 (4.2.8)

⇒ ‖ψ⊥‖L2 ≤ CP‖∇ψ⊥‖L2 , (4.2.9)

where we have used the Generalised Poincaré inequality with p(ψ⊥) = |
∫

Ω ψ⊥ dx| = 0
in order to gain equation (4.2.9). Substituting bi(x, t) by our orthogonal decompo-
sition, we arrive at

∂t (a1(t)ψ1(x) + ψ⊥(x, t)) = D4 (a1(t)ψ1(x) + ψ⊥(x, t))
+G(vi, v, b) (a1(t)ψ1(x) + ψ⊥(x, t))

⇒ d
dta1(t)ψ1(x) + ∂tψ⊥(x, t) = D4ψ⊥(x, t) +G(vi, v, b) (a1(t)ψ1(x) + ψ⊥(x, t)) .

Multiplying with ψ⊥ and integrating over Ω leads to

d
dta1(t)

∫
Ω
ψ1(x)ψ⊥(x, t) dx+

∫
Ω
∂tψ⊥(x, t) · ψ⊥(x, t) dx

= D
∫

Ω
4ψ⊥(x, t) ·ψ⊥(x, t) dx+

∫
Ω
G(vi, v, b) (a1(t)ψ1(x) + ψ⊥(x, t))ψ⊥(x, t) dx.

Green’s first identity, equations (4.2.7) and (4.2.8) allow us to simplify∫
Ω

1
2

d
dt (ψ⊥(x, t))2 dx = −D

∫
Ω
〈∇ψ⊥(x, t),∇ψ⊥(x, t)〉 dx

+
∫

Ω
G(vi, v, b) (a1(t)ψ1(x) + ψ⊥(x, t))ψ⊥(x, t) dx

1
2

d
dt‖ψ⊥(t)‖2

L2 +D‖∇ψ⊥(t)‖2
L2 =

∫
Ω
G(vi, v, b) (a1(t)ψ1(x) + ψ⊥(x, t))ψ⊥(x, t) dx

1
2

d
dt‖ψ⊥(t)‖2

L2 + D

C2
P

‖ψ⊥(t)‖2
L2 ≤

∫
Ω
G(vi, v, b) (a1(t)ψ1(x) + ψ⊥(x, t))ψ⊥(x, t) dx,

(4.2.10)

where the last step is due to equation (4.2.9). We aim to apply the following
theorem from Eisenhofer [Eis13]:

Theorem 4.15. Let y(t) and a(t) be non-negative functions with y ∈ C1([t0, t1])
and a ∈ C([t0, t1]) for 0 ≤ t0 < t1 ≤ ∞. If the inequality

d
dty(t) + γy(t) ≤ a(t) (4.2.11)
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is satisfied with γ ≥ 0, then for t0 ≤ t ≤ t1 it holds that

y(t) ≤ y(t0)e−γ(t−t0) +
∫ t

t0
a(s)e−γ(t−s) ds.

If in addition
∫∞

0 a(t) dt < ∞,

y(t) ≤ y(t0)e−γ(t−t0) +
∫ ∞

t0
a(s) ds,

which implies y(t) → 0 for t → ∞.

We set y(t) := ‖ψ⊥(t)‖2
L2 , a(t) :=

∫
Ω G(vi, v, b) (a1(t)ψ1(x) + ψ⊥(x, t))ψ⊥ dx

and find that equation (4.2.10) transforms into equation (4.2.11), with γ = D/C2
P .

The next step is to take a closer look at a(t), using the a-priori estimates of bi as
well as equation (4.2.1a).

0 ≤
∫

Ω
bi(x, t) =

∫
Ω
b0
i (x) +

∫ t

0
∂sbi(x, s) ds dx (4.2.12)

=
∥∥∥b0
i

∥∥∥
L1

+
∫ t

0

∫
Ω
D4bi(x, s) dx︸ ︷︷ ︸

=0

ds+
∫ t

0

∫
Ω
G(vi, v, b)bi(x, s) dx ds

So for all t ≥ 0 ∫ t

0

∫
Ω

−G(vi, v, b)bi(x, s) dx ds ≤
∥∥∥b0
i

∥∥∥
L1

⇒
∫ ∞

0

∫
Ω

−G(vi, v, b) (a1(s)ψ1(x) + ψ⊥(x, s)) dx ds ≤
∥∥∥b0
i

∥∥∥
L1

(4.2.13)

In order to apply equation (4.2.13) to a(t) we note that

a(t) =
∫

Ω
−G(vi, v, b)

(
a1(t)ψ1(x) + ψ⊥(x, t)︸ ︷︷ ︸

≥0

)
(−ψ⊥) dx.

Since we assumed G(vi, v, b) ≤ 0, we can now apply the mean value theorem

a(t) ≤ ‖ψ⊥‖0

∫
Ω

−G(vi, v, b) (a1(t)ψ1(x) + ψ⊥(x, t)) dx. (4.2.14)

Combining equations (4.2.13) and (4.2.14), we gather that
∫∞

0 a(t) dt < ∞,
which lets us apply theorem 4.15. It follows that y(t) = ‖ψ⊥‖2

L2 → 0, which implies
ψ⊥ → 0.

All in all, if G(vi, v, b) ≤ 0 ∀x, t we have

bi(x, t) = a1(t)ψ1(x) + ψ⊥(x, t) → Cψa
∞
1 . (4.2.15)
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A very similar calculation can be done in the case G(vi, v, b) ≥ 0, where we
establish an upper bound in equation (4.2.12) through our a-priori estimate Gmax/µ.

In biological terms this implies that in situations where vi = 0 is the only ESS
(G ≤ 0), or there is only a positive ESS and the starting population is low (G ≥ 0),
the resulting equilibrium population is constant. If, however, that is not the case
and there are for example multiple ESSs, the resulting equilibrium might well be
more complex, as can be seen in chapter 6 (e.g. figure 6.10). Determining such an
equilibrium analytically in the general case is quite difficult, unfortunately.



Chapter 5

Experiments

Frequently, when using mathematical models to explore biological processes, exper-
imental evidence is required to validate certain features of a model, make reliable
predictions or compute parameter values which may be used in numerical simula-
tions. Similarly, experimental findings inspire and help shape mathematical models.
The following chapter is the result of my 6-month research stay at the laboratory
of Stephen Diggle, where I conducted experiments which are also used to explore
some aspects of my model numerically in chapter 6.

The laboratory group itself was based at the University of Nottingham in the
Centre for Biomolecular Sciences. My stay was partially supported by the Erasmus+
program, while the work was supported by a Human Frontier Science Program
Young Investigators grant (RGY0081/2012) and a NERC grant (NE/J007064/1)
to Stephen P. Diggle.

As evolution in bacteria is hard to measure experimentally because of the effort
involved in sampling and sequencing resulting mutants, the focus of the experiments
is on the role of spatiality for producer/non-producer interactions.

5.1 Experimental setup
All the experiments were conducted at the University of Nottingham at the Centre
for Biomolecular Sciences in a laboratory of biosafety level 2 by myself. A FastPrep-
24 5G bead beater (MP Biomedicals) and a Tecan multimode plate reader available
to all laboratory users were used in these experiments.

5.1.1 General Idea
The main hypothesis of this series of experiments can be summarised as

H1 lasI mutants act as cheats in media with adenosine as carbon source.

95
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H2 Higher concentrations of agar limit diffusion of the signal molecule.

H3 With limited diffusion of the signal molecule, the relative fitness of the cheat
will decline.

These hypotheses are meant to explore two new ideas. The first is that, as
assumed in the model itself, quorum sensing (QS) signal is already a public good in
itself and can be cheated against. This has been theorised before, but it is shown
conclusively in these experiments. The second point is that a reduction of cheating
can be achieved by thickening the medium, thus limiting diffusion.

This simple step can already serve to make an in vitro experiment replicate
in vivo conditions more realistically, for example the thick, adhesive mucus that
blocks the airways of cystic fibrosis patients with chronic lung infection.

One important thing to consider when using signal as a public good is the
impact of the QS regulated exoproduct. As secreted exoproducts are public goods
as well, fitness benefit of mutants might be caused by those, instead of signal,
thereby obscuring the role of signal.

For that reason we will use adenosine (Ad) as a carbon source. Adenosine
is deaminated to form inosine, which is degraded inside the cell by a nucleoside
hydrolase (Nuh) to hypoxanthine plus ribose; hypoxanthine is then metabolised
to produce glyoxylate plus urea (Heurlier, Dénervaud, and Haas [HDH06], see
also figure 5.1). QS is crucial to the breakdown of adenosine because the las
system (through the regulator LasR) positively regulates Nuh. Because Nuh acts
intracellularly, any fitness effect of a loss-of-function mutation in the signal gene
lasI in this growth medium will be directly due to the lack of signal and not to any
downstream effect on the production of extracellular enzymes. The signal molecules
of Pseudomonas aeruginosa (P. aeruginosa) are shown in detail in figure 1.2

In order to tune the impact of QS on growth, the total available carbon will be
comprised of casamino acids (CAA) as well as adenosine. CAA is available to all
bacteria, regardless of QS ability.

5.1.2 Materials and Methods
The strains used were the wild-type P. aeruginosa laboratory strain PAO1, lasI
mutant (lasI-) and lasR mutant (lasR-), both isogenic insertion mutants created via
insertion of a gentamicin (Gm) resistance gene in the QS genes lasI respectively
lasR (PAO1 lasI::Gm respectively lasR::Gm), where the latter is used as a negative
control. The growth medium used in these experiments was quorum sensing medium
(QSM), which is specifically designed to make maximal growth dependent upon
lasRI -regulated proteases. As a last step, I added 0.1 % w/v of carbon sources as a
mix of CAA and Ad and the medium was filter sterilised. The exact mixture of
CAA and Ad depended on the experiment in question and is given there.
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Figure 5.1: Schematic representation of adenosine metabolism.
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In order to measure the concentration of QS signal N-3-oxo-dodecanoyl-l-ho-
moserine lactone (3-oxo-C12-HSL) after 48 h of incubation, 100 µL of the culture
supernatant was mixed with the same amount of a log phase culture of an Es-
cherichia coli (E. coli) bioreporter (psB1142). This mixture was incubated for
3 h while luminescence and OD600 were recorded. To estimate 3-oxo-C12-HSL
concentration, the luminescence of unknown samples was then compared to that of
known concentrations. A P. aeruginosa PAO1 strain containing a chromosomal
mini-CTXlux fusion to the lasB promoter (PAO1 lasI- plasB::lux) was used in order
to test 3-oxo-C12-HSL diffusion in different media over the course of 8 h.

A more detailed description of the materials used can be found in Mund, Diggle,
and Harrison [MDH17].

5.2 Cheating in liquid culture
The liquid culture experiments were conducted in 24-well-plates with a volume of
2 mL of media and 2 µL of mixed or pure bacteria cultures. Cultures were incubated
overnight in sterile lysogeny broth (LB) medium and brought to an OD600 of 0.8
(lasI-) respectively 0.9 (PAO1) prior to inoculation. Starting frequency of the
mutant was determined by diluting and plating the starter cultures, in order to
determine the colony forming units (CFU). The plates were then incubated at
37 ◦C with orbital shaking for 24 h or 48 h. After that time, cultures were diluted
and plated on LB as well as LB + Gm(25 µg/mL), in order to count CFU of PAO1
and lasI- in pure and mixed culture.

5.2.1 lasI mutants act as cheats in liquid medium

Looking at the CFU count after 24 h and 48 h, one can notice that with higher
adenosine levels the total CFU count declines (see figure 5.2). As the resulting
CFU count was quite low for 0.1 % Ad the incubation time was chosen to be 48 h
for future experiments. This effect was not as pronounced with pure PAO1 as it
was with lasI-. While all different cultures had a CFU count of around 1 × 108 for
pure CAA, the CFU count dropped to 4.6 % of that amount for pure PAO1 and to
0.1 % for pure lasI- at 0.1 % Ad. As a result, the lasI- in pure adenosine medium
grew to only 7 % of the density of pure PAO1 in the same medium, while mixed
cultures have an in-between value.

From this, it is already apparent that lasI- grows poorly in an environment
where QS is required for growth. We now want to investigate the growth of mixed
populations in more detail. To this end we calculate the amount of doublings the
bacteria undergo in 48 h for PAO1 and lasI- both in pure and mixed culture.
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Figure 5.2: Total CFU after incubation time for different adenosine percentages.
CAA was added to reach 0.1 % carbon source in every culture. With rising Ad
content, growth of cultures was retarded. This effect was more noticeable in lasI-

cultures.
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Figure 5.3: Amount of cell number doublings after 48 h incubation time for PAO1
and lasI- in pure or mixed cultures. One can see that PAO1 cultures have a higher
number of doublings when in pure culture, while the reverse is true for lasI-.
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As we can see in figure 5.3 PAO1 has a higher number of doublings in pure
culture while lasI- tends to have a higher number of doublings in mixed culture.
This implies that adding lasI- to the PAO1 bacteria has a negative impact on their
growth, while the lasI mutants benefit.

Another measure for the relative growth rate of two populations is the relative
fitness, defined as

relFit = fend (1 − fstart)
fstart (1 − fend) , (5.2.1)

where fstart and fend stand for start and end frequency of the focus population,
calculated as the CFU of the focus population divided by the total CFU. A relative
fitness of one therefore indicates fstart = fend, while a value of less than one signifies
relatively poorer growth and vice versa. From here on onwards, we will use lasI-

respectively lasR- as focus population. We can plot the relative fitness values
calculated from our experimental data for different percentages of adenosine and
for pure or mixed culture with figure 5.4 as result.

One can now observe the circumstances under which lasI- grows better or worse
than the PAO1 wild type by comparing the relative fitness values to 1. Looking at
the pure cultures, we recover the same trend as before — with increasing adenosine,
the growth of lasI- is more and more diminished. For mixed cultures, however,
this trend is reversed. In media with both CAA and Ad, lasI- has a relative
fitness of above 1, making it perform better than the wild type does. There is,
however, a decline in relative fitness when all carbon is supplied as Ad. This
is most likely attributable to the wild-type bacteria growing more slowly in the
absence of carbon sources that can be exploited before QS responses are fully
switched on. As we have seen in figure 5.2, CFU count is drastically decreased in
pure Ad. This means the wild-type cells enter an “up-regulated” status later on,
leaving less time to be exploited by the lasI mutant. But even though the relative
fitness in mixed culture may sink below 1, it is still significantly higher than the
relative fitness in pure culture. In fact, the difference between relative fitness of
lasI- in pure or mixed culture is significant in all media except for pure CAA, where
QS is unnecessary (Adenosine level/p-Values: 0 %/0.9692, 0.05 %/4.4787 × 10−4,
0.075 %/3.4198 × 10−5, 0.1 %/0.0049)

All these results indicate that lasI mutants act as cheats in media with adenosine
as carbon source, with 3-oxo-C12-HSL as a public good — they have a lower growth
rate when alone, which is increased in the presence of signal producing wild-type
cells and in turn decrease wild-type growth.
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Figure 5.4: Relative Fitness of lasI- after 48 h incubation time.

5.2.2 Signal production is increased in adenosine

Signal production of wild-type cultures was measured as signal concentration
in cell-free supernatant. After 48 h of growth and extraction of a small volume
for counting purposes, the remaining medium was filter-sterilised to prepare for
measurement.

As described in section 5.1.2, 100 µL of this supernatant as well as a series of
QSM with known concentrations of 3-oxo-C12-HSL were mixed 1:1 with E. coli
bioreporter psB1142. Both luminescence and OD600 of the bioreporter with the
known concentrations are shown in figure 5.5. Luminescence of the bioreporter
was adjusted by its OD600 to account for rising cell numbers during measurement.
One can make out an outlier curve for 0 µm 3-oxo-C12-HSL, which has no further
influence on the calculations. From the time course of luminescence for known
concentrations we choose t = 150 min as a point in time at which the luminescence
for different concentration is markedly different without the bacteria having reached
exponential phase, as indicated by the OD600.

Based on the luminescence of E. coli for our known concentrations, a linear
model is fitted to the calibration curve, linking concentration of 3-oxo-C12-HSL
to luminescence of the bioreporter. As the dependence seems to be parabolic in
type (see figure 5.6), the squared concentration was included as predictor as well.
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(a) OD600 of biosensor psB1142. After 150 min, the curves
start drifting apart.

(b) Luminescence of E. coli biosensor, adjusted by OD600.
At t = 150 min the curves have separated.

Figure 5.5: Time course for calibration series. Different concentration of purified
3-oxo-C12-HSL are shown as different colours, while lines of the same colour indicate
technical repetitions.
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Table 5.1: Estimators for Luminescence

Luminescence ∼ Concentration + Concentration2

Estimate Standard
Deviation t Value p Value

Concentration 5.4 × 106 7.4 × 105 7.3 3.6 × 10−9

Concentration2 8.0 × 109 4.5 × 108 17.6 1.4 × 10−21

Degrees of
Freedom

Sum of
Squares

Mean of
Squares F value p Value

Conc 1 1.3 × 1010 1.3 × 1010 5087.2 <10−16

Conc2 1 8.2 × 108 8.2 × 108 311.0 <10−16

Residuals 44 1.2 × 108 2.6 × 106

The values for this fit can be found in table 5.1. For this fit, two Cook’s distance
outliers have been removed from the data set. They can be identified visually in
figure 5.6.

Having found the correlation between luminescence of the bioreporter and
signal concentration, we can calculate the unknown signal concentration of the wild-
type supernatant. The resulting concentration, as shown in figure 5.7a, declines
with increasing adenosine. But we know from section 5.2.1 that CFU count also
decreases with adenosine. We therefore divide the signal concentration by the CFU
count of the culture which produced it (see figure 5.7b). We can then observe
the reverse trend - signal concentration per CFU increases with Ad level. The
most notable jump occurs for 0.1 % Ad, where the produced concentration jumps
from around 1 × 10−12 µm/CFU to 6.5 × 10−11 µm/CFU. So even though the total
3-oxo-C12-HSL concentration is lowest at 0.1 % Ad, the per capita production is at
its highest.

5.2.3 The cheating benefit is provided by the signal itself
As described in section 5.1.1, the digestion of adenosine is internal and controlled
by the las system. Any benefit that non-producing mutants incur should therefore
be due to 3-oxo-C12-HSL.

In order to check that this hypothesis holds true, two sets of control experiments
have been conducted. First, the same experimental setup has been performed
with lasR- instead of lasI-. LasR- is a signal-blind mutant lacking the las-Receptor,
meaning it cannot respond to the signal in any way. In a setup with adenosine,
it should thus not be able to derive any benefit by being in proximity of PAO1
because it cannot digest adenosine even in the presence of 3-oxo-C12-HSL.
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Figure 5.6: Luminescence for calibration series at t = 150 min (coloured dots),
including the calculated fit (black line) from the generalised linear model.
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Figure 5.7: Calculated signal concentration in bacterial supernatant after 48 h.
While total signal concentration is negatively correlated with Ad percentage, cul-
tures in pure Ad have the highest per-capita production rate. Dots of the same
colour indicate technical repetitions, while different colours indicate the biological
repeats.
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Figure 5.8: Comparison between the relative fitness of lasI and lasR mutant after
48 h. While lasI- has a significantly higher fitness in mixed than in pure culture,
there is no such effect for lasR-. Every dot stands for one measurement.

To simplify comparison, we use equation (5.2.1) to calculate the relative fitness
of lasR- in pure and mixed culture, where mixed again refers to a 1:1 mix with
PAO1. We can then compare the computed values for lasI- and lasR-. It is visually
apparent from figure 5.8, that relative fitness of pure lasR- cultures undergoes
a similar decline with rising Ad level as pure lasI- cultures. At the same time,
where lasI- in mixed culture has a relative fitness significantly greater than that
in pure culture, lasR- relative fitness shows the same trend for both mixed and
pure culture. This shows that lasR mutants are indeed unable to cheat in this
situation, confirming the hypothesis that 3-oxo-C12-HSL, and not some downstream
exoproducts, acts as a public good.

To further confirm this, as a second control experiment both mutants as well as
PAO1 wild-type were again cultivated for 48 h, this time only in pure culture but
with the addition of 10 µm 3-oxo-C12-HSL. This should, in theory, have a similar
effect as co-culturing the mutants with PAO1, as it provides a source of external
signal.

The purified 3-oxo-C12-HSL was helpfully provided by Alex Truman from the
University of Nottingham. As it was solved in methanol, another set of experiments
with the same amount of pure methanol was conducted as proof of the fact that
any changes are not due to addition of methanol. After calculating relative fitness
from the results, we recover the data displayed in figure 5.9. Again we find that
with increasing Ad level the relative fitness of nearly all culture types decreases,
with the only exception of lasI- either in mixed culture or in pure culture with
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added 3-oxo-C12-HSL. Apart from some biological variation in the measurements,
methanol has no effect on relative fitness of cultures, while 3-oxo-C12-HSL has the
same effect as adding PAO1.

Apart from the visual interpretation of the results, one can also fit a generalised
linear model to the data sets in order to assess the influence of the different culture
conditions. This will be undertaken in section 5.4.

5.3 Cheating in solid culture
The experiments in solid media were conducted in 48-well plates with 1 mL culture
volume. The basic QSM remained the same, but was supplemented with 1 % agar,
in order to solidify the culture medium. Since QSM cannot be autoclaved while
agar has to be autoclaved, stocks of doubly concentrated QSM were mixed with
doubly concentrated agar solutions in equal parts. Bacterial cultures were added
while this mix was around 40 ◦C. At this temperature the media was still warm
enough to be in liquid phase and thus allow for distribution of bacterial cultures,
while at the same time being cool enough to prevent hyperthermic cell killing.

In order to count CFU from these solid 1 mL agar cubes, they had to be
liquefied using a bead beater. Due to volume constrains for bead beater tubes, agar
cubes were divided into three parts with a sterile metal spatula and the resulting
re-liquefied volumes remixed before plating out.

5.3.1 Adding agar retards diffusion

As a proof of concept that different agar concentrations have an effect on signal
diffusion I conducted a “sandwich experiment”, consisting of three layers: a bottom
layer of purified 3-oxo-C12-HSL in 0.5 % agar (0.1 mL of 0.5 µm), a middle layer
of different agar concentrations (0.8 mL of 1 % to 4 % Agar) and a top layer of
PAO1 lasI- plasB::lux biosensor in LB with 0.5 % agar (0.1 mL, OD600=0.2). The
signal would over time diffuse trough the middle layer into the top, where it would
induce the bacteria to luminescence. figure 5.10 shows a mock-up of this setup
with food colouring instead of 3-oxo-C12-HSL and biosensor to better illuminate
the concept as well as prove that when poured in a careful manner, the layers do
not immediately mix but rather diffuse with time.

In order to check if higher luminescence was due to increased bacteria num-
ber, CFU were counted after 8 h. The results indicate that there was no large
growth difference between the different agar treatments, see figure 5.10a. However,
treatments with lower agar concentrations did reach higher luminescence values.
Figure 5.10b shows the time curve for these treatments.
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Figure 5.9: Relative fitness of lasI- and lasR- for varying treatments. With higher
Ad concentrations, relative fitness of almost all mutant cultures declines, the only
exceptions being lasI- in mixed culture or with added 3-oxo-C12-HSL.



108 CHAPTER 5. EXPERIMENTS

time

Figure 5.10: Concept of sandwich experiment, done with red food colouring. The
top and bottom layers consist of 0.5 % agar, while the middle part consists of 4 %
agar in these photos. When carefully poured, the layers remain separated at first
and only small molecules diffuse with time.

This indicates different diffusion rates of 3-oxo-C12-HSL in different agar
concentrations. Due to time constraints and difficulty working with higher agar
concentrations, 1 % agar was chosen for the cheating experiments themselves.

5.3.2 Slowing diffusion reduces cheating
As our theory suggests, cheating in 1 % Agar is limited. This can be determined by
comparing the relative fitness of lasI- in the solidified media with the values from
the liquid experiments conducted before. The results are displayed in figure 5.12
and show that while relative fitness in pure culture does not differ much between
liquid and solid media, there is a reduction of relative fitness in mixed culture when
agar is added. The significance of this reduction will be shown in section 5.4.

Looking at the total CFU values after 48 h (accounting for different experiment
volumes, see figure 5.13), one can see that there is not much change for 0 % to
0.075 % Ad. At 0.1 % Ad, however, we have a large increase in CFU for cultures in
solid media. This increase is likely due to nutritional value of agar and thus plays a
larger role in a nutrient-depraved environment such as pure adenosine when signal
concentration is low. As we only compare relative fitness of cultures, this increase
in total CFU does not play a role in our analysis.

5.4 Generalised linear models
In order to assess the importance of the different environmental aspects and the
significance of the findings, the relative fitness values can be fitted by generalised
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0.5 µm 3-oxo-C12-HSL in the bottom layer and different agar concentrations in
between. Lines indicate mean values, while shaded areas indicate standard deviation
around this mean. Although the data is noisy, one can see that there is a clear
trend towards lower luminescence for higher agar values.
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cultures is quite similar, it is continuously lower for 1 % agar in mixed cultures.
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Figure 5.13: Comparison between CFU counts in liquid and solid culture after 48 h.
The only notable difference is an increase in CFU for pure Ad in solid culture.
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Table 5.2: Potential predictors for relative fitness

Description Fitted as Short form

How much adenosine the medium contained continuous
variable Ad

Whether or not the mutant was grown in a
coculture with PAO1 factor Mix

Whether or not the medium was enriched
with 3-oxo-C12-HSL factor C12

Whether or not the medium was solidified
with 1 % agar factor Solid

linear models (GLMs). A look at the typical distribution of the relative fitness
reveals that data with higher mean also shows higher variance. Hence a gamma
distribution was chosen as underlying distribution for all the following GLMs.
Table 5.2 shows the possible predictors for relative fitness. Depending on the
situation, a subset of the possible predictors was chosen for the model. The analysis
was conducted using the R package 3.2.3 and the model with or without interaction
terms chosen depending on goodness of fit.

As a first dataset, we analyse the dependence of lasI- and lasR- fitness on
co-culture and 3-oxo-C12-HSL addition. From figure 5.9 we expect both influences
to be roughly similar. A plot of the GLM with standard deviation as shaded
interval can be found in figure 5.14. We indeed find that Mix and C12 have
a similar influence on the relative fitness. A detailed list of all estimators and
significance values can be found in appendix B. Here we just note that relative
fitness declines with adenosine level for all cultures, as could be seen from the raw
data points before (estimate for Ad −11.79 to −20.92). However, this is offset by
the interaction term of Ad and C12 respectively Mix for lasI- cultures (estimate for
Ad:C12/Ad:Mix 25.14/22.76), leading to a positive slope for lasI- in mixed culture
and with 3-oxo-C12-HSL. There is no such thing for lasR- colonies, and indeed the
interaction term is not significant for them. This reinforces the statement made
earlier: lasI- colonies have a growth advantage over PAO1 when external signal is
supplied in some form that lasR- colonies do not achieve.

In the second analysis we want to compare relative fitness of lasI- in solid and
liquid medium. The raw data in figure 5.12 suggests that for pure cultures, Solid
should not change the behaviour, while the reverse is true for mixed cultures. And
indeed we find that Solid does not have a big impact on pure lasI- cultures - the
interaction term between Ad and Solid is not significant (Ad:Solid p = 0.61), while
Solid on its own, though significant (Solid p = 0.01) has a very small estimator
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Figure 5.14: GLMs of lasR- and lasI- in pure/mixed culture and with/without 3-
oxo-C12-HSL. For lasR-, relative fitness is negatively correlated with Ad percentage
regardless of treatment. In lasI-, both the addition of purified 3-oxo-C12-HSL and
PAO1 lead to a significant increase in relative fitness with Ad.
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Figure 5.15: GLMs of lasI- fitness in liquid and solid media, depending on culture
condition. While there is a positive correlation between Ad concentration and
relative fitness for lasI- in liquid mixed culture, solidifying the media negates this
effect, reverting the correlation back to a negative one as found for pure cultures.
On the other hand, there is no notable difference in relative fitness when adding
agar to pure cultures.

(Ad −20.20, Solid 0.28). At the same time, there is a significant decrease of relative
fitness with Ad level (Ad p < 10−16). For mixed cultures Solid is very significant
(p = 0.001) and the interaction of Ad and Solid leads to a slight negative correlation
of lasI- fitness with Ad in solid culture in contrast to the positive correlation in
liquid culture. As before, a list of all estimators and significance values can be
found in appendix B. We can also visually compare the behaviour in figure 5.15.

These findings emphasise the impact of solidifying the media on relative fitness
and show how important even a very simple spatial structure is. As such, they
not only allow us to estimate parameters for the numerical simulations in the
next chapter, but also encourage the ideas developed in chapters 3 and 4 about
the importance of spatial modelling. Furthermore, our findings regarding growth
rates of different cultures correspond well with the assumptions made in chapter 2
regarding costs and benefit of QS.
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Chapter 6

Numerical implementation

6.1 Setting parameters

We use the experimental data from chapter 5 to derive values for the parameters in
our model. Our aim here was to obtain rough estimates which replicate the general
qualitative behaviour, as opposed to fit the experimental data exactly.

In the experimental set-up, there were two different P. aeruginosa strains
investigated in different conditions: PAO1 bacteria in pure culture, further referred
to as wild-type bacteria (WT), as well as lasI mutants (lasI-) in pure culture and
both WT and lasI- in mixed culture. Going back to chapter 2, we start with the
simplest form of G-function, described in section 2.2.1. We note the shape of
the G-function for the different culture conditions, the average number of colony
forming units (CFU) as well as the amount of doublings in 0.05 % adenosine and
casamino acids (CAA) after 24 h in tables 6.1 and 6.2. To this end, we assume that
wild-type bacteria have a strategy v = 1, lasI mutants a strategy v = 0.

From these doublings, we can calculate a rough estimate of the cultures growth

Table 6.1: Averaged experimental values for 0.05 % adenosine and CAA.

Type CFU at start CFU after 24 h Doublings
WT pure culture 1.2 × 105 3.7 × 107 8.26
lasI- pure culture 1.2 × 105 2.7 × 107 7.79
WT mixed culture 6.0 × 104 5.1 × 106 6.42
lasI- mixed culture 6.2 × 104 2.4 × 107 8.60

115
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Table 6.2: Comparison of G-function shape and calculated growth rates in 0.05 %
adenosine and CAA.

Type G-function estimated growth
rate (1/h)

WT pure
(
Bmax · WT2

WT2+τWT +Bmin

)
e−K − µWT 0.2386

lasI- pure Bmin − µlasI- 0.2251

WT mix
(
Bmax · WT2

WT2+τ(WT+lasI-) +Bmin

)
e−K− µ(WT+lasI-) 0.1854

lasI- mix
(
Bmax · WT2

WT2+τ(WT+lasI-) +Bmin

)
− µ(WT+lasI-) 0.2484

rate (summarized in table 6.2), as

b(24 h) = b0 · e24 h·r

b0 · 2doublings = b0 · e24 h·r

r = doublings
24 h · ln(2).

We can do this calculation for lasI- in pure culture, obtaining

rlasI- = 0.2251 1
h .

The second parameter we want to calculate is µ. As we see a carrying capacity
of about 107 CFU, we use the growth rate of lasI- in pure culture (being the lowest)
to calculate µ through

0.2251 h−1 = µ · 107 CFU
202

µ = 1.8 × 10−6 h−1 CFU−1.

We divide by 202 as we will use a two-dimensional grid with 20 “spaces” in each
direction in our calculations later on. The total amount of bacteria in the grid will
therefore be

20∑
i=1

20∑
j=1

bi,j ≈ 202 · b

if enough time has passed for the bacteria to distribute. As such, we will also adjust
the start and end CFU of the cultures by dividing through 202 for the further
calculations. The CFU at start will be used to calculate the population-dependent
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death rate, while the CFU after 24 h is used in calculating the effect of QS, because
the benefit of QS is more apparent with higher cell numbers.

We start by noting that

Bmin = 0.2251 h−1 + µ · 1.2 × 105 CFU
202 = 0.2256 h−1.

Another short calculations for the two bacteria types in mixed population gives
us

rWT + µ(WT+lasI-)

rlasI- + µ(WT+lasI-)
= e−K = 0.1859

0.2489
⇒ K = 0.2918.

In order to calculate Bmax and τ , we compare wildtype populations growing in
pure and mixed conditions. It holds that

rpure+µWT

=
(
Bmax · 3.7 × 107 CFU/202

3.7 × 107 CFU/202 + τ
+ 0.2256 h−1

)
· e−0.2918

= 0.2391 h−1

rmix+µ(WT+lasI-)

=
(
Bmax · (1.3 × 104)2CFU

(1.3 × 104)2CFU + τ · 7.3 × 104 + 0.2256 h−1
)

· e−0.2918

= 0.1859 h−1

⇒ Bmax · 9.2 × 104 CFU
9.2 × 104 CFU + τ

= 0.1363 h−1

Bmax · 1.7 × 108 CFU
1.7 × 108 CFU + τ · 7.3 × 104 = 0.0699 h−1

⇒ 9.2 × 104

9.2 × 104 CFU + τ
· 1.7 × 108 CFU + τ · 7.3 × 104

1.7 × 108 = 1.9499

⇒ τ = 7.61 × 103 CFU
⇒ Bmax = 0.1024 h−1.

We now have a full set of parameters for the situation with 0.05 % adenosine
and CAA. If we repeat the process for the 0.075 % adenosine, we get the parameters
listed in the first two lines of table 6.3.

The situation for pure CAA and pure adenosine is a bit different. If all carbon
is supplied in the form of CAA the growth rates of all our experimental setups
is equal to 0.269 ± 0.006. We will therefore conclude that QS seems to have no
special impact on the bacteria in this situation.
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Table 6.3: Calculated parameter values for different media.

Bmax a Bmin K µ τ
Media 1/h 1/h 1/(h CFU) CFU
0.05 % Ad 0.1024 0.2256 0.2918 1.8 × 10−6 7.6 × 103

0.075 % Ad 0.091 0.1945 0.1978 2.2 × 10−6 6.1 × 103

0.1 % Ad 0.7186 0.0181 2.459 7.2 × 10−7 1.5 × 105

Table 6.4: Comparison of G-function shape and calculated growth rates in 0.1 %
adenosine.

Type G-function estimated growth
rate (1/h)

WT pure
(

WT2

WT2+τWT + 1
1+a2 +Bmin

)
e−K 0.0608

lasI- pure Bmin 0.0065

WT mix
(

WT2

WT2+τ(WT+lasI-) + 1
1+a2 +Bmin

)
e−K 0.0474

lasI- mix
(

WT2

WT2+τ(WT+lasI-) +Bmin

)
0.0384

For pure adenosine we calculate the growth rate from the doublings after 48 h.
Since the bacteria have not yet reached carrying capacity in this case and exhibit
very slow growth, this will give us more accurate numbers. The resulting estimates
can be found in the last line of table 6.4.

It becomes apparent that it is not possible to proceed analogously in the 0.1 %
Ad case, since we can find no biologically feasible parameters that fit the estimated
growth rates.

Looking at the growth rates again it becomes clear that in mixed culture the
wild type has a higher growth rate than lasI-. For this reason, we suspect that
there might be a private, non-cheatable benefit associated with QS in this medium.
Table 6.4 already shows the appropriate G-function terms for the different cases if
we assume a private benefit as detailed in section 2.2.1. The calculations themselves
then proceed much like before; results can be found in table 6.3.

6.2 Method of lines
If we want to make numerical simulations of the coupled ODE-PDE systems
developed before, the pre-programmed PDE solvers of Matlab will not suffice. In
order to calculate a numerical solution, we must therefore discretise the equations
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Figure 6.1: A basic representation of the method of lines

with respect to both time and space.
The method of lines is a way to discretise a PDE with respect to space, turning

it into a system of coupled ODEs. This system can then be solved using standard
ODE solvers, e.g. Runge-Kutta methods. It is a simple method for cases like ours,
where the exact shape of Ω is not of particular interest. Schiesser [Sch91] introduced
the method for many classes of PDEs in his book. In order to keep the results
demonstrative, we will concentrate on space dimension 2.

The basic idea is to have an evenly spaced grid with distance h. The grid
intersections will then have coordinates (xi, yi), where ∆x = xi − xi−1 = h as well
as ∆y = yi − yi−1 = h for all grid points. In the following, we will assume Ω to be
a square of side length L and require h to be a divider of L, s.t. L = h · (N − 1)
for an N ∈ N. Without loss of generality we can assume the square to have its
lower left corner in the origin. It then holds that xi = (i− 1) · h and thus x1 = 0,
xN = L. Figure 6.1 shows this construction, along with the notation we will adapt,
namely denoting the bacterial population of type k at the grid intersection points
xi and yi as bkij:

bkij(t) = bk(t, xi, xj).

In two-dimensional space, the Laplace transforms to

4bk(t, x, y) = ∂2
xbk(t, x, y) + ∂2

ybk(t, x, y).

It remains to find an approximation to the partial derivatives in the discretised
system. For that, we will use the standard central finite difference schemes with
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second order accuracy, e.g.

∂xb
k
i = bki+1 − bki−1

2h , (6.2.1)

∂2
xb
k
i = bki+1 − 2bki + bki−1

h2 . (6.2.2)

All in all, equation (4.2.1) transforms to a coupled ODE system for bkij and vkij,
namely

∂tb
k
ij = G(vkij, vij, bij) · bkij +D ·

bki+1,j + bki,j+1 − 4bkij + bki−1,j + bki,j−1

h2 , (6.2.3a)

∂tv
k
ij = ε∂1G(vkij, vij, bij). (6.2.3b)

In order to solve the full problem, we need to take care of initial and boundary
conditions. While initial conditions translate into the discretised system without
further problems, one needs to take a bit more care with boundary conditions. In
this case, as there is no loss of bacteria on the boundary, we will assume Neumann
boundary conditions. They translate to

∂xb
k(t, 0, y) = 0, ∂xb

k(t, L, y) = 0,
∂yb

k(t, x, 0) = 0, ∂yb
k(t, x, L) = 0,

and can be reshaped using equation (6.2.1) to get

bki,0 = bki,2, bki,N+1 = bki,N−1, bk0,j = bk2,j, bkN+1,j = bkN−1,j. (6.2.4)

The system of ODEs consisting of (6.2.3) together with (6.2.4) and appropriate
initial conditions is then implemented in Matlab and solved with Runge-Kutta-
techniques. The explicit Matlab code for the calculations themselves can be found
in appendix C.2. It makes use of an explicit Runge-Kutta-Solver inherent in Matlab,
based on the Dormand-Prince method.

6.3 Changes to equation system
When going from the theoretical analysis done in chapters 2 to 4 to a numerically
solvable system, a few changes are usually necessary. For our system, there are
three such changes: We define concrete initial and boundary conditions and modify
the definition of our cost function.
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Figure 6.2: Output of the patches code (see appendix C.1) with 2 species (depicted
in blue and red), a patch size of 4 and a separation of 2.

Initial conditions For initial conditions we will be using patches for b, as we
assume that the subpopulations are mixed but not completely homogeneous in the
beginning. Appendix C.1 displays the code used to create these patches, while
figure 6.2 exemplarily shows the output.

Boundary conditions In chapter 4 we have often assumed homogeneous Robin
boundary conditions, or even more general ones. For our numerical calculations,
we will simplify the boundary conditions to homogeneous Neumann conditions in
order to model the no-flux condition of the experimental system.

Modification of the cost function We also add in a feature of QS that we
have neglected before: the costs of QS depend on the signal level, as QS products
are only produced when the signal level is high enough. For models without abiotic
components, we can achieve this by modifying the cost term from equation (2.1.3)
to

C(vi, v, b) = exp
(
−K · (B(v, b) · vi)2

)
, (6.3.1)

as B(v, b) is a measure for the level of QS. We have not done so before, since it
does not change the analysis qualitatively, but leads to unnecessarily long and
obfuscating terms.

If we already work with explicit model terms for QS signal, we can use this
straight away by setting

C(s, vi) = exp
−K ·

(
s2

s2 + τ 2 · vi
)2
 . (6.3.2)
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Table 6.5: Comparison of relative fitness (see equation (5.2.1)) of different cultures
after 48 h, from numerical simulations and experimental values

liquid solid
Media simulation experiment simulation experiment
0.05 % Ad 2.39 2.68 1.29 1.48
0.075 % Ad 1.56 1.70 0.91 0.94
0.1 % Ad 0.72 0.64 0.54 0.56

6.4 Replicating experimental situations
We first run simulations based completely on the parameters calculated in section 6.1
and check if the qualitative behaviour we find is the same as in the experiments.
For this part, we will use the system analysed in section 4.2, with the changes
discussed in section 6.3. The equations to be solved are

∂tbi(x, t) = G(vi(x, t), v(x, t), b(x, t)) · bi(x, t) +D4bi(x, t), x ∈ Ω
∂bi(x, t)
∂n

= 0, x ∈ ∂Ω
∂tvi(x, t) = ε∂1G(vi(x, t), v(x, t), b(x, t)). x ∈ Ω̄

(6.4.1a)

(6.4.1b)
(6.4.1c)

The only parameter not yet determined is the diffusion coefficient D. Through a
series of simulation runs, we find that simulations with D = 0.1 mm2/h correspond
well to the experiments done in liquid culture, while D = 0.001 mm2/h lets us
replicate the experimental values from solid culture. Table 6.5 gives an overview of
the correspondence between simulation and experiment. The plots for 0.05 % to
0.1 % Ad can be found in figures 6.3 to 6.5. We can see that the lower diffusion
rate of D = 0.1 leads to a fast spatial homogenisation, while D = 0.001 preserves
the initial inhomogeneous structure longer. Consequently, lasI- cannot profit as
much from being in proximity to WT when diffusion is low, which we found to be
true in the experiments. Additionally, the growth advantage of lasI- is diminished
by rising Ad content. This is visually most apparent when comparing the growth
in liquid culture, figures 6.3a, 6.4a and 6.5a.

6.5 Comparing different G-functions
In chapter 2, we have examined two different categories of G-functions, with and
without abiotic components. In addition, we have explored the possibilities for
a private benefit to QS, in addition to public good (PG) production. We now
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(a) Simulation results for D = 0.1.

(b) Simulation results for D = 0.001.

Figure 6.3: Simulation results in 0.05 % Ad. Both WT and lasI- start out with the
same CFU, but lasI- ends with the higher density after 48 h. This effect is more
pronounced in liquid culture (D = 0.1), while the lower diffusion in solid culture
(D = 0.001) preserves the initial inhomogeneous structure.
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(a) Simulation results for D = 0.1.

(b) Simulation results for D = 0.001.

Figure 6.4: Simulation results for parameter values in 0.075 % adenosine.
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(a) Simulation results for D = 0.1.

(b) Simulation results for D = 0.001.

Figure 6.5: Simulation results for parameter values in 0.1 % adenosine.



126 CHAPTER 6. NUMERICAL IMPLEMENTATION

want to explore the behaviour in these cases numerically. In order to keep the
results comparable, the underlying model will remain as before, namely a coupled
ODE-PDE system.

6.5.1 G-function without abiotic components
In this case, the equation system to be solved remains exactly as in equation (6.4.1).
We study the cases investigated in section 2.2.1: a case where there is only the public
benefit to QS, one with private benefits B(vi) and one with a strategy-dependent
death rate.

G(vi, v, b) = B(v, b) · C(vi) − µ‖b‖1

We have seen in our calculations that vi = 0 is the only stable strategy in this
situation. We should therefore have vi → 0, and if Bmin = 0, bi → 0. Yet, when
looking at the simulation results for 3000 h as displayed in figure 6.6, we notice
that this convergence is very slow indeed. A quick calculation of ∂1G and G for
our parameter values confirms that both are close to zero. So even though QS is
theoretically unstable, both cheaters and producers persist alongside each other for
a very long time, albeit at different densities.

G(vi, v, b) =
(

B(v, b) + B(vi)
)

· C(vi) − µ‖b‖1

In section 2.2.1 we have focussed on Hill-terms for B(vi) and realized that the
long-term behaviour is critically dependent on the Hill coefficient h. Figures 6.7
to 6.9 show the results for h = 1, 2 or 3.

As predicted, the behaviour in these cases is quite different. For h ≤ 2 we
postulated that there can only be one positive stationary point for v and if it
is stable, then the zero solution is unstable. This is the case for the parameters
we have calculated. Additionally, we find that for h = 1 the zero solution is not
a stationary point. Thus both strategies converge towards the stable positive
equilibrium, one from above, the other from below. Population 2, which started
out as cheaters, gains QS functionality, while there is reduced production from
population 1. Since reducing production is slower to reach the stable point in this
parameter constellation, population 1 succumbs to the population pressure from
population 2 and dies out (see figure 6.7). This happens on a rather short time
frame of less than 200 h.

For h = 2, we can see from figure 6.8 that once again the strategies converge to
a positive value. But this time the zero solution is a stationary point, although
an unstable one. Hence population 2 cannot gain QS functionality by starting out
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Figure 6.6: Long-term behaviour of two populations with different start strategies,
using a G-function without additions. Both populations numbers are slowly
converging towards zero, with WT having the lower CFU.
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Figure 6.7: Evolution of two populations with different start strategies, using
a G-function with private benefit and a hill factor of h = 1. Note the shorter
time-scale in this plot. Population 1 dies out rather quickly, while population 2
gains the QS functionality, albeit at a low level, and remains at a stable population
level.
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Figure 6.8: Evolution of two populations with different start strategies, using
a G-function with private benefit and a hill factor of h = 2. In this scenario,
population 1 reduces its QS strategy to a lower, but stable value. Population 2 is
unable to compete and dies out.
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Figure 6.9: Evolution of two populations with different start strategies, using a
G-function with private benefit and a hill factor of h = 3. Both population 1 and
2 are coexisting in a stable way with similar CFU. One population is QS active
while the other is not.
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with v2 = 0. The end result is the extinction of population 2, while population 1
remains stable.

All in all, for h ≤ 2 we find that one population is driven to extinction, while
the other stays at a stable level with QS intact at lower levels.

When h > 2, we know from section 2.2.1 that there might be a stable positive
strategy in addition to a stable zero solution. We find this to be the case for h = 3
for our parameters, as one can see in figure 6.9. This means that both population 1
and population 2 remain at stable population and strategy levels, with population 1
practising QS while population 2 consists of cheaters. In this scenario, producers
and non-producers can live side-by-side indefinitely.

Additionally, for h = 3, there might exist unstable positive stationary strategies,
depending on parameter values. For simplicity’s sake, we show the effect for one
population only and set Bmin = 1, K = 0.5 as well as disable cost dependency.
As a result, when set to this unstable state both population and strategy remain
constant, but tend towards either zero or the positive evolutionary stable strategy
(ESS) if perturbed. If the perturbation is not spatially homogeneous, the resulting
stationary state might not be homogeneous as well. One example for such an effect
is shown in figure 6.10.

G(vi, v, b) = B(v, b) · C(vi) − µ(vi)‖b‖1

Instead of a direct private benefit we have also discussed G-functions with strategy-
dependent death rates µ(vi) in section 2.2.1. The explicit function examined in
detail was

µ(vi) = (µmax − µmin) e−dv2
i + µmin.

We know that the behaviour largely depends on the relation between K and
d and between B(v, b), ‖b‖1, ∆µ and K. In order to change the latter of the two
relations, one would have to change some of the “main” parameters we have kept
constant so far. In addition, it is difficult to calculate this value before running the
simulation. It is thus easier to change the relation between K and d, even though
we have raised some concerns about the case K > d in section 2.2.1. Our primary
concern we voiced was about the instability of the positive stationary point v̄i and
the subsequent divergence of the strategy value for large vi. But in praxis, this
instability hardly matters if v̄i is large enough. In fact, one could even relax our
initial assumption from

∃v∗ : ∂1G(v∗, v, b) < 0 ∀vi ≥ v∗

to

∃v∗ > max
{∥∥∥v0

i

∥∥∥
∞

}
: ∂1G(v∗, v, b) < 0
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Figure 6.10: Time evolution of a strategy starting out in an unstable stationary
point with and without perturbation. Without perturbation, the strategy value
remains in the unstable point. With the addition of a small perturbation, it
converges towards the nearest ESS. If the perturbation is sine-shaped, as in this
case, the resulting strategy limit is spatially inhomogeneous.
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without implications. As such, we can safely consider a parameter set with K > d,
as long as v̄i > max{‖v0

i ‖∞}.
Since we have set K = 2.459, the cases d = 2 and d = 3 are of particular

interest. Additionally, we need to specify µmax as well as µmin. We expect that the
constant death rate of µ = 7.24 × 10−7 is the maximal death rate for this model.
For the minimal death rate we roughly assume a reduction to one tenth, so that
µmin = 7.24 × 10−8.

If d = 3, we have K < d and a behaviour very similar to a private benefit with
h = 2: There is a positive stable equilibrium point for vi to which population 1
converges, while the strategy of population 2 is caught in the unstable zero point.
In accordance with these results, population 2 dies out while population 1 remains
at a stable level. The results are shown in figure 6.11.

If d = 2, on the other hand, we have K > d. Since a short calculation for
our parameter values yields v̄i = 108, the critical point is indeed far away from
the interesting strategy value domain. As expected, the populations behave as in
the case without additions, with both populations declining very slowly towards
extinction (see figure 6.12).

6.5.2 G-function with abiotic components
As discussed in section 2.2.2, we can also model the benefit from QS directly
through the signal and enzymes produced. We take the system proposed there and
add in the signal influence on costs:

ṡ = Fs(v, s, b) +Ds 4s,

ė = Fe(v, s, e, b) +De 4e,

ḃi = G(vi, s, e, b) · bi +Db 4bi,

v̇i = ε∂1G(vi, s, e, b),

with

Fs(v, (s, e, b)T ) = αs ·
∑
j

bjv
s
j + βs · s2

s2 + τ 2 ·
∑
j

bjv
s
j − γss,

Fe(v, (s, e, b)T ) = βe · s2

s2 + τ 2 ·
∑
j

bjv
e
j − γee.

It follows that we have to set values for some additional parameters, some of
which we will take from literature while we calculate the others. First, we divide
the total cost for QS into signalling costs and responding costs. As we know that
signalling is the less expensive step, we choose to divide them approximately 1 : 3.
The resulting costs as well as the other parameters are detailed in table 6.6. We
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Figure 6.11: Evolution of two populations with different start strategies, using a
G-function with a strategy-dependent death rate and d = 3. In this scenario, the
reduced death rate serves to stabilize population 1 with its strategy converging
towards the positive ESS, while population 2 declines towards zero.
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Figure 6.12: Evolution of two populations with different start strategies, using a
G-function with a strategy-dependent death rate and d = 2. Both populations
decline towards zero, albeit very slowly, with population 1 having the lower CFU.
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Table 6.6: Standard parameter values for the numeric simulations with abiotic
components

description name value source
signal base production αs 9.2 × 10−5 nmol/(L h) [Fek+10]
enzyme induced production βe 4.8 × 105 mol/(CFU L h) [Vet+98]
signal induced production βs 9.2 × 10−4 nmol/(L h) [Fek+10]
effectiveness of enzyme c1 3.6 × 104 1/(mol h) [BGM95]
food intake of bacteria c2 1 × 10−19 1/(CFU h) [Sim85]
enzyme degradation γe 2.1 × 10−2 1/h
nutrient degradation γn 2.3 × 10−2 1/h
signal degradation γs 5.5 × 10−3 1/h [Eng+07]
enzyme cost Ke 0.14 1
signal cost Ks 5.78 × 10−2 1
replenishment of nutrients n̄0 4 × 10−13 mol/(L h)
signal threshold τ 70 nmol/L [Fek+10]

choose to measure the signal s in nmol/L, the enzyme e and nutrients n in mol/L.
Since the production rates for QS products are usually given as an amount of moles
in the literature, we need to reformulate it. To that end we note that we want our
total area to represent 1 mL, as in the experiments from chapter 5. Like before, we
divide this total volume by the amount of spaces in our grid, getting

V = 1 mL
202 = 2.5 × 10−3 mL

⇒ V −1 = 4 × 105 1
L .

In order to transform our two-dimensional space into three-dimensional volume,
we can continue to think about the spaces in our grid as 1 mm long and imagine a
“height” of 2.5 mm.

G(vi, s, e, b) = B(e, b) · C(s, vi) − µ‖b‖1

If the G-function is structured in this way, signal and enzyme are freely available
to bacteria in the vicinity. We have noted before that this leads to the demise of
cooperators in the long term. Inspired by equation (2.2.30a), we take

n(e, b) = c1e

c2‖b‖1 + γn
· n0

c1e+ γn
,

B(e, b) = Bmax · n(e, b).
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Figure 6.13: Evolution of two populations with different start strategies, using a
G-function dependent on explicit abiotic components without private benefits. The
strategy of population 2 is constantly zero and not shown here. Population 1 dies
out right away, lowering both strategy values in the process. Population 2 remains
stable as long as there are abiotic components left and starts to decline quickly
afterwards.
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The results are shown in figure 6.13. As expected, the cooperators decline after
the initial growth spurt, which leads to lower enzyme concentrations and, ultimately,
to the extinction of both populations. It is notable that after the remaining enzyme
is degraded, this extinction is much quicker than the one predicted by the G-
function without abiotic components (see figure 6.6), though both share the same
ultimate fate.

Private Compartments

In order to model the behaviour of P. aeruginosa when one considers private
compartments, we revisit section 2.2.3. We want to include private compartments
for both signal (si) and enzyme (ei). From equation (2.2.31) we have

ei = βe
θ− + γe

· vei · s2
i

s2
i + τ 2 + θ+

θ− + γe
· e =: E(vei , vsi , e),

where si is the solution of equation (2.2.36):

0 = −s3
i (1 + γsθ

−1) +
(

(αs + βs)ω + s
)
s2
i − τ 2(1 + γsθ

−1)si +
(
αsω + s

)
τ 2

⇔ 0 = αsv
s
i + βsv

s
i · s2

i

s2
i + τ 2 + θ(s− si) − γssi.

While it is possible to solve equation (2.2.36) for si, doing so involves calculating
the root of a cubic polynomial and thus requires a lot of computing time if done
often. For that reason, instead of using a Hill function for activation, we use a step
function, reducing the equation to

0 = αsv
s
i + βsv

s
i · 1≥τ + θ(s− si) − γssi.

For practical purposes, we calculate si by

si := αsv
s
i + θs

θ + γs
, si =

si if si < τ

si + βsvs
i

θ+γs
if si ≥ τ

. (6.5.1)

This leads to a slight underestimation of the actual signal concentration, as
the step function only admits a higher signal production once the base production
is sufficient in order to reach the threshold τ , while a Hill-function term already
admits a partial activation. Figure 6.14 shows a comparison of both versions. There
is however little actual difference in the simulations when using any one of the
activation terms for our parameter values.
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Hill-term Simplification
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(a) Activation of QS, as regulated
by intracellular signal concentration

(b) Resulting extra-
cellular concentration

Figure 6.14: Comparison between the actual activation function using a Hill term
and a step function simplification.

The system to be solved is based on equation (2.2.33) and can be written as

ṡ = λθ ·
∑
j

(bj(sj − s)) +Ds 4s− γss

ė = λ
∑
j

(
bj
(
θ−ej − θ+e

))
+De 4e− γee

ḃi = ((rnn(vi, v, e, b))C(vi) − µ‖b‖1)︸ ︷︷ ︸
G(vi,e,b)

·bi +Db 4bi

v̇i = ε∂1G(vi, v, e, b)

with

n(vi, v, e, b) =
(

c1e

c2‖b‖1 + γn
+ c1E(vei , vsi , e)

c2 + γn

)
· n0

c1

(
e+∑

j
(bjE(vej , vsj , e))

)
+γn

.

It remains to calculate ∂1G(vi, v, e, b). We have

∂1G(vi, v, e, b) = rnn(vi, v, e, b) · ∂vi
C(vi) + rn∂vi

n(vi, v, e, b) · C(vi)

∂vi
C(vi) =

(
∂vs

i
C(vi)

∂ve
i
C(vi)

)
= −2

(
s2
i

s2
i + τ 2

)2

C(vi)
(
Ksv

s
i

Kev
e
i

)
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Table 6.7: Adjusted parameter values for the numeric simulations with private
compartments

name value
αs 2.3 × 105 nmol/(L h)
βe 1.2 × 1015 mol/(CFU L h)
βs 2.3 × 106 nmol/(L h)
λ 4 × 10−10 1
θ 2.6 × 104 1/h
θ+ 10−5 · θ− 1/h

∂vi
n(vi, v, e, b) = c1

c2 + γn
· n0

c1

(
e+∑

j
(bjE(vej , vsj , e))

)
+ γn

·
(
∂vs

i
E(vei , vsi , e)

∂ve
i
E(vei , vsi , e)

)

∂ve
i
E(vei , vsi , e) = βe

θ− + γe
· s2

i

s2
i + τ 2

∂vs
i
E(vei , vsi , e) = βe

θ− + γe
vei · 2siτ 2

(s2
i + τ 2)2 · ∂vs

i
si

∂vs
i
si = (αs + βs)s2

i + αsτ
2

θ
(
3s2

i (1 + γs

θ
) − 2si

(
(αs + βs)v

s
i

θ
+ s

)
+ (1 + γs

θ
)τ 2
)

where the last equation is gained by deriving equation (2.2.36) with respect to vsi .
Due to the shift from extra- to intracellular production of QS products, we

need to recalculate some parameters that depend on volume. We assume that
a bacterial cell has an inside volume of 1 × 10−15 L and recalculate the values of
αs, βs, βe based on this number. Additionally, we have

λ = Vintracellular

Vextracellular
= 1 × 10−15 L

2.5 × 10−6 L .

For θ, we take a rather high value to model the high permeability of the
bacterial cell membrane for QS signal found in experiments. A summary of the
new parameter values can be found in table 6.7.

The result depends on the magnitude of θ−, as might be expected. For θ−

small, a large part of the QS enzymes produced remain with the producing bacteria
and provide private benefits. Accordingly, cheating bacteria die out (figure 6.15).
Again, this process happens faster than when modelling the behaviour without
explicit abiotic terms.

If on the other hand θ− is large, more enzyme is freely available to all bacteria,
which leads to coexistence (figure 6.16). It is however noticeable that non-producing
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Figure 6.15: Evolution of two populations with different start strategies, using a
G-function dependent on explicit abiotic components with private benefits and
θ− = 2.6. The strategy of population 2 is constantly zero and not shown here. Note
the short time-scale. QS strategy as well as population numbers of population 1
remain stable, while population 2 dies off.
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Figure 6.16: Evolution of two populations with different start strategies, using a
G-function dependent on explicit abiotic components with private benefits and
θ− = 2.6 × 104. The strategy of population 2 is constantly zero and not shown
here. With this higher exchange rate, population 1 reaches a high number of CFU
quickly, while population 2 takes longer to grow but eventually surpasses the other.
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Figure 6.17: Simulation results for an ODE system with a plain G-function and
two populations. Both populations decline after the initial growth spurt.

bacteria grow more slowly, as it takes time for QS enzymes to diffuse from the
producing bacteria. But in the long term they are able to reach the same number
or even outgrow the cooperators.

6.6 Comparing different equation systems
Having seen how the shape of the G-function influences the competition outcome
between cooperators and QS-Cheaters, we now ask how the choice of equation
system influences said outcome. In chapters 3 and 4, we have seen a variety of
equation systems that could describe the QS interactions. We will restrict ourselves
to a basic G-function without additions in these cases, so as to keep the results
comparable.

6.6.1 ODE system
When passing from a PDE system with explicit spatial variables to an ODE system,
we need to adjust the death rate µ. As we have divided the total amount of bacteria
by 202 before, we now gain the adjusted death rate µ by dividing our former rate
by 202. This gives a value of µ = 1.81 × 10−9.

As we already expect from our analytical results in section 3.1, there is no
stable strategy different from zero and both populations as well as strategies are on
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Figure 6.18: Simulation results for an ODE system with a mixing term of m = 0.5
and two populations. We can see that the strategy of population 1 declines towards
zero, while both populations are growing.

a decline (see figure 6.17). The speed of this decline is comparable to the coupled
system from section 6.5.1, shown in figure 6.6.

6.6.2 ODE system with mixing
One way to achieve spatial effects with ODEs is to introduce a mixing parameter
m, as detailed in section 3.3 and Appel [App16]. While Appel investigates the
behaviour for many different values of the mixing parameter, m, we will just
exemplarily pick m = 0.5 and m = 0.

For m = 0.5, we find that population 1, starting out with a strategy of 1
and thus a full producer, is able to increase in population (see figure 6.18). The
“cheater” population 2 still has a growth advantage, but on a much lower level.
This is mainly due to the decline in strategy value that population 1 undergoes in
this scenario — m is large enough to allow growth and subsequent evolution of the
population, but too small for a positive value of vi to be stable.

For m = 0, the situation is quite different. Here, the non-producer population
2 is unable to derive any benefit from being in close contact with the producer
population 1, while they in turn gain the entire benefit from QS. This leads to
a sharp decline for population 2, whereas population 1 grows towards a stable
population size. At the same time, the strategy values remain stationary, as
displayed in figure 6.19.
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Figure 6.19: Simulation results for an ODE system with a mixing term of m = 0,
i.e. a separated system. In this scenario, the non-producer population 2 cannot
survive, while population 1 remains QS active and converges towards a stable
population level. Both strategies remain unchanged.

6.6.3 ODE system with external influence

We implement the simplified influx term as specified in equation (3.2.2), and solve
the corresponding ODE system. At first, the behaviour resembles the one without
additions, as seen in figure 6.20. But when looking at a longer time scale, the
strategy value of population 1 declines until quite close to zero, while the population
itself is able to stabilize. At the same time, the rise and evolution of population 1
sparks the extinction of population 2.

6.6.4 Coupled ODE-PDE system

We have already seen the results of this system in section 6.5.1. They are quite
comparable to the results from an unmodified ODE system, as shown in section 6.6.1.

6.6.5 Fully parabolic PDE system

In this version, not only the bacteria, but also the strategies underlie diffusion.
Numerically, it is quite simple to implement diffusion via method of lines for the
strategies as well.
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Figure 6.20: Simulation results for an ODE system with external influence, on two
different time scales. Population 1 very slowly reduces their strategy to a near-zero
level, where it stabilises. At the same time, population 2 dies off after dominating
the other initially. After this event, the population count of population 1 remains
constant.



6.6. COMPARING DIFFERENT EQUATION SYSTEMS 147

The behaviour is very similar, too. When taking a G-function without additions,
both strategies as well as populations decline as they did for the coupled system, with
no discernible differences in population numbers. We can gather from figure 6.21
that the only notable difference is the “smoothness” of the strategy data.

The magnitude of strategy diffusion has no strong influence on this behaviour.
Changing Dv from 0.01 ·Db to 100 ·Db results in a deviation of only 1.5 %.

6.6.6 Quasilinear PDE system
In contrast to section 6.6.5, we forgo the autonomous strategy diffusion, using the
same diffusion constant as the bacterial population, but add an advection term.
The resulting equation for vi has been described in equation (4.1.2b):

∂tvi(x, t) = ε∂1G
(
vi(x, t), v(x, t), b(x, t)

)
+D4vi(x, t) + 2D∇bi(x, t) · ∇vi(x, t)

bi(x, t)
.

(4.1.2b revisited)

By using the central finite difference scheme proposed in equation (6.2.1), we
can write

2D∇bk · ∇vk

bk
= 2D

bk

(
∂xb

k∂xv
k + ∂yb

k + ∂yv
k
)

= 2D
bkij

(
bki+1,j − bki−1,j

2h ·
vki+1,j − vki−1,j

2h +
bki,j+1 − bki,j−1

2h ·
vki,j+1 − vki,j−1

2h

)

= D

2h2bkij

(
(bki+1,j − bki−1,j)(vki+1,j − vki−1,j) + (bki,j+1 − bki,j−1)(vki,j+1 − vki,j−1)

)
.

In this way, our quasilinear system can be solved by the method of lines as well.
As one can see when comparing PDE systems in figure 6.22, the results do not
differ from those without advection, except for a minor drop in strategy value.

One can however find a slight difference in strategy evolution when looking at
a different start situation. To that end we define the function

ψ(x, y) =
ε+ 1 + cos

(
π
r

·
√

(x− a)2 + (y − a)2
)

if (x, y) ∈ Br(a)
ε if (x, y) 6∈ Br(a)

,

where r and a are parameters defining the centre and radius of the resulting “hump”
and Br(a) the ball around a with radius r. We scale ψ so that the overall starting
CFU remains the same and fix different centres for two populations in order to
observe the spatial behaviour better. With this starting condition, we regain the
same overall behaviour as before, namely a cheater population whose growth is
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Figure 6.21: Simulation of three different PDE systems with the patches start.
Population numbers (first 2 rows, blue/yellow) remain the same across the different
systems, strategy evolution (last 3 rows, red) deviates slightly.
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Figure 6.22: Simulation of three different PDE systems with ψ(x, y) as start.
Population numbers (first 2 rows, blue/yellow) remain the same across the different
systems, but the strategy evolution (last 3 rows, red) differs.
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dependent on a declining WT population. But there is a difference in the evolution
of strategy between the three PDE systems.

This difference is quite small between the coupled ODE-PDE and the fully
parabolic system, consisting mostly of a difference in “smoothness” caused by the
smoothing properties of the Laplacian. The added advection term in the quasilinear
system, on the other hand, influences the strategy evolution perceptively. That is
especially apparent with low bacteria numbers, since

∂1G(vi, v, b) = C ′(vi)B(v, b),

where B(v, b) scales with the amount of producing bacteria. Thus, when bacteria
numbers are low, the rate of change for the strategy goes to zero. But the quasilinear
system mitigates this behaviour by introducing an advection term which is not
negatively dependent on the bacteria numbers. All in all, it follows that the strategy
value in populations with low CFU count is more subject to change in quasilinear
systems than it is in coupled or fully parabolic systems. This effect can be seen in
figure 6.22.



Chapter 7

Conclusion

In this thesis, we have developed several models to investigate quorum sensing in
P. aeruginosa, focussing on evolutionary forces and population development in
spatially organised communities. Previous studies [Bro07; CMF12; CRL09; Mel+10;
Rum+12; DCG12] had indicated that both assortment and private benefits might
help stabilise cooperation through QS and we have indeed found correlations
between these effects and ESSs.

We have considered simplified models at first, using ODE systems as basis
and foregoing explicit modelling of QS molecules. We found that when QS has
a purely public benefit without any assortment, QS is evolutionary unstable, as
has been shown experimentally [Rum+09; MDH17]. But we have also shown that
this instability persists both when changing the underlying system to a PDE or
coupled ODE-PDE model as well as when modelling abiotic terms explicitly. We
established that in order to stabilise cooperation, it was necessary to introduce
some kind of external separation.

This separation could take the form of a mixing factor which determines the
strength of interaction between bacteria. In systems with a low mixing factor, QS
serves more as a self-inducing mechanism than as a group behaviour and there
exist positive ESSs. We have found evidence of such behaviour in our experiments,
where a reduced diffusion led to less cheating behaviour and higher relative fitness
for the QS-active subpopulation [MDH17].

Another variant is a process of segregation and re-mixing, modelled by external
influxes. It represents migration of bacteria from a well-mixed, planktonic state
into segregated micro-colonies and back again. Depending on parameter values,
such a system can admit a positive ESS [Mun+16].

If we do not enforce spatial effects through such mechanisms, but work directly
with spatial variables in a PDE system, the stability of QS is dependent on the G-
function we apply. G-functions that admit a private benefit for QS-active bacteria,
either directly or by reducing cell death, allow for the existence of positive ESSs.
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For a certain class of benefit terms subpopulations engaging in QS can even coexist
indefinitely with non-producers.

Besides consideration of long-term behaviour, we have also explored existence
and uniqueness of solutions to the systems. Proving and applying a theorem about
the existence of coupled upper-lower solutions has established the existence of
strong solutions to a broad class of PDE systems, ours included, provided the
functions involved fulfil certain smoothness assumptions. In the case of coupled
ODE-PDE systems, we have successfully applied fixed point theorems to gain
existence and uniqueness results. We were also able to demonstrate the asymptotic
behaviour for some special cases of G-functions, including all systems with only
zero for ESS.

We have also employed numerical methods to showcase the behaviour and
confirm our results. This allowed us to explore the systems in a range of conditions.
While we have not found much difference between simulations of different PDE
systems, changing G-functions as well as certain key parameters had a profound
impact on both evolutionary and population dynamics, as we had predicted.

Naturally, there are still open questions. For all our models, we have assumed
that bacteria that share a genotype also exhibit the same phenotype. This might
not hold true for QS: bacteria may have intact QS genes while not participating
in the QS process. Such a mechanism changes the dynamics of the cooperation,
as the fitness benefit of this kind of “cheating” bacteria results in an increased
reproduction rate of bacteria with intact QS genes [HS15]. There are also other
mechanisms that might help stabilize QS that we have not explored, such as policing
or kin selection [for an overview, see RGK14].

Furthermore, it has been reported that QS plays a role in antibiotic resistance,
both directly [Lih+13] and indirectly by regulating biofilm formation [Dav+98].
While we have made some approaches to this topic by considering a strategy-
dependent death rate, integrating these dynamics in more detail could be of further
interest, as the complex interplay between QS, biofilm formation and antibiotic
resistance has a profound impact upon medical treatment strategies.

From a mathematical point of view, another interesting expansion would be
a strategy-dependent diffusion rate. This would require an in-depth look at the
foundations of the G-function ansatz but would potentially allow for Turing-type
perturbations in PDE systems.
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Appendix A

Theorems

A.1 Norms, spaces and properties
Definition A.1 (Sum of derivatives). The symbol Dj

xu denotes any derivative of
a function u(x) with respect to x of order j, and we denote the summation over all
possible such derivatives of order j by∑

(j)
Dj
xu.

Definition A.2 (Norms for C l,l/2). Let l be a positive, non-integral number. For
the Banach space C l,l/2 of functions u(x, t) that are continuous in QT = Ω × [0, T ],
together with all derivatives of the form Dr

tD
s
x, for 2r + s < l and have finite norm

‖u‖l,QT
, we define the following norms in the style of Ladyzenskaja, Solonnikov,

and Uralceva [LSU67]:

(i) ‖u‖l,QT
= 〈u〉(l)

QT
+

blc∑
j=0

〈u〉(j)
QT

,

(ii) 〈u〉(0)
QT

= |u|(0)
QT

= max
QT

|u|,

(iii) 〈u〉(j)
QT

=
∑

(2r+s=j)
|Dr

tD
s
xu|(0)

QT
,

(iv) 〈u〉(l)
QT

= 〈u〉(l)
x,QT

+ 〈u〉(l/2)
t,QT

,

(v) 〈u〉(l)
x,QT

=
∑

(2r+s=blc)
〈Dr

tD
s
xu〉(l−blc)

x,QT
,

(vi) 〈u〉(l/2)
t,QT

=
∑

0<l−2r−s<2
〈Dr

tD
s
xu〉( l−2r−s

2 )
t,QT

,
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(vii) 〈u〉(α)
x,QT

= sup
(x,t),(x′,t)∈QT

|x−x′|≤ρ0

|u(x, t) − u(x′, t)|
|x− x′|α

, 0 < α < 1,

(viii) 〈u〉(α)
t,QT

= sup
(x,t),(x,t′)∈QT

|t−t′|≤ρ0

|u(x, t) − u(x, t′)|
|t− t′|α

, 0 < α < 1.

Definition A.3 (Norms for C l). Let l be a positive, non-integral number. For the
Banach space C l of continuous functions u(x) that have continuous derivatives up
to order blc in Ω and finite norm ‖u‖l,Ω, we define the following norms in the style
of Ladyzenskaja, Solonnikov, and Uralceva [LSU67]:

(i) ‖u‖l,Ω = 〈u〉(l)
Ω +

blc∑
j=0

〈u〉(j)
Ω ,

(ii) 〈u〉(0)
Ω = |u|(0)

Ω = max
Ω

|u|,

(iii) 〈u〉(j)
Ω =

∑
(j)

∣∣∣Dj
xu
∣∣∣(0)

Ω
,

(iv) 〈u〉(l)
Ω =

∑
(blc)

〈D(blc)
x u〉(l−blc)

Ω ,

(v) 〈u〉(α)
Ω = sup

x,x′∈Ω
|x−x′|≤ρ0

|u(x) − u(x′)|
|x− x′|α

, 0 < α < 1.

Definition A.4 (Norms for Lp). Let 1 ≤ p < ∞. We define the Banach space Lp
of integrable functions u(x) that have finite norm ‖u‖Lp, with the norm defined in
the usual way:

‖u‖Lp =
(∫

Ω
u(x)p dx

)1/p
.

Definition A.5 (analytic). A map f : U ⊂ X → Y , with U open, is analytic in
U if f is infinitely often differentiable at each point of U and if, for each x ∈ U ,
there exists δ = δ(x) > 0 so that whenever ‖h‖X ≤ δ,

f(x+ h) =
∞∑
k=0

1
k!f

(k)(x)(hk),

the series converging in Y-norm uniformly in ‖h‖X ≤ δ.
An equivalent condition is that, for some δ > 0, there exists a constant M =

M(x, δ) so that
1
k!
∥∥∥f (k)(x)

∥∥∥δk ≤ M < ∞, ∀k ≥ 0.



A.2. INEQUALITIES 165

A.2 Inequalities
Theorem A.1 (Grönwall’s inequality). Let I denote an interval of the real line of
the form [a,∞) or [a, b] or [a, b) with a < b. Let α, β and u be real-valued functions
defined on I. Assume that β and u are continuous and that the negative part of α
is integrable on every closed and bounded subinterval of I.

(a) If β is non-negative and if u satisfies the integral inequality

u(t) ≤ α(t) +
∫ t

a
β(s)u(s) ds, ∀t ∈ I,

then

u(t) ≤ α(t) +
∫ t

a
α(s)β(s) exp

(∫ t

s
β(r) dr

)
ds, t ∈ I.

(b) If, in addition, the function α is non-decreasing, then

u(t) ≤ α(t) exp
(∫ t

a
β(s) ds

)
, t ∈ I.

[see Bel43]

Theorem A.2 (Generalised Poincaré inequality). Let Q be a bounded and Lipschitz
set in Rn, and let p be a continuous seminorm on H1(Q) which is a norm on the
constants (p(a) = 0, a ∈ R ⇒ a = 0). Then there exists a constant c depending
only on Q such that

‖u‖L2 ≤ c(Ω) (‖∇u‖L2 + p(u)) , ∀u ∈ H1(Ω).

[see Tem97, p.51f]
Examples for p are

p(u) =
∣∣∣∣∫

Ω
u(x) dx

∣∣∣∣ ,
p(u) = ‖u‖L2(ω), ω ⊂ Ω,measω > 0

p(u) =
(∫

Γ
|γ0u|2 dt

)1/2
.
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Theorem A.3 (Poincaré inequality). Let p, so that 1 ≤ p ≤ ∞ and Ω a subset
with at least one bound. There then exists a constant C, depending only on Ω and
p , so that, for every function u of the W 1,p

0 (Ω) Sobolev space,

‖u‖Lp(Ω) ≤ C‖∇u‖Lp(Ω).

[see Eva10, Theorem 3, p.279f]

Theorem A.4 (Comparison theorem). Let v(x, t) and w(x, t) be continuous func-
tions in Q̄T , and let the first two x-derivatives and the first t-derivative be continuous
in Q̄T . Let F (x, t, p, pi, pij) be a continuous function together with its first derivative
with respect to the phk in a domain E containing the closure of the set of points
(x, t, p, pi, pij) where

(x, t) ∈ QT , p ∈ (v(x, t), w(x, t)),

pi ∈
(
∂v(x, t)
∂xi

,
∂v(x, t)
∂xi

)
, pij ∈

(
∂2v(x, t)
∂xi∂xj

,
∂2v(x, t)
∂xi∂xj

)

here (a, b) denotes the interval connecting a to b. Assume also that ∂F
∂phk

is a positive
semi-definite matrix. If

∂v

∂t
> F

(
x, t, v,

∂v

∂xi
,
∂2v

∂xi∂xj

)
in QT , (A.2.1)

∂w

∂t
≤ F

(
x, t, w,

∂w

∂xi
,
∂2w

∂xi∂xj

)
in QT , (A.2.2)

and if either

v > w on B + ST , (A.2.3)

or

v > w on B, (A.2.4)
∂v

∂n
+ β(x, t, v) < ∂w

∂n
+ β(x, t, w) on ST . (A.2.5)

then also v > w in QT .

[see Fri64, Theorem 16, p.52f]
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A.3 Fixed point theorems
Theorem A.5 (Banach fixed-point theorem). Let (X, d) be a non-empty complete
metric space with a contraction mapping T : X → X. Then T admits a unique
fixed point x∗ in X.

[see Ban22, p. 160]

Theorem A.6 (Schauder fixed-point theorem). Let X be a non-empty closed
convex subset of a Banach Space V . If T : X → X is continuous with a compact
image, then T has a fixed point.

[see Sch30]

Theorem A.7 (Arzelà-Ascoli). Let (X, d) be a compact metric space, and let
M ⊂ C(X), where C denotes as usual the space of continuous functions equipped
with the supremum. If M fulfils

(i) M is bounded,

(ii) M is closed,

(iii) M is equicontinuous, i.e.

∀ε > 0∃δ > 0∀x ∈ M : d(s, t) ≤ δ ⇒ |x(s) − x(t)| ≤ ε

then M is compact.

[see Wer07, theorem II.3.4]

A.4 Uniqueness, Existence
Theorem A.8 (Rolle’s theorem). Let f ∈ C([a, b]) be a real-valued function, that
is differentiable on the open interval (a, b).If f(a) = f(b), then there exists at least
one c ∈ (a, b) such that

f ′(c) = 0.

Königsberger [see Kön92, p.134]
The following theorems are concerned with norms of the solution u of

Lu(x, t) = f(x, t) in D, (A.4.1a)
u(x, 0) = u0(x) on B̄, (A.4.1b)

∂u(x, t)
∂n(x, t) + β(x, t)u(x, t) = ψ(x, t) on S, (A.4.1c)
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Theorem A.9. Assume that u(x, t) ∈ C2,1(D) is a solution of

ut −
∑
i,j

aij(x, t, u)∂xi
∂xj

u+ b(x, t, u, ux) = 0 in D

∂u

∂n
+ ϕ(x, t, u) = 0 in S

u(x, 0) = u0(x) in B

where the functions aij, b, ϕ are subject to the following conditions for |u| ≤ M ,
(x, t) ∈ D

µ̂ξ2 ≤
∑
i,j

aij(x, t, u)ξiξj ≤ µξ2 ∀ξ ∈ R (A.4.2a)

|∂uaij|, |∂xaij|, |∂taij|,
∣∣∣∂2
uaij

∣∣∣, |∂u∂xaij|, |∂u∂taij|, |∂x∂taij| ≤ µ (A.4.2b)
|b(x, t, u, p| ≤ µ(1 + p2) (A.4.2c)

|∂pb|(1 + |p|) + |∂ub| + |∂tb| ≤ µ(1 + p2) (A.4.2d)
|ϕ|, |∂uϕ|, |∂xϕ|, |∂tϕ|,

∣∣∣∂2
uϕ
∣∣∣, |∂u∂xϕ|, |∂u∂tϕ| ≤ µ (A.4.2e)

and S ∈ C2. Then, if supD |u| ≤ M it holds that

sup
D

|ux| ≤ M1, ‖u‖1+δ ≤ C,

where M1, δ, C depend only on M, c, µ, ‖u0(x)‖2 and S.

For a proof of this statement, see Ladyzenskaja, Solonnikov, and Uralceva
[LSU67, Theorem 7.2].

Theorem A.10 (boundary Schauder estimates). Let L be defined as before. If the
following conditions hold:

1. The coefficients of L are locally Hölder continuous with coefficient α ∈ (0, 1).

2. For any (x, t) ∈ D and for any real vector ξ:
n∑

i,j=1
aij(x, t)ξiξj ≥ K|ξ|2,

3. β(x, t) ∈ H1+α,

4. f(x, t) ∈ Hα, ψ(x, t) ∈ H1+α, u
0(x) ∈ H2+α,

5. S ∈ H2+α,
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then there exists a unique solution u(x, t) of equation (A.4.1) and a constant C
such that

‖u‖2+α ≤ C
(

‖f‖α + ‖ψ‖1+α +
∥∥∥u0

∥∥∥
2+α

)

[see Lie86, Theorem 5]

Theorem A.11 (Schauder estimates). Let L be defined as before. If the following
conditions hold:

1. The coefficients of L are locally Hölder continuous with coefficient α ∈ (0, 1),

2. β(x, t) ∈ H1+α,

3. f(x, t) ∈ Hα, ψ(x, t) ∈ H1+α, φ(x) ∈ H2+α,

4. S ∈ H2+α,

then there exists a unique solution u(x, t) of

Lu(x, t) = f(x, t) in Ω × (0, τ),
∂u(x, t)
∂n(x, t) + β(x, t)u(x, t) = ψ(x, t) on S, u(x, 0) = φ(x) in Ω,

and a constant C such that

‖u‖2+α,Q̄T
≤ C

(
‖f‖α,Q̄T

+ ‖ψ‖1+α,ST
+ ‖φ‖2+α,Ω

)
.

If u(x, t) satisfies a Dirichlet condition instead, i.e. solves

Lu(x, t) = f(x, t) in Ω × (0, τ),
u(x, t) = ψ(x, t) on S, u(x, 0) = φ(x) in Ω,

then it holds that

‖u‖2+α,Q̄T
≤ C

(
‖f‖α,Q̄T

+ ‖ψ‖2+α,S + ‖φ‖2+α,Ω

)
.

[see LSU67, Theorem 5.2,5.3, p.322]
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A.5 Asymptotic behaviour
Definition A.6 (dissipative).

‖S(t)u0‖Φ ≤ Q(‖u0‖Φ)e−αt + C∗ u0 ∈ Φ

Where ‖·‖Φ is a norm in the function space Φ and the positive constants α and
C∗ and the monotonic function Q are independent of t and u0.

Efendiev [see Efe13, p.19]

Definition A.7 (Global attractor). A set A ⊂ Φ is a global attractor for the
semigroup S(t) if

1. A is compact in Φ;

2. A is strictly invariant: S(t)A = A ∀t ≥ 0;

3. A is an attracting set for the semigroup S(t): lim
t→∞

distH(S(t)B,A) = 0 with
distH(X,Y ) := sup

x∈X
inf
y∈Y

d(x, y).

Definition A.8 (Exponential attractor). A set M is an exponential attractor for
S(t) in H if

1. it is compact in H

2. it is positively invariant, i.e. S(t)M ⊂ M, ∀t ≥ 0

3. it has finite fractal dimension,

4. it attracts exponentially fast the bounded sets of initial data in the following
sense: there exists a monotonic function Q and a constant α > 0 such that

∀B ⊂ H bounded, distH(S(t)B,M) ≤ Q(‖B‖H)e−αt, t ≥ 0

If S(t) possesses an exponential attractor M, then it also possesses the global
attractor A ⊂ M and M is a compact attracting set.

Efendiev [see Efe13, p. 27]
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Table B.1: Estimators for lasR- ∼ Ad + Mix

Relative Fitness ∼ Adenosine + Mix

Estimate Standard
Deviation t Value p Value

(Intercept) 0.52 0.23 2.24 3.3 × 10−2

Adenosine −11.79 3.03 −3.89 5.4 × 10−4

Mix −0.84 0.22 −3.77 7.5 × 10−4

DoF Deviance Res.
DoF

Residual
Deviance F value p Value

NULL 31 23.39
Ad 1 5.67 30 17.72 14.09 7.8 × 10−4

Mix 1 5.54 29 12.18 13.76 8.7 × 10−4

AIC 21.64

Table B.2: Estimators for lasR- ∼ Ad + C12

Relative Fitness ∼ Adenosine + C12

Estimate Standard
Deviation t Value p Value

(Intercept) −0.03 0.21 −0.12 9.0 × 10−1

Adenosine −15.43 2.74 −5.63 4.9 × 10−7

C12 0.37 0.20 1.81 7.5 × 10−2

DoF Deviance Res.
DoF

Residual
Deviance F value p Value

NULL 63 70.14
Ad 1 15.37 62 54.77 23.36 9.4 × 10−6

C12 1 2.15 61 52.62 3.27 7.6 × 10−2

AIC 42.197
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Table B.3: Estimators for lasR- ∼ Ad * C12

Relative Fitness ∼ Adenosine * C12

Estimate Standard
Deviation t Value p Value

(Intercept) −0.07 0.26 −0.26 8.0 × 10−1

Adenosine −14.71 3.89 −3.78 3.6 × 10−4

C12 0.45 0.37 1.22 2.3 × 10−1

Ad:C12 −1.46 5.50 −0.27 7.9 × 10−1

DoF Deviance Res.
DoF

Residual
Deviance F value p Value

NULL 63 70.14
Ad 1 15.37 62 54.77 23.24 1.0 × 10−5

C12 1 2.15 61 52.62 3.25 7.6 × 10−2

Ad:C12 1 0.03 60 52.59 0.05 8.3 × 10−1

AIC 44.155

Table B.4: Estimators for lasI- ∼ Ad * Mix

Relative Fitness ∼ Adenosine * Mix

Estimate Standard
Deviation t Value p Value

(Intercept) 0.47 0.21 2.24 2.7 × 10−2

Adenosine −20.92 3.12 −6.70 6.9 × 10−10

Mix 0.20 0.30 0.66 5.1 × 10−1

Ad:Mix 22.76 4.42 5.15 1 × 10−6

DoF Deviance Res.
DoF

Residual
Deviance F value p Value

NULL 125 164.95
Ad 1 1.78 124 163.17 2.09 1.5 × 10−1

Mix 1 59.44 123 103.73 69.63 1.3 × 10−13

Ad:Mix 1 14.83 122 88.91 17.37 5.8 × 10−5

AIC 254.92
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Table B.5: Estimators for lasI- ∼ Ad * C12

Relative Fitness ∼ Adenosine * C12

Estimate Standard
Deviation t Value p Value

(Intercept) 0.26 0.36 0.72 4.7 × 10−1

Adenosine −16.40 5.31 −3.08 3.1 × 10−3

C12 −0.04 0.51 −0.07 9.4 × 10−1

Ad:C12 25.14 7.51 3.35 1.4 × 10−3

DoF Deviance Res.
DoF

Residual
Deviance F value p Value

NULL 63 92.90
Ad 1 2.37 62 90.53 1.92 1.7 × 10−1

C12 1 23.61 61 66.93 19.12 5.0 × 10−5

Ad:C12 1 11.98 60 54.95 9.70 2.8 × 10−3

AIC 139.07

Table B.6: Estimators for pure cultures, lasI- ∼ Ad + Solid

Relative Fitness ∼ Adenosine + Solid

Estimate Standard
Deviation t Value p Value

(Intercept) 0.43 0.12 3.64 4.0 × 10−4

Adenosine −20.20 1.55 −13.03 <10−16

Solid 0.28 0.11 2.49 1.4 × 10−2

DoF Deviance Res.
DoF

Residual
Deviance F value p Value

NULL 125 125.27
Ad 1 48.81 124 76.45 118.41 <10−16

Solid 1 2.55 123 73.91 6.18 1.4 × 10−2

AIC 92.89
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Table B.7: Estimators for mixed cultures, lasI- ∼ Ad * Solid

Relative Fitness ∼ Adenosine * Solid

Estimate Standard
Deviation t Value p Value

(Intercept) 0.67 0.23 2.94 3.9 × 10−3

Adenosine 1.84 3.35 0.55 5.8 × 10−1

Solid −0.28 0.32 −0.88 3.8 × 10−1

Ad:Solid −5.53 4.74 −1.17 2.5 × 10−1

DoF Deviance Res.
DoF

Residual
Deviance F value p Value

NULL 125 86.38
Ad 1 0.02 124 86.36 0.02 8.8 × 10−1

Solid 1 10.95 123 75.41 11.13 1.1 × 10−3

Ad:Solid 1 0.96 122 74.45 0.98 3.3 × 10−1

AIC 357.75
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Appendix C

Numerical code

C.1 Auxiliary code

function matrix = patchmatrix(e,pS,N,K,k)

% Start out with one 'unit'
unitsize = (pS+e)*K;
unit = zeros(unitsize);
unitnr = ceil(N/unitsize);

% Fill the one unit appropriately
patch = ones(pS);
for j = 1:K

lo = (j-1)*(pS+e)+1;
unit(lo:lo+(pS-1),lo:lo+(pS-1)) = patch;

end

% Repeat units as needed, shifting appropriate for subpop nr
matrix = repmat(unit,unitnr);
matrix = circshift(matrix,(pS+e)*(k-1),2);
matrix = matrix(1:N,1:N);
end

function z = smoothsquare(X,Y,a,r,scale)

eps = 1e-4;

more = ((X-a).^2+(Y-a).^2 < r^2);
z = more.*(cos(pi/r*sqrt((X-a).^2+(Y-a).^2))+1) + eps;
z = scale*z;
end
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C.2 Calculations for PDE systems

function dt = TwoDApprox_Vectorized(t,in,N,K,h,const,Gfunction,...
dGfunction,tend)

%% unpacking of v and b
% i are the discretisations in x-direction, j in y-direction; v ...

and b are
% given as vectors. We define accordingly that i will be unpacked ...

first,
% before j and k; for N = 3, for example, it would hold that
% v(4): i=1, j=2, k=1, v(10): i=1, j=1, k=2 and so on.
braw = in(1:end/2);
vraw = in(end/2+1:end);

v = reshape(vraw,[N,N,K]);
b = reshape(braw,[N,N,K]);

dvdt = zeros(N,N,K);
dbdt = zeros(N,N,K);

%% Calculation of dt
% In order to calculate the diffusion, calculate shifted matrices;
% Neumann boundary = mirrored borders
bl = circshift(b,1,2);
bl(:,1,:) = bl(:,3,:);

br = circshift(b,-1,2);
br(:,end,:) = br(:,end-2,:);

bu = circshift(b,-1,1);
bu(end,:) = bu(end-2,:);

bo = circshift(b,1,1);
bo(1,:) = bo(3,:);

vl = circshift(v,1,2);
vl(:,1,:) = vl(:,3,:);

vr = circshift(v,-1,2);
vr(:,end,:) = vr(:,end-2,:);

vu = circshift(v,-1,1);
vu(end,:) = vu(end-2,:);

vo = circshift(v,1,1);
vo(1,:) = vo(3,:);
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%Calculate the diffusion
diffb = const.D/h^2 * (bl+br+bu+bo-4*b);
diffv = const.D/h^2 * (vl+vr+vu+vo-4*v);

%Calculate the gradient term
gradv = const.D/h^2 * ((bu-bo).*(vu-vo)+(bl-br).*(vl-vr))./(2*b);
%NaN values are artifacts of starting conditions; igore them
gradv(isnan(gradv)) = 0;

% Calculate the reaction term
for k = 1:K

dbdt(:,:,k) = Gfunction(v(:,:,k),v,b).*b(:,:,k);
dvdt(:,:,k) = const.eps * dGfunction(v(:,:,k),v,b);

end

dbdt = dbdt + diffb;
dvdt = dvdt + diffv +gradv;

%% Reshape the matrices back into vectors
dvdtend = reshape(dvdt,[N^2*K,1]);
dbdtend = reshape(dbdt,[N^2*K,1]);
dt = [dbdtend;dvdtend];

%% Progress bar
persistent wait;

if (isempty(wait))
wait=waitbar(0,'processing...');

else
waitbar(t/tend,wait);

end

if (t>=tend && ~isempty(wait))
close(wait);
wait=[];

end

end
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