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Abstract

Graphical modeling has mainly been limited to discrete and Gaussian distributions, distributions

that lead to severe underestimation of large risks and, therefore, to unsuitable models in the

context of risk assessment. This thesis deals with the development and investigation of a class

of graphical models that finds its application in situations where extreme risks play an essential

role and may propagate through a network, for example, when modeling water levels or pollution

concentrations in a river or when modeling risks in a large industrial structure.

We use the concept of structural equation modeling to introduce the class of recursive max-

linear models. The causal structure of a recursive max-linear model is represented by a directed

acyclic graph, and the node variables are max-linear functions of their parental node variables

and independent noise variables. Natural candidates for the noise distributions are extreme

value distributions or distributions in their domains of attraction resulting in a corresponding

multivariate distribution.

First, we study structural properties of recursive max-linear models. Different directed acyclic

graphs and weights in the max-linear structural equations may lead to the same recursive max-

linear model; but all of them lead to the same max-linear representations of the model in terms

of the noise variables. We characterize these graphs and weights and point out the minimum

directed acyclic graph that represents the causal structure of the model. In particular, we address

the relation between the weights in the structural equations and the coefficients in the max-linear

representations in detail. Further, we give necessary and sufficient conditions on a max-linear

model to be a recursive max-linear model. Throughout we exploit the natural orders between the

node variables and between the max-linear coefficients, for example, to obtain reduced model

representations.

In the second part of the thesis, we assume regularly varying noise variables leading to extremal

dependence between the components of a recursive max-linear model. The focus is on the matrix

of pairwise tail dependence coefficients, which measure the extremal dependence between two

random variables. Motivated by the fact that a multivariate Gaussian distribution is completely

determined by its mean and its covariance matrix, we investigate how far the coefficients of a

recursive max-linear model and its underlying graph can be recovered from its tail dependence

matrix. For example, the associated minimum graph is identifiable from the tail dependence

matrix and a causal ordering of any associated graph. We present a procedure that, given a tail

dependence matrix of a recursive max-linear model, finds all recursive max-linear models with

this tail dependence matrix.

In the last part, we consider the identifiability and estimation of recursive max-linear models.

We show that the max-linear coefficient matrix and the noise distributions can be identified from

the distribution of a recursive max-linear model. To infer these quantities from observational
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data, we cannot apply standard methods as the assumptions usually made are not satisfied.

However, we can use the distributional properties of the ratio between two components to find,

with probability 1, the true max-linear coefficient matrix exactly, provided the number of ob-

servations is sufficiently large. An estimate we suggest if the true underlying graph is known

has the same property. We prove that this estimate can be considered a maximum likelihood

estimate in an extended definition.
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Zusammenfassung

Die graphische Modellierung beschränkt sich bisher hauptsächlich auf diskrete und Gaußsche

Verteilungen, Verteilungen, die zu einer starken Unterschätzung großer Risiken und damit zu

ungeeigneten Modellen im Rahmen der Risikobewertung führen. Diese Arbeit beschäftigt sich

mit der Entwicklung und Untersuchung einer Klasse von graphischen Modellen, die ihre An-

wendung in Situationen findet, in denen extreme Risiken eine wesentliche Rolle spielen und

sich über ein Netzwerk ausbreiten können. Beispiele sind die Modellierung von Wasserständen

oder Schadstoffkonzentrationen in einem Fluss oder von Risiken in einer großen industriellen

Struktur.

Wir verwenden das Konzept der Strukturgleichungsmodellierung, um die Klasse rekursiver

max-linearer Modelle einzuführen. Die kausale Struktur eines rekursiven max-linearen Modells

wird durch einen gerichteten azyklischen Graphen repräsentiert. Die Knotenvariablen sind max-

lineare Funktionen der elterlichen Knotenvariablen und unabhängiger Fehlerterme. Natürliche

Kandidaten für die Fehlertermverteilungen sind Extremwertverteilungen oder Verteilungen in

deren Anziehungsbereichen, die zu einer entsprechenden multivariaten Verteilung führen.

Zunächst untersuchen wir strukturelle Eigenschaften rekursiver max-linearer Modelle. Unter-

schiedliche gerichtete azyklische Graphen und Gewichte in den max-linearen Strukturgleichun-

gen können zum selben rekursiven max-linearen Modell führen; aber alle von ihnen führen zu

den gleichen max-linearen Darstellungen des Modells bezüglich der Fehlerterme. Wir charakter-

isieren diese Graphen und Gewichte und heben den minimalen gerichteten azyklischen Graphen,

der die kausale Struktur des Modells repräsentiert, besonders hervor. Insbesondere beleuchten

wir ausführlich den Zusammenhang zwischen den Gewichten in den Strukturgleichungen und

den Koeffizienten in den max-linearen Darstellungen. Ferner geben wir notwendige und hinre-

ichende Bedingungen für ein max-lineares Modell, ein rekursives max-lineares Modell zu sein,

an. Durchgehend nutzen wir die natürlichen Ordnungen zwischen den Knotenvariablen und zwis-

chen den max-linearen Koeffizienten aus, um beispielsweise reduzierte Modelldarstellungen zu

erhalten.

Im zweiten Teil der Arbeit gehen wir von regelmäßig variierenden Fehlertermen aus, die zu

einer extremalen Abhängigkeit zwischen den Komponenten eines rekursiven max-linearen Mod-

ells führen. Der Fokus liegt auf der Matrix der paarweisen Tail-Dependence-Koeffizienten, welche

die extremale Abhängigkeit zwischen zwei Zufallsvariablen messen. Motiviert durch die Tatsache,

dass multivariate Gauß-Verteilungen vollständig durch ihren Erwartungswert und ihre Kovari-

anzmatrix bestimmt sind, untersuchen wir, wie weit sich die Koeffizienten eines rekursiven max-

linearen Modells und sein zugrunde liegender Graph aus seiner Tail-Dependence-Matrix bes-

timmen lassen. Beispielsweise ist der zugehörige Minimalgraph aus der Tail-Dependence-Matrix

und einer kausalen Ordnung eines jeden zugehörigen Graphen identifizierbar. Wir stellen ein

v



Verfahren vor, welches für eine gegebene Tail-Dependence-Matrix eines rekursiven max-linearen

Modells alle rekursiven max-linearen Modelle mit dieser Tail-Dependence-Matrix findet.

Im letzten Teil beschäftigen wir uns mit der Identifizierbarkeit und der Schätzung rekursiver

max-linearer Modelle. Wir zeigen, dass die max-lineare Koeffizientenmatrix und die Fehlerterm-

verteilungen anhand der Verteilung eines rekursiven max-linearen Modells identifiziert werden

können. Um diese Größen aus Beobachtungsdaten zu gewinnen, können wir keine Standard-

methoden anwenden, da die dabei üblicherweise getroffenen Annahmen nicht erfüllt sind. Wir

können jedoch die Verteilungseigenschaften des Quotienten zweier Komponenten verwenden,

um mit Wahrscheinlichkeit 1 die wahre max-lineare Koeffizientenmatrix zu finden, vorausge-

setzt, die Anzahl der Beobachtungen ist hinreichend groß. Ein Schätzer, den wir empfehlen,

wenn der wahre zugrunde liegende Graph bekannt ist, hat die gleiche Eigenschaft. Wir be-

weisen, dass dieser Schätzer in einer erweiterten Definition als Maximum-Likelihood-Schätzer

angesehen werden kann.
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Chapter 1

Introduction

In this chapter we first introduce briefly the key concepts and methods we use subsequently in

this thesis. We then outline the scope of the thesis and state the main results. Finally, we give

an overview and summary of research topics and works on the model developed in this thesis.

1.1 General introduction and motivation

This thesis aims to develop a class of graphical models for modeling extreme events.

1.1.1 Graphical models

Probabilistic graphical models (graphical models for short) are a marriage between probability

theory and graph theory and are a useful tool to reduce the complexity of multivariate statistical

modeling. Profound introductions into graphical modeling can be found in Koller and Friedman

[45] and Lauritzen [47]. Each node of the graph is identified with a random variable, and the edges

in the graph are used to encode conditional independence relations between the random variables.

So graphical models provide a simple way to visualize the structure of a probabilistic model, and

model properties can be read off directly from the graph. It is therefore not astonishing that this

rich class is widely used in various areas of application as, for example, in artificial intelligence,

biology, decision support systems, engineering, finance, genetics, geology, and medicine (see e.g.

Pourret et al. [59], the above textbooks and references therein).

Directed acyclic graphs

In this thesis we focus on directed acyclic graphs (DAGs) leading to directed graphical models,

also called Bayesian networks. Figure 1.1.1 shows examples of graphs. The left graph is no DAG,

since it has an undirected edge between 3 and 5; the middle graph is no DAG, since it has a

(directed) cycle 1→ 2→ 4→ 3→ 1; the right graph is a DAG.

Markov properties

A graphical model is directed if the distribution satisfies the local Markov property with respect

to the DAG: each variable is conditionally independent of its non-descendants (excluding the

parents) given its parents in the DAG (cf. Chapter 3.2 of [47]). Applying the local Markov

to the DAG from Figure 1.1.1 yields the conditional independence relations X2 á (X3,X5) ∣

1
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Figure 1.1.1: Example of graphs. We identify the nodes 1, . . . ,5 with the random variables X1, . . . ,X5.
The right graph is a DAG: all edges are directed and there are no (directed) cycles.

X1, X3 á X2 ∣ X1, X4 á (X1,X5) ∣ (X2,X3), and X5 á (X1,X2,X4) ∣ X3. All conditional

independence relations that are implied by the local Markov property are encoded in the DAG

via the global Markov property. The criterion of d-separation explains how these relations can be

read off from the DAG (see Corollary 3.23 and Proposition 3.25 of [47] for precise definitions).

If the distribution has a density with respect to a product measure, then the density factorizes

according to the DAG (see second paragraph of Section 3.2.2 and Theorem 3.27 of [47]). This

property is called recursive factorization. It is equivalent to the local and hence the global Markov

property and is probably the most commonly used property to define directed graphical models.

Recursive structural equation models

Given a DAG, a recursive structural equation model (recursive SEM) is a multivariate statistical

model where every random variable is associated with a node and can be written as a (measur-

able) function of its parents and an independent noise variable. The distributions of recursive

SEMs satisfy, by construction, the local and hence the global Markov property with respect to

the associated DAG (see Theorem 1.4.1 and the related discussion in Pearl [55]). Thus recursive

SEMs offer a possibility to construct directed graphical models.

Causal models

Establishing and understanding cause-effect relations is an omnipresent desire in science and

daily life. It is especially important when dealing with extreme risks, because knowing and

understanding the causes of extreme events could help us to deal better with such events.

Recursive SEMs play an important role in the field of causal inference; cf. Bollen [5], Pearl [55],

and Spirtes et al. [69]. The causal structure of a recursive SEM is described by the associated

DAG. Using DAGs has the advantage that parental variables can be considered to be direct

causes of its children. As an example, the edge 1 → 3 in the DAG from Figure 1.1.1 reflects a

(direct) causal influence of X1 (cause) on X3 (effect).

Structure learning

Assume we have observations of a graphical model or a recursive SEM and we want to adress the

estimation of the DAG (structure learning). We want to stress that in this thesis we assume that

all variables are observed, that is, there are no hidden variables. Since, with respect to a given

distribution, many different DAGs satisfy the Markov property (because of the equivalence, it

2



1.1 General introduction and motivation

does not matter if we use the local or global Markov property), the Markov property is not enough

to be able to recover the DAG from the observations. In addition to the Markov property, many

common structure learning methods assume faithfulness, which means that the distribution is

assumed to have no conditional independence relations except those represented in the DAG by

the Markov property (cf. Sections 3.4.3, 3.5.2 of [69]). Two DAGs can be different but still entail

the same conditional independence relations via the Markov property; such DAGs are called

Markov equivalent. For a characterization of these DAGs, see e.g. Verma and Pearl [71]. Thus

any method that assumes faithfulness and learns by observed conditional independence relations

cannot distinguish between such DAGs and identifies Markov equivalence classes. A well-known

example of such a method is the PC algorithm (Spirtes and Glymour [67]). So, without further

assumptions, the graphs in the Markov equivalence classes cannot be distinguished.

Restricted recursive SEMs

However, if we put certain restrictions on the functions of recursive SEMs, their noise variables,

or both, then for some of these classes the DAG is identifiable from the distribution. For the

causal inference this would mean that, if the data follow a recursive SEM from such a restricted

class of recursive SEMs and assuming that all variables are observed, the causal structure can

be inferred from observational data only. Important research tasks for restricted recursive SEMs

include the identifiability of the coefficients and the associated DAG from the distribution and

the structure learning from a finite sample. The book by Peters et al. [58] provides a nice overview

and introduction into this field of research and summarizes the current state of research. Recently,

the identifiability theory was mainly elaborated for additive recursive SEMs with Gaussian noise

(see e.g. Ernest et al. [21] and references therein).

1.1.2 Extreme value theory

Extreme value theory is concerned with the analysis and quantification of very rare and unusal

events. Examples for such events include hurricanes, extreme wind gusts, floods, and heavy

rainfall. They are from particular interest for society and industry as they are mostly dangerous

and very costly.

Motivating example: extreme risks in networks

The development of extreme value theory and extreme value statistics has always been driven by

applications. So the research presented in this thesis has been motivated by applications, more

precisely by a technical risk analysis. Involved in an industrial project, we applied extreme value

statistics to the safety of airplane landings and estimated the risk of serious incidents during an

airplane landing (Gissibl et al. [29], Wang et al. [72]). One specifically risky event is the so-called

runway overrun, which describes the fact that an airplane is unable to stop before the end of

the runway. A case study can be found in Ayra [3]. As part of this projekt, the DAG shown

in Figure 1.1.2 was developed. It shows the dependence structure, given by the DAG, between

numerous physical quantities that may contribute to a runway overrun. Extraordinary values of
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Figure 1.1.2: DAG describing the relationships between the physical quantities that may contribute to
a runway overrun during an airplane landing.

some quantities may propagate through the DAG and lead invariably to a runway overrun. The

thesis aims to develop models that are able to model such situations. To give another example,

a river naturally forms a DAG. In the modeling of floods in rivers (Asadi et al. [2]), the extreme

dependence structure, given by the DAG underlying the river, should be taken into account.

Further examples include chemical pollution of rivers (Hoef et al. [35]), financial risk (Einmahl

et al. [20]), and many others. Here graphical models appear as a natural class of models. So far,

however, they are less suitable for modeling extreme events.

Graphical models mainly underestimate extreme risks

Despite the broad scope of applicability, graphical modeling of continuous random variables has

mainly been limited to Gaussian distributions; see e.g. [45, 47]. In the context of risk assessment,

risk variables are usually modeled by continuous variables; however, it has been known for a

long time that Gaussian models in almost all cases underestimate extreme events severely. Thus

there is a need for graphical models that do not underestimate extreme risks.

We now introduce the key concepts of extreme value theory needed in this thesis, but would like

to mention that the focus of this thesis is on the graphical modeling with its associated concepts

and only basic concepts of extreme value theory are used. Detailed introductions into extreme

value theory are given in de Haan and Ferreira [14], Beirlant et al. [4], and Resnick [60, 61].
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1.2 Scope and goals of this thesis

In extreme value theory max-stable distributions occur as limit distributions of normalized

maxima. We deal with a conceptually simple but useful class of distributions whose max-stable

distributions have a special property.

Max-linear (ML) models

A max-linear (ML) model is a multivariate probabilistic model where every component is a max-

linear function of independent random variables. ML models are a natural extremal analogue of

linear models. The random variables are usually assumed to be standard 1-Fréchet distributed.

Similar to Wang and Stoev [73], we generally allow random variables with support R+. Within

the class of max-stable distributions, the spectral measure of a max-linear model, which describes

the dependence structure, is discrete. Conversely, every max-stable random vector with discrete

spectral measure is max-linear. Another interesting result is that every max-stable distribution

can be approximated arbitrarily well via a ML model (e.g. Yuen and Stoev [75], Section 2.2).

ML models have been investigated, generalized, and applied to real world problems by many

researchers; see e.g. Cui and Zhang [11], Einmahl et al. [19], Falk et al. [23], Kiriliouk [41],

Schlather and Tawn [64], Strokorb and Schlather [70], and [73].

Tail dependence coefficients

The dependence structure of max-stable distributions is described by rather complex measures

such as the exponent measure, the spectral measure, the stable tail dependence function, and

the Pickand’s dependence function. This complexity makes it difficult to estimate them, see

e.g. [17, 19] and the references therein. Therefore, simpler extremal dependence measures are

often considered. In this thesis we consider the (upper) tail dependence coefficient between two

random variables, which goes back to Sibuya [66]. It is, roughly speaking, the probability of

observing a large value in one variable provided that a large value has been observed for the

other variable. The tail dependence coefficient is a special case of the extremogram (Davis and

Mikosch [12]), which is a natural extremal analogue of the correlation function for stationary

processes. It finds its application in many situations. One problem which is addressed for tail

dependence coefficients is, for example, the construction of max-stable distributions with given

tail dependence coefficients (see e.g. Falk [22] and [23, 64, 70]). Note that the tail dependence

coefficient is not only defined for max-stable distributions, but is only meaningful if the distri-

bution is heavy-tailed. Therefore, when working with tail dependence coefficients, we require

corresponding distributions for the random variables of the ML models.

1.2 Scope and goals of this thesis

The main goal of this thesis is to develop a statistical model that can be applied in a variety of

different areas and in situations where extreme risks play an essential role and may propagate

through a network. To this end, we use the concept of structural equation modeling and define

the class of recursive max-linear (ML) models.
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Chapter 1 Introduction

Recursive ML models

A recursive ML model on a DAG D is a SEM where every random variable is a max-linear

function of the parental node variabes in D and an independent noise variable with support

R+ = [0,∞). The precise mathematical definition can be found in Section 2.1. We may think of

the positive weights in the max-linear structural equations as relative quantities reflecting that

a risk may originate with certain proportions in its different ancestors.

In this thesis we address different research problems for this model class.

Chapter 2: Max-linear models on directed acyclic graphs

In Chapter 2 we shed light on the structural properties of a recursive ML model. In the subse-

quent chapters, we use these properties extensively.

Almost all results we present in this chapter are based on the fact that there is no cancellation

on R+ = [0,∞) with respect to the maximum ∨. This means that for some a, b, c ∈ R+, a∨c = b∨c
but a ≠ b. In contrast, the addition, for example, has this property, i.e., for all a, b, c ∈ R+, if

a+ c = b+ c, then a = b. That this property does not hold for the maximum leads to a complexity

reduction of the model in many ways what we would like to discuss in the following.

The actual central property of a recursive ML model is the max-linearity in terms of its noise

variables. The corresponding max-linear (ML) coefficients can be obtained by a path analysis

of D; more precisely, the computation of the ML coefficients corresponds to the algebraic path

problem over the max-times semiring (R+,∨, ⋅) (see e.g. Mahr [51] and Rote [62]). Each path

is assigned a weight and that is the product of the edge weights along the path. The problem

consists then in finding a path between two nodes having maximum weight. The most well-

known problem of this kind is probably the shortest path problem. What the product is in

our problem, is there the sum, and the minimum corresponds to the maximum. So only the

max-weighted paths are relevant for the ML model representation of a recursive ML model.

As a consequence, a polytree represents the max-linear structural equation and the max-linear

model representation of a component of a recursive ML model. With this, we often find further

conditional independence relations that are not entailed by the (global) Markov property applied

to its DAG. Hence, a recursive ML model is generally not faithful.

Again because of the above property of the maximum, different DAGs and edge weights may

define the same recursive ML model. However, all of them lead to the same ML coefficient

matrix and can be computed from it. We characterize these DAGs and edge weights. Here the

minimum DAG representing the causal structure plays an important role. This result has direct

implications for the identifiability and the estimation of a recursive ML model: the true DAG

and the true weights of the max-linear structural equations cannot be recovered in general.

We also specify necessary and sufficient conditions on a matrix to be the ML coefficient matrix

of a recursive ML model, both in the case where the associated DAG is given and in the case

where it is arbitrary. Using the matrix product over (R+,∨, ⋅), the ML coefficient matrix is in

both cases the solution of a fixed point equation.

In the last part of this chapter, given a set of node variables of a recursive ML model, we
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1.2 Scope and goals of this thesis

investigate which insights can be gained about the others. We present a minimal subset of the

given node variables that provides the same information.

Chapter 3: Tail dependence of recursive max-linear models with regularly varying

noise variables

In Chapter 3 we assume regularly varying noise variables (cf. Section 3.1.1 below). This leads

to models treated in classical multivariate extreme value theory, and we may have extremal

dependence between two components of a recursive ML model. The latter would not be the case

if we did not assume heavy-tailed noise variables, and the matrix of pairwise tail dependence

coefficients, further referred to as tail dependence matrix, would be meaningless. The question

of identifiability of restricted SEMs and the fact that a multivariate Gaussian distribution is

completely defined by its mean and its covariance matrix motivated us to study the identifiability

of a recursive max-linear model from its tail dependence matrix in this heavy-tailed setting.

We know from above that we cannot identify either its true DAG or its true weights in the max-

linear structural equations. It is also not possible to recover the ML coefficient matrix. In fact,

uncountably many recursive ML models with arbitrary index of regular variation have the same

tail dependence matrix. However, we show that the DAGs representing the max-linear structural

equations are identifiable from the tail dependence matrix and some additional information on

the associated DAG such as the reachability matrix (i.e., the matrix whose ij-th entry is one if

i = j or i is an ancestor of j and zero else) or only a causal ordering (i.e., a permutation σ on

V = {1, . . . , d} such that σ(j) < σ(i) for all i and their ancestors j).

We call a recursive ML model max-weighted if all paths are max-weighted. Because of its

simple structure, this subclass of recursive ML models plays a special role, not only in this

chapter. Here we can recover the DAGs from the tail dependence matrix and the initial nodes

of the associated DAG. Further, we present necessary and sufficient conditions on a matrix to

be the tail dependence matrix of a recursive max-weighted model on a given DAG.

We propose an algorithm that, given a tail dependence matrix of a recursive ML model, finds

all recursive ML models with this tail dependence matrix. We also develop such a procedure

especially for the subclass of recursive max-weighted models.

Another interesting problem we address is how DAGs of recursive ML models with the same

tail dependence matrix relate to each other. For example, an initital node in a DAG of a recursive

max-weighted model is again an initial node in a DAG of a recursive max-weighted model with

the same tail dependence matrix or it is a terminal node.

Chapter 4: Identifiability and estimation of recursive max-linear models

In Chapter 4 we study the identifiability and estimation of recursive ML models. We relax

again the assumptions on the noise variables and assume here independent and atomfree noise

variables with support R+. In risk settings, which we have in mind when thinking of possible

applications, it is natural to require the noise variables to have positive infinite support and

atomfree distributions.
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Chapter 1 Introduction

In contrast to the identifiability problem from Chapter 3, given the distribution of a recursive

ML model, the ML coefficient matrix and hence the class of DAGs and edge weights defining

the recursive ML model can be recovered; furthermore, the noise distributions are identifiable.

To explain this easily and convincingly, we consider the ratio between two components and

show that its support determines the relationship between the two corresponding nodes in the

associated DAG uniquely. We use these theoretical findings to propose a simple procedure to

learn the ML coefficient matrix from observational data. It has the nice property to identify,

with probability 1, the true ML coefficient matrix for a sufficiently large number of observations.

The main part of this chapter deals with the parameter learning of recursive ML models

with known DAG. The statistical theory of recursive ML models is generally challenging, here,

for example, since no σ-finite measure exists on the space of observations that dominates the

distributional family of recursive ML models on the given DAG. So standard likelihood the-

ory does not apply. Kiefer and Wolfowitz [40] extended the standard definition of a maximum

likelihood estimate (MLE) to the non-dominated case. Following this approach, our goal is to

find the corresponding MLEs of the ML coefficient matrix. But, like the standard definition,

the Kiefer-Wolfowitz approach suffers from the problem that the recommended densities are

only uniquely defined up to almost sure equality. That the densities can be changed on null sets

leads to different MLEs depending on the used density version. We illustrate this difficulty by

examples. Among the potential MLEs, one stands out. It is based on the minimal observed ratio

between two components and is, with probability 1, equal to the true ML coefficient matrix if the

number of observations is sufficiently large. We prove that this estimate is a MLE in the sense

of Kiefer-Wolfowitz but also discuss others. The most elaborate step is to derive the densities.

Here we find interesting relationships with other classes of graphical models.

Each chapter of the thesis is based on a paper or a manuscript which is very close to be

submitted:

Chapter 2: N. Gissibl and C. Klüppelberg. Max-linear models on directed acyclic graphs.

Bernoulli, 24(4A):2693–2720, 2018.

Chapter 3: N. Gissibl, C. Klüppelberg, and M. Otto. Tail dependence of recursive max-linear

models with regularly varying noise variables. Econometrics and Statistics,

6:149–167, 2018.

Chapter 4: N. Gissibl, C. Klüppelberg, and S. L. Lauritzen. Identifiability and estimation of

recursive max-linear models. In preparation, 2018.

The individual chapters are basically self-contained. They introduce the notation, methodology,

and literature which is needed to understand the chapters in their respective introductory sec-

tions. Different notations, abbreviations, and model assumptions on a recursive ML model seem

reasonable in different settings; therefore, they might differ from chapter to chapter.
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1.2 Scope and goals of this thesis

Research on recursive ML models

We conclude the Introduction with the presentation of further research works on recursive ML

models, which shows the variety of topics linked to this model class. Overall, we observe that

extreme value theory and extreme value statistics are slowly starting to make their way into

graphical modeling (see e.g. Hitz and Evans [34] and Papastathopoulos and Strokorb [54]).

Because of the accumulated knowledge on recursive ML models, we expect that a consequent

use of algebraic theory based on properties of the max-times semiring (R+,∨, ⋅) (see e.g. Butkovič

[7]) would simplify the theory of recursive ML models. Zhang [76] started to investigate this, for

example, by finding the fixed point of the max-linear structural equations defining a recursive

ML model. Further promising results in this direction are achieved in this master’s thesis.

As already mentioned, a recursive ML model is generally not faithful to its DAG. Klüppelberg

and Lauritzen [43] prove that a recursive ML model is faithful if and only if the DAG has at

most one path between two nodes. This paper also provides a detailed overview and summary of

the methodological concepts of this model; for example, the necessary graph terminology, basic

properties of conditional independence, and the Markov properties of directed graphical models

and their relation to SEMs are discussed.

Parts of the paper

N. Gissibl and C. Klüppelberg. Prediction of recursive max-linear models. In preparation, 2018.

have been contained in the very first version of Gissibl and Klüppelberg [27] available online

using the link https://arxiv.org/pdf/1512.07522v1.pdf. In this paper we assume that some

node variables of a recursive ML model are observed and we want to predict the values of the

remaining. In a first step, we investigate representations of node variables in terms of a given

subset of node variables and a minimal number of noise variables. In some situations, this leads

to almost sure equality between two distinct appropriately scaled node variables. This result

has direct implications for the prediction problem: some of the unknown node variables can,

with probability 1, be predicted exactly. We use these results to provide an algorithm for the

prediction problem. Given observations of parts of a recursive ML model, it predicts the other

node variables. To prove its correctness, we also determine reduced forms of regular conditional

distributions compared to previous representations (see e.g. [73]).

Chapter 3 of this thesis is the continuation of the work presented in Otto [53]. The focus

of this master’s thesis is on the so-called homogeneous model (see Example 3.3.1 below). The

homogeneous model is a special case of a recursive ML model and is completely determined

by the reachability matrix of any underlying DAG. Because of its simple structure, it was the

starting point for the development of recursive ML models and is still an important model to

try new ideas and approaches for recursive ML models. In [53] a consistent and asymptotically

normal estimator for the tail dependence matrix is suggested. The performance of this estimator

and the algorithms developed in this master’s thesis to recover homogeneous models as far as

possible from their tail dependence matrices is evaluated on simulated data sets.

As in Chapter 3, Krali [46] requires regularly varying noise variables in recursive ML models.

The author proposes a scaling technique for causal order search and an estimation procedure
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Chapter 1 Introduction

for the scaling parameters. Algorithms developed here are tested for their performance in a

simulation study with the result that they perform nicely even in high dimensions.

Hartl [32] has done important preliminary work for Chapter 4 of this thesis. The estimate

mentioned above that is based on the minimal observed ratio between two components is in-

vestigated and first properties are presented, mainly under the assumption of standard Fréchet

distributed noise variables. In addition, the author illustrates the performance of this estimate

on simulated data and makes first attempts to infer the minimum underlying causal structure

of a recursive ML model from observational data. For the latter a method is suggested which

also seems to work if the data do not follow a recursive ML model exactly. We come back to

this in the conclusion and outlook of Chapter 4.

A recursive ML model has already been fitted to real data. In fact, Einmahl et al. [20] present

an estimator of the tail dependence function in the context of extreme value theory and apply

it to data from the EURO STOXX 50 Index assuming an underlying recursive ML model on a

known DAG with standard 1-Fréchet distributed noise variables.

The last work related to recursive ML models we would like to mention is that of Klüppelberg

and Sönmez [44]. They extend the definition of this model class to infinite graphs and inves-

tigate their relations to classical percolation theory, more precisely to nearest neighbor bond

percolation.
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Chapter 2

Max-linear models on directed acyclic

graphs

Abstract

We consider a new recursive structural equation model where all variables can be written as

max-linear function of their parental node variables and independent noise variables. The model

is max-linear in terms of the noise variables, and its causal structure is represented by a directed

acyclic graph. We detail the relation between the weights of the recursive structural equation

model and the coefficients in its max-linear representation. In particular, we characterize all

max-linear models which are generated by a recursive structural equation model and show that

its max-linear coefficient matrix is the solution of a fixed point equation. We also find the

minimum directed acyclic graph representing the recursive structural equations of the variables.

The model structure introduces a natural order between the node variables and between the

max-linear coefficients. This yields representations of the vector components, which are based

on the minimum number of node and noise variables.

MSC 2010 subject classifications: Primary 60G70, 60E15, 05C20; secondary 05C75

Keywords and phrases: Directed acyclic graph, graphical model, max-linear model, minimal

representation, path analysis, structural equation model

2.1 Introduction

Graphical models are a popular tool to analyze and visualize conditional independence relations

between random variables (see e.g. Koller and Friedman [45] and Lauritzen [47]). Each node

in a graph indicates a random variable, and the graph encodes conditional independence rela-

tions between the random variables. We focus on directed graphical models, also called Bayesian

networks, where edge orientations come along with an intuitive causal interpretation. The con-

ditional independence relations between the random variables, which are encoded by a directed

acyclic graph (DAG), can be explored using the (directed) Markov property: each variable is con-

ditionally independent of its non-descendants (excluding the parents) given its parents (cf. [47],

Chapter 3.2).

Despite many areas of application for directed graphical models, ranging from artificial intel-

ligence, decision support systems, and engineering to genetics, geology, medicine, and finance
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Chapter 2 Max-linear models on directed acyclic graphs

(see e.g. Pourret et al. [59]), graphical modeling of random vectors has mainly been limited

to discrete and Gaussian distributions; see e.g. [45, 47]. In the context of risk assessment, risk

exposures are usually modeled by continuous variables, however, the assumption of Gaussianity

leads invariably to severe underestimation of large risks and therefore to unsuitable models.

Recursive structural equation models (recursive SEMs) offer a possibility to construct directed

graphical models; cf. Bollen [5], Pearl [55], and Spirtes et al. [69]. For a given DAG D = (V,E)
with nodes V = {1, . . . , d} and edges E = {(k, i) ∶ i ∈ V and k ∈ pa(i)} define

Xi = fi(Xpa(i), Zi), i = 1, . . . , d, (2.1.1)

where pa(i) denotes the parents of node i in D and fi is a real-valued measurable function;

Z1, . . . , Zd are independent noise variables. Thus a recursive SEM is specified by an underlying

causal structure given by a DAG D, the functions fi, and the distributions of Zi for i = 1, . . . , d.

In this setting the distribution of X = (X1, . . . ,Xd) is uniquely defined by the distributions of

the noise variables and, denoting by nd(i) the non-descendants of node i,

Xi áXnd(i)∖pa(i) ∣Xpa(i), i = 1, . . . , d; (2.1.2)

i.e., the distribution of X is Markov relative to D (see Theorem 1.4.1 and the related discussion

in [55]). Recently, recursive linear SEMs and generalizations in a Gaussian setting have received

particular attention; see Bühlmann et al. [6], Ernest et al. [21], and references therein.

Our focus is not on sums but on maxima, where natural candidates for the noise distributions

are the extreme value distributions or distributions in their domains of attraction; see e.g. Resnick

[60, 61]. We define a recursive max-linear (ML) model X on a DAG D by

Xi ∶= ⋁
k∈pa(i)

ckiXk ∨ ciiZi, i = 1, . . . , d, (2.1.3)

with independent random variables Z1, . . . , Zd with support R+ = [0,∞) and positive weights

cki for all i ∈ V and k ∈ pa(i) ∪ {i}.

This new model is motivated by applications to risk analysis, where extreme risks play an

essential role and may propagate through a network. In such a risk setting, it is natural to

require the noise variables to have positive infinite support. Moreover, we may think of the edge

weights in (2.1.3) as relative quantities so that a risk may originate with certain proportions in

its different ancestors.

In this chapter we investigate structural properties as well as graph properties of a recursive

ML model X on a DAG D. We will show that X is a max-linear (ML) model (for background on

ML models in the context of extreme value theory, see e.g. de Haan and Ferreira [14], Chapter 6)

in the sense that

Xi =
d

⋁
j=1

bjiZj , i = 1, . . . , d, (2.1.4)

with Z1, . . . , Zd as in (2.1.3), and B = (bij)d×d is a matrix with nonnegative entries. We call B
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2.1 Introduction

max-linear (ML) coefficient matrix of X and its entries max-linear (ML) coefficients.

The ML coefficients of X can be determined by a path analysis of D. Throughout we write

k → i if there is an edge from k to i in D. We assign a weight to every path p = [j = k0 → k1 →
⋅ ⋅ ⋅ → kn = i], which is the product of the edge weights along p multiplied by the weight of the

noise variable Zj (a concept which goes back to Wright [74]):

dji(p) = ck0,k0ck0,k1 . . . ckn−2,kn−1ckn−1,kn = ck0,k0
n−1
∏
ν=0

ckν ,kν+1 . (2.1.5)

We will show that the ML coefficients are given for i ∈ V by

bji = ⋁
p∈Pji

dji(p) for j ∈ an(i), bii = cii, and bji = 0 for j ∈ V ∖ (an(i) ∪ {i}), (2.1.6)

where Pji is the set of paths from j to i and an(i) the ancestors of i.

The computation in (2.1.6) corresponds to the algebraic path problem over the max-times

semiring (R+,∨, ⋅) (see e.g. Mahr [51] and Rote [62]). We present it in matrix form using the

matrix product over (R+,∨, ⋅). We apply this concept in the two different situations, where the

DAG D is given, and we test if a given ML coefficient matrix is consistent with D, but also later

on, when we check if a given matrix defines a recursive SEM on some unspecified DAG.

From (2.1.6) it is clear that not all paths are needed for representing X as ML model (2.1.4).

This perception leads to a complexity reduction of the model in different ways and in different

situations. For every specific component Xi of X only those paths with terminal node i which

carry the maximum weight are relevant for its representation (2.1.4), and we call them max-

weighted paths. All other paths can be disposed of without changing this representation. It is

even sufficient to consider only one in D max-weighted path from every ancestor of i to i.

Consequently, Xi can be represented as component of a recursive ML model on a polytree with

node set an(i)∪{i} and with the same weights and noise variables as in the original representation

(2.1.3).

However, in general none of these individual polytrees represents all components of X in

the sense of (2.1.3) simultaneously. Still there may be subgraphs of D and weights such that

all components of X have representation (2.1.3), and we present all such possible subgraphs

and weights. In particular, we characterize the smallest subgraph of this kind, which we call

minimum max-linear (ML) DAG of X, and point out its prominent role.

We show that all DAGs and weights which represent X as in (2.1.3) can be identified from the

ML coefficient matrix B of X. In this context, we also give necessary and sufficient conditions

on a matrix to be the ML coefficient matrix of some recursive ML model.

It is a simple but important observation that there is a natural order between the components

of X; from (2.1.3) we see immediately that Xi ≥ ckiXk holds for all i ∈ V and k ∈ pa(i).
For every component of X and some U ⊆ V , we find lower and upper bounds in terms of

XU ∶= (X`, ` ∈ U). Often we do not need all components of XU to compute the best bounds

of Xi in terms of components of XU . If i ∈ U , then an upper and lower bound is given by Xi

itself; otherwise, for a lower bound we only need to consider a component Xj of XU if j ∈ an(i),
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Chapter 2 Max-linear models on directed acyclic graphs

but no max-weighted path from j to i passes through some node in U ∖ {j}. A similar result

and concept applies for the upper bound of Xi. Thus the max-weighted paths also lead in this

context indirectly to a complexity reduction. We will also use the max-weighted ancestors of i

in U to obtain a minimal representation of Xi in terms of XU and noise variables.

This chapter is organized as follows. In Section 2.2 we discuss the max-linearity of a recursive

ML model X and express its ML coefficient matrix in terms of a weighted adjacency matrix of

a corresponding DAG. Section 2.3 introduces the important notion of a max-weighted path and

studies its consequences for the ML coefficients. In Section 2.4 we give necessary and sufficient

conditions for a ML model being a recursive ML model on a given DAG. Section 2.5 is devoted

to the minimum ML DAG of X as the DAG with the minimum number of edges within the class

of all DAGs representing X in the sense of (2.1.3). In Section 2.6, given a set of node variables,

we investigate which information can be gained for the other components of X. This results

in lower and upper bounds for the components. Finally, we derive a minimal representation for

the components of X as max-linear function of a subset of node variables and certain noise

variables.

We use the following notation throughout this chapter. For a node i ∈ V , the sets an(i), pa(i),
and de(i) contain the ancestors, parents, and descendants of i in D. Furthermore, we use the

notation An(i) = an(i) ∪ {i}, Pa(i) = pa(i) ∪ {i}, and De(i) = de(i) ∪ {i}. We write U ⊆ V for

a non-empty subset U of nodes, XU = (X`, ` ∈ U), and U c = V ∖ U . All our vectors are row

vectors. We also extend the previous notation in a natural way by writing an(U) = ⋃i∈U an(i),
An(U) = an(U) ∪ U , and so on. For a matrix B with nonnegative entries, we write sgn(B) for

the matrix with entries equal to 1 if the corresponding entry in B is positive and 0 else. We

denote by 1U the indicator function of U and set 1∅ ≡ 0. In general, we consider statements for

i ∈ ∅ as invalid. For arbitrary (possibly random) ai ∈ R+, we set ⋁i∈∅ ai = 0 and ⋀i∈∅ ai = ∞.

2.2 Max-linearity of a recursive ML model

For a recursive ML model X on a DAG D = (V,E), given by (2.1.3), we derive its max-linear

representation (2.1.4). We start with our leading example, a recursive ML model on the diamond-

shaped DAG depicted below.

Example 2.2.1. [Max-linear representation of a recursive ML model]

Consider a recursive ML model X = (X1,X2,X3,X4) on the DAG

D = (V,E) = ({1,2,3,4},{(1,2), (1,3), (2,4), (3,4)})

with weights cki for i ∈ V and k ∈ Pa(i). We obtain for the components of X:

X1 = c11Z1

X2 = c12X1 ∨ c22Z2 = c12c11Z1 ∨ c22Z2

X3 = c13X1 ∨ c33Z3 = c13c11Z1 ∨ c33Z3

1

2 3

4
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2.2 Max-linearity of a recursive ML model

X4 = c24X2 ∨ c34X3 ∨ c44Z4

= c24(c12c11Z1 ∨ c22Z2) ∨ c34(c13c11Z1 ∨ c33Z3) ∨ c44Z4

= (c24c12c11 ∨ c34c13c11)Z1 ∨ c24c22Z2 ∨ c34c33Z3 ∨ c44Z4.

Thus X satisfies (2.1.4) with ML coefficient matrix

B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c11 c11c12 c11c13 c11c12c24 ∨ c11c13c34
0 c22 0 c22c24

0 0 c33 c33c34

0 0 0 c44

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

We observe that the ML coefficients satisfy indeed (2.1.6). Moreover, B is an upper triangular

matrix, since D is well-ordered (cf. Remark 2.2.3(ii)). ◻

The following result shows that such a representation can be obtained in general: every com-

ponent of a recursive ML model has a max-linear representation in terms of its ancestral noise

variables and an independent one. It provides a general method to calculate the ML coefficients

by a path analysis as described in (2.1.5) and (2.1.6).

Theorem 2.2.2. Let X be a recursive ML model on a DAG D = (V,E), and let B = (bij)d×d
be the matrix with entries as defined in (2.1.6). Then

Xi = ⋁
j∈An(i)

bjiZj , i = 1, . . . , d; (2.2.1)

i.e., B is the ML coefficient matrix of X.

Proof. Without loss of generality we assume throughout this proof that D is well-ordered (cf. Re-

mark 2.2.3(ii)). We prove the identity (2.2.1) by induction on the number of nodes of D. For

d = 1 we have by (2.1.3)

X1 = c11Z1 = b11Z1,

where the last equality holds by (2.1.6). Suppose that (2.2.1) holds for a recursive ML model X

of dimension d; i.e.,

Xk = ⋁
j∈An(k)

bjkZj = ⋁
j∈an(k)

⋁
p∈Pjk

djk(p)Zj ∨ ckkZk, k = 1, . . . , d.

Now consider a (d+ 1)-variate recursive ML model. We first investigate the nodes i ∈ {1, . . . , d}.

SinceD is well-ordered, we have (d+1) ∈ V ∖pa(i). Hence, it suffices to show representation (2.2.1)

with respect to the subgraph D[{1, . . . , d}] = ({1, . . . , d},E ∩ ({1, . . . , d} × {1, . . . , d})). However,

this holds by the induction hypothesis. So we can use this representation for i ∈ {1, . . . , d} and
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(2.A.1) to obtain

Xd+1 = ⋁
k∈pa(d+1)

ck,d+1Xk ∨ cd+1,d+1Zd+1

= ⋁
k∈pa(d+1)

⋁
j∈an(k)

⋁
p∈Pjk

ck,d+1djk(p)Zj ∨ ⋁
k∈pa(d+1)

ck,d+1ckkZk ∨ cd+1,d+1Zd+1

= ⋁
j∈an(d+1)

( ⋁
k∈de(j)∩pa(d+1)

⋁
p∈Pjk

ck,d+1djk(p) ∨ ⋁
k∈pa(d+1)∩{j}

ck,d+1ckk)Zj ∨ cd+1,d+1Zd+1.

Observe that every path from some j to d + 1 is of the form p = [j → ⋅ ⋅ ⋅ → k → d + 1] for some

k ∈ de(j)∩pa(d+1), or an edge j → d+1 corresponding to j ∈ pa(d+1). By (2.1.5) the path p has

weight dj,d+1(p) = djk(p)ck,d+1, and the edge j → d + 1 has weight dj,d+1([j → d + 1]) = cjjcj,d+1.
This yields

Xd+1 = ⋁
j∈an(d+1)

⋁
p∈Pj,d+1

dj,d+1(p)Zj ∨ cd+1,d+1Zd+1 = ⋁
j∈An(d+1)

bj,d+1Zj ,

where we have used that bj,d+1 = ⋁
p∈Pj,d+1

dj,d+1(p) for j ∈ an(d + 1) and bd+1,d+1 = cd+1,d+1.

By (2.1.6) the ML coefficient bji of X is different from zero if and only if j ∈ An(i). This

information is contained in the reachability matrix R = (rij)d×d of D, which has entries

rji ∶=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1, if there is a path from j to i, or if j = i,
0, otherwise.

If the ji-th entry of R is equal to one, then i is reachable from j.

Remark 2.2.3. Let R be the reachability matrix of D.

(i) The ML coefficient matrix B is a weighted reachability matrix of D; i.e., R = sgn(B).

(ii) The DAG D can be well-ordered, which means that the set V = {1, . . . , d} of nodes can

be linearly ordered in a way compatible with D such that k ∈ pa(i) implies k < i (see

e.g. Appendix A of Diestel [15]). If D is well-ordered, then B and R are upper triangular

matrices. ◻

Finding the ML coefficient matrix B from D and the weights in (2.1.3) by a path analysis

as described in (2.1.5) and (2.1.6) would be very inefficient. We may, however, compute B by

means of a specific matrix multiplication.

For two nonnegative matrices F and G, where the number of columns in F is equal to the

number of rows in G, we define the product ⊙ ∶ Rm×n+ ×Rn×p+ → Rm×p+ by

(F = (fij)m×n,G = (gij)n×p) ↦ F ⊙G ∶= (
n

⋁
k=1

fikgkj)
m×p

. (2.2.2)

The triple (R+,∨, ⋅), which is called max-times or subtropical algebra, is an idempotent semiring

with 0 as 0-element and 1 as 1-element. The operation ⊙ is therefore a matrix product over a
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2.2 Max-linearity of a recursive ML model

semiring. Such semirings are fundamental in tropical geometry; for an introduction see Butkovič

[7] or Maclagan and Sturmfels [50]. The matrix product ⊙ is associative: for F ∈ Rm×n+ , G ∈ Rn×p+ ,

and H ∈ Rp×q+ , F⊙(G⊙H) = (F⊙G)⊙H, and we have (F⊙G)⊺ = G⊺⊙F ⊺. Denoting by B all d×d
matrices with nonnegative entries and by ∨ the componentwise maximum between two matrices,

(B,∨,⊙) is also a semiring with the null matrix as 0-element and the identity matrix idd×d as

1-element. This semiring is, however, not commutative, since ⊙ is in general not. Consistent

with a matrix product, we define powers recursively: A⊙0 ∶= idd×d and A⊙n ∶= A⊙(n−1) ⊙ A for

A ∈ B and n ∈ N.

The matrix product ⊙ allows us to represent the ML coefficient matrix B of X in terms of

the weighted adjacency matrix (cij1pa(j)(i))d×d of D.

Theorem 2.2.4. Let X be a recursive ML model on a DAG D = (V,E) with weights cki for

i ∈ V and k ∈ Pa(i) as in (2.1.3). Define the matrices

A ∶= diag(c11, . . . , cdd), A0 ∶= (cij1pa(j)(i))d×d, and A1 ∶= (ciicij1pa(j)(i))d×d.

Then the ML coefficient matrix B of X from Theorem 2.2.2 has representation

B = A for d = 1 and B = A ∨
d−2
⋁
k=0

(A1 ⊙A⊙k
0 ) for d ≥ 2.

Proof. For d = 1 we know from (2.1.6) that b11 = c11. Hence, B = A. Now assume that d ≥ 2.

First we show that if D has a path of length n (a path consisting of n edges) from node j to

node i, then the ji-th entry of the matrix A1 ⊙A⊙(n−1)
0 is equal to the maximum weight of all

paths of lengths n from j to i, otherwise it is zero. The proof is by induction on n.

An edge j → i, which is the only path of length n = 1, has the weight dji([j → i]) = cjjcji.
Since the ji-th entry of the matrix A1 ⊙ A⊙0

0 = A1 ⊙ idd×d = A1 is given by cjjcji1pa(i)(j), the

statement is true for n = 1.

Denote by a0,ji, an,ji, and an+1,ji the ji-th entry of A0,A1⊙A⊙(n−1)
0 , and A1⊙A⊙n

0 , respectively.

As A1⊙A⊙n
0 = (A1⊙A⊙(n−1)

0 )⊙A0, the ji-th entry of A1⊙A⊙n
0 is given by an+1,ji = ⋁dk=1 an,jka0,ki =

⋁dk=1 an,jkcki1pa(i)(k). We obtain from the induction hypothesis and (2.1.5) that an,jka0,ki is zero

if D does not contain a path of length n from j to k or the edge k → i; otherwise it is equal to

the maximum weight of all paths which consist of a path of length n from j to k and the edge

k → i. Since every path of length n+ 1 from j to i is of this form for some k ∈ V , the ji-th entry

of A1 ⊙A⊙n
0 is indeed equal to the maximum weight of all paths of length n + 1 from j to i if

there exists such a path, otherwise it is zero.

Finally, again by (2.1.6), for i ∈ V and j ∈ an(i), the ML coefficient bji is equal to the maximum

weight of all paths from j to i, and note that due to acyclicity, a path in D is at most of length

d−1. Thus, if j ∈ an(i), then the ji-th entry of ⋁d−2k=0A1⊙A⊙k
0 is equal to bji, otherwise it is zero.

Since by (2.1.6), bii = cii and bji = 0 for j ∈ V ∖An(i), the ML coefficient matrix B is given by

B = A ∨A1 ∨ (A1 ⊙A0) ∨ (A1 ⊙A⊙2
0 ) ∨ ⋅ ⋅ ⋅ ∨ (A1 ⊙A⊙(d−2)

0 ).
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Chapter 2 Max-linear models on directed acyclic graphs

The following has been shown in the proof of Theorem 2.2.4.

Corollary 2.2.5. If D has a path of length n from j to i, the ji-th entry of the matrix A1 ⊙
A
⊙(n−1)
0 is equal to the maximum weight of all paths of length n from j to i, otherwise the entry

is zero.

Summarizing the noise variables of X into the vector Z = (Z1, . . . , Zd), the representation

(2.2.1) of X can be written by means of the product ⊙ as

X = Z ⊙B = (
d

⋁
j=1

bjiZj , i = 1, . . . , d) = ( ⋁
j∈An(i)

bjiZj , i = 1, . . . , d).

Consequently, the definition of the matrix product ⊙ modifies and extends the definition given

in Wang and Stoev [73, Section 2.1, Eq. (2)].

2.3 Max-weighted paths

Given a recursive ML model X on a DAG D = (V,E) with weights cki for i ∈ V , k ∈ Pa(i) and

ML coefficient matrix B = (bij)d×d, we investigate the paths of D and their particular weights,

the implications on the ML coefficients as well as induced subgraph structures leading to reduced

representations of (2.1.3).

From (2.1.6) and (2.2.1) we know that a path p from j to i, whose weight dji(p) is strictly

smaller than bji, does not have any influence on the distribution of X. This fact suggests the

following definition.

Definition 2.3.1. Let X be a recursive ML model on a DAG D = (V,E) with path weights

as in (2.1.5) and ML coefficient matrix B. We call a path p from j to i a max-weighted path if

bji = dji(p). ◻

A prominent example, where all paths are max-weighted, is the following.

Example 2.3.2. [Polytree] A polytree is a DAG whose underlying undirected graph has no

cycles; polytrees have at most one path between any pair of nodes. Thus, assuming that X is a

recursive ML model on a polytree, all paths must be max-weighted. ◻

The following example indicates the importance and consequences of max-weighted paths.

Example 2.3.3. [Max-weighted paths, graph reduction]

Consider a recursive ML model X = (X1,X2,X3) on the DAG

1

2 3

D = (V,E) = ({1,2,3},{(1,2), (1,3), (2,3)})

with weights cki for i ∈ V and k ∈ Pa(i) and ML coefficient matrix B. We distinguish between

two situations:
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2.3 Max-weighted paths

(1) If c13 > c12c23, then the edge 1→ 3 is the unique max-weighted path from 1 to 3.

(2) If, however, c13 ≤ c12c23, then b13 = c11c12c23 = b12b23
b22

and the path [1 → 2 → 3] is max-

weighted. We obtain in this case

X3 = b13Z1 ∨ b23Z2 ∨ b33Z3 =
b23
b22

(b12Z1 ∨ b22Z2) ∨ b33Z3 = c23X2 ∨ b33Z3.

Thus X is also a recursive ML model on the DAG

DB ∶= ({1,2,3},{(1,2), (2,3)}).

Here DB is the DAG with the minimum number of edges such that sgn(B) is its reachability

matrix. By Remark 2.2.3(i) there cannot be a smaller DAG representing X in the sense of

(2.1.3). ◻

We present some immediate consequences of the path weights in (2.1.5) and the definition of

max-weighted paths.

Remark 2.3.4. (i) If there is only one path between two nodes, it is max-weighted.

(ii) Every subpath of a max-weighted path is also max-weighted.

(iii) Every path which results from a max-weighted path by replacing a subpath with another

max-weighted subpath is also max-weighted. ◻

To find for some i ∈ V and j ∈ an(i) the ML coefficient bji, it suffices to know the weight cjj

of the noise variable Zj and the edge weights along one arbitrary max-weighted path from j to

i, since every max-weighted path from j to i has the same weight. This allows us to represent

every component of X as component of a recursive ML model on a subgraph of D. For this

purpose we introduce the following definition.

Definition 2.3.5. Let X be a recursive ML model on a DAG D = (V,E), and let D = (V ,E)
be a subgraph of D. We denote by pa(i) the parents of node i in D and define

Yi ∶= ⋁
k∈pa(i)

ckiYk ∨ ciiZi, i ∈ V ,

with the same weights and noise variables as in the representation of X in (2.1.3). We call the

resulting recursive ML model Y = (Y`, ` ∈ V ) recursive ML submodel of X induced by D. ◻

We summarize some immediate properties of Y .

Remark 2.3.6. Let i ∈ V with ancestors an(i) in D. Denote by B = (bij)∣V ∣×∣V ∣ the ML coefficient

matrix of Y .

(i) Every path in D has the same weight (2.1.5) as in D.

(ii) A path of D which is in D a max-weighted path is also in D max-weighted.
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Chapter 2 Max-linear models on directed acyclic graphs

(iii) For j ∈ an(i), D has one in D max-weighted path from j to i if and only if bji = bji.

(iv) D has one in D max-weighted path from every j ∈ an(i) to i if and only if Xi = Yi. ◻

By Remark 2.3.4(ii) for every i ∈ V , there exists a polytree Di of D with node set An(i)
which has exactly one in D max-weighted path from every ancestor of i to i. There may even

exist several such polytrees (cf. Example 2.3.8 below). We learn from the construction of Di and

Remark 2.3.4(ii) that indeed every path of Di is in D max-weighted. Therefore, some component

Xj ofX coincides by Remark 2.3.6(iv) with the corresponding one of the recursive ML submodel

of X induced by Di if and only if Di has at least one path from every ancestor of j in D to j.

By construction of Di this property holds obviously for Xi. We summarize this result as follows.

Proposition 2.3.7. Let X be a recursive ML model on a DAG D = (V,E). For some i ∈ V and

An(i) in D let Di be a polytree with node set An(i) such that Di has one in D max-weighted path

from every j ∈ an(i) to i. Let Y i = (Y`, ` ∈ An(i)) be the recursive ML submodel of X induced

by Di. Then for all j ∈ An(i) which have the same ancestors in Di and D, we have Xj = Yj.

We discuss the recursive ML model from Example 2.2.1 in the context of Definition 2.3.1 and

Proposition 2.3.7.

Example 2.3.8. [Continuation of Example 2.2.1: max-weighted paths, polytrees, conditional

independence]

For the polytrees as in Proposition 2.3.7, we identify all max-weighted paths ending in node 4.

By Remark 2.3.4(i), the paths [2 → 4] and [3 → 4] are max-weighted. For the weights of the

paths [1→ 2→ 4] and [1→ 3→ 4], we have three situations:

c11c12c24 = c11c13c34, c11c12c24 > c11c13c34, and c11c12c24 < c11c13c34.

In the first situation, both paths from 1 to 4 are max-weighted. Thus there are two different

polytrees having one in D max-weighted path from every ancestor of 4 to 4, namely,

D4,1 = ({1,2,3,4},{(1,2), (2,4), (3,4)}) and D4,2 = ({1,2,3,4},{(1,3), (2,4), (3,4)}).

In the second situation, the path [1 → 2 → 4] is the unique max-weighted path from 1 to 4

and, hence, D4,1 is the unique polytree as in Proposition 2.3.7 for node 4. The third situation is

symmetric to the second, such that D4,2 is also such a unique polytree.

Now let Y 1 = (Y1,1, Y1,2, Y1,3, Y1,4) and Y 2 = (Y2,1, Y2,2, Y2,3, Y2,4) be the recursive ML sub-

models of X induced by D4,1 and D4,2. The distributions of X, Y 1, and Y 2 are Markov relative

to D, D4,1, and D4,2, respectively. For a DAG, the local Markov property as specified in (2.1.2),

is by Proposition 4 of Lauritzen et al. [48] equivalent to the global Markov property (for a

definition see Corollary 3.23 of [47]). Using this property we find

Y1,1 á Y1,4 ∣ Y1,2 and Y2,1 á Y2,4 ∣ Y2,3.

20



2.3 Max-weighted paths

If the path [1→ 2→ 4] is max-weighted, we have by Proposition 2.3.7 that

Y1,1 =X1, Y1,2 =X2, and Y1,4 =X4,

hence, X1 áX4 ∣X2. Accordingly, if [1→ 3→ 4] is max-weighted, then

Y2,1 =X1, Y2,3 =X3, and Y2,4 =X4,

and X1 áX4 ∣X3 holds. Since the only conditional independence property encoded in D by the

(global) Markov property is X1 á X4 ∣ X2,X3, we can identify additional conditional indepen-

dence properties of X from the polytrees in Proposition 2.3.7. ◻

Remark 2.3.9. (i) Assume the situation of Proposition 2.3.7. Let Vi be the set of all nodes

in An(i) which have the same ancestors in D and Di. Since the distributions of X and

Y are Markov relative to D and Di, respectively, conditional independence properties of

X are encoded in D and of Y in Di. By Proposition 2.3.7 the conditional independence

relations between subvectors of Y Vi = (Y`, ` ∈ Vi) which we can read off from Di hold also

between the corresponding subvectors of X. Since missing edges correspond to conditional

independence properties, and Di is a subgraph of D, we can often identify additional

conditional independence properties of X from Di.

(ii) From (i) or Example 2.3.8 we learn that a recursive ML model on a DAG D is in general

not faithful ; i.e., not all its conditional independence properties are encoded in D by the

(global) Markov property. ◻

As can be seen from Examples 2.3.3 and 2.3.8, any reduction of a recursive ML model depends

on the existence of max-weighted paths that pass through specific nodes. The following result

shows how we can obtain this information from its ML coefficient matrix.

Theorem 2.3.10. Let X be a recursive ML model on a DAG D = (V,E) with ML coefficient

matrix B. Let further U ⊆ V , i ∈ V and j ∈ an(i), and recall from Remark 2.2.3(i) that bji > 0.

(a) There is a max-weighted path from j to i which passes through some node in U if and only

if

bji = ⋁
k∈De(j)∩U∩An(i)

bjkbki

bkk
. (2.3.1)

(b) No max-weighted path from j to i passes through some node in U if and only if

bji > ⋁
k∈De(j)∩U∩An(i)

bjkbki

bkk
. (2.3.2)

This holds also for U = ∅.

Proof. First assume that De(j)∩U ∩An(i) = ∅. Thus no path, hence also no max-weighted path,

from j to i passes through some node in U , and it suffices to verify (b). Since the right-hand
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Chapter 2 Max-linear models on directed acyclic graphs

side of (2.3.2) is zero if and only if De(j) ∩U ∩An(i) = ∅ and the ML coefficient bji is positive,

(b) is proven for this case (including the case that U = ∅).

Now assume that De(j) ∩ U ∩ An(i) = {k}, which implies that there is a path from j to i

passing through k ∈ U . If k = i or k = j, there is obviously a max-weighted path from j to i

passing through i or j and (2.3.1) is always valid.

Next assume that k ∈ V ∖ {i, j}, and let p1 and p2 be max-weighted paths from j to k and

from k to i, respectively. Denote by p the path from j to i consisting of the subpaths p1 and p2.

By (2.1.5) and the definition of a max-weighted path, we obtain

dji(p) =
1

ckk
djk(p1)dki(p2) =

bjkbki

bkk
.

Since p is max-weighted if and only if bji = dji(p) and this is not the case if and only if bji > dji(p),
we have shown (a) and (b) for the situation of De(j) ∩U ∩An(i) = {k}. In particular, it follows

that bji ≥ bjkbki
bkk

for all k ∈ De(j) ∩U ∩An(i).
Assume now that De(j)∩U ∩An(i) contains more than one element and that a max-weighted

path from j to i passes through some node k ∈ U . We know from above that this is equivalent

to

bji =
bjkbki

bkk
and bji ≥

bjlb`i

b``
for all ` ∈ (De(j) ∩U ∩An(i)) ∖ {k},

which is again equivalent to (2.3.1). Similarly, we obtain (b).

Remark 2.3.11. Recall the matrix product ⊙ from (2.2.2), and let R be the reachability matrix

of D. We obtain from R = sgn(B) (Remark 2.2.3(i)) that for i, j ∈ V

⋁
k∈De(j)∩U∩An(i)

bjkbki

bkk
=

d

⋁
k=1

bjkbki

bkk
1U(k) =∶

d

⋁
k=1

bjkbU,ki

is the ji-th entry of the matrix B ⊙ BU with BU = (bU,ij)d×d. Thus we may decide whether

there is a max-weighted path between two nodes that passes through some node in U by

comparing the entries of the matrices B and B ⊙ BU . Such use of the matrix product ⊙
can be made at various points throughout the thesis, for example, in Remark 2.5.2(ii), The-

orem 2.5.3, and Lemma 2.6.3(b). ◻

The following corollary gives an important property of the ML coefficients. The first part has

been shown in the proof of Theorem 2.3.10, the second part follows from Remark 2.2.3(i).

Corollary 2.3.12. For all i ∈ V , k ∈ An(i), and j ∈ An(k), bji ≥ bjkbki
bkk

> 0. Indeed, bji ≥ bjkbki
bkk

holds for all i, j, k ∈ V .

We learn immediately from (2.1.3) that ckiXk ≤ Xi for all i ∈ V and k ∈ pa(i). From Corol-

lary 2.3.12 we find such inequalities also for components, whose nodes are not connected by an

edge but by a path of arbitrary length.

Corollary 2.3.13. For all i ∈ V and j ∈ An(i) we have
bji
bjj
Xj ≤Xi.
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Proof. Note that An(j) ⊆ An(i). Using the max-linear representation (2.2.1) of Xi and Xj as

well as Corollary 2.3.12, we obtain

Xi = ⋁
`∈An(i)

b`iZ` ≥ ⋁
`∈An(j)

b`iZ` ≥ ⋁
`∈An(j)

b`jbji

bjj
Z` =

bji

bjj
⋁

`∈An(j)
b`jZ` =

bji

bjj
Xj .

2.4 ML coefficients leading to a recursive ML model on a given

DAG

Recall the definition of a ML model given in (2.1.4). From Theorem 2.2.2 we know that every

recursive ML model is max-linear. In this section we provide necessary and sufficient conditions

on a ML model to be a recursive ML model on a given DAG D.

It can be shown that every ML model which is a recursive SEM as given in (2.1.1) with

unspecified functions f1, . . . , fd must be a recursive ML model. That a recursive ML model is

also a recursive SEM follows immediately from its recursive definition. To summarize, a ML

model can be represented as a recursive SEM (2.1.1) on a DAG D if and only if it has a

recursive ML representation (2.1.3) relative to the same DAG D.

Motivated by Remark 2.2.3(i), in what follows we assume that sgn(B) is the reachability

matrix R of D. In our investigation the DAG with the minimum number of edges, such that

R = sgn(B), will play an important role. This has already been indicated in Example 2.3.3.

We give a general definition of the DAG with the minimum number of edges that represents

the same reachability relation as a given DAG.

Definition 2.4.1. Let D = (V,E) be a DAG. The DAG Dtr = (V,Etr) is the transitive reduction

of D if the following holds:

(a) Dtr has a path from node j to node i if and only if D has a path from j to i, and

(b) there is no graph with less edges than Dtr satisfying condition (a). ◻

Since we work with finite DAGs throughout, the transitive reduction is unique and is also a

subgraph of the original DAG. The transitive reduction of a DAG can be obtained by successively

examining its edges in any order and deleting an edge k → i if it contains a path from k to i

which does not include this edge. For these properties and further details, see e.g. Aho et al. [1].

In what follows we need the notion of patr(i), the parents of i in Dtr.

We present necessary and sufficient conditions on B to be the ML coefficient matrix of a

recursive ML model on D.

Theorem 2.4.2. Let D = (V,E) be a DAG with reachability matrix R and X a ML model as

in (2.1.4) with ML coefficient matrix B such that sgn(B) = R. Define

A ∶= diag(b11, . . . , bdd) and A0 ∶= (bij
bii
1pa(j)(i))

d×d
.
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Then X is a recursive ML model on D if and only if the following fixed point equation holds:

B = A ∨B ⊙A0, (2.4.1)

where ⊙ is the matrix product from (2.2.2). In this case,

Xi = ⋁
k∈pa(i)

bki
bkk

Xk ∨ biiZi, i = 1, . . . , d.

Proof. First we investigate the fixed point equation (2.4.1) and compute the ji-th entry of B⊙A0.

By definition, together with sgn(B) = R, it is equal to

d

⋁
k=1

bjkbki

bkk
1pa(i)(k) = ⋁

k∈De(j)∩pa(i)

bjkbki

bkk
.

We have De(j)∩pa(i) = ∅ for j ∈ V ∖an(i) and De(j)∩pa(i) = de(j)∩pa(i) for j ∈ an(i)∖pa(i).
Moreover, for j ∈ patr(i) using that de(j) ∩ pa(i) = ∅, we obtain De(j) ∩ pa(i) = {j}. Thus,

taking also the matrix A into account, (2.4.1) is equivalent to

bji =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if j ∈ V ∖An(i),
bii, if j = i,

⋁
k∈de(j)∩pa(i)

bjkbki

bkk
, if j ∈ an(i) ∖ pa(i),

bji ∨ ⋁
k∈de(j)∩pa(i)

bjkbki

bkk
, if j ∈ pa(i) ∖ patr(i),

bji, if j ∈ patr(i)

for all i, j ∈ V . In this equation the first row is automatically satisfied, since R = sgn(B), also the

second and the last one hold trivially. To summarize, the fixed point equation (2.4.1) is satisfied

if and only if for all i ∈ V the following identities hold:

bji = ⋁
k∈de(j)∩pa(i)

bjkbki

bkk
for all j ∈ an(i) ∖ pa(i), (2.4.2)

bji = bji ∨ ⋁
k∈de(j)∩pa(i)

bjkbki

bkk
for all j ∈ pa(i) ∖ patr(i). (2.4.3)

Thus it suffices to show that X is a recursive ML model on D if and only if (2.4.2) and (2.4.3)

hold for all i ∈ V .

First assume that X is a recursive ML model on D, and let i ∈ V and j ∈ an(i). Since every

path from j to i passes through at least one parent node of i, there must be a max-weighted

path from j to i passing through some node in pa(i). Using (2.3.1) with U = pa(i) and noting

that j ∈ De(j) ∩ U ∩ An(i) = De(j) ∩ pa(i), we find for j ∈ an(i) ∖ pa(i) Eq. (2.4.2) and for

j ∈ pa(i) ∖ patr(i) Eq. (2.4.3).

For the converse statement, assume that (2.4.2) and (2.4.3) hold. For j ∈ patr(i) we have

de(j) ∩ pa(i) = ∅, such that the right-hand side of (2.4.3) is equal to bji. Thus (2.4.3) holds for
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all j ∈ pa(i). Since sgn(B) = R, we have Xi = ⋁dj=1 bjiZj = ⋁j∈An(i) bjiZj . We split up the index

set and use (2.4.2) in the first place and (2.4.3) for all j ∈ pa(i) in the second place to obtain

Xi = ⋁
j∈an(i)∖pa(i)

bjiZj ∨ ⋁
j∈pa(i)

bjiZj ∨ biiZi

= ⋁
j∈an(i)∖pa(i)

⋁
k∈de(j)∩pa(i)

bjkbki

bkk
Zj ∨ ⋁

j∈pa(i)
bjiZj ∨ ⋁

j∈pa(i)
⋁

k∈de(j)∩pa(i)

bjkbki

bkk
Zj ∨ biiZi

= ⋁
j∈an(i)

⋁
k∈de(j)∩pa(i)

bjkbki

bkk
Zj ∨ ⋁

j∈pa(i)
bjiZj ∨ biiZi.

Interchanging the first two maximum operators by (2.A.1) yields

Xi = ⋁
k∈pa(i)

⋁
j∈an(k)

bjkbki

bkk
Zj ∨ ⋁

k∈pa(i)
bkiZk ∨ biiZi

= ⋁
k∈pa(i)

bki
bkk

( ⋁
j∈an(k)

bjkZj ∨ bkkZk) ∨ biiZi

= ⋁
k∈pa(i)

bki
bkk

Xk ∨ biiZi.

In the proof of Theorem 2.4.2 we have shown that, under the required conditions, the fixed

point equation (2.4.1) holds if and only if (2.4.2) and (2.4.3) hold for all nodes. We summarize this

in part (a) of the following corollary. Part (b) has also been verified in the proof of Theorem 2.4.2.

The final statement is based on the fact that for k ∈ pa(i) we have de(k) ∩ pa(i) = ∅ if and only

if k ∈ patr(i).

Corollary 2.4.3. (a) Assume the situation of Theorem 2.4.2. Then X is a recursive ML

model on D if and only if for every i ∈ V ,

bji = ⋁
k∈de(j)∩pa(i)

bjkbki

bkk
for all j ∈ an(i) ∖ pa(i), (2.4.4)

bji ≥ ⋁
k∈de(j)∩pa(i)

bjkbki

bkk
for all j ∈ pa(i) ∖ patr(i). (2.4.5)

(b) Let X be a recursive ML model on a DAG D = (V,E) with ML coefficient matrix B. Then

for every i ∈ V and k ∈ pa(i),

bki ≥ ⋁
`∈de(k)∩pa(i)

bk`b`i
b``

.

Moreover, the right-hand side is equal to zero if and only if k ∈ patr(i), and in this case

the inequality is strict.

By (2.4.4) and (2.4.5) exactly those ML coefficients bji for i ∈ V and j ∈ an(i), such that j → i

is an edge in Dtr, do not have to meet any specific conditions apart from being positive.
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In summary, given a DAG D with d nodes, both Theorem 2.4.2 and Corollary 2.4.3(a) char-

acterize all ML coefficient matrices of any recursive ML model possible on D as all nonnegative

d×d matrices that are weighted reachability matrices of D and satisfy (2.4.1), equivalently (2.4.4)

and (2.4.5). If we can verify these two properties for a nonnegative d×d matrix B, then it is the

ML coefficient matrix of a recursive ML model on D, and weights in its representation (2.1.3)

are given by cki = bki
bkk

for k ∈ pa(i) and cii = bii.

2.5 Graph reduction for a recursive ML model

From Proposition 2.3.7 we know that every component of a recursive ML model X on a DAG

D = (V,E) satisfies (2.1.3) on a subgraph of D. These subgraphs, however, usually vary from one

component to another. On the other hand, we know from Example 2.3.3 that the whole vector

X may also be a recursive ML model on a subgraph of D. This raises the question of finding

the smallest subgraph of D such that X is a recursive ML model on this DAG. We define and

characterize this minimum DAG before we point out its prominent role in the class of all DAGs

representing X in the sense of (2.1.3).

Definition 2.5.1. Let X be a recursive ML model on a DAG D = (V,E) with ML coefficient

matrix B. We call the DAG

DB = (V,EB) ∶= (V,{(k, i) ∈ E ∶ bki > ⋁
`∈de(k)∩pa(i)

bk`b`i
b``

}) (2.5.1)

the minimum max-linear (ML) DAG of X. ◻

We summarize some properties of DB as follows.

Remark 2.5.2. (i) The minimum ML DAG DB = (V,EB) is a subgraph of the original DAG

D = (V,E). Observe from Corollary 2.4.3(b) that the transitive reduction Dtr = (V,Etr)
of D is also a subgraph of D. In summary, we have Etr ⊆ EB ⊆ E. This implies that the

DAGs DB and D have the same reachability matrix, which is sgn(B) by Remark 2.2.3(i).

(ii) By Theorem 2.3.10(b) the minimum ML DAG DB contains exactly those edges k → i of

D, where no max-weighted path from k to i passes through some node in pa(i)∖{k}. This

means that DB has an edge k → i if and only if it is the only max-weighted path from k

to i in D. The DAG DB can be obtained from D by deleting an edge k → i if D contains

a max-weighted path from k to i which does not include this edge. Note the analogy to

finding the transitive reduction Dtr of D described below Definition 2.4.1. An algorithm

is by comparison of ML coefficients and motivated by Corollary 2.4.3(b): for all i ∈ V and

k ∈ pa(i) ∖ patr(i) remove the edge k → i from D if

bki = ⋁
`∈de(k)∩pa(i)

bk`b`i
b``

.

◻
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2.5 Graph reduction for a recursive ML model

The method described in Remark 2.5.2(ii) determines DB from D and the ML coefficient

matrix B. Indeed, we can also identify DB directly from B without knowing D.

Theorem 2.5.3. Let X be a recursive ML model with ML coefficient matrix B. Then the

minimum ML DAG of X can be represented as

DB = (V,{(k, i) ∈ V × V ∶ k ≠ i and bki >
d

⋁
`=1
`≠i,k

bk`b`i
b``

}); (2.5.2)

in particular, DB is identifiable from B.

Proof. Let D be a DAG which represents X in the sense of (2.1.3). Such a DAG exists by the

definition of a recursive ML model. We show that the edge set in (2.5.2) coincides with EB as

defined in (2.5.1). Assume first that (k, i) is contained in the edge set in (2.5.2). Since sgn(B)
is the reachability matrix of D (cf. Remark 2.2.3(i)), we have

bki >
d

⋁
`=1
`≠i,k

bk`b`i
b``

= ⋁
`∈de(k)∩an(i)

bk`b`i
b``

. (2.5.3)

Since the right-hand side of (2.5.3) is nonnegative, we must have bki > 0 and, hence, k ∈ an(i). By

Theorem 2.3.10(b) no max-weighted path from k to i passes through some node in V ∖{i, k}. Thus

the edge k → i must be the only max-weighted path from k to i and, hence, by Remark 2.5.2(ii)

it must be an edge in EB as in (2.5.1).

For the converse, let (k, i) ∈ EB. Since by Remark 2.5.2(ii) this edge is the only max-weighted

path from k to i, no max-weighted path passes through some node in V ∖ {i, k}. This is by

Theorem 2.3.10(b) equivalent to (2.5.3) and (k, i) belongs to the edge set in (2.5.2).

We characterize all DAGs and specify all weights such that X satisfies (2.1.3). The minimum

ML DAG DB of X is the smallest DAG of this kind and has unique weights in representation

(2.1.3) in the sense that all irrelevant weights are set to zero. We can add any edge k → i into

DB with weight cki ∈ (0, bkibkk
] representing X again in the sense of (2.1.3) as long as the graph

represents the same reachability relation as DB. As a consequence, to find B by a path analysis

as described in (2.1.5) and (2.1.6), it suffices to know DB and the weights in representation

(2.1.3) relative to DB.

Theorem 2.5.4. Let X be a recursive ML model with ML coefficient matrix B. Let further

DB = (V,EB) be the minimum ML DAG of X and paB(i) the parents of node i in DB.

(a) The minimum ML DAG DB of X is the DAG with the minimum number of edges such

that X satisfies (2.1.3). The weights in (2.1.3) are uniquely given by cii = bii and cki = bki
bkk

for i ∈ V and k ∈ paB(i).

(b) Every DAG with node set V that has at least the edges of DB and the same reachability

matrix as DB represents X in the sense of (2.1.3) with weights given for all i ∈ V by

cii = bii, cki =
bki
bkk

for k ∈ paB(i), and cki ∈ (0,
bki
bkk

] for k ∈ pa(i) ∖ paB(i).
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There are no further DAGs and weights such that X has representation (2.1.3).

Proof. (a) Let D be a DAG and cki for i ∈ V and k ∈ Pa(i) weights such thatX has representation

(2.1.3). By Remark 2.5.2(i) DB is a subgraph of D.

First we prove thatX is a recursive ML model on DB with weights cki for i ∈ V and k ∈ PaB(i)
by showing that all components of X coincide with those of the recursive ML submodel of X

induced by DB (see Definition 2.3.5). By Remark 2.3.6(iv) it suffices to verify for all i ∈ V and

j ∈ an(i) that DB has one in D max-weighted path from j to i. Among all max-weighted paths

from j to i in D, let p be one with maximum length, and assume that p includes an edge, say

k → `, which is not contained in DB. The DAG D has by Remark 2.5.2(ii), however, a max-

weighted path p1 from k to ` which does not include the edge k → `. Note that p1 consists of

more edges than the path [k → `]. Thus, by replacing in p the edge k → ` by p1, we obtain by

Remark 2.3.4(iii) a max-weighted path from j to i consisting of more edges than p. Since this

is a contradiction to the fact that p has maximum length among all max-weighted paths from j

to i, p must be in DB.

Since every edge k → i in DB is by Remark 2.5.2(ii) the only max-weighted path from k to i

in D, the weights in (2.1.3) are uniquely given, and we have by Definition 2.3.1 and (2.1.5) that

bki = ckkcki = bkkcki, which implies cki = bki
bkk

. For the same reason there cannot be a DAG with

less edges than DB such that X has representation (2.1.3).

(b) First we show that X satisfies (2.1.3) relative to a DAG D with the properties and weights

cki for i ∈ V and k ∈ Pa(i) (the parents in D). Note that the DAG DB is a subgraph of D and

both DAGs have the same reachability relation. Since X is by part (a) a recursive ML model

on DB, we may use Corollary 2.3.13 with the ancestors in DB: for every i ∈ V and k ∈ pa(i),
since k is an ancestor of i in DB and bki

bkk
≥ cki, we have

Xi ≥
bki
bkk

Xk ≥ ckiXk.

With this we obtain from representation (2.1.3) of Xi relative to DB that

Xi = ⋁
k∈paB(i)

ckiXk ∨ ciiZi = ⋁
k∈paB(i)

ckiXk ∨ ⋁
k∈pa(i)∖paB(i)

ckiXk ∨ ciiZi,

which is (2.1.3) relative to D.

It remains to show that there are no further DAGs and weights such thatX has representation

(2.1.3). By Remark 2.5.2(i) every DAG that represents X in the sense of (2.1.3) must have the

same reachability matrix as DB and must contain at least the edges of DB. By (2.1.5) and (2.1.6)

the weights in representation (2.1.3) of X have to satisfy cki ≤ bki
bkk

for all i ∈ V and k ∈ pa(i).
The statement follows, since the weights cki are by part (a) uniquely with respect to DB.

As explained before Theorem 2.5.4, we can add edges into DB while keeping the same reacha-

bility relation and still having representation (2.1.3) for X. In what follows we will use the DAG

with the maximum number of edges with this property.
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2.5 Graph reduction for a recursive ML model

Definition 2.5.5. Let D = (V,E) be a DAG. The transitive closure Dtc = (V,Etc) of D is the

DAG that has an edge j → i if and only if D has a path from j to i. ◻

The transitive reduction is essentially the inverse operation of the transitive closure: for the

transitive reduction one reduces the number of edges and for the transitive closure one adds

edges while maintaining the identical reachability relation. The transitive reduction of a DAG

D is a subgraph of D, and D is again a subgraph of the transitive closure. Moreover, all DAGs

with the same reachability matrix have the same transitive reduction and the same transitive

closure, and every node has in all such DAGs the same ancestors and descendants.

The following is a consequence of Theorem 2.5.4(b) and Remark 2.2.3(i).

Corollary 2.5.6. The recursive ML model X is also a recursive ML model on the transitive

closure of every DAG with reachability matrix sgn(B).

We use this corollary to obtain necessary and sufficient conditions on a ML coefficient ma-

trix B as in (2.1.4) to be the ML coefficient matrix of a recursive ML model. In contrast to

Theorem 2.4.2 and Corollary 2.4.3(a), we do not require that B belongs to a specific given

DAG.

Theorem 2.5.7. Let X be a ML model as in (2.1.4) with ML coefficient matrix B such that

sgn(B) is the reachability matrix of some DAG. Define

A ∶= diag(b11, . . . , bdd), B0 ∶= (bij
bii

)
d×d

, and Atc
0 ∶= B0 − idd×d,

where idd×d denotes the identity matrix. Then X is a recursive ML model if and only if the

following fixed point equation holds:

B = B ⊙B0, which is equivalent to B = A ∨B ⊙Atc
0 , (2.5.4)

where ⊙ is the matrix product from (2.2.2).

Proof. Let Dtc be the transitive closure of a DAG with node set V = {1, . . . , d} and reachability

matrix sgn(B). For i ∈ V we denote by pa(i) and an(i) the parents and ancestors of node i in

Dtc, respectively, and observe from the definition of Dtc that an(i) = pa(i) for all i ∈ V .

First we show thatX is a recursive ML model if and only if the fixed point equationB = A∨B⊙
Atc

0 holds. By Corollary 2.5.6X is a recursive ML model if and only if it is a recursive ML model

on Dtc. By Theorem 2.4.2 it suffices to show that Atc
0 is equal to the weighted adjacency matrix

A0 = ( bijbii 1pa(j)(i))
d×d

. Since B0 is a weighted reachability matrix of Dtc, we obtain

Atc
0 = B0 − idd×d = (bij

bii
1an(j)(i))

d×d
= (bij

bii
1pa(j)(i))

d×d
.

It remains to show that B ⊙B0 = A ∨B ⊙Atc
0 . By the definition of the matrix product ⊙ the

29



Chapter 2 Max-linear models on directed acyclic graphs

ji-th entry of A ∨B ⊙Atc
0 is equal to

bji1{i}(j) ∨
d

⋁
k=1

bjk(
bki
bkk

− 1{i}(k)) = bji1{i}(j) ∨
d

⋁
k=1
k≠i

bjkbki

bkk

= bji1{i}(j) ∨
d

⋁
k=1
k≠i,j

bjkbki

bkk
∨ bji1V ∖{i}(j)

=
d

⋁
k=1

bjkbki

bkk
,

which is the ji−th entry of the matrix B ⊙B0.

A nonnegative symmetric matrix is by Theorem 2.5.7 the ML coefficient matrix of a re-

cursive ML model if and only if it is a weighted reachability matrix of a DAG and satisfies

(2.5.4). Assume that we have verified these properties for a matrix B. In order to find now all

recursive ML models which have ML coefficient matrix B, we can first use (2.5.2) to derive the

minimum ML DAG DB from B and then Theorem 2.5.4(b) to find all DAGs and weights as in

(2.1.3) such that (2.1.6) holds.

2.6 Backward and forward information in a recursive ML model

We investigate relations between the components of a recursive ML model X on a DAG D =
(V,E) with ML coefficient matrix B. More precisely, we apply our previous results to identify

those components of X which provide maximal information on some other component.

We know already from Corollary 2.3.13 that Xi ≤ bii
bi`
X` for all i ∈ V and ` ∈ De(i) so that for

some node set U ⊆ V and all i ∈ V ,

⋁
j∈An(i)∩U

bji

bjj
Xj ≤Xi ≤ ⋀

`∈De(i)∩U

bii
bi`
X`. (2.6.1)

The values of the bounds in (2.6.1) can often be found as the maximum and minimum over a

smaller number of nodes in U . We illustrate this by the following example.

Example 2.6.1. [Continuation of Examples 2.2.1 and 2.3.8: bounds]

For U = {1,2} and i = 4 we find by (2.6.1) the lower bound

b14
b11

X1 ∨
b24
b22

X2 ≤X4. (2.6.2)

We discuss the lower bound and distinguish between two cases.

First assume that the path [1 → 2 → 4] is max-weighted, which is by Theorem 2.3.10(a)

equivalent to b14 = b12b24
b22

. From Corollary 2.3.13 or (2.6.1) we obtain

b12
b11

X1 ≤X2, equivalently
b14
b11

X1 ≤
b24
b22

X2.
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2.6 Backward and forward information in a recursive ML model

Therefore, the lower bound of X4 in (2.6.2) is always b24
b22
X2.

Now assume that the path [1 → 2 → 4] is not max-weighted. Since this is the only path from

1 to 4 passing through node 2, this is by Theorem 2.3.10(b) equivalent to b14 > b12b24
b22

. From the

max-linear representation (2.2.1) of X1 and X2 we have b24
b22
X2 < b14

b11
X1 if and only if

b12b24
b22

Z1 ∨ b24Z2 < b14Z1, equivalently b24Z2 < b14Z1.

The event {b24Z2 < b14Z1} has positive probability, since Z1 and Z2 are independent with support

R+, giving b14
b11
X1 as lower bound. But also the event { b14b11X1 ≤ b24

b22
X2} has positive probability,

giving the lower bound b24
b22
X2. Thus only in the first case the number of nodes in the lower

bound in (2.6.1) can be reduced. ◻

We will find that a node j ∈ An(i) ∩ U is relevant for the lower bound in (2.6.1) if no max-

weighted path from j to i passes through some other node in U . Observe that this includes the

observation made in Example 2.6.1. The nodes in the upper bound of (2.6.1) have a similar

characterization. We present a formal definition of these particular ancestors and descendants,

characterize them below in Lemma 2.6.3, and give an example afterwards.

Definition 2.6.2. Let X be a recursive ML model on a DAG D = (V,E), U ⊆ V and i ∈ V .

(a) We call a node j ∈ An(i) ∩ U lowest max-weighted ancestor of i in U if no max-weighted

path from j to i passes through some node in U ∖ {j}. We denote the set of the lowest

max-weighted ancestors of i in U by AnUlow(i).

(b) We call a node ` ∈ De(i)∩U highest max-weighted descendant of i in U if no max-weighted

path from i to ` passes through some node in U ∖ {`}. We denote the set of the highest

max-weighted descendants of i in U by DeUhigh(i). ◻

For i ∈ U we find that the only lowest max-weighted ancestor and the only highest max-

weighted descendant of i in U is the node i itself. For i ∈ U c = V ∖ U a simple characteri-

zation of AnUlow(i) and DeUhigh(i) is given next; this allows us to identify these nodes via the

ML coefficient matrix of X.

Lemma 2.6.3. Let X be a recursive ML model on a DAG D = (V,E), U ⊆ V and i ∈ V .

(a) If i ∈ U , then AnUlow(i) = DeUhigh(i) = {i}.

(b) If i ∈ U c, then

AnUlow(i) = {j ∈ an(i) ∩U ∶ bji > ⋁
k∈de(j)∩U∩an(i)

bjkbki

bkk
}, (2.6.3)

DeUhigh(i) = {` ∈ de(i) ∩U ∶ bi` > ⋁
k∈de(i)∩U∩an(`)

bikbk`
bkk

}. (2.6.4)

Proof. (a) follows immediately from the definition.
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(b) Since i ∈ U c, we have by Definition 2.6.2(a) that AnUlow(i) ⊆ an(i) ∩ U . For j ∈ an(i) ∩ U we

know from Theorem 2.3.10(b) that no max-weighted path from j to i passes through some node

in U ∖ {j} if and only if

bji > ⋁
k∈de(j)∩U∩an(i)

bjkbki

bkk
,

where we have used that i ∈ U c. Similarly, we obtain (2.6.4).

Example 2.6.4. [Continuation of Examples 2.2.1, 2.3.8, and 2.6.1: AnUlow(4)]
In order to find the lowest max-weighted ancestors of node 4 in U = {1,2}, first observe that

the only max-weighted path [2 → 4] from 2 to 4 does not pass through any node in U ∖ {2}.

Therefore, we have by Definition 2.6.2(a) that 2 ∈ AnUlow(4). For node 1 we consider – as in

Example 2.6.1 – two cases and use (2.6.3):

(1) If b14 = b12b24
b22

, then AnUlow(4) = {2}.

(2) If b14 > b12b24
b22

, then AnUlow(4) = {1,2}.

Comparing this with Example 2.6.1 shows that the lower bound of X4 in (2.6.2) is always realized

by some lowest max-weighted ancestor of node 4 in U . ◻

We prove that the lower and upper bounds in (2.6.1) are always realized by some lowest

max-weighted ancestor and highest max-weighted descendant in U , respectively. For the lower

bound this is based on the fact that between all nodes and their ancestors in U there is always a

max-weighted path which contains a lowest max-weighted ancestor in U . For the upper bound

we use the existence of a max-weighted path between all nodes and their descendants in U that

passes through some highest max-weighted descendant in U . Before we state the modified lower

and upper bounds in Proposition 2.6.6, we provide a useful characterization for a path analysis,

which includes these statements.

Lemma 2.6.5. Let X be a recursive ML model on a DAG D = (V,E). Furthermore, let U ⊆ V ,

i ∈ V , j ∈ an(i), and ` ∈ de(i).

(a) D has a max-weighted path from j to i passing through some node in U if and only if it

has a max-weighted path from j to i passing through some node in AnUlow(i).

(b) D has a max-weighted path from i to ` passing through some node in U if and only if it

has a max-weighted path from i to ` passing through some node in DeUhigh(i).

Proof. We only show (a); part (b) can be proved analogously. Assume that a max-weighted path

from j to i passes through some node in AnUlow(i). Since AnUlow(i) ⊆ U , there is obviously also a

max-weighted path from j to i that passes through some node in U .

For the converse, we may assume that i ∈ U c, since by Lemma 2.6.3(a) AnUlow(i) = {i} for i ∈ U
and hence every max-weighted path contains a node in AnUlow(i). Among all max-weighted paths

from j to i let p be one with maximum number of nodes in U . Denote by k1 the lowest node

on p contained in U ; i.e., the subpath of p from k1 to i contains no other node of U . Assume

32



2.6 Backward and forward information in a recursive ML model

that k1 /∈ AnUlow(i). Since k1 ∈ U and i ∈ U c, there is by Definition 2.6.2(a) a max-weighted path

p1 from k1 to i that passes through some node k2 ∈ U with k2 ≠ k1. Thus, by replacing in p the

subpath from k1 to i by p1, we obtain by Remark 2.3.4(iii) a max-weighted path from j to i

containing more nodes in U than p. This is however a contradiction. Hence, k1 ∈ AnUlow(i), and

p is a max-weighted path from j to i that passes through some node in AnUlow(i).

Proposition 2.6.6. Let X be a recursive ML model on a DAG D = (V,E) with ML coefficient

matrix B. Let U ⊆ V and i ∈ V . Then

⋁
j∈An(i)∩U

bji

bjj
Xj = ⋁

j∈AnUlow(i)

bji

bjj
Xj and ⋀

`∈De(i)∩U

bii
bi`
X` = ⋀

`∈DeUhigh(i)

bii
bi`
X`. (2.6.5)

Proof. Note from Definition 2.6.2(a) that AnUlow(i) ⊆ An(i) ∩U . To show the first equality, take

some k ∈ (An(i)∩U)∖AnUlow(i). Observe from Lemma 2.6.3(a) that k ≠ i and, hence, k ∈ an(i)∩U .

By Lemma 2.6.5(a) there must be a max-weighted path from k to i which passes through some

node j ∈ AnUlow(i). By (2.3.1) and Corollary 2.3.13, we obtain

bki
bkk

Xk =
bkjbji

bkkbjj
Xk ≤

bji

bjj
Xj . (2.6.6)

Since for all k ∈ (An(i) ∩ U) ∖ AnUlow(i) there exists some j ∈ AnUlow(i) such that (2.6.6) holds,

the first equality of (2.6.5) follows. The second equality may be verified analogously.

So far, for every component of X, we have identified a lower and upper bound in terms of

the components of XU = (X`, ` ∈ U). However, we cannot say anything about the quality of the

bounds. For example, we do not know in which situation a component attains one of the bounds.

We clarify this by writing all components of X as max-linear functions of the components of

XU and certain noise variables. There are many such representations, since we can always

include non-relevant ancestral components with appropriate ML coefficients as we know from

Corollary 2.3.13. To find the relevant components of XU and noise variables, we focus on those

with the minimum number of components of XU and the minimum number of noise variables.

For i ∈ V we denote by anUnmw(i) the set of all j ∈ an(i) such that no max-weighted path from j

to i passes through some node in U . By Theorem 2.3.10(b) we have

anUnmw(i) = {j ∈ an(i) ∶ bji > ⋁
k∈De(j)∩U∩An(i)

bjkbki

bkk
}. (2.6.7)

Since j ∈ an(i)∖anUnmw(i) if and only if there is a max-weighted path from j to i passing through

some node in U , we obtain from Theorem 2.3.10(a)

an(i) ∖ anUnmw(i) = {j ∈ an(i) ∶ bji = ⋁
k∈De(j)∩U∩An(i)

bjkbki

bkk
}. (2.6.8)

Theorem 2.6.7. Let X be a recursive ML model on a DAG D with ML coefficient matrix B,

and let U ⊆ V . Furthermore, let AnUlow(i) be the lowest max-weighted ancestors of node i in U
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Chapter 2 Max-linear models on directed acyclic graphs

as in Definition 2.6.2(a), and define AnUnmw(i) ∶= (anUnmw(i) ∪ {i}) ∩U c. Then for every i ∈ V ,

Xi = ⋁
k∈AnUlow(i)

bki
bkk

Xk ∨ ⋁
j∈AnUnmw(i)

bjiZj . (2.6.9)

This representation of Xi as a max-linear function of the components of XU and noise variables

involves the minimum number of components of XU and the minimum number of noise variables.

Proof. We distinguish between nodes i ∈ U and i ∈ U c. For i ∈ U we know from Lemma 2.6.3(a)

that AnUlow(i) = {i}. Furthermore, we have AnUnmw(i) = ∅, since i ∈ U and every path, hence

every max-weighted path, from some j ∈ an(i) to i passes through some node in U , namely i

itself. Thus we obtain (2.6.9). The second statement is obvious.

Now assume that i ∈ U c, and note that in this case AnUnmw(i) = anUnmw(i) ∪ {i}. Applying the

first equality in (2.6.5) and (2.2.1) as well as (2.A.2) in a second step to interchange the first

two maximum operators, we have

⋁
k∈AnUlow(i)

bki
bkk

Xk = ⋁
k∈an(i)∩U

bki
bkk

( ⋁
j∈An(k)

bjkZj) = ⋁
j∈an(i)

⋁
k∈De(j)∩an(i)∩U

bjkbki

bkk
Zj . (2.6.10)

We split up the set an(i) into anUnmw(i) and an(i) ∖ anUnmw(i) as well as the set AnUnmw(i) into

anUnmw(i) and {i} to obtain that the right-hand side of (2.6.9) is equal to

⋁
j∈an(i)∖anUnmw(i)

⋁
k∈De(j)∩an(i)∩U

bjkbki

bkk
Zj ∨ ⋁

j∈anUnmw(i)
( ⋁
k∈De(j)∩an(i)∩U

bjkbki

bkk
∨ bji)Zj ∨ biiZi.

Noting that i ∈ U c when using (2.6.8) and (2.6.7) yields

⋁
j∈an(i)∖anUnmw(i)

bjiZj ∨ ⋁
j∈anUnmw(i)

bjiZj ∨ biiZi = ⋁
j∈An(i)

bjiZj =Xi.

In order to verify that for i ∈ U c (2.6.9) is the representation of Xi with the minimum number of

components of XU and the minimum number of noise variables, we prove that each term on the

right-hand side of (2.6.9) has to appear, since otherwise some noise variable Zj in representation

(2.2.1) of Xi would have a weight strictly less than bji. We compare the noise variables on the

right-hand sides of (2.6.9) and (2.6.10). Since biiZi does not appear in (2.6.10), it has to appear

in (2.6.9). For j ∈ anUnmw(i) it follows from (2.6.7) that if Zj appears in (2.6.10), then with a

coefficient strictly less than bji. The maximum over AnUnmw(i) must therefore appear in (2.6.9).

Definition 2.6.2(a) implies that no max-weighted path from j ∈ AnUlow(i) to i passes through

some node in de(j)∩an(i)∩U . Thus observe from (2.6.10) and (2.3.2) that only the term
bji
bjj
Xj

provides Zj with the weight bji in (2.6.9) and the term
bji
bjj
Xj has to appear in (2.6.9).

We use Theorem 2.6.7 to obtain for every component Xi of X a minimal representation in

terms of the components of Xpa(i) and noise variables.

Corollary 2.6.8. Let DB be the minimum ML DAG of X as in Definition 2.5.1 with parents
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2.6 Backward and forward information in a recursive ML model

paB(i) of node i in DB. Then for all i ∈ V we have An
pa(i)
low (i) = paB(i) and

Xi = ⋁
k∈paB(i)

bki
bkk

Xk ∨ biiZi = ⋁
k∈paB(i)

ckiXk ∨ ciiZi. (2.6.11)

Proof. Recall from (2.5.1) that

paB(i) = {k ∈ pa(i) ∶ bki > ⋁
`∈de(k)∩pa(i)

bk`b`i
b``

},

and observe from this and (2.6.3) that An
pa(i)
low (i) = paB(i). Since every path from j ∈ an(i) to i

passes through some node in pa(i), there is always a max-weighted path from j to i containing

some node of pa(i). Hence, An
pa(i)
nmw (i) = (an

pa(i)
nmw (i) ∪ {i}) ∩ (pa(i))c = {i}. Thus we obtain from

(2.6.9) the first equality in (2.6.11). For the second, recall from Theorem 2.5.4(a) that bii = cii
and bki

bkk
= cki for k ∈ paB(i).

Remark 2.6.9. Representation (2.6.11) complements Theorem 2.5.4(a); we find again that the

minimum ML DAG DB yields the minimal representation of X as a recursive ML model. ◻

The following example illustrates and discusses representation (2.6.9).

Example 2.6.10. [Continuation of Examples 2.2.1, 2.3.8, 2.6.1, and 2.6.4: minimal representa-

tion of X4 by X1,X2 and X2]

We consider again U = {1,2} and i = 4. Obviously, there are max-weighted paths from 1 and 2 to

4 passing through some node in U = {1,2}. Hence, 1,2 ∈ an(4)∖anUnmw(4). Since no max-weighted

path from 3 to 4 passes through 1 or 2, we have AnUnmw(4) = (anUnmw(4) ∪ {4}) ∩U c = {3,4}. In

Example 2.6.4 we have already determined the set AnUlow(4) depending on the ML coefficients.

Thus we distinguish again between two cases:

(1) If b14 = b12b24
b22

, then X4 = b24
b22
X2 ∨ b34Z3 ∨ b44Z4.

We want to remark that the conditional independence properties of X are reflected in this

representation: from Example 2.3.8 we know that X1 á X4 ∣ X2 if the path [1 → 2 → 4] is

max-weighted, which is the case here. So it is obvious that X1 does not need to appear in

the minimal representation of X4 as max-linear function of X1 and X2.

(2) If b14 > b12b24
b22

, then X4 = b14
b11
X1 ∨ b24

b22
X2 ∨ b34Z3 ∨ b44Z4.

In particular, b14b11X1 > b24
b22
X2 is possible with positive probability; in (1) this is not possible

(see Example 2.6.1).

For U = {2} and i = 4 we have AnUlow(4) = {2}. Similarly as above we obtain that 2 ∈
an(4)∖anUnmw(4) and 3,4 ∈ AnUnmw(4). It remains to discuss node 1, which gives rise to the same

two cases as above:

(1) If the path [1→ 2→ 4] is max-weighted, then X4 = b24
b22
X2 ∨ b34Z3 ∨ b44Z4.

(2) If the path [1→ 2→ 4] is not max-weighted, then X4 = b24
b22
X2 ∨ b14Z1 ∨ b34Z3 ∨ b44Z4.
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Chapter 2 Max-linear models on directed acyclic graphs

Such minimal representations become relevant, when X is partially observed. If, for example,

X2 is observed and B is known, then the prediction problem of X4 can be solved by (conditional)

simulation of the relevant noise variables and direct computation of X4. In case (1) we need to

simulate independent Z3, Z4, whereas in case (2) additionally Z1 has to be simulated conditioned

on X2. We discuss such prediction problems in Gissibl and Klüppelberg [28]. ◻

Appendix 2.A An auxiliary lemma

Lemma 2.A.1. Let D = (V,E) be a DAG and U ⊆ V . For nonnegative functions a(i, j, k),

i, j, k ∈ V , we have for all i ∈ V ,

⋁
k∈pa(i)

⋁
j∈an(k)

a(i, j, k) = ⋁
j∈an(i)

⋁
k∈de(j)∩pa(i)

a(i, j, k), (2.A.1)

⋁
k∈an(i)∩U

⋁
j∈An(k)

a(i, j, k) = ⋁
j∈an(i)

⋁
k∈De(j)∩an(i)∩U

a(i, j, k). (2.A.2)

Proof. Since we take maxima, we only have to prove that each combination of nodes (k, j) on

the left-hand side appears also on the right-hand side and vice versa. In order to prove (2.A.1),

it suffices to show that

k ∈ pa(i) and j ∈ an(k) if and only if j ∈ an(i) and k ∈ de(j) ∩ pa(i).

By observing that an(pa(i)) ⊆ an(i) and j ∈ an(k) if and only if k ∈ de(j), this equivalence is

obvious. Eq. (2.A.2) is proved in the same way.
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Chapter 3

Tail dependence of recursive max-linear

models with regularly varying noise

variables

Abstract

Recursive max-linear structural equation models with regularly varying noise variables are con-

sidered. Their causal structure is represented by a directed acyclic graph (DAG). The problem

of identifying a recursive max-linear model and its associated DAG from its matrix of pairwise

tail dependence coefficients is discussed. For example, it is shown that if a causal ordering of

the associated DAG is additionally known, then the minimum DAG representing the recursive

structural equations can be recovered from the tail dependence matrix. For a relevant subclass

of recursive max-linear models, identifiability of the associated minimum DAG from the tail de-

pendence matrix and the initial nodes is shown. Algorithms find the associated minimum DAG

for the different situations. Furthermore, given a tail dependence matrix, an algorithm outputs

all compatible recursive max-linear models and their associated minimum DAGs.

MSC 2010 subject classifications: Primary 60G70, 05C20; secondary 05C75, 62-09, 65S05

Keywords and phrases: Causal inference, directed acyclic graph, extreme value theory, graphical

model, max-linear model, max-stable model, regular variation, structural equation model, tail

dependence coefficient

3.1 Introduction

Causal inference is fundamental in virtually all areas of science. Examples for concepts estab-

lished over the last years to understand causal inference include structural equation modeling

(see e.g. Bollen [5], Pearl [55]) and graphical modeling (see e.g. Koller and Friedman [45], Lau-

ritzen [47], Spirtes et al. [69]).

In extreme risk analysis, it is especially important to understand causal dependencies. We

consider recursive max-linear models (RMLMs), which are max-linear structural equation models

whose causal structure is represented by a directed acyclic graph (DAG). Such models are directed

graphical models (see [55], Theorem 1.4.1); i.e., the DAG encodes conditional independence
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Chapter 3 Tail dependence of recursive ML models with regularly varying noise variables

relations in the distribution via the (directed global) Markov property. RMLMs were introduced

and studied in Chapter 2. They may find their application in situations when extreme risks play

an essential role and may propagate through a network, for example, when modeling water levels

or pollution concentrations in a river or when modeling risks in a large industrial structure. In

Einmahl et al. [20] a RMLM was fitted to data from the EURO STOXX 50 Index, where the

DAG structure was assumed to be known.

In this chapter we assume regularly varying noise variables. This leads to models treated in

classical multivariate extreme value theory. The books by Beirlant et al. [4], de Haan and Ferreira

[14], and Resnick [60, 61] provide a detailed introduction into this field. A RMLM with regularly

varying noise variables is in the maximum domain of attraction of an extreme value (max-stable)

distribution. The spectral measure of the limit distribution, which describes the dependence

structure given by the DAG, is discrete. Every max-stable random vector with discrete spectral

measure is max-linear (ML), and every multivariate max-stable distribution can be approximated

arbitrarily well via a ML model (e.g. Yuen and Stoev [75], Section 2.2). This demonstrates the

important role of ML models in extreme value theory. They have been investigated, generalized,

and applied to real world problems by many researchers; see e.g. Cui and Zhang [11], Einmahl

et al. [19], Falk et al. [23], Kiriliouk [41], Schlather and Tawn [64], Strokorb and Schlather [70],

and Wang and Stoev [73].

One main research problem that is addressed for restricted recursive structural equation mod-

els, where the functions are required to belong to a specified function class, is the identifiability of

the coefficients and the DAG from the observational distribution. Recently, particular attention

in this context has been given to recursive structural equation models with additive Gaussian

noise; see e.g. Ernest et al. [21], Peters et al. [57], and references therein. For RMLMs this prob-

lem is investigated in Chapter 4. In the present chapter we discuss the identifiability of RMLMs

from their (upper) tail dependence coefficients (TDCs).

The TDC, which goes back to Sibuya [66], measures the extremal dependence between two

random variables and is a simple and popular dependence measure in extreme value theory.

Methods to construct multivariate max-stable distributions with given TDCs have been pro-

posed, for example, by Falk [22], [23], [64], and [70]. Somehow related we identify all RMLMs

with the same given TDCs.

3.1.1 Problem description and important concepts

First we briefly review RMLMs and introduce the TDC formally. We then describe the idea of

this work in more detail and state the main results.

Max-linear models on DAGs

Consider a RMLM X = (X1, . . . ,Xd) on a DAG D = (V,E) with nodes V = {1, . . . , d} and edges

E = {(k, i) ∶ i ∈ V and k ∈ pa(i)}:

Xi = ⋁
k∈pa(i)

ckiXk ∨ ciiZi, i = 1, . . . , d, (3.1.1)
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3.1 Introduction

where pa(i) denotes the parents of node i in D and cki > 0 for k ∈ pa(i)∪{i}; the noise variables

Z1, . . . , Zd, represented by a generic random variable Z, are assumed to be independent and

identically distributed with support R+ ∶= (0,∞) and regularly varying with index α ∈ R+,

abbreviated by Z ∈ RV(α). Denoting the distribution function of Z by FZ , the latter means that

lim
t→∞

1 − FZ(xt)
1 − FZ(t)

= x−α

for every x ∈ R+. Examples for FZ include Cauchy, Pareto, and log-gamma distributions. For

details and background on regular variation, see e.g. [60, 61].

The properties of the noise variables imply the existence of a normalizing sequence an ∈ R+

such that for independent copies X(1), . . . ,X(n) of X,

a−1n
n

⋁
ν=1
X(ν) d→M , n→∞, (3.1.2)

where M is a non-degenerate random vector with distribution function denoted by G and all

operations are taken componentwise. Thus X is in the maximum domain of attraction of G; we

write X ∈ MDA(G). The limit vector M (its distribution function G) is necessarily max-stable:

in the present situation we have for all n ∈ N and independent copies M (1), . . . ,M (n) of M , the

distributional equality n1/αM
d= ⋁nν=1M (ν). Furthermore, M is again a RMLM on D, with the

same weights in (3.1.1) as X and standard α-Fréchet distributed noise variables, i.e.,

FZ(x) = Φα(x) = exp{−x−α}, x ∈ R+.

A proof of (3.1.2) as well as an explicit formula for G and its univariate and bivariate marginal

distributions can be found in Appendix 3.A.2, Proposition 3.A.2.

In what follows we summarize the most important properties of X presented in Chapter 2

which are needed throughout this chapter. Every component ofX can be written as a max-linear

function of its ancestral noise variables:

Xi = ⋁
j∈An(i)

bjiZj , i = 1, . . . , d, (3.1.3)

where An(i) = an(i) ∪ {i} and an(i) are the ancestors of i in D (see Theorem 2.2.2). For i ∈ V ,

bii = cii. For j ∈ an(i), bji can be determined by a path analysis of D as explained in the

following. Throughout we write k → i whenever D has an edge from k to i. With every path

p = [j = k0 → k1 → ⋅ ⋅ ⋅ → kn = i] we associate a weight, which we define to be the product of the

edge weights along p multiplied by cjj . The coefficient bji is then the maximum weight of all

paths from j to i. In summary, we have for i ∈ V and j ∈ an(i),

bji = ⋁
p∈Pji

dji(p) with dji(p) ∶= ck0k0
n−1
∏
ν=0

ckνkν+1 , (3.1.4)

where Pji is the set of all paths from j to i. For all i ∈ V and j ∈ V ∖An(i) we set bji = 0. We call
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Chapter 3 Tail dependence of recursive ML models with regularly varying noise variables

the coefficients bji ML coefficients (MLCs) and summarize them in the ML coefficient matrix

(MLCM) B = (bij)d×d. For the reachability matrix R of D, whose ji-th entry is one if j ∈ An(i)
and zero else, we find

R = sgn(B), (3.1.5)

where sgn denotes the signum function and is taken componentwise. As a consequence, the

ancestors and descendants of every node in D can be obtained from B.

Not all paths are needed for computing bji in (3.1.4). We call a path p from j to i max-

weighted path from j to i if it realizes the maximum in (3.1.4), i.e., if bji = dji(p). The concept

of max-weighted paths is essential. This has been worked out in Chapter 2. For example, max-

weighted paths may lead to more conditional independence relations in the distribution of X

than those encoded by D via the Markov property (see Remark 2.3.9). RMLMs where all paths

are max-weighted play a central role in this chapter; we call them recursive max-weighted models

(RMWMs).

Further DAGs and weights may exist such that X satisfies (3.1.1); for a detailed characteri-

zation of these DAGs and weights, see Theorem 2.5.4. The smallest DAG of this kind is the one

that has an edge k → i if and only if this is the only max-weighted path from k to i in D (see

Remark 2.5.2(ii) and Theorem 2.5.4(a)). We call this DAG DB, the minimum ML DAG of X.

It can be determined from B (see Theorem 2.5.3). The other DAGs representing X in the sense

of (3.1.1) are those that have at least the edges of DB and the same reachability matrix. For

edges contained in DB, the weights from (3.1.1) are uniquely defined by B. From these weights

the weights for the other edges can be derived.

Remark 3.1.1. The random vector X and its distribution are characterized by the distribution

FZ of the noise variables and the max-linear dependence structure induced by D. So computing

the max-stable limit distribution G concerns only the marginal limits, whereas the max-linear

dependence structure remains always the same (cf. also the proof of Proposition 3.A.2). This

restrictive dependence structure of X can be generalized naturally within the framework of

multivariate regular variation. See [60, 61] for background on multivariate regular variation.

In the literature various equivalent formulations of regular variation for random vectors can be

found. The extent of a possible generalization can be probably best understood when considering

an equivalent representation of the dependence in a regularly varying vector. A random vector

X ∈ Rd+ is regularly varying with index α ∈ R+ if and only if there exists a random vector Θ with

values in Sd−1 = {x ∈ Rd+ ∶ ∥x∥ = 1}, where ∥ ⋅ ∥ is any norm in Rd+, such that for every x ∈ R+,

P(∥X∥ > tx,X/∥X∥ ∈ ⋅)
P(∥X∥ > t)

v→ x−αP(Θ ∈ ⋅), t→∞. (3.1.6)

The notation
v→ stands for vague convergence on the Borel σ-algebra of Sd−1. We immediately find

from (3.1.6) that the dependence structure of X is for moderate values of ∥X∥ arbitrary; only

when ∥X∥ becomes large, the dependence structure becomes that of Θ. When assuming that the

dependence structure in the limit is max-linear given by D and the marginal limits are α-Fréchet
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(with an appropriate scale parameter), then X ∈ MDA(G) with G still as in Proposition 3.A.2;

hence, X would have the same TDCs as in the present less general framework. So similarly to

the flexibility of the margins, expressed by Z ∈ RV(α), there would also be flexibility in the

dependence structure.

In this chapter the restriction to the limiting max-linear dependence provides a sufficient

model as the focus lies on the causal structure in terms of the DAGs. This allows for a more

concise notation and makes the focus of the chapter more transparent. ◻

The tail dependence matrix of X

For i ∈ V we denote the distribution function of component Xi of the RMLM X by Fi and its

generalized inverse by F←i (u) = inf{x ∈ R+ ∶ F (x) ≥ u} for 0 < u < 1. The TDC between Xi and

Xj is then given by the limit

χ(i, j) = lim
u↑1

P(Xi > F←i (u) ∣Xj > F←j (u)).

We summarize all TDCs in the tail dependence matrix (TDM) χ = (χ(i, j))d×d.

Recall the fact that Z ∈ RV(α) and the definition of the MLCM B of X. Defining then the

standardized MLCM of X by

B = (bij)d×d ∶= (
bαij

∑k∈An(j) b
α
kj

)
d×d

, (3.1.7)

the TDC between Xi and Xj can be computed as

χ(i, j) = χ(j, i) = ∑
k∈An(i)∩An(j)

bki ∧ bkj . (3.1.8)

By (3.1.5) and (3.1.7) it is the sum of the pairwise minima of the i-th and j-th column of B.

A proof of (3.1.8) is given in Appendix 3.A.2. There we implicitly show that X and the limit

vector M from (3.1.2) have the same TDM χ.

The TDC χ(i, j) is zero if and only if i and j do not have common ancestors. Therefore, the

initial nodes of D (i.e., the nodes without parents) constitute a set V0 of maximum cardinality

such that χ(i, j) is zero for all distinct i, j ∈ V0. This property turns out to be helpful when

identifying from χ. We also show that χ(i, j) is zero if and only if Xi and Xj are independent,

which is reminiscent of the multivariate Gaussian distribution with its equivalence between

independence and zero correlation.

Obviously, when investigating χ, understanding the structure of B is essential. Not surpris-

ingly, B inherits structural properties from B. For example, B is again a MLCM of a RMLM

on the same DAG D, and its columns add up to one. Properties of B, which we use throughout

this chapter, are summarized in Appendix 3.A.2, Lemma 3.A.1.
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Chapter 3 Tail dependence of recursive ML models with regularly varying noise variables

Identifiability from χ

The main goal of this chapter is to investigate how far the dependence structure of X and the

DAG D can be recovered from the TDM χ. We call two RMLMs that have the same TDM

χ-equivalent. For example, X and the limit vector M from (3.1.2) are χ-equivalent. The set

{(̃bij)d×d ∈ Rd×d+ ∶ b̃ij = βjb
1/α̃
ij for all i, j ∈ V and βj ∈ R+} (3.1.9)

contains the MLCMs of all RMLMs that have the same standardized MLCM B as X and

regularly varying noise variables with index α̃ ∈ R+; this can be verified by using Theorem 2.5.7.

Obviously, all the corresponding RMLMs are also χ-equivalent to X. Therefore, given χ only,

we can never identify the true representations (3.1.1) and (3.1.3) of X and the DAG D.

The RMLM X has the same minimum ML DAG DB as every RMLM with MLCM B

(Lemma 3.A.1(e)). As a consequence, DB can be determined from B (cf. Theorem 2.5.3). This

raises the question of whether B and, hence, the minimum ML DAG of X are identifiable from

χ. The answer is generally no, quite simply due to the symmetry of χ.

Example 3.1.2. [B is not identifiable from χ]

Consider two RMLMs on the DAGs D1 and D2 with standardized MLCMs

B1 =
⎡⎢⎢⎢⎢⎣

1 b

0 1 − b

⎤⎥⎥⎥⎥⎦
and B2 =

⎡⎢⎢⎢⎢⎣

1 − b 0

b 1

⎤⎥⎥⎥⎥⎦
1 2D1 1 2 D2

for some b ∈ (0,1). For both we find the same TDCs: χ(1,1) = χ(2,2) = 1, χ(1,2) = χ(2,1) = b. ◻

We show, however, that B can be computed recursively from χ and some additional informa-

tion on the DAG D. This may be its reachability matrix R but also only a causal ordering σ;

i.e., σ is a permutation on V = {1, . . . , d} such that σ(j) < σ(i) for all i ∈ V and j ∈ an(i). If X

is max-weighted, then B is identifiable from χ and the initial nodes V0 of D.

The question also arises which RMLMs are all χ-equivalent to X and what their minimum

ML DAGs are. Since by (3.1.9) every MLCM of a RMLM with TDM χ can be obtained from

its particular standardized version, it suffices to clarify which the standardized MLCMs of all

RMLMs with TDM χ are. To this end we use the identifiability results mentioned above to

develop an algorithm that computes these matrices from χ. The proposed procedure can be

considerably simplified for RMWMs.

Another interesting point is how DAGs of χ-equivalent RMLMs relate to each other. Here

we also investigate the RMWMs as a relevant subclass of RMLMs separately. For example, an

initial node in a DAG of a RMWM is again an initial node in a DAG of a χ-equivalent RMWM

or it must be a terminal node (i.e., a node without descendants).

This chapter is organized as follows. We provide some basic results in Section 3.2. For a RMLM

X we investigate its TDM χ and link it to its standardized MLCM B and its associated DAG D.

Here we discuss the situations when two components of X have zero tail dependence. We also
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introduce the important concept of χ-cliques, which allows us to identify potential initial node

sets in D from χ. Section 3.3 is devoted to RMWMs. We point out the specific properties of χ

which lead to the identifiability of B from χ and the initial nodes. We also present necessary

and sufficient conditions on a matrix to be the TDM of a RMWM. In Section 3.4 we then study

different identifiability problems based on χ. We propose algorithms to compute B from χ and

some further information on D such as a causal ordering. We also explain how the standardized

MLCMs of all RMLMs that have TDM χ can be determined. In Section 3.5 we consider χ-

equivalent RMLMs and analyze relationships between them and their DAGs. We use these

results to investigate whether RMWMs on different DAGs can be χ-equivalent at all and if so

under which conditions. Section 3.6 concludes and suggests further directions of research.

Note that all recursion formulas presented in the chapter are well-defined, since we work with

DAGs. Throughout we illustrate our findings with examples for the (standardized) MLCM of

a RMLM on a given DAG. It can be verified by Theorem 2.4.2 or Corollary 2.4.3(a) that the

presented matrices are indeed MLCMs of RMLMs on the particular DAGs. Moreover, we use the

following notation throughout the chapter. We denote the ancestors, parents, and descendants

of node i in D by an(i), pa(i), and de(i), respectively. We define An(i) ∶= an(i) ∪ {i}, Pa(i) ∶=
pa(i) ∪ {i}, and De(i) ∶= de(i) ∪ {i}. For (possibly random) ai ∈ R we set ⋁i∈∅ ai = 0 and

∑i∈∅ ai = 0. We generally consider statements for i ∈ ∅ as invalid.

3.2 A recursive ML model and its tail dependence matrix

In this section for a RMLM X on a DAG D, we highlight some relations between its TDM χ,

its standardized MLCM B, and the DAG D. They prove particularly useful when we identify

the RMLMs that are χ-equivalent to X in Section 3.4.4 or investigate DAGs of χ-equivalent

RMLMs in Section 3.5.

3.2.1 The tail dependence coefficients and max-weighted paths

We start with lower and upper bounds for the TDC between two components of X such that

in D the two corresponding nodes are connected by a path. We also show that max-weighted

paths lead to simple expressions for the TDCs and to nice relationships between them. Exactly

these properties motivate us to consider RMWMs in detail later on.

Lemma 3.2.1. Let i ∈ V and j ∈ an(i).

(a) We have 0 < bji

bjj
≤ χ(j, i) with equality if and only if there is a max-weighted path from

every k ∈ An(j) to i passing through j. In that case, χ(j, i) = ∑k∈An(j) bki.

(b) We have χ(j, i) ≤ ∑k∈An(j) bki < 1.

(c) Let k ∈ de(j) ∩ an(i). If there is a max-weighted path from every ` ∈ An(j) to k and from

every ` ∈ An(j) to i passing through j as well as from every ` ∈ An(k) to i passing through
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Chapter 3 Tail dependence of recursive ML models with regularly varying noise variables

k, then

χ(j, i) = χ(j, k)χ(k, i) < χ(j, k) ∧ χ(k, i). (3.2.1)

Proof. As An(j) ⊆ An(i), we have by (3.1.8), χ(j, i) = ∑k∈An(j) bki ∧ bkj .
(a) For k ∈ An(j), by Lemma 3.A.1(d), (f),

bkjbji

bjj
≤ bki ∧ bkj with equality if and only if there

is a max-weighted path from k to i passing through j. With this, using also Lemma 3.A.1(b),

(a), we obtain χ(j, i) ≥ bji

bjj
∑k∈An(j) bkj =

bji

bjj
> 0 with equality if and only if there is a max-

weighted path from every k ∈ An(j) to i passing through j. In that case Lemma 3.A.1(d) yields

χ(j, i) = ∑k∈An(j)
bkjbji

bjj
= ∑k∈An(j) bki.

(b) As An(j) ⊊ An(i), by Lemma 3.A.1(a), (b) we find χ(j, i) ≤ ∑k∈An(j) bki < ∑k∈An(i) bki = 1.

(c) The equality in (3.2.1) follows from (a) and Lemma 3.A.1(d), the inequality then from the

strict inequalities in (a) and (b).

In the proof of Lemma 3.2.1 we have used that for i ∈ V , k ∈ an(i), and j ∈ an(k), D has a max-

weighted path from j to i passing through k if and only if bji = bjkbki

bkk
(Lemma 3.A.1(d)). As to the

equality in (3.2.1), one could expect that the MLCs can be replaced by the corresponding TDCs.

The following example disproves this. In particular, it proves that the converse of Lemma 3.2.1(c)

is not true in general and also that we may have the equality in (3.2.1) although k /∈ de(j)∩an(i).

Example 3.2.2. [χ(j, i) = χ(j, k)χ(k, i) is neither necessary nor sufficient for bji = bjkbki

bkk
]

(1) Consider a RMLM on D1 with standardized MLCM

1

4

3

2 D1

B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0.4 0.3

0 1 0.4 0.25

0 0 0.2 0.125

0 0 0 0.325

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

As b24 = b23b34
b33

, the path [2 → 3 → 4] is max-weighted. Computing χ we find χ(2,4) <
χ(2,3)χ(3,4). That is, χ(2,4) ≠ χ(2,3)χ(3,4) although there is a max-weighted path

from 2 to 4 passing through 3.

(2) Now consider a RMLM on D1 with standardized MLCM

B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0.1 0.085

0 1 0.8 0.5

0 0 0.1 0.04

0 0 0 0.375

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The path [2→ 3→ 4] is not max-weighted, since b23b34
b33

≠ b24. However, we have χ(2,3)χ(3,4) =
χ(2,4). In summary, χ(2,3)χ(3,4) = χ(2,4) although there is no max-weighted path from

2 to 4 passing through 3.
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(3) Finally, consider a RMLM on D2 with standardized MLCM

1

4

3

2 D2

B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 1/3 1/6
0 1 1/3 1/3
0 0 1/3 0

0 0 0 1/2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Here we find χ(1,3)χ(3,4) = χ(1,4); but 3 is not an ancestor of 4. According to this the

equality in (3.2.1) may hold although k /∈ de(j) ∩ an(i). ◻

3.2.2 The tail dependence coefficients and the initial nodes

In this section we mainly investigate how χ and D relate to each other.

Two components of X are independent if and only if the TDC between them is zero. We link

these two properties with the relationship between the two corresponding nodes in D.

Theorem 3.2.3. Let X be a RMLM on a DAG D = (V,E) with TDM χ and i, j ∈ V . Then the

following statements are equivalent:

(a) Xi and Xj are independent.

(b) An(i) ∩An(j) = ∅.

(c) χ(i, j) = 0.

Proof. The equivalence between (a) and (b) follows from representation (3.1.3) for Xi and Xj

and the distributional properties of the noise variables. The one between (b) and (c) is immediate

by (3.1.8) and Lemma 3.A.1(a).

Remark 3.2.4. (i) Let R be the reachability matrix of D. The ij-th (ji-th) entry of RTR

equals the cardinality of An(i)∩An(j). Thus by Theorem 3.2.3, sgn(χ) = sgn(RTR). That

is, we learn from χ(i, j) > 0 only that An(i) ∩ An(j) ≠ ∅ but not whether i and j are

connected by a path as is the case for the (standardized) MLCs (Lemma 3.A.1(a) and

(3.1.5), respectively).

(ii) In the more general framework of Remark 3.1.1, parts (a) and (b) of Theorem 3.2.3 would

have to be replaced by

(a’) Xi and Xj are asymptotically independent; i.e., the corresponding components of the

limit vector are independent.

(b’) The dependence structure in the limit is given by a DAG, in which An(i)∩An(j) = ∅.

The equivalence between (a’) and (c) is a well-known result in extreme value theory; see

e.g. Theorem 6.2.3 and the subsequent remark in [14]. ◻
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In what follows we investigate the relationship between χ and the initial nodes V0 of D. This

is motivated by the fact that a RMLM is recursively defined by the structure of D. For example,

to obtain representation (3.1.3) of X from its representation (3.1.1) recursively, we would start

with representation (3.1.3) of the components Xi with i ∈ V0. Then by proceeding iteratively

we would substitute the parental variables in (3.1.1) by their representation (3.1.3). Such an

iterative procedure starting with the initial nodes could also identify all RMLMs which have

(the given) TDM χ.

The TDC between two components of X simplifies considerably when in D one of the corre-

sponding nodes is an initial node. If both nodes are initial nodes, then the TDC between them

is zero. We provide these and further related results.

Lemma 3.2.5. (a) For distinct i, j ∈ V0, χ(i, j) = 0.

(b) Let W ⊆ V such that χ(i, j) = 0 for all distinct i, j ∈W . Then ∣W ∣ ≤ ∣V0∣.

(c) For i ∈ V and j ∈ V0, An(i) ∩ V0 = {k ∈ V0 ∶ χ(k, i) > 0} and De(j) = {k ∈ V ∶ χ(j, k) > 0}.

(d) For i ∈ V and j ∈ V0, χ(j, i) = bji.

Proof. (a) and (c) follow from the fact that initial nodes have no ancestors and Theorem 3.2.3.

(b) Assume that ∣W ∣ > ∣V0∣. Since for every i ∈ V there is some j ∈ An(i) ∩ V0, we have j ∈
An(i1) ∩ An(i2) for some j ∈ V0 and distinct i1, i2 ∈ W . As An(i1) ∩ An(i2) ≠ ∅, again by

Theorem 3.2.3, χ(i1, i2) ≠ 0. This is, however, a contradiction to the fact that χ(i1, i2) = 0 as

i1, i2 ∈W . Hence, ∣W ∣ ≤ ∣V0∣.
(d) As An(j) = {j}, we obtain from (3.1.8) by Lemma 3.A.1(a), (f), χ(j, i) = ∑dk=1 bki ∧ bkj =
bji ∧ bjj = bji.

From Lemma 3.2.5(a), (b) we learn that V0 is one of the node sets of maximum cardinality

such that for every two distinct nodes, the TDC between their corresponding components of X

is zero. We introduce a concept which allows us to determine these sets from χ by a graph. For

an illustration of these notions, we refer to Example 3.4.12 below.

Definition 3.2.6. Let χ be the TDM of a RMLM on a DAG D and W ⊆ V .

(a) We call the undirected graph that has nodes V and an edge between k and i if and only

if χ(k, i) > 0, χ-graph.

Let now Dχ be the complement of the χ-graph; i.e., Dχ is the graph with the same node set V

but the edge set consists of the edges that are not present in the χ-graph.

(b) We call W a χ-clique if it is a clique in Dχ; i.e., every two (distinct) nodes in W are

connected by an edge in Dχ.

(c) We call W a maximum χ-clique if it is a maximum clique in Dχ; i.e., W is a clique in Dχ

such that no clique in Dχ with higher cardinality exists. ◻
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3.3 A recursive max-weighted model and its tail dependence matrix

The χ-graph associated with the TDM χ of X corresponds to the covariance graph of the ran-

dom vector X introduced in Cox and Wermuth [10], in which two (distinct) nodes are connected

by an edge if and only if their corresponding components are dependent (cf. Theorem 3.2.3). In

the non-Gaussian case, however, the name covariance graph is misleading.

The following theorem is an immediate consequence of Definition 3.2.6 and Lemma 3.2.5(a),

(b).

Theorem 3.2.7. Let X be a RMLM on a DAG D with TDM χ. Then the set V0 is a maximum

χ-clique.

Theorem 3.2.7 raises the question of how V0 is related to possible other maximum χ-cliques.

Lemma 3.2.8. Let W be a maximum χ-clique.

(a) There is only one bijection ϕ ∶ V0 → W such that for every j ∈ V0, χ(j,ϕ(j)) > 0 and

χ(j, i) = 0 for all i ∈W ∖ {ϕ(j)}.

(b) Let ϕ be the bijection from (a). Then for j ∈ V0, An(ϕ(j)) ∩ V0 = {j} and De(j) ∩W =
{ϕ(j)}. In particular, if j ≠ ϕ(j), then D has a path from j to ϕ(j).

(c) Let i, j ∈ V ∖W . If χ(i, j) < ∑k∈W χ(k, i) ∧ χ(k, j), then V0 ≠W .

Proof. (a) Since maximum χ-cliques have the same cardinality, we know from Theorem 3.2.7

that ∣V0∣ = ∣W ∣. As for every i ∈ W , An(i) ∩ V0 ≠ ∅, it suffices by Lemma 3.2.5(c) to show that

∣De(j) ∩W ∣ = 1 for j ∈ V0. We first assume that ∣De(j) ∩W ∣ > 1. Using Theorem 3.2.3 similarly

as in the proof of Lemma 3.2.5(b) yields a contradiction. Hence, ∣De(j) ∩W ∣ ≤ 1. As ∣V0∣ = ∣W ∣,
∣De(j) ∩W ∣ = 1 must hold.

(b) follows from (a) and Lemma 3.2.5(c).

(c) Assume that V0 =W . Using Lemma 3.A.1(a) and Lemma 3.2.5(d) we obtain from (3.1.8)

χ(i, j) =
d

∑
k=1

bki ∧ bkj ≥ ∑
k∈W

χ(k, i) ∧ χ(k, j).

Since this contradicts the conditions of (c), V0 and W must be different.

3.3 A recursive max-weighted model and its tail dependence

matrix

In this section we focus on RMWMs, i.e., RMLMs where all paths are max-weighted. We first

present some structural properties of a RMWM X on a DAG D with standardized MLCM B.

We then investigate its TDM χ and show that the assumption of all paths in D being max-

weighted involves simple relations between the TDCs and the (standardized) MLCs. Finally, we

give necessary and sufficient conditions on a matrix to be the TDM of a RMWM on a given

DAG.
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Chapter 3 Tail dependence of recursive ML models with regularly varying noise variables

3.3.1 Some structural properties of a recursive max-weighted model

All RMLMs on polytrees are RMWMs simply because in a polytree there is at most one path

between every two (distinct) nodes (see also Example 2.3.2). Furthermore, a RMWM can be con-

structed on every DAG, as the following example shows. Note the particularly simple structure

of the introduced class of RMLMs.

Example 3.3.1. [The homogeneous model]

Let D = (V,E) be a DAG with V = {1, . . . , d} and Z1, . . . , Zd as in (3.1.1). Consider the RMLM

defined by

Xi ∶=
1

∣An(i)∣1/α
( ⋁
k∈pa(i)

∣An(k)∣1/αXk ∨Zi), i = 1, . . . , d.

We find that every path p from j to i has the same weight dji(p) = ∣An(i)∣−1/α. As a consequence,

every path is max-weighted and X is a RMWM. Its representation (3.1.3) is given by

Xi =
1

∣An(i)∣1/α ⋁
j∈An(i)

Zj , i = 1, . . . , d.

For the TDC from (3.1.8) between Xi and Xj , we have

χ(i, j) = ∑
k∈An(i)∩An(j)

1

∣An(i)∣ ∧
1

∣An(j)∣ =
∣An(i) ∩An(j)∣
∣An(i)∣ ∨ ∣An(j)∣ .

If j ∈ an(i), then this reduces to χ(j, i) = ∣An(j)∣/∣An(i)∣. Finally, by Proposition 3.A.2 the

components of the limit vector M introduced in (3.1.2) are standard α-Fréchet distributed. ◻

Recall from the Introduction the prominent role of the minimum ML DAG DB of X, which

equals the minimum ML DAG DB of a RMLM with MLCM B (Lemma 3.A.1(e)). The fact that

X is max-weighted ensures that DB only depends on sgn(B) but not on the precise values of the

standardized MLCs. Since sgn(B) is the reachability matrix of D ((3.1.5) and Lemma 3.A.1(a)),

DB can be determined from pure graph theoretical properties. To clarify this we introduce a

basic concept in graph theory, which goes back to Aho et al. [1].

Definition 3.3.2. Let D be a DAG.

(a) An edge k → i is redundant if D has another path from k to i.

(b) The DAG Dtr obtained from D by deleting its redundant edges is called transitive reduction

of D. ◻

Since DB has an edge k → i if and only if this is the only max-weighted path from k to i

in D, the fact that D has only max-weighted paths yields part (i) of the following remark. By

Definition 3.3.2 and Lemma 3.A.1(a) (ii) is a consequence of (i).

Remark 3.3.3. Let Dtr be the transitive reduction of D.

(i) The DAGs DB and Dtr coincide.
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3.3 A recursive max-weighted model and its tail dependence matrix

(ii) DB is the DAG with the minimum number of edges that has reachability matrix sgn(B).

(iii) Even if X is a RMLM but not max-weighted, it may happen that DB = Dtr with all paths

max-weighted in DB. In that case all results presented in this section hold with respect to

Dtr. ◻

3.3.2 Properties of the tail dependence coefficients of a recursive

max-weighted model

The following result points out the simple structure of χ. It follows from Lemma 3.2.1(a), (c),

since in D all paths are max-weighted.

Lemma 3.3.4. Let i ∈ V .

(a) For j ∈ An(i), χ(j, i) = bji

bjj
= ∑k∈An(j) bki = ∑k∈An(j) bkkχ(k, i).

(b) For k ∈ an(i) and j ∈ an(k), χ(j, i) = χ(j, k)χ(k, i) < χ(j, k) ∧ χ(k, i).

(c) For j ∈ an(i) and some path [j = k0 → k1 → ⋅ ⋅ ⋅ → kn = i], χ(j, i) = ∏n−1
ν=0 χ(kν , kν+1).

The equality χ(j, i) = χ(j, k)χ(k, i) for some j ∈ An(i) ∩ An(k) does not necessarily imply

that k ∈ An(i) (cf. part (3) of Example 3.2.2). For RMWMs, however, whenever these products

hold for all j ∈ An(i) ∩An(k) ∩ V0, where V0 are again the initial nodes in D, we can conclude

that k ∈ An(i).

Proposition 3.3.5. For i, k ∈ V , k ∈ An(i) if and only if χ(j, i) = χ(j, k)χ(k, i) for all j ∈
An(i) ∩An(k) ∩ V0.

Proof. Assume that χ(j, i) = χ(j, k)χ(k, i) for all j ∈ An(i) ∩ An(k) ∩ V0. We first show that

χ(`, i) ≤ χ(`, k) for every ` ∈ An(i)∩An(k). We obtain for j ∈ An(`)∩V0, using the assumptions

and Lemma 3.3.4(b),

χ(k, i) = χ(j, i)
χ(j, k) = χ(j, `)χ(`, i)

χ(j, `)χ(`, k) = χ(`, i)
χ(`, k) .

Hence, χ(`, i) = χ(`, k)χ(k, i) and χ(`, i) ≤ χ(`, k). Together with Lemma 3.3.4(a) we then find

from (3.1.8)

χ(k, i) = ∑
`∈An(k)∩An(i)

b``(χ(`, k) ∧ χ(`, i)) = ∑
`∈An(k)∩An(i)

b``χ(`, i)

= χ(k, i) ∑
`∈An(k)∩An(i)

b``χ(`, k).

By the assumptions and Theorem 3.2.3 χ(k, i) > 0 so that ∑`∈An(k)∩An(i) b``χ(`, k) = 1. As

1 = ∑`∈An(k) b``χ(`, k) (Lemma 3.3.4(a)) and b``χ(`, k) > 0 for all ` ∈ An(k) (Lemma 3.A.1(a)

and Theorem 3.2.3), we have An(i) ∩An(k) = An(k). This finally implies that An(k) ⊆ An(i),
equivalently k ∈ An(i).

The converse statement holds due to Lemma 3.3.4(b).

49



Chapter 3 Tail dependence of recursive ML models with regularly varying noise variables

In Lemma 3.3.4(a) we have written the positive standardized MLCs as functions of themselves

and TDCs. We now present expressions for them only in terms of TDCs.

Proposition 3.3.6. For i ∈ V and j ∈ An(i),

bji = χ(j, i) − ∑
k∈an(j)

λjkχ(k, i) with λjk = 1 − ∑
`∈de(k)∩an(j)

λj`. (3.3.1)

Proof. As by Lemma 3.3.4(a) bji = χ(j, i)−∑k∈an(j) bki, it suffices to show that∑k∈an(j) λjkχ(k, i) =
∑k∈an(j) bki. Using again Lemma 3.3.4(a) yields

∑
k∈an(j)

λjkχ(k, i) = ∑
k∈an(j)

λjk ∑
`∈An(k)

b`i.

Noting that k ∈ an(j) and ` ∈ An(k) if and only if ` ∈ an(j) and k ∈ De(`) ∩ an(j), we can

interchange the two summation operators to obtain

∑
k∈an(j)

λjk ∑
`∈An(k)

b`i = ∑
`∈an(j)

b`i ∑
k∈De(`)∩an(j)

λjk = ∑
`∈an(j)

b`i(λj` + ∑
k∈de(`)∩an(j)

λjk) = ∑
`∈an(j)

b`i,

where we have used the definition of λj` for the last equality.

Before we give an example of representation (3.3.1), we summarize some characteristics of the

coefficients λjk. Denoting by patr(j) the parents of j in the transitive reduction Dtr of D, we have

λjk = 1 for k ∈ patr(j) as de(k) ∩ an(j) = ∅. For k ∈ an(j) ∖patr(j) it can be verified that λjk ≠ 0

if and only if there exists no k̃ ∈ de(k) ∩ an(j) such that ∣De(k̃) ∩ patr(j)∣ = ∣De(k) ∩ patr(j)∣.

Example 3.3.7. [On representation (3.3.1)]

Consider a RMWMX on the DAG D depicted below, and note that here D = Dtr. We determine,

as an example, representation (3.3.1) for the MLCs b36,66 and b98,99:

b36,66 = χ(36,66) − χ(35,66),
b98,99 = χ(98,99) − χ(34,99) − χ(66,99) − χ(97,99) + χ(2,99) + χ(35,99).

1 2 35 36 37 . . . 65 66 98 99

3 4 5 . . . 33 34

67 68 . . . 96 97

D

◻

We address again the interrelations between the TDCs and prove that every TDC can be

written as linear combination of minima of two TDCs.
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Proposition 3.3.8. For i, j ∈ V ,

χ(i, j) = ∑
k∈An(i)∩An(j)

µij,k(χ(k, i) ∧ χ(k, j)) with µij,k = 1 − ∑
`∈de(k)∩An(i)∩An(j)

µij,`. (3.3.2)

Proof. Applying Lemma 3.3.4(a) and Lemma 3.A.1(b), (d) we obtain for k ∈ An(i) ∩An(j),

χ(k, i) ∧ χ(k, j) = bki

bkk
∧ bkj
bkk

= ( bki
bkk

∧ bkj
bkk

)( ∑
`∈An(k)

b`k) = ∑
`∈An(k)

b`kbki

bkk
∧ b`kbkj

bkk
= ∑
`∈An(k)

b`i ∧ b`j .

With this we then have

∑
k∈An(i)∩An(j)

µij,k(χ(k, i) ∧ χ(k, j)) = ∑
k∈An(i)∩An(j)

µij,k ∑
`∈An(k)

b`i ∧ b`j .

Using that k ∈ An(i)∩An(j) and ` ∈ An(k) if and only if ` ∈ An(i)∩An(j) and k ∈ De(`)∩An(i)∩
An(j) to interchange the summation operators similarly as in the proof of Proposition 3.3.6 and

the definition of µij,` similarly as the one of λj` there, we finally find (3.3.2).

For i, j ∈ V denote by lca(i, j) the lowest common ancestors of i and j; i.e., k ∈ lca(i, j) if

and only if k ∈ An(i) ∩An(j) and D has no path from k to another node in An(i) ∩An(j). For

µij,k from (3.3.2) we have µij,k = 1 for k ∈ lca(i, j) as in that case de(k) ∩ An(i) ∩ An(j) = ∅.

It can be verified that µij,k = 0 for k ∈ (An(i) ∩ An(j)) ∖ lca(i, j) if and only if there exists

some k̃ ∈ de(k) ∩ An(i) ∩ An(j) such that ∣De(k̃) ∩ lca(i, j)∣ = ∣De(k) ∩ lca(i, j)∣. With this, if

j ∈ An(i), then µij,j = 1 and µij,k = 0 for k ∈ an(j). Thus in that case the right-hand side of the

first equality in (3.3.2) is equal to χ(j, i) ∧ χ(j, j) = χ(j, i), and representation (3.3.2) is trivial.

Note the analogy of the coefficients µij,k to the coefficients λjk in (3.3.1).

Example 3.3.9. [On representation (3.3.2)]

Consider a RMWM on the DAG D depicted below. We present, as an example, representation

(3.3.2) for the TDCs χ(95,96) and χ(96,97):

χ(95,96) =χ(33,95) ∧ χ(33,96),
χ(96,97) =χ(33,96) ∧ χ(33,97) + χ(64,96) ∧ χ(64,97) + χ(94,96) ∧ χ(94,97)

− χ(34,96) ∧ χ(34,97) − χ(2,96) ∧ χ(2,97).

1 2 34 35 36 . . . 63 64

96

97

3 4 5 . . . 32 33

65 66 . . . 93 94

95

D

◻
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Chapter 3 Tail dependence of recursive ML models with regularly varying noise variables

We conclude this section with necessary and sufficient conditions on a matrix to be the TDM

of a RMWM on a given DAG D. To be such a matrix, the ij-th (ji-th) entry of the matrix

must satisfy a property depending on the relationship between i and j in D. For example,

based on Theorem 3.2.3, it must be zero if and only if An(i) ∩An(j) = ∅. By Lemma 3.A.1(e),

Remark 3.3.3(i), and Theorem 2.5.4, a RMWM on D is a RMWM on every DAG that has

reachability matrix R of D. Consequently, it would be sufficient to specify R and to require the

four conditions below for any DAG with reachability matrix R such as the transitive reduction

Dtr of D.

Theorem 3.3.10. Let D = (V,E) be a DAG with nodes V = {1, . . . , d} and reachability matrix

R. Let χ = (χ(i, j))d×d be a symmetric matrix with ones on the diagonal. For i ∈ V define

bii ∶= 1 −∑k∈an(i) bkkχ(k, i) recursively. Then χ is the TDM of a RMWM X on D if and only if

the following conditions hold:

(a) sgn(χ) = sgn(RTR).

(b) For all i ∈ V , bii > 0.

(c) For all i ∈ V , j ∈ an(i), and k ∈ de(j) ∩ pa(i), χ(j, i) = χ(j, k)χ(k, i).

(d) For all i, j ∈ V such that i /∈ An(j) and j /∈ An(i) but An(i) ∩An(j) ≠ ∅,

χ(i, j) = ∑
k∈An(i)∩An(j)

bkk(χ(k, i) ∧ χ(k, j)).

In that case bii is the i-th diagonal entry of the standardized MLCM B of X. Furthermore, for

i, j ∈ V , bji = 0 if j ∈ V ∖An(i), and bji = bjjχ(j, i) if j ∈ an(i).

Proof. Assume that χ is the TDM of a RMWM X on D. The statements (a) and (c) follow from

Remark 3.2.4(i) and Lemma 3.3.4(b). By Lemma 3.3.4(a) bii is the i-th diagonal entry of the

standardized MLCM B of X. Since all bii are positive according to Lemma 3.A.1(a), assertion

(b) holds. The representation of χ(i, j) in (d) is again a consequence of Lemma 3.3.4(a).

Assume now that (a)–(d) hold. For every i ∈ V define bji ∶= bjjχ(j, i) for all j ∈ an(i) and for

all j ∈ V ∖ An(i), bji ∶= 0. We first show that B = (bij)d×d is the MLCM of a RMWM on D,

where weights from its representation (3.1.1) are given by cii ∶= bii and cki ∶= bki
bkk

= χ(k, i) for

i ∈ V and k ∈ pa(i). As sgn(χ) = sgn(RTR) and bii > 0, the weights cki for i ∈ V and k ∈ Pa(i)
are positive, which is a necessary condition for them by the definition of a RMLM in (3.1.1).

Let p = [j = k0 → k1 → ⋅ ⋅ ⋅ → kn = i] be a path in D. Using (c) iteratively yields

dji(p) = cjj
n−1
∏
ν=0

ckν ,kν+1 = bjj
n−1
∏
ν=0

χ(kν , kν+1) = bjjχ(j, k2)
n−1
∏
ν=2

χ(kν , kν+1) = . . . = bjjχ(i, j) = bji.

This implies that B = (bij)d×d is the MLCM of a RMWM X. Since it suffices to specify one

RMLM that has TDM χ, we may assume that Z ∈ RV(1). Denoting the TDM of X by χ =
(χ(i, j))d×d, it remains to show that χ = χ. Since the diagonal entries of χ equal one, the

equality of the diagonal entries is obvious. For i, j ∈ V such that An(i) ∩ An(j) = ∅, the ij-th
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(ji-th) entries of χ and χ are zero and, hence, equal due to condition (a) and Theorem 3.2.3.

The matrix B is the standardized MLCM of X as α = 1 and bii = 1 − ∑k∈an(i) bki for every

i ∈ V . Thus for i ∈ V and j ∈ an(i) we have by Lemma 3.3.4(a) and the definition of B that

χ(j, i) = bji

bjj
= χ(i, j). Finally, for i, j ∈ V such that j /∈ An(i) and i /∈ An(j) but An(i)∩An(j) ≠ ∅,

using Lemma 3.3.4(a), the result shown before, and condition (d), we obtain

χ(i, j) = ∑
k∈An(i)∩An(j)

bkk(χ(k, i) ∧ χ(k, j)) = ∑
k∈An(i)∩An(j)

bkk(χ(k, i) ∧ χ(k, j)) = χ(i, j).

In Example 3.5.5 below we present a possible application of Theorem 3.3.10.

Remark 3.3.11. In Theorem 3.3.10 the coefficients bii can also be defined by

1−∑k∈an(i) λikχ(k, i) with λik as in (3.3.1). We give a sketch of a proof of this assertion: we show

that λik = 1−∑`∈de(k)∩an(i) λ`k and use this to verify that if (c) holds, then the assertion is valid

as well. Moreover, condition (d) can be replaced by

(d’) For all i, j ∈ V such that i /∈ An(j) and j /∈ An(i) but An(i) ∩An(j) ≠ ∅,

χ(i, j) = ∑
k∈An(i)∩An(j)

µij,k(χ(k, i) ∧ χ(k, j)) with µij,k as in (3.3.2).

By going through the proof of Theorem 3.3.10, we observe that this can be done due to the

representation of χ(i, j) in (3.3.2). ◻

3.4 Identifiability problems based on the tail dependence

matrix of a recursive ML model

Throughout this section we assume that the TDM χ of a RMLM X on a DAG D with standard-

ized MLCM B is given. We first show the identifiability of B from χ and the reachability matrix

R of D. We then assume that the reachability relation of D is not fully known but only a causal

ordering σ. This still leads to identifiability of B from χ. We also investigate whether B can be

recovered from χ and the initial nodes V0 of D. It turns out that this is generally not possible,

but we verify it for RMWMs. We prove the different identifiability results by providing algo-

rithms which compute B from χ and the additionally known information on D. Finally, based

on these results we present an approach, which finds the standardized MLCMs of all RMLMs

with TDM χ. Since this method simplifies for RMWMs considerably, we give an adapted and

modified version for this subclass of RMLMs.

3.4.1 Identifiability from the tail dependence matrix and the reachability

matrix

The following algorithm computes B from χ and R recursively. The rows of B are filled up

successively until B is obtained, where the number of ancestors determines the order in which
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the rows are treated. The existence of such an algorithm proves the identifiability of B from χ

and R.

Algorithm 3.4.1. [Find B from χ and R]

For ν = 0, . . . , d − 1,

for j ∈ V such that ∣an(j)∣ = ν, set

bji = 0 for all i ∈ V ∖De(j) and bji = χ(j, i) − ∑
k∈an(j)

bki ∧ bkj for all i ∈ De(j). (3.4.1)

Eq. (3.4.1) follows from Lemma 3.A.1(a), (3.1.8), and Lemma 3.A.1(f). If X is max-weighted,

then by Lemma 3.3.4(a) (3.4.1) can be replaced by

bji = 0 for all i ∈ V ∖De(j), bjj = 1 − ∑
k∈an(j)

bkj , and bji = bjjχ(j, i) for all i ∈ de(j).

(3.4.2)

To avoid the iterative loop, we can also use (3.3.1) for computing the diagonal entries of B.

Note, however, that this requires to calculate the coefficients λjk appearing in (3.3.1) recursively

as well.

3.4.2 Identifiability from the tail dependence matrix and a causal ordering

So far we have dealt with the identifiability from χ and the reachability matrix R of D. Here we

investigate the identifiability from χ and a causal ordering σ of D. If R is given, then we know

for every two (distinct) i, j ∈ V whether there is a path from j to i; but from σ we only learn

that there is no path from j to i if σ(j) > σ(i).
There exists a causal ordering for every DAG due to the acyclicity (see also Diestel [15],

Appendix A). However, it is not necessarily unique. For example, the DAG D1 from Exam-

ple 3.2.2 has the identity function on V = {1,2,3,4} and the permutation σ̃ on V given by

σ̃(2) = 1, σ̃(1) = 2, σ̃(3) = 3, σ̃(4) = 4 as causal orderings.

The DAG D has a causal ordering which can be completely described by its initial nodes V0

and χ as follows.

Lemma 3.4.2. We denote the initial nodes by V0 = {i1, . . . , i∣V0∣} and define V i
0 ∶= {k ∈ V0 ∶

χ(k, i) > 0} for i ∈ V . Then D has a causal ordering σ such that

σ(iν) = ν for ν = 1, . . . , ∣V0∣ and for all i, j ∈ V , σ(j) < σ(i) whenever ∣V j
0 ∣ < ∣V i

0 ∣. (3.4.3)

Proof. Recall from Lemma 3.2.5(c) that V j
0 = An(j)∩V0 and V i

0 = An(i)∩V0. With this it is not

difficult to see that D has such a causal ordering.

Now we give an iterative procedure which computes B from χ and σ. Obviously, this proves

the identifiability of B from χ and σ. Here the rows of B are also filled up successively, where

the order of the nodes given by σ defines the order in which the rows are treated.
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3.4 Identifiability problems based on the TDM of a recursive ML model

Algorithm 3.4.3. [Find B from χ and σ]

For ν = 1, . . . , d,

for j ∈ V such that σ(j) = ν, set

bji = 0 for all i ∈ V such that σ(j) > σ(i),
bji = χ(j, i) − ∑

k∶σ(k)<σ(j)
bki ∧ bkj for all i ∈ V such that σ(j) ≤ σ(i). (3.4.4)

Eq. (3.4.4) can be obtained from (3.1.8) by using Lemma 3.A.1(a), the definition of a causal

ordering, and Lemma 3.A.1(f).

3.4.3 Identifiability of recursive max-weighted models from the tail

dependence matrix and the initial nodes

In what follows we assume X to be max-weighted. Then recalling Lemma 3.2.5(c), Proposi-

tion 3.3.5 involves a procedure to determine R from χ and V0. Since Algorithm 3.4.1 computes

B from χ and R, we can identify B from χ and V0. This is usually not possible outside the class

of RMWMs.

Example 3.4.4. [B is generally not identifiable from χ and V0]

Consider two RMLMs on D1 and D2 with standardized MLCMs B1 and B2 given by

B1 =

⎡⎢⎢⎢⎢⎢⎢⎣

1 0.2 0.3

0 0.8 0.4

0 0 0.3

⎤⎥⎥⎥⎥⎥⎥⎦

and B2 =

⎡⎢⎢⎢⎢⎢⎢⎣

1 0.2 0.3

0 0.4 0

0 0.4 0.7

⎤⎥⎥⎥⎥⎥⎥⎦

.

1

2 3

D1 1

3 2

D2

We find by Lemma 3.A.1(d) that none of the two models is max-weighted. Since both have the

same χ and D1 and D2 share the same initial node V0 = {1}, we cannot distinguish between B1

and B2 based on χ and V0. ◻

Proceeding as suggested by Proposition 3.3.5 to recover R from χ and V0 is very tedious,

since many conditions may need to be verified. Therefore, we introduce an alternative method

which computes B from χ and V0: we first determine a causal ordering σ of D and apply then

Algorithm 3.4.3 to obtain B. From the next proposition we learn how a causal ordering σ of D
can be computed from χ and V0; note that we encountered property (i) in (3.4.3).

Proposition 3.4.5. Let V i
0 for i ∈ V be as in Lemma 3.4.2. Every permutation σ on V such

that for all i, j ∈ V ,

(i) σ(j) < σ(i) whenever ∣V j
0 ∣ < ∣V i

0 ∣ and

(ii) σ(j) < σ(i) whenever ∣V j
0 ∣ = ∣V i

0 ∣ and maxk∈V i0 χ(k, i) < max
k∈V j0

χ(k, j)

is a causal ordering of D.
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Proof. Assume that σ is no causal ordering of D, i.e., σ(j) > σ(i) for some i ∈ V and j ∈ an(i).
Recall from Lemma 3.2.5(c) that V j

0 = An(j) ∩ V0 and V i
0 = An(i) ∩ V0. As j ∈ an(i), V j

0 ⊆
V i

0 . But then because of the properties of σ, V j
0 = V i

0 and max
k∈V j0

χ(k, j) ≤ max
k∈V j0

χ(k, i).
Assume now that j ∈ V j

0 , and note that i /∈ V j
0 as j ∈ an(i). Then, since for i1, i2 ∈ V the TDC

χ(i1, i2) = 1 if and only if i1 = i2 (cf. (3.1.8) and Lemma 3.A.1(a)), we find 1 = max
k∈V j0

χ(k, j) ≤
max

k∈V j0
χ(k, i) < 1. This contradiction proves that j /∈ V j

0 , which implies again that V j
0 =

an(j) ∩ V0. As max
k∈V j0

χ(k, j) ≤ max
k∈V j0

χ(k, i), χ(k, j) ≤ χ(k, i) for some k ∈ an(j) ∩ V0.

Observe from Lemma 3.3.4(b) that j /∈ an(i), since otherwise χ(k, i) < χ(k, j). This, however,

contradicts our original assumption, and σ must be a causal ordering of D.

Finally, we clarify the precise steps of our approach to determine B from χ and V0.

Algorithm 3.4.6. [Modification of Algorithm 3.4.3 for RMWMs: find B from χ and V0]

1. Find a causal ordering σ of D from χ and V0:

for ν = 1, . . . , ∣V0∣,

find all j ∈ V such that ∣V j
0 ∣ = ∣{k ∈ V0 ∶ χ(k, j) > 0}∣ = ν and summarize them in the

set Aν ;

sort the nodes k1, . . . , k∣Aν ∣ from Aν such that

max
`∈V0

χ(`, k1) ≥ max
`∈V0

χ(`, k2) ≥ . . . ≥ max
`∈V0

χ(`, k∣Aν ∣);

for µ = 1, . . . , ∣Aν ∣,

set σ(kµ) = ∑ν−1λ=1 ∣Aλ∣ + µ, where ∑0
λ=1 ∶= 0.

2. Apply Algorithm 3.4.3 to obtain B from χ and σ.

Observe from Proposition 3.4.5 that every permutation σ on V which can be chosen in step

1. is indeed a causal ordering of D.

3.4.4 Identifiability from the tail dependence matrix

We now combine the previous results to find the standardized MLCMs of all RMLMs that have

TDM χ. In the first part we deal with general RMLMs. Because of the identifiability properties

derived in Section 3.4.3, we assume in the second part that χ is the TDM of a RMWM. We

provide an algorithm, which outputs the standardized MLCMs of all RMWMs that have TDM χ.

(General) recursive max-linear models

Every permutation σ̃ on V = {1, . . . , d} is a causal ordering of a DAG with nodes V but not

necessarily of a DAG that corresponds to a RMLM with TDM χ. But if this is the case, then

applying Algorithm 3.4.3 with σ = σ̃ yields the corresponding standardized MLCM B. This

suggests the following procedure to prove the existence of a RMLM which has TDM χ and

whose associated DAG has causal ordering σ̃: first apply Algorithm 3.4.3 with σ = σ̃, and check
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then whether the obtained matrix B is the standardized MLCM of a RMLM which has TDM χ

and whose associated DAG has causal ordering σ̃. In the second step it is enough to verify that

B is the MLCM of a RMLM, which can be done by Theorem 2.5.7.

Lemma 3.4.7. Let σ̃ be a permutation on V and B the matrix obtained by applying Algo-

rithm 3.4.3 with σ = σ̃. If B is the MLCM of a RMLM (RMWM), then B is the standard-

ized MLCM of a RMLM (RMWM) which has TDM χ and whose associated DAG has causal

ordering σ̃.

Proof. LetX be the RMLM (RMWM) with MLCMB and Z ∈ RV(1). Its existence is guaranteed

asB is the MLCM of a RMLM (RMWM). We show thatX has standardized MLCMB and TDM

χ as well as that its associated DAG D has causal ordering σ̃. Recall from (3.1.5) that sgn(B) is

the reachability matrix of D. Thus by (3.4.4) σ̃ is a causal ordering of D and bii = 1−∑k∈an(i) bki
for every i ∈ V . As the latter holds and α = 1, B is the standardized MLCM of X. The fact that

X has TDM χ also follows from (3.4.4).

So the following “naive” method finds the standardized MLCMs of all RMLMs that have

TDM χ: for every permutation on V compute the matrix B from Algorithm 3.4.3, and check

whether it is the MLCM of a RMLM; if so, then B is the standardized MLCM of a RMLM

with TDM χ. However, the number of permutations on V to be investigated can often be

significantly reduced. By Theorem 3.2.7 and Lemma 3.2.8(c) the set of all maximum χ-cliques

W (see Definition 3.2.6) such that χ(i, j) ≥ ∑k∈W χ(k, i)∧χ(k, j) for all i, j ∈ V ∖W contains the

initial node sets of all DAGs underlying RMLMs with TDM χ. Hence, it suffices to investigate

the causal orderings of the DAGs that have such initial nodes W . But also the number of causal

orderings to be investigated for every such set W can be reduced further by Lemma 3.4.2: it is

enough to consider those permutations on V that satisfy the properties σ has in (3.4.3) with

V0 =W . The following algorithm describes the precise steps of the proposed method to find the

standardized MLCMs of all RMLMs with TDM χ.

Algorithm 3.4.8. [Find all B from χ]

1. Find all maximum χ-cliques:

(a) find the complement Dχ of the χ-graph;

(b) find all maximum cliques of Dχ.

2. For every maximum χ-clique W = {i1, . . . , i∣W ∣},

(a) check χ(i, j) ≥ ∑k∈W χ(k, i) ∧ χ(k, j) for all i, j ∈ V ∖W ;

if not, then there is no RMLM with TDM χ on a DAG with initial nodes W ;

else,

(b) for every permutation σ̃ on V = {1, . . . , d} such that

σ̃(iν) = ν for ν = 1, . . . , ∣W ∣ and

σ̃(j) < σ̃(i) whenever ∣{k ∈W ∶ χ(k, j) > 0}∣ < ∣{k ∈W ∶ χ(k, i) > 0}∣,

i. apply Algorithm 3.4.3 with σ = σ̃;
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ii. check whether B obtained in i. is the MLCM of a RMLM, for example, using

Theorem 2.5.7;

if not, then there is no RMLM with TDM χ on a DAG with causal ordering σ̃;

else, B is the standardized MLCM of a RMLM with TDM χ.

When the algorithm returns a standardized MLCM B of a RMLM with TDM χ in step ii.,

then it is not necessary to perform steps i., ii. for further permutations on V which are causal

orderings of DAGs with reachability matrix sgn(B), since all of them would lead to the same B.

For the application of Algorithm 3.4.8, we have assumed so far that χ is the TDM of a RMLM.

If this is not the case, Algorithm 3.4.8 would not produce any output. The same applies to

Algorithm 3.4.11 below if χ is not the TDM of a RMWM.

One could drop step 2.(a) and perform step 2.(b) for all maximum χ-cliques. However, the

performance of step 2.(a) can be very effective.

Example 3.4.9. [Not all maximum χ-cliques are initial node sets]

Consider the TDM χ of a RMLM on the DAG D depicted below. Note that such a RMLM

is max-weighted, since D is a polytree (cf. Section 3.3.1). Theorem 3.2.3 yields that the sets

{1}, . . . ,{1000} are the maximum χ-cliques. For k ∈ {2, . . . ,999} we know from Lemma 3.3.4(b)

that χ(1,1000) < χ(1, k) ∧χ(k,1000). The property tested in step 2.(a) is therefore not fulfilled

for the maximum χ-cliques W ∈ {{2}, . . . ,{999}}. However, we can verify by Lemma 3.3.4(b)

that it is fullfilled for W ∈ {{1},{1000}}. Consequently, step 2.(b) needs only be performed for

W ∈ {{1},{1000}} and not for the other 998 maximum χ-cliques.

1 2 . . . 999 1000D

◻

It is indeed necessary to perform step ii., i.e., to verify that a matrix B obtained in i. is a

MLCM of a RMLM.

Example 3.4.10. [Not every B obtained in ii. belongs to a RMLM]

Consider the TDM

χ =

⎡⎢⎢⎢⎢⎢⎢⎣

1 1/10 1/3
1/10 1 13/30

1/3 13/30 1

⎤⎥⎥⎥⎥⎥⎥⎦

.

Performing steps i. and ii. of Algorithm 3.4.8 with σ̃ being the identity function on V = {1,2,3}
and also with σ̃ given by σ̃(1) = 1, σ̃(3) = 2, σ̃(2) = 3 (note that these permutations are really

tested in step 2.(b)), we find

B1 =

⎡⎢⎢⎢⎢⎢⎢⎣

1 1/10 1/3
0 9/10 1/3
0 0 1/3

⎤⎥⎥⎥⎥⎥⎥⎦

and B2 =

⎡⎢⎢⎢⎢⎢⎢⎣

1 1/10 1/3
0 17/30 0

0 1/3 2/3

⎤⎥⎥⎥⎥⎥⎥⎦

.
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As can be verified by Theorem 2.4.2, the matrix B1 is the MLCM of a RMLM on the DAG D1

depicted in Example 3.4.4. Although sgn(B2) is the reachability matrix of a DAG, namely of

the DAG D2 from Example 3.4.4, which is a necessary property of a matrix to be the MLCM

of a RMLM according to (3.1.5), it is no MLCM of a RMLM. ◻

Recursive max-weighted models

Assume now that χ is the TDM of a RMWM. We modify and adapt Algorithm 3.4.8 to obtain

a procedure which outputs the standardized MLCMs of all RMWMs with TDM χ. Among the

maximum χ-cliques which we find in step 2.(a) of Algorithm 3.4.8 are the initial node sets of

the DAGs underlying the RMWMs that have TDM χ. We learn from Proposition 3.4.5 and

Lemma 3.4.7 that a maximum χ-clique is such an initial node set if and only if the matrix B

obtained by Algorithm 3.4.6 is the MLCM of a RMWM. In that case, B is obviously the stan-

dardized MLCM of a RMWM with TDM χ. These observations lead to the following procedure.

Algorithm 3.4.11. [Modification of Algorithm 3.4.8 for RMWMs: find all B from χ]

1. Find all maximum χ-cliques (cf. step 1. of Algorithm 3.4.8).

2. For every maximum χ-clique W ,

(a) check χ(i, j) ≥ ∑k∈W χ(k, i) ∧ χ(k, j) for all i, j ∈ V ∖W ;

if not, then there is no RMWM with TDM χ on a DAG with initial nodes W ;

else,

i. apply Algorithm 3.4.6 with V0 =W ;

ii. check the following properties for the matrix B obtained in i.:

- sgn(B) is the reachability matrix of a DAG

- for all i ∈ V , j ∈ an(i), and k ∈ de(j) ∩ pa(i), bji = bjkbki

bkk

if not, then there is no RMWM with TDM χ on a DAG with initial nodes W ;

else, B is the standardized MLCM of a RMWM with TDM χ.

That the properties we verify for the matrix B in step ii. are sufficient for B to be the MLCM

of a RMWM can be verified by Corollary 2.4.3(a).

To conclude this section, we highlight the essential steps of Algorithm 3.4.11 with an example.

Example 3.4.12. [The class of RMWMs is not closed under χ-equivalence]

Consider the TDM

1 2

3 4 Dχ
χ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0.2 0

0 1 0.6 0.5

0.2 0.6 1 0.5

0 0.5 0.5 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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Chapter 3 Tail dependence of recursive ML models with regularly varying noise variables

We read from the complement Dχ of the χ-graph that the sets W1 = {1,2} and W2 = {1,4}
are the maximum χ-cliques. Applying Algorithm 3.4.6 with V0 = W1 and V0 = W2, we get the

matrices

B1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0.2 0

0 1 0.6 0.5

0 0 0.2 0

0 0 0 0.5

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and B2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0.2 0

0 0.5 0.1 0

0 0 0.2 0

0 0.5 0.5 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

1 2

3 4D1

1 4

3 2 D2

The matrix B1 is the MLCM of a RMWM on D1, whereas B2 is not the MLCM of a RMWM,

but it is the MLCM of a RMLM on D2. Therefore, all RMWMs with TDM χ have the same

standardized MLCM B1, and D1 is their associated DAG. Furthermore, all these models are

χ-equivalent to the RMLMs with standardized MLCM B2. ◻

3.5 χ-equivalent recursive ML models and their DAGs

In this section we mainly present interrelations between DAGs of χ-equivalent RMLMs.

One of the best known equivalence relations on the set of DAGs is certainly the Markov

equivalence: two DAGs are Markov equivalent if they entail the same conditional independence

relations via the Markov property; for a characterization of such DAGs, see e.g. Verma and

Pearl [71]. The associated DAG of a recursive linear Gaussian structural equation model can be

identified from the distribution only up to a Markov equivalence class (under the assumption of

faithfulness; see e.g. Spirtes and Zhang [68]). In the following example we discuss the relation

between χ-equivalence of RMLMs and Markov equivalence of their associated DAGs.

Example 3.5.1. [The difference between χ-equivalence of RMLMs and Markov equivalence of

their DAGs]

(1) Undirected graphs underlying Markov equivalent DAGs coincide. Example 3.4.12 clarifies

that this does not hold for DAGs of χ-equivalent RMLMs. Such DAGs are therefore not

necessarily Markov equivalent.

(2) For the TDCs of a RMLMX on D1, which is always a RMWM, we have by Lemma 3.3.4(b)

that χ(1,3) < χ(1,2)∧χ(2,3). Since D2 has initial node 2, by Lemma 3.2.8(c) there cannot

be a RMLM that is χ-equivalent to X on D2. Thus although the DAGs D1 and D2 are

Markov equivalent, there exist no χ-equivalent RMLMs on D1 and D2.

(3) As can be verified by Theorem 3.3.10, RMLMs on the Markov equivalent DAGs D1 and

D3 are always χ-equivalent. This shows that there can be χ-equivalent RMLMs on Markov

equivalent DAGs.
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1 2 3D1 1 2 3D2 3 2 1D3

◻

DAGs of χ-equivalent RMLMs have the same number of initial nodes, since the initial node

sets of such DAGs are maximum χ-cliques, which have the same cardinality by definition. We

learn from Algorithm 3.4.3 that if the standardized MLCMs of two χ-equivalent RMLMs differ,

then the causal orderings of their associated DAGs must also differ. So for these two DAGs there

exist nodes i, j ∈ V such that one DAG has a path from j to i and the other has one from i to

j. We provide further properties of two DAGs underlying χ-equivalent RMLMs.

Proposition 3.5.2. Let X and X̃ be χ-equivalent RMLMs on DAGs D and D̃, respectively.

We denote the initial nodes in D and D̃ by V0 and Ṽ0, the ancestors of i by an(i) and ãn(i),

and the descendants of i by de(i) and d̃e(i).

(a) There is only one bijection ϕ ∶ V0 → Ṽ0 such that for every j ∈ V0, χ(j,ϕ(j)) > 0 and

χ(j, j̃) = 0 for all j̃ ∈ Ṽ0 ∖ {ϕ(j)}.

Let ϕ be the bijection from (a) and j ∈ V0.

(b) We have An(ϕ(j))∩V0 = D̃e(ϕ(j))∩V0 = {j}. In particular, if j ≠ ϕ(j), then D has a path

from j to ϕ(j), and D̃ has one from ϕ(j) to j.

(c) We have De(j) = D̃e(ϕ(j)).

(d) For i ∈ V , Ãn(i) ∩ Ṽ0 = {ϕ(j) ∶ j ∈ An(i) ∩ V0}.

Proof. (a) is immediate by Lemma 3.2.8(a), since Ṽ0 is a maximum χ-clique.

(b) Since Ṽ0 is a maximum χ-clique, according to Lemma 3.2.8(b), An(ϕ(j)) ∩ V0 = {j}. Note

that for every j̃ ∈ Ṽ0, χ(̃j,ϕ−1(̃j)) > 0 and χ(̃j, j) > 0 for all j ∈ V0∖{ϕ−1(̃j)}, where ϕ−1 ∶ Ṽ0 → V0

denotes the inverse of ϕ. As V0 is a maximum χ-clique, we therefore have again by Lemma 3.2.8(b)

that D̃e(i) ∩ V0 = {ϕ−1(i)} with i = ϕ(j), which is obviously equivalent to D̃e(ϕ(j)) ∩ V0 = {j}.

(c) Let i ∈ De(j). By (b) j ∈ An(ϕ(j))∩An(i) and, consequently, by Theorem 3.2.3 χ(ϕ(j), i) > 0.

Lemma 3.2.5(c) then yields that i ∈ D̃e(ϕ(j)). Hence, De(j) ⊆ D̃e(ϕ(j)). From this, by reversing

the roles of D and D̃ and noting that χ(̃j,ϕ−1(̃j)) > 0 for all j̃ ∈ Ṽ0, we observe that D̃e(ϕ(j)) ⊆
De(j).
(d) can be verified by (c).

Recursive max-weighted models

Now we consider χ-equivalent RMWMs and investigate their DAGs. Because of Theorem 3.2.7,

Algorithm 3.4.6, and Lemma 3.A.1(e), if a TDM χ of a RMWM has one maximum χ-clique

W , all RMWMs with TDM χ (the models are then χ-equivalent by definition) have the same

standardized MLCM and, hence, the same minimum ML DAG, which again has initial nodes W .

By Algorithm 3.4.6 the initial nodes of DAGs of χ-equivalent RMLMs with different standardized
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MLCMs must also differ. We present further interrelationships between DAGs of χ-equivalent

RMWMs with regard to their initial nodes.

Theorem 3.5.3. Let X and X̃ be χ-equivalent RMWMs on DAGs D and D̃, respectively. We

denote by V0 and Ṽ0 the initial nodes in D and D̃ and by V∞ and Ṽ∞ their terminal nodes. Let

ϕ ∶ V0 → Ṽ0 be the bijection from Proposition 3.5.2(a) and j ∈ V0 such that j ≠ ϕ(j).

(a) We have ϕ(j) ∈ V∞. In particular, Ṽ0 ⊆ (V0 ∩ Ṽ0) ∪ V∞.

(b) If p = [j = k0 → k1 → ⋅ ⋅ ⋅ → kn−1 → kn = ϕ(j)] is a path in the transitive reduction Dtr of D,

then p̃ = [ϕ(j) = kn → kn−1 → ⋅ ⋅ ⋅ → k1 → k0 = j] is a path in the transitive reduction D̃tr of

D̃.

Proof. We denote by an(i) and ãn(i) the ancestors of i in D and D̃ and by de(i) and d̃e(i) its

descendants.

(a) Assume that ϕ(j) /∈ V∞. Consequently, by Proposition 3.5.2(b) D has a path from j to some

i ≠ ϕ(j) passing through ϕ(j). Replacing V0 by Ṽ0, we learn from the the proof of Lemma 3.2.8(c)

that χ(j, i) ≥ χ(j,ϕ(j)) ∧ χ(ϕ(j), i). But this contradicts Lemma 3.3.4(b). Hence, ϕ(j) ∈ V∞.

(b) To prove that p̃ is a path in D̃tr, because of the properties of D̃tr, it suffices to show

that for ν = 0, . . . , n − 1, kν+1 ∈ ãn(kν) and d̃e(kν+1) ∩ ãn(kν) = ∅. Recalling from Proposi-

tion 3.5.2(b) that An(ϕ(j)) ∩ V0 = {j}, we observe that An(kν) ∩An(kν+1) ∩ V0 = {j}. We then

obtain from Proposition 3.5.2(d) that Ãn(kν) ∩ Ãn(kν+1) ∩ Ṽ0 = {ϕ(j)}. By Lemma 3.3.4(b) we

have χ(kν , ϕ(j)) = χ(kν , kν+1)χ(kν+1, ϕ(j)). As Ãn(kν) ∩ Ãn(kν+1) ∩ Ṽ0 = {ϕ(j)}, using Propo-

sition 3.3.5 then proves that kν+1 ∈ ãn(kν). To show that d̃e(kν+1) ∩ ãn(kν) = ∅, assume the

converse. Let ` ∈ d̃e(kν+1) ∩ ãn(kν). By reversing the roles of Dtr and D̃tr and noting that for

every j̃ ∈ Ṽ0, χ(̃j,ϕ−1(̃j)) > 0 and χ(̃j, j) > 0 for all j ∈ V0 ∖ {ϕ−1(̃j)}, where ϕ−1 ∶ Ṽ0 → V0

denotes the inverse of ϕ, we know from above that then kν ∈ an(`) and ` ∈ an(kν+1), i.e.,

de(kν)∩an(kν+1) ≠ ∅. But this is in contradiction to the fact that p is a path in Dtr. Hence, D̃tr

must contain p̃.

In the next example we use Theorem 3.5.3 to find RMWMs that are χ-equivalent to a given

one.

Example 3.5.4. [Continuation of Example 3.3.7: find χ-equivalent RMWMs]

By Theorem 3.2.3 the sets {1}, . . . ,{99} are the maximum χ-cliques. Since 99 is the only terminal

node in D, it may be the only initial node of a DAG that underlies a potential RMWM with

the same TDM χ as X and differs from D. Thus the DAG

99 98 66 65 . . . 37 36 35 2 1

34 33 . . . 5 4 3

97 96 . . . 68 67
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is the transitive reduction D̃tr of such a DAG. To verify the existence of a RMWM with TDM

χ on a DAG whose transitive reduction is D̃tr, we may compute the matrix B from (3.4.2) and

check then whether it is the MLCM of a RMWM. ◻

We conclude this section with an example investigating whether a RMWM on a known DAG

is χ-equivalent to a RMWM on another given DAG.

Example 3.5.5. [The existence of χ-equivalent RMWMs on given DAGs]

We consider a RMWM X with TDM χ on D1 and clarify when X is χ-equivalent to a RMWM

on D2. Note that all RMLMs on D1 and on D2 are max-weighted. By Theorem 3.3.10 we find

χ(1,2) = 0, χ(1,4) = 0, χ(1,3) > 0, 1 − χ(1,3) − χ(2,3) > 0,

1 − χ(2,4) > 0, χ(3,4) = χ(2,3) ∧ χ(2,4) > 0

and also that χ is the TDM of a RMWM on D2 if and only if

χ(1,2) = 0, χ(1,4) = 0, χ(1,3) > 0, 1 − χ(1,3) − χ(3,4) > 0,

1 − χ(2,4) > 0, χ(2,3) = χ(2,4) ∧ χ(3,4) > 0.

This implies that X is χ-equivalent to a RMWM on D2 if and only if χ(2,3) = χ(3,4).
As shown in Example 3.4.12 the matrix χ given therein is the TDM of a RMWM on D1. As

χ(2,3) = 0.6 ≠ χ(3,4) = 0.5, such a model cannot be χ-equivalent to a RMWM on D2. Of course,

we already know this from Example 3.4.12.

1 2

3 4D1

1 4

3 2 D2

◻

3.6 Conclusion and outlook

A RMLM is not restricted to heavy-tailed noise variables, but is defined in (2.1.3) for indepen-

dent noise variables with support R+. Only, if the noise variables are heavy-tailed, the TDM is

meaningful (not identical to the zero matrix) for modeling the dependence structure in a RMLM.

In this heavy-tailed setting, we considered the problem of identifying a RMLM X on a DAG

D from its TDM χ. Simply because of the symmetry of χ, the identifiability of X is not possible

in general. RMLMs with arbitrary index of regular variation and MLCM whose column sums

are also arbitrary have TDM χ. As our focus was on the causal structure of X represented

by D, we concentrated on the standardized model, where the index of regular variation is one

and the columns of its MLCM B add up to one. We showed that B can be recovered from

χ and some additional information on D such as the full reachability relation or only a causal

ordering. In these situations we can also determine the minimum ML DAG DB ofX, the smallest
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Chapter 3 Tail dependence of recursive ML models with regularly varying noise variables

DAG which represents the recursive max-linear dependence structure of X. We developed an

algorithm which outputs the standardized MLCMs of all RMLMs having TDM χ. Moreover,

we found the RMWMs as a relevant subclass of RMLMs. The simple structure of their TDMs

allows for identifiability of B and DB from χ and the initial nodes of D. This led to a simpler

approach to find the standardized MLCMs of all RMWMs with TDM χ.

Finally, we would like to say a few words about how the results of this chapter can be applied

statistically. The first step would be the estimation of χ. Of course, this is usually based on

observations, from which we could learn more than only the extreme dependence between every

two components of X. Extremal data are, however, sufficient for estimating χ. Estimators can

be derived from estimators of the tail dependence function (Huang [36]). An estimator for the

latter that is suitable for our situation is, for example, the empirical one introduced in [36] and

studied further in Drees and Huang [17]. Many modifications of this estimator can be found (see

e.g. the textbooks [4, 14]). A parametric estimator has been suggested in [20].

Since zero tail dependence is essential for the causal dependence between two components (see

Theorem 3.2.3), we would also want to test zero tail dependence between every two components

of X. This is equivalent to testing asymptotic independence (cf. Remark 3.2.4(ii)). Correspond-

ing tests, which can be consulted in this context, were introduced in Coles et al. [9], Draisma

et al. [16], Ledford and Tawn [49], and Peng [56]. A similar problem occurs with Gaussian graph-

ical model selection. It can be performed by testing conditional independence relations, which

is equivalent to testing zero entries in the inverse of the covariance matrix (cf. [47], Proposi-

tion 5.2). We plan to investigate variants of methods developed in this context, for example,

in Drton and Perlman [18], Friedman et al. [24], Kalisch and Bühlmann [39], Meinshausen and

Bühlmann [52], and Rothman et al. [63]. A further goal will be to derive relations between

(conditional) independence in a regularly varying graphical model and its TDM.

Appendix 3.A

3.A.1 Properties of the standardized ML coefficient matrix of a recursive

ML model

We summarize some properties of the standardized MLCM B defined in (3.1.7), which are used

throughout the chapter.

Lemma 3.A.1. Let X be a RMLM on a DAG D with MLCM B and standardized MLCM B.

(a) We have sgn(B) = sgn(B).

(b) For i ∈ V , ∑k∈An(i) bki = ∑dk=1 bki = 1.

(c) The matrix B is the MLCM of a RMLM on D.

(d) For i ∈ V , k ∈ an(i), and j ∈ an(k), bji ≥ bjkbki

bkk
with equality if and only if there is a

max-weighted path from j to i passing through k.

(e) The minimum ML DAGs DB and DB coincide.
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(f) For distinct i, j ∈ V , bjj > bji.

Proof. (a) and (b) are immediate consequences of the definition of B and (3.1.5).

(c) can be verified by Theorem 2.4.2.

(d) The inequality follows from (c) and Corollary 2.3.12 and the rest of the statement from

Theorem 2.3.10(a) and by observing that bji = bjkbki

bkk
if and only if bji = bjkbki

bkk
.

(e) is a consequence of Theorem 2.5.3 and the definition of B.

(f) For j ∈ V ∖An(i) we have immediately by (a) that bji = 0 < bjj . For j ∈ An(i) we obtain by

parts (b) and (d),

1 = ∑
k∈An(j)

bki + ∑
k∈An(i)∖An(j)

bki ≥
bji

bjj
∑

k∈An(j)
bkj + ∑

k∈An(i)∖An(j)
bki =

bji

bjj
+ ∑
k∈An(i)∖An(j)

bki.

Since An(i) ∖ An(j) ≠ ∅ and bki > 0 for all k ∈ An(i) ∖ An(j), we find 1 > bji

bjj
, equivalently

bjj > bji.

3.A.2 Derivation of the tail dependence matrix of a recursive ML model

We first prove (3.1.2) and specify G and its univariate and bivariate marginal distributions.

Proposition 3.A.2. Let X be a RMLM on a DAG D with MLCM B. Then X ∈ MDA(G) with

G(x) = exp{ −
d

∑
j=1

⋁
i∈De(j)

(bji
xi

)
α
}, x = (x1, . . . , xd) ∈ Rd+.

Let M = (M1, . . . ,Md) be a random vector with distribution function G. Then for i, j ∈ V the

distribution functions of Mi and (Mi,Mj) are given by

Gi(xi) = exp{ − x−αi ∑
j∈An(i)

bαji} and Gij(xi, xj) = exp{ − ∑
k∈An(i)∪An(j)

(bki
xi

)
α
∨ (bkj

xj
)
α
}.

Proof. As Z ∈ RV(α), there exists a normalizing sequence an ∈ R+ such that for every x ∈ R+,

lim
n→∞

FnZ(anx) = Φα(x) (3.A.1)

(e.g. [60], Proposition 1.11). Using (3.1.3), the independence of the noise variables, and (3.A.1),

we obtain for x ∈ Rd+,

[P(X ≤ anx)]
n = [P( ⋁

j∈An(i)
bjiZj ≤ anxi, i ∈ V )]n

= [P(Zj ≤ an ⋀
i∈De(j)

xi
bji
, j ∈ V )]n

=
d

∏
j=1

FnZ(an ⋀
i∈De(j)

xi
bji

)

ÐÐÐ→
n→∞

d

∏
j=1

Φα( ⋀
i∈De(j)

xi
bji

) = G(x).
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This proves that X ∈ MDA(G) (cf. Eq. (3.1.2)). Finally, the distribution functions of Mi and

(Mi,Mj) are obtained by letting all other components of x in G tend to ∞ and recalling

(3.1.5).

Proof of (3.1.8). For every k ∈ V we have n(1−Fk(ak,n)) → 1 as n→∞ with ak,n ∶= F←k (1− 1
n
) =

( 1
1−Fk )

←(n). Thus,

χ(i, j) = lim
n→∞

P(Xi > ai,n,Xj > aj,n)
1 − Fj(aj,n)

= lim
n→∞

n[1 − Fi(ai,n) + 1 − Fj(aj,n) − 1 + P(Xi ≤ ai,n,Xj ≤ aj,n)]

= 2 − lim
n→∞

n[1 − P(Xi ≤ ai,n,Xj ≤ aj,n)].

By Proposition 5.10(b), whose conditions are satisfied according to Proposition 3.A.2, and

Eq. (5.38) of [60], we find

χ(i, j) = 2 + logGij((−1/ logGi)←(1), (−1/ logGj)←(1)),

where (−1/ logGi)← and (−1/ logGj)← denote the generalized inverses of the functions −1/ logGi

and −1/ logGj . With the representations for Gi, Gj , and Gij from Proposition 3.A.2, we then

obtain by a simple calculation

χ(i, j) = 2 − ∑
k∈An(i)∪An(j)

bki ∨ bkj .

Finally, using Lemma 3.A.1(b), (a) yields

χ(i, j) = ∑
k∈An(i)∪An(j)

bki + ∑
k∈An(i)∪An(j)

bkj − ∑
k∈An(i)∪An(j)

bki ∨ bkj

= ∑
k∈An(i)∪An(j)

bki ∧ bkj = ∑
k∈An(i)∩An(j)

bki ∧ bkj .

We learn from this proof that X and the limit vector M from (3.1.2) have the same TDM, since

M ∈ MDA(G).
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Chapter 4

Identifiability and estimation of recursive

max-linear models

Abstract

We address the identifiablity and estimation of recursive max-linear structural equation models.

Such models are generally unidentifiable: several DAGs and edge weights representing the max-

linear structural equations may exist. We show that the whole class of DAGs and edge weights is

identifiable. For estimation, standard likelihood theory and classical methods cannot be applied

because assumptions usually made are not satisfied. We develop a simple learning method which,

with probability 1, identifies the true class for a sufficiently large number of observations. Given

the true underlying DAG, we present an estimator for the class of edge weights that can be

considered a maximum likelihood estimator in a generalized setting. Given many observations,

this estimator has also the nice property to estimate, almost surely, the true class of edge weights

exactly.

MSC 2010 subject classifications: Primary 60E15, 62H12; secondary 62G05, 60G70, 62-09

Keywords and phrases: Causal inference, directed acyclic graph, generalized maximum likelihood

estimation, graphical model, identifiability, max-linear model, nonparametric maximum like-

lihood estimation, structural equation model

4.1 Introduction

Establishing and understanding cause-effect relations is an omnipresent desire in science and

daily life. It is especially important when dealing with extreme risks. Examples for such situ-

ations include incidents at airplane landings (Gissibl et al. [29]; cf. Figure 1.1.2), flooding in

river networks (Asadi et al. [2]), financial risk (Einmahl et al. [20]), and chemical pollution of

rivers (Hoef et al. [35]). Such applications to risk analysis, where extreme risks may propagate

through a network, were the motivation behind the recursive max-linear (ML) models defined

in Chapter 2. Recursive ML models are by definition structural equation models (SEMs) whose

causal structure is represented by a directed acyclic graph (DAG) and, hence, by Theorem 1.4.1

of Pearl [55] directed graphical models. SEMs (see e.g. Bollen [5], [55]) and graphical models (see

e.g. Koller and Friedman [45], Lauritzen [47], Spirtes et al. [69]) are well-established concepts to

the understanding and quantification of causal inference from observational data.
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Important research problems that are addressed for classes of recursive SEMs, as is the class

of recursive ML models, are the identifiability of the coefficients and the associated DAG from

the observational distribution as well as the estimation of the DAG (structure learning) from a

finite sample. The book by Peters et al. [58] provides a profound introduction into this field of

research and summarizes the current state of research.

We study these problems for recursive ML models. Throughout we assume that all variables

are observed, that is, there are no hidden variables.

Recursive ML models are defined by a DAG, edge weights, and independent noise variables.

Different DAGs and edge weights can define the same model (cf. Theorem 2.5.4). The so-called

max-linear (ML) coefficient matrix determines this class of DAGs and edge weights uniquely.

So the true DAG and edge weights are not identifiable; but, as we shall see, the ML coefficent

matrix and, hence, the class of DAGs and edge weights defining the underlying model.

This identifiability result has direct implications for structure learning: if the data follow

a recursive ML model, the associated class of DAGs and edge weights can be inferred from

observational data only.

Several approaches for structure learning, which can be split mainly into score-based and

constraint-based methods, have been proposed. Constraint-based methods, such as the PC al-

gorithm (Spirtes and Glymour [67]), assume faithfulness to the underlying DAG (see e.g. Re-

mark 2.3.9(ii) for the definition of faithfulness). However, recursive ML models are never faithful

unless the underlying DAG has at most one path between two nodes (see Remark 2.3.9(i) and

Theorem 4 of Klüppelberg and Lauritzen [43]). On the other hand, score-based methods (see

Chickering [8], Geiger and Heckerman [25], Heckerman et al. [33], and references therein) require

distributional properties that are not valid for recursive ML models or would at least restrict

the model class. So we cannot use standard methods for structure learning without further ado.

Of course, we meet the same challenge in parameter learning where the DAG is assumed to

be known. There exists no σ-finite measure on the space of observations that dominates the

distributional family of recursive ML models on a given DAG. As a consequence, we cannot

use standard maximum likelihood estimation methods. We suggest an estimator that can be

considered a maximum likelihood estimator in an extended definition originally introduced by

Kiefer and Wolfowitz [40] for covering the nonparametric case.

But for all that, estimation and structure learning of recursive ML models can be done in a

simple and efficient fashion. Exploiting the distributional properties of the ratios between two

components of a recursive ML model, we present appropriate procedures. For a sufficiently large

number of observations, they identify, with probability 1, the true ML coefficient matrix and,

hence, the true associated class of DAGs and edge weights; the convergence is geometrically fast.

This chapter is organized as follows. In Section 4.2 we present the model class of recursive ML

models and introduce the notation used throughout this chapter. In Section 4.3 we discuss the

identifiability of recursive ML models. Here we show distributional properties of the ratio between

two components of a recursive ML model. Based on these properties, we propose an identification

method. Section 4.4 is devoted to the estimation of recursive ML models in the situation where

the DAG is known. We follow the Kiefer-Wolfowitz approach to determine generalized maximum
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likelihood estimates (GMLEs). The main part is the derivation of a specific Radon-Nikodym

derivative. Here we make comparisons with the case where we can define a standard likelihood

function. To conclude this section, we point out a GMLE and its outstanding properties. In

Section 4.5 we complement the theoretical findings with an efficient procedure to learn recursive

ML models from observations only. Section 4.6 concludes and suggests further directions of

research. In Appendix 4.A we give an alternative identification algorithm. In addition, we prove

further distributional properties of the ratio between two components, which are not needed in

the main part of the chapter, but are useful for a deeper understanding.

4.2 Preliminaries – Recursive ML models

We consider recursive ML models, which have been introduced in Chapter 2. In this section we

introduce some notations and summarize the most important properties needed throughout this

chapter.

A recursive ML model X = (X1, . . . ,Xd) is specified by an underlying (causal) structure in

terms of a DAG D = (V,E) with nodes V = {1, . . . , d}, positive edge weights cki for i ∈ V and

k ∈ pa(i), and independent random variables Z1, . . . , Zd with support R+ ∶= (0,∞) and atomfree

distributions:

Xi = ⋁
k∈pa(i)

ckiXk ∨Zi, i = 1, . . . , d, (4.2.1)

where pa(i) are the parents of node i in D. To highlight the DAG D, we say that X is a

recursive ML model on D. In the original definition of a recursive ML model in (2.1.3), the

weights of the noise variables Zi in (4.2.1) do not necessarily have to be equal to one but

can be any positive real number. Such a recursive ML model has then representation (4.2.1)

with appropriately scaled noise variables. In addition, the distributional properties of the noise

variables are in (2.1.3) slightly different. In the context of risk analysis, natural candidates

for the noise distributions are extreme value distributions or distributions in their domain of

attraction, resulting in a corresponding multivariate distribution (for details and background on

multivariate extreme value models, see e.g. Beirlant et al. [4], de Haan and Ferreira [14], Resnick

[60, 61]).

Occasionally, we write k → i instead of k ∈ pa(i). Assigning the weight dji(p) = ∏n−1
ν=0 ckνkν+1

to every path p = [j = k0 → k1 → ⋅ ⋅ ⋅ → kn = i] and denoting the set of all paths from j to i by

Pji, we call the nonnegative matrix B with entries

bji = ⋁
p∈Pji

dji(p) for all j ∈ an(i), bii = 1, and bji = 0 for all j ∈ V ∖An(i), (4.2.2)

ML coefficient matrix of X. This means for distinct i, j ∈ V , bji is positive if and only if there

is a path from j to i; in that case bji is the maximum weight of all paths from j to i, where the

weight of a path is the product of all edge weights cki along this path. We call a path from j to

i whose weight equals the maximum weight bji max-weighted.
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The components of X can be expressed as max-linear functions of their ancestral noise vari-

ables and an independent one; the corresponding ML coefficients are the entries of B:

Xi =
d

⋁
j=1

bjiZj = ⋁
j∈An(i)

bjiZj , i = 1, . . . , d, (4.2.3)

where An(i) = an(i) ∪ {i} and an(i) are the ancestors of i in D (cf. Theorem 2.2.2).

We have presented those properties of X we need throughout the whole chapter. Further

properties of X from Chapter 2 are introduced where they are needed.

Throughout this chapter we use the following notation. The sets an(i), pa(i), de(i), and

nd(i) contain the ancestors, parents, descendants, and non-descendants of node i in D. We set

An(i) = an(i)∪{i} and Pa(i) = pa(i)∪{i}. For U ⊊ V we write XU = (X`, ` ∈ U) and accordingly

for x ∈ Rd+, xU = (x`, ` ∈ U). Generally, we consider statements for i ∈ ∅ as invalid. Furthermore,

we set ⋁i∈∅ ai = 0, ⋀i∈∅ ai = ∞, ∏i∈∅ ai = 1, and ai
0 = ∞ for (possibly random) ai ∈ R+ as well as

⋃i∈∅Ai = ∅ and ⋂i∈∅Ai = Rd+ for Ai ⊆ Rd+.

4.3 Identifiability of a recursive ML model

We discuss the identifiability of a recursive ML model X from its distribution L(X). We start

with an example.

Example 4.3.1. [The DAG and the edge weights are not necessarily identifiable]

Consider a recursive ML model X = (X1,X2,X3) on the DAG D depicted below with edge

weights c12, c23, c13 such that c13 ≤ c12c23. By (4.2.1) the components of X have the following

representations,

X1 = Z1, X2 = c12X1 ∨Z2, and X3 = c13X1 ∨ c23X2 ∨Z3.

From these and the order between the edge weights, we observe that

X3 = c∗13X1 ∨ c23X2 ∨Z3 for every c∗13 ∈ [0, c12c23].

This implies that X is a recursive ML model on D with edge weights c12, c23, c
∗
13 ∈ (0, c12c23]

as well as on the DAG DB depicted below with edge weights c12, c23. Consequently, we cannot

identify D as well as c13 from the distribution L(X) of X. However, note that the ML coefficient

matrix B is unique.

If c13 > c12c23, then D and the edge weights c12, c23, c13 are the only DAG and edge weights,

respectively, that represent X in the sense of (4.2.1). Thus they are identifiable from L(X).

1 2 3D 1 2 3 DB

◻
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As conclusion of Example 4.3.1, it is generally not possible to identify the true DAG D and

the edge weights cki underlying X in representation (4.2.1) from L(X). The reason for this is

that several DAGs and edge weights may exist such that X has this representation. The smallest

DAG of this kind is the DAG that has an edge k → i if and only if k → i is the only max-weighted

path from k to i. We call this DAG DB the minimum ML DAG of X. It is the smallest DAG

representing the causal structure of X. The further DAGs are the DAGs that have at least the

edges of DB and a path from j to i if and only if DB has a path from j to i. The edge weights cki

in representation (4.2.1) of X are only uniquely given for edges contained in DB. In that case,

cki = bki; otherwise, we may have cki ∈ (0, bki]. All these DAGs and edge weights lead via (4.2.2)

to the same ML coefficient matrix B and can be determined from B. All this can be found in

Section 2.5 with its main results in Theorems 2.5.3, 2.5.4.

Based on the above observations, we investigate the identifiability of this class of DAGs and

edge weights from L(X). Since it can be recovered from B, it suffices to clarify whether B

is identifiable from L(X). There are many ways to prove that this is indeed the case. The

way used in this section suggests a simple procedure, which is presented in Algorithm 4.5.1

below, to estimate B from independent realizations of X. We demonstrate an alternative way

in Appendix 4.A.1.

We know from (4.2.2) that bii = 1 and bji ≠ 0 if and only if j ∈ An(i). Hence, to show

the identifiability of B from supp(X), it suffices to find a quantity that can be determined

from L(X) and that specifies for distinct i, j ∈ V whether j ∈ an(i) and if so, defines bji. It

turns out that the support of Xi
Xj

, denoted by supp(XiXj ), is such a quantity. Because of the

max-linear representation (4.2.3) of the components of X, it is clear that it depends on the

distributional properties of the noise variables. We first discuss some consequences of these

properties. Recall that the noise variables are assumed to be independent with support R+ and

atomfree distributions. We denote by (Ω,F ,P) the probability space of (Z1, . . . , Zd) and, hence,

of X. We write events such as {ω ∈ Ω ∶ Xi(ω) < Xj(ω)} or {ω ∈ Ω ∶ Zi(ω) < Zj(ω)} more

conveniently as {Xi <Xj} or {Zi < Zj}, respectively.

The independence of the noise variables and their atomfree distributions imply that

the event {Zi = xZj} for distinct i, j ∈ V and x ∈ R+ has probability zero. (4.3.1)

This plays an important role in determing the atoms of Xi
Xj

. It shows, together with (4.2.3), that

the sets {Xi = xXj} = {⋁`∈An(i) b`iZ` = ⋁`∈An(j) xb`jZ`} and

{ ⋁
`∈An(i)∩An(j)∶

b`i=b`jx

b`iZ` > ⋁
`∈An(i)∩An(j)∶

b`i≠b`jx

(b`i ∨ xb`j)Zj ∨ ⋁
`∈An(i)∖An(j)

b`iZ` ∨ ⋁
`∈An(j)∖An(i)

xb`jZ`}

differ only by a set of probability zero. Therefore, Xi
Xj

has an atom in x if and only if An(i) ∩
An(j) ≠ ∅ and x = b`i

b`j
for some ` ∈ An(i) ∩ An(j) as the noise variables are independent and

have support R+.
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Table 4.1: Distributional properties of Xi

Xj
.

Relationship between i and j supp(XiXj ) Atoms

j ∈ an(i) [bji,∞) b`i
b`j

for ` ∈ An(j)
i ∈ an(j) (0, 1

bij
] b`i

b`j
for ` ∈ An(i)

j ∈ nd(i) and i ∈ nd(j):
an(i) ∩ an(j) ≠ ∅ R+

b`i
b`j

for ` ∈ an(i) ∩ an(j)
an(i) ∩ an(j) = ∅ R+ -

The support of the noise variables of R+ and representation (4.2.3) are the reason why

supp(Xi

Xj
) = { ⋁`∈An(i) b`iz`

⋁`∈An(j) b`jz`
∶ zAn(i)∪An(j) ∈ R

∣An(i)∪An(j)∣
+ }.

Since the function

R∣An(i)∪An(j)∣ → R+, zAn(i)∪An(j) ↦
⋁`∈An(i) b`iz`

⋁`∈An(j) b`jz`

is continuous, supp(XiXj ) is an interval in R+. Assume that supp(XiXj ) has a positive lower bound;

i.e., there exists some a ∈ R+ such that

⋁
`∈An(i)∩An(j)

ab`jz` ∨ ⋁
`∈An(j)∖An(i)

ab`jz` ≤ ⋁
`∈An(i)∩An(j)

b`iz` ∨ ⋁
`∈An(i)∖An(j)

b`iz` (4.3.2)

for all zAn(i)∪An(j) ∈ R
∣An(i)∪An(j)∣
+ . If An(j) ∖An(i) ≠ ∅, we can choose z` for some ` ∈ An(j) ∖

An(i) so large that ab`jz` is greater than the maximum on the right-hand side of (4.3.2). This

contradicts (4.3.2), and we necessarily have that An(j) ∖An(i) = ∅, equivalently, j ∈ An(i). We

then find that (4.3.2) holds if and only if a ≤ ⋀`∈An(i)
b`i
b`j

; otherwise, there are zAn(i)∪An(j) such

that the maximum on the left-hand side of (4.3.2) is greater than the one on the right-hand

side. Hence, supp(XiXj ) has a positive lower bound if and only if j ∈ An(i). It remains to clarify

whether ⋀`∈An(i)
b`i
b`j

is then contained in the interval supp(XiXj ). This is indeed the case, since by

Corollary 2.3.12 ⋀`∈An(i)
b`i
b`j

= bji and bji is an atom of Xi
Xj

. Conversely, we obtain that supp(XiXj )
is bounded from above if and only if i ∈ An(j). In that case, the upper bound is 1

bij
, which is

an atom of Xi
Xj

and contained in supp(XiXj ). In Table 4.1 we give supp(XiXj ) depending on the

relationship between i and j in D; the atoms of Xi
Xj

are shown as well.

Table 4.1 and (4.2.2) suggest the following algorithm to compute B from L(X). This proves

the identifiability of B from L(X). Instead of the whole distribution L(X), it suffices to know

supp(XiXj ) for all i, j ∈ V with i < j.

Algorithm 4.3.2. [Find B from L(X)]

1. For all i ∈ V = {1, . . . , d}, set bii = 1.

2. For all i, j ∈ V with i < j, find supp(XiXj ):
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4.3 Identifiability of a recursive ML model

if supp(XiXj ) = [a,∞) for some a ∈ R+, then set bji = a and bij = 0;

else, if supp(XiXj ) = (0, a] for some a ∈ R+, then set bij = 1
a and bji = 0;

else, set bij = bji = 0.

So far we have shown that the ML coefficient matrix B of X can be obtained from L(X).
Since all DAGs and weights that represent X in the sense of (4.2.1) can be determined from

B, the only quantities we do not know about yet but are needed to define X are the noise

variables. In fact, the distribution of the noise vector (Z1, . . . , Zd) is identifiable from L(X).
Because of the identifiability of B from L(X), we can prove this by providing an algorithm that

determines the distributions of the noise variables from L(X) and B. Its correctness follows

from the independence of the noise variables. We denote by FZi the distribution function of the

noise variable Zi. It is enough to know the univariate marginal distribution functions of L(X)
instead of the whole distribution L(X).

Algorithm 4.3.3. [Find FZ1(x), . . . , FZd(x) for x ∈ R+ from B and L(X)]
For ν = 0, . . . , d − 1,

for i ∈ V such that ∣an(i)∣ = ν, set

FZi(x) =
P(Xi ≤ x)

∏j∈an(i) FZj( xibji )
.

Finally, we summarize the main result of this section again.

Theorem 4.3.4. Let L(X) be the distribution of a recursive ML model X. Then its ML coeffi-

cient matrix B and the distribution of its noise vector (Z1, . . . , Zd) are identifiable from L(X).

Furthermore, all edge weights and DAGs that could have generated X by (4.2.1) can be obtained.

Figure 4.3.1 gives an overview of how all these quantities can be determined from L(X). To

conclude, recursive ML models with different ML coefficient matrices or different distributions

of the noise vectors can never have the same distribution. Conversely, all recursive ML models

with the same distribution must have the same ML coefficient matrix and identically distributed

noise vectors. However, such recursive ML models can have different underlying DAGs and edge

weights with the result that the true underlying DAG and the corresponding edge weights cannot

be identified in general.
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1. For all i ∈ V = {1, . . . , d}, set bii = 1.

2. For all i, j ∈ V with i < j, find supp(XiXj ):

if supp(XiXj ) = [a,∞) for some a ∈ R+,

then set bji = a and bij = 0;

else, if supp(XiXj ) = (0, a] for some a ∈ R+,

then set bij = 1
a and bji = 0;

else, set bij = bji = 0.

L(X)

B

For ν = 0, . . . , d − 1,

for i ∈ V such that ∣an(i)∣ = ν,

set

FZi(x) =
P(Xi ≤ x)

∏j∈an(i) FZj( xibji )
.

X has representation (4.2.3) with DAG D and edge
weights cki if and only if

- D has the same reachability matrix as the
minimum ML DAG

DB = (V,{(k, i) ∈ V × V ∶ k ≠ i, bki >
d

⋁
`=1
`≠i,k

bk`b`i}).

- cki = bki if k → i is in DB; otherwise, cki ∈ (0, bki]

FZ1(x), . . . , FZd(x), x ∈ R+
all DAGs D and edge weights cki that
lead to B (i.e., (4.2.2) holds)

Algorithm 4.3.2

Algorithm 4.3.32.5.3, 2.5.4

Theorems

Figure 4.3.1: How the ML coefficient matrix B, the distributions of the noise variables FZ1 , . . . , FZd
, as well as all potential DAGs D and edge weights

cki of a recursive ML model X can be identified from its distribution L(X) (cf. Theorem 4.3.4). In the paragraph above Remark 2.2.3, the
definition of the reachability matrix of a DAG is given.
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4.4 Estimation of a recursive ML model with known DAG

In this section we assume that independent realizations x(t) = (x(t)1 , . . . , x
(t)
d ), t = 1, . . . , n, of

a recursive ML model X = (X1, . . . ,Xd) and its DAG D are given. Our goal is the estimation

of its edge weights cki, its ML coefficient matrix B, and the distribution of its noise vector

(Z1, . . . , Zd). In the first part we suggest GMLEs; in the second we discuss the preferred GMLE

of B in detail.

4.4.1 Generalized maximum likelihood estimation

The recursive ML model X may satisfy (4.2.1) with respect to D for various edge weights cki

(see Example 4.3.1 and Theorem 2.5.4(b)). As a consequence, we usually have no chance to

estimate the true edge weights of X from x(1), . . . ,x(n) exactly, although D is known. But

this is theoretically possible for its ML coefficient matrix B, since B is identifiable from the

distribution L(X) of X (see Algorithm 4.3.2). That is why we start with the estimation of B.

To obtain then estimates of these various edge weights, we use the fact that this class of edge

weights can be determined from B (see Figure 4.3.1). We present the corresponding result in

Corollary 4.4.30 below.

ML coefficient matrix B

Before we start estimating B, we introduce some notation. We denote by B the class of the ML

coefficient matrices of all recursive ML models on D. This means that our estimate of B should

be an element of B. For a characterization of the class B, see Theorem 2.4.2 or Corollary 2.4.3(a).

In Remark 4.4.5 below we present further necessary and sufficient conditions for a matrix to

be contained in B. For B ∈ B we denote by PB the probability measure induced by a recursive

ML model on D with ML coefficient matrix B. To estimate B, we consider the family of these

probability measures, denoted by P(D) in the following. Theorem 4.3.4 allows us to assume

that the distributions of the underlying noise vectors are identical. So throughout this section

the noise vectors of all recursive ML models on D are assumed to have the same distribution.

Further, we assume that the only information we have about this distribution is that it has

support R+ and independent, atomfree margins.

We cannot use standard maximum likelihood methods to estimate B, since P(D) is not

dominated; i.e., there exists no σ-finite measure µ such that every probability measure in P(D)
is absolutely continuous with respect to µ. We illustrate this by a simple example.

Example 4.4.1. [P(D) is not dominated]

Consider the DAG D with nodes {1,2} and an edge from 1 to 2. We assume that P(D) is

dominated: there exists a σ−finite measure µ such that for every B ∈ B,

PB(A) = 0 whenever µ(A) = 0 for A ∈ B(R2
+), (4.4.1)
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x2
=
b1
2
x1

x2

x1

x2

x1

Figure 4.4.1: On the left-hand side supp(PB) from Example 4.4.1 is shown, on the right-hand side the
set A(b12) for different values of b12 ∈ R+.

where B(R2
+) denotes the Borel σ−algebra on R2

+. From Table 4.1 we know that

PB({(b12x,x) ∈ R2
+ ∶ x ∈ R+}) =∶ PB(A(b12)) > 0.

Hence, by (4.4.1), µ(A(b12)) > 0 for every b12 ∈ R2
+. Thus there are uncountably many disjoint sets

with positive µ-measure. This contradicts the σ-finiteness of µ, and P(D) cannot be dominated.

In Figure 4.4.1 the support of PB, supp(PB), and the set A(b12) for different values b12 ∈ R2
+ are

depicted; these sets play an important role in the further course of this section.

By the same argumentation as in this example, P(D) is for all D not dominated. ◻

We cannot use densities as likelihoods as with the classical maximum likelihood estimation.

However, there exist definitions of generalized MLEs that cover the undominated case as well;

Kalbfleisch and Prentice [38], [40], and Scholz [65] suggested such extensions. Their goal was to

investigate how a nonparametric MLE should be defined, a problem where typically no common

σ-finite dominating measure exists; think, for example, of the problem of estimating an arbitrary

unknown distribution. We follow the Kiefer-Wolfowitz definition of a GMLE; this was also done,

for example, by Gill [26] and Johansen [37].

Let P be a family of probability measures on (Rd+,B(Rd+)), where B(Rd+) denotes the Borel

σ-algebra on Rd+, and x(1), . . . ,x(n) a random sample from some P0 ∈ P. For P,Q ∈ P and x ∈ Rd

we define ρ(x, P,Q) ∶= dP
d(P+Q)(x), where dP

d(P+Q) denotes a density of P with respect to P +Q.

Then we call P̂0 a generalized maximum likelihood estimate (GMLE) of P0 if

n

∏
t=1
ρ(x(t), P̂0, P̂0) ≠ 0 and

n

∏
t=1
ρ(x(t),Q, P̂0) ≤

n

∏
t=1
ρ(x(t), P̂0,Q) for all Q ∈ P. (4.4.2)

Since P is absolutely continuous with respect to P+Q, the density dP
d(P+Q) always exists according

to the Radon-Nikodym theorem. This means that the GMLE is well-defined. The idea of the

Kiefer-Wolfowitz definition is very logical and their definition extends the definition of a MLE in

a very natural way. The approach is to consider pairwise comparisons of possible distributions

P and Q for the observations x(1), . . . ,x(n) only: strict inequality in the second condition of

(4.4.2) means that P̂0 is a more likely explanation of the sample x(1), . . . ,x(n) than Q. When

using the Kiefer-Wolfowitz approach, only the second condition in (4.4.2) is usually required.

But the first condition is implicitly in the Kiefer-Wolfowitz definition and requiring it leads in
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our case to other GMLEs, as we show in Example 4.4.2 below. This condition excludes – with

a suitable choice of ρ – GMLEs B̃ where the observations x(1), . . . ,x(n) could not have been

generated by PB̃. We go into it and clarify it in Examples 4.4.2, 4.4.3.

If P is dominated by a σ-finite measure, then the Kiefer-Wolfowitz definition is equivalent

to the usual definition of a MLE; if P0 is completely unknown, then the empirical distribution

function is a GMLE.

In order to be able to compute the GMLEs of B, we need to find for any two B,B∗ ∈ B, a den-

sity of PB with respect to PB +PB∗ . For this we determine a partition {A0(B,B∗),A1/2(B,B∗),
A1(B,B∗)} of Rd+ that satisfies the three properties,

(A) PB(A0(B,B∗)) = 0,

(B) PB(A ∩A1/2(B,B∗)) = PB∗(A ∩A1/2(B,B∗)) for every A ∈ B(Rd+), and

(C) PB∗(A1(B,B∗)) = 0.

Then the measurable function from Rd+ to {0,1/2,1} such that

x↦ ρ(x,B,B∗) = 1

2
⋅ 1A1/2(B,B∗)(x) + 1A1(B,B∗)(x) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0, if x ∈ A0(B,B∗),
1
2 , if x ∈ A1/2(B,B∗),
1, if x ∈ A1(B,B∗),

(4.4.3)

is a density as desired. That is because, using the properties (A), (B), (C), we obtain for every

A ∈ B(Rd+),

∫
A
ρ(x,B,B∗)(PB + PB∗)(dx) = PB(A ∩A1/2(B,B∗)) + PB(A ∩A1(B,B∗)) = PB(A).

We begin with two examples that shall help to get an idea and provide insights into the

concepts and arguments we use in the general case. They are deliberately very detailed.

Example 4.4.2. [Continuation of Example 4.4.1: how to find a density as in (4.4.3) and the

GMLEs]

Recall the sets depicted in Figure 4.4.1. For B,B∗ ∈ B we show that the partition

{A0(B,B∗) ∶= R2
+ ∖ supp(PB) ∪ [(supp(PB) ∖A(b12)) ∩A(b∗12)]

= {x ∈ R2
+ ∶ x2 < b12x1} ∪ {x ∈ R2

+ ∶ x2 = b∗12x1 > b12x1},
AB+B

∗
1/2 ∶= [A(b12) ∩A(b∗12)] ∪ [(supp(PB) ∖A(b12)) ∩ (supp(PB∗) ∖A(b∗12))]

= {x ∈ R2
+ ∶ x2 = b12x1 = b∗12x1} ∪ {x ∈ R2

+ ∶ x2 > (b12 ∨ b∗12)x1},
A1(B,B∗) ∶= [supp(PB) ∩ (R2

+ ∖ supp(PB∗))] ∪ [A(b12) ∩ (supp(PB∗) ∖A(b∗12))]

= {x ∈ R2
+ ∶ b∗12x1 > x2 ≥ b12x1} ∪ {x ∈ R2

+ ∶ x2 = b12x1 > b∗12x1}}
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Figure 4.4.2: The density ρ(⋅,B,B∗) given in (4.4.4) as a contour plot (top line) and as a function of
x2

x1
(bottom line) for the three situations b12 < b∗12 (left-hand side), b12 = b∗12 (middle), and

b12 > b∗12 (right-hand side). The area where it is 0/1
2
/1 is coloured in red/blue/green.

of R2
+ satisfies properties (A), (B), (C), leading to the function

x↦ ρ(x,B,B∗) = 1

2
⋅ 1{b12x1}∩{b∗12x1}(x2) +

1

2
⋅ 1(b12∨b∗12,∞)(x2) + 1[b12,b∗12)(x2) + 1{b12}∩(b∗12,∞)(x2)

(4.4.4)

from R2
+ to {0,1/2,1} as a density of PB with respect to PB + PB∗ . Note that, obviously,

{x ∈ R2
+ ∶ x2 = b∗kix1 > bkix1} = ∅ if b12 ≥ b∗12, and corresponding for the other sets. Figure 4.4.2

shows the density ρ(⋅,B,B∗) for the three possible orders between b12 and b∗12.

Let X be a recursive ML model on D with ML coefficient matrix B and Z1, Z2 its noise

variables. Since by Table 4.1 b12 is the only atom of X2

X1
and supp(X2

X1
) = [b12,∞), property (A)

is true. By reversing the roles of B and B∗, (C) follows from (A). Recalling that we assume

identically distributed noise vectors, (B) is obvious if b12 = b∗12. Assume that b12 ≠ b∗12. We then

have by definition of X that {X ∈ A1/2(B,B∗)} = {X2 > (b12 ∨ b∗12)X1} = {Z2 > (b12 ∨ b∗12)Z1}
and X2 = Z2 on {Z2 > (b12 ∨ b∗12)Z1}. With this, using that A1/2(B∗,B) = A1/2(B,B∗) and that

the noise vectors are identically distributed, we finally obtain for A ∈ B(R2
+),

PB(A ∩A1/2(B,B∗)) = P({X ∈ A} ∩ {Z2 > (b12 ∨ b∗12)Z1})
= P({(Z1, Z2) ∈ A} ∩ {Z2 > (b12 ∨ b∗12)Z1})
= PB∗(A ∩A1/2(B∗,B)) = PB∗(A ∩A1/2(B,B∗)).

So far we know that the function in (4.4.4) is a density of PB with respect to PB + PB∗ . We

use this density to determine the GMLEs of B. The only ML coefficient we have to estimate is

b12. Define b̂12 as the minimal observed ratio of X2

X1
, i.e., b̂12 = ⋀nt=1

x
(t)
2

x
(t)
1

, and let B̂ denote the

corresponding ML coefficient matrix. Then, by the definition of ρ and its defining sets, some

PB̃ ∈ P(D) satsifies the first condition in (4.4.2) if and only if

b̃12x
(t)
1 ≤ x(t)2 for all t, equivalently b̃12 ≤ b̂12. (4.4.5)
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4.4 Estimation of a recursive ML model with known DAG

Defining n(B,B∗) = ∣{t ∶ x(t) ∈ A1/2(B,B∗)}∣ and using that n(B,B∗) = n(B∗,B), we obtain

n

∏
t=1
ρ(x(t),B,B∗) = 2−n(B,B

∗)
n

∏
t=1

1Rd+∖A0(B,B∗)(x(t)),

n

∏
t=1
ρ(x(t),B∗,B) = 2−n(B,B

∗)
n

∏
t=1

1Rd+∖A0(B∗,B)(x(t)).

Hence, some PB̃ ∈ P(D) satsifies the second condition in (4.4.2) if and only if

for all B ∈ B, if some x(t) ∈ A0(B̃,B), then some x(s) ∈ A0(B, B̃). (4.4.6)

In summary, some B̃ is a GMLE of B if and only if (4.4.5) and (4.4.6) are satisfied. We discuss

the possible GMLEs of b12 in detail.

(1) b̃12 ∈ (0, b̂12) is no GMLE:

Set b12 = b̂12, and let x(t) such that b̂12x
(t)
1 = x(t)2 . Then x(t) ∈ {x ∈ R2

+ ∶ x2 = b12x1 >
b̃12x2} ⊆ A0(B̃,B) but no x(s) ∈ A0(B, B̃) = {x ∈ R2

+ ∶ x2 < b12x1}. This contradicts

(4.4.6); consequently, b̃12 cannot be a GMLE of b12. In Figure 4.4.3(a) we illustrate this

situation. On the left-hand side a contour plot of the density ρ(⋅, B̃,B) is shown, on the

right-hand side of ρ(⋅,B, B̃). The crosses represent the realizations x(1), . . . ,x(n). In the

left plot crosses are in the 0-area coloured in red, namely, those that realize b̂12, but in the

right plot not. So B̃ cannot be a GMLE of B.

(2) b̃12 > b̂12 is no GMLE if b̃12x
(t)
1 ≠ x(t)2 for all t:

Figure 4.4.3(b) shows a situation that contradicts (4.4.6), similarly to Figure 4.4.3(a) in

(1). So b̃12 is no GMLE. That could not be the case because of the necessary condition in

(4.4.5), but more on this in (4).

(3) b̂12 is a GMLE:

Condition (4.4.5) holds obviously. To prove (4.4.6), assume for some B ∈ B that some

x(t) ∈ A0(B̂,B). By definition of A0(B̂,B), x(t)2 = b12x
(t)
1 > b̂12x

(t)
1 , which implies that

b12 > b̂12. For x(s) such that b̂12x
(s)
1 = x

(s)
2 , we then find that x

(s)
2 < b12x

(s)
1 . Hence,

x(s) ∈ A0(B, B̂), and b̂12 is a GMLE of b12. We learn this informally from Figure 4.4.3(c).

The top line shows contour plots of ρ(⋅, B̂,B) for the three different orders between b12

and b̂12, and the bottom line shows the corresponding contour plots of ρ(⋅,B, B̂). The two

plots on the left-hand side correspond to the situation from above: in the upper plot there

are realizations in the 0-area, namely those that are on the line {x ∈ R2
+ ∶ x2 = b12x1}, but

then there are also realizations in the 0-area of the lower plot (those that lie below this

line). Hence, (4.4.6) holds. Since there is no realization in the 0-area of the middle and

right plot in the top line, (4.4.6) is automatically satisfied if b12 ≤ b̂12.

(4) b̃12 = x
(t)
2

x
(t)
1

> b̂12 would be a GMLE if we do not require (4.4.5):

Similarly to Figure 4.4.3(c) in (3), Figure 4.4.3(d) indicates that (4.4.6) holds. Since

supp(PB) = {x ∈ R2
+ ∶ x2 ≥ b12x1} and all x(t) ∈ supp(PB), it makes sense to require
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Figure 4.4.3: Discussion of the GMLEs of b12 with respect to the density from Figure 4.4.2.
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4.4 Estimation of a recursive ML model with known DAG

(4.4.5) and, therefore, to exclude here b̃12 as a GMLE of b12. In summary, when setting

the density of PB with respect to PB + PB∗ outside PB to zero, what is allowed due to

property (A), then the first condition in (4.4.2) guarantees that for a GMLE B̃ of B all

x(t) ∈ supp(PB̃). ◻

A density of PB with respect to PB +PB∗ is only uniquely defined up to almost sure equality.

This is exactly what may cause problems in the Kiefer-Wolfowitz definition of a GMLE. So

various versions of the Radon-Nikodym derivatives can lead to many different GMLEs. Since

the author of [65] missed the specification of the exact version in the Kiefer-Wolfowitz definition,

he developed another definition of a nonparametric MLE. However, the same problem can arise

with the classical definition of the MLE what [65] illustrates by the Gaussian distribution, and

the classical MLE became accepted anyhow. In the following example we investigate how the

GMLEs of B differ depending on the choice of the density.

Example 4.4.3. [The GMLEs depend on the choice of the density ρ]

Consider the DAG

1

3

2

D

and define b̂13 ∶= ⋀nt=1
x
(t)
3

x
(t)
1

and b̂23 ∶= ⋀nt=1
x
(t)
3

x
(t)
2

. Let B̂ be the corresponding ML coefficient matrix.

Figure 4.4.4 shows twelve different densities of PB with respect to PB +PB∗ for the nine combi-

nations of the three orders between b13 and b∗13 as well as the three orders between b23 and b∗23.

That these are really densities can be derived from Theorem 4.4.7 below or at least by the same

arguments used in its proof. In Table 4.2 the corresponding GMLEs of B are presented. De-

pending on the observations, we obtain different GMLEs. For the densities ρ1 and ρ2, we discuss

the potential GMLEs in Figures 4.4.5, 4.4.6 similarly as in Figure 4.4.3 for Example 4.4.2.

We have four events that may occur, namely,

F1 = {X3 = b13X1} ∩ {X3 = b23X2}, F2 = {X3 = b13X1} ∩ {X3 > b23X2},
F3 = {X3 > b13X1} ∩ {X3 = b23X2}, F4 = {X3 > b13X1} ∩ {X3 > b23X2},

where F1 is by (4.2.3) and (4.3.1) the only null event. Assuming we exclude such null events in

the observations x(1), . . . ,x(n) and we observe x
(t)
3 = b̂13x(t)1 = b̂23x(t)2 for some t, then (̂b13, b̂23)

is no exact estimate of (b13, b23). The densities ρ2, ρ4, ρ6, ρ8, ρ10, ρ11 recognize this and suggest

(̂b13, b̂23) as a GMLE of (b13, b23) only if we do not observe x
(t)
3 = b̂13x(t)1 = b̂23x(t)2 for some t.

This is because these densities are zero on the null set {x ∈ R3
+ ∶ x3 = b13x1 = b23x2}.

Generally, all densities assume that at least one ML coefficient is estimated exactly. All of

them consider B̂ as the unique GMLE if the minimal observed ratios of X3

X1
and X3

X2
have not

occured in the same observation. Concerning the possible events, this seems to be reasonable.

Apart from that, each density leads to more meaningful and less useful GMLEs. Consider, for

example, the third situation from Table 4.2. The minimal observed ratio b̂13 of X3

X1
has then been

observed at least twice. Excluding null events would mean that b̂13 is an atom of X3

X1
. Since the
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Figure 4.4.4: Different densities dPB

d(PB+PB∗) for B,B∗ ∈ B with the DAG D from Example 4.4.3 as a function of x3

x1
and x3

x2
. The area where the respective

density is 0/1
2
/1 is coloured in red/blue/green. The corresponding GMLEs are given in Table 4.2.
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Figure 4.4.4: continued.
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Table 4.2: The GMLEs corresponding to the densities depicted in Figure 4.4.4.

Situation GMLE Density

∄s ∶ x
(s)
3

x
(s)
1

= b̂13, x
(s)
3

x
(s)
2

= b̂23 (̂b13, b̂23) ρ1–ρ12

∃s ∶ x
(s)
3

x
(s)
1

= b̂13, x
(s)
3

x
(s)
2

= b̂23 (̂b13, b̂23) ρ1, ρ3, ρ5, ρ7, ρ9, ρ12

∃t ∶ x
(t)
3

x
(t)
1

= b̂13, x
(t)
3

x
(t)
2

> b̂23 (̃b13, b̂23) with b̃13 ∈ (0, b̂13) ρ2, ρ4, ρ6, ρ8, ρ10, ρ11

∃u ∶ x
(u)
3

x
(u)
1

> b̂13, x
(u)
3

x
(u)
2

= b̂23 (̂b13, b̃23) with b̃23 ∈ (0, b̂23) ρ2, ρ4, ρ6, ρ8, ρ10, ρ11

∃s ∶ x
(s)
3

x
(s)
1

= b̂13, x
(s)
3

x
(s)
2

= b̂23 (̂b13, b̂23) ρ1, ρ3, ρ5, ρ7, ρ9, ρ12

∃t ∶ x
(t)
3

x
(t)
1

= b̂13, x
(t)
3

x
(t)
2

> b̂23 (̃b13, b̂23) with b̃13 ∈ (0, b̂13) ρ2, ρ11

∄u ∶ x
(u)
3

x
(u)
1

> b̂13, x
(u)
3

x
(u)
2

= b̂23 (̂b13, b̃23) with b̃23 ∈ (0, b̂23) ρ2, ρ3, ρ4, ρ5, ρ6, ρ8, ρ9, ρ10, ρ11, ρ12

∃s ∶ x
(s)
3

x
(s)
1

= b̂13, x
(s)
3

x
(s)
2

= b̂23 (̂b13, b̂23) ρ1, ρ3, ρ5, ρ7, ρ9, ρ12

∄t ∶ x
(t)
3

x
(t)
1

= b̂13, x
(t)
3

x
(t)
2

> b̂23 (̃b13, b̂23) with b̃13 ∈ (0, b̂13) ρ2, ρ3, ρ4, ρ5, ρ6, ρ8, ρ9, ρ10, ρ11, ρ12

∃u ∶ x
(u)
3

x
(u)
1

> b̂13, x
(u)
3

x
(u)
2

= b̂23 (̂b13, b̃23) with b̃23 ∈ (0, b̂23) ρ2, ρ11

∃s ∶ x
(s)
3

x
(s)
1

= b̂13, x
(s)
3

x
(s)
2

= b̂23 (̂b13, b̂23) ρ1, ρ3, ρ5, ρ7, ρ9, ρ12

∄t ∶ x
(t)
3

x
(t)
1

= b̂13, x
(t)
3

x
(t)
2

> b̂23 (̃b13, b̂23) with b̃13 ∈ (0, b̂13) ρ2, ρ3, ρ4, ρ5, ρ6, ρ8, ρ9, ρ10, ρ11, ρ12

∄u ∶ x
(u)
3

x
(u)
1

> b̂13, x
(u)
3

x
(u)
2

= b̂23 (̂b13, b̃23) with b̃23 ∈ (0, b̂23) ρ2, ρ3, ρ4, ρ5, ρ6, ρ8, ρ9, ρ10, ρ11, ρ12

only atom of X3

X1
is b13 (cf. Table 4.1), b13 is estimated by b̂13 exactly and (̃b13, b̂23) for b̃13 ∈ (0, b̂13)

is rather an inappropriate estimate. All densities except ρ2 and ρ11 recognize this and do not

consider this estimate a GMLE of b13.

To summarize, setting a density used to determine GMLEs of B to zero on all null events as

described above, then the first condition in (4.4.2) guarantees that B̃ ∈ B can only be a GMLE

of B if no observation belongs to a PB̃-null event. Furthermore, we notice that the distributional

properties of X allow us to decide whether a GMLE is a sensible estimate or not. So the

uncertainty about how to select unproblematic density versions does not matter too much in

our situation. ◻
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Figure 4.4.5: Discussion of the possible GMLEs of (b13, b23) with respect to the density ρ1 from Figure 4.4.4.
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Figure 4.4.6: Discussion of the possible GMLEs of (b13, b23) with respect to the density ρ2 from Figure 4.4.4.

86



4.4
E

stim
ation

of
a

recu
rsive

M
L

m
o
d

el
w

ith
k
n

ow
n

D
A

G

x3

x2

x3

x1
b13

b23

b̂13

b̃23

ρ2(⋅, B̃,B):

x3

x2

x3

x1
b13

b 2
3
=
b̃ 2

3

b̂13

x3

x2

x3

x1
b13

b̃23

b̂13

b23

x3

x2

x3

x1
b13 = b̂13

b23

b̃23

x3

x2

x3

x1
b13 = b̂13

b 2
3
=
b̃ 2

3

x3

x2

x3

x1
b13 = b̂13

b̃23

b23

x3

x2

x3

x1
b̂13

b23

b13

b̃23

x3

x2

x3

x1
b̂13

b 2
3
=
b̃ 2

3

b13

x3

x2

x3

x1
b̂13

b̃23

b13

b23

x3

x2

x3

x1
b13

b23

b̂13

b̃23

ρ2(⋅,B, B̃):

x3

x2

x3

x1
b13

b 2
3
=
b̃ 2

3

b̂13

x3

x2

x3

x1
b13

b̃23

b̂13

b23

x3

x2

x3

x1
b13 = b̂13

b23

b̃23

x3

x2

x3

x1
b13 = b̂13

b 2
3
=
b̃ 2

3

x3

x2

x3

x1
b13 = b̂13

b̃23

b23

x3

x2

x3

x1
b̂13

b23

b13

b̃23

x3

x2

x3

x1
b̂13

b 2
3
=
b̃ 2

3

b13

x3

x2

x3

x1
b̂13

b̃23

b13

b23

(c) (̂b13, b̃23) with b̃23 ∈ (0, b̂23) is a GMLE if ∃t ∶
x
(t)
3

x
(t)
1

= b̂13,
x
(t)
3

x
(t)
2

= b̂23.

x3

x2

x3

x1

ρ2(⋅, B̃,B)

b13

b 2
3
=
b̂ 2

3

b̃13

x3

x2

x3

x1

ρ2(⋅, B̃,B)

b13

b 2
3
=
b̂ 2

3

b̃13

(d) (̃b13, b̂23) with b̃13 < b̂13 is no GMLE if

∄t ∶
x
(t)
3

x
(t)
1

= b̂13,
x
(t)
3

x
(t)
2

= b̂23.

x3

x2

x3

x1
b13 = b̂13

b23

b̃23

ρ2(⋅, B̃,B)
x3

x2

x3

x1
b13 = b̂13

b23

b̃23

ρ2(⋅,B, B̃)

(e) (̂b13, b̃23) with b̃23 < b̂23 is no GMLE if

∄t ∶
x
(t)
3

x
(t)
1

= b̂13,
x
(t)
3

x
(t)
2

= b̂23.

x3

x2

x3

x1

ρ2(⋅, B̃,B)

b13

b 2
3
=
b̃ 2

3

b̃13

x3

x2

x3

x1

ρ2(⋅,B, B̃)

b13

b 2
3
=
b̃ 2

3

b̃13

(f) (̃b13, b̃23) with b̃13 < b̂13 and b̃23 < b̂23 is no GMLE.

Figure 4.4.6: continued.
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Chapter 4 Identifiability and estimation of recursive ML models

Example 4.4.3 raises the question what a sensible estimator of B is in the general case. Recall

that D is assumed to be known. Table 4.1 shows that for j ∈ an(i) the minimal value that can

be observed for Xi
Xj

is bji, which is an atom of Xi
Xj

. This suggests the following estimate of the

ML coefficients:

b̆ii = 1, b̆ji = 0 for j ∈ V ∖An(i), and b̆ji =
n

⋀
t=1

x
(t)
i

x
(t)
j

for j ∈ an(i).

Davis and Resnick [13] suggested such minimal observed ratios for Max-ARMA processes. For j ∈
V ∖an(i) we estimate bji obviously exactly. For n sufficiently large, we can expect to observe the

atoms bji for j ∈ an(i) in the sample x(1), . . . ,x(n) and, hence, to estimate these ML coefficients

exactly as well. However, if n is not large, B̆ is not necessarily a ML coefficient matrix of a

recursive ML model on D, as the following simple example shows.

Example 4.4.4. [B̆ is not necessarily in B]

Consider the DAG

1 2 3D

and assume we observe b̆13 > b̆12b̆23; this can happen, for example, if the observations only belong

to the events {X2 > b12X1} ∩ {X3 > b23X2} and {X2 = b12X1} ∩ {X3 > b23X2}. The matrix B̆ is,

however, not contained in B (see (2.4.4)) and, therefore, no suitable estimate of B. ◻

The ML coefficients (bki, i ∈ V, k ∈ pa(i)) define B uniquely, as the following remark makes

clear. This means that it suffices to find appropriate estimates of the ML coefficients (bki, i ∈
V, k ∈ pa(i)). If we estimate these ML coefficients exactly, then the remaining ML coefficients as

well. The remark follows from the definition of a recursive ML model on D and Theorem 2.5.4(b).

Remark 4.4.5. Let Dtr be the transitive reduction of D. For the definition of Dtr, see e.g.

Definition 2.4.1. We denote by patr(i) the parents of i in Dtr.

(i) B = (bij)d×d ∈ B if and only if for every i ∈ V ,

bii = 1, bji = 0 for j ∈ V ∖An(i), bki > 0 for k ∈ patr(i), and bji = ⋁
p∈Pji

dji(p) for j ∈ an(i),

where dji(p) = ∏n−1
ν=0 bkνkν+1 for a path p = [j = k0 → k1 → ⋅ ⋅ ⋅ → kn = i].

(ii) Coefficients (bki, i ∈ V, k ∈ pa(i)) are entries of a matrix B ∈ B if and only if for every i ∈ V ,

bki > 0 for k ∈ patr(i) and bki ≥ ⋁p∈Pki∖{[k→i]} dki(p) for k ∈ pa(i) ∖ patr(i). In this case, the

remaining ML coefficients are uniquely given for i ∈ V by

bii = 1, bji = 0 for j ∈ V ∖An(i), and bji = ⋁
p∈Pji

dji(p) for j ∈ an(i) ∖ pa(i).

◻
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4.4 Estimation of a recursive ML model with known DAG

We have for a path p = [j = k0 → k1 → ⋅ ⋅ ⋅ → kn = i] and some realization x(t) such that

b̆jix
(t)
j = x(t)i ,

(
n

⋀
s=1

x
(s)
k1

x
(s)
k0

)(
n

⋀
s=1

x
(s)
k2

x
(s)
k1

) . . . (
n

⋀
s=1

x
(s)
kn

x
(s)
kn−1

) ≤
x
(t)
k1

x
(t)
k0

x
(t)
k2

x
(t)
k1

. . .
x
(t)
kn

x
(t)
kn−1

=
x
(t)
i

x
(t)
j

= b̆ji =
n

⋀
s=1

x
(s)
i

x
(s)
j

. (4.4.7)

By Remark 4.4.5(ii) this proves that the coefficients (b̆ki, i ∈ V, k ∈ pa(i)) are entries of a unique

matrix B̂ ∈ B. The entries of B̂ can be computed by

b̂ii = 1, b̂ji = 0 for j ∈ V ∖An(i), b̂ki =
n

⋀
t=1

x
(t)
i

x
(t)
k

for k ∈ pa(i), and

b̂ji = ⋁
p∈Pji

d̂ji(p) for j ∈ an(i) ∖ pa(i),
(4.4.8)

where d̂ji(p) = ∏n−1
ν=0 b̂kνkν+1 for a path p = [j = k0 → k1 → ⋅ ⋅ ⋅ → kn = i]. We can use Theorem 2.2.4

with cki = bki and, hence, the matrix product ⊙ defined in (2.2.2) to compute B̂ more efficiently

than by the path analysis described in (4.4.8). An even more efficient computation of B̂ by ⊙ is

shown in Theorem 4.2 of Zhang [76].

We learn from (4.4.8) and Remark 4.4.5(i) that B̆ ∈ B if and only if B̆ = B̂. By (4.4.7) and

Remark 4.4.5(ii) we have bji ≤ b̂ji ≤ b̆ji for j ∈ an(i). Consequently, when using B̂ or B̆ as an

estimate of B, we never underestimate a ML coefficient; furthermore, the matrix B̂ estimates B

more precisely than B̆. So there is no reason why we should prefer B̆ to B̂. As explained above

when we have introduced B̆, if n is large, we estimate (bki, i ∈ V, k ∈ pa(i)) with high probability

by (̂bki, i ∈ V, k ∈ pa(i)) exactly and, hence, by B̂ the whole matrix B. In that case, we also have

B̂ = B̆. We explain this ’exact estimation’ more precisely in Section 4.4.2. In summary, B̂ seems

to be a reasonable estimate of B and the only reasonable for n sufficiently large. As discussed

and observed in Example 4.4.3, we can say relatively well whether B̂ is a reasonable estimate of

B or whether some ML coefficients are overestimated. The distributional properties of the ratios

between two components of X help us with this. The same applies to all GMLEs we obtain.

Because of the mentioned properties of B̂, we would expect that B̂ is a GMLE of B and for

n sufficiently large even that it is the unique GMLE. That is exactly what we show in what

follows. We specify, for the general case, one density of PB with respect to PB + PB∗ that has

a representation as in (4.4.3) and leads to B̂ as a GMLE of B. This density has a particularly

nice structure and representation. However, one should have in mind from Example 4.4.3 and

Table 4.2 that several such densities may exist, even where B̂ is no GMLE of B. Our parti-

tion {A0(B,B∗),A1/2(B,B∗),A1(B,B∗)} of Rd+ is based on the followig representation for the

components of the recursive ML model X:

Xi = ⋁
k∈pa(i)

bkiXk ∨Zi; in particular, Xi ≥ ⋁
k∈pa(i)

bkiXk, (4.4.9)

which has been shown in Theorem 2.4.2. We start with the specification of A1/2(B,B∗) and

prove a property needed subsequently to verify property (B). Have in mind that, obviously,
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for i ∈ V , {x ∈ Rd+ ∶ xi = ⋁k∈pa(i) b∗kixk = ⋁k∈pa(i) bkixk} = ∅ if there is no x ∈ Rd+ such that

xi = ⋁k∈pa(i) b∗kixk = ⋁k∈pa(i) bkixk. This is, for example, the case if bki > b∗ki for all k ∈ pa(i) or

bki < b∗ki for all k ∈ pa(i).

Lemma 4.4.6. Let B,B∗ ∈ B. Let X be a recursive ML model on D with ML coefficient matrix

B and Z1, . . . , Zd its noise variables. We denote by (Ω,F ,P) the probability space of (Z1, . . . , Zd)
and, hence, of X. Furthermore, we define

Ω(B,B∗) ∶=
d

⋂
i=1

{ ⋁
j∈An(i)∶bji=b∗ji

bjiZj > ⋁
j∈an(i)∶bji≠b∗ji

(bji ∨ b∗ji)Zj},

A1/2(B,B∗) ∶=
d

⋂
i=1

[{x ∈ Rd+ ∶ xi = ⋁
k∈pa(i)

bkixk = ⋁
k∈pa(i)

b∗kixk} ∪ {x ∈ Rd+ ∶ xi > ⋁
k∈pa(i)

(bki ∨ b∗ki)xk}].

Then for every F ∈ F ,

P(F ∩ {X ∈ A1/2(B,B∗)}) = P(F ∩Ω(B,B∗)). (4.4.10)

Proof. First, define for i ∈ V

Ω1,i
1/2 ∶= {Xi = ⋁

k∈pa(i)
bkiXk = ⋁

k∈pa(i)
b∗kiXk}, Ω2,i

1/2 ∶= {Xi > ⋁
k∈pa(i)

(bki ∨ b∗ki)Xk},

Ωi ∶= { ⋁
j∈An(i)∶bji=b∗ji

bjiZj > ⋁
j∈an(i)∶bji≠b∗ji

(bji ∨ b∗ji)Zj}.

The proof is by induction on the number of nodes of D. For d = 1 the statement is clear.

Assume now that D = (V,E) has d + 1 nodes and that the assertion holds with respect to

DAGs with less than d + 1 nodes. Furthermore, assume without loss of generality that d + 1

is a terminal node (i.e., de(d + 1) = ∅). Since (X1, . . . ,Xd) is a recursive ML model on the

DAG ({1, . . . , d},E ∩({1, . . . , d}×{1, . . . , d})) with ML coefficient matrix B = (bij)d×d and B∗ =
(bij)d×d is the ML coefficient matrix of a recursive ML model on this DAG as well, the induction

hypothesis yields that

P(F ∩ {X ∈ A1/2(B,B∗)}) = P(F ∩
d+1
⋂
i=1

(Ω1,i
1/2 ∪Ω2,i

1/2)) = P(F ∩
d

⋂
i=1

Ωi ∩ (Ω1,d+1
1/2 ∪Ω2,d+1

1/2 )).

(4.4.11)

For every i ∈ V we have by (4.2.3) on Ωi by definition,

Xi = ⋁
j∈An(i)

bjiZj = ⋁
j∈An(i)

b∗jiZj . (4.4.12)

Noting from the proof of Theorem 2.4.2 that

⋁
k∈pa(d+1)

bk,d+1Xk = ⋁
k∈pa(d+1)

bk,d+1 ⋁
j∈An(k)

bjkZj = ⋁
j∈an(d+1)

bj,d+1Zj ,
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we obtain from (4.4.12) on ⋂di=1 Ωi,

⋁
k∈pa(d+1)

b∗k,d+1Xk = ⋁
k∈pa(d+1)

b∗k,d+1 ⋁
j∈An(k)

b∗jkZj = ⋁
j∈an(i)

b∗j,d+1Zj .

Thus, again by (4.2.3),

d

⋂
i=1

Ωi ∩Ω1,d+1
1/2 =

d

⋂
i=1

Ωi ∩ { ⋁
j∈An(d+1)

bj,d+1Zj = ⋁
j∈an(d+1)

bj,d+1Zj = ⋁
j∈an(d+1)

b∗j,d+1Zj},

d

⋂
i=1

Ωi ∩Ω2,d+1
1/2 =

d

⋂
i=1

Ωi ∩ { ⋁
j∈An(d+1)

bj,d+1Zj > ⋁
j∈an(d+1)

(bj,d+1 ∨ b∗j,d+1)Zj}

=
d

⋂
i=1

Ωi ∩ {bj,d+1Zj > ⋁
j∈an(d+1)

(bj,d+1 ∨ b∗j,d+1)Zj}.

From (4.3.1) we then finally observe that ⋂di=1 Ωi∩(Ω1,d+1
1/2 ∪Ω2,d+1

1/2 ) and ⋂di=1 Ωi∩Ωd+1 only differ

by a set of probability zero, and, hence, (4.4.10) follows from (4.4.11).

The complete partition {A0(B,B∗),A1/2(B,B∗),A1(B,B∗)} of Rd+ we suggest is as follows,

{A0(B,B∗) = ⋃
i∈V

[{x ∈ Rd+ ∶ xi < ⋁
k∈pa(i)

bkixk} ∪ {x ∈ Rd+ ∶ xi = ⋁
k∈pa(i)

b∗kixk > ⋁
k∈pa(i)

bkixk}],

A1/2(B,B∗) = ⋂
i∈V

[{x ∈ Rd+ ∶ xi = ⋁
k∈pa(i)

bkixk = ⋁
k∈pa(i)

b∗kixk} ∪ {x ∈ Rd+ ∶ xi > ⋁
k∈pa(i)

(bki ∨ b∗ki)xk}],

A1(B,B∗) = Rd+ ∖ (A0(B,B∗) ∪A1/2(B,B∗))}.

Every vector x ∈ Rd+ belongs to exactly one of these sets. This has to be understood that

intersections correspond to all components have to satisfy something, and unions correspond

to at least one component satisfies something. Then by definition all sets are disjoint, and by

definition of A1(B,B∗) they really partition Rd+. We now show that this partition leads to a

density as in (4.4.3) and, therefore, verify properties (A)–(C). In Example 4.4.2 we have already

done this for the simple DAG 1→ 2. For an arbitrary DAG D, we can proceed likewise.

Theorem 4.4.7. Let B,B∗ ∈ B, where B contains the ML coefficient matrices of all recursive

ML models on the DAG D. Then the function from Rd+ to {0,1/2,1} such that

x↦ ρ(x,B,B∗) = 1

2
⋅ 1A1/2(B,B∗)(x) + 1A1(B,B∗)(x) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0, if x ∈ A0(B,B∗),
1
2 , if x ∈ A1/2(B,B∗),
1, if x ∈ A1(B,B∗)

(4.4.13)

is a density of PB with respect to PB + PB∗.

Proof. Let X be a recursive ML model on D with ML coefficient matrix B and Z1, . . . , Zd its

noise variables.
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(A) Since V is finite, it suffices to show for every i,

PB({x ∈ Rd+ ∶ xi < ⋁
k∈pa(i)

bkixk}) = P(Xi < ⋁
k∈pa(i)

bkiXk) = 0, (4.4.14)

PB({x ∈ Rd+ ∶ xi = ⋁
k∈pa(i)

b∗kixk > ⋁
k∈pa(i)

bkixk}) = P(Xi = ⋁
k∈pa(i)

b∗kiXk > ⋁
k∈pa(i)

bkiXk) = 0.

The former is immediate by (4.4.9). By the same argument we have for the latter,

0 ≤ P( ⋁
k∈pa(i)

bkiXk ∨Zi = ⋁
k∈pa(i)

b∗kiXk > ⋁
k∈pa(i)

bkiXk) = P(Zi = ⋁
k∈pa(i)

b∗kiXk > ⋁
k∈pa(i)

bkiXk)

≤ P(Zi = ⋁
k∈pa(i)

b∗ki ⋁
j∈An(k)

bjkZj) = 0,

where we have used (4.2.3) and (4.3.1) for the last inequality and equality, respectively. Thus

we have verified (A).

(B) Recall that the noise vectors of the recursive ML models are assumed to be identically

distributed. Furthermore, note that the set Ω(B,B∗) from Lemma 4.4.6 is a subset of ⋂i∈V {Xi =
⋁j∈An(i)∶bji=b∗ji bjiZj}. Thus, using that Ω(B,B∗) = Ω(B∗,B), we then obtain from (4.4.10) for

A ∈ B(Rd+),

PB(A ∩A1/2(B,B∗)) = P({X ∈ A} ∩Ω(B,B∗)) = P({( ⋁
j∈An(i)∶bji=b∗ji

bjiZj , i ∈ V ) ∈ A} ∩Ω(B,B∗))

= P({( ⋁
j∈An(i)∶bji=b∗ji

b∗jiZj , i ∈ V ) ∈ A} ∩Ω(B∗,B)) = PB∗(A ∩A1/2(B,B∗)).

(C) We observe from the definition of A0(B,B∗) and A1/2(B,B∗) that

A1(B,B∗) = Rd+ ∖ (A0(B,B∗) ∪A1/2(B,B∗))
⊆ ⋃
i∈V

[{x ∈ Rd+ ∶ ⋁
k∈pa(i)

b∗kixk > xi ≥ ⋁
k∈pa(i)

bkixk} ∪ {x ∈ Rd+ ∶ xi = ⋁
k∈pa(i)

bkixk > ⋁
k∈pa(i)

b∗kixk}]

⊆ A0(B∗,B).

Since A0(B∗,B) is by (A) a PB∗-null set, the subset A1(B,B∗) as well.

As observed in Example 4.4.3, there exist several densities of PB with respect to PB + PB∗ .

For example, the value on

A1/2(B,B∗) ∩ ⋃
i∈V

[ ⋃
k∈pa(i)∶b∗

ki
≠ bji
bjk

∀j∈An(k)

{x ∈ Rd+ ∶ xi = b∗kixk} ∪ ⋃
k∈pa(i)∶bki≠

b∗
ji

b∗
jk
∀j∈An(k)

{x ∈ Rd+ ∶ xi = bkixk}]

can be set arbitrarily, since this set is by property (C) from the proof of Theorem 4.4.7 and

Table 4.1 a PB- and a PB∗-null set. The same applies to the sets

A0(B,B∗) ∩ [ ⋃
i∈V

{x ∈ Rd+ ∶ xi < ⋁
k∈pa(i)

b∗kixk} ∪ ⋃
k∈pa(i)∶bki≠

b∗
ji

b∗
jk
∀j∈An(k)

{x ∈ Rd+ ∶ xi = bkixk}],
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A1(B,B∗) ∩ [ ⋃
i∈V

{x ∈ Rd+ ∶ xi < ⋁
k∈pa(i)

bkixk} ∪ ⋃
k∈pa(i)∶b∗

ki
≠ bji
bjk

∀j∈An(k)

{x ∈ Rd+ ∶ xi = b∗kixk}].

Furthermore, we may set the density equal to one on

⋃
i∈V

{x ∈ Rd+ ∶ xi < ⋁
k∈pa(i)

b∗kixk} ∪ ⋃
k∈pa(i)∶bki≠

b∗
ji

b∗
jk
∀j∈An(k)

{x ∈ Rd+ ∶ xi = bkixk}.

and equal to zero on

⋃
i∈V

{x ∈ Rd+ ∶ xi < ⋁
k∈pa(i)

bkixk} ∪ ⋃
k∈pa(i)∶b∗

ki
≠ bji
bjk

∀j∈An(k)

{x ∈ Rd+ ∶ xi = b∗kixk}.

It is not necessary to use (4.4.9) but, according to (2.6.11), we could use the representation

Xi = ⋁k∈paB(i) bkiXk ∨ Zi, where paB(i) are the parents of i in the minimum ML DAG DB of

X. From these facts we can derive several densities of PB with respect to PB + PB∗ .

We observe an interesting relation between the density (4.4.13) for D and corresponding

densities for subgraphs of D.

Example 4.4.8. [“Marginal” densities ρi]

Consider the DAGs

1 2 3D 1 2D2 2 3D3

Let ρ, ρ2, and ρ3 be the corresponding densities from (4.4.13). For the ML coefficient matrix

B of a recursive ML model on D, let B12 and B23 be the ML coefficient matrices of recursive

ML models on D2 and D3 with edge weight c12 = b12 and c23 = b23. Here B12 and B23 are the

submatrices of B formed by the first two or the last two rows and columns, respectively. We

then find for x = (x1, x2, x3) ∈ R3
+,

ρ(x,B,B∗)
= (ρ2(xPa(2),B12,B

∗
12) ∨ ρ3(xPa(3),B23,B

∗
23))1{ρ2(xPa(2),B12,B

∗
12) ∧ ρ3(xPa(3),B23,B

∗
23) > 0}.

This can be observed from Figure 4.4.7, where these densities are depicted as functions of x2
x1

and/or x3
x2

for all nine different orders between the ML coefficients. Conversely, ρ2 and ρ3 can

be derived from ρ as follows:

ρ2((x1, x2),B12,B
∗
12) = min

y∈{y∈R+∶ρ((x1,x2,y),B,B∗)>0}
ρ((x1, x2, y),B,B∗),

ρ3((x2, x3),B23,B
∗
23) = min

y∈{y∈R+∶ρ((y,x2,x3),B,B∗)>0}
ρ((y, x2, x3),B,B∗),

which we learn from Figure 4.4.7 again. ◻

We extend the findings from Example 4.4.8 to the general case. Furthermore, we show that

the densities ρi are (regular) conditional densities. For the definition of a regular conditional
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Figure 4.4.7: The densities ρ(x = (x1, x2, x3),B,B∗), ρ2((x1, x2),B12,B
∗
12), ρ3((x2, x3),B23,B

∗
23) from

Example 4.4.8 as functions of x2

x1
and/or x3

x2
. The area where the respective density is 0/1

2
/1

is coloured in red/blue/green.

distribution, see e.g. Chapter 8.3 of Klenke [42].

Proposition 4.4.9. Let B,B∗ ∈ B and X,X∗ corresponding recursive ML models on D. For

i ∈ V , let ρi be the density given in (4.4.13) with respect to the DAG Di = (Pa(i),{(k, i) ∶ k ∈
pa(i)}) as well as Bi and B∗

i the ML coefficient matrices of recursive ML models on Di with

edge weights cki = bki and c∗ki = b∗ki, respectively.

(a) We have for ρ(x,B,B∗) given in (4.4.13),

ρ(x,B,B∗) = ( ⋁
i∈V

ρi(xPa(i),Bi,B
∗
i ))1{ ⋀

i∈V
ρi(xPa(i),Bi,B

∗
i ) > 0} (4.4.15)

=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

0, if ⋀i∈V ρi(xPa(i),Bi,B
∗
i ) = 0,

⋁i∈V ρi(xPa(i),Bi,B
∗
i ), if ⋀i∈V ρi(xPa(i),Bi,B

∗
i ) > 0.

(b) The function ρi can be computed from ρ by

ρi(xPa(i),Bi,B
∗
i ) = min

y∈{y∈Rd+∶yPa(i)=xPa(i),ρ(y,B,B∗)>0}
ρ(y,B,B∗),
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where we set miny∈∅ ρ(y,B,B∗) = 0.

(c) The function from Rd+ to {0,1/2,1} such that xPa(i) ↦ ρi(xPa(i),Bi,B
∗
i ) is a density of

P
i∣pa(i)
B with respect to P

i∣pa(i)
B +P i∣pa(i)B∗ , where P

i∣pa(i)
B is a regular conditional distribution

of Xi given Xpa(i) and P
i∣pa(i)
B∗ one of X∗

i given X∗
pa(i).

Proof. Denoting by Ai0(Bi,B∗
i ), Ai1/2(Bi,B

∗
i ), Ai1(Bi,B∗

i ) the sets defining ρi(⋅,Bi,B∗
i ), we have

for the corresponding sets of ρ,

A0(B,B∗) = ⋃
i∈V

{x ∈ Rd+ ∶ xPa(i) ∈ Ai0(Bi,B∗
i )},

A1/2(B,B∗) = ⋂
i∈V

{x ∈ Rd+ ∶ xPa(i) ∈ Ai1/2(Bi,B
∗
i )},

A1(B,B∗) = ⋂
i∈V

{x ∈ Rd+ ∶ xPa(i) ∈ Ai1/2(Bi,B
∗
i ) ∪Ai1(Bi,B∗

i )} ∩ [Rd+ ∖A1/2(Bi,B∗
i )].

From this we can observe (a) and (b).

(c) We denote the noise variables of X again by Z1, . . . , Zd. It is not difficult to verify that

P
i∣pa(i)
B ((0, xi] ∣ xpa(i)) = FZi(xi)1[⋁k∈pa(i) bkixk,∞)(xi), xPa(i) ∈ R

∣Pa(i)∣
+ ,

is a regular conditional distribution function of Xi given Xpa(i). To get an idea for this, use

(4.4.9) and the independence of the noise variables to obtain

P
i∣pa(i)
B ((0, xi] ∣ xpa(i)) = P(Xi ≤ xi ∣Xpa(i) = xpa(i))

= P( ⋁
k∈pa(i)

bkiXk ∨Zi ≤ xi ∣Xpa(i) = xpa(i))

= FZi(xi)1[⋁k∈pa(i) bkixk,∞)(xi).

Since we assume that the noise vectors of X and X∗ are identically distributed,

P
i∣pa(i)
B∗ ((0, xi] ∣ xpa(i)) = FZi(xi)1[⋁k∈pa(i) b∗kixk,∞)(xi), xPa(i) ∈ R

∣Pa(i)∣
+ ,

is a regular conditional distribution function of X∗
i given X∗

pa(i). Figure 4.4.8 depicts the

two conditional distribution functions for the three possible orders between ⋁k∈pa(i) bkixk and

⋁k∈pa(i) b∗kixk. It then suffices to show for all xpa(i) ∈ R
∣pa(i)∣
+ and y ∈ R+,

P
i∣pa(i)
B ((0, y] ∣ xpa(i)) = ∫(0,y]

ρi(xPa(i),Bi,B
∗
i )(P

i∣pa(i)
B + P i∣pa(i)B∗ )(dxi ∣ xpa(i)),

and for this again by definition of ρi (cf. (4.4.3) and the related discussion) that

P
i∣pa(i)
B ((0, y] ∩ (0, ⋁

k∈pa(i)
bkixk) ∣ xpa(i)) = 0,

P
i∣pa(i)
B ((0, y] ∩ { ⋁

k∈pa(i)
b∗kixk} ∣ xpa(i)) = 0 if ⋁

k∈pa(i)
b∗kixk > ⋁

k∈pa(i)
bkixk,

P
i∣pa(i)
B ((0, y] ∩ { ⋁

k∈pa(i)
bkixk} ∣ xpa(i)) = P

i∣pa(i)
B∗ ((0, y] ∩ { ⋁

k∈pa(i)
bkixk} ∣ xpa(i))
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x

FZi

0

1

P
i∣pa(i)
B
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x
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FZi

1

P
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Figure 4.4.8: The conditional distribution functions from the proof of Proposition 4.4.9(c).

if ⋁
k∈pa(i)

b∗kixk = ⋁
k∈pa(i)

bkixk,

P
i∣pa(i)
B ((0, y] ∩ ( ⋁

k∈pa(i)
(bki ∨ b∗ki)xk,∞) ∣ xpa(i)) = P

i∣pa(i)
B∗ ((0, y] ∩ ( ⋁

k∈pa(i)
(bki ∨ b∗ki)xk,∞) ∣ xpa(i)).

Since FZi is continuous, this can be read directly from Figure 4.4.8.

Figure 4.4.9 below shows another example for the DAGs Di from Proposition 4.4.9.

According to (4.4.15), the density ρ is the maximum of the conditional densities ρi. This is

an interesting result in consideration of the following remark.

Remark 4.4.10. The distribution of X is Markov relative to D (see e.g. (2.1.2) and the related

discussion). If the distribution L(Y ) of a positive real-valued random vector Y satisfies this

property and has density f with respect to a product measure, then L(Y ) admits a recursive

factorization according to D; i.e.,

f(y) = ∏
i∈V

fi∣pa(i)(yi ∣ ypa(i)), y ∈ Rd+,

where the functions fi∣pa(i)(⋅ ∣ ypa(i)) are densities for the conditional distribution of Yi given

Y pa(i) = ypa(i). For more details, see Section 3.2.2 of Lauritzen [47]. ◻

In what follows we now determine all GMLEs of B with respect to the density ρ given in

(4.4.13). The value of ρ(x(t),B,B∗) indicates the membership of x(t), having the value 0 if

x(t) ∈ A0(B,B∗), 1/2 if x(t) ∈ A1/2(B,B∗), and 1 if x(t) ∈ A1(B,B∗). So, to find the GMLEs of

B, we have to understand when an observation x(t) is in which of these sets. This is investigated

in the next lemma, which is simply by definition of A0(B,B∗), A1/2(B,B∗), and A1(B,B∗).

Lemma 4.4.11. Let B̂ be the matrix from (4.4.8).
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4.4 Estimation of a recursive ML model with known DAG

(a) No x(t) ∈ A0(B,B) if and only if all x(t) ∈ A1/2(B,B).

(b) x(t) ∈ A1/2(B,B∗) if and only if x(t) ∈ A1/2(B∗,B).

(c) If x(t) ∈ A1(B,B∗), then x(t) ∈ A0(B∗,B).

(d) All x(t) ∈ A1/2(B,B) if and only if for every i ∈ V and k ∈ pa(i), bki ≤ b̂ki.

(e) If all x(t) ∈ A1/2(B,B), then x(t) ∈ A0(B,B∗) if and only if x
(t)
i = ⋁k∈pa(i) b∗kix

(t)
k >

⋁k∈pa(i) bkix
(t)
k for some i ∈ V .

(f) If all x(t) ∈ A1/2(B,B), then no x(t) ∈ A0(B̂,B).

By this lemma we find nice characterizations of the GMLEs of B. These characterizations only

depend on the estimates of the ML coefficients that belong to an edge of D. With the choice of

the partition {A0(B,B∗), A1/2(B,B∗),A1(B,B∗)} defining ρ and Remark 4.4.5 in mind, this

is exactly what was expected and makes sense. Since ρ(⋅,B,B∗) equals zero outside supp(PB) =
A1/2(B,B), the first condition in (4.4.2) ensures that for a GMLE B̃ ∈ B all x(t) ∈ supp(PB̃),
which is a reasonable property. Throughout the following discussion about the GMLEs of B,

we use implicitly that the matrix B̂ from (4.4.8) is an element of B as well as (4.4.8), and

Remark 4.4.5. All GMLEs relate to the density ρ from (4.4.13) without mentioning this explicitly

again.

Theorem 4.4.12. Let x(t) = (x(t)1 , . . . , x
(t)
d ) for t = 1, . . . , n be independent realizations of a

recursive ML model X on a given DAG D with ML coefficient matrix B. Then B̃ ∈ B is a

GMLE of B if and only if one of the following conditions is satisfied.

(a)
n

∏
t=1
ρ(x(t), B̃, B̃) ≠ 0 and

n

∏
t=1
ρ(x(t),B, B̃) ≤

n

∏
t=1
ρ(x(t), B̃,B) for all B ∈ B.

(b) All x(t) ∈ A1/2(B̃, B̃) and for all B ∈ B, if some x(t) ∈ A0(B̃,B), then some x(s) ∈
A0(B, B̃).

(c) b̃ki ≤ b̂ki for every i ∈ V and k ∈ pa(i), and no x(t) ∈ A0(B̃, B̂).

(d) All x(t) ∈ A1/2(B̃, B̂) = A1/2(B̂, B̃).

(e) For every i ∈ V , b̃ki ≤ b̂ki for all k ∈ pa(i) with strict inequality only if for every x
(t)
Pa(i) such

that
x
(t)
i

x
(t)
k

= b̂ki, b̃k̃i = b̂k̃i =
x
(t)
i

x
(t)
k̃

for some k̃ ∈ pa(i).

(f) For every i ∈ V , the vector (̃bki, k ∈ pa(i)) is a GMLE of the ML coefficients (bki, k ∈ pa(i))
of a recursive ML model Y i on Di = (Pa(i),{(k, i) ∶ k ∈ pa(i)}) with edge weights cki = bki.

Proof. (a) corresponds to the definition of a GMLE of B.

(b) is by definition of ρ and Lemma 4.4.11(a)–(c).

(c) We show the equivalence to (b). Assume (b) holds but not (c). With regard to Lemma 4.4.11(d),

there must be some x(t) ∈ A0(B̃, B̂). As B̂ ∈ B, we obtain from (b) that x(t) ∈ A0(B̂, B̃). This con-

tradicts, however, Lemma 4.4.11(f). By Lemma 4.4.11(d) it then remains to show that (c) implies
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Figure 4.4.9: The DAGsDi of the recursive ML models Y i from Proposition 4.4.9 and Theorem 4.4.12(f)
for a recursive ML model X on the DAG D depicted on the left-hand side with ML
coefficient matrix B. The edges are marked with the corresponding ML coefficients. Note
that b12, b14, b34, b24 can be arbitary positive numbers but b24 ≥ b23b34.

the second property of (b). For this assume some x(t) ∈ A0(B̃,B), where B ∈ B. Lemma 4.4.11(e)

yields for some i, x
(t)
i = ⋁k∈pa(i) bkix

(t)
k > ⋁k∈pa(i) b̃kix

(t)
k . As x

(t)
i ≥ ⋁k∈pa(i) b̂kix

(t)
k , we necessarily

have that x
(t)
i = ⋁k∈pa(i) bkix

(t)
k > ⋁k∈pa(i) b̂kix

(t)
k ; otherwise, it would be a contradiction to (c)

because of Lemma 4.4.11(e). Hence, bki > b̂ki for some k ∈ pa(i). For x(s) such that
x
(s)
i

x
(s)
k

= b̂ki, we

then find x
(s)
i < bkix(s)k , which finally proves that x(s) ∈ A0(B, B̃), as x

(s)
i < ⋁k∈pa(i) bkix

(s)
k .

(d) follows from (c) as we may observe from Lemma 4.4.11(c), (d), (f). By definition, if all

x(t) ∈ A1/2(B̃, B̂), then all x(t) ∈ A1/2(B̃, B̃). Thus by Lemma 4.4.11(d), (d) implies (c).

(e) It is not difficult to see that (c), (d), and (e) are equivalent.

(f) For i ∈ V let (y(t)` , ` ∈ Pa(i)) for t = 1, . . . , n be independent realizations of Y i. We know

from (e) that (̃bki, k ∈ pa(i)) is a GMLE of (bki, k ∈ pa(i)) if and only if for every k ∈ pa(i),
b̃ki ≤ ⋀nt=1

y
(t)
i

y
(t)
k

=∶ ĉki with strict inequality only if for every t such that y
(t)
i = ĉkiy(t)k , b̃k̃iy

(t)
k̃

=

ĉk̃iy
(t)
k̃

= y(t)i for some k̃ ∈ pa(i). This shows the equivalence between (e) and (f).

Theorem 4.4.12(f) seems to reduce the problem of finding GMLEs of B to the same problem

for recursive ML models on DAGs that consist only of initial nodes (i.e., nodes without ancestors)

and one terminal node (i.e., a node without descendants). These DAGs have already appeared

in Proposition 4.4.9. Figure 4.4.9 shows them for an example. For some matrix B̃ to be a GMLE

of B, it is, however, not enough for property (f) of Theorem 4.4.12 to hold. B̃ ∈ B is necessary

as we show by an example.

Example 4.4.13. [B̃ ∈ B in Theorem 4.4.12 is necessary but property (f) provides edge weights

leading to a GMLE B̃ of B]

Consider the DAG D from Example 4.3.1, and assume we observe that b̂13 = b̂12b̂23 and no x(t)

with x
(t)
3 = b̂13x(t)1 , x

(t)
3 > b̂23x(t)2 . This can happen, for example, when n = 1 or all observations

belong to the event {X2 > b12X1} ∩ {X3 > b23X2} ∩ {X3 > b13X1}. Then (̂b12, b̃13, b̂23) with

b̃13 ∈ (0, b̂13) cannot be a GMLE of (b12, b13, b23), since b̃13 ≥ b̂12b̂23 is a necessary property (see

e.g. Corollary 2.4.3(a)). However, property (f) of Theorem 4.4.12 holds: that (e) holds is clear,

and (f) is always equivalent to (e) (cf. the proof of Theorem 4.4.12(f)). Note that the edge

weights c̃12 = b̂12, c̃23 = b̂23, c̃13 ∈ (0, b̂13) lead to the ML coefficient matrix B̂ and thus belong by

Theorem 4.4.12(e) to a recursive ML model on D whose ML coefficient matrix is a GMLE of B

(cf. Corollary 4.4.17 below). ◻

98



4.4 Estimation of a recursive ML model with known DAG

So far, to find all GMLEs of B, we would determine all vectors with property (c), (d), or (e) of

Theorem 4.4.12 and then test by using Remark 4.4.5(ii) which of them lead to a matrix B̃ ∈ B.

However, the second step is not necessary, since the observation from Example 4.4.13 is valid

for the general case: the vectors from Theorem 4.4.12(c), (d), (e) are the edge weights leading

to a GMLE B̃ of B.

Corollary 4.4.14. Assume the situation of Theorem 4.4.12. Recall from the definition of B̂

that b̂ki = ⋀nt=1
x
(t)
i

x
(t)
k

for k ∈ pa(i). Let cki be the edge weights of X and Y a recursive ML model

on D with edge weights c̃ki. Then the ML coefficient matrix B̃ of Y is a GMLE of B if and only

if one of the following conditions is satisfied.

(a) For every i ∈ V , c̃ki ≤ b̂ki for all k ∈ pa(i) and there is no x
(t)
Pa(i) such that x

(t)
i =

⋁k∈pa(i) b̂kix
(t)
k > ⋁k∈pa(i) c̃kix

(t)
k .

(b) For every i ∈ V , x
(t)
i > ⋁k∈pa(i)(c̃ki ∨ b̂ki)x

(t)
k or x

(t)
i = ⋁k∈pa(i) c̃kix

(t)
k = ⋁k∈pa(i) b̂kix

(t)
k for

all x
(t)
Pa(i).

(c) For every i ∈ V , c̃ki ≤ b̂ki for all k ∈ pa(i) with strict inequality only if for every x
(t)
Pa(i) such

that
x
(t)
i

x
(t)
k

= b̂ki, c̃k̃i = b̂k̃i =
x
(t)
i

x
(t)
k̃

for some k̃ ∈ pa(i).

(d) For every i ∈ V , the vector (c̃ki, k ∈ pa(i)) is a GMLE of the edge weights (cki, k ∈ pa(i))
of a recursive ML model on Di = (Pa(i),{(k, i) ∶ k ∈ pa(i)}).

Proof. Observe from the proof that the properties (c)–(f) of Theorem 4.4.12 are equivalent even

if B̃ /∈ B. Therefore, by definition of the sets A0(B̃, B̂),A1/2(B̃, B̂), we obtain the equvivalence

between (a)–(d).

It suffices to show the equivalence between (a) and property (c) of Theorem 4.4.12. By

Lemma 4.4.11(e), Theorem 4.4.12(c) holds if and only if for every i ∈ V , b̃ki ≤ b̂ki for all k ∈ pa(i)
and there is no x

(t)
Pa(i) such that x

(t)
i = ⋁k∈pa(i) b̂kix

(t)
k > ⋁k∈pa(i) b̃kix

(t)
k . We know from Theo-

rem 2.5.4(b) that c̃ki = b̃ki for k ∈ paB̃(i) and c̃ki ∈ (0, b̃ki] for k ∈ pa(i) ∖ paB̃(i), where paB̃(i)
are the parents of i in the minimum ML DAG DB̃. With this, using Corollary 2.6.8 and (2.6.5),

we obtain

⋁
k∈pa(i)

b̃kiXk = ⋁
k∈paB̃(i)

b̃kiXk = ⋁
k∈paB̃(i)

c̃kiXk = ⋁
k∈pa(i)

c̃kiXk.

Consequently, for every i and x
(t)
Pa(i), ⋁k∈pa(i) b̃kix

(t)
k = ⋁k∈pa(i) c̃kix

(t)
k . So it remains to show that

b̃ki ≤ b̂ki for every i and k ∈ pa(i) if c̃ki ≤ ĉki for every i ∈ V and k ∈ pa(i). We find in that case

for the weight of a path p = [k0 = k → k1 → ⋅ ⋅ ⋅ → kn−1 → kn = i],

d̃ki(p) = c̃k0k1 c̃k1k2 . . . b̃kn−1,kn ≤ b̂k0k1 b̂k1k2 . . . b̂kn−1,kn ≤ b̂ki,

where we have used (4.4.7) for the last inequality. Thus, by definition of b̃ki in (4.2.2), b̃ki ≤ b̂ki
for k ∈ pa(i).
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In the following algorithm we use Corollary 4.4.14(a) to identify all GMLEs of B. Of course,

we could alternatively use Corollary 4.4.14(b),(c) in step 2. To avoid to compute the same ML

coefficient matrix several times, since different edge weights may lead to the same ML coefficient

matrix, we use Theorem 2.5.4(b) in step 3.(b), (c).

Algorithm 4.4.15. [Find all GMLEs B̃ of B from D and x(1), . . . ,x(n)]

1. For every i ∈ V and k ∈ pa(i), compute b̂ki = ⋀nt=1
x
(t)
i

x
(t)
k

.

2. Find all vectors (c̃ki, i ∈ V, k ∈ pa(i)) such that c̃ki ≤ b̂ki and for every i ∈ V , there is no

x
(t)
Pa(i) with x

(t)
i = ⋁k∈pa(i) b̂kix

(t)
k > ⋁k∈pa(i) c̃kix

(t)
k . Summarize them in the set C.

3. For c̃ ∈ C,

(a) compute via (4.2.2) the corresponding ML coefficient matrix B̃;

(b) find DB̃ via (2.5.2);

(c) remove those vectors c̃ = (c̃ki, i ∈ V, k ∈ pa(i)) from C that lead to B̃; i.e., c̃ki = b̃ki for

k ∈ paB̃(i) and c̃ki ∈ (0, b̃ki] for k ∈ pa(i) ∖ paB̃(i);

(d) perform step 3. for the next vector c̃ ∈ C.

We would like to recall once again the matrix product ⊙ from (2.2.2) with which B̃ and the

adjacency matrix of DB̃ can be computed more efficiently (see Theorem 2.2.4 and Remark 2.3.11

as well as Theorem 4.2 of [76]).

We know the following from Example 4.4.2 but, of course, it is an immediate consequence of

Theorem 4.4.12(e) as well.

Corollary 4.4.16. For every i ∈ V and k ∈ pa(i), b̂ki is the only GMLE of the ML coefficient

bki of a recursive ML model on Dki = ({k, i},{(k, i)}) with edge weight cki = bki.

As B̂ ∈ B, a further immediate consequence of Theorem 4.4.12(e) is that B̂ is a GMLE of B.

We use part (d) to provide a necessary and sufficient condition for its uniqueness.

Corollary 4.4.17. The matrix B̂ is a GMLE of B. It is the only GMLE if and only if there is

no B ∈ B ∖ {B̂} such that all x(t) ∈ A1/2(B, B̂).

In what follows we give an explanation why B̂ is the unique GMLE if n is sufficiently large.

For this we first present a situation where B̂ is the unique GMLE.

Corollary 4.4.18. We denote by paB̂(i) the parents of i in the minimum ML DAG DB̂ of a

recursive ML model with ML coefficient matrix B̂. The matrix B̂ is the unique GMLE of B if

for every i ∈ V and k ∈ paB̂(i), x
(t)
i = b̂kix(t)k > ⋁k̃∈pa(i)∖{k} b̂k̃ix

(t)
k̃

for some x
(t)
Pa(i).

Proof. Assume a further GMLE B̃ ∈ B of B. We observe from Theorem 4.4.12(e) that b̃ki = b̂ki
for k ∈ paB̂(i). Since B̂ and B̃ differ, b̃ki < b̂ki for some k ∈ pa(i) ∖ paB(i) (see Remark 4.4.5).

By definition of DB̂ there must exist a max-weighted path p = [k0 = k → k1 → ⋅ ⋅ ⋅ → kn = i] that

is contained in DB̂ (cf. Remark 2.5.2(ii)). With this we find that b̂ki = b̂k0k1 b̂k1k2 . . . b̂kn−1,kn =
b̃k0k1 b̃k1k2 . . . b̃kn−1,kn > b̃ki. The inequality is a contradiction to B̃ ∈ B. Hence, B̃ = B̂, and B̂ is

the only GMLE.
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The events corresponding to Corollary 4.4.18 have positive probability.

Lemma 4.4.19. Let i ∈ V and k ∈ paB(i), where paB(i) are the parents of i in DB. Then the

event Aki = {Xi = bkiXk > ⋁k̃∈pa(i)∖{k} bk̃iXk̃} has positive probability.

Proof. We first show that

Ãki = { ⋁
j∈an(i)∶bji>⋁k̃∈pa(i)∖{k} bjk̃bk̃i

bjiZj > ⋁
j∈an(i)∶bji=⋁k̃∈pa(i)∖{k} bjk̃bk̃i

bjiZj ∨Zi} ⊆ Aki.

Using that for j ∈ an(i), bji = ⋁k∈pa(i) bjkbki, which follows, for example, from Corollary 2.4.3(a)

and Remark 2.2.3(i), it is not difficult to verify that

Ãki ⊆ { ⋁
j∈An(i)

bjiZj = bki ⋁
j∈An(k)

bjkZj} ∩ ⋂
k̃∈pa(i)∖{k}

{ ⋁
j∈An(i)

bjiZj > bk̃i ⋁
j∈An(k̃)

bjk̃Zj},

where we set ⋂k̃∈∅ F = Ω for F ∈ F . This is by (4.2.3) a subevent of Aki and, hence, Ãki ⊆ Aki.
It remains to show that P(Ãki) > 0. Since the noise variables are independent and have support

R+, it suffices to show that bji > ⋁k̃∈pa(i)∖{k} bjk̃bk̃i for some j ∈ an(i). Observing from (2.5.2)

that k is such a node j finishes the proof.

For n sufficiently large, we observe Aki for every i ∈ V and k ∈ paB(i). Then the estimate b̂ki

for k ∈ paB(i) is equal to the true parameter bki. However, we do not know which edges are in

DB so that it may be not enough to observe the events Aki from Lemma 4.4.19 only to estimate

B exactly. We illustrate this by an example.

Example 4.4.20. [Observing the events from Lemma 4.4.19 is not enough]

Consider the DAG D from Example 4.3.1, and assume for the true ML coefficients that b13 =
b12b23; the minimum ML DAG DB of X is then the DAG D without the edge 1 → 3 (see

Example 4.3.1). Furthermore, we assume that we have two observations x(1),x(2) only: x(1)

belongs to the event {X2 = b12X1}∩{X3 > b23X2}∩{X3 > b13X1} and x(2) to {X2 > b12X1}∩{X3 =
b23X2} ∩ {X3 > b13X1}. Both events occur with positive probability. Then we estimate b12

and b23 by b̂12 and b̂23 exactly but would overstimate b13 with b̂13. If we know DB, which

is usually not the case, then we would estimate b13 by b̂12b̂23 and, hence, exactly. Assuming

that
x
(1)
3

x
(1)
1

> x
(2)
3

x
(2)
1

= b̂13, we learn from Theorem 4.4.12(e) that the vectors (̂b12, b̂13, b̃23) with

b̃23 ∈ (0, b̂23] and (̂b12, b̃13, b̂23) such that b̂13 ≥ b̃13 ≥ b̂12b̂23 are the GMLEs of (b12, b13, b23) as

b̂23 = x
(2)
3

x
(2)
2

< x
(1)
3

x
(1)
2

. If b̂13 = x
(1)
3

x
(1)
1

< x
(2)
3

x
(2)
1

, then (̂b12, b̂13, b̂23) is the only GMLE (cf. Corollary 4.4.18),

and if b̂13 = x
(1)
3

x
(1)
1

= x
(2)
3

x
(2)
1

, then the vectors (̂b12, b̂13, b̃23) with b̃23 ∈ (0, b̂23] are the GMLEs. Note,

however, that we observe b̂13 = x
(1)
3

x
(1)
1

= x
(2)
3

x
(2)
1

with probability zero, since X3

X1
has no atom in b̂13 (see

Table 4.1). ◻

If every b̂ki for k ∈ pa(i) ∖ paB(i) equals the true ML coefficient bki and the events Aki from

Lemma 4.4.19 are observed implicitly, then Corollary 4.4.18 yields that B̂ is the unique GMLE;

furthermore, B is estimated exactly by B̂. These conditions apply in particular if n is sufficiently

large. Thus we get the following corollary.
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Corollary 4.4.21. For n sufficiently large, B̂ is equal to the true B and is the unique GMLE

of B.

Recursive max-weighted models

Suppose we have the information that the model X underlying x(1), . . . ,x(n) is max-weighted;

i.e., all paths are max-weighted. This subclass of recursive ML mdels was introduced and dis-

cussed in Chapter 3. For example, if D is a polytree (i.e., the underlying undirected graph has

no cycles) or has at most one path between two nodes, then a recursive ML model on D is

automatically max-weighted; the latter request to D is weaker than the first as the following

DAG shows.

1

3

4

2

We observe from Example 4.4.20 that, when determing GMLEs of B, it makes sense to use the

additional knowledge that X is max-weighted. This can be achieved by the use of a density

specific to recursive max-weighted models. In what follows we discuss such a density and the

corresponding GMLEs of B.

Analogous to Remark 4.4.5, we first present necessary and sufficient conditions for a matrix

to be the ML coefficient matrix of a recursive max-weighted model on the given DAG D.

Remark 4.4.22. Let Dtr be the transitive reduction of D. We denote by Bmw the class of the

ML coefficient matrices of all recursive max-weighted models on D.

(i) B = (bij)d×d ∈ Bmw if and only if for every i ∈ V ,

bii = 1, bji = 0 for j ∈ V ∖An(i), bki > 0 for k ∈ patr(i), and

bji = dji(p) for j ∈ an(i) and every p ∈ Pji,

where dji(p) = ∏n−1
ν=0 bkνkν+1 for a path p = [j = k0 → k1 → ⋅ ⋅ ⋅ → kn = i].

(ii) B ∈ Bmw if and only if for every i ∈ V ,

bii = 1, bji = 0 for j ∈ V ∖An(i), bki > 0 for k ∈ patr(i), and

bji = bjkbki for k ∈ pa(i) and j ∈ an(k).

(iii) Coefficients (bki, i ∈ V, k ∈ pa(i)) are entries of a matrix B ∈ Bmw if and only if for every

i ∈ V , bki > 0 for k ∈ patr(i) and bki = dki(p) for k ∈ pa(i) ∖ patr(i) and every path p ∈ Pki.
In this case, the remaining ML coefficients are uniquely given for i ∈ V by

bii = 1, bji = 0 for j ∈ V ∖An(i), and bji = dji(p) for j ∈ an(i) ∖ pa(i) and some p ∈ Pji.
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◻

According to Remark 4.4.22(ii), we have for every i ∈ V , k ∈ pa(i), and j ∈ An(k), bji = bjkbki.
Thus we find from Table 4.1

P(Xi = bkiXk) > 0 and P(Xi = xXk) = 0 for x ∈ R+ ∖ {bki}; (4.4.16)

i.e., the distribution of Xi
Xk

has only one atom in bki.

Let now B,B∗ ∈ Bmw. We define

Amw
0 (B,B∗) ∶= ⋃

i∈V
⋃

k∈pa(i)
[{x ∈ Rd+ ∶ xi < bkixk} ∪ {x ∈ Rd+ ∶ xi = b∗kixk > bkixk}],

Amw
1/2(B,B

∗) ∶= ⋂
i∈V

⋂
k∈pa(i)

[{x ∈ Rd+ ∶ xi = bkixk = b∗kixk} ∪ {x ∈ Rd+ ∶ xi > (bki ∨ b∗ki)xk}],

Amw
1 (B,B∗) ∶= Rd+ ∖ (Amw

0 (B,B∗) ∪Amw
1/2(B,B

∗)).

{Amw
0 (B,B∗),Amw

1/2(B,B
∗),Amw

1 (B,B∗)} is a partition of Rd+. These sets define a density of PB

with respect to PB +PB∗ , for which we obtain similar representations as in Proposition 4.4.9(a)

for ρ.

Corollary 4.4.23. Let B,B∗ ∈ Bmw.

(a) The function from Rd+ to {0,1/2,1} such that

x↦ ρmw(x,B,B∗) = 1

2
⋅ 1Amw

1/2(B,B∗)(x) + 1Amw
1 (B,B∗)(x) (4.4.17)

is a density of PB with respect to PB + PB∗.

For i ∈ V , let ρmw,i be the density given in (4.4.17) with respect to the DAG Di from Propo-

sition 4.4.9; we also use the notation Bi and B∗
i introduced there. Furthermore, for i ∈ V and

k ∈ pa(i), let ρk→i the density from (4.4.17) with respect to the DAG Dki = ({k, i},{(k, i)}) as

well as Bki and B∗
ki the ML coefficient matrices of recursive ML models on Dki with edge weight

cki = bki and c∗ki = b∗ki, respectively.

(b) Writing xki for (xk, xi), we have for x ∈ Rd+,

ρk→i(xki,Bki,B∗
ki) = min

y∈{y∈Rd+∶yki=xki,ρmw(y,B,B∗)>0}
ρmw(y,B,B∗)

= min
yPa(i)∈{yPa(i)∈R

∣Pa(i)∣
+ ∶yki=xki,ρmw,i(yPa(i),Bi,B

∗
i >0}

ρmw,i(yPa(i),Bi,B∗
i ),

ρmw,i(xPa(i),Bi,B
∗
i ) = min

y∈{y∈Rd+∶yPa(i)=xPa(i),ρmw(y,B,B∗)>0}
ρmw(y,B,B∗)

= ( ⋁
k∈pa(i)

ρk→i(xki,Bki,B∗
ki) ∨

1

2
)1{ ⋀

k∈pa(i)
ρk→i(xki,Bki,B∗

ki) > 0},

ρmw(x,B,B∗) = ( ⋁
i∈V

⋁
k∈pa(i)

ρk→i(xki,Bki,B∗
ki) ∨

1

2
)1{ ⋀

i∈V
⋀

k∈pa(i)
ρk→i(xki,Bki,B∗

ki) > 0}
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= ( ⋁
i∈V

ρmw,i(xPa(i),Bi,B
∗
i ))1{ ⋀

i∈V
ρmw,i(xPa(i),Bi,B

∗
i ) > 0}.

Proof. (a) We verify

(A) PB(Amw
0 (B,B∗)) = 0,

(B) PB(A ∩Amw
1/2(B,B

∗)) = PB∗(A ∩Amw
1/2(B,B

∗)) for every A ∈ B(Rd+), and

(C) PB∗(Amw
1 (B,B∗)) = 0

(cf. the discussion related to (4.4.3)).

(A) As ⋃i∈V {x ∈ Rd+ ∶ xi < ⋁k∈pa(i) bkixk} = ⋃i∈V ⋃k∈pa(i) {x ∈ Rd+ ∶ xi < bkixk}, it suffices by

(4.4.14) and the definition of Amw
0 (B,B∗) to show that {x ∈ Rd+ ∶ xi = b∗kixk > bkixk} is a PB-null

set for i ∈ V and k ∈ pa(i). This is immediate by (4.4.16).

(B) In Theorem 4.4.7 we have proved that (B) holds with Amw
1/2(B,B

∗) replaced by A1/2(B,B∗).
As Amw

1/2(B,B
∗) ⊆ A1/2(B,B∗), (B) follows.

(C) is a consequence of (A) as

Amw
1 (B,B∗) ⊆ ⋃

i∈V
⋃

k∈pa(i)
[{x ∈ Rd+ ∶ b∗kixk > xi ≥ bkixk} ∪ {x ∈ Rd+ ∶ xi = bkixk > b∗kixk}]

⊆ Amw
0 (B∗,B).

(b) can be observed similarly as Proposition 4.4.9(a), (b).

Since the sets defining ρmw are simpler as the ones defining ρ, we would prefer ρmw. However,

it is no density for general recursive ML models as we demonstrate by an example.

Example 4.4.24. [ρmw is no density for non-max-weighted models]

Consider the DAG D from Example 4.3.1, and let B,B∗ ∈ B such that b13 > b12b23, b12 = b∗12,
b13 = b∗13, and b∗23 = b13

b12
. Furthermore, define A23

0 = {x ∈ R3
+ ∶ x3 = b∗23x2}. We learn from Table 4.1

that PB(A23
0 ) > 0. As A23

0 ⊆ Amw
0 (B,B∗), we then obtain

∫
A23

0

ρmw(x,B,B∗)(PB + PB∗)(dx) = 0 < PB(A23
0 ).

This shows that x↦ ρmw(x,B,B∗) is no density of PB with respect to PB + PB∗ . ◻

Before we characterize the GMLEs of B with respect to ρmw given in (4.4.17), we summarize

the most important properties needed for this. Similarly as in Lemma 4.4.11, they follow directly

from the definition of the sets Amw
0 (B,B∗), Amw

1/2(B,B
∗), Amw

1 (B,B∗).

Lemma 4.4.25. For i ∈ V and k ∈ pa(i), set b̂ki = ⋀nt=1
x
(t)
i

x
(t)
k

.

(a) No x(t) ∈ Amw
0 (B,B) if and only if all x(t) ∈ Amw

1/2(B,B).

(b) x(t) ∈ Amw
1/2(B,B

∗) if and only if x(t) ∈ Amw
1/2(B

∗,B).

(c) If x(t) ∈ Amw
1 (B,B∗), then x(t) ∈ Amw

0 (B∗,B).
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(d) All x(t) ∈ Amw
1/2(B,B) if and only if for every i ∈ V and k ∈ pa(i), bki ≤ b̂ki.

(e) If all x(t) ∈ Amw
1/2(B,B), then no x(t) ∈ Amw

0 (B∗,B) if and only if for every i ∈ V and

k ∈ pa(i), b∗ki ≤ b̂ki with equality if bki = b̂ki.

(f) If all x(t) ∈ Amw
1/2(B,B), then x(t) ∈ Amw

0 (B,B∗) if and only if x
(t)
i = b∗kix

(t)
k and b∗ki > bki

for some i ∈ V and k ∈ pa(i).

Proposition 4.4.26. Let x(1), . . . ,x(n) be independent realizations of a recursive max-weighted

model X on a given DAG D with ML coefficient matrix B. Let B̂ be the matrix from (4.4.8).

Then B̃ ∈ Bmw is a GMLE of B if and only if one of the following conditions is satisfied.

(a) All x(t) ∈ Amw
1/2(B̃, B̃) and for all B ∈ Bmw, if some x(t) ∈ Amw

0 (B̃,B), then some x(s) ∈
Amw

0 (B, B̃).

(b) b̃ki ≤ b̂ki for every i ∈ V and k ∈ pa(i), and if b̃ki < b̂ki for some i ∈ V and k ∈ pa(i), then

there is no B ∈ Bmw such that bki ≤ b̂ki for every i ∈ V and k ∈ pa(i) with equality if b̃ki = b̂ki
and for at least one edge k → i with b̃ki < b̂ki.

Proof. (a) follows from the definition of ρmw and Lemma 4.4.25(a)–(c).

(b) By Lemma 4.4.25(d) and (a), B̃ ∈ Bmw is a GMLE of B if and only if b̃ki ≤ b̂ki for every i and

k ∈ pa(i) and there is no B ∈ Bmw such that some x(t) ∈ Amw
0 (B̃,B) but no x(t) ∈ Amw

0 (B, B̃).
We finally observe from Lemma 4.4.25(e), (f) that this is equivalent to (b), which finishes the

proof.

The matrix B̂ is not necessarily in Bmw. Consider, for example, DAG D from Example 4.3.1:

B̂ /∈ Bmw if b̂13 > b̂12b̂23. We have observed this situation in Example 4.4.20. A further example

can be found in Example 4.4.28 below. Of course, B̂ is no GMLE and cannot be the true B

if B ∈ Bmw but B̂ /∈ Bmw; at least one ML coefficient bki with k ∈ pa(i) must then have been

overestimated. Next, we investigate the case where B̂ ∈ Bmw. To guarantee this we could, for

example, assume that D is a polytree or has at most one path between two nodes.

Corollary 4.4.27. Assume the situation of Proposition 4.4.26.

(a) If B̂ ∈ Bmw, it is the only GMLE of B.

(b) For every i ∈ V , the vector (̂bki, k ∈ pa(i)) is the only GMLE of the ML coefficients

(bki, k ∈ pa(i)) of a recursive ML model Y i on Di with edge weights cki = bki.

(c) For every i ∈ V and k ∈ pa(i), b̂ki is the only GMLE of the ML coefficient bki of a recursive

ML model on Dki = ({k, i},{(k, i)}) with edge weight cki = bki.

Proof. (a) By Proposition 4.4.26(b) B̂ ∈ Bmw is a GMLE of B. It is unique, since, otherwise, B̂

is such a matrix B that cannot exist according to Proposition 4.4.26(b).

(b) Let (y(t)` , ` ∈ Pa(i)), t = 1, . . . , n, be independent realizations of Y i. Since Y i is max-weighted,

we know from (a) that the vector (⋀nt=1
y
(t)
i

y
(t)
k

, k ∈ pa(i)) is the only GMLE of (bki, k ∈ pa(i)).
(c) follows from Example 4.4.2 or analogoulsy to (b) from (a).
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The densities ρk→i and ρmw,i have a similar meaning for ρmw as ρi for ρ (cf. Proposition 4.4.9(a),

(b) and Corollary 4.4.23(b)). Therefore, in the situation of Proposition 4.4.26, one could expect

a similar result as Theorem 4.4.12(f). That this is not the case can be observed from Corol-

lary 4.4.27(b), (c) and the next example.

Example 4.4.28. [If B̂ /∈ Bmw, then several GMLEs may exist]

Consider the DAG

1

2 3

4

D

and assume that X is max-weighted, which is equivalent to b12b24 = b13b34. Furthermore, assume

that b̂12b̂24 < b̂13b̂34. Of course, we would rather not oberve this if n is sufficiently large. But

this can happen if, for example, only the events F1 = {X2 = b12X1} ∩ {X3 > b13X1} ∩ {X4 >
b24X2} ∩ {X4 > b34X3} and F2 = {X2 > b12X1} ∩ {X3 > b13X1} ∩ {X4 = b24X2} ∩ {X4 > b34X3}
have occured. It is known that the model is max-weighted. So it is obvious to use ρmw for

finding GMLEs. Then by Proposition 4.4.26(b) both the ML coefficient matrix corresponding

to the edge weights (̂b12, b̃13, b̂24, b̂34) such that b̂12b̂24 = b̃13b̂34 and the one corresponding to

the edge weights (̂b12, b̂13, b̂24, b̃34) such that b̂12b̂24 = b̂13b̃34 is a GMLE of B. This is because

B̂ /∈ Bmw; otherwise, these matrices would not be GMLEs of B (cf. Proposition 4.4.26(b) and

Corollary 4.4.26(a)). The ML coefficent matrix of a recursive max-weighted model onD with edge

weights (̂b12, b̃13, b̂24, b̃34) such that b̃13 ≤ b̂13, b̃34 ≤ b̂34, and b̂12b̂24 = b̃13b̃34 is no GMLE of B, since

setting b12 = b̂12, b13 = b̂13, b24 = b̂24, and b34 = b12b24
b34

leads to a matrix B ∈ Bmw that, according to

Proposition 4.4.26(b), cannot exist if this would be a GMLE. In this way we can show that the

two matrices listed above are the only GMLEs ofB. One possible explanation why we find exactly

these GMLES with ρmw is as follows (cf. Example 4.4.3). Since we have assumed observations

underlying a recursive max-weighted model but observed that b̂12b̂24 < b̂13b̂34, b̂13 or b̂23 cannot be

the true value. Assuming that b12, b24, b34 are estimated exactly by b̂12, b̂24, b̂34, (̂b12, b̃13, b̂24, b̂34)
with b̂12b̂24 = b̃13b̂34 is the only reasonable estimate of (b12, b24, b13, b34); similarly, assuming that

b̂12, b̂13, b̂24 are the true values, (̂b12, b̂13, b̂24, b̃34) with b̂12b̂24 = b̂13b̃34 is the only sensible estimate.

When b13, b24, b34 are estimated exactly by b̂13, b̂24, b̂34, it makes no sense to estimate b12 by a

value smaller than b̂12, since these estimates do not belong to a recursive max-weighted model;

the same applies to b24. If we observe the events F1 and F2 both more than once, then we can

expect that b12 and b24 are estimated exactly, since X2

X1
has only an atom in b12 and X4

X2
in b24

(cf. Table 4.1). ◻

If it is known that the realizations x(1), . . . ,x(n) are generated by a recurisve max-weighted

model, we can use both ρ and ρmw to find GMLEs of B. We show that parts (a), (b) of Corol-

lary 4.4.27 are not true when replacing ρmw by ρ. Part (c) holds (see Corollary 4.4.16).
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Example 4.4.29. [Continuation of Example 4.4.3: ρ versus ρmw]

Note that X is max-weighted. So we can consider GMLEs with respect to ρ and ρmw. By

Theorem 4.4.12(e) the GMLEs of (b13, b23) with respect to ρ from (4.4.13) are

(̂b13, b̂23),

(̃b13, b̂23) with b̃13 ∈ (0, b̂13) if there is no x(t) such that b̂13 =
x
(t)
3

x
(t)
1

and
x
(t)
3

x
(t)
2

> b̂23, and

(̂b13, b̃23) with b̃23 ∈ (0, b̂23) if there is no x(t) such that
x
(t)
3

x
(t)
1

> b̂13 and
x
(t)
3

x
(t)
2

= b̂23.

As B̂ ∈ Bmw, B̂ is the only GMLE of B with respect to ρmw (see Corollary 4.4.27(a)).

The density ρmw equals ρ1 from Figure 4.4.4 and ρ equals ρ5. Thus we have verified the results

presented in Table 4.2 for these two densities. ◻

Edge weights cki

In what follows we do not assume anymore that the observations x(1), . . . ,x(n) explicitly underlie

a recursive max-weighted model but an arbitrary recursive ML model. We have started with the

estimation of B as it is not possible to recover the true edge weights cki underlying representation

(4.2.1) of X from x(1), . . . ,x(n), since different edge weights may lead to B. But we know what

edge weights that are (see e.g. Figure 4.3.1), and, obviously, the probability measure induced

by X is the same for different edge weights that all result in B. As a consequence, all edge

weights that lead, together with D, to a GMLE B̃ of B are GMLEs of the true edge weights

of X. Since we consider B̂ to be the best possible estimate of B (see also Section 4.4.2 below)

and it is the unique GMLE of B if n is sufficiently large (see Corollary 4.4.21), we formulate the

following corollary. However, it remains valid if we replace B̂ by some B̃ ∈ B that satisfies one

of the conditions of Theorem 4.4.12.

Corollary 4.4.30. Assume the situation of Theorem 4.4.12. Let cki for i ∈ V and k ∈ pa(i) be

the edge weights of representation (4.2.1) of X and DB̂ the minimum ML DAG based on B̂. We

denote by paB̂(i) the parents of i in DB̂. Then every (ĉki, i ∈ V, k ∈ pa(i)) such that

ĉki = b̂ki if k ∈ paB̂(i) and ĉki ∈ (0, b̂ki] if k ∈ pa(i) ∖ paB̂(i)

is a GMLE of (cki, i ∈ V, k ∈ pa(i)).

If D is a polytree or has at most one path between two nodes, then D, DB, and DB̂ are the

same, since every edge k → i is the only and, hence, max-weighted path from k to i (cf. Re-

mark 2.5.2(ii)). In that case,X is max-weighted, B̂ ∈ Bmw, and the edge weights ofX are unique.

Therefore, by Corollary 4.4.27(a), with respect to ρmw, the vector (⋀nt=1
x
(t)
i

x
(t)
k

, i ∈ V, k ∈ pa(i)) is

the unique GMLE of the edge weights (cki, i ∈ V, k ∈ pa(i)).
To find all GMLEs of the edge weights and not only those that correspond to B̂, it is not

necessary to determine all GMLEs of B before. In fact, we have characterized the GMLEs
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of the edge weights in Corollary 4.4.14: a vector (c̃ki, i ∈ V, k ∈ pa(i)) ∈ R∣E∣
+ is a GMLE of

(cki, i ∈ V, k ∈ pa(i)) if and only if it satisfies one of the properties of Corollary 4.4.14. Performing

steps 1. and 2. of Algorithm 4.4.15, we obtain all these vectors from D and x(1), . . . ,x(n); more

precisely, the set C from step 2. contains all GMLEs of (cki, i ∈ V, k ∈ pa(i)).

Distribution functions FZi
of the noise variables

Algorithm 4.3.3 provides an iterative procedure to obtain the distribution functions FZi from

B and the marginal distribution functions Gi of the variables Xi. Estimating B by B̂ and the

distributions Gi, for example, by their empirical versions, we can apply this procedure to find

an estimator of the distributions FZi . Often, it is more efficient to estimate Gi parametrically.

Under the assumption that the noise variables Zi are regularly varying with the same index, we

have computed the distributions Gi explicitly in Proposition 3.A.2. Besides B, we then would

also have to estimate the index of regular variation.

4.4.2 An almost perfect estimate of B

As already indicated in the previous section, we would usually choose the matrix B̂ from (4.4.8)

as an estimate of B. To clarify again why, we summarize and add properties of this estimate.

In the extended definition of a MLE introduced by Kiefer-Wolfowitz, B̂ can be considered a

MLE (Corollary 4.4.17). By its definition it never underestimates a ML coefficient and identifies

by Remark 4.4.5(ii) the true ML coefficient matrix exactly if and only if it identifies all bki for

k ∈ pa(i) exactly. Since by Table 4.1 P(Xi = bkiXk) > 0 for k ∈ pa(i), it follows from the Borel-

Cantelli lemma that b̂ki P-almost surely equals the true value for n sufficiently large. Thus, if

n is large, B̂ finds, with probability 1, the true B. In [13] this is discussed for the time-series

framework used there.

The following two examples show how effective the estimate B̂ can be; in particular, n does

not necessarily need to be large. The second example is a conclusion of Example 4.4.3.

Example 4.4.31. [Continuation of Example 4.4.28: one observation may be enough to estimate

B exactly]

If we observe the event

{X2 = b12X1} ∩ {X3 = b13X1} ∩ {X4 = b24X2} ∩ {X4 = b34X3},

then we estimate all ML coefficients exactly. Note that this event has positive probability and

occurs P-almost surely if and only if Z1 realizes all node variables; i.e., if X2 = b12Z1, X3 = b13Z1,

and X4 = b14Z1. ◻

Example 4.4.32. [Continuation of Example 4.4.3: B̂ is the perfect estimate of B]

When excluding the null event F1, we estimate B by B̂ exactly if and only if the observations

x(1), . . . ,x(n) include the events F2 and F3; otherwise, it would be enough to observe F1. ◻

Obviously, the larger n the higher the probability that the event {Xi = bkiXk} for k ∈ pa(i)
is included in x(1), . . . ,x(n) and, hence, the minimal observed ratio b̂ki = ⋀nt=1

x
(t)
i

x
(t)
k

of Xi
Xk

equals
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the true bki. Assuming the probability of {Xi = bkiXk} is known, we show next how one has

to choose n to observe this event with probability greater than 1 − p. We also prove that the

probability for estimating the true bki converges geometrically fast to 1.

Proposition 4.4.33. Let X(t) = (X(t)
1 , . . . ,X

(t)
n ) for t = 1, . . . , n be independent copies of a

recursive ML model X on a DAG D with ML coefficient matrix B. Let i ∈ V and k ∈ pa(i).

(a) We have P(XiXk = bki),P(
Xi
Xk

> bki) ∈ (0,1).

(b) P(⋀nt=1
X

(t)
i

X
(t)
k

= bki) ≥ 1−p for some p ∈ (0,1) if and only if n ≥ ln(p)
ln(1−P( Xi

Xk
=bki))

= ln(p)
ln(P( Xi

Xk
>bki))

.

(c) The convergence P(⋀nt=1
X

(t)
i

X
(t)
k

= bki) → 1 as n→∞ is geometrically fast.

Proof. First, recall, for example, from (4.4.9) or Corollary 2.3.13 that the events {Xi = bkiXk}
and {Xi > bkiXk} are complementary. With this and the same argumentation we have used

to verify that P(XiXk = bki) > 0 below of (4.3.1), we obtain that P(Xi > bkiXk) > 0; cf. also

Corollary 4.A.5(b) in Appendix 4.A.2, where we examine such events in more detail. Hence, (a)

holds. Using that X(1), . . . ,X(n) are independent and identically distributed yields

P(
n

⋀
t=1

X
(t)
i

X
(t)
k

= bki) = 1 − P(
n

⋀
t=1

X
(t)
i

X
(t)
k

> bki) = 1 −
n

∏
t=1

P(
X

(t)
i

X
(t)
k

> bki) = 1 − P(Xi

Xk
> bki)

n
.

From this and the above properties, we then observe (b) and (c).

In conclusion, B̂ has the nice property to be ’geometrically’ consistent.

4.5 Structure learning of a recursive ML model

Contrary to the assumptions in the previous section, we now assume that independent realiza-

tions x(1), . . . ,x(n) of a recursive ML model X are given but the underlying DAG D is unknown.

We know from previous discussions that it is not possible to recover D and the true edge weights

cki but, based on Theorem 4.3.4, the ML coefficient matrix B and from this the distribution of

the noise vector as well as all DAGs and edge weights that could have generated X via (4.2.1).

Our first goal is, therefore, the estimation of B.

Algorithm 4.3.2 suggests a very simple procedure: it suffices for any pair of distinct i, j ∈ V to

decide whether supp(XiXj ) has a positive lower bound, alternatively a positive upper bound, and

if so, to estimate the bound. By Table 4.1, if there is such a bound, then it is an atom of Xi
Xj

.

Since we can expect to observe atoms more than twice for n sufficiently large, we propose the

following estimation method.

Algorithm 4.5.1. [Find an estimate qB of B from x(1), . . . ,x(n)]

1. For all i ∈ V = {1, . . . , d}, set qbii = 1.

2. For all i, j ∈ V with i < j,
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if #{t ∶ ⋀ns=1
x
(s)
i

x
(s)
j

= x
(t)
i

x
(t)
j

} ≥ 2, then set qbji = ⋀nt=1
x
(t)
i

x
(t)
j

and qbij = 0;

else, if #{t ∶ ⋁ns=1
x
(s)
i

x
(s)
j

= x
(t)
i

x
(t)
j

} ≥ 2, then set qbij = ⋀nt=1
x
(t)
j

x
(t)
i

and qbji = 0;

else, set qbij = qbji = 0.

In step 2. rather two steps are summarized. The first step is concerned with estimating the

reachability matrix of D, the second with learning the ML coefficients. As explained above, we

can use qB to derive estimates of the DAGs and edge weights that represent X by (4.2.1) as well

as an estimate of the distribution of the noise vector (cf. the last two paragraphs of Section 4.4.1

and Figure 4.3.1).

Since by (4.2.2) bji ≠ 0 if and only if j ∈ An(i), bji and bij are never both positive for distinct

i, j and, if bjkbki > 0, then bji > 0. Algorithm 4.5.1 is constructed in the way that qB satisfies

the former property automatically but not the second. To guarantee this, we could update the

estimator qB as follows:

for all distinct i, j ∈ V with i < j,

if qbjkqbki > 0 for some k ∈ V ∖ {i, j}, then set qbji = ⋀nt=1
x
(t)
i

x
(t)
j

;

if qbikqbkj > 0 for some k ∈ V ∖ {i, j}, then set qbij = ⋀nt=1
x
(t)
j

x
(t)
i

.

But now the first property is not necessarily satisfied anymore. As a consequence, the estimate

D qB of the minimum ML DAG DB obtained from qB is not necessarily acyclic. There are certainly

many ways to avoid this and to obtain better estimates of B. Decisive is, however, the following:

because of the distributional properties of the ratios between two components of X summarized

in Table 4.1, Algorithm 4.5.1 outputs, P-almost surely, the true ML coefficient matrix B if n is

sufficiently large. Similar statements as in Proposition 4.4.33 can be made about the convergence

of qbji to the true value bji and about the number of observations needed to estimate B by qB

with a certain probability exactly.

4.6 Conclusion and Outlook

We first studied the identifiability of a recursive ML modelX from its distribution. Its true DAG

and edge weights are not identifiable; however, its ML coefficient matrix B. This repesents the

class of all DAGs and edge weights that could have generated X via (4.2.1). In other words, we

can identify representation (4.2.3) but not (4.2.1). Beside B, the distribution of the noise vector

is identifiable. As a consequence of these results, we can recover B and the noise distributions

from realizations of X.

Parameter and structure learning for recursive ML models seems to be a challenging task

because assumptions usually made for the models in standard methods are not met. However,

in both cases, B can be estimated very efficiently by a simple procedure. The key idea of our

approach is to consider the observed ratios between any two node variables, that is, to perform
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a transformation on the realizations. The transformed realizations or rather the distributional

properties of the corresponding random variables make it possible to identify, with probability 1,

the true B whenever n is sufficiently large. It would be interesting to investigate the relationship

between the performance of our procedures and n. Here, one possible question is how many

observations are at least necessary to estimate B exactly. This requires understanding which of

the events such as F1, F2, F3, F4 from Example 4.4.3 have positive probability (cf. the discussion

below Corollary 4.A.5 in Appendix 4.A.2).

We plan to evaluate the performance of our proposed methods on simulated data sets. In Hartl

[32] first simulations were performed. They confirm the theoretical findings and our epectations

on the quality of our estimates. A comparison with other methods makes only limited sense.

On the one hand because of the discussed assumptions of the other methods, on the other hand

because of the outstanding properties of our estimates. Compared with other methods, we also

do not make concrete distributional assumptions; we only assume independent and atomfree

noise variables with support R+. In risk settings, which we have in mind when thinking of

possible applications, it is natural to require the noise variables to have positive infinite support

and atomfree distributions. Another advantage of our procedures is that they can deal with

arbitrary high dimensions and, as long as n is sufficiently large, they have the same performance

as for smaller dimensions.

A further goal is to apply the procedures to real-world data. However, it is unreasonable to

expect any non-simulated data to follow a recursive ML model exactly; especially to expect that

we observe a minimal observed ratio more than twice, what we do in Algorithm 4.5.1. It seems to

be more reasonable to expect values close to each other. We therefore want to develop methods

based on accumulation points. First attempts have already been made in [32].

Appendix 4.A

4.A.1 Alternative procedure to identify the ML coefficient matrix of a

recursive ML model from its distribution (cf. Algorithm 4.3.2)

There are many ways to show that the ML coefficient matrix B of a recursive ML model X on a

DAG D is identifiable from its distribution L(X). We present an alternative to Algorithm 4.3.2.

Proposition 4.A.1. Let i, j ∈ V be distinct. Then j ∈ an(i) if and only if there exists some

a ∈ R+ such that for all xi, xj ∈ R+ with axj ≥ xi,

P(Xi ≤ xi,Xj ≤ xj) = P(Xi ≤ xi). (4.A.1)

In that case, a = bji.

Proof. For the bivariate distribution function of (Xi,Xj), we obtain for xi, xj ∈ R+, using rep-

resentation (4.2.3) and the independence of the noise variables,

P(Xi ≤ xi,Xj ≤ xj) = P( ⋁
`∈An(i)

b`iZ` ≤ xi, ⋁
`∈An(j)

b`jZ` ≤ xj)
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= ∏
`∈An(i)∩An(j)

FZ`(
xi
b`i

∧ xj

b`j
) ∏
`∈An(i)∖An(j)

FZ`(
xi
b`i

) ∏
`∈An(j)∖An(i)

FZ`(
xj

b`j
).

(4.A.2)

Assume that j ∈ an(i). We find from Corollary 2.3.12 that ⋀`∈An(j)
b`i
b`j

= bji and, hence, if

bjixj ≥ xi, then
xj
b`j

≥ xi
b`i

for all ` ∈ An(j). With this we obtain from (4.A.2) for bjixj ≥ xi,

P(Xi ≤ xi,Xj ≤ xj) = ∏
`∈An(j)

FZ`(
xi
b`i

) ∏
`∈An(i)∖An(j)

FZ`(
xi
b`i

) = ∏
`∈An(i)

FZ`(
xi
b`i

) = P(Xi ≤ xi).

This proves (4.A.1).

Assume now that (4.A.1) holds and that j /∈ an(i). Furthermore, note that the latter holds

if and only if An(j) ∖ An(i) ≠ ∅. Since the noise variables have support R+, we know that

∏`∈An(j)∖An(i) FZ`(
xj
b`j

) < 1. Thus, using (4.A.1), (4.A.2), and the monotony of a distribution

function yields for axj ≥ xi,

P(Xi ≤ xi) = ∏
`∈An(i)∩An(j)

FZ`(
xi
b`i

∧ xj

b`j
) ∏
`∈An(i)∖An(j)

FZ`(
xi
b`i

) ∏
`∈An(j)∖An(i)

FZ`(
xj

b`j
)

< ∏
`∈An(i)∩An(j)

FZ`(
xi
b`i

∧ xj

b`j
) ∏
`∈An(i)∖An(j)

FZ`(
xi
b`i

)

≤ ∏
`∈An(i)

FZ`(
xi
b`i

),

which is obviously a contradiction. Hence, j ∈ an(i).

Proposition 4.A.1 and (4.2.2) allow us by the following algorithm to obtain B from L(X).
This again proves the identifiability of B from L(X). Instead of the whole distribution L(X),
it suffices to know the bivariate marginal distribution functions of L(X). However, this is a

stronger information on L(X) than we need in Algorithm 4.3.2.

Algorithm 4.A.2. [Find B from L(X)]

1. For all i ∈ V = {1, . . . , d}, set bii = 1.

2. For all i, j ∈ V with i < j, find P(Xi ≤ xi,Xj ≤ xj):

if P(Xi ≤ xi,Xj ≤ xj) = P(Xi ≤ xi) for some a ∈ R+ and all xi, xj ∈ R+ with axj ≥ xi, then

set bji = a and bij = 0;

else, if P(Xi ≤ xi,Xj ≤ xj) = P(Xj ≤ xj) for some a ∈ R+ and all xi, xj ∈ R+ with axi ≥ xj ,
then set bij = a and bji = 0;

else, set bij = bji = 0.

4.A.2 Ratios between two components of a recursive ML model

When estimating, identifying, or learning the structure of a recursive ML model X, the ratios

between two components of X are crucial. Because of their importance, we show further distri-

butional properties of these ratios. In particular, we relate different events that can be described
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by such ratios to events that depend on noise variables only. Already presented results such as

the properties shown in Table 4.1 occur again as a consequence, but are shown for the sake of

completeness.

Denote the probability space of the noise vector (Z1, . . . , Zd) by (Ω,F ,P), and define for every

i ∈ V ,

mi ∶ Ω→ An(i), ω ↦ j for some j ∈ {j ∈ An(i) ∶ bjiZj(ω) ≥ ⋁
`∈An(i)∖{j}

b`iZ`(ω)}.

The max-linear representation (4.2.3) yields that Xi(ω) = bmi(ω),iZmi(ω)(ω), in words, mi indi-

cates a noise variable which realizes Xi. By (4.3.1), with probability 1, the maximum value of

{bjiZj ∶ j ∈ An(i)} is achieved for unique j ∈ An(i); consequently, mi is P-almost surely uniquely

defined. Since the noise variables are independent with support R+, mi is, with positive prob-

ability, equal to each node in An(i). Unsurprisingly, the ratios between two components of X

inherit the distributional properties from those of the noise variables.

Theorem 4.A.3. Let i, j ∈ V and x ∈ R+.

(a) For every F ∈ F ,

P(F ∩ {Xi ≤ xXj}) = P(F ∩ { ⋁
`∈An(i)∖M≤

b`iZ` < ⋁
`∈M≤

xb`jZ`}) =∶ P(F ∩Ω≤
ij(x)),

where M≤
ij = {` ∈ An(j) ∶ b`i ≤ b`jx}.

(b) The event {Xi ≤ xXj} has positive probability if and only if bji ≤ x.

(c) The event {Xi ≤ xXj} has positive probability for every x ∈ R+ if and only if j /∈ An(i).

(d) On {Xi ≤ xXj}, mj ∈M≤
ij.

Proof. By (4.2.3) {Xi ≤ xXj} equals

{ ⋁
`∈An(i)∖An(j)

b`iZ` ∨ ⋁
`∈An(i)∩An(j)

b`iZ` ≤ ⋁
`∈An(j)∖An(i)

xb`jZ` ∨ ⋁
`∈An(i)∩An(j)

xb`jZ`}. (4.A.3)

The maximum on the right-hand side cannot be attained in xb`jZ` for ` ∈ An(i) ∩An(j) with

xb`j < b`i; otherwise, we would have a contradiction as xb`jZ` is strictly smaller than the maxi-

mum on the left-hand side. We find by (4.2.2) that An(j)∖An(i) ⊆M≤
ij . These two observations

yield (d). For k ∈ An(i)∩An(j)∩M≤
ij , obviously, bkiZk ≤ ⋁`∈M≤

ij
xb`jZ`. Hence, we may also remove

the nodes of M≤
ij appearing on the left-hand side of (4.A.3). All in all, the events {Xi ≤ xXj}

and {⋁`∈An(i)∖M≤
ij
b`iZ` ≤ ⋁`∈M≤

ij
xb`jZ`} coincide. Since, according to (4.3.1), Ω≤

ij differs from

the second set only by a null set, we have verified (a). From (a) and the fact that the noise

variables are independent and have support R+, we learn that P(Xi ≤ xXj) > 0 if and only if

M≤
ij ≠ ∅. As by Corollary 2.3.12 ⋀`∈An(j)

b`i
b`j

= bji, M≤
ij ≠ ∅ if and only if x ≥ bji. This shows (b).

Assertion (c) is a consequence of (b), since by (4.2.2) bji = 0 if and only if j /∈ An(i).
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Theorem 4.A.3(d) implies that the max-linear representation (4.2.3) of Xj can be reduced

on {Xi ≤ xXj} to ⋁`∈M≤
ij
b`jZ`. Since the maximum value of {b`iZ` ∶ ` ∈ An(j)} is achieved on

{Xi ≤ xXj} with positive probability for every ` ∈M≤
ij , a further reduction is not possible.

By Theorem 4.A.3 we can draw conclusions about potential atoms of Xi
Xj

: consider the inter-

section of the events {Xi ≤ xXj} and {Xi ≥ xXj} = {Xj ≤ 1
xXi}, which equals {Xi = xXj}. In

the following corollary we summarize some results regarding the event {Xi = xXj}.

Corollary 4.A.4. Let i, j ∈ V and x ∈ R+.

(a) For all F ∈ F ,

P(F ∩ {Xi = xXj}) = P(F ∩ { ⋁
`∈M=

ij

b`iZ` > ⋁
`∈An(i)∖M=

ij

b`iZ` ∨ ⋁
`∈An(j)∖M=

ij

xb`jZ`})

=∶ P(F ∩Ω=
ij(x)),

where M=
ij = {` ∈ An(i) ∩An(j) ∶ b`i = xb`j}.

(b) The event {Xi = xXj} has positive probability if and only if x = b`i
b`j

for some ` ∈ An(i) ∩
An(j).

(c) Xi
Xj

has atoms if and only if An(i) ∩An(j) ≠ ∅.

(d) We have P-almost surely on {Xi = xXj}, mi =mj ∈M=
ij.

Proof. (a) It can be shown that Ω=
ij(x) = Ω≤

ij(x) ∩Ω≤
ij(1/x). Hence, (a) follows from part (a) of

Theorem 4.A.3.

(b) is a consequence of (a), since the noise variables are independent with support R+.

(c) is immediate by (b).

(d) The max-linear representation (4.2.3) shows that on Ω=
ij(x), mi,mj ∈M=

ij . Since by (a) the

set {Xi = xXj} ∖Ω=
ij(x) is a null set, (d) holds.

For the sake of completeness, we consider the events that are complementary to them in

Theorem 4.A.3.

Corollary 4.A.5. Let i, j ∈ V and x ∈ R+. Let further M≤
ij be as defined in Theorem 4.A.3.

(a) We have

{Xi > xXj} = { ⋁
`∈An(i)∖M≤

ij

b`iZ` > ⋁
`∈M≤

ij

xb`jZ`} = { ⋁
`∈M>

ij

b`iZ` > ⋁
`∈An(j)∖M>

ij

xb`jZ`} = Ω>
ij(x),

where M>
ij = An(i) ∖M≤

ij = {` ∈ An(i) ∶ b`i > b`jx}.

(b) The event {Xi > xXj} has positive probability if and only if x < 1
bij

.

(c) The event {Xi > xXj} has positive probability for every x ∈ R+ if and only if i /∈ An(j).

(d) On {Xi > xXj}, mi ∈M>
ij.
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Proof. (a) In the proof of Theorem 4.A.3, we have shown that the events {Xi ≤ xXj} and

{⋁`∈An(i)∖M≤
ij
b`iZ` ≤ ⋁`∈M≤

ij
xb`jZ`} are equal. Since {Xi > xXj} is the complementary event of

{Xi ≤ xXj}, the assertion is clear.

(b), (c) can be obtained from (a) analogously as Theorem 4.A.3(b), (c) from part (a) there.

(d) follows from (a) and (4.2.3).

We can use the results presented in this section to figure out whether events such as F1, F2,

F3, F4 from Example 4.4.3 have positive probability. For example, we obtain from parts (a) of

Corollaries 4.A.4, 4.A.5 that

P(F1) = P({b13X1 = b23X2} ∩ {X3 = b13X1} ∩ {X3 = b23X2})
= P(Ω=

21(b13/b23) ∩Ω=
31(b13) ∩Ω=

32(b23)) = P(∅ ∩ {b13Z1 > Z3} ∩ {b23Z2 > Z3}) = 0,

P(F4) = P(Ω>
31(b13) ∩Ω>

32(b23)) = P({Z3 > b13Z1} ∩ {Z3 > b23Z2}) = P(Z3 > b13Z1 ∨ b23Z2) > 0,

since the noise variables are independent and have support R+. Depending on which events may

occur with positive probability simultaneously, more or less observations are needed to obtain

good estimates of B using (4.4.8) when D is known or Algorithm 4.5.1 when D is unknown.

The distributional properties of Xi
Xj

presented in Table 4.1 also follow from this section; the

atoms are given in Corollary 4.A.4(b), supp(XiXj ) can be determined, for example, from Theo-

rem 4.A.3(b) and Corollary 4.A.5(b).
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