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Abstract

Diese Dissertation behandelt Symmetriemethoden in der Quanteninformationstheorie, insbe-

sondere die Invarianz von Quantenzuständen und Quantenkanälen unter einer gegebenen unitären

Darstellung einer endlichen oder kompakten Gruppe. Diese Dissertation analysiert drei un-

terschiedliche Anwendungsbeispiele, Quantenklonen, Information-Störungs-Austauschbeziehung

und randomisierte Benchmarks, in denen Symmetriemethoden genutzt werden, um die Kom-

plexität der Forschungsfrage signifikant zu reduzieren und so eine analytische Lösung zu errei-

chen.

This dissertation discusses symmetry methods in quantum information theory; in particular,

quantum states and quantum channels invariant under a particular unitary representation of a

finite or compact group. This thesis analyzes three different examples of application, universal

quantum cloning, information-disturbance tradeoffs and randomized benchmarking. Symmetry

methods are used to significantly reduce the complexity of the research question, such that it

is possible to obtain an analytic solution.
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It always seems impossible, until it’s done.

– Nelson Mandela





Acknowledgments

This dissertation would not have been possible if it was not for my doctoral adviser Prof. Dr. Mi-

chael M. Wolf. I would like to express my sincere gratitude to him for the continuous support

of my research, for his patience, the motivation and the immense knowledge. That some want

to name the oracle in their next publication “Michael” does not come as a surprise.

I would furthermore like to thank all members of the thesis committee: Prof. Dr. Michael

M. Wolf, Prof. Dr. Felix Krahmer, Prof. Dr. Otfried Gühne and Prof. Dr. Stephen D. Bartlett

for their time and help.

Besides my adviser and my committee, I would like to thank the whole M5 group. Old, cur-

rent and new. You created the great atmosphere that turned these Ph.D. years into something

very special that I will always love to remember. The group has been a source of friendships

as well as good advice and collaboration. I always enjoyed our coffee breaks with stories, cakes

and laughter. You also ensured that I learned a lot outside of my research area: I am sure I

now know as much about animals as I wished to know, and probably even more. Moreover,

I am grateful to our group’s administrative assistants Wilma Ghamam and Silvia Schulz who

kept us organized and were always ready to help.

I would like to especially thank one person from M5 in particular, who also had the delight

of proof-reading this dissertation. My office mate, Daniel Stilck França, with whom I had the

greatest time and shared the biggest laughs. Thank you very much, Daniel, for being such an

honest and fun soul! You are a true inspiration and surely the best Caipirinha mixer in town.

I feel very lucky that I got to share an office with you. My next office mate surely has to step

into the biggest footsteps.

Furthermore, I am grateful to all my collaborators: Prof. Dr. Michael M. Wolf, Prof. Dr. Da-

vid Gross, Prof. Dr. Steven T. Flammia, Prof. Dr. Harald Weinfurter, Dr. Jasmin D. A. Mei-

necke, Dr. Joel J. Wallmann, Daniel Stilck França, Lukas Knips and Jan Dziewior. It was

a great experience to work with and to learn from such distinct researchers. Thank you very

much.

I gratefully acknowledge the funding source that made my Ph.D. work possible. I was funded

by the Elite Network of Bavaria through the doctorate program “Exploring Quantum Matter”.

I thank all members of this program and everyone that is involved for such a great work

environment and the many stimulating seminars. In particular, I would like to thank my

“ExQM Crew”, Moritz August, David Leiner and Jakob Wierzbowski, for the trillions coffees

that we drank and for the many fun evenings that we spent not discussing research.

A special thank goes to Prof. Dr. Stephen D. Bartlett whose research group at the University

of Sydney I visited during my doctoral studies. It was not only great to escape the European

winter and enjoy the Australian summer and everything that comes with it, but it was an

ix



Acknowledgments

amazing experience to be part of your group and to work alongside such splendid researchers.

Thank you very much for this opportunity! Thus, I would also like to not miss the chance to

thank all the Usyd group members. I had a great time with you all in Australia! You are all

like the stereotypical Australian very very kind and you made me feel very welcomed. I would

especially like to thank Angela Karanjai, Kamil Korzekwa and Daniel Süß, who I had such a
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1 Introduction

Symmetry methods are widely used in a variety of mathematical fields and physical applications.

They draw on a wide range of disciplines and without surprise they can also be found at the

heart of quantum information theory. Classifying invariants and reducing complicated objects

into a simple canonical form appoint these symmetry methods to a valuable toolbox. These

tools are used in this dissertation to study fundamental features of quantum information theory

and to answer research questions concerned with information processing tasks.

In particular, this dissertation studies quantum states and quantum channels that are inva-

riant under a particular unitary representation of a compact group. These symmetry consi-

derations then simplify specific fundamental questions in three areas of application. The first

area of application is universal asymmetric quantum cloning, in which it can be shown that the

optimal quantum cloning channel obeys a specific symmetry. It is then possible to explicitly

derive the quantum channel yielding an optimal tradeoff between the individual qualities of

the quantum clones. Another area of application is the information-disturbance tradeoff. A

two-parameter family of quantum instruments giving the optimal tradeoff between information

gain and state disturbance can be derived, again using the symmetry of the underlying opti-

mization problem. The third area of application analyzed in this dissertation is randomized

benchmarking. The protocol includes an averaging procedure, which again allows the applica-

tion of symmetry methods. It is then possible to derive quantitative estimates of the average

error of the noise inherit to a physical quantum channel.

I utilize symmetry methods to reduce the complexity of the research question, such that

analytic results can be obtained. All articles included in this dissertation fall into these three

main areas of application of the symmetry methods,

(a) quantum cloning,

(b) information-disturbance tradeoffs, and

(c) randomized benchmarking.

The research articles included in this dissertation fall into one or two of these main areas. This

determines their order of appearance in this dissertation. Article 1 falls into area (a), article 2

is concerned with area (b), article 3 is mainly about area (b), but also treats area (a), article 4

and article 5 solely discuss area (c). Their extensive summary and a statement of the individual

contribution is presented in the appendix.
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1 Introduction

Outline of this dissertation

The following chapters give a short introduction to the mathematical and physical concepts

of quantum information theory as well as important symmetry methods used throughout the

included articles of this dissertation. Since the articles included are solely concerned with

finite-dimensional quantum mechanics, this dissertation only analyzes this special case and

thus avoids cumbersome technicalities.

In chapter 2 we introduce the basic formalism of quantum information theory. We start by

defining quantum states and measurements performed on systems in specific quantum states in

section 2.1 and we give explicit examples commonly used in quantum information theory and

used throughout this dissertation. In section 2.2 we define quantum channels and underline

their importance to describe physical processes. We discuss different representations of quan-

tum channels that are commonly used in quantum information theory and that manifested

themselves as very useful when studying the mathematical and physical properties of quantum

channels. These two concepts are then brought together in section 2.3, where we discuss ge-

neral measurement schemes described by quantum instruments. In chapter 3 we provide an

introduction to the symmetry methods used throughout this dissertation. Section 3.1 describes

the structure of quantum states under symmetry. We study its general structure, before we

give three explicit examples of a symmetry group. In section 3.2 we discuss quantum channels

under symmetry. The connection to quantum states under symmetry is established and the

same three examples of a symmetry group are discussed. In section 3.3 we define the notion of

a group design and discuss an example of a unitary 2-design, the complex Clifford group, and

an example of an orthogonal 2-design, the real Clifford group. In chapter 4 we discuss three

applications of the symmetry methods presented in the previous chapter. Section 4.1 discusses

universal quantum cloning, section 4.2 covers information-disturbance tradeoffs and section 4.3

deals with randomized benchmarking. This chapter shows how we use these symmetry methods

to derive analytic results to fundamental questions in quantum information theory.

Throughout the following chapters, references for basic definitions and concepts, commonly

used in quantum information theory, may be omitted. In the case of quantum information

theory, these can all be found in the famous book by Michael A. Nielsen and Isaac L. Chuang [6]

or in the excellent book by Teiko Heinosaari and Mário Ziman [7]. All basic results about finite

or compact groups and their representations used throughout the chapter describing symmetry

methods in quantum information theory can be found in the marvelous book by Barry Simon [8].

The author does not claim authorship for these results, even if a reference is omitted.

2



2 Quantum Information Theory

Throughout this dissertation we will only consider finite dimensional Hilbert spaces Cd. We

will writeMd1,d2 for the space of d1 × d2 matrices and in the case that d1 = d2 = d we use the

abbreviationMd. For any X ∈Md1,d2 , we will denote by Xt ∈Md2,d1 the usual transposition,

by X̄ ∈Md1,d2 the complex conjugation and by X∗ = X̄t ∈Md2,d1 the conjugate transpose. A

matrix X ∈Md that is equal to its own conjugate transpose, i.e. X∗ = X, is called hermitian.

A matrix X ∈ Md is called positive semidefinite if and only if (iff) it is a hermitian matrix

with solely non-negative eigenvalues and we will denote this by X ≥ 0. The set of all positive

semidefinite matrices forms a cone and we will denote it by M+
d ⊂Md. Moreover, for a linear

map T : Md1 → Md2 we will denote its adjoint with respect to (w.r.t.) the Hilbert-Schmidt

inner product by T ∗ :Md2 →Md1 . Furthermore, let 1d ∈ Md denote the identity matrix on

Md and we will use the notation idd :Md →Md to denote the identity map.

In the following, subscripts denoting the dimension might be omitted if these are clear from

context. We use the bra-ket notation, also called Dirac notation, as it is the standard notation

used in quantum mechanics [6, 9].

2.1 Quantum states and measurements

Quantum mechanics divides every physical experiment into the preparation of a quantum state

and the measurement of an observable associated with a quantum system in that quantum

state. A preparation scheme of a quantum system determines the probability distribution

of any possible measurement. Therefore, a quantum state may be regarded as the family of

preparation schemes that yields identical outcome distributions for all measurements. Similarly,

a measurement may be regarded as the family of measurement schemes that yields identical

outcome distributions for all quantum states in a statistical experiment.

2.1.1 Quantum states

Every d-dimensional quantum state, d ∈ N, is described by a density matrix ρ ∈ M+
d that is

positive semidefinite and has trace 1. In the special cases d = 2 and d = 3, quantum states

are usually called qubits and qutrits, respectively. Analogously, d-dimensional quantum states

are sometimes referred to as qudits. We will denote by Dd ⊆ Md the set of all d-dimensional

quantum states, i.e.,

Dd := {ρ ∈Md | ρ ≥ 0,Tr[ρ] = 1} . (2.1)

This set is convex, i.e., for any ρ, σ ∈ Dd and 0 ≤ λ ≤ 1 implies λρ+(1−λ)σ ∈ Dd. The extremal

points of this set, i.e., those elements that do not admit a proper convex decomposition, are

3



2 Quantum Information Theory

called pure states and are the one-dimensional projectors |ψ〉〈ψ| for unit vectors |ψ〉 ∈ Cd. Any

quantum state that is not pure is called mixed and we will call 1

d ∈ Dd the maximally mixed

quantum state.

In quantum theory, composite systems are described using tensor products. A multipartite

quantum system consisting of n ∈ N quantum states with dimensions d1, d2, . . . , dn ∈ N is

described by D(Cd1 ⊗ . . . ⊗ Cdn) ⊂ ⊗n
i=1Mdi . The simplest example is a bipartite system

ρ1,2 ∈ D(Cd1 ⊗ Cd2). The restrictions of ρ1,2 are then obtained using the partial trace, where

the trace map Tr : Md → C is just applied to a subsystem. Thus, if we would like to trace

out the second system to obtain the first restricted quantum state we apply the partial trace

Tr2 := id⊗Tr to ρ1,2. The resulting state is then usually denoted by omitting the label of

the traced out system, i.e., ρ1 = (id⊗Tr)(ρ1,2) = Tr2(ρ1,2). We will also call these restrictions

reduced states or marginals.

Multipartite quantum systems may exhibit a characteristic, called entanglement, that dis-

tinguishes them from their classical counterparts. Informally, we speak of entanglement if the

correlation exhibited between the individual systems is not of classical nature. Consider a bi-

partite quantum state ρ ∈ D(Cd1 ⊗Cd2). It is called separable or classically correlated if there

is m ∈ N such that it can be written as

ρ =
m∑

i=1

λiρ
(1)
i ⊗ ρ

(2)
i , (2.2)

with quantum states {ρ(k)
i }mi=1 ⊂ Ddk and a probability distribution {λi}mi=1 as weights for all

k ∈ {1, 2}. Otherwise ρ ∈ D(Cd1 ⊗ Cd2) is called entangled.

The most extreme cases regarding entanglement arise if the marginals are maximally mixed.

Consider the Hilbert space Cd ⊗ Cd with the computational basis given by the standard unit

vectors {|i〉}di=1 on those two spaces. Then we define the maximally entangled state

Ωd := |Ω〉〈Ω| with |Ω〉 =
1√
d

d∑

i

|i〉 ⊗ |i〉 . (2.3)

Note that both marginals are maximally mixed, i.e., Tr1[Ωd] = Tr2[Ωd] = 1

d . It turns out that

every maximally entangled state is of the form (1⊗U) |Ω〉, where U is some unitary matrix.

However, if we talk about the maximally entangled state, we refer to the one given in the

computational basis. The maximally entangled quantum state is closely related to the flip (or

swap) operation, defined through F |i〉 ⊗ |j〉 = |j〉 ⊗ |i〉 by the correspondence,

d |Ω〉〈Ω|t2 = F, (2.4)

where ·t2 denotes the partial transposition on the second system, i.e., for any bipartite ρ ∈
D(Cd ⊗ Cd) the partial transposition is defined as

ρ 7→ ρt2 :=
(
id⊗ ·t

)
(ρ). (2.5)

2.1.2 Measurements

An m-outcome measurement on the space of quantum states is described by a positive operator-

valued measure (POVM) E := {Ei}mi=1, whose elements Ei ∈ M+
d , called effect operators, are

4



2.2 Quantum channels

positive semidefinite and sum up to the identity
∑m

i=1Ei = 1. If the measurement is performed

on a system in quantum state ρ ∈ Dd, we get the measurement outcome i with probability

Tr[ρEi]. This is illustrated in figure 2.1. We denote the set of all such POVMs as Ed,m and

we use the shorthand notation Ed := Ed,d. If the effect operators Ei are mutually orthogonal

projections, we call the POVM a von Neumann measurement.

ρ E {Tr[Eiρ]}mi=1

Figure 2.1: Measurement of a system in quantum state ρ ∈ Dd represented by a POVM E ∈ Ed,m.

The measurement outcome i is observed with probability Tr[Eiρ].

We call a POVM informationally complete, if the statistics obtained through the measure-

ment allow for a full description of the quantum state. This is maximally efficient, if the measu-

rement’s effect operators are rank-one projections. An especially interesting case occurs if these

effect operators are symmetric with respect to the Hilbert-Schmidt inner product [10, 11]. This

is called a symmetric, informationally complete (SIC) POVM, i.e., a set of d2 subnormalized

rank-one projectors E = {Pi/d}d2i=1 ∈ Ed2,d with equal pairwise Hilbert-Schmidt inner product,

Tr[PiPj ]/d
2 = 1/(d2(d+ 1)) for all i 6= j.

We have now defined a quantum measurement of a system in a quantum state. In order to

fully describe a quantum measurement scheme, the notion of a quantum channel is needed.

We therefore discuss completely positive and trace-preserving linear maps, also called quantum

channels, in the next section.

2.2 Quantum channels

Considering the time evolution of our quantum system yields different (but equivalent) pictures

related to the splitting of a physical process into preparation and measurement. If the evolution

is part of the measurement process, we speak of the Heisenberg picture. If, on the other hand,

we allow the quantum states to evolve with time, we usually refer to this as the Schrödinger

picture. In the following, we will mostly adopt the later viewpoint.

Any physical process should be represented by a linear map that maps quantum states to

quantum states. It should therefore preserve the positivity as well as the trace characterizing

quantum states. A linear map T :Md1 →Md2 is called positive iff T (X) ≥ 0 whenever X ≥ 0

and trace-preserving iff Tr[T (X)] = Tr[X] for any X ∈ Md1 . Positivity alone is, however,

not sufficient for a full description of a physical process. Consider a system which is part of a

larger system, such as a reduced state in a bipartite setting. If the linear map acts solely onto

that subsystem, we still require the overall system to remain positive. We therefore require

the stronger notion of complete positivity. A linear map T :Md1 →Md2 is called completely

positive iff (idn⊗T ) :M(Cn⊗Cd1)→M(Cn⊗Cd2) is positive for every n ∈ N. This motivates

the following definition.

Definition 2.1 (Quantum channel). A quantum channel is a linear map

T :Md1 →Md2 (2.6)

5



2 Quantum Information Theory

that is completely positive and trace preserving. The set of all quantum channels of the form

(2.6) is denoted by Td1,d2 , and we will write Td1 := Td1,d1 .

This definition is illustrated in figure 2.2. An example of a quantum channel is the identity

channel, idd : Md → Md. Intuitively, the identity channel represents the ideal quantum

communication channel as the quantum state it acts upon is not altered in the process.

ρ T T (ρ)

Figure 2.2: A quantum channel T ∈ Td1,d2 acting on a system in a quantum state ρ ∈ Dd1 . The system

evolves to the quantum state T (ρ) ∈ Dd2 .

In the Heisenberg picture quantum channels are linear maps

T ∗ :Md2 →Md1 , (2.7)

which are completely positive and unital, i.e., T ∗(1d2) = 1d1 . They correspond to the dual map

of the quantum channel in the Schrödinger picture with respect to the Hilbert-Schmidt inner

product. Performing a measurement described by a POVM E = {Ei}mi=1 ∈ Ed2,m, the outcome

probabilities of an evolved state when measured are Tr[EiT (ρ)] = Tr[T ∗(Ei)ρ] and thus equal

in the two different pictures.

The following section introduces different representations of quantum channels defined above;

these are very useful and widely used through quantum information literature.

2.2.1 Representations of quantum channels

The following one-to-one correspondence between linear maps and operators turns out to be

very useful. In particular, in the study of quantum channels the theorem allows to infer its

properties by the study of the corresponding quantum state.

Theorem 2.2 (Choi-Jamiolkowski isomorphism [12]). The mapping

J : T 7→ JT := (T ⊗ idd1)Ωd1 , (2.8)

defines the so-called Choi-Jamiolkowski isomorphism between the vector spaces of linear maps

on a d1-dimensional system {T :Md1 →Md2 | T linear} and linear operators on a (d2 × d1)-

dimensional Hilbert space M(Cd2 ⊗ Cd1). The matrix d1JT is often called Choi matrix, and if

T is a quantum channel, then JT is usually referred to as the corresponding Jamiolkowski state.

This theorem gives rise to many useful correspondences [12]:

(a) A linear map T : Md1 → Md2 is completely positive iff the corresponding Choi matrix is

positive semidefinite, i.e., iff JT ≥ 0.

(b) A linear map T :Md1 →Md2 is unital, i.e., T (1) = 1, iff Tr2[JT ] = 1d2 /d1.

(c) A linear map T :Md1 →Md2 is trace-preserving, i.e., T ∗(1) = 1, iff Tr1[JT ] = 1d1 /d1.

6



2.3 Quantum instruments

(d) A linear map T : Md1 → Md2 is hermiticity-preserving, i.e., T (X) = T (X)∗ for all

X = X∗ ∈Md1 , iff the corresponding Choi matrix is hermitian, i.e., JT = J∗T .

Furthermore, this theorem 2.2 gives rise to the following very useful representation of quantum

channels. It stems from the convex decomposition of the Jamiolkowski state into rank-one

matrices.

Theorem 2.3 (Kraus representation [12, 13]). A liner map T : Md1 → Md2 is completely

positive iff there is a r ∈ N such that for any X ∈Md1 it can be written in the form

T (X) =

r∑

j=1

KjXK
∗
j , (2.9)

with matrices {Kj ∈ Cd2×d1}ri=1, which are called the Kraus operators of T . Furthermore,

T is trace-preserving iff the Kraus operators satisfy
∑r

j=1K
∗
jKj = 1 and T is unital iff∑r

j=1KjK
∗
j = 1. Moreover, the minimum number of Kraus operators is called the Kraus-

rank and r ≤ d1d2.

We have now thoroughly discussed quantum states, quantum measurements as well as quan-

tum channels and are therefore equipped to introduce quantum instruments. These describe a

general measurement scheme, a key concept in this dissertation [2, 4], and are defined in the

following section.

2.3 Quantum instruments

A general measurement scheme describes the statistics of the measurement results and the

evolution of the quantum system on which the measurement is performed. This is described

by a quantum instrument, illustrated in figure 2.3. Quantum instruments were first introduced

by [14] and a detailed description can be found in [15, Chapter 2.3].

ρ I
T (ρ)

{Tr[Eiρ]}mi=1

Figure 2.3: A general measurement scheme described by a quantum instrument.

A quantum instrument is a set of completely positive linear maps I := {Ii :Md1 →Md2}mi=1

that fulfill the normalization condition
∑m

i=1 I
∗
i (1) = 1, where the I∗i : Md2 → Md1 denote

the corresponding dual maps of the elements of the quantum instrument. In this general

measurement scheme, if the measurement on the system in state ρ ∈ Dd gives the outcome i

with probability pi := Tr[Ii(ρ)], then the quantum state after the measurement is Ii(ρ)/pi.

Therefore, the two marginals of our quantum instrument are the inherent quantum measu-

rement and the inherent quantum channel. We identify the inherent POVM to be E := {Ei :=

I∗i (1)}mi=1 ∈ Ed1,m, such that the measurement outcome i is observed with probability

pi = Tr[Ii(ρ)] = Tr[I∗i (1)ρ] = Tr[Eiρ]. (2.10)
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2 Quantum Information Theory

The normalization condition on the quantum instrument ensures that the probabilities add up

to one, as expected. On the other hand, if we ignore the measurement outcomes, the sum of

the elements of the quantum instrument yields a quantum channel T :Md1 →Md2 , i.e.,

T (·) :=

m∑

i=1

Ii(·), (2.11)

where the normalization condition of the quantum instrument gives the quantum channel its

trace-preserving property.

The notion of a quantum instrument naturally describes the fact that a POVM alone does not

determine the quantum state after the measurement. Rather the full description of the quantum

instrument is needed to describe a general measurement scheme as depicted in figure 2.3. That

is, every POVM corresponds to a whole equivalence class of instruments.

The most well known example is the so-called Lüders instrument associated to a POVM

E ∈ Ed1,m. It is defined to be the quantum instrument I with elements

Ii(·) =
√
Ei ·

√
Ei, i = 1, . . . ,m, (2.12)

where for any X ∈ Md with X ≥ 0,
√
X ∈ Md is such that (

√
X)∗
√
X = X. In the special

case of a von Neumann measurement, if we measure the outcome i, the system, initially in

quantum state ρ, evolves to the post-measurement quantum state EiρEi/Tr[Eiρ]. This von

Neumann-Lüders measurement is well-known from standard quantum mechanics and arises as

a special case in the general quantum instrument description of a measurement [6].

With the help of quantum instruments, it is now possible to formalize the intuitive notion of

state disturbance through a measurement. If a measurement is performed on a system in some

quantum state in order to gain some information about this system, we necessarily have to

introduce some disturbance to the system. This idea is described in the following proposition.

Proposition 2.4 (No information without disturbance [7]). Consider a quantum instrument

represented by a set of completely positive linear maps I := {Ii : Md → Md}. If there is no

disturbance on average, i.e., T :=
∑

i Ii satisfies T = id, then the probability of obtaining an

outcome i, which is given by Tr[Ii(ρ)], is independent of the input quantum state ρ ∈ Md.

Therefore, no information is gained about this initial quantum state.

Proof. Using the one-to-one correspondence between a completely positive linear map and

its Choi matrix, given in theorem 2.2, the fact that there is no disturbance on average, i.e.,∑
i Ii = id, reads ∑

i

JIi = |Ω〉〈Ω| . (2.13)

The Ii are completely positive, such that JIi ≥ 0. Equation (2.13) thus corresponds to a

convex decomposition of the maximally entangled state. This is, however, a pure state, such

that the decomposition must be trivial, i.e., JIi = ci |Ω〉〈Ω| for some constants ci ≥ 0. Therefore,

Ii = ci idd, such that the probability of obtaining outcome i is Tr[Ii(ρ)] = ci Tr[ρ] = ci and is

thus independent of ρ.
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Gaining information about an unknown quantum state without introducing any disturbance

to the quantum system would be possible, if the following cloning device was viable:

Theorem 2.5 (No-Cloning Theorem [16]). There is no quantum channel, T :Md →Md⊗Md

such that for all quantum states ρ ∈ Dd the following holds,

T (ρ) = ρ⊗ ρ. (2.14)

Proof. The theorem is a consequence of linearity. Let |ψ〉〈ψ| , |φ〉〈φ| ∈ Dd be two orthogonal

pure states. If there was a map T as specified in the theorem, then for λ ∈ [0, 1]

λT (|ψ〉〈ψ|) + (1− λ)T (|φ〉〈φ|) = λ (|ψ〉〈ψ| ⊗ |ψ〉〈ψ|) + (1− λ) (|φ〉〈φ| ⊗ |φ〉〈φ|) , (2.15)

which has rank 2, while,

T (λ |ψ〉〈ψ|+ (1− λ) |φ〉〈φ|) = (λ |ψ〉〈ψ|+ (1− λ) |φ〉〈φ|)⊗ (λ |ψ〉〈ψ|+ (1− λ) |φ〉〈φ|) , (2.16)

which has rank 22.

The no-cloning theorem tells us that it is impossible to perfectly clone an unknown quantum

state. It is, however, possible to do this in an approximate manner, which has given rise to many

applications of the no-cloning theorem in different areas of quantum information theory [17, 18].

Therefore, even though proposition 2.4 and theorem 2.5, as no-go theorems, are negative in

nature, they do open up a fruitful field of applications and fundamental questions in quantum

information theory [1, 2, 4], which is explored in the articles included in this dissertation.
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3 Symmetry Methods

This chapter describes the symmetry methods used throughout the dissertation. For an ex-

tensive review of representations of finite and compact groups, which are fundamental for the

study of symmetries, the reader is referred to [8].

Consider a finite or compact group G with elements g ∈ G and a unitary representation

U := {Ug}g∈G on a finite-dimensional Hilbert space Cd. This unitary representation can be

written as a direct sum of irreducible unitary representations (irreps), i.e.,

U '
k⊕

i=1

niU
i, (3.1)

where ni > 0 denotes the degeneracy of the ith irrep. The underlying Hilbert space decomposes

as

Cd '
k⊕

i=1

(
Cdi ⊗ Cni

)
, (3.2)

where the sum runs over all irreps of the group G and Cdi carries the ith irrep. Every Ug,

g ∈ G, is then block-diagonal with respect to this decompositions, i.e., it is of the form

Ug '
k⊕

i=1

U ig ⊗ 1ni . (3.3)

Let A be the algebra of operators generated by the unitary representation {Ug}g∈G. Then

its commutant, denoted by A′, is defined as

A′ := {B |BA = AB for all A ∈ A} . (3.4)

Considering the decomposition of the underlying Hilbert space, it is clear that

A =

{
k⊕

i=1

Ai ⊗ 1ni

∣∣∣∣∣Ai ∈Mdi

}
, (3.5)

and the commutant has the form,

A′ =
{

k⊕

i=1

1di ⊗Bi
∣∣∣∣∣Bi ∈Mni

}
. (3.6)

If the group G is compact, it is well-known that there exists a unique probability measure µ

that is invariant under left and right group multiplication [8, Chapter VII.3]. This measure is

called Haar measure and we will denote integrals with respect to this Haar measure by
∫
G dµ.

The following groups are of special relevance in the upcoming discussion about symmetries.

Their definitions are given now.
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Definition 3.1 (Unitary group). The unitary group U(d) is the group of d×d matrices obeying

(a) U∗U = UU∗ = 1.

Definition 3.2 (Special unitary group). The special unitary group SU(d) is the group of d×d
matrices obeying

(a) U∗U = UU∗ = 1 and

(b) det(U) = 1.

Definition 3.3 (Orthogonal group). The orthogonal group O(d) is the group of d × d real

matrices obeying

(a) OtO = OOt = 1.

Definition 3.4 (Special orthogonal group). The special orthogonal group SO(d) is the group

of d× d real matrices obeying

(a) OtO = OOt = 1 and

(b) det(O) = 1.

We have described the mathematical basics in terms of unitary representations of finite or

compact groups and the decomposition of the underlying Hilbert space with respect to the

irreducible unitary representations. Furthermore, we have defined the commutant of unitary

representations of a finite or compact group. Moreover, we have introduced important groups,

that will be used throughout the next section. With all these details at hand, we now study

quantum states and quantum channels under symmetry.

3.1 Quantum states under symmetry

We say that a quantum state ρ ∈ Dd obeys a symmetry of a unitary representation U = {Ug}g∈G
of some group G on Cd, if it is invariant with respect to that symmetry, i.e., if for all g ∈ G

ρ = UgρU
∗
g (3.7)

holds. Instead of studying the symmetry behavior of specific quantum states, it is of interest

to fix a specific symmetry group and then study all quantum states that are invariant under

this symmetry group.

We are in particular interested in bipartite quantum states ρ ∈ D(Cd ⊗Cd) and we focus on

closed groups G of unitaries of the form U = (U (1) ⊗ U (2)), with unitary U (1), U (2) ∈ U(d).

Please note that we simplified our notation, since in the following we always refer to this

specific unitary representation. As a closed subgroup of the unitary group, this group G must

be compact and therefore carries a unique Haar measure. This may be used to define the

following concept of a twirl.
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Definition 3.5 (Twirl of a quantum state). Let ρ ∈ D(Cd ⊗ Cd) be a quantum state, G a

finite or compact group with unitary representation of the form U = (U (1)⊗U (2)), with unitary

U (1), U (2) ∈ U(d) and with Haar measure µ. We denote the twirl of ρ with respect to G as

T :Md2 →Md2 and define it to be

T(ρ) :=

∫

G

(
U (1) ⊗ U (2)

)
ρ
(
U (1) ⊗ U (2)

)∗
dµ. (3.8)

The twirl maps every matrix A ∈Md2 into the commutant G′ which is the algebra

G′ :=
{
B ∈Md2

∣∣∣∀
(
U (1) ⊗ U (2)

)
∈ G :

[
B,
(
U (1) ⊗ U (2)

)]
= 0
}
, (3.9)

that commutes with all elements of G.1 This twirl operation is completely positive and doubly

stochastic, that is, it maps density matrices to density matrices and the identity to itself.

Furthermore, it is a projection. In accordance with equation (3.6), every B ∈ G′ is thus of the

form,

B '
k⊕

i=1

1di ⊗Bi, (3.10)

with di = dimCdi and Bi acting on the ni-dimensional space appearing in equation (3.3).

In the following we will focus on finite or compact groups G of which all irreducible unitary

representations on Cd are non-degenerate, i.e., for which ni = 1 holds for all i = {1, . . . , k}. In

this case, the commutant G′ is an abelian algebra [19] that is spanned by a set of orthogonal

minimal projections {Pi}ki=1, such that equation (3.10) is of the form

B =
k⊕

i=1

xiPi, (3.11)

where xi = Tr[BPi]/di and the Pi are the orthogonal projections onto the ith irrep.

In particular, one can show that in the non-degenerate case the twirl is explicitly given by

T(·) =
k∑

i=1

1

di
Tr[ · Pi]Pi, (3.12)

through the observation that for all A ∈Md2 we have that

T(A) =
k∑

i=1

1

di
Tr [T(A)Pi]Pi

=
k∑

i=1

1

di
Tr [AT(Pi)]Pi

=

k∑

i=1

1

di
Tr [APi]Pi,

where we have used the fact that the twirl is self-adjoint with respect to the Hilbert-Schmidt

inner product.

1Please note again that we use a simplified notation so by U ∈ G, we strictly speaking refer to the unitary

representation Ug, g ∈ G.
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Using the invariance of the Haar measure, the following lemma illustrates the correspon-

dence between the invariance of a quantum state under the twirl and its membership of the

commutant.

Lemma 3.6. For a quantum state ρ ∈ D(Cd ⊗ Cd),
[
ρ, U (1) ⊗ U (2)

]
= 0 ∀ U (1), U (2) ∈ U (d) (3.13)

is equivalent to ∫

G

(
U (1) ⊗ U (2)

)
ρ
(
U (1) ⊗ U (2)

)∗
dµ = ρ. (3.14)

Proof. If [
ρ, U (1) ⊗ U (2)

]
= 0 ∀ U (1), U (2) ∈ U (d)

then

∫

G

(
U (1) ⊗ U (2)

)
ρ
(
U (1) ⊗ U (2)

)∗
dµ =

∫

G
ρ
(
U (1) ⊗ U (2)

)(
U (1) ⊗ U (2)

)∗
dµ = ρ.

The other direction follows from

∫

G

(
U (1) ⊗ U (2)

)
ρ
(
U (1) ⊗ U (2)

)∗
dµ = ρ.

because then for unitary V (1), V (2) ∈ U (d) we have

ρ
(
V (1) ⊗ V (2)

)

=

∫

G

(
U (1) ⊗ U (2)

)
ρ
(
U (1) ⊗ U (2)

)∗
dµ
(
V (1) ⊗ V (2)

)

=
(
V (1) ⊗ V (2)

)(
V (1) ⊗ V (2)

)∗ ∫

G

(
U (1) ⊗ U (2)

)
ρ
(
U (1) ⊗ U (2)

)∗
dµ
(
V (1) ⊗ V (2)

)

=
(
V (1) ⊗ V (2)

)∫

G

(
U (1) ⊗ U (2)

)
ρ
(
U (1) ⊗ U (2)

)∗
dµ

=
(
V (1) ⊗ V (2)

)
ρ,

where we have used the invariance property.

Therefore, in order to study the symmetry behavior, we can focus on analyzing the commu-

tant and its structure. In the following, we will look at three specific examples of a symmetry

group, which are of particular interest [20]. We study the UU -invariant quantum states, the

UŪ -invariant quantum states and the OO-invariant quantum states.

3.1.1 UU-invariant states – Werner states

The first and most prominent example is the Werner state [21, 22]. These are all quantum

states ρ ∈ D(Cd ⊗ Cd) that are invariant under unitaries of the form (U ⊗ U), with unitary

U ∈ U(d), forming a representation of a group G on Cd ⊗ Cd. The notation reflects that
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3.1 Quantum states under symmetry

this is just the unitary group and we therefore write the projection of any quantum state

ρ ∈ D(Cd ⊗ Cd) onto the Werner states, the UU -twirl, as

T(UU)(ρ) =

∫

U(d)
(U ⊗ U) ρ (U ⊗ U)∗ dµ. (3.15)

The structure of all Werner states can be analyzed using a well-known result from group theory,

given in the following theorem [1].

Theorem 3.7 (Weyl [23, Chapter IV]). If an operator ρ acting on the n-fold tensor product(
Cd
)⊗n

obeys [ρ, U⊗n] = 0 for all unitaries U ∈ U (d), then it is a linear combination of

operators Vπ representing the permutation group on
(
Cd
)⊗n

, i.e., it is of the form

ρ =
∑

π∈Sn
aπVπ, (3.16)

where Sn is the symmetric group on n elements, π are all possible permutations of n elements

and aπ ∈ C. The permutation operators Vπ are defined via

Vπ (v1 ⊗ . . .⊗ vn) = vπ−1(1) ⊗ . . .⊗ vπ−1(n). (3.17)

Proof. The theorem immediately follows from [8, Theorem IX.11.5]. Denote by SU(d) the

special unitary group of finite degree d and by Sn the symmetric group on n elements. Let A
be the group algebra of SU(d) and B be the group algebra of Sn generated by their respective

unitary representation on
(
Cd
)⊗n

. Since SU(d) and Sn act dually on
(
Cd
)⊗n

, we get A′ = B.

The commutant is therefore exactly the algebra generated by the permutation operators Vπ.

Thus, if an operator commutes with all unitaries of the form U⊗n, it must be an element of

this commutant, i.e. it must be a linear combination of permutation operators.

Therefore, the most simple version of this theorem applies to our case with n = 2. We,

therefore, only need to consider two permutation operators, namely the identity 1 ∈ Md2

and the flip (or swap) operator F ∈ Md2 , which was already introduced in section 2.1 in

equation (2.4). Hence, the current analysis yields that a quantum state ρ ∈ Md2 with a

UU -symmetry must be of the form

ρ = a
1

d2
+ bF, (3.18)

with appropriate a, b ∈ C. The normalization condition, which says that Tr[ρ] = 1, gives

b = (1− a)/d. The positivity requirement, ρ ≥ 0, then yields

ρ = a
1

d2
+ (1− a)

F
d
, a ∈

[
d

d+ 1
,

d

d− 1

]
, (3.19)

where we have used the fact that the flip F has eigenvalues ±1 (with multiplicities d(d± 1)/2)

corresponding to symmetric and antisymmetric eigenvectors respectively.

Another very common representation of the Werner states is in terms of these eigenprojections

of the flip F [20]. Let us denote these by P±, i.e., FP± = ±P±, given by P± = (1±F)/2. As
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already mentioned, these have multiplicities d± = d(d ± 1)/2 corresponding to the symmetric

and antisymmetric subspace. Every Werner state can then be written in the following form

ρ = a
P+

d+
+ (1− a)

P−
d−

, a ∈ [0, 1] . (3.20)

The next example is closely related to the Werner state and the next section is therefore

going to build on the analysis just presented.

3.1.2 UŪ-invariant states – Isotropic states

A second very prominent example can be derived by considering the partial transposition of

the second system of a Werner state. These are all states that are invariant under the compact

group G represented by unitaries of the form
(
U ⊗ Ū

)
, with unitary U ∈ U(d), on Cd ⊗ Cd.

The ·̄ again denotes complex conjugation. This is easily seen by considering lemma 3.6 and

observing that if ρ ∈ D(Cd⊗Cd) commutes with unitaries U ⊗U , then ρt2 ∈ D(Cd⊗Cd) must

commute with U ⊗ Ū by using that U∗ = Ū t holds. A state obeying this symmetry is called

an isotropic state [24]. The UŪ -twirl projects every quantum state ρ ∈ D(Cd ⊗ Cd) onto the

isotropic states,

T(UŪ)(ρ) =

∫

U(d)

(
U ⊗ Ū

)
ρ
(
U ⊗ Ū

)∗
dµ. (3.21)

The structure of these states can be determined by using the previous analysis regarding

Werner states and our observation regarding the partial transposition [19]. First we should

note how the partial transposition alters the action of the unitaries under consideration. We

find for any A1, A2 ∈Md and every U (1), U (2) ∈ U(d),

((
U (1) ⊗ U (2)

)
(A1 ⊗A2)

(
U (1) ⊗ U (2)

)∗)t2

=
(
U (1)A1U

(1)∗
)
⊗
(
U (2)A2U

(2)∗
)t

=
(
U (1)A1U

(1)∗
)
⊗
((

U (2)∗
)t
At2

(
U (2)

)t)

=
(
U (1) ⊗ Ū (2)

)
(A1 ⊗A2)t2

(
U (1) ⊗ Ū (2)

)∗
. (3.22)

By linearity this holds for any A ∈Md2 , too. Let G be a compact group with unitary represen-

tation of the form
(
U (1) ⊗ U (2)

)
and let K be a compact group with unitary representation of

the form
(
U (1) ⊗ Ū (2)

)
with unitaries U (1), U (2) ∈ U(d). Furthermore, denote their respective

twirls by T(U1U2) and T(U1Ū2). Using the computation from equation (3.22), it is then immedi-

ately possible to see that the twirls are related through the partial transposition

(
T(U1U2)(·)

)t2
= T(U1Ū2)

(
(·)t2

)
. (3.23)

As a consequence, we find that the commutants, as ranges of the twirls, obey the fundamental

relation (
G′
)t2 = K′. (3.24)

Therefore, the quantum states invariant under K are precisely the partial transposes of the

quantum states invariant under G.
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3.1 Quantum states under symmetry

Every isotropic state ρ ∈Md2 is thus of the form

ρ = a
1

d2
+ b |Ω〉〈Ω| , (3.25)

for appropriate a, b ∈ C, where |Ω〉〈Ω| denotes again the maximally entangled quantum state,

which is the partial transposition of the flip, i.e.,

|Ω〉〈Ω| = dFt2 . (3.26)

Normalization yields that b = 1 − a and together with positivity we get that every isotropic

state is of the form

ρ = a
1

d2
+ (1− a) |Ω〉〈Ω| , a ∈

[
0,

d2

d2 − 1

]
. (3.27)

Combining the last two examples leads to a third prominent example of symmetry group,

which is discussed in the next section.

3.1.3 OO-invariant states

The third example we would like to analyze is all quantum states ρ ∈ D
(
Cd ⊗ Cd

)
that are

invariant under the compact group G represented by real orthogonal matrices of the form

(O ⊗O), with orthogonal O ∈ O(d), on Cd ⊗ Cd. These states are usually just referred to as

OO-invariant quantum states [19]. The OO-twirl of a quantum state ρ ∈ D(Cd ⊗ Cd) is given

by

T(OO)(ρ) =

∫

O(d)
(O ⊗O) ρ (O ⊗O)∗ dµ, (3.28)

where µ now denotes the Haar measure on O(d). The OO-twirl projects every quantum state

onto the OO-invariant quantum states, i.e., into the commutant of G.

The two previous examples fall into this class, since both UU -invariant quantum states as well

as UŪ -invariant quantum states are OO-invariant. Therefore, we know that the commutant

G′ is at least the algebra generated by the commutant of the group represented by unitaries of

the form (U ⊗ U) and the group represented by unitaries of the form
(
U ⊗ Ū

)
, with U ∈ U(d).

Considering the well-known theory of representation of the orthogonal group O(d), we know

that there is no additional element to its commutant [8], i.e., every OO-invariant quantum state

is of the form

ρ = a1+bF + c |Ω〉〈Ω| , (3.29)

with appropriate a, b, c ∈ C. The corresponding minimal orthogonal projections in the flavor

of equation (3.10) that span the commutant algebra are

P0 = |Ω〉〈Ω| , P1 =
1

2
(1−F) , and P2 =

1

2
(1+F)− |Ω〉〈Ω| . (3.30)

Therefore, every OO-invariant state can be written as a linear combination of these projections,

i.e.,

ρ = (1− a1 − a2)P0 + a1
P1

Tr[P1]
+ a2

P2

Tr[P2]
, a1, a2 ≥ 0, a1 + a2 ≤ 1. (3.31)
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In this section, we discussed quantum states under symmetries and the decomposition of

the underlying Hilbert space. We presented three examples that are very prominent in the

literature, and we analyzed the structure of quantum states that are invariant with respect to

these three symmetries.

The next section is going to analyze quantum channels under symmetries. We will start with

a general discussion about covariant quantum channels and then discuss quantum channels

under the symmetries particularly emphasized in this section.

3.2 Quantum channels under symmetry

This section uses previously presented results regarding quantum states under symmetry to

discuss quantum channels under symmetry. We will, in particular, study the case of the ortho-

gonal group related to the third example discussed in the last section. Before we do this, we

start by defining covariance property of a quantum channel.

Definition 3.8 (Covariant quantum channel). A quantum channel T : Md → Md is said to

be covariant with respect to unitary representations U (1), U (2) of a finite or compact group G,

if for all X ∈Md and for all g ∈ G,

T
(
U (2)∗
g XU (2)

g

)
= U (1)∗

g T (X)U (1)
g . (3.32)

The twirl of a quantum channel is a very important concept and since it is related to cova-

riance we define it in the following.

Definition 3.9 (Twirl of a quantum channel). Let T :Md →Md be a quantum channel, G a

finite or compact group with Haar measure µ and U (1), U (2) unitary representations of G. We

denote the twirl of T with respect to G as TT :Md →Md and define it to be

TT (·) :=

∫

G
U (1)
g ◦ T ◦ U (2)∗

g (·) dµ, (3.33)

where U denotes the adjoint representation of G defined through its action on any X ∈Md by

conjugation, i.e., for all g ∈ G

Ug(X) = UgXU
∗
g . (3.34)

The following lemma shows that the notion of covariance and invariance under the twirl are

closely linked. This is in the same spirit as lemma 3.6, as we will show later on.

Lemma 3.10. Let G be a compact or finite group with unitary representations U (1) and U (2)

and Haar measure µ. For a quantum channel T :Md →Md

U (1)
g T

(
U (2)∗
g · U (2)

g

)
U (1)∗
g = T (·) ∀g ∈ G (3.35)

is equivalent to ∫

G
U (1)
g T

(
U (2)∗
g · U (2)

g

)
U (1)∗
g dµ = T (·). (3.36)
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Proof. If

U (1)
g T

(
U (2)∗
g · U (2)

g

)
U (1)∗
g = T (·)

holds for all g ∈ G, then it immediately follows that

∫

G
U (1)
g T

(
U (2)∗
g · U (2)

g

)
U (1)∗
g dµ = T (·)

by the properties of the Haar measure. If, on the other hand,

∫

G
U (1)
g T

(
U (2)∗
g · U (2)

g

)
U (1)∗
g dµ = T (·),

then for fixed h,

T
(
U

(2)∗

h · U (2)
h

)
=

∫

G
U (1)
g T

(
U (2)∗
g U

(2)∗

h · U (2)
h U (2)

g

)
U (1)∗
g dµ

=

∫

G
U

(1)∗

h U
(1)
h U (1)

g T
(
U (2)∗
g U

(2)∗

h · U (2)
h U (2)

g

)
U (1)∗
g U

(1)∗

h U
(1)
h dµ

= U
(1)∗

h

(∫

G
U

(1)
h U (1)

g T
(
U (2)∗
g U

(2)∗

h · U (2)
h U (2)

g

)
U (1)∗
g U

(1)∗

h dµ

)
U

(1)
h

= U
(1)∗

h

(∫

G
U

(1)
hg T

(
U

(2)∗

hg · U
(2)
hg

)
U

(1)∗

hg dµ

)
U

(1)
h

= U
(1)∗

h

(∫

G
U (1)
g T

(
U (2)∗
g · U (2)

g

)
U (1)∗
g dµ

)
U

(1)
h

= U
(1)∗

h T (·)U (1)
h ,

where we have used the properties of the Haar measure and the fact that for h fixed, g 7→ hg

is a bijection, so as g runs through G, so does hg.

We are in particular interested in bipartite quantum states ρ ∈ D
(
Cd ⊗ Cd

)
and we again

focus on closed groups G of unitaries of the form U =
(
U (1) ⊗ U (2)

)
with unitary U (1), U (2) ∈

U(d). Similarly to the previous section, where we discussed quantum states under symmetry,

we will also use a simplified notation in the rest of this section.

The Choi-Jamiolkowski state JT ∈ Md2 of a quantum channel T : Md → Md is invariant

under twirling if it is a covariant quantum channel. This connection is formalized in the

following lemma.

Lemma 3.11. For a quantum channel T :Md →Md

U (1)T
(
U (2)∗ · U (2)

)
U (1)∗ = T (·) ∀ U (1), U (2) ∈ U (d) (3.37)

is equivalent to ∫

G

(
U (1) ⊗ Ū (2)

)
JT

(
U (1) ⊗ Ū (2)

)∗
dµ = JT , (3.38)

where the group G is of the form U (1) ⊗ Ū (2) with U (1), U (2) ∈ U(d) and µ denotes the group’s

Haar measure.
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Proof. If

U (1)T
(
U (2)∗ · U (2)

)
U (1)∗ = T (·) ∀ U (1), U (2) ∈ U (d)

then
∫

G

(
U (1) ⊗ Ū (2)

)
JT

(
U (1) ⊗ Ū (2)

)∗
dµ

=

∫

G

(
U (1) ⊗ Ū (2)

)
(T ⊗ id) |Ω〉〈Ω|

(
U (1) ⊗ Ū (2)

)∗
dµ

=

∫

G

(
U (1) ⊗ Ū (2)

)
(T ⊗ id)

(
U (2) ⊗ Ū (2)

)∗
|Ω〉〈Ω|

(
U (2) ⊗ Ū (2)

)(
U (1) ⊗ Ū (2)

)∗
dµ

=

∫

G

(
U (1)T

(
U (2)∗ · U (2)

)
U (1)∗ ⊗ id

)
|Ω〉〈Ω| dµ

=

∫

G
(T ⊗ id) |Ω〉〈Ω| dµ

=JT ,

where we have again used the properties of the Haar measure and the fact that (U⊗Ū) |Ω〉 = |Ω〉
for any unitary U ∈ U(d). The other direction follows from

∫

G

(
U (1) ⊗ U (2)

)
JT

(
U (1) ⊗ U (2)

)∗
dµ = JT ,

and application of lemma 3.10.

This lemma 3.11 allows us to use the previous analysis from section 3.1 to analyze the struc-

ture of quantum channels under the three different symmetries studied before (see also [20]).

3.2.1 UU-covariant quantum channels

The first example that we discuss is the UU -covariant quantum channel T : Md → Md

satisfying for any X ∈Md

T (UXU∗) = UT (X)U∗ ∀U ∈ U(d). (3.39)

By lemma 3.11 its corresponding Jamiolkowski state is an isotropic state. Therefore, consider

the following linear maps S1, S2 :Md →Md that act on X ∈Md as

S1(X) := dTr[X]1 and S2(X) := X. (3.40)

Their Choi matrices are the identity 1 ∈Md2 and the maximally entangled state |Ω〉〈Ω| ∈ Md2

JS1 = (S1 ⊗ id) |Ω〉〈Ω| = 1 and (3.41)

JS2 = (S2 ⊗ id) |Ω〉〈Ω| = |Ω〉〈Ω| . (3.42)

Using equation (3.27) therefore yields the well-known result that UU -covariant quantum chan-

nels are depolarizing, i.e., the UU -covariant quantum channel T :Md →Md has the structure

T (·) = aTr[·]1
d

+ (1− a) id, a ∈
[
0,

d2

d2 − 1

]
. (3.43)

This is a prominently used result throughout quantum information theory [20] and was derived

here again using the invariance of its Jamiolkowski state.
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3.2.2 UŪ-covariant quantum channels

The second example is that of a quantum channel T : Md → Md that is UŪ -covariant, i.e.,

that satisfies for every X ∈Md

T
(
ŪXŪ∗

)
= UT (X)U∗ ∀U ∈ U(d). (3.44)

By lemma 3.11 its corresponding Jamiolkowski state is a Werner state. Therefore, in order to

analyze its structure consider the following linear maps S1, S3 : Md → Md that act on any

X ∈Md as

S1(X) := dTr[X]1 and S3(X) := dXt. (3.45)

Please note that these linear maps are not quantum channels, but they do have the correct

invariance properties. Their Choi states are exactly the identity 1 ∈Md2 and the flip F ∈Md2 ,

JS1 = (S1 ⊗ id) |Ω〉〈Ω| = 1 and (3.46)

JS3 = (S3 ⊗ id) |Ω〉〈Ω| = F. (3.47)

Using lemma 3.11 together with equation (3.20) shows that a UŪ -covariant quantum channel

T :Md →Md is of the form

T (·) =
a

d+ 1

(
Tr[·]1+(·)t

)
+

1− a
d− 1

(
Tr[·]1−(·)t

)
, a ∈ [0, 1]. (3.48)

This concludes the second example.

3.2.3 OO-covariant quantum channels

The third example combines the first two. Consider an OO-covariant quantum channel T :

Md →Md satisfying for any X ∈Md

T (OXO∗) = OT (X)O∗ ∀O ∈ O(d). (3.49)

By lemma 3.11 its corresponding Jamiolkowski state is an OO-invariant quantum state. In

order to analyze its structure consider the following linear maps defined in the two previous

examples, S1, S2, S3 :Md →Md that act on any X ∈Md as

S1(X) := dTr[X]1, S2(X) := X and S2(X) := dXt. (3.50)

As discussed previously, their Choi matrices are exactly the identity 1 ∈ Md2 , the maximally

entangled state |Ω〉〈Ω| ∈ Md2 and the flip F ∈Md2 ,

JS1 = (S1 ⊗ id) |Ω〉〈Ω| = 1, (3.51)

JS2 = (S2 ⊗ id) |Ω〉〈Ω| = |Ω〉〈Ω| and (3.52)

JS3 = (S3 ⊗ id) |Ω〉〈Ω| = F. (3.53)

Using equation (3.31) then shows that an OO-covariant quantum channel T :Md →Md has

the structure

T (·) = (1− a1 − a2) id +
a1

d− 1

(
Tr[·]1−(·)t

)
+

2a2

d(d+ 1)− 2

(
d

2

(
Tr[·]1−(·)t

)
− id

)
, (3.54)

a1, a2 ≥ 0, a1 + a2 ≤ 1.
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Therefore, the two previous examples are special cases of this quantum channel.

In this section we have discussed quantum states and quantum channels under symmetry.

We analyzed three important symmetry examples and derived the explicit structure of the

commutant. In the next section, we focus on group designs, in particular on unitary and

orthogonal 2-designs. These are sets of unitary (or real orthogonal) matrices that are “nicely

distributed” in the sense that the average of any 2nd degree polynomial over these sets equals

the average over the entire unitary (or orthogonal) group [25, 26].

3.3 Group designs

Many algorithms and protocols in quantum information theory are based on random quantum

states generated according to the Haar measure [27–32]. Generating these according to the

Haar measure is, however, inefficient in practice, since the number of gates required grows

exponentially with the number of qubits [33].Therefore, it is very useful to identify subsets of

the unitary group that can adequately simulate the Haar measure for a class of operational

tasks and to furthermore determine efficient gate decompositions for these subsets. This leads

to the notion of a group design and more specifically unitary design, which will be the focus in

this section. Unitary t-designs were, to our knowledge, first introduced to quantum information

theory by Dankert in his thesis [34] and in a proceeding paper [33]. In the following we will

focus on the special case of unitary 2-designs, where t = 2. All definitions can, however, be

easily generalized.

Definition 3.12 (Unitary 2-design). A set D = {Uk ∈ U(d)}k=1,...,K of unitary matrices on

Cd is a unitary 2-design if it fulfills the following equivalent conditions:

(a) (Averages) Let p(U) be a polynomial of degree at most 2 in the matrix elements of U and

at most 2 in the complex conjugates of those matrix elements. Then the following relation

should be fulfilled for any polynomial of this type,

1

K

K∑

k=1

p(Uk) =

∫

U(d)
p(U) dµ. (3.55)

(b) (Twirling of quantum states) For all bipartite quantum states ρ ∈ D(Cd⊗Cd) the following

holds
1

K

∑

Uk∈D
(Uk ⊗ Uk)ρ(Uk ⊗ Uk)∗ =

∫

U(d)
(U ⊗ U)ρ(U ⊗ U)∗ dµ. (3.56)

(c) (Twirling of quantum channels) For any quantum channel T : Md → Md and for any

quantum state ρ ∈ Dd the following holds

1

K

∑

Uk∈D
U∗kT (UkρU

∗
k )Uk =

∫

U(d)
U∗T (UρU∗)U dµ. (3.57)

In all these equivalent statements, the integral is again taken with respect to the Haar measure

of U(d), denoted by µ.
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The second equivalent formulation of a unitary 2-design, (b), reveals the link to the previous

sections: We recover the notion of a Werner state. That is, for any unitary 2-design D, we may

use the analysis of the previous sections to specify the structure of its twirl or any quantum

channel or quantum state under its twirl. In the following, we will focus on designs that form a

group, since, to our best knowledge, all relevant examples fall into this class [35]. We can then

immediately give an equivalent definition of a unitary t-design through the commutant:

Definition 3.13 (Unitary t-design). Let G be a finite or compact group acting on Cd for some

dimension d. Then G is a unitary t-design if we have the equality of commutants, i.e.,

{
U⊗t

∣∣U ∈ G
}′

=
{
U⊗t

∣∣U ∈ U(d)
}′
. (3.58)

This definition naturally lends itself to a generalization to arbitrary reference groups, beyond

the well-studied case of U(d). In particular, the following will be of interest to us:

Definition 3.14 (Orthogonal t-design). Let G be a finite or compact group acting on Cd for

some dimension d. Then G is an orthogonal t-design if we have the equality of commutants,

i.e., {
O⊗t

∣∣O ∈ G
}′

=
{
O⊗t

∣∣O ∈ O(d)
}′
, (3.59)

where O(d) is the real orthogonal group acting on Cd.

In the next sections, we will give two examples of designs. The first one is the complex

Clifford group, which is a prominent example of a unitary 2-design in the quantum informa-

tion theory literature, examples including randomized benchmarking [5, 36–38], quantum state

tomography [39–42], quantum process tomography [43, 44], quantum cryptography [45] and

quantum error correction [46]. The second example is the real Clifford group, which is an ort-

hogonal 2-design [3]. It is not as popular as its complex counterpart in quantum information

theory, but does find applications in randomized benchmarking [3] or quantum computing on

rebits [47, 48].

3.3.1 Complex Clifford group

The complex Clifford group is a unitary 2-design, a unitary 3-design, but fails to be a unitary

4-design [49–54]. Therefore, let us start by defining the complex Clifford group.

The full Pauli group on one qubit P(1) is defined as the group generated by

P(1) := 〈X,Z, iI〉 , (3.60)

where I,X, Y, Z are the standard Pauli matrices defined as

I :=

(
1 0

0 1

)
, X :=

(
0 1

1 0

)
, Y :=

(
0 −i
i 0

)
and Z :=

(
1 0

0 −1

)
. (3.61)

The full Pauli group on n qubits is defined to be the n-fold tensor power

P(n) := P(1)⊗n. (3.62)
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Definition 3.15 (Complex Clifford group). The complex Clifford group X(n) is the group-

theoretic normalizer of the full Pauli group P(n) in the unitary group U(2n), i.e., it is defined

as

X(n) := {U ∈ U(2n) |UP(n) = P(n)U} . (3.63)

In the simplest case, for one qubit n = 1, the complex Clifford group is just given as

X(1) = 〈H,P 〉 , (3.64)

where H is the Hadamard gate defined as

H :=
1√
2

(
1 1

1 −1

)
, (3.65)

and P is the π/4-phase gate defined as

P :=

(
1 0

0 i

)
. (3.66)

In the simple two qubit case, n = 2, the complex Clifford group is just

X(2) = 〈X(1)⊗X(1), CZ〉 , (3.67)

where CZ is the controlled Z-gate defined as

CZ :=




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1



. (3.68)

The complex Clifford group is the most prominent non-trivial example of a unitary 2-design.

A short proof of this fact is stated in the following. Please note that studying the commutant

structure significantly simplifies the proof (cf. the proof in [35]).

Theorem 3.16. The representation {Ug⊗ Ūg} of the complex Clifford group X(n) decomposes

into two non-degenerate irreducible unitary representations.

Proof. See [55, theorem 6.8.1.] and proofs therein.

Theorem 3.17. The complex Clifford group X(n) is a unitary 2-design.

Proof. The complex Clifford group X(n) is a subgroup of the unitary group U(2n). Therefore,

its commutant must contain the commutant of the unitary group. By theorem 3.16 both

commutants have the same dimensions, and are thus equal. Application of definition 3.13 of a

unitary 2-design proves the claim.

Another example of interest is the real Clifford group. This is a subgroup of the complex

Clifford group and is discussed in the next section.
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3.3.2 Real Clifford group

In a similar fashion to the complex Clifford group, we can define a group called the real Clifford

group. To do so, we first need to define the real Pauli group E(n) on n qubits as

E(n) :=
〈
E(1)⊗n

〉
, (3.69)

where E(1) is just the real Pauli group on 1 qubit defined as

E(1) :=

〈
X :=

(
0 1

1 0

)
, Z :=

(
1 0

0 −1

)〉
. (3.70)

E(n) is thus generated by tensor products of the Pauli matrices X and Z with 2 × 2 identity

matrices 12. Therefore, as the matrices are real, it is called the real Pauli group.

Definition 3.18 (Real Clifford group). The real Clifford group C(n) is the group-theoretic

normalizer of the real Pauli group E(n) in the real orthogonal group O (2n), i.e., it is defined

as

C(n) := {O ∈ O(2n) |OE(n) = E(n)O} . (3.71)

In the simplest case when n = 1 the real Clifford group is generated by the Pauli Z-gate and

the Hadamard gate H,

C(1) =

〈
Z :=

(
1 0

0 −1

)
, H :=

1√
2

(
1 1

1 −1

)〉
, (3.72)

and in the two qubit case when n = 2 the real Clifford group is

C(2) = 〈C(1)⊗C(1), CZ〉 , (3.73)

where CZ is again the controlled Z-gate, defined as

CZ :=




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1



. (3.74)

A thorough discussion of the real Clifford group can be found in [55].

The real Clifford group is therefore a subgroup of the complex Clifford group, C(n) ⊂ X(n),

and we necessarily have that for any t ∈ N,

{O⊗t|O ∈ C(n)}′ ⊃ {U⊗t|U ∈ X(n)}′.

Similarly, the orthogonal group is a subgroup of the unitary group, O(2n) ⊂ U(2n), and we

thus have that

{O⊗t|O ∈ O(2n)}′ ⊃ {U⊗t|U ∈ U(2n)}′.
In the special case t = 2, we get the following correspondence:

{O⊗2|O ∈ C(n)}′ ⊃ {U⊗2|U ∈ X(n)}′

‖ ‖
{O⊗2|O ∈ O(2n)}′ ⊃ {U⊗2|U ∈ U(2n)}′

This is proven in the following.
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Theorem 3.19. The representation {Og⊗Og} of the real Clifford group C(n) decomposes into

three non-degenerate irreducible unitary representations.

Proof. See [55, theorem 6.8.1.] and proofs therein.

Theorem 3.20. The real Clifford group C(n) is an orthogonal 2-design.

Proof. The real Clifford group C(n) is a subgroup of the real orthogonal group O(2n). There-

fore, the commutant of the real orthogonal group must be contained in the commutant of the

real Clifford group. By theorem 3.19 both commutants have the same dimensions, and are thus

equal. Application of definition 3.14 of an orthogonal 2-design proves the claim.

We have discussed group designs and in particular unitary and orthogonal 2-designs. We

have given one example each: the complex Clifford group is a unitary 2-design and one of its

subgroups, the real Clifford group, is an orthogonal 2-design. These groups are of particular

importance, since it is often the case that in practice it suffices to draw random matrices from

the unitary (or orthogonal) design, instead of the full unitary (or orthogonal) group with respect

to the Haar measure. We have studied the structure of quantum states and quantum channels

with respect to unitary or orthogonal symmetries thoroughly. These findings then also apply

to the groups design. These symmetry considerations have been applied throughout all articles

included in this dissertation. We are in particular interested in the application of symmetries in

the area of universal quantum cloning, information-disturbance tradeoffs as well as randomized

benchmarking.
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This chapter discusses three different applications of the symmetry methods presented in the

previous chapter. The first application of interest is universal quantum cloning [1, 4], which is

discussed in the next section. Another application of interest is within the area of information-

disturbance tradeoffs [2, 4]. The third application of the symmetry methods is within rando-

mized benchmarking [3, 5], which is presented in the third and final section of this chapter.

4.1 Universal quantum cloning

Quantum cloning is the process of perfectly cloning an arbitrary unknown quantum state and

obtaining an exact copy of that quantum state without altering it, i.e., for any quantum state

ρ ∈ Dd a quantum cloning device performs

ρ 7→ ρ⊗ ρ. (4.1)

Such a process is forbidden by the laws of quantum mechanics as was shown in the famous

No-Cloning Theorem by Wootters and Zurek [16] and explained in theorem 2.5. Even though

it is simple to prove by just invoking the linearity of quantum mechanics, this no-go theorem

has fundamental consequences in the field of quantum information and yet again underlines the

striking difference between quantum information and its classical counterpart. On a first look,

it seems like the no-cloning theorem only tells us what cannot be done, it gives an intrinsic

impossibility; however, it only tells us what cannot be done in an exact manner. On the other

hand, most of the tasks cannot be performed in an exact manner using real devices. It is,

therefore, more intriguing to study the bounds inherit to such a device. This finds applications

to many tasks in quantum information theory, such as quantum state estimation [56–58] and

eavesdropping in quantum cryptography [59–61]. The idea is that, in general, there is no

way how an eavesdropper could perfectly copy a quantum state encoding some information.

Consequently, as long as this quantum state is received unperturbed, the receiver knows that

it has not been copied by any adversary. This is just one of the many useful application of the

no-cloning theorem in information theory.

Historically, the no-cloning theorem was the result of many discussions about a proposal made

by Nick Herbert [62]. He proposed a FLASH communication scheme (First Light Amplification

Superluminal Hookup) to use quantum correlations to communicate faster than light. His

proposal, however, needed that copying an unknown quantum state is possible. This triggered

many discussions and responses [16, 63–65] and lead to the no-cloning theorem.

Even though perfect quantum cloning is not possible, it is possible to do so in an approximate

manner. Quantum cloning, therefore, refers to the process of finding a quantum channel that
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clones a quantum state as best as possible. If all quantum clones have the same quality, the

cloning procedure is called symmetric. On the other hand, if the quantum clones are allowed to

have different qualities, the cloning procedure is called asymmetric quantum cloning. Therefore,

symmetric quantum cloning is a special case of asymmetric quantum cloning. In the case of

universal quantum cloning, the cloning process is independent of the input quantum state, i.e.,

all input quantum states are copied equally well. Non-universal quantum cloning is thus mostly

referred to as state-dependent cloning. In the following we will restrict to universal asymmetric

quantum cloning, in which the clones may have different qualities, but this is independent of

the input quantum state.

The first authors who went beyond the no-cloning theorem were Bužek and Hillery [66], who

studied the optimal universal 1 → 2 qubit quantum cloning machine [67]. This gave rise to

a vast amount of articles generalizing their universal symmetric quantum cloning machine to

either qudits or the N →M cloning case [57, 68–73].

At the same time, the thorough exploration of universal asymmetric quantum cloning be-

gan [1, 71, 74–86], where the produced quantum clones are allowed to have different qualities.

For more details, the reader is referred to the two excellent review articles [17, 18]. This special

case is of particular interest to us, and it will thus be discussed in the following.

ρ T
T1(ρ)

T2(ρ)

Figure 4.1: The main setup of universal asymmetric 1 → 2 quantum cloning. The quantum cloning

channel T : Md → Md ⊗Md takes any initial state ρ ∈ Dd and gives two approximate

clones T1(ρ) ∈ Dd and T2(ρ) ∈ Dd with possibly different qualities.

Let us consider the case of universal asymmetric 1 → 2 quantum cloning. Its main setup is

depicted in figure 4.1. We are interested in finding the optimal cloning channel T :Md →Md⊗
Md that yields the best possible quantum clones, given through its marginals by T1(ρ) ∈ Dd
and T2(ρ) ∈ Dd. Intuitively, the better the quality of one of the clones, the worst the quality

of the other must be. In order to assess the quality of the individual clones, we consider the

distance of the marginal channel Ti to the identity channel. The goal is then to fully specify

the set of all attainable single quantum clone qualities,

C =

{
z ∈ R2

∣∣∣∣∣ z =

(
d(T1)

d(T2)

)}
, (4.2)

where the distance measures d : Td → [0,∞] must fulfill specific assumptions.

Assumption 4.1 (on the distance measure to the identity channel [1]). For d : Td → [0,∞]

we assume that

(a) d is concave,

(b) d is unitarily invariant, i.e., for every unitary U ∈Md and every quantum channel T ∈ Td,
we have that

d (UT (U∗ · U)U∗) = d(T ), (4.3)
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4.2 Information-disturbance tradeoff

and

(c) the origin is attainable, i.e., {0} ∈ C.

It is then possible to show that without loss of generality (w.l.o.g.) the optimal quantum

cloning channel is UU -covariant [1, 72, 73], such that the marginal maps take the form of a

depolarizing channel, i.e., for i = 1, 2,

Ti(·) = a2
i Tr[·]1

d
+ (1− a2

i ) id, ai ∈
[
0,

d2

d2 − 1

]
, (4.4)

in accordance with section 3.2. Casting the universal asymmetric quantum cloning problem

as an optimization problem, then allows to achieve analytic results for the optimal universal

quantum cloning channel.

Theorem 4.2 (Optimal universal 1→ 2 asymmetric quantum cloning channel [1, theorem 3]).

The optimal universal 1 → 2 asymmetric quantum cloning channel T : Md → Md ⊗Md for

any quantum state ρ ∈ Dd is given by

T (ρ) = (a2 1+a1F)

(
ρ⊗ 1

d

)
(a2 1+a1F) , (4.5)

with (a1)2 + (a2)2 + 2a1a2
d = 1, a1, a2 ∈ R, and where F is the flip or swap operator.

This application shows that symmetry considerations are very useful and it is possible to

truncate the problem in question extensively. The symmetry considerably reduces the com-

plexity of the problem while still preserving the interesting features of the full structure. This

can also be observed in the next application that we will discuss: information-disturbance

tradeoffs.

4.2 Information-disturbance tradeoff

The information-disturbance tradeoff quantifies how much information can be extracted through

a quantum measurement from a quantum system and how much noise has to be necessarily

introduced to that system. The goal is to mathematically describe the accessible region and

find the optimal tradeoff. For a given amount of information, the disturbance is minimized,

or, for a fixed amount of tolerable disturbance, the amount of information extracted from the

system is maximized.

Heisenberg’s uncertainty principle, mostly stated using the famous inequality for position

and momentum,

∆q∆p ≥ ~, (4.6)

certainly comprises the information-disturbance tradeoff. Its mathematical development to

include a generalized measurement scheme [14, 87], lead to numerous works on its assertion

and scope. The inherent negative formulation regarding limitations of quantum preparations

and measurement has lead to many underestimations of its fundamental relevance. The interest

in a thorough mathematical analysis of the information-disturbance tradeoff has, however, seen
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a significant increase, especially since the emergence of quantum information theory. This

is especially the case, since it is relevant for some practical applications, such as quantum

cryptography [59, 88–90].

This interest is represented by the vast amount of papers quantifying the tradeoff. One

way, in which these papers differ, is whether a reference measurement is used to quantify the

measurement error and whether a second reference system is used to quantify the disturbance.

In [91–103], for example, both, the measurement error as well as the disturbance, are quantified

with respect to a reference measurement. Contrarily, in [104–111] no reference measurement is

used at all. We are particularly interested in an intermediate approach. The information gained

is quantified through a quantum measurement, which is assumed to approximate a given target

measurement, which serves as our reference. On the other hand, the disturbance is quantified

without specifying any reference measurement. This differentiation is illustrated in figure B.1.

This approach seems to be more natural, and also more applicable to quantum communication

setups within the laboratory [4].

Another way, in which the papers quantifying the information-disturbance tradeoff differ, is

the distance measures used. For example, [91, 100, 101, 105, 106, 109] use various entropic

distance measures, [96, 103, 107] use norm-based distance measures, [104, 105, 109, 110] use

fidelities, [95, 111] use Fisher information, and [97, 102] use transport-cost functions. These all

stand on an equal footing and their respective advantages lie within their applications.

In the following we will consider the setup illustrated in figure 4.2. We fix a target measure-

ment E ∈ Ed,m and we quantify the tradeoff between the quality of a measurement E′ ∈ Ed,m,

that approximates the target measurement, and the disturbance that this measurement in-

troduces to the system. The disturbance is described by a quantum channel T ∈ Td and its

distance to the identity channel id ∈ Td. Every quantum instrument then describes one pair

(E′, T ) allowed by quantum mechanics.

ρ I
T (ρ)

{Tr[E′iρ]}mi=1

Figure 4.2: The main setup of the information-disturbance tradeoff. The quantum instrument I = {Ii :

Md →Md}mi=1 describes a measurement scheme. It gives the statistics of the measurement

results corresponding to the POVM E′ ∈ Ed,m (classical output) and the evolution of the

initial quantum system ρ ∈ Dd to its final state after the measurement T (ρ) ∈ Dd (quantum

output). The information-disturbance tradeoff quantifies the minimal disturbance to the

system necessary to obtain a specific amount of information.

The disturbance is quantified by a functional ∆ : Td → [0,∞] that determines how much

T ∈ Td differs from the identity channel id ∈ Td. We will need the following assumption.

Assumption 4.3 (on the distance measure to the identity channel [2, assumption 1]).

For ∆ : Td → [0,∞] we assume that

(a) ∆(id) = 0,
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4.2 Information-disturbance tradeoff

(b) ∆ is convex,

(c) ∆ is basis-independent, i.e., for every unitary U ∈Md and every quantum channel T ∈ Td,
we have that

∆ (UT (U∗ · U)U∗) = ∆(T ). (4.7)

The measurement error is quantified by a functional δ : Ed,m → [0,∞] that determines how

much E′ differs from the target measurement E. In the case of a non-degenerate von Neumann

target measurement, which is the case we will focus on, we require the following assumptions.

Assumption 4.4 (on the distance measure to the target measurement [2, assumption 2]).

For δ : Ed → [0,∞] we assume that

(a) δ
(
(|i〉〈i|)di=1

)
= 0,

(b) δ is convex,

(c) δ is permutation-invariant, i.e., for every permutation π ∈ Sd and any measurement M ∈ Ed

M ′i = U∗πMπ(i)Uπ ∀i ⇒ δ(M ′) = δ(M), (4.8)

where Uπ is the permutation matrix that acts as Uπ|i〉 = |π(i)〉, and

(d) that for every diagonal unitary D ∈Md and any measurement M ∈ Ed

M ′i = D∗MiD ∀i ⇒ δ(M ′) = δ(M). (4.9)

Using these assumptions on the two functionals, allows us to exploit the symmetry properties

of the optimization problem. Every quantum instrument can be regarded as a quantum channel

with a classical output and a quantum output. If we adopt this viewpoint, it is possible to

show the following proposition.

Proposition 4.5 (Reduction to symmetric channels [2, proposition 1]). Let G be the group

generated by all diagonal unitaries and permutation matrices in Md. If ∆ and δ satisfy as-

sumptions 4.3 and 4.4, respectively, the optimal tradeoff between them can be attained within

the set of channels T̃ :Md →Md ⊗Md for which

(U ⊗ U)T̃
(
U∗ρU

)
(U ⊗ U)∗ = T̃ (ρ) ∀U ∈ G, ρ ∈ Dd. (4.10)

The optimization is thus invariant under the group of all diagonal unitaries and permutation

matrices. The results derived in section 3.2.1 can therefore only be used partly, because we do

not consider the full unitary group here. Given that the group G, generated by all diagonal

unitaries and permutation matrices, is a subgroup of the full unitary group, we expect its

commutant to be larger. The structure of the marginals has an additional term, which is given

in the next lemma.

Lemma 4.6 (Structure of marginals of symmetric channels [2, lemma 1]). Let G be the group

generated by all diagonal unitaries and permutation matrices in Md and T : Md → Md a

quantum channel. Then the following are equivalent:
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(a) T (ρ) = UT (U∗ρU)U∗ ∀U ∈ G, ρ ∈ Dd.

(b) There are a, b, c ∈ R with a+ b+ c = 1 so that

T (·) = aTr[·]1
d

+ b id +c

d∑

i=1

|i〉〈i| 〈i| · |i〉 . (4.11)

These symmetry considerations, therefore, once again significantly reduce the complexity

of the problem. It is therefore possible to obtain analytic results regarding the information-

disturbance tradeoff as is shown in [2]. We can show that if the target measurement is a

non-degenerate von Neumann measurement, then the optimal information-disturbance trade-

off can always be achieved within a two-parameter family of quantum instruments, which is

independent of the chosen distance measure.

Theorem 4.7 ((Almost universal) optimal instruments [2, theorem 1]). Let ∆ and δ be

distance-measures for quantifying disturbance and measurement-error that satisfy assumpti-

ons 4.3 and 4.4, respectively. Then the optimal ∆− δ-tradeoff w.r.t. a target measurement that

is given by an orthonormal basis {|i〉 ∈ Cd}di=1 is attained within the two-parameter family of

instruments defined by

Ii(ρ) := z 〈i| ρ |i〉 1d− |i〉〈i|
d− 1

+ (1− z)KiρKi, Ki := µ1d +ν |i〉〈i| , (4.12)

where z ∈ [0, 1] and µ, ν ∈ R satisfy dµ2 + ν2 + 2µν = 1 (which makes
∑

i Ii trace preserving).

The next section discusses one more application of these symmetry methods, namely rando-

mized benchmarking.

4.3 Randomized benchmarking

Randomized benchmarking is a method for obtaining quantitative estimates of the average

error rate of a physical quantum channel. This is a crucial ingredient to many applications,

in which only a sufficiently low error guarantees a successful implementation, such as quantum

computing. Full characterization of the error of the physical quantum channel is possible

through quantum process tomography [7]. This method is, however, not feasible in practice. It

requires a number of experimental configurations that grows exponentially with the system size.

Furthermore, it unrealistically assumes that the measurements and the state preparation admit

lower errors than the process itself. Randomized benchmarking overcomes these difficulties and

allows us to quantitatively determine the noise in a system efficiently, even though only partial

information is obtained. Randomized benchmarking has become a popular tool to assess the

quality of quantum processes [36, 112–120].

The standard approach to randomized benchmarking is to consider quantum gates taken

from the complex Clifford group [31, 33, 37, 121–128]. However, randomized benchmarking is

possible using any other finite or compact group G as shown in [3, 5, 123, 124, 129]. Sequences

of quantum gates are then generated, such that the net sequence, if realized without errors, is
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4.3 Randomized benchmarking

the identity operation. An average sequence fidelity can then be obtained by averaging over

many random realizations of quantum gate sequences of the same length. Repeating these steps

many times for different sequence lengths, we obtain an estimate of the expected value of the

sequence fidelity to which experimental data may be calibrated. This yields information about

the average error rate of the noise of the system.

More concretely, consider a sequence of m+1 quantum gates Cj :M2n →M2n , j = 1, . . . ,m,

taken from a finite or compact group G that act on an initial quantum state ρ ∈ D2n , followed

by a measurement represented by a POVM E ∈ E2n . This is visualized in figure 4.3. The

physical quantum channels are

C̃j = Cj ◦ E , (4.13)

where Cj(·) = Cj ·Cj , Cj ∈ G, is a quantum gate taken from the representation of the group G

and E :M2n →M2n is the associated error quantum channel. It is common to assume that the

error quantum channel is both gate and time independent. A generalization is straightforward,

but introduces unnecessary complicated notation. Therefore, we will also assume gate and time

independence of the error quantum channel here.

ρ C̃1 C̃2
. . . C̃m C̃m+1 E

Figure 4.3: The main setup of randomized benchmarking. For a fixed m ∈ N, a sequence of m + 1

quantum gates is applied to an initial quantum state ρ ∈ D2n . A measurement E ∈ E2n is

then performed.

The sequence is generated, such that in the case of its ideal implementation, it gives the

identity operation, i.e.,

Cm+1 ◦ Cm ◦ . . . ◦ C2 ◦ C1 = id . (4.14)

A subsequent measurement is performed given by an effect operator of a POVM, E ∈ E2n ,

to measure the survival probability. Averaging over M ∈ N random realizations of sequences

of length m gives the average sequence fidelity. This averaging procedure gives a twirl over

that respective group. In the case of the complex Clifford group X(n), which we know forms a

unitary 2-design by theorem 3.17, we can use the symmetry considerations from section 3.2.1

to deduce that the average over the complex Clifford group gives a depolarizing error quantum

channel, i.e.,

E(·) = aTr[·]1
d

+ (1− a) id, a ∈
[
0,

d2

d2 − 1

]
. (4.15)

In the case of the real Clifford group C(n), which is an orthogonal 2-design by theorem 3.20, we

know from section 3.2.3 that the average over the real Clifford group yields an error quantum

channel of the form

E(·) = (1− a1 − a2) id +
a1

d− 1

(
Tr[·]1−(·)t

)
+

2a2

d(d+ 1)− 2

(
d

2

(
Tr[·]1−(·)t

)
− id

)
, (4.16)

a1, a2 ≥ 0, a1 + a2 ≤ 1.
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4 Applications

The symmetry considerations again significantly simplify the problem under consideration. It is

then possible to derive the exponential decay of the expected fidelity. The parameters to which

experimental data is then calibrated are exactly those parameters appearing in equations (4.15)

and (4.16) or the alike parameters if another symmetry group is considered. These then assess

the quality of the quantum process.

The three applications discussed in the three previous sections clearly show that symmetry

methods provide a powerful toolbox to study fundamental features of quantum mechanics

and they demonstrate their exploitation for information processing tasks. Symmetry methods

within quantum information theory allow to significantly reduce the complexity of the problem

under investigation, so that it is possible to obtain analytic results.
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[87] G. Lüders. Über die Zustandsänderung durch den Meßprozeß. Ann. Phys., 443(5-8):322–

328, 1950.

[88] A. K. Ekert. Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett., 67:661–

663, August 1991.

[89] C. A. Fuchs and A. Peres. Quantum-state disturbance versus information gain: Uncer-

tainty relations for quantum information. Phys. Rev. A, 53:2038–2045, April 1996.

[90] C. A. Fuchs. Information Gain vs. State Disturbance in Quantum Theory, chapter 13,

pages 229–259. Wiley-VCH Verlag GmbH & Co. KGaA, January 2005.

[91] H. Martens and W. M. de Muynck. Disturbance, conservation laws and the uncertainty

principle. J. Phys. A, 25(18):4887, 1992.

[92] M. Ozawa. Universally valid reformulation of the Heisenberg uncertainty principle on

noise and disturbance in measurement. Phys. Rev. A, 67(4):042105, April 2003.

[93] M. Ozawa. Uncertainty relations for noise and disturbance in generalized quantum mea-

surements. Ann. Phys., 311(2):350–416, 2004.

[94] T. Heinosaari and M. M. Wolf. Nondisturbing quantum measurements. J. Math. Phys.,

51(9):092201, 2010.

40



Bibliography

[95] Y. Watanabe and M. Ueda. Quantum estimation theory of error and disturbance in

quantum measurement. ArXiv e-prints: arXiv:1106.2526 [quant-ph], June 2011.

[96] A. C. Ipsen. Error-disturbance relations for finite dimensional systems. ArXiv e-prints:

arXiv:1311.0259 [quant-ph], November 2013.

[97] P. Busch, P. Lahti, and R. F. Werner. Proof of Heisenberg’s error-disturbance relation.

Phys. Rev. Lett., 111(16):160405, October 2013.

[98] P. Busch, P. Lahti, and R. F. Werner. Colloquium: Quantum root-mean-square error

and measurement uncertainty relations. Rev. Mod. Phys., 86:1261–1281, October 2014.

[99] C. Branciard. How well can one jointly measure two incompatible observables on a given

quantum state? Proc. Natl. Acad. Sci. USA, 110(17):6742–6747, April 2013.

[100] F. Buscemi, M. J. W. Hall, M. Ozawa, and M. M. Wilde. Noise and disturbance in quan-

tum measurements: An information-theoretic approach. Phys. Rev. Lett., 112(5):050401,

February 2014.

[101] P. J. Coles and F. Furrer. State-dependent approach to entropic measurement-disturbance

relations. Phys. Lett. A, 379:105–112, January 2015.

[102] R. Schwonnek, D. Reeb, and R. F. Werner. Measurement uncertainty for finite quantum

observables. Mathematics, 4(2):38, June 2016.

[103] J. M. Renes, V. B. Scholz, and S. Huber. Uncertainty relations: An operational approach

to the error-disturbance tradeoff. Quantum, 1:20, July 2017.

[104] K. Banaszek. Fidelity balance in quantum operations. Phys. Rev. Lett., 86:1366–1369,

February 2001.

[105] H. Barnum. Information-disturbance tradeoff in quantum measurement on the uniform

ensemble. In Proceedings of IEEE International Symposium on Information Theory, page

277, 2001.

[106] L. Maccone. Entropic information-disturbance tradeoff. Europhys. Lett., 77(4):40002,

2007.

[107] D. Kretschmann, D. Schlingemann, and R. F. Werner. The information-disturbance

tradeoff and the continuity of Stinespring’s representation. IEEE Trans. Inf. Theory,

54(4):1708–1717, April 2008.

[108] F. Buscemi, M. Hayashi, and M. Horodecki. Global information balance in quantum

measurements. Phys. Rev. Lett., 100:210504, May 2008.

[109] F. Buscemi and M. Horodecki. Towards a unified approach to information-disturbance

tradeoffs in quantum measurements. Open Syst. Inf. Dyn., 16(01):29–48, 2009.

41



Bibliography

[110] A. Bisio, G. Chiribella, G. M. D’Ariano, and P. Perinotti. Information-disturbance tra-

deoff in estimating a unitary transformation. Phys. Rev. A, 82:062305, December 2010.

[111] T. Shitara, Y. Kuramochi, and M. Ueda. Trade-off relation between information and

disturbance in quantum measurement. Phys. Rev. A, 93:032134, March 2016.

[112] J. M. Chow, J. M. Gambetta, L. Tornberg, J. Koch, L. S. Bishop, A. A. Houck, B. R.

Johnson, L. Frunzio, S. M. Girvin, and R. J. Schoelkopf. Randomized benchmarking and

process tomography for gate errors in a solid-state qubit. Phys. Rev. Lett., 102:090502,

March 2009.

[113] C. A. Ryan, M. Laforest, and R. Laflamme. Randomized benchmarking of single- and

multi-qubit control in liquid-state NMR quantum information processing. New J. Phys.,

11(1):013034, 2009.

[114] S. Olmschenk, R. Chicireanu, K. D. Nelson, and J. V. Porto. Randomized benchmarking

of atomic qubits in an optical lattice. New J. Phys., 12(11):113007, 2010.

[115] K. R. Brown, A. C. Wilson, Y. Colombe, C. Ospelkaus, A. M. Meier, E. Knill,

D. Leibfried, and D. J. Wineland. Single-qubit-gate error below 10−4 in a trapped ion.

Phys. Rev. A, 84:030303, September 2011.

[116] J. P. Gaebler, A. M. Meier, T. R. Tan, R. Bowler, Y. Lin, D. Hanneke, J. D. Jost,

J. P. Home, E. Knill, D. Leibfried, and D. J. Wineland. Randomized benchmarking of

multiqubit gates. Phys. Rev. Lett., 108:260503, June 2012.

[117] R. Barends, J. Kelly, A. Megrant, A. Veitia, D. Sank, E. Jeffrey, T. C. White, J. Mutus,

A. G. Fowler, B. Campbell, Y. Chen, Z. Chen, B. Chiaro, A. Dunsworth, C. Neill,

P. O’Malley, P. Roushan, A. Vainsencher, J. Wenner, A. N. Korotkov, A. N. Cleland, and

J. M. Martinis. Superconducting quantum circuits at the surface code threshold for fault

tolerance. Nature, 508:500–503, April 2014.

[118] T. Xia, M. Lichtman, K. Maller, A. W. Carr, M. J. Piotrowicz, L. Isenhower, and M. Saff-

man. Randomized benchmarking of single-qubit gates in a 2D array of neutral-atom

qubits. Phys. Rev. Lett., 114:100503, March 2015.

[119] J. T. Muhonen, A. Laucht, S. Simmons, J. P. Dehollain, R. Kalra, F. E. Hudson, S. Freer,

K. M. Itoh, D. N. Jamieson, J. C. McCallum, A. S. Dzurak, and A. Morello. Quantifying

the quantum gate fidelity of single-atom spin qubits in silicon by randomized benchmar-

king. J. Phys. Condens. Matter, 27(15):154205, 2015.

[120] S. Asaad, C. Dickel, N. K. Langford, S. Poletto, A. Bruno, M. A. Rol, D. Deurloo, and

L. DiCarlo. Independent, extensible control of same-frequency superconducting qubits

by selective broadcasting. npj Quantum Inf., 2:16029, August 2016.

[121] J. J. Wallman. Randomized benchmarking with gate-dependent noise. Quantum, 2:47,

January 2018.

42



[122] J. Helsen, J. J. Wallman, S. T. Flammia, and S. Wehner. Multi-qubit randomized ben-

chmarking using few samples. ArXiv e-prints: arXiv:1701.04299 [quant-ph], January

2017.

[123] A. W. Cross, E. Magesan, L. S. Bishop, J. A. Smolin, and J. M. Gambetta. Scalable

randomized benchmarking of non-Clifford gates. npj Quantum Inf., 2:16012, April 2016.

[124] A. Carignan-Dugas, J. J. Wallman, and J. Emerson. Characterizing universal gate sets

via dihedral benchmarking. Phys. Rev. A, 92:060302, December 2015.
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Summary of article 1: Universal Asymmetric Quantum Cloning

Revisited [1]

In this article, we investigate the universal asymmetric 1→ 2 quantum cloning problem. Quan-

tum cloning is only possible in an approximate manner. Its exact statement is excluded by

linearity of quantum mechanics (cf. theorem 2.5) and it highlights the striking difference bet-

ween classical and quantum information theory. It thus forms a fundamental no-go theorem in

quantum information theory and its bounds give rise to many applications (cf. section 4.1) [56–

61]. In this work we look at universal quantum cloning, in which the figure of merit assessing

the quality of the quantum clones is state-independent, i.e., it is independent of the input

quantum state. Moreover, we study the more general case of asymmetric universal quantum

cloning, in which the qualities of the clones are allowed to differ. We focus on the 1 → 2

quantum cloning problem; one quantum state is transformed to two approximate copies, which

we call its quantum clones. Intuitively, the better the quality of one of these clones, the worse

the quality of the second must be. In this article, we quantitatively describe this intuitive

behavior. We derive the quantum cloning channel and we fully specify the set of all attainable

single quantum clone qualities.

The universal asymmetric quantum cloning problem can be cast as an optimization problem.

To derive the optimal quantum cloning channel, we maximize the quality of one of the clones,

while keeping the quality of the second clone fixed. The qualities of the single clones are assessed

using a distance measure that fulfills the property of joint concavity and unitary invariance.

For technical reasons we furthermore assume that the origin is attainable. An example of such

distance measure is the entanglement fidelity. We then identify the symmetry properties of this

optimization problem. This reduces the complexity of the underlying problem and allows for

an analytic solution. In theorem [1, theorem 3] we give the optimal universal 1→ 2 asymmetric

quantum cloning channel, which is independent of the choice of distance measure:

Theorem A.1 (Optimal universal 1 → 2 asymmetric quantum cloning channel [1, theorem

3]). The optimal universal 1 → 2 asymmetric quantum cloning channel T :Md →Md ⊗Md
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for any quantum state ρ ∈ Dd is given by

T (ρ) = (α2 1+α1F)

(
ρ⊗ 1

d

)
(α2 1+α1F) , (A.1)

with (α1)2 + (α2)2 + 2α1α2
d = 1, α1, α2 ∈ R, and where F is the flip or swap operator.

Furthermore, we show that it is possible to rewrite the optimization problem as a semidefinite

program (SDP). This might be useful when considering applications of universal asymmetric

quantum cloning.

Moreover, we analytically derive the set of all achievable single quantum clone qualities

for different figures of merit. The optimization problem describing the universal asymmetric

quantum cloning problem can be rewritten using the notion of a one-sided polar [1, definition

3]. It is then possible to use the bipolar theorem [1, theorem 4] to fully specify the set of all

attainable single quantum clone qualities. In its application it is important that the distance

measure used is such that the origin is attainable. We then obtain the following results:

Theorem A.2 (Set of all attainable single clone fidelities within universal 1→ 2 asymmetric

quantum cloning [1, theorem 5]). The set of all attainable clone qualities in terms of single

clone fidelities 〈Ω| JTi |Ω〉 with i = 1, 2, where JTi := id⊗Ti (|Ω〉〈Ω|) is the Choi-Jamiolkowski

state of the marginals of the optimal quantum cloning channel, given by equation (A.1), with

|Ω〉〈Ω| being the maximally entangled state, is given by

C =

{
x ∈ R2

∣∣∣∣∣ sup
v∈R2

〈x, (v, 1− v)〉
λmax

(
H(v,1−v)

) ≤ 1

∧ sup
v∈R2

〈x, (−v, v − 1)〉
λmax

(
H(−v,v−1)

) ≤ 1 ∧ sup
v∈R2

〈x, (±v,∓v)〉
λmax

(
H(±v,∓v)

) ≤ 1

}
, (A.2)

where λmax (Hz) denotes the maximum eigenvalue of

Hz = z1 |Ω〉〈Ω|01 ⊗ 12 + z2 |Ω〉〈Ω|02 ⊗ 11,

given by

λmax

(
H( v

1−v )

)
=

1

2d

(
d+

√
d2 + 4(d2 − 1)(v − 1)v

)
,

λmax

(
H( −v

v−1

)
)

=





0 if 0 ≥ v ≥ 1,

1
2d

(
−d+

√
d2 + 4(d2 − 1)(v − 1)v

)
otherwise,

λmax

(
H(±v
∓v
)
)

= v

√
d2 − 1

d2
.

The upper boundary of this set is described by

1

d+ 1

(√
〈Ω| JT1 |Ω〉+

√
〈Ω| JT2 |Ω〉

)2
+

1

d− 1

(√
〈Ω| JT1 |Ω〉 −

√
〈Ω| JT2 |Ω〉

)2
=

2

d
. (A.3)

We extended this result to other examples of distance measures. Figures illustrating these

results can be found in [1, appendix].
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748 Universal asymmetric quantum cloning revisited

1 Introduction

One of the most fundamental, but nevertheless intriguing, feature of quantum mechanics is

the impossibility to perfectly clone an arbitrary quantum state. The intrinsic linearity of

quantum mechanics facilitates this remarkable difference between classical information and

its quantum counterpart, quantum information, which cannot be copied in a perfect manner.

This observation is known as the “No-Cloning Theorem 1” [1]. It is deeply intertwined with

the impossibility of superluminal communication, the impossibility of classical teleportation

as well as the impossibility of fully determining an unknown quantum state [2]. Even though

the No-Cloning Theorem 1 gives rise to a lot of impossibilities, it also allows advantageous

use within for example quantum cryptography.

The possibilities that open up with the study of the No-Cloning Theorem 1 gave rise to

a vast research area. This research was fuelled even further by experimental advancements;

in these experiments approximate quantum cloning was realized using different techniques

[3, 4, 5, 6]. One question, which turns out to be especially interesting is the question of

approximate quantum cloning and its inherent boundaries. An intensive review is given by

Cerf and Fiurášek [7] and by Scarani, Iblisdir and Gisin [8]. Even though perfect quantum

cloning is impossible, it can be done in an approximate manner. This means that we are

looking for a quantum channel, which clones any input state as good as possible. This is

called universal quantum cloning, because this setting is independent of the input state, i.e.

the figure of merit assessing the quality of the clones is state-independent. In the case in

which all clones have the same quality, the cloning procedure is named universal symmetric

quantum cloning. If the clones may have different qualities, the cloning procedure is named

universal asymmetric quantum cloning. The symmetric quantum cloning is thus a special

case of the asymmetric quantum cloning.

Quantum cloning has been studied immensely after the universal symmetric 1→ 2 qubit

quantum cloning machine was discovered by Bužek and Hillery in 1996 [9]. Their machine

was shown to be optimal by Bruß, DiVincenzo, Ekert, Fuchs, Macchiavello and Smolin two

years later [11]. At about the same time, Gisin and Massar presented their work on univer-

sal symmetric quantum cloning machines that transform N identical qubits into M identical

clones and gave a numerical suggestion for optimality [12]. Full optimality was then pro-

vided through an analytical proof by Bruß, Ekert and Macchiavello [13]. Naturally, all these

universal symmetric quantum cloning machines were extended to the qudit case. This was

independently done by Bužek and Hillery [14] and Cerf [15], who analyzed the 1→ 2 quantum

cloning case for qudits, as well as Werner, who constructed the unique optimal symmetric

N →M qudits quantum cloning machine and together with Keyl shows full optimality using

group theoretical methods [16, 17].

The thorough exploration of the asymmetric case began with papers by Bužek, Hillery and

Bednik [18], Niu and Griffiths [19] and Cerf [15, 20], in which they independently analyze and

derive the universal asymmetric 1 → 2 qubit quantum cloning machine. Furthermore, they

generalized their results from qubits to qudits [21, 22]. The more general universal asymmetric

N →M qubit cloning machines were introduced by Iblisdir, Aćın, Gisin, Fiurážek, Filip and

Cerf [23] and, using a technique from group theory, by Iblisdir, Aćın and Gisin [24]. The

extensions to qudits was then presented by Fiurážek, Filip and Cerf in an additional paper

[25]. The inherent tradeoff among various output fidelities was further clarified and visualized
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by Jiang and Yu [26]. Moreover, Ćwikliński, Horodecki and Studziński further discussed the

asymmetric quantum cloning case in their paper [27], in which they provide a general result on

an admissible region of fidelities for universal 1→ N qubit quantum cloning machines. This

result was extended to qudits by Studziński, Ćwikliński, Horodecki and Mozrzymas using a

general group representation approach [28]. Simultaneously, Kay together with Ramanathan

and Kaszlikowshi analyzed special cases of the universal N → M qudit quantum cloning

machines, such as the universal asymmetric 1 → N qudit cloning problem or the universal

asymmetric N − 1→ N qubit cloning problem [29, 30, 31].

This paper is concerned with the universal asymmetric 1 → 2 quantum cloning. We are

thus interested in a quantum channel, also called optimal cloning map, that produces two

good approximate clones from one input state, such that the qualities of these two clones

must not be equal and are independent of the input state. In other words, if we fix the

quality of one of the clones, the optimal cloning map maximizes the quality of the other clone

independent of the input state. There exists a natural tradeoff between the qualities of the

two clones: if the quality of one clone increases, intuitively it is clear that the quality of

the other clone must decrease, complying to the No-Cloning Theorem 1. The goal of this

paper is to quantify this intuitive behavior regarding the quality of the two clones and to

rediscover this optimal cloning map corresponding to universal asymmetric 1 → 2 quantum

cloning. The arising asymmetric quantum cloning map agrees with previous results; we derive

it, however, using methods from Eggeling and Werner [32] and Vollbrecht and Werner [33]

originally used in order to study separability properties and entanglement measures under

symmetry respectively. Furthermore, in this paper we analytically derive the set of achievable

single quantum clone qualities using different figures of merit by means of convex analysis

techniques. This powerful but simple method is what sets it apart from previous results.

The paper is organized as follows: In the next chapter, we give a brief overview of the

setting under consideration in this paper. Chapter 3 discusses figures of merit with which the

quality of the clones are assessed. In order to quantify the asymmetric tradeoff in the quality

of the clones, single clone figures of merit are investigated solely. In Chapter 4 we observe

that the optimal quantum cloning channel is a quantum channel featuring specific symmetry

properties. These symmetry properties determine the Choi-Jamiolkowski state. The Choi-

Jamiolkowski channel state duality establishes that all properties of the quantum channel

are encoded in the corresponding state. Reformulating the asymmetric quantum cloning

problem using this Choi-Jamiolkowski state yields the optimal quantum cloning channel,

given in Theorem 3 in Chapter 5. Furthermore, in this chapter, we draw the connection

to semidefinite programming, which may also be used to solve the convex quantum cloning

optimization problem. In Chapter 6 we use the bipolar theorem, a technique known from

convex analysis, to fully characterize the set of all attainable single quantum clone fidelities.

Theorem 5 summarizes this main result. Additionally, the set of all achievable single quantum

clone qualities using a range of different figures of merit are given in Corollary 2. These sets

are depicted in figures found in the appendix.

2 The Setting of Universal Asymmetric Quantum Cloning

We consider systems on a finite dimensional Hilbert spaceH = Cd. Denote asMd the set of all

complex-valued d×d-matrices. Every quantum state is described by a density matrix ρ ∈Md
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with normalization Tr [ρ] = 1 and positivity property ρ ≥ 0. The set of all d-dimensional

density matrices or quantum states is denoted as Dd := {ρ ∈Md|ρ ≥ 0,Tr [ρ] = 1}. A

transformation of a quantum state is described by a quantum channel, which is a com-

pletely positive trace preserving linear map T : Md → Md′ . Furthermore, we denote by

U (d) := {U ∈Md|UU∗ = U∗U = 1} the unitary group acting on our Hilbert space H = Cd.
Moreover, 1 is the identity matrix in Md.

ρ T T1(ρ)

T2(ρ)

Fig. 1. The main setup of universal asymmetric 1→ 2 quantum cloning.

We are considering the universal asymmetric 1→ 2 quantum cloning case. The main setup

is illustrated in Figure 1. The quantum cloning channel, T ∈ B(Md), T :Md →Md⊗Md is

a trace preserving completely positive linear map with marginal maps Ti :Md →Md for i =

1, 2, defined as Ti(ρ) := Trī [T (ρ)], where the involution i 7→ ī corresponds to the permutation

{2, 1} of {1, 2}a. Subscripts usually denote the underlying system. The corresponding Choi-

matrix defined as Md3 3 τ012 := (id⊗T ) (|Ω〉〈Ω|), where |Ω〉〈Ω| denotes the maximally

entangled state, therefore has three subscripts, 1 and 2 corresponding to the two marginals

of the quantum channel T and a third subscript 0 corresponding to the identity channel to

which T is tensored.

Intuition lets us postulate, that the closer T1(ρ) is to ρ, the further away is T2(ρ) to ρ.

Otherwise the No-Cloning Theorem 1 is violated. In order to analyze this intuition and to

quantitatively describe it, some further definitions are needed.

Theorem 1 (No-Cloning Theorem [1]). Consider quantum systems on a finite dimen-

sional Hilbert space H = Cd. There is no completely positive trace preserving linear map,

called a quantum channel, T :Md →Md ⊗Md such that for all quantum states ρ ∈ Dd the

following holds,

T (ρ) = ρ⊗ ρ. (1)

Proof. See [1], or for the convenience of the reader we give a proof in the following. The

theorem is a consequence of linearity. Let {|ψi〉〈ψi|}ni=1 be a set of orthogonal pure states and

{λi}ni=1 be a set of probabilities such that λi 6= 0 for all i. If there was a map T as specified

in the theorem, then
∑

i

λiT (|ψi〉〈ψi|) =
∑

i

λi |ψi〉〈ψi| ⊗ |ψi〉〈ψi| , (2)

which has rank n, while,
∑

i

λiT (|ψi〉〈ψi|) = T (
∑

i

λi |ψi〉〈ψi|) =
∑

ij

λiλj |ψi〉〈ψi| ⊗ |ψj〉〈ψj | , (3)

aIf i = 1 then ī = 2 and if i = 2 then ī = 1.
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which has rank n2 2.

3 The Figure of Merit assessing Single Clone Qualities

In order to assess the quality of the clones, we will consider a distance measure d on the space

of linear operators. This distance measure d(·, ·) : B(Md) × B(Md) → R+ quantifies the

quality of a clone. Since we are interested in the asymmetric tradeoff within the quality of

the clones, the figure of merit is used to quantify the quality of a single clone. We will thus

compare each marginal Ti to the identity map; that is, we are going to consider d(Ti, id) for

i = 1, 2. Our goal is to fully specify the set of all attainable single quantum clone qualities,

C =

{
z ∈ R2

∣∣∣∣z =

(
d(T1, id)
d(T2, id)

)}
,

using this figure of merit.

Required properties of our figure of merit: Let L, S :Md →Md be quantum channels.

We require the figure of merit to have the following properties due to technical reasons.

(i) Joint concavity:

d (L, S) ≥ λd
(
L(1), S(1)

)
+ (1− λ)d

(
L(2), S(2)

)

for all L and S, where L = λL(1)+(1−λ)L(2) and S = λS(1)+(1−λ)S(2), with λ ∈ [0, 1].

(ii) Unitary invariance:

d(U ◦ L ◦U∗,U ◦ S ◦U∗) = d(L, S)

for all ideal channels U defined by U(ρ) = UρU∗ with unitary U ∈ U (d) and where ·∗
denotes the adjoint or conjugate transpose.

(iii) Furthermore, for reasons that will become clear later, we require that the origin is

attainable, i.e. that {0} ∈ C. This requirement means that we are not necessarily

considering a metric as a distance measure.

An example of a valid distance measure that fulfills these properties is given by a variant

of the induced trace norm distance

d1(Ti, id) = 1− 1

2
sup
ρ∈Dd

‖Ti(ρ)− ρ‖1 . (4)

It characterizes the maximum probability of not distinguishing the outputs of the two channels

Ti, i = 1, 2, and the identity channel id over all pure state inputs. This distance measure is

specifically chosen in this way to always contain the origin,

{0} ∈ C1 =

{
z ∈ R2

∣∣∣∣z =

(
d1(T1, id)
d1(T2, id)

)}
,

as illustrated in Figure 2, for reasons that will become clear later. Furthermore, we can notice

that if 1 − 1
2 supρ ‖Ti(ρ)− ρ‖1 = 1, then the marginal must be given by Ti(ρ) = ρ, with

i = 1, 2. If we now let the other marginal be given by Tī(ρ) = σ, with ī = 2, 1, for some fixed
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1

1

1
d

1
d

0

1− 1
2 supρ ‖T1(ρ)− ρ‖1

1− 1
2 supρ ‖T2(ρ)− ρ‖1

C1

Fig. 2. Set of all attainable single quantum clone qualities C1. The figure of merit is d1(Ti, id) =

1− 1
2

supρ ‖Ti(ρ)− ρ‖1 for i = 1, 2.

quantum state σ ∈ Dd, then 1− 1
2 supρ ‖Tī(ρ)− ρ‖1 = λmin(σ), where λmin(σ) ∈

[
0, 1

d

]
is the

smallest eigenvalue of σ. These boundary points are visualized in Figure 2.

Another example, which is going to be of interest to us later on, is the fidelity

dF (Ti, id) = 〈Ω| τ0i |Ω〉 , (5)

where τ0i := id⊗Ti (|Ω〉〈Ω|) is the Choi-Jamiolkowski state of the marginal map and |Ω〉〈Ω| is
the maximally entangled state with |Ω〉 = 1√

d

∑d
i=1 |ii〉. It measures the overlap of the output

with the maximally entangled state, if Ti acts on half a maximally entangled state.

Other examples that might be of interest are a variant of the induced Frobenius norm

distance

d2(Ti, id) = 1− sup
ρ∈Dd

‖Ti(ρ)− ρ‖2 , (6)

a variant of the induced operator norm distance

d∞(Ti, id) = 1− sup
ρ∈Dd

‖Ti(ρ)− ρ‖∞ , (7)

and a variant of the diamond norm distance, which is a stabilized version of the induced trace

norm distance,

d�(Ti, id) = 1− 1

2
‖Ti − id‖� = 1− 1

2
sup
ρ∈Dd2

‖(Ti ⊗ idd) (ρ)− ρ‖1 , (8)

with i = 1, 2. Note that all these distance measures are adjusted by dkmax, k = 1, 2,∞, �,
the maximum value that the norm may take such that the origin is always contained in the

corresponding set of all attainable single quantum clone qualities. This is the case, because

we always look at the worst case scenario over all quantum states.

The goal is to characterize all possible quantum clone qualities; it is thus of interest to us

to consider the following optimization problem

sup
T

[
z1d

k(T1, id) + z2d
k(T2, id)

]
, (9)
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with z1, z2 ∈ R for different figures of merit, k = F, 1, 2,∞, �. This optimization problem

gives the upper boundary of the set of all attainable single quantum clone qualities. The set

of admissible quantum channels T is compact, since the set is bounded and closed in a finite

dimensional vector space. The supremum in Eq. (9) is therefore attained for some optimal

quantum channel Toptimal, which is the optimal quantum cloning channel, as it gives the best

tradeoff possible within the qualities of the quantum clones.

4 The Symmetry Properties of the Optimal Quantum Cloning Channel

In order to find the optimal quantum cloning channel, it is of interest to us to identify special

symmetry properties of this quantum channel. Let us define what we mean by a symmetrized

quantum channel, because it turns out that the optimal quantum cloning channel is exactly

of this type.

Definition 1 (Symmetrized quantum channel). A symmetrized quantum channel T̃ :Md →
Md is defined via the map

T (·) 7→ T̃ (·) =

∫

U(d)

U ◦ T ◦U∗ (·) dU

=

∫

U(d)

UT (U∗ · U)U∗ dU ∀ U ∈ U (d) , (10)

where dU denotes the normalized Haar measure on the unitary group U (d) and U (·) = U ·U∗
is the ideal quantum channel. Note that we will always use a tilde to denote a symmetrized

quantum channel.

This symmetrization (also called twirling and in quantum information first introduced in

[32, 33]) can be considered as averaging over the unitary group U (d) on our Hilbert space H.

Let us consider a symmetrized quantum cloning channel T̃ :Md →Md ⊗Md with

T (ρ) 7→ T̃ (ρ) =

∫

U(d)

(U ⊗ U)T (U∗ρU)(U ⊗ U)∗ dU

for every quantum state ρ ∈ Dd. It turns out that this symmetry property also applies to its

marginals; see the following Lemma 1.

Lemma 1. The marginal maps Ti :Md →Md, i = 1, 2, of a symmetrized quantum channel

T̃ :Md →Md ⊗Md are symmetrized,

T̃i(ρ) =

∫

U(d)

UTi (U∗ρU)U∗ dU,

for i = 1, 2, for every quantum state ρ ∈ Dd.
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Proof. The marginal maps of a symmetrized quantum channel are given by

T̃i(ρ) = Trī

[
T̃ (ρ)

]

= Trī

[∫

U(d)

(U ⊗ U)T (U∗ρU) (U ⊗ U)
∗

dU

]

=

∫

U(d)

Trī
[
(U ⊗ U)T (U∗ρU) (U ⊗ U)

∗]
dU

=

∫

U(d)

U Trī [T (U∗ρU)]U∗ dU

=

∫

U(d)

UTi (U∗ρU)U∗ dU,

for both marginals i = 1, 2 2.

These symmetrized marginal maps satisfy the so-called covariance property T̃i(V ρV
∗) =

V T̃i(ρ)V ∗ with i = 1, 2 for unitary V ∈ U (d), as stated in the Lemma 2 below [32, 33].

Definition 2 (Covariant). A quantum channel T :Md →Md is called covariant with respect

to V if

T (V · V ∗) = V T (·)V ∗

holds for all V ∈ U (d).

Lemma 2. A symmetrized quantum channel T̃ :Md →Md is covariant.

Proof. Using the definition of a symmetrized quantum channel yields

T̃ (V · V ∗)

=

∫

U(d)

UT (U∗V · V ∗U)U∗ dU

=V

∫

U(d)

V ∗UT (U∗V · V ∗U)U∗V dUV ∗

=V

∫

U(d)

WT (W ∗ ·W )W ∗ d(VW )V ∗

=V

∫

U(d)

WT (W ∗ ·W )W ∗ d(W )V ∗

=V T̃ (·)V ∗,

where we have defined W := V ∗U with unitaries U, V ∈ U (d) and used the properties of the

Haar measure 2.

The figure of merit that assesses the single clone qualities is influenced by this covariance
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property in the following way, namely

dk(T̃i, id) = dk

(∫

U(d)

U ◦ Ti ◦U∗ dU, id

)

≥
∫

U(d)

dk (U ◦ Ti ◦U∗, id) dU

=

∫

U(d)

dk (Ti,U ◦ id ◦U∗) dU

= dk(Ti, id),

for k = F, 1, 2,∞, �, where we have used the joint concavity property (i) of the figure of

merit. The optimization problem given by Eq. (9) therefore simplifies, because the supremum

is attained for a symmetrized quantum channel T̃ , i.e. we have

sup
T

[
z1d

k(T1, id) + z2d
k(T2, id)

]
= sup

T̃

[
z1d

k(T̃1, id) + z2d
k(T̃2, id)

]
, (11)

with z1, z2 ∈ R, for k = F, 1, 2,∞, �.

5 The Optimal Quantum Cloning Channel

The last chapter has shown that the optimal quantum cloning channel is of a symmetrized

form. This gives rise to a specific structure of its Choi-Jamiolkowski state, which we are going

to exploit to solve the optimization problem in Eq. (11). This chapter therefore discusses the

implication of the symmetrized optimal quantum cloning channel on its Choi-Jamiolkowski

state and uses this additional structure to derive the optimal quantum cloning channel.

The Choi-Jamiolkowski state of a quantum channel T is defined as

τ := id⊗T (|Ω〉〈Ω|) , (12)

where |Ω〉 = 1√
d

∑d
i=1 |ii〉. We would like to simplify our optimization problem given by

Eq. (11) even further using this Choi-Jamiolkowski state. For this purpose, we would like to

show that
[
τ, Ū ⊗ U ⊗ U

]
= 0 for unitary U ∈ U (d), in the case of a symmetrized quantum

channel, where ·̄ denotes the complex conjugate.

Lemma 3. For a Choi-Jamiolkowski state τ ∈Md3 ,

[
τ, Ū ⊗ U ⊗ U

]
= 0 ∀ U ∈ U (d)

is equivalent to ∫

U(d)

(
Ū ⊗ U ⊗ U

)
τ
(
Ū ⊗ U ⊗ U

)∗
dU = τ.

The proof of this Lemma 3 can be found in the Appendix A.1. We may now use this

Lemma 3 to prove the following Corollary 1.
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Corollary 1. Let τ := id⊗T̃ (|Ω〉〈Ω|) be the Choi-Jamiolkowski state of some symmetrized

quantum channel T̃ , as in Definition 1, then the following holds

[
τ, Ū ⊗ U ⊗ U

]
= 0 ∀ U ∈ U (d) .

Proof. Remembering that U ⊗ 1 |Ω〉 = 1⊗ UT |Ω〉 , such that U ⊗ Ū |Ω〉 = |Ω〉 , we get
∫

U(d)

(
Ū ⊗ U ⊗ U

)
τ
(
Ū ⊗ U ⊗ U

)∗
dU

=

∫

U(d)

(
Ū ⊗ U ⊗ U

) (
id⊗T̃ |Ω〉〈Ω|

) (
Ū ⊗ U ⊗ U

)∗
dU

=

∫

U(d)

(1⊗ U ⊗ U)
(

id⊗T̃
)

((1⊗ U∗) |Ω〉〈Ω| (1⊗ U)) (1⊗ U ⊗ U)
∗

dU

=τ,

due to the covariance property of T̃ . Application of Lemma 3 finishes the proof 2.

Proposition 1. If for a Choi-Jamiolkowski state τ ∈Md3 we have that

[
τ, Ū ⊗ U ⊗ U

]
= 0 ∀ U ∈ U (d) ,

then [
τ t0 , U ⊗ U ⊗ U

]
= 0,

where t0 denotes the partial transpose on the first system.

The proof of this Proposition 1 can be found in the Appendix A.2.

The optimization problem given by Eq. (11) was reduced to a supremum over all sym-

metrized quantum channels, because we found that the optimal quantum cloning channel must

be of this form. Using Corollary 1, we may, without loss of generality, restrict to quantum

cloning channels whose Choi-Jamiolkowski matrix τ commutes with
{
Ū ⊗ U ⊗ U : U ∈ U (d)

}

and we would like to reformulate our problem by means of τ .

Theorem 2 (Weyl [34, Chapter IV]). Let H be a finite-dimensional Hilbert space. If an

operator τ acting on H⊗n fulfills [τ, U⊗n] = 0 for all unitaries U ∈ U (d), then it is a linear

combination of operators Vπ representing the permutation group on H⊗n,

τ =
∑

π∈Sn

aπVπ,

where Sn is the symmetric group on n elements, π are all possible permutations of n elements

and aπ ∈ C. The permutation operators Vπ are defined via

Vπ (v1 ⊗ . . .⊗ vn) = vπ−1(1) ⊗ . . .⊗ vπ−1(n).

Proof. The theorem immediately follows from [35, Theorem IX.11.5]. Denote by SU(d)

the special unitary group of finite degree d and by Sn the symmetric group on n elements.

60



A-L Hashagen 757

Let A be the group algebra of SU(d) and B be the group algebra of Sn generated by their

unitary representation on H. Since SU(d) and Sn act dually on
(
Cd
)⊗n

, we have A′ = B.

The commutant is thus exactly the algebra generated by the permutation operators Vπ. If

an operator commutes with all unitaries of the form U⊗n, it must therefore be an element of

this algebra, i.e. a linear combination of permutation operators 2.

Considering Lemma 1, we know that τ t0 commutes with all unitaries of the form U ⊗U ⊗
U . Furthermore, by Theorem 2, τ t0 must be given by a linear combination of permutation

operators, in our case acting on three elements,

τ t0012 =
∑

π∈S3

aπVπ = a11 + a2V(01) + a3V(02) + a4V(12) + a5V(012) + a6V(210), (13)

with aπ ∈ C, where V(01) denotes the permutation operator of the first two factors (similarly

for V(02) and V(12)), V(012) denotes the cyclic permutation and similarly V(210) denotes the

anticyclic permutation [32, 33].

The marginal maps are thus given as

τ t001 = Tr2[τ t0012] = (a1d+ a3 + a4)1 + (a2d+ a5 + a6)F, (14a)

τ01 = (a1d+ a3 + a4)1 + (a2d+ a5 + a6)d |Ω〉〈Ω| , (14b)

T̃1(ρ) = (a1d+ a3 + a4)d1Tr[ρ] + (a2d+ a5 + a6)dρ, (14c)

and

τ t002 = Tr1[τ t0012] = (a1d+ a2 + a4)1 + (a3d+ a5 + a6)F, (15a)

τ02 = (a1d+ a2 + a4)1 + (a3d+ a5 + a6)d |Ω〉〈Ω| , (15b)

T̃2(ρ) = (a1d+ a2 + a4)d1Tr[ρ] + (a3d+ a5 + a6)dρ, (15c)

with a1, . . . , a6 ∈ C, where we again denote by |Ω〉〈Ω| := 1
d

∑d
i,j=1 |ii〉〈jj| the maximally

entangled state and by F :=
∑d
i,j=1 |ji〉〈ij| the flip (or swap) operator.

As a quantum channel, T̃ is a completely positive trace preserving linear map and it

must thus fulfill specific properties. Due to the Choi-Jamiolkowski state-channel duality, the

operator τ encodes all of its properties [36, Chapter 4.4.3]. Denote by T̃ ∗ the dual of the

quantum channel T̃ corresponding to the Heisenberg picture.

Properties:

(i) Hermiticity: τ = τ∗, i.e.

a1, . . . , a4 ∈ R and a5 = ā6 ∈ C.

(ii) Normalization: Tr[τ ] = 1
d Tr

[
T̃ ∗(1)

]
, i.e.

a1d
3 + (a2 + a3 + a4)d2 + (a5 + a6)d = 1.

(iii) Preservation of trace: T̃ ∗(1) = 1 if and only if Tr12 [τ ] = 1

d .

(iv) Complete positivity: T̃ is completely positive if and only if τ ≥ 0.
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Note that if T̃ (ρ) is a completely positive trace preserving linear map, then so are its marginal

maps T̃i(ρ) := Trī

[
T̃ (ρ)

]
, i = 1, 2.

In order to simplify notation and to visualize agreement to previously known results [21,

22], let

(α1)2 := a1d
3 + a3d

2 + a4d
2, (β1)2 := a2d

2 + a5d+ a6d,

(α2)2 := a1d
3 + a2d

2 + a4d
2, (β2)2 := a3d

2 + a5d+ a6d.

Then the Choi-Jamiolkowski states τ0i, i = 1, 2, of the marginal maps T̃i are

τ0i = α2
i

1

d2
+ β2

i |Ω〉〈Ω| . (16)

The preservation of trace, property (iii), namely Tri [τ0i] = 1/d, gives a condition on βi, namely

that

Tri [τ0i] = Tri

[
α2
i

1

d2
+ β2

i |Ω〉〈Ω|
]

= (α2
i + β2

i )
1

d
=
1

d

⇔ β2
i = 1− α2

i .

Another property that the marginals must fulfill is complete positivity, property (iv), namely

τ0i ≥ 0. This yields

τ0i = α2
i

1

d2
+ β2

i |Ω〉〈Ω| ≥ 0

⇔ α2
i ≥ 0 and β2

i ≥ −
α2
i

d2
.

Therefore, the marginal maps and their corresponding Choi-Jamiolkowski states are given as

τ0i = α2
i

1

d2
+ (1− α2

i ) |Ω〉〈Ω| , (17a)

T̃ (ρ) = α2
i

1

d
Tr[ρ] + (1− α2

i )ρ, (17b)

with α2
i ∈

[
0, d2

d2−1

]
.

Since these properties must not only hold for the marginals, but also for the full quantum

channel, consider

τ012 =
∑

π∈S3

aπV
t0
π . (18)

The preservation of trace property (iii), namely that Tr12 [τ012] = 1/d, yields

Tr12 [τ012] = Tr12

[∑

π∈S3

aπV
t0
π

]
= (a1d

2 + a2d+ a3d+ a4d+ a5 + a6)1 =
1

d

⇔ a1d
2 + a2d+ a3d+ a4d+ a5 + a6 =

1

d
.
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Deciding complete positivity, property (iv), is a bit more tricky and we thus follow the idea

of the following papers [32, 33]. One should first of all notice that

At0 :=

{∑

π∈S3

aπV
t0
π

∣∣∣∣∣aπ ∈ C

}

is a six-dimensional non-commutative unital C∗-algebra. In general, if a von Neumann algebra

B ⊆ A ' Md(C) is a subalgebra of a finite-dimensional matrix algebra, then there exists a

unitary U such that

B = U

(
0⊕

K⊕

k=1

Mdk ⊗ 1mk

)
U∗,

for a decomposition of the Hilbert space Cd = Cd0 ⊕⊕K
k=1 Cdk ⊗ Cmk , where each factor k

is isomorphic to a full matrix algebra of dimension d2
k which appears with multiplicity mk

[37, Chapter 3.6]. Since von Neumann algebras and C∗-algebras coincide in finite dimensions,

At0 is isomorphic to a sum of two one dimensional and a two dimensional matrix algebra, i.e.

6 =
∑K
k=1 d

2
k = 22 + 12 + 12 (Note that it cannot be a sum of six one dimensional matrix

algebras, due to the non-commutativity). Using the same notation as in [32], namely,

X = V t0(01) and

V = V t0(12) = V(12),

with X∗ = X and V ∗ = V , such that

1
t0 = 1,

V t0(02) = V XV,

V t0(012) = XV,

V t0(210) = V X,

we get that

X2 = dX,

V 2 = 1 and

XVX = X.
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A convenient basis is then given by [32]

S+ =
1 + V

2

(
1− 2X

d+ 1

)
1 + V

2
,

S− =
1− V

2

(
1− 2X

d− 1

)
1− V

2
,

S0 =
1

d2 − 1
(d(X + V XV )− (XV + V X)) ,

S1 =
1

d2 − 1
(d(XV + V X)− (X + V XV )) ,

S2 =
1√

d2 − 1
(X − V XV ) ,

S3 =
i√

d2 − 1
(XV − V X) .

Denoting by sk(ρ) := Tr[ρSk] for k ∈ {+,−, 0, 1, 2, 3} and using the results of Eggeling and

Werner [32], we get the following criteria for complete positivity,

s+, s−, s0 ≥ 0, s2
0 ≥ s2

1 + s2
2 + s2

3, s+ + s− + s0 = 1.

Translating this result back into our original notation (see Appendix B) reduces the optimiza-

tion problem given in Eq. (11) to the following convex optimization.

Find

sup
T̃

[
z1d

k
(
T̃1, id

)
+ z2d

k
(
T̃2, id

)]
, (19a)

for k = F, 1, 2,∞, � with z1, z2 ∈ R, where the supremum is taken over all quantum channels

of the form

T̃ (ρ) = a1d1Tr[ρ] + a2d
2ρ⊗ 1

d
+ a3d

21

d
⊗ ρ+ a4dFTr[ρ]

+ a5d
2

(
ρ⊗ 1

d

)
F + a6d

2F
(
ρ⊗ 1

d

)
, (19b)

with the corresponding Choi-Jamiolkowski state given by

τ012 = a11012 + a2d |Ω〉〈Ω|01 ⊗ 12 + a3d |Ω〉〈Ω|02 ⊗ 11

+ a410 ⊗ F12 + a5

∑

ijk

|jjk〉〈iki|+ a6

∑

ijk

|kjk〉〈iij| , (19c)

such that

0 ≤ a1 + a4, (19d)

0 ≤ (a1 − a4)
1

2
d(d− 2)(d+ 1), (19e)

0 ≤ 2a1 + (a2 + a3)d+ a5 + a6, (19f)

1 = a1d
3 + (a2 + a3 + a4)d2 + (a5 + a6)d, (19g)
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− (a2 + a4)(a3 + a4) + (a1 + a5)(a1 + a6)

+ (a1(a2 + a3)− a4(a5 + a6))d+ (a2a3 − a5a6)d2 ≥ 0. (19h)

In case d > 2, it is then clear that a1 = a4 = 0 and without loss of generality a5 = a6 ∈ R.

Then the optimal cloning map and its Choi-Jamiolkowski state is given by

T̃ (ρ) = (α21 + α1F)

(
ρ⊗ 1

d

)
(α21 + α1F) , (20a)

τ012 =(α2)2

(
|Ω〉〈Ω|01 ⊗

12

d

)
+ (α1)2

(
|Ω〉〈Ω|02 ⊗

11

d

)

+
α1α2

d2

∑

ijk

|jjk〉〈iki|+ α1α2

d2

∑

ijk

|kjk〉〈iij| , (20b)

with

(α1)2 + (α2)2 +
2α1α2

d
= 1. (20c)

In the case d = 2, however, the second inequality given by Eq. (19e) vanishes. The

optimization therefore does not necessarily yield the result a1 = a4 = 0 anymore, since these

might now take negative values. It turns out that this is a freedom in the parametrization,

however, still yielding the same universal optimal quantum cloning channel. We may therefore

state the following Theorem 3 in full agreement with [21, 22, 23], in which the optimal universal

1→ 2 asymmetric quantum cloning channel has been derived too. We have, however, mostly

used the symmetry idea of Eggeling and Werner as well as Vollbrecht and Werner [32, 33] that

exploit a similar symmetry property of the quantum states to study separability properties

and entanglement measures.

Theorem 3 (Optimal universal 1 → 2 asymmetric quantum cloning channel). The op-

timal universal 1 → 2 asymmetric quantum cloning channel T̃optimal : Md →Md ⊗Md for

any quantum state ρ ∈ Dd is given by

T̃optimal(ρ) = (α21 + α1F)

(
ρ⊗ 1

d

)
(α21 + α1F) , (21)

with (α1)
2

+ (α2)
2

+ 2α1α2

d = 1, α1, α2 ∈ R, and where F :=
∑d
i,j=1 |ji〉〈ij| is the flip (or

swap) operator.

What is interesting to notice is that as the dimension of the underlying Hilbert space d

increases, the optimal cloning map approaches the trivial approach to quantum cloning. The

trivial approach is represented by the quantum channel

Ttrivial (ρ) = αρ⊗ 1

d
+ (1− α)

1

d
⊗ ρ,

where α ∈ [0, 1]. Instead of cloning the quantum state ρ, an identity channel is applied and an

additional state is prepared, the maximally mixed state. Thus, in the limit as the dimension

of the underlying Hilbert space increases, d→∞, even approximate quantum cloning is not

possible.
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5.1 Determining achievable quantum clone qualities numerically

In order to support our findings, it is also possible to rewrite the optimization problem given

by Eq. (19) as a semidefinite program (SDP) [40]. To solve this semidefinite program, we

used cvx, a package for specifying and solving convex programs [41, 42]. Let

z =

(
z1

z2

)
∈ R2 and D =

(
dk(T1, id)
dk(T2, id)

)
,

for k = F, 1, 2,∞, � with Ti (·) = α2
i
1

d Tr [·] +
(
1− α2

i

)
id (·).

Maximise

zT ·D

subject to

s0 ⊕ s+ ⊕ s− ⊕
(
s0 + s3 s1 + is2

s1 + is2 s0 − s3

)
⊕ s+ + s− + s0 − 1

⊕ 1− (s+ + s− + s0)⊕ α2
1 ⊕ α2

2 ⊕
d2

d2 − 1
− α2

1 ⊕
d2

d2 − 1
− α2

2 ≥ 0.

The corresponding analytical results for different figures of merit are shown in Figure B.1 up

to Figure B.5 in the Appendix B.

6 The Set of all achievable Single Quantum Clone Qualities

In the previous part, we were only interested in the optimal asymmetric quantum cloning

channel describing the boundary of the set of all achievable single quantum clone qualities. In

this chapter, we analytically derive this set using different figures of merit. Let us, however,

turn to the fidelity dF (Ti, id) = 〈Ω| τ0i |Ω〉 for i = 1, 2, where τ0i = id⊗T̃i (|Ω〉〈Ω|), first, such

that the optimization problem is given by

sup
T̃

[
z1d

F (T̃1, id) + z2d
F (T̃2, id)

]
= sup

τ≥0

Tr12[τ ]=
10
d

[z1 〈Ω| τ01 |Ω〉+ z2 〈Ω| τ02 |Ω〉] . (22)

This is visualized in Figure 3, which shows the set of all attainable qualities of the two quantum

clones,

CF =

{
z ∈ R2

∣∣∣∣z =

(
〈Ω| τ01 |Ω〉
〈Ω| τ02 |Ω〉

)}
. (23)

First of all, we notice that for i = 1, 2 and ī = 2, 1, if the overlap of τ0i with the maximally

entangled state is 〈Ω| τ0i |Ω〉 = 1 yielding τ0i = |Ω〉〈Ω|0i, then the overall state must be

τ012 = |Ω〉〈Ω|0i ⊗
1ī

d , such that the other marginal state turns out to be τ0ī = 10

d ⊗
1ī

d . This

gives 〈Ω| τ0ī |Ω〉 = 1
d2 . Furthermore, if the overlap of τ0i with the maximally entangled state

is 〈Ω| τ0i |Ω〉 = 0 yielding τ0i = d2

d2−1
1

d2 − 1
d2−1 |Ω〉〈Ω|, then the other marginal state must

be τ0ī = 1
d2−1

1

d2 + d2−2
d2−1 |Ω〉〈Ω|, such that its overlap with the maximally entangled state is

〈Ω| τ0ī |Ω〉 = d2−1
d2 . This gives four extreme points of our set CF as illustrated in Figure 3.
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1
d2−1
d2

1
d2

1d2−1
d2

1
d20

〈Ω| τ01 |Ω〉

〈Ω| τ02 |Ω〉

CF

Fig. 3. Set of all attainable single quantum clone fidelities CF . The figure of merit is the single clone

fidelity dF (Ti, id) = 〈Ω| τ0i |Ω〉 for i = 1, 2, where τ0i := id⊗Ti (|Ω〉〈Ω|) is the Choi-Jamiolkowski
state.

Lemma 4. Let τ be the Choi-Jamiolkowski operator of a symmetrized quantum channel.

Then

τ012 ≥ 0 and Tr12 [τ012] =
10

d

is equivalent to

τ012 ≥ 0 and Tr [τ012] = 1.

Proof. If Tr12 [τ012] = 10

d , then taking the full trace gives Tr012 [τ012] = 1. The other

direction follows from the form of the Choi-Jamiolkowsi state of a symmetrized quantum

channel. Using τ012 =
∑
π∈S3

aπV
t0
π gives

Tr012 [τ012] = 1

⇔
∑

π∈S3

aπ Tr012

[
V t0π
]

= 1

⇔
(
a1d

2 + (a2 + a3 + a4)d+ a5 + a6

)
d = 1.

Now

Tr12 [τ012] =
(
a1d

2 + (a2 + a3 + a4)d+ a5 + a6

)
10 =

10

d

2.

In order to describe the set of all achievable single clone qualities, consider

Hz = z1 |Ω〉〈Ω|01 ⊗ 12 + z2 |Ω〉〈Ω|02 ⊗ 11, with z1, z2 ∈ R.

Then, one notices that our optimization problem given by Eq. (22) may be rewritten using
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Lemma 4 as

sup
τ≥0

Tr12[τ ]=
10
d

[z1 〈Ω| τ01 |Ω〉+ z2 〈Ω| τ02 |Ω〉]

= sup
τ≥0

Tr[τ ]=1

[z1 〈Ω| τ01 |Ω〉+ z2 〈Ω| τ02 |Ω〉]

= sup
τ≥0

Tr[τ ]=1

Tr [z1 |Ω〉〈Ω|01 ⊗ 12τ012 + z2 |Ω〉〈Ω|02 ⊗ 11τ012]

= sup
τ≥0

Tr[τ ]=1

Tr [Hzτ012]

= λmax (Hz) ,

where λmax (Hz) is the maximum eigenvalue of Hz. We are thus interested in the largest

eigenvalue of Hz, denoted as λmax (Hz), i.e.

λmax (Hz) = sup
τ≥0

Tr[τ ]=1

[z1 〈Ω| τ01 |Ω〉+ z2 〈Ω| τ02 |Ω〉] = sup
x∈CF

〈z, x〉 .

The set CF defined in Eq. (23) may then be expressed using the notion of a polar, which is

defined as follows.

Definition 3 (Polar [43, Definition 5.101]). Consider a finite dimensional vector space X

and its dual vector space X∗. The one-sided polar A� of a nonempty subset A of X, is the

subset of X∗ defined by

A� := {x′ ∈ X∗ : 〈x, x′〉 ≤ 1 for all x ∈ A} .

Likewise, if B is a nonempty subset of X∗, then its one-sided polar is the subset of X defined

by

B� := {x ∈ X : 〈x, x′〉 ≤ 1 for all x′ ∈ B} .
The one-sided bipolar of a subset A of X is the set (A�)

�
written simply as A��. The bipolar

of a subset of X∗ is defined in a similar manner.

Lemma B.1, which can be found in the appendix, gives some properties of the one-sided

polar, in order to allow a more intuitive handling of this Definition 3. With this definition at

hand, we may state the Bipolar Theorem 4.

Theorem 4 (Bipolar Theorem [43, Theorem 5.103]). Consider a finite dimensional vector

space X and its dual vector space X∗ and let A be a nonempty subset of X. The one-sided

bipolar A�� is the convex closed hull of A ∪ {0}. Hence if A is convex, closed, and contains

zero, then A = A��. Corresponding results hold for subsets of X∗.
The Bipolar Theorem 4 has numerous applications in functional analysis.b In quantum

information it always presents a very powerful tool when one wishes to fully characterize a

bFurther information about the concept of a polar and a more general statement of the Bipolar theorem can
be found in [43].
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closed convex set, which is exactly what we would like to do here. The one-sided polar
(
CF
)�

of the non-empty set CF ⊆ R2, defined in Eq. (23) is therefore given as

(
CF
)�

=
{
z ∈ R2

∣∣∀ x ∈ CF : 〈z, x〉 ≤ 1
}

=

{
z ∈ R2

∣∣∣∣ sup
x∈CF

〈z, x〉 ≤ 1

}

=
{
z ∈ R2

∣∣λmax (Hz) ≤ 1
}
.

Since the one-sided bipolar
(
CF
)��

is just the one-sided polar of the one-sided polar, we get

(
CF
)��

=
{
x ∈ R2

∣∣∣∀ z ∈
(
CF
)�

: 〈x, z〉 ≤ 1
}

=
{
x ∈ R2

∣∣∀ z ∈ R2 : if λmax (Hz) ≤ 1 then 〈x, z〉 ≤ 1
}

=

{
x ∈ R2

∣∣∣∣∀ z ∈ R2 :

〈
x,

z

λmax (Hz)

〉
≤ 1

}

=

{
x ∈ R2

∣∣∣∣ sup
z∈R2

〈
x,

z

λmax (Hz)

〉
≤ 1

}
.

In order to analyze this even further, one may now realize that every vector ( z1z2 ) ∈ R2 can

be written as b ( v
1−v ), with b ∈ R+ and v ∈ R, if z1 + z2 > 0, or b

( −v
v−1

)
, with b ∈ R+ and

v ∈ R, if z1 + z2 < 0, or
(±v
∓v
)
, with v ∈ R, if z1 + z2 = 0. This is helpful, because b ∈ R+

and λmax (Hbz) = bλmax (Hz). Now differentiating these three cases, the one-sided bipolar is

(
CF
)��

=




x ∈ R2

∣∣∣∣∣∣∣∣
sup
v∈R2

〈
x,

(
v

1− v

)〉

λmax

(
H( v

1−v )

) ≤ 1

∧ sup
v∈R2

〈
x,

(
−v
v − 1

)〉

λmax

(
H( −v

v−1

)
) ≤ 1

∧ sup
v∈R2

〈
x,

(
±v
∓v

)〉

λmax

(
H(±v
∓v

)
) ≤ 1




.

Note that by analyzing the rank ofHz we always expect an eigenvalue equal to zero. Therefore,

the maximum eigenvalue must always be non-negative, i.e. λmax (Hz) ≥ 0. It turns out that

λmax

(
H( v

1−v )

)
=

1

2d

(
d+

√
d2 + 4(d2 − 1)(v − 1)v

)
,

λmax

(
H( −v

v−1

)
)

=

{
0 if 0 ≥ v ≥ 1,
1
2d

(
−d+

√
d2 + 4(d2 − 1)(v − 1)v

)
otherwise,

λmax

(
H(±v
∓v

)
)

= v

√
d2 − 1

d2
.
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Proposition 2 (Convexity). The set

CF =

{
z ∈ R2

∣∣∣∣z =

(
〈Ω| τ01 |Ω〉
〈Ω| τ02 |Ω〉

)}

is convex.

Proof. Let zA, zB ∈ C, then for λ ∈ [0, 1], zC = λzA + (1− λ)zB ∈ CF , because

zC = λzA + (1− λ)zB

= λ

(
〈Ω| τA01 |Ω〉
〈Ω| τA02 |Ω〉

)
+ (1− λ)

(
〈Ω| τB01 |Ω〉
〈Ω| τB02 |Ω〉

)

=

(
〈Ω| τC01 |Ω〉
〈Ω| τC02 |Ω〉

)
∈ CF

2.

By using the Bipolar Theorem 4 together with the fact that CF is convex, as shown in

Proposition 2, closed and contains the origin, we see that CF =
(
CF
)��

. A cumbersome

computation then shows that the boundary of this set is described by

1

d+ 1

(√
〈Ω| τ01 |Ω〉+

√
〈Ω| τ02 |Ω〉

)2

+
1

d− 1

(√
〈Ω| τ01 |Ω〉 −

√
〈Ω| τ02 |Ω〉

)2

=
2

d
, (24)

which is illustrated in Figure B.1. We may therefore state the following Theorem 5, summa-

rizing the main result.

Theorem 5 (Set of all attainable single clone fidelities within universal 1 → 2 asym-

metric quantum cloning). The set of all attainable clone qualities in terms of single clone

fidelities dF (Ti, id) = 〈Ω| τ0i |Ω〉 with i = 1, 2, where τ0i := id⊗T̃i (|Ω〉〈Ω|) is the Choi-

Jamiolkowski state of the marginals of the optimal quantum cloning channel, given by Eq. (21),

with |Ω〉〈Ω| := 1
d

∑d
i,j=1 |ii〉〈jj| being the maximally entangled state, is given by

CF =




x ∈ R2

∣∣∣∣∣∣∣∣
sup
v∈R2

〈
x,

(
v

1− v

)〉

λmax

(
H( v

1−v )

) ≤ 1

∧ sup
v∈R2

〈
x,

(
−v
v − 1

)〉

λmax

(
H( −v

v−1

)
) ≤ 1

∧ sup
v∈R2

〈
x,

(
±v
∓v

)〉

λmax

(
H(±v
∓v

)
) ≤ 1




, (25a)

where λmax (Hz) denotes the maximum eigenvalue of

Hz = z1 |Ω〉〈Ω|01 ⊗ 12 + z2 |Ω〉〈Ω|02 ⊗ 11,
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given by

λmax

(
H( v

1−v )

)
=

1

2d

(
d+

√
d2 + 4(d2 − 1)(v − 1)v

)
,

λmax

(
H( −v

v−1

)
)

=

{
0 if 0 ≥ v ≥ 1,
1
2d

(
−d+

√
d2 + 4(d2 − 1)(v − 1)v

)
otherwise,

λmax

(
H(±v
∓v

)
)

= v

√
d2 − 1

d2
.

The upper boundary of this set is described by

1

d+ 1

(√
〈Ω| τ01 |Ω〉+

√
〈Ω| τ02 |Ω〉

)2

+
1

d− 1

(√
〈Ω| τ01 |Ω〉 −

√
〈Ω| τ02 |Ω〉

)2

=
2

d
, (25b)

and illustrated in Figure B.1, which can be found in the appendix.

This theorem is in agreement with previously established results [26, 28]. Here, the authors

have used a group theoretic approach, whereas our main technique comes from convex analysis.

A similar theorem may be stated for different figures of merit, since the set of attainable

single clone qualities is convex for any d(Ti, id), satisfying the properties discussed earlier, as

shown in the following proposition.

Proposition 3 (Convexity). The set

C =

{
z ∈ R2

∣∣∣∣z =

(
d (T1, id)
d (T2, id)

)}

is convex.

Proof. Let zA, zB ∈ C, then for λ ∈ [0, 1], we get

λ

(
d
(
TA1 , id

)

d
(
TA2 , id

)
)

+ (1− λ)

(
d
(
TB1 , id

)

d
(
TB2 , id

)
)

=

(
λd
(
TA1 , id

)
+ (1− λ) d

(
TB1 , id

)

λd
(
TA2 , id

)
+ (1− λ) d

(
TB2 , id

)
)

≤
(
d
(
λTA1 + (1− λ)TB1 , id

)

d
(
λTA2 + (1− λ)TB2 , id

)
)

=

(
d
(
TC1 , id

)

d
(
TC2 , id

)
)
∈ C.

In the case, where the figure of merit is given by the fidelity, we even get equality. In all other

cases for the lower boundary consider the following quantum channel,

T (ρ) = |ψ〉〈ψ| ⊗ (λρ+ (1− λ) |ψ〉〈ψ|) ,

such that

Ti (ρ) = |ψ〉〈ψ| and

Tī(ρ) = λρ+ (1− λ) |ψ〉〈ψ| ,

for i = 1, 2 with λ ∈ [0, 1] and |ψ〉 ∈ Dd some pure quantum state 2.
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This immediately gives rise to the following corollary.

Corollary 2 (Set of all attainable single quantum clone qualities within universal 1 → 2

asymmetric quantum cloning using different figures of merit). The set of all attainable single

quantum clone qualities in terms of the different figures of merit dk(Ti, id) with i = 1, 2 for

k = F, 1, 2,∞, �, is given by

Ck = conv
(
{0} ∪

{
x(k)
max

}
∪
{
x(k)

∣∣∣g
(
fk
(
x

(k)
1

)
, fk

(
x

(k)
2

))
= 0
})

, (26a)

where {0} is the origin,
{
x

(k)
max

}
are the two points where dk(Ti, id) reaches its maximum for

i = 1, 2 and where the function g : R2 → R is

g(x1, x2) =
1

d+ 1
(
√
x1 +

√
x2)

2
+

1

d− 1
(
√
x1 −

√
x2)

2 − 2

d
, (26b)

with the functions fk : R→ R specified by

fF
(
x

(F )
i

)
= x

(F )
i , (26c)

f1
(
x

(1)
i

)
= 1 +

1 + d

d

(
x

(1)
i − 1

)
, (26d)

f2
(
x

(2)
i

)
= 1 +

d2 − 1

d2

√
d

d− 1

(
x

(2)
i − 1

)
, (26e)

f∞
(
x

(∞)
i

)
= 1 +

1 + d

d

(
x

(∞)
i − 1

)
and (26f)

f�
(
x

(�)
i

)
= x

(�)
i . (26g)

The sets are depicted in Figure B.1 up to Figure B.5 in the appendix.

7 Summary

This paper revisits the universal asymmetric 1→ 2 quantum cloning problem. We derived the

optimal universal 1→ 2 asymmetric quantum cloning channel using its symmetry properties

in Theorem 3. Additionally, we noticed that its inherent optimization problem can be recast

as a semidefinite program. This result has been derived previously by [21, 22].

Furthermore, we completely characterize the set of all attainable single quantum clone

qualities within universal asymmetric 1→ 2 quantum cloning for different figures of merit in

Theorem 5 and Corollary 2 using the concept of a one-sided polar together with the famous

Bipolar Theorem 4 from convex analysis. This is an alternative approach to the one chosen

in [28], where the authors use a general group representation approach and only study the

fidelity.
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14. V. Bužek and M. Hillery (1998), Universal Optimal Cloning of Arbitrary Quantum States: From
Qubits to Quantum Registers, Phys. Rev. Lett., vol. 81, pp. 5003–5006.

15. N. J. Cerf (1998), Asymmetric Quantum Cloning Machines, Acta Phys. Slovaca, vol. 48, pp. 115–
132.

16. R. F. Werner (1998), Optimal cloning of pure states, Phys. Rev. A, vol. 58, pp. 1827–1832.
17. M. Keyl and R. F. Werner (1999), Optimal cloning of pure states, testing single clones, J. Math.

Phys., vol. 40, pp. 3283–3299.
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21. S. L. Braunstein, V. Bužek and M. Hillery (2001), Quantum-information distributors: Quantum

network for symmetric and asymmetric cloning in arbitrary dimension and continuous limit, Phys.
Rev. A, vol. 63, p. 052313.

22. N. J. Cerf (2000), Asymmetric quantum cloning in any dimension, J. Mod. Opt., vol. 47, pp.
187–209.

73



770 Universal asymmetric quantum cloning revisited
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Appendix A.1. Proof of Lemma 3

Lemma 3. For a Choi-Jamiolkowski state τ ∈Md3 ,

[
τ, Ū ⊗ U ⊗ U

]
= 0 ∀ U ∈ U (d)

is equivalent to ∫

U(d)

(
Ū ⊗ U ⊗ U

)
τ
(
Ū ⊗ U ⊗ U

)∗
dU = τ.

Proof. If [
τ, Ū ⊗ U ⊗ U

]
= 0

then
∫

U(d)

(
Ū ⊗ U ⊗ U

)
τ
(
Ū ⊗ U ⊗ U

)∗
dU

=

∫

U(d)

τ
(
Ū ⊗ U ⊗ U

) (
Ū ⊗ U ⊗ U

)∗
dU

=

∫

U(d)

τ dU

=τ.

The other direction follows from
∫

U(d)

(
Ū ⊗ U ⊗ U

)
τ
(
Ū ⊗ U ⊗ U

)∗
dU = τ,

because then for unitary V ∈ U (d) we have

τ
(
V̄ ⊗ V ⊗ V

)

=

∫

U(d)

(
Ū ⊗ U ⊗ U

)
τ
(
Ū ⊗ U ⊗ U

)∗
dU
(
V̄ ⊗ V ⊗ V

)

=
(
V̄ ⊗ V ⊗ V

) (
V̄ ⊗ V ⊗ V

)∗
∫

U(d)

(
Ū ⊗ U ⊗ U

)
τ
(
Ū ⊗ U ⊗ U

)∗
dU
(
V̄ ⊗ V ⊗ V

)

=
(
V̄ ⊗ V ⊗ V

) ∫

U(d)

(
Ū ⊗ U ⊗ U

)
τ
(
Ū ⊗ U ⊗ U

)∗
dU

=
(
V̄ ⊗ V ⊗ V

)
τ,

where we have used the invariance property 2.

Appendix A.2. Proof of Proposition 1

Proposition 1. If for a Choi-Jamiolkowski state τ ∈Md3 we have that

[
τ, Ū ⊗ U ⊗ U

]
= 0 ∀ U ∈ U (d) ,
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then [
τ t0 , U ⊗ U ⊗ U

]
= 0,

where t0 denotes the partial transpose on the first system.

Proof.
∫

U(d)

(U ⊗ U ⊗ U) τ t0 (U ⊗ U ⊗ U)
∗

dU

=

∫

U(d)

(U ⊗ U ⊗ U)
(

id⊗T̃ |Ω〉〈Ω|
)t0

(U ⊗ U ⊗ U)
∗

dU

=

∫

U(d)

[(
(U∗)T ⊗ U ⊗ U

)
id⊗T̃ |Ω〉〈Ω|

(
UT ⊗ U∗ ⊗ U∗

)]t0
dU

=

∫

U(d)

[(
Ū ⊗ U ⊗ U

)
id⊗T̃ |Ω〉〈Ω|

(
Ū ⊗ U ⊗ U

)∗]t0
dU

remembering that U ⊗ Ū |Ω〉 = |Ω〉 gives

=

∫

U(d)

[
(1⊗ U ⊗ U) id⊗T̃ (1⊗ U∗) |Ω〉〈Ω| (1⊗ U) (1⊗ U∗ ⊗ U∗)

]t0
dU

=

∫

U(d)

τ t0 dU

=τ t0 .

Application of Lemma 3 finishes the proof 2.

Appendix B Appendix and Figures

Relation between different notation used in Chapter 5.

s0 = a12d+ a2d
2 + a3d

2 + a5d+ a6d

s1 = a2d+ a3d+ a42d+ a5d
2 + a6d

2

s2 = a2d
√
d2 − 1 + a3(−d)

√
d2 − 1

s3 = a5(−id)
√
d2 − 1 + a6id

√
d2 − 1

s+ = a1
1

2
d(d+ 2)(d− 1) + a4

1

2
d(d+ 2)(d− 1)

s− = a1
1

2
d(d− 2)(d+ 1) + a4

1

2
d(−d+ 2)(d+ 1)

Lemma B.1 (Properties of polars [43, Lemma 5.102]). Consider a finite dimensional vector

space X and its dual vector space X∗. Let A,B be nonempty subsets of X and let {Ai} be a

family of nonempty subsets of X. Then the following properties hold:

1. If A ⊂ B, then A� ⊃ A�.

2. If ε 6= 0, then (εA)
�

= 1
εA
�.
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3. ∩
(
A�i
)

= (∪Ai)�.

4. The one-sided polar A� is nonempty, convex, closed and contains the origin.

The corresponding dual statements are true for subsets of X∗.
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Fig. B.1. The set of all attainable single quantum clone qualities in terms of dF (Ti, id) =
〈Ω| τ0i |Ω〉, i = 1, 2, given by Eq. (25a) for different dimensions of the underlying
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Fig. B.2. The set of all attainable single quantum clone qualities in terms of d1(Ti, id) =
1 − 1

2
supρ ‖Ti(ρ)− ρ‖1, i = 1, 2, given by Eq. (26a) for different dimensions of the un-
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Fig. B.3. The set of all attainable single quantum clone qualities in terms of d�(Ti, id) =
1 − 1

2
‖Ti − id‖�, i = 1, 2, given by Eq. (26a) for different dimensions of the underly-

ing Hilbert space, using MATLAB [46]. The upper boundary of this set is given by
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Fig. B.4. The set of all attainable single quantum clone qualities in terms of d∞(Ti, id) =

1 − supρ ‖Ti(ρ)− ρ‖∞, i = 1, 2, given by Eq. (26a) for different dimensions of the un-
derlying Hilbert space, using MATLAB [46]. The upper boundary of this set is given by
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Fig. B.5. The set of all attainable single quantum clone qualities in terms of d2(Ti, id) =

1 − supρ ‖Ti(ρ)− ρ‖2, i = 1, 2, given by Eq. (26a) for different dimensions of the under-

lying Hilbert space, using MATLAB [46]. The upper boundary of this set is given by
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Summary of article 2: Universality and Optimality in the

Information-Disturbance Tradeoff [2]

In this article, we investigate the tradeoff between the quality of an approximate measurement

and the disturbance this measurement induces to the quantum system. Even though this

phenomena of necessary disturbance when extracting information from a quantum system has

been known for decades (cf. proposition 2.4), its quantitative description has given rise to

many debates and obscurities. Due to recent practical applications to quantum information

processing tasks, such as quantum cryptography [59, 88–90], a thorough mathematical analysis

is needed.

This article differs to known quantitative bounds on the disturbance derived in other papers

in two respects. Firstly, the performed measurement is considered to approximate a fixed target

measurement; this yields the measurement error. The disturbance, however, is not quantified

with respect to another observable. This is in stark contrast to other papers, in which either the

measurement error as well as the disturbance are quantified with respect to a second reference

measurement [91–103] or no reference observable is used at all [104–111]. This classification is

illustrated in figure B.1.

Secondly, instead of considering specific distance measures in order to derive the tradeoff,

in this work we prove the existence of a two-parameter family of quantum instruments that

are (almost) universally optimal as long as the distance measures exhibit a set of properties

that are shared by many distance measures considered in the literature such as convexity and

basis-independence. These include for example norm-based measures as used in [96, 103, 107],

fidelities as used in [95, 111] or for example transport-cost functions as used in [97, 102]. The

following result is proven in the case of a non-degenerate von Neumann target measurement.

In this scenario it is possible to use symmetry methods to reduce the number of optimization

parameters, such that an analytic solution can be obtained. It is shown that, without loss of

generality, the optimum is obtained for a twirled quantum channel, which gives rise to a rich

advantageous structure.

Theorem B.1 ((Almost universal) optimal instruments [2, theorem 1]). Let ∆ and δ be

distance-measures for quantifying disturbance and measurement-error that satisfy assumpti-
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Figure B.1: Classification of information-disturbance tradeoffs w.r.t. whether a reference measurement

is used to quantify the information gain and the disturbance. The blue cross shows the

intermediate approach taken in [2].

ons 4.3 and 4.4 (see section 4.2), respectively. Then the optimal ∆− δ-tradeoff w.r.t. a target

measurement that is given by an orthonormal basis {|i〉 ∈ Cd}di=1 is attained within the two-

parameter family of instruments defined by

Ii(ρ) := z 〈i| ρ |i〉 1d− |i〉〈i|
d− 1

+ (1− z)KiρKi, Ki := µ1d +ν |i〉〈i| , (B.1)

where z ∈ [0, 1] and µ, ν ∈ R satisfy dµ2 + ν2 + 2µν = 1 (which makes
∑

i Ii trace preserving).

Furthermore, we show that for many common disturbance measures, z = 0 is optimal. This

is the case if, for example, ∆ is the worst-case or average-case fidelity, or it is the worst-case

Schatten 1−1-norm or the diamond norm. This is, however, not true in general. We construct

an explicit example for ∆ satisfying all assumptions 4.3 for which z = 0 is not optimal.

We give explicit tradeoffs in the case of non-degenerate von Neumann measurements for a

variety of distance measures.

Theorem B.2 (Total variation - fidelity tradeoff [2, theorem 2]). Consider a non-degenerate

von Neumann measurement, given by an orthonormal basis in Cd, and an instrument with d

corresponding outcomes. Then the worst-case total variational distance δTV and the worst-case

fidelity f satisfy

δTV ≥





1
d

∣∣∣
√
f(d− 1)−√1− f

∣∣∣
2

if f ≥ 1
d ,

0 if f ≤ 1
d .

(B.2)

The inequality is tight and equality is attainable within the one-parameter family of instruments

in equation (B.1) with z = 0.

Theorem B.3 (Total variation - average fidelity tradeoff [2, theorem 3]). Consider a non-

degenerate von Neumann measurement, given by an orthonormal basis in Cd, and an instrument
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with d corresponding outcomes. Then the worst-case total variational distance δTV and the

average-case fidelity f̄ satisfy

δTV ≥





1
d

∣∣∣∣
√(

f̄ − 1
d+1

)
d2−1
d −

√(
1− f̄

)
d+1
d

∣∣∣∣
2

if f̄ ≥ 2
d+1 ,

0 if f̄ ≤ 2
d+1 .

(B.3)

The inequality is tight and equality is attainable within the one-parameter family of instruments

in equation (B.1) with z = 0.

Theorem B.4 (Total variation - trace norm tradeoff [2, corollary 3]). Consider a non-degenerate

von Neumann measurement, given by an orthonormal basis in Cd, and an instrument with d

corresponding outcomes. Then the worst-case total variational distance δTV and its trace-norm

analogue ∆TV satisfy

δTV ≥





1
d

∣∣∣
√

(1−∆TV )(d− 1)−√∆TV

∣∣∣
2

if ∆TV ≤ 1− 1
d ,

0 if ∆TV ≥ 1− 1
d .

(B.4)

The inequality is tight and equality is attainable within the one-parameter family of instruments

in equation (B.1) with z = 0.

The diamond norm, which is operationally the most relevant distance measure when it comes

to distinguishing quantum channels, is treated in a more general setting. In this case, we allow

the target measurement to be a possibly degenerate von Neumann measurement. This does,

however, not affect the optimal tradeoff curve in case of the diamond norm. We prove that the

optimal tradeoff only depends on the number of outcomes and is independent of the dimensions

of the projections.

Theorem B.5 (Total variation - diamond norm tradeoff [2, theorem 4]). If an instrument is

considered approximating a (possibly degenerate) von Neumann measurement with m outcomes,

then the worst-case total variational distance δTV and the diamond norm distance ∆� satisfy

δTV ≥





1
2m

(√
(2−∆�)(m− 1)−√∆�

)2
if ∆� ≤ 2− 2

m ,

0 if ∆� > 2− 2
m .

(B.5)

The inequality is tight in the sense that for every choice of the von Neumann measurement

there is an instrument achieving equality.

Furthermore, we examine the more general case when the target measurement is given by an

arbitrary positive operator-valued measure (POVM). We can then characterize the achievable

region in the ∆ − δ-plane as the feasible set of some semidefinite program (SDP), if ∆ and δ

are convex semialgebraic.

Theorem B.6 (SDP solution for arbitrary target measurements [2, theorem 7]). If ∆ and δ

are both convex and semialgebraic, then the accessible region in the ∆− δ-plane is the feasible

set of a SDP.
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We show that in the case of interest, if we consider a Schatten p-to-q-norm distance, with

p and q rational, to describe the disturbance caused to the quantum system and a worst-case

lp-norm distance, with rational p, to quantify the measurement error, the accessible region in

the ∆− δ-plane is the feasible set of a SDP.

Theorem B.7 ([2, corollary 5]). The Schatten p-to-q norm-distances of a quantum channel

Φ ∈ Td to the identity channel

Φ 7→ ||Φ− id ||p→q,n := sup
ρ∈Ddn

||(Φ− id)⊗ idn(ρ)||q
||ρ||p

, n ∈ N, (B.6)

are semialgebraic for all p, q ∈ [1,∞) ∩Q and p, q =∞.

The worst-case fidelity distance of a quantum channel Φ ∈ Td to the identity channel

Φ 7→ inf
ρ∈Dd

F (Φ(ρ), ρ)2 (B.7)

is semialgebraic.

The worst-case lp-distances of a POVM E′ ∈ Ed,m to the target POVM E ∈ Ed,m

E′ 7→ sup
ρ∈Dd

||
(
Tr[ρEi]− Tr[ρE′i]

)m
i=1
||p, (B.8)

are semialgebraic for all p ∈ [1,∞) ∩Q and p =∞.

In the special case of the worst-case l∞-distance and the diamond norm, we explicitly state the

SDP yielding the optimal tradeoff curve if considering a general POVM as target measurement.

We apply this result to the example of a qubit symmetric, informationally complete (SIC)

POVM and a qutrit SIC POVM.

Statement of individual contribution

This project is a follow up project to the previous one on universal asymmetric quantum

cloning [1]. Instead of looking at the tradeoff between two quantum outputs of a channel,

this project involves studying the tradeoff between a quantum output and a classical output

of a channel. I, Anna-Lena Karolyn Hashagen, had the idea for this project while visiting the

quantum information theory research group of Prof. Dr. Reinhard F. Werner at the Leibniz

Universität Hannover. It was the result of many discussions with some of the group members,

in particular with René Schwonnek. The concrete research question was then a joint effort of

my doctoral supervisor, Prof. Dr. Michael M. Wolf, and me.

We started to examine the research question by looking at concrete measures, namely the

worst-case l∞-norm distance to quantify the measurement error and the diamond norm dis-

tance to quantify the disturbance caused to the system. It was immediately clear that the

symmetry methods, discussed in chapter 3, apply to this particular research question. I proved

proposition [2, proposition 1] and lemma [2, lemma 1] in close consultation with my doctoral

supervisor, Prof. Dr. Michael M. Wolf. Even though at that time, we were still looking at
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UNIVERSALITY AND OPTIMALITY IN THE

INFORMATION-DISTURBANCE TRADEOFF

ANNA-LENA K. HASHAGEN1 AND MICHAEL M. WOLF1,2

Abstract. We investigate the tradeoff between the quality of an approx-
imate version of a given measurement and the disturbance it induces in
the measured quantum system. We prove that if the target measurement
is a non-degenerate von Neumann measurement, then the optimal tradeoff
can always be achieved within a two-parameter family of quantum devices
that is independent of the chosen distance measures. This form of almost
universal optimality holds under mild assumptions on the distance mea-
sures such as convexity and basis-independence, which are satisfied for all
the usual cases that are based on norms, transport cost functions, rela-
tive entropies, fidelities, etc. for both worst-case and average-case analysis.
We analyze the case of the cb-norm (or diamond norm) more generally for
which we show dimension-independence of the derived optimal tradeoff for
general von Neumann measurements. A SDP solution is provided for gene-
ral POVMs and shown to exist for arbitrary convex semialgebraic distance
measures.
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2 HASHAGEN AND WOLF

1. Introduction

The idea that measurements inevitably disturb a quantum system is so much
folklore and so deeply routed in the foundations of quantum mechanics that
it is difficult to trace back historically. It is certainly present in Heisenberg’s
original exposition of the uncertainty relation. However, it only became ame-
nable to mathematical analysis after the ‘projection postulate’ was replaced
by a more refined theory of the quantum measurement process [1, 2]. With
the emergence of the field of quantum information theory, the interest in a
quantitative analysis of the information-disturbance tradeoff has intensified.
At the same time, it became an issue of practical significance for many quan-
tum information processing tasks, most notably for quantum cryptography
[3, 4, 5, 6].

In the last two decades numerous papers derived quantitative bounds on the
disturbance induced by a quantum measurement. A coarse way to categorize
the existing approaches is depending on whether or not there are reference
measurements w.r.t. which information gain on one side and disturbance on
the other side are quantified. In [7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]
disturbance and information gain are both considered w.r.t. reference measu-
rements. In [20, 21, 22, 23, 24, 25, 26, 27], in contrast, no reference observable
is used on either side. In the present paper, we follow an intermediate route:
we consider the performed measurement as an approximation of a given re-
ference measurement, but we quantify the disturbance without specifying a
second observable.

Another way of classifying previous works is in terms of the measures that
are used to mathematically formalize and quantify disturbance and information
gain: for instance, [7, 21, 25, 16, 22, 17] use various entropic measures, [23, 12,
19] use norm-based measures, [20, 21, 25, 26] use fidelities, [11, 27] use Fisher
information, and [13, 18] use transport-cost functions. Many other measures
are conceivable and most of them come in two flavors: a worst-case and an
average-case variant, where the latter again calls for the choice of an underlying
distribution.

A central point of the present work is to show that the information-disturbance
problem has a core that is largely independent of the measures chosen. More
specifically, we prove the existence of a small set of devices that are (almost)
universally optimal independent of the chosen measures, as long as these exhi-
bit a set of elementary properties that are shared by the vast majority of
distance measures found in the literature. Based on this universality result,
we then derive optimal tradeoff bounds for specific choices of measures. These
include the diamond norm and its classical counterpart the total variation
distance. In this case, the reachability of the optimal tradeoff has been de-
monstrated experimentally in a parallel work [28].
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INFORMATION-DISTURBANCE TRADEOFF 3

Organization of the paper. Sec. 2 starts off with introducing the setup and
summarizes the paper’s main results. In Sec. 3, we discuss distance measures
that quantify the measurement error and the disturbance caused to the system.
We give a brief overview of common measures found in the literature that
fulfill the assumptions we make, necessary to derive the universality theorem.
In Sec. 4, for the case of a non-degenerate von Neumann target measurement,
we derive a universal two-parameter family of optimal devices that yield the
best information-disturbance tradeoff. In Sec. 5, still for the case of a non-
degenerate von Neumann target measurement, we use the universal optimal
devices derived in the previous section to compute the optimal tradeoff for
a variety of distance measures. In the special case where we consider the
diamond norm for quantifying disturbance, we derive the optimal tradeoff also
for the case of degenerate von Neumann target measurements. In the last
section, Sec. 6, we show that the optimal tradeoff can always be represented as
a SDP if the distance measures under consideration are convex semialgebraic.
We give the explicit SDP that represents the tradeoff between the diamond
norm and the worst-case l∞-distance and apply it to the special case of qubit
as well as qutrit SIC POVMs.

2. Summary

This section will briefly introduce some notation, specify the considered
setup, and summarize the main results. More details and proofs will then be
given in the following sections.

Notation. Throughout we will consider finite dimensional Hilbert spaces Cd,
write Md for the set of complex d × d matrices and Sd ⊆ Md for the subset
of density operators, usually denoted by ρ. An m-outcome measurement on
this space will be described by a positive operator valued measure (POVM)
E = (E1, . . . , Em) whose elements Ei ∈ Md are positive semidefinite and
sum up to the identity operator

∑m
i=1Ei = 1. The set of all such POVM’s

will be denoted by Ed,m and we will set Ed := Ed,d. We will call E a von
Neumann measurement if the Ei’s are mutually orthogonal projections and
further call it non-degenerate if those are one-dimensional, i.e., characterized
by an orthonormal basis. A completely positive, trace-preserving linear map
will be called a quantum channel and the set of quantum channels from Md

into Md will be denoted by Td.
Setup. We will fix a target measurement E ∈ Ed,m and investigate the tradeoff
between the quality of an approximate measurement of E, say by E ′ ∈ Ed,m,
and the disturbance the measurement process induces in the system. The
evolution of the latter will be described by some channel T1 ∈ Td. To this end,
we will have to choose two suitable functionals E ′ 7→ δ(E ′) and T1 7→ ∆(T1)
that quantify the deviation of E ′ and T1 from the target measurement E and
the ideal channel id, respectively.
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4 HASHAGEN AND WOLF

For a given triple (E, δ,∆) the question will then be: what is the accessible
region in the δ − ∆-plane when running over all possible measurement devi-
ces and, in particular, what is the optimal tradeoff curve and how can it be
achieved?

Clearly, E ′ and T1 are not independent. The framework of instruments
allows to describe all pairs (E ′, T1) that are compatible within the rules of
quantum theory. An instrument assigns to each possible outcome i of a mea-
surement a completely positive map Ii :Md →Md so that the corresponding
POVM element is E ′i := I∗i (1) and the evolution of the remaining quantum
system is governed by T1 :=

∑m
i=1 Ii. Normalization requires that this sum is

trace-preserving.

Main results. There are zillions of possible choices for the measures ∆ and δ.
If one had to choose one pair that stands out for operational significance this
would probably be the diamond norm and its classical counterpart, the total
variational distance (defined and discussed in Sec. 3 and Sec. 5). One of our
results is the derivation of the optimal tradeoff curve for this pair (Thm. 4 in
Sec. 5.5):

Theorem (Total variation - diamond norm tradeoff). If an instrument is
considered approximating a (possibly degenerate) von Neumann measurement
with m outcomes, then the worst-case total variational distance δTV and the
diamond norm distance ∆� satisfy

δTV ≥
{

1
2m

(√
(2−∆�)(m− 1)−√∆�

)2

if ∆� ≤ 2− 2
m
,

0 if ∆� > 2− 2
m
.

(1)

The inequality is tight in the sense that for every choice of the von Neumann
measurement there is an instrument achieving equality.

Note that the tradeoff depends solely on the number m of outcomes and
is independent of the dimension of the underlying Hilbert space (apart from
d ≥ m). Also note that the accessible region shrinks with increasing m and in
the limit m→∞ becomes a triangle, determined by δTV ≥ 1−∆�/2.

In Sec. 5 we derive similar results for the worst-case as well as average-case
fidelity and trace-norm. In all cases, the bounds are tight and we show how
the optimal tradeoff can be achieved. Instead of going through these and more
examples one-by-one we follow a different approach. We provide a general
tool for obtaining optimal tradeoffs for all pairs (δ,∆) that exhibit a set of
elementary properties that are shared by the vast majority of distance measures
that can be found in the literature. These properties, which are discussed in
Sec. 3, are essentially convexity and suitable forms of basis-(in)dependence.
For the case of a non-degenerate von Neumann target measurement Thm. 1
in Sec. 4 shows that optimal devices can always be found within a universal
two-parameter family, independent of the specific choice of δ and ∆:
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INFORMATION-DISTURBANCE TRADEOFF 5

Theorem ((Almost universal) optimal instruments). Let ∆ and δ be distance-
measures for quantifying disturbance and measurement-error that satisfy As-
sumptions 1 and 2 (cf. Sec. 3), respectively. Then the optimal ∆− δ-tradeoff
w.r.t. a target measurement that is given by an orthonormal basis {|i〉 ∈ Cd}di=1

is attained within the two-parameter family of instruments defined by

Ii(ρ) := z〈i|ρ|i〉1d − |i〉〈i|
d− 1

+ (1− z)KiρKi, Ki := µ1d + ν|i〉〈i|, (2)

where z ∈ [0, 1] and µ, ν ∈ R satisfy dµ2 + ν2 + 2µν = 1 (which makes
∑

i Ii
trace preserving).

While the parameter z can be eliminated for instance in all cases mentioned
above, we show in Cor. 2 that this is not possible in general.

If the target measurement itself is not a von Neumann measurement but a
general POVM, then closed-form expressions like the ones above should not
be expected. For the important case of the diamond norm, we show in Sec. 6
how the optimal tradeoff curve can still be obtained via a semidefinite program
(SDP). This is an instance of the following more general fact (Thm. 7):

Theorem (SDP solution for arbitrary target measurements). If ∆ and δ are
both convex and semialgebraic, then the accessible region in the ∆− δ-plane is
the feasible set of a SDP.

Note that no assumptions on the chosen measures are made other than being
convex and semialgebraic.

3. Distance measures

In this section we have a closer look at the functionals ∆ : Td → [0,∞]
and δ : Ed,m → [0,∞] that quantify how much E ′ and T1 differ from E and
id, respectively. We will not assume that they arise from metrics and use
the notion of a ‘distance’ merely in the colloquial sense. We will state the
assumptions that we will use in Sec. 4 and discuss some of the most common
measures that appear in the literature.

Quantifying disturbance. For the universality theorem (Thm. 1) we will
need the following assumption on ∆:1

Assumption 1 (on the distance measure to the identity channel).
For ∆ : Td → [0,∞] we assume that (a) ∆(id) = 0, (b) ∆ is convex, and (c)
∆ is basis-independent in the sense that for every unitary U ∈ Md and every
channel Φ ∈ Td:

∆
(
UΦ(U∗ · U)U∗

)
= ∆(Φ). (3)

1In fact, slightly less is required since Eq. (3) will only be used for unitaries that are
products of diagonal and permutation matrices.
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In the usually considered cases, ∆ arises from a distance measure on the set
of density operators Sd ⊆Md. In fact, if ∆̃ : Sd×Sd → [0,∞] is convex in its
first argument, unitarily invariant and satisfies ∆̃(ρ, ρ) = 0, then considering
the worst case as well as the average case w.r.t. the input state both lead
to functionals that satisfy Assumption 1. More precisely, if µ is a unitarily
invariant measure on Sd and S ⊆ Sd a unitarily closed subset (e.g., the set of
all pure states), then the following two definitions can easily be seen to satisfy
Assumption 1, see the appendix:

∆∞(Φ) := sup
ρ∈S

∆̃
(
Φ(ρ), ρ

)
,

∆µ(Φ) :=

∫

Sd
∆̃
(
Φ(ρ), ρ

)
dµ(ρ).

While ∆∞ quantifies the distance between Φ and id in the worst case in terms
of ∆̃, ∆µ does the same for the average case.

Concrete examples for ∆̃ are (i) ∆̃(ρ, σ) = 1 − F (ρ, σ), where F (ρ, σ) :=
||√ρ√σ||1 is the fidelity, (ii) the relative entropy and many other quantum
f -divergences [29] including the Chernoff- and Hoeffding-distance and (iii)
∆̃(ρ, σ) = |||ρ − σ|||, where ||| · ||| is any unitarily invariant norm such as
the Schatten p-norms.

The latter can, in a similar vein, be used to define Schatten p-to-q norm-
distances to the identity channel

Φ 7→ ||Φ− id||p→q,n := sup
ρ∈Sdn

||(Φ− id)⊗ idn(ρ)||q
||ρ||p

, q, p ∈ [1,∞], n ∈ N,

which also fulfill Assumption 1. Special cases are given by the diamond norm
|| · ||� := || · ||1→1,d, which we discuss in more detail in Sec. 5.5, and its dual,
the cb-norm (with p = q =∞, n = d).

Quantifying measurement error. The following assumptions that we need
for the universality theorem on the functional δ refer to the case of a non-
degenerate von Neumann target measurement that is given by an orthonormal
basis (|i〉〈i|)di=1.

Assumption 2 (on the distance measure to the target measurement).
For δ : Ed → [0,∞] we assume that (a) δ

(
(|i〉〈i|)di=1

)
= 0, (b) δ is convex, (c)

δ is permutation-invariant in the sense that for every permutation π ∈ Sd and
any M ∈ Ed

M ′
i = U∗πMπ(i)Uπ ∀i ⇒ δ(M ′) = δ(M), (4)

where Uπ is the permutation matrix that acts as Uπ|i〉 = |π(i)〉, and (d) that
for every diagonal unitary D ∈Md and any M ∈ Ed

M ′
i = D∗MiD ∀i ⇒ δ(M ′) = δ(M). (5)

Here, the most common cases arise from distance measures δ̃ : Pd × Pd →
[0,∞] on the space of probability distributions Pd :=

{
q ∈ Rd|∑d

i=1 qi =
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INFORMATION-DISTURBANCE TRADEOFF 7

1∧∀i : qi ≥ 0
}

applied to the target distribution pi := 〈i|ρ|i〉 and the actually

measured distribution p′i := tr [ρE ′i]. Suppose δ̃ is convex in its second argu-

ment, invariant under joint permutations and satisfies δ̃(q, q) = 0. Then the
worst-case as well as the average-case construction

δ∞(E ′) := sup
ρ∈S

δ̃(p, p′),

δµ(E ′) :=

∫

Sd
δ̃(p, p′) dµ(ρ),

both satisfy Assumption 2, see appendix. Concrete examples for δ̃ are all
lp-norms for p ∈ [1,∞] and the Kullback-Leibler divergence as well as other
f -divergences. Other examples for δ that satisfy Assumption 2 are transport
cost functions like the ones used in [18].

Note that convexity of the two measures ∆ and δ implies that the region in
the ∆−δ-plane that is accessible by quantum instruments is a convex set. The
boundary of this set is given by two lines that are parallel to the axes (and
correspond to the maximal values of ∆ and δ) and what we call the optimal
tradeoff curve.

4. Universal optimal devices

There are three major steps towards proving the claimed universality theo-
rem: the exploitation of symmetry, the construction of a von Neumann algebra
isomorphism to obtain a manageable representation, and the final reduction
to the envelope of a unit cone.

Throughout this section, the target measurement will be given by an ortho-
normal basis E = (|i〉〈i|)di=1. In this case, instead of working with instruments
it turns out to be slightly more convenient to work with channels. More spe-
cifically, we will describe the entire process by a channel T :Md →Md⊗Md

with marginals T1, T2 ∈ Td. T1 will then reflect the evolution of the ‘distur-
bed’ quantum system, whereas the output of T2 is measured by E leading to
E ′i = T ∗2 (Ei). This is clearly describable by an instrument and conversely, for
every instrument I we can simply construct

T (ρ) :=
d∑

i=1

Ii(ρ)⊗ |i〉〈i|,

which shows that the two viewpoints are equivalent.

Proposition 1 (Reduction to symmetric channels). Let G be the group gene-
rated by all diagonal unitaries and permutation matrices in Md. If ∆ and δ
satisfy Assumptions 1 and 2, respectively, the optimal tradeoff between them
can be attained within the set of channels T :Md →Md ⊗Md for which

(U ⊗ U)T
(
U∗ρU

)
(U ⊗ U)∗ = T (ρ) ∀U ∈ G, ρ ∈ Sd. (6)
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Proof. We will show that for an arbitrary channel T , which does not necessarily
satisfy Eq. (6), the symmetrization

T̄ :=

∫

G

(U ⊗ U)T
(
U∗ · U

)
(U ⊗ U)∗ dU

w.r.t. the Haar measure of G performs at least as well as T . Let T̄1 and T̄2 be
the marginals of T̄ . Then

∆
(
T̄1

)
= ∆

(∫

G

UT1

(
U∗ · U

)
U∗ dU

)

(1b)

≤
∫

G

∆
(
UT1

(
U∗ · U

)
U∗
)

dU
(1c)
= ∆(T1),

where the used assumption is indicated above the (in-)equality sign. Similarly,
we obtain

δ

[(
T̄ ∗2
(
|i〉〈i|

))d
i=1

]
(2b)

≤
∫

G

δ

[(
U∗T ∗2

(
U |i〉〈i|U∗

)
U
)d
i=1

]
dU

(2d)
=

∫

G

δ

[(
U∗πT

∗
2

(
|π(i)〉〈π(i)|

)
Uπ

)d
i=1

]
dU

(2c)
= δ

[(
T ∗2
(
|i〉〈i|

))d
i=1

]
,

where we have used that every U ∈ G can be written as U = UπD, where Uπ
is a permutation and D a diagonal unitary, both depending on U .

Consequently, when replacing T by its symmetrization T̄ , which satisfies
Eq. (6) by construction, neither ∆ nor δ is increasing. �

Lemma 1 (Structure of marginals of symmetric channels). Let G be the group
generated by all diagonal unitaries and permutation matrices in Md and Φ :
Md →Md a quantum channel. Then the following are equivalent:

(1) Φ(ρ) = UΦ
(
U∗ρU

)
U∗ ∀U ∈ G, ρ ∈ Sd.

(2) There are α, β, γ ∈ R with α + β + γ = 1 so that

Φ = α tr [·] 1
d

+ β id + γ
d∑

i=1

|i〉〈i|〈i| · |i〉. (7)

Proof. (2) ⇒ (1) can be seen by direct inspection. In order to prove the con-
verse, we consider the Jamiolkowski-state (= normalized Choi-matrix) JΦ :=
1
d

∑d
i,j=1 Φ

(
|i〉〈j|

)
⊗ |i〉〈j|. Then (1) is equivalent to the statement that JΦ

commutes with all unitaries of the form U ⊗ Ū , U ∈ G. Considering for the
moment only the subgroup of diagonal unitaries, this requires that

〈ij|JΦ|kl〉 = (2π)−d
∫ 2π

0

. . .

∫ 2π

0

ei(ϕi−ϕj−ϕk+ϕl)〈ij|JΦ|kl〉 dϕ1 . . . dϕd,
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which vanishes unless (i = j ∧ k = l) ∨ (i = k ∧ j = l). Hence, there are
A,B ∈Md such that

JΦ =
d∑

i,j=1

Aij|i〉〈i| ⊗ |j〉〈j|+Bij|i〉〈j| ⊗ |i〉〈j|.

Next, we will exploit that JΦ commutes in addition with permutations of the
form Uπ ⊗ Uπ for all π ∈ Sd. For i 6= j this implies that Ai,j = Aπ(i),π(j) and
Bi,j = Bπ(i),π(j) so that there is only one independent off-diagonal element for
each A and B. The case i = j leads to a third parameter that is a coefficient in
front of

∑
i |ii〉〈ii|. Translating this back to the level of quantum channels then

yields Eq. (7). The coefficients are real and sum up to one since Φ preserves
hermiticity as well as the trace. �

If T is symmetric as in Prop. 1, then both marginal channels T1 and T2 are
of the form derived in the previous Lemma. That is, each Ti, i ∈ {1, 2}, is
specified by three parameters αi, βi, γi only two of which are independent.

The following Lemma shows that under Assumption 2 the error measure δ
depends only on α2 and does so in a non-decreasing way.

Lemma 2. Let δ satisfy Assumption 2. There is a non-decreasing function
δ̂ : [0, 1] → [0,∞] s.t. for all T2 : Md → Md of the form in Eq. (7) with

coefficients α2, β2, γ2 we have δ
[(
T ∗2 (|i〉〈i|)

)d
i=1

]
= δ̂(α2).

Proof. The statement follows from convexity of δ together with the observation
that β and γ only contribute jointly to δ and not individually. This is seen by
composing T2 with the projection onto the diagonal. This leads to a channel
of the same form, but possibly different parameters. On the level of the latter
the composition corresponds to (α2, β2, γ2) 7→ (α2, 0, β2 + γ2). The distance
measure δ, however, does not change in this process and thus depends only
on the sum β2 + γ2 and not on those two parameters individually. As this
sum equals 1− α2 we see that δ can be regarded as a function of α2 only. We
formally denote this function by δ̂. Assumption (2b) then implies that δ̂ is

convex. As it is in addition positive and satisfies δ̂(0) = 0 by Assumption (2a),

we get that δ̂ is non-decreasing. �
For later investigation, it is useful to decompose the JΦ that corresponds to

Eq. (7) into its spectral projections:

JΦ = aPa + bPb + cPc, where Pa := 1−
d∑

i=1

|ii〉〈ii|,

Pb :=
1

d

d∑

i,j=1

|ii〉〈jj|, Pc :=
d∑

i=1

|ii〉〈ii| − Pb. (8)

The coefficients a, b, c are the eigenvalues of JΦ (and thus non-negative) and
related to α, β, γ via α = d2a, β = b − c, γ = d(c − a). When considering

99



10 HASHAGEN AND WOLF

symmetric T , we will label the eigenvalues of JTi with a subscript i ∈ {1, 2} to
distinguish the two marginals.

Since the P ’s are mutually orthogonal projectors, we can obtain the eigen-
values from their expectation values. That is,

x1 =
tr [(Px ⊗ 1)JT ]

tr [Px]
and x2 =

tr [(1⊗ Px)JT ]

tr [Px]
, x ∈ {a, b, c}. (9)

If we are aiming at identifying a subset of optimal channels, we can, according
to Lemma 2, w.l.o.g. use a2 as δ. Due to the monotonic relation between the
two, optimality for one implies optimality for the other. The question we are
going to address in the next step of the argumentation is then: which values of
a1, b1 and c1 are consistent with a given value of a2? After all, due to Prop. 1,
∆ and δ will be functions of those parameters only. Thus, we would like to
know which is the accessible region in the space of these parameters, when we
vary JT over the set of all density matrices.

We tackle this question using an operator algebraic point of view: the opera-
tors 1⊗Pa, Px⊗1 together with the identity operator generate a von Neumann
algebra A on which JT acts as a state, i.e., as a normalized positive linear
functional. This suggests the use of a von Neumann algebra isomorphism that
simplifies the representation. To this end, we observe that A is generated by
the following operators:

1d3 =: 1d ⊗
d∑

i=1

|ii〉〈ii| =:

d∑

i,j=1

|ii〉〈jj| ⊗ 1d =:
d∑

i=1

|ii〉〈ii| ⊗ 1d =:

The introduced diagrammatic notation turns out be useful as it reflects that
these operators are what one may call contraction tensors.2 If we view an
element inMd⊗Md⊗Md as a tensor with three left and three right indices,
then the diagrammatic notation indicates which of these indices get contracted
together—by connecting them. Taking products of pairs of these four operators
generates (up to scalar multiples, which arise from closed loops) three new
contraction tensors:

:= , := , := .

The set of these seven tensors is, however, closed under multiplication (again
ignoring scalar multiples). This is easily verified by using the diagrammatic
notation and going through all cases. This observation is the core for con-
structing a simplifying isomorphism:

2Please note that these diagrams are not braid diagrams, but rather diagrammatically
represent contraction tensors.

100



INFORMATION-DISTURBANCE TRADEOFF 11

Lemma 3 (Isomorphic representation). Let A be the von Neumann algebra
that is generated by the set {1d3 ,1d ⊗ Pa, Pa ⊗ 1d, Pb ⊗ 1d, Pc ⊗ 1d}. A unital
map ι : A →M2 ⊕C3 defined by

ι : 7→ d|e1〉〈e1| ι : 7→ |e2〉〈e2| (10)

ι : 7→ 12 ⊕ f2 ι : 7→ |e2〉〈e2| ⊕ f1 (11)

is an isomorphism if |e1〉, |e2〉 constitute unit vectors with |〈e1|e2〉|2 = 1/d in
the space of the non-abelian part (i.e., the corresponding projections as well as
12 are in M2) and f1 := (1, 0, 0), f2 := (0, 1, 0) are elements of the abelian
part.3

Proof. A is generated by the above set of seven contraction tensors. Since
this set is closed under multiplication, ∗-operation and contains linear inde-
pendent elements, we have dim(A) = 7. Moreover, A is non-commutative
since [ , ] 6= 0. From the representation theory of finite-dimensional von
Neumann algebras we known that every 7-dimensional non-commutative von
Neumann algebra is isomorphic to M2 ⊕ C3 [30, Thm. 5.6]. Hence, we can
establish an isomorphism ι by representing a generating set of A inM2⊕C3.
Due to unitality ι(1d3) = 12 ⊕ (1, 1, 1) has to hold. Moreover, since ,
are (proportional to) non-commuting minimal projectors in A, they need to
be the same in M2 ⊕ C3. Taking proportionality factors into account, this
determines Eq. (10) and requires |〈e1|e2〉|2 = 1/d in order to be consistent
with the value of the trace tr [ ]. From = and = we see
that ι( ) acts as identity on M2. Similarly, ι( ), when restricted to M2,
has to be a projector that is not the identity and has |e2〉 as eigenvector (due
to = ). This determines Eq. (11) when restricted to M2. Moreover,
sinceM2⊕C3 has to be generated, both ι( ) and ι( ) have to have non-zero
parts on the abelian side. Since they are projectors, these parts need to be
projectors as well. Finally, they have to be one-dimensional since otherwise
the identity operator would become linearly dependent. �

Using this Lemma we can now express the accessible region within the space
of parameters α1, β1, γ1, α2 by varying over all states on M2 ⊕C3, instead of
over all states JT on Md3 . To this end, we just have to unravel the linear
maps from the parameters to the eigenvalues a1, b1, c1, a2, to the P ’s, to the
contraction tensors, and finally to their representation in M2 ⊕ C3. In this
way, we obtain:

Corollary 1. There exists a channel T :Md →Md⊗Md with corresponding
Jamiolkowski state JT whose marginals give rise to the parameters α1, β1 and

3Here we regard C3 as space M1 ⊕M1 ⊕M1 of diagonal matrices in M3.
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12 HASHAGEN AND WOLF

a2 iff there exists a state % on M2 ⊕C3 such that

α1 =
d

d− 1

(
1− tr [12%]− tr [f2%]

)
, (12)

β1 = 〈e1|%|e1〉 −
1

d− 1

(
tr [12%] + tr [f2%]− 〈e1|%|e1〉

)
, (13)

a2 =
(
1− 〈e2|%|e2〉 − tr [f1%]

)
/(d2 − d), (14)

where C3 is regarded as space of diagonal 3 × 3 matrices and e1, e2, f1, f2 are
as in Lemma 3.

The proof of this corollary can be found in the appendix.
There is still unitary freedom in the choice of the vectors e1, e2. We utilize

this and set

〈e1|σy|e1〉 = 〈e2|σy|e2〉 = 0 and |e2〉〈e2| =
1

2
(12 + σx), (15)

where the σi’s are the usual Pauli matrices. So in particular, we choose the
vectors such that the corresponding projectors lie in an equatorial plane of the
Bloch sphere that is characterized by density matrices with real entries.

In order to simplify the problem further, we now focus more explicitly on
minimizing a2:

Proposition 2 (Reduction to the unit cone). Under the constraints given by
Eqs. (12 – 15), the minimum value for a2 for arbitrary fixed values of α1, β1

that is achievable by varying over all states % is attained for a state of the form

% =
1

2

(
(1− z)12 + xσx + yσz

)
⊕ (z, 0, 0), (16)

where (x, y, z) ∈ R3 is an element of the envelope of the unit cone, i.e., z ∈
[0, 1], x2 + y2 = (1− z)2.

Proof. We simplify the structure of % in four steps, each of which eliminates one
parameter. First, note that we can assume tr [f3%] = 0, where f3 is the diagonal
matrix (0, 0, 1). This is seen by considering the map % 7→ % + tr [f3%] (f1 −
f3), which decreases a2, sets the f3-component to zero, but leaves α1 and β1

unchanged.
Second, we claim that the f2-component can be set to zero, as well. To this

end, consider the map % 7→ %+ tr [f2%] (|e⊥1 〉〈e⊥1 |−f2) where e⊥1 is a unit vector
in C2 that is orthogonal to e1. By construction, this sets the f2-component
to zero, decreases a2 and leaves α1 and β1 invariant. Taken together with the
first step, this already shows that the abelian part of % can be assumed to be
of the form (z, 0, 0) for some z ∈ [0, 1].

Third, observe that the σy-component of the non-abelian part of % does not
enter any of the equations so that we can as well set it to zero and thus assume
that, restricted toM2, % lies in the ’real’ equatorial plane of the Bloch sphere.

Taking positivity and normalization into account, Eq. (16) summarizes these
findings, so far with x2 + y2 ≤ (1− z)2. What remains to show is that equality
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can be assumed, here. Let v1, v2, w ∈ R3 be the Bloch vectors of e1, e2 and
%, respectively. Suppose ||w||2 < 1, which corresponds to a point that does
not lie on the envelope of the cone and let v⊥1 ∈ R3 be a unit vector in the
equatorial plane that is orthogonal to v1. Then the map w 7→ w + εv⊥1 , for
sufficiently small ε of the right sign, leaves α1 and β2 unchanged, but decreases
a2. Hence, we can choose ε so that the Bloch vector reaches unit norm, which
completes the proof of the proposition. �

x

z

1

1

v2

v1

Figure 1. Sketch of the unit cone used in the construction
of the proof in Prop. 2. The orange parabola corresponds to
a fixed value of δ and the optimal device is contained within
its boundary; its location depends on the chosen disturbance
distance measure ∆.

This completes the list of ingredients that are needed for the main theorem
of this section:

Theorem 1 ((Almost universal) optimal devices). Let ∆ and δ be distance-
measures for quantifying disturbance and measurement-error that satisfy As-
sumptions 1 and 2, respectively. Then the optimal ∆ − δ-tradeoff is attained
within the following two-parameter family of quantum channels:

T (ρ) :=
d∑

i=1

[
z〈i|ρ|i〉1d − |i〉〈i|

d− 1
+ (1− z)KiρKi

]
⊗ |i〉〈i|, (17)

Ki := µ1d + ν|i〉〈i|,
where z ∈ [0, 1] and µ, ν ∈ R are constrained by imposing T to be trace preser-
ving.

Proof. What remains to do is to translate the two-parameter family of Eq. (16)
into the world of channels. It suffices to consider the cases in which either
z = 0 or z = 1 since these generate the general case by convex combination.
In both cases the relevant von Neumann algebra is a factor on which the dual
of ι becomes its inverse, up to a multiplicity factor. This means, we have to
compute ι−1(%) and show that it equals JT when normalized.
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14 HASHAGEN AND WOLF

If z = 1, this is readily verified since in this case % = f1 for which Eqs. (10,11)
give

ι−1(%) = − =
d∑

i=1

(
1d − |i〉〈i|

)
⊗ |ii〉〈ii|.

If z = 0 then % is a rank-one projection within the real algebra generated by
the projections onto |e1〉 and |e2〉. That is,

% = µ2|e1〉〈e1|+
ν2

d
|e2〉〈e2|+ τ

(
|e1〉〈e2|+ |e2〉〈e1|

)
,

for some τ, µ, ν ∈ R. Having rank one requires vanishing determinant, which
fixes τ 2 = µ2ν2/d while the remaining two parameters are constrained by the

normalization tr [%] = 1. Please note that we choose τ = µν/
√
d, since µ ∈ R,

which thus includes the other case. Exploiting that ι−1 is again an isomorphism
and that for instance |e1〉〈e2| =

√
d|e1〉〈e1| · |e2〉〈e2|, we obtain

ι−1(%) =
1

d

[
µ2 + ν2 + µν

(
+

)]

=
1

d

d∑

i,k,l=1

Ki|k〉〈l|Ki ⊗ |k〉〈l| ⊗ |i〉〈i|,

which is, up to normalization, indeed the Choi matrix of the claimed channel.
�

In the following section we will see that for many common disturbance me-
asures ∆, in fact, one more parameter can be eliminated: z = 0 turns out to
be optimal if ∆ is for instance constructed from the average-case or worst-case
fidelity, the worst-case Schatten 1 − 1-norm or the diamond norm. This may
not come as a surprise since a look at Eq. (12) reveals that for channels that
correspond to elements of the unit cone we have

α1 =
d

d− 1
z. (18)

In other words, the contribution of the completely depolarizing channel to T1

vanishes iff z = 0. This raises the question whether z = 0 is generally optimal
under Assumptions 1 and 2. The following construction, whose only purpose
is to enable the argument, shows that this is not true. Hence, without adding
further assumptions about the distance measures (in particular about ∆) no
further reduction is possible. On the set of quantum channels onMd we define

∆̂(Φ) := sup
||ψ||=1

〈ψ|Φ
(
|ψ〉〈ψ|

)
|ψ〉 − inf

||ϕ||=1
〈ϕ|Φ

(
|ϕ〉〈ϕ|

)
|ϕ〉.

This particular example yields zero disturbance for the depolarizing channel,
and thus allows to show that z = 0 is not true in general.

Lemma 4. ∆̂ satisfies Assumption 1.
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Proof. Evidently, ∆̂(id) = 0 and ∆̂ is basis-independent. Convexity follows

from the fact that ∆̂ is a supremum over linear functionals. �
Corollary 2 (Necessity of the second parameter). Let δ be any error-measure
that satisfies Assumption 2 and that is faithful in the sense that δ = 0 implies
a perfect measurement. Then the optimal ∆̂ − δ-tradeoff cannot be attained
within the family of channels in Eq. (17) with z = 0.

Proof. Consider δ = 0 in the ∆̂ − δ-plane. Within the full set of channels in
Eq. (17) there is one that attains δ = 0 while T1(·) = tr [·]1/d, by choosing

µ = 0, ν = 1 and z = (d− 1)/d. The latter implies ∆̂(T1) = 0. However, if we
restrict ourselves to channels with z = 0, then the unique channel in Eq. (17)

that achieves δ = 0 has T1(·) =
∑

i〈i| · |i〉|i〉〈i| for which clearly ∆̂(T1) > 0. �

Clearly, ∆̂ is not a ’natural’ disturbance measure. For instance, it has the
somewhat odd property that it vanishes for the ideal channel as well as for
the projection onto the maximally mixed state. In particular, it is not faithful.
Note, however, that adding the latter as an additional requirement to Assump-
tion 1, would still not allow to eliminate the parameter z. In order to construct
a new counterexample, we could just consider Φ 7→ ∆̂(Φ) + ε||Φ− id||�. This
would be faithful and satisfy Assumption 1 for any ε > 0, but for sufficiently
small ε, the minimum ∆-value for δ = 0 would, by continuity, again not be
attainable for z = 0.

5. Optimal tradeoffs

In this section we will continue considering non-degenerate von Neumann
measurements and exploit the universality theorem of the previous section
in order to explicitly compute the optimal tradeoff for a variety of worst-case
distance measures. We first discuss the total variational distance as a paradigm
for the measurement error δ and then the fidelity and trace-norm as means for
quantifying disturbance.

5.1. Total variation. We saw in Lemma 2 that all functionals quantifying the
measurement error consistent with Assumption 2 are non-decreasing functions
of the parameter α2. In the following, we want to make this dependence explicit
for one case that we regard as the most important one from an operational
point of view — the worst-case total variational distance. Given two finite
probability distributions p and p′, their total variational distance is given by

||p− p′||TV :=
1

2
||p− p′||1 =

1

2

∑

i

|pi − p′i|. (19)

The significance of this distance stems from the fact that it displays the largest
possible difference in probabilities that the two distributions assign to the same
event. In our context the two probability distributions arise from an ideal and
an approximate measurement on a quantum state. As ||p− p′||TV has itself a
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’worst-case interpretation’ it is natural to also consider the worst case w.r.t.
all quantum states and use the resulting functional as δ. That is,

δTV (E ′) = sup
ρ

1

2

∑

i

∣∣tr [E ′iρ]− 〈i|ρ|i〉
∣∣. (20)

If E ′i = T ∗2 (|i〉〈i|) with T2 of the form in Eq. (7) so that we can regard δTV as

a function of α2, we will write δ̂TV (α2).

Lemma 5 (Total variational distance). In the symmetric setting discussed
above, the worst-case total variational distance, regarded as a function of α2, is
given by δ̂TV (α2) = α2(1−1/d). Furthermore, if an instrument is parametrized
by the unit cone coordinates of Eq. (16), then it leads to a worst-case total
variational distance of (1− z − x)/2.

Proof. Inserting E ′i = T ∗2 (|i〉〈i|) = α21/d+(1−α2)|i〉〈i| into Eq. (20) we obtain

δ̂(α2) = α2 sup
ρ

1

2

∑

i

∣∣tr
[
ρ
(
1/d− |i〉〈i|

)]∣∣

= α2

(
1− 1

d

)
,

where the supremum is computed by first realizing that diagonal ρ’s (i.e.,
classical probability distributions) suffice and then noting that convexity of
the l1-norm allows to restrict to the extreme points of the simplex of classical
distributions, which all lead to the same, stated value.

The δTV -value of an instrument parametrized by the coordinates of the unit
cone can then be obtained from Eq. (14) when using that α2 = d2a2. �

An alternative way of quantifying the measurement error would be the worst-
case l∞-distance between the two probability distributions p and p′. In the
present context, this measure turns out to have exactly the same value since

sup
ρ

max
i

∣∣∣tr [E ′iρ]− 〈i|ρ|i〉
∣∣∣ = max

i

∣∣∣∣E ′i − |i〉〈i|
∣∣∣∣
∞

= α2

∣∣∣∣1/d− |i〉〈i|
∣∣∣∣
∞ = α2

(
1− 1

d

)
.

5.2. Worst-case fidelity. We consider the worst-case fidelity of a channel
T1 :Md →Md

f := inf
||ψ||=1

〈ψ|T1

(
|ψ〉〈ψ|

)
|ψ〉, (21)

which is equal to infρ F
(
T1(ρ), ρ

)2
due to joint concavity of the fidelity. The

following states the optimal ’information-disturbance tradeoff’ between f and
the total variational distance:
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Theorem 2 (Total variation - fidelity tradeoff). Consider a non-degenerate
von Neumann measurement, given by an orthonormal basis in Cd, and an in-
strument with d corresponding outcomes. Then the worst-case total variational
distance δTV and the worst-case fidelity f satisfy

δTV ≥
{

1
d

∣∣∣
√
f(d− 1)−√1− f

∣∣∣
2

if f ≥ 1
d
,

0 if f ≤ 1
d
.

(22)

The inequality is tight and equality is attainable within the one-parameter fa-
mily of instruments in Eq. (2) with z = 0.

Proof. We exploit that the optimal tradeoff is attainable for symmetric chan-
nels (Prop. 1) whose marginal is given in Eq. (7). Inserting this into the
worst-case fidelity in Eq. (21) we obtain

f = min
||ψ||=1

(
α1

d
+ β1 + γ1

d∑

i=1

|〈ψ|i〉|4
)

=
α1

d
+ β1 +

{
γ1
d

if γ1 ≥ 0,
γ1 if γ1 < 0.

(23)

Using Eqs. (12,13) together with γ1 = 1−α1−β1 we can express this in terms
of the state %. From the proof of Prop. 2 we know in addition that we can
w.l.o.g. assume that tr [%f2] = 0 and tr [12%] = 1 − tr [%f1]. In this way, we
obtain

f = min{1− tr [%f1] , 〈e1|%|e1〉+ tr [%f1] /d}. (24)

We aim at maximizing Eq. (24) for each value of the total variational distance,
which by Lemma 5 and Eq. (14) can be expressed as

δTV = 1− 〈e2|%|e2〉 − tr [%f1] .

Considering the map % 7→ %+ε|e2〉〈e2|−εf1, ε ≥ 0, under which δTV is constant
and f non-decreasing, we see that tr [%f1] = 0 can be assumed. That is, z = 0
is indeed sufficient for the optimal tradeoff.

The remaining optimization problem can be solved in the equatorial plane of
the Bloch sphere, where %, |e2〉〈e2| and |e1〉〈e1| are represented by Bloch vectors
(x, y) =: w, (1, 0) and (2/d − 1, 2

√
d− 1/d) =: v, respectively. Minimizing

δTV = (1− x)/2 under the constraints

f ≤ 1

2

(
1 + 〈w, v〉

)
, 〈w,w〉 = 1,

then amounts to a quadratic problem whose solution is stated in Eq. (22). �

5.3. Average-case fidelity. One prominent example of an average-case me-
asure is the average-case fidelity of a quantum channel T1 :Md →Md

f̄ :=

∫

‖ψ‖=1

〈ψ|T1(|ψ〉〈ψ|)|ψ〉 dψ. (25)
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The following theorem gives the optimal ’information-disturbance tradeoff’
between the average-case fidelity and the worst-case total variational distance:

Theorem 3 (Total variation - average fidelity tradeoff). Consider a non-
degenerate von Neumann measurement, given by an orthonormal basis in Cd,
and an instrument with d corresponding outcomes. Then the worst-case total
variational distance δTV and the average-case fidelity f̄ satisfy

δTV ≥
{

1
d

∣∣∣
√(

f̄ − 1
d+1

)
d2−1
d
−
√(

1− f̄
)
d+1
d

∣∣∣
2

if f̄ ≥ 2
d+1

,

0 if f̄ ≤ 2
d+1

.
(26)

The inequality is tight and equality is attainable within the one-parameter fa-
mily of instruments in Eq. (2) with z = 0.

Proof. We again use the fact that the optimal tradeoff is attainable for symme-
tric channels by Prop. 1 and its marginal is given in Eq. (7). The average-case
fidelity given in Eq. (25) therefore yields

f̄ =

∫

‖ψ‖=1

〈ψ|
(
α1
1

d
+ β1|ψ〉〈ψ|+ γ1

d∑

i=1

|i〉〈i|〈i|ψ〉〈ψ|i〉
)
|ψ〉 dψ

=
α1

d
+ β1 + γ1

d∑

i=1

∫

‖ψ‖=1

〈ψ|i〉〈i|ψ〉〈i|ψ〉〈ψ|i〉 dψ.

The integral can be rewritten to give
∫

‖ψ‖=1

〈ψ ⊗ ψ| (|i〉〈i| ⊗ |i〉〈i|) |ψ ⊗ ψ〉 dψ

=

∫

U(d)

〈00| (U ⊗ U) (|i〉〈i| ⊗ |i〉〈i|) (U ⊗ U)∗ |00〉 dU

= 〈00| 1+ F

d(d+ 1)
|00〉

=
2

d(d+ 1)
,

where F is the flip operator defined as F|ij〉 = |ji〉 and dU denotes the nor-
malized Haar measure on the unitary group U(d) acting on Cd. Together with
γ1 = 1− α1 − β1, this gives an average fidelity

f̄ =
2

d+ 1
− α1

d− 1

d(d+ 1)
+ β1

d− 1

d+ 1
.

Using Eqs. (12,13) we can express this in terms of the state %. We can again
w.l.o.g. assume that tr [%f2] = 0 and tr [12%] = 1 − tr [%f1] from the proof of
Prop. 2. Therefore, we obtain

f̄ =
1

d+ 1
(1 + d〈e1|%|e1〉) . (27)
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We would like to maximize Eq. (27) for each value of the worst-case total
variational distance, which by Lemma 5 and Eq. (14) is

δTV = 1− 〈e2|%|e2〉 − tr [%f1] .

Similarly to the worst-case fidelity, we can again consider the map % 7→ % +
ε|e2〉〈e2| − εf1, ε ≥ 0, under which δTV is constant and f̄ non-decreasing, such
that tr [%f1] = 0 can be assumed. That is, z = 0 is sufficient for the optimal
tradeoff.

The remaining optimization problem can be solved by realizing that (f̄(d+
1) − 1)/d = 〈e1|%|e1〉 and using the solution to the quadratic problem stated
and solved in the worst-case fidelity tradeoff. This yields the solution stated
in Eq. (26). �
5.4. Trace norm. The analogue of the total variational distance for density
operators is (up to a factor of 2) the trace norm distance. The corresponding
distance between a channel T1 and the identity map is then given by half of
the 1-to-1-norm distance

∆TV (T1) :=
1

2
sup
ρ
||T1(ρ)− ρ||1, (28)

where the supremum is taken over all density operators. ∆TV quantifies how
well T1 can be distinguished from id in a statistical experiment, if no ancillary
system is allowed. For the two-parameter family of channels in Eq. (7) ∆TV

turns out to be a function of the worst-case fidelity f , which was defined in
Eq. (21). This is in contrast to the case of general channels, which merely
satisfy the Fuchs-van de Graaf inequalities

1− f ≤ ∆TV ≤
√

1− f. (29)

Lemma 6. For every channel of the form in Eq. (7), we have ∆TV = 1− f .

Proof. Due to convexity of the norm we can restrict the supremum in Eq. (28)
to pure state density operators. The resulting operator T1

(
|ψ〉〈ψ|

)
− |ψ〉〈ψ|

then has a single negative eigenvalue and vanishing trace. Hence, the trace-
norm is twice the operator norm and we can write

∆TV (T1) = max
||ψ||=||φ||=1

〈φ|
[
|ψ〉〈ψ| − T1

(
|ψ〉〈ψ|

)]
|φ〉 (30)

= max
||ψ||=||φ||=1

[
(1− β1)|〈ψ|φ〉|2 − α1

d
− γ1

d∑

i=1

|〈φ|i〉|2|〈ψ|i〉|2
]

= max
||ψ||=||φ||=1

〈ψ ⊗ φ|R|ψ ⊗ φ〉 − α1

d
,

R := (1− β1)F− γ1

d∑

i=1

|ii〉〈ii|.

Our aim is to prove that the maximum in Eq. (30) is attained for ψ = φ
since then the Lemma follows from the definition of the worst-case fidelity f .
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In order to achieve this, we exploit the symmetry properties of R, which is
block-diagonal w.r.t. the decomposition of Cd ⊗Cd into symmetric and anti-
symmetric subspace. Moreover, if we denote by P+ := (1+F)/2 the projector
onto the symmetric subspace, then R ≤ P+RP+. Defining S as the set of
separable density operators and utilizing its convexity, we obtain

max
||ψ||=||φ||=1

〈ψ ⊗ φ|R|ψ ⊗ φ〉 = max
ρ∈S

tr [Rρ] ≤ max
ρ∈S

tr [RP+ρP+]

= max
ρ∈P+SP+

tr [Rρ]

= max
||ψ||=1

〈ψ ⊗ ψ|R|ψ ⊗ ψ〉,

where the last step follows from the fact that the extreme points of the convex
set P+SP+ are pure, symmetric product states. �

Due to Prop. 1 we can now plug the previous Lemma into Thm. 2 and
obtain:

Corollary 3 (Total variation - trace norm tradeoff). Consider a non-degenerate
von Neumann measurement, given by an orthonormal basis in Cd, and an in-
strument with d corresponding outcomes. Then the worst-case total variational
distance δTV and its trace-norm analogue ∆TV satisfy

δTV ≥
{

1
d

∣∣∣
√

(1−∆TV )(d− 1)−√∆TV

∣∣∣
2

if ∆TV ≤ 1− 1
d
,

0 if ∆TV ≥ 1− 1
d
.

(31)

The inequality is tight and equality is attainable within the one-parameter fa-
mily of instruments in Eq. (2) with z = 0.

5.5. Diamond norm. We treat the diamond norm separately, not only be-
cause it might be the operationally most relevant measure, but also because the
corresponding tradeoff result will be proven in a more general setting: we will
allow the target measurement to be a von Neumann measurement that may be
degenerate. We will see that degeneracy, even if it varies among the measure-
ment outcomes, does not affect the optimal tradeoff curve if the diamond norm
is considered. For general distance measures ∆ that satisfy Assumption 1 we
do not expect this result to be true since, loosely speaking, they typically be-
have less benign w.r.t. extending the system than the diamond norm. Hence,
assigning different dimensions to different measurement outcomes may, in ge-
neral, affect the optimal information-disturbance relation. Before we prove
that this is not the case for the tradeoff between the diamond norm and its
classical counterpart, the total variational distance, let us recall its definition
and basic properties.

For a hermiticity-preserving map Φ :Md →Md′ we define

||Φ||� := sup
ρ
||(Φ⊗ idd)(ρ)||1, (32)
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where the supremum is taken over all density operators in Md2 , which by
convexity may be assumed to be pure. For a quantum channel T1 :Md →Md

we then define

∆�(T1) := ||T1 − idd||�. (33)

∆�(T1) quantifies how well T1 can be distinguished from the identity channel
id in a statistical experiment, when arbitrary preparations, measurements and
ancillary systems are allowed. There are two crucial properties of the diamond
norm that we will exploit: 1) Monotonicity: for any quantum channel Ψ,
neither ||Ψ ◦ Φ||� nor ||Φ ◦ Ψ||� can be larger than ||Φ||�. 2) Tensor stability:
in particular, ||Φ⊗ id||� = ||Φ||�.
Lemma 7 (Dimension-independence of optimal tradeoff curve). Consider a
von Neumann measurement with m outcomes, corresponding to m mutually
orthogonal, non-zero projections of possibly different dimensions, as target.
Then the optimal ∆� − δTV -tradeoff depends only on m and is independent of
the dimensions of the projections.

Proof. Let (d1, . . . , dm) ∈ Nm be the dimensions of the projections (i.e., the
dimensions of their ranges) and assume w.l.o.g. that dm is the largest among
them. We will consider three changes of those dimensions, namely

(1, . . . , 1)→ (dm . . . , dm)→ (d1, . . . , dm)→ (1, . . . , 1), (34)

and show that in each of those three steps the accessible region in the ∆�−δTV -
plane can only grow or stay the same. Since Eq. (34) describes a full circle,
this means that the region, indeed, stays the same, which proves the claim of
the Lemma.

For the starting point in Eq. (34) we consider an arbitrary instrument(
Ii : Mm → Mm

)m
i=1

that is supposed to approximate a von Neumann
measurement given by (|i〉〈i|)mi=1. From here, we construct an instrument
that approximates (|i〉〈i| ⊗ 1dm)mi=1 simply by taking Ii ⊗ iddm =: Ĩi. Then
∆�
(∑

i Ĩi
)

= ∆�
(∑

i Ii
)

holds due to the tensor stability of the diamond
norm and

sup
ρ

m∑

i=1

∣∣∣tr
[
ρ
(
Ĩ∗i (1)− |i〉〈i| ⊗ 1dm

)] ∣∣∣

= sup
ρ

m∑

i=1

∣∣∣tr
[
ρ
((
I∗i (1)− |i〉〈i|

)
⊗ 1dm

)] ∣∣∣

= sup
ρ

m∑

i=1

∣∣∣tr
[
ρ
(
I∗i (1)− |i〉〈i|

)] ∣∣∣

shows that the value of δTV is preserved, as well.
Second and third step in Eq. (34) can be treated at once by realizing that in

both cases the dimensions are pointwise non-increasing. So let us consider this
scenario in general. Denote the projections corresponding to two von Neumann
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measurements by Qi ∈ MD and Q̃i ∈ MD̃ and assume that tr [Qi] =: di ≥
d̃i := tr

[
Q̃i

]
. Let Ii : MD → MD be the elements of an instrument that

approximates the measurement in the larger space. In order to construct an
instrument in the smaller space that is at least as good w.r.t. ∆� and δ, we
introduce two isometries V and W as

V : CD̃ → CD s.t. V ∗QiV = Q̃i

W : CD → Ck ⊗CD̃ s.t. ∀i ∈ {1, . . . , D̃} : WV |i〉 = |1〉 ⊗ |i〉,
where {|i〉}i is an orthonormal basis in CD̃ and k ∈ N is sufficiently large so
that W can be an isometry. The sought instrument in the smaller space can
then be defined as

Ĩi(ρ) := trCk

[
WIi

(
V ρV ∗

)
W ∗] ,

where trCk means the partial trace w.r.t. the first tensor factor. For the value
of ∆� we obtain∣∣∣
∣∣∣id−

∑

i

Ĩi

∣∣∣
∣∣∣
�

=
∣∣∣
∣∣∣trCk

[
WV · V ∗W ∗]− trCk

[
W
(∑

i

Ii
(
V · V ∗

))
W ∗
]∣∣∣
∣∣∣
�

≤
∣∣∣
∣∣∣V · V ∗ −

∑

i

Ii
(
V · V ∗

)∣∣∣
∣∣∣
�
≤
∣∣∣
∣∣∣id−

∑

i

Ii

∣∣∣
∣∣∣
�
,

where we have used the monotonicity property of the diamond norm twice.
Finally, using that Ĩ∗i (1) = V ∗I∗i (1)V we can show that also δTV is non-
increasing when moving to the smaller space since

sup
ρ

∑

i

∣∣∣tr
[
ρ
(
Ĩ∗i (1)− Q̃i

)]∣∣∣ = sup
ρ

∑

i

∣∣tr
[
V ρV ∗

(
I∗i (1)−Qi

)]∣∣

≤ sup
ρ

∑

i

∣∣tr
[
ρ
(
I∗i (1)−Qi

)]∣∣ ,

where the supremum in the first (second) line is taken over all density operators
in the smaller (larger) space. �
Theorem 4 (Total variation - diamond norm tradeoff). If an instrument is
considered approximating a (possibly degenerate) von Neumann measurement
with m outcomes, then the worst-case total variational distance δTV and the
diamond norm distance ∆� satisfy

δTV ≥
{

1
2m

(√
(2−∆�)(m− 1)−√∆�

)2

if ∆� ≤ 2− 2
m
,

0 if ∆� > 2− 2
m
.

(35)

The inequality is tight in the sense that for every choice of the von Neumann
measurement there is an instrument achieving equality.

Note: if the von Neumann measurement is non-degenerate, then equality
is again attainable within the one-parameter family of instruments in Eq. (2)
with z = 0. In the degenerate case, equality is attainable by such instruments
when suitably embedded, as it is done in the proof of Lemma 7.
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Figure 2. The optimal total variation - diamond norm tradeoff
for different numbers of measurement outcome.

Proof. Due to Lemma 7 we can assume that the von Neumann measurement
is non-degenerate and acts on a d = m dimensional Hilbert space. We will
prove that the accessible region stays the same when replacing ∆� with 2∆TV

so that the theorem follows from Cor. 3.
Since ∆� ≥ 2∆TV it suffices to show that this holds with equality for instru-

ments that achieve the optimal ∆TV − δTV curve. Due to Eq. (18) and Cor. 3
we can restrict ourselves to symmetric channels T1 of the form in Eq. (7) with

α1 = 0. With C(·) :=
∑d

i=1 |i〉〈i|〈i| · |i〉 and using that (1− β1) = γ1 we have

∆�(T1) = sup
||ψ||=1

∣∣∣∣(T1 ⊗ idd − idd2
)(
|ψ〉〈ψ|

)∣∣∣∣
1

= sup
||ψ||=1

γ1

∣∣∣∣|ψ〉〈ψ| −
(
C ⊗ idd

)(
|ψ〉〈ψ|

)∣∣∣∣
1

= 2γ1 sup
||ψ||=||φ||=1

|〈ψ|φ〉|2 − 〈φ|
(
C ⊗ idd

)(
|ψ〉〈ψ|

)
|φ〉

= 2γ1 sup
||ψ||=1

1− 〈ψ|
(
C ⊗ idd

)(
|ψ〉〈ψ|

)
|ψ〉,
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where the last two steps follow exactly the argumentation below Eq. (30). For

the remaining optimization problem we write |ψ〉 = (1d ⊗X)
∑d

i=1 |ii〉 where

X ∈Md is s.t.
∑d

i=1〈i|X∗X|i〉 = ||ψ||2 = 1. Then

〈ψ|
(
C ⊗ idd

)(
|ψ〉〈ψ|

)
|ψ〉 =

d∑

i=1

∣∣〈i|X∗X|i〉
∣∣2 ≥ 1

d

( d∑

i=1

〈i|X∗X|i〉
)2

=
1

d
,

where the inequality is an application of Cauchy-Schwarz. Consequently,

∆�(T1) ≤ 2γ1

(
1− 1

d

)
= 2∆TV (T1), (36)

where the last inequality uses that ∆TV = 1 − f by Lemma 6 and f = 1 −
γ(1− 1/d) by Eq. (23). As ∆� is also lower bounded by 2∆TV , equality has to
hold in Eq. (36), which completes the proof. �

Note that equality in Eq. (36) means that entanglement assistance does not
increase the distinguishability of the identity channel id and the channel T1.

6. SDPs for general POVMs

In this section, we consider the most general case, when the target measure-
ment E is given by an arbitrary POVM. It is then still possible to characterize
the achievable region in the ∆− δ-plane as the set of solutions to some SDP if
∆ and δ are convex semialgebraic. To this end, let us start with the definition
of semialgebraicity.

A semialgebraic set is a set S ⊆ Rn defined by a finite sequence of polynomial
equations and inequalities or any finite union of such sets. We mainly follow
[31, 32].

Definition 1 (Semialgebraic set [32, Definition 3.1.1]). A semialgebraic subset
of Rn is an element of the Boolean algebra of subsets of Rn which is generated
by the sets

{(x1, . . . , xn) ∈ Rn|p (x1, . . . , xn) > 0} , p ∈ R[X1, . . . , Xn], (37)

where R[X1, . . . , Xn] denotes the ring of real polynomials in the variables X1,
. . ., Xn.

From this definition, it is immediately clear that sets of the form

{(x1, . . . , xn) ∈ Rn|p (x1, . . . , xn) • 0} ,
where • ∈ {<,>,≤,≥,=, 6=}, p ∈ R[X1, . . . , Xn], are semialgebraic and that
the family of semialgebraic sets is closed under taking complements, finite
unions and finite intersections. Moreover, by the Tarski-Seidenberg principle
quantification over reals preserves the semialgebraic property [33, Appendix
1]:
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Theorem 5 (Tarski-Seidenberg, quantifier elimination [34, Thm. 1]). Given
a finite set {pi(x, z)}ki=1 of polynomial equalities and inequalities with variables
(x, z) ∈ Rn ×Rm and coefficients in Q. Let φ(x, z) be a Boolean combination
of the pi’s (using ∨, ∧ and ¬) and

Ψ(z) :=
(
Q1x1 . . . Qnxn : φ(x, z)

)
, Qj ∈ {∃,∀} . (38)

Then there exists a formula ψ(z) which is (i) a quantifier-free Boolean com-
bination of finitely many polynomial (in-)equalities with rational coefficients,
and (ii) equivalent in the sense

∀z :
(
ψ(z)⇔ Ψ(z)

)
. (39)

Moreover, there exists an effective algorithm which constructs the quantifier-
free equivalent ψ of any such formula Ψ.

Definition 2 (Semialgebraic function). Let Sk ⊆ Rnk be non-empty semialge-
braic sets, k = 1, 2. A function f : S1 → S2 is said to be semialgebraic if its
graph

{(x, z) ∈ S1 × S2|z = f(x)} (40)

is a semialgebraic subset of Rn1+n2.

Using the Tarski-Seidenberg principle, Thm. 5, it is also possible to prove
that the following functions, that are likely to appear in optimization problems,
are semialgebraic [32, Sec. 3.1]:

• Real polynomial functions are semialgebraic.
• Compositions of semialgebraic functions are semialgebraic. Let Sk ⊆
Rnk , k = 1, 2, 3, be semialgebraic sets and let f : S1 → S2 and g : S2 →
S3 be semialgebaric functions. Then their composition g ◦ f : S1 → S3

is semialgebraic.
• Let f : S1 → S2 be a semialgebraic function, and let A ⊆ S1 (resp. B ⊆
S2) be a semialgebraic set. Then f(A) (resp. f−1(B)) is semialgebraic.
• Finite sums and products of semialgebraic functions are semialgebraic.

Let f1, f2 : S1 → R be semialgebraic functions. Then f1 + f2, f1f2 :
S1 → R are semialgebraic.
• Let f1, f2 : S1 → R be semialgebraic functions. If f−1

2 ({0}) 6= S1, then
f1/f2 : S1\f−1

2 ({0})→ R is semialgebraic.
• Let MHerm

n denote the set of all Hermitian n × n-matrices, and for
H ∈ MHerm

n let λk(H), k ∈ {1, . . . , n}, denote the eigenvalues of H in
decreasing order. The functions λk(·) :MHerm

n → R are semialgebraic.
• The singular value functions σk : Cm×n → [0,∞), 1 ≤ k ≤ min{m,n}

are semialgebraic.

For the last point, we identify a subset of Cn with a subset of R2n by sepa-
rating the real and imaginary parts. Therefore, the notion of a semialgebraic
subset of Cm×n is well defined.

Furthermore, one can show the following regarding the supremum or infi-
mum of a function:

115



26 HASHAGEN AND WOLF

Lemma 8 ([32, Cor. 3.1.15]). Let Sk ⊆ Rnk be non-empty semialgebraic sets,

k = 1, 2, and f : S1 × S2 → R a semialgebraic function. Then f̂ , f̌ : S1 →
R ∪ {−∞,∞},

f̂(x) := sup
y∈S2

f(x, y) and (41)

f̌(x) := inf
y∈S2

f(x, y) (42)

are both semialgebraic.

Using the fact that singular value functions are semialgebraic, it is immedi-
ately possible to show the following corollary:

Corollary 4 ([32, Cor. 3.1.24]). The Schatten p-norms ‖·‖p : Cn×m → [0,∞)

are semialgebraic for all p ∈ [1,∞) ∩Q and p =∞.

Proof. Please see [32, Cor. 3.1.23 and 3.1.19] for a full proof. The main idea is
to establish that the function x 7→ xp/q, with x > 0 and p, q positive integers,
is semialgebraic. Its graph is

{
(x, z) ∈ R2

+

∣∣∣z = x
p
q

}

=
{

(x, z) ∈ R2
∣∣zq − xp = 0

}
∩R2

+,

which is semialgebraic. �
Corollary 5. The Schatten p-to-q norm-distances of a quantum channel Φ ∈
Td to the identity channel

Φ 7→ ||Φ− id||p→q,n := sup
ρ∈Sdn

||(Φ− id)⊗ idn(ρ)||q
||ρ||p

, n ∈ N,

are semialgebraic for all p, q ∈ [1,∞) ∩Q and p, q =∞.
The worst-case fidelity distance of a quantum channel Φ ∈ Td to the identity

channel

Φ 7→ inf
ρ∈Sd

F (Φ(ρ), ρ)2

is semialgebraic.
The worst-case lp-distances of a POVM E ′ ∈ Ed,m to the target POVM

E ∈ Ed,m
E ′ 7→ sup

ρ∈Sd
|| (tr[ρEi]− tr[ρE ′i])

m
i=1 ||p,

are semialgebraic for all p ∈ [1,∞) ∩Q and p =∞.

Proof. Given that the set of all quantum states is semialgebraic [34, Lemma
1], Cor. 4 together with Lemma 8 immediately yields the statements. �

In particular, the special case of the diamond norm || · ||� := || · ||1→1,d,
which we discuss in more detail below, and its dual, the cb-norm (with p =
q =∞, n = d) are semialgebraic.
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Theorem 6 (Helton-Nie conjecture in dimension two [35, Thm. 6.8.]). Every
convex semialgebraic subset S of R2 is the feasible set of a SDP. That is, it
can be written as

S =

{
ξ ∈ R2

∣∣∣∣∣∃η ∈ R
m : A+

2∑

i=1

ξiBi +
m∑

j=1

ηjCj ≥ 0

}
, (43)

where m ≥ 0 and A, Bi as well as Cj are real symmetric matrices of the same
size.

The proof of the Helton-Nie conjecture in dimension two can be found in
[35].4 The main observation of this section is a consequence of the previous
theorem and the following simple Lemma:

Lemma 9. If ∆ and δ are both semialgebraic, then the accessible region in the
∆− δ-plane is a semialgebraic set.

Proof. Let us denote the accessible region in the ∆− δ-plane by S, i.e.,

S =

{
x ∈ R2

∣∣∣∣∣∃I = {Ii}mi=1 : x1 = ∆

(
m∑

i=1

Ii

)
∧ x2 = δ ((I∗i (1))mi=1)

}
.

First note that the set of instruments is semialgebraic. The maps I 7→∑m
i=1 Ii

as well as I 7→ (I∗i (1))mi=1 are algebraic and therefore semialgebraic [31]. Given
that the composition of two semialgebraic maps is semialgebraic [31, Prop.
2.2.6 (i)] and that the image of a semialgebraic set under a semialgebraic map
is semialgebraic [31, Prop. 2.2.7.], ∆ (

∑m
i=1 Ii) as well as δ ((I∗i (1))mi=1) are

semialgebraic. Using the Tarski-Seidenberg principle, Thm. 5, we arrive at the
claim. �
Theorem 7 (SDP solution for arbitrary target measurements). If ∆ and δ are
both convex and semialgebraic, then the accessible region in the ∆− δ-plane is
the feasible set of a SDP.

Proof. If ∆ and δ are convex and semialgebraic, then the whole region in the
∆−δ-plane that is accessible by quantum instruments is a convex semialgebraic
subset of R2 by Lemma 9. By Thm. 6, it must thus be the feasible set of a
SDP. �

In particular, if we consider a Schatten p-to-q-norm distance, with p and
q rational, to describe the disturbance caused to the quantum system and a
worst-case lp-norm distances, with rational p, to quantify the measurement
error, the accessible region in the ∆− δ-plane is the feasible set of a SDP.

Unfortunately, we do not know how to make the results of [35] constructive.
That is while Thm. 7 proves the existence of a SDP, we do not have a way of
making the SDP explicit.

4The conjecture for larger dimensions was shown to be false in general in [36].
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SDP for the diamond norm tradeoff. We now explicitly state the SDP
yielding the optimal tradeoff curve in the case of a general POVM for the
worst-case l∞-distance and the diamond norm. This particular example does
not rely on the general result of Thm 7, since the l∞-norm as well as the
diamond norm are already well-suited to SDP formulation. Please note that
on the measurement error side, we use the worst-case l∞-norm to quantify the
distance between the two probability distributions,

δl∞ := sup
ρ

max
i

∣∣∣tr [E ′iρ]− tr [Eiρ]
∣∣∣. (44)

In this setting the optimization problem, quantifying the information-disturbance
tradeoff, is given as:
Compute for a given target POVM E = {Ei}mi=1 and λ ∈ [0, 1]

ν(E, λ) := min
{Ii}mi=1

∥∥∥∥∥
m∑

i=1

Ii − id

∥∥∥∥∥
�

(45)

such that ‖I∗i (1)− Ei‖∞ ≤ λ ∀i,
Ii is completely positive ∀i and
m∑

i=1

I∗i (1) = 1.

In the following, let us the define the Choi matrix for any linear map T :
Md →Md′ as

J(T ) := (T ⊗ idd)

(
d∑

i,j=1

|ii〉〈jj|
)
. (46)

Theorem 8. For a given target POVM E = {Ei ∈Md}mi=1 and λ ∈ [0, 1], the
optimization problem ν(E, λ) given in Eq. (45), can be formulated as a SDP
(φ,C,D), where φ :Md̂ →Mď is a hermiticity preserving map, C = C∗ ∈Md̂

and D = D∗ ∈ Mď, with dimensions d̂ = (m + 4)d2 + 2(m + 2)d and
ď = 2 + (m+ 2)d2. The primal and the dual SDP problem are given as follows:

Primal SDP problem

maximize tr [CX]

subject to φ(X) = D

X ≥ 0

Dual SDP problem

minimize tr [DY ]

subject to φ∗(Y ) ≥ C

Y = Y †

where the hermiticity preserving map φ :Md̂ →Mď is

φ(X) = tr [w0]⊕ tr [w1]⊕ (A+ Z0 − 1⊗ w0)⊕ (B + Z1 − 1⊗ w1)⊕
m⊕

i=1

(
M +M∗ + 1⊗

(
Fi − F̃i

)
+Gi + 1⊗

(
H − H̃

))
, (47)
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with

X :=

(
A M
M∗ B

)
⊕ w0 ⊕ w1 ⊕ Z0 ⊕ Z1 ⊕

m⊕

i=1

Fi ⊕
m⊕

i=1

F̃i ⊕
m⊕

i=1

Gi ⊕H ⊕ H̃. (48)

The adjoint of the map φ is

φ∗(Y ) :=

(
Y0

∑m
i=1 J(Ii)∑m

i=1 J(Ii) Y1

)
⊕ (λ01− tr1 [Y0])⊕ (λ11− tr1 [Y1])⊕

Y0 ⊕ Y1 ⊕
m⊕

i=1

tr1 [J(Ii)]⊕
m⊕

i=1

−tr1 [J(Ii)]⊕
m⊕

i=1

J(Ii)⊕

m∑

i=1

tr1 [J(Ii)]⊕−
m∑

i=1

tr1 [J(Ii)] , (49)

with

Y := λ0 ⊕ λ1 ⊕ Y0 ⊕ Y1 ⊕
m⊕

i=1

J(Ii). (50)

Furthermore,

D :=
1

2
⊕ 1

2
⊕ 0⊕ 0⊕

m⊕

i=1

0 (51)

and

C :=

(
0 J(id)

J(id) 0

)
⊕ 0⊕ 0⊕ 0⊕ 0⊕

m⊕

i=1

(
−λ1+ ET

i

)
⊕

m⊕

i=1

(
−λ1− ET

i

)
⊕

m⊕

i=1

0⊕ 1⊕−1. (52)

Proof. The diamond norm can be expressed as a SDP itself [37, 38],

∥∥∥∥∥id−
m∑

i=1

Ii

∥∥∥∥∥
�

= min
Y0,Y1∈Md⊗Md

1

2
[‖tr1 [Y0]‖∞ + ‖tr1 [Y1]‖∞]

such that

(
Y0 J (id−∑m

i=1 Ii)
J (id−∑m

i=1 Ii) Y1

)
≥ 0 and

Y0, Y1 ≥ 0,
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where tr1 denotes the partial trace over the first system. Using Watrous SDP
for the diamond norm in the form of [38, p. 11] gives

ν (E, λ) = minimize
1

2
[λ0 + λ1]

such that

(
Y0

∑m
i=1 J(Ii)∑m

i=1 J(Ii) Y1

)
≥
(

0 J(id)
J(id) 0

)

λ01− tr1 [Y0] ≥ 0

λ11− tr1 [Y1] ≥ 0

Y0, Y1 ≥ 0

tr1 [J(Ii)] ≥ −λ1+ ET
i ∀i

− tr1 [J(Ii)] ≥ −λ1− ET
i ∀i

J(Ii) ≥ 0 ∀i
m∑

i=1

tr1 [J(Ii)] ≥ 1

−
m∑

i=1

tr1 [J(Ii)] ≥ −1.

We would like to write this as a SDP in the form

minimize tr [DY ]

subject to φ∗(Y ) ≥ C,

Y = Y †.

Collecting all variables that we optimize over yields Y ∈ C⊕C⊕Md2⊕Md2⊕⊕m
i=1Md2 as

Y := λ0 ⊕ λ1 ⊕ Y0 ⊕ Y1 ⊕
m⊕

i=1

J(Ii).

Furthermore, we set D ∈ C⊕C⊕Md2 ⊕Md2 ⊕
⊕m

i=1Md2 as

D :=
1

2
⊕ 1

2
⊕ 0d2 ⊕ 0d2 ⊕

m⊕

i=1

0d2 .
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Similarly, set φ∗(Y ) ∈M2d2⊕Md⊕Md⊕Md2⊕Md2⊕
⊕m

i=1Md⊕
⊕m

i=1Md⊕⊕m
i=1Md2 ⊕

⊕m
i=1Md ⊕

⊕m
i=1Md to be

φ∗(Y ) :=

(
Y0

∑m
i=1 J(Ii)∑m

i=1 J(Ii) Y1

)
⊕ (λ01d − tr1 [Y0])⊕ (λ11d − tr1 [Y1])⊕

Y0 ⊕ Y1 ⊕
m⊕

i=1

tr1 [J(Ii)]⊕
m⊕

i=1

−tr1 [J(Ii)]⊕
m⊕

i=1

J(Ii)⊕

m∑

i=1

tr1 [J(Ii)]⊕−
m∑

i=1

tr1 [J(Ii)] ,

and we define C ∈M2d2 ⊕Md⊕Md⊕Md2 ⊕Md2 ⊕
⊕m

i=1Md⊕
⊕m

i=1Md⊕⊕m
i=1Md2 ⊕

⊕m
i=1Md ⊕

⊕m
i=1Md as

C :=

(
0 J(id)

J(id) 0

)
⊕ 0d ⊕ 0d ⊕ 0d2 ⊕ 0d2 ⊕

m⊕

i=1

(
−λ1+ ET

i

)
⊕

m⊕

i=1

(
−λ1− ET

i

)
⊕

m⊕

i=1

0d2 ⊕ 1d ⊕−1d.

Therefore, the optimization problem ν(E, λ) is a SDP indeed. In order to
state the dual SDP problem, define X ∈ M2d2 ⊕Md ⊕Md ⊕Md2 ⊕Md2 ⊕⊕m

i=1Md ⊕
⊕m

i=1Md ⊕
⊕m

i=1Md2 ⊕
⊕m

i=1Md ⊕
⊕m

i=1Md to be

X :=

(
A M
M∗ B

)
⊕ w0 ⊕ w1 ⊕ Z0 ⊕ Z1 ⊕

m⊕

i=1

Fi ⊕
m⊕

i=1

F̃i ⊕
m⊕

i=1

Gi ⊕H ⊕ H̃.

Using the fact that tr [φ∗(Y )X] = tr [Y φ(X)] lets us construct φ such that
φ(X) ∈ C⊕C⊕Md2 ⊕Md2 ⊕

⊕m
i=1Md2 is

φ(X) = tr [w0]⊕ tr [w1]⊕ (A+ Z0 − 1⊗ w0)⊕ (B + Z1 − 1⊗ w1)⊕
m⊕

i=1

(
M +M∗ + 1⊗

(
Fi − F̃i

)
+Gi + 1⊗

(
H − H̃

))
.

�

Proposition 3. For the above SDP (φ,C,D) the Slater-type strong duality
holds, such that

sup
X

tr [CX] = inf
Y

tr [DY ] . (53)

Proof. There is an interior point X > 0 that fulfills φ(X) = D and a Y = Y ∗

such that φ∗(Y ) ≥ C. By Slater’s theorem strong duality holds for the SDP
(φ,C,D). �
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Using Thm. 8 it is therefore possible to explicitly state the SDP that yields
the information-disturbance tradeoff curve for any general POVM in the case
where the measurement-error is quantified by the worst-case l∞-distance and
the disturbance is quantified by the diamond norm.
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Figure 3. The information-disturbance tradeoff for a qubit SIC
POVM target measurement.

SIC POVM. As it is a prominent application in various fields in quantum
information theory, this section analyzes the example of a symmetric, infor-
mationally complete (SIC) POVM as target measurement. A SIC POVM is

defined by a set of d2 subnormalized rank-1 projectors {Pi/d}d
2

i=1, which have
equal pairwise Hilbert-Schmidt inner products, tr [PiPj] /d

2 = 1/d2(d + 1)
for i 6= j. Figure 3 and 4 show the information-disturbance tradeoff for a
qubit SIC POVM and qutrit SIC POVM as target measurement respectively.
In two dimensions, we considered the following SIC POVM represented by
the four Bloch vectors (0, 0, 1), (2

√
2/3, 0,−1/3), (−

√
2/3,

√
2/3,−1/3) and

(−
√

2/3,−
√

2/3,−1/3). In dimension three, the nine explicit (unnormali-
zed) vectors of the SIC POVM under consideration are (0, 1,−1), (0, 1,−η),
(0, 1,−η2), (−1, 0, 1), (−η, 0, 1), (−η2, 0, 1), (1,−1, 0), (1,−η, 0) and (1,−η2, 0)
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Figure 4. The information-disturbance tradeoff for a qutrit
SIC POVM target measurement.

with η = exp 2πi/3. To solve the SDP stated in Thm. 8 for this particular
example, we used cvx, a package for specifying and solving convex programs
[39, 40] in MATLAB [41].

The solution of the SDP is compared to an instrument similar to the one
found in Thm. 1 consisting of an inherit POVM E ′ = tE+(1−t)1/d, t ∈ [0, 1],
together with the Lüders channel. The symmetry of the SIC POVM most likely
leads to this agreement. However, further investigation would be necessary to
get a better understanding of this observation.
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Appendix

Proof that average- and worst-case construction satisfy Assump-
tion 1 and Assumption 2.

Lemma 10. If ∆̃ : Sd × Sd → [0,∞] satisfies

(i) ∆̃(ρ, ρ) = 0,
(ii) convexity in its first argument and

(iii) unitary invariance,

then the worst-case as well as the average-case construction

∆∞(Φ) := sup
ρ∈S

∆̃ (Φ(ρ), ρ) and

∆µ(Φ) :=

∫

Sd
∆̃ (Φ(ρ), ρ) dµ(ρ),

with µ a unitarily invariant measure on Sd and S ⊆ Sd a unitarily closed
subset, satisfy Assumption 1.

Proof. Let ∆̃ : Sd × Sd → [0,∞] be such that it

(i) satisfies ∆̃(ρ, ρ) = 0,
(ii) is convex in its first argument, i.e., for any quantum state σ, σ′, ρ ∈ Sd

∆̃ (λσ + (1− λ)σ′, ρ) ≤ λ∆̃ (σ, ρ) + (1− λ)∆̃ (σ′, ρ) ∀λ ∈ [0, 1] ,

(iii) and is unitarily invariant, i.e., for any quantum state σ, ρ ∈ Sd
∆̃ (U∗σU, U∗ρU) = ∆̃ (σ, ρ) ∀ unitaries U ∈Md.

Then its worst case ∆∞ satisfies

(a) ∆∞(id) = 0, since

∆∞(id) = sup
ρ∈S

∆̃ (id(ρ), ρ) = sup
ρ∈S

∆̃ (ρ, ρ) = 0,

(b) is convex, i.e., for every quantum channel Φ,Φ′ ∈ Td
∆∞ (λΦ + (1− λ)Φ′) ≤ λ∆∞ (Φ) + (1− λ)∆∞ (Φ′) ∀λ ∈ [0, 1] ,

because

∆∞ (λΦ + (1− λ)Φ′) = sup
ρ∈S

∆̃ (λΦ(ρ) + (1− λ)Φ′(ρ), ρ)

≤ λ sup
ρ∈S

∆̃ (Φ(ρ), ρ) + (1− λ) sup
ρ∈S

(Φ′(ρ), ρ)

= λ∆∞ (Φ) + (1− λ)∆∞ (Φ′) ,

(c) and is basis-independent, i.e., for every unitary U ∈Md and every channel
Φ ∈ Td, we have that

∆∞ (UΦ (U∗ · U)U∗) = ∆∞(Φ),
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since

∆∞ (UΦ (U∗ · U)U∗) = sup
ρ∈S

∆̃ (UΦ (U∗ρU)U∗, ρ)

= sup
ρ∈S

∆̃ (Φ (U∗ρU) , U∗ρU)

= sup
ρ∈S

∆̃ (Φ (ρ) , ρ)

= ∆∞(Φ).

The average case ∆µ satisfies

(a) ∆µ(id) = 0, since

∆µ(id) =

∫

Sd
∆̃ (id(ρ), ρ) dµ(ρ) =

∫

Sd
∆̃ (ρ, ρ) dµ(ρ) = 0,

(b) is convex, i.e., for every quantum channel Φ,Φ′ ∈ Td
∆µ (λΦ + (1− λ)Φ′) ≤ λ∆µ (Φ) + (1− λ)∆µ (Φ′) ∀λ ∈ [0, 1] ,

because

∆µ (λΦ + (1− λ)Φ′) =

∫

Sd
∆̃ (λΦ(ρ) + (1− λ)Φ′(ρ), ρ) dµ(ρ)

≤ λ

∫

Sd
∆̃ (Φ(ρ), ρ) dµ(ρ) + (1− λ)

∫

Sd
∆̃ (Φ′(ρ), ρ) dµ(ρ)

= λ∆µ (Φ) + (1− λ)∆µ (Φ′) ,

(c) and is basis-independent, i.e., for every unitary U ∈Md and every channel
Φ ∈ Td, we have that

∆µ (UΦ (U∗ · U)U∗) = ∆µ(Φ),

since

∆µ (UΦ (U∗ · U)U∗) =

∫

Sd
∆̃ (UΦ (U∗ρU)U∗, ρ) dµ(ρ)

=

∫

Sd
∆̃ (Φ (U∗ρU) , U∗ρU) dµ(ρ)

=

∫

Sd
∆̃ (Φ (ρ) , ρ) dµ(ρ)

= ∆µ(Φ),

where we have used the fact that µ is a unitarily invariant measure on Sd.
The worst-case construction as well as the average-case construction therefore
satisfy Assumption 1 as claimed. �

Lemma 11. If δ̃ : Pd × Pd → [0,∞] on the space of probability distributions

Pd :=
{
q ∈ Rd|∑d

i=1 qi = 1 ∧ ∀i : qi ≥ 0
}

applied to the target distribution
pi := 〈i|ρ|i〉 and the actually measured distribution p′i := tr [ρE ′i] satisfies
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(i) δ̃(q, q) = 0,
(ii) convexity in its second argument and

(iii) invariance under joint permutations,

then the worst-case as well as the average-case construction

δ∞(E ′) := sup
ρ∈S

δ̃(p, p′),

δµ(E ′) :=

∫

Sd
δ̃(p, p′) dµ(ρ),

both satisfy Assumption 2.

Proof. Let δ̃ : Pd × Pd → [0,∞] be such that it

(i) satisfies δ̃(q, q) = 0,
(ii) is convex in its second argument, i.e., for every probability distribution

p, q, q′ ∈ Pd
δ̃(p, λq + (1− λ)q′) ≤ λδ̃(p, q) + (1− λ)δ̃(p, q′) ∀λ ∈ [0, 1],

(iii) and invariant under joint permutations,i.e., for every quantum state ρ ∈
Sd and every POVM E,E ′ ∈ Ed

δ̃
((

tr
[
ρU∗πEπ(i)Uπ

])d
i=1

,
(
tr
[
ρU∗πE

′
π(i)

]
Uπ
)d
i=1

)
= δ̃

(
(tr [ρEi])

d
i=1 , (tr [ρE ′i])

d
i=1

)
.

Then its worst case δ∞ satisfies

(a) δ∞
(

(|i〉〈i|)di=1

)
= 0, since

δ∞
(

(|i〉〈i|)di=1

)
= sup

ρ∈S
δ̃
(

(|i〉〈i|)di=1 , (|i〉〈i|)
d
i=1

)
= 0,

(b) is convex, i.e., for any POVM Q,Q′ ∈ Ed
δ∞ (λQ+ (1− λ)Q′) ≤ λδ∞ (Q) + (1− λ)δ∞ (Q′) ∀λ ∈ [0, 1],

because

δ∞ (λQ+ (1− λ)Q′) = sup
ρ∈S

δ̃(p, λq + (1− λ)q′)

≤ λ sup
ρ∈S

δ̃(p, q) + (1− λ) sup
ρ∈S

δ̃(p, q′)

= λδ∞ (Q) + (1− λ)δ∞ (Q′) ,

where we have denoted the corresponding probability distribution as qi :=
tr [ρQi] and q′i := tr [ρQ′i].

(c) is permutation-invariant, i.e., for every permutation π ∈ Sd and any POVM
E ∈ Ed

δ∞
((
U∗πEπ(i)Uπ

)d
i=1

)
= δ∞

(
(Ei)

d
i=1

)
,
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where Uπ is the permutation matrix that acts as Uπ|i〉 = |π(i)〉, since

δ∞
((
U∗πEπ(i)Uπ

)d
i=1

)
= sup

ρ∈S
δ̃
(

(tr [ρ|i〉〈i|])di=1 ,
(
tr
[
ρU∗πEπ(i)Uπ

])d
i=1

)

= sup
ρ∈S

δ̃
(

(tr [ρ|i〉〈i|])di=1 ,
(
tr
[
UπρU

∗
πEπ(i)

])d
i=1

)

= sup
ρ∈S

δ̃
(

(tr [U∗πρUπ|i〉〈i|])di=1 ,
(
tr
[
ρEπ(i)

])d
i=1

)

= sup
ρ∈S

δ̃
(

(tr [ρUπ|i〉〈i|U∗π ])di=1 ,
(
tr
[
ρEπ(i)

])d
i=1

)

= sup
ρ∈S

δ̃
(

(tr [ρ|π(i)〉〈π(i)|])di=1 ,
(
tr
[
ρEπ(i)

])d
i=1

)

= sup
ρ∈S

δ̃
(

(tr [ρ|i〉〈i|])di=1 , (tr [ρEi])
d
i=1

)

= δ∞
(

(Ei)
d
i=1

)
,

(d) and it satisfies for every diagonal unitary D ∈Md and any POVM E ∈ Ed
δ∞
(
(D∗EiD)di=1

)
= δ∞

(
(Ei)

d
i=1

)
,

because

δ∞
(
(D∗EiD)di=1

)
= sup

ρ∈S
δ̃
(

(tr [ρ|i〉〈i|])di=1 , (tr [ρD∗EiD])di=1

)

= sup
ρ∈S

δ̃
(

(tr [ρ|i〉〈i|])di=1 , (tr [DρD∗Ei])
d
i=1

)

= sup
ρ∈S

δ̃
(

(tr [DρD∗|i〉〈i|])di=1 , (tr [ρEi])
d
i=1

)

= sup
ρ∈S

δ̃
(

(tr [ρD∗|i〉〈i|D])di=1 , (tr [ρEi])
d
i=1

)

= sup
ρ∈S

δ̃
(

(tr [ρ|i〉〈i|])di=1 , (tr [ρEi])
d
i=1

)

= δ∞
(
(Ei)

d
i=1

)
.

Similarly, its average case δµ satisfies

(a) δµ

(
(|i〉〈i|)di=1

)
= 0, since

δµ

(
(|i〉〈i|)di=1

)
=

∫

Sd
δ̃
(

(|i〉〈i|)di=1 , (|i〉〈i|)
d
i=1

)
dµ(ρ) = 0,

(b) is convex, i.e., for any POVM Q,Q′ ∈ Ed
δµ (λQ+ (1− λ)Q′) ≤ λδµ (Q) + (1− λ)δµ (Q′) ∀λ ∈ [0, 1],

127



38 HASHAGEN AND WOLF

because

δµ (λQ+ (1− λ)Q′) =

∫

Sd
δ̃(p, λq + (1− λ)q′) dµ(ρ)

≤ λ

∫

Sd
δ̃(p, q) dµ(ρ) + (1− λ)

∫

Sd
δ̃(p, q′) dµ(ρ)

= λδµ (Q) + (1− λ)δµ (Q′) ,

where we have denoted the corresponding probability distribution as qi :=
tr [ρQi] and q′i := tr [ρQ′i].

(c) is permutation-invariant, i.e. for every permutation π ∈ Sd and any E ∈ Ed

δµ

((
U∗πEπ(i)Uπ

)d
i=1

)
= δµ

(
(Ei)

d
i=1

)

where Uπ is the permutation matrix that acts as Uπ|i〉 = |π(i)〉, since

δµ

((
U∗πEπ(i)Uπ

)d
i=1

)
=

∫

Sd
δ̃
(

(tr [ρ|i〉〈i|])di=1 ,
(
tr
[
ρU∗πEπ(i)Uπ

])d
i=1

)
dµ(ρ)

=

∫

Sd
δ̃
(

(tr [ρ|i〉〈i|])di=1 ,
(
tr
[
UπρU

∗
πEπ(i)

])d
i=1

)
dµ(ρ)

=

∫

Sd
δ̃
(

(tr [U∗πρUπ|i〉〈i|])di=1 ,
(
tr
[
ρEπ(i)

])d
i=1

)
dµ(ρ)

=

∫

Sd
δ̃
(

(tr [ρUπ|i〉〈i|U∗π ])di=1 ,
(
tr
[
ρEπ(i)

])d
i=1

)
dµ(ρ)

=

∫

Sd
δ̃
(

(tr [ρ|π(i)〉〈π(i)|])di=1 ,
(
tr
[
ρEπ(i)

])d
i=1

)
dµ(ρ)

=

∫

Sd
δ̃
(

(tr [ρ|i〉〈i|])di=1 , (tr [ρEi])
d
i=1

)
dµ(ρ)

= δµ

(
(Ei)

d
i=1

)
,

(d) and it satisfies for every diagonal unitary D ∈Md and any E ∈ Ed

δµ
(
(D∗EiD)di=1

)
= δµ

(
(Ei)

d
i=1

)
,
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because

δµ
(
(D∗EiD)di=1

)
=

∫

Sd
δ̃
(

(tr [ρ|i〉〈i|])di=1 , (tr [ρD∗EiD])di=1

)
dµ(ρ)

=

∫

Sd
δ̃
(

(tr [ρ|i〉〈i|])di=1 , (tr [DρD∗Ei])
d
i=1

)
dµ(ρ)

=

∫

Sd
δ̃
(

(tr [DρD∗|i〉〈i|])di=1 , (tr [ρEi])
d
i=1

)
dµ(ρ)

=

∫

Sd
δ̃
(

(tr [ρD∗|i〉〈i|D])di=1 , (tr [ρEi])
d
i=1

)
dµ(ρ)

=

∫

Sd
δ̃
(

(tr [ρ|i〉〈i|])di=1 , (tr [ρEi])
d
i=1

)
dµ(ρ)

= δµ
(
(Ei)

d
i=1

)
.

The worst-case as well as the average-case construction therefore satisfy As-
sumption 2. �

Proof of Corollary 1.

Proof. The eigenvalues of JTi , i = 1, 2, can be obtained from the expectation
values of the mutually orthogonal projectors, i.e.,

x1 =
tr [(Px ⊗ 1)JT ]

tr [Px]
and x2 =

tr [(1⊗ Px)JT ]

tr [Px]
, x ∈ {a, b, c}.

Since we know that a, b, c are related to α, β, γ via α = d2a, β = b − c, γ =
d(c− a), we get

α1 = d2 tr [(Pa ⊗ 1)JT ]

tr [Pa]

= d2
tr
[(
1d3 −

∑d
i=1 |ii〉〈ii| ⊗ 1d

)
JT

]

d2 − d .

Similarly,

β1 =
tr [(Pb ⊗ 1)JT ]

tr [Pb]
− tr [(Pc ⊗ 1)JT ]

tr [Pc]

=
tr
[(

1
d

∑d
i,j=1 |ii〉〈jj| ⊗ 1d

)
JT

]

1

−
tr
[(∑d

i=1 |ii〉〈ii| ⊗ 1d − 1
d

∑d
i,j=1 |ii〉〈jj| ⊗ 1d

)
JT

]

d− 1
,
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and

a2 =
tr [(1⊗ Pa)JT ]

tr [Pa]

=
tr
[(
1d3 − 1d ⊗

∑d
i=1 |ii〉〈ii|

)
JT

]

d2 − d .

Using the diagrammatic notation introduced earlier, i.e.,

1d3 =: 1d ⊗
d∑

i=1

|ii〉〈ii| =:

d∑

i,j=1

|ii〉〈jj| ⊗ 1d =:
d∑

i=1

|ii〉〈ii| ⊗ 1d =:

together with the isomorphic representation from Lemma 3, the claim follows
immediately. �
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In quantum mechanics, every measurement that extracts information, necessarily introduces

some disturbance to the system. This idea is fundamental and emphasizes again the difference

between classical and quantum mechanics. It, furthermore, finds applications within areas of

quantum information theory, such as quantum communication [59, 88–90]. It is thus of special

interest, whether the insights gained through a thorough mathematical analysis, are accessible

in an experimental setting and really lead to an advantage in experimental applications.

In this article we experimentally realize the information-disturbance tradeoff derived in [2].

In the special case of binary measurements on qubits, which is the case considered here, we

rederive results from [2] under specific assumptions, significantly simplifying the proofs. The

derivation yields a tradeoff and specifies the optimal quantum instruments achieving it.

Theorem C.1 (Total variation - trace norm tradeoff [4, theorem 1]). Consider a von Neumann

target measurement given by an orthonormal basis
{
|i〉 ∈ C2

}2

i=1
, and an instrument with two

corresponding outcomes. Then the worst-case total variational distance δ and its trace-norm

analogue ∆, defined as

δ(E′) := sup
ρ

1

2

2∑

i=1

∣∣Tr[E′iρ]− Tr[Eiρ]
∣∣ , (C.1)

and

∆(Ts) :=
1

2
sup
ρ
‖Ts(ρ)− ρ‖1 , (C.2)

quantifying measurement error and disturbance respectively, satisfy

∆ ≥





1
2

(√
1− δ −

√
δ
)2

if δ ≤ 1
2 ,

0 if δ ≥ 1
2 .

(C.3)

The inequality is tight and equality is attained within the family of instruments defined by

Ij(ρ) := KjρKj , (C.4)
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with

Kj =
√

1− γ |j〉〈j|+√γ(1− |j〉〈j|), (C.5)

with γ ∈ [0, 1/2], j = 1, 2.

Theorem C.1, therefore, gives the quantum instruments that need to be realized in the

laboratory, in order to experimentally measure the information-disturbance tradeoff. In general,

it is possible to realize every quantum channel acting on a quantum system by an interaction

with an auxiliary system. In this article, we use an optical Mach-Zehnder interferometer to

realize the quantum instrument. The quantum state is encoded in the polarization and the

auxiliary system is provided by the path degree of freedom. Figure C.1 shows the experimental

realizations of different quantum instruments with respect to the measurement error on one

side and the state disturbance on the other side. The measurements agree well with theoretical

predictions, which are represented by the blue line.
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Figure C.1: [4, figure 1] The experimentally realized quantum instruments are represented by blue

crosses. The optimal ones clearly outperform the theoretical prediction of the universal

asymmetric quantum cloning protocol (red line) as well as the theoretical prediction of

the coherent swap protocol (green line) with high significance. They, furthermore, turn

out to be close to the theoretical optimal protocol (blue line).

These findings are compared to two other protocols, namely the universal asymmetric quan-

tum cloning protocol and the coherent swap protocol. In the first one, a quantum state is

asymmetrically cloned and the target measurement is performed on one of the clones. The

asymmetry within the quality then yields the tradeoff regarding measurement error and dis-

turbance. The resulting tradeoff is derived in the following theorem.
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Theorem C.2 (Total variation - trace norm tradeoff using optimal universal asymmetric clo-

ning [4, theorem 2]). Consider a von Neumann measurement given by an orthonormal basis in

C2 on one of the outputs of the optimal universal 1→ 2 asymmetric quantum cloning channel.

Then the worst-case total variational distance δ and its trace-norm analogue ∆ satisfy

∆ =





1
4

(√
2− 3δ −

√
δ
)2

if δ ≤ 1
2 ,

0 if δ ≥ 1
2 .

(C.6)

The second protocol uses the coherent swap. The quantum state is coherently swapped with

the maximally mixed state and the target measurement is then, again, performed on one of the

systems. The resulting tradeoff is derived.

Theorem C.3 (Total variation - trace norm tradeoff using the coherent swap [4, theorem 3]).

Consider a von Neumman measurement given by an orthonormal basis in C2 on one of the

outputs of a coherent swap channel. Then the worst-case total variational distance δ and its

trace-norm analogue ∆ satisfy

∆ =
1

2
− δ. (C.7)

Both theoretically derived tradeoffs are shown in figure C.1. The tradeoff derived using the

universal asymmetric quantum cloning protocol is represented by the red line, whereas the

tradeoff from the coherent swap protocol is shown using the blue line. These schemes clearly

do not perform optimally and we have shown that this advantage is experimentally accessible

and not just a mere theoretical improvement.

Statement of individual contribution

I, Anna-Lena Karolyn Hashagen, presented first results of my research project at the Mu-

nich Quantum Center poster session [2]. Jan Dziewior was very interested in this project on

information-disturbance tradeoffs and said that he has been so for some time, but never really

found access to the more mathematical papers on this topic. I, therefore, explained to him what

the research question is that we were trying to answer and pointed out some of the methods

we were using. We then realized that one of his group members, Lukas Knips, is actually a

member of the Ph.D. program Exploring Quantum Matter of the Elite Network of Bavaria, of

which I am also a member. After a second meeting, we then quickly realized that with their

laboratory equipment, they can experimentally implement the theoretical findings of our arti-

cle [2] in a qubit setting. Following up on this, I had numerous discussions with Lukas Knips,

Jan Dziewior and Dr. Jasmin D. A. Meinecke on the experimental realization. I explained to

them the mathematical preliminaries to understand the article [2] and suggested to focus on

the binary qubit setting.

Moreover, I understood that the diamond norm as a measure of disturbance is not a feasible

measure in practice and therefore suggested to focus on the worst-case trace norm distance.
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Furthermore, this is the quantum analogue of the worst-case total variational distance, which

is used as a figure of merit to assess the measurement error. Prof. Dr. Michael M. Wolf and I

were able to prove that in the case considered in this article the allowed auxillary systems do

not give an advantage and, for the optimal tradeoff curve, the trace norm equals the diamond

norm distance.

Prof. Dr. Michael M. Wolf suggested to compare the tradeoff obtained by the optimal quan-

tum instruments from [2] with other protocols. One natural candidate is the asymmetric

quantum cloning protocol. Another protocol involves the coherent swap. In a meeting with all

authors of this article present, we decided to pursue this line and compare our results to these

two measurement protocols.

I proved and formulated all theorems in this article. That is, I was solely responsible for

theorems [4, theorem 1, 2 and 3] as well as lemma [4, lemma 4 and 5].

Lukas Knips, Jan Dziewior, Dr. Jasmin D. A. Meinecke and Prof. Dr. Harald Weinfurter

were solely responsible for the experimental implementation in the laboratory. They built the

experiment, they ran the experiment and they recorded the data. My doctoral supervisor

Prof. Dr. Michael M. Wolf and I were not involved in this process. I was, however, involved in

the analysis of the recorded data.

Furthermore, I was responsible for writing the theoretical part of this article and I was

extensively involved in polishing the final version.

Lukas Knips is the principal author of this paper. I, Anna-Lena Karolyn Hashagen, was

extensively involved in all parts of this article, except in the experimental implementation in

the laboratory.
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Measurement-Disturbance Tradeoff Outperforming Optimal Cloning

Lukas Knips,1, 2 Jan Dziewior,1, 2 Anna-Lena K. Hashagen,3 Jasmin

D. A. Meinecke,1, 2 Harald Weinfurter,1, 2 and Michael M. Wolf3

1Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Straße 1, 85748 Garching, Germany
2Department für Physik, Ludwig-Maximilians-Universität, 80797 München, Germany

3Fakultät für Mathematik, Technische Universität München, Germany

One of the characteristic features of quantum mechanics is that every measurement that extracts
information about a general quantum system necessarily causes an unavoidable disturbance to the
state of this system. A plethora of different approaches has been developed to characterize and
optimize this tradeoff. Here, we apply the framework of quantum instruments to investigate the
optimal tradeoff and to derive a class of procedures that is optimal with respect to most meaningful
measures. We focus our analysis on binary measurements on qubits as commonly used in commu-
nication and computation protocols and demonstrate theoretically and in an experiment that the
optimal universal asymmetric quantum cloner, albeit ideal for cloning, is not an optimal procedure
for measurements and can be outperformed with high significance.

Introduction.—The work of Heisenberg, best visualized
by the Heisenberg microscope [1], teaches us that every
measurement is accompanied by a fundamental distur-
bance of a quantum system. The question about the
precise relation between the information gained about
the quantum system and the resulting disturbance has
since inspired numerous studies [2–19]. A central prob-
lem is to find a tight, quantitative tradeoff relation, e.g.,
for the maximally achievable information for a given dis-
turbance or, vice versa, for the minimal disturbance for a
certain amount of extracted information. Obviously, this
is not only relevant for quantum foundations, but also for
many applications in quantum communication [20, 21]
and quantum computation [22–24]. Initially studied in
the context of which-path information and loss of visibil-
ity in interferometers [2, 3], quantifying the information-
disturbance tradeoff was based on various measures such
as the traditional root mean squared distance [4, 5], the
distance of probability distributions [6], operation and
estimation fidelities [7–9], entropic quantities [8–13], re-
versibility [13–15], stabilized operator norms [16, 17],
state discrimination probability [10], probability distri-
bution fidelity [18], and Fisher information [19]. In spite
of all these distinct approaches, no clear candidate for
a most fundamental framework for the analysis of the
information-disturbance tradeoff in quantum mechanics
has yet emerged.

Here we build upon a novel, comprehensive
information-disturbance relation introduced recently by
two of us [25]. There, optimal measurement devices
have been proven to be independent of the chosen
quality measures, as long as these fulfill some reasonable
assumptions, such as convexity and basis-independence.
This approach is unique with respect to the employment
of reference observables. On one hand, since information
eventually is obtained via measurements of observables,
we base the quantification of the measurement error
on a reference observable. On the other hand, the
measurement induced disturbance is defined without

relying on any reference observable in order not to
restrict the further usage of the post-measurement state.
For a finite-dimensional von Neumann measurement,
the optimal tradeoff can be achieved with quantum
instruments described by at most two parameters.

FIG. 1. The optimal quantum instruments in terms of mea-
surement error and disturbance clearly outperform the op-
timal asymmetric cloner (red curve) and the coherent swap
operation (green line). Our measurements (blue crosses) come
close to the theoretical curve (blue curve). The violet marked
instrument is discussed in Fig. 5 in more detail. The error bars
are too small to be visible; for a detailed discussion see [26].

In this letter, we describe how optimal instruments
can be derived for typical measures of measurement er-
ror, i.e., inverse information, and state disturbance and
how they can be implemented in an experiment. Typi-
cally, quantum cloning is considered to be a good choice
to achieve an optimal measurement disturbance tradeoff.
Yet, here we show that the optimal instruments outper-
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form all (asymmetric) quantum cloners [26]. We test the
tradeoff relation experimentally using a tunable Mach-
Zehnder-Interferometer and implement a large range of
quantum instruments. We apply these instruments to
a two-dimensional quantum system encoded in the pho-
ton polarization and investigate the relation between the
error of the measurement and the disturbance of the
qubit state. As distance measures we consider exemplar-
ily some of the measures recommended in [16], i.e., the
worst-case total variational distance and the worst-case
trace norm. For other measures see supplemental ma-
terial (SM) [26]. The experiment clearly shows that the
optimal universal asymmetric cloner as well as the coher-
ent swap scheme are suboptimal (Fig. 1).

Measurements as quantum instruments.—To generally
quantify both the measurement error and the measure-
ment induced disturbance, we describe the measurement
of observables on a quantum system by means of quan-
tum instruments [27, 28] as illustrated in Fig. 2. For-
mally, a quantum instrument I is defined as a set of
completely positive linear maps I := {Ij}mj=1 that ful-

fills the normalization condition
∑m
j=1 I

∗
j (1) = 1, where

I∗j denotes the dual map to Ij with respect to the
Hilbert-Schmidt inner product. This description natu-
rally encompasses the connection between the observable
given by a positive operator valued measure (POVM)
E′ := {E′j}mj=1 and the quantum channel Ts, which de-
scribes the measurement induced change of the state.

In general, a quantum channel is a completely positive
trace preserving linear map. In the context of quantum
instruments, the channel is given by the sum of the lin-
ear maps with Ts :=

∑m
j=1 Ij , where each map corre-

sponds to one measurement operator E′j of the POVM.
The normalization condition of the quantum instrument
ensures that the corresponding quantum channel is trace-
preserving. Expressing the channel in terms of I as above
reflects the decohering effect of the measurement on the
quantum state of the measured system.

The measurement operators {E′j}mj=1 themselves are
fully determined by I via E′j := I∗j (1), where the proba-
bility distribution for outcomes {j}mj=1 on state ρ is given

by tr (Ij(ρ)) = tr (Ij(ρ)1) = tr
(
ρI∗j (1)

)
= tr

(
ρE′j

)
.

From this point of view, the normalization condition of
the quantum instrument ensures that the distribution
{tr
(
E′jρ

)
}mj=1 is normalized. The instrument description

based on the normalized set of maps I, which implies
the pair (E′, Ts), is sufficient to exhaustively describe all
possible quantum measurement processes.

Distance measures.—From the notion of quantum in-
struments it becomes immediately clear that E′ and Ts
are not independent, i.e. the change of the state has a
fundamental dependence on the information gained and
vice versa. To enable a thorough quantitative analysis of
this measurement-disturbance tradeoff, we use distance
measures to assess the quality of the approximate mea-
surement and to quantify the disturbance. We quantify
the disturbance ∆ caused to the system by the deviation
of the channel Ts from the identity channel Tid (ρ) := ρ.

ρ I

Ts(ρ)

{tr
(
E′jρ

)
}mj=1

FIG. 2. General description of a measurement using a quan-
tum instrument I. Obtaining information about the quan-
tum state via the POVM E′ (dashed line, classical output)
induces a change of the quantum state described by the quan-
tum channel Ts (solid line, quantum output).

The measurement error δ quantifies the deviation of the
measurement E′ from a reference measurement E. This
approach utilizes a reference POVM E to quantify the
measurement error, but not the disturbance, in contrast
to all other approaches found in the literature, where ei-
ther a reference system is used for both, measurement
error and disturbance, or none is used at all.

The measurement error δ can be quantified by defin-
ing a worst-case total variational distance based on the
l1-distance between probability distributions. The l1-
distance, also called total variational distance, displays
the largest possible difference between the probabilities
that two probability distributions assign to the same
event and therefore is the relevant distance measure for
hypothesis testing [28, 29]. In our case, these two proba-
bility distributions stem from the target measurement
E and the actual measurement E′ for some quantum
state. To generalize the measure for the measurement
error to take into account all possible quantum states ρ
of the system we additionally take the worst case w.r.t.
all states, which is natural when considering the maximal
difference, i.e., worst-case characteristic of the l1-distance
itself. Thus our worst-case total variational distance is
defined as

δ(E′) := sup
ρ

1

2

2∑

i=1

|tr (E′iρ)− tr (Eiρ)| . (1)

The quantum analogue of the worst-case total vari-
ational distance is the worst-case trace norm distance,
which we thus use to quantify the distance between the
quantum channel Ts and the identity channel Tid,

∆(Ts) :=
1

2
sup
ρ
‖Ts(ρ)− ρ‖1 . (2)

This disturbance measure quantifies how well the quan-
tum channel Ts can be distinguished from the identity
channel Tid in a statistical experiment, if no auxiliary
systems are allowed [30].

Optimal instruments and tradeoff.—As reference mea-
surement, we choose the ideal projective measurement of
the qubit with E = {|j〉〈j|}2j=1. As proven in [25] for
the optimal quantum instruments each element Ij can
be expressed by a single Kraus operator, agreeing with
the intuition that additional Kraus operators introduce
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noise to the system. In the case of a qubit this leads to

Ts(ρ) =
2∑

j=1

KjρK
†
j and {E′j = K†jKj}2j=1. (3)

The Kraus operators of an optimal instrument can be
chosen diagonal in the basis {|j〉}2j=1 given by the target

measurement [25]. Since for a qubit there are only two of
them and they must satisfy the normalization condition,
in general their form is

K1 =
√

1− b22 |1〉〈1|+ eiβ1b1 |2〉〈2| , (4a)

K2 = b2 |1〉〈1|+ eiβ2

√
1− b21 |2〉〈2| , (4b)

with 0 ≤ b21, b22 ≤ 1 and two arbitrary phases β1 and β2.
As proven in [26], for such an instrument, the worst-

case total variational distance δ and its trace-norm ana-
logue ∆, Eqs. (1,2), quantifying measurement error and
disturbance respectively, satisfy

∆ ≥





1
2

(√
1− δ −

√
δ
)2

if δ ≤ 1
2 ,

0 if δ ≥ 1
2 .

(5)

The inequality is tight and cannot be exceeded by any
quantum measurement procedure. Equality in Eq. (5) is
attained for the family of optimal instruments defined by

K1 =
1√
2

(√
1− γ |1〉〈1|+

√
1 + γ |2〉〈2|

)
, (6a)

K2 =
1√
2

(√
1 + γ |1〉〈1|+

√
1− γ |2〉〈2|

)
, (6b)

with γ ∈ [0, 1], leading to δ(γ) = (1− γ) /2.
Other known measurement schemes.—Let us evalu-

ate common quantum measurement procedures in terms
of their measurement-disturbance tradeoff. For per-
fect quantum cloning, there would be no measurement-
disturbance tradeoff, as one of the perfect clones could
be measured without error with the other clone staying
undisturbed. Although perfect cloning is impossible [31],
one can derive a protocol that is optimal for approxi-
mate quantum cloning. Hence, it is a manifest intuition
that the optimal universal asymmetric quantum cloner
provides a promising measurement protocol that natu-
rally leads simultaneously to a small disturbance and a
small measurement error. It is illustrated in Fig. 3. The
quantum channel Ts(ρ) = trs′ (Tclo(ρ)), a marginal of
the cloning channel Tclo, corresponds to the evolution
of the system state, obtained when tracing out the sec-
ond (primed) clone. The corresponding channel of the
second clone, Ts′(ρ) = trs (Tclo(ρ)), provides an approx-
imate copy to which the reference POVM E is applied.
Asymmetry within the quality of the clones determines
the tradeoff between the measurement error and the dis-
turbance.

ρ Tclo

Ts(ρ)

Ts′(ρ) E

FIG. 3. Universal asymmetric quantum cloning. The initial
quantum state ρ is asymmetrically, approximately cloned to
the auxiliary system, initially in state 1/2. The target mea-
surement is performed on one of the clones, while the other
is compared to the initial quantum state ρ.

The optimal universal asymmetric quantum cloning
channel Tclo for any initial quantum state ρ reads [32]

Tclo (ρ) = (a21 + a1F)

(
ρ⊗ 1

2

)
(a21 + a1F) , (7)

with a2
1 + a2

2 + a1a2 = 1, a1, a2 ∈ R, and the flip (or

swap) operator F :=
∑2
i,j=1 |ji〉〈ij|. The parameter a1

determines the amplitude of a swap operation between
both qubits.

With our measures, the measurement-disturbance
tradeoff for the asymmetric quantum cloning channel sat-
isfies

∆ =





1
4

(√
2− 3δ −

√
δ
)2

if δ ≤ 1
2 ,

0 if δ ≥ 1
2

(8)

with δ(a2) = a2
2/2 [26].

As the cloning operation cannot be realized by a uni-
tary two-qubit transformation, any real implementation
of the protocol is embedded in a larger system. Let us
thus consider an obvious analogue to the cloning opera-
tion, which can be realized by a unitary two-qubit opera-
tion. For the swapping channel Tcs, the system interacts
with the auxiliary system via a Heisenberg Hamiltonian
as

Tcs (ρ) = eitF (ρ⊗ ρ̃) e−itF

= (a21 + ia1F) (ρ⊗ ρ̃) (a21− ia1F) , (9)

with t ∈ [0, π/2] or using a parametrization analogous to
the cloning scheme with a2

1 + a2
2 = 1, a1, a2 ∈ R. The

extreme cases are no swap (t = 0, a2 = 1) and full swap
(t = π/2, a1 = 1).

The δ-∆-tradeoff for the target measurement E =
{|j〉〈j|}2j=1 performed on one of the outputs satisfies

∆ =
1

2
− δ, (10)

with δ(t) = (1 − a2
1)/2, for the coherent swap [26], evi-

dently also inferior to our optimal instruments, Eq. (6),
with the tradeoff given in Eq. (5).

Experimental implementation.—For our experimental
evaluation of the measurement-disturbance tradeoff we
want to realize a broad range of quantum instruments
including the optimal ones. For that purpose we consider
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FIG. 4. Conceptual experimental setup. The state ρ is en-
coded in the polarization degree of freedom of a photon, which
is sent to a variable beam splitter (var BS). The spatial super-
position state inside of the interferometer is denoted by |φ0〉
and can be tuned in terms of relative intensities and phase.
For the interaction U between the path and the polarization
degrees of freedom we apply a σz operation to the polariza-
tion in one path. Projections onto the output ports |C〉 and
|D〉 of a balanced 50:50 beam splitter conclude the realization
of the Kraus operators as given in Eqs. (12). Polarization and
intensity measurements are performed at the output ports of
the interferometer. Please note that the actual experiment,
while equivalent to the shown setup, is structured differently
such that the polarization state ρ is created inside of the inter-
ferometer. The actual experiment is described in more detail
in [26].

the polarization degree of freedom of photons to encode ρ,
with |1〉 ↔ |H〉 and |2〉 ↔ |V 〉, where |H〉 (|V 〉) denotes
horizontally (vertically) polarized light. The Kraus op-
erators describing the chosen set of instruments are thus
given by

K1,2 =
1√
2

[√
1± γ |H〉〈H|+ eiβ

√
1∓ γ |V 〉〈V |

]
(11)

with an arbitrary phase β. The optimal cases Eqs. (6)
are achieved for β = 0.

To experimentally realize a quantum instrument and to
enable analysis of the two outputs Ts and E′, it is neces-
sary to employ an additional auxiliary quantum system,
which is not yet explicitly present in the instrument de-
scription of Fig. 2. For the measurement of photon polar-
ization a natural candidate is the path degree of freedom
of the photons. Since in our case a two dimensional aux-
iliary system is sufficient, we employ a Mach-Zehnder in-
terferometer, which provides the two path states |A〉 and
|B〉, see Fig. 4. The properties of the instrument are then
determined by the initial state of this auxiliary system,
|φ0〉 = cosα |A〉 + eiϕ sinα |B〉, the measurement per-
formed on it, i.e., the detection in the output path states
|C〉 and |D〉, as well as by an intermediate interaction be-
tween path and polarization. The interaction is given by
a unitary evolution U , which exchanges information be-
tween the systems. We use U = iσz⊗|A〉〈A|+1⊗|B〉〈B|,
which introduces a polarization dependent phase shift in
arm |A〉.

FIG. 5. Evaluating measurement error δ and disturbance ∆.
a) The measurement error corresponds to the maximal dis-
tance between the outcomes of the actual measurements E′1
and E′2 (red crosses) to the outcomes of the ideal measure-
ments E1 and E2 (blue line). b) The disturbance is obtained
by taking the supremum of the trace distance between the
prepared polarization states and the tomographically recon-
structed states of Ts. Please note that the suprema in a) and
b) are achieved for different states. Statistical error bars are
negligibly small. For a detailed discussion, see [26].

For an initial path state |φ0〉 the Kraus operators,
which act on the polarization, can then be obtained as

K1 = trpath [(1⊗ |C〉〈C|)U (1⊗ |φ0〉〈φ0|)] , (12a)

K2 = trpath [(1⊗ |D〉〈D|)U (1⊗ |φ0〉〈φ0|)] . (12b)

Relating these expressions with Eq. (11), the parameters
γ and β are given by the experimental parameters α and
ϕ by γ = sin (2α) sinϕ and β = arctan [tan (2α) cosϕ].
The outcome of the measurement E′ is then obtained by
determining the total intensity in the output C (E′1) and
D (E′2), respectively, the action of the quantum chan-
nel Ts by state tomography of the polarization degree of
freedom.

Measurements and results.—According to Eqs. (1) and
(2), the measures δ and ∆ use the supremum over differ-
ent input states ρ. We thus prepare for each quantum
instrument different linearly polarized states ρ, which
are analyzed after the interaction. The prepared po-
larization state ρ = |ψ〉〈ψ| in both arms is given by
|ψ〉 = cos θ2 |H〉 + sin θ

2 |V 〉, where |H〉 and |V 〉 as the
eigenstates of the Pauli matrix σz with eigenvalues +1
and −1, respectively, denote horizontal and vertical po-
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larization. We use 16 different values for θ, including
those where extremal behavior for the disturbance or the
measurement error is expected. The set of pure, linearly
polarized states is sufficient as the suprema in Eqs. (1)
and (2) are attained in our experimental implementation,
see SM [26].

An intuitive strategy consists of setting a specific in-
strument and then varying the polarization state ρ, which
however requires to keep the instrument parameters (α
and ϕ) stable. It turns out to be experimentally more
favorable to prepare different polarization states ρ and
then vary the phase ϕ for fixed α and ρ. One thus asso-
ciates measurements which correspond to the same state
|φ0〉 of the auxiliary system to the same instrument.

The evaluation of the measurement error and the dis-
turbance for one instrument of Fig. 1 is shown in Fig. 5
a) and b), respectively. The supremum over a great cir-
cle of the Bloch sphere, described by |ψ〉, has been used
for the analysis. The measurement error is given by the
maximal deviation of the measurement (red crosses) to
the best fitting target measurement (blue solid line), see
Eq. (1). While some states as eigenstates of the trans-
formation (theoretically) do not show any disturbance,
for the disturbance, the largest trace distance has to be
taken into account, see Eq. (2).

The obtained values for measurement error and state
disturbance are shown in Fig. 1 for the set of experimen-
tally prepared quantum instruments. Each data point
here identifies one quantum instrument, for which the
supremum of the prepared quantum states in terms of
measurement error and disturbance is determined. The
horizontal structure is explained when considering that
for a fixed α, various measurements with different ϕ have
been taken, see Eq. (11). We could show that there
exist quantum instruments, also experimentally accessi-
ble, which significantly outperform the optimal universal
asymmetric cloner (red curve) and the coherent swap op-

eration (green line) in terms of the considered distances.
Conclusion.—We applied the novel approach derived

in [25] to the setting of binary qubit measurements
achieving an optimal measurement-disturbance tradeoff.
In this setting a reference measurement is used to quanti-
tatively obtain the measurement error. The disturbance,
on the other hand, does not depend on any reference
measurement, but solely on comparing the state before
and after the measurement. Our protocol is tailored for
applications based on a specific measurement without re-
stricting subsequent use of the post-measurement state.

Furthermore, we have demonstrated that the strategies
of optimal universal asymmetric quantum cloning and co-
herent swap do not perform optimally when considering
the tradeoff relation between measurement error and dis-
turbance. Those protocols are optimal for their respec-
tive purposes such as approximate quantum cloning, but
cannot compete with the optimal quantum instruments
in the measurement scenario as in general they result in
worse measurement-disturbance tradeoff relations. We
have shown that the advantage of optimal instruments
over other schemes is experimentally accessible and not
only a mere theoretical improvement. In future appli-
cations our findings allow to identify these procedures
which retrieve information at the physically lowest cost
in terms of state disturbance.
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SUPPLEMENTAL MATERIAL

SM1: OPTIMAL TRADEOFF RELATION

Theorem 1 (Total variation - trace norm tradeoff).
Consider a von Neumann target measurement given by

an orthonormal basis
{
|i〉 ∈ C2

}2

i=1
, and an instrument

with two corresponding outcomes. Then the worst-case
total variational distance δ and its trace-norm analogue
∆, defined as in Eqs. (1,2), quantifying measurement er-
ror and disturbance respectively, satisfy

∆ ≥





1
2

(√
1− δ −

√
δ
)2

if δ ≤ 1
2 ,

0 if δ ≥ 1
2 .

(S1)

The inequality is tight and equality is attained within the
family of instruments defined by

Ij(ρ) := KjρKj , j = 1, 2, (S2)

with

K1,2 =
1√
2

(√
1± γ |1〉〈1|+

√
1∓ γ |2〉〈2|

)
(S3)

with γ ∈ [0, 1].

Proof. In order to derive the information-disturbance
tradeoff, we need to solve the following optimization
problem:
For γ ∈ [0, 1]

minimize ∆


Ts =

2∑

j=1

Ij


 (S4)

subject to δ
(
E′ =

{
I∗j (1)

}2

j=1

)
≤ γ,

Ij is c.p. and

2∑

j=1

I∗j (1) = 1,

where the last two constraints ensure that I is an instru-
ment. As discussed before, we assume that every element
of the instrument can be expressed using a single Kraus
operator. This agrees well with intuition, because more
Kraus operators introduce more noise to the system. Fur-
thermore, we assume that these Kraus operators can be
chosen diagonal in the basis of the target measurement,
E = {|j〉〈j|}2i=1, to reflect the symmetry of the optimiza-
tion problem. These assumptions simplify the optimiza-
tion problem significantly. The Kraus operators given in
Eq. (4) then yield the following POVM elements of the
approximate measurement

E′j = (1− b2j̄ ) |j〉〈j|+ b2j (1− |j〉〈j|), (S5)

for j = 1, 2, where j̄ = 2 if j = 1 and j̄ = 1 if j = 2 with
0 ≤ b21, b22 ≤ 1. The measurement error is thus given as

δ(E′) = sup
ρ

1

2

2∑

j=1

∣∣tr
(
E′jρ

)
− 〈j| ρ |j〉

∣∣

= sup
ρ

1

2

2∑

j=1

∣∣∣tr
((
b2j1− (b2j + b2j̄ ) |j〉〈j|

)
ρ
)∣∣∣

= sup
‖ψ‖=1

1

2

2∑

j=1

∣∣∣〈ψ| b2j1− (b2j + b2j̄ ) |j〉〈j| |ψ〉
∣∣∣

=
1

2
(b21 + b22),

where the convexity of the l1-norm was used. The dis-
turbance follows from direct calculations,

∆(T1) =
1

2
sup
ρ
‖T1(ρ)− ρ‖1

=
1

2
sup
ρ

∥∥∥∥∥∥

2∑

j=1

KjρK
†
j − ρ

∥∥∥∥∥∥
1

=
1

2

∣∣∣∣1− eiβ1b1

√
1− b22 − eiβ2b2

√
1− b21

∣∣∣∣ .

Without loss of generality, we may assume that b1, b2 ≥ 0
in the optimization problem, such that an optimum is
attained for β1 = β2 = 0. The optimization problem
given in Eq. (S4) therefore simplifies:
For γ ∈ [0, 1]

minimize
1

2

(
1− b1

√
1− b22 − b2

√
1− b21

)
(S6)

subject to
1

2
(b21 + b22) ≤ 1

2
(1− γ) ,

0 ≤ b1, b2 ≤ 1.

The global minimum is achieved at

b1 = b2 =





√
1
2 γ ∈ [−1, 0]√
1
2

√
1− γ γ ∈ [0, 1]

and as stated in Eq. (S1).

SM2: TRADEOFF RELATION FOR OPTIMAL
UNIVERSAL ASYMMETRIC CLONING

Theorem 2 (Total variation - trace norm tradeoff us-
ing optimal universal asymmetric cloning). Consider a
von Neumann measurement given by an orthonormal ba-
sis in C2 on one of the outputs of the optimal universal
1 → 2 asymmetric quantum cloning channel. Then the
worst-case total variational distance δ and its trace-norm
analogue ∆ satisfy

∆ =





1
4

(√
2− 3δ −

√
δ
)2

if δ ≤ 1
2 ,

0 if δ ≥ 1
2 .

(S7)
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Proof. The marginals of the optimal cloning channel are
given by

Tclo,i(ρ) = a2
i

1

2
tr (ρ) + (1− a2

i )ρ, i = 1, 2, (S8)

with Tclo,1 = Ts and Tclo,2 = Ts′ . The marginal quan-
tum channel Ts describes the evolution of the quantum
state and its distance to the identity channel Tid then
quantifies the disturbance. Similarly, the marginal Ts′ ,
whose output is measured by the target measurement E,
describes the measurement itself through E′j = T ∗s′(Ej).
This is illustrated in Fig. 3. This yields for the distur-
bance

∆(Ts) :=
1

2
sup
ρ
‖Ts(ρ)− ρ‖1

=
1

2
sup
ρ

∥∥∥∥a2
1

1

2
− a2

1ρ

∥∥∥∥
1

=
a2

1

2
.

The measurement error turns out to be

δ(E′) := sup
ρ

1

2

2∑

j=1

∣∣tr
(
E′jρ

)
− 〈j| ρ |j〉

∣∣

= sup
ρ

1

2

2∑

j=1

|tr (T ∗s′(|j〉〈j|)ρ)− 〈j| ρ |j〉|

= sup
ρ

1

2

2∑

j=1

|tr (|j〉〈j|Ts′(ρ))− 〈j| ρ |j〉|

= sup
ρ

1

2

2∑

j=1

∣∣∣∣〈j| a2
2

1

2
− a2

2ρ |j〉
∣∣∣∣

=
a2

2

2
.

Substituting this into the trace-preserving condition of
the optimal universal asymmetric quantum cloning chan-
nel, we obtain the theorem 2.

SM3: TRADEOFF RELATION FOR COHERENT
SWAP

Theorem 3 (Total variation - trace norm tradeoff using
the coherent swap). Consider a von Neumman measure-
ment given by an orthonormal basis in C2 on one of the
outputs of a coherent swap channel. Then the worst-case
total variational distance δ and its trace-norm analogue
∆ satisfy

∆ =
1

2
− δ. (S9)

Proof. Using the substitution a1 = a and a2 =
√

1− a2

with a ∈ [0, 1] yields the two marginals of the coherent
swap quantum channel,

Ts(ρ) = a2ρ̃+ (1− a2)ρ (S10)

and

Ts′(ρ) = (1− a2)ρ̃+ a2ρ. (S11)

The disturbance is therefore

∆(Ts) :=
1

2
sup
ρ
‖Ts(ρ)− ρ‖1

=
1

2
a2 sup

ρ
‖ρ̃− ρ‖1 .

The optimal choice for ρ̃ should clearly satisfy the points
(∆(Ts) = 0, δ(E′) = 1/2) and (∆(Ts) = 1/2, δ(E′) = 0),
where again E′ = T ∗s′(E). For any such choice of ρ̃ the
disturbance thus satisfies ∆(Ts) ≥ a2/2. The measure-
ment error turns out to be

δ(E′) := sup
ρ

1

2

2∑

j=1

∣∣tr
(
E′jρ

)
− 〈j| ρ |j〉

∣∣

= sup
ρ

1

2

2∑

j=1

|tr (T ∗s′(|j〉〈j|)ρ)− 〈j| ρ |j〉|

= sup
ρ

1

2

2∑

j=1

|tr (|j〉〈j|Ts′(ρ))− 〈j| ρ |j〉|

=
(
1− a2

)
sup
ρ

1

2

2∑

j=1

|〈j| ρ̃ |j〉 − 〈j| ρ |j〉| .

Thus, an optimal choice for ρ̃ that minimizes the dis-
turbance and the measurement error is ρ̃ = 1/2. A pure
state with the same diagonal entries yields the same mea-
surement error; it would, however, increase the distur-
bance caused to the system.

The disturbance is then

∆(Ts) =
a2

2
,

and the measurement error is

δ(E′) =
1

2

(
1− a2

)
.

This gives the linear tradeoff curve given in theorem 3.

SM4: PROPERTIES OF DISTANCE MEASURES

The distance measures used throughout this manu-
script to quantify the measurement error and the dis-
turbance, denoted by δ and ∆, satisfy Assumption 1 and
Assumption 2 of [25] respectively.
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Lemma 4. δ as defined in Eq. (1) satisfies the following
properties:

(a) δ({|i〉〈i|}2i=1) = 0,

(b) δ is convex,

(c) δ is permutation invariant, i.e., for every permuta-
tion π and any measurement M

δ
(
{U†πMπ(i)Uπ}2i=1

)
= δ

(
{Mi}2i=1

)
,

where Uπ is the permutation matrix that acts as
Uπ |i〉 = |π(i)〉, and

(d) δ is invariant under diagonal unitaries, i.e., that for
every diagonal unitary D and any measurement M

δ
(
{D†MiD}2i=1

)
= δ

(
{Mi}2i=1

)
.

Proof. Let δ(M) := supρ
1
2

∑2
i=1 |tr (Miρ)− 〈i| ρ |i〉|.

Then

(a) δ({|i〉〈i|}2i=1) = 0, since

δ({|i〉〈i|}2i=1) = sup
ρ

1

2

2∑

i=1

|〈i| ρ |i〉 − 〈i| ρ |i〉| = 0,

(b) δ is convex, since for any measurements M,M ′ and
for all λ ∈ [0, 1],

δ (λM + (1− λ)M ′)

= sup
ρ

1

2

2∑

i=1

|tr ((λMi + (1− λ)M ′i) ρ)− 〈i| ρ |i〉|

≤λ sup
ρ

1

2

2∑

i=1

|tr (Miρ)− 〈i| ρ |i〉|

+ (1− λ) sup
ρ

1

2

2∑

i=1

|(tr (M ′iρ)− 〈i| ρ |i〉)|

=λδ(M) + (1− λ)δ(M ′),

(c) δ is permutation invariant, since for every permuta-
tion π and any measurement M

δ
(
{U†πMπ(i)Uπ}2i=1

)

= sup
ρ

1

2

2∑

i=1

∣∣tr
(
U†πMπ(i)Uπρ

)
− 〈i| ρ |i〉

∣∣

= sup
ρ

1

2

2∑

i=1

∣∣tr
(
Mπ(i)ρ

)
− 〈π(i)| ρ |π(i)〉

∣∣

= sup
ρ

1

2

2∑

i=1

|tr (Miρ)− 〈i| ρ |i〉|

=δ
(
{Mi}2i=1

)
,

where Uπ is the permutation matrix that acts as
Uπ |i〉 = |π(i)〉, and

(d) δ is invariant under diagonal unitaries, since for every
diagonal unitary D and any measurement M

δ
(
{D†MiD}2i=1

)

= sup
ρ

1

2

2∑

i=1

∣∣tr
(
D†MiDρ

)
− 〈i| ρ |i〉

∣∣

= sup
ρ

1

2

2∑

i=1

∣∣tr (Miρ)− 〈i|D†ρD |i〉
∣∣

= sup
ρ

1

2

2∑

i=1

|tr (Miρ)− 〈i| ρ |i〉|

=δ
(
{Mi}2i=1

)
.

Lemma 5. ∆ as defined in Eq. (2) satisfies the following
properties:

(a) ∆(Tid) = 0,

(b) ∆ is convex,

(c) ∆ is basis-independent, i.e., for every unitary U and
every quantum channel Φ

∆
(
UΦ

(
U† · U

)
U†
)

= ∆ (Φ) .

Proof. Let ∆(Φ) := 1
2 supρ ‖Φ(ρ)− ρ‖1. Then

(a) ∆(Tid) = 0, since ∆(Tid) = 1
2 supρ ‖ρ− ρ‖1 = 0,

(b) ∆ is convex, since for any quantum channels Φ,Φ′

and for all λ ∈ [0, 1],

∆ (λΦ + (1− λ)Φ′)

=
1

2
sup
ρ
‖(λΦ + (1− λ)Φ′) (ρ)− ρ‖1

=
1

2
sup
ρ
‖λ (Φ(ρ)− ρ) + (1− λ) (Φ′(ρ)− ρ)‖1

≤λ1

2
sup
ρ
‖Φ(ρ)− ρ‖1 + (1− λ)

1

2
sup
ρ
‖Φ′(ρ)− ρ‖1

=λ∆(Φ) + (1− λ)∆(Φ′),

where we have used properties of a norm and prop-
erties of a supremum of a convex functional over a
convex set,

(c) ∆ is basis-independent, i.e., for every unitary U and
every quantum channel Φ

∆
(
UΦ

(
U†ρU

)
U†
)

=
1

2
sup
ρ

∥∥UΦ
(
U†ρU

)
U† − ρ

∥∥
1

=
1

2
sup
ρ

∥∥UΦ (ρ)U† − UρU†
∥∥

1

=
1

2
sup
ρ
‖Φ (ρ)− ρ‖1

=∆ (Φ) ,
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where we have used the fact that the trace norm is
unitarily invariant.

SM5: DIFFERENT MEASURES

The optimal instruments as explained in the main text
and derived in Sec. result in optimal measurement-
disturbance relations for all distance measures which sat-
isfy the assumptions of [25]. For more details on the dis-
tance measure used in the main text see Sec. .

FIG. S1. Comparison of optimal quantum instruments (blue)
with the optimal universal asymmetric quantum cloner (red)
for different distance measures based on simulations. The
tradeoff relation of the main text based on the measures of
Eqs. (1) and (2) is shown (solid lines) and equivalent to a prop-
erly scaled version of the worst-case Hilbert-Schmidt norm
(overlayed dashed lines) and to the worst-case infidelity (not
shown). For averaging over all quantum states instead of tak-
ing the supremum of the trace norm for the disturbance, one
obtains the dashdotted lines.

We here show the tradeoff relations for different choices
of disturbance measures, while the measurement error is
always quantified as in Eq. (1). For various meaning-
ful measures, we observe that the optimal instruments
outperform the cloner, see Fig. S1.

SM6: EXPERIMENTAL SETUP

Due to experimental and practical limitations, the ac-
tual experimental setup has been slightly different than
described in the main text. However, the actual imple-
mentation is fully equivalent to the description there. In

FIG. S2. Actual experimental setup. Light from a diode
laser (LD) propagates through a single mode fiber and is sent
through a fixed polarizer (H-POL). A beam splitter (BS) cre-
ates a spatial superposition. The attenuation of one arm can
be adjusted using a half waveplate (HWP) in arm A and an-
other H-POL. The relative phase ϕ can be varied using a
piezo controlled prism. H-POLs together with variable HWPs
ensure equal polarization in both arms as indicated by the
dotted lines. As the H-POLs are used to vary the attenua-
tion as well as to set the polarization state, they are part of
both the instrument and the state preparation. The reflec-
tion from arm A on the second BS introduces a coupling be-
tween polarization and path. Polarization and intensity mea-
surements are performed in output port C using waveplates
(HWP and QWP), polarizing beam splitters (PBS) and pho-
todiodes (PD). Output port D is not monitored, as for phase
ϕ0 it is redundant to the output of port C at phase ϕ0 + π.

order to be able to fully tune the attenuation in one of
the interferometer arms, we use a half waveplate (HWP)
sandwiched between two polarizers. Therefore, the po-
larization state ρ cannot be set before. Hence, we decided
to first create the spatial superposition state |φ0〉 using
waveplates and polarizers and subsequently set ρ in both
interferometer arms separately. With this approach, we
still achieve at this stage a separable state ρ ⊗ |φ0〉〈φ0|
within the interferometer before the interaction. As we
set the polarization state directly in front of the second
beam splitter of the interferometer, the reflection of beam
A on the beam splitter already provides the interaction
between system and auxiliary system. This reflection in-
duces the unitary transformation U as described in the
main text, enabling us to obtain the Kraus operators
given in Eq. (11).

Since for a perfect beam splitter the output ports are
interchanged for ϕ0 ↔ ϕ0 + π, we use only output port
C to obtain data for both projections, considering the
phases ϕ1 = ϕ0 and ϕ2 = ϕ0 +π. This way, both projec-
tions are carried out with exactly the same equipment,
reducing possible experimental errors.

SM7: CHOICE OF POLARIZATION STATES

According to the parametrization |ψ〉 = cos θ2 |H〉 +

sin θ
2 |V 〉, the experimentally prepared values for θ were

{−20◦, −10◦, 0◦, 10◦, 20◦, 70◦, 80◦, 90◦, 100◦, 110◦,
160◦, 170◦, 180◦, 190◦, 200◦, 270◦}. For θ = 0◦ and
θ = 180◦, the prepared state corresponds to horizontal
polarization |H〉 and vertical polarization |V 〉, respec-
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tively. Thus, the reflection in beam A only introduces a
phase, as for example the state for θ = 0◦ is transformed
according to

|H〉 ⊗
(
cosα |A〉+ sinαeiϕ |B〉

)
→

|H〉 ⊗
(
i cosα |A〉+ sinαeiϕ |B〉

)
, (S12)

which does not change the state of the polarization. The
disturbance therefore (ideally) vanishes. In contrast, for
θ = 90◦, we expect

(|H〉+ |V 〉)⊗
(
cosα |A〉+ sinαeiϕ |B〉

)
→

i (|H〉 − |V 〉)⊗ cosα |A〉+ (|H〉+ |V 〉)⊗ sinαeiϕ |B〉 ,
(S13)

where normalization is omitted. For a given instrument
characterized by {α,ϕ}, this polarization state is ex-
pected to give the largest disturbance ∆.

For the Kraus operators given in Eq. (11), we find for

E′j = K†jKj for j = 1, 2,

E′1,2 =
1

2

(
1± sin 2α cosϕ 0

0 1∓ sin 2α cosϕ

)
. (S14)

Therefore, the distance of the outcome probabilities, used
to obtain δ, becomes

1

2

∑

i

∣∣∣tr (E′i |ψ〉〈ψ|)− |〈i|ψ〉|2
∣∣∣ =

|cos θ (1− cosϕ sin 2α)| , (S15)

which vanishes for θ = 90◦ (and θ = 270◦) and can be
maximal for θ = 0◦ (and θ = 180◦).

SM8: ERROR ANALYSIS OF EXPERIMENTAL
DATA

The statistical error of the data shown in Fig. 1 is es-
timated by comparing the results obtained in redundant
measurements. The standard deviation of the measure-
ment error is estimated to be around 8.3 · 10−5, whereas
the 1σ-error bar for the estimated disturbance is approx-
imately 7.0 · 10−5. Those values are thus too small to be
visible in Fig. 1.

Additionally to statistical errors, two different sources
of systematic errors have been identified. First, the state
preparation as well as the interaction are not perfectly
implemented. The imperfect preparation of the initial
polarization state and of the state analysis are the main
reasons that the identity channel with no disturbance at
all (but high measurement error) cannot be implemented
perfectly, leading to a residual disturbance, which ap-
pears as an increase of the minimal disturbance ∆ of the
data in the plot. In any case, this type of error only re-
duces the quality of the prepared quantum instruments
and does not lead to faulty conclusions.

However, as a second type of systematic error one has
to ensure that the prepared polarization states are de-
scribing a great circle on the Bloch sphere and contain
the states with extremal results sufficiently well. This
error can be approximated by considering the data as
shown in Fig. 5. By applying a parabolic model for the
data points around the extrema of the probability graphs
and the maxima of the trace distance graphs, the devi-
ation of the extrema from the measured points can be
estimated. This effect might cause a quantum instru-
ment to look better than it actually is, i.e., less disturb-
ing together with smaller measurement error. Yet, for
the dataset shown in Fig. 5 b), the parabolic fit results
in a maximum at θ ≈ 89.95◦ with a trace distance larger
by only 0.02% compared to the trace distance at θ = 90◦.
The probabilities in Fig. 5 a) around θ = 0◦ and θ = 180◦

can nicely be described by parabolae, where the extrema
coincide with our measured points. Thus, the systematic
effect of underestimating the measurement error or the
disturbance due to badly chosen measurement states is
negligibly small.

In conclusion, the different sources of errors overall
reduce the quality of the implemented quantum instru-
ments and do not lead to an underestimation of distur-
bance and measurement error, respectively. We can thus
show the implementation of instruments better than the
optimal quantum cloner with high significance.
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Summary of article 4: Real Randomized Benchmarking [3]

Randomized benchmarking is a technique that yields quantitative estimates of the average error

of the noise inherit to a physical quantum channel. In this article, we study real randomized

benchmarking, where the quantum gates under consideration are taken from the real Clifford

group. The real Clifford group is the normalizer of the real Pauli group, which only contains

the Pauli gates with real entries. It is a subgroup of the complex Clifford group and it is not a

unitary 2-design. However, in this article we show that it forms an orthogonal 2-design,

Theorem D.1 ([3, theorem 4]). The real Clifford group C(n) is an orthogonal 2-design.

We furthermore clarify how to sample from the real Clifford group, since this is a crucial

part of the real randomized benchmarking protocol.

A very useful symmetry argument may then be employed and the twirled quantum channel,

which arises due to the averaging procedure in the real randomized benchmarking protocol,

is an affine combination of the Werner-Holevo channel, the ideal channel and the completely

depolarizing channel. Real randomized benchmarking can thus estimate two parameters instead

of one allowing to obtain more fine-grained information about the noise in the system.

Theorem D.2 ([3, theorem 7]). The protocol RealRB(m,E, ρ) has an expected fidelity of the

form

F̄ (m,E, ρ) = A+ bmB + cmC, (D.1)

where A,B and C are functions only of (E, ρ) and b and c depend on the average noise channel.

One of these parameters is related to the average rebit fidelity, where the average is taken

with respect to the orthogonal group, i.e., with respect to rebits. This figure of merit for any

two quantum channels C and C̃ is defined to be

F̄R
(
C, C̃

)
=

∫

O(d)
Tr
[
C (O |0〉〈0|O∗) C̃ (O |0〉〈0|O∗)

]
dO, (D.2)

and gives one of the parameters through

F̄R (E , id) =
b(d− 1) + 1

d
. (D.3)
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The usual average fidelity

F̄
(
C, C̃

)
=

∫

U(d)
Tr
[
C (U |0〉〈0|U∗) C̃ (U |0〉〈0|U∗)

]
dU, (D.4)

then allows to calibrate the second parameter through

F̄ (E , id) =
b(d2 + d− 2) + cd(d− 1) + 2(d+ 1)

2d(d+ 1)
. (D.5)

This makes the real randomized benchmarking analysis especially interesting when considering

quantum computations on rebits. It has been shown that universal quantum computing is

possible using only rebits [47]. The real Clifford group then plays the role of the complex

Clifford group when studying stabilizer circuits [48]. Together with the second parameter, it

is then also possible to infer the usual average fidelity. The experimental data may thus be

calibrated to the real randomized benchmarking model by varying the quantum gate sequence

length and fitting the two parameters.

Statement of individual contribution

This project was initialized, when I, Anna-Lena Karolyn Hashagen, visited Prof. Dr. Stephen

D. Bartlett and his quantum physics research group in the School of Physics at the University

of Sydney, Australia, from December 2016 until April 2017. Prof. Dr. Steven T. Flammia

and Dr. Joel J. Wallmann are permanent members of this quantum physics research group in

Sydney. Prof. Dr. David Gross from the Institute for Theoretical Physics of the University of

Cologne, Germany, was a visiting professor at that time.

Prof. Dr. Steven T. Flammia provided the idea that the randomized benchmarking protocol

could be applied to other groups, not only the complex Clifford group, which was the focus of

research at that time. Prof. Dr. David Gross had the idea to look at subgroups of the complex

Clifford group. I then discovered that the real Clifford group is a good candidate, because

it yields applicable results within quantum computing on rebits. Furthermore, I was able to

prove that the real Clifford group is an orthogonal 2-design without any further input from the

other authors. Therefore, the theorem [3, theorem 4], the main ingredient of real randomized

benchmarking, was proven solely by me. I give two different proofs in the article, one using the

structures of the commutants and another one using the frame potential of the real Clifford

group. I, Anna-Lena Karolyn Hashagen, was solely responsible for describing the symmetry

methods applicable to the real Clifford group.

Furthermore, I was solely responsible for deriving the real randomized benchmarking pro-

tocol (realRB protocol) and the proof of the theorem [3, theorem 7]. The protocol yields two

parameters to which experimental data can be calibrated. I had the idea to relate one of those

parameters to a figure of merit called the average real fidelity, which again connected our results

to quantum computations on rebits.

It is important to add a section about how to sample from the real Clifford group. These

subtleties, even though they are extremely important and it is highly necessary to address
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them, are mostly ignored by the randomized benchmarking community. During several video

conferencing sessions, I addressed this issue with the help of Prof. Dr. David Gross, who was

able to point me in the right direction and suggested literature to look at. We were then able

to address the problem of how to efficiently sample from the real Clifford group together. The

section [3, section V] is therefore a result of joint work by Prof. Dr. David Gross and myself.

Furthermore, I was fully responsible for writing this article and finishing up the final version.

I, Anna-Lena Karolyn Hashagen, am the principal author of this article and was extensively
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Randomized benchmarking provides a tool for obtaining precise quantita-
tive estimates of the average error rate of a physical quantum channel. Here we
de�ne real randomized benchmarking, which enables a separate determination
of the average error rate in the real and complex parts of the channel. This
provides more �ne-grained information about average error rates with approx-
imately the same cost as the standard protocol. The protocol requires only
averaging over the real Cli�ord group, a subgroup of the full complex Cli�ord
group, and makes use of the fact that it forms an orthogonal 2-design. It the-
refore allows benchmarking of fault-tolerant gates for an encoding which does
not contain the full Cli�ord group transversally. Furthermore, our results are
especially useful when considering quantum computations on rebits (or real
encodings of complex computations), in which case the real Cli�ord group now
plays the role of the complex Cli�ord group when studying stabilizer circuits.

1 Introduction
The design of reliable quantum information processing devices requires the quantitative
characterization of the average error rate of a physical quantum channel. Full characteri-
zation of quantum processes is possible through quantum process tomography [29]. This
method is, however, infeasible in practice. Firstly, it relies upon the challenging assump-
tion that the set of measurements and the quantum state preparation admit lower errors
than the process itself. Furthermore, the number of experimental con�gurations required
� including quantum state preparation and quantum measurements � grows exponentially
with the number of qubits even when employing improvements such as compressed sensing
[17, 26].

An alternative approach is randomized benchmarking (RB) and variants thereof [8, 10,
11, 14, 15, 20, 37�39]. An RB protocol gives an estimate of the average �delity between the
realized and ideal implementations of a group of quantum gates by estimating the decay
rate of the survival probability over random sequences of varying lengths. The e�ort of
implementing the RB protocol scales e�ciently with the number of qubits and it is robust
against measurement and state preparation errors. Due to this, RB has become a popular
tool to assess the quality of quantum processes [1, 3, 4, 9, 19, 34, 42, 45, 47, 54].

In this work, we study RB protocols in which the quantum gates are taken from the
real Cli�ord group, which we refer to as real randomized benchmarking. We de�ne the
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notion of an orthogonal 2-design, and show that the real Cli�ord group constitutes one.
This property allows one to e�ciently estimate the average �delity of an experimental
implementation of the real Cli�ord group.

There are two primary motivations for using alternative groups for randomized ben-
chmarking. First, some gates may be signi�cantly worse than others due to di�erent
implementations (such as fault-tolerant implementations of non-transversal gates). Inclu-
ding such gates in the benchmarking group would result in a rapid decay dominated by
the worst gate(s), so that little information can be obtained about the majority of gates.
Furthermore, some quantum codes do not allow all transversal Cli�ord gates. The real
Cli�ord group might, however, be accessible. This insight was recently used to do rando-
mized benchmarking inside the code space of the [4,2,2] code using a variant of the protocol
discussed in the present manuscript [28]. Second, the average gate �delity quanti�es the
error rate over the entire Hilbert space. If an experiment only involves states in a portion
of Hilbert space, then the relative �gure of merit should only average over the states in that
portion of Hilbert space. Real randomized benchmarking allows a direct characterization
of the average gate �delity over real-valued density operators, which is directly relevant to
universal quantum computation with rebits [7, 46]. Third, information about which part
of the Hilbert space is a�icted by the worst errors provides more information with which
to optimize the experimental implementation of a group of quantum gates.

Summary. We analyze real randomized benchmarking, where the quantum gates are
taken from the real Cli�ord group. The real Cli�ord group acting on n-qubits is generated
by

C(n) := 〈Zi, Hi, CZij〉 ,
where the subscripts indicate that the gate is acting on the ith qubit and Z is the Pauli
Z-gate, H is the Hadamard gate and CZ is the controlled Z-gate, de�ned respectively as,

Z =
(

1 0
0 −1

)
, H = 1√

2

(
1 1
1 −1

)
, CZ =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1


 .

The protocol that gives an estimate of the average �delity between the physical and ideal
implementations of these gates, denoted as C̃ and C respectively, is given in protocol 2
in section 7. We assume that the error quantum channel is gate and time independent
throughout. However, we note that the methods of Wallman [50] and Merkel et al. [41]
can be used to prove that the gate-dependent assumption can be relaxed with negligible
e�ect on the estimate; we leave a careful and detailed proof of this to future work. The
protocol estimates the decay rate of the survival probability over random gate sequences
of varying length m+ 1 as illustrated in �g. 1.

The protocol gives an approximation to the average sequence �delity,

F̄ (m,E, ρ) = A+ bmB + cmC,

where A, B and C depend only on the state preparation and measurement, and b and c
depend on the noise quantum channel. Let Si :Md →Md, i = a, b, c, be de�ned as

Sa(·) = Tr[·] I
d
,

Sb(·) = 1
2(id +θ)− Tr[·] I

d
and

Sc(·) = 1
2(id−θ),
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ρ C̃1 C̃2 . . . C̃m C̃m+1 E

Figure 1: The main setup of real randomized benchmarking (see Protocol 2 for more details). For a
fixed m ∈ N, a sequence of m + 1 real Clifford gates is applied to an initial quantum state ρ. The
sequence is generated, such that in the case of its ideal implementation, it gives the identity operation.
A subsequent measurement is performed given by an effect operator of a POVM, E, to measure the
survival probability. Averaging over M ∈ N random realizations of sequences of length m gives the
average sequence fidelity.

then

A = Tr[ESa(ρ)],
B = Tr[ESb(ρ)] and

C = Tr[ESc(ρ)],

as well as

b = Tr[T ◦ Sb(ρ)]
Tr[Sb(ρ)] and

c = Tr[T ◦ Sc(ρ)]
Tr[Sc(ρ)] ,

where T :Md →Md denotes the noise quantum channel.
The parameter b is linearly proportional to the average rebit �delity, where the average

is taken with respect to the orthogonal group, see eq. (35) in section 6. Together with
parameter c, they give the average �delity, see eq. (34). It is thus possible to obtain more
�ne-grained information about the physical implementation of real Cli�ord gates.

Organization of the paper. This paper starts with an introduction to the group
twirl and in particular studies the twirl over the real orthogonal group. In this particular
case, the exact form of a twirled quantum channel is derived. We establish the notion of
an orthogonal 2-design and, after de�ning the real Cli�ord group, in section 3 we show
that the real Cli�ord group is an orthogonal 2-design. The derived insights into the real
Cli�ord group are then, in the following section 4, compared to the complex case. Section 5
gives a protocol on how to obtain a Haar sample from the real Cli�ord group in an e�cient
way. In section 6 we discuss the �gures of merit of which real RB obtains estimates. In
section 7 we give the real RB protocol that shows how to calibrate the average sequence
�delity to experimental data. Section 8 uses the results established in section 3 to derive
the estimate for the average �delity.

2 Group twirl
In this section we introduce the mathematical background necessary for real randomized
benchmarking. We will �rst introduce the notation used throughout this paper followed
by a review of the relevant representation theoretic concepts.

We consider an n-qubit system with an underlying �nite-dimensional Hilbert space
H ' Cd, d = 2n. Denote by Md (C) the set of complex-valued d × d-matrices and as
Md (R) the set of real-valued d × d-matrices. Every quantum state is described by a
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density matrix ρ ∈ Md (C), with normalization Tr [ρ] = 1 and positivity property ρ ≥
0. The set of d-dimensional density matrices or quantum states is denoted as Dd :=
{ρ ∈Md (C)|ρ ≥ 0,Tr [ρ] = 1}. A transformation of a quantum state is described by a
quantum channel, which is a completely positive trace preserving linear map T :Md (C)→
Md (C). The Choi-Jamioªkowski representation [33] provides a one-to-one correspondence
between linear maps T :Md →Md′ and operators τT ∈Md′d via

τT = (id⊗T ) |Ω〉〈Ω| , (1)

where |Ω〉〈Ω| = 1
d

∑d
i,j=1 |ii〉〈jj| is the maximally entangled state. This operator τT encodes

every property of the linear map T and the representation shows that the set of quantum
channels corresponds one-to-one to the set of bipartite quantum states which have one
reduced density matrix maximally mixed [29]. This result will be used throughout this
work. Denote by U(d) the unitary group acting on Cd and by O(d) the real orthogonal
group acting on Cd. Moreover, I is the identity matrix inMd (C).

Throughout this paper, we are interested in group actions on quantum channels. For
an extensive review of representations of �nite and compact groups, please refer to [48].
To this end consider any �nite group G with elements g ∈ G and a unitary representation
{U(g)}g∈G on Cd. Its adjoint representation UU : G→ End(Md(C)) is de�ned through its
action on any X ∈Md(C) as

UU(g)(X) = U(g)XU(g)∗ ∀g ∈ G, (2)

and may be represented as a matrix U ⊗ Ū ∈Md2 .
Indeed, let H be a general matrix group acting on some Hilbert space K (below, we

will be interested in e.g. H = {U(g) ⊗ Ū(g) | g ∈ G}, with K = Cd ⊗ Cd ). The Hilbert
space decomposes as

K '
k⊕

i=1
Ki ⊗ Cni , (3)

where the sum is over irreducible unitary representations of H, Ki = Cdi carries the
ith irreducible unitary representation, and ni is the degeneracy of the irreducible unitary
representations in K. Every U ∈ H is block-diagonal with respect to this decomposition,
i.e. of the form

U '
k⊕

i=1
Ui ⊗ Ini×ni . (4)

The commutant H ′ of H is the algebra H ′ = {X | [X,U ] = 0 ∀U ∈ H} which commutes
with all elements of H. By Schur's Lemma, every X ∈ H ′ is of the form

X '
k⊕

i=1
Idi×di

⊗Xi, (5)

with di = dimKi, and Xi acting on the ni-dimensional space appearing on the right hand
side of eq. (4). We will mainly restrict our attention to the case where all irreducible
unitary representations of H on K are non-degenerate, i.e. ni = 1 for all i = {1, . . . , k}. In
this case, eq. (5) takes the form

X '
k∑

i=1
xiPi, (6)

where the Pi are orthogonal projections onto the ith irreducible unitary representation and
the xi ∈ C.
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The group twirl associated with H is

T : A 7→
∫

H
UAU∗dU, (7)

where the integration is w.r.t. the Haar measure on H. In particular, if H is �nite, the
integral is the normalized sum over the group. The group twirl is (i) idempotent, (ii) self-
adjoint (w.r.t. the Hilbert-Schmidt inner product), and (iii) leaves elements X ∈ H ′ of the
commutant invariant. It is thus the orthogonal projection onto H ′. In the non-degenerate
case, one can check that this projection is given explicitly by

T(A) =
k∑

i=1

1
di

Tr(APi)Pi. (8)

Clearly, the group twirl over H only depends on the commutant H ′. Thus, if a group
S is such that S′ = H ′, twirling over S is equivalent to twirling over H. In practice,
this freedom can be advantageous, if S has e.g. smaller cardinality than H, or simpler
implementations as a quantum circuit. The notion of a group design captures this relation:
A unitary t-design is any group G such that we have the equality of commutants

{U⊗t |U ∈ G}′ = {U⊗t |U ∈ U(d)}′. (9)

General many-qubit unitaries do not have an e�cient gate decomposition, while there are
many-qubit unitary 2-designs and 3-designs that do. This was the original motivation for
introducing the notion [11].

Phrased this way, it is natural to generalize eq. (9) to arbitrary �reference groups�,
beyond the now well-studied case of U(d). In particular, we will be concerned with the
following case:

Definition 1. Let G be a matrix group acting on Cd for some d. Then G is an orthogonal
t-design if we have the equality of commutants, i.e.,

{U⊗t |U ∈ G}′ = {O⊗t |O ∈ O(d)}′,

where O(d) is the real orthogonal group acting on Cd.

2.1 Group twirl over the orthogonal group
Throughout this paper, our main emphasis will be on orthogonal 2-designs. In this case,
it is possible to work out the commutant easily [49]. Consider the unitary representation
O(2) : g 7→ O(g)⊗O(g) of the orthogonal group O(d) on H = Cd ⊗ Cd, given as

G = {O ⊗O|O ∈ O(d)} . (10)

The commutant G′ is spanned by three orthogonal projections [40, 49],

P0 = |Ω〉〈Ω| , (11a)

P1 = 1
2 (I− F) and (11b)

P2 = 1
2 (I + F)− |Ω〉〈Ω| , (11c)

where F = ∑d
i,j=1 |ij〉〈ji| is the �ip (or swap) operator and |Ω〉〈Ω| = 1

d

∑d
i,j=1 |ii〉〈jj| is

the maximally entangled state. For any symmetric X ∈ Md(C), we have that FX =

Accepted in Quantum 2018-08-09, click title to verify 5
167



X, and for any antisymmetric X ∈ Md(C), we get FX = −X. The projections thus
correspond to multiples of the identity, antisymmetric matrices and traceless symmetric
matrices respectively. Every density operator in the commutant must thus be in the convex
hull of the corresponding normalized density matrices ρi = Pi/di for i = 0, 1, 2.

The theory discussed above therefore applies to quantum channels too. To this end,
let T be a quantum channel on a d-dimensional quantum system, and let G be a matrix
group on Cd. The twirled channel T̃ over the full real orthogonal group,

T̃ (·) =
∫

O(d)
OT (O∗ ·O)O∗ dO, (12)

can then be expressed as in eq. (7). Using the state channel duality, we see that ρ0 = P0/d0
then corresponds to the ideal channel T (·) = id, ρ1 = P1/d1 corresponds to the Werner-
Holevo channel given by

T (·) = Tr [·]I− θ
d− 1 ,

where θ denotes the usual transposition ρ 7→ θ(ρ) := ρT , and
∑

i Pi/d
2 corresponds to the

completely depolarizing channel T (·) = Tr [·]I/d. This yields

T̃ (·) = α id +β I
d

Tr [·] + γ
ITr [·]− θ
d− 1 , (13)

with α, β, γ ∈ R satisfying α + β + γ = 1 (which makes T̃ trace-preserving). As before,
θ denotes the usual transposition ρ 7→ θ(ρ) := ρT . This immediately follows from the
correspondence between a quantum channel and its Jamioªkowski state,

∫

O(d)
(O ⊗O) τT (O ⊗O)∗ dO

=
∫

O(d)
(O ⊗O) (id⊗T ) |Ω〉〈Ω| (O ⊗O)∗ dO

=
∫

O(d)

1
d

d∑

i,j=1
O |i〉〈j|O∗ ⊗OT (|i〉〈j|)O∗ dO

=
∫

O(d)

1
d

d∑

i,j=1
|i〉〈j| ⊗OT (O∗ |i〉〈j|O)O∗ dO

=
(

id⊗
∫

O(d)
OT (O∗ ·O)O∗ dO

)
|Ω〉〈Ω| .

A twirl over a quantum channel and the corresponding twirl over its Jamioªkowski quantum
state are thus equivalent descriptions. We will, however, focus on the twirling of quantum
channels throughout the rest of this paper, where we will use that the theory allows us to
give an explicit representation of the image of a channel under an orthogonal twirl.

3 Real Clifford group
We now de�ne the real Cli�ord group and show that it is an orthogonal 2-design. Following
[44], we de�ne the real Pauli group E(n) on n qubits as the n-fold tensor power

E(n) :=
〈
E(1)⊗n〉 , (14)
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where E(1) is just the real Pauli group on 1 qubit de�ned as

E(1) :=
〈
X :=

(
0 1
1 0

)
, Z :=

(
1 0
0 −1

)〉
. (15)

E(n) is thus generated by tensor products of the Pauli matrices X and Z with 2×2 identity
matrices I2.

Definition 2 (Real Clifford group). The real Clifford group C(n) is the normalizer in
O (2n) of the real Pauli group E(n), i.e.

C(n) := {O ∈ O(2n)|OE(n) = E(n)O} . (16)

In the simple case when n = 1 the real Cli�ord group is generated by

C(1) =
〈
Z :=

(
1 0
0 −1

)
, H := 1√

2

(
1 1
1 −1

)〉
, (17)

and in the case when n = 2 the real Cli�ord group is

C(2) =
〈
C(1)⊗ C(1), CZ :=




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1




〉
, (18)

where H is the Hadamard gate and CZ is the controlled Z-gate. See [44] for a thorough
discussion of the real Cli�ord group.

Theorem 3. The representation O(2) : g 7→ O(g) ⊗ O(g) of the real Clifford group C(n)
decomposes into three non-degenerate irreducible unitary representations.

Proof. See [44, theorem 6.8.1.] and proofs therein.

We are now equipped to give the theorem that acts as the main mathematical ingredient
for real randomized benchmarking.

Theorem 4. The real Clifford group C(n) is an orthogonal 2-design.

Proof. The real Clifford group C(n) is a subgroup of the real orthogonal group O(2n). Its
commutant therefore contains the commutant of the real orthogonal group. By theorem 3
these two commutants have the same dimensions, and must thus be equal. This proves
the claim.

Theorem 4 will be the main ingredient for real RB. It is, however, possible to also prove
the following interesting fact about the real Cli�ord group.

Proposition 5. The real Clifford group C(n) is an orthogonal 3-design, but it is not an
orthogonal 4-design.

Proof. See [44, notes below theorem 6.8.1] for the fact that the real Clifford group C(n)
is an orthogonal 3-design. See [43, corollary 4.13] for the fact that it is not an orthogonal
4-design, where it is shown that in this case the commutant has an additional element to
it.
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4 Complex Clifford group
The real Cli�ord group shares the properties observed in the last chapter with its complex
counterpart. The complex Cli�ord group is a unitary 2-design, a unitary 3-design, but fails
to be an exact unitary 4-design [27, 31, 36, 53, 55, 56]. This, however, is not a coincidence.
To this end, let us �rst de�ne the complex Cli�ord group.

The Pauli group on one qubit P(1) is de�ned as the group generated by

P(1) := 〈X,Z, iI〉 , (19)

where I,X, Y, Z are the standard Pauli matrices given as

I :=
(

1 0
0 1

)
, X :=

(
0 1
1 0

)
, Y :=

(
0 −i
i 0

)
and Z :=

(
1 0
0 −1

)
. (20)

The Pauli group on n qubits is de�ned to be

P(n) := P(1)⊗n. (21)

Definition 6 (Complex Clifford group). The complex Clifford group X (n) is the group-
theoretic normalizer in the unitary group U(2n) of the Pauli group P(n), i.e.

X (n) := {U ∈ U(2n)|UP(n) = P(n)U} . (22)

In the simple case where n = 1 the complex Cli�ord group is therefore just given as

X (1) = 〈H,P 〉 , (23)

where H is the Hadamard gate de�ned in eq. (17) and P is the π/4-phase gate given as

P :=
(

1 0
0 i

)
. (24)

In the simple case when n = 2 the complex Cli�ord group is just given as

X (2) = 〈X (1)⊗X (1), CZ〉 , (25)

where CZ is again the controlled Z-gate de�ned in eq. (18).
The real Cli�ord group is therefore a subgroup of the complex Cli�ord group, C(n) ⊂

X (n), and we necessarily have that for any t ∈ N,

{O⊗t|O ∈ C(n)}′ ⊃ {U⊗t|U ∈ X (n)}′.

Similarly, the orthogonal group is a subgroup of the unitary group, O(2n) ⊂ U(2n), and
we thus have that

{O⊗t|O ∈ O(2n)}′ ⊃ {U⊗t|U ∈ U(2n)}′.
In the special case t = 2 (and in fact t = 3), we get the following correspondence:

{O⊗2|O ∈ C(n)}′ ⊃ {U⊗2|U ∈ X (n)}′
‖ ‖

{O⊗2|O ∈ O(2n)}′ ⊃ {U⊗2|U ∈ U(2n)}′
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In [44], using the language of invariant harmonic polynomials, it was shown that any
harmonic polynomial pA that is invariant w.r.t. the complex Cli�ord group, must be
invariant w.r.t. any of its subgroups, including the real Cli�ord group. If we decompose
the harmonic polynomial into its real and imaginary parts, then the restrictions pRe(A) and
pIm(A) must be invariant harmonic polynomials of the real Cli�ord group. Unfortunately,
the resulting real polynomials may turn out to be zero. It is therefore not possible to infer
the absence of harmonic invariants of X (n) from the absence of real harmonic invariants of
C(n). However, it explains the observation regarding the real and complex Cli�ord group
and their t-design properties for t = 2, 3.

If some family of matrix groups G acting on Cd fails to be a unitary t-design, it might
still turn out to be useful for RB. If its commutant, {U⊗t|U ∈ G}′, has l additional
elements to it than the commutant of the unitary group, {U⊗t|U ∈ U(d)}′, and there are
only l = O(1) additional elements to the commutant, then we may term the family of
matrix groups G an algebraic almost t-design.

An example of an algebraic almost unitary t-design is the family of Cli�ord groups,
which form an algebraic almost 4-design with one additional generator in its commutant
compared to the unitary group [30, 31, 56]. As another example, the real Cli�ord group
is an algebraic almost unitary 2-design (and an exact orthogonal 2-design, as discussed
above). The dihedral-CNOT family of groups provides yet another example [10].

The l additional factors in the commutant are useful for RB because they yield l
additional decay terms in the average �delity. A successful �t to the multi-exponential
decay in a benchmarking experiment would then yield �ner-grained information about the
average error rate by �nding the average �delity associated to the projections onto each
of the commutant algebras. In these scenarios, however, stability is an issue in the case of
large l as �tting a multi-exponential decay is in general poorly conditioned [12]. For the
case discussed in the most detail in this paper, the real Cli�ord group, there is only one
extra decay term, and successful data processing methods can be employed to �t the model
that we derive below with an e�cient number of measurements [22, 24]. Another avenue for
dealing with multi-exponential decays is to consider state preparations and measurements
that optimize the contrast between various competing terms, perhaps even canceling all
but one (or a constant fraction of) the exponential decay terms [8, 18]. We explore this
idea in more detail in section 8.

The next section answers the question of how to obtain a Haar sample from the real
Cli�ord group in an e�cient way. This is an important ingredient for the real RB protocol.

5 Haar sample from the real Clifford group
5.1 Structure of the real Clifford group, and orthogonal transformations
Here, we summarize results and notions from [6] and [2, Chapter 7].

Consider the phase space V = F2n
2 . Elements of phase space will often be written as

(p, q) ∈ F2n
2 , with p, q ∈ Fn

2 . An important piece of structure for the real Cli�ord group [6]
is the quadratic form

Q ((p, q)) = p · q =
n∑

i=1
piqi. (26)

For x = (p, q), x′ = (p′, q′), one checks that

Q(x+ x′)−Q(x)−Q(x′) = p · q′ − p′ · q = [x, x′], (27)

Accepted in Quantum 2018-08-09, click title to verify 9
171



where the square brackets denote the standard symplectic form on phase space. (While over
F2, −1 = +1, we occasionally use negative signs when these would appear for analogous
calculations in odd characteristic). The form Q turns V into an orthogonal space.

A vector x ∈ V is singular if Q(x) = 0. A hyperbolic pair is a set of two singular
vectors e, f ∈ V such that [e, f ] = 1. A two-dimensional subspace is a hyperbolic plane if
it is spanned by a hyperbolic pair.

A space U ⊂ V is totally singular if Q and [·, ·] vanish on U . Clearly, U = {(p, 0) | p ∈
Fn

2} is totally singular and has dimension half of V . This, by de�nition, means that Q has
Witt index n, or, equivalently sign +1. A 2n-dimensional orthogonal space in characteristic
two has sign +1 if and only if it is isometric to the orthogonal sum of n hyperbolic planes:

V =
n⊕

i=1
〈{ei, fi}〉, Q(ei) = Q(fi) = [ei, ej ] = [fi, fj ] = 0, [ei, fj ] = δi,j . (28)

The set of linear transformations GL(V ) preserving such a quadratic form of positive
sign (and hence, by eq. (27), the form [·, ·]) is the group O+(2n, 2). By eq. (28), a matrix
S represents an element of O+(2n, 2) with respect to a hyperbolic basis {e1, f1, . . . , en, fn}
if and only if it is symplectic and its columns are singular � i.e. if and only if its columns
form again a hyperbolic basis.

Recall that the complex Cli�ord group up to Pauli operators is isomorphic to the
symplectic group X (n)/P (n) ' Sp(2n, 2) [35]. That is true in the sense that for each
U ∈ X (n), there exists a S ∈ Sp(2n, 2) such that

UP (x)U∗ ∝ P (Sx),

where for x = (p, q) ∈ F2n
2 , we have de�ned the Pauli operator

P (x) = iQ(x)
n⊗

i=1
XqiZpi . (29)

Any two Cli�ords U that di�er by the left- or right-action of an element of the Pauli group
induce the same S.

If U/P (n) contains a real-valued matrix, then S ∈ O+(2n, 2), i.e., in addition to being
symplectic, its columns are singular. Conversely, any element of the real Cli�ord group
is associated with such an S, which again does change under left- or right-multiplication
with elements from E(n).

Thus, to sample from the real Cli�ord group, one can proceed by 1) drawing a random
element from O+(2n, 2) (see below), 2) use one of the known constructions (e.g. [13, 32])
for generating a gate sequence that implements a given symplectic matrix as a Cli�ord
operation, and 3) multiply with a randomly chosen element of E(n).

5.2 Efficient sampling from O+(2n, 2)
It remains to describe an e�cient protocol for drawing an element S from O+(2n, 2) uni-
formly at random. This will be achieved as follows:

Protocol 1: Sampling(O+(2n, 2))

Initialization Choose a basis B1 of F2n
2 .

Iterate for i = 1 to n Choose random linear combinations x of the vectors in Bi
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until x is non-zero and singular. Set ei = x. Choose random linear combina-
tions y of the vectors in Bi until [ei, y] = 1. If y is singular, set fi = y. Else,
set fi = ei + y. Choose a basis Bi+1 for 〈{ej , fj}ij=1〉⊥.

Result Return matrix S, with columns given by e1, f1, e2, f2 . . . , en, fn.

The following statements are true for this construction:

1. By de�nition, the span of B1 is an orthogonal space of sign +1 and dimension 2n.

2. Assume Vi = 〈Bi〉 spans an orthogonal space of sign +1 and dimension 2(n − i +
1). Then, in expectation, one will �nd a non-zero singular x after no more than 4
attempts. To see this, let {e′j , f ′j}j be a hyperbolic basis for Vi. Then x will be of
the form

x =
n−i+1∑

j=1

(
pje
′
j + qjf

′
j

)
,

with the pj , qj drawn uniformly at random. Hence

Q(x) =
n−i+1∑

j=1

(
pjQ(e′j) + qjQ(f ′j) + pjqj [e′j , f ′j ]

)
=

n−i+1∑

j=1
pjqj ,

which is zero with probability at least 1
2 , while at least 1 − 2−n ≥ 1

2 of these cases
correspond to non-zero x.

3. Under the same assumption as before, a vector y with [ei, y] = 1 will be found after
an expected number of 2 attempts. This is because | ker(y 7→ [ei, y])| = 2dim(Vi)−1

and thus exactly half of all vectors in V do not lie in the kernel.

4. The vectors {ei, fi} form a hyperbolic pair. Indeed, ei is singular by construction. If
y is singular, so is fi. If Q(y) = 1, then

Q(fi) = Q(ei + y) = Q(ei) +Q(y) + [ei, y] = 0 + 1 + 1 = 0.

Also, [ei, y] = [ei, y + ei] = 1.

5. The basis Bi+1 of 〈{ej , fj}ij=1〉⊥ describes the solution space of a set of liner equations
over F2, and can thus be found e�ciently. By eq. (28), it spans an orthogonal space
of sign +1 and dimension 2(n− (i+ 1) + 1).

Hence, by induction, the columns of S form a hyperbolic basis of F2n
2 , and every such

basis is equally likely to arise this way. The above procedure thus samples uniformly from
O+(2n, 2).

The next chapters use the result that the real Cli�ord group is an orthogonal 2-design
to analyze real RB using gates from the real Cli�ord group.

6 Figures of merit
The main goal of RB is to quantify how close a physical quantum channel C̃ is to the ideal
quantum gate C. In order to do so, we seek a �gure of merit assessing this quality in an
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e�cient way. We can always write the physical quantum channel as a composition of the
ideal quantum channel with an error quantum channel, C̃ = C ◦ E [29]. We assess the
quality of the physical quantum channel using the average �delity

F̄
(
C, C̃

)
=
∫

U(d)
Tr
[
C (U |0〉〈0|U∗) C̃ (U |0〉〈0|U∗)

]
dU, (30)

and the average rebit �delity

F̄R
(
C, C̃

)
=
∫

O(d)
Tr
[
C (O |0〉〈0|O∗) C̃ (O |0〉〈0|O∗)

]
dO. (31)

Please notice that in the case of the average rebit �delity, the average is taken with respect
to the orthogonal group. The �delity is thus averaged over rebits. For quantum gates
C(·) = C · C∗ with C unitary, this simpli�es to

F̄
(
C, C̃

)
=
∫

U(d)
Tr [C (U |0〉〈0|U∗)C∗CE (U |0〉〈0|U∗)C∗] dU

=
∫

U(d)
〈0|U∗E (U |0〉〈0|U∗)U |0〉 dU = F̄ (E , id) , (32)

and similarly for the average rebit �delity to

F̄R
(
C, C̃

)
=
∫

O(d)
〈0|O∗E (O |0〉〈0|O∗)O |0〉 dO = F̄R (E , id) . (33)

These are the quantities that are related to the two parameters, which RB can estimate,

F̄ (E , id) = b
(
d2 + d− 2

)
+ cd (d− 1) + 2 (d+ 1)
2d (d+ 1) (34)

as well as

F̄R (E , id) = b (d− 1) + 1
d

. (35)

For real density matrices the action of the twirled channel thus reduces to the action of
the depolarizing channel with parameter b, and the above average gate �delities can be
interpreted as �delities restricted to the respective commutant spaces. This makes our
analysis especially interesting when considering quantum computations on rebits. It has
been shown that universality holds in this case [46] and the real Cli�ord group now plays
the role of the complex Cli�ord group when studying stabilizer circuits [7].

The next chapter gives the real RB protocol, which has to be executed to quantitatively
describe the quality of a sequence of physical quantum gates taken from the real Cli�ord
group.

7 Real randomized benchmarking protocol
The real randomized benchmarking protocol is given in the following. The real RB protocol
considers quantum gates taken from the real Cli�ord group. We assume that the error
quantum channel is both gate and time independent. We follow the notation of [38].

We will �rst describe the protocol for a given state preparation ρ, sequence length m,
and �nal measurement E. This de�nes a protocol that can be repeated many times to
obtain data with those labels, (m,E, ρ). Averaging these data gives a �delity decay curve,
which in expectation is a function only of these three data labels and the noise channel,
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which is assumed to be gate and time independent. This forms the core of real RB. In
the subsequent section, we will show one way to process these data to obtain accurate
estimates of the parameters of the decay curve without having to �t multi-exponential
decays, which is possible but in practice quite challenging. In the following, we give the
real RB protocol:

Protocol 2: RealRB(m,E, ρ)

Step 1 Fix a positive integer m ∈ N that varies with every loop.

Step 2 Generate a sequence of m + 1 quantum gates taken from the real Cli�ord
group, i.e., C1, . . . , Cm+1, where Cj(·) = Cj ·C∗j , Cj ∈ C(n), for j = 1, . . . ,m+1.
The �rst m quantum gates, C1, . . . , Cm, are chosen independent and uniformly
at random from the real Cli�ord group. The �nal quantum gate, Cm+1, is
chosen from the real Cli�ord group, such that the net sequence (if realized
without errors) is the identity operation,

Cm+1 ◦ Cm ◦ . . . ◦ C2 ◦ C1 = id, (36)

where ◦ represents composition. The entire sequence is therefore given by

Sm =©m+1
j=1 Cj ◦ E , (37)

where E is the associated error, a completely positive trace preserving linear
map.

Step 3 For each sequence, measure the survival probability given by the �delity

F (m,E, ρ) = Tr [ESm(ρ)] , (38)

where ρ is the initial quantum state, taking into account preparation errors,
and E is an e�ect operator of a POVM taking into account measurement
errors.

Step 4 Repeat steps 2-3 and average over M random realizations of the sequence
of length m to �nd the averaged sequence �delity

F̄ (m,E, ρ) = Tr
[
ES̄m(ρ)

]
, (39)

where

S̄m = 1
M

∑

m

Sm (40)

is the average sequence operation.

Repeating these steps many times and averaging the results gives a good approximation
to the average sequence �delity,

F̄ (m,E, ρ) = A+ bmB + cmC, (41)

where A, B and C, given in eq. (58) below, depend only on the state preparation and
measurement, and b and c depend on the average noise channel.

Please note that the �nal quantum gate Cm+1 can be found e�ciently by the Gottesman-
Knill theorem [21].
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The question of how to choose the sequence lengths m and the number of sequences
at each length M is still unanswered, but is addressed in [16, 23, 30, 51]. The sequence
length m should be exponentially spaced from 4, in order to avoid gate-dependent e�ects
[41, 52], to around 1/(1− F̄R), for optimal information gain [23].

In the next section, we analyze RB focusing on the real Cli�ord group. The fact that
it is an orthogonal 2-design will prove that it obeys the model given in eq. (41) when the
assumptions of the noise model hold. Finally, we will discuss parameter estimation.

8 Fidelity decay and parameter estimation
The main setup of real RB is illustrated in �g. 1. A sequence of m + 1 quantum gates
C̃j acts on an initial quantum state ρ ∈ Dd, followed by a measurement represented by a
POVM with e�ect operators E. Consider the physical quantum channel

C̃j = Cj ◦ E , (42)

where Cj(·) = Cj · C∗j , Cj ∈ C(n), is a real Cli�ord gate and E : Md(C) →Md(C) is the
associated error, a completely positive trace preserving linear map. We assume that the
error quantum channel is both gate and time independent.

Let us �rst derive the decay curve of the expected data, eq. (41).

Theorem 7. The protocol RealRB(m,E, ρ) has an expected fidelity of the form

F̄ (m,E, ρ) = A+ bmB + cmC, (43)

where A, B and C are functions only of (E, ρ), and b and c depend on the average noise
channel.

Proof. The expected fidelity of the above described sequence is given by

F (m,E, ρ) = Tr
[
E
[
C̃m+1 ◦ C̃m ◦ . . . ◦ C̃2 ◦ C̃1

]
(ρ)
]

= Tr [E [Cm+1 ◦ E ◦ Cm ◦ E ◦ . . . ◦ C2 ◦ E ◦ C1 ◦ E ] (ρ)] . (44)

Absorbing the first error quantum channel into the state as a preparation error gives

F (m,E, ρ) = Tr [E [Cm+1 ◦ E ◦ Cm ◦ E ◦ . . . ◦ C2 ◦ E ◦ C1] (ρ)]
= Tr [E [Sm] (ρ)] , (45)

with

Sm =Cm+1 ◦ E ◦ Cm ◦ E ◦ . . . ◦ C2 ◦ E ◦ C1

=
=I︷ ︸︸ ︷

Cm+1 ◦ (Cm ◦ . . . ◦ C1 ◦
=D∗m︷ ︸︸ ︷

C∗1 ◦ . . . ◦ C∗m) ◦ E ◦ Cm ◦ E◦
. . . E ◦ C3 ◦ (C2 ◦ C1︸ ︷︷ ︸

=D3

◦ C∗1 ◦ C∗2︸ ︷︷ ︸
=D∗2

) ◦ E ◦ C2 ◦ (C1︸ ︷︷ ︸
=D2

◦ C∗1︸︷︷︸
=D∗1

) ◦ E ◦ C1︸︷︷︸
=D1

=D∗m ◦ E ◦ Dm ◦ . . . ◦ D∗2 ◦ E ◦ D2 ◦ D∗1 ◦ E ◦ D1

=©m
j=1

(
D∗j ◦ E ◦ Dj

)
, (46)

where we have used the fact that C(n) is a group and defined a new quantum gate

Dj :=©j
l=1Cl, (47)
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with D(·) = Dj · D∗j , Dj ∈ C(n). Please note that all Dj are independent uniformly
distributed real Clifford gates.

The sequence fidelity can then be written as

F (m,E, ρ) = Tr
[
E©m

j=1
[
D∗j ◦ E ◦ Dj

]
(ρ)
]
. (48)

Taking the average over the real Clifford group yields an average sequence fidelity given
by

F̄ (m,E, ρ) = Tr


E 1
|C(n)|

∑

Dj∈C(n)
Sm(ρ)




= Tr


E 1
|C(n)|

∑

Dj∈C(n)
©m

j=1
[
D∗j ◦ E ◦ Dj

]
(ρ)




= Tr


E


 1
|C(n)|

∑

Dj∈C(n)
D∗j ◦ E ◦ Dj



◦m

(ρ)


 , (49)

where we have used the fact that all Dj are independent uniformly distributed Clifford
gates. Because the real Clifford group is an orthogonal 2-design, see theorem 4, we have
that

1
|C(n)|

∑

Dj∈Cm

D∗j ◦ E ◦ Dj (·) =
∫

O(d)
O∗ ◦ E ◦ O (·) dO, (50)

where O(·) = O · O∗, O ∈ O(d), is the orthogonal quantum channel. By eq. (13), the
averaged sequence fidelity is

F̄ (m,E, ρ) = Tr
[
E

(
α id +β I

d
Tr [·] + γ

ITr [·]− θ
d− 1

)◦m
(ρ)
]
, (51)

with α, β, γ ∈ R. Consider the following change of variables,

α = 1
2 (b+ c) , (52a)

β = a− b+ 1
2(b− c)d and (52b)

γ = 1
2(c− b)(d− 1), (52c)

such that

a = α+ β + γ, (53a)

b = α− γ

(d− 1) and (53b)

c = α+ γ

(d− 1) . (53c)

Note that a = α+ β + γ = 1. The resulting quantum channel is

T̃ (·) = aTr [·] I
d

+ b

(1
2 (id +θ)− Tr (·) I

d

)
+ c

1
2 (id−θ) , (54)

with α, β, γ ∈ R. Its m-fold concatenation is given by

T̃m (·) = am Tr [·] I
d

+ bm
(1

2 (id +θ)− Tr (·) I
d

)
+ cm 1

2 (id−θ) . (55)
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Therefore, the averaged sequence fidelity is

F̄ (m,E, ρ)

= Tr
[
E

(
α id +β I

d
Tr [·] + γ

ITr [·]− θ
d− 1

)◦m
ρ

]

= Tr
[
E

(
aTr [·] I

d
+ b

(1
2 (id +θ)− Tr (·) I

d

)
+ c

1
2 (id−θ)

)◦m
ρ

]

= Tr
[
E

(
am Tr [·] I

d
+ bm

(1
2 (id +θ)− Tr (·) I

d

)
+ cm 1

2 (id−θ)
)
ρ

]

=am Tr
[
E
I
d

]
+ bm Tr

[
E

(1
2
(
ρ+ ρT

)
− I
d

)]
+ cm Tr

[
E

1
2
(
ρ− ρT

)]
. (56)

Given that a = 1, the averaged sequence fidelity simplifies to

F̄ (m,E, ρ) = A+ bmB + cmC, (57)

where

A = Tr
[
E
I
d

]
, (58a)

B = Tr
[
E

(1
2
(
ρ+ ρT

)
− I
d

)]
and (58b)

C = Tr
[
E

1
2
(
ρ− ρT

)]
, (58c)

for any fixed prepared quantum state ρ and any fixed quantum measurement represented
by a POVM with effect operators E. As claimed, A, B and C are independent of the noise
channel.

The experimental data may thus be calibrated to this model using the real RB protocol
discussed in section 7 by varying the parameter m and �tting the parameters b and c. It is
important to notice that any quantum state preparation errors and quantum measurement
errors are absorbed by A, B and C and the calibration of the model to experimental data is
thus not a�ected by these errors. However, direct �tting is sometimes poorly conditioned
in multi-exponential decays, and obtaining high accuracy can be challenging. We next
describe a way to improve the contrast by choosing several di�erent states and measure-
ments and �tting to simpler decay curves by clever averaging. We make the simplifying
assumption that the noise on the state preparations and measurements is independent of
the particular state preparation, or the particular measurement. While this will not hold
exactly in practice, in the regimes of interest there should still be a marked increase in
statistical contrast when applying this idea [8, 18].

The standard approach in RB is to prepare eigenstates of Z on each qubit and then
measure the POVM element that corresponds to +1 eigenstates of Z on each qubit. In
the ideal case, this choice eliminates C (since ρ is symmetric). This reduces the number of
parameters that need to be �t for the same data, which typically leads to a higher quality
�t. We can generalize this idea so that we can accurately estimate b and c separately
without coupling to all of the nuisance parameters A, B, and C at once.

The idea is to randomly compile in an extra gate that e�ectively prepares di�erent
Pauli eigenstates, rather than just a +1 eigenstate of Z on each qubit. First notice that
every Pauli eigenstate is either complex symmetric (ρ = ρT ) or antisymmetric (ρ = −ρT ).
The latter only holds if the Pauli eigenstate has an odd number of Y gates. So we should

Accepted in Quantum 2018-08-09, click title to verify 16
178



choose from these initial states if we want to isolate the parameters b and c. Similarly, the
POVM element E can be randomly chosen to be the +1 eigenstate or the −1 eigenstate of
each given Pauli input eigenstate. For a given sequence length m, this de�nes four possible
data sets. Letting βm(ρ,E) denote the data collected at sequence length m with state
preparations ρ± that are symmetric or antisymmetric, and with ±1 eigenstate projectors
E±, we have the four data sets

βm(ρ+, E+), βm(ρ+, E−), βm(ρ−, E+), βm(ρ−, E−) . (59)

Each of these obeys (in expectation) the respective form of the expected �delity decay
eq. (57). Now we can look at the symmetries of the nuisance parameters A, B, and C from
eq. (58) and we see that linear combinations of the data sets can be chosen to eliminate
one or more of the above parameters in the ideal case. In fact, we have that the following
di�erences in data approach the following �delity di�erence curves:

βm(ρ+, E+)− βm(ρ+, E−) → F̄ (m, ρ+, E+)− F̄ (m, ρ+, E−) = ∆B bm (60a)
βm(ρ−, E+)− βm(ρ−, E−) → F̄ (m, ρ−, E+)− F̄ (m, ρ−, E−) = ∆C cm , (60b)

where ∆B = Tr[Eρ+] and ∆C = Tr[Eρ−]. In practice, there will not be exact cancellation,
but this transformation will still greatly enhance the contrast. Therefore, collecting data
at various values of m and �tting to the model ∆B bm or ∆C cm respectively yields a much
simpler exponential �t model, and standard tools from regression can be applied. Each
of these �ts then yields a separate estimate of the parameters b and c without a strong
covariance between the estimates. Estimates of the average rebit �delity as well as the
average �delity are thus obtained by eq. (35) and eq. (34) respectively. Real RB thus
provides �ner-grained information about the channel.
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Appendix
Following [25] it is also possible to use the frame potential and establish that the real
Cli�ord group is an orthogonal 2-design.

Theorem 8 (Orthogonal frame potential). Let D = {Ok ∈ O(d)}k=1,...,K be a set of
orthogonal real matrices. Define the frame potential of D to be

P (D) = 1
K2

∑

Ok,Ok′∈D

|Tr [O∗kOk′ ]|4 . (61)

The set D is an orthogonal 2-design if and only if P(D) = 3.

Proof. Following the idea and notation of [25], the group D is an orthogonal 2-design if
and only if ∆ := τD − τtwirl = 0, where

τD = (idd2 ⊗TD) |Ω〉〈Ω|

=


idd2 ⊗ 1

K

∑

Ok∈D

(Ok ⊗Ok) · (Ok ⊗Ok)∗

 |Ω〉〈Ω| ,

τtwirl = (idd2 ⊗Ttwirl) |Ω〉〈Ω|

=
(

idd2 ⊗
∫

O(d)
(O ⊗O) · (O ⊗O)∗ dO

)
|Ω〉〈Ω| .

In order to see what this means in terms of the frame potential, let us introduce a basis
with regards to the minimal projections given in eq. (11). Within the subspace of P0,
we introduce an orthonormal basis

{
|i0〉j

}d0

j=1
with dimension d0 = dim P0. Similarly,

we introduce an orthonormal basis
{
|i1〉j

}d1

j=1
within the subspace of P1 with dimension

d1 = dim P1 as well as an orthonormal basis
{
|i2〉j

}d2

j=1
within the subspace of P2 with

dimension d2 = dim P2. These then form an orthonormal basis
{
|i〉j
}d2

j=1
in Cd⊗Cd. The

maximally entangled state is then given by |Ω〉〈Ω| with

|Ω〉 = 1
d

2∑

m=0

dm∑

im=1
|im〉 ⊗ |im〉 .

Using this decomposition and using eq. (8), we see that

τtwirl =
(

idd2 ⊗
2∑

m=0

Tr [ · Pm]
Tr [Pm] Pm

)
|Ω〉〈Ω|

= 1
d2

2∑

m=0

dm∑

im,jm=1
|im〉〈jm| ⊗

Tr [|im〉〈jm|Pm]
Tr [Pm] Pm

= 1
d2

2∑

m=0

1
Tr [Pm]Pm ⊗ Pm.

Furthermore,

τD = 1
d2

d2∑

i,j=1
|i〉〈j| ⊗ 1

K

∑

Ok∈D

(Ok ⊗Ok) |i〉〈j| (Ok ⊗Ok)∗ .
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We will now show that ‖∆‖22 := Tr
[|∆|2] = 0, from which the claim follows. We thus

want to compute

Tr [∆∗∆] = Tr [τ∗twirlτtwirl − τ∗twirlτD − τ∗Dτtwirl + τ∗DτD] .

Its first term is easily calculated to give

Tr [τ∗twirlτtwirl] = 1
d4 Tr

[ 2∑

m=0

1
Tr [Pm]2

[Pm ⊗ Pm]
]

= 3
d4 .

The second and third term yield

Tr [τ∗twirlτD] = 1
d4 Tr

[( 2∑

m=0

1
Tr [Pm]Pm ⊗ Pm

)




d2∑

i,j=1
|i〉〈j| ⊗ 1

K

∑

Ok∈D

(Ok ⊗Ok) |i〉〈j| (Ok ⊗Ok)∗





= 1
d4K

2∑

m=0

d2∑

i,j=1

1
Tr [Pm] Tr [Pm |i〉〈j|] Tr


Pm

∑

Ok∈D

(Ok ⊗Ok) |i〉〈j| (Ok ⊗Ok)∗

 ,

where we have used the fact that Pm commutes with (Ok ⊗Ok). We then have that

Tr [τ∗twirlτD] = 1
d4K

2∑

m=0

dm∑

im=1

1
Tr [Pm] Tr


 ∑

Ok∈D

(Ok ⊗Ok)Pm |im〉〈im| (Ok ⊗Ok)∗



= 1
d4

2∑

m=0

dm∑

im=1

Tr [Pm |im〉〈im|]
Tr [Pm]

= 3
d4 .

The last term is

Tr [τ∗DτD] = 1
d4K2

d2∑

i,j=1

d2∑

v,w=1
Tr [|j〉〈i|v〉〈w|]

Tr


 ∑

Ok∈D

∑

Ok′∈D

(Ok ⊗Ok) |j〉〈i| (Ok ⊗Ok)∗ (Ok′ ⊗Ok′) |v〉〈w| (Ok′ ⊗Ok′)∗



= 1
d4K2

d2∑

i,j=1

∑

Ok,Ok′∈D

Tr [(Ok ⊗Ok) |j〉〈i| (Ok ⊗Ok)∗ (Ok′ ⊗Ok′) |i〉〈j| (Ok′ ⊗Ok′)∗]

= 1
d4K2

∑

Ok,Ok′∈D

|TrO∗kOk′ |4

=P(D)
d4 .

The group D is an orthogonal 2-design if and only if ∆ = 0, which gives P(D) = 3 and
thus the claim follows.

Theorem 9. Let D = {Ok ∈ O(d)}k=1,...,K be a set of real orthogonal matrices with the
symmetry G = {Ok ⊗Ok|Ok ∈ D} affording the character ζG. Then the following are
equivalent:

Accepted in Quantum 2018-08-09, click title to verify 23
185



1. The set D is an orthogonal 2-design.

2. The symmetry has no more than three irreducible representations.

3. It holds that 〈ζG, ζG〉 = 3.

Before we can prove this theorem, let us recall the notion of a character, which plays a
major role in the analysis of unitary representations. We mainly follow [48].

Definition 10 (Character). Given any unitary representation U : g 7→ U(g) of a group
G, we define its character by

ξ(g) := Tr [U(g)] . (62)

A character is called irreducible, if the unitary representation under consideration is irre-
ducible.

Denote by
{
V (i)

}
i
the irreducible unitary representations of G and the corresponding

irreducible characters by {χi}i. The irreducible characters are orthonormal in the group
algebra [48] with the inner product given by

〈χi, χj〉 := 1
|G|

∑

g∈G

χi(g)χj(g) = δij . (63)

If a representation is the direct sum of subrepresentations, then the corresponding character
is the sum of the characters of those subrepresentations. This holds true especially for the
decomposition into irreducible representations.

Theorem 11 ([48, theorem III.2.4.]). Every character ξ is of the form

ξ =
∑

i

niχi (64)

for nonnegative integers ni and every such sum is the character of some representation.

Proof. The proof is given in [48], but is reproduced here for the convenience of the reader.
It is a standard result in representation theory that any finite-dimensional unitary repre-
sentation can be written as a direct sum of finite irreducible unitary representations [48,
theorem II.2.3.],

U = ⊕iniV
(i), (65)

for some ni. But then we necessarily have that

ξ =
∑

i

niχi, (66)

which yields the claim.

Corollary 12. If the character ξ has a decomposition as in theorem 11 given by eq. (64),
then

〈ξ, ξ〉 =
∑

i

n2
i . (67)
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Proof. Substituting the decomposition into the inner product gives

〈ξ, ξ〉 =
〈∑

i

niχi,
∑

j

njχj

〉

=
∑

i,j

ninj 〈χi, χj〉

=
∑

i,j

ninjδi,j

=
∑

i

n2
i , (68)

where we have used the orthogonality relation of irreducible characters given in eq. (63).

With these de�nitions and results at hand, we may now prove theorem 9, following the
idea of [25].

Proof of theorem 9. Consider the unitary representation associated to the symmetry G as
given in the theorem 9 and its afforded character denoted by ζG. The frame potential can
be related to the character ζG by

P(D) = 〈ζG, ζG〉 . (69)

Due to corollary 12 this must equal 〈ζG, ζG〉 = 3 if and only if G has exactly three
irreducible components. This in turn is equivalent to D being an orthogonal 2-design by
theorem 8. The claim thus follows.

Theorem 13. The real Clifford group C(n) is an orthogonal 2-design.

Proof. Given that the real Clifford group has three irreducible representations by theo-
rem 3, it must be an orthogonal 2-design by theorem 9.
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E Contributed further article: Article 5

D. S. França and A. K. Hashagen

Approximate randomized benchmarking for finite groups

Journal of Physics A: Mathematical and Theoretical, 51(39):395302, August 2018

Summary of article 5: Approximate Randomized Benchmarking for

Arbitrary Finite Groups [5]

In this paper we analyze randomized benchmarking for quantum gates that form a representa-

tion of an arbitrary finite group. The same symmetry idea can be applied. The protocol requires

an averaging procedure giving rise to a twirl of a quantum channel. The twirled quantum chan-

nel is covariant with respect to that finite group and is thus an element of the commutant of

the adjoint representation. The decomposition of the underlying Hilbert space into irreducible

unitary representations therefore determines its structure. The sought after average fidelity is

then just a simple function of the trace of the quantum channel, again yielding an exponential

decay of the average fidelity.

Corollary E.1 ([5, corollary 14]). Suppose we perform randomized benchmarking for a unitary

representation U of a finite group G s.t. U ⊗ Ū = ⊕α∈Ĝ
(
Cdα ⊗ Cmα

)
and a quantum channel

T . Then there exist λ1, . . . , λk ∈ B1(0) and a0, a1, . . . , ak ∈ C s.t.

F (m,E, ρ) = a0 +
k∑

i=1

akλ
m
i . (E.1)

for m ≥ maxmα. Moreover, k ≤∑αmα corresponds to the number of distinct eigenvalues of

T(T ) and λi are its eigenvalues.

Calibrating this exponential decay to experimental data thus yields estimates on the eigen-

values and therefore the spectrum of the twirled quantum channel. This allows us to obtain

information about the noise in the system.

The randomized benchmarking protocol assumes that we are able to efficiently obtain Haar

samples of the finite group. This might not be possible in practice for an arbitrary finite

group. It is, however, possible to obtain approximate samples using Markov chain Monte Carlo

methods. We therefore show how to apply these results to randomized benchmarking and we

obtain a stability result for approximate randomized benchmarking.

Corollary E.2 ([5, Corollary 18]). Let µ be the Haar measure on G and ν1, . . . , νm probability

measures on G s.t.

‖µ− νk‖1 ≤ εk, (E.2)
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for all 1 ≤ k ≤ m and εk ≥ 0. Denote by ν̃ the distribution of (D1, . . . ,Dm) if we pick the Uk
independently from νk. Then

|Tr [Tν̃,m(T )(ρ)E]− F (m,E, ρ)| ≤ 4

√√√√ log(|G|)
1− |G|−1

m∑

k=1

εk. (E.3)

Furthermore, we consider randomized benchmarking with quantum gate sequences solely

chosen from a set of generators closed under inversion and one additional arbitrary quantum

gate. This increases the practicality of randomized benchmarking as it is unrealistic to assume

that all quantum gates from a group may be implemented. Usually gates have to be broken

down into generators and it is therefore a natural question how randomized benchmarking with

generators performs. In this setting we make the additional assumption that the error quantum

channel describing the noise in the system is almost covariant with respect to the group under

consideration. We show that randomized benchmarking in this setting is possible if the set of

generators is rapidly mixing.

Corollary E.3 ([5, corollary 21]). Let Sb,m+b+1 be the average gate sequence and λ ∈ [0, 1).

Then for any POVM element E and state ρ ∈Md:

|Tr [E (Sb,m+1) (ρ)E]− F (m,E, ρ)| ≤ ε+O
(
δ2 λ

1− λm
)
. (E.4)

We apply these results to two finite groups. The first one we consider is the subgroup of

monomial unitary matrices, which nonzero entries are the n-th roots of unity only. The group of

monomial unitary matrices is particularly interesting, because it contains the T -gate, which is

necessary for universal quantum computing together with the Clifford gates. The algorithm is

simulated for this subgroup with n = 8 and the error quantum channel is assumed to depolarize

to a random state with probability (1− p). The error analysis shows a good estimation of the

average fidelity using this method.

The second example we consider is the full complex Clifford group, as it is the standard

group when considering randomized benchmarking. It has the advantage that we only need

to estimate one parameter in this case. The error quantum channel describing the noise is

taken to be a convex combination of the identity and a random quantum channel such that

it is approximately covariant. The numerical results clearly show that both methods, the

approximate randomized benchmarking as well as the generator randomized benchmarking,

are effective to estimate the average fidelity. The latter method is only applicable in a high

fidelity regime, which is not restrictive, since this is the regime of interest in general.

Statement of individual contribution

This project originated from the previous paper on Real Randomized Benchmarking by Anna-

Lena K. Hashagen, Prof. Dr. Steven T. Flammia, Prof. Dr. David Gross and Dr. Joel J. Wallman

[3]. The idea was that instead of choosing a specific group and analyzing the randomized ben-

chmarking protocol on a case by case basis, it would be of interest to give a general randomized
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benchmarking protocol. Daniel Stilck França proof-read my article and this is how the idea of

a joint project started with the aim to generalize the ideas from [3].

I was responsible for the whole section about the symmetry considerations and the analysis

of the structure of the groups’ commutant. The lemma [5, lemma 9] and corollary [5, corollary

10] are straightforward generalizations of principles used in my previous paper [3]. Daniel

Stilck França and I quickly agreed on their formulation and presentation during discussions. I

derived lemma [5, lemma 11] in the case of irreducibly covariant representations. Daniel Stilck

França then generalized the proof to arbitrary representations of finite groups. The general

randomized benchmarking protocol found in section [5, section 4] was formulated during a

discussion and is of the spirit to the one presented in [3]. Theorem [5, theorem 13] and corollary

[5, corollary 14] were proven during discussions at the blackboard in a joint effort. The section

about approximate twirls [5, section 5] was proven solely by Daniel Stilck França. In order to

overcome one of the practical issues of randomized benchmarking, we showed that randomized

benchmarking is possible if only access to the generators and one more element of the group

under consideration is given. The given protocol is the same as the one given earlier; it just

accommodates the more complicated notation for the gate sequences. Daniel Stilck França was

mainly responsible for this.

In this article we study two examples. I initially suggested the group of monomial unitary

matrices as a possible application of our protocol and Daniel Stilck França refined this to the

case of monomial matrices with entries that are n-th roots of unity, which, as a finite subgroup,

fits our framework perfectly. We both suggested to apply our results to the complex Clifford

group, as this is a natural choice within randomized benchmarking. Daniel Stilck França was

solely responsible for all the numerics in this article. After the first draft of this article was

written, we had many discussions on how to improve the presentation of this article and we

both made minor and major changes to all parts of the article.

Daniel Stilck França is the principal author of this article. I, Anna-Lena Karolyn Hashagen,

was extensively involved in all parts of this article, except the section about approximate twirls

and the numerics.
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Abstract
We investigate randomized benchmarking (RB) in a general setting with 
quantum gates that form a representation, not necessarily an irreducible one, 
of a finite group. We derive an estimate for the average fidelity, to which 
experimental data may then be calibrated. Furthermore, we establish that RB 
can be achieved by the sole implementation of quantum gates that generate 
the group as well as one additional arbitrary group element. In this case, we 
need to assume that the noise is close to being covariant. This yields a more 
practical approach to RB. Moreover, we show that RB is stable with respect 
to approximate Haar sampling for the sequences of gates. This opens up the 
possibility of using Markov chain Monte Carlo methods to obtain the random 
sequences of gates more efficiently. We demonstrate these results numerically 
using the well-studied example of the Clifford group as well as the group of 
monomial unitary matrices. For the latter, we focus on the subgroup with 
nonzero entries consisting of nth roots of unity, which contains T gates.

Keywords: randomized benchmarking, quantum gates, Clifford gates, 
monomial unitary, random walks on groups, fidelity estimation

(Some figures may appear in colour only in the online journal)

1.  Introduction

One of the main obstacles to build reliable quantum computers is the need to implement 
quantum gates with high fidelity. Therefore, it is key to develop techniques to estimate the 
quality of quantum gates and thus certify the quality of a quantum computer. To this end, 
one could perform tomography for the underlying noise in the implementation and in prin-
ciple obtain a complete description of it [1, 2]. However, in general, the number of measure-
ments necessary to estimate for a complete tomography of the noise scales exponentially 
with the system size and is not a practical solution to the problem. Thus, it is vital to develop 
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2

techniques to estimate the level of noise in systems more efficiently, even if we only obtain 
partial information.

Randomized benchmarking (RB) is a protocol to estimate the average fidelity of a set of 
quantum gates forming a representation of a group [3–6]. The very important case of Clifford 
gates has already been widely studied and some rigorous results that show its efficiency under 
some noise scenarios are available [7, 8], such as when the noise is independent of the gate and 
time. Besides its efficiency, another highlight of the protocol is that it is robust against state 
preparation and measurement errors. This makes it very attractive from an experimental point 
of view and its applicability was demonstrated successfully [9–17].

In this work, we show how to extend these protocols to gates that are representations of 
a finite group1; these must not necessarily be irreducible or form a 2-design. Although other 
works, such as [18–21], already extended the protocol to other specific groups of interest, we 
focus on showing how to estimate the average fidelity based on properties of the particular 
representation at hand for arbitrary finite groups. To this end, we investigate the structure 
of quantum channels that are covariant under a unitary representation of a group and derive 
formulas for their average fidelity in terms of their spectra. We then show that one can use RB 
to estimate the average fidelity of these gates under the assumption that they are subject to 
time and gate independent noise.

In order for this procedure to be efficient, it is necessary that we may multiply, invert and 
sample uniformly distributed elements of the group efficiently and that the given representa-
tion does not decompose into too many irreducible unitary representations, as we will discuss 
in more detail later. This is the case for the well-studied case of Cliffords.

The usual RB protocol assumes that we can implement sequences of gates that are sampled 
from the Haar distribution of the group [3–6]. We further generalize the RB protocol by show-
ing that it is possible to implement sequence gates that are approximately Haar distributed 
instead. Therefore, it is possible to use Markov chain Monte Carlo methods to obtain the sam-
ples, potentially more efficiently. This result is of independent interest to the RB literature, as 
it shows that the protocol is stable against small errors in the sampling.

Moreover, we show how one can perform RB by just implementing gates that generate the 
group and one additional random element from the group at each round of the protocol. Thus, 
this last gate will generally not be an element of the generators. Mostly considering generators 
provides a more natural framework to the protocol, as often one is only able to implement a 
certain number of gates that generate the group and must, therefore, decompose the gates into 
generators. However, this protocol works under the assumption that the noise affecting the 
gates is already close to being covariant with respect to (w.r.t.) the group and not for arbitrary 
quantum channels, as in the usual setting. Moreover, we still need the ability to implement 
one gate which might not be contained in the set of generators and still assume that the same 
quantum channel that describes the noise on the generators also describes the noise on this 
gate. To illustrate our techniques, we apply them to subgroups of the monomial unitary matri-
ces, i.e. products of d−dimensional permutation and diagonal unitary matrices. These can 
be seen as a generalization of stabilizer groups [22]. We focus on the subgroup of monomial 
unitary matrices whose nonzero entries are roots of unity. We show that we only need to esti-
mate two parameters and multiplying and inverting elements of it can be done in time O(d). 
Moreover, they include the T-gate, which is known to form a universal set for quantum com-
putation together with the Clifford gates [23]. Therefore, one can use the protocol described 

1 Most of the results in this work can easily be extended to compact groups. However, as it is not clear that  
implementing the RB protocol for compact groups is relevant for applications and given that this would make some 
proofs less accessible, we restrict to finite groups here.
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here to estimate the noise from T-gates more efficiently. We make numerical simulations for 
our protocol and these subgroups and show that it is able to reliably estimate the average gate 
fidelity. Moreover, we numerically compare our techniques based on approximate Haar sam-
ples and implementation of generators to the usual protocol for Cliffords and show that the 
three yield indistinguishable results in the high fidelity regime.

This paper is structured as follows: we start by fixing our notation and reviewing basic 
results on Markov chains and covariant quantum channels; needed in section 2. In section 3 
we derive the average fidelity of quantum channels in terms of their spectra and we give basic 
results on the decay of the probability of measurement outcomes under covariant quantum 
channels. These form the basis for the RB protocol for general groups, which we discuss and 
analyze in section 4. In section 5 we prove that it is also possible to implement the protocol 
using approximate samples. We then discuss the generalized RB protocol based on imple-
menting random sequences of gates that generate the group in section 6. In this section, we 
also discuss the conditions under which this protocol applies. Finally, in section 7, we apply 
our techniques to the subgroup of monomial unitary matrices and perform numerical experi-
ments for it. In the same section, we also compare numerically the RB protocols developed 
here with the usual one in the case of the Clifford group.

2.  Notation and preliminaries

We will be interested in finite dimensional quantum systems. Denote by Md the space of d × d 
complex matrices. We will denote by Dd  the set of d-dimensional quantum states, i.e. posi-
tive semi-definite matrices ρ ∈ Md  with trace 1. We will call a linear map T : Md → Md′ a 
quantum channel if it is trace preserving and completely positive. We will denote the adjoint 
of a quantum channel T with respect to the Hilbert–Schmidt scalar product by T*. We will 
call a collection of positive semidefinite matrices {Ei}l

i=1 a positive operator valued measure 
(POVM) if the POVM elements Ei, called effect operators, sum up to the identity. Throughout 
this paper, we will use the channel-state duality that provides a one-to-one correspondence 
between a quantum channel T : Md → Md and its Choi–Jamiolkowski state τT ∈ Md2 
obtained by letting T act on half of a maximally entangled state, i.e.

τT := (T ⊗ idd) (|Ω〉〈Ω|) ,� (1)

where |Ω〉〈Ω| ∈ Md2 is a maximally entangled state, that is,

|Ω〉〈Ω| = 1
d

d∑

i,j=1

|ii〉〈jj| ,� (2)

where {|i〉}d
i=1 is an orthonormal basis in Cd. Please refer to [24] for more on these concepts. 

To measure the distance between two states we will use the Schatten 1−norm for A ∈ Md, 
denoted by ‖ · ‖1 and given by

‖A‖1 := Tr
(
(A†A)

1
2

)
,� (3)

where † denotes the adjoint. Then, given two states ρ,σ ∈ Dd, their trace distance is given by 
‖ρ− σ‖1/2. This norm on Md induces a norm on linear operators Φ : Md → Md through

‖Φ‖1→1 := sup
X∈Md ,X �=0

‖Φ(X)‖1

‖X‖1
.� (4)
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Given a random quantum channel T : Md → Md, we will denote its expectation value by 
E(T).

We will also need some basic facts from the representation theory of finite groups. We 
refer to e.g. [25] for more on this and the proofs of the statements we use here. We will be 
particularly interested in the commutant of the algebra generated by the group. To this end we 
introduce:

Definition 1 (Commutant).  Let A be an algebra of operators on a Hilbert space H. Then 
the commutant A′ of A is defined by

A′ := {B|BA = AB for all A ∈ A} .� (5)

Recall that a function U : G → Md  is called a unitary representation of a finite group G on 
a finite-dimensional Hilbert space H � Cd if we have for all g1, g2 ∈ G that Ug1 Ug2 = Ug1g2. 
We will denote the unitary corresponding to g by Ug. From basic results of representation 
theory, we know that there exists distinct α1, . . . ,αk ∈ Ĝ, where Ĝ  denotes the set of equiva-
lence classes of irreducible unitary representations (irreps), such that the unitary representa-
tion can be written as a direct sum of irreps, i.e. U ∼= ⊕Uαi ⊗ Imα with mα > 0 denoting the 
degeneracy of the αith irrep. The structure of the commutant is then described in the following 
theorem.

Theorem 2 ([25, theorem IX.11.2]).  Let U be a unitary representation of a finite group 
G on H. Write H = ⊕α∈Ĝ

(
Cdα ⊗ Cmα

)
 so that Ug = ⊕k

i=1Uαi
g ⊗ Imα with {αi}k

i=1 distinct 
elements in Ĝ . Let A(U) be the algebra of operators generated by the {Ug}g∈G , and A(U)′ 
its commutant. Then

A(U) =
{
⊕k

i=1Ai ⊗ Imα

∣∣Ai ∈ Mdαi

}
,� (6a)

A(U)′ =
{
⊕k

i=1Idαi
⊗ Bi

∣∣Bi ∈ Mmα

}
.� (6b)

Given a finite group G, we will call the uniform probability distribution on it its Haar 
measure. For a proof of its existence and basic properties, we refer to [25, section VII.3]. 
Given some unitary representation U : G → Md , we call the function χ : G → C given by 
g �→ Tr (Ug) the character of the representation. We will denote the character of an irreduc-
ible representation α ∈ Ĝ by χα and remark that one can find the decomposition in theorem 2 
through characters [25, section III.2].

2.1.  Covariant quantum channels and twirls

The definition of covariance of quantum channels is central to the study of their symmetries 
and will be one of the building blocks of the generalized RB protocol:

Definition 3 (Covariant quantum channel [26]).  A quantum channel T : Md → Md 
is covariant w.r.t. a unitary representation U : G → Md  of a finite group G, if for all g ∈ G

T
(
Ug · U†

g

)
= UgT (·)U†

g .� (7)

In general, one allows different unitary representations of the group in the input and output 
of the channel in the definition of covariance, but here we will restrict to the case when we 
have the same unitary representation. There are many different and equivalent characteriza-
tions of covariance. Here we mention that covariance is equivalent to the Choi–Jamiolkowski 
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state τT commuting with Ug ⊗ Ūg for all g ∈ G. To see this, note that given a unitary represen-
tation U of G we may define its adjoint representation U : G → End(Md) through its action 
on any X ∈ Md  by conjugation,

Ug(X) = UgXU†
g .� (8)

Through the Choi–Jamiolkowski isomorphism, it is easy to see that the adjoint representa-
tion is equivalent to the unitary representation Ug ⊗ Ūg ∈ Md2. As we can rephrase (7) as 
T commuting with the adjoint representation, this translates to the Choi–Jamiolkowski state 
commuting with Ug ⊗ Ūg. This means in particular that we may use structural theorems, like 
theorem 2, to investigate covariant channels, as covariance implies that the channel is in the 
commutant of the adjoint representation.

Theorem 4.  Let T : Md → Md be a quantum channel that is covariant w.r.t. a unitary 
representation U of a finite group G and let ⊕α∈Ĝ

(
Cdα ⊗ Cmα

)
 be the decomposition of the 

underlying Hilbert space into irreps α of G with multiplicity mα for the unitary representation 
U ⊗ Ū . Then:

T = ⊕α∈ĜIdα ⊗ Bα� (9)

with Bα ∈ Mmα.

Proof.  As T is covariant, it must be an element of the commutant of the adjoint representa-
tion, i.e. T ∈ A(U)′. The decomposition then follows from theorem 2.� □ 

This decomposition further simplifies when no multiplicities in the decomposition of the 
unitary representations into its irreducible components are present. We call such channels 
irreducibly covariant. Here we briefly mention some of the results of [27], where the structure 
of such channels is investigated.

Theorem 5 ([27, theorem 40]).  A quantum channel T : Md → Md is irreducibly covari-
ant w.r.t. an irrep U : G → Md  of a finite group G if and only if it has a decomposition of the 
following form:

T = lidPid +
∑

α∈Ĝ,α �=id

lαPα,
� (10)

with lid = 1, lα ∈ C and where Pid, Pα : Md → Md are projectors defined as

Pα(·) = χα(e)
|G|

∑

g∈G

χα
(
g−1)Ug · U†

g ,� (11)

with α ∈ Ĝ and e ∈ G the identity of the group. They have the following properties:

PαPβ = δαβPα, (Pα)∗ = Pα and
∑

α∈Ĝ

Pα = idd,
� (12)

where idd : Md → Md is the identity map and the coefficients lα are the eigenvalues of the 
quantum channel T.

That is, in the case of an irreducibly covariant channel we can also write down the projec-
tions onto different eigenspaces and diagonalize the channel.

One of the most important concepts in this paper is that of the twirl of a channel.
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Definition 6 (Twirl).  Let T : Md → Md be a quantum channel, G a finite group with Haar 
measure μ and U : U → Md a unitary representation of G. We define the twirl of T w.r.t. G, 
denoted by T (T) : Md → Md, as

T (T)(·) =
∫

G
U∗

g ◦ T ◦ Ug(·)dµ.� (13)

Strictly speaking the twirled channel, of course, depends on the particular group and uni-
tary representation at hand. However, we will omit this in the notation, as the group in ques-
tion should always be clear from context. It is then easy to show that T (T) is a quantum 
channel that is covariant w.r.t. this representation.

2.2.  Random walks on groups

We will need some basic tools from the field of random walks on groups to motivate and 
explain our protocol to perform RB with generators or with approximate samples. Therefore, 
we review these basic concepts here and refer to e.g. [28, chapter 2.6] for more details and 
proofs. Given a finite group G, we denote the set of probability measures on G by P(G). If 
X, Y are two independent random variables on G with distributions µ, ν ∈ P(G), respectively, 
we denote their joint distribution on G × G by µ⊗ ν . Analogously, we will denote the joint 
distribution of Y1, . . . , Yn i.i.d. variables with distribution ν by ν⊗n and the m-fold Cartesian 
product of G with itself by Gm. The random walk on G with increment distribution ν is defined 
as follows: it is a Markov chain with state space G. Given that the current state Xn of the chain 
is g, the next state Xn+1 is given by multiplying the current state on the left by a random ele-
ment of G selected according to ν. That is, we have

P(Xn+1 = g2|Xn = g1) = ν
(
g2g−1

1

)
.� (14)

Another way of tracking the transition probabilities for these chains is through the transition 
matrix of the chain, π. For g1, g2 ∈ G, this matrix is defined as

π(g1, g2) = ν
(
g2g−1

1

)
.� (15)

If X0 is distributed according to µ ∈ P(G), we have that the distribution of Xn is given by πnµ, 
where we just expressed μ as a vector in R|G|. We recall the following fundamental result 
about random walks on groups:

Theorem 7.  Let G be a finite group and A be a set of generators of G that is closed under 
inversion. Moreover, let ν be the uniform distribution on A and X1, X2, . . . be a random walk 
with increment distribution ν. Then the distribution of Xn converges to the Haar distribution 
on G as n → ∞.

Proof.  We refer to e.g. [28, section 2.6.1] for a proof and more details on this.� □ 

Given a generating subset A of G that is closed under inverses and ν the uniform distribution 
on A, we will refer to the random walk with increment ν as the random walk generated by A. 
This result provides us with an easy way of obtaining samples which are approximately Haar 
distributed if we have a set of generators by simulating this random walk for long enough. The 
speed of this convergence is usually quantified in the total variation distance. Given two prob-
ability measure µ, ν  on G, we define their total variation distance to be given by:
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‖µ− ν‖1 :=
1
2

∑

g∈G

|µ(g)− ν(g)|.� (16)

We then define the mixing time of the random walk as follows:

Definition 8 (Mixing time of random walk).  Let G be a finite group and A a set of gen-
erators closed under inverses and μ be the Haar measure on the group. For ε > 0, the mixing 
time of the chain generated by A, t1(ε), is defined as

t1(ε) := inf{n ∈ N|∀ν ∈ P(G) : ‖πnν − µ‖1 � ε}.� (17)

We set tmix to be given by t1(4−1), as this is a standard choice in literature [28, section 4.5]. 
One can then show that t1(ε) � �log2

(
ε−1

)
�tmix  (see [28, section 4.5] for a proof). There is 

a huge literature devoted to determining the mixing time of random walks on groups and we 
refer to [29] and references therein for more details. For our purposes it will be enough to note 
that in most cases we have that t1(ε) scales logarithmically with ε−1 and |G|. Another distance 
measure which is quite useful in the study of convergence of random variables is the relative 
entropy D. For two probabilities measures µ, ν  on {1, . . . , d} we define their relative entropy 
to be

D(µ||ν) :=





d∑
i=1

µ(i) log
(

µ(i)
ν(i)

)
, ifµ(i) = 0forallis.t.ν(i) = 0,

+∞, else.
� (18)

One of its main properties is that for µ, ν ∈ P(G) we have [30]

D(µ⊗n||ν⊗n) = nD(µ||ν).� (19)

3.  Fidelities

Given a quantum channel T : Md → Md and a unitary channel U : Md → Md, the average 
fidelity between them is defined as

F(T ,U) =
∫

Tr (T(|ψ〉〈ψ|)U(|ψ〉〈ψ|)) dψ,� (20)

where we are integrating over the Haar measure on quantum states. In case U is just the iden-
tity, we refer to this quantity as being the average fidelity of the channel and denote it by F(T). 
As shown in [31], the average fidelity of a channel is a simple function of its entanglement 
fidelity, given by

Fe(T) = Tr (T ⊗ id (|Ω〉〈Ω|) |Ω〉〈Ω|) ,� (21)

with |Ω〉〈Ω| the maximally entangled state. One can then show that

F(T) =
dFe(T) + 1

d + 1
.� (22)

Thus, we focus on estimating the entanglement fidelity instead of estimating the average fidel-
ity. This can be seen to be just a function of the trace of the channel and the dimension, as we 
now show.

Lemma 9.  Let T : Md → Md be a quantum channel. Then Fe(T) = d−2Tr (T). Here we 
mean the trace of T as a linear operator between the vector spaces Md.
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Proof.  The entanglement fidelity is

Fe(T) = Tr (T ⊗ id (|Ω〉〈Ω|) |Ω〉〈Ω|)

=
1
d2

d∑

i,j,k,l=1

Tr ([T (|i〉〈j|)⊗ |i〉〈j|] |l〉〈k| ⊗ |l〉〈k|)

=
1
d2

d∑

i,j=1

Tr
(

T (|i〉〈j|) (|i〉〈j|)†
)

.

Note that {|i〉〈j|}d
i,j=1 is an orthonormal basis of Md and Tr

(
T (|i〉〈j|) (|i〉〈j|)†

)
 corresponds to 

the Hilbert–Schmidt scalar product between T (|i〉〈j|) and |i〉〈j|. Therefore, we have that

d∑

i,j=1

Tr
(

T (|i〉〈j|) (|i〉〈j|)†
)
= Tr (T) ,

where again Tr (T) is meant as the trace of T as a linear operator.� □ 

That is, if we know the eigenvalues or the diagonal elements of T w.r.t. some basis, we may 
determine its entanglement and average fidelity. The RB protocol explores the fact that twirl-
ing a channel does not change its trace and that the trace of covariant channels has a much 
simpler structure, as made clear in the next corollary.

Corollary 10.  Let T : Md → Md be a quantum channel that is covariant w.r.t. a unitary 
representation U : G → Cd of a finite group G and let ⊕α∈Ĝ

(
Cdα ⊗ Cmα

)
 be the decomposi-

tion of Cd ⊗ Cd into irreps α of G with multiplicity mα for the unitary representation U ⊗ Ū . 
Choose a basis s.t.

T = ⊕α∈ĜIdα ⊗ Bmα� (23)

with Bα ∈ Mmα. Then

Fe(T) = d−2
∑

α∈Ĝ

dαTr (Bα) .
� (24)

Proof.  The claim follows immediately after we combine theorem 4 and lemma 9.� □ 

This shows that the spectrum of quantum channels that are covariant w.r.t. a unitary repre-
sentation of a finite group has much more structure and is simpler than that of general quantum 
channels. In particular, if the unitary representation U ⊗ Ū  is such that 

∑
α mα � d2, then 

we know that the spectrum of the quantum channel is highly degenerate and we only need to 
know a few points of it to estimate the trace. We will explore this fact later in the implementa-
tion of the RB protocol.

We will now show in lemma 11 that the probability of measurement outcomes has a very 
simple form for covariant channels and their powers.

Lemma 11.  Let T : Md → Md be a quantum channel that is covariant w.r.t. a unitary 
representation U : G → Md  of a finite group G and let ⊕α∈Ĝ

(
Cdα ⊗ Cmα

)
 be the decom-

position of Cd ⊗ Cd into irreps α of G with multiplicity mα for the unitary representation 
U ⊗ Ū . Moreover, let ρ ∈ Dd, E ∈ Md  be a POVM element and m � maxmα. Then there 
exist λ1, . . . ,λk ∈ B1(0), the unit ball in the complex plane, and a0, a1, . . . , ak ∈ C s.t.
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Tr (Tm(ρ)E) = a0 +
k∑

i=1

akλ
m
i .� (25)

Moreover,

k �
∑

α∈Ĝ

mα − 1
� (26)

corresponds to the number of distinct eigenvalues of T and λi are its eigenvalues.

Proof.  As T is a linear map from Md to Md it has a Jordan decomposition [32]. That is, 
there exists an invertible linear operator X : Md → Md  such that

X−1 ◦ T ◦ X = D + N, [D, N] = 0.

Here D : Md → Md is diagonal in the standard basis {|i〉〈j|}d
i,j=1 of Md with diagonal en-

tries given by the eigenvalues of T and N : Md → Md nilpotent. As we have that T is co-
variant, it follows from the decomposition in theorem 4 that the eigenvalues can be at most 
maxmα = m0−fold degenerate and Nm0 = 0. Thus, it follows that Tm is diagonalizable, as 
m � maxmα. We then have

X−1 ◦ Tm ◦ X = Dm.

We can then rewrite the scalar product

Tr (Tm(ρ)E) = Tr
(
X ◦ Dm ◦ X−1(ρ)E

)
= Tr

(
Dm(X−1(ρ))X∗(E)

)
.

Let bi,j and ci,j be the matrix coefficient of X∗(E) and X−1(ρ), respectively, in the standard 
basis. That is

X†(E) =
d∑

i,j=1

bi,j |i〉〈j| , X−1(ρ) =
d∑

i,j=1

ci,j |i〉〈j| .

Exploring the fact that D is diagonal in this basis we obtain

Tr (Tm(ρ)E) =
d∑

i,j=1

bi,jci,jdm
i,j,

where di,j are just the eigenvalues of T, including multiplicities. To arrive at the curve in (25), 
we group together all terms corresponding to the same eigenvalue λi. Moreover, note that 
quantum channels always have 1 in their spectrum, which gives the a0 term that does not 
depend on m. The fact that λi ∈ B1(0) follows from the fact that they are given by the eigen-
values of the channel and these are always contained in the unit circle of the complex plane 
[33].� □ 

Finally, we show that twirling does not change the entanglement fidelity and thus does not 
change the average fidelity, as observed in [31] and elsewhere in the literature. Thus, when we 
want to estimate the average fidelity of a channel T : Md → Md we may instead work with 
the twirled channel T (T) and explore its rich structure.
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Theorem 12.  Let T : Md → Md be a quantum channel, G be a finite group and 
U : G → Md  be a unitary representation. Then

Fe(T) = Fe(T (T)).� (27)

Proof.  We present a slightly different proof of this fact here. Note that U∗
g ◦ T ◦ Ug is just a 

similarity transformation of T and thus Tr
(
U∗

g ◦ T ◦ Ug
)
= Tr (T), where again we mean the 

trace of these channels as linear operators. Thus, integrating over all Ug does not change the 
entanglement fidelity, as Fe(T) = d−2Tr (T).� □ 

4.  Randomized benchmarking protocol

The RB protocol, as discussed in [3–6, 8, 34–39] is a protocol to estimate the average fidelity 
of the implementation of gates coming from some group G. Its usual setting is the Clifford 
group, but we discuss it for general groups here. Other papers have investigated the protocol 
for gates beyond Cliffords, such as [18, 19, 21]. But all of these have restricted their analysis 
to some other specific group. As we will see later, we can analyze the protocol for arbitrary 
groups by just investigating properties of the given unitary representation. We mostly follow 
the notation of [38]. We assume that the error quantum channel is gate and time indepen-
dent. That is, whenever we want to implement a certain gate Ug, where Ug(·) = Ug · U†

g  with 
Ug ∈ U(d), we actually implement Ug ◦ T  for some quantum channel T : Md → Md. We 
assume that we are able to multiply and invert elements of G and draw samples from the Haar 
measure on G efficiently to implement this protocol, but will later relax this sampling condi-
tion. The protocol is as follows:

	Step 1	� Fix a positive integer m ∈ N that varies with every loop.
	Step 2	� Generate a sequence of m  +  1 quantum gates. The first m quantum gates Ug1 , . . . ,Ugm  

are independent and Haar distributed. The final quantum gate, Ugm+1 is chosen such 
that in the absence of errors the net sequence is just the identity operation,

Ugm+1 ◦ Ugm ◦ . . . ◦ Ug2 ◦ Ug1 = id,� (28)

			  where ° represents composition. Thus, the whole quantum gate sequence is

Sm = ©m+1
j=1 Ugj ◦ T ,� (29)

			  where T is the associated error quantum channel.
	Step 3	� For every sequence, measure the sequence fidelity

Tr (Sm(ρ)E) ,� (30)

			�  where ρ is the initial quantum state, including preparation errors, and E is an effect 
operator of some POVM including measurement errors.

	Step 4	� Repeat steps 2–3 and average over M random realizations of the sequence of length 
m to find the averaged sequence fidelity given by

F̄(m, E, ρ) =
1
M

∑

m

Tr (Sm(ρ)E) .� (31)

	Step 5	� Repeat steps 1–4 for different values of m and obtain an estimate of the expected 
value of the sequence fidelity
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F(m, E, ρ) = Tr (E(Sm)(ρ)E) .� (32)

4.1.  Analysis of the protocol

We will now show how we can estimate the average fidelity from the data produced by the 
protocol, that is, an estimate on the curve F(m, E, ρ) = Tr (E(Sm)(ρ)E).

Theorem 13.  Let T : Md → Md be a quantum channel and G a group with a unitary  
representation U : G → Md . If we perform the RB protocol for G we have

E(Sm) = T (T)m.� (33)

Proof.  Although the proof is identical to the case in which G is given by the Clifford group, 
we will cover it here for completeness. Given some sequence {Ug1 , . . . ,Ugm+1} of unitary gates 
from G, define the unitary operators

Di = ©i
j=1Ugi .� (34)

Note that we have

Sm =Ugm+1 ◦ T ◦ Ugm ◦ T ◦ . . . ◦ Ug2 ◦ T ◦ Ug1

=

=I︷ ︸︸ ︷
Ugm+1 ◦ (Ugm ◦ . . . ◦ Ug1 ◦

=D∗
m︷ ︸︸ ︷

U∗
g1
◦ . . . ◦ U∗

gm
) ◦ T ◦ Ugm ◦ T◦

. . . T ◦ Ug3 ◦ (Ug2 ◦ Ug1︸ ︷︷ ︸
=D3

◦U∗
g1
◦ U∗

g2︸ ︷︷ ︸
=D∗

2

) ◦ T ◦ Ug2 ◦ (Ug1︸ ︷︷ ︸
=D2

◦ U∗
g1︸︷︷︸

=D∗
1

) ◦ T ◦ Ug1︸︷︷︸
=D1

=D∗
m ◦ T ◦ Dm ◦ . . . ◦ D∗

2 ◦ T ◦ D2 ◦ D∗
1 ◦ T ◦ D1

= ©m
j=1

(
D∗

j ◦ T ◦ Dj
)

.
�

(35)

Here we have absorbed the first channel T as SPAM error. As we have that each of the Ugi  is 
independent and Haar-distributed, it follows that the Di are independent and Haar distributed 
as well. It then follows from (35) that

�
E (Sm) = E

(
©m

j=1

(
D∗

j ◦ T ◦ Dj
))

= ©m
j=1E

(
D∗

j ◦ T ◦ Dj
)
= T (T)m. □ 

We can then use our structural results on covariant quantum channels to obtain a more 
explicit form for the curve F(m, E, ρ).

Corollary 14.  Suppose we perform RB for a unitary representation U : G → Md  of a finite 
group G s.t. U ⊗ Ū = ⊕α∈Ĝ

(
Cdα ⊗ Cmα

)
 and a channel T. Then there exist λ1, . . . ,λk ∈ B1(0) 

and a0, a1, . . . , ak ∈ C s.t.

F(m, E, ρ) = a0 +
k∑

i=1

akλ
m
i .� (36)

for m � maxmα. Moreover, k �
∑

α mα corresponds to the number of distinct eigenvalues of 
T (T) and λi are its eigenvalues.
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Proof.  The claim follows immediately from theorem 13 and lemma 11.� □ 

That is, by fitting the curve to experimental data we may obtain estimates on the λi and thus 
on the spectrum of T (T). If we know the multiplicity of each eigenvalue, then we can estimate 
the trace as well and thus the average fidelity. However, in the case in which we have more 
than one parameter to estimate, it is not clear which eigenvalue corresponds to which irrep and 
we therefore cannot simply apply the formula in corollary 10. Suppose we are given an esti-
mate {λ̂1, . . . , λ̂k} of the parameters sorted in decreasing order and let d↑

α be the dimensions 
of the irreps sorted in ascending and d↓

α in descending order. We define the minimal fidelity, 
Fmin, to be given by

Fmin =
1
d2

∑
d↓
αλ̂i� (37)

and the maximum fidelity, Fmax, to be given by

Fmax =
1
d2

∑
d↑
αλ̂i.� (38)

That is, we look at the pairings of dα and λ̂i that produces the largest and the smallest estimate 
for the fidelity. These then give the most pessimistic and most optimistic estimate, respectively. 
The fact that we cannot associate a λi to each irrep causes some problems in this approach 
from the numerical point of view and we comment on them in appendix A. We also note that 
since the first version of this work, a modified version of the protocol we describe here was 
given in [40]. Their protocol provides a way of isolating the individual parameters in the case 
of irreducibly covariant channels.

5.  Approximate twirls

In the description of our RB protocol, we assume that we are able to obtain samples from 
the Haar measure of the group G. It is not possible or efficient to obtain samples of the Haar 
measure for most groups, but a lot of research has been done on how to obtain approximate 
samples efficiently using Markov chain Monte Carlo methods, as discussed in section 2.2. 
Here we discuss how to use samples which are approximately Haar distributed for RB. Note 
that these results may also be interpreted as a stability result w.r.t. not sampling exactly from 
the Haar measure of G. We will assume we are able to pick the Ugk  independently and that they 
are distributed according to a measure νk  s.t.

‖νk − µ‖1 � εk,� (39)

for εk � 0. Our goal is to show that under these assumptions we may still implement the RB 
protocol discussed before and obtain measurement statistics that are close to the ones obtained 
using Haar samples.

Motivated by this, we define the ν̃ -twirl of a channel.

Definition 15 (ν̃ -twirl to the power m).  Let ν̃  be a probability measure on Gm, 
T : Md → Md a quantum channel and U : G → Md  a d−dimensional unitary representa-
tion of G. We define the ν̃ -twirl to the power m to be given by

Tν̃,m(T) =
|G|∑

i1,...,im=1

ν̃ (gi1 , . . . , gim)©m
k=1 Ugik

◦ T ◦ U∗
gik

.� (40)
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This definition boils down to the regular twirl for ν̃ = µ⊗m, μ the Haar measure on G. We 
will now show that by sampling Ugk  close to Haar we have that the ν̃ -twirl of a channel is also 
close to the usual twirl.

Lemma 16 (Approximate twirl).  Let T : Md → Md be a quantum channel, G a finite 
group with a d−dimensional unitary representation U : G → Md  and ν̃  a probability meas-
ure on Gm. Let Tν̃,m(T) be the ν̃ -twirl to the power m and T (T) be the twirl w.r.t. the Haar 
measure on G given by μ. Moreover, let ‖ · ‖ be a norm s.t. ‖T‖ � 1 for all quantum channels. 
Then

‖Tν̃,m(T)− T (T)m‖ � 2‖ν̃ − µ⊗m‖1.� (41)

Proof.  Observe that we may write

‖Tν̃,m(T)− T (T)m‖ =

∥∥∥∥∥∥

|G|∑

i1,...,im=1

(
ν̃ (gi1 , . . . , gim)−

1
|G|m

)
©m

k=1 Ugik
◦ T ◦ U∗

gik

∥∥∥∥∥∥
.

The claim then follows from (16), as

|G|∑

i1,...,im=1

∣∣∣∣ν̃ (gi1 , . . . , gim)−
1

|G|m
∣∣∣∣ = 2‖ν̃ − µ⊗m‖1,

the triangle inequality and the fact that ‖©m
k=1 Ugik

◦ T ◦ U∗
gik
‖ � 1.� □ 

Thus, in order to bound ‖Tν̃,m(T)− T (T)m‖ in any norm in which quantum channels are 
contractions, it suffices to bound ‖ν̃ − µ⊗m‖1. Examples of such norms are the 1 → 1 norm 
and the diamond norm [41, theorem 2.1]. We remark that other notions of approximate twirl-
ing were considered in the literature [39, 42], but these works were mostly concerned with the 
case of the unitary group and not arbitrary finite groups. Although it would be straightforward 
to adapt their definitions to arbitrary finite groups, it is not clear at first sight that their notions 
of approximate twirls behave well when taking powers of channels that have been twirled 
approximately. This is key for RB. Given random unitaries {Ui}m

i=1 from G, let Dk = ©k
i=1Ui, 

as before.

Theorem 17.  Let μ be the Haar measure on G and ν1, . . . , νm probability measures on G 
s.t.

‖µ− νk‖1 � εk,� (42)

for all 1 � k � m and εk � 0. Denote by ν̃  the distribution of (D1, . . . ,Dm) if we pick the Uk 
independently from νk  . Then

‖Tν̃,m(T)− T (T)m‖1→1 � 4

√√√√ log(|G|)
1 − |G|−1

m∑

k=1

εk.� (43)

Proof.  We refer to appendix C for a proof and only sketch the main steps here. We start by 
applying lemma 16 to reduce the problem of estimating this norm to estimating the total vari-
ation distance between ν̃  and μ. We then show that the total variation distance between ν̃  and 
μ and ⊗m

k=1µk  coincide. We bound this total variation distance by the relative entropy using 
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Pinsker’s inequality, explore tensorization properties of the relative entropy, and then use a 
reverse Pinsker inequality. We then obtain the final bound from (43).� □ 

Note that the same result holds for any norm that contracts under quantum channels, such 
as the diamond norm.

Corollary 18.  Let μ be the Haar measure on G and ν1, . . . , νm probability measures on G 
s.t.

‖µ− νk‖1 � εk,� (44)

for all 1 � k � m and εk � 0. Denote by ν̃  the distribution of (D1, . . . ,Dm) if we pick the Uk 
independently from νk . Then

|Tr (Tν̃,m(T)(ρ)E)− F(m, E, ρ)| � 4

√√√√ log(|G|)
1 − |G|−1

m∑

k=1

εk.� (45)

Proof.  It follows from Hölder’s inequality that

|Tr (Tν̃,m(T)(ρ)E)− F(m, E, ρ)| = |Tr
(
E
(
Tν̃,m(T)(ρ)− T (T)m

(ρ)
))

|
�‖E‖∞‖Tν̃,m(T)− T (T)m‖1→1,

where we have used the submultiplicativity of the 1 → 1-norm. As E is the element of a 
POVM, we have ‖E‖∞ � 1 and the claim then follows from theorem 17.� □ 

This shows that we may use approximate twirls instead of exact ones and obtain expecta-
tion values that are close to the perfect twirl. Given that we want to assure that the statistics 
we obtain for some m ∈ N are δ > 0 close to our target distribution, we would have to sample 
the Ugk  such that

‖µ− νk‖1 � δ2(1 − |G|−1)

16 log(|G|)m ,� (46)

as can be seen by plugging in this bound in the result of corollary 18. If we use a random walk 

on a group to sample from the Haar distribution we have to run each chain for t1
(

δ2(1−|G|−1)
16 log(|G|)m

)
 

steps, which gives a total runtime of O
(

tmix log
(

16 log(|G|)m
δ2(1−|G|−1)

))
. For a fixed δ, this will be 

efficient if the chain mixes rapidly, that is, tmix is small, and we choose m to be at most of the 
order of the dimension.

6.  Randomized benchmarking with generators

One of the downsides of the usual RB protocol [3–6, 34–39] is that we assume that we may 
implement any gate of the group. Usually, gates have to be broken down into generators, as 
discussed in [43, section 1.2.3 and chapter 8]. Therefore, it would be desirable both from 
the point of view of justifying the noise model and the implementation level of the protocol 
to mostly need to implement gates from a set of generators. We describe here a protocol to 
perform RB by just implementing gates from a set of generators closed under inversion and 
one arbitrary gate. We also make the additional assumption that the quantum channel that 
describes the noise is already approximately covariant in a sense we will make precise soon. 
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This protocol is inspired by results of the last section that suggest a way of performing RB 
by just implementing gates coming from a set A that generates the group G and is closed 
under inversion and one additional arbitrary gate from G at each round of the protocol. From 
the basic results of random walks discussed in section 2.2, we know that if we pick gates 
Ug1 , Ug2 , . . . uniformly at random from A, it follows that Ugb Ugb−1 . . .Ug1 will be approxi-
mately distributed like the Haar measure on G for b � tmix. However, one should note that 
in this setting the Di, defined in (34), will not be independent of each other. To see this, note 
that given Di = Ug, we know that the distribution of the Di+1 is restricted to elements h ∈ G 
of the form h  =  ag with a ∈ A, which clearly show that they are not independent in general. 
However, if we look at Di+l for l ∼ tmix, then their joint distribution will be close to Haar. That 
is, looking at Di and Dj which are far enough apart from each other, we may again assume that 
they are both almost Haar distributed and if we look at each Di individually we may assume 
that they are almost Haar distributed. One way to explore this observation for RB protocols 
only having to implement the generators is to look at the following class of quantum channels:

Definition 19 (δ-covariant quantum channel).  A quantum channel T : Md → Md 
is called δ-covariant w.r.t. a unitary representation U : G → Md  of a group G, if there exist 
quantum channels Tc, Tn : Md → Md  such that

T = (1 − δ)Tc + δTn,� (47)

and Tc is covariant w.r.t. U.

That is, T is almost covariant w.r.t. the group. Similar notions of approximate covariance 
were also introduced in [44]. Their notion of an approximate covariant channel is arguably 
more natural than ours, as they quantify how close a channel is to being covariant using the 
minimal distance to a covariant channel in the diamond norm. Unfortunately, we also need 
information on how close the powers of the channel are to being covariant and it is not clear 
how to derive such bounds using their definition but it is straightforward using ours. Another 
issue related to our definition is the fact that it does not cover quantum channels that are uni-
tary, unless they are the identity. That is because unitary channel are extremal points of the set 
of quantum channels [26] and thus cannot be written in any nontrivial convex combination 
with another quantum channel. Thus, it remains an open problem how to generalize these 
methods to unitary noise, as preliminary numerical evidence suggests that the protocol also 
gives good estimates in this case. The standard example of quantum channels that satisfy our 
definition are quantum channels that are close to the identity channel, i.e. we have δ small and 
Tc the identity channel.

We will need to fix some notation before we describe the protocol. For a given sequence 
of unitaries si = (Ug1 , Ug2 , . . .) we let Ssi,c,d = ©d

j=cUgj ◦ T  for c, d ∈ N  and the gates chosen 
according to the sequence.

Thus, if we apply random generators b times as an initialization procedure and only start 
fitting the curve after this initialization procedure we may also estimate the average fidelity.

This yields the following protocol.

	Step 1	� Fix a positive integer m ∈ N that varies with every loop and another integer b ∈ N.
	Step 2	� Generate a sequence of b  +  m  +  1 quantum gates, si. The first b  +  m quantum gates 

Ug1 , . . . ,Ugb+m are chosen independently and uniformly at random from A. The final 
quantum gate, Ugb+m+1 is chosen as

Ugb+m+1 = (Ugb+m ◦ . . . ◦ Ug2 ◦ Ug1)
−1.� (48)
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	Step 3	� For each sequence si, measure the sequence fidelity

Tr (Ssi,b+1,b+m+1(Ssi,1,b(ρ))E) ,� (49)

			  where ρ is the initial quantum state and E is an effect operator of a POVM.
	Step 4	� Repeat steps 2–3 and average over M random realizations of the sequence of length 

m to find the averaged sequence fidelity

F̄(m, E, ρ) =
1
M

M∑

i=1

Tr (Ssi,b+1,b+m+1(Ssi,1,b(ρ))E) .� (50)

	Step 5	� Repeat steps 1–4 for different values of m to obtain an estimate of the expected value 
of the average survival probability

F(m, E, ρ) = E (Tr (Ssi,b+1,b+m+1(Ssi,1,b(ρ))E)) .� (51)

We will now prove that this procedure gives rise to the same statistics as if we were using 
samples from the Haar distribution up to O(δ2).

Theorem 20.  Let T be δ−covariant w.r.t. a unitary representation U : G → Md  of a finite 
group G, A a subset of G that generates G and is closed under inversion and δ > 0. Suppose 
we run the protocol above with b = t1(m−1ε) for some ε and m � b. Then

‖T (T)m − E(Sb,b+m+1)‖1→1 � ε+ O
(
δ2bm

)
.� (52)

Proof.  We refer to appendix D for a proof.� □ 

Corollary 21.  Let Sb,m+b+1 and b be as in theorem 20. Then for any POVM element E and 
state ρ ∈ Md :

|Tr (E (Sb,m+1) (ρ)E)− F(m, E, ρ)| � ε+ O
(
δ2bm

)
.� (53)

Proof.  The proof is essentially the same as that of corollary 18.� □ 

This shows that performing RB by only implementing the generators is feasible as long as 
we have a δ−covariant channel with δ small and a rapidly mixing set of generators, that is, 
δ2bm � 1. Recall that a Markov chain is said to be rapidly mixing if the mixing time scales 
polylogarithmically with the size of the state space [45]. In our case, the size of the state space 
is given by the size of the group we are benchmarking. Thus, for groups whose size scales 
polynomially with the dimension of the system or equivalently exponentially in the number 
of qubits, this translates to b scaling like O(nk logk(nε−1m)), for n the number of qubits and 
k a natural number. This scaling renders the protocol reliable if δ is roughly smaller than the 
inverse of a polynomial on the number of qubits.

7.  Numerics and examples

Here we show how to apply our methods to groups that might be of special interest and discuss 
some numerical examples. Many relevant questions for the practical application of our work 
are still left open and have two different flavors: the numerical and statistical side. From the 
numerical point of view, it is not clear at first how to fit the data gathered by a RB protocol to 
an exponential curve if we have several parameters. We refer to appendix A for a discussion 
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of these issues and some proposals of how to overcome them. From a statistical point of view, 
it is not clear how to derive confidence intervals for the parameters and how large we should 
choose the different parameters of the protocol, such as m and M. We refer to appendix B for 
a discussion of these issues and preliminary results in this direction.

7.1.  Monomial unitary matrices

We consider how to apply our methods of generalized RB to some subgroups of the monomial 
unitary matrices MU(d).

Definition 22.  Let {|i〉}d
i=1 be an orthonormal basis of Cd. We define the group of mono-

mial unitary matrices, MU(d) to be given by U ∈ U(d) of the form U  =  DP with D, P ∈ U(d) 
and D diagonal w.r.t. {|i〉}d

i=1 and P a permutation matrix.

Subgroups of this group can be used to describe many-body states in a formalism that is 
broader than the stabilizer formalism of Paulis and have other applications to quantum com-
putation (see [22]). As the group above is not finite and it is unreasonable to assume that we 
may implement diagonal gates with phases of an arbitrary precision, we focus on the follow-
ing subgroups:

Definition 23.  We define MU(d, n) to be the subgroup of the monomial unitary matrices of 
dimension d whose nonzero entries consist only of nth roots of unity.

Another motivation to consider these subgroups is that they contain the T-gate [23],

T = |0〉〈0|+ ei π4 |1〉〈1|� (54)

in case n � 8. Thus these gates, together with Cliffords, constitute a universal set of quantum 
gates [23]. Also note that the group considered here contains the group considered in [20]. 
There they also consider the group generated by diagonal matrices containing nth roots of 
unity, CNOTs and Pauli X gates. Although the latter two are permutations, they do not gener-
ate the whole group of permutations and the groups do not coincide. We now show that we 
have to estimate two parameters for them.

Lemma 24 (Structure of channels covariant w.r.t. monomial unitaries).  Let 
MU(d, n) be such that n � 3 and T : Md → Md a quantum channel. Then the following are 
equivalent:

	 (i)	�T(ρ) = UT
(
U†ρU

)
U† ∀U ∈ MU(d, n), ρ ∈ Sd.

	(ii)	�There are α,β ∈ R so that

T(·) = Tr (·) I
d
+ α

(
id −

d∑

i=1

|i〉〈i| 〈i| · |i〉
)

+ β

(
d∑

i=1

|i〉〈i| 〈i| · |i〉 − Tr (·) I
d

)
.

�

(55)

Moreover, the terms in the r.h.s. of (55) are projections of rank 1, d2  −  d and d  −  1, respec-
tively.

Proof.  We refer to appendix E for a proof.� □ 

This result shows that we only need to estimate two parameters when performing RB 
with these subgroups. They are therefore a natural candidate to apply our methods to and we 
investigate this possibility further. We begin by analyzing the complexity of multiplying and 
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inverting elements of MU(d, n). We show this more generally for MU(d), as it clearly gives an 
upper bound for its subgroups as well. We may multiply and invert elements of MU(d) in time 
O(d). To multiply elements in MU(d) we need to multiply two permutations of d elements, 
which can be done in time O(d), multiply a vector u ∈ Cd  with a permutation matrix, which 
can be done in time O(d), and multiply d elements of U(1) with each other, which again can 
be done in time O(d). This shows that multiplying elements of this group takes O(d) opera-
tions. To invert an element of MU(d) we need to invert a permutation, which again takes O(d), 
invert d elements of U(1) and apply a permutation to the resulting vector. This also takes O(d) 
operations. Moreover, one can generate a random permutation and an element of U(1)d in time 
O(d), giving O(Mmd) complexity for the classical part of the RB procedure. Although this 
scaling is not efficient in the number of qubits as in the case of Clifford gates [3], the fact that 
it is linear in the dimension and not superquadratic as in the general case still allows for our 
method to be applied to high dimensions.

To exemplify our methods, we simulate our algorithm for some dimensions and number 
of sequences M. We run the simulations for MU(d, 8), as it is the smallest one that contains 
the T-gate. We consider the case of a quantum channel T that depolarizes to a random state 
σ ∈ Dd with probability (1 − p), that is

T(ρ) = pρ+ (1 − p)σ,� (56)

where σ ∈ Dd is chosen uniformly at random from the set of states. Although the state σ 
is chosen at random each time we run the protocol, note that it is also fixed for each run. 
This implies that this quantum channel will in general not be covariant, as σ �= I/d  almost 
surely. It is not difficult to see that for this class of channels the entanglement fidelity is 
Fe(T) = ( p(d2 − 1) + 1)/d2 and we, therefore, measure our error in terms of the parameter 
p. The results are summarized in table 1.

We also obtain numerical results for unitary noise models. Here we consider quantum 
channels that are given by a conjugation with a unitary U of the form

U = ⊗n
j=1eiθjσX,j

for systems of n qubits, σX,j the Pauli X matrix acting on the jth qubit and θj ∈ [0, 2π). We 
sampled channels of this form by picking the θj independently and uniformly at random from 
some interval (0, a). The magnitude of a is a proxy for ‘how noisy’ this unitary will be on aver-
age. Moreover, we use the methods described in appendix A.2 to isolate the relevant param
eters. The results are summarized in table 2. These numerical results of tables 1 and 2 clearly 
show that we may estimate the fidelity to a good degree with our procedure.

7.2.  Clifford group

As mentioned before, the Clifford group is the usual setup of RB, as we only have to estimate 
one parameter and it is one of the main building blocks of quantum computing [23]. Thus, 
we apply our protocols based on approximate samples of the Haar distribution and genera-
tor based protocols to Clifford gates. It is known that the Clifford group on n qubits, C(n), is 
generated by the Hadamard gate H, the π−gate and the CNOT gate between different qubits, 
defined as

H =
1√
2

(
1 1
1 −1

)
, π =

(
1 0
0 i

)
and CNOT =




1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


 ,� (57)
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respectively. We refer to e.g. [46, section 5.8] for a proof of this claim. We need a set of gen-
erators that is closed under taking inverses for our purposes. All but the π−gate are their own 
inverse, so we add the inverse of the π−gate to our set of generators to assure that the random 
walk converges to the Haar measure on the Clifford group. That is, we will consider the set A 
of generators of the Clifford group C(n) consisting of Hadamard gates, π−gates and its inverse 
on each individual qubit and CNOT between any two qubits,

A = {πi,π−1
i , Hi, CNOTi,j}.� (58)

To the best of our knowledge, there is no rigorous estimate available for the mixing time of 
the random walk generated by A and it would certainly be interesting to investigate this ques-
tion further. However, based on our numerical results and the results of [42], we conjecture 
that it is rapidly mixing, i.e. tmix = O(n2 log(n)). This would be more efficient than the algo-
rithm proposed in [47], which takes O(n3) operations. To again test our methods we perform 
similar numerics as in the case of the monomial unitaries.

Table 1.  Error analysis of the RB protocol described in section 4 to the group 
MU(d, 8) and depolarizing noise as defined in (56). We take the initial state to 
be |0〉〈0|, the POVM element to be |0〉〈0|, p  =  0.9 and we always choose m  =  40. 
Moreover, we generate 100 different channels for each combination of dimension and 
number of sequences. The table shows the resulting mean and median error as well 
as the standard deviation for different values of d and M. Here, we define the error 
to be given by |F − F̂|, where F is the true average fidelity of the channel and F̂  the 
estimate we obtain from our protocol. These results indicate that the protocol performs 
well with this range of parameters for several different dimensions, as we observed 
small errors for all combinations of dimension and M. Note that increasing the number 
of random sequences M by one order of magnitude reduced the error, although this 
certainly requires more experimental effort.

d M
Mean error 
(×10−3)

Median  
error (×10−3)

Standard deviation 
(×10−3)

64 1000 9.17 2.14 3.93
128 100 6.08 1.48 2.14
128 1000 5.17 1.01 1.13
1024 100 9.17 2.14 3.93
1024 1000 4.55 1.13 1.77

Table 2.  Error analysis of the RB protocol described in section 4 to the group 
MU(d, 8) and unitary noise. We generate 100 different channels for each value of 
a and always perform the protocol for 10 qubits. For each run of the protocol we 
generate 1000 sequences of gates and choose m  =  20. The table shows the resulting 
mean and median error as well as the standard deviation for different values of a. 
Here, we define the error to be given by |F − F̂|, where F is the true average fidelity 
of the channel and F̂  the estimate we obtain from our protocol. These results indicate 
that the protocol performs well with this range of parameters and unitary noise.

a
Mean  
error (×10−4)

Median  
error (×10−4)

Standard deviation 
(×10−4)

0.1 3.90 2.00 0.45
0.2 2.63 1.80 2.10
0.3 3.19 1.9 3.05
0.4 4.11 2.05 4.04
0.5 4.71 2.11 4.01
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We simulate the following noise model: we first pick a random isometry V :
(
C2

)⊗n →(
C2

)⊗n ⊗
(
C2

)⊗n
 and generate the quantum channel

T(ρ) = pρ+ (1 − p)tr2
(
VρV†) ,� (59)

where tr2 denotes the partial trace over the second tensor factor. That is, T is just the convex 
combination of the identity and a random channel and is δ-covariant w.r.t. a group with δ = p. 
This sampling procedure ensures that the channel T will not have any further symmetries. 
From the discussion in section 6 we expect this to work best for p close to one. The results for 

Table 3.  For each combination of p, M and b we generate 20 different random quantum 
channels and perform generator RB for the Clifford group on five qubits. In all these 
cases we pick m  =  20. The average error is defined as the average of the absolute value 
between the exact fidelity and the one estimated using our protocol. The table shows 
the average error and its standard deviation in terms of different choices of b, M and p.

p b M
Average  
error (×10−3)

Standard deviation 
of error (×10−4)

0.98 10 10 5.49 1.38
0.95 10 100 1.44 3.92
0.95 5 100 1.52 7.94
0.95 5 20 1.56 7.44
0.90 10 20 3.20 1.58
0.80 10 50 8.63 6.01

Table 4.  For each combination of p, M and b we generate 20 different random quantum 
channels and perform generator RB for the Clifford group on five qubits. In all these 
cases we pick m  =  20. The average error is defined as the average of the absolute value 
between the exact fidelity and the one estimated using our protocol. The table shows 
the average error and its standard deviation in terms of different choices of b, M and p.

p b M
Average  
error (×10−2)

Standard deviation 
of error (×10−3)

0.7 5 100 2.07 1.15
0.65 5 100 2.29 1.95
0.60 5 100 27.1 52.30
0.55 5 100 44.5 67.30

Table 5.  For each combination of p, M and b we generate 20 different convex 
combinations of the identity and a random unitary and perform generator RB for the 
Clifford group on five qubits. In all these cases we pick m  =  20. The average error 
is defined as the average of the absolute value between the exact fidelity and the 
one estimated using our protocol. The table shows the average error and its standard 
deviation in terms of different choices of b, M and p.

p b M
Average  
error (×10−3)

Standard deviation 
of error (×10−4)

0.98 10 100 2.30 9.44
0.95 10 100 1.15 9.19
0.90 10 100 3.62 2.22
0.85 10 100 6.67 39.4
0.80 10 100 83.4 55.9
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p close to one are summarized in table 3. The average error increases as the channel becomes 
noisier, but generally speaking we are able to obtain an estimate which is 10−3 close to the true 
value with M around 20 and m  =  20.

We also performed some numerical experiments for p significantly away from one, which 
are summarized in table 4.

Figure 1.  Plot of the average error (a) and mean error (b) as a function of p for different 
versions of the RB protocol for the Clifford group and the random quantum channel 
noise model as defined in (59). For each value of p we generated 20 instances of the 
random channel with M  =  100 and m  =  20. For the generator RB we chose b  =  5 and 
to obtain the approximate samples we ran the chain for 20 steps.
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The noise model above favors quantum channels with a high Kraus rank. Here we also 
consider the case of quantum channels of the form

T(ρ) = pρ+ (1 − p)UρU†,

where U is a randomly chosen (Haar) unitary. These channels have Kraus rank 2 and are δ-
covariant with δ = p. The numerical results can be found in table 5.

These results show that these methods are effective to estimate the average fidelity under 
less restrictive assumptions on the gates we may implement using RB if we have a high fidel-
ity, as indicated in tables 3 and 5. However, in case we do not have a high fidelity, these meth-
ods are not reliable, as can be seen in table 4. Note that our numerical results seem to indicate 
that the cut-off of the range of average fidelities we can reliably detect occurs at larger values 
of the fidelity in the case of channels with lower Kraus rank, as can be see in table 5. This 
should not severely restrict the applicability of these methods, as one is usually interested in 
the high fidelity regime when performing RB.

Finally, in figure 1 we compare the three different RB protocols discussed in this paper. We 
compare the usual RB protocol, which we call the perfect sampling protocol, to the one with 
approximate samples and the generator RB for the random quantum channel noise model. The 
curve makes clear that using approximate and exact samples leads to virtually indistinguish-
able estimates and that all protocols have similar performance for p close to one.

8.  Conclusion and open problems

We have generalized the RB protocol to estimate the average gate fidelity of unitary repre-
sentations of arbitrary finite groups. Our protocol is efficient when multiplying, inverting and 
sampling elements from the group can be done efficiently and we have shown some potential 
applications that go beyond the usual Clifford one. Moreover, we showed that using approxi-
mate samples instead of perfect ones from the Haar measure on the group does not lead to 
great errors. This can be seen as a stability result for RB protocols w.r.t. sampling which was 
not available in the literature and is also relevant in the Clifford case. We hope that this result 
can be useful in practice when one is not given a full description of the group but rather a set 
of generators. Moreover, we have shown how to perform RB by just implementing a set of 
generators and one arbitrary gate under some noise models. This protocol could potentially be 
more feasible for applications, as the set of gates we need to implement is on average simpler.

However, some questions remain open and require further work. It is straightforward to 
generalize the technique of interleaved RB to this more general scenario and this would also 
be a relevant development. It would be important to derive confidence intervals for the esti-
mates as was done for the Clifford case in [7, 8]. Moreover, it would be relevant to estimate 
not only the mean fidelity but also the variance of this quantity. The assumption that the noisy 
channel is the same for all gates is not realistic in many scenarios and should be seen as a 
0-order approximation, as in [37]. It would be desirable to generalize our results to the case in 
which the channel depends weakly on the gate.
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Appendix A.  Numerical considerations

Here we gather some comments on the numerical issues associated with the RB procedure 
when estimating more than one parameter.

A.1.  Fitting the data to several parameters

In order to be able to estimate the average fidelity following the protocols discussed so far, it 
is necessary to fit noisy data points {xi}m

i=1 ⊂ R to a curve f : R → R of the form

f (x) = a0 +
n∑

k=1

ake−bkx,� (A.1)

with a0, a1, . . . , an, b1, . . . , bn ∈ C. Although this may look like an innocent problem at first 
sight, fitting noisy data to exponential curves is a difficult problem from the numerical point 
of view for large n. It suffers from many stability issues, as thoroughly discussed in [48]. Here 
we are going to briefly comment on some of the issues and challenges faced when trying to 
fit the data, although we admittedly only scratch the surface. For a more thorough analysis of 
some methods and issues, we refer to [48, 49].

We assume that we know the maximum number of different parameters, 2n  +  1, which we 
are fitting. This is given by the structure of the unitary representation at hand, as discussed in 
lemma 11. Luckily, significant progress has been made in the recent years to develop algo-
rithms to overcome the issues faced in this setting and it is now possible to fit curves to data 
with a moderate number of parameters. It is also noteworthy that for n  =  2 there exist stable 
algorithms based on geometric sums [49] which works for equispaced data, as is our case. For 
estimating more than two parameters one can use the algorithms proposed in [48], available 
at [50]. It should be said that the reliability and convergence of most algorithms found in the 
literature depends strongly on the choice of a good initial point. This tends not to be a prob-
lem, as we might have some assumptions where our fidelity approximately lies and choose 
the initial bk accordingly. What could be another source of numerical instabilities is the fact 
that we have to input the model with a number of parameters, n. In case the eigenvalues of T 
are very close for different irreps, then this will lead to numerical instabilities. This is the case 
if the noise is described by a depolarizing channel, for example. Furthermore, it might be the 
case that the initial state in our protocol does not intersect with all eigenspaces of the channel. 
This may lead to some parameters ak being zero and we are not able to estimate some of the 
bk from them.

Moreover, it is in principle not possible to tell which parameter corresponds to which irrep 
given the decomposition in lemma 11, which is again necessary to estimate the trace of the 
channel. So even in the case in which we have a small number of parameters, it is important 
that the different irreps associated to our parameters have a similar dimension or to assume 
that the spectrum of the twirled channel contains eigenvalues that are very close to each other. 
In this way, the most pessimistic estimate on the fidelity, as defined in (37), is not very far 
from the most optimistic, defined in (38). This is one of the reasons we focus on examples that 
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only have a small number of parameters, say one or two, and irreps of a similar dimension to 
avoid having numerical instabilities or estimates that range over an interval that is too large.

It is therefore important to develop better schemes to fit the data in the context of RB for 
more than one or two parameters. This is important from a statistical point of view, as it would 
be desirable to obtain confidence intervals for the parameters from the RB data. We will fur-
ther develop this issue in appendix B. It would be worthwhile pursuing a Bayesian approach 
to this problem, as was done in [51] for the usual RB protocol.

A.2.  Isolating the parameters

One way to possibly deal with this issue is to isolate each parameter, that is, by preparing 
states that only have support on one of the irreps that are not the trivial one. In the case of non-
degenerate unitary representations, discussed in theorem 5, we have the following:

Theorem A.1 (Isolating parameters).  Let U : G → Md  be a simply covariant irrep 
of a finite group G and T : Md → Md a channel which is covariant w.r.t. U. Then, for all 
eigenvalues λα there is a quantum state ρα = I

d + X, where X = X† and Tr (X) = 0, such that

Tm (ρα) =
I
d
+ λm

αX.� (A.2)

Proof.  Consider the projections to the irreducible subspaces Pα defined in (11). For a self-
adjoint operator X ∈ Md  we have that

Pα(X)† =
χα(e)
|G|

∑

g∈G

χα (g)U†
g XUg = Pα(X),

as we are summing over the whole group and χα (g−1) = χα (g). Therefore, we have that the 
Pα are hermiticity preserving. As the image of Pα is the eigenspace corresponding to the ir-
reps, we thus only have to show that there exists a self-adjoint X such that Pα(X) �= 0. But the 
existence of such an X is clear, as we may choose a basis of Md that consists of self-adjoint 
operators. Moreover, as for α not the trivial representation all eigenvectors are orthogonal to 
I, it follows that Tr (X) = 0 and that for ε > 0 small enough Id + εX is positive semidefinite. 
To finish the proof, note that simply irreducible channels always satisfy

�T(I) = I. □ 

Note that this also proves that the spectrum of irreducibly covariant channels is always 
real. That is, if we can prepare a state such as in (A.2), then we can perform the RB with this 
as an initial state and estimate the eigenvalue corresponding to each irrep. This would bypass 
the problems discussed in appendix A.1. The proof of theorem A.1 already hints a way of 
determining how to isolate the parameter: just apply the projector Pα to some states ρi . If the 
output is not zero, then we can in principle write down a state that ‘isolates’ the parameter 
as in the proof of theorem A.1. This idea was explored in [40] to obtain a way of isolating 
the parameters for irreducibly covariant channels and general representation under additional 
assumptions. However, in the case of the monomial unitary matrices discussed in section 7.1, 
we can examine the projections and see how to isolate the parameters. To isolate the parameter 
α in (55), we can prepare initial states ρ ∈ Dd that have 1/d as their diagonal elements and at 
least one nonzero off-diagonal element, as then the projector corresponding to β vanishes on ρ 
and does not vanish on the one corresponding to α. To isolate the parameter β, one can prepare 
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states ρ that are diagonal in the computational basis but are not the maximally mixed state, as 
can be seen by direct inspection.

Appendix B.  Statistical considerations

One of the main open questions left in our work is how to derive good confidence intervals 
for the average fidelity. For the case of the Clifford group, discussed in section 7.2, one can 
directly apply the results of [7, 8], but it is not clear how one should pick m and M for arbitrary 
finite groups. Especially in the case in which we are not working with Cliffords, it is not clear 
how many sequences per point, M, we should gather and how big m should be, as it depends 
on the choice of the algorithm picked for fitting the curve. As noted in appendix A.1, this is not 
a trivial problem from a numerical point of view. However, it is possible to obtain estimates on 
how much the observed survival probability deviates from its expectation value by just using 
Hoeffding’s inequality:

Theorem B.1.  Let F̄(m, E, ρ) be the observed average fidelity with M sequences and 
F(m, E, ρ) the average fidelity for any of the protocols discussed before and ε > 0. Then:

P(|F(m, E, ρ)− F̄(m, E, ρ)| � ε) � e−2Mε2
.� (B.1)

Proof.  This is just a straightforward application of Hoeffding’s inequality [52], as F̄(m, E, ρ) 
is just the empirical average of a random variable whose value is contained in [0, 1] and whose 
expectation value is F(m, E, ρ).� □ 

This bound is extremely general, as we did not even have to use any property of the random 
variables or of the group at hand. One should not expect it to perform well for specific cases 
and the scaling it gives is still undesirable for applications. Indeed, to assure we are 10−4 close 
to the expectation value with probability of 0.95, we need around 6 × 108 sequences, which is 
not feasible. Thus, it is necessary to derive more refined bounds for specific groups.

Appendix C.  Proof of theorem 17

Theorem C.1.  Let μ be the Haar measure on G and ν1, . . . , νm probability measures on G 
s.t.

‖µ− νk‖1 � εk,� (C.1)

for all 1 � k � m and εk � 0. Denote by ν̃  the distribution of (D1, . . . ,Dm) if we pick the Uk 
independently from νk  . Then

‖Tν̃,m(T)− T (T)m‖1→1 � 4

√√√√ log(|G|)
1 − |G|−1

m∑

k=1

εk.� (C.2)

Proof.  From lemma 16 it suffices to show

‖ν̃ − µ⊗m‖1 � 2

√√√√ log(|G|)
1 − |G|−1

m∑

k=1

εk,
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as the 1 → 1 norm contracts under quantum channels [41].
We will first show that

‖ν̃ − µ⊗m‖1 = ‖ ⊗m
k=1 νk − µ⊗m‖1.

We may rewrite the distribution ν̃  in terms of the νk  as follows:

P(D1 = g1,D2 = g2, . . . ,Dm = gm) =P(U1 = g1, U2 = g2g−1
1 , . . . , Um = gmg−1

m−1)

=ν1(g1)ν2(g2g−1
1 ) . . . νm(gmg−1

m−1),

as the Ugi  are independent.

Note that the map σ : Gm → Gm, (g1, . . . , gm) �→
(
g1, g2g−1

1 , . . . , gmg−1
m−1

)
 is bijective. 

Moreover, we have ν̃ = ⊗m
k=1νk ◦ σ. As the total variation norm is invariant under composi-

tions with bijections on the state space, we have

‖ν̃ − µ⊗m‖1 = ‖ ⊗m
k=1 νk ◦ σ − µ⊗m‖1 = ‖ ⊗m

k=1 νk − µ⊗m ◦ σ−1‖1 = ‖ ⊗m
k=1 νk − µ⊗m‖1,

where the last equality follows from the fact that the Haar measure is invariant under bijec-
tions. We will now bound ‖ ⊗m

k=1 νk − µ⊗m‖1. By Pinsker’s inequality [53], we have

‖ ⊗m
k=1 νk − µ⊗m‖2

1 � 4D
(
⊗m

k=1νk ||µ⊗m) = 4
m∑

k=1

D (νk ||µ) .� (C.3)

Here D is the relative entropy. In [53, theorem 1] they show that

D (νk ||µ) �
log(|G|)

1 − |G|−1 ‖µ− νk‖1

and from (42) it follows that

D (νk ||µ) �
log(|G|)

1 − |G|−1 εk.� (C.4)

Combining (C.4) with (C.3) and taking the square root yields the claim.� □ 

Appendix D.  Proof of theorem 20

Theorem D.1.  Let T be δ−covariant w.r.t. a unitary representation U : G → Md  of a finite 
group G, A a subset of G that generates G and is closed under inversion and δ > 0. Suppose 
we run the protocol above with b = t1(m−1ε) for some ε and m � b. Then

‖T (T)m − E(Sb,b+m+1)‖1→1 � ε+ O
(
δ2bm

)
.� (D.1)

Proof.  Let Tc and Tn be as in definition 19. Then we have

T (T) = (1 − δ)Tc + δT (Tn),

as Tc is already covariant, and
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T (T)m =(1 − δ)mTm
c + δ(1 − δ)m−1

m−1∑

j=0

T j
cT (Tn)Tm−j−1

c

+ δ2(1 − δ)m−2
∑

j1+j2+j3=m−2

T j1
c T (Tn)T j2

c T (Tn)T j3
c + O(δ3).

�

(D.2)

Moreover, as Tc is covariant w.r.t. this unitary representation, we have

E(Sb,m+b+1) = (1 − δm)Tc + δ(1 − δ)m−1
m−1∑

j=0

E
(
T j

cDm−jTnD∗
m−jT

m−j−1
c

)

+δ2(1 − δ)m−2
∑

j1+j2+j3=m−2

E
(
T j1

c Dj2+1TnD∗
j2+1T j2

c Dj3+1TnD∗
j3+1T j3

c

)
+ O(δ3).

�

(D.3)

It is clear that the terms of zero−order in δ in (D.2) and (D.3) coincide. Comparing each of the 
summands of first order we obtain:

E
(
T j

cDm−jTnD∗
m−jT

m−j−1
c

)
− T j

cT (Tn)Tm−j−1
c

=
∑

g∈G

(
νm−j(g)−

1
|G|

)
T j

cUgTnU∗
g Tm−j−1

c ,

where νm−j  is the distribution of Dm−j. Comparing the terms of second order we obtain:

E
(
T j1

c Dj2+1TnD∗
j2+1T j2

c Dj3+1TnD∗
j3+1T j3

c

)
− T j1

c T (Tn)T j2
c T (Tn)T j3

c

=
∑

g1,g2∈G

(
τj3+1,j2+1(g1, g2)−

1
|G|2

)
T j1

c Ug1 TnU∗
g1

T j2
c Ug2 TnU∗

g2
T j3

c .

Here τj3+1,j2+1 is the joint distribution of Dj3+1 and Dj2+1. Then, using arguments similar to 
those of theorem 17, we have that

‖T (T)m − E(Sb,m+1)‖1→1

� δ(1 − δ)m−1
m∑

j=1

‖νj − µ‖+ δ2(1 − δ)m−2
m−1∑

j1=1

m∑

j2=j1+1

‖τj1,j2 − µ⊗2‖1 + O(δ3).

Now, from our choice of b, we have ‖νj − µ‖1 � ε
m . Furthermore, we have that

τj1,j2(g1, g2) = P(Dj1 = Ug1 ,Dj2 = Ug2) = P(Dj2 = Ug2 |Dj1 = Ug1)P(Dj1 = Ug1).

By the construction of the Dj, it holds that

P(Dj2 = Ug2 |Dj1 = Ug1) = π j2−j1(g1, g2),

where π is the stochastic matrix of the chain generated by A. From this we obtain

∑

g1,g2∈G

∣∣∣∣τj1,j2(g1, g2)−
1

|G|2
∣∣∣∣ =

∑

g1,g2∈G

∣∣∣∣νj1(g1)π
j2−j1(g1, g2)−

1
|G|2

∣∣∣∣

�
∑

g1,g2∈G

∣∣∣∣νj1(g1)−
1
|G|

∣∣∣∣π j2−j1(g1, g2) +

∣∣∣∣
1
|G|π

j2−j1(g1, g2)−
1

|G|2
∣∣∣∣ .

�

(D.4)
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As the matrix π is doubly stochastic, summing over g2 first

∑

g1,g2∈G

∣∣∣∣νj1(g1)−
1
|G|

∣∣∣∣π j2−j1(g1, g2) =
∑

g1∈G

∣∣∣∣νj1(g1)−
1
|G|

∣∣∣∣ � εm−1,

which again follows from our choice of b. We now estimate the other term in (D.4),

m−1∑

j1=1

m∑

j2=j1+1

∑

g1,g2∈G

1
|G|

∣∣∣∣π j2−j1(g1, g2)−
1
|G|

∣∣∣∣ .� (D.5)

Note that for a fixed g1,

∑

g2∈G

∣∣∣∣π j2−j1(g1, g2)−
1
|G|

∣∣∣∣

is just the total variation distance between the Markov chain starting at g1 and the Haar meas-
ure after j2 − j1 steps. Thus, in case j2 − j1 � t1

(
εm−1

)
,

∑

g1,g2∈G

1
|G|

∣∣∣∣π j2−j1(g1, g2)−
1
|G|

∣∣∣∣ �
ε

m� (D.6)

and in case j2 − j1 � t1
(
εm−1

)
 we have the trivial estimate

∑

g1,g2∈G

1
|G|

∣∣∣∣π j2−j1(g1, g2)−
1
|G|

∣∣∣∣ � 2.� (D.7)

Combining inequalities (D.6) and (D.7), we obtain

m−1∑

j1=1

m∑

j2=j1+1

∑

g1,g2∈G

1
|G|

∣∣∣∣π j2−j1(g1, g2)−
1
|G|

∣∣∣∣ = O(mt1(εm−1)).

Putting all inequalities together, we obtain the claim.� □ 

Appendix E.  Proof of lemma 24

Lemma E.1 (Structure of channels covariant w.r.t. monomial unitaries).  Let 
MU(d, n) be such that n � 3 and T : Md → Md a quantum channel. Then the following are 
equivalent:

	 (i)	�T(ρ) = UT
(
U†ρU

)
U† ∀U ∈ MU(d, n), ρ ∈ Sd.

	(ii)	�There are α,β ∈ R so that

T(·) = Tr (·) I
d
+ α

(
id −

d∑

i=1

|i〉〈i| 〈i| · |i〉
)

+ β

(
d∑

i=1

|i〉〈i| 〈i| · |i〉 − Tr (·) I
d

)
.

�

(E.1)

Moreover, the terms in the r.h.s. of (55) are projections of rank 1, d2  −  d and d  −  1, respec-
tively.
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Proof.  (2) ⇒ (1) can be seen by direct inspection. In order to prove the converse, we con-

sider the Choi–Jamiolkowski state τT := 1
d

∑d
i,j=1 T

(
|i〉〈j|

)
⊗ |i〉〈j|. Then (1) is equivalent to 

the statement that τT commutes with all unitaries of the form U ⊗ Ū , U ∈ MU(d, n). That is, 
we have

d∑

i,j=1

U ⊗ Ū
(
T
(
|i〉〈j|

)
⊗ |i〉〈j|

)
(U ⊗ Ū)† =

d∑

i,j=1

T
(
|i〉〈j|

)
⊗ |i〉〈j| .

Restricting to the subgroup of diagonal unitaries in MU(d, n), for which U† = Ū, we have

d∑

i,j=1

ei(φj−φi)UT
(
|i〉〈j|

)
Ū ⊗ |i〉〈j| =

d∑

i,j=1

T
(
|i〉〈j|

)
⊗ |i〉〈j| ,

where eiφi is the ith diagonal entry of U. Comparing the tensor factors it follows that

ei(φj−φi)UT
(
|i〉〈j|

)
Ū = T

(
|i〉〈j|

)
.� (E.2)

We will now show that we have

τT =
d∑

i,j=1

Aij |i〉〈i| ⊗ |j〉〈j|+ Bij |i〉〈j| ⊗ |i〉〈j| .� (E.3)

We have

T(|i〉〈j|) =
d∑

k,l=1

ak,l |k〉〈l|

for some ak,l ∈ C. From (E.2) it follows that

d∑

k,l=1

ei(φk−φl)ak,l |k〉〈l| = ei(φi−φj)
d∑

k,l=1

ak,l |k〉〈l|� (E.4)

for all diagonal unitaries. Again comparing both sides of (E.4) we have ak,lei(φi−φj) = ei(φk−φl)ak,l. 
Suppose now i �= j. For ak,l �= 0 we have

ei(φi−φj) = ei(φk−φl)� (E.5)

for all diagonal entries of diagonal unitaries. If k, l, i and j are all pairwise distinct, we have 
i  =  k and j �= l or i �= k and j  =  l, then it is clear that we may always find a combination 
of φk,φl,φi  and φj such that (E.5) is not satisfied, a contradiction. For i  =  l and k  =  j, it is 
only possible to find such a combination for n  >  2, as otherwise φi − φj = −(φi − φj) always 
holds. This proves that we have

T (|i〉〈j|) = Bij |i〉〈j|� (E.6)

for i �= j. For i  =  j we have analogously that

UT(|i〉〈i|)Ū =
d∑

k,l=1

ei(φk−φl)ak,l |k〉〈l| =
d∑

k,l=1

ak,l |k〉〈l| .
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In this case, we have ak,l = ei(φk−φl)ak,l  for all possible phases of the form ei(φk−φl). It is then 
clear that ak,l  =  0 unless k  =  l by a similar argument as before. This gives

T (|i〉〈i|) =
d∑

j=1

Aij |j〉〈j| .� (E.7)

Putting together (E.7) and (E.6) implies (E.3). Next, we will exploit that τT commutes in 
addition with permutations of the form Uπ ⊗ Uπ for all π ∈ Sd. For i �= j this implies that 
Ai,j = Aπ(i),π( j) and Bi,j = Bπ(i),π( j) so that there is only one independent off-diagonal ele-
ment for each A and B. The case i  =  j leads to a third parameter that is a coefficient in front 
of 

∑
α |ii〉〈ii|. Translating this back to the level of projections then yields (55). The fact that 

the terms of (55) are projections can be seen by direct inspection. Note that the term corre
sponding to α is the difference of two projections, the identity and projection onto diagonal 
matrices. As the rank of the identity is d2 and the space of diagonal matrices has dimension d, 
we obtain the claim. The same reasoning applies to the term corresponding to β, as it is the dif-
ference of the projection onto diagonal matrices and the projection onto the maximally mixed 
state. The latter is a projection of rank 1, which yields a rank of d  −  1 for their difference.� □ 
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