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§ 8. Enriques surfaces of Type Ẽ8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
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Introduction
Given a smooth and projective variety X over an algebraically closed field k, we can form its

structure sheafOX , its tangent sheaf TX and its cotangent sheaf ΩX . While all invariants associated
to the three of them are invariants ofX up to isomorphism, their behaviour under birational maps is
more subtle. However, one can form the canonical sheaf ωX = det(ΩX) and define the geometric
genus pg(X) = h0(X,ωX). As it turns out, pg(X) is a birational invariant of X [Har77].

Now, a closer look at the case of curves reveals that there is a unique, smooth and projective
curve with pg = 0, namely P1, giving a simple way to check whether a given curve is birational and
hence isomorphic to the projective line. However, already the case of dimension 2 is much harder:
In the late 19th century, M. Noether introduced a new birational invariant of a surface, the arithmetic
genus pa =

∑2
i=0(−1)ihi(X,OX)− 1, and A. Cayley gave an example of a surface showing that

h1(X,OX) = q = pg − pa > 0 is possible. This new invariant q is called the irregularity of
the surface X . Observing that q(P2) = pg(P2) = 0, Noether conjectured that any surface with
q = pg = 0 is rational. The first counterexample to this conjecture – and the main objects to
be studied in this thesis – were constructed by F. Enriques as normalizations of a generic sextic
in P3 passing doubly through the edges of a tetrahedron [Enr96] and surfaces of this type are now
called Enriques surfaces in honor of Enriques. Using the plurigenera pn = H0(X,ω⊗nX ), which are
new birational invariants introduced by Enriques, G. Castelnuovo was able to formulate his famous
rationality criterion for surfaces, saying that a surface is rational if and only if q = p2 = 0. After
Enriques’ discovery, Castelnuovo found examples of surfaces with q = pg = 0 and pn growing
linearly, followed by L. Campedelli [Cam32] and L. Godeaux [God35] giving such examples of
surfaces where pn grows quadratically.

In fact, as the plurigenera are birational invariants of a surface, so is the minimal number κ
such that pn = O(nκ) as n → ∞. This κ is the Kodaira dimension of the surface and Enriques
surfaces satisfy κ = 0. The other surfaces of Kodaira dimension zero are Abelian, bielliptic and
K3 surfaces. With varieties of general type (with κ = 2) always having finite automorphism group
and projective space (with κ = −∞) always having infinite automorphism group, it is a natural
question to ask for the behaviour of automorphism groups of surfaces of Kodaira dimension 0
and 1. The work related to this thesis completes the classification of Enriques surfaces with finite
automorphism group in arbitrary characteristic.

Let us give some more background on Enriques surfaces: An Enriques surface is a smooth
and projective surface X with second `-adic betti number b2 = 10 whose canonical divisor
class is numerically trivial. The reason why Enriques surfaces have Kodaira dimension 0 is that
ω⊗2
X = OX . In fact, one can show that the torsion component of the identity of the Picard

scheme Picτ is of length 2 and if Picτ (k) is non-trivial, it is generated by ωX . By the classi-
fication of finite group schemes of prime order over algebraically closed fields [TO70], we know
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4 INTRODUCTION

that Picτ ∈ {Z/2Z, µ2, α2}, where the first and second group schemes are isomorphic to each other
if and only if p = char(k) 6= 2 and the third one only exists in characteristic 2. If Picτ ∼= Z/2Z,
we call X classical. Otherwise, we call X singular (resp. supersingular) if Picτ ∼= µ2 (resp. α2).
While the Picτ -torsor over X is étale and hence the total space is a K3 surface if p 6= 2 or X is
singular, the torsor becomes inseparable with singular total space for the other cases. However, in
any case, the cover X̃ is an integral and Gorenstein surface with trivial dualizing sheaf, hence it is
sometimes called ”K3-like”. Even though it might seem to be the case that the singularities of the
K3-like cover make the analysis of singular and supersingular Enriques surfaces more difficult, we
will explain how to use these singularities, which are invariants of the surface X , to our advantage
in Chapter II of this thesis.

Over the complex numbers, a [GH16] moduli space of unpolarized Enriques surfaces, which
is 10-dimensional, quasi-affine [Bor96] and rational [Kon94] can be constructed using the pe-
riod map for complex Enriques surfaces [Hor78a], [Hor78b]. While a general Enriques surface
does not contain (−2)-curves, i.e. smooth rational curves with self-intersection (−2), there is a
codimension-one subvariety parametrizing Enriques surfaces containing such curves. Note that a
general Enriques surface with a (−2)-curve contains infinitely many such curves. On the bound-
ary of the moduli space, there is a codimension-one subvariety corresponding to certain rational
and smooth surfaces X with h0(X,ω−1

X ) = 0 and h0(X, (ω−1
X )⊗2) 6= 0, which are called Coble

surfaces. Both of these codimension-one subvarieties are rational [DK13]. In Chapter I of this
thesis, we will give some explicit examples of 1-dimensional families of Enriques surfaces, which
degenerate to Coble surfaces, as predicted by the complex period space.

Recently, C. Liedtke in [Lie15] and T. Ekedahl, J. Hyland and N. Shepherd-Barron in [EHS12]
have studied the moduli space of Enriques surfaces in positive characteristic: The moduli space of
Cossec-Verra polarized Enriques surfaces is a quasi-separated Artin stack of finite type over Spec
Z, which is irreducible, unirational, 10-dimensional, smooth in odd characteristics and consists of
two connected components with these properties in characteristic 2. These two connected compo-
nents parametrize singular and classical Enriques surfaces, respectively. Their 9-dimensional inter-
section parametrizes supersingular Enriques surfaces. The stack of unpolarized Enriques surfaces
is very badly behaved (see [Lie15, Remark 5.3]) because the automorphism group of a generic En-
riques surfaceX is an infinite and, unlessX is supersingular or an exceptional [ES04] and classical
Enriques surface in characteristic 2, discrete group.

The automorphism group of a very general complex Enriques surface has been studied in the
early 1980’s. As we mentioned before, such an Enriques surface does not contain (−2)-curves,
making it possible to study these automorphism groups using the Torelli Theorem for K3 surfaces.
This has been carried out by W. Barth and C. Peters [BP83] and by V. V. Nikulin [Nik81]. The au-
tomorphism group is equal to the 2-congruence subgroup of the group of positive-cone-preserving
automorphisms of the E10 lattice. In particular, it is infinite. However, as the Enriques surface ac-
quires more independent classes of (−2)-curves, its automorphism group becomes smaller. There-
fore, to find Enriques surfaces with finite automorphism group, we have to find surfaces with very
special configurations of (−2)-curves. It is in fact a corollary of the classification, that the number
of (−2)-curves on Enriques surfaces with finite automorphism group is finite.
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The first example of an Enriques surface with finite automorphism group (Type VII) was found
by G. Fano [Fan10] in 1910 and a second one (Type I) was found by I. Dolgachev [Dol84] in 1984.
The systematic classification of these surfaces over the complex numbers was then carried out by V.
Nikulin [Nik84] and S. Kondo [Kon86]. There are seven types I, . . . ,VII of such Enriques surfaces,
distinguished by their dual graphs of (−2)-curves, the first two of which form a 1-dimensional
family and the others are unique [Kon86]. Now, we can explain the contents of this thesis:

Chapter I, which follows the exposition in [Mar17], gives the classification of Enriques sur-
faces with finite automorphism group in odd characteristic and of singular Enriques surfaces with
finite automorphism group in characteristic 2. These are exactly the cases where the K3-like cover
is smooth, so in fact K3, and our method also gives another proof of the classification of these
surfaces over the complex numbers. The main tool – and the main difference to the other cases – is
the existence of elliptic fibrations on these Enriques surfaces, which are separable twists of rational
and elliptic fibrations with a section. Since the theory of separable twists is very well developed
and the twisting can be controlled explicitly using the K3 cover, it is possible to obtain very pre-
cise information on these surfaces. We give an explicit description of the moduli spaces of these
objects and give minimal fields of definition for the different types of Enriques surfaces with finite
automorphism group. Here, the list of Enriques surfaces with finite automorphism group turned
out to be more or less the same as over the complex numbers, except that some of the seven types
are missing in small characteristics.

Chapter II – following the paper [KKM17], which is joint work with T. Katsura and S. Kondo
– finishes the classification in characteristic 2 in the cases where the K3-like cover is singular. To
obtain the classification of possible dual graphs of classical and supersingular Enriques surfaces
with finite automorphism group in characteristic 2, we use the singularities of the canonical cover
to our advantage. In particular, the technique of conductrices, which was developed by Ekedahl
and Shepherd-Barron in [ES04] to study exceptional Enriques surfaces, will play an important role.
On the other hand, the realization of these dual graphs is obtained by the following method, which
can be thought of as an inseparable analogue of the method in odd characteristics: We start with
a rational and elliptic or quasi-elliptic fibration with a section, take an inseparable double cover,
which corresponds to the Frobenius on the base curve, and take the quotient by a suitable action
of an infinitesimal group scheme of length 2, which can be done explicitly using vector fields as in
[KK15b] for Type VII. As in the separable case, this corresponds to a quadratic twist of the generic
fiber of the genus one fibration, but this time the twist is inseparable.

Chapter III – following the paper [DM17], which is joint work with I. Dolgachev – deals
with the classification of groups G of automorphisms of Enriques surfaces X acting trivially on
Num(X) resp. Pic(X). Over the complex numbers, all Enriques surfaces which admit such nu-
merically resp. cohomologically trivial automorphisms are classified (see [MN84]). We obtain
a list of possible finite groups G of numerically resp. cohomologically trivial automorphisms of
Enriques surfaces in positive characteristic and show that most of them are realized on Enriques
surfaces with finite automorphism group. Moreover, we describe a method for obtaining a full
classification of surfaces, which admit such automorphisms, in any characteristic.

Acknowledgement. It is a pleasure for me to thank my Ph.D. advisor C. Liedtke for suggesting
this research topic and for his support.





CHAPTER I

Enriques surfaces with finite automorphism group and smooth K3
cover

Up to minor modifications, this chapter is taken from the paper ”Enriques surfaces with finite
automorphism group in positive characteristic” of the author. Currently, the paper is submitted and
a preprint can be found on the ArXiv (see [Mar17]).

Convention

Unless mentioned otherwise, we will work over an algebraically closed field k of arbitrary char-
acteristic. By Enriques surface we will mean Enriques surface with a smooth K3 cover throughout
this chapter. This means that we will not be dealing with classical and supersingular Enriques
surfaces in characteristic 2 in this chapter.

1. Summary

As we explained in the introduction to this thesis, the classification of Enriques surfaces with
finite automorphism group over the complex numbers is due to Nikulin and Kondo. The key obser-
vation for Nikulin’s approach to the classification is the fact that for a complex Enriques surface X
the subgroup WX ⊆ O(Num(X)) generated by reflections along classes of (−2)-curves has finite
index if and only if Aut(X) is finite. However, while in any characteristicWX being of finite index
in O(Num(X)) implies that the automorphism group Aut(X) is finite [Dol84, Main Theorem],
the converse uses the Global Torelli Theorem proven by E. Horikawa [Hor78a], [Hor78b], which
is not available in positive characteristic. For this reason, we will not pursue Nikulin’s approach.
Nevertheless, it will follow from our explicit classification that Aut(X) being finite implies that
WX ⊆ O(Num(X)) has finite index.

Kondō’s approach is based on the observation – due to Dolgachev [Dol84, §4] – that the
Mordell-Weil group of the Jacobian of every elliptic fibration of an Enriques surface X acts on
X , hence it has to be finite if we want X to have finite automorphism group. Using this approach,
we will obtain the classification of Enriques surfaces with finite automorphism group and smooth
K3 cover in positive characteristic. Recall that the K3 cover of an Enriques surface X is smooth if
and only if char(k) 6= 2 or X is a singular Enriques surface.

MAIN THEOREM (Classification). Let X be an Enriques surface with smooth K3 cover over
an algebraically closed field k.

(1) X has finite automorphism group if and only if the dual graph of all (−2)-curves on X is
one of the seven dual graphs in Table 1.
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8 I. ENRIQUES SURFACES WITH FINITE AUTOMORPHISM GROUP AND SMOOTH K3 COVER

(2) The automorphism groups, the characteristics in which they exist, and the moduli of En-
riques surfaces of each of the seven types are as in Table 1.

Type Dual Graph of (−2)-curves Aut Autnt char(k) Moduli

I D4 Z/2Z any A1 −
{0,−256}

II S4 {1} any A1 −
{0,−64}

III
(Z/4Z×

(Z/2Z)2) o
D4

Z/2Z 6= 2 unique

IV
(Z/2Z)4 o
(Z/5Z o
Z/4Z)

{1} 6= 2 unique
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V S4 × Z/2Z Z/2Z 6= 2, 3 unique

VI S5 {1} 6= 3, 5 unique

VII S5 {1} 6= 2, 5 unique

TABLE 1. Classification



10 I. ENRIQUES SURFACES WITH FINITE AUTOMORPHISM GROUP AND SMOOTH K3 COVER

In Table 1, Sn is the symmetric group on n letters, D4 is the dihedral group of order 8, and for
two groups N and H , N oH denotes a semi-direct product of N and H .

In characteristic 2, the search for Enriques surfaces with finite automorphism group has been
started recently by T. Katsura and S. Kondō [KK15b]. There, the question of existence of the
seven types in characteristic 2 was settled. The classification in Chapter I shows that the examples
of singular Enriques surfaces with finite automorphism group in [KK15b] are in fact all possible
examples of such surfaces. The classification of classical and supersingular Enriques surfaces with
finite automorphism group in characteristic 2 will be treated in Chapter II.

REMARK. As an application of our classification, we determine the semi-symplectic parts of
the automorphism groups of Enriques surfaces with finite automorphism group. For the precise
statement, we refer the reader to Theorem 12.2 and Table 6.

As explained in the introduction, we avoid the use of transcendental methods by exploiting a
quadratic twist construction for special (i.e. with (−2)-curve as bisection) elliptic fibrations: We
exhibit ”critical” subgraphs, which are dual graphs of singular fibers of a special elliptic fibration
π on X together with some special bisection N , for each of Kondō’s seven types and we show
that an Enriques surface whose dual graph of all (−2)-curves contains such a diagram is one of
the seven types. Therefore, we can use the quadratic twist construction to construct π and N and
hence the Enriques surface itself. Since the quadratic twist construction is universal, we can give
an explicit description of the moduli of Enriques surfaces with finite automorphism group. Finally,
the equations we give can actually be interpreted as integral models of these Enriques surfaces and
some of them were found using the integral models of extremal and rational elliptic surfaces of T.
Jarvis, W. Lang and J. Ricks [JLR12].

As we have just mentioned, a closer look at our equations reveals that they do in fact define
integral models of these surfaces in the following sense.

THEOREM 11.3 (Integral models). Let K ∈ {I, . . . ,VII} and PK be as in Table 2. There is
a family ϕK : X → Spec(Z[ 1

PK
]) whose fibers are Enriques surfaces of type K with full Picard

group over the prime field.

Type PK

I 255, 257
II 63, 65
III 2
IV 2
V 6
VI 15
VII 10

TABLE 2. Integral models

Note that for K 6= I, II, PK is exactly the product over the characteristics where type K does
not exist. If K = I, II, we give two integral models to obtain the following corollary, which solves
the existence of the seven types over arbitrary fields.
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COROLLARY 11.5. Suppose that there exists an Enriques surface of type K ∈ {I, . . . ,VII} in
characteristic p. Then, there exists an Enriques surface of type K with full Picard group over Fp
(resp. over Q if p = 0).

Moreover, we exhibit special generators of the automorphism groups of Enriques surfaces with
finite automorphism group, leading to our third result.

THEOREM 11.6. Let X be an Enriques surface of type K ∈ {I, . . . ,VII} over a field k such
that Pic(X) = Pic(Xk̄).

• If K 6= III, IV, then Aut(X) is defined over k.
• If K = III, then Aut(X) is defined over L ⊇ k with [L : k] ≤ 2.
• If K = IV, then Aut(X) is defined over L ⊇ k with [L : k] ≤ 16.

Let us now explain the structure of Chapter I: In §2, we extend Kondō’s base change con-
struction to positive characteristic after recalling several facts on Enriques surfaces and elliptic
fibrations. In §3, . . . , §9, we construct Enriques surfaces of types I, . . . ,VII and compute their
automorphism groups as well as their moduli. After that, in §10, we classify the dual graphs of
Enriques surfaces with finite automorphism group, finishing the proof of our Main Theorem. In
§11, we explain how to obtain information on the arithmetic of these surfaces and in §12, we give
the list of semi-symplectic automorphism groups of Enriques surfaces with finite automorphism
group.

2. Preliminaries

2.1. Generalities on Enriques surfaces, dual graphs and elliptic fibrations. Here we recall
some basic facts about Enriques surfaces, clarify our terminology, and refer the reader to [CD89]
for proofs and to [Sil94] for anything related to elliptic curves. In the first ten sections, we will be
working over an algebraically closed field k.

DEFINITION 2.1. A K3 surface is a smooth, projective surface X̃ over k with ωX̃
∼= OX̃ and

H1(X̃,OX̃) = 0. An Enriques surface X with smooth K3 cover is the quotient of a K3 surface by
a fixed point free involution σ. We call the K3 surface X̃ with X̃/σ = X the canonical cover or
K3 cover of X .

CONVENTION 2.2. From now on, we will drop the ”with smooth K3 cover” and we will always
assume that the Enriques surfaces we talk about have such a cover.

DEFINITION 2.3. An elliptic fibration (with base curve P1) of a smooth surface X̃ is a surjec-
tive morphism π̃ : X̃ → P1 such that almost all fibers are smooth genus 1 curves, π̃∗OX̃ = OP1

and no fiber contains a (−1)-curve. We do not require that π̃ has a section.

PROPOSITION 2.4. (Bombieri and Mumford [BM76, Theorem 3]) Every Enriques surface
admits an elliptic fibration.

The reason why we do not assume that elliptic fibrations have a section is that this is never the
case for Enriques surfaces:
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PROPOSITION 2.5. (Cossec and Dolgachev [CD89, Theorem 5.7.2, Theorem 5.7.5, Theorem
5.7.6]) Let π be an elliptic fibration of an Enriques surfaces. Then,

• if char(k) 6= 2, π has exactly two tame double fibers, both of which are either of multi-
plicative type or smooth, and
• if char(k) = 2, π has exactly one wild double fiber, which is either of multiplicative type

or a smooth ordinary elliptic curve.

REMARK 2.6. Since being supersingular is an isogeny-invariant, one can check the type of the
double fiber on the K3 cover.

Therefore, the intersection number of any curve with a fiber of an elliptic fibration of an En-
riques surface is even. Thus, the best approximation to a section will be a bisection.

DEFINITION 2.7. Let N be an irreducible curve on an Enriques surface X and let π be an
elliptic fibration of X .

• N is a (−2)-curve if N2 = −2. Equivalently, N ∼= P1.
• N is a special bisection of π if N is a (−2)-curve with F.N = 2, where F is a general

fiber of π.
• If π admits a special bisection, we call π special.

In fact, special elliptic fibrations are much more common than one might think. More pre-
cisely, we have the following result of F. Cossec, which was shown by W. Lang also to hold in
characteristic 2.

PROPOSITION 2.8. (Cossec [Cos85, Theorem 4], Lang [Lan88, Theorem A3]) An Enriques
surface contains a (−2)-curve if and only if it admits a special elliptic fibration.

Now, we recall some facts on the Jacobian fibrations of elliptic fibrations of Enriques surfaces.

PROPOSITION 2.9. (Cossec and Dolgachev [CD89, Theorem 5.7.1]) Let π be an elliptic fibra-
tion of an Enriques surface. Then, the Jacobian fibration J(π) of π is an elliptic fibration of a
rational surface.

Since the group of sections of the Jacobian of an elliptic fibration of an Enriques surface acts on
the surface, we will mostly be concerned with extremal and rational elliptic fibrations. The group
of sections of an elliptic fibration π is also called the Mordell-Weil group of π [Sil94, III §9].

DEFINITION 2.10. Let π be an elliptic fibration of an Enriques surface and let J(π) be its
Jacobian. We call J(π) and π extremal if the Mordell-Weil group MW(J(π)) is finite.

We will use the Kodaira-symbols In(n ≥ 1), I∗n(n ≥ 0), II, III, IV, II∗, III∗, and IV∗ to denote
the singular fibers of an elliptic fibration (see for example [Sil94, p.354]). The reducible fibers
consist of (−2)-curves and their intersection behaviour will play an important role throughout this
thesis.

DEFINITION 2.11. Let M be a set of (−2)-curves on a smooth surface X .
• The dual graph of M is the graph whose vertices are elements of M and two vertices
Ei, Ej ∈M with i 6= j are joined by an n-tuple line if Ei.Ej = n.
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• If M is the set of all (−2)-curves on X , we will call the corresponding graph the dual
graph of all (−2)-curves on X .
• If M is the set of all (−2)-curves contained in singular fibers of an elliptic fibration π of
X , we call M the dual graph of singular fibers of π.

The dual graphs of the singular fibers of type In(n ≥ 2), I∗n(n ≥ 0), III, IV, II∗, III∗, and IV∗

are Ãn−1, D̃n+4, Ã1, Ã2,Ẽ8, Ẽ7, and Ẽ6, respectively (see [Mir89, I.6]). Conversely, configura-
tions of (−2)-curves whose dual graphs are extended Dynkin diagrams of these types give rise to
elliptic fibrations.

PROPOSITION 2.12. (Kodaira [Kod63], Mumford [Mum69]) A connected, reduced divisor D
on an Enriques surface X is equal to the support of a fiber of an elliptic fibration if and only if D
is an irreducible genus 1 curve or the irreducible components of D are (−2)-curves whose dual
graph is an extended Dynkin diagram of type Ã-D̃-Ẽ.

Note that one cannot always reconstruct the fiber type from the graph. Using this notation, we
can give the list of extremal and rational elliptic fibrations in every characteristic due to R. Miranda,
U. Persson and W. E. Lang.

PROPOSITION 2.13. (Miranda and Persson [MP86], Lang [Lan91], [Lan94]) Let π be an ex-
tremal fibration of a rational surface. Then, the singular fibers of π are given in Table 3.

The extremal and rational elliptic surfaces with singular fibers (I∗0, I
∗
0) in characteristic 6= 2

and the ones with singular fiber (I∗4) in characteristic 2 form 1-dimensional families and all other
fibrations are unique.

char(k) 6= 2, 3, 5 char(k) = 5 char(k) = 3 char(k) = 2

(II∗, II) (II∗, II) (II∗) (II∗)
(III∗, III) (III∗, III) (III∗, III) –
(IV∗, IV) (IV∗, IV) – (IV∗, IV)

(I∗0, I
∗
0) (I∗0, I

∗
0) (I∗0, I

∗
0) –

(II∗, I1, I1) (II∗, I1, I1) (II∗, I1) (II∗, I1)
(III∗, I2, I1) (III∗, I2, I1) (III∗, I2, I1) (III∗, I2)
(IV∗, I3, I1) (IV∗, I3, I1) (IV∗, I3) (IV∗, I3, I1)
(I∗4, I1, I1) (I∗4, I1, I1) (I∗4, I1, I1) (I∗4)
(I∗2, I2, I2) (I∗2, I2, I2) (I∗2, I2, I2) –
(I∗1, I4, I1) (I∗1, I4, I1) (I∗1, I4, I1) (I∗1, I4)

(I9, I1, I1, I1) (I9, I1, I1, I1) (I9, II) (I9, I1, I1, I1)
(I8, I2, I1, I1) (I8, I2, I1, I1) (I8, I2, I1, I1) (I8, III)
(I5, I5, I1, I1) (I5, I5, II) (I5, I5, I1, I1) (I5, I5, I1, I1)
(I6, I3, I2, I1) (I6, I3, I2, I1) (I6, I3, III) (I6, IV, I2)
(I4, I4, I2, I2) (I4, I4, I2, I2) (I4, I4, I2, I2) –
(I3, I3, I3, I3) (I3, I3, I3, I3) – (I3, I3, I3, I3)

TABLE 3. Extremal and rational elliptic fibrations
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REMARK 2.14. From Table 3 we see that the fibrations in small characterstics differ from the
characteristic 0 cases only if either a II∗ fiber is involved or if the characteristic divides the number
of simple components of some fiber of the fibration.

In fact, the Shioda-Tate formula implies that the dual graph of (−2)-curves contained in singu-
lar fibers of an elliptic fibration π determines whether π is extremal or not.

LEMMA 2.15. (Shioda, [Shi72, Corollary 1.5]) Let π be an elliptic fibration of a rational
surface or of an Enriques surface. Then, π is extremal if and only if the lattice spanned by the fiber
components of π has rank 9.

Extremal elliptic fibrations of Enriques surfaces over the complex numbers were studied by the
author in [Mar16], where he classified those extremal fibrations with at least one reducible double
fiber.

2.2. Base Change Construction.

NOTATION 2.16. Let π : X → P1 be an elliptic fibration with section of a rational surface or
of a K3 surface. We denote the composition in MW(π) with respect to some fixed zero section by
⊕, the inverse of a section P is denoted by	P and the translation by a section P is denoted by tP .
By abuse of notation, we will also use tP for the induced automorphism of X .

Over the complex numbers, the following is due to S. Kondō [Kon86, p.199]. There are gener-
alizations of this result in [HS11] and [Sch16]. Since we need this construction for our classifica-
tion, we will extend it to arbitrary characteristic.

LEMMA 2.17. Let f : X̃ → X be the canonical cover of an Enriques surface X and let σ be
the covering involution. Let π : X → P1 be a special elliptic fibration ofX with a special bisection
N , let F be a double fiber of π and let J(π) : J(X)→ P1 be the Jacobian fibration associated to
π. Let π̃ be the fibration of X̃ induced by |f−1F | and denote by ϕ : |f−1F | = P1 → P1 = |2F |
the induced morphism on the base curve.

Then,
(1) N splits into two sections N+ and N− of π̃. In particular, the minimal proper smooth

models of the base changes of J(π) and π along ϕ are isomorphic.
(2) Choose N+ as the zero section of π̃. Then, J(σ) = t	N− ◦ σ is an involution whose

quotient, after minimalizing the obtained fibration, is J(π).
(3) N− satisfies N−.N+ = 0, J(σ)(N−) = 	N− and it does not meet the preimage of a

singular double fiber of π in the identity component.

The main tool to establish this result in arbitrary characteristic is the following lemma, which is
a close study of how automorphisms of the generic fiber of an elliptic fibration with section extend
to special fibers. For lack of a reference, we will give a proof.

LEMMA 2.18. Let R be a discrete valuation ring and let K = Quot(R). Let (E,O) be an
elliptic curve over K and let E be the Néron model of E over R. Let E0 be the identity component
of the special fiber of E . Let ρ : Aut(E,O) → Aut(E0, O|E0) be the natural map obtained from
the Néron mapping property and restriction. Then, ρ is injective if and only if one of the following
holds:
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• char(k) 6∈ {2, 3}
• char(k) ∈ {2, 3} and E0 is not additive.

If E0 is additive, then ker(ρ) consists of all elements of order pn, where p = char(k).

PROOF. We will compute the reduction of the automorphisms explicitly using Weierstrass
equations and the description of automorphisms in [Sil09, p.411] (see also [Sil94, p.364] for an
exposition of Tate’s algorithm). Throughout, we denote by π a uniformizer of R.

If char(k) ≥ 5, then we use a minimal and integral Weierstrass equation

y2 = x3 + a4x+ a6.

Since all g ∈ Aut(E,O) are of the form g : (x, y) 7→ (ζ2x, ζ3y) for some 12-th root of unity ζ,
they induce non-trivial automorphisms of E0 independently of a4 and a6.

If char(k) = 3, then we use a minimal and integral Weierstrass equation

y2 = x3 + a2x
2 + a4x+ a6.

If a2 6= 0, then the same argument as before works, so we may assume a2 = 0. Then, an
automorphism g ∈ Aut(E,O) is given by g : (x, y) 7→ (ζ2x + r, ζ3y), where ζ4 = 1 and
r3 + a4r+ (1− ζ2)a6 = 0. If ζ 6= 1, then ρ(g) 6= id, since ζ does not depend on a4 and a6. But if
ζ = 1 and r = ±

√
−a4, then ρ(g) is trivial if and only if π | a4, i.e. if and only if E0 is of additive

type.
If char(k) = 2, then we use a minimal and integral Weierstrass equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6.

The inversion involution g ∈ Aut(E,O) is given by (x, y) 7→ (x, y + a1x + a3). Thus, ρ(g) is
trivial if and only if π | a1, a3, i.e. if and only if E0 is of additive type. Now if j(E0) = 0,
then we can assume a1 = a2 = 0. An automorphism g ∈ Aut(E,O) is given by g : (x, y) 7→
(ζ2x+ s2, ζ3y+ ζ2sx+ t), where ζ3 = 1, s4 +a3s+ (1− ζ)a4 = 0 and t2 +a3t+ s6 +a4s

2 = 0.
If ζ 6= 1, then we have ρ(g) 6= id. Therefore, assume ζ = 1 and s3 + a3 = 0. Now, ρ(g) = id and
if and only if π | a3, i.e. if and only if E0 is additive. �

PROOF OF LEMMA 2.17. Since X̃ → X is étale of degree 2, every (−2)-curve on X splits
into two disjoint (−2)-curves on X̃ . In particular, N splits into two (−2)-curves N+ and N−. We
claim that a general fiber of π also splits into two components. Indeed, suppose that a general fiber
does not split into two components. Then, char(k) = 2 and σ acts on every fiber of π̃. Since σ
is fixed point free and additive and supersingular fibers do not admit fixed point free involutions,
every fiber of π̃ would have to be multiplicative or ordinary, which is absurd. Both N+ and N−

have to be sections of the fibration π̃, since a general fiber of π splits into two components F1 and
F2, both of which are fibers of π̃, and therefore 2 = N.F = 2N+.F1 = 2N−.F1.

Next, we show that J(σ) is indeed an involution. Let F0 be the identity component of a fiber of
π̃ which is fixed (not necessarily pointwise) by σ. Note that F0 is either multiplicative or smooth
by Proposition 2.5. Since σ is fixed point free, it induces a translation on F0 if F0 is smooth.
Moreover, because J(σ)(N+) = t	N− ◦ σ(N+) = N+, J(σ)|F0 is the identity if F0 is smooth,
and it can have at most order 2 if F0 is multiplicative. Together we obtain J(σ)2|F0 = id in any
case. Now, J(σ)2 fixes π̃ and hence it is an automorphism of the generic fiber of π̃ fixing the
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zero section N+. By Lemma 2.18, J(σ)2 = id, because it restricts to the identity on F0. Since
J(σ)(N+) = N+, this section descends to the quotient and we obtain J(π).

Finally, if π has a singular double fiber F of type In, the preimage of F in X̃ is a fiber F ′ of
π̃ of type I2n, since this happens with the corresponding fiber on the Jacobian. Now, σ has to act
without fixed points, hence it acts as a rotation of order 2 on the corresponding Ã2n−1 diagram,
while J(σ) fixes the diagram. In particular, the preimage of N meets two opposite curves of the
diagram, i.e. N− does not meet the identity component of F ′ if we choose N+ to be the zero
section of π̃. �

In particular, we obtain a distinguished non-zero section of π̃ if π̃ arises as the base change
of a special elliptic fibration π of an Enriques surface with a given special bisection. Conversely,
we will see that we can reconstruct π from J(π) by exhibiting a suitable section on a degree 2
base change of J(π). This has been studied by K. Hulek and M. Schütt in [HS11] using quadratic
twists. Since in our case J(π) is an extremal and rational elliptic fibration and extremal and rational
elliptic surfaces are classified, we can approach the classification problem in a very explicit way.
First, let us clarify what we mean by a ”suitable section”.

DEFINITION 2.19. Let J(π) : J → P1 be an elliptic fibration of a rational surface J with zero
section N+. Let ϕ : P1 → P1 be a separable degree 2 morphism such that no branch point of ϕ
is a point of additive reduction of J(π). If char(k) = 2, assume further that the branch point is
not a point of good supersingular reduction of J(π). Then, a minimal proper smooth model of the
base change π̃ of J(π) along ϕ is an elliptic fibration of a K3 surface X̃ . Denote the zero section
of π̃ also by N+ and let J(σ) be a covering involution of X̃ → J such that J(σ)(N+) = N+. A
section N− of π̃ is called a J(π)-Enriques section of π̃ if

(1) N−.N+ = 0,
(2) J(σ)(N−) = 	N−, and
(3) N− does not meet the identity component of the fiber over ϕ−1(x) if ϕ is branched over

a point x with J(π)−1(x) singular.

REMARK 2.20. Observe that these are exactly the properties satisfied by the section N− in
Lemma 2.17 (3).

REMARK 2.21. We will encounter several examples of such J(π)-Enriques sections through-
out this chapter. The quickest way to achieve conditions (1) and (2) is to take for N− an every-
where integral (i.e. N−.N+ = 0) 2-torsion section of π̃, since such a section will be a base change
of a 2-torsion section of J(π). However, this does not guarantee condition (3) to hold, as we will
see later.

The following is the main ingredient in our approach to the classification. Over the complex
numbers, this is implicitly contained in [Kon86] (for a variation of this, see [HS11]).

PROPOSITION 2.22. With notation as in the above definition, letN− be a section of π̃ such that
J(σ)(N−) = 	N− and N+.N− = 0. Then, the quotient of X̃ by the involution σ := tN− ◦ J(σ)
is an Enriques surface X with a special elliptic fibration π induced by π̃ if and only if N− is a
J(π)-Enriques section. The Jacobian of π is J(π) and the double fibers of π occur over the branch
points of ϕ.
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PROOF. Let us first show that σ is an involution. Denote by F0 a fiber which is fixed (not
necessarily pointwise) by J(σ). We have σ2|F0 = tN− |F0 ◦J(σ)|F0 ◦ tN− |F0 ◦J(σ)|F0 = tN− |F0 ◦
t	N− |F0 = id|F0 and since F0 is either multiplicative or smooth and σ2 fixes π̃ and N+, we obtain
σ2 = id by Lemma 2.18.

Since translation by a section fixes all fibers and J(σ) fixes at most two fibers F0 and F1, we
have Fix(σ) ⊆ F0 ∪ F1. If F ∈ {F0, F1} is smooth, we claim that J(σ) acts trivially on F . In
characteristic different from 2, this follows because J(σ) acts non-trivially on a global 2-form, and
in characteristic 2, J(σ)|F is either the identity or a hyperelliptic involution, since it fixes N+ and
F is ordinary. The latter case is impossible by [DK01, Theorem 1]. Since J(σ) acts trivially on a
smooth fiber F ∈ {F0, F1} and N−.N+ = 0, σ|F = tN− |F will have no fixed points on F . As for
a multiplicative fiber F ∈ {F0, F1}, J(σ) fixes the components of F (not necessarily pointwise),
hence σ has fixed points if and only if N− meets the identity component of this fiber, i.e. if and
only if N− is not a J(π)-Enriques section.

Now, if N− is a J(π)-Enriques section, this means that the quotient of X̃ by σ is an Enriques
surface X . Moreover, the divisors F and N+ +N− are fixed by σ and thus descend to X , giving
a special elliptic fibration π on X . Additionally, F0 and F1 descend to the two double fibers of π
and J(π) is the Jacobian of π by construction. �

REMARK 2.23. If σ has fixed points , we claim that it actually has a fixed locus of dimension 1.
To see this, note that σ fixing two points on a (−2)-curve in characteristic 2 means that the whole
curve is fixed (see also [DK01]). For the other characteristics, we refer the reader to [Zha98]. After
contracting the fixed locus, the quotient by σ is nothing but a rational log Enriques surface of index
2 [Zha91] and its minimal resolution is a Coble surface (see [DZ01]). We will not study these
surfaces here, but the attentive reader will see them occur naturally as degenerations of the models
we give for the surfaces in our Main Theorem.

REMARK 2.24. We see from the proof that one can also obtain an Enriques surface as quotient
by σ if one weakens the assumption N+.N− = 0 to N+ ∩ N− ∩ F0 = N+ ∩ N− ∩ F1 = ∅.
However, in general, this will not produce a smooth bisection. For more on this, see [HS11].

With this explicit and universal construction at our disposal, we can have a look at the rela-
tion between special bisections of an elliptic fibration of an Enriques surface and sections of its
Jacobian.

COROLLARY 2.25. Let π be a special elliptic fibration of an Enriques surfaceX with a special
bisection N splitting into N+ and N− on the K3 cover X̃ of X . There is a map

jac2 : MW(J(π))→ {special bisections of π},
which is

• injective if N− is not 2-torsion after fixing N+ as the zero section, and
• 2-to-1 onto its image otherwise.

Moreover, MW(J(π)) acts transitively on the image of jac2 via its action on X .

PROOF. We use the notation of Lemma 2.17. There is a natural injection MW(J(π)) →
MW(π̃) and using this, we will consider sections of J(π) as sections of π̃ by abuse of notation. Let
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P ∈ MW(J(π)). Since P comes from J(π), it is fixed by J(σ). Now, we compute

P.σ(P ) = P.(tN− ◦ J(σ))(P ) = P.(P ⊕N−) = N+.N− = 0.

Therefore, the divisor P + σ(P ) descends to a (−2) curve jac2(P ) on X , which is necessarily a
bisection of π, since 2 = (P + σ(P )).F̃ = jac2(P ).F , where F̃ (resp. F ) is a general fiber of π̃
(resp. π). For the injectivity, observe that σ(P ) ∈ MW(J(π)) if and only if J(σ)(σ(P )) = σ(P ),
i.e. if and only if

P ⊕N− = (tN− ◦ J(σ))(P ) = σ(P ) = J(σ)(σ(P )) = P 	N−,

which happens if and only if N− is 2-torsion. The statement about the action of MW(J(π)) is
clear by construction of jac2. �

To compute the intersection behaviour of the special bisections obtained via jac2, we will use
the height pairing on MW(π̃).

PROPOSITION 2.26. (Shioda [Shi90]) Let π̃ be an elliptic fibration of a K3 surface with zero
section N+. The pairing

MW(π̃)×MW(π̃) → Q

(P,Q) 7→ 〈P,Q〉 = 2 + P.N+ +Q.N+ − P.Q−
∑
ν∈P1

contrν(P,Q),

where the contrν(P,Q) are local correction terms depending on the intersection of P and Q with
the fiber over ν, is a symmetric, bilinear pairing on MW(π̃), which induces the structure of a
positive definite lattice on MW(π̃)/MW(π̃)tors. It is called the height pairing on MW(π̃). We write
h(P ) for 〈P, P 〉.

REMARK 2.27. Note that this implies immediately that h(P ) = 0 if and only if P is in
MW(π̃)tors. Moreover, 〈P,Q〉 = 0 as soon as P or Q is in MW(π̃)tors.

For the reader’s convenience, we recall the correction terms of the height pairing following
[SS10, p.52]. First, we have to fix a numbering of the simple components of a reducible fiber Fν
of an elliptic fibration π with zero section N+ depending on the dual graph Γ of Fν . In any case,
denote the component of Fν which meets N+ by E0.

• If Γ = Ãn−1, denote the components of Fν by E0, . . . , En−1 such that Ei.Ej = 1 if and
only if i− j = ±1 mod n.
• If Γ = D̃n+4, denote the simple components of Fν by E0, E1, E2, and E3 such that E1

is a simple component with minimal distance to E0.
Now, let P,Q ∈ MW(π) such that P meets Ei and Q meets Ej and assume i ≤ j. If i = 0, the
correction term is 0. Otherwise, the value of contrν(P,Q) is given in the following Table 4.

2.3. Example. We keep the notation introduced in the previous subsection. Since we know
how sections coming from J(π) intersect the fibers of π̃, we can compute the intersection behaviour
of the corresponding bisections on X once we know how N− intersects the fibers of π̃. But this is
already determined by the intersection behaviour of the special bisection N on X with the fibers
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Γ Ẽ7 Ẽ6 D̃n+4 Ãn−1

Case i = j 3
2

4
3

{
1 if i = 1

1 + n
4 else

i(n−i)
n

Case i < j - 2
3

{
1
2 if i = 1
1
2 + n

4 else
i(n−j)
n

TABLE 4. Correction terms for the height pairing

of the morphism π. We will leave these computations to the reader but give a detailed description
of the procedure in the following example.

Suppose an Enriques surface contains the following dual graph of (−2)-curves with N as
indicated:

•

•

•

•

•

•

•

•

• • •N

This is the dual graph of a special elliptic fibration with a singular fiber of type I8 and a double
fiber of type I2. Note that the I2 fiber has to be double, since N meets its components only once
and N is a bisection. On the K3 cover, this yields the following configuration:

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
• •

•

N+

N−

On the other hand, we know that the Jacobian of π together with its four sections P1, P2, P3,
and P4 has the following dual graph:

P3

P4

P2

P1•

•

•

•

•

•

•

•

• • •

•

•

•

One can explicitly compute the dual graph of a degree 2 base change of J(π) ramified over the
I2 fiber (and not ramified over I8):
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P1

P3

P2

P4

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
• •

•

•

•

To put this picture together with the second one, we set N+ = P1 as the zero section, add the
sections N− ⊕ Pi for all i to the diagram and calculate the intersection of N− with Pi using the
height pairing and the equality 0 = 〈Pi, N−〉 = 2−N−.Pi −

∑
ν contrν(Pi, N

−) which follows
from Remark 2.27. By using translations, we obtain the remaining intersection numbers and the
following graph, where we denote Pi and Pi ⊕N− by P+

i and P−i respectively:

P2.N
− = P4.N

− = 2−
(

6

8
+

2

8
+ 1

)
= 0; P3.N

− = 2−
(

4

8
+

4

8

)
= 1

N+

N−

P+
3

P−3

P+
2

P−2

P+
4

P−4

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
• •

•

•

•

•

•

•

•

This yields the following configuration on the quotient Enriques surface, where we denote the
special bisection corresponding to Pi again by Pi:
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•

•

•

•

•

•

•

•

• • •

••

•
N

P2
P3

P4

In fact, we can produce six more (−2)-curves using different fibrations with a double I3 fiber
to obtain the dual graph of type VII. For example, one may look at the following subgraph:

•

•

•

•

•

•

• • •

•

•
N1

By Proposition 2.12, the (−2)-curve N1 is a special bisection of a fibration with fibers I6, I3

(not IV, since it is double) and another reducible fiber. By Lemma 2.15, the corresponding fibration
is extremal and by Table 3, the last reducible fiber is of type I2 (resp. III in characteristic 3) and it is
simple, since N1 meets its reduced components twice. Hence, we can add the missing component
of the I2 (resp. III) fiber to the graph. Similarly, one finds five more (−2)-curves and finally obtains
the dual graph of type VII. The configuration we started with is what we will later call the ”critical
subgraph of type VII”, since we have shown that any Enriques surface containing this graph is of
type VII.

REMARK 2.28. Note that the crucial point in all examples is the computation of the intersection
numbers of the bisections using the height pairing. The intersection of the bisections obtained via
jac2 with the fibers is just a ”translation” of the intersection of N with the fibers. In particular,
the process is much easier if N− is a 2-torsion section, since the bisections arising via jac2 are
disjoint.

2.4. Vinberg’s criterion and numerically trivial automorphisms. In order to check that the
(−2)-curves in the graphs for types I, . . . ,VII are all (−2)-curves on the Enriques surface, one
uses Vinberg’s criterion.

PROPOSITION 2.29. (Vinberg [Vin75, Theorem 2.6]) Let Γ be a dual graph of finitely many
(−2)-curves on an Enriques surface X . Suppose that Γ contains no m-tuple lines with m ≥ 3 and
suppose that the cone K = {C ∈ Num(X)R|C.E ≥ 0 for all E ∈ Γ} is strictly convex. Then, the
group WΓ generated by reflections along (−2)-curves in Γ has finite index in O(Num(X)) if and
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only if the fibration π induced by every subgraph F of Γ of type Ã-D̃-Ẽ is extremal and Γ contains
the dual graph of singular fibers of π. In this case, Γ is the dual graph of all (−2)-curves on X .

REMARK 2.30. This is a reformulation of the version of Vinberg’s criterion presented by
Kondō [Kon86, Theorem 1.9]. The last statement is due to Namikawa [Nam85, (6.9)]. The strict
convexity of K can be achieved, for example, if Γ contains the dual graph of singular fibers of an
elliptic fibration π and also contains another (−2)-curve which is not contained in a fiber of π.

The following corollary is a straightforward application of Vinberg’s criterion.

COROLLARY 2.31. Let X be an Enriques surface whose dual graph of all (−2)-curves con-
tains a graph Γ which is one of the seven dual graphs in the Main Theorem. Then, the (−2)-curves
in Γ are all (−2)-curves on X .

Therefore, we can check the action of Aut(X) on Num(X) directly on the dual graph of (−2)-
curves on X .

DEFINITION 2.32. An automorphism of an Enriques surface X is called numerically trivial if
it acts trivially on Num(X). It is called cohomologically trivial if it acts trivially on Pic(X). We
denote the respective groups by Autnt(X) and Autct(X).

Recall that Num(X) is a quotient of Pic(X), hence Autct(X) is a normal subgroup of Autnt(X).
Over the complex numbers a complete classification of such automorphisms is available (see
[MN84] and [Muk10]). There are three types of Enriques surfaces X with numerically trivial
automorphisms and they satisfy Autnt(X) ∈ {Z/2Z,Z/4Z}. In positive characteristics, however,
we only have bounds on the size of these groups.

PROPOSITION 2.33. (Dolgachev [Dol13]) Let X be an Enriques surface. Then,

|Autct(X)| ≤ 2 and |Autnt(X)/Autct(X)| ≤ 2.

We will not use this result, since we are interested in the precise shape of the automorphism
group. Therefore, we give explicit arguments in every case. In Chapter III, we explain how to
deduce Dolgachev’s results on numerically and cohomologically trivial automorphisms in arbitrary
characteristic and we will see how a classification similar to the complex case can be obtained.

3. Enriques surfaces of type I

3.1. Main theorem for type I.

THEOREM 3.1. Let X be an Enriques surface. The following are equivalent:
(1) X is of type I.
(2) The dual graph of all (−2)-curves on X contains the graph in Figure 1.
(3) The canonical cover X̃ of X admits an elliptic fibration with a Weierstrass equation of

the form
y2 + β(s2 + s)xy = x3 + β3(s2 + s)3x

such that the covering morphism ρ : X̃ → X is given as quotient by the involution
σ = tN− ◦ J(σ), where J(σ) : s 7→ −s− 1 and tN− is translation by N− = (0, 0).
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• • • • • • •

•

•• •

FIGURE 1. Critical subgraph for type I

PROOF. First, observe that the dual graph of type I (see Table 1) contains the graph in the
above Figure 1.

This subgraph can be interpreted as the dual graph of a special elliptic fibration π with singular
fibers III∗ and I2 (not III, since this fiber is a double fiber) and special bisectionN as follows, where
the dotted rectangles mark the fibers:

• • • • • • •

•

••• N

As explained in Lemma 2.17, N splits into two sections N+ and N− of the elliptic fibration π̃
induced by π on the K3 cover X̃ . Fixing N+ as the zero section, we can compute h(N−) = 0 and
we see that N− is a 2-torsion section of π̃. Starting from the subgraph in Figure 1, we get the last
missing (−2)-curve from the elliptic fibration with a double fiber of type I8, which is induced by
the Ã7 diagram, as follows: The fibration is extremal by Lemma 2.15, the second reducible fiber is
of type I2 (resp. III in characteristic 2) by Table 3 and the intersection behaviour can be determined
from the dual graph. These are all (−2)-curves on X by Corollary 2.31.

Now, we pursue the converse process dictated by Proposition 2.22 and calculate all elliptic
fibrations of K3 surfaces obtained as separable quadratic base changes of J(π) together with a
section having the same intersection behaviour as N− with curves obtained from (−2)-curves on
X .

By [JLR12] we have the following equation for the unique rational elliptic surface with singular
fibers of type III∗ and I2

y2 + txy = x3 + t3x,

where t is a coordinate on P1. The I2 fiber is at t =∞, while the III∗ fiber is at t = 0. Moreover, if
char(k) 6= 2, there is an I1 fiber at t = 64 and all other fibers are smooth. The non-trivial 2-torsion
section is s = (0, 0).

In every characteristic, we can write a degree 2 morphism P1 → P1 with t = ∞ as branch
point and which is not branched over t = 0 in the form

t 7→ β(s2 + s),

where s is the new parameter on P1 and β ∈ k − {0}. We are allowed to assume that t = 0
is not a branch point, since the III∗ fiber is not multiple. The covering involution is given by
J(σ) : s 7→ −s− 1. The second branch point of this degree 2 cover in characteristic different from
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2 is at t = −β
4 , which corresponds to s = −1

2 . Now, we get the equation

y2 + β(s2 + s)xy = x3 + β3(s2 + s)3x

together with the 2-torsion section s′ = (0, 0) obtained by pulling back s. This equation defines an
elliptic fibration π̃ on a K3 surface. As explained in Section 2.2, if π̃ is obtained as base change of
a fibration of an Enriques surface, then s′ = N− and σ is the covering involution. �

REMARK 3.2. Note that we have not yet claimed existence of Enriques surfaces of type I.
However, we have reduced this problem to the question whether N− is a J(π)-Enriques section or
not. We answer this question in the subsection on degenerations and moduli.

3.2. Automorphisms.

PROPOSITION 3.3. Let X be an Enriques surface of type I. Then, Aut(X) ∼= D4 and this
group is generated by automorphisms induced by 2-torsion sections of the Jacobian fibrations of
elliptic fibrations of X . Moreover, Autnt(X) ∼= Z/2Z and Aut(X)/Autnt(X) = (Z/2Z)2.

PROOF. Recall that the dual graph of type I is as follows:

As has already been explained by Kondō [Kon86, p.205] and Dolgachev [Dol84, p.175], the
symmetry group of the dual graph of (−2)-curves is (Z/2Z)2 and the 2-torsion section of the
fibration π induced by the linear system |2(F9 +F11)| acts as a reflection along the horizontal axis,
while the 2-torsion section of the fibration induced by |F11+F12| acts trivially on the graph. A non-
trivial numerically trivial automorphism g fixes F3 and F7 pointwise, hence g fixes the fibration π
and at least one geometric point on the generic fiber of π. Since π is non-isotrivial, g is the unique
hyperelliptic involution of the generic fiber of π fixing the geometric points defined by F3 and F7.
Since Aut(X) contains a translation by a 4-torsion section of the Jacobian of |F11 +F12|, it suffices
to observe that the 2-torsion section of a fibration with I∗4 fiber acts as a reflection along the vertical
axis to show that Aut(X) ∼= D4. This follows from Corollary 2.25. �

3.3. Degenerations and Moduli.

PROPOSITION 3.4. Let β 6= 0 and

y2 + β(s2 + s)xy = x3 + β3(s2 + s)3x
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be the Weierstrass equation of an elliptic fibration π̃β with section on a K3 surface X̃ . Define the
involution σ = tN− ◦ J(σ), where J(σ) : s 7→ −s − 1 and tN− is translation by the section
N− = (0, 0). Then, the following statements are true:

(1) σ is fixed point free if and only if β 6= −256. If β = −256, then the fixed locus of σ is
one (−2)-curve.

(2) Two fibrations π̃β and π̃β′ are isomorphic up to automorphisms of P1 if and only if β = β′.

PROOF. For the first claim, by Lemma 2.22, we have to check whether N− is a J(π)-Enriques
section. First, observe that N−.N+ = 0, J(σ)(N−) = N− = 	N− and N− does not meet the I4

fiber in the identity component. Therefore, we are done if the second fiber fixed by J(σ), namely
F− 1

2
, is smooth. This happens if and only if β 6= −256 and otherwise F− 1

2
is an I2 fiber. In the

latter case, N− does not meet the singular point (−29, 214) of the Weierstrass equation at s = −1
2

and therefore it meets the identity component of F− 1
2
. Hence, N− is not a J(π)-Enriques section

in this case and σ is not fixed point free by Proposition 2.22.
The second claim follows immediately from a comparison of j-invariants, since in any charac-

teristic and independently of β, the locations of the III∗ and I4 fibers are at s = −1, 0,∞. �

We have seen in the previous subsection that the two elliptic fibrations with singular fiber III∗

on an Enriques surface of type I are isomorphic. Therefore, we can describe the moduli space of
these Enriques surfaces using the previous proposition.

COROLLARY 3.5. Enriques surfaces of type I are parametrized by A1 − {0,−256} in every
characteristic.

While β ∈ {0,∞} leads to very degenerate surfaces, we still get an involution if β = −256,
while the K3 surface acquires an additional rational double point. The minimal resolution of the
quotient is a Coble surface (see also Remark 2.23).

4. Enriques surfaces of type II

4.1. Main theorem for type II.

THEOREM 4.1. Let X be an Enriques surface. The following are equivalent:

(1) X is of type II.
(2) The dual graph of all (−2)-curves on X contains the graph in Figure 2.

•

•

• •

•

•

• •

•

•

•

FIGURE 2. Critical subgraph for type II
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(3) The canonical cover X̃ of X admits an elliptic fibration with a Weierstrass equation of
the form

y2 + β(s2 + s)xy + β2(s2 + s)2y = x3 + β(s2 + s)x2

such that the covering morphism ρ : X̃ → X is given as quotient by the involution
σ = tN− ◦ J(σ), where J(σ) : s 7→ −s− 1 and tN− is translation by N− = (0, 0).

PROOF. First, observe that the dual graph of type II (see Table 1) contains the graph in the
above Figure 2.

This subgraph can be interpreted as the dual graph of a special elliptic fibration π with singular
fibers I∗1, I4 and special bisection N as follows, where the dotted rectangles mark the fibers:

•

•

• •

•

•

• •

•

•

•N

Note that the I4 fiber is a double fiber. Similarly to the case of type II, we compute h(N−) = 0
and find the last missing (−2)-curves via jac2.

We found the following equation for the unique rational elliptic surface with singular fibers of
type I∗1 and I4 in arbitrary characteristic

y2 + txy + t2y = x3 + tx2,

where t is a coordinate on P1. The I4 fiber is at t = ∞, while the I∗1 fiber is at t = 0. Moreover,
if char(k) 6= 2, then there is an I1 fiber at t = 16 and all other fibers are smooth. The non-trivial
2-torsion section is s = (0, 0).

In every characteristic, we can write every degree 2 morphism P1 → P1 with t =∞ as branch
point that is not branched over t = 0 in the following form

t 7→ β(s2 + s),

where s is the new parameter on P1 and β ∈ k − {0}. The covering involution is given by
s 7→ −s− 1. The second branch point of this degree 2 cover in characteristic different from 2 is at
t = −β

4 . Now, we get the equation

y2 + β(s2 + s)xy + β2(s2 + s)2y = x3 + β(s2 + s)x2

together with the 2-torsion section s′ = (0, 0) obtained by pulling back s. This equation defines an
elliptic fibration π̃ on a K3 surface. As explained in Section 2.2, if π̃ is obtained as base change of
a fibration of an Enriques surface, then s′ = N− and σ is the covering involution. �

4.2. Automorphisms.

PROPOSITION 4.2. Let X be an Enriques surface of type II. Then, Aut(X) ∼= S4 and this
group is generated by automorphisms induced by 2-torsion sections of the Jacobian fibrations of
elliptic fibrations of X . Moreover, Autnt(X) ∼= {1}.
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PROOF. Kondō’s proof works in arbitrary characteristic [Kon86, p.208] once we show that the
surface has no numerically trivial automorphisms. Recall that the dual graph of (−2)-curves for
type II is as follows:

A numerically trivial automorphism g fixes the two bisections F1 and F7 of the non-isotrivial
fibration π induced by the linear system |2(F9 + F10 + F11 + F12)| pointwise. Both F1 and F7

are separable (i.e. the projection to the base curve is separable) bisections of π, since they meet
distinct points on the I∗1 fiber, hence g fixes at least four geometric points on the generic fiber of π.
If char(k) = 2, then g is trivial. If char(k) 6= 2, then we may assume that g is non-trivial. Then,
g is a hyperelliptic involution of π and the four geometric points on the generic fiber are 2-torsion
points relative to each other. But in characteristic different from 2, π has an I1 fiber which has only
two 2-torsion points. Therefore, F1 and F7 would have to meet, but they do not. Hence, g is trivial.

�

4.3. Degenerations and Moduli. As in the case of type I, one proves the following.

PROPOSITION 4.3. Let β 6= 0 and

y2 + β(s2 + s)xy + β2(s2 + s)2y = x3 + β(s2 + s)x2

be the Weierstrass equation of an elliptic fibration π̃β with section on a K3 surface X̃ . Define the
involution σ = tN− ◦ J(σ), where J(σ) : s 7→ −s − 1 and tN− is translation by the section
N− = (0, 0). Then, the following statements are true:

(1) σ is fixed point free if and only if β 6= −64. If β = −64, the fixed locus of σ is one
(−2)-curve.

(2) Two fibrations π̃β and π̃β′ are isomorphic up to automorphisms of P1 if and only if β = β′.

COROLLARY 4.4. Enriques surfaces of type II are parametrized by A1 − {0,−64} in every
characteristic.

As in the case of type I, the cases where β ∈ {0,∞} are very degenerate surfaces and β = −64
leads to a Coble surface.

5. Enriques surfaces of type III

5.1. Main theorem for type III.

THEOREM 5.1. Let X be an Enriques surface. The following are equivalent:
(1) X is of type III.
(2) The dual graph of all (−2)-curves on X contains the graph in Figure 3.
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• • • •

• • • •

•

• • • •

FIGURE 3. Critical subgraph for type III

(3) The canonical cover X̃ of X admits an elliptic fibration with a Weierstrass equation of
the form

y2 + xy = x3 + 4s4x2 + s4x

such that the covering morphism ρ : X̃ → X is given as quotient by the involution
σ = tN− ◦ J(σ), where J(σ) : s 7→ −s and tN− is translation by N− = (0, 0).

Moreover, Enriques surfaces of type III do not exist in characteristic 2.

PROOF. Note that the dual graph of type III (see Table 1) contains the graph in Figure 3.
The subgraph in Figure 3 can be interpreted as the dual graph of a special elliptic fibration π

with singular fibers (I4, I4, I2, I2) and special bisection N as follows, where the dotted rectangles
mark the fibers:

• • • •

• • • •

•

• • • •

N

As before, the bisection N splits into two sections N+ and N− of the elliptic fibration π̃
induced by π on the K3 cover X̃ . Fixing N+ as the zero section, we compute h(N−) = 0 and we
see that N− is a 2-torsion section of π̃ meeting the I8 fibers in a non-identity component.

Note that the existence of this fibration already implies non-existence of this type of Enriques
surfaces in characteristic 2, since a fibration with singular fibers (I4, I4, I2, I2) does not exist on
rational surfaces in characteristic 2, as can be seen in Table 3.

Now, Corollary 2.25 gives three more (−2)-curves resulting in the following graph:
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• • • •

• • • •

•

• • • •

• •

•
We find a graph of an elliptic fibration with singular fibers (I∗0, I

∗
0) and special bisection N :

N

• • •

• • •

•

•

• •

•

With the usual notation, we compute h(N−) = 2 and add two bisections coming from Corol-
lary 2.25. In the following figure, we only added one of these bisections to maintain readability:

• • • •

• • • •

•

• • • •

• •

•

•

Note that one of the bisections arising via jac2 has already been part of the graph to begin with.
Hence, it remains to produce two more (−2)-curves using another fibration. We leave the details
to the reader.

By [JLR12], we have the following equation for the unique rational elliptic surface with sin-
gular fibers of type (I4, I4, I2, I2) in characteristic different from 2 (the equation can be simplified
over Z)

y2 + xy = x3 + 4t2x2 + t2x,
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where t is a coordinate on P1. The I4 fibers are at t = 0,∞, while the I2 fibers are at t = ±1
4 . The

non-trivial 2-torsion sections are s1 = (−4t2, 2t2), s2 = (0, 0) and s3 = (−1
4 ,

1
8).

In characteristic different from 2, we can write a degree 2 morphism P1 → P1 with t = 0,∞
as branch points in the following form

t 7→ s2,

where s is the new parameter on P1. The covering involution J(σ) is given by s 7→ −s. Now, we
get the equation

(5.1) y2 + xy = x3 + 4s4x2 + s4x

together with the 2-torsion sections s′1 = (−4s4, 2s4), s′2 = (0, 0) and s′3 = (−1
4 ,

1
8) obtained by

pulling back s1,s2 and s3. All of them are J(σ)-(anti-)invariant. However, s′1 (resp. s′3) meets the
identity component of the fiber at s =∞ (resp. s = 0). Therefore, s′2 is the section we are looking
for. �

REMARK 5.2. Note that Equation (5.1) has an automorphism ι : s 7→
√
−1s which commutes

with σ. Therefore, ι induces an automorphism of the Enriques surface, which we will also denote
by ι. Moreover, ι fixes the 2-torsion sections of (5.1). Note also that this automorphism acts as√
−1 on a non-zero global 2-form of the K3 surface.

5.2. Automorphisms.
PROPOSITION 5.3. Let X be an Enriques surface of type III. Then, Aut(X) ∼= (Z/4Z ×

(Z/2Z)2) o D4 and this group is generated by automorphisms induced by 2-torsion sections of
the Jacobian fibrations of non-isotrivial elliptic fibrations of X and the automorphism exhibited in
Remark 5.2. Moreover, Autnt ∼= Z/2Z and Aut(X)/Autnt(X) = (Z/2Z)3 oD4.

PROOF. Recall that the dual graph of (−2)-curves for type III is as follows:
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Let us first show that |Autnt(X)| ≤ 2. Consider the elliptic fibration π induced by the linear
system |2(E3 + E4 + E5 + E11)| and let g ∈ Autnt(X) be a non-trivial automorphism. If g
fixes one of the bisections E2, E9, E6 and E12 pointwise, then it is the hyperelliptic involution of
the generic fiber of π fixing the geometric points defined by the bisection. Moreover, g induces a
unique involution on such a bisection if it acts non-trivially on it. In any case, ord(g) = 2n for
some n ∈ N and, since char(k) 6= 2, g is tame. The fixed locus of a tame automorphism is smooth
by the Lefschetz fixed point formula [Ive72]. Since g fixes E1, E3, E5 and E7 pointwise, it has to
act non-trivially on E2, E9, E6 and E12. In particular, g is unique.

As explained by Kondō [Kon86, p.214], the automorphism group of the graph is the same as
the automorphism group of the subgraph Σ generated by {Ei}i∈{1,...,12}, which is (Z/2Z)4 oD4.
Moreover, since the intersection behaviour of the curves is the same in any characteristic, it is still
true that only an index 2 subgroup of Aut(Σ) may be realized.

As for the realization of the automorphisms, note the following:
• A reflection rd along a diagonal axis is realized by a 2-torsion section of the Jacobian of
|E2 + E9 + E6 + E12 + 2(E1 + E7 + E8)|.
• A reflection rv along the vertical axis is realized by the 2-torsion section of the Jacobian

of |E2 + E9 + E8 + E10 + 2(E3 + E4 + E5 + E6 + E7)|.
• There is a 2-torsion section of the Jacobian of the fibration |2(E3 + E4 + E5 + E11)|

which interchanges E2 and E9 as well as E6 and E12 while fixing E4, E11, E8 and E10.
Another 2-torsion section of the same fibration induces the numerically trivial involution.
• After fixingE6 as a special bisectionN of |2(E3+E4+E5+E11)|, the automorphism ι of

Remark 5.2 fixes E6 and E12 and interchanges E2 and E9. Moreover, it acts non-trivially
on exactly one of the pairs (E3, E10) and (E4, E11).

These facts are checked by using Corollary 2.25 and following through the construction of
jac2. Now, note that we can compute the pointwise stabilizer G of the set {E1, E3, E5, E7} using
Equation (5.1). It is generated by ts1 , ts3 and ts2 as well as ι and the inversion involution. All these
automorphisms commute with each other and ι2 = ts2 , hence G ∼= Z/4Z × (Z/2Z)2. Therefore,
we have a short exact sequence

0 // G // Aut(X) // D4
// 0.

We claim that this sequence splits. Indeed, by [MO14, Corollary 4.7 and Section 7.1], a tame
semi-symplectic automorphism (i.e. an automorphism acting trivially on H0(X, ω⊗2

X )) has order at
most 6. We have realized all reflections using translations by 2-torsion sections, which are semi-
symplectic, since they fix the base of an elliptic fibration and act as translation on the fibers, and
tame, since we are working in characteristic different from 2. Therefore, rd ◦ rv has order 4 and
the group generated by rd and rv is a subgroup of Aut(X) isomorphic to D4. Hence, the sequence
splits and the proof is finished. �

REMARK 5.4. In particular, note that Aut(X) is not a semi-direct product (Z/2Z)4oD4. This
was already observed by H. Ohashi in [Oha15] and corrects a small mistake in [Kon86].

5.3. Degenerations and Moduli. This is similar to the first two cases. However, the involu-
tion is always fixed point free, since the branch points of the degree 2 map of P1s do not move.
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PROPOSITION 5.5. Assume char(k) 6= 2. Let

y2 + xy = x3 + 4s4x2 + s4x

be the Weierstrass equation of an elliptic fibration π̃ with section on a K3 surface X̃ . Define
the involution σ = tN− ◦ J(σ), where J(σ) : s 7→ −s and tN− is translation by the section
N− = (0, 0). Then, σ is fixed point free.

COROLLARY 5.6. Enriques surfaces of type III exist if and only if char(k) 6= 2. Moreover,
they are unique if they exist.

REMARK 5.7. The equation we took from [JLR12] for J(π) makes sense in characteristic 2,
where it defines a rational elliptic surface with singular fibers I4 at t = 0 and I∗1 at t = ∞. The
degree 2 cover t 7→ s2 given in Proposition 5.5 is the Frobenius morphism and the base change
along this morphism defines a rational elliptic surface with singular fibers (I8, III). This surface
is the minimal resolution of singularities of a surface covering a 1-dimensional family of classical
Enriques surfaces with finite automorphism group of ”type VIII”, as is shown in Chapter II Section
7.

6. Enriques surfaces of type IV

6.1. Main theorem for type IV.

THEOREM 6.1. Let X be an Enriques surface. The following are equivalent:
(1) X is of type IV.
(2) The dual graph of all (−2)-curves on X contains the graph in Figure 4.

• • • •

• • • •

•

• • • •

FIGURE 4. Critical subgraph for type IV

(3) The canonical cover X̃ of X admits an elliptic fibration with a Weierstrass equation of
the form

y2 = x3 + 2(s4 + 1)x2 + (s4 − 1)2x

such that the covering morphism ρ : X̃ → X is given as quotient by the involution
σ = tN− ◦J(σ), where J(σ) : s 7→ −s and tN− is translation by N− = (−(s2−1)2, 0).

Moreover, Enriques surfaces of type IV do not exist in characteristic 2.

PROOF. First, we observe that the dual graph of type IV (see Table 1) contains the graph in
Figure 4.



6. ENRIQUES SURFACES OF TYPE IV 33

This subgraph can be interpreted as the dual graph of a special elliptic fibration π with singular
fibers (I4, I4, I2, I2) and special bisection N as follows:

• • • •

• • • •

•

• • • •

N

The bisection N splits into two sections N+ and N− of the elliptic fibration π̃ induced by π
on the K3 cover X̃ . Fixing N+ as the zero section, we compute h(N−) = 0 and we see that N−

is a 2-torsion section of π̃ meeting the I4 fibers coming from the I2 fibers of π in a non-identity
component. The same argument as for type III shows that this type cannot exist in characteristic 2.

Now, Corollary 2.25 gives three more (−2)-curves resulting in the following graph:

• • • •

• • • •

•

• • • •

••

•

Again, to produce additional (−2)-curves, we find a different special fibration with special
bisection N on this surface as follows:

N

• •

• • •

• •

••

•

This special fibration has one I∗0 fiber and four disjoint (−2)-curves contained in some other
fibers. Such a fibration will be extremal in any case by Lemma 2.15, so by Table 3 the fibers are
(I∗0, I

∗
0). Hence, we obtain one more (−2)-curve. We leave it to the reader to find three more such

diagrams and to check that the resulting graph is the one of type IV.
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We use the same equation as for surfaces of type III

y2 + xy = x3 + 4t2x2 + t2x,

where t is a coordinate on P1. Recall that the I4 fibers are at t = 0,∞, while the I2 fibers are at
t = ±1

4 . The non-trivial 2-torsion sections are s1 = (−4t2, 2t2), s2 = (0, 0) and s3 = (−1
4 ,

1
8).

In characteristic different from 2, we can write a degree 2 morphism P1 → P1 with t = ±1
4 as

branch points in the following form

t 7→ 1

4
(
s2 − 1

s2 + 1
),

where s is the new parameter on P1. The covering involution J(σ) is given by s 7→ −s. After
scaling x and y and simplifying we get the equation

(6.1) y2 = x3 + 2(s4 + 1)x2 + (s4 − 1)2x

together with the 2-torsion sections s′1 = (−(s2 − 1)2, 0), s′2 = (0, 0) and s′3 = (−(s2 + 1)2, 0)
obtained by pulling back s1,s2 and s3. All of them are J(σ)-anti-invariant. However, s′2 meets the
identity component of the fiber at s = 0. Moreover, the surface defined by equation (6.1) has an
automorphism ι interchanging s′1 and s′3 given by ι : s 7→

√
−1s.

Therefore, we can choose s′1 as N−. �

REMARK 6.2. It is important to observe that the fibration π̃ defined by Equation (6.1) has more
torsion sections than the ones coming from the rational surface. For example, one can check that
P = (−(s−

√
−1)2(s2−1),−2s(s−

√
−1)2(s2−1)) is a section satisfying P ⊕P = N−. Since

tP ◦ ι commutes with σ, it will induce an automorphism of the Enriques surface, which we will
also denote by tP ◦ ι. Moreover, (tP ◦ ι)2 = tQ ◦ J(σ) for a 4-torsion section Q of π̃. Again, note
that tP ◦ ι acts as

√
−1 on a non-zero global 2-form of the K3 surface.

6.2. Automorphisms.

PROPOSITION 6.3. Let X be an Enriques surface of type IV. Then, Aut(X) ∼= (Z/2Z)4 o
(Z/5ZoZ/4Z) and this group is generated by automorphisms induced by sections of the Jacobian
fibrations of elliptic fibrations ofX and an automorphism exhibited in Remark 6.2. More precisely,
we can choose the sections in such a way that at most one of them is not 2-torsion and that none of
them is a section of an isotrivial fibration. Moreover, Autnt ∼= {1}.

PROOF. Recall that the dual graph of (−2)-curves for type IV is as follows:
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We claim that Autnt(X) is trivial. Indeed, a numerically trivial automorphism g acts trivially
on the base of the fibration |2(E1 + E11)|, since this fibration has four reducible fibers and g fixes
the four bisections E2, E4, E13 and E14 pointwise, hence it is trivial.

Following [Kon86, p.217] we look at the action of Aut(X) on the set of five fibrations {∆i|i =
1, . . . , 5}with ∆1 = |2(E1+E11)|, ∆2 = |2(E2+E10)|, ∆3 = |2(E5+E15)|, ∆4 = |2(E6+E13)|
and ∆5 = |2(E17 + E19)|. The kernel of the induced homomorphism ψ : Aut(X) → S5 is
isomorphic to (Z/2Z)4 and it is generated by translations by 2-torsion sections of the Jacobians of
the ∆i [Kon86, p.218]. From the dual graph, we see that an automorphism of X cannot act as a
permutation of order 3 or as a transposition on {∆1, . . . ,∆5}. Now, we show that the image of ψ
is the group G generated by

ϕ1 : ∆1 7→ ∆3 7→ ∆4 7→ ∆2 7→ ∆5

ϕ2 : ∆1 7→ ∆3 7→ ∆2 7→ ∆4.

Using Corollary 2.25, these permutations are realized as follows:

• The Jacobian of |E5 +E6 +E10 +E18 +E11| has a 5-torsion section which realizes ϕ1.
• If we fix E11 as a special bisection of ∆5, we obtain a section P by Remark 6.2 such that
ϕ2 is realized by the automorphism tP ◦ ι. To see this, note that a 4-torsion section of the
Jacobian of ∆5 acts as ∆1 7→ ∆2; ∆3 7→ ∆4.

We have G ∼= Z/5Z o Z/4Z and, since [S5 : G] ≥ 6, this yields the claim on the image of ψ.
Now, note that we can compose tP ◦ ι with an involution interchanging the two I2 fibers of the ∆5
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fibration to obtain an automorphism of order 4 realizing ϕ2. Hence, we obtain a splitting of

0 // (Z/2Z)4 // Aut(X) // Z/5Z o Z/4Z // 0.

This finishes the proof. �

6.3. Degenerations and Moduli. Similarly to the previous case, we obtain information about
degenerations and moduli by direct calculation.

PROPOSITION 6.4. Assume char(k) 6= 2. Let

y2 = x3 + 2(s4 + 1)x2 + (s4 − 1)2x

be the Weierstrass equation of an elliptic fibration π̃ with section on a K3 surface X̃ . Define
the involution σ = tN− ◦ J(σ), where J(σ) : s 7→ −s and tN− is translation by the section
N− = (−(s2 − 1)2, 0). Then, σ is fixed point free.

COROLLARY 6.5. Enriques surfaces of type IV exist if and only if char(k) 6= 2. Moreover,
they are unique if they exist.

7. Enriques surfaces of type V

7.1. Main theorem for type V.

THEOREM 7.1. Let X be an Enriques surface. The following are equivalent:
(1) X is of type V.
(2) The dual graph of all (−2)-curves on X contains the graph in Figure 5.

•

•

•

•

•

•

•

•

•

•

• •

FIGURE 5. Critical subgraph for type V

(3) The canonical cover X̃ of X admits an elliptic fibration with a Weierstrass equation of
the form

y2 + (s2 + 1)xy + (s2 + 1)y = x3 + (s2 + 2)x2 + (s2 + 1)x

such that the covering morphism ρ : X̃ → X is given as quotient by the involution
σ = tN− ◦ J(σ), where J(σ) : s 7→ −s and tN− is translation by N− = (−1, 0).

Moreover, Enriques surfaces of type V do not exist in characteristic 2 and 3.
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PROOF. First, we observe that the dual graph of type V (see Table 1) contains the graph in
Figure 5.

This subgraph can be interpreted as the dual graph of a special elliptic fibration π with singular
fibers I6, I2 (not III, since it is double) and I3 (or IV) and special bisection N as follows, where the
dotted rectangles mark the fibers:

•

•

•

•

•

•

•

•

•

•

• •N

As before, the bisection N splits into two sections N+ and N− of the elliptic fibration π̃
induced by π on the K3 cover X̃ . Fixing N+ as the zero section, we can compute h(N−) = 0 and
we see that N− is a 2-torsion section of π̃ meeting the I6 and I2 fibers in a non-identity component.

Note that the existence of this fibration already gives non-existence of this type of Enriques
surfaces in characteristic 2 and 3, since an extremal fibration with singular fibers I6 and I2 does not
exist on rational surfaces in characteristic 3 (see Table 3) and because a fibration with two double
fibers cannot exist in characteristic 2. Therefore, we will assume char(k) 6= 2, 3 from now on.

Now, Corollary 2.25 gives two more (−2)-curves resulting in the following graph:

•

•

•

•

•

•

•

•

•

•

•

•

• •

For this example, one can use a fibration with an I∗2 fiber to produce another (−2)-curve:
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•

•

•

•

•

•

•

•

•

•

•

•

• ••

As usual, the remaining curves can be found similarly.
By [JLR12], we have, after simplifying, the following equation for the unique extremal and

rational elliptic surface with singular fibers (I6, I3, I2, I1)

y2 + txy + ty = x3 + (1 + t)x2 + tx,

where t is a coordinate on P1. The I6 fiber is at t = ∞, the I3 fiber is at t = 0, the I2 fiber is at
t = 1 and the I1 fiber is at t = −8. The non-trivial 2-torsion section is s = (−1, 0).

In characteristic different from 2, we can write a degree 2 morphism P1 → P1 with t = 1,∞
as branch points in the following form

t 7→ s2 + 1,

where s is the new parameter on P1. The covering involution J(σ) is given by s 7→ −s. Now, we
have the equation

(7.1) y2 + (s2 + 1)xy + (s2 + 1)y = x3 + (s2 + 2)x2 + (s2 + 1)x

together with the 2-torsion sections s′ = (−1, 0) obtained by pulling back s. Since s′ is J(σ)-
(anti-)invariant and meets the fibers in the correct components, it is the section we are looking
for. �

7.2. Automorphisms.

PROPOSITION 7.2. Let X be an Enriques surface of type V. Then, Aut(X) ∼= S4×Z/2Z and
this group is generated by automorphisms induced by 2-torsion sections of the Jacobian fibrations
of elliptic fibrations of X . Moreover, Autnt(X) ∼= Z/2Z and Aut(X)/Autnt(X) ∼= S4.

PROOF. Recall that the dual graph of (−2)-curves for type V is as follows:
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We claim that |Autnt(X)| = 2. Indeed, a numerically trivial automorphism g acts trivially on
the base of the fibration |2(E1 +E2 +E3 +E4 +E5 +E6)|, since this fibration has at least three
singular fibers and g acts trivially or induces a unique involution on the three bisectionsE10,E7 and
E9. By the same argument as for type III, there is at most one such g. Now, note that the 2-torsion
section of the Jacobian of this fibration acts identically on the graph of (−2)-curves.

The automorphism group of the graph is S4 [Kon86, p.223]. It suffices to look at the action of
Aut(X) on the set {E1, E3, E5, E8}.

• Transpositions of E5 with another curve of the set are induced by 2-torsion sections of
fibrations with a singular fiber of type I∗2. For example, there is a 2-torsion section of the
Jacobian of |E2 + E6 + E7 + E9 + 2(E1 + E8 + E10)| which interchanges E3 and E5

by Corollary 2.25.
• All transpositions of two curves different from E5 are induced by 2-torsion sections of

fibrations with a singular fiber of type III∗, e.g. the 2-torsion section of the Jacobian of
|E10 + E9 + 2E1 + 2E3 + 2E7 + 3E6 + 3E4 + 4E5| interchanges E10 and E9.

Finally, we claim that these transpositions generate a subgroup of Aut(X), which is isomorphic
to S4. Indeed, this can be checked by using Equation (7.1) to compute the stabilizerG ofE1 (which
is D6) and by using the fact that the maximal order of a tame semi-symplectic automorphism is 6
(see [MO14]). This finishes the proof. �

7.3. Degenerations and Moduli. As in the previous cases, we prove the existence of this type
by explicit calculation.

PROPOSITION 7.3. Assume char(k) 6= 2, 3. Let

y2 + (s2 + 1)xy + (s2 + 1)y = x3 + (s2 + 2)x2 + (s2 + 1)x
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be the Weierstrass equation of an elliptic fibration π̃ with section on a K3 surface X̃ . Define
the involution σ = tN− ◦ J(σ), where J(σ) : s 7→ −s and tN− is translation by the section
N− = (−1, 0). Then, σ is fixed point free.

COROLLARY 7.4. Enriques surfaces of type V exist if and only if char(k) 6= 2, 3. Moreover,
they are unique if they exist.

REMARK 7.5. Again, the equation makes sense in characteristic 2, where it defines a K3
surface covering a 1-dimensional family of classical and supersingular Enriques surfaces of type
VII (see [KK15b] and Chapter II Section 6).

8. Enriques surfaces of type VI

8.1. Main theorem for type VI.

REMARK 8.1. In the first five cases, every base change with the correct ramification points
produced an elliptic fibration of a K3 surface with J(π)-Enriques section N−. This happened
because the section N− was a 2-torsion section. In the last two cases, however, we do not get this
section for free.

LEMMA 8.2. Let char(k) 6= 3, J(σ) : s 7→ −s− β, and

y2 − 3(3(s2 + βs) + 1)xy + (3(s2 + βs) + 1)2y = x3

with β ∈ k − {± 2√
3
} be the Weierstrass equation of an elliptic fibration of a K3 surface. Then, an

everywhere integral, J(σ)-anti-invariant section N− meeting the fiber at s =∞ in a non-identity
component exists if and only if β = ±1. Moreover, it is unique up to sign if it exists. Both cases are
isomorphic and if β = 1, the section is given by N− = (s+ s2, s3).

PROOF. By [Shi10, Lemma 1.2], an everywhere integral section N− is given by (x(s), y(s)),
where x(s) and y(s) are polynomials in s with degs(x) ≤ 4 and degs(y) ≤ 6. Now, a lengthy, but
straightforward calculation comparing coefficients gives the result. Finally, note that the automor-
phism s 7→ −s exchanges both cases. �

THEOREM 8.3. Let X be an Enriques surface. The following are equivalent:
(1) X is of type VI.
(2) The dual graph of all (−2)-curves on X contains the graph in Figure 6.
(3) The canonical cover X̃ of X admits an elliptic fibration with a Weierstrass equation of

the form
y2 − 3(3s2 + 3s+ 1)xy + (3s2 + 3s+ 1)2y = x3

such that the covering morphism ρ : X̃ → X is given as quotient by the involution
σ = tN− ◦J(σ), where J(σ) : s 7→ −s−1 and tN− is translation by N− = (s+ s2, s3).

Moreover, Enriques surfaces of type VI do not exist in characteristic 3.

PROOF. First, observe that the dual graph of type VI (see Table 1) contains the graph in the
below Figure 6.

This subgraph can be interpreted as the dual graph of a special elliptic fibration π with singular
fibers IV∗, I3 (not III, since it is double) and special 2-section N . With the same notation as in
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•
•
•
•
•

•
•

•

•
•

•

FIGURE 6. Critical subgraph for type VI

the previous cases, we can compute h(N−) 6= 0 and from Corollary 2.25 we obtain two more
(−2)-curves as follows:

•
•
•
•
•

•
•

•

•
•

•
••

There are three subgraphs of type Ã1 such that the graph of (−2)-curves disjoint from this
diagram together with a special bisection has the following form:

•
•
•
•

•
•

•

•
•

•

The only rational elliptic fibration with a singular fiber of type I2 and some other singular fibers
whose dual graphs contain an A5 and an A2 diagram is the one with singular fibers (I6, I3, I2, I1)
(resp. (I6, IV, I2) in characteristic 2). Using the other (−2)-curves in the graph, one deduces that
the I6 and I3 (resp. IV) fibers are simple. These fibrations give the seven remaining (−2)-curves
for the dual graph of type VI. Observe that the existence of such a fibration excludes this case in
characteristic 3, since the I2 fiber is double.

We have found the following equation for the unique rational and extremal elliptic surface with
singular fibers IV∗ and I3 in any characteristic

y2 + txy + t2y = x3,
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where t is a coordinate on P1. By a change of coordinates (valid away from characteristic 3) we
obtain

y2 − 3(3t+ 1)xy + (3t+ 1)2y = x3.

The IV∗ fiber is at t = −1
3 , the I3 fiber is at t =∞ and there is an I1 fiber at t = −2

3 .
In characteristic 6= 3, we can write a degree 2 morphism P1 → P1 with t =∞ as branch point

and which is not branched over −1
3 as

t 7→ s2 + βs,

where s is the new parameter on P1 and β 6= ± 2√
3
. The covering involution J(σ) is given by

s 7→ −s− β. We obtain the equation

y2 − 3(3(s2 + βs) + 1)xy + (3(s2 + βs) + 1)2y = x3.

By Lemma 8.2, if a suitable section N− exists, we can assume β = 1 and N− = (s+ s2, s3). �

8.2. Automorphisms.

PROPOSITION 8.4. Let X be an Enriques surface of type VI. Then, Aut(X) ∼= S5 and this
group is generated by automorphisms induced by 2-torsion sections of the Jacobian fibrations of
elliptic fibrations of X . Moreover, Autnt(X) ∼= {1}.

PROOF. Recall that the dual graph of (−2)-curves for type VI is as follows:

Let us first show that Autnt(X) is trivial. Indeed, the three separable bisectionsE7, E9 andE10

of |E1 +E2 +E3 +E4 +E5 +E6| are fixed pointwise by any numerically trivial automorphism,
which therefore has to be the identity.
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The automorphism group of the graph is S5 [Kon86, p.223]. We look at the induced action of
Aut(X) on the set Σ = {E1, . . . , E10} and note the following points:

• The pointwise stabilizer of the set Γ1 = {E4, E5, E6, E7} is Z/2Z. It is realized by the
2-torsion section of the Jacobian of |2(E5 + E13)|.
• The stabilizer of E5 under the action of the automorphism group of the graph is S3 ×
Z/2Z. It is realized by the stabilizer of Γ1 and the 2-torsion sections of the Jacobian
fibrations of fibrations with a fiber of type I∗1. For example the Jacobian of |E6 + E7 +
E3 + E10 + 2(E4 + E5)| has a 2-torsion section which interchanges E6 and E7.
• Since the stabilizer of E5 has order 12, it suffices to show that the group generated by

2-torsion sections acts transitively on Σ. We show that we can map E5 to E10, E3 and
E6. The rest can be done similarly.
• Indeed, the 2-torsion sections of the Jacobians of |2(E3 + E17)|, |2(E10 + E16)| and
|2(E8 + E11)| interchange E5 and E10, E5 and E3 and E3 and E6, respectively.

�

8.3. Degenerations and Moduli.

PROPOSITION 8.5. Assume char(k) 6= 3. Let

y2 − 3(3(s2 + s) + 1)xy + (3(s2 + s) + 1)2y = x3

be the Weierstrass equation of an elliptic fibration π̃ with section on a K3 surface X̃ . Define the
involution σ = tN− ◦ J(σ), where J(σ) : s 7→ −s − 1 and tN− is translation by the section
N− = (s + s2, s3). Then, σ is fixed point free if and only if char(k) 6= 5. If char(k) = 5, σ has
exactly one (−2)-curve as fixed locus.

PROOF. The only possibility for σ to have fixed points is the case where ϕ : t 7→ s2 + s is
branched over the point lying under the nodal fiber. Hence, we may assume that char(k) 6= 2. The
branch points of ϕ are t = ∞ and t = −1

4 , while the I1 fiber of π lies over t = −2
3 . Hence, ϕ

is branched over the point lying under the nodal fiber if and only if −2
3 = −1

4 , i.e. if and only if
5 = 0.

Now if char(k) = 5, the location of the I2 fiber of π̃ is s = −1
2 = 2. The singular point of

the Weierstrass equation at s = 2 is (−1, 1), while N− passes through (1, 3). Hence, N− meets
the identity component of the I2 fiber and therefore it is not a J(π)-Enriques section and σ fixes a
(−2)-curve. �

COROLLARY 8.6. Enriques surfaces of type VI exist if and only if char(k) 6= 3, 5. Moreover,
they are unique if they exist.

Similarly to the cases of type I and II, one obtains a Coble surface if σ has a fixed curve, i.e. if
char(k) = 5.
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9. Enriques surfaces of type VII

9.1. Main theorem for type VII.

LEMMA 9.1. Let char(k) 6= 2, J(σ) : s 7→ −s, and

y2 = x3 − (s2
β + sβ)x2 + (2s3

β − 3s2
β + 4sβ − 2)x+ (−s3

β + 2s2
β − 2sβ + 1),

where sβ = s2 + β with β ∈ k − {1}, be the Weierstrass equation of an elliptic fibration of
a K3 surface. Then, an everywhere integral, J(σ)-anti-invariant section N− meeting the fibers
at s = ∞ and s = ±

√
1− β in a non-identity component exists if and only if β ∈ {0, 2}.

Moreover, it is unique up to sign if it exists. Both cases are isomorphic and if β = 0, the section is
N− = (1, s− s3).

PROOF. Similarly to the previous case, one obtains conditions on β by direct calculation. Let
us show the existence of the automorphism. The Weierstrass equation for the rational elliptic
fibration

y2 = x3 − (t2 + t)x2 + (2t3 − 3t2 + 4t− 2)x+ (−t3 + 2t2 − 2t+ 1)

has an automorphism
t 7→ 2− t; x 7→ x− 2 + 2t.

This automorphism induces the desired isomorphism. �

THEOREM 9.2. Let X be an Enriques surface. The following are equivalent:
(1) X is of type VII.
(2) The dual graph of all (−2)-curves on X contains the graph in Figure 7.

•

•••

•

•

•• • • •

FIGURE 7. Critical subgraph for type VII

(3) The canonical cover X̃ of X admits an elliptic fibration with a Weierstrass equation of
the form

y2 = x3 − (s4 + s2)x2 + (2s6 − 3s4 + 4s2 − 2)x+ (−s6 + 2s4 − 2s2 + 1)

such that the covering morphism ρ : X̃ → X is given as quotient by the involution
σ = tN− ◦ J(σ), where J(σ) : s 7→ −s and tN− is translation by N− = (1, s− s3).

Moreover, singular Enriques surfaces of type VII do not exist in characteristic 2.

PROOF. First, observe that the dual graph of type VII (see Table 1) contains the graph in the
above Figure 7.

Conversely, we have shown in Example 2.3 that we recover type VII from the critical subgraph
and, since an elliptic fibration with singular fibers I8 and I2 (not III, since it is a double fiber) does
not exist in characteristic 2, this type cannot exist in characteristic 2.
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We have found the following equation for the unique rational and extremal elliptic surface with
singular fibers (I8, I2, I1, I1) in characteristic different from 2

y2 = x3 − (t2 + t)x2 + (2t3 − 3t2 + 4t− 2)x+ (−t3 + 2t2 − 2t+ 1),

where t is a coordinate on P1. The I8 fiber is at t = 1, the I2 fiber is at t =∞ and there are two I1

fibers at t = 1±
√
−1
2 .

In characteristic different from 2, we can write a degree 2 morphism P1 → P1 with t = ∞ as
branch point and which is not branched over t = 0 as

t 7→ s2 + β,

where s is the new parameter on P1 and β 6= 0. The covering involution J(σ) is given by s 7→ −s.
Now, note that we are looking for a section N− which meets the I4 and I8 fibers in non-identity
components. By Lemma 9.1, if a suitable section N− exists, we can assume β = 0 and N− =
(1, s − s3). Moreover, one can check that N− has the correct intersection behaviour with the I8

fibers. �

9.2. Automorphisms.

PROPOSITION 9.3. Let X be an Enriques surface of type VII. Then, Aut(X) ∼= S5 and this
group is generated by automorphisms induced by 2-torsion sections of the Jacobian fibrations of
elliptic fibrations of X . Moreover, Autnt(X) ∼= {1}.

PROOF. Recall that the dual graph of (−2)-curves for type VII is as follows:
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We claim that Autnt(X) is trivial. Indeed, one can check that the bisectionsE2,E3,E5,E6,E8

and E9 of |K4 +K5| are fixed pointwise by any numerically trivial automorphism, which therefore
has to be trivial.

The automorphism group of the graph is S5. Following [Kon86, p.232], we look at the induced
action on the set Σ = {K1, . . . ,K5} and observe that the pointwise stabilizer of Σ is trivial. Now,
each Ki, i ∈ {1, . . . , 5}, meets exactly three Ej , j ∈ {1, . . . , 15}, twice. The 2-torsion sections
of the Jacobians of the elliptic fibrations |2(Ki + Ej)| act as permutations of cycle type (2, 2) on
Σ−Ki. Note that the 2-torsion section of the Jacobian of |K4 +K5| interchangesK4 andK5 while
fixing K1,K2 and K3. Together, these involutions generate the full automorphism group. �

9.3. Degenerations and Moduli.

PROPOSITION 9.4. Assume char(k) 6= 2. Let

y2 = x3 − (s4 + s2)x2 + (2s6 − 3s4 + 4s2 − 2)x+ (−s6 + 2s4 − 2s2 + 1)

be the Weierstrass equation of an elliptic fibration π̃ with section on a K3 surface X̃ . Define
the involution σ = tN− ◦ J(σ), where J(σ) : s 7→ −s and tN− is translation by the section
N− = (1, s − s3). Then, σ is fixed point free if and only if char(k) 6= 5. If char(k) = 5, σ has
exactly one (−2)-curve as fixed locus.

PROOF. The branch points of ϕ are t = ∞ and t = 0, while the I1 fibers of π lie over
t = 1±

√
−1
2 . Hence, ϕ is branched over a point lying under a nodal fiber if and only if 1±

√
−1
2 = 0,

i.e. if and only if 5 = 0.
Now, if char(k) = 5, the location of the I2 fiber of π̃ is s = 0. The singular point of the

Weierstrass equation at s = 0 is (2, 0), while N− passes through (1, 0). Hence, N− meets the
identity component of the I2 fiber and therefore it is not a J(π)-Enriques section and σ fixes a
(−2)-curve. �

COROLLARY 9.5. Enriques surfaces of type VII with smooth K3 cover exist if and only if
char(k) 6= 2, 5. Moreover, they are unique if they exist.

REMARK 9.6. Here, it is important to recall our convention on Enriques surfaces in character-
istic 2. In fact, by [KK15b], there is a 1-dimensional family of classical and supersingular Enriques
surfaces of type VII in characteristic 2 (see Chapter II Section 6). Note also that the involution σ
produces a Coble surface in characteristic 5.

10. The classification-theorem

Now that we have completed the construction of the seven types of Enriques surfaces with fi-
nite automorphism group, it remains to show that these seven types are indeed all possible Enriques
surfaces with finite automorphism group. Hence, the goal of this chapter is to prove the follow-
ing classification-theorem, finishing the proof of the Main Theorem. Recall that all our Enriques
surfaces are assumed to have a smooth canonical cover.

THEOREM 10.1. Let X be an Enriques surface. The following are equivalent:
(1) X has finite automorphism group.
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(2) Every elliptic fibration of X is extremal.
(3) Every special elliptic fibration of X is extremal and X contains a (−2)-curve.
(4) The dual graph of all (−2)-curves on X contains a critical subgraph for one of the types

I, . . . ,VII.
(5) The dual graph of all (−2)-curves on X is one of the seven types I, . . . ,VII.
(6) X contains only finitely many, but at least one, (−2)-curves.

Before giving the proof of Theorem 10.1, we need to introduce the tools for the classification
of dual graphs.

10.1. Preparations for the proof of the classification-theorem. Corollary 2.25 and the height
pairing of sections of elliptic fibrations of the K3 cover will play an important role. More precisely,
we have the following lemma.

LEMMA 10.2. Let π : X → P1 be a special and extremal elliptic fibration of an Enriques
surface X with special bisection N . Let π̃ be the corresponding elliptic fibration of the K3 cover
X̃ of X . Denote the irreducible curves on X̃ mapping surjectively onto N by N+ and N−. Let
J(π) be the Jacobian of π. We choose N+ as the zero section of π̃.

Then,
• either h(N−) = 0 and N− is a 2-torsion section in MW(J(π)) ⊆ MW(π̃)
• or N− satisfies∑

ν

contrν(N−) < 4 and
∑
ν

contrν(N−, P ) ∈ {0, 1, 2}

for all P ∈ MW(J(π)) ⊆ MW(π̃) with P 6= N−.

PROOF. Since

0 ≤ h(N−) = 4 + 2N−.N+ −
∑
ν

contrν(N−) = 4−
∑
ν

contrν(N−)

and N− restricts to a 2-torsion section on a fiber F of π̃ lying over a double fiber of π, we ei-
ther have h(N−) = 0 and we claim that N− is 2-torsion or h(N−) > 0 and therefore we have∑

ν contrν(N−) < 4.
Indeed, suppose h(N−) = 0 and N− is not 2-torsion. Then, N−⊕N− meets the zero section

in F , hence its order is divisible by char(k) = 2 by [IL13, Proposition 2.4]. But if char(k) = 2,
the fiber F is either multiplicative or ordinary by Proposition 2.5, contradicting [IL13, Proposition
2.1].

Since every P ∈ MW(J(π)) ⊆ MW(π̃) is disjoint from N+, we have

0 = 〈P,N−〉 = 2 + P.N+ +N−.N+ − P.N− −
∑
ν

contrν(N−, P ) =

= 2− P.N− −
∑
ν

contrν(N−, P ),

which yields the second claim. �
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REMARK 10.3. By Table 4, the local contributions to the height pairing can be read off almost
completely from the dual graph of singular fibers. However, a remark about the cases where π has
a double fiber of type I1 is in order. Since sections P ∈ MW(J(π)) meet the corresponding I2 fiber
of π̃ in the identity component, N− cannot be 2-torsion. Moreover,

∑
ν contrν(N−) will decrease

by 1
2 , while

∑
ν contrν(N−, P ) stays the same, hence N− can only satisfy the conditions of the

lemma if it does so, when we ignore the double I1 fiber. We will do this from now on.

DEFINITION 10.4. Let Γ1 be the dual graph of singular fibers of a rational and extremal elliptic
fibration. A graph Γ ⊇ Γ1 is called a fiber-bisection configuration for Γ1 if the following two
conditions hold:

(1) Γ− Γ1 consists of one vertex N called the special bisection.
(2) N meets every connected component of Γ1 of type D̃ and Ẽ exactly twice and every

component of type Ã at least once and at most twice. Moreover, N meets at most two
connected components of Γ1 exactly once.

Given a fiber-bisection configuration Γ, we can check whether it could be the dual graph of a
special elliptic fibration π on an Enriques surface as follows: Suppose it is the dual graph of π.
Then, we can pass to the canonical cover, add the sections coming from the Jacobian J(π) of π and
check the conditions of Lemma 10.2. By Remark 10.3, it makes sense to say that a fiber-bisection
configuration satisfies the conditions of Lemma 10.2.

DEFINITION 10.5. A fiber-bisection configuration is called admissible if it satisfies the condi-
tions of Lemma 10.2

10.2. Outline of proof. In this section, we outline the proof of the following lemma, which is
the main ingredient in the proof of Theorem 10.1.

LEMMA 10.6. Let X be an Enriques surface such that every special elliptic fibration of X
is extremal and X contains a (−2)-curve. Then, the dual graph of (−2)-curves on X contains a
critical subgraph (see Figures 1, . . . , 7) for one of the types I, . . . ,VII.

PROOF OF THEOREM 10.1 (ASSUMING LEMMA 10.6). As observed by Dolgachev [Dol84,
§4], if X has finite automorphism group, then every elliptic fibration π on X is extremal, since the
Mordell-Weil group of J(π) acts faithfully on X . In particular, since X admits an elliptic fibration
by Proposition 2.4, X contains a (−2)-curve by Lemma 2.15 and every special elliptic fibration of
X is extremal. From Lemma 10.6, we deduce that X contains a critical subgraph, which, by the
earlier chapters, implies that the dual graph of (−2)-curves on X is one of the types I, . . . ,VII.

The seven dual graphs in Table 1 consist of 12 (resp. 20) vertices, hence X contains finitely
many and at least one (−2)-curve. Moreover, we have computed the automorphism groups of these
surfaces. They are finite. Finally, by Corollary 2.25, the only special elliptic fibrations of Enriques
surfaces with finitely many, but at least one, (−2)-curves are the extremal ones. �

Since we have constructed all seven types in the previous chapters, Theorem 10.1 will finish
the classification. The strategy for the proof of Lemma 10.6 can be summarized as follows:

(1) Let X be an Enriques surface with a (−2)-curve such that every special elliptic fibration
of X is extremal. By Proposition 2.8, X admits such a special elliptic fibration π.
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(2) Pick a dual graph Γ1 of singular fibers of a rational and extremal elliptic fibration and
some admissible fiber-bisection configuration Γ ⊇ Γ1. Suppose that Γ is the dual graph
of fibers and special bisection of π.

(3) Apply Corollary 2.25 to find additional (−2)-curves and obtain a bigger graph Γ2.
(4) If Γ2 contains one of the critical subgraphs, we have shown in the previous chapters that

X is of one of the seven types.
(5) If not, find a different subgraph Γ3 of Γ2 of type Ãn together with a vertex N meeting

Γ3 exactly once. By Proposition 2.12, Γ3 is the dual graph of a singular fiber of a special
elliptic fibration π1 and N is a special bisection of π1. By the assumption on X , π1 is
extremal, i.e. we can extend Γ3 to a dual graph Γ4 of singular fibers of an extremal elliptic
fibration such that Γ4 ∪N is an admissible fiber-bisection configuration for Γ4. Now, go
back to step (3).

We will show that the above process will terminate at some point for every choice of Γ1, either
with a contradiction or with step (4).

10.3. Proof of the classification-theorem. The following lemma shows that the number of
admissible fiber-bisection configurations we have to check is ”not too big”.

LEMMA 10.7. Let X be an Enriques surface with a special and extremal elliptic fibration π.
Then, X admits a special elliptic fibration with a double fiber of type In with n ≥ 2. Moreover, if
π has double fibers of type In1 and In2 , then n1 + n2 ≤ 8.

PROOF. For the first claim, let π be a special and extremal elliptic fibration of X and let N
be a special bisection of π. If π has a fiber of type IV∗, III∗, II∗, I∗n, or In with n ≥ 5, then N and
fiber components form a fiber of type In and a component of the fiber takes the role of a special
bisection. The remaining possibilities for π are the one with fibers (I4, I4, I2, I2) and the one with
fibers (I3, I3, I3, I3). These are checked similarly, using more than one fiber.

For the second claim, let π be a special elliptic fibration of X with double fibers of type In1

and In2 . Denote a special bisection by N and the corresponding curves on the K3 cover by N+

and N− as usual. Then, we compute
∑

ν contrν(N−) ≥ (n1 + n2)/2 using Table 4. Since∑
ν contrν(N−) ≤ 4, this gives the second claim. �

It is straightforward to give a complete list of admissible fiber-bisection configurations for dual
graphs of singular fibers of extremal elliptic fibrations. We leave the details to the reader. Note that
it follows from the classification of extremal and rational elliptic surfaces (see Table 3) that we do
not have to take special care of small characteristics.

LEMMA 10.8. LetAdmp be the set of admissible fiber-bisection configurations for dual graphs
of extremal elliptic fibrations over an algebraically closed field of characteristic p. Then Admp ⊆
Adm0.

LEMMA 10.9. Table 5 shows the list of all admissible fiber-bisection configurations for dual
graphs of singular fibers of extremal elliptic fibrations, where the special bisection meets at least
one Ã subgraph (marked with a 2 in front) only once.
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Dual graph of fibers Admissible fiber-bisection configurations

Ẽ7 ⊕ 2Ã1 • • • • • • •

•

•• •

• • • • • • •

•

•• •

Ẽ6 ⊕ 2Ã2

• • • • • • • •

••

•

D̃5 ⊕ 2Ã3

•

•

• •

•

•

• •

•

•

•

•

•

• •

•

•

• •

•

•

•

D̃6 ⊕ 2Ã1 ⊕ 2Ã1

•

•

•

• •

•

• •

•

•

•

• •

•

•

• •

•

• •

•

•

•

•

D̃6 ⊕ 2Ã1 ⊕ Ã1
•

•

•

• •

•

• •

•

•

•

• •

•

•

• •

•

• •

•

•

•

•

•

•

•

• •

•

• •

•

•

•

• •

•

•

• •

•

• •

•

•

•

•

2Ã7 ⊕ Ã1
•

•

•

•

•

•

•

•

• • •

Ã7 ⊕ 2Ã1
•

•

•

•

•

•

•

•

• • • •

•

•

•

•

•

•

•

• • •

2Ã4 ⊕ Ã4
•

• • •

• •

• • •

••

2Ã5 ⊕ Ã2 ⊕ 2Ã1

•

•

•

•

•

•

• • •

•

• •

Ã5 ⊕ 2Ã2 ⊕ 2Ã1

•

•

•

•

•

•

• • •

•

• •

2Ã5 ⊕ Ã2 ⊕ Ã1

•

•

•

•

•

•

• • •

•

• •
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Ã5 ⊕ 2Ã2 ⊕ Ã1

•

•

•

•

•

•

• • •

•

• •

•

•

•

•

•

•

• • •

•

• •

•

•

•

•

•

•

• • •

•

• •

Ã5 ⊕ Ã2 ⊕ 2Ã1 •

•

•

•

•

•

• • •

•

• •

•

•

•

•

•

•

• • •

•

• •

•

•

•

•

•

•

• • •

•

• •

•

•

•

•

•

•

• • •

•

• •

2Ã3⊕ 2Ã3⊕ Ã1⊕ Ã1

• • • •

• • • •

•

• • • •

Ã3⊕ Ã3⊕ 2Ã1⊕ 2Ã1

,

• • • •

• • • •

•

• • • •

• • • •

• • • •

•

• • • •

2Ã3⊕ Ã3⊕ 2Ã1⊕ Ã1

• • • •

• • • •

•

• • • •

2Ã3 ⊕ Ã3 ⊕ Ã1 ⊕ Ã1

• • • •

• • • •

•

• • • •

• • • •

• • • •

•

• • • •

• • • •

• • • •

•

• • • •

Ã3 ⊕ Ã3 ⊕ 2Ã1 ⊕ Ã1

• • • •

• • • •

•

• • • •

• • • •

• • • •

•

• • • •
• • • •

• • • •

•

• • • •

• • • •

• • • •

•

• • • •

2Ã2⊕ 2Ã2⊕ Ã2⊕ Ã2

• •

• • • •

•

• • • •

• •

2Ã2 ⊕ Ã2 ⊕ Ã2 ⊕ Ã2

• •

• • • •

•

• • • •

• •

• •

• • • •

•

• • • •

• •

TABLE 5. Admissible fiber-bisection configurations for extremal fibrations
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REMARK 10.10. In fact, many of these admissible fiber-bisection configurations are realizable
over the complex numbers (see [Mar16]).

From these tables, we can deduce the following improvement of Lemma 10.7.

COROLLARY 10.11. If an Enriques surface X admits a special and extremal elliptic fibration,
then X is either of type II or it admits a special elliptic fibration with a double fiber of type I2.

PROOF. By Lemma 10.7, we know that X admits an elliptic fibration with a double fiber of
type In for some n. Almost every graph in Lemma 10.9 admits an Ã1 subgraph and a vertex
meeting this subgraph exactly once; the only exception is the critical subgraph for type II. Hence,
the claim follows. �

Before we start with the proof of Lemma 10.6, we need the following auxiliary result.

LEMMA 10.12. There is no Enriques surface with a special elliptic fibration with singular
fibers

• (I3, I3, I3, I3) such that two of the I3 fibers are multiple or
• (I6, I3, I2, I1) such that the I3 and I2 fibers are multiple.

PROOF. We will only show the first claim; the second one is similar. The claim is true if
char(k) ∈ {2, 3}, since there is no rational elliptic surface with singular fibers (I3, I3, I3, I3) in
characteristic 3 and an elliptic fibration of an Enriques surface in characteristic 2 cannot have two
multiplicative double fibers.

Let us assume char(k) 6∈ {2, 3}. The rational elliptic surface J(π) with singular fibers
(I3, I3, I3, I3) has the Weierstrass equation

(10.1) y2 = x3 + (−3t4 + 24t)x+ 2t6 + 40t3 − 16.

If an Enriques surface with this Jacobian and two double I3 fibers exists, it is covered by the base
change of (10.1) via t 7→ s2 − 1.

A J(π)-Enriques section N− = (x(s), y(s)) meets the fibers of J(π) at s = 0 and at s = ∞
in a non-identity component and is J(σ)-anti-invariant, where J(σ) : s 7→ −s. Since the singular
point of the fiber at s = 0 (resp. s =∞) is (−3, 0) (resp. (1, 0)), N− has the form

x = −3 + x2s
2 + s4

y = y1s+ y3s
3 + y5s

5.

Plugging this into the base change of equation (10.1), we additionally obtain y1 = y5 = 0, y3 =
±8, x2 = −2 and finally 144 = 0, which is not allowed, since char(k) 6= 2, 3. �

PROOF OF LEMMA 10.6. (For a detailed explanation of how to add (−2)-curves using jac2,
see Section 2.3.) By Corollary 10.3, it suffices to check the admissible fiber-bisection configura-
tions with a 2Ã1 component. We will treat them in the following order:
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Γ1 # Admissible fiber-bisection configurations

D̃6 ⊕ 2Ã1 ⊕ 2Ã1 2

D̃6 ⊕ 2Ã1 ⊕ Ã1 4

Ẽ7 ⊕ 2Ã1 2

Ã3⊕ Ã3⊕ 2Ã1⊕ 2Ã1 2

2Ã3⊕ Ã3⊕ 2Ã1⊕ Ã1 1

Ã3 ⊕ Ã3 ⊕ 2Ã1 ⊕ Ã1 4

2Ã5 ⊕ Ã2 ⊕ 2Ã1 1

Ã5 ⊕ Ã2 ⊕ 2Ã1 4

Ã7 ⊕ 2Ã1 2

• Γ1 = D̃6 ⊕ 2Ã1 ⊕ 2Ã1

a) Fiber-bisection configuration:

•

•

•

• •

•

• •

•

•

•

•
After adding a bisection with jac2, we find another special fibration with two double
I2 fibers and bisection N as follows, where the dotted rectangles mark the fibers:

•

•

•

• •

•

• •

•

•

•

•

•

N

There is a D4 diagram which is disjoint from the two Ã1 subgraphs. By Table 3,
the only extremal fibration with two singular fibers of type I2 and one singular fiber
whose dual graph contains a D4 is the one with singular fibers (I∗2, I2, I2). How-
ever, the bisection N cannot meet the I∗2 fiber in an admissible way, hence this fiber-
bisection configuration does not occur.

b) Fiber-bisection configuration:

•

•

•

• •

•

• •

•

•

•

•
After adding a bisection with jac2, we find another special fibration with two double
I4 fibers and bisection N as follows:
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•

•

•

•

• •

•

• •

•

•

•

•

N

By Table 3, the only extremal fibration with two singular fibers of type I4 is the one
with singular fibers (I4, I4, I2, I2) and the only admissible fiber-bisection configura-
tion with Γ1 = 2Ã3 ⊕ 2Ã3 ⊕ Ã1 ⊕ Ã1 is the critical subgraph for type III.

• Γ1 = D̃6 ⊕ 2Ã1 ⊕ Ã1

a) Fiber-bisection configuration:

•

•

•

• •

•

• •

•

•

•

•
After adding a bisection corresponding to a 2-torsion section via jac2, we obtain
another special fibration with double singular fibers I6 and I2 and bisection N as
follows:

•

•

•

• •

•

• •

•

•

•

•

•

N

The only admissible fiber-bisection configuration for such a fibration is the critical
subgraph for type V.

b) Fiber-bisection configuration:

•

•

•

• •

•

• •

•

•

•

•
Adding another bisection corresponding to a 2-torsion section via jac2, we obtain
another special fibration with two singular double fibers of type I4, giving the critical
subgraph for type III:
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•

•

•

• •

•

• •

•

•

•

•

• N

c) Fiber-bisection configuration:

•

•

•

• •

•

• •

•

•

•

•
Adding another bisection corresponding to a 2-torsion section via jac2, we obtain
another special fibration with two singular double fibers of type I2, bisection N , and
some fiber whose dual graph contains a D4. The only extremal fibration satisfying
this is the one with fibers (I∗2, I2, I2) and we have already treated the cases where both
I2 fibers are double.

•

•

•

• •

•

• •

•

•

•

•

•

N

d) Fiber-bisection configuration:

•

•

•

• •

•

• •

•

•

•

•
There is another special elliptic fibration with double fiber of type I2 as in the fol-
lowing figure:

•

•

•

• •

•

• •

•

•

•

•

N

There is aD4 diagram and three disjoint vertices, which are disjoint from the marked
subgraph. The only extremal fibration whose dual graph of singular fibers contains
these diagrams is the one with singular fibers (I∗2, I2, I2). But the bisection N meets
the fibers in such a way, that the fiber-bisection configuration will be one of the
configurations we have already treated.
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• Γ1 = Ẽ7 ⊕ 2Ã1

a) Fiber-bisection configuration:

• • • • • • •

•

•• •

This is the critical subgraph for type I.
b) Fiber-bisection configuration:

• • • • • • •

•

•• •

There is another special elliptic fibration with a double fiber of type I2 and a bisection
N as follows:

• • • • • • •

•

•• •

N

There is a D6 diagram and an isolated vertex which are disjoint from the marked
subgraph. Moreover, from the intersection behaviour of N , we can exclude the case
that the new fibration has a singular fiber of type III∗. The only extremal fibration
satisfying these conditions is the one with singular fibers (I∗2, I2, I2). We have already
treated all fiber-bisection configurations for this fibration.

• Γ1 = Ã3 ⊕ Ã3 ⊕ 2Ã1 ⊕ 2Ã1

a) Fiber-bisection configuration:
• • • •

• • • •

•

• • • •
This is the critical subgraph for type IV.

b) Fiber-bisection configuration:
• • • •

• • • •

•

• • • •
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After adding bisections coming from 2-torsion sections via jac2, we obtain another
(maybe non-special) fibration with two double I2 fibers as follows:

• • • •

• • • •
•

• • • •

•

• •

There are six disjoint vertices which are disjoint from the two I2 fibers. There is
no extremal elliptic fibration whose dual graph of singular fibers contains two Ã1

diagrams and six disjoint vertices.
• Γ1 = 2Ã3 ⊕ Ã3 ⊕ 2Ã1 ⊕ Ã1

Fiber-bisection configuration:
• • • •

• • • •

•

• • • •
Adding a bisection corresponding to a 2-torsion section via jac2, we find another

special fibration with two double I2 fibers and special bisection N .

• • • •

• • • •

•

• • • •

•

N

Since we have already treated all cases with two double I2 fibers, we are done with
this case.
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• Γ1 = Ã3 ⊕ Ã3 ⊕ 2Ã1 ⊕ Ã1

a) Fiber-bisection configuration:
• • • •

• • • •

•

• • • •
After adding a bisection corresponding to a different 2-torsion section via jac2, we
obtain another special elliptic fibration with two double fibers of type I2 and a special
bisection N as follows:

• • • •

•

• • • •

•

• • • •

N

Since we have treated all fibrations with two double I2 fibers, we are done.
b) The other fiber-bisection configuration where the bisection meets both components

of the simple I2 fiber is treated similarly to case a).
c) Fiber-bisection configuration:

• • • •

• • • •

•

• • • •
We add another bisection arising via jac2 and find a special elliptic fibration with
double fibers of type I3 and I2 and bisection N as follows:

• • • •

• • • •

•

• • • •

•

N
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The only extremal fibration with these fibers is the one with singular fibers of type
(I6, I3, I2, I1). But the I3 and I2 fibers cannot both be double by Lemma 10.12. There-
fore, this fiber-bisection configuration does not occur.

d) Fiber-bisection configuration:
• • • •

• • • •

•

• • • •
There is another special elliptic fibration with a double singular fiber of type I2 and
special bisection N as in the following figure:

• • • •

• • • •

•

• • • •

N

There is anA3 diagram and three disjoint vertices which are disjoint from the I2 fiber.
The extremal fibrations whose dual graphs of singular fibers satisfy these conditions
are the ones with singular fibers (I∗2, I2, I2) and (I4, I4, I2, I2). Since we have already
treated the first fibration, we can assume that the second one occurs. But the bisection
N and the fibers form a fiber-bisection configuration which we have already treated,
hence this case is settled.

• Γ1 = 2Ã5 ⊕ Ã2 ⊕ 2Ã1

Fiber-bisection configuration:

•

•

•

•

•

•

• • •

•

• •

This is the critical subgraph for type V.
• Γ1 = Ã5 ⊕ Ã2 ⊕ 2Ã1

a) Fiber-bisection configuration:

•

•

•

•

•

•

• • •

•

• •
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There is another special elliptic fibration with a double fiber of type I5 and bisection
N . We leave it to the reader to check that one obtains the critical subgraph for type
VI from a fibration with singular fibers I5, I5 where one of the I5 fibers is double.

•

•

•

•

•

•

• • •

•

• •

N

b) Fiber-bisection configuration:

•

•

•

•

•

•

• • •

•

• •

Adding another special bisection corresponding to the 2-torsion section via jac2, we
obtain another special elliptic fibration with two double singular fibers of type I3 and
bisection N as follows:

•

•

•

•

•

•

• • •

•

• ••
N

The only extremal and rational elliptic fibration with two fibers of type I3 is the
fibration with fibers (I3, I3, I3, I3). By Lemma 10.12, there is no such fibration with
two double I3 fibers.

c) Fiber-bisection configuration:

•

•

•

•

•

•

• • •

•

• •

Adding another special bisection corresponding to a 6-torsion section via jac2, we
obtain another special fibration with a double fiber of type I2 and a special bisection
N as follows:

•

•

•

•

•

•

• • •

•

• ••

N
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There are diagrams of type A3, A2, and A1 which are disjoint from the double I2

fiber. Therefore, the fibration cannot have an I8 fiber. Since we have treated all
the other cases with a double I2 fiber, we can assume that the fibration has singular
fibers of type I6, I3 (or IV) and I2 such that the I6 fiber is simple. But then, the fibers
together with the bisection N form the admissible fiber-bisection configuration of
case a) or b), since N meets distinct components of the I6 fiber. Therefore, this case
is settled.

d) Fiber-bisection configuration:

•

•

•

•

•

•

• • •

•

• •

Here, we can use the same (−2)-curves as in the previous case and the same argu-
ment right away without adding additional bisections.

• Γ1 = Ã7 ⊕ 2Ã1

a) Fiber-bisection configuration:

•

•

•

•

•

•

•

•

• • •
This is the critical subgraph for type VII.

b) Fiber-bisection configuration:

•

•

•

•

•

•

•

•

• • •
There is another special elliptic fibration with a double fiber of type I2 and special
bisection N as follows:

•

•

•

•

•

•

•

•

• • •

N

This fiber-bisection configuration is not the same as the one we started with and since
this is the last case, we have already treated this. �

11. Arithmetic of Enriques surfaces with finite automorphism group

In this section, we explain how to derive the results on the arithmetic of Enriques surfaces with
finite automorphism group, which we mentioned in the introduction, from the equations we gave in
the earlier chapters (see §3, . . . , §9). In particular, we establish explicit models of Enriques surfaces
of every type over the prime fields Fp and Q.

LEMMA 11.1. The following integral Weierstrass models of elliptic K3 surfaces admit a reso-
lution of singularities over the ring R, where R is as follows:

PROOF. Let f : X → Spec(R) be one of the families defined by the above equations. Since
the non-smooth locus of f is closed and f is proper, the non-smooth locus of f is proper. Hence,
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Equation R Type

y2 + (s2 + s)xy = x3 + (s2 + s)3x Z[ 1
257 ] I

y2 − (s2 + s)xy = x3 − (s2 + s)3x Z[ 1
255 ] I

y2 + (s2 + s)xy + (s2 + s)2y = x3 + (s2 + s)x2 Z[ 1
65 ] II

y2 − (s2 + s)xy + (s2 + s)2y = x3 − (s2 + s)x2 Z[ 1
63 ] II

y2 + xy = x3 + 4s4x2 + s4x Z[1
2 ] III

y2 = x3 + 2(s4 + 1)x2 + (s4 − 1)2x Z[1
2 ] IV

y2 + (s2 + 1)xy + (s2 + 1)y = x3 + (s2 + 2)x2 + (s2 + 1)x Z[1
6 ] V

y2 − 3(3s2 + 3s+ 1)xy + (3s2 + 3s+ 1)2y = x3 Z[ 1
15 ] VI

y2 = x3− (s4 + s2)x2 + (2s6− 3s4 + 4s2− 2)x+ (−s6 + 2s4− 2s2 + 1) Z[ 1
10 ] VII

every singular point of the generic fiber Xη of f is the generic point of a subscheme Z of X which
is completely contained in the singular locus of f and flat over Spec(R). Since Z is flat over
Spec(R), a local computation shows that blowing up along Z commutes with taking fibers of f .
Moreover, we know that every fiber of f has the same types of rational double points, hence we can
repeat the above argument and deduce that the minimal resolution of singularities of the generic
fiber extends uniquely to a minimal resolution of the whole family. �

REMARK 11.2. The reason why we have to exclude some seemingly arbitrary characteristics
is that the surface defined by the Weierstrass equation acquires additional singularities in these
characteristics, because the degree 2 morphism to a rational elliptic surface we used to find the
equations branches over a multiplicative fiber. This happens for the first four equations and for the
last two, where the double cover branches over a nodal fiber, producing an additionalA1 singularity
in some fibers. This singularity cannot be resolved in families without a base change to an algebraic
space (see [Art74]).

THEOREM 11.3. Let K ∈ {I, . . . ,VII}. There is a morphism ϕK : X → Spec(Z[ 1
PK

]) whose
fibers are Enriques surfaces of type K with full Picard group, i.e. Pic(XFp) = Pic(XF̄p

). The
numbers PK are given in Table 2.

PROOF. By Lemma 11.1, we have a family of K3 surfaces over Z[ 1
PK

]. Now, observe that the
Enriques involution is also defined over this ring. Hence, the only remaining claim is the one that
the fibers of the family have full Picard group.

Let Xp be the fiber over p of one of the families of Enriques surfaces over R and let X̃p be
its canonical cover. By Vinberg’s criterion (Proposition 2.29), the geometric Picard group of Xp is
generated by (−2)-curves, hence it suffices to check that all these curves are defined over Fp (resp.
over Q if p = 0). Then, one uses our explicit equations to check that the Galois action preserves
the preimages of these curves in X̃p and therefore all (−2)-curves on Xp are defined over Fp (resp.
over Q if p = 0). Note that it suffices to check that the fiber components and special bisections of
the fibration we used to construct the surfaces are fixed, since this will imply that the Galois action
is trivial on the whole graph. �
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REMARK 11.4. In particular, note that there are Enriques surfaces of type VI and VII with full
Picard group over Q, while this is not possible for their canonical cover due to a result of N. D.
Elkies (see [Sch10]).

Moreover, Theorem 11.3 proves the existence of a model for every type of Enriques surfaces
with finite automorphism group together with its dual graph of (−2)-curves over the prime fields.

COROLLARY 11.5. Suppose that there exists an Enriques surface of type K ∈ {I, . . . ,VII} in
characteristic p. Then, there exists an Enriques surface X of type K with full Picard group over
Fp (resp. over Q if p = 0).

THEOREM 11.6. Let X be an Enriques surface of type K ∈ {I, . . . ,VII} over a field k such
that Pic(X) = Pic(Xk̄).

• If K 6= III, IV, then Aut(X) is defined over k.
• If K = III, then Aut(X) is defined over L ⊇ k with [L : k] ≤ 2.
• If K = IV, then Aut(X) is defined over L ⊇ k with [L : k] ≤ 16.

PROOF. Let X be an Enriques surface over k such that |Aut(Xk̄)| < ∞ and Pic(X) =
Pic(Xk̄). Since Pic(X) = Pic(Xk̄), every elliptic fibration of X is defined over k. Therefore,
all Jacobian fibrations of elliptic fibrations of X are defined over k. Now, if X is of type I, II,V,VI
or VII, the generic fiber of an elliptic fibration of X whose Jacobian has non-trivial sections has
j-invariant 6= 0, 1728. Therefore, the Jacobian is unique up to quadratic twisting with elements
in k̄. We have shown in Propositions 3.3, 4.2, 7.2, 8.4, and 9.3 that Aut(Xk̄) is generated by the
actions of 2-torsion sections of the Jacobian fibrations of elliptic fibrations of X . Since quadratic
twisting preserves 2-torsion sections and all extremal and rational elliptic fibrations have a model
over k such that their 2-torsion is already defined over k, all such sections, and hence Aut(X), are
defined over k.

If X is of type III, we need to realize the additional automorphism of Remark 5.2. For this, a
quadratic extension is sufficient.

If X is of type IV, we need the automorphism of Remark 6.2 and one non-2-torsion section
(see Proposition 6.3). As before, we need a field extension of degree at most 2 per non-2-torsion
section. To define the automorphism of Remark 6.2, we need a field extension of degree at most
eight, since we found a model of the corresponding fibration which acquires the required section
after a quadratic extension and we need a quadratic extension to define ι (see Remark 6.2). �

REMARK 11.7. Over finite fields (and for our model), the proof shows that an extension of
degree 4 suffices to realize all automorphisms for type IV.

12. Semi-symplectic automorphisms

As an application of our explicit classification of Enriques surfaces with finite automorphism
group, we determine the semi-symplectic automorphism groups of these surfaces.

DEFINITION 12.1. Let X be an Enriques surface. An automorphism of X is called semi-
symplectic if it acts trivially on H0(X, ω⊗2

X ). We denote the group of all semi-symplectic automor-
phisms of X by Autss(X).
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These automorphisms are studied in [MO14]. There, the semi-symplectic automorphism groups
of Enriques surfaces of type VI and VII have already been computed. See [Oha15] for a study of
finite and non-semi-symplectic automorphisms.

THEOREM 12.2. Let X be an Enriques surface of type K ∈ {I, . . . ,VII}. Then, the group
Autss(X) is as given in the following table:

Type Autss(X)

I D4

II S4

III (Z/2Z)3 oD4

IV (Z/2Z)4 o (Z/5Z o Z/2Z)

V S4 × Z/2Z
VI S5

VII S5

TABLE 6. Semi-symplectic automorphism groups

PROOF. Note that an automorphism induced by a section of the Jacobian of an elliptic fibration
of X is semi-symplectic, since it fixes the base of the fibration and acts as translation on the fibers.
For all K, the group generated by such automorphisms is equal to the group given in Table 6. If
K 6= III, IV, these are all automorphisms, and if K ∈ {III, IV}, we have exhibited non-semi-
symplectic automorphisms in Remarks 5.2 and 6.2. Since the groups in Table 6 have index 2 in
Aut(X) for K ∈ {III, IV}, this finishes the proof. �

REMARK 12.3. The fact that surfaces of type III and IV admit non-semi-symplectic automor-
phisms is the reason why, in general, we need a field extension to realize all automorphisms of these
surfaces. These non-semi-symplectic automorphisms act as

√
−1 on a non-zero global 2-form of

the K3 cover, hence it is necessary to adjoin at least
√
−1 to k to realize all automorphisms of

these surfaces. Since the K3 cover of Enriques surfaces of type III and IV is the Kummer surface
associated to the self-product of an elliptic curve with j-invariant 1728 [Kon86, p.193], it is likely
that this field extension always suffices.



CHAPTER II

Enriques surfaces with finite automorphism group in characteristic 2

Up to minor modifications, this chapter is taken from the paper ”Classification of Enriques
surfaces with finite automorphism group in characteristic 2”, which is joint work of the author with
T. Katsura and S. Kondo. Currently, the paper is submitted and a preprint can be found on the
ArXiv (see [KKM17]).

1. Summary

In this chapter, we give the classification of supersingular and classical Enriques surfaces with
finite automorphism group in characteristic 2.

These two cases differ drastically from the other types of Enriques surfaces: The K3-like cover
is no longer smooth – sometimes not even normal – and some of these surfaces admit quasi-elliptic
fibrations. Also, the total number of genus one fibrations on these surfaces might be very small and
the Enriques surfaces with the smallest number of genus one fibrations are called ”extra-special”
(see Chapter III §6) and are distinguished by the special configurations of (−2)-curves on them.
Moreover, even though a generic classical Enriques surface in characteristic 2 does not admit global
vector fields, there are some ”exceptional” surfaces that have global vector fields. These surfaces
have been classified by Ekedahl, Shepherd-Barron and Salomonsson in [ES04] and [Sal] according
to their dual graphs of (−2)-curves. Since Enriques surfaces with finite automorphism group have
the most special configurations of (−2)-curves, it is natural that all these phenomena occur during
the classification.

As a first step towards the classification of Enriques surfaces with finite automorphism group in
characteristic 2, Katsura and Kondo [KK15b] checked whether the seven types of Enriques surfaces
with finite automorphism group in characteristic 0 can also occur in characteristic 2. Their results
are given in the following table.

Type I II III IV V VI VII
singular © © × × × © ×
classical × × × × × × ©

supersingular × × × × × × ©
TABLE 1. The seven types in characteristic 2

In Table 1,© denotes the existence and × denotes the non-existence of an Enriques surface with
the dual graph of type I, ...,VII. All examples in Table 1 are given explicitly.

65
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We have already seen in Chapter I that this list is complete in the singular case. The following
theorems settle the remaining cases.

THEOREM 1.1. Let X be a supersingular Enriques surface in characteristic 2.
(A) X has a finite group of automorphisms if and only if the dual graph of all (−2)-curves on

X is one of the graphs in Table 2 (A).
(B) All cases exist. More precisely, we construct families of these surfaces whose automor-

phism groups and dimensions are given in Table 2 (B).

(A) Classification

Type Dual Graph of (−2)-curves

Ẽ8
• • • • • • • • •

•

Ẽ7 + Ã1
• •• • • • • • • •

•

Ẽ6 + Ã2

D̃8
• • • • • • •

•

•

•

VII

(B) Examples

Aut(X) Autct(X) dim

Z/11Z Z/11Z 0

Z/2Z or
Z/14Z {1} or Z/7Z 1

Z/5Z×S3 Z/5Z 0

Q8 Q8 1

S5 {1} 0

TABLE 2. (A) and (B)

THEOREM 1.2. Let X be a classical Enriques surface in characteristic 2.
(A) X has a finite group of automorphisms if and only if the dual graph of all (−2)-curves on

X is one of the graphs in Table 3 (A).
(B) All cases exist. More precisely, we construct families of these surfaces whose automor-

phism groups and dimensions are given in Table 3 (B).
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(A) Classification

Type Dual Graph of (−2)-curves

Ẽ8
• • • • • • • • •

•

Ẽ7 + Ã1
• •• • • • • • • •

•

Ẽ7 + Ã1
• •• • • • • • • •

•

Ẽ6 + Ã2

D̃8
• • • • • • •

•

•

•

D̃4 + D̃4

• •

• • • • • •

•

•

•

VII

VIII

(B) Examples

Aut(X) Autnt(X) dim

{1} {1} 1

Z/2Z {1} 2

Z/2Z Z/2Z 1

S3 {1} 1

Z/2Z Z/2Z 2

(Z/2Z)3 (Z/2Z)2 2

S5 {1} 1

S4 {1} 1

TABLE 3. (A) and (B)
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In Theorem 1.1 and Theorem 1.2, Aut(X), Autct(X) or Autnt(X) is the automorphism group of
X , the cohomologically trivial automorphism group or the numerically trivial automorphism group
(see Definition 2.3 and Chapter III), respectively, Sn is the symmetric group of degree n and Q8 is
the quaternion group of order 8. The examples of supersingular Enriques surfaces of type Ẽ7 + Ã1

form a 1-dimensional family, but in some cases the automorphism group jumps.

REMARK 1.3. We remark that the following families in Theorem 1.1 (B) and Theorem 1.2 (B)
are non-isotrivial: Ẽ7 + Ã1 supersingular, Ẽ6 + Ã2 classical, VII classical, D̃4 + D̃4 and VIII. The
family of Ẽ7 + Ã1 classical surfaces with simple type III fiber and the family of type D̃4 + D̃4 are
at least 1-dimensional. However, the problem of determining the moduli space of such Enriques
surfaces is still open.

Recall that only the dual graph of type VII appears over the complex numbers. Moreover
the Enriques surface with the dual graph of type VII is unique over the complex numbers, on the
other hand, the example of Katsura and Kondo [KK15b] in characteristic 2 is a 1-dimensional
non-isotrivial family of classical and supersingular Enriques surfaces with such dual graph (see
Theorem 6.1). The canonical cover of any Enriques surface of type VII has 12 rational double
points of type A1 and its minimal resolution is the unique supersingular K3 surface with Artin
invariant 1. The canonical covers of the other Enriques surfaces in Theorem 1.1 and Theorem 1.2
are non-normal rational surfaces.

Let us summarize the genus one fibrations on each of the above Enriques surfaces (for the
notation, see Subsection 2.4, and Propositions 2.7, 2.8). We indicate that it is either elliptic (e) or
quasi-elliptic (qe) after the type of singular fibers:

• Type Ẽ8: (2II∗) (qe)
• Type Ẽ7 + Ã1:

supersingular : (2III∗, III) (qe), (II∗) (qe)
classical-case 1: (2III∗, III) (qe), (II∗) (qe)
classical-case 2: (2III∗, 2III) (qe), (II∗) (qe)
• Type Ẽ6 + Ã2:

supersingular: (2IV∗, IV) (e), (III∗, 2III) (qe)
classical : (2IV∗, I3, I1) (e), (III∗, 2III) (qe)
• Type D̃8:

supersingular: (2I∗4) (qe), (2II∗) (e), (II∗) (e)
classical: (2I∗4) (qe), (2II∗, I1) (e), (II∗, I1) (e)
• Type D̃4 + D̃4: (2I∗0, 2I∗0) (qe), (I∗4) (e), (2I∗4) (e)
• Type VII: (I9, I1, I1, I1) (e), (I8, 2III) (e), (I5, I5, I1, I1) (e), (I6, 2IV, I2) (e)
• Type VIII: (2I∗1, I4) (e), (I∗2, 2III, 2III) (qe), (IV∗, I3, I1) (e).

As we have explained above, the canonical cover of classical and supersingular Enriques sur-
faces in characteristic 2 is singular. Moreover, these Enriques surfaces admit non-zero global 1-
forms. By definition of the K3 cover, the singular points of the cover are exactly the points mapping
to zeroes of a global 1-form η on the Enriques surface. The divisorial part of the set of zeros of
η is called the bi-conductrix and half of it is called the conductrix. Ekedahl and Shepherd-Barron
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[ES04] classified possible conductrices of elliptic and quasi-elliptic fibrations on classical and su-
persingular Enriques surfaces.

The idea of the classification of dual graphs here is similar to the cases with smooth K3 cover
in Chapter I: We use the classification of extremal elliptic fibrations. However, we also have to take
quasi-elliptic fibrations into account. Moreover, it is harder to produce new (−2)-curves from a
given fibration since we do not have a quadratic twist construction in the cases with singular cover.
Instead, we can use the conductrix to cut down the number of cases to be checked considerably.

Due to the lack of the quadratic twist construction, we take another approach to the construction
of examples, which is nevertheless inspired by the cases with smooth K3 cover. We start with some
special genus one fibration on the Enriques surface we want to construct. Starting from its Jacobian,
we base change along the Frobenius on P1 to obtain a singular surface. This will be birationally
equivalent to the canonical cover of our Enriques surface. Now, we have to construct a rational
vector field on this singular surface and take the quotient by this vector field to obtain another
singular surface, which, after a minimal resolution of singularities, is the Enriques surface we are
looking for.

In some cases, which will play an important role in Chapter III, it is not possible to determine
the automorphism groups of the Enriques surfaces with finite automorphism group directly from
their dual graphs of (−2)-curves. In these cases, we use our equations to calculate the automor-
phism group Aut(X) (see §4).

Let us now explain the structure of Chapter II: In §2, we recall basic facts on vector fields and
conductrices. For the reader’s convenience, we also repeat some of the facts, which are already
used in Chapter I, but still hold for classical and supersingular Enriques surfaces. In §3 and §4 we
explain how to construct the rational vector fields and give equations for our examples of Enriques
surfaces with finite automorphism group. The construction of these examples is given in detail
in §5, . . . , §11. In these sections, we also compute the automorphism groups and give some non-
isotriviality results. Finally, in §12, we give the classification of possible dual graphs of Enriques
surfaces with finite automorphism group.

2. Preliminaries

2.1. Vector fields. Let k be an algebraically closed field of characteristic p > 0, and let S be
a nonsingular complete algebraic surface defined over k. We denote by KS a canonical divisor of
S. A rational vector field D on S is said to be p-closed if there exists a rational function f on S
such that Dp = fD. A vector field D for which Dp = 0 is called of additive type, while that for
which Dp = D is called of multiplicative type. Let {Ui = SpecAi} be an affine open covering of
S. We set ADi = {D(α) = 0 | α ∈ Ai}. The affine varieties {UDi = SpecADi } glue together to
define a normal quotient surface SD.

Now, we assume that D is p-closed. Then, the natural morphism π : S −→ SD is a purely
inseparable morphism of degree p. If the affine open covering {Ui} of S is fine enough, then taking
local coordinates xi, yi on Ui, we see that there exist gi, hi ∈ Ai and a rational function fi such
that the divisors defined by gi = 0 and by hi = 0 have no common divisor, and such that

D = fi

(
gi

∂

∂xi
+ hi

∂

∂yi

)
on Ui.
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By Rudakov and Shafarevich [RS76, Section 1], the divisors (fi) on Ui give a global divisor (D)
on S, and zero-cycles defined by the ideal (gi, hi) on Ui give a global zero cycle 〈D〉 on S. A
point contained in the support of 〈D〉 is called an isolated singular point of D. If D has no isolated
singular point, D is said to be divisorial. Rudakov and Shafarevich [RS76, Theorem 1, Corollary]
showed that SD is nonsingular if 〈D〉 = 0, i.e., D is divisorial. When SD is nonsingular, they also
showed a canonical divisor formula

(2.1) KS ∼ π∗KSD + (p− 1)(D),

where ∼ means linear equivalence. As for the Euler number c2(S) of S, we have a formula

(2.2) c2(S) = deg〈D〉 −KS · (D)− (D)2

(cf. Katsura and Takeda [KT89, Proposition 2.1]).
Now we consider an irreducible curve C on S and we set C ′ = π(C). Take an affine open set

Ui above such thatC∩Ui is non-empty. The curveC is said to be integral with respect to the vector
field D if gi ∂

∂xi
+ hi

∂
∂yi

is tangent to C at a general point of C ∩ Ui. Then, Rudakov-Shafarevich
[RS76, Proposition 1] showed the following proposition:

PROPOSITION 2.1. (i) If C is integral, then C = π−1(C ′) and C2 = pC ′2.
(ii) If C is not integral, then pC = π−1(C ′) and pC2 = C ′2.

2.2. Enriques surfaces in characteristic 2. Since we only dealt with Enriques surfaces with
smooth K3 cover in Chapter I, we will recall the general definition here. A minimal algebaic
surface with numerically trivial canonical divisor is called an Enriques surface if the second Betti
number is equal to 10. Such surfacesX are divided into three classes in characteristic 2 (for details,
see Bombieri and Mumford [BM76, Section 3]):

(i) KX is not linearly equivalent to zero and 2KX ∼ 0. Such an Enriques surface is called a
classical Enriques surface.

(ii) KX ∼ 0, H1(X,OX) ∼= k and the Frobenius map acts on H1(X,OX) bijectively. Such
an Enriques surface is called a singular Enriques surface.

(iii) KX ∼ 0, H1(X,OX) ∼= k and the Frobenius map is the zero map on H1(X,OX). Such
an Enriques surface is called a supersingular Enriques surface.

It is known that PicτX is isomorphic to Z/2Z if X is classical, µ2 if X is singular or α2 if X
is supersingular (Bombieri-Mumford [BM76, Theorem 2]). As in the case of characteristic 0 or
p > 2, an Enriques surface X in characteristic 2 has a canonical double cover π : X̃ → X , which
is a separable Z/2Z-cover, a purely inseparable µ2- or α2-cover according to X being singular,
classical or supersingular. The surface X̃ might have singularities and it might even be non-normal
(see Proposition 2.13), but it is K3-like in the sense that its dualizing sheaf is trivial.

2.3. (−2)-curves. LetX be an Enriques surface and let Num(X) be the quotient of the Néron-
Severi group NS(X) of X by torsion. Then Num(X) together with the intersection product is an
even unimodular lattice of signature (1, 9) (Illusie [Ill79, Corollary 7.3.7], Cossec and Dolgachev
[CD89, Chap. II, Theorem 2.5.1]), and hence is isomorphic to U ⊕E8. We denote by O(Num(X))
the orthogonal group of Num(X). The set

{x ∈ Num(X)⊗ R : 〈x, x〉 > 0}
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has two connected components. Denote by P (X) the connected component containing an ample
class of X . For δ ∈ Num(X) with δ2 = −2, we define an isometry sδ of Num(X) by

sδ(x) = x+ 〈x, δ〉δ, x ∈ Num(X),

which is nothing but the reflection with respect to the hyperplane perpendicular to δ. The isometry
sδ is called the reflection associated with δ. We call a nonsingular rational curve on an Enriques
surface or a K3 surface a (−2)-curve. For a (−2)-curve E on an Enriques surface, we identify
E with its class in Num(X). Let W (X) be the subgroup of O(Num(X)) generated by reflections
associated with all (−2)-curves on S. Then P (X) is divided into chambers each of which is a
fundamental domain with respect to the action of W (X) on P (X). There exists a unique chamber
containing an ample class which is nothing but the closure of the ample cone D(X) of X . It is
known that the natural map

(2.3) ρn : Aut(X)→ O(Num(X))

has a finite kernel. Since the image Im(ρn) preserves the ample cone, we see Im(ρn) ∩W (X) =
{1}. Therefore Aut(X) is finite if the index [O(Num(X)) : W (X)] is finite. Thus we have the
following Proposition (see Dolgachev [Dol84, Proposition 3.2]).

PROPOSITION 2.2. If W (X) is of finite index in O(Num(X)), then Aut(X) is finite.

Over the field of complex numbers, the converse of Proposition 2.2 holds by using the Torelli type
theorem for Enriques surfaces (Dolgachev [Dol84, Theorem 3.3]). As in Chapter I, we have the
following definition.

DEFINITION 2.3. Denote by Autnt(X) the kernel of the map ρn given by (2.3). Similarly
denote by Autct(X) the kernel of the map

(2.4) ρc : Aut(X)→ O(NS(X)).

A non-trivial automorphism is called cohomologically or numerically trivial if it is contained in
Autct(X) or Autnt(X), respectively. If S is not classical, then NS(X) = Num(X) and hence
Autct(X) = Autnt(X).

2.4. Genus one fibrations. We recall some facts on an elliptic or a quasi-elliptic fibrations
on Enriques surfaces. For simplicity, we call an elliptic or a quasi-elliptic fibration a genus one
fibration. For classical and supersingular Enriques surfaces, we have the following more general
versions of Proposition 2.4 and Proposition 2.5 of Chapter I.

PROPOSITION 2.4. (Bombieri and Mumford [BM76, Theorem 3]) Every Enriques surface has
a genus one fibration.

PROPOSITION 2.5. (Dolgachev and Liedtke [CDL, Theorem 4.8.3])
Let f : X → P1 be a genus one fibration on an Enriques surface X in characteristic 2. Then

the following hold.
(i) IfX is classical, then f has two tame double fibers, each is either an ordinary elliptic curve

or a singular fiber of additive type.
(ii) If X is singular, then f has one wild double fiber which is a smooth ordinary elliptic curve

or a singular fiber of multiplicative type.
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(iii) If X is supersingular, then f has one wild double fiber which is a supersingular elliptic
curve or a singular fiber of additive type.

LEMMA 2.6. Let f : X → P1 be an isotrivial genus one fibration on an Enriques surface in
characteristic 2. Let F be a double fiber of f such that the underlying reduced fiber Fred is an
elliptic curve. Then Fred has j-invariant 0 if and only if the generic fiber of f also has j-invariant
0.

PROOF. We can assume that the general fiber of f is an elliptic curve. Since f is isotrivial, it
becomes trivial after passing to a finite cover of P1. Hence, F is isogeneous to the generic fiber
of f . Since having j-invariant 0 is equivalent to being supersingular in characteristic 2 and being
supersingular is an isogeny-invariant, we get the result. �

As in Chapter I, we use the symbols In (n ≥ 1), I∗n (n ≥ 0), II, III, IV, II∗, III∗, IV∗ of
singular fibers of an elliptic or a quasi-elliptic fibration in the sense of Kodaira. The dual graph
of (−2)-curves on a singular fiber of type In (n ≥ 2), I∗n (n ≥ 0), III, IV, II∗, III∗ or IV∗ is an
extended Dynkin diagram Ãn−1, D̃n+4, Ã1, Ã2, Ẽ8, Ẽ7 or Ẽ6, respectively. For a double singular
fiber of type F , we denote it by 2F . Let f : S → P1 be a genus one fibration on a surface S. If,
for example, f has a double singular fiber of type III and a singular fiber of type IV∗, then it is said
that f has singular fibers (2III, IV∗). If f has a section and its Mordell-Weil group is torsion, then
f is called extremal. We use the following classifications of extremal rational elliptic and rational
quasi-elliptic fibrations (compare Chapter I Table 3).

PROPOSITION 2.7. (Lang [Lan91], [Lan94]) The following are the singular fibers of extremal
elliptic fibrations on rational surfaces:

(II∗), (II∗, I1), (III∗, I2), (IV∗, IV), (IV∗, I3, I1), (I∗4), (I∗1, I4),

(I9, I1, I1, I1), (I8, III), (I6, IV, I2), (I5, I5, I1, I1), (I3, I3, I3, I3).

PROPOSITION 2.8. (Ito [Ito94]) The following are the singular fibers of quasi-elliptic fibrations
on rational surfaces:

(II∗), (III∗, III), (I∗4), (I∗2, III, III), (I∗0, I
∗
0),

(I∗0, III, III, III, III), (III, III, III, III, III, III, III, III).

Note that any quasi-elliptic fibration on a rational surface is extremal.
Consider a genus one fibration on an Enriques surface π : X → P1. Then the Mordell-Weil

group of the Jacobian of π acts on X effectively as automorphisms. This implies the following
Proposition.

PROPOSITION 2.9. (Dolgachev [Dol84, §4]) Assume that the automorphism group of an En-
riques surface X is finite. Then any genus one fibration on X is extremal.

Let X be an Enriques surface. A genus one fibration f : X → P1 is called special if there
exists a (−2)-curve R with R · f−1(P ) = 2 (P ∈ P1), that is, f has a (−2)-curve as a 2-section.
In this case, R is called a special 2-section. The following result is due to Cossec [Cos85] in which
he assumed the characteristic p 6= 2, but the assertion for p = 2 holds, too.
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PROPOSITION 2.10. (Lang [Lan88, II, Theorem A3], Dolgachev and Liedtke [CDL, Theorem
5.3.4]) Assume that an Enriques surface X contains a (−2)-curve. Then there exists a special
genus one fibration on X .

2.5. Vinberg’s criterion. Let X be an Enriques surface. We recall Vinberg’s criterion which
guarantees that a group generated by a finite number of reflections is of finite index in O(Num(X)).

Let ∆ be a finite set of (−2)-vectors in Num(X). Let Γ be the graph of ∆, that is, ∆ is the set
of vertices of Γ and two vertices δ and δ′ are joined by m-tuple lines if 〈δ, δ′〉 = m. We assume
that the cone

K(Γ) = {x ∈ Num(X)⊗ R : 〈x, δi〉 ≥ 0, δi ∈ ∆}
is a strictly convex cone. Such Γ is called non-degenerate. A connected parabolic subdiagram Γ′ in
Γ is a Dynkin diagram of type Ãm, D̃n or Ẽk (see Vinberg [Vin75, p. 345, Table 2]). If the number
of vertices of Γ′ is r + 1, then r is called the rank of Γ′. A disjoint union of connected parabolic
subdiagrams is called a parabolic subdiagram of Γ. We denote by K̃1 ⊕ · · · ⊕ K̃s a parabolic
subdiagram which is a disjoint union of connected parabolic subdiagrams of type K̃1, . . . , K̃s,
where Ki is Am, Dn or Ek. The rank of a parabolic subdiagram is the sum of the ranks of its
connected components. Note that the dual graph of singular fibers of a genus one fibration on X
gives a parabolic subdiagram. We denote by W (Γ) the subgroup of O(Num(X)) generated by
reflections associated with δ ∈ Γ.

PROPOSITION 2.11. (Vinberg [Vin75, Theorem 2.3]) Let ∆ be a set of (−2)-vectors in Num(X)
and let Γ be the graph of ∆. Assume that ∆ is a finite set, Γ is non-degenerate and Γ contains no
m-tuple lines with m ≥ 3. Then W (Γ) is of finite index in O(Num(X)) if and only if every con-
nected parabolic subdiagram of Γ is a connected component of some parabolic subdiagram in Γ
of rank 8 (= the maximal one).

PROPOSITION 2.12. (Namikawa [Nam85, Proposition 6.9]) Let ∆ be a finite set of (−2)-
curves on an Enriques surface X and let Γ be the graph of ∆. Assume that W (Γ) is of finite index
in O(Num(X)). Then ∆ is the set of all (−2)-curves on X .

2.6. Conductrix. Let X be a classical or supersingular Enriques surface. Then it is known
that there exists a global regular 1-form η on X . The canonical cover π : X̃ → X has a singularity
at P ∈ X̃ if and only if η vanishes at π(P ). Since c2(X) = 12, η always vanishes somewhere, and
hence X̃ is singular. The divisorial part B of the zero set of η is called the bi-conductrix of X . The
divisor B is of the form 2A where A is a divisor called the conductrix of X .

PROPOSITION 2.13. (Ekedahl and Shepherd-Barron [ES04, Proposition 0.5], Dolgachev and
Liedtke [CDL, Proposition 1.3.8]) Let X be a classical or supersingular Enriques surface and A
its conductrix. Assume A 6= 0. Then A is 1-connected. Moreover A2 = −2 and the normalization
of the canonical cover has either four rational double points of type A1 as singularities or one
rational double point of type D4.

In the paper [ES04], Ekedahl and Shepherd-Barron gave possibilities of the conductrices for quasi-
elliptic and elliptic fibrations in characteristic 2. In Section 12, we will use their classification of
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the conductrices ([ES04, Theorems 2.2, 3.1]). For simplicity, we say an A1-singularity or a D4-
singularity for a rational double point of type A1 or of type D4 respectively. Also we will use the
symbol nA1 for n rational double points of type A1.

3. Construction of vector fields

In this section, we explain two methods to construct a candidate of a vector field D on an
algebraic surface Y such that the quotient surface Y D becomes an Enriques surface.

3.1. Enriques surfaces with an elliptic pencil. Let f : Y −→ P1 be an elliptic surface with
a section. Assume that Y is either a K3 surface or a rational surface. Then, the generic fiber is an
elliptic curve E over the field k(t) with one variable t. Therefore, there exists a non-zero regular
vector field δ on E which we can regard as a non-zero rational vector field on Y . Taking a suitable
vector field g(t) ∂∂t and a suitable function f(t) on P1, we look for a vector field

D = f(t){g(t)
∂

∂t
+ δ}

such that Y D is birationally isomorphic to an Enriques surface. In many cases, double fibers of the
Enriques surface Y D exist over the zero points of g(t) by the theory of vector field (cf. Proposition
2.1). In this way, we construct Enriques surfaces of type Ẽ6 + Ã2 in Section 5, of type VII in
Section 6 and of type VIII in Section 7.

3.2. Enriques surfaces with a quasi-elliptic pencil. By Queen [Que71, Theorem 2], we have
two normal forms of the generic fibers of a quasi-elliptic fiber space over the field K = k(s) with
a variable s:

(1) u2 = a+ v + cv2 + dv4 with a, c, d ∈ K and d /∈ K,
(2) u2 + u = a+ dv4 with a, d ∈ K and d /∈ K.
Here, u, v are variables. Note that the case (3) in Queen [Que71, Theorem 2] doesn’t occur in

our case, because the trancendental degree of K = k(s) over k is 1. As for the relative generalized
Jacobians of these quasi-elliptic surfaces, Queen [Que72, Theorem 1] showed the following:

The generalized Jacobian for (1) : u2 = v + cv2 + dv4,
The generalized Jacobian for (2) : u2 + u = dv4.
We use the case (1) to construct our Enriques surfaces. By the change of coordinates x =

1/v + c, y = u/v2, the generalized Jacobian for (1) is birationally isomorphic to

y2 = x3 + c2x+ d,

which is a Weierstrass normal form. By Bombieri-Mumford [BM76], the relative Jacobian of the
quasi-elliptic Enriques surface is a rational surface. Therefore, this surface is birationally isomor-
phic to the rational quasi-elliptic surface in the list of Ito [Ito02, Proposition 5.1].

Starting from Ito’s list of rational quasi-elliptic surfaces, we pursue the converse procedure
above to construct a candidate of an Enriques surface X , and using the candidate, we construct
a vector field D on a rational surface Y such that Y D is birationally isomorphic to the Enriques
surface X . Using this technique, we will construct Enriques surfaces of type Ẽ8 in Section 8, of
type Ẽ7 + Ã1 in Section 9, of type D̃8 in Section 10 and of type D̃4 + D̃4 in Section 11.
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We will concretely show in the next subsection how to construct a vector field on a rational
surface to make an Enriques surface of type D̃4 + D̃4.

3.3. Example: Vector fields for Enriques surfaces of type D̃4 + D̃4. By Ito [Ito02, Propo-
sition 5.1], we take the rational quasi-elliptic surface defined by

y2 = x3 + a4s2x+ s3 with a ∈ k.

This quasi-elliptic surface has two singular fibers of type I∗0 (namely, of type D̃4) over the points
on P1 defined by s = 0 and s =∞. Taking the change of coordinates

x = 1/v + a2s, y = s2u/v2, s = 1/S

we get
u2 = S4v + a2S3v2 + Sv4

Now, we add a term S7 + S3 and a parameter b (b 6= 0) as follows:

(3.1) u2 = b2S4v + a2S3v2 + Sv4 + S7 + S3.

We need to show that these surfaces are Enriques surfaces of type D̃4 + D̃4. For this purpose, we
take the base change by the Frobenius morphism:

S = t2.

Then, the surface becomes

u2 + b2t8v + a2t6v2 + t2v4 + t14 + t6 = 0.

Therefore, by this equation we have

{(u+ at3v + tv2 + t7 + t3)/bt4}2 = v.

Now, by the change of coordinates

w = (u+ at3v + tv2 + t7 + t3)/bt4, v = v, t = t,

we have
v = w2.

This means we have k(u, v, t) = k(w, t), which is a rational function field of two variables. Since u = bt4w + at3w2 + tw4 + t7 + t3

S = t2

v = w2,

we have {
∂u
∂w = bt4
∂u
∂t = at2w2 + w4 + t6 + t2.

We put

D′ = (1/t3)

(
bt4

∂

∂t
+ (at2w2 + w4 + t6 + t2)

∂

∂w

)
.
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Then, we see D′(u) = 0, D′(v) = 0, D′(S) = 0 and k(t, w)D
′

= k(u, v, S) with the equation
(3.1). For the later use, taking new coordinates (x, y), we consider the change of coordinates

x = 1/t, y = t/w.

Then, we have
∂

∂t
= x2 ∂

∂x
+ xy

∂

∂y
,
∂

∂w
= xy2 ∂

∂y
.

By this change of coordinates, D′ becomes

(3.2) D =
1

x2y2

(
bx3y2 ∂

∂x
+ (ax2y2 + x2 + x4y4 + y4 + bx2y3)

∂

∂y

)
where a, b ∈ k, b 6= 0. We will show in Section 11 that the quotient surface with the function field
k(x, y)D is an Enriques surface of type D̃4 + D̃4.

4. Equations of Enriques surfaces and their automorphisms

4.1. Generalities. Let X be an Enriques surface, and we assume that X has a structure of a
quasi-elliptic fibration ϕ : X −→ P1. Let t be a parameter of an affine line A1 in the base curve
P1. We denote by C the curve of cusps of the quasi-elliptic fibration, and assume that over the
point defined by t =∞ it has a double fiber 2F∞. We assume that

(4.1) y2 = tx4 + g1(t)x2 + g2(t)x+ g3(t) (g1(t), g2(t), g3(t) ∈ k[t])

is the defining equation of an affine normal surface whose resolution of singularities is isomorphic
to the open set X \ (C ∪ 2F∞) of X . Under these conditions, let σ be an automorphism of X
which preserves the double fiber 2F∞. Then, for large positive integers m, σ acts on the vector
space L(2mF∞) associated with the linear system |2mF∞|. Therefore, σ keeps the structure of
the quasi-elliptic fibration ϕ : X −→ P1, and it acts on the base curve P1 with a fixed point at
infinity:

σ : P1 −→ P1

∪ ∪
A1 A1

t 7→ c1t+ c2

Here, c1, c2 are elements of k with c1 6= 0.
We set A = k[t, x, y]/(y2 + tx4 + g1(t)x2 + g2(t)x + g3(t)). Then A is normal by our

assumption. As k[x, y]-module, we have

(4.2) A = k[t, x]⊕ k[t, x]y,

which is a free k[t, x]-module. Since σ preserve C and 2F∞, σ acts on the open setX \ (C∪2F∞)
of X .

LEMMA 4.1. σ induces an automorphism of Spec(A).
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PROOF. We consider the change of coordinates

u =
1

x
, v =

y

x2
.

Then, the equation becomes v2 = t+g1(t)u2+g2(t)u3+g3(t)u4, and the curveC of cusps is given
by u = 0. On the curve C, the affine surface is nonsingular. Therefore, the open setX \(C∪2F∞)
is constructed by some blowing-ups of Spec(A):

π : X \ (C ∪ 2F∞) −→ Spec(A).

Note that π is surjective. Since σ is an automorphism of X \ (C ∪ 2F∞), we have a morphism

(π, π ◦ σ) : X \ (C ∪ 2F∞) −→ Spec(A)× Spec(A).

We denote by Γ the image of the morphism (π, π◦σ). We denote bt p1 (resp. p2) the first projection
(resp. the second projection) : pi : Spec(A)× Spec(A) −→ Spec(A) (i = 1, 2). Then, restricting
the projection p1 to Γ, we have a morphism

p1|Γ : Γ −→ Spec(A).

Since Spec(A) is affine, the exceptional curves by blowing-ups collapse by the morphism (π, π◦σ).
Therefore, the morphism p1|Γ is a finite birational morphism. Since Spec(A) is normal by our
assumption, we see that by the Zariski main theorem p1|Γ is an isomorphism. Therefore, we have
a morphism p2|Γ ◦ p1|−1

Γ : Spec(A) −→ Spec(A) which is the induced automorphism by σ. �

By this lemma, σ acts on Spec(A) and induces an automorphism

(4.3) σ∗ : A −→ A.

Now we consider the generic fiber of ϕ : X −→ P1. It is a curve of genus one over k(t) whose
affine part is given by the equation (4.1). The curve C of cusps gives a point P∞ of degree 2 on
the curve of genus one. We denote by L̃(P∞) the vector space over k(t) associated with the linear
system |P∞| on the curve of genus one. By the Riemann-Roch theorem, we have dim L̃(P∞) = 2

and we see that 1 and x give the basis of L̃(P∞). Since σ preserves the curve C of cusps, σ∗(x) is
contains in L̃(P∞). Therefore, there exists d1(t), d2(t) ∈ k(t) such that

σ∗(x) = d1(t)x+ d2(t).

By (4.2) and (4.3), there exist d3(t, x), d4(t, x) ∈ k[t, x] such that

σ∗(x) = d3(t, x) + d4(t, x)y.

Therefore, considering σ∗(x)2, we have

d1(t)2x2 + d2(t)2 = d3(t, x)2 + d4(t, x)2(tx4 + g1(t)x2 + g2(t)x+ g3(t)).

Since the right-hand-side is in k[t, x], we see that d1(t) and d2(t) are also polynomials of t. There-
fore, we see that σ is of the following form:

(4.4) σ :

 t 7→ c1t+ c2 (c1, c2 ∈ k; c1 6= 0)
x 7→ d1(t)x+ d2(t) (d1(t), d2(t) ∈ k[t]; d1(t) 6≡ 0)
y 7→ e1(t, x)y + e2(t, x) (e1(t, x), e2(t, x) ∈ k[t, x]; e1(t, x) 6≡ 0)
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REMARK 4.2. Let X be an Enriques surface which has a structure of elliptic or quasi-elliptic
fibration ϕ : X −→ P1 defined by

y2 + g0(t)y = tx4 + g1(t)x2 + g2(t)x+ g3(t)

with g0(t), g1(t), g2(t), g3(t) ∈ k[t]. Here, t is a parameter of an affine line A1 in the base curve
P1. We denote by C the 2-section defined by x = ∞, and by F∞ the fiber over the point on P1

defined by t =∞. We assume that the equation is the defining equation of an affine normal surface
whose resolution of singularities is isomorphic to the open set X \ (C ∪ F∞) of X . Under these
conditions, let σ be an automorphism of X which preserves the curve C and the fiber F∞. Then,
the automorphism σ is also expressed as the form (4.4), and a similar argument to the above works.

We use the following trivial lemma.

LEMMA 4.3. k[x, y] is a free k[x2, y2]-module of rank 4. A basis is given by 1, x, y, xy.

4.2. List of equations and automorphisms. In this subsection, we list up the equations of
Enriques surfaces X with finite automorphism group and their automorphism groups except the
case of type VII. We will use these equations to calculate the automorphism group in cases of
type Ẽ6 + Ã2 (supersingular), type Ẽ8 (supersingular and classical), type Ẽ7 + Ã1 (supersingular),
type D̃8 (supersingular and classical) and type D̃4 + D̃4. We will give the proofs of this list in
Examples 4.3, 4.4, 4.5 and in Theorem 5.9, Theorem 8.4, Theorem 8.9, Theorem 9.10, Theorem
10.5, Theorem 10.11, Theorem 11.4. For the remaining cases, we do not use this list to determine
the automorphism groups and hence omit the details.

(1) Enriques surfaces of type Ẽ6 + Ã2.
(i) Supersingular case:

y2 + ty = tx4 + x3 + t3x+ t7, Aut(X) ∼= 〈σ, τ, ρ〉 ∼= Z/5Z×S3,

where σ :

 t 7→ ζt
x 7→ ζ4x
y 7→ ζy,

τ :

 t 7→ t
x 7→ x
y 7→ y + t,

and ρ is an automorphism induced from the action

of a section of order 3 of a relative Jacobian of the elliptic fibration on X with singular fibers
(IV, IV∗). Here, ζ is a primitive fifth root of unity and 〈τ, ρ〉 ∼= S3.
(ii) Classical case:

y2 + c2txy + βc3t2y = tx4 + c2t3x2 + (c3t4 + c5αt3)x+ t7 + t3 = 0,
where c = 1

a+
4√
a3

(a 6= 0, 1), α is a root of z8 + z6 + z5 + a2z4 + a4z3 + a8z2 + a16 = 0, and

β = α2+a4

α .

Aut(X) ∼= 〈σ, τ〉 ∼= S3, where σ :

 t 7→ t
x 7→ x
y 7→ y + c2tx+ βc3t2

and τ is an automorphism

induced from the action of a section of order 3 of the relative Jacobian of the elliptic fibration on
X with singular fibers (IV, IV∗).

(2) Enriques surfaces of type VII:

y2 = t(t+ 1)(t+ a2)(t+ b2)xy + {(ab+ 1)t+ ab}(t+ 1)(t+ a2)(t+ b2)y + tx4+
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{(ab+1)t+ab}(t+1)(t+a2)(t+ b2)x3 +{t2 +(t+1)(t+a2)(t+ b2)}(t+1)(t+a2)(t+ b2)x2

+{(ab+ 1)t+ ab}t(t+ 1)(t+ a2)(t+ b2)x+ t3 + t3(t+ 1)(t+ a2)(t+ b2)

+t(t+ 1)2(t+ a2)2(t+ b2)2 + t(t+ 1)3(t+ a2)3(t+ b2)3,

where a, b ∈ k, a+ b = ab, a3 6= 1. In this case, Katsura and Kondo calculated Aut(X) from the
dual graph in [KK15b].

(3) Enriques surfaces of type VIII:
y2 = tx4 + at2x3 + at3(t+ 1)2x+ t7 + t3 (a 6= 0).

In this case we calculate Aut(X) from the dual graph in Section 7.

(4) Enriques surfaces of type Ẽ8.
(i) Supersingular case:

y2 = tx4 + x+ t7, Aut(X) ∼= 〈σ〉 ∼= Z/11Z

where σ :

 t 7→ ζt
x 7→ ζ7x
y 7→ ζ9y

and ζ is a primitive 11-th root root of unity.

(ii) Classical case:
y2 = tx4 + at3x+ t7 + t3 (a 6= 0), Aut(X) ' {1}.

(5) Enriques surfaces of type Ẽ7 + Ã1

(i) Supersingular case:
y2 + y = tx4 + ax+ t7 (a 6= 0),
Aut(X) ∼= 〈σ〉 ∼= Z/2Z if a7 6= 0, 1,
Aut(X) ∼= 〈σ〉 ∼= Z/14Z if a7 = 1.
By the change of coordinates t 7→ t+ a4, y 7→ y + a2x2 + ax, x 7→ x, the equation becomes

y2 + y = tx4 + (t+ a4)7

and σ is given by

σ :

 t 7→ t
x 7→ x
y 7→ y + 1.

if a7 6= 0, 1,

σ :


t 7→ ζt

x 7→ 1
4√ζx+ ( 4√ζ+1)

4√ζ a6 +
( 4
√
ζ5+1)
4√ζ a2t

y 7→ y + 1 + (1 + ζ2)a6t2 + (1 + ζ3)a2t3
if a7 = 1,

where ζ is a primitive 7-th root of unity.
(ii) Classical one with singular fibers of type (2III∗, III):

y2 + at2y = tx4 + bt3x+ t7 + t3 (a 6= 0, b 6= 0), Aut(X) ∼= 〈σ〉 ∼= Z/2Z

where σ :

 t 7→ t
x 7→ x
y 7→ y + at2.

(iii) Classical one with singular fibers of type (2III∗, 2III):
y2 + at2y = tx4 + t7 + t3 (a 6= 0), Aut(X) ∼= 〈σ〉 ∼= Z/2Z
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where σ :

 t 7→ t
x 7→ x
y 7→ y + at2.

(6) Enriques surfaces of type D̃8

(i) Supersingular case:
y2 = tx4 + tx2 + ax+ t7 (a 6= 0), Aut(X) ∼= 〈{σω,α}〉 ∼= Q4

σω,α :

 t 7→ t+ ω
x 7→ x+ α+ ω2t
y 7→ y + ω2x2 + ω2x+ ω2t3 +

√
aα+

√
a

Here, ω is a primitive cube root of unity and α is a root of the equation
z2 + z + ω

√
a+ 1 = 0.

(ii) Classical case:
y2 = tx4 + at3x2 + bt3x+ t7 + t3 (a 6= 0, b 6= 0), Aut(X) ∼= 〈σ〉 ∼= Z/2Z

where σ :


t 7→ t
x 7→ x+

√
at

y 7→ y + 4
√
a
√
bt2.

(7) Classical Enriques surfaces of type D̃4 + D̃4

y2 = tx4 + at3x2 + bt4x+ t7 + t3 (b 6= 0), Aut(X) ∼= 〈{σα}, τ〉 ∼= (Z/2Z)3,

where σα :

 t 7→ t
x 7→ x+ αt
y 7→ y,

τ :

 t 7→ 1/t
x 7→ x/t2

y 7→ y/t5,

and α is a root of the equation z3 + az + b = 0.

4.3. Example 1. We calculate the defining equation of classical Enriques surfaces of type
Ẽ6 + Ã2. As in (5.3), (5.5) in Section 5, we take the elliptic surface defined by y2 +xy+ t2y = x3,
and a vector field D = (t + a) ∂∂t + (x + t2) ∂

∂x on it. Set T = t2, u = (t + a)x + t3, and
v = (t+a)3(y+x2). Then, we haveD(T ) = 0,D(u) = 0,D(v) = 0 and k(t, x, y)D = k(T, u, v).
We have a relation

v2 + (T + a2)uv + a(T + a2)Tv
= (T + a2)u4 + (T 2 + a4)(Tu2 + T 4) + T 6(T + a2),

and this equation defines our classical Enriques surface of type Ẽ6 + Ã2. We put c = 1/(a+
4
√
a3),

and consider the change of new coordinates
T = 1

c2
t+ a2

u = 1
c3
x+ β+a

c2
t+ a3

v = 1
c7
y + δ

c5
tx+ 1

c6
t3 + α+βδ

c4
t2.

Here, δ is a root of the equation z2 + z+ a2 = 0, α is a root of the equation z8 + z6 + z5 + a2z4 +

a4z3 + a8z2 + a16 = 0, and β = α2+a4

α . Then, we get the normal form

y2 + c2txy + βc3t2y = tx4 + c2t3x2 + (c3t4 + c5αt3)x+ t7 + t3 = 0.
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4.4. Example 2. We calculate the defining equation of classical Enriques surfaces of type
VII. In [KK15b], to construct Enriques surfaces of type VII, we use an elliptic surface defined by
y2 + t2xy+y = x3 +x2 + t2 and a vector field D = (t+a)(t+ b) ∂∂t + t2x+1

t+1
∂
∂x , a, b ∈ k, a+ b =

ab, a3 6= 1. Put

X = (t+ 1)(t+ a)(t+ b)x+ t, Y = (t+ 1)(t+ a)(t+ b) + tx2, T = t2.

Then k(x, y, t)D = k(X,Y, T ). Thus, replacing X, Y (T + 1)(T + a2)(T + b2), T by x, y, t,
respectively, we have the equation of Enriques surfaces of type VII.

4.5. Example 3. We calculate the defining equation of classical Enriques surfaces of type
VIII. We consider the elliptic surface Y defined by

y2 + txy + ty = x3 + x2.

Then, we have
∂y

∂t
=
y

t
,
∂y

∂x
=

ty + x2

t(x+ 1)
.

Therefore, considering x, y as local parameters instead of x, t, and using t = x3+x2+y2

(x+1)y , we have

D = t(at+ 1) ∂∂t + (x+ 1) ∂
∂x

= t(at+ 1){ (x+1)y2

x3+x2+y2
∂
∂y}+ (x+ 1){ ∂∂x + ty+x2

t(x+1)
∂
∂y}

= x3+x2+y2

(x+1)y {a
x3+x2+y2

(x+1)y + 1}{ (x+1)y2

x3+x2+y2
∂
∂y}

+(x+ 1) ∂
∂x + (x+ 1) (x+1)y

x3+x2+y2
1

x+1{
x3+x2+y2

(x+1)y y + x2} ∂∂y
= 1

(x+1)(x3+x2+y2)
{{a(x6 + x4 + y4) + x4y + x2y} ∂∂y

+(x5 + x4 + x2y2 + x3 + x2 + y2) ∂
∂x}

with a 6= 0. Putting

T = x2, X = y2, z = ax7 + ax5 + ay4x+ x5y + x3y + x4y + x2y3 + x2y + y3,

we have D(T ) = D(X) = D(z) = 0, and we have an equation

z2 = a2TX4 + (T 2 + 1)X3 + (T 5 + T 4 + T 3 + T 2)X + a2T 5 + a2T 7,

which gives birationally the equation of Y D. We consider the change of coordinates defined by

y =
z

a
+X2 + T 3 + T 2, t = T + 1, x = X.

with new variables x, y, t. Then the equation becomes

y2 = tx4 +
1

a2
t2x3 +

1

a2
t3(t+ 1)2x+ t7 + t3

For the sake of simplicity, we replace 1
a2

by a. Then we have the normal form

y2 = tx4 + at2x3 + at3(t+ 1)2x+ t7 + t3.
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REMARK 4.4. This surface has an involution defined by

t 7→ 1

t
, x 7→ x

t2
, y 7→ y

t5
.

Other results on the defining equations and their groups of automorphisms in Subsection 4.2
are obtained in a similar way.

5. Enriques surfaces of type Ẽ6 + Ã2

From Section 5 to Section 11, we will construct examples of Enriques surfaces given in Theo-
rem 1.1 and Theorem 1.2. First we consider the cases where the Enriques surfaces have a special
elliptic fibration with a desired double fiber, that is, the case of type Ẽ6 + Ã2, of type VII and of
type VIII. Next we consider the remaining cases that Enriques surfaces have a special quasi-elliptic
fibration with a desired double fiber. In this section, we give Enriques surfaces of type Ẽ6 + Ã2.

5.1. Supersingular case. We consider the relatively minimal nonsingular complete elliptic
surface ψ : R −→ P1 associated with a Weierstrass equation

y2 + sy = x3

with a parameter s. This surface is a unique rational elliptic surface with a singular fiber of type
IV over the point given by s = 0 and a singular fiber of type IV∗ over the point given by s = ∞
(Lang [Lan94, §2]). Note that all nonsingular fibers are supersingular elliptic curves. We consider
the base change of ψ : R −→ P1 by s = t2. Then, we have the elliptic surface defined by

(5.1) y2 + t2y = x3.

We consider the relatively minimal nonsingular complete model of this elliptic surface :

(5.2) f : R̃ −→ P1.

By considering the change of coordinate defined by x′ = x/t2, y′ = y/t3, t′ = 1/t, we have

y′2 + t′y′ = x′3.

Thus the surface R̃ is isomorphic to R. The rational elliptic surface f : R̃ → P1 has a singular
fiber of type IV∗ over the point given by t = 0 and a singular fiber of type IV over the point given
by t =∞.

The elliptic surface f : R̃ −→ P1 has three sections si (i = 0, 1, 2) given as follows:

s0 : the zero section.
s1 : x = y = 0.
s2 : x = 0, y = t2.

On the singular elliptic surface (5.1), we denote by F0 the fiber over the point defined by t = 0,
and by F∞ the fiber over the point defined by t = ∞. Both F0 and F∞ are irreducible, and on
each Fi (i = 0,∞) the surface (5.1) has only one singular point Pi. The surface R̃ is the surface
obtained by the minimal resolution of singularities of the surface (5.1). We denote the proper
transform of Fi on R̃ again by Fi, if confusion doesn’t occur. We have six exceptional curves E0,k

(k = 1, 2, . . . , 6) over the point P0 such that F0 and these six exceptional curves make a singular
fiber of type IV∗ of the elliptic surface f : R̃ −→ P1 as follows: The blowing-up at the singular
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point P0 gives one exceptional curveE0,1, and the surface is nonsingular along F0 and has a unique
singular point P0,1 on E0,1. The blowing-up at the singular point P0,1 gives two exceptional curves
E0,2 and E0,3. We denote the proper transform of E0,1 by E0,1. The three curves E0,1, E0,2 and
E0,3 meet at one point P0,2 which is a singular point of the obtained surface. The blowing-up at the
singular point P0,2 again gives two exceptional curves E0,4 and E0,5. The three curves E0,1, E0,4

and E0,5 meet at one point P0,3 which is a singular point of the obtained surface. The curve E0,2

(resp. E0,3) intersects E0,4 (resp. E0,5) and does not meet other curves. Finally the blowing-up at
the singular point P0,3 gives an exceptional curve E0,6 and the obtained surface is nonsingular over
these curves. The curve E0,6 meets E0,1, E0,4 and E0,5 transversally. The dual graph of the curves
F0, E0,1, . . . , E0,6 is of type Ẽ6. The cycle

F0 + E0,2 + E0,3 + 2(E0,1 + E0,4 + E0,5) + 3E0,6

forms a singular fiber of type IV∗. On the other hand, the blowing-up at the singular point P∞ gives
two exceptional curves E∞,1 and E∞,2. The obtained surface is now nonsingular, that is, nothing
but R̃. The three curves F∞, E∞,1 and E∞,2 form a singular fiber of type IV. The configuration of
these curves is as in the following Figure 1.

FIGURE 1

The sections si have the self-intersection number −1 and others have the self-intersection number
−2.

Now, we consider a rational vector field on R̃ induced from

D =
∂

∂t
+ t2

∂

∂x
.
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Then, we have D2 = 0, that is, D is 2-closed. However D has an isolated singularity at the point
P which is the singular point of the fiber of type IV, that is, the intersection point of three curves
F∞, E∞,1 and E∞,2 (note that (t, x) is not a local parameter along the fiber defined by t = 0). To
resolve this singularity, we first blow up at P . Denote by E∞,3 the exceptional curve. We denote
the proper transforms of F∞, E∞,1 and E∞,2 by the same symbols. Then blow up at three points
E∞,3 ∩ (F∞ + E∞,1 + E∞,2). Let Y be the obtained surface and ψ : Y → R̃ the successive
blowing-ups. We denote by E∞,4, E∞,5 or E∞,6 the exceptional curve over the point E∞,3 ∩ F∞,
E∞,3 ∩ E∞,1 or E∞,3 ∩ E∞,2 respectively. Then we have the following Figure 2. In this Figure 2
we give the self-intersection numbers of the curves except for the curves with the self-intersection
number −2, and the thick lines are integral curves with respect to D.

FIGURE 2

Now, according to the above blowing-ups, we see the following:

LEMMA 5.1. (i) The divisorial part (D) on Y is given by

−2(E0,1 + E0,4 + E0,5 + E0,6 + E∞,3 + E∞,4 + E∞,5 + E∞,6)− (F∞ + E∞,1 + E∞,2).

(ii) The integral curves in Figure 2 are

E0,1, E0,4, E0,5, F∞, E∞,1, E∞,2, E∞,3.

LEMMA 5.2. (i) (D)2 = −12.
(ii) The canonical divisor KY of Y is given by

KY = −2(E∞,3 + E∞,4 + E∞,5 + E∞,6)− (F∞ + E∞,1 + E∞,2).

(iii) KY · (D) = −4.
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LEMMA 5.3. D is divisorial and the quotient surface Y D is nonsingular.

PROOF. Since R̃ is a rational elliptic surface and Y is the blowing-ups at 4 points, we have
c2(Y ) = 16. Using (D)2 = −12, KY · (D) = −4 and the equation (2.2), we have

16 = c2(Y ) = deg〈D〉 −KY · (D)− (D)2 = deg〈D〉+ 4 + 12.

Therefore, we have deg〈D〉 = 0. This means that D is divisorial, and that Y D is nonsingular. �

Let π : Y → Y D be the natural map. By the result on the canonical divisor formula (2.1), we
have

KY = π∗KY D + (D).

LEMMA 5.4. (i) The images of the curves E0,1, E0,4, E0,5 in Y D are exceptional curves.
(ii) The self-intersection numbers of the images of F0, E0,2, E0,3, E0,6 in Y D are −4.
(iii) The self-intersection numbers of the images of F∞, E∞,i (i = 1, . . . , 6) and three sections

si (i = 0, 1, 2) in Y D are −2.

PROOF. The assertions follows from Proposition 2.1 and Lemma 5.1, (ii). �

Let E′0,1, E
′
0,4, E

′
0,5, E

′
0,6 be the image of E0,1, E0,4, E0,5, E0,6 in Y D, respectively. Then we

have the following Figure 3 in which we give the self-intersection numbers of the curves except the
curves with the self-intersection number −2.

FIGURE 3

Let
ϕ1 : Y D → X ′
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be the blowing-downs of E′0,1, E
′
0,4, E

′
0,5. Then the image of E′0,6 in X ′ is an exceptional curve.

Let
ϕ2 : X ′ → X

be the blowing-down of this exceptional curve. Now we have the following diagram

Y D π←− Y
ϕ1 ↓ ↓ ψ
X ′ R̃

ϕ2 ↓
X

We have thirteen (−2)-curves E1, . . . , E13 with the self-intersection number −2 which form
the following Figure 4.

FIGURE 4

Then, we have
KY D = ϕ∗1(KX′) + E0,1 + E0,4 + E0,5

= ϕ∗1 ◦ ϕ∗2(KX) + E0,6 + 2(E0,1 + E0,4 + E0,5).

LEMMA 5.5. The canonical divisor KX of X is numerically equivalent to 0.

PROOF. By Lemma 5.2, (ii),

KY = −2(E∞,3 + E∞,4 + E∞,5 + E∞,6)− (F∞ + E∞,1 + E∞,2).

On the other hand,

KY = π∗KY D + (D) = π∗(ϕ∗1 ◦ ϕ∗2(KX) + E0,6 + 2(E0,1 + E0,4 + E0,5)) + (D) =

π∗(ϕ∗1 ◦ ϕ∗2(KX)) + 2(E0,6 + E0,1 + E0,4 + E0,5) + (D) = π∗(ϕ∗1 ◦ ϕ∗2(KX)) +KY .
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Here we use the fact that E0,1, E0,4, E0,5 are integral and E0,6 is non-integral (Lemma 5.1, (ii) and
Lemma 2.1). Therefore, KX is numerically equivalent to zero. �

LEMMA 5.6. The surface X has b2(X) = 10.

PROOF. Since π : Y −→ Y D is finite and purely inseparable, the étale cohomology of Ỹ is
isomorphic to the étale cohomology of Y D. Therefore, we have b1(Y D) = b1(Y ) = 0, b3(Y D) =
b3(Y ) = 0 and b2(Y D) = b2(Y ) = 14. Since ϕ2 ◦ ϕ1 is the blowing-downs of four exceptional
curves, we see b0(X) = b4(X) = 1, b1(X) = b3(X) = 0 and b2(X) = 10. �

THEOREM 5.7. With the notation above, X is a supersingular Enriques surface.

PROOF. Since KX is numerically trivial, Xa is minimal and the Kodaira dimension κ(X) is
equal to 0. Since b2(X) = 10, X is an Enriques surface. Since Ỹ is a rational surface, Xa is either
supersingular or classical. Consider the elliptic fibration g : X −→ P1 induced by f : R̃ −→ P1.
Note that the fiber over the point given by t = ∞ is a double fiber of type IV∗ and the fiber over
the point given by t = 0 is simple. Since the other fibers are smooth and supersingular elliptic
curves by Lemma 2.6, they are simple by Proposition 2.5. Therefore X is a supersingular Enriques
surface by Proposition 2.5. �

The dual graph of the thirteen (−2)-curves E1, . . . , E13 is as in the following Figure 5.

FIGURE 5

On Xa, there exist exactly one elliptic fibration with singular fibers of type (2IV∗, IV) defined by
the linear system |E8 + E9 + E10| and three quasi-elliptic fibrations with singular fibers of type
(III∗, 2III) defined by |2(E9 + E12)|, |2(E8 + E11)|, |2(E10 + E13)| respectively.

By Proposition 2.2, we now have the following theorem.

THEOREM 5.8. The Enriques surface X contains exactly thirteen (−2)-curves.
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PROOF. Consider the dual graph Γ of 13 (−2)-curves in Figure 5. We can easily prove that
any maximal parabolic subdiagrams in Γ is of type Ẽ6 + Ã2 or of type Ẽ7 + Ã1. It follows from
Proposition 2.2 that Aut(X) is finite and X contains exactly 13 (−2)-curves. �

THEOREM 5.9. The automorphism group Aut(X) is isomorphic to Z/5Z × S3 and the nu-
merically trivial automorphism group Autnt(X) is isomorphic to Z/5Z.

PROOF. To calculate Aut(X) we first give an equation of X mentioned in Section 4 and then
determine its automorphism group. As in Subsection 4.1, we consider the elliptic surface defined
by y2+t2y = x3 and the vector fieldD = ∂

∂t+t
2 ∂
∂x . Put T = t2, u = x+t3, v = y+tx2. Then, we

have D(T ) = 0, D(u) = 0, D(v) = 0 and we have the relation v2 +Tv = Tu4 +u3 +T 3u+T 7.
Since we have k(x, y, t)D = k(u, v, T ), the quotient surface by D is birationally isomorphic to the
surface defined by v2 +Tv = Tu4 +u3 +T 3u+T 7. We replace variables u, v, T by new variables
x, y, t, respectively for convenience. Then, the equation y2 + ty = tx4 + x3 + t3x + t7 gives a
normal affine surface. Note that the minimal normal completion of this surface is a normal elliptic
surface f : X −→ P1 which is birationally isomorphic to our Enriques surface. Set

A = k[t, x, y]/(y2 + ty + tx4 + x3 + t3x+ t7)

and let σ be an automorphism of our Enriques surface. The double fiber, denoted by 2F∞, exists
over the point defined by t = ∞. Since σ preserves the diagram of (−2)-curves, σ preserves
2F∞. Therefore, σ preserves the structure of this elliptic surface. Since there are three 2-sections
for this elliptic surface by the configuration of nordal curves, σ acts on these three 2-sections as a
permutation. We denote by C̃ be the 2-section at infinity and assume that σ preserves C̃. Then,
as in the case of a quasi-elliptic surface, σ has the form in (4.4) in Subsection 4.1. Moreover, this
elliptic surface has a singular fiber over the point defined by t = 0, σ preserves also the singular
fiber. Therefore, we know c2 = 0 and we have σ∗(t) = c1t.

Therefore, together with the equation y2 = ty + tx4 + x3 + t3x+ t7, we have an identity

e1(t, x)2(ty + tx4 + x3 + t3x+ t7) + e2(t, x)2 + c1t(e1(t, x)y + e2(t, x))
= c1t(d1(t)x+ d2(t))4 + (d1(t)x+ d2(t))3

+(c1t)
3(d1(t)x+ d2(t)) + (c1t)

7.

A is a free k[x, y]-module, and 1 and y are linearly independent over k[x, y]. Taking the coefficient
of y, we have e1(t, x)2t + c1te1(t, x) = 0. Since e1(t, x) 6= 0, we have e1(t, x) = c1, which is a
constant. Therefore, we have

c2
1(tx4 + x3 + t3x+ t7) + e2(t, x)2 + c1te2(t, x)

= c1t(d1(t)x+ d2(t))4 + (d1(t)x+ d2(t))3

+(c1t)
3(d1(t)x+ d2(t)) + (c1t)

7.

As a polynomial of x, if e2(t, x) has a term of degree greater than or equal to 3, then e2(t, x)2 has
a term greater than or equal to 6. We cannot kill this term in the equation. Therefore, we can put
e2(t, x) = a0(t) + a1(t)x + a2(t)x2 with a0(t), a1(t), a2(t) ∈ k[t]. We take terms which contain
only the variable t. Then, we have an equality

c2
1t

7 + a0(t)2 + c1ta0(t) = c1td2(t)4 + d2(t)3 + c3
1t

3d2(t) + c7
1t

7.
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Put deg d2(t) = `. Suppose ` ≥ 2. Then, the right-hand-side has an odd term whose degree is
equal to 4`+1 ≥ 9. Therefore, the left-hand-side must have an odd term which is of degree 4`+1.
This means deg a0(t) = 4`+ 1. However, in the equation we cannot kill the term of degree 8`+ 2
which comes from a0(t)2. Therefore, we can put d2(t) = b0 + b1t with b0, b1 ∈ k. Then, the
equation becomes

a0(t)2 + c1ta0(t) + c2
1t

7

= c1b
4
0t+ c1b

4
1t

5 + b30 + b20b1t+ b0b
2
1t

2 + b31t
3 + c3

1b0t
3 + c3

1b1t
4 + c7

1t
7.

If deg a0(t) ≥ 4, we cannot kill the term of degree greater than or equal to 8 which comes from
a0(t)2. Therefore, we can put a0(t) = α0 + α1t+ α2t

2 + α3t
3. Then, we have equations:

c2
1 = c7

1, α
2
3 = 0, 0 = c1b

4
1, α

2
2 + c1α3 = c3

1b1, c1α2 = b31 + c3
1b0,

α2
1 + c1α1 = b0b

2
1, c1α0 = c1b

4
0 + b20b1, α

2
0 = b30.

Solving these equations, we have

b0 = 0, b1 = 0, α0 = 0, α2 = 0, α3 = 0, c5
1 = 1, α1 = 0 or c1.

Therefore, we have c1 = ζ, e1(t, x) = ζ, a0(t) = 0 or ζt, d2(t) = 0. with ζ5 = 1, ζ ∈ k. Putting
these date into the original equation, we have

ζ2(tx4 + x3 + t3x) + a1(t)2x2 + a2(t)2x4 + ζta1(t)x+ ζta2(t)x2

= ζtd1(t)4x4 + d1(t)3x3 + ζ3t3d1(t)x.

Considering the coefficients of x4, we have ζ2t + a2(t)2 + ζtd1(t)4 = 0. Therefore, we have
a2(t) = 0 and d1(t) = ζ4. Considering the coefficients of x2, we have a1(t) = 0. Therefore we
have

c1 = ζ, d1(t) = ζ4, d2(t) = 0, e1(t, x) = ζ, e2(t, x) = 0 or ζt.

Fixing a fifth primitive root ζ of unity, we set

σ : t 7→ ζt, x 7→ ζ4x, y 7→ ζy
τ : t 7→ t, x 7→ x, y 7→ y + t.

Then, we have
σ ◦ τ : t 7→ ζt, x 7→ ζ4x, y 7→ ζy + ζt

and 〈σ ◦ τ〉 ∼= Z/10Z. We now take the relative Jacobian variety of f : X −→ P1. It has singular
fibers of types IV, IV∗, and the Mordell Weil group is isomorphic to Z/3Z (cf. Ito [Ito02]). We
denote by ρ a generator of the group. It acts on X and permutes three 2-sections. On the other
hand, τ is induced from the action of the Mordell-Weil group Z/2Z of a quasi-elliptic fibration p
with singular fibers of type (III∗, III) (cf. Ito [Ito02]) and it interchanges two 2-sections not equal
to the curve of cusps of p. Therefore, considering the action of the subgroup 〈τ, ρ〉 generated by τ
and ρ on the dual graph of (−2)-curves, we see 〈τ, ρ〉 is isomorphic to the symmetric group S3 of
degree 3. Considering the commutation relations of σ, τ, ρ, we conclude Aut(X) ∼= Z/5Z × S3

(see Subsection 4.2). The automorphism σ is numerically trivial by construction. �

REMARK 5.10. Note that Autct(X) = Autnt(X) becauseX is supersingular. The numerically
trivial automorphism σ of order 5 is a new example of such automorphisms.
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5.2. Classical case. We consider the relatively minimal nonsingular complete elliptic surface
ψ : R −→ P1 associated with the Weierstrass equation

y2 + xy + sy = x3

with a parameter s. This surface is a rational elliptic surface with a singular fiber of type I3 over the
point given by s = 0, a singular fiber of type I1 over the point given by s = 1 and a singular fiber
of type IV∗ over the point given by s = ∞ (cf. Lang [Lan94, §2]). We consider the base change
of ψ : R −→ P1 by s = t2. Then, we have the elliptic surface associated with the Weierstrass
equation

(5.3) y2 + xy + t2y = x3.

We consider the relatively minimal nonsingular complete model of this elliptic surface :

(5.4) f : R̃ −→ P1.

The rational elliptic surface f : R̃ → P1 has a singular fiber of type I6 over the point given by
t = 0, a singular fiber of type I2 over the point given by t = 1 and a singular fiber of type IV over
the point given by t =∞ (see Figure 6). The fibration f has six sections. In Figure 6, (−1)-curves
denote the 0-section and two sections defined by the equations

x = y = 0, x = y + t2 = 0

respectively.

FIGURE 6

Now, we consider a rational vector field on R̃ defined by

(5.5) D = Da = (t+ a)
∂

∂t
+ (x+ t2)

∂

∂x
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where a ∈ k, a 6= 0, 1. We see that D2 = D, that is, D is 2-closed. Note that the nonsingular
fiber Fa over the point defined by t = a is integral with respect to D. The vector field D has an
isolated singularity at the point P which is the singular point of the fiber of type IV. Denote by F∞,
E∞,1 and E∞,2 the three components of the singular fiber of type IV. Then P is the intersection
point of these three curves. To resolve this singularity, we first blow up at P . Denote by E∞,3 the
exceptional curve. We denote the proper transforms of F∞, E∞,1 and E∞,2 by the same symbols.
Then blow up at three points E∞,3 ∩ (F∞ + E∞,1 + E∞,2). Let Y be the obtained surface and
ψ : Y → R̃ the successive blowing-ups. We denote by the same symbol D the induced vector
field on Y . We denote by E∞,4, E∞,5 or E∞,6 the exceptional curve over the point E∞,3 ∩ F∞,
E∞,3 ∩E∞,1 or E∞,3 ∩E∞,2 respectively. Then we have the following Figure 7 in which we give
the self-intersection numbers of the curves, and the thick curves are integral with respect to D.

FIGURE 7

A direct calculation shows the following Lemmas.

LEMMA 5.11. (i) The divisorial part (D) of D on Y is given by

−(E1 + E0,1 + E0,2 + E0,5 + F∞ + E∞,1 + E∞,2)− 2(E∞,3 + E∞,4 + E∞,5 + E∞,6).

(ii) The integral curves in Figure 7 are

E0,1, E0,2, E0,5, F∞, E∞,1, E∞,2, E∞,3, E1.

LEMMA 5.12. (i) (D)2 = −12.
(ii) The canonical divisor KY of Y is given by

KY = −(F∞ + E∞,1 + E∞,2)− 2(E∞,3 + E∞,4 + E∞,5 + E∞,6).
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(iii) KY · (D) = −4.

Now, by taking the quotient by D, we have the following Figure 8. Here the numbers −1,−4
denote the self-intersection numbers of curves. The other curves have the self-intersection number
−2.

FIGURE 8

We now contract four (−1)-curves in Figure 8, and denote by Xa the obtained surface which
has the dual graph of (−2)-curves given in Figure 5 (recall that the vector field (5.5) contains a
parameter a). We use the notation of Figure 8. On Xa, there exist exactly one elliptic fibration
with singular fibers of type (2IV∗, I3, I1) defined by the linear system |E8 + E9 + E10| and three
quasi-elliptic fibrations with singular fibers of type (III∗, 2III) defined by |2(E9 + E12)|, |2(E8 +
E11)|, |2(E10 + E13)| respectively.

THEOREM 5.13. The surfaces {Xa} form a 1-dimensional non-isotrivial family of classical
Enriques surfaces with the dual graph given in Figure 5.

PROOF. By using Lemmas 5.11, 5.12 and the same argument as in the case of the supersingular
surface in the previous subsection, Xa is an Enriques surface. Since the image of Fa and the
singular fiber of type VI∗ are double fibers,Xa is classical by Proposition 2.5. Moreover the double
fiber Fa varies and hence this family is non-isotrivial. By the same proof as that of Theorem 5.8,
we prove that Xa contains exactly 13 (−2)-curves whose dual graph is given in Figure 5. �

LEMMA 5.14. The map ρn : Aut(Xa)→ O(Num(Xa)) is injective.

PROOF. Let g ∈ Ker(ρn). Then g preserves each of the thirteen curves E1,..., E13 (see Figure
5). First note that g fixes three points on each of E8, E9, E10 (in contrast to the supersingular
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case, where only two distinct points are fixed). Hence, g fixes E8, E9 and E10 pointwisely. Let p
be the quasi-elliptic fibration with singular fibers of type (III∗, 2III) defined by the linear system
|2(E8 + E11)| and let F be a general fiber of p. The two curves E9, E10 are 2-sections of the
fibration p. Then, g fixes at least three points on F which are the intersection with E9 and E10 and
the cusp of F . Hence, g fixes F pointwisely. Thus ρn is injective. �

By Proposition 2.2, we now have the following theorem.

THEOREM 5.15. The automorphism group Aut(Xa) is isomorphic to the symmetric group S3

of degree three and Xa contains exactly thirteen (−2)-curves.

PROOF. By Lemma 5.14, Aut(Xa) is a subgroup of the symmetry group of the dual graph of
(−2)-curves which is isomorphic to S3. By considering the actions of the Mordell-Weil groups
of the Jacobian fibrations of genus one fibrations on Xa, any symmetry of the dual graph can be
realized by an automorphism of Xa. �

6. Enriques surfaces of type VII

Katsura and Kondo proved the following theorem based on a method given in [KK15a].

THEOREM 6.1. ([KK15b]) There exists a 1-dimensional non-isotrivial family of Enriques sur-
faces with the dual graph of (−2)-curves given in Figure 9. A general member of this family is
classical and a special member is supersingular. The automorphism group of any member in this
family is isomorphic to the symmetric group S5 of degree 5. The canonical cover of any member in
this family has 12 ordinary nodes and its minimal resolution is the supersingular K3 surface with
Artin invariant 1.

FIGURE 9

There exist elliptic fibrations with singular fibers of type (I9, I1, I1, I1), (I5, I5, I1, I1), (I8, 2III)
or (I6, 2IV, I2) on Enriques surfaces of type VII. For more details, we refer the reader to [KK15b].
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7. Enriques surfaces of type VIII

In this section we give a construction of a one-dimensional family of classical Enriques surfaces
with the dual graph of type VIII.

We consider the relatively minimal nonsingular complete elliptic surface ψ : R −→ P1 asso-
ciated with the Weierstrass equation

y2 + sxy = x3 + s2x

with a parameter s. This surface is a rational elliptic surface with a singular fiber of type I∗1 over the
point given by s = 0 and a singular fiber of type I4 over the point given by s = ∞ (Lang [Lan94,
§2]). We consider the base change of ψ : R −→ P1 by s = t2. Then, we have the Weierstrass
model defined by

(7.1) y2 + txy + ty = x3 + x2

(see Lang [Lan94, §2]). We consider the relatively minimal nonsingular complete model of this
elliptic surface :

(7.2) f : R̃ −→ P1.

The rational elliptic surface f : R̃ → P1 has a singular fiber of type III over the point given by
t = 0 and a singular fiber of type I8 over the point given by t =∞.

On the singular elliptic surface (7.1), we denote by F0 the fiber over the point defined by t = 0,
and by E0 the fiber over the point defined by t =∞. Both F0 and E0 are irreducible, and on each
F0 andE0, the surface (7.1) has only one singular point P0 and P∞ respectively. The surface R̃ is a
surface obtained by the minimal resolution of singularities of (7.1). We use the same symbol for the
proper transforms of curves on R̃. The blowing-up at the singular point P0 gives one exceptional
curve F1, and the surface is nonsingular along F0 and F1. The two curves F1 and F0 make a
singular fiber of type III of the elliptic surface f : R̃ −→ P1. On the other hand, the blowing-up
at the singular point P∞ gives two exceptional curves E1, E2, and the surface is nonsingular along
E0 and has a unique singular point P1 which is the intersection of E1 and E2. The blowing-up at
the singular point P1 gives two exceptional curves E3 and E4. The curves E3 and E4 meet at one
point P2 which is a singular point of the obtained surface. The blowing-up at the singular point P2

again gives two exceptional curves E5 and E6. The curves E5 and E6 meet at one point P3 which
is a singular point of the obtained surface. Finally the blowing-up at the singular point P3 gives an
exceptional curve E7 and the obtained surface is nonsingular over these curves. The cycle

E0 + E1 + E2 + E3 + E4 + E5 + E6 + E7

forms a singular fiber of type I8 given in Figure 10.
The elliptic surface f : R̃ −→ P1 has four sections si (i = 0, 1, 2, 3) given as follows:

s0 : the zero section.
s1 : x = y = 0.
s2 : x = t, y = 0.
s3 : x = 0, y = t.
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Also we consider the following two 2-sections b1, b2 defined by:

b1 : x+ y = 0, x2 + tx+ t = 0.
b2 : x+ y + tx+ t = 0, x2 + tx+ t = 0.

The configuration of singular fibers, three sections and two 2-sections is given in the following
Figure 10:

FIGURE 10

Now, we consider a rational vector field on R̃ defined by

D = Da = t(at+ 1)
∂

∂t
+ (x+ 1)

∂

∂x
, a 6= 0 ∈ k.

Then, we have D2 = D, that is, D is 2-closed. However D has an isolated singularity at the point
P which is the singular point of the fiber of type III, that is, the intersection point of two curves F0

and F1 (note that (x, t) is not a local parameter along F0). To resolve this singularity, we first blow
up at P . Denote by F2 the exceptional curve. We denote the proper transforms of F0 and F1 by
the same symbols. Then the induced vector field has three isolated singularities one of which is the
intersection of three curves and other two points lie on the curve F2. Blow up at these three points.
Let Y be the obtained surface and ψ : Y → R̃ the successive blowing-ups. We denote the induced
vector field by the same symbol D, and the four exceptional curves by F2, F3, F4, F5. Then we
have the following Figure 11.
In the Figure 11 we give the self-intersection numbers of the curves except the curves with the
self-intersection number −2. Also the thick lines are integral curves with respect to D. Denote
by Fa the fiber over the point defined by at = 1. Then Fa is integral with respect to D. Now,
according to the above blowing-ups, we see the following lemmas.
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FIGURE 11

LEMMA 7.1. (i) The divisorial part (D) of the vector field D on Y is given by

−(F0 + F1 + F2 + 2F3 + E1 + E2 + E5 + E6).

(ii) The integral curves in Figure 11 are

F0, F1, F2, E1, E2, E5, E6.

LEMMA 7.2. (i) (D)2 = −12.
(ii) The canonical divisor KY of Y is given by

KY = −(F0 + F1 + F2 + 2F3).

(iii) KY · (D) = −4.

Now take the quotient Y D of Y by D. By using the same argument as in the proof of Lemma 5.3,
D is divisorial and Y D is nonsingular. By Proposition 2.1, we have the following configuration of
curves in Figure 12. In the Figure 12 we give the self-intersection numbers of the curves except the
curves with the self-intersection number −2.

Let Xa be the surface obtained by contracting four exceptional curves in Figure 12 (Recall that
the vector field D contains a parameter a). Then we have the following configuration of (−2)-
curves in Figure 13.
The dual graph of the sixteen (−2)-curves in Figure 13 is nothing but the one given in Figure 14.
Note that any maximal parabolic subdiagram of this diagram is of type D̃5 ⊕ Ã3, D̃6 ⊕ Ã1 ⊕ Ã1

or Ẽ6 ⊕ Ã2.
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FIGURE 12

FIGURE 13

THEOREM 7.3. The surfaces {Xa} form a non-isotrivial 1-dimensional family of classical
Enriques surfaces with the dual graph given in Figure 14. The automorphism group Aut(Xa) is
isomorphic to S4.

PROOF. By using Lemmas 7.1 and 7.2 and the same argument as in the proof of Theorem 1,Xa

is an Enriques surface. Since Xa has a quasi-elliptic fibration defined by |2(E5 +E11)| = |2(E6 +
E16)| with two double fibers, Xa is classical (Proposition 2.5). Note that the image of Fa is a
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FIGURE 14

double fiber of an elliptic fibration with singular fibers of type (2I∗1, I4). Since Fa varies, this family
is non-isotrivial. By the same proof as that of Theorem 5.8, Xa contains exactly 16 (−2)-curves
whose dual graph given in Figure 14. The quasi-elliptic fibration defined by |2(E5 +E11)| has five
2-sections E2, E12, E13, E14, E15. Each of these 2-sections meets another (−2)-curves at three
different points, and hence they are fixed by any numerically trivial automorphisms. Therefore, by
the same proof as that of Lemma 5.14, the natural map ρn : Aut(Xa)→ O(Num(Xa)) is injective.
Note that the automorphism group of the dual graph is isomorphic to the symmetric group S4.
By considering the actions of the Mordell-Weil groups of the Jacobian fibrations of genus one
fibrations on Xa, we have proved that Aut(Xa) ∼= S4. �

On Xa, there are three types of genus one fibrations: three elliptic fibrations with singular
fibers of type (2I∗1, I4), three quasi-elliptic fibrations with singular fibers of type (I∗2, 2III, 2III) and
eight elliptic fibrations with singular fibers of type (IV∗, I3, I1).

8. Enriques surfaces of Type Ẽ8

In this section we give constructions of supersingular and classical Enriques surfaces with the
following dual graph given of all (−2)-curves in Figure 15.

8.1. Supersingular case. Let (x, y) be an affine coordinate of A2 ⊂ P2. Consider a rational
vector field D defined by
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• • • • • • • • •

•

FIGURE 15

(8.1) D =
1

x5

(
(xy6 + x3)

∂

∂x
+ (x6 + y7 + x2y)

∂

∂y

)
.

Then D2 = 0, that is, D is 2-closed. Note that D has a pole of order 5 along the line ` defined by
x = 0 and this line is integral with respect to D. We see that D has a unique isolated singularity
(x, y) = (0, 0). First blow up at the point (0, 0). Then we see that the exceptional curve is not
integral and the induced vector field has a pole of order 2 along the exceptional curve. Moreover
the induced vector field has a unique isolated singularity at the intersection of the proper transform
of ` and the exceptional curve. Then continue this process until the induced vector field has no
isolated singularities. The final configuration of curves is given in Figure 16. Here F0 is the proper
transform of ` and the suffix i of the exceptional curve Ei corresponds to the order of successive
blowing-ups.

FIGURE 16

We denote by Y the surface obtained by this process. Also we denote by the same symbol D
the induced vector field on Y . By direct calculations, we have the following lemmas.

LEMMA 8.1. (i) The integral curves with respect to D in Figure 16 are all horizontal curves
(thick lines).

(ii) (D) = −(5F0 + 2E1 + 6E2 + 8E3 + 7E4 + 4E5 + 3E6 + 2E7 + 4E8 + 5E9 + 6E10 +
8E11 + 4E12 + 6E13).
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LEMMA 8.2. (i) (D)2 = −12.
(ii) The canonical divisor KY of Y is given by KY = −(3F0 + 2E1 + 4E2 + 6E3 + 5E4 +

4E5 + 3E6 + 2E7 + 4E8 + 5E9 + 6E10 + 8E11 + 4E12 + 6E13).
(iii) KY · (D) = −4.

Now take the quotient Y D of Y byD. By using the same argument as in the proof of Lemma 5.3,D
is divisorial and hence Y D is nonsingular. By Proposition 2.1, we have the following configuration
of curves in Figure 17:

FIGURE 17

By contracting three exceptional curves, we get a new exceptional curve which is the image of the
(−4)-curve meeting three exceptional curves. Let X be the surface obtained by contracting the
exceptional curve. The surface X contains 10 (−2)-curves whose dual graph is given by Figure
15. Note that this diagram contains a unique maximal parabolic subdiagram which is of type Ẽ8.
The pencil of lines in P2 through (x, y) = (0, 0) induces a quasi-elliptic fibration on X with a
double fiber of type II∗.

THEOREM 8.3. The surface X is a supersingular Enriques surfaces with the dual graph given
in Figure 15.

PROOF. By using Lemmas 8.1, 8.2 and the same arguments as in the proofs of Theorems 5.7,
5.8, X is an Enriques surface with the dual graph given in Figure 15. Note that the normalization
of the canonical cover of X is obtained from Y by contracting the divisor F0 +E2 +E3 +E4, and
hence it has a rational double point of type D4. It follows from Lemma 12.6 (Section 12) that X is
supersingular. �

THEOREM 8.4. Aut(X) = Autnt(X) = Autct(X) ∼= Z/11Z.
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PROOF. First note that the dual graph has no symmetries and hence Aut(X) = Autnt(X).
Since X is supersingular, Autct(X) = Autnt(X).

Now we consider the vector field (8.1), and we set u = x2, v = y2, z = x7 +xy7 +x3y. Then,
we have D(u) = 0, D(v) = 0, D(z) = 0 with the equation z2 = u7 + uv7 + u3v. Therefore, the
quotient surface P2 by D is birationally isomorphic to the surface defined by z2 = u7 +uv7 +u3v,
which is birationally isomorphic to our Enriques surface. To do a change of coordinates, we define
new variables x, y, t by

x = 1/u, y = z/u4, t = v/u.

Then, the equation becomes y2+tx4+x+t7 = 0. This equation gives a nonsingular affine surface.
Set

A = k[t, x, y]/(y2 + tx4 + x+ t7)

and let σ be an automorphism of our Enriques surface. The double fiber, denoted by 2F∞, of
type II∗ exists over the point defined by t = ∞. Since σ preserves the diagram of (−2)-curves, σ
preserves the curve C of cusps and 2F∞. Therefore, σ has the form in (4.4) in Subsection 4.1.

Therefore, together with the equation y2 = tx4 + x+ t7, we have an identity

e1(t, x)2(tx4 + x+ t7) + e2(t, x)2

= (c1t+ c2)(d1(t)x+ d2(t))4 + (d1(t)x+ d2(t)) + (c1t+ c2)7.

Using Lemma 4.3 and taking the coefficients of x, we have e1(t, x)2 + d1(t) = 0. Therefore,
e1(t, x) is a polynomial of t, i.e., we can put e1(t, x) = e1(t), and d1(t) = e1(t)2. Taking the
coefficients of t, we have e1(t)2x4+e1(t)2t6+c1(d1(t)x+d2(t))4+d2(t)odd/t+c1(c1t+c2)6 = 0.
Here, d2(t)odd is the odd terms of d2(t). Considering the coefficients of x4 of this equation, we
have e1(t)2 = c1d1(t)4 = c1e1(t)8. Since we have e1(t) 6≡ 0, we have e1(t)6 = 1/c1. Therefore,
e1(t) is a constant and we set e1(t) = e1 ∈ k. Then, e6

1 = 1/c1. Therefore, we have an identity
e2

1t
6 + c1d2(t)4 + d2(t)odd/t + c1(c1t + c2)6 = 0 with e6

1 = 1/c1. Let d2(t) be of degree m. If
m ≥ 2 , then we have deg d2(t)4 ≥ 8 and we cannot kill the highest term of d2(t)4 in the equation.
Therefore, we can put d2(t) = b0 + b1t (b0, b1 ∈ k) and we have an identity

(e2
1 + c7

1)t6 + (c1b
4
1 + c5

1c
2
2)t4 + c3

1c
4
2t

2 + (c1b
4
0 + b1 + c1c

6
2) = 0.

Therefore, we have e2
1 + c7

1 = 0, c1b
4
1 + c5

1c
2
2 = 0, c3

1c
4
2 = 0, c1b

4
0 + b1 + c1c

6
2 = 0 with e6

1 = 1/c1.
Since c1 6= 0, we have c2 = b1 = b0 = 0 and c1 = ζ, e1 = ζ9, d1 = ζ7 with ζ11 = 1. Putting
these data into the original equation, we have e2(t, x) = 0. These σ’s are really automorphisms of
X and we conclude Aut(X) ∼= Z/11Z (see Subsection 4.2). �

REMARK 8.5. The automorphism σ is a new example of a cohomologically trivial automor-
phism.

8.2. Classical case. Let Q = P1 × P1 be a nonsingular quadric and let ((u0, u1), (v0, v1)) be
a homogeneous coordinate of Q. Let x = u0/u1, x

′ = u1/u0, y = v0/v1, y
′ = v1/v0. Consider

a rational vector field D defined by

(8.2) D =
1

x3y2

(
x4y2 ∂

∂x
+ (x2 + ax4y4 + y4)

∂

∂y

)
, a 6= 0 ∈ k.
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Then D2 = D, that is, D is 2-closed. Note that D has a pole of order 3 along the divisor
defined by x = 0, a pole of order 1 along the divisor defined by x =∞ and a pole of order 2 along
the divisor defined by y = 0. Moreover D has two isolated singularities at (x, y) = (0, 0), (∞, 0).
As in the case of supersingular Enriques surfaces of type E8, we blow up the points of isolated
singularities of D and those of associated vector field, and finally get a vector field D, denoted
by the same symbol, without isolated singularities. The configuration of curves is given in Figure
18. Here F0, E1, or E2 is the proper transform of the curve defined by y = 0, x = 0, or x = ∞,
respectively, and the suffix i of the other exceptional curveEi corresponds to the order of successive
blowing-ups. We denote by Y the surface obtained by these successive blowing-ups.

FIGURE 18

A direct calculation shows the following two Lemmas 8.6 and 8.7.

LEMMA 8.6. (i) The integral curves with respect to D in Figure 18 are all horizontal curves
(thick lines).

(ii) (D) = −(2F0 + 3E1 + E2 + 2E3 + 4E5 + 4E6 + 3E7 + 2E8 + 4E9 + 5E10 + 6E11 +
8E12 + 4E13 + 6E14).

LEMMA 8.7. (i) (D)2 = −12.
(ii) The canonical divisor KY of Y is given by KY = −(2F0 + 2E1 + E3 + 3E5 + 4E6 +

3E7 + 2E8 + 4E9 + 5E10 + 6E11 + 8E12 + 4E13 + 6E14).
(iii) KY · (D) = −4.

Now take the quotient Y D of Y by D. By using the same argument as in the proof of Lemma 5.3,
Y D is nonsingular. By Proposition 2.1, we have the following configuration of curves in the below
Figure 19:

Let Xa be the surface obtained by contracting four exceptional curves in Figure 19 (Recall that
the vector field D contains one parameter a (see (8.2))). Then Xa contains 10 (−2)-curves whose
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FIGURE 19

dual graph is given by Figure 15. Recall that this diagram contains a unique maximal parabolic
subdiagram which is of type Ẽ8. The first projection fromQ to P1 induces a quasi-elliptic fibration
on Xa with two double fibers of type II∗ and of type II.

THEOREM 8.8. The surfaces {Xa} form a 1-dimensional family of classical Enriques surfaces
with the dual graph given in Figure 15.

PROOF. By using Lemmas 8.6, 8.7 and the same arguments as in the proofs of Theorems 5.7,
5.8, Xa is an Enriques surface with the dual graph given in Figure 15. Since Xa,b has a genus one
fibration with two double fibers of type II∗, II, Xa is classical (Proposition 2.5). �

THEOREM 8.9. The automorphism group Aut(Xa) is trivial.

PROOF. We consider the vector field (8.2), and we set u = x2, v = y2, z = x3 + ax5y4 +
xy4 +x4y3. Then, we haveD(u) = 0,D(v) = 0,D(z) = 0 with the equation z2 = u3 +a2u5v4 +
uv4 + u4v3 with a 6= 0. Therefore, the quotient surface P1 × P1 by D is birationally isomorphic
to the surface defined by z2 = u3 + a2u5v4 + uv4 + u4v3, which is birationally isomorphic to our
Enriques surface. To do a change of coordinates, we define new variables x, y, t by

x = 1/a
3
4uv, y = z/a

7
4u4v2, t = 1/

√
au

and we replace 1/a
5
4 by a for the sake of simplicity. Then, the equation becomes y2 + tx4 +at3x+

t3 + t7 = 0. This equation gives a normal affine surface. Set

A = k[t, x, y]/(y2 + tx4 + at3x+ t3 + t7)

and let σ be an automorphism of our Enriques surface. The double fiber, denoted by 2F∞, of type
II∗ exists over the point defined by t = ∞. Since σ preserves the dual graph of (−2)-curves,
σ preserves the curve C of cusps and 2F∞. Therefore, σ has the form in (4.4) in Subsection 4.1.
Moreover, this quasi-elliptic surface has a singular fiber over the point defined by t = 0, σ preserves
also the singular fiber. Therefore, we know c2 = 0 and we have σ∗(t) = c1t.
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Therefore, together with the equation y2 + tx4 + at3x+ t3 + t7 = 0, we have an identity

e1(t, x)2(tx4 + at3x+ t3 + t7) + e2(t, x)2

= c1t(d1(t)x+ d2(t))4 + a(c1t)
3(d1(t)x+ d2(t))

+(c1t)
3 + (c1t)

7.

Differentiating both sides by x, we have ae1(t, x)2t3 +ac3
1d1(t)t3 = 0, that is, e1(t, x)2 = c3

1d1(t).
Therefore, e1(t, x) is a polynomial of t, i.e., we can put e1(t, x) = e1(t), and d1(t) = c−3

1 e1(t)2.
Using Lemma 4.3 and taking the coefficients of t, we have e1(t)2x4 + e1(t)2t2 + e1(t)2t6 +
c1(c−3

1 e1(t)2x+ d2(t))4 + ac3
1d2(t)event

2 + c3
1t

2 + c7
1t

6 = 0. Here, d2(t)even is the even terms of
d2(t). Considering the coefficients of x4 of this equation, we have e1(t)2 = c−11

1 e1(t)8. Since we
have e1(t) 6≡ 0, we have e1(t)6 = c11

1 . Therefore, e1(t) is a constant and we set e1(t) = e1 ∈ k.
Then, e6

1 = c11
1 and the equation becomes e2

1t
2+e2

1t
6+c1d2(t)4+ac3

1d2(t)event
2+c3

1t
2+c7

1t
6 = 0.

If the degree of d2(t) is greater than or equal to 2, then the highest term of d2(t)4 cannot be killed
in the equation. Therefore, we can put d2(t) = b0 + b1t (b0, b1 ∈ k) and we have an identity

e2
1t

2 + e2
1t

6 + c1(b0 + b1t)
4 + ac3

1b0t
2 + c3

1t
2 + c7

1t
6 = 0.

Therefore, we have e2
1 = c7

1, c1b
4
1 = 0, e2

1 + ac3
1b0 + c3

1 = 0 and c1b
4
0 = 0. Therefore, considering

e6
1 = c11

1 , we have b0 = b1 = 0, or c1 = e1 = 1. Therefore, we have d1(t) = 1, d2(t) = 0,
e1(t, x) = 1 and e2(t, x) = 0. Hence, Aut(Xa) is trivial. �

9. Enriques surfaces of type Ẽ7 + Ã1

9.1. Classical case with a double fiber of type III∗. In this subsection we give a construction
of an Enriques surface with the following dual graph of all (−2)-curves given in Figure 20.

• •• • • • • • • •

•

FIGURE 20

Let (X0, X1, X2) ∈ P2 and (S, T ) ∈ P1 be homogeneous coordinates. Consider the surface R
defined by

(9.1) S(aX2
0 + bX2

2 ) + T (X2
1 + aX1X2 + bX0X2) = 0 (a, b ∈ k, a 6= 0, b 6= 0).

Note that the projection to P1 defines a fiber space π : R→ P1 whose general fiber is a nonsingular
conic. Let E1 be the fiber over the point (S, T ) = (0, 1) which is nonsingular. The fiber over the
point (S, T ) = (1, 0) is a double line denoted by 2E2 and the fiber over the point (b2, a3) is a union
of two lines denoted by E3, E4. The line defined by X2 = 0 is a 2-section of the fiber space which
is denoted by F0. The surface R has two rational double points Qi = ((α, βi, 1), (1, 0)) (i = 1, 2)

of type A1, where α =
√
b/a and βi is a root of the equation y2 + ay +

√
b3/a = 0.

Let (x = X0/X2, y = X1/X2, s = S/T ) be an affine coordinate. Define
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(9.2) D =
1

s

(
a(s2 + c)

∂

∂x
+ (as2x2 + bc)

∂

∂y

)
(b 6= a2c)

where c is a root of the equation of t2 + (b/a)t + 1 = 0. Then D2 = aD, that is, D is 2-closed.
A direct calculation shows that D has two isolated singularities at the intersection points of F0 and
E1, E2. As in the case of supersingular Enriques surfaces of type E8, we blow up the two rational
double points and the points of isolated singularities of D successively, and finally get a vector
field, denoted by the same symbol D, without isolated singularities. The configuration of curves
is given in Figure 21. Here the suffix i of the exceptional curve Ei corresponds to the order of
successive blowing-ups.

FIGURE 21

Now we denote by Y the surface obtained by successive blowing-ups. By direct calculations,
we have the following lemmas.

LEMMA 9.1. (i) The integral curves with respect to D in Figure 21 are all horizontal curves
(thick lines).

(ii) (D) = −(F0 + E1 + 2E2 + E5 + 2E7 + 2E8 + 2E9 + 2E10 + 2E11 + 3E12 + 4E13 +
4E14 + 2E15).

LEMMA 9.2. (i) (D)2 = −12.
(ii) The canonical divisor KY of Y is given by KY = −(F0 + 2E2 +E7 +E8 + 2E9 + 2E10 +

2E11 + 3E12 + 4E13 + 4E14 + 2E15).
(iii) KY · (D) = −4.

Now take the quotient Y D of Y byD. By using the same argument as in the proof of Lemma 5.3,D
is divisorial and hence Y D is nonsingular. By Proposition 2.1, we have the following configuration
of curves in Figure 22:

Let Xa,b be the surface obtained by contracting four exceptional curves. The surface Xa,b

contains 11 (−2)-curves whose dual graph is given by Figure 20. Note that any maximal parabolic
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FIGURE 22

subdiagram of this diagram is of type Ẽ7 ⊕ Ã1 or Ẽ8. On the surface Xa,b, there exist a quasi-
elliptic fibration with singular fibers of type (2III∗, III) induced from the fiber space π : R → P1

and two quasi-elliptic fibrations with a singular fiber of type II∗.

THEOREM 9.3. The surfaces {Xa,b} form a 2-dimensional family of classical Enriques sur-
faces with the dual graph given in Figure 20. It contains an at least 1-dimensional, non-isotrivial
family. The automorphism group Aut(Xa,b) is Z/2Z which is not numerically trivial.

PROOF. By using Lemmas 9.1, 9.2 and the same arguments as in the proofs of Theorems 5.7,
5.8, Xa,b is an Enriques surface with the dual graph given in Figure 20. Let p1 be the genus one
fibration with singular fibers (2III∗, III). By construction, p1 has two double fibers (see Figure 22).
Hence Xa,b is classical (Proposition 2.5). In the next subsection 9.2, we give classical Enriques
surfaces with double fibers of type III∗ and III which are specializations of {Xa,b}. It follows
from Matsusaka and Mumford [MM64, Theorem 1] that the family {Xa,b} contains an at least
1-dimensional non-isotrivial family.

Next we determine the automorphism group. First we show that there are no numerically trivial
automorphisms. Consider a genus one fibration p2 with a singular fiber of type II∗. By using the
classification of conductrices (Ekedahl and Shepherd-Barron [ES04], see also Table 5 in the later
Section 12), p2 is quasi-elliptic and the fiber of type II∗ is simple. The simple component of the
fiber of type III∗ not meeting the special 2-section is the curve of cusps of the fibration p2. Let
C1, C2 be the double fibers of p2 both of which are rational curves with a cusp. Let g be any
numerically trivial automorphism. First assume that g is of order 2. Note that g preserves the
double fiber C of type II of the fibration p1 and g fixes two points on C which are the cusp of C
and the intersection of C and the curve of cusps of p1. Hence g fixes C pointwisely. Since C is
a 2-section of p2, Ci is preserved by g. Thus g fixes three points on Ci, which are the cusp of Ci
and the intersection points of Ci with the two double fibers of p1, and hence g fixes C1 and C2

pointwisely. Therefore g fixes at least three points on a general fiber F of p1 which are its cusp and
the intersection points with C1 and C2, and hence g fixes F pointwisely. Hence g is identity, that
is, there are no numerically trivial automorphisms of even order. In the case where the order of g
is odd, obviously, g preserves each Ci, and hence the above argument works well. Therefore, there
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are no numerically trivial automorphisms ofXa,b. Obviously the symmetry group of the dual graph
of (−2)-curves is Z/2Z (see Figure 20). By considering the action of the Mordell-Weil group of
the Jacobian fibration of p1, we have Aut(Xa,b) ∼= Z/2Z. �

9.2. Classical case with double fibers of type III∗ and of type III. In this subsection we
give a construction of classical Enriques surfaces with the following dual graph of all (−2)-curves
given in Figure 23.

• •• • • • • • • •

•

FIGURE 23

In the previous equations (9.1), (9.2), we set b = 0. Then c = 1 and the surface is defined by

(9.3) aSX2
0 + T (X2

1 + aX1X2) = 0 (a ∈ k, a 6= 0)

The fiber over the point (S, T ) = (0, 1) is a union of two lines, denoted by E1, E2, defined by
X1(X1 + aX2) = 0. The fiber over the point (S, T ) = (1, 0) is a double line denoted by 2E3. The
line defined by X2 = 0 is a 2-section of the fiber space which is denoted by F0. The surface R has
two rational double points Q1 = ((0, 0, 1), (1, 0)), Q2 = ((0, a, 1), (1, 0)) of type A1.

Let (x = X0/X2, y = X1/X2, s = S/T ) be an affine coordinate. Define

(9.4) D =
1

s

(
(s2 + 1)

∂

∂x
+ s2x2 ∂

∂y

)
.

Then D2 = D, that is, D is 2-closed. A direct calculation shows that D has two isolated sin-
gularities at the intersection points of the 2-section F0 and two fibers over the points (S, T ) =
(1, 0), (0, 1). As in the previous case, we blow up the two rational double points and the points
of isolated singularities of D successively, and finally get a vector field D, denoted by the same
symbol, without isolated singularities. The configuration of curves is given in Figure 24.
Here we use the same symbols F0, E1, E2, E3 for their proper transforms, and the suffix i of the
other exceptional curve Ei corresponds to the order of successive blowing-ups. The thick lines
are integral curves. We denote by Y the surface obtained by successive blowing-ups. By direct
calculations, we have the following lemmas.

LEMMA 9.4. (i) The integral curves with respect to D in Figure 24 are F0, E1, E2, E6, E7,
E8, E9, E11 (thick lines).

(ii) (D) = −(F0+E1+E2+2E3+2E6+2E7+2E8+2E9+2E10+3E11+4E12+4E13+2E14).

LEMMA 9.5. (i) (D)2 = −12.
(ii) The canonical divisor KY of Y is given by KY = −(F0 + 2E3 +E6 +E7 + 2E8 + 2E9 +

2E10 + 3E11 + 4E12 + 4E13 + 2E14).
(iii) KY · (D) = −4.
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FIGURE 24

Now take the quotient Y D of Y by D. By using the same argument as in the proof of Lemma 5.3,
Y D is nonsingular. By Proposition 2.1, we have the following configuration of curves in the below
Figure 25:

FIGURE 25

LetXa be the surface obtained by contracting four exceptional curves. The surfaceXa contains
11 (−2)-curves whose dual graph is given by Figure 23. Note that any maximal parabolic subdia-
gram of this diagram is of type Ẽ7 ⊕ Ã1 or Ẽ8. The surface Xa has a quasi-elliptic fibration with
singular fibers of type (2III∗, 2III) induced from the fiber space π : R → P1 and a quasi-elliptic
fibration with a singular fiber of type (II∗).

THEOREM 9.6. The surfaces {Xa} form a 1-dimensional family of classical Enriques surfaces
with the dual graph given in Figure 23. The automorphism group Aut(Xa) is Z/2Z which is
numerically trivial.
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PROOF. By using Lemmas 9.4 and 9.5 and the same arguments as in the proofs of Theorems
1 and 5.8, Xa is an Enriques surface with the dual graph given in Figure 23. Since Xa has a quasi-
elliptic fibration with two double fibers, Xa is classical (Proposition 2.5). By the same argument as
in the case of Theorem 9.3, we see that |Autnt(Xa)| ≤ 2. Since the dual graph of (−2)-curves on
Xa has no symmetries (see Figure 23), we have Aut(Xa) = Autnt(Xa). Let p be the quasi-elliptic
fibration with singular fibers of type (2III∗, 2III). By considering the action of the Mordell-Weil
group of the Jacobian fibration of p, we have Aut(Xa) ∼= Z/2Z. �

9.3. Supersingular case with a double fiber of type III∗. In this subsection we give a con-
struction of supersingular Enriques surfaces with the dual graph of all (−2)-curves given in Figure
20.

Let (X0, X1, X2) ∈ P2 and (S, T ) ∈ P1 be homogeneous coordinates. Consider the surface R
defined by

(9.5) S(X2
0 + a3X2

2 ) + T (X2
1 +X1X2 + a2X0X2) = 0 (a ∈ k, a 6= 0).

Note that the projection to P1 defines a fiber space π : R→ P1 whose general fiber is a nonsingular
conic. The fiber over the point (S, T ) = (a4, 1) is a union of two lines denoted by E1, E2 and the
fiber over the point (S, T ) = (1, 0) is a double line denoted by 2E3. The line defined by X2 = 0 is
a 2-section, denoted by F0, of the fiber space.

The surface R has two rational double points Qi = ((α, βi, 1), (1, 0)) (i = 1, 2) where α =√
a3 and βi’s are roots of the equation y2 + y + a3√a = 0.

Let (x = X0/X2, y = X1/X2, s = S/T ) be an affine coordinate. Define

(9.6) D = (s2 + a)
∂

∂x
+ (x2 + a2s2)

∂

∂y
.

Then D2 = 0, that is, D is 2-closed. A direct calculation shows that D has an isolated singularity
at the intersection point of the 2-section F0 and the fiber over the point (S, T ) = (1, 0). As in the
case of the previous section, we blow up the two rational double points and the point of isolated
singularity of D successively, and finally get a vector field without isolated singularities. The
configuration of curves is given in Figure 26.

Here we use the same symbols F0, E1, E2, E3 for their proper transforms, and the suffix i of
the other exceptional curve Ei corresponds to the order of successive blowing-ups.

We denote by Y the surface obtained by successive blowing-ups. By direct calculations, we
have the following lemmas.

LEMMA 9.7. (i) The integral curves with respect to D in Figure 26 are all horizontal curves
(thick lines).

(ii) (D) = −(F0 + 4E3 + 3E4 + 3E5 + 4E6 + 2E7 + 2E8 + 2E9 + 2E10 + 3E11 + 4E12 +
4E13 + 2E14).



110 II. ENRIQUES SURFACES WITH FINITE AUTOMORPHISM GROUP IN CHARACTERISTIC 2

FIGURE 26

LEMMA 9.8. (i) (D)2 = −12.
(ii) The canonical divisor KY of Y is given by KY = −(F0 + 2E3 +E4 +E5 + 2E6 + 2E7 +

2E8 + 2E9 + 2E10 + 3E11 + 4E12 + 4E13 + 2E14).
(iii) KY · (D) = −4.

Now take the quotient Y D of Y byD. By using the same argument as in the proof of Lemma 5.3, Y
is divisorial and hence Y D is nonsingular. By Proposition 2.1, we have the following configuration
of curves in Figure 27.

FIGURE 27
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Let Xa be the surface obtained by contracting the three exceptional curves and the curve meet-
ing the three exceptional curves. The surface Xa contains 11 (−2)-curves whose dual graph is
given by Figure 20. Recall that any maximal parabolic subdiagram of this diagram is of type
Ẽ7 ⊕ Ã1 or Ẽ8.

THEOREM 9.9. The surfaces {Xa} form a 1-dimensional non-isotrivial family of supersingu-
lar Enriques surfaces with the dual graph given in Figure 20.

PROOF. By using Lemmas 9.7, 9.8 and the same arguments as in the proofs of Theorems
5.7, 5.8, Xa is an Enriques surface with the dual graph given in Figure 20. By construction, the
normalization of the canonical cover has a rational double point of type D4. It now follows from
Lemma 12.6 (Section 12) that Xa is supersingular. It follows from the following Theorem 9.10
and Matsusaka and Mumford [MM64, Theorem 1] that the family {Xa} is non-isotrivial. �

The surfaceXa contains a unique quasi-elliptic fibration with singular fibers of type (2III∗, III)
induced from the fiber space π : R → P1 and two quasi-elliptic fibrations with a singular fiber of
type (II∗).

THEOREM 9.10. If a7 6= 1, then the automorphism group Aut(Xa) is Z/2Z which is not
numerically trivial. If a7 = 1, then the automorphism group Aut(Xa) is Z/14Z and Autnt(Xa)
is Z/7Z.

PROOF. We consider the vector field (9.6), and we set T = s2, u = x + as + s3 and v =
y + sx2 + a2s3. Here, s = (y2 + y + a2x)/(x2 + a3) by (9.5). Then, we have D(T ) = 0,
D(u) = 0, D(v) = 0 with the equation v2 + v = Tu4 + a2u + T 7 with a 6= 0 and the quotient
surface P2 by D is birationally isomorphic to the surface defined by v2 + v = Tu4 + a2u + T 7,
which is birationally isomorphic to our Enriques surface. For the sake of simplicity, we replace a2

by a. Then , the normal form becomes v2 + v = Tu4 + au+ T 7. To calculate the automorphism
group, we consider the change of coordinates with new coordinates x, y, t:

T = t+ a4, v = y + a2x2 + ax, u = x.

Then, the equation becomes y2 +y = tx4 +(t+a4)7 with a 6= 0. This equation gives a nonsingular
affine surface. Set

A = k[t, x, y]/(y2 + y + tx4 + (t+ a4)7)

and let σ be an automorphism of our Enriques surface. The double fiber, denoted by 2F∞, exists
over the point defined by t = ∞. Since σ preserves the diagram of (−2)-curves, σ preserves
2F∞. Therefore, σ preserves the structure of this quasi-elliptic surface. σ has the form in (4.4) in
Subsection 4.1. Moreover, this quasi-elliptic surface has a singular fiber over the point defined by
t = 0 and σ preserves also the singular fiber. Therefore, we have σ∗(t) = c1t.

Therefore, together with the equation y2 + y + tx4 + (t+ a4)7 = 0, we have an identity

e1(t, x)2(y + tx4 + (t+ a4)7) + e2(t, x)2 + (e1(t, x)y + e2(t, x))
= c1t(d1(t)x+ d2(t))4 + (c1t+ a4)7.

A is a free k[x, y]-module, and 1 and y are linearly independent over k[x, y]. Taking the coefficient
of y, we have e1(t, x)2 + e1(t, x) = 0. Since e1(t, x) 6= 0, we have e1(t, x) = 1. Therefore, we
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have
tx4 + (t+ a4)7 + e2(t, x)2 + e2(t, x)
= c1t(d1(t)x+ d2(t))4 + (c1t+ a4)7.

As a polynomial of x, if e2(t, x) has a term of degree greater than or equal to 3, then e2(t, x)2

has a term greater than or equal to 6. We cannot kill this term in the equation. By the equation,
we know that e2(t, x) doesn’t have terms of x of odd degree. Therefore, we can put e2(t, x) =
a0(t)+a2(t)x2 with a0(t), a2(t) ∈ k[t]. We take the coefficients of x4. Then, we have t+a2(t)2 +
c1td1(t)4 = 0. Therefore, we have two equations 1 + c1d1(t)4 = 0 and a2(t)2 = 0. Therefore,
we have a2(t) = 0 and d1(t) = 1

4
√
c1

. The equation becomes (t + a4)7 + a0(t)2 + a0(t) =

c1td2(t)4 + (c1t+ a4)7. Put deg d2(t) = `. Suppose ` ≥ 2. Then, the right-hand-side has an odd
term whose degree is equal to 4` + 1 ≥ 9. Therefore, the left-hand-side must have an odd term
which is of degree 4` + 1. This means deg a0(t) = 4` + 1. However, in the equation we cannot
kill the term of degree 8` + 2 which comes from a0(t)2. Therefore, we can put d2(t) = b0 + b1t
with b0, b1 ∈ k. Then, the equation becomes

(t+ a4)7 + a0(t)2 + a0(t) = c1b
4
0t+ c1b

4
1t

5 + (c1t+ a4)7

If deg a0(t) ≥ 4, we cannot kill the term of degree greater than or equal to 8 in the equation which
comes from a0(t)2. Therefore, we can put a0(t) = α0 + α1t + α2t

2 + α3t
3. Then, we have

equations:

1 = c7
1, a4 + α2

3 = c6
1a

4, a8 = c1b
4
1 + c5

1a
8, a12 + α2

2 = c4
1a

12,
a16 + α3 = c3

1a
16, a20 + α2

1 + α2 = c2
1a

20,
a24 + α1 = c1b

4
0 + c1a

24, a28 + α2
0 + α0 = a28.

Assume a7 6= 1. Since α3 = (c3
1 + 1)a2 = (c3

1 + 1)a16, we have (c3
1 + 1)a2(a7 + 1)2 = 0.

By a7 6= 1 and a 6= 0, we have c3
1 = 1. Since 1 = c7

1, we have c1 = 1. Therefore, we have
α1 = α2 = α3 = 0, b0 = b1 = 0, and α0 = 1 or 0. Therefore, we see that σ is given by either
t 7→ t, x 7→ x, y 7→ y + 1 or the identity. Hence, we have Aut(Xa) ∼= Z/2Z if a7 6= 1. Now,
assume a7 = 1. By c7

1 = 1, c1 is a seventh root of unity. We denote by ζ a primitive seventh root
of unity. Then we have a solution

c1 = ζ, α1 = 0, α2 = (1 + ζ2)a6, α3 = (1 + ζ3)a2,

b0 = ( 4√ζ+1)a6

4√ζ , b1 =
( 4
√
ζ5+1)a2

4√ζ .

We have also α0 = 1 or 0. Using these data, we have an automorphism σ which is defined by

t 7→ ζt

x 7→ 1
4√ζx+ ( 4√ζ+1)

4√ζ a6 +
( 4
√
ζ5+1)
4√ζ a2t

y 7→ y + 1 + (1 + ζ2)a6t2 + (1 + ζ3)a2t3.

This σ is of order 14, and by our argument the automorphism group is generated by σ. This means
Aut(Xa) ∼= Z/14Z if a7 = 1. By our construction, we have Autnt(Xa) = Autct(Xa) ∼= Z/7Z if
a7 = 1.

Finally we show that Z/2Z is not numerically trivial. Assume that g = σ7 is numerically
trivial. Let p1 be the quasi-elliptic fibration with singular fibers of type (2III∗, III) and let p2 be
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a genus one fibration with singular fiber of type (II∗). By using the classification of conductrices
(Ekedahl and Shepherd-Barron [ES04], see also Table 5 in the later Section 12), we see that p2 is
quasi-elliptic and the fiber of type II∗ is simple. Note that the simple component E of the singular
fiber of type III∗ not meeting the special 2-section is the curve of cusps of p2. Since g preserves
the double fiber C of p2, g fixes two points on C which are the cusp of C and the intersection point
of C and E. Thus g fixes C pointwisely. Obviously, g preserves a general fiber F of p1 and fixes
two points on F which are the cusp of F and the intersection with C. Hence g fixes F pointwisely.
Thus we obtain g = 1 which is a contradiction. �

REMARK 9.11. The automorphism of order 7 is a new example of cohomologically trivial
automorphisms.

10. Enriques surfaces of type D̃8

In this section we give a construction of Enriques surfaces with the following dual graph of all
(−2)curves given in Figure 28.

• • • • • • •

•

•

•

FIGURE 28

10.1. Supersingular case. Let (x, y) be an affine coordinate of A2 ⊂ P2. Consider a rational
vector field D defined by

(10.1) D = Da =
1

x5

(
x(x4 + x2 + y6)

∂

∂x
+ (ax6 + y(x4 + x2 + y6))

∂

∂y

)
where a ∈ k, a 6= 0. Then D2 = 0, that is, D is 2-closed. Note that D has poles of order 5
along the line ` defined by x = 0, and this line is integral. We see that D has a unique isolated
singularity (x, y) = (0, 0). First blow up at the point (0, 0). Then we see that the exceptional
curve is not integral and the induced vector field has poles of order 2 along the exceptional curve.
Moreover the induced vector field has a unique isolated singularity at the intersection of the proper
transform of ` and the exceptional curve. Continue this process until the induced vector field has no
isolated singularities. The final configuration of curves is given in Figure 29. Here F0 is the proper
transform of ` and the suffix i of the exceptional curve Ei corresponds to the order of successive
blowing-ups.

We denote by Y the surface obtained by this process. Also we denote by the same symbol D
the induced vector field on Y . By direct calculations, we have the following lemmas.

LEMMA 10.1. (i) The integral curves with respect to D in Figure 29 are all horizontal curves
(thick lines).

(ii) (D) = −(5F0 +2E1 +6E2 +8E3 +7E4 +4E5 +3E6 +2E7 +2E8 +4E9 +E10 +2E11).



114 II. ENRIQUES SURFACES WITH FINITE AUTOMORPHISM GROUP IN CHARACTERISTIC 2

FIGURE 29

LEMMA 10.2. (i) (D)2 = −12.
(ii) The canonical divisor KY of Y is given by KY = −(3F0 + 2E1 + 4E2 + 6E3 + 5E4 +

4E5 + 3E6 + 2E7 + 2E8 + 4E9 + E10 + 2E11).
(iii) KY · (D) = −4.

Now take the quotient Y D of Y by D. By using the same argument as in the proof of Lemma 5.3,
D is divisorial and Y D is nonsingular. By Proposition 2.1, we have the following configuration of
curves in Figure 30.

FIGURE 30

By contracting three exceptional curves, we get a new exceptional curve which is the image of the
(−4)-curve meeting three exceptional curves. Let Xa be the surface obtained by contracting the
new exceptional curve (Recall that the vector field (8.1) contains a parameter a). The surface Xa
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contains 10 (−2)-curves whose dual graph is given by Figure 28. Note that any maximal parabolic
subdiagram of this diagram is of type D̃8 or Ẽ8. On Xa there exist a quasi-elliptic fibration with
singular fibers of type (I∗4) induced from the pencil of lines in P2 through (x, y) = (0, 0).

THEOREM 10.3. The surfaces {Xa} form a 1-dimensional family of supersingular Enriques
surfaces with the dual graph given in Figure 28.

PROOF. By using Lemmas 10.1, 10.2 and the same arguments as in the proofs of Theorems
5.7, 5.8, X is an Enriques surface with the dual graph given in Figure 28. By construction, the nor-
malization of the canonical cover has a rational double point of typeD4. HenceXa is supersingular
(Lemma 12.6, Section 12). �

REMARK 10.4. Note that Xa contains exactly three genus one fibrations. Let p1 be the genus
one fibration with a double singular fiber 2F1 of type I∗4, and let pi (i = 2, 3) be two genus one
fibrations with a singular fiber Fi of type II∗. Note that p1 is quasi-elliptic because its pull back on
the canonical cover is a P1-bundle, and p2 and p3 are elliptic because the conductrix is contained
in the singular fiber of type II∗ (see Lemma 12.2). Note that F1 · F2 = F1 · F3 = F2 · F3 = 2.
If both F2 and F3 are double fibers, then there are no canonical U -pairs on this Enriques surface
which is a contradiction (Cossec and Dolgachev [CD89, Theorem 3.4.1]). Hence one of them, for
example, F2 is double and other F3 is simple. Since there are no automorphisms which change a
double fiber and a simple fiber, any automorphism of Xa is cohomologically trivial.

THEOREM 10.5. The automorphism group Aut(Xa) is a quaternion groupQ8 of order 8 which
is cohomologically trivial.

PROOF. We consider the vector field (10.1), and we set u = x2, v = y2, z = ax7 + x5y +
x3y + xy7. Then, we have D(u) = 0, D(v) = 0, D(z) = 0 with the equation z2 = a2u7 +
u5v+u3v+uv7. Therefore, the quotient surface P2 by D is birationally isomorphic to the surface
defined by z2 = a2u7 +u5v+u3v+uv7, which is birationally isomorphic to our Enriques surface.
To do a change of coordinates, we define new variables x, y, t by

x = 1/u, y = z/u4, t = v/u

and we replace a2 by a for the sake of simplicity. Then, the equation becomes y2 + tx4 + tx2 +
ax+ t7 = 0. This equation gives a nonsingular affine surface. Set

A = k[t, x, y]/(y2 + tx4 + tx2 + ax+ t7)

and let σ be an automorphism of our Enriques surface. The double fiber, denoted by 2F∞, of
type I∗4 exists over the point defined by t = ∞. Since σ preserves the diagram of (−2)-curves, σ
preserves the curve C of cusps and 2F∞. Therefore, σ has the form in (4.4) in Subsection 4.1.

Therefore, together with the equation y2 = tx4 + tx2 + ax+ t7, we have an identity

e1(t, x)2(tx4 + tx2 + ax+ t7) + e2(t, x)2

= (c1t+ c2)(d1(t)x+ d2(t))4 + (c1t+ c2)(d1(t)x+ d2(t))2

+a(d1(t)x+ d2(t)) + (c1t+ c2)7.

Using Lemma 4.3 and taking the coefficients of x, we have ae1(t, x)2 + ad1(t) = 0. Therefore,
e1(t, x) is a polynomial of t, i.e., we can put e1(t, x) = e1(t), and d1(t) = e1(t)2. Taking the
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coefficients of t, we have e1(t)2x4 + e1(t)2x2 + e1(t)2t6 + c1(d1(t)x + d2(t))4 + c1(d1(t)x +
d2(t))2 + ad2(t)odd/t+ c1(c1t+ c2)6 = 0. Here, d2(t)odd is the odd terms of d2(t). Considering
the coefficients of x4 of this equation, we have e1(t)2 = c1d1(t)4 = c1e1(t)8. Since we have
e1(t) 6≡ 0, we have e1(t)6 = 1/c1. Therefore, e1(t) is a constant and we set e1(t) = e1 ∈ k.
Then, e6

1 = 1/c1. Considering the coefficients of x2, we have e2
1 = e1(t)2 = c1d1(t)2 = c1e

4
1.

Therefore, e2
1 = 1/c1. Therefore, we have c1 = 1 and so e1 = d1 = 1. The equation becomes

t6 + d2(t)4 + d2(t)2 + ad2(t)odd/t + (t + c2)6 = 0. If the degree of d2(t) is greater than or
equal to 2, then the highest term of d2(t)4 cannot be killed in the equation. Therefore, we can put
d2(t) = b0 + b1t (b0, b1 ∈ k) and we have an identity

t6 + (b0 + b1t)
4 + (b0 + b1t)

2 + ab1 + (t+ c2)6 = 0.

Therefore, we have c2 = b21, c2
2 = b1 and b40 + b20 +ab1 + c6

2 = 0. Therefore, we have either c2 = 0,
b1 = 0, b0 = 0, 1, or c2 = ω, b1 = ω2 and b0 = α is any root of z2 + z + ω

√
a+ 1 = 0. Here, ω

is any cube root of unity. There exist 8 solutions. Putting these data into the original equation, we
have e2(t, x) =

√
a or ω2x2 + ω2x+ ω2t3 +

√
aα +

√
a. These σ’s are really automorphisms of

X and we conclude Aut(X) ∼= Q4 (see Subsection 4.2). The cohomologically trivialness follows
from Remark 10.4. �

REMARK 10.6. The group Q8 is a new example of cohomologically trivial automorphsims.

10.2. Classical case. LetQ = P1×P1 be a nonsingular quadric and let ((u0, u1), (v0, v1)) be
a homogeneous coordinate of Q. Let x = u0/u1, x

′ = u1/u0, y = v0/v1, y
′ = v1/v0. Consider

a rational vector field D defined by

(10.2) D =
1

xy2

(
ax2y2 ∂

∂x
+ (x4y4 + by4 + x2y2 + x2)

∂

∂y

)
where a, b ∈ k, a, b 6= 0. Then D2 = aD, that is, D is 2-closed. Note that D has a pole of order
1 along the divisor defined by x = 0, a pole of order 3 along the divisor defined by x = ∞ and
a pole of order 2 along the divisor defined by y = 0. Moreover D has isolated singularities at
(x, y) = (0, 0), (∞, 0). As in the case of supersingular Enriques surfaces of type Ẽ8, we blow
up the points of isolated singularities of D and those of associated vector fields, and finally get a
vector field without isolated singularities. The configuration of curves is given in Figure 31.
Here F0, E1, or E2 is the proper transform of the curve defined by y = 0, x = 0, or x = ∞,
respectively.

We denote by Y the surface obtained by the successive blowing-ups. A direct calculation
shows the following two lemmas.

LEMMA 10.7. (i) The integral curves with respect to D in Figure 31 are all horizontal curves
(thick lines).

(ii) (D) = −(2F0 +E1 +3E2 +2E3 +4E5 +4E6 +3E7 +2E8 +2E9 +4E10 +E11 +2E12).

LEMMA 10.8. (i) (D)2 = −12.
(ii) The canonical divisor KY of Y is given by KY = −(2F0 + 2E2 + E3 + 3E5 + 4E6 +

3E7 + 2E8 + 2E9 + 4E10 + E11 + 2E12).
(iii) KY · (D) = −4.
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FIGURE 31

Now take the quotient Y D of Y byD. By using the same argument as in the proof of Lemma 5.3,D
is divisorial and hence Y D is nonsingular. By Proposition 2.1, we have the following configuration
of curves in Figure 32.

FIGURE 32

Let Xa,b be the surface obtained by contracting four exceptional curves in Figure 32 (Recall
that the vector field D contains two parameters a, b (see (10.2))). On Xa,b, there exist 10 (−2)-
curves whose dual graph is given by Figure 28. Recall that any maximal parabolic subdiagram of
this diagram is of type D̃8 or Ẽ8. On Xa,b there exists a quasi-elliptic fibration with singular fibers
of type (I∗4) induced from the first projection from Q to P1.
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THEOREM 10.9. The surfaces {Xa,b} form a 2-dimensional family of classical Enriques sur-
faces with the dual graph given in Figure 28.

PROOF. By using Lemmas 10.7, 10.8 and the same arguments as in the proofs of Theorems
5.7 and 5.8, Xa,b is an Enriques surface with the dual graph given in Figure 28. Since Xa,b has a
genus one fibration with two double fibers (see Figure 32), Xa,b is classical (Proposition 2.5). �

REMARK 10.10. There are two genus one fibrations with a singular fiber of type II∗. As we
explained in Remark 10.4, one of them is double and the other is simple. If its only singular fiber is
(II∗), then its j-invariant is zero (Lang [Lan94]) and hence all nonsingular fibers are supersingular
elliptic curves by Lemma 2.6. This contradicts to the fact that a double fiber of a genus one fibration
on a classical Enriques surface is an ordinary elliptic curve or an additive type (Proposition 2.4).
Thus this fibration has singular fibers of type (II∗, I1) by Lang [Lan94].

THEOREM 10.11. The automorphism group Aut(Xa,b) is Z/2Z which is numerically trivial.

PROOF. It follows from Remark 10.10 that Aut(Xa,b) = Autnt(Xa,b). We consider the vector
field (10.2), and we set u = x2, v = y2, z = x5y4 + bxy4 + x3y2 + x3 + ax2y3. Then, we have
D(u) = 0, D(v) = 0, D(z) = 0 with the equation z2 = u5v4 + b2uv4 + u3v2 + u3 + a2u2v3

with a, b 6= 0. Therefore, the quotient surface of P1 × P1 by D is birationally isomorphic to the
surface defined by z2 = u5v4 + b2uv4 + u3v2 + u3 + a2u2v3, which is birationally isomorphic to
our Enriques surface. To do a change of coordinates, we define new variables x, y, t by

x =
4
√
b/uv, y =

4
√
b3z/u4v2, t =

√
b/u.

and we replace 1√
b

and a2
4√
b5

by a and b, respectively, for the sake of simplicity. Then, the equation

becomes y2 + tx4 + at3x2 + bt3x+ t3 + t7 = 0. This equation gives a normal affine surface. Set

A = k[t, x, y]/(y2 + tx4 + at3x2 + bt3x+ t3 + t7 = 0)

and let σ be an automorphism of our Enriques surface. The double fiber, denoted by 2F∞, of
type I∗4 exists over the point defined by t = ∞. Since σ preserves the dual graph of (−2)-curves,
σ preserves the curve C of cusps and 2F∞. Therefore, σ has the form in (4.4) in Subsection 4.1.
Moreover, this quasi-elliptic surface has a singular fiber over the point defined by t = 0, σ preserves
also the singular fiber. Therefore, we know c2 = 0 and we have σ∗(t) = c1t.

Therefore, together with the equation y2 + tx4 + at3x2 + bt3x + t3 + t7 = 0, we have an
identity

e1(t, x)2(tx4 + at3x2 + bt3x+ t3 + t7) + e2(t, x)2

= c1t(d1(t)x+ d2(t))4 + a(c1t)
3(d1(t)x+ d2(t))2

+b(c1t)
3(d1(t)x+ d2(t)) + (c1t)

3 + (c1t)
7.

Differentiate both sides by x, and we have be1(t, x)2t3 + bc3
1d1(t)t3 = 0, that is, e1(t, x)2 =

c3
1d1(t). Therefore, e1(t, x) is a polynomial of t, i.e., we can put e1(t, x) = e1(t), and d1(t) =

c−3
1 e1(t)2. Using Lemma 4.3 and taking the coefficients of t, we have e1(t, x)2(x4 + at2x2 + t2 +

t6) + c1(c−3
1 e1(t)2x+ d2(t))4 + ac3

1t
2(c−3

1 e1(t)2x+ d2(t))2 + bc3
1d2(t)event

2 + c3
1t

2 + c7
1t

6 = 0.
Here, d2(t)even is the even terms of d2(t). Considering the coefficients of x4 of this equation, we
have e1(t)2 = c−11

1 e1(t)8. Since we have e1(t) 6≡ 0, we have e1(t)6 = c11
1 . Therefore, e1(t) is a
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constant and we set e1(t) = e1 ∈ k. Then, we have e6
1 = c11

1 . Considering the coefficients of x2

of this equation, we have ae2
1t

2 = ac−3
1 e4

1t
2, i.e., e2

1 = c3
1. Therefore, we have c9

1 = c11
1 . Since

c1 6= 0, we have c1 = 1. Therefore, we have e1 = 1 and d1(t) = 1. Then, the equation becomes
d2(t)4 + at2d2(t)2 + bd2(t)event

2 = 0. If the degree of d2(t) is greater than or equal to 2, then
the highest term of d2(t)4 cannot be killed in the equation. Therefore, we can put d2(t) = b0 + b1t
(b0, b1 ∈ k) and we have an identity (b0 + b1t)

4 + a(b0 + b1t)
2t2 + bb0t

2 = 0. Therefore, we have
b41 = ab21, ab20 = bb0 and b40 = 0. Therefore, we have b0 = 0, and b1 =

√
a or 0. Going to the

original equality, we have e2(t, x)2 = bt3
√
at, i.e., e2(t, x) = 4

√
a
√
bt2. Therefore, we conclude

that σ is given by either t 7→ t, x 7→ x+
√
at, y 7→ y + 4

√
a
√
bt2 or the identity. Hence, we have

Aut(X) ∼= Z/2Z. �

11. Enriques surfaces of type D̃4 + D̃4

In this section we give a construction of Enriques surfaces with the following dual graph of all
(−2)-curves given in Figure 33 .

• •

• • • • • •

•

•

•

FIGURE 33

Let Q = P1 × P1 be a nonsingular quadric and let ((u0, u1), (v0, v1)) be a homogeneous
coordinate of Q. Let x = u0/u1, x

′ = u1/u0, y = v0/v1, y
′ = v1/v0. Consider a rational vector

field D defined by the equation (3.2):

D =
1

x2y2

(
bx3y2 ∂

∂x
+ (ax2y2 + x2 + x4y4 + y4 + bx2y3)

∂

∂y

)
where a, b ∈ k, b 6= 0. Note that D2 = bD, that is, D is 2-closed. Denote by E1, E2 and F0 the
curves defined by x = 0, x′ = 0 and y = 0, respectively. The vector field D has poles of order
2 along E1, E2, E3, and has isolated singularities (x, y) = (0, 0) and (x′, y) = (0, 0). The curves
E1, E2 are integral. Now blow up at two points (x, y) = (0, 0) and (x′, y) = (0, 0). The both
exceptional curves are integral with respect to the induced vector field. The induced vector field
has poles of order 3 along two exceptional curves and has isolated singularities at the intersections
of the exceptional curves and the proper transforms of E1 and E2. Then blow up at the isolated
singularities of the induced vector field and continue this process until the induced vector field
has no isolated singularities. We denote by Y the surface obtained by this process and by the same
symbolsE1, E2, F0 the their proper transforms. Also we denote by the same symbolD the induced
vector field on Y . The final configuration of curves is given in Figure 34.

LEMMA 11.1. (i) The integral curves with respect to D in Figure 34 are all horizontal curves
(thick lines).
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FIGURE 34

(ii) (D) = −(2F0 + 2E1 + 2E2 + 3E3 + 3E4 + 2E5 + 2E6 + E7 + E8).

LEMMA 11.2. (i) (D)2 = −12.
(ii) The canonical divisor KY of Y is given by KY = −(2F0 +E1 +E2 +2E3 +2E4 +2E5 +

2E6 + E7 + E8).
(iii) KY · (D) = −4.

Now take the quotient Y D of Y by D. By using the same argument as in the proof of Lemma 5.3,
D is divisorial and Y D is nonsingular. By Proposition 2.1, we have the following Figure 35.

FIGURE 35

Let Xa,b be the surface obtained by contracting four exceptional curves which contains 11
(−2)-curves whose dual graph is given by Figure 33. Note that any maximal parabolic subdaigram
of this diagram is of type D̃8 or D̃4 ⊕ D̃4. The surface Xa,b contains a quasi-elliptic fibration
p1 with singular fibers of type (2I∗0, 2I∗0) induced from the first projection from Q to P1 and nine
genus one fibrations with a singular fiber of type (I∗4). These nine genus one fibrations are elliptic by
comparing to the conductrix given in Ekedahl and Shepherd-Barron [ES04, Theorem 2.2, Theorem
3.1] (see Tables 4 and 5 in the Section 12).
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THEOREM 11.3. The surfaces {Xa,b} form a 2-dimensional family of classical Enriques sur-
faces with the dual graph given in Figure 33. It contains an at least 1-dimensional, non-isotrivial
family.

PROOF. By using Lemmas 11.1, 11.2 and the same arguments as in the proofs of Theorems
5.7, 5.8, Xa,b is an Enriques surface with the dual graph given in Figure 33.

By (3.1) in Subsection 3.3, the surface Xa,b is the quasi-elliptic surface given by the equation

u2 + Sv4 + a2S3v2 + b2S4v + S3 + S7 = 0

By Queen [Que71, Theorem 2], its Jacobian is the quasi-elliptic surface given by

u2 + Sv4 + a2S3v2 + b2S4v = 0

Now we change coordinates

Y = u/bS2v2, X = 1/v + a2/b2S, T = 1/S

which yields
Y 2 = X3 + (a4/b4)T 2X + (1/b2)T 3

Since these Jacobian quasi-elliptic surfaces form a 1-dimensional, non-isotrivial family by Ito
[Ito02], the family {Xa,b} contains an at least 1-dimensional, non-isotrivial family. �

THEOREM 11.4. The automorphism group Aut(Xa,b) is isomorphic to (Z/2Z)3. Moreover
Autnt(Xa,b) ∼= (Z/2Z)2.

PROOF. Equations of our classical Enriques surfaces of type D̃4 + D̃4 are given by (3.1) in
Subsection 3.3. For our use, we set x = v, y = u, t = S and we replace a2 (resp. b2) by a (resp.
b) for the sake of simplicity. Then, the equation becomes y2 + tx4 + at3x2 + bt4x+ t3 + t7 = 0.
This equation gives a normal affine surface. Set

A = k[t, x, y]/(y2 + tx4 + at3x2 + bt4x+ t3 + t7).

Our quasi-elliptic surface ϕ : X −→ P1 has two double fibers of type I∗0 over the points defined by
t = 0 (resp. t =∞). First, we consider an automorphism τ defined by

τ : t 7→ 1/t, x 7→ x/t2, y 7→ y/t5.

This automorphism is of order 2 and exchanges two double fibers. Let σ be an automorphism of our
Enriques surface. σ either keeps the double fibers or exchanges them. If σ exchanges the double
fibers, then we consider τ ◦σ. This keeps the double fibers. Therefore, we assume that σ keeps the
double fibers. Since σ preserves the diagram of (−2)-curves, σ preserves the curve C of cusps and
the double fiber 2F∞ over t =∞. Therefore, σ has the form in (4.4) in Subsection 4.1. Moreover,
by our assumption, σ preserves the double fiber over the point defined by t = 0. Therefore, we may
assume σ∗(t) = c1t. Using these data, together with the equation y2 = tx4+at3x2+bt4x+t3+t7,
we have an identity

e1(t, x)2(tx4 + at3x2 + bt4x+ t3 + t7) + e2(t, x)2

= c1t(d1(t)x+ d2(t))4 + a(c1t)
3(d1(t)x+ d2(t))2

+b(c1t)
4(d1(t)x+ d2(t)) + (c1t)

3 + (c1t)
7.
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Using Lemma 4.3 and taking the coefficients of x, we have be1(t, x)2t4 + bc4
1t

4d1(t) = 0. There-
fore, we have e1(t, x)2 + c4

1d1(t) = 0 and e1(t, x) is a polynomial of t, i.e., we can put e1(t, x) =
e1(t), and d1(t) = e1(t)2/c4

1. Taking the coefficients of t, we have

e1(t)2x4 + ae1(t)2t2x2 + e1(t)2t2 + e1(t)2t6 + c1(d1(t)x+ d2(t))4

+ac3
1t

2(d1(t)x+ d2(t))2 + bc4
1t

4d2(t)odd/t+ c3
1t

2 + c7
1t

6 = 0.

Here, d2(t)odd is the odd terms of d2(t). Considering the coefficients of x4 of this equation, we
have e1(t)2 = c1d1(t)4 = e1(t)8/c15

1 . Since we have e1(t) 6≡ 0, we have e1(t)6 = c15
1 . Therefore,

e1(t) is a constant and we set e1(t) = e1 ∈ k. Then, e6
1 = c15

1 . Considering the coefficients of x2,
we have at2e2

1 = ac3
1t

2d1(t)2 = ac3
1t

2(e2
1/c

4
1)2 = at2e4

1/c
5
1. Therefore, e2

1 = c5
1 and d1(t) = c1.

The equation becomes

e2
1t

2 + e2
1t

6 + c1d2(t)4 + ac3
1t

2d2(t)2 + bc4
1t

4d2(t)odd/t+ c3
1t

2 + c7
1t

6 = 0.

If deg d2(t) ≥ 2, then we cannot kill the hightest term of c1d2(t)4 in the equation.
Therefore, we can put d2(t) = b0 + b1t, and we have equations

e2
1 = c7

1, c1b
4
1 + ac3

1b
2
1 + bc4

1b1 = 0, e2
1 + ac3

1b
2
0 + c3

1 = 0, c1b
4
0 = 0.

Solving these equations with e2
1 = c5

1, we have b0 = 0, c1 = e1 = d1 = 1, and b1 is either 0
or root of the equation z3 + az + b = 0. Putting this data into the original equation, we have
e2(t, x) = 0. Hence, we have 4 automorphisms, which are the identity and three automorphisms
of order 2. The involution τ and these automorphisms are commutative with each other. We now
conclude Aut(X) ∼= (Z/2Z)3 (see Subsection 4.2).

Obviously τ is not numerically trivial. We show that any involution σ preserving each double
fiber of type I∗0 is numerically trivial. Let F be a double fiber of type I∗0 and let E be the component
with multiplicity 2 of F . Then σ preserves E and a simple component C of F meeting with the
special 2-section of the fibration, and hence it preserves one more simple component C ′ of F . This
implies that σ fixes two points on E which are intersection points of E with C and C ′. Therefore σ
fixes E pointwisely and hence σ preserves all components of F . Thus σ is numerically trivial. �

12. Possible dual graphs

In this section, unless mentioned otherwise, all our Enriques surfaces are classical or supersin-
gular.

12.1. Singularities of the canonical cover. In [ES04], Ekedahl and Shepherd-Barron studied
”exceptional” Enriques surfaces using the conductrix associated to their canonical cover. In this
section, we show that the non-normal locus as well as the isolated singularities of the canonical
cover can be used to determine the dual graphs of (−2)-curves on Enriques surfaces with finite
automorphism group. For this, we first need some preliminaries.

LEMMA 12.1. (Ekedahl and Shepherd-Barron [ES04, Lemma 0.9]) Let X be an Enriques
surface, ρ : X̃ → X its canonical cover and π : X → P1 a genus one fibration. Then the
morphism ρ factors through the pullback XF of π by the Frobenius map on P1. The map X̃ → XF

is an isomorphism outside of the double fibers of π.
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LEMMA 12.2. LetX be an Enriques surface with conductrixA. Let π be a genus one fibration
on X .

(1) If π is a quasi-elliptic fibration, then the curve of cusps of π is a component of A with
multiplicity 1.

(2) If π is an elliptic fibration, then A is contained in one fiber of π.
In particular, π is elliptic if and only if A is contained in a fiber of π.

PROOF. By Katsura [Kat82], a non-zero regular 1-form ω on X is given by the pullback of a
regular 1-form on P1. Assume π is quasi-elliptic. Let F be a general cuspidal fiber and t a local
parameter at π(F ). Then locally around the cusp of F is given by the equation π∗t = y2 + x3

(Bombieri-Mumford [BM77, Proposition 4]), hence ω = x2dx which vanishes twice at the cusp.
Therefore, the curve of cusps is a component of A with multiplicity 1. Similarly one shows that ω
does not vanish on any smooth point of an elliptic fiber of π if π is an elliptic fibration. Since A is
connected, this yields the second claim. �

Recall that the minimal dissolution of a double cover Y → X of surfaces with X smooth
and Y normal is the successive blowing-ups of points on X lying under singular points of Y . For
an Enriques surface X we call the minimal dissolution of the double cover X̃norm → X , where
X̃norm is the normalization of the canonical cover X̃ , the minimal dissolution of X and denote it
by Xdiss. The normalization X̃sm of Xdiss in K(X̃) is the minimal resolution of singularities of
X̃norm if X̃norm has only rational singularities.

Now, we recall the results of Ekedahl and Shepherd-Barron [ES04] on what happens to (−2)-
curves on X when taking their inverse image in X̃sm and additionally study curves of arithmetic
genus 1.

LEMMA 12.3. With the notation introduced above, let C be an irreducible curve of arithmetic
genus at most 1 on an Enriques surface X with conductrix A. Denote the irreducible curve on
X̃sm mapping surjectively to C by C̃ and let ρ : X̃sm → X̃ and π : X̃ → X be the morphisms
from the normalization of the minimal dissolution of X to X̃ and from X̃ to X respectively. We fix
the following invariants:

(i) The degree s of (π ◦ ρ)|C̃ : C̃ → C.
(ii) The number r of points (including infinitely near ones) on C which are blown up during

the minimal dissolution of X and their multiplicity m.
(iii) The intersection number A · C.
(iv) The self-intersection numbers C̃2 and C2.
(v) The arithmetic genera pa(C) and pa(C̃).

(vi) If pa(C) = 1, the type Sing of singularity of C. This is either nodal n, cuspidal c or
smooth sm.

Then C̃ satisfies the following:
(1) C̃2 = (C2 −m2r)s2/2 and 2pa(C̃)− 2 = C̃2 − sA · C
(2) If two curves meet transversally on X and both have s-invariant 1, then they do not meet

on Xdiss.
(3) For A · C ≥ −2 and pa(C) = 0, we have the following possibilities
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r s A · C C̃2 pa(C̃)
0 1 1 −1 0
0 2 −1 −4 0
2 1 0 −2 0
4 1 −1 −3 0
6 1 −2 −4 0
1 2 −2 −6 0

(4) For pa(C) = 1, we have the following possibilities

Sing r m s A · C C̃2 pa(C̃)
sm 0 1 0 0 1
sm 0 2 0 0 1
n 1 2 1 0 −2 0
c 0 1 0 0 1
c 0 2 0 0 1
c 1 2 1 0 −2 0
c 4 1 1 0 −2 0
c 2 1 1 1 −1 0
c 0 1 2 0 0

(5) If C is a cuspidal curve such that
• |C| defines a quasi-elliptic fibration, then r = 0 and s = 1
• |C| defines an elliptic fibration, then r = 1, m = 2 and s = 1
• |C| does not define a quasi-elliptic fibration and |2C| defines a quasi-elliptic fibra-

tion, then r = 2, m = 1 and s = 1.

PROOF. Similar to Ekedahl and Shepherd-Barron [ES04], the formulas for the self-intersection
number and the genus of C̃ are obtained by observing that the self-intersection number of C drops
by m2 for every point of multiplicity m on C which is blown up during the minimal dissolution
and from ωX̃/X = π∗(OX(−A)). Also the claim (2) is in [ES04].

The first table is contained in [ES04] and we will only establish the second one. Therefore,
assume that pa(C) = 1. If C is smooth, then A · C = 0 by Lemma 12.2 which only leaves the
two possibilities listed. If C is nodal, then |C| defines an elliptic fibration ϕ with C as a simple
fiber. Therefore, formally locally around C, X is isomorphic to the Jacobian of ϕ and by Lemma
12.1 we can find C̃ by doing Frobenius pullback along the base. But on an I1 fiber, an elliptic
surface acquires anA1-singularity at the singular point of the nodal curve after Frobenius pullback.
Therefore, the node of C is blown up during the minimal dissolution. A similar argument works if
C is cuspidal and |C| defines an elliptic fibration.

If C is cuspidal, we have enumerated all numerical possibilities except for the ones where
pa(C̃) = 0 and s = 2. These cases do not occur. In fact, assume that s = 2 and pa(C̃) = 0.
Denote the image of C̃ on X̃norm by C̃ ′. Since the singular point of C is not blown up during the
dissolution (by the self-intersection formula), we have C̃ ′ ∼= C̃ ∼= P1. Then, the flat morphism
ϕ : X̃norm → X restricts to a morphism ϕ|C̃′ : C̃ ′ → C. Since s = 2, we have ϕ∗C = C̃ ′ so
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ϕ|C̃′ is nothing but the base change of ϕ along the closed immersion C → X and as such it is a
flat morphism. But a morphism from P1 to the cuspidal cubic is never flat.

For the last statement (5), observe that |C| defines a quasi-elliptic fibration if and only ifA·C =
2, and |2C| defines a quasi-elliptic fibration if and only if A · C = 1. This follows immediately
from Lemma 12.2, which implies that A · C = D · C where D is the curve of cusps of |C| (resp.
|2C|). �

REMARK 12.4. Several of the numerical possibilities in Lemma 12.3 might be excluded by
using Lang’s list of possible configurations of singular fibers on rational elliptic surfaces in charac-
teristic 2 [Lan00] together with Lemma 12.1. However, we will not pursue this here.

COROLLARY 12.5. Let X be an Enriques surface with a quasi-elliptic fibration ϕ. Let F be a
fiber of ϕ. If F is a double fiber, then two points on F (including infinitely near ones) are blown
up during the minimal dissolution. If F is simple, then no point on F is blown up.

PROOF. If F is reducible, this can be read off from the table in [ES04, p.13], since every
(−2)-curve on a simple fiber has r-invariant 0 and exactly one (−2)-curve on a double fiber has
r-invariant 2 while the others have r-invariant 0. If F is irreducible, this is the last statement of
Lemma 12.3. �

COROLLARY 12.6. Let X be an Enriques surface with a quasi-elliptic fibration. Then the
normalization X̃norm of the canonical cover has an isolated D4-singularity if and only if X is
supersingular.

PROOF. Let ϕ be a quasi-elliptic fibration onX . Since the conductrix is non-empty by Lemma
12.2, X̃ is not normal. Therefore, X̃norm has either four A1- or one D4-singularity by Proposition
2.13. If ϕ has two double fibers, at least two distinct points on X are blown up during the minimal
dissolution by Lemma 12.5. In this case, X is classical (Proposition 2.5) and X̃ has four A1-
singularities. If ϕ has only one double fiber, at most two distinct points on X are blown up. In this
case, X is supersingular and X̃ has one D4-singularity. �

12.2. Special extremal genus one fibrations. In this section, we present a detailed study of
Enriques surfaces with special genus one fibrations, their conductrices and isolated singularities
on their canonical cover. Throughout, we will use the observations summed up in the following
Lemma.

LEMMA 12.7. Let X be an Enriques surface with a conductrix A and X̃ its canonical cover.
The following hold.

(1) If two (−2)-curves which meet transversally have s-invariant 1, then their intersection is
blown up.

(2) Every (−2)-curve meets the conductrix at most once.
(3) Every (−2)-curve which is not a component of the conductrix has s-invariant 1.

Now let π : X → P1 be a genus one pencil. Then the following hold.
(a) A singular fiber of type In of π gives n A1-singularities on X̃ .
(b) If A 6= ∅ and π has a singular fiber of type In, then X̃ has four A1-singularities.
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(c) If A 6= ∅ and two disjoint (−2)-curves have positive r-invariant, then X̃ has four A1-
singularities.

(d) If A 6= ∅ and the sum of all r-invariants of fiber components is less than 4, then X̃ has
one D4-singularity.

PROOF. The first claim is obtained by checking intersection numbers, as was done by Ekedahl
and Shepherd-Barron in [ES04] and the second is a consequence of Lemma 12.3. Since a curve C
which is not contained in A has A · C ≥ 0, the third claim follows from Lemma 12.3.

For the statements about π: The first can be checked using the Jacobian of π, since an In
fiber is simple. The second claim follows immediately from the first, since X̃ has either four A1-
singularities or one D4-singularity if A 6= ∅ (see Proposition 2.13). Two disjoint curves having
positive r-invariant means that distinct points are blown up during the dissolution, excluding the
possibility of a D4-singularity on the cover. For the last claim, the sum of r-invariants of fiber
components being less than 4 means that less than 4 distinct points are blown up, so the singularity
can only be a D4-singularity. �

REMARK 12.8. Observe that we have used that the singularities lying over a simple fiber of π
can be read off from the Frobenius base change of the Jacobian fibration.

LEMMA 12.9. There are no special elliptic fibrations on Enriques surfaces with a double fiber
of type 2III∗, 2II∗ or 2I∗4. Moreover, if the conductrix is nonempty, a special elliptic fibration with
a double fiber of type IV can not exist.

PROOF. The statement about II∗, III∗ and I∗4 is contained in Ekedahl and Shepherd-Barron
[ES04, Corollary 3.2]. We will give another argument here. Let N be a special 2-section and C the
simple component of the double fiber we want to exclude. By checking all possible conductrices
of [ES04, Theorem 3.1], we obtain that C and N have s-invariant 1. Moreover, A · C = 0 if C is
a component of A with multiplicity 1, whereas A · C = 1 if C does not occur in the conductrix.
Therefore, N ·A = 1 if and only if C ·A = 0. Now by Lemma 12.7 (1), the intersection of N and
C is blown up. But one of them has r-invariant 0 by Lemma 12.3. This is a contradiction.

Now we prove the second claim. Since N has s-invariant 1 by Lemma 12.7 (3) and every
component of the fiber of type IV also has s-invariant 1 by the same Lemma, the intersection of
N and the fiber of type IV is blown up. Additionally, the intersection of the three components
of the fiber of type IV is blown up. Therefore, the canonical cover has four A1-singularities by
Proposition 2.13. But every component of the fiber of type IV and N have r-invariant 2. This can
not be achieved by blowing-ups at only 4 distinct points. �

LEMMA 12.10. The isolated singularities on the normalization of the canonical cover of an
Enriques surface with a special extremal elliptic fibration and the conductrix are summed up in
Table 4. The self-intersection number of the reduced inverse image of the curve on the minimal
resolution of singularities of the canonical cover is given as an index to the multiplicity.

PROOF. For the list of rational extremal elliptic fibrations see Proposition 2.7. We will use the
tables in [ES04, p.16-18] for the possibilites of the conductrix A. In every case, we denote the
special 2-section by N . Recall that A2 = −2 by Proposition 2.13.
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Singular fibers Conductrix Isolated singularities

(I∗4)
• • • • •
1−4 1−2 1−2 1−2 1−4 4A1

(II∗)

• • • • • • •

•

1−2 2−2 3−4 2−1 2−4 1−1 1−4

1−1

D4

(2III, I8) ∅ 12A1

(III, I8) ∅ D4, 8A1

(2I∗1, I4)

•• •

•

1−41−4 1−1

1−4

4A1

(I∗1, I4) ••
1−41−4 4A1

(III∗, I2)

• • • • •

•

1−4 1−1 2−4 1−1 1−4

1−2

4A1

(II∗, I1)

• • • • • • •

•

1−2 2−2 3−4 2−1 2−4 1−1 1−4

1−1

4A1

(IV, 2IV∗)

• • • • •

•

•

1−4 1−1 2−4 1−1 1−4

1−1

1−4

D4

(IV, IV∗)

• • •

•

1−4 1−1 1−4

1−4

D4

(2IV, I2, I6) ∅ 12A1

(IV, I2, I6) ∅ D4, 8A1

(2IV∗, I1, I3)

• • • • •

•

•

1−4 1−1 2−4 1−1 1−4

1−1

1−4

4A1

(IV∗, I1, I3)

• • •

•

1−4 1−1 1−4

1−4

4A1

(I9, I1, I1, I1) ∅ 12A1

(I5, I5, I1, I1) ∅ 12A1

(I3, I3, I3, I3) ∅ 12A1

TABLE 4. Singularities on the canonical cover of an Enriques surface with an
extremal, special, elliptic fibration
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• (I∗4) : There is only one possibility for A with A2 = −2. The canonical cover has four
A1-singularities by Lemma 12.7 (c).
• (II∗) : There are two possible conductrices with A2 = −2. However, since N ·A ≤ 1 by

Lemma 12.7 (2), we get the one in the table. Since all fibers different from the fiber of
type II∗ are smooth and no point on a smooth fiber is blown up during the dissolution by
Lemma 12.3, the sum of all r-invariants of fibers is less than 4. Hence the cover has one
D4-singularity by Lemma 12.7 (d).
• (2III, I8) : In this case A = ∅. Since the intersection of N with a component of the fiber

of type III is blown up, there are at least 9 distinct points which are blown up during the
dissolution by Lemma 12.7 (a). Therefore, the cover has 12 A1-singularities.
• (III, I8) : Again, we have A = ∅. By [Lan00], the fiber of type III acquires a D4-

singularity after Frobenius pullback. The 8 A1-singularities come from the fiber of type
I8 by Lemma 12.7 (a).
• (2I∗1, I4) : By Lemma 12.7 (b), we have 4 A1-singularities. Since every point which is

blown up lies on the fiber of type I4 , the r-invariant of N is at most 1 and therefore
N ·A = 1. This is only possible for the conductrix in our table.
• (I∗1, I4) : By the same argument as in the previous case, we have N · A = 1. Moreover,
N can not meet distinct components of the fiber of type I∗1 since we would obtain a
different fibration with a double fiber of type I4 or I5 in these cases. Therefore, N meets
a multiplicity 2 component of the fiber of type I∗1 . Now N and some components of
the fiber of type I∗1 form a fiber of type I∗0 of a different fibration and the only possible
conductrix for this behaviour is the one in our table.
• (III∗, I2) : There are two possible conductrices with A2 = −2. If the conductrix has the

full fiber as support, N meets the central multiplicity 2 component since N · A ≤ 1 by
Lemma 12.7 (2). But then, there is a fiber of type IV∗ of a different fibration such that
two components of the conductrix meet the fiber without being contained in it. This is
not possible by Lemma 12.2. Hence, we have the conductrix in our table and the isolated
singularities because of Lemma 12.7 (b).
• (II∗, I1) : The conductrix is the one in the table by the same argument as in the (II∗) case.

By Lemma 12.7 (b), we get the types of isolated singularities.
• (IV, 2IV∗) : Since N meets a simple component of the fiber of type IV∗, we can exclude

the case where the conductrix does not have the full fiber as support, since in this case
every simple component of the fiber of type IV∗ has s-invariant 1 and r-invariant 0 while
N has s-invariant 1, contradicting Lemma 12.7 (1). The isolated singularities are as in
the table, since by [Lan00] the fibers of type IV acquires a D4-singularity after Frobenius
pullback.
• (IV, IV∗) : Suppose that A has the full fiber of type IV∗ as support. Then N meets a

multiplicity 2 component of this fiber by A · N ≤ 1. But then N and components of
the fiber of type IV∗ form a fiber of type I∗1 of a different elliptic fibration such that two
components of the conductrix meet the fiber without being contained in it. This is not
possible by Lemma 12.2. As in the previous case, we get a D4-singularity.
• (2IV, I2, I6) and (IV, I2, I6): The argument is essentially the same as in the (2III, I8) and

(III, I8) cases.
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• (2IV∗, I1, I3) amd (IV∗, I1, I3): The argument is similar to the cases with singular fibers
(IV, 2IV∗) and (IV, IV∗), except that the fibers of type In give 4 A1-singularities by
Lemma 12.7 (a).
• All singular fibers multiplicative: In these cases, we get 12 A1-singularities by Lemma

12.7 (a). �

For the convenience of the reader we give the corresponding table for quasi-elliptic fibrations.
This does not require proof, since the conductrices are uniquely determined (see [ES04]) and the
isolated singularities depend on the number of double fibers (see Corollary 12.5).

LEMMA 12.11. The isolated singularities on the normalization of the canonical cover of an
Enriques surface with a quasi-elliptic fibration and the conductrix are summed up in Table 5.
The self-intersection number of the reduced inverse image of the curve on the minimal resolution
of singularities of the canonical cover is given as an index to the multiplicity. We do not give
multiplicities of the fibers of type III. The curve of cusps is encircled.

REMARK 12.12. Recall that any Enriques surface has a genus one fibration (Proposition 2.4)
and if an Enriques surface X has a finite group of automorphisms, then any genus one fibration
on X is extremal (Proposition 2.9). Therefore, X has an extremal, special genus one fibration by
Proposition 2.10. Lemmas 12.10 and 12.11 imply that the canonical cover of any Enriques surface
with finite automorphism group has only A1- or D4-singularities as isolated singularities.

12.3. Determination of possible dual graphs.

THEOREM 12.13. Let X be a classical or supersingular Enriques surface with finite automor-
phism group. Then, the dual graph of (−2)-curves onX is one of the dual graphs given in Theorem
1.1 (A) and Theorem 1.2 (A).

PROOF. We start with a tuple (A, I) where A is one of the possible conductrices and I is
either D4 or 4A1. We consider all possible special extremal genus one fibrations and check, if an
Enriques surface with finite automorphism group with conductrix A and canonical double cover
whose normalization has isolated singularities of type I can exist and determine its dual graph of
(−2)-curves. We will make use of Lemma 12.2 very often without mentioning it from now on.
Also we denote by N a special (−2)-section for a given special genus one fibration. If the fibration
is quasi-elliptic, then N denotes the curve of cusps.

• Conductrix: • • • • • • • • •

•

2 3 5 4 4 3 3 2 1

2

Singularities: D4 or 4A1

Possible special, extremal fibrations: (2II∗) quasi-elliptic

This is nothing but the dual graph of type Ẽ8. The Enriques surfaces are supersingular
or classical according to the type of singularities (Corollary 12.6). These are the Ẽ8

exceptional surfaces studied in [ES04].
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Singular fibers Conductrix Isolated singularities

(2II∗)
• • • • • • •

•

• •.
2−4 3−1 5−4 4−1 4−4 3−1 3−4 2−2 1−2

2−1

4A1 or D4

(II∗)

• • • • • • •

•

•.
1−2 2−4 2−1 3−4 2−1 2−4 1−1 1−4

1−1

4A1 or D4

(2I∗4)

• • • • • • •

•

1−2 2−2 3−4 2−1 2−4 1−1 1−4

1−1

.

4A1 or D4

(I∗4)

• • • • •

•

1−4 1−1 2−4 1−1 1−4

1−2.
4A1 or D4

(2III∗, III)

• • • • • • •

•

•
1−2 2−4 2−1 3−4 2−1 2−4 1−1 1−4

1−1

.

4A1 or D4

(III∗, III)

• • • • •

•

•

1−4 1−1 2−4 1−1 1−4

1−1

1−4.

4A1 or D4

(2I∗0, 2I∗0)
• • • • •
1−4 1−2 1−2 1−2 1−4.

4A1

(2I∗0, I
∗
0)

• • • •
1−4 1−2 1−2 1−4.

4A1 or D4

(I∗0, I
∗
0)

• • •
1−4 1−2 1−4.

4A1 or D4

(2I∗2, III, III)

• • • • •

•

1−4 1−1 2−4 1−1 1−4

1−2

.

4A1 or D4

(I∗2, III, III)

• • •

•

1−4 1−1 1−4

1−4.
4A1 or D4

(2I∗0, 4× III)
• • •
1−4 1−2 1−4.

4A1 or D4

(I∗0, 4× III)
• •
1−4 1−4.

4A1 or D4

(8× III)
•
1−6.

4A1 or D4

TABLE 5. Singularities on the canonical cover of an Enriques surface with a quasi-
elliptic fibration
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• Conductrix: • • • • • • • •

•

2 2 3 2 2 1 11

1

Singularities: D4 or 4A1

Possible special, extremal fibrations: (II∗) quasi-elliptic, (2III∗, III) quasi-elliptic and
(2III∗, 2III) quasi-elliptic.

First note that in case of (2III∗, III) the 2-section N meets each component of the
singular fiber of type III because otherwise there is a (−2)-curve meeting the conductrix
more than once. Now for each special genus one fibration we immediately obtain the dual
graph of type Ẽ7 + Ã1. These are the Ẽ7 exceptional surfaces of [ES04].

• Conductrix: • • • • • • •

•

1 2 3 2 2 1 1

1

Singularities: D4 or 4A1

Possible special, extremal fibrations: (2I∗4) quasi-elliptic, (II∗) elliptic and (II∗, I1) elliptic

If we start with a special elliptic fibration with a singular fiber of type II∗, the 2-
section N has to meet this fiber in a component with multiplicity 2, for otherwise there
is a quasi-elliptic fibration with a double fiber of type 2III. This is not allowed. Thus
we either get a quasi-elliptic fibration with a double fiber of type III∗ or a quasi-elliptic
fibration with a double fiber of type I∗4. Again, the first case is not allowed. Therefore,
this is an Enriques surface of type D̃8. Starting from the quasi-elliptic fibration of type
(2I∗4), we immediately obtain the dual graph of type D̃8.

• Conductrix: • • • • •

•

•

1 1 2 1 1

1

1

Singularities: D4 or 4A1

Possible special extremal fibrations: (III∗, 2III) quasi-elliptic, (III∗, III) quasi-elliptic,
(IV, 2IV∗) elliptic and (2IV∗, I3, I1) elliptic

If we start with a special genus one fibration (III∗, III) together with the 2-section N ,
then we find a genus one fibration with a double fiber of type IV∗, and if we start with
(IV, 2IV∗) or (2IV∗, I3, I1), then we find a fibration (III∗, 2III). In the case of (III∗, 2III),
we immediately obtain the dual graph of type Ẽ6 +Ã2 (we can prove the non-existence of
(III∗, III) quasi-elliptic case, but we omit the details). This is an Ẽ6 exceptional Enriques
surface of [ES04].
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• Conductrix: • • • • •

•

1 1 2 1 1

1

Singularities: D4

Possible special extremal fibrations: (I∗4) quasi-elliptic, (2I∗2, III, III) quasi-elliptic, and
(2I∗2, 2III, III) quasi-elliptic

If we start with (I∗4), then we find a special fibration with a double fiber of type I∗2.
In cases (2I∗2, III, III) and (2I∗2, 2III, III), there exists a genus one fibration with a fiber of
type III∗ which is elliptic since the conductrix is contained in a fiber. Hence it is of type
(III∗, I2) which contradicts the type of singularities (Lemma 12.7, (b)). Thus this case
does not occur on an Enriques surface with finite automorphism group.

• Conductrix: • • • • •

•

1 1 2 1 1

1

Singularities: 4A1

Possible special extremal fibrations: (2I∗2, 2III, III) quasi-elliptic, (2I∗2, III, III) quasi-elliptic,
(I∗4) quasi-elliptic and (III∗, I2) elliptic

In every case, there is a quasi-elliptic fibration with a singular fiber of type (I∗4) and
with the curve of cusps meeting the central component.

To see this in the case of the special elliptic fibration with singular fibers of type
(III∗, I2), note that if the 2-section meets a simple component of the fiber of type III∗, we
get a quasi-elliptic fibration with a singular fiber of type 2III, if it meets a component of
multiplicity 2 on one of the long arms, we get a quasi-elliptic fibration with a singular
fiber of type 2I∗2 and if it meets the component of multiplicity 2 in the center, there would
be a special elliptic fibration with a double fiber of type IV∗, which we have excluded.

In the cases with a double fiber of type I∗2, observe that the curve of cusps can not
meet a component of a simple fiber of type III twice, because of Lemma 12.7 (2). Hence
we obtain a quasi-elliptic fibration with a singular fiber of type I∗4.

We will now start from a quasi-elliptic fibration with a singular fiber of type I∗4 and
exclude this case. Two of the blown up points lie on the conductrix and two do not. Any
(−2)-curve not meeting the conductrix has r-invariant 2 and therefore it passes through
the 2 blown up points not lying on the conductrix. In particular, any two (−2)-curves not
meeting the conductrix meet each other at least twice.
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The configuration we start with is the following:

• •

• • • • •

• ••

There are four subdiagrams of type Ẽ7. If the automorphism group of an Enriques
surface with this conductrix is finite, the elliptic fibrations induced by those subdiagrams
have singular fibers of type (III∗, I2). For any of these diagrams of type Ẽ7, the two
remaining curves are either 2- or 4-sections of the fibration, depending on whether the
fiber of type III∗ is double or not. If such a multisection meets a component of the fiber of
type I2 only once, we obtain a quasi-elliptic fibration with singular fiber of type II∗, which
is not allowed. If one of the multisections meets only one component of the fiber of type
I2, the other multisection and the other component of the fiber of type I2 are disjoint from
a diagram of type D̃6, hence they meet each other twice. This leaves us with the following
three possible dual graphs, where a wiggly line means that the two curves corresponding
to the adjacent vertices meet four times:

A B C

• •

• • • • •

• ••

• •

• •

• • • • •

• ••

• •

• •

• • • • •

• ••

• •

– We first exclude CaseC. Using one of the diagrams of type Ã1, which yields a quasi-
elliptic fibration with singular fibers (2I∗2, 2III, III), we get the following graph:

• •

• • • • •

• ••

• •

•
Therefore, there is a subdiagram of type D̃4. This is not allowed for an Enriques
surface with finite automorphism group having this conductrix.

– Now we exclude Case A. We get another (−2)-curve as in the following diagram
from one of the other fibrations with singular fibers of type (III∗, I2)
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• •

• • • • •

• ••

• •

•
But then the orthogonal complement of a diagram of type D̃6 contains a 2-connected
path of four (−2)-curves, which is not possible.

– Lastly, let us exclude CaseB. Again, looking at another fibration with singular fibers
of type (III∗, I2), we get the following two cases, where a dotted line denotes that the
two adjacent curves meet 10 times

a) b)

• •

• • • • •

• ••

• •

• •..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
.

• •

• • • • •

• ••

• •

• •..
..
..
..
..
..
..
..
..
..
..
..
..
..

..
...

In case a) we get the same contradiction as for Case A. In case b) there is a special
elliptic fibration with singular fibers of type (III∗, I2) having intersection graph of
Case A, namely the following:

• •

• • • • •

• ••

•

•
Therefore, an Enriques surface with finite automorphism group and this conductrix

can not exist.
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• Conductrix: • • • • •1 1 1 1 1

Singularities: 4A1

Possible special extremal fibrations: (2I∗0, 2I∗0) quasi-elliptic and (I∗4) elliptic

If we start with a special elliptic fibration with a singular fiber of type (I∗4), we have
to observe that a special 2-section N has to meet the conductrix, for otherwise we obtain
a quasi-elliptic fibration with a singular fiber of type 2III. Now if the 2-section N meets
the conductrix, we obtain a special genus one fibration with a singular fiber of type 2I∗2,
2I∗1 or 2I∗0. The first two are not allowed. Thus, we get a quasi-elliptic fibration with a
double fiber of type I∗0 and an Enriques surface of type D̃4 + D̃4.

The same graph is immediately obtained when starting with the quasi-elliptic fibra-
tion with singular fibers of type (2I∗0, 2I∗0).

• Conductrix: • • • •1 1 1 1

Singularities: D4 or 4A1

Possible special extremal fibrations: (2I∗0, I
∗
0) quasi-elliptic

Starting with a fibration with singular fibers of type (2I∗0, I
∗
0), the special 2-section N

meets the component with multiplicity 2 of the singular fiber of type I∗0 (otherwise there
exists a fibration with a fiber of type III containing a componentN of the conductrix), and
hence there is a subdiagram of type D̃7 which defines a non-extremal fibration (Propo-
sitions 2.7 and 2.8). Therefore, an Enriques surface with this conductrix can not have a
finite automorphism group.

• Conductrix: • • •1 1 1

Singularities: D4 or 4A1

Possible special extremal fibrations: (2I∗0, 2III, III, III, III) quasi-elliptic and (2I∗0, III,
III, III, III) quasi-elliptic

Starting with a quasi-elliptic fibration with singular fibers of type (I∗0, I
∗
0), we obtain

an elliptic fibration with a singular fiber of type I∗2, which is not allowed.
As for the fibrations with a double fiber of type 2I∗0, by the same reason as in the

previous case, a special 2-section N meets two components of each simple fiber of type
III. Therefore there is a diagram of type D̃6 containing the conductrix. But an elliptic
fibration with a fiber of type I∗2 can not be extremal by Propositions 2.7 and 2.8.
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• Conductrix: • •1 1

Singularities: D4 or 4A1

Possible special extremal fibrations: (I∗0, 2III, 2III, III, III) quasi-elliptic, (I∗0, 2III, III, III, III)
quasi-elliptic, (I∗0, III, III, III, III) quasi-elliptic and (I∗1, I4) elliptic.

If there is a quasi-elliptic fibration on this surface, then there is a configuration of type
I∗0 containing the conductrix. The induced elliptic fibration is not extremal.

Starting with a special elliptic fibration with singular fibers of type (I∗1, I4), we look
at the intersection of N with the fiber of type I∗1. If the special 2-section N meets distinct
components, we obtain a configuration giving a double fiber of type I4 or I5, which is a
contradiction. If N meets a simple component twice, we get a double fiber of type III
of a quasi-elliptic fibration and we have excluded this case before. If N meets a double
component once, then there is a configuration of type I∗0 containing the conductrix giving
the same contradiction as in the first paragraph.

• Conductrix: •1

Singularities: D4 or 4A1

Possible special extremal fibrations: (III, III, III, III, III, III, III, III) quasi-elliptic, any mul-
tiplicities

The 2-section N is nothing but the conductrix and hence N meets two components
of each simple fiber of type III as in the previous cases. Thus we have an elliptic fibration
with a fiber of type I∗0 which is not extremal by Proposition 2.7.

• Conductrix: • • •

•

1 1 1

1

Singularities: 4A1

Possible special extremal fibrations: (I∗2, 2III, 2III) quasi-elliptic, (I∗2, III, 2III) quasi-elliptic,
(I∗2, III, III) quasi-elliptic, (2I∗1, I4) elliptic and (IV∗, I1, I3) elliptic

If there is a quasi-elliptic fibration with singular fibers of type (I∗2, 2III, 2III), we have
the following configuration of (−2)-curves:
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• •

• • • •

•

•

• •

• •
The special elliptic fibration induced by the diagram of type D̃5 meeting the two

curves at the bottom gives four more (−2)-curves. We leave it to the reader to check that
the resulting intersection graph is of type VIII.

If there is a special elliptic fibration with singular fibers of type (2I∗1, I4), the 2-section
N has to meet a component of the fiber of type I4 twice, since a special elliptic fibration
with a double fiber of type IV is not allowed. Therefore, there is a quasi-elliptic fibration
with a double singular fiber of type III, which has to be a fibration with singular fibers of
type (I∗2, 2III, 2III), since the curve of cusps does not meet one of the components of the
second fiber of type III which is a component of the fiber of type I4 and the curve of cusps
may not meet the other component twice.

Starting with a quasi-elliptic fibration with singular fibers of type (I∗2, III, 2III) or
(I∗2, III, III), we immediately get the existence of a special elliptic fibration with a singular
double fiber of type I∗1, returning us to the case above.

If there is a special elliptic fibration with singular fibers of type (IV∗, I1, I3), the
2-section meets either a simple component of the fiber of type IV∗ twice or a double
component once. In the first case, we get a quasi-elliptic fibration with a singular fiber of
type 2III and in the second case, we get a special elliptic fibration with a double fiber of
type I∗1. Both cases have already been dealt with.

• Conductrix: • • •

•

1 1 1

1

Singularities: D4

Possible special extremal fibrations: (I∗2, III, 2III) quasi-elliptic, (I∗2, III, III) quasi-elliptic
and (IV, IV∗) elliptic

If we start with a quasi-elliptic fibration, we get a special elliptic fibration with a
double fiber of type I∗1, which is not allowed.

In the case of the fibration with singular fibers of type (IV, IV∗), the 2-section either
meets a simple component of the fiber of type IV∗ twice, or a double component once.
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The first case leads to a special genus one fibration with a double fiber of type III and the
second one to a special elliptic fibration with a double fiber of type I∗1. Both cases have
already been treated.

• Conductrix: ∅
Singularities: D4, 8A1

Possible special extremal fibrations: (IV, I2, I6) elliptic and (III, I8) elliptic

We start from any of the two special fibrations and a special 2-section N . By consid-
ering the intersection of N with the fibers of type I6, I8, we can find a special genus one
fibration with an additive double fiber of type III or IV no matter how the 2-section in-
tersects the fibers. However, these fibrations are not allowed by our list. Hence a surface
with these singularities can not have finite automorphism group.

• Conductrix: ∅
Singularities: 12A1

Possible special extremal fibrations: (I9, I1, I1, I1) elliptic, (I5, I5, I1, I1) elliptic, (2IV, I2, I6)
elliptic, (2III, I8) elliptic and (I3, I3, I3, I3) elliptic

If we start with a special fibration with singular fibers of type (2III, I8), the 2-section
has to meet two adjacent components of the fiber of type I8. Indeed, the twelve blowing-
ups for the dissolution all happen on the singular fibers and the eight of them occuring on
the fiber of type I8 are the blowing-ups of the intersections of any two adjacent compo-
nents. Since we have to blow up two points on the special 2-section, it has to meet such a
point of intersection. From this configuration we leave it to the reader to verify, using the
above list, that the dual graph we obtain is the one of type VII.

Starting with a special extremal fibration with singular fibers of type (2IV, I2, I6), we
can check that there is a special fibration with double fiber of type 2III, which returns us
to the case above. Indeed, if the 2-section meets distinct components of every fiber, we
obtain a fibration with a singular fiber of type II∗ which is not allowed by the assumption
A = ∅.

For the other configurations, we also obtain a special elliptic fibration with a degen-
erate double fiber from the 2-section and components of the fiber of type In with n ≥ 3.
Hence, the argumentation of the previous two cases applies. �



CHAPTER III

Numerically trivial automorphisms of Enriques surfaces

Up to minor modifications, this chapter is taken from the paper ”Numerically trivial automor-
phisms of Enriques surfaces in characteristic 2”, which is joint work of the author with I. Dol-
gachev. Currently, the paper is submitted and a preprint can be found on the ArXiv (see [DM17]).

1. Summary

We have seen in the previous chapters that the automorphism group of an Enriques surface
with finite automorphism group can be read off almost completely from its dual graph of (−2)-
curves. However, in some cases we had to calculate the automorphism group explicitly using the
equations since we could not exclude automorphisms acting trivially on the graph of (−2)-curves.
Such cohomologically and numerically trivial automorphisms are the topic of this Chapter III.

Quite generally, if X is a smooth and projective algebraic surface over an algebraically closed
field k of characteristic p ≥ 0, we call an automorphism g of X cohomologically trivial (resp.
numerically trivial) if it acts trivially on the `-adic étale cohomology H2

ét(X,Zl) (resp. H2
ét(X,Zl)

modulo torsion).
Apart from automorphisms which belong to the connected group of automorphisms that pre-

serves an ample divisor class, cohomologically and numerically trivial automorphisms are very
rare. For example, over the field of complex numbers X must be either an elliptic surface with
q = pg = 0 or with c2 = 0, or a surface of general type whose canonical linear system has a
base point or its Chern classes satisfy c2

1 = 2c2 or c2
1 = 3c2 (see [Pet79]). In particular, a com-

plex K3 surface does not admit non-trivial numerically trivial automorphisms, while a complex
Enriques surface could. In the case of algebraic surfaces over a field of positive characteristic we
know less. However, we know, for example, that K3 surfaces do not admit any numerically trivial
automorphisms by work of A. Ogus [Ogu78], J. Keum [Keu12] and J. Rizov [Riz06].

The first example of a numerically trivial automorphism of an Enriques surface was constructed
by D. Lieberman in 1976 [Lie78]. After that, the classification of complex Enriques surfaces
with cohomologically or numerically trivial automorphisms was carried out by S. Mukai and Y.
Namikawa: An Enriques surface has a numerically trivial automorphism if and only if it contains
one of three critical configurations of (−2)-curves (see Remark 7.3) and Enriques surfaces with
finite automorphism group, namely type I, III and V, give examples of Enriques surfaces realizing
these three configurations.

In this chapter, we give the classification of numerically and cohomologically trivial automor-
phism groups of Enriques surfaces in arbitrary characteristic. As in the case of Enriques surfaces
with finite automorphism group, the classification over the complex numbers uses transcendental
methods. In positive characteristics, as in the other chapters, we use genus one fibrations instead

139
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of transcendental methods. A first attempt to give a classification in arbitrary characteristic was
the content of the paper [Dol13] of I. Dolgachev. Although the main result of the paper is correct
when p 6= 2, the analysis of possible groups in characteristic 2 is erroneous. In fact, we have
seen many groups of cohomologically trivial automorphisms in Chapter II of this thesis, which
contradict Dolgachev’s claims. The goal of this chapter is to use a different approach to the study
of cohomologically and numerically trivial automorphisms to obtain the complete classification of
these groups in arbitrary characteristic:

THEOREM. Let X be an Enriques surface over an algebraically closed field of characteristic
p ≥ 0.

(1) If p 6= 2, then |Autct(X)| ≤ 2 and Autnt(X) ∼= Z/2aZ with a ≤ 2.
(2) If p = 2 and X is singular, then |Autct(X)| = |Autnt(X)| ≤ 2.
(3) If p = 2 andX is classical and notE8-extra-special, then |Autct(X)| ≤ 2 and Autnt(X) ∼=

(Z/2Z)a with a ≤ 2.
(4) If p = 2 and X is supersingular, then |Autct(X)| = |Autnt(X)| ≤ 2, unless X is one of

five types of exceptions distinguished by their dual graphs of (−2)-curves.
Moreover, if X is unnodal, then Autct(X) = {1}.

Let us now explain the structure of Chapter III: In §2, . . . , §4, we give the necessary back-
ground material on numerically trivial automorphisms, on genus one curves and on genus one
fibrations of Enriques surfaces. In §5 we recall bielliptic models of Enriques surfaces, which are
the main tool in our classification. After explaining the classification of extra-special Enriques
surfaces in §6, we prove our main results in §7 and §8.

2. Generalities on numerically and cohomologically trivial automorphisms

Let X be an Enriques surface. It is known that

H2
ét(X,Zl) ∼= NS(X)⊗ Zl, H2

ét(X,Zl)/torsion ∼= Num(X)⊗ Zl,
where Num(X) = NS(X)/(KX) is the group of divisor classes modulo numerical equivalence and
NS(X) is the Néron-Severi group that coincides with the Picard group of X (see [CD89], Chapter
1, §2). The automorphism group Aut(X) is discrete in the sense that the connected component
of the identity of the scheme of automorphisms AutX/k of X consists of one point, and admits
natural representations

ρ : Aut(X)→ Or(NS(X)), ρn : Aut(X)→ Or(Num(X)),

in the group of automorphisms of the corresponding abelian groups preserving the intersection
form. We set

Autct(X) = Ker(ρ), Autnt(X) = Ker(ρn).

An automorphism in Ker(ρ) (resp. Ker(ρn)) is called cohomologically trivial (resp. numerically
trivial).

We start with the following general result that applies to any surface with discrete scheme of
automorphisms and discrete Picard scheme.

PROPOSITION 2.1. The groups Autct(X) and Autnt(X) are finite groups.
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PROOF. We know that NS(X) = Pic(X) and Num(X) is the quotient of NS(X) by its finite
torsion subgroup Tors(NS(X)). Thus, the elementary theory of abelian groups gives us

Or(NS(X)) ∼= Hom(Num(X),Tors(NS(X))) o Or(Num(X)).

This implies that

(2.1) Autnt(X)/Autct(X) ⊆ Tors(NS(X))⊕ρ(X).

So, it is enough to prove that G = Autct(X) is a finite group. The group acts trivially on Pic(X),
hence leaves invariant any very ample invertible sheaf L. For any g ∈ G let αg : g∗(L)→ L be an
isomorphism. Define a structure of a group on the set G̃ of pairs (g, αg) by

(g, αg) ◦ (g′, αg′) = (g ◦ g′, αg′ ◦ g′∗(αg)).

The homomorphism (g, αg) → g defines an isomorphism G̃ ∼= k∗ o G. The sheaf L admits
a natural G̃-linearization, and hence the group G̃ acts linearly on the space H0(X,L) and the
action defines an injective homomorphism G→ Aut(P(H0(X,L)). The group of projective trans-
formations of X embedded by |L| is a linear algebraic group that has finitely many connected
components. We know that G is discrete. Thus, the group G is finite. �

In our case, when X is an Enriques surface, we know that the torsion subgroup of NS(X) is
generated by the canonical class KX and 2KX = 0. Moreover, KX 6= 0 if p 6= 2. Recall from
Chapter II that, in characteristic 2, Enriques surfaces come in three types:

• classical surfaces,
• singular Enriques surfaces or µ2-surfaces,
• supersingular surfaces or α2-surfaces

Surfaces of the first type are characterized by the condition KX 6= 0 if p = 2. Surfaces of the
second and the third type satisfy KX = 0. They are distinguished by the action of the Frobenius
endomorphism on the cohomology space H2(X,OX) ∼= k. It is trivial in the third case and it is
not trivial in the second case.

Applying (2.1), we obtain the following.

COROLLARY 2.2. The quotient group Autnt(X)/Autct(X) is a 2-elementary abelian group.

3. Half-fibers of genus one fibrations

In this section, we recall basic facts on genus one fibrations of Enriques surfaces, some of which
we have already seen in the previous chapters. We will emphasize the relation to sequences of
primitive isotropic vectors in Num(X), which will play an important role throughout this chapter.

Recall that an Enriques surface always admits a fibration f : X → P1 with general fiber Xη

an elliptic curve or a quasi-elliptic curve over the field K of rational functions on P1 (i.e. a regular
non-smooth irreducible curve of arithmetical genus one) (see [CD89], Corollary 3.2.1). To treat
both cases, we call such a fibration a genus one fibration, specifying when needed whether it is an
elliptic fibration or a quasi-elliptic fibration.

A genus one fibration is defined by a base-point-free pencil |D| of divisors of arithmetic genus
one satisfyingD2 = 0. The numerical class [D] in Num(X) is always divisible by two, soD = 2F ,
where [F ] is a primitive isotropic vector in the lattice Num(X). There are two representatives
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F, F ′ of [F ] if p 6= 2 or X is classical Enriques surface in characteristic 2. Otherwise, there is
only one representative. We call these representatives half-fibers of |2F |, of the pencil or of the
corresponding fibration.

Conversely, let W nod
X be the group of isometries of Num(X) generated by reflections into

the classes of smooth rational curves ((−2)-curves, for short). Any primitive isotropic vector in
Num(X) can be transformed by an element of W nod

X to the numerical class of a half-fiber. Hence,
any nef divisor F such that [F ] is a primitive isotropic vector in Num(X) defines a genus one pencil
|2F | and a corresponding genus one fibration f : X → P1. An Enriques surface is called unnodal
if it does not contain (−2)-curves. In this case W nod

X = {1} and there is a bijective correspondence
between primitive isotropic vectors in Num(X) and genus one fibrations on X .

A general fiber of an elliptic (resp. quasi-elliptic) fibration is a smooth elliptic curve (resp.
irreducible curve of arithmetic genus one with one ordinary cusp). We will use Kodaira’s no-
tations for singular (resp. reducible) fibers of elliptic (resp. quasi-elliptic) fibrations, namely
I1, In, I∗n, II, III, IV, II

∗, III∗, IV∗. Fibers of type In are called of multiplicative type, all others of
additive type.

We have the following (see [CD89], Chapter 5. §7).

PROPOSITION 3.1. Let F be a half fiber of a genus one fibration on an Enriques surface.
• If p 6= 2 orX is a singular Enriques surface in characteristic 2, then F is of multiplicative

type or a smooth elliptic curve, which is ordinary if p = 2.
• If p = 2 and KX 6= 0, then F is of additive type or a smooth ordinary elliptic curve.
• If p = 2 and X is a supersingular Enriques surface, then F is of additive type or a

supersingular elliptic curve.

A (−2)-curve is called a special bisection of a half-fiber F or of the corresponding pencil |2F |,
or of the corresponding genus one fibration, if it intersects F with multiplicity 1.

A relatively minimal model of the Jacobian variety Jη of the generic fiber Xη of an elliptic
fibration is a rational elliptic surface j : J → P1. The group Jη(η) is called the Mordell-Weil group
of the elliptic fibration. It is a finitely generated abelian group. It acts on Xη by translation, and by
the properties of a relative minimal model, the action extends to a biregular action on X .

The type of a singular fiber Jt of j : J → P1 coincides with the type of the fiber Xt (see
[CD89], Theorem 5.3.1 and [LLR04], Theorem 6.6). Similarly, if the fibration is quasi-elliptic, the
Jacobian variety Jη of its general fiber is a unipotent group scheme, a non-trivial inseparable form
of the additive group scheme. Its Mordell-Weil group is a finite p-elementary abelian group. The
theory of minimal models of surfaces allows us to construct a rational surface with a quasi-elliptic
fibration whose generic fiber with the singular point deleted is isomorphic to Jη.

An ordered sequence (f1, . . . , fn) of isotropic vectors in Num(X) with fi · fj = 1 − δij and
fi ·h > 0 for the class of an ample divisor h can always be transformed by an element w ∈W nod

X to
a sequence where f1 + · · ·+ fn is the class of a nef divisor. A lift (F1, . . . , Fn) of such a sequence
to NS(X) is called a U[n]-sequence. After reordering, we may assume that F1 is a half-fiber of
a genus one fibration and either Fi+1 = Fi + R, where R is a (−2)-curve with R · Fi = 1 or
Fi+1 is a half-fiber of a genus one fibration. A U[n]-sequence is called c-degenerate, if it contains
exactly c half-fibers. If c = n, it is called non-degenerate. We say that a U[m]-sequence A extends
a U[n]-sequence B if, after reordering, A contains B. For a given Enriques surface X , the maximal
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length of a non-degenerate U[n]-sequence is denoted by nd(X) and is called the non-degeneracy
invariant of X .

REMARK 3.2. Note that, by definition, the Ri that occur in a U[n+1]-sequence of the form
(F1, F1 + R1, . . . , F1 +

∑n
i=1Ri) form a Dynkin diagram of type An and the Ri with i ≥ 2 are

contained in fibers of |2F1|.

For the following Proposition, see [DL] Proposition 5.1.5.

PROPOSITION 3.3. Let n ≤ 8. Then, any c-degenerate U[n]-sequence can be extended to a
c′-degenerate U[10]-sequence with c′ ≥ c.

It is a much more difficult question whether a non-degenerate U[n]-sequence can be extended
to a non-degenerate U[m]-sequence (see e.g. Section 5). However, the following is known (see
[Cos85], Theorem 3.5 or [DL], Theorem 5.1.17).

THEOREM 3.4. Suppose p 6= 2 or X is a singular Enriques surface. Then, any half-fiber can
be extended to a non-degenerate U[3]-sequence.

LEMMA 3.5. Let F1, F2 form a non-degenerate U[2]-pair. Then, F1 and F2 do not have com-
mon irreducible components.

PROOF. We use that a fiber F1 is numerically 2-connected, i.e. if we write F1 as a sum of two
proper effective divisors F1 = D1+D2, thenD1 ·D2 ≥ 2. To see this, we use thatD2

1 < 0, D2
2 < 0

and F 2
1 = F1 ·D1 = F1 ·D2 = 0. Now, if D1 is the maximal effective divisor with D1 ≤ F1 and

D1 ≤ F2 and if we let F1 = D1 +D2 and F2 = D1 +D′2 be decompositions into effective divisors,
we have D2.D

′
2 ≥ 0. Therefore 1 = F1 ·F2 = (D1 +D2) ·F2 = (D2 ·D1 +D2 ·D′2) ≥ D2 ·D1,

hence D1 = 0. �

Let (F1, F2) be a non-degenerate U[2]-sequence. Since F1 · F2 = 1, by the previous lemma,
F1 ∩ F2 consists of one point.

LEMMA 3.6. Let (F1, F2, F3) be a non-degenerate U[3]-sequence. Suppose that |F2 + F3 −
F1 +KX | = ∅. Then, F1 ∩ F2 ∩ F3 = ∅.

PROOF. Consider the natural exact sequence coming from restriction of the sheafOX(F1−F2)
to F3:

0→ OX(F1 − F2 − F3)→ OX(F1 − F2)→ OF3(F1 − F2)→ 0.

We have (F1−F2−F3) ·F1 = −2. Since F1 is nef, the divisor class F1−F2−F3 is not effective.
Thus, by Riemann-Roch and Serre’s Duality, h1(OX(F1 − F2 − F3)) = 0 since h0(OX(KX +
F3 + F2 − F1)) = 0 by assumption. Now, h0(OX(F1 − F2)) = 0, because (F1 − F2).F1 = −1
and F1 is nef. Suppose F1 ∩F2 ∩F3 6= ∅, thenOF3(F1−F2) ∼= OF3 and h0(OF3(F1−F2)) = 1.
It remains to consider the exact sequence of cohomology and get a contradiction. �

REMARK 3.7. Note that for any D ∈ |F2 + F3 − F1 +KX |, we have D2 = −2 and D.F2 =
D.F3 = 0, so D consists of (−2)-curves contained in fibers of |2F2| and |2F3|.
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4. Automorphisms of genus one curves

Let us recall some known results about automorphism groups of elliptic curves over alge-
braically closed fields which we will use frequently. The proof of the following result can be found
in [Sil09], III, §10 and Appendix A.

PROPOSITION 4.1. Let E be an elliptic curve over an algebraically closed field with automor-
phism group G and absolute invariant j. For g ∈ G, let Eg be the set of fixed points of g.

(1) If p 6= 2, 3

j G ord(g) |Eg|
6= 0, 1 Z/2Z 2 4

1 Z/4Z

{
2

4

{
4

2

0 Z/6Z


2

3

4

6


4

3

2

1

(2) If p = 3

j G ord(g) |Eg|
6= 0 Z/2Z 2 4

0 Z/3Z o Z/4Z


2

3

4


4

1

2

(3) If p = 2

j G ord(g) |Eg|
6= 0 Z/2Z 2 2

0 Q8 o Z/3Z

{
2, 4

3

{
1

3

5. Bielliptic maps and bielliptic involutions

Let (F1, F2) be a non-degenerate U[2]-pair of half-fibers. The linear system |2F1 +2F2| defines
a morphism of degree 2 from X to a surface D of degree 4 in P4 (it is called a superelliptic map
in [CD89], renamed as a bielliptic map in [CDL]). The surface D is an anti-canonical model of a
unique (up to isomorphism) weak del Pezzo surface of degree 4 obtained by blowing up 5 points
p1, . . . , p5 in the projective plane P2.

If KX 6= 0, the point p3 is infinitely near to p2 and p5 is infinitely near to p4. The points
p1, p2, p3 and p1, p4, p5 lie on lines `1 and `′1. The proper inverse transform of the pencil of lines
through p1 and the pencil of conics through p2, p3, p4, p5 on P2 are pencils of conics on D. The



5. BIELLIPTIC MAPS AND BIELLIPTIC INVOLUTIONS 145

proper inverse transforms of the lines `1, `′1 (resp. the lines `2, `′2 passing through p2, p4 and the
exceptional curve over p1) on P2 are the four lines L1, L

′
1 (resp. L2, L

′
2) on D. The proper inverse

transforms of the two pencils of conics on D are the genus one pencils |2F1| and |2F2| of X . The
half-fibers F1, F

′
1 (resp. F2, F

′
2) are the proper inverse transforms of the lines L1, L

′
1 (resp. L2, L

′
2).

One can choose projective coordinates in P4 so that D is given by equations

(5.1) x2
0 + x1x2 = x2

0 + x3x4 = 0.

The pencils of conics that give rise to the pencils |2F1| and |2F2| are cut out by the linear pencils
of planes

(5.2) ax2 + bx3 = ax4 + bx1 = 0, ax2 + bx4 = ax3 + bx1 = 0.

The lines are given by equations x0 = xi = xj = 0, i ∈ {1, 2}, j ∈ {3, 4}. They correspond to the
parameters (a : b) = (1 : 0) and (0 : 1).

If KX = 0 and X is singular (resp. supersingular), the surface D has a unique singular point,
which is a rational double of type D(1)

4 (resp. D(0)
4 ). The surface is again an anti-canonical model

of a unique (up to isomorphism) weak del Pezzo surface of degree 4, which is the blow-up of 5
points p1, . . . , p5 in P2, where p5 is infinitely near to p4, p4 is infinitely near to p3 and p3 is infinitely
near to p2. The surface has only two lines. Their proper inverse transforms on X are the half-fibers
of the genus one fibrations |2F1| and |2F2|. The fibrations themselves are defined by the pencils
of conics on D obtained from the pencil of lines through p1 and the pencil of conics through the
points p2, p3, p4, p5. The surface D is isomorphic to a surface given by equations

(5.3) x2
0 + x1x2 = x1x3 + x4(ex0 + x2 + x4) = 0,

where e = 1 if X is singular, and e = 0 if X is supersingular. The pencils of concis that give rise
to our pencils are given by the equations

(5.4) ax3 + b(ex0 + x2 + x4) = ax4 + bx1 = 0, a(ex0 + x2 + x4) + bx1 = ax3 + bx4 = 0.

If the map φ is separable, the birational automorphism ofX defined by the degree two separable
extension of the fields of rational functions k(X)/φ∗k(D) extends to a biregular automorphism of
X which we call a bielliptic involution of X .

The group of automorphisms of the surface D is a subgroup of projective transformations of
P4 that leaves the surface D invariant. The following proposition describes the group of automor-
phisms of the quartic surface D.1

PROPOSITION 5.1. Let D1,D2,D3 be the image of a bielliptic map defined by the linear system
|2F1 + 2F2|, where KX 6= 0, X is singular, or X is supersingular, respectively. Then

• Aut(D1) ∼= G2
m oD8;

• Aut(D2) ∼= G2
a o Z/2Z;

• Aut(D3) ∼= (G2
a oGm) o Z/2Z.

Here, Gm (resp. Ga) denote the multiplicative (resp. additive) one-dimensional algebraic group
over k and D8 denotes the dihedral group of order 8.

1The computation of these groups in the cases of surfaces D2,D3 in [CD89] is erroneous. The correct computation
can be found in [CDL], Proposition 0.6.26.
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REMARK 5.2. Note that the connected component Aut(D)0 of Aut(D) is the group of auto-
morphisms preserving each line on D. Using equations (5.1) and (5.3), we can write the action of
Aut(D)0 explicitly as follows, with λ, µ ∈ Gm and α, β ∈ Ga:

• Action of Aut(D1)0 :

(x0 : x1 : x2 : x3 : x4) 7→ (x0 : λx1 : λ−1x2 : µx3 : µ−1x4)

• Action of Aut(D2)0 :

(x0 : x1 : x2 : x3 : x4) 7→ (x0+αx1 : x1 : α2x1+x2 : βx0+(αβ+α2β+β2)x1+βx2+x3+(α+α2)x4 : βx1+x4)

• Action of Aut(D3)0 :

(x0 : x1 : x2 : x3 : x4) 7→ (x0 + αx1 : x1 : α2x1 + x2 : (α2β + β2)x1 + βx2 + x3 + α2x4, βx1 + x4)

(x0 : x1 : x2 : x3 : x4) 7→ (x0 : λ−1x1 : λx2 : λ3x3, λx4)

Moreover, we can compute the group of automorphism fixing the pencils given by equations
(5.2) (resp. (5.4)) on D. They are obtained by setting λ = µ (resp. α ∈ {0, 1}, β = 0, resp.
α = β = 0, λ = 1).

The known information about the automorphism group of the surfaces D allows us to give a
criterion for an automorphism to be a bielliptic involution.

COROLLARY 5.3. Let (F1, F2) be a non-degenerate U[2]-sequence and let g be a non-trivial
automorphism of X . Assume that g preserves F1, F2 and a (−2)-curve E with E.F1 = E.F2 = 0,
which is not a component of one of the half-fibers F1, F2, F

′
1, F

′
2. If X is supersingular, assume

additionally that g has order 2n. Then, g is the bielliptic involution associated to the linear system
|2F1 + 2F2|.

PROOF. Let φ : X → D be a bielliptic map defined by the linear system |2F1 + 2F2|. Since
g leaves |2F1 + 2F2| invariant, it descends to an automorphism of P4 = |2F1 + 2F2|∗ that leaves
D invariant. Moreover, the induced automorphism preserves the lines on D by assumption. Recall
that E.F1 = E.F2 = 0, hence φ(E) is a point P . Since E is not a component of one of the
half-fibers, P does not lie on any of the lines of D. If D = D1, this means that P is not on the
hypersurface x0 = 0 and if D ∈ {D2,D3}, it means that P is not on the hypersurface x1 = 0.

If D = D1, the x0 coordinate x0(P ) of P is non-zero, hence so are all xi(P ) by Equation
(5.1). By Remark 5.2, there is no automorphism of D1 fixing P and preserving the lines except the
identity. Therefore, g coincides with the covering involution of φ.

If D ∈ {D2,D3}, we have x1(P ) 6= 0. Again, by Remark 5.2, there is no automorphism of D2

fixing P and preserving the lines except the identity. For D3, we use the additional assumption to
exclude the case that g acts on D3 via Gm. �

REMARK 5.4. In fact, the failure of this criterion without the additional assumption in the
supersingular case leads to the existence of cohomologically trivial automorphisms of odd order
(see Section 7).

LEMMA 5.5. Let τ be the bielliptic involution associated to a linear system |2F1 + 2F2|.
Suppose τ is numerically trivial. Then, Num(X)Q is spanned by the numerical classes [F1], [F2]
and eight smooth rational curves that are contained in fibers of both |2F1| and |2F2|.



6. EXTRA-SPECIAL ENRIQUES SURFACES 147

PROOF. We have a finite degree 2 cover X ′ = X − E → D′ = D − P , where E is spanned
by (-2)-curves blown down to a finite set of points P on D. We have Pic(D′)Q = Pic(D)Q and
Pic(X ′)gQ (the invariant part) = f∗(Pic(D′)Q is spanned by the restriction of F1, F2 to X ′. Since
Pic(X) is spanned by Pic(X ′) and the classes of components of E, we can write any any invariant
divisor class as a linear combination of [F1], [F2] and invariant components of E. In our case all
divisors classes are invariant. Since dim(Pic(X)Q) − dim(〈F1, F2〉Q) = 8, E consists of eight
(−2)-curves. �

Denote the number of irreducible components of a fiberD of |2F | bymD. Since rk(Pic(X)) =
10, we have

∑
D∈|2F |(mD − 1) ≤ 8, and, by the Shioda-Tate formula, the Jacobian of |2F | has

finite Mordell-Weil group if and only if equality holds. In the latter case, |2F | is called extremal.

COROLLARY 5.6. Let (F1, F2) be a U[2]-pair of half-fibers such that the bielliptic involution
τ associated to |2F1 + 2F2| is numerically trivial. Then, |2F1| and |2F2| are extremal.

Moreover, the following hold:

(1) For every fiber D of |2F1|, all but one component C of D is contained in fibers of |2F2|.
(2) C has multiplicity at most 2.
(3) Neither |2F1| nor |2F2| have a multiplicative fiber with more than two components.

PROOF. By the previous lemma, there are eight (−2)-curves contained in fibers of both |2F1|
and |2F2|. Since a fiber of |2F1| cannot contain a full fiber of |2F2|, this implies 8 ≤

∑
D∈|2F |(mD−

1) ≤ 8. Hence, |2F1| is extremal and so is |2F2|. Moreover, if, for some fiber D of |2F1|, two
components of D are not contained in fibers of |2F2|, then, by the same formula, |2F1| and |2F2|
share less than eight (−2)-curves. This contradicts Lemma 5.5.

For (2), note that the remaining component C of multiplicity m in D satisfies 2 = D.F2 =
mC.F2. Since C.F2 > 0, this yields (2).

As for (3), assume that D is multiplicative with more than 2 components. Note that C meets
distinct points on distinct components ofD. The connected divisorD′ = D−C satisfiesD′.(2F1+
2F2) = 0, hence it is contained in the exceptional locus of the bielliptic map φ. Since τ preserves
the components of D′, φ(C) is an irreducible curve with a node. But C is contained in the pencil
of conics induced by |2F1|. This is a contradiction. �

6. Extra-special Enriques surfaces

Throughout this section, we assume that p = 2 and X is either classical or supersingular. An
Enriques surface X is called extra-special if nd(X) ≤ 2.

It is claimed in [CD89], Theorem 3.5.1 that Theorem 3.4 is true in any characteristic unless the
surface is extra-special with finitely many (−2)-curves with the dual graph defined by one of the
diagrams from the following Table 1. The surfaces of type Ẽ8, Ẽ1

7 and D̃8 are called E8, E7 and
D8-extra-special, respectively. However, the surface of type Ẽ2

7 was erroneously asserted to have
nd(X) = 2, although, in fact, it is not extra-special and has nd(X) equal to 3 (see [DL, Proposition
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5.2.4]).2. We refer the reader to [DL] for a new proof due to the author of the classification of extra-
special surfaces and collect the results we need in the context of numerically trivial automorphisms
in this section.

Type Configuration

Ẽ8
• • • • • • • • •

•

Ẽ1
7

• •• • • • • • • •

•

Ẽ2
7

• •• • • • • • • •

•

D̃8
• • • • • • •

•

•

•

TABLE 1. E8,E7 and D8-extra-special surfaces and the Ẽ2
7 surface

THEOREM 6.1. Assume that X is not E8-extra-special. Then, any half-fiber can be extended
to a non-degenerate U[2]-sequence.

THEOREM 6.2. Assume that X is not E8,E7 or D8-extra-special. Then, nd(X) ≥ 3.

REMARK 6.3. In Chapter II, the cohomologically trivial and numerically trivial automorphism
groups of extra-special surfaces have been calculated. For our examples, the groups are given in
Table 2.

Type Autct(X) Autnt(X)

classical Ẽ8 {1} {1}
supersingular Ẽ8 Z/11Z Z/11Z

classical D̃8 Z/2Z Z/2Z
supersingular D̃8 Q8 Q8

classical Ẽ1
7 {1} Z/2Z

TABLE 2. Numerically trivial automorphisms of extra-special surfaces

However, as we have seen in the previous chapter, it is not known whether there are more
surfaces of these types than the ones given in Chapter II. Note that the calculation of these groups
in the case where X is classical of type D̃8 or Ẽ1

7 only depends on the dual graph of (−2)-curves
(see Chapter II, Theorem 10.11 and Theorem 9.6)

2So far, this is the only known example of an Enriques surface with nd(X) = 3.
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7. Cohomologically trivial automorphisms

Now that we have treated the necessary background material, we can proceed to the heart of
this chapter. In this section, we prove our main results on cohomologically trivial automorphisms.

7.1. Cohomologically trivial automorphisms of even order.

THEOREM 7.1. Let X be an Enriques surface which is not extra-special.
(1) IfX is classical or singular, then |Autct(X)| ≤ 2. IfX is also unnodal, then Autct = {1}.
(2) If X is supersingular, then the statements of (1) hold for the 2-Sylow subgroup G of

Autct(X).
Moreover, if a non-trivial g ∈ Autct (resp. G) exists, then g is a bielliptic involution.

PROOF. Let g ∈ Autct(X) and assume that g has order 2n if X is supersingular. Note that,
by definition, g preserves all half-fibers on X . We will show that there is a U[2]-pair such that
g satisfies the conditions of Corollary 5.3. Note that g preserves all half-fibers and (−2)-curves,
since it is cohomologically trivial, so it suffices to find a (−2)-curve, which is contained in two
simple fibers of genus one fibrations forming a U[2]-pair.

Take a c-degenerate U[10]-sequence on X with c maximal. If 3 ≤ c ≤ 9, then there is a
(−2)-curve R in this sequence such that F.R = 0 for at least 3 half-fibers F in the sequence. Now,
Lemma 3.5 shows thatR is contained in a simple fiber of two pencils |2F1| and |2F2|. By Corollary
5.3, g is the bielliptic involution associated to |2F1 + 2F2|. In particular, g is unique.

If c = 10, assume that one of the half-fibers, say F1, is reducible. Then, by Lemma 3.5, for
every Fi in the sequence, all but one component of F1 is contained in simple fibers of |2Fi|. Hence,
we find some component R with R.Fi = 0 for at least 3 half-fibers and the same argument as
before applies.

If |Fi +Fj −Fk| 6= ∅ or |Fi +Fj −Fk +KX | 6= ∅ for some half-fibers Fi, Fj , Fk occuring in
the sequence, by Remark 3.7, there is an effective divisorD withD.Fi = D.Fj = 0 andD2 = −2.
Since Fi and Fj can be assumed to be irreducible, D contains a (−2)-curve which is contained in
a simple fiber of both |2Fi| and |2Fj |. Again, Corollary 5.3 applies.

Therefore, we can assume that all half-fibers are irreducible and Fi ∩ Fj ∩ Fk = ∅ by Lemma
3.6. This is immediate if X is unnodal. Then, g fixes all Fi pointwise by Proposition 4.1, hence it
is trivial, as can be seen by applying the same Proposition to a general fiber of, say, |2F1|. �

In the case of classical Enriques surface in characteristic 2, we can say more, using the classi-
fication of Enriques surfaces with finite automorphism group.

COROLLARY 7.2. Let X be a classical Enriques surface in characteristic 2 which is not E8-
extra-special. Then, Autct(X) ∼= Z/2Z if and only if X is D8-extra-special.

PROOF. Let F1 be a half-fiber on X . By Theorem 3.4, we can extend F1 to a non-degenerate
U[2]-sequence. Assume that there exists a non-trivial g ∈ Autct(X). Then, g acts on D1 via its
action on |2F1 + 2F2|∗. By Proposition 5.1, g acts via G2

m on D1. But g has order 2 by Theorem
7.1, hence it acts trivially on D1. Therefore, g is the covering involution of the bielliptic map and
by Corollary 5.6, |2F1| is extremal. Therefore, every genus one fibration on X is extremal. In
particular, by Chapter II Section 12, X has finite automorphism group. We have calculated the
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groups Autct(X) of these surfaces and the only surfaces for which the calculation of the groups
depends on the specific example are the ones of type Ẽ8 and D̃4 +D̃4 (see Remark 6.3 and Remark
8.4). In the latter case, there is a U[2]-pair of fibrations with simple I∗4 fibers, which share only
7 components. By Corollary 5.6, the corresponding bielliptic involution is not cohomologically
trivial. Therefore, our calculation of the groups shows that the D8-extra-special surface is the only
classical Enriques surface which is not E8-extra-special and has a non-trivial cohomologically
trivial automorphism. �

REMARK 7.3. Using Theorem 7.1 and Corollary 5.6 may lead to an explicit classification of
Enriques surfaces X with non-trivial Autnt(X). For example, in characteristic p 6= 2, one can
show that the surface must contain (−2)-curves with one of the following dual graphs:

• •

•
•

•
•

•

•
• •(a) • •

•

•

•

•

•

•

•

•

•

•
(b)

• •

•

•

•

•

•

•

•

• •

(c)

In the case k = C this is an assertion from [Kon86, Theorem (1.7)].

7.2. Cohomologically trivial automorphisms of odd order. Before we start with the treat-
ment of cohomologically trivial automorphisms of odd order of supersingular Enriques surfaces,
let us collect the known examples. These surfaces have finite automorphism groups and a detailed
study can be found in Chapter II. In Table 3, we recall the group of cohomologically trivial auto-
morphisms of these examples. Again, it is not known whether there are more examples of these
surfaces than the ones given in Chapter II.

Type Autct(X)

Ẽ8 Z/11Z
Ẽ2

7 Z/7Z or {1}
Ẽ6 Z/5Z

TABLE 3. Examples of cohomologically trivial automorphisms of odd order

LEMMA 7.4. Let X be a supersingular Enriques surface which is not E8-extra-special and let
G ⊆ Autct(X) be a non-trivial subgroup of odd order. Then, G is cyclic and acts non-trivially on
the base of every genus one fibration of X .
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PROOF. Take any half-fiber F1 and extend it to a non-degenerate U[2]-sequence (F1, F2) on
X . Since G has odd order, it acts on D3 via a finite subgroup of Gm, hence G is cyclic. By Remark
5.2, a generator g of G acts on the image D3 of the bielliptic map as

(x0 : x1 : x2 : x3 : x4) 7→ (x0 : λ−1x1 : λx2 : λ3x3, λx4).

Such an automorphism acts non-trivially on the pencils of conics given by Equation (5.4), hence g
acts non-trivially on |2F1|. �

LEMMA 7.5. Let F be a fiber of a genus one fibration and let g be a tame automorphism of
finite order that fixes the irreducible components of F . Then, the Lefschetz fixed-point formula

e(F g) =
2∑
i=0

(−1)iTr(g∗|H i
ét(F,Ql)).

holds for F . If F is reducible and not of type I2, then e(F g) = e(F ). If F is of type I2, then
e(F g) = e(F ) = 2 or e(F g) = 4. The latter case can only occur if g has even order.

PROOF. In case the order is equal to 2, this is proven in [Dol13] by a case-by-case direct
verification. The proof uses only the fact that a tame non-trivial automorphism of finite order of P1

has two fixed points. Also note that the verification in case F is of type I2 and g interchanges the
two singular points of F was missed, but it still agrees with the Lefschetz formula. �

PROPOSITION 7.6. Let g ∈ Autct(X) be an automorphism of odd order. Then, every genus
one pencil |D| of X has one of the following combinations of singular fibers

(7.1) I∗0 + I∗0 I∗4 + II, IV∗ + IV, III∗ + III, II∗ + II, I9 + I1 + I1 + I1, I∗3, III∗

The last three configurations can only occur if g has order 3.

PROOF. The claim is clear if X is E8-extra-special, hence we can apply Lemma 7.4 and find
that g acts non-trivially on all genus one pencils. Since the order of g is prime to p, it fixes two
members F1, F2 of the pencil, one of which is a double fiber. Since all other fibers are moved, the
set of fixed points Xg is contained in F1 ∪ F2. Applying the Lefschetz fixed-point formula, we
obtain

(7.2) e(X) = 12 = e(Xg) = e(F g1 ) + e(F g2 ),

where e() denotes the l-adic topological Euler-Poincaré characteristic.
If one of the fibers, say F1 is smooth, then, since g has odd order and e(F g2 ) ≤ 10, σ acts

as an automorphism of order 3 on F1. Hence, by Proposition 4.1, g has three fixed points on
F1. Therefore, F2 is of type I9, I∗3 or III∗ and g has order 3. By [Lan00], we get the last three
configurations of the Proposition.

If both fibers or the corresponding half-fibers are singular curves, then e(Fi) = e(F gi ). Indeed,
for irreducible and singular curves, this follows from e(F g2 ) ≤ 10 and for reducible fibers, this
is Lemma 7.5 for automorphisms of odd order. The formula for the Euler-Poincaré characteristic
of an elliptic surface from [CD89], Proposition 5.1.6 implies that F1 and F2 are the only singular
fibers of |D|. In this case, denoting the number of irreducible components of Fi by mi, we have
m1 + m2 ≥ 8, hence |2F | is extremal and both fibers are of additive type. The classification of
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singular fibers of extremal rational genus one fibrations is known [Lan91], [Lan94], [Ito02]. Since
the types of singular fibers of a genus one fibration and of its Jacobian fibration are the same, it is
straightforward to check that the list given in the proposition is complete. �

COROLLARY 7.7. If X admits an automorphism g ∈ Autct(X) of odd order at least 5, then X
is one of the surfaces in Table 3.

PROOF. By Proposition 7.6, every genus one fibration onX is extremal. It is shown in Chapter
II Section 12, that such an Enriques surface has finite automorphism group. Using the list of
Proposition 7.6, the claim follows from the classification of supersingular Enriques surfaces with
finite automorphism group. �

PROPOSITION 7.8. Assume that X is not one of the surfaces in Table 3. If X admits an
automorphism g ∈ Autct(X) of order 3, then X contains the following diagram of (−2)-curves

• • • • •
•

•
•

• •

•

N

N1

N2

In this case, Autct(X) = Z/3Z.

PROOF. If every special genus one fibration onX is extremal, thenX has finite automorphism
group by Chapter II Section 12. Therefore, we observe that, by Proposition 7.6, X has to admit a
special genus one fibration with special bisection N such that g fixes two fibers F1 and F2, where
F1 is a smooth supersingular elliptic curve and F2 is of type III∗ or I∗3. If F1 is a simple fiber, then
N meets two distinct points of F1, since g does not fix the tangent line at any point of F1. But then,
g fixes three points on N , hence it fixes N pointwise, which contradicts Corollary 7.4.

Therefore, F1 is a double fiber and an argument similar to the above also shows that N meets
a component of multiplicity 2 of F2. Now, depending on the intersection behaviour of N with F2,
we see that N and components of F2 form a half-fiber of type I∗n or IV∗ of some other genus one
fibration. Using the list of Proposition 7.6, we conclude that F2 is of type I∗3 and N intersects F2

as follows:

• • • • •

•

• •

•

The five leftmost vertices form a fiber of type I∗0. By Proposition 7.6, this diagram is a half-fiber
of a fibration with singular fibers I∗0 and I∗0. Adding the second fiber to the diagram, we arrive at
the diagram of the Proposition.

Now, observe that the fibration we started with has three (−2)-curves as bisections. They are
the curves N,N1, N2 in the diagram from the assertion of the proposition. All of them are fixed
pointwise by any cohomologically trivial automorphism of order 2, since such an automorphism
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fixes their intersection with F1 and F2. Hence, no such automorphism can exist by Proposition
4.1 applied to a general fiber of the fibration. Since no cohomologically trivial automorphisms of
higher order can occur on X by Corollary 7.7, we obtain Autct(X) = Z/3Z. �

REMARK 7.9. In fact, using conductrices as in Chapter II, one can show that the only genus
one fibrations on the supersingular Enriques surface of Proposition 7.8 are quasi-elliptic fibrations
with singular fibers of types I∗0 and I∗0 or elliptic fibrations with a unique singular fiber of type I∗3.

THEOREM 7.10. Assume that the automorphism groups of surfaces of type Ẽ8, D̃8, Ẽ
2
7 and Ẽ6,

are as in Table 2 and Table 3. Then, for any supersingular Enriques surface X in characteristic 2,
we have Autct(X) ∈ {1,Z/2Z,Z/3Z,Z/5Z,Z/7Z,Z/11Z, Q8},

8. Numerically trivial automorphisms

If KX = 0, Autnt(X) = Autct(X), so we only have to treat the case that KX 6= 0, i.e. X is
classical.

By definition, any g ∈ Autnt(X) leaves invariant any genus one fibration, however, it may act
non-trivially on its base, or equivalently, it may act non-trivially on the corresponding pencil |D|.
Also, by definition, any g ∈ Autct(X) fixes the half-fibers of a genus one fibration (their difference
in NS(X) is equal to KX ). The following lemma proves the converse.

LEMMA 8.1. A numerically trivial automorphism g that fixes all half-fibers on X is cohomo-
logically trivial.

PROOF. Since g is numerically trivial, it fixes any smooth rational curve, because they are the
unique representatives in NS(X) of their classes in Num(X). By assumption, it fixes the linear
equivalence class of all irreducible genus one curves. Applying Enriques Reducibility Lemma
from [CD89], Corollary 3.2.3 we obtain that g fixes the linear equivalence classes of all curves on
X . �

LEMMA 8.2. Let G be a finite, tame group of automorphisms of an irreducible curve C fixing
a nonsingular point x. Then, G is cyclic.

PROOF. Since G is finite and tame, one can linearize the action in the formal neighborhood of
the point x. It follows that the action of G on the tangent space of C at x is faithful. Since x is
nonsingular, the tangent space is one-dimensional and therefore the group is cyclic. �

THEOREM 8.3. Let X be an Enriques surface and assume that p 6= 2. Then, Autnt(X) ∼=
Z/2aZ with a ≤ 2. Moreover, if X is unnodal, then Autnt(X) = {1}.

PROOF. By Theorem 7.1 and Lemma 8.1, any g ∈ Autnt(X) has order 2 or 4, so it suffices
to show that Autnt(X) is cyclic. Since Autnt(X) is tame, every numerically trivial automorphism
has smooth fixed locus.

Assume that there is some g ∈ Autnt(X) \Autct(X). Then, g switches the half-fibers of some
elliptic fibration |2F1| on X by Lemma 8.1. The argument with the Euler-Poincaré characteristics
from the proof of Proposition 7.6 applies and shows that one of the two fibers F ′, F ′′ of |2F1| fixed
by g, say F ′, has at least 5 components. Hence, if X is unnodal, then Autnt(X) = {1} follows
from Theorem 7.1.
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If F ′ is additive, then it has some componentR, which is fixed pointwise by Autnt(X), because
it is adjacent to at least three other components. Since the fixed loci are smooth, any automorphism
fixing a (−2)-curve adjacent to R is trivial. Hence, the claim follows from Lemma 8.2.

If F ′ is multiplicative, the fixed point formula shows that F ′ is of type I and g has four fixed
points on F ′′. Extend F1 to a non-degenerateU[2]-sequence (F1, F2). Since F ′.F2 = 2, F ′ contains
a cycle of 3 (−2)-curves contained in a fiber D of |2F2|. Now, as in the additive case, we find a
(−2)-curve, which is fixed pointwise by Autnt(X). Indeed, if D is additive, we use the same
argument as before and if D is multiplicative, then some component of D meets a component of
F ′ exactly once in a nonsingular point of F ′. This component is fixed pointwise by Autnt(X). �

REMARK 8.4. The previous Theorem is not true if p = 2. Indeed, in Chapter II we have seen
an Enriques surface X of type D̃4 + D̃4 with the dual graph of (−2) curves

• • • • •

•

•

•

•

•

•

•

that satisfies Autnt(X) = (Z/2Z)2 (see Chapter II Section 11). Moreover, we have seen in the
proof of Corollary 7.2 that Autct(X) = {1}.

If p = 2, even though we still have the same bound on the size of Autnt(X), the cyclic group
of order 4 can not occur.

THEOREM 8.5. Let X be a classical Enriques surface in characteristic 2 which is not E8-
extra-special. Then, Autnt(X) ∼= (Z/2Z)b with b ≤ 2.

PROOF. By Corollary 7.2, Autct(X) 6= {1} if and only if X is D8-extra-special and for such
a surface we have Autnt(X) = Autct(X) = Z/2Z . Hence, we can assume Autct(X) = {1}. By
Lemma 8.1, we have Autnt(X) = (Z/2Z)b and we have to show b ≤ 2. Suppose that b ≥ 3 and
take some half-fiber F1. By Theorem 3.4, we can extend F1 to a non-degenerate U[2]-sequence
(F1, F2). Since |Autnt(X)| > 4, there is some numerically trivial involution g that preserves F1

and F2. By Remark 5.2, such an automorphism acts trivially on D1, hence it has to coincide with
the bielliptic involution associated to |2F1 + 2F2|. Both fibrations have a unique reducible fiber F
(resp. F ′) which has to be simple, since there is some numerically trivial involution which does
not preserve Fi. By Corollary 5.6, F and F ′ are additive and share 8 components. This is only
possible if they are of type I∗4 or II∗. Note that F.F ′ = 4 is impossible if both of them are of type
I∗4. In the remaining cases, it is easy to check that the surface is D8-extra-special. We have already
treated this surface. �



Outlook

In this last chapter, we want to summarize our results on automorphisms of Enriques surfaces
and point the reader to some questions we have left open as well as give some ideas on how to
solve them.

In Chapter I, despite the absence of transcendental methods, it was possible to solve the classi-
fication problem of Enriques surfaces with finite automorphism group and smooth K3 cover com-
pletely, using a separable quadratic twist construction. On the way, we also gave a complete de-
scription of the corresponding moduli spaces as well as minimal fields of definition for the surfaces
and their automorphisms. Even in characteristic 0, this arithmetic information is new. However,
it is not quite clear how the seven families of Enriques surfaces with finite automorphism group
in characteristic 0 are connected to the classical and supersingular Enriques surfaces with finite
automorphism group in characteristic 2. While the techniques of Chapter I only work in the case
of Enriques surfaces with smooth canonical cover whereas the techniques of Chapter II only work
in the other cases, the approach of Chapter III using bielliptic maps might make it possible to give
explicit models connecting these two worlds.

In Chapter II, we completed the classification of Enriques surfaces with finite automorphism
group in characteristic 2. Nevertheless, there are still some open problems related to the classifica-
tion. For example, the problem of describing the corresponding moduli space is still open and we
did not give minimal fields of definition for the Enriques surfaces with finite automorphism group.
To solve these two problems, one could either try to extend the quadratic twist construction to the
inseparable case and argue as in Chapter I or one could use bielliptic maps as in Chapter III and,
by a very careful study of the branch loci of these bielliptic maps, give a description of the moduli
space of Enriques surfaces with finite automorphism group.

In Chapter III, we gave the classification of possible groups of cohomologically and numer-
ically trivial automorphisms of Enriques surfaces in arbitrary characteristic. Of course, the next
step would be a classification of Enriques surfaces, which admit such numerically trivial automor-
phisms. We have already taken some steps into this direction in Chapter III and a classification
of these surfaces in odd characteristics will be given in [DL]. As in the case of Enriques surfaces
with finite automorphism group, the classification of classical and supersingular Enriques surfaces
with numerically trivial automorphisms in characteristic 2 may be obtainable by keeping track of
the singularities of their canonical cover. We hope to address this problem in a future paper.
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[KK15b] T. Katsura and S. Kondō. On Enriques surfaces in characteristic 2 with a finite group of
automorphisms. To appear in J. Algebraic Geometry, 2015.
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