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Abstract

Graphical modeling has mainly been limited to discrete and Gaussian distributions, distributions
that lead to severe underestimation of large risks and, therefore, to unsuitable models in the
context of risk assessment. This thesis deals with the development and investigation of a class
of graphical models that finds its application in situations where extreme risks play an essential
role and may propagate through a network, for example, when modeling water levels or pollution
concentrations in a river or when modeling risks in a large industrial structure.

We use the concept of structural equation modeling to introduce the class of recursive max-
linear models. The causal structure of a recursive max-linear model is represented by a directed
acyclic graph, and the node variables are max-linear functions of their parental node variables
and independent noise variables. Natural candidates for the noise distributions are extreme
value distributions or distributions in their domains of attraction resulting in a corresponding
multivariate distribution.

First, we study structural properties of recursive max-linear models. Different directed acyclic
graphs and weights in the max-linear structural equations may lead to the same recursive max-
linear model; but all of them lead to the same max-linear representations of the model in terms
of the noise variables. We characterize these graphs and weights and point out the minimum
directed acyclic graph that represents the causal structure of the model. In particular, we address
the relation between the weights in the structural equations and the coefficients in the max-linear
representations in detail. Further, we give necessary and sufficient conditions on a max-linear
model to be a recursive max-linear model. Throughout we exploit the natural orders between the
node variables and between the max-linear coefficients, for example, to obtain reduced model
representations.

In the second part of the thesis, we assume regularly varying noise variables leading to extremal
dependence between the components of a recursive max-linear model. The focus is on the matrix
of pairwise tail dependence coefficients, which measure the extremal dependence between two
random variables. Motivated by the fact that a multivariate Gaussian distribution is completely
determined by its mean and its covariance matrix, we investigate how far the coefficients of a
recursive max-linear model and its underlying graph can be recovered from its tail dependence
matrix. For example, the associated minimum graph is identifiable from the tail dependence
matrix and a causal ordering of any associated graph. We present a procedure that, given a tail
dependence matrix of a recursive max-linear model, finds all recursive max-linear models with
this tail dependence matrix.

In the last part, we consider the identifiability and estimation of recursive max-linear models.
We show that the max-linear coefficient matrix and the noise distributions can be identified from

the distribution of a recursive max-linear model. To infer these quantities from observational
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data, we cannot apply standard methods as the assumptions usually made are not satisfied.
However, we can use the distributional properties of the ratio between two components to find,
with probability 1, the true max-linear coefficient matrix exactly, provided the number of ob-
servations is sufficiently large. An estimate we suggest if the true underlying graph is known
has the same property. We prove that this estimate can be considered a maximum likelihood

estimate in an extended definition.
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Zusammenfassung

Die graphische Modellierung beschrankt sich bisher hauptséchlich auf diskrete und Gauf3sche
Verteilungen, Verteilungen, die zu einer starken Unterschiatzung groflier Risiken und damit zu
ungeeigneten Modellen im Rahmen der Risikobewertung fiihren. Diese Arbeit beschaftigt sich
mit der Entwicklung und Untersuchung einer Klasse von graphischen Modellen, die ihre An-
wendung in Situationen findet, in denen extreme Risiken eine wesentliche Rolle spielen und
sich iiber ein Netzwerk ausbreiten konnen. Beispiele sind die Modellierung von Wasserstédnden
oder Schadstoffkonzentrationen in einem Fluss oder von Risiken in einer grofien industriellen
Struktur.

Wir verwenden das Konzept der Strukturgleichungsmodellierung, um die Klasse rekursiver
max-linearer Modelle einzufiihren. Die kausale Struktur eines rekursiven max-linearen Modells
wird durch einen gerichteten azyklischen Graphen représentiert. Die Knotenvariablen sind max-
lineare Funktionen der elterlichen Knotenvariablen und unabhéngiger Fehlerterme. Natiirliche
Kandidaten fiir die Fehlertermverteilungen sind Extremwertverteilungen oder Verteilungen in
deren Anziehungsbereichen, die zu einer entsprechenden multivariaten Verteilung fithren.

Zunachst untersuchen wir strukturelle Eigenschaften rekursiver max-linearer Modelle. Unter-
schiedliche gerichtete azyklische Graphen und Gewichte in den max-linearen Strukturgleichun-
gen kénnen zum selben rekursiven max-linearen Modell fiihren; aber alle von ihnen fiithren zu
den gleichen max-linearen Darstellungen des Modells beziiglich der Fehlerterme. Wir charakter-
isieren diese Graphen und Gewichte und heben den minimalen gerichteten azyklischen Graphen,
der die kausale Struktur des Modells reprisentiert, besonders hervor. Insbesondere beleuchten
wir ausfithrlich den Zusammenhang zwischen den Gewichten in den Strukturgleichungen und
den Koeffizienten in den max-linearen Darstellungen. Ferner geben wir notwendige und hinre-
ichende Bedingungen fiir ein max-lineares Modell, ein rekursives max-lineares Modell zu sein,
an. Durchgehend nutzen wir die natiirlichen Ordnungen zwischen den Knotenvariablen und zwis-
chen den max-linearen Koeflizienten aus, um beispielsweise reduzierte Modelldarstellungen zu
erhalten.

Im zweiten Teil der Arbeit gehen wir von regelméafig variierenden Fehlertermen aus, die zu
einer extremalen Abhangigkeit zwischen den Komponenten eines rekursiven max-linearen Mod-
ells fithren. Der Fokus liegt auf der Matrix der paarweisen Tail-Dependence-Koeffizienten, welche
die extremale Abhéngigkeit zwischen zwei Zufallsvariablen messen. Motiviert durch die Tatsache,
dass multivariate Gauf3-Verteilungen vollstdndig durch ihren Erwartungswert und ihre Kovari-
anzmatrix bestimmt sind, untersuchen wir, wie weit sich die Koeffizienten eines rekursiven max-
linearen Modells und sein zugrunde liegender Graph aus seiner Tail-Dependence-Matrix bes-
timmen lassen. Beispielsweise ist der zugehorige Minimalgraph aus der Tail-Dependence-Matrix

und einer kausalen Ordnung eines jeden zugehorigen Graphen identifizierbar. Wir stellen ein



Verfahren vor, welches fiir eine gegebene Tail-Dependence-Matrix eines rekursiven max-linearen
Modells alle rekursiven max-linearen Modelle mit dieser Tail-Dependence-Matrix findet.

Im letzten Teil beschéftigen wir uns mit der Identifizierbarkeit und der Schétzung rekursiver
max-linearer Modelle. Wir zeigen, dass die max-lineare Koeffizientenmatrix und die Fehlerterm-
verteilungen anhand der Verteilung eines rekursiven max-linearen Modells identifiziert werden
konnen. Um diese Groflen aus Beobachtungsdaten zu gewinnen, kénnen wir keine Standard-
methoden anwenden, da die dabei iiblicherweise getroffenen Annahmen nicht erfiillt sind. Wir
kénnen jedoch die Verteilungseigenschaften des Quotienten zweier Komponenten verwenden,
um mit Wahrscheinlichkeit 1 die wahre max-lineare Koeffizientenmatrix zu finden, vorausge-
setzt, die Anzahl der Beobachtungen ist hinreichend gro. Ein Schéatzer, den wir empfehlen,
wenn der wahre zugrunde liegende Graph bekannt ist, hat die gleiche Eigenschaft. Wir be-
weisen, dass dieser Schétzer in einer erweiterten Definition als Maximum-Likelihood-Schétzer

angesehen werden kann.
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Chapter 1
Introduction

In this chapter we first introduce briefly the key concepts and methods we use subsequently in
this thesis. We then outline the scope of the thesis and state the main results. Finally, we give

an overview and summary of research topics and works on the model developed in this thesis.

1.1 General introduction and motivation

This thesis aims to develop a class of graphical models for modeling extreme events.

1.1.1 Graphical models

Probabilistic graphical models (graphical models for short) are a marriage between probability
theory and graph theory and are a useful tool to reduce the complexity of multivariate statistical
modeling. Profound introductions into graphical modeling can be found in Koller and Friedman
[45] and Lauritzen [47]. Each node of the graph is identified with a random variable, and the edges
in the graph are used to encode conditional independence relations between the random variables.
So graphical models provide a simple way to visualize the structure of a probabilistic model, and
model properties can be read off directly from the graph. It is therefore not astonishing that this
rich class is widely used in various areas of application as, for example, in artificial intelligence,
biology, decision support systems, engineering, finance, genetics, geology, and medicine (see e.g.

Pourret et al. [59], the above textbooks and references therein).

Directed acyclic graphs

In this thesis we focus on directed acyclic graphs (DAGs) leading to directed graphical models,
also called Bayesian networks. Figure 1.1.1 shows examples of graphs. The left graph is no DAG,
since it has an undirected edge between 3 and 5; the middle graph is no DAG, since it has a
(directed) cycle 1 - 2 - 4 - 3 — 1; the right graph is a DAG.

Markov properties

A graphical model is directed if the distribution satisfies the local Markov property with respect
to the DAG: each variable is conditionally independent of its non-descendants (excluding the
parents) given its parents in the DAG (cf. Chapter 3.2 of [47]). Applying the local Markov
to the DAG from Figure 1.1.1 yields the conditional independence relations Xo 1 (X3, X5) |
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Figure 1.1.1: Example of graphs. We identify the nodes 1,...,5 with the random variables X1, ..., X5.
The right graph is a DAG: all edges are directed and there are no (directed) cycles.

X1, Xs 1L Xo | Xy, X4 1 (X1,X5) | (Xo,X3), and X5 1 (X3, X2, X4) | X3. All conditional
independence relations that are implied by the local Markov property are encoded in the DAG
via the global Markov property. The criterion of d-separation explains how these relations can be
read off from the DAG (see Corollary 3.23 and Proposition 3.25 of [47] for precise definitions).
If the distribution has a density with respect to a product measure, then the density factorizes
according to the DAG (see second paragraph of Section 3.2.2 and Theorem 3.27 of [47]). This
property is called recursive factorization. It is equivalent to the local and hence the global Markov

property and is probably the most commonly used property to define directed graphical models.

Recursive structural equation models

Given a DAG, a recursive structural equation model (recursive SEM) is a multivariate statistical
model where every random variable is associated with a node and can be written as a (measur-
able) function of its parents and an independent noise variable. The distributions of recursive
SEMSs satisfy, by construction, the local and hence the global Markov property with respect to
the associated DAG (see Theorem 1.4.1 and the related discussion in Pearl [55]). Thus recursive

SEMs offer a possibility to construct directed graphical models.

Causal models

Establishing and understanding cause-effect relations is an omnipresent desire in science and
daily life. It is especially important when dealing with extreme risks, because knowing and
understanding the causes of extreme events could help us to deal better with such events.
Recursive SEMs play an important role in the field of causal inference; cf. Bollen [5], Pearl [55],
and Spirtes et al. [69]. The causal structure of a recursive SEM is described by the associated
DAG. Using DAGs has the advantage that parental variables can be considered to be direct
causes of its children. As an example, the edge 1 - 3 in the DAG from Figure 1.1.1 reflects a

(direct) causal influence of X; (cause) on X3 (effect).

Structure learning

Assume we have observations of a graphical model or a recursive SEM and we want to adress the
estimation of the DAG (structure learning). We want to stress that in this thesis we assume that
all variables are observed, that is, there are no hidden variables. Since, with respect to a given

distribution, many different DAGs satisfy the Markov property (because of the equivalence, it
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does not matter if we use the local or global Markov property), the Markov property is not enough
to be able to recover the DAG from the observations. In addition to the Markov property, many
common structure learning methods assume faithfulness, which means that the distribution is
assumed to have no conditional independence relations except those represented in the DAG by
the Markov property (cf. Sections 3.4.3, 3.5.2 of [69]). Two DAGs can be different but still entail
the same conditional independence relations via the Markov property; such DAGs are called
Markov equivalent. For a characterization of these DAGs, see e.g. Verma and Pearl [71]. Thus
any method that assumes faithfulness and learns by observed conditional independence relations
cannot distinguish between such DAGs and identifies Markov equivalence classes. A well-known
example of such a method is the PC algorithm (Spirtes and Glymour [67]). So, without further

assumptions, the graphs in the Markov equivalence classes cannot be distinguished.

Restricted recursive SEMs

However, if we put certain restrictions on the functions of recursive SEMs, their noise variables,
or both, then for some of these classes the DAG is identifiable from the distribution. For the
causal inference this would mean that, if the data follow a recursive SEM from such a restricted
class of recursive SEMs and assuming that all variables are observed, the causal structure can
be inferred from observational data only. Important research tasks for restricted recursive SEMs
include the identifiability of the coefficients and the associated DAG from the distribution and
the structure learning from a finite sample. The book by Peters et al. [58] provides a nice overview
and introduction into this field of research and summarizes the current state of research. Recently,
the identifiability theory was mainly elaborated for additive recursive SEMs with Gaussian noise

(see e.g. Ernest et al. [21] and references therein).

1.1.2 Extreme value theory

Extreme value theory is concerned with the analysis and quantification of very rare and unusal
events. Examples for such events include hurricanes, extreme wind gusts, floods, and heavy
rainfall. They are from particular interest for society and industry as they are mostly dangerous

and very costly.

Motivating example: extreme risks in networks

The development of extreme value theory and extreme value statistics has always been driven by
applications. So the research presented in this thesis has been motivated by applications, more
precisely by a technical risk analysis. Involved in an industrial project, we applied extreme value
statistics to the safety of airplane landings and estimated the risk of serious incidents during an
airplane landing (Gissibl et al. [29], Wang et al. [72]). One specifically risky event is the so-called
runway overrun, which describes the fact that an airplane is unable to stop before the end of
the runway. A case study can be found in Ayra [3]. As part of this projekt, the DAG shown
in Figure 1.1.2 was developed. It shows the dependence structure, given by the DAG, between

numerous physical quantities that may contribute to a runway overrun. Extraordinary values of
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Figure 1.1.2: DAG describing the relationships between the physical quantities that may contribute to
a runway overrun during an airplane landing.

some quantities may propagate through the DAG and lead invariably to a runway overrun. The
thesis aims to develop models that are able to model such situations. To give another example,
a river naturally forms a DAG. In the modeling of floods in rivers (Asadi et al. [2]), the extreme
dependence structure, given by the DAG underlying the river, should be taken into account.
Further examples include chemical pollution of rivers (Hoef et al. [35]), financial risk (Einmahl
et al. [20]), and many others. Here graphical models appear as a natural class of models. So far,

however, they are less suitable for modeling extreme events.

Graphical models mainly underestimate extreme risks

Despite the broad scope of applicability, graphical modeling of continuous random variables has
mainly been limited to Gaussian distributions; see e.g. [45, 47]. In the context of risk assessment,
risk variables are usually modeled by continuous variables; however, it has been known for a
long time that Gaussian models in almost all cases underestimate extreme events severely. Thus

there is a need for graphical models that do not underestimate extreme risks.

We now introduce the key concepts of extreme value theory needed in this thesis, but would like
to mention that the focus of this thesis is on the graphical modeling with its associated concepts
and only basic concepts of extreme value theory are used. Detailed introductions into extreme

value theory are given in de Haan and Ferreira [14], Beirlant et al. [4], and Resnick [60, 61].



1.2 Scope and goals of this thesis

In extreme value theory maz-stable distributions occur as limit distributions of normalized
maxima. We deal with a conceptually simple but useful class of distributions whose max-stable

distributions have a special property.

Max-linear (ML) models

A maz-linear (ML) model is a multivariate probabilistic model where every component is a max-
linear function of independent random variables. ML models are a natural extremal analogue of
linear models. The random variables are usually assumed to be standard 1-Fréchet distributed.
Similar to Wang and Stoev [73], we generally allow random variables with support R,. Within
the class of max-stable distributions, the spectral measure of a max-linear model, which describes
the dependence structure, is discrete. Conversely, every max-stable random vector with discrete
spectral measure is max-linear. Another interesting result is that every max-stable distribution
can be approximated arbitrarily well via a ML model (e.g. Yuen and Stoev [75], Section 2.2).
ML models have been investigated, generalized, and applied to real world problems by many
researchers; see e.g. Cui and Zhang [11], Einmahl et al. [19], Falk et al. [23], Kiriliouk [41],
Schlather and Tawn [64], Strokorb and Schlather [70], and [73].

Tail dependence coefficients

The dependence structure of max-stable distributions is described by rather complex measures
such as the exponent measure, the spectral measure, the stable tail dependence function, and
the Pickand’s dependence function. This complexity makes it difficult to estimate them, see
e.g. [17, 19] and the references therein. Therefore, simpler extremal dependence measures are
often considered. In this thesis we consider the (upper) tail dependence coefficient between two
random variables, which goes back to Sibuya [66]. It is, roughly speaking, the probability of
observing a large value in one variable provided that a large value has been observed for the
other variable. The tail dependence coefficient is a special case of the extremogram (Davis and
Mikosch [12]), which is a natural extremal analogue of the correlation function for stationary
processes. It finds its application in many situations. One problem which is addressed for tail
dependence coefficients is, for example, the construction of max-stable distributions with given
tail dependence coefficients (see e.g. Falk [22] and [23, 64, 70]). Note that the tail dependence
coefficient is not only defined for max-stable distributions, but is only meaningful if the distri-
bution is heavy-tailed. Therefore, when working with tail dependence coefficients, we require

corresponding distributions for the random variables of the ML models.

1.2 Scope and goals of this thesis

The main goal of this thesis is to develop a statistical model that can be applied in a variety of
different areas and in situations where extreme risks play an essential role and may propagate
through a network. To this end, we use the concept of structural equation modeling and define

the class of recursive maz-linear (ML) models.
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Recursive ML models

A recursive ML model on a DAG D is a SEM where every random variable is a max-linear
function of the parental node variabes in D and an independent noise variable with support
R, = [0, 00). The precise mathematical definition can be found in Section 2.1. We may think of
the positive weights in the max-linear structural equations as relative quantities reflecting that
a risk may originate with certain proportions in its different ancestors.

In this thesis we address different research problems for this model class.

Chapter 2: Max-linear models on directed acyclic graphs

In Chapter 2 we shed light on the structural properties of a recursive ML model. In the subse-
quent chapters, we use these properties extensively.

Almost all results we present in this chapter are based on the fact that there is no cancellation
on R, = [0, 00) with respect to the maximum v. This means that for some a,b,c€ R;, ave=bve
but a # b. In contrast, the addition, for example, has this property, i.e., for all a,b,c € Ry, if
a+c=b+c, then a = b. That this property does not hold for the maximum leads to a complexity
reduction of the model in many ways what we would like to discuss in the following.

The actual central property of a recursive ML model is the max-linearity in terms of its noise
variables. The corresponding max-linear (ML) coefficients can be obtained by a path analysis
of D; more precisely, the computation of the ML coefficients corresponds to the algebraic path
problem over the max-times semiring (R;,Vv,-) (see e.g. Mahr [51] and Rote [62]). Each path
is assigned a weight and that is the product of the edge weights along the path. The problem
consists then in finding a path between two nodes having maximum weight. The most well-
known problem of this kind is probably the shortest path problem. What the product is in
our problem, is there the sum, and the minimum corresponds to the maximum. So only the
maz-weighted paths are relevant for the ML model representation of a recursive ML model.
As a consequence, a polytree represents the max-linear structural equation and the max-linear
model representation of a component of a recursive ML model. With this, we often find further
conditional independence relations that are not entailed by the (global) Markov property applied
to its DAG. Hence, a recursive ML model is generally not faithful.

Again because of the above property of the maximum, different DAGs and edge weights may
define the same recursive ML model. However, all of them lead to the same ML coefficient
matrix and can be computed from it. We characterize these DAGs and edge weights. Here the
minimum DAG representing the causal structure plays an important role. This result has direct
implications for the identifiability and the estimation of a recursive ML model: the true DAG
and the true weights of the max-linear structural equations cannot be recovered in general.

We also specify necessary and sufficient conditions on a matrix to be the ML coefficient matrix
of a recursive ML model, both in the case where the associated DAG is given and in the case
where it is arbitrary. Using the matrix product over (R,,v,-), the ML coefficient matrix is in
both cases the solution of a fixed point equation.

In the last part of this chapter, given a set of node variables of a recursive ML model, we
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investigate which insights can be gained about the others. We present a minimal subset of the

given node variables that provides the same information.

Chapter 3: Tail dependence of recursive max-linear models with regularly varying

noise variables

In Chapter 3 we assume regularly varying noise variables (cf. Section 3.1.1 below). This leads
to models treated in classical multivariate extreme value theory, and we may have extremal
dependence between two components of a recursive ML model. The latter would not be the case
if we did not assume heavy-tailed noise variables, and the matrix of pairwise tail dependence
coefficients, further referred to as tail dependence matriz, would be meaningless. The question
of identifiability of restricted SEMs and the fact that a multivariate Gaussian distribution is
completely defined by its mean and its covariance matrix motivated us to study the identifiability
of a recursive max-linear model from its tail dependence matrix in this heavy-tailed setting.

We know from above that we cannot identify either its true DAG or its true weights in the max-
linear structural equations. It is also not possible to recover the ML coefficient matrix. In fact,
uncountably many recursive ML models with arbitrary index of regular variation have the same
tail dependence matrix. However, we show that the DAGs representing the max-linear structural
equations are identifiable from the tail dependence matrix and some additional information on
the associated DAG such as the reachability matrix (i.e., the matrix whose ij-th entry is one if
i =7 or i is an ancestor of j and zero else) or only a causal ordering (i.e., a permutation o on
V ={1,...,d} such that o(j) < o(¢) for all ¢ and their ancestors j).

We call a recursive ML model maz-weighted if all paths are max-weighted. Because of its
simple structure, this subclass of recursive ML models plays a special role, not only in this
chapter. Here we can recover the DAGs from the tail dependence matrix and the initial nodes
of the associated DAG. Further, we present necessary and sufficient conditions on a matrix to
be the tail dependence matrix of a recursive max-weighted model on a given DAG.

We propose an algorithm that, given a tail dependence matrix of a recursive ML model, finds
all recursive ML models with this tail dependence matrix. We also develop such a procedure
especially for the subclass of recursive max-weighted models.

Another interesting problem we address is how DAGs of recursive ML, models with the same
tail dependence matrix relate to each other. For example, an initital node in a DAG of a recursive
max-weighted model is again an initial node in a DAG of a recursive max-weighted model with

the same tail dependence matrix or it is a terminal node.

Chapter 4: Identifiability and estimation of recursive max-linear models

In Chapter 4 we study the identifiability and estimation of recursive ML models. We relax
again the assumptions on the noise variables and assume here independent and atomfree noise
variables with support R,. In risk settings, which we have in mind when thinking of possible
applications, it is natural to require the noise variables to have positive infinite support and

atomfree distributions.
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In contrast to the identifiability problem from Chapter 3, given the distribution of a recursive
ML model, the ML coefficient matrix and hence the class of DAGs and edge weights defining
the recursive ML model can be recovered; furthermore, the noise distributions are identifiable.
To explain this easily and convincingly, we consider the ratio between two components and
show that its support determines the relationship between the two corresponding nodes in the
associated DAG uniquely. We use these theoretical findings to propose a simple procedure to
learn the ML coefficient matrix from observational data. It has the nice property to identify,

with probability 1, the true ML coefficient matrix for a sufficiently large number of observations.

The main part of this chapter deals with the parameter learning of recursive ML models
with known DAG. The statistical theory of recursive ML models is generally challenging, here,
for example, since no o-finite measure exists on the space of observations that dominates the
distributional family of recursive ML models on the given DAG. So standard likelihood the-
ory does not apply. Kiefer and Wolfowitz [40] extended the standard definition of a maximum
likelihood estimate (MLE) to the non-dominated case. Following this approach, our goal is to
find the corresponding MLEs of the ML coefficient matrix. But, like the standard definition,
the Kiefer-Wolfowitz approach suffers from the problem that the recommended densities are
only uniquely defined up to almost sure equality. That the densities can be changed on null sets
leads to different MLEs depending on the used density version. We illustrate this difficulty by
examples. Among the potential MLESs, one stands out. It is based on the minimal observed ratio
between two components and is, with probability 1, equal to the true ML coefficient matrix if the
number of observations is sufficiently large. We prove that this estimate is a MLE in the sense
of Kiefer-Wolfowitz but also discuss others. The most elaborate step is to derive the densities.

Here we find interesting relationships with other classes of graphical models.

Each chapter of the thesis is based on a paper or a manuscript which is very close to be
submitted:

Chapter 2: N. Gissibl and C. Kliippelberg. Max-linear models on directed acyclic graphs.
Bernoulli, 24(4A):2693-2720, 2018.

Chapter 3: N. Gissibl, C. Kliippelberg, and M. Otto. Tail dependence of recursive max-linear
models with regularly varying noise variables. Fconometrics and Statistics,
6:149-167, 2018.

Chapter 4: N. Gissibl, C. Kliippelberg, and S. L. Lauritzen. Identifiability and estimation of

recursive max-linear models. In preparation, 2018.

The individual chapters are basically self-contained. They introduce the notation, methodology,
and literature which is needed to understand the chapters in their respective introductory sec-
tions. Different notations, abbreviations, and model assumptions on a recursive ML model seem

reasonable in different settings; therefore, they might differ from chapter to chapter.



1.2 Scope and goals of this thesis

Research on recursive ML models

We conclude the Introduction with the presentation of further research works on recursive ML
models, which shows the variety of topics linked to this model class. Overall, we observe that
extreme value theory and extreme value statistics are slowly starting to make their way into
graphical modeling (see e.g. Hitz and Evans [34] and Papastathopoulos and Strokorb [54]).

Because of the accumulated knowledge on recursive ML models, we expect that a consequent
use of algebraic theory based on properties of the max-times semiring (R, Vv,-) (see e.g. Butkovi¢
[7]) would simplify the theory of recursive ML models. Zhang [76] started to investigate this, for
example, by finding the fixed point of the max-linear structural equations defining a recursive
ML model. Further promising results in this direction are achieved in this master’s thesis.

As already mentioned, a recursive ML model is generally not faithful to its DAG. Kliippelberg
and Lauritzen [43] prove that a recursive ML model is faithful if and only if the DAG has at
most one path between two nodes. This paper also provides a detailed overview and summary of
the methodological concepts of this model; for example, the necessary graph terminology, basic
properties of conditional independence, and the Markov properties of directed graphical models
and their relation to SEMs are discussed.

Parts of the paper
N. Gissibl and C. Klippelberg. Prediction of recursive max-linear models. In preparation, 2018.

have been contained in the very first version of Gissibl and Kliippelberg [27] available online
using the link https://arxiv.org/pdf/1612.07522v1.pdf. In this paper we assume that some
node variables of a recursive ML model are observed and we want to predict the values of the
remaining. In a first step, we investigate representations of node variables in terms of a given
subset of node variables and a minimal number of noise variables. In some situations, this leads
to almost sure equality between two distinct appropriately scaled node variables. This result
has direct implications for the prediction problem: some of the unknown node variables can,
with probability 1, be predicted exactly. We use these results to provide an algorithm for the
prediction problem. Given observations of parts of a recursive ML model, it predicts the other
node variables. To prove its correctness, we also determine reduced forms of regular conditional
distributions compared to previous representations (see e.g. [73]).

Chapter 3 of this thesis is the continuation of the work presented in Otto [53]. The focus
of this master’s thesis is on the so-called homogeneous model (see Example 3.3.1 below). The
homogeneous model is a special case of a recursive ML model and is completely determined
by the reachability matrix of any underlying DAG. Because of its simple structure, it was the
starting point for the development of recursive ML models and is still an important model to
try new ideas and approaches for recursive ML models. In [53] a consistent and asymptotically
normal estimator for the tail dependence matrix is suggested. The performance of this estimator
and the algorithms developed in this master’s thesis to recover homogeneous models as far as
possible from their tail dependence matrices is evaluated on simulated data sets.

As in Chapter 3, Krali [46] requires regularly varying noise variables in recursive ML models.

The author proposes a scaling technique for causal order search and an estimation procedure



Chapter 1 Introduction

for the scaling parameters. Algorithms developed here are tested for their performance in a
simulation study with the result that they perform nicely even in high dimensions.

Hartl [32] has done important preliminary work for Chapter 4 of this thesis. The estimate
mentioned above that is based on the minimal observed ratio between two components is in-
vestigated and first properties are presented, mainly under the assumption of standard Fréchet
distributed noise variables. In addition, the author illustrates the performance of this estimate
on simulated data and makes first attempts to infer the minimum underlying causal structure
of a recursive ML model from observational data. For the latter a method is suggested which
also seems to work if the data do not follow a recursive ML model exactly. We come back to
this in the conclusion and outlook of Chapter 4.

A recursive ML model has already been fitted to real data. In fact, Einmahl et al. [20] present
an estimator of the tail dependence function in the context of extreme value theory and apply
it to data from the EURO STOXX 50 Index assuming an underlying recursive ML model on a
known DAG with standard 1-Fréchet distributed noise variables.

The last work related to recursive ML models we would like to mention is that of Kliippelberg
and Sonmez [44]. They extend the definition of this model class to infinite graphs and inves-
tigate their relations to classical percolation theory, more precisely to nearest neighbor bond

percolation.
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Chapter 2

Max-linear models on directed acyclic

graphs

Abstract

We consider a new recursive structural equation model where all variables can be written as
max-linear function of their parental node variables and independent noise variables. The model
is max-linear in terms of the noise variables, and its causal structure is represented by a directed
acyclic graph. We detail the relation between the weights of the recursive structural equation
model and the coefficients in its max-linear representation. In particular, we characterize all
max-linear models which are generated by a recursive structural equation model and show that
its max-linear coefficient matrix is the solution of a fixed point equation. We also find the
minimum directed acyclic graph representing the recursive structural equations of the variables.
The model structure introduces a natural order between the node variables and between the
max-linear coefficients. This yields representations of the vector components, which are based

on the minimum number of node and noise variables.
MSC 2010 subject classifications: Primary 60G70, 60E15, 05C20; secondary 05C75

Keywords and phrases: Directed acyclic graph, graphical model, max-linear model, minimal

representation, path analysis, structural equation model

2.1 Introduction

Graphical models are a popular tool to analyze and visualize conditional independence relations
between random variables (see e.g. Koller and Friedman [45] and Lauritzen [47]). Each node
in a graph indicates a random variable, and the graph encodes conditional independence rela-
tions between the random variables. We focus on directed graphical models, also called Bayesian
networks, where edge orientations come along with an intuitive causal interpretation. The con-
ditional independence relations between the random variables, which are encoded by a directed
acyclic graph (DAG), can be explored using the (directed) Markov property: each variable is con-
ditionally independent of its non-descendants (excluding the parents) given its parents (cf. [47],
Chapter 3.2).

Despite many areas of application for directed graphical models, ranging from artificial intel-

ligence, decision support systems, and engineering to genetics, geology, medicine, and finance

11



Chapter 2 Max-linear models on directed acyclic graphs

(see e.g. Pourret et al. [59]), graphical modeling of random vectors has mainly been limited
to discrete and Gaussian distributions; see e.g. [45, 47]. In the context of risk assessment, risk
exposures are usually modeled by continuous variables, however, the assumption of Gaussianity
leads invariably to severe underestimation of large risks and therefore to unsuitable models.

Recursive structural equation models (recursive SEMs) offer a possibility to construct directed
graphical models; cf. Bollen [5], Pearl [55], and Spirtes et al. [69]. For a given DAG D = (V, E)
with nodes V ={1,...,d} and edges E = {(k,i):i €V and k € pa(i)} define

Xi= i Xpaeys Zi)s i=1,....d, (2.1.1)

where pa(i) denotes the parents of node 7 in D and f; is a real-valued measurable function;
Z1,...,2q are independent noise variables. Thus a recursive SEM is specified by an underlying
causal structure given by a DAG D, the functions f;, and the distributions of Z; for i =1,...,d.
In this setting the distribution of X = (X71,..., Xy) is uniquely defined by the distributions of

the noise variables and, denoting by nd(i) the non-descendants of node 1,
X; ﬂ-Xnd(i)\pa(i) | Xpa(i)v 1=1,...,d; (2.1.2)

i.e., the distribution of X is Markov relative to D (see Theorem 1.4.1 and the related discussion
in [55]). Recently, recursive linear SEMs and generalizations in a Gaussian setting have received
particular attention; see Bithlmann et al. [6], Ernest et al. [21], and references therein.

Our focus is not on sums but on maxima, where natural candidates for the noise distributions
are the extreme value distributions or distributions in their domains of attraction; see e.g. Resnick
[60, 61]. We define a recursive maz-linear (ML) model X on a DAG D by

Xi = \/ CkiXkVCiiZiy i:1,...,d, (213)
kepa(i)
with independent random variables Z1, ..., Z; with support R, = [0,00) and positive weights

cki for all i € V and k e pa(i) u {i}.

This new model is motivated by applications to risk analysis, where extreme risks play an
essential role and may propagate through a network. In such a risk setting, it is natural to
require the noise variables to have positive infinite support. Moreover, we may think of the edge
weights in (2.1.3) as relative quantities so that a risk may originate with certain proportions in
its different ancestors.

In this chapter we investigate structural properties as well as graph properties of a recursive
ML model X on a DAG D. We will show that X is a maz-linear (ML) model (for background on
ML models in the context of extreme value theory, see e.g. de Haan and Ferreira [14], Chapter 6)

in the sense that

d
X =\/biZ;, i=1,....d, (2.1.4)
j=1
with Z1,...,Zg as in (2.1.3), and B = (b;;)dxq is @ matrix with nonnegative entries. We call B

12



2.1 Introduction

maz-linear (ML) coefficient matriz of X and its entries max-linear (ML) coefficients.

The ML coefficients of X can be determined by a path analysis of D. Throughout we write
k — i if there is an edge from k to i in D. We assign a weight to every path p = [j = kg — k1 —>
-+ >k, = i], which is the product of the edge weights along p multiplied by the weight of the
noise variable Z; (a concept which goes back to Wright [74]):

n-1

dji(P) = ChokoChoskr - - Chn—zskin1 Chn-1,kn = Chosko L | Chu ke - (2.1.5)
v=0

We will show that the ML coefficients are given for i € V' by

bji = \Ié dj,‘(p) for j € an(i), bii = Cij, and bji =0 for j eV~ (an(i) @] {7,}), (2.1.6)
pery;

where Pj; is the set of paths from j to ¢ and an(i) the ancestors of i.

The computation in (2.1.6) corresponds to the algebraic path problem over the max-times
semiring (R.,Vv,-) (see e.g. Mahr [51] and Rote [62]). We present it in matrix form using the
matrix product over (Ry,v,-). We apply this concept in the two different situations, where the
DAG D is given, and we test if a given ML coefficient matrix is consistent with D, but also later
on, when we check if a given matrix defines a recursive SEM on some unspecified DAG.

From (2.1.6) it is clear that not all paths are needed for representing X as ML model (2.1.4).
This perception leads to a complexity reduction of the model in different ways and in different
situations. For every specific component X; of X only those paths with terminal node ¢ which
carry the maximum weight are relevant for its representation (2.1.4), and we call them maz-
weighted paths. All other paths can be disposed of without changing this representation. It is
even sufficient to consider only one in D max-weighted path from every ancestor of ¢ to i.
Consequently, X; can be represented as component of a recursive ML model on a polytree with
node set an(z)u{i} and with the same weights and noise variables as in the original representation
(2.1.3).

However, in general none of these individual polytrees represents all components of X in
the sense of (2.1.3) simultaneously. Still there may be subgraphs of D and weights such that
all components of X have representation (2.1.3), and we present all such possible subgraphs
and weights. In particular, we characterize the smallest subgraph of this kind, which we call
minimum maz-linear (ML) DAG of X, and point out its prominent role.

We show that all DAGs and weights which represent X as in (2.1.3) can be identified from the
ML coefficient matrix B of X. In this context, we also give necessary and sufficient conditions
on a matrix to be the ML coefficient matrix of some recursive ML model.

It is a simple but important observation that there is a natural order between the components
of X; from (2.1.3) we see immediately that X; > ¢; Xy holds for all ¢ € V and k € pa(i).
For every component of X and some U < V, we find lower and upper bounds in terms of
Xy = (Xy,0 e U). Often we do not need all components of X to compute the best bounds
of X; in terms of components of X ;. If ¢ € U, then an upper and lower bound is given by X;

itself; otherwise, for a lower bound we only need to consider a component X; of Xy if j € an(i),

13



Chapter 2 Max-linear models on directed acyclic graphs

but no max-weighted path from j to i passes through some node in U \ {j}. A similar result
and concept applies for the upper bound of X;. Thus the max-weighted paths also lead in this
context indirectly to a complexity reduction. We will also use the max-weighted ancestors of ¢

in U to obtain a minimal representation of X; in terms of Xy and noise variables.

This chapter is organized as follows. In Section 2.2 we discuss the max-linearity of a recursive
ML model X and express its ML coefficient matrix in terms of a weighted adjacency matrix of
a corresponding DAG. Section 2.3 introduces the important notion of a max-weighted path and
studies its consequences for the ML coefficients. In Section 2.4 we give necessary and sufficient
conditions for a ML model being a recursive ML model on a given DAG. Section 2.5 is devoted
to the minimum ML DAG of X as the DAG with the minimum number of edges within the class
of all DAGs representing X in the sense of (2.1.3). In Section 2.6, given a set of node variables,
we investigate which information can be gained for the other components of X. This results
in lower and upper bounds for the components. Finally, we derive a minimal representation for
the components of X as max-linear function of a subset of node variables and certain noise

variables.

We use the following notation throughout this chapter. For a node i € V', the sets an(i), pa(i),
and de(7) contain the ancestors, parents, and descendants of i in D. Furthermore, we use the
notation An(i) = an(i) u {i}, Pa(i) = pa(i) u {i}, and De(i) = de(i) u {i}. We write U ¢ V for
a non-empty subset U of nodes, Xy = (Xy,¢ € U), and U¢ = V \U. All our vectors are row
vectors. We also extend the previous notation in a natural way by writing an(U) = U,y an(i),
An(U) = an(U) u U, and so on. For a matrix B with nonnegative entries, we write sgn(B) for
the matrix with entries equal to 1 if the corresponding entry in B is positive and 0 else. We
denote by 1 the indicator function of U and set 14 = 0. In general, we consider statements for

i € @ as invalid. For arbitrary (possibly random) a; € R, we set Ve a; = 0 and Ajeya; = o0.

2.2 Max-linearity of a recursive ML model

For a recursive ML model X on a DAG D = (V, E), given by (2.1.3), we derive its max-linear
representation (2.1.4). We start with our leading example, a recursive ML model on the diamond-
shaped DAG depicted below.

Example 2.2.1. [Max-linear representation of a recursive ML model]
Consider a recursive ML model X = (X7, X2, X3, X4) on the DAG

D= (V>E) = ({1a2a374}7 {(172)7 (173)7 (2a4)> (374)})

with weights cy; for i € V and k € Pa(i). We obtain for the components of X:

O

Xi1=cu2n S\
Xo =c12X1 VeaaZa = crac11 21 V 2222 @ @
X3 =c13X1 V3343 = c13¢1141 V 3323 \‘@‘/

14



2.2 Max-linearity of a recursive ML model

Xy =cXoVeuX3 Ve
= caa(c12¢11 21 V €2222) v c3a(c13c11Z1 V ¢3323) V CaaZy

= (c2ac12¢11 V €34€13€11) 21 V C24C22 720 NV 343323 N CaaZy.

Thus X satisfies (2.1.4) with ML coefficient matrix

C11 C11C12 C11C13 C11€12C24 V C11C13C34

B 0 €22 0 €22C24
0 0 C33 C33C34
0 0 0 C44

We observe that the ML coefficients satisfy indeed (2.1.6). Moreover, B is an upper triangular

matrix, since D is well-ordered (cf. Remark 2.2.3(ii)). ]

The following result shows that such a representation can be obtained in general: every com-
ponent of a recursive MLL model has a max-linear representation in terms of its ancestral noise
variables and an independent one. It provides a general method to calculate the ML coefficients
by a path analysis as described in (2.1.5) and (2.1.6).

Theorem 2.2.2. Let X be a recursive ML model on a« DAG D = (V, E), and let B = (bij)dxd
be the matriz with entries as defined in (2.1.6). Then

XZ‘Z \/ bjiZj7 i=1,...,d; (221)
jeAn(q)

i.e., B is the ML coefficient matriz of X.

Proof. Without loss of generality we assume throughout this proof that D is well-ordered (cf. Re-
mark 2.2.3(ii)). We prove the identity (2.2.1) by induction on the number of nodes of D. For
d =1 we have by (2.1.3)

X1 =cnZ1=bn 2,

where the last equality holds by (2.1.6). Suppose that (2.2.1) holds for a recursive ML model X

of dimension d; i.e.,

Xk= \/ bijj = \/ \/ djk(p)ZjVCkak, k‘=1,...,d.
jeAn(k) jean(k) pePjy

Now consider a (d + 1)-variate recursive ML model. We first investigate the nodes i € {1,...,d}.
Since D is well-ordered, we have (d+1) € V\pa(i). Hence, it suffices to show representation (2.2.1)
with respect to the subgraph D[{1,...,d}] = ({1,...,d}, En({1,...,d} x{1,...,d})). However,

this holds by the induction hypothesis. So we can use this representation for i € {1,...,d} and
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Chapter 2 Max-linear models on directed acyclic graphs

(2.A.1) to obtain

Xivi= V  ranXpVcartdn Zan
kepa(d+1)
=V V V andix(®)Z;v ) ChdsiCikZi V i e Zan
kepa(d+1) jean(k) pePjy kepa(d+1)
=V ( \Vi V crandjp(p) v \Vi Chdr1Ckk ) Zj V Cai dat Zda -
jean(d+1) kede(j)npa(d+1) pePjx kepa(d+1)n{j}

Observe that every path from some j to d + 1 is of the form p = [j - --- > k — d + 1] for some
ke de(j)npa(d+1), or an edge j - d+1 corresponding to j € pa(d+1). By (2.1.5) the path p has
weight d; 4,1(p) = dji(p)cr a+1, and the edge j — d + 1 has weight d; 4.1 ([j = d+1]) = ¢jjcjae1-
This yields

Xai= N djar1(P)Zj v carr,ae1Zai =\ bjar1Z;,

jean(d+1) pePj q+1 jeAn(d+1)
where we have used that b; 4,1 = P\/ dj.ar1(p) for jean(d +1) and bgs1,d+1 = Cas1,d+1- d
PEry d+1

By (2.1.6) the ML coefficient b;; of X is different from zero if and only if j € An(4). This

information is contained in the reachability matriz R = (7j)axqd of D, which has entries

1, if there is a path from j to ¢, or if j =14,
Tji =
0, otherwise.

If the ji-th entry of R is equal to one, then i is reachable from j.
Remark 2.2.3. Let R be the reachability matrix of D.
(i) The ML coefficient matrix B is a weighted reachability matrix of D; i.e., R = sgn(DB).

(ii) The DAG D can be well-ordered, which means that the set V = {1,...,d} of nodes can
be linearly ordered in a way compatible with D such that k € pa(i) implies k < i (see
e.g. Appendix A of Diestel [15]). If D is well-ordered, then B and R are upper triangular

matrices. u

Finding the ML coefficient matrix B from D and the weights in (2.1.3) by a path analysis
as described in (2.1.5) and (2.1.6) would be very inefficient. We may, however, compute B by
means of a specific matrix multiplication.

For two nonnegative matrices F' and G, where the number of columns in F' is equal to the

number of rows in G, we define the product ® : R7*" x R} — R7""? by
(F = (fij)mxn, G = (Gij)nxp) > F © G := (k\/ fikgkj) . (2.2.2)
1 mx

The triple (R4, Vv,-), which is called max-times or subtropical algebra, is an idempotent semiring

with 0 as O-element and 1 as 1-element. The operation ® is therefore a matrix product over a
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2.2 Max-linearity of a recursive ML model

semiring. Such semirings are fundamental in tropical geometry; for an introduction see Butkovi¢
[7] or Maclagan and Sturmfels [50]. The matrix product @ is associative: for F' € R™" G e R},
and H e Ry, Fo(GoH) = (FOG)oH, and we have (FOG)" = GT® F'. Denoting by B all dxd
matrices with nonnegative entries and by v the componentwise maximum between two matrices,
(B,v,®) is also a semiring with the null matrix as 0-element and the identity matrix idgxq as
1-element. This semiring is, however, not commutative, since ® is in general not. Consistent
with a matrix product, we define powers recursively: A®9 := idgy and A®" := A1) o 4 for
AeBand neN.

The matrix product ® allows us to represent the ML coefficient matrix B of X in terms of

the weighted adjacency matrix (¢;1pa(;)(7))axa of D.

Theorem 2.2.4. Let X be a recursive ML model on a DAG D = (V, E) with weights cg; for
i€V and k € Pa(i) as in (2.1.3). Define the matrices

A= diag(c11, ey Cdd), AO = (cij]lpa(j)(i))dxd’ and Al = (Ciicij]lpa(j) (i))dxd'

Then the ML coefficient matriz B of X from Theorem 2.2.2 has representation

B=A ford=1 and B:A\/d\/z(AlcaAgk) for d>2.
k=0
Proof. For d = 1 we know from (2.1.6) that b1y = ¢11. Hence, B = A. Now assume that d > 2.
First we show that if D has a path of length n (a path consisting of n edges) from node j to
node 4, then the ji-th entry of the matrix A4; © Ag(n_l) is equal to the maximum weight of all
paths of lengths n from j to ¢, otherwise it is zero. The proof is by induction on n.

An edge j — i, which is the only path of length n = 1, has the weight d;;([j — i]) = ¢jjcji.
Since the ji-th entry of the matrix 41 ©@ ASY = Ay ©@ idgxq = A1 is given by cjjciilpaciy(j), the
statement is true for n = 1.

), and A1 @ AS" respectively.
As A10AS™ = (A1®A0®(n_1))®Ao, the ji-th entry of A;®@AJ"™ is given by ani1,j; = szl A, jk GO ki =
V%zl an,jkChilpa(i) (k). We obtain from the induction hypothesis and (2.1.5) that a, jrao ki is zero

Denote by ag j;, G, ji, and ap+1,5; the ji-th entry of Ag, Ay @AOG)(TL_1

if D does not contain a path of length n from j to k or the edge k — i; otherwise it is equal to
the maximum weight of all paths which consist of a path of length n from j to k£ and the edge
k — i. Since every path of length n+1 from j to ¢ is of this form for some k € V', the ji-th entry
of A ® AF™ is indeed equal to the maximum weight of all paths of length n +1 from j to ¢ if
there exists such a path, otherwise it is zero.

Finally, again by (2.1.6), for i € V and j € an(4), the ML coefficient b;; is equal to the maximum
weight of all paths from j to ¢, and note that due to acyclicity, a path in D is at most of length
d—1. Thus, if j € an(7), then the ji-th entry of Vz;g Ay @AOQk is equal to bj;, otherwise it is zero.
Since by (2.1.6), bi; = ¢ and bj; = 0 for j € V N\ An(i), the ML coefficient matrix B is given by

B=Av Ay (410 40) v (410 48 verv (1 0 450D)
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Chapter 2 Max-linear models on directed acyclic graphs

The following has been shown in the proof of Theorem 2.2.4.

Corollary 2.2.5. If D has a path of length n from j to i, the ji-th entry of the matriz A1 ®
Ag("_l) is equal to the maximum weight of all paths of length n from j to i, otherwise the entry

18 zero.

Summarizing the noise variables of X into the vector Z = (Z3,...,Z), the representation

(2.2.1) of X can be written by means of the product © as

d
X=ZoB=(\VbZji=1,....d)=( \/ biZj,i=1,....d).
j=1 jeAn(s)

Consequently, the definition of the matrix product ® modifies and extends the definition given
in Wang and Stoev [73, Section 2.1, Eq. (2)].

2.3 Max-weighted paths

Given a recursive ML model X on a DAG D = (V, E) with weights cy; for i € V., k € Pa(i) and
ML coefficient matrix B = (b;j)dxq, we investigate the paths of D and their particular weights,
the implications on the ML coefficients as well as induced subgraph structures leading to reduced
representations of (2.1.3).

From (2.1.6) and (2.2.1) we know that a path p from j to ¢, whose weight dj;(p) is strictly
smaller than b;;, does not have any influence on the distribution of X. This fact suggests the

following definition.

Definition 2.3.1. Let X be a recursive ML model on a DAG D = (V, E) with path weights
as in (2.1.5) and ML coefficient matrix B. We call a path p from j to i a maz-weighted path if

bji = dji(p)- =
A prominent example, where all paths are max-weighted, is the following.

Example 2.3.2. [Polytree] A polytree is a DAG whose underlying undirected graph has no
cycles; polytrees have at most one path between any pair of nodes. Thus, assuming that X is a

recursive ML model on a polytree, all paths must be max-weighted. |
The following example indicates the importance and consequences of max-weighted paths.

Example 2.3.3. [Max-weighted paths, graph reduction]
Consider a recursive ML model X = (X7, X, X3) on the DAG

D=(V,E)=({1,2,3},{(1,2),(1,3),(2,3)}) /@\
H—0O
with weights cg; for ¢ € V and k € Pa(i) and ML coefficient matrix B. We distinguish between

two situations:
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2.3 Max-weighted paths

(1) If ¢13 > c19¢23, then the edge 1 — 3 is the unique max-weighted path from 1 to 3.

2) If, however, ci3 < c12¢23, then big = c11c10093 = bi2b23 and the path [1 » 2 — 3] is max-
boa p

weighted. We obtain in this case
b
X3 =01321V bz Zo Vv b33Z3 = bﬁ(bmzl VbaaZs) v bgsZs = ca3 Xo v b33 Z3.
22
Thus X is also a recursive ML model on the DAG

DB = ({1,2,3),{(1,2),(2,3)}).

Here D? is the DAG with the minimum number of edges such that sgn(B) is its reachability
matrix. By Remark 2.2.3(i) there cannot be a smaller DAG representing X in the sense of
(2.1.3). O

We present some immediate consequences of the path weights in (2.1.5) and the definition of

max-weighted paths.
Remark 2.3.4. (i) If there is only one path between two nodes, it is max-weighted.
(ii) Every subpath of a max-weighted path is also max-weighted.

(iii) Every path which results from a max-weighted path by replacing a subpath with another

max-weighted subpath is also max-weighted. a

To find for some i € V and j € an(i) the ML coefficient bj;, it suffices to know the weight c¢;;
of the noise variable Z; and the edge weights along one arbitrary max-weighted path from j to
i, since every max-weighted path from j to ¢ has the same weight. This allows us to represent
every component of X as component of a recursive ML, model on a subgraph of D. For this

purpose we introduce the following definition.

Definition 2.3.5. Let X be a recursive ML model on a DAG D = (V,E), and let D = (V, E)
be a subgraph of D. We denote by pa(i) the parents of node i in D and define

Y; = \/ CLiYr V CiiZi, 1€ V,
kepa(i)

with the same weights and noise variables as in the representation of X in (2.1.3). We call the
resulting recursive ML model Y = (Y, £ € V) recursive ML submodel of X induced by D. O

We summarize some immediate properties of Y.

Remark 2.3.6. Let i € V with ancestors an(4) in D. Denote by B = (Eij)|7|x|7| the ML coefficient

matrix of Y.
(i) Every path in D has the same weight (2.1.5) as in D.

(ii) A path of D which is in D a max-weighted path is also in D max-weighted.
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Chapter 2 Max-linear models on directed acyclic graphs
(iii) For j € an(), D has one in D max-weighted path from j to i if and only if bj; = bj;.
(iv) D has one in D max-weighted path from every j € an(i) to 4 if and only if X; =Y;. O

By Remark 2.3.4(ii) for every i € V, there exists a polytree D; of D with node set An(i)
which has exactly one in D max-weighted path from every ancestor of ¢ to i. There may even
exist several such polytrees (cf. Example 2.3.8 below). We learn from the construction of D; and
Remark 2.3.4(ii) that indeed every path of D; is in D max-weighted. Therefore, some component
X of X coincides by Remark 2.3.6(iv) with the corresponding one of the recursive ML submodel
of X induced by D; if and only if D; has at least one path from every ancestor of j in D to j.

By construction of D; this property holds obviously for X;. We summarize this result as follows.

Proposition 2.3.7. Let X be a recursive ML model on a DAG D = (V, E). For some i€V and
An(z) in D let D; be a polytree with node set An(i) such that D; has one in D max-weighted path
from every j € an(i) to i. Let Y; = (Y, £ € An(i)) be the recursive ML submodel of X induced
by D;. Then for all j € An(i) which have the same ancestors in D; and D, we have X; =Y;.

We discuss the recursive ML model from Example 2.2.1 in the context of Definition 2.3.1 and

Proposition 2.3.7.

Example 2.3.8. [Continuation of Example 2.2.1: max-weighted paths, polytrees, conditional
independence]

For the polytrees as in Proposition 2.3.7, we identify all max-weighted paths ending in node 4.
By Remark 2.3.4(i), the paths [2 - 4] and [3 — 4] are max-weighted. For the weights of the
paths [1 - 2 - 4] and [1 - 3 — 4], we have three situations:

C11€12C24 = C11C13C34, C11C12C24 > €11C13C34, and  c11¢12€24 < €11€13C34.

In the first situation, both paths from 1 to 4 are max-weighted. Thus there are two different

polytrees having one in D max-weighted path from every ancestor of 4 to 4, namely,

D4,1 = ({1’273’4}’ {(1’2)’ (274)7 (374)}) and D4,2 = ({1727374}7 {(173)7 (274)7 (374)})

In the second situation, the path [1 — 2 — 4] is the unique max-weighted path from 1 to 4
and, hence, Dy ; is the unique polytree as in Proposition 2.3.7 for node 4. The third situation is
symmetric to the second, such that Dy is also such a unique polytree.

Now let Y1 = (Y1,1,Y12,Y13,Y14) and Yo = (Y21,Y22,Y23,Y24) be the recursive ML sub-
models of X induced by Dy ; and Dy 2. The distributions of X, Y1, and Y3 are Markov relative
to D, Dy,1, and Dy 9, respectively. For a DAG, the local Markov property as specified in (2.1.2),
is by Proposition 4 of Lauritzen et al. [48] equivalent to the global Markov property (for a
definition see Corollary 3.23 of [47]). Using this property we find

YinLYia|Yio and Yo1 L Yos|Yas
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2.3 Max-weighted paths

If the path [1 — 2 — 4] is max-weighted, we have by Proposition 2.3.7 that
Yii1=X1, Yip=X5, and Yi4=Xy,

hence, X1 1 X4 | Xo. Accordingly, if [1 - 3 - 4] is max-weighted, then
Yo1=X1, Yo3=X3, and Ys4=Xy,

and X7 I X4 | X3 holds. Since the only conditional independence property encoded in D by the
(global) Markov property is X7 1L X4 | X2, X3, we can identify additional conditional indepen-
dence properties of X from the polytrees in Proposition 2.3.7. a

Remark 2.3.9. (i) Assume the situation of Proposition 2.3.7. Let V; be the set of all nodes
in An(¢) which have the same ancestors in D and D;. Since the distributions of X and
Y are Markov relative to D and D;, respectively, conditional independence properties of
X are encoded in D and of Y in D;. By Proposition 2.3.7 the conditional independence
relations between subvectors of Yy, = (Y7,¢ € V;) which we can read off from D; hold also
between the corresponding subvectors of X . Since missing edges correspond to conditional
independence properties, and D; is a subgraph of D, we can often identify additional

conditional independence properties of X from D;.

(ii) From (i) or Example 2.3.8 we learn that a recursive ML model on a DAG D is in general
not faithful; i.e., not all its conditional independence properties are encoded in D by the

(global) Markov property. ]

As can be seen from Examples 2.3.3 and 2.3.8, any reduction of a recursive ML model depends
on the existence of max-weighted paths that pass through specific nodes. The following result

shows how we can obtain this information from its ML coeflicient matrix.

Theorem 2.3.10. Let X be a recursive ML model on a DAG D = (V,E) with ML coefficient
matriz B. Let further UCV, i€V and j € an(i), and recall from Remark 2.2.3(i) that bj; > 0.

(a) There is a max-weighted path from j to i which passes through some node in U if and only
if

bjxbri

bji = . (2.3.1)
keDe(j5)nUnAn(4) brk
(b) No maz-weighted path from j to i passes through some node in U if and only if
bibpi
bji > R L (2.3.2)

keDe(j)nUnAn(i) Dkk
This holds also for U = @.

Proof. First assume that De(j)nUnAn(i) = @. Thus no path, hence also no max-weighted path,

from j to i passes through some node in U, and it suffices to verify (b). Since the right-hand
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Chapter 2 Max-linear models on directed acyclic graphs

side of (2.3.2) is zero if and only if De(j) nU nAn(i) = @ and the ML coefficient bj; is positive,
(b) is proven for this case (including the case that U = @).

Now assume that De(j) n U n An(i) = {k}, which implies that there is a path from j to i
passing through k£ € U. If k = ¢ or k = j, there is obviously a max-weighted path from j to ¢
passing through ¢ or j and (2.3.1) is always valid.

Next assume that k € V ~ {i,5}, and let p; and ps be max-weighted paths from j to k& and
from k to i, respectively. Denote by p the path from j to i consisting of the subpaths p; and p».
By (2.1.5) and the definition of a max-weighted path, we obtain

1 b;ibri
dji(p) = —djr(p1)dpi(p2) = 2—.
Ckk bk

Since p is max-weighted if and only if bj; = d;;(p) and this is not the case if and only if b;; > d;;(p),
we have shown (a) and (b) for the situation of De(j) nU n An(i) = {k}. In particular, it follows

that bj; > 2% for all k € De(j) n U n An(i).

Assume now that De(j) nU nAn(7) contains more than one element and that a max-weighted

path from j to ¢ passes through some node k € U. We know from above that this is equivalent

to
bbri bjibei , .
bj‘:M and bjiz% for all £ € (De(j) nU nAn(i)) \ {k},
kk (24
which is again equivalent to (2.3.1). Similarly, we obtain (b). O

Remark 2.3.11. Recall the matrix product © from (2.2.2), and let R be the reachability matrix
of D. We obtain from R =sgn(B) (Remark 2.2.3(i)) that for i,j € V

b bi d p. bi d
IR\ 2 (k) = bjkbug
keDe(5)nUnAn(s) brk k=1 Dkk k=1

is the ji-th entry of the matrix B © By with By = (by,j)dxd- Thus we may decide whether
there is a max-weighted path between two nodes that passes through some node in U by
comparing the entries of the matrices B and B ® By. Such use of the matrix product ®
can be made at various points throughout the thesis, for example, in Remark 2.5.2(ii), The-
orem 2.5.3, and Lemma 2.6.3(b). ]

The following corollary gives an important property of the ML coefficients. The first part has
been shown in the proof of Theorem 2.3.10, the second part follows from Remark 2.2.3(i).

Corollary 2.3.12. For all i€V, k¢ An(i), and j € An(k), by > "% > 0. Indeed, by; > "2

bik
holds for alli,j,keV.

We learn immediately from (2.1.3) that c¢x; Xy < X; for all i € V and k € pa(i). From Corol-
lary 2.3.12 we find such inequalities also for components, whose nodes are not connected by an

edge but by a path of arbitrary length.

Corollary 2.3.13. For alli eV and j € An(i) we have EXJ' < X;.

bjj
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2.4 ML coefficients leading to a recursive ML model on a given DAG

Proof. Note that An(j) ¢ An(4). Using the max-linear representation (2.2.1) of X; and X, as
well as Corollary 2.3.12, we obtain
bejbji bji

bi;
Xi= V buiZi> \ buZe> | —LLZ =2\ byZi=-LX;.
LeAn(i) LeAn(j) LeAn(y) bjj bjj LeAn(j) bjj

O]

2.4 ML coefficients leading to a recursive ML model on a given
DAG

Recall the definition of a ML model given in (2.1.4). From Theorem 2.2.2 we know that every
recursive ML model is max-linear. In this section we provide necessary and sufficient conditions
on a ML model to be a recursive ML. model on a given DAG D.

It can be shown that every ML model which is a recursive SEM as given in (2.1.1) with
unspecified functions fi,..., fg must be a recursive ML model. That a recursive ML model is
also a recursive SEM follows immediately from its recursive definition. To summarize, a ML
model can be represented as a recursive SEM (2.1.1) on a DAG D if and only if it has a
recursive ML representation (2.1.3) relative to the same DAG D.

Motivated by Remark 2.2.3(i), in what follows we assume that sgn(B) is the reachability
matrix R of D. In our investigation the DAG with the minimum number of edges, such that
R =sgn(B), will play an important role. This has already been indicated in Example 2.3.3.

We give a general definition of the DAG with the minimum number of edges that represents

the same reachability relation as a given DAG.

Definition 2.4.1. Let D = (V, E) be a DAG. The DAG D' = (V, E™) is the transitive reduction
of D if the following holds:

(a) DY has a path from node j to node i if and only if D has a path from j to i, and
(b) there is no graph with less edges than D' satisfying condition (a). m

Since we work with finite DAGs throughout, the transitive reduction is unique and is also a
subgraph of the original DAG. The transitive reduction of a DAG can be obtained by successively
examining its edges in any order and deleting an edge k — ¢ if it contains a path from k to ¢
which does not include this edge. For these properties and further details, see e.g. Aho et al. [1].
In what follows we need the notion of pa'’(i), the parents of i in D.

We present necessary and sufficient conditions on B to be the ML coefficient matrix of a

recursive ML model on D.
Theorem 2.4.2. Let D = (V,E) be a DAG with reachability matriz R and X a ML model as
in (2.1.4) with ML coefficient matriz B such that sgn(B) = R. Define

bij :
A= diag(bn, ey bdd) and AO = (_j]lpa(j)(l))

bii dxd
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Chapter 2 Max-linear models on directed acyclic graphs

Then X is a recursive ML model on D if and only if the following fized point equation holds:
B=Av Bo A, (2.4.1)

where © is the matriz product from (2.2.2). In this case,

XZ'Z \/ %Xk\/biiziy i=1,...,d.
kepa(i) Ykk

Proof. First we investigate the fixed point equation (2.4.1) and compute the ji-th entry of B® Ay.
By definition, together with sgn(B) = R, it is equal to

d b b birbrs
V %ﬂpa(i)(k‘) =V %

k=1 Vkk keDe(j)npa(i) Ykk
We have De(j)npa(i) = @ for j € Vxan(i) and De(j)npa(z) = de(j) npa(i) for j € an(i) \ pa(i).
Moreover, for j € pa'™(i) using that de(j) npa(i) = @, we obtain De(j) npa(i) = {j}. Thus,

taking also the matrix A into account, (2.4.1) is equivalent to

0, it j eV~ An(i),
bis, if j =1,

birbr;
Z3k7ki if j e an(4) \ pa(i),

Dji =\ kede(j)rpa(i) bk |
birbr;
bji v M, if j € pa(i) \ pa¥ (i),
kede(j)npa(i) bk
bji, ifj € patr(i)

for all i, € V. In this equation the first row is automatically satisfied, since R = sgn(B), also the
second and the last one hold trivially. To summarize, the fixed point equation (2.4.1) is satisfied
if and only if for all ¢ € V' the following identities hold:
b;kbri . . .
bji = \/ —_— for all j e an(i) \ pa(i), (2.4.2)
kede(j)rpa(i) Dkk

b;kbri

bji =bji v for all j € pa(i) ~ pa'(i). (2.4.3)

kede(j)npa(i) “kk
Thus it suffices to show that X is a recursive ML model on D if and only if (2.4.2) and (2.4.3)
hold for all i e V.

First assume that X is a recursive ML model on D, and let i € V and j € an(). Since every
path from j to ¢ passes through at least one parent node of i, there must be a max-weighted
path from j to ¢ passing through some node in pa(i). Using (2.3.1) with U = pa(i) and noting
that j € De(j) nU n An(i) = De(j) npa(i), we find for j € an(i) \ pa(i) Eq. (2.4.2) and for
j epa(i) ~ pa'™ (i) Eq. (2.4.3).

For the converse statement, assume that (2.4.2) and (2.4.3) hold. For j € pa'™(i) we have
de(j) npa(i) = @, such that the right-hand side of (2.4.3) is equal to b;;. Thus (2.4.3) holds for
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2.4 ML coefficients leading to a recursive ML model on a given DAG

all j € pa(i). Since sgn(B) = R, we have X; = \/?:1 bjiZj = Vjean(s) bjiZ;- We split up the index
set and use (2.4.2) in the first place and (2.4.3) for all j € pa(i) in the second place to obtain

Xi = \/ bjiZj \% \/ bjl'Zj \% biiZi
jean(i)\pa(i) Jjepa(i)
bikbri b
= V V s Ziv \ bjZiv \/ hk 2V by Z;
jean(i)\pa(i) kede(j)npa(i) bik jepa(i) jepa(i) kede(j)npa(i) Ykk
birbr;
= \/ \/ Ik ZjV \/ bﬂZ]\/b“Zl
jean(i) kede(j)npa(i) Pk jepa(i)

Interchanging the first two maximum operators by (2.A.1) yields

P birbri

Zj \% \/ kaZk 2 b“ZZ
kepa(i) jean(k) bik kepa(i)
bri
= \/ bi( \/ bijj \% bkak) \% biiZi
kepa(i) Ykk  jean(k)
kepa(i) Vkk

O]

In the proof of Theorem 2.4.2 we have shown that, under the required conditions, the fixed
point equation (2.4.1) holds if and only if (2.4.2) and (2.4.3) hold for all nodes. We summarize this
in part (a) of the following corollary. Part (b) has also been verified in the proof of Theorem 2.4.2.
The final statement is based on the fact that for k € pa(i) we have de(k) npa(i) = @ if and only
if ke pa'(i).

Corollary 2.4.3. (a) Assume the situation of Theorem 2.4.2. Then X is a recursive ML
model on D if and only if for everyieV,

birbri
bj; = \V IRk for all j € an(i) \ pa(), (2.4.4)
kede(j)npa(i) Dkk
birbri
bi> NV forall jepa(i) ~ pa®(i). (2.4.5)

kede(j)npa(i) Dkk
(b) Let X be a recursive ML model on a DAG D = (V, E) with ML coefficient matriz B. Then

for every i € V and k € pa(i),

by, > brebei

tede(k)npa(i) Dee

Moreover, the right-hand side is equal to zero if and only if k € pa' (i), and in this case

the inequality is strict.

By (2.4.4) and (2.4.5) exactly those ML coefficients bj; for i € V and j € an(7), such that j -4

is an edge in D%, do not have to meet any specific conditions apart from being positive.
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Chapter 2 Max-linear models on directed acyclic graphs

In summary, given a DAG D with d nodes, both Theorem 2.4.2 and Corollary 2.4.3(a) char-
acterize all ML coefficient matrices of any recursive ML model possible on D as all nonnegative
dxd matrices that are weighted reachability matrices of D and satisfy (2.4.1), equivalently (2.4.4)
and (2.4.5). If we can verify these two properties for a nonnegative d x d matrix B, then it is the
ML coefficient matrix of a recursive ML model on D, and weights in its representation (2.1.3)

are given by cg; = 5}’:; for k e pa(i) and ¢;; = by;.

2.5 Graph reduction for a recursive ML model

From Proposition 2.3.7 we know that every component of a recursive ML model X on a DAG
D = (V, E) satisfies (2.1.3) on a subgraph of D. These subgraphs, however, usually vary from one
component to another. On the other hand, we know from Example 2.3.3 that the whole vector
X may also be a recursive ML model on a subgraph of D. This raises the question of finding
the smallest subgraph of D such that X is a recursive ML model on this DAG. We define and
characterize this minimum DAG before we point out its prominent role in the class of all DAGs

representing X in the sense of (2.1.3).

Definition 2.5.1. Let X be a recursive ML model on a DAG D = (V, E') with ML coefficient
matrix B. We call the DAG

DP = (VB = (Vi{(hi) e Biby> |/ ) (25.1)
tede(k)npa(i) De¢

the minimum maz-linear (ML) DAG of X. ]
We summarize some properties of DP as follows.

Remark 2.5.2. (i) The minimum ML DAG D? = (V, EB) is a subgraph of the original DAG
D = (V,E). Observe from Corollary 2.4.3(b) that the transitive reduction D = (V, E*)
of D is also a subgraph of D. In summary, we have E'* ¢ EP ¢ E. This implies that the
DAGs D and D have the same reachability matrix, which is sgn(B) by Remark 2.2.3(i).

(ii) By Theorem 2.3.10(b) the minimum ML DAG D¥ contains exactly those edges k — i of
D, where no max-weighted path from k to i passes through some node in pa(i) ~ {k}. This
means that DP has an edge k — i if and only if it is the only max-weighted path from k
to i in D. The DAG D can be obtained from D by deleting an edge k — i if D contains
a max-weighted path from k to ¢ which does not include this edge. Note the analogy to
finding the transitive reduction DY of D described below Definition 2.4.1. An algorithm
is by comparison of ML coefficients and motivated by Corollary 2.4.3(b): for all i € V' and
ke pa(i) \ pa®(i) remove the edge k — i from D if

brebei
by = keOei

tede(kynpa(i) Dee
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2.5 Graph reduction for a recursive ML model

The method described in Remark 2.5.2(ii) determines DP from D and the ML coefficient

matrix B. Indeed, we can also identify D? directly from B without knowing D.

Theorem 2.5.3. Let X be a recursive ML model with ML coefficient matriz B. Then the
minimum ML DAG of X can be represented as

DB:(V,{(k:,i)erV:kqti and by; > >/1 b“b“}); (2.5.2)

d
S b
i

~

ik

in particular, DB is identifiable from B.

Proof. Let D be a DAG which represents X in the sense of (2.1.3). Such a DAG exists by the
definition of a recursive ML, model. We show that the edge set in (2.5.2) coincides with EP as
defined in (2.5.1). Assume first that (k,¢) is contained in the edge set in (2.5.2). Since sgn(B)
is the reachability matrix of D (cf. Remark 2.2.3(i)), we have

d

biebe; bicbe;
b >\ - A (2.5.3)

21 b b
ot Lede(k)nan(i)

Since the right-hand side of (2.5.3) is nonnegative, we must have by; > 0 and, hence, k € an(7). By
Theorem 2.3.10(b) no max-weighted path from & to i passes through some node in Vx\{i, k}. Thus
the edge k — ¢ must be the only max-weighted path from k to i and, hence, by Remark 2.5.2(ii)
it must be an edge in EP as in (2.5.1).

For the converse, let (k,i) € EP. Since by Remark 2.5.2(ii) this edge is the only max-weighted
path from k to ¢, no max-weighted path passes through some node in V'~ {i,k}. This is by
Theorem 2.3.10(b) equivalent to (2.5.3) and (k,7) belongs to the edge set in (2.5.2). O

We characterize all DAGs and specify all weights such that X satisfies (2.1.3). The minimum
ML DAG D? of X is the smallest DAG of this kind and has unique weights in representation

(2.1.3) in the sense that all irrelevant weights are set to zero. We can add any edge k — i into

DB with weight ¢, € (0, g}’:}z] representing X again in the sense of (2.1.3) as long as the graph
represents the same reachability relation as DP. As a consequence, to find B by a path analysis
as described in (2.1.5) and (2.1.6), it suffices to know D and the weights in representation

(2.1.3) relative to D5.

Theorem 2.5.4. Let X be a recursive ML model with ML coefficient matrix B. Let further
DB = (V, EB) be the minimum ML DAG of X and pa® (i) the parents of node i in DP.

(a) The minimum ML DAG DB of X is the DAG with the minimum number of edges such
that X satisfies (2.1.3). The weights in (2.1.3) are uniquely given by c;; = bi; and c; = 2:;
forieV and k e paB(i).

(b) Every DAG with node set V that has at least the edges of DP and the same reachability
matriz as DP represents X in the sense of (2.1.3) with weights given for all i€V by

Cii = by, cCpi= % forke paB(i), and ¢ € (0, %] for k e pa(i) \ paB(i).
brk brk
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There are no further DAGs and weights such that X has representation (2.1.3).

Proof. (a) Let D be a DAG and ¢; for i € V and k € Pa(i) weights such that X has representation
(2.1.3). By Remark 2.5.2(i) DP is a subgraph of D.

First we prove that X is a recursive ML model on D with weights ¢, for i € V and k € PaP(4)
by showing that all components of X coincide with those of the recursive ML submodel of X
induced by D? (see Definition 2.3.5). By Remark 2.3.6(iv) it suffices to verify for all i € V and
j € an(i) that DP has one in D max-weighted path from j to i. Among all max-weighted paths
from j to ¢ in D, let p be one with maximum length, and assume that p includes an edge, say
k — ¢, which is not contained in DZ. The DAG D has by Remark 2.5.2(ii), however, a max-
weighted path p; from k to £ which does not include the edge k — £. Note that p; consists of
more edges than the path [k — ¢]. Thus, by replacing in p the edge k - ¢ by p;, we obtain by
Remark 2.3.4(iii) a max-weighted path from j to i consisting of more edges than p. Since this
is a contradiction to the fact that p has maximum length among all max-weighted paths from j
to 4, p must be in DB.

Since every edge k — i in D is by Remark 2.5.2(ii) the only max-weighted path from k to 4
in D, the weights in (2.1.3) are uniquely given, and we have by Definition 2.3.1 and (2.1.5) that

bri = cprCri = brrcri, which implies ¢g; = g:;. For the same reason there cannot be a DAG with
less edges than DP such that X has representation (2.1.3).

(b) First we show that X satisfies (2.1.3) relative to a DAG D with the properties and weights
cyi for i € V and k € Pa(i) (the parents in D). Note that the DAG D? is a subgraph of D and
both DAGs have the same reachability relation. Since X is by part (a) a recursive ML model

on DB, we may use Corollary 2.3.13 with the ancestors in DB: for every i € V and k € pa(i),

. . .. b
since k is an ancestor of 7 in DF and b}’:; > ci, we have

bi.;
X; > ﬂXk > cpi Xk
brk

With this we obtain from representation (2.1.3) of X; relative to D that

Xi= V aiXpveiZi= ) cuXpv V CkiXk V Ciii,
kepaPB (i) kepaB (i) kepa(i)\paPB (i)
which is (2.1.3) relative to D.
It remains to show that there are no further DAGs and weights such that X has representation
(2.1.3). By Remark 2.5.2(i) every DAG that represents X in the sense of (2.1.3) must have the
same reachability matrix as D and must contain at least the edges of DP. By (2.1.5) and (2.1.6)

the weights in representation (2.1.3) of X have to satisfy cp; < 25 for all i € V and k € pa(i).

brk
The statement follows, since the weights cy; are by part (a) uniquely with respect to DZ. O

As explained before Theorem 2.5.4, we can add edges into D while keeping the same reacha-
bility relation and still having representation (2.1.3) for X . In what follows we will use the DAG

with the maximum number of edges with this property.
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2.5 Graph reduction for a recursive ML model

Definition 2.5.5. Let D = (V, E) be a DAG. The transitive closure D' = (V, E*®) of D is the
DAG that has an edge j — ¢ if and only if D has a path from j to i. O

The transitive reduction is essentially the inverse operation of the transitive closure: for the
transitive reduction one reduces the number of edges and for the transitive closure one adds
edges while maintaining the identical reachability relation. The transitive reduction of a DAG
D is a subgraph of D, and D is again a subgraph of the transitive closure. Moreover, all DAGs
with the same reachability matrix have the same transitive reduction and the same transitive

closure, and every node has in all such DAGs the same ancestors and descendants.

The following is a consequence of Theorem 2.5.4(b) and Remark 2.2.3(i).

Corollary 2.5.6. The recursive ML model X is also a recursive ML model on the transitive

closure of every DAG with reachability matriz sgn(B).

We use this corollary to obtain necessary and sufficient conditions on a ML coefficient ma-
trix B as in (2.1.4) to be the ML coefficient matrix of a recursive ML model. In contrast to
Theorem 2.4.2 and Corollary 2.4.3(a), we do not require that B belongs to a specific given
DAG.

Theorem 2.5.7. Let X be a ML model as in (2.1.4) with ML coefficient matriz B such that
sgn(B) is the reachability matriz of some DAG. Define
A:=diag(b1, ... ,ba), DBo:= (921) . and A := By - idgua,
bn’ dxd
where idgxq denotes the identity matrixz. Then X is a recursive ML model if and only if the

following fized point equation holds:
B=B0®By, which is equivalentto B=Av B AL, (2.5.4)

where ® is the matriz product from (2.2.2).

Proof. Let D' be the transitive closure of a DAG with node set V = {1,...,d} and reachability
matrix sgn(B). For i € V we denote by pa(i) and an(i) the parents and ancestors of node i in
D', respectively, and observe from the definition of D' that an(i) = pa(i) for all i € V.

First we show that X is a recursive ML model if and only if the fixed point equation B = AvB®
Aff holds. By Corollary 2.5.6 X is a recursive ML model if and only if it is a recursive ML model
on D, By Theorem 2.4.2 it suffices to show that A is equal to the weighted adjacency matrix
Ap = (%]lpa(j)(i))dxd. Since By is a weighted reachability matrix of D', we obtain

AY = By —idgxg = (%]lan(j)(i))dxd = (%ﬂpa(j)(i))

bii bu dxd

It remains to show that B® By = Av B ® Aff. By the definition of the matrix product ® the
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Chapter 2 Max-linear models on directed acyclic graphs

ji-th entry of Av B® Af is equal to

d bi ¢ bikbri
biln (Vv V bl —= =Ly (k) = bjiln(G) vV -2
i )V Vb = Ly (0)) = bty () Vb
. 4 Dby .
=bjily () v V b Vv bjily iy (4)
k=1 kk
k#t,7
¢ b,bp
ko1 bre
which is the ji—th entry of the matrix B © By. O

A nonnegative symmetric matrix is by Theorem 2.5.7 the ML coefficient matrix of a re-
cursive ML model if and only if it is a weighted reachability matrix of a DAG and satisfies
(2.5.4). Assume that we have verified these properties for a matrix B. In order to find now all
recursive ML models which have ML coefficient matrix B, we can first use (2.5.2) to derive the
minimum ML DAG D? from B and then Theorem 2.5.4(b) to find all DAGs and weights as in
(2.1.3) such that (2.1.6) holds.

2.6 Backward and forward information in a recursive ML model

We investigate relations between the components of a recursive ML model X on a DAG D =
(V, E) with ML coefficient matrix B. More precisely, we apply our previous results to identify
those components of X which provide maximal information on some other component.
We know already from Corollary 2.3.13 that X; < é’—?ZXg for all i € V and £ € De(i) so that for
some node set U €V and all i e V|
bji bii
\/ —Xj <X; < /\ — X (2.6.1)
jeAn(i)nU Yjj £eDe(i)nU bie
The values of the bounds in (2.6.1) can often be found as the maximum and minimum over a

smaller number of nodes in U. We illustrate this by the following example.

Example 2.6.1. [Continuation of Examples 2.2.1 and 2.3.8: bounds]
For U ={1,2} and ¢ =4 we find by (2.6.1) the lower bound

bﬂXl \Y, @XQ < Xy (262)

b11 bo2
We discuss the lower bound and distinguish between two cases.
First assume that the path [1 - 2 — 4] is max-weighted, which is by Theorem 2.3.10(a)
equivalent to by4 = %. From Corollary 2.3.13 or (2.6.1) we obtain

bﬁXl < Xs, equivalently %Xl < bﬁXg.

b1 11 b
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2.6 Backward and forward information in a recursive ML model

Therefore, the lower bound of X4 in (2.6.2) is always Z;—;‘Xg.

Now assume that the path [1 - 2 — 4] is not max-weighted. Since this is the only path from
1 to 4 passing through node 2, this is by Theorem 2.3.10(b) equivalent to by4 > %. From the
max-linear representation (2.2.1) of X; and X» we have ;Z—;‘Xg < %Xl if and only if

b12b24

Z1VboyZs <biyZ1, equivalently boygZo < b142.

22
The event {bogZ5 < 1471 } has positive probability, since Z; and Z; are independent with support
R, giving % 1 as lower bound. But also the event {%Xl < b;—;‘Xg} has positive probability,

giving the lower bound %Xg. Thus only in the first case the number of nodes in the lower
bound in (2.6.1) can be reduced. o

We will find that a node j € An(i) n U is relevant for the lower bound in (2.6.1) if no max-
weighted path from j to ¢ passes through some other node in U. Observe that this includes the
observation made in Example 2.6.1. The nodes in the upper bound of (2.6.1) have a similar
characterization. We present a formal definition of these particular ancestors and descendants,

characterize them below in Lemma 2.6.3, and give an example afterwards.
Definition 2.6.2. Let X be a recursive ML model on a DAG D= (V,E),UcV andi€eV.

(a) We call a node j € An(i) nU lowest maz-weighted ancestor of i in U if no max-weighted
path from j to i passes through some node in U \ {j}. We denote the set of the lowest

max-weighted ancestors of i in U by AnY_(i).

(b) We call anode £ € De(i)nU highest maz-weighted descendant of i in U if no max-weighted
path from ¢ to ¢ passes through some node in U \ {£}. We denote the set of the highest
max-weighted descendants of ¢ in U by De}[{igh(i). o

For i € U we find that the only lowest max-weighted ancestor and the only highest max-
weighted descendant of ¢ in U is the node i itself. For ¢ € U = V \ U a simple characteri-
zation of An (i) and De}l{igh(i) is given next; this allows us to identify these nodes via the
ML coefficient matrix of X.

Lemma 2.6.3. Let X be a recursive ML model on a DAGD=(V,E),UcV andi€V.
(a) Ifi e U, then AnY (i) = De}[{igh(i) ={i}.
(b) If i e UC, then

bisbii
Anfl, (3) = {j can(i) n U s by, > SRR (2.6.3)

kede(j)nUnan(i) Okk

Defip (1) = {5 ede(i)NU by > \V bikbke}. (2.6.4)
kede(i)nUnan(¢) Dkk

Proof. (a) follows immediately from the definition.
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Chapter 2 Max-linear models on directed acyclic graphs

(b) Since i € U®, we have by Definition 2.6.2(a) that An (i) can(i) nU. For j € an(i) n U we
know from Theorem 2.3.10(b) that no max-weighted path from j to i passes through some node
in U~ {j} if and only if

i1

bji > Z3k7ki

)

kede(j)nUnan(i) Okk
where we have used that ¢ € U¢. Similarly, we obtain (2.6.4). O

Example 2.6.4. [Continuation of Examples 2.2.1, 2.3.8, and 2.6.1: An{_(4)]

In order to find the lowest max-weighted ancestors of node 4 in U = {1,2}, first observe that
the only max-weighted path [2 — 4] from 2 to 4 does not pass through any node in U \ {2}.
Therefore, we have by Definition 2.6.2(a) that 2 € An{ (4). For node 1 we consider — as in

Example 2.6.1 — two cases and use (2.6.3):
(1) Tf brs = 22824 then An{] (4) = {2}.

2) If by > 2221 then AnY (4) = {1,2}.
low

P

Comparing this with Example 2.6.1 shows that the lower bound of X4 in (2.6.2) is always realized

by some lowest max-weighted ancestor of node 4 in U. a

We prove that the lower and upper bounds in (2.6.1) are always realized by some lowest
max-weighted ancestor and highest max-weighted descendant in U, respectively. For the lower
bound this is based on the fact that between all nodes and their ancestors in U there is always a
max-weighted path which contains a lowest max-weighted ancestor in U. For the upper bound
we use the existence of a max-weighted path between all nodes and their descendants in U that
passes through some highest max-weighted descendant in U. Before we state the modified lower
and upper bounds in Proposition 2.6.6, we provide a useful characterization for a path analysis,

which includes these statements.

Lemma 2.6.5. Let X be a recursive ML model on a DAG D = (V, E). Furthermore, let U 'V,
1€V, jean(i), and £ € de(i).

(a) D has a maz-weighted path from j to i passing through some node in U if and only if it

has a maz-weighted path from j to i passing through some node in Angw(i).

(b) D has a maz-weighted path from i to £ passing through some node in U if and only if it
has a maz-weighted path from i to £ passing through some node in De}({igh(i).

Proof. We only show (a); part (b) can be proved analogously. Assume that a max-weighted path
from j to ¢ passes through some node in Anlléw(z'). Since Anonw(i) c U, there is obviously also a
max-weighted path from j to ¢ that passes through some node in U.

For the converse, we may assume that i € U¢, since by Lemma 2.6.3(a) An (i) = {i} fori e U
and hence every max-weighted path contains a node in Anféw(i). Among all max-weighted paths
from j to i let p be one with maximum number of nodes in U. Denote by k; the lowest node

on p contained in U; i.e., the subpath of p from k; to i contains no other node of U. Assume
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2.6 Backward and forward information in a recursive ML model

that k1 ¢ Anl (7). Since ky € U and i € U°, there is by Definition 2.6.2(a) a max-weighted path
p1 from kq to ¢ that passes through some node ko € U with kg # k1. Thus, by replacing in p the
subpath from k; to i by p;, we obtain by Remark 2.3.4(iii) a max-weighted path from j to i
containing more nodes in U than p. This is however a contradiction. Hence, k; € Angw(i), and

p is a max-weighted path from j to ¢ that passes through some node in Angw(i). O

Proposition 2.6.6. Let X be a recursive ML model on a« DAG D = (V, E) with ML coefficient
matric B. Let U CV and i e V. Then
bji bji bis bii

VX=X end A\ X=X (2.6.5)
jeAn(i)nU “J3J jeAnY (i) 97 LeDe(i)nU Vit teDel,y, (3) Vit

Proof. Note from Definition 2.6.2(a) that An{ (i) ¢ An(i) nU. To show the first equality, take
some k € (An(i)nU)~AnY_(i). Observe from Lemma 2.6.3(a) that k # i and, hence, k € an(i)nU.
By Lemma 2.6.5(a) there must be a max-weighted path from k to ¢ which passes through some
node j € AnY (7). By (2.3.1) and Corollary 2.3.13, we obtain

bri e _ Drsbii

L = X < 22X 2.6.6
b, bibjj b’ 260
Since for all k € (An(i) nU) ~ An_ (i) there exists some j € An (i) such that (2.6.6) holds,
the first equality of (2.6.5) follows. The second equality may be verified analogously. O

So far, for every component of X, we have identified a lower and upper bound in terms of
the components of X = (Xy,¢ € U). However, we cannot say anything about the quality of the
bounds. For example, we do not know in which situation a component attains one of the bounds.
We clarify this by writing all components of X as max-linear functions of the components of
Xy and certain noise variables. There are many such representations, since we can always
include non-relevant ancestral components with appropriate ML coefficients as we know from
Corollary 2.3.13. To find the relevant components of X and noise variables, we focus on those
with the minimum number of components of X and the minimum number of noise variables.
For i € V we denote by an”_ (i) the set of all j € an(4) such that no max-weighted path from j
to i passes through some node in U. By Theorem 2.3.10(b) we have

bibis
and, (i) = {J € an(i) : by > V Ll (2.6.7)
keDe(j)nUnAn(i) Ckk
Since j € an(i)~anY__ (i) if and only if there is a max-weighted path from j to i passing through

some node in U, we obtain from Theorem 2.3.10(a)

b;rbri
SRR (2.6.8)

an(i) N anll,,, (i) = {j e an(i) : by, = ;
keDe(j)nUnAn(i) Ykk

Theorem 2.6.7. Let X be a recursive ML model on a DAG D with ML coefficient matriz B,

and let U ¢ V. Furthermore, let Angw(i) be the lowest maz-weighted ancestors of node i in U
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Chapter 2 Max-linear models on directed acyclic graphs

as in Definition 2.6.2(a), and define AnY__ (i) := (an¥ . (3) U {i}) nU®. Then for everyieV,

keAnY (i) D, jeAnY (i)

nmw

This representation of X; as a max-linear function of the components of X and noise variables

involves the minimum number of components of X and the minimum number of noise variables.

Proof. We distinguish between nodes i € U and i € U¢. For i € U we know from Lemma 2.6.3(a)
that AnY (i) = {i}. Furthermore, we have Anl . (i) = @, since i € U and every path, hence
every max-weighted path, from some j € an(i) to i passes through some node in U, namely i

itself. Thus we obtain (2.6.9). The second statement is obvious.

Now assume that i € U, and note that in this case An{ . (i) = an", (i) U {i}. Applying the

first equality in (2.6.5) and (2.2.1) as well as (2.A.2) in a second step to interchange the first

two maximum operators, we have

b bri bjkbr
biyee oy By ozyey oy ey gy
keAnT (4) kk kean(i)nU Ykk  jeAn(k) jean(i) keDe(j)nan(i)nU  Ykk

We split up the set an(i) into an¥__ (i) and an(i) ~ an¥_ (i) as well as the set AnY__ (i) into

nmw

an{ (i) and {i} to obtain that the right-hand side of (2.6.9) is equal to

nmw

birbri bibri
]kajv 1kVk

jean(i)~an¥, (i) keDe(j)nan(i)nU bk jean¥_ (i) keDe(j)nan(i)nU bk

\Y bﬂ)ZJ \% b“ZZ

Noting that i € U¢ when using (2.6.8) and (2.6.7) yields

\/ biiZiv | bjZivbiZi= \| bjZ;=X,.
jean(i)sanf,,, (i) jeanf,, (4) JjeAn(i)
In order to verify that for i e U¢ (2.6.9) is the representation of X; with the minimum number of
components of X and the minimum number of noise variables, we prove that each term on the
right-hand side of (2.6.9) has to appear, since otherwise some noise variable Z; in representation
(2.2.1) of X; would have a weight strictly less than b;;. We compare the noise variables on the
right-hand sides of (2.6.9) and (2.6.10). Since b;;Z; does not appear in (2.6.10), it has to appear
in (2.6.9). For j € an¥ (4) it follows from (2.6.7) that if Z; appears in (2.6.10), then with a

nmw
U

nmw

coefficient strictly less than b;;. The maximum over Any . (i) must therefore appear in (2.6.9).
Definition 2.6.2(a) implies that no max-weighted path from j € Anféw(i) to ¢ passes through

some node in de(j)nan(i)nU. Thus observe from (2.6.10) and (2.3.2) that only the term %Xj
JJ
provides Z; with the weight bj; in (2.6.9) and the term %Xj has to appear in (2.6.9). O
13

We use Theorem 2.6.7 to obtain for every component X; of X a minimal representation in

terms of the components of X ;) and noise variables.

pa(i

Corollary 2.6.8. Let DB be the minimum ML DAG of X as in Definition 2.5.1 with parents

34



2.6 Backward and forward information in a recursive ML model
paB (i) of node i in DB. Then for alli eV we have Anﬁgi)(i) =paB(i) and

b:
Xi= XV b Zi = V  iXkvciZi. (2.6.11)
kepaB (i) kk kepaPB (i)

Proof. Recall from (2.5.1) that

paB(i) = {k e pa(i) : by; > \V brebe; }’
tede(k)npa(i) bgg

and observe from this and (2.6.3) that Anif:’gl)(i) = paP(i). Since every path from j € an(i) to i
passes through some node in pa(i), there is always a max-weighted path from j to ¢ containing
some node of pa(i). Hence, AnP2) (i) = (annfrfw) (i)u{i})n(pa(i))®={i}. Thus we obtain from
(2.6.9) the first equality in (2.6.11). For the second, recall from Theorem 2.5.4(a) that b;; = c;;

and 5}’:; = ¢y for k e pal(4). O

Remark 2.6.9. Representation (2.6.11) complements Theorem 2.5.4(a); we find again that the

minimum ML DAG D? yields the minimal representation of X as a recursive ML model. O
The following example illustrates and discusses representation (2.6.9).

Example 2.6.10. [Continuation of Examples 2.2.1, 2.3.8, 2.6.1, and 2.6.4: minimal representa-
tion of X4 by X1, Xo and X5]

We consider again U = {1,2} and i = 4. Obviously, there are max-weighted paths from 1 and 2 to
4 passing through some node in U = {1,2}. Hence, 1,2 € an(4)~an?_ . (4). Since no max-weighted
path from 3 to 4 passes through 1 or 2, we have AnY__(4) = (an¥__(4)u{4}) nU® = {3,4}. In
Example 2.6.4 we have already determined the set Anlow(4) depending on the ML coeflicients.

Thus we distinguish again between two cases:

(1) If bry = 22224 then Xy = 24X, v b3aZs v baaZs.

We want to remark that the conditional independence properties of X are reflected in this
representation: from Example 2.3.8 we know that X; 1L X4 | Xo if the path [1 -2 — 4] is
max-weighted, which is the case here. So it is obvious that X; does not need to appear in

the minimal representation of X, as max-linear function of X; and Xs.

(2) If byy > % then Xy = %Xl v ’,;g—gXQ V b3aZ3 V bysZy.
In particular, I;—;‘X 1> %Xg is possible with positive probability; in (1) this is not possible
(see Example 2.6.1).

For U = {2} and i = 4 we have An{ (4) = {2}. Similarly as above we obtain that 2 €
(4) and 3,4 € An

two cases as above:

an(4)~an¥ U (4). It remains to discuss node 1, which gives rise to the same

(1) If the path [1 — 2 - 4] is max-weighted, then X, = Z;_;lXQ V b3aZ3V baaZy.

(2) If the path [1 — 2 — 4] is not max-weighted, then Xy = 224X, v b14 71 V b34Z3 V baa Zs.
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Chapter 2 Max-linear models on directed acyclic graphs

Such minimal representations become relevant, when X is partially observed. If, for example,
X is observed and B is known, then the prediction problem of X4 can be solved by (conditional)
simulation of the relevant noise variables and direct computation of X,. In case (1) we need to
simulate independent Z3, Z;, whereas in case (2) additionally Z; has to be simulated conditioned

on Xy. We discuss such prediction problems in Gissibl and Kliippelberg [28]. O

Appendix 2.A An auxiliary lemma

Lemma 2.A.1. Let D = (V,E) be a DAG and U ¢ V. For nonnegative functions a(i,j, k),
1,5,k €V, we have for all i eV,

\/ a(i,j,k): \/ \/ a(ivjak)v (2A1)

kepa(i) jean(k) jean(z) kede(j)npa(i)
\ a(i,j,k)= \/ a(i,j,k). (2.A.2)
kean(i)nU jeAn(k) jean(i) keDe(j)nan(i)nU

Proof. Since we take maxima, we only have to prove that each combination of nodes (k,j) on
the left-hand side appears also on the right-hand side and vice versa. In order to prove (2.A.1),

it suffices to show that
kepa(i) and jean(k) if and only if jean(i) and k € de(j) npa(i).

By observing that an(pa(i)) € an(i) and j € an(k) if and only if k € de(j), this equivalence is
obvious. Eq. (2.A.2) is proved in the same way. O
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Chapter 3

Tail dependence of recursive max-linear
models with regularly varying noise

variables

Abstract

Recursive max-linear structural equation models with regularly varying noise variables are con-
sidered. Their causal structure is represented by a directed acyclic graph (DAG). The problem
of identifying a recursive max-linear model and its associated DAG from its matrix of pairwise
tail dependence coefficients is discussed. For example, it is shown that if a causal ordering of
the associated DAG is additionally known, then the minimum DAG representing the recursive
structural equations can be recovered from the tail dependence matrix. For a relevant subclass
of recursive max-linear models, identifiability of the associated minimum DAG from the tail de-
pendence matrix and the initial nodes is shown. Algorithms find the associated minimum DAG
for the different situations. Furthermore, given a tail dependence matrix, an algorithm outputs

all compatible recursive max-linear models and their associated minimum DAGs.
MSC 2010 subject classifications: Primary 60G70, 05C20; secondary 05C75, 62-09, 65505

Keywords and phrases: Causal inference, directed acyclic graph, extreme value theory, graphical
model, max-linear model, max-stable model, regular variation, structural equation model, tail

dependence coeflicient

3.1 Introduction

Causal inference is fundamental in virtually all areas of science. Examples for concepts estab-
lished over the last years to understand causal inference include structural equation modeling
(see e.g. Bollen [5], Pearl [55]) and graphical modeling (see e.g. Koller and Friedman [45], Lau-
ritzen [47], Spirtes et al. [69]).

In extreme risk analysis, it is especially important to understand causal dependencies. We
consider recursive max-linear models (RMLMs), which are max-linear structural equation models
whose causal structure is represented by a directed acyclic graph (DAG). Such models are directed

graphical models (see [55], Theorem 1.4.1); i.e., the DAG encodes conditional independence
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Chapter 3 Tail dependence of recursive ML models with regularly varying noise variables

relations in the distribution via the (directed global) Markov property. RMLMs were introduced
and studied in Chapter 2. They may find their application in situations when extreme risks play
an essential role and may propagate through a network, for example, when modeling water levels
or pollution concentrations in a river or when modeling risks in a large industrial structure. In
Einmahl et al. [20] a RMLM was fitted to data from the EURO STOXX 50 Index, where the
DAG structure was assumed to be known.

In this chapter we assume regularly varying noise variables. This leads to models treated in
classical multivariate extreme value theory. The books by Beirlant et al. [4], de Haan and Ferreira
[14], and Resnick [60, 61] provide a detailed introduction into this field. A RMLM with regularly
varying noise variables is in the mazimum domain of attraction of an extreme value (maz-stable)
distribution. The spectral measure of the limit distribution, which describes the dependence
structure given by the DAG, is discrete. Every max-stable random vector with discrete spectral
measure is max-linear (ML), and every multivariate max-stable distribution can be approximated
arbitrarily well via a ML model (e.g. Yuen and Stoev [75], Section 2.2). This demonstrates the
important role of ML models in extreme value theory. They have been investigated, generalized,
and applied to real world problems by many researchers; see e.g. Cui and Zhang [11], Einmahl
et al. [19], Falk et al. [23], Kiriliouk [41], Schlather and Tawn [64], Strokorb and Schlather [70],
and Wang and Stoev [73].

One main research problem that is addressed for restricted recursive structural equation mod-
els, where the functions are required to belong to a specified function class, is the identifiability of
the coefficients and the DAG from the observational distribution. Recently, particular attention
in this context has been given to recursive structural equation models with additive Gaussian
noise; see e.g. Ernest et al. [21], Peters et al. [57], and references therein. For RMLMs this prob-
lem is investigated in Chapter 4. In the present chapter we discuss the identifiability of RMLMs
from their (upper) tail dependence coefficients (TDCs).

The TDC, which goes back to Sibuya [66], measures the extremal dependence between two
random variables and is a simple and popular dependence measure in extreme value theory.
Methods to construct multivariate max-stable distributions with given TDCs have been pro-
posed, for example, by Falk [22], [23], [64], and [70]. Somehow related we identify all RMLMs
with the same given TDCs.

3.1.1 Problem description and important concepts

First we briefly review RMLMs and introduce the TDC formally. We then describe the idea of

this work in more detail and state the main results.

Max-linear models on DAGs

Consider a RMLM X = (X1,...,X4) on a DAG D = (V,E) with nodes V ={1,...,d} and edges
E={(k,i):ieV and k epa(i)}:

Xz': \/ C]ﬂ'XkVCiiZi, i=1,...,d, (311)
kepa(i)
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where pa(i) denotes the parents of node 7 in D and ¢; > 0 for k € pa(i) u{i}; the noise variables
Z1,...,2q, represented by a generic random variable Z, are assumed to be independent and
identically distributed with support R, := (0,00) and regularly varying with index a € Ry,
abbreviated by Z € RV(«). Denoting the distribution function of Z by Fy, the latter means that

lim 1= Fy(at) =x ¢
tsoo ] — FZ(t)

for every = € R,. Examples for Fz include Cauchy, Pareto, and log-gamma distributions. For

details and background on regular variation, see e.g. [60, 61].

The properties of the noise variables imply the existence of a normalizing sequence a,, € R,
such that for independent copies XM, ..., X of X

'V X LM, 0o, (3.1.2)

v=1
where M is a non-degenerate random vector with distribution function denoted by G and all
operations are taken componentwise. Thus X is in the maximum domain of attraction of G; we
write X € MDA(G). The limit vector M (its distribution function G) is necessarily max-stable:
in the present situation we have for all n € N and independent copies M (1), M (") of M , the
distributional equality nl/epg 4 Vo M ). Furthermore, M is again a RMLM on D, with the

same weights in (3.1.1) as X and standard a-Fréchet distributed noise variables, i.e.,
Fz(z)=®,(x) =exp{-27%}, zeR,.

A proof of (3.1.2) as well as an explicit formula for G and its univariate and bivariate marginal

distributions can be found in Appendix 3.A.2, Proposition 3.A.2.

In what follows we summarize the most important properties of X presented in Chapter 2
which are needed throughout this chapter. Every component of X can be written as a max-linear

function of its ancestral noise variables:

Xi= '\ biZj, i=1,....d, (3.1.3)

jeAn(z)
where An(i) = an(i) U {i} and an(i) are the ancestors of i in D (see Theorem 2.2.2). For i € V,
bi; = ci. For j € an(i), bj; can be determined by a path analysis of D as explained in the
following. Throughout we write k — ¢ whenever D has an edge from k to i. With every path
p=1[j=ko— ki - -k, =1] we associate a weight, which we define to be the product of the
edge weights along p multiplied by c¢;;. The coefficient b;; is then the maximum weight of all

paths from j to . In summary, we have for i € V and j € an(i),

n-1
bji = \/ dji(p) with dji(p) = Choko H Chykyyrs (3.1.4)
pEPji v=0

where Pj; is the set of all paths from j to i. For alli e V and j € V \ An(i) we set bj; = 0. We call
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Chapter 3 Tail dependence of recursive ML models with regularly varying noise variables

the coefficients bj; ML coefficients (MLCs) and summarize them in the ML coefficient matriz
(MLCM) B = (bij)dxq- For the reachability matriz R of D, whose ji-th entry is one if j € An(4)

and zero else, we find
R =sgn(B), (3.1.5)

where sgn denotes the signum function and is taken componentwise. As a consequence, the
ancestors and descendants of every node in D can be obtained from B.

Not all paths are needed for computing b;; in (3.1.4). We call a path p from j to ¢ maz-
weighted path from j to i if it realizes the maximum in (3.1.4), i.e., if bj; = d;j;(p). The concept
of max-weighted paths is essential. This has been worked out in Chapter 2. For example, max-
weighted paths may lead to more conditional independence relations in the distribution of X
than those encoded by D via the Markov property (see Remark 2.3.9). RMLMs where all paths
are max-weighted play a central role in this chapter; we call them recursive maz-weighted models
(RMWMs).

Further DAGs and weights may exist such that X satisfies (3.1.1); for a detailed characteri-
zation of these DAGs and weights, see Theorem 2.5.4. The smallest DAG of this kind is the one
that has an edge k — i if and only if this is the only max-weighted path from k to i in D (see
Remark 2.5.2(ii) and Theorem 2.5.4(a)). We call this DAG D, the minimum ML DAG of X.
It can be determined from B (see Theorem 2.5.3). The other DAGs representing X in the sense
of (3.1.1) are those that have at least the edges of DP and the same reachability matrix. For
edges contained in DB, the weights from (3.1.1) are uniquely defined by B. From these weights
the weights for the other edges can be derived.

Remark 3.1.1. The random vector X and its distribution are characterized by the distribution
F7 of the noise variables and the max-linear dependence structure induced by D. So computing
the max-stable limit distribution G concerns only the marginal limits, whereas the max-linear
dependence structure remains always the same (cf. also the proof of Proposition 3.A.2). This
restrictive dependence structure of X can be generalized naturally within the framework of
multivariate regular variation. See [60, 61] for background on multivariate regular variation.

In the literature various equivalent formulations of regular variation for random vectors can be
found. The extent of a possible generalization can be probably best understood when considering
an equivalent representation of the dependence in a regularly varying vector. A random vector
X € ]R‘Jjr is regularly varying with index a € R, if and only if there exists a random vector © with
values in S¢! = {x e R? : || = 1}, where || - | is any norm in R?, such that for every = € Ry,

POAX > te, X/ X €) v _
>z “P(O¢€:), t- o0. (3.1.6)
POIX] > )

The notation — stands for vague convergence on the Borel o-algebra of S*!. We immediately find
from (3.1.6) that the dependence structure of X is for moderate values of | X | arbitrary; only
when | X || becomes large, the dependence structure becomes that of ©. When assuming that the

dependence structure in the limit is max-linear given by D and the marginal limits are a-Fréchet
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(with an appropriate scale parameter), then X € MDA(G) with G still as in Proposition 3.A.2;
hence, X would have the same TDCs as in the present less general framework. So similarly to
the flexibility of the margins, expressed by Z € RV(«a), there would also be flexibility in the

dependence structure.

In this chapter the restriction to the limiting max-linear dependence provides a sufficient
model as the focus lies on the causal structure in terms of the DAGs. This allows for a more

concise notation and makes the focus of the chapter more transparent. m|

The tail dependence matrix of X

For i € V' we denote the distribution function of component X; of the RMLM X by F; and its
generalized inverse by F~(u) = inf{z e R, : F(z) > u} for 0 < u < 1. The TDC between X; and
X is then given by the limit

X(i.) = lm PO > () | X > F(w).

We summarize all TDCs in the tail dependence matriz (TDM) x = (x(%,7))dxd-

Recall the fact that Z € RV(«a) and the definition of the MLCM B of X. Defining then the
standardized MLCM of X by

— _ b
B=(bj), ==o—2—) (3.1.7)
( J)dxd ( ZkEAn(j) b?j )dxd
the TDC between X; and X; can be computed as

keAn(i)nAn(j)

By (3.1.5) and (3.1.7) it is the sum of the pairwise minima of the i-th and j-th column of B.
A proof of (3.1.8) is given in Appendix 3.A.2. There we implicitly show that X and the limit
vector M from (3.1.2) have the same TDM .

The TDC x(i,7) is zero if and only if ¢ and j do not have common ancestors. Therefore, the
initial nodes of D (i.e., the nodes without parents) constitute a set V; of maximum cardinality
such that x(7,j) is zero for all distinct i,5 € V. This property turns out to be helpful when
identifying from y. We also show that x(i,7) is zero if and only if X; and X are independent,
which is reminiscent of the multivariate Gaussian distribution with its equivalence between

independence and zero correlation.

Obviously, when investigating x, understanding the structure of B is essential. Not surpris-
ingly, B inherits structural properties from B. For example, B is again a MLCM of a RMLM
on the same DAG D, and its columns add up to one. Properties of B, which we use throughout

this chapter, are summarized in Appendix 3.A.2, Lemma 3.A.1.
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Chapter 3 Tail dependence of recursive ML models with regularly varying noise variables

Identifiability from x

The main goal of this chapter is to investigate how far the dependence structure of X and the
DAG D can be recovered from the TDM x. We call two RMLMs that have the same TDM
X -equivalent. For example, X and the limit vector M from (3.1.2) are y-equivalent. The set

{(Zij)dxd € Rf_Xd :Zij = ﬁjl_)z-lj/a for all i,j eV and ﬁj € R+} (3.1.9)

contains the MLCMs of all RMLMs that have the same standardized MLCM B as X and
regularly varying noise variables with index & € R, ; this can be verified by using Theorem 2.5.7.
Obviously, all the corresponding RMLMs are also y-equivalent to X . Therefore, given x only,
we can never identify the true representations (3.1.1) and (3.1.3) of X and the DAG D.

The RMLM X has the same minimum ML DAG D? as every RMLM with MLCM B
(Lemma 3.A.1(e)). As a consequence, D can be determined from B (cf. Theorem 2.5.3). This
raises the question of whether B and, hence, the minimum ML DAG of X are identifiable from

Xx. The answer is generally no, quite simply due to the symmetry of y.

Example 3.1.2. [B is not identifiable from x]
Consider two RMLMs on the DAGs D; and Dy with standardized MLCMs

_ 1 b — 1-b 0
0 O=@ 5[t 1] w0 ] OO »
0 1-b b 1

for some b € (0, 1). For both we find the same TDCs: x(1,1) = x(2,2) =1, x(1,2) = x(2,1) =b. O

We show, however, that B can be computed recursively from y and some additional informa-
tion on the DAG D. This may be its reachability matrix R but also only a causal ordering o;
i.e., o is a permutation on V = {1,...,d} such that o(j) < o(i) for all i € V and j € an(i). If X
is max-weighted, then B is identifiable from x and the initial nodes Vj of D.

The question also arises which RMLMs are all y-equivalent to X and what their minimum
ML DAGs are. Since by (3.1.9) every MLCM of a RMLM with TDM x can be obtained from
its particular standardized version, it suffices to clarify which the standardized MLCMs of all
RMLMs with TDM x are. To this end we use the identifiability results mentioned above to
develop an algorithm that computes these matrices from y. The proposed procedure can be
considerably simplified for RMWMs.

Another interesting point is how DAGs of y-equivalent RMLMs relate to each other. Here
we also investigate the RMWDMs as a relevant subclass of RMLMs separately. For example, an
initial node in a DAG of a RMWM is again an initial node in a DAG of a y-equivalent RMWM

or it must be a terminal node (i.e., a node without descendants).

This chapter is organized as follows. We provide some basic results in Section 3.2. For a RMLM
X we investigate its TDM y and link it to its standardized MLCM B and its associated DAG D.

Here we discuss the situations when two components of X have zero tail dependence. We also
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3.2 A recursive ML model and its tail dependence matrix

introduce the important concept of x-cliques, which allows us to identify potential initial node
sets in D from . Section 3.3 is devoted to RMWMs. We point out the specific properties of x
which lead to the identifiability of B from x and the initial nodes. We also present necessary
and sufficient conditions on a matrix to be the TDM of a RMWM. In Section 3.4 we then study
different identifiability problems based on x. We propose algorithms to compute B from y and
some further information on D such as a causal ordering. We also explain how the standardized
MLCMs of all RMLMs that have TDM x can be determined. In Section 3.5 we consider x-
equivalent RMLMs and analyze relationships between them and their DAGs. We use these
results to investigate whether RMWMSs on different DAGs can be y-equivalent at all and if so

under which conditions. Section 3.6 concludes and suggests further directions of research.

Note that all recursion formulas presented in the chapter are well-defined, since we work with
DAGs. Throughout we illustrate our findings with examples for the (standardized) MLCM of
a RMLM on a given DAG. It can be verified by Theorem 2.4.2 or Corollary 2.4.3(a) that the
presented matrices are indeed MLCMs of RMLMSs on the particular DAGs. Moreover, we use the
following notation throughout the chapter. We denote the ancestors, parents, and descendants
of node ¢ in D by an(i), pa(¢), and de(i), respectively. We define An(i) := an(i) u {i}, Pa(i) :=
pa(i) U {i}, and De(i) := de(i) u {i}. For (possibly random) a; € R we set V;za; = 0 and

Yic @i = 0. We generally consider statements for ¢ € @ as invalid.

3.2 A recursive ML model and its tail dependence matrix

In this section for a RMLM X on a DAG D, we highlight some relations between its TDM
its standardized MLCM B, and the DAG D. They prove particularly useful when we identify
the RMLMs that are x-equivalent to X in Section 3.4.4 or investigate DAGs of y-equivalent
RMLMs in Section 3.5.

3.2.1 The tail dependence coefficients and max-weighted paths

We start with lower and upper bounds for the TDC between two components of X such that
in D the two corresponding nodes are connected by a path. We also show that max-weighted
paths lead to simple expressions for the TDCs and to nice relationships between them. Exactly

these properties motivate us to consider RMWDMSs in detail later on.

Lemma 3.2.1. Let i €V and j € an(i).

(a) We have 0 < gﬁ < x(4,1) with equality if and only if there is a maz-weighted path from
33 _
every k € An(j) to i passing through j. In that case, X(j,7) = Lpean(s) Oki-

(b) We have x(j,1) < ZkeAn(j)Bki <l

(c) Let k e de(j) nan(i). If there is a max-weighted path from every ¢ € An(j) to k and from
every £ € An(j) to i passing through j as well as from every ¢ € An(k) to i passing through
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k, then
X(o1) = XU )X (k) < X (o Ie) A Xy ). (3:2.1)

Proof. As An(j) € An(i), we have by (3.1.8), x(J,7) = Xkean()) bri A by
(a) For k € An(j), by Lemma 3.A.1(d), (f), b’”b“ < b; A by; with equality if and only if there
is a max-weighted path from k to i passing thrz)ugh j. With this, using also Lemma 3.A.1(b),
(a), we obtain x(j,7) > E Y keAn(j) bk] = % > 0 with equality if and only if there is a max-
weighted path from every k € An(j) to i passing through j. In that case Lemma 3.A.1(d) yields
x(J,4) = ZkeAn(]) 5, = LkeAn(j) bi.

(b) As An(j) ¢ An(z)7 by Lemma 3.A.1(a), (b) we find x(j,7) < ZkeAn(j)Eki < ZkeAn(i)Bki =1.
(c) The equality in (3.2.1) follows from (a) and Lemma 3.A.1(d), the inequality then from the
strict inequalities in (a) and (b). O

In the proof of Lemma 3.2.1 we have used that forie V', k € an(i) and j € an(k), D has a max-
weighted path from j to ¢ passing through k if and only if bj; = ]';k’” (Lemma 3.A.1(d)). As to the
equality in (3.2.1), one could expect that the MLCs can be replaced by the corresponding TDCs.
The following example disproves this. In particular, it proves that the converse of Lemma 3.2.1(c)
is not true in general and also that we may have the equality in (3.2.1) although & ¢ de(j)nan(s).

]kbkz ]
bk

Example 3.2.2. [x(j,) = x(4, k)x(k, ) is neither necessary nor sufficient for b;; =

(1) Consider a RMLM on D; with standardized MLCM

1 0 04 03
— |0 1 04 025
5- | 1/1
0 0 02 0.125
0 0 0 0.325 @ Dy

As by, = basbsa , the path [2 - 3 — 4] is max-weighted. Computing x we find x(2,4) <
33

x(2,3)x(3,4). That is, x(2,4) # x(2,3)x(3,4) although there is a max-weighted path

from 2 to 4 passing through 3.

(2) Now consider a RMLM on D; with standardized MLCM

0 0.1 0.085
1 08 0.5

0 0.1 0.04
0 0 037

o]
I
o o o =

The path [2 — 3 — 4] is not max-weighted, since 5253@ # boy. However, we have x(2,3)x(3,4) =
33

x(2,4). In summary, x(2,3)x(3,4) = x(2,4) although there is no max-weighted path from

2 to 4 passing through 3.
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(3) Finally, consider a RMLM on Dy with standardized MLCM

v -G
[ ]

13 13|
1(/)3 1(/)2 @‘_@ Dy

Here we find x(1,3)x(3,4) = x(1,4); but 3 is not an ancestor of 4. According to this the
equality in (3.2.1) may hold although k ¢ de(j) nan(i). O

|

I
o o o =
o o R O

3.2.2 The tail dependence coefficients and the initial nodes

In this section we mainly investigate how x and D relate to each other.
Two components of X are independent if and only if the TDC between them is zero. We link

these two properties with the relationship between the two corresponding nodes in D.

Theorem 3.2.3. Let X be a RMLM on a DAG D = (V,E) with TDM x and i,j € V. Then the

following statements are equivalent:
(a) X; and X; are independent.
(b) An(i) nAn(j) = @.

(C) X(lv.j) =0.

Proof. The equivalence between (a) and (b) follows from representation (3.1.3) for X; and X;
and the distributional properties of the noise variables. The one between (b) and (c) is immediate
by (3.1.8) and Lemma 3.A.1(a). O

Remark 3.2.4. (i) Let R be the reachability matrix of D. The ij-th (ji-th) entry of RTR
equals the cardinality of An(i) nAn(4). Thus by Theorem 3.2.3, sgn(x) = sgn(R? R). That
is, we learn from x(7,5) > 0 only that An(i) n An(j) # @ but not whether ¢ and j are
connected by a path as is the case for the (standardized) MLCs (Lemma 3.A.1(a) and
(3.1.5), respectively).

(ii) In the more general framework of Remark 3.1.1, parts (a) and (b) of Theorem 3.2.3 would
have to be replaced by

(a’) X; and X; are asymptotically independent; i.e., the corresponding components of the

limit vector are independent.
(b’) The dependence structure in the limit is given by a DAG, in which An(i¢)nAn(j) = @.

The equivalence between (a’) and (c) is a well-known result in extreme value theory; see

e.g. Theorem 6.2.3 and the subsequent remark in [14]. O
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Chapter 3 Tail dependence of recursive ML models with regularly varying noise variables

In what follows we investigate the relationship between x and the initial nodes V, of D. This
is motivated by the fact that a RMLM is recursively defined by the structure of D. For example,
to obtain representation (3.1.3) of X from its representation (3.1.1) recursively, we would start
with representation (3.1.3) of the components X; with i € V. Then by proceeding iteratively
we would substitute the parental variables in (3.1.1) by their representation (3.1.3). Such an
iterative procedure starting with the initial nodes could also identify all RMLMs which have
(the given) TDM .

The TDC between two components of X simplifies considerably when in D one of the corre-
sponding nodes is an initial node. If both nodes are initial nodes, then the TDC between them

is zero. We provide these and further related results.

Lemma 3.2.5. (a) For distinct i,j € V,, x(i,7) = 0.
(b) Let W €V such that x(i,7) =0 for all distinct i,5 € W. Then |W| < |V;].
(c) ForieV and jeV,, An(i)nVy={keV,:x(k,i) >0} and De(j) ={k eV : x(j,k) > 0}.
(d) ForieV and jeV;, x(4,i) = bj;.

Proof. (a) and (c) follow from the fact that initial nodes have no ancestors and Theorem 3.2.3.
(b) Assume that |[W]| > |V;|. Since for every i € V' there is some j € An(i) nV,, we have j ¢
An(i1) n An(iy) for some j € V, and distinct i1,72 € W. As An(i1) n An(iz) # @, again by
Theorem 3.2.3, x(i1,i2) # 0. This is, however, a contradiction to the fact that x(i1,i2) = 0 as
i1,12 € W. Hence, [W| < |V,|.

(d) As An(j) = {5}, we obtain from (3.1.8) by Lemma 3.A.1(a), (f), x(j,7) = X%, bri A bxj =
Byi nbs; = by 0

From Lemma 3.2.5(a), (b) we learn that V; is one of the node sets of maximum cardinality
such that for every two distinct nodes, the TDC between their corresponding components of X
is zero. We introduce a concept which allows us to determine these sets from x by a graph. For

an illustration of these notions, we refer to Example 3.4.12 below.
Definition 3.2.6. Let y be the TDM of a RMLM on a DAG D and W c V.

(a) We call the undirected graph that has nodes V and an edge between k and ¢ if and only
if x(k,i) >0, x-graph.

Let now DX be the complement of the y-graph; i.e., DX is the graph with the same node set V'
but the edge set consists of the edges that are not present in the y-graph.

(b) We call W a x-clique if it is a clique in DX; i.e., every two (distinct) nodes in W are

connected by an edge in DX.

(c) We call W a mazimum x-clique if it is a maximum clique in DX; i.e., W is a clique in DX

such that no clique in DX with higher cardinality exists. a
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The y-graph associated with the TDM y of X corresponds to the covariance graph of the ran-
dom vector X introduced in Cox and Wermuth [10], in which two (distinct) nodes are connected
by an edge if and only if their corresponding components are dependent (cf. Theorem 3.2.3). In
the non-Gaussian case, however, the name covariance graph is misleading.

The following theorem is an immediate consequence of Definition 3.2.6 and Lemma 3.2.5(a),

(b).

Theorem 3.2.7. Let X be a RMLM on a DAG D with TDM x. Then the set V; is a mazimum
x-clique.

Theorem 3.2.7 raises the question of how V; is related to possible other maximum y-cliques.
Lemma 3.2.8. Let W be a maximum x-clique.

(a) There is only one bijection ¢ : Vo - W such that for every j € Vi, x(j,¢(j)) > 0 and
X(.i) =0 for alli € W {(j)}.

(b) Let ¢ be the bijection from (a). Then for j € Vi, An(p(j)) NV, = {j} and De(j)nW =
{e(3)}. In particular, if j + ©(j), then D has a path from j to o(j).

(¢c) Leti,je V~W. If x(i,7) < Xpew x(k,7) A x(k,7), then Vo + W.

Proof. (a) Since maximum y-cliques have the same cardinality, we know from Theorem 3.2.7
that |V;| = |W|. As for every i € W, An(i) n'V, # @, it suffices by Lemma 3.2.5(c) to show that
|De(j) nW|=1 for j € V. We first assume that |De(j) n W/|> 1. Using Theorem 3.2.3 similarly
as in the proof of Lemma 3.2.5(b) yields a contradiction. Hence, [De(j) n W| < 1. As |V,| = W],
|De(5) n W| =1 must hold.

(b) follows from (a) and Lemma 3.2.5(c).

(c) Assume that V; = W. Using Lemma 3.A.1(a) and Lemma 3.2.5(d) we obtain from (3.1.8)

d [ .
k=1 keW

Since this contradicts the conditions of (c), V; and W must be different. O]

3.3 A recursive max-weighted model and its tail dependence

matrix

In this section we focus on RMWNMSs, i.e., RMLMs where all paths are max-weighted. We first
present some structural properties of a RMWM X on a DAG D with standardized MLCM B.
We then investigate its TDM x and show that the assumption of all paths in D being max-
weighted involves simple relations between the TDCs and the (standardized) MLCs. Finally, we
give necessary and sufficient conditions on a matrix to be the TDM of a RMWM on a given
DAG.
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3.3.1 Some structural properties of a recursive max-weighted model

All RMLMs on polytrees are RMWDMs simply because in a polytree there is at most one path
between every two (distinct) nodes (see also Example 2.3.2). Furthermore, a RMWM can be con-
structed on every DAG, as the following example shows. Note the particularly simple structure
of the introduced class of RMLMs.

Example 3.3.1. [The homogeneous model]
Let D= (V,E) be a DAG with V ={1,...,d} and Z1,...,Z4 as in (3.1.1). Consider the RMLM
defined by

1 . .
s W(k \/(A) An(il kazi)’ i=1.000d.
epa(i

We find that every path p from j to 7 has the same weight d;;(p) = |An(7)|"1/*. As a consequence,
every path is max-weighted and X is a RMWM. Its representation (3.1.3) is given by

1
Xi=—— \/ Z;, i=1,...,d.
|An() [V jeane) ’
For the TDC from (3.1.8) between X; and X, we have
1 1 |An(i) n An(j)|

D= By @] RG]~ A AaG)]

If j € an(7), then this reduces to x(7,7) = |An(j)|/|An(¢)|. Finally, by Proposition 3.A.2 the

components of the limit vector M introduced in (3.1.2) are standard a-Fréchet distributed. O

Recall from the Introduction the prominent role of the minimum ML DAG D? of X, which
equals the minimum ML DAG D5 of a RMLM with MLCM B (Lemma 3.A.1(e)). The fact that
X is max-weighted ensures that DB only depends on sgn(B) but not on the precise values of the
standardized MLCs. Since sgn(B) is the reachability matrix of D ((3.1.5) and Lemma 3.A.1(a)),

DB can be determined from pure graph theoretical properties. To clarify this we introduce a

basic concept in graph theory, which goes back to Aho et al. [1].
Definition 3.3.2. Let D be a DAG.
(a) An edge k — ¢ is redundant if D has another path from & to i.

(b) The DAG D" obtained from D by deleting its redundant edges is called transitive reduction
of D. O

Since DB has an edge k — ¢ if and only if this is the only max-weighted path from & to ¢
in D, the fact that D has only max-weighted paths yields part (i) of the following remark. By

Definition 3.3.2 and Lemma 3.A.1(a) (ii) is a consequence of (i).
Remark 3.3.3. Let D' be the transitive reduction of D.

(i) The DAGs DB and D™ coincide.
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3.3 A recursive max-weighted model and its tail dependence matrix

(ii) DB is the DAG with the minimum number of edges that has reachability matrix sgn(B).

(iii) Even if X is a RMLM but not max-weighted, it may happen that DB = DY with all paths
max-weighted in D, In that case all results presented in this section hold with respect to
v, o

3.3.2 Properties of the tail dependence coefficients of a recursive
max-weighted model

The following result points out the simple structure of x. It follows from Lemma 3.2.1(a), (c),

since in D all paths are max-weighted.

Lemma 3.3.4. LetieV.

|e~\
<

(a) For j e An(i), x(j,i) = ” = Skean(j) Oki = Skean(j) brrex (k. 7).

(b) For kean(i) and j € an(k), x(4,7) = x(7,k)x(k,i) < x(4,k) A x(k,1).

=

(¢) For jean(i) and some path [j = ko = ki = - = kn =], x(4,1) = [1"°Z8 x kv, kui1).

The equality x(7,7) = x(J,k)x(k,7) for some j € An(i) n An(k) does not necessarily imply
that k € An(i) (cf. part (3) of Example 3.2.2). For RMWDMs, however, whenever these products
hold for all j € An(i) n An(k) nV,, where V; are again the initial nodes in D, we can conclude
that k € An(37).

Proposition 3.3.5. For i,k € V, k € An(i) if and only if x(4,7) = x(4,k)x(k,i) for all j €
An(i) nAn(k)nVj.

Proof. Assume that x(j,7) = x(J,k)x(k,7) for all j € An(i) n An(k) nV,. We first show that
x(¢,3) < x(¢, k) for every £ € An(i) n An(k). We obtain for j € An(¢) nV;, using the assumptions
and Lemma 3.3.4(b),

x(4:4) _ xG,Ox(61) _ x(44)
X k) xG,Ox( k) x(4 k)

Hence, x(¢,1) = x(¢,k)x(k,i) and x(4,7) < x(¢, k). Together with Lemma 3.3.4(a) we then find
from (3.1.8)

x(k,i) =

X(k‘,Z) = Z BE@(X(£7]€)AX(€77:)) = Z BE(X(Evi)
LeAn(k)nAn(i) LeAn(k)nAn(i)

:X(k7i) Z EMX(&]{)'
LeAn(k)nAn(7)

By the assumptions and Theorem 3.2.3 x(k,i) > 0 so that deAn(k)nAn(i)l_)ggx(ﬁ,k) = 1. As
L = Yrean(k) beex (£, k) (Lemma 3.3.4(a)) and by x (4, k) > 0 for all £ € An(k) (Lemma 3.A.1(a)
and Theorem 3.2.3), we have An(i) n An(k) = An(k). This finally implies that An(k) ¢ An(i),
equivalently &k € An(7).

The converse statement holds due to Lemma 3.3.4(b). O
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Chapter 3 Tail dependence of recursive ML models with regularly varying noise variables

In Lemma 3.3.4(a) we have written the positive standardized MLCs as functions of themselves

and TDCs. We now present expressions for them only in terms of TDCs.

Proposition 3.3.6. ForieV and j € An(i),

bji=x(hi) = Y Awx(kyi) with Ajp=1- 3 A (3-3.1)
kean(j) Lede(k)nan(y)

Proof. Asby Lemma 3.3.4(a) b ji = X(J5 1)~ Lkean()) b, it suffices to show that Y kean(y) NjkX (k1) =
Y kean(j) by;. Using again Lemma 3.3.4(a) yields

Z Ajrx (ki) = Z Ajk Z by;.

kean(j) kean(j) LeAn(k)

Noting that k € an(j) and ¢ € An(k) if and only if £ € an(j) and k € De(¢) nan(j), we can

interchange the two summation operators to obtain

oMk > b= > b Y, k= oy bui(Me+ X Ak)= > ba

kean(j) LeAn(k) Lean(j)  keDe(£)nan(j) Lean(j) kede(£)nan(y) Lean(j)

where we have used the definition of \j, for the last equality. O

Before we give an example of representation (3.3.1), we summarize some characteristics of the
coefficients \;i. Denoting by pa™(j) the parents of j in the transitive reduction D* of D, we have
Ajk =1 for k e pa'(j) as de(k) nan(j) = @. For k € an(j) \ pa'(j) it can be verified that A;z # 0
if and only if there exists no & € de(k) nan(j) such that |De(%) npa'™(5)| = [De(k) npa(j)|.

Example 3.3.7. [On representation (3.3.1)]
Consider a RMWM X on the DAG D depicted below, and note that here D = D, We determine,
as an example, representation (3.3.1) for the MLCs 536766 and 1_398799:

bse66 = X(36,66) — x(35,66),
bos,00 = Xx(98,99) — x(34,99) — x(66,99) — x(97,99) + x(2,99) + x(35,99).

JosloZoREEGEoN
» O~ O-@-@—  ~O-OO-@
“o-0-—~@-@

O

We address again the interrelations between the TDCs and prove that every TDC can be

written as linear combination of minima of two TDCs.
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3.3 A recursive max-weighted model and its tail dependence matrix

Proposition 3.3.8. Fori,jeV,

x(i,7) = > pije(x(k,i) Ax(k,7))  with  pije=1- > pije  (3.3.2)
keAn(i)nAn(j) Lede(k)NAn(i)nAn(y)

Proof. Applying Lemma 3.3.4(a) and Lemma 3.A.1(b), (d) we obtain for k € An(i) n An(j),

b i bk b i _lc bewb, i Egkl_)k- - -
XOei) ax(k,j) = =2 A= = (ZEAZD) (S By = Y AT oS By A by
bk bkk bk brk”\ reAn(r) eeAn(k) bk bk teAn(k)

With this we then have

Z iuljyk(X(kvl) /\X(kaj)) = Z Hij ke Z Bgz‘/\l;gj.
keAn(i)nAn(j) keAn(i)nAn(j) LeAn(k)
Using that k£ € An(i)nAn(j) and £ € An(k) if and only if £ € An(i)nAn(j) and k € De(¢)nAn(i)n
An(j) to interchange the summation operators similarly as in the proof of Proposition 3.3.6 and

the definition of p;;, similarly as the one of \j, there, we finally find (3.3.2). O

For 4,5 € V denote by lca(i,j) the lowest common ancestors of i and j; i.e., k € lca(i,7) if
and only if k € An(i) n An(j) and D has no path from & to another node in An(i) n An(j). For
ijg from (3.3.2) we have p;;, = 1 for k € lca(i,j) as in that case de(k) nAn(i) nAn(j) = @
It can be verified that p;;, = 0 for k € (An(i) n An(j)) \ lca(s,j) if and only if there exists
some k € de(k) n An(i) n An(j) such that [De(%) nlca(i,j)| = [De(k) nlca(i,7)|. With this, if
J € An(7), then p;5; =1 and ;55 = 0 for k € an(j). Thus in that case the right-hand side of the
first equality in (3.3.2) is equal to x(j,7) A x(4,7) = x(4, 1), and representation (3.3.2) is trivial.
Note the analogy of the coefficients ;1 to the coefficients Aj; in (3.3.1).

Example 3.3.9. [On representation (3.3.2)]
Consider a RMWM on the DAG D depicted below. We present, as an example, representation
(3.3.2) for the TDCs x(95,96) and x(96,97):

X(95,96) =x(33,95) A x(33,96),
x(96,97) =x(33,96) A x(33,97) + x(64,96) A x(64,97) + x(94,96) A x(94,97)
— x(34,96) A x(34,97) - x(2,96) A x(2,97).

|
|
|

Joslotlons
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Chapter 3 Tail dependence of recursive ML models with regularly varying noise variables

We conclude this section with necessary and sufficient conditions on a matrix to be the TDM
of a RMWM on a given DAG D. To be such a matrix, the ij-th (ji-th) entry of the matrix
must satisfy a property depending on the relationship between 7 and j in D. For example,
based on Theorem 3.2.3, it must be zero if and only if An(i) n An(j) = @. By Lemma 3.A.1(e),
Remark 3.3.3(i), and Theorem 2.5.4, a RMWM on D is a RMWM on every DAG that has
reachability matrix R of D. Consequently, it would be sufficient to specify R and to require the
four conditions below for any DAG with reachability matrix R such as the transitive reduction
D of D.

Theorem 3.3.10. Let D = (V, E) be a DAG with nodes V = {1,...,d} and reachability matrix
R. Let x = (x(4,7))dxa be a symmetric matriz with ones on the diagonal. For i € V define
b =1- > kean(i) beex(k,i) recursively. Then x is the TDM of a RMWM X on D if and only if
the following conditions hold:

(a) sgn(x) = sgn(R'R).

(b) For allieV, by >0.

(c) For allieV, jean(i), and k e de(j) npa(i), x(4,1) = x(J, k) x(k,7).

(d) For alli,jeV such thati¢ An(j) and j ¢ An(i) but An(i) nAn(j) + @,

keAn(i)nAn(y)

In that case by; is the i-th diagonal entry of the standardized MLCM B of X . Furthermore, for
i,jeV, bji=0if jeV ~An(i), and bj; = bj;ix(j,1) if j € an(i).
Proof. Assume that x is the TDM of a RMWM X on D. The statements (a) and (c) follow from
Remark 3.2.4(i) and Lemma 3.3.4(b). By Lemma 3.3.4(a) b;; is the i-th diagonal entry of the
standardized MLCM B of X. Since all b;; are positive according to Lemma 3.A.1(a), assertion
(b) holds. The representation of x(7,;) in (d) is again a consequence of Lemma 3.3.4(a).
Assume now that (a)—(d) hold. For every i € V define bj; := bj;x(4,7) for all j € an(i) and for
all j € V ~ An(i), bj; := 0. We first show that B = (b;j)dxq is the MLCM of a RMWM on D,

where weights from its representation (3.1.1) are given by c¢;; = b;; and cp; = g’” = x(k,1) for
_ Kk

i€V and k e pa(i). As sgn(x) = sgn(RTR) and b;; > 0, the weights ¢;; for i € V and k € Pa(i)

are positive, which is a necessary condition for them by the definition of a RMLM in (3.1.1).

Let p=[j=ko— ki -+ — k,=1] be a path in D. Using (c) iteratively yields

n-1 n-1 n-1
dji(p) = ¢jj [T ehokur = 0jj TT X(Fus kuer) = bygx (G, k2) [T x(kus kusr) = - = bjix (3, 7) = bji-
v=0 v=0 v=2
This implies that B = (I_)ij)dxd is the MLCM of a RMWM X. Since it suffices to specify one
RMLM that has TDM y, we may assume that Z € RV(1). Denoting the TDM of X by X =
(X(4,7))dxd, it remains to show that X = x. Since the diagonal entries of y equal one, the
equality of the diagonal entries is obvious. For i,j € V' such that An(i) n An(j) = @, the ij-th
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3.4 Identifiability problems based on the TDM of a recursive ML model

(ji-th) entries of x and X are zero and, hence, equal due to condition (a) and Theorem 3.2.3.

The matrix B is the standardized MLCM of X as o = 1 and by = 1 - Zkean(i)gki for every

i€ V. Thus for i € V and j € an(i) we have by Lemma 3.3.4(a) and the definition of B that
bji

xX(j,1) = 7= X(i,7). Finally, for i, j € V such that j ¢ An(i) and i ¢ An(j) but An(i)nAn(j) # @,

using Lemma 3.3.4(a), the result shown before, and condition (d), we obtain

X(i,5) = S b ((k,i) Ax(k,5)) = S bre(x(k, i) A x(k, ) = x (1, 5).
keAn(i)nAn(y) keAn(i)nAn(y)

In Example 3.5.5 below we present a possible application of Theorem 3.3.10.

Remark 3.3.11. In Theorem 3.3.10 the coefficients b;; can also be defined by
1= Y kean(i) NikX (k1) with Ag, as in (3.3.1). We give a sketch of a proof of this assertion: we show
that Aix = 1= ¥sede(k)nan(s) Mok and use this to verify that if (c) holds, then the assertion is valid

as well. Moreover, condition (d) can be replaced by

(d’) For all 4,j € V such that i ¢ An(j) and j ¢ An(i) but An(i) nAn(j) # @,

x(i,7) = > pijr(X(k,i) Ax(k,j))  with g as in (3.3.2).
keAn(i)nAn(j)

By going through the proof of Theorem 3.3.10, we observe that this can be done due to the
representation of x(,7) in (3.3.2). ]

3.4 Identifiability problems based on the tail dependence

matrix of a recursive ML model

Throughout this section we assume that the TDM x of a RMLM X on a DAG D with standard-
ized MLCM B is given. We first show the identifiability of B from y and the reachability matrix
R of D. We then assume that the reachability relation of D is not fully known but only a causal
ordering o. This still leads to identifiability of B from . We also investigate whether B can be
recovered from y and the initial nodes V of D. It turns out that this is generally not possible,
but we verify it for RMWMs. We prove the different identifiability results by providing algo-
rithms which compute B from y and the additionally known information on D. Finally, based
on these results we present an approach, which finds the standardized MLCMs of all RMLMs
with TDM x. Since this method simplifies for RMWMs considerably, we give an adapted and
modified version for this subclass of RMLMs.

3.4.1 Identifiability from the tail dependence matrix and the reachability

matrix

The following algorithm computes B from y and R recursively. The rows of B are filled up

successively until B is obtained, where the number of ancestors determines the order in which
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Chapter 3 Tail dependence of recursive ML models with regularly varying noise variables

the rows are treated. The existence of such an algorithm proves the identifiability of B from yx
and R.

Algorithm 3.4.1. [Find B from y and R]
Forv=0,...,d-1,
for j € V such that |an(j)| = v, set

bj; =0 for all ie V\De(j) and bj;=x(j,i)— Y. bg;iaby forallieDe(j).  (3.4.1)
kean(y)

Eq. (3.4.1) follows from Lemma 3.A.1(a), (3.1.8), and Lemma 3.A.1(f). If X is max-weighted,
then by Lemma 3.3.4(a) (3.4.1) can be replaced by

bji=0 forallieV \De(j), bjj=1- > b, and bj;=bj;x(j,i) for all i e de().
kean(j)

(3.4.2)

To avoid the iterative loop, we can also use (3.3.1) for computing the diagonal entries of B.
Note, however, that this requires to calculate the coefficients A;;, appearing in (3.3.1) recursively

as well.

3.4.2 Identifiability from the tail dependence matrix and a causal ordering

So far we have dealt with the identifiability from x and the reachability matrix R of D. Here we
investigate the identifiability from y and a causal ordering ¢ of D. If R is given, then we know
for every two (distinct) 4,5 € V whether there is a path from j to i; but from o we only learn
that there is no path from j to i if o(j) > o(7).

There exists a causal ordering for every DAG due to the acyclicity (see also Diestel [15],
Appendix A). However, it is not necessarily unique. For example, the DAG D; from Exam-
ple 3.2.2 has the identity function on V' = {1,2,3,4} and the permutation & on V given by
5(2)=1,5(1)=2,5(3) =3,3(4) =4 as causal orderings.

The DAG D has a causal ordering which can be completely described by its initial nodes V,

and x as follows.

Lemma 3.4.2. We denote the initial nodes by Vy = {i1,...,ijy,|} and define Vi={keV,:
X(k,i) >0} forieV. Then D has a causal ordering o such that

o(iy)=v forv=1,...,|Vo| and foralli,jeV, o(j)<ao(i) whenever |VJ|<[Vi|. (3.4.3)

Proof. Recall from Lemma 3.2.5(c) that V = An(j) NV, and V = An() nV,. With this it is not
difficult to see that D has such a causal ordering. O

Now we give an iterative procedure which computes B from y and ¢. Obviously, this proves
the identifiability of B from y and o. Here the rows of B are also filled up successively, where

the order of the nodes given by ¢ defines the order in which the rows are treated.
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3.4 Identifiability problems based on the TDM of a recursive ML model

Algorithm 3.4.3. [Find B from y and o]
Forv=1,...,d,
for j € V such that o(j) = v, set

bji =0 for all ¢ € V such that o(j) > o (i),

bii=x(j,i)— Y. by Abg; for all i € V such that o(j) < o(4).
kio(k)<o(5)

(3.4.4)

Eq. (3.4.4) can be obtained from (3.1.8) by using Lemma 3.A.1(a), the definition of a causal
ordering, and Lemma 3.A.1(f).

3.4.3 Identifiability of recursive max-weighted models from the tail
dependence matrix and the initial nodes

In what follows we assume X to be max-weighted. Then recalling Lemma 3.2.5(c), Proposi-
tion 3.3.5 involves a procedure to determine R from yx and V,. Since Algorithm 3.4.1 computes
B from y and R, we can identify B from x and V,. This is usually not possible outside the class
of RMWMs.

Example 3.4.4. [B is generally not identifiable from y and V]
Consider two RMLMs on D; and Dy with standardized MLCMs B; and Bs given by

Dy @ 1 02 0.3 1 02 0.3 @ Dy

1=10 0.8 04| and Bsy=|0 04 0

TN : SN
G "l s o o1 0] (—0)

We find by Lemma 3.A.1(d) that none of the two models is max-weighted. Since both have the
same y and D; and D, share the same initial node V, = {1}, we cannot distinguish between B

and Bj based on x and V. O

Proceeding as suggested by Proposition 3.3.5 to recover R from x and V; is very tedious,
since many conditions may need to be verified. Therefore, we introduce an alternative method
which computes B from y and V;: we first determine a causal ordering ¢ of D and apply then
Algorithm 3.4.3 to obtain B. From the next proposition we learn how a causal ordering o of D

can be computed from y and V; note that we encountered property (i) in (3.4.3).

Proposition 3.4.5. Let V' for i€ V be as in Lemma 3.4.2. Every permutation o on V such
that for alli,j €V,

(i) o(j§) < o(i) whenever |VJ| < |V and
(ii) o(j) < o(i) whenever |VJ| = |Vi| and max;y: x(k,i) < max, /g x(k,7)

s a causal ordering of D.
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Proof. Assume that o is no causal ordering of D, i.e., o(j) > o (i) for some i € V and j € an(i).
Recall from Lemma 3.2.5(c) that VJ = An(j) nV, and Vi = An(i) nV,. As j € an(i), VJ ¢
VZ. But then because of the properties of o, vy = Vi and Max;, g x(k,j) < max;, x(k, 7).
Assume now that j € V', and note that i ¢ V; as j € an(i). Then, since for 41,43 € V the TDC
x(i1,i2) = 1 if and only if ¢; =4y (cf. (3.1.8) and Lemma 3.A.1(a)), we find 1 = max;, x(k,j) <
max;, i x(k,i) < 1. This contradiction proves that j ¢ V¢, which implies again that Vj =
an(j) nV,. As max;, g x(k,j) < maxy, v x(k,i), x(k,7) < x(k,i) for some k € an(j) n Vj.
Observe from Lemma 3.3.4(b) that j ¢ an(i), since otherwise x(k,i) < x(k,7). This, however,

contradicts our original assumption, and ¢ must be a causal ordering of D. O

Finally, we clarify the precise steps of our approach to determine B from y and Vj.
Algorithm 3.4.6. [Modification of Algorithm 3.4.3 for RMWNMs: find B from x and V]
1. Find a causal ordering o of D from y and V;:
forv=1,...,|Vq|,

find all j € V such that |VZ| = |[{k € V; : x(k,7) > 0} = v and summarize them in the
set A,;

sort the nodes ki, ..., k4, from A, such that
lky) > lkay) > ... 2 Lk :
max x (¢, k1) 2 max (L k) max x (€, ka,))

for p=1,...,]A,,
set o(k,) = XK1 [Ax| + i, where ¥9_; := 0.

2. Apply Algorithm 3.4.3 to obtain B from x and o.

Observe from Proposition 3.4.5 that every permutation ¢ on V which can be chosen in step

1. is indeed a causal ordering of D.

3.4.4 Identifiability from the tail dependence matrix

We now combine the previous results to find the standardized MLCMs of all RMLMs that have
TDM x. In the first part we deal with general RMLMs. Because of the identifiability properties
derived in Section 3.4.3, we assume in the second part that y is the TDM of a RMWM. We
provide an algorithm, which outputs the standardized MLCMs of all RMWMs that have TDM .

(General) recursive max-linear models

Every permutation @ on V' = {1,...,d} is a causal ordering of a DAG with nodes V' but not
necessarily of a DAG that corresponds to a RMLM with TDM y. But if this is the case, then
applying Algorithm 3.4.3 with ¢ = & yields the corresponding standardized MLCM B. This
suggests the following procedure to prove the existence of a RMLM which has TDM y and
whose associated DAG has causal ordering & first apply Algorithm 3.4.3 with ¢ =&, and check
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3.4 Identifiability problems based on the TDM of a recursive ML model

then whether the obtained matrix B is the standardized MLCM of a RMLM which has TDM yx
and whose associated DAG has causal ordering &. In the second step it is enough to verify that
B is the MLCM of a RMLM, which can be done by Theorem 2.5.7.

Lemma 3.4.7. Let & be a permutation on V and B the matriz obtained by applying Algo-
rithm 3.4.3 with o = &. If B is the MLCM of a RMLM (RMWM), then B is the standard-
ized MLCM of a RMLM (RMWM) which has TDM x and whose associated DAG has causal

ordering G.

Proof. Let X be the RMLM (RMWM) with MLCM B and Z € RV(1). Its existence is guaranteed
as B is the MLCM of a RMLM (RMWM). We show that X has standardized MLCM B and TDM
x as well as that its associated DAG D has causal ordering &. Recall from (3.1.5) that sgn(B) is
the reachability matrix of D. Thus by (3.4.4) & is a causal ordering of D and by; = 1 - Y kean(i) %
for every i € V. As the latter holds and a = 1, B is the standardized MLCM of X . The fact that
X has TDM x also follows from (3.4.4). O

So the following “naive” method finds the standardized MLCMs of all RMLMs that have
TDM y: for every permutation on V compute the matrix B from Algorithm 3.4.3, and check
whether it is the MLCM of a RMLM; if so, then B is the standardized MLCM of a RMLM
with TDM y. However, the number of permutations on V' to be investigated can often be
significantly reduced. By Theorem 3.2.7 and Lemma 3.2.8(c) the set of all maximum y-cliques
W (see Definition 3.2.6) such that x(,j) > Ygew x(k,7) Ax(k, j) for all 4,5 € VN W contains the
initial node sets of all DAGs underlying RMLMs with TDM yx. Hence, it suffices to investigate
the causal orderings of the DAGs that have such initial nodes W. But also the number of causal
orderings to be investigated for every such set W can be reduced further by Lemma 3.4.2: it is
enough to consider those permutations on V' that satisfy the properties o has in (3.4.3) with
Vo = W. The following algorithm describes the precise steps of the proposed method to find the
standardized MLCMs of all RMLMs with TDM Y.

Algorithm 3.4.8. [Find all B from ¥]

1. Find all maximum yx-cliques:
(a) find the complement DX of the x-graph;

(b) find all maximum cliques of DX.

2. For every maximum x-clique W = {iy,..., 4w},

(a) check x(i,5) > Sgew x(k.7) A x(k,j) for all i,j € VN W,
if not, then there is no RMLM with TDM x on a DAG with initial nodes W;

else,

(b) for every permutation & on V' ={1,...,d} such that
(iy)=viorv=1,...,|[W| and
(j) <7(i) whenever [{k e W : x(k,j) >0} <|{k e W :x(k,i)> 0},

i. apply Algorithm 3.4.3 with o = G;
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Chapter 3 Tail dependence of recursive ML models with regularly varying noise variables

ii. check whether B obtained in i. is the MLCM of a RMLM, for example, using
Theorem 2.5.7;
if not, then there is no RMLM with TDM x on a DAG with causal ordering &;
else, B is the standardized MLCM of a RMLM with TDM Y.

When the algorithm returns a standardized MLCM B of a RMLM with TDM Y in step ii.,
then it is not necessary to perform steps i., ii. for further permutations on V' which are causal
orderings of DAGs with reachability matrix sgn(B), since all of them would lead to the same B.
For the application of Algorithm 3.4.8, we have assumed so far that x is the TDM of a RMLM.
If this is not the case, Algorithm 3.4.8 would not produce any output. The same applies to
Algorithm 3.4.11 below if x is not the TDM of a RMWM.

One could drop step 2.(a) and perform step 2.(b) for all maximum y-cliques. However, the

performance of step 2.(a) can be very effective.

Example 3.4.9. [Not all maximum y-cliques are initial node sets]

Consider the TDM x of a RMLM on the DAG D depicted below. Note that such a RMLM
is max-weighted, since D is a polytree (cf. Section 3.3.1). Theorem 3.2.3 yields that the sets
{1},...,{1000} are the maximum x-cliques. For k € {2,...,999} we know from Lemma 3.3.4(b)
that x(1,1000) < x(1,k) A x(k,1000). The property tested in step 2.(a) is therefore not fulfilled
for the maximum y-cliques W € {{2},...,{999}}. However, we can verify by Lemma 3.3.4(b)
that it is fullfilled for W e {{1},{1000}}. Consequently, step 2.(b) needs only be performed for
W e {{1},{1000}} and not for the other 998 maximum y-cliques.

» -0~ —@-@

It is indeed necessary to perform step ii., i.e., to verify that a matrix B obtained in i. is a
MLCM of a RMLM.

O

Example 3.4.10. [Not every B obtained in ii. belongs to a RMLM]
Consider the TDM

1 1/10 1/3
x=[1/10 1 13/30].
1/3 13/30 1

Performing steps i. and ii. of Algorithm 3.4.8 with & being the identity function on V' = {1,2, 3}
and also with & given by 5(1) = 1, 5(3) = 2, 5(2) = 3 (note that these permutations are really
tested in step 2.(b)), we find

1 1/10 1/3 1 1/10 1/3
By={0 9/10 1/3| and B2=|0 17/30 0
0 0 1/3 0 1/3 2/3
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3.4 Identifiability problems based on the TDM of a recursive ML model

As can be verified by Theorem 2.4.2, the matrix B; is the MLCM of a RMLM on the DAG D,
depicted in Example 3.4.4. Although sgn(Bs) is the reachability matrix of a DAG, namely of
the DAG D, from Example 3.4.4, which is a necessary property of a matrix to be the MLCM
of a RMLM according to (3.1.5), it is no MLCM of a RMLM. o

Recursive max-weighted models

Assume now that y is the TDM of a RMWM. We modify and adapt Algorithm 3.4.8 to obtain
a procedure which outputs the standardized MLCMs of all RMWMs with TDM x. Among the
maximum y-cliques which we find in step 2.(a) of Algorithm 3.4.8 are the initial node sets of
the DAGs underlying the RMWMs that have TDM x. We learn from Proposition 3.4.5 and
Lemma 3.4.7 that a maximum y-clique is such an initial node set if and only if the matrix B
obtained by Algorithm 3.4.6 is the MLCM of a RMWM. In that case, B is obviously the stan-
dardized MLCM of a RMWM with TDM y. These observations lead to the following procedure.

Algorithm 3.4.11. [Modification of Algorithm 3.4.8 for RMWNMs: find all B from Y]

1. Find all maximum yx-cliques (cf. step 1. of Algorithm 3.4.8).

2. For every maximum x-clique W,
(a) check x(i,5) > Tgew x(k,d) A x(k, j) for all i,j € VN W;
if not, then there is no RMWM with TDM x on a DAG with initial nodes W;
else,
i. apply Algorithm 3.4.6 with V;, = W;
ii. check the following properties for the matrix B obtained in i.:

- sgn(B) is the reachability matrix of a DAG

- for all i eV, j ean(i), and k € de(j) npa(i), l_)ji = b%zl:w

if not, then there is no RMWM with TDM x on a DAG with initial nodes W;
else, B is the standardized MLCM of a RMWM with TDM y.

That the properties we verify for the matrix B in step ii. are sufficient for B to be the MLCM
of a RMWM can be verified by Corollary 2.4.3(a).
To conclude this section, we highlight the essential steps of Algorithm 3.4.11 with an example.

Example 3.4.12. [The class of RMWNMs is not closed under x-equivalence]
Consider the TDM

o=o

0 1 06 05

02 06 1 05|
0 05 05 1 @ G Dx
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Chapter 3 Tail dependence of recursive ML models with regularly varying noise variables

We read from the complement DX of the y-graph that the sets W7 = {1,2} and Wy = {1,4}
are the maximum x-cliques. Applying Algorithm 3.4.6 with V, = Wy and V; = W5, we get the

matrices

OO el fan) oo
— lo 1 06 05 — ]o 05 01 0
l l By = and By = . l l
00 02 0 0 0 02 0
D, @ @ 00 0 05 0 05 05 1 @<—@ Dy

The matrix B, is the MLCM of a RMWM on D;, whereas B> is not the MLCM of a RMWM,
but it is the MLCM of a RMLM on Dj. Therefore, all RMWMs with TDM y have the same
standardized MLCM B;, and D; is their associated DAG. Furthermore, all these models are
x-equivalent to the RMLMs with standardized MLCM Bs. |

3.5 x-equivalent recursive ML models and their DAGs

In this section we mainly present interrelations between DAGs of x-equivalent RMLM:s.

One of the best known equivalence relations on the set of DAGs is certainly the Markov
equivalence: two DAGs are Markov equivalent if they entail the same conditional independence
relations via the Markov property; for a characterization of such DAGs, see e.g. Verma and
Pearl [71]. The associated DAG of a recursive linear Gaussian structural equation model can be
identified from the distribution only up to a Markov equivalence class (under the assumption of
faithfulness; see e.g. Spirtes and Zhang [68]). In the following example we discuss the relation

between y-equivalence of RMLMs and Markov equivalence of their associated DAGs.

Example 3.5.1. [The difference between y-equivalence of RMLMs and Markov equivalence of
their DAGs]

(1) Undirected graphs underlying Markov equivalent DAGs coincide. Example 3.4.12 clarifies
that this does not hold for DAGs of x-equivalent RMLMs. Such DAGs are therefore not

necessarily Markov equivalent.

(2) For the TDCs of a RMLM X on Dy, which is always a RMWM, we have by Lemma 3.3.4(b)
that x(1,3) < x(1,2)Ax(2,3). Since Dy has initial node 2, by Lemma 3.2.8(c) there cannot
be a RMLM that is x-equivalent to X on Ds. Thus although the DAGs D; and D5 are
Markov equivalent, there exist no y-equivalent RMLMs on Dy and Ds.

(3) As can be verified by Theorem 3.3.10, RMLMs on the Markov equivalent DAGs D; and
D3 are always y-equivalent. This shows that there can be y-equivalent RMLMs on Markov
equivalent DAGs.
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3.5 x-equivalent recursive ML models and their DAGs

HOROMORIOROROBIONRONO

DAGs of y-equivalent RMLMs have the same number of initial nodes, since the initial node
sets of such DAGs are maximum y-cliques, which have the same cardinality by definition. We
learn from Algorithm 3.4.3 that if the standardized MLCMs of two y-equivalent RMLMs differ,
then the causal orderings of their associated DAGs must also differ. So for these two DAGs there
exist nodes i,j € V such that one DAG has a path from j to ¢ and the other has one from i to

j. We provide further properties of two DAGs underlying x-equivalent RMLMs.

Proposition 3.5.2. Let X and X be x-equivalent RMLMs on DAGs D and 5, respectively.
We denote the initial nodes in D and D by V, and V,, the ancestors of i by an(i) and am(i),
and the descendants of i by de(i) and de(i).

(a) There is only one bijection ¢ : Vo — V, such that for every j € Vo, x(4,0(j)) > 0 and
X(5.7) =0 for all 7 Vo~ {o(j)}.

Let ¢ be the bijection from (a) and j € V.

(b) We have An((7)) Vi = De(p(j)) Vo = {j}. In particular, if § = ¢(7), then D has a path
from j to ©(j), and D has one from ¢(j) to j.

(¢c) We have De(j) = De(i0(5)).
(d) ForieV, An(i)nV,={p(j):jecAn(i)nV,}.

Proof. (a) is immediate by Lemma 3.2.8(a), since V, is a maximum y-clique.

(b) Since V, is a maximum y-clique, according to Lemma 3.2.8(b), An(¢(j)) nV, = {j}. Note
that for every j € Vi, x(7,¢71(5)) > 0 and x(7,7) > 0 for all j € Vox {¢ (7))}, where o' : V, - V,,
denotes the inverse of ¢. As V} is a maximum y-clique, we therefore have again by Lemma 3.2.8(b)
that De(i) NV, = {¢ (i)} with i = ¢(j), which is obviously equivalent to De(p(5)) NV, = {j}.
(c) Let i € De(j). By (b) j € An(¢(j))nAn(i) and, consequently, by Theorem 3.2.3 x(¢(j),7) > 0.
Lemma 3.2.5(c) then yields that i € De(¢(j)). Hence, De(j) € De(p(5)). From this, by reversing
the roles of D and D and noting that x(7, 0 *(5)) > 0 for all J € V,, we observe that De(¢(j)) <
De(j).

(d) can be verified by (c). O

Recursive max-weighted models

Now we consider y-equivalent RMWMs and investigate their DAGs. Because of Theorem 3.2.7,
Algorithm 3.4.6, and Lemma 3.A.1(e), if a TDM yx of a RMWM has one maximum x-clique
W, all RMWMs with TDM x (the models are then y-equivalent by definition) have the same
standardized MLCM and, hence, the same minimum ML DAG, which again has initial nodes W.
By Algorithm 3.4.6 the initial nodes of DAGs of x-equivalent RMLMs with different standardized
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Chapter 3 Tail dependence of recursive ML models with regularly varying noise variables

MLCMs must also differ. We present further interrelationships between DAGs of x-equivalent
RMWDMs with regard to their initial nodes.

Theorem 3.5.3. Let X and X be x-equivalent RMWMs on DAGs D and D, respectively. We
denote by V, and V, the initial nodes in D and D and by V.. and V., their terminal nodes. Let
©:Vy =V, be the bijection from Proposition 3.5.2(a) and j € Vy such that j # ¢(j).

(a) We have ©(5) € Vo In particular, Vy € (Von V) U VL

(b) If p=[j=ko—> ki~ = kn1— ks =0(j)] is a path in the transitive reduction D" of D,
then p=[@(j) = kn = kn_1 —» --- = k1 > ko = j] is a path in the transitive reduction D of
D.

Proof. We denote by an(i) and an(i) the ancestors of i in D and D and by de(i) and de(i) its
descendants.

(a) Assume that ¢(j) ¢ V... Consequently, by Proposition 3.5.2(b) D has a path from j to some
i # ¢(j) passing through gp(]). Replacing V;, by V,, we learn from the the proof of Lemma 3.2.8(c)
that x(7,7) > x(4,¢(j3)) A x(¢(j),7). But this contradicts Lemma 3.3.4(b). Hence, ¢(j) €

(b) To prove that p is a path in DY, because of the properties of D', it suffices to show
that for v = 0,...,n -1, k41 € an(k,) and (ia(k,,ﬂ) nan(k,) = @. Recalling from Proposi-
tion 3.5.2(b) that An(p(j)) NV, ={j}, we observe that An(k,) n An(k,+1) NV, = {j}. We then
obtain from Proposition 3.5.2(d) that An(k,) nAn(ky+1) NV, = {¢(j)}. By Lemma 3.3.4(b) we
have (ks 9(7)) = X(un ko)X U1, 9()). As Bn(ky) 0 (k) 0 Vs = {9(j)}, using Propo-
sition 3.3.5 then proves that k,.q € an(k,). To show that (%(ku+1) nan(k,) = @, assume the
converse. Let ¢ ¢ &é(kwl) nan(k,). By reversing the roles of D" and D and noting that for
every j € Vo, x(7,97' (7)) > 0 and x(7,5) > 0 for all j € Vo {¢7'(§)}, where o' : ¥ >V}
denotes the inverse of ¢, we know from above that then k, € an(¢) and ¢ € an(k,.1), i.e.,
de(k,) nan(k,.1) # @. But this is in contradiction to the fact that p is a path in D¥. Hence, D¥

must contain p. ]

In the next example we use Theorem 3.5.3 to find RMWNMSs that are y-equivalent to a given

one.

Example 3.5.4. [Continuation of Example 3.3.7: find x-equivalent RMWDMs]

By Theorem 3.2.3 the sets {1},...,{99} are the maximum y-cliques. Since 99 is the only terminal
node in D, it may be the only initial node of a DAG that underlies a potential RMWM with
the same TDM x as X and differs from D. Thus the DAG

=@~ ~0-0-0_
@-ELO-O-  ~@-@-O OO0
SO0 ~O-@
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3.6 Conclusion and outlook

is the transitive reduction D of such a DAG. To verify the existence of a RMWM with TDM
x on a DAG whose transitive reduction is D', we may compute the matrix B from (3.4.2) and
check then whether it is the MLCM of a RMWM. a

We conclude this section with an example investigating whether a RMWM on a known DAG
is x-equivalent to a RMWM on another given DAG.

Example 3.5.5. [The existence of y-equivalent RMWMSs on given DAGs]
We consider a RMWM X with TDM x on D; and clarify when X is y-equivalent to a RMWM
on Ds. Note that all RMLMs on D; and on Dy are max-weighted. By Theorem 3.3.10 we find

x(1,2) =0, x(1,4)=0, x(1,3)>0, 1-x(1,3)-x(2,3)>0,
1 _X(274) >0, X(374) = X(273) /\X(274) >0

and also that x is the TDM of a RMWM on Ds if and only if

X(152):07 X(1’4):Ov X(173)>05 1_X(173)_X(3a4—)>07
1-x(2,4)>0, x(2,3)=x(2,4) Ax(3,4) > 0.

This implies that X is x-equivalent to a RMWM on D, if and only if x(2,3) = x(3,4).
As shown in Example 3.4.12 the matrix x given therein is the TDM of a RMWM on D;. As
x(2,3) =0.6 # x(3,4) = 0.5, such a model cannot be y-equivalent to a RMWM on Ds. Of course,

we already know this from Example 3.4.12.

OO O O
[/] []
2 @/@ @/

Dy

3.6 Conclusion and outlook

A RMLM is not restricted to heavy-tailed noise variables, but is defined in (2.1.3) for indepen-
dent noise variables with support R,. Only, if the noise variables are heavy-tailed, the TDM is
meaningful (not identical to the zero matrix) for modeling the dependence structure in a RMLM.

In this heavy-tailed setting, we considered the problem of identifying a RMLM X on a DAG
D from its TDM y. Simply because of the symmetry of x, the identifiability of X is not possible
in general. RMLMs with arbitrary index of regular variation and MLCM whose column sums
are also arbitrary have TDM y. As our focus was on the causal structure of X represented
by D, we concentrated on the standardized model, where the index of regular variation is one
and the columns of its MLCM B add up to one. We showed that B can be recovered from
x and some additional information on D such as the full reachability relation or only a causal

ordering. In these situations we can also determine the minimum ML DAG D? of X, the smallest
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Chapter 3 Tail dependence of recursive ML models with regularly varying noise variables

DAG which represents the recursive max-linear dependence structure of X. We developed an
algorithm which outputs the standardized MLCMs of all RMLMs having TDM . Moreover,
we found the RMWNMSs as a relevant subclass of RMLMs. The simple structure of their TDMs
allows for identifiability of B and D from y and the initial nodes of D. This led to a simpler
approach to find the standardized MLCMs of all RMWMs with TDM y.

Finally, we would like to say a few words about how the results of this chapter can be applied
statistically. The first step would be the estimation of x. Of course, this is usually based on
observations, from which we could learn more than only the extreme dependence between every
two components of X. Extremal data are, however, sufficient for estimating y. Estimators can
be derived from estimators of the tail dependence function (Huang [36]). An estimator for the
latter that is suitable for our situation is, for example, the empirical one introduced in [36] and
studied further in Drees and Huang [17]. Many modifications of this estimator can be found (see
e.g. the textbooks [4, 14]). A parametric estimator has been suggested in [20].

Since zero tail dependence is essential for the causal dependence between two components (see
Theorem 3.2.3), we would also want to test zero tail dependence between every two components
of X. This is equivalent to testing asymptotic independence (cf. Remark 3.2.4(ii)). Correspond-
ing tests, which can be consulted in this context, were introduced in Coles et al. [9], Draisma
et al. [16], Ledford and Tawn [49], and Peng [56]. A similar problem occurs with Gaussian graph-
ical model selection. It can be performed by testing conditional independence relations, which
is equivalent to testing zero entries in the inverse of the covariance matrix (cf. [47], Proposi-
tion 5.2). We plan to investigate variants of methods developed in this context, for example,
in Drton and Perlman [18], Friedman et al. [24], Kalisch and Biihlmann [39], Meinshausen and
Biihlmann [52], and Rothman et al. [63]. A further goal will be to derive relations between

(conditional) independence in a regularly varying graphical model and its TDM.

Appendix 3.A

3.A.1 Properties of the standardized ML coefficient matrix of a recursive
ML model

We summarize some properties of the standardized MLCM B defined in (3.1.7), which are used
throughout the chapter.

Lemma 3.A.1. Let X be a RMLM on a DAG D with MLCM B and standardized MLCM B.
(a) We have sgn(B) =sgn(B).
(b) ForieV, Siean(i)bri = Loy bri = 1.
(¢c) The matriz B is the MLCM of a RMLM on D.

(d) Fori eV, ke an(i), and j € an(k), bj; > % with equality if and only if there is a
kk
maz-weighted path from j to i passing through k.

(e) The minimum ML DAGs DB and DB coincide.
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Appendix 3.A

(f) For distincti,j eV, bj; > bj;.

Proof. (a) and (b) are immediate consequences of the definition of B and (3.1.5).

(c) can be verified by Theorem 2.4.2.

(d) The inequality follows from (c) and Corollary 2.3.12 and the rest of the statement from
Theorem 2.3.10(a) and by observing that b;; = % if and only if bj;; = b];ki’”.

(e) is a consequence of Theorem 2.5.3 and the definition of B.

(f) For j € V \ An(i) we have immediately by (a) that bj; = 0 < bj;. For j € An(i) we obtain by
parts (b) and (d),

1= Z bki + Z bkz’ > _L Z bkj + Z bki = _L + Z bki-
keAn(j) keAn(i)~An(j) bjj keAn(j) keAn(i)~An(j) bjj  keAn(i)~An(j)
Since An(i) \ An(j) # @ and by; > 0 for all k € An(i) \ An(j), we find 1 > EL_’:, equivalently
_ _ 27
bjj > bjz'. O

3.A.2 Derivation of the tail dependence matrix of a recursive ML model

We first prove (3.1.2) and specify G and its univariate and bivariate marginal distributions.
Proposition 3.A.2. Let X be a RMLM on a DAG D with MLCM B. Then X € MDA(G) with
d bji

G(m):exp{—Z \V (—)a}, x=(x1,...,2q) e RY

j=1ieDe(j) * Ti

Let M = (My,...,My) be a random vector with distribution function G. Then for i,j € V the
distribution functions of M; and (M;, M;) are given by

B ) b\ b\
Gi(mi):exp{—xi jeg(i)bji} and Gij(xz-,xj):exp{—kEAn(giAn(j) x_kz) v(xij) }

Proof. As Z € RV(«), there exists a normalizing sequence a,, € R, such that for every = e R,,
lim FJ(apx) = ®o(x) (3.A.1)
n—o0

(e.g. [60], Proposition 1.11). Using (3.1.3), the independence of the noise variables, and (3.A.1),

we obtain for = € RY,

[P(X <anz)]" =[B( V bjiZ;<apws,ieV)]"
jeAn(z)
L

=[P(Zi<an N = ieV)]”
ieDe(j) “I?

“[1F5(an A )

j=1 ieDe(5) bji
d z;

o [Tl A 50) = Gl@)
j=1 ieDe(j) "I

65



Chapter 3 Tail dependence of recursive ML models with regularly varying noise variables

This proves that X € MDA(G) (cf. Eq. (3.1.2)). Finally, the distribution functions of M; and
(M;, M;) are obtained by letting all other components of  in G tend to oo and recalling
(3.1.5). O

Proof of (3.1.8). For every k € V we have n(1-Fj(ag,)) - 1 as n - oo with ay,, := F,;_(l—%) =
(ﬁ)e(n) Thus,
k

]P)(X, > aim,X]‘ > aj,n)

x(4,7) = lim

1-Fj(ajn)
= lim [l - Fi(ain) +1- Fj(ajn) -1+ P(Xi <ain, Xj < ajn)]
n— oo
=2— lim n[l _]P)(XZ < ai,nan < aj»”)]'
n—00

By Proposition 5.10(b), whose conditions are satisfied according to Proposition 3.A.2; and
Eq. (5.38) of [60], we find

x(i,5) = 2+10g Gij((=1/log Gi)™ (1), (-1/1og G;) ™ (1)),

where (-1/log G;)~ and (-1/log G;)~ denote the generalized inverses of the functions —1/log G;
and —1/log G;. With the representations for G;, G;, and G;; from Proposition 3.A.2, we then

obtain by a simple calculation

x(4,5) =2~ > bpi V b
keAn(i)UAn(j)

Finally, using Lemma 3.A.1(b), (a) yields

X(ivj) = Z Ekz + Z Bkj - Z Ekz Vl_)kj

keAn(i)uAn(j) keAn(:)uAn(j) keAn(i)uAn(j)
= Z E]m AN Bk:j = Z Bkz A Ekj-
keAn(i)uAn(j) keAn(i)nAn(j)

We learn from this proof that X and the limit vector M from (3.1.2) have the same TDM, since
M ¢ MDA(G). O
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Chapter 4

Identifiability and estimation of recursive

max-linear models

Abstract

We address the identifiablity and estimation of recursive max-linear structural equation models.
Such models are generally unidentifiable: several DAGs and edge weights representing the max-
linear structural equations may exist. We show that the whole class of DAGs and edge weights is
identifiable. For estimation, standard likelihood theory and classical methods cannot be applied
because assumptions usually made are not satisfied. We develop a simple learning method which,
with probability 1, identifies the true class for a sufficiently large number of observations. Given
the true underlying DAG, we present an estimator for the class of edge weights that can be
considered a maximum likelihood estimator in a generalized setting. Given many observations,
this estimator has also the nice property to estimate, almost surely, the true class of edge weights

exactly.
MSC 2010 subject classifications: Primary 60E15, 62H12; secondary 62G05, 60G70, 62-09

Keywords and phrases: Causal inference, directed acyclic graph, generalized maximum likelihood
estimation, graphical model, identifiability, max-linear model, nonparametric maximum like-

lihood estimation, structural equation model

4.1 Introduction

Establishing and understanding cause-effect relations is an omnipresent desire in science and
daily life. It is especially important when dealing with extreme risks. Examples for such situ-
ations include incidents at airplane landings (Gissibl et al. [29]; cf. Figure 1.1.2), flooding in
river networks (Asadi et al. [2]), financial risk (Einmahl et al. [20]), and chemical pollution of
rivers (Hoef et al. [35]). Such applications to risk analysis, where extreme risks may propagate
through a network, were the motivation behind the recursive maz-linear (ML) models defined
in Chapter 2. Recursive ML models are by definition structural equation models (SEMs) whose
causal structure is represented by a directed acyclic graph (DAG) and, hence, by Theorem 1.4.1
of Pearl [55] directed graphical models. SEMs (see e.g. Bollen [5], [55]) and graphical models (see
e.g. Koller and Friedman [45], Lauritzen [47], Spirtes et al. [69]) are well-established concepts to

the understanding and quantification of causal inference from observational data.
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Chapter 4 Identifiability and estimation of recursive ML models

Important research problems that are addressed for classes of recursive SEMs, as is the class
of recursive ML models, are the identifiability of the coefficients and the associated DAG from
the observational distribution as well as the estimation of the DAG (structure learning) from a
finite sample. The book by Peters et al. [58] provides a profound introduction into this field of
research and summarizes the current state of research.

We study these problems for recursive ML models. Throughout we assume that all variables
are observed, that is, there are no hidden variables.

Recursive ML models are defined by a DAG, edge weights, and independent noise variables.
Different DAGs and edge weights can define the same model (cf. Theorem 2.5.4). The so-called
maz-linear (ML) coefficient matriz determines this class of DAGs and edge weights uniquely.
So the true DAG and edge weights are not identifiable; but, as we shall see, the ML coefficent
matrix and, hence, the class of DAGs and edge weights defining the underlying model.

This identifiability result has direct implications for structure learning: if the data follow
a recursive ML model, the associated class of DAGs and edge weights can be inferred from
observational data only.

Several approaches for structure learning, which can be split mainly into score-based and
constraint-based methods, have been proposed. Constraint-based methods, such as the PC al-
gorithm (Spirtes and Glymour [67]), assume faithfulness to the underlying DAG (see e.g. Re-
mark 2.3.9(ii) for the definition of faithfulness). However, recursive ML models are never faithful
unless the underlying DAG has at most one path between two nodes (see Remark 2.3.9(i) and
Theorem 4 of Kliippelberg and Lauritzen [43]). On the other hand, score-based methods (see
Chickering [8], Geiger and Heckerman [25], Heckerman et al. [33], and references therein) require
distributional properties that are not valid for recursive ML models or would at least restrict
the model class. So we cannot use standard methods for structure learning without further ado.

Of course, we meet the same challenge in parameter learning where the DAG is assumed to
be known. There exists no o-finite measure on the space of observations that dominates the
distributional family of recursive ML models on a given DAG. As a consequence, we cannot
use standard maximum likelihood estimation methods. We suggest an estimator that can be
considered a maximum likelihood estimator in an extended definition originally introduced by
Kiefer and Wolfowitz [40] for covering the nonparametric case.

But for all that, estimation and structure learning of recursive ML models can be done in a
simple and efficient fashion. Exploiting the distributional properties of the ratios between two
components of a recursive ML model, we present appropriate procedures. For a sufficiently large
number of observations, they identify, with probability 1, the true ML coefficient matrix and,

hence, the true associated class of DAGs and edge weights; the convergence is geometrically fast.

This chapter is organized as follows. In Section 4.2 we present the model class of recursive ML
models and introduce the notation used throughout this chapter. In Section 4.3 we discuss the
identifiability of recursive ML models. Here we show distributional properties of the ratio between
two components of a recursive ML model. Based on these properties, we propose an identification
method. Section 4.4 is devoted to the estimation of recursive ML models in the situation where

the DAG is known. We follow the Kiefer-Wolfowitz approach to determine generalized mazimum
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likelihood estimates (GMLEs). The main part is the derivation of a specific Radon-Nikodym
derivative. Here we make comparisons with the case where we can define a standard likelihood
function. To conclude this section, we point out a GMLE and its outstanding properties. In
Section 4.5 we complement the theoretical findings with an efficient procedure to learn recursive
ML models from observations only. Section 4.6 concludes and suggests further directions of
research. In Appendix 4.A we give an alternative identification algorithm. In addition, we prove
further distributional properties of the ratio between two components, which are not needed in

the main part of the chapter, but are useful for a deeper understanding.

4.2 Preliminaries — Recursive ML models

We consider recursive ML models, which have been introduced in Chapter 2. In this section we
introduce some notations and summarize the most important properties needed throughout this

chapter.

A recursive ML model X = (X,...,Xy) is specified by an underlying (causal) structure in
terms of a DAG D = (V, E) with nodes V = {1,...,d}, positive edge weights cy; for i € V and

k € pa(i), and independent random variables Z1,. .., Z; with support R, := (0, 00) and atomfree
distributions:
Xi= V ewXpvZ, i=1,....d, (4.2.1)
kepa(i)

where pa(i) are the parents of node i in D. To highlight the DAG D, we say that X is a
recursive ML model on D. In the original definition of a recursive ML model in (2.1.3), the
weights of the noise variables Z; in (4.2.1) do not necessarily have to be equal to one but
can be any positive real number. Such a recursive ML model has then representation (4.2.1)
with appropriately scaled noise variables. In addition, the distributional properties of the noise
variables are in (2.1.3) slightly different. In the context of risk analysis, natural candidates
for the noise distributions are extreme value distributions or distributions in their domain of
attraction, resulting in a corresponding multivariate distribution (for details and background on
multivariate extreme value models, see e.g. Beirlant et al. [4], de Haan and Ferreira [14], Resnick
[60, 61]).

Occasionally, we write k — i instead of k € pa(i). Assigning the weight d;;(p) = T1723 Chyoky.r
to every path p =[j = kg - k1 — --- > k,, = 1] and denoting the set of all paths from j to i by

Pj;, we call the nonnegative matrix B with entries

bji= \/ dji(p) for all jean(i), b;=1, and bj; =0 forall j €V \ An(s), (4.2.2)

pePj;
ML coefficient matriz of X. This means for distinct 4,5 € V, bj; is positive if and only if there
is a path from j to 7; in that case b;; is the maximum weight of all paths from j to ¢, where the
weight of a path is the product of all edge weights c; along this path. We call a path from j to

© whose weight equals the maximum weight b;; maz-weighted.
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The components of X can be expressed as max-linear functions of their ancestral noise vari-

ables and an independent one; the corresponding ML coefficients are the entries of B:

d

Xi=\biZj= \ buZj, i=1,....d, (4.2.3)
J=1 jeAn(i)

where An(i) = an(i) U {i} and an(7) are the ancestors of ¢ in D (cf. Theorem 2.2.2).

We have presented those properties of X we need throughout the whole chapter. Further

properties of X from Chapter 2 are introduced where they are needed.

Throughout this chapter we use the following notation. The sets an(i), pa(i), de(i), and
nd(7) contain the ancestors, parents, descendants, and non-descendants of node 7 in D. We set
An(z) =an(i)u{i} and Pa(i) = pa(i)u{i}. For U ¢ V we write Xy = (Xy, £ € U) and accordingly
for & e RY, @y = (24,0 € U). Generally, we consider statements for i € @ as invalid. Furthermore,
we set Vieg @i = 0, Njeg @i = 00, [Tjegai = 1, and G = oo for (possibly random) a; € R, as well as
Uieg Ai = @ and Njeg A; = Rﬁf for A; c Rff.

4.3 Identifiability of a recursive ML model

We discuss the identifiability of a recursive ML model X from its distribution £(X). We start

with an example.

Example 4.3.1. [The DAG and the edge weights are not necessarily identifiable]
Consider a recursive ML model X = (X7, X9, X3) on the DAG D depicted below with edge
weights cj2, ca3, ¢13 such that ci3 < ¢19¢23. By (4.2.1) the components of X have the following

representations,
X1=21, Xg=c19X1VvZy, and Xj3=c13X1Vca3XaV Zs.
From these and the order between the edge weights, we observe that
X3 =cj3X1VesXov Zg for every ¢ € [0, crac3].

This implies that X is a recursive ML model on D with edge weights cj2, a3, ¢i5 € (0, ci2¢23]
as well as on the DAG DP depicted below with edge weights ¢12, ca3. Consequently, we cannot
identify D as well as ¢13 from the distribution £(X') of X. However, note that the ML coefficient
matrix B is unique.

If 15 > c12c03, then D and the edge weights c19, ca3, c13 are the only DAG and edge weights,
respectively, that represent X in the sense of (4.2.1). Thus they are identifiable from £(X).

Jo=c= 0 INOS OOk
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As conclusion of Example 4.3.1, it is generally not possible to identify the true DAG D and
the edge weights cy; underlying X in representation (4.2.1) from £(X). The reason for this is
that several DAGs and edge weights may exist such that X has this representation. The smallest
DAG of this kind is the DAG that has an edge k — ¢ if and only if k — ¢ is the only max-weighted
path from k to i. We call this DAG D? the minimum ML DAG of X. It is the smallest DAG
representing the causal structure of X. The further DAGs are the DAGs that have at least the
edges of DP and a path from j to i if and only if D? has a path from j to i. The edge weights cy;
in representation (4.2.1) of X are only uniquely given for edges contained in DB. In that case,
ki = bi;; otherwise, we may have cy; € (0,bg;]. All these DAGs and edge weights lead via (4.2.2)
to the same ML coefficient matrix B and can be determined from B. All this can be found in

Section 2.5 with its main results in Theorems 2.5.3, 2.5.4.

Based on the above observations, we investigate the identifiability of this class of DAGs and
edge weights from L£(X). Since it can be recovered from B, it suffices to clarify whether B
is identifiable from £(X). There are many ways to prove that this is indeed the case. The
way used in this section suggests a simple procedure, which is presented in Algorithm 4.5.1
below, to estimate B from independent realizations of X. We demonstrate an alternative way
in Appendix 4.A.1.

We know from (4.2.2) that b; = 1 and bj; # 0 if and only if j € An(é). Hence, to show
the identifiability of B from supp(X), it suffices to find a quantity that can be determined
from £(X) and that specifies for distinct 7,j € V' whether j € an(i) and if so, defines bj;. It
turns out that the support of %, denoted by supp(%), is such a quantity. Because of the
max-linear representation (4.2.3) of the components of X, it is clear that it depends on the
distributional properties of the noise variables. We first discuss some consequences of these
properties. Recall that the noise variables are assumed to be independent with support R, and
atomfree distributions. We denote by (€2, F,P) the probability space of (Z1,...,Zy) and, hence,
of X. We write events such as {w € Q : X;(w) < Xj(w)} or {w e Q: Z;j(w) < Zj(w)} more
conveniently as {X; < X;} or {Z; < Z;}, respectively.

The independence of the noise variables and their atomfree distributions imply that
the event {Zi = :ch} for distinct i, € V and x € R, has probability zero. (4.3.1)

This plays an important role in determing the atoms of % It shows, together with (4.2.3), that

J
the sets {X; = fL‘Xj} = {VﬂeAn(i) byi Zy = VZeAn(j) I‘bngg} and

\/ bgiZg > \/ (bgi \2 xbgj)Zj \2 \/ bgiZg \Y% \/ xbngg}
LeAn(i)nAn(j): LeAn(i)nAn(j): LeAn(i)NAn(j) LeAn(7)NAn(7)
bli:béjz bli#bejz

differ only by a set of probability zero. Therefore, % has an atom in z if and only if An(i) n
J

5o for some £ € An(i) n An(y) as the noise variables are independent and

An(j) + @ and = = 2
J
have support R,.
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Table 4.1: Distributional properties of §;
Relationship between i and j Supp(%) Atoms
j ean(i) [bji, ) % for £ € An(j)
i€ an(j) (0, 5] % for ¢ € An(i)
jend(i) and i € nd(j):
an(i) nan(j) + @ R, Z%; for ¢ € an(i) nan(y)
an(i) nan(j) =@ R, -

The support of the noise variables of R, and representation (4.2.3) are the reason why

X; VeeAn(i) beize |An(i)uAn(j))|
i) [ YteAnty) ot A ¢ RAMBUARIITL
supp( X; ) {\/eeAn(j) bejze FAn(uAn() € F }

Since the function

. . \/[ An(i byiz
A A eAn(i) Vit
R' n(1)uAn(j)| - R+a ZAn(iuAn(G) Y T L
Viean(y) bejze
is continuous, supp(%) is an interval in R, . Assume that supp(%) has a positive lower bound;
J J

i.e., there exists some a € R, such that

\/ abngg \Y \/ abngg < \/ byize v \/ by zp (4.3.2)
LeAn(i)nAn(j) LeAn(j)NAn(i) LeAn(i)nAn(j) LeAn(i)NAn(j)

for all zx,ziyuan() € R‘fn(i)UAn(j)l. If An(j) ~ An(i) # @, we can choose z; for some £ € An(j)
An(i) so large that aby;z is greater than the maximum on the right-hand side of (4.3.2). This
contradicts (4.3.2), and we necessarily have that An(j) \ An(7) = @, equivalently, j € An(i). We
then find that (4.3.2) holds if and only if a < Agean(s) %; otherwise, there are zan(;)uan(j) such
that the maximum on the left-hand side of (4.3.2) is greater than the one on the right-hand
side. Hence, supp())g—;) has a positive lower bound if and only if j € An(4). It remains to clarify
whether Agean(s) % is then contained in the interval supp(%). This is indeed the case, since by
Corollary 2.3.12 Agean(i) 1%’_ =bj; and bj; is an atom of % Conversely, we obtain that supp(%’_)
is bounded from above if and only if ¢ € An(j). In that case, the upper bound is %j, which is
an atom of % and contained in supp())g—;). In Table 4.1 we give supp(ig—;) depending on the
relationship between ¢ and j in D; the atoms of % are shown as well.

Table 4.1 and (4.2.2) suggest the following algorithm to compute B from £(X'). This proves
the identifiability of B from £(X). Instead of the whole distribution £(X), it suffices to know
supp(%) for all i,j € V with i < j.

Algorithm 4.3.2. [Find B from £(X)]
1. ForallieV ={1,...,d}, set b;; = 1.

2. For all 4,5 € V with i < j, find supp(%):
J
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4.3 Identifiability of a recursive ML model

if supp(i((—;) = [a, 00) for some a € R,, then set bj; = a and b;; = 0;

else, if supp(%) = (0,a] for some a € R, then set b;; = % and bj; = 0;
J

else, set b;; = bj; = 0.

So far we have shown that the ML coefficient matrix B of X can be obtained from L£(X).
Since all DAGs and weights that represent X in the sense of (4.2.1) can be determined from
B, the only quantities we do not know about yet but are needed to define X are the noise
variables. In fact, the distribution of the noise vector (Zi,...,Zy) is identifiable from £(X).
Because of the identifiability of B from £(X), we can prove this by providing an algorithm that
determines the distributions of the noise variables from £(X) and B. Its correctness follows
from the independence of the noise variables. We denote by F'z, the distribution function of the
noise variable Z;. It is enough to know the univariate marginal distribution functions of £(X)
instead of the whole distribution £(X).

Algorithm 4.3.3. [Find Fy, (z),...,Fz,(x) for z e R, from B and £(X)]
Forv=0,...,d-1,
for i € V such that |an(i)| = v, set

P(Xi < l‘)
Mjean(iy £z, (52)

FZz(w) =

Finally, we summarize the main result of this section again.

Theorem 4.3.4. Let L(X) be the distribution of a recursive ML model X . Then its ML coeffi-
cient matriz B and the distribution of its noise vector (Z1,...,Zq) are identifiable from L(X).
Furthermore, all edge weights and DAGs that could have generated X by (4.2.1) can be obtained.

Figure 4.3.1 gives an overview of how all these quantities can be determined from £(X). To
conclude, recursive ML models with different ML coefficient matrices or different distributions
of the noise vectors can never have the same distribution. Conversely, all recursive ML models
with the same distribution must have the same ML coefficient matrix and identically distributed
noise vectors. However, such recursive ML, models can have different underlying DAGs and edge
weights with the result that the true underlying DAG and the corresponding edge weights cannot

be identified in general.
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X has representation (4.2.3) with DAG D and edge
weights cg; if and only if

- D has the same reachability matrix as the
minimum ML DAG

DF = (V. {(k,i) e VX Vil %4, b >\ brebui}).
£=1

d
*i,k

L

- g = by if k — i is in DP; otherwise, ¢, € (0, br;]

<= m e —— o ——— -

all DAGs D and edge weights cy; that

Theorems

Algorithm 4.3.2

1
1
1
U

Y

1. For all i e V ={1,...,d}, set b;; = 1.

2. For all 4,5 € V with ¢ < 7, find supp(%_):
if supp(ig—;) =[a, o) for some a € R,
then set b;; = a and b;; = 0;

else, if supp(%) = (0,a] for some a € R,

then set b;; = é and bj; = 0;

else, set b;; = bj; = 0.

v
Forv=0,...,d-1,
for i € V such that |an(i)| = v,

set
IP)(XZ < :L‘)

Fy (x) = .
R jeanti) Fz, (55)

<= - - -

lead to B (i.e., (4.2.2) holds)

Fz (z),...,Fz,(x), x € R,

S[opowr I\ QAISINODI JO UOIPRWIIISO pue AJ[Iqeyryuop] § JIoyder)

Figure 4.3.1: How the ML coefficient matrix B, the distributions of the noise variables Fz, ..., Fz,, as well as all potential DAGs D and edge weights
ck; of a recursive ML model X can be identified from its distribution £(X) (cf. Theorem 4.3.4). In the paragraph above Remark 2.2.3, the
definition of the reachability matrix of a DAG is given.



4.4 Estimation of a recursive ML model with known DAG

4.4 Estimation of a recursive ML model with known DAG

In this section we assume that independent realizations z®) = (acgt), e ,x((it)), t=1,...,n, of
a recursive ML model X = (X1,...,Xy) and its DAG D are given. Our goal is the estimation
of its edge weights cp;, its ML coefficient matrix B, and the distribution of its noise vector
(Z1,...,Z4). In the first part we suggest GMLESs; in the second we discuss the preferred GMLE
of B in detail.

4.4.1 Generalized maximum likelihood estimation

The recursive ML model X may satisfy (4.2.1) with respect to D for various edge weights cx;
(see Example 4.3.1 and Theorem 2.5.4(b)). As a consequence, we usually have no chance to
estimate the true edge weights of X from x,..., (™ exactly, although D is known. But
this is theoretically possible for its ML coeflicient matrix B, since B is identifiable from the
distribution £(X) of X (see Algorithm 4.3.2). That is why we start with the estimation of B.
To obtain then estimates of these various edge weights, we use the fact that this class of edge
weights can be determined from B (see Figure 4.3.1). We present the corresponding result in
Corollary 4.4.30 below.

ML coefficient matrix B

Before we start estimating B, we introduce some notation. We denote by B the class of the ML
coefficient matrices of all recursive ML models on D. This means that our estimate of B should
be an element of B. For a characterization of the class B, see Theorem 2.4.2 or Corollary 2.4.3(a).
In Remark 4.4.5 below we present further necessary and sufficient conditions for a matrix to
be contained in B. For B € B we denote by Pp the probability measure induced by a recursive
ML model on D with ML coefficient matrix B. To estimate B, we consider the family of these
probability measures, denoted by P(D) in the following. Theorem 4.3.4 allows us to assume
that the distributions of the underlying noise vectors are identical. So throughout this section
the noise vectors of all recursive ML models on D are assumed to have the same distribution.
Further, we assume that the only information we have about this distribution is that it has

support R, and independent, atomfree margins.

We cannot use standard maximum likelihood methods to estimate B, since P(D) is not
dominated; i.e., there exists no o-finite measure p such that every probability measure in P(D)

is absolutely continuous with respect to p. We illustrate this by a simple example.

Example 4.4.1. [P(D) is not dominated|
Consider the DAG D with nodes {1,2} and an edge from 1 to 2. We assume that P(D) is

dominated: there exists a o—finite measure p such that for every B € B,

Pg(A) =0 whenever u(A) =0 for A e B(R?), (4.4.1)
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Figure 4.4.1: On the left-hand side supp(Pg) from Example 4.4.1 is shown, on the right-hand side the
set A(by2) for different values of byo € R,.

where B(R?) denotes the Borel o—algebra on R2. From Table 4.1 we know that
PB({(blgx,m) € R?_ X € R+}) =: PB(A(blg)) > 0.

Hence, by (4.4.1), u(A(b12)) > 0 for every b2 € R2. Thus there are uncountably many disjoint sets
with positive y-measure. This contradicts the o-finiteness of p, and P(D) cannot be dominated.
In Figure 4.4.1 the support of Pg, supp(Pg), and the set A(b12) for different values bys € R? are
depicted; these sets play an important role in the further course of this section.

By the same argumentation as in this example, P(D) is for all D not dominated. O

We cannot use densities as likelihoods as with the classical maximum likelihood estimation.
However, there exist definitions of generalized MLEs that cover the undominated case as well;
Kalbfleisch and Prentice [38], [40], and Scholz [65] suggested such extensions. Their goal was to
investigate how a nonparametric MLE should be defined, a problem where typically no common
o-finite dominating measure exists; think, for example, of the problem of estimating an arbitrary
unknown distribution. We follow the Kiefer-Wolfowitz definition of a GMLE; this was also done,
for example, by Gill [26] and Johansen [37].

Let P be a family of probability measures on (R?, B(R?)), where B(R?) denotes the Borel
o-algebra on Rﬂf, and ..., (™ a random sample from some Py € P. For P,Q € P and x € R?
we define p(a:,AP, Q) = %(m), where % denotes a density of P with respect to P + Q.
Then we call Py a generalized mazimum likelihood estimate (GMLE) of Py if

[Tp(z, By, B)#0 and []p(=,Q,B) <[] p(z, By, Q) for all Q e P. (4.4.2)
t=1 t=1 t=1

Since P is absolutely continuous with respect to P+(@, the density % always exists according
to the Radon-Nikodym theorem. This means that the GMLE is well-defined. The idea of the
Kiefer-Wolfowitz definition is very logical and their definition extends the definition of a MLE in
a very natural way. The approach is to consider pairwise comparisons of possible distributions
P and Q for the observations ,..., (™ only: strict inequality in the second condition of
(4.4.2) means that Py is a more likely explanation of the sample (), ... 2 than Q. When
using the Kiefer-Wolfowitz approach, only the second condition in (4.4.2) is usually required.

But the first condition is implicitly in the Kiefer-Wolfowitz definition and requiring it leads in
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our case to other GMLEs, as we show in Example 4.4.2 below. This condition excludes — with
a suitable choice of p — GMLEs B where the observations (..., ("™ could not have been

generated by Pz. We go into it and clarify it in Examples 4.4.2, 4.4.3.

If P is dominated by a o-finite measure, then the Kiefer-Wolfowitz definition is equivalent
to the usual definition of a MLE; if Py is completely unknown, then the empirical distribution
function is a GMLE.

In order to be able to compute the GMLEs of B, we need to find for any two B, B* € B, a den-
sity of P with respect to Pg + Pp+. For this we determine a partition {AO(B, B*), Ayj5(B,B*),
A1(B, B*)} of R‘i that satisfies the three properties,

(A) Pp(Ao(B,B")) =0,
(B) Pp(An Ay;5(B,B")) = Pp«(An Ay (B, B*)) for every A e B(RY), and
(C) Pp-(Ai(B,B")) =0.

Then the measurable function from R? to {0,1/2,1} such that

0, if e Ao(B,B"),
oy 1 .
@~ p(@,B,B") = oL, ,8,5)(®) + Ly, (®) =15, if @ e Ayp(B,BY), (4.4.3)
1, if$€A1(B,B*),

is a density as desired. That is because, using the properties (A), (B), (C), we obtain for every
AeBRY),

/AP(%B,B*)(PB + Pp+)(dz) = Pp(An Ay (B, B")) + Pg(An Ai(B, B")) = Pp(4).

We begin with two examples that shall help to get an idea and provide insights into the

concepts and arguments we use in the general case. They are deliberately very detailed.

Example 4.4.2. [Continuation of Example 4.4.1: how to find a density as in (4.4.3) and the
GMLEs]
Recall the sets depicted in Figure 4.4.1. For B, B* € B we show that the partition

{A0(B, B*) == B2 \ supp(Pp) u [ (supp(Ps) \ A(b12)) 0 A(bi)]
={z e R 12y <bppa1 U {x e RS 1 9 = biymy > biowy },
AP = [A(b1z) n A(bly) ] [ (supp(Ps) ~ A(biz)) 0 (supp(Pi+) \ A(by))]
={z e R2 129 = bioz1 = bow1 } U {x e R} 1 39 > (b1 v biy) 21 },
A1 (B, B*) := [supp(Pp) n (R? \ supp(Pp+)) | U[A(b12) n (supp(Pp+) N A(b},))]

= {CC € Rz : bfzwl > X9 2 blgxl} U {.’1} € Rz 129 = bioxy > bbxl}}
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Figure 4.4.2: The density p(-, B, B*) given in (4.4.4) as a contour plot (top line) and as a function of
22 (bottom line) for the three situations b1z < by, (left-hand side), bi2 = b}, (middle), and

b1 > b7, (right-hand side). The area where it is 0/= /1 is coloured in / /

of R? satisfies properties (A), (B), (C), leading to the function

00y (72)
(4.4.4)

1
x > p(x, B,B*) = ]1{b12m}m{b Loy (T2) + 5 Loiovby,, 00) (@2) + L1y pry(22) + Ly pyner

120

from R? to {0,1/2,1} as a density of Pp with respect to Pg + Ppg+. Note that, obviously,
{:1; € Rz two = by > bkixl} = @ if bia > b]y, and corresponding for the other sets. Figure 4.4.2
shows the density p(-, B, B*) for the three possible orders between b12 and b7,.

Let X be a recursive ML model on D with ML coefficient matrix B and Z7, Zy its noise
variables. Since by Table 4.1 by is the only atom of % and supp(%) = [b12, 00), property (A)
is true. By reversing the roles of B and B*, (C) follows from (A). Recalling that we assume
identically distributed noise vectors, (B) is obvious if bip = b]5. Assume that bis # b],. We then
have by definition of X that {X € A;/5(B,B*)} = {X2 > (b1a v bip) X1} = {Z2 > (b12 v bj3) Z1}
and Xo = Z3 on {Zs > (b2 v bj5)Z1}. With this, using that A,,y(B*, B) = Ay5(B, B") and that
the noise vectors are identically distributed, we finally obtain for A € B(R?),

PB(AﬂAl/Q(B,B*)) =P{X e A} n{Zy> (b2 Vv biy)Z1})
=P({(Z1,22) e A} n{Zy > (b12 v b15) Z1})
= Pp«(AnAy;p(B",B)) = Pp-(An Ay j5(B, BY)).

So far we know that the function in (4.4.4) is a density of Pp with respect to Pg + Pp+. We

use this density to determine the GMLEs of B. The only ML coefficient we have to estimate is
20

b12. Define b12 as the minimal observed ratio of , ie., b12 = AiLy ?t), and let B denote the

corresponding ML coefficient matrix. Then, by the definition of p and its defining sets, some
P € P(D) satsifies the first condition in (4.4.2) if and only if

blgx( ) ( ) for all t, equivalently bio < bio. (4.4.5)
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4.4 Estimation of a recursive ML model with known DAG

Defining n(B, B*) =|{t: &) € A, 5(B, B*)}| and using that n(B, B*) = n(B*, B), we obtain

[To(z,B,B*) =27 (55 H Lga.40(B,B%) (=),

t=1

[To(=".B*,B) =27"FF) [Ty 4,5 (2).
t=1 =1 " ’
Hence, some Pz € P(D) satsifies the second condition in (4.4.2) if and only if
for all B ¢ B, if some ™ ¢ Ay(B, B), then some z*) ¢ 4y(B, B). (4.4.6)

In summary, some B is a GMLE of B if and only if (4.4.5) and (4.4.6) are satisfied. We discuss
the possible GMLESs of b19 in detail.

(1) b1z € (0,b12) is no GMLE:
Set bio = 312, and let (¥ such that 'l;lgxgt) = xét). Then () ¢ {zz: € ]R% P Ty = bioxy >
512:1:2} c Ag(B,B) but no ® ¢ Ay(B,B) {:13 e R2 : 2y < bmzcl}. This contradicts
(4.4.6); consequently, by cannot be a GMLE of bio. In Figure 4.4.3(a) we illustrate this
situation. On the left-hand side a contour plot of the density p(-,g,B) is shown, on the

right-hand side of p(-,B,E). The crosses represent the realizations :L'(l), . ,a:(”). In the
left plot crosses are in the 0-area coloured in red, namely, those that realize 312, but in the
right plot not. So B cannot be a GMLE of B.

(2) bya > bio is no GMLE if 31237?) # Zﬁgt) for all ¢:
Figure 4.4.3(b) shows a situation that contradicts (4.4.6), similarly to Figure 4.4.3(a) in
(1). So b13 is no GMLE. That could not be the case because of the necessary condition in
(4.4.5), but more on this in (4).

(3) b1y is a GMLE:
Condition (4.4.5) holds obviously. To prove (4.4.6), assume for some B € B that some
x® ¢ AO(E,B). By definition of AO(E,B), CL‘ét) = blzxgt) > ’l;lzxgt), which implies that
bia > 512. For =(*) such that Elgxgs) = xés), we then find that xés) < blgxgs). Hence,
AN Ao(B, E), and by is a GMLE of byy. We learn this informally from Figure 4.4.3(c).
The top line shows contour plots of p(-,E,B) for the three different orders between b1
and b2, and the bottom line shows the corresponding contour plots of p(-, B, B). The two
plots on the left-hand side correspond to the situation from above: in the upper plot there
are realizations in the O-area, namely those that are on the line {:13 € ]R%r P Ty = blgxl}, but
then there are also realizations in the 0-area of the lower plot (those that lie below this
line). Hence, (4.4.6) holds. Since there is no realization in the O-area of the middle and

right plot in the top line, (4.4.6) is automatically satisfied if byo <bia.

~ ) -
(4) byg = % > b12 would be a GMLE if we do not require (4.4.5):
1
Similarly to Figure 4.4.3(c) in (3), Figure 4.4.3(d) indicates that (4.4.6) holds. Since
supp(Pp) = {az e R? : xy > 612931} and all z®) supp(Pp), it makes sense to require

79



Chapter 4 Identifiability and estimation of recursive ML models

p(-, B, B) p(-, B, B) , B,
1 1 1
b12 € (0, b12) is no GMLE. (b) B12 > b1z is no GMLE if byg # 2 (t) for all t.
X2 X2

P(',E, B):

1..

T2

1..

b12 is a GMLE.

T2 €2
p(.,§7B): . . .
x1

X2

p(-,B,E)

T2 X2

1..

(d) Bra = (t) > D12 would be a GMLE if we do not require the first
condition in (4.4.2).

p(~,B,§)

Figure 4.4.3: Discussion of the GMLEs of b;5 with respect to the density from Figure 4.4.2.
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4.4 Estimation of a recursive ML model with known DAG

(4.4.5) and, therefore, to exclude here b19 as a GMLE of byy. In summary, when setting
the density of Pg with respect to Pp + Pp+ outside Pp to zero, what is allowed due to
property (A), then the first condition in (4.4.2) guarantees that for a GMLE B of B all
x® ¢ supp(Pg). m]

A density of Pg with respect to Pg + Pp+ is only uniquely defined up to almost sure equality.
This is exactly what may cause problems in the Kiefer-Wolfowitz definition of a GMLE. So
various versions of the Radon-Nikodym derivatives can lead to many different GMLEs. Since
the author of [65] missed the specification of the exact version in the Kiefer-Wolfowitz definition,
he developed another definition of a nonparametric MLE. However, the same problem can arise
with the classical definition of the MLE what [65] illustrates by the Gaussian distribution, and
the classical MLE became accepted anyhow. In the following example we investigate how the
GMLEs of B differ depending on the choice of the density.

Example 4.4.3. [The GMLEs depend on the choice of the density p]

Consider the DAG
D @

and define by3 := A", (t) and bz = AP, (t) Let B be the corresponding ML coefficient matrix.
Figure 4.4.4 shows twelve different densmes of Pg with respect to Pg + Pp+ for the nine combi-
nations of the three orders between bi3 and b5 as well as the three orders between b3 and b3;.
That these are really densities can be derived from Theorem 4.4.7 below or at least by the same
arguments used in its proof. In Table 4.2 the corresponding GMLEs of B are presented. De-
pending on the observations, we obtain different GMLESs. For the densities p; and po, we discuss
the potential GMLEs in Figures 4.4.5, 4.4.6 similarly as in Figure 4.4.3 for Example 4.4.2.

We have four events that may occur, namely,

Fy={X3=bi3X1} n{X5=ba3Xo}, Fo={X3=0b13X1}n{X3>baXo},
F3={X35>big X1} n{X3=b3Xs}, Fy={X3>b13X1}n{X3>basXs},

where F} is by (4.2.3) and (4.3.1) the only null event. Assuming we exclude such null events in
the observations w(l), e ,w(") and we observe xgt) :/b\lgzcg ) - bgg(lfg ) for some t, then (/513,?5\23)
is no exact estimate of (b13,b23). The densities pa, p4, ps, Ps, P10, P11 Tecognize this and suggest
(blg,bgg) as a GMLE of (b13,be3) only if we do not observe a:( N 33:( ) —/b\ggwgt) for some t.
This is because these densities are zero on the null set {m € ]R+ 123 = bigxy = bggl‘g}.

Generally, all densities assume that at least one ML coefficient is estimated exactly. All of
them consider B as the unique GMLE if the minimal observed ratios of % and §—3 have not
occured in the same observation. Concerning the possible events, this seems to be reasonable.
Apart from that, each density leads to more meaningful and less useful GMLEs. Consider, for
example, the third situation from Table 4.2. The minimal observed ratio by of has then been

observed at least twice. Excluding null events would mean that b13 is an atom of . Since the
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Chapter 4 Identifiability and estimation of recursive ML models

Table 4.2: The GMLEs corresponding to the densities depicted in Figure 4.4.4.

Situation GMLE Density
RO O P
Bs: = (g) =b13 % =bog | (b13,023) P1-P12
2
o)~ 2 - P
5175 = bz, 5y = bas (b13, b23) P15 P35 P55 P75 P9, P12
ORI R
3 3

Jt: = b13, > Doz | (D13, b2s) with bis € (0,b13) | pa, pa, p6, Ps, P10s P11

Ju: x?“) > b13, ﬁ =bog | (b13,ba3) with oz € (0,D23) | p2, p1, p6, Pss P10s P11
2

© o P
s x(a) bi3 (s) =baz | (b13,b23) P15 P35 P55 P75 P95 P12
&> N (% -

3t: 2 (t) =by3, 2 NORe Doz | (D13, ba3) with iz € (0,b13) | pa, p11
2

Au: ;% > b3, % =Das | (bis,bas) with bos € (0,D23) | p2, p3, 4, P5, P65 P8, P9, 105 P115 P12
1 2

2~ gl S
3s: = (s) =3, = MO =ba3 | (b13,b23) P15 P35 P5, P75 P9, P12
&> N <2t> -

Bt = ROy =13, = iy > bas (b13,b23) with D1z € (0,D13) | 2, 03, Pas P55 P65 P85 P95 P10s P11, P12

m(“> _ ;(w

Ju: x‘_“) > b13, =% = bog | (bi3,ba3) with oz € (0,D23) | p2, p11
1 2

(s) < ( )~ ~ o~
ds: :B(s) bl (s) 623 (bl3ab23) P15 P35 P55 P75 L9, P12
&) _ <2t> ~

At : = RO = b1z, = > b2 (b13,b23) with D1z € (0,D13) | 2, 03, Pas P55 P65 P85 95 P10s P11, P12

Eu: z(_u) > b13) ﬁ = b23 (3137323) with 323 € (07323) P25 P35 P4, P5, P65 P8, P9, P10, P11, P12
1 2

only atom of % is by3 (cf. Table 4.1), by3 is estimated by bi3 exactly and (313,’1)\23) for bys € (0,313)
is rather an inappropriate estimate. All densities except ps and p1; recognize this and do not
consider this estimate a GMLE of by3.

To summarize, setting a density used to determine GMLEs of B to zero on all null events as
described above, then the first condition in (4.4.2) guarantees that B € B can only be a GMLE
of B if no observation belongs to a Pz-null event. Furthermore, we notice that the distributional
properties of X allow us to decide whether a GMLE is a sensible estimate or not. So the
uncertainty about how to select unproblematic density versions does not matter too much in

our situation. O
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Chapter 4 Identifiability and estimation of recursive ML models

Example 4.4.3 raises the question what a sensible estimator of B is in the general case. Recall

that D is assumed to be known. Table 4.1 shows that for j € an(i) the minimal value that can

be observed for % is bj;, which is an atom of % This suggests the following estimate of the
J J
ML coefficients:
o o o n m(t)
bii =1, bjz' =0 for ] eV~ An(i), and bji = /\ % for j € an(i).
t=1 1}
J

Davis and Resnick [13] suggested such minimal observed ratios for Max-ARMA processes. For j €
V' \an(i) we estimate bj; obviously exactly. For n sufficiently large, we can expect to observe the
atoms bj; for j € an(7) in the sample W ... 2(™ and, hence, to estimate these ML coefficients
exactly as well. However, if n is not large, B is not necessarily a ML coefficient matrix of a

recursive ML model on D, as the following simple example shows.

Example 4.4.4. [B is not necessarily in B]

Consider the DAG
» (D——®)

and assume we observe 513 > 5127)23; this can happen, for example, if the observations only belong
to the events {X2 > b12X1} n {X3 > bggXQ} and {X2 = bngl} n {Xg > b23X2}. The matrix B iS,

however, not contained in B (see (2.4.4)) and, therefore, no suitable estimate of B. O

The ML coefficients (by;,7 € V. k € pa(i)) define B uniquely, as the following remark makes
clear. This means that it suffices to find appropriate estimates of the ML coefficients (by;,? €
V. k e pa(i)). If we estimate these ML coefficients exactly, then the remaining ML coefficients as

well. The remark follows from the definition of a recursive ML model on D and Theorem 2.5.4(b).

Remark 4.4.5. Let D' be the transitive reduction of D. For the definition of DY, see e.g.
Definition 2.4.1. We denote by pa' (i) the parents of i in D'.

(i) B = (bij)axa € B if and only if for every i e V,

bii=1, bj; =0 for j e V~An(i), by >0 for k epa™(i), and bj; = d;i(p) for j € an(2),
j j J
pEPji

where dji(p) = [1020 bk ,., for a path p=[j = ko > k1 — -+ = ky, = i].

(ii) Coeflicients (bg;,i € V, k € pa(i)) are entries of a matrix B € B if and only if for every i e V,
br; > 0 for k € pa™ (i) and br; 2 Vpep,,~{[k—i]} dri(p) for k € pa(i) \ pa'(i). In this case, the

remaining ML coefficients are uniquely given for i € V' by

bii = 1, bji =0 for j eV~ An(i), and bji = \/ dji(p) for j € an(i) AN pa(i).
pEPji
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4.4 Estimation of a recursive ML model with known DAG

We have for a path p = [j = kg - k1 — --- - k, = 4] and some realization =¥ such that

(s) (s) (s) ) (1) (t) (t) (s)

n n I n A x o v nox

(A AZ) (A Sy Dl b T AT A
(s) (s) (s) (t) (1) (1) (t) J (s)

R STy " Ty Ty Ty, T s=1;

By Remark 4.4.5(ii) this proves that the coefficients (by;,i € V, k € pa(i)) are entries of a unique
matrix B € B. The entries of B can be computed by

n )

By =1, Fji =0 for j € V ~ An(i), i = A\ % for k € pa(i), and
=1z (4.4.8)

'I;ji =V c'l\ﬂ(p) for j e an(i) \ pa(i),
pePj;

where dji(p) = [1723 Dryk,., for a path p=[j = ko = k1 = --- > ky, = i]. We can use Theorem 2.2.4
with c¢g; = bg; and, hence, the matrix product ® defined in (2.2.2) to compute B more efficiently
than by the path analysis described in (4.4.8). An even more efficient computation of Bby o is
shown in Theorem 4.2 of Zhang [76].

We learn from (4.4.8) and Remark 4.4.5(i) that B € B if and only if B = B. By (4.4.7) and
Remark 4.4.5(ii) we have bj; S/b\ji < lu)ji for j € an(i). Consequently, when using B or B as an
estimate of B, we never underestimate a ML coefficient; furthermore, the matrix B estimates B
more precisely than B. So there is no reason why we should prefer B to B. As explained above
when we have introduced B, if n is large, we estimate (bki, i € V,k € pa(i)) with high probability
by (/b\kl,z e V,k e pa(i)) exactly and, hence, by B the whole matrix B. In that case, we also have
B=DB.We explain this ’exact estimation’ more precisely in Section 4.4.2. In summary, B seems
to be a reasonable estimate of B and the only reasonable for n sufficiently large. As discussed
and observed in Example 4.4.3, we can say relatively well whether B is a reasonable estimate of
B or whether some ML coefficients are overestimated. The distributional properties of the ratios

between two components of X help us with this. The same applies to all GMLEs we obtain.

Because of the mentioned properties of B, we would expect that B is a GMLE of B and for
n sufficiently large even that it is the unique GMLE. That is exactly what we show in what
follows. We specify, for the general case, one density of Pp with respect to Pp + Pp~ that has
a representation as in (4.4.3) and leads to B as a GMLE of B. This density has a particularly
nice structure and representation. However, one should have in mind from Example 4.4.3 and
Table 4.2 that several such densities may exist, even where B is no GMLE of B. Our parti-
tion {AO(B, B*), Ayj2(B, B*), A1(B, B*)} of R? is based on the followig representation for the

components of the recursive ML model X:

Xi= '\ bXkvZ; inparticular, X;> \/ b Xk, (4.4.9)
kepa(i) kepa(i)

which has been shown in Theorem 2.4.2. We start with the specification of A;/,(B,B") and
prove a property needed subsequently to verify property (B). Have in mind that, obviously,
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Chapter 4 Identifiability and estimation of recursive ML models

for v € V, {az eR?: ;= Vikepa(i) OriTk = Viepa(i) bkixk} = @ if there is no x € R? such that
Ti = Viepa(i) DeiTh = Viepa(i) OkiTr- This is, for example, the case if by; > by; for all k € pa(i) or
bii < by, for all k € pa(i).

Lemma 4.4.6. Let B, B* € B. Let X be a recursive ML model on D with ML coefficient matrix
B and Z1, ..., Zy its noise variables. We denote by (2, F,P) the probability space of (Z1,...,Z3)

and, hence, of X. Furthermore, we define

d
QB,BY=N{ V bZ> N (bivb)Z),

i=1 jeAn(i):bji=b; jean(i):b;i#b3,

d
Ayjo(B,B) = ﬂ[{meRf_ cxi= Vo bkizk= b,:i:nk}u{me]Rﬁf x>\ (bei v b)) Tk}
i=1 kepa(i) kepa() kepa(z)

Then for every F e F,
P(Fn{X € Ay)5(B,B")}) =P(FnQ(B,B")). (4.4.10)
Proof. First, define for i e V'

Q= {Xi= V buXe= V X, Q0 ={Xi> V(b vbi) X},

kepa(z) kepa(z) kepa(z)
Qi = { \/ bj'Zj > \/ (bﬂ \% b;Z)Z]}
jeAn(i):bﬂ:b;i jean(i):bjﬁtb;i

The proof is by induction on the number of nodes of D. For d = 1 the statement is clear.
Assume now that D = (V,E) has d + 1 nodes and that the assertion holds with respect to
DAGs with less than d + 1 nodes. Furthermore, assume without loss of generality that d + 1
is a terminal node (i.e., de(d + 1) = @). Since (Xi,...,Xq4) is a recursive ML model on the
DAG ({1,....,d}, En({1,...,d} x{1,...,d})) with ML coefficient matrix B = (b;;)4xq and B* =
(bij)dxa is the ML coefficient matrix of a recursive ML model on this DAG as well, the induction

hypothesis yields that

d+1 . . d
B(F 0 {X € Ayp(B, B} = B(F 0 () ()0 05)) = B(F 0 ()20 (25" 0 04p™)).
(4.4.11)
For every i € V we have by (4.2.3) on §2; by definition,
Xi= \ biZj= \ b7 (4.4.12)

jeAn() jeAn(z)

Noting from the proof of Theorem 2.4.2 that

V' bganXe= V  bkaar V bipZi= N bjanZ;,
kepa(d+1) kepa(d+1) jeAn(k) jean(d+1)
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4.4 Estimation of a recursive ML model with known DAG
we obtain from (4.4.12) on N, i,

\/ blf:,d+1Xk: \/ bl:,d+1 \/ \/ d+1Zj-

kepa(d+1) kepa(d+1) jeAn(k) ]ean(z
Thus, again by (4.2.3),
d 1,d+1 d
(n 91}2 =Nun{ V bjaZi= \ bjaZi= \ b;,d+1Zj}a
i=1 i=1 jeAn(d+1) jean(d+1) jean(d+1)

d d
inﬂQ?/C;—l = sz ﬂ{ \/ bj,d+IZj > \/ (bj,d+1 Vb;d+1)Z]’}
i=1 =1 jeAn(d+1) jean(d+1)

d
= ﬂle n{bjas1Z; > ' \(/d+1)(bj,d+l Vi a)Z)-
i= jean

From (4.3.1) we then finally observe that ﬂld:l Q;n (Q}/Cé*'l Q?/{?l) and ﬂf-l:l ;" Q. only differ

by a set of probability zero, and, hence, (4.4.10) follows from (4.4.11). O

The complete partition {AO(B,B*),Al/Q(B,B*),Al(B,B*)} of R? we suggest is as follows,

{Ao(B,B*) = U [{CB € Rf tx; < \/ bkzxk} (@] {:13 € ]Rf LI = \/ bkzxk > \/ bkzxk}]

1€V kepa(i) kepa(i) kepa(i)
Ayjo(B,B*) = N [{xeR‘i:xi: V brizk= bzixk}u{x€R+:xi> \  (bgi vby,;) xk}],
1€V kepa(i) kepa(i) kepa(i)

A(B,B*) =R (A(B, B*) U Al/Q(B,B*))}.

Every vector x € R‘i belongs to exactly one of these sets. This has to be understood that
intersections correspond to all components have to satisfy something, and unions correspond
to at least one component satisfies something. Then by definition all sets are disjoint, and by
definition of A;(B,B*) they really partition R?. We now show that this partition leads to a
density as in (4.4.3) and, therefore, verify properties (A)—(C). In Example 4.4.2 we have already
done this for the simple DAG 1 — 2. For an arbitrary DAG D, we can proceed likewise.

Theorem 4.4.7. Let B, B* € B, where B contains the ML coefficient matrices of all recursive
ML models on the DAG D. Then the function from R? to {0,1/2,1} such that

0, ifxeAg(B,B"),
5 ifx€A1/2(B,B*)7 (4413)
. ifweAy(B,BY)

x > p(x,B,B") = ]1A1/2(B By () + 14, (B, () =

[ DN

is a density of Pp with respect to Pg + Pp=.

Proof. Let X be a recursive ML model on D with ML coefficient matrix B and Z1, ..., Zy its

noise variables.
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(A) Since V is finite, it suffices to show for every 1,

Pg({zeR:zi< \/ buar})=P(Xi< V buXk)=0, (4.4.14)
kepa(i) kepa(3)

PB({weRi:xi: \/ b,:lxk> \/ bkzxk}):]P’(XZ: \/ bl:sz> \/ bkiXk) =0.
kepa(i) kepa(i) kepa(i) kepa(i)

The former is immediate by (4.4.9). By the same argument we have for the latter,

0<P( V buiXpvZi= V biXe> V buiXe)=P(Zi= V buXe> V buXy)
kepa(i) kepa(i) kepa(i) kepa(i) kepa(i)

<P(Zi= \ by V buZi)=0,
kepa(i) jeAn(k)

where we have used (4.2.3) and (4.3.1) for the last inequality and equality, respectively. Thus
we have verified (A).

(B) Recall that the noise vectors of the recursive ML models are assumed to be identically
distributed. Furthermore, note that the set Q(B, B*) from Lemma 4.4.6 is a subset of M;cy/ {Xi =
VjeAn(z‘):bji:b;i bjiZj}. Thus, using that Q(B, B*) = Q(B*, B), we then obtain from (4.4.10) for
AeB(RY),

Pp(An A ;s(B,B*)) =P({X ¢ A}nQ(B,B")) =P({( \Vi bjiZj,ieV)e Ay nQ(B,B"))
jEAn(i):bji=b;i
=P({( \/ b5 ZjieV)eAbnQ(B*, B)) = Pg«(An Ay jp(B, BY)).
jEAn(i):bji=b;-_i

(C) We observe from the definition of Ag(B,B*) and A,5(B, B*) that

Ay(B,B*) =R% \ (Ao(B, B*) U Ay 5(B, BY))
EU[{QSEREZ \/ b};i:rk>xl-2 \/ bkixk}u{azeRf:xi: \/ bkixk> \/ b};zxk}]

1€V kepa(i) kepa(i) kepa(i) kepa(i)
c Ao(B*, B).
Since Ao(B*, B) is by (A) a Pp+-null set, the subset A;(B, B*) as well. O

As observed in Example 4.4.3, there exist several densities of Pg with respect to Pg + Pp«.

For example, the value on

Aqpo(B,B*)n J [ U {meR‘i:xizb,’;ixk}u U {meR‘i:xizbkiSEk}]
3 [ ] *
ZEVkEPa(i):bZﬁ b;; VjeAn(k) kepa(i):bkﬁtbﬁi VjieAn(k)
ik

can be set arbitrarily, since this set is by property (C) from the proof of Theorem 4.4.7 and
Table 4.1 a Pgp- and a Ppg+-null set. The same applies to the sets

AO(B,B*)Q[U{;UER?_Z.%< \/ b};zxk}u U {:EER?_:Q?iZbM{L‘k}],
<V kepa(i) i VjeAn(k)
b;k

kepa(i):by;+
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Al(B,B*)m[U{:BeRil:xi< \V bkimk}u U {meRf:xi:bZixk}].
eV kepa(i) kepa(i):b?,+ 21 V jeAn(k)
17 b
Furthermore, we may set the density equal to one on
U{azeR‘i:xi< \V b,:iazk}u U {azeRi:xi:bkiazk}.
eV kepa(i) keva(iVbe s 2Ly
epa(i):by; # 73— VjeAn(k)
ik
and equal to zero on
U{meRi:xi< \V bkifck}u U {meRﬁl_:xi:bZi:Ek}.
eV kepa(i) kepa(i)bj g1 VjeAn(k)
J

It is not necessary to use (4.4.9) but, according to (2.6.11), we could use the representation
Xi = Viepas (i) ki Xk V Zi, where pal (i) are the parents of 4 in the minimum ML DAG D of
X. From these facts we can derive several densities of Pg with respect to Pg + Pp-.

We observe an interesting relation between the density (4.4.13) for D and corresponding

densities for subgraphs of D.

Example 4.4.8. [“Marginal” densities p;]
Consider the DAGs

» O-O-@ »0O-0 »O-O

Let p, p2, and p3 be the corresponding densities from (4.4.13). For the ML coefficient matrix
B of a recursive ML model on D, let B1s and Bog be the ML coefficient matrices of recursive
ML models on Dy and D3 with edge weight c1o = b1o and cog = bog. Here Bio and Bsg are the
submatrices of B formed by the first two or the last two rows and columns, respectively. We

then find for @ = (21,29, 23) € Ri,

p(z, B, B")
= (P2(33Pa(2), B2, Biy) V p3(Zpa3), Bos, 353))]1{02($Pa(2)7 Biz, Biy) A p3(Zpa3), Bas, B3s) > 0}.

This can be observed from Figure 4.4.7, where these densities are depicted as functions of i—f

and /or i—g for all nine different orders between the ML coefficients. Conversely, po and p3 can

be derived from p as follows:

p2((21,72), Bi2, Biy) = ((z1,22,9), B, BY),

min P
ye{yeRy:p((21,22,y),B,8%)>0}

p3((x27x3)73237B53): p((yax27x3)7B7B*)7

min
ye{yeRy:p((y,22,23),B,B*)>0}
which we learn from Figure 4.4.7 again. a

We extend the findings from Example 4.4.8 to the general case. Furthermore, we show that

the densities p; are (regular) conditional densities. For the definition of a regular conditional
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Figure 4.4.7: The densities p(x = (21, 22,23), B, B*), p2((x1,22), Bi2, BY5), p3((z2,x3), Bag, B33) from
Example 4.4.8 as functions of £ and/or 72. The area where the respective density is 0/ 21

is coloured in red/blue/green.

distribution, see e.g. Chapter 8.3 of Klenke [42].

Proposition 4.4.9. Let B,B* ¢ B and X, X"

corresponding recursive ML models on D. For

i€V, let p; be the density given in (4.4.13) with respect to the DAG D; = (Pa(i),{(k,i) : k €
pa(i)}) as well as B; and B} the ML coefficient matrices of recursive ML models on D; with

edge weights ci; = by; and ci; = b, respectively.

(a) We have for p(x, B, B*) given in (4.4.13),

p(x, B,B*) = ( _\{/pi(a’Pa(i)vB%B;))]l{ /‘\/pi(wPa(i)a Bi, B}) >0}
1€ 1€

Viev pi(®pagiy, Bi» BY ),
(b) The function p; can be computed from p by

pi(Tpagi), Bi, B} ) = min

) p(y,B,B"),
Ye{yeR:Yp,(iy=Tpa(s).p(y,B,B*)>0}
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4.4 Estimation of a recursive ML model with known DAG

where we set mingey p(y, B, B*) = 0.

(c) The function from R? to {0,1/2,1} such that Tpa(iy P Pi(Tpagi), Bi, BYY) is a density of

pipa® ipai), pilpa(i)

with respect to Py , where Pl‘pa(z) 1s a reqular conditional distribution

of Xi given X ;) and PBhf 2D one of X given X

pa(i)”
Proof. Denoting by A (B;, B}), Al /2(B,,B ), AL (B, B}) the sets defining p; (-, B, B}), we have

for the corresponding sets of p,

Ao(B,B*) = U {$ € Ri : azpa(i) € A%(Bz,B:)},

eV
Al/Q(B,B*) = Q{w € R:i_ P Tpa(s) € All/z(Bl,B;)},
1€
Ai(B,B*) = Q{w € R : py(i) € Aj o (Bi, BY) U A1(By, BY) } 0 [RYN Ayjp(Bi, BY) -
1€

From this we can observe (a) and (b).
(c) We denote the noise variables of X again by Zi,...,Z4. It is not difficult to verify that

ilpal(i Pa(i
PR ((0, 2] | @patiy) = F2 (@) Uy sy asnoo) (@), @pagiy € RESD,

is a regular conditional distribution function of X; given X ;. To get an idea for this, use

pa(i
(4.4.9) and the independence of the noise variables to obtain

PP ((0,2,] | Tpa(iy) = P(Xi < @ | Xpagi) = Tpagi))

= IP’( V' kiXp Vv Zi<ai| Xpa) = wpa(i))
kepa(i)

=1l (mi)]l[vkspa(i) briT,00) (7).

Since we assume that the noise vectors of X and X* are identically distributed,

i|pa(i Pa(i
PB|E ® ((0 xz] | Lpa(i) ) = FZi(xi)]l[Vkepa(i) b,:izk,oo)(xi)a Lpa(i) € RL— ( )|7

is a regular conditional distribution function of X given Xpa(l) Figure 4.4.8 depicts the
two conditional distribution functions for the three possible orders between Vyepa(i) Okizr and

Vkepa(i) 0Tk 1t then suffices to show for all @, € lea(m and y e R,,

nga(i)((oay] | xpa(i)) = [

© y] (mPa(z)7 B;, B )( 1|pa(l glja(Z))(de | mpa(i))a

and for this again by definition of p; (cf. (4.4.3) and the related discussion) that

PO (0,410 (0, \/ brir) | Zpagiy) =0,

kepa(i)
Z‘Pa(l)( {k \/( )bkzxk} | mpa(l)) 0 if . \/() b]);zl']g > . \/() bkz‘ﬁﬂlm
epa(i epa(s €palt
nga(i)( {k \/( briwh } | ®pagiy) = P Z‘pa(l)((o y] {k \/( britr} | paiy)
epa(i) epa(i)
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Figure 4.4.8: The conditional distribution functions from the proof of Proposition 4.4.9(c).

it \/ bhze= bk,

kepa(i) kepa(i)
PE(O,910( V(b v bi)ee, o) [ pasy) = PO (0.0] 0 ( V(b v b, 00) | @pagy).
kepa(i) kepa(i)
Since Fz, is continuous, this can be read directly from Figure 4.4.8. O

Figure 4.4.9 below shows another example for the DAGs D; from Proposition 4.4.9.
According to (4.4.15), the density p is the maximum of the conditional densities p;. This is

an interesting result in consideration of the following remark.

Remark 4.4.10. The distribution of X is Markov relative to D (see e.g. (2.1.2) and the related
discussion). If the distribution £(Y) of a positive real-valued random vector Y satisfies this
property and has density f with respect to a product measure, then £(Y') admits a recursive

factorization according to D; i.e.,
d
f(y) = H fi\pa(i) (yl | ypa(i))7 yeRY,
€V

where the functions fjpaiy(- | Ypa(s)) are densities for the conditional distribution of ¥; given

Y La(i) = Ypa(i)- For more details, see Section 3.2.2 of Lauritzen [47]. o

In what follows we now determine all GMLEs of B with respect to the density p given in
(4.4.13). The value of p(z¥), B, B*) indicates the membership of (), having the value 0 if
x® € Ag(B,B*), 1/2 if ") € Ayo(B,BY), and 1 if xz® ¢ A|(B, B*). So, to find the GMLEs of
B, we have to understand when an observation (*) is in which of these sets. This is investigated
in the next lemma, which is simply by definition of Ao(B, B*), Ay/5(B,B"), and A1(B, B*).

Lemma 4.4.11. Let B be the matriz from (4.4.8).
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4.4 Estimation of a recursive ML model with known DAG

(a) No z") € Ao(B,B) if and only if all z'V € A, 5(B, B).

(b) V) e Ay ;5(B,B*) if and only if ") € A, »(B*, B).

(¢) If £ e A;(B, B*), then () € Ay(B*, B).

(d) Allz® € A, y(B, B) if and only if for every i€V and k € pa(i), by; < by

(e) If all ) ¢ Ay2(B, B), then x® ¢ Ag(B,B*) if and only if xgt) = Viepa(i) bzix,(:) >

Vkepal(i) bkzx,(f) for some i€ V.
(f) If all z¥) € Ayj2(B, B), then no x® e Ay(B, B).

By this lemma we find nice characterizations of the GMLEs of B. These characterizations only
depend on the estimates of the ML coefficients that belong to an edge of D. With the choice of
the partition {AO(B,B*), Al/Q(B,B*),Al(B,B*)} defining p and Remark 4.4.5 in mind, this
is exactly what was expected and makes sense. Since p(-, B, B*) equals zero outside supp(Pg) =
Ay/2(B, B), the first condition in (4.4.2) ensures that for a GMLE BeBal z® ¢ supp(Pg),
which is a reasonable property. Throughout the following discussion about the GMLEs of B,
we use implicitly that the matrix B from (4.4.8) is an element of B as well as (4.4.8), and
Remark 4.4.5. All GMLEs relate to the density p from (4.4.13) without mentioning this explicitly

again.

Theorem 4.4.12. Let () = (:ngt),...,:cglt)) fort =1,...,n be independent realizations of a
recursive ML model X on a giwven DAG D with ML coefficient matriz B. Then B € B is a
GMLE of B if and only if one of the following conditions is satisfied.

(a) ﬁ p(x®, B, B) 0 and ﬁ p(xz® B, B) < ﬁ p(x®, B, B) for all BeB.
=1 t=1 t=1

(b) All 2@ e Al/Q(E,E) and for all B € B, if some ) ¢ Ag(B,B), then some x(®) €
Ao(B, B).

(¢) i <bp; for every i€V and k € pa(i), and no V) € Ay(B, B).

(d) Alla® e A,)y(B,B) = Ay »(B, B).

(t)

Pai) such

(e) For everyieV, byi < by for all k e pa(i) with strict inequality only if for every x
® ~ o~ ® ~ ‘
that % = bpi, by, = by, = % for some k € pa(i).
k

(f) For everyi eV, the vector (b, k € pa(i)) is a GMLE of the ML coefficients (by;, k € pa(i))
of a recursive ML model Y ; on D; = (Pa(i),{(k,7) : k e pa(i)}) with edge weights ci; = by;.

Proof. (a) corresponds to the definition of a GMLE of B.

(b) is by definition of p and Lemma 4.4.11(a)—(c).

(c) We show the equivalence to (b). Assume (b) holds but not (c). With regard to Lemma 4.4.11(d),
there must be some ) € Ag(B, B). As B € B, we obtain from (b) that ) ¢ Ay(B, B). This con-
tradicts, however, Lemma 4.4.11(f). By Lemma 4.4.11(d) it then remains to show that (c) implies
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Figure 4.4.9: The DAGs D; of the recursive ML models Y; from Proposition 4.4.9 and Theorem 4.4.12(f)
for a recursive ML model X on the DAG D depicted on the left-hand side with ML
coefficient matrix B. The edges are marked with the corresponding ML coefficients. Note
that b12,b14,b34,b24 can be arbitary positive numbers but boy > bogbsy.

the second property of (b). For this assume some (") € Ay(B, B), where B € B. Lemma 4.4.11(e)

(t)

yields for some 1, x(t) = Viepa(i) b/ﬂac](ct > \/kepa(l)zkle(:) As x(t) > \/kepa(z)zkzxk , we necessarily

have that :c( ) - = Viepa(i) bklaz,(:) > Vkepa(i) blﬂyc,(c ); otherwise, it would be a contradiction to (c)
(S) —~
because of Lemma 4.4.11(e). Hence, by; > by for some k € pa(i). For (%) such that ( 5 = bri, we

then find xgs) < b,ymac](€ ), which finally proves that z(*) e Ao(B, B), as 33 ) < Vkepa(i) bk/rm;lt,(C ).

(d) follows from (c) as we may observe from Lemma 4.4.11(c), (d), (f). By definition, if all
xz® ¢ A1/2(§,§), then all z® ¢ AI/Q(E,E). Thus by Lemma 4.4.11(d), (d) implies (c).

(e) It is not difficult to see that (c), (d), and (e) are equivalent.

(f) For i e V let (y (t),ﬁ € Pa(i)) for ¢t = 1,...,n be independent realizations of Y;. We know

from (e) that (bi, k € pa(i)) is a GMLE of (bkz,k: € pa(i)) if and only if for every k € pa(i),

by < Ay (t) =: C; with strict inequality only if for every ¢ such that y( ) - cmylit), b,;ly(t)

ckzyg) = yz( ) for some % € pa(i). This shows the equivalence between (e) and (f). O

Theorem 4.4.12(f) seems to reduce the problem of finding GMLEs of B to the same problem
for recursive ML models on DAGs that consist only of initial nodes (i.e., nodes without ancestors)
and one terminal node (i.e., a node without descendants). These DAGs have already appeared
in Proposition 4.4.9. Figure 4.4.9 shows them for an example. For some matrix B to be a GMLE
of B, it is, however, not enough for property (f) of Theorem 4.4.12 to hold. B € B is necessary

as we show by an example.

Example 4.4.13. [E € B in Theorem 4.4.12 is necessary but property (f) provides edge weights
leading to a GMLE B of B]

Consider the DAG D from Example 4.3.1, and assume we observe that 7)\13 —312323 and no z(9)
with 20 < Byl o)

belong to the event {Xg > b1o X1} n{ X3 > basXo} n{X3 > bi13X1}. Then (blg,blg,bgg) with
b3 € (0,b13) cannot be a GMLE of (bya, bi3, ba3), since b1 > biabos is a necessary property (see
e.g. Corollary 2.4.3(a)). However, property (f) of Theorem 4.4.12 holds: that (e) holds is clear,
and (f) is always equivalent to (e) (cf. the proof of Theorem 4.4.12(f)). Note that the edge
weights €1 =b1a, Tag = bas, Ti3 € (0,313) lead to the ML coefficient matrix B and thus belong by
Theorem 4.4.12(e) to a recursive ML model on D whose ML coefficient matrix is a GMLE of B

(cf. Corollary 4.4.17 below). O

> bosg x( ). This can happen, for example, when n = 1 or all observations
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So far, to find all GMLEs of B, we would determine all vectors with property (c), (d), or (e) of
Theorem 4.4.12 and then test by using Remark 4.4.5(ii) which of them lead to a matrix BeB.
However, the second step is not necessary, since the observation from Example 4.4.13 is valid
for the general case: the vectors from Theorem 4.4.12(c), (d), (e) are the edge weights leading
to a GMLE B of B.

Corollary 4.4.14. Assume the situation of Theorem 4.4.12. Recall from the definition of B
— (t)

that by = Nj2q % for k e pa(i). Let cp; be the edge weights of X and'Y a recursive ML model
Ty

on D with edge weights Tr;. Then the ML coefficient matriz B of Y is a GMLE of B if and only
if one of the following conditions is satisfied.
(a) For every i € V, G < bi; for all k € pa(i) and there is no acgz(i) such that :pgt) =
Vkepa(i) ’gkzx](:) > Vkepa(z‘) Ekz’x/(:)-

(t)

(b) For every i € V, 2 > Viepa(iy @i v b)) or 2 = Viepa(iy Ty’ = Viepa( brizy, for

(®)

all Ty

(%)

Pa(i) such

(¢) For every i€V, Gy < by for all k € pa(i) with strict inequality only if for every a

( )~ — ( )
that = (t) = by, ;= by, = (t) for some k € pa(i).

(d) For every i eV, the vector (Ci;, k € pa(i)) is a GMLE of the edge weights (cg;, k € pa(i))
of a recursive ML model on D; = (Pa(i),{(k,i) : k € pa(i)}).

Proof. Observe from the proof that the properties (¢)—(f) of Theorem 4.4.12 are equivalent even
if B ¢ B. Therefore, by definition of the sets AO(E .B ), Ay /Q(E ,B), we obtain the equvivalence
between (a)—(d).

It suffices to show the equivalence between (a) and property (c¢) of Theorem 4.4.12. By
Lemma 4.4.11(e), Theorem 4.4.12(c) holds if and only if for every i e V, br; < by for all k e pa(i)

and there is no mgg(i) such that x( = Vkepa(i) bkzx,(f > Vikepa(i) bk,m,i) We know from Theo-
rem 2.5.4(b) that G, = by; for k € paB(z) and T; € (0,Dy;] for k € pa(i) paB(i), where paB(z’)
are the parents of 7 in the minimum ML DAG D?. With this, using Corollary 2.6.8 and (2.6.5),

we obtain

\/ b X, = \V b X, = V &iXe= V Xk
kepa(i) kepaB (i) kepaB (i) kepa(i)

Consequently, for every ¢ and wé )( X Vkepa(i) bkzx,g = Viepa(i) c/rmx,(C ). So it remains to show that
br; < by for every i and k € pa(t) if Cx; < Ck; for every i € V and k € pa(i). We find in that case
for the weight of a path p=[ko=k > k1 — -+ = kp-1 = ky = 1],

dri(P) = Choky Chyka - - - Okppy ki < Okiohy Ok kg + + - Okpr_y k. < ki

where we have used (4.4.7) for the last inequality. Thus, by definition of b; in (4.2.2), bei < bpi
for k € pa(1). O
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In the following algorithm we use Corollary 4.4.14(a) to identify all GMLEs of B. Of course,
we could alternatively use Corollary 4.4.14(b),(c) in step 2. To avoid to compute the same ML
coefficient matrix several times, since different edge weights may lead to the same ML coefficient
matrix, we use Theorem 2.5.4(b) in step 3.(b), (c).

Algorithm 4.4.15. [Find all GMLEs B of B from D and (), ... 2]

— ()
1. For every i € V and k € pa(¢), compute by; = A}, %
T

2. Find all vectors (Cj;,7 € V) k € pa(i)) such that ¢; < br; and for every i € V, there is no

®) (t
Lpa(s) i

3. For¢eC,

with = = \/kepa(i)?;kiﬂfl(:) > Vkepa(i)ﬁ'kix,(:). Summarize them in the set C.

(a) compute via (4.2.2) the corresponding ML coefficient matrix B;
(b) find D via (2.5.2);

(¢) remove those vectors € = (¢;,i € V, k € pa(i)) from C that lead to B: i.e., Ty = by for
k e paf (i) and @, € (0,by;] for k € pa(i) ~ paP (i);

(d) perform step 3. for the next vector €€ C.

We would like to recall once again the matrix product ® from (2.2.2) with which B and the
adjacency matrix of DB can be computed more efficiently (see Theorem 2.2.4 and Remark 2.3.11
as well as Theorem 4.2 of [76]).

We know the following from Example 4.4.2 but, of course, it is an immediate consequence of
Theorem 4.4.12(e) as well.

Corollary 4.4.16. For every i € V and k € pa(i), byi is the only GMLE of the ML coefficient
br; of a recursive ML model on Dy; = ({k,i},{(k,1)}) with edge weight cg; = by;.

As B e B, a further immediate consequence of Theorem 4.4.12(e) is that B is a GMLE of B.

We use part (d) to provide a necessary and sufficient condition for its uniqueness.

Corollary 4.4.17. The matriz B is a GMLE of B. It is the only GMLE if and only if there is
no B € BN {B} such that all ) e AI/Q(B,E).

In what follows we give an explanation why B is the unique GMLE if n is sufficiently large.

For this we first present a situation where B is the unique GMLE.

Corollary 4.4.18. We denote by pag(z’) the parents of i in the minimum ML DAG DB of a
recursive ML model with ML coefficient matric B. The matriz B is the unique GMLE of B if

for every i€V and k € pag(i), J:Et) =3kix,it) > VEEpa(i)\{k}EEix’;(;t) for some a:gg(i).

Proof. Assume a further GMLE B € B of B. We observe from Theorem 4.4.12(e) that bri = bri
for k € pag(i). Since B and B differ, by; < by; for some k € pa(i) ~ paP (i) (see Remark 4.4.5).
By definition of DB there must exist a max-weighted path p = [kg =k > k1 —» --- > k, = i] that
is contained in DB (cf. Remark 2.5.2(ii)). With this we find that bri = 3k0k13k1k2 by
Fkoklglﬂ ko - -Ekn-hkn > Eﬂ The inequality is a contradiction to BeB. Hence, B = E, and B is
the only GMLE. 0

n—1,kn —
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4.4 Estimation of a recursive ML model with known DAG

The events corresponding to Corollary 4.4.18 have positive probability.

Lemma 4.4.19. Let i € V and k € pa® (i), where paP(i) are the parents of i in DP. Then the
event Ay; = {Xi = by X > \/’,;Epa(l.)\{k} bEzXE} has positive probability.

Proof. We first show that

Zki = { \/ bj'Zj > \/ bjiZj \% Zi} c Ag;.

jean(i):bﬂ>vﬁepa(i)\{k} bj%bgi jean(i):bﬂ:v%épa(i)\{k} bj’/;b'l;i

Using that for j € an(i), bji = Vgepa(i) bjxbri, which follows, for example, from Corollary 2.4.3(a)
and Remark 2.2.3(i), it is not difficult to verify that

Al V biZi=bu NV baZijn N { V biZi>by, V bgZs},
jeAn(i) jeAn(k) Fepa(i)~{k} JeAn(i) jeAn(%)

where we set (i, /' = for ' € F. This is by (4.2.3) a subevent of Ay; and, hence, Ay € A
It remains to show that IP’(ZM) > 0. Since the noise variables are independent and have support
R,, it suffices to show that b;; > Viepa(i~ (k3 0507 for some j € an(i). Observing from (2.5.2)
that k is such a node j finishes the proof. O

For n sufficiently large, we observe Ay; for every i € V and k € pa®(i). Then the estimate brei
for k € paB(i) is equal to the true parameter by;. However, we do not know which edges are in
DB so that it may be not enough to observe the events Ay, from Lemma 4.4.19 only to estimate

B exactly. We illustrate this by an example.

Example 4.4.20. [Observing the events from Lemma 4.4.19 is not enough]

Consider the DAG D from Example 4.3.1, and assume for the true ML coefficients that b3 =
biabos: the minimum ML DAG DB of X is then the DAG D without the edge 1 — 3 (see
Example 4.3.1). Furthermore, we assume that we have two observations M 2@ only: M)
belongs to the event { Xo = b1 X7 }n{ X3 > bag Xo}n{ X3 > b13X1} and @ to {X3 > b2 X1 }n{ X3 =
ba3Xo} N {X3 > b13X1}. Both events occur with positive probability. Then we estimate byo
and bo3 by 312 and /623 exactly but would overstimate b;3 with 313. If we know D , which
is usually not the case, then we would estimate b3 by 312323 and, hence, exactly. Assuming

2D @

that ﬁ > % = b1z, we learn from Theorem 4.4.12(e) that the vectors (7)\12,’1)\13,’523) with
1 1

323 € (0,/623] and (3127313,/1)\23) such that /513 > 7?/13 > /17\12323 are the GMLEs of (612,b13,b23) as

— (2) (1) — (1) (2) —~ o~ =~

bog = 55 < S5, If by = Z35 < 255, then (bia, big, bog) is the only GMLE (cf. Corollary 4.4.18),
1'2 X l’l $1

2
—~ (1) (2) —~ -~ ~ —~
and if b3 = % = %, then the vectors (b2, b13,beg) with bas € (0,b23] are the GMLESs. Note,
Zy 1

(1) (2)
-7 xX X o 1. . N 7
however, that we observe b3 = ﬁ = ﬁ with probability zero, since §—‘I’ has no atom in b3 (see
1 1

Table 4.1). O
If every by; for k ¢ pa(i) ~ paP(i) equals the true ML coefficient by; and the events Ay; from
Lemma 4.4.19 are observed implicitly, then Corollary 4.4.18 yields that B is the unique GMLE;

furthermore, B is estimated exactly by B. These conditions apply in particular if n is sufficiently

large. Thus we get the following corollary.
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Corollary 4.4.21. For n sufficiently large, B is equal to the true B and is the unique GMLE
of B.

Recursive max-weighted models

Suppose we have the information that the model X underlying w(l), cee (™ is max-weighted;
i.e., all paths are max-weighted. This subclass of recursive ML mdels was introduced and dis-
cussed in Chapter 3. For example, if D is a polytree (i.e., the underlying undirected graph has
no cycles) or has at most one path between two nodes, then a recursive ML model on D is

automatically max-weighted; the latter request to D is weaker than the first as the following

P
o8l

We observe from Example 4.4.20 that, when determing GMLEs of B, it makes sense to use the
additional knowledge that X is max-weighted. This can be achieved by the use of a density
specific to recursive max-weighted models. In what follows we discuss such a density and the
corresponding GMLEs of B.

Analogous to Remark 4.4.5, we first present necessary and sufficient conditions for a matrix

to be the ML coefficient matrix of a recursive max-weighted model on the given DAG D.

Remark 4.4.22. Let D' be the transitive reduction of D. We denote by By, the class of the

ML coeflicient matrices of all recursive max-weighted models on D.

i) B = (b;j)dxd € Bmw if and only if for every i e V,
(i) J y y

bii=1, bj; =0 for j eV~ An(i), by; >0 for k e pa' (i), and
bji = dji(p) for j e an(¢) and every p € Pj;,

where d;;(p) = s bi,k,,, forapathp=[j=ko > ki > -k, =1].
(ii) B € By if and only if for every i € V,
bii=1, bj;=0for j €V~ An(i), bg; >0 for k e pa™ (i), and

bji = bjiby; for k € pa(i) and j € an(k).

(iii) Coefficients (by;,i € V, k € pa(i)) are entries of a matrix B € By, if and only if for every
i€V, by >0 for k epa'™(i) and by; = di;(p) for k € pa(i) \ pa'™(i) and every path p € Py;.

In this case, the remaining ML coefficients are uniquely given for i € V by

bii =1, bj; =0 for j € V N An(i), and bj; = d;;i(p) for j € an(i) \ pa(i) and some p € Pj;.
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4.4 Estimation of a recursive ML model with known DAG

O

According to Remark 4.4.22(ii), we have for every i € V, k € pa(i), and j € An(k), bj; = bjrby,.
Thus we find from Table 4.1

IP)(XZ = b]ﬂXk) >0 and IP)(XZ = $Xk) =0 for x € Ry~ {bkl}7 (4416)

i.e., the distribution of has only one atom in by;.
Let now B, B* ¢ Bmw. We define

AOHIW(B,B*) = E‘J/k U() [{:1} € R:i_ T < bkzxk} U {:1: € Rﬁl_ X = b]:z.%'k > bkzl'k}];
% epa(t

AfR(B.BY) =1 N [{ze RY @ 2y = by, = buapfu{ze RY : 2 > (b vbi)an ],
i€V kepa(i)

AT(B,B*) =R{ \ (A§™(B, B*) U ATS (B, B*)).

{AmW(B B*), A (B,B*), A™ (B, B*)} is a partition of R?. These sets define a density of Pg
with respect to Pg + Pp~, for which we obtain similar representations as in Proposition 4.4.9(a)

for p.
Corollary 4.4.23. Let B, B* € B,,.

(a) The function from R? to {0,1/2,1} such that
o 1
T — pmw(J?, B, B ) = 5 . ]IAY;Z’(B,B*)(w) + ]IAYI’“’(B,B*)(x) (4417)

is a density of Pg with respect to Pg + Pp~.

For i eV, let ppmuw,; be the density given in (4.4.17) with respect to the DAG D; from Propo-
sition 4.4.9; we also use the notation B; and B introduced there. Furthermore, for i € V and
k € pa(i), let px; the density from (4.4.17) with respect to the DAG Dy; = ({k,i},{(k,i)}) as
well as By; and Bj; the ML coefficient matrices of recursive ML models on Dy; with edge weight
cki = by and c;; = by, respectively.

(b) Writing xy; for (zx,x;), we have for € e RZ,

pkaz(xklkalaB]:z) = a min pm’w(vauB*)
ye{y€R+:yki:wkinom’w(y?B?B* )>0}
. *
= Pa(a)] min me,i(yPa(i)a Biv Bz )7
yPa(i)E{yPa(i)ER+ :yki:mki’pmw,i(yPa(i)vBi’B; >0}
* : *
Pmw,i(Tpagiys Bi, Bi ) = min pmu(y, B, B)

Ye{yeREYp, (1) =Tpa(iy,Pmu(y,B,B*)>0}

\/ pk—n(wku Bkw Bkl) Vv = )ﬂ{ /\ pk—»z(xk'm Bkza B]m) > 0}
kepa(i) kepa(i)

me(CI?,B7B*) = ( \/ \/ pk%z(kaBkz;Bkz)V 2)]1{ /\ /\ pk%z(mk'L;Bkakz) >O}
1€V kepa(i) i€V kepa(i)
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= ( %pmw,i(mpa<i),3i,33))n{ /\ pri(@eagiys Bis BY) > 0}.

Proof. (a) We verify
(A) Pp(Ag™(B,B")) =0,

(B) Pp(An A (B,B")) = Pp:(An ADY(B, B*)) for every A e B(R?), and

(C) Pp«(A™(B,B*))=0

(cf. the discussion related to (4.4.3)).

(A) As Uiev {.’B € R:i_ Xy < Vkepa(i) bmm‘k} = Usev Ukepa(i) {zc € Rz X < bkixk}, it suffices by

4.4.14) and the definition of A™ (B, B*) to show that {x € R? : z; = b* .z, > b, | is a Pg-null
0 + ki

set for ¢ € V and k € pa(7). This is immediate by (4.4.16).

B) In Theorem 4.4.7 we have proved that (B) holds with A% (B, B*) replaced by Ay ,4(B, B*).

1/2 /
As A‘f}‘éV(B,B*) € Ay2(B, BY), (B) follows.
(C) is a consequence of (A) as

Aran(B,B*) c U U [{:D € Ril : b;;ﬁk >T;2 bkzxk} U {(L‘ € Ri tx; = by, > b;zxk}]
1€V kepa(i)

c A™(B*,B).

(b) can be observed similarly as Proposition 4.4.9(a), (b). O

Since the sets defining pmw are simpler as the ones defining p, we would prefer ppny. However,

it is no density for general recursive ML models as we demonstrate by an example.

Example 4.4.24. [py is no density for non-max-weighted models]

Consider the DAG D from Example 4.3.1, and let B, B* € B such that bi3 > biabas, bi2 = b5,
bi3 = bi3, and b33 = %. Furthermore, define A2® = {a: eR3:25= b§3x2}. We learn from Table 4.1
that Pg(A2%) > 0. As A3 c A" (B, B*), we then obtain

* 23
ngg P (@, B, B*)(Pp + P+ )(dzr) = 0 < Pp(AZ),

This shows that @ — pmw (2, B, B*) is no density of Pg with respect to Pg + Pp+. m|

Before we characterize the GMLEs of B with respect to pmyw given in (4.4.17), we summarize
the most important properties needed for this. Similarly as in Lemma 4.4.11, they follow directly

from the definition of the sets A7™ (B, B*), Arf}vz"(B,B*), ATV (B, B*).

— (t)
Lemma 4.4.25. ForieV and k € pa(i), set by; = \i; %
Ly

(a) No ) e Ay™(B, B) if and only if all 2 € AT}3(B, B).

(b) &) ¢ AT (B, B¥) if and only if (") ¢ A7}%(B*, B).

(c) If x®) e AT(B, B*), then 2 ¢ AT"(B*, B).

104



4.4 Estimation of a recursive ML model with known DAG

(d) All 2D e A™%(B, B) if and only if for every i€V and k € pa(i), by < by

1/2

(e) If all ) ¢ Al/Q(B B), then no V) ¢ AT"(B*,B) if and only if for every i € V and
ke pa(i), by, < br; with equality if by; = by;.

(1) If all 2®) € AT(B, B), then ) ¢ Al™(B,B*) if and only if 2 = b2 and by, > by

for some i€V and k € pa(i).

Proposition 4.4.26. Let (1), ... 2™ be independent realizations of a recursive maz-weighted
model X on a given DAG D with ML coefficient matriz B. Let B be the matriz from (4.4.8).
Then B € By is a GMLE of B if and only if one of the following conditions is satisfied.

(a) All 2 € A1/2(B B) and for all B € By, if some £ ¢ A7(B, B), then some x(*) ¢
AT(B, B).

(b) br; < by for every i € V and k € pa(i), and if by; < by for some i € V and k € pa(i), then
there is no B € By, such that by; < by for everyi eV and k € pa(i) with equality ifgki = by

and for at least one edge k — i with B < b

Proof. (a) follows from the definition of pp,y, and Lemma 4.4.25(a)—(c).

(b) By Lemma 4.4.25(d) and (a), B € By is a GMLE of B if and only if by; < by; for every i and
k € pa(i) and there is no B € By such that some x(Y) ¢ APY(B, B) but no z® ¢ AT (B, B).
We finally observe from Lemma 4.4.25(e), (f) that this is equivalent to (b), which finishes the
proof. O

The matrix B is not necessarily in Byy. Consider, for example, DAG D from Example 4.3.1:
B ¢ B if D13 > biabas. We have observed this situation in Example 4.4.20. A further example
can be found in Example 4.4.28 below. Of course, B is no GMLE and cannot be the true B
if B € By but B ¢ Bow; at least one ML coefficient by; with k € pa(i) must then have been
overestimated. Next, we investigate the case where B € Bpyw. To guarantee this we could, for

example, assume that D is a polytree or has at most one path between two nodes.
Corollary 4.4.27. Assume the situation of Proposition 4.4.26.
(a) If B € By, it is the only GMLE of B.

(b) For every i € V, the vector (Eki,k € pa(i)) is the only GMLE of the ML coefficients
(bki, k € pa(i)) of a recursive ML model Y; on D; with edge weights cj; = by;.

(¢) For everyieV and k € pa(i), by; is the only GMLE of the ML coefficient by; of a recursive
ML model on Dy; = ({k,i},{(k,i)}) with edge weight c; = by;.

Proof. (a) By Proposition 4.4.26(b) B € By is a GMLE of B. It is unique, since, otherwise, B
is such a matrix B that cannot exist according to Proposition 4.4.26(b).
(b) Let (y (t), CePa(i)),t=1,...,n, be independent realizations of Y;. Since Y'; is max-weighted,

we know from (a) that the vector (/\t 1 (t) .k e pa(i)) is the only GMLE of (by;, k € pa(i)).
(c) follows from Example 4.4.2 or analogoulsy to (b) from (a). O
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The densities pg—; and pmw,; have a similar meaning for pn as p; for p (cf. Proposition 4.4.9(a),
(b) and Corollary 4.4.23(b)). Therefore, in the situation of Proposition 4.4.26, one could expect
a similar result as Theorem 4.4.12(f). That this is not the case can be observed from Corol-
lary 4.4.27(b), (c) and the next example.

Example 4.4.28. [If B ¢ By, then several GMLEs may exist]
Consider the DAG

and assume that X is max-weighted, which is equivalent to b1abog = b13b34. Furthermore, assume
that 312324 < 313334. Of course, we would rather not oberve this if n is sufficiently large. But
this can happen if, for example, only the events Fy = {Xo = b12 X1} n {X3 > b13 X5} n {Xy >
bas Xo} N{Xy > b34 X3} and Fy = {Xo > b1o X1} n{ X3 > b13 X1} n{Xy = bay Xo} n {Xy > b34 X3}
have occured. It is known that the model is max-weighted. So it is obvious to use pmw for
finding GMLEs. Then by Proposition 4.4.26(b) both the ML coefficient matrix corresponding
to the edge weights (312,313,324,334) such that 312324 = 313/1)\34 and the one corresponding to
the edge weights (312,313,324,334) such that byabas = bisbss is a GMLE of B. This is because
B ¢ By otherwise, these matrices would not be GMLEs of B (cf. Proposition 4.4.26(b) and
Corollary 4.4.26(a)). The ML coefficent matrix of a recursive max-weighted model on D with edge
weights (’512,513,324,334) such that b3 < D13, bsa < b3a, and biabag = bi3bss is no GMLE of B, since
setting b1 :312, bis :'513, boy :324, and b3y = % leads to a matrix B € B, that, according to
Proposition 4.4.26(b), cannot exist if this would be a GMLE. In this way we can show that the
two matrices listed above are the only GMLEs of B. One possible explanation why we find exactly
these GMLES with pp is as follows (cf. Example 4.4.3). Since we have assumed observations
underlying a recursive max-weighted model but observed that /512324 < /513?5\34, 313 or /523 cannot be
the true value. Assuming that b2, bog, b34 are estimated exactly by 312,324,334, (312,313,324,334)
with 512324 :313/534 is the only reasonable estimate of (b2, bag, b13, b34); similarly, assuming that
312,’17\13,’524 are the true values, (312,313,324,334) with ’6\12’524 =313334 is the only sensible estimate.
When b3, bay, b3y are estimated exactly by /513,/1)\24,/13\34, it makes no sense to estimate b12 by a
value smaller than bia, since these estimates do not belong to a recursive max-weighted model;
the same applies to bey. If we observe the events F; and Fh both more than once, then we can
expect that b1o and boy are estimated exactly, since % has only an atom in b2 and % in boy
(cf. Table 4.1). o

If it is known that the realizations (1), ... (™ are generated by a recurisve max-weighted
model, we can use both p and ppy to find GMLEs of B. We show that parts (a), (b) of Corol-
lary 4.4.27 are not true when replacing pnw by p. Part (c¢) holds (see Corollary 4.4.16).
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4.4 Estimation of a recursive ML model with known DAG

Example 4.4.29. [Continuation of Example 4.4.3: p versus pmw]
Note that X is max-weighted. So we can consider GMLEs with respect to p and pnw. By
Theorem 4.4.12(e) the GMLEs of (b13,b23) with respect to p from (4.4.13) are

(b1, bas),
- - - M MON
(b13,Da3) with by € (0,D13) if there is no #™® such that by = % and % > bog, and
Ty Ly
(t) (t)
—~ o~ . ~ —_ A . (t) 1'3 — J}'3 s
(blg, b23) with b3 € (0, b23) if there is no ‘"’ such that O] > b1z and ol bos.
Ty )
As B € Bny, B is the only GMLE of B with respect to puyw (see Corollary 4.4.27(a)).
The density pmw equals p; from Figure 4.4.4 and p equals p5. Thus we have verified the results

presented in Table 4.2 for these two densities. |

Edge weights c;

In what follows we do not assume anymore that the observations a:(l), . ,a:(”) explicitly underlie
a recursive max-weighted model but an arbitrary recursive ML model. We have started with the
estimation of B as it is not possible to recover the true edge weights cg; underlying representation
(4.2.1) of X from =), ... 2™ since different edge weights may lead to B. But we know what
edge weights that are (see e.g. Figure 4.3.1), and, obviously, the probability measure induced
by X is the same for different edge weights that all result in B. As a consequence, all edge
weights that lead, together with D, to a GMLE B of B are GMLEs of the true edge weights
of X. Since we consider B to be the best possible estimate of B (see also Section 4.4.2 below)
and it is the unique GMLE of B if n is sufficiently large (see Corollary 4.4.21), we formulate the
following corollary. However, it remains valid if we replace B by some B € B that satisfies one
of the conditions of Theorem 4.4.12.

Corollary 4.4.30. Assume the situation of Theorem 4.4.12. Let cy; for i € V and k € pa(i) be
the edge weights of representation (4.2.1) of X and DP the minimum ML DAG based on B. We
denote by paP (i) the parents of i in DB. Then every (G, i€ V, k e pa(i)) such that

Chi = Dri if k€ pag(z‘) and Ti; € (O,Zki] if k epa(i) ~ pag(i)

is a GMLE of (c;,1 €V, k epa(i)).

If D is a polytree or has at most one path between two nodes, then D, D, and DB are the
same, since every edge k — i is the only and, hence, max-weighted path from k to i (cf. Re-
mark 2.5.2(ii)). In that case, X is max-weighted, B € Buy, and the edge weights of X are unique.
Therefore, by Corollary 4.4.27(a), with respect to pmw, the vector (/\?:1 %,i eV ke pa(i)) is
the unique GMLE of the edge weights (ck;, i € V, k € pa(i)). '

To find all GMLEs of the edge weights and not only those that correspond to B, it is not
necessary to determine all GMLEs of B before. In fact, we have characterized the GMLEs
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of the edge weights in Corollary 4.4.14: a vector (C;,i € V,k € pa(i)) « ]RLE| is a GMLE of
(criyi € Vi k epa(i)) if and only if it satisfies one of the properties of Corollary 4.4.14. Performing
steps 1. and 2. of Algorithm 4.4.15, we obtain all these vectors from D and ™, ..., (™ more

precisely, the set C from step 2. contains all GMLEs of (cg;,7 € V, k € pa(i)).

Distribution functions F, of the noise variables

Algorithm 4.3.3 provides an iterative procedure to obtain the distribution functions Fyz, from
B and the marginal distribution functions G; of the variables X;. Estimating B by B and the
distributions G;, for example, by their empirical versions, we can apply this procedure to find
an estimator of the distributions Flz,. Often, it is more efficient to estimate G; parametrically.
Under the assumption that the noise variables Z; are regularly varying with the same index, we
have computed the distributions G; explicitly in Proposition 3.A.2. Besides B, we then would

also have to estimate the index of regular variation.

4.4.2 An almost perfect estimate of B

As already indicated in the previous section, we would usually choose the matrix B from (4.4.8)
as an estimate of B. To clarify again why, we summarize and add properties of this estimate.

In the extended definition of a MLE introduced by Kiefer-Wolfowitz, B can be considered a
MLE (Corollary 4.4.17). By its definition it never underestimates a ML coefficient and identifies
by Remark 4.4.5(ii) the true ML coefficient matrix exactly if and only if it identifies all by; for
k € pa(i) exactly. Since by Table 4.1 P(X; = by; Xj) > 0 for k € pa(i), it follows from the Borel-
Cantelli lemma that by; P-almost surely equals the true value for n sufficiently large. Thus, if
n is large, B finds, with probability 1, the true B. In [13] this is discussed for the time-series
framework used there.

The following two examples show how effective the estimate B can be; in particular, n does

not necessarily need to be large. The second example is a conclusion of Example 4.4.3.

Example 4.4.31. [Continuation of Example 4.4.28: one observation may be enough to estimate
B exactly]

If we observe the event
{X2=b1oX1} 0 { X3 =b13X1} 0 {X4 = bauXo} 0 {Xy =bss X3},

then we estimate all ML coefficients exactly. Note that this event has positive probability and
occurs P-almost surely if and only if Z; realizes all node variables; i.e., if Xo = b19 21, X3 = b13247,
and X4 = b1a21. ]
Example 4.4.32. [Continuation of Example 4.4.3: B is the perfect estimate of B]

When excluding the null event Fy, we estimate B by B exactly if and only if the observations
w(l), ey (™ include the events F» and F3; otherwise, it would be enough to observe Fj. O

Obviously, the larger n the higher the probability that the event {X; = by; Xi} for k € pa(t)
(t)

is included in (,..., 2™ and, hence, the minimal observed ratio by; = AV % of ))((—; equals
k
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4.5 Structure learning of a recursive ML model

the true by;. Assuming the probability of {X; = bx; Xx} is known, we show next how one has
to choose n to observe this event with probability greater than 1 — p. We also prove that the

probability for estimating the true by; converges geometrically fast to 1.

Proposition 4.4.33. Let x® = (Xl(t),...,Xflt)) fort =1,...,n be independent copies of a
recursive ML model X on a DAG D with ML coefficient matriz B. Let i € V and k € pa(i).

(a) We have IP’())((—;C = bki)jp(ig—; > bk:i) €(0,1).

X In(p) __ In(p)
(b) IP’( (t) = bkz) > 1-p for somepe (0,1) if and only if n > - (I—P(}f—;:bki)) = 1n(1P()%>bk¢))'

(t)
(¢) The convergence IP’( AV X(t) = bkz) — 1 as n — oo is geometrically fast.

k
Proof. First, recall, for example, from (4.4.9) or Corollary 2.3.13 that the events {X; = bg; X }
and {X; > by; Xi} are complementary. With this and the same argumentation we have used
to verify that }P’(i{( = b;m-) > 0 below of (4.3.1), we obtain that ]P’(XZ- > bkiXk) > 0; cf. also
Corollary 4.A.5(b) in Appendix 4.A.2, where we examine such events in more detail. Hence, (a)
holds. Using that X (1), . ¢ () are independent and identically distributed yields

n x® x® n o x®

i X; n
IP)(t/\legt)=bki) 1- P(/\X(t)>bki)=1 tH]P’( > ) = 1-B( > b))

From this and the above properties, we then observe (b) and (c). O

In conclusion, B has the nice property to be 'geometrically’ consistent.

4.5 Structure learning of a recursive ML model

Contrary to the assumptions in the previous section, we now assume that independent realiza-
tions (1, ..., 2(" of a recursive ML model X are given but the underlying DAG D is unknown.
We know from previous discussions that it is not possible to recover D and the true edge weights
cr; but, based on Theorem 4.3.4, the ML coefficient matrix B and from this the distribution of
the noise vector as well as all DAGs and edge weights that could have generated X via (4.2.1).
Our first goal is, therefore, the estimation of B.

Algorithm 4.3.2 suggests a very simple procedure: it suffices for any pair of distinct i, € V to
decide whether supp( ) has a positive lower bound, alternatively a positive upper bound, and
if so, to estimate the bound. By Table 4.1, if there is such a bound, then it is an atom of i((j.
Since we can expect to observe atoms more than twice for n sufficiently large, we propose the

following estimation method.
Algorithm 4.5.1. [Find an estimate B of B from (), ... L ()]
1. Forallie V ={1,...,d}, set Eu =1.

2. For all 4,5 € V with ¢ < j,
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(_s) gg(t) 2 -
if #{t /\ (s) (t)} > 2 then set b]l /\?:1 % and b” = 07
Zj T
ORI NO) .
else, if #{t Vi z = (t)} > 2, then set bjj = A%, 1= and bj; = 0;
Zi

&7‘

else, set b;j = bj; =

In step 2. rather two steps are summarized. The first step is concerned with estimating the
reachability matrix of D, the second with learning the ML coefficients. As explained above, we
can use B to derive estimates of the DAGs and edge weights that represent X by (4.2.1) as well
as an estimate of the distribution of the noise vector (cf. the last two paragraphs of Section 4.4.1
and Figure 4.3.1).

Since by (4.2.2) bj; # 0 if and only if j € An(%), bj; and b;; are never both positive for distinct
i,j and, if bjpbg; > 0, then bj; > 0. Algorithm 4.5.1 is constructed in the way that B satisfies
the former property automatically but not the second. To guarantee this, we could update the
estimator B as follows:
for all distinct ¢,j € V with ¢ < j,

- -~ - (t)
if b;rbr; > 0 for some ke V \ {4, 7}, then set bj; = A}, (t),

(t)
if blkbkj >0 for some k €V \ {i,j}, then set bz] = Aty x(t)

But now the first property is not necessarily satisfied anymore. As a consequence, the estimate
DB of the minimum ML DAG DP obtained from B is not necessarily acyclic. There are certainly
many ways to avoid this and to obtain better estimates of B. Decisive is, however, the following:
because of the distributional properties of the ratios between two components of X summarized
in Table 4.1, Algorithm 4.5.1 outputs, P-almost surely, the true ML coefficient matrix B if n is
sufficiently large. Similar statements as in Proposition 4.4.33 can be made about the convergence
of Ej,- to the true value bj; and about the number of observations needed to estimate B by B

with a certain probability exactly.

4.6 Conclusion and Outlook

We first studied the identifiability of a recursive ML model X from its distribution. Its true DAG
and edge weights are not identifiable; however, its ML coefficient matrix B. This repesents the
class of all DAGs and edge weights that could have generated X via (4.2.1). In other words, we
can identify representation (4.2.3) but not (4.2.1). Beside B, the distribution of the noise vector
is identifiable. As a consequence of these results, we can recover B and the noise distributions
from realizations of X.

Parameter and structure learning for recursive ML models seems to be a challenging task
because assumptions usually made for the models in standard methods are not met. However,
in both cases, B can be estimated very efficiently by a simple procedure. The key idea of our

approach is to consider the observed ratios between any two node variables, that is, to perform
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a transformation on the realizations. The transformed realizations or rather the distributional
properties of the corresponding random variables make it possible to identify, with probability 1,
the true B whenever n is sufficiently large. It would be interesting to investigate the relationship
between the performance of our procedures and n. Here, one possible question is how many
observations are at least necessary to estimate B exactly. This requires understanding which of
the events such as Fy, Fy, F3, Fy from Example 4.4.3 have positive probability (cf. the discussion
below Corollary 4.A.5 in Appendix 4.A.2).

We plan to evaluate the performance of our proposed methods on simulated data sets. In Hartl
[32] first simulations were performed. They confirm the theoretical findings and our epectations
on the quality of our estimates. A comparison with other methods makes only limited sense.
On the one hand because of the discussed assumptions of the other methods, on the other hand
because of the outstanding properties of our estimates. Compared with other methods, we also
do not make concrete distributional assumptions; we only assume independent and atomfree
noise variables with support R,. In risk settings, which we have in mind when thinking of
possible applications, it is natural to require the noise variables to have positive infinite support
and atomfree distributions. Another advantage of our procedures is that they can deal with
arbitrary high dimensions and, as long as n is sufficiently large, they have the same performance
as for smaller dimensions.

A further goal is to apply the procedures to real-world data. However, it is unreasonable to
expect any non-simulated data to follow a recursive ML model exactly; especially to expect that
we observe a minimal observed ratio more than twice, what we do in Algorithm 4.5.1. It seems to
be more reasonable to expect values close to each other. We therefore want to develop methods

based on accumulation points. First attempts have already been made in [32].

Appendix 4.A

4.A.1 Alternative procedure to identify the ML coefficient matrix of a
recursive ML model from its distribution (cf. Algorithm 4.3.2)

There are many ways to show that the ML coefficient matrix B of a recursive ML model X on a
DAG D is identifiable from its distribution £(X). We present an alternative to Algorithm 4.3.2.

Proposition 4.A.1. Let i,j € V be distinct. Then j € an(i) if and only if there exists some

a € Ry such that for all x;,x; € Ry with ax; > x;,
P(X; <@, Xj <aj) = P(X; < ). (4.A.1)
In that case, a = bj;.

Proof. For the bivariate distribution function of (Xj;, X;), we obtain for x;,z; € R, using rep-

resentation (4.2.3) and the independence of the noise variables,

]P’(XZ‘ < xi,Xj < a:j) = ]P’( \/ by Zy < x4, \/ bngg < xj)
LeAn(i) LeAn(j)
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_ H FZg( T; :UJ T

bei " b Faul by P
LeAn(i)nAn(j) i 45" teAn(i)~An(j) 0i” peAn(j)~An(3)

)
(4.A.2)

Assume that j € an(i). We find from Corollary 2.3.12 that Agean(j) ZT’f; = b;; and, hence, if
bjiz; > z;, then % > % for all £ € An(j). With this we obtain from (4.A.2) for bj;x; > z;,
J 7

P(X; <, Xj<z;)= [] Fz

teAn(j) bZi éeAn(i)\An(j)FZf(bh) I1 FZe(bh) P(X; < z;).

LeAn()
This proves (4.A.1).

Assume now that (4.A.1) holds and that j ¢ an(¢). Furthermore, note that the latter holds
if and only if An(j) ~ An(i) # @. Since the noise variables have support R,, we know that
[TreAn(j)~An() FZ[(%) < 1. Thus, using (4.A.1), (4.A.2), and the monotony of a distribution

. J

function yields for az; > x;,

ZT; x xX; X4
ronsns el Pl (i)
LeAn(i)nAn(j) i 25" teAn(i)~An(j) 0i” peAn(j)~An(3) 4
< H FZZ & A ﬁ H FZZ(_>
LeAn(i)nAn(j) bei by LeAn(i)~An(j) bei
x
< H Fyg, bz ),
LeAn(i) i
which is obviously a contradiction. Hence, j € an(i). O

Proposition 4.A.1 and (4.2.2) allow us by the following algorithm to obtain B from L£(X).
This again proves the identifiability of B from £(X). Instead of the whole distribution £(X),
it suffices to know the bivariate marginal distribution functions of £(X). However, this is a

stronger information on £(X) than we need in Algorithm 4.3.2.
Algorithm 4.A.2. [Find B from £(X)]

1. For all i e V ={1,...,d}, set b;; = 1.

2. For all i,j € V with i < j, find P(X; <z, X; < xj):

if P(X; < 2, X <xj) =P(X; < ;) for some a € R, and all z;,z; € R, with az; > z;, then

set bji =a and bij = 0;

else, if P(X; <x;, X; <z;) =P(X; < x;) for some a € R, and all z;,z; € R, with ax; > z;,
then set bij =a and bji = O;

else, set b;j = bj; = 0.

4.A.2 Ratios between two components of a recursive ML model

When estimating, identifying, or learning the structure of a recursive ML model X, the ratios
between two components of X are crucial. Because of their importance, we show further distri-

butional properties of these ratios. In particular, we relate different events that can be described
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by such ratios to events that depend on noise variables only. Already presented results such as
the properties shown in Table 4.1 occur again as a consequence, but are shown for the sake of
completeness.

Denote the probability space of the noise vector (Z1,...,Zy) by (2, F,P), and define for every
1€V,

m; : Q — An(i), wr jfor some je{jeAn(i):b;Z;(w)> \/  buZi(w)}.
teAn(i)~{j}
The max-linear representation (4.2.3) yields that X;(w) = by, ()i Zm, (w) (w), in words, m; indi-
cates a noise variable which realizes X;. By (4.3.1), with probability 1, the maximum value of
{bjiZ; : j € An(i)} is achieved for unique j € An(7); consequently, m; is P-almost surely uniquely
defined. Since the noise variables are independent with support R,, m; is, with positive prob-
ability, equal to each node in An(¢). Unsurprisingly, the ratios between two components of X

inherit the distributional properties from those of the noise variables.
Theorem 4.A.3. Leti,jeV and x e R,.
(a) For every F e F,

P(Fr{X;<aX;})=P(Fn{ \/  buZe< \/ abyZ})=P(FnQ(z)),
LeAn(i)\ M= LeM=

where ij ={l e An(j) : by < bgjz}.
(b) The event {X; <xX;} has positive probability if and only if bj; < x.
(¢) The event {X; <xX;} has positive probability for every x € R, if and only if j ¢ An(i).
(d) On {X; <xX;}, mjeMs.
Proof. By (4.2.3) {X; <zX,} equals

\/ bei Zy v \/ bei Zy < \/ wbngg \Y \/ a}bngg}. (4.A.3)
LeAn(i)~NAn(j) LeAn(i)nAn(j) LeAn(j)NAn(7) LeAn(i)nAn(j)

The maximum on the right-hand side cannot be attained in xb,;Z, for ¢ € An(i) n An(j) with
xbgj < by;; otherwise, we would have a contradiction as xby;Zy is strictly smaller than the maxi-
mum on the left-hand side. We find by (4.2.2) that An(j) ~ An(i) ¢ M, fj These two observations
yield (d). For k € An(i)ﬂAn(j)ﬁij, obviously, bg; Zi < VkMigj xbgj Zy. Hence, we may also remove
the nodes of ij appearing on the left-hand side of (4.A.3). All in all, the events {X; < X}
and {erAn(i)\ij beiZyp < VkMisj :Ebngg} coincide. Since, according to (4.3.1), ij differs from
the second set only by a null set, we have verified (a). From (a) and the fact that the noise
variables are independent and have support R,, we learn that P(X; < zX;) > 0 if and only if
ij # 3. As by Corollary 2.3.12 Agean(y) %’_ = bji, ij # @ if and only if « > bj;. This shows (b).
Assertion (c) is a consequence of (b), since by (4.2.2) bj; = 0 if and only if j ¢ An(¢). O
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Theorem 4.A.3(d) implies that the max-linear representation (4.2.3) of X; can be reduced
on {X; <zX;} to \/&Migj bejZy. Since the maximum value of {by;Z; : £ € An(j)} is achieved on
{X; <z X;} with positive probability for every £ € M, = a further reduction is not possible.

By Theorem 4.A.3 we can draw conclusions about potentlal atoms of =t: consider the inter-
section of the events {X; < 2X;} and {X; > 2X;} = {X; < 1X;}, which equals {X; =2X;}. In

the following corollary we summarize some results regarding the event {X; = zX,}.
Corollary 4.A.4. Leti,j eV and x € R,.

(a) For all F e F,

]P)(F n {)(Z = xXJ}) = P(F n { \/ bgiZg > \/ bgiZg \ \/ l’bng[})
LeM7 LeAn(i)\ M, LeAn(j)\ M

where M = {l € An(i) n An(j) : by = xby; }.

(b) The event {X; = xX;} has positive probability if and only if x = % for some £ € An(i) n
J
An(y).

(c) % Xs has atoms if and only if An(i) n An(j) + @.
(d) We have P-almost surely on {X; = xX;}, m; =m; € M.

Proof. (a) It can be shown that Q;(z) = QF () Q: ~(1/z). Hence, (a) follows from part (a) of
Theorem 4.A.3.

(b) is a consequence of (a), since the noise variables are independent with support R,.

(c) is immediate by (b).

(d) The max-linear representation (4.2.3) shows that on Q7 (), m;,m; € M. Since by (a) the
set {X; =2 X;}\ Q(x) is a null set, (d) holds. O

For the sake of completeness, we consider the events that are complementary to them in
Theorem 4.A.3.

Corollary 4.A.5. Leti,j€V and x € R,. Let further ij be as defined in Theorem 4.A.3.

(a) We have

{Xi > IX]'} = { \/ bgiZg > \/ xbngg} { bgiZg > \/ J,‘bngg} = QZ(I),
ZeAn(z’)\ij ZEM— LeM, CeAn(j)\M7;

where M5 = An(i) N M55 = {€ € An(i) : by > by}
(b) The event {X; >xX;} has positive probability if and only if x < i
(¢) The event {X; >xX,;} has positive probability for every x € R, if and only if i ¢ An(j).

(d) On {Xl > CCX]'}, m; € M;]
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Proof. (a) In the proof of Theorem 4.A.3, we have shown that the events {X; < X} and
{VzeAn(i)\ij beiZp < \/gEMisj xbngg} are equal. Since {X; >z X} is the complementary event of
{X; <xX;}, the assertion is clear.

(b), (c) can be obtained from (a) analogously as Theorem 4.A.3(b), (c) from part (a) there.
(d) follows from (a) and (4.2.3). O

We can use the results presented in this section to figure out whether events such as Fi, Fs,
F3, Fy from Example 4.4.3 have positive probability. For example, we obtain from parts (a) of
Corollaries 4.A.4, 4.A.5 that

]P’(Fl) = ]P)({bngl = b23X2} n {Xg = bngl} n {X3 = b23X2})
= P(Q;l(blg/bgig) n le(blg) n Q§2(b23)) = ]P)(Q n {b1321 > Zg} n {bggZQ > Zg}) = 0,
P(F4) = ]P)( 51(()13) N ng(bgg)) = P({Zg > b1321} N {Z3 > ngZQ}) = ]P(Zg > b1321 \% b2322) > 0,

since the noise variables are independent and have support R,. Depending on which events may
occur with positive probability simultaneously, more or less observations are needed to obtain
good estimates of B using (4.4.8) when D is known or Algorithm 4.5.1 when D is unknown.

The distributional properties of % presented in Table 4.1 also follow from this section; the
atoms are given in Corollary 4.A.4(b), supp(i((—;) can be determined, for example, from Theo-
rem 4.A.3(b) and Corollary 4.A.5(b).
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